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ABSTRACT

The ubiquitous spread of machine learning tools in natural sciences in recent
years has seen trully exponential growth. What sounded like an expression from
a sci-fi novel mere 7 years ago, “solving PDEs with machine learning” is hardly
surprising to anyone today. The variety of methods is very large, but most of
them revolve around the artificial neural networks. Despite tremendous success
of applications to problems in natural sciences, and despite many strides towards
a fundamental theory of neural networks, they still often lack interpretability
and robustness of the results. An alternative, much narrower class of machine
learning algorithms is comprised of the kernel methods. These methods, in
contrast, offer deep analytical theory, with many approximation results and
interpretable components. The firm foundation of the kernel methods, however,
is offset by the practical difficulties, such as high computational cost, the burden
of high-dimensional optimization and the necessity to manually choose kernel
parametrization. This thesis explores a few applications of the kernel methods to
dynamical systems, with the goal to address some of those issues. The comparison
between the kernel analog forecasting and the plain Gaussian process regression
is made, both from theoretical and practical sides, and a parametric extension of
the former is proposed. An application of kernel methods to closures of dynamical
systems is showcased. Finally, an application of data assimilation machinery to
an epidemiological model is shown.
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chapter 1

I NTRODUCTION

This chapter serves two purposes: (1) to provide an overview of the thesis and
how chapters link together, and what the main contributions are; and (2) to
present a context in which this thesis fits and how it relates to the field.

1.1 OVERVIEW OF THE THESIS

This work consists of six chapters. The current chapter, Chapter 1, is an intro-
duction to the thesis and the broader field, and the remaining five are split into
two parts, representing the results of the work done in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Applied and Computa-
tional Mathematics, in the Department of Computing and Mathematical Sciences
at California Institute of Technology.

The first part is titled “Kernel Methods in Dynamical Systems Forecasting”,
and it consists of Chapters 2 to 4. Each of them has KAF as their main subject of
study, a data-driven method of forecasting dynamical systems. Being a rather
recent addition to the family of forecasting tools, KAF has not yet enjoyed the
success and attention of some of the more well-known machine learning methods,
and the first part of the thesis aims to fill in some of the gaps, exploring and
extending theoretical and numerical aspects of the methodology.

Chapter 2 introduces the method, along with the necessary notation, defini-
tions and developed theoretical background, and establishes a connection with
GPR. Despite being a principally kernel method, KAF was not explicitly cast
in the GPR terms before current work, and therefore this connection presents
the main contribution of the chapter. Bridging two independently developed
methods facilitates borrowing of the ideas and theorems from each other, en-
riching both. It is shown that there are three turning points (ways of performing
a certain step) in the KAF algorithm which distinguish it from the GPR. These
three options are referred to as modalities, and can be briefly summarized as (1)
the choice of kernel, (2) bi-stochastic normalization of the kernel matrix, and (3)
spectrum truncation of the eigendecomposition. Analysis of the interpolation
property is also performed in this chapter.

Chapter 3 continues the study with numerical experiments. In particular, the
three modalities are explored one at a time on a number of forecasting problems,
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2 INTRODUCTION

represented as time series datasets. By choosing each of the three modalities to
be performed either the GPR or the KAF way, it is possible to theorize what
effects they have on the forecasting skill. The datasets are obtained from two
canonical low-dimensional dynamical systems — HO and L-63, and from a pre-
industrial integration of the Community Climate System Model v. 4 (CCSM4),
with ENSO index as the quantity of interest.

Chapter 4 proposes an extension to KAF which allows one to forecast parametrically-
dependent dynamical systems. Two settings are considered: one where parameter
values are explicitly known and presented as part of the time series dataset, and
one where parameter values are not explicitly known, but trajectories come
as delay-embedded variables. Several extensions are proposed, and then tested
numerically. The dynamical systems used to generate parameter-dependent time
series are again HO and L-63, with three and two parameters varied, respectively,
for a total of five test problems.

The second part is titled “Data-Driven Model Augmentation” and consists of
Chapters 5 and 6. These chapters use several techniques to augment dynamical
systems from data, in particular, closures for subsystems and data assimilation (DA).
The principal difference here is that a model of the dynamical system, possibly
imperfect, is known, whereas in the first part forecasting is model-free.

Chapter 5 introduces three methods for obtaining a closure for the slow sub-
system of the Lorenz ’96 multiscale (L-96). The latter is a system of ordinary
differential equations (ODEs) with explicit scale separation, i. e. it has interde-
pendent slow and fast subsystems. The motivation behind seeking closures is in
speeding up numerical integration of such systems. Since variables of a multi-
scale system depend on each other, numerical solution requires time steps small
enough to resolve all scales of the dynamics, thus, the fastest mode determines
the step size for the whole system. By obtaining a closure, or in other words, a
function of variables of the slow subsystem that approximates behavior of the fast
subsystem, it is possible to increase the step size and, hence, shorten computation
times. Using GPR as a regression method, three closure variants are proposed,
and numerically compared against each other, as well as against KAF.

Chapter 6 presents a model of estimating individual viral probabilities in a
population. It combines a compartmental model of epidemiological evolution
(akin to the Susceptible, Exposed, Infected, Resistant (SEIR) model), a graph
network representing the population, and DA techniques for incorporating data.
At the core of the model is a system of ODEs. It is derived from the reduced
master equations of the compartmental model by introducing a data-driven
closure. Vertices of the graph network represent individuals, while edges define
connections between them. These connections are used to compute various
epidemiological coefficients in the model. Finally, a form of Kalman filter is
used as the DA method. Assuming that such a model could be implemented as
a mobile app, data used in the DA loop can come from two sources: proximity
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data (such as bluetooth sensors) and medical data (for example, results of the viral
tests, hospitalization etc.). The model is used to estimate individual probabilities
of being infected at the current moment or in the very near future, which avoids
the usual complications of forecasting SEIR models. Large-scale numerical runs
show that the proposed model provides a way of achieving lower death and
hospitalization rates when compared to taking no measures, whilst maintaining
a relatively low proportion of the quarantined population.

1.2 BROADER CONTEXT

Here we provide a few brief notes on the state of the field in general, and what
place current work takes.

The field of dynamical systems modelling is phenomenally vast, spanning
several disciplines in applied mathematics and natural sciences. Ranging from the
classical numerical methods to the modern-day very-large-scale neural networks,
there are flavors of all kinds of dynamics forecasting. On this spectrum, KAF lies
in the family of model-free methods, i. e. purely data-driven. For such methods,
assumptions of the underlying system generating the data can be made, but a
particular form of the equations is not known. In contrast, the classical numerical
modelling uses a given discretized model (whether given or discretized by a
numerical method), and only takes geometry, initial and boundary conditions,
and other parameters of the system as input. Finally, there are methods that
combine the two approaches, making use of both data and models. In particular,
among such methods are data assimilation methods and methods that use data
for obtaining closures.

Among the data-driven methods, Autoregressive (AR) models represent a
large and widespread class. They provide a general framework for data-driven
modelling of dynamical systems, with vast literature devoted to the subject. The
most basic AR model is typically written as

𝑥𝑛+1 = 𝐴(𝑥𝑛) + 𝜉𝑛, (1.1)

where 𝑥𝑛 ∈ ℝ𝑑 is a state vector at a discrete time step 𝑛, 𝐴 : ℝ𝑑 → ℝ𝑑 is an
operator mapping the state space into itself, and 𝜉𝑛 is noise. The operator 𝐴
was first historically considered to be linear, but in general is not limited to
such consideration [98]. It can also take in multiple vectors from the past, say
𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝑏+1, in which case it is said to be a 𝑏-order AR model.

The use of AR models has seen success in a number of fields, such as quantitative
finance modelling [98], geophysical modelling [71, 92], biological and medical
modelling [20], and has recently been extensively applied in the neural network
community [15, 56, 57, 61].

One of the key differences between the framework presented by AR models
and the modelling of time series using KAF is the semigroup stucture that AR
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models exhibit, which is lacking in KAF case. In plain words, forecasting the
model (1.1) 2 steps forward is the same as repeatedly applying it twice; for KAF
this is not the case. This can be seen as a disadvantage of KAF.

However, as introduced in Chapter 2, there is rather profound theory devel-
oped for KAF, making the method stand out among other data-driven predictors.
As an example, it guarantees that in the large data limit its forecast converges to
the conditional expectation of the Koopman operator, applied to the response
variable:

𝔼
[
U𝜃 𝐹

��� 𝐻 ]
(1.2)

Within the context of kernel methods, KAF takes a relatively niche place. The
Koopman formalism has seen a lot of attention in recent years [19], similarly to
kernel methods in general supervised learning. However, KAF manages to unify
two theories and thus, provides a solid theoretical foundation.

The first part of this work attempts to place KAF within the family of ker-
nel methods, study specifics of the method, and show that an extension of its
application to parameter-dependent dynamical systems is possible. The second
part proposes several particular closure methods derived for models of dynamical
systems from time series data, and demonstrates an application of data assimilation
methods to a large, nonlinear and non-local system.



Part I

KERNEL METHODS
IN DYNAMICAL SYSTEMS FORECAST ING

In the first part of the thesis, we focus our attention on purely data-
driven forecasting of the dynamical systems, and more specifically,
on the method called kernel analog forecasting. In particular, we
consider some theoretical underpinnings of the method, its applica-
tions to periodic, quasi-periodic and chaotic systems, its parametric
extension, and compare it to other forecasting techniques.



chapter 2

THEORET ICAL ANALYS I S OF KERNEL ANALOG
FORECAST ING

The subject of the study laid out in Chapters 2 and 3 begins its story more than
half a century ago with Edward Lorenz, the famed meteorologist, who had been
trained by the mathematician (and dynamical systems expert) George Birkhoff at
Harvard, before switching to a PhD at MIT in the atmospheric sciences. Lorenz
introduced a method for model-free prediction of the dynamical evolution [65].
Dubbed later analog forecasting, it essentially prescribed to search the available
time series data and find the closest analog to a given initial condition from which
the prediction was to be made (“closest” in this context is defined by a metric
relevant for the problem at hand). Then, the forecast was formed by taking an
appropriate number of discrete time steps forward along the time series, stopping
at the step closest to the desired forecasting horizon (unless all steps were discrete
and equal in size, and the exact time was attainable). This method, which we will
call the Lorenz method to avoid confusion, gained a lot of attention but quickly
fell out of favor for the following two reasons: it is discontinuous as a function
of input, i. e. initial condition, and it did not work well with the available data
(for example, if the data was too sparse). However, its simplicity and intuitive
explanation remained appealing conceptually, and prompted a revisit years later,
bringing the method into the new century with a more sophisticated approach
in the era of massive data sets.

Kernel analog forecasting (KAF) is a method of forecasting dynamical systems,
based on and aimed at unifying two methodologies: kernel operator theory
and Koopman operator theory. It was first introduced in 2016 by Zhao and
Giannakis [120], and has been since developed theoretically [2] and applied in
numerical experiments to forecasting model problems in climate science [113].
Conceptually, KAF can be seen as a moral extension of the Lorenz method,
addressing its disadvantages and supplementing it with rigorous theory.

In this chapter, we provide a view of KAF from a different angle: as one of the
kernel regression family of methods. In particular, we compare it to the Gaussian
process regression (GPR), and show that there are three modalities by which the
two methods differ. We then explore each of these aspects of KAF in more detail.
In the following chapter, we revisit this comparison with numerical experiments.

6
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This chapter is organized as follows. Section 2.1 serves as a brief introduction,
establishing notation that will be used throughout this and the next chapter, and
giving an overview of KAF and the theory that was developed by Giannakis
and collaborators, provided here for the completeness of the picture, and mostly
following the work of Alexander and Giannakis [2]. Our contributions begin in
Section 2.2, where we cast KAF in the form of GPR, discovering the relation
between the two methods. We also draw parallels with the kernel ridge regression
(KRR) by showing how the main formula for regression can be derived via linear
least-squares. Finally, in Section 2.3 we look into the interpolation property of
KAF.

2.1 INTRODUCTION

Kernel analog forecasting is a method for timeseries prediction. It aims to solve
the following problem: given a timeseries of a (possibly) partially-observed
dynamical system, a matching timeseries of a response variable (i. e. variable of
interest), and a (possibly) unseen initial condition, predict the evolution of the
response variable into the future. A few trivial observations:

◦ it is a discrete time-step method,

◦ it is a model-free method, that is, it uses no information of the underlying
dynamical system,

◦ the response variable may be one of the observed states of the system, a
function thereof, or a hidden state (or, again, a function of some number
of them) that is not directly observed but whose evolution can, in principle,
be inferred from the observed ones,

◦ the initial condition is given in the observables space.

2.1.1 Notation and RKHS Theory Basics

We now introduce notation that will allow us to formalize the method and
theory behind it. We start with dynamical systems, and then move towards
kernel definitions.

Loosely speaking, a dynamical system describes evolution of some state over
time. Instances of such evolution are commonly referred to as trajectories, although
they may not resemble physical intuition of the word “trajectory”, depending
on definitions of a system. For example, time can be continuous or discrete
(naturally, giving rise to continuous-time and discrete-time systems, respectively).
Continuous-time systems are more common and agree with our intuition of the
surrounding world, while discrete-time systems arise with iterative processes,
or as a result of discretization of a continuous-time system. Some prototypical
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examples include school-level physics problems (like motion of a projectile) and
iteration maps (e. g. logistic map), correspondingly.

Another branching in the richness of dynamical systems comes from the space
in which trajectories lie. We call it the phase space, and it is, in most generality,
simply a non-empty set Ω.

In many practical cases of interest, however, the phase space Ω is (1) a finite
or countable set, (2) a subset of Euclidean space ℝ𝑛 (possibly, with Riemannian
structure), or (3) a subset of a function space. The prototypical examples for
each of these cases are (1) iterations on integers (such as the one used in the
Collatz conjecture), (2) ordinary differential equations, and (3) partial differential
equations. We limit the scope of our attention to the evolution on a subset
Ω ⊆ ℝ𝑛.

Definition 2.1. Let Ω be a non-empty subset of ℝ𝑛, and let Φ : ℝ+ × Ω → Ω be
a continuous function in both arguments. We call such function a dynamical flow,
and use Φ𝑡 as a shorthand notation for a fixed 𝑡 ∈ ℝ+, if and only if it satisfies two
conditions:

(i) Φ0(𝑥) = 𝑥 for any 𝑥 ∈ Ω, and

(ii) Φ𝑠 ◦ Φ𝑡 = Φ𝑠+𝑡 for any 𝑠, 𝑡 ∈ ℝ+.

Condition (ii) is often referred to as the semigroup property, for the following
reason. It is common to view a dynamical flow as a monoid, i. e. a semigroup with
an identity element. Indeed, let the set from the monoid definition be comprised
of the elements Φ𝑡 for any 𝑡 ∈ ℝ+, and let the binary operation be the function
composition ◦. The identity element is defined as Φ0 ≡ Id and is guaranteed to
exist by condition (i). Associativity is guaranteed by condition (ii), and in fact, it
also gives distributivity: Φ𝑠 ◦Φ𝑡 = Φ𝑠+𝑡 = Φ𝑡+𝑠 = Φ𝑡 ◦Φ𝑠 . The semigroup property
will become relevant later for the discussion of the KAF predictor.

Definition 2.2. A dynamical system is a tuple (Ω,Φ) such that Φ is a dynamical
flow, and Ω satisfies Φ𝑡 (Ω) ⊆ Ω for all 𝑡 ∈ ℝ+.

The flow Φ can be defined on the whole Euclidean space ℝ𝑛, but very often
the “interesting” behavior happens on a proper subset, and then it is enough to
consider restriction of Φ on that subset. One such case is when a system has one
or several attractors.

Definition 2.3. An attractor of a dynamical system (Ω,Φ) is a set Ω0 ⊂ ℝ𝑛 that
satisfies three conditions:

(i) Φ𝑡 (Ω0) = Ω0 for all 𝑡 ∈ ℝ+;

(ii) there exists an open set Ω𝑏 ⊃ Ω0, called basin of attraction, with the following
property: for any open set 𝑉 satisfying Ω0 ⊂ 𝑉 ⊆ Ω𝑏 , there exists 𝑡 ∈ ℝ+

such that Φ𝑡 (𝑥) ∈ 𝑉 for any 𝑥 ∈ Ω𝑏 ;
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(iii) there does not exist a proper subset Ω1 ⊂ Ω0 that satisfies the first two
conditions.

The existence of an attractor from a numerical point of view means that, af-
ter initializing in the basin of attraction and integrating the system for some
sufficiently long time (called spin-up), the evolution is constrained to a small
neighbourhood of the attractor itself (or rather, its numerical, floating-point
representation). Hence, we will simply use Ω further on to denote the phase
space, without specifying whether it is an attractor or not because we can always
assume that the dynamics will have converged to the attractor.

Definition 2.4. Let (Ω,Φ) be a dynamical system. An observation function

𝐻 : Ω → X

is a continuous function that maps the phase space to the observation space X ⊆ ℝ𝑐 ,
with 𝑐 ∈ ℕ.

Definition 2.5. Let (Ω,Φ) be a dynamical system. A response variable

𝐹 : Ω → ℝ

is any continuous, measurable and square-integrable function. We call the space
of such functions the space of responses and denote it C(Ω).

If both an observation function and a response variable are given, then we will
write (Ω,Φ, 𝐻, 𝐹 ).

Part of the KAF methodology relies on the measure-theoretic framework,
which includes such mathematical objects as a 𝜎-algebra (typically denoted F), a
probability measure (denoted 𝜇), a random variable and Lebesgue integrals (including
expectation, variance and their conditional variants). We omit these definitions
here and simply take them to be defined as usual. Similarly, we will use spaces of
square-integrable functions without a formal definition, noting that, for a measure
space (Ω,F, 𝜇), we will denote them as 𝐿2(𝜇). For 𝜎-algebras, we will also write
F(Ω) assuming that some specific 𝜎-algebra is defined on the set Ω.

We now establish the basics of the kernel theory. First, following Defini-
tion 1.1 and some derivations of Paulsen and Raghupathi [76], we introduce the
reproducing kernel Hilbert space (RKHS).

Definition 2.6. Let ℝX denote the set of all functions from X to ℝ. A reproducing
kernel Hilbert space K (on X) is a subset of ℝX if it satisfies three conditions:

(i) K is a vector subspace of ℝX,

(ii) K is endowed with an inner product ⟨·, ·⟩, with respect to which K is a
Hilbert space, and
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(iii) for every 𝑥 ∈ X, the linear evaluation functional 𝐸𝑥 : K→ ℝ, defined by
𝐸𝑥 (𝑓 ) B 𝑓 (𝑥), is bounded.

Applying Riesz representation theorem to 𝐸𝑥 , we conclude that for every
𝑥 ∈ X there exists an element 𝑘𝑥 ∈ K such that

𝐸𝑥 (𝑓 ) = ⟨𝑓 , 𝑘𝑥⟩.

Furthermore, we can define 𝑘 : X× X→ ℝ by

𝑘 (𝑥,𝑦) B 𝑘𝑦 (𝑥),

which, in turn, allows to establish the so called kernel trick:

𝑘 (𝑥,𝑦) = 𝑘𝑦 (𝑥) = 𝐸𝑥 (𝑘𝑦) = ⟨𝑘𝑦, 𝑘𝑥⟩.

The function𝑘 is called the reproducing kernel for K. However, below we introduce
a narrower and more useful for our purposes definition of a kernel, relying on
the assumed measure-theoretic framework.

Definition 2.7. Let (X,F, 𝜇) be a probability space. A function 𝑘 : X× X→ ℝ

is called a kernel function or, simply, kernel if it is a measurable function and is
square-integrable in the joint space:∫

X×X
|𝑘 (𝑥, 𝑠) |2 𝑑𝜇 (𝑥)𝑑𝜇 (𝑠) < ∞.

Before we introduce the next definition, we need to fix notation for a kernel
matrix.

Definition 2.8. Let {𝑥1, 𝑥2, . . . , 𝑥𝑁 } and {𝑦1, 𝑦2, . . . , 𝑦𝑀 } be two collections of
points in X. We will call 𝐾 ∈ ℝ𝑁×𝑀 a kernel matrix defined by:

𝐾𝑛𝑚 = 𝑘 (𝑥𝑛, 𝑦𝑚),

and write 𝐾 =
{
𝑘 (𝑥𝑛, 𝑦𝑚)

}
as a shorthand.

Definition 2.9. A kernel 𝑘 is called positive-definite if for any number of distinct
points 𝑥1, 𝑥2, . . . , 𝑥𝑁 ∈ X, the kernel matrix 𝐾 =

{
𝑘 (𝑥𝑛, 𝑥𝑚)

}
is positive semi-

definite, i. e. for any 𝑣 ∈ ℝ𝑁 , it holds that 𝑣⊤𝐾𝑣 ⩾ 0.

Definition 2.10. A kernel 𝑘 is called symmetric if 𝑘 (𝑥,𝑦) = 𝑘 (𝑦, 𝑥) for all 𝑥,𝑦 ∈ X.

Next, the following famous characterization of RKHSs allows to build a con-
nection between two definitions of a kernel function.

Theorem 2.11 (Moore–Aronszajn). Let 𝑘 be a symmetric, positive-definite kernel
on X. Then there exists a reproducing kernel Hilbert space K on X such that 𝑘 is its
reproducing kernel.
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The converse is also true.

Lemma 2.12. If 𝑘 is a reproducing kernel for some RKHS on X, then it is a symmetric,
positive-definite kernel on X.

As a consequence of these two statements, there is a one-to-one correspondence
between RKHSs and symmetric, positive definite (s. p. d.) kernels, thus we will
write K(𝑘) when we mean “an RKHS induced by 𝑘”. It also explains the im-
portance of the s. p. d. property, and going forward, we will only consider such
kernel functions.

Since we assume a probability measure 𝜇 on Xexists, we can use it to introduce
Lebesgue integration, and with it, integral operators on 𝐿2(𝜇) (as we did in
Definition 2.7).

Definition 2.13. Let 𝑘 be an s. p. d. kernel on X. We define kernel operator
K : 𝐿2(𝜇) → 𝐿2(𝜇) as follows:

K[𝑓 ] (𝑥) =
∫
X

𝑘 (𝑥, 𝑠) 𝑓 (𝑠)𝑑𝜇 (𝑠).

Definition 2.14. Let 𝑘 be a kernel on X, and let 𝑋 = {𝑥𝑛}𝑁𝑛=1 be a collection of
points in X, 𝑋 ⊂ X. The kernel field given data 𝑋 is a mapping 𝑘

��
𝑋

: X → ℝ𝑁

defined as follows:

𝑘
��
𝑋
(𝑥) = (

𝑘 (𝑥, 𝑥1), 𝑘 (𝑥, 𝑥2), · · · , 𝑘 (𝑥, 𝑥𝑁 )
)⊤
.

Sometimes we will simply write 𝑘 (𝑥) with some abuse of notation, when it is
clear from the context which data set it refers to.

It is important to distinguish the two spaces: K(𝑘) and 𝐿2(𝜇). They consist
of different objects (functions mapping X to ℝ and classes of equivalence of such
functions, respectively), and even though both spaces are Hilbert, their inner
products are, again, different. Obviously, it is possible to define an operator 𝜄
that maps K(𝑘) to 𝐿2(𝜇) in the most natural way (i. e. by simply mapping to the
equivalence class [𝑓 ] ∈ 𝐿2(𝜇) of a function 𝑓 ∈ K(𝑘)), but the converse is not as
straightforward. The situtation becomes much easier if X is compact and 𝑘 is
a Mercer kernel (continuous and s. p. d.). However, even in this case the inner
products, in general, are not equal:

⟨𝑓 , 𝑔⟩K(𝑘) ≠ ⟨𝜄 𝑓 , 𝜄𝑔⟩𝐿2 (𝜇) .

In fact, these two extra conditions (Mercer kernel and compactness of X) allow
to write a closed form of the inner product. On the one hand, continuity of
the kernel leads to continuity of any 𝑓 ∈ K(𝑘), which means that K(𝑘) is a
“subset” of 𝐿2(𝜇) (more technically, it is continuously embedded if one considers
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𝜄 : 𝑓 ↦→ [𝑓 ] as the inclusion operator). On the other hand, application of the
spectral theorem gives the following representation:

𝑘 (𝑥, 𝑠) =
∞∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (𝑥)𝑒 𝑗 (𝑠), (2.1)

where 𝜆 𝑗 ⩾ 0, with 𝑒 𝑗 ∈ K(𝑘), and
{
𝜄𝑒 𝑗

}∞
𝑗=1 ⊂ 𝐿2(𝜇) form an orthonormal basis

in 𝐿2(𝜇). This allows the usual expansion for any [𝑓 ] ∈ 𝐿2(𝜇):

[𝑓 ] =
∞∑︁
𝑗=1

⟨[𝑓 ], 𝜄𝑒 𝑗 ⟩𝐿2 (𝜇)𝜄𝑒 𝑗 ,

and at the same time, using the representation property of the kernel,

𝑓 (𝑥) = ⟨𝑓 , 𝑘𝑥⟩K(𝑘),

and, plugging in eq. (2.1), we obtain the following:

𝑓 (𝑥) =
∞∑︁
𝑗=1

𝜆 𝑗 ⟨𝑓 , 𝑒 𝑗 ⟩K(𝑘)𝑒 𝑗 (𝑥).

With slight abuse of notation, the formula relating the two basis expansions is

⟨𝑓 , 𝑒 𝑗 ⟩K(𝑘) =
1
𝜆 𝑗

⟨𝜄 𝑓 , 𝜄𝑒 𝑗 ⟩𝐿2 (𝜇) . (2.2)

Finally, substituting eq. (2.2) into ⟨𝑓 , 𝑔⟩K(𝑘) three times, we arrive at

⟨𝑓 , 𝑔⟩K(𝑘) =
∞∑︁
𝑖, 𝑗=1

𝜆𝑖𝜆 𝑗 ⟨𝑓 , 𝑒𝑖⟩K(𝑘) ⟨𝑔, 𝑒 𝑗 ⟩K(𝑘) ⟨𝑒𝑖, 𝑒 𝑗 ⟩K(𝑘)

=

∞∑︁
𝑖=1

𝜆𝑖
⟨𝜄 𝑓 , 𝜄𝑒𝑖⟩𝐿2 (𝜇)

𝜆𝑖

⟨𝜄𝑔, 𝜄𝑒𝑖⟩𝐿2 (𝜇)
𝜆𝑖

=

∞∑︁
𝑖=1

1
𝜆𝑖
𝑓𝑖𝑔𝑖,

where we used that ⟨𝑒𝑖, 𝑒 𝑗 ⟩K(𝑘) = 𝜆−1
𝑗 𝛿𝑖 𝑗 , and denoted 𝑓𝑖 = ⟨𝜄 𝑓 , 𝜄𝑒𝑖⟩𝐿2 (𝜇) .

2.1.2 KAF Theory

We start by presenting KAF as a method of predicting a response variable 𝑓 ,
driven by a partially-observed dynamical system (Ω,Φ, 𝐻, 𝐹 ):

𝜔 (𝑡) = Φ𝑡 (𝜔0), 𝜔0 ∈ Ω, 𝑡 ∈ ℝ+,
𝑥 (𝑡) = 𝐻 (𝜔 (𝑡)),
𝑦 (𝑡) = 𝐹 (𝜔 (𝑡)) .
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For the ease of notation, we will additionally use 𝑥𝑡 : Ω → X and 𝑦𝑡 : Ω → ℝ:

𝑥𝑡 = 𝐻 ◦ Φ𝑡 , 𝑦𝑡 = 𝐹 ◦ Φ𝑡 .

Later, we will reformulate KAF as a method for general supervised learning (SL),
but in this section we introduce it the way it was originally developed. Definitions
and theorems used in this section follow Alexander and Giannakis [2] unless
otherwise noted.

Definition 2.15. The Koopman operator U : ℝ+ × C(Ω) → C(Ω) maps the space
of responses into itself, for every 𝑡 ∈ ℝ+, and is defined through the following
relation:

U(𝑡, 𝐹 ) B 𝐹 ◦ Φ𝑡 , for any 𝑡 ∈ ℝ+ and any 𝐹 ∈ C(Ω).

The common shorthand notation is U𝑡 , and since it is a linear operator by defini-
tion, we will simply write U𝑡 𝐹 .

The idea behind the Koopman operator is to provide an alternative way of
“changing coordinates”: instead of staying in a finite-dimensional phase space (or
a space of changed coordinates) with nonlinear evolution, Koopman operator
lifts the dynamics into an infinite-dimensional phase space with linear evolution.
With slight abuse of notation, we will also use the same notation for the Koopman
operator defined on a space of 𝜇-square-integrable response variables:

𝐿2(Ω,ℝ; 𝜇) =
{
𝐹 : Ω → ℝ

���� ∫
Ω
|𝐹 (𝜔) |2𝑑𝜇 (𝜔) < ∞

}
.

This discrepancy should not be of serious importance since in the case of compact
phase space Ω, the space of responses C(Ω) is a “subset” of 𝐿2(Ω,ℝ; 𝜇), in the
same sense as K(𝑘) was a “subset” of 𝐿2(𝜇) in the previous section.

Definition 2.16. For a given measurable observation function 𝐻 : Ω → X, the
pushforward measure (or simply, pushforward) 𝜇𝐻 : F(X) → ℝ+ is a measure on the
observation space Xdefined by

𝜇𝐻 (𝐴) B 𝜇
(
𝐻−1(𝐴)

)
, for every 𝐴 ∈ F(X).

Definition 2.17. A target function 𝜁 : ℝ+ × X→ ℝ is a function that, for every
𝜃 ∈ ℝ+, approximates evolution of the response variable from a given observed
state:

𝜁 (𝜃, 𝑥 (𝑡)) ≈ 𝑦 (𝑡 + 𝜃 ), (2.3)

and as a shorthand, we will write 𝜁 𝜃 ◦ 𝑥𝑡 ≈ 𝑦𝑡+𝜃 . In addition, we require that 𝜁 𝜃 is
a 𝜇𝐻-square-integrable function.
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Ω X

ℝ

Φ𝑡

𝐹

𝐻

𝜁 𝜃

Figure 2.1: Commutative diagram of the spaces in the dynamical systems perspective.

Here we deliberately leave out any specifics as to what is meant by “approx-
imating” as it will depend on the appropriate metric, tolerance level etc. It is
important to note, however, that in general, such approximation might not be
possible. As a simple illustratory example, in the system

𝜔1(𝑡) = 𝑎, 𝑎 ∈ ℝ,

𝜔2(𝑡) = 𝑏𝑡, 𝑏 ∈ ℝ,

𝑥 (𝑡) = 𝜔1(𝑡),
𝑦 (𝑡) = 𝜔2(𝑡),

the residual
𝜁 𝜃 ◦ 𝑥𝑡 − 𝑦𝑡+𝜃 can be made arbitrarily large.

The example above shows what exactly could go wrong, and, more impor-
tantly, that when it does go wrong, there is nothing we can hope for in regards
to reaching our forecasting goal. Clearly, if some crucial information is lost by
the observation function 𝐻 (like the time 𝑡 in this case), then it is impossible to
minimize the residual. However, the next natural question to ask is: what can be
said if only some information is lost?

To answer that, we need a more granular approach, and the measure-theoretic
perspective comes to rescue. Since we assume that all considered spaces (namely,
Ω, X and ℝ, see Figure 2.1) have a measure, one of the natural approaches
is to consider the residual in the 𝐿2-space of functions (rather, their classes of
equivalence) that map Ω to ℝ:

E𝜃 [𝜁 ] =
𝜁 𝜃 ◦ 𝑥𝑡 − 𝑦𝑡+𝜃2

𝐿2 (𝜇)
. (2.4)

Obviously, for this to be defined, both functions 𝜁 𝜃 ◦ 𝑥𝑡 and 𝑦𝑡+𝜃 must be mea-
surable functions w. r. t. the 𝜎-algebra Fon Ω. In both cases, this condition is
always true by assumptions.

However, the function 𝐻 defines a sub-𝜎-algebra F(𝐻 ) on Ω which is, in
general, coarser than the 𝜎-algebra F. Those subsets of Ω on which 𝐻 takes
constant values are indistinguishable for any function defined on the range of
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𝐻 , i. e. the observation space X. This means that the function 𝜁 𝜃 ◦ 𝐻 is only
F(𝐻 )-measurable.

