
Guaranteed Policy Performance in Reinforcement
Learning

Thesis by
Cameron Voloshin

In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

2024
Defended June 13, 2023

ii

© 2024
Cameron Voloshin

ORCID: 0009-0007-7725-6660
cvoloshin.com

All rights reserved

cvoloshin.com

iii

ACKNOWLEDGEMENTS

To my loving mother, Mila Voloshin.

I am deeply grateful to my immediate family, Oleg, Etana Voloshin, and
Danielle Bronner. You have been an incredible support system, and your
unwavering belief in me has pushed me to strive for excellence.

To all of the remarkable people that I have had the privilege of calling close
friends: Thomas Anderson, Ada Campagna, Jessica Vautor, Joe Slote, Eitan
Levin, Dima Burov, Terry Gdoutos, Jacob Gilman, Max Obolsky, Colin Miller,
Jessica Wang, Melodie Kao, Rogelio Gomez, I want to express my heartfelt
gratitude. You have been there for me through the highs and lows, and I have
learned tremendously from each and every one of you. Your unique and special
presence in my life have made this thesis possible.

Without any doubt, I want to extend my sincerest appreciation to my advisor,
Yisong Yue. Your guidance, support, insights, and encouragement before and
throughout my PhD adventure have been invaluable. You have made my
dreams possible many times over. My gratitude also goes out to the remaining
members of my thesis committee, Adam Wierman, Katie Bouman, and Swarat
Chaudhuri, for their insightful feedback and suggestions.

I would like to thank my other collaborators, Hoang Le, Abhinav Verma, and
Nan Jiang, as well as my Argo internship coworkers Andrew Hartnett and
Matthew Hausknecht. Working with such amazing individuals has allowed me
to learn and grow tremendously.

It has also been a privilege to engage in discussions with my current and former
Caltech colleagues, whose names are too numerous to mention individually.
You all have contributed to creating a supportive and collaborative research
environment.

To all of you, thank you for being there for me and allowing me to lean on
you. Your presence, guidance, and contributions have been instrumental in my
journey, and I am truly grateful.

iv

ABSTRACT

Decision-making is ubiquitous in everyday life. Increasingly, researchers are
seeking answers on how to optimally solve sequential decision-making tasks.
Thanks to recent availability of computation, advances in deep learning, and
released open-sourced code, it has become easy to train a computational agent
to make decisions in many domains. Nevertheless, in realistic scenarios where
the consequences of failure are high, running a trained computational agent in
the wild poses substantial risk.

The goal of this thesis is to develop and advance techniques that guarantee
a learned agent does what we expect it to do. The thesis tackles two central
questions:

1) Given an agent, how can we predict if it will perform desirably?

2) Can we structure the learning process to guarantee desirable post-learning
performance?

On the former question, this thesis proposes multiple algorithms to evaluate
such agents, finds factors that have high influence on the success of agent
evaluation, and open-sources benchmarks for further development in the space.

On the latter question, this thesis formulates desirable agent behavior as a
constrained optimization with varying types of constraints depending on the
structure afforded to the practitioner. Constraining the search space over the
learning process ensures post-learning behaviors will, by definition, perform as
desired.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Cameron Voloshin, Abhinav Verma, and Yisong Yue. “Eventual Dis-
counting Temporal Logic Counterfactual Experience Replay”. In:
International Conference on Machine Learning (ICML). 2023.
CV participated in the conception of the project, formulated, imple-
mented and analyzed the method, prepared the data, conducted the
experiments, and led in the writing of the manuscript.

[2] Cameron Voloshin, Hoang Minh Le, Swarat Chaudhuri, and Yisong
Yue. “Policy Optimization with Linear Temporal Logic Constraints”.
In: Advances in Neural Information Processing Systems. Ed. by Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho.
2022. url: https://openreview.net/forum?id=yZcPRIZEwOG.
CV participated in the conception of the project, formulated, imple-
mented and analyzed the method, prepared the data, conducted the
experiments, and led in the writing of the manuscript.

[3] Cameron Voloshin, Nan Jiang, and Yisong Yue. “Minimax Model
Learning”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2021, pp. 1612–1620.
CV participated in the conception of the project, formulated, imple-
mented and analyzed the method, prepared the data, conducted the
experiments, and led in the writing of the manuscript.

[4] Cameron Voloshin, Hoang Minh Le, Nan Jiang, and Yisong Yue.
“Empirical Study of Off-Policy Policy Evaluation for Reinforcement
Learning”. In: Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (Round 1). Ed. by J.
Vanschoren and S. Yeung. Vol. 1. 2021. url: https://openreview.
net/forum?id=IsK8iKbL-I.
CV participated in the conception of the project, formulated, imple-
mented and analyzed the methods, prepared the data, conducted the
experiments, and led in the writing of the manuscript.

[5] Hoang M Le, Cameron Voloshin, and Yisong Yue. “Batch Policy
Learning under Constraints”. In: International Conference on Ma-
chine Learning (ICML). 2019.
CV participated in the formulation, implementation and experimen-
tation in the project, and in the writing of the manuscript.

https://openreview.net/forum?id=yZcPRIZEwOG
https://openreview.net/forum?id=IsK8iKbL-I
https://openreview.net/forum?id=IsK8iKbL-I

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions v
Table of Contents . v
List of Illustrations . ix
List of Tables . xi

I Introduction 1
Chapter 1: Motivation and Goal . 2

1.1 Guarantee from existing data: Off Policy Evaluation (OPE) 3
1.2 Guarantee from restructuring learning: Learning with Guarantees . 4

Chapter 2: Foundations . 7
2.1 Preliminaries to Policy Learning, and Markov Decision Processes . . 7
2.2 Preliminaries to OPE . 8
2.3 Preliminaries to Linear Temporal Logic 8
2.4 Policy Learning With Guarantees 12

II Off Policy Evaluation 14
Chapter 3: Caltech OPE Benchmark and Empirical Study 15

3.1 Benchmarking Design & Methodology 17
3.2 Empirical Evaluation . 24
3.3 Discussion and Future Directions 29

Chapter 4: Advances in Model Based OPE 32
4.1 Introduction to Model-Based OPE and OPO 32
4.2 Preliminaries . 33
4.3 Minimax Model Learning (MML) for OPE 34
4.4 Off-Policy Optimization (OPO) 39
4.5 Scenarios & Considerations . 41
4.6 Experiments . 44
4.7 Other Related Work . 47
4.8 Discussion and Future Work 48

Chapter 5: Advances in Model Free OPE 49
5.1 Fitted Q Evaluation (FQE) for Off Policy Evaluation 49
5.2 Generalization Guarantee of FQE 49
5.3 Empirical Analysis . 51

vii

III Policy Learning with Guarantees 52
Chapter 6: Value-Based Guarantees . 53

6.1 Introduction . 53
6.2 Problem Formulation . 55
6.3 Proposed Approach . 58
6.4 Theoretical Analysis . 61
6.5 Empirical Analysis . 64
6.6 Other Related Work . 67
6.7 Discussion . 68

Chapter 7: LTL-based Guarantees in Discrete Domains 69
7.1 Motivating Examples . 70
7.2 Background and Problem Formulation 71
7.3 Approach . 73
7.4 End-To-End Guarantees . 79
7.5 Empirical Analysis . 80
7.6 Related Work . 81
7.7 Discussion . 82

Chapter 8: LTL-based Guarantees in Continuous Domains 84
8.1 Problem Formulation . 85
8.2 RL-Friendly Form: Eventual Discounting 86
8.3 LTL Counterfactual Experience Replay 90
8.4 Experiments . 93
8.5 Related Work . 96
8.6 Discussion . 97

IV Appendix 120
Appendix A: Chapter 1 Appendix . 121

A.1 Glossary of Terms . 121
A.2 Ranking of Methods . 122
A.3 Supplementary Folklore Backup 125
A.4 Model Selection Guidelines . 126
A.5 Methods . 127
A.6 Environments . 130
A.7 Experimental Setup . 133
A.8 Additional Supporting Figures 138

Appendix B: Chapter 2 Appendix . 147
B.1 OPE . 148
B.2 OPO . 155
B.3 Additional theory . 157
B.4 Scenarios & Considerations . 159
B.5 Experiments . 166

Appendix C: Chapter 3 Appendix . 171
C.1 Preliminaries to Analysis of Fitted Q Evaluation (FQE) 171
C.2 Generalization Analysis of Fitted Q Evaluation 174

viii

Appendix D: Chapter 4 Appendix . 184
D.1 Equivalence between Regularization and Constraint Satisfaction . . 184
D.2 Convergence Proofs . 187
D.3 End-to-end Generalization Analysis of Main Algorithm 188
D.4 Preliminaries to Analysis of Fitted Q Iteration (FQI) 191
D.5 Finite-Sample Analysis of Fitted Q Iteration (FQI) 193
D.6 Additional Instantiation of Meta-Algorithm (algorithm 4) 199
D.7 Additional Experimental Details 201

Appendix E: Chapter 5 Appendix . 205
E.1 Notation and Overview . 205
E.2 Analysis: Statements with Proof 208
E.3 Conjecture on Sample Complexity 225
E.4 Additional Algorithms . 226
E.5 Experiments . 231

Appendix F: Chapter 6 Appendix . 237
F.1 Experiments . 237
F.2 Constructing feasible trajectories for policy gradient during rollout . 240

ix

LIST OF ILLUSTRATIONS

Number Page
2.1 LTL-Based Guarantees, Examples 9
3.1 Example of an OPE factor . 19
3.2 OPE Method Comparison . 24
3.3 OPE Method Decision Tree . 25
3.4 OPE Method Comparison . 26
3.5 OPE Method Comparison . 27
4.1 Visual Representation of MML Loss 36
4.2 MML Experiment Results for LQR 45
4.3 MML Experiment Results for Cartpole 46
4.4 MML Experiment Results for Inverted Pendulum 47
6.1 Value-Based Guarantees Experiment for FrozenLake 65
6.2 Value-Based Guarantees Experiment for CarRacing 65
7.1 Motivating Examples for LTL-Based Guarantees 70
7.2 Product MDP Diagrams . 73
7.3 LTL-Based Guarantees, Discrete - Results 80
8.1 LTL-Based Guarantees, Examples 85
8.2 LTL-Based Guarantees, Continuous - Results 93
A.1 Environment Illustration: Graph 130
A.2 Environment Illustration: Graph-Mountain Car 130
A.3 Environment Illustration: Mountain Car 130
A.4 Environment Illustration: Enduro 130
A.5 Environment Illustration: Graph-POMDP 130
A.6 Environment Illustration: Gridworld 130
A.7 Experiment Hyperparameters by Model and Environment 136
A.8 Hyperparameters for each model by Environment, Cont. 137
A.9 Enduro DM vs IPS. 138

A.10 MC comparison - Function approx 138
A.11 Enduro DM vs HM . 139
A.12 Short vs Long Horizon comparison - Graph 139
A.13 Short vs Long Horizon comparison - Graph 139
A.14 Short vs Long Horizon comparison - DM vs DR 139

x

A.15 Comparison in a low data regime 140
A.16 Comparison with dense vs sparse rewards 140
A.17 Comparison with exact vs estimated πb 140
A.18 Comparison with exact vs estimated πb 140
A.19 Hybrid Method comparison . 141
A.20 Hybrid Method comparison . 141
A.21 Hybrid Method comparison . 141
A.22 Hybrid Method comparison . 141
A.23 Hybrid Method comparison . 142
A.24 Class comparison with unknown πb 142
A.25 Class comparison with unknown πb 142
A.26 Class comparison with unknown πb 142
A.27 AM Direct vs Hybrid comparison for AM. (Gridworld) 143
A.28 FQE Direct vs Hybrid comparison 143
A.29 MRDR Direct vs Hybrid comparison 143
A.30 Q-Reg Direct vs Hybrid comparison 144
A.31 Qπ(λ) Direct vs Hybrid comparison 144
A.32 Retrace(λ) Direct vs Hybrid comparison 144
A.33 Tree-Backup Direct vs Hybrid comparison 145
A.34 DR comparison with varying DM 145
A.35 WDR comparison with varying DM 145
A.36 MAGIC comparison with varying DM 145
A.37 DR comparison with varying DM 145
A.38 WDR comparison with varying DM 146
A.39 MAGIC comparison with varying DM 146
B.1 Effect of increased Function Class size on MML 170
D.1 Environment Illustrations: FrozenLake and CarRacing 201
D.2 Experiment Results for LSPI and Value-Based Constraints 203
E.1 Demonstration of Blocking Issue of LCP 227
E.2 Environment Illustrations: Pacman, Mountain Car 231
E.3 Additional Results for LTL-Based Constraints, Discrete 234
E.4 Effect on policy for varying LTL objectives 235

xi

LIST OF TABLES

Number Page
3.1 Benchmark environment characteristics 20
7.1 Operators and Parameters for Value Iteration 78
A.1 Summary of Near-Top Frequency 122
A.2 OPE - Short Horizon, Small Policy Mismatch 123
A.3 OPE - Short Horizon, Large Policy Mismatch 123
A.4 OPE - Long Horizon, Small Policy Mismatch 123
A.5 OPE - Long Horizon, Large Policy Mismatch, Deterministic Env 123
A.6 OPE - Long Horizon, Large Policy Mismatch, Stochastic Env . . 124
A.7 OPE - Insufficient Representation 124
A.8 OPE - Sufficient Representation, Poor πb Estimation 124
A.9 OPE - Sufficient Representation, Good πb Estimation 124

A.10 Folklore Backup - Baseline . 125
A.11 Folklore Backup - Increasing Horizon 125
A.12 Folklore Backup - Increasing Policy Mismatch 125
A.13 OPE Model Selection Guidelines 126
A.14 Model Selection Guidelines Cont. 126
A.15 IPS Methods . 127
A.16 Full COBS Environment Parameters 133
A.17 Experiment Parameters - Graph 134
A.18 Experiment Parameters - Graph-POMDP 134
A.19 Experiment Parameters - Gridworld 134
A.20 Experiment Parameters - Pixel Gridworld 134
A.21 Experiment Parameters - Graph Mountain Car 134
A.22 Experiment Parameters - Mountain Car 134
A.23 Experiment Parameters - Pixel Mountain Car 135
A.24 Experiment Parameters - Enduro 135
E.1 Description of Policies and Probabilities 206
E.2 Description of Gains . 206
E.3 Description of Value Functions 207
E.4 LTL-Based Guarantees, Discrete - Experiment Hyperparameters 233
F.1 LTL-Based Guarantees, Continuous - Environment Details . . . 237
F.2 LTL-Based Guarantees, Continuous - Q-learning Hyperparam . 238
F.3 LTL-Based Guarantees, Continuous - PPO Hyperparam 239

Part I

INTRODUCTION

2

Chapter 1

MOTIVATION AND GOAL

This chapter motivates and presents the goal and developments of this
thesis.

Simply put, solving a sequential decision-making task involves finding a sequence
of actions over time that achieve a desired outcome. It is easy to appreciate
the wide range of tasks to which this concept applies, such as traffic routing,
power system management, recommendation systems, financial trading, motion
planning in autonomous vehicles and robotics, games like chess, and even
simple tasks like making a sandwich. The list is abundant.

Beyond some basic systems, classical solutions have become impractical due
to the extensive search space they require. Increasingly, researchers and
practitioners have leaned on learning-based approaches, fueled by superhuman
levels of computation, leveraging success in deep learning including computer
vision [112, 49], and increasingly language models [213]. These powerful deep
learning advances have contributed to dramatic successes in sequential decision
domains, most notably in games [144, 185] and recommendation [127].

However, many decision-making domains involve substantial risks to human life,
hardware, and resources. This raises a fundamental question when deploying
“learned agents” capable of interacting with the world:

How can we be sure that the agent will succeed? (Performance Guarantee)

As of the writing of this thesis, providing a satisfying answer to this question
remains elusive, limiting the applicability of learning-based approaches to
systems where repeated failure is tolerable.

In the following sections, we present our attempt to address this fundamental
question. Our approach consists of two key steps:

1) We will massage any existing data to extract meaningful signal on our
agent’s expected performance.

3

2) We will re-frame the learning process to proactively ensure satisfactory
performance of the agent.

1.1 Guarantee from existing data: Off Policy Evaluation (OPE)
A key approach to providing a performance guarantee for a learned agent,
particularly when the cost of deployment is high, involves leveraging existing
data. This data may include human demonstrations, or limited deployments of
classical or conservative agents.

The problem of estimating the performance of a new agent using pre-collected
historical data generated by other agents is known as the Off-Policy Policy
Evaluation (OPE) problem.

In practice, the dataset contains actions chosen by a different agent from the
one being evaluated. Had we run the new agent in the world we may have
observed different actions and outcomes than the ones available in the dataset.
Accounting for this distribution shift poses the fundamental challenge in OPE.
Ignoring this shift can result in poor estimation of agent performance.

Given its importance, the research community actively advances OPE tech-
niques, both for the bandit [54, 24, 196, 219, 128, 138] and reinforcement
learning settings [97, 54, 60, 133, 223, 209, 152, 225, 44]. These new de-
velopments reflect practical interests in deploying reinforcement learning to
safety-critical situations [127, 220, 24, 17], and the increasing importance of
off-policy learning and counterfactual reasoning [47, 203, 149, 123, 135, 155].
OPE is also similar to the dynamic treatment regime problem in the causal
inference literature [151].

In Part II, our work focuses on OPE. Chapter 3 surveys and benchmarks the
existing techniques for OPE, teasing out some of the key factors that have
high influence on method performance. We summarize guidelines for method
selection depending on the circumstance and open source an extensive package
for new OPE experimentation and development. We also outline further
directions remaining in OPE development. To the best of our knowledge, this
is the first comprehensive study on OPE.

Chapter 4 restricts its attention to model-based OPE. The chapter argues that
current model-based approaches for OPE have an incomplete learning objective
and do not properly correct for distribution shift. We develop a novel method
known as Minimax Model Learning (MML), provide theoretical guarantees

4

on its predictive performance, and demonstrate empirical improvement over
previous methods. We also show that this idea can, additionally, be extended
to do learning, which we will get to in the next section.

Similarly, Chapter 5 attends to model-free OPE. Here we develop Fitted
Q Evaluation (FQE), a simple method for OPE and derive guarantees on
its predictive performance. It is demonstrably more reliable than previous
model-free methods and significantly easier to implement.

1.2 Guarantee from restructuring learning: Learning with Guarantees
A policy serves as the decision system that guides an agent’s actions within the
world. The interaction protocol follows a sequence of steps: the world reveals a
context, the agent selects an action based on that context using its policy, the
agent executes the action and experiences a cost, the world is influenced by the
action, and the next context is revealed, and so on. Typically, a policy maps
previous contexts to a distribution of possible actions. Common assumptions
include the policy depending only on the last context (Markovian) and the
environment providing all relevant information (fully observable). This process
is formalized as a Markov Decision Process (MDP) [166] and is foundational
to the reinforcement learning framework [190, 21].

At a high level, the primary objective of the interaction loop is to find sequences
of actions that minimize the agent’s accumulated cost, leading to optimal
solutions. By achieving this, the agent is expected to demonstrate desired
behaviors and successfully accomplish whatever task is implied within the
costs. Indeed, the underlying premise, known as the “reward hypothesis” [194,
186], posits that a scalar cost function fully captures the task specification.
However, designing a single appropriate scalar cost function can be excessively
challenging, particularly in complex real-world systems like self-driving cars.
These tasks often involve numerous constraints, like safety, reliability, and
comfort, in addition to a main objective like reaching a destination. In the
context of the reward hypothesis, these constraints need to be integrated into
the scalar cost function. This blending of the main objective and real-world
constraints introduces complexity in both guaranteeing and validating the
success of the agent’s behavior.

In fact, designing a cost (reward) function can be so hard that there is an
entire effort to investigate learning a cost function [79, 63, 233, 188]. Finding

5

the correct cost function can be as hard as solving the problem itself [154].
Recent theoretical evidence suggests that certain tasks are simply not reducible
to scalar costs [2]. Nevertheless, to date, almost all theoretical understanding
of RL is focused on this scalar cost minimization setting (e.g., [207, 100, 101,
197, 160, 14, 72, 45, 15, 6, 7, 126, 167, 168]).

In practice, one circumvents these challenges using heuristics such as adding
“breadcrumbs”, known as cost-shaping [187], to guide the agent to qualitatively
behave the way the practitioner intended. However, such heuristics can lead to
catastrophic failures in which the learning agent ends up exploiting the cost
function in an unanticipated way [171, 206, 93, 227, 154]. Additionally, the
process of cost-shaping often requires iterative refinement, as practitioners are
unlikely to achieve the desired behavior on their first attempt. Consequently,
this iterative process is only viable when the cost of failure is relatively low.
As far as guarantees are concerned, a cost-shaped function has lost precision in
specifying the desired behavior.

To address these limitations and pitfalls, Part III of this thesis focuses on
reconfiguring the learning problem without relying on the reward hypothesis.
Instead, we explore two alternative approaches:

1) Value-Based Guarantees

2) Linear Temporal Logic (LTL)-Based Guarantees

Learning with Value Based Guarantees In this approach, the domain
expert decomposes the task into multiple simultaneous constraints, each associ-
ated with a cost function and a corresponding value function (cumulative cost).
The objective is to keep each value function below its respective threshold,
which may be determined by prior domain knowledge or historical data.

Chapter 6 presents an approach that allows the imposition of value-based
constraints in a counterfactual manner when historical data already exists,
without the need for further agent-world interaction. We provide end-to-end
finite-sample performance guarantees, leveraging Off-Policy Policy Evaluation
(Part II) to reason about constraint satisfaction.

6

Learning with LTL-Based Guarantees
In this setting, the domain expert specifies the task using the language of
Linear Temporal Logic (LTL). Unlike a scalar cost function, LTL enables
precise description of a task and further enables transparent blending of any
additional constraints into a single specification. When desired, a cost function
can be defined to discern the “best” LTL-satisfying policy, based on factors
like time, energy, or effort.

Chapter 7 introduces an approach to finding (cost-optimal) LTL-satisfying
policies in discrete context systems with access to a generative model of the
world. Strong guarantees are provided with minimal assumptions. We develop
several theoretical tools for our analyses and empirically validate the strength
of our method.

In Chapter 8, we address the scenario where a generative model is not available,
and an LTL-satisfying policy needs to be learned through online interaction with
the environment. We develop a proxy value function and a technique called LTL-
guided counterfactual experience replay (LCER) to overcome the challenges
of sparse learning signals, allowing us to take advantage of specific structure
afforded to us by LTL over traditional cost-functions. Empirical evaluations
demonstrate the performance gains of LCER with various reinforcement learning
algorithms.

7

Chapter 2

FOUNDATIONS

This chapter introduces the reader to the preliminaries underlying this
thesis.

2.1 Preliminaries to Policy Learning, and Markov Decision Processes
As discussed in the previous chapter, sequential decision making involves
iterated interaction between agent and world. Formally, this is abstracted to
discounted MDP framework specified by a tuple (S,A, P,R, γ). Here, S is the
state (context) space, A is the action space, P : S×A → ∆(S) is the transition
function of the world, R : S × A → ∆([−R̄, R̄]) is the reward function, and
γ ∈ [0, 1) is the discount factor. It may sometimes be convenient to consider
C : S ×A → ∆([−C̄, C̄]), a cost function instead of a reward function. Here,
C̄, R̄ ∈ R. Let X ≡ S ×A.

Given an MDP, a (stochastic) policy π : S → ∆(A) and a starting state
distribution d0 ∈ ∆(S) together determine a distribution over trajectories of
the form s0, a0, r0, s1, a1, r1, . . . , where s0 ∼ d0, at ∼ π(st), rt ∼ R(st, at), and
st+1 ∼ P (st, at) for t ≥ 0.

The standard optimization objective for policy learning is to optimize the value
function (or cumulative reward) defined as:

V P (π) ≡ E

 ∞∑
i=0

γiri

∣∣∣∣∣
s0∼d0

ai∼π(·|si)
si+1∼P (·|si,ai)
ri∼R(·|si,ai)

 , (2.1)

over all π in some policy class Π.

It will occasionally be convenient to keep track of the action-value function
defined as:

Qπ(s, a) ≡ E

[∞∑
i=0

γiri

∣∣∣∣∣
s0=s,a0=a
ai∼π(·|si)

si+1∼P (·|si,ai)
ri∼R(·|si,ai)

]
, Qπ(s, π(s)) ≡ Ea∼π(s) [Qπ(s, a)] .

It is easy to see that V P (π) = Es∼d0 [Qπ(s, π(s))] = Es∼d0

[
Ea∼π(s)) [Qπ(s, a)]

]
.

8

2.2 Preliminaries to OPE
Since policies are selected by optimizing Eq (2.1), we can evaluate it using the
same metric:

V P (π) ≡ J(π, P) ≡ Es∼d0 [V P
π (s)], (2.2)

where we can recursively write V using the Bellman Equation,

V P
π (s) ≡ Ea∼π(·|s)[Er∼R(·|s,a)[r] + γEs̃∼P (·|s,a)[V P

π (s̃)]]. (2.3)

A useful equivalent measure of performance is:
J(π, P) = E(s,a)∼dP

π,γ
[Er∼R(·|s,a)[r]], (2.4)

where dPπ,γ(s, a) ≡
∑∞
t=0 γ

tdPπ,t(s, a) is the (discounted) distribution of state-
action pairs induced by running π in P and dPπ,t ∈ ∆(X) is the distribution of
(st, at) induced by running π under P . The first term in dPπ,γ is dPπ,0 = d0. dPπ,t
has a recursive definition that we use in Section 4.3:

dPπ,t(s, a) =
∫
dPπ,t−1(s̃, ã)P (s|s̃, ã)π(a|s)dν(s̃, ã), (2.5)

where ν is the Lebesgue measure.

In the batch learning setting, we are given a dataset D = {(si, ai, s′
i)}ni=1, where

si ∼ dπb
(s), ai ∼ πb, and s′

i ∼ P (·|si, ai), where πb is some behavior policy
that collects the data. For convenience, we write (s, a, s′) ∼ Dπb

P , where
Dπb

(s, a) = dπb
(s)πb(a|s).

The OPE objective is to estimate:

J(π, P ∗) ≡ V P ∗(π) ≡ E

 ∞∑
i=0

γiri

∣∣∣∣∣
s0∼d0

ai∼π(·|si)
si+1∼P ∗(·|si,ai)
ri∼R(·|si,ai)

 , (2.6)

the performance of an evaluation policy π in the true environment P ∗, using
only logging data D with samples from Dπb

P ∗. Solving this objective is difficult
because the actions in our dataset were chosen with πb rather than π. Thus,
any π ̸= πb potentially induces a “shifted” state-action distribution Dπ ̸= Dπb

,
and ignoring this shift can lead to poor estimation.

OPE is sometimes considered in the episodic RL setting. In this situation,
D = {τ i}Ni=1, a set of N trajectories (or episodes), where i indexes over
trajectories, and τ i = (si0, ai0, ri0, . . . , siT−1, a

i
T−1, r

i
T−1) and T may be fixed or a

random variable.

2.3 Preliminaries to Linear Temporal Logic
We give the necessary background and examples to understand Linear Temporal
Logic. An atomic proposition is a variable that takes on a truth value. An

9

alphabet over a set of atomic propositions AP is given by Σ = 2AP. For example,
if AP = {x, y} then Σ = {{}, {x}, {y}, {x, y}}. ∆(A) represents the set of
probability distributions over a set A.

Running Example

ε

⊥

⊥ y

¬y

0

2

1
¬r

y

¬y ⊥¬rr

b1

0

3b

b

2

Figure 2.1: Examples. First: Illustration of the Flatworld environment. The
agent is a green dot and there are 3 zones: yellow, blue and red. Second:
LDBA B for “FGy”. SB∗ = {1}, denoted by green circle. The initial state is
b−1 = 0. Third: LDBA B for “GF (y & XFr) & G¬b”. SB∗ = {1}, denoted
by green circle. The initial state is b−1 = 1.

We will be using the environment illustrated in Figure 2.1 (First) as a running
example. The agent is given by a green dot and there are three circular regions
in the environment colored yellow, blue, and red. The AP are given by {y, b, r},
referring to the respective colored zones. Elements of Σ indicate which zone(s)
the agent is in.

MDPs with Labelled State Spaces
We extend an MDP from Section 2.1 to a labelled Markov Decision Process
(MDP) framework given by the tuple M = (SM,AM, PM, dM

0 , γ, LM) consist-
ing of a state space SM, an action space AM, an unknown transition function
PM : SM ×AM → ∆(SM), an initial state distribution dM

0 ∈ ∆(SM), and a
labelling function LM : SM → Σ. Let AM(s) to be the set of available actions
in state s.

Notice, unlike traditional MDPs, M has a labeling function LM which returns
the atomic propositions that are true in that state. For example, in Figure 2.1
(First), when the agent enters a state s ∈ SM such that it is both in the yellow
and blue zone then LM(s) = {y, b}.

10

Linear Temporal Logic (LTL)
Here we give a basic introduction to LTL. For a more comprehensive overview,
see Baier and Katoen [16].

Definition 2.3.1 (LTL Specification, φ). An LTL specification φ is the entire
description of the task, constructed from a composition of atomic propositions
with logical connectives: not (¬), and (&), and implies (→); and temporal
operators: next (X), repeatedly/always/globally (G), eventually (F), and until
(U).

Examples. For AP = {x, y}, some basic task specifications include safety
(G¬x), reachability (Fx), stability (FGx), response (x→ Fy), and progress
(x & XFy).

Consider again the environment in Figure 2.1 (First) where AP = {y, r, b}.
If the task is to eventually reach the yellow zone and stay there (known as
stabilization) then we write φ = FGy. Or, if we would like the agent to
infinitely loop between the yellow and red zone while avoiding the blue zone
then φ = GF (y & XFr) & G¬b, a combination of safety, reachability, and
progress.

LTL Satisfaction
LTL has recursive semantics defining the meaning for logical connective satis-
faction. Without loss of generality, we will be using a specialized automaton, an
LDBA Bφ [184], defined below to keep track of the progression of φ satisfaction.
More details for constructing LDBAs are in [80, 16, 111]. We drop φ from Bφ
for brevity.

Definition 2.3.2. (Limit Deterministic Büchi Automaton, LDBA [184]) An
LDBA is a tuple B = (SB,Σ ∪ AB, P

B,SB∗
, bB

−1) consisting of (i) a finite set
of states SB, (ii) a finite alphabet Σ = 2AP, AB is a set of indexed jump
transitions (iii) a transition function PB : SB × (Σ ∪ AB)→ SB, (iv) accepting
states SB∗ ⊆ SB, and (v) initial state bB

−1. There exists a mutually exclusive
partitioning of SB = SB

D ∪ SB
N such that SB∗ ⊆ SB

D, and for b ∈ SB
D, a ∈ Σ then

PB(b, a) ⊆ SB
D, closed. AB(b) is only (possibly) non-empty for b ∈ SB

N and
allows B to transition to SB

D without reading an AP. A path ϱ = (b0, b1, . . .) is
a sequence of states in B reached through successive transitions under PB.

11

Definition 2.3.3. (B accepts) B accepts a path ϱ if there exists some state
b ∈ SB∗ in the path that is visited infinitely often.

Examples. Consider again the environment in Figure 2.1 (First) where
AP = {y, r, b}. If we would like to make an LDBA for φ = FGy (reach and
stabilize at y) then we would get the state machine seen in Figure 2.1 (Second).
In this state machine, the agent starts at state 0. The accepting set is given
by SB∗ = {1}. The transition between state 0 and state 1 is what is formally
referred to as a jump transition: AB(0) = {ϵ} while AB(·) = ∅ otherwise.
Whenever the agent is in state 0 of the LDBA, there is a choice of whether
to stay at state 0 or transition immediately to state 1. This choice amounts
to the agent believing that it has satisfied the “eventually” part of the LTL
specification. When the agent takes this jump, then it must thereafter satisfy y
to stay in state 1. The agent gets the decision of when it believes it is capable
of satisfying y thereafter. When the agent takes the jump, if it fails to stay in
y, it immediately transitions to the sink, denoted state 2. The LDBA accepts
when the state 1 is reached infinitely often, meaning the agent satisfies “always
y” eventually, as desired.

Another example, this time without jump transitions, would be for φ =
GF (y & XFr) & G¬b (oscillate between y and r forever while avoiding b).
The LDBA can be seen in Figure 2.1 (Third). In this state machine, the agent
starts at state 1 and the accepting set is given by SB∗ = {1}. To make a loop
back to state 1, the agent must visit both r and y. Doing so infinitely often
satisfies the LDBA condition and therefore the specification. If at any point b
is encountered then the agent transitions to the sink, denoted state 3.

We first introduce slightly more notation. Let Z = SM×SB. Let Π : Z×A →
∆([0, 1]) be a (stochastic) policy class over the product space of the MDP and
the LDBA (defined below), where A((s, b)) = AM(s) ∪ AB(b), to account for
jump transitions in B.

Synchronizing the MDP with the LDBA. For any (s, b) ∈ Z, a policy
π ∈ Π is able to select an action in AM(s) or an action in AB(b), if available. We
can therefore generate a trajectory as the sequence τ = (s0, b0, a0, s1, b0, a1, . . .)

12

under a new probabilistic transition relation given by

P (s′, b′|s, b, a) =


PM(s, a, s′) a ∈ AM(s), b′ ∈ PB(b, L(s′))

1, a ∈ AB(b), b′ ∈ PB(b, a), s = s′

0, otherwise

. (2.7)

Let the LDBA projection of τ be the subsequence τB = (b0, b1, . . .). Elements
of τB can be thought of as tracking an agent’s LTL specification satisfaction:

Definition 2.3.4 (Run Satisfaction, τ |= φ). We say a trajectory satisfies φ if
B accepts τB, which happens if ∃b ∈ τB infinitely often with b ∈ SB∗ .

Let TP
π = Ez∼dM

0 ×{b−1}[TP
π (z)] be the distribution over all possible trajectories

starting from any initial state z ∈ dM
0 ×{b−1} where TP

π (z) is the (conditional)
distribution over all possible trajectories starting from z ∈ Z generated by π
under relation P (given in (2.7)). The probability of LTL satisfaction results
from counting how many of the trajectories satisfy the LTL specification:

Definition 2.3.5 (State Satisfaction, z |= φ). Pπ[z |= φ] = Eτ∼TP
π (z)[1{τ |=φ}] =

Eτ∼TP
π
[1{τ |=φ}|z0 = z].

Definition 2.3.6 (Policy Satisfaction, π |= φ). P[π |= φ] = Eτ∼TP
π
[1{τ |=φ}]

where 1X is the indicator for X.

2.4 Policy Learning With Guarantees
Optimizing the standard objective in Eq (2.1) requires that the whole task
be encoded in the reward/cost function given by R or C. Instead, we give a
brief introduction to the problems we will be solving instead, which give more
nuanced guarantee over policy performance.

Value-Based Guarantees
In the case there are real-world constraints which have their own individual
cost functions to keep under control we may take an objective of the form:

arg min
π∈Π

V (π)

s.t. G1(π) ≤ τ1, . . . , Gk(π) ≤ τk,
(Value-Based Guarantees)

where the k constraint value functions are Gπ
i ≡ Es∼d0 [∑∞

t=0 γ
tgi(st, at)|s0 = s].

Each gi : X → R are known constraint cost functions and τi represents the
allowable threshold. For examples of problems of this form, see Chapter 6.

13

LTL-Based Guarantees
Similarly, we can instead optimize over probability optimal policies in the form:

arg max
π∈Π

P [π |= φ] (LTL-Based Guarantees)
to find the policies that best satisfy our task, encoded in an LTL formula φ.
For examples of problems of this form, see Chapter 8.

Further, we could write this as a constrained problem in the form:
arg max

π∈Π
V (π) (LTL-Based Guarantees, with auxiliary cost)

s.t. π ∈ {arg max
π′∈Π

P [π′ |= φ]}.
For examples of problems of this form, see Chapter 7.

Remark 2.4.1. The policy class Π is different between the Value-Based Guar-
antees and LTL-Based Guarantees. In the former, Π : S → ∆(A) are functions
from MDP states to MDP actions. In the latter, Π : (SM×SB)→ ∆(AM∪AB)
are functions from states to actions in the product MDP given by synchronizing
a labelled MDP with an LDBA.

Part II

OFF POLICY EVALUATION

15

Chapter 3

CALTECH OPE BENCHMARK AND EMPIRICAL STUDY

In this chapter, we develop an experimental benchmark and empirical
study for off-policy policy evaluation (OPE) in reinforcement learning,
which is a key problem in many safety critical applications. Given
the increasing interest in deploying learning-based methods, there has
been a flurry of recent proposals for OPE method, leading to a need
for standardized empirical analyses. Our work takes a strong focus
on diversity of experimental design to enable stress testing of OPE
methods. We provide a comprehensive benchmarking suite to study
the interplay of different attributes on method performance. We also
distill the results into a summarized set of guidelines for OPE in practice.
Our software package, the Caltech OPE Benchmarking Suite (COBS), is
open-sourced and we invite interested researchers to further contribute
to the benchmark.

We present the Caltech OPE Benchmarking Suite (COBS), which bench-
marks OPE techniques via experimental designs that give thorough considera-
tions to factors that influence performance. The reality of method performance,
as we will discuss, is nuanced and comparison among different estimators is
tricky without pushing the experimental conditions along various dimensions.
Our philosophy and contributions can be summarized as follows:

• We establish a benchmarking methodology that considers key factors that
influence OPE performance, and design a set of domains and experiments to
systematically expose these factors. The proposed experimental domains are
complementary to continuous control domains from recent offline RL bench-
marks [69, 68]. We differ from these recent benchmarks in two important
ways:

1) COBS allows researchers fine-grained control over experimental design,
other than just access to a pre-collected dataset. The offline data
can be generated “on-the-fly” based on experimental criteria, e.g., the
divergence between behavior and target policies.

16

2) We offer significant diversity in experimental domains, covering a wide
range of dimensionality and stochasticity. Together, the goal of this
greater level of access is to enable a deeper look at when and why
certain methods work well.

• As a case study, we select a representative set of established OPE baseline
methods, and test them systematically. We further show how to distill
the empirical findings into key insights to guide practitioners and inform
researchers on directions for future exploration.

• COBS is an extensive software package that can interface with new en-
vironments and methods to run new OPE experiments at scale.1 Given
the fast-changing nature of this active area of research, our package is
designed to accommodate the rapidly growing body of OPE estimators.
COBS is already actively used by multiple research groups to benchmark
new algorithms.

Prior Work. Empirical benchmarks have long contributed to the scientific
understanding, advancement, and validation of machine learning techniques
[37, 35, 36, 177, 53, 49]. Recently, many have called for careful examination
of empirical findings of contemporary deep learning and deep reinforcement
learning efforts [89, 136]. As OPE is central to real-world applications of
reinforcement learning, proper benchmarking is critical to ensure in-depth
understanding and accelerate progress. While many recent methods are built
on sound mathematical principles, a notable gap in the current literature is a
standard for benchmarking empirical studies, with perhaps a notable exception
from the recent DOPE [69] and D4RL benchmarks [68].

Compared to prior complementary work on OPE evaluation for reinforcement
learning [68, 69], our benchmark offers two main advantages. First, we focus
on maximizing reproducibility and nuanced experimental control with minimal
effort, covering data generation and fine-grained control over factors such as
relative “distance” between the offline data distribution and the distribution
induced by evaluation policies. Second, we study a diverse set of environments,
spanning range of desiderata such as stochastic-vs-deterministic and different
representations for the same underlying environment. Together, these attributes
enable our benchmarking suite to conduct systematic analyses of the method

1https://github.com/clvoloshin/COBS

https://github.com/clvoloshin/COBS

17

performance under different scenarios, and provide a holistic summary of the
challenges one may encounter in different scenarios.

Background & Notation. Recall from the preliminaries of Section 2.2,
we are given an evaluation policy πe, the OPE problem is to estimate the
value V (πe) = Es∼d0

[∑T−1
t=0 γ

trt|s0 = s
]
, with at ∼ πe(·|st), st+1 ∼ P (·|st, at),

rt ∼ R(st, at), and d0 ⊆ S is the initial state distribution. For notational
convenience in this chapter, we assume a fixed episode length of T .

3.1 Benchmarking Design & Methodology
Design Philosophy
The design philosophy of the Caltech OPE Benchmarking Suite (COBS) starts
with the most prominent decision factors that can make OPE difficult. These
factors come from both the existing literature and our own experimental study,
which we will further discuss. We then seek to design experimental conditions
that cover a diverse range of these factors. As a sub-problem within the broader
reinforcement learning problem class, OPE experiments in existing literature
gravitate towards commonly used RL domains. Unsurprisingly, the most
common experiments belong to the Mujoco group of deterministic continuous
control tasks [204], or discrete domains that operate via OpenAI Gym interface
[31]. For OPE, high-dimensional domains such as Atari [20] appear less often,
but are also natural candidates for OPE testing. We selectively pick from these
domains as well as design new domains, with the goal of establishing refined
control over the decision factors.

Design Factors. We consider several domain characteristics that are often
major factors in performance of OPE methods:

1) Horizon length. Long horizons can lead to catastrophic failure in some OPE
methods due to an exponential blow-up in some of their components [128,
97, 133].

2) Reward sparsity. Sparse rewards represent a difficult credit assignment
problem in RL. This factor is often not emphasized in OPE, and arguably
goes hand-in-hand with horizon length.2

3) Environment stochasticity. Popular RL domains such as Mujoco and Atari
are mostly deterministic. This is a fundamental limitation in many existing
empirical studies since many theoretical challenges to RL only surface in
2Considered in isolation, long horizons may not be an issue if the reward signal is dense.

18

a stochastic setting. A concrete example is the famous double sampling
problem [46], which is not applicable in many contemporary RL benchmarks.

4) Unknown behavior policy. This is related to the source of the collected
data. The data may come from one or a more policies which may not be
known. For example, existing dataset benchmarks, such as D4RL [68] can
be considered to come from an unknown behavior policy. Some methods
will require behavior policy estimation, thus introducing some bias.

5) Policy and distribution mismatch. The relative difference between the
evaluation and behavior policy can play a critical role in the performance
of many OPE methods. This difference induces a distribution mismatch
between the dataset D and the dataset that would have been produced had
we run the evaluation policy. Performing out-of-distribution estimation is
a key challenge for robust OPE. We focus on providing a systematic way
to stress test OPE methods under this mismatch, which we accomplish by
offering a control knob for flexible data generation to induce various degrees
of mismatch.

6) Model misspecification. Model misspecification refers to the insufficient
representation power of the function class used to approximate different
objects of interest, whether the transition dynamics, value functions, or
state distribution density ratio. In realistic applications, it is reasonable
to expect at least some degree of misspecification. We study the effect of
misspecification via two controlled scenarios: (i) we start with designing
simple domains to test OPE methods under tabular representation and (ii)
we test the same OPE methods and same tabular data generation process,
but the input representation for OPE methods is now modified to expose
the impact of choosing a different function class for representation.

Domains
Ultimately, many of the aforementioned factors are intertwined and their useful-
ness in evaluating OPE performance cannot be considered in isolation. However,
they serve as a valuable guide in our selection of benchmark environments.
To that end, our benchmark suite includes eight environments. We use two
standard RL benchmarks from OpenAI [29]. As many standard RL benchmarks
are fixed and deterministic, we design six additional environments that allow
control over different design factors. Figure 3.1 depicts one such design factor:
the representation complexity.

19

!

"#"

#"! "!

""
!"#

$%&

$"%
&

!"#

!"&

!"#

!"&

!"&

Fixed: Stochasticity, Reward Sparcity, Policy Mismatch, Horizon, etc.

[position, velocity]

RepresentationSimple Complex

Graph-MC MC Pixel-MC

Figure 3.1: Depicting one of the dimensions which COBS provides control.
For the Mountain Car environment, we can select either a tabular, standard
coordinate-based, or pixel-based representation of the state while holding other
factors fixed.

Graph: A flexible discrete environment that can vary in horizon, stochasticity,
and sparsity.

Graph-POMDP: An extension of Graph to a POMDP setting, where selected
information is omitted from the observations that form the behavior data. This
enables controlled study of the effect of insufficient representation power relative
to other settings in the Graph domain above.

Gridworld (GW): A gridworld design that offers larger state and action
space than the Graph domains, longer horizon, and similarly flexible design
choices for other environmental factors. Using some version of gridworld is
standard across many RL experiments. Gridworld enables simple integration
of various designs, and fast data collection.

Pixel-Gridworld (Pix-GW): A scaled-up domain from Gridworld which
enables pixel-based representation of the state space. While such usage is not
standard in existing literature, this design offers compelling advantage over
many existing standard RL benchmarks. First, this domain enables simple
controlled experiments to understand the impact of high-dimensional represen-
tation on OPE performance, where the ground truth of various quantities to
be estimated is readily obtainable thanks to the access to underlying simpler
grid representation. Second, this domain effectively simulates high-dimensional
experiments with easily tuned experimental conditions, e.g., degree of stochas-
ticity. This design freedom is not available with many currently standard RL
benchmarks.

Mountain Car (MC): A standard control domain, which is known to have

20

challenging credit assignment due to sparsity of the reward. Our benchmark
for this standard domains allows for function approximation to vary between a
linear model and feed-forward neural network, in order to highlight the effects
of model misspecification.

Pixel Mountain Car (Pix-MC): A modified version of Mountain Car where
the state input is pixel-based, testing the methods’ ability to work in high
dimensional settings.

Tabular Mountain Car (Graph-MC): A simplified version of Mountain
Car to a graph, allowing us to complete the test for model misspecification by
considering the tabular case.

Atari (Enduro): A pixel-based Atari domain. Note that all Atari envi-
ronments are deterministic and high-dimensional. Instead of choosing many
different Atari domains to study, we instead opt to select Enduro as the rep-
resentative Atari environment, due to its sparsity of reward (and commonly
regarded as a highly challenging task). All Atari environments share similar
interaction protocol, and can be seamlessly integrated into COBS, if desired.

All together, our benchmark consists of 8 environments with characteristics
summarized in Table 3.1. Complete descriptions can be found in Appendix
A.6. All environments have finite action spaces.

Table 3.1: Environment characteristics.

Environment Graph Graph-MC MC Pix-MC Enduro G-POMDP GW Pix-GW

Is MDP? yes yes yes yes yes no yes yes
State desc. pos. pos. [pos, vel] pixels pixels pos. pos. pixels
T 4 or 16 250 250 250 1000 2 or 8 25 25
Stoch Env? variable no no no no no no variable
Stoch Rew? variable no no no no no no no
Sparse Rew? variable terminal terminal terminal dense terminal dense dense
Q̂ Class tabular tabular linear/NN NN NN tabular tabular NN
Initial state 0 0 variable variable gray img 0 variable variable
Absorb. state 2T 22 [.5,0] img([.5,0]) zero img 2T 64 zero img
Frame height 1 1 2 2 4 1 1 1
Frame skip 1 1 5 5 1 1 1 1

Experiment Protocol
Selection of Policies. We use two classes of policies. The first is state-
independent with some probability of taking any available action. For example,
in the Graph environment with two actions, π(a = 0) = p, π(a = 1) = 1 − p
where p is a parameter we can control. The second is a state-dependent

21

ϵ−Greedy policy. We train a policy Q∗ (using value iteration or DDQN [85])
and then vary the deviation away from the policy. Hence ϵ − Greedy(Q∗)
implies we follow a mixed policy π = arg maxaQ∗(s, a) with probability 1− ϵ
and uniform with probability ϵ. Here ϵ is a parameter we can control.

Most OPE methods explicitly require absolute continuity among the policies
(πb > 0 whenever πe > 0). Thus, all policies will remain stochastic with this
property maintained.

Data Generation & Metrics. Each experiment depends on specifying an
environment and its properties, behavior policy πb, evaluation policy πe, and
number of trajectories N from rolling-out πb for historical data. The true
on-policy value V (πe) is the Monte-Carlo estimate via 10, 000 rollouts of πe.
We repeat each experiment m = 10 times with different random seeds. We
judge the quality of a method via two metrics:

• Relative mean squared error (Relative MSE): 1
m

∑m
i=1

(V̂ (πe)i− 1
m

∑m

j=1 V (πe)j)2

(1
m

∑m

j=1 V (πe)j)2 ,
which allows a fair comparison across different conditions.3

• Near-top Frequency: For each experimental condition, we include the number
of times each method is within 10% of the best performing one to facilitate
aggregate comparison across domains.

Implementation & Hyperparameters. COBS allows running experiments
at scale and easy integration with new domains and techniques for future
research. The package consists of many domains and reference implementations
of OPE methods.

Hyperparameters are selected based on publication, code release or author
consultation. We maintain a consistent set of hyperparameters for each estima-
tor and each environment across experimental conditions (see hyperparameter
choice in appendix Table A.7).4

Baselines
OPE methods were historically categorized into importance sampling methods,
direct methods, or doubly robust methods. This demarcation was first intro-

3The metric used in prior OPE work is typically mean squared error: MSE=
1
m

∑m
i=1(V̂ (πe)i − V (πe)i)2.

4In practice, hyperparameter tuning is not practical for OPE due to a lack of validation
signal.

22

duced for contextual bandits [54], and later extended to the RL setting [97].
Some recent methods have blurred the boundary of these categories. Examples
include Retrace(λ) [149] that uses a product of importance weights of multiple
time steps for off-policy Q correction, and MAGIC [201] that switches between
importance weighting and direct methods. In this benchmark, we propose
to group OPE into three similar classes of methods, but with an expanded
definition for each category: Inverse Propensity Scoring, Direct Methods, and
Hybrid Methods. For the current benchmark, we select representative estab-
lished baselines from each category. Appendix A.5 contains a full description
of all methods under consideration.

Inverse Propensity Scoring (IPS) We consider the main four variants: Im-
portance Sampling (IS), Per-Decision Importance Sampling (PDIS), Weighted
Importance Sampling (WIS), and Per-Decision WIS (PDWIS). IPS has a rich
history in statistics [163, 81, 92], with successful crossover to RL [165]. The
key idea is to reweight the rewards in the historical data by the importance
sampling ratio between πe and πb, i.e., likelihood of reward under πe versus πb.

Direct Methods (DM) While some direct methods make use of impor-
tance weight adjustments, a key distinction of direct methods is the focus on
regression-based techniques to (more) directly estimate the value functions of
the evaluation policy (Qπe or V πe). This is an area of very active research with
rapidly growing literature. We consider 8 different direct approaches, taken
from the following respective families of direct estimators.

Model-based estimators Perhaps the most commonly used DM is Model-
based (also called approximate model, denoted AM), where the transition
dynamics, reward function and termination condition are directly estimated
from historical data [97, 161]. The resulting learned MDP is then used to
compute the value of πe, e.g., by Monte-Carlo policy evaluation. There are
also some recent variants of the model-based estimator, e.g., [228].

Value-based estimators Fitted Q Evaluation (FQE) is a model-free coun-
terpart to AM, and is functionally a policy evaluation counterpart to batch Q
learning [123]. Qπ(λ) & Retrace(λ) & Tree-Backup(λ) Several model-free meth-
ods originated from off-policy learning settings, but are also natural for OPE.
Qπ(λ) [82] can be viewed as a generalization of FQE that looks to the horizon
limit to incorporate the long-term value into the backup step. Retrace(λ) [149]
and Tree-Backup(λ) [165] also use full trajectories, but additionally incorporate

23

varying levels of clipped importance weights adjustment. The λ-dependent term
mitigates instability in the backup step, and is selected based on experimental
findings of [149].

Regression-based estimators Direct Q Regression (Q-Reg) & More Robust
Doubly-Robust (MRDR) [60] propose two direct methods that make use of
cumulative importance weights in deriving the regression estimate for Qπe ,
solved through a quadratic program. MRDR changes the objective of the
regression to that of directly minimizing the variance of the Doubly-Robust
estimator.

Minimax-style estimators [133] recently proposed a method for the infinite
horizon setting — we refer to this estimator as IH. While IH can be viewed as
a Rao-Blackwellization of the IS estimator, we include it in the DM category
because it solves the Bellman equation for state distributions and requires
function approximation, which are more characteristic of DM. IH shifts the
focus from importance sampling over action sequences to importance ratio
between state density distributions induced by πb and πe. Starting with IH,
this style of minimax estimator has recently attracted significant attention
in OPE literature, including state-action extension of IH [209, 96] and DICE
family of estimators [152, 229, 225, 44]. For our benchmarking purpose, we
choose IH as the representative of this family.

Hybrid Methods (HM) Hybrid methods subsume doubly robust-like ap-
proaches, which combine aspects of both IPS and DM. Standard doubly robust
OPE (denoted DR) [97] is an unbiased estimator that leverages DM to de-
crease the variance of the unbiased estimates produced by importance sampling
techniques. Other HM include Weighted Doubly-Robust (WDR) and MAGIC.
WDR replaces the importance weights with self-normalized importance weights
(similar to WIS). MAGIC introduces adaptive switching between DR and DM;
in particular, one can imagine using DR to estimate the value for part of a
trajectory and then using DM for the remainder. Using this idea, MAGIC [201]
finds an optimal linear combination among a set that varies the switch point
between WDR and DM. Note that any DM that returns Q̂πe(s, a; θ) yields
a set of corresponding DR, WDR, and MAGIC estimators. As a result, we
consider 21 hybrid approaches in our experiments.

24

Method Near-top Freq.

MAG. FQE 30.0%
DM FQE 23.7%
IH 19.0%
WDR FQE 17.8%
MAGIC Qπ(λ) 17.3%

Figure 3.2: Left: (Graph domain) Comparing IPS (and IH) under short and
long horizon. Mild policy mismatch setting. PDWIS is often best among IPS.
But IH outperforms in long horizon. Center: (Pixel-MC) Comparing direct
methods in high-dimensional, long horizon setting. Relatively large policy mis-
match. FQE and IH tend to outperform. AM is significantly worse in complex
domains. Retrace(λ), Q(λ) and Tree-Backup(λ) are very computationally ex-
pensive and thus excluded. Right: (Top Methods) The top 5 methods which
perform the best across all conditions and domains.
3.2 Empirical Evaluation
We evaluate 33 different OPE methods by running thousands of experiments
across the 8 domains. Due to limited space, we show only the results from
selected environmental conditions in the next section. The full detailed results,
with highlighted best method in each class, are available in the appendix. The
goal of the evaluation is to demonstrate the flexibility of the benchmark suite to
systematically test the different factors of influence. We synthesize the results,
and present further considerations and directions for research in Section 3.3.

What is the best method?
The first important takeaway is that there is no clear-cut winner : no single
method or method class is consistently the best performer, as multiple environ-
mental factors can influence the accuracy of each estimator. With that caveat
in mind, based on the aggregate top performance metrics, we can recommend
from our selected methods the following for each method class (See Figure 3.2
right, appendix Table A.13, and appendix Table A.1).

Inverse propensity scoring (IPS). In practice, weighted importance sam-
pling, which is biased, tends to be more accurate and data-efficient than
unbiased basic importance sampling methods. Among the four IPS-based
estimators, PDWIS tends to perform best (Figure 3.2 left).

Direct methods (DM). Generally, FQE, Qπ(λ), and IH tend to perform the
best among DM (appendix Table A.1). FQE tends to be more data efficient
and is the best method when data is limited (Figure 3.5). Qπ(λ) generalizes

25

Figure 3.3: General Guideline Decision Tree.

FQE to multi-step backup, and works particularly well with more data, but is
computationally expensive in complex domains. IH is highly competitive in
long horizons and with high policy mismatch in a tabular setting (appendix
Tables A.5, A.6). In pixel-based domains, however, choosing a good kernel
function for IH is not straightforward, and IH can underperform other DM
(appendix Table A.9). We provide a comparison among direct methods for
tabular (appendix Figure A.13) and complex settings (Figure 3.2 center).

Hybrid methods (HM). With the exception of IH, each DM corresponds
to three HM: standard doubly robust (DR), weighted doubly robust (WDR),
and MAGIC. For each DM, its WDR version often outperforms its DR version.
MAGIC can often outperform WDR and DR. However, MAGIC comes with
additional hyperparameters, as one needs to specify the set of partial trajectory
length to be considered. Unsurprisingly, their performance highly depends on
the underlying DM. In our experiments, FQE and Qπ(λ) are typically the most
reliable: MAGIC with FQE or MAGIC with Qπ(λ) tend to be among the best
hybrid methods (see appendix Figures A.19 - A.23).

A recipe for method selection
Figure 3.3 summarizes our general guideline for navigating key factors that
affect the accuracy of different estimators. To guide the readers through the
process, we now dive further into our experimental design to test various factors,
and discuss the resulting insights.

Do we potentially have representation mismatch? Representation mis-
match comes from two sources: model misspecification and poor generalization.
Model misspecification refers to the insufficient representation power of the

26

Figure 3.4: Comparing IPS versus Direct methods versus Hybrid methods
under short and long horizon, large policy mismatch and large data. Left:
(Graph domain) Deterministic environment. Center: (Graph domain) Stochas-
tic environment and rewards. Right: (Graph-POMDP) Model misspecification
(POMDP). Minimum error per class is shown.
function class used to approximate either the transition dynamics (AM), value
function (other DM), or state distribution density ratio (in IH).

Having a tabular representation controls for representation mismatch by ensur-
ing adequate function class capacity, as well as zero inherent Bellman error (left
branch, Fig 3.3). In such cases, we may suffer from poor generalization without
sufficient data coverage, which depends on other domain-specific factors.

The effect of representation mismatch (right branch, Fig 3.3) can be understood
via two scenarios:

• Misspecified and poor generalization: We expose the impact of this severe
mismatch scenario via the Graph POMDP construction, where selected
information is omitted from an otherwise equivalent Graph MDP. Here, HM
substantially outperforms DM (Figure 3.4 right versus left).

• Misspecified but good generalization: Function classes such as neural networks
have powerful generalization ability, but may introduce bias and inherent
Bellman error5 [150, 38] (see linear vs. neural networks comparison for
Mountain Car in appendix Fig A.10). Still, powerful function approximation
makes (biased) DM very competitive with HM, especially under limited data
and in complex domains (see pixel-Gridworld in appendix Fig A.24-A.26).
However, function approximation bias may cause serious problems for high-
dimensional and long horizon settings. In the extreme case of Enduro (very
long horizon and sparse rewards), all DM fail to convincingly outperform a
naïve average of behavior data (appendix Fig A.9).

5Inherent Bellman error is defined as supg∈F inff∈F||f − Tπg||dπ , where F is function
class chosen for approximation, and dπ is state distribution induced by evaluation policy π.

27

Figure 3.5: (Gridworld domain) Errors are directly correlated with policy
mismatch but inversely correlated with data size. We pick the best direct
methods for illustration. The two plots represent the same figure from two
different vantage points.
Short horizon vs. Long horizon? It is well-known that IPS methods are
sensitive to trajectory length [128]. Long horizon leads to an exponential blow-
up of the importance sampling term, and is exacerbated by significant mismatch
between πb and πe. This issue is inevitable for any unbiased estimator [97]
(a.k.a., the curse of horizon [133]). Similar to IPS, DM relying on importance
weights also suffer in long horizons (appendix Fig A.13), though to a lesser
degree. IH aims to bypass the effect of cumulative weighting in long horizons,
and indeed performs substantially better than IPS methods in very long horizon
domains (Fig 3.2 left).

A frequently ignored aspect in previous OPE work is a proper distinction
between fixed, finite horizon tasks (IPS focus), infinite horizon tasks (IH focus),
and indefinite horizon tasks, where the trajectory length is finite but varies
depending on the policy. Many applications should properly belong to the
indefinite horizon category.6 Applying HM in this setting requires proper
padding of the rewards (without altering the value function in the infinite
horizon limit) as DR correction typically assumes fixed length trajectories.

