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ABSTRACT

A Besicovitch set is defined as a compact subset ofR𝑛 which contains a line segment
of length 1 in every direction. The Kakeya conjecture says that every Besicovitch set
has Minkowski and Hausdorff dimensions equal to 𝑛. This thesis gives an improved
Hausdorff dimension estimate, 𝑑 ě 0.60376707287 𝑛 + O(1), for Besicovitch sets
displaying a special structural property called “stickiness.” The improved estimate
comes from using an incidence geometry argument called a “𝑘-planebrush,” which
is a higher dimensional analogue of Wolff’s “hairbrush” argument from 1995.

In addition, an x-ray transform estimate is obtained as a corollary of Zahl’s 𝑘-linear
estimate in 2019. The x-ray estimate, together with the estimate for sticky sets,
implies that all Besicovitch sets in R𝑛 must have Minkowski dimension greater than
(2 ´

?
2 + 𝜀)𝑛. Though this Minkowski dimension estimate is not as good as one

previously known from Katz-Tao (2000), it provides a new proof of the same result.
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C h a p t e r 1

INTRODUCTION

1.1 Outline of thesis and summary of notation
Chapter 1 of this document contains a brief exposition of the Kakeya problem. It
introduces the Kakeya set conjecture and the Kakeya maximal conjecture along
with the concept of a “sticky set,” providing context for the results proved in later
chapters. Chapter 2 introduces some variants of the Kakeya problem, including the
multilinear Kakeya problem and the 𝑘-linear Kakeya problem, and outlines some
recent results in the 𝑘-linear Kakeya problem (Hickman-Rogers-Zhang [12] and
Zahl [27]) which are used in Chapters 3 and 4.

Chapter 3 gives a Kakeya maximal estimate, at a dimension depending on a param-
eter 𝑘 , for sets of 𝛿-tubes obeying a special structural property called 𝑘-planiness.
Chapter 4 combines the results of Chapter 3 with recent results in the 𝑘-linear Kakeya
conjecture to prove an improved Hausdorff dimension estimate for sticky sets. In
the final section of Chapter 4, an x-ray transform estimate is obtained as a corollary
of Zahl ([27]). The x-ray transform estimate is used to give a Minkowski dimension
estimate, 𝑑 ě (2 ´

?
2) + 10´10)𝑛 + O(1), for all Besicovitch sets. Though this

Minkowski dimension estimate is not as good as one previously known (from Katz
and Tao [18]), it provides a different proof of the result.

Table 1.1: Summary of notation

𝐴 ≲ 𝐵 D𝐶 ą 0 : 𝐴 ď 𝐶𝐵

𝐴 „ 𝐵 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴
𝐴 ⪅ 𝐵 D𝐶𝜀 ą 0 : 𝐴 ď 𝐶𝜀𝛿

´𝜀𝐵

𝐴 « 𝐵 𝐴 ⪅ 𝐵 and 𝐵 ⪅ 𝐴
dim𝐻 (𝐸) Hausdorff dimension of 𝐸
dim𝑀 (𝐸) Minkowski dimension of 𝐸
dim𝑀 (𝐸) upper Minkowski dimension of 𝐸
dimP (𝐸) Packing dimension of 𝐸

|𝐸 | Lebesgue measure of 𝐸
𝜈 normalized surface measure on S𝑛´1

#𝐸 Cardinality of 𝐸
𝑁𝛿 (𝐸) 𝛿-neighborhood of 𝐸
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1.2 From Kakeya needle sets to the Kakeya maximal conjecture
In 1920, the Russian mathematician A.S. Besicovitch studied the following problem
in a paper ([3]) published in a Russian monthly periodical:

Given a function of two variables, Riemann integrable on a plane domain, does
there always exist a pair of mutually perpendicular directions such that the repeated
simple integration along the two directions exists and gives the value of the integral
over the domain?

This problem reduced to proving the existence a set of Lebesgue plane measure 0
which contained a line segment of length ě 1 in every direction. Besicovitch solved
the problem, answering the above question in the negative, by demonstrating the
construction of such a set. Later, in 1928, Besicovitch wrote that he had become
aware of a “twin problem” posed by the Japanese mathematician S. Kakeya in 1917
([2]). The problem had never before come to his attention because of the isolation
of Russia following the civil war. Kakeya’s problem was this:

In the class of figures in which a line segment of length 1 can be rotated by 360𝑜

without ever leaving the figure, which one has the smallest area?

Each of these two problems was concerned with sets containing a line segment of
length 1 in every direction, with Kakeya’s problem imposing the additional constraint
that there should be a continuous transition.

Definition 1. A Kakeya needle set is a set in R𝑛 in which a line segment of length 1
can be rotated continuously by 360𝑜 without leaving the set.

Definition 2. A Besicovitch set is a compact set in R𝑛 which contains a line segment
of length 1 in every direction.

In his paper [2], Besicovitch gave a modified version of his construction of a measure
zero Besicovitch set in [3] to solve Kakeya’s problem, thereby disproving Kakeya’s
original conjecture that the smallest figure in which one could continuously rotate a
unit line segment by 360𝑜 was the hypocycloid of area 𝜋/8 ([13]).
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Decades later, in 1971, Besicovitch sets resurfaced in the work of Charles Fefferman,
who was studying the following question.

If 𝑇 is an operator on 𝐿𝑝 (R𝑛) defined by 𝑇 𝑓 = 𝜒𝐵 𝑓 , where 𝜒𝐵 is the characteristic
function of the unit ball in R𝑛, for which values of 𝑝 is it the case that, for all
𝑓 P 𝐿𝑝 (R𝑛),

| |𝑇 𝑓 | |𝐿𝑝 (R𝑛) ď 𝐶 | | 𝑓 | |𝐿𝑝 (R𝑛)?

The “disc conjecture” stated the the above estimate holds for all

2𝑛
𝑛 + 1

ă 𝑝 ă
2𝑛
𝑛 ´ 1

;

these necessary conditions were demonstrated by Hertz using the example where 𝑓
is a Schwartz function whose Fourier transform is identically 1 on the unit ball. Prior
to Fefferman’s work, the disc conjecture was known to be true in R1. It thus came as
a surprise when Fefferman showed that the disc conjecture is false whenever 𝑝 ≠ 2
(𝑛 ą 1) using, as a lemma, Besicovitch’s construction of measure zero Besicovitch
sets ([9]). The work of Fefferman and Hertz led to the following further conjecture,
which has come to be called the Kakeya set conjecture, about Besicovitch sets:

Conjecture 3 (Kakeya set conjecture). Every Besicovitch set in R𝑛 has Minkowski
and Hausdorff dimensions equal to 𝑛.

The Kakeya set conjecture in R2 was solved by Davies ([8]) but remains open for
𝑛 ě 3. The best known results are due to Katz-Zahl ([19]) in R3 and due to Katz-
Zahl ([14]) in R4. The best known bounds in higher dimensions are due to Katz-Tao
([18]). Corollary 47 of this thesis gives an new proof of a Minkowski dimension
estimate for Besicovitch sets which was previously known from [18].

The current state-of-the-art for the Kakeya set conjecture (Hausdorff dimension
version) is given in Table 1.2. The motivation for the Kakeya set conjecture is
discussed in Section 1.3 below.

1.3 Formulation of the Kakeya maximal conjecture
The Kakeya maximal conjecture is a more quantitative formulation of the Kakeya
set conjecture in terms of a maximal operator. The formulation of the conjecture
given below was given by Bourgain [5], though a similar formulation had been given
by Córdoba [7], who also proved the conjecture in R2.
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Table 1.2: State of the art for the Kakeya conjecture

𝑛 dim𝐻 (𝐾) ě Proved by
3 2.5 + 𝜀 Katz-Zahl [15]
4 3.058. . . Katz-Zahl [14]
5 3.6 Hickman-Rogers-Zhang [12]
6 7 ´ 2

?
2 Katz-Tao [18]

7 34/7 Hickman-Rogers-Zhang [12]
...

...

For any small number 𝛿 ą 0, 𝑒 P S𝑛´1 and 𝑎 P R𝑛, define 𝑇 𝛿𝑒 (𝑎) to be the 𝛿-
neighborhood of a line segment pointing in direction 𝑒 and centered at point 𝑎, so
𝑇 𝛿𝑒 (𝑎) is a tube (or cylinder) of radius 𝛿 and length 1. If 𝑓 P 𝐿1

loc(R
𝑛), its Kakeya

maximal function 𝑓 ˚
𝛿

: S𝑛´1 Ñ R is defined by

𝑓 ˚
𝛿 (𝑒) = 𝛿1´𝑛 sup

𝑎PR𝑛

∫
𝑇 𝛿
𝑒 (𝑎)

| 𝑓 |.

If 𝑓 is the indicator function of the set 𝑁𝛿 (𝐵), where 𝐵 is any Besicovch set, any
bound of the type

| | 𝑓 ˚
𝛿 | |𝑞 ď 𝐶 | | 𝑓 | |𝑝

with 1 ă 𝑞 ă 8, 𝑝 ă 8, and 𝐶 independent of 𝛿, fails to hold. In addition, if
𝑓 is the indicator function of the set 𝑁𝛿 (𝐵), where 𝐵 is any Besicovch set of zero
Lebesgue measure, a bound of the form

| | 𝑓 ˚
𝛿 | |𝑝 ď 𝐶𝜀𝛿

´𝜀 | | 𝑓 | |𝑝

cannot hold if 𝑝 ą 𝑛. Thus the strongest estimate which may be expected is of the
following form.

Conjecture 4 (Kakeya maximal conjecture, version 1). For every 𝜀 ą 0, there is a
constant 𝐶𝜀 ą 0 such that for all 𝛿 ą 0 and 𝑓 P 𝐿𝑛 (R𝑛),

| | 𝑓 ˚
𝛿 | |𝐿𝑛 (S𝑛´1) ď 𝐶𝜖𝛿

´𝜀 | | 𝑓 | |𝐿𝑛 (R𝑛) .

Interpolating this (by the Riesz-Thorin interpolation theorem) with the trivial esti-
mate

| | 𝑓 ˚
𝛿 | |𝐿8 (S𝑛´1) ≲ 𝛿

1´𝑛 | | 𝑓 | |𝐿1 (R𝑛) ,

one obtains a conjecture

| | 𝑓 ˚
𝛿 | |𝐿𝑞 (S𝑛´1) ⪅ 𝛿

1´𝑛/𝑝 | | 𝑓 | |𝐿𝑝 (R𝑛) where 1 ď 𝑝 ď 𝑛 and 𝑞 = (𝑛 ´ 1)𝑝1.
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Partial progress in the Kakeya conjecture is given by estimates of this form. The full
Kakeya maximal conjecture is solved only in R2 ([7]) and remains open in higher
dimensions. The Kakeya maximal conjecture implies the Kakeya set conjecture, as
is demonstrated in Section 1.5 below. Table 1.3 gives the best known results for the
Kakeya maximal conjecture in higher dimensions.

Table 1.3: State of the art for the Kakeya maximal conjecture

𝑛 dim𝐻 (𝐾) ě Result proved by
2 2 Córdoba
3 5/2 + 𝜀 Katz-Zahl
4 3.057. . . Katz-Zahl
5 18/5 Hickman-Rogers-Zhang
6 4 Wolff
7 34/7 Hickman-Rogers-Zhang
8 21/4 Hickman-Rogers-Zhang
9 6 Hickman-Rogers-Zhang
10 13/2 Hickman-Rogers-Zhang
...

...

1.4 Importance of the Kakeya maximal conjecture
There are many prominent open conjectures in diverse areas of math which have
been shown, if they are true, to each imply that the Kakeya set conjecture and the
Kakeya maximal conjecture are true. Some of these conjectures are mentioned
below.

Restriction conjecture.
If 𝜎 is the surface measure on the unit sphere S𝑛´1, is there an estimate

| |�𝑓 𝑑𝜎 | |𝐿𝑝 (R𝑛) ≲ | | 𝑓 | |𝐿𝑝 (𝑑𝜎)

for all 𝑝 ě 2𝑛
𝑛´1 . (There are also versions of the restriction conjecture for other

hypersurfaces with boundary, rather than the sphere.)

It was proved by Fefferman in [9] that the restriction conjecture implies the Kakeya
maximal conjecture.

Bochner-Riesz conjecture.
If 𝛿 ą 0, and if 𝑆𝛿 is an operator on 𝐿𝑝 (R𝑛) defined by 𝑆𝛿 𝑓 (𝜉) = (1´|𝜉 |2)𝛿𝜒𝐵 (𝜉) 𝑓 (𝜉),
where 𝜒𝐵 is the characteristic function of the unit ball in R𝑛, then

| |𝑆𝛿 𝑓 | |𝐿𝑝 (R𝑛) ď 𝐶 | | 𝑓 | |𝐿𝑝 (R𝑛)
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for all 𝑝 satisfying
��� 1
𝑝

´ 1
2

��� ď 2𝛿+1
2𝑛 .

Tao showed that the Bochner Riesz conjecture implies the restriction conjecture
([22]). The greater importance of the Kakeya maximal conjecture is that there are
methods, first developed by Bourgain in 1991, whereby progress on the Kakeya
maximal conjecture would imply progress on the Bochner-Riesz conjecture and
restriction conjecture ([6]). However, even if the Kakeya maximal conjecture were
proved in full, the Bochner Riesz and restriction conjectures would not be completely
solved.

Local smoothing conjecture.
Let 𝑢 be the solution of the initial value problem for the wave equation in 𝑛 space
dimensions:

□𝑢 = 0, 𝑢(¨, 0) = 𝑓 ,
B𝑢

B𝑡
(¨, 0) = 0.

Then
@𝜀 ą 0 D𝐶𝜀 ą 0 : | |𝑢 | |𝐿𝑝 (R𝑛ˆ[1,2]) ď 𝐶𝜀 | | 𝑓 | |𝑝,𝜀,

for all 𝑝 P [2, 2𝑛
𝑛´1 ]. Here | | ¨ | |𝑝,𝜀 is the inhomogeneous 𝐿𝑝 Sobolev norm with 𝜀

derivatives.

This conjecture was made by Sogge and is known to imply the Bochner Riesz
conjecture ([20]).

Montgomery’s conjecture.
Assume 𝑇 ď 𝑁2. Let

𝐷 (𝑠) =
𝑁∑︁
𝑛=1

𝑎𝑛𝑛
𝑖𝑠

where | |{𝑎𝑛}| |ℓ8 ď 1. Let T be a 1-separated subset of [0, 𝑇]. Then is there an
estimate

@𝜀 ą 0 D𝐶𝜀 ą 0 :
∑︁
𝑡PT

|𝐷 (𝑡) |2 ď 𝐶𝜀𝑁
1+𝜀 (𝑁 + |T |)?

Bourgain showed in [4] that Montgomery’s conjecture implies the Kakeya set con-
jecture.

1.5 Equivalent versions of the Kakeya maximal conjecture
For the following sections, it may be more convenient to work with some equivalent
formulations of the Kakeya maximal conjecture, which are written below.
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Conjecture 5 (Kakeya maximal conjecture, version 2). For every 𝜀 ą 0, if T is a
family of 𝛿-tubes pointing in 𝛿-separated directions, there is a number 𝐶𝜀 ą 0 such
that

| |
∑︁
𝑇PT

𝜒𝑇 | |𝐿𝑛 (R𝑛´1) ď 𝐶𝜀𝛿
´𝜀

(∑︁
𝑇PT

|𝑇 |
) (𝑛´1)/𝑛

.

Conjecture 6 (Kakeya maximal conjecture, version 3). For every 𝜀 ą 0, if

(i) T is a set of 𝛿-tubes in R𝑛 that point in 𝛿-separated directions, and

(ii) 𝑌 (𝑇) is a subset of 𝑇 for every 𝑇 P T, and 0 ď 𝜆 ď 1 is a number such that
|𝑌 (𝑇) | ě 𝜆 |𝑇 | for every 𝑇 P T,

then there exists a constant 𝐶𝜀 ą 0 such that�����⋃
𝑇PT

𝑌 (𝑇)
����� ě 𝐶𝜖𝛿

𝜀𝜆𝑛
∑︁
𝑇PT

|𝑇 |. (1.1)

Theorem 7. The three versions of the Kakeya conjecture are equivalent.

It will be shown that version 3 ñ version 2 ñ version 1 ñ version 3.

Proof that version 3 implies version 2. Assume that version 3 of the Kakeya con-
jecture is true. Let T be a set of 𝛿-tubes pointing in 𝛿-separated directions. For
every nonnegative integer 𝑘 , define

𝐸𝑘 = {𝑥 P R𝑛 : 2𝑘 ď #T(𝑥) ă 2𝑘´1}.

The statement of version 2 of the Kakeya conjecture is equivalent to∑︁
𝑘

|𝐸𝑘 |2𝑘𝑛/(𝑛´1)
ď 𝐶𝜖𝛿

´𝜖/(𝑛´1)
∑︁
𝑇PT

|𝑇 |

By the pigeonhole principle, there exists a value of 𝑘 for which

|𝐸𝑘 |2𝑘𝑛/(𝑛´1) ≳
1

log(1/𝛿)
∑︁
𝑘

|𝐸𝑘 |2𝑘𝑛/(𝑛´1) .

Since log(1/𝛿) ≲ 𝛿𝜀 for any 𝜀 ą 0, it is sufficient to show that for this value of 𝑘 ,

|𝐸𝑘 |𝑛´12𝑘𝑛 ď 𝐶𝜖𝛿
´𝜀

(∑︁
𝑇PT

|𝑇 |
)𝑛´1
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For each 𝑇 P T, define a shading 𝑌𝑘 (𝑇) by

𝑌𝑘 (𝑇) = 𝑇 X 𝐸𝑘 .

Note that for a certain value of ℓ, we have

|𝐸𝑘 | ¨ 2𝑘 „

∑︁
𝑇PT

|𝑌𝑘 (𝑇) | „
1

log 𝛿

∑︁
𝑇PTℓ

2´ℓ |𝑇 | „
1

log 𝛿
|
⋃
𝑇PTℓ

𝑌𝑘 (𝑇) | ¨ 2𝑘 ,

where
Tℓ = {𝑇 P T : 2´ℓ´1

ă |𝑌𝑘 (𝑇) | ď 2´ℓ}.

This leads to two conclusions, first

|𝐸𝑘 | « |
⋃
𝑇PTℓ

𝑌𝑘 (𝑇) |

and second
2𝑘 «

2´ℓ𝛿𝑛´1#Tℓ
|𝐸𝑘 |

.

From the second conclusion, the statement to show becomes

2´ℓ𝑑 (∑𝑇PTℓ |𝑇 |)𝑛

|𝐸𝑘 |
ď 𝐶𝜖𝛿

´𝜖

(∑︁
𝑇PT

|𝑇 |
)𝑛´1

.

Rearranging and using the first conclusion above, this is

|
⋃
𝑇PTℓ

𝑌𝑘 (𝑇) | ≳ 𝛿𝜖2´ℓ𝑛
∑︁
𝑇PTℓ

|𝑇 |,

which is true from version 3 of the Kakeya conjecture. □

Proof that version 2 implies version 1. Let 𝜀 ą 0 be given, and let 𝑓 P 𝐿1
loc(R

𝑛).
Let Ω Ď S𝑛´1 be a maximal 𝛿-separated set of directions. For every 𝑒 P Ω define
𝑇𝑒 as the 𝛿-tube centered at the position that achieves the supremum

sup
𝑎PR𝑛

∫
𝑇 𝛿
𝑒 (𝑎)

| 𝑓 (𝑥) | 𝑑𝑥,

and then set T := {𝑇𝑒 : 𝑒 P Ω}. From version 2 of the conjecture,

| |
∑︁
𝑇PT

𝜒𝑇 | |𝐿𝑛 (R𝑛) ≲ 𝛿´𝜀 .

The crucial observation used is that, provided |𝑒 ´ 𝑒1 | ă 𝛿, there is some 𝐶 ą 0
such that | 𝑓 ˚

𝛿
(𝑒) | „ | 𝑓 ˚

𝐶𝛿
(𝑒1) |. Thus

| | 𝑓 ˚
𝛿 | |𝑛𝐿𝑛 (S𝑛´1) ≲

∑︁
𝑒PΩ

∫
𝑁𝛿 ({𝑒})

| 𝑓 ˚
𝛿 (𝜔) |𝑛 𝑑𝜔 ≲ 𝛿𝑛´1

∑︁
𝑒PΩ

| 𝑓 ˚
𝐶𝛿 (𝑒) |

𝑛.
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Using duality between ℓ𝑛 and ℓ𝑛1 , there exist numbers {𝑦𝑒}𝑒PΩ such that

𝛿𝑛´1
∑︁
𝑒PΩ

𝑦𝑒 𝑓
˚
𝛿 (𝑒) =

(
𝛿𝑛´1

∑︁
𝑒PΩ

| 𝑓 ˚
𝛿 (𝑒) |𝑛

)1/𝑛 (
𝛿𝑛´1

∑︁
𝑒PΩ

|𝑦𝑒 |𝑛
1

)1/𝑛1

and furthermore
𝛿𝑛´1

∑︁
𝑒PΩ

|𝑦𝑒 |𝑛
1

= 1.

