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ABSTRACT 

Earth-based radar observations reveal that the surface of 

Venus rotates very slowly in the retrograde sense, Tides raised 

by the sun in the body of Venus tend to slow its rotation further. 

The spin of Venus might be in a steady state if thermal tides in 

the atmosphere balance the tidal torque on the crust. Part I of 

this dissertation presents a quantitative theory of atmospheric 

tides applicable to Venus. It is found that the thermal tide is 

capable of maintaining the rotation of Venus in its current state 

indefinitely. 

Part II examines the effects of obliquity, the frequency­

dependence of the tides, core-mantle coupling, possible resonances, 

and other phenomena . It appears most likely that Venus originated 

with an obliquity greater than 90°. 
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THE ROTATION OF VENUS 

PART I. ATMOSPHERIC TIDES 



2 
1. The Rotation of Venus 

Earth-based radar observations reveal that the surface of Venus 

rotates with a very long sidereal period of 243 days, and in the retro­

grade sense; its orbital and spin angular momenta form an angle 

(the obliquity) within a few degrees of 180° (Shapiro~ ~l., 1978). 

Such a slow rotation is unlikely to be primordial, but there are 

several influences that may affect the rotation. 

The gravitational field of the Sun raises tides in the body of 

Venus, on which it exerts a retarding torque. In the absence of 

other effects, within about 108 years this torque should be 

capable of slowing Venus down from the present rate to the 

synchronous state, with one hemisphere always facing the 

Sun. Furthermore, Goldreich and Peale (1970) found that a 

retrograde obliquity is unstable on the same time scale as 

the despinning. So either we happen to be observing the final 

stages of Venus' tidal evolution, an unlikely circumstance, 

or else Venus has already reached a stable equilibrium in 

wh-Lch other influences balance the solar body tide. 

There is the addit ional complication that the s pin o[ Venus 

appears to be affected by the orbit of the Earth, so that Venus 

presents nearly the same hemisphere to the Earth at each close 

approach. This is hard to account for, since the Earth's influence 

ought to be much weaker than the solar torque on the body tides, 

and in any case cannot by itself stabilize the obliquity (Goldreich 

and Peale, 1970). It appears that a third influence at least 

is needed to account for the present rotation state. 
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Thermal tides in the atmosphere of Venus may provide the 

necessary balance of torques. This state of affairs is 

depicted in Fig. 1, after Hinch (1970). Since only the 

semidiurnal components of the tides contribute to the torques, 

it is convenient to picture the effects produced both by the real 

sun and by an identical image sun on the opposite side of the 

planet. The suns are held stationary in the figure, so that 

Venus is rotating clockwise as seen from north of its orbit 

plane. 

The suns' gravitational influence elongates the solid 

body of Venus, represented by the inner oval in the diagram. 

Internal dissipation produces a lag angle between the subsolar 

points and the positions of high tide. The planet's rotation 

pulls the tidal bulges forward into the afternoon sector, but 

they remain fixed relative to the suns. The daily cycle of 

heating and cooling also redistributes the mass of the atmosphere. 

The outer oval represents a surface of constant pressure; it 

may also be regarded as the surface of an ocean with equivalent 

mass. Solar radiation raises the air temperature highest in 

the afternoon, causing mass to flow to the colder morning 

region. 

The gravitational attraction of the suns, represented by 

arrows in the figure, thus exerts contrary torques on the atmosphere 
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Figure 1 

Balance of Torques on Venus 

Since only the s emidiurna l components of the tides produce 

a torque, an "image sun" is shown diametrically opposite the true 

sun, in order to make the picture symmetrical and to aid in visuali­

za tion. The sun is held fixed in this sketch so tha t Venus is 

rotating clockwise as seen from north of its orbit plane. The inner 

oval represents the tidally distorted figure of Venus , while the outer 

oval represents a surface of constant atmospheric pressure; the outer 

ova1 may also be regarded as the surface of an ocean of equivalent mass. 

Solar radiation raises the air temperature in the af t ernoon and causes 

mass to flow to the colder morning region. The high-pressure areas 

as well as the tidal bulges in the body of Venus are fixed with 

respec t to the sun (but not with respect to the surface). The 

gravitational at traction of the sun, represented by arrows in the 

diagram, thus exerts contrary torques on the atmosphere and body of 

Venus. 
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and body of Venus. It will be shown in chapter 7 that the net 

torque on the atmosphere depends only on the semidiurnal 

component of the surface pressure variation. If this amounts 

to only as much as a few millibars, the atmospheric torque 

could cancel the decelerating tidal torque on the crust. In 

that case, the spin has no tendency either to slow down or 

to speed up, and the current rotation of Venus may be in a 

steady state. 

Various authors (MacDonald, 1964; Gold and Soter, 1969, 1971; 

Hinch, 1970; Kundt, 1977; Cazenave and Fouchard, 1977; see also Holmberg, 

1952) have considered the effects of atmospheric tides on the rotation 

of Venus. However, realistic calculati.ons have not been possible 

before, for lack of adequate data and of a theory of atmospheric 

tides applicable to Venus. Part I of this work develops an approximate 

theory of atmospheric tides suitable for Venus, and applies it to 

recent data, mostly returned by the Soviet Venera spacecraft . From 

this we predict the periodic variations in wind, temperature, and pressure 

at the surface. The resulting torque on the atmosphere does cancel 

the torque due to tides in the body of Venus, for reasonable values 

of the dissipation. The observed rotation of Venus can then be 

understood as an equilibrium between atmospheric and body tides, and 

possibly also the influence of the Earth. 
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2. Tidal Theory Including Mean Zonal Winds 

Classical theory treats tides as the response of a linear 

oscillator to a periodic therma l or gravitational forcing. The tradi-

tional approach treats an atmosphere in uniform rotation; no mean 

winds or horizontal t emperature gradients are considered. As a result, 

the horizontal and vertical structures of the oscillations are 

separable. For Venus , these assumptions are not justified (Lindzen, 

1970b), primarily because of the substantial difference in rotation rate 

between the uppe r and lower atmospheres. In the following chapter, 

we develop a gener alized linear theory of atmospheric tides that can 

b e applied in the presence of a large s hear in the mean zonal wind. 

The derivations c losely follow the work of Chapman and Lindzen (1970) 

and of Lindzen and Hong (1974). 

A. Primitive Equations. 

To a suff i ciently high a ccuracy, it is valid to treat atmospheric 

tides on Venus as hydrostatic. In terms of the conventional variables, 

the hydrostatic law is 

oP 
oz - gp. (2: 1) 

As long as the oscillations are hydrosta tic, it is simpler to develop 

the governing equations in isobaric coordinates, where altitude z 

i s considered a function of pressure p instead of vice versa . Define 

the new "height" coordinate x = - 0r. (p/p J where the constant p 
O 

is 
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the mean surface pressure at the equator, and let its corresponding 

dx 1 dp 
speed be n = dt = - pat· 

z 
Define also the geopotential g, = f gdz, 

0 

the tidal potential 0, and the total geopotential i = I + 0 . 

Since the acceleration of gravity g is nearly constant, the hydro­

static law (2:1) becomes 

p/p RT, 

where we have combined it with the equation of state for an ideal 

gas. 

Now let a be the radius of Venus, and w its sideral rate of 
9 

rotation at the surface, considered positive. Also let 8 be the 

colatitude, measured from the right-hand rotation pole, let cp be 

(2:2) 

the longitude relative to the surface in the direction of rotation, 

and let the corresponding velocities relative to the ground be 

u = cJ90) and v = ct sin e(~) . This coordinate system is described 
\dt dt 

p p 
by Figure 2, after Lindzen (1970b). 

The inv i scid equati on s of horizonta l momentum t he n ta~ e t h e f ollow-

ing form: 

~~ ( a s:ne t 2w ) v cos 8 
~. 

dv + ( V 
+ 2w )u cos0 

1 
a dt a sin8 ~ sinO 

where we may write the d 
dt 

operator as 

d a u o V _a_ + T1 = -+--+ dt at a 08 a sin8 ocp 

g -+- -( 
oz aD) 
acp clcp a 

_Q _ 
c)X. 

1 
a (2:3) 

1 il (2:4) 
sine acp 

(2:5) 
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Figure 2 

Coordinate system for tidal theory 



10 

w 



11 

We also introduce the equation of continuity in isobaric coordinates : 

0 
1 

a sine 
_Q_ 
ae 

B. Linearization 

1 
a sine ( 2 : 6 ) 

In order to linearize the basic equa t ions about a reference state, 

we split all dependent var i ables into a mean part and a variation. 

The mean par½ designated by an overbar, is zonally and temporally 

averaged, so that it depends on l y on 8 and x, while the variation 

depends also on cp and t. Further□orc we shall represent all 

variation quantities as complex Fourier series in cp and tin 

order to eliminate their dependence on longitude and time. 

For example , the tota l geopotential would then be written 

~ (8,x, cp, t) -( ) + R 1 ~ q,cr,s(8,x) e i foot+scp) t 8 , X ea L..,, u 'I' -f-

a,s (2 : 7) 

wh ere s is the zonal wavenumber and cr i s the angular time frequency 
0 
·t· 

of the oscillation at a point fixed on the surface. Note thats must 

be an integer f or continuity , and that t he symbol 6 will signify 

a complex variation quantity depending on a ands. 

For convenience, we also define w, the (po s ition-d ependent) 

mean rotation rate of the atmosphere relative to inertial space, 

and its corresponding Doppler-shifted tidal frequency o: 

w (8 ,x) cl~ + V 
w + = w 

--~ 
dt ~ a sin e 

(2 : 8) 
o(G, x) + 

SV 
0 a sin e ~ 
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The mean merid ional and vertical velocit i es u and T1 a r e small 

on Venus, and so ar e the nonlinear correlation terr.is ::;uch as uv - u v 

(Suomi, 1974). Scaling the equations of motion shows that those 

terms can be neglected in the following treatment. 

Then the equations of thebasic state reduce to 

RT (2:9) 

2 (w2-w 2) a sine cose 
0 

(2:10) 

wher e ,.:.i i s the r o tation ra te of the a tr1o s phe rc at the ground, not 
0 

necessarily equal tow. The above may be combined to give the 
0 

cyclostrophic balance condition for Venus (the "thermal wind"; 

Leovy, 1973): 

c -
c)S RT 

2 o 2 g_-v-
a s i ne cos 8 ox w == 2aw cos 8 ax (2:11) 

For reasonable choice s of w(8,x), the mean equa tions show tha t 

the average surface pressure and temperature change by about one 

Lf 
part in 10 between the equator and the poles. It is possible, 

however, that the mea n state represented by the averaged equations 

(2:9) and (2;11) would be baroclinically (or otherwise ) unstable; 

the actual mean balance might be mainta ined by some more complicated 

mechanisms. Even so, this would aff ect the linearization about 

the mean only slightly, and we shall see that the r esults are not 

sens i tiv e t o t he exar t cho i ce o f t he mean ~tate. 
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In order to obtain a linearized sys tem, we may now expand the 

primitive equations (2:2) - (2:6) to first order in variation 

quantities. Subtract ing the equations (2:9) and (2:10) of the basic 

state then removes the zeroth-order terms, which ba l ance in the mean. 

Finally, applying the Fourier decomposition (2:7) to the linearized 

equations gives for each individual component 

o oljt = Rb T 
clX 

i .o OU - 2w 

io ov + 2. ill 

cos e ov 

6u cos e 

cl 
+ 61lasin0 Ox w = 

= 

+ 

0 = 
1 
.L 

a sine 
(6u sin e ) 

08 

+ _g_ oT\ - 01, ox 
, 

(2: 12) 

1 0 6,v .,.-. 
a 08 

(2 :13} 

ou sin 8 cl 
---- U) oe (?.; ]_l,) 

is 

is + -- 6v 
a sin 0 

(2 :1 5) 

where we have omitted the superscript 0,s for the sake of clarity. 

C. Thermodynamic Relations 

Now for each o,x component equations (2:12)-(2:15) represent 

four equati·ons 1·n five unknowns: ;:. u ~v ~~ ;:.,1, d >-T w d u , u , u, 1, u f an u • e procee 

to eliminate 6T i n terms of the other variables and a knmvn forcing. 

d 
To first order in o- quantities, applying the dt- operator (2:5) to 

the temperature T g ives 

J = 

(2 :16) ;:_ (d Tl . ;:_ + 1 0 - 0 -
u cl t = l CJ u T o u a oS T + 0 11 clX T 

What is (~n ? Ignoring other effects , define the solar heating 

T ~~ where Sis the entropy per unit mass. By making use of 

the thermod ynamic relation 
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R ~ = c ~ + Rdx 
p p T 

and by regarding T as a function of Sand p only, we find 

dT 

J 
C 

p 

--= 
dt ..... (E-) pTJ + (L .. ) l pc c T 

' p p' ' 

(2:17) 

(2:18) 

Since the atmospheric heat balance is steady in the lon~ ter□, 

-
averaging eq. (2:18) above must give J = 0. Furthermore, to simulate 

the damping of the temperature variations, we introduce a Newtonian 

cooling term~!= (T-T)/T in addition to the above, where 

1/T is the Newtonian cooling coefficient, and T is the time constant 

of the damping. We choose to simulate the effects of dissipation 

this way, not only because it is a natural model for radiative damping, 

but also because it is the simplest; i.e., it is the only way known 

to parameterize the damping which preserves the separability of the 

classical tidal equations without raising their order (Lindzen and 

McKenzie, 1967; Dickinson and Geller, 1968). 

Now combining equation (2:18) with (2:16) and including Newtonian 

cooling allows us to rewrite the hydrostatic law (2:13) as 

(icJ +- 1/T) _ _Q_ 6t = 
c)X 

(ia + 1/T) R6T 

= 1 cl -
11. 6 J - r 6 Ti - 6u a ~ RT , 

(2:19) 

where we have put rt= l ~ . 20 and written 6J by analogy with oy. 
C 

p 
We have also defined f, the stratification or static stability, as 



r _a_ R;:;;.L + RT ){ ox 

15 

(2:20) 

Note that f may not be negative in a stably stratified atmosphere. 

According to the cyclostrophic relation (2:10), f increases toward 

the equator on Venus for any realistic choice of w (e ,x). 

D. Elimination of Variables 

Now equations (2:13), (2:14), (2:15), and (2:19) constitute four 

coupled equations in four unknowns. Since we eliminated the~ and t 

dep endences, we can so lve (2:13) and (2:14) algebraically for 6u and 

ov in terms of 6Tj and oo/ : 

1 6u = --- 1 ".\ 2sw 
a 008 6o/ + i a 

cose o 2~1 

sine 6* + 6Tj a sine cos8 ax w J 6 

ov = ¼ [ + (sin 8 
0
°
8 

w + 2w cos 0 ) 1 0 01} + -- crs 
a 08 a sin e 

- io 6Tj a ::;in e _Q__ w] 
ex 

Substituting (2:21) and (2:22) into (2:15) and (2:19) to 

eliminate ou and ov gives 

0 = ii\. a2 oljr + i /L o 0~ + ii\. 6~ + A4 
o 61) 

1 ') 08 3 00 08,:. L 

0 611 + A.
5 

oT, 
ex 

(2:21) 

(2: 2 2) 

(2:23) 
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where we have def i ned the fo llowing real coefficients: 

2+. 0 o 2+ 4 2 2 6 == - o sin cos 0 ~ w w cos 0 

Al 

11.2 

11.3 

11.4 

As 

11.7 

r 
+ 

a 
2 

a I::::. 

a 1 !- ( s i : e) =: -

2 sin e a 

2s 1 
2 

OS 
- 2 2 

a I w cos e ) 
sin e ~ \ I::::. . 2 

a a I::. sin 0 

--1 c 2 2w 0 
== - sin e cos e -- UJ =: - cos 0 -v 

ox ox 

=: 

=: 

=: 

=: 

I::::. 

1 

1 

at::. 

OS _Q_ w + 1 _ _Q_ ( sin
2

e 
I::::. ox sin e oe t. 

0S 0 + _Q_ A + cos e 
A4 - --w 

I::. ox oe 4 sine 

0 

6 
sin 

o 2 e cos e - ,u ox • - al\. 4 

2sw 2 0 2 

cos 

- -- cos e 
I::::. 

-w 
OX 

== _ 23w c~s 0 l\. 
sin 0 4 

1 _Q_ w2 ) 
2 

r + - - (a sin 0 cos e == r 
I::::. ox 

e o 2) -- w 
ox 

'Z 2 
a f:::./1.4 

It is interesting to examine the significance of the term 

(2:24 ) 

(2:25) 

2 2 
f + - f == -a f:::. 11.

4 
. This quantity, which is positive near the equatcr, 

seems to represent an added contribution to the static stability 

from t he s hear . I n fact, the presence of an outward gradient of 
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angular momentum in a rotating fluid does help to stabilize it 

against convection. Yet that cannot be the significance of this 

t erm, since it vanishes at the equator while the momentum gradient 

does not. Rather it represents the horizontal advection of heat 

which is coupled to vertical motions. 

Next we wo uld like to reduc e (2:23) and (2 :24 ) to a singl e 

equation in one unknown. If ...Q._w << ~ , as it is on Earth, we ax . 
could separate variables in a manner parallel to the traditional 

theory . For example, suppose that the frequency cr (as well~$ 

wand v) depends only on colatitude 8 , but that crT depends only 

on height x. Then r+ becomes f(x) ~ A5 become.s 1, and A4 ::; A6 

A
7 

;= 0, while equations (2:23). and (2;24). become 

0 = (io + li'r) a~ oy + fo11 - xoJ. 

(2:26) 

(2: 27) 

Differentiating (2:26) with respect to x and using (2:27) to eliminate 

oi then yields 

0 = [ A1 
+ A _Q_ + ii.-, ( fo1l - ~oJ) 

2 as ~ \ cr - i/T 

0 ox 611 
(2:28) 
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Now we put· 

611 = 611 (x) 0 (0) 
,{', {, 

and 

6J (x) 0 (0) 
,{', ,{', 

,{, 

r •t 1.nen ::;epar ati1tb vc:1riabl e::; in eq. (2:28) gives for eac :1 component 

K6J 

1 
gh,{, 

0 
,{', 

__E_ + I\. ] ( 0,{,) 
d0 3 cr 

where h is a constant of separation conventionally called the 
,{', 

(2:29) 

(2:30) 

(2: 31) 

equivalent depth. In the traditional case, where wand CJ are constant, 

we may write (2:30) and (2:31) above in their more familiar forms: 

4 
2 2 

a w 
gh 

,{', 

0 
,{', 

i 
gh (1 - -) 

,f, CJT 

d 
~x/2 1. where we efine y = e 6 I , ~~ = cos 0, and f = 

,{', ,{', 

(J 

2w· 

(2: 3 2) 

(2: 3 3) 

Thus we se~ th~t latitudinal gradients of the mean zonal wind 

do not in themselves alter the separability of the tida l the.ory 

(provided also that the lower boundary is taken at x = 0 instead 

of a sphere); this appears to be a new result. Unfortunately, 



19 

th e pr e s e nce of a vertical shear as on Venus prevents the separation 

uf the latitude and height dependences. 

It is instructive to consider o as a slowly varying function of 

x; then the vertical and horizontal structure equations (2:30) and 

(2: 31) remain nearly valid~ 1loweve:r, the ~eparfl.tton "constant h now 
? • n 

varies with height roughly as cr-(x), according to eq. (2:31). Since 

the rotation rate of the Venusian upper atmosphere is nearly 30 times 

faster than the motion of the surface relative t\'.> the subs.olar po in t,th e 

equivalent depth i s nearly three orders of ten greater high in the 

atmosphere than close to the ground. The effects of the stratification 

and heating which appear in eq. (2:32) will thus b e correspondingly 

reduced, comp&red to an atmosphere rotating uniformly with height. 

This interpretation is borne out by both our more rigorous 

analytical and numerical solutions of the tidal equations. 

In the realistic case of Venus, ll w is of order unity, so 
wax 

that the "slowly varying" approximation cannot strictly be made. 

Although we cannot then obtain eq. (2:28), eqs. (2:23) and (2:24) 

can still be combined to yield a singl e exact relation in ct. As 

long as f+ f 0, we can invert (2:2L1) for 6Tl: 

01] = ~·: [<10 + 1/T) ;x o,y + iA
6 

;
0 

o~- + iA
7 

ct - noJ] (2:34) 

Subs tituting (2:3L1) into (2:23) to eliminate 6T1,multiplying by f'+, 
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and rearranging gives 

A _Q_ 6 11; + 1~ _Q_ Oo/ + A 6,j; 
+ e ae • x ax o 

where we define the coefficients 

A4 a"a (xOJ) - A4 (t :a r+) xoJ .+ A5 xOJ -:x (nOJ) 

+ ( 1 a r ) 
r+ ax + x.oJ 

A = CJ - i/T xx 

A0x = A6 - A (cr - i/T) 4 

Ae = r+ A2 a + - A4 o0A6 

i/T) + _g_ ( cr - i/T) 
c)X 

Ax = - A4 !a (o - i/ T) + A4 ( r~ ; 0 r+) (o 

- (_;L _g_ r )ca - i/T) - A ( a - i/T) + /1.7 
r + ax + 5 

= r + A3 - A4 :a Al+ A4 (r~ :a r+) Al+ :x Al A 
0 

Now (2:35) above is the required equation in one unknown , 

but i t i:s generally not separable unless f-- v = 0. Lindzen 
u X 

and Hong (1974) have developed similar equations in a ltitude 

(2: 35) 

(2: 36) 

coordinates, including mean zonal winds and latitudinal temperature 

gradients, and used a finite-difference scheme to calculate tides 
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in the Earth's atmosphere. It is doubtful 

whether such an approach could be applied directly to Venus, 

with its regions of small or vanishing stratification where eq. (2:34) 

does not apply. This difficulty might possibly be overcome by 

integrating the finite-difference forms of (2:23) and (2:24) 

simultaneously. In chapter 5 and 6 we shall describe two simpler 

methods of predicting the general features of atmospheric tides on Venus. 

E. Boundary conditions. 

Ifs/ 0, the solutions for ot and 6~ must vanish at the 

poles, so that the tidal fields are continuous there (but not 

necessarily differentiable). Whens= 0, continuity is assured 

so we may impose a condition of zero gradient at the poles. In 

the separable case these conditions combined with the 

horizontal structure equation (2:31) or (2:33) form a 

Sturm-Liouville type problem. Its solution set consists 

CY, S 
of the eigenfunctions 0 (called Hough modes when 0 is 

t 
CY, S 

constant), with their associated eigenvalues h 
t 

Any function of colatitude can be represented in terms 

of the complete set of Hough modes; thus both the forcing 

and the tidal fields may be represented as eigenfu11ction 

expansions in colatitude when separation of variables is 

employed . 

We must also impose boundary conditions on the vertical 

structure of the tidal fields. In our coordinate systen1, the 

ve rtical velocity w may be written 
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a 
icr (6* - 60)/g + 6u sin0 cos 0 g 

+ H OT], 

__Q__ -
z is defined o.::; the scale hei6ht. ax 

:::n the cla!:; sical ca:,e, when h #- co, this becomes 

0 w ~ HO~ + \ [a~ &; - 0 ~J 
Since the air must not flow through the planet's surface, 

we shall require 

at the ground, 

dZ 
w = dt 

where Z is the height of the gravitational 

tide raised in the crust. To first order, condition (2:39) 

can be applied at z = 0, or at z = 0, instead of at z = Z; 

since eq. (2:9) shows that~ (0, x = O) is on the order of a 

meter for Venus, condition (2:39) can even be applied at 

x = 0 with comparable accuracy. 

The upper boundary condition is much more subtle. Since 

(2:37) 

(2:38) 

(2:39) 

the tidal equation (2:36) is of complex or position-dependent type, 

the familiar variety of conditions do not apply. First of 

all, we demand that the energy density in the tidal fields 

remains bounded as height increases indefinitely. (Siebert 

(1961) further requires the total kinetic energy to be bounded, 

but for practical purposes these are the same.) When this is not 

sufficient, we shall apply the radiation condition, also 

called the outgoing wave condition: at great heights the tidal 
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waves must carry a non-negative upward flux of energy, or in 

other words, their group velocities must have a non-negative 

upward component. This simulates the effects of dissipative 

processes which become important at very high alti tudes, such 

as viscosity, thermal conductivity, radiation, and nonlinear 

effects. For a uniformly rotating atmosphere with constant 

stratification and negligible forcing above some level, 

the radiation condition is equivalent to requiring the tidal 

(1/2 + i;\.)x fields to vary as e , where ;, is a positive 

constant (Wilkes, 1949). In comparison, the boundedness 

-x/2 condition demands that e 611 _, 0 as x-, co . The former may 

be obtained from the latter by retaining the damping 1/T in the 

solution, applying the condition of boundedness, and fina lly 

neglecting the damping . Instead of the usual "rigid" lower 

boundary condition, it might be appropriate to apply an 

analogous "ingoing" wave or boundedness condition in the 

event that there is no solid surface, or if the lower boundary 

is very remote from the region of forcing, as is the case 

for thermal tides in the Jovian planets. 

Finally, the boundedness condition sometimes permits the 

existence of nonzero solutions, or free oscillations, even 

when the forcing terms 6J and 60 vanish. While such phenonmena, 

possibly including baroclinic instability or the like, may 

play some role in maintaining the basic state of the Venus 
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atmosphere, we shall assume that all free solutions either are 

damped out or e lse do not interact with the tidal fields. 
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3. Model Atmospheres 

In this chapter we shall develop simple analytic models 

for the basic state of the Venus atmosphere, which are needed 

for the numerical and analytical exploration of the tides. 

On the basis of stratification, the atmosphere is divided 

into a troposphere and a stratosphere. These two regions are 

separatedby the tropopause, which generally slopes with 

latitude in the presence of a vertical shear. Numerical 

calculations for the Earth's atmosphere suggest that such 

sloping interfaces reduce interference effects among the 

tidal waves, and elimina te the sensitivity of the surface 

pressure variation to details of the basic state (Lindzen and 

Hong , 1914). Furthermore, since we intend to study tides 

mainly near Venus' equa t or, where the slope vanishes, for our 

purposes we may take the tropopause at a constant pressure 

l evel p =pt~ 600 mb, or x = xt ~ 5.0, corresponding roughly 

to the bottom of the cloud deck at an altitude of z = z ~ 50km. 
t 

The Venera 8, 9, and 10 data on zonal wind speed versus 

altitude are presented in Fig. 3 (Keldysh, 1977). The Venera 

9 and 10 speeds level off at about 60 m/s, while the Venera 8 

velocities exceed 100 m/s at the top; the difference may reflect 

temporal variations. In our models we shall adopt an intermediate 

value of 90 m/s in the stratosphere, corresponding to the 

ultraviole t cloud motions observed by Mariner 10 (Suomi, 1974). 
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Figure 3 

Zonal wind speed as a function of altitude 

Figure 4 

Top: Entropy versus pressure 

Bottom: Stratification versus pressure 

Figure 5 

Temperature versus altitude 

Figure 6 

Pressure p or height x as a function of altitude z 
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With this alteration, the Venera probe data are fitted 

fairly well by a mean wind profile which vanishes in the bottom half 

scale height, is constant in the stratosphere, and linear 

in x in between. Stated analytically, this model becomes 

V 0, X < .5 

.5 < X <x 
t 

(3:1) 

v = 90 m/s 

This model is graphed in Fig. 3 as the curves labeled C and D; 

the slight difference is due to a minor change in the scale of 

altitude versus pressure. 

The linear dependence of v on x adopted above is fairly 

realistic for use in the numerical computations, but it is not 

convenient for studying the tides ana l y tica lly . We shall be 

able to simplify the mathematical analysis considerably by 

use of an "exponential wind " model: 

w 

w 

fx 
= Wo e .:± V = 

= 
fx 

.:± Ul o e t = w 
o:> 

X ~ X " f ~ . 785 
t' 

(e fx -1) a Wo x< X 
t 

V a W 0 
(ef~ -1) 90 m/ s 

This alternative wind profile is depict ed in Fig . 3 by the 

curves labeled A a nd B. 

We also r equ ire models of the static stability profile 

f'(x). In order to simplify the upper boundary condition, 

it suffices to take f(x) = r 
o:> 

constant~ 7560 J /kg in 

(3: 2) 
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the stratosphere, corresponding to an asymptotic temperature 

r 
a, 

T = ~ 200K. 
ro i-tR 

If the troposphere were strictly adiabatic, as in a 

vigorously convecting atmosphere, we should put r 0, as 

represented by the horizontal line labeled B,C in Fig. 4 

(bottom). However, the Russian entropy measurements (Marov ~ al., 

1973; Keldysh, 1977) presented in Fig. 4 (top) suggest the presence 

of a stably stratified layer near the twenty-bar level; accordingly we 

define the following alternative model for the static stability 

in the atmosphere of Venus: 

r 0 , X < 1.2 

r = 5000 J/kg 
(3: 3) 

r = o 1.8 

r r 
a, 

The stratified layer is labeled Din Fig. 4. 

Again, the above profile is not convenient for solving the 

tidal equations analytically, Along with the exponential wind, 

eq~ (3:2), it is convenient to adopt an exponential 

stratification 

r r 
0 

r = r 
a, 

2fx 
e 

X > X 
t 

where r may have any value greater than or equal to zero. 
0 

Yet if the cyclostrophic relation (2:10) applies, the minimum 

stratification must occur at the poles. Assuming that the 

(3 :4) 
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troposphere is strictly adiabatic at the poles (and that the 

circulation period is not strongly dependent on latitude) then 

gives a lower limit on r at the equator: 
0 

2 2 2 r ~ (2f + ~f) a w ~ 4.5 J/kg 
0 0 

The corresponding profile is plotted as curve A in Fig. 4 

(bottom). 

For ·the numerical calculations, we shall use four 

different models for the mean state of the Venus atmosphere; 

model A, defined by eqs. (3:2) and (3:4); 

model B, described by eq. (3:2) with r = 0 

in the troposphere; 

model C, described by eq. (3:1) with r 0 

in the troposhere; and 

model D, de f ined by eqs. (3:1) and (3:3) 

Only models A and B, based on the exponential wind profile, 

will be used to study the tides analytically. 