How different are behavior and target policies? Similar to IPS, the
performance of DM is negatively correlated with the degree of policy mismatch.
Figure 3.5 shows the interplay of increasing policy mismatch and historical data
size, on the top DM in the deterministic gridworld. We use (supa∈A,x∈X

πe(a|s)
πb(a|s))

T

as an environment-independent metric of mismatch between the two policies.
The performance of the top DM (FQE, Qπ(λ), IH) tend to hold up better than

6Applying IH in the indefinite horizon case requires setting up an absorbing state that
loops over itself with zero terminal reward.

28

IPS methods when the policy gap increases (appendix Figure A.15). FQE and
IH are best in the small data regime, and Qπ(λ) performs better as data size
increases (Figure 3.5). Increased policy mismatch weakens the DM that use
importance weights (Q-Reg, MRDR, Retrace(λ) and Tree-Backup(λ)).

Do we have a good estimate of the behavior policy? Often the behavior
policy may not be known exactly and requires estimation, which can introduce
bias and cause HM to underperform DM, especially in low data regime (e.g.,
pixel gridworld appendix Figure A.24-A.26). Similar phenomenon was observed
in the statistics literature [104]. As the data size increases, HMs regain the
advantage as the quality of the πb estimate improves.

Is the environment stochastic or deterministic? While stochasticity
affects all methods by straining the data requirement, HM are more negatively
impacted than DM (Figure 3.4 center, Figure A.14). This can be justified by
e.g., the variance analysis of DR, which shows that the variance of the value
function with respect to stochastic transitions will be amplified by cumulative
importance weights and then contribute to the overall variance of the estimator;
see [97, Theorem 1] for further details. We empirically observe that DM
frequently outperform their DR versions in the small data case (Figure A.14).
In a stochastic environment and tabular setting, HM do not provide significant
edge over DM, even in short horizon case. The gap closes as the data size
increases (Figure A.14).

Challenging common wisdom
To illustrate the value of a flexible benchmarking tool, in this section we further
synthesize the empirical findings and stress-test several commonly held beliefs
about the high-level performance of OPE methods.

Is HM always better than DM? No. Overall, DM are surprisingly compet-
itive with HM. Under high-dimensionality, long horizons, estimated behavior
policies, or reward/environment stochasticity, HM can underperform simple
DM, sometimes significantly (e.g., see appendix Figure A.14).

Concretely, HM can perform worse than DM in the following scenarios that we
tested:

• Tabular with large policy mismatch, or stochastic environments (appendix
Figure A.14, Table A.3, A.6).

29

• Complex domains with long horizon and unknown behavior policy (app.
Figure A.24-A.26, Table A.8).

When data is sufficient, or model misspecification is severe, HM provides
consistent gains over DM.

Is horizon length the most important factor? No. Despite conventional
wisdom suggesting IPS methods are most sensitive to horizon length, we find
that this is not always the case. Policy divergence supa∈A,x∈X

πe(a|s)
πb(a|s) can be just

as, if not more, meaningful. For comparison, we designed two scenarios with
identical mismatch (supa∈A,x∈X

πe(a|s)
πb(a|s))

T as defined in Section 3.2 (see appendix
Tables A.11, A.12). Starting from a baseline scenario of short horizon and small
policy divergence (appendix Table A.10), extending horizon length leads to
10× degradation in accuracy, while a comparable increase in policy divergence
causes a 100× degradation.

How good is model-based direct method (AM)? AM can be among the
worst performing direct methods (appendix Table A.1). While AM performs
well in tabular setting in the large data case (appendix Figure A.13), it tends
to perform poorly in high dimensional settings with function approximation
(e.g., Figure 3.2 center). Fitting the transition model P (s′|s, a) is often more
prone to small errors than directly approximating Q(s, a). Model fitting errors
also compound with long horizons.

3.3 Discussion and Future Directions
Finally, we close with a brief discussion on some limitations common to recent
OPE benchmarks and more generally OPE experimental studies, and point to
areas of development for future studies.

Lack of short-horizon benchmark in high-dimensional settings. Evaluation of
other complex RL tasks with short horizon is currently beyond the scope of our
study, due to the lack of a natural benchmark. For contextual bandits, it has
been shown that while DR is highly competitive, it is sometimes substantially
outperformed by DM [219]. New benchmark tasks should have longer horizon
than contextual bandits, but shorter than typical Atari games. We also currently
lack natural stochastic environments in high-dimensional RL benchmarks. An
example candidate for medium horizon, complex OPE domain is NLP tasks
such as dialogue.

30

Other OPE settings. We outline practically relevant settings that can benefit
from benchmarking:

• Missing data coverage. A common assumption in the analysis of OPE is
a full support assumption: πe(a|s) > 0 implies πb(a|s) > 0, which often
ensure unbiasedness of estimators [165, 133, 54]. This assumption is often
not verifiable in practice. Practically, violation of this assumption requires
regularization of unbiased estimators to avoid ill-conditioning [133, 60]. One
avenue to investigate is to optimize the bias-variance trade-off when the full
support is not applicable.

• Confounding variables. Existing OPE research often assumes that the
behavior policy chooses actions solely based on the state. This assumption
is often violated when the decisions in the historical data are made by
humans instead of algorithms, who may base their decisions on variables not
recorded in the data, causing confounding effects. Tackling this challenge,
possibly using techniques from causal inference [200, 156], is an important
future direction.

• Strategic Environmental Behavior. Most OPE methods have focused exclu-
sively on single-agent scenarios under well-defined MDP. Realitic applications
of offline RL may have to deal with nonstationary and partial observability
induced by strategic behavior from multiple agents [230]. There is currently
a lack of a compelling domain to study such a setting.

Evaluating new OPE estimators. For our empirical evaluation, we selected
a representative set of established baseline approaches from multiple OPE
method families. Currently this area of research is very active and as such,
new OPE estimators have been and will continue to be proposed. We discuss
several new minimax style estimators, notably the DICE family in section 3.1.
A minimax-style estimator has also been recently proposed for the model-based
regime [214]. Among the ideas that use marginalized state distribution [223]
to improve over standard IPS, [102, 103] analyze double reinforcement learning
estimator that makes use of both estimates for Q function and state density
ratio. While we have not included all estimators in our current benchmark, our
software implementation is highly modular and can easily accommodate new
estimators and environments.

31

Algorithmic approach to method selection. Using COBS, we showed how to
distill a general guideline for selecting OPE methods. However, it is often not
easy to judge whether some decision criteria are satisfied (e.g., quantifying
model misspecification, degree of stochasticity, or appropriate data size). As
more OPE methods continue to be developed, an important missing piece is
a systematic technique for model selection, given a relatively high degree of
variability among existing techniques.

32

Chapter 4

ADVANCES IN MODEL BASED OPE

We present a novel off-policy loss function for learning a transition model
in model-based reinforcement learning. Notably, our loss is derived from
the off-policy policy evaluation objective with an emphasis on correcting
distribution shift. Compared to previous model-based techniques, our
approach allows for greater robustness under model mis-specification
or distribution shift induced by learning/evaluating policies that are
distinct from the data-generating policy. We provide a theoretical analysis
and show empirical improvements over existing model-based off-policy
evaluation methods. We provide further analysis showing our loss can be
used for off-policy optimization (OPO) and demonstrate its integration
with more recent improvements in OPO.

4.1 Introduction to Model-Based OPE and OPO
We study the problem of learning a transition model in a batch, off-policy
reinforcement learning (RL) setting, i.e., of learning a function P (s′|s, a) from
a pre-collected dataset D = {(si, ai, s′

i)}ni=1 without further access to the
environment. Contemporary approaches to model learning focus primarily on
improving the performance of models learned through maximum likelihood
estimation (MLE) [193, 48, 113, 43, 42, 137]. The goal of MLE is to pick the
model within some model class P that is most consistent with the observed
data or, equivalently, most likely to have generated the data. This is done by
minimizing negative log-loss (minimizing the KL divergence) summarized as
follows:

P̂MLE = arg min
P∈P

1
n

∑
(si,ai,s′

i)∈D
− log(P (s′

i|si, ai)). (4.1)

A key limitation of MLE is that it focuses on picking a good model under the
data distribution while ignoring how the model is actually used.

In an RL context, a model can be used to either learn a policy (policy learn-
ing/optimization) or evaluate some given policy (policy evaluation), without
having to collect more data from the true environment. We call this actual

33

objective the “decision problem”. Interacting with the environment to solve the
decision problem can be difficult, expensive, and dangerous, whereas a model
learned from batch data circumvents these issues. Since MLE (4.1) does not
optimize over the distribution of states induced by the policy from the decision
problem, it thus does not prioritize solving the decision problem. Notable
previous works that incorporate the decision problem into the model learning
objective are Value-Aware Model Learning (VAML) and its variants [59, 58, 1].
These methods, however, still define their losses w.r.t. the data distribution as
in MLE, and ignore the distribution shift from the pre-collected data to the
policy-induced distribution.

In contrast, we directly focus on requiring the model to perform well under
unknown distributions instead of the data distribution. In other words, we are
particularly interested in developing approaches that directly model the batch
(offline) learning setting. As such, we ask: “From only pre-collected data, is
there a model learning approach that naturally controls the decision problem
error?”.

We present a new loss function for model learning that: (1) only relies on batch
or offline data; (2) takes into account the distribution shift effects; and (3)
directly relates to the performance metrics for off-policy evaluation and learning
under certain realizability assumptions. The design of our loss is inspired by
recent advances in model-free off-policy evaluation [e.g., 134, 208], which we
build upon to develop our approach.

4.2 Preliminaries
Recall from Section 2.2, in the batch learning setting, we are given a dataset
D = {(si, ai, s′

i)}ni=1, where si ∼ dπb
(s), ai ∼ πb, and s′

i ∼ P (·|si, ai), where
πb is some behavior policy that collects the data. For convenience, we write
(s, a, s′) ∼ Dπb

P , where Dπb
(s, a) = dπb

(s)πb(a|s).

Finally, we need three classes W ,V ,P of functions. W ⊂ (X → R) represents
ratios between state-action occupancies, V ⊂ (S → R) represents value func-
tions and P ⊂ (X → ∆(S)) represents the class of models (or simulators) of
the true environment.

Note. Any Lemmas or Theorems presented without proof have full proofs in
the Appendix.

34

4.3 Minimax Model Learning (MML) for OPE
Natural Derivation
We start with the off-policy evaluation (OPE) learning objective and derive the
MML loss (Def 4.3.1). In Section 4.4, we show the loss also bounds off-policy
optimization (OPO) error through its connection with OPE.

OPE Decision Problem. Recall from Section 2.2, the OPE objective is to
estimate:

J(π, P ∗) ≡ E

 ∞∑
i=0

γiri

∣∣∣∣∣
s0∼d0

ai∼π(·|si)
si+1∼P ∗(·|si,ai)
ri∼R(·|si,ai)

 , (4.2)

the performance of an evaluation policy π in the true environment P ∗, using
only logging data D with samples from Dπb

P ∗.

Model-Based OPE. Given a model class P and a desired evaluation policy
π, we want to find a simulator P̂ ∈ P using only logging data D such that:

P̂ = arg min
P∈P
|J(π, P)− J(π, P ∗)|. (4.3)

Interpreting Eq. (4.3), we run π in P to compute J(π, P) as a proxy to J(π, P ∗).
If we find some P ∈ P such that |δP,P ∗

π | = |J(π, P)− J(π, P ∗)| is small, then
P is a good simulator for P ∗.

Derivation. Using (2.2) and (2.4), we have:
δP,P

∗

π = J(π, P)− J(π, P ∗)
= Es∼d0 [V P

π (s)]− E(s,a)∼dP ∗
π,γ(·,·)[Er∼R(·|s,a)[r]].

Adding and subtracting E(s,a)∼dP ∗
π,γ

[V P
π (s)], we have:

δP,P
∗

π = Es∼d0 [V P
π (s)]− E(s,a)∼dP ∗

π,γ
[V P
π (s)] (4.4)

+ E(s,a)∼dP ∗
π,γ

[V P
π (s)− Er∼R(·|s,a)[r]]. (4.5)

To simplify the above expression, we make the following observations. First,
Eq. (4.5) can be simplified through the Bellman equation from Eq. (2.3). To
see this, notice that dP ∗

π,γ is equivalent to some d(s)π(a|s) for an appropriate
choice of d(s). Thus,

E(s,a)∼dP ∗
π,γ

[V P
π (s)− Er∼R(·|s,a)[r]]

= Es∼d(·)[Ea∼π(·|s)[V P
π (s)− Er∼R(·|s,a)[r]]]

= Es∼d(·)[Ea∼π(·|s)[Es′∼P (·|s,a)[γV P
π (s)]]]

= γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]].

Second, we can manipulate Eq. (4.4) using the definition of dPπ,γ and recursive

35

property of dPπ,t from Eq. (2.5):

Es∼d0 [V P
π (s)]− E(s,a)∼dP ∗

π,γ
[V P
π (s)]

= −
∞∑
t=1

γt
∫
dP

∗
π,t(s, a)V P

π (s)dν(s, a)

= −γ
∞∑
t=0

γt
∫
dP

∗
π,t+1(s, a)V P

π (s)dν(s, a)

= −γ
∞∑
t=0

γt
∫
dP

∗
π,t(s̃, ã)P ∗(s|s̃, ã)π(a|s)V P

π (s)dν(s̃, ã, s, a)

= −γ
∞∑
t=0

γt
∫
dP

∗
π,t(s, a)P ∗(s′|s, a)V P

π (s′)dν(s, a, s′)

= −γE(s,a)∼dP ∗
π,γ

[Es′∼P ∗(·|s,a)[V P
π (s′)]].

Combining the above allows us to succinctly express:

δP,P
∗

π = γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]]

− γE(s,a)∼dP ∗
π,γ

[Es′∼P ∗(·|s,a)[V P
π (s′)]].

Since D contains samples from Dπb
and not dP ∗

π,γ , we use importance sampling
to simplify the right-hand side of δP,P ∗

π to:

γ E
(s,a,s′)∼Dπb

P ∗

[
dP

∗
π,γ

Dπb

(
E

s̃∼P (·|s,a)[V
P
π (s̃)]− V P

π (s′)
)]
. (4.6)

Define wPπ (s, a) ≡ dP
π,γ(s,a)
Dπb

(s,a) . If we knew wP
∗

π (s, a) and V P
π (for every P ∈ P),

then we can select a P ∈ P to directly control δP,P ∗
π . We encode this intuition

as:

Definition 4.3.1. [MML Loss] ∀w ∈ W , V ∈ V , P ∈ P ,
LMML(w, V, P) =E(s,a,s′)∼Dπb

(·,·)P ∗(·|s,a)[w(s, a) ·(
Es̃∼P (·|s,a)[V (s̃)]− V (s′)

)
].

When unambiguous, we will drop the MML subscript.

Here we have replaced wP ∗
π (s, a) with w coming from function class W and V P

π

with V from class V . The function class W represents the possible distribution
shifts, while V represents the possible value functions.

With this intuition, we can formally guarantee that J(π, P) ≈ J(π, P ∗) under
the following realizability conditions:

36

S ×A

dP
∗

π,γ

(s, a)

P ∗ P
(s̃, ·)(s′, ·)

V P
π (s′)

V P
π (s̃)V P

π

Dπb

Figure 4.1: Visual of Eq. (4.6). The error at every point (s, a) in Dπb
is

the difference between V P
π (s̃) (induced by following P) and V P

π (s′) (induced by
following P ∗). We re-weight the points (s, a) in Dπb

to mimic dP ∗
π,γ. Accumulat-

ing the errors exactly yields the OPE error of using P as a simulator. MLE,
instead, finds a P “pointing” in the same direction as P ∗ for all points in Dπb

,
ignoring the discrepancy with dP ∗

π,γ.
Assumption 4.1 (Adequate Support). Dπb

(s, a) > 0 whenever dPπ,γ(s, a) > 0.
Define wPπ (s, a) ≡ dP

π,γ(s,a)
Dπb

(s,a) .

Assumption 4.2 (OPE Realizability). For a given π, W ×V contains at least
one of (wPπ , V P ∗

π) or (wP ∗
π , V P

π) for every P ∈ P .

Theorem 4.3.1 (MML & OPE). Under Assumption 4.2,

|J(π, P̂)− J(π, P ∗)| ≤ γ min
P∈P

max
w∈W,V ∈V

|L(w, V, P)|, (4.7)

where P̂ = arg minP∈P maxw∈W,V ∈V |L(w, V, P)|.

Remark 4.3.2. We want to choose V ,W ,P carefully so that many P ∈ P
satisfy L(w, V, P) = 0 and Assumption 4.2. By inspection, L(w, V, P ∗) = 0 for
any V ∈ V , w ∈ W.

Remark 4.3.3. While V P
π ∈ V ∀P ∈ P appears strong, it can be verified for

every P ∈ P before accessing the data, as the condition does not depend on P ∗.
In principle, we may redesign V to guarantee this condition.

Remark 4.3.4. When γ = 0, J does not depend on a transition function, so
J(π, P) = J(π, P ∗) ∀P ∈ P.

37

L(w, V, P ∗) = 0 and Theorem 4.3.1 implies that the following learning procedure
will be robust to any distribution shift in W and any value function in V :

Definition 4.3.2 (Minimax Model Learning (MML)).
P̂ = arg min

P∈P
max

w∈W,V ∈V
|LMML(w, V, P)|. (4.8)

Interpretation and Verifiability
Figure 4.1 gives a visual illustration of Eq. (4.6) which leads to the MML
Loss (Def 4.3.1). πb has induced an “inbalanced” training dataset Dπb

and the
importance sampling term acts to rebalance our data because our test dataset
will be dP ∗

π,γ , induced by π. Because the objective is OPE, we don’t mind that P̂
is different than P ∗ so long as EP̂ [V P̂

π] ≈ EP ∗ [V P̂
π]. In other words, the size of

V P̂
π tells us which state transitions are important to model correctly. We want

to appropriately utilize the capacity of our model class P so that P̂ models P ∗

when V P̂
π is large. When it is small, it may be better off to ignore the error in

favor of other states.

Theorem 4.3.1 quantifies the error incurred by evaluating π in P̂ instead of P ∗,
assuming Assumption 4.2 holds. For OPE, P̂ is a reasonable proxy for P . In
this sense, MML is a principled method approach for model-based OPE. See
Appendix B.1 for a complete proof of Thm 4.3.1 and Appendix B.1 for the
sample complexity analysis.

If the exploratory state distribution dπb
and πb are known then Dπb

is known.
In this case, we can also verify that wPπ ∈ W for every P ∈ P a priori. Together
with Remark 4.3.3, we may assume that both wPπ ∈ W and V P

π ∈ V for all
P ∈ P. Consequently, only one of V P ∗

π ∈ V or wP ∗
π ∈ W has to be realizable

for Theorem 4.3.1 to hold.

Instead of checking for realizability apriori, we can perform post-verification
that wP̂π ∈ W and V P̂

π ∈ V. Together with the terms depending on P ∗,
realizability of these are also sufficient for Theorem 4.3.1 to hold. This relaxes
the strong “for all P ∈ P” condition.

Comparison to Model-Free OPE
Recent model-free OPE literature [e.g., 134, 208] has similar realizability
assumptions to Assumption 4.2.

38

As an example, the method MWL [208] takes the form of:
J(π, P ∗) ≈ E(s,a,r)∼Dπb

[ŵ(s, a)r]
where ŵ = arg min

w∈W
max
Q∈Q
|LMWL(w,Q)|,

requiring QP ∗
π to be realized to be a valid upper bound. Here Q is analogous

to our function class V where Ea∼π(a|s)[QP ∗
π (s, a)] = V P ∗

π (s). The loss LMWL

has no dependence on P and is therefore model-free. MQL [208] has analogous
realizability conditions to MWL.

Our loss, LMML, has the same realizability assumptions in addition to one
related to P (and not P∗). As discussed in Remark 4.3.3, these P-related
assumptions can be verified a priori and in principle, satisfied by redesigning
the function classes. Therefore, they do not pose a substantial theoretical
challenge. See Section 4.6 for a practical discussion.

An advantage of model-free approaches is that when both wP ∗
π , QP ∗

π are realized,
they return an exact OPE point estimate. In contrast, MML additionally
requires some P ∈ P that makes the loss zero for any w ∈ W , V ∈ V. The
advantage of MML is the increased flexibility of a model, enabling OPO
(Section 4.4) and visualization of results through simulation (leading to more
transparency).

While recent model-free OPE and our method both take a minimax approach,
the classes W ,V ,P play different roles. In the model-free case, minimization is
w.r.t either W or V and maximization is w.r.t the other. In our case, W ,V are
on the same (maximization) team, while minimization is over P . This allows
us to treat W × V as a single unit, and represents distribution-shifted value
functions. A member of this class, Edata[wV] (= E(s,a)∼Dπb

[d
P ∗
π,γ

Dπb
V P
π (s)]), ties

together the OPE estimate.

Misspecification of P ,V ,W
Suppose Assumption 4.2 does not hold and P ∗ ̸∈ P. Define a new function
h(s, a, s′) ∈ H = {w(s, a)V (s′)|(w, V) ∈ W × V}. Then we redefine L:

L(h, P) =E(s,a,s′)∼Dπb
(·,·)P ∗(·|s,a)[

Ex∼P (·|s,a)[h(s, a, x)]− h(s, a, s′)].

Proposition 4.3.5 (Misspecification discrepancy for OPE). Let H ⊂ (S×A×
S → R) be a set of functions on (s, a, s′). Denote (WV)∗ = wP

∗
π (s, a)V P

π (s′)

39

(or, equivalently, (WV)∗ = wPπ (s, a)V P ∗
π (s′)).

|J(π, P̂)− J(π, P ∗)| ≤ γmin
P

max
h∈H
|L(h, P)|+ γϵH, (4.9)

where ϵH = maxP∈P minh∈H |L((WV)∗ − h, P)|.

L(WV ∗ − h, P) measures the difference between h and (WV)∗. Another
interpretation of Prop 4.3.5 is if arg maxH∪{(WV)∗} L(h, P) = (WV)∗ for some
P ∈ P then MML returns a value γϵH below the true upper bound, otherwise
the output of MML remains the upperbound. This result illustrates that
realizability is sufficient but not necessary for MML to be an upper-bound on
the loss.

Application to the Online Setting
While the main focus of MML is batch OPE and OPO, we will make a few
remarks relating to the online setting. In particular, if we assume we can engage
in online data collection thenW = {1} (the constant function), representing no
distribution shift since πb = π. When VAML and MML share the same function
class V , we can show that minM maxW,V LMML(w, V, P)2 ≤ minP LV AML(V , P)
for any V ,M. In other words, MML is a tighter decision-aware loss even in
online data collection. In addition, MML enables greater flexibility in the
choice of V . See Appendix B.1 for further details.

4.4 Off-Policy Optimization (OPO)
Natural Derivation
In this section we examine how MML can be integrated into the policy learn-
ing/optimization objective. In this setting, the goal is to find a good policy
with respect to the true environment P ∗ without interacting with P ∗.

OPO Decision Problem. Given a policy class Π and access to only a logging
dataset D with samples from Dπb

P ∗, find a policy π ∈ Π that is competitive
with the unknown optimal policy π∗

P ∗ :
π̂∗ = arg min

π∈Π
|J(π, P ∗)− J(π∗

P ∗ , P ∗)|. (4.10)
Note: No additional exploration is allowed.

Model-Based OPO. Given a model class P, we want to find a simulator
P̂ ∈ P using only logging data D and subsequently learn π∗

P̂
∈ Π in P̂ through

any policy optimization algorithm which we call Planner(·).

40
Algorithm 1 Standard Model-Based OPO
Require: D = Dπb

P ∗, Modeler, Planner
1: Learn P̂ ← Modeler(D)
2: Learn π̂∗

P ← Planner(P̂)
3: return π̂∗

P

In Algorithm 1, Modeler(·) refers to any (batch) model learning procedure.
The hope for model-based OPO is that the ideal in-simulator policy π∗

P̂
and the

actual best (true environment) policy π∗
P ∗ perform competitively: J(π∗

P̂
, P ∗) ≈

J(π∗
P ∗ , P ∗). Hence, instead of minimizing Eq (4.10) over all π ∈ Π, we can

focus Π = {π∗
P}P∈P .

Derivation. Beginning with the objective, we add zero twice:
J(π∗

P ∗ , P ∗)− J(π∗
P , P

∗) = J(π∗
P ∗ , P ∗)− J(π∗

P ∗ , P)︸ ︷︷ ︸
(a)

+ J(π∗
P ∗ , P)− J(π∗

P , P)︸ ︷︷ ︸
(b)

+ J(π∗
P , P)− J(π∗

P , P
∗)︸ ︷︷ ︸

(c)

.

Term (b) is non-positive since π∗
P is optimal in P (π∗

P ∗ is suboptimal), so we
can drop it in an upper bound. Term (a) is the OPE estimate of π∗

P ∗ and term
(c) the OPE estimate of π∗

P , implying that we should use Theorem 4.3.1. With
this intuition, we have:

Theorem 4.4.1 (MML & OPO). If wP ∗
π∗

P ∗
, wP

∗
π∗

P
∈ W and V P

π∗
P ∗
, V P

π∗
P
∈ V for

every P ∈ P then:
|J(π∗

P ∗ , P ∗)− J(π∗
P̂
, P ∗)| ≤ 2γmin

P
max
w,V
|L(w, V, P)|.

The statement also holds if, instead, wPπ∗
P ∗
, wPπ∗

P
∈ W and V P ∗

π∗
P ∗
, V P ∗

π∗
P
∈ V for

every P ∈ P.

Interpretation and Verifiability
Theorem 4.4.1 compares two different policies in the same (true) environment,
since π∗

P̂
will be run in P ∗ rather than P̂ . In contrast, Theorem 4.3.1 compared

the same policy in two different environments. The derivation of Theorem 4.4.1
(see Appendix B.2) shows that having a good bound on the OPE objective
is sufficient for OPO. MML shows how to learn a model that exploits this
relationship.

Furthermore, the realizability assumptions of Theorem 4.4.1 relax the require-
ments of an OPE oracle. Rather than requiring the OPE estimate for every

41

π, it is sufficient to have the OPE estimate of π∗
P ∗ and π∗

P (for every P ∈ P)
when there is a P ∈ P such that L(w, V, P) is small for any w ∈ W , V ∈ V .

We could have instead examined the quantity minπ |J(π∗
P ∗ , P ∗) − J(π, P ∗)|

directly from Eq (4.10). What we would find is that the upper bound is
2 minP maxw,V |Ed0 [V]− L(w, V, P)| and the realizability requirements would
be that V P

π ∈ V , wP
∗

π ∈ W for every π in some policy class. This is a much
stronger requirement than in Theorem 4.4.1.

For OPO, apriori verification of realizability is possible by enumerating over
P ∈ P . Whereas the target policy π was fixed in OPE, now π∗

P varies for each
P ∈ P . It may be more practical to, as in OPE, perform post-verification that
wPπ∗

P̂

∈ W and V P
π∗

P̂

∈ V. If they do not hold, then we can modify the function
classes until they do. This relaxes the “for every P ∈ P” condition and leaves
only a few unverifiable quantities relating to P ∗.

Sample complexity and function class misspecification results for OPO can be
found in Appendix B.2, B.2.

Comparison to Model-Free OPO
For minimax model-free OPO, [39] have analyzed a minimax variant of Fitted
Q Iteration (FQI) [55], inspired by Antos et al. [12]. FQI is a commonly
used model-free OPO method. In addition to realizability assumptions, these
methods also maintain a completeness assumption: the function class of interest
is closed under bellman update. Increasing the function class size can only help
realizability but may break completeness. It is unknown if the completeness
assumption of FQI is removable [39]. MML only has realizability requirements.

4.5 Scenarios & Considerations
In this section we investigate a few scenarios where we can calculate the class
V and W or modify the loss based on structural knowledge of P ,W , and V .

In examining the scenarios, we aim to verify that MML gives sensible results.
For example, in scenarios where we know MLE to be optimal, MML should
ideally coincide. Indeed, we show this to be the case for the tabular setting and
Linear-Quadratic Regulators. Other scenarios include showing that MML is
compatible with incorporating prior knowledge using either a nominal dynamics
model or a kernel.

The proofs for any Lemmas in this section can be found in Appendix B.4.

42

Linear & Tabular Function Classes
When W ,V ,P are linear function classes then the entire minimax optimization
has a closed form solution. In particular, P takes the form P = φ(s, a, s′)Tα
where φ ∈ R|S×A×S| is some basis of features with α ∈ R|S×A×S| its pa-
rameters and (w(s, a), V (s′)) ∈ WV = {ψ(s, a, s′)Tβ : ∥β∥∞ < +∞} where
ψ ∈ R|S×A×S|.

Proposition 4.5.1 (Linear Function classes). Let P = φ(s, a, s′)Tα where φ ∈
R|S×A×S| is some basis of features with α its parameters. Let (w(s, a), V (s′)) ∈
WV = {ψ(s, a, s′)Tβ : ∥β∥∞ < +∞}. Then,

α̂ = E−T
n

[∫
φ(s, a, s′)ψ(s, a, s′)Tdν(s′)

]
En[ψ(s, a, s′)], (4.11)

if En
[∫
φ(s, a, s′)ψ(s, a, s′)Tdν(s′)

]
has full rank.

The tabular setting, when the state-action space is finite, is a common special
case. We can choose:

ψ(s, a, s′) = φ(s, a, s′) = ei (4.12)
as the ith standard basis vector where i = s|A||S| + a|S| + s′. There is no
model misspecification in the tabular setting (i.e., P ∗ ∈ P), therefore P̂ = P ∗

in the case of infinite data.

Proposition 4.5.2 (Tabular representation). Let P = φ(s, a, s′)Tα with φ ∈
R|S×A×S| as in Eq (4.12) and α its parameters. Let (w(s, a), V (s′)) ∈ WV =
{φ(s, a, s′)Tβ : ∥β∥∞ < +∞}. Assume we have at least one data point from
every (s, a) pair. Then:

P̂n(s′|s, a) = #{(s, a, s′) ∈ D}
#{(s, a, ·) ∈ D} . (4.13)

Prop. 4.5.2 shows that MML and MLE coincide, even in the finite-data regime.
Both models are simply the observed propensity of entering state s′ from tuple
(s, a).

Linear Quadratic Regulator (LQR)
The Linear Quadratic Regulator (LQR) is defined as linear transition dynamics
P ∗(s′|s, a) = A∗s+B∗a+w∗ where w∗ is random noise and a quadratic reward
function R(s, a) = sTQs+ aTRa for Q,R ≥ 0 symmetric positive semi-definite.
For ease of exposition we assume that w∗ ∼ N(0, σ∗2I). We assume that
(A∗, B∗) is controllable. Exploiting the structure of this problem, we can

43

check that every V ∈ V takes the form V (s) = sTUs+ q for some symmetric
semi-positive definite U and constant q (Appendix Lemma B.4.1).

Furthermore, we know controllers of the form π(a|s) = −Ks where K ∈ Rk×n

are optimal in LQR [22]. We consider determistic and therefore misspecified
models of the form P (s′|s, a) = As+Ba. W is a Gaussian mixture and we can
write LMML as a function of U,K and (A,B) (Appendix Lemma B.4.2).

Proposition 4.5.3 (MML + MLE Coincide for LQR). Let A ∈ Rn×n, B ∈
Rn×k, K ∈ Rk×n. Let U ∈ Sn be positive semi-definite. Set k = 1, a single
input system. Then,

arg min
(A,B)

max
K,U
|LMML(K,U, (A,B))| = (A∗, B∗)

= arg min
(A,B)

LMLE(A,B).

Despite model misspecification, both MLE and MML give the correct param-
eters (Â, B̂) = (A∗, B∗). We leave showing that MML and MLE coincide in
multi-input (k > 1) LQR systems for future work.

Residual Dynamics & Environment Shift
Suppose we already had some baseline model P0 of P ∗. Alternatively, we may
view this as the real world starting with (approximately) known dynamics P0

and drifting to P ∗. We can modify MML to incorporate knowledge of P0 to
find the residual dynamics:

Definition 4.5.1. [Residual MML Loss] For w ∈ W , V ∈ V , P ∈ P ,
L(w, V, P) = E(s,a,s′)∼Dπb

(·,·)P ∗(·|s,a)[w(s, a) ·(
Ex∼P0(·|s,a)[

P0(x|s, a)− P (x|s, a)
P0(x|s, a) V (x)]− V (s′)

)
].

This solution form matches the intuition that having prior knowledge in the
form of P0 focuses the learning objective on the difference between P ∗ and P0.

Incorporating Kernels
Our approach is also compatible with incorporating kernels (which is a way of
encoding domain knowledge such as smoothness) to learn in a Reproducing
Kernel Hilbert Space (RKHS). For example, we may derive a closed form
for max(w,V)∈WV L(w, V, P)2 when W × V corresponds to an RKHS and use
standard gradient descent to find P̂ ∈ P, making the minimax problem

44

much more tractable. See Appendix B.4 for a detailed discussion on RKHS,
computational issues relating to sampling from P and alternative approaches
to solving the minimax problem.

4.6 Experiments
In our experiments, we seek to answer the following questions: (1) Does MML
prefer models that minimize the OPE objective? (2) What can we expect
when we have misspecification in V? (3) How does MML perform against MLE
and VAML in OPE? (4) Does our approach complement modern offline RL
approaches? For this last question, we consider integrating MML with the
recently proposed MOREL [106] approach for offline RL. See Appendix B.5 for
details on MOREL.

Brief Environment Description/Setup
We perform our experiments in three different domains.

Linear-Quadratic Regulator (LQR). The LQR domain is a 1D environment
with stochastic dynamics P ∗(s′|s, a). We use a finite class P consisting of
deterministic policies. We ensure V P

π ∈ V for all P ∈ P by solving the
equations in Appendix Lemma B.4.1. We ensure W P ∗

π ∈ W using Appendix
Equation (B.7).

Cartpole [30]. The reward function is modified to be a function of angle and
location rather than 0/1 to make the OPE problem more challenging. Each
P ∈ P is a parametrized NN that outputs a mean, and logvariance representing
a normal distribution around the next state. We model the class WV as a
RKHS as in Prop B.4.3 with an RBF kernel.

Inverted Pendulum (IP) [51]. This IP environment has a Runge-Kutta(4)
integrator rather than Forward Euler (Runge-Kutta(1)) as in OpenAI [30],
producing significantly more realistic data. Each P ∈ P is a deterministic
model parametrized with a neural network. We model the classWV as a RKHS
as in Prop B.4.3 with an RBF kernel.

Further Detail A thorough description of the environments, experimental
details, setup, and hyperparameters can be found in Appendix B.5.

45

Figure 4.2: LQR. (Left, OPE Error) MML finds the P ∈ P with the lowest
OPE error as P gets richer. Since calculations are done in expectation, no error
bars are included. (Right, Verifiability) The OPE error (smoothed) increases
with misspecification in V parametrized by ϵ, the expected MSE between the
true V P ∗

π ̸∈ V and the approximated V̂ P ∗
π ∈ V . Nevertheless, directionally they

all follow the same trajectory as P gets richer.
Results
Does MML prefer models that minimize the OPE objective? We vary
the size of the model class Figure 4.2 (left) testing to see if MML will pick
up on the models which have better OPE performance. When the sizes of
|P| are small, each method selects (A∗, B∗) (e.g. P (s′|s, a) = A∗s+B∗a), the
deterministic version of the optimal model. However, increasing the richness of
P , MML begins to pick up on models that are able to better evaluate π.

Two remarks are in order. In LQR, policy optimization in (A∗, B∗) coincides
with policy optimization in P ∗. Therefore, if we tried to do policy optimization
in our selected model then our policy would be suboptimal in P ∗. Secondly,
MML favors a model other than (A∗, B∗) because a good OPE estimate relies
on appoximating the contribution from the stochastic part of P ∗.

There is a trade-off between the OPE objective and the OPO objective. MML’s
preference is dependent on the capacities of P ,W ,V . Figure 4.2 (left) illustrates
OPE is preferred forW fixed. Appendix Figure B.1 explores the OPO objective
and shows that if we increase W then OPO becomes favored. In some sense
we are asking MML to be robust to many more OPE problems as |W| ↑ and
so the performance on any single one decreases, favoring OPO.

What can we expect when we have misspecification in V? To check
verifiability in practice, we would run π in a few P ∈ P and calculate V P

π .
We would check if V P

π ∈ V by fitting V̂ P
π and measuring the empirical gap

E[(V̂ P
π − V P

π)2] = ϵ2.

Figure 4.2 (right) shows how MML performs when V P
π ̸∈ V but we do have

46

Figure 4.3: (Cartpole, OPE Error) Comparison of model-based approaches
for OPE. Lower is better. MML outperforms others. Not pictured: traditional
model-free methods such as IS/PDIS have error of order 3-8.
V̂ P
π (s) = V P

π (s) +N (0, ϵ) ∈ V. Since E[(V̂ P
π − V P

π)2] = ϵ2 then ϵ is the root-
mean squared error between the two functions. Directionally all of the errors go
down as |P| ↑, however it is clear that ϵ has a noticeable effect. We speculate
that if this error not distributed around zero and instead is dependent on the
state then the effects can be worse.

How does MML perform against MLE and VAML in OPE? In addition
to Figure 4.2 (left), Figure 4.3 also illustrates that our method outperforms
the other model-learning approaches in OPE. The environment and reward
function is challenging, requiring function approximation. Despite the added
complexity of solving a minimax problem, doing so gives nearly an order of
magnitude improvement over MLE and many orders over VAML. This validates
that MML is a good choice for model-learning for OPE.

Algorithm 2 OPO Algorithm (based on MOREL [106])
Require: D, L among {MML, MLE, VAML}

1: Learn an ensemble of dynamics P1, . . . , P4 ∈ P using Pi = arg minP∈P L(D)

2: Construct a pessimistic MDP M (see Appendix B.5) with P (s, a) =
1
4
∑4
i=1 Pi(s, a).

3: π̂ ← PPO(M) (Best of 3) [180]

Does our approach complement modern offline RL approaches? We
integrate MML, VAML, and MLE with MOREL as in Algorithm 2. Conse-
quently, Figure 4.4 shows that MML performs competitively with the other
methods, achieving near-optimal performance as the number of trajectories

47

Figure 4.4: (Invert. Pend., OPO Performance) Comparison of model-based
approaches for OPO with function-approx using Algorithm 2. Higher is better.
MML performs competitively even in low data regimes.
increases. MML has good performance even in the low-data regime, whereas
other methods perform worse than πb. Performance in the low-data regime is
of particular interest since sample efficiency is highly desirable.

Algorithm 2 forms a pessimistic MDP where a policy is penalized if it enters
a state where there is disagreement between P1, . . . , P4. Given that MML
performs well in low-data, we can reason that MML produces models with
support that stays within the dataset D or generalize well slightly outside
this set. The other models poor performance is suggestive of incorrect over-
confidence outside of D and PPO produces a policy taking advantage of this.

4.7 Other Related Work
Minimax and Model-Based RL. [170] introduce an iterative minimax
approach to simultaneously find the optimal-policy and a model of the environ-
ment. Despite distribution-shift correction, online data collection is required
and is not comparable to MML, where we focus on the batch setting.

Batch (Offline) Model-Based RL Recent improvements in batch model-
based RL focus primarily on the issue of policies taking advantage of errors
in the model [106, 48, 42, 95]. These improvements typically involve un-
certainty quantification to keep the agent in highly certain states to avoid
model exploitation. These improvements are independent of the loss function
involved.

48

4.8 Discussion and Future Work
We have presented a novel approach to learning a model for batch, off-policy
model-based reinforcement learning. Our approach follows naturally from the
definitions of the OPE and OPO objectives and enjoys distributional robustness
and decision-awareness. We examined different scenarios under which our
method coincided with other methods as well as when closed form solutions
were available. We provided sample complexity analysis and misspecification
analysis. Finally, we empirically validated that our method was competitive
with current model learning approaches.

A key component throughout this chapter has been the function class W ×V .
Finding other interpretations for this term may prove to be useful outside of
MML and is of interest in future work. Furthermore, MML remains part of a
two-step OPO pipeline: first learn the model, then return the optimal policy in
that model. Another direction of future research is to have a single-shot batch
OPO objective that returns both a model and the optimal policy simultaneously,
in effect combining MML with the minimax algorithm in [170]. Finally, it may
be interesting to integrate MML with other forms of distributionally robust
model learning, e.g., Liu et al. [132].

49

Chapter 5

ADVANCES IN MODEL FREE OPE

We propose Fitted Q Evaluation (FQE), a new and simple method
for model-free off-policy policy evaluation (OPE) and derive PAC-style
bounds. We show experimentally that our OPE method outperforms
other popular OPE techniques on a standalone basis, especially in a
high-dimensional setting.

5.1 Fitted Q Evaluation (FQE) for Off Policy Evaluation
We propose a new and simple model-free technique using function approx-
imation, called Fitted Q Evaluation (FQE). FQE is based on an iterative
reductions scheme similar to Fitted Q Iteration (FQI) [56], but for the problem
of off-policy evaluation. Algorithm 3 lays out the steps. The key difference
with FQI is that the min operator is replaced by Qk−1(s′

i, π(s′
i)) (Line 3 of

Algorithm 3). Each s′
i comes from the original D. Since we know π(s′

i), each
D̃k is well-defined. Note that FQE can be augmented with the doubly-robust
techniques seen in Chapter 3.

Algorithm 3 Fitted Q Evaluation: FQE(π, c)
Require: Dataset D = {si, ai, s′

i, ci}ni=1 ∼ πD. Function class F. Policy π to be
evaluated

1: Initialize Q0 ∈ F randomly
2: for k = 1, 2, . . . ,K do
3: Compute target yi = ci + γQk−1(s′

i, π(s′
i)) ∀i

4: Build training set D̃k = {(si, ai), yi}ni=1
5: Solve a supervised learning problem:

Qk = arg min
f∈F

1
n

∑n
i=1(f(si, ai)− yi)2

6: return QK(s, π(s)) for any s

5.2 Generalization Guarantee of FQE
In this section, we provide sample complexity analysis for FQE. We use the
notion of pseudo-dimension as capacity measure of non-linear function class F
[65]. Pseudo-dimension dimF, which naturally extends VC dimension into the
regression setting, is defined as the VC dimension of the function class induced

50

by the sub-level set of functions of F: dimF = VC-dim({(x, y) 7→ sign(f(x)−y) :
f ∈ F}).

Pseudo-dimension is finite for a large class of function approximators. For
example, Bartlett et al. [18] bounded the pseudo-dimension of piece-wise linear
deep neural networks (e.g., with ReLU activations) as O(WL logW), where
W is the number of weights, and L is the number of layers.

FQE relies on reductions to supervised learning to update the value function.
In off-policy evaluation, the evaluation policy induces a different state-action
distribution compared to the data generating distribution µ. We use the notion
of concentration coefficient for the worst case, proposed by [147], to measure the
degree of distribution shift. The following standard assumption from analysis
of related ADP algorithms limits the severity of distribution shift over future
time steps:

Assumption 5.1 (Concentration coefficient of future state-action distribution).
[147, 148, 150, 11, 12, 119, 118, 57, 140]
Let P π be the operator acting on f : X → R s.t.

(P πf)(s, a) =
∫

S
f(s′, π(s′))P (ds′|s, a).

Given data generating distribution µ, initial state distribution χ, for m ≥ 0 and
an arbitrary sequence of stationary policies {πm}m≥1 define the concentration
coeffient:

βµ(m) = sup
π1,...,πm

∥∥∥∥∥d(d0P
π1P π2 . . . P πm)
dµ

∥∥∥∥∥
∞
.

We assume βµ = (1− γ)2 ∑
m≥1

mγm−1βµ(m) <∞.

This assumption is valid for a fairly large class of MDPs [148]. For instance
βµ is finite for any finite MDP, or any infinite state-space MDP with bounded
transition density.1 Having a finite concentration coefficient is equivalent the
top-Lyapunov exponent Γ ≤ 0 [25], which means the underlying stochastic
system is stable. We show below a simple sufficient condition for Assumption
5.1 (albeit stronger than necessary).

1This assumption ensures sufficient data diversity, even when the executing policy is
deterministic. An example of how learning can fail without this assumption is based on the
“combination lock” MDP [109]. In this deterministic MDP example, βµ can grow arbitrarily
large, and we need an exponential number of samples for both FQE and FQI. See Appendix
C.1.

51

Example 5.2.1. Consider an MDP such that for any non-stationary distribu-
tion ρ, the marginals over states satisfy ρs(s)

µs(s) ≤ L (i.e., transition dynamics are
sufficiently stochastic), and ∃M : ∀s, a : µ(a|s) > 1

M
(i.e., the behavior policy

is sufficiently exploratory). Then βµ ≤ LM .

Recall that for a given policy π, the Bellman (evaluation) operator is defined
as (TπQ)(s, a) = r(s, a) + γ

∫
S Q(s′, π(s′))P (ds′|s, a). In general Tπf may not

belong to F for f ∈ F. For FQE (and FQI), the main operation in the algorithm
is to iteratively project TπQk−1 back to F via Qk = arg minf∈F ∥f − TπQk−1∥.
The performance of both FQE and FQI thus depend on how well the function
class F approximates the Bellman operator. We measure the ability of function
class F to approximate the Bellman evaluation operator via the worst-case
Bellman error:

Definition 5.2.1 (inherent Bellman evaluation error). Given a function class
F and policy π, the inherent Bellman evaluation error of F is defined as
dπF = supg∈F inff∈F ∥f − Tπg∥π where ∥·∥π is the ℓ2 norm weighted by the
state-action distribution induced by π.

We are now ready to state the generalization bound for FQE:

Theorem 5.2.1 (Generalization error of FQE). Let the costs be bounded above
by C̄. Under Assumption 5.1, for ϵ > 0 & δ ∈ (0, 1), after K iterations of Fitted
Q Evaluation (Algorithm 3), for n = O

(
C4

ϵ2
(log K

δ
+ dimF log C2

ϵ2
+ log dimF)

)
,

we have with probability 1− δ:

∣∣V (π)− VK(π)
∣∣ ≤ γ1/2

(1− γ)3/2
(√

βµ (2dπF + ϵ) + 2γK/2C

(1− γ)1/2
)
.

This result shows a dependency on ϵ of Õ(1
ϵ2

), compared to Õ(1
ϵ4

) from other
related ADP algorithms [150, 12]. The price that we pay is a multiplicative
constant 2 in front of the inherent error dπF. The error from second term on
RHS decays exponentially with iterations K. The proof is in Appendix C.2.

5.3 Empirical Analysis
We invite the reader to see Chapter 3 for a full empirical study on the perfor-
mance of FQE along with many state-of-the-art OPE methods. There will also
be additional experiments in Chapter 6 when FQE will be used as a subroutine
in policy learning as a means of guaranteeing post-learning performance.

Part III

POLICY LEARNING WITH
GUARANTEES

53

Chapter 6

VALUE-BASED GUARANTEES

When learning policies for real-world domains, two important questions
arise: (i) how to efficiently use pre-collected off-policy, non-optimal behav-
ior data; and (ii) how to mediate among different competing objectives
and constraints. We thus study the problem of batch policy learning
under multiple constraints, and offer a systematic solution. We first
propose a flexible meta-algorithm that admits any batch reinforcement
learning and online learning procedure as subroutines. We then present
a specific algorithmic instantiation and provide performance guarantees
for the main objective and all constraints. Our algorithm achieves strong
empirical results in different domains, including in a challenging problem
of simulated car driving subject to multiple constraints such as lane keep-
ing and smooth driving. We also show experimentally that our choice of
OPE method (FQE) outperforms other popular OPE techniques on a
standalone basis, especially in a high-dimensional setting.

6.1 Introduction
We study the problem of policy learning under multiple constraints. Con-
temporary approaches to learning sequential decision making policies have
largely focused on optimizing some cost objective that is easily reducible to a
scalar value function. However, in many real-world domains, choosing the right
cost function to optimize is often not a straightforward task. Frequently, the
agent designer faces multiple competing objectives. For instance, consider the
aspirational task of designing autonomous vehicle controllers: one may care
about minimizing the travel time while making sure the driving behavior is
safe, comfortable, or fuel efficient. Indeed, many such real-world applications
require the primary objective function be augmented with an appropriate set
of constraints [9].

Contemporary policy learning research has largely focused on either online
reinforcement learning (RL) with a focus on exploration, or imitation learning
(IL) with a focus on learning from expert demonstrations. However, many real-

54

world settings already contain large amounts of pre-collected data generated by
existing policies (e.g., existing driving behavior, power grid control policies, etc.).
We thus study the complementary question: can we leverage this abundant
source of (non-optimal) behavior data in order to learn sequential decision
making policies with provable guarantees on constraint satisfaction?

We thus propose and study the problem of batch policy learning under multiple
constraints. Historically, batch RL is regarded as a subfield of approximate
dynamic programming (ADP) [116], where a set of transitions sampled from
the existing system is given and fixed. From an interaction perspective, one can
view many online RL methods (e.g., DDPG [129]) as running a growing batch
RL subroutine per round of online RL. In that sense, batch policy learning is
complementary to any exploration scheme. To the best of our knowledge, the
study of constrained policy learning in the batch setting is novel.

We present an algorithmic framework for learning sequential decision making
policies from off-policy data. We employ multiple learning reductions to online
and supervised learning, and present an analysis that relates performance in
the reduced procedures to the overall performance with respect to both the
primary objective and constraint satisfaction.

Constrained optimization is a well studied problem in supervised machine learn-
ing and optimization. In fact, our approach is inspired by the work of Agarwal
et al. [5] in the context of fair classification. In contrast to supervised learning
for classification, batch policy learning for sequential decision making introduces
multiple additional challenges. First, setting aside the constraints, batch policy
learning itself presents a layer of difficulty, and the analysis is significantly more
complicated. Second, verifying whether the constraints are satisfied is no longer
as straightforward as passing the training data through the learned classifier.
In sequential decision making, certifying constraint satisfaction amounts to an
off-policy policy evaluation problem, which is a challenging problem and the
subject of active research. In this chapter, we develop a systematic approach to
address these challenges, provide a careful error analysis, and experimentally
validate our proposed algorithms. In summary, our contributions are:

• We formulate the problem of batch policy learning under multiple con-
straints, and present the first approach of its kind to solve this problem.
The definition of constraints is general and can subsume many objectives.
Our meta-algorithm utilizes multi-level learning reductions, and we show

55

how to instantiate it using various batch RL and online learning subrou-
tines. We show that guarantees from the subroutines provably lift to
provide end-to-end guarantees on the original constrained batch policy
learning problem.

• Leveraging techniques from batch RL as a subroutine, we provide a
refined theoretical analysis for general non-linear function approximation
that improves upon the previously known sample complexity bound [150]
from O(n4) to O(n2).

• To evaluate and verify constraint satisfaction, we propose a simple new
technique for off-policy policy evaluation, which is used as a subroutine
in our main algorithm. We show that it is competitive to other off-policy
policy evaluation methods.

• We validate our algorithm and analysis with two experimental settings.
First, a simple navigation domain where we consider safety constraint.
Second, we consider a high-dimensional racing car domain with smooth
driving and lane keeping constraints.

6.2 Problem Formulation
We follow the notation introduced in Section 2.1. Let S ⊂ Rd be a bounded
and closed d-dimensional state space. Let A be a finite action space. Let
c : X 7→ [0, C] be the primary objective cost function that is bounded by
C. Let there be m constraint cost functions, gi : X 7→ [0, G], each bounded
by G. To simplify the notation, we view the set of constraints as a vector
function g : X 7→ [0, G]m where g(s, a) is the column vector of individual
gi(s, a). Let P (·|s, a) denote the (unknown) transition/dynamics model that
maps state/action pairs to a distribution over the next state. Let γ ∈ (0, 1)
denote the discount factor. Let d0 be the initial states distribution.

We consider the discounted infinite horizon setting. An MDP is defined using
the tuple (S,A, c, g, P, γ, d0). A policy π ∈ Π maps states to actions, i.e.,
π(s) ∈ A. The value function Cπ : S 7→ R corresponding to the primary cost
function c is defined in the usual way: Cπ(s) = E [∑∞

t=0 γ
tc(st, at) | s0 = s],

over the randomness of the policy π and transition dynamics P . We similarly
define the vector-value function for the constraint costs Gπ : S 7→ Rm as
Gπ(s) = E [∑∞

t=0 γ
tg(st, at)|s0 = s]. Define C(π) and G(π) as the expectation

of Cπ(s) and Gπ(s), respectively, over the distribution d0 of initial states.

56

Batch Policy Learning under Constraints
In batch policy learning, we have a pre-collected dataset,

D = {(si, ai, s′
i, c(si, ai), g1:m(si, ai)}ni=1,

generated from (a set of) historical behavioral policies denoted jointly by πD.
The goal of batch policy learning under constraints is to learn a policy π ∈ Π
from D that minimizes the primary objective cost while satisfying m different
constraints:

min
π∈Π

C(π)

s.t. G(π) ≤ τ,
(OPT)

where G(·) = [g1(·), . . . , gm(·)]⊤ and τ ∈ Rm is a vector of known constants.
We assume that (OPT) is feasible. However, the dataset D might be generated
from multiple policies that violate the constraints.

Examples of Policy Learning with Constraints
Counterfactual & Safe Policy Learning. In conventional online RL, the
agent needs to “re-learn” from scratch when the cost function is modified.
Our framework enables counterfactual policy learning assuming the ability
to compute the new cost objective from the same historical data. A simple
example is safe policy learning [70]. Define safety cost G(s, a) = φ(s, a, c) as a
new function of existing cost c and features associated with current state-action
pair. The goal here is to counterfactually avoid undesirable behaviors observed
from historical data. We experimentally study this safety problem in Section
6.5.

Other examples from the literature that belong to this safety perspective
include planning under chance constraints [158, 23]. The constraint here is
G(π) = E[I(s ∈ Serror)] = P(s ∈ Serror) ≤ τ .

Multi-objective Batch Learning. Traditional policy learning (RL or IL)
presupposes that the agent optimizes a single cost function. In reality, we may
want to satisfy multiple objectives that are not easily reducible to a scalar
objective function. One example is learning fast driving policies under multiple
behavioral constraints such as smooth driving and lane keeping consistency
(see Section 6.5).

57

Equivalence between Constraint Satisfaction and Regularization
Our constrained policy learning framework subsumes several existing regularized
policy learning settings. Regularization typically encodes prior knowledge, and
has been used extensively in the RL and IL literature to improve learning
performance. Many instances of regularized policy learning can be naturally
cast into (OPT):

• Entropy regularized RL [78, 231] is equivalent to G(π) = H(π), where
H(π) measures policy entropy.

• Smooth imitation learning [122] is equivalent to G(π) = minh∈H ∆(h, π),
where H is a class of provably smooth policies and ∆ is a divergence
metric.

• Regularizing RL with expert demonstration [91] is equivalent to G(π) =
E[ℓ(π(x), π∗(x))], where π∗ is the expert policy.

• Conservative policy improvement [125, 179, 3] is equivalent to G(π) =
DKL(π, πk), where πk is some “well-behaving” policy.

We provide a detailed equivalence derivation of the above examples in Ap-
pendix D.1. Of course, some problems are more naturally described using the
regularization perspective, while others using constraint satisfaction.

More generally, one can establish the equivalence between regularized and
constrained policy learning via a simple appeal to Lagrangian duality as shown
in Proposition 6.2.1 below. This Lagrangian duality also has a game-theoretic
interpretation (Section 5.4 of Boyd and Vandenberghe [26]), which serves as an
inspiration for developing our approach.

Proposition 6.2.1. Let Π be a convex set of policies. Let C : Π 7→ R, C :
Π 7→ RK be value functions. Consider the two policy optimization tasks:

Regularization: min
π∈Π

C(π) + λ⊤G(π)

Constraint: min
π∈Π

C(π) s.t. G(π) ≤ τ.

Assume that the Slater’s condition is satisfied in the Constraint problem (i.e.,
∃π s.t. G(π) < τ). Assume also that the constraint cannot be removed without
changing the optimal solution, i.e., infπ∈Π C(π) < infπ∈Π:G(π)≤τ C(π). Then ∀
λ > 0, ∃ τ , and vice versa, such that Regularization and Constraint share
the same optimal solutions. (Proof in Appendix D.1.)

58
Algorithm 4 Meta-algo for Batch Constrained Learning

1: for each round t do
2: πt ← Best-response(λt)
3: π̂t ← 1

t

∑t
t′=1 πt′ , λ̂t ← 1

t

∑t
t′=1 λt′

4: Lmax = maxλ L(π̂t, λ)
5: Lmin = L(Best-response(λ̂t), λ̂t)
6: if Lmax − Lmin ≤ ω then
7: Return π̂t
8: λt+1 ← Online-algorithm(π1, . . . , πt−1, πt)

6.3 Proposed Approach
To make use of strong duality, we first convexify the policy class Π by allowing
stochastic combinations of policies, which effectively expands Π into its convex
hull Conv(Π). Formally, Conv(Π) contains randomized policies,1 which we
denote π = ∑T

t=1 αtπt for πt ∈ Π and ∑T
t=1 αt = 1. Executing a mixed π

consists of first sampling one policy πt from π1:T according to distribution α1:T ,
and then executing πt. Note that we still have E[π] = ∑T

t=1 αtE[πt] for any
first-moment statistic of interest (e.g., state distribution, expected cost). It is
easy to see that the augmented version of (OPT) over Conv(Π) has a solution
at least as good as the original (OPT). As such, to lighten the notation, we
will equate Π with its convex hull for the rest of the chapter.

Meta-Algorithm
The Lagrangian of (OPT) is L(π, λ) = C(π) + λ⊤(G(π) − τ) for λ ∈ Rm

+ .
Clearly (OPT) is equivalent to the min-max problem: min

π∈Π
max
λ∈Rk

+

L(π, λ). We

assume (OPT) is feasible and that Slater’s condition holds (otherwise, we can
simply increase the constraint τ by a tiny amount). Slater’s condition and
policy class convexification ensure that strong duality holds [26], and (OPT) is
also equivalent to the max-min problem: max

λ∈Rk
+

min
π∈Π

L(π, λ).

Since L(π, λ) is linear in both λ and π, strong duality is also a consequence
of von Neumann’s celebrated convex-concave minimax theorem for zero-sum
games [217]. From a game-thoeretic perspective, the problem becomes finding
the equilibrium of a two-player game between the π−player and the λ−player
[64]. In this repeated game, the π−player minimizes L(π, λ) given the current
λ, and the λ−player maximizes it given the current (mixture over) π.

We first present a meta-algorithm (Algorithm 4) that uses any no-regret online
1This places no restrictions on the individual policies. Individual policies can be arbitrarily

non-convex. Convexifiying a policy class amounts to allowing ensembles of learned policies.

59

learning algorithm (for λ) and batch policy optimization (for π). At each
iteration, given λt, the π-player runs Best-response to get the best response:

Best-response(λt) = arg min
π∈Π

L(π, λt)

= arg min
π∈Π

C(π) + λ⊤
t (G(π)− τ).

This is equivalent to a standard batch reinforcement learning problem where
we learn a policy that is optimal with respect to c+ λ⊤

t g. The corresponding
mixed strategy is the uniform distribution over all previous πt. In response
to the π−player, the λ−player employs Online-algorithm, which can be any
no-regret algorithm that satisfies:∑

t

L(πt, λt) ≥ max
λ

∑
t

L(πt, λ)− o(T).

Finally, the algorithm terminates when the estimated primal-dual gap is below
a threshold ω (Lines 7-8).

Leaving aside (for the moment) issues of generalization, Algorithm 4 is guaran-
teed to converge assuming: (i) Best-response gives the best single policy in
the class, and (ii) Lmax and Lmin can be evaluated exactly.

Proposition 6.3.1. Assuming (i) and (ii) above, Algorithm 4 is guaranteed to
stop and the convergence depends on the regret of Online-algorithm. (Proof
in Appendix D.2.)

Our Main Algorithm
We now focus on a specific instantiation of Algorithm 4. Algorithm 5 is our
main algorithm in this chapter.