In the following estimates we will abuse notation by using 𝑦𝑒 interchangably with
𝑦𝑇 , where 𝑇 P T is understood to be 𝑇𝑒 as defined above in the proof.

| | 𝑓 ˚
𝛿 | |𝐿𝑛 (S𝑛´1) ≲

(
𝛿𝑛´1

∑︁
𝑒PΩ

| 𝑓 ˚
𝛿 (𝑒) |𝑛

)1/𝑛

≲ 𝛿𝑛´1
∑︁
𝑒PΩ

𝑦𝑒 ¨ | 𝑓 ˚
𝛿 (𝑒) |

≲

∫ ∑︁
𝑇PT

𝜒𝑇 (𝑥) ¨ 𝑦𝑇 ¨ 𝑓 (𝑥) 𝑑𝑥

ď | |
∑︁
𝑇PT

𝑦𝑇 ¨ 𝜒𝑇 | |𝑛/(𝑛´1) ¨ | | 𝑓 | |𝐿𝑛 (R𝑛) .

It now remains to show that

| |
∑︁
𝑇PT

𝑦𝑇 ¨ 𝜒𝑇 | |𝑛/(𝑛´1) ≲ 𝛿
´𝜀 .

By dyadic pigeonholing, it is possible to choose a subset T1 Ď T for which

| |
∑︁
𝑇PT1

𝑦𝑇 ¨ 𝜒𝑇 | |𝑛/(𝑛´1) ⪆ | |
∑︁
𝑇PT

𝑦𝑇 ¨ 𝜒𝑇 | |𝑛/(𝑛´1)

and for which there is number 𝑁 P N such that 𝑦𝑇 „ 2𝑁 for all 𝑇 P T1. It now
follows that

| |
∑︁
𝑇PT

𝑦𝑇 ¨ 𝜒𝑇 | |𝑛/(𝑛´1) ≲ 2𝑁 ¨ | |
∑︁
𝑇PT1

𝜒𝑇 | |𝑛/(𝑛´1)

≲ 2𝑁 𝛿´𝜀 (𝛿𝑛´1#T1)1/𝑛1

„ 𝛿´𝜀

(
𝛿𝑛´1

∑︁
𝑇PT1

|𝑦𝑇 |𝑛
1

)1/𝑛1

ď 𝛿´𝜀,

and this completes the proof. □
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Proof that version 1 implies version 3. Let 𝜀 ą 0 be given, and let T be a set of
𝛿-tubes which point in 𝛿-separated directions. Let 𝑌 (𝑇) Ď 𝑇 be given for every
𝑇 P T and let 0 ă 𝜆 ă 1 be chosen so that |𝑌 (𝑇) | ě 𝜆 |𝑇 | for every 𝑇 P T. By dyadic
pigeonholing, it is possible to find a number 𝜆1 and a subset T1 Ă T for which

𝜆1 |𝑇 | ď |𝑌 (𝑇) | ă 2𝜆1 |𝑇 | for all 𝑇 P T1

and ∑︁
𝑇PT1

|𝑌 (𝑇) | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |.

The above statement implies that

𝜆1 ≳ 𝜆/log(1/𝛿). (1.2)

Let 𝑓 be the indicator function of
⋃
𝑇PT1 𝑌 (𝑇). Let Ω = {dir(𝑇) : 𝑇 P T1} and let

𝑇𝑒 P T1 be the 𝛿-tube pointing in direction 𝑒 for every 𝑒 P Ω. Now

𝜆1𝛿𝑛´1#T1
„

∑︁
𝑇PT1

|𝑌 (𝑇) | ≲
∑︁
𝑒PΩ

∫
𝑇𝑒

𝑓 (𝑥) 𝑑𝑥

≲
∑︁
𝑒PΩ

𝛿𝑛´1 𝑓 ˚
𝛿 (𝑒)

≲
∑︁
𝑒PΩ

∫
𝑁𝛿 ({𝑒})

𝑓 ˚
𝛿 (𝜔) 𝑑𝜎(𝜔)

≲ | | 𝑓 ˚
𝛿 | |𝐿𝑛 (S𝑛´1) ¨ (𝛿𝑛´1#Ω) (𝑛´1)/𝑛.

Thus, from version 1 of the conjecture,

| | 𝑓 | |𝐿𝑛 (R𝑛) ⪆ 𝜆1(𝛿𝑛´1#T1)1/𝑛.

From (1.2),

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝛿𝜀𝜆𝑛
(∑︁
𝑇PT

|𝑇 |
)
,

which is the conclusion of version 3 of the Kakeya maximal conjecture. □

1.6 Proof of the Kakeya maximal conjecture in R2

In this section, it will be shown that version 2 of the Kakeya conjecture is true for
R2. The statement to prove is the following. For every 𝜀 ą 0, there is a constant
𝐶𝜀 ą 0 such that whenever T is a set of 𝛿-tubes pointing in 𝛿-separated directions
in R2, ∫

R𝑛
|
∑︁
𝑇PT

𝜒𝑇 |2 ď 𝐶𝜀𝛿
´𝜀𝛿#T.



11

The above statement may be re-written as∫
R𝑛

∑︁
𝑇1,𝑇2PT

𝜒𝑇1𝜒𝑇2 =
∑︁

𝑇1,𝑇2PT

|𝑇1 X 𝑇2 | ď 𝐶𝜀𝛿
´𝜀 (𝛿#T)2 . (1.3)

Let 𝜀 ą 0 be given. Observe that for any two 𝛿-tubes 𝑇1 and 𝑇2, the area of the
intersection 𝑇1 X 𝑇2 depends on the angle 𝜃 = ∠(dir(𝑇1), dir(𝑇2)):

|𝑇1 X 𝑇2 | ď
𝛿2

sin 𝜃
≲
𝛿2

𝜃
.

For each dyadic number 𝜃, let

T𝜃 [𝑇1] = {𝑇2 P T : 𝜃 ď ∠(dir(𝑇1), dir(𝑇2)) ă 2𝜃}.

Since the tubes in T point in 𝛿-separated directions, #T𝜃 [𝑇1] ≲ 𝜃𝛿´1 for every
𝑇1 P T. Thus, ∑︁

𝑇1,𝑇2PT

|𝑇1 X 𝑇2 | ≲
∑︁
𝑇1PT

∑︁
𝜃

∑︁
𝑇2PT𝜃 [𝑇1]

𝛿2

𝜃

≲
∑︁
𝑇1PT

∑︁
𝜃

𝛿.

Since there are „ log(1/𝛿) possible values of 𝜃, and since there always exists a
constant 𝐶𝜀 ą 0 such that log(1/𝛿) ď 𝐶𝜀𝛿

´𝜀, this proves (1.3).

1.7 Proof that the Kakeya maximal conjecture implies the Kakeya set conjec-
ture

Slightly different versions of the following proof have been written down by Wolff
([24]) and by Tao ([21]) in collections of lecture notes. The proof will show that
version 3 of the Kakeya maximal conjecture implies that every Besicovitch set in R𝑛

has Hausdorff dimension equal to 𝑛. Since the Minkowski dimension of a set is never
less than its Hausdorff dimension, this will prove that that every Besicovitch set in
R𝑛 also has Minkowski dimension 𝑛. The reader will observe that the full strength
of the Kakeya maximal conjecture (version 3) will not be needed in the proof; rather,
the subcase of the Kakeya maximal conjecture where 𝜆 ≳ (1/log(1/𝛿))2 will be
sufficient.

Let 𝐵 be a Besicovitch set in R𝑛 and let 𝜀 ą 0 be arbitrary. The goal is to prove that
the (𝑛´ 𝜀)-dimensional Hausdorff measure H 𝑛´𝜀 (𝐵) is infinite. For each direction
𝜔 P S𝑛´1, let ℓ𝜔 be a unit line segment which is contained in 𝐵 and which points in
the direction 𝜔. For any set 𝐸 Ď R𝑛, define a measure 𝜇 by

𝜇(𝐸) =
∫
S𝑛´1

|𝐸 X ℓ𝜔 | 𝑑𝜔,
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where |𝐸 X ℓ𝜔 | is the 1-dimensional Lebesgue measure of 𝐸 X ℓ𝜔. Thus 𝜇(𝐵) = 1.
This measure is sometimes called the canonical measure associated to a Besicovitch
set.

Let 𝛿0 ą 0 be given and let U be a covering of 𝐵 by balls of any radius smaller than
𝛿0. For any 𝑘 P Z, let U𝑘 be the subcollection of balls given by

U𝑘 = {𝑈 P U : 2´𝑘´1
ă diam(𝑈) ď 2´𝑘 }

and define 𝐵𝑘 be the union of all𝑈 P U𝑘 . Since∑︁
𝑘PZ : 2´𝑘ă𝛿0

1
𝑘2 ≲ 1,

there must exist a value of 𝑘 for which

𝜇(𝐵𝑘 ) ≳
1
𝑘2 .

Fix 𝛿 := 2´𝑘 . Let T0 be the collection of 𝛿-tubes 𝑇𝜔, each defined as the 𝛿-
neighborhood of the line segment ℓ𝜔, for every 𝜔 P S𝑛´1. Observe that

𝜇(𝐵𝑘 ) = 𝛿1´𝑛

∫
S𝑛´1

∫
𝐵𝑘

1𝑇𝜔 (𝑥) 𝑑𝑥 𝑑𝜔.

Consider the following tiling of S𝑛´1: letR𝑛´1 be tiled by 𝛿-cubes given by translates
(0, 𝛿]𝑛´1 placed end-to-end and let a “tile” on the sphere be given by the image of
one of these 𝛿-cubes via the map 𝜉 ÞÑ (𝜉,

a

1 ´ |𝜉 |2) sending R𝑛´1 to the northern
hemisphere. Thus the sphere S𝑛´1 may be covered by tiles 𝜃 so that

𝜇(𝐵𝑘 ) = 𝛿1´𝑛
∑︁
𝜃

∫
𝜃

∫
𝐵𝑘

1𝑇𝜔 (𝑥) 𝑑𝑥 𝑑𝜔.

Further, it may arranged that half of all the tiles 𝜃 are removed from the sum above
without reducing the right hand side above by a factor of more than one half, so that
any two tiles are separated by a distance of at least 𝛿. For every remaining tile 𝜃,
there must exist 𝜔 P 𝜃 such that

∫
𝐵𝑘

1𝑇𝜔 (𝑥) 𝑑𝑥 ě
∫
𝜃

∫
𝐵𝑘

1𝑇𝜔 (𝑥) 𝑑𝑥 𝑑𝜔. Let T be
the subcollection of T0 consisting of this choice of 𝜔 for every tile 𝜃; then there are
„ 𝛿1´𝑛 tubes in T and they point in 𝛿-separated directions. Define a shading for
each tube 𝑇 P T by

𝑌 (𝑇) := 𝑇 X 𝐵𝑘 ,

where 𝑘 = log(1/𝛿) is the chosen value of 𝑘 above, for which 𝜇(𝐵𝑘 ) ≳ 𝑘´2. Thus∑︁
𝑇PT

|𝑌 (𝑇) X 𝐵𝑘 | ≳ 𝜇(𝐵𝑘 ) ě

(
1

log(1/𝛿)

)2
.
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Using dyadic pigeonholing, it is possible to find a refinement T1 Ď T and a number
0 ă 𝜆 ă 1 such that |𝑌 (𝑇) | „ 𝜆 |𝑇 | for every 𝑇 P T1, and further

∑
𝑇PT1 |𝑌 (𝑇) | ≳

1
log(1/𝛿)

∑
𝑇PT𝑌 (𝑇). From this, and the fact thatT1 continues to be direction separated,

it follows that 𝜆 ≳ (1/log(1/𝛿))3. With an appropriate implicit constant, it may
then be arranged that 𝜆 ≳ 𝛿𝜀/4𝑛, and if the Kakeya maximal conjecture is true,

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝛿𝜀/2,

then it follows that |𝐵𝑘 | ≳ 𝛿𝜀. Since each ball in U𝑘 has volume „ 𝛿𝑛, it must be
that #U𝑘 ≳ 𝛿

´𝑛+𝜀/2. Thus, ∑︁
𝑈PU𝑘

𝛿𝑛´𝜀
ě 𝛿´𝜀/2,

and H 𝑛´𝜀 (𝐵) = 8. This completes the proof.

1.8 Introduction to the x-ray transform estimate and sticky sets
In 1998, Wolff observed a certain estimate involving the x-ray transform, defined
below, had a close connection to the Kakeya problem ([25]). The question considered
by Wolff about the x-ray transform is written below:

Let G be the space of all lines ℓ = ℓ𝑥,𝑣 Ă R𝑛 , where 𝑥, 𝑣 are points within the unit
ball centered at the origin in R𝑛´1, and ℓ𝑥,𝑣 is parametrized by

ℓ𝑥,𝑣 = {(𝑥 + 𝑣𝑡, 𝑡) : 𝑡 P [0, 1]}.

For any function 𝑓 P 𝐿1(R𝑛), the x-ray transform 𝑋 𝑓 : G Ñ R is defined by

𝑋 𝑓 (ℓ) =
∫
ℓ

𝑓 .

For which 1 ď 𝑝, 𝑞, 𝑟 ď 8 and 𝛼 ě 0 does the estimate

| |𝑋 𝑓 | |𝐿𝑞𝜈𝐿𝑟𝑥 ď | | 𝑓 | |𝐿𝑝
𝛼
,

hold? Here 𝐿𝑝𝛼 is the Sobolev space (1 +
?

´Δ)´𝛼𝐿𝑝.

Various estimates of this kind have been proved (e.g. [25]) and more are conjectured
to hold. The relation of this question to the Kakeya problem becomes more evident
in the following equivalent formulation of a certain mixed norm x-ray estimate:
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Definition 8. We say there is an x-ray estimate at dimension 𝑑 if there exist 0 ď

𝛼, 𝛾 ď 1 for which the following statement holds: for any 𝛿-separated set Ω of
directions and any collection T of 𝛿-tubes pointing in directions in Ω, of which no
tube is contained in the tenfold dilate of another tube, the following estimate holds:

| |
∑︁
𝑇PT

𝜒𝑇 | |𝑑1 ⪅ 𝛿1´ 𝑛
𝑑𝑚1´𝛼 (𝛿𝑛´1#Ω)𝛾,

where 𝑚 is the directional multiplicity of T.

It was first observed by Katz, Łaba and Tao that an x-ray transform estimate could
be used to deduce the prevalence of special structure in “extremal” Besicovitch sets.
More precisely, the following result is proved in [17]:

Proposition 9. Suppose that an x-ray transform estimate holds at dimension 𝑑 in
R𝑛. If there exists a Besicovitch set 𝐵 satisfying dim𝑀 (𝐵) ď 𝑑 + 𝜀, then there exists
a set of 𝛿-tubes T with the following properties:

(i) The tubes in T point in 𝛿-separated directions,

(ii) There exists a set of 𝛿1/2-tubes T𝛿1/2 and a partition of T into sets T[𝑇𝛿1/2] given
by

T[𝑇𝛿1/2] = {𝑇 P T : 𝑇 Ď 𝑇𝛿1/2};

satisfying the following properties:

#T « 𝛿1´𝑛,

#T𝛿1/2 « 𝛿(1/2) (1´𝑛) and

#T[𝑇𝛿1/2] « 𝛿(1/2) (1´𝑛)

(iii) |⋃𝑇PT 𝑇 | ⪅ 𝛿𝑛´𝑑´𝜀.

(iv) |⋃𝑇
𝛿1/2PT𝛿 𝑇 | ⪅ (𝛿1/2)𝑛´𝑑´𝜀.

The proof of a slightly different version of this proposition is given in Section 4.5.

Sets of 𝛿-tubes satisfying properties (i) and (ii) in the list above are called sticky sets.
Katz-Łaba-Tao ([17]) demonstrated that sticky sets have a self-similar structure and
exploited the structural properties of sticky sets to give an improved Minkowski
dimension estimate for Besicovitch sets in R3.

Very recently, the Kakeya conjecture was proved by Wang and Zahl ([23]) in the
special case of sticky sets inR3. Chapter 4 in this thesis gives an improved Hausdorff
dimension estimate for sticky sets in higher dimensions.
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C h a p t e r 2

RECENT PROGRESS IN THE 𝑘-LINEAR KAKEYA
CONJECTURE

2.1 The multilinear Kakeya theorem
The most recent results in the higher-dimensional Kakeya problem have been proved
by means of progress on a variant of the Kakeya problem called the multilinear
Kakeya problem. The multilinear variant of the Kakeya problem was first introduced
by Benett, Carbery and Tao in [1]. The following theorem was proved up to endpoint
in [1] and the endpoint was proved by Guth in [10].

Theorem 10 (Multilinear Kakeya theorem). Let 2 ď 𝑘 ď 𝑛. There exists a constant
𝐶 so that, if T1, . . . ,T𝑘 are collections of 𝛿-tubes in R𝑛, then

| |
∑︁
𝑇1PT1

¨ ¨ ¨

∑︁
𝑇𝑘PT𝑘

(
𝜒𝑇1 ¨ ¨ ¨ 𝜒𝑇𝑘 |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |

)1/𝑘 | |𝑘/(𝑘´1)

ď 𝐶𝛿1´ 𝑛
𝑘

𝑘∏
𝑖=1

( ∑︁
𝑇𝑖PT𝑖

|𝑇𝑖 |
)1/𝑘

.

As was observed by Bourgain and Guth in 2010, the multlinear Kakeya estimates
could lead to estimates for the Kakeya maximal function, but the resulting estimates
were weaker than the maximal estimates proved previously by Wolff ([26]) using
incidence geometry techniques.

Though the multilinear Kakeya theorem is sharp, the multilinear variant of the
Kakeya problem does not impose the requirement that the 𝛿-tubes point in 𝛿-
separated directions. The direction-separated multilinear Kakeya conjecture is still
open. The best known estimates for this problem are due to Zahl ([28]). A very
similar though slightly weaker estimate was proved by Hickman-Rogers-Zhang in
[12].

Theorem 11 (Zahl, 𝑘-linear estimate). Let 2 ď 𝑘 ď 𝑛. For every 𝜖 ą 0, if T is a set
of 𝛿-tubes pointing in 𝛿-separated directions, then there is a constant 𝐶𝜖 ą 0 such
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that, for all 𝑑 ď
𝑛2+𝑛+𝑘2´𝑘

2𝑛 ,

| | (
∑︁

𝑇1,...,𝑇𝑘PT

1𝑇1 ¨ ¨ ¨ 1𝑇𝑘 |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |𝑑/(𝑑´1)

ď 𝐶𝜖𝛿
1´ 𝑛

𝑑
´𝜖 (

∑︁
𝑇PT

|𝑇 |)𝑛(𝑑´1)/(𝑛´1)𝑑 .

The next two sections (on polynomial partitioning and the polynomial Wolff axioms)
mention some of the prominent insights in the proof of the above theorem. Directly
below is a corollary of Zahl’s 𝑘-linear estimate that will be applied in Chapter 4.

Corollary 12. Let 2 ď 𝑘 ď 𝑛. For every 𝜖 ą 0, if T is a set of 𝛿-tubes satisfying
the following hypotheses:

i. The tubes in T point in 𝛿-separated directions,

ii. 𝑌 is a shading of T satisfying |𝑌 (𝑇) | ě 𝜆 |𝑇 | for every 𝑇 P T,

iii. At every point 𝑥 P
⋃
𝑇PT𝑌 (𝑇),

#{(𝑇1, . . . , 𝑇𝑘 ) P T𝑘 (𝑥)) : |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) | ą 𝛽} ≳ 1
log(1/𝛿) #T𝑘 (𝑥),

where 𝛽 ą 0 is a fixed constant that does not depend on 𝛿,

then there is a constant 𝐶𝜖 ą 0 such that for all 𝑑 ď
𝑛2+𝑛+𝑘2´𝑘

2𝑛 ,�����⋃
𝑇PT

𝑌 (𝑇)
����� ě 𝐶𝜖 𝛽𝜆

𝑑𝛿𝑛´𝑑+𝜖 (
∑︁
𝑇PT

|𝑇 |) (𝑛´𝑑)/(𝑛´1) .