Of course, each model of the stratification corresponds 

to a certain distribution of temperature, pressure, and 

entropy, which may be found by integrating eq. 

(2:2). We have chosen T
0 

= 750 Kat the ground. Average 

temperature is shown as a function of altitude by the. solid 

lines in Fig. 5, while Fig. 6 may be regarded as giving the 

(3 :5) 

conversion between altitude z and pressure p, or the height 

coordinate x. The entropy profile corresponding to each model 
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is plotted in Fig. 4 (top) for ease of comparison with the 

Venera data. The data do not enable us to chose among these 

several models at present, although the upcoming Pioneer and 

Venera spacecraft missions should help further to constrain 

the picture of the Venus atmosphere. 
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4. The Distribution of Heating 

Once the basic state of the atmosphere has been defined, 

we need to specify the forcing function. Atmospheric tides 

driven by the gravitational influence of the sun are treated 

in a later chapter, and have little effect on the net torque. 

In this chapter we are concerned with the thermal forcing of 

atmospheric tides. 

A. Absorption of sunlight in the atmosphere 

At the subsolar point, Venus receives a solar flux of about 

2600 W/m2
, but it only absorbs 600 ± 180 W/m

2 
(Irvine, 1968). 

Of this, about 100 W/m
2 

is absorbed by the ground 

(Avduevskii ~~al., 1976a) ,so that about 500 W/m
2 

must be absorbed 

directly in the atmosphere and cloud layers. 

The total flux abosorbe Fis related to the solar heating 

rate per unit mass J through 

F = (Oro Jr Jf dx = 
( Po J dp_ 

Jo g 
(°,, J .E. dx = Po 

Jo g g 

(ro -X 
J O J e dx . ( 4 : 1) 

Lacis (1975) has modeled heating rates in the atmosphere of 

Venus, using both ground-based observations and Venera 8 

entry probe measurements. Concerning the day side, he 

concludes (Lacis, 1975): "Above~ 20 mb (x ~ 8.4), the 

heating rate s are nearly the same over the whole sunlit 

hemisphere ... In the deep a tmosphere the ratio of heating 

rates remains constant and is roughly proportional to the cosine 

of solar zenith angle. 11 Naturally, the insolation vanishes 
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on the night side of the planet. Combined, these statements can 

be expressed as follows: 

J = J (x) cos C if cos C > o 
0 

J = 0 if cos c ~ o 

where C is the solar zenith angle and J (x) is the vertical 
0 

profile of the heating rate at the subsolar point. On the 

(4: 2) 

other hand, comparison of the Venera 8, 9, and 10 measurements 

(Avduevskii et al.,1973; Avduevskii et al., 1976a) suggests that 

h 11 • • • hl ( ) 1. S ~ 2 b h t e i um1nat1on varies roug y as cos C elow t e 

cloud deck. For simplicity's sake we shall assume that the 

heating has the horizontal structure described by (4:2) above. 

While more elaborate models are possible, the results would 

be affected only slightly,as discussed in chapter 4 of Part II. 

Now we need to express the forcing (4:2) in terms 

periodic in longitude and time. Suppose that the obliquity 
I I 

of Venus is 180° - f3 •, where f3 • is a small angle between the 

equator and orbit planes (two or three degrees, according 

to the radar studies of Shapiro~ al., 1978).To first order 

in 13' (and neglecting the small eccentricity of Venus' orbit), 

the longitude er, of the subsolar point decreases uniformly 
0 

with time, while its latitude :!!
2
• - 0 varies sinusoidally over 

0 

an orbit: 

Cf; = w
0 

t - nt 
0 

0 = .!!. + f3 'sin nt 
0 2 

where both time and longitude are measured from the northern 

vernal equinox. This small-obliquity approximation will be 

(4:3) 
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made exact in Part II. Then we find for the cosine of t he sol ar 

zenith ang l e 

cos ( == sin e cos (cp - Cf> ) - s' cos e sin nt 
'::) 

However, when it is half - rectif i ed as (4:2 ) requires, we find 

I 
t o f i rst or der in S , 

(4:4 ) 

J cos ( if cos C _>o ) == sin e ·I 
\ 0 otherwise 

cos (cp - cp ) if cos 
0 

0 otherwi se 

cos (cp - cp0 ) >O l 
(cp - cp ) >O l 0 

. l l if - s' cos e sin nt 
0 otherwise 

sine .[ 1:. + 1. 
TT 2 

cos (cp - m) + _1_ cos (2m - 2rn ) -
2 

T0 Jn T T0 TT 

ro 
I: 

- s' 

(-l ) s / 2 
cos 

2 
s -1 

cos e l sin 

1 co 
+- I: 

TT 

s odd3 ' 

+ s in ( scp -

( scp - scr, ) ] 
0 

s == 4, 
even 

nt + 1. sin (cp - wt - 2nt ) + 1:. sin (cp - wt) 
TT O TT ~ 

s - 1 --

[ sin (sq, 
(-1 ) 

2 
- sw-¥t - ( s + 1) n t) s 

SW t - (s - 1) 
n t J J 9 

' 
Note that when [3

1 
== 0 in (4 :4), the heating rates are 

(4:5 ) 

symmetrical with respect to the equator, while the presence of s' 
introduces an antisymmetrical part. Except for the diurnal 

( s == 1) terms we also note that all the even values of s arise 

from the symmetrical part, while all the odd wavenumbers arise 

from the antisymrnetrical forcing; however, this is an artifact 

of the simple horizontal structure (4:2) assumed . 
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The first term of the expansion (4:5) does not vary 

with time. Since the insolation cannot of course be negative, 

..!. sin 8 is simply the average of the heating, relative to 
TT 

the subsolar value . This steady energy input must be carried 

away by internal processes (such as the Newtonian cooling term 1/T) 

and ultimately reradiated to space; thus in setting J = 0 

we may remove the first term from (4:5). 

The equivalent gravity mode approach applied in a later 

chapter also requires us to express both the forcing and 

response in terms of spherical surface harmonics. The tenns 

sin e 1/2 cos (cp - CP, ) 
Cl 

- s' cos e sin nt in (4:5) are 

already in the proper form, since sin e = pl 1 (cos 8) 
' 

and cos e = pl 0 (cos 8) are suitable Legendre functions. 
' 

In all othe r cases, the latitude distributions sin 8 and 

cos 8 must be decomposed into Legendre functions of different 

orders. For the semidiurnal component, the leading term is 

15 . 20 
64 

Sln cos (2cp - 2cp ) 
0 

(4:6) 

while the leading term of the antisyrmnetr.ic diurnal component is 

- o ' 15 • e e i-' 
32 

sin - cos (sin (~ - w~ t -2nt) +sin(~ - w~ t) l (4: 7) 

Both express ions (4:6) and (4:7) above represent spherical 

harmonics of the second degree (~ = 2). None of the other components 

contribute second degree terms (because 1 ~ s), and since only second 

degree harmonics are capable of producing a substantial torque, we 

need not consider ~ny higheT crder t erms. 
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The distribution of heating with height is not well 

known, so we shall use a combination of the simple models 

depicted in Fig. 7. Here the horizontal scale is logarithmic 

in J (x), the heating rate per unit mass at the subsolar 
0 

point. The vertical scale is linear in x, or logarithmic in 

pressure p, in order to avoid complications due to slight 

differences in the relation between pressure and attitude z. 

Each of the profiles in this figure is normalized using eq. 

(4:27) so that the total insolation F absorbed at the subsolar 

point is 500 W/m2 for models I, II, and III, but is 100 W/r/ 

for the rest. 

The profile labe led I in the fi gure represents a uniform 

heating per unit mass above the nominal level of the cloud tops, 

x = x ~ 7. 5 or p ~ SO mb. When normali zed using ( 4: 1), this 
a 

model becomes 
X 

oJ 6F _g__ a 
(4:8) = e X > X 

Po a 

6J = 0 x:,; X 
a 

where oJ denotes .::i complex Fourier component of the total flux 

absorbed in this manner. This profile corresponds to the 

absorption of sunlight in an optically thin atmosphere above 

a reflecting layer: if the clouds are not perfectly reflecting, 

this model can be linearly combined with one or more of the others. 

Model II is a delta function representing the absorption 

of energy within the c loud layer itself, presumed to be 
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Figure 7 

Heating rate J as a function of height x or pressure 

pat the subsolar point for several models of the thermal 

forcing in the Venus atmosphere. The upper scale gives 

J/c ~ J/(945 J/kg/K) in degrees Kelvin per day (86400 seconds). 
p 

The upper profiles I, II, and III are each normalized to a 

total absorption of 500 W/m
2

, while the lower profiles IV, 

V, and VIII are each normalized to 100 W/m
2

• The twinning 

of profiles IV and Vis related to differences in the mean 

zonal wind models and is explained in the text. 
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optically dense. Normalized, this may be written 
X 

6J 6F __g_ e a 6 (x ) = - X 

Po a 
(4:9) 

where the latter 6- symbol must not be confused with a complex 

variation quantity. 

The curve labeled III in the figure represents a broader, more 

realistic distribution of absorption in the clouds. We have 

approximated the (inhomogeneous cloud) model calculations of 

Lacis (1975) by a Gaussian heating profile. The distribution 

peaks at the nominal level of cloud type (x = x) and has a 
a 

full width at half-maximum of~ 2.2 scale heights (~12 km); 

when normalized, this can be written 
2 

(x-x ) 

Note 

oJ(x) 6J(x )e 
a 

a 
1. 75 

6J (x ) ~ 500 __g_ 6F if x ~ 7. 5 
a p

0 
a 

that a Gaussian distribution appears 

since Fig. 7 is a semi-logarithmic plot. 

as a parabola, 

(4:10) 

The remaining heating profile represents the redistribution 

of hea t absorbed by the ground, and will be described in 

the remainder of this chapter. 
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B. A diffusive thermal boundary layer 

The insolation absorbed by the ground also drives 

atmospheric tides, by means of heat exchange between the 

surface and the atmosphere. This is of course a subject 

of tremendous complexity, but we begin by analogy with 

the thermal boundary layer on Earth. In the following, we 

treat heat transport in the lower atmosphere of Venus 

as a process of diffusion. 

After Chapman and Lindzen (1970), we set r = 0 and 

:e RT= 0 in the heat equation (2:20), so that advection of 

heat is neglected. We then replace the source term K6J 

by the vertical gradient of the diffusive heat flux, so 

that analogous heat diffusion equations apply in the atmosphere 

and in the soil: 

icr 6T = 

icJ 6T 
~ 

1 _g_ (K _a_ 6T) oz a oz pc p 

_l _ _a_ 
Pb\ oz 

_Q_ 
oz 

1 
pc H 

p 

6T) 

K 
o (~ _a_ 6T) ox H ox 

z < 0 

, z >O; 

Here Ka: and Kb are respectively the thermal conductivities 

of the lower atmosphere and of the ground, pb is the density 

(4: 11) 

of the soil, and cb is its specific heat capacity. In general, 

all of the parameters in eq. (4:11) above may vary with 

height, but for the sake of simplicity, we shall treat as 

constant the quantities K /H, 0pc H, K.. , 
a p b 
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tantamount to taking K cr 1/T cr e ~x while 0 cr 1/p cr ex . 
a 

When we add t he boundary condition that oT must be 

continuous at the surface z = 0, and must vanish at z = ±oo, 

the so l ution to (4:11) becomes a complex exponential function 

of height : 

oT - oT e -(1 + i) (~:)x z >O 
0 

oT oT e (1 + i ) z / Db z < 0 
0 

where we have defined t he constants 

D =~ and 
a 0 p C 

0 0 p 

as the thermal skin depths in the atmosphere and soil, 

respectively. The atmospheric t emperature variation from 

(4 : 12) above is graphed in Fig . 8, where the solid curve 

represents the real part and the dashed curve shows the 

imaginary part. 

(4:12 ) 

( 4 : 13) 
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Figure 8 

Temperature variation versus height 

for a diffusive thermal boundary layer 
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We also impose the condition that there is no net flux into 

the interface z = 0. This completes the solution by relating 

the surface temperature oT to the insolation oF absorbed 
0 

by the ground: 

Note that both terms 6T in (4:14) above have the same phase, 
0 

(4:llf) 

so that the transfer of heat from the ground to the atmosphere 

is effective ly instantaneous. 

We proceed to estimate the valuesof these parameters 

appropriate to the lower atmosphere of Venus. The thermal 

conductivity due strictly to molecular diffusion would be 

-6 on the order of 10 W/m/K vastly less efficient than 

ot he r atmospher ic processes . It may be that the dominant heat 

transfer mechanism in the thermal boundary l ayer i s radiative ; in an 

optically dense medium, radiative transfer reduces to a process 

of diffusion, with an e ffective thermal conductivity of 

(Goody, 1964), where crsB is the Stefan-Bolzmann constant, 

and£ is the photon mean free path (the mean invers e of the 

absorption coefficient). The lower atmosphere of Venus 

contains about 0.1% water vapor (Moro z ~i. al_:_, 1977), so that 

£ is probably on the order of 100 meters (Avduevsky ~~ al., 



1970: Kuzmin and Marov, 1975). This leads to a thermal 

conductivity on the order of 104 W/m/K, corresponding to a 

skin depth of roughly 800 m. 

This estimate of the conductivity is really a lower limit, 

since turbulent mixing may be the dominant heat transport 

process in the lower atmosphere of Venus. The thermal conductivity 

4 due to eddy diffusion is on the order of 10 W/m/K on Earth 

(Kuo, 1968), but eddy transport may be vastly more efficient on 

Venus, where the troposphere is about 50 times denser and 

nearly adiabatic. The competition between turbulence and 

radiative transfer fortunately does not complicate the problem; 

if eddy diffusion contributes a thermal conductivity KF 

greater than the effective radiative conductivity~, Goody 

(1960) has shown that to lowest order in KR/KE, the results 

are just the same as if only the eddy contribution were present. 

For typical surface materials, we estimate¾~ 10 W/m/K 

a nd pbcb ~ 3 x 106 J/m3/K, so that the thermal skin depth 

in the ground is about 3.3 m for the diurnal wave. We then find 

K K 
Db~ 3 W/m2/K, while Da > 15 W/m

2
/K. These remain in the 

a a 
same ratio for all frequencies, so that we are justified in 

neglecting the heat capacity of the soil relative to the atmosphere 

in eq. (4:14). This proves that effectively all of the heat 
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absorbed by the ground is immediately deposited at the bottom 

of the atmosphere, We can also estimate that daily temperature 

variations at the surface of Venus should not exceed a few 

degrees: 

1 - i 
oT ~ oF ( 2 ) (D /K ) ~ (1 - i) x L 7 K 

a a 

for the diurnal component. 

(4:16) 

Following Chapman and Lindzen (1970), we regard the heating 

function J as derivable from the temperature field (4:12) by 

means of the heat equation (2:20), even when advection is not 

negl ected: 

oJ = c i CT 6 T = oJ 
p 0 

(..Q_) e- (1 + i) (~-<!._) X 
CT o a 

(4:17) 

While Chapman and Lindzen (1970) ma de the above substitution 

in altitude coordinates, it is more valid when expressed in 

isobaric coordinates like ours. However, substituting oT from 
0 

(4:14) directly into (4:17) above is inexact because the 

X 
solution was obtained effectively by assuming CT= 0 0 e Since 

the vertical form of oJ depends on the frequency as a function of 

height, oJ in (4:17) must be renormalized using eq. (4:1) for 
0 

each model of the mean zonal winds . 

We shall use the heating distribution (4:17) above to 

represent the 'effects or thermal diffusion in our numerical and 

analytical calculat i ons despite the restriction mentioned above. 



so 
We define heating models VI and 

VII with thermal conductivities K of 108 and 107 W/m/K 
a 

respectively, corresponding to thermal skin depths of roughly 

4.4 and 1.4 scale heights for the diurnal wave according to 

eq. (4:13). These are not shown in Fig. 7 for the sake of clarity. 

6 
Conductivities on the order of 10 W/m/K or less correspond 

to shallow skin depths. Since the surface pressure cannot 

respond to the fine structure of the forcing, a small conductivity 

can be represented by a delta-function heating introduced just 

above the ground. The "heating at the ground mode l" is written 

oJ = oF _g_ o (x - O+) (4:18) 
Po 

and is labeled profile VIII in Fig. 7. 

On the other hand, the temperature gradient at the ground 

is 

_Q_ oT = - oF/K (4:19) oz o a 

A thermal conductivity K less than about 105 W/m/K is thus 
a 

liable to drive the lapse rate unstable with respect to 

convection. This possibility is discussed more fully in the 

next section. 
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C. A simple approach to convection 

Consider an atmosphere which is strictly isentropic 

up to some level x = x, and stably stratified above. Adding 
C 

heat in a thin layer at the bottom would produce an unstable, 

superadiabatic temperature gradient. Buoyancy-driven 

convection would set in, and heat would rapidly be transported 

upwards, until an adiabatic lapse rate were re-established 

up to roughly the original height x . The stably stratified 
C 

layer above the convective region would act as a lid to any 

further heat transport. If heat were then removed from the 

top of the convective zone, the entire process of 

readjustment would be reversed. This visualiza tion suggests 

that the major effects of convection can be modeled simply 

by sh i ft ing an adiabat up and down on a plot of T (z ), as 

the dashed line in Fig. 5 demonstra te s. That sketch is 

exaggerated, though, since the total insulation absorbed by 

the ground over a Venus day would be able to raise the 

temperature of the bulk of the atmosphere by only about 

a tenth of a degree. This approach resembles Gierasch and 

Goody 1 s (1968) treatment of the Martian thermal boundary layer, 

which was adapted by Zurek (1975) to study atmospheric tides 

on Mars o 

In our isobaric coordinate system, the shifting adiabats 

described above are defined by 

-r(,X 
e X < X • 

C 
(4: 20) 
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As in the previous section, the heat equation (2:20) 

allows us to represent convection approximately by a special 

heating distribution; 

OJ = (io- + ih) c 6T 
p 

(4:21) 

This type of forcing is illustrated in Fig, 7 by the profiles 

labeled IV and V; the tops of the convective layers are chosen 

so as to coincide with the levels of stable stratification of 

x = 5.0 and x = 1.2 respectively, as suggested by the static 
C C 

stability profile shown in Fig. 4 (bottom). Since the 

convective heating rate (4: 21) depends on the forcing frequency, 

two curves are shown in Fig. 7 for each convective model; 

the straight profiles correspond to the "exponential wind" 

model (3:2) of the basic state, while the curves with kinks 

at x = 0.5 are related to model (3:1) of the mean wind. 

For the purpose of presentation, these curves are drawn for 

1/T = 0 and an obliquity of exactly 180° (S
1 = 0), so that 

all of the component frequences are multiples of (w + n) 

and these have the same dependence on height. This restriction 

does not apply to the numerical calculations. Finally each of 

the profiles IV through VIII shown in Fig. 7 is normalized by 

2 
numerical integration of (4:1) to comprise 100 w/m, the total 

insolation absorbed by the ground at the subsolar point. 

It is worth remembering that the technique developed above 

is a linear means of dealing with a fundamentally nonlinear 
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process. Convec tive instability may also be tied to other types 

o f in s tabiliti es and t o nonline a r phe nomena bey ond the scope of 

the tidal theory. Naive though this approach may be, it is 

adequate to its purpose: to show the principal effects of 

distributing the heat absorbed at the ground throughout the 

lower atmosphere. 
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5. The Equivalent Gravity Mode Approach 

Three major difficulties arise in calculating tidal effects 

in the atmosphere of Venus: uncertainties in the basic state, 

ignorance of the heating distribution, and the nonseparability 

of the tidal equations in latitude and height which arises 

from the large vertical shear in the mean zonal wind. Ultimately 

we shall show that these problems have little impact on the 

conclusions regarding the net atmospheric tidal torque on Venus. 

A. Theoretical basis 

Nonseparability is not a fundamental obstacle, since the 

nonseparable tidal equations could be solved by a two-dimensional 

finite-difference scheme, as Lindzen and Hong (1974) did for 

the Earth. Such an attack is prone to numerical pitfalls; 

furthermore, present knowledge of the basic state and heating 

profile does not warrant such rigor. Accordingly we shall not 

seek global solutions, but instead assume a latitudinal structure 

as if the solutions were separable, in order to solve for the 

vertical structure at the equator. This approximate 

approach indicates that the surface pressure variations are 

mainly forced by heating near the ground, for which the question 

of separability is not as important. 

The appellation "equivalent gravity mode" was coined by 

Lindzen (1970a) in a study of gravity waves on a nonrotating 

plane, which have a sinusoidal structure in both horizontal 
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directions. A concise description is found in the sequel 

(Lindzen and Blake, 1971): "In Part I (Lindzen 1970a) we 

defined 'equivalent' gravity modes as internal gravity waves 

on a non-rotating plane whose frequencies are equal to tidal 

frequencies, whose east-west wavenumbers are equal to those 

of the tidal modes at the equator, and whose meridional 

wavenumbers are e,ho.oen so that the vertical structures of the 

'equivalent' gravity modes are identical ... with the vertical 

structures of tidal modes appropriate to a rotating sphere. 

In addition, the horizontal structure of the 'equivalent' 

gravity modes (E.G. M. 's) approximates that of tidal modes in 

the neighborhood of the equator." 

The technique was further developed in Lindzen (1971) 

and in Lindzen and Hong (1973). By using properties of the 

horizontal structure found from the separable case, one can 

more readily study the effects on the vertical structure of 

a variety of phenomena, such as viscosity and thermal conductivity, 

which lead to nonseparability of the tidal equations on a 

rotating sphere. We shall use an approach slightly modified 

from the one described above to study atmospheric tides on 

Venus. 

The spin and orbital periods of Venus are comparable, 

so no distinction is made between seasonal and diurnal timescales. 
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Accordingly the basic state is assumed symmetrical about the 

equator. Then the coefficients of eqs. (2:23) and (2:24) 

given in (2:25) naturally divide into a symmetric set 

These coefficients, as well as the dependent variables 

OT] and ot in (2:23) and (2:24), may now be replaced by their 

Taylor series expansions about the equator, Since the 

tropical region is the most important for calculating the tidal 

torques, we retain only the first two te r ms of the resulting 

expansions. For forcin g3 symmetrical with respect to the equator, 

all of the coefficients then take their values at the equator, 

so that the antisymmetric coefficients vanish. For antisymmetrial 

forcings, however, the symmetrical coefficients are again set to 

their values at the equator, while the antisymmetrical ones 

are replaced by their first derivatives with respect to 0, 

evaluated at the equator. 

We can further simplify the resulting tidal equations by 

defining a new, height~dependent "equivalent depth" h(x) by 

analogy with eq. (2:31). For symmetrical modes, let 

while for antisymmetrical modes, we put 

(5: 1) 

(5: 2) 
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where all derivatives are evaluated at the equator. Choosing 

a value for his thus tantamount to assuming the ratio of 6w 

to its second derivative (or of its first derivative to its third) 

without solving for the horizontal structure of the tidal mode. 

While this is somewhat arbitrary, ultimately we shall show that 

the results are insensitive to the horizontal structure. 

It is also convenient to introduce the notation 

rr = 0 for symmetrical modes. 

rr = 1 for antisymmetrical modes. 

1 d 2 a 
and X = 2 dx w = ~ A

4 
evaluated at the equator 

CT 

Then equations (2:23) and (2:24) can be written 

io- d 
gh Oijr = dx OT) - (rrx + A5) oT) 

Now OT) may be eliminated between (5:4) and (5:5) above, to 

give a single ordinary differential equation in the potential 

Oijr for each o-,s mode: 

• d s: J 
l - 11.V 

dx 

+~ [- (a - i/T) 
1 d 

Oijr (AS + rrx + f dx r) dx 

d 
(o- - i/T) - Ilax] + 6o/ [ ~~ + JJo-x (A5 + 

J_ d +- X + ---dx r dx 

d 
(ax)] - rr dx 

Equation (5:6) above could have been obtained directly by 

expanding eq. (2:35) about the equator. However, it is more 

(5: 3) 

(5: 4) 

(5:5) 

(5: 6) 

r) 
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convenient to eliminate ow between (5:4) and (5:5) in order to 

obtain a single equation in the vertical velocity o~, as in 

the classical approach. 

If h is finite, subsituting ow from (5:4) and (5:5) 

and rearranging gives 

11,0J d 2 
0T1 

d 
[ 

nx a d <!h)] - - 0~ /\.5 + nx + i ---
i 

dx2 dx gh dx 
(1 - -)gh (1 - -) 

a, [ r 
CTT 

d 
(/\.5 + nx) + (/\.5 + nx) nx (5: 7) + 0~ • dx i 

(1 - ~)gh . (1 - -) 
O"'f CTT 

- (/\. + nx) SL d <!h)] 5 gh dx 

Now eq. (5:7) (or else (5:6)) can be solved either analytically 

or by the simple numerical method described by Chapman and Lindzen 

(1970). Once 6~ (x) is known ow can easily be found through 

eq. (5:4). Then (2:19) and (2:22) give expressions for the 

temperature variation: 

6T = 1_ _Q_ 0,1, = 1_ (ia + 1/T)-l [ia TIX ow - ro~ + ,,,oJJ. 
R 2Jx 'I' R 

(5: 8) 

Equations (2:21) and (2:22) can also be expanded so as to 

give the horizontal wind speeds 6u and 6v and their colatitudinal 

derivatives at the equator for each mode. If ow and 6~ are 

symmetric, we find at the equator 

OU 0 

_Q_ 6v 
c18 

(5:9) 

0 
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Similarly, if ot and 6'f1 are antisymmetric we find 

OU i a _Q_ 6u = 0 = a:rae 6w ae 

6v 0 0 1 
(so- - 2w 

02 _Q_ 01\r + = ae 6v + -- w) 
2 ae 2 ae 

cr 

(5: 10) 

• a ( aw) a 
:i,. ;:- ax ae 611 

\ 

We can also substitute the above results into eq. (2:37) to find the 

(5: 11) 

Eq. (5:11) combined with (2:39) then constitutes the lowe r 

boundary condition for eq. (5:7). Since the equivalent depth 

is typically four ordersof ten less than the scale height at the 

ground, for Venus the lower boundary condition is almost 

identical to requiring 61] = 0 at x = 0. 
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C. Equivalent depths 

The equivalent gravity mode approach of the preceding 

section has now reduced the tidal problem to one dimension, 

where it is more easily dealt with. For the purposes of the 

numerical calculations, we still need to evaluate the 

equivalent depths. 

Suppose that the tidal problem were separable in the upper 

atmosphere of Venus. The equivalent depths could then be 

obtained by dividing the known values for the Earth 
2 2 

• f h • aw b h 1 ratio o t e quantity --- etween t e two p anets 
g 

by 23.1, the 

(assuming mean zonal winds of 90 m/s at the equator in the 

stratosphere of Venus). The resulting approximate values of 

hare listed in Table 1 under the heading "classical", for 

the four modes of lowest order at each of the important 

forcing frequencies. The terrestrial values for the inertial 

diurnal modes (0 = w) were taken from Lindzen (1967), while 

all of the others were taken from the corresponding synodic 

modes (a = sw +- sn) tabulated by Flattery (1967). 

The least arbitrary technique of extending these equivalent 

depths throughout the atmosphere would be to scale the tabulated 

stratospheric values to the height-dependent frequency at each level. 

Since the equations are not separable in the first place, 

such a refinement would be an unnecessary complication. By 

comparing several approaches we shall show that it is adequate 
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to assume a plausible distribution over colatitude, independent 

of height, which gives simple formulae for the equivalent 

depth as a function of frequency. 

The simplest way (method O) of approximating the 

equivalent depth is to neglect L 6t 
03 

altogether in 
oe2 and - 3 6t 

oe 
eqs. (5: 1) and (5: 2). Then 6t and 6Tj will have the same 

distribution over colatitude as the forcing, while (5:1) and (5:2) 

become, 

1 1 
J\3] 

1 -= - [rr J\2 + = IT gh CY 2 4 
a CY 

2 2 
[CY - 8w + (2SCY - 4w) 

02 2sw s 2 

oe w] +23+22 
(5: 12) 

a CY a CY 

Table 1 shows that the equivalent depths obtained this way 

do not agree well with the "classical" values, so that the 

traditional case cannot be recovered. 

It is more satisfactory to scale the equivalent depths of 

the separable problem approximately to each level of the Venus 

atmosphere. No explicit formula is known for the equivalent 

depths in the classical case. Based on an equational beta-plane 

approximation, Lindzen (1967) gives a formula which predicts 

some of the eigenvalues quite well, but only for the diurnal 

modes. Green (1965) replaces the Coriolis parameter 2w cos 0 

in the classical primitive equations by a constant values 2 w2 
0 

for midlatitudes. The eigenfunctions of the resulting separable 

problem are Legendre functions )s (cos 0) of degree ,t, and 

orders, with corresponding equivalent depths given by 



ht 

2 2 
2 2 s w 
~ - (J 0 

g t (t +l) 
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The resulting values are listed under method 1 in Table 1, 

2 
where following Green (1965) we uses = 0.95 for diurnal 

0 

2 
tides, ands = 2.0 otherwise. Note that (5:13) above is 

0 

an exact solution to the Hough equation (2:33) for a 

nonrotating planet (w = O). 

The comparison between the equivalent depths obtained by 

means of method 1 and the classical values is much more 

(5: 13) 

satisfactory. The Legendre functions are very convenient for 

representing the forcing and response for s everal reasons: (1) 

they resemble the known Hough functions for low degree and order, 

(2) they are simple and well known, (3) they automatically fit 

the polar boundar y condition, and (4) they are natural for 

treating the resulting gravitational torques. Therefore 

we shall adopt formula (5:13) as the principal method for 

estimating equivalent depths in the numerical computations. 

However, it might be more consistent with our original 

approach to obtain the equivalent depths from eqs. (5:1) 

and (5:2) applied to Legendre functions, than from eq. (5:13). 