For brevity, we omit some of the theoretical details of the construction here. In
plain words, let 𝐿2 (F(𝐻 ), 𝜇) be the subspace of the 𝐿2(𝜇) space of functions which
consists of the F(𝐻 )-measurable functions. This subspace is the search space,
and by considering the orthogonal projection of U𝜃 𝐹 ∈ 𝐿2(𝜇) onto 𝐿2 (F(𝐻 ), 𝜇),
it can be shown that there exists a unique function 𝑅𝜃 ◦ 𝐻 such that〈

𝜑,U𝜃 𝐹
〉
𝐿2 (𝜇)

=

〈
𝜑, 𝑅𝜃 ◦ 𝐻

〉
𝐿2 (𝜇)

, (2.5)

for any 𝜑 ∈ 𝐿2(F(𝐻 ), 𝜇). Since this is the orthogonal projection, it also delivers
the minimum in the E𝜃 [𝜁 ] functional. Finally, it also has the interpretation of
the conditional expectation:

𝑅𝜃 ◦ 𝐻 = 𝔼
[
U𝜃 𝐹

��� 𝐻 ]
, (2.6)

where we use common shorthand notation 𝔼[·| 𝐻 ] instead of 𝔼[·| F(𝐻 )].
Definition 2.18. The regression function at lead time 𝜃 is the unique function
𝑅𝜃 : X→ ℝ which stems from the orthogonal projection of the image of the
Koopman operator applied to the response variable:

𝑅𝜃 ◦ 𝐻 = 𝔼
[
U𝜃 𝐹

��� 𝐻 ]
.

We have now implicitly defined the best possible solution to the forecasting
problem: it is the function 𝑅 : ℝ+ × X, of course, with the usual remark that
𝑅 ∈ 𝐿2 (F(X), 𝜇𝐻 ) is an equivalence class and there needs to be a way to “extract”
a function out of it, which we will revisit later. However, theoretical existence
and uniqueness of such function alone does not specify how it can be found in
practice. Taking the optimization approach requires defining a functional and a
search space.

Note that having identified the source of error, we can now decompose it
into two parts: one which is intrinsic to the problem and depends solely on the
dynamical system, and one which is defined by our approximation to the sought
ideal solution (we call it the excess error):

E𝜃 [𝜁 ] = e
(𝑖)
𝜃

+ e𝜃 [𝜁 ],
with

e
(𝑖)
𝜃

=

𝑅𝜃 ◦ 𝐻 − U𝜃 𝐹
2

𝐿2 (𝜇)
, (intrinsic)

e𝜃 [𝜁 ] =
𝜁 𝜃 − 𝑅𝜃2

𝐿2 (𝜇𝐻 )
. (excess)

Clearly, minimizing e𝜃 [𝜁 ] is equivalent to minimizing the whole error.
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Definition 2.19. The hypothesis space H ⊆ 𝐿2(F(X), 𝜇𝐻 ) is a closed and convex
subset over which the excess error e𝜃 [𝜁 ] is minimized.

Remark 2.20. As usual, for ease of notation, we identify a set of 𝐿2 functions with its
image under the 𝜄 operator that maps into the 𝐿2 space. An important requirement here
is that 𝜄 must be injective, i. e. each function in the preimage of H is mapped to its own
equivalent class. This, however, is a mild constraint because usually the hypothesis space
contains at functions that are at least continuous (and in our case, it will be an RKHS).

We are now ready to give the final definition before moving on to the final-
dimensional setting where we will work with data. Since H is a closed and convex
subset of a Hilbert space, there exists an orthogonal projection PH: 𝐿2(𝜇𝐻 ) → H.
Due to orthogonality, we can further decompose the excess error into two terms:

e𝜃 [𝜁 ] =
PH𝑅

𝜃 − 𝜁 𝜃
2

𝐿2 (𝜇𝐻 )
+

(Id−PH

)
𝑅𝜃

2

𝐿2 (𝜇𝐻 )
.

And just as before, since the second term does not depend on 𝜁 , minimizing the
excess error is equivalent to minimizing the first term in the above equation.

Definition 2.21. The ideal target function 𝑍 : ℝ+ × X→ ℝ is the unique element
of the hypothesis space H, and is defined as the minimizer of the excess error:

𝑍𝜃 = PH𝑅
𝜃 .

There are three things to note here. First, note that the ideal target function
depends on the hypothesis space, but for brevity we omit this dependence from
notation. Second, the existence of this function follows from the fact that the 𝜄
opeartor is injective, as discussed in Remark 2.20. Finally, the uniqueness follows
from the orthogonality of the projection PH, which, in turn, is possible because
the hypothesis space is closed and convex.

2.1.2.1 Finite-dimensional Setting

Moving to more concrete objects, kernel analog forecasting employs an RKHS
as the hypothesis space, or rather, a finite-dimensional subspace thereof. As
mentioned in Section 2.1.1, the kernel operator K : 𝐿2(𝜇𝐻 ) → 𝐿2(𝜇𝐻 ) is compact
and self-adjoint, thus, invoking the spectral theorem, we obtain the eigendecom-
position:

K 𝑣𝑖 = 𝜆𝑖𝑣𝑖,

with 𝑣𝑖 ∈ 𝐿2(𝜇𝐻 ) and 𝜆𝑖 ∈ ℝ. Moreover, eigenfunctions form an orthonormal
basis in 𝐿2(𝜇𝐻 ), and because K is trace-class and positive (taking into the view
Definition 2.7 of a kernel 𝑘 and requiring it to be a Mercer kernel, see Theorems
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4.26 and 4.27 of Steinwart and Christmann [102]), its eigenvalues can be sorted
in descending order 𝜆1 ⩾ 𝜆2 ⩾ . . . ⩾ 0. Define

𝑢𝑖 = 𝜆
−1/2𝜄∗𝑣𝑖,

where 𝜄∗ : 𝐿2(𝜇𝐻 ) → K is the adjoint operator. Using eq. (2.2), it is easy to show
that 𝑢𝑖 form an orthonormal set in K, leading to the following definition.

Definition 2.22. An ℓ-dimensional KAF hypothesis space Hℓ ⊆ K(𝑘) is defined
as Hℓ = span {𝑢𝑖}ℓ𝑖=1.

Given the existence and explicit form of the orthonormal basis of Hℓ , we can
now write out expansion of 𝑅𝜃 ∈ 𝐿2(𝜇𝐻 ):

𝑅𝜃 =
∞∑︁
𝑖=1

𝛼𝑖 (𝜃 )𝑣𝑖,

with the following expression for the coefficients:

𝛼𝑖 (𝜃 ) =
〈
𝑣𝑖, 𝑅

𝜃
〉
𝐿2 (𝜇𝐻 )

=

〈
𝑣𝑖 ◦ 𝐻, 𝑅𝜃 ◦ 𝐻

〉
𝐿2 (𝜇)

=

〈
𝑣𝑖 ◦ 𝐻,U𝜃 𝐹

〉
𝐿2 (𝜇)

.

Here in the last equality we used eq. (2.5), and before that we used the fact that
the mapping 𝑣 ↦→ 𝑣 ◦ 𝐻 is an isometric isomorphism between 𝐿2(𝜇𝐻 ) and 𝐿2(𝜇)
(this follows directly from the definition of the pushforward 𝜇𝐻 ).

From this derivation we can write out the closed form of the ideal target
function 𝑍 :

𝑍𝜃 =
ℓ∑︁
𝑖=1

𝛼𝑖 (𝜃 )𝜆−1/2
𝑖 𝑢𝑖 .

Definition 2.23. The variable-bandwidth kernel 𝑘vb : X× X→ ℝ is defined as

𝑘vb(𝑥,𝑦) = exp
(
− ∥𝑥 − 𝑦∥2

𝛿 𝑟 (𝑥) 𝑟 (𝑦)

)
,

where 𝛿 ∈ ℝ+ is a scale parameter, and 𝑟 : X→ ℝ is a surrogate for a density
function of the data.

In practice, both 𝛿 and 𝑟 are treated as parameters, and so are estimated from
the data points. We omit the details of that algorithm here, simply noting that it
relies on the kernel density estimation (KDE) techniques (see Berry and Harlim
[13] and Giannakis [39]). Importantly, this procedure only uses domain data.
This is in contrast to the usual tuning of some parametrized kernel: more often,
tuning involves some form of an optimization algorithm with cross-validation,
and thus requires both domain and regression data points.
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Definition 2.24. The (symmetric) bi-stochastic normalization of an s. p. d. kernel
𝑘 is a procedure that produces another s. p. d. kernel 𝑔 : X× X → ℝ with the
Markov property:∫

X

𝑔(𝑥, 𝑠) 𝑑𝜇𝐻 (𝑠) = 1, for all 𝑥 ∈ X.

The kernel 𝑔 is explicitly defined through the following relations:

𝑔(𝑥,𝑦) =
∫
X

𝑘 (𝑥, 𝑠) 𝑘 (𝑠,𝑦)
𝑑 (𝑥) 𝑞(𝑠) 𝑑 (𝑦) 𝑑𝜇𝐻 (𝑠), (2.7a)

with

𝑑 (𝑥) =
∫
X

𝑘 (𝑥, 𝑠) 𝑑𝜇𝐻 (𝑠), 𝑞(𝑥) =
∫
X

𝑘 (𝑥, 𝑠)
𝑑 (𝑠) 𝑑𝜇𝐻 (𝑠). (2.7b)

2.2 GP INTERPRETATION OF KAF

In this section, we look into how part of the KAF methodology can be re-
interpreted in terms of the Gaussian process (GP) regression.

2.2.1 Problem Formulation

We first introduce a general SL problem. Assume that data 𝜒 is given in the form
of pairs:

𝜒 = {𝑥𝑛, 𝑦𝑛 = 𝑓 (𝑥𝑛)}𝑁𝑛=1 , with 𝑥𝑛 ≠ 𝑥𝑚 for 𝑛 ≠𝑚, (2.8)

where 𝑥𝑛 ∈ 𝑆 , 𝑦𝑛 ∈ ℝ, and 𝑓 : 𝑆 → ℝ is the unknown function. Our goal
is to approximate 𝑓 on a compact set 𝑆 ⊂ X provided that data points 𝑥𝑛 are
sampled from the set 𝑆 densely enough to recover the sampling measure. To
express regression data (2.8) succinctly, it will be useful to introduce the following
notation:

𝑓 (𝑋 ) = 𝑦, (2.9)

where 𝑦 = (𝑦1, . . . , 𝑦𝑁 )⊤, 𝑋 = {𝑥𝑛}𝑁𝑛=1 agrees with notation of Definition 2.14,
and 𝑓 (𝑋 ) = (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁 ))⊤.

A particular case of the problem above is in the context of dynamical systems,
briefly introduced in Section 2.1.1 as the original setup for KAF. To establish a
link between two notations, let (Ω,Φ, 𝐻, 𝐹 ) be a dynamical system, and let the
observation space be the same as the phase space, X≡ Ω, with 𝐻 ≡ IdΩ. Fixing
the time 𝑡 = 𝜃 , we can define

𝑓 B 𝐹 ◦ Φ𝜃 , (2.10)
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and, thereby, transform the problem of forecasting U𝑡 ◦𝐹 (𝑠) into the SL problem
of approximating 𝑓 (𝑠). To preserve the generality of the dynamical systems set-
ting, i. e. when X≠ Ω, some additional work is required. For example, we might
consider function 𝑓 (𝑥 ; 𝜉) with a latent variable 𝜉 to account for the information
“lost” by the observation function 𝐻 . Here we avoid such complications and only
work with the simpler version.

2.2.2 Overview of the KAF Methodology

To highlight the GPR–KAF connection, we summarize the practical details
outlined in Section 2.1.2, and view KAF as a two-step algorithm.

I Using𝑋 data only, construct a data-driven s. p. d. kernel𝑔(·, ·), and compute
the first ℓ eigenpairs of the kernel operator G : 𝐿2(𝜈) → 𝐿2(𝜈). Recall that
G = 𝜄𝜄∗, with 𝜄 : 𝑓 ↦→ [𝑓 ], and its adjoint 𝜄∗ maps 𝐿2 to K(𝑔), the RKHS
induced by kernel 𝑔. The operator G is defined in a standard way:

G 𝑓 =

∫
𝑆
𝑔(·, 𝑠) 𝑓 (𝑠) 𝜈 (𝑑𝑠), (2.11)

with 𝜈 being the sampling measure.

II Even though G acts on an infinite-dimensional space 𝐿2(𝜈), in practice
only the kernel matrix 𝐺 with entries 𝐺𝑛𝑚 = 𝑔(𝑥𝑛, 𝑥𝑚) can be computed;
thus, a form of Nyström extension is used to construct basis functions{
𝜓𝑖

}ℓ
𝑖=1 ⊂ K(𝑔) from eigenvectors 𝑢𝑖 of 𝐺 . KAF approximation is then

formed by projecting the function of interest 𝑓 onto these basis functions.

Analysis of Step II comprises Section 2.2.3, while Step I is discussed in more
detail in Section 2.2.4. Here we only note that Step I itself consists of two parts:

I(a) assuming that 𝑆 is a compact manifold, the 𝑘-nearest neighbors (𝑘NN)
algorithm and kernel density estimation (KDE) with the radial basis func-
tion (RBF) kernel are used to estimate (1) the manifold dimension of 𝑆 ,
(2) the sampling density, and (3) the scale parameter, all from domain
data 𝑋 only; these quantities are plugged into the formula for the variable-
bandwidth (VB) kernel 𝑘vb;

I(b) symmetric bi-stochastic normalization is applied to 𝑘vb, resulting in the
data-driven kernel 𝑔; this normalization guarantees that (1) the spectrum
of G (and, by extension, 𝐺) lies in [0, 1], (2) its top eigenvalue is equal to 1,
and (3) the top eigenvector is constant (i. e. G is a constant-preserving, or
averaging, operator).
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In matrix notation, the normalization from part (b) is written as follows:

𝐺 = 𝐷−1𝐾vb𝑄
−1𝐾⊤

vb𝐷
−1, (2.12a)

where
𝐷 = diag(𝑑), 𝑑 = 𝐾vb1, 𝑄 = diag(𝑞), 𝑞 = 𝐾vb𝐷

−11, (2.12b)

and 𝐾vb = {𝑘vb(𝑥𝑛, 𝑥𝑚)} is the unnormalized kernel matrix. As the VB kernel
is symmetric, so is the kernel matrix 𝐾vb, thus we can drop its transpose in
eq. (2.12a). Formulas (2.12) are in direct correspondence with the continuous
version of the normalization in eq. (2.7).

2.2.3 Second Step of KAF is Truncated-Spectrum GP Regression

We now prove that Step II of the KAF algorithm can be viewed as an approxi-
mation of the classic GP regression. More precisely, this approximation is the
truncated-spectrum GP regression (introduced later in Definition 2.27). First,
we recall the basic definitions and formulas of the GP theory.

Let
(
𝑊 (𝑠))𝑠∈𝑆 be a GP with zero mean and s. p. d. an covariance function 𝑔.

Given data (2.8), we assume {𝑊 (𝑥𝑛) = 𝑦𝑛}𝑁𝑛=1. Recall notation (2.9), the formula
for conditional expectation is then:

𝔼
[
𝑊 (𝑠)

���𝑊 (𝑋 ) = 𝑦
]
=

𝑁∑︁
𝑛,𝑚=1

𝑦𝑛 Θ𝑛𝑚 𝑔(𝑥, 𝑥𝑚) = 𝑦⊤Θ𝑔(𝑠)

= 𝑔(𝑠)⊤Θ𝑦, (2.13)

where Θ B 𝐺−1 is the precision matrix, and 𝑔(𝑠) = 𝑔
��
𝑋
(𝑠) is the kernel field given

data 𝑋 (Definition 2.14).
By assumption, 𝑔 is symmetric, which means that𝐺 is also symmetric. Invoking

the finite-dimensional spectral theorem, let the eigendecomposition of the kernel
matrix 𝐺 be denoted by

𝐺 = 𝑈Λ𝑈 ⊤, (2.14)

where𝑈 ∈ ℝ𝑁×𝑁 is orthogonal, with eigenvectors𝑢𝑖 as columns, and Λ ∈ ℝ𝑁×𝑁 is
a diagonal matrix with eigenvalues 𝜆𝑛, ordered from highest to lowest. Plugging
this into eq. (2.13) yields

𝔼
[
𝑊 (𝑠)

���𝑊 (𝑋 ) = 𝑦
]
= 𝑔(𝑠)⊤𝑈Λ−1𝑈 ⊤𝑦. (2.15)

Before we move to proving the main result of the chapter, several definitions
need to be introduced.
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Definition 2.25. Let 𝐴 ∈ ℝ𝑁×𝑁 be a matrix of rank 𝑟 , and let 𝐴 = 𝑈 Σ𝑉⊤ be
its singular value decomposition (SVD). The Moore–Penrose pseudoinverse 𝐴† is
defined as

𝐴† B 𝑈 Σ†𝑉⊤,
where

Σ† = diag
(
𝜎−1

1 , 𝜎−1
2 , . . . , 𝜎−1

𝑟 , 0, . . . , 0
)
.

Definition 2.26. Let 𝐴 ∈ ℝ𝑁×𝑁 be a matrix of rank 𝑟 , and let 𝐴 = 𝑈 Σ𝑉⊤ be its
SVD. The 𝛾-truncation of 𝐴, for 𝛾 ⩽ 𝑟 , 𝛾 ∈ ℕ, is called the following matrix:

𝐴[:𝛾] B 𝑈 Σ[:𝛾]𝑉⊤,
where

Σ[:𝛾] = diag
(
𝜎1, 𝜎2, . . . , 𝜎𝛾 , 0, . . . , 0

)
.

Similarly, the 𝛾-tail of 𝐴 is defined as

𝐴[𝛾 :] B 𝐴 −𝐴[𝛾 :] = 𝑈
(
Σ − Σ[𝛾 :]

)
𝑉⊤,

so it contains only the remaining 𝑟 − 𝛾 singular values.

Thus, for example, in the case of a symmetric matrix 𝐺 and its eigendecom-
position (2.14), the matrices Λ[:ℓ] and Λ[ℓ :] contain upper ℓ and lower 𝑁 − ℓ
eigenvalues, respectively, sorted in descending order:

Λ[:ℓ] =

©«

𝜆1
. . .

𝜆ℓ

0
. . .

0

ª®®®®®®®®®®®¬
, Λ[ℓ :] =

©«

0
. . .

0
𝜆ℓ+1

. . .

𝜆𝑁

ª®®®®®®®®®®®¬
Note that, in general, operations of truncation and taking pseudo-inverse are not
commutative:(

Σ†
)
[:ℓ]

=

(
diag

(
𝜎−1
𝑟 , . . . , 𝜎−1

1 , 0, . . . , 0
) )

[:ℓ]
= diag

(
𝜎−1
𝑟 , . . . , 𝜎−1

𝑟−ℓ , 0, . . . , 0
)

≠ diag
(
𝜎−1

1 , . . . , 𝜎−1
ℓ , 0, . . . , 0

)
=

(
diag

(
𝜎1, . . . , 𝜎ℓ , 0, . . . , 0

) )†
=

(
Σ[:ℓ]

)†
.

This is due to a simple fact that sorting singular values in descending order, and
taking their reciprocals are also not commutative. Therefore, unless specified,
we will always assume that truncation takes precedence:

𝐴†
[:ℓ] ≡

(
𝐴[:ℓ]

)†
.
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Definition 2.27. Let
(
𝑊 (𝑠))𝑠∈𝑆 be a GP with zero mean and an s. p. d. covariance

function 𝑔. Given regression data 𝜒 = (𝑋,𝑦), the truncated-spectrum GP regression
is a map𝑊

��
𝜒

: 𝑆 × {1, . . . , 𝑁 } → ℝ defined as follows:

𝑊
��
𝜒
(𝑠; ℓ) B 𝑔(𝑠)⊤𝐺†

[:ℓ] 𝑦 = 𝑔(𝑠)⊤𝑈 Λ†
[:ℓ] 𝑈

⊤𝑦.

Comparing this definition with formula (2.15) reveals that the posterior mean
of𝑊 (𝑠) is recovered when ℓ = 𝑁 :

𝑊
��
𝜒
(𝑠;𝑁 ) ≡ 𝔼

[
𝑊 (𝑠)

���𝑊 (𝑋 ) = 𝑦
]
.

Finally, let 𝑝 B
⌊
𝜃
Δ𝑡

⌋
, i. e. an integer number of steps, rounded down. In

what follows, we identify 𝑝 and 𝜃 because we only consider a fixed timestep Δ𝑡 .
Similarly, we will write the Koopman operator U𝑝 to mean U𝑝Δ𝑡 .

Lemma 2.28. Let {𝑔𝑛 (·)}𝑁𝑛=1 be a collection of functions defined on 𝑆 and mapping
into ℝ, and let 𝑈 and 𝐴 = diag (𝑎1, . . . , 𝑎𝑁 ) be two matrices on ℝ𝑁×𝑁 . Then Nyström
extensions {𝜓𝑖 (·)}𝑁𝑖=1 defined by the formulas

𝜓𝑖 (𝑠) = 𝑎𝑖
𝑁∑︁
𝑛=1

𝑈𝑛𝑖 𝑔𝑛 (𝑠)

can be written in matrix notation:

𝜓 (𝑠) = 𝐴𝑈 ⊤𝑔(𝑠),
where we used vectors 𝜓 (𝑠) and 𝑔(𝑠):

𝜓 (𝑠) =
(
𝜓1(𝑠), . . . ,𝜓𝑁 (𝑠)

)⊤
and 𝑔(𝑠) =

(
𝑔1(𝑠), . . . , 𝑔𝑁 (𝑠)

)⊤
,

Proof. The proof is a straightforward application of the rules of matrix multipli-
cation. Denote

𝑏𝑖 (𝑠) B
𝑁∑︁
𝑛=1

𝑈𝑛𝑖 𝑔𝑛 (𝑠),

then vector 𝑏 (𝑠) is simply a product of𝑈 ⊤ and 𝑔(𝑠) by definition (transpose comes
from the swapped indices under the sum). Noting that the expression of the form
𝜓𝑖 (𝑠) = 𝑎𝑖𝑏𝑖 (𝑠) defines vector 𝜓 (𝑠) = 𝐴𝑏 (𝑠) concludes the proof. □

Lemma 2.29. Let {𝜓𝑖 (·)}𝑁𝑖=1 be a collection of functions defined on 𝑆 and mapping
into ℝ, let 𝑦 ∈ ℝ𝑁 , and let 𝑈 and 𝐴 = diag (𝑎1, . . . , 𝑎𝑁 ) be two matrices on ℝ𝑁×𝑁 .
Then, for any ℓ = 1, . . . , 𝑁 , a function 𝑧 : 𝑆 → ℝ defined by the formula

𝑧 (𝑠) =
𝑁∑︁
𝑛=1

ℓ∑︁
𝑖=1

𝑦𝑛𝑈𝑛𝑖 𝑎𝑖 𝜓𝑖 (𝑠),

can be written in matrix notation:

𝑧 (𝑠) = 𝑦⊤𝑈𝐴[:ℓ]𝜓 (𝑠).
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Proof. Define 𝑏 (𝑠) ∈ ℝ𝑁 with

𝑏𝑛 (𝑠) B
ℓ∑︁
𝑖=1

𝑈𝑛𝑖 𝑎𝑖 𝜓𝑖 (𝑠),

then, clearly, 𝑧 (𝑠) = ∑𝑁
𝑛=1𝑦𝑛𝑏𝑛 (𝑠) can be expressed as the inner product of two

vectors, that is 𝑧 (𝑠) = 𝑦⊤𝑏 (𝑠).
Now define 𝑐 (𝑠) ∈ ℝ𝑁 with

𝑐𝑖 (𝑠) B
{
𝑎𝑖 𝜓𝑖 (𝑠), for 𝑖 ⩽ ℓ ,
0, for ℓ < 𝑖 ⩽ 𝑁 ,

then the upper limit in definition of 𝑏𝑛 (𝑠) can be changed to 𝑁 instead:

𝑏𝑛 (𝑠) =
𝑁∑︁
𝑖=1

𝑈𝑛𝑖 𝑐𝑖 (𝑠),

and by definition of matrix multiplication, vector 𝑏 (𝑠) is simply equal to the
product 𝑈𝑐 (𝑠). Finally, using the truncation notation, for vector 𝑐 (𝑠) we write:

𝑐 (𝑠) =

©«

𝑎1
. . .

𝑎ℓ

0
. . .

0

ª®®®®®®®®®®®¬

©«
𝜓1(𝑠)
𝜓2(𝑠)
...

𝜓𝑁 (𝑠)

ª®®®®®¬
= 𝐴[:ℓ]𝜓 (𝑠).

Combining expressions for 𝑧 (𝑠), 𝑏 (𝑠) and 𝑐 (𝑠), we obtain the needed result:

𝑧 (𝑠) = 𝑦⊤𝑏 (𝑠) = 𝑦⊤𝑈𝑐 (𝑠) = 𝑦⊤𝑈𝐴[:ℓ]𝜓 (𝑠) .

□

Theorem 2.30. Let 𝑔 be an s. p. d. kernel, and let 𝜒 = (𝑋,𝑦) be the regression data.
Then, the KAF predictor 𝑍𝑝 : 𝑆 → ℝ from Step II is equivalent to the truncated-spectrum
GP regression𝑊

��
𝜒
.

Proof. Recalling expressions from Algorithms 2 and 3 in [21], the KAF formula
is written as follows:

𝑍𝑝 (𝑠) =
𝑁∑︁
𝑛=1

ℓ∑︁
𝑖=1

𝜓𝑖 (𝑠) 𝑢𝑖 (𝑥𝑛)
𝜆1/2
𝑖

𝑦
(𝑝)
𝑛 , (2.16)
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where 𝑦 (𝑝)𝑛 = U𝑝 𝐹 (𝑥𝑛), 𝑢𝑖 (𝑥𝑛) = 𝑈𝑛𝑖 , 𝜆𝑖 = Λ𝑖𝑖 , and

𝜓𝑖 (𝑠) = 𝜆−1/2
𝑖

𝑁∑︁
𝑛=1

𝑔(𝑠, 𝑥𝑛)𝑢𝑖 (𝑥𝑛). (2.17)

Note that if in formula (2.17) we had 𝜆−1
𝑖 instead we would arrive at the standard

Nyström extension; however, the benefit of normalizing with the square root
is that functions given by eq. (2.17) form an orthonormal basis in the RKHS
K(𝑔) [2].

We can now cast the KAF formula (2.16) in matrix notation. Defining

𝑦 (𝑝) B
(
𝑦
(𝑝)
1 , . . . , 𝑦

(𝑝)
𝑁

)⊤
and 𝜓 (𝑠) B

(
𝜓1(𝑠), . . . ,𝜓𝑁 (𝑠)

)⊤
,

and applying Lemmas 2.28 and 2.29 to eqs. (2.16) and (2.17), we arrive at the
following:

𝑍𝑝 (𝑠) =
(
𝑦 (𝑝)

)⊤
𝑈

(
Λ1/2
[:ℓ]

)†
𝜓 (𝑠)

=

(
𝑦 (𝑝)

)⊤
𝑈

(
Λ1/2
[:ℓ]

)† (
Λ−1/2𝑈 ⊤𝑔(𝑠)

)
=

(
𝑦 (𝑝)

)⊤
𝑈Λ†

[:ℓ] 𝑈
⊤𝑔(𝑠).

(2.18)

Here we used the fact that for a product of two diagonal matrices, if one of them
has zeros on the diagonal then the corresponding values of the other matrix can
be set to any value (for example, also zero) without changing the product.

Since 𝑍𝑝 (𝑠) ∈ ℝ, it is equal to its own transpose:

𝑍𝑝 (𝑠) = 𝑔(𝑠)⊤𝑈 Λ†
[:ℓ] 𝑈

⊤𝑦 (𝑝) = 𝑔(𝑠)⊤𝐺†
[:ℓ] 𝑦

(𝑝), (2.19)

and noting that 𝑦 (𝑝)𝑛 = U𝑝 𝐹 (𝑥𝑛) = 𝑓 (𝑥𝑛) = 𝑦𝑛 concludes the proof. □

Corollary 2.31. If ℓ = 𝑁 , then the KAF formula recovers standard GP regression.

Proof. Follows trivially from the observation after Definition 2.27. □

Remark 2.32. By assumption, kernel 𝑔 is s. p. d., which allows one to talk about the
“first” eigen-pairs, sorted by eigenvalues from largest to smallest. This has the usual
interpretation of the “amount” of energy contained in each mode, and ℓ-truncation,
therefore, cuts the tail of the spectrum.

2.2.4 Three Modalities

We continue our analysis of the KAF predictor from the point of view of the GP
regression. We have now seen that, given an arbitrary s. p. d. kernel 𝑔, performing
Step II is equivalent to doing the truncated-spectrum GP regression. Here we
interpret Steps I(a) and I(b), and provide intuition behind each of the three major
differences between GPR and KAF, which we call modalities.
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Figure 2.2: Examples of the self-tuning kernels.
Blue and red depict the RBF and self-tuning kernels, respectively. Data points are sampled from
a normal distribution N(0, 𝜎), with 𝜎 = 2 and 0.4 for top and bottom rows, respectively.

2.2.4.1 The Variable-Bandwidth Kernel

Step I(a) constructs a specific data-adopted kernel𝑘vb, called the variable-bandwidth
kernel (see Definition 2.23). This construction involves two alike optimization
algorithms, which tune the parameters 𝛿 and 𝑟 (𝑠) using the data points. Most
notably, though, only domain data points 𝑋 = {𝑥𝑛}𝑁𝑛=1 are used. This means that,
unlike most conventional GPR tuning methods, it does not involve loss function
minimization or cross-correlation techniques.

From a theoretical point of view, the VB kernel aims to adjust for the sampling
density irregularities. In this sense, it is similar to the self-tuning kernel of Zelnik–
Manor and Perona [119] (here given in discrete form):

{𝐾st}𝑛𝑚 = exp
(
−∥𝑥𝑛 − 𝑥𝑚∥2

𝜎𝑛 𝜎𝑚

)
, where 𝜎𝑛 = ∥𝑥𝑛 − 𝑥 𝐽 (𝑛) ∥, (2.20)

and 𝐽 (𝑛) is the 𝜅-th nearest neighbor of point 𝑥𝑛, 𝜅 ∈ {1, . . . , 𝑁 − 1}. This still
leaves the parameter 𝜅 to be determined (and, in fact, a similar parameter exists
in the VB kernel tuning algorithm), but it has been observed in practice that
perfomance is not too sensitive w. r. t. 𝜅, and empirically it is often set to some
fraction of the number of points (for example, 𝜅 = ⌈0.1𝑁 ⌉ is common).

The difference between 𝐾st and 𝐾vb kernels is in the level of sophistication.
It can be argued that for certain problems, they will produce similar results.
Examples of both kernels are depicted in Figure 2.2.

Comparing to a standard GPR kernel like RBF, the benefits and drawbacks of
using the VB kernel are summarized below:
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+ for problems with significant variation in the sampling density, the VB
kernel adjusts and performs more accurately;

+ it also provides computational speed-ups in training because no costly
O(𝑁 3) matrix inversions are needed during tuning, since the loss function
is not computed;

+ moreover, if two (or more) functions, say, 𝑓1(𝑋 ) = 𝑦 (1) and 𝑓2(𝑋 ) = 𝑦 (2) ,
are to be regressed, and the 𝑋 data is unchanged for both, then the tuning
only happens once;

- however, some information about the approximated function is lost, for
example, its smoothness, which could lead to possibly incorrect scale pa-
rameter estimation.

Note that, while the third positive might seem arbitrary in the general SL setting,
it becomes important for forecasting of dynamical systems. Indeed, recalling
that each discrete time horizon 𝑝 comes with a unique regression function
𝑓𝑝 (𝑋 ) = U𝑝 𝐹 (𝑋 ) = 𝑦 (𝑝) , tuning the kernel only once per dataset 𝑋 saves a lot of
computational time.