Proof of Corollary 12 from Zahl’s 𝑘-linear theorem. Let 𝜖 ą 0 be given, and let T
be a set of 𝛿-tubes that obeys hypotheses i, ii and iii. Then, from condition ii,

| | (
∑︁

𝑇1,...,𝑇𝑘PT

1𝑌 (𝑇1) ¨ ¨ ¨ 1𝑌 (𝑇𝑘) |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |𝐿1 ě 𝛽1/𝑑
∑︁
𝑇PT

𝜆 |𝑇 |.

By Hölder’s inequality,

| | (
∑︁

𝑇1,...,𝑇𝑘PT

1𝑌 (𝑇1) ¨ ¨ ¨ 1𝑌 (𝑇𝑘) |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |1

ď | | (
∑︁

𝑇1,...,𝑇𝑘PT

1𝑇1 ¨ ¨ ¨ 1𝑇𝑘 |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |𝑑/(𝑑´1) ¨ |
⋃
𝑇PT

𝑌 (𝑇) |1/𝑑 .
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Applying Theorem 11 to the statement above, one obtains

𝛽𝜆𝑑 (
∑︁
𝑇PT

|𝑇 |)𝑑´𝑛(𝑑´1)/(𝑛´1)
ď 𝐶𝜖𝛿

𝑑´𝑛´𝜖 |
⋃
𝑇PT

𝑌 (𝑇) |.

Rearranging this gives the statement

|
⋃
𝑇PT

𝑌 (𝑇) | ě 𝐶𝜖 𝛽𝛿
𝑛´𝑑+𝜖𝜆𝑑 (

∑︁
𝑇PT

|𝑇 |) (𝑛´𝑑)/(𝑛´1) .

□

2.2 Polynomial partitioning method
The techniques used for proving Zahl’s 𝑘-linear estimate involve polynomial parti-
tioning, which was introduced by Guth and Katz ([11]) in 2014.

For any polynomial 𝑃 : R𝑛 Ñ R, the zero set of 𝑃, 𝑍 (𝑃) := {𝑥 P R𝑛 :
𝑃(𝑥) = 0}, partitions R𝑛 into “cells”, which are the disjoint connected com-
ponents of R𝑛z𝑍 (𝑃). Further, a 𝛿-shrunken cell is a connected component of
R𝑛z𝑁𝛿 (𝑍 (𝑃)). The “idea” of the polynomial partitioning technique is to con-
sider the contributions to the norm of the function to be bounded (in this case,
| | (∑𝑇1,...,𝑇𝑘PT 1𝑇1 ¨ ¨ ¨ 1𝑇𝑘 |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |𝑑/(𝑑´1)) from the different
cells, and from 𝑁𝛿 (𝑍 (𝑃)), which is the 𝛿-neighborhood of an algebraic variety. If
the polynomial 𝑃 is correctly chosen, the contribution to the function norm in every
cell is roughly equal. If the contribution from the cells dominates, the “cellular
case” is said to hold; alternatively, if the dominant contribution comes from the
𝛿-neighborhood of the zero set of the polynomial, then the “algebraic case” is said
to hold.

The following polynomial partitioning theorem is due to Guth.

Theorem 13. Fix 0 ă 𝛿 ă 𝑟 , 𝑥0 P R𝑛 and suppose 𝐹 P 𝐿1(R𝑛) is nonnegative and
supported on 𝐵(𝑥0, 𝑟) X 𝑁4𝛿Z where Z is an 𝑚-dimensional transverse complete
intersection with deg Z ď 𝑑. At least one of the following cases holds:

1. Cellular case. There exists a polynomial 𝑃 : R𝑛 Ñ R of degree 𝑂 (𝑑) with
the following properties:

a) #cell(𝑃) „ 𝑑𝑚 and each 𝑂 P cell(𝑃) has diameter at most 𝑟/2.

b) One may pass to a refinement of cell(𝑃) such that if H is defined as a
family of 𝛿-shrunken cells as above, then∫

𝑂

𝐹 „ 𝑑´𝑚

∫
R𝑛
𝐹 for all 𝑂 P H.
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2. Algebraic case. There exists an (𝑚 ´ 1)-dimensional algebraic variety Y of
degree at most 𝑂 (𝑑) such that∫

𝐵(𝑥0,𝑟)X𝑁4𝛿Z
𝐹 ≲ log 𝑑

∫
𝐵(𝑥0,𝑟)X𝑁𝛿𝑌

𝐹.

In the cellular case, Bezout’s theorem is used to deduce that the number of 𝛿-tubes
entering each cell can be controlled since by Bezout’s theorem, a 𝛿-tube 𝑇 can cross
𝑍 (𝑃) at most deg 𝑃 times. Thus, each 𝛿-tube 𝑇 can enter at most deg 𝑃+1 shrunken
cells. As long as the cellular case holds, each cell can be re-partitioned into smaller
cells, until the cells have radius „ 𝛿 and the contribution from each cell is bounded.

In the algebraic case, one can obtain a chain of nested algebraic varieties, of decreas-
ing dimensions, through which passing 𝛿-tubes makes the dominant contribution to
the norm of the function to be estimated. In this case, a “multi-scale” polynomial
Wolff axiom, discussed briefly in the next section, is used to estimate the maximum
number of 𝛿-tubes that lie at a tangent to several nested algebraic varieties.

2.3 Polynomial Wolff axioms
The following estimate for the cardinality of a family of direction-separated 𝛿-tubes
partially contained in a semialgebraic subset of R𝑛 is a key result used in proving
Theorem 11. The following theorem was proved for 𝑛 = 3 by Larry Guth, for 𝑛 = 4
by Zahl ([27]), and for 𝑛 ě 5 by Katz and Rogers ([16]).

Theorem 14 (Polynomial Wolff axioms). Let 𝑛 and 𝐸 be integers, with 𝑛 ě 2, and
let 𝜖 ą 0.Then there is a constant 𝐶 (𝑛, 𝐸, 𝜖) so that for every semialgebraic set
𝑆 Ă R𝑛 of complexity at most 𝐸 and for every set T of direction-separated 𝛿-tubes,
we have

#{𝑇 P T : 𝑇 X 𝑆 | ě 𝜆 |𝑇 |} ď 𝐶 (𝑛, 𝐸, 𝜖) |𝑆 |𝛿1´𝑛´𝜖𝜆´𝑛

The new feature used in Zahl’s 𝑘-linear estimate, and in Hickman-Rogers-Zhang
([12]), is the “multiscale polynomial Wolff axiom”, which provides a sharp bound
for the cardinality of a set of 𝛿-separated 𝛿-tubes that intersect several algebraic
varieties of different dimensions at once.

Theorem 15 (Multiscale polynomial Wolff axioms). For all 𝑛 ě 𝑚 ě 𝑘 ď 1 and
𝜖 ą 0, there is a constant 𝐶𝑛,𝑑,𝜖 such that

#
𝑚⋂
𝑗=𝑘

{𝑇 P T : |𝑇 X 𝐵𝜆 𝑗
X 𝑁𝜌Z 𝑗 | ě 𝜆 𝑗 |𝑇 |} ď 𝐶𝑛,𝑑,𝜖

©­«
𝑚´1∏
𝑗=𝑘

𝜌

𝜆 𝑗

ª®¬
(
𝜌

𝜆𝑚

)𝑛´𝑚

𝛿´(𝑛´1)´𝜖
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whenever 0 ă 𝛿 ď 𝑝 ď 𝜆𝑘 ď ¨ ¨ ¨ ď 𝜆𝑚 ď 1, T is a direction-separated family of
𝛿-tubes, Z 𝑗 Ă R𝑛 are 𝑗-dimensional algebraic varieties of degree ď 𝑑 and the balls
𝐵𝜆 𝑗

are nested: 𝐵𝜆𝑘 Ď . . . Ď 𝐵𝜆𝑚 Ă R𝑛.

This theorem is proved using tools from real algebraic geometry. There are some
open questions related to the polynomial Wolff axioms which, if solved, could lead
to progress in proving x-ray transform estimates at higher dimensions. Namely, is
there a cardinality bound for sets of 𝛿-tubes partially contained in the neighborhood
of an algebraic variety, which do not necessarily satisfy the hypothesis that the tubes
point in 𝛿-separated directions, but instead, satisfy the hypothesis that the directional
multiplicity of tubes is at most 𝛿´𝛽𝑛 for some number 𝛽 between 0 and 1? Such a set
of 𝛿-tubes would also have to satisfy the condition that no tube in the set contains
the 5-fold dilate of another one.
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C h a p t e r 3

NEW KAKEYA ESTIMATE FOR 𝑘-PLANY SETS

The Kakeya estimate obtained in this chapter is proved using a geometric structure
called the “𝑘-planebrush”. A planebrush structure has been used before to prove
Kakeya maximal estimates in R4 by Katz and Zahl in [14]. The planebrush is a
higher-dimensional analogue of the “hairbrush” appearing in Wolff ([26]). Wolff’s
hairbrush consisted of all 𝛿-tubes intersecting a single, central 𝛿-tube 𝑇 at large an-
gles inR3. Each 𝛿-tube passing through𝑇 at a large angle lies in the 𝛿-neighborhood
of a plane that contains the axis of 𝑇 . The 𝛿-thickened planes containing the axis
of 𝑇 are disjoint from each other away from 𝑇 , and the each tube in the hairbrush
lies in exactly one thickened 𝑘-plane. The Kakeya maximal estimate for the plane is
applied separately to each thickened plane to get a Kakeya estimate for all the tubes
in the hairbrush.

In the argument used in this chapter, the 𝑘-planebrush consist of all tubes 𝑇 1 which
intersect at least one of many tubes 𝑇 lying tangent to a (𝑘 ´ 1)-plane 𝑉 . The tubes
in the planebrush each lie in exactly one of up to 𝛿´𝑛+𝑘 𝛿-thickened 𝑘-planes that
all contain 𝑉 . Away from a neighborhood of 𝑉 , the different thickened 𝑘-planes
are disjoint, and the best known result for the Kakeya maximal conjecture in R𝑘 is
applied to separately to each thickened 𝑘-plane.

In order to ensure that each 𝑘-planebrush contains enough 𝛿-tubes to give a good
estimate, the 𝑘-planebrush technique requires the hypothesis that the collection of
T is (𝑘 ´ 1)-plany. The meaning of this term is explained below:

Definition 16 (m-Planiness). A family of 𝛿-tubes T with shading 𝑌 is called 𝑚-
plany if for every 𝛿-cube 𝑄, there exists an 𝑚-plane 𝑉 (𝑄) such that for every 𝑇 P T

satisfying 𝑌 (𝑇) X𝑄 ≠ H,
∠(𝑇,𝑉 (𝑄)) ≲ 𝛿.

The main result in this chapter is the following:

Proposition 17. Let 3 ď 𝑘 ď 𝑛. For any 𝜀 ą 0, if T is a set of (𝑘´1)-plany 𝛿-tubes
pointing in 𝛿-separated directions, and if each 𝑇 P T has a shading 𝑌 (𝑇) Ď 𝑇
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satisfying |𝑌 (𝑇) | ě 𝜆 |𝑇 |, then there exists a constant 𝐶𝜀 ą 0 such that

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝜆𝑑𝛿𝑛´𝑑+𝜀
∑︁
𝑇PT

|𝑇 |,

where 𝑑 ď
2𝑛+2´(

?
2´1)𝑘

3 .

The above result is obtained by combining the next proposition with the Kakeya
maximal estimate obtained from Hickman-Rogers-Zhang. The proof of Proposition
17 is given at the end of this chapter.

Proposition 18. Let 𝜀 ą 0. If T is a set of 𝛿-tubes satisfying the following hypothe-
ses:

i. The tubes in T point in 𝛿-separated directions,

ii. Each tube 𝑇 P 𝑇 has a subset 𝑌 (𝑇) and |𝑌 (𝑇) | ě 𝜆 |𝑇 | for all 𝑇 P T,

iii. The family T with shading 𝑌 is (𝑘-1)-plany,

then there exists a constant 𝐶𝜖 ą 0 such that�����⋃
𝑇PT

𝑌 (𝑇)
����� ě 𝐶𝜖𝛿

(𝑛´2+𝑘´𝑑 (𝑘))/3+𝜖𝜆𝑑 (𝑘)/3+1(
∑︁
𝑇PT

|𝑇 |), (3.1)

where 𝑑 (𝑘) is the largest exponent for which a Kakeya maximal estimate holds in
R𝑘 .

This proposition is proved in section 3.4 of this chapter.

3.1 Two-ends reduction
The “two-ends reduction” was first introduced by Wolff ([25]) and has been reused
by many others in proving Kakeya estimates. The proof given below imitates one
given by Tao’s lecture notes [21].

Definition 19 (Two-ends condition). Let 𝜖 ą 0. A set 𝐹 Ď R𝑛 obeys the “two-ends”
condition with exponent 𝜖 if

|𝐹 X 𝐵(𝑥, 𝑟) | ≲ 𝑟𝜖 |𝐹 |

for all balls 𝐵(𝑥, 𝑟).
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Proposition 20. Let 𝜖 ą 0. If T is a set of 𝛿-tubes satisfying the following hypothe-
ses:

i. The tubes in T point in 𝛿-separated directions,

ii. Each tube 𝑇 P 𝑇 has a subset 𝑌 (𝑇) and |𝑌 (𝑇) | ě 𝜆 |𝑇 | for all 𝑇 P T,

iii. The family T with shading 𝑌 is (𝑘-1)-plany,

iv. For every 𝑇 P T, 𝑌 (𝑇) obeys the two-ends conjecture with exponent 𝜖 ,

then there exists a constant 𝐶𝜖 ą 0 such that�����⋃
𝑇PT

𝑌 (𝑇)
����� ě 𝐶𝜖𝛿

(𝑛´2+𝑘´𝑑 (𝑘))/3+𝜖𝜆𝑑 (𝑘)/3+1(
∑︁
𝑇PT

|𝑇 |),

where 𝑑 (𝑘) is the largest exponent for which a Kakeya maximal estimate holds in
R𝑘 .

Lemma 21 (Two-ends reduction). Proposition 20 implies Proposition 18.

Proof. Let 𝜖 ą 0 be given. Suppose that Proposition 20 is true, and let T be a set of
𝛿-tubes obeying hypotheses i, ii and iii in the statement of Proposition 18. For any
tube 𝑇 P T, consider the ratio

|𝑌 (𝑇) X 𝐵(𝑥, 𝑟) |
𝑟𝜖

(‹)

where 𝐵(𝑥, 𝑟) is a ball of radius 𝑟 centered at point 𝑥. If 𝛿 ď 𝑟 ď 1, then
|𝑌 (𝑇) X 𝐵(𝑥, 𝑟) | ď 𝛿𝑛´1𝑟 ď 𝑟𝜖 , so (‹) is bounded above by 1. If 𝑟 ă 𝛿, then
|𝑌 (𝑇) X 𝐵(𝑥, 𝑟) | ≲ 𝑟𝑛 ď 𝑟𝜖 . Thus, the set{

|𝑌 (𝑇) X 𝐵(𝑥, 𝑟) |
𝑟𝜖

: 𝐵(𝑥, 𝑟) is a ball with 𝑟 ď 1
}
.

is bounded above and has a supremum. If 𝑟 = 1, and the point 𝑥 is chosen so that
𝐵(𝑥, 𝑟) contains 𝑌 (𝑇), one can see that the supremum must exceed 𝜆 |𝑇 |. For each
𝑇 P T, it is possible to choose a ball 𝐵(𝑥𝑇 , 𝑟𝑇 ) that comes within a factor of 2 of the
supremum, so that

|𝑌 (𝑇) X 𝐵(𝑥𝑇 , 𝑟𝑇 ) | ě
𝑟𝜖
𝑇
𝜆 |𝑇 |
2

. (3.2)

Since |𝑌 (𝑇) X 𝐵(𝑥𝑇 , 𝑟𝑇 ) | ≲ 𝑟𝑛𝑇 , and since 𝜆 ě 𝛿1´𝜖 , the above statement implies
that 𝑟𝑇 ≳ 𝛿. For each 𝑇 , define a new shading 𝑌1(𝑇) by

𝑌1(𝑇) = 𝑌 (𝑇) X 𝐵(𝑥𝑇 , 𝑟𝑇 ).



23

By performing dyadic pigeonholing on 𝑟𝑇 , we may choose a subcollection T1 Ď T

of tubes such that
𝜌 ď 𝑟𝑇 ă 2𝜌 for every 𝑇 P T1,

where 𝜌 is a number between 𝛿1´𝜖 and 1, and

#T1 ≳
1

log 1/𝛿#T.

Then for every 𝑇 P T1, (3.2) implies that

|𝑌1(𝑇) | ≳ 𝜌𝜖𝜆 |𝑇 | ě 𝛿𝜖𝜆 |𝑇 | ≳ 𝛿𝜖𝜆 |𝑇 X 𝐵(𝑥𝑇 , 𝑟𝑇 ) |
𝜌

. (3.3)

The intersection 𝑇 X 𝐵(𝑥𝑇 , 𝑟𝑇 ) is contained in a tube of radius 𝛿 and length 2𝜌.
By means of an isotropic linear rescaling 𝜎 which takes 𝑥 ÞÑ 𝑥/2𝜌, each set
𝑇 X 𝐵(𝑥𝑇 , 𝑟𝑇 ) may be scaled to a (𝛿/𝜌)-tube 𝑇 . Then 𝜎(𝑌1(𝑇)) Ď 𝑇 and from
(3.3),

𝜎(𝑌1(𝑇)) | ⪆
𝜆

𝜌
|𝑇 |.

We will now show that each 𝛿/𝜌-tube𝑇 with shading𝜎(𝑌1(𝑇)) satisfies the two-ends
condition. For any ball 𝐵(𝑥1, 𝑟 1), we have

|𝑌1(𝑇) X 𝐵(𝑥1, 𝑟 1) |
(𝑟 1)𝜖 ď

|𝑌 (𝑇) X 𝐵(𝑥1, 𝑟 1) |
(𝑟 1)𝜖 ď

2 ¨ |𝑌 (𝑇) X 𝐵(𝑥𝑇 , 𝑟𝑇 ) |
(𝑟𝑇 )𝜖

ď 2𝜌´𝜖 |𝑌1(𝑇) |,

because of the way 𝐵(𝑥𝑇 , 𝑟𝑇 ) were previously chosen. Re-arranging the previous
statement gives

|𝑌1(𝑇) X 𝐵(𝑥1, 𝑟 1) | ≲
(
𝑟 1

𝜌

)𝜖
|𝑌1(𝑇) |.

This implies that ��𝜎 (
𝑌1(𝑇) X 𝐵(𝑥1, 𝑟 1)

) �� ≲ (
𝑟 1

𝜌

)𝜖
|𝜎 (𝑌1(𝑇)) | ,

which means that 𝜎(𝑌1(𝑇)) obeys the two-ends condition because 𝜎(𝐵(𝑥1, 𝑟 1))
is a ball of radius 𝑟 1/𝜌. Since the number of 𝛿/𝜌 tubes 𝑇 is #T1, which is „

1/log(1/𝛿) ¨ #T, we will need to choose a subcollection T2 Ď T1 so that the re-
scaled tubes 𝑇 = 𝜎(𝑇) for 𝑇 P T2 will point in 𝛿/𝜌-separated directions. Observe
that

#T2 ≳ 𝜌
𝑛´1#T1 ⪆ 𝜌

𝑛´1#T.

We may now apply the conclusion of Proposition 20 to the rescaled tubes from T2

to get �����⋃
𝑇PT2

𝜎 (𝑌1(𝑇))
����� ě 𝐶𝜖

(
𝜆

𝜌

)𝑑 (
𝛿

𝜌

)𝑛´𝑑+𝜖
(
∑︁
𝑇PT2

|𝑇 |).
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Reversing the rescaling 𝜎, we now find�����⋃
𝑇PT2

𝑌 (𝑇)
����� ě 𝐶𝜖𝜆

𝑑𝛿𝑛´𝑑+𝜖 (#T2) (𝛿/𝜌)𝑛´1 ⪆ 𝐶𝜖𝜆
𝑑𝛿𝑛´𝑑+𝜖 (

∑︁
𝑇PT

|𝑇 |),

which is the desired conclusion for Proposition 18. □

3.2 Broad-narrow reduction
If T is a family of 𝛿-tubes with shading 𝑌 , we will say that a point 𝑥 P

⋃
𝑇PT𝑌 (𝑇) is

𝑠-narrow if there exists a unit vector 𝑣𝑥 P S𝑛´1 such that

{𝑇 P T(𝑥) : ∠(dir(𝑇), 𝑣𝑥) ď 𝑠} ě
1
2

#T(𝑥).

If this condition fails at a point 𝑥 P
⋃
𝑇PT𝑌 (𝑇), then we say that the point 𝑥 is

𝑠-broad.