Then it is easy to find the quotients 

1 02 lim 1 a2 (cos 0 )= - -ot = 
0--->rr / 2 P (cos 0) 

-P 
6t 00

2 a02 ts ts 
(5:14) 

-t (t + 1) + 2 
s 

' 
o -1 0 3 lirn [ o -1 L p (cos 0)] 6~ = /2 <00 P (cos 0) ) <ae ot ) 

00
3 0->rr ,f, S a0

3 ts 
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• -· --··------·- ----·- ·· -- - --· --···- ••• - · · ·-- ··-··- -r-----
Table 1 Equivalent depths ht high in t;~ ~~~~~;~er-~- (m) ____ _ I 

(J) + n 1 

-- - -·· -- --- ·f ···- · 
; 

(J) 1 

2n 
; 

1 (J) + 

(J) - 2n 1 

; 
-- ...... . -; 

I 

' 
2w + 2n ! 2 

! 
i 

2w l 2 

; ·------- ·· ··---- - -· - .. ..... .. . 

2w - 2n i 2 

-2n 0 

i 1 0 I 

2 ! 1 
3 0 

; 4 1 

1 0 
I 
2 1 

j 3 ' 0 
; 

4 1 

1 0 

' 2 1 
3 0 

: lf 1 ' 

1 0 
I 2 1 
3 0 
4 1 
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3 1 
4 0 ' I 

I 5 1 ; 
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2 0 
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5 1 
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4 0 
5 1 
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I 
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805. 
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805. 
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586. 
352. 
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466. 
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238. 
00 

68.0 
68.0 ; 

I 
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264. 

103 1.85 X 

74.4 
71.1 

-----
213. 

103 -1.36 X 

62.0 
65.3 

499. 
330. 
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476. 
317. 
173. 
127. 

454. 
305. 
166. 
122. 

.... - .• · ··· ·-·- ---
00 

-3.94 X 10-4 

• 0.289 -4 
-3.94 X 10 

641. 
424. 
280. 
207. 

; 724 , 
505. 
362. 
277. 
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2 = - t (t + 1) + s + 1 

Substituting (5:14) above into (5:1) and (5:2) then yields 

glh = } 4 [cr 2 t 
a cr 

_2-=_ w] 
08

2 

2 
(t + 1) + 2s wcr - 8 w IT + IT (2scr + 4w) 

(5:15) 

The results of formula (5:15) above are also listed in Table 1 

under method 2, but do not appear to reproduce the separable 

results as well as those from method 1. Formula (5:15) will 

therefore be used as an alternative for comparison with (5:13) 

in the numerical computa tions. 

It i s worth noting that the first anti s ymme tric mode of 

t he inertial diurna l frequency cr = w has a formally infinite 

equivalent depth in the classical case, which only method 2 

of the approximate formulae has reproduced. This is significant 

because an infinite equivalent depth may lead to vanishing 

surface pressure variations; the behavior of tidal modes with 

infinite equivalent depths is treated more fully in Appendix I. 
2 

However, Table 1 was made by setting¾ w = 0 in eqs . (5:12) 
08 

and (5:15), and so represents an ideal case. In reality, the 

substantial horizontal wind shear observed on Venus (Suomi, 1974) 

keeps the equivalent depth small so that this particular tidal mode 

probably behaves qualitatively the same a s the others. Several 

of the tabula ted equivalent depths are infinite for the 

cr = -2n semiannual tides as well; this also is an artifact of 

the f ormulae used and does not occur e ither in the exact 
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solutions of the Hough equation or in reality. These questions 

could probably be resolved by two-dimensional finite-difference 

computations, like those of Lindzen and Hong (1974), but as 

we have already mentioned, these are subject to limitations of 

their own. 

2 
Meanwhile the equivalent depth scales roughly as cr (x), the 

square of the frequency at each height, according to all of the 

approximate formulae (5:12), (5:13), and (5:15). As a result, 

the equivalent depths decrease by roughly three orders of 

magnitude from the upper atmosphere dmm to the surface of 

Venus. The equivalent depths of the surface are listed in 

Table 2, which has the same format as Table 1, except that 

the "exact" values of the equivalent depths are less meaningful 

and are therefore omitted. 



Table 2 

CJ 

w + n 

w 

w + 2n 

w - 2n 

2w + 2n 

s ' t 
1 

1 

1 

1 

1 

i . 
i 

2 

2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

2 
3 
4 
5 

IT 

0 
1 
0 
1 

0 
1 
0 
1 

0 
1 
0 
1 

0 
1 
0 
1 

0 
1 
0 
1 
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.. .. ..-.,-- ---·, 
Equivalent depths ht at the surface (meters) l 

method 0 

0.818 
1.44 
0.818 
1.44 

0.123 
-0.0925 

0.123 
-0.0925 

2.27 
2.02 
2.27 
2.02 

-0.699 
-0.0893 
-0.699 
-0.0893 

1.29 
1.17 
1.29 
1.17 

· , 
method 1 i 

0.626 
0.209 
0.104 
0.0626 

9.25 X 10-3 

3.08 X 10-3 

1. 54 X 10-J 
9.25 X 10-4 

1.68 
0.559 
0.279 
0.168 

0.0750 
0.0250 
0.0125 
7.50 X 10-3 

0.946 
0.473 
0.284 
0.189 

method 2 

0.542 
0.314 
0.124 
0.0839 

0.0925 
co 

0.0264 
0.0264 

' . ·········· · ·····- ···-···- ··-- ··--··7 
1.41 ! 
o. 63.5 ! 
0.293 

1 

0.187 

1. 78 
-0.310 

0.0488 
0.0405 

···· · ·- ·-·l 

i -----------, 
0.922 t 
0. 513 i 
o. 306 ! 

-··· -·- -.. - -----. · ·--- ...... ·- . - •·· . 0. 210 ·····-·-·- _i 
0.185 

' 
2 

2w l 2 3 
! Lf 

! 
5 

2 

2w - 2n 2 Z 
5 

i ; I 

0 
1 
0 
1 

0 
1 
0 
1 

• • 0 i 0 

-2n , 0 1 1 
2 I 0 

! 
3w + 3n : 3 

3 1 
i 

3 0 
4 1 
5 0 
6 1 

' 
0.247 
0.296 
0.247 
0.296 

-4.91 X ~0-4 

-3.17 X 10-5 
-4 

-4,91 X 10_
5 

-3.17 X 10 

OJ 
i 

-2.45 
OJ 

-2.45 

1.45 
1.34 
1.45 
1.34 

0.123 
0.0617 
0.0370 
0.0247 

-0.122 
-0.0608 
-0.0365 
-0.0243 

OJ 

0.496 
0.165 
0.0827 

1.14 
0.685 
0.456 
0.326 

0.123 
0.0673 
0.493 

-5.45 X 

-3.24 X 

-2.30 X 

-3.44 X 

co 

5,93 
0.289 
0.168 

1.11 
0.695 
0.466 
0.338 

4 0 1.51 1.25 1.22 
! 5 1 1.44 0.831 0.832 

4w + 4n 4 i
1 6 0 1.51 i 0.593 0.597 
I 

\ 7 1 1. 44 I O. 445 , 0. 451 
····-· ·-· .. ....... • ...... . J ,. ........ .. •- ·-· ·· ·· --···•·-·-···• •·•· ···•·•--.J ..... - .. ........... _ ..... - .. ·····- ' ··-·· ·· ... .. .. . 
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C. Numerical calculations 

The tidal equations were solved numerically in one 

dimension according to the equivalent gravity mode formulation, 

using both methods 1 and 2 described in the preceding section. 

The finite-difference scheme employed is standard in tidal 

problems and is given in Chapman and Lindzen (1970); see also 

Lindzen and Kuo (1969). We used a fully complex double 

precision program with a vertical step size x ~ .05 for accuracy. 

Table 3 displays the tidal variations in surface pressure 

op resulting from each of the heating distributions I - VIII, 
0 

for models A - D of the basic state. For the main synodic 

diurnal mode (cr = w + n), heating profiles I, II, and III are 

2 
normalized to a total absorbed insolation of 1/2 x 500 W/m, 

2 while distributions IV through VIII are normalized to 1/2 x 1.00 W/m. 

This tidal mode has a large amplitude, but does not affect the 

torque on the planet. It will be shown in chapter 7 that the 

net accelerating torque on the atmosphere is proportional to 

the imaginary part of the semidiurnal component Co-= 2w + 2n) 

of the surface pressure variation. In order for this mode to 

be consistent with eq. (4:6), heating models I~ III must be 

15 2 
normalized to a total flux of 

64 
x 500 W/m, and profiles 

15 2 
IV - VIII to 

64 
x 100 W/m. All of the other modes tabulated 

appea r only when the obliquity is not exactly 180°. They 

influence the behavior of Venus' obliquity, and will be discussed 

further in Part II of this work. Here they have been normalized 
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j 

' i 
i SIGMA = l *OMEGA + l * N S = l DEGREE = l 

I 

PARITY = 0 i 
;...--·- ·· -··· - - r · - - --· -·--------- - -·· -

! 

J 

I 

I I 

DELTA P {MILLIBARSJ 
MO DE: L---- --- ············ ·· •• ·· ----j 

METHOD l METHOD 2 

A O.O +I* O.O 0.159 +I* 0.528E-Ol 
8 -0.756E-03+I* O.ZBOE-03 
C -0.402E-03+1* 0.171E-03 

-0.202E-03+l* 0.173E-03 
, -0.260E-03+I* 0 .223E-03 

O. l 75E-02 +I*-0 .149 E-02 ' D - 0 • .3 6 8 E- 0 3 + I * 0 • l 5 7 E-0 3 

A 
B 
C 
D 

1.48 +I*-0.134 0 .164 +I*-0.259 
O.ll7E-02+1* 0.329E-02 0.2l8E-03+I* 0.435E-03 
0.718E-03+I* O.l75E-02 0.281E-03+I* 0.560E-03 
0.660E-03+1* O.l60E-02 -O.l86E-02+I*-0.375E-02 

0.628E-03+I*-0.740E-02 -0.103E-Ol+I*-0.638E-Ol 

i 

i 
--1 

; l I I 
A 
B 
C 
D 

-0.256E-04+1* 0 . 227E-03 0.863E-04+I* 0.614E-04 
-O.ll3E-04 +I * Oo262E-04 0.112E-03+I * 0.430E-04 
-0.103E-04+1* 0.240E-04 -0 . 747E-03+l*-0.290E-03 

A -2. 32 +I* 5.30 -0.887 +I* 3.60 
rv 8 -0 . 1+ 82 E - 0 4 +I* 3.43 -0.7l0E-05+l * 2 .. 92 

C -0.151 [ -04-+-I* 0 .. 8 79 -0. 498E-05 ·H * 0 .. 835 
D -Ool05 E-04+ I* 0.869 -0.248E-04+ I * 00838 

A -3.02 + l * 9.42 -o .. 965 +l* 6.74 
V B ' -0.189£:-04+1* 6.08 -0.217E-05 +I '>: 5.24 

' 
C l -o. l01E-04+J>:: 2.45 -0.301E-05+l* 2.33 

' 
lJ -0. 844E-05 ·t-l* 2.43 -0 ,, 134E-03 +I* 2.35 

.. -- -- ··-· ----··. - •. ·•- -···· . -· --- -· · 

A -1. 95 +I * 8.04 -0.504 +I,;,: 5 .. 62 
VI 8 o. 433 +I* 5 . 02 0.344 +I* 4 .. 36 

C 0.1 3 9 +l* 2.99 0.128 +I* 2088 
D 0.137 +I* 2.98 0.129 +l* 2.89 

. ----1 - ---- · •• -· ···-·· · ···· ·-· - - ·-· - ··-· ······ - -- __ _ .. ______ ---- -- -· --------· •. 

A 0.109 + I >'.c 10.5 0.838 + lt.• 7.39 
: VII 8 1.55 +I ,:: 6.32 1.26 +I* 5.6! 

C 0.590 +I,:, 4.20 0.549 +I* 4o06 
D I 

o. 583 +I* 4.1 8 0.553 + I t.c 4.08 
- --- - - ------ -·"····~------~--- - .. . - --·- ·•• ------- ---------- ···-·· ·-----·-- - ·---· .... 

A ! -0.335 +l* 10 .. o -0 .. l ll +I* 9 .. 66 I 

VI I I B 
! 
i -0.185E-05 + I >:0 9.49 -0 .279E-06+I* 9.35 

C ! -0.140E:-05 +l* 9 . 35 -0.414E-06+ i* 9.32 ! 

D i -0.118E-05 +l* 9.35 -0.185E-04+l * 9.32 

I 
i 
1 

I I 
. · · - · __ 1 _ -···-···-·- ------·· -- --· ·--- . • -· - · - ····· -·- .. . .... ··- . ... • ·- . -- ... -- -··•·- ··- ·-·· ··. - - ..... . .. ---- -···-··------ . ·-·--------··· - -
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·-----·-··--··-- ·-- ·-·--·---·- ·-----···--·1 

S = 2 DEGKEE = 2 PARI1Y = 0 1 
I 

-·--7···------ ·---- ·----·--··--·--··- -·--··-·- ---··--···--··•---··- ··- -··--- .. .... . ·-- ··· -· ·· ·---··· ·· ···-· ·· -··•····-·-···-··· · ·•··· ·······--·· . ···j 

I . -· I DELTA p U'11Llll::)AkS) I 
J 1 11i o c ::: L r·--· --- ·--·---.,- --·· ··--··-····-·· ---·--· --·-·· ···•· •- ···--··-··-- -···-··-·-·-----··-·-· - ·· ----•····• ·- -. 

1 , ' Mf: THCD 1 METHOD 2 j 
•--· -·--··· -~·--···········- - :•- --- -···-··---·------·•·-·•··· ··-· ·- ··--·- ·--· ······-···- -·-· - ·-·--··-···- -··-·-·-·-·-·------·- ·- ·-·----· .... -·--·-i 
l I : < 

j : ~ ; o.o . _ +1:,0 .0 _. 
1

-o.iss~ +I~o.1~~ I 
i I l3 ! -0. Hi7E-03+1 °' C).35lE-O 2 i O. 193t:-O2+1 '.< O .. 19?E-O2 ; 

C '. 0 .172i::-03+l '!' 0.310F-02 I 0.226E-02+I>:< O.l69E-O2 ! 
l, 0 ; -· 0 • 2 J H·. - 0 3 + I ~,- 0 • 1.~ lit E - 0 2 ! -0. 2 5 7 E- 0 2 + l *- 0 • l 9 1 E- C 2 

1

1

; 

I ' I . r------- ·-:--·-·. ············· t-·······• •• - ·- · -·--·---·- ·-····· ··- -·--·· ············ ·-·-· - -· -··--· · ·t-- -·····- - ·-·······-··-- •-·•·-·-···---·--·· -· - ··•·· •·· .. ·•··i 
i • A • -0 • 1 2 4 + I ,:, _ 0. 1-t 0 1 j 0. 12 1 + I* 0 • 314 l 
l I 1 e o.514E:-02+1,:, 0.1111::-02 I o.315E-02+I*-0 .l30E-02 ! 

C . O. 1+59E-02 + I >:: 0.993E - 03 1 O.30OE-O2+l*-O .. 181E-O2 I 
C : - O.615E-O2+I*-O.U2E-O 2 ! -O .34OE-O2+I* O.2O6E-O2 l 

---; : . · i · I 
I ,~ : - 0 . S55E:-Cl+l~'-0.73 1t E-0l j 0.997E -0l+I ':' 0.851E-0l ! 

. 111 I s : o .J4L;-E-02 +1t.'- O.J93F-0 3 l o.8l'tE-O3+I*-o.1O1F-O2 ! 
j I c ; 0. 12OE-O2+H' - O.5J"tE- O3 : o .t65E-O3+I*-O.ll9E-C2 i 
: ~ o i - O. 1 6 1 E- O2+H' u. 71 8E-0 3 l - o. 75 OE - O3 +I * o.135E-O2 • 
7----· - ···- ··· --,-·-··-· ------------- ··- -----· ---------······: ··-·- --··-··- -·-· --... ··-· -·----·--- ·-·-·--··- . 
! :,. -0.1 60 +H' 0.663 ! - 0 .1 8 1 +I* 1.22 
! 1 V j 8 - 0 . 733E: - 0tt+ 1,:-: O. 752 i ·- 0. 44HE-04t I~• o. 70 4 
! i C - 0 • 4 2 g E- 0 't+ I ~: 0 • 2 2 4 1' - 0 • 3 12 ~- 0 1t + P O • 2 1 7 
I ! 

• o o .l37c-o4+1 * G.£'.16 , o.ao 1E-o s +r ,:, 0.210 i 
,_ _____ .;,_ ________ ._____ - ---··---··· · ···-- ···· ·- - --·- • - - -~- ---L-.. -~-- ·--·· ·-· .. - ·· - ··· - - .. --··-------- -- · ···-~-- ----'4o•----· ··- - - ··- - --1 
.! \ \ 

1 A · -O.143 +1 ,;, 1.57 - · n 150 +I* 1.81 i 
V 

V O I 
J -0.25 7E-04+ l * 1.32 - O. 1&6E -O 4+ l* 1.25 I 
C : -0.2 11E- Ott+I ;;-: 0 o6 lf -O.?JlE-O 't +P' 0.599 \ 
D . -0.466E- 0Lt+l '~ 0.609 , -o . 2 ?9E-04+!>:' 0.590 j 

~--·~--·- •----·---·--·--------------- -·····-·-·- ····-·--····-·<··---- ·· •··· ······-· .... - ·•·· ·· ·· · ... .. · -····· · ··- · ·····---·· . ··· ·-··· j 

A O. 114E-Ol+ I* 1.3 9 U.985E-Ol+l* l.69 
VI B 0.135 +1,:, 1.1 6 0. 123 +I * 1.10 

j 

C O. 55OE- Ol+I,:, 0.791t i 0 .5 25E -Ol + l * O.777 
o o .531E-O1+1* o .1 s 1 : :.). 5l16 E-01+I* o.769 

1 <----,---·-i --· --- ··-----·- ·-·-·--·-···---···--·--- ···-····-·! ··-· . ..... ... ..... . ··-···· ·-·-- ..... ····-· •·-···-· - ··- -··-- ···-· ·-· ·--- ·1 

1\ . O.5O2 +H' 1. 88 ! 0.6-)0 -t-1,:: 2.06 
1 

Vil 3 0 ~'+94 +I>:: 1. 56 j O. t+58 +I* 1.50 
C 0.250 +l '~ l.22 i 0.240 +I * 1.20 

VI I f i 

D i o.245 l-1~' 1.. 2 1 I o •. 235 +r ,:, 1.1 9 

-- ------- --- ---- - ---- j =z: k; ~ ~= g;: ::-~: 1i A , -0. 160 E- 0 l + I~' 2.2G 
0 - O.267E-O5+H' 2.21 
C -04 3 61E - O5+1 '~ 
D -0.647E-05+I•~ 

2 .. 20 
2. 20 

! -0.265[ - 05+1* 2 .20 
l - o.3 1+1E-o5+I * 2.20 

1 .... ....... _.J ___ ·-----··· .. ·-·-··-•-·····-•-"'•···········---·····-··--·-··· ···•-·-----•· •··········-··• .,.1. ····• ····-··· ··-··- -·····-- - ·-··--·····----·-···-·- -·-···-----J 
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1-·--·---------··· . -- ------------·----- --- --·-· -'-- ·-----· ••·-"·- ·· .. . . . -- .. ---- --- ------- ---------------------------- -

! SIGMA= l*CMtGn + Ll*N S = 1 DEGREE= 2 PARITY= l 
- --~1--·------·r---··--··---·- · --·'- ··-·· ····---- ·• ---- · . ··· ··- •·- · · -- ·- -··-·-- • . . ... - ..•. . ·- ... •.. ··· ·- ·-- -· - ·-·-·-··--- -- ·---•-- -·•--·-- -·------ - -·- - -

J 

l I 

ll I 

1 l DELTA p {"-l1LLl3ARS) 

A 
8 
C 
0 

A 
8 
C 

2 

0.0 +I;" 0.0 • O.J +1,;, 0.0 ! 
o .. 4g9E-u9+J>:<-O .• tl32E-09 O.O +I>:,: O.O ! 

- 0 • 9 2 9 E - l 2 + I * 0 • 1 6 7 E:- 1 1 ! 0 • 0 + I * 0 • 0 i 
-O.J80E-1J+l* 0.686E-13 i J.O +I* o.o / 

... · ·-· ·· ·· ·· ····· . ----- - - --- --- -·· --· ·- ····---·-··· ·-·--- ---·-- ---- ·- -i ___ ___ ......... . · ···· ··•· ---- ····•··· ...... -- · ····- -- - ... . -·------ - ! 

0 . 11 3 E:- 0 t~ + I *- C • 7 1 0 E- 0 4 i O. 0 + I* 0 • 0 ! ! ; 
-O.953f::-O8+1*-0.3O1E-O8 , O.O +1,:, 0.0 j 

O.19OE-1O+1* O.55OE-11 , O.O +I* O.O i 
D _ _?:.?BOE~ 1-~-~ _I :~._ 0 :~-~-4.-~:-~_:_J __ °- ~? _____ ----~ ~ ~:---~ ~~-------~ 
A 
8 
C 

O.913E-O7+1* O.656E-O7 0.0 +I*-O.6O1E-O9 
-O.248E-U9+1* O.585E-O7 O.O +I*-O.6Olf::-O9 

0.21 8E-l2+l* O.866E-O9 0.0 +I*-O.586~-1O 
O.8 8 ~~-14+1* O.861E-O9 0.0 +l*-O.586E-1O 

..... ·-·-------·- ·-··-----·-----···--· ··- -·---··~· ·------- ---.------ ----------· -- ---•-··-----·-~----- -- --~---···-~------ ······ ····· -·--·-··-•~------' ( ! 
A -0.?07 +l>•"-0.8Y6E-Ol J.O +l*-0.155 ; 

IV ~ -0. 177E-06+l* 1.79 O.O +I*-O.155 

V 

V I 

VI I 

C O.0 89 E-iO+1* O.795 0.0 +I*-O.552~-Ol 
U O. l'.:>lt:-L::+F O. 795 0.0 +l>:-C-0.5521:-Cl 

i 
...•..• . ------ ----~-- -----·---- , - - ·- , --- ---- ----...i 

A 
B 
C 
l) 

-1.19 +l*-0.192 
-O.3~3E-O6+l* 4.15 

0.3 J 3 c - 09+I* 2.75 
o.soB~-12+1* 2.1s 

o.o 
o.o 
o.o 
o.o 

·H*-O.36O 
+l*-O.36O 
t- I,:,_ 0 • 19 l 

i 

. -- . -- ···--·· - . . . . . .. --1·- - .. -- . ----- ·--·- ---------- ·· - --·- -·--····~- ------ . 

A 
8 
L 
J) 

-1.24 +1:.:,-0.121 i -O.93O!:-O2+!;'<-O.334 
0.113 +I* 3.Bl i -0.930E-02+l*-0.334 
0.127 +I* 4.68 ! -O.R48E-02+1*-0.325 
0.127 +I* 4.69 J -O.849E-02+1*-O.326 

i ! - ·-·· ----·-- !--·--· ·---· ·· ··--- ··-·-·····-----·--- ------·--· ·---·-- --· --··--•-----·- - ·-----: - -----·-- --· ·---··-- ·----- -· --·-·· ·- ---··-·----··---·--- - -

A -l.12 +l*-O.o27E-Ol ; -0.365E-Ol+I*-0.430 
6 O.439 +1* 4.88 i -O.365E-O1+1*-O.43O 
C O.~O7 +I* 6.0 4 • -O.339E-01+1*-O.421 
U 0.508 +I* 6.05 -J.340E-Ol+l*-0.421 

+l* -?..12 , A -8. l.2 +I;" 14.2 
V[ll b l -Ool?7 t: - •)6+P 17.2 

j C O.178 E-O9+H- 18.O 

o.o 
0.0 
o.o 
o.o 

+I* -2.12 

· ! D [ O.299E-12+I:::, 18 .. O 

L ________ J _____ ___ __l ___ ___ __ ~ --- -- ------ --- ----- --. ····---- -··• -·· . --------- --- . -- -

+ [ ~': --1.55 
+I~~ -1 .s~ 
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l s1G~A = L * □MEGA + Z*N 

l 

S = 1 DEGREE= 2 PARITY= 1 
···-- ·-···· ·· ··1 --- --·- ·· ·· 

' DELTA P {MILL I BARS) 

MET HOO l 
- 1-

A 0.240E-02+I*-0.327E-02 
B 0.819E-05+I* 0.206E-04 
C O.S68E- 05+I* 0 .218E-O~ 
D : - 0 • 3 J l E - 0 5 + I *- 0 • 7 3 4 f- 0 5 

•• • .•• -·· -·--- -- ----·•· ··-··-- ··--·--

METHO D 2 

U.352E-03+I*-0 .322E- C3 
0.859E-05+I*-0.197E-04 

-J.53 8E- 05+[ * -0.153E-04 
0.127E-04+I* 0 .358E-C4 

A . , -O.L07l-Ol+I*-O.l38E- OL 0.289E-04+l*-0.30 5E-03 
I I B O • 12 4 E- 0 3 + I *-0 • 5 6 2 f.:- 0 4 - 0. ld 8 E- 0 5 + l ,:<- 0 . 13 l E - 04 

1 I I 

[ V 

V 

VI 

V 1 l 

VI l I , 

i 
l 

l 

C 0.131E-03+I*-0.657f-04 -0.914E-05+1*-0.496E-05 
D -0.441E-04+l* 0.224E-04 0.214E-04+I* O.ll6E- 04 

A 
~ 

C 
D 

A 
d 
C 
D 

-0. 766t-04+I>:<-0.583E-04 -0.Z28E-0 1~+i'-'=-0.l43E-03 
-0.275E-05+l* 0.677E-04 -0.461E-05•1*- 0.38lf-05 
-0.150E-05+l* 0.468 E-05 -0.6j8E- 05 •I*- 0 .202E-05 

0.496E-06+I*-0.158f-J5 0.154(-04+1* 0.4 7JE-05 

-1 .. ?8 +L* 1.85 -0.159!::-02-tJ:.\, 3.46 
. -0.9tt3E-04+l,.~ 2.73 -J.5l 4E -05+l* 2.05 
-0.395 E-04+l* 0.782 -0.l3LE-05+1 * 0.696 
-0 .. 300£:-05+ l'" Oe75d -0.569E-05+ I* 0.693 

. . -- . .. -- . - - -

A -2.20 +I* 3 . 7:j -O. l81E-0 2 +l '~ 5.33 
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to twice the total absorption as the main semidiurnal mode. 

Inspection of the semidiurnal results shows that absorption 

in the upper atmosphere (profiles I-III) produces only a small 

torque, likely to have either s:i:gn. In constrast, heating in 

the lower atmosphere (models IV-:-VI-IT) seems always to gene1:ate a 

net accelerating torque on the planet. Heati,ng deeper in 

the atmosphere generally has the greatest effect at the ground. 

This was anticipated by scaling the equivalent depth, and will 

be elucidated more fully in the following sections. The different 

basic state models A-D and EGM methods 1 and 2 do not seem 

to have as much effect as the choice of heating distribution; 

mostly they appear to alter the coupling between the upper and 

lower atmospheres. There is one exception; for the antisymmetric 

inertial diurnal mode (rr = w, s = 1) the surface pressure 

variations obtained through method 2 are about an order of 

magnitude less than those from method 1, or vanish altogether, 

as expected; this provides a nice check on the consistency of 

the calculations. 

Along with the torques and pressure variations, the numerical 

program also calculated temperature and wind fields. In addition 

it generated the correlation terms such as pw and vw, which are 

related to energy and momentum transport (Reynolds stresses), 

respectively. Those correlations which ought to vanish according 

to symmetry or to the lower boundary condition did so, while 

the upward energy flux was always positive or negligible, 

consistent with the upper boundary condition. However, the 
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correlations were quite sensitive both to the heating distribution 

and to the basic state model, while the EGM method used did not 

matter as much. 

The numerical program also solves for the height at which 

the exponentially growing tides become nonlinear, and at which 

they presumably dump a large part of the outgoing energy flux. 

This is taken as the level where 6T/T = - 6p/p first exceeds 

unity in magnitude. While this height was variable, it was 

always above the cloud tops for the properly normalized solar 

input. 

The Newtonian cooling term 1/,r was also retained explicitly 

in the numerical program. At first we used the thermal time 

constant as a function of height obtained by Pollack and Young 

(1975), which becomes comparable with the rotation period a bove 

x ~ 8 or z ~ 70 km, along with the appropiate upper bounda ry 

condition at the top (6 6~ / 6 x = 0 at x = 15; see Lindzen 

and Hong (1974) for a discussion). Subsequently we found that 

the inclusion of this damping only affected the amplitudes and 

phases of the tidal fields by 10% or less at the surface. 

Interestingly, dissipation growing with he ight t ended to increase 

the amplitudes at theground; this is interpreted as due to enhanced 

reflection or "trapping" of gravity waves in the troposphere. 

For the sake of definiteness, all of the values presented in 

Table 3 were obtained by neglecting damping (setting 1/T = 0) 
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and imposing either the boundedness or outgoing wave condition at 

the top, as appropriate. In order to obtain more definitive 

results, it is necessary to gather better data on the heating 

distribution and on the basic state. 
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D. Free modes and gravitational forcing 

In the following two sections, we shall use the equivalent 

gravity mode approach to explore the atmospheric tides 

analytically. This will also be of value in interpreting the 

numerical results. 

In order to render the problem analytically tractable, 

we shall neglect the difference between cr and sw . This is 

a good approximation high in the atmosphere where w > > n, 

and is often done in the terrestrial theory. Close to the 

ground it is off by about a factor of two (for the principal 

semidiurnal mode) , while the frequency cr retains more 

significance than sw, 

Under the above approximation, equations (5:1) and (5;2) 

for the equivalent depth can be related 

cr,s cr,s [ ( )] 2 
h (x) = h (O) cr x 
~ ~ cr (O) 

We also employ the ttexponential wind" model (3: 2) for the 

variation of frequency with height: 

fx 
cr (x) = cr 

O 
e , x < x t; 

cr (x) 
fx 

cr e t 
0 

X :2:: X 
t 

(5:16) 

(5: 17) 
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When the damping 1/-r is neglected for simplicity, the tidal 

equation (5:7) has constant coefficients in the troposphere: 

2 
H.OJ = _d_ OT] - ~ oT] 
gh d 2 dx [1 + (2 + 4 IT) -\] 

0 X 

+ oT] [r: - f (1 + f 
g 0 

+ 1!._) + I1 
2 

s 

s 

elf+ sf\] 
2 4 

s s 

where we have written h for he, (0) and h for hf, (oo): 
0 CX) 

It is easily verified that the general solution to eq. 

