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ABSTRACT

Cells sense and respond in spatially structured environments, including soils and
tissue. My Ph.D. projects centered on developing new theoretical models and
computational methods to understand how cells migrate in complex environments.

The first project is more theoretical in nature, leveraging information theory to study
how the spatial organization of cell signaling pathways are adapted to the cell’s nat-
ural environment. In tissue and soil, cells must localize to their targets by navigating
distributions of extracellular ligands that are spatially discontinuous, consisting of
local concentration peaks, due to binding a non-uniform network of ECM fibers. It
is unclear how cells navigate patchy environments while not getting trapped in local
concentration peaks. To answer this question, we framed navigation as a problem of
maximizing mutual information in space and developed a computational algorithm
for computing signaling pathway architectures that maximize mutual information
in simulated natural environments. We found that for cells in tissues and soils,
dynamic localization of membrane receptors dramatically boosts sensing precision
and enables cells to navigate to chemical sources 30 times faster, but this receptor
localization strategy is relatively inconsequential for cells in purely diffusive envi-
ronments. Further, we found that anisotropic receptor dynamics previously observed
in immune cells and growth cones are nearly optimal as predicted by our model.

The second project is more computational in nature, leveraging multiplexed tissue
imaging to understand T-cell migration in tumor microenvironments. Immunother-
apies can halt or slow down cancer progression by activating either endogenous
or engineered T-cells to detect and kill cancer cells. T-cells must infiltrate the tu-
mor core for immunotherapies to be effective. However, many solid tumors resist
T-cell infiltration, challenging the efficacy of current therapies. In collaboration
with clinician scientists at Cedars-Sinai Medical Center, we developed an integrated
deep learning framework, Morpheus, that takes large-scale spatial omics profiles of
patient tumors, and combines a formulation of T-cell infiltration prediction as a self-
supervised machine learning problem with a counterfactual optimization strategy to
generate minimal tumor perturbations predicted to boost T-cell infiltration. We ap-
plied Morpheus to 368 metastatic melanoma and colorectal cancer samples assayed
using 40-plex imaging mass cytometry, discovering cohort-dependent, combinato-
rial perturbations, involving CXCL9, CXCL10, CCL22 and CCL18 for melanoma
and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer, predicted to support
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T-cell infiltration across large patient cohorts. Using only raw image data, Morpheus
also identified distinct therapeutic strategies for different patient strata such as cancer
stage or fatty liver presence. Our work presents a paradigm for counterfactual-based
prediction and design of cancer therapeutics using spatial omics data.
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C h a p t e r 1

INTRODUCTION

1.1 Understanding cell migration in naturalistic environments
Traditional approaches to studying cell navigation often use highly simplified en-
vironmental models, where signals are either uniform or monotonic, neglecting
the complex spatial structure in natural cell environments (Berg, Howard C, and
Purcell, 1977; Hu et al., 2010; Mugler, Levchenko, and Nemenman, 2016; Endres
and Wingreen, 2008). Classic work, beginning with the seminal paper by Berg and
Purcell (1977), studied cell sensing in homogeneous environments (Berg, Howard
C, and Purcell, 1977). This and subsequent works were extended to study the de-
tection of spatially varying concentrations, where monotonic gradients remain the
canonical environmental model (Hu et al., 2010; Mugler, Levchenko, and Nemen-
man, 2016; Endres and Wingreen, 2008). Recent work has started to address spatial
complexity (Chou et al., 2011), but much work remains to understand how cell nav-
igation strategies are affected by natural signal distributions, particularly spatially
correlated fluctuations. Such complexity can pose challenges to cell engineering
applications, such as CAR-T cell responses to tumor microenvironments (Martinez
and Moon, 2019). Fundamentally, it is not clear what sense and response strategies
are well adapted to operate in environments where signals take on complex spatial
structures.

Modern signal processing theory shows that sensing strategies must adapt to the
statistics of the input signals, suggesting that spatial sensing in cells should be
adapted to the spatial structure of signaling molecules in the cells’ native environ-
ments (Candès and Wakin, 2008). For example, when designing electronic sensor
networks sensing spatial phenomena, adapting sensor placement to the spatial statis-
tic of the signal can significantly improve information acquisition (Krause, Singh,
and Guestrin, 2008). Furthermore, spatial navigation where sensing plays a key role
may also benefit from sensor placement adaptation, as suggested by work from both
robot and insect navigation (Iida and Nurzaman, 2016; Huston et al., 2015). For
example, when navigating turbulent plumes, locusts actively move their antennae to
odorant locations in order to acquire more information on source location (Huston
et al., 2015). In the context of cell navigation, interstitial gradients can potentially
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trap cells in local concentration peaks (Weber et al., 2013). Cells that can adapt
sensing to patchy structure of the gradient may overcome local traps.

1.2 Experimental tools for profiling tissue signaling environments
A major challenging in studying how cells migration in complex environments,
including tissue, is the difficulty associated with profiling the chemical cues present
in vivo. Recent advancements in spatial omics technologies enables us to capture
the spatial organization of cells and molecular signals in intact human tumors with
unprecedented molecular detail, revealing the relationship between localization of
different cell types and tens to thousands of molecular signals (Moffitt, Lundberg,
and Heyn, 2022). Migration of cells such as T-cells and tumor cells is modu-
lated by a rich array of signals within the tumor microenvironment (TME) such as
chemokines, adhesion molecules, tumor antigens, immune checkpoints, and their
cognate receptors (Lanitis et al., 2017). Recent advances in in situ molecular profil-
ing techniques, including spatial transcriptomic (Rodriques et al., 2019; Eng et al.,
2019) and proteomic (Giesen et al., 2014; Goltsev et al., 2018) methods, simulta-
neously capture the spatial relationship of tens to thousands of molecular signals
and cell localization in intact human tumors with micron-scale resolution. Imaging
mass cytometry (IMC) is one such technology that uses metal-labeled antibodies to
enable simultaneous detection of up to 40 antigens and transcripts in intact tissue
(Giesen et al., 2014).

1.3 Biomedical challenges associated with in vivo cell migration
The immune composition of the tumor microenvironment (TME) plays a crucial role
in determining patient prognosis and response to cancer immunotherapies (Fridman
et al., 2017; Binnewies, Mikhail, et al., 2018; Bruni, Angell, and Galon, 2020). Im-
munotherapies that alter the immune composition using transplanted or engineered
immune cells (chimeric antigen receptor T-cell therapy) or remove immunosup-
pressive signaling (checkpoint inhibitors) have shown exciting results in relapsed
and refractory tumors in hematological cancers and some solid tumors. However,
effective therapeutic strategies for most solid tumors remain limited (Hegde and
D. S. Chen, 2020; Choe, Williams, and Lim, 2020; Pitt et al., 2016). The TME is
a complex mixture of immune cells, including T-cells, B cells, natural killer cells,
and macrophages, as well as stromal cells and tumor cells (Fridman et al., 2017).
The interactions between these cells can either promote or suppress tumor growth
and progression, and ultimately impact patient outcomes. For example, high levels
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of tumor-infiltrating lymphocytes (TILs) in the TME are associated with improved
prognosis and response to immunotherapy across multiple cancer types (Haslam and
Prasad, 2019; Lee and Ruppin, 2019). Conversely, an immunosuppressive TME
characterized by low levels of TILs is associated with poor prognosis and reduced
response to immunotherapy (Pittet, Michielin, and Migliorini, 2022). Durable,
long-term clinical response of T-cell-based immunotherapies are often constrained
by a lack of T-cell infiltration into the tumor, as seen in classically “cold" tumors
such as triple-negative breast cancer or pancreatic cancer, which have seen little
benefit from immunotherapy (Bonaventura, Paola, et al., 2019; Savas et al., 2016;
Tsaur et al., 2021). The precise cellular and molecular factors that limit T-cell
infiltration into tumors is an open question.
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C h a p t e r 2

RECEPTOR LOCALIZATION MAXIMIZES INFORMATION
ACQUISITION IN NATURAL CELL ENVIRONMENTS

Wang, Zitong Jerry, and Matt Thomson (2022). “Localization of signaling receptors
maximizes cellular information acquisition in spatially structured natural envi-
ronments”. In: Cell Systems 13.7, pp. 530–546. doi: 10.1016/j.cels.2022.
05.004.

2.1 Abstract
Cells in natural environments like tissue or soil sense and respond to extracellular
ligands with intricately structured and non-monotonic spatial distributions that are
sculpted by processes such as fluid flow and substrate adhesion. In this work, we
show that spatial sensing and navigation can be optimized by adapting the spatial
organization of signaling pathways to the spatial structure of the environment. We
develop an information-theoretic framework for computing the optimal spatial or-
ganization of a sensing system for a given signaling environment. We find that
receptor localization maximizes information acquisition in simulated natural con-
texts, including tissue and soil. Receptor localization extends naturally to produce
a dynamic protocol for continuously redistributing signaling receptors, which when
implemented using simple feedback, boosts cell navigation efficiency by 30-fold.
Broadly, our framework readily adapts to studying how the spatial organization of
signaling components other than receptors can be modulated to improve cellular
information processing.

2.2 Introduction
Cells sense and respond in spatially structured environments, where signal distribu-
tions are determined by a range of chemical and physical processes from substrate
binding to fluid flow (Fowell and Kim, 2021). In tissue and soil, distributions of ex-
tracellular ligands can be spatially discontinuous, consisting of local ligand patches
(B.-G. Yang et al., 2007; M. Weber et al., 2013; Russo et al., 2016; Milde, Bergdorf,
and Koumoutsakos, 2008; Kicheva et al., 2007; Sarris et al., 2012; Kennedy et al.,
2006; Raynaud and Nunan, 2014; Hodge, 2006; De Anna et al., 2021; Nunan et
al., 2001; Lim et al., 2015; Philipsborn et al., 2006). In tissue, diffusive signal-

https://doi.org/10.1016/j.cels.2022.05.004
https://doi.org/10.1016/j.cels.2022.05.004
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ing molecules are transported by interstitial fluid through a porous medium. These
molecules are then captured by cells and a non-uniform network of extracellular ma-
trix (ECM) fibers, taking on a distribution that is stable and highly reticulated (B.-G.
Yang et al., 2007; Kennedy et al., 2006; M. Weber et al., 2013; Russo et al., 2016;
Kicheva et al., 2007; Sarris et al., 2012). For example, ECM-bound chemokine
(CCL21) gradients extending from lymphatic vessels take on stable spatial struc-
tures, characterized by regions of high ligand concentration separated by spatial
discontinuities (M. Weber et al., 2013). Similar observations have been made for
the distribution of other chemokines, axon guidance cues and morphogens in tissues
(Kicheva et al., 2007; Sarris et al., 2012; Kennedy et al., 2006; Lim et al., 2015).
In soil, a heterogeneous pore network influences the spatial distribution of nutrients
by dictating both the locations of nutrient sources as well as where nutrients likely
accumulate (Raynaud and Nunan, 2014; Hodge, 2006; De Anna et al., 2021; Nunan
et al., 2001). Free-living cells detect chemical cues released by patchy distributions
of microorganisms, where molecules are moved via fluid flow and diffusion (Ray-
naud and Nunan, 2014; Hodge, 2006). Cells in these and other natural environments
experience surface ligand profiles with varying concentration peaks, non-continuity
and large dynamic range (Kennedy et al., 2006; Dlamini, Kennedy, and Juncker,
2020), differing strongly from smoothly varying, purely diffusive environments.

Modern signal processing theory shows that sensing strategies must adapt to the
statistics of the input signals, suggesting that spatial sensing in cells should be
adapted to the spatial structure of signaling molecules in the cells’ native environ-
ments (Candès and Wakin, 2008). For example, when designing electronic sensor
networks sensing spatial phenomena, adapting sensor placement to the spatial statis-
tic of the signal can significantly improve information acquisition (Krause, Singh,
and Guestrin, 2008). Furthermore, spatial navigation where sensing plays a key role
may also benefit from sensor placement adaptation, as suggested by work from both
robot and insect navigation (Iida and Nurzaman, 2016; Huston et al., 2015). For
example, when navigating turbulent plumes, locusts actively move their antennae to
odorant locations in order to acquire more information on source location (Huston
et al., 2015). In the context of cell navigation, interstitial gradients can potentially
trap cells in local concentration peaks (M. Weber et al., 2013). Cells that can adapt
sensing to patchy structure of the gradient may overcome local traps.

Traditional approaches to studying cell sensing often use highly simplified envi-
ronmental models, where signals are either uniform or monotonic, neglecting the
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complex spatial structure in natural cell environments (Berg, Howard C, and Pur-
cell, 1977; Hu et al., 2010; Mugler, Levchenko, and Nemenman, 2016; Endres and
Wingreen, 2008). Classic work, beginning with the seminal paper by Berg and Pur-
cell (1977), studied cell sensing in homogeneous environments (Berg, Howard C,
and Purcell, 1977). This and subsequent works were extended to study the detection
of spatially varying concentrations, where monotonic gradients remain the canonical
environmental model (Hu et al., 2010; Mugler, Levchenko, and Nemenman, 2016;
Endres and Wingreen, 2008). Recent work has started to address spatial complexity
(Chou et al., 2011), but much work remains to understand how cell sensing strategies
are affected by natural signal distributions, particularly spatially correlated fluctua-
tions. Such complexity can pose challenges to cell engineering applications, such
as CAR-T cell responses to tumor microenvironments (Martinez and E. K. Moon,
2019). Fundamentally, it is not clear what sense and response strategies are well
adapted to operate in environments where signals take on complex spatial structures.

Interestingly, empirical observations suggest that cells might modulate the place-
ment of their surface receptors to exploit the spatial structure of ligand distribution
in its environment (Pignata et al., 2019; Bouzigues et al., 2007; Nieto et al., 1997;
Buul et al., 2003; Shimonaka et al., 2003; Yokosuka et al., 2005; Mossman et al.,
2005). For example, some axon guidance receptors can dynamically rearrange on
the surface of growth cones (Pignata et al., 2019; Bouzigues et al., 2007). In such
cases, receptors rearrange constantly, adjusting local surface densities in response
to changes in ligand distribution across the cell surface. Some chemokine receptors
in lymphocytes exhibit similar spatial dynamics (Nieto et al., 1997; Buul et al.,
2003; Shimonaka et al., 2003). However, other chemokine receptors remain uni-
form even when their ligands are distributed non-uniformly (Vicente-Manzanares
and Sánchez-Madrid, 2004). In addition, during antigen recognition, T-cell recep-
tors (TCRs) take on different placements, ranging from uniform to highly polarized,
depending on the density of antigen molecules on the surface of the opposing cell
(Majzner et al., 2020). Thus, across a diverse range of cell surface receptors, we see
different, even contradictory rearrangement behavior in response to changes in en-
vironmental structure. It remains unclear whether dynamic receptor rearrangement
has an overarching biological function across disparate biological contexts.

Inspired by previous works that applied information maximization principles to un-
derstand the design of biological systems for signal processing (Tkačik, Walczak,
and Bialek, 2009; Sokolowski and Tkačik, 2015; Monti, Lubensky, and Ten Wolde,
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2018; Tkačik, Callan, and Bialek, 2008; Dubuis et al., 2013; Petkova et al., 2019;
Tkačik and Gregor, 2021; Cheong et al., 2011), we formulated an information-
theoretic framework showing spatial localization of cell surface receptors is an
effective spatial sensing strategy in natural cell environments, but relatively incon-
sequential in purely diffusive environments. Our framework allows us to solve
for receptor placements that maximizes information acquisition in natural environ-
ments, while generating such environments using existing computational models of
tissue and soil microenvironments. We find that anisotropic receptor dynamics pre-
viously observed in cells are nearly optimal. Specifically, information acquisition
is maximized when receptors form localized patch at regions of maximal ligand
concentration. Optimizing receptor placement offers significant gain in information
acquisition over uniformly distributed receptors, but only in native cell habitats,
leading to an average of ∼ 1 bit of information gain in tissues and soils but only
∼ 0.01 bits in purely diffusive gradients. The optimal strategy maximizes infor-
mation by taking advantage of patchy ligand distribution in natural environments,
reallocating sensing resources to a small but high signal region on the cell surface,
while explicitly “ignoring” ligand information at low signal regions.

Our framework extends naturally to produce a dynamic protocol for continuously
relocalizing receptors in response to a dynamic environment. We show that a simple
feedback scheme implements this protocol within a cell, and significantly improves
cell navigation. Compared to cells with uniform receptor placement, cells using this
scheme achieve more than 30-fold improvement in their ability to localize to the
peak of simulated interstitial gradients. Furthermore, our model accurately predicts
spatial distribution of membrane receptors observed experimentally (Pignata et al.,
2019; Bouzigues et al., 2007; Nieto et al., 1997; Buul et al., 2003; Shimonaka
et al., 2003). Importantly, our framework easily extends to study how spatial
organization of many different cellular components, beyond receptor placement,
affects information processing (see Discussion). Taken together, our model serves
as a useful conceptual framework for understanding the role of spatial organization
of signal transduction pathways in cell sensing, and provides a sensing strategy that
is both effective in natural cell environments and amenable to cell engineering.
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2.3 Results
An optimal coding framework allows the computation of optimal receptor
placement given spatial signal statistics

Figure 2.1: Adapting receptor placements to signal (input) statistic of natural
cell environments (A) (Left) tuning sensor placement can boost the performance of
electronic sensor network. (Right) cell surface receptors also function as a sensor
network, taking as inputs ligand profiles C across the cell surface and producing
as outputs a profile of receptor activity A across the cell membrane. The optimal
receptor placement strategy 𝜙∗ : c → r maps each ligand profile to a receptor
placement, such that the mutual information 𝐼 (C;A) is maximized. (B) The
problem of optimal receptor placement formulated as a resource allocation problem
over parallel, noisy communication channels. The 𝑖-th channel represents the 𝑖-
th region of the cell membrane, with input 𝐶𝑖, output 𝐴𝑖 and receptor number 𝑟𝑖.
The input statistic 𝑝(c) depends on the environment, and the measurement kernel
𝑝(𝑎𝑖 |𝑐𝑖, 𝑟𝑖) is modeled as a Poisson counting process. The general formulation of
the optimal strategy 𝜙∗ allocates 𝑁 receptors to 𝑚 channels for each ligand profile
c, such that 𝐼 (C,A) is maximized (Equation 2.2). The local formulation selected
the receptor placement 𝜙∗(c) that maximizes 𝐼 (ĉ, â), where ĉ is a Poisson random
vector with mean equal to c (Equation 2.4).
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Figure 2.1: (continued) (C) i. Approximating input statistic by simulating natural
environments and sampling ligand profiles {c} by tiling cells uniformly across
the environment; ii. modeling ligand distribution in tissue microenvironment by
incorporating diffusion, advection, ECM binding, degradation, and cell uptakes.
iii. modeling ligand distribution in soil microenvironment by generating bacteria
distributed in spatial patches, releasing diffusive ligands.

We are interested in optimal strategies for a task we refer to as spatial sensing.
Spatial sensing is an inference task where a cell infers external profiles of varying
ligand level across its surface from an internal profile of varying receptor activity
across its membrane. This is a useful model task since optimizing performance on
this task should improve the cell’s ability to infer diverse environmental features.

We developed a theoretical framework to study whether manipulating the place-
ment of cell surface receptors can improve spatial sensing performance. Optimizing
spatial sensing by tuning receptor placement is analogous to optimizing distributed
electronic sensor network by adjusting the location of sensors, which has been ex-
tensively studied in signal processing (Krause, Singh, and Guestrin, 2008). In the
optimization of distributed sensor networks monitoring spatial phenomena (Fig-
ure 2.1A), it is well known that adjusting the placement of a limited number of
sensors can significantly boost sensing performance, where the optimal placement
strategy is dictated by the statistics of the input signals (Krause, Singh, and Guestrin,
2008; Caselton and Zidek, 1984). The collection of a limited number of receptors
on the cell surface also functions as a distributed sensor network, sensing a spatial
profile of varying ligand concentration (Figure 2.1A). Therefore, we hypothesized
that receptor placement can be tuned to improve spatial sensing, and that the optimal
strategy depends on the statistics of ligand profiles that cells typically encounter.
Unlike traditional works in sensor optimization which focuses on finding a single
"best" placement (Krause, Singh, and Guestrin, 2008), cells can rearrange their re-
ceptors within a matter of minutes (Bouzigues et al., 2007), leading to a potentially
much richer class of strategies.

Before presenting the general optimization problem, we set up the mathematical
framework through the lens of information theory. Consider a two-dimensional (2D)
cell with a 1D membrane surface. By discretizing the membrane into𝑚 equally sized
regions, we modeled the membrane-receptor system as 𝑚 parallel communication
channels (Figure 2.1B). The input to these𝑚 channels is C = (𝐶1, ..., 𝐶𝑚), where𝐶𝑖
is a random variable representing the amount of ligands at the 𝑖-th membrane region.
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The receptor profile r = (𝑟1, .., 𝑟𝑚) denotes the amount of receptors allocated to each
membrane region. The output A = (𝐴1, ..., 𝐴𝑚) is the amount of active receptors
across the membrane, which depends on c and r through 𝑝(A = a|c, r), the
measurement kernel. Consider a placement strategy 𝜙 : c → r, mapping a ligand
profile to a receptor placement (Figure 2.1B). For a fixed number of receptors 𝑁 ,
we are interested in the choice of 𝜙 that maximizes the mutual information 𝐼 (C;A)
between the channels’ inputs C and outputs A, defined as,

𝐼 (C;A) =
∑︁
c∈C

∑︁
a∈A

𝑝(c,a) log
𝑝(c,a)
𝑝(c)𝑝(a) . (2.1)

The mutual information, in units of bits, quantifies the "amount of information"
obtained about C by observing A. It is minimized when C and A are independent,
and maximized when one is a deterministic function of the other. Importantly, note
the choice of m (membrane bins) sets an upper bound on the mutual information,
hence sets the scale for all information value reported in this paper (see Supplement,
Section 2.10 for derivations of this relation). Mathematically, the optimal strategy
𝜙∗ can be written as

𝜙∗
𝑝(c) = argmax

∀c 𝜙(c)≥0∑
𝑖 𝜙𝑖 (c)=𝑁

𝐼 (C;A | 𝜙, 𝑝(c)), (2.2)

where 𝑁 is the total number of receptors which is taken to be a constant. Note the
mutual information converges towards its upper bound as 𝑁 increases (Figure 2.8A).
The mutual information is agnostic to the decoding process in that it does not assume
any details about downstream signaling, nor the exact environmental features a cell
may try to decode, expanding the scope of our results.

To solve for 𝜙∗, we needed to specify both a measurement kernel 𝑝(a|c, r) and
an input statistic 𝑝(c). We modeled 𝑝(a|c, r) assuming that each receptor binds
ligands locally and activates independently. Furthermore, each local sensing process
is modeled as a Poisson counting process. These assumptions yield the following
measurement kernel,

𝑝(A = a | C = c, r) =
𝑚∏
𝑖=1

𝜇𝑖
𝑎𝑖

𝑎𝑖!
𝑒−𝜇𝑖 , (2.3)

where 𝜇𝑖 = 𝑟𝑖 ( 𝑐𝑖
𝑐𝑖+𝐾𝑑 + 𝛼

𝐾𝑑
𝑐𝑖+𝐾𝑑 ) is the average number of active receptors at the 𝑖-th

membrane region. 𝐾𝑑 is the equilibrium dissociation constant and 𝛼 accounts for
constitutive activity of receptors observed in cells, including many GPCRs, which
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we take to be small (𝛼 ≪ 1) (Seifert and Wenzel-Seifert, 2002; Slack and Hall,
2012). The bracket term represents the probability of receptor activation, and the
fractional term 𝐾𝑑

𝑐𝑖+𝐾𝑑 ensures it is always less than 1 (Buchwald, 2019).

Next, we specify the input statistic 𝑝(c) for three classes of environments: soil,
tissue, and monotonic gradient. For each class of environment, we constructed 𝑝(c)
empirically, by computationally generating a ligand concentration field as the steady-
state solution of a partial-differential equation (PDE), and sampling ligand profiles
({c}) from them by evaluating the PDE solution around cells placed at different
spatial locations (Figure 2.1C-i) (for details see Supplement, Section 2.10). Putting
the empirical measure on the samples {c} approximates the true distribution of C.
For soil, we follow mathematical models from (Melke et al., 2010) and (Raynaud
and Nunan, 2014), modeling diffusive ligands released from a group of soil bacteria
whose spatial distribution agrees with the statistical properties of real soil colonies
(Figure 2.1C-iii, Figure 2.2A). For tissue, we adopted models from (Milde, Bergdorf,
and Koumoutsakos, 2008) and (Rejniak et al., 2013), where they modeled diffusive
ligands released from a localized source, perturbed by in vivo processes such as
interstitial fluid flow and heterogeneous ECM binding, leading to an immobilized
interstitial gradient (Figure 2.1C-ii, Figure 2.2B). We also considered a monotonic
gradient (Figure 2.2B) as an exponential fit to the simulated interstitial gradient.
Fitting ensures any difference between the two environments are due to differences
in local structures, not global features such as gradient decay length or average
concentration. It is important to note that the overall framework can accommodate
any choice of 𝑝(c) and 𝑝(a|c) beyond what we have considered.