2.2.4.2 Bi-stochastic Normalization

Second deviation from the common GPR usage is the normalization of the kernel.
Step I(b) takes any s. p. d. kernel and outputs a normalized one. In practice, the
matrix form (2.12) is used, without resorting to formulas from Definition 2.24,
but the kernel function 𝑔(·, ·) is always implicitly defined, and can be, in principle,
restored (via Nyström extension, for example). The aim of the normalization is
two-fold, as summarized below.

SPECTRUM NORMALIZATION:
The spectrum of the resulting kernel operator G — and, by extension,
that of the kernel matrix 𝐺 — is normalized to [0, 1]. Recall that starting
from an s. p. d. kernel 𝑘 , the bi-stochastic normalization produces an s. p. d.
kernel 𝑔, which allows to sort the eigenvalues in descending order, with a
guaranteed first eigenvalue equal to one:

1 = 𝜆1 ⩾ 𝜆2 ⩾ . . . ⩾ 0.

Moreover, the eigenfunction that corresponds to 𝜆1 is constant:

G1𝑆 (𝑥) = 1𝑆 (𝑥).
Having a constant function in the hypothesis space, in turn, provides a
necessary tool for proving convergence results with 𝑡 → ∞. In plain
words, it means that in the worst case KAF recovers the time-independent
conditional expectation 𝔼[𝐹 |𝐻 ]. At the same time, spectrum lying in [0, 1]
allows for more robust spectrum truncation, in view of Remark 2.32.
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DENSITY CORRECTION:
The bi-stochastic normalization originates from Coifman and Hirn [26],
with a construction similar to the diffusion maps algorithm [27]. This
suggests that the normalization is able to correct variability in sampling
density.

Note that both VB kernel and normalization aim to adjust for the sampling
density irregularities. This poses seemingly no problem when these techniques
are used in conjuction, however, it is unclear whether one or another is to be
preferred. We investigate this numerically in Chapter 3.

2.2.4.3 Spectrum Truncation

The third and last modality that separates KAF and GPR is the spectrum trunca-
tion. In Section 2.2.3, we showed that it comprises Step II of the KAF algorithm,
here we outline its purpose.

COMPUTATIONAL SPEED-UP:
As mentioned before, in practical applications using kernel methods such
as KAF essentially hinges on inverting the kernel matrix𝐺 . Due to the fact
that it is an s. p. d. matrix, finding 𝐺−1 is trivial if its eigendecomposition is
known. Finding ℓ largest eigenvalues (and corresponding eigenvectors) is
possible with iterative Krylov-type methods such as Arnoldi iteration. This
can be achieved in O(ℓ𝑁 2) operations, as opposed to O(𝑁 3) for a full matrix
inversion. The constant in front of ℓ𝑁 2 is slightly higher for the Arnoldi
mehtod, however, since ℓ is typically at least on order of magnitude smaller
than 𝑁 , it provides a significant computational speed-up. For example,
running KAF on the ENSO dataset (see Chapter 3) provides at least a ten-
fold speed-up. At the same time, for small-scale problems (say, 𝑁 ≲ 103)
using Arnoldi iterations can be slower.

REGULARIZATION:
Simultaneously, spectrum truncation acts as a regularizer. It is well-known
that in practice, GP regression often produces an ill-conditioned kernel
matrix 𝐺 [85], and thus, requires some form of regularization. Another
reason to regularize is to avoid overfitting issues. Among the most popular
methods are adding white-noise kernel, method of induced points and
using pseudoinverse. The latter differs slightly from spectrum truncation,
as pseudoinverse method uses all non-zero eigenvalues, i. e. ℓ ≡ rank𝐺 .

So far, we have omitted details on selecting ℓ . This parameter can be chosen
via three different approaches, listed from easiest to hardest to compute:

(i) setting ℓ to a constant value, typically a fraction of the whole number of
data points, e. g. ℓ = ⌈0.1𝑁 ⌉;
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(ii) choosing ℓ such that only a certain spectrum level is retained;

(iii) learning ℓ with a cross-validation technique.

The second approach involves a simple minimization procedure, for example:

ℓ = arg min
1⩽ 𝑗⩽𝑁

𝜂 (𝜆1, . . . , 𝜆𝑁 ; 𝑗), where

𝜂 (𝜆1, . . . , 𝜆𝑁 ; 𝑗) =
��𝜆 𝑗 − 𝜀cutoff

�� or 𝜂 (𝜆1, . . . , 𝜆𝑁 ; 𝑗) =
����� 𝑗∑︁
𝑖=1

𝜆𝑖 − 𝜀cutoff

����� ,
and 𝜀cutoff ∈ [0, 1) is a predetermined parameter. This way of choosing ℓ works
well with the iterative nature of the Arnoldi method (that is, at each step of
computing the next eigenpair, 𝜂 can be easily evaluated). The bi-stochastic
normalization makes this procedure uniform across problems of various nature.

The third approach is the most accurate one, but requires computing a loss
function, and therefore, is also the most computationally intensive. Note that
thanks to the use of the VB kernel, the dataset is only split into training and testing
subsets once, so there should be no ambiguity when using these descriptions in
the KAF setting. We also note that for dynamical systems, since forecasting each
time horizon 𝑝 means utilizing a different function 𝑦 (𝑝) , the truncation parameter
becomes a function of 𝑝: ℓ = ℓ (𝑝).

2.2.4.4 Summary

For quick reference, the three modalities and their effects are summarized here in
Table 2.1. As follows from the previous discussion, each modality is a separate way
of performing a certain part of the generalized regression algorithm. Despite
being executed consecutively, these parts are largely independent from each
other, in the sense that they do not need to know what other parts are doing.
In Section 2.2.4.3, we briefly mention that normalization of the spectrum helps
with interpreting spectrum truncation (and perhaps, makes it easier to choose
appropriate cutoff threshold), however, the former is not necessary for the latter
to work. Likewise, we emphasized that normalization works for any s. p. d. kernel
function, not just the VB kernel.

This observation provides us a way to interpret the three modalities as binary
switches, where each one can be independently turned on and off. Notwithstand-
ing the context of the problem (dynamics forecasting or function regression)
the KAF method then is the one with all three turned on. On the contrary, the
GP regression is the one with all three turned off. This brings us to an idea for
numerical inverstigation of the method: by switching the modalities on and off
one by one, we can compare different variants and reason about the effects of
each of them. The study that lays this out comprises Chapter 3.
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KAF GPR

kernel VB kernel 𝑘vb; tuned with 𝑋
data only

parameter-dependent kernel
𝑘 (·, ·;𝜗); tuned with (𝑋,𝑦)
data

normalization bi-stochastic normalization typically none
regularization spectrum trucation white-noise kernel, induced

points etc.

Table 2.1: Three KAF modalities summarized.

2.2.5 Least-Squares Derivation of KAF

Taking a data-driven basis as a starting point, the KAF predictor can be derived
via ordinary least squares. In this view, it can be linked to the kernel ridge
regression (KRR), which is not surprising given that GPR and KRR provide
essentially the same method.

Assume that we are given an RKHS K(𝑔) induced by a kernel 𝑔, and the first
ℓ functions of the basis

{
𝑢 𝑗

}∞
𝑗=1 evaluated at fixed data points 𝑋 = {𝑥𝑛}𝑁𝑛=1 only:

𝑈ℓ =
©«
𝑢1(𝑥1) . . . 𝑢ℓ (𝑥1)
...

...

𝑢1(𝑥𝑁 ) . . . 𝑢ℓ (𝑥𝑁 )

ª®®®¬ . (2.21)

Since matrix 𝑈ℓ comes from the eigendecomposition of an s. p. d. matrix 𝐺 , it is
orthogonal: (𝑈ℓ)⊤𝑈ℓ = 𝐼 .

Formally writing an unknown function 𝑓 ∈ 𝐿2 as a decomposition 𝑓 =∑∞
𝑗=1 𝛼 𝑗𝑢 𝑗 , then truncating it to the first ℓ functions and evaluating them on

𝑋 data points gives:

𝑈ℓ𝛼 = 𝑓 (𝑋 ) C 𝑦, (2.22)

where 𝛼 is a vector of coefficients 𝛼 𝑗 , and we used notation

𝑓 (𝑋 ) =
©«
𝑓 (𝑥1)
...

𝑓 (𝑥𝑁 )

ª®®®¬ . (2.23)

The least-squares solution without regularization is given by

𝛼 =
(
𝑈 ⊤
ℓ 𝑈ℓ

)−1
𝑈 ⊤
ℓ 𝑦 = 𝑈 ⊤

ℓ 𝑦. (2.24)

Using the standard Nyström extension, we write

𝜑 𝑗 (𝑠) = 𝜆−1
𝑗

𝑁∑︁
𝑛=1

𝑔(𝑠, 𝑥𝑛)𝑢 𝑗 (𝑥𝑛), (2.25)
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with 𝜑 𝑗 (𝑥𝑛) ≡ 𝑢 𝑗 (𝑥𝑛) for any 𝑛 = 1, 𝑁 and any 𝑗 = 1, ℓ .
Let Λℓ ∈ ℝℓ×ℓ be a diagonal matrix containing the first ℓ eigenvalues on the

diagonal. Plugging the last two formulas into the truncated decomposition of 𝑓
gives

𝑓 (𝑠) =
ℓ∑︁
𝑗=1

𝛼 𝑗𝜑 𝑗 (𝑠)

=

ℓ∑︁
𝑗=1

𝛼 𝑗𝜆
−1
𝑗

𝑁∑︁
𝑛=1

𝑔(𝑠, 𝑥𝑛)𝑢 𝑗 (𝑥𝑛)

= 𝑔(𝑠)⊤𝑈ℓΛ−1
ℓ 𝛼

= 𝑔(𝑠)⊤𝑈ℓΛ−1
ℓ 𝑈

⊤
ℓ 𝑦.

(2.26)

Observing that 𝑈ℓΛ−1
ℓ 𝑈

⊤
ℓ = 𝑈Λ†

[:ℓ]𝑈
⊤, we arrive at equation (2.19) once more.

2.3 ANALYIS OF KAF PROPERTIES

2.3.1 Interpolation Property

In this section, we look into several methods based on GPR and KAF, and whether
they have the interpolation property, i.e. they evaluate exactly 𝑦𝑛 for each 𝑥𝑛 from
the data set. We also consider the residual in each case.

As our starting point, we write the approximation formula in the general form:

𝑧 (𝑠) = 𝑔(𝑠)⊤Γ†𝑦, (2.27)

where we do not limit ourselves to the VB kernel, but we require it to be s. p. d.
By varying the matrix Γ, we consider three specific cases (using 𝑧1, 𝑧2 and 𝑧3
notation, respectively):

(i) standard GP regression, Γ = 𝐺 ,

(ii) GP regression with white noise, Γ = 𝐺 + 𝛽𝐼 ,
(iii) GP regression with ℓ-truncation of the spectrum, Γ = 𝐺 [:ℓ] .

Since we are interested in the interpolation property, in each case we evaluate
𝑧 (·) on the whole dataset:

𝑧 (𝑋 ) = 𝐺Γ†𝑦. (2.28)

As is known for the GP regression, it interpolates the data:

𝑧1 (𝑋 ) = 𝐺𝐺−1𝑦 = 𝑦. (2.29)
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Figure 2.3: Function 𝑤 (𝑥) = 𝑥
𝑥+𝛽 plotted for various values of 𝛽.

The residual 𝑟1 = 𝑦 − 𝑧1(𝑋 ) is equal to zero in this case, as is KAF conditional
variance, for any input data:

𝑣1(𝑠) = 𝑔(𝑠)⊤𝐺−1(𝑦 − 𝑧1(𝑋 ))2 = 0. (2.30)

Here and throughout the rest of the section we write 𝑦2 for a vector 𝑦 to denote
entry-wise square.

2.3.1.1 GP Regression with White Noise

Let Γ = 𝐺 + 𝛽𝐼 , the regression formula then gives:

𝑧2(𝑋 ; 𝛽) = 𝐺 (𝐺 + 𝛽𝐼 )−1𝑦

= 𝐺
(
𝑈 (Λ + 𝛽𝐼 )𝑈 ⊤)−1

𝑦

= 𝑈Λ (Λ + 𝛽𝐼 )−1𝑈 ⊤𝑦

= 𝑈
©«

𝜆1
𝜆1+𝛽

. . .
𝜆𝑁
𝜆𝑁 +𝛽

ª®®®¬𝑈
⊤𝑦.

(2.31)

We see that the white-noise regularization does not preserve the interpolation
property, and instead each projection of the data vector 𝑦 onto the eigen-space is
multiplied by 𝜆𝑖

𝜆𝑖+𝛽 . The function 𝑤 (𝑥) = 𝑥
𝑥+𝛽 is depicted in Figure 2.3 for several

values of 𝛽. We only consider the interval (0, 1] because we assume that the
bi-stochastic normalization was applied to the kernel matrix.
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We now look at the residual, i. e. 𝑟2(𝛽) = 𝑦 − 𝑧2(𝑋 ; 𝛽):
𝑟2(𝛽) = 𝑦 −𝑈Λ(Λ + 𝛽𝐼 )−1𝑈 ⊤𝑦

=

(
𝑈𝑈 ⊤ −𝑈Λ(Λ + 𝛽𝐼 )−1𝑈 ⊤

)
𝑦

= 𝑈
(
𝐼 − Λ(Λ + 𝛽𝐼 )−1

)
𝑈 ⊤𝑦

= 𝑈
(
𝛽 (Λ + 𝛽𝐼 )−1

)
𝑈 ⊤𝑦

= 𝑈
©«

𝛽
𝜆1+𝛽

. . .
𝛽

𝜆𝑁 +𝛽

ª®®®¬𝑈
⊤𝑦.

(2.32)

It is easy to see that in the two limiting cases, 𝛽 = 0 and 𝛽 → ∞, 𝑧2(𝑋 ; 𝛽) takes
the values 𝑦 and 0, correspondingly.

2.3.1.2 GP Regression with Spectrum Truncation

Let Γ = 𝐺 [:ℓ] = 𝑈Λ[:ℓ]𝑈 ⊤, the regression formula then gives:

𝑧3(𝑋 ) = 𝐺𝐺†
[:ℓ]𝑦

= 𝑈Λ𝑈 ⊤𝑈Λ†
[:ℓ]𝑈

⊤𝑦

= 𝑈 𝐼 [:ℓ]𝑈 ⊤𝑦

= 𝑈

©«

1
. . .

1
0

. . .

0

ª®®®®®®®®®®®¬
𝑈 ⊤𝑦,

(2.33)

where 𝐼 [:ℓ] is a diagonal 𝑁 × 𝑁 matrix with ones in the first ℓ entries.
For the residual 𝑟3, only the tail of the spectrum is retained:

𝑟3 = 𝑦 − 𝑧3(𝑋 ) = 𝑈 𝐼 [ℓ :]𝑈 ⊤𝑦, (2.34)

where 𝐼 [ℓ :] is a diagonal matrix with ones in ℓ + 1, ℓ + 2, . . . , 𝑁 positions, and zeros
everywhere else.

It is clear that if 𝑦 ∈ span {𝑢1, 𝑢2, . . . , 𝑢ℓ } then 𝑧3(𝑥) ≡ 𝑧1(𝑥), i.e. we recover
GPR formula exactly, which also means that 𝑧3(𝑥) interpolates the data. This
explains why in some numerical experiments we see almost exact prediction
and, correspondingly, almost zero conditional variance: if the data vector 𝑦
approximately lies in the span of the first ℓ eigenvectors then, given that data
points are sampled sufficiently densely, the interpolation will be almost exact and
the residual will be close to zero.



chapter 3

NUMER ICAL EXPER IMENTS I LLUSTRAT ING KAF

3.1 INTRODUCTION

The three modalities described in Chapter 2 (the choice of the specific VB
kernel, the bi-stochastic normalization that normalizes the spectrum to the [0, 1]
interval and guarantees that the eigenfunction corresponding to the maximum
eigenvalue 1 is constant, and truncation of the spectrum that serves as both a
regularization and a computational speed-up technique) provide a theoretical
connection between the two regression methods, kernel analog forecasting (KAF)
and Gaussian process regression (GPR). And even though these two methods have
been historically used in different contexts (dynamics forecasting and function
interpolation, respectively), we may apply them to the same set of problems. This
will open up the use of new methodologies in specific areas, and help to develop
an understanding of the scope of their application, complexity estimates, pros
and cons etc.

In this chapter we continue the comparison of the two methods, now turning
our attention to the numerics. In order to disentagle the effects of the three
modalities that KAF introduces into the kernel regression, we conduct a series of
numerical experiments with one modality turned on at a time, thereby providing
a more fine-grained, in-depth analysis. As outlined in the previous chapter, these
modalitities can be thought of as binary switches. Each of them may be turned
on or off, giving a total of 23 = 8 combinations, with the GPR case being when
all three are switched off, and the KAF case — when all three are switched on
(see Table 3.1).

Remark. The field of kernel regression has developed a deep theory on s. p. d. kernels,
owing its roots to the early advancements in functional analysis, and beyond. The
question of choosing a specific kernel has been widely studied in many contexts, and
is still a topic of active research. There is a plethora of heuristically successful kernels
used by practitioners in various fields of science, and in full generality, theory (including
one developed for KAF) allows the use of any s. p. d. kernel. However, here we limit the
scope of our comparison to the RBF kernel only:

𝑘rbf (𝑥,𝑦) = exp
(
− ∥𝑥 − 𝑦∥2

𝜀

)
.
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The motivation for doing so is twofold: relying on the existing literature, we hope that
comparison to the RBF kernel would provide enough insight into the VB kernel, by
way of reflexivity; moreover, the VB kernel is morally a squared-exponential kernel,
similar to the self-tuning [119] and Gibbs kernels, and its closest analog among “standard”
kernels is precisely the RBF. Thus, in this chapter we switch between VB (on) and RBF
(off ) kernels.

GPR V1 V2 V3 KAF

VB kernel 0 1 0 0 1 1 0 1
bi-stoch. norm. 0 0 1 0 1 0 1 1
spectrum trunc. 0 0 0 1 0 1 1 1

Table 3.1: Eight variants, spanning the “distance” between GPR and KAF.

Regression variants that are used in this chapter (besides GPR and KAF) are
labeled V1–V3, giving 5 methods to be tested in total. Since each of the variants
(including GPR and KAF) must be tested against some other regression method,
the possible number of combinations quickly grows too large to have a chance
at providing a meaningful summary of the results. Therefore, we focus on just
three experiments, listed below:

I. GPR vs V1,

II. GPR vs V2,

III. GPR vs V3.

Experiments I-III are comparisons of the standard GPR versus a variant with
one single switch on. These are the most straightforward setups, and we note that
in one way or another, all three have been carried out before in the existing liter-
ature [13]. We run these experiments on several data sets though, amongst which
are dynamical systems timeseries, with the usual goal of forecasting evolution
from a given initial condition.

The choice of the Experiments I-III is dictated by our interest in understanding
the effects of each of the switches on the forecasting skill. Another natural choice
would be to compare KAF with a single switch turned off, however, leaning
towards simpler and more well-studied methods (such as GPR) provides a clearer
picture.

The chapter is organized as follows. Section 3.2 introduces test problems and
data sets that are utilized in numerics throughout this chapter. The results of
Experiments I-III are reported in Section 3.3.
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3.2 TEST PROBLEMS AND DATA SETS

Numerical experiments in this chapter are performed on three datasets: harmonic
oscillator (HO), Lorenz ’63 (L-63), and El Niño–Southern Oscillation (ENSO). The
first two come from model dynamical systems, while ENSO is a dataset generated
by a general circulation model which emulates the atmospheric patterns of Earth.
Common with these datasets is the structure of the data:

◦ each dataset is one continuous timeseries of dynamical evolution;

◦ data is provided as a tuple

𝜒 =
{
𝑥𝑛, 𝑦𝑛 = 𝐹 (𝑥𝑛)

}𝑁
𝑛=1,

where each 𝑥𝑛 ∈ X ⊆ ℝ𝑐 is a vector representing the observable coordinates,
𝑦𝑛 ∈ ℝ is a response variable, and 𝑛 = 1, 𝑁 represents the time index;

◦ discrete time steps are fixed and constant throughout each dataset (although,
they differ between datasets).

Before the main computation, datasets are split into several chunks and sections.
First, the whole timeseries is partitioned into train, validation and test chunks.
As mentioned before, the VB kernel does not require hyperparameter tuning
(rather, its tuning does not use the 𝑦 part of the data), and so validation set is not
needed. However, since we also use the RBF kernel in some experiments, for
consistency, we always split the timeseries into the three chunks.

Second, each of the three chunks is partitioned into the main and extra sections.
Because of the nature of timeseries forecasting, the maximum time horizon 𝑝max
must be set in advance. This is because, for a given time horizon 𝑝, responses are
formed by marching 𝑝 steps forward in relation to the observables:

𝑍𝑝 (𝑥𝑛) ≈ 𝑦𝑛+𝑝 .

Therefore, only the first 𝑁 − 𝑝max data points from the observation space can be
used, which constitutes the main section; the rest goes into the extra section (i. e.
points with indices 𝑁 − 𝑝max + 1, 𝑁 − 𝑝max + 2, . . . , 𝑁 ).

To prevent ambiguity, in this chapter we use superscript for coordinate nota-
tion 𝑥𝑖 to distinguish it from time index with subscript 𝑥𝑛.

Harmonic Oscillator

Harmonic oscillator is a continuous-time two-dimensional dynamical system:

𝑥1(𝑡) = cos(1.7𝑡),
𝑥2(𝑡) = sin(1.7𝑡). (3.1)
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In Chapter 4, we revisit this system, adding amplitude, frequency and phase
shift parameters in order to test KAF parametric extensions; here we simply use
system (3.1) with fixed parameters.

The data set consists of a single trajectory, starting from initial point (0, 1)
and spanning 𝑁 = 7000 steps with a time step Δ𝑡 = 0.01. In all numerical runs,
the initial condition is chosen so that it does not coincide with any of the points
from the training set (but still lies on the 1.7-radius circle).

Lorenz ’63

The second model dynamical system is a three-dimensional system of ODEs,
colloquially known as Lorenz ’63:

¤𝑥1 = 𝜎 (𝑥2 − 𝑥1),
¤𝑥2 = 𝑥1(𝜌 − 𝑥3) − 𝑥2,

¤𝑥3 = 𝑥1𝑥2 − 𝛽𝑥3,

(3.2)

where 𝜎 = 10, 𝛽 = 8
3 and 𝜌 = 28 are parameters of the system. These values are

known as the classical parameter values, and it is proven that a chaotic attractor
with Hausdorff dimension ≈ 2.06 exists for these values [106, 110].

The data set generated with this system contains a single timeseries with
𝑁 = 61 000 points. Of these points, 40 500 is split for the training chunk, and
𝑝max = 500 are reserved for time horizon forecasting. Thus, exactly 40 000 points
are used for training (i. e. the kernel matrix is 40 000 × 40 000.

The whole trajectory is obtained using the Runge–Kutta Dormand–Prince
method of 5th order (DOPRI5). Even though the method itself has an adaptive time
step, it has the so called dense output feature, which means that it can interpolate
between the steps without loss of order. We use this feature to mimic the fixed
step size Δ𝑡 = 0.01. Additionally, we set both absolute and relative tolerances to
10−7 to guarantee high precision.

Since L-63 is a chaotic system with a global attractor, we are interested in the
behaviour of the system on that attractor. Hence, we let the DOPRI5 integrator
run for spin-up time 𝑇spinup = 100.0 first, and then restart the integrator from the
last step of the spin-up run. This way we obtain a trajectory that lies in a close
neighbourhood of the attractor.

In order to obtain a set of initial conditions for testing purposes, we perform
the above procedure one more time: choose a different starting initial condition,
run DOPRI5 for 𝑇spinup = 100.0, and then restart the integrator. This results in
an entirely new trajectory (much shorter, with 𝑁 = 500) without any points
overlapping with the training chunk, yet still in the vicinity of the attractor. This
new trajectory is used to evaluate the performance of the methods (e. g. compute
the RMSE).
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El Niño–Southern Oscillation

The last dataset comes from a pre-industrial control integration of the CCSM4 [38].
This is the same control integration as used in Wang, Slawinska, and Giannakis
[113] to evaluate performance of KAF, and is available at:

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.

track1.1deg.006.html

The dataset we use consists of 1300 years of monthly averages (thus, 𝑁 =

15 600) of the sea surface temperature (SST) fields sampled at approximately 1
resolution, on the Indo-Pacific longitude-latitude box 28°E–70°W and 30°S–
20°N. The total number of coordinates is 44 771. The output variable is the
(one-dimensional) Niño 3.4 index [7]. It is computed as the difference between
a 3-month running mean of the SST and a reference value (computed over
a 30-year period of observations). The spatial average is performed over the
longitude-latitude box 170°W–120°W and 5°S–5°N.

We split the whole dataset into the training chunk with 1100 years (that is,
𝑁 = 13 200), and the testing chunk with 200 years (𝑁 = 2400). For this dataset,
we use 𝑝max = 50. Moreover, for this dataset we also employ delay embedding to
achieve better forecasting skill, following several works in this area [40, 100, 113].
Delay embedding is discussed in more detail in Chapter 4, Section 4.5.1; here we
simply note that, in simple terms, it stacks several consecutive 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑛+𝑏−1
vectors into one long one 𝑥𝑛 whose dimension is 𝑏 times the original dimension
of 𝑥𝑛 ’s. Since each vector in the ENSO dataset represents a monthly average, a
natural delay embedding dimension is 𝑏 = 12, as then it contains timeseries of
one consecutive year. Therefore, the total dimension becomes 537 252. Delay
embedding also decreases the total number of data points by 𝑏 − 1, so taking into
account the maximum forecasting horizon 𝑝max, main section of the training
chunk contains 𝑁 = 13 139 data points.

3.3 COMPARISON OF GPR VERSUS SINGLE-SWITCH-ON VARIANTS

This section comprises the first set of experiments, namely comparisons between
the plain GP regression, and GP regression with a single modality borrowed
from KAF.

In addition to the standard methodology described in Chapter 2, here we
employ a few practical enhancements. First, as briefly mentioned before, the
algorithm that tunes the variable-bandwidth kernel requires an external parame-
ter: the number of nearest neighbors from which to compute the adhoc density.
We express it as a fraction of total number of training points (e. g. ⌈0.1𝑁 ⌉). From
hundreds of numerical test runs, we have observed that a value between 0.07 and
0.2 is typically sufficient, with higher values providing smoother results (both

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.track1.1deg.006.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.track1.1deg.006.html
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in terms of the final density estimation, and the resulting eigenvectors, in turn,
influencing the smoothness of the forecast). Thus, we fix it to 0.15 in all our
experiments unless otherwise noted.

Second, previously it was observed that GPR in general, and KAF in particular,
performs better when sparsification of kernel matrices is used. Continuing this
idea, we employ the following procedure to obtain a sparse version of the kernel
matrix.

Definition 3.1. Let the sparsification parameter 𝛼sparse be a real number in [0, 1),
and let 𝐾 be a matrix in ℝ𝑁×𝑀 . The sparsifiying operator S : ℝ𝑁×𝑀× [0, 1) → ℝ𝑁×𝑀

is defined as follows:{
S(𝐾, 𝛼sparse)

}
𝑛𝑚
B

{
𝐾𝑛𝑚, if 𝐾𝑛𝑚 > min𝐾 + 𝛼sparse(max𝐾 − min𝐾),
0, otherwise,

and max𝐾 , min𝐾 are computed over all entries of the matrix 𝐾 .

Here we use 𝛼sparse = 0.8 for the main kernel matrix, and 𝛼sparse = 0.6 for the
computation of the kernel field. Such high values of the sparsification parameter
should not be surprising: as we only use squared exponential kernels (RBF and
VB), the values of the kernel matrix decay very quickly with distance. Thus,
high 𝛼sparse values mostly zero out values that are already close to zero.

An alternative approach to sparsification is to set a certain number 𝑁sparse of
non-zero values per each row or column. In the context of kernels depending
on the distance, this can be interpreted as keeping 𝑁sparse nearest neighbors for
each data point. The relationship of being a nearest neighbor is not transitive,
though, in other words, if 𝑥𝑛 is within the 𝑁sparse nearest neighbors of 𝑥𝑚, the
converse is not necessarily true. This means that iterating over rows, for example,
such sparsification might result in a non-symmetric matrix, and some form of
symmetrization is needed at the end. To avoid such complications, we stick to
the sparsification operator S, having observed that numerical results do not vary
significantly when using one or the other sparsification procedure.

3.3.1 Experiment I

Here we compare the GPR and V1 variants, that is, numerically investigate
whether substituting the RBF kernel 𝑘rbf with the VB kernel 𝑘vb produces similar
results (see Table 3.1). We arrive at the conclusion that the use of 𝑘rbf achieves
the same forecasting quality, provided that the parameter 𝜀 is well tuned.

As discussed in Chapter 2, a key difference between the GP regression and
KAF is the tuning procedure:

◦ for KAF, the tuning happens inside the construction of the variable-bandwidth
kernel, that is, estimation of the manifold dimension, sampling density and
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Figure 3.1: Result of applying the VB (left) and RBF (right) kernels. For RBF, 𝜀 = 0.001.

bandwidth itself are all derived from the input data {𝑥𝑛}𝑁𝑛=1 (which can be
thought of as an inner-loop optimization);

◦ for GPR, the hyperparameters (e. g. 𝜀 in 𝑘rbf ) are typically tuned via an
outer loop, that is, an optimization algorithm is applied to the loss function
of the following form:

𝐽 (𝜀) = ∥𝑧 (𝑋tune; 𝜀) − 𝑦tune∥, (3.3)

where 𝜀 denotes a vector of hyperparameters, and 𝑋tune and 𝑦tune denote
data set that has no intersection with the train set.

Harmonic Oscillator

For this data set, in the RBF case we found a suitable parameter 𝜀 = 0.001 by hand
because the range of acceptable values is very wide. We observe both coordinates
for training, and predict 𝑥1.

The results are presented in Figure 3.1. As is clear from the plots, both results
are indistinguishable from the ground truth.

Here we note that sparsification of the kernel matrix only played a significant
role for the VB kernel, while it had no effect in the RBF case for the chosen
parameter value. For VB, the chosen values of the sparsification parameter 𝛼sparse
is 0.8 for both kernel matrix and kernel field. An example of poorly tuned
sparsification parameter is depicted in Figure 3.2.

On a different note, even when forecasting was not as good, the conditional
variance of KAF was not producing meaningful results. This relates to the
discussion at the end of Section 2.3.1.

Lorenz ’63

The results are presented in Figure 3.3. As before, we observe all coordinates and
predict 𝑥1. Again, we tune the sparsification parameter for the VB kernel (0.8
for kernel matrix and 0.6 for kernel field), and the 𝜀 parameter for RBF (1.0). As
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Figure 3.2: The VB kernel with a poorly-tuned sparsification parameter.

Figure 3.3: Result of applying the VB (left) and RBF (right) kernels. For RBF, 𝜀 = 1.0.

with the harmonic oscillator, sparsification had no effect on the forecasting skill
in the RBF case, but unlike that model, it would not deteriorate forecasting with
the VB kernel as much Figure 3.4.

Again, we see no visible difference between the two kernels. The conditional
variance, however, clearly provides useful uncertainty quantification for this
dynamical system.

Figure 3.4: The VB kernel with a poorly-tuned sparsification parameter.



3.3 COMPARISON OF GPR VERSUS SINGLE-SWITCH-ON VARIANTS 41

El Niño–Southern Oscillation

The results are presented in Figure 3.5. The RMSE is computed using 2351
points, since the total available number of the points in the testing chunk was
2400 and 𝑝max = 50.

Figure 3.5: Result of applying the VB (left) and RBF (right) kernels. For RBF, 𝜀 =

300 000.

3.3.2 Experiment II

Experiment II juxtaposes the standard GP regression with the regressor after
bi-stochastic normalization (see Table 3.1).

Harmonic Oscillator

For HO, we report no difference between regression with and without normal-
ization. As in Experiment I, both methods forecast with no error.

Lorenz ’63

The results are presented in Figure 3.6.

Figure 3.6: Result of applying regression without (left) and with (right) normalization.
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El Niño–Southern Oscillation

The results are presented in Figure 3.7. As can be seen from the RMSE plots, the
results vary insignificantly.