CS:18) above is 

OT] (x) A e Cs + i A) X + B 

+ _.!:L_ 
1 

2i gh A 
0 

Cs + i A )x 
0 e 

0 

( 
I ; 

• oJ x) dx 

Cs + i A )x 
0 ){ 1 -----e 

gh 2iA 
0 

• oJ Cx' ) dx
1 

Cs - i Ao) 
e 

X 
- Cs fe 

0 

X 

fe 
0 

X 

+ 
I 

i A )x 
0 

i A )x
1

. 0 • 

-2f'1 
e 

-2fx
1 

e 

(5:18) 

(5:19) 

In the stratosphere, f = 0 and we recover the "classical" 

vertical structure equation (2:30), whose solution is similarly 

(1/2 + i A ) (x -x) (1/2 - i A ) (x -x) 
oT] (x) C e 0 C + D e 

0 C 

(1/2 + i A )x 
X 

-(1/2 + i 11. )x' 
l{ 1 CX) fe CX) 

+ 
- (J~) 

2i11. e 
gh (1 CX) 

CX) CX) 

CX) 



79 

• oJ (x 1 dx 

1 (1/2 - i . I. )x J e -Cl/2 J,{. co 

i:..) 2i;\ 
e 

gh (1 - 0 
co CJJ ro 

• 6J (J) d.J. 

In the above expressions, A, B, c, and D are constants of 

integration, and we have defined 

s = 1/2 + -\ + IT (lf) 
2 

s s 

2 r 
f + lf) 

2 2 0 f (1 + (lf + §1__) Ao = --- + IT ':"" s gh 2 2 4 
0 s s s 

L 
0 

gh 
1
4· - f (1 + f + lf + _l_ + .L) =J 0 2 2 4 

0 s s s 

:\ 2 = 
. ro 

r 
0 

gh 
ro 

(1 - J:_)-1 
CJT 

If h . f 2 2 . . t e expression or;\ or;\ above should be positive, 
ro 

we take the (real) positive root; if the expression 

is negative (or complex due to damping), we take the root 

lying in the first quadrant of the complex plane, We must 

treat separately the possibility that A ~ 0 qr A = O. 
• • • 0 ro 

Note that the presence of shear represented by f > 0 

2 
in (5;21) above always reduces the value of A making the 

0 

tidal modes more likely to be evanescent, or "trapped". Thus 

(5: 20) 

(5: 21) 

vertical shear furthur decouples the upper and lower atmospheres, 

in addition t0 the effective incre!'lse of equ:rvalent depth w:i:.th 

height discussed previously ~ 
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Given the choice of square roots above, the upper boundary 

condition requires us to set D = 0 in (5:20). The lower 

boundary condition also provides a relation among the remaining 

constants of integration. Combining eq. (5:19) with (5:11) 

and (2:39) at x = 0 gives 

icr oz+ icr 60./g = AH+ + BH , 
0 0 

(5:22) 

where we have defined H and H by 

[1 ( rn°

2

~/ )]c5 , 23) 
+ 

H = H + h ( s ± i 11. - TI X - AS) - IT 
± 0 0 0 

CJ 0 

In order to complete the solution, we also need two 

matching conditions at the interface x = x, to relate the 
0 

solutions for the two regions. Since the oscillations are 

hydrostatic, the pressure p decreases continuously with altitude 

z, according to equation (2:1). Conversely z must be a 

continuousfunction of p, so that by eq. (2:2), ot (x) must 

be continuous across the tropopause, Conservation of mass 

further requires that the velocity normal to the interface be 

continuous; at the equator, this is equivalent to continuity of 

6~ (x). Therefore we shall adopt continuity of 6~ and ot 

as our matching conditions at x = X • 
0 

For the time being, let us leave out the thermal forcing . 

Then the requirement of continuity of 6~ at x = x gives 
0 

C 
(s + i 11. ) x ( s - i 11. )x 

A e o t + B e o t (5: 24) 
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6t Cx) can ne found from C5:19) and C5:20) by use of C5:4); 

continuity ~ t x = xt then requires 

+ i 'A 
0 

- A 
5 - n 

(s + i A. )x 
0 t 

• e 

+ B Cs - i 'A - A 
0 5 - n ns 

Cs - i 'A )x 
0 t 

(5:25) 

Solving C5: ·24) and C5:25) simultaneously with (5:23) then gives 

A = ic C6Z + 6O/g) s 
') 

Cs + H - s H )-l 
+ - - + 

B = io ') C6Z + 6O/g) 
s+ Cs + H - s H )-1 

+ - + 

k Cs - i 'A )x 
C io- C6Z + 6O/g) 

0 t = e 
') 

where we h 2. 1e defined S+ ands by 

s = 
± 

r 

I 
l s ± i'A -A -rr I o 5 
l-

Cs ± i 'A )x 
0 t 

• e 

C5: 26) 

Cs + i 'A )x ] 
s 

0 t 
e 

C5:27) 

For the tir:J~ being, we presume that the quantity (s+ H _ - s_ H +) 

cannot vani~h, and is of orders H. 
± 0 
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At a level of constant pressure p, or of constant x, 

the a l titude z varies by an amount 

oz = 6 p/g = (6* - 60 ) / g (5: 28) 

Relative to a fixed a l titude z, the pressure p varies by an 

amount 

Op z = . - 6 z (aaz p) = gp 6 z = p Ol~ - p 60 
(5 :29) 

The sur face of the planet also experiences a pr~ssure variation 

by virtue of the tidal motion of the ground up and down 

relative to the mean pressure gradient. Combining this effect 

with the above gives for the total pressure variation a t the 

C5:3Cl) 

where the subscript nought s signify a quantity evaluated at x = O. 

By virtue of eq. ( 5 : 4), we find 

gh 
0 

icr 
(A+ B) 

0 (.5 :31) 

,. (. /1.5 + IT A4 )] • 

Subsituting A and B from C4 : 17) into the above then gives 

6* = CoO + g oZ) [s+ <s - i A. - I\ - IT /1.4 ) 
0 0 5 (5:32) 

i] - s Cs + i A. - /1. - IT /1.4 h Cs+ H_ - S H )-1 
- 0 5 0 + 
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Since h is on the order of a meter for Venus, the dynamic response 
0 

of the atmosphere to the gravitational forcing is negligible. The 

resulting surface pressure variation p 6~ is on the order of 
0 0 

p 60 h ~ 10-4 mb from eq. (5:32) above, while the accompanying 
0 0 

wind and temperature variations are correspondingly small. 

When the small dynami c term p ow is neglected in eq. 
0 0 

(5:30), the result becomes independent of the EGM approach. 

The surface pressure variation for all latitudes is then given 

by 

opz ~ - p (oo + g oz) ~ oo (1 + k -ik/Q - j + ij /Q) o - po 0 

~ 1.8 rob sin 0 

In formula (5:33) above, j and k are respectively the height 

and potential Love numbers while Q is the "quality factor" 

for body tides; these quantities are described more fully in 

chapter 7. Note that the gravitationally induced pressure 

variation is mostly due to the equipotential surfaces' 

moving up and down farther than the ground; if Venus were a 

perfectly fluid body (j = 1 +k) with no dissipation (1/Q = O), 

the forcing term (60 + g oz) would vanish entirely. 

The gravitationally induced surface pressure variation 

(5:33) has a substantial amplitude but the phase lead is 

(5:33) 

much too small to produce a significant torque. This is because 



84 

the imaginary part of the surface pressure variation is 

produced merely by the tidal bulge in the crust displacing 

the air, while the density of the soil is about fifty times 

greater than that of the air. Thus only the thermal forcing 

can produce a substantial torque on the atmosphere of Venus, 

There is one exception to the treatment above. When both 

the thermal and gravitational forcings vanish, the response 

of the atmosphere remains indeterminate provided that the quantity 

(s+ H_ - s_ H+) vanishes also. This circumstance defines the 

free modes of the atmosphere, as discussed previously. In 

general, the response of a free mode to either type of 

forcing is formally unbounded, or resonant. 

As long as the oscillations do not interact with the basic 

state physical intuition dictates that there can be no free 
' 

modes in the presence of damping (complex ;\
0 

2 
or ;\

00 

2
), 

or if the outgoing wave condition is applied (;\ positive). . ro 

In pursuing free oscillations, we may then restrict our attention 

to evanescent modes (;\ imaginary), although for Venus most 
ro 

tidal modes are in fact propagating (;\
00 

positive). 

Note that S+ H_ - s H+ always vanishes as ;\
0 

tends 

to zero. However, all of the tidal fields generally remain 

finite in this limit, as the explicit solution for ;\ = 0 confirms. 
0 

In the classical case (f = O), if the atmosphere is 

adiabatic everywhere, we find 
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Ao = /\.,;x, = i/2, S+ = 0 s_ 
xt 

= e 

hcr, s 
(5: 34) 

H+ = H 
0 t , H = H . 

0 

Thus we recover the usual result that free modes in a strictly 

cr s adiabatic atmosphere only occur when ht' = H
0

• 

For Venus, the low frequencies of the tides allow us to 

neglect h
0

/H
0

• If we regard both Ao and A
00 

as imaginary, we 

always find S+ < s_, so that free modes of short period cannot 

exist. If we suppose that A is positive, we get a purely 
0 

imaginary expression: 

S+ H_ -1;_ H+ ::::3 H
0 

(s+ - I;_) 

+ [s -A5 - rr A4 

sin (A
0
xt) l • . 

The refore free modes of short period can only exist if the 

Venus atmosphere fulfills the special condition (5:35) 

above. Since this would be a rather fortuitous circumstance, 

henceforth we shall exclude the possibility of resonant 

atmospheric tides. 

(5:35) 



86 

E. The Green's function 

Since our system of equations is linear, we can treat the 

thermal and gravitational forcings separately, and add the 

solutions together at the end to obtain the combined effects. 

The gravitational forcing was treated in the preceding section: 

if now we leave it out, the lower boundary condition becomes 

homogenous. Then it becomes convenient for analytical purposes 

to formulate the response of the atmosphere to a thermal forcing 

in terms of Green's functions. 

For our purposes the Green's function is merely the 

response produced by a forcing in a thin layer. Consider 

the heating as a Dirac delta-function at the level x = x
1

: 

where the latter 6 symbol denotes the Dirac function and 

not a complex variation quantity, while the multiplier oJ
3 

furnishes the proper dimensions of power per unit mass. 

(5:36) 

If x
1 

< xt so that the heating is in the troposphere, 

subsituting the above forcing (5:36) into the formula (5:19) 

and applying the upper boundary condition gives the solution 

<s + i A.o) X Cs - i A. )x 
611 A e + B e 

0 
= X < XJ 

( s + i A. ) X Cs - i A. )x 
6 T\ A e 0 + B e 0 = 
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rt.OJ J 1 <s + i "-o ) (x - xJ) -2fx 
J +-- 2i)c e e gh 

0 0 

uoJJ 1 <s - i ;\ ) 
0 

(X - X J) -2fx 
J --- 2i;\ e e gh 

0 0 

(1/2 + i " ) (x - xt) ·co 
◊Ti = C e X > X 

t 

Note that according to (5:37) above, 6~ and ot suffer an 

abrupt change in amplitude and phase at the heating level 

x = xJ. Still, we require 6~ and ot to be continuous at the 

interface x = xt. This matching condition, along with the 

homogeneous form of the lower boundary condition (5:22), 

gives f or the constants of integration 

A = 
gh 

0 

1 -
2
fxJ [ -Cs + i Jc

0
)xJ 

2i;\ 
0 

e H _ s + e - S e 

(5:37) 

uoJJ l -2fxJ [ -(s + i Jc
0

)xJ -<s - i A0 l,xJ] 
B =-- 2i;\ e H+ S + e - !; e gh -

0 0 

. (s+ H - - !;_ H )-1 
+ (5: 38) 

11,6JJ -2fx 2!;xt [ -<s + i 11.o)xJ ,...<s i A0 )xJ] J 
C gh e e H+ e H e 

0 

. (s+ H_-!;_ H )-1 
+ , 
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6p = po 61)r 
0 0 
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surface pressure variation 

= 
116J J -2fx1 [ -Cs 

- po e H s e :0 0 + 
0 

-Cs - i A )x] 
0 J 

e 

+ i A.
0

)x
1 

(5: 39) 

The response of the atmosphere to a heating at the ground 

(model VIII) can now be obtained directly by subsituting eq. (4:18) 

for (5:36) in the results above. Then 6J
1 

is replaced by 

oF : 0 , xJ = 0, and the surface pressure variation becomes simply 

6p 
0 

tt6F 
icr 

0 

tt6F 
cr H 

0 0 

(5: 40) 

For the main semidiurnal mode, eq. (5:40) gives 6p ~ ix 2.3 mb, 
0 

which corresponds to a substantial torque. Note that the 

solution (5:40) above is virtually independent of the basic 

state of the atmosphere; actually this result is still more 

general, and we shall return to it shortly. 

On the other hand if x
1 

> xt so that the heating is in 

the stratosphere, substituting eq. (5:36) into (5:20) yields 

6T] - A e 
(s + i 11. )x 

0 + B e 
<s - 1 11. ) x 

0 
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611 =Ce 
gh 

co 

[ 
( ) (1/2 - i 11. ) (x e (1/2 + i 11.co) x - XJ _ e co 

(1/2 + i 11.co) (x - xt) 
611 =Ce 

1 
2i11. 

co 

Applying the boundary and matching conditions again gives 

(5:41) 

x.6JJ -2fx (1/2 - i A. ) (xt -x)( H ) t co 
J S+ H_-- s_ H+ A= i 

e e 
gh (1 --) 

0 CT t co 

xJ) ( S+ H:+- s_ H;) - x.6J -2fx (1/2 - i A.co) (x -J t t 
B = e e i gh (1 --) 

0 CT T co 

(s + i 11. )x (s - i 11. )x x.6JJ 
C=Ae o t+Be o t+-----

gh (1- --2:._) 
co 0 T 

OJ 

(1/2 - i 11. ) 
OJ 

- e 

Similarly we find for the surface pressure variation 

op = 
0 

po-----.- e 
(1 - -2._) 

0 T 
CT 

0 
co 

-2fx 
t 

(1/2 - i 11.) (x - xJ) 
OJ t 

e 

(5: 42) 

(5: 43) 
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We note that eqs. (5:42) and (5:4J) above match (5:38) 

and (5:39) when the heating is at the tropopause and the 

stratospheric damping is neglected (x
3 

= xt' 1/T = 0), 

The effects of heating distribution II can now be found 

directly by replacing eq. (5:36) with (4: 9 ), so that 6JJ 
X 

becomes 6F JL ea 
po 

and x
3 

becomes X • 
a 

A distributed heating 6J (x ) can always be represented 

as a generalized linear combination of delta functions: 

6J (x) = 
co J 6J (x3 ) 6 (x - x 3 ) dx3 
() 

(5 :49) 

If the problem is linear with homogenous boundary condition, 

the solution is then just the heating distribution convolved with 

the response to the delta-function forcing. In particular, 

combining the surface pressure variation (5:43) arising from 

a de l t a-func tion fo,cing with eq, (4 : 8) fo r mode l I of the heating 

yi e ld s 

0:, 

(1/2 A.co) (xt - x3 ) 

1 u6FI X - i 
JL e a 

6p = - po (cr - i/,r) 
e 

0 po co 
a 

• 2 A. H Cs+ H - S H ) dxJ (5:45) 
0 0 - + 

po rt6F X -2fx 
_g_ a t 

= - e e 
(1/2 - i A.co) (1 - i/0

00
T) po 

00 

(1/ 2 - i A. ) (x - X ) co t a 
Cs+ H+) • e 2 A.o H H - s . 0 
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Note that the result (5:45) above is the same as for model II 

of the heating, except oF is replaced by oF (1 '2 ·, \-1 
1 - l/\cc/ • • 

This ratio agrees with the numerical calculations, which also 

show that the Gaussian heating distribution (4:10) of model III 

has a comparable effect at the ground. This demonstrates 

that the breadth of the absorption profile in the upper 

atmosphere generally does not affect the order of magnitude of 

the resulting surface pressure variations. 

We are able to estimate this effect for the main 

15 2 semidiurnal tide by inserting oF ~ 64 x 500 W/m 

into formula (5:45): 

(5:46) 

which agrees well with the numerical calculat ions . The drop 

in density with height tends to increase the effect of heating 

X /2 
high in the atmosphere through the factor ea , but is overcome 

by the 

ground 

"impedance mismatch" between the stratosphere and . the 

-(2f + ___i) X 
represented by the factor e 2 t. Thus the 

s 

surface pressure variation driven by the direct absorption 

of sunlight high in the atmosphere is about an order of 

magnitude too weak to counteract to despinning torque due 

to l)ody tides. 
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Heating in the troposphere ought to produce a greater 

torque becau~e of the slower rotation of the lower atmosphere. 

The exponential dependence of frequency upon height makes it 

easy to normalize the 

6J (x) = 6J 
0 

fx 
e 

f + (1 + 

Convolving (5:47) above with the Green's function (5:39) 

for the troposphere then gives 

11,0J 
6Po = - po 

0 

ia 
0 

where we have neglected the changes at the tropopause. The 

convective forcing function (4:21) is treated similarly: 

6J (x) = 6J 
0 

fx 
e 

-KX 
e ,x<x-> 

C 

- 1t6J O ( 
op - - P 

0 0 ia 
o s+ 

oJ 
0 

- e 

s + i Jc 
0 

(5:47) 

(5 :49) 
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It is gratifying to note that numerical evaluations of the 

above formulae agree very closely with the finite-difference 

calculations for the same cases. 

In the limit where the convective and diffusive layers 

are much thinner than a scale height (x <<land D < < H ), 
C a 0 

the results above reduce to the solution (5:40) for heating 

at the ground, as expected. As the net heating moves farther 

from the surface, it ought to become less effective at driving· 

surface pressure variations. However, estimating op from 
0 

the above formulae gives roughly the same result for thick 

heated layers (x > 1 and D > H) as for heating at the ground; 
C a 0 

the numerical calculations confirm tha t they are of the same order 

of magnitude. The single most important parameter controlling 

the atmospheric tidal torque on Venus is therefore the amount 

of sunlight absorbed by the ground. In the next chapter, we 

shall be able to account for this result more simply. 



6. Heating at the Ground 

In this chapter we derive the tidal effects at the 

surface independently of the equivalent gravity mode approximation. 

In this context it is noteworthy that Hinch (1970) obtained 

essentially the same surface pressure variation as (5:40), by 

applying a much simpler approach to a strictly isentropic 

atmosphere corotating with the ground on a cylindrical 

planet. However, his model was heated radiatively at the 

top. We can understand why he arrived at the same result 

as ours for heating at the ground by considering the 

Green's function for a stationary, adiabatic atmosphere. 

Using the parameters from (5:34) in eq. (5:43) then gives 
H 00 

op 
0 

ip 
0 

0 

G - i/,r 
H 

0 J 
0 

fo - ih) 

When 1/T and h/H are neglected, the result (6:1) above is 
0 

the same as (5:40). Therefore to 

the extent that the troposphere of Venus can be considered 

isentropic and stationary, the details of the heating 

distribution in the lower atmosphere are irrelevant for 

(6:1) 

our purposes, because the same surface pressure variation is 

obtained no matter how the net absorbed insolation is 

distributed in such an atmosphere. 
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Since the result for heating at the ground is so 

prominent, we present another derivation which shows how 

little formula (6:1) depends on any specific assumptions. We 

begin by supposing only that all of the energy absorbed by 

the ground is immediately redeposited in a thin layer of air 

at the surface. Then the heating distribution becomes the 

same as for model VIII: 

We can then substitute the above forcing into the form 

(2:24) of the heat equation. Since all tidal fields 

(except oJ) must remain finite, integrating (2:24) across 

the heated layer gives 

0 = (ia 
0 

_ _g_),(, 6F 
p 

0 

Because h /H is negligible on Venus (with the possible 
0 0 

exception of the antisymmetric a w mode), the lower 

boundary condition reduces to 6~ = 0 at x = 0. Now eq. 

(2:23) shows that :x 6~ is also finite, so that 6~ itself 

must furthermore be continous. Therefore 6~ vanishes 

immediately above the heated layer as well. As long as no 

other forcings or fre e modes are pre s ent, 6~ vanishes 

everywhere. Then by eq. (2:23), 6t must also vanish 

everywhere above the boundary layer. (The upper boundary 

condition does not enter, because we have dealt with a 

(6:2) 

(6: 3) 
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system of only first order in height x.) Thus (with the 

single possible exception· mentioned above) eq. (6:3) gives for 

the pressure variation at the ground 

Formula (6:4) above is essentially the same eq, (5:40) 

for heating model VIII, eq. (6:1) for heating anywhere in a 

stationary isentropic atmosphere, and the result obtained 

by Hinch (1970). Although eq. (6:4) was obtained by 

assuming a very shallow heated layer, it is independent of 

(6:4) 

the assumptions involved in the equivalent gravity mode 

approach and of the model atmosphere chosen. Since a surface 

pressure variation with the magnitude and phase of (6:4) 

above is capable of exerting the dominant torque on the 

atmosphere of Venus, we shall adopt this simple formula for a 

semiquantitative study of the surface wind field and for 

a discussion of the evolution of Venus' rotation. 

It is useful to notice that formula (6:4) is equivalent 

to the solution of the differential equation 

d + (P - p ) ho F/H d+- p = - 11. .... 
'- 0 0 0 0 (6 ;5) 

l 
t' h 

11. -th 0 
F ( t' ) dt' p (t) = p (0) - 0 e 

0 0 H e 
0 

Formula (6:5) above permits us to find the total surface 

pressure variation p
0 

- p
0

, including all Fourie r components 

op at once, given the time dependence of the insolation 
0 
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abso .-·bed by the ground. As an example, using the half­

rec t. '.~fied sine wave given by eq. (4:5), with F = 100 W/m2 

at t :-12 subsolar point, and neglecting l3
1 

and 1/T then yields 
0 

p - P ~ 19. 7 mb ~ sin 8 
0 0 

CR:) 
(-

TT 

p P ~ 19. 7 mb ~ sin 8 (CR:) - 1), 
() 0 TT 

!I. < cp 
2 0 

3TT 
< 

2 

Thi s variation in surface pressure in depicted in Figure 9 

as a set of isobars on a grid of latitude and longitude 

rela~ ive to the subsolar point. The solid curves denote 

a pr ':s sure greater than or equal to the mean, while the 

(6:6) 

dash<od lines represent negative values of the pressure 

vari:i tion; the contour interval is one millibar. This pattern 

migra tes eastward (right) with the sun so that the solid 

surface is moving toward the west (left) relative to this 

map. Note that the pressure is high on the morning side 

and Low in the afternoon, so that the sun does indeed exert an 

acce lerating torque on the atmosphere. 

Given formula (6:4) for the surface pressure variations, 

it ir; simple to use eqs. (2:21) and (2:22) in order to find 

the t:idal wind field at the surface. For example, supposing 

that (JJ = w o 2 so that on the average the lowest layers of the 

atmo ~.;phere are corotating with the ground, the surface winds 

for the same case as (6:6) then become 
6P 

[o co; 8 + 2 0 J 6u 0 SW cos 
= i --

0 a- 4w
2 2

0)sin Po (er - cos 

6P 
20 J 0 

~

CJ s + 2w ovo = cos 
a- 2 2 2 , Po (er - 4w cos 8)s1n 

(6: 7) 
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Figure 9 

Surface pressure and temperature variations, no damping (1/T = 0) 

Figure 10 

Surface wind field, no damping (1/T = 0) 
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This wind field is mapped in Figure 10, corresponding with 

Figure 9 for the undamped surface pressure field. The lengths 

of the arrows are proportional to the wind speeds (the scale is 

given at the lower left of the figure). Their orientations 

give the correct direction relative to the local meridian, 

but it is interesting to note that these arrows do not represent 

displacements accurately; the zonal wind components are 

de-emphasized at high latitudes in this projec tion. The 

winds are only plotted up to a latitude of± 45°, because 

the speed and direction of the wind are finite but unde fined 

at the poles; however, this is only an artifact of the 

simple heating distribution which does not take the 

"airmass effect" into account. It is evident from the 

figure that near the ground the subsola r point is a region 

of diver gence, while the antisolar point is an area of 

co nvergence. 

The landing sites of the Venera 8, 9, and 10 probes 

relative to the subsolar coordinates are indicated in Fig. 10 

by small circles. Surface wind speeds measured by the Venera 9 

and 10 anemometers averaged~ 0 oS m/ s and l o0 m/s, respectively 

(Avduevskii ~ al., 1976b), while radar tracking of Venera 8 

gives an upper limit of ~2 m/s near the ground (Marov et al. 

1973). Inspection of the figure suggests tha t the observed 

winds are several times slower than eq. (6:7) predicts. However 

the anemometers on the Venera 9 and 10 landers were mounted only 
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about one meter off the ground 9 undoubtedly well within the 

frictional boundary layer, so that such measurements are not 

conclusive. 

The expressions (6:7) for the surface winds are not 

easy to integrate analytically for all components at once, 

except at the equator where the zonal component is proportional 

to the pressure variation: 

V - -
0 

Here v = a (w~ + n ) :::;; 3.76 m/ s is the 
0 

subsolar point travel s eastward over 

(6 :8) 

speed at which the 

the surface of Venus. 

when 1/T and 
I 

that (6:6) However, ~ , are neglected so eq. applies, 
0 

the peak surface wind speed given by (6:8) above is 4.50 

m/s occurring at about 71° away from the subsolar point. 

Since this exceeds v, the re l ative motion of the sun , a 
0 

critical region might develop on the morning side where 

the frequency of the forcing felt by the gas locally vanishes. 

Strictly speaking, this is inconsistent with the original 

linearization fundamental to all tidal theories, and suggests 

that either nonlinear effects or substantial damping may 

occur. 

In addition to the critical phenomena suggested above, 

•. friction with the ground must tend to reduce the surface 

winds. Our formulae really apply only above the frictional 
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boundary layer, provided that it is thinner than the heated 

layer. Other effects which might conspire to reduce the 

amplitude and phase of the surface pressure variation 

include turbulent viscosity and the development of baroclinic 

or other instabilities in the tidal fields. For the sake of 

simplicity, we choose to parameterize all of these unmodeled 

effects by means of a Newtonian cooling. A thermal time constant 

T comparable to the forcing period has a substantial impact 

on the tidal fields, as Figures 11 and 12 illustrate. 

These are the same as Figures 9 and 10, except that now we 

have included a Newtonian cooling with T ~ 10 days. It is 

evident that a substantial damping both 

reduces the amplitude of the tidal variations, and alters 

their phases so that the dynamic response of the atmosphere 

comes to resemble a static situation. This ought to remain 

qualitatively true for any dissipative mechanism. Damping 

of the atmospheric tides can also have important effects 

on the rotation of Venus, as shown in the remainder of 

this work. 
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Figure 11 

Surface pressure and temperature variations, 

damping included (T == 10 days) 

Figure 12 

Surface wind field, damping included (T == 10 days) 
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7. Tidal Torques and Conclusions 

The sun's gravitational influence exerts torques on 

both the body and atmosphere of Venus, which are evaluated 

in this chapter. At the surface of Venus, the solar tidal 

potential may be written 

3 a2 2 -2 GM -
3 

(cos C 
0 r 

l) 3 ~ -
J 2 

5, 75 (cos C kg 

Here G is the universal constant of gravitation, M is the 
0 

mass of the sun, a is the radius of Venus, r is the distance 

between Venus and the sun, and C is the local zenith angle 

of the sun. 

For simplicity, we neglect the orbital eccentricity 

so tha t r is taken as constant. Furthermore we assume an 

(7: 1) 

obliquity of exactly 180° (~' - = 0), These restriction will be 

relaxed somewhat in Part II of this work. Meanwhile, eq. 

(7;1) above may be simplified by substitution from eq, (4:4): 

2 
0 = ~ l GM a

3 
(1/2 sin 20 cos 2~ + 1/2 sin 

2
0 ~ 1/3). 

0 2 0 0 r 

The colatitude 8 is still measured northward from the pole, 

while the new longitude cp is measured westward from the 
0 

subsolar point, 

(7:2) 

The solar tidal potential O raises a bulge in the surface 
0 

of Venus whose height Z is given by 
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Z (8, cp ) = - i O (0, cp - £) 
0 g 0 0 2 

The phase lag E arises because internal dissipation retards 

the time of high tide. This tidal bulge generates its own 

gravitational potential 

a 3 
(0 , . m ) = k (-d) 0 (0, m -:-

T0 0 '0 0 
0 

falling off as the inverse cube of the distance d from the 

center of Venus. Self-gravitation is negligible in the 

atmosphere, so that the total tidal potential is just 

0 = 0 + 0, The induced potential interacts in turn with 
0 0 

the mass of the sun. By reaction, the sun exerts a torque 

on the tidal bulge, given by 

(body torque) 

l k GM 2 a·; 

2 0 6 
r 

sin E ~ - 2, 0 X 1018 J X k 
Q 

The negative sign appearing above means that the body torque 

tends to reduce the rotation rate. 

The constants j and kin the above formulae are called 

the Love numbers for height and potential, respectively, 

while Q = cot Eis known as the tidal "quality factor". 