We are interested in the functional relationship between ligand profiles {c} and their
optimal receptor placements {𝜙∗(c)}. To this end, we computed the optimal receptor
placement for each sampled profile c individually, reducing the general formulation
to a local formulation. Given ligand profile c, random vector ĉ represents local
fluctuations of c due to stochasticity of reaction-diffusion events. In the case of
unimolecular reaction-diffusion processes, it can be shown that ĉ is a Poisson vector
with mean equal to c, solution of the PDE. Therefore, we can solve for 𝜙∗(c) locally
by maximizing the mutual information between ĉ and the resulting output â,

𝜙∗(c) = argmax
r≥0∑
𝑖 𝑟𝑖=𝑁

𝐼 (ĉ, â | r), (2.4)

where 𝑝(â) = ∑
c 𝑝(â|ĉ = c)𝑝(ĉ = c). The main difference between the general

formulation of (2.2) and local formulation of (2.4) is their dependence on the input
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statistic 𝑝(c). In the general formulation, the strategy 𝜙∗
𝑝(c) is explicitly parametrized

by 𝑝(c). In the local formulation, 𝜙∗ is independent of the choice of 𝑝(c). However,
differences in 𝑝(c) between environments will still crucially affect the set of optimal
receptor profiles that cells will actually adopt. This is because changing 𝑝(c)
changes the region of the domain of 𝜙∗ that is most relevant, thus changing the
optimal receptor profiles that are actually used in different environments. For
example, suppose environment A and B have input statistic 𝑝𝐴 and 𝑝𝐵, and any
ligand profile observed in A is not observed in B, and vice versa. Although 𝜙∗ is
the same between A and B, this function is being evaluated on entirely different
ligand profiles in A compared to B, so that receptor profiles observed in the two
environment will likely be very different, in ways dictated by differences between
their input statistic 𝑝𝐴 and 𝑝𝐵. As a result, the statistical structure over the space of
ligand profiles plays an important role in determining which receptor placement is
effective, even when the placements are computed locally for each ligand profile.
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Receptor localization yields optimal spatial sensing in natural environments

Figure 2.2: Receptor localization optimizes information acquisition in natural
environments. (A), computationally generated ligand concentration fields using
PDE models of soil (left), tissue (interstitium) (middle), and simple exponential
gradient (right, fitted to tissue with correlation index 𝑅2 = 0.98). (B), i) Example
of optimal receptor profile 𝜙∗(c) (colored) and the corresponding ligand profile
c (gray); ii) entropy for each optimal receptor placements in {𝜙∗(c)} colored by
environment, colored triangles indicate the entropy of three receptor placements
shown in i). (C), optimal efficacy 𝜂 colored by environments.
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Figure 2.2: (continued) (D), i) efficacy for soils of varying values of 𝜎2
bacteria, ii)

efficacy for tissue with varying values of 𝑘ECM, and for exponential gradients fitted
to each tissue (gradient). Stars correspond to parameter values used to generate
Panel A–C and E. (E), scatterplot where each dot corresponds to a single pair of c
and 𝜙∗(c), where c is sampled from environments as illustrated in Figure 2.1C-i;
𝜂c is defined in Equation 2.8. Across all panels, 𝑁 = 1000, 𝐾𝑑 = 40𝑛𝑀 , 𝛼 = 0.1,
𝑚 = 100.

Optimal strategies of receptor placement are similar for soil and tissue environment,
where receptors are highly localized within membrane positions experiencing high
ligand concentrations. Figure 2.2B-i shows three examples of optimal receptor
placements 𝜙∗(c) (colored) with the corresponding ligand profile c, one from each
class of environments shown in Figure 2.2A. In all three cases, the peak of each opti-
mal receptor profile is oriented towards the position of highest ligand concentration.
Compared to monotonic gradient, receptor profiles optimized for the ligand profiles
sampled from tissue and soil are highly localized, with around 80% of receptors
found within 10% of the membrane. In general, the optimal strategy consistently
allocates more receptors to regions of higher ligand concentration, but in a highly
nonlinear manner. Figure 2.2B-iii shows, across all sampled ligand profiles {c},
the peak of receptor profiles always align with the peak of ligand profiles. But in-
stead of allocating receptors proportional to ligand level, receptors tend to be highly
localized to a few membrane positions with the highest ligand concentrations.

Indeed, Figure 2.2B-ii shows that optimal receptor profiles tend to have low entropy.
The entropy of receptor profile r, defined as 𝐻 (r) = −∑

𝑖
𝑟𝑖
𝑁

log
( 𝑟𝑖
𝑁

)
, can be used

as a measure of localization. Note the maximal value of this entropy measure is
limited by the number of membrane bins m. Low entropy corresponds to recep-
tor profiles where most receptors are concentrated to a few membrane positions,
forming localized patches. Such high degree of localization is partly explained by
low receptor numbers. When receptors are limited, information gain per receptor
within each membrane channel is approximately independent of receptor number
(for details see Supplement, Section 2.10). Thus, the optimal solution allocates all
receptors to the channel with the highest information content (see Figure 2.9). In
addition, receptors are more localized for sensing in soil and tissue because locally,
they exhibit greater spatial variations in ligand concentration compared to simple
gradients (Figure 2.2A) (for details see Supplement, Section 2.10). Absolute ligand
concentration also influences the optimal strategy, which we take to be dilute in
agreement with empirical measurements (Xiangdan Wang et al., 2008; Clark et al.,
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2015). In saturating environments, the optimal solution completely switches, al-
locating most receptors to regions of lowest ligand concentrations (for details see
Supplement, Section 2.10, Figure 2.10). In summary, the optimal placement strat-
egy 𝜙∗ in the environments studied can be approximated by a simple scheme, where
receptors localize to form patches at positions of high ligand concentration.

Optimally placed receptors significantly improve information acquisition relative to
uniform receptors, especially in soil and tissue environments. To make this statement
precise, we quantified the efficacy of a receptor placement strategy 𝜙 : c → r with
respect to a set of ligand profiles {c}. First, we denote by 𝐼𝜙 the average information
cells acquire by adapting a the placement strategy 𝜙,

𝐼𝜙 = ⟨𝐼 (ĉ; â | 𝜙)⟩c (2.5)

where ⟨·⟩c denotes averaging across the set of sample ligand profiles {c}, and recall ĉ
is a Poisson-distributed random vector with mean c. The efficacy of 𝜙 is the absolute
increase in average information cells acquire by adapting the strategy 𝜙 compared
to a uniform strategy 𝜙𝑢, where receptors are always uniformly distributed,

𝜂(𝜙) = 𝐼𝜙 − 𝐼𝜙u , (2.6)

We are specifically interested in the optimal efficacy 𝜂(𝜙∗), and refer to it as 𝜂 when
the dependency is clear from context. Since we will often compare the optimal
and uniform strategy, we will denote 𝐼𝜙∗ as 𝐼opt and 𝐼𝜙𝑢 as 𝐼unif . For a particular
𝜂(𝜙∗), the set of ligand profiles {c} referred to in its definition is always the same
set that 𝜙∗ is optimized for. The larger 𝜂 is, the more beneficial it is for cells to place
receptors optimally rather than uniformly. We found that 𝜂 is an order of magnitude
larger for soil and tissue environment compared to a simple gradient (Figure 2.2C).
This difference persists across cells of different size and across a wide range of
receptor parameter values (Figure 2.2C, Figure 2.7B, Figure 2.11). In other words,
placing receptors optimally rather than uniformly benefits cells in complex, natural
environments significantly more than cells in simple, monotonic gradients. Note
that differences between tissue and monotonic gradient are due to differences in
local spatial structure, not global features such as gradient decay length or global
average concentration, as both parameters were made to be identical between the two
environments. Lastly, although the mutual information is an exponential measure,
so an improvement by one bit has different meaning depending on the baseline 𝐼unif ,
this fact does not hinder interpretation of 𝜂 as 𝐼unif is similar between the three
environments (Figure 2.11A).
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In addition to the large difference in information gain (𝜂) between natural envi-
ronments and simple gradients, Figure 2.11 shows similar differences exist when
comparing other metrics assessing the benefit of optimizing receptor placement,
such as the relative information gain ((𝐼opt − 𝐼unif)/𝐼unif) and the absolute increase in
the number of distinguishable input signals (2𝐼opt − 2𝐼unif ). For example, optimizing
receptor placement increases the number of distinguishable input states by 40 in
tissue, while optimizing the same receptors in the fitted gradient leads to an increase
of 1 (Figure 2.11A). Note that in the limit of strong constitutive receptor activ-
ity, all placement strategies become equivalent to uniformly distributed receptors.
Since receptor activation in the absence of ligands reduces statistical dependence
between ligand level and receptor activity, the average information acquisition 𝐼𝜙
for any strategy 𝜙 converges to zero, driving information gain 𝜂(𝜙) compared to the
uniform strategy to zero (Figure 2.11A).

For both soil and tissue environment, the optimal efficacy 𝜂 depends on a key
parameter in their respective PDE model. We illustrate this dependence by adjusting
the value of each respective parameter, sampling new ligand profiles {c}, solving for
optimal placements {𝜙∗(c)}, and computing 𝜂. Figure 2.2D shows how 𝜂 changes
as we adjust environmental parameters. In soil, 𝜂 drops substantially as ligand
sources (bacteria) become more aggregated (Figure 2.2D-i), corresponding to an
increase in the parameter 𝜎2

bacteria of the random process used to model bacterial
distribution (star corresponds to empirical value from (Raynaud and Nunan, 2014)).
This result is intuitive since increasing the extent of aggregation of sources makes
the environment appear more like a simple gradient generated from a single ligand
source. In tissue, optimal efficacy dropped when most ligands were found in solution,
instead of bound to the ECM (Figure 2.2D-ii), corresponding to low ECM binding
rate (𝑘ECM). For reference, star indicates the empirical value of 𝑘ECM for the
chemokine CXCL13 (B.-G. Yang et al., 2007). Compared to its fitted monotonic
gradient, 𝜂 in the interstitial gradient remain significantly higher for all ECM binding
rates (Figure 2.2D-ii). In tissue, gradients made up of ECM-bound ligands are
ubiquitous, suggesting the optimization of receptor placement is highly relevant.

Optimal efficacy (𝜂) is larger in soil and tissue because ligand profiles that cells
encounter in such environments tend to be more patchy, having most of the ligands
concentrated in a small subset of membrane regions. We make this statement precise
by quantifying patchiness of a ligand profile c using a measure of sparsity,

sparsity(c) = 1 − c

cRMS
, (2.7)
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where the root-mean-square cRMS =

√︃
1
𝑚

∑
𝑖 𝑐

2
𝑖

and c = 1
𝑚

∑
𝑖 𝑐𝑖 is the average

concentration of c across the membrane. A ligand profile with a sparsity of one has
all ligands contained in a single membrane region, whereas a uniform distribution
of ligands has a sparsity of zero. Next, we defined an efficacy measure 𝜂c for each
ligand profile c,

𝜂c = 𝐼 (ĉ; â | 𝜙∗) − 𝐼 (ĉ; â | 𝜙𝑢) = 𝐼opt,𝑐 − 𝐼unif,𝑐, (2.8)

where again 𝜙𝑢 denotes uniform receptor distribution. Unlike 𝜂 as defined in
Equation 2.6, 𝜂c does not involve the averaging across the entire set {c} through
⟨·⟩c, it measures improvement in information gain for only a single ligand profile c.
The larger 𝜂c is, the more useful the optimal placement is for sensing c compared to
a uniform profile. Each dot in Figure 2.2E corresponds to a ligand profile sampled
from an environment, as illustrated in Figure 2.1C-i. Figure 2.2E shows that 1) across
a wide range of concentrations, sparser ligand profiles tend to induce higher efficacy
𝜂c, and 2) ligand profiles sampled from soil and tissue tend to be sparser compared to
profiles from the corresponding monotonic gradient. Taken together, since signals
cells encounter in natural environments tend to have sparse concentration profiles,
cells can improve their spatial sensing performance by localizing receptors to regions
of high ligand concentration.

In summary, the value of optimizing receptor placement as a sensing strategy de-
pends strongly on the environmental structure. Patchy ligand distribution found in
tissues and soils makes optimizing receptor placement a highly effective sensing
strategy. Our result demonstrates that uncovering effective cell sensing strategies
requires a careful consideration of the spatial structure of the cells’ natural habitat.
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Spatial sensing via the optimal strategy is robust to imprecise placements caused
by biological constraints

Figure 2.3: Optimal efficacy 𝜂(𝜙∗) is robust to minor deviations in receptor place-
ment away from the optimal form. (A), the effect of different degrees of shifting
and flattening applied to a receptor profile (black curve). (B), colors of heat map
represent ratio of perturbed efficacy 𝜂(𝜙𝑝) to optimal efficacy 𝜂(𝜙∗) for different
combinations of shifting and flattening, computed for ligand profiles {c} sampled
from either soil or tissue; call-out boxes corresponds to different sets of perturba-
tions, showing the average of the optimal {𝜙∗(c)} (gray) and perturbed {𝜙𝑝 (c)}
(red) receptor placements, after all ligand profile peaks were centered; red number
indicates the value on heat map; cell radius = 10 µm.

Despite the optimal strategy 𝜙∗ being highly localized and precisely oriented, we
found that neither features are necessary to achieve high efficacy. Given the stochas-
tic nature of biochemical processes in cells, this robustness is crucial as it makes the
strategy feasible in cells. Fortunately, receptors do not need to adopt 𝜙∗ precisely
in order to obtain substantial information gain. To illustrate, we perturb the optimal
placements and show that sensing efficacy persists when receptors partially align
with ligand peak and localize weakly. For soil and tissue, we circularly shift and flat-
ten (by applying a moving average) all optimal receptor profiles {𝜙∗(c)} computed
from sample ligand profiles to obtain {𝜙𝑝 (c)}, the corresponding set of perturbed
profiles. Different degrees of shifting and flattening represents different degrees of
misalignment and weakened localization, respectively. Figure 2.3A shows results
of different perturbations (colored) applied to a receptor profile (black). To assess
the effect of these perturbations on sensing, we compute the efficacy 𝜂(𝜙𝑝) of the
perturbed profiles, and compare it to the optimal efficacy 𝜂(𝜙∗). The heatmap in
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Figure 2.3B shows the ratio of perturbed to optimal efficacy for various combina-
tions of perturbations, across soil and tissue. Figure 2.3B-i shows two examples of
perturbations (red dots) that drastically alter the receptor profile while still achiev-
ing high efficacy. The red and gray curve in the call-out box represents what the
"average" perturbed and optimal profiles look like, respectively. They are obtained
by circularly shifting each profile in {𝜙𝑝 (c)} and {𝜙∗(c)} so the peak of c is center,
followed by averaging across the set of shifted profiles element-wise. Clearly, highly
localized receptors (> 80% of receptors found within 10% of membrane) are not
necessary for effective sensing. In fact, compared to uniformly distributed recep-
tors, a modest enrichment of receptors oriented towards the ligand peak (4 folds
relative to uniform) already provides significant information gain (Figure 2.3B) —
a behavior of membrane receptors that has been observed in cells (McClure et al.,
2015). Such robustness holds across different cell sizes and efficacy metric (Fig-
ure 2.12). In tissue, the heatmap of Figure 2.3B-i also shows that weakly localized
receptors (large flatten factor) are more robust to misalignment (large shift factor).
Altogether, this robustness (Figure 2.3) suggest that biochemical implementations
of receptor localization could improve sensing in natural or engineered cells even in
the presence of stochastic fluctuations that induce imperfect localization. Moreover,
receptor localization previously observed in cells is sufficient to obtain significant
information gain.



20

Optimization framework extends naturally to produce a dynamic protocol for
sensing time-varying ligand profiles

Figure 2.4: A dynamic receptor placement protocol based on maximizing rate
of information gain. (A), schematic showing a cell moving along a path (gray
curve) sensing a sequence of ligand profiles {c𝑡} at points (crosses) along the path,
using receptor placements {r∗𝑡 } generated by the dynamic protocol. (B), accounting
for transport cost, the optimal placement strategy is modified to localize receptors to
an intermediate position between subsequent ligand peaks or form multiple receptor
peaks.

Our framework extends naturally to produce a dynamic protocol for rearranging re-
ceptors in response to dynamically changing ligand profiles. So far, we have viewed
ligand profiles as static snapshots and considered instantaneous protocols for recep-
tor placement. In reality, cells sense while actively exploring their environment,
so that the ligand profile it experiences is changing in time, both due to intrinsic
changes in the environment state as well as due to the motion of the cell. As the
ligand profile c𝑡 changes over time, we want the receptor profile r𝑡 to change in an
"efficient" manner to improve information acquisition (Figure 2.4A). Specifically,
we obtain a dynamic protocol by extending our framework to account for both in-
formation acquisition and a “cost” for changing receptor location. We quantify this
cost using the Wasserstein-1 distance 𝑊1(r𝐴, r𝐵), which is the minimum distance
receptors must move across the cell surface to redistribute from profile r𝐴 to r𝐵

(for details see Supplement, Section 2.10). For a cell sensing a sequence of ligand
profiles {c𝑡}𝑇𝑡=1 over time, the optimal receptor placement r∗𝑡 for c𝑡 now depends
additionally on r∗

𝑡−1, the optimal placement for the previous ligand profile,

r∗𝑡 = argmax
r≥0∑
𝑖 𝑟𝑖=𝑁

𝐼 (ĉ𝑡 ; â | r) − 𝛾𝑊1
(
r∗𝑡−1, r

)
, (2.9)



21

where 𝑝(â) =
∑

c 𝑝(â|ĉ𝑡)𝑝(ĉ𝑡), and 𝛾 ≥ 0 represents the cost of moving one
receptor per unit distance. The cost 𝛾 implicitly encodes a time scale for receptor re-
distribution. Smaller 𝛾 means less “cost” is associated with redistributing receptors,
hence the receptor profile becomes more dynamic. The exact relationship between
𝛾 and the speed of receptor redistribution depends on both receptor properties and
the environment, see Figure 2.13A–D for an example of how receptor speed scales
with 𝛾. For 𝛾 = 0, this formulation reduces to the original formulation of Equa-
tion 2.4. This dynamic formulation admits a natural interpretation as maximizing
information rate (information per receptor-distance moved) instead of absolute in-
formation. For 𝑡 = 1, we define 𝑟∗𝑡 according to the original formulation. Hence,
we refer to the dynamic protocol of Equation 2.9 as the general optimal strategy
since it encompasses 𝜙∗. Figure 2.4B illustrates two salient features of this dynamic
protocol. Firstly (left), when the peak of the previous receptor profile r∗

𝑡−1 is near
the peak of the current ligand profile c𝑡 , r∗𝑡 is obtained by shifting receptors towards
the current ligand peak but not aligning fully. Secondly (right), when the peak of
the previous receptor profile is far from the current ligand peak, some receptors are
moved to form an additional patch at the current ligand peak refer to Figure 2.13F
to see how changing 𝛾 affects the receptor behavior in Figure 2.4B). Receptor prop-
erties such as the strength of constitutive receptor activity (𝛼) also affect receptor
redistribution dynamics. Decreasing 𝛼 increases mutual information, making the
cost of redistribution less relevant, leading receptors to localize more readily to align
with new ligand peaks (Figure 2.13E). Although the formulation of Equation 2.9 is
quite complex, this general optimal strategy can be achieved by a simple receptor
feedback scheme.



22

Simple feedback scheme rearranges receptors to achieve near-optimal infor-
mation acquisition

Figure 2.5: Positive feedback scheme redistributes receptors to achieve near-
optimal sensing efficacy for both static and dynamic signals. (A), the cell is
modeled as a one-dimensional membrane lattice with a well-mixed cytosol. Re-
ceptors are subject to three redistribution mechanisms: endocytosis (𝑘off), activity-
dependent incorporation into membrane (ℎ𝐴𝑖𝑅cyto), membrane diffusion (𝑑𝑚); Value
of ℎ sets the feedback strength between receptor activity and the rate with which
receptors incorporate into the membrane; ℎ = 4 × 10−3 s−1, 𝑑𝑚 = 1 × 10−2 µm2 s−1,
𝑘off = 1× 10−1 s−1 (see Supplement, Table 2.2). (B), receptor profiles (yellow) gen-
erated by simulating the feedback scheme for an initially uniform set of receptors,
against a static ligand profile from tissue and soil. (C), ratio of scheme efficacy
𝜂(𝜙𝑠) to optimal efficacy 𝜂(𝜙∗) for static signals {c} sampled from soil and tissue,
stars indicate parameter values used for simulation in Panel B. (D), (top) kymograph
showing the entire temporal sequence of receptor profiles of a moving cell; (bottom)
position of ligand peak aligned in time with position of receptor peak as generated
by the feedback scheme.
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Figure 2.5: (continued) (E), snapshots of receptor profiles taken at select time
points. (F), ratio of scheme efficacy 𝜂(𝜙𝑠) to optimal efficacy 𝜂(𝜙∗) for a sequence
of signals {c𝑡} sampled by translating a cell through soil and tissue environment,
stars indicate parameter values used for simulation in Panel D-E; cell radius = 10𝜇𝑚
(see Figure 2.15B-C for results with cell radius = 5𝜇𝑚). (G), histogram showing
the distribution of ligand peak (gray) and receptor peak (yellow) position on the
membrane of the cell from Panel D, dashed black line indicates the direction of
the global gradient with respect to membrane positions. See Table 2.2 for feedback
scheme simulation parameters.

A positive feedback scheme implements the general optimal strategy (Equation 2.9),
organizing receptors into localized pole(s) to achieve near-optimal information ac-
quisition. Asymmetric protein localization is a fundamental building block of
many complex spatial behavior in cells, involved in sensing, movement, growth,
and division (Macara and Mili, 2008). Many natural localization circuits are well-
characterized down to molecular details (Hegemann et al., 2015; Zhu et al., 2020).
In fact, even synthetic networks have been experimentally constructed in yeast, ca-
pable of reliably organizing membrane-bound proteins into one or more localized
poles (Chau et al., 2012). Such works demonstrate the feasibility of engineering
new spatial organization systems in cells.

Using a PDE model of a receptor redistribution scheme, we show that simple, local
interactions can redistribute receptors to achieve near-optimal information acquisi-
tion, for both static and dynamic signals. Figure 2.5A illustrates the three redistri-
bution processes (arrows) in our feedback scheme that affects receptor distribution
(𝑟), which can be expressed mathematically as

𝜕𝑟 (𝑥, 𝑡)
𝜕𝑡

= 𝐷∇2
memb𝑟 − 𝑘off 𝑟 + ℎ𝐴𝑅cyto, (2.10)

where 𝑥 denotes membrane position and 𝑡 denotes time. The first term repre-
sents lateral diffusion of receptors on the membrane with uniform diffusivity 𝐷.
The second term represents endocytosis of receptors with rate 𝑘off. The last term
represents recruitment/incorporation of receptors to membrane position 𝑖 from a
homogeneous cytoplasmic pool (𝑅cyto) with rates ℎ𝐴𝑖, where ℎ a proportionality
constant and 𝐴𝑖 is the local receptor activity (see Supplement, Section 2.10 for
simulation detail, including how parameter values were derived from literature).
This activity-dependent receptor recruitment provides the necessary feedback that
enables ligand-dependent receptor redistribution. Recent works suggest activity-
dependent receptor recruitment can be achieved through biased docking and fusion
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of secretory vesicles carrying the receptors to regions of high receptor activity
(Xin Wang et al., 2019; Hegemann et al., 2015; Kinoshita-Kawada et al., 2019).
Budding yeasts Ste2 receptors achieve this feedback using an interacting loop with
intracellular polarity factor Cdc42 (Hegemann et al., 2015). Note that our feedback
scheme is only meant to illustrate one possible implementation of the dynamic rear-
rangement protocol. Feasible alternatives such as activity-dependent endocytosis or
microtubule-dependent receptor redistribution have also been proposed, providing a
range of biochemical strategies for implementation (Bouzigues et al., 2007; Suchkov
et al., 2010).

Given a fixed ligand profile c, Figure 2.5B shows our feedback scheme can, within
minutes, localize receptors (yellow) towards the position of maximum ligand con-
centration. This localization dynamic is robust to changes in 𝑘off and ℎ across at
least an order of magnitude (Figure 2.15A). We denote the steady-state receptor
profile generated by our scheme in response to ligand profile c as 𝜙𝑠 (c). As Fig-
ure 2.5B shows, scheme-generated profiles are far less localized than their optimal
counterpart 𝜙∗(c). Despite this, Figure 2.5C shows scheme efficacy 𝜂(𝜙𝑠) are close
to that of the optimal value 𝜂(𝜙∗). Recall 𝜂(𝜙∗) measures the absolute increase in
average information acquired using optimally placed instead of uniform receptors.
Therefore, the scheme efficacy 𝜂(𝜙𝑠) makes a similar comparison between scheme-
driven and uniform receptors. In Figure 2.5C, we see scheme efficacy is robust
to variations in both endocytosis (𝑘off) and average membrane incorporation rate
(⟨ℎ𝐴𝑖⟩𝑖), with other parameters fixed to empirical values (Marco et al., 2007). Stars
represent parameters used to simulate profiles in Figure 2.5B.

Our feedback scheme (Equation 2.10) can continuously rearrange receptors in re-
sponse to changes in ligand profile, exhibiting dynamics similar to the optimal
dynamic protocol (Equation 2.9). Figure 2.5D-E shows a time-varying receptor
profile, generated by the feedback scheme in a cell translating across the tissue
environment. In this dynamic setting, the scheme can still induce asymmetric re-
distribution of receptors. Figure 2.5D (top) shows this dynamic asymmetry through
a kymograph of a sequence of receptor profiles {𝜙𝑠 (c𝑡)}. As desired, snapshots
along this sequence show receptors localize towards regions of high ligand concen-
tration (Figure 2.5E). Receptor placements generated by our scheme exhibit features
of the dynamic protocol shown in Figure 2.4B. First, as the ligand peak changes
position slightly, the receptor peak gets shifted in the same direction after a delay.
Figure 2.5D (bottom) illustrates this phenomena by aligning the time trace of both
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peak positions . Here, a shift in the ligand peak (gray) is often followed by a cor-
responding shift in receptor peak (yellow) after an appreciable delay, hence there
is only partial peak-to-peak alignment. Second, if the ligand peak changes posi-
tion abruptly, a second receptor peak forms, oriented towards with the new ligand
peak. Figure 2.5E-iii illustrates this clearly by showing a new receptor peak forming
precisely after a large shift in ligand peak position (Figure 2.5D). We assess the per-
formance of our scheme by comparing scheme-generated placements {𝜙𝑠 (c)} and
optimal placements {𝜙∗(c)} corresponding to the same sequence of ligand profiles
{c𝑡}. Figure 2.5F shows that for cells moving in soil and tissue, scheme efficacy
𝜂(𝜙𝑠) (star) is not far from the optimal value 𝜂(𝜙∗). Furthermore, scheme efficacy
is robust to variations in endocytosis (𝑘off) and average incorporation rate (⟨ℎ𝑎𝑖⟩𝑖).
Taken together, our feedback scheme organizes receptors to achieve near-optimal
information acquisition, in both static and dynamic environments.