Proposition 22. Let 𝜖 ą 0. If T is a set of 𝛿-tubes satisfying the following hypothe-
ses:

i. The tubes in T point in 𝛿-separated directions,

ii. Each tube 𝑇 P 𝑇 has a subset 𝑌 (𝑇) and |𝑌 (𝑇) | ě 𝜆 |𝑇 | for all 𝑇 P T,

iii. The family T with shading 𝑌 is (𝑘-1)-plany,

iv. For every 𝑇 P T, 𝑌 (𝑇) obeys the two-ends conjecture with exponent 𝜖 ,

v. There is a set 𝐸 Ď
⋃
𝑇PT𝑌 (𝑇) satisfying the condition∑︁

𝑇PT

|𝑌 (𝑇) X 𝐸 | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |,

for which any point 𝑥 P 𝐸 satisfies:

#{(𝑇1, 𝑇2) P T(𝑥) ˆ T(𝑥) : ∠(dir(𝑇1), dir(𝑇2)) ≳ 𝛿𝜖 } ≳
1

log(1/𝛿) # (T(𝑥))2 ;

then there exists a constant 𝐶𝜖 ą 0 such that�����⋃
𝑇PT

𝑌 (𝑇)
����� ě 𝐶𝜖𝛿

(𝑛´2+𝑘´𝑑 (𝑘))/3+𝜖𝜆𝑑 (𝑘)/3+1(
∑︁
𝑇PT

|𝑇 |)

where 𝑑 (𝑘) is the largest exponent for which a Kakeya maximal estimate holds.

Lemma 23 (Broad-narrow reduction). Proposition 22 implies Proposition 20.
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To prove the broad-narrow reduction, we will first make some observations on broad
and narrow points in the following simple lemmas.

Lemma 24. If a point 𝑥 P
⋃
𝑇PT𝑌 (𝑇) is 𝑠-broad, then

#
{
(𝑇1, 𝑇2) P T(𝑥) ˆ T(𝑥) : ∠(dir(𝑇1), dir(𝑇2) ą 𝑠

}
ě

3
4

# (T(𝑥))2 . (3.4)

Proof. If a point 𝑥 is 𝑠-broad with respect to (T, 𝑌 ), then one may find a set of
4𝑠-separated directions {𝑣𝑖 P S𝑛´1}𝐶𝑠1´𝑛

𝑖=1 , where 𝐶 „ 1 is a fixed constant, such that
for every 𝑖,

#{𝑇 P T(𝑥) : ∠(dir(𝑇), 𝑣𝑖) ď 𝑠} ď
1
2

#T(𝑥).

Since the set of directions {𝑣𝑖 P S𝑛´1}𝐶𝑠1´𝑛

𝑖=1 is 4𝑠-separated, we observe that if
𝑇𝑖 P {𝑇 P T : ∠(dir(𝑇), 𝑣𝑖) ď 𝑠}, 𝑇𝑗 P {𝑇 P T : ∠(dir(𝑇), 𝑣 𝑗 ) ď 𝑠}, and 𝑖 ≠ 𝑗 , then

∠(dir(𝑇𝑖), dir(𝑇𝑗 )) ě 𝑠.

The total number of ordered pairs (𝑇1, 𝑇2) P T(𝑥) ˆ T(𝑥) in which both 𝑇1 and 𝑇2

come are in the 𝑠-neighborhood of the same direction is less than 1/4 (#T(𝑥))2, and
the conclusion follows. □

Lemma 25. If T is a family of 𝛿-tubes with shading 𝑌 , there is a number 𝑠 and a set
𝐸 Ď

⋃
𝑇PT𝑌 (𝑇) such that∑︁

𝑇PT

|𝑌 (𝑇) X 𝐸 | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |

and every point 𝑝 P 𝐸 satisfies two conditions:

(i) 𝑝 is 𝑠-narrow, and

(ii) we have

#
{
(𝑇1, 𝑇2) P T(𝑥) ˆ T(𝑥) : ∠(dir(𝑇1), dir(𝑇2)) ě

𝑠

4

}
ě

3
4
(#T(𝑥))2 .

Proof. For every point 𝑝, define 𝑘 𝑝 by

𝑘 𝑝 = max
{
𝑘 P Z : D𝑣𝑝 P S𝑛´1 such that #{𝑇 P T(𝑝) : ∠(𝑣𝑝, dir(𝑇)) ≲ 2´𝑘 } ě

1
2

#T(𝑝).
}

(3.5)
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Note that this maximum must always exist since 𝑘 must lie between 0 and „

log(𝛿´1). By dyadic pigeonholing, we may choose a value of 𝑠 such that

𝑠

2
ď 2´𝑘 𝑝 ă 𝑠 (3.6)

for every point 𝑝 in a set 𝐸 Ď
⋃
𝑇PT𝑌 (𝑇), such that the Lebesgue measure of 𝐸

satisfies ∑︁
𝑇PT

|𝑌 (𝑇) X 𝐸 | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |.

We claim that every point 𝑝 P 𝐸 satisfies the two required conditions. To see
this, note from (3.5) and (3.6) that 𝑝 satisfies the first condition. For the second
condition, we observe from the definition of 𝑘 𝑝 that at every 𝑝 P 𝐸 ,

@𝑣 P S𝑛´1 : #
{
𝑇 P T(𝑝) : ∠(dir(𝑇), 𝑣) ě

𝑠

4

}
ě

1
2

#T(𝑝),

which means 𝑝 is 𝑠/4-broad. By applying the result of Lemma 24, we have

#
{
(𝑇1, 𝑇2) P T(𝑥) ˆ T(𝑥) : dir(𝑇1), dir(𝑇2) ą

𝑠

4

}
ě

3
4
(#T(𝑝))2 .

□

Proof of Lemma 23. Assume that Proposition 22 is true. Let 𝜀 ą 0 be given and let
T be a family of 𝛿-tubes that satisfies hypotheses (i)–(iv) of Proposition 20. Apply
Lemma 25 and let 𝐸 and 𝑠 be as in the statement of that lemma. For every point
𝑝 P 𝐸 , let 𝑣𝑝 P S𝑛´1 be as in (3.5). Define a new shading by

𝑌 1(𝑇) = {𝑝 P 𝑌 (𝑇) X 𝐸 : ∠(𝑣𝑝, dir(𝑇) ď 𝑠},

and correspondingly define

T1(𝑝) = {𝑇 P T : 𝑝 P 𝑌 1(𝑇)}.

From Lemma 25 we have, for every 𝑝 P 𝐸 ,

#{𝑇 P T : 𝑝 P 𝑌 1(𝑇)} ě
1
2

#T(𝑝),

and from this we can see that∑︁
𝑇PT

|𝑌 1(𝑇) | „

∫
𝐸

#T1(𝑝) 𝑑𝑝 ≳
∫
𝐸

#T(𝑝) 𝑑𝑝 „

∑︁
𝑇PT

|𝑌 (𝑇) X 𝐸 |.
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Also from Lemma 25,∑︁
𝑇PT

|𝑌 (𝑇) X 𝐸 | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |.

Combining the above two statements, we obtain∑︁
𝑇PT

|𝑌 1(𝑇) | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |. (3.7)

Next we may choose a shading 𝑌2 of T such that 𝑌2(𝑇) Ď 𝑌 1(𝑇) for every 𝑇 P T,
there is a number 0 ă 𝜆1 ă 1 such that

|𝑌2(𝑇) | „ 𝜆1 |𝑇 | for all 𝑇 P T

and in addition ∑︁
𝑇PT

|𝑌2(𝑇) | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 1(𝑇) |. (3.8)

From (3.7), (3.8) and hypothesis (ii) of Proposition 20, we can conclude that

𝜆1 ≳
𝜆

(log(1/𝛿))2 . (3.9)

It is possible to cover the upper hemisphere of S𝑛´1 with „ 𝑠1´𝑛 finitely overlapping
tiles of side length 𝑠, where a tile of side length 𝑠 means the image via the map
𝜉 ÞÑ (𝜉,

a

1 ´ |𝜉 |2) of translates of tiles [0, 𝑠)𝑛´1 tiling R𝑛´1. For each tile 𝜏 of
radius 𝑠 covering the sphere, define

T(𝜏) := {𝑇 P T : dir(𝑇) P 𝜏}.

Let 𝜏1 and 𝜏2 be two non-adjacent tiles so dist(𝜏1, 𝜏2) ą 2𝑠. If 𝑇1 P T(𝜏1) and
𝑇2 P T(𝜏2), the angle between the tubes would be greater than 2𝑠:

∠(𝑇1, 𝑇2) ą 2𝑠.

By the definition of the shading 𝑌2, this means that 𝑌2(𝑇1) X 𝑌2(𝑇2) = H. Under
the shading 𝑌2, the collections T(𝜏1) and T(𝜏2) are disjoint. Within each 𝑠-tile 𝜏
covering S𝑛´1, there are up to (𝑠/𝛿)𝑛´1 𝛿-tubes. Without loss of generality, we
may assume that the center of the tile 𝜏 is the north pole of the sphere, i.e. the
point (0, . . . , 0, 1). Perform a non-isotropic rescaling 𝜙 which takes (𝑥1, . . . , 𝑥𝑛) ÞÑ

(𝑥1/𝑠, . . . , 𝑥𝑛´1/𝑠, 𝑥𝑛). After this rescaling, 𝜙(𝑇) is contained in the 𝑛-fold dilate of
a 𝛿/𝑠-tube 𝑇 that points in the same direction as 𝑇 . Define a shading 𝑌 for each 𝑇
by

𝑌 (𝑇) := 𝜙(𝑌2(𝑇)).
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From (3.9), we have
|𝑌 (𝑇) | „ 𝜆1 |𝑇 |.

We now claim that (𝑇,𝑌 ) satisfies hypotheses (i) — (v) in the statement of Propo-
sition 22. Hypothesis (ii) has already been shown, and hypothesis (i) holds because
of the non-isotropic way in which the re-scaling 𝜙 was done. The family 𝑇 is
(𝑘 ´ 1)-plany because the family T is assumed to be (𝑘 ´ 1)-plany. For hypothesis
(iv), we observe that since 𝑌 (𝑇) obeys the two-ends condition with exponent 𝜀 for
every 𝑇 P T, so does 𝑌2(𝑇), and it follows that 𝑌 (𝑇) obeys the two-ends condition
with exponent 𝜀 as well. To show that 𝑇,𝑌 satisfy hypothesis (v), consider that at
every point 𝑝 P

⋃
𝑇PT[𝜏] 𝑌

1(𝑇), we know from Lemma 25 that

#
{
(𝑇1, 𝑇2) P T1(𝑝) ˆ T1(𝑝) : ∠(dir(𝑇1), dir(𝑇2)) ≳

𝑠

4

}
ě

3
4

#
(
T1(𝑝)

)2
.

Finally, we observe that after the rescaling,

∠(dir(𝑇1), dir(𝑇2)) ě 𝑠/4 implies that ∠(dir(𝑇1, 𝑇2) ě 𝑐𝜖𝛿
𝜖

for some 𝑐𝜖 ą 0. Thus the family (T̃, 𝑌 ) satisfies hypothesis (v), and by Proposition
22, there exists 𝐶𝜀 ą 0 such that�����⋃̃

𝑇PT̃

𝑌 (𝑇)
����� ě 𝐶𝜀 (𝛿/𝑠)𝑛´𝑑+𝜀𝜆𝑑

∑̃︁
𝑇PT̃

|𝑇 |.

Undoing the rescaling 𝜙 (which has the effect of multiplying both sides of the above
equation by 𝑠𝑛´1), we obtain the estimate������ ⋃

𝑇PT(𝜏)
𝑌2(𝑇)

������ ě 𝐶𝜀𝛿
𝑛´𝑑+𝜀𝑠´𝑛+𝑑´𝜀𝜆𝑑

∑︁
𝑇PT[𝜏]

|𝑇 |.

Sum over a collection of pairwise non-adjacent tiles covering the sphere to get�����⋃
𝑇PT

𝑌2(𝑇)
����� ě 𝐶𝜀𝛿

𝑛´𝑑+𝜀𝑠´𝑛+𝑑´𝜖𝜆𝑑
∑︁
𝑇PT

|𝑇 |.

Since 𝑠 ă 1, this estimate is stronger than the desired estimate by a factor of 𝑠´𝑛+𝑑´𝜀.
This completes the proof. □

3.3 Volume of a planebrush
In this section, an estimate will be given for the volume of 𝛿-tubes in the 𝑘-
planebrush. It will first be needed to give an estimate for the number of tubes
contained in the 𝑘-planebrush.
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Figure 3.1: A 𝑘-planebrush at a point 𝑥

Definition 26 (𝑘-planebrush). If 𝑝 P
⋃
𝑇PT𝑌 (𝑇) and 0 ă 𝜌 ă 1, a 𝑘-planebrush at

point 𝑝 and angle 𝜌 is a set of tubes

Tplanebrush(𝑝, 𝜌) = {𝑇 P T : ∠(𝑇,𝑉 (𝑝)) „ 𝜌 and D𝑇 1
P T(𝑝) : 𝑇 X 𝑇 1 ≠ H}.

Lemma 27 (Constant multiplicity refinement). Let T be a family of 𝛿-tubes pointing
in 𝛿-separated directions. Assume that every tube 𝑇 P T has a subset 𝑌 (𝑇) and
0 ă 𝜆 ă 1 is a number such that |𝑌 (𝑇) | ě 𝜆 |𝑇 | for every 𝑇 P T. Then there exists a
refinement T1 Ă T and a new shading 𝑌 1(𝑇) Ď 𝑌 (𝑇) for each 𝑇 P T1, which satisfy
the following properties:

i There is a dyadic number 𝜇 such that for every point 𝑥 P
⋃
𝑇PT1 𝑌 1(𝑇), 𝜇 ď

T(𝑥) ă 2𝜇.

ii
∑
𝑇PT1 |𝑌 1(𝑇) | ≳ (∑𝑇PT |𝑌 (𝑇) |) /log(1/𝛿)2.

iii 𝜇 ≳ 𝜆𝛿𝑛´1#T/|⋃𝑇PT𝑌 (𝑇) |.

Proof. For every integer 𝑘 between 1 and log 𝛿1´𝑛, let 𝐸𝑘 Ď
⋃
𝑇PT𝑌 (𝑇) be the set

of points with multiplicity around 2𝑘 , i.e.

𝐸𝑘 =

{
𝑝 P

⋃
𝑇PT

𝑌 (𝑇) : 2𝑘 ď #T(𝑝) ă 2𝑘+1
}
.

For each 𝑘 , define a shading 𝑌𝑘 by 𝑌𝑘 (𝑇) := 𝑌 (𝑇) X 𝐸𝑘 . For each integer ℓ between
0 and log(𝜆/𝛿), let T𝑘,ℓ be the collection of tubes 𝑇 whose for which the shading
𝑌𝑘 (𝑇) has density around 2´ℓ𝜆, i.e.

T𝑘,ℓ =

{
𝑇 P T : 2´ℓ𝜆 |𝑇 | ď |𝑌𝑘 (𝑇) | ă 2´ℓ+1𝜆 |𝑇 |

}
.
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From the definitions of 𝑘 and ℓ, one can observe that∑︁
𝑇PT

|𝑌 (𝑇) | „ #T ¨ 𝜆𝛿𝑛´1
„

log(1/𝛿)∑︁
𝑘=0

log(1/𝛿)∑︁
ℓ=0

#T𝑘,ℓ2´ℓ𝜆𝛿𝑛´1.

By the pigeonhole principle, there exists at least one pair (𝑘, ℓ) that satisfies

#T𝑘,ℓ2´ℓ𝜆𝛿´1 ≳
1

(log(1/𝛿))2 #T ¨ 𝜆𝛿´1. (3.10)

Take 𝜇 = 2𝑘 , define the shading𝑌 1 by𝑌𝑘 and define T1 as T𝑘,ℓ for this choice of 𝑘 and
ℓ. From here, points (i) and (ii) in the statement of the lemma follow immediately
from (3.10). One can also observe that

𝜇 = 2𝑘 ě
𝜆 ¨ #T𝑘,ℓ ¨ 2´ℓ𝛿𝑛´1

|⋃𝑇PT𝑌 (𝑇) |
⪆

𝜆

|⋃𝑇PT𝑌 (𝑇) |
,

which is statement (iii). □

Lemma 28 (Planebrush multiplicity). Let T be a family of direction-separated 𝛿-
tubes with shading 𝑌 that obeys the hypotheses of Proposition 22. In addition,
assume that ∑︁

𝑇PT

|𝑌 (𝑇) | ≳ 𝜆.

Then there exist an angle 𝜌 ą 0 and a point 𝑝 such that

#Tplanebrush(𝑝, 𝜌) ⪆
𝜆3 𝜌 𝛿´1

|⋃𝑇PT𝑌 (𝑇) |2
.

Proof. Let T1, 𝑌 1 be the constant multiplicity refinement of T, 𝑌 given by Lemma
27. Let 𝑝 be any point for which #T1(𝑝) ≳ 𝜇. To see that such a point 𝑝 must exist,
suppose to the contrary that at all points, #T1(𝑝) ă 𝑐𝜇 for a fixed constant 𝑐 to be
chosen later. Then it follows that∑︁

𝑇PT1

|𝑌 1(𝑇) | ď 𝑐𝜇 ¨

�����⋃
𝑇PT1

𝑌 1(𝑇)
����� ă 𝑐𝜆 ≲

𝑐
∑
𝑇PT |𝑌 (𝑇) |

log(1/𝛿)2 . (3.11)

On the other hand, by point (ii) in Lemma 27,∑︁
𝑇PT1

|𝑌 1(𝑇) | ≳
∑
𝑇PT |𝑌 (𝑇) |

log(1/𝛿)2 . (3.12)

This contradicts (3.11) if the constant 𝑐 is chosen to be smaller than the implicit con-
stant in (3.12). For such a point 𝑝, one can count the number of triples (𝑇1, 𝑄1, 𝑇2)
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where 𝑇1 is a tube whose shading intersects 𝑝 and 𝑇2 is a tube whose shading
intersects the shading of 𝑇1 in a 𝛿-cube 𝑄1. More precisely,

#{(𝑇1, 𝑄1, 𝑇2) P T1
ˆ Q ˆ T : 𝑇1 P T1(𝑝), 𝑄1 Ď 𝑌 1(𝑇1) X 𝑌 1(𝑇2)} ≳ 𝜇 ¨ 𝜆1𝛿´1

¨ 𝜇

⪆ 𝜇2𝜆𝛿´1.

By the pigeonhole principle, there exists an angle 𝜌 with 𝛿 ď 𝜌 ď 1 such that

#{(𝑇1, 𝑄1, 𝑇2) P T1
ˆ Q ˆ T : 𝑇1 P T1(𝑝), 𝑄1 Ď 𝑌 1(𝑇1) X 𝑌 1(𝑇2), ∠(𝑇2, 𝑉 (𝑝)) „ 𝜌}

⪆ 𝜇2𝜆𝛿´1.

Since the tube 𝑇1 must pass through both 𝑝 and 𝑄1, and since the tubes passing
through 𝑝 are assumed to be (1, 𝛿𝜖 )-broad, it follows that the choice of𝑄1 determines
𝑇1 entirely. Thus, for each𝑄1, there is precisely one 𝑇1 that is a triple counted in the
previous step.

#{(𝑄1, 𝑇2) P QˆT : 𝑇1 P T1(𝑝), (𝑇1, 𝑄1, 𝑇2) is a triple in the previous step } ≳ 𝜇2𝜆𝛿´1.

Since the tube 𝑇2 makes angle 𝜌 with 𝑉 (𝑝), there are „ 𝜌´1 𝛿-cubes contained
in 𝑇2 that are also contained in a 𝛿-neighborhood of 𝑉 (𝑝). Thus, for each 𝛿-tube
𝑇2 that makes angle 𝜌 with 𝑉 (𝑝), there are potentially up to 𝜌´1 cubes 𝑄1 for
which (𝑄1, 𝑇2) is a pair counted in the previous statement, i.e. a pair for which
𝑄1 Ď 𝑌 1(𝑇2) X 𝑁𝛿 (𝑉 (𝑝)) and 𝑄1 Ď 𝑌 1(𝑇1) for some 𝑇1 P T(𝑝) . It follows that

#{𝑇2 P T : D𝑇1 P T(𝑝) such that 𝑌 1(𝑇1) X 𝑌 1(𝑇2) ≠ H and ∠(𝑇2, 𝑉 (𝑝)) „ 𝜌}
⪆ 𝜇2𝜆𝛿´1𝜌.