Policy Learning. We instantiate Best-response with Fitted Q Iteration
(FQI), a model-free off-policy learning approach [56]. FQI relies on a series
of reductions to supervised learning. The key idea is to approximate the true
action-value function Q∗ by a sequence {Qk ∈ F}Kk=0, where F is a chosen
function class.

In Lines 3 & 9, FQI(c+λ⊤g) is defined as follows. With Q0 randomly initialized,
for each k = 1, . . . , K, we form a new training dataset D̃k = {(si, ai), yi}ni=1

where:
∀i : yi = (ci + λ⊤gi) + γmin

a
Qk−1(s′

i, a),

60
Algorithm 5 Constrained Batch Policy Learning
Require: Dataset D = {si, ai, s′

i, ci, gi}ni=1 ∼ πD. Online algorithm parameters: ℓ1
norm bound B, learning rate η

1: Initialize λ1 = (B
m+1 , . . . ,

B
m+1) ∈ Rm+1

2: for each round t do
3: Learn πt ← FQI(c+ λ⊤

t g) // FQI with cost c+ λ⊤
t g

4: Evaluate Ĉ(πt)← FQE(πt, c) // Algo 3 with πt, cost c
5: Evaluate Ĝ(πt)← FQE(πt, g) // Algo 3 with πt, cost g
6: π̂t ← 1

t

∑t
t′=1 πt′

7: Ĉ(π̂t)← 1
t

∑t
t′=1 Ĉ(πt′), Ĝ(π̂t)← 1

t

∑t
t′=1 Ĝ(πt′)

8: λ̂t ← 1
t

∑t
t′=1 λt′

9: Learn π̃ ← FQI(c+ λ̂⊤
t g) // FQI with cost c+ λ̂⊤

t g
10: Evaluate Ĉ(π̃)← FQE(π̃, c), Ĝ(π̃)← FQE(π̃, g)
11: L̂max = max

λ,∥λ∥1=B

(
Ĉ(π̂t) + λ⊤

[
(Ĝ(π̂t)− τ)⊤, 0

]⊤)
12: L̂min = Ĉ(π̃) + λ̂⊤

t

[
(Ĝ(π̃)− τ)⊤, 0

]⊤
13: if L̂max − L̂min ≤ ω then
14: Return π̂t

15: Set zt =
[
(Ĝ(πt)− τ)⊤, 0

]⊤
∈ Rm+1

16: λt+1[i] = B λt[i]e−ηzt[i]∑
j
λt[j]e−ηzt[j]∀i // λ[i] the ith coordinate

and (si, ai, s′
i, ci, gi) ∼ D (original dataset). A supervised regression procedure

is called to solve for:
Qk = arg min

f∈F

1
n

n∑
i=1

(f(si, ai)− yi)2.

The policy then: πK = arg minaQK(·, a).

FQI has been shown to work well with several empirical domains: spoken
dialogue systems [162], physical robotic soccer [173], and cart-pole swing-up
[172]. Another possible model-free subroutine is Least-Squares Policy Iteration
(LSPI) [115]. One can also consider model-based alternatives [159].

Off-policy Policy Evaluation. A crucial difference between constrained
policy learning and existing work on constrained supervised learning is the
technical challenge of evaluating the objective and constraints. First, estimating
L̂(π, λ) (Lines 11-12) requires estimating Ĉ(π) and Ĝ(π). Second, any gradient-
based approach to Online-learning requires passing in Ĝ(π)− τ as part of
gradient estimate (line 15). This problem is known as the off-policy policy
evaluation (OPE) problem: we need to evaluate Ĉ(π) and Ĝ(π) having only
access to data D ∼ πD. We studied existing OPE techniques in Chapter 3, and
proposed two methods in subsequent chapters. We will be using FQE, from

61

Chapter 5, to instantiate Algorithm 5

Online Learning Subroutine. As L(πt, λ) is linear in λ, many online convex
optimization approaches can be used for Online-algorithm. Perhaps the
simpliest choice is Online Gradient Descent (OGD) [234]. We include an
instantiation using OGD in Appendix D.6.

For our main Algorithm 5, similar to [5], we use Exponentiated Gradient (EG)
[108], which has a regret bound of O(

√
log(m)T) instead of O(

√
mT) as in

OGD. One can view EG as a variant of Online Mirror Descent [153] with
a softmax link function, or of Follow-the-Regularized-Leader with entropy
regularization [182]. Gradient-based algorithms generally require bounded λ.
We thus force ∥λ∥1 ≤ B using hyperparameter B. Solving (OPT) exactly
requires B =∞. We will analyze Algorithm 5 with respect to finite B. With
some abuse of notation, we augment λ into a (m+ 1)−dimensional vector by
appending B −∥λ∥1, and augment the constraint cost vector g by appending 0
(Lines 11, 12 & 15 of Algorithm 5).2

6.4 Theoretical Analysis
Convergence Guarantee
The convergence rate of Algorithm 5 depends on the radius B of the dual
variables λ, the maximal constraint value G, and the number of constraints m.
In particular, we can show O(B2

ω2) convergence for primal-dual gap ω.

Theorem 6.4.1 (Convergence of Algorithm 5). After T iterations, the empirical
duality gap is bounded by

L̂max − L̂min ≤ 2B log(m+ 1)
ηT

+ 2ηBG2.

Consequently, to achieve the primal-dual gap of ω, setting η = ω
4G2B

will ensure
that Algorithm 5 converges after 16B2G2 log(m+1)

ω2 iterations. (Proof in Appendix
D.2.)

Convergence analysis of our main Algorithm 5 is an extension of the proof to
Proposition 6.3.1, leveraging the no-regret property of the EG procedure [182].

2The (m + 1)th coordinate of g is thus always satisfied. This augmentation is only
necessary when executing EG.

62

Generalization Guarantee of FQI
We recall a few definitions from Chapter 5, including that for concentration of
the state-action distribution and inherent bellman error.

Assumption 6.1 (Concentration coefficient of future state-action distribution).
[147, 148, 150, 11, 12, 119, 118, 57, 140]
Let P π be the operator acting on f : X 7→ R s.t.

(P πf)(s, a) =
∫

S
f(x′, π(x′))P (ds′|s, a).

Given data generating distribution µ, initial state distribution d0, for m ≥ 0 and
an arbitrary sequence of stationary policies {πm}m≥1 define the concentration
coefficient:

βµ(m) = sup
π1,...,πm

∥∥∥∥∥d(d0P
π1P π2 . . . P πm)
dµ

∥∥∥∥∥
∞
.

We assume βµ = (1− γ)2 ∑
m≥1

mγm−1βµ(m) <∞.

Definition 6.4.1 (Inherent Bellman evaluation error). Given a function class
F and policy π, the inherent Bellman evaluation error of F is defined as
dπF = supg∈F inff∈F ∥f − Tπg∥π where ∥·∥π is the ℓ2 norm weighted by the
state-action distribution induced by π.

We can show, analogous to FQE, a generalization bound for FQI. While FQI
has been widely used, to the best of our knowledge, a complete analysis of FQI
for non-linear function approximation has not been previously reported.3

Definition 6.4.2 (Inherent Bellman optimality error). [150] Recall that the
Bellman optimality operator is defined as:

(TQ)(s, a) = r(s, a) + γ
∫

S
min
a′∈A

Q(s′, a′)P (ds′|s, a).
Given a function class F, the inherent Bellman error is defined as dF =
supg∈F inff∈F ∥f − Tg∥µ, where ∥·∥µ is the ℓ2 norm weighted by µ, the state-
action distribution induced by πD.

Theorem 6.4.2 (Generalization error of FQI). Under Assumption 6.1, for ϵ > 0
& δ ∈ (0, 1), after K iterations of Fitted Q Iteration, for n = O

(
C4

ϵ2
(log K

δ
+

3FQI for continuous action space from [11] is a variant of fitted policy iteration and not
the version of FQI under consideration. The appendix of [120] contains a proof of FQI but
for linear functions.

63

dimF log C2

ϵ2
+ log dimF)

)
, we have with probability 1− δ:∣∣∣C∗ − C(πK)
∣∣∣ ≤ 2γ

(1− γ)3

(√
βµ (2dF + ϵ) + 2γK/2C

)
,

where πK is the policy acting greedy with respect to the returned function QK.
(Proof in Appendix D.5.)

End-to-End Generalization Guarantee
We are ultimately interested in the test-time performance and constraint
satisfaction of the returned policy from Algorithm 5. We now connect the
previous analyses from Theorems 6.4.1, 5.2.1 & 6.4.2 into an end-to-end error
analysis.

Since Algorithm 5 uses FQI and FQE as subroutines, the inherent Bellman
error terms dF and dπF will enter our overall performance bound. Estimating
the inherent Bellman error caused by function approximation is not possible
in general (chapter 11 of Sutton and Barto [191]). Fortunately, a sufficiently
expressive F can generally make dF and dπF to arbitrarily small. To simplify
our end-to-end analysis, we assume dF = 0 and dπF = 0, i.e., the function class
F is closed under applying the Bellman operator.4

Assumption 6.2. We consider function classes F sufficiently rich so that
∀f : Tf ∈ F & Tπf ∈ F for the policies π returned by Algorithm 5.

With Assumptions 6.1 & 6.2, we have the following error bound:

Theorem 6.4.3 (Generalization guarantee of Algorithm 5). Let π∗ be the
optimal policy to (OPT). Denote V = C + BG. Let K be the number of
iterations of FQE and FQI. Let π̂ be the policy returned by Algorithm 5, with
termination threshold ω. For ϵ > 0 & δ ∈ (0, 1), when n = O

(
V 4

ϵ2
(log K(m+1)

δ
+

dimF log V 2

ϵ2
+ log dimF)

)
, we have with probability at least 1− δ:

C(π̂) ≤ C(π∗) + ω + (4 +B)γ
(1− γ)3

(√
βµϵ+ 2γK/2V

)
,

and

G(π̂) ≤ τ + 2V + ω

B
+ γ1/2

(1− γ)3/2

(√
βµϵ+ 2γK/2V

(1− γ)1/2

)
.

The proof is in Appendix D.3. This result guarantees that, upon termination
of Algorithm 5, the true performance on the main objective can be arbitrarily

4A similar assumption was made in Cheng et al. [40] on near-realizability of learning the
model dynamics.

64

close to that of the optimal policy. At the same time, each constraint will be
approximately satisfied with high probability, assuming sufficiently large B &
K, and sufficiently small ϵ.

6.5 Empirical Analysis
We perform experiments on two different domains: a grid-world domain (from
OpenAI’s FrozenLake) under a safety constraint, and a challenging high-
dimensional car racing domain (from OpenAI’s CarRacing) under multiple
behavior constraints. We seek to answer the following questions in our ex-
periments: (i) whether the empirical convergence behavior of Algorithm 5 is
consistent with our theory, and (ii) how the returned policy performs with re-
spect to the main objective and constraint satisfaction. Appendix D.7 includes
a more detailed discussion of our experiments.

Frozen Lake.
Environment & Data Collection. The environment is an 8x8 grid. The
agent has 4 actions N,S,E,W at each state. The main goal is to navigate from a
starting position to the goal. Each episode terminates when the agent reaches
the goal or falls into a hole. The main cost function is defined as c = −1 if
goal is reached, otherwise c = 0 everywhere. We simulate a non-optimal data
gathering policy πD by adding random sub-optimal actions to the shortest path
policy from any given state to goal. We run πD for 5000 trajectories to collect
the behavior dataset D (with constraint cost measurement specified below).

Counterfactual Safety Constraint. We augment the main objective c with
safety constraint cost defined as g = 1 if the agent steps into a hole, and
g = 0 otherwise. We set the constraint threshold τ = 0.1, roughly 75% of
the accumulated constraint cost of behavior policy πD. The threshold can
be interpreted as a counterfactually acceptable probability that we allow the
learned policy to fail.

Results. The empirical primal dual gap L̂max − L̂min in Figure 6.1 (left)
quickly decreases toward the optimal gap of zero. The convergence is fast
and monotonic, supporting the predicted behavior from our theory. The test-
time performance in Figure 6.1 (middle) shows the safety constraint is always
satisfied, while the main objective cost also smoothly converges to the optimal
value achieved by an online RL baseline (DQN) trained without regard to the
constraint. The returned policy significantly outperformed the data gathering

65

Figure 6.1: FrozenLake Results. (Left) Empirical duality gap of algorithm 5 vs.
optimal gap. (Middle) Comparison of returned policy and others w.r.t. (top)
main objective value and (bottom) safety constraint value. (Right) FQE vs.
other OPE methods on a standalone basis.

Figure 6.2: CarRacing Results. (Left) & (Middle) (Lower is better) Comparing
our algorithm, regularized LSPI, online RL w/o constraints, behavior policy
πD w.r.t. main cost objectives and two constraints. (Right) FQE vs. other
OPE methods on a standalone basis.
policy πD on both main and safety cost.

Car Racing.
Environment & Data Collection. The car racing environment, seen in
Figure D.1 (right), is a high-dimensional domain where the state is a 96×96×3
tensor of raw pixels. The action space A = {steering× gas× brake} takes 12
discretized values. The goal in this episodic task is to traverse over 95% of the
track, measured by a given number of “tiles” as a proxy for distance coverage.
The agent receives a reward (negative cost) for each unique tile crossed and
no reward if the agent is off-track. A small positive cost applies at every time
step, with maximum horizon of 1000 for each episode. With these costs given
by the environment, one can train online RL agent using DDQN [211]. We
collect ≈ 1500 trajectories from DDQN’s randomization, resulting in data set
D with ≈ 94000 transition tuples.

Fast Driving under Behavioral Constraints. We study the problem
of minimizing environment cost while subject to two behavioral constraints:
smooth driving and lane centering. The first constraint G0 approximates

66

smooth driving by g0(s, a) = 1 if a contains braking action, and 0 otherwise.
The second constraint cost g1 measures the distance between the agent and
center of lane at each time step. This is a highly challenging setup since
three objectives and constraints are in direct conflict with one another, e.g.,
fast driving encourages the agent to cut corners and apply frequent brakes to
make turns. Outside of this work, we are not aware of previous work in policy
learning with 2 or more constraints in high-dimensional settings.

Baseline and Procedure. As a naïve baseline, DDQN achieves low cost,
but exhibits “non-smooth” driving behavior (see our supplementary videos).
We set the threshold for each constraint to 75% of the DDQN benchmark.
We also compare against regularized batch RL algorithms [57], specifically
regularized LSPI. We instantiate our subroutines, FQE and FQI, with multi-
layered CNNs. We augment LSPI’s linear policy with non-linear features
derived from a well-performing FQI model.

Results. The returned mixture policy from our algorithm achieves low main
objective cost, comparable with online RL policy trained without regard to
constraints. After several initial iterations violating the braking constraint, the
returned policy — corresponding to the appropriate λ trade-off — satisties
both constraints, while improving the main objective. The improvement over
data gathering policy is significant for both constraints and main objective.

Regularized policy learning is an alternative approach to (OPT) (section 6.2).
We provide the regularized LSPI baseline the same set of λ found by our
algorithm for one-shot regularized learning (Figures 6.2 (left & middle)). While
regularized LSPI obtains good performance for the main objective, it does
not achieve acceptable constraint satisfaction. By default, regularized policy
learning requires parameter tuning heuristics. In principle, one can perform
a grid-search over a range of parameters to find the right combination — we
include such an example for both regularized LSPI and FQI in Appendix D.7.
However, since our objective and constraints are in conflict, main objective and
constraint satisfaction of policies returned by one-shot regularized learning are
sensitive to step changes in λ. In constrast, our approach is systematic, and is
able to avoid the curse-of-dimensionality of brute-force search that comes with
multiple constraints.

In practice, one may wish to deterministically extract a single policy from
the returned mixture for execution. A de-randomized policy can be obtained

67

naturally from our algorithm by selecting the best policy from the existing
FQE’s estimates of individual Best-response policies.

Off-Policy Evaluation
The off-policy evaluation by FQE is critical for updating policies in our al-
gorithm, and is ultimately responsible for certifying constraint satisfaction.
While other OPE methods can also be used in place of FQE, we find that
the estimates from popular methods are not sufficiently accurate in a high-
dimensional setting. Complementing the more extensive ablations study in
Chapter 3, we select an individual policy and compare FQE against PDIS
[164], DR [98] and WDR [202] with respect to the constraint cost evaluation.
To compare both accuracy and data-efficiency, for each domain we randomly
sample different subsets of dataset D (from 10% to 100% transitions, 30 trials
each). Figure 6.1 (right) and 6.2 (right) illustrate the difference in quality. In
the FrozenLake domain, FQE performs competitively with the top baseline
method (DR and WDR), converging to the true value estimate as the data
subsample grows close to 100%. In the high-dimensional car domain, FQE
signficantly outperforms other methods.

6.6 Other Related Work
Constrained MDP (CMDP). The CMDP is a well-studied problem [9].
Among the most important techniques for solving CMDP are the Lagrangian
approach and solving the dual LP program via occupation measure. However,
these approaches only work when the MDP is completely specified, and the
state dimension is small such that solving via an LP is tractable. More recently,
the constrained policy optimization approach (CPO) by [3] learns a policy
when the model is not initially known. The focus of CPO is on online safe
exploration, and thus is not directly comparable to our setting.

Multi-objective Reinforcement Learning. Another related area is multi-
objective reinforcement learning (MORL)[212, 174]. Generally, research in
MORL has largely focused on approximating the Pareto frontier that trades-off
competing objectives [212, 174]. The underlying approach to MORL frequently
relies on linear or non-linear scalarization of rewards to heuristically turns
the problem into a standard RL problem. Our proposed approach represents
another systematic paradigm to solve MORL, whether in batch or online
settings.

68

6.7 Discussion
We have presented a systematic approach for batch policy learning under multi-
ple constraints. Our problem formulation can accommodate general definition
of constraints, as partly illustrated by our experiments. We provide guarantees
for our algorithm for both the main objective and constraint satisfaction. Our
strong empirical results show a promise of making constrained batch policy
learning applicable for real-world domains, where behavior data is abundant.

Our implementation complies with the steps laid out in Algorithm 5. In very
large scale or high-dimensional problems, one could consider a noisy update
version for both policy learning and evaluation. We leave the theorerical and
practical exploration of this extension to future work.

69

Chapter 7

LTL-BASED GUARANTEES IN DISCRETE DOMAINS

We study the problem of policy optimization (PO) with linear temporal
logic (LTL) constraints. The language of LTL allows flexible description
of tasks that may be unnatural to encode as a scalar cost function. We
consider LTL-constrained PO as a systematic framework, decoupling task
specification from policy selection, and as an alternative to the standard
of cost shaping. With access to a generative model, we develop a model-
based approach that enjoys a sample complexity analysis for guaranteeing
both task satisfaction and cost optimality (through a reduction to a
reachability problem). Empirically, our algorithm can achieve strong
performance even in low-sample regimes.

In this chapter, we propose a novel policy optimization framework for RL under
LTL constraints. Our approach relies on two assumptions that are significantly
less restrictive than those in prior work and circumvent the negative results on
RL-modulo-LTL: the availability of a generative model of the environment and
a lower bound on the transition probabilities in the underlying MDP. Under
these assumptions, we derive a learning algorithm based on a reduction to a
reachability problem. The reduction in our method can be instantiated with
several planning procedures that handle unknown dynamics [21, 166]. We show
that our algorithm offers strong constraint satisfaction guarantees and give a
rigorous sample complexity analysis of the algorithm.

In summary, the contributions are:

1) We provide a novel approach to LTL-constrained RL that requires significantly
fewer assumptions, and offers stronger guarantees, than previous work.

2) We develop several new theoretical tools for our analysis. These may be of
independent interest.

3) We empirically validate using both infinite- and indefinite-horizon problems,
and with composite specifications such as collecting items while avoiding

70

enemies. We find that our method enjoys strong performance, often requiring
many fewer samples than our worst-case guarantees.

7.1 Motivating Examples

1
2

p
1-p

R

S

Figure 7.1: (Left) Infinite Loop. The robot must perpetually walk between the
coffee room and office. Without proper state-space augmentation, a markovian
cost function cannot capture this task. (Right) Safe Delivery. A packet must be
delivered without being interfered. Policy 2 should be chosen. One would need
to penalize receiving the packet significantly over having it stolen: R > S.

We examine two examples where standard cost engineering cannot capture the
task (Figure 7.1). We consider the undiscounted setting here. See [131, 2] for
difficult examples for the discounted setting.

Example 1 (Infinite Loop). A robot is given the task of perpetually walking
between the coffee room and the office (Figure 7.1 (Left)). To achieve this
behavior, both the policy and cost-function must be history-dependent. These
can be made Markovian through proper state-space augmentation and has been
studied in hierarchical reinforcement learning or learning with options [121,
189]. Options engineering is laborious and requires expertise. Nevertheless,
without the appropriate augmentation, any cost-optimal policy of a Markovian
cost function will fail at the task. We will see in Section 7.2 that any LTL
expression comes with automatic state-space augmentation, requiring no expert
input.

Example 2 (Safe Delivery). The goal is to maximize the probability of
safely sending a packet from one computer to another (Figure 7.1 (Right)).
Policy 1 leads to a hacker sniffing packets but passing them through, and is
unsafe. Policy 2 leads to a hacker stealing packets with probability p > 0, and
is safe with probability 1 − p, and is the policy that satisfies the task. For
cost engineering, let R and S be the recurring costs of the received and stolen
states. For the two policies, the avg. costs are g1 = R and g2 = pS + (1− p)R.
Strangely, we must set R > S in order for g2 < g1. Fortunately, optimizing any
cost function constrained to satisfying the LTL specification does not suffer

71

from this counter intuitive behavior as only policy 2 has any chance of satisfying
the LTL expression.

7.2 Background and Problem Formulation
For an introduction to the background for LTL, see Section 2.3. From there,
recall a few key definitions.

We construct a Product MDP from syncronizing a Labelled MDP M with a
specification-specific automaton (LDBA) B:

Definition 7.2.1. (Product MDP) XM,B = (S,A, P, C, d0, L,S∗) is an MDP
with S = SM × SB, A = AM ∪ AB, C((m, b), a) = CM(m, a) if a ∈ AM(m)
otherwise 0, d0 = {(m, b)|m ∈ dM

0 , b ∈ PB(sB
0 , L

M(m))}, L((m, b)) = LM(m),
S∗ = {(·, b) ∈ S|b ∈ SB∗} accepting states, and P : S ×A → ∆(S) taking the
form:

P ((m, b), a, (m′, b′)) =


PM(m, a,m′) a ∈ AM(m), b′ ∈ PB(b, L(m′))

1, a ∈ AB(b), b′ ∈ PB(b, a),m = m′

0, otherwise

.

A run τ = (s0, s1, . . .) = ((m0, b0), (m1, b1), . . .) in X is accepting (accepted) if
(b0, b1, . . .), the projection onto B, is accepted. Equivalently, some s ∈ S∗ in
X is visited infinitely often. This leads us to the following definition of LTL
satisfaction:

Definition 7.2.2 (Satisfaction, τ |= φ). A run τ in X satisfies φ, denoted
τ |= φ, if it is accepted.

Definition 7.2.3. (Satisfaction, π |= φ) A policy satisfies φ with probability
P [π |= φ] = Eτ∼TP

π
[1τ |=φ]. Here, 1X is an indicator variable which is 1 when

X is true, otherwise 0. TP
π is the set of trajectories induced by π in X with

transition function P .

Problem Formulation
Our goal is to find a policy that simultaneously satisfies a given LTL speci-
fication φ with highest probability (probability-optimal) and is also optimal
w.r.t. the cost function of the MDP. We consider (stochastic) Markovian
policies Π, and define the set of all probability-optimal policies as Πmax =
{arg maxπ′∈Π P [π′ |= φ]}. We first define the gain g (average-cost) and transient

72

cost J :

gPπ ≡Eτ∼TP
π

[
lim
T→∞

1
T

T−1∑
t=0
C(st, π(st))

∣∣∣∣∣τ |= φ

]
,

JPπ ≡Eτ∼TP
π

[
κτ∑
t=0
C(st, π(st))

∣∣∣∣∣τ |= φ

]
,

(7.1)

where κτ is the first (hitting) time the trajectory τ leaves the transient states
induced by π. When P is clear from context, we abbreviate gPπ and JPπ by gπ
and Jπ, respectively.

Gain optimality for infinite horizon problems has a long history in RL [21, 166].
Complementary to gain optimality, we consider a hybrid objective including the
transient cost. For any λ ≥ 0, we define the optimal policy as the probability-
optimal policy with minimum combined cost:

π∗
λ ≡ arg min

π∈Πmax
Jπ + λgπ (LTL-OPT)

= arg min
π∈Πmax

(Jπ + λgπ)P [π |= φ] (≡ V P
π,λ).

In other words, probability-optimal policies are those that satisfy the entirety of
the task, both desired and required behaviors, where V P

π,λ ≡ (Jπ+λgπ)P [π |= φ]
is the normalized value function1, corresponding to a notion of energy or effort
required, with λ representing the tradeoff between gain and transient cost. We
will often omit the dependence of V on P and λ for brevity.

Example. Consider the Safe Delivery example (Figure 7.1 (Right)). For
policy 1, P [1 |= φ] = 0 and so 1 ̸∈ Πmax. Let policy 2 be a cost 1 timestep
before stolen or receipt, then g2 = R is the (conditional) gain, J2 = 1 is the
(conditional) transient costs, P [2 |= φ] = 1− p, and V2 = (1 + λR)(1− p).

Problem 1 (Planning with Generative Model/Simulator). Suppose access to a
generative model of the true dynamics P from which we can sample transitions
s′ ∼ P (s, a) for any state-action pair (s, a) ∈ S ×A.2 With probability 1− δ,
for some errors ϵφ, ϵV > 0, find a policy π ∈ Π that simultaneously has the
following properties: (i) |P [π |= φ]− P [π∗ |= φ] | < ϵφ (ii) |Vπ − Vπ∗| < ϵV .

1Normalized objectives are not unusual in RL, e.g. in discounted settings, multiplication
by (1− γ)

2The use of a generative model is increasingly common in RL [72, 126, 6, 198], and is
applicable in many settings where such a generative model is readily available as a simulator
(e.g., [52]).

73

7.3 Approach
End Components & Accepting Maximal End Components
Our analysis relies on the idea of an end component: a recurrent, inescapable
set of states when restricted to a certain action set. It is a sub-MDP of a larger
MDP that is probabilistically closed.

Definition 7.3.1. (End Component, EC/MEC/AMEC [16]) Consider MDP
(S,A, P, C, d0, L,S∗). An end component (E,AE) is a set of states E ⊆ S and
acceptable actions AE(s) ⊆ A(s) (where s ∈ E) such that ∀(s, a) ∈ E ×AE
then Post(s, a) = {s′|P (s, a, s′) > 0} ⊆ E. Furthermore, (E,AE) is strongly
connected: any two states in E is reachable from one another by means of
actions in AE. We say an end component (E,AE) is maximal (MEC) if it is
not contained within a larger end component (E ′,AE′), i.e., ∄(E ′,AE′) EC
where E ⊆ E ′,AE(s) ⊆ AE′(s) for each s ∈ A. A MEC (E,AE) is an accepting
MEC (AMEC) if it contains an accepting state, ∃s ∈ E s.t. s ∈ S∗.

High-Level Intuition
The description of our approach, LTL Constrained Planning (LCP), in Section
7.3 is rather technical in order to yield theoretical guarantees. We thus first
summarize the high-level intuitions.

A3

s*
1 s*

2

β

1− β

A1 A2

(a) Abstract Diagram

s*

(b) Example, Infinite Loop

s*

(c) Example, Safe Delivery

Figure 7.2: Product MDP diagrams. (Left) The goal of LTL Constrained Policy
Optimization can be reduced to a reachability problem. We want to reach
A1 or A2 from s0 and then follow the blue arrows with some distribution. A3
with the blue arrows is a rejecting end component because it does not contain
an accepting state s∗. For β < 1 , the yellow action is not in the allowable
action set of A1 because there is a risk of entering A3, strictly decreasing our
probability of LTL satisfaction. (Center) Example for Infinite Loop, Figure 7.1
Left. (Right) Example for Safe Delivery, Figure 7.1 Right.

Solution Decomposition. Consider the accepting states s∗
1, s

∗
2 in Figure

7.2 (Left), which are the states we need to visit infinitely often to satisfy the

74

specification. First, let us identify the accepting maximal end components
(AMECs) of s∗

1 and s∗
2: the state sets A1 and A2 (resp.) and their corresponding

action sets AA1 and AA2 (the blue arrows in A1 and A2). Note that these
AMECs do not include the yellow action in Figure 7.2 (Left), which has a
chance of leaving A1 and getting stuck in A3.

Our solution first runs a transient policy until reaching A1 or A2, and then
switches to a (probability-optimal) recurrent policy that stays within A1 or A2

(resp.) while visiting s∗
1 or s∗

2 (resp.) infinitely often. A probability-optimal
recurrent policy will select actions in AA1 and AA2 to visit s∗

1, s
∗
2 infinitely often

(e.g., the uniform policies with the AMECs (A1,AA1) and (A2,AA2)). Finding
a transient policy from s0 to A1, A2 can be viewed as a reachability problem,
which we can solve via a Stochastic Shortest Path (SSP) problem and leverage
recent literature [198, 110].

Cost Optimality. As stated in (LTL-OPT), the goal is to find a cost-optimal
policy within the set of probability-optimal policies. For instance, the uniform
policy over AA1 and AA2 (the blue arrows in Figure 7.2 (Left) is probability
optimal, but may not be cost optimal. Similarly, the unconstrained cost-
optimal policy may not be probability optimal. Consider just A1 for the
moment. Suppose the cost of the arrows between the white nodes is 4 while the
other costs are 7. Then the uniform (probability-optimal) policy in A1 over AA1

has cost 1
2

(
4+4

2

)
+ 1

2

(
7+7+4

3

)
= 5. The gain-optimal policy that deterministically

selects the actions between the white nodes π̃ has cost
(

4+4
2

)
= 4, but is not

probability optimal. If we perturb π̃ to make it even slightly stochastic (but
still mostly deterministic, i.e η-greedy with η ≈ 0), then it will be arbitrarily
close to gain optimality and also recover probability optimality. This is a
preferable probability-optimal policy over the uniform policy.

Overall Procedure. The high-level procedure is: (i) identify the AMECs
(e.g. (A1,AA1), (A2,A2)) by filtering out bad actions like the yellow arrow; (ii)
find a cost-optimal (optimal gain cost) recurrent policy in each AMEC that
visits some s∗ infinitely often; (iii) instantiate an SSP problem that finds a
cost-optimal (optimal transient cost) transient policy from s0 to A1 ∪ A2 and
avoids A3; (iv) return a policy that stitches together the policies from (ii) and
(iii). See Section 7.3 for the algorithmic details. We show in Section 7.4 that
this solution gives the optimal solution to LTL-OPT.

75

Additional Assumptions and Definitions
Perhaps surprisingly, when planning with a simulator (i.e., generative model),
even infinite data is insufficient to verify an LTL formula without having a
known lower-bound on the lowest nonzero probability of the transition function
P [131]. Without this assumption, LTL constrained policy learning is not
learnable [224]. We thus begin by assuming a known lower bound on entries in
P .3

Assumption 7.1 (Lower Bound). We assume we have access to a lower bound
β > 0 on the lowest non-zero probability of the transition function P :

0 < β ≤ min
s,a,s′∈S×A×S

{P (s, a, s′)|P (s, a, s′) > 0}. (7.2)

We assume that all the costs are strictly positive, avoiding zero-cost (or negative-
cost) cycles that trap a policy. Leveraging cost-perturbations and prior work
[198] can remove the assumption.

Assumption 7.2 (Bounds on cost function). The minimum cost cmin > 0 is
strictly positive.

Let D = {(s, a, s′)} be all the collected samples (s, a, s′) while running the
algorithm. At any point, P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| is the empirical frequency
of visiting s′ from (s, a). We introduce an event E and error ψ(n) to quantify
uncertainty on P̂ (s, a, s′) based on current data: n(s, a) = |{(s, a) ∈ D}|. E
is based on empirical Bernstein bounds [141], and holds w.p. 1 − δ (Lemma
E.2.1).

Definition 7.3.2 (High Probability Event). A high probability event E :
E = {∀s, a, s′ ∈ S × A× S,∀n(s, a) > 1 : |(P (s,a, s′)− P̂ (s, a, s′))|

≤ ψsas′(n) ≤ ψ(n)},

where ψsas′(n) ≡
√

2P̂ (s, a, s′)(1− P̂ (s, a, s′)))ξ(n) + 7
3ξ(n), ψ(n) ≡

√
1
2ξ(n) +

7
3ξ(n), and ξ(n) ≡ log(4n2|S|2|A|

δ
)/(n− 1).

Remark 7.3.1. For some ρ > 0, if we require |P (s, a, s′) − P̂ (s, a, s′)| ≤ ρ

then we need n(s, a) = ψ−1(ρ) samples for state-action pair (s, a). See Lemma
E.2.2 for the quantity ψ−1(ρ).

3Our assumptions are consistent with the minimal requirements studied by [131].

76

Definition 7.3.3 (Plausible Transition Function). The set of plausible transi-
tion functions is given by

P = {P̃ :S ×A → ∆(S)| (7.3)P̃ (s, a, s′) = P̂ (s, a, s′), P̂ (s, a, s′) ∈ {0, 1}

P̃ (s, a, s′) ∈ P̂ (s, a, s′)± ψsas′ ∩ [β, 1− β], otherwise
} (7.4)

Let P(s, a) ≡ {P (s, a, ·)|P ∈ P} be the possible transition distributions for
state-action pair (s, a). We denote Pπ(s, s′) = Ea∼π[P (s, a, s′)] as the Markov
chain given dynamics P with policy π, and can be thought of as a |S| × |S|
matrix Pπ = {pij}|S|

i,j=1.

Main Algorithm: LTL Constrained Planning (LCP)

Algorithm 6 LTL Constrained Planning (LCP)
Require: Error ϵV > 0, Error ϵφ > 0, Tolerance δ > 0, Lower bound β > 0 (see Assumption 7.1)
1: Globally, track P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| {Empirical estimate of P}
2: ((A1,AA1), . . . , (Am,AAk))← FindAMEC((S,A, P̂))
3: for i = 1, . . . , k do
4: Set πi, gi ← PlanRecurrent((Ai,AAi), ϵV

7λ
) {Plan gain-optimal policy πi for Ai}

5: Set π0 ← PlanTransient(((A1, g1), . . . , (Ak, gk)), 2ϵV
9) {Plan shortest paths policy π0 to ∪k

i=1
Ai}

6: return π = ∪k
i=0πi

Our approach, LTL Constrained Planning (LCP), has three components, as
shown in Algorithm 6 and described below. Recall from Problem 1 that the
policy optimization problem LTL-OPT is instantiated over a product MDP
(Def. 7.2.1), and that we are given a generative model of the true dynamics P
from which we can sample transitions s′ ∼ P (s, a) for any state/action pair.

Finding AMECs (FindAMEC). Sampling each state-action pair φFindAMEC =
O(1

β
) times (see Prop. E.2.4), by Assumption 7.1, verifies the support of P .

We can compute all of the MECs using Algorithm 47 from [16]. Among these
MECs, we keep the AMECs, which amounts to checking if the MEC (Ai,AAi

)
contains an accepting state s∗ ∈ S∗ from the given product MDP.

PlanRecurrent (PR). To plan in each AMEC (A,AA) (i.e., find the optimal
recurrent policy), we use Alg. 7 with (extended) relative value iteration (VI,
Alg. 17 in appendix) using the optimistic Bellman operator LαPR (see Table 7.1,
we discuss α in next paragraph). Let πv denote the greedy policy w.r.t. the
fixed point v = LαPRv (v is the optimistic value estimate). Using the η-greedy
policy, π ≡ (1− η)πv + ηUnif(AA) (Alg. 7, Line 7), together with Pπ, makes A

77

Algorithm 7 PlanRecurrent (PR)
Require: AMEC (A,AA), error ϵPR > 0
1: Set ρ← 2ψ(φFindAMEC(β)) {ρ ∼ ∥P − P̃∥−1

1 }
2: repeat
3: Set ρ← ρ

2
4: Sample ψ−1(ρ) times ∀(s, a) ∈ A×AA
5: v′, v, P̃ ← VI(LαPR, dPR, ϵ

L
PR) {v′ = LαPRv}

6: until ρ > ϵPR(1−∆(P̃))
3|A|cmax

{∥P − P̃∥1 small}
7: Set policy π ← η-greedy policy w.r.t. v′

8: Set gain gπ ← 1
2 (max(v′ − v) + min(v′ − v))

9: return π, gπ

recurrent: s∗ ∈ A is visited infinitely often and P [π |= φ|s0 ∈ A] = 1. Since η
can be arbitrarily small (Lemma E.2.7), then gπ ≈ gπv and π is both cost and
probability optimal. As intuited in Section 7.3, π has full support over AA but
is nearly deterministic.4

VI in Line 5 of Alg. 7 is an iterative procedure (Alg. 17 in appendix), and
terminates via dPR < ϵL

PR (Table 7.1). Convergence of extended VI is guaranteed
[166, 94, 66], so long as the dynamics, P̃ = arg minp∈P(s,a) p

Tv, achieving the
inner minimization of LαPR are aperiodic — hence the aperiodicity transform
α ∈ (0, 1) in LαPR [166]. Computing P̃ can be done efficiently [94] (Alg. 18 in
appendix). For stability, we shift each entry of vn by the value of the first entry
vn(0) [21].

Alg. 7 returns the average gain cost gπ of policy π when we have enough samples
for each state-action pair in (A,AA) to verify that n > ψ−1

(
ϵPR(1−∆(P̃π))

3|A|cmax

)
where

∆(P̃π) = 1
2 maxij

∑
k |p̃ik − p̃jk|. Here, ∆(P̃π) is an easily computable measure

on the ergodicity of the Markov chain P̃π [41]. We track ψ(n) (recall Def. 7.3.2)
via a variable ρ and sample ψ−1(ρ) ≈ 1

ρ2 (see Lemma E.2.2) samples from each
state-action pair in (A,AA) (Alg. 7, Line 4). We halve ρ each iteration (Alg. 7,
Line 3) and convergence is guaranteed because ρ will never fall below some
unknown constant ϵPR(1−∆̄A)

6|A|cmax
(see Lemma E.2.8); the halving trick is required

because ∆̄A is unknown a priori.

Proposition 7.3.2 (PR Convergence & Correctness, Informal). Let πA be the
gain-optimal policy in AMEC (A,A). Algorithm 7 terminates after at most

4Typically, RL settings admit a fully deterministic optimal policy, but for LTL constrained
policy optimization the optimal policy may not be deterministic (although can be very nearly
so). See Cost Optimality in Section 7.3.

78
Table 7.1: Subroutine Operators and Parameters for Value Iteration.

Op/Param Description

Lα
PRv(s) mina∈AA(s)

(
C(s, a) + α minp∈P(s,a) pT v

)
+ (1− α)v(s) ∀s ∈ A

dPR(vn+1, vn) < ϵL
PR maxs∈A(vn+1(s)− vn(s))−mins∈A(vn+1(s)− vn(s)) < 2ϵPR

3

LPTv(s)
{

min
{

mina∈AA(s)
(
C(s, a) + minp∈P(s,a) pT v

)
, V̄ /ϵφ

}
, s ∈ S \ ∪k

i=1Ai

λgi, s ∈ Ai

dPT(vn+1, vn) < ϵL
PT ∥vn+1 − vn∥1 < cminϵPTϵφ/(4V̄)

Algorithm 8 PlanTransient (PT)
Require: States & gains: {(Ai, gi)}ki=1, err. ϵPT > 0
1: Set VT (s) = λgi for s ∈ Ai {Terminal costs}
2: Sample φPT times ∀(s, a) ∈ (S \ ∪Ai)×A
3: v′, v, P̃ ← VI(LPT, dPT, ϵ

L
PT, VT) {v′ = LPTv}

4: Set π ←greedy policy w.r.t v′

5: return π

log2

(
6|A|cmax
ϵPR(1−∆̄A)

)
repeats, and collects at most n = Õ(|A|2c2

max
ϵ2PR(1−∆̄A)2) samples for

each (s, a) ∈ (A,AA). The η-greedy policy π w.r.t. v′ (Alg. 7, Line 5) is gain
optimal and probability optimal: |gπ − gπA

| < ϵPR, P [π |= φ|s0 ∈ A] = 1.

PlanTransient (PT). This is the stochastic shortest path (SSP) reduction step
that finds a policy from the initial state s0 to the AMECs (Alg. 8). The main
algorithmic tool used by PlanTransient is similar to that of PlanRecurrent:
it also uses extended value iteration (VI, Alg. 17 in appendix) but with a
different optimistic Bellman operator LPT (Table 7.1), and then returns a (fully
deterministic) greedy policy w.r.t. the resulting optimistic value v (Alg. 8, Line
4). LPT is used to calculate the highest probability, lowest cost path to the
AMECs (Alg. 8, Line 3).

Since rejecting end components might exist (see A3 from Figure 7.2 (Left)), a
trajectory may end up stuck and accumulate cost indefinitely, and so we must
bound ∥v∥∞ < V̄ /ϵφ to prevent blow up. In Prop. E.2.13, we show how to
select V̄ such that π will reach the target states (in this case, the AMECs), first
with high prob and then with lowest cost. The existence of such a bound on
∥v∥∞ was shown to exist, without construction, in [110]. In practice, choosing
a large V̄ is enough.

The terminal costs VT (Alg. 8, Line 1) together with Bellman equation LPT has
value function Ṽπ ≈ p(Jπ + 1

p

∑k
i=1 pigπi

) + (1 − p)V̄ /ϵφ ≈ Vπ, relating to Vπ
(LTL-OPT); see Section E.1. Here, pi = P [π reaches Ai] ≡ Eτ∼TP

π
[1∃s∈τ s.t s∈Ai

]

79

and p = ∑k
i=1 pi. VI converges when dPT < ϵPT (see Table 7.1). Convergence of

extended VI for SSP is guaranteed [198, 110]. The number of samples required
for each state-action pair (s, a) ∈ (S \ ∪Ai)×A is φPT = ψ−1

(
cminϵPTϵ2φ

14|S\∪k
i=1Ai|V̄ 2

)
.

Proposition 7.3.3 (PlanTransient Convergence & Correctness, Informal).
Denote the cost- and prob-optimal policy as π′. After collecting at most n =
Õ(|S\∪k

i=1Ai|2V̄ 4

c2
minϵ

2
PTϵ

4
φ

) samples for each (s, a) ∈ (S \ ∪ki=1Ai)×A, the greedy policy π
w.r.t. v′ (Alg. 8, Line 3) is both cost and probability optimal:
∥Ṽπ − Ṽπ′∥ < ϵPT, |P

[
π reaches ∪ki=1 Ai

]
− P

[
π′ reaches ∪ki=1 Ai

]
| ≤ ϵφ.

7.4 End-To-End Guarantees
The number of samples necessary to guarantee an (ϵV , ϵφ, δ)-PAC approximation
to the cost-optimal and probability-optimal policy relies factors: β (lower bound
on the min. non-zero transition probability of P), {cmin, cmax} (bounds on the
cost function C), ∆̄Ai

(worst-case coefficient of ergodicity for EC (Ai,AAi
)), V̄

(upper bound on the value function), and λ (tradeoff factor).

Theorem 7.4.1 (Sample Complexity). Under the event E, Assumption 7.1
and 7.2, after

n = Õ
(

1
β

+ 1
ϵ2
V

(
|S|2V̄ 4

c2
minϵ

4
φ

+ λ2
k∑
i=1

|Ai|2c2
max

(1− ∆̄Ai
)2

))
samples5 are collected from each state-action pair, the policy π returned by
Algorithm 6 is, with probability 1 − δ, simultaneously ϵV -cost optimal and
ϵφ-probability optimal, satisfying:

(i) |P [π |= φ]− P [π∗ |= φ] | ≤ ϵφ (ii) ∥Vπ − Vπ∗∥∞ < ϵV . (7.5)

With a sufficiently large λ (which may not be verifiable in practice), π is also
gain optimal.

Corollary 7.4.2 (Gain (Average Cost) Optimality). There exists λ∗ > 0 s.t. for
λ > λ∗, the policy π returned by Alg. 6 satisfies (7.5), gπ = arg minπ′∈Πmax gπ′,
and is probability and gain optimal.

The high-level structure of our analysis follows the algorithm structure in Section
7.3, via composing the constituent guarantees. To complete the analysis, we

5The lower bound relating to β from [131] is Ω(log(2δ)
log(1−β)) whereas ours is Õ(1

β). We
conjecture that Ω̃(1

β) samples are required. See Appendix Section E.3.

80

50 100 150 200
Total Number of Samples (× 103)

0.2

0.4

0.6

0.8

1.0

150

160

170

180

190

Mountain Car

LCP (Ours)

LCRL (shaped)

LCRL Max
0.0

200

B
etter

B
etter

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
 o

f
S
a
ti
sf

a
ct

io
n

20

40

60

80

100

T
im

es
te

ps

Pacman

20 4030 50 60

Total Number of Samples (× 103)

B
etter

B
etter

Figure 7.3: Results. (Left Column) Pacman. φ is to eventually collect food
and always avoid the ghost. We let the system run for a maximum of 100
timesteps. (Right Column) Discretized Mountain Car (MC). φ is to eventually
reach the flag.
develop some technical tools which may be of independent interest, including a
gain simulation Lemma E.2.8 and an η-greedy optimality Lemma E.2.7. For
ease of exposition, we also ignore paths between AMECs (see Appendix E.4).

7.5 Empirical Analysis
We perform experiments in two domains: (1) Pacman domain where an agent
finds food and indefinitely avoids a ghost and (2) discretized version of mountain
car (MC) [29], where the agent must reach the flag. Our goal is to understand
whether: (i) our LCP approach (Alg.6) produces competitive polices; (ii)
LCP can work in continuous state spaces through discretization; (iii) LCP
can enjoy efficient sample complexity in practice. For a baseline, we use
Logically Constrained RL (LCRL, [83]), which is a Q-learning approach to
LTL-constrained PO in unknown MDPs. We also do heavy cost shaping to
LCRL as another baseline. See App E.5 for more details and results.

Results
spec in Figure 7.3 (Left) approaches 1 much faster than the two baselines.
The returned policy collects the food quickly and then stays close, but avoids,
the ghost. Any policy that avoids the ghost is equally good, as we have not
incentivized it to stay far away. LCRL redefines cost as 1 if the LTL is solved
and 0 otherwise, which is too sparse and learning suffers. Indeed, shaped LCRL
performs better than straight LCRL.

81

Performance in continuous state space? Similarly, the probability of
satisfying the LTL spec in Figure 7.3 (Right) goes up to 1. However, here
the LCRL (shaped) baseline performs relatively well as it is being given
“breadcrumbs” for how to solve the task. Our algorithm performs well without
needing any cost shaping. Standard LCRL fails to learn. This experiment
demonstrates that LCP can be used even in discretized continuous settings.

Sample Complexity? Our theory is quite conservative w.r.t. empirical
performance. In Pacman (Figure 7.3, Left), Thm. 7.4.1 suggests ≈ 350 samples
per (s, a) pair just to calculate the AMECs. Empirically, LCP finds a good
policy after 11 samples per (s, a) pair (∼ 66k/6k samples/pair).

Other Considerations. One of the strengths and potential drawbacks of LTL
is its specificity. If a φ, for a truly infinite horizon problem, is to “eventually”
do something, then accomplishing the task quickly is not required. As a finite
horizon problem, in MC (Fig. 7.3, Right) SSP finds the fastest path to the goal.
In contrast, since any stochastic policy with full support will “eventually” work,
the policy returned by LCP for Fig 7.1 (Left) (Fig. 7.2 Center, & App Fig.
E.4) may take exponential time to complete a single loop. Two straightforward
ways to address this issue are (a) including explicit time constraints in φ, and
(b) cost shaping to prefer policies reaching some s∗ quickly and repeatedly.
Unlike standard cost-shaping, φ satisfaction is still guaranteed since the cost is
decoupled from φ.

7.6 Related Work
Constrained Policy Optimization. One attempt at simplifying cost func-
tions is to split the desired behaviors from the required behaviors. The desired
behaviors remain as part of the cost function while the required behaviors
are treated as constraints. Recent interest in constrained policy optimization
within the RL community has been related to the constrained Markov Decision
Process (CMDP) framework [10, 123, 4, 142]. This framework enables clean
methods and guarantees, but enforces expected constraint violations rather
than absolute constraint violations. Setting and interpreting constraint thresh-
olds can be very challenging, and inappropriate in safety-critical problems
[121].

LTL + RL. Recently, LTL-constrained policy optimization has been developed
as an alternative to CMDPs [131]. Unlike CMPDs, the entire task is encoded

82

into an LTL expression and is treated as the constraint. Q-learning variants
when dynamics are unknown and Linear Programming methods when dynamics
are known are common solution concepts [176, 83, 27, 33, 50]. The Q-learning
approaches rely on proper, unknowable tuning of discount factor for their
guarantees. Theoretically oriented works include [67, 221]. While providing
PAC-style guarantees, the assumptions made in these works rely on unknowable
policy-environment interaction properties. We make no such assumptions here.

Another solution technique is employing reward machines [205, 34, 210] or
high-level specifications that can be translated into reward machines [99].
These works are generally empirical and handle finite or repeated finite prob-
lems (episodic problems at test time); they can only handle a smaller set of
LTL expressions, specifically regular expressions. Our work handles ω-regular
expressions, subsuming regular expressions and requires a nontrivial leap, algo-
rithmically and theoretically, to access the broader set of allowable expressions.
Many problems are ω-regular problems, but not regular, such as liveness (some-
thing good will happen eventually) and safety (nothing bad will happen forever).
The works that attempt to handle full LTL expressibility redefine reward as 1
if the LTL is solved and 0 otherwise; the cost function of the MDP is entirely
ignored.

Verification and Planning. As an alternative to our approach, one might
consider LTL satisfaction verification and extend it to an optimization technique
by checking every policy (which will naively take an exponential amount of
samples to verify a single policy [28, 13]). Many verification approaches exist
[114, 16, 8, 226, 117, 90] and among the ones that do not assume known
dynamics, the verification guarantees rely on quantities as difficult to calculate
as the original verification problem itself [13].

7.7 Discussion
We have presented a novel algorithm, LCP, for policy optimization under LTL
constraints in an unknown environment. We formally guarantee that the policy
returned by LCP simultaneously has minimal cost with respect to the MDP
cost function and maximal probability of LTL satisfaction. Our experiments
verify that our policies are competitive and our sample estimates conservative.

The assumptions we make are strong, but to the best of our knowledge, are
the most relaxed amongst tractable model-based algorithms proposed for this

83

space. Model-free algorithms (Q-learning) have less stringent assumptions but
do not come with the kind of guarantees that our work has and largely ignore
the cost function, solving only part of the problem. An interesting future
direction would be to extend our work to continuous state and action spaces
and settings with function approximation.

84

Chapter 8

LTL-BASED GUARANTEES IN CONTINUOUS DOMAINS

Linear temporal logic (LTL) offers a simplified way of specifying tasks
for policy optimization that may otherwise be difficult to describe with
scalar reward functions. However, the standard RL framework can be too
myopic to find maximally LTL satisfying policies. This chapter makes
two contributions. First, we develop a new value-function based proxy,
using a technique we call eventual discounting, under which one can
find policies that satisfy the LTL specification with highest achievable
probability. Second, we develop a new experience replay method for
generating off-policy data from on-policy rollouts via counterfactual
reasoning on different ways of satisfying the LTL specification. Our
experiments, conducted in both discrete and continuous state-action
spaces, confirm the effectiveness of our counterfactual experience replay
approach.

We focus on model-free policy learning of an LTL specified objective from
online interaction with the environment. We make two technical contributions.
First, we reformulate the RL problem with a modified value-function proxy
using a technique we call eventual discounting. The key idea is to account for
the fact that optimally satisfying the LTL specification may not depend on the
length of time it takes to satisfy it (e.g., “eventually always reach the goal”).
We prove in Section 8.2 that the optimal policy under eventual discounting
maximizes the probability of satisfying the LTL specification.

Second, we develop an experience replay method to address the reward sparsity
issue. Namely, any LTL formula can be converted to a fully known specialized
finite state automaton from which we can generate multiple counterfactual
trajectories from a single on-policy trajectory. We call this method LTL-guided
counterfactual experience replay. We empirically validate the performance gains
of our counterfactual experience replay approach using both finite state/action
spaces as well as continuous state/action spaces using both Q-learning and
Policy Gradient approaches.

85

ε

⊥

⊥ y

¬y

0

2

1
¬r

y

¬y ⊥¬rr

b1

0

3b

b

2

α 1− α

A B0

Figure 8.1: Examples. First: Illustration of the Flatworld environment. The
agent is a green dot and there are 3 zones: yellow, blue and red. Second:
LDBA B for “FGy”. SB∗ = {1}, denoted by green circle. The initial state is
b−1 = 0. Third: LDBA B for “GF (y & XFr) & G¬b”. SB∗ = {1}, denoted by
green circle. The initial state is b−1 = 1. Fourth: For this example, an agent
starting in state 0 and solving arg maxπ∈Π Eτ∼TP

π
[∑∞

i=0 γ
i1{bi∈SB∗ }] where SB∗

is illustrated as the green circles would choose to take action B with probability
1 if α ∈ (1/2, 1) for any γ ∈ [0, 1]. Such a policy has P [π |= φ] = α < 1.
However the probability optimal policy deterministically takes action A, with
P [π∗ |= φ] = 1. This illustrates catastrophic myopic behavior.
8.1 Problem Formulation
For an introduction to the background for LTL, see Section 2.3. From there,
recall a few key definitions. Let Z = SM × SB. Let Π : Z × A → ∆([0, 1])
be a (stochastic) policy class over the product space of the MDP and the
LDBA (defined below), where A((s, b)) = AM(s) ∪AB(b), to account for jump
transitions in B.

Synchronizing the MDP with the LDBA. For any (s, b) ∈ Z, a policy
π ∈ Π is able to select an action in AM(s) or an action in AB(b), if available. We
can therefore generate a trajectory as the sequence τ = (s0, b0, a0, s1, b0, a1, . . .)
under a new probabilistic transition relation given by

P (s′, b′|s, b, a) =


PM(s, a, s′) a ∈ AM(s), b′ ∈ PB(b, L(s′))

1, a ∈ AB(b), b′ ∈ PB(b, a), s = s′

0, otherwise

. (8.1)

Let the LDBA projection of τ be the subsequence τB = (b0, b1, . . .). Elements
of τB can be thought of as tracking an agent’s LTL specification satisfaction:

Definition 8.1.1 (Run Satisfaction, τ |= φ). We say a trajectory satisfies φ if
B accepts τB, which happens if ∃b ∈ τB infinitely often with b ∈ SB∗ .

Let TP
π = Ez∼dM

0 ×{b−1}[TP
π (z)] be the distribution over all possible trajectories

starting from any initial state z ∈ dM
0 ×{b−1} where TP

π (z) is the (conditional)

86

distribution over all possible trajectories starting from z ∈ Z generated by π
under relation P (given in (8.1)). The probability of LTL satisfaction results
from counting how many of the trajectories satisfy the LTL specification:

Definition 8.1.2 (State Satisfaction, z |= φ). Pπ[z |= φ] = Eτ∼TP
π (z)[1{τ |=φ}] =

Eτ∼TP
π
[1{τ |=φ}|z0 = z].

Definition 8.1.3 (Policy Satisfaction, π |= φ). P[π |= φ] = Eτ∼TP
π
[1{τ |=φ}]

where 1X is the indicator for X.

Ideally we would like to find a policy with highest probability of LTL specifica-
tion satisfaction: one that generates the most number of LTL-satisfying runs.
Formally,

π∗ ∈ arg max
π∈Π

P[π |= φ]. (8.2)
We note that Eq (8.2) is the standard starting point for formulating policy
optimization for LTL satisfaction [224, 27, 32, 83, 84, 215].

8.2 RL-Friendly Form: Eventual Discounting
Unfortunately, the maximization problem in Eq (8.2) is not easily optimized
since we dont have a direct signal on P[π |= φ]. Without any additional
assumptions (such as structured knowledge of the MDP), any finite subsequence
can only give evidence on whether τ |= φ but not a concrete proof.

Eventual Discounting. To address the above issue, we develop a modified
value-function based surrogate as follows. Given a trajectory τ = (s0, b0, a0, . . .),
we keep track of how often bi ∈ SB∗ and incentivize an agent to visit SB∗ as
many times as possible. In particular, under eventual discounting, the value
function will give the agent a reward of 1 when in a state bi ∈ SB∗ and not
discount length of time between visits to SB∗ . Formally, we will be seeking

π∗
γ ∈ arg max

π∈Π
Eτ∼TP

π
[

∞∑
i=0

Γi1{bi∈SB∗ }] (≡ V γ
π), (8.3)

where Γ0 = 1 and

Γi =
i−1∏
t=0

γ(bt), γ(bt) =

γ, bt ∈ SB∗

1, otherwise
. (8.4)

Intuition for Γi. At first glance setting Γi = γi to be the traditional RL
exponential discount rate would seem reasonable. Unfortunately, ∄γ ∈ [0, 1]
with Γi = γi that avoids catastrophic myopic behavior. In particular, take

87

Figure 8.1 (Fourth). The agent starts in state 0 and only has two actions A
and B. Taking action A transitions directly to an accepting state from which
point the accepting state is visited every 2 steps. On the other hand, action
B transitions to an accepting state with probability α and a sink state with
probability 1− α. The accepting state reached by action B is revisited every
step. Suppose β = π(A) = 1− π(B) then we can calculate:

Eτ∼TP
π
[

∞∑
i=0

γi1{bi∈SB∗ }] = β

1− γ2 + (1− β)α
1− γ . (8.5)

For α > 1/2, the optimal choice β is β = 0 implying that P (π |= φ) = α.
When α ∈ (1/2, 1) then this implies that π is not probability optimal. Indeed,
P (π |= φ) = α < 1 when β = 0 but P (π∗ |= φ) = 1 by selecting β = 1. The
intuition here, which can be formalized by taking γ → 1, is that the average
reward for taking action A is 1

2 while the average reward for taking action B is
1 with probability α, which is worth the risk for large α > 1/2.

To avoid this myopic behavior, we must avoid discriminating between return
times between good states. The number steps (on average) it takes to return to
SB∗ is irrelevant: we only require that the system does return. For this reason
we do not count time (hence γ = 1) in our definition of Γi when the system is
not in SB∗ . We call this eventual discounting.

Analysis of π∗
γ

In this section we analyze how the probability of π∗
γ satisfying φ compares to

that of the best possible one π∗.

Let the set O(τ) = {i : bi ∈ SB∗} denote the occurences (time steps) when a
good state is reached. This quantity is natural since |O(τ)| =∞ if and only if
τ |= φ.

Lemma 8.2.1. For any π ∈ Π and γ ∈ (0, 1), we have

|(1− γ)V γ
π − P[π |= φ]| ≤ log(1

γ
)Oπ,

where Oπ = Eτ∼TP
π

[
|O(τ)|

∣∣∣∣∣τ ̸|= φ

]
is the expected number of visits to an ac-

cepting state for the trajectories that do not satisfy φ.

88

Proof. Fix some state z = (s, b) ∈ Z.