Our feedback scheme can align receptors with the global gradient direction, sug-
gesting that this scheme may allow cells to escape local ligand concentration peaks
within interstitial gradients. On the one hand, Figure 2.5G shows that the peak of
ligand profiles (gray), as experienced by cells, do not always agree with the direc-
tion of the global gradient (dashed line) — a known feature of interstitial gradients
(M. Weber et al., 2013). On the other hand, receptors organized by the feedback
scheme (yellow) align very well with the global gradient direction. This effect of the
feedback scheme comes from its ability to localize receptors and account for past
receptor profiles. The latter allows the current receptor profile to carry memory of
past ligand profiles that the cell has encountered, enabling a form of spatial averaging
over ligand peaks. This alignment of receptors to the global gradient should pro-
vide significant boost to cell navigation performance, especially in non-monotonic,
interstitial gradients.
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Feedback scheme enables cells to search quickly and localize precisely in sim-
ulated interstitial gradients

Figure 2.6: In simulated interstitial gradient, cells localize to source quickly and
precisely when receptors are redistributed by the feedback scheme instead of
uniformly distributed. (A), (left) interstitial CCL21 gradient, (right) white curves
represent haptotactic trajectories of dendritic cells (M. Weber et al., 2013). (B), (top)
schematic of a navigation task where a cell (green flag) in a region of an interstitial
gradient move towards the source (red flag) by sensing spatially distributed ligands
by decoding source direction locally; the ligand field shown is a region of the tissue
environment in Figure 2.2A obtained through PDE simulation (see Supplement,
Section 2.10); (bottom) red curve shows the tissue ligand field averaged over the
y-direction, and black curve is the fitted exponential gradient, scale bar: 10 µm.
(C), sample trajectories of repeated simulations of cells navigating with uniform
receptors (blue) and with scheme-driven receptors (orange), all scale bars: 10 µm.
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Figure 2.6: (continued) (D), (left) histogram of time taken to reach source across
600 cells at different starting positions of equal distance from source. note the
rightmost bar includes all cells that did not reach the source after 8 hours; (right)
bar plot showing percentage of runs completed in 1 hrs (success rate), see also
Figure 2.16 for success rate across different simulation parameters. (E), same type
of data as in Panel D for cells navigating in an exponential gradient (fitted to the
interstitial gradient used to generate Panel D). (F), red stripes (left) represent growth
cones moving within specific lamina along a Slit gradient (right schematic), an
ellipse-shaped cell used for this simulation to mimic navigating growth cone, scale
bar: 40 µm (Xiao and Baier, 2007). (G), (top) schematic of a navigation task where
a cell (green flag) senses its environment in order to remain close to source. solid
white line represents cell trajectory, dotted white line demarcates a distance of 5 µm
from ligand source. (see Table 2.3 for tissue simulation parameters), (bottom) red
curve shows the tissue ligand field averaged over the y-direction, and black curve is
the fitted exponential gradient, scale bar: 2 µm. (H), sample trajectories of repeated
simulations of cells performing task with either uniform or scheme-driven receptors,
all scale bars: 2 µm. (I), (left) histogram of time spent by cell at various distance from
the ligand source. (measured from source to farthest point on cell, perpendicular
to source edge) aggregated across 600 cells starting at different positions, moving
at 2 hours near the ligand source; (right) bar plot shows percentage of time spent
more than 5 µm from source (error rate), see also Figure 2.16 for error rate across
different simulation parameters. (J), same data type as Panel I for cells navigating
in an exponential gradient (fit to interstitial gradient of Panel I).

Cells using our feedback scheme effectively localizes to the ligand source of simu-
lated interstitial gradients, while cells with uniform receptors become trapped away
from the source by local concentration peaks. Immune cells can navigate towards
the source of an interstitial gradient in a directed, efficient manner (Figure 2.6A)
(M. Weber et al., 2013). Efficient navigation can be difficult in complex tissue
environments, partly due to the existence of local maxima away from the ligand
source, potentially trapping cells on their way to the source (Figure 2.6B). By simu-
lating cell navigation using standard models of directional decoding (for details see
Supplement, Section 2.10), we found that cells with uniform receptors can indeed
become trapped during navigation. Figure 2.6C demonstrates this behavior through
the trajectories of individual cells with uniform receptors (blue), as they consistently
become stuck within specific locations of the environment. On the other hand, us-
ing the same method of directional decoding, cells with scheme-driven receptors
(orange) reliably reach the source in an efficient manner. Figure 2.6D illustrates
this difference through a histogram of the time it took for a cell to reach the source,
created by simulating cells starting at uniformly sampled locations 40 µm from the
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source, moving at a constant speed of 2𝜇𝑚/min. Remarkably, for the circuit pa-
rameter values chosen, only 2% of cells (13/600) with uniform receptors reached
the source within 1 hour, compared to 73% of cells (436/600) using the feedback
scheme, boosting success rate by more than 30-folds. In fact, Figure 2.6D shows
that > 97% of cells with uniform receptors fail to reach the source even after 6
hours, as expected due to being trapped. This improvement in success rate persists
across a wide range of scheme parameters (orders-of-magnitude) and directional
decoding schemes (Figure 2.16). We emphasize that the poor performance of cells
with uniform receptors is only partially due to inaccuracy associated with decoding
local gradients. Indeed, cells that only follow local gradients have trouble finding
the global peak (ligand source) in simulated interstitial gradients. We demonstrate
this by simulating cells moving precisely along local gradient directions (direction
of maximal increase in ligand concentration across the cell’s surface), such cells
become trapped at local ligand peaks on their way to the source (Figure 2.16C). As
expected, Figure 2.6E shows that the difference in performance between uniform and
scheme-driven receptors is relatively less pronounced in the simple gradient (black
curve Figure 2.6B bottom) — a twofold difference in success rate. We discuss
the analogy between our feedback scheme and the infotaxis algorithm (Vergassola,
Villermaux, and Shraiman, 2007) in the Discussion section .

Our feedback scheme can also help cells remain within a highly precise region along
a chemical gradient. During certain developmental programs, cells must restrict
their movements within a region along a gradient in order to form stable anatomical
structures. Growth cones demonstrate an extraordinary ability in accomplishing
this task. Axon projections of retinal ganglion cells can remain within a band of
tissue (lamina) of only 3 − 7𝜇𝑚 wide, at a specific point along a chemical gradient
(Figure 2.6F) (Xiao and Baier, 2007; Xiao, Staub, et al., 2011). Figure 2.6G
illustrates how we assess our scheme’s ability to achieve this level of precision.
We initiate a cell at a gradient source and track the proportion of time the cell
was more than 5 𝜇𝑚 away from the source. As the cell moves along the gradient,
uneven ligand distribution in the environment can lead the cell to move erroneously
away from the source. Figure 2.6H shows that cells with uniform receptors (blue)
can indeed make excursions away from the source. But cells with the feedback
scheme (orange) reliably stay close to the source for an extended period of time.
We quantify this difference by pooling from 600 trajectories of cells starting at
different positions along the source, decoding source direction and navigating for
2 hours. Figure 2.6I shows the number of time steps the cells collectively spent at
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specific distances from the source. For the circuit parameter values chosen, cells
with uniform receptors are found more than 5 µm away from the source 15% of the
time (22204/144000 steps). On the other hand, cells with the feedback scheme do
so only 2% of the time (3287/144000 steps), a 7-fold reduction in error rate. This
difference in error rate persists for a wide range of scheme parameters and directional
decoding schemes (Figure 2.16D,F). Similar improvement in performance is found
for cells navigating in fitted exponential gradients (black curve Figure 2.6G bottom).
Figure 2.6J shows the error rate is reduced by 10-fold from cells with uniform to
scheme-driven receptors (10% vs. 1%). This result is intuitive as the gradients used
for this task has extremely short decay length (5 µm) to mimic in vivo gradients
that growth cones encounter. As a result, the fitted exponential becomes very
similar to the simulated interstitial gradient. Taken together, our feedback scheme is
functionally effective in simulated patchy gradients found in tissue, enabling cells to
solve common navigation tasks with significantly improved accuracy and precision.
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Optimal efficacy accurately predicts experimental observations of membrane-
receptor distribution

Figure 2.7: Optimal efficacy 𝜂 predicts observed distributions of cell surface
receptors using their surface expression level and binding affinity. (A) observed
membrane distributions of receptors in heterogeneous environments, i. white ar-
rowheads indicate Slit receptor Robo1 of commissural growth cones navigating in
an interstitial Slit gradient (Pignata et al., 2019), ii. chemokine receptor CCR5 of
human T lymphocytes subject to a CCL5 gradient (Nieto et al., 1997), iii. (left)
transmission image of growth cone, white arrowhead indicates direction of GABA
gradient, (right) bright dots represent GABAAR redistributing in response to a
GABA gradient (Bouzigues et al., 2007), iv. C5aR-GFP remains uniformly dis-
tributed in response to a point source of a C5aR agonist, delivered by micropipette
(white dot), open arrowheads point to leading edges of cells (Servant et al., 1999).
Scale bars i-iii: 5𝜇𝑚, iv: 10𝜇𝑚. (B) optimal efficacy 𝜂 for different values of 𝐾𝑑 and
𝑁; values computed using the tissue environment, where the ratio between average
ligand concentration and 𝐾𝑑 is fixed, 𝛼 = 0.1; red dots correspond to receptors
that polarize in heterogeneous environments (CCR2, CXCR4, CCR5, GABAAR,
Robo1), white dots represent receptors that are constantly uniform (IL-2R, TNFR1,
TGF𝛽R2, CR3, C5aR), roman numerals correspond to receptors in Panel A, see
Table 2.4 for receptor data.

In addition to generating optimal sensing strategies for simulated environments, our
framework can be used to predict receptor distribution of natural cell surface recep-
tors (Figure 2.7A), using both the environmental structure in which the receptors
function and their biological properties. In addition to environmental structure, re-
ceptor properties such as cell surface expression level (𝑁) and binding affinity (𝐾𝑑)
also play a role in determining the optimal strategy by affecting the measurement
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kernel (Equation 2.3). For a simulated tissue environment, Figure 7B shows that
despite offering greater than twofold gain in information (𝜂 > 100) when 𝑁 is small,
optimizing receptor placement offers nearly zero gain in information (𝜂 ≪ 1) when
𝑁/𝐾𝑑 is large. High 𝑁 and low 𝐾𝑑 improve information acquisition by allowing the
receptor activities to be more sensitive to changes in input level, and since the total
amount of information available to the cell is fixed, the amount of additional gain
that can be made by optimizing receptor placement is reduced.

Figure 2.7B suggests that for real cell surface receptors, we may be able to predict
their membrane distribution by specifying both their environment and biological pa-
rameters (𝑁 , 𝐾𝑑). Specifically for receptors functioning in tissue, we predict those
with parameters that fall within the high 𝜂 regime (Figure 2.7B) are more likely
to adapt the optimal localized distribution. Although data are limited, empirical
observations of real receptors agree with this prediction. Comparing data across
cell surface receptors from multiple cell types found in human tissue, Figure 2.7B
show that receptors (red dots) with parameters corresponding to large 𝜂 have been
observed to localize in non-uniform environments (Figure 2.7A-i-iii). Importantly,
the localized receptors concentrate at the region of the membrane with the highest
ligand concentration, consistent with the theoretically optimal strategy. Such lo-
calization is clearly illustrated in Figure 2.7A-iii, where GABA receptors localize
precisely to the membrane region experiencing the highest ligand concentration,
as indicated by the white arrow. Receptors (white dots) with parameters corre-
sponding to small 𝜂, however, are always uniformly distributed (Figure 2.7A-iv),
even when the environment is non-uniform. Furthermore, although Figure 2.7B is
based on a fixed 𝛼 (constitutive receptor activity), the striking relationship between
receptor organization and optimal efficacy 𝜂 holds for values of 𝛼 spanning at least
two orders-of-magnitude (Figure 2.17). More detailed comparisons between the
experimental receptor distributions and the theoretical optimum is unfortunately not
possible, because detailed, quantitative descriptions of the ligand profile that the
cells were sensing are not available. This agreement between theory and observa-
tions is not meant to imply that evolution optimizes receptor placement. Indeed,
there are key caveats such as variations in receptor expression over time and differ-
ences between the environments of different receptors. Our theory does, however,
provide a framework for studying natural variations in the spatial organization of
receptors, such as differences observed between chemotactic receptors in the same
T-cell (Nieto et al., 1997).



32

2.4 Discussion
A rich collection of works, spanning diverse areas including developmental biology,
systems biology, and neuroscience, put forth the idea of optimizing mutual infor-
mation to predict the design of biological systems that process information (Tkačik,
Walczak, and Bialek, 2009; Sokolowski and Tkačik, 2015; Monti, Lubensky, and
Ten Wolde, 2018; Tkačik, Callan, and Bialek, 2008; Dubuis et al., 2013; Petkova
et al., 2019; Tkačik and Gregor, 2021; Cheong et al., 2011). For example, infor-
mation maximization principles have been applied to derive fundamental limits on
the fidelity of information transfer in biochemical networks (Mehta et al., 2009;
Cheong et al., 2011). Inspired by these works, we formulated an information-
theoretic framework that enables us to compute effective cell sensing strategies
across different environments. We applied the framework to different signaling
microenvironments, including tissues and soils, to discover a receptor localization
strategy that significantly improves both cell sensing and navigation. More broadly,
our work has a series of conceptual and practical implications. Our theory sug-
gests a functional role for spatial organization in cellular information processing,
conceptually showing how spatially organized intracellular components can be used
by cells to more accurately infer the state of its external environment, here through
sensing and chemoreceptors. Furthermore, our theory conceptually shows how spa-
tial organization of a cell’s sensing apparatus can actually reflect spatial structure of
its environment. Similar results are found in neuroscience, but it is interesting to see
how such an efficient coding perspective can help understand spatial organization
within a cell. Lastly, our theory has practical consequences for cell engineering.
Currently, most synthetic circuits function without spatial modulation and are stud-
ied in well-mixed compartments. Our work shows how spatial control over synthetic
sense and response architectures can provide new strategies for engineering circuits
that function in natural environments.

Connection between information acquisition and navigation

We showed that a receptor placement strategy aimed at maximizing information rate
can boost cell navigation performance. Since information content increases towards
the ligand source, receptors are more likely to move towards the side of the membrane
closer to the source rather than away, enforcing movement up gradients. Further-
more, the trade-off between information acquisition and receptor redistribution in
Equation 2.9 can be viewed as combining exploitative and exploratory tendencies,
where larger redistribution "cost" favors exploitation. This strategy is similar in
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principle to the infotaxis algorithm (Vergassola, Villermaux, and Shraiman, 2007),
where one can view receptors as "navigating agents", whose movements guide the
cell towards the target. Although the idea is quite intuitive, the exact relationship
between navigation and information acquisition requires further investigation. On
the one hand, the feedback scheme is most effective in the case of limited sampling
of inputs (Figure 2.16B,E), which suggests maximizing information content indeed
helps with navigation. On the other hand, moving receptors to maximize informa-
tion rate is significantly more effective as a navigation strategy compared to only
maximizing absolute information (Figure 2.14).

2.5 Data availability
All analysis, simulation and plotting scripts are openly available at: https:
//github.com/neonine2/receptor-code. All data generated in this work is
openly available at: http://dx.doi.org/10.22002/D1.2149.

2.6 Material availability
This paper did not generate new reagents.
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2.10 Supplemental methods
Formulation of optimization problem

In this paper, we developed a theoretical framework to study whether manipulating
the placement of cell surface receptors can improve the spatial sensing performance.
Optimizing spatial sensing by tuning receptor placement is analogous to optimizing
distributed electronic sensor network by adjusting the location of sensors, which has
been extensively studied in signal processing (Krause, Singh, and Guestrin, 2008).
Before presenting the general optimization problem, we set up the mathematical
framework through the lens of information theory. Consider a two-dimensional (2D)
cell with a 1D membrane surface. By discretizing the membrane into𝑚 equally sized
regions, we modeled the membrane-receptor system as 𝑚 parallel communication
channels (Figure 2.1B). The 𝑖-th channel takes as input 𝐶𝑖 ∈ N0, a random variable
denoting ligand count at the 𝑖-th region of the membrane surface. Given 𝑟𝑖 ∈ N0

receptors, this channel produces as output 𝐴𝑖 ∈ N0, a number of active receptors
that is random due to stochastic nature of receptor activation and randomness in
𝐶𝑖. Given 𝑚 channels representing the entire cell membrane, our model comprised
four key mathematical objects: ligand profile C = (𝐶1, ..., 𝐶𝑚), receptor placement
r = (𝑟1, .., 𝑟𝑚), active receptor profile A = (𝐴1, ..., 𝐴𝑚), and measurement kernel
𝑃(A = a | C = c, r). The input C ∼ 𝑝(c) is now the entire ligand profile across
the cell surface. Each realization c ofC has probability 𝑝(c) of being observed. We
explain below how 𝑝(c) can be constructed to represent statistics of ligand profiles
cells naturally encounter (see Input statistic). The receptor profile r denotes the
number of receptor allocated to each membrane region. The output A ∼ 𝑝(a) is
the number of active receptors across the membrane, which depends on c and r

through 𝑝(a|c, r), the measurement kernel. We explain below how this kernel can
be modeled (see Measurement kernel).

Consider a placement strategy 𝜙 : c → r, that maps a ligand profile to a receptor
placement. In our general optimization problem (Figure 2.1B), we are interested
in the choice of 𝜙 that maximizes the amount of information the cell can obtain
regarding C by observing A, for a fixed number of receptors 𝑁 . Formally, we
quantify this information using the mutual information,

𝐼 (C;A) =
∑︁
c∈C

∑︁
a∈A

𝑝(c,a) log
𝑝(c,a)
𝑝(c)𝑝(a) . (2.11)

The mutual information is minimized when C and A are independent, and maxi-
mized when one is a deterministic function of the other. Since 𝑝(c,a) = 𝑝(a|c, r =
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𝜙(c))𝑝(c), each summand in the mutual information will be affected by the choice
of 𝜙. Taken together, we arrive at our general formulation of the optimal strategy
𝜙∗:

𝜙∗
𝑝(c) = argmax

∀c 𝜙(c)≥0∑
𝑖 𝜙𝑖 (c)=𝑁

𝐼 (C;A | 𝜙, 𝑝(c)), (2.12)

where 𝑁 is the total number of receptors. The subscript 𝑝(c) is meant to emphasize
the dependence of the optimal strategy on the input statistics.

To solve for 𝜙∗
𝑝(c) , we needed to specify both a measurement kernel 𝑝(a|c, r) and

an input statistic 𝑝(c). The input statistic 𝑝(c) for an environment represents the
probability that a cell in that environment will encounter the ligand profile c.

Measurement kernel
We model 𝑝(a|c, r) assuming that each receptor binds ligands locally and activates
independently of other receptors. These assumptions allow us to factorize 𝑝(a|c, r)
as follows,

𝑃(A = a | C = c, r) =
𝑚∏
𝑖=1

𝑃(𝐴𝑖 = 𝑎𝑖 | 𝐶𝑖 = 𝑐𝑖, 𝑟𝑖). (2.13)

Each local sensing process involves probabilistic ligand-receptor interaction which
can be viewed as a Bernoulli process. In this way, the number of active recep-
tors follows a Binomial distribution, which can be approximated with the Poisson
distribution when the probability of successful binding event is low. Indeed, experi-
mental measurements have shown that receptor occupancy is well approximated by
the Poisson distribution (Ueda et al., 2001), such that

𝑃(𝐴𝑖 = 𝑎𝑖 | 𝐶𝑖 = 𝑐𝑖, 𝑟𝑖) =
𝜇𝑖
𝑎𝑖

𝑎𝑖!
𝑒−𝜇𝑖 , (2.14)

where 𝜇𝑖 = 𝑟𝑖

(
𝑐𝑖

𝑐𝑖+𝐾𝑑 + 𝛼 𝐾𝑑
𝑐𝑖+𝐾𝑑

)
. The bracket term represents the probability of

activation for a receptor experiencing 𝑐𝑖 ligands. 𝐾𝑑 is the equilibrium dissociation
constant and 𝛼 represents constitutive receptor activity, which we take to be small
(𝛼 ≪ 1). In other words, the number of active receptors 𝐴𝑖 given ligand count 𝑐𝑖 is a
Poisson random variable with mean 𝜇𝑖. Equation (2.13) and (2.14) together specify
the measurement kernel.

Input statistic
Next, we specify the input statistic 𝑝(c) which will be determined by spatial distri-
bution of ligands, thus differ between different classes of environment. Suppose a
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circular cell samples its environment by binding nearby ligands. The cell will en-
counter certain spatial profiles of ligands more often than others, and such statistics
will likely depend on the type of environment the cell lives in. In this work, we
studied three classes of environments: soil, tissue, and monotonic gradient. Closed
form models do not exist for ligand profile statistics of natural environments. There-
fore, we take an empirical approach, generating instances of each environment as the
steady-state solution of PDE models and directly sample ligand profiles from them
(see Section 2.10 for details on all PDE models). For soil, we adopted mathematical
models from (Melke et al., 2010) and (Raynaud and Nunan, 2014), modeling diffu-
sive ligands released from a group of soil bacteria whose spatial distribution agrees
with the statistical properties of real soil colonies (Figure 2.1C-iii, Figure 2.2A). For
tissue, we adopted models from (Milde, Bergdorf, and Koumoutsakos, 2008) and
(Rejniak et al., 2013), where they modeled diffusive ligands released from a localized
source, perturbed by in vivo processes such as interstitial fluid flow, non-uniform
ECM binding and cell uptake, to represent an interstitial gradient (Figure 2.1C-
ii, Figure 2.2B). We also considered a simple (monotonic) gradient (Figure 2.2C)
which is an exponential fit to the simulated interstitial gradient (Figure 2.2B). Fit-
ting ensures any difference between the two environments are due to differences
in local structures, not global features such as gradient decay length or average
concentration. For each environment, we obtain a ligand concentration field 𝑐(𝑥)
as the steady-state solution of a PDE. Then, we tile it with a cell of fixed size and
evaluate the concentration field along each cell membrane to obtain a set of ligand
profiles denoted {c} (Figure 2.1C-i). Putting the empirical measure on the samples
{c} approximates the true distribution of C. It is important to note that although we
modeled 𝑝(c) and 𝑝(a|c) in these ways, the overall framework can accommodate
any alternative choices of model.

For these choices of 𝑝(c) and 𝑝(a|c), we aimed to study the functional relationship
between ligand profiles {c} and their optimal receptor placements 𝜙∗(c). To this
end, we optimized receptor profiles for each sampled profile c individually, reducing
the general problem to a local formulation. Given ligand profile c, the random vector
ĉ represents local fluctuations of c due to stochasticity of reaction-diffusion events.
In the case of unimolecular reaction-diffusion processes, it can be shown that ĉ is
a Poisson random vector with mean equal to c, solution of the PDE. Therefore, we
can solve for 𝜙∗(c) locally by maximizing the mutual information between ĉ and
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the resulting output â,
𝜙∗(c) = argmax

r≥0∑
𝑖 𝑟𝑖=𝑁

𝐼 (ĉ, â | r), (2.15)

where 𝑝(â) =
∑

c 𝑝(â|ĉ = c)𝑝(ĉ = c) and 𝑁 is the total receptor number. We
assume r to be real-valued instead of integer-valued when solving (2.15), this is
reasonable as long as 𝑁 is not too small.

The main difference between the general formulation of (2.12) and local formulation
of (2.15) is their dependence on the input statistic 𝑝(c). In the general formulation,
the strategy 𝜙∗

𝑝(c) is explicitly parametrized by 𝑝(c). In the local formulation,
𝜙∗ is independent of the choice of 𝑝(c). However, differences in 𝑝(c) between
environments will still crucially affect the set of optimal receptor profiles that cells
will actually adopt. This is because changing 𝑝(c) changes the region of the domain
of 𝜙∗ that is most relevant, thus changing the optimal receptors profiles that are
actually used in different environments. For example, suppose environment A and
B have input statistic 𝑝𝐴 and 𝑝𝐵 with non-overlapping support, meaning that any
ligand profile observed in A is not observed in B, and vice versa. Although 𝜙∗ is
the same between A and B, this function is being evaluated on entirely different
ligand profiles in A compared to B, so that receptor profiles observed in the two
environment will likely be very different, in ways dictated by differences between
their input statistic 𝑝𝐴 and 𝑝𝐵. As a result, the statistical structure over the space of
ligand profiles plays an important role in determining which receptor placement is
effective, even when the placements are computed locally for each ligand profile.

The constrained nonlinear optimization problem of (2.15) was evaluated using the
fmincon routine of MATLAB 2021 (“MATLAB Optimization Toolbox” 2021a).
The Sequential Quadratic Programming algorithm was used to ensure accurate
solutions that may exist near the boundary of the feasible region. Furthermore, the
analytical gradient of the objective function, shown in equation Equation 2.28, was
supplied to ensure faster convergence.

Bin number and mutual information

An important point to emphasize is that the choice of m (number of discrete mem-
brane bins) sets a scale for all information values reported in the paper, because the
mutual information (𝐼 (C;A)) is bounded by the entropy of its input which scales
logarithmically with 𝑚. To illustrate this relationship, we consider a cell sensing
a uniform distribution of ligands, where it experiences 𝑐 molecules on average. In
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this simplified setting, the number of ligand molecules at each of the 𝑚 membrane
bin are represented by Poisson random variable with mean 𝑐/𝑚. Using the fact that
the mutual information is bounded above by its input entropy, we get the following
bound,

𝐼 (C;A) ≤ 𝑚𝐻 (𝐶𝑖), (2.16)

where 𝐶𝑖 ∼ Pois(𝑐/𝑚). Substituting 𝐻 (𝐶𝑖) for the entropy of a Poisson random
variable, we can rewrite the bound above as,

𝐼 (C;A) ≤ 𝑚
(
𝑐

𝑚
[1 − log(𝑐/𝑚)] + 𝑒−𝑐/𝑚

∞∑︁
𝑘=0

(𝑐/𝑚)𝑘 log(𝑘!)
𝑘!

)
. (2.17)

For large m, this expression simplifies to yield an upper bound on the mutual
information that scales logarithmically with 𝑚,

𝐼 (C;A) ≤ 𝑐(1 − log(𝑐)) + 𝑐 log(𝑚). (2.18)

Figure 2.8A shows this upper bound for 𝑐 = 1. As further validation of Equa-
tion 2.18, Figure 2.8A shows that as we increase the number of receptors, 𝐼 (C;A)
converges toward the derived upper bound (red). Furthermore, the result that opti-
mizing receptor placement is significantly more beneficial in natural environments
compared to simple gradients holds for a wide range of membrane bin numbers,
as shown in Figure 2.8B where the absolute information gain (𝜂, Equation 2.6) is
significantly larger in natural environments compared to simple gradients, for a wide
range of m values.