This precisely counts the tubes in Tplanebrush(𝑝, 𝜌) and demonstrates the correct
multiplicity of tubes in the planebrush Tplanebrush(𝑝, 𝜌). □

Lemma 29 (Volume of a single planebrush). Let Tplanebrush(𝑝, 𝜌) be a planebrush
at point 𝑝 and angle 𝜌. Then⋃

𝑇PTplanebrush (𝑝,𝜌)
𝑌 (𝑇) ≳ 𝐶𝜖𝛿(𝑛´2+𝑘´𝑑 (𝑘))/3+𝜖𝜆𝑑 (𝑘)/3+1𝜌1/3.

Proof. Choose a maximal set of 𝛿/𝜌-separated points {𝛼 𝑗 } 𝑗 in the unit sphere in
the space 𝑉 (𝑝)K = {𝑣 P R𝑛 : ⟨𝑣,𝑉 (𝑝)⟩ = 0}, which is an (𝑛 ´ 𝑘 + 1)-dimensional
space. For each 𝛼 𝑗 , define a 𝑘-plane 𝑉 𝑗 by 𝑉 𝑗 = span(𝑉 (𝑝), 𝛼 𝑗 ). The resulting
collection of 𝑘-planes {𝑉 𝑗 } 𝑗 satisfies the following two conditions.
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(A) Every tube 𝑇 P Tplanebrush(𝑝, 𝜌) is contained in N𝐶2𝛿𝑉 𝑗 , with 𝐶2 „ 1, for some
𝑗 .

(B) If a point 𝑥 P R𝑛 satisfies dist(𝑥,𝑉 (𝑝)) ě 𝐶3𝜌), then 𝑥 P N𝐶2𝛿𝑉 𝑗 for at most
„ (𝐶2/𝐶3)𝑛´𝑘+1 choices of 𝑘-plane 𝑉 𝑗 .

To show that (A) holds, let 𝑇 P Tplanebrush(𝑝, 𝜌) and write dir(𝑇 1) = 𝑣 | | + 𝑣K,
where 𝑣 | | P 𝑉 (𝑝) and 𝑣K P (𝑉 (𝑝))K. Choose 𝛼 𝑗 such that ∠(𝛼 𝑗 , 𝑣K) ď 𝛽/𝜌.
This is possible because of the maximality of the set {𝛼 𝑗 }. Write 𝑣K = 𝑣1 + 𝑣2,
where 𝑣1 lies in the direction of 𝛼 𝑗 and ⟨𝑣2, 𝛼 𝑗 ⟩ = 0. Since ∠(𝑇 1, 𝑉 (𝑄0)) ď 𝜌,
|𝑣K | = sin

(
∠(𝑇 1, 𝑉 (𝑝))

)
≲ 𝜌. Now

sin
(
∠(dir(𝑇), 𝑉 𝑗 )

)
= |𝑣2 | = sin

(
∠(𝑣2, 𝑣

K)
)

¨ |𝑉K | ≲ 𝛿,

so (A) is proved.

To show (B), let a point 𝑥 satisfy dist(𝑥,𝑉 (𝑝)) ě 𝐶3𝜌). If 𝑥 = 𝑥 | | + 𝑥K, where 𝑥 | |

lies in 𝑉 (𝑝) and ⟨𝑥K, 𝑥 | |⟩ = 0, then |𝑥K | ≳ 𝐶3𝜌. Suppose that 𝑥 P N𝐶2𝛿𝑉 𝑗 for some
𝑗 . Then

dist
(
𝑥K

|𝑥K |
, 𝛼 𝑗

)
≲
𝐶2𝛽

𝐶3𝑝
. (3.13)

Since the directions {𝛼 𝑗 } are 𝛿/𝜌-separated, there are only at most „ (𝐶2/𝐶3)𝑛´𝑘+1

choices of 𝛼 𝑗 that can satisfy (3.13). This proves (B).

For each 𝑘-plane 𝑉 𝑗 , let T 𝑗 be the family of tubes given by

T 𝑗 = {𝑇 P T𝑝𝑏(𝑝, 𝜌) : 𝑇 Ă N𝐶2𝛿𝑉 𝑗 }.

Define the set 𝐸 𝑗 by
𝐸 𝑗 =

⋃
𝑇PT 𝑗

𝑌 (𝑇)zN𝐶3𝜌𝑉 (𝑄0).

By the conclusion of Lemma 21, we may assume that each tube 𝑇 P T 𝑗 satisfies

|𝑌 (𝑇) X 𝐵(𝑥, 𝐶2𝜌) | ≲ (𝐶2𝜌)𝜖1 |𝑌 (𝑇) |

for every 𝜖1 ą 0. By choosing 𝜖1 small enough,

|𝑌 (𝑇) X 𝐸 𝑗 | ≳
𝜆

2
|𝑇 |.

Summing over all 𝑇 P T 𝑗 , we obtain∫
𝐸 𝑗

∑︁
𝑇PT 𝑗

𝜒𝑌 (𝑇) ě
𝜆

2
𝛽𝑛´1#T 𝑗 . (3.14)
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On the other hand, by applying Hölder’s inequality we obtain∫
𝐸 𝑗

∑︁
𝑇PT 𝑗

𝜒𝑌 (𝑇) ď | |
∑︁
𝑇PT 𝑗

𝜒𝑇 | |𝐿𝑑 (𝑘 )1 (R𝑛) ¨ |𝐸 𝑗 |1/𝑑 (𝑘) , (3.15)

where 𝑑 (𝑘) is chosen to be the highest dimension for which a Kakeya maximal esti-
mate is known to hold inR𝑘 , and 𝑑 (𝑘)1 is the Hölder conjugate of 𝑑 (𝑘). Specifically,

𝑑 (𝑘) = max
2ďℓď𝑘

min
(
𝑘 ´ ℓ + 2,

𝑘2 + 𝑘 + ℓ2 ´ ℓ

2𝑘

)
.

We will now apply a Kakeya maximal estimate to | |∑𝑇PT 𝑗
𝜒𝑇 | |𝐿𝑑 (𝑘 )1 . Let 𝜌𝑉 𝑗

be
the orthogonal projection function from R𝑛 onto 𝑉 𝑗 . Since each 𝑇 P T 𝑗 satisfies
𝑇 Ă N𝐶2𝛿𝑉 𝑗 , we observe that ∠(𝑇,𝑉 𝑗 ) ≲ 𝐶2𝛿. This implies that 𝜌𝑉 𝑗

(𝑇) is a cylinder
of radius 𝛽 and length ≳ 𝐶´1

2 and is contained in a „ 𝐶´1
2 -dilation of a 𝛿-tube in

R𝑘 . Thus, we may write

| |
∑︁
𝑇PT 𝑗

𝜒𝑇 | |𝐿𝑑 (𝑘 )1 (R𝑛) =
©­«
∫
R𝑛´𝑘

∫
R𝑘

|
∑︁
𝑇PT 𝑗

𝜒𝑇 |𝑑 (𝑘)
1ª®¬

1/𝑑 (𝑘)1

=
©­«
∫
[´𝐶2𝛿,𝐶2𝛿]𝑛´𝑘

∫
𝑉 𝑗

|
∑︁
𝑇PT 𝑗

𝜒𝑇 |𝑑 (𝑘)
1ª®¬

1/𝑑 (𝑘)1

≲ 𝛿(𝑛´𝑘)/𝑑 (𝑘)1 ©­«
∫
𝑉 𝑗

|
∑︁
𝑇PT 𝑗

𝜒𝐶2𝜌𝑉𝑗
(𝑇) |𝑑 (𝑘)

1ª®¬
1/𝑑 (𝑘)1

.

After applying the Kakeya maximal estimate, this gives

| |
∑︁
𝑇PT 𝑗

𝜒𝑇 | |𝐿𝑑 (𝑘 )1 (R𝑛) ⪅ 𝛿
(𝑛´𝑘)/𝑑 (𝑘)1

𝛿´𝑘/𝑑 (𝑘)+1´𝜖 (𝛿𝑘´1#T 𝑗 )1/𝑑 (𝑘)1

.

Combining this estimate with (3.14) and (3.15), we obtain

𝜆

2
𝛿𝑛´1#T 𝑗 ⪅ 𝛿(𝑛´𝑘)/𝑑 (𝑘)1

𝛿´𝑘/𝑑 (𝑘)+1´𝜖 (𝛿𝑘´1#T 𝑗 )1/𝑑 (𝑘)1

¨ |𝐸 𝑗 |1/𝑑 (𝑘) ,

which simplifies to
|𝐸 𝑗 | ⪆ 𝛿𝑛´1𝜆𝑑 (𝑘)𝛿𝑘´𝑑 (𝑘)#T 𝑗 . (3.16)

Summing (3.16) over all 𝑗 and using properties (A) and (B) above, we obtain������ ⋃
𝑇PTplanebrush (𝑝,𝜌)

𝑌 (𝑇)

������ ⪆ 𝛿𝑛´1𝜆𝑑 (𝑘)𝛿𝑘´𝑑 (𝑘)#Tplanebrush(𝑝, 𝜌). (3.17)
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Combining (3.17) with Lemma 28 gives������ ⋃
𝑇PTplanebrush (𝑝,𝜌)

𝑌 (𝑇)

������
3

⪆ 𝛿𝑛´2𝜆𝑑 (𝑘)+3𝛿𝑘´𝑑 (𝑘)𝜌. (3.18)

□

3.4 Proof of k-planebrush estimate
The goal of this section is to prove Proposition 22. Below is described an algorithm
that decomposes the set of 𝛿-tubes T into a collection of “planebrushes.”

Algorithm:

Input. The input to the algorithm consists of:

(i) A number 𝛿 ą 0.

(ii) A family of 𝛿-tubes T with shading 𝑌 satisfying |𝑌 (𝑇) | ě 𝜆 |𝑇 | for
every 𝑡 P T, for some number 0 ď 𝜆 ă 1.

(iii) A shading 𝑌 1 of T satisfying 𝑌 1(𝑇) Ď 𝑌 (𝑇) for every 𝑇 P T and∑︁
𝑇PT

|𝑌 1(𝑇) | ě
𝜆

2
.

(iv) An index 𝑖, initially equal to 1.

Output. The output of the algorithm will be:

(i) A sequence (𝑝𝑖, 𝜌𝑖)𝑁𝑖=1 where 𝑝𝑖 is a point in R𝑛 and 0 ă 𝜌𝑖 ă 1 for
every 1 ď 𝑖 ď 𝑁

(ii) A collection of shadings {𝑌𝑖}𝑁´1
𝑖=0 of T

together satisfying the following properties:

(P1) The sets (“planebrushes”)
⋃
𝑇PTplanebrush (𝑝𝑖 ,𝜌𝑖) 𝑌𝑖´1(𝑇) are pairwise dis-

joint, and

(P2) The “planebrushes” together cover more than half the “incidences”,
i.e.

𝑁∑︁
𝑖=1

∑︁
𝑇PTplanebrush (𝑝𝑖 ,𝜌𝑖)

|𝑌𝑖´1(𝑇) | ě
𝜆

2
.
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The algorithm consists of the following steps:

Step 1. Apply Lemma 28 to the family (T𝑖´1, 𝑌𝑖´1) to obtain 𝑝𝑖 and 𝜌𝑖 such that

#Tplanebrush(𝑝𝑖, 𝜌𝑖) ⪆
𝜆3 𝜌𝑖 𝛿

´1

|⋃𝑇PT𝑌 (𝑇) |2
.

Step 2. Define T𝑖 := T𝑖´1zTplanebrush(𝑝𝑖, 𝜌𝑖). Define the shading 𝑌𝑖 as follows:

𝑌𝑖 (𝑇) = 𝑌𝑖´1(𝑇)z𝑁𝜌𝑖 (𝑉 (𝑝𝑖)).

For any angle 𝜃, the number of tubes making angle 𝜃 or less to the (𝑘 ´ 1)-
plane 𝑉 (𝑝𝑖) is ≲ 𝜃´𝑛+𝑘´1

𝑖
𝛿1´𝑛. If a tube 𝑇 P T𝑖 makes an angle 𝜃 to

the (𝑘 ´ 1)-plane 𝑉 (𝑝𝑖), then a 𝜌𝑖/𝜃-fraction of 𝑇 is contained in a 𝜌𝑖-
neighborhood of 𝑉 (𝑝𝑖). Therefore the maximum number of incidences
removed is∑︁
𝜃

∑︁
𝑇PT,∠(𝑇,𝑉 (𝑝𝑖))„𝜃

|𝑌𝑖 (𝑇) X 𝑁𝜌 (𝑉 (𝑝𝑖)) | ď

∑︁
𝜃

𝜃´𝑛+𝑘´1 𝜌𝑖

𝜃
𝛿𝑛´1

ď 2𝜌𝑖𝛿𝑘´1.

On the other hand, by the two ends condition,∑︁
𝜃

∑︁
𝑇PT,∠(𝑇,𝑉 (𝑝𝑖))„𝜃

|𝑌𝑖 (𝑇)X𝑁𝜌 (𝑉 (𝑝𝑖)) | ď

∑︁
𝜃

𝜃´𝑛+𝑘´1
( 𝜌𝑖
𝜃

)𝜖
𝜆𝛿𝑛´1

ď 2𝜌𝜖𝑖 𝜆𝛿
𝑘´1.

Taking the geometric mean of the two estimates above,∑︁
𝜃

∑︁
𝑇PT,∠(𝑇,𝑉 (𝑝𝑖))„𝜃

|𝑌𝑖 (𝑇) X 𝑁𝜌 (𝑉 (𝑝𝑖)) | ď 2𝜌(1+𝜖)/2
𝑖

𝜆1/2𝛿𝑘´1.

Terminate the algorithm if

𝑖∑︁
𝑗=1

𝜌
(1+𝜖)/2
𝑗

𝜆1/2𝛿𝑘´1
ě
𝜆

2
,

otherwise we observe that∑︁
𝑇PT𝑖

|𝑌𝑖 (𝑇) | ě

∑︁
𝑇PT0

|𝑌0(𝑇) | ´

𝑖∑︁
𝑗=1

𝜌
(1+𝜖)/2
𝑗

𝜆1/2
ě
𝜆

2
,

so we return to Step 1 with 𝑖 increased by 1 and repeat.
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Proof of Proposition 22. Define T0 := T and 𝑌0 := 𝑌 . Then apply the above
algorithm with beginning input (T0, 𝑌0) and starting with 𝑖 = 1.

After applying the algorithm, a collection of “planebrushes” (𝑝𝑖, 𝜌𝑖)𝑁𝑖=1 is obtained,
and from (P1), it follows that

|
⋃
𝑇PT

𝑌 (𝑇) | ě

𝑁∑︁
𝑖=1

|
⋃

𝑇PTplanebrush (𝑝𝑖 ,𝜌𝑖)
𝑌𝑖´1(𝑇) |.

By applying Lemma 29,

|
⋃
𝑇PT

𝑌 (𝑇) | ě 𝐶𝜖𝛿
(𝑛´2+𝑘´𝑑 (𝑘))/3+𝜖𝜆𝑑 (𝑘)/3+1

(
𝑁∑︁
𝑖=1

𝜌
𝑑 (𝑘)/3
𝑖

)
.

Since
𝑖∑︁
𝑗=1

𝜌𝑘 ě

𝑖∑︁
𝑗=1

𝜌
(1+𝜖)/2
𝑗

𝜆1/2𝛿𝑘´1
ě

1
2
,

we have
∑𝑁
𝑖=1 𝜌

𝑑 (𝑘)/3
𝑖

ě 1
2 , and this completes the proof. □

Proof of Proposition 18. This is given by combining Proposition 22 with Lemma
21 and Lemma 23. □

Proof of Proposition 17. Let 𝜀 ą 0 and let T, 𝑌 be as stated in the hypothesis of the
proposition. By applying Proposition 18 with

𝑑 (𝑘) = (2 ´
?

2)𝑘,

which is the estimate given by Hickman-Rogers-Zhang, we obtain the estimate

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝛿(𝑛´2+(
?

2´1)𝑘)/3+𝜀𝜆(2´
?

2)𝑘/3+1
∑︁
𝑇PT

|𝑇 |,

which is the result needed. □
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C h a p t e r 4

NEW KAKEYA ESTIMATE FOR STICKY SETS

Definition 30 (Sticky set). A set T of 𝛿-tubes pointing in 𝛿-separated directions is
sticky if, for any 𝜀 ą 0, whenever 𝛿1´𝜀 ≲ 𝜃 ă 1, there is a family T𝜃 of 𝜃-tubes
pointing in 𝜃-separated directions so that T and T𝜃 satisfy the following conditions:

i. #T ≳ 𝛿1´𝑛+𝜀,

ii. #T𝜃 ≳ 𝜃1´𝑛+𝜀, and

iii. T can be partitioned into sets

T[𝑇𝜃] := {𝑇 P T : 𝑇 Ď 𝑇𝜃},

with
#T[𝑇𝜃] ≳ (𝛿/𝜃)1´𝑛+𝜀

for every 𝑇𝜃 P T𝜃 .

The family T𝜃 in this definition will be called the 𝜃-parents of T.

The major result of the this chapter is the following proposition.

Proposition 31. For every 𝜀 ą 0, whenever T is a sticky family of 𝛿-tubes with
shading 𝑌 , which satisfies |𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 | for all 𝑇 P T,

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝛿𝑛´𝑑+(𝑑+1)𝜀,

where
𝑑 ď 0.60376707287 𝑛 + O(1).

Sections 4.1, 4.2 and 4.3 are devoted to the proof of this proposition. Section 4.4 in
this chapter gives the relation between sticky sets as defined in this thesis and sticky
Besicovitch sets as defined recently by [23]. Section 4.5 proves an x-ray transform
estimate as a corollary of Zahl’s 𝑘-linear Kakeya estimate in [28].
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4.1 Shading and refinement of sticky sets

Lemma 32 (Shading of sticky sets). Let 𝜖 ą 0 and let T be a sticky family of 𝛿-tubes.
Suppose that every 𝑇 P T has a shading 𝑌 (𝑇) Ď 𝑇 such that

|𝑌 (𝑇) | ě 𝐶𝜀𝛿
𝜀 |𝑇 |.

Then for any 𝛿 ď 𝜃 ď 𝛿1´𝜖 , there is a shading 𝑌 of the 𝜃-parent family T𝜃 such that
for every 𝑇𝜃 P T𝜃 ,

|𝑌 (𝑇𝜃) | ě 𝐶𝜀𝜃
𝜀/(1´𝜀) |𝑇𝜃 |

and 𝑌 (𝑇) Ď 𝑌 (𝑇𝜃) for every 𝑇 P T[𝑇𝜃].

Proof. For any 𝑇𝜃 P T𝜃 , define a shading by

𝑌 (𝑇𝜃) =
⋃ {

𝑄𝜃 : 𝑄𝜃 X 𝑇𝜃 X
©­«

⋃
𝑇PT[𝑇𝜃 ]

𝑌 (𝑇)ª®¬ ≠ H

}
.

Since |𝑌 (𝑇) | ě 𝐶𝜀𝛿
𝜖 |𝑇 | for every 𝑇 P T[𝑇𝜃], there are at least 𝐶𝜀𝛿´1+𝜖 𝛿-cubes in

each 𝑌 (𝑇). Thus,

#{(𝑄,𝑇) : 𝑇 P T[𝑇𝜃], 𝑄 Ď 𝑌 (𝑇)} „ 𝐶𝜀𝜃
𝑛´1𝛿´𝑛+𝜀 .

Each 𝜃-cube 𝑄𝜃 Ď 𝑇𝜃 contains at most (𝜃/𝛿) 𝛿-cubes in any one 𝛿-tube 𝑇 , so

#{(𝑄𝜃 , 𝑇) : 𝑇 P T[𝑇𝜃], 𝑄𝜃 X 𝑇 ≠ H} ď 𝐶𝜀𝜃
´1(𝜃𝑛´1𝛿1´𝑛+𝜀).

Since there are „ 𝜃𝑛´1´𝜀𝛿1´𝑛+𝜀 tubes in T[𝑇𝜃], we can conclude that there are at
least

„ 𝛿𝜀𝜃´1

𝜃-cubes 𝑄𝜃 in 𝑌 (𝑇𝜃). Since 𝜃 ď 𝛿1´𝜀, we have

𝛿𝜀 ď 𝜃𝜀 ď (𝛿1´𝜀)𝜀 = 𝛿𝑐𝜀,

where 𝑐 = 1 ´ 𝜀. This shows that |𝑌 (𝑇𝜃) | ≳ 𝛿𝜀/𝑐. □

Remark 33. Lemma 32 will need to be applied inductively, by covering a family T
of 𝛿-tubes by 𝛿1´𝜀-tubes, and then covering these by (𝛿1´𝜀)1´𝜀-tubes, and so on,
until we can work with a family of 𝛽-tubes, where 𝛽 „ 1. This means that Lemma
32 will be applied log(1/𝛿) many times. For small enough 𝛿,

(1 ´ 𝜀)log(1/𝛿)
ď (1 ´ 𝜀)1/𝜀 ≲

1
𝑒
.