Figure 3.7: Result of applying regression without (left) and with (right) normalization.

3.3.3 Experiment III

Experiment III compares the standard GP regression and the spectrum-truncated
version (see Table 3.1).

Harmonic Oscillator

Similar to two previous experiments, there is no difference between GP regressor
with and without spectrum-truncation.

El Niño–Southern Oscillation

The results are presented in Figure 3.8. As can be seen from the RMSE plots,
the results are essentially the same. This should come as no surprise, since the
spectrum decays very quickly (Figure 3.9).

Figure 3.8: Result of applying regression without (left) and with (right) truncation.
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Figure 3.9: Spectrum of the kernel matrix, evaluated on ENSO dataset (first 400 values).



chapter 4

PARAMETR IC EXTENS ION OF THE KAF

4.1 INTRODUCTION TO PARAMETRIC DEPENDENCE

Many dynamical systems are parametrically-dependent, i. e. have one or several
parameters that define its behavior. For simplicity, we limit ourselves to one-
parameter models, with the belief that ideas outlined here can be extended to
several parameters. In this chapter, we consider a parametric extension of the
KAF with two settings in mind: (1) the data is given in the form of multiple
trajectories, each of which is obtained for a fixed and known parameter value;
(2) the data is given in the same form, however, the actual parameter values are
unknown. We will refer to case (1) as explicit and case (2) – implicit. It is assumed
that the parameter value does not change throughout one time-series, and it is
always known which time-series correspond to different parameters, even in the
implicit case.

Naturally, our goal in both cases is to predict evolution of the dynamical system
for a given parameter value (whether one that is present in the training data set,
or one that lies between the smallest and the largest values – keeping in mind
that we deal with the one-dimensional case only), and starting from an unseen
initial point. In the explicit setting, in the best-case scenario, one would hope
that having a pair of the form (𝑥0; 𝜆), where 𝑥0 is the initial point, and 𝜆 is a
parameter value, would suffice. However, this would be impossible for the implicit
case, except in certain trivial cases (such as when a parameter does not affect
the system’s behavior). Thus, in case (2), we must use additional information
in order to make predictions. Perhaps the most natural and straightforward
methodology for such a task is delay embedding; we devote our methodology in
case (1) entirely to this approach and its description is contained in Section 4.5.1.

4.2 ORGANIZATION AND SUMMARY OF THE RESULTS

The chapter is organized as follows. We introduce a set of test problems in
Section 4.3 which are used throughout the chapter to numerically test proposed
approaches to parametric extensions of the KAF. These problems are comprised
of two subsets:

44
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◦ contolled settings which we can analyze before applying the KAF, and by
comparing our intuition with the actual results of the numerical experi-
ments, draw conclusions about the forecasting skill;

◦ settings that are closer to the real-world dynamical systems which serve as
a test of applicability of the KAF parametric extensions.

In Section 4.4, we study the explicit parameter case (1); the same is then done for
the implicit case (2) in Section 4.5. We explore the various options for extending
KAF as a forecasting technique for parametrically dependent dynamical systems.
The proposed extension are then applied to a suite of test problems, highlighting
some advantages and drawbacks of each approach. In particular, even though
the delay embedding lacks a rigorous mathematical guarantee for successful
applications in forecasting (as discussed in Section 4.5.1), it is indeed an efficient
practical tool. Furthermore, we found that certain cases are easier to tackle:
generally, if the location of the manifold or attractor changes in the phase space
as the parameter varies, then the forecasting skill is much higher compared to
those cases when only the topology changes (like going from a chaotic attractor
to a limit cycle of small period), or only the velocity of the oscillations changes.
We observe that forecasting in the former cases (with shifts in the phase space) is
sometimes even possible in the implicit case (2) without the use of delay embedding
(demonstrated by d-KAF (4.6) and cc-KAF (4.7)).

Section 4.6 concludes with a summary of the results and an overview of the
possible further directions.

4.3 TEST PROBLEMS

Here we introduce five test problems, stemming from two dynamical systems:
the harmonic oscillator (HO) and Lorenz ’63 (L-63). The former is a simple
periodic two-dimensional oscillator that allows us to study the proposed para-
metric extensions of KAF in a controlled setting, while the latter, being, perhaps,
the most well-known chaotic dynamical system, sheds some light on how such
extensions would work on idealized, i. e. noiseless, chaotic systems. Introduced in
1963 by Edward Lorenz [64], the L-63 system still serves today as a prototypical
example for testing numerical methods on chaotic systems, as it was proven
in 1999 [106] that the system does exhibit chaos for certain parameter values,
referred to as the classical values (see eq. (4.3) below).
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4.3.1 Harmonic oscillator

The continuous-time harmonic oscillator dynamical system is defined as follows:

𝑥 (𝑡) = 𝐸 cos(𝜅 (𝑡 + 𝛼)),
𝑦 (𝑡) = 𝐸 sin(𝜅 (𝑡 + 𝛼)), (4.1)

with three parameters: amplitude 𝐸, frequency 𝜅 and phase shift 𝛼 .

Experiment Training values Testing, seen Testing, unseen

(HO-AMP) 𝐸 = 1.0, 2.0, 3.0, 4.0 𝐸 = 2.0 𝐸 = 2.5
(HO-FREQ) 𝜅 = 1.3, 1.6, 1.9, 2.1 𝜅 = 1.6 𝜅 = 2.0
(HO-PH) 𝛼 = 0.0, 0.2, 0.4, 0.8 𝛼 = 0.0 𝛼 = 0.6

Table 4.1: Parameter values used to generate training and testing data sets for HO exper-
iments.

Fixing two of the parameters and varying the third, defines a test problem
each:

(HO-AMP) varying amplitude 𝐸 changes the location of the manifold on which
data lives in the phase space, which is, arguably, the easiest mode for
forecasting a dynamical system with parametric dependence;

(HO-FREQ) varying frequency 𝜅 does not change the manifold, and so, clearly,
would make it impossible to distinguish between two different frequencies,
but when sampled with equal time intervals, this problem in the discrete
setting is amenable to forecasting;

(HO-PH) varying phase shift 𝛼 is the hardest, as it tests the ability of the forecaster
to shift the initial condition with data lying on the same manifold and
sampled with equal intervals.

For simplicity, whenever the two of three parameters are fixed, we let them
be as follows:

𝐸 = 1, 𝜅 = 1, 𝛼 = 0.

The setup for all three experiments is the same: we generate training data set
by sampling system (4.1) with a constant time-step Δ𝑡 = 0.01, using 3000 steps
for each of the parameter values. For example, for (HO-AMP) we produce a total
of 12000 data points, with 3000 for each of the values 𝐸 = 1, 2, 3, 4. For each
experiment, we also generate two testing data sets: one with a parameter value
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Figure 4.1: Lorenz ’63 attractors resulting from various values of 𝜌.

that was in the training set, and one for a new parameter value. All parameter
values for the HO set of experiments are summarized in Table 4.1.

In the explicit case, these three problems provide insights into how one might
go about choosing a kernel, and which of the proposed in Section 4.4 ap-
proaches are better suited. In the implicit case, they allow us to theorize when
delay embedding might work, and when it certainly must fail.

4.3.2 Lorenz ’63

The L-63 model is a chaotic, ergodic system of differential equations with three
parameters 𝜎 , 𝜌 and 𝛽:

¤𝑥 = 𝜎 (𝑦 − 𝑥)
¤𝑦 = 𝑥 (𝜌 − 𝑧) − 𝑦
¤𝑧 = 𝑥𝑦 − 𝛽𝑧.

(4.2)

We define two problems:

(L-RHO) varying parameter 𝜌, the attractor shifts in the phase space along the
𝑧-coordinate (simultaneously getting more spread out and undergoing
bifurcations transitioning to limit cycle behavior at 𝜌 ≈ 100), see Figure 4.1;

(L-SIGMA) varying parameter 𝜎 , the attractor changes its behavior from chaotic
to periodic, see Figure 4.2.

The former setting is somewhat analogous to problem (HO-AMP), and thus is
expected to be easier than the latter, which is a mixture of problems (HO-AMP)
and (HO-FREQ).

The so called classical parameter values are:

𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3. (4.3)
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Figure 4.2: Lorenz ’63 attractors resulting from various values of 𝜎 .

25 0 25

20

40

25 0 25

20

40

25 0 25

20

40

25 0 25

20

40

25 0 25

20

40

Figure 4.3: Same as Figure 4.2 (with same coloring), but 2-d projections onto 3𝑥 = 5𝑦
plane.

It is proven that a chaotic attractor exists for these values.

Experiment Training values Testing, seen Testing, unseen

(L-RHO) 𝜌 = 28 + 8𝑘, 𝑘 = 0, . . . , 9, 𝜌 = 28 𝜌 = 48
(L-SIGMA) 𝜎 = 20, 19, 18, 17, 11 𝜎 = 18 𝜎 = 14

Table 4.2: Parameter values used to generate training and testing data sets for L-63
experiments.

In the (L-RHO) experiment, as with the HO problems, we set two of the three
parameters to these values except the one that is being changed, i. e. 𝜌. In the
(L-SIGMA) experiment, we deviate slightly from the classical values (4.3):

𝜌 = 28, 𝛽 = 1.1,
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and the values of 𝜎 correspond to a limit cycle of period 2, period 4, chaos, chaos,
and a limit cycle of period 3, respectively (Figure 4.3).

All parameter values used to generate training data sets, along with the values
that generate testing (seen and unseen) data sets, are provided in Table 4.2.

Numerical integration is performed using the RK45 method, as implemented in
the Python library SciPy [109]. We use default tolerance values (rtol = 0.001

and atol = 1e-06), but set the max_step parameter to 0.01 so that the solution
is sampled at equal time intervals. Before any integration run, we perform the
following steps:

1) set a seed for pseudo-random number generator (numpy.random.seed);

2) compute the coordinates of one of the two critical points, 𝑝+:

𝑝± =

(
±
√︁
𝛽 (𝜌 − 1), ±

√︁
𝛽 (𝜌 − 1), 𝜌 − 1

)⊤
;

3) sample normally-distributed random variables 𝜉𝑖 ∼ N(0, 0.01), for 𝑖 =

1, 2, 3, with zero mean and 0.1 standard deviation, and add them to the
coordinates of 𝑝+ to obtain the spin-up initial conditions:

©«
𝑥ic

𝑦ic

𝑧ic

ª®®®¬ = 𝑝+ +
©«
𝜉1

𝜉2

𝜉3

ª®®®¬
4) spin-up L-63, i. e. numerically integrate system (4.2) (using the same solver

parameters) for time 𝑡 from 0 to 3000;

5) save coordinates of the last integration step as the new initial conditions.

4.4 EXPLICIT PARAMETER VALUES

4.4.1 Fixed Parameters; One Time Series

For ease of exposition, we provide a brief recap of the KAF formulation here.
Suppose the dynamical system is given by

𝜔𝑛+1 = Φ(𝜔𝑛), (4.4)

where Φ : X× Y→ X× Y, with the space of observations X and the latent space
Y. We work within the discrete-time dynamics setting, but also note that Φ can
come from an appropriately discretized continuous-time dynamical system, i. e.
it can be set to an evolution map ΥΔ𝑡 over time period Δ𝑡 . We also assume the
system is ergodic, and denote the invariant measure 𝜇.
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Let 𝜔 = {𝜔𝑛 = (𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 be a sequence in X× Ygenerated by (4.4). We are
given data 𝑑 (𝜔), comprised of two sequences:

{𝑥𝑛}𝑁𝑛=1 ⊂ X and {𝑓𝑛 = 𝐹 (𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 ⊂ ℝ,

where the latter are computed from𝜔 via mapping 𝐹 : X×Y→ ℝ. Our goal is to
predict 𝐹 (𝑥𝑞, 𝑦𝑞) for some number of discrete-time iterations 𝑞 ∈ ℕ, given unseen
initial condition 𝑥 and data 𝑑 (𝜔). Thus, we view the data-driven predictor as a
map 𝑍𝑞,𝑑 : X→ ℝ which takes initial condition 𝑥 as input. Note, however, that
it necessarily depends on data 𝑑 (𝜔), which we simply denote as 𝑑 , and also takes
𝑞 as an input parameter.

Remark. Here we remind the reader that, even if we had access to the true dynamics
Φ and response 𝐹 , we would not be able to compute 𝐹 (𝑥𝑞, 𝑦𝑞) as it would require the
knowledge of the full phase-space initial condition (𝑥,𝑦), and not just the 𝑥 part. This
remark remains valid even in the case when 𝐹 depends non-trivially only on the 𝑥 variable.
Such settings where the initial condition is unknown or only partially known, and the
model is also known, can be linked to problems that data assimilation is concerned with
— in the case of dynamical systems, and to the field of inverse problems — in general [91].

The KAF predictor has the following form:

𝑍𝑞,𝑑 (𝑥) =
1
𝑁

𝑁∑︁
𝑛=1

𝑝 (𝑥, 𝑥𝑛;𝑑) 𝑓𝑛+𝑞 (𝑑),

𝑝 (𝑥, 𝑥𝑛;𝑑) =
ℓ (𝑞)∑︁
𝑗=1

𝜓 𝑗 (𝑥)𝜙 𝑗 (𝑥𝑛)
𝜆1/2
𝑗

.

(4.5)

Here eigenpairs𝜙 𝑗 , 𝜆 𝑗 , as well as Nyström extensions𝜓 𝑗 are computed from data𝑑 ;
and ℓ (𝑞) is the spectrum truncation number. We include explicit data dependence
in the formula above so that we may emphasize the following: 𝑝 (𝑥, 𝑥𝑛;𝑑) does
not involve knowledge of the time-ordering of the data, but 𝑓𝑛+𝑞 (𝑑) does. The
weighting kernel 𝑝 (𝑥, 𝑥𝑛;𝑑) determines how much weight to attach to a time-
series initialized at point 𝑥𝑛, according to its proximity to 𝑥 , the desired initial
point.

4.4.2 Fixed Parameters; Multiple Time Series

We now assume we are given multiple time-series {𝑑 (𝑚)}𝑀𝑚=1, each initialized by
an initial point 𝑥 (𝑚)

0 , all of which are drawn independently at random from 𝜇; we
again label the union of these time-series by 𝑑. We also write{

𝑥 (𝑚)
𝑛

}𝑁
𝑛=1

⊂ X and
{
𝑓 (𝑚)
𝑛

}𝑁
𝑛=1

⊂ ℝ,

for the resulting constituent time series within 𝑑 (𝑚) . For simplicity, and w. l. o. g.,
we suppose that the number of points within each time-series is constant and
equal to 𝑁 .
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Figure 4.4: Comparison of d-KAF (4.6) and cc-KAF (4.7).
The constituent time series are from the same larger dataset of chaotic L-63, here 𝑁 (𝑚) = 4000,
𝑀 = 10 and 𝑁 = 40000.

In this setting two natural predictors suggest themselves. The first is based on
straightforward Monte Carlo averaging of (4.5):

𝑍𝑞,𝑑 (𝑥) =
1
𝑀

𝑀∑︁
𝑚=1

(
1
𝑁

𝑁∑︁
𝑛=1

𝑝
(
𝑥, 𝑥 (𝑚)

𝑛 ;𝑑 (𝑚)
)
𝑓 (𝑚)
𝑛+𝑞

)
. (4.6)

The second one takes the following form:

𝑍𝑞,𝑑 (𝑥) =
1
𝑀

𝑀∑︁
𝑚=1

(
1
𝑁

𝑁∑︁
𝑛=1

𝑝
(
𝑥, 𝑥 (𝑚)

𝑛 ;𝑑
)
𝑓 (𝑚)
𝑛+𝑞

)
. (4.7)

For the reason outlined below, we will refer to these as diagonal and cross-correlated
KAF, respectively (and abbreviate as d-KAF and cc-KAF).

The difference here is subtle but significant: in the first case, the weighting
kernel 𝑝 only depends on each respective individual trajectory 𝑑 (𝑚) , whereas in
the second case it depends on all of the data 𝑑 at once, exploiting the fact that the
weighting kernel 𝑝 does not require time-ordered data.

To present the difference in a more lucid way, we again refer to the connection
with GP regression, and, in particular, a formula from Chapter 2:

𝑍𝑞,𝑑 (𝑥) = 𝑔(𝑥)⊤𝐺†
ℓ 𝑓 (𝑞).
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Starting from d-KAF (4.6), we rewrite it in the matrix form:

1
𝑁

𝑁∑︁
𝑛=1

𝑝
(
𝑥, 𝑥 (𝑚)

𝑛 ;𝑑 (𝑚)
)
𝑓 (𝑚)
𝑛+𝑞 =


𝑔(𝑥, 𝑥 (𝑚)

1 )
...

𝑔(𝑥, 𝑥 (𝑚)
𝑁 )


⊤ 
𝑔(𝑥 (𝑚)

1 , 𝑥 (𝑚)
1 ) · · · 𝑔(𝑥 (𝑚)

1 , 𝑥 (𝑚)
𝑁 )

...
. . .

...

𝑔(𝑥 (𝑚)
𝑁 , 𝑥 (𝑚)

1 ) · · · 𝑔(𝑥 (𝑚)
𝑁 , 𝑥 (𝑚)

𝑁 )


†,ℓ 

𝑓 (𝑚)
1+𝑞
...

𝑓 (𝑚)
𝑁+𝑞

 =

𝑔(𝑚) (𝑥)⊤
(
𝐺 (𝑚)

)†,ℓ
𝑓 (𝑚) (𝑞),

where we use notation 𝐴†,ℓ to denote pseudoinverse of 𝐴 that is taken after trun-

cating the eigendecomposition to ℓ eigenpairs, and 𝑓 (𝑚) (𝑞) =
(
𝑓 (𝑚)
1+𝑞 , . . . , 𝑓

(𝑚)
𝑁+𝑞

)⊤
.

For exposition purposes, let 𝑀 = 2, the formula for the d-KAF is then as
follows:

𝑍𝑞,𝑑 (𝑥) =
1
2

(
𝑔(1) (𝑥)⊤

(
𝐺 (1)

)†,ℓ
𝑓 (1) (𝑞) + 𝑔(2) (𝑥)⊤

(
𝐺 (2)

)†,ℓ
𝑓 (2) (𝑞)

)
=

1
2

(
𝑔(1) (𝑥)
𝑔(2) (𝑥)

)⊤ ©«
(
𝐺 (1)

)†,ℓ
0

0
(
𝐺 (2)

)†,ℓª®®¬
(
𝑓 (1) (𝑞)
𝑓 (2) (𝑞)

)
.

If the truncation number ℓ is equal to 𝑁 (which means no truncation), then we
may further simplify it to:

𝑍𝑞,𝑑 (𝑥) =
1
2

(
𝑔(1) (𝑥)
𝑔(2) (𝑥)

)⊤ (
𝐺 (1) 0

0 𝐺 (2)

)−1 (
𝑓 (1) (𝑞)
𝑓 (2) (𝑞)

)
.

This is due to the fact that for two positive-definite symmetric matrices 𝐴1 =

𝑈1Λ1𝑈
⊤
1 and𝐴2 = 𝑈2Λ2𝑈

⊤
2 , the eigendecomposition of the block-diagonal matrix

comprised of 𝐴1 and 𝐴2 is defined by the formula:(
𝐴1 0
0 𝐴2

)
=

(
𝑈1 0
0 𝑈2

) (
Λ1 0
0 Λ2

) (
𝑈1 0
0 𝑈2

)⊤
.

For the same 𝑀 = 2 case, the cc-KAF formula has the following form:

𝑍𝑞,𝑑 (𝑥) =
(
𝑔(1) (𝑥)
𝑔(2) (𝑥)

)⊤ (
𝐺 (1) 𝐺 (1,2)

𝐺 (2,1) 𝐺 (2)

)†,ℓ (
𝑓 (1) (𝑞)
𝑓 (2) (𝑞)

)
.

Here the off-diagonal matrices 𝐺 (𝑚1,𝑚2) ,𝑚1 ≠𝑚2, have cross-correlation terms
of the form 𝑔

(
𝑥 (𝑚1)
𝑖 , 𝑥 (𝑚2)

𝑗

)
, with 𝑖, 𝑗 ∈ {1, . . . , 𝑁 }. Note, in particular, that the
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Figure 4.5: Comparison of the average (purple) of two GP regressors each trained on
half points vs one trained on all (black), ordered by decreasing length scale.

Pink and light blue dashed lines are for two GP regressors trained on (0.2, 0.6, 1.0) and
(0.0, 0.4, 0.8), respectively. In gray: the ground truth function 1 + 0.5 sin(2𝜋𝑥). All four GP
regressors use exp(−∥𝑥 − 𝑦∥2/𝜀) kernel, where 𝜀 = 1.0, 0.25, 0.15, and 0.01, from left to right.

factor 1/2 disappeared: this is because the total number of points is 2𝑁 , and so
the eigenvector matrix satisfies ΦΦ⊤ = 2𝑁 · 𝐼2𝑁×2𝑁 , and thus the normalization

1
2𝑁 is needed.

Since 𝐺 is symmetric, the off-diagonal matrices obey 𝐺 (1,2) =
(
𝐺 (1,2)

)⊤
. These

matrices contain correlations between𝑚 = 1 and𝑚 = 2 trajectories; thus, if the
two trajectories are very dissimilar (say, lie in different lobes of an attractor, such
as L-63), then the two methods should differ in approximately a factor of 2.

In an attempt to interpret this unusual conclusion from the GP regression
point of veiw, suppose we take the trivial identity kernel 𝑔id(𝑥,𝑦) = 𝛿 (𝑥 −𝑦), and
let 𝑁 = 3, 𝑀 = 2. Suppose also that the space is the interval [0, 1], and relabel
points so that they have continuous indices:

𝑥1 = 𝑥 (1)1 , 𝑥2 = 𝑥 (2)1 ,

𝑥3 = 𝑥 (1)2 , 𝑥4 = 𝑥 (2)2 ,

𝑥5 = 𝑥 (1)3 , 𝑥6 = 𝑥 (2)3 .

Evaluating posterior GPs 𝑧1 and 𝑧2 on 𝑥1 would yield𝑦1 and 0, respectively, hence
the average of the two is 𝑦1/2. However, if we use all four points to construct
𝑧∗(𝑥) = 𝑔id(𝑥)⊤𝐺−1

id 𝑦, then 𝑧∗(𝑥1) = 𝑦1. This effect is further demonstrated in
a series of experiments, where we take the squared exponential kernel and let
𝜀 → 0 (Figure 4.5).

We now turn to testing whether both d-KAF and cc-KAF give similar answers
in large data limits. The first is likely justifiable and if they are similar it helps
to justify the second. If they do give similar answers then note that the latter is
better suited to the next section in which we try to learn parameter-dependence.
Results of this experiment are shown in Figure 4.4.

Finally, we note that, using, as before, Arnoldi iterations, d-KAF requires
O(𝑀𝑁 2) evaluations of the kernel function, and O(ℓ𝑁 2) multiplications to obtain
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the ℓ-truncated pseudoinverse; whereas cc-KAF requires O(𝑀2𝑁 2) evaluations
and O(ℓ𝑀2𝑁 2) multiplications.

4.4.3 Variable Parameters; Multiple Time Series

Now imagine the data is generated by a parameter 𝜆 ∈ Λ dependent (possibly
stochastic) dynamical system and let XΛ = X× Λ. Let 𝜔 = {𝜔𝑛 = (𝑥𝑛, 𝑦𝑛)}𝑁−1

𝑛=0 be
a sequence in X× Ygenerated by 𝜔𝑛+1 = Φ(𝜔𝑛, 𝜆). We write the evolution of
this (possibly stochastic) dynamical system as

𝜔𝑛+1 = Φ(𝜔𝑛, 𝜆𝑛; 𝜁𝑛), 𝜁𝑛
𝑖.𝑖 .𝑑 .∼ 𝜈

𝜆𝑛+1 = 𝜆𝑛 .
(4.8)

Assume (for simplicity) that

𝜇′(𝑑𝜔,𝑑𝜆) = 𝜇 (𝑑𝜔 |𝜆) LebΛ(𝑑𝜆),
where LebΛ is Lebesgue measure on Λ, normalized to a probability (uniform
measure on Λ). We implicitly assume that conditional measure 𝜇 (𝑑𝜔 |𝜆) enjoys
continuity properties with respect to 𝜆; this is certainly not necessarily the case
in all situations, but in the case of stochastic dynamics settings can be developed
where it does hold. This assumption is also true for some dissipative ODEs: in
particular, it is true (albeit for small perturbations of the classical parameters) for
L-63, with measure 𝜇 (𝑑𝜔 |𝜆) being the invariant measure defined on the system’s
attractor [106].

We then generate data in Ω × Λ by choosing 𝜆 uniformly at random from Λ
and then generating a time-series from the dynamical system (4.8) at this value of
𝜆 and generating data from it as in the previous sections, but with X replaced by
XΛ, and 𝑥 by (𝑥, 𝜆). We thus use a weighting kernel 𝑞 : XΛ × XΛ ↦→ ℝ. Previous
kernel was based on ∥𝑥 − 𝑥′∥2, i. e. Euclidean norm. In the parameter-dependent
setting a number of ideas are natural. The first is to set 𝑧 = (𝑥, 𝜆) and consider
norm based on

1
2
⟨𝑧,𝐴𝑧⟩

and then 𝐴 is a parameter to be chosen to put the two contributions on the
same scale. The second is to seek a product kernel w. r. t. 𝑥 and 𝜆 separately
with 𝜆 being computed analytically using large data asymptotics and uniform
distribution, and then 𝑥 being as before but with 𝜆 dependent variable bandwidth.

We may choose 𝜆 uniformly at random 𝑀 times from Λ and then generate 𝑀
time-series at 𝑀 different values of 𝜆, noting that 𝜆 does not evolve along the
dynamical system. We may then use formula (4.7) noting that now it gives a
function of both initial condition and parameter:

𝑍𝑞,𝑑 (𝑥, 𝜆) =
1
𝑀

𝑀∑︁
𝑚=1

(
1
𝑁

𝑁−1∑︁
𝑛=0

𝑝
(
(𝑥, 𝜆),

(
𝑥 (𝑚)
𝑛 , 𝜆(𝑚)

)
;𝑑

)
𝑓 (𝑚)
𝑛+𝑞

)
. (4.9)
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Figure 4.6: RMSE for (HO-AMP) test problem, forecasting for 𝐸 = 2.0 and 𝐸 = 2.5.
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Figure 4.7: RMSE for (HO-FREQ) test problem, forecasting for 𝜅 = 1.6 and 𝜅 = 2.0.

4.4.4 Case Studies

We study the above ideas by comparing the predictors (4.6), (4.7), (4.9) on a
dataset containing different parameter regimes. Results are demonstrated on the
test problems outlined in the previous section, with single parameter variation in
each case.

4.4.5 Harmonic Oscillator

Here we present results of the three groups of experiments outlined in Sec-
tion 4.3.1.

We train individual regressors for each of the timeseries, and a d-KAF, cc-KAF
and p-KAF regressors.

For each of the three cases we use two evaluations: one for a previously seen
parameter value (i. e. one that is in the training set), and one for an unseen
parameter value.
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Figure 4.8: RMSE for (HO-PH) test problem, forecasting for 𝛼 = 0.0 and 𝛼 = 0.6.

The results for (HO-AMP), (HO-FREQ) and (HO-PH) are presented in Fig-
ures 4.6, 4.7 and 4.10, respectively.

4.4.6 Lorenz ’63

We compare the following variants of KAF applied to these multiple time series,
ordered from least to best expected predictive skill:

1. d-KAF (4.6): the average of 𝑀 = 10 KAF predictors trained separately on
each time series,

2. cc-KAF (4.7): KAF trained all at once on the entire group of time series
with no parameter information, namely, 𝐻 (𝜔, 𝜆) = [𝑥,𝑦, 𝑧]⊤,

3. p-KAF (4.9): cc-KAF trained on parameter-augmented coordinates (mean
centered and normalized), namely 𝐻 (𝜔, 𝜆) = [𝑥,𝑦, 𝑥, 𝜆]⊤,

4. KAF (4.5): the ideal scenario of training KAF entirely on the same fixed
parameters (one time series) as the initial data.

Results are shown in Figure 4.1.
As is expected, p-KAF produces results that are slightly worse but similar to the

standard KAF. Perhaps, what is unexpected is that p-KAF and cc-KAF produce
similar results. For Lorenz ’63 this can be simply explained by the fact that the
attractor physically lies in different parts of the phase space (i. e. it moves up in
𝑧-direction as 𝑟ℎ𝑜 increases), so Euclidean distance in the phase space provides
enough information; in other words, the weights assigned to samples 𝑓 (𝑚)

𝑛+𝑞 in
eq. (4.7), for 𝑚 ≠ 𝑚(𝜌), are rather small. This is in contrast to d-KAF, where
there are no cross-correlation blocks 𝐺 (𝑚1,𝑚2) , 𝑚1 ≠ 𝑚2, and so the trajectory
converges to the prior mean, zero, much faster.
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Figure 4.9: Variable parameters; multiple time series prediction of 𝑥0 ≈ 15.
Ordered from least to best predictive skill from top to bottom, are plots of d-KAF (4.6), cc-
KAF (4.7), and p-KAF (4.9). The bottom plot, included for illustrative purposes, depicts the ideal
scenario of fixed parameters and single time series for training a standard KAF predictor (4.5).
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Figure 4.10: RMSE for (L-SIGMA) test problem, forecasting for 𝜎 = 18.0 and 𝛼 = 14.0.
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Figure 4.11: Comparison of cc-KAF (4.7) and p-KAF (4.9), for parameter value 𝜌 = 48
which not in the training set; both have ℓ = 1000 eigenpairs.
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4.5 IMPLICIT PARAMETER VALUES

4.5.1 Delay Embedding

The main technique that allows us to extend KAF to the parametric setting is
called delay embedding, a widely deployed technique based on a result proved by
Floris Takens in 1981 [104]. In this subsection we state the main theorem, provide
brief explanation of the use in the discrete dynamics case, introduce notation for
delay embedding and discuss heuristics and computational aspects of using it in
practice. The original Takens’ embedding theorem is formulated below.

Theorem 4.1 (F. Takens [104]). Let 𝑀 be a compact manifold of dimension𝑚. For
pairs (𝜙,𝑦), 𝜙 : 𝑀 → 𝑀 a smooth diffeomorphism and 𝑦 : 𝑀 → ℝ a smooth function,
it is a generic property that the map Φ(𝜙,𝑦) : 𝑀 → ℝ2𝑚+1, defined by

Φ(𝜙,𝑦) (𝑥) =
(
𝑦 (𝑥), 𝑦 (𝜙 (𝑥)), . . . , 𝑦 (𝜙2𝑚 (𝑥))

)
is an embedding; by “smooth” we mean at least 𝐶2.

For our purpores, this theorem implies that, given a discrete dynamical system,
defined by iterations 𝑥𝑛+1 = 𝜙 (𝑥𝑛), it is possible to recover full dynamics by
looking at one-dimensional observations of the trajectory, provided enough delay-
points are used (twice as many as the dimension of a manifold on which dynamics
lie).

A few practical issues arise here. First of all, chaotic attractors are not compact
manifolds, for they have a fractional dimension. This poses a problem, however,
there have been many generalizations of Theorem 4.1, some of which, in particu-
lar, replace the smooth manifold with a set of arbitrary box-counting dimension.
Moreover, in practice, delay embedding tends to work well, which is confirmed
by a vast number of studies over the period of several decades.

Second, we are not necessarily guaranteed that the dynamics “visits” the whole
manifold 𝑀 ; thus, a time-series of observations {𝑦 (𝑥𝑛)}𝑁𝑛=1, no matter how big
𝑁 is, will not allow us to recover the whole manifold. This is circumvented by
an assumption we make that we only consider ergodic systems with compact
attractors, so any long enough trajectory is sufficient to cover the whole attractor.
It is true, however, and just like in the normal KAF setting of Chapters 1 and 2,
if the unseen initial condition does not lie on such attractor, the prediction skill
is not expected to be high.