Figure 2.8: Effect of the number of membrane bins (m) on mutual information
and optimal efficacy, Related to Figure 1 and 2 (A) The maximum mutual informa-
tion achievable (red line, Equation 2.18) as a function of m, the number of membrane
bins. As the number of receptors per bin (N/m) increases, the mutual information
converges to its maximum value. (B) the optimal efficacy for different choices of
m, computed across tissue, soil, and simple gradient, 𝛼 = 0.01, 𝐾𝑑 = 40, 𝑁 = 1000.
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Theoretical properties of Poisson channels

In information theory, the Poisson channel is a canonical model used to study
communication of information by random discrete occurrences in time that obey
Poisson statistics. We show that we can map our receptor activation model directly
onto this canonical model. As a result, we make use of existing results from
information theory regarding the Poisson channel to 1) show that the localized
receptor placement strategy described in the main text holds across most reasonable
biochemical models of receptor activation and 2) provide intuition for how different
factors such as ligand concentration can alter the optimal strategy.

Mapping receptor model to the canonical Poisson channel model We begin by
showing how a single membrane-receptor channel can be mapped to the canonical
scalar Poisson model. The same argument applies for mapping multiple parallel
membrane-receptor channels to the canonical vector Poisson model introduced in
the next section.

Recall the receptor model of Equation 2.14 we used to represent the number of active
receptors 𝐴 for a given ligand level c, which is motivated by empirical measurements
of receptor activity,

𝑝(𝐴 = 𝑎 | 𝐶 = 𝑐, 𝑟) = 𝜇𝑎

𝑎!
𝑒−𝜇, 𝜇 = 𝑟 ( 𝑐

𝑐 + 𝐾𝑑
+ 𝛼 𝐾𝑑

𝑐 + 𝐾𝑑
). (2.19)

Although this model of receptor activation consists of many biochemical details, we
can map it directly onto the canonical scalar Poisson model,

𝑌 |𝑋 ∼ Pois(𝛼𝑋) (2.20)

where 𝑋 is a scalar input, 𝑌 is a scalar output, and 𝛼 is a scaling variable. Such
a model defines a Poisson channel whose output is a Poisson random variable
conditioned on the input 𝑋 with its mean equal to 𝑟𝑋 , where 𝑋 is an arbitrary input
random variable. We map this channel model maps onto our model of receptor
activation for a single membrane region, by defining 𝑋 , 𝛼 in the following way,

𝑋 := 𝑓 (𝐶) = 𝐶

𝐶 + 𝐾𝑑
+ 𝛼 𝐾𝑑

𝐶 + 𝐾𝑑
,

𝛼 := 𝑟,
(2.21)

where 𝑋 represents the probability of receptor activation, 𝑟 denotes the number
of receptors. From this set of definitions, it follows that 𝑌 = 𝐴 is the number of
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active receptors. Note that 𝛼 from equation (2.20) is a constant value, rather than
a function like the placement strategy 𝜙. Therefore, Equation 2.21 agrees with our
local formulation of (2.15), and matches the general formulation of (2.12) if 𝜙 is a
constant function. An important consequence of this mapping is that we can now
study the quantity 𝐼 (𝑋,𝑌 ) since,

𝐼 (𝑋;𝑌 ) = 𝐼 ( 𝑓 (𝐶); 𝐴) (2.22)

= 𝐼 (𝐶; 𝐴), (2.23)

where the second line follows from the fact that the mutual information is invariant to
invertible transformations 𝑓 . Since most physical models of receptor activity ( 𝑓 ) are
strictly increasing functions of ligand count, hence invertible, theoretical properties
of 𝐼 (𝑋,𝑌 ) which we discuss here directly applies to many receptor models beyond
what is considered in this work, such as models with signal amplification and
receptor cooperativity. Note that we are leaving the probability distribution 𝑃(𝑋)
unspecified, which again makes many of the following results valid for many choices
of 𝑓 .

Relating properties of 𝐼 (𝑋,𝑌 ) to receptor sensing Having established the rela-
tionship 𝐼 (𝑋;𝑌 ) = 𝐼 (𝐶; 𝐴), we now use the scalar Poisson model to illustrate how
theoretical properties of the mutual information 𝐼 (𝑋,𝑌 ) agrees with our intuition
of ligand sensing via receptor binding. We specialize to the case where 𝑋 is a
non-negative random variable which is sufficient for our problem as 𝑋 only takes
values between 0 and 1. In this setting, Theorem 2 of (Guo, Shamai, and Verdú,
2008) gives the partial information gain for the scalar Poisson channel as,

𝑑

𝑑𝑟
𝐼 (𝑋;𝑌 ) = 𝐸 [𝑋 log 𝑋 − 𝐸 [𝑋 |𝑌 ] log 𝐸 [𝑋 |𝑌 ]] . (2.24)

An immediate consequence of Equation 2.24 is that the mutual information 𝐼 (𝑋,𝑌 )
(hence 𝐼 (𝐶; 𝐴)) is strictly increasing in the scaling variable (receptor number),
which follows from the fact that the right side of Equation 2.24 is non-negative
due to Jensen’s inequality since 𝑥 log 𝑥 is a convex function. The fact that 𝐼 (𝑋,𝑌 )
is strictly increasing in 𝑟 agrees with the intuition that increasing the number of
receptors should increase the amount of information the cell can acquire about its
external environment.

Observe that the right hand side of Equation 2.24 is exactly the minimum mean loss
in estimating 𝑋 based on𝑌 under the loss function 𝑙 (𝑥1, 𝑥2) = 𝑥1 log(𝑥1/𝑥2)−𝑥1+𝑥2.
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Using this fact, one can show that 𝐼 (𝑋,𝑌 ) is a concave function of 𝑟, which again
agrees with the intuition that since the total amount of information available 𝐻 (𝑋) is
fixed, incremental gain in information acquisition must diminish as more receptors
are added. Importantly, the fact that 𝐼 (𝑋;𝑌 ) is an increasing, concave function of
the scaling variable 𝑟 holds across all models of receptor activation (Equation 2.21).
In particularly, the concavity of 𝐼 (𝑋;𝑌 ) is a general phenomena and not a result of
saturation from ligand binding.

Mapping full membrane-receptor model to vector Poisson channel model We
will now rewrite our local optimization problem of Equation 2.15 using the canonical
vector Poisson channel model. By doing so, we will be able to use theoretical
properties of the vector Poisson model to provide additional insight into the optimal
solution, and expand the result beyond the specific receptor model used in the main
text. By a similar argument as in the scalar Poisson case, the full membrane-
receptor model considered in our work (main text, Equation 2.3) maps exactly onto
the canonical vector Poisson channel model, defined as

Y |X ∼
𝑚∏
𝑖=1

𝑃(𝑌𝑖 | X) =
𝑚∏
𝑖=1

Pois(𝑌𝑖 | (ΦX)𝑖) (2.25)

where the random vector X = (𝑋1, 𝑋2, ..., 𝑋𝑚) maps to the probability of receptor
activation across the 𝑚 discretized membrane regions, the random vector Y =

(𝑌1, 𝑌2, ..., 𝑌𝑚) maps to the random vector of active receptors A = (𝐴1, 𝐴2, ..., 𝐴𝑚),
the channel matrix Φ ∈ R𝑚×𝑚+ can map onto receptor placement r = (𝑟1, 𝑟2, ..., 𝑟𝑚)
such that Φ = diag (r). This mapping represents the fact that receptors bind
ligands locally and activate independently of other receptors. We introduce Φ for
completeness, showing that this model can accommodate situations where there are
crosstalks between channels, leading to non-zero terms in the off-diagonal. Since
the equivalent of (2.23) holds for the vector model, we can rewrite the optimization
problem in Equation 2.15 as,

r∗ = argmax
r≥0∑
𝑖 𝑟𝑖=𝑁

𝐼 (X ,Y | r). (2.26)

By working with Equation 2.26, we derive results that hold for many models of
receptor activation, including all models where activity is a monotonic function of
ligand level.

Reformulation of receptor optimization in terms of partial information gain
We reformulate Equation 2.26 in terms of the partial derivatives 𝜕𝐼 (X;Y )/𝜕𝑟𝑖,
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which provides additional insight into the optimal solution. According to the
Karush-Kuhn-Tucker (KKT) conditions, the following must hold at the optimal
solution r∗ for 1 ≤ 𝑖 ≤ 𝑚 ,

𝑑

𝑑𝑟𝑖
𝐼 (X;Y | r∗) = 𝜆 − 𝜇𝑖,

𝜇𝑖𝑟
∗
𝑖 = 0,

(2.27)

where 𝜇𝑖 ≥ 0 and 𝜆 are the KKT multipliers. Another way to interpret the equations
above is that for all channels where the optimal receptor number 𝑟∗

𝑖
is non-zero,

their partial derivatives 𝑑
𝑑𝑟𝑖
𝐼 (X;Y ) |r∗ must be equal. Put another way, optimal

solution occurs when incremental information gain is matched across channels.
Since whenever the partial derivatives do not all agree, then one can always move
receptors from the channel with a smaller partial derivative to one with higher partial
derivative to achieve a higher mutual information.

Asymptotic of the gradient of mutual information at small 𝑁 We show that
when total receptor number is low, the partial information gain depends only on
the properties of X , the probability of receptor activation. This result allows us to
directly solve for the optimal solution at the low 𝑁 regime. Theorem 1 of (L. Wang
et al., 2014) gives the gradient of mutual information between input and output of
the vector Poisson channel 𝐼 (X;Y ), with respect to the matrix Φ as,

∇Φ𝐼 (X;Y )𝑖 𝑗 = 𝐸 [𝑋 𝑗 log(ΦX)𝑖] − 𝐸 [𝐸 [𝑋 𝑗 |Y ] log 𝐸 [(ΦX)𝑖 |Y ]] . (2.28)

Specializing to the setting where Φ is a diagonal matrix with diag(Φ) = r, the
derivative of mutual information with respect to receptor number at position 𝑖 is,

𝑑

𝑑𝑟𝑖
𝐼 (X;Y ) = 𝐸 [𝑋𝑖 log 𝑋𝑖] − 𝐸 [𝐸 [𝑋𝑖 |Y ] log 𝐸 [𝑋𝑖 |Y ]] . (2.29)

This derivative can be interpreted as the information gain at the 𝑖-th channel per
receptor added.

When total receptor number (𝑁) is low, corresponding to all scaling variables ({𝑟𝑖})
being small, we can express (2.29) as a function of just the random variable X .
First, using Lemma 1 from (Dytso, Fauß, and Poor, 2020), we have

𝑟𝑖𝐸 [𝑋𝑖 |Y = y] = (𝑦𝑖 + 1) 𝑝Y (y + 1𝑖)
𝑝Y (y)

= 𝑟𝑖

𝐸

[
(𝑋𝑖)𝑦𝑖+1 𝑒−𝑟𝑖𝑋𝑖

∏
𝑚≠𝑖

1
𝑦𝑚! (𝑋𝑚)

𝑦𝑚 𝑒−𝑟𝑚𝑋𝑚
]

𝐸
[∏

𝑚 (𝑋𝑚)𝑦𝑚 𝑒−𝑟𝑚𝑋𝑚
] .

(2.30)
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Therefore, for 𝑟𝑖 > 0, we have

𝐸 [𝑋𝑖 |Y = y] =
𝐸

[
(𝑋𝑖)𝑦𝑖+1 𝑒−𝑟𝑖𝑋𝑖

∏
𝑚≠𝑖

1
𝑦𝑚! (𝑋𝑚)

𝑦𝑚 𝑒−𝑟𝑚𝑋𝑚
]

𝐸
[∏

𝑚 (𝑋𝑚)𝑦𝑚 𝑒−𝑟𝑚𝑋𝑚
] . (2.31)

Now using monotone convergence theorem, we obtain

lim
𝑟1,...,𝑟𝑚→0+

𝐸 [𝑋𝑖 | Y = y] =
𝐸

[
(𝑋𝑖)𝑦𝑖+1 ∏

𝑚≠𝑖
1
𝑦𝑚! (𝑋𝑚)

𝑦𝑚 𝑒−𝑟𝑚𝑋𝑚
]

𝐸 [∏𝑚 (𝑋𝑚)𝑦𝑚]
(2.32)

The above limit holds for any path, and also holds for all value of y including zero.
Evaluating the above limit at y = 0 we have

lim
𝑟1,...,𝑟𝑚→0+

𝐸 [𝑋𝑖 |Y = 0] = 𝐸 [𝑋𝑖] . (2.33)

Applying this limit to (2.29) gives the desired result,

lim
𝑟1,...,𝑟𝑚→0+

𝜕

𝜕𝑟𝑖
𝐼 (X;Y ) = 𝐸 [𝑋𝑖 log 𝑋𝑖] − 𝐸 [𝑋𝑖] log 𝐸 [𝑋𝑖], (2.34)

which we denote as
𝜕𝐼0
𝜕𝑟𝑖

:= lim
𝑟1,...,𝑟𝑚→0+

𝜕

𝜕𝑟𝑖
𝐼 (X;Y ). (2.35)

In this limit, the partial derivatives are independent of receptor number. Intuitively,
when receptor numbers are low, the effect of diminishing return that comes from
having many receptors should be weak. Importantly, this result holds for arbitrary
distribution 𝑃(X), hence it holds for any environmental statistic and model of
receptor activation. As we show in the next section, this fact allows us to solve for
the optimal solution r∗ exactly in the low 𝑁 limit.

Factors affecting optimal receptor placement

Total receptor number
Optimal receptor placement can be strongly localized when receptors are limited in
quantity. When receptor number is small, Equation 2.34 shows that the 𝑑

𝑑𝑟𝑖
𝐼 (X;Y )

becomes independent of receptor number. This result implies that 𝐼 (X;Y ) is
maximized when all receptors are allocated to the channel with the largest partial
derivative 𝑑

𝑑𝑟𝑖
𝐼 (X;Y ), resulting in strong receptor localization. We can see this by

first noting that in the limit of small 𝑁 , Equation 2.34 and Taylor’s theorem allows
us to write the mutual information as a linear function of r,

𝐼 (X;Y ) =
𝑚∑︁
𝑖=1

𝜕𝐼0
𝜕𝑟𝑖

𝑟𝑖 (2.36)
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Hence, our optimization problem becomes a linear program with the following form,

maximize a𝑇r

subject to 1𝑇r = 𝑟tot, r ≥ 0,
(2.37)

where 𝑎𝑖 = 𝜕𝐼0/𝜕𝑟𝑖. Suppose the 𝑎𝑖’s are sorted in increasing order (with corre-
sponding 𝑟𝑖’s rearranged as well),

𝑎1 ≤ 𝑎2 ≤ · · · < 𝑎𝑘 = · · · = 𝑎𝑚−1 = 𝑎𝑚 (2.38)

Denote 𝑎max := 𝑎𝑚, we have

a𝑇r ≤ 𝑎max(1𝑇r) = 𝑎max𝑟tot (2.39)

for all feasible r, with equality if and only if

𝑟𝑘 + · · · + 𝑟𝑚 = 𝑟tot. (2.40)

The optimal solution is then to allocate all receptors among the channels with
maximal partial information gain 𝜕𝐼0/𝜕𝑟𝑖, in any manner. This result is quite
intuitive. If the channel information gains are fixed, we allocate all receptors
to the channel with the highest gain. Since Equation 2.34 is valid for all non-
negative random variable 𝑋 , this result holds for arbitrary environmental statistics.
Furthermore, since 𝜕𝐼0/𝜕𝑟𝑖 = 𝑎𝑖 ≥ 0 due to Jensen’s inequality, the optimal solution
remains unchanged if we replace the equality constraint by an inequality 1𝑇r ≤ 𝑁 .
Again, since we allow 𝑃(X) to be arbitrary, this optimal solution holds for any
environmental statistic and model of receptor activation. Figure 2.9 illustrates this
result by optimizing across two Poisson channels for different number of receptors
(𝑁).
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Figure 2.9: Optimal receptor distribution across two Poisson channels for vari-
ous values of 𝑁 , Related to Figure 2.2 and Figure 2.7. Given two Poisson channel
with independent inputs 𝑋1 and 𝑋2, where 𝐸 [𝑋2] > 𝐸 [𝑋1]. Each plot corresponds
to a particular choice of 𝑁 to be divided between the two channels. Solid curves
represent the partial derivative the mutual information 𝐼 (𝑋;𝑌 ) with respect to the
two channel receptor number 𝑟1 and 𝑟2, evaluated for different receptor allocations.
Dotted horizontal lines indicate the receptor distribution between the two channels
that maximizes 𝐼 (𝑋;𝑌 ).

In line with the KKT condition of Equation 2.27, Figure 2.9 shows the optimal
receptor distribution across the two channels (dotted lines) occurs precisely where
their partial derivatives (solid lines) are equal. Even though channel 2 (orange)
experience an average ligand concentration that is only 5% higher than channel 1,
the optimal solution allocates nearly all receptors (98%) to channel 2 when 𝑁 is
small. As 𝑁 increases, this asymmetry of the optimal solution reduces significantly,
resulting in a 5% difference in receptor number between the two channels when
𝑁 = 200. In agreement with results we derived, strong receptor localization occurs
when 𝑁 is small due to the fact that 𝑑

𝑑𝑟𝑖
𝐼 (𝑋;𝑌 ) becomes nearly independent of

receptor number (note the difference in y-range across the three plots in Figure 2.9).

Absolute ligand concentration and dynamic range In addition to receptor num-
ber, environmental factors can strongly influence receptor placement. Intuitively,
one would expect the larger the difference between two channels’ input ligand
concentration, the larger the asymmetry should be in their receptor allocation. Fig-
ure 2.10A confirms this intuition, showing that as the relative difference in average
ligand concentration sensed between two channels increase, receptor distribution
between the two channels becomes more asymmetric. Figure 2.10A also suggests
two additional features of the optimal strategy that are less intuitive,



46

1. As ligand concentration increases, optimal strategy switches from allocating
more to allocating fewer receptors to region of higher ligand concentration

2. When ligand concentration are either high or low, optimal receptor placement
can become highly localized, concentrating most receptors to a few channels

Figure 2.10: Optimal receptor distribution across two Poisson channels for
different absolute ligand concentration and relative difference in concentration,
Related to Figure 2.2. (A) Each curve represents the optimal receptor proportion
𝑟∗1/𝑁 for channel 1 for increasing levels of ligand input for channel 2 while keeping
𝐸 [𝐶1] fixed. (B) While keeping the relative difference between 𝐸 [𝐶1] and 𝐸 [𝐶2]
fixed at 5%, black curve shows the optimal receptor proportion in channel 1 for
different level of𝐸 [𝐶1]. Blue curve shows the approximation of the partial derivative
shown in Equation 2.34. Black dotted line indicates peak of blue curve, red dotted
line indicated 𝑟∗1/𝑁 = 0.5. 𝐾𝑑 = 40𝑛𝑀 . (C) binary entropy function (𝐻 (𝑝) =

−𝑝 log 𝑝 − (1 − 𝑝) log (1 − 𝑝)) in nats

The first feature can be seen by observing the fact that as 𝐸 [𝐶1] increases in
Figure 2.10A, the optimal receptor distribution 𝑟∗1/𝑁 (gray to black) changes from
being below 0.5 to above 0.5, even though 𝐸 [𝐶2] > 𝐸 [𝐶1] for all cases plotted. The
second case can be seen by observing the slope of the graphs. As 𝐸 [𝐶1] becomes
either high (black) or low (gray), the optimal receptor distribution becomes more
sensitive to (𝐸 [𝐶2] − 𝐸 [𝐶1])/𝐸 [𝐶1], the relative difference in average input level.
For a minor difference in concentration of < 5%, nearly all receptors become
allocated to one of the two channels

Both of these observations are indeed general features of the optimal strategy and we
can explain both using 𝜕𝐼0/𝜕𝑟𝑖 defined in Equation 2.34. We can gain further intu-
ition of both features from the shape of the binary entropy function (Figure 2.10C).
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1. Figure 2.10B shows that when 𝐸 [𝑋1] is low, 𝜕𝐼0/𝜕𝑟1 is an increasing function
in 𝐸 [𝑋1], suggesting that more receptors should be allocated to channels with
higher probability of receptor activation (i.e., ligand concentration). How-
ever, this monotonicity switches as 𝐸 [𝑋1] increases, with 𝜕𝐼0/𝜕𝑟1 becoming
a decreasing function in 𝐸 [𝑋1]. The point at which monotonicity of 𝜕𝐼0/𝜕𝑟1

switches (dashed black line) matches precisely with when the optimal strat-
egy switches from allocating more receptors to region of higher probability of
receptor activation to region of lower probability, as shown by the solid black
curve passing the dashed red line. Thus feature #1 can be fully explained by
the gradient of mutual information. This switch in strategy is intuitive when
we consider the binary entropy function. Recall that 𝑋𝑖 maps to the probability
of receptor activation in the 𝑖-th channel, so it shares a similar interpretation
as the success probability 𝑝 of the binary entropy function. The entropy func-
tion 𝐻 (𝑝) is maximized when the success probability (analogously receptor
activation) is neither high nor low (Figure 2.10C). Thus it can be less useful
to place more receptors at regions of higher ligand concentration, since those
receptors will simply stay activated, being uninformative of the input.

2. Figure 2.10B shows that the slope of 𝜕𝐼0/𝜕𝑟1 is maximized when 𝐸 [𝑋1]
is either low or high. The larger the difference in the partial derivatives
between two channels, the more receptors will need to be allocated before
their partial derivative agree, a necessary condition for achieving optimality
according to Equation 2.27. Therefore, a small relative difference in input
concentration between channels can lead to large difference in information
gain per receptor, when absolute ligand concentration is either high or low
(relative to 𝐾𝑑), leading to strong localization of receptors. This behavior
can also be explained using the binary entropy function, specifically the fact
that the rate of change in entropy is maximized at low and high success
probability (Figure 2.10C). Analogously, placing receptors in regions where
likelihood of activation is 0 or 1 is useless from an information perspective
(zero entropy/uncertainty in output), so all receptors should be allocated to a
region with non-zero entropy, no matter how small the difference in likelihood
of activation (thus ligand concentration) is.
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Modeling chemical microenvironment

Soil chemical microenvironment In soil, free-living unicellular eukaryotes can
sense and respond to signaling ligands secreted by soil bacteria. We follow mathe-
matical models described in (Raynaud and Nunan, 2014) and (Melke et al., 2010),
modeling the spatial distribution of ligands in two steps: 1) model the spatial dis-
tribution of bacteria in soil, and 2) model each bacteria as an independent point
sources of ligands.

Modeling bacteria distribution in soil We follow the procedure outlined Raynaud
and Nunan (2014), which allows us to generate realistic bacterial distributions found
in soil. This procedure involves sampling from a spatial statistical model, based
on Log Gaussian Cox Processes (LGCP) fitted to image data of observed bacterial
distribution in soil. In a LGCP, the observed number of bacteria per unit area is
modeled as a Poisson process in which the rate parameter is treated as being the
exponential of a Gaussian process. Specifically, we consider Gaussian processes
with an exponential covariance function,

𝐶 (𝑟) = 𝜎2
bacteria𝑒

−𝑟/𝛽, (2.41)

so the Gaussian process (and the LGCP) is fully determined by three parameters,
its mean (𝜇), variance (𝜎2

bacteria), and scale (𝛽). In the limit as 𝜎2
bacteria → 0, we

obtain a homogeneous Poisson process. The average intensity of a LGCP (number
of bacteria per unit area) is given by,

𝜆 = 𝑒𝜇+𝜎
2
bacteria/2 (2.42)

We used parameters reported in (Raynaud and Nunan, 2014), with 𝜇 = −7.52,
𝜎2

bacteria = 1.9, and 𝛽 = 25, to simulate a bacterial density of approximately
109 cells/g on a 1000 × 3000µm2 rectangular domain (containing approx. 4000
cells). These are the default parameters unless otherwise stated in the main text.
We used R 3.6.1 with packages spatstat (Baddeley, Rubak, and Turner, 2015) and
RandomFields (Schlather et al., 2020) to generate all bacteria distributions.

Modeling chemical distribution given bacteria distribution. Given a spatial
distribution of bacteria, we model the distribution of secreted molecules using
standard reaction-diffusion models (Melke et al., 2010). Specifically, such models
treat each bacteria as a static, independent sources, producing ligands with rate 𝛼
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that diffuse (𝐷) and degrade (𝛾). The resulting ligand concentration field is then the
solution of the following partial-differential equation (PDE) ,

𝜕𝑐(𝑥, 𝑡)
𝜕𝑡

= 𝛼 |bacteria + 𝐷Δ𝑐 − 𝛾𝑐, (2.43)

Rather than approximating each parameter of Equation 2.43, we model the ligand
distribution produced by a bacteria using a 2D Gaussian density profile, and directly
fit the Gaussian profile to empirical measurements. The concentration 𝑐 at a given
position 𝑥 in the domain is then the sum over all such Gaussian profiles evaluated at
𝑥, which can be expressed mathematically as

𝑐(𝑥) =
∑︁
𝑞 ∈ U

𝐶
√

2𝜋𝑠2
exp

{
− ||𝑥 − 𝑞 | |2

2𝑠2

}
(2.44)

where U represents the set of bacterial positions generated using the LGCP model.
𝐶 represents the total concentration of each Gaussian profile, and 𝑠 determines the
width of the profile, both of which are assumed to be uniform across all bacteria.
We extract both parameters based on a geostatistical block kriging analysis of the
spatial distribution of AHL in soil (𝐶 chosen such that mean concentration (across
the entire spatial domain) is approximately 0.6 nm, 𝑠 = 9 µm) (Burton et al., 2005;
Gantner et al., 2006; Sheng et al., 2017; Y.-J. Wang and Leadbetter, 2005).