39

Therefore
1

(1 ´ 𝜀)log(1/𝛿) ≳ 𝑒,

and the family of 𝛽-tubes will have a shading of density 𝛽𝑒𝜀.

A refinement of a set of 𝛿-tubes T with shading 𝑌 is a set of 𝛿-tubes T1 with shading
𝑌 1 such that T1 Ď T, 𝑌 (𝑇) Ď 𝑌 1(𝑇) for every 𝑇 P T1, and∑︁

𝑇PT1

|𝑌 1(𝑇) | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |.

Lemma 34. Let T be a sticky family of tubes with shading 𝑌 . Suppose that, for
any 𝜀 ą 0, 𝑌 satisfies the condition |𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 | for every 𝑇 P T. If T1, 𝑌 1 is a
refinement of T, 𝑌 , then T1 is also sticky.

Proof. Let 𝜀 ą 0 be given. Suppose T be a sticky family of tubes with shading 𝑌
satisfying

|𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 |

for every 𝑇 P T. Suppose that T1, 𝑌 1 is a refinement of T, 𝑌 , i.e. T1 Ď T and
𝑌 1(𝑇) Ď 𝑌 (𝑇) for every 𝑇 P T1 and∑︁

𝑇PT1

|𝑌 1(𝑇) | ≳ 1
log(1/𝛿)

∑︁
𝑇PT

|𝑌 (𝑇) |.

First, consider the cardinality of T1. Since∑︁
𝑇PT1

|𝑌 1(𝑇) | ≳ 𝛿𝑛´1+2𝜀#T,

we know that
#T1 ≳ 𝛿2𝜀#T ≳ 𝛿1´𝑛+3𝜀 .

Next, let 𝛿1´𝜀 ě 𝜃 ă 1 be any number and let T𝜃 be the 𝜃-parent family of T. Since
T1 is a subset of T, there is an inherited partition of T1 into sets

T1 [𝑇𝜃] = {𝑇 P T1 : 𝑇 Ď 𝑇𝜃}.

Now define a refinement T1
𝜃

Ď 𝑇𝜃 by

T1
𝜃 = {𝑇𝜃 P T𝜃 : T1 [𝑇𝜃] ≳ 2(𝛿/𝜃)1´𝑛+3𝜀}.

Since #T1 ≳ 𝛿1´𝑛+3𝜀, it follows that

#
(
T𝜃zT

1
𝜃

)
≲

1
2
𝜃1´𝑛+3𝜀,

so #T1
𝜃
≳ 1

2 𝜃
1´𝑛+3𝜀, which makes T1

𝜃
a valid set of 𝜃-parents for T1. This proves that

T𝜃 is sticky. □
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4.2 Extremal sticky sets
The following definitions build up the concept of an “extremal sticky set,” which
will be used in the following propositions to prove a Hausdorff dimension estimate
for sticky sets of 𝛿-tubes. Define 𝑀 (𝛿) by

𝑀 (𝛿) := inf
T,𝑌

���� ⋃
𝑇PT

𝑌 (𝑇)
����

where the infimum is taken over all sets T, 𝑌 satisfying the following conditions:

i. T is a sticky set of 𝛿 tubes, and

ii. 𝑌 is a shading of T satisfying |𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 | for every 𝑇 P T.

Define 𝜎 by

𝜎 := lim sup
𝛿Ñ0

log𝑀 (𝛿)
log 𝛿

.

Definition 35 (Extremal sticky set). For any 𝜀 ą 0, if T is a sticky set of 𝛿-tubes
with shading 𝑌 satisfying, firstly, |𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 | for every 𝑇 P T, and secondly,

|
⋃
𝑇PT

𝑌 (𝑇) | ≲ 𝛿𝑛´𝜎+𝜀 (𝛿𝜀)𝜎, (˚)

then T will be called an 𝜀-extremal sticky set, or just an 𝜀-extremal set.

From the definition of 𝜎, it is immediate that 𝜀-extremal sets of 𝛿-tubes exist, if
𝛿 is small enough, for every 𝜀 ą 0. The following two lemmas will show that
𝜀-extremal sticky sets exhibit a kind of self-similarity, provided 𝜀 is small enough.
The following notation will be used in the lemmas.

Notation. For any point 𝑥 P R𝑛, we define:

T𝜃 (𝑥) := {𝑇𝜃 P T𝜃 : 𝑥 P 𝑌𝜃 (𝑇𝜃)}

and T[𝑇𝜃] (𝑥) := {𝑇 P T[𝑇𝜃] : 𝑥 P 𝑌 (𝑇)}.

The following notation will be used to denote multiplicity:

𝜇𝛿 (𝑥) := #T(𝑥),

𝜇𝜃 (𝑥) := #T𝜃 (𝑥),

and 𝜇𝛿 [𝑇𝜃] (𝑥) := #T[𝑇𝜃] (𝑥).
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Lemma 36 (Multiplicities in extremal sticky sets). There exists 𝜀0 ą 0 such that,
for every 0 ă 𝜀 ă 𝜀0, if T is an 𝜀-extremal family of 𝛿-tubes with shading 𝑌 , then
there exists a refined shading 𝑌 1 of T (i.e. 𝑌 1(𝑇) Ď 𝑌 (𝑇) for every 𝑇 P T) such that

|𝑌 1(𝑇) | ≳ 𝛿2𝜀 |𝑇 |

for every 𝑇 P T, and whenever 𝜃 is a number satisfying 𝛿 ă 𝜃 ď 𝛿1´𝜀, there is a
family of 𝜃-tubes T𝜃 with shading 𝑌𝜃 such that

(i) (Fine multiplicity) 𝜇𝛿 (𝑝) ≳ 𝛿´𝑛+𝜎´𝜀.

(ii) (Coarse multiplicity) 𝜇𝜃 (𝑝) ≳ 𝜃´𝑛+𝜎´𝜀.

(iii) (Inner multiplicity) 𝜇𝛿 [𝑇𝜃] (𝑝) ≳ (𝜃/𝛿)´𝑛+𝜎´𝜀.

Proof. Let 𝜀 ą 0 and suppose that T is an 𝜀-extremal set of 𝛿-tubes with shading 𝑌 .
Let T1, 𝑌1 be a constant multiplicity refinement of (T, 𝑌 ) with multiplicity 𝜇𝛿. The
details of how to obtain this refinement are given below.

For every positive integer 𝑘 , let 𝐸𝑘 be the set of points at which the multiplicity of
𝛿-tubes in T is „ 2𝑘 , i.e.

𝐸𝑘 = {𝑥 P

⋃
𝑇PT

𝑌 (𝑇) : 2𝑘´1
ă #T(𝑥) ď 2𝑘 }.

Since
∑
𝑘PN |𝐸𝑘 | ¨ 2𝑘 „

∑
𝑇PT |𝑌 (𝑇) | ≳ 𝛿𝜀, there is an integer 𝑘 such that

|𝐸𝑘 | ¨ 2𝑘 ≳
1

log(1/𝛿) 𝛿
𝜀 .

Set 𝜇𝛿 := 2𝑘 for this value of 𝑘 . Now define a new shading 𝑌1 of T by

𝑌1(𝑇) = 𝑌 (𝑇) X 𝐸𝑘 , @𝑇 P T.

For every 0 ă 𝜆 ă 1, define a new family T1,𝜆 by

T1,𝜆 = {𝑇 P T : 𝜆 |𝑇 | ď |𝑌1(𝑇) | ă 2𝜆 |𝑇 |}.

By the pigeonhole principle, there exists some 𝜆 such that∑︁
𝑇PT1,𝜆

|𝑌1(𝑇) | ě
1

log(𝜃/𝛿)
∑︁
𝑇PT

|𝑌1(𝑇) | ≳
1

log(1/𝛿)2 𝛿
𝜀 . (4.1)

Let T1 := T1,𝜆 for this chosen value of 𝜆, and further observe from (4.1) that

𝜆 ≳
1

(log(1/𝛿)2 𝛿
𝜀 .
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This shows how to obtain the constant multiplicity refinement, and we now need to
show that this refinement obeys the multiplicity bound in part (i) in the statement of
this lemma. Using the hypothesis that T is an 𝜀-extremal set, we see that

|
⋃
𝑇PT1

𝑌1(𝑇) | ď |
⋃
𝑇PT

𝑌 (𝑇) | ≲ 𝛿𝑛´𝜎+𝜖 (𝛿𝜀)𝜎 .

On the other hand, from the definition of 𝜎 and because T1 is also a sticky set by
Lemma 34,

|
⋃
𝑇PT1

𝑌1(𝑇) | ≳ 𝛿𝑛´𝜎+𝜖 (𝛿𝜀)𝜎 .

Since
𝜇𝛿 ¨ |

⋃
𝑇PT1

𝑌1(𝑇) | „

∑︁
𝑇PT1

|𝑌1(𝑇) | ≳ 𝛿2𝜀,

we conclude that
𝜇𝛿 ≳ 𝛿

´𝑛+𝜎´𝜖 (𝛿𝜀)1´𝜎 . (4.2)

Fix a tube𝑇𝜃 P T𝜃 and consider the set of 𝛿-tubes T1 [𝑇𝜃] with shading𝑌 1. Let T1 [𝑇𝜃]
be a constant multiplicity refinement of T1 [𝑇𝜃] with shading 𝑌1 and multiplicity
𝜇𝛿 [𝑇𝜃]. (The details of how to obtain the constant multiplicity refinement are very
similar to those given in detail for T above, so they are not repeated.) We will prove
an upper bound on 𝜇𝛿 [𝑇𝜃] by observing the structure of the set T1 [𝑇𝜃].

Let 𝑒 = dir(𝑇𝜃). Let 𝜙 : R𝑛 Ñ R𝑛 be the anisotropic rescaling defined by

𝜙(𝑥) = 𝑥 ¨ 𝑒 + 𝑥 ¨ 𝑒K

𝜃
.

Observe that 𝜙(𝑇𝜃) equals a cylinder of radius 1 and length 1. Every 𝛿-tube 𝑇 in
T1 [𝑇𝜃] no longer has the shape of a tube. Since ∠(dir(𝑇), 𝑒) ≲ 𝜃, we know that
|dir(𝑇) ¨ 𝑒K | ≲ 𝜃, and thus |𝜙(dir(𝑇)) | ď 2. This implies that 𝜙(𝑇) is contained in
the 2-fold dilate of a 𝛿/𝜃-tube 𝑇 which has the same center as 𝑇 but points in the
direction as the vector 𝜙(dir(𝑇)). Similarly 𝑇 is contained in the 2-fold dilate of
𝜙(𝑇). Through the identification 𝜙(𝑇) ÞÑ 𝑇 , one may speak of 𝜙(𝑇) as a 𝛿/𝜃-tube,
which we will now do by an abuse of notation. Let T̃𝛿/𝜃 denote the collection of
𝛿/𝜃-tubes 𝜙(𝑇) contained in 𝜙(𝑇𝜃).

Since T1 [𝑇𝜃] consists of tubes pointing in 𝛿-separated directions, 𝑇𝛿/𝜃 consists of
(𝛿/𝜃)-tubes which are (𝛿/𝜃)-separated, It will be now shown that T̃𝛿/𝜃 is a sticky
family of 𝛿/𝜃-tubes. To see this, consider the setT1 [𝑇𝜃] and let 𝜂 be an “intermediate”
scale, i.e. let 𝛿 ă 𝜂 ă 𝜃. Since T is sticky, there is an 𝑒𝑡𝑎-parent family T𝜂 of
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𝜂-tubes covering every 𝑇 P T. There are „ 𝜂1´𝑛+𝜖 𝜂-tubes in T𝜂, which means that
for all except at most 𝜃´𝜖 𝜃-tubes 𝑇𝜃 , there are 𝜃𝑛´1𝜂1´𝑛 𝜂-tubes covering all T(𝑇𝜃).
Finally, observe that if an 𝜂-tube𝑇𝜂 contains a 𝛿-tube𝑇 P T1 [𝑇𝜃], then ∠(𝑇𝜂, 𝑇𝜃) ≲ 𝜃,
and thus 𝑇𝜂 is contained in a 2-fold dilate of 𝑇𝜃 .

Applying the rescaling 𝜙 to each 𝑇𝜂, one sees that 𝜙(𝑇𝜂) is an 𝜂/𝜃-tube containing
« 𝜂𝑛´1(𝛿/𝜃)1´𝑛 (𝛿/𝜃)-tubes in it. This shows that the family 𝑇𝛿/𝜃 is sticky.

For every 𝑇 P T̃𝛿/𝜃 , let 𝑌 be the shading given by

𝑌 (𝑇) = 𝜙(𝑌1(𝑇)).

By the definition of 𝜎, and also because |𝑌 (𝑇) | ≳ 𝛿2𝜀 |𝑇 | for every 𝑇 P T[𝑇𝜃], we
know that

|
⋃

𝑇PT̃𝛿/𝜃

𝑌 (𝑇) | ≳ (𝛿/𝜃)𝑛´𝜎+𝜖 (𝛿2𝜀)𝜎 .

Since
𝜇𝛿 [𝑇𝜃] ¨ |

⋃
𝑇PT̃𝛿/𝜃

𝑌 (𝑇) | «

∑︁
𝑇P𝑇𝛿/𝜃

|𝑌 (𝑇) | „ 𝛿2𝜀,

we conclude that
𝜇𝛿 [𝑇𝜃] ≲ (𝛿/𝜃)´𝑛+𝜎´2𝜀 (𝛿2𝜀)1´𝜎 . (4.3)

Now consider the set of tubes T𝜃 , which is the 𝜃-parent family to the set T1. Let 𝑌𝜃
be the shading for T𝜃 that is given by applying Lemma 32 to (T1, 𝑌 1). Let T𝜃,1, 𝑌𝜃,1
be a constant multiplicity refinement of (T𝜃 , 𝑌𝜃) with multiplicity 𝜇𝜃 . Then since
T𝜃,1 is sticky, we have, using the definition of 𝜎 as above,

𝜇𝜃 ≲ 𝜃
´𝑛+𝜎´𝜖 (𝜃𝑒𝜖 )1´𝜎 . (4.4)

Finally, by taking another refinment of T𝜃,2 of T𝜃,1, it is possible to ensure that for
all 𝑇𝜃 P T𝜃,2,

𝜇𝛿 [𝑇𝜃] „ 𝜇𝛿 [T𝜃]

for a constant 𝜇𝛿 [T𝜃], which also satisfies

𝜇𝛿 [T𝜃] ≲ (𝛿/𝜃)´𝑛+𝜎´2𝜀 (𝛿2𝜀)1´𝜎 . (4.5)

We will use the observation that at a point 𝑥,

𝜇𝛿 (𝑥) ď 𝜇𝜃 (𝑥) ¨ 𝜇𝛿 [𝑇𝜃] (𝑥).
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For this observation to be applicable, it is necessary to take a refinement T2, 𝑌2 of
T1, 𝑌1 such that ⋃

𝑇PT2

𝑌2(𝑇2) Ď

⋃
𝑇𝜃PT𝜃,2

𝑌𝜃 (𝑇𝜃).

Now putting together (4.2), (4.4) and (4.5), and using the observation at any point
𝑥, and for any tube 𝑇𝜃 P T𝜃 , we can conclude the following statements:

𝜇𝛿 ≳ 𝛿
´𝑛+𝜎´𝜖 (𝛿𝜀)1´𝜎

𝜇𝜃 ≳ 𝜃
´𝑛+𝜎´𝜖 (𝛿𝜀)1´𝜎

𝜇𝛿 [T𝜃] (𝑥) ≳ (𝛿/𝜃)´𝑛+𝜎´𝜀 (𝛿𝜀)1´𝜎 .

□

Lemma 37 (Self-similarity of extremal sticky sets). There exists 𝜀0 ą 0 such that
for any 0 ă 𝜀 ă 𝜀0, if T is an 𝜀-extremal family of 𝛿-tubes with shading 𝑌 , then the
𝜃-parent family T𝜃 , with the induced shading from Lemma 32, is 𝜀(1 ´ 𝜀)-extremal,
provided 𝛿 ă 𝜃 ď 𝛿1´𝜀.

Proof. This is a direct consequence of Lemma 36. Let 𝜀 ą 0 and suppose that T
is an 𝜀-extremal family of 𝛿-tubes with shading 𝑌 . Let T𝜃 be the 𝜃-parent set of T
and let 𝑌𝜃 be the shading given by Lemma 32. By Lemma 36, there is a refinement
T1, 𝑌 1 of T, 𝑌 and a refinement T1

𝜃
, 𝑌 1
𝜃

of T𝜃 , 𝑌𝜃 such that for all 𝑥 P
⋃
𝑇PT1 𝑌 1(𝑇), and

any 𝑇𝜃 P T1
𝜃
(𝑥),

𝜇(𝑥) „ 𝜇 ≳ 𝛿´𝑛+𝜎´𝜀

𝜇𝜃 (𝑥) „ 𝜇𝜃 ≳ 𝜃
´𝑛+𝜎´𝜀

𝜇𝛿 [𝑇𝜃] (𝑥) „ 𝜇𝛿 [T1
𝜃] ≳ (𝛿/𝜃)´𝑛+𝜎´𝜀,

for some numbers 𝜇, 𝜇𝜃 and 𝜇𝛿 [T1
𝜃
]. Since we have

𝜇𝜃 ¨ |
⋃
𝑇PT1

𝑌 1(𝑇) | „

∑︁
𝑇PT1

|𝑌 1(𝑇) | ≳ 𝛿𝜀
∑︁
𝑇PT

|𝑌 (𝑇) | ≳ 𝛿2𝜀,

it follows that
|
⋃
𝑇PT1

𝑌 1(𝑇) | ≲ 𝜃2𝜀(1´𝜀)𝜃𝑛´𝜎+𝜀,

which is the desired conclusion. □



45

Lemma 38 (Balanced cover). For any 𝜀 ą 0, if T is an 𝜀-extremal sticky set of
𝛿-tubes with shading𝑌 and if T𝜃 is the 𝜃-parent set of T for some 𝛿1´𝜀 ď 𝜃 ď 𝛿1´2𝜀,
and if 𝑌𝜃 is the shading of T𝜃 induced by Lemma 32, then there are refinements
(T1, 𝑌 1) of (T, 𝑌 ) and (T1

𝜃
, 𝑌 1
𝜃
) of (T𝜃 , 𝑌𝜃) such that every 𝜃-cube𝑄𝜃 P

⋃
𝑇𝜃PT1

𝜃
𝑌 1
𝜃
(𝑇𝜃)

contains „ (𝜃/𝛿)𝜎´𝜀 𝛿-cubes in
⋃
𝑇PT𝑌 (𝑇).

Proof. Let 𝜀 ą 0 be given. Let T, 𝑌 ,T𝜃 and 𝑌𝜃 be as described in the hypothesis in
the lemma statement. Since (T, 𝑌 ) is 𝜀-extremal, the number of 𝛿-cubes contained
in

⋃
𝑇PT𝑌 (𝑇) is ≲ 𝛿´𝜎+𝜀. By Lemma 37, the number of 𝜃-cubes in

⋃
𝑇𝜃PT𝜃 𝑌𝜃 (𝑇𝜃)

is ≲ 𝜃´𝜎+𝜀 . By dyadic pigeonholing, there is a set 𝐸 Ď
⋃
𝑇𝜃PT𝜃 𝑌𝜃 (𝑇𝜃) such that

every 𝜃-cube 𝑄𝜃 contained in 𝐸 contains „ 𝑁 𝛿-cubes and∑︁
𝑇𝜃PT𝜃

|𝑌𝜃 (𝑇𝜃) X 𝐸 | ≳ 𝜃𝜀
∑︁
𝑇PT𝜃

|𝑌𝜃 (𝑇𝜃) |.

Define a new shading of T𝜃 by 𝑌 1
𝜃
(𝑇𝜃) := 𝑌𝜃 (𝑇𝜃) X 𝐸 for every 𝑇𝜃 P T𝜃 . Define a

subset T1
𝜃

Ď T𝜃 so that |𝑌 1
𝜃
(𝑇𝜃) | „ 𝜆𝜃 |𝑇𝜃 | for all 𝑇𝜃 P T𝜃 and∑︁

𝑇𝜃PT1
𝜃

|𝑌 1
𝜃 (𝑇𝜃) | ≳ 𝜃2𝜀

∑︁
𝑇PT𝜃

|𝑌𝜃 (𝑇𝜃) |.