“Recovering dynamics” in this context means that the new, reconstructed
dynamics in ℝ2𝑚+1 are diffeomorphically equivalent to the original dynamics.
This, by itself, does not provide a forecasting technique, but applying any fore-
casting method on delay-embedded vectors does. A delay-embedded vector of
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delay-embedding dimension 𝑏 is defined as a stack of (𝑏 − 1) previous iterations
of the dymical map, plus the current one:

𝑥 (𝑏)𝑛 = [𝑥𝑛−𝑏+1, 𝑥𝑛−𝑏+2, . . . , 𝑥𝑛]⊤ .

If the dynamics (or observations) are one-dimensional, then 𝑥 (𝑏) ∈ ℝ𝑏 ; but if
each of the time-series vectors 𝑥𝑛 is 𝑠-dimensional, then 𝑥 (𝑏) ∈ ℝ𝑠𝑏 .

Obviously, taking a time-series {𝑥𝑛}𝑁𝑛=1 and turning it into a delay-embedded
one means that the total number of points reduces to 𝑁 − 𝑏; this usually poses no
problem since 𝑁 ≫ 𝑏. Here we note that finding a good dimension 𝑏 is mostly a
heuristic exercise: in principle, Theorem 4.1 guarantees that 𝑏 = 2𝑚 + 1 should
be enough for a manifold of dimension𝑚. This means that employing a higher
embedding dimension should do no harm, after the 2𝑚 + 1 dimension is reached.
In practice, however, observations are inherently noisy (due to numerical errors
of ODE intergration), so then a delay embedding window 𝑇emb = 𝑏Δ𝑡 becomes
important. The dimension is still required to be at least 2𝑚 + 1, but too long of
a window 𝑇emb might yield worse results. To complicate matters further, if the
window is too short, data-driven forecasts also become worse, even when the
manifold dimension is known, and the 2𝑚 + 1 requirement is satisfied. A possible
explanation of this phenomenon is that many 𝑇emb intervals of the trajectory are
too similar to each other, hence the kernel does not provide sufficient separation,
and the computations are poorly conditioned.

Heuristically, however, numerical experiments we conducted on test problems
outlined in Section 4.3, as well as with other dynamical systems not covered in
this chapter and whose stable manifold dimension is explicitly known, suggest
that the best results from using delay embedding are achieved when two factors
are satisfied:

◦ the delay-embedding dimension 𝑏 is appoximately between 2𝑚 and 4𝑚,
and

◦ the delay-embedding window 𝑇emb is large enough to observe significant
variation (in terms of the sensitivity of the chosen kernel), yet small enough
to not accumulate large errors from the numerical integration.

Similarly, theory tells us that an observation function 𝑦 : 𝑀 → ℝ whose
codomain is the real line, is enough, so higher dimensions should not deteriorate
the embedding accuracy. In practice, however, it happens that observing just
one coordinate is sometimes more beneficial than observing the full state, at least
for the purposes of using KAF (as outlined below, in the harmonic oscillator
subsection).

The computational cost of using delay embedding in the context of kernel
methods depends on the choice of the kernel. For the squared exponential kernel
𝑘 (𝑥,𝑦) = exp(∥𝑥 − 𝑦∥2/𝛿), or any other kernel that uses Euclidean norm as
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distance, computation of each element of the kernel matrix from a pair of points
𝑥𝑖 and 𝑥 𝑗 grows linearly from O(𝑠) to O(𝑠𝑏). Thus, total complexity of computing
one kernel matrix from 𝑁 data points is O(𝑠𝑏𝑁 2) (counting multiplications and
evaluations of the exponential function only). Here we assume 𝑁 ≫ 𝑏, so we
ignore changes in the total number of points.

As noted above, the embedding dimension 𝑏 needs to be determined experi-
mentally. For such procedure, efficient implementation of the delay embedding
involves computation and storage of pairwise distances (p-d) 𝑝𝑖 𝑗 = ∥𝑥𝑖 − 𝑥 𝑗 ∥2.
This increases the memory cost by O(𝑁 2) for dense matrices. It can be further
reduced by the use of sparse matrices, setting values 𝑝𝑖 𝑗 ≪ 1 to zero. Storing this
additional matrix is not a significant challenge, though, since even for 𝑁 = 105

points the total size of the upper-triangular part of the p-d matrix (its diagonal is
zero, and it is symmetric) is ∼4.7 GB. After the p-d matrix (𝑝𝑖 𝑗 ) is computed, the
new distances

(
𝑝 (𝑏)𝑖 𝑗

)
for embedding dimension 𝑏 are computed using a simple

formula:

𝑝 (𝑏)𝑖 𝑗 = 𝑝𝑖 𝑗 + 𝑝𝑖−1, 𝑗−1 + · · · + 𝑝𝑖−𝑏+1, 𝑗−𝑏+1,

and 𝑖 and 𝑗 range from 𝑏 to 𝑁 , thus
(
𝑝 (𝑏)𝑖 𝑗

)
∈ ℝ(𝑁−𝑏)×(𝑁−𝑏) .

4.5.2 KAF with Delay Embedding

Delay embedding can be a useful tool for general time-series prediction, improv-
ing the forecasting skill even when full state of the system is observed and the
system is Markovian (as can be seen from some of the results in Section 4.5.3).
The obvious downside of using delay embedding is using a portion of trajec-
tory instead of one point as the initial condition. In the context of forecasting
parameter-dependent dynamical systems with hidden parameters, however, it is
justified because it provides additional information to distinguish (𝑥0, 𝜆𝑎) from
(𝑥0, 𝜆𝑏).

The most straight-forward approach of applying delay embedding to fore-
casting with a kernel method like KAF is to simply treat the newly formed
delay-embedded vectors 𝑥 (𝑏) as coming from a phase space of an augmented
dynamical system:

𝑥 (𝑏)𝑛+1 = Φ(𝑏)
(
𝑥 (𝑏)𝑛

)
.

In the case of a kernel that uses Euclidean distance, this means that the 𝐿2-
distance is computed between two trajectory pieces that 𝑥 (𝑏)𝑖 and 𝑥 (𝑏)𝑗 represent.
Obviously, there are other options, for example, using an approximation of
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the 𝐻1 norm, or approximation of the curvature of 𝑥 (𝑏)𝑖 − 𝑥 (𝑏)𝑗 , which, in the
arc-length parametrization, is essentially the 𝐻2 seminorm:

|𝑥 (·) − 𝑧 (·) |2
𝐻2 =

∫
[0,𝑇 ]

|𝑥′′(𝑡) − 𝑧′′(𝑡) |2𝑑𝑡,

and so on. We note that these choices cannot be made for a general forecasting
problem, and would need to be made for a particular problem.

It is also important to note that Theorem 4.1, despite providing a solid theoret-
ical ground for the use of delay embedding in the context of dynamical systems
forecasting, does not guarantee success. Indeed, two attractors corresponding to
parameter values 𝜆𝑎 and 𝜆𝑏 can be diffeomorphically equivalent yet the dynamics
will differ. In practice, however, delay embedding demonstrates excellent sep-
aration of the various dynamics. Moreover, as demonstrated in the harmonic
oscillator example, even in the case when the two manifolds corresponding to
different parameter values are exactly the same, KAF with delay embedding still
gives good results.

4.5.3 Case Studies

Similar to the explicit parameter case, we test KAF with delay embedding against
pure KAF on the HO and L-63 data set. In each case, we conduct one experiment
for each dynamical system.

4.5.4 Harmonic Oscillator

The results are presented in Figure 4.12. Here we only run the (HO-FREQ)
experiment. Top row represents the case where we observe full state and only
predict 𝑥 coordinate, and the bottom row is observing and predicting only 𝑥
coordinate. Left and right columns depict cases where the parameter is out-of-
sample and from the training set, respectively.

4.5.5 Lorenz ’63

The results are presented in Figure 4.13. Here we only run the (L-RHO) experi-
ment. Top row represents the case where we observe full state and only predict
𝑥 coordinate, and the bottom row is observing and predicting only 𝑥 coordinate.
Left and right columns depict cases where the parameter is out-of-sample and
from the training set, respectively.

4.6 CONCLUSION AND FURTHER DIRECTIONS

Among the possible further directions we indicate the following:
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Figure 4.12: Applying KAF to HO with delay-embedding dimension 24.

Figure 4.13: Applying KAF to L-63 with delay-embedding dimension 5.

1. rigorous foundation for the use of delay embedding, with two important
questions to answer: how to distinguish the cases when it is applicable to
the problem at hand, and – in those cases when it is indeed applicable –
what the optimal delay-embedding dimension and window are;

2. design of a kernel in the joint X×Λ space which could exploit the geometry
of the family of attractors;
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3. development of a hybrid approach, when part of the data set is given with
explicit parameter values, and part is given without such values.

As mentioned in the introduction to the chapter, our methodology relies on
the assumption that dynamics, and the attractor when one exists, vary smoothly
with parameter. And even though the L-63 experiments included bifurcations,
they were not significant enough to rule out useful application of the KAF, but
would merely deteriorate the forecasting skill. However, we expect that one can
easily find an example of parametric dynamics which would render our approach
useless. A likely setting, which arises frequently, is where the global attractor
is only upper semi-continuous [103]; this happens, for example, if one of the
lobes of a chaotic attractor disappears. An entirely new way of dealing with such
situations would be needed.



Part II

DATA-DR I VEN MODEL AUGMENTATION

In the second part of the thesis, we consider two particular examples of
model augmentation via data gathered from dynamical systems. The
first is a problem of finding closures for multiscale systems. Here we
propose several approaches and demonstrate them on a few examples.
The second is a case of applying data assimilation techniques to
epidemiological models on graphs (motivated by the COVID-19
pandemic).



chapter 5

CLOSURES FOR MULT I SCALE SYSTEMS US ING KERNEL
METHODS

One of the main challenges that arises in forecasting multiscale dynamical systems
is dealing with numerical integration with vastly different time scales. The size
of a time-step required for stable and accurate integration is controlled by the
fastest process exhibited by a system. However, often one is only interested in
the macro-scale processes, for which the said time-step may be set to orders of
magnitude larger. As a result, numerical investigation of such dynamical systems
is constrained by the smallest time-step needed to resolve the fast process, even
though there is little practical benefit from obtaining accurate trajectories of the
fast process.

A different approach is to try and construct a closure for the fast process’ con-
tribution to the behaviour of the slow process. Consider the following ordinary
differential equation (ODE):

¤𝑥 = 𝑓1(𝑥) + 𝑓2(𝑦),
¤𝑦 =

1
𝜀
𝑔(𝑥,𝑦),

(5.1)

where 𝑥 and 𝑦 are some vectors, and 𝜀 ≪ 1. Deriving a closure then constitutes
finding another function such that the 𝑥-subsystem can be integrated in time
independently:

¤𝑋 = 𝑓1(𝑋 ) +𝐶 (𝑋 ), (5.2)

with 𝑋 ≈ 𝑥 in some sense. A typical objective in obtaining the closure 𝐶 is to
match statistics of the resulting system 𝑋 (𝑡) with the true statistics of 𝑥 (𝑡). These
questions have been extensively studied in the literature [77].

This chapter is devoted to the possibility of learning such closures in a data-
driven way using kernel methods. It also serves as a bridge between first and
second parts of the thesis, as it involves both data-driven forecasting with kernel
methods and obtaining kernel-derived closures. In Section 5.1, we introduce
the model problem used for studying closures, and outline several strategies of
constructing kernel closures. In Section 5.2, we test the forecasting ability of
the proposed methods numerically, and compare them to other closure methods,
along with the pure data-driven forecasting.

66
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5.1 KERNEL-BASED CLOSURES

A natural setting for seeking closures is provided by a linear variant of the
model (5.1) that exhibits averaging:

¤𝑥 = 𝑓1(𝑥) + 𝐵𝑦,
¤𝑦 =

1
𝜀
𝑔(𝑥,𝑦),

(5.3)

where now 𝐵 is linear, and invoking the averaging principle, for a sufficiently
small 𝜀, we may write 𝑋 ≈ 𝑥 with

¤𝑋 = 𝑓1(𝑋 ) +𝐶 (𝑋 ),
𝐶 (𝑋 ) =

∫
Y

𝐵𝑦 𝑑 (𝜇𝑥𝑦),
(5.4)

and 𝜇𝑥 is the invariant measure of the 𝑦 variable, with a frozen 𝑥 . These assump-
tions guarantee existence of such closure, and therefore justify the data-driven
approach to finding one. Details of the underlying theory may be found in Pavli-
otis and Stuart [77].

5.1.1 The Model

In this chapter we focus our attention on a chaotic dynamical system, colloquially
known as Lorenz ’96 multiscale [66], which we will simply abbreviate to L-96.
Following the notation established in [33], the L-96 equations model 𝐾 slow
variables {𝑥𝑘}𝐾𝑘=1 coupled to 𝐽𝐾 fast variables {𝑦 𝑗,𝑘}𝐽 ,𝐾𝑗,𝑘=1,1 with evolution given as
follows:

¤𝑥𝑘 = −𝑥𝑘−1(𝑥𝑘−2 − 𝑥𝑘+1) − 𝑥𝑘 + 𝐹𝑥 +
ℎ𝑥
𝐽

𝐽∑︁
𝑗=1
𝑦 𝑗,𝑘 ,

¤𝑦 𝑗,𝑘 =
1
𝜀

(
−𝑦 𝑗+1,𝑘 (𝑦 𝑗+2,𝑘 − 𝑦 𝑗−1,𝑘) − 𝑦 𝑗,𝑘 + ℎ𝑦𝑥𝑘

)
,

𝑥𝑘+𝐾 = 𝑥𝑘 , 𝑦 𝑗,𝑘+𝐾 = 𝑦 𝑗,𝑘 , 𝑦 𝑗+𝐽 ,𝑘 = 𝑦 𝑗,𝑘+1.

(5.5)

This is of the form (5.3). Here 𝑘 ranges from 1 to 𝐾 and 𝑗 ranges from 1 to 𝐽 ,
thus, there are (𝐽 +1)𝐾 equations in total. The periodic boundary conditions link
𝑥 and 𝑦 variables in such a way that if we were to represent coupling between
the variables they would form two circles (Figure 5.1).

On the assumption that the 𝑦-variables, with 𝑥 frozen, are ergodic, the averag-
ing principle shows the existence of a function 𝐶 : ℝ𝐾 → ℝ𝐾 such that, for small
𝜀, the 𝑥 variables are approximated by 𝑋 = (𝑋1, . . . , 𝑋𝑘) solving

¤𝑋𝑘 = −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹𝑥 +
ℎ𝑥
𝐽
𝐶𝑘 (𝑋 ), 𝑘 = 1 . . 𝐾 ,

𝑋𝑘+𝐾 = 𝑋𝑘 ,

(5.6)
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𝒙1

𝒚1,1

𝒚2,1

𝒚3,1

𝒚4,1

Figure 5.1: Coupling diagram for L-96.
Each line represents a mutual dependence of the connected variables. Dependence of 𝑥 on 𝑦
means that 𝑦 appears in the right-hand side of an ODE for ¤𝑥 . Each variable also depends on itself,
but for clarity we do not picture those.

with the same periodic boundary conditions as before, and𝐶𝑘 : ℝ𝐾 → ℝ denoting
the 𝑘𝑡ℎ component of a vector-valued function𝐶. This system is of the form (5.4).
Since system (5.5) is index-shift-invariant, it is clear that the closure 𝐶𝑘 , if it
exists, satisfies 𝐶𝑘+1(𝑋 ) = 𝐶𝑘 (𝜋𝑋 ) where 𝜋 shifts the vector indices by adding
one unit, invoking periodicity at the end points. Furthermore, when 𝐽 is large,
empirical evidence [33, 115] suggests that there is a function 𝑐 : ℝ → ℝ such that
the approximation 𝐶𝑘 (𝑋 ) = 𝑐 (𝑋𝑘) is a good one.

For the numerics that follow a key point to appreciate is that for small 𝜀 the
variables 𝑥 in (5.5) exhibit (approximately) Markovian behavior, and this behavior
is deterministic and governed by 𝑋 . However, by tuning 𝐹𝑥 , different responses
arise in the deterministic variable. In the following we fix parameters 𝜀−1, 𝐾 , 𝐽 ,
ℎ𝑥 , ℎ𝑦 throughout all our experiments as follows:

𝜀−1 = 128, 𝐾 = 9, 𝐽 = 8, ℎ𝑥 = −0.8, ℎ𝑦 = 1.0. (5.7)

We then choose 𝐹𝑥 as a bifurcation parameter, and distinguish three cases as
follows:

periodic
𝐹𝑥 = 5.0,

quasiperiodic
𝐹𝑥 = 6.9,

chaotic
𝐹𝑥 = 10.0.

Figure 5.2 demonstrates the three responses within system (5.5) resulting from
these parameter choices.
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(a) Periodic (b) Quasiperiodic (c) Chaotic

Figure 5.2: L-96 regimes of increasing complexity (left to right).
Phase portraits show (𝑥1, 𝑥2, 𝑥3) coordinates shaded by 𝑥4. The parameter 𝐹𝑥 takes values 5.0, 6.9
and 10.0 respectively, from left to right, and all other parameters are as in (5.7).

5.1.2 Closure designs

Here we introduce three approaches to constructing a closure. All three have a
common theme of collecting data from numerical integration of some ODE and
using it to learn the closure 𝑐 : ℝ → ℝ. Once the closure is obtained, it is used
for numerical integration of the closed system.

As discussed above, for L-96 we seek the closure 𝑐 in the form of a function
taking 𝑋𝑘 as input and mapping it to an approximation of

∑𝐽
𝑗=1𝑦 𝑗,𝑘 , which can

then be multiplied by ℎ𝑥 𝐽−1 to obtain the forcing term. Thus, in each case the
training data comes in the following form:{(

𝑥𝑘 (𝑡𝑖),
𝐽∑︁
𝑗=1
𝑦 𝑗,𝑘 (𝑡𝑖)

)}
, 𝑘 = 1 . . 𝐾 . (5.8)

Note that index-shift invariance allows us to collect 𝐾 data point pairs in one
integration step.

Since numerical evidence suggests that L-96 is ergodic [33], it is important
to take a constant time-step Δ𝑡 for numerical integration, as it will guarantee
sampling from the ergodic measure. In practice, we use Runge–Kutta 4(5)
scheme (from the Python library SciPy [109]), with adaptive step size, however,
interpolation of 5th order is then used to reconstruct the solution at Δ𝑡-apart
points.

In most cases, the amount of data points collected is too big for computationally-
efficient use of a kernel method, and is overwhelming for a learning a one-
dimensional function, so we choose a subset of training data uniformly at random
to obtain 500–800 points (Figure 5.3). Since we assume a Markovian form of the
closure (i. e. it only depends on the current value of the variable), we do not need
to keep track of the ordering of the points.
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Figure 5.3: Gaussian Process Regression.

As our closure model, we use a standard GP regression with the following
kernel:

𝑘 (𝑥,𝑦) = 𝐴 exp
(
−∥𝑥 − 𝑦∥2

2𝛿2

)
+ 𝛼,

where 𝐴 > 0 is a magnitude pararmeter, 𝛿 > 0 is a length-scale parameter, and
𝛼 > 0 is a white-noise parameter. The parameters’ initial values, bounds and
typical posterior values are outlined in Table 5.1.

Parameter Initial values Bounds Typical Posterior

A 1
[
10−5, 105] 0.8, 1.1

𝛿 3
[
10−10, 106] 0.01, 0.03

𝛼 1
[
10−10, 105] 0.1, 0.5

Table 5.1: GP parameter bounds, initial and typical posterior values.

The GP regression is carried out using Python library Scikit-learn [79]. It
implements Algorithm 2.1 of Rasmussen and Williams [85] to fit the GP to the
data, which also outputs log-marginal likelihood; the latter is then used to tune
the parameters via L-BFGS-B routine [22, 121], as implemented in SciPy [109].

After tuning parameters and fitting a GP to the data, we use the posterior
GP’s mean as the closure 𝑐 in (5.6). As our benchmark, we integrate this system
numerically, and compare the density of 𝑋𝑘 to the density of 𝑥𝑘 of the original
system (5.5). The same remark about constant step-size applies here; furthermore,
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Figure 5.4: L-96 numerical simulations.
Depicted in this plot are sample numerical simulations of a full L-96 system (5.5) (blue), closed
system (5.6) with an offline closure, and closed system (5.6) with a naive closure 𝑐 (𝑋𝑘 ) = ℎ𝑦 𝐽𝑋𝑘 .

since both systems are index-shift invariant, the density of 𝑋𝑘 is the same for any
𝑘 = 1 . . 𝐾 , which again allows us to build empirical densities faster. We use kernel
density estimation for comparison and plotting (see Figure 5.5 for an example).

Offline

The most staightforwad approach, which we call offline, is to first obtain data pairs
of the form (5.8), for example, by numerically integrating the full model (5.5)
for a short period of time, and then use them to perform the GP regression with
parameter tuning.

Filtered

The second approach, called filtered, starts off exactly like the offline one, but
instead of using the closed model (5.6) with learned closure 𝑐, we leave one section
of the fast variables to provide behavior that is close to the real system (5.5):

¤𝑋𝑘 = −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹𝑥 +
ℎ𝑥
𝐽
𝑐 (𝑋𝑘), 𝑘 = 2 . . 𝐾,

¤𝑋1 = −𝑋𝐾 (𝑋𝐾−1 − 𝑋2) − 𝑋1 + 𝐹𝑥 + ℎ𝑥
𝐽

𝐽∑︁
𝑗=1
𝑦 𝑗 ,

¤𝑦 𝑗 = 1
𝜀

(
−𝑦 𝑗+1(𝑦 𝑗+2 − 𝑦 𝑗−1) − 𝑦 𝑗 + ℎ𝑦𝑋1

)
,

𝑋𝑘+𝐾 = 𝑋𝑘 , 𝑦 𝑗+𝐽 = 𝑦 𝑗 .

(5.9)
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Full system
GPR closure

Figure 5.5: Probability density functions of L-96 and the system with offline closure.

Note that since we only have one section of the fast variables, we modify the
periodic boundary condition for 𝑦 to make it loop onto itself.

This approach allows for a data assimilation algorithm to be run in parallel,
in case data from a real-world system is gathered for the fast variables. This
also allows one to investigate the significance of any particular subset of the fast
variables and, potentially, answer some optimal design questions.

Online

Finally, the online approach consists of many small iterations of building the
closure. Here we will have a series of closures 𝑐𝑖 instead of one. We first must
choose an initial closure 𝑐0; for L-96, we would simply choose a linear closure
𝑐0(𝑋 ) = ℎ𝑥ℎ𝑦 , which can be obtained from the fast subsystem by setting all
𝑦 𝑗,𝑘 ≡ const and equal to each other. After a short period of time, the data
produced in such fashion is then used to train a GP regressor, and a new closure
𝑐1(𝑋 ) is set to be the mean of that regressor. The process then continues, and
one could stop when 𝑐𝑖 and 𝑐𝑖+1 are close in some norm.

5.2 FORECASTING COMPARISONS

5.2.1 Conditional Expectation and Variance

We aim to predict the 𝑥1 variable from historical data of a long trajectory of
𝑥 alone. Thus the observation and observable maps are Π(𝜔) = 𝑥 , 𝐹 (𝜔) = 𝑥1.
We will also use 𝐹 (𝜔) = 𝑥2

1 when estimating conditional variance. By tuning
the scalar parameter 𝐹𝑥 (not to be confused with function 𝐹 ) as outlined in the
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Figure 5.6: Online GPR iterations: 𝑖 = 0 through 𝑖 = 3.

preceding subsection we can obtain periodic, quasiperiodic and chaotic responses
in the averaged variable 𝑋 . It is intuitive that the ability of the KAF to track the
true trajectory of the slow variables decreases with increasing complexity; in
other words, predictions in the periodic case should be the most accurate whilst
those in the chaotic case present a significant challenge. In the experiments that
follow the size and sampling interval of the source (training) data remain fixed at
(40000, 0.05) and the out-of-sample (test) data set is fixed at �̂� = 7000.

The space of observables X in the current example is the space of all slow
variables. Since, under the small-𝜀 limit, an ODE closure of the slow dynamics
is obtained, the variable 𝑥 behaves (approximately) like a deterministic Markov
process, and the expectation in (2.6) disappears; the predictor is expected to track
the actual trajectory 𝑥1(𝑡). To see this another way, note that simply knowing
the initial values of the 𝑥-variables (recall that X is precisely all 𝑥-variables) and
the closure 𝐶 (𝑋 ) in equation (5.6), we are able to predict 𝑥1 (or indeed, any 𝑥𝑘 )
exactly, given the initial conditions for all 𝑥-variables.

However this picture is greatly affected by the sensitivity of the system to
initial conditions and sampling errors due to high dimensionality of the attractor.
We now describe how these predictions work in practice, in the three regimes
shown in Figure 5.2. We display our results in Figure 5.7, where 𝑥1 and standard
deviation bands are predicted and compared with the true signal starting from
the same point. The long-term predictability in each regime is constrained by
the complexity of the underlying Markovian, deterministic, slow dynamics. In
the periodic regime, since chaos is absent in the slow variables, a perfect predictor
is obtained via the partially observed dynamics; one interpretation of why this
occurs is because the eigenfunctions of the Koopman operator lie in a finite
span of the diffusion coordinate observables [9]. Observe that 𝑍𝜏 remains in
phase, and the forecast variance is negligible, for long lead times up to the length
of the entire out-of-sample trajectory (𝜏 = 350). The quasiperiodic trajectory
is tracked imperfectly, but with significant accuracy over the same range of
times; errors are visible mainly around the extrema of 𝑥1 as suggested by the
phase portrait; the conditional variance reflects the significant accuracy present.
Prediction in the fully chaotic regime only tracks the trajectory, however, until
a lead time of approximately 1 time unit, exhibiting behaviour at long lead times
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Trajectory
Prediction
Predicted 2𝜎

(a) Periodic

(b) Quasiperiodic

(c) Chaotic

Figure 5.7: Predictability: periodic, quasiperiodic and chaotic regimes.
Prediction 𝑍𝜏 (𝑥) of observable 𝐹 (𝜔) = 𝑥1 across 3 different regimes. In each figure grey is the
true trajectory, blue the predictor using KAF, and pink gives two standard deviations confidence
bands, computed using the conditional variance. The parameter 𝐹𝑥 takes values 5.0, 6.9 and 10.0
respectively, from top to bottom, and all other parameters are as in (5.7). In the first, periodic
response regime, the trajectory is predicted almost perfectly and this accuracy is reflected in the
narrow confidence bands. In the second, quasiperiodic response regime, the trajectory is predicted
very well, but with growing error reflected accurately in the slowly growing confidence bands.
In the third, chaotic response regime, the predictive capability is lost due to sensitivity to initial
conditions and this is reflected in the rapidly growing confidence bands and in the convergence
of the predictor to a constant, for large 𝜏 .
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Figure 5.8: RMSE.
This figure depicts the RMSE of the predictor 𝑍𝜏 (𝑥) for (5.5), for different 𝐹𝑥 , as a function
of 𝜏 . The parameter 𝐹𝑥 takes values 5.0, 7.1 and 10.0 respectively, from smaller to larger error,
corresponding to periodic, quasiperiodic and chaotic response; all other parameters are as in (5.7).

which is somewhat similar to that seen in the previous, homogenization, section
in which the predicted variable behaved as if drawn from a Markov stochastic
process. In particular the long-term predictor in the chaotic regime converges
to a constant by construction, assuming mixing, and this is consistent with the
inherent unpredictability of chaotic dynamics. It is notable that the size of the
conditional variance, and the resulting confidence bands, is a useful guideline as
to the pathwise accuracy of the data-driven predictor. The observations about the
predictability of the system by KAF methods are also manifest in Figure 5.8 which
shows the RMSE in each of the periodic, quasiperiodic and chaotic regimes.

We mention that in the quasiperiodic case the presence of multiple attractors
(or multiple lobes of the same attractor), and resulting intermittent switching
between these attractors, leads to a loss of predictability that is significant on
time-scales much longer than those shown here. For the figure shown here we
have ensured that training points and out-of-sample points are gathered from the
same (part of the) attractor to maintain accuracy. We train using two different
trajectories to gather ample training data.

Recall that at each lead time 𝜏 along the horizontal axis there is a potentially
different number of eigenfunctions ℓ (𝜏) used in the data-driven method. In the
chaotic regime the optimal ℓ (𝜏) tends to 1 for large times whilst ℓ fluctuates
around 50 in the quasiperiodic regime; we obtain ℓ ≈ 9 for all 𝜏 in the periodic
regime.

5.2.2 Comparison Of Data-Driven And Model-Data-Driven Prediction

The previous subsection concerned purely data-driven prediction of variable 𝑥
from (A), using only data in the form of a time-series for 𝑥 . In this subsection we
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Figure 5.9: Mean of Gaussian process regression as a closure.
Function 𝑐𝐺𝑃 , and data used to determine it, from data generated by (5.5) with parameters as in
(5.7) and 𝐹𝑥 = 10.0.

provide comparison with a different forecasting technique based on a combination
of model and data-driven prediction, using data in the form of a time-series for
(𝑥, 𝐵𝑦). Knowledge of 𝐵𝑦 enables the use of Gaussian process regression (GPR) [85]
to approximate 𝑣 (·) by 𝑣𝐺𝑃 (·) in (A0). Our approach is motivated by the paper [33]
which looked at finding such closures for the L-96 model in form (5.5). When
applied to (5.5) the methodology leads to an approximate closure for the slow
variable 𝑋 which takes the form

¤𝑋𝑘 = −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹𝑥 + ℎ𝑥𝑐𝐺𝑃 (𝑋𝑘), 𝑘 ∈ {1, . . . , 𝐾}, (5.10)

subject to periodic boundary conditions 𝑋𝑘+𝐾 = 𝑋𝑘 . This should be compared
with (5.6), which arises from application of the averaging principle; note that, in
addition, we have invoked the hypothesis that 𝐶𝑘 (𝑋 ) can be well-approximated
by function of 𝑐 (𝑋𝑘), as discussed directly after (5.6); and we will determine an
approximation 𝑐𝐺𝑃 for 𝑐 by GPR.

Explicit details of the procedure we use to build a GP closure are described in
Section 5.1.2; here we observe that for training we use tuples {𝑥𝑘 (𝑡𝑛), (𝐵𝑦)𝑘 (𝑡𝑛)}𝑁𝑛=1,
over all 𝑘 = 1, . . . , 𝐾 . See Figure 5.9 to see the data used (red random subsamples,
without replacement, of the total grey data set), and an approximate GP closure
𝑐𝐺𝑃 determined from that data.

Once we have the closed model appearing in (5.10) we may use it to predict
the variable 𝑥 appearing in (5.5), and we may compare that prediction with the
one made by KAF. Figure 5.10 shows the result of doing so. It shows that the
KAF approach is superior in the periodic and quasiperiodic settings, but that
for predictions of the trajectory itself the model-data based predictor (5.10) is
superior to KAF in the chaotic case. Note that the model-data based predictor
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Figure 5.10: Comparison of data-driven and model-data-driven prediction.
The true trajectory is shown in grey, the KAF data-driven prediction in blue and the model-
data-driven predictions based on (5.10) in dotted-red; the periodic, quasiperiodic, and chaotic
regimes are considered in turn.

has access to more data than does the KAF, and requires model knowledge; the
KAF is entirely data-driven.

We now dig a little deeper into the comparison. We do this in a systematic
way in the periodic, quasiperiodic and chaotic regimes. In each of these three
cases we show four RMSE error curves, labelled as follows: a) the standard KAF
based on 𝑥 data alone; b) an enhanced KAF using (𝑥, 𝐵𝑦) data, the same data
used to train the ODE (5.10); c) a prediction using the ODE (5.10); d) a KAF
prediction trained on 𝑋 data alone, generated by the ODE (5.10). Figure 5.11
shows that KAF a) is the ideal predictor in the periodic regime and is near-ideal
in the quasiperiodic regime; on the other hand, the ODE (5.10) predictor c) is
ideal for short-term predictability in the chaotic case. Augmenting observations
with 𝐵𝑦 within KAF, as in b), gives errors similar to those arising from a), when
observing 𝑥 alone; thus knowledge of 𝐵𝑦 provides little extra information. In
the chaotic case, the RMSEs of KAF trained on 𝑥 , a), and on 𝑋 , d), are very
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Figure 5.11: RMSE comparison for the four cases a)–d) described in the text, in the
periodic, quasiperiodic, and chaotic regimes.