Tissue chemical microenvironment We follow mathematical models of lig-
and distribution in tissue outlined in (Rejniak et al., 2013; Milde, Bergdorf, and
Koumoutsakos, 2008), simulating a tissue environment using a PDE model that
incorporates four transport mechanisms: (1) free diffusion, (2) ECM binding, (3)
fluid advection, (4) cellular uptake. The spatial domain is a rectangle of size
300 µm × 900 µm. We model ligands being supplied through fluid flows from the
left boundary of the domain, and penetrate the interstitial space between immobi-
lized cells. Soluble ligands are then transported by diffusion and fluid flow, and
become immobilized upon binding to an extracellular matrix (ECM) made up of
networks of interconnected fibers containing ligand binding sites. We explicitly
represent both ECM-bound (𝑐𝑏) and soluble forms of the ligand (𝑐𝑠), so that the the
total ligand concentration 𝑐(𝑥, 𝑡) at position 𝑥 and time 𝑡 is equal to,

𝑐(𝑥, 𝑡) = 𝑐𝑠 (𝑥, 𝑡) + 𝑐𝑏 (𝑥, 𝑡). (2.45)
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Mathematically, we can describe the dynamics of the soluble fraction 𝑐𝑠 (𝑥, 𝑡) as
follows,
𝜕𝑐𝑠

𝜕𝑡
= 𝜅 |boundary−𝑢(𝑥, 𝑡) ·∇𝑐𝑠+𝐷Δ𝑐𝑠−𝛽𝑐𝑐𝑠 |cells−𝑘ECM(𝑒(𝑥)−𝑐𝑏)𝑐𝑠−𝛾𝑠𝑐𝑠 . (2.46)

1. The first term, 𝜅, represents production/release of molecule at the left bound-
ary.

2. The second term represents fluid transport, where 𝑢(𝑥, 𝑡) is the velocity field
of the interstitial fluid with input flow speed 𝑢in at the left boundary. We
impose zero-velocity condition on the top and bottom boundary.

3. The third term represents diffusion with 𝐷 as the ligand diffusion coefficient.

4. The fourth term represents cellular uptake with rate 𝛽𝑐, a process that only
occurs near immobilized cells distributed across the domain.

5. The 5th term represents ECM binding. The concentration of ECM binding
site 𝑒(𝑥) at position 𝑥 is generated using a minimal model of ECM protein
distribution (see paragraph on "Generating ECM fiber network"). Binding
occur with rate proportional to 𝑒(𝑥) − 𝑐𝑏 (𝑥, 𝑡), the level of available ECM
binding site. Since the on-rate of ECM binding is much larger than the
off-rate, we assume the off-rate to be zero.

6. The last term represents enzymatic degradation of ligand.

The dynamics of ECM-bound fraction 𝑐𝑏 (𝑥, 𝑡) is much simpler, involving a term
corresponding to ECM binding, a degradation term due to enzymatic decay .

𝜕𝑐𝑏

𝜕𝑡
= 𝑘ECM(𝑒(𝑥) − 𝑐𝑏)𝑐𝑠 − 𝛾𝑏𝑐𝑏 . (2.47)

To generate a ligand concentration field 𝑐, we take 𝜅 to be non-zero for a brief
period of time, representing a bolus of ligand release. Then, we simulate the
combined dynamics of bound and soluble fractions for sufficiently long until the
ligand distribution 𝑐(𝑥, 𝑡) is relatively stable. In practice, we observe that 𝑐 ≈ 𝑐𝑏

after a sufficiently long period of time, since the soluble fraction quickly become
insignificant due to fluid flow. The resulting concentration field represents an
interstitial gradient. The average concentration is set by setting the release rate 𝜅
such that the concentration of the soluble fraction 𝑐𝑠 matches measured chemokine
concentration found in interstitial fluids (1 pm to 10 pm) (Xiangdan Wang et al.,
2008; Clark et al., 2015).
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Generating ECM fiber network To generate a distribution of ECM binding
sites 𝑒(𝑥), we use a minimal computation model of fiber network (Harjanto and
Zaman, 2013; Schlüter, Ramis-Conde, and Chaplain, 2012; Byoungkoo Lee et al.,
2014). The model generates ECM fibers represented by line segments, which could
represent fibronectin, collagen, laminin, or other fibrous matrix components. To
position each fiber, one end of each segment is randomly positioned following a
uniform distribution within the domain. The other end’s position is determined
by picking an angle, uniformly from [0, 2𝜋), and length sampled from a normal
distribution with mean 75 µm and standard deviation of 5 µm (as measured for
collagen by Friedl et al. (1997)). In total, 4050 fibers were placed in the domain.
For the PDE simulation, the generated network is discretized by counting the number
of fibrous proteins around each node in the simulation lattice. The density of fiber
within each node is then converted to a concentration value representing the level
of ECM binding sites, resulting in an average concentration of ECM binding site of
520 nm.

Simple chemical gradient
One of the simplest model of chemical gradient can be described by the following
PDE,

𝜕𝑐(𝑥, 𝑡)
𝜕𝑡

= 𝛼𝛿(𝑥0) + 𝐷Δ𝑐 − 𝛾𝑐, (2.48)

where ligands are produced at rate 𝛼 from a localized source at 𝑥0, diffuses with
diffusivity 𝐷 and undergoes first order degradation with rate 𝛾. The steady-state
solution of Equation 2.48 is a single exponential gradient,

𝑐(𝑥) = 𝐶0 exp (−𝑥/𝜆), (2.49)

where the ligand concentration 𝑐(𝑥) only depends on distance 𝑥 from the source, the
concentration at the source boundary 𝐶0 = 𝛼/(2

√︁
𝐷/𝛾) and the decay length 𝜆 =√︁

𝐷/𝛾. By taking the source location 𝑥0 to be the entire left boundary of the spatial
domain, the stimulated interstitial gradient is well-described by the exponential
model. Specifically, by first averaging the interstitial gradient (along the axis parallel
to the ligand source) and fitting the resulting 1-D profile to Equation 2.49 using
Matlab’s fit function, we obtain an excellent fit with correlation coefficient 𝑅2 = 0.98.
This fitted exponential profile is the simple, monotonic gradient used in the paper.
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Table 2.1: Parameters used for modeling all three environment classes: soil,
tissue, and simple gradient, Related to Figure 2.2A. Tissue simulation code was
adopted from (Rejniak et al., 2013). Parameters for simple gradient obtained from
fitting an exponential function to the spatially averaged profile of the tissue gradient
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Incorporate cost for receptor redistribution using the Wasserstein distance

In a dynamically changing environment, receptor should redistribute in an efficient
manner in order to maximize information acquisition. We extended our optimization
problem of Equation 2.15 to incorporate a "cost" for changing receptor location. For
a cell sensing a sequence of ligand profiles {c𝑡}𝑇𝑡=1 over time, the optimal receptor
placement r∗𝑡 for c𝑡 now depends additionally on r∗

𝑡−1, the receptor placement for
the previous ligand profile,

r∗𝑡 = argmax
r≥0∑
𝑖 𝑟𝑖=𝑁

𝐼 (ĉ𝑡 ; â | r) − 𝛾𝑊1
(
r∗𝑡−1, r

)
. (2.50)

Here, we model the cost for redistributing receptors using the Wasserstein-1 (𝑊1)
distance. For completeness, we first introduce the formal definition of the 𝑊1

distance before returning to a much simpler form that applies to our problem. Let
𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 represent two random variables defined over 𝑀 ⊂ R𝑑 . Further,
let J (𝑃,𝑄) denote all joint distributions 𝐽 for (𝑋,𝑌 ) that have marginal 𝑃 and 𝑄.
The𝑊1 distance between 𝑃 and 𝑄 is,

𝑊1(𝑃,𝑄) = inf
𝐽∈J (𝑃,𝑄)

∫
𝑀×𝑀

∥𝑥 − 𝑦∥1𝑑𝐽 (𝑥, 𝑦). (2.51)

One way to understand the above definition is to consider different ways of trans-
porting a distribution of mass 𝑃(𝑥) to a different distribution 𝑄(𝑥). Given some
cost function associated with each unit of mass transported, the 𝑊1 distance is the
minimum transport cost achievable. In this way, the 𝑊1 distance assumes that the
transformation from 𝑃 to 𝑄 occurs in an optimal manner. Note that this distance
function is non-negative and symmetric, and does not require 𝑃 and 𝑄 to be prob-
ability distributions, it applies whenever the total mass is preserved between 𝑃 and
𝑄.

Although Equation 2.51 is difficult to compute in general, it has a closed form for
the special case of 𝑑 = 1 which is the case we are considering. Instead of using the
canonical form of the 𝑊1 distance in 1-D, we need to use a generalized form that
applies to distributions on a circle (Rabin, Delon, and Gousseau, 2011). For two
receptor distributions on the 1-D surface of a 2-D cell, represented as non-negative
vectors a and b of length 𝑚, the𝑊1 distance takes on the form,

𝑊1(a, b) =
𝑚∑︁
𝑖=1

|𝜙𝑖 − 𝜇 |, (2.52)
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where 𝜙𝑖 =
∑𝑖
𝑗=1

(
𝑎 𝑗
∥𝑎∥1

− 𝑏 𝑗
∥𝑏∥1

)
and 𝜇 is the median of the set of values {𝜙𝑖, 1 ≤ 𝑖 ≤

𝑚}. We derive the gradient of Equation 2.52 as,

𝜕

𝜕𝑎𝑘
𝑊1(a, b) =

𝑚∑︁
𝑖=1

sgn(𝜙𝑖 − 𝜇)
𝑖∑︁
𝑗=1

(
𝛿 𝑗 𝑘 −

𝑎 𝑗

∥𝑎∥1

)
. (2.53)

We perform optimization with this gradient using the fmincon function (with sqp
algorithm) in MATLAB.

Numerical simulation of receptor feedback scheme

In our feedback scheme, receptor 𝑟 (𝑥, 𝑡) is modeled by considering three redistribu-
tion mechanisms: (1) lateral diffusion of 𝑟 along the plasma membrane (𝐷∇2

memb𝑟),
(2) endocytosis of 𝑟 along the plasma membrane (𝑘off 𝑟), (3) incorporation of cy-
toplasmic pool of receptors, 𝑅cyto, to the membrane at rate proportional to local
receptor activity (ℎ𝐴𝑅cyto). 𝐴(𝑥, 𝑡) is a random variable that denotes receptor activ-
ity along the cell membrane, and is a function of local receptor number. Then, the
equation describing the distribution of 𝑟 across the cell membrane can be expressed
mathematically as,

𝜕𝑟 (𝑥, 𝑡)
𝜕𝑡

= 𝐷∇2
memb𝑟 − 𝑘off 𝑟 + ℎ𝐴𝑅cyto, (2.54)

where the total number of receptors 𝑟tot =
∫
memb 𝑟 + 𝑅cyto is fixed. We simulate

receptor distribution by treating the cell membrane as a 1D space and the cytosol
as a single, homogeneous compartment. This simplification allows us to simulate
our PDE using the Crank-Nicolson method in one spatial dimension. Given space
and time units Δ𝑥 and Δ𝑡, respectively, the Crank-Nicolson method with 𝑅

𝑗

𝑖
:=

𝑟 (𝑖Δ𝑥, 𝑗Δ𝑡) and 𝐴 𝑗
𝑖

:= 𝐴(𝑖Δ𝑥, 𝑗Δ𝑡) is given by the difference scheme

𝑅
𝑗+1
𝑖

− 𝑅 𝑗
𝑖

Δ𝑡
=

𝐷

2Δ𝑥2

(
𝑅
𝑗

𝑖+1 − 2𝑅 𝑗
𝑖
+ 𝑅 𝑗

𝑖−1 + 𝑅
𝑗+1
𝑖+1 − 2𝑅 𝑗+1

𝑖
+ 𝑅 𝑗+1

𝑖−1

)
− 𝑘off

2

(
𝑅
𝑗

𝑖
+ 𝑅 𝑗+1

𝑖

)
+
ℎ𝐴

𝑗

𝑖

2

(
𝑅
𝑗
cyto + 𝑅

𝑗+1
cyto

)
(2.55)

where, 𝑖 = 1, 2, 3, ...𝑚, representing 𝑚 discrete membrane compartments and 𝑅 𝑗cyto
represents the additional cytosol compartment. Since the membrane is represented
by a circle, we have the following pair of conditions,

𝑅
𝑗

0 = 𝑅
𝑗
𝑚, 𝑅

𝑗

𝑚+1 = 𝑅
𝑗

1 . (2.56)
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Lastly, total receptor number across all compartments is conserved,
𝑚∑︁
𝑖=1

𝑅
𝑗

𝑖
+ 𝑅 𝑗cyto =

𝑚∑︁
𝑖=1

𝑅
𝑗+1
𝑖

+ 𝑅 𝑗+1
cyto. (2.57)

Now, we can combined Equation 2.55–Equation 2.57 and rewrite everything in
vector form. First, let

𝛼 :=
𝐷

2Δ𝑥2 , 𝛽 :=
𝑘off
2

, 𝜅
𝑗

𝑖
:=
ℎ𝐴

𝑗

𝑖

2
,

and rewrite equation (2.55) as,

𝑅
𝑗+1
𝑖

Δ𝑡
−𝛼

(
𝑅
𝑗+1
𝑖+1 − 2𝑅 𝑗+1

𝑖
+ 𝑅 𝑗+1

𝑖−1

)
+ 𝛽𝑅 𝑗+1

𝑖
− 𝜅 𝑗+1

𝑖
𝑅
𝑗+1
cyto =

𝑅
𝑗

𝑖

Δ𝑡
+𝛼

(
𝑅
𝑗

𝑖+1 − 2𝑅 𝑗
𝑖
+ 𝑅 𝑗

𝑖−1

)
− 𝛽𝑅 𝑗

𝑖
+ 𝜅 𝑗

𝑖
𝑅
𝑗
cyto (2.58)

and define 𝑈 𝑗 to be the (𝑚 + 1)-dimensional vector with components 𝑅 𝑗
𝑖

for 𝑖 =
1, 2, 3, ...𝑚 and𝑈 𝑗

𝑚+1 = 𝑅
𝑗
cyto. The difference scheme is given in the vector form

𝑃𝑈 𝑗+1 = 𝑄𝑈 𝑗 . (2.59)

where,

𝑃 =



1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 0 · · · 0 −𝛼 −𝜅 𝑗+1
1

−𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 0 · · · 0 −𝜅 𝑗+1
2

0 . . .
. . .

. . .
...

...
. . .

. . .
. . .

0 · · · 0 −𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 −𝜅 𝑗+1
𝑚−1

−𝛼 0 · · · 0 −𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝜅 𝑗+1
𝑚

1 1 · · · 1 1


(2.60)

𝑄 =



1
Δ𝑡

− 2𝛼 − 𝛽 𝛼 0 · · · 0 𝛼 𝜅
𝑗

1
−𝛼 1

Δ𝑡
− 2𝛼 − 𝛽 𝛼 0 · · · 0 𝜅

𝑗

2

0 . . .
. . .

. . .
...

...
. . .

. . .
. . .

0 · · · 0 𝛼 1
Δ𝑡

− 2𝛼 − 𝛽 𝛼 𝜅
𝑗

𝑚−1
𝛼 0 · · · 0 𝛼 1

Δ𝑡
− 2𝛼 − 𝛽 𝜅

𝑗
𝑚

1 1 · · · 1 1


(2.61)
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Because 𝐴 is invertible, the Crank-Nicolson scheme reduces to the iterative process

𝑈 𝑗+1 = 𝑃−1𝑄𝑈 𝑗 . (2.62)

The entire evolution of 𝑟 can be solved where at each time step, we update receptor
activity 𝐴 𝑗

𝑖
across all membrane position 𝑖 according to the random process described

by equation (2.13), (2.14), followed by solving equation (2.62) for𝑈 𝑗+1.

Parameter Symbol Value Ref.
Receptor endocytosis rate 𝑘off 0.06 s−1 to 0.18 s−1 (Marco et al., 2007)
Feedback constant ℎ 2 × 10−3 s−1 to 4 × 10−3 s−1 (Marco et al., 2007)
Average receptor feedback rate ⟨ℎ𝐴𝑖⟩𝑖 10−3 s−1 to 2 × 10−3 s−1 (Marco et al., 2007)
Receptor dissociation constant 𝐾𝑑 40 µm —
Cell radius 10 µm —
Basal receptor activity 𝛼 0.1 —
Spatial discretization Δ𝑥 0.6283 µm —
Time discretization Δ𝑡 1 s —
Total receptor 𝑟tot 1000 —
Number of membrane bins 𝑚 100 —

Table 2.2: Parameter values for feedback scheme simulation, Related to Fig-
ure 2.5. The average rate of receptor incorporation, ⟨ℎ𝐴𝑖⟩𝑖, depends on receptor
activity which changes as the cell moves in a heterogeneous environment. Thus, the
range shown represents the time-averaged value for a cell moving through simulated
tissue environments. The value of ℎwas chosen to achieve a physiologically relevant
range for ⟨ℎ𝐴𝑖⟩𝑖.

We set the value of the feedback constant ℎ using empirical measurements from
Marco et al. (2007) (Marco et al., 2007). In Figure 3M of Marco et al., the
authors report a quartile box plot showing estimated values for a parameter they
call h (which we will refer to as ℎ̄), with a mean estimate of around 1.6 × 10−3 s−1.
Note ℎ̄ is equivalent in meaning as our ℎ𝐴𝑖. However, since ℎ𝐴𝑖 will be different
across different membrane bins and across time, we simulate the feedback scheme
for a cell in a given environment and set the value of h such that the mean rate
⟨ℎ𝐴𝑖⟩ (averaged across membrane and time) is approximately equal to the mean
estimate of 1.6 × 10−3 s−1 reported by Marco et al.. The value ℎ̄ reported by Marco
et al. corresponds specifically to the transport rate of the Cdc42 to the membrane.
The parameter value was obtained by analyzing fluorescence recovery of GFP-
Cdc42 in membrane regions bleached with a laser pulse. Although the measured
value corresponds to Cdc42, it has been used to model the effective exocytosis
rate for receptors shown to undergo activity-dependent localization, showing good
agreement with empirical data (Hegemann et al., 2015). Similar values around
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10−3 s−1 to 2 × 10−3 s−1 have been measured for the recycling rate of a wide range
of GPCRs (JJ, 1993; Pippig, Andexinger, and Lohse, 1995; Koenig and Edwardson,
1996; Koenig and Edwardson, 1994).

Numerical simulation of cell navigating in interstitial chemical gradients

Chemotaxis algorithm At 𝑡 = 0, initialize a cell at position 𝑝0 ∈ Ω ⊂ R2.

At each subsequent time step 𝑡 = 𝑡 + Δ𝑡 with the cell at position 𝑝𝑡 ∈ Ω:

1. Compute mean ligand profile c ∈ R𝑚 at the cell’s current position.

2. Independently sample 𝑛 ligand profiles {C (𝑖)}𝑛
𝑖=1 where each element 𝐶 𝑗 is

distributed as a Poisson random variable with mean equal to 𝑐 𝑗 (𝑛 = 30 used
in main text, refer to Figure 2.16 for other values of 𝑛).

3. For each ligand profileC (𝑖) sampled, sample a corresponding receptor activity
profiles A(𝑖) ,

A(𝑖) |C (𝑖) ∼
𝑚∏
𝑗=1

Pois(𝜆 𝑗 ), where 𝜆 𝑗 = 𝑟 𝑗

(
𝐶

(𝑖)
𝑗

𝐶
(𝑖)
𝑗

+ 𝐾𝑑
+ 𝛼 𝐾𝑑

𝐶
(𝑖)
𝑗

+ 𝐾𝑑

)
. (2.63)

4. Compute average receptor activity Ā = 1
𝑛

∑𝑛
𝑖=1 A

(𝑖)

5. Compute the an estimator of gradient direction 𝜃 using one of three approaches

• Optimal decoder + noise (Hu et al., 2010): 𝜃 = arctan
(

sin(ϕ)𝑇Ā
cos(ϕ)𝑇Ā

)
+

N(0, 0.1), where 𝜙𝑖 = 2𝜋𝑖/𝑚, 𝑖 = 1, ..., 𝑚 corresponds to the angle
where 𝐴𝑖 is measured on the cell surface.

• Random: 𝜃 is sampled uniformly from the set of 𝑚 angles/directions
{𝜙𝑖}𝑚𝑖=1

• Maximal increase: 𝜃 = 𝜙𝑖∗ where

𝑖∗ = argmax1≤𝑖≤𝑚 𝑓 (𝑖) and 𝑓 (𝑖) =

𝐴̄𝑖 − 𝐴̄𝑖+𝑚/2 𝑖 ≤ 𝑚/2

𝐴̄𝑖 − 𝐴̄𝑖−𝑚/2 𝑖 > 𝑚/2

This decoder selects the direction of maximum change in receptor activ-
ity across the cell surface.

(*) In addition to the three decoders above, we consider the possibility of
temporal averaging, where Ā is a running mean over the past 5 minutes
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of receptor activity profiles (a total of 300× 30 = 9000 sample profiles).
This running average is decoded with the optimal decoder + noise as
described above.

6. Set new cell position 𝑝𝑡+Δ𝑡 = 𝑝𝑡 + 𝑠Δ𝑡 [cos(𝜃), sin(𝜃)], with speed 𝑠 =

2 µm min−1, Δ𝑡 = 1 s.

7. Repeat from step 1.

Tissue gradient simulation for cell navigation

Localization task In addition to using the same tissue environment as the rest of
the paper, we simulated additional tissue gradients using the same set of parameters
but different (randomly generated) ECM fiber networks. This results in tissue gra-
dients that have the same macroscopic features but different patterns of microscopic
fluctuations.

Retention task This task was motivated by the precision with which growth cones
can retain themselves within specific regions of gradients of axon guidance cues. For
this task, we used an ellipse-shaped cell with semi-major axis = 5 µm, semi-minor
axis = 2 µm to mimic the shape of a navigating growth cone. In-vivo observations
of axon guidance cue gradients show very short decay length (Xiao and Baier, 2007;
Xiao, Staub, et al., 2011), so we adjust several parameters to generate interstitial
gradients with matching decay length. Below are the new parameter values that
differ from Table 2.1,

Parameter Symbol Value
Diffusion coefficient 𝐷 5 µm2 s−1

Interstitial fluid flow speed 𝑢in 0.3 µm s−1

Production/release rate 𝜅 20 nm s−1

Soluble ligand degradation 𝛾𝑠 3 × 10−1 s−1

Bound ligand degradation 𝛾𝑏 3 × 10−3 s−1

Table 2.3: Parameter values used for tissue gradient generated for retention
task that differs from the values in Table 2.1, Related to Figure 2.6.

Data on receptor placement, surface expression level, and binding affinity
Empirical measurements of receptor cell surface expression level and binding affinity
can be highly variable, depending on how the affinity was measured and the particular
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cell type used. The data shown below simply represent a subset of values reported
in literature.
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Table 2.4: Receptor data used for Figure 2.7 of main text, Related to Figure 2.7..
(*) receptor expression level data for Robo1 was taken from a non-neuronal cancer
cell line.
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Extension of information theoretic framework to study other spatial sensing
strategies such as modulation of cell shape
We briefly illustrate an extension of our framework to study how cell shape can
be tuned to improve cell sensing and navigation. Recall the generalized model of
receptor activation from the Discussion,

E[𝐴𝑖 | 𝑐𝑖] = 𝑓 (θ𝑖)
( 𝑐𝑖

𝑐𝑖 + 𝐾𝑑
+ 𝛼 𝐾𝑑

𝑐𝑖 + 𝐾𝑑

)
, (2.64)

where 𝑓 is an unspecified function of an arbitrary set of variables θ, representing
the "effective" number of receptors at position 𝑖.

Recent work has shown that given uniform membrane receptors sensing a uniform
ligand field, membrane regions of higher curvature can exhibit higher receptor activ-
ity, due to higher local volume-to-surface ratio (Rangamani et al., 2013). Suppose
we are interested in tuning membrane shape/curvature as a way to maximize in-
formation acquisition by cells. Assuming a constant, linear relationship between
curvature at the i-th membrane position 𝛽𝑖 and "effective" receptor number 𝑓 , and
that receptors are uniformly distributed, then we have

E[𝐴𝑖 | 𝑐𝑖] = 𝛼
𝑟tot
𝑁
𝛽𝑖

( 𝑐𝑖

𝑐𝑖 + 𝐾𝑑
+ 𝛼 𝐾𝑑

𝑐𝑖 + 𝐾𝑑

)
, (2.65)

where 𝛼 is a proportionality constant and 𝑁 is the number of membrane bins. This
model is identical to our receptor model (2.19) up to a constant factor. Furthermore,
if we assume a fixed total membrane area, the resulting optimization problem
is nearly identical with (2.15), where total membrane area now play a similar
role as total receptor number, and 𝛽𝑖 takes the place of 𝑟𝑖. Therefore, we expect
general features of the optimal cell shape to match that of the optimal receptor
placement. Namely, cells can maximize information acquisition by increasing
membrane curvature at regions of high ligand concentration, by making narrow
protrusions. One can derive a more accurate solution by considering a detailed model
of the relationship between curvature and receptor activity outlined in (Rangamani
et al., 2013).