V γ
π (z) = Eτ∼TP

π
[

∞∑
i=0

Γi1{bi∈SB∗ }|z0 = z]

= Eτ∼TP
π

|O(τ)|∑
j=0

γj|z0 = z

 .
Using the fact that ∑k

j=0 γ
j = 1−γk

1−γ , we have

V γ
π (z) = Eτ∼TP

π

[
1− γ|O(τ)|

1− γ

∣∣∣∣∣τ |=φ
z0=z

]
Pπ[z |= φ]

+ Eτ∼TP
π

[
1− γ|O(τ)|

1− γ

∣∣∣∣∣τ ̸|=φ
z0=z

]
Pπ[z ̸|= φ]. (8.6)

Since |O(τ)| =∞ for any τ |= φ,

Eτ∼TP
π

[
1− γ|O(τ)|

1− γ

∣∣∣∣∣τ |=φ
z0=z

]
= 1

1− γ , (8.7)

together with Pπ[z ̸|= φ] ≥ 0 implies

V γ
π (z) ≥ 1

1− γPπ[z |= φ]. (8.8)

Taking the expectation over initial states we have

V γ
π ≥

1
1− γP[π |= φ]. (8.9)

Now we find an upper bound. Let Mπ(t) = Eτ∼TP
π

[
et|O(τ)|

∣∣∣∣∣τ ̸|= φ

]
. Starting

again with Eq (8.6) and using Eq (8.7), we have

V γ
π (z) ≤ Pπ[z |= φ]

1− γ +
1− Eτ∼TP

π

[
elog(γ)|O(τ)|

∣∣∣∣∣τ ̸|=φ
z0=z

]
1− γ , (8.10)

where we have used that Pπ[z ̸|= φ] ≤ 1 for any z ∈ Z. Taking the expectation
with respect to the initial state distribution then we have

(1− γ)V γ
π ≤ P[π |= φ] + 1−Mπ(log(γ)) (8.11)

In particular, Mπ(t) is convex and therefore it lies above its tangents:

Mπ(t) ≥Mπ(0) + tM ′
π(0) = 1 + tEτ∼TP

π

[
|O(τ)|

∣∣∣∣∣τ ̸|= φ

]
= 1 + tOπ.

Plugging this inequality into Eq (8.11), together with Eq (8.9),

P[π |= φ] ≤ (1− γ)V γ
π ≤ P[π |= φ] + log(1

γ
)Oπ. (8.12)

Subtracting P[π |= φ] from both sides and taking the absolute value completes
the proof.

89

Theorem 8.2.2. (Non-asymptotic guarantee) For any γ ∈ (0, 1),

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2 log(1

γ
) sup
π∈Π

Oπ, (8.13)

where Oπ = Eτ∼TP
π

[
|O(τ)|

∣∣∣∣∣τ ̸|= φ

]
.

Proof. Consider any sequence {πi}∞
i=1 such that P[πi |= φ]→ supπ P[π |= φ] as

i→∞. Then we have for any πi,
P[πi |= φ]− P[π∗

γ |= φ] = P[πi |= φ]− (1− γ)V γ
πi

+ (1− γ)V γ
πi
− (1− γ)V γ

π∗
γ

+ (1− γ)V γ
π∗

γ
− P[π∗

γ |= φ]
(a)
≤ |P[πi |= φ]− (1− γ)V γ

πi
|

+ |P[π∗
γ |= φ]− (1− γ)V γ

π∗
γ
|

(b)
≤ log(1

γ
)(Oπi

+Oπ∗
γ
)

(c)
≤ 2 log(1

γ
) sup
π∈Π

Oπ,

where (a) is triangle inequality together with removing the term (1− γ)V γ
πi
−

(1 − γ)V γ
π∗

γ
since it is nonpositive by definition of π∗

γ, (b) is an application of
Lemma 8.2.1, and (c) is a supremum over all policies. Taking the limit on both
sides as i→∞ completes the proof.

Corollary 8.2.3. If the number of policies in Π is finite then supπ∈Π Oπ =
m <∞ is attained, is a finite constant and

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2m log(1

γ
).

Corollary 8.2.4. In the case that SM and AM are finite, then Z and A are
finite. It is known that optimal policies are deterministic [166] and therefore
there we need only consider deterministic policies, for which there are a finite
number. Thus supπ∈Π Oπ = m <∞ is attained, is a finite constant and

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2m log(1

γ
).

Interpretation
Theorem 8.2.2 relies on the quantity supπ∈Π Oπ to be finite for the bound to
have meaning. In fact, we need only make requirements on Mπ(log(γ)) but
the requirements are more easily understood on Oπ. As an aside, Mπ(log(γ))

90

can be interpreted as the moment generating function of the random variable
which is the number of visits to SB∗ . Instead we consider the equally natural
quantity Oπ. Oπ is the (average) number of times that a good state is visited
by a trajectory that does not satisfy the specification. Ideally, this number
would be small and it would be easy to discriminate against good and bad
policies.

The bad news. In the case that Π is an infinite class, conditions for ensuring
supπ∈Π Oπ is finite is nontrivial and is dependent on the landscape of the
transition function P of the MDP and Π.

Let us suppose supπ∈Π Oπ is infinite. This means there are policies that induce
bad trajectories that eventually fail to reach SB∗ , but along the way visited
SB∗ an arbitrarily large (but finite) number of times. In other words, they are
policies that are indistinguishable from actual probability-optimal policies until
the heat death of the universe.

For example, let us consider the specification in Figure 8.1 (Third), given by
“indefinitely cycle between red and yellow while avoiding blue”. A good-looking
bad policy is one that accomplishes the task frequently but, amongst the times
that it fails, it would cycle between red and yellow many times before failing.
supπ∈Π Oπ being infinite means that there are policies that will cycle arbitrarily
many times before failing.

The good news. Corollary 8.2.4 reveals that discretization suffices to generate
probability optimal policies, with suboptimality shrinking at a rate of log(1

γ
).

This suggests that compactness of P and Π and continuity of P may very
well be enough but we leave these conditions for future work. Finally, since
all computers deal with finite precision, the number of policies is finite and
therefore Corollary 8.2.3 similarly applies.

8.3 LTL Counterfactual Experience Replay
One can optimize the formulation in Eq (8.3) using any Q-learning or policy
gradient approach, as seen in Algorithm 9 (Line 4). However, doing so is
challenging since it suffers from reward sparsity: the agent only receives a
signal if it reaches a good state.

We combat reward sparsity by exploiting the LDBA: PB is completely known.
By knowing PB, we can generate multiple off-policy trajectories from a single
on-policy trajectory by modifying which stats in the LDBA we start in, which

91
Algorithm 9 Learning with LCER
Require: Maximum horizon T . Replay buffer D = {}.

1: for k = 1, 2, . . . do
2: Run πk−1 in the MDP for T timesteps and collect trajectory τ =

(s0, b0, a0, . . . , sT−1, bT−1, aT−1, sT , bT)
3: Dk ← LCER(Dk−1, τ)
4: πk ← Update(πk−1, Dk) {Q-learn/Policy grad.}

Algorithm 10 LCER for Q-learning
Require: Dataset D. Trajectory τ of length T .

1: for (st, at, st+1) ∈ τ do
2: for b ∈ SB do
3: Set b̃← PB(b, LM(st+1))
4: D ← D ∪ (st, b, at,1b̃∈B∗ , st+1, b̃)
5: for ϵ ∈ AB(s) do
6: Set b̃← PB(b, ϵ)
7: D ← D ∪ (st, b, ϵ,1b̃∈B∗ , st, b̃)
8: return D

notably does not require any access to the MDP transition function PM.
We call this approach LTL-guided Counterfactual Experience Replay, LCER
(Algorithm 9, Line 3), as it is a modification of standard experience replay [130,
143, 144] to include counterfactual experiences elsewhere in the LDBA. LCER is
most simply understood through Q-learning, and needs careful modification
for policy gradient methods.

Q-learning with LCER. See Algorithm 10 for a synopsis of LCER for Q-learning.
Regardless of whatever state s ∈ SM the agent is in, we can pretend that
the agent is in any b ∈ SB. Then for any action the agent takes we can store
experience tuples:

{(s, b, a, r, s′, b̃′) | ∀b ∈ SB}, (8.14)
where b̃′ = PB(b, LM(s′)) is the transition that would have occurred from
observing labelled state L(s′) in state (s, b) and r = 1b̃′∈B∗ . Furthermore we
can add all jump transitions:

{(s, b, ϵ, r, s, b̃′) | ∀b ∈ SB,∀ϵ ∈ AB(b)}, (8.15)
since jumps also do not affect the MDP. Notice when we add the jumps that
s′ = s, since only the LDBA state shifts in a jump.

Policy Gradient with LCER. See Algorithm 11 for a summary of LCER
for policy gradient. For policy gradient, unlike Q-learning, it is necessary to
calculate future reward-to-go: Rk(τ) = ∑T

i=k Γi1{bi∈SB∗ }. Thus, we have to

92
Algorithm 11 LCER for Policy Gradient
Require: Dataset D. Trajectory τ of length T .

1: Set T̃0 ← T̃ (τ)
2: for k = 1, . . . , T − 1 do
3: T̃k ← E(T̃k−1)
4: if T̃k == T̃k−1 then
5: Set T̃T−1 ← T̃k
6: break
7: Set D ← D ∪ T̃T−1
8: return D

generate entire trajectories that are consistent with PB rather than independent
transition tuples as in Eq (8.14). We will show how to generate all feasible
trajectories.

Consider a trajectory τ = (s0, b0, a0, . . . , sT , bT) was collected. Let us remove
jump transitions (si, bi, ai) where ai ∈ AB(bi) and consider the projection of
the trajectory to the MDP τM = (s0, s1, . . . , sT). We should only have control
over the initial LDBA state b0 as all other automaton states (b1, . . . , bT) in a
trajectory sequence are determined by τM and bi+1 = PB(bi, LM(si)).

Therefore we add
T̃ (τ) = {(s0, b̃0, a0, . . . , sT , b̃T) | ∀b̃0 ∈ SB, b̃i = PB(b̃i−1, L

M(si))},
where only the LDBA states are different between the trajectories.

Now we handle jump transitions. Consider some τ̃ ∈ T̃ (τ). Recall, a jump
transition can occur whenever AB(b̃i) is non-empty. This involves adding a
trajectory that is identical to τ̃ all the way until the jump occurs. The jump
occurs and then the same action sequence and MDP state sequence follows
but with different LDBA states. Specifically, suppose b̃i had an available jump
transitions, ϵ ∈ AB(b̃i). Then:

τ̃i,ϵ = (s0, b̃
′
i, a0, . . . , si, b̃

′
i, ϵ, si, b̃

′
i+1, ai, . . . , sT , b̃

′
T), (8.16)

where b̃′
k = b̃i for k ≤ i and b̃′

k = PB(b̃′
k−1, L

M(sk)) otherwise.

We have to add all possible τ̃ ′
i,ϵ that exist. Let E be the operator that adds

jumps to existing sequences:

E(T̃ (τ)) = T̃ (τ) ∪ {τ̃i,ϵ from Eq (8.16)|
∀τ̃ ∈ T̃ (τ),∃bi ∈ τ̃ s.t. ∃ϵ ∈ AB(bi)}. (8.17)

We can only apply E(E(. . . (E(T̃ (τ))))) at most T times since the original length
of τ is T .

93

Remark 8.3.1. The length of τ has to be sufficiently large to make sure the
LDBA has opportunity to reach SB∗. A sufficient condition is T ≥ |{b|AB(b) ̸=
∅}|, the number of LDBA states with jump transitions.

It is possible to constructively generate feasible trajectories during the rollout
of a policy rather than after-the-fact; see Appendix F.2.

ϕ = GF (x &XF y) & G¬r

0 1 2 3 4 5

Minecraft

0.0

0.5

1.0

1.5

2.0

2.5

D
is
co

un
te

d
R
ew

ar
d

Q-Learn (LCER)

Training Steps (x1000)

Q-Learn

Oscillate yellow & blue, avoid red

ϕ = GF (x &XF y) & G¬r
Flatworld

0

1

2

3

4

5

Training Steps (x1000)

Oscillate yellow & red, avoid blue Drive in a circle, never crashStabilize in yellow

0 1 2 3 4 5

Flatworld

0

1

2

3

4

5

Training Steps (x1000)

PPO

Q-Learn (LCER)

Q-Learn

PPO (LCER)

Discrete Actions Cont. Actions

ϕ = FG

0 2.5 5 7.5 10

PPO

Q-Learn (LCER)

Q-Learn

PPO (LCER)

0 5 10 15 20 25

Discrete Actions Cont. Actions

ϕ = GF (x &XF y) & G¬r
Carlo

0

.4

.6

Training Steps (x1000)

1 2

1 2

.2

PPO
PPO (LCER)

20

0

40

60

80

0 2 4 6 8 10
Training Steps (x10000)

Q-Learn (LCER)
Q-Learn

Pacman
ϕ = F () & G¬

Get the food, avoid the ghost

Figure 8.2: Results. Each column is an environment and a LTL formula we’d
like an agent to satisfy. The environment and a trajectory from the final policy
is illustrated in the center of the column (except for Pacman, which is the
initial state). The learning curves at the bottom of each column show that
adding off-policy data using LCER has strong benefits for empirical performance.
First Column: Minecraft, where an agent should visit the yellow and blue
areas while avoiding the red. The final policy is illustrated via blue dots.
Second Column: Pacman, where an agent should collect the food while
avoiding a ghost. Third Column: Flatword, where an agent should eventually
stabilize in the yellow region. When the actions are discrete we use Q-learning,
when the actions are continuous we use PPO. Fourth Column: Same as
the third column except an agent should oscillate between the yellow and red
regions while avoiding the blue. Fifth Column: Carlo, where an agent should
drive in a circle without crashing by visiting the blue regions labelled 1 and 2
indefinitely.

8.4 Experiments
We perform experiments in four domains with varying LTL formulas, state
spaces, action spaces, and environment stochasticity summarized in the fol-
lowing section. Our aim is to answer the following two questions: (1) Can we
achieve policies that behave the way we expect an LTL-satisfying policy to
behave? (2) How does LCER impact the performance of learning.

94

Environment Details
Minecraft The Minecraft environment is a 10× 10 deterministic gridworld
with 5 available actions: left, right, up, down, nothing. The agent, given by
a red triangle starts in the cell (9, 2). The environment, as well as the final
behavior of the agent (given by blue dots) can be seen in Figure 8.2 (First).

Pacman The Pacman environment is a 5× 8 deterministic gridworld with 5
available actions: left, right, up, down, nothing. The agent, given by a red
triangle starts in the cell (0, 3). The ghost chases the agent with probability 0.8
and takes a random action with probability 0.2, for this reason the environment
is stochastic. The starting position of the environment can be seen in Figure
8.2 (Second).

Flatworld The Flatworld environment (seen in Figure 8.2 Third and Fourth)
is a two dimensional continuous world. The agent (given by a green dot) starts
at (−1,−1). The dynamics of the world are given by x′ = x + a/10 where
both x ∈ R2 and a ∈ [0, 1]2. We also allow the action space to be discrete by
letting there be 5 actions (right, up, left, down, nothing) where the agent takes
a full-throttle action in each respective direction.

Carlo The Carlo environment (seen in Figure 8.2 Fifth)is a simplified self-
driving simulator that uses a bicycle model for the dynamics. The agent observes
its position, velocity, and heading in radians for a total of 5 dimensions. The
agent has control over its heading and throttle, for an action space of [−1, 1]2.
For this domain, we have chosen to use a circular track where the agent starts in
the center of the road at an angle of {π(1+2i)/4}3

i=0 and drive counterclockwise
around in a circle without crashing.

Methods and Baseline
When the action space is discrete, we use Q-learning with LCER otherwise we use
PPO with LCER. The baseline we compare against is the same method without
LCER. This allows us to verify the extent to which LCER impacts performance.
We also plot a trajectory from the final policy for each environment in the
middle of each column of Figure 8.2, except for Pacman as it is difficult to
visualize the interaction between the ghost and pacman outside of video.

Dealing with A. For PPO, the agent’s policy is a Gaussian (as in standard
implementations) over the continuous action space. In order to deal with jump
transitions (in the LDBA) when in a continuous action space (in the MDP),

95

we first let the agent decide whether to execute a jump transition or not (i.e. a
probabilistic coin flip). If the agent chooses to not, then we take the action
according to the Gaussian. The coin flip probability is learned, as well as
the Gaussian. For the importance sampling term of PPO, the density of π is
modified to account for the coin flip. For more details see Appendix F.1.

Results
Can we achieve desired behavior? The answer here is a resounding yes.
For each environment (except Pacman) we illustrate the trajectory of the final
policy above each learning curve in Figure 8.2. Determining the probability of
satisfaction of the final policy is currently a challenging open problem (except
in finite-state action spaces). Nevertheless, in each environment the agent
qualitatively accomplishes the task. Even for challenging tasks with continuous
action spaces, the agent is able to learn to accomplish the LTL specification.

Does LCER help in the learning process? According to the learning curves
in the last row of Figure 8.2, LCER demonstrably expedites learning. In every
environment with the exception of Carlo, LCER generates significant lift over
lack of experience replay.

Intuition for why LCER helps? One way of viewing an LDBA is as a
curriculum for what steps need to be taken in order to accomplish a task. By
replacing the LDBA state of the agent with some other dream LDBA state,
we are allowing the agent to “pretend” that it has already accomplished some
portion of the task.

As an example, consider the Flatworld example in Figure 8.2 with φ =
GF (y & XF (r)) & (G¬b). A baseline agent (without LCER) would need
to accomplish the entirety of the task in order to see any reward. However,
an agent with counterfacual data, need only visit y from state 0 of the LDBA
(see figure 8.1 for the LDBA). Then once the agent is really good at getting
to y, it needs to learn how to reach r from state 2. After both of these tasks
are accomplished, independently, the agent has solved the whole task. Placing
the agent in state 0 of the LDBA effectively lets the agent pretend that it has
already visited r. In this sense, part of the task has been accomplished.

96

8.5 Related Work
Finding LTL-satisfying policies. Among the attempts at finding LTL-
satisfying policies, Q-learning approaches have been the primary method of
choice when the dynamics are unknown and Linear Programming methods
when the dynamics are known [176, 83, 27, 33, 50]. The Q-learning approaches
are predominantly constrained to finite state-action spaces. Among the works
that extend to continuous action spaces [84], DDPG is used and takes the form
of hierarchical RL which is known to potentially find myopic policies [205].

Handling a subset of LTL specifications involving those expressible as finite
expressions can also be addressed with Reward machines [205, 34, 210]. Our
work handles ω-regular expressions, subsuming regular expressions. Many
problems are ω-regular problems, but not regular, such as liveness (something
good will happen eventually) and safety (nothing bad will happen forever).

On the formulation in Eq (8.3). Notable prior work on defining the value
function as a function of the number of visits to SB and a state-dependent
Γi function include Bozkurt et al. [27] and Cai et al. [32]. Most notably,
these authors use multiple different state-dependent discount rates that have a
complicated relationships between them that needs to be satisfied in the limit
as γ → 1−. Our work drastically simplifies this, getting rid of the technical
assumptions, while strengthening the guarantees. This allows us to find a
non-asymptotic dependence on the suboptimality of a policies’ probability of
LTL satisfaction as a function of γ.

Off-policy data. One may view the counterfactual samples in Toro Icarte
et al. [205] as an instantiation of LCER, limited to finite LTL expressions and
discrete action spaces. Extension to continuous action space and full LTL
requires a careful treatment. In the continuous action and full LTL setting,
[218] incorporate starting the agent from a different initial LDBA state (than
b−1) which is still on-policy but from a different starting state and doesn’t
take advantage of the entire LDBA structure. This work can be seen as
complimentary to our own.

Theory. Works with strong theoretical guarantees on policy satisfaction
include Fu and Topcu [67], Wolff et al. [221], and Voloshin et al. [215] but are
once again limited to discrete state/action spaces. Extensions of these work to
continuous state space are not trivial as they make heavy use of the discrete
Markov chain structure afforded to them.

97

8.6 Discussion
Our work, to the best of our knowledge, is the first to make full use of the
LDBA as a form of experience replay and first to use policy gradient to learn
LTL-satisfying policies. Our eventual discounting formulation is unrestricted
to Finitary fragments of LTL like most prior work.

Despite the guarantees afforded to us by eventual discounting, in general the
problem given in Eq (8.2) is not PAC learnable [224]. Though, like SAT solvers,
it is still useful to find reasonable heuristics to problems that are difficult.
We show that under particular circumstances, eventual discounting gives a
signal on the quantity of interest in (8.2) and even when it fails, it selects
a policy that is difficult to differentiate from a successful one. Further, the
bad news discussed in Section 8.2 we speculate is unavoidable in general LTL
specifications, without significant assumptions on the MDP. For example, for
stability problems in LTL and assuming control-affine dynamics then Lyapunov
functions can serve as certificates for a policies’ LTL satisfaction. A reasonable
relaxation to this would be require a system to behave a certain way for a long,
but finite amount of time.

98

BIBLIOGRAPHY

[1] Romina Abachi, Mohammad Ghavamzadeh, and Amir-massoud
Farahmand. Policy-Aware Model Learning for Policy Gradient Meth-
ods. 2020. arXiv: 2003.00030 [cs.AI].

[2] David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael
Littman, Doina Precup, and Satinder Singh. “On the Expressivity
of Markov Reward”. In: Advances in Neural Information Processing
Systems. 2021. url: https://proceedings.neurips.cc/paper/
2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf.

[3] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. “Con-
strained Policy Optimization”. In: International Conference on Ma-
chine Learning. 2017, pp. 22–31.

[4] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. “Con-
strained Policy Optimization”. In: Proceedings of the 34th Inter-
national Conference on Machine Learning. 2017. url: https://
proceedings.mlr.press/v70/achiam17a.html (visited on 04/08/2022).

[5] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudıók, John Langford,
and Hanna Wallach. “A reductions approach to fair classification”.
In: arXiv preprint arXiv:1803.02453 (2018).

[6] Alekh Agarwal, Sham Kakade, and Lin F Yang. “Model-based rein-
forcement learning with a generative model is minimax optimal”. In:
Conference on Learning Theory. 2020.

[7] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan.
“Optimality and approximation with policy gradient methods in
markov decision processes”. In: Conference on Learning Theory.
2020.

[8] Gul Agha and Karl Palmskog. “A Survey of Statistical Model Check-
ing”. In: ACM Trans. Model. Comput. Simul. 28.1 (Jan. 2018). issn:
1049-3301. doi: 10.1145/3158668. url: https://doi.org/10.
1145/3158668.

[9] Eitan Altman. Constrained Markov decision processes. Vol. 7. CRC
Press, 1999.

[10] Eitan Altman. Constrained Markov Decision Processes: Stochas-
tic Modeling. en. 1st ed. Boca Raton: Routledge, Dec. 2021. isbn:
978-1-315-14022-3. doi: 10 . 1201 / 9781315140223. url: https :
/ / www . taylorfrancis . com / books / 9781315140223 (visited on
04/08/2022).

https://arxiv.org/abs/2003.00030
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.mlr.press/v70/achiam17a.html
https://proceedings.mlr.press/v70/achiam17a.html
https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1201/9781315140223
https://www.taylorfrancis.com/books/9781315140223
https://www.taylorfrancis.com/books/9781315140223

99

[11] András Antos, Csaba Szepesvári, and Rémi Munos. “Fitted Q-
iteration in continuous action-space MDPs”. In: Advances in neural
information processing systems. 2008, pp. 9–16.

[12] András Antos, Csaba Szepesvári, and Rémi Munos. “Learning near-
optimal policies with Bellman-residual minimization based fitted
policy iteration and a single sample path”. In: Machine Learning
71.1 (2008), pp. 89–129.

[13] Pranav Ashok, Jan Křetínský, and Maximilian Weininger. “PAC Sta-
tistical Model Checking for Markov Decision Processes and Stochastic
Games”. In: Computer Aided Verification. Ed. by Isil Dillig and Ser-
dar Tasiran. Cham: Springer International Publishing, 2019, pp. 497–
519. isbn: 978-3-030-25540-4.

[14] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang.
“Model-based reinforcement learning with value-targeted regression”.
In: International Conference on Machine Learning. 2020.

[15] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anand-
kumar. “Reinforcement learning of POMDPs using spectral methods”.
In: Conference on Learning Theory. 2016.

[16] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
en. Cambridge, Mass: The MIT Press, 2008. isbn: 978-0-262-02649-9.

[17] Heejung Bang and James M. Robins. “Doubly Robust Estimation
in Missing Data and Causal Inference Models”. In: Biometrics 61.4
(2005), pp. 962–973. doi: 10.1111/j.1541-0420.2005.00377.x.

[18] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehra-
bian. “Nearly-tight vc-dimension bounds for piecewise linear neural
networks”. In: Proceedings of the 22nd Annual Conference on Learn-
ing Theory (COLT 2017). Ed. by Satyen Kale and Ohad Shamir.
Vol. 65. Proceedings of Machine Learning Research. PMLR, July
2017, pp. 1064–1068. url: https://proceedings.mlr.press/v65/
harvey17a.html.

[19] Peter L. Bartlett and Shahar Mendelson. “Rademacher and Gaussian
Complexities: Risk Bounds and Structural Results”. In: Proceedings
of the 14th Annual Conference on Computational Learning Theory
and and 5th European Conference on Computational Learning Theory.
COLT ’01/EuroCOLT ’01. Berlin, Heidelberg: Springer-Verlag, 2001,
pp. 224–240. isbn: 3540423435.

[20] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
“The arcade learning environment: An evaluation platform for general
agents”. In: Journal of Artificial Intelligence Research 47 (2013),
pp. 253–279.

https://doi.org/10.1111/j.1541-0420.2005.00377.x
https://proceedings.mlr.press/v65/harvey17a.html
https://proceedings.mlr.press/v65/harvey17a.html

100

[21] Dimitri P Bertsekas et al. “Dynamic programming and optimal
control 3rd edition, volume ii”. In: Belmont, MA: Athena Scientific
(2011).

[22] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and
Dimitri P Bertsekas. Dynamic programming and optimal control.
Vol. 1. 3. Athena scientific Belmont, MA, 2005.

[23] Lars Blackmore, Masahiro Ono, and Brian C Williams. “Chance-
constrained optimal path planning with obstacles”. In: IEEE Trans-
actions on Robotics 27.6 (2011), pp. 1080–1094.

[24] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X.
Charles, D. Max Chickering, Elon Portugaly, Dipankar Ray, Patrice
Simard, and Ed Snelson. “Counterfactual Reasoning and Learning
Systems: The Example of Computational Advertising”. In: Journal
of Machine Learning Research (JMLR) 14 (2013), pp. 3207–3260.

[25] Philippe Bougerol and Nico Picard. “Strict stationarity of generalized
autoregressive processes”. In: The Annals of Probability 20.4 (1992),
pp. 1714–1730. doi: 10.1214/aop/1176989526. url: https://doi.
org/10.1214/aop/1176989526.

[26] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[27] Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos, and Miroslav
Pajic. “Control Synthesis from Linear Temporal Logic Specifica-
tions using Model-Free Reinforcement Learning”. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA). 2020,
pp. 10349–10355. doi: 10.1109/ICRA40945.2020.9196796.

[28] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojtěch
Forejt, Jan Křetínský, Marta Kwiatkowska, David Parker, and Ma-
teusz Ujma. “Verification of Markov Decision Processes Using Learn-
ing Algorithms”. In: Automated Technology for Verification and Anal-
ysis. Ed. by Franck Cassez and Jean-François Raskin. Cham: Springer
International Publishing, 2014, pp. 98–114. isbn: 978-3-319-11936-6.

[29] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym.
2016. eprint: arXiv:1606.01540.

[30] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. “OpenAI Gym”.
In: CoRR abs/1606.01540 (2016). arXiv: 1606.01540.

[31] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. “Openai gym”. In:
arXiv preprint arXiv:1606.01540 (2016).

https://doi.org/10.1214/aop/1176989526
https://doi.org/10.1214/aop/1176989526
https://doi.org/10.1214/aop/1176989526
https://doi.org/10.1109/ICRA40945.2020.9196796
arXiv:1606.01540
https://arxiv.org/abs/1606.01540

101

[32] Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessan-
dro Abate, and Zhen Kan. “Modular deep reinforcement learning for
continuous motion planning with temporal logic”. In: IEEE Robotics
and Automation Letters 6.4 (2021), pp. 7973–7980.

[33] Mingyu Cai, Shaoping Xiao, Zhijun Li, and Zhen Kan. “Optimal
Probabilistic Motion Planning with Potential Infeasible LTL Con-
straints”. In: IEEE Transactions on Automatic Control (2021), pp. 1–
1. doi: 10.1109/TAC.2021.3138704.

[34] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard
Valenzano, and Sheila A. McIlraith. “LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement Learning”.
In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences
on Artificial Intelligence Organization, July 2019, pp. 6065–6073. doi:
10.24963/ijcai.2019/840. url: https://doi.org/10.24963/
ijcai.2019/840.

[35] Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. “An
empirical evaluation of supervised learning in high dimensions”. In:
Proceedings of the 25th international conference on Machine learning.
2008, pp. 96–103.

[36] Rich Caruana and Alexandru Niculescu-Mizil. “An empirical compar-
ison of supervised learning algorithms”. In: Proceedings of the 23rd
international conference on Machine learning. 2006, pp. 161–168.

[37] Olivier Chapelle and Lihong Li. “An empirical evaluation of thompson
sampling”. In: Advances in neural information processing systems.
2011, pp. 2249–2257.

[38] Jinglin Chen and Nan Jiang. “Information-Theoretic Considerations
in Batch Reinforcement Learning”. In: Proceedings of the 36th Inter-
national Conference on Machine Learning. 2019, pp. 1042–1051.

[39] Jinglin Chen and Nan Jiang. “Information-Theoretic Considerations
in Batch Reinforcement Learning”. In: Proceedings of the 36th Inter-
national Conference on Machine Learning. Ed. by Kamalika Chaud-
huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. Long Beach, California, USA: PMLR, June 2019,
pp. 1042–1051.

[40] Ching-An Cheng, Xinyan Yan, Evangelos Theodorou, and Byron
Boots. “Accelerating Imitation Learning with Predictive Models”. In:
Conference on Artificial Intelligence and Statistics (AISTATS). 2019.

[41] Grace E. Cho and Carl D. Meyer. “Comparison of perturbation
bounds for the stationary distribution of a Markov chain”. In: Linear

https://doi.org/10.1109/TAC.2021.3138704
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840

102

Algebra and its Applications 335.1 (2001), pp. 137–150. issn: 0024-
3795. doi: https://doi.org/10.1016/S0024-3795(01)00320-2.

[42] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey
Levine. “Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models”. In: Advances in Neural Information
Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc., 2018, pp. 4754–4765.

[43] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita,
Tamim Asfour, and Pieter Abbeel. “Model-Based Reinforcement
Learning via Meta-Policy Optimization”. In: 2nd Annual Conference
on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October
2018, Proceedings. Vol. 87. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 617–629.

[44] Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári,
and Dale Schuurmans. “Coindice: Off-policy confidence interval esti-
mation”. In: arXiv preprint arXiv:2010.11652 (2020).

[45] Christoph Dann and Emma Brunskill. “Sample complexity of episodic
fixed-horizon reinforcement learning”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 28. 2015, pp. 2818–2826.

[46] Christoph Dann, Gerhard Neumann, and Jan Peters. “Policy evalua-
tion with temporal differences: A survey and comparison”. In: The
Journal of Machine Learning Research 15.1 (2014), pp. 809–883.

[47] Thomas Degris, Martha White, and Richard S Sutton. “Off-Policy
Actor-Critic”. In: (2012).

[48] Marc Peter Deisenroth and Carl Edward Rasmussen. “PILCO: A
Model-Based and Data-Efficient Approach to Policy Search”. In:
Proceedings of the 28th International Conference on International
Conference on Machine Learning. ICML’11. Bellevue, Washington,
USA: Omnipress, 2011, pp. 465–472. isbn: 9781450306195.

[49] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. “Imagenet: A large-scale hierarchical image database”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2009, pp. 248–255.

[50] Xuchu Ding, Stephen L. Smith, Calin Belta, and Daniela Rus. “Op-
timal Control of Markov Decision Processes With Linear Temporal
Logic Constraints”. en. In: IEEE Transactions on Automatic Control
59.5 (May 2014), pp. 1244–1257. issn: 0018-9286, 1558-2523. doi:
10.1109/TAC.2014.2298143.

[51] Victor Dorobantu and Andrew Taylor. LyaPy. https://github.
com/vdorobantu/lyapy. 2020.

https://doi.org/https://doi.org/10.1016/S0024-3795(01)00320-2
https://doi.org/10.1109/TAC.2014.2298143
https://github.com/vdorobantu/lyapy
https://github.com/vdorobantu/lyapy

103

[52] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. “CARLA: An open urban driving simulator”.
In: Conference on robot learning. 2017.

[53] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter
Abbeel. “Benchmarking deep reinforcement learning for continuous
control”. In: International Conference on Machine Learning (ICML).
2016.

[54] Miroslav Dudıók, John Langford, and Lihong Li. “Doubly robust
policy evaluation and learning”. In: International Conference on
Machine Learning (ICML). 2011.

[55] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-Based
Batch Mode Reinforcement Learning”. In: J. Mach. Learn. Res. 6
(Dec. 2005), pp. 503–556. issn: 1532-4435.

[56] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-based
batch mode reinforcement learning”. In: Journal of Machine Learning
Research 6.4 (2005), pp. 503–556.

[57] Amir M Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and
Csaba Szepesvári. “Regularized policy iteration”. In: Advances in
Neural Information Processing Systems. IEEE. 2009, pp. 441–448.

[58] Amir-massoud Farahmand. “Iterative Value-Aware Model Learning”.
In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. Curran Associates, Inc., 2018, pp. 9072–9083.

[59] Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski.
“Value-Aware Loss Function for Model-based Reinforcement Learn-
ing”. In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. Ed. by Aarti Singh and Jerry Zhu. Vol. 54.
Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, Apr. 2017, pp. 1486–1494.

[60] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh.
“More Robust Doubly Robust Off-policy Evaluation”. In: Interna-
tional Conference on Machine Learning (ICML). 2018.

[61] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh.
“More Robust Doubly Robust Off-policy Evaluation”. In: arXiv
preprint arXiv:1802.03493 (2018).

[62] Yihao Feng, Lihong Li, and Qiang Liu. “A kernel loss for solving the
bellman equation”. In: Advances in Neural Information Processing
Systems. 2019, pp. 15430–15441.

104

[63] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learn-
ing: Deep Inverse Optimal Control via Policy Optimization”. In:
Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48. ICML’16. New York,
NY, USA: JMLR.org, 2016, pp. 49–58.

[64] Yoav Freund and Robert E Schapire. “Adaptive Game Playing Us-
ing Multiplicative Weights”. In: Games and Economic Behavior 29
(1999), pp. 79–103.

[65] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The ele-
ments of statistical learning. Springer Series in Statistics. New York,
NY, USA: Springer, 2001.

[66] Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. “Improved
analysis of ucrl2 with empirical bernstein inequality”. In: arXiv
preprint arXiv:2007.05456 (2020).

[67] Jie Fu and Ufuk Topcu. “Probably Approximately Correct MDP
Learning and Control With Temporal Logic Constraints”. In: Robotics:
Science and Systems X, University of California, Berkeley, USA,
July 12-16, 2014. Ed. by Dieter Fox, Lydia E. Kavraki, and Hanna
Kurniawati. 2014. doi: 10.15607/RSS.2014.X.039. url: http:
//www.roboticsproceedings.org/rss10/p39.html.

[68] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey
Levine. D4RL: Datasets for Deep Data-Driven Reinforcement Learn-
ing. 2020. arXiv: 2004.07219 [cs.LG].

[69] Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, ziyu
wang, Alexander Novikov, Mengjiao Yang, Michael R Zhang, Yu-
tian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine, and
Thomas Paine. “Benchmarks for Deep Off-Policy Evaluation”. In:
International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=kWSeGEeHvF8.

[70] Javier García and Fernando Fernández. “A comprehensive survey
on safe reinforcement learning”. In: Journal of Machine Learning
Research 16.1 (2015), pp. 1437–1480.

[71] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengx-
ing Chen, Yuchen He, Zachary Kaden, Vivek Narayanan, and Xiaohui
Ye. “Horizon: Facebook’s Open Source Applied Reinforcement Learn-
ing Platform”. In: arXiv preprint arXiv:1811.00260 (2018).

[72] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen.
“Minimax PAC bounds on the sample complexity of reinforcement
learning with a generative model”. In: Machine learning 91.3 (2013),
pp. 325–349.

https://doi.org/10.15607/RSS.2014.X.039
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://arxiv.org/abs/2004.07219
https://openreview.net/forum?id=kWSeGEeHvF8

105

[73] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[74] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
“Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger. Curran Associates, Inc.,
2014, pp. 2672–2680.

[75] Zhaohan Guo, Philip S Thomas, and Emma Brunskill. “Using Op-
tions and Covariance Testing for Long Horizon Off-Policy Policy
Evaluation”. In: Advances in Neural Information Processing Systems.
2017, pp. 2492–2501.

[76] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A
distribution-free theory of nonparametric regression. Springer Science
& Business Media, 2006.

[77] David Ha and Jürgen Schmidhuber. “World Models”. In: arXiv
preprint arXiv:1803.10122 (2018).

[78] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine.
“Reinforcement Learning with Deep Energy-Based Policies”. In: In-
ternational Conference on Machine Learning. 2017, pp. 1352–1361.

[79] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca
Dragan. “Cooperative inverse reinforcement learning”. In: Advances
in Neural Information Processing Systems. 2016, pp. 3909–3917.

[80] Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini,
and Lijun Zhang. “Lazy probabilistic model checking without deter-
minisation”. In: arXiv preprint arXiv:1311.2928 (2013).

[81] John Michael Hammersley and David Christopher Handscomb. “Monte
Carlo methods”. In: (1964).

[82] Anna Harutyunyan, Marc G. Bellemare, Tom Stepleton, and Rémi
Munos. “Q(lambda) with Off-Policy Corrections”. In: Conference on
Algorithmic Learning Theory (ALT). 2016.

[83] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroen-
ing. Logically-Constrained Reinforcement Learning. 2018. doi: 10.
48550/ARXIV.1801.08099. url: https://arxiv.org/abs/1801.
08099.

[84] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate.
“Deep reinforcement learning with temporal logics”. In: International
Conference on Formal Modeling and Analysis of Timed Systems.
Springer. 2020, pp. 1–22.

https://doi.org/10.48550/ARXIV.1801.08099
https://doi.org/10.48550/ARXIV.1801.08099
https://arxiv.org/abs/1801.08099
https://arxiv.org/abs/1801.08099

106

[85] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Rein-
forcement Learning with Double Q-Learning”. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16.
Phoenix, Arizona: AAAI Press, 2016, pp. 2094–2100.

[86] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Rein-
forcement Learning with Double Q-Learning”. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16.
Phoenix, Arizona: AAAI Press, 2016, pp. 2094–2100.

[87] David Haussler. “Sphere packing numbers for subsets of the Boolean
n-cube with bounded Vapnik-Chervonenkis dimension”. In: Journal
of Combinatorial Theory, Series A 69.2 (1995), pp. 217–232.

[88] Mikael Henaff, Alfredo Canziani, and Yann LeCun. “Model-Predictive
Policy Learning with Uncertainty Regularization for Driving in Dense
Traffic”. In: arXiv preprint arXiv:1901.02705 (2019).

[89] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau,
Doina Precup, and David Meger. “Deep reinforcement learning that
matters”. In: Thirty-Second AAAI Conference on Artificial Intelli-
gence. 2018.

[90] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Syl-
vain Peyronnet. “Approximate Probabilistic Model Checking”. In:
Verification, Model Checking, and Abstract Interpretation. Ed. by
Bernhard Steffen and Giorgio Levi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 73–84. isbn: 978-3-540-24622-0.

[91] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom
Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian
Osband, et al. “Deep q-learning from demonstrations”. In: Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

[92] Daniel G Horvitz and Donovan J Thompson. “A generalization of
sampling without replacement from a finite universe”. In: Journal of
the American statistical Association 47.260 (1952), pp. 663–685.

[93] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg,
and Dario Amodei. “Reward learning from human preferences and
demonstrations in atari”. In: Advances in neural information pro-
cessing systems 31 (2018).

[94] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal
Regret Bounds for Reinforcement Learning”. In: Journal of Machine
Learning Research 11.51 (2010), pp. 1563–1600. issn: 1533-7928.

[95] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. “When
to Trust Your Model: Model-Based Policy Optimization”. In: Ad-
vances in Neural Information Processing Systems 32. Ed. by H.

107

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett. Curran Associates, Inc., 2019, pp. 12519–12530. url:
http://papers.nips.cc/paper/9416- when- to- trust- your-
model-model-based-policy-optimization.pdf.

[96] Nan Jiang and Jiawei Huang. “Minimax Value Interval for Off-
Policy Evaluation and Policy Optimization”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 2747–2758.

[97] Nan Jiang and Lihong Li. “Doubly Robust Off-policy Value Evalua-
tion for Reinforcement Learning”. In: International Conference on
Machine Learning (ICML). 2016.

[98] Nan Jiang and Lihong Li. “Doubly Robust Off-policy Value Evalua-
tion for Reinforcement Learning”. In: International Conference on
Machine Learning. 2016, pp. 652–661.

[99] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. “A com-
posable specification language for reinforcement learning tasks”. In:
Advances in Neural Information Processing Systems 32 (2019).

[100] Sham Kakade and John Langford. “Approximately optimal approxi-
mate reinforcement learning”. In: ICML. Vol. 2. 2002, pp. 267–274.

[101] Sham Machandranath Kakade. “On the sample complexity of re-
inforcement learning”. PhD thesis. University of College London,
2003.

[102] Nathan Kallus and Masatoshi Uehara. “Double reinforcement learn-
ing for efficient off-policy evaluation in markov decision processes”.
In: arXiv preprint arXiv:1908.08526 (2019).

[103] Nathan Kallus and Masatoshi Uehara. “Efficiently breaking the
curse of horizon: Double reinforcement learning in infinite-horizon
processes”. In: arXiv preprint arXiv:1909.05850 (2019).

[104] Joseph DY Kang, Joseph L Schafer, et al. “Demystifying double
robustness: A comparison of alternative strategies for estimating a
population mean from incomplete data”. In: Statistical science 22.4
(2007), pp. 523–539.

[105] Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi Yadkori,
and Benjamin Van Roy. “Conservative Contextual Linear Bandits”.
In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett. Vol. 30. 2017.

http://papers.nips.cc/paper/9416-when-to-trust-your-model-model-based-policy-optimization.pdf
http://papers.nips.cc/paper/9416-when-to-trust-your-model-model-based-policy-optimization.pdf

108

[106] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and
Thorsten Joachims. MOReL : Model-Based Offline Reinforcement
Learning. 2020. arXiv: 2005.05951 [cs.LG].

[107] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann Le-
Cun. 2015. url: http://arxiv.org/abs/1412.6980.

[108] Jyrki Kivinen and Manfred K Warmuth. “Exponentiated Gradient
versus Gradient Descent for Linear Predictors”. In: Information and
Computation 132.1 (1997), pp. 1–63.

[109] Sven Koenig and Reid G. Simmons. “The effect of representation and
knowledge on goal-directed exploration with reinforcement-learning
algorithms”. In: Machine Learning 22.1 (Mar. 1996), pp. 227–250.
issn: 1573-0565. doi: 10.1007/BF00114729.

[110] Andrey Kolobov, Mausam, and Daniel S. Weld. “A Theory of Goal-
Oriented MDPs with Dead Ends”. In: Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelligence. UAI’12.
Catalina Island, CA: AUAI Press, 2012, pp. 438–447.

[111] Jan Křetıónskỳ, Tobias Meggendorfer, and Salomon Sickert. “Owl:
a library for ω-words, automata, and LTL”. In: International Sym-
posium on Automated Technology for Verification and Analysis.
Springer. 2018, pp. 543–550.

[112] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Pro-
ceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1. NIPS’12. Lake Tahoe, Nevada: Cur-
ran Associates Inc., 2012, pp. 1097–1105.

[113] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and
Pieter Abbeel. “Model-Ensemble Trust-Region Policy Optimization”.
In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

[114] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verifica-
tion of Probabilistic Real-time Systems”. In: Proc. 23rd International
Conference on Computer Aided Verification (CAV’11). Ed. by G.
Gopalakrishnan and S. Qadeer. Vol. 6806. LNCS. Springer, 2011,
pp. 585–591.

[115] Michail G Lagoudakis and Ronald Parr. “Least-squares policy itera-
tion”. In: Journal of machine learning research 4.12 (2003), pp. 1107–
1149.

https://arxiv.org/abs/2005.05951
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF00114729

109

[116] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch re-
inforcement learning”. In: Reinforcement learning. Springer, 2012,
pp. 45–73.

[117] Richard Lassaigne and Sylvain Peyronnet. “Probabilistic Verification
and Approximation”. In: Electron. Notes Theor. Comput. Sci. 143
(Jan. 2006), pp. 101–114. issn: 1571-0661. doi: 10.1016/j.entcs.
2005.05.031. url: https://doi.org/10.1016/j.entcs.2005.05.
031.

[118] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos.
“Finite-sample analysis of least-squares policy iteration”. In: Journal
of Machine Learning Research 13.Oct (2012), pp. 3041–3074.

[119] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos.
“Finite-sample analysis of LSTD”. In: ICML-27th International Con-
ference on Machine Learning. 2010, pp. 615–622.

[120] Alessandro Lazaric and Marcello Restelli. “Transfer from multiple
MDPs”. In: Advances in Neural Information Processing Systems.
2011, pp. 1746–1754.

[121] Hoang M Le, Nan Jiang, Alekh Agarwal, Miro Dudík, Yisong Yue, and
Hal Daumé III. “Hierarchical Imitation and Reinforcement Learning”.
In: International Conference on Machine Learning (ICML). July
2018.

[122] Hoang M Le, Andrew Kang, Yisong Yue, and Peter Carr. “Smooth
imitation learning for online sequence prediction”. In: Proceedings of
the 33rd International Conference on International Conference on
Machine Learning-Volume 48. JMLR. org. 2016, pp. 680–688.

[123] Hoang M Le, Cameron Voloshin, and Yisong Yue. “Batch Policy
Learning under Constraints”. In: International Conference on Ma-
chine Learning (ICML). 2019.

[124] Wee Sun Lee, Peter L Bartlett, and Robert C Williamson. “Efficient
agnostic learning of neural networks with bounded fan-in”. In: IEEE
Transactions on Information Theory 42.6 (1996), pp. 2118–2132.

[125] Sergey Levine and Pieter Abbeel. “Learning neural network policies
with guided policy search under unknown dynamics”. In: Advances
in Neural Information Processing Systems. 2014, pp. 1071–1079.

[126] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen.
“Breaking the sample size barrier in model-based reinforcement learn-
ing with a generative model”. In: Advances in neural information
processing systems 33 (2020), pp. 12861–12872.

https://doi.org/10.1016/j.entcs.2005.05.031
https://doi.org/10.1016/j.entcs.2005.05.031
https://doi.org/10.1016/j.entcs.2005.05.031
https://doi.org/10.1016/j.entcs.2005.05.031

110

[127] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. “Unbiased
Offline Evaluation of Contextual-bandit-based News Article Recom-
mendation Algorithms”. In: ACM Conference on Web Search and
Data Mining (WSDM). 2011.

[128] Lihong Li, Rémi Munos, and Csaba Szepesvári. “Toward Minimax
Off-policy Value Estimation”. In: Artificial Intelligence and Statistics.
2015, pp. 608–616.

[129] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
“Continuous control with deep reinforcement learning”. In: Interna-
tional Conference on Learning Representations (ICLR). 2016.

[130] Long-Ji Lin. “Self-improving reactive agents based on reinforcement
learning, planning and teaching”. In: Machine learning 8.3-4 (1992),
pp. 293–321.

[131] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and
James MacGlashan. Environment-Independent Task Specifications
via GLTL. 2017. doi: 10.48550/ARXIV.1704.04341. url: https:
//arxiv.org/abs/1704.04341.

[132] Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and
Yisong Yue. “Robust regression for safe exploration in control”. In:
Learning for Dynamics and Control (L4DC). 2020.

[133] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. “Breaking
the curse of horizon: Infinite-horizon off-policy estimation”. In: Neural
Information Processing Systems (NeurIPS). 2018.

[134] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. “Breaking
the curse of horizon: Infinite-horizon off-policy estimation”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 5361–
5371.

[135] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill.
“Off-Policy Policy Gradient with State Distribution Correction”. In:
arXiv preprint arXiv:1904.08473 (2019).

[136] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch,
Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. “Challenging
Common Assumptions in the Unsupervised Learning of Disentangled
Representations”. In: International Conference on Machine Learning.
2019, pp. 4114–4124.

[137] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell,
and Tengyu Ma. “Algorithmic Framework for Model-based Deep
Reinforcement Learning with Theoretical Guarantees”. In: 7th Inter-
national Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

https://doi.org/10.48550/ARXIV.1704.04341
https://arxiv.org/abs/1704.04341
https://arxiv.org/abs/1704.04341

111

[138] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi
Tang, Lichan Hong, and Ed H Chi. “Off-policy Learning in Two-
stage Recommender Systems”. In: International World Wide Web
Conference (WWW). 2020.

[139] David J. C. MacKay. Information Theory, Inference & Learning Al-
gorithms. USA: Cambridge University Press, 2002. isbn: 0521642981.

[140] Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mo-
hammad Ghavamzadeh. “Finite-sample analysis of Bellman residual
minimization”. In: Proceedings of 2nd Asian Conference on Machine
Learning. 2010, pp. 299–314.

[141] Andreas Maurer and Massimiliano Pontil. Empirical Bernstein Bounds
and Sample Variance Penalization. 2009. doi: 10.48550/ARXIV.
0907.3740. url: https://arxiv.org/abs/0907.3740.

[142] Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and
Robert E Schapire. “Reinforcement learning with convex constraints”.
In: Neural Information Processing Systems (NeurIPS). 2019.

[143] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. “Play-
ing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[144] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. “Human-level control
through deep reinforcement learning”. In: Nature 518.7540 (2015),
pp. 529–533.

[145] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foun-
dations of machine learning. MIT press, 2012.

[146] William H Montgomery and Sergey Levine. “Guided policy search
via approximate mirror descent”. In: Advances in Neural Information
Processing Systems. 2016, pp. 4008–4016.

[147] Rémi Munos. “Error bounds for approximate policy iteration”. In:
ICML. Vol. 3. 2003, pp. 560–567.

[148] Rémi Munos. “Performance bounds in l_p-norm for approximate
value iteration”. In: SIAM journal on control and optimization 46.2
(2007), pp. 541–561.

[149] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Belle-
mare. “Safe and Efficient Off-Policy Reinforcement Learning”. In:
Neural Information Processing Systems (NeurIPS). 2016.

https://doi.org/10.48550/ARXIV.0907.3740
https://doi.org/10.48550/ARXIV.0907.3740
https://arxiv.org/abs/0907.3740

112

[150] Rémi Munos and Csaba Szepesvári. “Finite-time bounds for fitted
value iteration”. In: Journal of Machine Learning Research 9.5 (2008),
pp. 815–857.

[151] Susan A Murphy, Mark J van der Laan, James M Robins, and
Conduct Problems Prevention Research Group. “Marginal mean
models for dynamic regimes”. In: Journal of the American Statistical
Association 96.456 (2001), pp. 1410–1423.

[152] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. “Dualdice:
Behavior-agnostic estimation of discounted stationary distribution
corrections”. In: Advances in Neural Information Processing Systems.
2019, pp. 2315–2325.

[153] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Prob-
lem complexity and method efficiency in optimization. Wiley, 1983.

[154] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance
under reward transformations: Theory and application to reward
shaping”. In: Icml. Vol. 99. 1999, pp. 278–287.

[155] Xinkun Nie, Emma Brunskill, and Stefan Wager. “Learning When-
to-Treat Policies”. In: arXiv preprint arXiv:1905.09751 (2019).

[156] Michael Oberst and David Sontag. “Counterfactual Off-Policy Evalu-
ation with Gumbel-Max Structural Causal Models”. In: International
Conference on Machine Learning. 2019, pp. 4881–4890.

[157] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. “Self-
Imitation Learning”. In: International Conference on Machine Learn-
ing. 2018.

[158] Masahiro Ono, Marco Pavone, Yoshiaki Kuwata, and J Balaram.
“Chance-constrained dynamic programming with application to risk-
aware robotic space exploration”. In: Autonomous Robots 39.4 (2015),
pp. 555–571.

[159] Dirk Ormoneit and Śaunak Sen. “Kernel-based reinforcement learn-
ing”. In: Machine learning 49.2-3 (2002), pp. 161–178.

[160] Ian Osband, Daniel Russo, and Benjamin Van Roy. “(More) effi-
cient reinforcement learning via posterior sampling”. In: Advances in
Neural Information Processing Systems 26 (2013).

[161] Cosmin Paduraru. “Off-policy evaluation in Markov decision pro-
cesses”. PhD thesis. McGill University Libraries, 2013.

[162] Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and
Hervé Frezza-Buet. “Sample-efficient batch reinforcement learning
for dialogue management optimization”. In: ACM Transactions on
Speech and Language Processing (TSLP) 7.3 (2011), p. 7.

113

[163] Michael JD Powell and J Swann. “Weighted uniform sampling—a
Monte Carlo technique for reducing variance”. In: IMA Journal of
Applied Mathematics 2.3 (1966), pp. 228–236.

[164] Doina Precup, Richard S Sutton, and Satinder P Singh. “Eligibility
Traces for Off-Policy Policy Evaluation”. In: Proceedings of the 17th
International Conference on Machine Learning. Morgan Kaufmann
Publishers Inc. 2000, pp. 759–766.

[165] Doina Precup, Richard S. Sutton, and Satinder P. Singh. “Eligibility
Traces for Off-Policy Policy Evaluation”. In: International Conference
on Machine Learning (ICML). 2000.

[166] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[167] Guannan Qu and Adam Wierman. “Finite-time analysis of asyn-
chronous stochastic approximation and Q-learning”. In: Conference
on Learning Theory. 2020.

[168] Guannan Qu, Chenkai Yu, Steven Low, and Adam Wierman. “Ex-
ploiting Linear Models for Model-Free Nonlinear Control: A Provably
Convergent Policy Gradient Approach”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE. 2021, pp. 6539–6546.

[169] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave,
Anssi Kanervisto, and Noah Dormann. Stable Baselines3. https:
//github.com/DLR-RM/stable-baselines3. 2019.

[170] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A Game
Theoretic Framework for Model Based Reinforcement Learning. 2020.
arXiv: 2004.07804 [cs.LG].

[171] Jette Randlòv and Preben Alstròm. “Learning to Drive a Bicycle
Using Reinforcement Learning and Shaping”. In: ICML. 1998.

[172] Martin Riedmiller. “Neural fitted Q iteration–first experiences with
a data efficient neural reinforcement learning method”. In: Machine
Learning: ECML 2005. Springer, 2005, pp. 317–328.

[173] Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange.
“Reinforcement learning for robot soccer”. In: Autonomous Robots
27.1 (2009), pp. 55–73.

[174] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley. “A survey of multi-objective sequential decision-making”.
In: Journal of Artificial Intelligence Research 48 (2013), pp. 67–113.

[175] Stephane Ross and J Andrew Bagnell. “Reinforcement and imita-
tion learning via interactive no-regret learning”. In: arXiv preprint
arXiv:1406.5979 (2014).

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/abs/2004.07804

114

[176] Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, and
Sanjit A. Seshia. “A learning based approach to control synthesis of
Markov decision processes for linear temporal logic specifications”. In:
53rd IEEE Conference on Decision and Control. 2014, pp. 1091–1096.
doi: 10.1109/CDC.2014.7039527.

[177] Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita.
“A Large-scale Open Dataset for Bandit Algorithms”. In: arXiv
preprint arXiv:2008.07146 (2020).

[178] Florian Schaefer and Anima Anandkumar. “Competitive Gradient
Descent”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 7625–
7635. url: http://papers.nips.cc/paper/8979-competitive-
gradient-descent.pdf.

[179] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. “Trust region policy optimization”. In: International
Conference on Machine Learning. 2015, pp. 1889–1897.

[180] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. “Proximal Policy Optimization Algorithms”. In: CoRR
abs/1707.06347 (2017). arXiv: 1707.06347. url: http://arxiv.
org/abs/1707.06347.

[181] E. Seneta. “Perturbation of the stationary distribution measured
by ergodicity coefficients”. In: Advances in Applied Probability 20.1
(1988), pp. 228–230. doi: 10.2307/1427277.

[182] Shai Shalev-Shwartz et al. “Online learning and online convex opti-
mization”. In: Foundations and Trends® in Machine Learning 4.2
(2012), pp. 107–194.

[183] Jack Sherman and Winifred J. Morrison. “Adjustment of an Inverse
Matrix Corresponding to a Change in One Element of a Given
Matrix”. In: Ann. Math. Statist. 21.1 (Mar. 1950), pp. 124–127. doi:
10.1214/aoms/1177729893.

[184] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský.
“Limit-Deterministic Büchi Automata for Linear Temporal Logic”. In:
Computer Aided Verification. Ed. by Swarat Chaudhuri and Azadeh
Farzan. Cham: Springer International Publishing, 2016, pp. 312–332.
isbn: 978-3-319-41540-6.

[185] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. “Mastering
the game of Go with deep neural networks and tree search”. In:
Nature 529.7587 (2016), pp. 484–489.

https://doi.org/10.1109/CDC.2014.7039527
http://papers.nips.cc/paper/8979-competitive-gradient-descent.pdf
http://papers.nips.cc/paper/8979-competitive-gradient-descent.pdf
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.2307/1427277
https://doi.org/10.1214/aoms/1177729893

115

[186] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton.
“Reward is enough”. In: Artificial Intelligence 299 (2021), p. 103535.

[187] Jonathan Sorg. “The Optimal Reward Problem: Designing Effective
Reward for Bounded Agents”. PhD thesis. University of Michigan,
USA, 2011. url: https://hdl.handle.net/2027.42/89705.

[188] Jonathan Sorg, Satinder Singh, and Richard L. Lewis. “Reward
Design via Online Gradient Ascent”. In: Proceedings of the 23rd
International Conference on Neural Information Processing Systems
- Volume 2. NIPS’10. Vancouver, British Columbia, Canada: Curran
Associates Inc., 2010, pp. 2190–2198.

[189] R.S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-
MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning”. In: Artificial Intelligence 112 (1999), pp. 181–211.

[190] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, Mar. 1998. isbn: 0-262-
19398-1.

[191] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[192] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[193] Richard S. Sutton. “Integrated Architectures for Learning, Planning,
and Reacting Based on Approximating Dynamic Programming”. In:
In Proceedings of the Seventh International Conference on Machine
Learning. Morgan Kaufmann, 1990, pp. 216–224.

[194] Richard S. Sutton and Andrew G. Barto. Reinforcement Learn-
ing: An Introduction. Second. The MIT Press, 2018. url: http:
//incompleteideas.net/book/the-book-2nd.html.

[195] Adith Swaminathan and Thorsten Joachims. “Batch learning from
logged bandit feedback through counterfactual risk minimization.” In:
Journal of Machine Learning Research 16.1 (2015), pp. 1731–1755.

[196] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro
Dudik, John Langford, Damien Jose, and Imed Zitouni. “Off-policy
evaluation for slate recommendation”. In: Neural Information Pro-
cessing Systems (NeurIPS). 2017.

[197] Csaba Szepesvári. “Algorithms for reinforcement learning”. In: Syn-
thesis lectures on artificial intelligence and machine learning 4.1
(2010), pp. 1–103.

https://hdl.handle.net/2027.42/89705
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

116

[198] Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro
Lazaric. “Sample Complexity Bounds for Stochastic Shortest Path
with a Generative Model”. en. In: Proceedings of the 32nd Interna-
tional Conference on Algorithmic Learning Theory. Mar. 2021. url:
https://proceedings.mlr.press/v132/tarbouriech21a.html.

[199] Jean Tarbouriech, Runlong Zhou, Simon Shaolei Du, Matteo Pirotta,
Michal Valko, and Alessandro Lazaric. “Stochastic Shortest Path:
Minimax, Parameter-Free and Towards Horizon-Free Regret”. In: Ad-
vances in Neural Information Processing Systems. Ed. by A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021. url:
https://openreview.net/forum?id=cc_AXK6rWPJ.