Presuming that Venus has the same internal distribution of 

density and rigidity as the Earth, the terrestrial values 

(7;3) 

(7; 4) 

(7: 5) 

of the Love numbers (Munk and MacDonald, 1975) may be rescaled 
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to j ~ .51 and k~ .25 for Venus. If Venus has zero rigidity, 

we may use the Love numbers j ~ 1.96, k ~ .96 for a fluid 

Earth (Munk and MacDonald, 1975). Scaling Q is more dubious, 

but values comparable with the other terrestrial planets may 

be expected: Q ~ 80 for Mars, (Smith and Born, 1976), derived 

from the secular acceleration of Phobos; Q ~ 10 for the Moon 

(Yoder et al~, 1978), from an offset in the Cassini state 

, (see chapter 7 of Part II); and 30 ~ Q ~ 100 for the solid 

Ear th (Munk and MacDonald , 1975), from damping of the Chandler 

wobble. However, the luna r and terre s tria l v a lues quoted above 

may include nontidal effects due to core -mantle friction or to 

othe r sources of dissipation which tend to reduce the apparent 

Q, as d i s cussed in chapter 7 of Part II. 

wobble. Howeve r , the l atter two values ma y be too low, 

because of core-mantle friction (also discussed in 

chapter 7 of Part II), or other effects. 

The sun exerts a n e t torque on the atmosphere as well, 

given by the volume integral of -p - 0- 0 . By virtue of the 
acs 0 

hydrostatic law (2:1), the integral over altitude z may be 

converted to one over pressure p. Since O does not change 
0 

sensibly through the depth of the atmosphere (H << a), the 

int e gral c a n then be evaluated in terms of the pressure Pz 

at the ground z = Z: 



llO 

(atmospheric torque) 1 I .l (-0 - O ) pdz a d CQ_ a sin 8d8 ai 0 0 

(7:6) 

-- J J J 
0 0 pZ 

(_Q_ 0 ) p (_ dp) a drn 
d'b 0 \ gp T0 

a sin 8d8 

IT (a~ 
When (~ 0) is written out in full, and the Fourier 

u~ 0 

decomposition (2:7) is applied to the surface pressue P
2

, 

it is apparent that only the imaginary part of the semidiurnal 

pressure variation contributes to the net torque: 

(atmospheric torque) ll 3 
sin 

r 

2 
8 sin 2CP, 

0 

loo+ 
I: 

Geal 
CJ 's CJ' s 

(~0)] l (opz ) cos (s~) - Im (opz ) sin 
CJ' s 

d~ sin 8d8 

M 6 TT 

I l 
CJ' s 

2(2 ) 3 0 a 
Cop'? ) sin =--- Im 

2 M 3 '-' cp0 
o r 

0 

M 6 
l _Q_ E_ 

= TT 2 M 3 
o r I CJ' 2 3 

Im ( op
2 

) sin 8d8 

d cp0 sin 
3

ed8 

The pressure variation appearing in eq, (7:7) above is 

(7 :7) 
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still a function of the colatitude 8. 
0,2 

Gold and Soter (1969) estimated op
2 

By analogy with the Earth, 
0 ,2 

(8) = op (!!.) sin 30; 
Z 2 

the resulting integral of sin 
6

0d8 in eq (7;7) yields a factor 

5 of 
16 

TT. On the other hand, the equivalent gravity mode approach 

defined in chapter 5 assumes 
0,2 0,2 2 
6p

2 
(8) = 6p

2 
(~) sin 8, so that 

the net torque on the atmosphere becomes simply 

M 6 
l-2._ (atmospheric torque) = TT 2 M 

3 
o r 

TT r sin 
5e d 0 

-· (7:8) 

M 6 l __Q 0,s 
= TT 2 M 3 Im (bpz 

o r 
This approach was used for numerical calct,1:l,ati9ns of the surface 

pressure variations, as described in chapter 5; the resulting 
0,2 

values for op
2 

(~) are listed in Table 3 under the synodic 

semidiurnal mode (0 = 2w + 2n) . 

According to formula (6:4), the surface pressure variation 
0 ,s 0' s 
6p

2 
has the same latitudinal structure as the insolation 6F 

when the heating at the ground model applies. If 6F is 

distributed as cos 8 on the sunlit side, subtituting the 

expansion (4:5) into eq. (7:7) then yields a 

M 6 s 3 0 a 0, 
(atmospheric torque)= TT 2 M 3 Im (6p

2 
(~)) 

M 6 
3 0 a 

<?, r 

TT 

I sine d e 

0 ,s 
Im (6p

2 
(~) ) 

TT2M3 
o r 

M, 6 x.F ( l ) 3 0 a 2 0 3 
=TTz_M ___ J_~-0--H- -

1
---_-2-~---2- 8 TT 

or oo +0 , 
0 0 

1.8 X 1016 
J ~-----------2 -2 

(2w+2n) T 1 + 
0 

(7: 9) 



112 

The net solar torque on the atmosphere is transmitted to 

the body of Venus in two ways. Following an idea by G, Colombo 

(private communication, 1978), when the body phase lag is 

neglected, it is easy to show that the atmospheric pressure 

distribution exerts an accelerating torque on the tidal bulge 

in the surface of Venus, which is just the height Love number 

j times the net solar torque on the atmosphere from eq~ (7:6)! 

However, in order for the atmospheric circulation to be steady 

(over a time scale of ~10
3 

years), the remainder of the net 

torque on the atmosphere must be transmitted to the crust. 

Reynolds stresses vanish at the lower boundary, but sufficient 

frictional coupling would be produced by mean zonal wind speeds 

on the order of 1 cm/sat the ground (Hinch, 1970). 

If the rotation of the crust is also steady over geologic 

time, the atmospheric and body tidal torques must balance (or 

nearly so if the rotation of Venus is resonant with the orbit 

of the Earth). Comparison of eqs, (7:5) and (7:9) shows that 

the atmospheric and body tides balance if 

Q~ 2.0 X 10
18 

J 

1,8 X 10
16 

J 
(2w T + 2n T ) -

2
] ~ 28 

0 0 0 

where we have set k = .25 and neglected lh . 
0 

Figure 13, after Gold and Soter (1969), shows the various 

2n torques on Venus as functions of the diurnal frequency 
w+n 

(7: 10) 
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Figure 13 

Torques on Venus versus rotation rate. Horizontal 

line: body tidal torque for Q = 30 = constant. Vertical 

spikes: Earth resonances. Curve: atmospheric 

tidal torque. 
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(the inverse of the solar day). The curve shows the torque due 

to atmospheric tides, using eq. (7:9) for heating at the ground 

with 1/T = 0, so that damping and nonlinearities are neglected, 
0 

Then the atmospheric torque varies as the inverse of the frequency 

The horizontal line represents the magnitude of the body tidal 

torque, assuming Q =constant~ 30, The vertical spikes on this 

line give the strengths of the spin resonances with the Earth, 

-5 B-A using the terrestrial value of 2, 2 x 10 (= -C-, where A ;:;; B ;:;; C 

are the principal moments of inertia) for the permanent gravita­

tional quadrupole moment of Venus. 

The body tides tend to clespin the planet towards synchronous 

rotation, while the atmospheric tides tend to drive it away. 

Where the two curves cross in the figure, the net torque on 

the planet vanishes.. This is a position of stable equilibrium 

with respect to changes in period, since the frequency dependence 

of the torque tends to return any changed value of the rotation 

rate back to the equilibrium state . Thus Venus could have 

begun with a rapid retrograde rotation and been gradually 

despun by body tides, evolving to the right in the figure, until 

the increasing influence of atmospheric tides overcame the 

body tidal torque, and Venus remained with a slow r e trograde 

rotation as in the present day , 
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In despinning from a rapid retrograde rotation, Venus would 

have to pass through a number of special rotation rates corres­

ponding to resonances between the spin of Venus and the orbit of 

the Earth. Currently the rotation period of Venus is very 

close, but apparently not equal, to one of these resonant values 

(Shapiro et al., 1978). If Venus does in fact occupy this 

resonance, its special rotation rate can only be maintained if the 

interaction between the Earth and the permanent quadrupole 

moment of Venus is stronger than the sum of the other torques 

on the planet. B-A 
For the value of C used to draw Fig . 13, the 

Earth's influence is about an order of magnitude too weak to 

overcome the net tidal torque, unless the atmospheric and body 

tides canc e l near the resonant frequency. In tha t case, the 

present rotation r a te of Venus may be explained as a balance 

among all three influences. 

However, none of the above effects can provide Venus with 

a sufficient mechanism for capture into a resonance of this 

kind, According to Goldreich and Peale (1967, 1970), viscous 

coupling between the hypothetical core and mantle of Venus may 

supply the requ i red dissipation. It is interesting to 

speculate that once Venus had evolved to a balance between the 

atmospheric and body tides, small variations in its orbital 

e ccentricity or changes in its climate might have driven the 



117 

equilibrium across the resonant period many times, until 

capture finally occurred. 

Finally, note that there are actually two equilibrium 

states shown in Fig. 13, corresponding to prograde and retro~ 

grade spins with the same diurnal period, Why should Venus 

occupy the retrograde state and not the prograde one? This problem 

really has a third dimension, the obliquity; when this is 

taken into account many equilibria can occur at all possible 

obliquities. Part II of this work will address these questions, 

along with several other problems concerning the rotation 

of Venus. 
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THE ROTATION OF VENUS 

PART II. OBLIQUITY AND EVOLUTION 
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1. The Obliquity of Venus 

The theory developed in Part I provides a means of 

calculating the net tidal torque on the atmosphere of Venus, 

The conclusions show that the planet's observed rotation 

period may represent a balance between the torques due to 

atmospheric and body tides, as well as possibly a spin 

resonance w"ith the orbit of the Earth. Actually, the problem 

involves a third dimension, the obliquity, not adequately 

dealt with in Part I. When another degree of freedom is 

included, the current spin state may become unstable, while 

other stable and unstable equilibria can appear at all 

obliquities. Part II considers not only these aspects of the 

present spin, but also the whole history of the rotation 

of Venus. 

Chapter 2 following describes the basic technique for 

treating arbitrary obliquities, while chapter 3 develops the 

theory of linear body tides~ In chapter 4 the results of Part I 

are used to generalize the theory of atmospheric tides to 

obliquities other than 180°. The possibility of spin resonances 

with either the Earth or the sun is studied in chapter 5, 

while chapter 6 explores the effects of precession, nutation, 

core-mantle friction, and other phenomena. Finally chapter 

7 arrives at the conclusions that Venus has probably always 

spun retrograde? and that core-mantle friction may play an 

important role in maintaining its current obliquity. 
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2. Coordinates and Equations of Motion 

Goldreich and Peale (1970) have developed an elegant 

formalism for inves t igating the rotation of Venus. We shall 

fo llow their method c losely and obtain results which can be 

compared directly with theirs. 

Define two right-handed Cartesian coordinate systems: 
~ A A 

a set of inertial axes (I, J, K), where K l ies in the direction 

of the orbital angular momentum of Venus, and a set of axes 

h h h 
( i, j, k) fix ed to the body of Venus a l ong the directions 

of the principa l moments of inertia (A, B, C). We further 
I\ I\ 

define t he (northern vernal for Venus) equinox 
Kx k e = 

- IK x id 
"ascending mode" (i, j) "- A 

as the of the plane on the (I, J) 

" I\ plane, and the usua l Euler angl es a,~. y, where co s a = I• e, 

J,. ,A A /'-

c os 13 = K • k, and cosy= e • i (se e Fig . 1). The Euler 

angles can be used to transform between inertial and body 

coordinate s a s follows : 

" h 
i I [cos a cos y sin a co s 13 s in y ] 

I\ 

+ J [ sin a cos y + cos a cos 13 sin y ] 

h 
+ K sin 13 sin y 

❖ i [- sin sin 13 y ] J cos a y a cos cos 

h 
[- cos 13 cosy] + J sin a sin y + cos a 

I\ 

+ K s in 13 cosy 

( 2: 1) 
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Figure 1 

Coordinates and Euler angles 
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f f sin a sin p - J cos a sin S --:- K cos S 

The planetocentric colatitude 8 and longitude~ are 

J\ " measured from the k and i axes, respectively, as shown in 

2 f P h • _,_ " h f f Fig. o art I. Ten a point a= a a on t e sur ace o . Venus 

may be located by 

" a 1 sine cos~+ 3 sine sin~+ t cos e 

I\ 
Now let r = r r be the position of the sun relative to Venus 

in the orbit plane. When the small orbital eccentricity is 

neglected, both the distance rand the orbital angular 

velocity n are constant. If the origin of time t is then 

A 
,.. 

chosen so that r = I a t t 0 , Y,i t;'. may write simply 

" 1 .1 r = cos nt + s:i.n nt 

The problem is simpl i fied considerably by assuming that 

" Venus always rotates about k, its axis of greatest moment of 

inertia, C; this will be justified~ posteriori in chapter 6. 

Then p becomes the obliquity, currently near 180°; recall 

that Os p s 180°. Let the inertial rate of rotation be w, 
I\ 

counterclockwise about k, so that the spin angular momentum 

" of Venus is w Ck. 

(2:2) 

(2: 3) 

By applying the Hamilton-Jacobi technique of analytical 

dynamics under the above assumptions, Goldreich and Peale (1970) 

obtained the equations of motion governing the system: 



d 
dt (w C) 

dl3 = _!_ _1_ 0H _ _!_ cosS c)H 
dt we sinl3 c)a we sinl3 c)y 

cb, = 
dt 

ii= 
dt 

_ _!__I_ 0H 
we sinl3 as 

oH 
c) (we) 

_!_ _S:~ oH 
wC sin S oi3 
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(Goldreich and Peale's (1970) eq. (5) contains a sign error, 

in (2:4) above? while th.eir eq. (6) contains an extra term 

dro pp ed from (2: 7). ) 

The HamiltoniAn f or the rotat ion of Venus may be written 

H (we, a, 13, y) = 1/2 w
2c + 1/2 w2~c + u + v + w 

The first term in (2:8) above describes unperturbed steady 

rotation; when H = 1/2 w
2 C, the equations of motion become 

simply 

dw = dl3 cb, 
dt dt = dt 0 iY_ 

dt 
w 

(2:4) 

(2:5) 

(2: 6) 

(2: 7) 

(2: 8) 

(2: 9) 

Variations in y itself are not of much interest, so eq. (2:7) 

will not be considered further. Meanwhile!~ represents axial 

precession, so discussion of eq. (2:6) will be postponed 

until chapter 6. It remains to examine the effects on 

wand 13 of the other terms in the Hamiltonian. 

The second term in (2:8) represents the contribution to 

the kinetic energy of rotation, due to changes in the moment 

of inertia induced by the tides. When the orbita l eccentricity 

is neglected (and the missing exponent 5 is supplied on the 

planet's radius), equation (12) of Goldreich and Peale (1970) 

becomes, in our notation, 
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2 
1/2 w liC = k 

0 
(3/4 sin

2 p - 1/2) (2: 10) 

Herek is the secular (zero frequency) Love number for a 
0 

second-degree potential. Note that expression (2:10) above 

contains neither a nor y, so that according to (2:4) and 

(2:5) it cannot affect w or~- Additional contributions to the 

Hamiltonian can arise from changes in the mean moments of 

inertia caused either by tectonic processes or by tidal 

despinning, but these are negligible, since much greater 

changes in the angular velocity occur over the same timescale 

(Goldreich and Peale, 1970; Goldreich and Toomre, 1969). Hence­

forth C will be considered constant. 

The term U appearing in (2:8) represents the gravitational 

potential energy associated with tides in the body of Venus, 

while Vis the interaction between external potentials and its 

permanent gravitational quadupole moment. We have also added 

the term W to take atmospheric tides into account. The next 

three chapters will examine the effects of these terms on 

the obliquity and rotation rate of Venus. 
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3. Body Tides 

A. The component tides 

The gravitational influence of the sun creates a tidal 

potential D at the surface of Venus, given to lowest order 
0 

in (~) by eq. (7:1) of Part I: 

a 2 3 2 1 
D = - GM -· - (cos C ---) (3:1) 
0 0 3 2 3 r 

The tidal potential may be expanded as a multiply periodic 

function of time; this approach is traditionally associated with 

Sir George Darwin, Since the orbital eccentricity has been 

neglected, the solar zenith angle C can be found by using 

the coordinate transformation (2:1) to form the scalar 

product of eqs, (2:2) and (2:3): 
/\ (\ 

cos C = a • r 1/2 ( 1 + cosi3) sin 8 cos (cp + y + a -nt) 

+ 1/2 (1 - cos i3) sin 0 cos (cp + y -a+nt) + sin i3 

cos 0 sin Co, - nt) 

(3: 2) 

To first order in i3 1 = 180° - i3, (3: 2) above is equivalent to 

eq. (4:4) of Part I. Squaring (3:2) and collecting terms 

ultimately yields 

2 1 1 3 2i3 1 3 28 1 cos C = [- - ·- (- cos - -) <2 cos - -) ] 
3 3 2 2 2 

1 2i3 cl 20 - l) l (2a - 2nt) + - - sin cos cos 2 2 2 

+ - sin i3 cos i3 sin 0 cos 0] sin (cp + y) (3:3) 

+ r½ cos i3 (1 + cos i3 ) sin 8 cos 0] sin (cp + y + 2a - 2nt) 

+ [ ~ sin i3 (1 - cos i3) sin 0 cos 0] sin (cp + y - 2a + 2nt) 



127 

+ [l . 
4 sin 20 2 

~ sin 0] cos (2~ + 2y) 

+ r½ (1 + cos S)
2 

+ r½ (1 cos S)
2 

sin 

sin 
2 

cos (2~ + 2y + 2a - 2nt) 

8] cos (2~ + 2y - 2a + 2nt) 

Equation (3:3) above shows that the tidal potential 0 
0 

consists of only eight components, as long as the orbital 

eccentricity is neglected. S
. dy 1nce ~- ~ w 

dt 
to a very close 

approx imation, these correspond to frequencies of 0, -2n, 

w, w - 2n, w + 2n, 2w, 2w - 2n, 2w + 2n. In standar d 

tidal theory, the respective components are labeled secular? 

semiannual, sidereal diurna l, slow diur n a l , fast diurnal, 

(3: 3) 

sidereal s emidiurnal, s l ow semidiurna l, a nd fast s emidiurnal . This 

nomenclature seems hard ly appropriate to Venus, s ince its 

orbital angular velocity n ~ ;;Sd is somewhat greater than its 

present rotation rate w ~ ;f
3
d; thus for example, not only is 

the slow semidiurnal frequency 2w - 2n less than the sidereal 

diurnal frequency w, but it is formally negative! We shall 

see that this need not complicate the analysis unduly. 

We can gain insight into the roles of the various 

components by considering their dependences upon the obliquity s. 
When S = 0, all the terms of (3:3) vanish, except for 

the secular and slow semidiurnal components. Similarly all 

but the secular and fast semidiurnal terms vanish for S = 180°. 

Clearly, the slow semidiurnal frequency 2w - 2n is associated with 

"progradeness" while the fast semidiurnal frequenc y 2w + 2n 
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is associated with "retrogradeness". The other nonsecular 

components represent seasonal effects occurring at intermediate 

obliquities. 

Now the solar potential O raises a bulge in the surface 
0 

of Venus, which has its own gravitational potential O . 
0 ... 

Because the strains involved are so small (from Part I, about 

o. 3 m = 5 x 10-8), we suppose that the material composing 
6 X 106

m 
the body responds linearly to the stresses, Then each component 

( ~~ ) of the forcinf. , corre sponding to 3 p3rticular fr e quency cr, 
0 (J 

gives rise to a distinct component (O ) of the induced potential 
~ (J 

with the same fr eq•'. ency. The ratio of t he amplitude of (0 ) 

to (O ) is knotrn as th e po t enti a l Lov e num ber k . 
0 CJ (J 

Diss ipation of tid a l energy in the body of Venus also 

introduces phase lags€ between the maxima of (0) and 
(J 0 (J 

(0) • The tidal "quality factor" Q is a dimensionless 
<j? (J 

measure of damping, defined as the inverse of the "specific" 

dissipation, and related to the phase lag by 

tan 1 
€ = 

(J Q 
LiE 
2rrE 

where Eis the peak mechanical energy stored in the body 

~ (J 

(3: 4) 

tides and LiE is the energy dissipated per cycle. In general, 

both k and Q depend upon the frequency cr; geophysical studies 
(J 

indicate 30 ~ Q ~ 100 for both solid Earth tides and the 

Chandler wobble, while seismic waves and free body oscillations 

have Q's of several hundred (Munk and MacDonald, 1975). 
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Since Q and k are always positive, we must add to (3:4) 
cr 

above the physically reasonable codicil that e must have 
cr 

the same sign as cr . The secular terms can have no phase lag, 

so we must put e = 0 if cr = O. 
cr 

We are now a ble~ t.o wrL te t h e f orm of the induced potential: 

{r 

1 2 * 3 2 1 
(2a* 2nt e-2n) + [- - sin 13 <2 cos 0 - -)] k cos -

2 2 -2n 

+ [ - sin 13* cos 13 * sin e cos 0] k sin <er + y* e ) 

+ [ l 
2 

sin !3* (1 + cos l3·k) sin 

• sin (~ + y* + 2a* - 2nt 

+ [ 1 
2 

sin 13* (1 - cos 13*) 

w 

e cos 0] k 
w-2n 

sin 0 cos 0] kw+2n 

• sin(~ + y* - 2a* + 2nt - ew+Zn) 

[l z * + 4 sin 13 

w 

sin 
2

0] k
2 2 

cos (2~ + 2y* + 2a* w- n 

- 2nt - e ) 
2w - 2n 

+ rl (1 - cos 13*) 2 
8 

sin 
2 

e] k2w+2n cos (2cp + 2y" - 2cl< 

(3:5) 
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After Goldreich and Peale (1970), we have put asterisks on 

the Euler angles (a*, B*, y*) in (3:5) above in order 

mathematically to distinguish . the body raising the tides 

fromthe body interac ting with the tides , although her e they are 

3 
physically the same. The factor (~) is included in (3:5) 

in order to show that the induced potential falls off as the 

inverse cube of the distance d from the center of Venus. 

This induced potential O attracts the Sun in turn. 
z 

The reaction produces a tidal torque on Venus, by virtue of 

the phase lags between the subsolar point and the position 

of "high tide.". For our purposes it is more convenient 

to r egarG the tidal bulge as a distribution of mass over the 

surface of Venus, equivalent to a density per unit areR of 

50 
--+ 

4nGa 

(K 1 1968 P 67) T·hen the contribution U to the au a, , . . 

Hamiltonian due to body tides is just the potential energy 

(3; 6) 

of the mass distribution (3:6) in the gravitational field of the Sun: 

1 1 ~ 

u nb 0 
L 

dcp sin 0 d 0 = a 
0 

0 0 (3; 7) 

I 1 50 0 2 
= __£___0 a dcp sin e a e 

4nGa 

0 
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When the trigonometric series (3:3) and (3:5) are multiplied 

together in the integrand of (3:7) above, only products of 

terms with the same zonal wavenumber s contribute to the integ-ral 

over longitude~• Performing the integration over colatitude 

8 as well then leaves 

u 
GM z s 

/k0 

a 
[ cl ZS* 

1 c1 213 1 Q sin .,.. ~ ) sin .,.. -) ] 
6 4 2 4 2 

r 

+ k 
-Zn 

9 
[32 sin ZS* sin 213] cos (2a* - 2a .,.. 4nt ,... .. e 7 2n) 

+ k -Zn [ {z sin 
2

13 * sin 
2

13] cos (2a* - 2a .,.. e .,..zn) 

+ [l
4 

sin 13* cos 13* sin S cos SJ k cos (y* - Y.,.. e ) w . w 

3 + [16 sin S* (1 + cos S*) sin S (1 + cos S)] k 2 w- n 

+ [{6 sin 13* (1 - cos S*) sin S (1 - cos 13)] kw+Zn 

• cos (y* - y - 2a* + 2a ,... E: •• ) . w+2n 

sin 
2

13] k 
2w 

cos ( 2 * . y .,.. 2y .,.. E: 2 ) . w 

3 2 2 + [ 64 (1 + cos S *) (1 + cos 13) ] kzw-Zn 

• cos (2y* .,.. 2y + 2a* - 2a - e 2 -" ) 
. W /..n 

(3; 8) 
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+ [l4 (1 - cos {3*)
2 

(I - cos {3)
2
1 k 2w+2n 

• cos (2y• _ 2y _ :?a• + 2a _ "2w+2n) l . 
Note that the second term in (3:8) varies with a short 

(semiannual) period, although we are primarily interested in 

secular changes. Such seasonal effects can formally be 

eliminated simply by averaging U over an orbital period. 

If the Love number k is taken as constant, (3:8) above is 
CJ 

then identical with eq. (10) of Goldreich and Peale (1970), 

when expanded to zeroth order in the orbital eccentricity 

(and when an omitted square is supplied on 1'-6)• 

(3: 8) 

At this point it is convenient to introduce the notation 

b (o-) = k 
CJ 

sine 
CJ 

~ 1.332 X 1018 J 

GM 
2
a

5 

u = ~0-_. 
0 6 

r 

dw 
Now according to eq. (2:4) we can find dt by differentiating 

u with respect to y (unstar red); dropping the asterisks 

subsequently gives 

dw 1 oU 
u 

lb (w) [ 2- 2j3 0 
-= - -- = sin 
dt C cly C 4 

3 2{3 (1 + + b (w 2n) [16 sin cos 

3 • [ 
16 

sin 
213 (1 - cos j3) 2 ) 

+ b (2w) [l sin 4
13] 

8 

2 
cos j3] 

2 j3) ] + b (w + 2n) 

(3:9) 

(3: 10) 
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+ b (2w - 2n) []
2 

(1 + cos (3)
4

] + b (2w - 2n) 

• [ - ]2 ( 1 - cos B) 
4 
J l 
dw 

It is easy to see from (3:10) above that dt < 0 whenever 

w :2>: 2n; thus body tides always tend to despin a rapidly 

rotating planet. Similarly, differentiating U with respect 

to a yields 

au = u { 9 4 d'.Y 
O 

b (-2n) [-16 sin i3 ] 

. [ 3 . 2R (1 - 8 sin .., - cos 

+ b (2w - 2n) [_;2 (1 + cos (3 )
4

] + b (2w.,... 2n) 

combining (3:10) and (3:11) above with eq. (2:5) then gives 

~ _ i_ 1 au _ i_ cos s au 
dt - we sin i3 aa wC sin i3 oY 

~~ l- b (2n) ri6 sin 
3
B] + b (w) r¾ sin 

3 s cos i3 J 

+ b (w - 2n) [{6 sin S (1 + cos (3)
2 

(2 - cos S) 

(3: 10) 

(3: 11) 

(3: 12) 

• + b (w+2n) [- ;
6 

sin i3 (1-cos i3) 2 
(2+cos S) J 
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+ b (2w) [ - ¾ sin 
3s cos S ] + b (2w - 2n) 

[ 3 . • - sin 
32 

When the obliquity is very small, to first order in S 

eqs. (3:10) and (3:12) reduce to 

dw uo 3 
(2w - 2n) 

uo 3 
sin -= ---b = - --k E: dt e 2 e 2 2w-2n 2w-2n 

1 
u 

- ~=~1_ [ b (2w - 2n) + b (w - 2n) - b (w_} 
s dt we 4 

For retrograde rotations, we define S'F 180° - Sas the 

supplement of the obliquity. Then to first order in S' 

dw 
dt 

1 

s' 

u 
= 0 lb (2w + 2n) = -c 2 

u 
~ l k si·n 
e 2 2w+2n 8 2w+2n 

dS' uo 3 
--=-
dt we 4 

[b (2w + 2n) + b (w + 2n) - b (w) ] 

(3: 12) 

(3: 13) 

(3: 14) 

(3: 15) 

(3:16) 

Equation (3:15) above is really the same as eq ~ (7:5) of Part J.. 

In the strictly planar problem where the obliquity is 

either 0 or 180°, expressions (3:13) and (3:15) show that the 

spin period always tends to evolve towards synchronism 

(w = n), while (3;14) and (3:16) give*= 0 (as we might 

expect from symmetry considerations). However, the stability 

of an exactly prograde or retrograde obliquity depends on the 

tendency for an infinitesimal Sor s' to grow or deca,y with ttme. 
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For a rapid rotation (w > >n), normally b (w - 2n) 

~ b (w) ~ b (w + 2n), so that an obliquity of either O or 180° 

would be unstable. For w ~ n, as for Venus, eq. (3:14) shows 

that a zero obliquity would be stable under the influence of 

body tides alone. According to eq. (3:16), though, the stability 

of the observed retrograde rotation of Venus is contingent 

upon the frequency dependence of the dissipation. Accordingly 

the remainder of this chapter will examine three different 

models of body tides, while atmospheric tides will be included 

in the next chapter. 
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B. The viscous model 

Analytically the simplest way to model tidal friction 

is to treat the Love number k as constant, and to assume that 
(J 

the response has the same form as the equilibrium tidal bulge 

in the absence of dissipation, but with the position of "high 

tide" shifted from the subsolar point to wherever the subsolar 

point had been at a time 6t before. The resulting picture of 

tidal evolution is very valuable for its clarity. 

MacDonald (1964) developed the above approach in order to 

simplify the Darwinian tidal theory; it is generally known as the 

"weak friction" approximation, but as Gerstenkorn (196 7) has pointed 

out, that is truly a misnomer . Many authors have used models 

for the time lag 6t as a function of the tidal amplitude or 

of the speed of the subsolar point which are inconsistent 

with the assumption of linearity, no matter how weak or 

strong the tidal forces may be. If a nonzero obliquity or 

inclination is involved, the peak displacement generally 

does not coincide with the position of the subsolar point 

at any time past; in general, the net distortion does not 

even have the same shape as an equilibrium tidal bulge! 

The "weak friction" model can still be made linear, 

prcvided that the time lag is the same for all of the component 

tides o Since a time lag 6t corresponds to a phase lag 
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e = cr6t, then to fi rst or der the dissipation must be 
cr 

proportional to the frequency: 

b (cr) = k 
cr 

sin e ~ k 
cr 

where Q is the value of the quality factor Q at the annual 
n 

(3;17) 

frequency cr ~ n. (Note, however, that the strict proportionality 

cannot persist for arbitrarily high frequencies, since sin E: cr 

cannot exceed 1.) Relation (3:17) above is graphed in Fig. 2 

as the straight line labeled "viscous", because this type of 

physical behavior is related to the effects of viscosity, 

which will be discussed more fully in the final section of 

this chapter. 