By extension, a strategy to dynamically form narrow membrane protrusions at
regions of high ligand concentration, without explicitly tuning receptor positions,
should in principle boost navigation efficiency in a manner similar to the receptor
feedback scheme we proposed, as the two strategies have qualitatively similar effects
on the spatial distribution of receptor activity. Recent works show that indeed a
feedback circuit that produces dynamic, narrow membrane protrusions is crucial for
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neutrophil navigation. Cells that cannot form narrow protrusions can still move, but
exhibit profoundly defective chemotaxis (Diz-Muñoz et al., 2016).
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2.11 Supplemental figures

Figure 2.11: Different metric assessing information gain offered by the optimal
placement strategy over the uniform strategy, Related to Figure 2.2. (A) versions
of Figure 2.2C for different information metrics, where 𝐼opt and 𝐼unif is defined in
Equation 2.5 in the main text, 1st row is absolute information gain between optimal
and uniform receptors, 2nd row is absolute increase in the number of different classes
to which the ligand profile can be subdivided after observing the receptor activity
(with inset showing intermediate values of 𝛼), 3rd row is relative information
gain, 4th row is the average information obtained with uniform receptors; (B)
versions of Figure 2.2E for different information metrics, 𝐼opt,c = 𝐼 (ĉ; â | 𝜙∗) and
𝐼unif,c = 𝐼 (ĉ; â | 𝜙𝑢); (C) versions of Figure 2.2D for different information metrics.
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Figure 2.12: Robustness of optimal efficacy to perturbation in receptor place-
ment for other cell radius and efficacy metric, Related to Figure 2.3. Colors
of heat map represent ratio of perturbed efficacy 𝜂(𝜙𝑝) to optimal efficacy 𝜂(𝜙∗)
for different combinations of shifting and flattening, computed for ligand profiles
{c} sampled from either (A) tissue or (B) soil; call-out boxes corresponds to dif-
ferent sets of perturbations, showing the average of the optimal {𝜙∗(c)} (gray) and
perturbed {𝜙𝑝 (c)} (red) receptor placements, after all profile peaks were centered;
(C) same as (A) but for a cell of 10 µm radius and for efficacy metric, 2𝐼𝜙∗ − 2𝐼𝜙𝑢 ,
corresponding to the increase in number of distinguishable input states between
optimal and uniform placements, similarly for soil (D)
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Figure 2.13: Effect of redistribution cost 𝛾 and constitutive receptor activity
𝛼 on receptor redistribution according to the dynamic protocol, Related to
Figure 2.4. (A) Schematic showing a cell circling a ligand source which generates
a stationary gradient (red). (B) Ligand profile experienced by the moving cell in
Panel A at two different time points. (C) Optimal receptor profile computed using
Equation 2.9 for the two time points shown in Panel B , for different values of
redistribution cost 𝛾. (D) Speed of the moving receptor cap (as shown in Panel
C) for a wide range of 𝛾, where speed is computed using the distance moved by
the center-of-mass of the receptor distribution. (E) Different receptor redistribution
dynamics for different degrees of constitutive receptor activity 𝛼 (shown for two
different pairs of ligand profiles), dotted lines represent ligand profile (red) and
receptor profile (yellow patch) at one time step, while solid lines represent the
ligand and receptor profile at the next time step. (F) Different receptor redistribution
dynamics for different receptor redistribution cost 𝛾, shown for the same pairs of
ligand profiles as Panel E.
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Figure 2.14: Success rate of chemotactic cell navigating in simulated interstitial
gradient for various values of 𝛾 in dynamic protocol, Related to Figure 2.4.
Dynamic protocol of Equation 2.50 is solved step-wise for a cell simulated to
navigate through an interstitial gradient, success rate is the proportion of simulated
cells reaching gradient peak within 1 hour using the optimal + noise decoding
method. 𝛾 = 0 corresponds to the case where the cost term is absent and receptors
move simply to maximize mutual information. Parameter 𝛾 determines the balance
between maximizing information and minimizing receptor transport cost. Note the
dynamic protocol should not be confused with the feedback scheme.



67

Figure 2.15: Effect of rate parameter values on the effectiveness of receptor
feedback scheme for information acquisition, Related to Figure 2.5. (A) heat
maps show the extent of receptor localization at the ligand peak for different choices
of scheme parameters 𝑘off and ℎ, for a cell in tissue (top) and soil (bottom), as
measured by the fold change in receptor number near the ligand peak compared to
a uniform distribution of receptors; call-out boxes show receptor morphology for
different parameter values, star indicates default parameter values used in Figure 2.5.
(B) ratio of scheme efficacy 𝜂(𝜙𝑠) to optimal efficacy 𝜂(𝜙∗) for static signals {c}
sensed by a 5 µm cell sampled from soil and tissue (C) ratio of scheme efficacy 𝜂(𝜙𝑠)
to optimal efficacy 𝜂(𝜙∗) for a sequence of signals {c𝑡} sampled by translating a
5 µm cell through soil and tissue environment at a speed of 2 µm min−1.
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Figure 2.16: Cell navigation and retention performance in simulated interstitial
gradient for various feedback scheme parameters, Related to Figure 2.6. (A)
heatmap showing success rate (proportion of simulated cells reaching gradient
peak within 1 hour) for cells using receptor feedback scheme with different values
of the endocytosis rate (𝑘off) and average incorporation rate (⟨ℎ𝑎𝑖⟩𝑖), white star
denotes parameter values used in Figure 2.6 of main text. (B) success rate for
cells navigating with different sampling rate, which is the number of ligand profiles
sampled per second. (C) histogram and corresponding success rate quantification
for cells decoding gradient using three different decoding methods, see supplemental
information for detail on each method (temporal averaging is done over a 5 minute
window). (D) heatmap showing error rate (proportion of simulated time steps
where cell was more than 5𝜇𝑚 away from the gradient peak) for cells using receptor
feedback scheme with different values of the endocytosis rate (𝑘off) and average
incorporation rate (⟨ℎ𝑎𝑖⟩𝑖), white star denotes parameter values used in Figure 2.6
of main text. (E) error rate for cells navigating with different sampling rate, which is
the number of ligand profiles sampled per second. (F) histogram and corresponding
error rate quantification for cells decoding gradient using three different decoding
methods, see Section 2.10 for details
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Figure 2.17: Relative and absolute information gain for natural receptors of
different surface expression level, constitutive activity, and binding affinity, Re-
lated to Figure 2.7. (A) relative information gain for different values of 𝐾𝑑 and
𝑁; values computed using the tissue environment; 𝛼 = 0.1; red dots correspond to
receptors that polarize in heterogeneous environments, white dots represent recep-
tors that are constantly uniform, see Table 2.4 for receptor data. (B) relative (left)
and absolute information gain (right) computed for the ten natural receptors shown
in Panel A, across different values of 𝛼, blue bars correspond to receptors that are
constantly uniform, red bars correspond to receptors that polarize in ligand gradient.
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C h a p t e r 3

MORPHEUS: GENERATING COUNTERFACTUAL
EXPLANATIONS OF TUMOR SPATIAL PROTEOMES TO

DISCOVER THERAPEUTIC STRATEGIES FOR ENHANCING
IMMUNE INFILTRATION

Wang, Zitong Jerry, et al. (2023). “Generating counterfactual explanations of tumor
spatial proteomes to discover effective strategies for enhancing immune infiltra-
tion”. In: bioRxiv. doi: 10.1101/2023.10.12.562107.

3.1 Abstract
Immunotherapies can halt or slow down cancer progression by activating either
endogenous or engineered T-cells to detect and kill cancer cells. For immunother-
apies to be effective, T-cells must be able to infiltrate the tumor microenvironment.
However, many solid tumors resist T-cell infiltration, challenging the efficacy of
current therapies. Here, we introduce Morpheus, an integrated deep learning frame-
work that takes large-scale spatial omics profiles of patient tumors, and combines
a formulation of T-cell infiltration prediction as a self-supervised machine learn-
ing problem with a counterfactual optimization strategy to generate minimal tumor
perturbations predicted to boost T-cell infiltration. We applied our framework to
368 metastatic melanoma and colorectal cancer (with liver metastases) samples as-
sayed using 40-plex imaging mass cytometry (IMC), discovering cohort-dependent,
combinatorial perturbations, involving CXCL9, CXCL10, CCL22 and CCL18 for
melanoma and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer, predicted to
support T-cell infiltration across large patient cohorts. Our work presents a paradigm
for counterfactual-based prediction and design of cancer therapeutics using spatial
omics data.

3.2 Introduction
The immune composition of the tumor microenvironment (TME) plays a crucial role
in determining patient prognosis and response to cancer immunotherapies (Fridman
et al., 2017; Binnewies, Mikhail, et al., 2018; Bruni, Angell, and Galon, 2020). Im-
munotherapies that alter the immune composition using transplanted or engineered
immune cells (chimeric antigen receptor T-cell therapy) or remove immunosup-

https://doi.org/10.1101/2023.10.12.562107


79

pressive signaling (checkpoint inhibitors) have shown exciting results in relapsed
and refractory tumors in hematological cancers and some solid tumors. However,
effective therapeutic strategies for most solid tumors remain limited (Hegde and
D. S. Chen, 2020; Choe, Williams, and Lim, 2020; Pitt et al., 2016). The TME is
a complex mixture of immune cells, including T-cells, B cells, natural killer cells,
and macrophages, as well as stromal cells and tumor cells (Fridman et al., 2017).
The interactions between these cells can either promote or suppress tumor growth
and progression, and ultimately impact patient outcomes. For example, high lev-
els of TILs in the TME are associated with improved prognosis and response to
immunotherapy across multiple cancer types (Haslam and Prasad, 2019; Lee and
Ruppin, 2019). Conversely, an immunosuppressive TME characterized by low levels
of TILs is associated with poor prognosis and reduced response to immunotherapy
(Pittet, Michielin, and Migliorini, 2022). Durable, long-term clinical response of
T-cell-based immunotherapies are often constrained by a lack of T-cell infiltration
into the tumor, as seen in classically “cold" tumors such as triple-negative breast
cancer or pancreatic cancer, which have seen little benefit from immunotherapy
(Bonaventura, Paola, et al., 2019; Savas et al., 2016; Tsaur et al., 2021). The precise
cellular and molecular factors that limit T-cell infiltration into tumors is an open
question.

Spatial omics technologies capture the spatial organization of cells and molecular
signals in intact human tumors with unprecedented molecular detail, revealing the
relationship between localization of different cell types and tens to thousands of
molecular signals (Moffitt, Lundberg, and Heyn, 2022). T-cell infiltration is modu-
lated by a rich array of signals within the tumor microenvironment (TME) such as
chemokines, adhesion molecules, tumor antigens, immune checkpoints, and their
cognate receptors (Lanitis et al., 2017). Recent advances in in situ molecular profil-
ing techniques, including spatial transcriptomic (Rodriques et al., 2019; Eng et al.,
2019) and proteomic (Giesen et al., 2014; Goltsev et al., 2018) methods, simulta-
neously capture the spatial relationship of tens to thousands of molecular signals
and T-cell localization in intact human tumors with micron-scale resolution. IMC
is one such technology that uses metal-labeled antibodies to enable simultaneous
detection of up to 40 antigens and transcripts in intact tissue (Giesen et al., 2014).

Recent work on computational methods as applied to multiplexed tumor images
have primarily focused on predicting patient-level phenotypes such as survival, by
identifying spatial motifs from tumor microenvironments (Bhate, Salil S, et al.,
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2022; Z. Wu et al., 2022; Schürch et al., 2020; Aoki, Tomohiro, et al., 2023).
These methods have generated valuable insights into how the complex composition
of TMEs influences patient prognosis and treatment response, but they fall short
of generating concrete, testable hypotheses for therapeutic interventions that may
improve patient outcomes. Given the prognostic significance of T-cell infiltration
into tumors, we need computational tools that can predict immune cell localization
from environmental signals and systematically generate specific, feasible tumor
perturbations that are predicted to alter the TME to improve patient outcomes.

Counterfactual explanations (CFEs) can provide important insight in image analysis
applications (Chang et al., 2019), but have not been applied to multiplexed imaging
data. Traditionally, CFEs help clarify machine learning model decisions by explor-
ing hypothetical scenarios, showing how the model’s interpretation would change if
a feature in an image were altered slightly (Wachter, Mittelstadt, and Russell, 2017).
For instance, slight pixel intensity variations or minor edge alterations in a tumor’s
appearance on an X-ray might lead a diagnostic model to classify the scan differently.
Numerous CFE algorithms exist to elucidate a model’s decision boundaries and shed
light on its sensitivity to specific image features (Verma et al., 2020). In multiplexed
tissue images where each pixel captures detailed molecular information, variations
in pixel intensity directly correspond to specific molecular interventions. Thus,
spatial omics data enables the extension of CFEs from understanding to predicting
actionable interventions.

In this work, we introduce Morpheus, an integrated deep learning framework that
first leverages large scale spatial omics profiles of patient tumors to formulate T-cell
infiltration prediction as a self-supervised machine learning (ML) problem, and
combines this prediction task with counterfactual optimization to propose tumor
perturbations that are predicted to boost T-cell infiltration. Specifically, we train
a convolutional neural network to predict T-cell infiltration using spatial maps of
the TME provided by IMC. We then apply a gradient-based counterfactual genera-
tion strategy to the infiltration neural network to compute changes to the signaling
molecule levels that increase predicted T-cell abundance. We apply Morpheus to
melanoma (Hoch et al., 2022) and colorectal cancer (CRC) with liver metastases
(Zhĳun Wang et al., 2023) to discover tumor perturbations that are predicted to
support T-cell infiltration in tens to hundreds of patients. We provide further vali-
dation of ML-based T-cell infiltration prediction using an additional breast cancer
data set (Danenberg et al., 2022). For patients with melanoma, Morpheus predicts
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combinatorial perturbation to the CXCL9, CXCL10, CCL22 and CCL18 levels can
convert immune-excluded tumors to immune-inflamed in a cohort of 69 patients.
For CRC liver metastasis, Morpheus discovered two cohort-dependent therapeutic
strategies consisting of blocking different subsets of CXCR4, PD-1, PD-L1 and
CYR61 that are predicted to improve T-cell infiltration in a cohort of 30 patients.
Our work provides a paradigm for counterfactual-based prediction and design of
cancer therapeutics based on classification of immune system activity in spatial
omics data.

3.3 Results
Counterfactual optimization for therapeutic prediction
The general logic of Morpheus (Figure 3.1A) is to first train, in a self-supervised
manner, a classifier to predict the presence of CD8+ T-cells from multiplexed tissue
images (Figure 3.1B). Then we compute counterfactual instances of the data by
performing gradient descent on the input image, allowing us to discover perturba-
tions to the tumor image that increases the classifier’s predicted likelihood of CD8+
T-cells being present (Figure 3.1C). The altered image represents a perturbation of
the TME predicted to improve T-cell infiltration. We mask CD8+ T-cells from all
images to prevent the classifier from simply memorizing T-cell expression patterns,
guiding it instead to learn environmental features indicative of T-cell presence.

We leverage IMC profiles of human tumors to train a classifier to predict the spatial
distribution of CD8+ T-cell in a self-supervised manner. Consider a set of images
{𝐼 (𝑖)}, obtained by dividing IMC profiles of tumor sections into local patches of
tissue signaling environments, where 𝐼 (𝑖) ∈ R𝑙×𝑤×𝑐 is an array with 𝑙 and 𝑤 denoting
the pixel length and width of the image and 𝑐 denoting the number of molecular
channels in the images (Figure 3.1B). Each image shows the level of 𝑐 proteins
across all cells within a small patch of tissue. From patch 𝐼 (𝑖) , we obtain a binary
label 𝑠(𝑖) indicating the presence and absence of CD8+ T-cells in the patch and
a masked copy 𝑥 (𝑖) with all signals originating from CD8+ T-cells removed (see
Supplemental methods). The task for the model 𝑓 is to classify whether T-cells
are present (𝑠(𝑖) = 1) or absent (𝑠(𝑖) = 0) in image 𝐼 (𝑖) using only its masked
copy 𝑥 (𝑖) . Specifically, 𝑓 (𝑥 (𝑖)) ∈ [0, 1] is the predicted probability of T-cells, and
then we apply a classification threshold 𝑝 to convert this probability to a predicted
label 𝑠(𝑖) ∈ {0, 1}. Since we obtain the image label 𝑠(𝑖) from the image 𝐼 (𝑖) itself
by unsupervised clustering of individual cells, our overall task is inherently self-
supervised.
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Figure 3.1: An integrated counterfactual optimization framework for discover-
ing therapeutic strategies predicted to drive CD8+ T-cell infiltration in human
tumors. (A) Overview of the Morpheus framework, which consists of first (B)
training a neural network classifier to predict the presence of CD8+ T-cells from
multiplexed tissue images where CD8+ T-cells are masked. (C) The trained classi-
fier is then used to compute an optimal perturbation vector 𝛿(𝑖) per patch by jointly
minimizing three loss terms (𝐿pred, 𝐿dist, 𝐿proto). The perturbation 𝛿(𝑖) represents
a strategy for altering the level of a small number of signaling molecules in patch
𝑥
(𝑖)
0 in a way that increases the probability of T-cell presence as predicted by the

classifier. The optimization also favors perturbations that shift the image patch to be
more similar to its nearest T-cell patches in the training data, shown as proto. Each
perturbation corresponds to adjusting the relative intensity of each imaging channel.
Taking the median across all perturbations produces a whole-tumor perturbation
strategy, which we assess by perturbing in silico tumor images from a test patient
cohort and examining the predicted T-cell distribution after perturbation.
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Given a set of image patches, we train a model 𝑓 to minimize the following T-cell
prediction loss, also known as the binary cross entropy (BCE) loss,

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

[
𝑠(𝑖) log

(
𝑠(𝑖)

)
+

(
1 − 𝑠(𝑖)

)
log

(
1 − 𝑠(𝑖)

)]
, (3.1)

where

𝑠(𝑖) =


1 if 𝑓 (𝑥 (𝑖)) ≥ 𝑝

0 if 𝑓 (𝑥 (𝑖)) < 𝑝
(3.2)

and 𝑝 is the classification threshold. We select 𝑝 by minimizing the following root
mean squared error (RMSE) on a separate set of tissue sections Ω,

RMSE2 =
1
|Ω|

∑︁
𝑗∈Ω

������ 1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑠(𝑖) − 1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑠(𝑖)

������
2

. (3.3)

The RMSE is a measure of the differences between the observed and predicted
proportions of T-cell patches in a tissue section averaged across a set of tissues Ω,
which we take to be the validation set.

We evaluated the performance of various classifiers, including both traditional con-
volutional neural networks (CNNs) and vision transformers. In all cases, we ob-
served similar performance (Table 3.6). We settled on a U-Net architecture because
of ease of extension of the model to multichannel data sets. Our U-Net classifier
consists of a standard U-Net architecture (Buda, Saha, and Mazurowski, 2019) and a
fully connected layer with softmax activation (Supplemental methods). To increase
the number of samples available for training, we take advantage of the spatial het-
erogeneity of TMEs and divide each tissue image into 48 µm × 48 µm patches upon
which the classifier is trained to predict T-cell presence (Supplemental methods).

Using our trained classifier and IMC images of tumors, we employ a counterfactual
optimization method to predict tumor perturbations that enhance CD8+ T-cell infil-
tration (Figure 3.1C). For each image patch 𝑥 (𝑖)0 that does not contain CD8+ T-cells,
our optimization algorithm searches for a perturbation 𝛿(𝑖) such that our classifier 𝑓
predicts the perturbed patch 𝑥 (𝑖)𝑝 = 𝑥

(𝑖)
0 + 𝛿(𝑖) as having T-cells, hence 𝑥 (𝑖)𝑝 is referred

to as a counterfactual instance. Ideally, we want each perturbation to involve per-
turbing as few molecules as possible, and realistic in that the counterfactual instance
is not far from image patches in our training data so we can be more confident of the
model’s prediction. We can obtain a perturbation 𝛿(𝑖) with these desired properties
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by solving the following optimization problem adopted from (Looveren and Klaise,
2021),

𝛿(𝑖) = min
𝛿
𝐿pred(𝑥 (𝑖)0 , 𝛿) + 𝐿dist(𝛿) + 𝐿proto(𝑥 (𝑖)0 , 𝛿), (3.4)

such that

𝐿pred(𝑥 (𝑖)0 , 𝛿) = 𝑐max(− 𝑓 (𝑥 (𝑖)0 + 𝛿), −𝑝),
𝐿dist(𝛿) = 𝛽∥𝛿∥1 + ∥𝛿∥2

2,

𝐿proto(𝑥 (𝑖)0 , 𝛿) = 𝜃∥𝑥
(𝑖)
0 + 𝛿 − proto(𝑖) ∥2

2

(3.5)

where 𝛿(𝑖) is a 3D tensor that describes perturbation made to each pixel of the patch.

The three loss terms in Equation (3.4) each correspond to a desirable property of
the perturbation we aim to discover. The term 𝐿pred encourages validity, in that the
perturbation increases the classifier’s predicted probability of T-cells to be larger
than 𝑝, so the network will predict the perturbed tissue patch as having T-cells when
it previously did not contain T-cells. Next, the term 𝐿dist encourages sparsity, in that
the perturbation does not require making many changes to the TME, by minimizing
the distance between the original patch 𝑥 (𝑖)0 and the perturbed patch 𝑥 (𝑖)p = 𝑥

(𝑖)
0 + 𝛿

using elastic net regularization. Lastly, the term proto(𝑖) in the expression for 𝐿proto

refers to the nearest neighbor of 𝑥 (𝑖)0 among all patches in the training set that
are classified as having T-cells (see Supplemental methods). Thus the term 𝐿proto

explicitly guides the perturbed image 𝑥 (𝑖)p to lie close to the data manifold defined by
our training set, making perturbed patches appear similar to what has been observed
in TMEs infiltrated by T-cells.

Since drug treatments cannot act at the spatial resolution of individual micron-scale
pixels, we constrain our search space to only perturbations that affect all cells in
the image uniformly. Specifically, we only search for perturbations that change the
level of any molecule by the same relative amount across all cells in an image. We
incorporate this constraint by defining 𝛿(𝑖) in the following way,

𝛿(𝑖) = 𝛾 (𝑖) ⊙3 𝑥
(𝑖)
0 , (3.6)

where 𝛾 (𝑖) ∈ R𝑐 defines a single factor for each channel in the image and the circled
dot operator represent channel-wise multiplication, so that within each channel, the
scaling factor is constant across the spatial dimensions of the image. In practice,
we directly optimize for 𝛾 (𝑖) , where 𝛾 (𝑖)

𝑗
can be interpreted as the relative change

to the mean intensity of the 𝑗-th channel. However, given our classifier does have
fine spatial resolution, we can search for targeted therapies such as perturbing only
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a specific cell type or restricting the perturbation to specific tissue locations by
changing Equation (3.6) to match these different types of perturbation.

Taken together, our algorithm obtains an altered image predicted to contain T-cells
from an original image which lacks T-cells, by minimally perturbing the original
image in the direction of the nearest training patch containing T-cells until the
classifier predicts the perturbed image to contain T-cells. Since our strategy may
find different perturbations for different tumor patches, we reduce the set of patch-
wise perturbations {𝛿(𝑖)}𝑖 to a whole-tumor perturbation by taking the median across
the entire set.
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Convolutional neural networks predict T-cell distribution

Figure 3.2: U-Net classifiers accurately predict T-cell distribution in IMC im-
ages of melanoma, metastatic liver, and breast tumor. (A) Histograms showing
the distribution of tumor cores per patient and CD8+ T-cell fractions per core across
all three data sets and data splits. (B) Predicted and actual T-cell distribution of
tissue sections from test cohorts in melanoma, liver tumor, and breast tumor data
set. (C) Predicted and true proportion of patches with T-cells within a tissue sec-
tion, each dot corresponds to a tissue section, diagonal black line indicates perfect
prediction. (D) The RMSE (Equation (3.3)) across all (test) tissue sections for three
different classes of models.

We applied Morpheus to two publicly available IMC data sets of tumors from
patients with metastatic melanoma (Hoch et al., 2022) and colorectal cancer (CRC)
with liver metastases (Zhĳun Wang et al., 2023) (Figure 3.2A). We validate the
infiltration prediction on an additional breast cancer data set (Danenberg et al.,
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2022). While this breast cancer data focuses on cell-type markers over functional
modulators of T-cell infiltration, making it unsuitable for therapeutic prediction, it
serves to further validate our ML-based prediction of T-cell infiltration.

The melanoma data set (Hoch et al., 2022) was obtained by IMC imaging of 159
tumor cores from 69 patients with stage III or IV metastatic melanoma. Each
tissue was imaged across 39 molecular channels, consisting of markers for tumor,
immune, and stromal cells, as well as 11 different chemokines (RNA) (Supplemental
methods). The CRC data set (Zhĳun Wang et al., 2023) consists of 209 tissue
sections taken from 30 patients imaged across 42 channels, including 60 sections
from primary CRC tumors, 89 sections CRC metastases to the liver and 60 “healthy"
liver sections obtained away from the metastases (Supplemental methods). The
breast cancer data set (Danenberg et al., 2022) was obtained by IMC imaging of 749
breast tumor cores from 693 patients. The tissues were imaged across 37 channels,
consisting of markers for tumor, lymphoid, myeloid and stromal cells (Supplemental
methods).

For each of the three tumor data sets, we trained a separate U-Net classifier that
effectively predicts CD8+ T-cell infiltration level in unseen tumor sections (Sup-
plemental methods). The two classifiers trained on melanoma and CRC data sets
achieved the best performance with an AUROC of 0.77 and 0.8, respectively, whereas
the classifier trained on breast tumors achieved a AUROC of 0.71 (Table 3.5). Fig-
ure 3.2B shows examples of actual and predicted T-cell distributions in tumor sec-
tions, demonstrating that our classifiers accurately predict the general distribution
of T-cells. For each tissue section of a cancer type, the predictions were obtained
by applying the corresponding U-Net classifier to each image patch independently.
Comparing the true proportion of T-cell patches in a tissue section against our pre-
dicted proportion also shows strong agreement (Figure 3.2C). The true proportion of
patches with T-cells is calculated by dividing the number of patches within a tissue
section that contain CD8+ T-cells by the total number of patches within that section.
We quantify the performance of our U-Nets on the entire test data set using the
RMSE (Equation 3.3), which represents the mean difference between our predicted
proportion and the true proportion per tumor section (Figure 3.2D). Our classifiers
performs well on liver tumor and melanoma, achieving a RMSE of only 6% and
8%, respectively, and a relatively lower performance of 11% on breast tumor. Taken
together, these results suggest that our classifier can accurately predict the T-cell
infiltration status of multiple tumor types.
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In order to gain insight into the relative importance of non-linearity and spatial
information in the performance of the U-Net on the T-cell classification task, we
compared the U-nets’ performance to a logistic regression model (LR) and a multi-
layer perceptron (MLP). Both the LR and MLP model are given only mean channel
intensities as input, so neither have explicit spatial information. Furthermore, the
LR model is a linear model with a threshold whereas the MLP is a non-linear
model. Figure 3.2D shows that across all three cancer data sets, the MLP classifier
consistently outperforms the LR model, reducing RMSE by 20−40% to suggest that
there are significant nonlinear interactions between different molecular features in
terms of their effect on T-cell localization. The importance of spatial features on the
T-cell prediction task, however, is less consistent across cancer types. Figure 3.2D
shows that for predicting T-cells in breast tumor, the U-Net model offers negligible
boost in performance relative to the MLP model (< 2% RMSE reduction), whereas
for liver tumor, the U-Net model achieved a RMSE 50% lower compared to the
MLP model. This result suggests that the spatial organization of signals may have
a stronger influence on CD8+ T-cell localization in liver tumor compared to breast
tumor.
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Applying Morpheus to metastatic melanoma samples

Figure 3.3: Combinatorial chemokine therapy predicted to drive T-cell infil-
tration in patients with metastatic melanoma (A) Whole-tumor perturbations
optimized across IMC images of patients (row) from the training cohort, with bar
graph showing the median relative change in intensity for each molecule.
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Figure 3.3: (continued) (B) Distribution of cancer stages among patients within
two clusters, gray indicates unknown stage, chance probability from hypergeometric
distribution. (C) Volcano plot comparing chemokine level and cell-type abundance
from patient cluster 1 and 2, computed using mean values and Wilcoxon rank
sum test. Gray indicates non-statistical significance. (D) Patch-wise chemokine
profile (left); 1-D heatmap (right): infiltration status (light/dark = from infil-
trated/deserted tumor), tumor cell (light/dark = present/absent), CD8+ T-cells
(light/dark = present/absent). (E) Patch-wise correlation between chemokine signals
and the presence of CD8+ T-cells. (F) (Top) UMAP projection of tumor patches
(chemokine channels) show a clear separation of masked patches with and without
T-cells. (Bottom) colored arrows connect UMAP projection of patches without
T-cells and their corresponding counterfactual (perturbed) patch, where the col-
ors correspond to k-nearest neighbor clusters (i-iv) of the counterfactual patches,
highlighting the minimal nature of the perturbations. Pie charts (i-iv) shows the
distribution of patients whose original tumor patches are found in the corresponding
cluster regions in the UMAP. (G) Cell maps computed from a patient’s IMC image,
showing the distribution of T-cells before and after perturbation. (H) Original vs.
perturbed (predicted) mean infiltration level across all patients (test cohort) with
95% confidence interval (only shown for patients with more than two samples).
Stage IV patients received perturbation strategy 1 (yellow), stage III patients re-
ceived perturbation strategy 2 (green). (I) Mean infiltration level across all patients
(test cohort) for optimized perturbation strategies of varying sparsity, error bar rep-
resents 95% CI.