In the periodic regime, KAF (a) is an ideal predictor with negligible growth in error (note the
logarithmic scale). In the quasiperiodic response regime, the growth in RMSE with KAF (a,b)
is significantly slower than that of the GP-based ODE prediction (c). In the chaotic response
regime, the GP-based ODE prediction (c) is more accurate in the near term, yet KAF error
stabilizes as the prediction converges to the conditional mean.

close, confirming that the ODE (5.10) for 𝑋 captures the invariant measure of
the approximately Markovian variables 𝑥 as intended.

We emphasize the difference between averaging and homogenization here:
in the averaging case observing the fast variables adds nothing to our prediction
because there is a closed system determined only by the slow variables (see
Figure 5.11, graphs a) and b) in all three plots). By contrast, in the homogenization
case, observing the fast variables improves short-term predictions because it
provides further information about the driving stochastic process entering the
homogenized limit (see Figure 5.12).
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Figure 5.12: Prediction in non-Markovian regime.
Here 𝐹𝑥 = 10, 𝜀 = 1. As expected, non-Markovian regime has a much shorter accurate trajectory
predictability, followed by rapid convergence of the conditional mean to a constant. Note,
however, that the uncertainty prediction bands contain the true trajectory for all time.

5.2.3 Non-Markovian regime

In the preceding subsections we studied predictors for 𝑥 , based only on time-series
data in the 𝑥 coordinate, for the equation (5.5). We studied the scale-separated
regime where 𝜀 ≪ 1 and 𝑥 is approximately Markovian and deterministic – it is
approximately governed by an ODE. Here we study the behavior of identical
predictors when 𝜀 = 1; the system (5.5) then no longer exhibits averaging
and 𝑥 is no longer Markovian because there is no scale-separation between
𝑥 and 𝑦. This experiment is conducted with 𝐹𝑥 = 10. Because of the lack
of Markovian behaviour we expect rapid loss of predictability in time, when
Π(𝜔) = 𝑥, 𝐹 (𝜔) = 𝑥1. The resulting conditional mean and variance, shown in
Figure 5.12, confirms this intuition. Indeed the conditional mean is out of phase
with the truth at lead time 𝜏 = 1, and this is also reflected in the large growth of
the conditional variance. Furthermore, the conditional mean tapers to a constant
at 𝜏 = 6, twice as quickly as it does in the 𝜀 ≪ 1 setting in which this tapering
occurs at 𝜏 ≈ 11 (Figures 5.7,5.10).

5.2.4 Comparison with Lorenz’ method

We illustrate the advantage of KAF over Lorenz’ original method of analog
forecasting (5.11), which can produce predictions that are discontinuous with
respect to initial condition. In particular, this occurs when data are partially
observed from a larger state space, and different states map to identical partial
observations. Recall that the Lorenz method is defined in the following way:

𝑍𝑝 (𝑠) = 𝑦 (𝑝)
𝑛★(𝑠), (5.11)
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(a) 𝑥1 (0) = 1.3736
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(b) 𝑥1 (0) = 1.3799

Figure 5.13: Lorenz’ method (5.11) vs. KAF.
Here 𝐹𝑥 = 5, 𝜀−1 = 128, with only partial observations: Π(𝜔) = 𝑥1. The sensitivity of Lorenz’
method to the initial conditions in this regime results in diverging predicted trajectories for
nearby initial conditions, separated only by 0.0063. By contrast, KAF, which is continuous with
respect to initial condition, shows moderate predictive skill and makes nearly identical predictions
for nearby initial conditions.

where 𝑛★(𝑠) = arg min𝑛 ∥𝑠 − 𝑥𝑛∥.
To study this, we observe a single coordinate 𝑥1 of the periodic regime (𝐹𝑥 = 5,

𝜀−1 = 128) so that the observed data are highly non-Markovian. We select initial
conditions that are O(10−3) apart, but are separated in time by integer multiples
of the period. Figure 5.13 plots the resulting predictions from Lorenz’ method
and KAF. Although Lorenz’ method is accurate for one initial condition (right),
it gives a diverging prediction for a nearly identical point (left). By contrast, KAF
is continuous with respect to initial condition and displays theoretically optimal
predictive skill (in an RMSE sense) for even highly non-Markovian observation
data. This experiment illuminates a key feature of KAF: that it gives consistent
predictions that are continuous with respect to initial conditions. Note, also,
that KAF uncertainty predictions of a periodic observable are also periodic, and
vanish at every half period when predictions intersect the ground truth.



chapter 6

GRAPH-BASED EPIDEMIOLOGICAL MODEL S WITH
DATA ASS IM I LAT ION

The study presented in this chapter was primarily carried out during the recent
COVID-19 pandemic to investigate the possibility of minimizing lockdown
effects via running epidemiological models with data of various kinds gathered
in real-time. It was motivated by two factors: on the one hand, the surge
of attempts at tackling the spread of the virus using connectivity information
available via proximity sensors of mobile devices (in place of, or in addition to, the
manual contact tracing) — a technical possibility that was not available during the
previous global pandemic of the Spanish flu (1918–1920); and on the other hand,
successful applications of data assimilation (DA) techniques in a variety of fields of
geophysical sciences, such as numerical weather prediction [50], oceanography,
land and ice modeling.

During the COVID-19 pandemic, exposure notification apps have been de-
veloped to scale up manual contact tracing. The apps use proximity data from
mobile devices to automate notifying direct contacts of an infection source.
However, the information they provide is limited because users receive only rare
and binary alerts, i. e. they only signal that a contact was made with someone
who tested positive for the virus. In this work, the risk network model is proposed
as a new digital approach to epidemic management and control.

Risk network combines a model of disease transmission with (a) proximity
and (b) crowd-sourced health data, in a fashion that closely resembles a data
assimilation cycle done in weather forecasting. It then provides frequently up-
dated individual risk assessments to users. Epidemic spreading is notorious for its
exponential growth, and therefore, creates a great challenge for predictions of
any meaningful time window into the future. The risk network model, however,
does not forecast the epidemic evolution, but rather focuses on current-time
estimations of individuals’ probabilities of being infected. In other words, it
uses historic data up to the present moment to infer information about the dis-
ease spreading over the past few days, and then produce a statistical assessment
of individual risks at the moment. This is achieved by using a DA backward-
and-forward time integration loop akin to a weather prediction cycle. Thus,
risk network uses the same data as exposure notification apps but in a more

81
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efficient way. Implemented at scale, it has the potential to effectively control
epidemics while minimizing economic and social disruption, as demonstrated in
computational experiments.

The chapter is organized as follows. Section 6.1 serves as a brief introduction
to the field of epidemiological modeling and elaborates on relevance of the study
in general. Sections 6.2 and 6.3 are devoted to the two components of the risk
network model: the former introduces the network model, while the latter
describes the proposed data assimilation pipeline. In particular, the network
model is comprised of (a) the compartmental epidemiological model (SIR-type),
(b) the master and reduced master equations (ODEs for probabilities), (c) the
closure of said master equations, (d) and the contact network, i. e. a graph with
time-dependent edges (connections) between nodes (users). All of these are
separated into their respective subsections in Section 6.2. The data assimilation
section includes descriptions of the DA algorithm itself, how the two types of
data are used, and the medical testing strategies.

Numerical simulation of the proposed model necessarily has to rely on a
surrogate model of disease spreading and proximity interactions within the
population because obtaining real-world data of either kind is nearly impossible
for privacy reasons. Such surrogate model is described in Section 6.4: one
subsection is devoted to graph generation, and another one to a Markov chain
Monte Carlo simulation of the virus transmission.

Finally, in Section 6.5, we conduct an extensive simulation study of the
COVID-19 epidemic in New York City (NYC), and discuss the results. In par-
ticular, it is shown that the risk network model with diagnostic testing achieves
epidemic control with fewer than half the deaths that occurred during NYC’s
lockdown, while isolating a far smaller fraction of the population (typically only
5–10% of the population at any given time).

This work was published in a peer-reviewed journal [93]. All code written in
support of this chapter is publicly available at:

https://github.com/tapios/risk-networks

Contributions of the author

D. B. has contributed to (a) the design of the closure of master equations, in
particular, devising and numerically testing a handful of candidate closures (Sec-
tion 6.2.3); (b) design, testing and implementation of multiple DA algorithms
and techniques: backward-and-forward time integration loop, sparsification of
the covariance matrices for faster computational runtimes (Section 6.3.1); medi-
cal testing strategies (Section 6.3.2); intervention strategies (Section 6.3.6); and
classification rules (Sections 6.3.4 and 6.3.5); (c) implementation and testing of
a large portion of the codebase; and (d) a great number of numerical runs on
small-sized networks. The surrogate model described in Section 6.4 is provided

https://github.com/tapios/risk-networks
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in this chapter for the full scientific picture of the study. Likewise, the conclusive
experiments that were run on large-sized networks in Section 6.5 are provided
for the scientific richness.

6.1 INTRODUCTION

Until a majority of the global population reaches immunity against continuously
evolving virus variants through vaccination or infection, any future epidemics
will need to be fought with non-pharmaceutical interventions (NPIs) [17, 45]
— as was the case with the past COVID-19 pandemic. They include social
distancing, mask usage, and restrictions of mass gatherings. But NPIs such as
lockdowns come at catastrophic costs to individuals, economies, and societies,
with disproportionate burdens carried by disadvantaged groups [25, 54]. Even if
imposed only intermittently and regionally, lockdowns are an inefficient means
of epidemic management and control: they isolate much of the population,
although even at extreme epidemic peaks, only a small fraction is infectious [53,
81]. If individuals who are at high risk of being infectious could be identified
before they infect others, control measures could be made more efficient by
targeting them to this high-risk group.

Testing and contact tracing have been discussed and partly implemented as
strategies to identify individuals who are at high risk of being infectious [36, 47,
55]: testing determines who is infectious, contact tracing identifies those who
may have been exposed through contact with an infectious individual, and this
high-risk group is then isolated. However, controlling the COVID-19 epidemic
by testing, contact tracing, and isolation (TTI) had been complicated by frequent
asymptomatic and presymptomatic transmission, which support silent spread,
and a short serial interval, the period between the onset of any symptoms in
infector and infectee [46, 47, 60, 78]. Even in ideal scenarios, contact tracing
needs to identify upward of 75% of infections to achieve epidemic control [36, 78].
Quickly diagnosing such a large fraction of infections and manually identifying
exposed individuals requires testing and a contact tracing workforce at a scale
that has been challenging to realize in most countries [3, 114].

To scale up the contact tracing component of TTI without a massive expansion
of the workforce, exposure notification apps had been developed. They rely
on proximity data from smartphones or other mobile devices to identify close
contacts between users [8, 23]. If an individual user is identified as being infec-
tious, prior close contacts are notified and can then self-isolate. The exposure
notification is deterministic (a user is only notified when potentially exposed),
and it only uses nearest-neighbor information on the network of close contacts
among users. Exposure notification apps have not seen widespread use, in part
perhaps because of early implementation difficulties and privacy concerns but
also because they do not provide users with information except in the rare case
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Figure 6.1: Schematic of the personalized risk assessment platform.
Proximity-tracking data from mobile devices is used to assemble a contact network, in
which nodes represent individuals and edges represent close contacts between individuals.
An epidemiological model defined on the contact network is then fused with diverse
health data, including diagnostic tests, hospitalization status, and possibly data such as
body temperature readings. The model spreads risk of infectiousness from a positive
individual (red) to others, taking into account knowledge about disease progression,
the time and duration of contacts, and the use of personal protective equipment (PPE),
among other factors. The result of the network DA is an assessment of individual risks,
for example, of being infectious, which then can be used to target contact interventions.

when they receive an exposure notification [59]. Nonetheless, where they have
been used, these apps have helped prevent the spread of infections [117].

Finally, one prominent approach that stands apart from contact tracing and
exposure notification apps is NOVID: a notification framework (implemented
as a mobile app for iOS and Android devices) that informs a user about how
many connections, or degrees, apart an exposure or infection occured [32, 63].
It uses, in principle, the same two types of anonymous data as the risk network,
namely, proximity data to build a graph of users and their connections, and
self-reported diagnostic data to register symptomatic, exposed, confirmed cases,
and vaccinated users. However, the main difference between NOVID and our
approach is that the former lacks any model of disease transmission, thus being
unable to predict probabilities of being exposed, leaving the user to guess them
based on the propagation “speed” through one’s circles of connections (10th

degree circle, 9th degree circle etc.). Furthermore, having an epidemiological
model as a basis for DA permits one to propagate exposure probabilities even to
and from external nodes, i. e. the ones that represent non-users in the general
population, and also provide uncertainty quantification.

This study presents a new and more effective way of exploiting the same
information on which exposure notification apps rely. Unlike these apps, how-
ever, this method provides users with continuously updated assessments of their
individual risks. The core idea is to learn about individual risks of exposure and
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infectiousness by propagating crowdsourced information about infection risks
over a dynamic contact network assembled from proximity data from mobile
devices. Instead of the deterministic assessments of exposure notification apps,
our approach exploits data from diverse sources probabilistically. Various types
of information, including their uncertainties, can be harnessed. For example:

◦ Diagnostic tests, including sensitive but slow molecular tests, less sensitive
but rapid antigen tests, or pooled diagnostic tests [97].

◦ Serological tests, which indicate a reduced probability of susceptibility
when antibodies specific to SARS-CoV-2 (or the causative agent of another
targeted disease) are detected.

◦ Self-reported clinical symptoms, elevated body temperature readings, or
other wearable sensor data, which can indicate an elevated probability of
infectiousness and virus transmission [16, 83].

Quantification of individual risks is achieved by assimilating data into a model
of virus transmission and disease progression. The model represents individual’s
probabilities via a system of ODEs, where the rates of virus transmission between
the nodes, i. e. users, are determined by a dynamic contact network. This
network, in turn, is represented by a graph whose edges are assembled from
proximity data.

For decision making, periodically updated individual risks of having been
exposed or of being infectious take the place of the deterministic assessments
in exposure notification apps. The probabilistic network approach propagates
data farther along the contact network than contact tracing, consistent with
models of disease progression and rates of virus transmission. It harnesses more
information than contact tracing, both by being able to include diverse data
sources with their uncertainties and by exploiting information inherent in the
network structure itself: an individual with many contacts generally is at greater
risk of having been exposed than an individual with fewer contacts [67, 75], and
such contact rates are available from the proximity data from mobile devices.

The network and the information it contains are dynamically updated in
periodic data assimilation (DA) cycles. These cycles resemble the daily DA
cycles that weather forecasting centers use operationally [11]. The quantitative
information that is provided by the risk network can be used in similar ways as
weather forecasts: to inform personal decisions by users based on their desire to
avoid risk (in the weather forecasting analogy, staying home rather than going
on a mountain in the face of a likely downpour) and to inform public policy when
aggregate risk measures indicate that wider mandates are necessary (analogous
to evacuating a city to protect lives and avoid overwhelming public health and
social infrastructures when a hurricane is likely to make landfall).
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Figure 6.2: Schematic of SEIHRD model [10].
Infected and hospitalized nodes infect susceptible nodes at rates 𝜅𝐼 and 𝜅𝐻 , respectively.
After being infected, susceptible nodes become exposed. Exposed nodes become infectious
at rate 𝜎 . Infected nodes may get hospitalized at rate ℎ𝛾 , die at rate 𝑑𝛾 , or become resistant
at rate (1 − ℎ − 𝑑)𝛾 . Once hospitalized, nodes either become resistant at rate (1 − 𝑑 ′)𝛾 ′
or die at rate 𝑑 ′𝛾 ′.

6.2 NETWORK MODEL AND EQUATIONS

Our point of departure is a variant of the widely used susceptible–exposed–
infectious–resistant (or recovered) (SEIR) model of epidemiology, extended
through inclusion of hospitalized (H) and deceased (D) compartments to an
SEIHRD model [10]. Compartmental epidemiological models have traditionally
been applied on the level of aggregated individuals (e. g., the population of a city
or country) [14]; here we follow more recent work and apply the SEIHRD on
an individual level on a time-dependent contact network [52, 75]. Thus, instead
of having 5 ODEs stemming from the mean-field approximation (the number
of states, in this case, six, minus one because fractions of the population in each
state must sum to one), we work with 5𝑁 equations, where 𝑁 is the number of
individuals.

For ease of exposition, we provide here a general form of the reduced master
equations with three possible states 𝑋 , 𝑌 and 𝑍 [96] (the exact form is provided
in Section 6.2.2):

¤⟨𝑋𝑖⟩ = 𝑅𝑦𝑥𝑖 ⟨𝑌𝑖⟩ + 𝑅𝑧𝑥𝑖 ⟨𝑍𝑖⟩ − (𝑅𝑥𝑦𝑖 + 𝑅𝑥𝑧𝑖 )⟨𝑋𝑖⟩,
¤⟨𝑌𝑖⟩ = 𝑅𝑥𝑦𝑖 ⟨𝑋𝑖⟩ + 𝑅𝑧𝑦𝑖 ⟨𝑍𝑖⟩ − (𝑅𝑦𝑥𝑖 + 𝑅𝑦𝑧𝑖 )⟨𝑌𝑖⟩,

(6.1)

where 𝑖 = 1, . . . , 𝑁 , and ⟨·⟩ denotes probability of being in that state. Here
𝑅𝑖 denotes the matrix of transition rates between states 𝑋 , 𝑌 and 𝑍 for the
𝑖th individual. These matrices can depend on other individual’s states, more
specifically in the case of SEIHRD model, one individual can become infected
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only through coming in contact with some other infectious individual. This is
where the information from the contact network comes in: in short, the duration
of a contact between two individuals influences transition rates.

In the contact network, each individual is represented by a node on the net-
work; time-dependent edges between the nodes are established by close contacts
between individuals, as recorded by proximity data from mobile devices. Virus
transmission can occur during close contacts from infectious or hospitalized
nodes to susceptible nodes, which thereupon become exposed (Figure 6.2). The
probability of transmission increases with contact duration, and the transmis-
sion rate can vary from node to node and with time, for example, to reflect
time-varying transmission rates resulting from virus mutations or a reduced
transmission rate when masks are worn. From being exposed, nodes progress to
becoming infectious, and later they may progress to requiring hospitalization,
recover, or die.

In real world, at any time 𝑡 , each node 𝑖 is in one of the six health and vital
states 𝑆𝑖 (𝑡), 𝐸𝑖 (𝑡) etc. of the SEIHRD model. The risk network learns about the
probabilities ⟨𝑆𝑖 (𝑡)⟩, ⟨𝐸𝑖 (𝑡)⟩, etc. of finding an individual node 𝑖 at time 𝑡 in each
of the different states. We adopt a sequential Bayesian learning approach that
propagates an ensemble of individual probabilities ⟨𝑆𝑖 (𝑡)⟩, ⟨𝐸𝑖 (𝑡)⟩, etc. across the
network and periodically updates them and the SEIHRD model parameters with
new data [5, 60, 80, 95]. Data falling within a DA window of length Δ (typically,
Δ ≈ 1 day) are incorporated into the model by adjusting the ensemble to minimize
the misfit to the data in the window. An interval Δ later, the updating procedure
is repeated. Such DA cycles and the underlying algorithms are used daily in
weather forecasting to estimate up to 109 variables characterizing the state of the
atmosphere; they easily scale to network epidemiology models with millions of
nodes or more. Essentially all types of data and their error characteristics can be
assimilated with this approach, even data that are less sensitive to infectiousness,
such as readings of heart rates [84] or body temperatures [16, 83] (Fig. 6.1).

6.2.1 SEIHRD model on a contact network

We first need to derive a Markov chain-type model that can only be in a finite
number of states at any given moment. Equations that govern such models are
called master equations. However, in practice numerically integrating the resulting
system of ODEs is infeasible for any large enough number of individuals 𝑁 , as
the number of equations is then 6𝑁 − 1. What is known as the reduced master
equations are then derived, with the number of equations equal to 5𝑁 . This
section introduces the Markov chain model, whereas Section 6.2.2 presents the
reduced master equations.
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We consider a population of 𝑁 individuals, indexed within this chapter by 𝑖.
At any time 𝑡 , an individual 𝑖 is in exactly one of six possible health and vital
states:

◦ 𝑆𝑖 (𝑡): susceptible, i. e. can get infected;

◦ 𝐸𝑖 (𝑡): exposed, i. e. infected but not yet infectious;

◦ 𝐼𝑖 (𝑡): infectious, i. e. shedding the virus (with or without clinical symptoms)
but not hospitalized;

◦ 𝐻𝑖 (𝑡): hospitalized with active disease and also shedding the virus;

◦ 𝑅𝑖 (𝑡): resistant, i. e. immune to the disease through either vaccination or
a prior infection (we assume lifelong resistance for now but this can be
relaxed to make immunity temporary);

◦ 𝐷𝑖 (𝑡): deceased.

We take 𝑆𝑖 (𝑡), 𝐸𝑖 (𝑡), 𝐼𝑖 (𝑡), 𝐻𝑖 (𝑡), 𝑅𝑖 (𝑡), and 𝐷𝑖 (𝑡) to be Bernoulli random
variables that depend on time 𝑡 and take only the values 0 and 1. That is, 𝑆𝑖 (𝑡) = 1
when individual 𝑖 is susceptible at time 𝑡 , and otherwise 𝑆𝑖 (𝑡) = 0 (and analogously
for the other variables). Because the six SEIHRD states enumerate all health and
vital states of individuals in this model, we have

𝑆𝑖 (𝑡) + 𝐸𝑖 (𝑡) + 𝐼𝑖 (𝑡) + 𝐻𝑖 (𝑡) + 𝑅𝑖 (𝑡) + 𝐷𝑖 (𝑡) = 1 . (6.2)

Therefore, there are only five independent states.
In the network epidemiology model, a close contact between individuals 𝑖 and

𝑗 establishes a temporary network edge with weight 𝑤 𝑗𝑖 (𝑡) = 1 for the duration
𝜏 of the contact; outside the contact period, 𝑤 𝑗𝑖 (𝑡) = 0. Transmission along the
temporary edges from one node to another and transitions between health and
vital states within each node are modeled as independent Poisson processes [34,
52, 67, 75]. Each process is characterized by a rate that may vary from node to
node and may depend on external variables such as age, sex, and medical risk
factors (see Figure 6.2 for a schematic).

We make the following assumptions about the transmission rate and the pa-
rameters characterizing transition rates between SEIHRD states, including prior
distributions used in the network model for DA:

◦ Transmission rate: During the contact period between an infectious or
hospitalized individual (𝐼 𝑗 (𝑡) = 1 or 𝐻 𝑗 (𝑡) = 1) and a susceptible individual
(𝑆𝑖 (𝑡) = 1), virus can be transmitted across the edge between nodes 𝑗 and
𝑖. When transmission occurs, the susceptible node 𝑖 becomes exposed and
switches state to 𝐸𝑖 (𝑡) = 1. During the contact period in which an edge is
active (𝑤 𝑗𝑖 (𝑡) = 1), we assume the transmission rate to a susceptible node
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with 𝑆𝑖 (𝑡) = 1 from an infectious node with 𝐼 𝑗 (𝑡) = 1 is 𝜅𝐼𝑗𝑖 = 𝑎 𝑗𝑖 (𝑡)𝛽, and
that from a hospitalized node with𝐻 𝑗 (𝑡) = 1 is 𝜅𝐻𝑗𝑖 = 𝑎

′
𝑗𝑖 (𝑡)𝛽. The parameter

𝛽 is a transmission rate across active edges, which we set to a global constant
in the stochastic surrogate-world simulations and learn on a nodal basis in
the model used for DA; 𝑎 𝑗𝑖 (𝑡) and 𝑎′𝑗𝑖 (𝑡) are time-dependent transmission
modifiers that can be adjusted to incorporate additional information that
may be available, for example, user-supplied information that individual
𝑖 is using PPE at time 𝑡 . In our proof-of-concept simulations, we use
𝑎 𝑗𝑖 (𝑡) = 0.1 within hospitals and 𝑎 𝑗𝑖 = 1 otherwise, to reflect the rarity of
SARS-CoV-2 transmission in hospitals in which PPE is worn [87]. (In
reality, however, depending on the types of PPE and adherence to hygiene
protocols, the degree of transmissibility reduction may vary substantially
among hospitals [87].) A typical value for the transmission rate of respiratory
viruses is around 𝛽 = 0.5 hour−1

= 12 day−1 [89].

Because we model transmission as a Poisson process, the probability that
transmission occurs during contact increases with the duration of the
contact period 𝜏 , e. g., for an infectious node as [73]

𝑇𝑗𝑖 (𝜏) = 1 − 𝑒−𝜅𝐼𝑗𝑖𝜏 .

(This holds provided the contact period 𝜏 is short relative to the duration
of infectiousness, so that the infectiousness status of a node does not change
during contact.)

In the model used for DA, we do not assume perfect knowledge of the
transmission rate; instead, we learn a partial transmission rate 𝛽𝑖 for each
node 𝑖, and compute transmission rates from node 𝑗 to node 𝑖 as the averages
𝜅𝐼𝑗𝑖 = 0.5𝑎 𝑗𝑖 (𝑡) (𝛽𝑖 + 𝛽 𝑗 ) and 𝜅𝐻𝑗𝑖 = 0.5𝑎′𝑗𝑖 (𝑡) (𝛽𝑖 + 𝛽 𝑗 ). We assume independent
normal priors for 𝛽𝑖 for each node, with a mean of 12 day−1 and a standard
deviation of 3 day−1. We truncate these distributions to [1 day−1

, 20 day−1],
though in practice these bounds are rarely reached.

◦ Latent period: Exposed nodes with 𝐸𝑖 (𝑡) = 1 transition to being infectious
with 𝐼𝑖 (𝑡) = 1 at the rate 𝜎𝑖 , which is the inverse of the latent period: the
time it takes for an exposed individual to become infectious. For COVID-
19, the latent period lies between about 2 days and about 12 days [53, 58, 60].
We take the latent period 𝜎−1

𝑖 to be fixed for each node 𝑖 but heterogeneous
across nodes. In the model used for DA, we represent it as 𝜎−1

𝑖 = 1 day + 𝑙𝑖 ,
where 𝑙𝑖 has a gamma prior distribution with shape parameter 𝑘 = 1.35 and
scale parameter 𝜃 = 2 day; hence, the minimum latent period is 1 day, and
its prior mean value is 3.7 days (1 day + 𝑘𝜃 ).

◦ Duration of infectiousness in community: Infectious nodes with 𝐼𝑖 (𝑡) = 1 tran-
sition to resistant, hospitalized, or deceased at the rate 𝛾𝑖 , which is the
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inverse of the duration of infectiousness in the community (i. e., outside
hospitals). For COVID-19, the median duration of infectiousness is around
3.5 days [60], but its distribution has a long tail, for example, from individ-
uals with serious or critical disease progression [46]. Like 𝜎𝑖 , we take 𝛾𝑖
to be fixed for each node 𝑖 but heterogeneous across nodes. In the model
used for DA, we model the duration of infectiousness as 𝛾−1

𝑖 = 1 day + 𝑔𝑖 ,
where 𝑔𝑖 has gamma prior distribution with shape parameter 𝑘 = 1.1 and
scale parameter 𝜃 = 2 days; hence, the minimum duration of infectiousness
is 1 day, and its prior mean value is 3.2 days [46, 60].

◦ Duration of hospitalization: Hospitalized nodes with 𝐻𝑖 (𝑡) = 1 transition
to resistant or deceased at the rate 𝛾 ′𝑖 , which is the inverse of the duration
of hospitalization. As before, we take 𝛾 ′𝑖 to be fixed for each node 𝑖 but
heterogeneous across nodes. In the model used for DA, we model the
duration of hospitalization as 𝛾 ′−1

𝑖 = 1 day +𝑔′𝑖 , where 𝑔′𝑖 has a gamma prior
distribution with shape parameter 𝑘 = 1.0 and scale parameter 𝜃 = 4 days;
hence, the minimum duration of hospitalization is 1 day, and its prior mean
value is 5 days. We assume hospitalized nodes are infectious. (If there is
evidence that a hospitalized patient no longer sheds the virus, this can be
taken into account by setting the transmission rate modifier 𝑎 𝑗𝑖 (𝑡) from the
corresponding node to zero; however, we are not considering this situation
in our proof-of-concept.)

◦ Hospitalization rate: We assume a fraction ℎ𝑖 of infectious nodes with 𝐼𝑖 (𝑡) =
1 requires hospitalization after becoming infectious. More precisely, we
assume that infectious nodes transition to becoming hospitalized at the rate
ℎ𝑖𝛾𝑖 . This implies that, over a period Δ𝑡 that is short relative to the duration
of infectiousness 𝛾−1

𝑖 , the probability of transitioning from being infectious
to hospitalized, relative to the total probability of leaving the infectious
state, is

1 − 𝑒−ℎ𝑖𝛾𝑖Δ𝑡
1 − 𝑒−𝛾𝑖Δ𝑡 ≈ ℎ𝑖 for 𝛾𝑖Δ𝑡 ≪ 1 .

We take ℎ𝑖 to be fixed for each node 𝑖 but heterogeneous across nodes; it
generally depends on age and other risk factors [10, 116]. We model the
age dependence in the stochastic surrogate-world simulations according
to clinical data as described below (Table 6.3), and we assume the same
parameters in the model used for DA.

◦ Mortality rate: We assume a fraction 𝑑𝑖 of infectious nodes with 𝐼𝑖 (𝑡) = 1
and a fraction 𝑑′𝑖 of hospitalized nodes with 𝐻𝑖 (𝑡) = 1 die. More precisely,
we assume infectious nodes die at the rate 𝑑𝑖𝛾𝑖 , and hospitalized nodes die at
the rate 𝑑′𝑖𝛾

′
𝑖 . Both 𝑑𝑖 and 𝑑′𝑖 are fixed for each node but are heterogeneous

across nodes, depending on age and other risk factors [10, 116]. Both in
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the stochastic surrogate-world simulation and in the model used for DA,
we assume the same age-dependent mortality rates (Table 6.3).

◦ Resistance: For now, we assume resistance to be lifelong, so that an individ-
ual who becomes resistant remains so indefinitely and does not return to
being susceptible. This assumption can be relaxed by allowing transitions
back to the susceptible state if resistance is not permanent.

The health and vital states and transition rates define a Markov chain for
the individual-level SEIHRD states. The SEIHRD Markov chain on a contact
network can be simulated directly with kinetic Monte Carlo methods [41], as in
previous studies [34, 35, 62, 89]. We use kinetic Monte Carlo simulations both
to benchmark a model for the SEIHRD probabilities and to provide a surrogate
for the real world in our proof-of-concept simulations.

6.2.2 Reduced master equations

We are principally interested in the individual SEIHRD probabilities, which are
the expected values ⟨𝑆𝑖 (𝑡)⟩, ⟨𝐸𝑖 (𝑡)⟩, etc. associated with the Bernoulli random
variables for the states. That is, ⟨𝑆𝑖 (𝑡)⟩ is the probability that individual 𝑖 is
susceptible at time 𝑡 .