The simple analytic form of the dissipation in 

this model permits us to obtain compact expressions for the 

tidal evolution at arbitrary obliquities. Substituting 

(3:17) into (3:9) and (3:11) gives, after considerable 

simplification, 

dw 
dt 

3 Uo k 
- 2c nQ 

n 

dp _ ]_ Uo __ k_ 
dt - 2 wC nQ 

n 

2 
[w (1 + cos S) - 2n cos p] 

[ (w cos S - 2n) sin p] 

(3; 18) 

(3:19) 

Eq. (3:19) above is equivalent to equation (19) of Goldreich 

and Peale (1970), found by consideration of the vector torque 

acting on the displaced tidal bulge; it shows that the obliquity 

S tends to increase as long as w cos S > 2n, but decreases 
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Figure 2 

Models for frequency dependence of tidal torque. 

Abcissa: forcing frequency CT• Ordinate: b(CT) = 

k sin€ ~ energy dissipation. Tb is the 
CT CT 

constant of an elasticoviscous body. 
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if w cos 13 < 2n. Thus a prograde obliquity of 0 would be stable 

for a slowly rotating planet like Venus, while a strictly 

retrograde obliquity of 180° is unstable at any rotation rate. 

The behavior is easier to visualize in a type of rectangular 

coordinates. Let X = w cos p be the component of the spin 
,.. 

angular velocity w parallel to the orbit normal K, and let 

Y = w sin p be the component of w lying in the plane of the 
I\ 

orbit,perpendicular to K. In thse coordinates, (3:18) and 

(3:19) may be restated as follows: 

dX 
dt 

dw 
= cos p 

dt 
- w sin l3 d~ 

dt 

3 Uo k 3 
= - ---- (2w cos p - 2n) = 

2 C nQ 2 
n 

dY dw sin p + w cos p dl3 -= 
dt dt dt 

3 
u k 3 

u 
0 sin 13 

0 
= --- w 

2 C Q n 2 C 
n 

Uo k 
- -- (2X - 2n) 
C Q n 

n 

k y 
Q n 

n 

This model of tidal evolution is pictured graphically in 

(3: 20) 

(3:21) 

Fig. 3,where expressions (3:20) and (3:21) above are plotted 

as vectors showing the rate and direction of evolution on a 

rectangular grid of X and Y. The lengths of the arrows are 

7 
normalized to show the change in rotation over 3.0 x 10 

years fork= 025 and Q2w + 2n 
~ 35, but the pattern does not 

0 
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Figure 3 

Spin evolution for the viscous model of 

body tides; time interval= 3.0 x 10
7
y 
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depend on the choice of parameters. It does not appear that 

such a diagram has ever been presented for planetary rotations, 

although it is not limited in application to Venus alone. 

Greenberg (1974) has given similar graphs for the tidal 

evolution of satellite orbits. (Although he used MacDonald's 

approach with constant Q, has arrows should have the same direction 

as if he used the more consistent relation (3:17).) 

For this particularly simple model of tidal dissipation, 

it is easy to integrate (3:20) and (3:21): 

X (t) - X (0) e-2 t/T + n; Y (t) 

2 C Qnn 
T=----

3 U k 
0 

y (O) e-t/T 

(3: 22) 

It is clear that the trajectory, or path of evolution of a 

planet in the X, Y plane, must be a vertical or horizontal 

straight line ending at the synchronous state, or else a 

parabola with a horizontal axis and vertex at X = n, Y = 0. 

Several representative trajectories have been plotted in 

Fig. 3 as an aid to visualization. 

The expression above has a very natural interpretation, 

given by Goldreich and Peale (1970). The tidal torque can be 

regarded as operating separately on the components of the spin 

angular velocity w perpendicular and parallel to the orbital 
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plane. The torque perpendiular to the orbit acts 

continually, and the corresponding component X of the spin 

decays exponentially toward the synchronous value. The torque 

on the oblique component Y of the spin varies seasonally; 

it peaks at the equinoxes, and vanishes at the solstices. 

Thus the Y component of w decays exponentially to zero, but with 

a time constant T twice as long as for the X component of the 

spin. When the viscous type of tidal dissipation is the 

only influence acting on the rotation, an initially prograde 

planet always remains prograde, while any retrograde rotation 

must eventually turn prograde. 
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C. Constant Q 

Since Q for the Earth changes by less than an order 

of magnitude between the Chandler wobble period of~ 440 

days and seismic periods of a few seconds, it is common 

to treat the specific dissipation as well as the Love numbers 

as independent of frequency. In order to satisfy our physical 

restriction on sign, we then adopt for the constant Q model 

b k sin E: ~ k/Q if CT ::,. 0 CT 0 

b = 0 if CT = 0 
(3:23) 

b = - k sin E: ~ - k/Q if CT< 0 CT CT 

This behavior is represented by the horizontal line in Fig. 2. 

Substituting (3:25) above into (3:14) gives, to first order 

in the obliquity S, 

l if w > 2n 

u 0 if w 2n 
d(:3 0 3 s k 

-1 if 2n x-x n< w< dt we 4 Q 
-2 if w = n 

-3 if w < n 

(3:2lf) 

Eq~ (3:24) above shows that a zero obliquity would be stable 

for Venus with its present rotation rate w < n. Meanwhile 

to first order in (3 1 = 180° - (3, (3:16) gives simply 

u 
0 

we 
3 
4 

k 
Q 

(3:25) 
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Again for the constant Q tidal model, an obliquity 

of 180° is unstable at any rotation rate. 

Substituting (3:23) into (3:9) and (3:11) gives rise to 

somewhat more complicated expressions for:~ and~: at 

arbitrary obliquities. The results are presented graphically 

in Fig. 4; the format is the same as in Fig. 3, except that 

now Q = 35 independent of frequency, and the time interval is 

5.0 x 10
7 

years. Discontinuous breaks in the pattern occur 

where the frequencies (w - n) and (w - 2n) change sign, but 

dw dl3 
dt and w dt depend only on 13 in each of the three regions 

separated by the semicircles w = n and w = 2n. The obliquity 

increases (~~ > O) only as long as w > 2n and O < 13 ~ 67°; 

~ otherwise dt:::; O. Again we find that for this model of body 

tides acting alone, all prograde planets remain prograde, while 

retrograde planets eventually become prograde. 
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Figure 4 

Spin evolution for the constant Q model 

of body tides: time interval= 5.0 x 10
7

y 
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D. Elasticoviscosity 

While an obliquity of exactly 180° is unstable for both 

of the tidal models considered so far, comparison of eq. 

(3:25) with (3:19) shows that the degree of instability 
I 

indicated by _l__ dS is several times less in the constant 
S' dt 

Q case than for the viscous model,where Q is inversely 

proportional to the tidal frequency. This suggests that a 

retrograde obliquity may actually be stable if Q increases 

with frequency. Although this possibility was not considered 

by Goldreich and Peale (1970), it is implicit in simple 

physical models of the dissipation mechanism. 

Consider a mechanical oscillator composed of a massless 

spring and dashpot connected in series. Inertia can be neglected 

since tidal periods are much longer than free oscillation 

periods (about an hour or less); this system is therefore 

like a damped single harmonic oscillator driven always much 

more slowly than its resonant frequency. If this oscillator 

is driven at a very low frequency, it responds like the 

dashpot alone, dissipating energy in its internal viscosity. 

The specific dissipation 1/Q is then roughly proportional to 

the frequency cr, but only up to a point; above some cha racteristic 

forcing frequency the dissipation decreases again, and the 

sys tem behaves more and more like the spring alone. 
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A material that responds to stresses in a manner 

analogous to the oscillator decribed above (except in shear 

instead of in compression) is called a Maxwell solid; this 

behavior is also known as elasticoviscosityo A Maxwell solid 

is presumed incompressible, and is characterized by a rigidity 

(or shear modulus)µ, as well as a viscosity v, such that the 

shear stress and strain are related by the constitutive 

equation 

1 
µ 

_Q_ (stress)+ 1. (stress)= 
at v 

_Q_ (strain) 
at 

Such a law is found to describe empirically a great many 

substances. When the viscosity v is formally infinite, 

(3:26) becomes the law of perfect elasticity; conversely 

when the rigidityµ is infinite (3:26) is the law of viscous 

flow. Thus a Maxwell body behaves like an elastic solid over 

short time scales, but flows like a Newtonian liquid over 

long periods of time. 

Sir George Darwin (1908) performed elaborate calculations 

of tides in an elasticoviscous planet. Although he supposed 

the body to have a constant density p, we shall interpret 

p as t he mean density of Venus. Darwin (1908) then gives 

[l + 0 2 v2 / µ2]1 /2 
2 2 

l 9i:". ) 
2 -1 / 2 

k k [l + Q__~ ( 1 + ] 
0 f 2 2g pa µ 

19 2 } /µ2]-1/2 
2 2 

19µ sin ( E: ) 
\)(J 

[l +0 [l +0 V (1 + 
0 2g pa 2 2g pa µ 

(3:26) 

(3: 27) 

2 -1/2 
) ] 
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2 2 
b (<J) = k sin 

(J 
k 19 \)(J [l + (J V 

f 2g pa 2 
µ 

2 -1 
(1 + 19µ, ) ] 

2g pa , (3:27) 

when kf is the Love number pertaining to a perfectly fluid 

body with the same mass distribution as the actual planet. 

The quantity 19 
2gpa 

appearing above may be regarded in effect 

as an added rigidity due to the planet's self-gravity. 

The curve labled elasticoviscous in Fig. 2 depicts the frequency­

dependence of this model for the dissipation. 

For low frequencies, eq. (3:27) above reduces to the viscous 

model, where the dissipation bfo) = k sin ( e, ) is proportional 
(J (J 

to the frequency: 

• 96 sin (e ) 
(J 

19 <JV 

However, b (o-) reaches a maximum at the frequency <J = 1/Tb' 

where Tb is the time constant for damping of the body tides, 

given by 

V ( 19µ 
T = - 1 + - --- ) 

b µ 2g rxz 

Above this frequency , b decreases again, falling off roughly 

1/<J for <J > > Tb• 

as 

(3: 28) 

(3:29) 
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Studies of the Chandler wobble yield the following values of 

the mean elasticoyiscous parameters for the Earth: 

µ = (8.35 ± 0.36) x 10
11 

dy • 
-2 

cm 10
20 • k 0 96 poise; f ~ . 

(3: 30) 

(Munk and Hacuonald, 1975). Presuming these values apply to 

Venus as well, inserting (3:30) into eq (3;29) gives 

20 10-11 12 8 
Tb= 10 x ( 8 . 15 + 3.367 x 10- ) s ~ 4.564 x 10 s ~ 14.5 years 

(3 : 31) 

for Venus, as compared with about Tb~ 13 years for the Earth. 

For our purposes, 0Tb is always much greater than unity, and 

the elasticoviscous model (3:27) gives 

-1 
k ~ k (1 + 19µ ) 0 96 (1 2 81) -l 252 

cr f 2g pa ~ • + • ~ • 

sin 19t:1-
e ~ 

2g pa 0 

b (er) = k sin e 
0 

1 2.81 --~--
0Tb 0 Tb 

19v 
~ 

0 2g pa 

6.16 X 10-9 

0 

s-l 1 
~Q 

1. 56 X 10-9 

0 

-1 
s 

(3: 32) 

4,T . -6 -1 
At the current semicliurnal frequency (er = 

116
. Sd ~ 1. 245 x 10 s ) , 

eq. (3:42) above leads to a value of Q ~ 200 for Venus, Yet 

even presuming that the elasticoviscous model is appropriate, 

Q may actually be much lower if the high temperatures in 

the crust of Venus reduce its effective visc osity v. 

From eqs. (3:16) and (3:27) we find that the present 

obliquity of Venus would be stable if Tb~ 3.5 x 10
6

s ~ 40 days. 

Thus a tidal model where Q increases with frequency 

exhibits qualitatively different behavior in this respect 
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from the models usually considered. This also raises the 

question whether past studies on the remote history of the 

Earth-moon systeF1 arl-: suf E iciently general. 

The e~pressions (3: 9) and (3: 11) for ~~ and * at 

arbitrary obliquities do not admit of much simplification in 

the elasticoviscous case. The tidal evolution in the (w, !3) 

plane is plotted in Fig. 5, where we have taken v ~ 1. 73 x 1019 

7 
poise so that Tb~ 7.90 x 10 s ~ 914 d ~ 2.50y and Q ~ 35. 

In order to improve legibility, only the direction of evolution 

is shown, using arrows of arbitrary lengh. For this choice of 

parameters, the current obliquity of Venus would be steady 

although the rotation rate would still be decreasing . In the 

absence of other influences, synchronous rotation is again 

the only possible final state. 

For the elasticoviscous model of solid body tides, like the <:>ther 

cases treated above, it can be shown analytically that any 

rapid rotation evolves toward an intermediate, but prograde 

obliquity. Even if Venus had originated with a short rotation 

period and an obliquity very close to 180°, it could hardly 

have despun to its present slow spin rate under the influence 

of body tides alone without turning prograde. One means of 

avoiding this difficulty is described in the following chapter. 
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Figure 5 

Spin evolution for the elasticoviscous model of 

body tides; arrows show direction only 
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4. Atmospheric Tides 

Tides in the atmosphere also affect the rotation of Venus, 

as demonstrated in Part I. In this chapter we shall apply 

the Hamiltonian formalism to our earlier results. The numerical 

calculations tabulated in chapter 5 of Part I permit us to 

examine the effect of atmospheric tides on the current rotation 

of Venus, while the heating at the ground model developed in 

chapter 6 of Part I is extended to cover all possible 

obliquities and a wide range of rotation rates. 

A. Contribution to the Hamiltonian 

The distribution of mass in the atmosphere also contributes 

to the gravitational field of Venus, as shown in chapter 7 

of Part I. By virtue of the hydrostatic law (eq. (2:1) 

of Part I), the atmosphere is equivalent to a mass density m 

per unit area, which depends only on the pressure Pz at the 

ground: 

m 
a J p dz a 

z 

Pz 
g 

a 

(4: 1) 

When the gravitational potential of Venus is analyzed in terms 

of spherical harmonics, to lo~est order only terms of the 

second degree are capable of exerting a torque on the sun. 

Therefore only the second degree part of the surface pressure 

variation enters the total Hamiltonian for the rotation of Venus. 
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The theory of atmospheric tides as developed in chapter 2 

of Part I is separable in longitude and time. Thus each Fourier 

component of the forcing gives rise to tides with the same 

frequency and zonal wavenumber. In the classical probleN, 

the tides are further separable into functions of height x and 

Hough modes depending on colatitude 8. This is not strictly 

true on Venus, because of the large vertical wind shear. 

The equivalent gravity mode formalism developed in chapter 5 

of Part I nevertheless assumes that the latitudinal structure 

of the tides is nearly separable in terms of Legendre functions 

P (cos 8), which resemble Hough modes for low orders. 
t,s 

As a result, each spherical harmonic component of the forcing 

gives rise only to the corresponding component of the surface 

pressure variation. The same is naturally true for the heating 

at the ground model defined in chapter 6 of Part I, which 

does not involve separation of colatitude and height. 

The following analysis is simplified considerably by 

expanding the second-degree part of the surface pressure or 

mass distribution in a manner parallel to expression (3:5) 

for the induced potential of the body tides. This step will 

be justified in the next section. In the complex a-notation 

of Part I, the atmospheric analogues of the Love numbers 
CY, S 

kcr may be written as op2 
, which have the dimensions of 



pressure. 
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The secular Love number k has no counterpart, 
0 

though, because the mean pressure distribution properly 

belongs to the atmosphere's basic state. Then the second­

degree part of the surface pressure, designated below by 

angle brackets, may be e:xpressed in terms of the following 

components: 

( gma) = <Pz)= I 6pz-2n, 01 [ 
1 2[3* cl 2 !)] 
2 

sin cos 0 -
2 2 

. cos (2a* - 2nt - e ) -2n 

+ l◊Pzw,11 [ - sin l3* cos [3* sin 0 cos 8] 

. sin (cp + y* - e ) 
w 

+ 1◊p,w-2n,ll 1 
l3* (1 + cos l3 1; ) sin - sin 2 

. sin (cp + y* + 2a >'; - 2nt - e ) 
w-2n 

+ l◊Pzw+2n,ll [ 1 sin [3 ,., (1 - cos f3 1') sin 
2 

• sin (cp + y* - 2a* + 2nt - ew+2n) 

0 cos 01 

0 cos 0] 

(4:2) 

+ 16 
2w,2 I [! • -2[3* Pz 4 sin sin 28] cos (2cp + 2y* - e ) 

2w 

+ I 2w-2n, 21 
opz 

1 2 [8 (1 + cos [3*) sin 20) 

.cos (2cp + 2y* + 2a* - 2nt - e
2 2 ) w- n 

+ I- 2w+2n,21 
Opz [! 

8 
(1 - cos l3*)

2 . 2 ] sin 0 

. cos (2cp + 2y* - 2a* + 2nt - e2w+2n) 



The phase lags e in (4:2) 
0 

159 

above now refer to the atmospheric 

(4: 3) 

The atmospheric contribution W to the Hamiltonian may 

also be developed similarly to the body tides. Substituting 

ma from eq. (4:3) for ~ in eq. (3:7), and averaging over an 

orbital period, then gives the atmospheric analogue to 

expression (3:8) for U: 

2n TT 

w = J J 
0 0 

2 a 4 
m O a sin 0 d 8 d cp = 
a 0 ~ 

<l 0 0 

. 0 sin e d 0 d cp 

Sn 
M 6 {1 6p:-2n, 0 I [i2 sin 213* 213] _Q_ a 

sin = 15 M 3 
~ r 

cos (2a)', - 2a - e 
-2n 

) 

l◊Pzw,11 [ l * * + sin 13 cos 13 sin 13 cos 13] cos (y* - y -4 ew) 

I opz w-2n, 1 j 3 
13* (1 + 13 ;',) 13 (1 13) ] + [16 sin cos sin + cos 

+ 

+ 

cos (y* + 2a* - y - 2a - ew-2n) 

Op
2

w+2n,ll • [{
6 

sin~• (1 - cos~•) sin~ (1 - cos~)] 

0 
2w,2 

Pz 

(4: 4) 
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+ 6 2w-2n, 21' 3 
Pz [64 (1 2 

(1 2 + cos 13*) + cos 13) J 

cos (2y* - 2y + 2a* - 2a - e 2n) 2w-
1 

+ 6 
2w+2n, 2 

Pz 
3 

[64 (1 - cos /3)<) 2 
(1 - 2 

cos 13) J 

cos (2y* - 2y - 2a* + 2a - e 2ID+2n)} 

Inserting W from (4:4) above into the equations of motion 

(2:4) and (2:5) then gives ~~and*; the resulting expressions 

can also be found by replacing U and b (cr) in eqs. (3:10) 
0 

and (3: 12) by W and - a (cr), where we define 
0 

a (cr) = -

Under these substitutions, eqs. (3:13) and (3:19) for small 

obliquities become 

w 
dw o 3 -- = -- a 
dt C 2 

M 6 
( 2w - 2n) = 4n _Q ~ 

5,C M 3 Im 
~ r 

l df3 Wo 3 
f3dt = - wC 4 [a (2w - 2n) + a (w - 2n) - a (w)] 

(4 :5) 

(4:6) 

(4: 7) 

while the analogues of eqs. (3:15) and (3:16) for retrograde 

rotations are 

dw Wo 3 
dt = c 2 a (2w + 2n) 

M 6 
4n 0 a I (op

2
2w+2n, 2) 

5CM3 m (4: 8) 
~ r 

[a (2w + 2n) + a (w + 2n) - a (w)] . (4: 9) 
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When the change of normalization (explained in the next 

section)is taken into account, eq. (4:8) above is just the same 

as eq. (7:7) of Part I. Thus as shown in that chapter, the net 

torque on the atmosphere of Venus currently depends only on 

the semidiurnal variation of the surface pressure. Meanwhile 

eq. (4:9) for the stability of a retrograde obliquity also 

involves the cr = w + 2n and cr = w frequency components. The 

following section applies the above formulation to the 

numerical results for these tidal modes obtained in Part I. 
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B. Stability of the present state 

For the current spin of Venus, atmospheric tides can 

be studied by means of the equivalent gravity mode approach 

developed in chapter 5 of Part I. As shmro therein, 

gravitationally induced tides are negligible in the Venus 

atmosphere, so only thermally driven tides are considered 

in the following. 

By equation (4:2) of Part I, the direct absorption of 

sunlight in the atmosphere of Venus was assumed separable into 

the form J (x) cos Con the day side, where J (x) is the 
0 0 

vertical profile of absorption at the subsolar point and C 

is the local zenith angle of the sun. Then the second 

degree components of the thermal forcing can be written in 

a form analogous to eq. (3:1) for the tidal potential D ; 
0 

/ ( )~ 15 ( ) ( 2 1) 
,,J . C, xv = 3 2 J0 X cos ' - 3 

CJ, s 
Consequently all of the tidal coefficients op

2 
appearing 

• • (4 3) d h • f • 1 lS in expression : correspon to a eating pro i e --
32 

J (x). Actually this separation only applies to the 
0 

stratospheric heating distributions I, II, and III. In the 

troposphere, models IV and V for convection, and VI and VII 

for thermal diffusion, cannot be expressed by eq. (4:10) 

above . Since eqs. (4:17) and (4:21) of Part I define these 

models in terms of CJ (x) h -- eac frequency component of the CJ , 
0 

spherical harmonic expansion of J has a slightly 

(4:10) 
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different height dependence. This complication is really only 

conceptual; in practice each component of the tropospheric 

15 2 heating is normalized to a total absorbed flux of 32 x 100 W/m, 

where 100 W/m
2 

is absorbed by the ground at the subsolar point. 

Then each component of the surface pressure in eq. (4:2) still 

corresponds to a similar component of the forcing. Finally, 

the heating at the ground model, defined by eq. (4:18) of 

Part I and further developed in chapter 6 of that Part, is trivially 

separable because it does not involve height. 

Although scattering and absorption may modify the 

horizontal dependence of the heating from the cos C distribution 

of the incident solar flux, the amplitudes of the low degree 

harmonics will be nearly unaffected. For example, if the 

heating actually varied as cos
2c on the day side, the 

normalization factor discussed above would become 1/2 instead 

15 of 
32

. Since such adjustments are easily made, we shall continue 

15 to normalize the component tides by 32 of the total flux 

F absorbed at the subsolar point. 
0 

The atmospheric contribution W to the Hamiltonian can then 

be found by calculating the surface pressure variation 

corresponding to each component of the forcing, as normalized 

above. As described in chapter 5 of Part I, such calculations 

were performed numerically, using two somewhat different 
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equivalent gravity mode (EGM) techniques. The resulting 

variations in surface pressure are listed in Table 3 of Part I 

for the most important tidal modes. The principal diurnal 

pressure variation (cr = w + n), normalized by 1/2 F, does 
0 

not appear in W because it represents a first degree spherical 

harmonic. The tabulated results for the main semidiurnal 

.d ( ~ ... + 2) 1· db lS • d • h tie cr "W n were norma ize y 
64 

in or er to give t e 

surface pressure variation at the equator; those values must 

be doubled to be consistent with the normalization 

above. The modes with cr = w - 2n and cr = 2w - 2n were not 

calculated, since these frequencies vanish somewhere between 

the stratosphere and the surface of Venus; in the absence 

of damping, the tidal theory becomes singular at such critical 

levels. This omission is not important, though, because 

inspection of eq. (4;4) shows that these components do not 

contribute to W for obliquities near 180°. All of the other 

second-degree modes listed in Table 3 of Part I were calculated 

according to the normalization de$cribed above. 

To first order in !3
1 = 180° - !3, eq. (4:8) for dw 

dt 

and eq. (4:9) 
I 

f dl3 ' or --
dt 

involve only the tides of frequency 

2w + 2n, w + 2n, and w. The imaginary parts of the surface 

pressure variations listed under these modes in Table 3 of 

Part I may then be substituted directly into (4;8) and (4:9), 

recalling that the semidiurnal values must be doubled. The 
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13' 
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dl3' dt are listed under the 

heading "atmosphere" in Table 1 following, versus EGM methods 

1 and 2, basic state models A, B, C, and D, and heating 

distributions I - VIII, all described in Part I. 

As the tabulated results show, heating in the stratosphere 

(profiles I, II, and III) has a comparatively small effect 

1 dl3' . 
on - dt' distributed almost evenly between positive 

i3 / 
(destabilizing) and negative (stabilizing) values. On the 

other hand, the tropospheric forcing (distributions IV - VIII) 

has a large influence on the obliquity. These conclusions 

are similar to those for the net torque obtained in Part I. 

Wbile rather variable in strength, the results in Table 1 

for EGM method 1 are all positive for heating at the ground 

(model VIII) and tend to become negative for thicker heated 

1 layers. In contrast, the values of -
i3 I 

negative for EGM method 2. The primary 

~ dt are nearly all 

reason for this 

difference is that the equivalent depth of the cr = w mode 

becomes infinite according to EGM method 2, unlike EGM 
2 

method 1, as long as¾ w = 0 at the equator. This leads to the 
c:)8 

near-vanishing of the corresponding surface pressure variation, 

as shown in Appendix I, but the special atmospheric conditions 

leading to such an ideal situation are not likely to occur on 

Venus. 
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Of course, the rota tion of Venus i s affected by tides in 

the body of the planet as well as those in the atmosphere. 

Combined body and atmospheric tides may be studied simply 

by adding the termsU and W of the Hamiltonian. For small obliquities, 

adding eq. (3;13) t9 (4:6) and eq. (3;14) to(~;7) yields 

dw = l l [U b (2w - 2n) - W a (2w - 2n)] 
dt C 2 o o 

1 

f3 
d(3 1 
dt we 

3 
[U b (2w - 2n) - W a (2w - 2n)] 4 0 0 

(4:11) 

+ U b (w - 2n) - W a (w - 2n) - U b (w) + W a (w)] • 
0 0 0 0 (4:12) 

To first order in (3
1 = 180° - 13, combining eq. (3:15) and (4:8) 

and (3: 16) with (Lf: 9) similarly gives 

dw 1 3 
[U b (2w + 2n) - w (2w + 2n)] -= a 

dt C 2 0 0 

I ( 4 :13) 
1 ~ = _l_ 3 

[U b (2w + 2n) - w a (2w +2n) 
f3 I dt we 4 0 0 

+ U b (w + 2n) - W a (w + 2n) - U 
0 0 0 

b (w) + W a (w)] • 
0 (4:14) 

The above equa tions (4:13) and (4:14) can be used to tell 

whether the retrograde spin of Venus is presently in a steady 

state. If the net tidal torques cancel so that the rotation 

rate in neither despinning nor accelerating, eq. (4:13) yields 

dw 
-- = 0 - U b (2w + 2n) = W a (2w + 2n) 
dt o o ( 4:15) 
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In order for the equilibrium also to be stable with respect to 

dS' obliquity perturbations, dtmust be negative. Combined with 

(4:15) above, eq. (4:14) be comes 

1 1 
;:s-

dt we 
3 
4 

[U b (~ + 2n) - W a (w + 2n) - U b (w) 

ff 
0 0 0 

+w a (w)] 
0 

Pursuing this line of reasoning any farther requires 

specific knowledge or assumptions regarding the frequency 

dependence of the dissipation in the body of Venus 

Suppose that the constant Q model applies, so the 

b Co-) as given by eq. (3:25) is es :::;entially independent 

of frequency. Then the remaining terms due to body tides 

in eq ~ (4: 16) above cancel, leaving 

a (w + 2n) + a (w)] 

(4: 16) 

(4:17) 

As for the case of the atmo s pher e acting alone, the numerical 

values for the surface pressure variations from Table 3 of 

Part I were substituted into eq. (4:17) ; the results are 

listed in Table 1 under the heading"+ constant Q"~ The 

1 as' contributions of the various heating models to - dt again 
S' 

combine linearly in the same proportions as in the total 

surface pressure variation . As expected, the addition of 

constant Q body tides tends to destabilize a retrograde 
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1 di3
1

_ 
obliquity. For equivalent gravity mode method 1,;; dt 

generally becomes positive, while for EGM method 2 the 

values in the troposphere become smaller but remain negative. 

As an alternative, consider the viscous model of body 

tides (3: 17), where b (cr) is proportional to the 

frequency. Combining this with eqs~ (4:15) and (4:16) yields 

d[3
1 = 1 3 

dt wC 4 

- u 
0 

w 
0 

wC 

[U ( w+2n ) b (2w + 2n) - W a (w + 2n) 
o 2w+2n o 

+ W a (µi)] 
0 

(2w + 2n) - a (w + 2n) + a 

The numerical values obtained from (4:18) above are also 

listed in Table 1, under the heading"+ viscous". The 

results are quite similar to those for the constant Q model, 

except tha t the negative values are smaller and the positive 

values are larger in general, so that an obliquity of 180° 

is stable for a still smaller range of parameters. 

( 4 :18) 

In the elasticoviscous model (3; 43) for body tides, b (cr) 

is almost inversely proportional to the frequency. In that 

case eq. (4:16) becomes 

1 

s' 
dS 1 --"-- = 
dt wG: 

- u 
0 

.l [u (2w+2n) b (2w + 4 0 w+2n 2n) - W
0 

a (w + 2n) 

~2w:2~ b (w) + Wo a (u,)] (4:19) 
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(::;~n) a (2w + 2n) - a (w + 2n) 

• + a (w)] 
(4:19) 

The valuesobtained from (4:19), tabulated under"+ elasticovisc 

are almost all negative, and especially large for EGM method 

2. This is consistent with the result of chapter 3, that 

ela~ticoviscousbody tides can stabilize the obliquity of a 

slow retrograde planet. 