Applying our counterfactual optimization procedure using the U-Net classifier
trained on melanoma IMC images, we discovered a combinatorial therapy predicted
to be highly effective in improving T-cell infiltration in patients with melanoma. We
restricted the optimization algorithm to only perturb the level of chemokines, which
are a family of secreted proteins that are known for their ability to stimulate cell
migration (Hughes and Nibbs, 2018) and have already been harnessed to augment
T-cell therapy (Foeng, Comerford, and McColl, 2022). By optimizing over multiple
chemokines, Morpheus opens the door to combinatorial chemokine therapeutics
that has the potential to more effectively enhance T-cell infiltration into tumors.
Figure 3.3A shows that patients from the training cohort separate into two clusters
based on hierarchical clustering of perturbations computed for each patient. Taking
median across all patients in cluster 1, the optimized perturbation is to increase
CXCL9 level by 370%, whereas in patient cluster 2, the optimized perturbation
consists of increasing CXCL10 level by 280% while decreasing CCL18 and CCL22
levels by 100% and 70%, respectively (Figure 3.3A). Both CXCL9 and CXCL10
are well known for playing a role in the recruitment of CD8+ T-cells to tumors. On
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the other hand, CCL22 is known to be a key chemokine for recruiting regulatory
T-cells (Kohli, Pillarisetty, and T. S. Kim, 2022) and CCL18 is known to induce an
M2-macrophage phenotype (Schraufstatter et al., 2012), so their expression likely
promotes an immunosuppressive microenvironment inhibitory to T-cell infiltration
and function.

Figure 3.3B shows that the choice of which of these two strategies was selected for a
patient appears to be strongly associated with the patient’s cancer stage, with strategy
1 being significantly enriched for patients with stage IV metastatic melanoma and
strategy 2 being significantly enriched for patients with stage III cancer, with a
probability of 0.053 of such difference being due to chance. Probing deeper into
the difference between these two patient clusters, we find that all chemokines have
lower mean expression in the tumors of patients in cluster 1 compared to cluster 2,
while there are no significant differences between the two groups in terms of the
cell-type compositions within tumors (Figure 3.3C). Since the levels of CCL22 and
CCL18 is 37% and 31% higher in patients from cluster 2 and both chemokines have
been implicated in having an inhibitory effect on T-cell infiltration, it is reasonable
that the optimization algorithm suggests inhibiting CCL18 and CCL22 only for
patients in cluster 2. However, the switch from boosting CXCL9 to CXCL10 is not
as straightforward. A possible explanations is that boosting CXCL10 is important
when blocking CCL18 and CCL22 in order for the perturbed patches to stay close
to the data manifold, leading to more realistic tissue environments.

Morpheus selected perturbations that would make the chemokine composition of a
TME more similar to T-cell rich regions of immune-infiltrated tumors. Figure 3.3D
shows that melanoma tissue patches can be clustered into distinct groups based on
their chemokine concentration profile. One cluster (highlighted in blue) contains
exactly the patches from immune-infiltrated tumors that contain both tumor and
T-cells, which likely represents a chemokine signature that is suitable for T-cell in-
filtration. Alternately, a second cluster (highlighted in red) which contains patches
from immune-desert tumors that have tumor cells but no T-cells likely represents
an unfavorable chemokine signature. In comparison to the cluster highlighted in
red, Figure 3.3D shows the cluster highlighted in blue contains elevated levels of
CXCL9, CXCL10 and reduced levels of CCL22 which partially agrees with the
perturbation strategy (Figure 3.3A) discovered by Morpheus. Lastly, Figure 3.3E
shows that our four selected chemokine targets cannot simply be predicted from
correlation of chemokine levels with the presence of CD8+ T-cells, as both CCL18
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and CCL22 are weakly correlated (< 0.1) with CD8+ T-cells even though the op-
timized perturbations requires inhibiting both chemokines, suggesting the presence
of significant nonlinear effects not captured by correlations alone.

We can directly observe how Morpheus searches for efficient perturbations by
viewing both the original patch and perturbed patches in a dimensionally reduced
space. Figure 3.3F (top) shows a UMAP projection where each point represents
the chemokine profile of an IMC patch. T-cell patches (with their CD8+ T-cells
masked) are well separated from patches without CD8+ T-cells. The colored arrows
in the bottom UMAP of Figure 3.3F illustrate the perturbation for each patch as
computed by Morpheus, and demonstrate two key features of our algorithm. First,
optimized perturbations push patches without T-cells towards the region in UMAP
space occupied by T-cell-infiltrated patches. Second, the arrows in Figure 3.3C
are colored to show that optimized perturbations seem efficient in that patches are
perturbed just far enough to land in the desired region of space. Specifically, red
points that start out on the right edge end up closer to the right after perturbation
(region ii and iii), while points that start on the left/bottom edge end up closer to the
left/bottom (region i and iv), respectively. We make this observation while noting
that UMAP, though designed to preserve the topological structure of the data, is not
a strictly distance-preserving transformation (McInnes, Healy, and Melville, 2018).
Furthermore, the pie charts (i-iv) are colored by the patient of origin to show the re-
gion of space where points are being perturbed to are not occupied by tissue samples
from a single patient with highly infiltrated tumor. Rather, these regions consist of
tissue samples from multiple patients, suggesting that our optimization procedure
can synthesize information from different patients when searching for therapeutic
strategies.

After applying the second perturbation strategy from Figure 3.3A in silico to IMC
images of a tumor, Figure 3.3G shows that T-cell infiltration level (defined as the
proportion of tumor patches with T-cells) is predicted to increase by 20 fold. We
applied our two perturbation strategies on patients in our test cohort in silico after
stratifying by cancer stage, using strategy 1 on patients with stage IV melanoma and
strategy 2 on patients with stage III melanoma.Figure 3.3H shows that this predicted
improvement holds across nearly all 14 patients from the test group, boosting T-cell
infiltration level from an average of 23% across samples to a predicted 63% post
perturbation. For the three test patients with multiple tumor sections (patient 64, 57,
89), we see small to moderate variation in predicted improvement across samples.
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The combinatorial nature of our optimized perturbation strategy is crucial to its pre-
dicted effectiveness. We systematically explored the importance of combinatorial
perturbation by changing parameter 𝛽 of Equation (3.4) which adjusts the sparsity
of the strategy, where a more sparse strategy means fewer molecules are perturbed.
Figure 3.3I shows that perturbing multiple targets is predicted to be necessary for
driving significant T-cell infiltration across multiple patients, with the best perturba-
tion strategy involving two targets predicted to generate only 60% of the infiltration
level achieved by the best perturbation strategy involving four targets. In conclusion,
within the scope of the chemokine targets considered, combinatorial perturbation of
the TME appears necessary for improving T-cell infiltration in metastatic melanoma.
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Applying Morpheus to CRC with liver metastases samples

Figure 3.4: Blocking subsets of PD-L1, CXCR4, PD-1, and CYR61 predicted to
drive T-cell infiltration in CRC cohort.
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Figure 3.4: (continued) (A) Optimized tumor perturbations aggregated to the patient
(row) level (train cohort). Bar graph shows the median relative change in intensity
for each molecule across all patients within their cluster. (B) Patch-wise correlation
between the levels of different molecules and the presence of CD8+ T-cells. (C)
Pie charts show proportion of patients in each cluster that have fatty liver disease
(FLD), chance probability from hypergeometric distribution. (D) Volcano plot
comparing molecule levels and cell-type abundance between the two patient cluster
using tumor tissues, computed using mean values and Wilcoxon rank sum test with
Bonferroni correction. (E) Optimized perturbations aggregated to the level of tissue
samples (row). (F) UMAP projection of IMC patches, left UMAP shows T-cell
patches colored by the tissue samples they are taken from. right UMAP shows
counterfactual (perturbed) instances optimized for tumor patches without T-cells
(red). (G) Line plots shows T-cell infiltration level for each tissue section from the
test cohort, before and after perturbation. Bar plots show predicted mean T-cell
infiltration level for each test patient. (H) Mean infiltration level across all test
patients using perturbation strategies of varying sparsity, obtained by varying 𝛽 in
Equation (3.4), error bar represents 95% CI.

Applying Morpheus to IMC images from the CRC cohort, we discovered two patient-
dependent therapies predicted to be highly effective in improving T-cell infiltration.
Figure 3.4A shows the optimal perturbations computed for every patient from the
training cohort, aggregated over all tumor samples for each patient. Our method
consistently discovered two distinct patient-dependent strategies for improving T-cell
infiltration, as revealed by hierarchical clustering of all patient-level perturbations
(Figure 3.4A). Taking median over patients in the first cluster, the optimized strategy
involves completely inhibiting PD-1, PD-L1, and CXCR4. While for the second
group of patients, the optimized strategy involves completely inhibiting CYR61,
PD-1, PD-L1, and CXCR4 (Figure 3.4A). Interestingly, all four of the perturbation
targets correlated poorly with the presence of CD8+ T-cells compared to the other
proteins that were not selected as perturbation targets (Figure 3.4B), suggesting the
presence of significant spatial and nonlinear effects not captured by correlations
alone.

All perturbation targets identified by our optimization procedure have been found to
play crucial roles in suppressing T-cell function in the TME, and treating patients
with inhibitors against subsets of the selected targets have already improved T-
cell infiltration in human CRC liver metastases. Regulatory T-cells (Tregs) are
recruited into tumor through CXCL12/CXCR4 interaction (Ghanem et al., 2014),
and the PD-1/PD-L1 pathway inhibits CD8+ T-cell activity and infiltration in tumors.
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In addition, CYR61 is a chemoattractant and was recently shown to drive M2
TAM infiltration in patients with CRC liver metastases (Zhĳun Wang et al., 2023).
Inhibition of both PD-1 and CXCR4, which were consistently selected by Morpheus
as targets, have already been shown to increase CD8+ T-cell infiltration in both
patients with CRC and mouse models (Biasci, Daniele, et al., 2020; Y. Chen et al.,
2015; Steele et al., 2023). Finally, Figure 3.4A shows that the fifth most common
proposed perturbation involves inhibiting IL-10. Indeed, blockade of IL-10 was
recently shown to increase the frequency of non-exhausted CD8+ T-cell infiltration
in slice cultures of human CRC liver metastases (Sullivan et al., 2023).

The emergence of the two distinct perturbation strategies may be explained by varia-
tion in liver fat build-up among patients. Patient cluster 1 is made up of significantly
more patients with fatty liver disease (70% FLD) compared to patient cluster 2
(22%), where the probability of this due purely to chance is 0.047 (Figure 3.4C).
Furthermore, Figure 3.4D shows that both YAP and CYR61 levels are significantly
higher in tumors from patient cluster 1, by 50% and 15%, respectively. Indeed,
CYR61 is known to be associated with non-alcoholic fatty liver disease (FLD) (Zhi-
jun Wang et al., 2023) and YAP is a transcription coregulator that induces CYR61
expression (Zhang, Pasolli, and Fuchs, 2011). However despite patients in cluster 1
having higher levels of CYR61, it is only for patients in cluster 2 where the optimal
strategy involves blocking CYR61. We postulate that this seemingly paradoxical
finding may arise because removing CYR61 from patients in cluster 1 represents a
more pronounced perturbation, given their inherently higher concentration. A per-
turbation of this magnitude would likely shift the tumor profile significantly away
from the data manifold, where the classifier’s prediction about the perturbation’s
effect becomes less reliable, hence such a perturbation would be heavily penalized
during optimization due to the 𝐿proto term.

Using only raw image patches, Morpheus discovers tissue-dependent perturbation
strategies (Figure 3.4E). As depicted in Figure 3.4E, by aggregating perturbations at
the individual tissue level, we observe that the optimized perturbation for “healthy"
liver sections is straightforward, necessitating only the inhibition of CXCR4. Recall
“healthy" sections are samples obtained away from sites of metastasis. In contrast,
promoting T-cell infiltration into primary colon tumors is anticipated to involve tar-
geting a minimum of three signals. Our method finds that liver metastases appears
to fall between these two tissue types. The optimized perturbation strategy for some
liver metastases samples is to block CXCR4, while requiring the inhibition of the
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same set of signals as primary tumors for others. Furthermore, direct comparison
between perturbations optimized for metastatic tumor and primary tumor samples
does not reveal a significant difference in strategy (Figure 3.6). We can partly under-
stand the discrepancy between tissues by plotting a UMAP projection of all T-cell
patches from the three tissue types (Figure 3.4F, left). The clear separation between
T-cell patches from "healthy" tissue and those from primary tumors underscores
that the signaling compositions driving T-cell infiltration likely differ substantially
between the two tissue types. This distinction is likely what prompted our method
to identify markedly different perturbation strategies. Furthermore, some patches
from metastatic tumors co-localize with “healthy" tissue patches in UMAP space,
while other patches co-localizes with primary tumor patches. This observation
again aligns with our previous result, where optimized perturbation strategies for
metastases samples share similarities with strategies for either “healthy" tissue or
primary tumor (Figure 3.4E).

Despite the CRC data set comprising a complex blend of healthy, tumor, and hybrid
metastatic samples, Morpheus targets the most pertinent tissue type when optimiz-
ing perturbations. During both the model training and counterfactual optimization
phases, we did not make specific efforts to segregate the three tissue types. Further-
more, we did not provide tissue type labels or any metadata. Despite these nuances,
Figure 3.4F shows that the counterfactual instances for tumor patches (dark blue)
from primary and metastases samples are mostly perturbed to be near T-cell patches
from primary (cyan) and metastatic tumor (gold), instead of being perturbed to
be similar to T-cell patches from “healthy" tumors (purple). This result is partly
a consequence of our prototypical constraint which encourages patches to be per-
turbed towards the closest T-cell patch. For a patch from a metastatic tumor without
T-cells, the closest (most similar) T-cell patch is likely also from a metastatic tumor
than from a “healthy" tissue. However, there are occasional exceptions where T-cell
patches from "healthy" tissues can influence the optimization of tumor tissues, as
outlined by the dashed ellipse in Figure 3.4F, especially if they share similar features
as tumor regions.

The two therapeutic strategies we discovered generalize to patients in our test cohort
(Figure 3.4G,H). Given that we have two therapeutic strategies, one enriched for
patients with FLD and another for patients without FLD, we apply different per-
turbation strategies in silico across all test patients depending on their FLD status.
Aggregated to the patient level, Figure 3.4G shows that CD8+ T-cell infiltration
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level is predicted to increase for nearly all patients, with the exception of patient 28.
Furthermore, aggregating to the entire test cohort, Figure 3.4H shows a statistically
significant boost to mean infiltration level from 15% to a predicted 35% post pertur-
bation. However, when comparing individual tissue samples, Figure 3.4G reveals
significant variation in the predicted response to perturbation among samples from
the same patient and tissue types. In patient 7, one primary tumor sample is predicted
to see a nearly threefold increase in T-cell infiltration after perturbation, yet almost
no change is expected for patient 7’s other two primary and three metastatic sam-
ples. Similar patterns are observed in patients 14 and 17. This marked variability
in response among a significant portion of test patients underscores the challenges
posed by intra-tumor and inter-patient heterogeneity in devising therapies for CRC
with liver metastases. This result further implies that, for studying CRC with liver
metastases, collecting numerous tumor sections per patient could be as crucial as
establishing a large patient cohort. Lastly, combinatorial perturbation is again pre-
dicted to be necessary to drive significant T-cell infiltration in large patient cohorts.
By increasing 𝛽 in Equation (3.4), we generated strategies with between one and
four total targets, where our four-target perturbation is the only strategy predicted to
produce a statistically significant boost to T-cell infiltration (Figure 3.4H).

3.4 Discussion
Our integrated deep learning framework, Morpheus, combines deep learning with
counterfactual optimization to directly predict therapeutic strategies from spatial
omics data. One of the major strengths of Morpheus is that it scales efficiently to
deal with large diverse sets of patients samples including metachronous tissue from
the same patients but different sites, which will be crucial as more spatial transcrip-
tomics and proteomics data sets are quickly becoming available (A. Chen et al.,
2022). Larger data sets could allow us to train more complex models such as vision
transformers, capturing long range interactions in tissues to improve prediction of
T-cell localization. Furthermore, a large set of diverse patient samples will more
accurately capture the extent of tumor heterogeneity, enabling Morpheus to discover
therapeutic strategies for different sub-classes of patients.

3.5 Code availability
Code for model training, perturbation optimization and analysis are publicly avail-
able at https://github.com/neonine2/morpheus-spatial. Our optimiza-
tion code was implemented in Python and was built upon the open source Python

https://github.com/neonine2/morpheus-spatial


99

library Alibi (Klaise et al., 2021).

3.6 Data availability
All data sets used in this study are published and publicly available.
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3.8 Supplemental methods
IMC data sets
All data sets used in this paper are publicly available. Metastatic melanoma data set
from Hoch et al. (Hoch et al., 2022) contains 159 images or cores taken from 69
patients, collected from sites including skin and lymph-node. CRC liver metastases
data set from Wang et al. (Zhĳun Wang et al., 2023) contains 209 images or cores
taken from 30 patients. Breast tumor data set from Danenberg et al. (Danenberg
et al., 2022) contains 693 images or cores taken from 693 patients. The RNA and
protein panels used for each of the three data sets are listed in Table 3.1.

Data split

For all three IMC data sets, we followed the same data splitting scheme to divide
patients into three different groups (training, validation, testing) while ensuring
similar class balance across the groups, which in our case means that the proportion
of image patches with and without T-cells are roughly equal across the three groups
for each data set. Specifically, each image within a data set was divided into
48 µm × 48 µm patches and the number of patches with and without CD8+ T-
cells was computed for each image. Furthermore, each patch was downsampled
from 48 × 48 pixels to 16 × 16 pixel dimension where each pixel now represents
a 3 µm × 3 µm region. We applied spectral analysis to study the effect of using
different patch size to predict T-cell infiltration and found that our selected patch
size remains highly informative of T-cell presence (Figure 3.5). Next, the patients
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Metastatic melanoma CRC with liver metastases Breast tumor

Vimentin DapB CD45 Glnsynthetase Histone H3 SMA
CD163 CCL4 CD163 NKG2D CK5 CD38
B2M CCL18 CCR4 PD-L1 HLA-DR CK8-18
CD134 CXCL8 FAP CD11c CD15 FSP1
CD68 CXCL10 LAG3 HepPar1 CD163 ICOS
GLUT1 CXCL12 FOXP3 𝛼SMA OX40 CD68
CD3 CXCL13 CD4 CD105 HER2 (3B5) CD3
LAG3 CCL2 CD68 VISTA Podoplanin CD11c
PD-1 CCL22 CD20 CD8𝛼 PD-1 GITR
HistoneH3 CXCL9 TIM3 CXCR4 CD16 c-Caspase3
CCR2 CCL19 PD-1 iNOS CD45RA B2M
PD-L1 CCL8 CD31 CYR61 CD45RO FOXP3
CD8 SMA CDX2 CAIX CD20 ER
SOX10 CD31 CD3 CD44 CD8 CD57
Mart1 pRB CD15 CD11b Ki-67 PDGFR𝛽
cleavedPARP MPO HLA-DR IL10 Caveolin-1 CD4
CD15 CK5 CXCL12 HLA-ABC CD31-vWF CXCL12
CD38 HLA-DR GranzymeB Ki67 HLA-ABC panCK
S100 Cadherin11 HistoneH3 CXCR3 HER2 (D8F12)
FAP Galectin9 YAP

CD14 CK19

Table 3.1: Protein and RNA panels imaged for each of the IMC data sets, with RNA
targets bolded

are shuffled between the three groups until three criteria are met: 1) the number of
patients across the three groups follow a 65/15/20 ratio, 2) the difference in class
proportion between any two of the three groups is less than 2%, and 3) the training
set contains at least 65% of total patches. The actual data splits used in the paper
are described in Table 3.2.

Data set Group Patient count Patch count Percent patches with
CD8+ T-cells

Metastatic Training 102 23741 29.6%
melanoma Validation 28 6045 30.3%

Testing 29 5950 30.4%

CRC with Training 19 44449 15.9%
liver metastases Validation 4 6957 14.4%

Testing 7 14907 15.9%

Breast cancer Training 485 41104 23.7%
Validation 113 9015 23.4%
Testing 151 12987 23.8%

Table 3.2: Data split for Melanoma, CRC cohort, and breast tumor IMC data set
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Single-cell phenotyping

For each data set, we used the cell-type classification (tumor and CD8+ T-cells) from
the original paper. For the melanoma data set, cell phenotyping was performed using
the Shiny application of the R package cytomapper (Eling et al., 2020), which allows
labeling of cell populations using multiple gates. CD8+ T-cells were defined using
CD3 and CD8, tumor cells are positive for any or multiple of SOX9, SOX10, MITF,
Mart1, S100A1, and p75. For the CRC and breast cancer data set, cell-type labeling
was performed using PhenoGraph (Levine et al., 2015).

Classifier training
In this work, we trained three classes of models to perform our T-cell prediction
task. All models presented in this paper were trained with early stopping based
on the validation Matthews Correlation Coefficient (MCC) for 10–20 epochs. All
models were trained on an NVIDIA GeForce RTX 3090 Ti GPU using PyTorch
version 1.13.1 (Paszke et al., 2019). More details about hyperparameters and
implementations can be found in our GitHub repository.

T-cell masking strategy

The purpose of model training is for the model to learn molecular features of a
tissue environment that supports the presence of CD8+ T-cell, so it is important for
us to remove features of the image that are predictive of CD8+ T-cell presence but
are not part of the cell’s environment, for example, the expression profile of T-cells
themselves. We devised a non-trivial cell masking strategy in order to remove T-cell
expression patterns without introducing new features that are highly predictive of T-
cell presence but are not biologically relevant. A simple masking strategy of zeroing
out all pixels belonging to CD8+ T-cells will introduce contiguous regions of zeros
to image patches with T-cells, which is an artificial feature that is nonetheless highly
predictive of T-cell presence and hence will likely be the main feature learned by a
model during training. To circumvent this issue, we first apply a cell “pixelation" step
to the original IMC image where we reduce each cell to a single pixel positioned
at the cell’s centroid. The value of this pixel is the sum of all pixels originally
associated with the cell, representing the total signal from each channel within the
cell. We then mask this “pixelated" image by zeroing all pixels representing CD8+
T-cells. Since there are usually at most two T-cell pixels in an image patch, zeroing
them in a 16 × 16 pixel image where most (> 90%) of the pixels are already zeros



102

is not likely to introduce a significant signal that is predictive T-cell presence. We
show that our strategy is effective at masking T-cells without introducing additional
features through a series of image augmentation experiments ( Supplemental Note
1 Assessment of T-cell masking strategy).

Logistic regression models

We trained a single-layer neural network on the average intensity values from each
molecular channel to obtain a LR classifier, predicting the probability of CD8+
T-cell presence in the image patch. This model represents a linear model where only
the average intensity of each molecule is used for prediction instead of their spatial
distribution within a patch.

MLP models

Similar to a LR model, the MLP also uses averaged intensity as input features for
prediction but is capable of learning nonlinear interactions between features. The
MLP model consists of two hidden layers (30 and 10 nodes) with Rectified Linear
Unit (ReLU) activation.

U-Net models

To train networks that can make full use of the spatial information, we used a fully
convolutional neural network with the U-Net architecture. The U-Net architecture
consists of a contracting path and an expansive path, which gives it a U-shaped
structure (Buda, Saha, and Mazurowski, 2019). The contracting path consists of
four repeated blocks, each containing a convolutional layer followed by a ReLU
activation and a max pooling layer. The expansive path mirrors the contracting
path, where each block contains a transposed convolutional layer. Skip connections
concatenates the up-sampled features with the corresponding feature maps from the
contracting path to include local information. The output of the expansive path is
then fed to a fully connected layer with softmax activation to produce a predicted
probability. The model was trained from scratch using image augmentation to
prevent over-fitting, including random horizontal/vertical flips and rotations, in
addition to standard channel-wise normalization. We train our U-Net classifiers
using stochastic gradient descent with momentum and a learning rate of 10−2 on
mini-batches of size 128.
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Counterfactual optimization
Given an IMC patch 𝑥 (𝑖) without T-cells, and a classifier 𝑓 , our goal is to find a
perturbation 𝛿(𝑖) for the patch such that 𝑓 classifies the perturbed patch as having
T-cells. For CNN models, 𝛿(𝑖) ∈ R𝑤×𝑙×𝑑 is a 3D tensor that describes changes made
for every channel, at each pixel of the patch.