These probabilities could be obtained as averages over an ensemble of kinetic
Monte Carlo simulations; however, it is more computationally efficient to solve
reduced master equations for the probabilities directly. The equations are [75,
96]:

⟨ ¤𝑆𝑖⟩ =−
[
𝜁𝑖 + 𝑘𝑥𝑖 ⟨𝑤𝑖⟩𝑃 (𝑡)𝜂𝑖

] ⟨𝑆𝑖⟩ , (6.3a)
⟨ ¤𝐸𝑖⟩ =

[
𝜁𝑖 + 𝑘𝑥𝑖 ⟨𝑤𝑖⟩𝑃 (𝑡)𝜂𝑖

] ⟨𝑆𝑖⟩ −𝜎𝑖 ⟨𝐸𝑖⟩ , (6.3b)
⟨¤𝐼𝑖⟩ = 𝜎𝑖 ⟨𝐸𝑖⟩ −𝛾𝑖 ⟨𝐼𝑖⟩ , (6.3c)
⟨ ¤𝐻𝑖⟩ = ℎ𝑖𝛾𝑖 ⟨𝐼𝑖⟩ −𝛾 ′𝑖 ⟨𝐻𝑖⟩ , (6.3d)
⟨ ¤𝑅𝑖⟩ = (1 − ℎ𝑖 − 𝑑𝑖)𝛾𝑖 ⟨𝐼𝑖⟩ +(1 − 𝑑′𝑖 )𝛾 ′𝑖 ⟨𝐻𝑖⟩ , (6.3e)
⟨ ¤𝐷𝑖⟩ = 𝑑𝑖𝛾𝑖 ⟨𝐼𝑖⟩ +𝑑′𝑖𝛾 ′𝑖 ⟨𝐻𝑖⟩ , (6.3f )

where

𝜁𝑖 (𝑡) =
∑�̃�
𝑗=1𝑤 𝑗𝑖 (𝑡)

(
𝜅𝐼𝑗𝑖 ⟨𝑆𝑖 (𝑡)𝐼 𝑗 (𝑡)⟩ + 𝜅𝐻𝑗𝑖 ⟨𝑆𝑖 (𝑡)𝐻 𝑗 (𝑡)⟩

)
⟨𝑆𝑖⟩ (6.3g)

is the total infectious pressure on node 𝑖 from within the network formed by
the �̃� users. The infectious pressure represents the possibility of transmission to
node 𝑖 from all network nodes that are at least temporarily connected with node
𝑖. Additionally, we have included an exogenous infection rate 𝜂𝑖 . This allows for
infection from outside the network of �̃� users when the master equation network
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represents only a subset of a larger network with 𝑁 nodes, and so transmission can
occur from unaccounted nodes. The exogenous infection rate 𝜂𝑖 is scaled by the
number of external neighbors 𝑘𝑥𝑖 of node 𝑖 that are not part of the user network,
by the probability ⟨𝑤𝑖⟩ of an edge of node 𝑖 being active, and by the time-
dependent prevalence of infectiousness 𝑃 (𝑡), estimated from the network of �̃�
users as described below in eq. (6.16). The probability of exogenous infection then
increases with the prevalence of infectiousness 𝑃 (𝑡) within the user base, which is
taken as a proxy of prevalence outside the user base. In an idealization that may not
be achievable in practice, we take the number of external neighbors 𝑘𝑥𝑖 as given
from the network structure. In practice, the number of external neighbors can be
estimated through use of the same proximity technologies (e. g., Bluetooth) on
which exposure notification apps rely, which allow the sensing of other nearby
mobile devices, even if they do not participate in the proximity sensing and
exposure notification protocol. While this is unlikely to yield perfect knowledge
about the number of external neighbors, it may be combined with statistical
approximations [99]. The net effect of these assumptions and approximations
is that a user surrounded by other users will have no exogenous infection rate,
while users with many external neighbors will have a larger exogenous infection
rate. We have confirmed in simulations that exact knowledge of the number
of neighbors can be replaced by statistical knowledge; for example, replacing
the node-dependent 𝑘𝑥𝑖 by the user-network average for all nodes (exterior
connectivity in Table 6.1) yields similar results (Figures 6.17 and 6.18).

We use with a Runge-Kutta-Fehlberg 4(5) scheme to integrate these ordi-
nary differential equations, with an adaptive timestep of maximum length 3 hours.
The weights 𝑤 𝑗𝑖 (𝑡) vary on shorter timescales. This is taken into account in the
numerical integration by averaging 𝑤 𝑗𝑖 (𝑡) over the length of a time step, rather
than evaluating 𝑤 𝑗𝑖 (𝑡) at discrete intervals.

6.2.3 Closure of reduced master equations

The master equations (6.3) for the probabilities are not closed because they depend
on the joint probabilities ⟨𝑆𝑖 (𝑡)𝐼 𝑗 (𝑡)⟩ and ⟨𝑆𝑖 (𝑡)𝐻 𝑗 (𝑡)⟩ in the infectious pressure
(Eq. 6.3g). Various approaches to closing this term have been proposed [52, 75,
96]. Our approach is to estimate it from the ensemble used in the DA cycle, as
follows.

The joint-event probability ⟨𝑆𝑖 (𝑡)𝐼 𝑗 (𝑡)⟩ and the marginal probabilities ⟨𝑆𝑖 (𝑡)⟩
and ⟨𝐼 𝑗 (𝑡)⟩ in the master equations (6.3) are related through the ratio

C
[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
=

⟨𝑆𝑖 (𝑡)𝐼 𝑗 (𝑡)⟩
⟨𝑆𝑖 (𝑡)⟩⟨𝐼 𝑗 (𝑡)⟩ , (6.4)
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Figure 6.3: Overall epidemic dynamics from SEIHRD model using mean-field approxi-
mation.
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Figure 6.4: Overall epidemic dynamics from SEIHRD model using mean-field approxi-
mation with ensemble correction.
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Figure 6.5: Histograms of correction coefficients (top row) C𝑀

[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
and (bottom

row) C𝑀

[
𝑆𝑖 (𝑡), 𝐻 𝑗 (𝑡)

]
at different times during the simulated epidemic.

where C
[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
is the rescaled joint probability of 𝑆𝑖 (𝑡) and 𝐼 𝑗 (𝑡). We

estimate it by its ensemble analogue:

C𝑀
[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
=

⟨𝑆𝑖 (𝑡)⟩⟨𝐼 𝑗 (𝑡)⟩
⟨𝑆𝑖 (𝑡)⟩ ⟨𝐼 𝑗 (𝑡)⟩

, (6.5)

where (·) = 𝑀−1 ∑
𝑚 (·) denotes the mean over the ensemble (with𝑚 = 1, . . . , 𝑀

labeling ensemble members). Thus, we approximate the joint probability in
eq. (6.3g) as follows:

⟨𝑆𝑖 (𝑡)𝐼 𝑗 (𝑡)⟩ = ⟨𝑆𝑖 (𝑡)⟩⟨𝐼 𝑗 (𝑡)⟩ C𝑀
[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
. (6.6)

With this empirical approximation, we obtain a closed-form expression for the
second moment ⟨𝑆𝑚𝑖 (𝑡)𝐼𝑚𝑗 (𝑡)⟩ for each ensemble member 𝑚, which we use in
the reduced master equations. The second moment ⟨𝑆𝑚𝑖 (𝑡)𝐻𝑚𝑗 (𝑡)⟩ follows anal-
ogously. If C𝑀

[
𝑆𝑖 (𝑡), 𝐼 𝑗 (𝑡)

]
= 1 and C𝑀

[
𝑆𝑖 (𝑡), 𝐻 𝑗 (𝑡)

]
= 1, this reduces to the

mean-field approximation that is commonly made in epidemiological models [75,
96] and that often is accurate on real-world networks [42].

We verified this closure against direct kinetic Monte Carlo simulations of
the SEIHRD model on the synthetic network described below, in the free-
running NYC simulation without lockdown (Fig. 6.10). The closure has similar
performance as the mean-field approximation and adequately, albeit not perfectly,
captures the stochastic network dynamics (Figures 6.3 and 6.4). The closure
correction coefficients (6.5) concentrate close to the value of 1 (Figure 6.5), which
explains the similar performance to the mean-field approximation.
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6.3 DATA ASSIMILATION

6.3.1 The algorithm

For DA, we use a version of the ensemble adjustment Kalman filter (EAKF) [5],
which has previously been used with epidemiological models [60, 80, 81, 95].
EAKF treats an ensemble of 𝑀 model parameters and states ⟨𝑆𝑚𝑖 (𝑡)⟩, ⟨𝐸𝑚𝑖 (𝑡)⟩, etc.
(𝑚 = 1, . . . , 𝑀) from a previous DA cycle as a prior and then linearly updates the
ensemble of model parameters and states to obtain an approximate Bayesian pos-
terior given the available data. Unlike other algorithms for computing Bayesian
posteriors on networks [4], it makes no assumptions about the network structure,
and it scales well to high-dimensional problems [5].

To learn about parameters and the states of nodes on the network, we use a
scheme based on iterating forward passes of the master equations over a time
window Δ, with EAKF updates between each pass; a similar scheme has been
used in epidemiology models before [60, 80, 81, 95]. In this way, we effectively
use EAKF as a smoother, harnessing all available data in a DA window (𝑡 𝑓 −Δ, 𝑡 𝑓 ).
There are two parts to the DA procedure:

1 UPDATE STAGE. An EAKF update step is performed to assimilate all data
available for the window (𝑡 𝑓 − Δ, 𝑡 𝑓 ), using the previous ensemble model
run as prior. The mismatch between the simulated ensemble trajectories
and the data is used to update the combined ensemble of parameters and
states at the initial time 𝑡 𝑓 − Δ.

2 FORECAST STAGE. The updated ensemble of states ⟨𝑆𝑚𝑖 (𝑡 𝑓 − Δ)⟩, ⟨𝐸𝑚𝑖 (𝑡 𝑓 −
Δ)⟩, etc., with the updated model parameters, is integrated forward up to
time 𝑡 𝑓 , to serve as prior for the next update cycle.

EAKF relies on linear updates and assumes Gaussian error statistics. However,
the forward equations (6.3) are nonlinear. As a result, the EAKF update does not
always conserve total probability, in the sense that SEIHRD probabilities for each
node will not always sum to 1. We therefore augment the state with an additional
total probability conservation variable, with observation equal to the target
probability sum 1. The Gaussian assumption is also at odds with probabilities
in [0, 1]. We have experimented with approaches of transforming variables
to an unbounded space, leading to total probability conservation becoming
highly nonlinear. We found it to be more robust to work in the original space
where total probability conservation is a linear constraint. This approach does,
however, violate Gaussianity assumptions about the ensemble when we reinforce
the probability bounds by clipping the states ⟨𝑆𝑚𝑖 (𝑡 𝑓 − Δ)⟩, ⟨𝐸𝑚𝑖 (𝑡 𝑓 − Δ)⟩, etc. to
[0, 1].

We assume data errors to be uncorrelated, so that their error covariance matrix
is diagonal (see below for how we specify error variances in the proof-of-concept
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simulations). Prior information on parameters and states is specified in EAKF
through the initial condition of the ensemble. We draw the parameters of the
ensemble from the above-specified prior distributions, and we initialize the state
by seeding each ensemble member with a fraction of (possibly different) infectious
nodes, the rest being susceptible. The initial fraction of infectious nodes is drawn
from a beta distribution with shape parameters 𝛼 = 0.0016 and 𝛽 = 1 (not to
be confused with the transmission rate 𝛽). The mean fraction (here, 0.16%) of
initially infected nodes agrees with the fraction of initially infected nodes in the
stochastic surrogate-world simulations.

To account for the multi-fidelity nature of the assimilated data, we perform
EAKF in multiple passes. This allows for better conditioned data covariance
matrices and for different hyperparameter choices for the different types of data.
We perform the following passes to assimilate data from the lowest to the highest
fidelity:

◦ In a first EAKF pass, we update parameters and states at 𝑡 𝑓 − Δ using the
poorest fidelity data (e.g., temperature sensor data), followed by a forecast
over (𝑡 𝑓 − Δ, 𝑡 𝑓 );

◦ In a second EAKF pass, we update parameters and states at 𝑡 𝑓 − Δ using
moderate-accuracy diagnostic test data, followed by another forecast over
(𝑡 𝑓 − Δ, 𝑡 𝑓 );

◦ In a final EAKF pass, we update parameters and states at 𝑡 𝑓 − Δ using data
about hospitalization and death status with small error variances, followed
by a final forecast over (𝑡 𝑓 − Δ, 𝑡 𝑓 ).

There are three well-established challenges that ensemble-based filters must
tackle when assimilating a number of parameters/states that is large relative to the
ensemble size [49]: overestimation of long-range covariances, underestimation
of variances, and ensemble collapse.

1. To prevent spurious long-range covariances, we localize the effect of ob-
servations on states within a single node [6, 49]. That is, direct updates
of a nodal state are only due to observations at that node during the DA
window. This also provides large computational savings because EAKF
updates may be performed sequentially node-by-node, in any order.

2. To prevent underestimation of variances by the finite-size ensemble, which
can lead to discounting of data points [5], and to ensure well-posedness of
the matrix inversions, we use regularization of the ensemble covariance
matrix Σ. If Λmin and Λmax denote the minimum and maximum eigenvalues
of Σ, we replace Σ in the EAKF algorithm with with Σ + max(𝛿 (Λmax −
Λmin), 𝛿min)𝐼 . We choose 𝛿 = 5/𝑀 to assimilate diagnostic test data, and
𝛿 = 1/𝑀 to assimilate hospitalization/death status; 𝛿min is taken to be the
mean observational noise standard deviation of the update.
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3. To prevent ensemble collapse, we add a hybrid inflation to an assimilated
state with a map 𝑥 ↦→ 𝑎(𝑥 −𝑥) +𝑥 +𝑁 (0, 𝑏𝑥), where 𝑥 is the ensemble mean
state and 𝑁 (0, 𝑏𝑥) is Gaussian noise with mean zero and standard deviation
𝑏𝑥 [49]. We take 𝑎 = 3.0 and 𝑏 = 0.1.

Because of the binary nature of the hospitalization and death data, we do not
update these states directly; doing so can lead to shocks in the system dynamics.
We only update the SEIR states ⟨𝑆𝑖 (𝑡 𝑓 −Δ)⟩, ⟨𝐸𝑖 (𝑡 𝑓 −Δ)⟩, ⟨𝐼𝑖 (𝑡 𝑓 −Δ)⟩, ⟨𝑅𝑖 (𝑡 𝑓 −Δ)⟩ at
the beginning of a DA window 𝑡 𝑓 −Δ ≤ 𝑡 ≤ 𝑡 𝑓 when assimilating hospitalization
and death data that fall within the DA window.

6.3.2 Testing strategy

We use a simple testing strategy that randomly tests a given budget of nodes
once per day. Our framework provides a testbed for different strategies. We
found random testing consistently outperformed three other simple strategies:
(i) concentrating the test budget on near-neighbors of positively tested nodes;
(ii) continuous testing of a fixed subset of the population; and (iii) testing nodes
with high predicted infectiousness values. We attribute this to the low prevalence
of disease. However, it is possible that more effective testing strategies can be
discovered that exploit estimated nodal states, the network structure, and the
intervention strategy. In a real-world scenario, systematic biases in testing (e. g.,
testing biased toward certain workplaces or educational institutions) may also
affect quantitative details of our results.

6.3.3 Parameter Learning

In addition to assimilating probabilities of SEIHRD states, we can in principle
learn about parameters in the reduced master equation model (6.3), for example:

◦ individual partial and time-dependent transmission rates 𝛽𝑖 ;

◦ individual inverse latent periods 𝜎𝑖 ;

◦ individual inverse durations of infectiousness 𝛾𝑖 and hospitalization 𝛾 ′𝑖 ;

◦ individual hospitalization rates ℎ𝑖 and mortality rates 𝑑𝑖 and 𝑑′𝑖 ;

◦ exogenous infection rates 𝜂𝑖 .

We have not fully explored the efficacy of learning about the different param-
eters from data. For now, we include only the partial transmission rates 𝛽𝑖 , the
inverse latent periods 𝜎𝑖 , and the durations of infectiousness 𝛾𝑖 and hospitalization
𝛾 ′𝑖 in the DA, all with the priors stated above. Figure 6.6 shows the prior distribu-
tions of the parameters at the beginning of the epidemic, as well as the posterior
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Figure 6.6: Distribution of ensemble averaged model parameters across nodes as a func-
tion of time during the epidemic.

The shaded regions contain 50%, 80% and 90% of the distribution. The dashed line
represents the true parameters in the stochastic simulation. During the first 8 days, no
DA is performed, and the parameter distributions are the prior distributions.
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distributions as the epidemic evolves and the network model learns about the
parameters. The results show that the DA does not refine the prior estimates
of the parameters. When priors were not initially centered on the true values,
they remained biased during the simulation. Further investigations focusing,
for example, on learning statistical averages of parameters rather than individual
node-per-node parameters would be beneficial.

The hospitalization rates ℎ𝑖 and mortality rates 𝑑𝑖 and 𝑑′𝑖 are fixed at the same
values as in the stochastic surrogate-world simulation (Table 6.3). We assume
the exogenous infection rates 𝜂𝑖 to be equal to the partial transmission rates 𝛽𝑖 ,
and we estimate the probability of an edge of node 𝑖 being active as

⟨𝑤𝑖⟩ = �̄�𝑖

𝜇 + �̄�𝑖
, (6.7)

where �̄�𝑖 is the diurnally averaged edge activation rate,

�̄�𝑖 =
1

1 day

∫ 1 day

0
𝐴𝑖 (𝑡) 𝑑𝑡, (6.8)

with

𝐴𝑖 (𝑡) = 1
�̂�

max

{
𝜆𝑖,min, 𝜆𝑖,max

[
1 − cos4

(
𝜋𝑡

1 day

)]4
}
. (6.9)

With our parameters, this is �̄�𝑖 = 𝜆𝑖,min/�̂� = 0.4 day−1 for isolated nodes and
�̄�𝑖 = 3.77 day−1 otherwise. For a stationary birth-death process, this estimate
for ⟨𝑤𝑖⟩ is the stationary probability of an edge being active; it approximates
the diurnally averaged probability in the case of the birth-death process with
diurnally varying edge activation rates. Through this probability ⟨𝑤𝑖⟩, the
exogenous infectious pressure depends on the isolation status of a node.

6.3.4 Classification in Risk Network

Nodes 𝑖 in the community group (c) are classified as possibly infectious (I𝑖 = 1)
or not (I𝑖 = 0) according to

I𝑖 =


1 if ⟨𝐼𝑚𝑖 ⟩ > 𝑐𝐼 ,
0 otherwise.

(6.10)

Here, 𝑐𝐼 is a classification threshold, which can be determined from receiver
operating characteristic (ROC) curves as some optimum tradeoff between wanting
to achieve high true positive rates while keeping false positive rates modest.
The ROC curves we use are adapted to the setting in which we are primarily
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interested in the fraction of users that is classified as possibly infectious (and thus
may be asked to self-isolate). We plot the true positive rate (TPR), i. e. fraction
of the nodes with I𝑖 = 1 for which 𝐼𝑖 = 1 in the stochastic simulation, against
the true positive rate (TPR), fraction of the nodes with I𝑖 = 1 in the user base of
size �̃� . ROC curves are traced out by lowering the classification threshold 𝑐𝐼 ,
thereby increasing both TPR and predicted positive fraction (PPF).

6.3.5 Classification in TTI

For the TTI scenarios, we assume the dynamic contact network among users is
known, as in the network DA scenarios, and we assume instantaneous tracing.
When a node 𝑖 in the community group (c) is tested positive, it is classified as in-
fectious; all nodes that have had at least one 15-minute contact with node 𝑖 within
the preceding 10 days are classified as exposed. All infectious and exposed com-
munity nodes are immediately isolated. This TTI scheme mimics the methods of
typical exposure notification apps; although it is idealized and overestimates TTI
performance achievable in practical settings [28, 36], it provides a fair baseline
for comparison with the risk network model.

6.3.6 Contact Interventions

We implement two types of intervention scenarios in our test cases. In the first, a
lockdown scenario (Figure 6.10), we set 𝜆𝑖,max for all nodes in the community
group (c) to 33 day−1. This amounts to a reduction of the mean contact rate (6.13)
in group (c) by 58%. In the second, a time-limited isolation intervention, we
reduce the contact rates of targeted high-risk nodes by setting 𝜆𝑖,max = 𝜆𝑖,min =

4 day−1; thus, these high-risk nodes are assumed to self-isolate, with only 4
contacts per day on average, corresponding to a reduction of their average
contact rate by 91%.

The duration of contact reduction takes three possible values. In the lockdown
scenario (Figure 6.10), all nodes have contact reduction from the inception of
the lockdown until the end of the simulation. In the TTI scenario, self-isolating
nodes have contact reduction for 14 days, in accordance with current CDC
guidelines [24], after which contact rates are reset to the original values. For the
risk network scenario, self-isolating nodes have contact reduction until they are
classified as negative (⟨𝐼𝑚𝑖 ⟩ ≤ 𝑐𝐼 ) for a period of 5 consecutive days, after which
contact rates are reset to their original values. This corresponds to reinstatement
of original contact rates for 50%, 90% and >99% of isolated nodes within 7, 14
and 21 days, respectively.
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Figure 6.7: Distribution of degrees 𝑘 in synthetic contact network with 97,942 nodes.

6.4 SYNTHETIC NETWORK FOR PROOF-OF-CONCEPT

To illustrate the methods with simulated data in a computational proof-of-
concept, we construct a large synthetic contact network with 𝑁 = 97, 942
nodes and about 1 million connections among them. The network has typical
characteristics of a human contact network. It has a time-dependent contact rate
minimum at night and a maximum midday, and it has a connectivity (degree)
distribution similar to human networks: there are many individuals with few
connections and a few highly connected individuals who are more likely to
become superspreaders [31] (Figs. 6.7, 6.8).

The network also contains a block representing hospitals, where hospitalized
patients are connected to healthcare workers, who in turn are connected to the
community in the rest of the network. Transmission rates in hospitals are reduced
by a factor of 10 to reflect the use of PPE, which has proven effective in making
SARS-CoV-2 transmission rates in hospitals rare. The purpose of explicitly
including hospitals in the network architecture is twofold: first, to illustrate how
reliable data (such as hospital admittance records) can be incorporated in the
risk network model; second, to enable comparison of hospitalization rates in the
simulated and real epidemic while mimicking the reduced transmission rate in
hospitals. Realistic human contact networks contain other structures, such as
households, workplaces, and schools [1]. Such features are not explicitly taken
into account in our synthetic network architecture; rather, contact clusters arise
randomly in the synthetic network. In the real world, such clusters would arise
naturally in the contact network assembled from proximity data, without the
need to account for them explicitly.

As surrogates for real-world health data, we use stochastic simulations of the
epidemiology model for the state variables 𝑆𝑖 (𝑡), 𝐸𝑖 (𝑡), etc. on the network. We
reproduce various scenarios of the early COVID-19 epidemic in New York City
(NYC), beginning during March 2020. Because age is an important risk factor



102 GRAPH-BASED EPIDEMIOLOGICAL MODELS WITH DATA ASSIMILATION

for COVID-19 severity, we assign ages to nodes based on the age distribution
of NYC and use them to model age-dependent disease progression according
to current knowledge about COVID-19 (Tables 6.2 and 6.3). While we assign
ages to nodes randomly, the realism of the model could be improved with age-
stratified contact patterns [68, 69]. With the resulting surrogate worlds of contact
patterns and disease progression, we explore how individual risk assessment and
epidemic management and control can be achieved in what-if scenarios.

6.4.1 Synthetic network for proof-of-concept

We generate a synthetic time-dependent contact network in two steps:

1. We generate a static degree-corrected stochastic block model (SBM) [51, 82],
consisting of 𝑁 nodes in three groups. The three groups represent (a)
hospitalized patients, (b) healthcare workers with contacts both within
hospitals and in the community, and (c) the community of all remaining
individuals (e. g., people in an urban environment). Hospital beds in group
(a) are filled when infected nodes become hospitalized; we assume an
infinite supply of hospital beds. Healthcare workers in group (b) make up
5% of all nodes, and the remaining 95% of nodes constitute group (c).

We describe connections within groups (a) and (b) with an Erdős–Rényi
model and use mean degrees of 5 in group (a) and 10 in group (b), based
on a social-contact analyses in a hospital setting [30]. Hospitalized patients
in group (a) can interact only with each other and with the healthcare
workers in group (b). To model the interactions between groups (a) and
(b), we set the corresponding mean degrees per node to 5 for edges con-
necting the groups. We parameterize the contacts among nodes in the
community group (c) with a power-law degree correction. As pointed
out in [29], when groups are ignored, degree distributions associated with
social interactions are well-described by a negative binomial distribution,
which, for example, has also been used to describe degree distributions
associated with sexual-contact networks [44]. In the presence of groups,
however, degree distributions of social-interaction networks have been
found to exhibit a power-law tail with an exponent of about 2.5 [29]. In
accordance with the results presented in [18, 29], we therefore describe
parts of the synthetic contact network by a stochastic block model with
power-law degree correction with exponent 2.5, mean degree �̂� = 10,
and maximum degree 100; Figure 6.7 shows the degree distribution. The
community (c) as a group only interacts with healthcare workers (b), and
we set the corresponding mean degree to 5.

2. To model time-dependence of the network, we make the edges of the
static SBM network created in the first step time-dependent by switching
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Figure 6.8: Dynamic contact network behavior in the first five simulated days, batched
into 3-hour windows (starting at midnight).

Displayed are the ensemble-averaged and node-averaged contact rate and total contact
duration.
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them on and off. That is, neighbors of all nodes remain fixed in time, but
their connections are activated or deactivated with time. We account for
day/night cycles in the edge weights 𝑤 𝑗𝑖 (𝑡), but we ignore, e. g., weekly
cycles. We generate a diurnal cycle that replicates some properties of
observed time-dependent human contact networks [37]: The fraction of
active edges is small at night and in the early morning hours, reaches a
maximum around noon, and approaches small values again in the evening.

To model the time-dependence of 𝑤 𝑗𝑖 (𝑡), we use a birth-death process
commonly used in queuing theory. The birth-death process is a Markov
chain in which arrivals (edge activations) are inhomogeneous Poisson
processes with a diurnally varying mean rate 𝐴 𝑗𝑖 (𝑡); contact durations are
exponentially distributed with a mean contact duration 𝜏 (i. e., a mean
rate parameter 𝜇 = 𝜏−1). We choose a mean duration of 𝜏 = 2 min (hence
𝜇 = 720 day−1), based on high-resolution human contact data [89]. We
model the mean edge activation rate as

𝐴 𝑗𝑖 (𝑡) = 1
�̂�

max
{

min(𝜆 𝑗,min, 𝜆𝑖,min),

min(𝜆 𝑗,max, 𝜆𝑖,max)
[
1 − cos4

(
𝜋𝑡

1 day

)]4

}
.

(6.11)

Here, 𝑡 = 0 starts at midnight, and �̂� is the mean degree of the network in
the community group (c), so that �̂�𝐴 𝑗𝑖 , when averaged over edges, is an
average contact rate per node. The diurnally averaged edge activation rate
then is

�̄� 𝑗𝑖 =
1

1 day

∫ 1 day

0
𝐴 𝑗𝑖 (𝑡) 𝑑𝑡 . (6.12)

For the minimum and maximum contact rates per node, 𝜆𝑖,min and 𝜆𝑖,max,
we choose the default values 𝜆min = 4 day−1 and 𝜆max = 84 day−1. If the
default contact rates apply for all nodes, this gives for the community group
(c) a mean contact rate per node of

�̂��̄� 𝑗𝑖 ≈ 37.7 day−1; (6.13)

this is about a factor 3–4 larger than typical human contact rates as assessed
by self-reports [70], consistent with the fact that we also take fleeting
contacts into account that would likely not be self-reported. The minimum
and maximum contact rates 𝜆𝑖,min and 𝜆𝑖,max for a node 𝑖 are the principal
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Figure 6.9: Illustration of different user base topologies.
(a) Neighbor-based user base, constructed by iteratively adding neighborhoods. (b)
Random subnetwork of users. Red nodes and edges are part of a user base, grey nodes
and edges of the overall population. The shown networks have 982 nodes and 5,916
edges. Both user bases contain 5% of all nodes.

parameters we vary to explore the effect of contact interventions. Reducing
𝜆𝑖,min and 𝜆𝑖,max for a node reduces the fraction of time edges connecting
to node 𝑖 are active. The contact rate and total contact duration over the
network for five simulated days are displayed in Figure 6.8.

The time dependencies of all edges 𝑤 𝑗𝑖 (𝑡) are treated as independent. We
update the time-dependence of each edge at midnight every simulated day,
running independent birth-death processes with parameters 𝐴 𝑗𝑖 (𝑡) and 𝜇
for the next day.

If a node becomes hospitalized, it is deactivated at its previous location in
the network and transferred to the hospital group (a). Hospitalized nodes are
assumed to be infectious. (This assumption may later be relaxed to model the
situation that a patient is no longer infectious but may still be hospitalized with
ongoing disease.)

Different choices of network architecture are, of course, possible and justifiable.
The network merely serves to generate simulated data for our proof-of-concept,
and the algorithms we demonstrate adapt to any network architecture, which in
practice would be provided by proximity data. We do not expect our results to
depend sensitively on our choice of network architecture.

6.4.2 Selection of subnetwork for user base

To select a subnetwork for a user base with �̃� < 𝑁 users, we construct subgraphs
with two different topologies. First, a neighbor-based subgraph is constructed
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Type Population Interior Exterior connectivity

75% neighbor 73,456 21,499 1.9
50% neighbor 48,971 6,301 5.2
25% neighbor 22,381 2,107 10.0
75% random 73,353 7,061 3.1
50% random 48,371 550 6.3
25% random 24,482 33 9.3

Table 6.1: Details of the different user bases. The percentage represents approximately
�̃� /𝑁 , for the user population �̃� . The interior defines how many users are
completely surrounded by other users. The exterior connectivity gives the
average number of exterior nodes connected to a node inside the user base.

from a randomly selected seed user, by adding all neighbors of this user to the
subgraph, then in a greedy fashion adding all neighbors of each member of this
new subgraph, and so on, until a desired user population is reached. Second,
a random subgraph is constructed by randomly choosing nodes from the full
network. Figure 6.9 illustrates the different user base topologies, and Table 6.1
summarizes their characteristics.

From Table 6.1, we see the topology of the user base affects the average number
of external neighbors. To mitigate this effect, we take into account that users
can be infected by neighbors external to the user base, through the additional
infectious pressure terms in the equations for ⟨ ¤𝑆𝑖⟩ and ⟨ ¤𝐸𝑖⟩ in Eq. (6.3). Such
neighbors are still detectable by proximity technologies (e. g., Bluetooth), but
because they are not users of the network DA protocol, we do not know their
current state.

6.4.3 Surrogate world simulation

To generate surrogate worlds with which to test the DA algorithm and interven-
tions, we simulate epidemics on the synthetic network stochastically with kinetic
Monte Carlo methods [41]. For these stochastic simulations (but not for the
model used for DA), we choose mean transmission and transition rates between
SEIHRD states that are homogeneous across nodes, except for hospitalization
and mortality rates that depend on age. The mean rates we use are based on
current knowledge about COVID-19 (Table 6.2). We simulate 20 epidemics that
only differ in their random seed. They are initialized on March 5, 2020, with
0.16% of nodes randomly assigned to be infectious.

The dependencies of the hospitalization rate ℎ𝑖 = ℎ(𝑎) and mortality rates
𝑑𝑖 = 𝑑 (𝑎) and 𝑑′𝑖 = 𝑑

′(𝑎) on age 𝑎 are estimates based on recent data (Table 6.3).
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Parameter Value

𝛽, 𝜅𝐼 12 day−1

𝜅𝐻 0.1𝛽
𝜎 (3.7 day)−1

𝛾 (3.2 day)−1

𝛾 ′ (5 day)−1

𝜆max 84 day−1

𝜆min 4 day−1

Table 6.2: Mean transmission and transition rates and maximum/minimum contact
rates for the surrogate-world simulations with the stochastic SEIHRD model
(Fig. 6.2). The mean rates are taken to be the same for all nodes; hence, the
nodal indices are suppressed. The latent period 𝜎−1 and duration of infectious-
ness in the community 𝛾−1 are approximated from those in refs. [60] and [46];
the duration of hospitalization 𝛾 ′−1 is from ref. [86], and the transmission rate
𝛽 is fit to be consistent with data for respiratory viruses [89] and to roughly
reproduce NYC data.

To model age-dependent disease progression, we randomly assign ages to
network nodes in the community group (c) according to the age distribution
for NYC, as given by U.S. Census data [107]. Additional factors we neglect
in our synthetic examples, such as age-dependent contact patterns, are likely
small perturbing factors for the risk assessment results we show. We assign ages
to nodes in the healthcare worker group (b) according to the age distribution
among working-age adults (21–65 years old). Initially, there are no hospitalized
nodes (i.e., group (a) is empty).