One more criterion must be met in order for the present 

rotation of Venus to be in a steady state. For the spin 

period to be stable with respect to small changes in the 

rotation r ate , we require 

" . , 

_Q_ (dw) < O .... U __Q_ b ( 2w + 2n ) > W _ _g_ a (2w + 2n) . 
c)W d t o c)W O c)UJ 

(4:20) 

Unfortuna tely, neither t he full three-dimensional tidal theory 

nor the equivalent gravity mode approximation can be used to 

evaluate eq. (4:20) above, since it is not possible to say 

for certain how the basic state of the atmosphere would 

change if the solid planet were rotating with a different 

period than observed. This limitation will be relaxed in the 

following section, along with the restriction to an obliquity 

near 180°. 
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C. Generalization to arbitrary obliquities 

The complete theory of atmospheric tides cannot be applied 

to obliquities and rotation rates besides the current spin 

of Venus, because the results depend on the basic state, as 

explained above. Yet the essential features of the tides may 

be represented by the heating at the ground model, described 

in chapter 6 of Part I; then the surface pressure variations 

do not depend on the details of the basic state, as long as 

the atmosphere near the surface is corotating with the crust. 

In the notation of this chapter, the result (6:4) of 

Part I may be writt en 

15 
v F 

6 
cr,s= · :) 

Pz 32 (i ,:, + 1/,,- ) H 
a o 

15 .tF0 
=---

32 aH 
0 

V 1 + cr-2. cr . 32 crRo l+cr -2 

( 4: 21) 
_ ~T-a_; , (:: _ 15 ul:0 ·( 1 _ .,....2 -) 

Ta 

➔ a (ol ~ Iw ~pz°' s) - I OP,° ,sj sin 'o ;; ~~ Cs,-t a-1 
The Newtonian cooling coefficient 1/T is included in eq. 

a 

(4:21) above in order to parameterize nonlinearities and damping 

in the thermal boundary layer. If 1/T is neglected,(:: 
a cr 

becomes -90° (always representing a phase lead) while a (cr) is 

inversely proportional to the frequency. The magnitude of the 

atmospheric time constant T is not known, and may depend on 
a 

frequency, but we shall use a constant value for T in order 
a 

to gain qualitative insights into the heating at the ground model. 
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According to eq. (4:21) above, the atmospheric torque then 

has the same functional form as (3:27), the elasticoviscous model of 

body tides. The stability criterion (4:20) cannot then be met 

for an elasticoviscous planet, unless its time constant T 
a 

is shorter than the atmosphere's. If T is so small, the body 
a 

tides may just as well be represented by the viscous model 

(3:17), which always satisfies condition (4:20). If on the 

other hand the constant Q model (3:23) applies, eq . (4:20) iq 

satisfied as long as T ~ l/(2w + 2n) ~ 9.29 days. 
a 

One difficulty r emains before the heating at the ground 

model can be applied to the question of obliquity. The simple 

formula (4:21) was derived under the assumption that the 

equivalent depth of the Venus atmosphere is negligible 

compared to the scale height near the ground. This approximation 

is excellent in most cases . However, for the particular mode 

with er= w, s= 1, the principal equivalent depth may be very 

large or formally infinite, as described in Chapter 5 of Part I. 
w,l 

In that case, the surface pressure variation &p
2 

vanishes, 

as shown in Appendix I . This does not seem like ly to occur 

on Venus, where the tidal modes are essentially nonseparable, but we 

shall examine both possibilities. Tides involving a (w) obtained 

from eq. (4:21) will be referred to as type 1 atmospheric tides. 

Type 2 tides are obtained by setting a (w) =· 0 in eq. ( 4: 2) 
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These two models are related to EGM methods 1 and 2, respectively 

and can now be compared with the detailed numerical calculations. 

The stability parameter;, 1t' from eq. (4:9) is graphed in Figure 6, 

for various combinations of body tides and the heating at the ground 

model for atmospheric tides. The scale along the bottom shows the time 

constant T of the atmosphere, while the upper scale gives the corre-
a 

sponding values of b(2w + 2n) ;:,:; k/Q, the dissipation in the body of 

Venus required to balance the atmospheric torque at the current 

rotation rate. The curves labeled A, Q, and V respectively 

refer to atmospheric tides acting alone, added to body tides 

of the constant Q type, and combined with the vis.cous model 

of body tides. Comparing Fig. 6 with Table 1 shows that the 

effects of the heating at the ground on the stability 

of the retrograde obliquity broadly resemble the EGM 

calculations, but each basic state model and heating distribution 

does not correspond to a unique value of T • 
a 

Because of the equivalence between heating at the ground and 

the elasticoviscous model, type 1 atmospheric tides can only help 

to stabilize the obliquity if T :;;; Lf0 days. The elasticoviscous model is 
a 

not included separately in Fig. 6, since for practical purposes 

it reduces to the viscous model whenever the rotation rate 

is stable, as 

the obliquity 

explained above. Tides of 

if Ta < 1/-Jsw
2 

+ 10n w + 

type v
1 

can stabilize 

2 
4n ;:,:; 8.55 days, but 
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Figure 6 

Effects of T on the stability of a 
a 

180° obliquity> for several tidal models 
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the negative branch of this curve is not shown in Fig. 6, 

since it is about three orders of magnitude weaker than the 

positive peak. For the Q1 model, an obliquity near 180° 

is only stable when T < 1/ /:;;--{"w + 2n) ~ 21.8 days; however, 
a 

eq. (4:20) shows that the rotation rate is unstable for both 

Q1 and Q2 tides whenever Ta ~ 9.29 days, as indicated by the 

dashed portions of the corresponding curves. Finally, it is 

easy to show that a retrograde obliquity is always stable for 

each of these models combined with type 2 atmospheric tides. 

Like all the models of body tides, the heating at the 

ground approach for atmospheric tides depends only on the 

fr equency of each component. Cons i der the X-axis of t he 

( L:i , p) - plane, where p = 0 or f! cc J_80°. The various to r ques on 

Venus are then symmetrical with respect to the prograde synchronous 

sta te Cw = n, S = O), as shown in Fig. 13 of Part I. If the 

atmospheric and body tides cancel a t S = 180° and a rotation rate w, 

anothe r equilibrium must oc cur at S = 0 and rotation rate 

w = w + 2n, corresponding to the same semidiurnal freqency. 

It is easy to see from eq. (4:20) that both equilibria 

must be equally sta ble or unstable with respect to perturbations 

in the rotation rate. Stability with respect to obliquity 

changes can be tes t ed by comparing eq . (4:11) for the prograde 

sta te to eq. (4:13) for the retrograde state; for tides of 

typ e 1, this give s 
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1 
13 
~ - l 3 [U b ( 2 ) ( ) d t - w C 4 0 

w - n - W
O 

a w - 2n - U 
O 

b ( w) + W
O 

a ( w) ] 

1 3 
[U b (w) (w) (w+2n) = - w a u b +w a (w+2n)] w.c 4 0 0 0 0 

dp ' 
(4: 22) 

w 1 - - w !3' dt 

Thus one of the equilibria is stable, and the other unstable, 

in this regard. Type 2 tides do not exhibit a comparable 

symmetry, but a prograde obliquity turns out to be stable 

for each of the models A
2

, q
2

, and V 
2

. (In case an equilibrium 

occurs between X = 0 and X = n, it and its mirror configuration 

are both stable or both unstable for tides of type l; the situation 

for type 2 tides is more complicated.) 

In general, stable and unstable equilibria can also 

occur at intermedia te obliquities. Figures 7 through 10 

following display the configurations in the Cw, 13) plane 

for the models v
1

, v
2

, Q
1

, and Q2 . On the basis of Fig. 6, 

we have chosen T = 17 days, k = .25, and Q
2 2 

~ 35, 
a w + n 

so that the torques balance at the present rotation rate, and 

a 180° obliquity is stable in all but the V 
1 

case~ Atmospheric 

tides acting alone have not been plotted, since for this value 

of the time constant Ta' the t wo t ypes A1 and A2 appear 

quite alike and r a ther featureless. 

In Fig. 7 for V 
1
-type tides, an unstable equilibrium 

(labeled U)a ppears for 13 ::::: 78°, while a stable state (labeled S) 
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Figure 7 

Spin evolution for type 1 atmospheric tides 

plus viscous body tides; 

time interval= 3.0 x 10
7

y 

Figure 8 

Spin evolution for type 2 atmospheric tides 

plus viscous body tides; 

time interval= 3.0 x 10
7

y 

Figure 9 

Spin evolution for type 1 atmospheric tides 

plus constant Q body tides; time interval= 

8 
1.5 X 10 y 

Figure 10 

Spin evolution for type 2 atmospheric tides 

plus constant Q body tides; time interval= 

8 
1.5 X 10 y 
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occurs at S ~ 133°. Since an obliquity of 180° is unstable, 

the equilibrium at S = 0 must be stable. Thus the unstable 

equilibrium at an intermediate obliquity is a branch point; 

the planet may not cross the trajectory leading into that state, 

and must wind up either with S = 133° or S = 0, depending on 

initial conditions. 

Although we have not the space to show it, this picture 

changes smoothly when the parameters vary. As the time constant 

T is shortened, and Q is correspondingly increased so as to 
a 

maintain the current rotation rate as an equilibrium, the 

stable retrograde equilibrium migrates toward S = 180°, and 

merges with the present state when T ~ 8.55 days. Simultaneously 
a 

the stable equilibrium at zero obliquity splits into an 

unstable equilibrium at S = 0 and a stable state at a small 

prograde obliquity. The picture is simpler for v 2-type tides; 

as Fig. 8 shows, both stable equilibria occur on the horizontal 

axis. 

The situation is more complicated for body tides with 

constant Q, shown combined with type 1 atmospheric tides in 

Fig. 9. Several poorly-defined equilibria which we have not 

bothered to label are visible at intermediate obliquities, 

while only one state is stable out of four occurring on the X-axis. 



184 

Fig. 10 for the case Q2 shows that deleting the cr = w component 

of the atmospheric tide affects this picture only slightly, 

stabilizing the more rapid prograde equilibrium. 

From these plots it appears that only a fraction of the 

possible initial conditions lead ultimately to the present 

rotation of Venus. Specifically, it appears unlikely that an 

originally prograde planet could ever "roll over" and become 

retrograde. It must be borne in mind, though, that the heating 

at the ground model for atmospheric tides neglects the absorption 

in the upper atmosphere of Venus. This forcing produces a 

torque which varies in magnitude roughly as (period at the 
period at the 

(density at the clouds~ -l/
2

. For the current basic state this torque 
\density at the ground) 
is about an order of magnitude less than that driven by the heating at 

the ground, as described in chapter 5 of Part I . If the surface 

of Venus were ever rotating several times faster than presently, all 

other things being equal, the stratospheric torque might have been 

dominant. Thus the simple model of atmospheric tides used above does 

not apply much beyond the limits of these plots, and does not allow 

firm conclusions regarding the spin history of Venus. In addition, 

we much next examine several other influences besides the tides which 

may also affect the rotation of Venus. 
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5. Resonances 

The rotation of Venus may also involve the phenomenon 

of spin-orbit resonance. The present rotation rate may be 

stabilized by the weak torque exerted by the Earth on the 

permanent quadrupole moment of Venus, discussed in chapter 

7 of Part I . This resonance would also have an effect on the 

obliquity comparable to the influence of the atmospheric 

and body tides. In the past, other resonances may have affected 

the history of Venus' spin. 

First consider the gravitational interaction of the sun with 

the permanent quadrupole moment of Venus. Its contribution 

t o the Hamiltonian is given by equation (11) of Goldreich and 

Peale (1970); in our notation, this may be written 

co 

GM L I (2C-A-B) V == ___Q <l sin zf3 - l) 
G2lq (e) [qnt] 0 -3 cos 

2r q=-c:o 4 2 

(2C-A-B) sin 2f3 
G20q (e) cos [2w - 2a + (2+q) nt] 

¾ (B-A) sin 
2

[3 G21q (e) cos [qnt - 2y ] (5: 1) 

- ~ (B-A) (1 + cos f3)
2 

G20q (e) cos [2w - 2a + (2+q)nt - 2y] 

~ (B-A) (1 - co s ~ )
2 

c 204 (e) cos [ ;,;;;' - 2a + (2+q)nt + 2y ]l • 

Here ~ represents the longitude of perihelion neasured fron the I 

axis, while the average distance~ of Venus from the sun is identical 

to the semimajor axis of its orbit. 
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The c
2 

(e) appearing in eq. (5:1) above are the functions 
pq 

of eccentricity tabulated by Kaula (1964). In general, G
2 

(e) = 
pq 

G
2 7 

(e) is of order etqJ or higher in the orbital 
,--p,-q 

eccentricity e; in particular, Kaula (1964) gives 

(1 _ e2)-3/2, 
G210 (e) = G20-2 (e) = G222 (e) = O (5: 2) 

It is clear that expression (5:1) contains short-period 

terms. In order to find the secular contribution to the 

Hamiltonian, we must average V with respect to time. As 
0 

long as w has no special value, the terms in (5:1) proportional 

to the equatorial asymmetry (B-A) vanish in the mean. The 

remaining terms are proportional to the dynamical oblateness 

2 
(2C-A-B = 2M aJ

2
); eq. (5:2) shows that the average of the 

~ 
second term also vanishes, while the first term becomes 

V 
s 

ci (2C-A-B) cl sin 
4 

2r3 

The equatorial asymmetry can interact with the solar 

gravitation in the long run, provided that the planet turns 

(5: 3) 

the same hemisphere towards the sun on successive or alternating 

perihelia. These are known as spin-orbit resonances of the 

first kind, of which thew=~ n rotation of Mercury is the 

prime example. The terms in (5:1) containing 2 y can thus 

contribute to the mean Hamiltonian in case 2w/n is nearly an 
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integer (say m), so that their frequencies vanish, or become 

comparable to the secular rates. Averaging eq. (5:1) then 

leaves three additional terms with different dependences 

on the obliquity and eccentricity: a p r ograde-type contribution 
GM 

- _8
3
' -

8
3 (B-A) (1 + cos ~)

2 G (e) V 
p 20 (m--2) 

2r 

• c ,Js _( 2.~ - 2a + mnt -· 2y ) 
a retrograde-type term 

GMO l ) ( 0)2 G _
3 8 

(B-A 1 - cos~ 20 
2r 

V 
r 

. cos (2~ - 2a - mnt + 2y) 

a nd an oblique-type term 

, 

V 
0 

GM 
3 

= 8 (B-A) - -3 4 
2r 

sin 2
i:, c21m (e) co s (mnt - 2y) . 

Because of their different resonant arguments, the three 

terms displayed above behave somewhat differently in the 

equations of motion. 

(5: 4) 

(5: 5) 

(5: 6) 

As eq. (5:2) shows, V and V defined above vanish when 
p r 

m = 0, but V does not. Therefore the w ~ 0 resonance has 
0 

purely oblique character, and would disappear altogether if 

the obliquity were 0 or 180°. This is worth noting because 

it is a common simplifying assumption in studies of this nature 

to let the planet's axis of greatest inertia be perpendicular 

to the orbit plane. Extra caution must be exercised in this 

particular case, though, because the planet would be practically 

nonrotating with respect to inertial space, and the basic 
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assumption of principal axis rotation may also be violated. 

All of the other solar resonances contain terms of each 

type. Since the retrograde-type contribution is of higher 

order in e than the others, it only dominates for obliquities 

within about a degree of 180°. Except for thew= n/2 

case, which contains mixed prograde and oblique terms of 

first order, and w = 0, all of the resonances have mainly 

prograde character for obliquities less than about 170°. 

The significance of this f a ct will be described shortly. 

For certain rotation rates, the quadrupole moment of Venus 

can also interact with the orbits of the other planets; these 

are known as spin-orbit resonances of the second kind. The 

sidereal rotation period of Venus has been measured at 243.00 ± 

.04 days (Shapiro~ al., 1978). If the period is actually 

243.165 days, Venus would present the same face to the Earth 

at each inferior conjunction (Goldreich and Peale, 1966a, 

1967, 1970). This situation is depicted in Fig. 11, where the 

position and orientation of Venus are viewed in a reference 

frame where the Earth and sun are fixed. Resonances with other 

planets such as Jupiter or Mercury are possible, but the 

nearest lie several days away from the observed period and 

are at least an order of magnitude weaker than the Earth 

resonance (Bellomo et al., 1967). 
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Figure 11 

Resonant rotation of Venus as seen in a frame 

of reference where the Earth and sun are fixed 
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The Hamiltonian term VEB arising from the suspected Earth 

resonance can be developed in a parallel manner to the solar 

contribution described above. Goldreich and Peale (1970) 

have shown that the unperturbed eccentricities and mutual 

inclination between the orbits of the Earth and Venus can 

be ignored. The Earth resonance is then clearly of the 

retrograde type. If we choose the i inertial axis as well 

as the origin of time at some initial inferior conjunction, 

Goldreich and Peale's (1970) expression for the secular 

inte raction becomes 

GM 
EB 
3 

3 (B-A) (1 - cos 13)
2 

co s [-2a + Sn - 4nt + 2y]. 
16 EB 

r 

A square omitted from the factor (1 - cos 0) in eq. (29) 

of Goldreich and Peale (1970) has been supplied in eq. (5:7) 

above, while the functions F201 (cos 0) and F220 (cos 0) in 

their equation (27) should be F210 (cos 0) and F222 (cos 0) 

respectively. 

The strength T of a resonance may be defined as the 

(5: 7) 

greatest torque it can exert either for despinning or accelerating 

the rotation rate. For example, applying eq. (L:4) to (5:7) 

gives 
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T = max av 
- = 0.958 
oY 

GM 
(±) 

3 
r 

~ (B-A) (1 - cos S)
2 ~ 1.47 x 1014 

J 

c1 - cos s/ (5: 8) 

B-C BA -6 Here we have assumed -- = - • = 2. 21 x 10 , the same 
C ~33 M~o~

2 

value as for the Earth. Comparison of (5:8) above with eq. 

(7:5) of Part I shows that the Earth resonance is probably 

about an order of magnitude weaker than the torque due to 

body tides o 

Equations (5:4) through (5:6) yield similar expressions 

for the strength s of the solar resonances, but the mass of 

the Earth is replaced by the mass of sun and a factor depending 

on the orbital eccentricity e of Venus. Since e is on the 

order of 10-2 while 

the Ear th resonance 

M:) ~ 329000 
M(±) 

is stronger 

(including the mass of the moon), 

than all of the solar r esonances 

for w ~ 3n. Furthermore, the orbital parameters of Venus vary on a 

5 
time scale of about 10 years, and the eccentricity occasionally 

vanishes. Whenever this happens, only thew= 0 and w = n resonances 

exist, so that capture into any of the other solar resonances 

is liable to be only temporary. 
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The generally accepted mechanism for capture into a 

spin-orbit resonance of the first kind cannot provide for 

capture of Venu~ into a spin-orbit resonance of the second 

kind (Goldreich and Peale, 1966b, 1967). However, an alternative 

capture mechanism (Goldreich and Peale, 1967, 1970) will be 

discussed in the next chapter. Once the rotation has been captured, 

the resonant argument librates about some mean with a period L 

given by 

L = 2n lc1i (5: 9) 

Substituting T from eq. (5:8) into (5:9) above gives L ~ 63000 

yr for the Earth resonance; the libration periods for the solar 

resonances scale accordingly. The frequency of libration may 

be regarded as defining the "linewidth" of a resonance; for 

2n 
example, 243d + 2n 

63000yr 
2n 

243±.002d. The rotation period 

thus needs to be within about .002 d of the resonant value for 

tte Earth substantially to affect the spin of Venus. The 

measured rotation period is almost a hundred times farther 

away (Shapiro et al., 1978), so that the resonant argument in 

eq. (5:7) would circulate through a full cycle about once 

every 500 years. On the other hand, the data do not 

altogether exclude the possibility of resonance (by about 4 

standard deviations), especially considering that the measured 
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period is about a hundred times closer to this particular 

resonance than to any others. 

Suppose that the spin of Venus were trapped in a resonance 

and the librations were damped out. Then the resonant argument would 

adjust itself to some mean phase such that the solar tides just 

balanced the resonant effect on the rotation rate. In the Hamiltonian 

formalism employed heretofore, this may be expressed 

dw 
0 = - = 

dt 
- 1_ --2_ (U+W+V) --. ..Q_ V = 

C ay ay 
- --2_ (U+W) 

ay (5:10) 

Equation (5:lO)above may now be solved for V; that value can 

then be inserted into (2:5) in order to find the behavior of 

the obliquity within a resonance. 

Instead of solving for the phase of the resonant argument 

in each case, a clever substitution used by Goldreich and Peale 

(1970) permits us greatly to simplify the problem~ Equation 

( 2 5) f df3 . l a V d a V •. or - invo ves ~-- an dt OU 2ly'• 
Since av has already been 

ay 

evaluated in eq. (5:8)~ we need only to relate it to ~v. 
uQ' . 

When w ~ O, only the oblique-type term (5:6) contrihut cs 

av 
to V, so that cla = O; however, the obliquity is then poorly defined 

since eq . (2:5) involves dividing by Wo Thew ,::::: n/2 resonance is of 

mixed type, such that its behavior depends on the angle between 

equinox and perihelion; we shall not go into it further. 

Al l of the othe r so lar resonances are of dominantly prograde 
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typ e , for which eq. (5:4) shows that oV = ~v . Since the 
oa oY 

possible Earth resonance is mostly of retrograde type, (5;7) 

give s :a v9 = - :y Vfi/ Using the above along with (5:10) to 

replace Vin eq, (2:5) then gives 

Eli - 1 1 _g_ (U+W+V) 1 cos fl _g_ (U+W+V) --dt w.C sin fl oa we sin fl oY 

1 1 _g_ (U+W+V) 1 1 [a: (U+W) ± :y VJ =- = we sin fl aa we sin fl 

1 1 
[a: (U+W) =f _a_ (u+w)l we sin fl oY ' 

where the upper sign of the± and =f :refers to the solar 

(5: 11) 

r esonance s with w ~ n, and the lower sign r e fers to the Ear th 

resonance. The ne t eff ec t of resonance lock is as if the term 

V did not appear at all in eq. (5:11) above, but the factor 

cos fl were replaced by +l for prograde-type resonances and by 

-1 f or re trogr a de-type r esonances. 
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The above technique can now be app lied to any suitable 

model of atmospheric and body tides. Figures 12 through 18 

following show the rate of change of the obliquity versus the 

obliquity; in each case the scale factor is given in inverse 

years along the vertical axis. The solid curves, labeled with 

the symbols 6., +, x, and ◊, correspond to rotation rates 

3 2n, 
5 

respectively. The dashed refer w = n, 2 n, and 2 n, curves 

2rr to the Earth commensurability with w = 
243 

d ~ .927n. The graph 

on the left side of each figure shows the effects of the resonances 

from eq. (5:11); for comparison, the graph on the right 

corresponds to the same rotation rates, but without resonant 

trapping, according to eq. (3:12). The cases portrayed in Figs. 

12 through 18 employ the same parameter values as Figs. 3-5 

and 7-10; the right-hand curves in the former set therefore 

give* along the appropriate semicircular cross-sections of the 

(X,Y)-plane in the latter. Note in particular that Figure 8 

for the constant Q model of body tides can actually be extended to 

all rotation rates w ~ n, since w x * depends only on~ in 

each of the five regions defined in eq. (3:24). 

For every nonresonant case, inspection reveals that the 

rate of change of the obliquity vanishes at either end of 
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Figure 12 

Spin evolution at resonance for the viscous model of body tides; 

6: w = n; +: 3 w = 2 n; x: 

w = 2rr, 
243 cl 

~ .92] n. 

w = 2n; ◊: 5 
w = 2 n. Dashed curves: 

Figure 13 

Spin evolution at resonance for the constant Q model of body tides. 

Figure 14 

Spin evolution at resonance for the elasticoviscous model of body 

tides. 

Figure 15 

Spin evolution at resonance for type 1 atmospheric tides plus 

viscous body tides. 

Figure 16 

Spin evolution at resonance for type 2 atmospheric tides plus 

viscous body tides. 

Figure 17 

Spin evolution at resonance for type 1 atmospheric tides plus 

constant Q body tides. 

Figure 18 

Spin evolution at resonance for type 2 atmospheric tides plus 

constant Q body tides. 
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the scale, as it must. In contrast, within each of the solar 

resonances,* becomes negatively infinite as S approaches 

180°, and tends to destabilize a retrograde rotation. This 

cannot be taken literally, though, because the resonances ch~nge 

character and become much weaker at such high obliquities, 

so that the obliquity may be stabilized or the planet might 

escape from resonance altogether. 

In contrast to the solar resonances, the Earth resonance 

is well behaved because of its 

retrograde character. This resonance only fades out 

or changes cha racter for obliquities of less than a few 

degrees. Goldre ich and Peale (1970) claim that expression 

(5:7) for the Earth-Venus interaction" ... is only valid for 

8 (our S) somewhat greater then 90°, since the stability of 

the resonance decreases as 8 approaches 90°." This remark 

appears to be inaccurate as it stands, but it would be apt if 

90° were replaced by 0 in the above quotation. 

When the net tidal torque on the planet is decelerating, 

eq. (5:11) shows that the Earth resonance has a stabilizing 

influence on an obliquity of 180°. Nevertheless, Figs. 12 

and 13 confirm that this effect alone is not strong enough 

to maintain the present orientation of Venus against either the 
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viscous or constant Q models of body tides (compare Figs. 1, 

2, and 4 of Goldreich and Peale, 1970). Yet if the rotation 

is already stable or nearly stable to begin with, resonance 

with the Earth distinctly augments its stability; witness 

Fig. 14 for the Darwin model of body tides. 

The possibility of spin-orbit resonances revives the 

question of "roll-over". It is conceivable that Venus may 

once have evolved to a slow prograde rotation, and then been 

captured into a resonance of either the first or second kind. 

Subsequently it would travel along a circular arc in the (w, fl) 

plane at a fixed rotation rate. Because of the altered 

influence on its obliquity, Venus might then have turned from 

prograde to r e trograde. If it were in the Earth resonance, it 

would remain there up to the present day; if in a solar 

resonance, it could be expected to escape as the resonance 

weakens at high obliquities, and finally to evolve a bit 

farther to the currently observed spin state. Unfortunately, 

the particular curves plotted in Figs. 12-18 show rather few 

instances where:~ switches from negative to positive as a 

result of capture into a resonance. Furthermore, most of the 

solar resonances could not survive long enough for the 

obliquity to evolve substantially (~10
5 

years compared with 

8 ~ 10 years). We conclude that Venus is unlikely to have 
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turned retrograde because of resonant effects. The next 

chapter deals with a much stronger constraint on the possibility 

of "roll-over". 
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6. Precession, Nutation, and Related Phenomena 

In order to specify completely the spin vector of Venus, 

yet a third coordinate is required. The simplest choice is 

a, the longitude of the equinox in the reference frame of the 

orbit. The greatest influence on a arises from the secular 

interaction of the dynamical oblateness with the sun; 

substituting V from eq. (5:3) into the equation of motion (2:6) 
s 

yields 

<la 
dt 

GH 
_Q_ 
-3 

2r 

2C-A-B 
we 

3 -3/2 
2 

cos S (1 - e) = - I 
cos~ 

w 
(6: 1) 

This represents uniform precession of the spin axis about the 

2C-A-B orbit normal. Measured values of J
2 

=~--fall in the 
2M a2 

-6 range of 10 (Howard et al., 1974), ~ 

corresponding to precession periods on the order of 10
4 

or 

10
5 

yr. Additional contributions to!~ from 1/2 w
2 

6C, 

U, and Ware negligible by comparison, although V from 
0 

(5:6) or V from (5:4) could be comparable to V in the 
p s 

w = 0 or w = n solar resonances, respectively. 

Suppose that Venus has a fluid core and a nearly rigid 

mantle. If these are strongly coupled, they will rotate about 

nearly the same axis with the same angular velocity w. 

If they are only weakly coupled, the core can ouly respond 

to the long-term average direction of the mantle axis, and 
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ends up spinning almost normal to the orbit plane at the rate 

w I cos~ I . Between these two extremes, differential rotation 

will cause frictional dissipation of energy at the core-mantle 

boundary. 

If the coupling is entirely viscous in nature, the core 

precespes at the same period as the mantle, but with a time 

lag given by 

a 
T 

C 

= __ c_. 
,/vw 

(Goldreich and Peale, 1967, 1970), where a represents the 
C 

radius of the core, and v its kinematic viscosity (viscosity 

divided by density). The precession r ate for strong coupling 

(dO! 
T << 1) is given by eq. (6: 1), while for weak coupling 

dt C 

(cl('{_ 
T > > 1) the precession rate is found by replacing the 

dt C 

value of C in the denominator of (6:1) by C, the greatest 
m 

moment of inertia of the mantle alone. Any deviation from 

this steady motion is exponentially damped with the same 

time constant T from eq. (6:2) above (Goldreich and Peale, 
C 

1970). 

Goldreich and Peale (1970) have also worked out the 

consequences of this process for the secular evolution of the 

obliquity and rotation period of Venus. In our notation, 

their results become 

(6:2) 
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[dw ] 
C C 

2s C (~ ) sin = 
dt CMF C 2 T -2 

C 
[l + <la 

0 (dt) Tc 

0 sin 
2

s 
3 

2f3] 
[l + \!W 

. 2 2 a , I cos 
C 

E£ = ~~ [dw] 
dt w sin f3 dt CMF 

The interpretation i s even s imple r in (X, 

dX = 0 
dt 

dY 
dt 

1 
sin f3 

C C 
C 

= 

-2] C 
2 

a 
0 C 

Y)-coordina t es : 

In the above relations, C represents the maximum moment of 
C 

inertia of the core , while the value of C lies somewhere 
0 

between C for weak coupling and C = C + C for strong m m c 

coupling. The e f fects of core-mant le dissipation can simply 

be added to those of body and atmospheric tides; although 

strictlyspeaking they are not derivable from a potential, 

eqs . (6:3) - (6:5) above could be obtained by adding a term 

- f [ !~JCMF to the Hamil tonian. 