Given a CNN classifier 𝑓 and a IMC patch 𝑥 (𝑖) such that 𝑓 (𝑥 (𝑖)0 ) = P(T-cells present) <
𝑝, where 𝑝 > 0 is the classification threshold below which the classifier predicts no
T-cell, we aim to obtain a perturbation 𝛿(𝑖) such that 𝑓 (𝑥 (𝑖)0 + 𝛿(𝑖)) > 𝑝, by solving
the following optimization problem adopted from (Looveren and Klaise, 2021),

𝛿(𝑖) = min
𝛿
𝐿pred(𝑥 (𝑖)0 , 𝛿) + 𝐿dist(𝛿) + 𝐿proto(𝑥 (𝑖)0 , 𝛿), (3.7)

such that

𝐿pred(𝑥 (𝑖)0 , 𝛿) = 𝑐max(− 𝑓 (𝑥 (𝑖)0 + 𝛿), −𝑝), (3.8)

𝐿dist(𝛿) = 𝛽∥𝛿∥1 + ∥𝛿∥2
2, (3.9)

𝐿proto(𝑥 (𝑖)0 , 𝛿) = 𝜃∥𝑥
(𝑖)
0 + 𝛿 − proto(𝑖) ∥2

2, (3.10)

𝛿(𝑖) = 𝛾 (𝑖) ⊙3 𝑥
(𝑖)
0 (3.11)

where proto(𝑖) is an instance of the training set classified as having T-cells, defined
by first building a k-d tree of training instances classified as having T-cells and
setting the 𝑘-nearest item in the tree (in terms of Euclidean distance to 𝑥 (𝑖)0 ) as proto.
We use 𝑘 = 1 for all counterfactual optimization. For all other parameters, we list
their values in Table 3.3. During optimization, the weight 𝑐 of the loss term 𝐿pred is
updated for 𝑛 iterations, starting at 𝑐0. If we identify a valid counterfactual for the
present value of 𝑐, we will then decrease 𝑐 in the subsequent optimization cycle to
increase the weight of the additional loss components, thereby enhancing the overall
solution. If, however, we do not identify a counterfactual, 𝑐 is increased to put
more emphasis on increasing the predicted probability of the counterfactual. The
parameter 𝑠max sets the maximum number of optimization steps for each value of 𝑐.

3.9 Supplemental information
Supplemental Note 1 Assessment of T-cell masking strategy
By masking T-cells prior to model training, we may have inadvertently introduced
a new signal that is predictive of T-cells, specifically that fewer cells in an image
increases the probability of T-cells being present. To assess the possibility of such
an effect, we study the impact of random cell masking on the predicted probability
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Parameters Melanoma CRC

𝛽 2 80
𝜃 60 40
𝑝 0.5 0.43
𝑐0 1000 1000
𝑛 5 5
𝑠max 1000 1000

Table 3.3: Parameter values used for counterfactual optimization

of T-cell presence. For each patch, we generate three randomized versions, where
we randomly select one of the cells to mask for each version. We then compute
the difference in predicted probabilities and predicted label between the randomized
patches and the original patch (Table 3.4). Across all three data sets, we do not see a
statistically significant difference in the predicted labels when comparing randomly
masked patches to original patches. We do see a significant increase in the predicted
probability value for CRC in the randomized images, although the mean change is
very small at 1.38× 10−4. These results suggest our T-cell masking strategy did not
introduce an artificial signal whereby simply removing cells at random will increase
the chance that T-cells are predicted to be present.

Table 3.4: Difference in predicted probability and predicted positive labels between
randomly masked patches and original patches, p-value obtained from a one-sample
T-test.

Cancer type Predicted label Predicted probability
Mean difference p-value Mean difference p-value

Melanoma −2.22 × 10−4 0.132 −1.45 × 10−4 2.28 × 10−5

Breast tumor −1.93 × 10−5 0.739 6.96 × 10−6 0.588
CRC 8.95 × 10−5 0.433 1.38 × 10−4 2.48 × 10−13
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Supplemental Note 2 Choice of IMC patch size
In order to obtain enough TME samples to train our classifier models, we took
advantage of the inherent heterogeneity in the TME and divided each tissue image
into 48 µm × 48 µm patches and treated each patch as an independent sample during
training. Here, we perform spectral analysis to study the relationship between spatial
patterning of proteins at various length scales and CD8+ T-cell infiltration. Specifi-
cally, we compute the power spectral density (PSD) of each breast tumor image. The
PSD shows the relative importance of patterning at various length scales (“wave-
lengths") in the expression map. We then compute the Pearson correlation between
patterning of a protein at a given length scale and T-cell infiltration (Figure 3.5).
Figure 3.5 shows there are significant information pertaining to T-cell infiltration at
our selected patch size. For certain proteins such as HLA-DR and FSP1, we see
significantly more information is present at longer length scales of around 200 µm.
This result suggests that for sufficient amount of IMC data, the performance of our
classifier model may be improved by increasing the size of image patches.
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Figure 3.5: Correlation between each frequency band of each protein channel
and T-cell infiltration level (proportion of CD8+ T-cell patches) across all IMC
images for the breast cancer data set. Red dotted line indicates the patch size of
48 µm used in this work.
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Optimized perturbation for primary CRC and liver metastases

Figure 3.6: Optimized perturbations for tissue sections from primary colorectal
tumor and liver metastases aggregated to the patient (row) level (train cohort).
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Evaluation metric for all trained classifiers
Table 3.5: Performance of different classifier models trained on melanoma, CRC,
and breast tumor IMC images to predict the presence of T-cells (𝑝 = 0.5)

Cancer type Model Accuracy Precision Recall F1 AUROC MCC

Melanoma Linear 0.84 0.83 0.37 0.51 0.67 0.48
MLP 0.85 0.79 0.48 0.59 0.72 0.53
U-Net 0.86 0.72 0.59 0.64 0.76 0.56

Breast Linear 0.82 0.57 0.16 0.24 0.57 0.23
tumor MLP 0.86 0.71 0.42 0.52 0.69 0.47

U-Net 0.87 0.70 0.50 0.58 0.73 0.52
CRC Linear 0.86 0.71 0.19 0.29 0.59 0.31

MLP 0.88 0.67 0.50 0.57 0.73 0.51
U-Net 0.88 0.68 0.61 0.64 0.77 0.57

Table 3.6: Performance of different CNN and ViT models trained on IMC image
patches of melanoma

Model Name U-Net ResNet-18 EfficientNet-B0 MedViT

Number of parameters 12.8M 11.2M 4.1M 31.3M
Test accuracy 0.86 0.86 0.851 0.853
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C h a p t e r 4

FUTURE WORK

4.1 Adapting information-theoretic framework to optimize other cell proper-
ties with respect to environmental statistic

One can easily adapt our information-theoretic framework introduced in Chapter 2
to understand how variables other than receptor placement affects spatial sensing.
Although this work is about optimizing receptor placement, the key quantity being
tuned is the spatial distribution of receptor activity, hence our result is relevant to
any variable that 1) affects receptor activity and 2) redistributes across space. To
illustrate, consider a generalized model of receptor activation,

E[𝐴𝑖 | 𝑐𝑖] = 𝑓 (θ𝑖)
( 𝑐𝑖

𝑐𝑖 + 𝐾𝑑
+ 𝛼 𝐾𝑑

𝑐𝑖 + 𝐾𝑑

)
, (4.1)

where 𝑓 is an unspecified function of an arbitrary set of variables θ𝑖, and 𝑓 (θ𝑖) rep-
resents the "effective" number of receptors at position 𝑖. In this work, we considered
the case where 𝜃𝑖 = 𝑟𝑖 and 𝑓 (𝑟𝑖) = 𝑟𝑖, but other factors such as phosphorylation level
and membrane curvature also affect local receptor activity 𝐴𝑖 (Rangamani et al.,
2013). In this way, one can optimize spatial sensing by tuning variables other than
receptor placement, by specifying alternative forms of 𝑓 . For example, it is known
that given uniformly distributed receptors, those found in membrane regions of
higher curvature can exhibit higher activity (Rangamani et al., 2013). Suppose we
want to know the optimal way to adjusT-cell shape to maximize information acqui-
sition, by assuming a linear relationship between local curvature 𝛽𝑖 and "effective"
receptor number, i.e., 𝑓 (𝑟𝑖, 𝛽𝑖) = 𝛽𝑖𝑟𝑖. Given uniform receptors and a constraint
on total contour length (or area) of the membrane, we quickly arrive at the optimal
solution since this problem is now identical to our original formulation. The optimal
strategy is to increase membrane curvature at regions of high ligand concentration,
by making narrow protrusions (for details see Supplement, Section 2.10).

4.2 Optimizing spatial organization at different stages of information pro-
cessing

Optimizing information transmission by organizing effectors in space can happen
at all stages of signal processing within the cell, but is likely most effective at the
receptor level. The most obvious reason is due to the data processing inequality,
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which states that post-processing cannot increase information. Therefore, only
optimization at the level of receptor activation can increase the total amount of
information that is available to the cell. The second reason is due to the "hourglass"
topology of cell signaling networks, which represent the fact that a large number
of signaling inputs converge onto a small number of effectors internal to the cell
(Csete and Doyle, 2004). For example, G-protein-coupled receptors, one of the
largest group of cell surface receptors, drive downstream signaling through the
same G-proteins. This feature makes optimizing spatial organization at later stages
of information processing very difficult, since information can be easily lost by
diffusion of effector molecules activated by different inputs, which ends up "mixing"
different spatial signals.

4.3 Extensions of Morpheus
For future work, we would like to apply Morpheus to spatial transcriptomics data sets
with hundreds to thousands of molecular channels. Although spatial transcriptomics
can profile significantly more molecules compared to spatial proteomic techniques
(Rodriques et al., 2019; Eng et al., 2019), the number of spatial transcriptomic
profiles of human tumors is currently limited due to the cost, with most public data
sets containing single tissue sections from 1–5 patients which is far too small to
apply Morpheus. However, spatial transcriptomics is likely to be more standardized
compared to proteomics, which use customized panels. As commercial platforms
for spatial transcriptomics start to come online (Janesick et al., 2022), we will
likely be seeing large scale spatial transcriptomics data sets in the near future, with
∼ 70–90% of the same probes shared between experiments.

A technical extension of Morpheus involves incorporating prior knowledge of gene-
gene interactions to model the causal relations between genes. Molecular features
in tissue profiles can exhibit strong dependencies, therefore, changing the level of
one molecule can affect the expression of others. For example, increased levels
of interferon-gamma (IFN-𝛾) in the tumor microenvironment, can upregulate the
expression of PD-L1 on tumor cells (Qian et al., 2018). In order to be more realistic
and actionable, a counterfactual should maintain these known causal relations. We
can apply a regularizer to penalize counterfactuals that are less feasible according
to established gene interactions from knowledge graphs, such as Gene Ontology
(Consortium, 2004).

Other extensions of Morpheus includes predicting cell-type specific perturbations,
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which can be done by directly restricting the perturbation to only alter signals
within specific cell types. Additionally, although we applied Morpheus to the
specific problem of driving T-cells to infiltrate solid tumors, we can generalize our
framework to predict candidate therapeutics that alter the localization of other cell
types. For example, Morpheus can train a classifier model to predict localization of
TAMs and compute perturbations predicted to reduce their abundance in the TME.

In this work, we focused on identifying generalized therapies by pooling predictions
across multiple patient samples, but we can also apply Morpheus to find personalized
therapy for treating individual patients. The variation in the optimized perturbations
we observe among patients in both melanoma and liver data sets suggest personalize
treatments could be significantly more effective compared to generalized therapies
(Figure 3.3A, Figure 3.4A). Furthermore, Figure 3.4G shows that a therapeutic
strategy could have highly variable effect even across different tissue samples from
the same patient. This variability suggests that to generate therapy for an individual
patient, it may be necessary to acquire significant quantities of biopsy data. We can
then apply our optimization procedure to a random subset of the samples, and then
test the resulting perturbation strategy on the remaining samples to see how well the
strategy is predicted to perform across an entire tumor or other primary/secondary
tumors.

Incorporating Morpheus in a closed loop with experimental data collection is another
promising direction for future work. Data can be collected from patients or animal
models with perturbed/engineered signaling context, and this data can be easily fed
back into the classifier model to refine the model’s prediction. The perturbation
could be based on what the model predicts to be effective interventions, as is the
case with Morpheus. We can also study tissue samples on which the model tends to
make the most mistake and train the model specifically using samples from similar
sources, such as similar patient strata or disease state.



112

BIBLIOGRAPHY

Aoki, Tomohiro, et al. (2023). “The spatially resolved tumor microenvironment pre-
dicts treatment outcome in relapsed/refractory Hodgkin lymphoma”. In: bioRxiv.

Berg, Howard C, and Edward M Purcell (1977). “Physics of chemoreception”. In:
Biophysical Journal 20.2, pp. 193–219.

Bhate, Salil S, et al. (2022). “Tissue schematics map the specialization of immune
tissue motifs and their appropriation by tumors”. In: Cell Systems 13.2, pp. 109–
130.

Biasci, Daniele, et al. (2020). “CXCR4 inhibition in human pancreatic and colorectal
cancers induces an integrated immune response”. In: Proceedings of the National
Academy of Sciences 117.46, pp. 28960–28970.

Binnewies, Mikhail, et al. (2018). “Understanding the tumor immune microenvi-
ronment (TIME) for effective therapy”. In: Nature Medicine 24.5, pp. 541–550.

Bonaventura, Paola, et al. (2019). “Cold tumors: a therapeutic challenge for im-
munotherapy”. In: Frontiers in Immunology 10, p. 168.

Bouzigues, Cédric et al. (2007). “Asymmetric redistribution of GABA receptors
during GABA gradient sensing by nerve growth cones analyzed by single quantum
dot imaging”. In: Proceedings of the National Academy of Sciences 104.27,
pp. 11251–11256.

Bruni, Daniela, Helen K Angell, and Jérôme Galon (2020). “The immune contex-
ture and Immunoscore in cancer prognosis and therapeutic efficacy”. In: Nature
Reviews Cancer 20.11, pp. 662–680.

Buda, Mateusz, Ashirbani Saha, and Maciej A Mazurowski (2019). “Association
of genomic subtypes of lower-grade gliomas with shape features automatically
extracted by a deep learning algorithm”. In: Computers in Biology and Medicine
109. doi: 10.1016/j.compbiomed.2019.05.002.

Candès, Emmanuel J and Michael B Wakin (2008). “An introduction to compressive
sampling”. In: IEEE Signal Processing Magazine 25.2, pp. 21–30.

Chang, Chun-Hao et al. (2019). “Explaining Image Classifiers by Counterfactual
Generation”. In: International Conference on Learning Representations (ICLR).

Chen, Ao et al. (2022). “Spatiotemporal transcriptomic atlas of mouse organogenesis
using DNA nanoball-patterned arrays”. In: Cell 185.10, pp. 1777–1792.

Chen, Yunching et al. (2015). “CXCR4 inhibition in tumor microenvironment fa-
cilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated
hepatocellular carcinoma in mice”. In: Hepatology 61.5, pp. 1591–1602.

https://doi.org/10.1016/j.compbiomed.2019.05.002


113

Choe, Joseph H, Jasper Z Williams, and Wendell A Lim (2020). “Engineering T cells
to treat cancer: the convergence of immuno-oncology and synthetic biology”. In:
Annual Review of Cancer Biology 4, pp. 121–139.

Chou, Ching-Shan et al. (2011). “Noise filtering tradeoffs in spatial gradient sensing
and cell polarization response”. In: BMC Systems Biology 5.1, pp. 1–16.

Consortium, Gene Ontology (2004). “The Gene Ontology (GO) database and infor-
matics resource”. In: Nucleic Acids Research 32, pp. D258–D261.

Csete, Marie and John Doyle (2004). “Bow ties, metabolism and disease”. In:
TRENDS in Biotechnology 22.9, pp. 446–450.

Danenberg, Esther et al. (2022). “Breast tumor microenvironment structures are
associated with genomic features and clinical outcome”. In: Nature Genetics
54.5, pp. 660–669.

Eling, Nils et al. (2020). “cytomapper: an R/Bioconductor package for visualization
of highly multiplexed imaging data”. In: Bioinformatics 36.24, pp. 5706–5708.

Endres, Robert G and Ned S Wingreen (2008). “Accuracy of direct gradient sensing
by single cells”. In: Proceedings of the National Academy of Sciences 105.41,
pp. 15749–15754.

Eng, Chee-Huat Linus et al. (2019). “Transcriptome-scale super-resolved imaging
in tissues by RNA seqFISH+”. In: Nature 568.7751, pp. 235–239.

Foeng, Jade, Iain Comerford, and Shaun R McColl (2022). “Harnessing the chemokine
system to home CAR-T cells into solid tumors”. In: Cell Reports Medicine.

Fridman, Wolf H et al. (2017). “The immune contexture in cancer prognosis and
treatment”. In: Nature Reviews Clinical Oncology 14.12, pp. 717–734.

Ghanem, Ismael et al. (2014). “Insights on the CXCL12-CXCR4 axis in hepatocel-
lular carcinoma carcinogenesis”. In: American Journal of Translational Research
6.4, p. 340.

Giesen, Charlotte et al. (2014). “Highly multiplexed imaging of tumor tissues with
subcellular resolution by mass cytometry”. In: Nature Methods 11.4, pp. 417–422.

Goltsev, Yury et al. (2018). “Deep profiling of mouse splenic architecture with
CODEX multiplexed imaging”. In: Cell 174.4, pp. 968–981.

Haslam, Alyson and Vinay Prasad (2019). “Estimation of the percentage of US
patients with cancer who are eligible for and respond to checkpoint inhibitor
immunotherapy drugs”. In: JAMA Network Open 2.5, e192535–e192535.

Hegde, Priti S and Daniel S Chen (2020). “Top 10 challenges in cancer immunother-
apy”. In: Immunity 52.1, pp. 17–35.

Hoch, Tobias et al. (2022). “Multiplexed imaging mass cytometry of the chemokine
milieus in melanoma characterizes features of the response to immunotherapy”.
In: Science Immunology 7.70.



114

Hu, Bo et al. (2010). “Physical limits on cellular sensing of spatial gradients”. In:
Physical Review Letters 105.4, p. 048104.

Hughes, Catherine E and Robert JB Nibbs (2018). “A guide to chemokines and their
receptors”. In: The FEBS Journal 285.16, pp. 2944–2971.

Huston, Stephen J et al. (2015). “Neural encoding of odors during active sampling
and in turbulent plumes”. In: Neuron 88.2, pp. 403–418.

Iida, Fumiya and Surya G Nurzaman (2016). “Adaptation of sensor morphology: an
integrative view of perception from biologically inspired robotics perspective”.
In: Interface Focus 6.4, p. 20160016.

Janesick, Amanda et al. (2022). “High resolution mapping of the breast cancer
tumor microenvironment using integrated single cell, spatial and in situ analysis
of FFPE tissue”. In: Biorxiv, pp. 2022–10.

Klaise, Janis et al. (2021). “Alibi Explain: Algorithms for Explaining Machine
Learning Models”. In: Journal of Machine Learning Research 22.181, pp. 1–7.

Kohli, Karan, Venu G Pillarisetty, and Teresa S Kim (2022). “Key chemokines
direct migration of immune cells in solid tumors”. In: Cancer gene therapy 29.1,
pp. 10–21.

Krause, Andreas, Ajit Singh, and Carlos Guestrin (2008). “Near-optimal sensor
placements in Gaussian processes: Theory, efficient algorithms and empirical
studies”. In: Journal of Machine Learning Research 9.2.

Lanitis, E et al. (2017). “Mechanisms regulating T-cell infiltration and activity in
solid tumors”. In: Annals of Oncology 28, pp. xii18–xii32.

Lee, Joo Sang and Eytan Ruppin (2019). “Multiomics Prediction of Response Rates
to Therapies to Inhibit Programmed Cell Death 1 and Programmed Cell Death 1
Ligand 1”. In: JAMA Oncology 5.11, pp. 1614–1618.

Levine, Jacob H. et al. (July 2015). “Data-Driven Phenotypic Dissection of AML Re-
veals Progenitor-like Cells that Correlate with Prognosis”. In: Cell 162.1, pp. 184–
197.

Looveren, Arnaud Van and Janis Klaise (2021). “Interpretable counterfactual ex-
planations guided by prototypes”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 650–665.

Martinez, Marina and Edmund Kyung Moon (2019). “CAR T cells for solid tumors:
new strategies for finding, infiltrating, and surviving in the tumor microenviron-
ment”. In: Frontiers in Immunology 10, p. 128.

McInnes, L., J. Healy, and J. Melville (Feb. 2018). “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction”. In: ArXiv e-prints.
arXiv: 1802.03426.

https://arxiv.org/abs/1802.03426


115

Moffitt, Jeffrey R, Emma Lundberg, and Holger Heyn (2022). “The emerging
landscape of spatial profiling technologies”. In: Nature Reviews Genetics 23.12,
pp. 741–759.

Mugler, Andrew, Andre Levchenko, and Ilya Nemenman (2016). “Limits to the pre-
cision of gradient sensing with spatial communication and temporal integration”.
In: Proceedings of the National Academy of Sciences 113.6, E689–E695.

Nieto, Marta et al. (1997). “Polarization of chemokine receptors to the leading
edge during lymphocyte chemotaxis”. In: The Journal of Experimental Medicine
186.1, pp. 153–158.

Paszke, Adam et al. (2019). “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems 32.

Pignata, Aurora et al. (2019). “A spatiotemporal sequence of sensitization to slits
and semaphorins orchestrates commissural axon navigation”. In: Cell Reports
29.2, pp. 347–362.

Pitt, JM et al. (2016). “Targeting the tumor microenvironment: removing obstruction
to anticancer immune responses and immunotherapy”. In: Annals of Oncology
27.8, pp. 1482–1492.

Pittet, Mikael J, Olivier Michielin, and Denis Migliorini (2022). “Clinical relevance
of tumour-associated macrophages”. In: Nature Reviews Clinical Oncology 19.6,
pp. 402–421.

Qian, Jiawen et al. (2018). “The IFN-𝛾/PD-L1 axis between T cells and tumor
microenvironment: hints for glioma anti-PD-1/PD-L1 therapy”. In: Journal of
neuroinflammation 15.1, pp. 1–13.

Rangamani, Padmini et al. (2013). “Decoding information in cell shape”. In: Cell
154.6, pp. 1356–1369.

Rejniak, Katarzyna Anna et al. (2013). “The role of tumor tissue architecture in
treatment penetration and efficacy: an integrative study”. In: Frontiers in Oncology
3, p. 111.

Rodriques, Samuel G et al. (2019). “Slide-seq: A scalable technology for measur-
ing genome-wide expression at high spatial resolution”. In: Science 363.6434,
pp. 1463–1467.

Savas, Peter et al. (2016). “Clinical relevance of host immunity in breast cancer:
from TILs to the clinic”. In: Nature Reviews Clinical Oncology 13.4, pp. 228–241.

Schraufstatter, Ingrid U et al. (2012). “The chemokine CCL18 causes maturation of
cultured monocytes to macrophages in the M2 spectrum”. In: Immunology 135.4,
pp. 287–298.

Schürch, Christian M et al. (2020). “Coordinated Cellular Neighborhoods Orches-
trate Antitumoral Immunity at the Colorectal Cancer Invasive Front”. In: Cell
182.5, pp. 1341–1359.



116

Servant, Guy et al. (1999). “Dynamics of a chemoattractant receptor in living
neutrophils during chemotaxis”. In: Molecular Biology of the Cell 10.4, pp. 1163–
1178.

Steele, Maria M et al. (2023). “T-cell egress via lymphatic vessels is tuned by antigen
encounter and limits tumor control”. In: Nature Immunology 24.4, pp. 664–675.

Sullivan, Kevin M et al. (2023). “Blockade of interleukin 10 potentiates antitumour
immune function in human colorectal cancer liver metastases”. In: Gut 72.2,
pp. 325–337.

Tsaur, Igor et al. (2021). “Immunotherapy in prostate cancer: new horizon of hurdles
and hopes”. In: World journal of urology 39, pp. 1387–1403.

Verma, Sahil et al. (2020). “Counterfactual explanations and algorithmic recourses
for machine learning: A review”. In: arXiv preprint arXiv:2010.10596.

Wachter, Sandra, Brent Mittelstadt, and Chris Russell (2017). “Counterfactual ex-
planations without opening the black box: Automated decisions and the GDPR”.
In: Harv. JL & Tech. 31, p. 841.

Wang, Zhĳun et al. (2023). “Extracellular vesicles in fatty liver promote a metastatic
tumor microenvironment”. In: Cell Metabolism.

Weber, Michele et al. (2013). “Interstitial dendritic cell guidance by haptotactic
chemokine gradients”. In: Science 339.6117, pp. 328–332.

Wu, Zhenqin et al. (2022). “Graph deep learning for the characterization of tumour
microenvironments from spatial protein profiles in tissue specimens”. In: Nature
Biomedical Engineering, pp. 1–14.

Zhang, Haiying, H Amalia Pasolli, and Elaine Fuchs (2011). “Yes-associated pro-
tein (YAP) transcriptional coactivator functions in balancing growth and differ-
entiation in skin”. In: Proceedings of the National Academy of Sciences 108.6,
pp. 2270–2275.


	Acknowledgements
	Abstract
	Published content and contributions
	Table of contents
	List of illustrations
	List of tables
	Introduction
	Understanding cell migration in naturalistic environments
	Experimental tools for profiling tissue signaling environments
	Biomedical challenges associated with in vivo cell migration

	Receptor localization maximizes information acquisition in natural cell environments
	Abstract
	Introduction
	Results
	Discussion
	Data availability
	Material availability
	Acknowledgements
	Author contributions
	Declaration of interests
	Supplemental methods
	Supplemental figures

	Morpheus: Generating counterfactual explanations of tumor spatial proteomes to discover therapeutic strategies for enhancing immune infiltration
	Abstract
	Introduction
	Results
	Discussion
	Code availability
	Data availability
	Acknowledgements
	Supplemental methods
	Supplemental information

	Future work
	Adapting information-theoretic framework to optimize other cell properties with respect to environmental statistic
	Optimizing spatial organization at different stages of information processing
	Extensions of Morpheus

	Bibliography