[200] Guy Tennenholtz, Shie Mannor, and Uri Shalit. “Off-Policy Eval-
uation in Partially Observable Environments”. In: arXiv preprint
arXiv:1909.03739 (2019).

[201] Philip Thomas and Emma Brunskill. “Data-efficient off-policy policy
evaluation for reinforcement learning”. In: International Conference
on Machine Learning (ICML). 2016.

[202] Philip Thomas and Emma Brunskill. “Data-efficient off-policy policy
evaluation for reinforcement learning”. In: International Conference
on Machine Learning. 2016, pp. 2139–2148.

[203] Philip S Thomas, Georgios Theocharous, Mohammad Ghavamzadeh,
Ishan Durugkar, and Emma Brunskill. “Predictive off-policy policy
evaluation for nonstationary decision problems, with applications to
digital marketing”. In: AAAI Conference on Innovative Applications
(IAA). 2017.

[204] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics
engine for model-based control”. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2012, pp. 5026–
5033.

[205] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and
Sheila A. McIlraith. “Reward Machines: Exploiting Reward Function
Structure in Reinforcement Learning”. In: J. Artif. Int. Res. 73
(May 2022). issn: 1076-9757. doi: 10.1613/jair.1.12440. url:
https://doi.org/10.1613/jair.1.12440.

[206] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. “Is deep
reinforcement learning really superhuman on atari? leveling the
playing field”. In: arXiv preprint arXiv:1908.04683 (2019).

[207] John Tsitsiklis and Benjamin Van Roy. “Analysis of temporal-diffference
learning with function approximation”. In: Advances in neural infor-
mation processing systems 9 (1996).

https://proceedings.mlr.press/v132/tarbouriech21a.html
https://openreview.net/forum?id=cc_AXK6rWPJ
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1613/jair.1.12440

117

[208] Masatoshi Uehara, Jiawei Huang, and Nan Jiang. “Minimax Weight
and Q-Function Learning for Off-Policy Evaluation”. In: Proceedings
of the 37th International Conference on Machine Learning. 2020,
pp. 1023–1032.

[209] Masatoshi Uehara, Jiawei Huang, and Nan Jiang. “Minimax weight
and q-function learning for off-policy evaluation”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 9659–9668.

[210] Pashootan Vaezipoor, Andrew C. Li, Rodrigo Toro Icarte, and Sheila
A. McIlraith. “LTL2Action: Generalizing LTL Instructions for Multi-
Task RL”. In: Proceedings of the 38th International Conference on
Machine Learning, ICML. Vol. 139. Proceedings of Machine Learning
Research. 2021, pp. 10497–10508. url: http://proceedings.mlr.
press/v139/vaezipoor21a.html.

[211] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforce-
ment Learning with Double Q-Learning.” In: AAAI. Vol. 2. Phoenix,
AZ. 2016, p. 5.

[212] Kristof Van Moffaert and Ann Nowé. “Multi-objective reinforcement
learning using sets of pareto dominating policies”. In: The Journal
of Machine Learning Research 15.1 (2014), pp. 3483–3512.

[213] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “At-
tention is All You Need”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. NIPS’17. Long
Beach, California, USA: Curran Associates Inc., 2017, pp. 6000–6010.
isbn: 9781510860964.

[214] Cameron Voloshin, Nan Jiang, and Yisong Yue. “Minimax Model
Learning”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2021, pp. 1612–1620.

[215] Cameron Voloshin, Hoang Minh Le, Swarat Chaudhuri, and Yisong
Yue. “Policy Optimization with Linear Temporal Logic Constraints”.
In: Advances in Neural Information Processing Systems. Ed. by Alice
H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. 2022.
url: https://openreview.net/forum?id=yZcPRIZEwOG.

[216] Cameron Voloshin, Hoang Minh Le, Nan Jiang, and Yisong Yue.
“Empirical Study of Off-Policy Policy Evaluation for Reinforcement
Learning”. In: Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (Round 1). Ed. by J.
Vanschoren and S. Yeung. Vol. 1. 2021. url: https://openreview.
net/forum?id=IsK8iKbL-I.

http://proceedings.mlr.press/v139/vaezipoor21a.html
http://proceedings.mlr.press/v139/vaezipoor21a.html
https://openreview.net/forum?id=yZcPRIZEwOG
https://openreview.net/forum?id=IsK8iKbL-I
https://openreview.net/forum?id=IsK8iKbL-I

118

[217] John Von Neumann and Oskar Morgenstern. Theory of games and
economic behavior (commemorative edition). Princeton university
press, 2007.

[218] Chuanzheng Wang, Yinan Li, Stephen L. Smith, and Jun Liu. Con-
tinuous Motion Planning with Temporal Logic Specifications using
Deep Neural Networks. 2020. doi: 10.48550/ARXIV.2004.02610.
url: https://arxiv.org/abs/2004.02610.

[219] Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudík. “Optimal and
Adaptive Off-policy Evaluation in Contextual Bandits”. In: Inter-
national Conference on Machine Learning (ICML). 2017, pp. 3589–
3597.

[220] MA Wiering. “Multi-agent reinforcement learning for traffic light
control”. In: International Conference on Machine Learning (ICML).
2000.

[221] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. “Robust control
of uncertain Markov Decision Processes with temporal logic specifica-
tions”. In: 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC). 2012, pp. 3372–3379. doi: 10.1109/CDC.2012.6426174.

[222] Yihong Wu and Pengkun Yang. “Chebyshev polynomials, moment
matching, and optimal estimation of the unseen”. In: The Annals of
Statistics 47.2 (2019), pp. 857–883. doi: 10.1214/17-AOS1665. url:
https://doi.org/10.1214/17-AOS1665.

[223] Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. “Towards Optimal
Off-Policy Evaluation for Reinforcement Learning with Marginal-
ized Importance Sampling”. In: Advances in Neural Information
Processing Systems. 2019, pp. 9665–9675.

[224] Cambridge Yang, Michael L. Littman, and Michael Carbin. “Re-
inforcement Learning for General LTL Objectives Is Intractable”.
In: CoRR abs/2111.12679 (2021). arXiv: 2111.12679. url: https:
//arxiv.org/abs/2111.12679.

[225] Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, and Dale Schuur-
mans. “Off-Policy Evaluation via the Regularized Lagrangian”. In:
Advances in Neural Information Processing Systems 33 (2020).

[226] Håkan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. “Statisti-
cal Verification of Probabilistic Properties with Unbounded Until”. In:
Formal Methods: Foundations and Applications. Ed. by Jim Davies,
Leila Silva, and Adenilso Simao. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 144–160. isbn: 978-3-642-19829-8.

https://doi.org/10.48550/ARXIV.2004.02610
https://arxiv.org/abs/2004.02610
https://doi.org/10.1109/CDC.2012.6426174
https://doi.org/10.1214/17-AOS1665
https://doi.org/10.1214/17-AOS1665
https://arxiv.org/abs/2111.12679
https://arxiv.org/abs/2111.12679
https://arxiv.org/abs/2111.12679

119

[227] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André
Biedenkapp, Kurtland Chua, Frank Hutter, and Roberto Calandra.
“On the importance of hyperparameter optimization for model-based
reinforcement learning”. In: International Conference on Artificial
Intelligence and Statistics. 2021.

[228] Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru,
George Tucker, Ziyu Wang, and Mohammad Norouzi. “Autoregressive
Dynamics Models for Offline Policy Evaluation and Optimization”.
In: arXiv preprint arXiv:2104.13877 (2021).

[229] Shangtong Zhang, Bo Liu, and Shimon Whiteson. “GradientDICE:
Rethinking Generalized Offline Estimation of Stationary Values”. In:
arXiv preprint arXiv:2001.11113 (2020).

[230] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin
Gruesbeck, David C Parkes, and Richard Socher. “The ai economist:
Improving equality and productivity with ai-driven tax policies”. In:
arXiv preprint arXiv:2004.13332 (2020).

[231] Brian D Ziebart. “Modeling purposeful adaptive behavior with the
principle of maximum causal entropy”. In: (2010).

[232] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind
K Dey. “Maximum Entropy Inverse Reinforcement Learning”. In:
AAAI. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

[233] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind
K. Dey. “Maximum Entropy Inverse Reinforcement Learning”. In:
Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 3. AAAI’08. Chicago, Illinois: AAAI Press, 2008, pp. 1433–
1438. isbn: 9781577353683.

[234] Martin Zinkevich. “Online convex programming and generalized in-
finitesimal gradient ascent”. In: Proceedings of the 20th International
Conference on Machine Learning (ICML-03). 2003, pp. 928–936.

Part IV

APPENDIX

121

Appendix A

CHAPTER 1 APPENDIX

A.1 Glossary of Terms

Acronym Term

OPE Off-Policy Policy Evaluation
X State Space
A Action Space
P Transition Function
R Reward Function
γ Discount Factor
d0 Initial State Distribution
D Dataset
τ Trajectory/Episode
T Horizon/Episode Length
N Number of episodes in D

πb Behavior Policy
πe Evaluation Policy
V , Q Value (ex: V (s)), Action-Value (ex: Q(s, a))
ρi

j:j′ Cumulative Importance Weight,
∏min(j′,T −1)

t=j

πe(ai
t|si

t)
πb(ai

t
|si

t
) . If j > j′ then ρ = 1.

IPS Inverse Propensity Scoring
DM Direct Method
HM Hybrid Method
IS Importance Sampling
PDIS Per-Decision Importance Sampling
WIS Weighted Importance Sampling
PDWIS Per-Decision Weighted Importance Sampling
FQE Fitted Q Evaluation [123]
IH Infinite Horizon [133]
Q-Reg Q Regression [60]
MRDR More Robust Doubly Robst [60]
AM Approximate Model (Model Based)
Q(λ) Qπ(λ) [82]
R(λ) Retrace(λ) [149]
Tree Tree-Backup(λ) [165]
DR Doubly-Robust [97, 54]
WDR Weighted Doubly-Robust [54]
MAGIC Model And Guided Importance Sampling Combining (Estimator) [201]
Graph Graph Environment
Graph-MC Graph Mountain Car Environment
MC Mountain Car Environment
Pix-MC Pixel-Based Mountain Car Environment
Enduro Enduro Environment
Graph-POMDP Graph-POMDP Environment
GW Gridworld Environment
Pix-GW Pixel-Based Gridworld Environment

122

A.2 Ranking of Methods
A method that is within 10% of the method with the lowest Relative MSE is
counted as a top method, called Near-top Frequency, and then we aggregate
across all experiments. See Table A.1 for a sorted list of how often the methods
appear within 10% of the best method.

Table A.1: Fraction of time among the top estimators across all experiments

Method Near-top Frequency

MAGIC FQE 0.300211
DM FQE 0.236786
IH 0.190275
WDR FQE 0.177590
MAGIC Qπ(λ) 0.173362
WDR Qπ(λ) 0.173362
DM Qπ(λ) 0.150106
DR Qπ(λ) 0.135307
WDR R(λ) 0.133192
DR FQE 0.128964
MAGIC R(λ) 0.107822
WDR Tree 0.105708
DR R(λ) 0.105708
DM R(λ) 0.097252
DM Tree 0.084567
MAGIC Tree 0.076110
DR Tree 0.073996
DR MRDR 0.073996
WDR Q-Reg 0.071882
DM AM 0.065539
IS 0.063425
WDR MRDR 0.054968
PDWIS 0.046512
DR Q-Reg 0.044397
MAGIC AM 0.038055
MAGIC MRDR 0.033827
DM MRDR 0.033827
PDIS 0.033827
MAGIC Q-Reg 0.027484
WIS 0.025370
NAIVE 0.025370
DM Q-Reg 0.019027
DR AM 0.012685
WDR AM 0.006342

123

Decision Tree Support
Tables A.2-A.9 provide a numerical support for the decision tree in Figure 3.3.
Each table refers to a child node in the decision tree, ordered from left to right,
respectively. For example, Table A.2 refers to the left-most child node (propery
specified, short horizon, small policy mismatch) while Table A.9 refers to the
right-most child node (misspecified, good representation, long horizon, good πb
estimate).

Table A.2: Near-top Frequency. Prop-
erly specified, short horizon, small pol-
icy mismatch experiments.

DM Hybrid

Direct DR WDR MAGIC

AM 4.7% 4.7% 3.1% 4.7%
Q-Reg 0.0% 4.7% 6.2% 4.7%
MRDR 7.8% 14.1% 7.8% 7.8%
FQE 40.6% 23.4% 21.9% 34.4%
R(λ) 17.2% 20.3% 20.3% 14.1%
Qπ(λ) 21.9% 18.8% 18.8% 17.2%
Tree 15.6% 12.5% 12.5% 14.1%
IH 17.2% - - -

IPS

Standard Per-Decision

IS 4.7% 4.7%
WIS 3.1% 3.1%
NAIVE 1.6% -

Table A.3: Near-top Frequency. Prop-
erly specified, short horizon, large pol-
icy mismatch experiments.

DM Hybrid

Direct DR WDR MAGIC

AM 20.3% 1.6% 0.0% 7.8%
Q-Reg 1.6% 1.6% 3.1% 1.6%
MRDR 3.1% 1.6% 6.2% 1.6%
FQE 35.9% 14.1% 17.2% 37.5%
R(λ) 23.4% 14.1% 20.3% 23.4%
Qπ(λ) 15.6% 15.6% 14.1% 20.3%
Tree 21.9% 12.5% 18.8% 21.9%
IH 29.7% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 1.6%
NAIVE 3.1% -

Table A.4: Near-top Frequency. Pop-
erly specified, long horizon, small pol-
icy mismatch experiments.

DM Hybrid

Direct DR WDR MAGIC

AM 6.9% 0.0% 0.0% 5.6%
Q-Reg 0.0% 1.4% 1.4% 1.4%
MRDR 1.4% 0.0% 1.4% 2.8%
FQE 50.0% 22.2% 23.6% 50.0%
R(λ) 13.9% 12.5% 11.1% 9.7%
Qπ(λ) 20.8% 18.1% 18.1% 18.1%
Tree 2.8% 1.4% 0.0% 2.8%
IH 29.2% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 5.6% -

Table A.5: Near-top Frequency. Prop-
erly specified, long horizon, large pol-
icy mismatch, deterministic env/rew
experiments.

DM Hybrid

Direct DR WDR MAGIC

AM 3.5% 3.5% 1.8% 1.8%
Q-Reg 3.5% 1.8% 0.0% 0.0%
MRDR 3.5% 1.8% 0.0% 0.0%
FQE 15.8% 17.5% 29.8% 28.1%
R(λ) 1.8% 3.5% 0.0% 0.0%
Qπ(λ) 22.8% 15.8% 38.6% 24.6%
Tree 3.5% 3.5% 1.8% 1.8%
IH 21.1% - - -

IPS

Standard Per-Decision

IS 5.3% 3.5%
WIS 0.0% 8.8%
NAIVE 0.0% -

124

Table A.6: Near-top Frequency. Prop-
erly specified, long horizon, large pol-
icy mismatch, stochastic env/rew ex-
periments.

DM Hybrid

Direct DR WDR MAGIC

AM 14.6% 0.0% 0.0% 8.3%
Q-Reg 4.2% 2.1% 0.0% 2.1%
MRDR 4.2% 2.1% 0.0% 0.0%
FQE 31.2% 2.1% 0.0% 25.0%
R(λ) 4.2% 6.2% 0.0% 0.0%
Qπ(λ) 2.1% 0.0% 0.0% 2.1%
Tree 4.2% 6.2% 0.0% 0.0%
IH 41.7% - - -

IPS

Standard Per-Decision

IS 25.0% 4.2%
WIS 0.0% 0.0%
NAIVE 2.1% -

Table A.7: Near-top Frequency. Po-
tentially misspecified, insufficient rep-
resentation experiments.

DM Hybrid

Direct DR WDR MAGIC

AM - - - -
Q-Reg 3.9% 13.7% 25.5% 6.9%
MRDR 0.0% 18.6% 15.7% 5.9%
FQE 0.0% 5.9% 13.7% 24.5%
R(λ) - - - -
Qπ(λ) - - - -
Tree - - - -
IH 6.9% - - -

IPS

Standard Per-Decision

IS 10.8% 8.8%
WIS 9.8% 13.7%
NAIVE 3.9% -

Table A.8: Near-top Frequency. Po-
tentially misspecified, sufficient rep-
resentation, poor πb estimate experi-
ments.

DM Hybrid

Direct DR WDR MAGIC

AM 0.0% 0.0% 0.0% 0.0%
Q-Reg 0.0% 0.0% 3.3% 0.0%
MRDR 13.3% 6.7% 0.0% 0.0%
FQE 0.0% 3.3% 6.7% 10.0%
R(λ) 16.7% 0.0% 6.7% 20.0%
Qπ(λ) 6.7% 0.0% 0.0% 3.3%
Tree 20.0% 0.0% 6.7% 6.7%
IH 0.0% - - -

IPS

Standard Per-Decision

IS 3.3% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -

Table A.9: Near-top Frequency. Po-
tentially misspecified, sufficient rep-
resentation, good πb estimate experi-
ments.

DM Hybrid

Direct DR WDR MAGIC

AM 0.0% 0.0% 0.0% 2.8%
Q-Reg 0.0% 0.0% 0.0% 0.0%
MRDR 0.0% 5.6% 0.0% 5.6%
FQE 8.3% 8.3% 25.0% 11.1%
R(λ) 2.8% 8.3% 8.3% 19.4%
Qπ(λ) 5.6% 5.6% 8.3% 0.0%
Tree 5.6% 8.3% 16.7% 5.6%
IH 0.0% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -

125

A.3 Supplementary Folklore Backup
The following tables represent the numerical support for how horizon and
policy difference affect the performance of the OPE estimators when policy
mismatch is held constant. Notice that the policy mismatch for table A.11 and
A.12 are identical:

(
.124573...

.1

)100
=
(
.9
.1

)10
. What we see here is that despite

identical policy mismatch, the longer horizon does not impact the error as
much (compared to the baseline, Table A.10) as moving πe to .9, far from .1
and keeping the horizon the same.

For the tables in this section we have T = 10, N = 50, πb(a = 0) = 0.1,
πe(a = 0) = 0.1246, unless otherwise specified.

Table A.10: Graph, relative MSE.
Dense rewards. Baseline.

DM Hybrid

Direct DR WDR MAGIC

AM 1.9E-3 4.9E-3 5.0E-3 3.4E-3
Q-Reg 2.4E-3 4.3E-3 4.2E-3 4.5E-3
MRDR 5.8E-3 8.9E-3 9.4E-3 9.2E-3
FQE 1.8E-3 1.8E-3 1.8E-3 1.8E-3
R(λ) 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Qπ(λ) 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Tree 1.8E-3 1.8E-3 1.8E-3 1.8E-3
IH 1.6E-3 - - -

IPS

Standard Per-Decision

IS 5.6E-4 8.4E-4
WIS 1.4E-3 1.4E-3
NAIVE 6.1E-3 -

Table A.11: Graph, relative MSE.
Dense rewards. T = 100. Increasing
horizon compared to baseline, fixed πe.

DM Hybrid

Direct DR WDR MAGIC

AM 5.6E-2 5.9E-2 5.9E-2 5.3E-2
Q-Reg 3.4E-3 1.1E-1 1.2E-1 9.2E-2
MRDR 1.1E-2 2.5E-1 2.9E-1 3.1E-1
FQE 6.0E-2 6.0E-2 6.0E-2 6.0E-2
R(λ) 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Qπ(λ) 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Tree 3.4E-1 7.0E-3 1.6E-3 2.3E-3
IH 4.7E-4 - - -

IPS

Standard Per-Decision

IS 1.7E-2 2.5E-3
WIS 9.5E-4 4.9E-4
NAIVE 5.4E-3 -

Table A.12: Graph, relative MSE. πe(a = 0) = 0.9. Dense rewards. Increasing
πe compared to baseline, fixed horizon.

DM Hybrid

Direct DR WDR MAGIC

AM 6.6E-1 6.7E-1 6.6E-1 6.6E-1
Q-Reg 5.4E-1 6.3E-1 1.3E0 9.3E-1
MRDR 5.4E-1 7.3E-1 2.0E0 2.0E0
FQE 6.6E-1 6.6E-1 6.6E-1 6.6E-1
R(λ) 6.7E-1 6.6E-1 9.3E-1 1.0E0
Qπ(λ) 6.6E-1 6.6E-1 6.6E-1 6.6E-1
Tree 6.7E-1 6.6E-1 9.4E-1 1.0E0
IH 1.4E-2 - - -

IPS

Standard Per-Decision

IS 1.0E0 5.4E-1
WIS 2.0E0 9.7E-1
NAIVE 4.0E0 -

126

A.4 Model Selection Guidelines
For the definition of near-top frequency, see the definition in Section 3.1. For
support of the guideline, see Table A.1)

Table A.13: Model Selection Guidelines.

Class Recommendation When to use Prototypical env.

Direct FQE Stochastic env, severe policy mismatch Graph, MC, Pix-MC
Q(λ) Compute non-issue, moderate policy mismatch GW/Pix-GW
IH Long horizon, mild policy mismatch, good kernel Graph-MC

IPS PDWIS Short horizon, mild policy mismatch Graph
Hybrid MAGIC FQE Severe model misspecification Graph-POMDP, Enduro

MAGIC Q(λ) Compute non-issue, severe model misspecification Graph-POMDP

Table A.14: Model Selection Guideline Cont.

Class Recommendation Near-top Freq.

Direct FQE 23.7%
Q(λ) 15.0%
IH 19.0%

IPS PDWIS 4.7%
Hybrid MAGIC FQE 30.0%

MAGIC Q(λ) 17.3%

127

A.5 Methods
Below we include a description of each of the methods we tested. Let T̃ = T −1.

Inverse Propensity Scoring (IPS) Methods
Table A.15: IPS methods. [54, 97]

Standard Per-Decision

IS
∑N
i=1

ρi
0:T̃
N

∑T̃
t=0 γ

trt
∑N
i=1

∑T̃
t=0 γ

t ρ
i
0:t
N rt

WIS
∑N
i=1

ρi
0:T̃
w0:T̃

∑T̃
t=0 γ

trt
∑N
i=1

∑T̃
t=0 γ

t ρ
i
0:t
w0:t

rt

Table A.15 shows the calculation for the four traditional IPS estimators:
VIS, VPDIS, VWIS, VPDWIS. In addition, we include the following method as
well since it is a Rao-Blackwellization [133] of the IPS estimators:

Hybrid Methods
Hybrid rely on being supplied an action-value function Q̂, an estimate of Q,
from which one can also yield V̂ (s) = ∑

a∈A π(a|s)Q̂(s, a).

Doubly-Robust (DR): [201, 97]

VDR = 1
N

N∑
i=1

V̂ (si0) + 1
N

N∑
i=1

∞∑
t=0

γtρi0:t[rit − Q̂(sit, ait) + γV̂ (sit+1)].

Weighted Doubly-Robust (WDR): [201]

VWDR = 1
N

N∑
i=1

V̂ (si0) +
N∑
i=1

∞∑
t=0

γt
ρi0:t
w0:t

[rit − Q̂(sit, ait) + γV̂ (sit+1)].

MAGIC: [201] Given gJ = {gi|i ∈ J ⊆ N ∪ {−1}} where

gj(D) =
N∑
i=1

j∑
t=0

γt
ρi0:t
w0:t

rit+
N∑
i=1

γj+1 ρ
i
0:t
w0:t

V̂ (sij+1)−
N∑
i=1

j∑
t=0

γt(ρ
i
0:t
w0:t

Q̂(sit, ait)−
ρi0:T̃
w0:T̃

V̂ (sit)),

then define dist(y, Z) = minz∈Z |y − z| and
b̂n(j) = dist(gJj (D), CI(g∞(D), 0.5))

Ω̂n(i, j) = Cov(gJi (D), gJj (D)),
then for a |J |−simplex ∆|J | we can calculate

x̂∗ ∈ arg min
x∈∆|J|

xT [Ω̂n + b̂b̂T]x,

yielding
VMAGIC = (x̂∗)TgJ .

MAGIC can be thought of as a weighted average of different blends of the DM

128

and Hybrid. In particular, for some i ∈ J , gi represents estimating the first i
steps of V (πe) according to DR (or WDR) and then estimating the remaining
steps via Q̂. Hence, VMAGIC finds the most appropriate set of weights which
trades off between using a direct method and a Hybrid.

Direct Methods (DM)
Model-Based

Approximate Model (AM): [97] An approach to model-based value estimation
is to directly fit the transition dynamics P (st+1|st, at), reward R(st, at), and
terminal condition P (st+1 ∈ Sterminal|st, at) of the MDP using some for of
maximum likelihood or function approximation. This yields a simulation
environment from which one can extract the value of a policy using an average
over rollouts. Thus, V (π) = E[∑T

t=1 γ
tr(st, at)|s0 = s, a0 = π(s0)] where the

expectation is over initial conditions s ∼ d0 and the transition dynamics of the
simulator.

Model-Free

Every estimator in this section will approximate Q with Q̂(·; θ), parametrized
by some θ. From Q̂ the OPE estimate we seek is

V = 1
N

N∑
i=1

∑
a∈A

πe(a|s)Q̂(si0, a; θ).

Note that EπeQ(st+1, ·) = ∑
a∈A πe(a|st+1)Q(st+1, a).

Direct Model Regression (Q-Reg): [60]

Q̂(·, θ) = min
θ

1
N

N∑
i=1

T̃∑
t=0

γtρi0:t

(
Ri
t:T̃ − Q̂(sit, ait; θ)

)2

Ri
t:T̃ =

T̃∑
t′=t

γt
′−tρi(t+1):t′r

i
t′

Fitted Q Evaluation (FQE): [123] Q̂(·, θ) = limk→∞ Q̂k where

Q̂k = min
θ

1
N

N∑
i=1

T̃∑
t=0

(Q̂k−1(sit, ait; θ)− yit)2

yit ≡ rit + γEπeQ̂k−1(sit+1, ·; θ)

Retrace(λ) (R(λ)), Tree-Backup (Tree), Qπ(λ): [149, 165, 82]
Q̂(·, θ) = lim

k→∞
Q̂k

129

where

Q̂k(s, a; θ) = Q̂k−1(s, a; θ) + Eπb
[
∑
t≥0

γt
t∏

k=1
ckyt|s0 = s, a0 = a]

and
yt = rt + γEπeQ̂k−1(st+1, ·; θ)− Q̂k−1(st, at; θ)

ck =


λmin(1, πe(ak|sk)

πb(ak|sk)) R(λ)

λπe(ak|sk) Tree

λ Qπ(λ)

.

More Robust Doubly-Robust (MRDR): [60] Given
Ωπb

(s) = diag[1/πb(a|s)]a∈A − eeT

e = [1, . . . , 1]T

Ri
t:T̃ =

T̃∑
j=t

γj−tρi(t+1):jr(sij, aij)

and
qθ(s, a, r) = diag[πe(a′|s)]a′∈A[Q̂(s, a′; θ)]a′∈A − r[1{a′ = a}]a′∈A

where 1 is the indicator function, then

Q̂(·, θ) = min
θ

1
N

N∑
i=1

T̃∑
t=0

γ2t(ρi0:T̃)2 × ρitqθ(sit, ait, Ri
t:T̃)TΩπb

(sit)qθ(sit, ait, Ri
t:T̃).

State Density Ratio Estimation (IH): [133]

VIH =
N∑
i=1

T̃∑
t=0

γtω(sit)ρt:trit∑N
i′=0

∑T̃
t′=1 γ

t′ω(si′t′)ρt′:t′

ω(sit) = lim
t→∞

∑T
t=0 γ

tdπe(sit)∑T
t=0 γ

tdπb
(sit)

,

where πb is assumed to be a fixed data-generating policy, and dπ is the distri-
bution of states when executing π from s0 ∼ d0. The details for how to find ω
can be found in Algorithm 1 and 2 of [133].

130

A.6 Environments
For every environment, we initialize the environment with a fixed horizon
length T . If the agent reaches a goal before T or if the episode is not over by
step T , it will transition to an environment-dependent absorbing state where it
will stay until time T . For a high level description of the environment features,
see Table 3.1.

0

1

2

3

4

2T-3

2T-2

R = +1 or R ~((+1,1)

R = −1 or R ~((−1,1)

a=0

a=1

a=0

a=1

a=1

a=0

ABS

Figure A.1: Graph Envi-
ronment.

0

1-1

-10 10

11
a=0

ABS

R=+
1

a=0

a=1

a=0

a=1

a=1

Figure A.2: Graph-MC
Environment.

Figure A.3: MC Environ-
ment, pixel-version. The
non-pixel version involves
representing the state of
the car as the position
and velocity.

Figure A.4: Enduro En-
vironment.

0

1

2

3

4

2T-3

2T-2

a=0

a=1

a=0

a=1

a=1

a=0

ABS

o=0 o=1 o=T-1

Figure A.5: Graph-
POMDP Environment.
Model-Fail [201] is a
special case of this
environment where T=2.
We also extend the
environment to arbitrary
horizon which makes it a
semi-mdp.

S S S S S S S S

S F H

S H F

S F H F

S H F

S H H F H

S H H H

S H F G

Figure A.6: Gridworld
environment. Blank
spaces indicate areas of
a small negative reward,
S indicates the starting
states, F indicates a field
of slightly less negative re-
ward, H indicates a hole
of severe penalty, G indi-
cates the goal of positive
reward.

Environment Descriptions
Graph

Figure A.1 shows a visualization of the Toy-Graph environment. The graph is
initialized with horizon T and with absorbing state sabs = 2T . In each episode,

131

the agent starts at a single starting state s0 = 0 and has two actions, a = 0
and a = 1. At each time step t < T , the agent can enter state st+1 = 2t+ 1 by
taking action a = 0, or st+1 = 2t+ 2 by taking action a = 1. If the environment
is stochastic, we simulate noisy transitions by allowing the agent to slip into
st+1 = 2t+ 2 instead of st+1 = 2t+ 1 and vice-versa with probability .25. At
the final time t = T , the agent always enters the terminal state sabs. The
reward is +1 if the agent transitions to an odd state, otherwise is −1. If the
environment provides sparse rewards, then r = +1 if sT−1 is odd, r = −1
if sT−1 is even, otherwise r = 0. Similarly to deterministic rewards, if the
environment’s rewards are stochastic, then the reward is r ∼ N(1, 1) if the
agent transitions to an odd state, otherwise r ∼ N(−1, 1). If the rewards are
sparse and stochastic then r ∼ N(1, 1) if sT−1 is odd, otherwise r ∼ N(−1, 1)
and r = 0 otherwise.

Graph-POMDP

Figure A.5 shows a visualization of the Graph-POMDP environment. The
underlying state structure of Graph-POMDP is exactly the Graph environment.
However, the states are grouped together based on a choice of Graph-POMDP
horizon length, H. This parameter groups states into H observable states.
The agent only is able to observe among these states, and not the underlying
MDP structure. Model-Fail [201] is a special case of this environment when
H = T = 2.

Graph Mountain Car (Graph-MC)

Figure A.2 shows a visualization of the Toy-MC environment. This environment
is a 1-D graph-based simplification of Mountain Car. The agent starts at s0 = 0,
the center of the valley and can go left or right. There are 21 total states, 10 to
the left of the starting position and 11 to the right of the starting position, and
a terminal absorbing state sabs = 22. The agent receives a reward of r = −1 at
every timestep. The reward becomes zero if the agent reaches the goal, which
is state x = +11. If the agent reaches x = −10 and continues left then the
agent remains in x = −10. If the agent does not reach state x = +11 by step
T then the episode terminates and the agent transitions to the absorbing state.

132

Mountain Car (MC)

We use the OpenAI version of Mountain Car with a few simplifying modifica-
tions [29, 192]. The car starts in a valley and has to go back and forth to gain
enough momentum to scale the mountain and reach the end goal. The state
space is given by the position and velocity of the car. At each time step, the
car has the following options: accelerate backwards, forwards or do nothing.
The reward is r = −1 for every time step until the car reaches the goal. While
the original trajectory length is capped at 200, we decrease the effective length
by applying every action at five times before observing st+1. Furthermore, we
modify the random initial position from being uniformly between [−.6,−.4] to
being one of {−.6,−.5,−.4}, with no velocity. The environment is initialized
with a horizon T and absorbing state sabs = [.5, 0], position at .5 and no
velocity.

Pixel-based Mountain Car (Pix-MC)

This environment is identical to Mountain Car except the state space has been
modified from position and velocity to a pixel based representation of a ball,
representing a car, rolling on a hill, see Figure A.3. Each frame ft is a 80× 120
image of the ball on the mountain. One cannot deduce velocity from a single
frame, so we represent the state as st = {ft−1, ft} where f−1 = f0, the initial
state. Everything else is identical between the pixel-based version and the
position-velocity version described earlier.

Enduro

We use OpenAI’s implementation of Enduro-v0, an Atari 2600 racing game.
We downsample the image to a grayscale of size (84,84). We apply every action
one time and we represent the state as st = {ft−3, ft−2, ft−1, ft} where fi = f0,

the initial state, for i < 0. See Figure A.4 for a visualization.

Gridworld (GW)

Figure A.6 shows a visualization of the Gridworld environment. The agent
starts at a state in the first row or column (denoted S in the figure), and proceeds
through the grid by taking actions, given by the four cardinal directions, for
T = 25 timesteps. An agent remains in the same state if it chooses an action
which would take it out of the environment. If the agent reaches the goal state

133
Table A.16: Environment parameters - Full description.

Environment Graph Graph-MC MC Pix-MC Enduro Graph-POMDP GW Pix-GW

Is MDP? yes yes yes yes yes no yes yes
State desc. position position [pos, vel] pixels pixels position position pixels
T 4 or 16 250 250 250 1000 2 or 8 25 25
Stoch Env? variable no no no no no no variable
Stoch Rew? variable no no no no no no no
Sparse Rew? variable terminal terminal terminal dense terminal dense dense
Q̂ Func. Class tabular tabular linear/NN NN NN tabular tabular NN
Initial state 0 0 variable variable gray img 0 variable variable
Absorb. state 2T 22 [.5,0] img([.5,0]) zero img 2T 64 zero img
Frame height 1 1 2 2 4 1 1 1
Frame skip 1 1 5 5 1 1 1 1

G, in the bottom right corner of the environment, it transitions to a terminal
state x = 64 for the remainder of the trajectory and receives a reward of +1.
In the grid, there is a field (denoted F) which gives the agent a reward of −.005
and holes (denoted H) which give −.5. The remaining states give a reward of
−.01.

Pixel-Gridworld (Pixel-GW)

This environment is identical to Gridworld except the state space has been
modified from position to a pixel based representation of the position: 1 for
the agent’s location, 0 otherwise. We use the same policies as in the Gridworld
case.

A.7 Experimental Setup
Description of the policies
Graph, Graph-POMDP and Graph-MC use static policies with some probability
of going left and another probability of going right, ex: π(a = 0) = p, π(a =
1) = 1− p, independent of state. We vary p in our experiments.

GW, Pix-GW, MC, Pixel-MC, and Enduro all use an ϵ−Greedy policy. In
other words, we train a policy Q∗ (using value iteration or DDQN) and then
vary the deviation away from the policy. Hence ϵ − Greedy(Q∗) implies we
follow a mixed policy π = arg maxaQ∗(s, a) with probability 1− ϵ and uniform
with probability ϵ. We vary ϵ in our experiments.

Enumeration of Experiments
The set of experiments per table is the Cartesian product of the parameters in
the table.

134

Table A.17: Graph parameters.

Parameters

γ .98
N 23:11

T {4, 16}
πb(a = 0) {.2, .6}
πe(a = 0) .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 random}
ModelType Tabular
Regress πb False

Table A.18: Graph-POMDP parame-
ters.

Parameters

γ .98
N 28:11

(T,H) {(2, 2), (16, 6)}
πb(a = 0) {.2, .6}
πe(a = 0) .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 random}
ModelType Tabular
Regress πb False

Table A.19: Gridworld parameters.

Parameters

γ .98
N 26:11

T 25
ϵ−Greedy, πb {.2, .4, .6, .8, 1.}
ϵ−Greedy, πe .1
Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType Tabular
Regress πb True

Table A.20: Pix-GW parameters.

Parameters

γ .96
N 26:9

T 25
ϵ−Greedy, πb {.2, .4, .6, .8, 1.}
ϵ−Greedy, πe .1
Stochastic Env {True, False}
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType NN
Regress πb {True, False}

Table A.21: Graph-MC parameters.

Parameters

γ .99
N 27:11

T 250

(πb(a = 0), πe(a = 0))
{(.45, .45), (.6, .6), (.45.6)
(.6, .45), (.8, .2), (.2, .8)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType Tabular
Regress πb False

Table A.22: MC parameters.

Parameters

γ .99
N 27:10

T 250

ϵ−Greedy, (πb, πe)
{(.1, 0), (1, 0)
(1, .1), (.1, 1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

135

Table A.23: Pix-MC parameters.

Parameters

γ .97
N 512
T 500

ϵ−Greedy, (πb, πe)
{(.25, 0), (.1, 0)
(.25, .1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

Table A.24: Enduro parameters.

Parameters

γ .9999
N 512
T 500

ϵ−Greedy, (πb, πe)
{(.25, 0), (.1, 0)
(.25, .1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

Representation and Function Class
For the simpler environments, we use a tabular representation for all the
methods. AM amounts to solving for the transition dynamics, rewards, terminal
state, etc. through maximum likelihood. FQE, Retrace(λ), Qπ(λ), and Tree-
Backup are all implemented through dynamics programming with Q tables.
MRDR and Q-Reg used the Sherman Morrison [183] method to solve the
weighted-least square problem, using a basis which spans a table.

In the cases where we needed function approximation, we did not directly fit
the dynamics for AM; instead, we fit on the difference in states P (s′ − s|s, a),
which is common practice.

For the MC environment, we ran experiments with both a linear and NN
function class. In both cases, the representation of the state was not changed
and remained [position, velocity]. The NN architecture was dense with [16,8,4,2]
as the layers. The layers had relu activations (except the last, with a linear
activation) and were all initialized with truncated normal centered at 0 with a
standard deviation of 0.1.

For the pixel-based environments (MC, Enduro), we use a convolutional NN.
The architechure is a layer of size 8 with filter (7,7) and stride 3, followed by
maxpooling and a layer of size 16 with filter (3,3) and stride 1, followed by
max pooling, flattening and a dense layer of size 256. The final layer is a dense
layer with the size of the action space, with a linear activation. The layers had
elu activations and were all initialized with truncated normal centered at 0
with a standard deviation of 0.1. The layers also have kernel L2 regularizers
with weight 1e-6.

136

When using NNs for the IH method, we used the radial-basis function and a
shallow dense network for the kernel and density estimate respectively.

Datasets
Datasets are not included as part of COBS since our benchmark is completely
simulation based. To recreate any dataset, select the appropriate choice of
environment parameters from the experiments enumerated in Section A.7.

Choice of hyperparameters.
Many methods require selection of convergence criteria, regularization param-
eters, batch sizes, and a whole host of other hyperparameters. Often there
is a trade-off between computational cost and the accuracy of the method.
Hyperparameter search is not feasible in OPE since there is no proper validation
(like game score in learning). See Tables A.7, A.8 for a list of hyperparameters
that were chosen for the experiments.

Figure A.7: Hyperparameters for each model by Environment.

Method Parameter Graph TMC MC Pix-MC Enduro Graph-POMDP GW Pix-GW

AM

Max Traj Len T T 50 50 - T T T
NN Fit Epochs - - 100 100 - - - 100
NN Batchsize - - 32 32 - - - 25
NN Train size - - .8 .8 - - - .8
NN Val size - - .2 .2 - - - .2
NN Early Stop delta - - 1e-4 1e-4 - - - 1e-4

Q-Reg

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 32 32 32 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Early Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

FQE

Convergence ϵ 1e-5 1e-5 1e-4 1e-4 1e-4 1e-5 4e-4 1e-4
Max Iter - - 160 160 600 - 50 80
NN Batchsize - - 32 32 32 - - 32
Optimizer Clipnorm - - 1. 1. 1. - - 1.

IH
Quad. prog. regular. 1e-3 1e-3 - - - 1e-3 1e-3 -
NN Fit Epochs - - 10001 10001 10001 - - 1001
NN Batchsize - - 1024 128 128 - - 128

137

Figure A.8: Hyperparameters for each model by Environment, Cont.

Method Parameter Graph TMC MC Pix-MC Enduro Graph-POMDP GW Pix-GW

MRDR

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 1024 1024 1024 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Early Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

R(λ)

λ .9 .9 .9 - - .9 .9 .9
Convergence ϵ 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

Qπ(λ)

λ .9 .9 .9 - - .9 .9 .9
Convergence ϵ 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

Tree

λ .9 .9 .9 - - .9 .9 .9
Convergence ϵ 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

138

A.8 Additional Supporting Figures

Figure A.9: Enduro DM vs IPS. πb
is a policy that deviates uniformly
from a trained policy 25% of the
time, πe is a policy trained with
DDQN. IH has relatively low error
mainly due to tracking the simple av-
erage, since the kernel function did
not learn useful density ratio. The
computational time required to cal-
culate the multi-step rollouts of AM,
Retrace(λ), Qπ(λ), Tree-Backup(λ)
exceeded our compute budget and
were thus excluded.

Figure A.10: MC comparison. N =
256. πb is a uniform random policy,
πe is a policy trained with DDQN.

139

Figure A.11: Enduro DM vs HM. πb
is a policy that deviates uniformly
from a trained policy 25% of the
time, πe is a policy trained with
DDQN.

Figure A.12: Comparison of Direct
methods’ performance across hori-
zon and number of trajectories in
the Graph environment. Small pol-
icy mismatch under a deterministic
environment.

Figure A.13: (Graph domain) Com-
paring DMs across horizon length
and number of trajectories. Large
policy mismatch and a stochastic en-
vironment setting.

Figure A.14: Comparing DM to
DR in a stochastic environment with
large policy mismatch. (Graph)

140

Figure A.15: Comparison between
FQE, IH, and WIS in a low data
regime. For low policy mismatch,
IPS is competitive to DM in low
data, but as the policy mismatch
grows, the top DM outperform. Ex-
periments ran in the Gridworld En-
vironment.

Figure A.16: Comparison between
IPS methods and IH with dense vs
sparse rewards. Per-Decision IPS
methods see substantial improve-
ment when the rewards are dense.
Experiments ran in the Graph envi-
ronment with π(a = 0) = .6, πe(a =
0) = .8

Figure A.17: Exact vs Estimated
πb. Exact πb = .2−Greedy, πe =
.1−Greedy. Min error per class.
(Pixel Gridworld, deterministic)

Figure A.18: Exact vs Estimated πb.
Exact πb =uniform, πe = .1−Greedy.
Min error per class. (Pixel Grid-
world, deterministic)

141

Figure A.19: Hybrid Method com-
parison. πb(a = 0) = .2, πe(a = 0) =
.8. Min error per class. (Graph-MC)

Figure A.20: Hybrid Method com-
parison. πb(a = 0) = .8, πe(a = 0) =
.2. Min error per class. (Graph-MC)

Figure A.21: Hybrid Method com-
parison. πb(a = 0) = .6, πe(a = 0) =
.6. Min error per class. (Graph-MC)

Figure A.22: Hybrid Method com-
parison. Exact πb = .2−Greedy,
πe = .1−Greedy. Min error per class.
(Pixel Gridworld)

142

Figure A.23: Hybrid Method com-
parison. πb = .8−Greedy(optimal),
πe = .1−Greedy(optimal). Min er-
ror per class. (Pixel Gridworld)

Figure A.24: Class comparison with
unknown πb. At first, HM underper-
form DM because πb is more diffi-
cult to calculate leading to imprecise
importance sampling estimates. Ex-
act πb = .2−Greedy(optimal), πe =
.1−Greedy(optimal). Min error per
class. (Pixel Gridworld, stochastic
env with .2 slippage)

Figure A.25: Class comparison with
unknown πb. At first, HM underper-
form DM because πb is more diffi-
cult to calculate leading to imprecise
importance sampling estimates. Ex-
act πb = .6−Greedy(optimal), πe =
.1−Greedy(optimal). Min error per
class. (Pixel Gridworld, stochastic
env with .2 slippage)

Figure A.26: Class comparison with
unknown πb. At first, HM under-
perform DM because πb is more
difficult to calculate leading to im-
precise importance sampling esti-
mates. Exact πb =uniform, πe =
.1−Greedy(optimal). Min error per
class. (Pixel Gridworld, stochastic
env with .2 slippage)

143

Figure A.27: AM Direct vs Hybrid comparison for AM. (Gridworld)

Figure A.28: FQE Direct vs Hybrid comparison. (Gridworld)

Figure A.29: MRDR Direct vs Hybrid comparison. (Gridworld)

144

Figure A.30: Q-Reg Direct vs Hybrid comparison. (Gridworld)

Figure A.31: Qπ(λ) Direct vs Hybrid comparison. (Gridworld)

Figure A.32: Retrace(λ) Direct vs Hybrid comparison. (Gridworld)

145

Figure A.33: Tree-Backup Direct vs Hybrid comparison. (Gridworld)

Figure A.34: DR comparison with
πb = .2−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

Figure A.35: WDR comparison
with πb = .2−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

Figure A.36: MAGIC comparison
with πb = .2−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

Figure A.37: DR comparison with
πb = .8−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

146

Figure A.38: WDR comparison
with πb = .8−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

Figure A.39: MAGIC comparison
with πb = .8−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Grid-
world)

147

Appendix B

CHAPTER 2 APPENDIX

Acronym Term

OPE Off Policy (Policy) Evaluation
OPO Off Policy (Policy) Optimization. Also goes by batch off-policy reinforcement learning.
S State Space
A Action Space
P Transition Function
P ∗ True Transition Function
R Reward Function
X State-Action Space S ×A
γ Discount Factor
π Policy
J(π, P) Performance of π in P
V P

π Value Function of π with respect to P
d0 Initial State Distribution
dP,γ

π (Discounted) Distribution of State-Action Pairs Induced by Running π in P

wP
π Distribution Shift (wP

π (s, a) = d
P,γ
π (s,a)

Dπb
(s,a))

ν Lebesgue measure
dπb Behavior state distribution
πb Behavior policy
Dπb Behavior data (dπb πb)
D Dataset containing samples from Dπb P ∗

En[·] Empirical approximation using D
E[·] Exact expectation
W Distribution Shifts Function Class (e.g. dP

π (s,a)
Dπ(s,a))

V Value Function Class (e.g. V P
π ∈ V)

P Model Function Class (e.g. P ∈ P)
L Model Learning Loss Function
P̂ Best Model w.r.t L
ϵH Misspecification Error
π∗

P Optimal Policy in P
RKHS Reproducing Kernel Hilbert Space
LQR Linear Quadratic Regulator
IP Inverted Pendulum
MML Minimax Model Learning (Ours)
MLE Maximum Likelihood Estimation
VAML Value-Aware Model Learning

148

B.1 OPE
In this section we explore the OPE results in the order in which they were
presented in the chapter.

Main Result
Proof for Theorem 4.3.1. Assume (wP ∗

π , V P
π) ∈ W × V. Fix some P ∈ P. We

use both definitions of J as follows:
J(π, P)− J(π, P ∗)
= Ed0 [V P

π]− E(s,a)∼dP ∗
π,γ ,r∼R(·|s,a)[r]

= E(s,a)∼dP ∗
π,γ

[V P
π (s)− Er∼R(·|s,a)[r]] + Ed0 [V P

π]− E(s,a)∼dP ∗
π,γ

[V P
π (s)]

= E(s,a)∼dP ∗
π,γ

[V P
π (s)− Er∼R(·|s,a)[r]]−

∞∑
t=1

γt
∫
dP

∗

π,t(s, a)V P
π (s)dν(s, a)

= E(s,a)∼dP ∗
π,γ

[γEs′∼P (·|s,a)[V P
π (s′)]]− γ

∞∑
t=0

γt
∫
dP

∗

π,t+1(s, a)V P
π (s)dν(s, a)

= γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]]− γ

∞∑
t=0

γt
∫
dP

∗

π,t(s̃, ã)P ∗(s|s̃, ã)π(a|s)V P
π (s)dν

= γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]]− γ

∞∑
t=0

γt
∫
dP

∗

π,t(s, a)P ∗(s′|s, a)V P
π (s′)dν

= γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]]− γE(s,a)∼dP ∗

π,γ
[Es′∼P ∗(·|s,a)[V P

π (s′)]]

= γE(s,a)∼dP ∗
π,γ

[Es′∼P (·|s,a)[V P
π (s′)]− Es′∼P ∗(·|s,a)[V P

π (s′)]]

= γE(s,a,s′)∼Dπb
P ∗(·|s,a)[

dP
∗

π,γ(s, a)
Dπb

(s, a)
(
Ex∼P (·|s,a)[V P

π (x)]− V P
π (s′)

)
]]

= γE(s,a,s′)∼Dπb
P ∗(·|s,a)[wP

∗

π (s, a)
(
Ex∼P (·|s,a)[V P

π (x)]− V P
π (s′)

)
]]

= γL(wP ∗

π , V P
π , P),

where the first equality is definition. The second equality is addition of 0. The
third equality is simplification. The fourth equality is change of bounds. The
fifth is definition. The sixth is relabeling of the integration variables. The
seventh and eighth are simplification. The ninth is importance sampling. The
tenth and last is definition. Since (wP ∗

π , V P
π) ∈ W × V then

|J(π, P)− J(π, P ∗)| = γ|L(wP ∗

π , V P
π , P)|

≤ γ max
w∈W,V ∈V

|L(w, V, P)| ≤ γmin
P∈P

max
w∈W,V ∈V

|L(w, V, P)|,
where the last inequality holds because P was selected in P arbitrarily.

149

Now, instead, assume (wPπ , V P ∗
π) ∈ W × V . Fix some P ∈ P . Then, similarly,

J(π, P)− J(π, P ∗) = E(s,a)∼dP
π,γ ,r∼R(·|s,a)[r]− Ed0 [V P ∗

π]

= E(s,a)∼dP
π,γ

[V P ∗

π (s)]− Ed0 [V P ∗

π]− E(s,a)∼dP
π,γ

[V P ∗

π (s)− Er∼R(·|s,a)[r]]

=
∞∑
t=1

γt
∫
dPπ,t(s, a)V P ∗

π (s)dν(s, a)− E(s,a)∼dP
π,γ

[V P ∗

π (s)− Er∼R(·|s,a)[r]]

= γ
∞∑
t=0

γt
∫
dPπ,t+1(s, a)V P ∗

π (s)dν(s, a)− E(s,a)∼dP
π,γ

[γEs′∼P ∗(·|s,a)[V P ∗

π (s′)]]

= γ
∞∑
t=0

γt
∫
dPπ,t(s̃, ã)P (s|s̃, ã)π(a|s)V P ∗

π (s)dν − γE(s,a)∼dP
π,γ

[Es′∼P ∗(·|s,a)[V P ∗

π (s′)]]

= γ
∞∑
t=0

γt
∫
dPπ,t(s, a)P (s′|s, a)V P ∗

π (s′)dν − γE(s,a)∼dP
π,γ

[Es′∼P ∗(·|s,a)[V P ∗

π (s′)]]

= γE(s,a)∼dP
π,γ

[Es′∼P (·|s,a)[V P ∗

π (s′)]]− γE(s,a)∼dP
π,γ

[Es′∼P ∗(·|s,a)[V P ∗

π (s′)]]

= γE(s,a)∼dP
π,γ

[Es′∼P (·|s,a)[V P ∗

π (s′)]− Es′∼P ∗(·|s,a)[V P ∗

π (s′)]]

= γE(s,a,s′)∼Dπb
P ∗(·|s,a)[

dPπ,γ(s, a)
Dπb

(s, a)
(
Ex∼P (·|s,a)[V P ∗

π (x)]− V P ∗

π (s′)
)
]]

= γE(s,a,s′)∼Dπb
P ∗(·|s,a)[wPπ (s, a)

(
Ex∼P (·|s,a)[V P ∗

π (x)]− V P ∗

π (s′)
)
]]

= γL(wPπ , V P ∗

π , P),
where we follow the same steps as in the previous derivation. Since (wPπ , V P ∗

π) ∈
W × V then
|J(π, P)− J(π, P ∗)| = γ|L(wPπ , V P ∗

π , P)|
≤ γ max

w∈W,V ∈V
|L(w, V, P)| ≤ γmin

P∈P
max

w∈W,V ∈V
|L(w, V, P)|,

where the last inequality holds because P was selected in P arbitrarily.

Sample Complexity for OPE
We do not have access to exact expectations, so we must work with P̂n =
arg minP maxw,V En[. . .] instead of P̂ = arg minP maxw,V E[. . .]. Furthermore,
J(π, P̂) requires exact expectation of an infinite sum: Ed0 [

∑∞
t=0 γ

trt] where
we collect rt by running π in simulation P̂ . Instead, we can only estimate
an empirical average over a finite sum in P̂n: JT,m(π, P̂n) = 1

m

∑m
j=1

∑T
t=0 γ

trjt ,
where each j indexes rollouts starting from s0 ∼ d0 and the simulation is over
P̂n. Our OPE estimate is therefore bounded as follows:

Theorem B.1.1. [OPE Error] Let the functions in V and W be uniformly
bounded by CV and CW respectively. Assume the conditions of Theorem 4.3.1

150

hold and |R| ≤ R̄, γ ∈ [0, 1). Then, with probability 1− δ,
|JT,m(π, P̂n)− J(π, P ∗)| ≤ γmin

P
max
w,V
|L(w, V, P)|

+ 4γRn(W ,V ,P) + 2R̄
1− γ γ

T+1

+ 2R̄
1− γ

√
log(2/δ)/(2m) + 4γCWCV

√
log(2/δ)/n,

where Rn(W ,V ,P) is the Rademacher complexity of the function class
{(s, a, s′) 7→w(s, a)(Ex∼P [V (x)]− V (s′)) :

w ∈ W , V ∈ V , P ∈ P}.

Proof for Theorem B.1.1. By definition and triangle inequality,
|JT,m(π, P̂n)− J(π, P ∗)| = |JT,m(π, P̂n)− J(π, P̂n) + J(π, P̂n)− J(π, P ∗)|

≤ |JT,m(π, P̂n)− J(π, P̂n)|︸ ︷︷ ︸
(a)

+ |J(π, P̂n)− J(π, P ∗)|︸ ︷︷ ︸
(b)

. (B.1)

Define V̂ P
π,T (si0) ≡

∑T
t=0 γ

trit for some trajectory indexed by i ∈ N where rit is
the reward obtained by running π in P at time t ≤ T starting at si0. For (a),

|JT,m(π, P̂n)− J(π, P̂n)|

=
∣∣∣∣∣ 1
m

m∑
i=1

V̂ P̂n
π,T (si0)−

1
m

m∑
i=1

V̂ P̂n
π,∞(si0) + 1

m

m∑
i=1

V̂ P̂n
π,∞(si0)− Ed0 [V P̂n

π]
∣∣∣∣∣

≤
∣∣∣∣∣ 1
m

m∑
i=1

V̂ P̂n
π,T (si0)−

1
m

m∑
i=1

V̂ P̂n
π,∞(si0)

∣∣∣∣∣+
∣∣∣∣∣ 1
m

m∑
i=1

V̂ P̂n
π,∞(si0)− Ed0 [V P̂n

π]
∣∣∣∣∣

≤ 2R̄
1− γ γ

T+1 + 2R̄
1− γ

√
log(2/δ)/(2m), (B.2)

with probability 1 − δ, where the last inequality is definition of V̂π,T and
Hoeffding’s inequality.

For (b), by Theorem 4.3.1,
|J(π, P̂n)− J(π, P ∗)| = γ|L(wP ∗

π , V P̂n , P̂n)| ≤ γmax
w,V
|L(w, V, P̂n)|

= γ(max
w,V
|L(w, V, P̂n)| −max

w,V
|Ln(w, V, P̂n)|+ max

w,V
|Ln(w, V, P̂n)|

−max
w,V
|L(w, V, P̂)|+ max

w,V
|L(w, V, P̂)|)

≤ γ(2 max
w,V,P

||L(w, V, P)| − |Ln(w, V, P)||+ min
P

max
w,V
|L(w, V, P)|)

≤ γ(2R′
n(W ,V ,P) + 2K

√
log(2/δ)/n+ min

P
max
w,V
|L(w, V, P)|)

≤ γ(4Rn(W ,V ,P) + 2K
√

log(2/δ)/n+ min
P

max
w,V
|L(w, V, P)|), (B.3)

151

where R′
n(W ,V ,P) is the Rademacher complexity of the function class

{(s, a, s′) 7→ |w(s, a)(Ex∼P [V (x)]− V (s′))| : w ∈ W , V ∈ V , P ∈ P},

noting that K = 2CwCV uniformly bounds |w(s, a)(Ex∼P (·|s,a)[V (x)]− V (s′))|
(Theorem 8 [19]). Furthermore since absolute value is 1-Lipshitz (by reverse
triangle ineq), then R′

n < 2Rn (Theorem 12 [19]) where Rn(W ,V ,P) is the
Rademacher complexity of the function class
{(s, a, s′) 7→ w(s, a)(Ex∼P (·|s,a)[V (x)]− V (s′))) : w ∈ W , V ∈ V , P ∈ P}.

Altogether, combining (1), (2), (3) we get our result.

The first term can be thought of as the estimate under infinite data, the
second term as the penalty for using function classes that are too rich, and the
remaining terms as the price we pay for finite data/ finite calculations.

Misspecification for OPE
When the assumptions behind MML do not hold, our method underbounds
the true error. The following is the proof for this Proposition.

Proof for Prop. 4.3.5. We have shown already that J(π, P̂) − J(π, P ∗) =
γL(wP ∗

π , V P
π , P) (= γL((WV)∗, P)). Therefore, by linearity of L in H, we

have
|L((WV)∗, P)| = |L(h, P) + L((WV)∗ − h, P)| ∀h ∈ H, P ∈ P

≤ |L(h, P)|+ |L((WV)∗ − h, P)|
≤ min

P
max
h
|L(h, P)|+ |L(h− (WV)∗, P)|

≤ min
P

max
h
|L(h, P)|+ max

P
min
h
|L((WV)∗ − h, P)|,

where ϵH = maxP minh |L((WV)∗ − h, P)|. Therefore |J(π, P̂) − J(π, P ∗)| ≤
γ(minP maxh |L(h, P)|+ ϵH), as desired.

Application to the Online Setting and Brief VAML Comparison
Algorithm 12 is the prototypical online model-based RL algorithm. In contrast
to the batch setting, we allow for online data collection. We require a function
called PLANNER, which can take a model Pk and find the optimal solution πk
in Pk.

152
Algorithm 12 Online Model-Based RL
Require: π0 = πb. PLANNER(·)

1: for k = 0, 1, . . . , K do
2: Collect data Dk by interacting with the true environment using πk.
3: Fit Pk ← arg minP∈P maxw,V ∈W,V LMML(w, V, P) where Dπb

= Dk

4: Fit πk ← PLANNER(Pk)
5: return (PK , πK)

Here we show that MML lower bounds the VAML error in online model-based
RL, where VAML is designed.

Proposition B.1.2. Let W = {1}. Then
min
P∈P

max
w∈W,V ∈V

LMML(w, V, P)2 ≤ min
P∈P
LV AML(V , P),

for every V ,P.