(6:3) 

(6:4) 

(6:5) 

Fig. 19 depicts the evolution of a p l anet's rotation under 

the influence of core-mantle friction alone. This has the 

same forma t as Figs . 3-5 and 7-10, except that only half 

as many arrows are shown for the sake of clarity. As this 

figure clearly shows, the evolution i s always straight down 
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Figure 19 

Spin evolution under the influence of core mantle 

friction alone; time interval= 7.0 x 10
4

y 
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through the (w, i:3)- plane. The Y-component of the mantle 

rotation decays monotonically to zero, while the X-component 

matches that of the core and is conserved~ The rotation rate 

w is thus always reduced, while the obliquity i3 is d,riyen a"\\Tay 

from 90q toward either 180° or O. 

For the purposes of illustration, Fig. 19 is drawn using a 

time interval of only 70,000 years, with a 
C 

6 = 3.0 x 10 m, C 
0 

= C 

2 = .332 M a, C = .10 x C, and C = .90 x C. For rotation 
0 C m 

periods longer than about 50 days, we have taken 2C-A-B 

-5 -18 -2 
= 2.0 x 10 x C independent of w, so that I~ 1.57 x 10 s 

(For shorter rotation periods, hydrostatic flattening increases 

the dynamical oblateness, but may also cause pressure forces 

to replace viscosity as the dominant coupling mechanism 

between the core and mantle (Goldreich and Peale, 1970). The 

influence on the spin will increase again or continue to 

decrease for more rapid rotations, depending on whether the 

former or latter effect prevails.) For fixed values of these 

parameters, core-mantle friction has the greatest influence 

on the planet's spin when both terms inside the brackets in 

eq. (6:3) are unity; accordingly we have also put 

'T 
C 

6036 

a 2 E2 
C -3 2 

yr -- v = --
3
- ~ 3.38 x 10 m /s . 

()J 

~ 
(6:6) 
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For this choice of the coupling constant, the core-mantle 

3 
interaction has nearly 10 times greater influence on the 

current obliquity of Venus, and remains dominant for viscosities 

up to six orders of magnitude greater or less than the optimal 

value from (6:6). Core-mantle friction can thus be a very 

powerful mechanism for maintaining the obliquity of Venus near 

its present value. It also extends considerably the range of 

initial conditions which lead to an obliquity of 180°. 

By the same token, since:! is symmetric with respect to~= 90°, 

an initially prograde rotation is again prevented from "rolling 

over" and becoming retrograde. 

In case the rotation rate w is trapped in a resonance, a 

little algebraic analysis yields the generalization of eq. (5:9): 

Using the same forma t as Figs. 12-18, Fig. 20 shows the effect 

of core-mantle dissipation on the obliquity, both in and out 

of resonance (compare Fig. 6 of Goldreich and Peale, 1970). 

The magnitude of:~ is somewhat increased by spin-orbit 

resonances of the first kind; furthermore the obliquity is 

driven away from 180° to 90°, or even to O. On the other hand, 

the Earth resonance again augments the stability of a retrograde 
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Figure 20 

Spin evolution at resonance under 

the influence of core-mantle friction 
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rotation, while a small obliquity tends to "roll over" toward 

90° and possibly through to 180"! Unfortunately, this seems 

unlikely to have happened to Venus because its resonance with 

the Earth is so weak, particularly at low obliquities. 

In addition to its strong stabilizing influence on the 

obliquity, core-mantle friction provides a mechanism for 

capture into the Earth resonance (Goldreich and Peale, 196.7). 

It might also enhance the chances of capture into a spin-orbit 

resonance of the first kind, regardless of the frequency 

dependence of the tides, As the rotation rate w of the mantle 

evolves across the resonant value, it is periodically increased 

and decreased slightly by the growing influence of the Earth 

or sun. Just as in the case of precession, the spin of the 

core lags the mantle~ The resulting dissipation of energy 

may cause capture into the resonance, and subsequent damping 

of the librations. Provided that the resonance is stable, 

the greatest chance of capture occurs at T ~ L/2n, with 
C 

significant capture probabilities for time constants on the 

same order of magnitude (Goldreich and Peale, 1967, 1968). 

Since the libration period L for the Earth resonance is on the 

same order as the precession period, the optimal coupling 

for stabilizing the obliquity also leads to a significant 
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likelihood of capture. Conversely, if the rotation period of 

Venus is actually resonant with the orbit of the Earth, that 

fact may be taken as evidence that core-mantle friction is 

currently maintaining its obliquity near 180°. 

The orbital plane of Venus also precesses with repect to 

inertial space. The spin axis then cannot maintain a fixed 

obliquity to the orbit normal unless both precession periods 

are identical (or if the axial precession is much faster than 

the orbital changes). Such commensurabilities are known as 

generalized Cassini states, and have received much attention 

in recent years; see, for example, Peale (1974) and Ward 

and DeCampli (1978). It may thus be no coincidence that the 

periods of precession and orbit variation are similar for Venus. 

However, the motion of Venus' orbit relative to the invariable 

plane is far from uniform, and complicates the problem considerably. 

The ultimate orientation taken by the rotation axis then 

depends not only on the details of the atmospheric and body 

tides, core-mantle friction, and the precession rate, but 

also on the history of Venus' orbit variations. At least the 

resonant interaction with the Earth does not materially affect 

the Cassini states for Venus. The pole position of Venus 

determined by Shapiro~ al. (1978) does not appear to match 

the Cassini state predicted by Ward and DeCampli (1978); as 

yet the interpretation is uncertain. 
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In the context of "roll-over", it is interesting to 

speculate that if the obliquity of Venus were ever near 90°, it 

might have been captured into an intermediate Cassini state 

(state 2). Subsequent despinning would have driven that Cassini 

state to a somewhat · retrograde obliquity, and dragged the 

spin axis along. Ultimately Venus would have escaped from 

state 2 and evolved to its present configuration under the 

various other influences. Peale (1974) considered a similar 

scenario for Mercury, but found that it constrained the 

possible spin histories very little because of the small 

capture probability for Cassini state 2. 

Since the differences among all three of its principal 

moments of inertia are probably comparable (B-A ~ C-B ~ 10-S) 
C ~ A ~ ' 

Venus must be regarded as a triaxial body rather than simply 

oblate. Instead of precessing uniformly about the orbit normal, 

the spin axis of Venus might wander by about a degree in obliquity 

during each precession period (Lyttleton, 1973). 

While this effect is too small to affect the rotation of Venus 

substantially, it might be able to account for the difference 

between the measured pole position and the predicted Cassini 

state for Venus. 

We are now in a position to examine the question of 

non-principal axis rotation. If a rigid body has principal 

moments of inertia C > B = A, and is freely rotating with 
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angular speed w, in general the angle between its axis 

of greatest inertia and the spin axis will vary at the Eulerian 

period N for free nutation, where 

N C 2n 
= 

C-A w 

Again taking C-A = 1.0x 10-5 
X C in eq. (6:8) above gives 

a very long nutation period of N ~ 67000 years. A simple 

generalization of the above formula (Kaula, 1968) reveals 

(6:8) 

that for Venus, unlike the Earth, non-ridgidity has a negligible 

effect on the period of nutation (Chandler wobble), although 

the motion of the spin axis may be complicated by the triaxiality 

of Venus. 

Now Goldreich and Toomre (1969) have shown tha t the canonical 

action integral associated with the free nuta tion of a rigid 

rotator is an adiabat ic invariant; in other wo r ds , the (properly 

defined) "amount" of nu tation is una ffected by changes in 

the system which take much longer than a nutation period. 

Unlike the Earth, however, the nutation period of Venus is 

comparable to the estimated periods of axial precession, 

orbit variation, and libra tion in resonance. The pr oblem 

then becomes very complicated , and each of these phenomena 

might possibly pump up the amplitude of the nutation indefinitely, 

unles s it i s damped somehow. If the only dissipa t ion is 

provided by the same mechanism "Q" tha t damps body tides , 
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the free nutation will decay on a timescale 

100 µ, Q (6:9) 
TQ::::: 2 2 

pa w 

(Burns and Safronov, 1973; McAdoo and Burns, 1974). For the values 

of these parameters estimated previously, this time constant 

9 is on the order of 10 years, which seems too long to damp the 

forced nuta tions effectively. 

Table 2 following lists the estimates of the various 

time scales most relevant to the rotational dynamics of Venus, 

Inspection shows that they divide conveniently into one 

5 8 
group of about 10 years, and another of 10 years or longer. 

The longer timescales pertain to the long-term evolution of 

the spin, while the shorter ones are important to the problems 

of Cassini states and core-mantle coupling. Because of this 

coincidence of timescales, core-mantle friction is one of the 

strongest possible stabilizing influences on the present spin 

of Venus. 
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TABLE 2.TIME SCALES 

FOR VENUS DYNAMICS 

TIDAL TIMESCALE (TO DESPIN VENUS FROM 

FROM PRESENT ROTATION TO SYNCHRONISM) 

LYTTLETON'S TIME SCALE (FOR RANDOM WALK 

OF ROTATION VECTOR) 

PRECESSION PERIOD 

ORBITAL VARIATIONS 

LIBRATION PERIOD IN RESONANCE 

FREE NUTATION (CHANDLER WOBBLE) PERIOD 

TIME TO DAMP NUTATION BY Q ALONE 

8 
~10 YR 



223 

7. Other Effects and Discussion 

There is a variety of other phenomena that may affect 

the rotation of Venus, or which may have influenced its history. 

For example, the interaction of the solar wind with the planet's 

magnetosphere may produce an additional torque, although presently 

Venus does not app ear t o possess an intrinsic magnetic field. 

A more ba sic question concerns the fundamental behavior of 

atmospheric tides. John Lewis (1971) has suggested that the 

atmosphere of Venus is in thermochemical equilibrium with 

carbonate rocks on the surface. He proposes that energy 

absorbed by the ground raises its temperatures only slightly, 

but causes rapid outgassing of carbon dioxide (with a ti.me constant 

on the order of a week; Lewis, 1971) via the reaction 

The resulting temperature change 

dT 
___.£_ = T F ~ (2.09 x 106 J/kg)-2 
dt o 

po 

is only on the order of a hundredth of a degree per Venus 

day, but the accompanying pressure variation 

dP 
0 --= 

dt 

po dTo 6 
- --- (2.09 x 10 J/kg) = 
T dt 

0 

Fg(2.09 x 106 J/kg)-l 

(7: 1) 

(7:2) 

(7:3) 
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amounts to several millibars, comparable to the largest effect 

of the atmospheric tides! Of course, the simple exchange 

of mass between the atmosphere and the soil cannot in itself 

alter the net torque on the planet. However, the resulting 

modification of the temperature and pressure fields could 

completely transform the pattern of atmospheric tides on Venus. 

For the time being, this remains merely an interesting 

speculation. 

The most drastic explanation for the retrograde rotation 

of Venus invokes a collision with a sizeable interplanetary 

body capable of reversing an initially prograde spin (Singer, 

1970, 1971; see also French, 1971). While such an event might 

indeed accomplish the desired effect, it must be considered 

improbable. Alternatively, body tides would by now have caused 

any sufficiently massive nearby retrograde satellites to crash 

onto the surface of Venus and make it rotate retrograde, 

regardless of its original orientation(McCord, 

1970, 1971; Burns, 1973; Ward and Reid, 1973). 

1968; Singer, 

The ad hoc 

nature of this hypothesis makes it unappealing but not unreasonable. 

Another prime motivation for such proposals is a difficulty 

with the time scale for tidal evolution. Presuming that Venus 

began with a rotation period of about a day, like the other 

planets, and also that t he tidal Q has remained constant, 

body tides alone could not have despun Venus to its present 
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slow rotation rate within the age of the solar system unless 

Q ~ 17 (Goldreich and Soter, 1966). This range has been 

regarded by some as implausibly low, compared to the other 

planets; such a low Q would also preclude the possibility that 

the current rotation period represents a balance between atmo­

spheric and body tidal torques. Of course, Q has not necessarily 

been constant over such a length of time and so wide a range 

of frequencies; these considerations can easily accomodate a 

factor of two. 

The retrograde obliquity of Venus presents a more 

serious challenge. We have seen how difficult it is for a 

prograde planet to "roll over" and become retrograde . Some 

scenarios may permit a rapidly rotating prograde planet to 

end up like Venus, but these all seem contrived. Barring 

problematica like collisions, it appears necessary to conclude 

that Venus has always rotated retrograde. 

Especially considering the 98° obliquity of Uranus, we 

prefer to postulate that Venus started out with an obliquity 

in the neighborhood of 100° and a rotation period of a day or 

two. Body tides and core-mantle friction would subsequently have 

slowed its rotation rate to near the present value, and increased 

the obliquity to nearly 180D. Finally the 

evolution was halted by the growing influence of atmospheric 

tides, or by capture into spin-orbit resonance with the Earth, 
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or both. The present rotation period of Venus thus represents 

a balance between atmospheric and body tides, and perhaps also 

the weaker influence of the Earth resonance. The obliquity is 

maintained near 180° by a combination of these three torques 

and the (probably dominant) effect of core-mantle friction. 

What are the prospects for testing the above hypothesis? 

More Earth-based radar observations are needed, since the measured 

rotation period and pole position still contain substantial 

uncertainties. As discussed in chapter 6, confirmation of the 

suspected Earth resonance would also be positive evidence for 

the importance of core-mantle friction. 

The upcoming Pioneer Venus mission may not provide much 

new information on the rotation vector, but gravitational 

perturbations on the orbiter will reveal the planet's principal 

axes and moment of inertia differences. In turn, this knowledge 

will greatly improve our understanding of resonance, precession, 

nutation, Cassini states, and related phenomena for Venus. 

Much greater sensitivity would be required in order to detect 

the induced tida l potential directly, though. 

Remote sensing from a spacecraft like the proposed VOIR (Venus 

Orbiting Imaging Radar) might be capable of measuring the 

atmospheric and body tides independently. Tidal variations 

of the surface pressure could be obtained from two-frequency 

radar attenuation data, especially combined with altimetry, 

since differential absorption of the s i gnal depends on the 
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ntegrated column density of CO
2 

(Shapiro et al., 1973). Unfortunetly, 

the absorptivity would also be affected by the temperature 

variations. Furthermore, sensitivities comparable to 10 cm of 

path length would be required, three or four orders of magnitude 

better than the state of the art for Earth-based radar. 

One of the greatest shortcomings in our treatment of 

atmospheric tides is the equivalent gravity mode approach, 

described in chapter 5 of Part I, and the related ambiguity 

between type 1 and type 2 tides. These questions could be 

resolved by two-dimensional finite difference calculations like 

those of Lindzen and Hong (1974). However, such an undertaking 

is not warranted by the present uncertainties in the heating 

distribution and basic state of Venus atmosphere. In sj_tu 

observations from the Pioneer Venus entry probes will substantially 

improve the state of our knowledge, and probably will make more 

elaborate calculations worth while. 

Since the tidal temperature and pressure variations are so 

small at the surface of Venus, direct measurements of these would 

require a long-lived lander of delicate sensitivity and 

calibration, constituting a real engineering challenge. 

On the other hand, it was shown in chapter 6 of Part I that 

tidally driven winds of several m/s should occur in the thermal 

boundary layer. Unless these winds are considerably reduced by 

friction within a few meters of the ground, their speed and 
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direction could be mea sured by a network of short-lived landers 

or penetrators. (Note that the Venera 9 and 10 anemometer data are 

limited to wind speed only). The tidal wind field may then afford 

the best opportunity of examining the behavior of atmospheric 

tides on Venus. 
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APPENDIX I. Infinite Equivalent Depths 

Consider the traditional tidal problem with w = constant 

t O. If the equivalent depth h becomes infinite under these 

circumstances, the solution of the Hough equation (2:33) 

of Part I must be a linear combination of the Legendre functions 

P (cos 8) and P (cos 8), while the tidal frequency is 
ts t-2,s 

2sw 
t(,!'.,-1) CJ = (I:l) 

(Chapman and Lindzen, 1970). The only common case for which 

this occurs is the first antisymmetric sidereal diurnal tide, 

for which CJ = w, s = 1, t = 2, and 

~ sin 8 cos 0 (Lindzen, 1965). 

0 (8) ~ t,s 

When his infinite, the Hough operator (2:32) vanishes, 

and eq. (2: 26) of Part I becomes simply 

o = a ax 
X 

e (I:2) 

However, (I:2) above can only satisfy the boundedness condition 

if 671 vanishes. Then eq. (2:27) of Part I may immediately be 
0 

integrated to give the geopotential variations: 

X 

f x.oJ dx' (I: 3) 
0 
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Now if the gravitational forcing 6~ is ignored, the lower 

boundary condition (2:37) of Part I yields identically 

6~ = O! This reproduces the classical result (Lindzen, 1965) 
0 

that thennal tides can give rise to no surface pressure variation 

p
0 

6~
0 

nor its consequent torque on the atmosphere for modes 

whose equivalent depth is infinite. This may have significant 

consequences for the obliquity of Venus, as detailed in Part II 

of this dissertation. 

The observed latitudinal differences in the~ four-day 

rotation period of the Venus upper atmosphere (Suomi, 1974) 

will alter the equivalent depths h, as well as the solutions ,e, . 

0-e, to the Hough equation, for a given forcing frequency. This 

ensures that all of the equivalent depths in the stratosphere 

will remain bounded, and on the order of a hundred kilometers. 

However, the bottom of the atmosphere is likely to be corotating 

with the surface, so that the classical solution will apply 

locally and the equivalent depth for the antisymmetric diurnal 

mode may become infinite at the ground. 

When his taken as infinite throughout the troposphere, 

but finite in the stratosphere, the analysis in chapter 5 of 

Part I shows that the surface pressure variations vanish along 

-1 
with the quantity (s+ H_ - s_ r1+) . This is unrealistic, 

however, because mean winds probably occur at all levels except 
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within an infinitesimal distance of the surface. Since after 

all this is the place not only where the lower boundary 

condition is applied, but also where the pressure variations 

are evaluated, the problem requires very careful treatment. 

The following analysis is based on suggestions by A. P. Ingersoll. 

We shall apply the Equivalent Gravity Mode method to the 

case cr = w, s = 1, TI= 1. For simplicity, we shall again represent 

the basic state by a vanishing stratification along with the 

exponential wind model (3:2) of Part I. However, we will not 

also adopt an exponential profile of the equivalent depth as 

given by eq. (5:13) of Part I. Instead, it is convenient to 

define 

h = Tx.-v with v ~ 0 for x < xc, 

(I:4) 
h h = constant for x ~ x 

oo C 

Then the tidal equation (5:8) of Part I may be written 

d2 d 
6~ - (1 +Sf+~) - 6~ + (1 + 5f)(3f + ~) 6~ 

dx2 x dx x 
1-tOJ V --x = 
gy 

(I:5) 

for the troposphere, where the damping 1/T has been neglected 

and f ~ O. The classical vertical structure equation (2:30) 

of Part I applies in the stratosphere. 

We seek to solve eq. (I:5) above by the power series 

method. Assume a homogeneous solution of the form 
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OJ 

oT] = L 
m=O 

with C 
0 

= 1 and oJ = O; 

(I:5) then becomes 

OJ OJ 

0 = L (µ+m) (µ+m-1) Cmf+m-
2 

- (1 + Sf + ~) L 
m=O x m=O 

• (µ+m) C xµ+m- l 
m 

OJ 

+ (1 + Sf) (3f + ~) 
X L 

m=O 

-µ+m 
C X 

m 

(I:6) 

(I: 7) 

Gathering terms of each order in x and rearranging (I:7) gives 

0 = µ (~L - 1 - v) --. µ = 0 or µ=l + v; 

0 = (µ + 1) (µ - 1 + (l + Sf)v, and - Sf)c
1 (I:S) 

0 = (µ + m + 2) (µ + m + 1 v)Cm+2 - [ (µ +m + 1) (1 +Sf) 

+ (1 + Sf)v] Cm+l + 3g(l + Sf) Cm • 

The above relations then provide two independent solutions 

to the homogeneous part of eq. (I:5): one of order zero and 

another of order 1 + v in x~ We shall label these functions 

F(x) and G(x), respectively. In the classical case where both v and f 

are zero, we recover the known solutions F(x) ;=. 1 and G(x) ;= e -1. 
X 

Since the coefficients in eq. (I:5) are all continuous for 

x > O, the easily verified general solution in the troposphere 

is then 



233 

6Tj(x) = AF(x) + BG(x) - F{x) +Sf)x' G(x') x6J (x) dx' 
gy(l+v) 

X I 
+ G(x) I e-(l+Sf)x F(x'.) 

I) 

rt.OJ (x') dx' 
gy(l+v) 

, X < X 
C 

The general solution in the strato sphere is the same as ~q. 

(5:17) of Part r. 

The vertical velocity ow in the troposphere is gtven by 

eq. (5:12) of Part 1 1 which for this case becomes 
2 

ow = T ~ -v ( :q.) [:x OT] - (1 + Sf) OT]]+ H 011 

(I:9) 

(I: 10) 

When the grav i tational f orcing is left out? the l ower boundary 

condition becomes ow= 0 at x = O. In this limit, (I:10) 

above gives 

0 .i__ o Tl 
dx ( 1 + S f) 6T] 

as long as v > □ ~ 

= A v (!_+Sf) - A -> A 
l+Sf 0 (I: 11) 

Ultimately we ~re interested in the pressure v~riations at 

the surface. Upon substitution by (I:9), expression (5:3) 

of Part I gives for the geopotential in the troposphere 
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ow(x) = ~ x-v [a~ 6~ - (1 + Sf) o~J 
:i.o-

= ¥ B x -v [~ G - ( 1 + 5 f ) c] 
iw dx 

(I:12) 

- ~v [adx F - (1 + Sf) F] J 

0 

-(1+8f) x' G(J!) 1-1..oJ(x') dx' 
e 1 + V 

+ ~v I~ G - (1 + Sf) c] Jx e -(l+Sf)x' F(x') 1-1..oJ(x' •• ) dx' 
lW Ldx 1 + V 

0 

In order to evaluate ow (O), we first take the following limits: 

lim 
x-->O 

- (l+Sf) 
Fu 

1-1..oJ(x~) dx'l 
gy . 

l 
I. e-(l+Sf)x' G(x') 1-1..oJ(x') d '1 

lim __:o _ ______ X 

x--+O v 
X 

(1:13) 

=(1+5£) v lim 
\1+8f x-->O le-(1+8f)xG(x) 1-1..6J(x) l 

v-1 
I VX 

since 6J is integrable, and 

lim 
x-->O 

1 + V 

= (J. +Sf)lim 
\1+8f x--+O 

(1:14) 
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Subs ti tut in~ the above results into eq. (I: 12) then gives a 

simple expression for the surface pressure variation: 

op 
0 

= p 6* = p 
0 0 0 

_zI_ 
i w (l+v) B 

0 

It only remains to evaluate the constant B. Consider 

(1:15) 

for example the heating at the ground model, defined by eq 

(4:18) of Part I, since this case seems the most liable to be 

affected. Substituting this heating profile into eq. (I:9) 

gives 

61] = G(x) [B + r(.◊F ] 
po y(l+v) , 

(I:16) 

Meanwhile the solu1: i_on in the stratosphere become s 

6Tj + 
(l ) C De 2 - i Aro x - x) 

C , X 2 X C , 

where A is defined in eq. (5:18) of Par t I. 
ro 

(1:17) 

The upper boundary condition yields D = O. Matching 

(I:16) and (1:17) t hen gives 

C G (x ) 
C 

(I:18) 

We also require 6• to be continuous across the tropopause . 

Applying this condition to eq. (1:12) and using (1:18) above gives 
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r 
B + rt6F 

po y (l+v) c dx c - (l+Sf) 

L 
] 

TX -v r~ G (x ) 

L 

;\ ) C = 
ro 

h 
ro 

;\ ) 
ro 

(1:19) 

,-tOF l( ) 
po T (l+v] xro • 

As long as the quantity [B + p y(l+v)] ..is nonzero, dividing 
0 

by it through eq. (1:19) above leaves 

T x -v [dd G ( x ) - ( 1 + 5 f) G (x )] = h 
C . X C C w 

1 (- 2 + i ;\
00

) G(xc) 

This is just the condition for free oscillations, since B 

may have any value when (1:20) is satisfied. As discussed 

in chapter 5 of Part I, this is unlikely. Furthermore this 

cannot occur for propagating modes, since then the right 

hand side of (1:20) above is complex. In general, then, eq. 

(1:19) along with eq. (1:15) implies 

(1:20) 

B = _ rt6F 
Po T (l+v ) 

- op = P __g__ o - o iw 
rt6F . ,t 6F --= 1--
po wHo 

(1:21) 
0 

Now (I: 21) above is e ssentially the same as the result (5: 37) 

of Part I for the heating at the ground model, where the 

equivalent depth is everywhere bounded. Similar results are 

expected for a distributed forcing. This justifies treating 

the antisymmetric diurnal tide on the same footing as all of 

the other tidal modes. 
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APPENDIX II. List of Symbols 

principal moments of inertia, where C 2 B 2 A; also 

used as constants of integration 

strength of atmospheric tides, defined by eq. (4:5) 

of Part II 

radius of Venus; a~ 6050 km 

strength of body tides; b(cr) = k 
O' 

sin E: 
O' 

k 
~ 

Q 

specific heat capacity at constant pressure; 

945 J/kg/K for CO2 

C ~ 
p 

specific heat capacity of soil; cb ~ 1000 J/kg/K 

complex thermal skin depth 

distance from the center of Venus 

orbital eccentricity 

insolation of solar flux 

= cr/2.w; also the exponential shear parameter defined 

in eq. (3:2) of Part I 

-11 
uni.versal constant of gravitation; G ~ 6.67 x 10 

3 2 
m /s /kg 

2 2 
acceleration of gravity; g = GM / a ~ 8. 6 m/ s 

<;? 

scale height; H = RT/g; also the Hamiltonian 

equivalent depths of tidal modes 
GM 

= -~ (2C-A-B) ¾ (l-e
2
)-

3
/

2 

2r 
imaginary unit; i = ~ 

thermotidal heating per unit time per unit mass; 

J = TdS 
dt 



j 

K 

k 

L 

,f_, 

,f_, 

a 

M 
0 

M 
CJ_ 

m 

N 

n 

P (cos 0) 
,ts 

p 

Q 

R 

r 

s 

s 
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height Love number; j ~ .42 for Venus 

eddy thermal conductivity of lower atmosphere 

thermal conductivity of soil;¾~ 10 W/m/K 

potential Love number; k ~ .25 for Venus 

libration period in resonance 

degree of a Legendre function 

photon mean free path, or mean inverse of the gaseous 

absorption coefficient 

mass of the sun; M ~ 1.99 x 10
30 

kg 
0 

mass of Venus; M ~ M /408524 ~ 4.87 x 10
24 

kg 
~ 0 

mass of Earth; M ~ M /332960 ~ 5.98 x 10
24 

kg 
EB 0 

surface mass distribution 

Eulerian nutation period 

orbital mean motion of Venus; n ~ 2n/224.7 d ~ 3.236 x 

-7 -1 
10 s 

associated Legendre function of degree ,f, and order 

s (unnormali zed) 

pressure 

"quality factor" for body tides 

specific gas constant; R ~ 189 J/kg/K for CO
2 

distance between Venus and the sun; r ~ .72333 

11 
AU ~ 1. 082 x 10 m 

entropy per unit mass 

integral wavenumber in longitude; also the order of 

an associated Legendre function 
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thermodynamic temperature; also tidal timescale 

time 

contribution to the Hamiltonian due to body tides 

wind speed away from the right-hand rotational pole; 

u = a d0 
dt 

contribution to the Hamiltonian due to the permanent 

gravitational quadrupole moment 

wind speed in the direction of rotation; v a sine 

~ 
dt 

speed of the subsolar point with resl?ect to the 

surface; y = a (w + n) 
0 'f 

::,;;j 3.76 m(s 

contribution to the Hamiltonian due to atmospheric 

tides 

vertical wind speed conjugate to altitude z; w = dz 
dt 

component of spin angular velocity in the orbit plane; 

X = w cos (3 

dimensionless height coordinate; x = -,-0J1(p/p
0

) 

component of spin angular velocity normal to the 

orbit plane; Y = w sin fl 

-x/2 
e = o Tl 

height of the crustal tide 

altitude above mean radius 

Euler angles (see Fig. 1 of Part II) 

stratification or static stability; r 

= x"i _a_ s 
c)X 

= r - l ca sin 
!::. 
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E: 

r;, 

Tl 

er, s 
0 (8) 
-t 

e 

X. 

A 

µ 

\) 

11 

p 
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2 cl 2 2 2 
= -er + sin e cos 8 a8 w + 4w cos e 

~ignifies a complex perturabtion quantity; also 

Dirac delta-function, where 6(x) = 0 if x / 0, but 

o+ 
1- 6 (x) dx = 1 
0 

tidal phase lag 

local zenith angle of the sun 

vertical wind speed conjugate to height x; 

colatitudinal variation of tidal modes 

colatitude measured from the right-hand rotation 

pole 

subscripted coefficients in differential equations; 

defined in text 

vertical wavenumber of atmospheric tides 

= cos 8; also rigidity or shear modulus 

kinematic viscosity of the core 

forcing term in eq. (2:35), defined in eq. (2:36) 

of Part I 

1 f = -+-+ 2 2 
s 

parity of tidal modes; n = 0 for modes symmetrical 

with respect to the equator, but 11 = 1 for 

antisymmetrical modes 

gas density 

soil density 
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V 

(l) 

w 
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amgular frequency of oscillations; cr sv + cr 
a3in8 o 

-8 2 4 Stefan-Bolzmann constant; crSB ~ 5.670 x 10 W/m /K 

thermal time constant of atmospheric damping; 1/T = 

Newtonian cooling coefficent 

strength of a resonance 

tidal effective dynamic viscosity 
X 

geopotential; q, = f g dz 
0 

longitude in the direction of rotation 

longitude relative to the subsolar point 

total potential; t 

tidal potential; 0 
3 a

2 
2 1 - GM - (cos r - -) 

2 0 3 '-' 3 
r 

rotation rate of the atmosphere; w = 
V 

rota tion rate of the crust; w 
~ 

asin0 
2n 

~ 243 d ~ 3 • O 

-1 1.809 m/s 
s ~ a 

longitude of perihelion 
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