It follows that (#T1
𝜃
) ¨𝜆𝜃 ¨ |𝑇𝜃 | ≳ 𝜃3𝜀, which allows us to conclude that #T1

𝜃
≳ 𝜃3𝜀#T𝜃

and 𝜆𝜃 ≳ 𝜃3𝜀. Now define a refined shading of T, 𝑌 by

𝑌 1(𝑇) := 𝑌 (𝑇) X 𝐸,

and take T1 Ď T such that |𝑌 1(𝑇) | „ 𝜆 |𝑇 | for all 𝑇 P T1, all so that∑︁
𝑇PT1

|𝑌 1(𝑇) | ≳ 𝛿𝜀
∑︁
𝑇PT

|𝑌 (𝑇) |.

Similarly, it follows that #T ≳ 𝛿𝜀#T and 𝜆 ≳ 𝛿𝜀. From the definition of 𝜎, we know
that

⋃
𝑇PT1 𝑌 1(𝑇) contains at least 𝛿´𝜎+𝜀 𝛿-cubes. But since T, 𝑌 was 𝜀-extremal,

the number of 𝛿-cubes in
⋃
𝑇PT1 𝑌 1(𝑇) must be „ 𝛿´𝜎+𝜀. Similarly, the number

of 𝜃-cubes in
⋃
𝑇𝜃PT1

𝜃
𝑌 1
𝜃
(𝑇𝜃) is „ 𝜃𝜎𝜀 . Every 𝜃-cube in

⋃
𝑇𝜃PT1

𝜃
𝑌 1
𝜃
(𝑇𝜃) contains the

same number of delta cubes, so 𝑁 „ (𝛿/𝜃)´𝑑+𝜖 . □

4.3 Kakeya estimate for sticky sets

Lemma 39. If T𝛽 is a set of 𝛽-tubes that point in 𝛽-separated directions, with 𝛽 „ 1,
and 𝑌𝛽 is a shading of T𝛽, then there is a refinement T1

𝛽
, 𝑌 1
𝛽

such that one of the
following cases holds:
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(a) (T1
𝛽
, 𝑌 1
𝛽
) is (𝑘 ´ 1)-plany.

(b) At every point 𝑥 P
⋃
𝑇𝛽PT1

𝛽
𝑌 1
𝛽
(𝑇𝛽),

#
{
((𝑇1, . . . , 𝑇𝑘 ) P

(
T1
𝛽 (𝑥))𝑘

)
: |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) | ą 𝛽𝑘

}
≳ #(T1

𝛽 (𝑥))𝑘 .
(4.6)

Proof. Let T𝛽 be a set of 𝛽-tubes that point in 𝛽-separated directions, and let 𝑌𝛽 be
a shading of T𝛽. We will say that a point 𝑥 P

⋃
𝑇𝛽PT𝛽 𝑌𝛽 (𝑇𝛽) satisfies the 𝑘-plane

condition if there exists a (𝑘 ´ 1)-plane 𝑉 (𝑥) such that

#{𝑇𝛽 P T𝛽 (𝑥) : ∠(dir(𝑇𝛽), 𝑉 (𝑥)) ≲ 𝛽} ≳
1
𝑁

#T𝛽 (𝑥), (4.7)

where 𝑁 is any number greater than 𝑘 . For example, one could use 𝑁 = 𝑛. Observe
that at any point 𝑥 P

⋃
𝑇𝛽PT𝛽 𝑌𝛽 (𝑇𝛽) which does not satisfy the 𝑘-plany condition,

the condition (4.6) is satisfied. To see this, let {𝑉𝑖} be a maximal collection of
„ 𝛽-separated (𝑘 ´ 1)-planes, all passing through the point 𝑥, in R𝑛. We may
partition T𝛽 (𝑥) into sets

T𝛽 (𝑥) [𝑉𝑖] := {𝑇𝛽 P T𝛽 (𝑥) : ∠(dir(𝑇𝛽, 𝑉𝑖) ≲ 𝛽}.

If 𝑇1 is chosen from T𝛽 (𝑥) [𝑉𝑖1], . . ., and 𝑇𝑘 is chosen from T𝛽 (𝑥) [𝑉𝑖𝑘 ], and if
𝑖1, . . . , 𝑖𝑘 are pairwise distinct, then

|dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) | ≳ 𝛽𝑘 .

Since 𝑥 does not satisfy the 𝑘-plany condition, there are at least

(1 ´
1
𝑁
) ¨ (1 ´

2
𝑁
) ¨ ¨ ¨ (1 ´

𝑘

𝑁
) ¨ (#T𝛽 (𝑥))𝑘

such 𝑘-tuples that can be chosen, and this shows (4.6). Denote

𝐸 = {𝑥 P

⋃
𝑇𝛽PT𝛽

𝑌𝛽 (𝑇𝛽) : 𝑥 satisfies the 𝑘-plany condition}.

Now we will consider two cases separately. First, suppose it is the case that∑︁
𝑇𝛽PT𝛽

|𝑌𝛽 (𝑇𝛽) X 𝐸 | ě
1
2

∑︁
𝑇𝛽PT𝛽

|𝑌𝛽 (𝑇𝛽) |. (4.8)

Then we will define

𝑌 1
𝛽 (𝑇𝛽) = {𝑥 P 𝑌𝛽 (𝑇𝛽) X 𝐸 : ∠(dir(𝑇𝛽), 𝑉 (𝑥)) ≲ 𝛽}
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and define T1
𝛽
= T𝛽, and now (T1

𝛽
, 𝑌 1
𝛽
) is (𝑘 ´ 1)-plany, so condition (a) holds. On

the other hand, if (4.8) is not true, then it must be that∑︁
𝑇𝛽PT𝛽

|𝑌𝛽 (𝑇𝛽)z𝐸 | ě
1
2

∑︁
𝑇𝛽PT𝛽

|𝑌𝛽 (𝑇𝛽) |.

In this case we will define
𝑌 1
𝛽 (𝑇𝛽) = 𝑌𝛽 (𝑇𝛽)z𝐸

and T1
𝛽
= T𝛽, and now condition (b) is satisfied. □

Proposition 40. Let 3 ď 𝑘 ď 𝑛. For every 𝜀 ą 0, whenever T is a sticky family
of 𝛿-tubes with shading 𝑌 , which satisfies |𝑌 (𝑇) | ≳ 𝛿𝜀 |𝑇 | for all 𝑇 P T, there exists
𝐶 ą 0 such that

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝛿𝑛´𝑑+𝐶𝜀,

where

𝑑 ď max
3ď𝑘ď𝑛

min
(
2𝑛 + 2 ´ (

?
2 ´ 1)𝑘

3
,
𝑛2 + 𝑘2 + 𝑛 ´ 𝑘

2𝑛

)
.

Proof. Fix 3 ď 𝑘 ď 𝑛. The proof is by induction on the scale 𝛿. In the base case,
the hypothesis is that T is a family of 𝛽-tubes, where 𝛽 „ 1 is the constant appearing
in the definition of 𝑘-linear tubes. By Lemma 39, T is either (𝑘 ´ 1)-plany, or else
satisfies (4.6). If T is (𝑘 ´ 1)-plany, Proposition 18 gives the result. If T satisfies
(4.6), the result is given by Corollary 12 with 𝐶 = 𝑑 + 1.

The induction hypothesis is the following: for every 𝜀 ą 0 and every 𝜃 in the interval
[𝛿/𝛽, 𝛽), if

(i) T𝜃 is a sticky set of 𝜃-tubes with shading 𝑌𝜃 , and

(ii) |𝑌𝜃 (𝑇𝜃) | ≳ 𝜃𝜀 |𝑇𝜃 | for all 𝑇𝜃 P T𝜃 ,

then there is a constant 𝐶𝜀 ą 0 such that����� ⋃
𝑇𝜃PT𝜃

𝑌𝜃 (𝑇𝜃)
����� ě 𝐶𝜀𝜃

𝑛´𝑑+(𝑑+1)𝜀 .

Let 𝜀 ą 0 and assume that T is a sticky family of 𝛿-tubes, with shading 𝑌 , such that
|𝑌 (𝑇) | ě 𝛿𝜀 |𝑇 | for all 𝑇 P T.

From the definition of 𝜎, it is enough to consider the case where (T, 𝑌 ) is an 𝜀-
extremal family of 𝛿-tubes. Since T is sticky, it is possible to cover T by a family
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T𝜃 of 𝜃-tubes pointing in 𝜃-separated directions, with 𝜃 = 𝛿/𝛽. Let 𝑌𝜃 be the
shading given by Lemma 32. By Lemma 37, the family (T𝜃 , 𝑌𝜃) admits a refinement
(T1

𝜃
, 𝑌 1
𝜃
) which is 𝜀(1 ´ 𝜀)-extremal. Since (T, 𝑌 ) is 𝜀-extremal and (T1

𝜃
, 𝑌 1
𝜃
) is

𝜖 (1 ´ 𝜀)-extremal,

|
⋃
𝑇PT

𝑌 (𝑇) | ≲ 𝛿𝑛´𝜎+(𝜎+1)𝜀 and |
⋃
𝑇𝜃PT1

𝜃

𝑌 1
𝜃 (𝑇𝜃) | ≲ 𝜃𝑛´𝜎+(𝜎+1)𝜀(1´𝜀) . (4.9)

By Lemma 38, there is a refinement (T1, 𝑌 1) of (T, 𝑌 ) and a refinement (T2
𝜃
, 𝑌2
𝜃
) of

(T1
𝜃
, 𝑌 1
𝜃
), and a number 𝑁 ą 0 such that

|
⋃
𝑇PT1

𝑌 1(𝑇) X𝑄𝜃 | „ 𝑁𝛿𝑛 (4.10)

for all 𝜃-cubes 𝑄𝜃 Ă
⋃
𝑇𝜃PT2

𝜃
𝑌2
𝜃
(𝑇𝜃). From the definition of 𝜎,

|
⋃
𝑇𝜃PT2

𝜃

𝑌2
𝜃 (𝑇𝜃) | ≳ 𝜃𝑛´𝜎+(𝜎+1)𝜀 .

This statement, together with (4.10) and (4.9), gives the conclusion that

(𝛿/𝜃)´𝜎+(𝜎+1)𝜀
„ 𝛽´𝜎+(𝜎+1)𝜀 ≲ 𝑁 ≲ 𝛽´𝜎+(𝜎+1)𝜀𝜃´(𝜎+1)𝜀2

.

By the induction hypothesis,

|
⋃
𝑇𝜃PT2

𝜃

𝑌2
𝜃 (𝑇𝜃) | ě 𝐶𝜀𝜃

𝑛´𝑑+(𝑑+1)𝜀 .

With (4.9), this implies that 𝜎 ´ (𝜎 ´ 1)𝜀 + (𝜎 ´ 1)𝜀2 ě 𝑑 ´ (𝑑 ´ 1)𝜀 and thus
𝑁 ≳ 𝛽´𝑑+(𝑑+1)𝜀´(𝜎+1)𝜀2 . Together with (4.10) and the induction hypothesis, this
gives

|
⋃
𝑇PT

𝑌 (𝑇) | ≳ 𝐶𝜖𝛿𝑛´𝑑+(𝑑+1)𝜖 𝛽(𝜎+1)𝜀2
.

If 𝛽 is chosen to be small enough that 𝛽(𝜎+1)𝜀2 times the implicit constant in the
statement above is smaller than 1, this closes the induction. □

The proof of Proposition 31 follows immediately from this result.

Proof of Proposition 31. Let 𝜀 ą 0 and let T, 𝑌 be as in the hypothesis of the
proposition. The result follows immediately by finding the value of 𝑘 for which the
maximum is obtained in the following expression:

max
3ď𝑘ď𝑛

min
(
2𝑛 + 2 ´ (

?
2 ´ 1)𝑘

3
,
𝑛2 + 𝑘2 + 𝑛 ´ 𝑘

2𝑛

)
.
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The optimal value of 𝑘 is given by

𝑘 =
1 ´

?
2 +

a

6 ´ 2
?

2
3

𝑛 + O(1) « 0.45555915723 𝑛 + O(1).

This gives
𝑑 ě 0.60376707287 𝑛 + O(1).

In the worst case scenario, given any 𝜀 ą 0, there are infinitely many dimensions
for which 𝑑 ď 0.60376707287 𝑛 + O(1) ´ 𝜀. □

4.4 Relation to sticky sets in Wang-Zahl
Recently, Wang and Zahl introduced the concept of a sticky Besicovitch set using the
packing definition of Besicovitch sets ([23]). In this section of the paper, the relation
between sticky sets of 𝛿-tubes and sticky Besicovitch sets as defined by Wang and
Zahl is outlined. A version of this result is proved in [23].

Definition 41. A sticky Besicovitch set is a compact set 𝐾 Ď R𝑛 obeying the
following hypotheses: there is a set of lines 𝐿 in R𝑛 such that

i. 𝐿 has a line in every direction,

ii. 𝐾 X ℓ contains a unit line segment for every ℓ P L, and

iii. 𝐿 has packing dimension 𝑛 ´ 1.

Let L be the set of all lines in R𝑛. Every non-vertical line ℓ P L can be represented
as

ℓ = (a, 0) + R𝑒

where 𝑒 P S𝑛´1 and a P R𝑛´1. In this section ℓ will be represented as

ℓ = (aℓ, 𝑒ℓ).

The distance between two lines ℓ and ℓ1 in L is defined by

dist(ℓ, ℓ1) = |aℓ ´ aℓ1 | + ∠(𝑒ℓ, 𝑒ℓ1).

A measure 𝜆 is defined on L to be the product of the Lebesgue measure on R𝑛´1

and the normalized surface measure 𝜈 on S𝑛´1. With these definitions, the packing
dimension of a set 𝐿 Ď L agrees with its upper modified box dimension.
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Proposition 42. For any 𝜀 ą 0, if 𝐾 is a sticky Besicovitch set in R𝑛, then there
exists 𝛿0 ą 0 such that

(1) for any 𝛿 ă 𝛿0, there is a set of 𝛿-tubes T which is sticky; and

(2) if dim𝐻 (𝐾) = 𝑑, then there is a shading𝑌 (𝑇) satisfying𝑌 (𝑇) | ≳
(
log(1/𝛿)

)´2 |𝑇 |
for every 𝑇 P T, such that ⋃

𝑇PT

𝑌 (𝑇) ≲ 𝛿𝑛´𝑑+𝜀 .

Proof. Let 𝜖 ą 0 be given and let 𝐾 be a sticky Besicovitch set. Since the packing
dimension of 𝐿 coincides with its upper modified box dimension, 𝐿 can be written
as a countable union of closed sets {𝐿𝑖} such that

dim𝑀 (𝐿𝑖) ď 𝑛 ´ 1 + 𝜀
4

for all 𝑖. There exists an index 𝑖 for which 𝜈
(
dir(𝐿𝑖)

)
ą 0. From the upper Minkowski

dimension of 𝐿𝑖, there eixsts 𝛿1 ą 0 such that for all 𝛿 ă 𝛿1,

𝜆(𝑁𝛿 (𝐿𝑖)) ď 𝛿(2𝑛´2)´(𝑛´1)´𝜀/2.

We will say that a direction 𝑒 P S𝑛´1 is over-represented at scale 𝛿 if

|{a P R𝑛´1 : (a, 𝑒) P 𝑁𝛿 (𝐿𝑖)}| ą 𝛿𝑛´1´𝜀 .

By Fubini’s theorem, it follows that

𝜈
(
{𝑒 P S𝑛´1 : 𝑣 is over-represented at scale 𝛿}

)
ď 𝛿𝜀/2.

By making 𝛿1 smaller if necessary, we can then ensure that∑︁
dyadic 𝛿:𝛿ă𝛿1

𝜈
(
{𝑒 P S𝑛´1 : 𝑣 is over-represented at scale 𝛿}

)
ď

1
2
𝜈(dir(𝐿𝑖)).

Now define a subset 𝐿1 Ď 𝐿𝑖 by

𝐿1 = 𝐿𝑖z
⋃

dyadic 𝛿:𝛿ă𝛿0

dir´1 ({𝑒 P S𝑛´1 : 𝑣 is over-represented at scale 𝛿}
)
.

By the definition of Hausdorff dimension, there exists a number 𝛿0 ą 0 (which we
can ensure is smaller than 𝛿1 above) and a cover Q of 𝐾 , where

Q =
⋃

dyadic𝛿:𝛿ă𝛿0

Q𝛿,
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where Q𝛿 is a collection of 𝛿-cubes and

#Q𝑘 ≲ 𝛿
´𝑑+𝜀/2.

For each ℓ P 𝐿1, since |𝐾 X ℓ | ě 1, there exists at least one 𝛿 such that����ℓ X
( ⋃
𝑄PQ𝛿

𝑄
) ���� ě

1

100
(
log(1/𝛿)

)2 . (4.11)

For each dyadic number 𝛿, let 𝐿𝛿 Ď 𝐿1 be the set of lines for which (4.11) holds.
Then there exists a dyadic scale 𝛿 ă 𝛿0 for which 𝜈(𝐿𝛿) ą 𝜈(𝐿1)/100

(
log(1/𝛿)

)2.
Fix this value of 𝛿 and rename 𝐿𝛿 as 𝐿2. Now we define E to be a 𝛿-separated subset
of dir(𝐿2), then

#E ě
𝜈(𝐿1)𝛿1´𝑛

100
(
log(1/𝛿)

)2 .

Define T be a set of 𝛿-tubes pointing in directions in E, with centers and shading
𝑌 (𝑇) chosen so that, using (4.11),⋃

𝑇PT

𝑌 (𝑇) =
⋃
𝑄PQ𝛿

𝑄

and |𝑌 (𝑇) | ≳ |𝑇 |/
(
log(1/𝛿)

)2 for every 𝑇 P T. Since this implies that

|
⋃
𝑇PT

𝑌 (𝑇) | ≲ 𝛿𝑛´𝑑+𝜀,

conclusion (2) in the statement of the proposition is shown. It now remains to show
that T is sticky. Let 𝜌 be a number such that 𝛿 ă 𝜌 ă 1.

If 𝜌 ě 𝛿0: since 𝛿0 may be considered an admissible constant, if T𝜌 is any set of
maximal 𝜌-separated tubes, it is trivial that #T𝜌 « 𝜌1´𝑛 and #T[𝑇𝜌] « (𝛿/𝜌)1´𝑛.

If 𝜌 ă 𝛿0: We will greedily cover 𝐿2 with 𝜌-balls, so that 𝜌/3-balls at the same
centers would be disjoint. Define T𝜌 to be the set of tubes pointing in the directions
of the lines in the cover and with centers inside the set on the left-hand-side of (4.11).
From this definition, it is clear that every 𝑇 P T is contained in some 𝑇𝛽 P T𝜌.

Since 𝛿0 ă 𝛿1, and since dir(𝐿2) has no directions over-represented at any scale
less than 𝛿1, there are at ≲ 𝛿´𝜀 tubes 𝑇𝜌 P T𝜌 that point in the same direction. To
make the directions 𝜌-separated, choose any one tube out of the possible 𝛿´𝜀 tubes
in the cover pointing in a given direction, and remove the other tubes pointing in
that direction from T𝜌. Then #T𝜌 « 𝜌1´𝑛. To ensure T is still covered by T𝜌, we
will take a refinement T1 Ă T, losing at most a 𝜌´𝜀 ď 𝛿´𝜀-fraction of T. Then T1

will be a sticky set, and it can be easily seen that conclusion (2) still holds for this
refinement. □
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Corollary 43. The Hausdorff dimension of every sticky Besicovitch set in R𝑛 must
exceed 0.60376707287 𝑛 + O(1).

4.5 An x-ray estimate derived as a corollary of Zahl’s k-linear estimate
In this section, an 𝑥-ray estimate is obtained as a corollary of Zahl’s 𝑘-linear estimate.
The proof is similar to that of Proposition 4.2 in [12].

For convenience, the definition of an x-ray estimate is repeated here. An x-ray
estimate at dimension d holds in R𝑛 if there exist 0 ď 𝛼, 𝛾 ă 1 such that the
following statement is true. For any 𝜀 ą 0, if E is a set of 𝛿-separated directions in
S𝑛´1 and T is a set of 𝛿-tubes obeying the following properties:

i. No tube in T is contained in the 10-fold dilate of another one.

ii. Every tube in T points in a direction in E and no more than 𝛿´𝛽 tubes in T point
in any given direction,

then there is a constant 𝐶𝜀 ą 0 such that

| |
∑︁
𝑇PT

𝜒𝑇 | |𝑑1 ď 𝐶𝜀𝛿
1´ 𝑛

𝑑
´𝜀 (𝛿´𝛽)1´𝛼 (𝛿𝑛´1#Ω)𝛾

Proposition 44. An x-ray estimate holds inR𝑛 at dimension 𝑑 = max2ď𝑘ď𝑛 min{𝑛2+
𝑛 + 𝑘2 ´ 𝑘)/2𝑛, 𝑛 ´ 𝑘 + 2}.