Proof. Fix P ∈ P . Then, by definition,
LMML(w, V, P) = E(s,a,s′)∼Dπb

P ∗ [w(s, a)(Ex∼P (·|s,a)[V (x)]− V (s′))]
. SinceW = {1}, then we can eliminate this dependence and get LMML(1, V, P) =
E(s,a,s′)∼Dπb

P ∗ [Ex∼P (·|s,a)[V (x)]− V (s′)]. Explicitly,
LMML(1, V, P)2

= (
∫ (∫

P (x|s, a)V (x)dν(x)−
∫
P ∗(s′|s, a)V (s′)dν(s′)

)
dν(s, a))2

= (
∫ (∫

(P (x|s, a)− P ∗(x|s, a))V (s′)dν(x)
)
dν(s, a))2

≤
∫ (∫

(P (x|s, a)− P ∗(x|s, a))V (x)dν(x)
)2
dν(s, a), Cauchy Schwarz

Taking the maxV ∈V on both sides and noting maxV
∫
f(V) ≤

∫
maxV f(V) for

any f, V then

max
V ∈V
LMML(1, V, P)2 ≤

∫
max
V ∈V

(∫
(P (x|s, a)− P ∗(x|s, a))V (x)dν(x)

)2
dν(s, a)

= LV AML(V , P). (B.4)
Since we chose P arbitrarily, then Eq B.4 holds for any P ∈ P . In particular,
if P̂V AML = arg minP∈P LV AML(V , P) then

min
P∈P

max
V ∈V
LMML(1, V, P)2 ≤ max

V ∈V
LMML(1, V, P̂V AML)2 ≤ min

P∈P
LV AML(V , P).

153

Prop B.1.2 reflects that the MML loss function is a tighter loss in the online
model-based RL case than VAML. In a sense, this reflects that MML should be
the preferred decision-aware loss function even in online model-based RL. An
argument in favor of VAML is that it is more computationally tractable given
an assumption that V is the set of linear function approximators. However, if
we desire to use more powerful function approximation VAML suffers the same
computational issues as MML. In general the pointwise supremum within VAML
presents a substantial computational challenge while the uniform supremum
from MML is much more mild, can be formulated as a two player game and
solved via higher-order gradient descent (see Section B.4).

Lastly, VAML defines the pointwise loss with respect to the L2 norm of the
difference between P and P ∗. The choice is justified in that it is computationally
friendlier but it is noted that L1 may also be reasonable [59]. We show in the
following example that, actually, VAML may not work with a pointwise L1

error.

Example B.1.1. Let S = A ∪ B, a disjoint partition of the state space.
For simplicity, assume no dependence on actions. Suppose our models P =
{Pα}α∈[0,1] take the form

Pα(s′|s) =

α s′ ∈ A

1− α s′ ∈ B
.

Suppose also that P ∗
α∗ ∈ P for some α∗ ∈ [0, 1]. Let V = {x1s∈A(s) +

y1s∈B(s)|x, y < M ∈ R+} be all bounded piecewise constant value functions
with ∥V ∥∞ = M ∈ R+. Then the empirical VAML loss with L1 pointwise
distance does not choose P ∗ when α ̸= 1

2 and cannot differentiate between P ∗

and any other P ∈ P when α∗ = 1
2 . MML does not have this issue.

Proof. To show this, first fix P ∈ P. Then the empirical VAML loss (in
expectation) is given by
Es∼P ∗ [max

V
|Ex∼P [V (x)]− V (s)|]

= α∗ max
V
|Ex∼P [V (x)]− V (A)|+ (1− α∗) max

V
|Ex∼P [V (x)]− V (B)|

= α∗ max
x,y∈[0,M]

|αx+ (1− α)y − x|+ (1− α∗) max
x,y∈[0,M]

|αx+ (1− α)y − y|

= α∗ max
x,y∈[0,M]

|(α− 1)(x− y)|+ (1− α∗) max
x,y∈[0,M]

|α(x− y)|

= (α∗|α− 1|+ (1− α∗)|α|)M.

154

If α∗ < .5 then the minimizer of the above quantity is α = 0, if α∗ > .5 then
the minimizer is α = 1. Therefore, if α∗ ∈ (0, .5)∪ (.5, 1) then VAML picks the
wrong model α ≠ α∗. Additionally, in the case that α∗ = .5 then the loss is M

2

for every P ∈ P . In this case, VAML with L1 cannot differentiate between any
model; all models are perfectly identical.

On the other hand, we repeat this process with MML:
|Es∼P ∗ [Ex∼P [V (x)]− V (s)]|
= |α∗(Ex∼P [V (x)]− V (A)) + (1− α∗)(Ex∼P [V (x)]− V (B))|
= |α∗(αx+ (1− α)y − x) + (1− α∗)(αx+ (1− α)y − y)|
= |α∗(α− 1)(x− y) + (1− α∗)α(x− y)|
= |α− α∗||x− y|.

Clearly minα∈[0,1] maxx,y∈[0,M] |α− α∗||x− y| = 0 where α = α∗.

We do not have to worry about the choice of norm for MML because we know
that the OPE error is precisely LMML. On the other hand, as shown in the
example, this is not the case for VAML.

155

B.2 OPO
In this section we explore the OPO results, as presented in the chapter.

Main Result
Proof for Theorem 4.4.1. Fix some P ∈ P . Through addition of 0, we get
J(π∗

P ∗ , P ∗)− J(π∗
P , P

∗) = J(π∗
P ∗ , P ∗)− J(π∗

P ∗ , P) + J(π∗
P ∗ , P)− J(π∗

P , P)
+ J(π∗

P , P)− J(π∗
P , P

∗).
Since π∗

P is optimal in P then J(π∗
P ∗ , P)− J(π∗

P , P) ≤ 0 which implies
J(π∗

P ∗ , P ∗)− J(π∗
P , P

∗) ≤ J(π∗
P ∗ , P ∗)− J(π∗

P ∗ , P) + J(π∗
P , P)− J(π∗

P , P
∗)

Taking the absolute value of both sides, triangle inequality and invoking Lemma
4.3.1 yields:
|J(π∗

P ∗ , P ∗)− J(π∗
P̂
, P ∗)| ≤ 2γmax

w,V
|L(w, V, P̂)| = 2γmin

P
max
w,V
|L(w, V, P)|

when wP
∗

π∗
P ∗
, wP

∗
π∗

P
∈ W and V P

π∗
P ∗
, V P

π∗
P
∈ V for every P ∈ P, or alternatively

wPπ∗
P ∗
, wPπ∗

P
∈ W and V P ∗

π∗
P ∗
, V P ∗

π∗
P
∈ V for every P ∈ P .

Sample Complexity for OPO
Since we will only have access to the empirical version P̂n rather than P̂ , we
provide the following bound

Theorem B.2.1 (Learning Error). Let the functions in V and W be uniformly
bounded by CV and CW respectively. Assume the conditions of Theorem 4.4.1
hold and |R| ≤ R̄, γ ∈ [0, 1). Then, with probability 1− δ,

|J(π∗
P̂n
,P ∗)− J(π∗

P ∗ , P ∗)| ≤ 2γmin
P

max
w,V
|L(w, V, P)|

+ 8γRn(W ,V ,P) + 8γCWCV

√
log(2/δ)/n,

where Rn(W ,V ,P) is the Rademacher complexity of the function class
{(s, a, s′) 7→ w(s, a)(Ex∼P [V (x)]− V (s′)) : w ∈ W , P ∈ P , V ∈ V}.

Proof for Theorem B.2.1. By Theorem 4.4.1,
|J(π∗

P̂n
, P ∗)− J(π∗

P ∗ , P ∗)| ≤ 2γmax
w,V
|L(w, V, P̂n)|.

We have shown in the proof of Theorem 4.3.1 that
max
w,V
|L(w, V, P̂n)| ≤ min

P
max
w,V
|L(w, V, P)|+4Rn(W ,V ,P)+4CWCV

√
log(2/δ)/n.

Combining the two completes the proof.

This bound has the same interpretation as in the OPO case; see Section B.1.

156

Misspecification
Similarly as in Section B.1, we show the misspecification gap for OPO in the
following result.

Lemma B.2.2 (OPO Misspecification). Let H ⊂ (S × A × S → R) be
functions on (s, a, s′). Denote (WV)∗

P ∗ = wP
∗

π∗
P ∗

(s, a)V P
π∗

P ∗
(s′) and (WV)∗

P =
wP

∗
π∗

P
(s, a)V P

π∗
P
(s′). Then:

|J(π, P̂)− J(π, P ∗)| ≤ 2γ
(

min
P∈P

max
h∈H
|L(h, P)|+ ϵH

)
, (B.5)

where
ϵH = max(max

P∈P
min
h∈H
|L((WV)∗

P ∗ − h, P)|,max
P∈P

min
g∈H
|L((WV)∗

P − g, P)|).

Proof for Lemma B.2.2. From the proof of Theorem 4.4.1,
J(π∗

P ∗ , P ∗)− J(π∗
P , P

∗) ≤ J(π∗
P ∗ , P ∗)− J(π∗

P ∗ , P) + J(π∗
P , P)− J(π∗

P , P
∗)

= L(wP ∗

π∗
P ∗
, V P

π∗
P ∗
, P) + L(wP ∗

π∗
P
, V P

π∗
P
, P).

Using the result from proof of Lemma 4.3.5,
|L(wP ∗

π∗
P ∗
, V P

π∗
P ∗
, P) + L(wP ∗

π∗
P
, V P

π∗
P
, P)|

≤ |L(h, P) + L((WV)∗
P ∗ − h, P)|+ |L(g, P) + L((WV)∗

P − g, P)|
≤ 2 min

P
max
h∈H
|L(h, P)|+ max

P
min
h∈H
|L((WV)∗

P ∗ − h, P)|

+ max
P

min
g∈H
|L((WV)∗

P − g, P)|

≤ 2(min
P

max
h∈H
|L(h, P)|+ ϵH),

where
ϵH = max(max

P
min
h
|L((WV)∗

P ∗ − h, P)|,max
P

min
g
|L((WV)∗

P − g, P)|).

Therefore |J(π, P̂)−J(π, P ∗)| ≤ 2γ(minP maxh |L(h, P)|+ ϵH), as desired.

157

B.3 Additional theory
In this section, we provide additional results that were not covered in the
chapter. Specifically, we show that as we make W ,V too rich then the only
model with zero loss is P ∗ itself, which may not be in P .

Necessary and sufficient conditions for uniqueness of |L(w, V, P)| = 0
When W ,V are in L2 then |L| = 0 is uniquely determined:

Lemma B.3.1 (Necessary and Sufficient). L(w, V, P) = 0 for all w ∈ L2(X , ν) =
{g :

∫
g2(x, a)dν(x, a) < ∞}, V ∈ L2(S, ν) = {f :

∫
f 2(x)dν(x) < ∞} if and

only if P = P ∗ wherever Dπb
(s, a) ̸= 0.

Corollary B.3.2. The same result holds if w · V ∈ L2(X × S, ν) = {h :∫
h2(x, a, x′)dν(x, a, x′) <∞}.

Proof for Lemma B.3.1 and Corollary B.3.2. We begin with definition 4.5.1
and expand the expectation.
L(w, V, P) =E(s,a,s′)∼Dπb

(·,·)P ∗(·|s,a)[w(s, a)
(
Ex∼P (·|s,a)[V (x)]− V (s′)

)
]

= E(s,a)∼Dπb
(·,·)[w(s, a)

(
Es′∼P (·|s,a)[V (s′)]− Es′∼P (·|s,a)[V (s′)]

)
]

=
∫
Dπb

(s, a)w(s, a)(V (s′)(P (s′|s, a)− P ∗(s′|s, a)) dν(s, a, s′).
(⇒) Clearly if P = P ∗ then L(w, V, P) = 0. (⇐) For the other direction,
suppose L(w, V, P) = 0. By assumption, w(s, a) can take on any function in
L2(X , ν) and therefore if L(w, V, P) = 0 then∫

V (s′)(P (s′|s, a)− P ∗(s′|s, a)) dν(s′) = 0, (B.6)
wherever Dπb

(s, a) ̸= 0. Similarly, V (s′) can take on any function in L2(S, ν)
and therefore if equation (B.6) holds then P = P ∗. For the corollary, let
(w, V) ∈ WV take on any function in L2(X × S, ν). If L(w, V, P) = 0 then
P (s′|s, a)− P ∗(s′|s, a) = 0, as desired.

In an RKHS, when the kernel corresponds to an integrally strict positive definite
kernel (ISPD), P = P ∗ remains the unique minimizer of the MML Loss:

Lemma B.3.3 (Realizability means zero loss even in RKHS). L(w, f, P) = 0
if and only if P = P ∗ for all (w, V) ∈ {(w(s, a), V (s′)) : ⟨wV,wV ⟩Hk

≤ 1, w :
X ×A→ R, V : X → R} in an RKHS with an integrally strict positive definite
(ISPD) kernel.

158

Proof for Lemma B.3.3. [208] prove an analogous result and proof here is
included for reader convenience. From Mercer’s theorem [145], there exists an
orthonormal basis (φj)∞

j=1 of L2(X × S, ν) such that RKHS is represented as

WV =
w · V =

∞∑
j=1

bjφj

∣∣∣∣∣(bj)∞
j=1 ∈ l2(N) with

∞∑
j=1

b2
j

µj
<∞

 ,
where each µj is a positive value since kernel is ISPD. Suppose there exists
some P ∈ P such that L(w, V, P) = 0 for all (w, V) ∈ WV and P ≠ P ∗. Then,
by taking bj = 1 when (j = j′) and bj = 0 when (j ≠ j′) for any j′ ∈ N, we
have L(φj, P) = 0 where we treat w · V as a single input to L. This implies
L(w, V, P) = 0 for all w · V ∈ L2(X × S, ν) = 0. This contradicts corollary
B.3.2, concluding the proof.

159

B.4 Scenarios & Considerations
In this section we give proof for the various propositions for the corresponding
section in the chapter.

Linear Function Classes
Proof for Prop. 4.5.1. Given w(s, a)V (s′) = ψ(s, a, s′)Tβ and P (s′|s, a) =
φ(s, a, s′)Tα then

Ln(w, V, P) = En[Ex∼P [ψ(s, a, x)Tβ]− ψ(s, a, s′)Tβ],

= En

[∫
αφ(s, a, x)Tψ(s, a, x)Tβdν(x)− ψ(s, a, s′)Tβ

]
,

= En[αT
(∫

φ(s, a, s′)ψ(s, a, s′)Tdν(s′)
)
β − ψ(s, a, s′)Tβ],

which is linear in β. L2
n(w, V, P) = 0 is achieved through

En[αT
(∫

φ(s, a, s′)ψ(s, a, s′)Tdν(s′)
)
− ψ(s, a, s′)T] = 0.

Thus,

α̂T = En[ψ(s, a, s′)T]En
[∫

φ(s, a, s′)ψ(s, a, s′)Tdν(s′)
]−1

,

assuming En
[∫
φ(s, a, s′)ψ(s, a, s′)Tdν(s′)

]
is full rank. Taking the transpose

completes the proof.

Proof for Prop. 4.5.2. We begin with φ(s, a, s′) = e(s,a,s′), the (s,a,s’)-th stan-
dard basis vector and ψ = φ. Then

X(s, a) = (
∑
x∈S

φ(s, a, x)φ(s, a, x)T)i,j =

1 i = s|A||S|+ a|S|, i = j

0 otherwise
.

Notice that X(s, a) is a diagonal matrix and is the discrete counter-part to∫
φ(s, a, s′)ψ(s, a, s′)Tdν(x). Therefore, En[X(s, a)] = 1

N

∑
(s,a,s′)∈DX(s, a),

which is a diagonal matrix of the average number of times (s, a) appears in
the dataset D. Similarly, En[φ(s, a, s′)] is the average number of times that
(s, a, s′) appears in the dataset D. Hence, by Prop 4.5.1,

α̂s,a,s′ = #{(s, a, s′) ∈ D}
#{(s, a, x) ∈ D : ∀x ∈ S} .

Therefore P (s′|s, a) = φ(s, a, s′)T α̂ = α̂s,a,s′ , as desired.

LQR
In order to provide proof that MML gives the LQR-optimal solution, we begin
with a few Lemmas. First, we show that the value function is quadratic.

160

Lemma B.4.1 (Value Function is Quadratic). Let st+1 = Ast +Bat + w with
w ∼ N(0, σ∗2I) be the dynamics, πK(a|s) = −Ks+wK where wK ∼ N(0, σ2

KI)
be the policy. Let γ ∈ (0, 1] be the discount factor. Then V (s) = sTUs + q

where
U = Q+KTRK + γ(A−BK)TU(A−BK)

q = 1
1− γ (σ2

Ktr(R) + γσ2
Ktr(BTUB) + γσ∗2tr(U)).

Proof for Lemma B.4.1. The value function is given by:
xTUx+ q

= xTQx+ EN(−Kx,σ2
KI)[uTRu+ γEN(Ax+Bu,σ∗2I)[V (s′)]]

= xTQx+ EN(−Kx,σ2
KI)[uTRu+ γ(Ax+Bu)TU(Ax+Bu) + γq + γσ∗2tr(U)]

= xTQx+ xTKTRKx+ σ2
Ktr(R) + γxT (A−BK)TJ(A−BK)x

+ γσ2
Ktr(BTUB) + γq + γσ∗2tr(U).

Thus, the quadratic terms satisfies:
U = Q+KTRK + γ(A−BK)TU(A−BK),

and the linear term satisfies:
q = 1

1− γ (σ2
Ktr(R) + γσ2

Ktr(BTUB) + γσ∗2tr(U)).

The final value is given by:
J(π, P ∗) = EN(s0,σ2

0I)[U] = sT0Us0 + q + σ2
0tr(U).

Existence and uniqueness of U, q is heavily studied [22].

Under the same assumptions as Lemma B.4.1, we simplify L to:

Lemma B.4.2 (LQR Loss Simplified). In addition to the assumptions of
Lemma B.4.1, let d0 = s0 + wd0 where wd0 ∼ N(0, σ2

d0I) be the initial state
distribution. Let P = As + Ba ∈ P where A ∈ Rn×n, B ∈ Rn×k and (A,B)
is controllable. Let K ∈ Rk×n represent all linear policies and U ∈ Sn+ be all
symmetric positive semi-definite matrices.

min
P

max
w,V
|L(w, V, P)|

= min
A,B

max
K,U

∑
i

γi[sT0 (A∗ −B∗K)iT∆(A∗ −B∗K)is0

+ tr(∆Σi)] + σ2
Ktr(BTUB −B∗TUB∗)− σ∗2tr(U),

161

where ∆ = (A − BK)TU(A − BK) − (A∗ − B∗K)TU(A∗ − B∗K) and Σi =
σ∗(I + . . .+ F i−1F (i−1)T) + σK(B∗B∗T + . . .+ F i−1B∗B∗TF (i−1)T) + σ0F

iF iT

for i > 0 and Σ0 = σ0I, F = A∗ −B∗K.

Proof for Lemma B.4.2. We first show that the evolution of dynamics P ∗

under gaussian noise, with a linear gaussian controller is a gaussian mixture∑
iN((A∗−B∗K)is0,Σi), where Σi = σ∗(I + . . .+F i−1F (i−1)T) + σK(B∗B∗T +

. . . F i−1B∗B∗TF (i−1)T) + σ0F
iF iT for i > 0 and Σ0 = σ0I, F = A∗ −B∗K.

It’s clear s0 ∼ N(s0, σ
2
0I), the base case. Suppose for induction sn ∼ N((A∗ −

B∗K)ns0,Σn) holds for some n ≥ 0. Then
sn+1 = A∗sn +B∗(−Ksn + wK) + w∗

= (A∗ −B∗K)sn +B∗wk + w∗

∼ N((A∗ −B∗K)n+1s0, (A∗ −B∗K)Σn(A∗ −B∗K)T +B∗B∗T + σ∗I)
= N((A∗ −B∗K)n+1s0,Σn+1),

completing the inductive step. Every step st is gaussian, therefore

dP
∗

π,γ(s, a) =
∞∑
i=0

γiN(s;F is0,Σi)N(a;−Ks, σ2
KI) (B.7)

is a gaussian mixture. Let w = dP ∗
π,γ

D
. We know V is quadratic, given by U ∈ Sn+.

For notational convenience, for matrix Z and vectors x,y define ⟨x, y⟩Z ≡ xTZy

and similarly ∥x∥Z ≡ ⟨x, x⟩Z = xTZx. Therefore,
min
P

max
w,V
L(w, V, P) = min

A,B
max
w,V

E(s,a)∼D[w[EP [V]− EP ∗ [V]]]

= min
A,B

max
w,U

E(s,u)∼D[w[∥As+Bu∥U − ∥A∗s+B∗u∥U − σ∗2tr(U)]]

= min
A,B

max
K,U

E∑
i
γiN((A∗−B∗K)is0,Σi)[Eu∼N(−Ks,σ2

KI)[∥As+Bu∥U

− ∥A∗s+B∗u∥U − σ∗2tr(U)]]
= min

A,B
max
K,U

E∑
i
γiN((A∗−B∗K)is0,Σi)[∥(A−BK)s∥U − ∥(A∗ −B∗K)s∥U

+ σ2
Ktr(BTUB)− σ2

Ktr(B∗TUB∗)− σ∗2tr(U)]
= min

A,B
max
K,U

E∑
i
γiN((A∗−B∗K)is0,Σi)[s

T [∆(A,B,A∗, B∗, U,K)]s

+ σ2
Ktr(BTUB −B∗TUB∗)− σ∗2tr(U)]

= min
A,B

max
K,U

∑
i

γi[∥(A∗ −B∗K)is0∥∆ + tr(∆Σi)]

+ σ2
Ktr(BTUB −B∗TUB∗)− σ∗2tr(U),

where ∆ = (A−BK)TU(A−BK)− (A∗ −B∗K)TU(A∗ −B∗K).

162

First, Lemma B.4.2 supposes that there is model mismatch P ∗ ̸∈ P since P
are deterministic simulators and P ∗ is stochastic. Second, we notice that K
takes the position of w, which is to say that the policy K directly specifies w,
as expected. We will need the previous two results in the experiments. We
may now prove Prop 4.5.3 that says MML yields the true parameters of LQR
in expectation:

Proof for Prop 4.5.3. Consider two linear, controllable systems with parame-
ters P1 = (A1, B1) and P2 = (A2, B2). Then there exists a controller K that
stabilizes P1 (i.e, J(P1, K) <∞) but destabilizes P2 (i.e, J(P2, K) =∞). We
show this by analyzing the characteristic polynomial of both A1 − B1K and
A2 −B2K. There exists an invertible matrix T1, T2 that put (A1, B1), (A2, B2)
into controllable canonical forms (CCF), respectively [22]. Thus, we will assume,
wlog, that (Ã1, B̃1), (Ã2, B̃2) are already in CCF. Hence,

Ã1 =



0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 1
−a0 −a1 −a2 . . . −an−1


, B̃1 =



0
0
...
0
1


,

and

Ã2 =



0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 1
−b0 −b1 −b2 . . . −bn−1


, B̃2 =



0
0
...
0
1


.

We will find a controller in the form K = K1T1 = K2T2 for some K1, K2 for
T1, T2 that put the systems into CCF. Consider a desired characteristic polyno-
mial of f(s) = (s+ ϵ)n−1(s+ λ) for ϵ, λ ∈ R+(> 0). This polynomial has eigen-
values equal to −ϵ,−λ and therefore a system with this polynomial is asymptoti-
cally stable (converges to 0 exponentially fast). Take K1 = [k1,0, k1,1, . . . , k1,n−1].
Then det(sI− (Ã1− B̃1K1)) = sn+(an−1 +k1,n−1)sn−1 + · · ·+(a0 +k1,0). By se-
lecting k1,i =

((
n−1
i

)
λ+

(
n−1
i−1

)
ϵ
)
ϵn−1−i−ai then det(sI− (Ã1− B̃1K1)) = f(s).

Hence, (Ã1, B̃1) is asymototically stable with eigenvalues −λ,−ϵ for any λ, ϵ
strictly positive. Therefore K = K1T1 makes the system (A1, B1) asymptoti-
cally stable.

Now we consider K2 = K1T1T
−1
2 . Let us denote T1T

−1
2 = T which is also

163

invertible since T1, T2 are invertible. Then by taking the last term of det(sI −
(Ã2 − B̃2K2)), we can examine the product ∏n−1

i=0 λi of the eigenvalues of the
closed loop system Ã2 − B̃2K2. Namely, b0 + ∑n−1

i=0 k1,iTi,n is the product of
eigenvalues. We may simplify this via some algebra as follows:

n−1∏
i=0

λi = b0 +
n−1∑
i=0

k1,iTi,n

= b0 +
n−1∑
i=0

Ti,n

(((
n− 1
i

)
λ+

(
n− 1
i− 1

)
ϵ

)
ϵn−1−i − ai

)

= b0 −
n−1∑
i=0

ai +
n−1∑
i=0

Ti,n

(
n− 1
i− 1

)
ϵn−i

︸ ︷︷ ︸
b̄

+λ
n−1∑
i=0

Ti,n

(
n− 1
i

)
ϵn−1−i

︸ ︷︷ ︸
c

= b̄+ λc.

We may select ϵ > 0 so that c ̸= 0 otherwise Ti,n = 0 for all i which would
contradict invertibility of T . Therefore ∏n−1

i=0 λi is linear in λ. By driving
λ→∞, then |∏n−1

i=0 λi| → ∞ is unbounded. Select λ so that |b̄+ λc| > 1. By
the pigeonhole principle, at least one of the eigenvalues of Ã2− B̃2K2 must have
a magnitude greater than 1 and therefore the system is unstable. Therefore
the controller K2T2 = K1T1T

−1
2 T2 = K1T1 = K makes the system (A2, B2)

unstable. Hence, K simultaneously stabilizes (A1, B1) but destabilizes (A2, B2).

According to Lemma B.4.2, when (A,B) = (A∗, B∗) then for any K:
max
U
L((A,B), K, U) = max

U
|σ∗2tr(U)| <∞,

since U are bounded by assumption. Furthermore, we have just shown that
there always exists a K that destabilizes any controller (A,B) ̸= (A∗, B∗) while
stabilizing (A∗, B∗). Therefore:

max
K,U
L((A,B), K, U) =∞,

for any system (A,B) ̸= (A∗, B∗). Therefore:
min
(A,B)

max
K,U
L((A,B), K, U) = (A∗, B∗).

It is well known that ordinary least squares is a consistent estimator when the
noise is exogenous, as it is here. Therefore the maximum likelihood solution
also yields (A∗, B∗) in expectation.

RKHS & Practical Implementation
Since P ∈ P is a stochastic model in general, then the inner expectation of the
loss in def (4.5.1) over P involves sampling x from P (·|s, a) and computing the

164

empirical average of V (x). In general this can be computationally demand-
ing if S is high dimensional and P does not have a closed form, requiring
MCMC estimates or variational estimates [139, 73]. However, in practice, most
parametrizations of models use nice distributions, such as gaussians, from which
sampling is efficient. This issue is similarly present in other decision-aware
literature [e.g., 59].

The estimator based on Eq (4.8) requires solving a minimax problem which is
often computationally challenging. One approach might be to set-up GAN-style
neural networks and use higher order gradient descent [74, 178].

If we have access to a kernel, say radial basis function (RBF), then the inner
maximization over w, V has a closed form when W × V correspond to a
reproducing kernel Hilbert space (RKHS), HK with kernel K. In particular, in
similar spirit to [134, 62, 208] we have

Proposition B.4.3 (Closed form exists in RKHS). AssumeWV = {(w(s, a), V (s′)) :
⟨wV,wV ⟩HK

≤ 1, w : X → R, V : S → R}. Let ⟨·, ·⟩HK
be an inner

product on HK satisfying the reproducing kernel property w(s, a)V (s′) =
⟨wV,K((s, a, s′), ·)⟩HK

. The term max(w,V)∈WV L(w, V, P)2 has a closed form:

max
(w,V)∈WV

L(w, V, P)2 = E(s,a,s′)∼Dπb
P ∗,(s̃,ã,s̃′)∼Dπb

P ∗

[
Ex∼P,x̃∼P [K((s, a, x), (s̃, ã, x̃))]
− 2Ex∼P [K((s, a, x), (s̃, ã, s̃′))]

+K((s, a, s′), (s̃, ã, s̃′))
]
.

Proof for Prop B.4.3. Recall that by the reproducing property of kernel K in
the RKHS space HK then ⟨f,K⟩HK

for any f ∈ HK . Starting from Def 4.5.1,
L(w, V, P)2 = E(s,a,s′)∼Dπb

(·,·)P ∗(·|s,a)[w(s, a)
(
Ex∼P (·|s,a)[V (x)]− V (s′)

)
]2

= E(s,a,s′,x)∼Dπb
(·,·)P ∗(·|s,a)P (·|s,a)[w(s, a)V (x)− w(s, a)V (s′)]2

= E(s,a,s′,x)∼Dπb
(·,·)P ∗(·|s,a)P (·|s,a)[⟨wV,K((s, a, x), ·)⟩Hk

− ⟨wV,K((s, a, s′), ·)⟩Hk
]2

= ⟨wV, (wV)∗⟩2Hk

where (wV)∗(·) = E(s,a,s′,x)∼Dπb
(·,·)P ∗(·|s,a)P (·|s,a)[K((s, a, x), ·) − K((s, a, s′, ·)].

By Cauchy-Schwarz and the fact that wV is within a unit ball, then
max

w,V ∈WV
L(w, f, V)2 = max

w,V ∈WV
⟨wV, (wV)∗⟩2Hk

= ∥(wV)∗∥2 = ⟨(wV)∗, (wV)∗⟩Hk
.

165

Expanding,
max

w,V ∈WV
L(w, f, V)2

= ⟨(wV)∗, (wV)∗⟩Hk

= ⟨E(s,a,s′,x)∼Dπb
(·,·)P ∗(·|s,a)P (·|s,a)[K((s, a, x), ·)−K((s, a, s′, ·)],

E(s̃,ã,s̃′,x̃)∼Dπb
(·,·)P ∗(·|s̃,ã)P (·|s̃,ã)[K((s̃, ã, x̃), ·)−K((s̃, ã, s̃′, ·)]⟩Hk

=
〈∫

Dπb
(s, a)P ∗(s′|s, a)P (x|s, a)(K((s, a, x), ·)−K((s, a, s′), ·)),

∫
Dπb

(s̃, ã)P ∗(s̃′|s̃, ã)P (x̃|s̃, ã)(K((s̃, ã, x̃), ·)−K((s̃, ã, s̃′), ·)),
〉

Hk

=
∫
Dπb

(s, a)P ∗(s′|s, a)P (x|s, a)Dπb
(s̃, ã)P ∗(s̃′|s̃, ã)P (x̃|s̃, ã)

× ⟨K((s, a, x), ·)−K((s, a, s′), ·), K((s̃, ã, x̃), ·)−K((s̃, ã, s̃′, ·)⟩Hk
.

By linearity of the inner product, the reproducing kernel property we get:
max

(w,V)∈WV
L(w, f, V)2

= E(s,a,s′,x)∼Dπb
P ∗P,(s̃,ã,s̃′,x̃)∼Dπb

P ∗P [K((s, a, x), (s̃, ã, x̃))−K((s, a, x), (s̃, ã, s̃′))
−K((s, a, s′), (s̃, ã, x̃)) +K((s, a, s′), (s̃, ã, s̃′))]

= E(s,a,s′,x)∼Dπb
P ∗P,(s̃,ã,s̃′,x̃)∼Dπb

P ∗P [K((s, a, x), (s̃, ã, x̃))− 2K((s, a, x), (s̃, ã, s̃′))
+K((s, a, s′), (s̃, ã, s̃′))],

where for the last equality we used the fact that K is symmetric.

166

B.5 Experiments
Environment Descriptions
LQR

The LQR domain is a 1D stochastic environment with true dynamics: P ∗(s′|s, a) =
s− .5a+w∗ where w∗ ∼ N(0, .012). We let x0 ∼ N(1, .12). The reward function
is R(s, a) = −(s + a) and γ = .9. We use a finite class P consisting of all
deterministic models P = {Px(s′|s, a) = (1 + x/10)s− (.5 + x/10)a|x ∈ [0,M]}
where we vary M ∈ {2, 3, . . . , 19}. We write (A∗, B∗) = P0(s′|s, a) = A∗s+B∗a,
the deterministic version of P ∗.

Cartpole

We use the standard Cartpole benchmark (OpenAI, [30]). The state space is
a tuple (x, ẋ, θ, θ̇) representing the position of the cart, velocity of the cart,
angle of the pole and angular velocity of the pole, respectively. The action
space is discrete given by pushing the car to the left or pushing the car to the
right. We add N(0, .0012) Gaussian noise to each component of the state to
make the dynamics stochastic. We consider the infinite horizon setting with
γ = .98. The reward function is modified to be a function of angle and location
R(s, θ) = (2− θ/θmax) ∗ (2− s/smax)− 1) rather than 0/1 to make the OPE
problem more challenging.

Inverted Pendulum (IP)

We consider the infinite horizon setting with γ = .98. The state space is
a tuple (θ, θ̇) representing the angle of the pole and angular velocity of the
pole, respectively. The action space A = R is continuous representing a
clockwise or counterclockwise force. The reward function is a clipped quadratic
function R([θ, θ̇], a) = min(((θ + π) mod 2π − π)2 + .1θ̇2 + .001u2, 100). This
IP environment has a Runge-Kutta(4) integrator [51] rather than Forwrd Euler
and, thus, produces more realistic data. The mass of the rod is .25 and the
length .5.

Experiment Descriptions
LQR OPE/OPO

OPE. We aim to evaluate π(a|s) = N(1.3s, .12). We ensure V P
π ∈ V for all

P ∈ P by solving the equations in Lemma B.4.1. We ensure W P ∗
π ∈ W using

167

Equation (B.7). We derive 1-d equations for VAML analogous to Lemma B.4.2).
Finally, we know MLE gives (A∗, B∗) in expectation (see Prop 4.5.3).

Metric: We compute |(J(π, P̂)− J(π, P ∗))|, the OPE error.

OPO. Similarly as in OPE, we ensure that all MML realizability assumptions
hold. This means as we increase P then we have to increase the sizes of both
W and V now instead of just V as in OPE. Once again MLE gives (A∗, B∗) in
expectation (see Prop 4.5.3) and we evaluate VAML using equations analogous
to those in Lemma B.4.2). With this, we produce Figure B.1 (right). By
increasing P, we also have more policies {π∗

P}P∈P we may consider. Instead
of selecting one for OPE, for each π ∈ {π∗

P}P∈P we calculate the OPE error.
We aggregate across all {π∗

P}P∈P by taking the average of the OPE errors and
the worst-case, which can be seen in Figure B.1 (left). Metric: We compute
|(J(π∗

P̂
, P̂)− J(π∗

P ∗ , P ∗))|, the OPO error.

Note: All calculations in LQR OPE/OPO are in expectation so no error bars
need be included.

Verifiability. With the same setup as in OPE, now randomly sample 100k
points in the interval [−3, 3] × [−3, 3], which is the support of the LQR
system. We rerun the same experiment as in OPE except now we add w ∼
N (0, ϵ) noise to V ∈ V where ϵ ∈ {0, .2, . . . , .8, 1}. We evaluate the error
|(J(π, P̂) − J(π, P ∗))| over the 100k samples rather than in expectation as
before. We run 5 seeds and present the mean over the seeds with standard
error. We smooth the resulting mean with a moving average filter of size 3.
The result can be seen in Figure 4.2 (right).

Cartpole OPE

Each P ∈ P takes the form s′ ∼ N (µ(s, a), σ(s, a)), where a NN outputs a
mean, and logvariance representing a normal distribution around the next
state. Each model has a two hidden layers and with 64 units each and ReLU
activation with final linear layer. We generate the behavior and target policy
using a near-perfect DDQN-based policy Q with a final softmax layer and
adjustable parameter τ : π(a|s) ∝ exp(Q(s, a)/τ). The behavior policy has
τ = 1, while the target policy has τ = 1.5. We truncate all rollouts at 1000
time steps and we calculate the true expected value using the Monte Carlo
average of 10000 rollouts.

168

We model the class WV as a RKHS as in Lemma B.4.3 with an RBF kernel.
We do the same for VAML. The RKHS kernel we use for MML and VAML is
given by K(s, a, s′) = K1(s)K2(a)K3(s′) and K3(s′) respectively where Ki are
Gaussian Radial Basis Function (RBF) kernels with a bandwidth equal to the
median of the pair-wise distances for each coordinate (s, a, s′ independently)
over the batch.

For MML, we sample from P a total of 5 times and take the empirical mean
to calculate the expectation over P for the RKHS formula given in B.4.3.

We run 20000 batches of size 128 and normalize the data over the batch. Our
learning rate is 10−3 and we use Adam [107] optimizer. The estimate we use is
the mean over the last 10 batches. We run 5 random seeds per dataset size,
and plot the log-relative MSE with standard error in Figure 4.3.

Note: These hyperparameters remain the same across the different loss func-
tions.

Metric: We compare the methods using the log-relative MSE metric:

log((J(π, P̂)− J(π, P ∗))2

(J(πb, P ∗)− J(π, P ∗))2),

which is negative when the OPE estimate J(π, P̂) is superior to the on-policy
estimate J(πb, P̂). The more negative, the better the estimate. To calculate
J(π, P̂) we run 100 trajectories in P̂ and take the mean.

Inverted Pendulum OPO

We generate the behavior data using a noisy feedback-linearized controller:
πb(a|s) is uniformly random with probability .3 and is a feedback-linearized
LQR controller (FLC) with probability .7 where we use the FLC corresponding
to LQR matrices Q = 2I2×2, R = I2×2. We truncate all rollouts at 200 time
steps. We fit 4 feed-forward neural networks representing P1, . . . , P4 where each
is a deterministic model with two layers of 16 weights and a Tanh activation
followed with Linear. We use Adam [107] optimizer with 10−3 as the learning
rate. Using different batches of size 64 on each Pi and perform 5000 iterations
for each model.

The RKHS kernel we use for MML and VAML is given by K(s, a, s′) =
K1(s)K2(a)K3(s′) and K3(s′) respectively where Ki are Gaussian Radial Basis
Function (RBF) kernels with a bandwidth equal to 1.

169

For MML, we only sample from P once to calculate the expectation over P for
the RKHS formula given in B.4.3, since P is deterministic.

Now we have P (s′|s, a) = 1
4
∑4
i=1 Pi(s′|s, a). We calculate α = Median({∥Pj(s, a)−

s′∥2 : j ∈ [1, . . . , 4], (s, a, s′) ∈ X ⊂ D}) where X is 10000 random samples
from the dataset. We form an α-USAD (see MOREL Section B.5) and con-
struct a pessimistic MDP (P̃ , R̃) (see Section B.5). We use PPO as our policy
optimizer with the default settings from [169]. We run PPO three times in
the pessimistic MDP and take the policy that performs the best and report
its performance. We keep track of the running maximum as we increase the
dataset size. We plot the mean of the running maximums over the five seeds
including standard error bars in Figure 4.4.

Note: These hyperparameters remain the same across the different loss func-
tions.

Metric: We look at the performance J(π∗
P̂
, P ∗) of a policy and compare it to

π∗, learned from PPO. To calculate J(π∗
P̂
, P ∗) we run 100 trajectories in P ∗

and take the mean.

MOREL
We give a brief explanation of MOREL [106] and its construction. The objective
of MOREL is to make sure that the policy we learn does not take advantage of
the errors in the simulator P . If there are errors in P then a policy may think
the agent can perform a particular state transition (s, a, s′) and R(s′, a′) has
high reward for some action a′. However, it’s possible that such a transition
(s, a, s′) may not occur in the true environment. Therefore, we modify our
model P (s′|s, a) in the following way:

P̃ (s′|s, a) =

Terminate episode Uα(s, a) = 1

P (s′|s, a) otherwise
,

where Uα(s, a) = 1 if maxi∈{1,2,3,4} ∥Pi(s′|s, a) − P (s′|s, a)∥ ≥ α, otherwise 0.
In other words, we’ve modified the transition dynamics so that we do not trust
our model P unless all the Pi are in agreement. We also modify our reward to
be

R̃(s, a) =

-100 Uα(s, a) = 1

R(s, a) otherwise
,

170

where −100 is chosen this value is well below any reward that the Inverted
Pendulum environment generates. Similarly, we penalize our policy for entering
a state where we are uncertain. Together, this creates a pessimistic MDP.

Additional Experiments

2 4 6 8 10 12 14

Number of Models, | | (= | | = | |)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

O
P

E
 E

rr
or

, |
J(

,P
)

J(
,P

*)
|

MML means
MML maxs
MLE, VAML, (A , B) means
MLE, VAML, (A , B) maxs

2 4 6 8 10 12 14

Number of Models, | | (= | | = | |)

0.00

0.02

0.04

0.06

0.08

0.10

O
P

O
 E

rr
or

, |
J(

* P
,P

)
J(

* P
*,

P
*)

|

MML
MLE, VAML, (A , B)

Figure B.1: (LQR) As we increase |W |, |V | then MML is forced to be robust
to too many OPE problems and settles for the system (A∗, B∗) since this is the
only system robust to the most OPE problems.

In the experiments for Figure B.1, we consider what happens when we satisfy
the realizability conditions for OPO. As we increase |P|, we must also increase
|W|, |V| because each P ∈ P induces an optimal policy π∗

P to which we have
to make sure wP ∗

π∗
P
∈ W and V Pi

π∗
P
∈ V for ∀Pi ∈ P. In a sense, we are adding

more OPE problems for MML to be robust to. In particular, we now have
more policies {π∗

P}P∈P to consider. As described earlier, for each π ∈ {π∗
P}P∈P

we calculate the OPE error. We aggregate across all {π∗
P}P∈P by taking the

average of the OPE errors and the worst-case, which can be seen in Figure B.1
(left). We plot the OPO error in Figure B.1 (right). What we see is that while
|P| is small, MML is able to be robust to a certain number of OPE problems.
But as we increase the number of OPE problems the average and max error
increases until all methods select the same model, which is the OPO-optimal
model, (A∗, B∗).

171

Appendix C

CHAPTER 3 APPENDIX

C.1 Preliminaries to Analysis of Fitted Q Evaluation (FQE)
In this section, we set-up necessary notations and definitions for the theoretical
analysis of FQE. To simplify the presentation, we will focus exclusively on
weighted ℓ2 norm for error analysis.

With the definitions and assumptions presented in this section, we will present
the sample complexity guarantee of Fitted-Q-Evaluation (FQE) in appendix
C.2.

While it is possible to adapt proofs from related algorithms [150, 12] to analyze
FQE, in the next two sections we show improved convergence rate from O(n−4)
to O(n−2), where n is the number of samples in data set D.

Our notation for Q function is similar to the RL literature — the only difference
is that the optimal policy minimizes Q(s, a) instead of maximizing. We denote
the bound on the value function as C (alternatively if the single timestep cost
is bounded by c, then C = c

1−γ).

Bellman operators
The Bellman optimality operator T : B(X ;C) 7→ B(X ;C) as:

(TQ)(s, a) = c(s, a) + γ
∫

S
min
a′∈A

Q(s′, a′)P (ds′|s, a). (C.1)
The optimal value functions are defined as usual by C∗(s) = sup

π
Cπ(s) and

Q∗(s, a) = sup
π
Qπ(s, a) ∀(s, a) ∈ X .

For a given policy π, the Bellman evaluation operator Tπ : B(X ;C) 7→ B(X ;C)
as:

(TπQ)(s, a) = c(s, a) + γ
∫

S
Q(s′, π(s′))P (ds′|s, a). (C.2)

It is well known that TπQπ = Qπ, a fixed point of the Tπ operator.

Data distribution and weighted ℓ2 norm
Denote the state-action data generating distribution as µ, induced by some
data-generating (behavior) policy πD, that is, (si, ai) ∼ µ for (si, ai, s′

i, ci) ∈ D.

Note that data set D is formed by multiple trajectories generated by πD. For

172

each (si, ai), we have s′
i ∼ P (·|si, ai) and ci = c(si, ai). For any (measur-

able) function f : X 7→ R, define the µ-weighted ℓ2 norm of f as ∥f∥2
µ =∫

X f(s, a)2µ(ds, da) =
∫

X f(s, a)2µx(ds)πD(a|ds). Similarly for any other state-
action distribution ρ, ∥f∥2

ρ =
∫

X f(s, a)2ρ(ds, da).

Inherent Bellman error
FQE depends on a chosen function class F to approximate Q(s, a). To express
how well the Bellman operator Tg can be approximated by a function in the
policy class F, when Tg /∈ F, a notion of distance, known as inherent Bellman
error was first proposed by [147] and used in the analysis of related ADP
algorithms [150, 148, 11, 12, 119, 118, 120, 140].

Definition C.1.1 (Inherent Bellman Error). Given a function class F and a
chosen distribution ρ, the inherent Bellman error of F is defined as:

dF = d(F,TF) = sup
h∈F

inf
f∈F
∥f − Th∥ρ ,

where ∥·∥ρ is the ρ−weighted ℓ2 norm and T is the Bellman optimality operator
defined in (C.1).

To analyze FQE, we will form a similar definition for the Bellman evaluation
operator

Definition C.1.2 (Inherent Bellman Evaluation Error). Given a function class
F and a policy π, the inherent Bellman evaluation error of F is defined as:

dπF = d(F,TπF) = sup
h∈F

inf
f∈F
∥f − Tπh∥ρπ

,

where ∥·∥ρπ
is the ℓ2 norm weighted by ρπ. ρπ is defined as the state-action

distribution induced by policy π, and Tπ is the Bellman operator defined in
(C.2)

Concentration coefficients
Let P π denote the operator acting on f : X 7→ R such that (P πf)(s, a) =∫

S f(s′, π(s′))P (s′|s, a)ds′. Acting on f (e.g., approximates Q), P π captures
the transition dynamics of taking action a and following π thereafters.

The following definition and assumption are standard in the analysis of related
approximate dynamic programming algorithms [118, 150, 11]. As approximate
value iteration and policy iteration algorithms perform policy update, the new
policy at each round will induce a different stationary state-action distribution.

173

One way to quantify the distribution shift is the notion of concentrability
coefficient of future state-action distribution, a variant of the notion introduced
by [147].

Definition C.1.3 (Concentration coefficient of state-action distribution).
Given data generating distribution µ ∼ πD, initial state distribution d0. For
m ≥ 0, and an arbitrary sequence of stationary policies {πm}m≥1 let

βµ(m) = sup
π1,...,πm

∥∥∥∥∥d(d0P
π1P π2 . . . P πm)
dµ

∥∥∥∥∥
∞
.

(βµ(m) =∞ if the future state distribution d0P
π1P π2 . . . P πm is not absolutely

continuous w.r.t. µ, i.e, d0P
π1P π2 . . . P πm(s, a) > 0 for some µ(s, a) = 0)

Assumption C.1. βµ = (1− γ)2 ∑
m≥1

mγm−1βµ(m) <∞.

Combination Lock Example. An example of an MDP that violates As-
sumption C.1 is the “combination lock” example proposed by [109]. In this
finite MDP, we have N states S = {1, 2, . . . , N}, and 2 actions: going L or R.
The initial state is s0 = 1. In any state x, action L takes agent back to initial
state s0, and action R advances the agent to the next state x+ 1 in a chain
fashion. Suppose that the reward is 0 everywhere except for the very last state
N . One can see that for an MDP such that any behavior policy πD that has
a bounded from below probability of taking action L from any state x, i.e.,
πD(L|s) ≥ ν > 0, then it takes an exponential number of trajectories to learn
or evaluate a policy that always takes action R. In this setting, we can see
that the concentration coefficient βµ can be designed to be arbitrarily large.

Complexity measure of function class F

Definition C.1.4 (Random L1 Norm Covers). Let ϵ > 0, let F be a set of
functions S 7→ R, let sn1 = (s1, . . . , sn) be n fixed points in S. Then a collection
of functions Fϵ = {f1, . . . , fN} is an ϵ-cover of F on sn1 if

∀f ∈ F,∃f ′ ∈ Fϵ : | 1
n

n∑
i=1

f(si)−
1
n

n∑
i=1

f ′(si)| ≤ ϵ.

The empirical covering number, denote by N1(ϵ,F, sn1), is the size of the smallest
ϵ-cover on sn1 . Take N1(ϵ,F, sn1) =∞ if no finite ϵ-cover exists.

Definition C.1.5 (Pseudo-Dimension). A real-valued function class F has
pseudo-dimension dimF defined as the VC dimension of the function class

174

induced by the sub-level set of functions of F. In other words, define function
class H = {(s, y) 7→ sign(f(s)− y) : f ∈ F}, then

dimF = VC-dimension(H).

C.2 Generalization Analysis of Fitted Q Evaluation
In this section we prove the following statement for Fitted Q Evaluation (FQE).

Theorem C.2.1 (Guarantee for FQE - General Case (theorem 5.2.1)). Under
Assumption C.1, for ϵ > 0 & δ ∈ (0, 1), after K iterations of Fitted Q Evaluation
(Algorithm 3), for n = O

(
C4

ϵ2
(log K

δ
+ dimF log C2

ϵ2
+ log dimF)

)
, we have with

probability 1− δ:∣∣∣Q(π)−QK(π)
∣∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµ (2dπF + ϵ) + 2γK/2C

(1− γ)1/2

)
.

Theorem C.2.2 (Guarantee for FQE - Bellman Realizable Case). Under
Assumptions C.1-C.2, for any ϵ > 0, δ ∈ (0, 1), after K iterations of Fit-
ted Q Evaluation (Algorithm 3), when n ≥ 24·214·C4

ϵ2

(
log K

δ
+ dimF log 320C2

ϵ2
+

log(14e(dimF + 1))
)
, we have with probability 1− δ:∣∣∣Q(π)−QK(π)

∣∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµϵ+ 2γK/2C

(1− γ)1/2

)
.

We first focus on theorem C.2.2, analyzing FQE assuming a sufficiently rich
function class F so that the Bellman evaluation update Tπ is closed wrt F (thus
inherent Bellman evaluation error is 0). We call this the Bellman evaluation
realizability assumption. This assumption simplifies the presentation of our
bounds.

After analyzing FQE under this Bellman realizable setting, we will turn to
error bound for general, non-realizable setting in theorem C.2.1 (also theorem
5.2.1). The main difference in the non-realizable setting is the appearance of
an extra term dπF our final bound.

Error bound for single iteration - Bellman realizable case
Assumption C.2 (Bellman evaluation realizability). We consider function classes
F sufficiently rich so that ∀f,Tπf ∈ F.

We begin with the following result bounding the error for a single iteration of
FQE, under “training” distribution µ ∼ πD.

175

Proposition C.2.3 (Error bound for single iteration). Let the functions in F
also be bounded by C, and let dimF denote the pseudo-dimension of the function
class F. We have with probability at least 1− δ:

∥Qk − TπQk−1∥µ < ϵ,

when n ≥ 24·214·C4

ϵ2

(
log 1

δ
+ dimF log 320C2

ϵ2
+ log(14e(dimF + 1))

)
Remark C.2.4. Note from proposition C.2.3 that the dependence of sample
complexity n here on ϵ is Õ(1

ϵ2
), which is better than previously known analysis

for Fitted Value Iteration [150] and FittedPolicyQ (continuous version of Fitted
Q Iteration [11]) dependence of Õ(1

ϵ4
). The finite sample analysis of LSTD

[119] showed an Õ(1
ϵ2

) dependence using linear function approximation. Here
we prove similar convergence rate for general non-linear (bounded) function
approximators.

Proof of Proposition C.2.3. Recall the training target in round k is yi =
ci + γQk−1(s′

i, π(s′
i)) for i = 1, 2, . . . , n, and Qk ∈ F is the solution to the

following regression problem:

Qk = arg min
f∈F

1
n

n∑
i=1

(f(si, ai)− yi)2.

Consider random variables (s, a) ∼ µ and y = c(s, a) + γQk−1(s′, π(s′)) where
s′ ∼ p(·|s, a). By this definition, TπQk−1 is the regression function that mini-
mizes square loss min

h:RX×A 7→R
E|h(s, a)− y|2 out of all functions h (not necessarily

in F). This is due to (TπQk−1)(s̃, ã) = E [y|s = s̃, a = ã] by definition of the
Bellman operator. Consider Qk−1 fixed and we now want to relate the learned
function Qk over finite set of n samples with the regression function over the
whole data distribution via uniform deviation bound. We use the following
lemma:

Lemma C.2.5 ([76], theorem 11.4. Original version [124], theorem 3). Consider
random vector (X, Y) and n i.i.d samples (Xi, Yi). Let m(x) be the (optimal)
regression function under square loss m(x) = E[Y |X = x]. Assume |Y | ≤ B

a.s. and B ≤ 1. Let F be a set of function f : Rd 7→ R and let |f(x)| ≤ B.

176

Then for each n ≥ 1

P
{
∃f ∈ F : E|f(X)− Y |2 − E|m(X)− Y |2 − 1

n

n∑
i=1

(
|f(Xi)− Yi|2

−|m(Xi)− Yi|2
)
≥ ϵ ·

(
α + β + E|f(X)− Y |2 − E|m(X)− Y |2

)}

≤ 14 sup
xn

1

N1

(
βϵ

20B,F, x
n
1

)
exp

(
− ϵ2(1− ϵ)αn

214(1 + ϵ)B4

)
,

where α, β > 0 and 0 < ϵ < 1/2

To apply this lemma, first note that since TπQk−1 is the optimal regression
function1, we have:

Eµ
[
(Qk(s, a)− y)2

]
= Eµ

[
(Qk(s, a)− TπQk−1(s, a) + TπQk−1(s, a)− y)2

]
= Eµ

[
(Qk(s, a)− TπQk−1(s, a))2] + Eµ[(TπQk−1(s, a)− y)2

]
.

Thus
∥Qk − TπQk−1∥2

µ = E
[
(Qk(s, a)− TπQk−1(s, a))2

]
= E

[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
,

where by definition
E
[
(Qk(s, a)− TπQk−1(s, a))2

]
=
∫

(Qk(s, a)− TπQk−1(s, a))2 µ(dx, da)

=
∫

(Qk(s, a)− Tπ(s, a))2µx(dx)πD(a|dx)

Next, given a fixed data set D̃k ∼ µ,
P
{
∥Qk − TπQk−1∥2

µ > ϵ
}

(C.3)

= P
{
E
[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
> ϵ

}

≤ P
{
E
[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
− 2 ·

(
1
n

n∑
i=1

(Qk(si, ai)− yi)2 − 1
n

n∑
i=1

(TπQk−1(si, ai)− yi)2
)
> ϵ

}
(C.4)

1It is easy to see that if m(x) = E[y|s] is the regression function then for any function
f(x), we have E [(f(x)−m(x))(m(x)− y) = 0]

177

= P
{
E
[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
− 1
n

n∑
i=1

[
(Qk(si, ai)− yi)2 − (TπQk−1(si, ai)− yi)2

]
>

1
2(ϵ+ E

[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
)
}

(C.5)

≤ P
{
∃f ∈ F : E

[
(f(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
− 1
n

n∑
i=1

[
(f(si, ai)− yi)2 − (TπQk−1(si, ai)− yi)2

]
≥ 1

2(ϵ2 + ϵ

2 + E
[
(f(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
)
}

≤ 14 sup
xn

1

N1

(
ϵ

80C
,F, xn1

)
· exp

(
− nϵ

24 · 214C4

)
. (C.6)

Equation (C.4) uses the definition of Qk = arg min
f∈F

1
n

∑n
i=1(f(si, ai)− yi)2 and

the fact that TπQk−1 ∈ F, thus making the extra term a positive addition.
Equation (C.5) is due to rearranging the terms. Equation (C.6) is an application
of lemma C.2.5. We can further bound the empirical covering number by
invoking the following lemma due to Haussler [87]:

Lemma C.2.6 ([87], Corollary 3). For any set X, any points x1:n ∈ X n,
any class F of functions on X taking values in [0, C] with pseudo-dimension
dimF <∞, and any ϵ > 0:

N1(ϵ,F, xn1) ≤ e(dimF + 1)
(

2eC
ϵ

)dimF

.

Applying lemma C.2.6 to equation (C.6), we have the inequality

P
{
∥Qk − TπQk−1∥2

µ > ϵ
}
≤ 14·e·(dimF+1)

(
320C2

ϵ

)dimF

·exp
(
− nϵ

24 · 214C4

)
.

(C.7)
Thus, when n ≥ 24·214·C4

ϵ2

(
log 1

δ
+ dimF log 320C2

ϵ2
+ log(14e(dimF + 1))

)
:

∥Qk − TπQk−1∥ρ < ϵ,

with probability at least 1−δ. Notice that the dependence of sample complexity
n here on ϵ is Õ(1

ϵ2
), which is better than previously known analyses for other

approximate dynamic programming algorithms such as Fitted Value Iteration
[150], FittedPolicyQ [12, 11] with dependence of O(1

ϵ4
).

178

Error bound for single iteration - Bellman non-realizable case
We now give similar error bound for the general case, where Assumption C.2
does not hold. Consider the decomposition
∥Qk − TπQk−1∥2

µ (C.8)
= E

[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
=
{
E
[
(Qk(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

]
− 2 ·

(
1
n

n∑
i=1

(Qk(si, ai)− yi)2 − 1
n

n∑
i=1

(TπQk−1(si, ai)− yi)2
)}

+
{

2 ·
(

1
n

n∑
i=1

(Qk(si, ai)− yi)2 − 1
n

n∑
i=1

(TπQk−1(si, ai)− yi)2
)}

= component_1 + component_2.

Splitting the probability of error into two separate bounds. We saw from the
previous section (equation (C.7)) that

P(component_1 > ϵ/2) ≤ 14 · e · (dimF + 1)
(

640C2

ϵ

)dimF

· exp
(
− nϵ

48 · 214C4

)
.

(C.9)
We no longer have component_2 ≤ 0 since TπQk−1 /∈ F. Let

f ∗ ≡ arg inf
f∈F

∥f − TπQk−1∥2
µ .

Since Qk = arg min
f∈F

1
n

∑n
i=1(f(si, ai)− yi)2, we can upper-bound component_2

by

component_2 ≤ 2 ·
(

1
n

n∑
i=1

(f ∗(si, ai)− yi)2 − 1
n

n∑
i=1

(TπQk−1(si, ai)− yi)2
)

We can treat f ∗ as a fixed function, unlike random function Qk, and use
standard concentration inequalities to bound the empirical average from the
expectation. Let random variable z = ((s, a), y), zi = ((si, ai), yi), i = 1, . . . , n
and let

h(z) = (f ∗(s, a)− y)2 − (TπQk−1(s, a)− y)2.

We have |h(z)| ≤ 4C2. We will derive a bound for

P
(

1
n

n∑
i=1

h(zi)− Eh(z) > ϵ

4 + Eh(z)
)
,

using Bernstein inequality[145]. First, using the relationship h(z) = (f ∗(s, a) +
TπQk−1(s, a)−2y)(f ∗(s, a)−TπQk−1(s, a)), the variance of h(z) can be bounded

179

by a constant factor of Eh(z), since
Var(h(z)) ≤ Eh(z)2 ≤ 16C2E

[
(f ∗(s, a)− TπQk−1(s, a))2

]
= 16C2

(
E
[
(f ∗(s, a)− y)2

]
− E

[
(TπQk−1(s, a)− y)2

])
(C.10)

= 16C2Eh(z). (C.11)
Equation (C.10) stems from TπQk−1 being the optimal regression function.
Now we can apply equation (C.11) and Bernstein inequality to obtain

P
(

1
n

n∑
i=1

h(zi)− Eh(z) > ϵ

4 + Eh(z)
)

≤ P
(

1
n

n∑
i=1

h(zi)− Eh(z) > ϵ

4 + Var(h(z))
16C2

)
≤ . . .

≤ exp

− n
(
ϵ
4 + Var

16C2

)2

2Var + 24C2

3

(
ϵ
4 + Var

16C2

)
 ≤ exp

− n
(
ϵ
4 + Var

16C2

)2(
32C2 + 8C2

3

) (
ϵ
4 + Var

16C2

)


= exp
−n

(
ϵ
4 + Var

16C2

)
32C2 + 8C2

3

 ≤ exp
(
− 1

128 + 32
3
· nϵ
C2

)
.

Thus

P
(

2 ·
[

1
n

n∑
i=1

h(zi)− 2Eh(z)
]
>
ϵ

2

)
≤ exp

(
− 3

416 ·
nϵ

C2

)
. (C.12)

Now we have

component_2 ≤ 2 · 1
n

n∑
i=1

h(zi) = 2 ·
[

1
n

n∑
i=1

h(zi)− 2Eh(z)
]

+ 4Eh(z).