The network has 97,942 nodes (with the difference to 100,000 arising from
stochastic effects in the generative algorithm). We choose the global mean
transmission rate 𝛽 so that our simulations are qualitatively aligned with the
evolution of the COVID-19 epidemic in NYC [74]. We find that a global value
of 𝛽 = 12 day−1 can qualitatively reproduce the observed rate of infections and
can quantitatively reproduce the rate of hospitalizations and deaths during the
initial phases of the epidemic in NYC.

6.4.4 Synthetic data

We sample synthetic data from the stochastic surrogate-world simulation on
the network with 𝑁 nodes and assimilate data for a possible subset of �̃� ≤ 𝑁
users in the reduced master equation model. To model data errors, we randomly
corrupt the synthetic data sampled from the surrogate world network with the
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Age group 𝑎 (yrs) 𝑓 (𝑎) ℎ(𝑎) 𝑑 (𝑎) 𝑑′(𝑎)
0–17 20.7% 0.2% 0.0001% 1.9%

18–44 40.0% 1.0% 0.001% 7.3%
45–64 24.5% 4.0% 0.1% 19.3%
65–74 8.3% 7.6% 0.7% 32.7%
≥ 75 6.5% 16.0% 1.5% 51.2%

Table 6.3: Age-dependent mean hospitalization and mortality rates in the surrogate-
world simulation. The share 𝑓 (𝑎) of the population in each age group 𝑎 is
taken from U.S. Census data [107]. The age-dependent death rate in hospitals
𝑑 ′ is obtained from cumulative hospitalization and death rates in NYC by
June 1, 2020 [74], under the assumption that 90% of deaths occurred in
hospitals. Age-dependent hospitalization rates ℎ(𝑎) and mortality rates 𝑑 (𝑎) in
the community (outside hospitals) are difficult to obtain directly from NYC
data because of an age-dependent undercount of infections [118]. We choose
hospitalization rates ℎ(𝑎) that approximate data from France [90], adjusting
the rates so that the overall hospitalization rate is

∑
𝑎 𝑓 (𝑎)ℎ(𝑎) ≈ 3.1%, which

is NYC’s overall hospitalization rate if one assumes a cumulative COVID-19
incidence rate of 23% [88], together with NYC’s actual hospitalization count
(52,333 on June 1, 2020) and population (8.34 million) [74]. Similarly, the
mortality rate in the community 𝑑 (𝑎) is chosen such that the overall infection
fatality rate is

∑
𝑎 𝑓 (𝑎)

[
𝑑 (𝑎) + ℎ(𝑎)𝑑 ′(𝑎)] ≈ 1.1%, which is NYC’s overall

infection fatality rate if one considers the same cumulative incidence of 23%
and the confirmed and probable cumulative death count from COVID-19
(21,607 by June 1, 2020).
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false positive and false negative rates implied by the sensitivity (false negative rate
= 1 − sensitivity) and specificity (false positive rate = 1 − specificity). The types
of data and their error rates are outlined below.

6.4.4.1 Testing positive on high-fidelity tests

A positive virus test for node 𝑖 is taken to imply

⟨𝐼𝑖 (𝑡)⟩ = PPV (6.14)

at the time the test sample is taken. The positive predictive value (PPV) is calculated
as

PPV =
sensitivity × 𝑃 (𝑡)

sensitivity × 𝑃 (𝑡) + (1 − specificity) × (1 − 𝑃 (𝑡)) , (6.15)

where we take the sensitivity of the test to be 80% and the specificity to be 99%,
which we use as an approximation of the currently imprecisely known actual
sensitivities and specificities [94, 112]. As an estimate of the infectiousness preva-
lence 𝑃 (𝑡) in the population, we use the average of the infectiousness probabilities
both over the network of size �̃� and over the ensemble of size 𝑀 ,

𝑃 (𝑡) = max ©« 1
�̃�𝑀

𝑀∑︁
𝑚=1

�̃�∑︁
𝑖=1

⟨𝐼𝑚𝑖 (𝑡)⟩, 1
�̃�

ª®¬ . (6.16)

The cutoff of �̃� −1 is included to guard against erroneously assuming prevalence
to be zero because of subsampling on the reduced network. For the DA, we
assume an error rate of 1 − PPV for a positive test result.

6.4.4.2 Testing negative on high-fidelity tests

A negative virus test for node 𝑖 is similarly taken to imply

⟨𝐼𝑖 (𝑡)⟩ = FOR (6.17)

at the time the test sample is taken. The false omission rate (FOR) is calculated as

FOR =
(1 − sensitivity) × 𝑃 (𝑡)

(1 − sensitivity) × 𝑃 (𝑡) + specificity × (1 − 𝑃 (𝑡)) ,

with the same sensitivity, specificity, and prevalence as for a positive virus test.
For the DA, we assume an error rate equal to FOR for a negative test result.
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6.4.4.3 Low-fidelity tests

To assimilate low-fidelity data such as those from temperature sensors, we assume
⟨𝐼𝑖 (𝑡)⟩ = PPV as for a positive virus test when they indicate infectiousness (e. g.,
when a temperature reading is elevated). However, we use a sensitivity of 20%
and specificity of 98% to reflect the lack of sensitivity of temperature sensors in
detecting COVID-19 infection [16]. For the DA, we assume an error rate equal
to 1 − PPV, analogous to a positive virus test.

6.4.4.4 Low-fidelity tests

Data about hospitalization with COVID-19 imply that 𝐻𝑖 (𝑡) = 1 for the duration
of hospitalization. We assume the hospitalization status of all users to be known
with certainty, that is, we assimilate the hospitalization status 𝐻𝑖 (𝑡) = 0 or
𝐻𝑖 (𝑡) = 1 for all users; however, we only update the SEIR probabilities at the
beginning of a DA window 𝑡 𝑓 − Δ ≤ 𝑡 ≤ 𝑡 𝑓 with hospitalization data.

6.4.4.5 Deaths

Death implies 𝐷𝑖 (𝑡) = 1. We assume the vital status of all users to be known
with certainty, that is, we assimilate 𝐷𝑖 (𝑡) = 0 or 𝐷𝑖 (𝑡) = 1 for all users; as for
hospitalization, however, we only update the SEIR probabilities at the beginning
of a DA window 𝑡 𝑓 − Δ ≤ 𝑡 ≤ 𝑡 𝑓 with death data.

6.4.4.6 Anti-body tests

For completeness, we state that a positive serological test for SARS-CoV-2 for
node 𝑖 would be taken to imply

⟨𝑅𝑖 (𝑡)⟩ = PPV,

with the positive predictive value calculated from (6.15). Typical values for
sensitivity would be 90% and for specificity 95% [108], and the prevalence of
resistance can be estimated from the resistance probabilities on the reduced
master equation network. We would again assume an error rate equal to 1−PPV.
However, we did not assimilate simulated serological tests in our proof-of-concept
because achievable serological test rates were low at the time of the study.

6.5 LARGE-SIZED NETWORK NUMERICAL RESULTS

6.5.1 Lockdown and world avoided

As an illustrative example, we simulate the evolution of an epidemic that, when
scaled up from our network size to the NYC population of 8.3 million, resembles
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No intervention

Lockdown

NYC data

Figure 6.10: Evolution of an outbreak in surrogate-world simulations with a lockdown
(blue) and without (orange).

The left column shows infection rates and the right column death rates. Upper row for
cumulative counts and lower row for daily counts, smoothed with a 7-day moving average
filter. Red bars represent confirmed and probable COVID-19 deaths and confirmed
infection rates for New York City [74], with the red axis labels on the right for confirmed
infection counts. Solid lines indicate the corresponding counts in the simulations, with the
black axis labels on the left for infections on the network. (The axes for infections in the
simulations are stretched by a factor 10 relative to the axes for confirmed NYC infections,
reflecting the undercount of infections by confirmed cases [118].) The light lines show
20 simulations that only differ by random seeds, with the thicker lines indicating the
ensemble mean; thus, they give an indication of sampling variability. The average
contact rate for all nodes is reduced by 58% from March 25, 2020 onward to mimic the
lockdown effect (blue solid line).
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No intervention

Lockdown

NYC data

Figure 6.11: Hospitalization rates in surrogate-world simulation with a lockdown (blue)
and without (orange).

The left panel shows cumulative hospitalizations and the right panel daily hospitalizations
per 100,000 population for the same simulations as those in Figure 6.10. Red bars represent
COVID-19-related hospitalization rates for New York City [74]. As in Figure 6.10, the
simulation data are smoothed with a 7-day moving average filter.

the early evolution of the COVID-19 epidemic in NYC in 2020 (Fig. 6.10). If the
contact rate on the network remains unchanged in the simulations, the number
of infections and deaths rises from early March into April, with daily deaths
reaching a peak of around 21 per 100,000 population in the second half of April.

However, this world was avoided by a lockdown, which became mandatory
in NYC from March 22 onward. In its wake, the number of daily new cases and
deaths began to decline from mid-April onward (Figure 6.10). We can reproduce
similar behavior in the stochastic simulations by reducing the average contact rate
of all nodes by 58% starting March 25 (Figure 6.10). The infection rates in the
stochastic simulations exceed the number of confirmed cases in NYC, presumably
because the latter undercount actual infections [118]. However, the death rates
in the stochastic simulations are close to the NYC death rate (Figure 6.10). The
hospitalization rates in the simulation also track the actual hospitalization rates
closely (Fig. 6.11).

Thus, the simulated epidemics on the synthetic network reproduce statistics
similar to the actual early epidemic in NYC, with realistic parameter choices for
transmission rates and disease progression. Notwithstanding the simplifications
of the network structure, this points to the qualitative adequacy of the synthetic
network epidemiology model as a testbed for network DA, which makes no a
priori assumptions about the structure of the network.

6.5.2 Accuracy of individual risk assessment

To demonstrate the accuracy of individual risk assessments, we assume the net-
work DA platform has �̃� ≤ 𝑁 users who exchange proximity data with each
other, with 25% to 100% of the population in the user base (i.e., 0.25 ≤ �̃� /𝑁 ≤ 1).
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In an idealization, the contact patterns of individuals within the user base are
assumed to be known completely; the contact patterns of individuals outside the
user base are assumed unknown. We also assume the number of external contacts
of individuals in the user base to be known, for example, from proximity-sensing
devices that can also detect devices of non-users. (However, we have verified that
this assumption can be replaced by only assuming knowledge of the average num-
ber of external contacts, without material effects on the results; see Figures 6.17
and 6.18.) For subsets of the �̃� users, we assimilate results of simulated rapid
diagnostic tests from the corresponding nodes in the surrogate-world simulation.
A fraction 𝑓 = 1%, 5%, or 25% of the user base is assumed to be tested daily, with
results available on the day of test administration; that is, every user is tested on
average every 100, 20, or 4 days. Testing the population of a major metropolitan
center such as NYC every 100 or 20 days is achievable in principle, as was the
case with the testing capacity during the height of the COVID pandemic. For
more limited user bases (�̃� /𝑁 ≤ 1), test rates of 25% per day within the user
base are locally achievable and in fact are routine, for example, on some college
campuses.

We first illustrate the risk network model in the worst-case scenario of the
free-running synthetic epidemic, in which contact patterns do not change. DA
begins on March 5. We show results for April 9, near the epidemic peak, when
about 7% of the population are infectious, and for April 30, when new infections
are waning (Fig. 6.10). (In this free-running epidemic, the maximum prevalence
of infectiousness is considerably higher than in the lockdown simulations, in
which prevalence peaks at 1.5%–2% — more in line with what actually occurred
during the lockdown in NYC.)

We classify users 𝑖 as possibly infectious (“positive”) when the estimated prob-
ability of infectiousness ⟨𝐼𝑖 (𝑡)⟩ exceeds a threshold 𝑐𝐼 . The TPR — the rate at
which users who are infectious in the stochastic surrogate-world simulation are
classified as positive — naturally increases as the classification threshold 𝑐𝐼 de-
creases; at the same time, the PPF — the rate at which users overall are classified
as positive, whether correctly or incorrectly — also increases because the false
positive rate (FPR) increases. The ROC curves trace out these competing changes
in TPR and PPF (or FPR) as the classification threshold 𝑐𝐼 is varied (Figure 6.12).
Choosing a classification threshold 𝑐𝐼 means finding a trade-off between wanting
a high TPR while keeping FPR and hence PPF low.

In the ideal albeit unrealistic scenario when the user base encompasses the whole
population (�̃� /𝑁 = 100%), TPRs for April 9 are 12%, 19%, and 47% for a PPF of
8% and test rates from 𝑓 = 1%, 5%, and 25%. Later in the epidemic, for April 30,
TPRs are 13%, 27%, and 59% (Figure 6.12 (a, b)). That is, the classification results
improve as the network model learns about the evolution of the epidemic. The
classification results are insensitive to the user base coverage �̃� /𝑁 : the accuracy of
the classification does not change for user bases consisting of neighborhoods in the
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Figure 6.12: ROC curves for classification as possibly infectious.
ROC curves trace out the TPR vs. PPF as the classification threshold is varied. TPR and
PPF are given relative to the user base size �̃� . Green shades of the ROC curves from
lighter to darker correspond to increasing diagnostic test rates 𝑓 . Left column for April 9;
right column for April 30. (a, b) For the ideal user base of �̃� /𝑁 = 100%. For comparison,
the filled circles are for a test-only scenario when only users with positive diagnostic
tests are classified as positive. (The 1%/day case falls outside the plotting region; values
for panel (a) are (7×10−4, 0.008) and for (b) are (2×10−4, 0.01).) The open circles are
for a contact-tracing scenario in which additionally prior close contacts of users with
positive diagnostic tests are classified as positive. Also shown is a sensors-only scenario in
which 75% of the user base is assumed to provide daily body temperature readings. (c,
d) For user bases consisting of neighborhoods in the network covering 25%, 50%, and
75% of the total population (Figure 6.9), with the same test rates 𝑓 in shades of green
as in (a, b). The black dashed line represents a random classifier that provides a lower
bound on performance.
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Figure 6.13: Receiver operating characteristic (ROC) curves for classification as possibly
infectious.

As in Figure 6.12, but for subnetworks with randomly selected nodes rather than for
subnetworks with a neighborhood topology. For the filled circles, the 1%/day case falls
outside the plotting region; values for panel (a) are (7× 10−4, 0.009) and for panel (b) are
(2 × 10−4, 0.01).
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network covering between 25% and 100% of the total population, even though
the scenarios with more limited user bases only use contact information for the
users, not for non-users (Figure 6.12 (c, d)). The results are also insensitive to the
user base topology (Figure 6.9): classification performance is not substantially
affected whether the user base consists of neighborhoods in the total population
network (Figure 6.12) or of randomly selected nodes (Figure 6.13).

To put these results in context, compare them with the following two tradi-
tional approaches:

◦ If only users with positive diagnostic tests are classified as positive, TPRs
reach 0.8%, 4%, and 22% for test rates 𝑓 = 1%, 5%, and 25%, respectively,
with PPFs 0.07%, 0.4%, and 1.8% on April 9 and corresponding TPRs of
1%, 4%, and 23% with PPFs 0.02%, 0.1%, and 0.7% on April 30 (Figure 6.12
(a, b), solid circles). This test-only TPR is close to but slightly smaller than
𝑓 because the test sensitivity is less than 100%. Classification by network
DA can achieve much higher TPRs than testing alone, especially at low
test rates, at the expense of increased but still modest PPFs.

◦ Contact tracing and exposure notification apps classify as positive users with
positive diagnostic tests, plus their potentially exposed nearest neighbors on
the network. If, following standard contact tracing protocols, individuals
are classified as positive if, over the 10 days preceding the diagnosis, they
had at least one contact of more than 15 minutes length with a user who had
a positive diagnostic test, the so-obtained contact-tracing TPRs for April
9 are 2.4%, 11%, and 45% for test rates from 𝑓 = 1%, 5% and 25%, with
PPFs of 1%, 5% and 23% (Figure 6.12 (a, b), open circles). For April 30
the corresponding TPRs are 2%, 6%, and 32% with PPFs 0.2%, 1.5%, and
7.6%. Network DA exploits the same data as contact tracing and exposure
notification apps but achieves substantially higher TPRs at the same PPF.
For example, at the same PPF as contact tracing, network DA achieves
about a 40% higher TPR than contact tracing for April 9, and about a
100% (factor 2) higher TPR for April 30 (Figure 6.12 (a, b), vertical lines
above open circles). That is, risk network in this synthetic example exploits
the exact same data as contact tracing or exposure notification apps, but it
does so much more effectively.

Risk network can also be used to assess quantitatively to what extent lower-
fidelity data can improve classification. As an example, we conducted a set of
experiments in which 75% of the users were assumed to report body temperatures
daily—for example, with wearable sensors [83]—with infectiousness indicated
by elevated temperature readings with 20% sensitivity [16]. Such temperature
readings improve the classification when no or few (𝑓 = 1%) diagnostic tests are
available; however, they do not provide a substantial benefit when 𝑓 = 5% of the
user base or more can be tested daily (Figure 6.12 (a, b)). Nonetheless, if widely
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adopted, temperature sensors can provide a modest benefit when diagnostic
testing capacity is low [83].

The results show that risk network allows identification of a large fraction of
infectious individuals, provided widespread testing is available. The improved
identification of infectious individuals over traditional methods is insensitive to
the fraction of the population covered by the user base, to the user base topology,
and to stochastic variability of the epidemic. The risk network maodel extends
classification beyond the nearest network neighbors on which contact tracing
and exposure notification apps focus. This gives it an advantage especially when
testing capacity is limited.

The capability of risk network to identify infectious individuals can be used
to tailor individualized contact interventions for epidemic management and
control. For epidemic management and control to be effective, however, it is
important not only that the classification accuracy is high but also that the user
base coverage is sufficiently large so that a large fraction of infectious individuals
can be identified in the population, rather than just within the user base.

6.5.3 Risk-tailored contact interventions

The individual risk assessments can be used to prompt those who are classified as
possibly infectious for contact interventions. As an illustrative example of such
individual contact interventions, we assume that users of the app self-isolate by
reducing their contact rate with others by 91%, to an average of 4 contacts per
day, during the time when they are classified as positive and 5 days thereafter; all
others in the population, whether app users or not, do not change their behavior.
As a baseline for comparison, we present TTI scenarios with the same contact
rate reduction but continuing over 14 days after diagnosis or identification as
possibly exposed through contact with an infectious individual. For this baseline
TTI scenario, an individual is classified as exposed if over the preceding 10 days,
they had at least one contact lasting more than 15 minutes with an individual
who had a positive diagnostic test; that is, the contact trace stage of this baseline
TTI emulates techniques used in exposure notification apps, relying on the same
data as those available for the risk network model in our synthetic examples. For
a direct and fair comparison with risk network, TTI compliance is assumed to
be confined to the user base. We use uniform testing regimes with test rates
𝑓 = 1%, 5%, and 25% within the user base. As classification threshold, we choose
a fixed threshold 𝑐𝐼 = 1%, resulting in TPR ≳ 40% and PPF ≲ 9% when contact
interventions commence. Choosing the classification threshold 𝑐𝐼 adaptively, in
response to current prevalence of infectiousness in the population, may further
improve the results.

In the idealized but unrealistic case with full user base coverage (�̃� /𝑁 = 100%),
the epidemic is more strongly suppressed with the risk network interventions than
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in the lockdown scenario, with 50–70% fewer cumulative deaths (Figure 6.14).
However, whereas in the lockdown scenario the entire population has reduced
contacts, with the risk network model only a small fraction of the population
self-isolates. The self-isolation fraction has an initial peak of 15–17% for about a
week and then falls quickly to 5–10%, with damped relaxation oscillations over
several weeks in the case with lower test rates (𝑓 = 5%); 50% of those who isolate
do so for 7 days or less, and 90% for 14 days or less. That is, in this idealized case,
risk-tailored self-isolation achieves effective epidemic control with isolation of
only a small fraction of the population at a time. Risk network does not squash
daily infections to zero, because the classification threshold 𝑐𝐼 was chosen as a
compromise between wanting a reliable classification with a high TPR while
avoiding isolation of a too large fraction of the population with a too high PPF
(Figure 6.12). For comparison, TTI with 100% compliance does not achieve
epidemic control at a test rate 𝑓 = 1%; at a test rate 𝑓 = 5%, cumulative deaths
are 3 times higher than with network DA because TTI misses more infections
than risk network. At the test rate 𝑓 = 25%, the cumulative death rate with TTI
is comparable to or lower than with risk network, but at the expense of a 2–5
times higher isolated fraction of the population. Whereas the performance of
TTI is strongly test-rate dependent, that of network DA is less sensitive to test
rate, and it is always more efficient than TTI.

In the somewhat more realizable case with �̃� /𝑁 = 75% user base coverage,
we simulate a demanding scenario in which testing and contact interventions are
confined to the user base; no contact information among non-users is harnessed,
and non-users maintain their contact patterns without isolation. In this case,
risk-tailored self-isolation still achieves epidemic control at all test rates of 𝑓 = 1%,
5%, and 25% within the user base (Figure 6.15), and attains a cumulative death
rate similar to the 100% user base. The fraction of the population in isolation
again peaks at just over 15% initially and then drops to 5–10%. As before, TTI
with 75% compliance and with the highest test rates (𝑓 = 25%) also achieves
epidemic control, but with a higher isolated fraction of the population. At the
test rate 𝑓 = 5%, TTI results in an about four times higher cumulative death
rate than isolation tailored by network DA, which additionally isolates fewer
individuals. TTI fails to achieve epidemic control at a test rate 𝑓 = 1%.

With a further reduced user base coverage of �̃� /𝑁 = 50%, classification
remains accurate, and isolation tailored by network DA can still achieve epidemic
control and can remain more effective than a lockdown in preventing infections
and deaths (Figure 6.19). The initial fraction of the population in isolation
increases to around 30%, and then drops again to between 5–10%. However,
this means that initially, the majority of the user base (50% of the population) is
in isolation, which creates perverse incentives: it effectively puts the user base,
but not others, in a lockdown. TTI with 50% compliance fails to control the
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Figure 6.14: Comparison of different contact intervention scenarios for full user base
with �̃� /𝑁 = 100%.

Shown are the lockdown scenario (blue) from Fig. 6.10, the results of network DA and
isolation of positive individuals for test rates 𝑓 = 1%, 5%, and 25% (greens), and the
results of TTI with the same test rates as for network DA (purples).
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Figure 6.15: Comparison of different contact intervention scenarios for a user base with
�̃� /𝑁 = 75%.

Plotting conventions as in Fig. 6.14. TTI here is confined to the same user base as
network DA, implying 75% compliance.
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Figure 6.16: Comparison of different contact intervention scenarios for random user
base with �̃� /𝑁 = 75%.

As in Figure 6.15, but with a subnetwork with randomly selected nodes and with a
classification threshold 𝑐𝐼 = 0.25%.
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Figure 6.17: As in Figure 6.15, but with constant exterior connectivity.
Comparison of different contact intervention scenarios for neighborhood user base with
�̃� /𝑁 = 75% and with a classification threshold 𝑐𝐼 = 1%, but replacing the user-dependent
number of external neighbours 𝑘𝑥𝑖 by the constant exterior connectivity from Table 6.1.
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Figure 6.18: As in Figure 6.16, but with constant exterior connectivity.
Comparison of different contact intervention scenarios for random user base with �̃� /𝑁 =

75% and with a classification threshold 𝑐𝐼 = 0.25%, but replacing the user-dependent
number of external neighbours 𝑘𝑥𝑖 by the constant exterior connectivity from Table 6.1.

Figure 6.19: Comparison of different contact intervention scenarios for neighborhood
user base with �̃� /𝑁 = 50% and with a classification threshold 𝑐𝐼 = 0.5%.
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Figure 6.20: Comparison of different contact intervention scenarios for random user
base with �̃� /𝑁 = 50% and with a lower classification threshold 𝑐𝐼 = 0.25%.

As in Figure 6.19, but with a subnetwork with randomly selected nodes.

Figure 6.21: Comparison of different contact intervention scenarios for neighborhood
user base with �̃� /𝑁 = 25% and with a classification threshold 𝑐𝐼 = 0.25%.
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Figure 6.22: Comparison of different contact intervention scenarios for random user
base with �̃� /𝑁 = 25% and with a lower classification threshold 𝑐𝐼 = 0.01%.

As in Figure 6.21, but with a subnetwork with randomly selected nodes.

epidemic for test rates below 𝑓 = 5% but still achieves some control at 𝑓 = 25%,
albeit with a higher isolated population fraction than with network DA.

For the yet smaller user base coverage of �̃� /𝑁 = 25%, classification remains
accurate (Figure 6.12); however, here the dominance of non-users within the
population, who do not isolate, rules out epidemic control (Figure 6.21). As
with any epidemic management measure, control cannot be achieved with low
compliance rates.

These results for reduced user bases are for sub-networks consisting of neigh-
borhoods in the overall population network. Results for user bases consisting of
nodes selected at random from the overall population are qualitatively similar
for �̃� /𝑁 = 75%, albeit with an adjusted classification threshold and a higher
fraction of the population in isolation (Figure 6.16). For �̃� /𝑁 = 50% with a
random user base, risk network, while still being able to identify a large fraction
of infectious individuals in the user base (Figure 6.13), ceases to be effective for
epidemic control (Figure 6.20); similar behavior is observed in the �̃� /𝑁 = 25%
case. That is, while network topology was rather unimportant for the accuracy of
classification, it does play a role for the effectiveness of epidemic management and
control strategies. It is possible the performance of the risk network in managing
the epidemic may be improved with data-adaptive classification thresholds.

In scenarios in which the user base and/or test rates are too small to achieve
epidemic control, there is still a pronounced reduction in the cumulative death
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Figure 6.23: Cumulative death rate of users vs. non-users for the �̃� /𝑁 = 25% user base
consisting of nodes selected at random from the overall population network.

Individual contact interventions are applied within the user base from March 15 onward.
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Figure 6.24: Cumulative death rate of users vs. non-users for the �̃� /𝑁 = 25% user base
consisting of neighborhoods in the overall population network.

Individual contact interventions are applied within the user base from March 15 onward.
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rate of users relative to the general non-user population (Figure 6.24). For test
rates 𝑓 = 1%, 5%, and 25% per day within the �̃� /𝑁 = 25% user base consisting
of neighborhoods in the overall population network, the cumulative death rate
is respectively 29%, 48%, and 42% lower than the death rate among non-users.
Additionally, although the contact interventions are confined to the user base,
the death rate in the non-user population is still reduced by about 50% compared
with the no-intervention scenario (Figure 6.10). For a �̃� /𝑁 = 25% user base
consisting of nodes selected at random, the results are qualitatively similar: Death
rates among users relative to non-users are reduced by 47%, 52%, and 56% for
respective test rates 𝑓 = 1%, 5%, and 25% (Figure 6.23).

That is, risk-tailored isolation on the basis of risk network generally outper-
forms TTI as an epidemic management and control approach when both are
presented with the same contact and test data. Even when it does not achieve
epidemic control because of low compliance rates, it still offers advantages to
users in terms of reduced death rates.

6.5.4 Discussion

We have demonstrated a platform concept for individual health risk assessment,
which exploits the same proximity data from mobile devices that exposure notifi-
cation apps rely upon but is substantially better at identifying infectious individu-
als. It achieves these gains by assimilating crowdsourced data from diverse sources
into an epidemiological model defined on a contact network. The risk network
model provides informative and actionable risk assessments for individuals, even
when only a modest fraction of the population uses the app necessary to obtain
proximity data. The accuracy of the risk assessments is largely independent of
the fraction of the population using the platform and of the user base topology;
it improves with increasing diagnostic test rates, as should be expected.

When the user base is sufficiently large (covering around 75% of the popu-
lation), the platform can be used to tailor interventions that are more efficient
for epidemic management and control than lockdowns or TTI. For example,
with a user base covering 75% of the population and users tested every 20 days,
simulations for NYC showed that risk-tailored self-isolation achieves epidemic
control with 63% fewer deaths than during NYC’s lockdown, with typically
only 5–10% of the population in isolation at any given time. This risk-tailored
isolation approach is more effective at preventing infections and deaths than a TTI
approach that uses the same contact and diagnostic test data. Our experiments
were solely based on self-isolation among app users, without considering other
public health interventions. As a result, 75% coverage may be a conservative
estimate. In reality, multiple non-pharmaceutical interventions will likely be
employed simultaneously at the population level, which may reduce the user
coverage required to achieve epidemic control.
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We have produced a modular codebase that allows for exploration and bench-
marking of tools to manage and control epidemics in a synthetic setting. To
validate and further optimize our choices of diagnostic test and intervention
strategies, further analyses are required. For example, our results may be im-
proved by the inclusion of additional information from the contact network or
more data-adaptive use of the risk assessments provided by the risk network
model. Additionally, it is possible to learn about the model parameters that appear
in the network epidemiology model; we have only skimmed the surface with
respect to what is possible in this regard, so far with limited success. Further
investigation to delineate which model parameters are identifiable from data
would be beneficial.

The platform has a relatively low barrier to widespread implementation. It can
be realized by expanding the computational backend of existing exposure notifi-
cation apps. High-precision proximity data are now available through Bluetooth
protocols [8], and lower-precision location data from mobile devices have been
exploited commercially for some time. Statistical techniques may be required to
optimize the reconstruction of contact networks from such proximity data in
practical implementations with imperfect knowledge of contact patterns [99].
To be effective, the platform requires that users provide proximity data and other
crowdsourced data, such as test results and reports of clinical symptoms. The
more detailed data users make available, the more accurate and detailed risk
profiles can be produced in return. Uptake rates of exposure notification apps
have already reached up to 75% in some urban areas, as in our simulated scenarios
(e. g., more than 90% of Singapore’s population over 6 years of age [43] is using
an exposure notification app). Uptake rates on a national scale so far have been
more modest (e. g., a third of the UK population [117]), in part, for example,
because of rural-urban digital divides but also, probably, because of the limited in-
formation provided by current exposure notification apps. However, smartphone
usage rates worldwide are around 50% and continue to grow rapidly [101]; thus,
widespread use of a risk-network-type model in future epidemics will become
technically possible. And while routine surveillance test rates in much of the
world are still low, more widespread surveillance testing on the scale of major
cities or regions at this point is feasible; for example, NYC currently is already
testing up to roughly 2.5% of its population daily [105]. Our conclusions provide
further evidence of the benefits of widespread testing, especially when that is
combined with the risk network to spread the test information over dynamic
contact networks assembled from proximity data.

Challenges to widespread and successful adoption of a network DA platform
center around equity, compliance, and privacy questions. Smartphone use is
not equitably distributed within the population, and there are disincentives
(e. g., unavailability of sick leave) to comply with individual contact interven-
tions. Conversely, classification of users as “low risk” may encourage risky and
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counterproductive behavior. It is also unknown, and we did not address, how
correlations between smartphone use, compliance, and factors influencing in-
fection risk would affect our results. An additional impediment to widespread
adoption of network DA are concerns about protecting users’ privacy. The
network DA platform requires data to be transferred temporarily to a central
computing facility for data assimilation [12]. This makes the platform more
difficult to harden against malicious exploitation than exposure notification apps,
which only require central data exchange when there is direct evidence of an
infection [48]. Nonetheless, the data need not be stored beyond a data assimilation
window that is at most a few days long. Additionally, the platform requires only
anonymized proximity data but not absolute location data, and it does not rely on
humans in the loop, reducing risks of malicious exploitation. There may be ways
to harden the platform itself and the data exchange with users against privacy
breaches [111].

The network DA platform provides obvious benefits in managing and control-
ling epidemics, for example, in reducing the need for lockdowns while preventing
infections and deaths, and in providing users tools to manage their personal risks.
It provides a scalable alternative to manual TTI programs, and a backend that
delivers more accurate and actionable information than current digital TTI and
exposure notification programs developed by many governments [43, 72]. The
effectiveness of such programs has been modelled [36, 47, 55], but their impact in
practice is only beginning to be elucidated [117]. Given that many TTI programs
are voluntary, and documentation of contacts in manual programs is subjective,
it will be important to compare both the control and cost effectiveness of manual
and digital trace programs with the more objective and automated network DA
approach presented here.

In addition to its health impacts, the COVID-19 pandemic has exacted an
enormous economic toll on countries throughout the world [25, 54]. There is
a continuing need to identify approaches that precisely and effectively control
epidemics while minimizing economic disruption. With sufficient uptake and
testing, the platform described here provides a means for achieving these dual
aims.
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