Lemma 45. Suppose that 𝛿0 ą 0 is a small number (e.g. 𝛿0 ă 𝑛/109). Let
2 ď 𝑘 ď 𝑛 and let 𝑑 ď 𝑛´ 𝑘 + 2 + 𝛿0. Suppose that for every 𝜀 ą 0, whenever T is
a set of 𝛿-tubes pointing in 𝛿-separated directions, then there is a constant 𝐶𝜖 ą 0
such that

| | (
∑︁

𝑇1,...,𝑇𝑘PT

1𝑇1 ¨ ¨ ¨ 1𝑇𝑘 |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) |𝑘/𝑑)1/𝑘 | |𝑑/(𝑑´1)

ď 𝐶𝜖𝛿
1´ 𝑛

𝑑
´𝜖 (

∑︁
𝑇PT

|𝑇 |)𝑛(𝑑´1)/(𝑛´1)𝑑 .
(4.12)

Then an x-ray estimate holds at any dimension 𝑑0 := 𝑑 ´ 𝛿0.

Proof of Lemma 45. Fix 2 ď 𝑘 ď 𝑛 and let 𝑑 ď 𝑛´ 𝑘 + 2. Assume that the 𝑘-linear
estimate in the lemma hypothesis holds. Let 𝜀 ą 0 be given. The argument uses
induction on scale 𝛿.

The induction hypothesis is that there exist 0 ă 𝛼, 𝛾 ă 1 and 𝐶1
𝜀 ą 0, whose values

will be specified later, such that the following statement holds:
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If T̃ is a set of (𝛿/𝑠)-tubes obeying properties i and ii in the definition of an x-ray
estimate, then there exists 𝐶𝜀 ą 0 such that

| |
∑̃︁
𝑇P𝑇

𝜒𝑇 | |𝑑1 ď 𝐶𝜀 (𝛿/𝑠)1´ 𝑛
𝑑

´𝜀 (𝛿/𝑠)´𝛽)1´𝛼 ((𝛿/𝑠)𝑛´1#E)𝛾 .

Let E be a set of 𝛿-separated directions in S𝑛´1 and let T be a set of 𝛿-tubes obeying
properties i and ii in the definition of the x-ray estimate. Let 𝑠 „ 1 be an admissible
constant whose value will be specified later.

Define a set Narrow𝑘 Ď
⋃
𝑇PT 𝑇 as a set of all points 𝑥 for which there exists a

(𝑘 ´ 1)-plane 𝑉 (𝑥) such that

#{𝑇 P T(𝑥) : ∠(dir(𝑇), 𝑉 (𝑥)) ≲ 𝑠} ≳ #
1

10𝑛
T(𝑥).

Define another set Broad𝑘 Ď
⋃
𝑇PT 𝑇 as the set of all points 𝑥 P

⋃
𝑇PT at which this

condition is not satisfied. Observe that for every point 𝑥 P Broad𝑘 , this leads to the
conclusion

#
{
(𝑇1, . . . , 𝑇𝑘 ) P (T(𝑥))𝑘 : |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) | ą 𝑠𝑘

}
≳ (#T1(𝑥))𝑘 . (4.13)

(For a more detailed justification of the last claim, see the proof of Lemma 39, where
the same claim is explained in detail.) Now

| |
∑︁
𝑇PT

𝜒𝑇 | |𝑑/(𝑑´1)
𝑑/(𝑑´1) ď

∫
Broad𝑘

|
∑︁
𝑇PT

𝜒𝑇 |𝑑/(𝑑´1) +
∫

Narrow𝑘

|
∑︁
𝑇PT

𝜒𝑇 |𝑑/(𝑑´1) .

In the right-hand-side above, we will call the first term the “𝑘-broad contribution”
and the second term the “𝑘-narrow contribution”. If the 𝑘-broad contribution
dominates, then it can be estimated by using the the 𝑘-linear estimate on 𝛿´𝛽 sets
of direction-separated tubes partitioning T, as follows.∫

Broad𝑘
|
∑︁
𝑇PT

𝜒𝑇 |𝑑/(𝑑´1) =

∫
Broad𝑘

�� ( ∑︁
𝑇1,...,𝑇𝑘PT

𝜒𝑇1 ¨ ¨ ¨ 𝜒𝑇𝑘
)1/𝑘 ��𝑑/(𝑑´1)

.

From property 4.13 above, we can ignore the contribution of 𝑘-tuples (𝑇1, . . . , 𝑇𝑘 )
unless |dir(𝑇1) ^ ¨ ¨ ¨ ^ dir(𝑇𝑘 ) | ą 𝑠𝑘 . Then, by using the 𝑘-linear estimate on the
norm applied to these 𝑘-tuples alone,

| |
( ∑︁
𝑇1,...,𝑇𝑘PT

𝜒𝑇1 ¨ ¨ ¨ 𝜒𝑇𝑘
)1/𝑘 | |𝐿𝑑/(𝑑´1) (Broad𝑘) ď 𝐶𝜖𝛿

(1´ 𝑛
𝑑

´𝜖) (𝛿´𝛽) (𝛿𝑛´1#E)
𝑛(𝑑´1)
(𝑛´1)𝑑 .
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Using Riesz-Thorin interpolation between this estimate and a known x-ray estimate
at dimension (𝑛 + 2)/2, from Theorem 1.2 of [{\L }aba1999xray], we obtain

| |
( ∑︁
𝑇1,...,𝑇𝑘PT

𝜒𝑇1 ¨ ¨ ¨ 𝜒𝑇𝑘
)1/𝑘 | |𝐿𝑑0/(𝑑0´1) (Broad𝑘) ď 𝐶𝜖𝛿

(1´ 𝑛
𝑑0

´𝜖) (𝛿´𝛽)𝛼 (𝛿𝑛´1#E)
𝑛(𝑑´1)
(𝑛´1)𝑑

provided that 𝛼 and 𝛾 have the following values:

𝛼 =

( 1
𝑑0

´ 1
𝑑

2
𝑛+2 ´ 1

𝑑

)
(𝑛 + 1)

(𝑛 ´ 1) (𝑛 + 2) and 𝛾 =
𝑑0 ´ 1
𝑑0

.

This shows the conclusion if the 𝑘-broad contribution dominates. On the other hand,
if the 𝑘-narrow contribution dominates, we will use the following tiling of S𝑛´1: let
R𝑛´1 be tiled by 𝑠-cubes given by translates (0, 𝑠]𝑛´1 placed end-to-end and let a
“tile” 𝜃 on the sphere be given by the image of one of these 𝑠-cubes via the map
𝜉 ÞÑ (𝜉,

a

1 ´ |𝜉 |2) sending R𝑛´1 to the northern hemisphere. Let T be partitioned
into sets

T[𝜃] = {𝑇 P T1 : dir(𝑇) P 𝜃}.

Then we may write∫
Narrow𝑘

∑︁
𝑇PT1

𝑌 1(𝑇) „

∫
Narrow𝑘

|
∑︁
𝜃

∑︁
𝑇PT𝜃

𝜒𝑌 1 (𝑇) (𝑥) | 𝑑𝑥.

Consider that at any point 𝑥 P Narrow𝑘 , the following statements hold, first by the
definition of Narrow𝑘 , and then by Hölder’s inequality,∑︁

𝜃

∑︁
𝑇PT𝜃

𝜒𝑇 (𝑥) =
∑︁

𝜃:∠(𝜃,𝑉 (𝑥))≲𝑠

∑︁
𝑇PT[𝜃]

𝜒𝑇 (𝑥)

ď
©­«

∑︁
𝜃:∠(𝜃,𝑉 (𝑥))≲𝑠

1ª®¬
1/𝑑0

¨
©­«
∑︁
𝜃

|
∑︁

𝑇PT[𝜃]
𝜒𝑇 (𝑥) |𝑑0/(𝑑0´1)ª®¬

(𝑑0´1)/𝑑0

.

For any (𝑘´1)-plane, the number of caps 𝜃 making angle ≲ 𝑠with the (𝑘´1)-plane
is „ 𝑠´𝑘+2. Thus,∫

Narrow𝑘

|
∑︁
𝜃

∑︁
𝑇PT𝜃

𝜒𝑌 1 (𝑇) (𝑥) |𝑑0/(𝑑0´1)
ď 𝑠(´𝑘+2)/(𝑑0´1)

∑︁
𝜃

| |
∑︁

𝑇PT[𝜃]
𝜒𝑇 | |𝑑0/(𝑑0´1)

𝑑0/(𝑑0´1)

and

| |
∑︁
𝑇PT1

𝜒𝑇 | |𝑑0/(𝑑0´1) ď 𝑠(´𝑘+2)/𝑑0 ©­«
∑︁
𝜃

| |
∑︁

𝑇PT[𝜃]
𝜒𝑇 | |𝑑0/(𝑑0´1)

𝑑0/(𝑑0´1)
ª®¬
(𝑑0´1)/𝑑0

. (4.14)
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To estimate the quantity on the right hand side above, we will use the inductive
hypothesis. For any tile 𝜃, let 𝑒𝜃 P S𝑛´1 be the center of 𝜃. Perform an anisotropic
re-scaling of all tubes T[𝑇𝜃] via the map

𝜉 ÞÑ (𝜉 ¨ 𝑒𝜃) + 𝑠´1
¨ 𝑠´1(𝜉 ´ 𝜉 ¨ 𝑒𝜃).

The image of every 𝛿-tube 𝑇 is contained in a 2𝛿/𝑠-tube which will be denoted 𝑇 .
To ensure that the set of directions in which the tubes 𝑇 are (𝛿/𝑠)-separated, we will
take a subset E1 Ă E such that E1 is 𝛿/𝑠-separated. Then

#E1
„ 𝑠𝑛´1#E .

Let T̃ be the set of all tubes 𝑇 , where 𝑇 P T and dir(𝑇) P E1. Now it is immediate
that 𝑇 satisfies properties i and ii in the hypothesis of the x-ray transform, and that
𝑇 has the following relation to T[𝜃]:

| |
∑︁

𝑇PT[𝜃]
𝜒𝑇 | |𝑑0/(𝑑0´1) = 𝑠

(𝑛´1) (𝑑0´1)/𝑑0 | |
∑̃︁
𝑇PT̃

𝜒𝑇 | |𝑑0/(𝑑0´1) .

By the induction hypothesis, the right-hand-side above is majorized by

𝑠(𝑛´1) (𝑑0´1)/𝑑0 (𝛿/𝑠)1´ 𝑛
𝑑0

´𝜀 (𝛿´𝛽)𝛼
(
(𝛿/𝑠)𝑛´1(#E1

X 𝜃)
)𝛾

„ 𝑠(𝑛´1) (𝑑0´1)/𝑑0 (𝛿/𝑠)1´ 𝑛
𝑑0

´𝜀 (𝛿´𝛽)𝛼
(
𝛿𝑛´1(#E X 𝜃)

)𝛾
.

After putting this together with (4.14), and our choice of 𝛾 = (𝑑0 ´ 1)/𝑑0, we find
that | |∑𝑇PT 𝜒𝑇 | |𝑑0/(𝑑0´1) is majorized by

𝑠𝜀+(𝑛´𝑘+2´𝑑0)/𝑑0𝛿
´1+ 𝑛

𝑑0
´𝜀 (𝛿´𝛽)𝛼

(
𝑠𝑛´1

∑︁
𝜃

(
𝛿𝑛´1#(#E X 𝜃)

)𝛾𝑑0/(𝑑0´1)
) (𝑑0´1)/𝑑0

= 𝑠𝜀+(𝑛´𝑘+2´𝑑0)/𝑑0𝛿
´1+ 𝑛

𝑑0
´𝜀 (𝛿´𝛽)𝛼

(
𝛿𝑛´1#E

)𝛾
.

By hypothesis, 𝑑0 ď 𝑛 ´ 𝑘 + 2, and the exponent of 𝑠 is positive. Thus 𝑠 may be
chosen to satisfy

𝑠𝜀+(𝑛´𝑘+2´𝑑0)/𝑑0 ď
1
2
𝐶1
𝜀 .

If 𝐶1
𝜀 is chosen such that

𝐶𝜀 ą 2 max{𝐶𝜀, 𝐶2
𝜀 },

then the induction hypothesis closes after adding the estimates obtain above for the
𝑘-broad and the 𝑘-narrow contributions. □
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Proof of Proposition 44. Let 𝛿0 ą 0 be a small number (e.g. smaller than 𝑛/109).
Let 𝑘0 be the value of 𝑘 for which the maximum

max
2ď𝑘ď𝑛

min
{
𝑛2 + 𝑛 + 𝑘2 ´ 𝑘

2𝑛
, 𝑛 ´ 𝑘 + 2

}
=: 𝑑0

is achieved. Let 𝑘1 be the value of 𝑘 for which the maximum

max
2ď𝑘ď𝑛

min
{
𝑛2 + 𝑛 + 𝑘2 ´ 𝑘

2𝑛
, 𝑛 ´ 𝑘 + 2 + 𝛿0

}
=: 𝑑1.

is achieved. Note that
𝑑0 ă 𝑑1 ă 𝑑0 + 𝛿0.

By Theorem 11, the 𝑘1-linear estimate (4.12) holds for

𝑑 =
𝑛2 + 𝑛 + 𝑘2

1 ´ 𝑘1

2𝑛
ď 𝑑1.

Now, by Lemma 45, an x-ray estimate holds at dimension 𝑑0, since 𝑑0 ě 𝑑1´𝛿0. □

The following proposition is essentially the same as Proposition 3.3 from [17]. It
has been provided here for completeness since the definition of stickiness is slightly
different from the definition appearing in that paper.

Proposition 46. Suppose that there is an x-ray estimate at dimension 𝑑 and that
there exists a Besicovitch set 𝐵 with dim𝑀 (𝐸) ď 𝑑 + 𝜀, for some 𝜀 ě 10´10. Then,
for any sufficiently small 𝛿 ą 0, there is a sticky collection T of 𝛿-tubes satisfying

|
⋃
𝑇PT

𝑇 | ≲ 𝛿𝑛´𝑑+𝜀 .

In the following proof, the same notation as in previous section will be used to
parametrize lines in R𝑛.

Proof. Let 𝐵 be a Besicovitch set with dim𝑀 (𝐸) ď 𝑑 + 𝜀. From the definition of
upper Minkowski dimension, this means

|𝑁𝜃 (𝐵) | ≲ 𝜃𝑛´𝑑+𝜀 for all 𝛿 ď 𝜃 ă 1. (4.15)

Let 𝐿 be a set of lines such that

i. 𝐿 contains a line in every direction (except the vertical direction), and



57

ii. 𝐵 X ℓ contains a unit line segment for every ℓ P 𝐿.

Every line in ℓ can be parametrized as

ℓ = (a, 0) + R𝑒

where a P R𝑛´1 is a point and 𝑒 P S𝑛´1 is the direction in which ℓ points; and thus
ℓ will be denoted (𝑎, 𝑒).

Call a direction 𝑒 P S𝑛´1 sticky at scale 𝜃 if

|{a P R𝑛´1 : (a, 𝑒) P 𝑁𝜃 (𝐿)}| ≲ 𝜃𝑛´1´𝐶1𝜀 . (4.16)

Let E Ď S𝑛´1 be the set of directions given by

E =
⋂

𝑘PZ:1≲𝑘≲log(1/𝛿)
{𝑒 P S𝑛´1 : 𝑒 is sticky at scale 2´𝑘 }.

For each 𝑒 P S𝑛´1zE, there exists a scale 𝜃𝑒 ą 0 such that (4.16) fails. By dyadic
pigeonholing, there is a set E0 Ď S𝑛´1zE and a number 𝜃 ą 0 such that 𝜃𝑒 „ 𝜃 for
all 𝑒 P E0 and

𝜈(E0) ≳
1

log(1/𝛿) 𝜈(S
𝑛´1

zE).

Let E1 be a maximal 𝜃-separated subset of E0. Since every 𝑒 P E1 is fails to be sticky
at scale 𝜃, there are ≳ 𝜃´𝐶1𝜀 𝜃-separated points a for which the line (a, 𝑒) P 𝑁𝜃 (𝐿).
Let T0 be the set of 𝜃-tubes given by taking the 𝜃-neighborhoods of the unit line
segments contained in 𝐵Xℓ for each of these lines ℓ = (a, 𝑒). By the x-ray transform
estimate, there exist numbers 0 ă 𝛼, 𝛾 ă 1 such that

| |
∑︁
𝑇PT0

𝜒𝑇 | |𝑑1 ≲ 𝜃1´ 𝑛
𝑑

´𝜀 (𝜃´𝐶1𝜀)1´𝛼 (𝜃𝑛´1#E1)1´𝛾 .

By an application of Hölder’s inequality, this implies that

|
⋃
𝑇PT0

𝑇 | ≳ 𝜃𝑛´𝑑+𝜀𝜃´𝑑𝐶1𝜀𝛼 (𝜃𝑛´1#E1)𝑑𝛾 .

Since |⋃𝑇PT0 𝑇 | Ď 𝑁2𝜃 (𝐵), it follows from (4.15) that

#E1 ≲ 𝜃
1´𝑛𝜃𝐶1𝜀𝛼/𝛾 .

Since E1 is a maximal 𝜃-separated subset of E0, this implies that 𝜈(E0) ≲ 𝜃𝐶1𝜀𝛼/𝛾

and thus
𝜈(E) ≳ 1 ´ log(1/𝛿)𝜃𝐶1𝜀𝛼/𝛾 ≳ 1,
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provided 𝐶1 is chosen to be sufficiently large.

Now let E𝛿 be a maximal 𝛿-separated subset of E. Let T be the set of 𝛿-tubes given
by the 𝛿-neighborhoods of the unit line segments contained in 𝐵X ℓ for every ℓ P 𝐿

pointing in a direction 𝑒 P E𝛿, then T „ 𝛿1´𝑛. It will be shown that a subset T1 of T
is sticky.

Choose a set of 𝜃-tubes 𝑇𝜃 so every tube 𝑇 P T is contained in at least one 𝑇𝜃 P T𝜃 .
It can be ensured that T𝜃 is minimal, i.e. every 𝑇𝜃 P T𝜃 contains at least one 𝑇 P T

which is not contained in any other 𝜃-tube in T𝜃 . Consider the set of coaxial lines of
tubes in 𝑇𝜃 . Suppose that there are several of these lines ℓ1, ¨ ¨ ¨ , ℓ𝑁 that are “almost
parallel,”, i.e. all the lines ℓ1, ¨ ¨ ¨ , ℓ𝑁 point in directions making at most angle 𝜃 with
a single direction 𝑒 P S𝑛´1. For each 1 ď 𝑖 ď 𝑁 , the line ℓ𝑖 = (a𝑖, 𝑒𝑖) is contained
in 𝑁𝜃 (dir´1(E)). Thus, the 𝜃-tubes with coaxial lines ℓ1, . . . , ℓ𝑁 all lie in

dir´1(𝑁2𝜃 ({𝑒})) X 𝑁2𝜃 (dir´1(E)).

It follows that

𝜆

(
dir´1(𝑁2𝜃 ({𝑒}) X 𝑁2𝜃 (dir´1(E))

)
≳ 𝑁𝜃2(𝑛´1)

and then, by Fubini’s theorem, there must exist 𝑒1 P 𝑁2𝜃 ({𝑒}) X E such that

|{a P R𝑛´1 : (a, 𝑒1) P 𝑁𝜃 (𝐿)}| ≳ 𝑁𝜃𝑛´1.

From (4.16), 𝑁 ≲ 𝜃´𝐶1𝜀. Thus, it is possible to choose a 𝜃-direction-separated
subset T1

𝜃
Ď T𝜃 such that #T1

𝜃
≳ 𝜃𝐶1𝜀#T𝜃 . After taking another refinement T2

𝜃
, it is

possible to ensure that every 𝑇𝜃 P T2
𝜃

contains ≳ (𝜃/𝛿)1´𝑛+𝐶2𝜀 𝛿-tubes for a suitable
constant 𝐶2 ą 0. If T1 is chosen to be

T1 := {𝑇 P T : D𝑇𝜃 P T2
𝜃 such that 𝑇 Ď 𝑇𝜃},

it follows that T1 is sticky and that #T1 ≳ 𝛿1´𝑛+𝐶3𝜀. □

Together with Proposition 46 and Proposition 31, Proposition 44 gives the following
corollary.

Corollary 47. The Minkowski dimension of every Besicovitch set in R𝑛 must exceed
𝑑 ě (2

?
2 + 𝜀)𝑛, for a certain value of 𝜀 greater than 10´10.

Though this estimate is not as strong as one previously proved in [18], it provides a
new proof of the result.
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