Using again the fact that TπQk−1 is the optimal regression function
Eh(z) = ED

[
(f ∗(s, a)− y)2

]
− ED

[
(TπQk−1(s, a)− y)2

]
= ED

[
(f ∗(s, a)− TπQk−1(s, a))2

]
= inf

f∈F
∥f − TπQk−1∥2

µ . (C.13)

Combining equations (C.9), (C.12) and (C.13), we can conclude that
P
{
∥Qk − TπQk−1∥2

µ − 4 inf
f∈F
∥f − TπQk−1∥2

µ > ϵ
}

(C.14)

≤ 14 · e · (dimF + 1)
(

640C2

ϵ

)dimF

· exp
(
− nϵ

48 · 214C4

)
+ exp

(
− 3

416 ·
nϵ

C2

)
,

implying
P
{
∥Qk − TπQk−1∥µ − 2 inf

f∈F
∥f − TπQk−1∥µ > ϵ

}
(C.15)

≤ 14 · e · (dimF + 1)
(

640C2

ϵ2

)dimF

· exp
(
− nϵ2

48 · 214C4

)
+ exp

(
− 3

416 ·
nϵ2

C2

)
.

(C.16)

180

We now can further upper-bound the term
2 inf
f∈F
∥f − TπQk−1∥µ ≤ 2 sup

f ′∈F
inf
f∈F
∥f − Tπf ′∥µ = 2dπF,

(the worst-case inherent Bellman evaluation error), leading to the final bound
for the Bellman non-realizable case.

One may wish to further remove the inherent Bellman evaluation error from
our error bound. However, counter-examples exist where the inherent Bellman
error cannot generally be estimated using function approximation (see section
11.6 of [191]). Fortunately, inherent Bellman error can be driven to be small
by choosing rich function class F (low bias), at the expense of more samples
requirement (higher variance, through higher pseudo-dimension dimF).

While the bound in (C.16) looks more complicated than the Bellman realizable
case in equation C.7, note that the convergence rate will still be O(1

n2).

Bounding the error across iterations
Previous sub-sections C.2 and C.2 have analyzed the error of FQE for a single
iteration in Bellman realizable and non-realizable case. We now analyze how
errors from different iterations flow through the FQE algorithm. The proof
borrows the idea from lemma 3 and 4 of [150] for fitted value iteration (for
value function V instead of Q), with appropriate modifications for our off-policy
evaluation context.

Recall that Cπ, Qπ denote the true value function and action-value function,
respectively, under the evaluation policy π. And CK = E[QK(s, π(s))] denote
the value function associated with the returned function QK from algorithm 3.
Our goal is to bound the difference Cπ − CK between the true value function
and the estimated value of the returned function QK .

Let the unknown state-action distribution induced by the evaluation policy π
be ρ. We first bound the loss ∥Qπ −QK∥ρ under the “test-time” distribution
ρ of (s, a), which differs from the state-action µ induced by data-generating
policy πD. We will then lift the loss bound from QK to CK .

Step 1: Upper-bound the value estimation error

Let ϵk−1 = Qk − TπQk−1 ∈ X , C. We have for every k that
Qπ −Qk = TπQπ − TπQk−1 + ϵk−1 (Qπ is fixed point of T π)

= γP π(Qπ −Qk−1) + ϵk−1.

181

Thus by simple recursion

Qπ −QK =
K−1∑
k=0

γK−k−1(P π)K−k−1ϵk + γK(P π)K(Qπ −Q0)

= 1− γK+1

1− γ

[
K−1∑
k=0

(1− γ)γK−k−1

1− γK+1 (P π)K−k−1ϵk

+ (1− γ)γK
1− γK+1 (P π)K(Qπ −Q0)

]

= 1− γK+1

1− γ

[
K−1∑
k=0

αkAkϵk + αKAK(Qπ −Q0)
]
, (C.17)

where for simplicity of notations, we denote

αk = (1− γ)γK−k−1

1− γK+1 for k < K,αK = (1− γ)γK
1− γK+1

Ak = (P π)K−k−1, AK = (P π)K .
Note that Ak’s are probability kernels and αk’s are deliberately chosen such
that ∑k αk = 1.

We can apply point-wise absolute value on both sides of (C.17) with |f | being
the short-hand notation for |f(s, a)| and inequality holds point-wise. By triangle
inequalities:

|Qπ −QK | ≤
1− γK+1

1− γ

[
K−1∑
k=0

αkAk|ϵk|+ αKAK |Qπ −Q0|
]
. (C.18)

Step 2: Bounding ∥Qπ −QK∥ρ for any unknown distribution ρ. To
handle distribution shift from µ to ρ, we decompose the loss as follows:
∥Qπ −QK∥2

ρ =
∫
ρ(dx, da) (Qπ(s, a)−QK(s, a))2

≤
[

1− γK+1

1− γ

]2 ∫ [(
K−1∑
k=0

αkAk|ϵk|+ αKAK |Qπ −Q0|
)

(s, a)
]2

(from(C.18))

≤
[

1− γK+1

1− γ

]2 ∫ [
K−1∑
k=0

αk(Akϵk)2 + αK(AK(Q∗ −Q0))2
]

(s, a) (Jensen)

≤
[

1− γK+1

1− γ

]2 ∫ [
K−1∑
k=0

αkAkϵ
2
k + αKAK(Q∗ −Q0)2

]
(s, a). (Jensen)

Using assumption C.1 (assumption 5.1), we can bound each term ρAk as:
ρAk = ρ(P π)K−k−1 ≤ µβµ(K − k − 1). (definition C.1.3)

Thus
∥Qπ −QK∥2

ρ[
1−γK+1

1−γ

]2 ≤
[

1− γ
1− γK+1

K−1∑
k=0

γK−k−1βµ(K − k − 1) ∥ϵk∥2
µ + αK(2C)2

]
.

Assumption C.1 (stronger than necessary for proof of FQE) can be used to

182

upper-bound the first order concentration coefficient:

(1− γ)
∑
m≥0

γmβµ(m) ≤ γ

1− γ

(1− γ)2 ∑
m≥1

mγm−1βµ(m)
 = γ

1− γβµ.

This gives the upper-bound for ∥Qπ −QK∥2
ρ as

∥Qπ −QK∥2
ρ ≤

[
1− γK+1

1− γ

]2 [
γ

(1− γ)(1− γK+1)βµ max
k
∥ϵk∥2

µ (C.19)

+ (1− γ)γK
1− γK+1 (2C)2

]

≤ 1− γK+1

(1− γ)2

[
γ

1− γβµ max
k
∥ϵk∥2

µ + (1− γ)γK(2C)2
]

≤ γ

(1− γ)3βµ max
k
∥ϵk∥2

µ + γK

1− γ (2C)2.

Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b, we conclude that

∥Qπ −QK∥ρ ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
∥ϵk∥µ + γK/2

(1− γ)1/2 2C
)
. (C.20)

Step 3: Desired Bound Now we can choose ρ to be the state-action distri-
bution by the evaluation policy π. The error bound on the value function Q

follows simply by integrating inequality (C.20) over state-action pairs induced
by π. The final error across iterations can be related to individual iteration
error by

|Qπ −QK | ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
∥ϵk∥µ + γK/2

(1− γ)1/2 2C
)
. (C.21)

Finite-sample guarantees for Fitted Q Evaluation
Combining results from (C.7), (C.16) and (C.21), we have the final guarantees
for FQE under both realizable and general cases.

Realizable Case - Proof of theorem C.2.2. From (C.7), when n ≥ N∗ ≡
24·214·C4

ϵ2

(
log K

δ
+ dimF log 320C2

ϵ2
+ log(14e(dimF + 1))

)
, we have ∥ϵk∥µ < ϵ with

probability at least 1− δ/K for any 0 ≤ k < K. Thus we conclude that for any
ϵ > 0, 0 < δ < 1, after K iterations of Fitted Q Evaluation, the value estimate
returned by QK satisfies:

|Qπ −QK | ≤
γ1/2

(1− γ)3/2

(√
βµϵ+ γK/2

(1− γ)1/2 2C
)

holds with probability 1− δ when n ≥ N∗. This concludes the proof of theorem
C.2.2.

Non-realizable Case - Proof of theorem C.2.1 and theorem 5.2.1.

183

Similarly, from (C.16) we have
P
{
∥Qk − TπQk−1∥µ − 2 inf

f∈F
∥f − TπQk−1∥µ > ϵ

}
(C.22)

≤ 14 · e · (dimF + 1)
(

640C2

ϵ2

)dimF

· exp
(
− nϵ2

48 · 214C4

)
+ exp

(
− 3

416 ·
nϵ2

C2

)
.

Since inff∈F ∥f − TπQk−1∥µ ≤ suph∈F inff∈F ∥f − Tπh∥µ = dπF (the inherent
Bellman evaluation error), similar arguments to the realizable case lead to the
conclusion that for any ϵ > 0, 0 < δ < 1, after K iterations of FQE:

|Qπ −QK | ≤
γ1/2

(1− γ)3/2

(√
βµ(2dπF + ϵ) + γK/2

(1− γ)1/2 2C
)

holds with probability 1− δ when n = O
(
C4

ϵ2
(log K

δ
+ dimF log C2

ϵ2
+ log dimF)

)
,

thus finishes the proof of theorem C.2.1.

Note that in both cases, the Õ(1
ϵ2

) dependency of n is significant improvement
over previous finite-sample analysis of related approximate dynamic program-
ming algorithms [150, 12, 11]. This dependency matches that of previous
analysis using linear function approximators from [118, 119] for LSTD and
LSPI algorithms. Here our analysis, using similar assumptions, is applicable
for general non-linear, bounded function classes, which is an improvement
over convergence rate of O(1

n4) in related approximate dynamic programming
algorithms [11, 12, 150].

184

Appendix D

CHAPTER 4 APPENDIX

D.1 Equivalence between Regularization and Constraint Satisfaction
Formulating Different Regularized Policy Learning Problems as Constrained
Policy Learning
In this section, we provide connections between regularized policy learning
and our constrained formulation (OPT). Although this chapter focuses on
batch policy learning, here we are agnostic between online and batch learning
settings.

Entropy regularized RL. The standard reinforcement learning objective,
either in online or batch setting, is to find a policy π∗

std that minimizes the
long-term cost (equivalent to maximizing the accumulated rewards): π∗

std =
arg minπ

∑
t E(st,at)∼π[c(st, at)] = arg minπ E(s,a)∼µπ [c(s, a)]. Maximum entropy

reinforcement learning [78] augments the cost with an entropy term, such
that the optimal policy maximizes its entropy at each visited state: π∗

MaxEnt =
arg minπ E(s,a)∼µπ [c(s, a)] − λH(π(·|s)). As discuseed by [78], the goal is for
the agent to maximize the entropy of the entire trajectory, and not greedily
maximizing entropy at the current time step (i.e., Boltzmann exploration).
Maximum entropy policy learning was first proposed by [232, 231] in the context
of learning from expert demonstrations. Entropy regulazed RL/IL is equivalent
to our problem (OPT) by simply set C(π) = E(st,at)∼π[c(st, at)] (standard RL
objective), and g(s, a) = π(a|s) log π(a|s), and thus G(π) = −H(π) ≤ τ.

Smooth imitation learning (& Regularized imitation learning). This
is a constrained imitation learning problem studied by [122]: learning to mimic
smooth behavior in continuous space from human desmonstrations. The data
collected from human demonstrations is considered to be fixed and given a
priori, thus the imitation learning task is also a batch policy learning problem.
The proposed approach from [122] is to view policy learning as a function
regularization problem: policy π = (f, g) is a combination of functions f
and h, where f belongs to some expressive function class F (e.g., decision
trees, neural networks) and h ∈ H with certifiable smoothness property (e.g.,
linear models). Policy learning is the solution to the functional regularization

185

problem π = arg minf,g Es∼µπ ∥f(s)− πE(s)∥+ λ ∥h(s)− πE(s)∥, where πE is
the expert policy. This constrained imitation learning setting is equivalent to
our problem (OPT) as follows: C(π) = C((f, h)) = Es∼µπ ∥f(s)− πE(s)∥ and
G(π) = G((f, h)) = minh′∈H ∥h′(s)− πE(s)∥ ≤ τ .

Regularizing RL with expert demonstrations / Learning from imper-
fect demonstrations. Efficient exploration in RL is a well-known challenge.
Expert demonstrations provide a way around online exploration to reduce
the sample complexity for learning. However, the label budget for expert
demonstrations may be limited, resulting in a sparse coverage of the state
space compared to what the online RL agent can explore [91]. Additionally,
expert demonstrations may be imperfect [157]. Some recent work proposed to
regularize standard RL objective with some deviation measure between the
learning policy and (sparse) expert data [91, 157, 88].

For clarity we focus on the regularized RL objective for Q-learning in [91], which
is defined as J(π) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q), where JDQ(Q)
is the standard deep Q-learning loss, Jn(Q) is the n-step return loss, JE(Q) is the
imitation learning loss given by JE(Q) = maxa∈A [Q(s, a) + ℓ(aE, a)−Q(s, aE)],
and JL2(Q) is an L2 regularization loss applied to the Q-network to prevent
overfitting to a small expert dataset. The regularization parameters λ’s are ob-
tained by hyperparameter tuning. This approach provides a bridge between RL
and IL, whose objective functions are fundamentally different (see AggreVate
by [175] for an alternative approach).

We can cast this problem into (OPT) as C(π) = CDQ(Q) + λ3CL2(Q) (stan-
dard RL objective), and two constraints: g1(π) = Es∼µπ [maxa∈A Q(s, a) +
ℓ(aE, a) − Q(s, aE)], and g2(s, a) = Es∼µπ [ct + γct+1 + . . . + γn−1ct+n−1 +
min′

a γ
nQ(st+n, a′)−Q(st, a)]. Here g1 captures the loss w.r.t. expert demon-

strations and g2 reflects the n-step return constraint.

More generally, one can define the imitation learning constraint as G(π) =
Es∼µπℓ(π(s), πE(s)) for an appropriate divergence definition between π(s) and
πE(s) (defined at states where expert demonstrations are available).

Conservative policy improvement. Many policy search algorithms perform
small policy update steps, requiring the new policy π to stay within a neighbor-
hood of the most recent policy iterate πk to ensure learning stability [125, 179,
146, 3]. This simply corresponds to the definition of G(π) = distance(π, πk) ≤

186

τ , where distance is typically KL-divergence or total variation distance be-
tween the distribution induced by π and πk. For KL-divergence, the single
timestep cost g(s, a) = −π(a|s) log(πk(a|s)

π(a|s)).

Equivalence of Regularization and Constraint Viewpoint - Proof of Propo-
sition 6.2.1
Regularization =⇒ Constraint: Let λ > 0 and π∗ be optimal policy
in Regularization. Set τ = G(π∗). Suppose that π∗ is not optimal in
Constraint. Then ∃π ∈ Π such that G(π) ≤ τ and C(π) < C(π∗). We then
have

C(π) + λ⊤G(π) < C(π∗) + λ⊤τ = C(π∗) + λ⊤G(π∗),
which contradicts the optimality of π∗ for Regularization problem. Thus π∗

is also the optimal solution of the Constraint problem.

Constraint =⇒ Regularization: Given τ and let π∗ be the corresponding
optimal solution of the Constraint problem. The Lagrangian of Constraint
is given by L(π, λ) = C(π) + λ⊤G(π), λ ≥ 0. Then π∗ = arg min

π∈Π
max
λ≥0

L(π, λ).
Let

λ∗ = arg max
λ≥0

min
π∈Π

L(π, λ).

Slater’s condition implies strong duality. By strong duality and the strong max-
min property [26], we can exchange the order of maximization and minimization.
Thus π∗ is the optimal solution of

min
π∈Π

C(π) + (λ∗)⊤(G(π)− τ).

Removing the constaint (λ∗)⊤τ , we have that π∗ is the optimal solution of the
Regularization problem with λ = λ∗. And since π∗ ≠ arg min

π∈Π
C(π), we must

have λ∗ ≥ 0.

187

D.2 Convergence Proofs
Convergence of Meta-algorithm - Proof of Proposition 6.3.1
Let us evaluate the empirical primal-dual gap of the Lagrangian after T

iterations:
max
λ

L(π̂T , λ) = max
λ

1
T

∑
t

L(πt, λ) (D.1)

≤ 1
T

∑
t

L(πt, λt) + o(T)
T

(D.2)

≤ 1
T

∑
t

L(π, λt) + o(T)
T

∀π ∈ Π (D.3)

= L(π, λ̂T) + o(T)
T

∀π. (D.4)

Equations (D.1) and (D.4) are due to the definition of π̂T and λ̂T and linearity
of L(π, λ) wrt λ and the distribution over policies in Π. Equation (D.2)
is due to the no-regret property of Online-algorithm. Equation (D.3) is
true since πt is best response wrt λt. Since equation (D.4) holds for all π,
we can conclude that for T sufficiently large such that o(T)

T
≤ ω, we have

maxλ L(π̂T , λ) ≤ minπ L(π, λ̂T) + ω , which will terminate the algorithm.

Note that we always have maxλ L(π̂T , λ) ≥ L(π̂T , λ̂T) ≥ minπ L(π, λ̂T). Algo
4’s convergence rate depends on the regret bound of the Online-algorithm
procedure. Multiple algorithms exist with regret scaling as Ω(

√
T) (e.g., online

gradient descent with regularizer, variants of online mirror descent). In that
case, the algorithm will terminate after O(1

ω2) iterations.

Empirical Convergence Analysis of Main Algorithm - Proof of Theorem
6.4.1
By choosing normalized exponentiated gradient as the online learning sub-
routine, we have the following regret bound after T iterations of the main
algorithm 5 (Chapter 2 of [182]) for any λ ∈ Rm+1

+ , ∥λ∥1 = B:
1
T

T∑
t=1

L̂(πt, λ) ≤ 1
T

T∑
t=1

L̂(πt, λt) +
B log(m+1)

η
+ ηG2BT

T
. (D.5)

188

Denote ωT =
B log(m+1)

η
+ηG2BT

T
to simplify notations. By the linearity of L̂(π, λ)

in both π and λ, we have for any λ that

L̂(π̂T , λ) linearity= 1
T

T∑
t=1

L̂(πt, λ)
eqn (D.5)
≤ 1

T

T∑
t=1

L̂(πt, λt) + ωT

best response πt

≤ 1
T

T∑
t=1

L̂(π̂T , λt) + ωT

linearity= L̂(π̂T , λ̂T) + ωT .

Since this is true for any λ, maxλ L̂(π̂T , λ) ≤ L̂(π̂T , λ̂T) + ωT .

On the other hand, for any policy π, we also have

L̂(π, λ̂T) linearity= 1
T

T∑
t=1

L̂(π, λt)
best response πt

≥ 1
T

T∑
t=1

L̂(πt, λt)

eqn (D.5)
≥ 1

T

T∑
t=1

L̂(πt, λ̂T)− ωT

linearity= L̂(π̂T , λ̂T)− ωT .
Thus minπ L̂(π, λ̂T) ≥ L̂(π̂T , λ̂T)− ωT , leading to

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T) ≤ L̂(π̂T , λ̂T) + ωT − (L̂(π̂T , λ̂T)− ωT) = 2ωT

After T iterations of the main algorithm 5, therefore, the empirical primal-dual
gap is bounded by

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T) ≤

2B log(m+1)
η

+ 2ηG2BT

T
.

In particular, if we want the gap to fall below a desired threshold ω, setting the
online learning rate η = ω

4G2B
will ensure that the algorithm converges after

16B2G2 log(m+1)
ω2 iterations.

D.3 End-to-end Generalization Analysis of Main Algorithm
In this section, we prove the following full statement of theorem 6.4.3. Note
that to lessen notation, we define V = C + BG to be the bound of value
functions under considerations in algorithm 5.

Theorem D.3.1 (Generalization bound of algorithm 5). Let π∗ be the optimal
policy to problem OPT. Let K be the number of iterations of FQE and FQI. Let
π̂ be the policy returned by our main algorithm 5, with termination threshold
ω. For any ϵ > 0, δ ∈ (0, 1), when n ≥ 24·214·V 4

ϵ2

(
log K(m+1)

δ
+ dimF log 320V 2

ϵ2
+

log(14e(dimF + 1))
)
, we have with probability at least 1− δ:

C(π̂) ≤ C(π∗) + ω + (4 +B)γ
(1− γ)3

(√
Cρϵ+ 2γK/2V

)

189

and

G(π̂) ≤ τ + 2V + ω

B
+ γ1/2

(1− γ)3/2

(√
Cρϵ+ 2γK/2V

(1− γ)1/2

)
.

Let π̂ = 1
T

∑
t πt be the returned policy T iterations, with corresponding dual

variable λ̂ = 1
T

∑
t λt.

By the stopping condition, the empirical duality gap is less than some thresh-
old ω, i.e., max

λ∈Rm+1
+ ,∥λ∥1=B

L̂(π̂, λ) − min
π∈Π

L̂(π, λ̂) ≤ ω where L̂(π, λ) = Ĉ(π) +

λ⊤(Ĝ(π)− τ). We first show that the returned policy approximately satisfies
the constraints. The proof of theorem D.3.1 will make use of the following
empirical constraint satisfaction bound:

Lemma D.3.2 (Empirical constraint satisfactions). Assume that the con-
straints Ĝ(π) ≤ τ are feasible. Then the returned policy π̂ approximately
satisfies all constraints

max
i=1:m+1

(ĝi(π̂)− τi) ≤ 2C + ω

B
.

Proof. We consider max
i=1:m+1

(ĝi(π̂)− τi) > 0 (otherwise the lemma statement is
trivially true). The termination condition implies that

L̂(π̂, λ̂)− max
λ∈Rm+1

+ ,∥λ∥1=B
L̂(π̂, λ) ≥ −ω

=⇒ λ̂⊤(Ĝ(π̂)− τ̂) ≥ max
λ∈Rm+1

+ ,∥λ∥1=B
λ⊤(Ĝ(π̂)− τ̂)− ω. (D.6)

We relax the RHS of Eq (D.6) by setting λ[j] = B for j = arg max
i=1:m+1

[ĝi(π̂)− τi]

and λ[i] = 0 ∀i ̸= j yields:
B max

i=1:m+1
[ĝi(π̂)− τi]− ω ≤ λ̂⊤(Ĝ(π̂)− τ). (D.7)

Given π such that Ĝ(π) ≤ τ , also by the termination condition:
L̂(π̂, λ̂)− L̂(π, λ̂) ≤ max

λ∈Rm+1
+ ,∥λ∥1=B

L̂(π̂, λ)−min
π∈Π

L̂(π, λ̂) ≤ ω.

Thus implies
L̂(π̂, λ̂) ≤ L̂(π, λ̂) + ω = Ĉ(π) + λ̂⊤(Ĝ(π)− τ) ≤ Ĉ(π) + ω. (D.8)

Combining what we have from equation (D.8) and (D.7):
B max

i=1:m+1
[ĝi(π̂)− τ̂i]−ω ≤ λ̂⊤(Ĝ(π̂)− τ̂) = L̂(π̂, λ̂)− Ĉ(π̂) ≤ Ĉ(π)+ω− Ĉ(π̂).

Rearranging and bounding Ĉ(π) ≤ C and Ĉ(π̂) ≤ −C completes the proof.

190

We now return to the proof of theorem D.3.1, our task is to lift empirical error
to generalization bound for main objective and constraints.

Denote by ϵFQE the (generalization) error introduced by the Fitted Q Evaluation
procedure (algorithm 3) and ϵFQI the (generalization) error introduced by the
Fitted Q Iteration procedure (algorithm 13). For now we keep ϵFQE and ϵFQI

unspecified (to be specified shortly). That is, for each t = 1, 2, . . . , T , we have
with probability at least 1− δ:

C(πt) + λ⊤
t (G(πt)− τ) ≤ C(π∗) + λ⊤

t (G(π∗)− τ) + ϵFQI .

Since π∗ satisfies the constraints, i.e., G(π∗) − τ ≤ 0 componentwise, and
λt ≥ 0, we also have with probability 1− δ

L(πt, λt) = C(πt) + λ⊤
t (G(πt)− τ) ≤ C(π∗) + ϵFQI . (D.9)

Similarly, with probability 1− δ, all of the following inequalities are true
Ĉ(πt) + ϵFQE ≥ C(πt) ≥ Ĉ(πt)− ϵFQE (D.10)
Ĝ(πt) + ϵFQE1 ≥ G(πt) ≥ Ĝ(πt)− ϵFQE1 (row wise for all m constraints).

(D.11)
Thus with probability at least 1− δ:
L(πt, λt) = C(πt) + λ⊤

t (G(πt)− τ) ≥ Ĉ(πt) + λ⊤
t (Ĝ(πt)− τ)− ϵFQE(1 + λ⊤

t 1)
≥ Ĉ(πt) + λ⊤

t (Ĝ(πt)− τ)− ϵFQE(1 +B)
= L̂(πt, λt)− ϵFQE(1 +B). (D.12)

Recall that the execution of mixture policy π̂ is done by uniformly sampling
one policy πt from {π1, . . . , πT}, and rolling-out with πt. Thus from equations
(D.9) and (D.12), we have Et∼U [1:T]L̂(πt, λt) ≤ C(π∗) + ϵFQI + (1 +B)ϵFQE w.p.
1− δ. In other words, with probability 1− δ:

1
T

T∑
t=1

L̂(πt, λt) ≤ C(π∗) + ϵFQI + (1 +B)ϵFQE.

Due to the no-regret property of our online algorithm (EG in this case):
1
T

T∑
t=1

L̂(πt, λt) ≥ max
λ

L̂(π̂, λ)− ω = Ĉ(π̂) + max
λ

λ⊤(Ĝ(π̂)− τ)− ω

If Ĝ(π̂)− τ ≤ 0 componentwise, choose λ[i] = 0, i = 1, 2, . . . ,m and λ[m+ 1] =
B. Otherwise, we can choose λ[j] = B for j = arg max

i=1:m+1
[ĝi(π̂)− τ [i]] and

λ[i] = 0 ∀i ̸= j. We can see that max
λ∈Rm+1

+ ,∥λ∥1=B
λ⊤(Ĝ(π̂)− τ) ≥ 0. Therefore:

Ĉ(π̂)− ω ≤ C(π∗) + ϵFQI + (1 +B)ϵFQE with probability at least 1− δ.

191

Combined with the first term from equation (D.10):
C(π̂)− ϵFQE − ω ≤ C(π∗) + ϵFQI + (1 +B)ϵFQE

or
C(π̂) ≤ C(π∗) + ω + ϵFQI + (2 +B)ϵFQE. (D.13)

We now bring in the generalization error results from our standalone analysis of
FQI (appendix D.5) and FQE (Chapter 5 appendix C.2) into equation (D.13).

Specifically, when

n ≥ 24 · 214 · V 4

ϵ2

(
log K(m+ 1)

δ
+ dimF log 320V 2

ϵ2 + log(14e(dimF + 1))
)
,

when FQI and FQE are run with K iterations, we have the guarantee that for
any ϵ > 0, with probability at least 1− δ

C(π̂) ≤ C(π∗) + ω + 2γ
(1− γ)3

(√
Cµϵ+ 2γK/2V

)
︸ ︷︷ ︸

FQI generalization error

+ γ1/2(2 +B)
(1− γ)3/2

(√
Cµϵ+ γK/2

(1− γ)1/2 2V
)

︸ ︷︷ ︸
(2+B)× FQE generalization error

≤ C(π∗) + ω + (4 +B)γ
(1− γ)3

(√
Cµϵ+ 2γK/2V

)
. (D.14)

From lemma D.3.2, Ĝ(π̂) ≤ τ + 2C+ω
B
≤ τ + 2V+ω

B
. From equation (D.11), for

each t=1,2,. . . ,T, we have Ĝ(πt) ≥ G(πt)− ϵFQE1 with probability 1− δ. Thus

P
(
Ĝ(π̂) ≥ G(π̂)− ϵFQE1

)
=

T∑
t=1

P(Ĝ(πt) ≥ G(πt)− ϵFQE1|π̂ = πt)P(π̂ = πt)

≥ T (1− δ) 1
T

= 1− δ.
Therefore, we have the following generalization guarantee for the approximate
satisfaction of all constraints:

G(π̂) ≤ τ + 2V + ω

B
+ γ1/2

(1− γ)3/2

(√
Cµϵ+ γK/2

(1− γ)1/2 2V
)
. (D.15)

Inequalities (D.14) and (D.15) complete the proof of theorem D.3.1 (and
theorem 6.4.3).

D.4 Preliminaries to Analysis of Fitted Q Iteration (FQI)
This section follows the same setup and structure as Chapter 5 Appendix
section C.1.

We show improved convergence rate from O(n−4) to O(n−2), where n is the
number of samples in data set D.

192

To be consistent with the notation of this chapter, we use the convention C(π)
as the value function that denotes long-term accumulated cost, instead of
using V (π) denoting long-term rewards in the traditional RL literature. Our
notation for Q function is similar to the RL literature - the only difference is
that the optimal policy minimizes Q(x, a) instead of maximizing. We denote
the bound on the value function as C (alternatively if the single timestep cost
is bounded by c, then C = c

1−γ). For simplicity, the standalone analysis of
FQI concerns only with the cost objective c. Dealing with cost c+ λ⊤g offers
no extra difficulty - in that case we simply augment the bound of the value
function to V = C +BG.

We begin by recalling a few ideas and definitions from Chapter 5 Appendix
section C.1.

Reminder from 5 Appendix section C.1
Recall, the Bellman optimality operator T : B(X ;C) 7→ B(X ;C) as:

(TQ)(s, a) = c(s, a) + γ
∫

S
min
a′∈A

Q(s′, a′)p(ds′|s, a). (D.16)
The optimal value functions are defined as usual by C∗(s) = sup

π
Cπ(s) and

Q∗(s, a) = sup
π
Qπ(s, a) ∀(s, a) ∈ X .

Denote the state-action data generating distribution as µ, induced by some
data-generating (behavior) policy πD, that is, (si, ai) ∼ µ for (si, ai, s′

i, ci) ∈ D.

Note that data set D is formed by multiple trajectories generated by πD. For
each (si, ai), we have s′

i ∼ p(·|si, ai) and ci = c(si, ai). For any (measur-
able) function f : X 7→ R, define the µ-weighted ℓ2 norm of f as ∥f∥2

µ =∫
X f(s, a)2µ(ds, da) =

∫
X f(s, a)2µs(ds)πD(a|ds). Similarly for any other state-

action distribution ρ, ∥f∥2
ρ =

∫
X f(s, a)2ρ(ds, da)

Definition D.4.1 (Inherent Bellman Error). Given a function class F and a
chosen distribution ρ, the inherent Bellman error of F is defined as:

dF = d(F,TF) = sup
h∈F

inf
f∈F
∥f − Th∥ρ ,

where ∥·∥ρ is the ρ−weighted ℓ2 norm and T is the Bellman optimality operator
defined in (D.16)

Definition D.4.2 (Concentration coefficient of state-action distribution).
Given data generating distribution µ ∼ πD, initial state distribution d0. For

193

m ≥ 0, and an arbitrary sequence of stationary policies {πm}m≥1 let

βµ(m) = sup
π1,...,πm

∥∥∥∥∥d(d0P
π1P π2 . . . P πm)
dµ

∥∥∥∥∥
∞
.

(βµ(m) =∞ if the future state distribution d0P
π1P π2 . . . P πm is not absolutely

continuous w.r.t. µ, i.e, d0P
π1P π2 . . . P πm(s, a) > 0 for some µ(s, a) = 0)

Assumption D.1. βµ = (1− γ)2 ∑
m≥1

mγm−1βµ(m) <∞.

Definition D.4.3 (Random L1 Norm Covers). Let ϵ > 0, let F be a set of
functions S 7→ R, let sn1 = (s1, . . . , sn) be n fixed points in S. Then a collection
of functions Fϵ = {f1, . . . , fN} is an ϵ-cover of F on sn1 if

∀f ∈ F,∃f ′ ∈ Fϵ : | 1
n

n∑
i=1

f(si)−
1
n

n∑
i=1

f ′(si)| ≤ ϵ.

The empirical covering number, denote by N1(ϵ,F, sn1), is the size of the smallest
ϵ-cover on sn1 . Take N1(ϵ,F, sn1) =∞ if no finite ϵ-cover exists.

Definition D.4.4 (Pseudo-Dimension). A real-valued function class F has
pseudo-dimension dimF defined as the VC dimension of the function class
induced by the sub-level set of functions of F. In other words, define function
class H = {(x, y) 7→ sign(f(x)− y : f ∈ F}, then

dimF = VC-dimension(H).

D.5 Finite-Sample Analysis of Fitted Q Iteration (FQI)
Algorithm and Discussion

Algorithm 13 Fitted Q Iteration with Function Approximation: FQI(c) [56]
Require: Collected data set D = {si, ai, s′

i, ci}ni=1. Function class F
1: Initialize Q0 ∈ F randomly
2: for k = 1, 2, . . . ,K do
3: Compute target yi = ci + γminaQk−1(s′

i, a) ∀i
4: Build training set D̃k = {(si, ai), yi}ni=1
5: Solve a supervised learning problem:

Qk = arg min
f∈F

1
n

∑n
i=1(f(si, ai)− yi)2

Ensure: πK(·) = arg min
a

QK(·, a) (greedy policy with respect to the returned
function QK)

The analysis of FQI (algorithm 13) follows analogously from the analysis of FQE
(Chapter 5 Appendix C.2). For brevity, we skip certain detailed derivations,
especially those that are largely identical to FQE’s analysis.

194

To the best of our knowledge, a finite-sample analysis of FQI with general
non-linear function approximation has not been published (Continuous FQI
from [11] is in fact a Fitted Policy Iteration algorithm and is different from algo
13). In principle, one can adapt existing analysis of fitted value iteration [150]
and FittedPolicyQ [12, 11] to show that under similar assumptions, among
policies greedy w.r.t. functions in F, FQI will find ϵ− optimal policy using
n = Õ(1

ϵ4
) samples. We derive an improved analysis of FQI with general non-

linear function approximations, with better sample complexity of n = Õ(1
ϵ2

).
We note that the appendix of [120] contains an analysis of LinearFQI showing
similar rate to ours, albeit with linear function approximators.

In this section, we prove the following statement:

Theorem D.5.1 (Guarantee for FQI - General Case (theorem 6.4.2)). Under
Assumption D.1, for any ϵ > 0, δ ∈ (0, 1), after K iterations of Fitted Q
Iteration (algorithm 13), for n = O

(
C4

ϵ2
(log K

δ
+ dimF log C2

ϵ2
+ log dimF)

)
, we

have with probability 1− δ:

C∗ − C(πK) ≤ 2γ
(1− γ)3

(√
βµ (2dF + ϵ) + 2γK/2C

)
,

where πK is the policy greedy with respect to the returned function QK , and C∗

is the value of the optimal policy.

The key steps to the proof follow similar scheme to the proof of FQE. We
first bound the error for each iteration, and then analyze how the errors flow
through the algorithm.

Single iteration error bound ∥Qk − TQk−1∥µ
Here µ is the state-action distribution induced by the data-generating policy
πD. We begin with the decomposition:
∥Qk − TQk−1∥2

µ = E
[
(Qk(s, a)− y)2

]
− E

[
(TQk−1(s, a)− y)2

]
=
{
E
[
(Qk(s, a)− y)2

]
− E

[
(TQk−1(s, a)− y)2

]
(D.17)

− 2 ·
(

1
n

n∑
i=1

(Qk(si, ai)− yi)2 − 1
n

n∑
i=1

(TQk−1(si, ai)− yi)2
)}

+
{

2 ·
(

1
n

n∑
i=1

(Qk(si, ai)− yi)2 − 1
n

n∑
i=1

(TQk−1(si, ai)− yi)2
)}

= component_1 + component_2.

195

For T the Bellman (optimality) operator (equation D.16), TQk−1 is the re-
gression function that minimizes square loss min

h:RX 7→R
E|h(s, a) − y|2, with the

random variables (s, a) ∼ µ and y = c(s, a) + γmina′ Qk−1(s′, a′) where
s′ ∼ p(s′|s, a). Invoking lemma C.2.5 and following the steps similar to
equations (C.4),(C.5),(C.6), and (C.7) from Chapter 5 Appendix C.2, we can
bound the first component as

P(component_1 > ϵ/2) ≤ 14 · e · (dimF + 1)
(

640C2

ϵ

)dimF

· exp
(
− nϵ

48 · 214C4

)
.

(D.18)
Let f ∗ = arg inf

f∈F
∥f − TQk−1∥2

µ. Since Qk = arg min
f∈F

1
n

∑n
i=1(f(si, ai)− yi)2, we

can upper-bound component_2 by

component_2 ≤ 2 ·
(

1
n

n∑
i=1

(f ∗(si, ai)− yi)2 − 1
n

n∑
i=1

(TQk−1(si, ai)− yi)2
)
.

Let random variable z = ((s, a), y), zi = ((si, ai), yi), i = 1, . . . , n and let
h(z) = (f ∗(s, a)− y)2 − (TQk−1(s, a)− y)2.

We have |h(z)| ≤ 4C2. We can derive a bound for

P
(

1
n

n∑
i=1

h(zi)− Eh(z) > ϵ

4 + Eh(z)
)
,

using Bernstein inequality, similar to equations (C.10) and (C.11) from Chapter
5 Appendix C.2 to obtain:

P
(

2 ·
[

1
n

n∑
i=1

h(zi)− 2Eh(z)
]
>
ϵ

2

)
≤ exp

(
− 3

416 ·
nϵ

C2

)
. (D.19)

Now we have

component_2 ≤ 2 · 1
n

n∑
i=1

h(zi) = 2 ·
[

1
n

n∑
i=1

h(zi)− 2Eh(z)
]

+ 4Eh(z).

Since
Eh(z) = E

D̃k

[
(f ∗(s, a)− y)2

]
− E

D̃k

[
(TQk−1(s, a)− y)2

]
= E

D̃k

[
(f ∗(s, a)− TQk−1(s, a))2

]
= inf

f∈F
∥f − TQk−1∥2

µ . (D.20)

Combining equations (D.18), (D.19) and (D.20), we obtain that
P
{
∥Qk − TQk−1∥2

µ − 4 inf
f∈F
∥f − TQk−1∥2

µ > ϵ
}

≤ 14 · e · (dimF + 1)
(

640C2

ϵ

)dimF

· exp
(
− nϵ

48 · 214C4

)
+ exp

(
− 3

416 ·
nϵ

C2

)
. (D.21)

196

Propagation of error bound for ∥Q∗ −QπK∥ρ
The analysis of error propagation for FQI is more involved than that of FQE,
but the proof largely follows the error propagation analysis in lemma 3 and 4
of [150] in the fitted value iteration context (for V function). We include the
Q function’s (slighly more complicated) derivation here for completeness.

Recall that πK is greedy wrt the learned function QK returned by FQI. We
aim to bound the difference C∗ − CπK between the optimal value function and
that πK . For a (to-be-specified) distribution ρ of state-action pairs (different
from the data distribution µ), we bound the generalization loss ∥Q∗ −QπK∥ρ

Step 1: Upper-bound the propagation error (value). Let ϵk−1 =
Qk − TQk−1. We have that

Q∗ −Qk = Tπ∗
Q∗ − Tπ∗

Qk−1 + Tπ∗
Qk−1 − TQk−1 + ϵk−1

≤ Tπ∗
Q∗ − Tπ∗

Qk−1 + ϵk−1 (b/c TQk−1 ≥ Tπ∗
Qk−1)

= γP π∗(Q∗ −Qk−1) + ϵk−1.

Thus by recursion Q∗−QK ≤
∑K−1
k=0 γ

K−k−1(P π∗)K−k−1ϵk+γK(P π∗)K(Q∗−Q0)

Step 2: Lower-bound the propagation error (value). Similarly
Q∗ −Qk = TQ∗ − Tπk−1Q∗ + Tπk−1Q∗ − TQk−1 + ϵk−1

≥ Tπk−1Q∗ − TQk−1 + ϵk−1 (as TQ∗ ≥ Tπk−1Q∗)
≥ Tπk−1Q∗ − Tπk−1Qk−1 + ϵk−1 (b/c πk−1 greedy wrt Qk−1)
= γP πk−1(Q∗ −Qk−1) + ϵk−1.

And by recursion:

Q∗ −QK ≥
K−1∑
k=0

γK−k−1(P πK−1P πK−2 . . . P πk+1)ϵk

+ γK(P πK−1P πK−2 . . . P π0)(Q∗ −Q0).

Step 3: Upper-bound the propagation error (policy). Beginning with a
decomposition of value wrt to policy πK :

Q∗ −QπK = Tπ∗
Q∗ − Tπ∗

QK + Tπ∗
QK − TπKQK + TπKQK − TπKQπK

(a)
≤ (Tπ∗

Q∗ − Tπ∗
QK) + (TπKQK − TπKQπK)

= γP π∗(Q∗ −QK) + γP πK (QK −QπK)
= γP π∗(Q∗ −QK) + γP πK (QK −Q∗ +Q∗ −QπK),

where (a) uses Tπ∗
QK ≤ TQK = TπKQK . This leads to (I − γP πK)(Q∗ −

QπK) ≤ γ(P π∗ − P πK)(Q∗ − QK) The operator (I − γP πK) is invertible and

197

(I − γP πK)−1 = ∑
m≥0 γ

m(P πK)m is monotonic. Thus
Q∗ −QπK

≤ γ(I − γP πK)−1(P π∗ − P πK)(Q∗ −QK)
= γ(I − γP πK)−1P π∗(Q∗ −QK)− γ(I − γP πK)−1P πK (Q∗ −QK). (D.22)

Applying inequalities from Step 1 and Step 2 to the RHS of (D.22), we have

Q∗ −QπK ≤ (I − γP πK)−1
[
K−1∑
k=0

γK−k
(
(P π∗)K−k − P πKP πK−1 . . . P πk+1

)
ϵk

+ γK+1
(
(P π∗)K+1 − (P πKP πK−1 . . . P π0)

)
(Q∗ −Q0)

]
. (D.23)

Next we apply point-wise absolute value on RHS of (D.23), with |ϵk| being the
short-hand notation for |ϵk(s, a)| point-wise. Using triangle inequalities and
rewriting (D.23) in a more compact form ([150]):

Q∗ −QπK ≤ 2γ(1− γK+1)
(1− γ)2

[
K−1∑
k=0

αkAk|ϵk|+ αKAK |Q∗ −Q0|
]
,

where αk = (1−γ)γK−k−1

1−γK+1 for k < K,αK = (1−γ)γK

1−γK+1 and

Ak = 1− γ
2 (I − γP πK)−1

[
(P π∗)K−k + P πKP πK−1 . . . P πk+1

]
for k < K

AK = 1− γ
2 (I − γP πK)−1

[
(P π∗)K+1 + P πKP πK−1 . . . P π0

]
.

Note that Ak’s are probability kernels that combine the P πi terms and αk’s
are chosen such that ∑k αk = 1.

Step 4: Bounding ∥Q∗ −QπK∥2
ρ for any test distribution ρ.

This step handles distribution shift from µ to ρ (similar to Step 2 from sub-
section C.2 of Chapter 5 Appendix C.2). Using Jensen twice:

∥Q∗ −QπK∥2
ρ ≤

[
2γ(1− γK+1)

(1− γ)2

]2 ∫ [
K−1∑
k=0

αkAkϵ
2
k + αKAK(Q∗ −Q0)2

]
(s, a).

Using assumption D.1 (assumption 6.1), each term ρAk is bounded as

ρAk = 1− γ
2 ρ(I − γP πK)−1

[
(P π∗)K−k + P πKP πK−1 . . . P πk+1

]
= 1− γ

2
∑
m≥0

γmρ(P πK)m
[
(P π∗)K−k + P πKP πK−1 . . . P πk+1

]
≤ (1− γ)

∑
m≥0

γmβµ(m+K − k)µ. (def D.4.2)

198

Thus
∥Q∗ −QπK∥2

ρ

≤
[

2γ(1− γK+1)
(1− γ)2

]2 [1
1− γK+1×

K−1∑
k=0

(1− γ)2 ∑
m≥0

γm+K−k−1βµ(m+K − k) ∥ϵk∥2
µ + αK(2C)2

]
(a)
≤
[

2γ(1− γK+1)
(1− γ)2

]2 [1
1− γK+1βµ max

k
∥ϵk∥2

µ + (1− γ)γK
1− γK+1 (2C)2

]

≤
[

2γ(1− γK+1)
(1− γ)2

]2 [1
1− γK+1βµ max

k
∥ϵk∥2

µ + γK

1− γK+1 (2C)2
]

≤
[

2γ
(1− γ)2

]2 [
βµ max

k
∥ϵk∥2

µ + γK(2C)2
]
,

where (a) uses (Assump. D.1). Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b,
we thus conclude that

∥Q∗ −QπK∥ρ ≤
2γ

(1− γ)2

(√
βµ max

k
∥ϵk∥µ + 2γK/2C

)
. (D.24)

Step 5: Bounding C∗−CπK Using the performance difference lemma (lemma
6.1 of [100], which states that C∗−CπK = − 1

1−γEs∼dπK
a∼πK

A∗ [s, a]. We can upper-
bound the performance difference of value function as
C∗ − CπK (D.25)

= 1
1− γEs∼dπK

a∼πK

[C∗(s)−Q∗(s, a)] = 1
1− γEs ∼dπK

[C∗(s)−Q∗(s, πK(s))]

(a)
≤ 1

1− γEs ∼dπK
[Q∗(s, π∗(s))−QK(s, π∗(s))

+QK(s, πK(s))−Q∗(s, πK(s))]

≤ 1
1− γEs ∼dπK

|Q∗(s, π∗(s))−QK(s, π∗(s))|

+ |QK(s, πK(s)−Q∗(s, πK(s))|
(b)
≤ 1

1− γ
(
∥Q∗ −QπK∥dπK

×π∗ + ∥Q∗ −QπK∥dπK
×πK

)
≤ 2γ

(1− γ)3

(√
βµ max

k
∥ϵk∥µ + 2γK/2C

)
, (D.26)

where (a) is greedy, and (b) is a 2-norm upper bound of the 1-norm. Note
that inequality (D.26) follows from (D.24) by specifying ρ = d0P

πKP π∗ and
ρ = d0P

πKP πK , respectively (d0 is the initial state distribution).

199

Finite-sample guarantees for Fitted Q Iteration
From (D.21) we have:

P
{
∥Qk − TQk−1∥µ − 2 inf

f∈F
∥f − TQk−1∥µ > ϵ

}
≤ 14 · e · (dimF + 1)

(
640C2

ϵ2

)dimF

· exp
(
− nϵ2

48 · 214C4

)

+ exp
(
− 3

416 ·
nϵ2

C2

)
.

Note that inff∈F ∥f − TQk−1∥µ ≤ suph∈F inff∈F ∥f − Th∥µ = dF (the inherent
Bellman error from equation D.16). Combining with equation (D.26), we have
the conclusion that for any ϵ > 0, 0 < δ < 1, after K iterations of Fitted Q
Iteration, and for πK the greedy policy wrt QK :

C∗ − Cπ
K ≤

2γ
(1− γ)3

(√
βµ(2dF + ϵ) + 2γK/2C

)
holds with probability 1− δ when n = O

(
C4

ϵ2
(log K

δ
+ dimF log C2

ϵ2
+ log dimF)

)
.

Note that compared to the Fitted Value Iteration analysis of [150], our error
includes an extra factor 2 for dF.

Statement for the Bellman-realizable Case
To facilitate the end-to-end generalization analysis of theorem 6.4.3, we include
a version of FQI analysis under Bellman-realizable assumption in this section.
The theorem is a consequence of previous analysis in this section.

Assumption D.2 (Bellman evaluation realizability). We consider function classes
F sufficiently rich so that ∀f,Tf ∈ F.

Theorem D.5.2 (Guarantee for FQI - Bellman-realizable Case). Under As-
sumption D.1 and D.2, for any ϵ > 0, δ ∈ (0, 1), after K iterations of Fitted
Q Iteration, for n ≥ 24·214·C4

ϵ2

(
log K

δ
+ dimF log 320C2

ϵ2
+ log(14e(dimF + 1))

)
, we

have with probability 1− δ:

C∗ − C(πK) ≤ 2γ
(1− γ)3

(√
βµϵ+ 2γK/2C

)
,

where πK is the policy greedy with respect to the returned function QK , and C∗

is the value of the optimal policy.

D.6 Additional Instantiation of Meta-Algorithm (algorithm 4)
We provide an additional instantiation of the meta-algorithm described in this
chapter, with Online Gradient Descent (OGD) [234] and Least-Squares Policy
Iteration (LSPI) [115] as subroutines. Using LSPI requires a feature map φ

200

such that any state-action pair can be represented by k features. The value
function is linear in parameters represented by φ. Policy representation is
simplified to a weight vector w ∈ Rk.

Similar to our main algorithm 5, OGD updates require bounded parameters
λ. We thus introduce hyper-parameter B as the bound of λ in ℓ2 norm. The
gradient update is projected to the ℓ2 ball when the norm of λ exceeds B (line
15 of algorithm 14).

Algorithm 14 Batch Learning under Constraints using Online Gradient
Descent and Least-Squares Policy Iteration
Require: Dataset D = {xi, ai, x′

i, ci, gi}ni=1 ∼ πD. Online algorithm parame-
ters: ℓ2 norm bound B, learning rate η

Require: Number of basis function k. Basis function φ (feature map for
state-action pairs)

1: Initialize λ1 = (0, . . . , 0) ∈ Rm

2: for each round t do
3: Learn wt ← LSPI(c+ λ⊤

t g) // LSPI with cost c+ λ⊤
t g

4: Evaluate Ĉ(wt)← LSTDQ(wt, c) // Algo 16 with πt, cost c
5: Evaluate Ĝ(wt)← LSTDQ(wt, g) // Algo 16 with πt, cost g
6: ŵt ← 1

t

∑t
t′=1 wt′

7: Ĉ(ŵt)← 1
t

∑t
t′=1 Ĉ(wt′), Ĝ(ŵt)← 1

t

∑t
t′=1 Ĝ(wt′)

8: λ̂t ← 1
t

∑t
t′=1 λt′

9: Learn w̃ ← LSPI(c+ λ̂⊤
t g) // LSPI with cost c+ λ̂⊤

t g
10: Evaluate Ĉ(w̃)← LSTDQ(w̃, c), Ĝ(w̃)← LSTDQ(w̃, g)
11: L̂max = max

λ,∥λ∥2≤B

(
Ĉ(ŵt) + λ⊤(Ĝ(ŵt)− τ)

)
12: L̂min = Ĉ(w̃) + λ̂⊤

t (Ĝ(w̃)− τ)
13: if L̂max − L̂min ≤ ω then
14: Return π̂t greedy w.r.t ŵt

(
i.e., π̂t(x) = arg mina∈A ŵ

⊤
t φ(s, a) ∀s

)
15: λt+1 = P(λt − η(Ĝ(πt)− τ)) where projection P(λ) = B λ

max{B,∥λ∥2}

Algorithm 15 Least-Squares Policy Iteration: LSPI(c) [115]
Require: Stopping criterion ϵ

1: Initialize w′ ← w0
2: repeat
3: w ← w′

4: w′ ← LSTDQ(w, c)
5: until ∥w − w′∥ ≤ ϵ

Ensure: Policy weight w
(
i.e., π(s) = arg mina∈A w

⊤φ(s, a) ∀s
)

201

Algorithm 16 LSTDQ(w, c) [115]
1: Initialize Ã← 0 // k × k matrix
2: Initialize b̃← 0 // k × 1 vector
3: for each (s, a, s′, c) ∈ D do
4: a′ = arg minã∈Aw

⊤φ(x′, ã)
5: Ã← Ã + φ(s, a)

(
φ(s, a)− γφ(x′, a′)

)⊤
6: b̃← b̃+ φ(s, a)c
7: w̃ ← Ã−1b̃

Ensure: w̃

D.7 Additional Experimental Details
Environment Descriptions and Procedures

Figure D.1: Depicting the FrozenLake and CarRacing environments.

Frozen Lake. The environment is a 8x8 grid as seen in Figure D.1 (left),
based on OpenAi’s FrozenLake-v0. In each episode, the agent starts from S

and traverse to goal G. While traversing the grid, the agent must avoid the
pre-determined holes denoted by H. If the agent steps off of the grid, the
agent returns to the same grid location. The episode terminates when the
agent reaches the goal or falls into a hole. The arrows in Figure D.1 (left) is
an example policy returned by our algorithm, showing an optimal route.

Denote Sholes as the set of all holes in the grid and Sgoal = {sgoal} is a singleton
set representing the goal in the grid. The contrained batch policy learning
problem is:

min
π∈Π

C(π) = E[I(s′ ̸∈ Sgoals)] = P(s′ ̸∈ {sgoal})

s.t. G(π) = E[I(s′ ∈ Sholes)] = P(s′ ∈ Sholes) ≤ τ.
(D.27)

We collect 5000 trajectories by selecting an action randomly with probability .95
and an action from a DDQN-trained model with probability .05.Furthermore
we set B = 30 and η = 50, the hyperparameters of our Exponentiated Gradient
subroutine. We set the threshold for the constraint τ = .1.

Car Racing. The environment is a racetrack as seen in Figure D.1 (right),

202

modified from OpenAi’s CarRacing-v0. In each state, given by the raw pixels,
the agent has 12 actions: a ∈ A = {(i, j, k)|i ∈ {−1, 0, 1}, j ∈ {0, 1}, k ∈
{0, .2}}. The action tuple (i, j, k) cooresponds to steering angle, amount of
gas applied and amount of brake applied, respectively. In each episode, the
agent starts at the same point on the track and must traverse over 95%
of the track, given by a discretization of 281 tiles. The agent recieves a
reward of +1000

281 for each unique tile over which the agent drives. The agent
receives a penalty of −.1 per-time step. Our collected dataset takes the form:
D = {(st−6, st−3, st), at, (st−3, st, st+3), ct, g0,t, g1,t} where si denotes the image
at timestep i and at is applied 3 times between st and st+3. This frame-stacking
option is common practice in online RL for Atari and video games. In our
collected dataset D, the maximum horizon is 469 time steps.

The first constraint concerns accumulated number of brakes, a proxy for smooth
driving or acceleration. The second constraint concerns how far the agent travels
away from the center of the track, given by the Euclidean distance between the
agent and the closest point on the center of the track. Let Nt be the number
of tiles that is collected by the agent in time t. The constrained batch policy
learning problem is:

min
π∈Π

E[
∞∑
t=0

γt(−1000
281 Nt + .1)]

s.t. G0(π) = E[
∞∑
t=0

γtI(at ∈ Abraking)] ≤ τ0

G1(π) = E[
∞∑
t=0

γtd(ut, vt)] ≤ τ1.

(D.28)

We instatiate our subroutines, FQE and FQI, with multi-layered CNNs. Fur-
thermore we set B = 10 and η = .01, the hyperparameters of our Exponentiated
Gradient subroutine. We set the threshold for the constraint to be about 75%
of the value exhibited by online RL agent trained by DDQN [211].

Additional Discussion for the Car Racing Experiment
Regularized policy learning and grid-search. We perform grid search over
a range of regularization parameters λ for both Least-Squares Policy Iteration -
LSPI ([115]) and Fitted Q Iteration - FQI ([56]). The results, seen from the the
first and second plot of Figure D.2, show that one-shot regularized learning has
difficulty learning a policy that satisfies both constraints. We augment LSPI
with non-linear feature mapping from one of our best performing FQI model

203

Figure D.2: (First and Second figures) Result of 2-D grid-search for one-shot,
regularized policy learning for LSPI (left) and FQI (right).
(Third and Fourth figures) value range of individual policies in our mixtured
policy and data generating policy πD for main objective (left) and cost constraint
(right).

(using CNNs representation). While both regularized LSPI and regularized
FQI can achieve low main objective cost, the constraint cost values tend to
be sensitive with the λ step. Overall for the whole grid search, about 10% of
regularized policies satisfy both constraints, while none of the regularized LSPI
policy satisfies both constraints.

Mixture policy and de-randomization. As our algorithm returned a
mixture policy, it is natural to analyze the performance of individual policies
in the mixture. The third and fourth plot from Figure D.2 show the range of
performance of individual policy in our mixture (purple band). We compare
individual policy return with the stochastic behavior of the data generation
policy. Note that our policies satisfy constraints almost always, while the
individual policy returned in the mixture also tends to outperform πD with
respect to the main objective cost.

Off-policy evaluation standalone comparison. Typically, inverse propen-
sity scoring based methods call for stochastic behavior and evaluation policies
[164, 195]. However in this domain, the evaluation policy and environment are
both deterministic, with long horizon (the max horizon is D is 469). Conse-
quently Per-Decision Importance Sampling typically evaluates the policy as 0.
In general, off-policy policy evaluation in long-horizon domains is known to be
challenging [134, 75]. We augment PDIS by approximating the evaluation pol-
icy with a stochastic policy, using a softmin temperature parameter. However,

204

PDIS still largely shows significant errors. For Doubly Robust and Weighted
Doubly Robust methods, we train a model of the environment as follows:

• a 32-dimensional representation of state input is learned using variational
autoencoder. Dimensionality reduction is necessary to aid accuracy, as
original state dimension is 96× 96× 3.

• an LSTM is used to learn the transition dynamics P (z(s′)|z(s), a), where z(s)
is the low-dimensional representation learned from previous step. Technically,
using a recurrent neural networks is an augmentation to the dynamical
modeling, as true MDPs typically do not require long-term memory.

• the model is trained separately on a different dataset, collected indendently
from the dataset D used for evaluation.

The architecture of our dynamics model is inspired by recent work in model-
based online policy learning [77]. However, despite our best effort, learning
the dynamics model accurately proves highly challenging, as the horizon and
dimensionality of this domain are much larger than popular benchmarks in
the OPE literature [98, 202, 61]. The dynamics model has difficulty predicting
the future state several time steps away. Thus we find that the long-horizon,
model-based estimation component of DR and WDR in this high-dimensional
setting is not sufficiently accurate. For future work, a thorough benchmarking of
off-policy evaluation methods in high-dimensional domains would be a valuable
contribution.

205

Appendix E

CHAPTER 5 APPENDIX

E.1 Notation and Overview
Acronym Term

LTL Linear Temporal Logic
MDP, LDBA Markov Decision Process. Limit Determinisitic Buchi Automaton
AMEC Accepting MEC
MEC/EC Maximal EC, End Component
LCP LTL Constrained Planning, Algo 6
FindAMEC Subroutine to assist in finding AMECs
PR PlanRecurrent. Subroutine to plan in AMECs, Algo 7
PT, NB-PT PlanTransient/ NoBlockPlanTransient. Subroutine to plan to AMECs, Algo 8/ Algo 19
VI Value Iteration Subroutine, Algo 17
AP Atomic Proposition
Σ Alphabet Σ = 2AP

S State Space
A Action Space. A(s) allowable actions in state s.
AA Restricted Action Space. AA(s) ⊆ A(s) allowable actions in state s ∈ A ⊆ S.
P Transition Function
Pπ Markov Chain induced by π in P
C Cost Function
X Product-MDP
τ Run or trajectory in an MDP
η-greedy(π) = (1 − η)π + ηUnif(AA) with 0 ≤ η ≤ 1, defined with respect to A ⊆ S
φ LTL Specification/Formula/Task
P [π |= φ] Probability that a policy satisfies the task
Π,Πmax Class of stochastic policies, π ∈ Π with maximal P [π |= φ]
β Lower bound on minimum, nonzero transition probability
D Dataset tracking all tuples (s, a, s′) simulated
P̂ Empirical estimate of P from data in D

P̃ Optimistic dynamics returned by VI
P Plausible transition functions consistent with all the information gathered in D
E High probability event
n(s, a) Number of samples accumulated in (s, a). Also denoted n

ψ(n) Error bound on maxs′∈S |P̂ (s, a, s′) − P (s, a, s′)|
ψ−1(ρ) Number of samples n(s, a) necessary to achieve maxs′∈S |P̂ (s, a, s′) − P (s, a, s′)| < ρ
ϵV Cost-optimality tolerance wrt. main problem (1)
ϵφ Prob-optimality tolerance wrt. main problem (1)
ϵPR error input into PR, ϵPR = ϵV

7λ

ϵPT error input into PT, ϵPT = 2ϵV
9

ϵLPR Convergence condition for VI in PR, ϵLPR = 2ϵPR
3

ϵLPT Convergence condition for VI in PT, ϵLPT = cminϵPTϵφ

4V̄
α Aperiodicity Coefficient α ∈ (0, 1). Pα,π = αPπ + (1 − α)I
Lα

PR Lα
PRv(s) = mina∈AA(s)

(
C(s, a) + αminp∈P(s,a) p

T v
)

+ (1 − α)v(s) ∀s ∈ A

LPT LPTv(s) =
{

min
{

mina∈AA(s)
(

C(s, a) + minp∈P(s,a) p
T v
)
, V̄
}
, s ∈ S \ ∪k

i=1Ai

λgi, s ∈ Ai

dPR Convergence operator for PR, dPR(v′, v) = maxs∈A(v′(s) − v(s)) − mins∈A(v′(s) − v(s))
dPT Convergence operator for PT, dPT(vn+1, vn) = ∥vn+1 − vn∥1
VT Terminal costs. VT = 0 by default
λ Tradeoff between gπ and Jπ

Jπ Transient cost, conditioned on runs satisfying φ
gπ Gain, Average-cost, conditioned on runs satisfying φ
V̄ Upper bound on Jπ for any π ∈ Π
∆(M) Coefficient of Ergodicity of matrix M , ∆(M) = 1

2 maxij

∑
k

|Mik −Mjk|
∆̄Ai

Worst-case coefficient of ergodicty in Ai

206

Overview
There is a lot of notation that we will be using to get through the analysis. It
is important to distinguish the following:

Table E.1: Policies and Probabilities.

Acronym Term

π∗ Optimal policy w.r.t (LTL-OPT)
π Policy returned by LCP (Algo 6)
πAi

Gain and Prob-optimal policy in AMEC (Ai,AAi
) in dynamics P

π̃Ai
Gain and Prob-optimal policy in AMEC (Ai,AAi

) in dynamics P̃
πi A policy in states Ai of an AMEC (Ai,AAi

), ignoring what π does outside of Ai

pπ , p∗ P [π |= φ] and P [π∗ |= φ]. Also denoted pπ and pπ∗

pπ
i , pπ∗

i P [π reaches Ai] ,P [π∗ reaches Ai] ≥ 0 denoted pi, p∗
i (resp),

∑k

i=1 pi = p,
∑k

i=1 p
∗
i = p∗

Table E.2: Gains.

Term Description. (Subscript i or Ai denotes “in AMEC (Ai,AAi
)”)

ĝP̃
π̃Ai

Approximated gain of (greedy) optimal policy π̃Ai
under optimistic dynamics P̃

gP
πi

Actual gain of policy πi (η-greedy version of policy from PR) under true dynamics P
gP

πAi
Gain of optimal policy πAi

under dynamics P

The relationship between these gains is subtle. PlanRecurrent (Algo 7) returns
ĝP̃π̃Ai

as the estimate for how good the best greedy policy will be in AMEC
(Ai,AAi

) under dynamics P̃ . But we don’t use the greedy policy, we use the
η-greedy policy πi. With πAi

being the true gain-optimal policy in dynamics
P (in AMEC (Ai,AAi

)), then we will find the following relations:
ĝP̃π̃Ai︸︷︷︸

Output from PR

≈︸︷︷︸
ϵL
PR
2

gP̃π̃Ai
≈︸︷︷︸

Lem E.2.7

gP̃πi
≈︸︷︷︸

Lem E.2.8

gPπi
≈︸︷︷︸

Prop E.2.5

gPπAi︸︷︷︸
Actual

.

In general gains g are functions of state: g(s). However, it is well known [166,
66] that in communicating MDPs (each state is reachable from one another
by some policy) that the gain of the optimal policy (even if determinstic) is
constant – independent of state. Since AMECs are communicating MDPs,
then πAi

, π̃Ai
induce constant gains in P, P̃ respectively. Lastly, the stochastic

policy πi makes both P̃ and P recurrent, and so the gain is also constant. We
will therefore only be considering the absolute difference between gains rather
than L∞ norms (as they coincide).

When superscripts are dropped in V , the dynamics are the true dynamics P
of the product-MDP X . Once again, the relationships between these value
functions is subtle. PlanTransient (Algo 8) returns v as the estimate for how

207
Table E.3: Value Functions.

Acronym Term

Vπ Main objective, value function V P
π,λ = Jπ + λgπ

v Approximated value of policy π from PT (Algo 7) in dynamics P̃
Ṽ P̃

π Actual value of policy π from PT in dynamics P̃
Ṽ P

π Actual value of policy π from PT in dynamics P ,
also denoted Ṽπ = p(Jπ +

∑k

i=1
pi
p
ĝP̃

π̃Ai
) + (1 − p) V̄

ϵφ

good π (the greedy policy wrt v) will be in reaching AMECs {(Ai,AAi
)}ki=1,

but is optimistic. v is an approximation to Ṽ P̃
π . Roughly speaking, we will find

that they are all similar/related:
v︸︷︷︸

Ouput from PT

≈︸︷︷︸
Lem E.2.16

Ṽ P̃
π ≈︸︷︷︸

Lem E.2.15

Ṽ P
π ≈︸︷︷︸

Prop E.2.12/E.4.1

Ṽ P
π∗︸︷︷︸

An intermediate Value Func.

,

where the last approximation has two different propositions: the first allows
the simplifying assumption made in this chapter regarding paths between
AMECS, and the second removes that assumption at the expense of increased
computation. Finally,

∥Ṽ P
π − Ṽ P

π∗∥ ≈︸︷︷︸
Thm 7.4.1

∥V P
π − V P

π∗∥, (E.1)

which involves swapping ĝP̃πAi
in Ṽ for gPπAi

.

208

E.2 Analysis: Statements with Proof
Sample Complexity Guarantee
The number of samples necessary to guarantee an (ϵV , ϵφ, δ)-PAC approximation
to the cost-optimal and probability-optimal policy relies factors: β (lower bound
on the mininum non-zero transition probability of P), {cmin, cmax} (bounds on
the cost function C), ∆̄Ai

(worst-case coefficient of ergodicity for EC (Ai,AAi
)),

V̄ (upper bound on the value function), and λ (tradeoff factor). Recall that
an event E captures the scenario where the empirical transition function P̂ is
close to the true transition function P . E holds with probability at least 1− δ,
see Lem E.2.1.

Theorem 7.4.1 (Sample Complexity). Under the event E, Assumption 7.1
and 7.2, after

n = Õ
(

1
β

+ 1
ϵ2
V

(
|S|2V̄ 4

c2
minϵ

4
φ

+ λ2
k∑
i=1

|Ai|2c2
max

(1− ∆̄Ai
)2

))
samples1 are collected from each state-action pair, the policy π returned by
Algorithm 6 is, with probability 1 − δ, simultaneously ϵV -cost optimal and
ϵφ-probability optimal, satisfying:

(i) |P [π |= φ]− P [π∗ |= φ] | ≤ ϵφ (ii) ∥Vπ − Vπ∗∥∞ < ϵV . (7.5)

Comparison To RL Literature. Before presenting the proofs, we briefly
compare this guarantee with standard guarantees in model-based reinforcement
learning under a generative model. It is important to note that while we show
that our guarantee is a sum of 3 terms, a tighter bound would be a max over
the 3 terms. To the best of our knowledge, the current state-of-the-art RL
(with generative model) guarantee is Õ(1

(1−γ)3ϵ2
) [6], per state-action pair. Here,

H = 1
1−γ represents the effective horizon in discounted settings. In other words,

cmaxH is the bound on (their) ∥V ∥. In our case, for the SSP reduction, the
effective horizon is H = ∥Ṽ ∥∞

cmin
, as this is the expected goal-reaching time in the

worst-case (since we do not have any discounting). We estimate ∥Ṽ ∥∞ with
upper bound V̄

ϵφ
. Suppose we set ϵ = min(ϵV , ϵφ). Focusing just on the center

term, we have guarantee taking the form, roughly, |S|2H4

ϵ2
. Here, the |S|2 comes

from a loose upper bound maxs∈S,a∈A ∥P̂ (s, a, ·)∥1 = |S|. In fact, as noted
in [198], when the MDP is not too chaotic maxs∈S,a∈A ∥P̂ (s, a, ·)∥1 = O(1).

1The lower bound relating to β from [131] is Ω(log(2δ)
log(1−β)) whereas ours is Õ(1

β). We
conjecture that Ω̃(1

β) samples are required. See Appendix Section E.3.

209

Further, by using careful variance-aware arguments from [198] we can decrease
the dependency from H4 to H3. Hence, the SSP guarantee (our center term)
and the standard RL guarantee are very similar. The first term 1

β
does not

appear in standard RL literature because there is no constraint verification
needed, but in practice will be dominated by the other terms. The last term
is also similar to the center term. cmax

1−∆̄Ai

can also be seen as an effective
horizon, accumulating cmax cost until the accepting component sufficiently
mixes. Here, |Ai|2 ≤ |S|2 and, again, comes from the loose upper bound
maxs∈Ai,a∈AAi

∥P̂ (s, a, ·)∥1 = |Ai|.

Proof of Theorem 7.4.1. We begin by examining the interaction of π∗ with P .
The Markov chain Pπ∗ has a number, say m, of recurrent classes R1, . . . , Rm,
sets of states that are trapping and visited infinitely often once reached. Some
of the recurrent classes Ri contain an accepting state s ∈ S∗, making any
trajectory entering Ri an accepting run, without loss of generality call these
R1, . . . , Rm′ (we just relabel them). Let Aπ∗

i
(s) = {a ∈ A|π∗

i (s|a) > 0} denote
the support of actions taken by π∗

i in state s ∈ Ri. Let Aπ∗
i

= {Aπ∗
i
(s)}s∈Ri

be
the indexed action set in Ri. Then, by definition, {(Ri,Aπ∗

i
)}m′
i=1 are accepting

EC. By definition, each accepting EC (Ri,Aπ∗
i
) must be contained within (or

is itself) some AMEC (Ai,Ai).

Fix some accepting EC (Rj,Aπ∗
j
). We claim, without loss of generality,

(Rj,Aπ∗
j
) = (Ai,AAi

) for some index i ∈ 1, . . . , k. To show this, let πAi

be the gain optimal, and probability-optimal policy in AMEC (Ai,AAi
): πAi

is defined over all states s ∈ Ai and actions a ∈ AAi
. Further, consider the

modified optimal policy

π̃∗(s, a) =

πAi
(s, a), s ∈ Ai

π∗(s, a), otherwise
.

Because πAi
is prob-optimal (ie. P [π̃∗ |= φ|s0 ∈ Ai] = 1) in Ai then the

probability P [π̃∗ |= φ] ≥ P [π∗ |= φ]. Further, Jπ̃∗ ≤ Jπ because any τ that
formerly passed through Rj \Ai now accumulates less cost. Further, gπAi

≤ gπ∗
i

by definition of optimality in AMEC (Ai,AAi
). Thus, Vπ̃∗ ≤ Vπ∗ . Of course, by

definition of optimality, the opposite signs hold: Vπ̃∗ ≥ Vπ∗ and P [π̃∗ |= φ] ≤
P [π∗ |= φ]. Therefore π̃∗ and π∗ are indistinguishable.

Repeating the above argument for each (Rj,Aπ∗
j
) means the accepting EC

of π∗ are AMECS and, by definition, form some subset of all of the AMECs

210

{(Ai,AAi
}ki=1. In other words, all accepting runs of π∗ reach states ∪ki=1Ai.

Furthermore, gπ∗ = ∑k
i=1

p∗
i

p
gPπAi

where p∗
i ≥ 0 is the probability that π∗ reaches

Ai and ∑k
i=1 p

∗
i = p.

Property (i) now follows as a direct consequence of Prop 7.3.3 and Prop 7.3.2.
Recall by Prop 7.3.3 that

|P
[
π reaches ∪ki=1 Ai

]
− max

π′∈Πmax
P
[
π′ reaches ∪ki=1 Ai

]
| ≤ ϵφ.

Prop 7.3.2 implies that once a run enters some Ai, the run is accepted. Re-
maining runs cannot be accepted since they do not reach any AMEC, the only
way to be accepted. Hence P [π |= φ] = P

[
π reaches ∪ki=1 Ai

]
. Since we just

showed that all accepting runs of π∗ reach some (Ai,Ai) then:
0 ≤ P [π∗ |= φ]− P [π |= φ]
≤ P

[
π∗ reaches ∪ki=1 Ai

]
− P

[
π reaches ∪ki=1 Ai

]
≤ ϵφ.

To show Property (ii), first let us define pπi as the probability of π reaching
AMEC (Ai,AAi

) and, by property (i), ∑k
i=1 p

π
i = ∑k

i=1 p
∗
i = p. The value

function given by the Bellman operator LPT (Table 7.1) in Algorithm 8 takes
the form

Ṽπ(s) = p(Jπ(s) + λ
k∑
i=1

pπi
p
ĝP̃π̃Ai

+ (1− p) V̄
ϵφ
, (E.2)

where ĝP̃π̃Ai
are the approximated gains for end component (Ai,AAi

) from
Algorithm 7. To see this, there is probability p that π |= φ and achieves
(conditional) expected cost Jπ(s) + λ

∑k
i=1

pi

p
ĝP̃π̃Ai

and prob 1− p that π ̸|= φ

where all cooresponding trajectories get stuck and accumulate V̄
ϵφ

cost. Let π̃
now represent the optimal solution to the value function Ṽπ (Algo 8). Therefore
we claim:

0 ≤ Vπ − Vπ∗

= Vπ − Ṽπ + Ṽπ − Ṽπ̃ + Ṽπ̃ − Ṽπ∗ + Ṽπ∗ − Vπ∗ + (1− p) V̄
ϵφ
− (1− p) V̄

ϵφ

≤ |Vπ − Ṽπ + (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(a)

+ |Ṽπ − Ṽπ̃|︸ ︷︷ ︸
(b)

+ Ṽπ̃ − Ṽπ∗︸ ︷︷ ︸
(c)

+ |Ṽπ∗ − Vπ∗ − (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(d)

≤ ϵV
3 + ϵV

3 + 0 + ϵV
3 ≤ ϵV .

For (a), first we note that gπ = ∑k
i=1

pπ
i

p
gPπi

, by definition of conditional expec-

211

tation. Let ϵPR = ϵV
7λ . Hence,

|Vπ − Ṽπ + (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(a)

= |p(Jπ(s) + λ
k∑
i=1

pπi
p
gPπi

)− p(Jπ(s) + λ
k∑
i=1

pπi
p
ĝP̃π̃Ai

)|

≤ λ max
i=1,...,k

|gPπi
− ĝP̃π̃Ai

|

≤ λ
4ϵPR

3 , Corollary E.2.6

≤ ϵV
3 .

By similar argument, for (d), together with earlier argument that g∗
π =∑k

i=1
p∗

i

p
gPπAi

then we also have that:

|Ṽπ∗ − Vπ∗ − (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(d)

= |p(Jπ∗(s) + λ
k∑
i=1

p∗
i

p
ĝP̃π̃Ai

)− p(Jπ∗(s) + λ
k∑
i=1

pπi
p
gPπAi

)|

≤ λ max
i=1,...,k

|gPπAi
− ĝP̃π̃Ai

|

≤ λ max
i=1,...,k

|gPπAi
− gPπi

|+ |gPπi
− ĝP̃π̃Ai

|

≤ λ
7ϵPR

3 , Prop E.2.5 and Corollary E.2.6

≤ ϵV
3 .

Further, we have (c) ≤ 0 holds because π̃ is optimal in Ṽ (either by as-
suming ∪ki=1Ai is the correct choice of AMECS, or using Algo 19 instead of
planTransient). In either case, (b) ≤ 3ϵPT

2 ≤
ϵV
3 by Prop E.2.12 or Prop E.4.1,

where ϵPT is set to ϵPT = 2ϵV
9 , completing the approximation guarantee.

We now compute the number of samples, per state-action pair, required by
Algorithm 6. By Prop E.2.4, we need n = Õ(1

β
) to verify the support of P .

After calculating the AMECs {(Ai,AAi
)}ki=1, we calculate the gain-optimal

policy πi for each AMEC. By Prop 7.3.2, we need n = Õ((|Ai|cmax
ϵPR(1−∆̄Ai

))
2) =

Õ((λ|Ai|cmax
ϵV (1−∆̄Ai

))
2) for each state-action pair in each end component (Ai,AAi

),
since ϵPR = ϵV

7λ . Finally, for the transient policy π0, the SSP reduction requires
n = Õ((|S\∪k

i=1Ai|V̄ 2

ϵPTϵ2φcmin
)2) = Õ((|S\∪k

i=1Ai|V̄ 2

ϵV ϵ2φcmin
)2) for each state-action pair outside of

the AMECs, by Prop 7.3.3, since ϵPT = 2ϵV
9 . A similar sample complexity is guar-

anteed by using Algo 19 in place of PlanTransient, where n = Õ((|S|V̄ 2

ϵV ϵ2φcmin
)2)

is required in place of n = Õ((|S\∪k
i=1Ai|V̄ 2

ϵV ϵ2φcmin
)2). Adding these together yields the

worst-case number of samples necessary in any state-action pair (s, a) ∈ S ×A.
These sample guarantees hold only when the event E holds, which itself holds

212

with probability 1− δ (see Lem E.2.1).

Corollary 7.4.2 (Gain (Average Cost) Optimality). There exists λ∗ > 0 s.t. for
λ > λ∗, the policy π returned by Alg. 6 satisfies (7.5), gπ = arg minπ′∈Πmax gπ′,
and is probability and gain optimal.

Proof of Corollary 7.4.2. Fix some λ > 0. Let π′ = arg minπ∈Πmax gπ. Sup-
pose gπ′ < gπ but Vπ,λ < Vπ′,λ, elementwise. In other words, π is the preferred
policy. Then,

0 ≤ Vπ′,λ − Vπ,λ
= Jπ′ + λgπ′ − Jπ − λgπ
≤ max

π̃∈Π
Jπ̃ + λ (gπ′ − gπ)︸ ︷︷ ︸

<0

,

since Jπ̃ ≥ 0 for each π̃ ∈ Π. If λ > maxπ̃∈Π Jπ̃

gπ−gπ′
then we contradict Vπ,λ <

Vπ′,λ. In particular, if π′ is the gain optimal policy then for any λ > λ∗ =
maxπ̃∈Π Jπ̃

min{π∈Π|gπ ̸=gπ′ } gπ−gπ′
then π′ is preferred to any other policy π ∈ Π.

213

High Probability Event and Sample Requirement

Definition 7.3.2 (High Probability Event). A high probability event E :
E = {∀s, a, s′ ∈ S × A× S,∀n(s, a) > 1 : |(P (s,a, s′)− P̂ (s, a, s′))|

≤ ψsas′(n) ≤ ψ(n)},

where ψsas′(n) ≡
√

2P̂ (s, a, s′)(1− P̂ (s, a, s′)))ξ(n) + 7
3ξ(n), ψ(n) ≡

√
1
2ξ(n) +

7
3ξ(n), and ξ(n) ≡ log(4n2|S|2|A|

δ
)/(n− 1).

Lemma E.2.1 (High Probability Event holds). The event E holds with proba-
bility at least 1− δ.

Proof of Lemma E.2.1 . We start with the anytime version of Theorem 4 of
[141] given by Lemma 27 of [199]:

P

∀ n ≥ 1,
∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√√√√2V̂n log(4n2/δ)

n− 1 + 7 log(4n2/δ)
3(n− 1)

 ≤ δ,

for any Zi ∈ [0, 1] iid. By re-setting δ ← δ
|S|2|A| , applying union bound over

all (s, a, s′) ∈ S × A × S, and observing that Zi ∼ P (s, a, s′) is a Bernoulli
random variable with empirical variance V̂n = P̂ (s, a, s′)(1− P̂ (s, a, s′)) yields
the result:
{∀s, a, s′ ∈ S×A×S,∀n > 1 : |P (s, a, s′)−P̂ (s, a, s′)| ≤ ψsas′(n)} w. prob 1−δ
Observing that ψsas′(n) ≤ ψ(n) for all n > 1 because ψsas′(n) takes on a
maximum when P̂ (s, a, s′) = 1

2 , completes the proof.

Lemma E.2.2 (Inverting E). Fix (s, a, s′) ∈ S ×A× S. Under the event E,
the number of samples ψ−1(ρ) required to achieve |P (s, a, s′) − P̂ (s, a, s′)| ≤
ψsas′(n) ≤ ψ(n) < ρ is given by:

ψ−1(ρ) = ⌈ 2
ζ2 log(16|S|2|A|

ζ4δ
)⌉+ 3 = Õ(1

ρ2),

where ζ ≡
− 3

7
√

2
+
√

(3
7

√
2

)2+ 12
7 ρ

2 .

Proof of E.2.2. We have ψsas′ < ψ(n) = x√
2 + 7

3x
2 ≤ ρ where x2 = ξ(n) =

log(4n2|S|2|A|δ−1)
n−1 . Solving the quadratic inequality, we have

x ≤
− 3

7
√

2 +
√

(3
7
√

2)2 + 12
7 ρ

2 ≡ ζ.

214

Hence, we have
log(4n2|S|2|A|δ−1)

n− 1 ≤ ζ2

=⇒ n ≥ log(4n2|S|2|A|δ−1)
ζ2 + 1

= 1
ζ2 log(eζ24n2|S|2|A|δ−1)

= 2
ζ2︸︷︷︸
c1

log(e
ζ2
2

√
4|S|2|A|δ−1︸ ︷︷ ︸

c2

n). (⋆)

By Lemma E.2.3, if n > 2c1 log(c1c2) then n > (⋆). Simplifying,

n ≥ 2
ζ2 log(16|S|2|A|

ζ4δ
) + 2.

Selecting ψ−1(ρ) = ⌈ 2
ζ2 log(16|S|2|A|

ζ4δ
)⌉+ 3 and noting that ζ = Õ(ρ) completes

the proof: n = Õ(1/ρ2).

Lemma E.2.3. (Lemma 10 of [105]) If log(c1c2) ≥ 1 and c1, c2 > 0 then
N > 2c1 log(c1c2) =⇒ N > c1 log(c2N).

215

FindAMEC proofs

Proposition E.2.4. (Support Verification FindAMEC) Under the event E and
Assumption 7.1, if n = φFindAMEC(β) = 5

β
log(100|S|2|A|

β2δ
) = Õ(1

β
) samples are

collected for each state-action pair (s, a) ∈ S × A then the support of P is
verified:

P (s, a, s′) =


0, P̂ (s, a, s′) = 0

1, P̂ (s, a, s′) = 1

∈ [β, 1− β], otherwise

.

Proof of Prop E.2.4 . Fix (s, a, s′) ∈ S ×A× S. Suppose P̂ (s, a, s′) ∈ {0, 1}
then by E we have

7 log(4n2|S|2|A|/δ)
3(n− 1) ≤ β. (E.3)

Following the second half of the proof of E.2.2 with ζ2 = 3β
7 , we have that if

we take n = φFindAMEC(β) = 5
β

log(100|S2A|
β2δ

) > 14
3β log(784|S2A|

9β2δ
) then we have

|P (s, a, s′)− P̂ (s, a, s′)| < β. (E.4)

Case P̂ (s, a, s′) = 1. Suppose P̂ (s, a, s′) = 1. By Eq (E.4), P (s, a, s′) > 1− β.
By Assumption 7.1 together with the fact that ∑x∈S P (s, a, x) = 1 then
P (s, a, x) = 0 for any x ̸= s′. Therefore, P (s, a, s′) = P̂ (s, a, s′) = 1.

Case P̂ (s, a, s′) = 0. Suppose P̂ (s, a, s′) = 0. By Eq (E.4), P (s, a, s′) < β.
Hence P (s, a, s′) = P̂ (s, a, s′) = 0, otherwise violating Assumption 7.1.

Case, Otherwise. If P (s, a, s′) > 1− β or P (s, a, s′) < β then by following
the above arguments we’d yield similar contradictions with Assumption 7.1.
Hence, P (s, a, s′) ∈ [β, 1− β].

216

PlanRecurrent proofs

Proposition 7.3.2 (PR Convergence & Correctness, Informal). Let πA be the
gain-optimal policy in AMEC (A,A). Algorithm 7 terminates after at most
log2

(
6|A|cmax
ϵPR(1−∆̄A)

)
repeats, and collects at most n = Õ(|A|2c2

max
ϵ2PR(1−∆̄A)2) samples for

each (s, a) ∈ (A,AA). The η-greedy policy π w.r.t. v′ (Alg. 7, Line 5) is gain
optimal and probability optimal: |gπ − gπA

| < ϵPR, P [π |= φ|s0 ∈ A] = 1.

We formalize Prop 7.3.2 as follows by adding the necessary PAC statements:

Proposition E.2.5 (PR Convergence & Correctness, Formal). Let πA be the
gain-optimal policy in AMEC (A,A). Algorithm 7 terminates after at most
log2

(
6|A|cmax
ϵPR(1−∆̄A)

)
repeats, and collects at most n = Õ(|A|2c2

max
ϵ2PR(1−∆̄A)2) samples for each

(s, a) ∈ (A,AA). Under the event E and Assumption 7.1 then with probability
1 − δ, the η-greedy policy π w.r.t. v′ (Alg. 7, Line 5) is gain optimal and
probability optimal: |gπ − gπA

| < ϵPR, P [π |= φ|s0 ∈ A] = 1.

Proof of Prop 7.3.2 & Prop E.2.5. Let πv′ be the greedy policy with respect
to v′. Let gP̃π̃A

be the gain of the gain-optimal policy, π̃A, in A with respect to
dynamics P̃ .

For the approximation error,
0 ≤ gPπ − gPπA

= gPπ − gP̃π + gP̃π − gP̃πv′ + gP̃πv′ − g
P̃
∗ + gP̃∗ − gPπA

≤ |gPπ − gP̃π |︸ ︷︷ ︸
(a)

+ |gP̃π − gP̃πv′ |︸ ︷︷ ︸
(b)

+ |gP̃πv′ − g
P̃
π̃A
|︸ ︷︷ ︸

(c)

+ gP̃π̃A
− gPπA︸ ︷︷ ︸
(d)

<
ϵPR

3 + ϵPR

3 + ϵPR

3 + 0 = ϵPR.

We have the first inequality because πA is gain optimal in P . By the Simulation
Lemma E.2.8 we have that (a) < ϵPR

3 by setting ϵ(2) = ϵPR
3 in the Lemma. By the

η-greedy approximation Lemma E.2.7 we have (b) < ϵPR
3 by setting ϵ(1) = ϵPR

3 in
the Lemma. For (c), since πv′ represents the approximately optimal policy in P̃
then, by value iteration approximation guarantees, (c) = |gP̃πv′ −gP̃π̃A

| < ϵLPR
2 ≤

ϵPR
3

by setting ϵL
PR = 2ϵPR

3 [66]. It is known that, by optimism and the aperiodicity
transformation [66, 94] for the average cost Bellman operator, gP̃π̃A

< gPπA

implying (d) < 0.

For the probability of satisfaction, when s0 ∈ A, following a policy that samples
every action in AA with positive probability makes the Markov Chain Pπ

217

recurrent. Thus, each s ∈ A is visited infinitely often. In particular there is
some s∗ ∈ A visited infinitely often, implying π |= φ.

Convergence is guaranteed by Lemma E.2.8: since ρ is halved every iteration
then ρ never falls below ϵ(2)(1−∆̄A)

2|A|cmax
, which is reached after log 1

2
(ϵPR(1−∆̄A)

6|A|cmax
) =

log2(6|A|cmax
ϵPR(1−∆̄A)) iterations (since ϵ(2) = ϵPR

3). Further by Lemma E.2.8, we get
the sample complexity n = Õ(|A|2c2

max
ϵ2PR(1−∆̄A)2), completing the proof.

Corollary E.2.6. Under the same assumptions as Prop E.2.5, in addition,
|gPπ − ĝP̃π̃A

| ≤ 4ϵPR
3 .

Proof. Continuing the same argument as in Prop E.2.5, we have

0 ≤ gPπ − gP̃π̃A
+ gP̃π̃A

− ĝP̃π̃A
≤ ϵPR + ϵL

PR

2 = 4ϵPR

3 ,

where we use triangle inequality and appeal to Prop E.2.5 for |gPπ − gP̃π̃A
| ≤ ϵPR

and [66] where |gP̃π̃A
− ĝP̃πA

| ≤ ϵLPR
2 ≤

ϵPR
3 since ϵL

PR = 2ϵPR
3 .

Lemma E.2.7. (η-greedy approximation) Let P be any dynamics. Let π be
a greedy policy in AMEC (A,AA) with dynamics P . With 0 ≤ η ≤ 1, let πη
be η-greedy with respect to π. Then, for any error ϵ(1) > 0, there exists some
threshold η∗ ∈ (0, 1] such that when η ∈ (0, η∗] we have

|gPπ − gPπη
| ≤ ϵ(1). (E.5)

Proof. Let s0, . . . , s|A|−1 be any ordering of the states in A. The standard (non-
optimistic) average cost Bellman equation with known dynamics P is given
by Lv(s) = g(s) + mina∈AA(s)

(
C(s, a) + P (s, a)v

)
for each s ∈ A for a unique

g and v unique up to a constant translation [21]. Furthermore, since the end
components are communicating sets then we know that g is a constant vector,
i.e. g = g(s) = g(s′) for any s, s′ ∈ A [21]. Since v is unique up to translation,
we can always set v(0) = 0 to make v unique. The evaluation equations, under
policy π, is similarly, Lπv(s) = gπ + Ea∼π

[
C(s, a)] + Pπ(s, a)v [21]. For more

generality, instead of Pπ we consider αPπ + (1−α)I, an aperiodicity transform

218

with any coefficient α ∈ [0, 1]. Then the Lπ written as a system takes the form:

02|A| =
αPπ − (1− α)I −I

C D


︸ ︷︷ ︸

Xπ



v0
...

v|A|−1

g0
...

g|A|−1


︸ ︷︷ ︸

y

−



Ea∼πC(s0, a)
...

Ea∼πC(s|A|−1, a)
0
...
0


︸ ︷︷ ︸

bπ

with

C =


1 0 . . .

0 0 . . .
... . . .

 , D =


0 . . . 0
1 −1 0

.
0 1 −1

 .

This system combines Lv(s) = Ea∼π(s)[C(s, a)] + (αPπ + (1 − α)I)v together
with g(s) = g(s′) for any s, s′ ∈ A and v(0) = 0.

Succinctly, Xπy − bπ = 0. Similarly, we have Xπηy
′ − bπη = 0. Let dX =

Xπη−Xπ, db = bπη−bπ and dy = y′−y then (Xπ +dX)(y+dy)− (bπ +db) = 0.
Hence,

dy = (Xπ + dX)−1(db− dXy)
= (I +X−1

π dX)−1X−1
π (db− dXy).

We calculate ∥dX∥∞ :
∥dX∥∞ = max

s∈A

∑
s′∈A
|αPπη(s, s′)− αPπ(s, s′)|

= max
s∈A

∑
s′∈A
|α((1− η)Pπ(s, s′) + ηPUnif (s, s′))− αPπ(s, s′)|

= αηmax
s∈A

∑
s′∈A
|PUnif (s, s′)− Pπ(s, s′)|

≤ αη2|A|.
By a similar argument, together with C ≤ cmax, then ∥db∥∞ ≤ 2ηcmax Hence,

∥dy∥∞ ≤ ∥(I +X−1
π dX)−1∥∞∥X−1

π ∥∞(∥db∥∞ + ∥dX∥∞∥y∥∞)

≤ ∥X−1
π ∥∞

1− ∥X−1
π ∥∞∥dX∥∞

(∥db∥∞ + ∥dX∥∞∥y∥∞)

≤ η∥X−1
π ∥∞

1− 2α|A|η∥X−1
π ∥∞

(2cmax + 2α|A|∥y∥∞).

219

By selecting
η ≤ η∗ = ϵ(1)

∥X−1
π ∥∞(2cmax + 2α|A|∥y∥∞) + ϵ(1)2α|A|∥X−1

π ∥∞
,

we get that ∥dy∥∞ ≤ ϵ(1) and therefore |gPπ − gPπη
| ≤ ϵ(1), as desired.

220

Lemma E.2.8. (Simulation Lemma, Avg. Cost) Fix some α ∈ (0, 1) arbitrary.
Let P̃ be the optimistic dynamics achieving the inner minimum of the Bellman
equation with respect to LαPR (see Table 7.1) in the AMEC given by (A,AA).
Let π be the η∗ stochastic policy as in Lemma E.2.7. For some error ϵ(2) > 0.
Let m ∈ N be the smallest value such that ∆((αP̃π + (1− α)I)m) < 1. When n

is large enough that ψ(n) ≤ 1
α2

((
ϵ(2)(1−∆(P̃m

α,π))
|A|cmax

+ 1
)1/m

− 1
)

then

|gPπ − gP̃π | < ϵ(2). (E.6)
For ΠA, the set of deterministic policies in A, let ∆̄A = maxπ∈ΠA

∆((αPπ∗
η

+
(1−α)I)m) where m = maxπ∈ΠA

minm∈N{m|∆((αPπ∗
η

+ (1−α)I)m) < 1. Then,
in particular, (E.6) holds after n = Õ(|A|2c2

max
ϵ2(2)(1−∆̄A)2) samples are collected for each

state-action pair in (A,AA).

Proof. Consider, notationally, Pα(s, a, s′) = αP (s, a, s′) + (1 − α)1{s=s′} be
an aperiodicity transform with α ∈ (0, 1). When fixed by a policy, then
Pα,π = αPπ + (1 − α)I. By [166] (Prop. 8.5.8), aperiodicity transforms do
not affect gain. Hence gPπ = gPα

π and gP̃π = gP̃α
π . Let xπ,Pα be the stationary

distribution of π in Pα and xπ,P̃α
be the stationary distribution of π in P̃α.

These quantities exist due to the fact that π has full support over AA making
both Pα, P̃α ergodic (finite, irreducible, recurrent, and aperiodic). Hence,

|gPπ − gP̃π | = |gPα
π − gP̃α

π |

= |Es∼xπ,Pα
[Ea∼π(s)[C(s, a)]]− Es∼xπ,P̃α

[Ea∼π(s)[C(s, a)]]|

= |
∑
s∈A

Ea∼π(s)[C(s, a)](xπ,Pα(s)− xπ,P̃α
(s))|

≤ cmax∥xπ,Pα − xπ,P̃α
∥1.

To bound ∥xπ,Pα − xπ,P̃α
∥1, we appeal to classic stationary-distribution pertur-

bation bounds [41]. First, since P̃α,π is ergodic then ∃m0 <∞ such that for any
m ≥ m0 then ∆(P̃m

α,π) < 1. Then, in particular, ∥xπ,Pα−xπ,P̃α
∥1 ≤

∥P̃m
α,π−Pm

α,π∥∞

1−∆(P̃m
α,π)

[181, 41]. Let E = Pπ,α − P̃π,α, and thus ∥E∥∞ = α∥Pπ − P̃π∥∞ ≤ α|A|ψ(n).
Then,

∥P̃m
α,π − Pm

α,π∥∞ = ∥P̃m
α,π − (αPπ + (1− α)I)m∥∞

= ∥P̃m
α,π − (αE + αP̃π + (1− α)I)m∥∞

= ∥P̃m
α,π − (αE + P̃α,π)m∥∞

≤ (α∥E∥∞ + 1)m − 1
≤ (α2|A|ψ(n) + 1)m − 1.

221

where in the second-to-last inequality uses that ∥P̃α,π∥∞ = 1 and ∥AB∥∞ ≤
∥A∥∞∥B∥∞ for matrices A,B. Putting it all together we have that

|gPπ − gP̃π | ≤ cmax
(α2|A|ψ(n) + 1)m − 1

1−∆(P̃m
α,π)

. (E.7)

We therefore require that

ψ(n) ≤ 1
α2|A|

(ϵ(2)(1−∆(P̃m
α,π))

cmax
+ 1

)1/m

− 1
 (E.8)

to yield |gPπ − gP̃π | < ϵ(2). The equation (E.8) also holds with P̃ replaced with
P , with (some other) m appropriate.

In the AMEC (A,AA) then there are at most |ΠA| = |A||AA| deterministic
policies. For each policy π ∈ ΠA, there is some η∗

π satisfying Lemma E.2.7. Let
m = maxπ∈ΠA

minm∈N{m|∆(Pm
α,πη∗

π
) < 1} and ∆̄A = maxπ∈ΠA

∆(Pm
α,πη∗

π
) < 1

(recall this is guaranteed because Pα,πη∗
π

is ergodic). Then, when ψ(n) <

1
α2|A|

((
ϵ(2)(1−∆̄A)

cmax
+ 1

)1/m
− 1

)
then |gPπ − gP̃π | < ϵ((2). By Lemma E.2.2, we

have n = Õ(|A|
2
m c

2
m
max

ϵ
2
m
(2)(1−∆̄A)

2
m

) = Õ(|A|2c2
max

ϵ2(2)(1−∆̄A)2), since m = 1 achieves the maximum.

Remark E.2.9. We do not require knowledge of ∆̄A < 1. The existence is
sufficient to guarantee convergence.

Remark E.2.10. The function ∆(M), coefficient of ergodicity of matrix M ,
is a measure (and bound) of the second largest eigenvalue of M .

Remark E.2.11. In this chapter, we have assumed that m = 1 and α = 1, for
simplicity in exposition. For full rigor, m may be larger, though typically small.
m can be seen as the smallest value making any column of Pm

α,π dense. From a
computational perspective, it is efficient to compute powers of P̃α,π and stop
when P̃m

α,π has a dense column, making ∆(P̃α,π) < 1. From there, we can check
if ρ (Line 6, Algo 7) satisfies the r.h.s of Eq (E.8). We present the samples
required by maximizing over m ∈ N.

222

PlanTransient proofs

Proposition 7.3.3 (PlanTransient Convergence & Correctness, Informal).
Denote the cost- and prob-optimal policy as π′. After collecting at most n =
Õ(|S\∪k

i=1Ai|2V̄ 4

c2
minϵ

2
PTϵ

4
φ

) samples for each (s, a) ∈ (S \ ∪ki=1Ai)×A, the greedy policy π
w.r.t. v′ (Alg. 8, Line 3) is both cost and probability optimal:
∥Ṽπ − Ṽπ′∥ < ϵPT, |P

[
π reaches ∪ki=1 Ai

]
− P

[
π′ reaches ∪ki=1 Ai

]
| ≤ ϵφ.

Proposition E.2.12 (PlanTransient Convergence & Correctness, Formal).
Let {Ai, gi}ki=1 be the set of inputs to Algorithm 8, together with error ϵPT > 0.
Denote the cost- and prob-optimal policy as π′. After collecting at most n =
Õ(|S\∪k

i=1Ai|2V̄ 4

c2
minϵ

2
PTϵ

4
φ

) samples for each (s, a) ∈ (S \ ∪ki=1Ai)×A, under the event E
and Assumption 7.1 then with probability 1− δ, , the greedy policy π w.r.t. v′

(Alg. 8, Line 3) is both cost and probability optimal:
∥Ṽπ − Ṽπ′∥ < ϵPT, |P

[
π reaches ∪ki=1 Ai

]
− P

[
π′ reaches ∪ki=1 Ai

]
| ≤ ϵφ.

Proof of 7.3.3. Convergence follows from boundedness of ∥v∥ ≤ V̄ , and mono-
tone convergence and is well studied [166, 94, 199, 66].

Fix λ > 0 and drop it from the notation V P
π,λ. Let Ṽ P̃

∗ be the value function
for the optimal policy in P̃ . For the approximation error, we have

0 ≤ Ṽ P
π − Ṽ P

∗ = Ṽ P
π − Ṽ P̃

π︸ ︷︷ ︸
(a)

+ Ṽ P̃
π − Ṽ P

∗︸ ︷︷ ︸
(b)

< ϵPT.

For (a) we appeal to Lemma E.2.15 and set ϵ(3) = ϵPT/2 requiring that ψ(n) =
ϵPTcmin

14|S\∪k
i=1Ai|V̄ 2(1+ 1

ϵφ
)2 , occuring when n = Õ((|S\∪k

i=1Ai|V̄ 2

ϵPTϵ2φcmin
)2) samples per state-

action pair have been collected. For (b), by Lemma E.2.16, by selecting
ϵL

PT = cminϵPTϵφ
4V̄ we have that

V P̃
π − V P

∗ ≤ (1 + 2ϵL
PT

cmin
)v − V P

∗

= 2ϵL
PTv

cmin

≤ 2V̄ ϵL
PT

ϵφcmin
≤ ϵPT

2 .

For the probability of satisfaction, by Prop E.2.13, we have that π and π∗

coincide in probability of reaching the states in ∪ki=1Ai.

Proposition E.2.13 (Selecting a bound on ∥v∥). Let {Ai, gi}ki=1 be the
set of inputs to Algorithm 8. Let π′ have maximal probability of reaching

223

∪ki=1Ai. Then, with error ϵφ > 0, bounding ∥v∥∞ = ∥LPTv∥∞ ≤ V̄
ϵφ

where
V̄ ≥

(
1
β|S|

(
1−β|S|

1−β

)
+ λ

)
cmax guarantees that π returned by Algorithm 8 is near

probability optimal:
|P [π |= φ]− P [π′ |= φ] | < ϵφ.

Proof of E.2.13. Suppose V̄ ≥ Jπ + λcmax for any π ∈ Π. Let V̄
ϵφ

be chosen as
upper bound on ∥v∥ = ∥LPTv∥. Denote P [π |= φ] as p, and P [π′ |= φ] as p∗.
Suppose, for contradiction, p∗ − p > ϵφ, yet π is returned by the Algorithm.
This would imply that Ṽπ ≤ Ṽπ′ .

Hence,

0 ≤ Ṽπ′ − Ṽπ ≤ p∗(Jπ′ + λ
k∑
i=1

p∗
i

p∗ ĝ
P̃
π̃Ai

)︸ ︷︷ ︸
≤Jπ+λcmax

− p(Jπ + λ
k∑
i=1

pi
p
ĝP̃π̃Ai

)︸ ︷︷ ︸
≥0

+ (p− p∗)︸ ︷︷ ︸
<−ϵφ

V̄

ϵφ

< Jπ + λcmax − V̄

≤ 0.
Hence, we have a contradiction. Thus, |p∗ − p| ≤ ϵφ if V̄ ≥ Jπ + λcmax for any
π ∈ Π. In fact, since the solution to LPT is deterministic, it suffices to consider
only deterministic Π.

We will now bound Jπ = Eτ∼Tπ

[∑κπ
t=0 C(st, π(st))

∣∣∣∣∣τ |= φ

]
≤ cmaxEτ∼Tπ [κτ |τ |=

φ], as this is the only unknown quantity. Here Eτ∼Tπ [κτ |τ |= φ] is the expected
number of steps it takes π to leave the transient states. This means that a
worst-case bound would be a policy that remains in the transient states as long
as possible.

We construct the worst-case scenario and give a justification, a formal proof
follows from induction. Suppose the starting state is s0. If π induces a prob-1
transition back to s0 then s0 is recurrent, and so κτ would be small. Instead,
π induces a prob 1− β transition to s0 and a prob β transition to s1. Notice
that the transition to s1 must be at least probability β due to Assumption 7.1.
Again, if s1 gave all of its probability to s1 or s0 then a MEC would form and
strictly decrease κτ . This process repeats until we reach state s|S|−1, which
has to have a self-loop. If it does not, then, again a large MEC would form
and decrease κτ . Of course, this is the well known chain graph, with easily
computable expected hitting time: Eτ∼Tπ [κτ] ≤ 1

β|S|
1−β|S|

1−β . By making s|S|−1

the accepting state, then Eτ∼Tπ [κτ |τ |= φ] = Eτ∼Tπ [κτ] = 1
β|S|

1−β|S|

1−β achieves

224

the bound. Any other choice of accepting states would strictly decrease κτ .
Hence, we can select

V̄ ≥
(

1
β|S|

(
1− β|S|

1− β

)
+ λ

)
cmax ≥ Jπ + λcmax,

completing the proof.

Remark E.2.14. It may also be possible to empirically estimate Jπ rather than
take the bound from Prop E.2.13, considering that we have the structure of P
through P̂ . We give the high level idea. We know all of the AMECs and rejecting
EC, so we have all the transient states (denoted T). Then for some policy π and
P ′ ∈ P, submatrix Qπ(s, s′) = P ′

π(s, s′) for s, s′ ∈ T represents the transitions
in the transient states. It is well known that Eτ∼Tπ [κτ] = ∥(I−Q)−1∥∞. Taking
the max over all π ∈ Π, P ′ ∈ P, and finally multiplying by cmax gives a bound
on Jπ.

Lemma E.2.15. (Simulation Lemma, Transient Cost [198]) Consider an MDP
(S,A, . . .). For any two transition functions P ′, P ′′ ∈ P, policy π, and error
ϵ(3) > 0 then

∥Ṽ P ′′

π ∥∞ = ∥Ṽ P ′

π ∥∞ ≤ (1+ 1
ϵφ

)V̄ , ∥Ṽ P ′

π −Ṽ P ′′

π ∥∞ ≤
7|S|V̄ 2(1 + 1

ϵφ
)2ψ(n)

cmin
≤ ϵ(3),

occurring after n = Õ(|S|2V̄ 4

ϵ2(3)ϵ
4
φc

2
min

) samples from each state-action pair in S ×A.

Proof. Direct consequence of the definition of V̄ from Prop E.2.13, application
of Lemma 2 from [198] and Lemma E.2.2.

Lemma E.2.16. (EVI Bound, [198]) Suppose v is returned by VI with accuracy
ϵL

PT with Bellman equation LPT (See Table 7.1). Suppose π is greedy with respect
to v. If ϵL

PT ≤ cmin
2 then, element-wise,

v ≤ Ṽ P
π∗ , v ≤ Ṽ P̃

π ≤ (1 + 2ϵL
PT

cmin
)v.

225

E.3 Conjecture on Sample Complexity
As we have proven in Theorem 7.4.1, the optimal policy creates a set of
AMECs which coincide with (Ai,Ai)ki=1. For any potential AMEC, we need to
guarantee probabilistic closure. For each state-action pair (s, a) ∈ Ai × AAi

we have to sample enough times to guarantee that we have “collected” all of
the possible unique transitions (s, a, s′). Indeed, this is similar to the famous
coupon collection problem, where we want to know how much time it will take
to collect all unique transitions (s, a, s′). Suppose there are m unique tuples
each with probability β = 1

m
.

We can use a Chebyshev-based lower bound:

P
[
N > m logm− log(1

δ
)m
]
≥ δ.

Simplifying, we get that P
[
N > m log(m

δ
)
]
≥ δ. Thus, the number of transi-

tions needed is
N = Ω(m log(m

δ
)) = Ω(1

β
log(1

βδ
)) = Ω̃(1

β
).

Further, [222] show that indeed N ≥ β
log β .

226

E.4 Additional Algorithms
In this section we discuss the additional subroutines used in this chapter. We
discuss the case where selecting ∪ki=1Ai as the terminal states for SSP in Algo
6 can fail and an alternative solution.

Value Iteration
Our version of Value Iteration VI (Algo 17) is a two-in-one version, due to
the similarity of Relative VI (used in PlanRecurrent) and SSP (used in
PlanTransient). The general idea is that you apply the Bellman Operator L
onto your current iterate vn repeatedly until d(vn+1, vn) exceeds ϵ. When we
wish to find the gain, then VT (terminal states) is empty, and we use shifting by
the first value of vn(0) for stability [21]. In other words, we subtract vn(0) from
every value of vn. On the other hand, if a set of terminal costs is provided then
these represent the set of states that we want to reach through SSP and the
value vn(s) = VT (s) is known and must be kept fixed throughout applications of
L. The only difference in our application of L over standard Bellman operators
is that L is optimistic and has an interior minimization over minp∈P(s,a) p

Tvn

(See Table 7.1). To solve this, minimization we use a modified version from
[94] given in Algo 18. The idea of Algo 18 is simple: put all the mass of P̃
onto the lowest possible values of vn while still being consistent with P̂ . This
is efficient as it requires an ordering over v and then a single pass over the
states S̃. The calculated probability p(s̃l) (see Algo 18) are what we call the
optimistic dynamics P̃ (s, a, s̃l).

Algorithm 17 Value Iteration (VI)
Require: Optimistic Bellman Operator L, Error Measure d, accuracy ϵ > 0, VT

terminal values (optional)
1: Set n = 0, v0 = 0S , v1 = Lv0
2: repeat
3: n

+←− 1
4: if VT is empty then
5: Shift vn ← vn − vn(0)1 {Relative Value Iteration}
6: else
7: vn(s)← VT (s) for s ∈ VT {SSP}
8: Apply operator vn+1, P̃ ← Lvn {Bellman Backup}
9: until d(vn+1, vn) > ϵ

10: return vn+1, vn, P̃

227

Algorithm 18 InnerMin (for PT/PR)
Require: A set of states S̃, current estimate from VI vn, estimates P̂ (s, a, ·) for a

specific (s, a) pair with s ∈ S̃, errors ψ(n), lower bound β (See Assumption 7.1)
1: Sort S̃ = {s̃1, s̃2, . . . , s̃m} according to vn(s̃1) ≤ vn(s̃2) ≤ . . . ≤ vn(s̃m), where vn

is the current
2: Set

p(s̃1) =


min(1− β, P̂ (s, a, s̃1) + ψ(n)), P̂ (s, a, s̃1) ̸∈ {0, 1}
1, P̂ (s, a, s̃1) = 1
0, P̂ (s, a, s̃1) = 0

3: For remaining j > 1, set p(s̃j) = P̂ (s, a, s̃j)
4: Set l← m
5: while

∑
s̃j∈S̃ p(s̃j) > 1 do

6: Reset

p(s̃l) =


max(β, 1−

∑
s̃j ̸=s̃l

p(s̃j)), P̂ (s, a, s̃l) ̸∈ {0, 1}
1, P̂ (s, a, s̃l) = 1
0, P̂ (s, a, s̃l) = 0

7: Decrement l← l − 1
8: Set P̃ (s, a, s̃) = p(s̃) for each s̃ ∈ S̃
9: return P̃ (s, a, s̃)

Modified Algorithm handling Blocking Failure in Algorithm 6

A2A1

π1

π2

Figure E.1: Blocking Issue. If A1 is included in the terminal AMECs (the
states we want to reach) then once it is reached πA1 is instantiated and A1
becomes recurrent, implying only π1 is considered. However, even though it
may be the case that Jπ1 < Jπ2, we may still have Vπ1 > Vπ2. This example
demonstrates the necessity to pick the terminal AMECs properly, rather than
just the union of all AMECs found, to avoid blocking.

One of the failure modes of Algorithm 6 is in its selection of which AMECs
are the necessary AMECs to reach. In fact, by selecting unnecessary AMECs,
the SSP procedure fails to treat some AMECs as transient states when in fact,
maybe, lower cost could have been achieved if they were. One way to see this is
to consider a single directional chain of AMECS (See Figure E.1). In the figure,
two policies can be considered: (1) π1 that reaches for A1 and then starts πA1

when A1 is reached, and (2) π2 that reaches for A2 and then starts πA2 when A2

228

is reached. It may be the case that Vπ2 < Vπ1 despite Jπ2 > Jπ1 , since it requires
a longer cost path to reach the desired AMEC. Despite this observation, when
A1 is selected as terminal states in the subroutine PlanTransient (Algo 8), we
disallow consideration of π2 at all. As explained in the proof of Theorem 7.4.1,
whatever AMECs are induced by π∗ coincide with AMEC = {Ai,AAi

}ki=1. Let
Ω = 2AMEC \∅, all non-empty subsets of AMECs (possible targets). Since all
accepting trajectories of π∗ land in an AMEC, then another way of looking at
π∗ is:

π∗ = min
ω∈Ω

min
π∈Π̃(ω)

Vπ,

where Π̃(ω) = {π ∈ Πmax|π(s, a) = πAi
(s, a) for s ∈ Ai ∈ ω, a ∈ AAi

(s)},
which is a policy class where the only degrees of freedom are outside of ω. In
other words, π ∈ Π̃(ω) is followed until the trajectory hits Ai ∈ ω and then πAi

is followed thereafter.

We will reconcile this failure mode of PlanTransient through a modified,
nonblocking, subroutine NoBlockPlanTransient (Algo 19).

Algorithm 19 NoBlockPlanTransient (NB-PT)
Require: States & gains: {(Ai, gi)}ki=1, err. ϵPT > 0
1: Set v(s) =∞ for each s ∈ S.
2: Sample φPT times ∀(s, a) ∈ S ×A
3: for ω ∈ 2{Ai}k

i=1 \∅ do
4: Set VT (s) = λgi for s ∈ Ai ⊆ ω
5: v′

ω, vω, P̃ ← VI(LPT, dPT, ϵ
L
PT, VT)

6: if Es∼d0 [v′
ω(s)] < Es∼d0 [v(s)] then

7: Set v = v′
ω

8: Set π ←greedy policy w.r.t v
9: return π

The proof of correctness follows from the fact that v′
ω closely tracks Vπ where

π is greedy wrt v′
ω. Then, selecting the smallest Vπ coincides with Vπ∗ .

Proposition E.4.1 (Correctness and Convergence of NoBlockPlanTransient).
After collecting at most n = Õ(|S|2V̄ 4

c2
minϵ

2
PTϵ

4
φ
) samples for each (s, a) ∈ S ×A, under

the event E and Assumption 7.1 then with probability 1− δ, , the greedy policy
π w.r.t. v′ (Alg. 8, Line 3) is both cost and probability optimal:

∥Ṽπ − Ṽπ∗∥ < 3ϵPT

2 , |P [π |= φ]− P [π∗ |= φ] | ≤ ϵφ.

Proof. Suppose vω < v′
ω for any ω′ ∈ Ω, with ω ∈ Ω. Fix some ω′. Denote the

greedy policies πvω , πvω′ wrt vω, vω′ . Suppose Ṽπvω′ < Ṽπvω
. Then an error was

229

made and
0 ≤ Ṽ P

πvω
− Ṽ P

πvω′

≤ Ṽ P
πvω
− Ṽ P̃

πvω
+ Ṽ P̃

πvω
− vω + vω − vω′ + vω′ − Ṽ P̃

πvω′
+ Ṽ P̃

πvω′
− Ṽ P

πvω′

≤ ϵPT

2 + ϵPT

2 + 0 + 0 + ϵPT

2
≤ 3ϵPT

2 ,

where the second line comes from grouping each pair of elements from the first
line and applying the bounds found in proof of Proposition E.2.12.

On the other hand, suppose p+ ϵφ = P [πvω |= φ]+ ϵφ < P
[
πvω′ |= φ

]
= p′. The

same proof as in Prop E.2.13 applies to show that the probability of satisfaction
remains close:

0 ≤ Ṽπvω′ − Ṽπvω

≤ p′(Jπvω′ + λ
k∑
i=1

p′
i

p′ ĝπ̃Ai
)︸ ︷︷ ︸

≤Jπ+λcmax

− p(Jπvω
+ λ

k∑
i=1

pi
p
ĝπ̃Ai

)︸ ︷︷ ︸
≥0

+ (p− p′)︸ ︷︷ ︸
<−ϵφ

V̄

ϵφ

< Jπ + λcmax − V̄

≤ 0,
showing that |p− p′| < ϵφ.

In particular, since the choice of ω′ was arbitrary, it holds for ω′ achieving
ω′ = minω∈Ω minπ∈Π̃(ω) Vπ. Therefore the previous bounds all hold for with p′

replaced with p∗ and Ṽ P
πvω′

replaced with Ṽ P
π∗ .

It is clear we can think of this non-blocking subroutine as checking the different
inputs to Algo 8, which requires φPT(ω) = ϵPTcmin

14|S\ω|V̄ 2(1+ 1
ϵφ

)2 , occuring when

n = Õ((|S\ω|V̄ 2

ϵPTϵ2φcmin
)2) samples per state-action pair have been collected. Taking

the maximum over ω ∈ Ω, we have n = Õ((|S|V̄ 2

ϵPTϵ2φcmin
)2) samples required for

each state-action pair in S ×A.

Remark E.4.2. Recall S∗ is set of accepting states in Product-MDP X . This
subroutine appears to have an exponential runtime in |S∗|; Ω is at most 2|S∗|,
which is not related to the typical PAC parameters. In general, Ω is modestly
small.

Remark E.4.3. While the runtime scales poorly with |S∗|, the sample com-
plexity remains PAC.

230

Remark E.4.4. We believe it is possible to bring the runtime of the subroutine
to be polynomial in |S∗| by leveraging the MEC quotient structure (see [16]),
but leave that for future work.

231

E.5 Experiments
Environments and Details

Figure E.2: Environment Illustrations. (Left) Pacman. φ is for the agent, the
red triangle, to eventually collect the food, given by the yellow dot, and always
avoid the ghost, the red semicircle with eyes. (Right) Mountain Car (MC). φ
is to eventually reach the flag.

Pacman. This environment (pictured in Fig E.2 Left) is a 5x8 gridworld.
The starting positions of the agent (red triangle), food (yellow circle), and
ghost (red semicircle with eyes), are as illustrated in Fig E.2. The agent has
4 cardinal directions at each state in addition to a “do nothing” action. The
LTL specification is to eventually reach the food and to forever avoid the ghost
“F(food) & G(!ghost)”, where the food state is labelled “food” and the ghost
state is labelled “ghost”. Once the food is picked up, it is gone. The ghost
chases the agent (following the shortest path) with probability .4 and chooses a
random action with probability .6. Though this is an infinite horizon problem,
as there is no terminal state, we allow a maximum horizon of H = 100 in our
experiments. We track how long the agent has avoided the ghost and whether
the agent has picked up the food. To simplify verification, we say the agent
has satisfied the spec if the food has been picked up and the ghost has been
avoided for all H timesteps. The cost function is defined as 1 everywhere.

For the shaped LCRL baseline, we use progression through the LDBA as a
“reward”: if the agent progresses to a new state in the automaton then the cost
of that transition is .1 instead of 1. The authors of LCRL used similar ideas in
their code as well. However, we must note that progression-based cost shaping
eliminates any guarantee of LTL satisfaction. An agent is incentivized to find
cycles in the LDBA rather than find an accepting state. In the case when no
such cycles exist, then this form of cost shaping can work.

Mountain Car This domain (pictured in Fig E.2 Right) is a discretization

232

of the Mountain Car domain from OpenAI [29], with state-space given by
tuple (position, velocity) and cost of 1. We discretize the position space
into 32 equal size bins and the velocity into 32 geometrically-spaced bins,
allowing more granularity around low velocity than high velocity, making 322

bins (states) in the MDP. The starting state is the standard MC starting
state, but then placed in the appropriate bin. A bin can be converted back
to (pos,vel), for purposes of sampling from P , by uniformly selecting from
the valid positions/velocities implied by the bin. The agent has 3 actions:
accelerate left, do nothing, accelerate right. The specification is to eventually
reach the goal state “F(goal)”, the standard task, where any bin with position
beyond the flag position is labelled “goal”.

For the shaped LCRL baseline, we use a cost function of c = .1 if the change
in position is positive and the agent accelerated right, likewise if the change is
negative and the agent accelerated left, otherwise c = 1. This cost function
should incentivize the agent to seek actions which make the car go faster. Unlike
the previous experiment, here cost-shaping has no effect on the guarantee of
LTL satisfaction.

Safe Delivery This domain (pictured in Fig 7.1 Right) is a 4-state MDP: (0)
start state, (1) sniffed packet, (2) stolen packet (3) delivered packet. In each
state, the agent has two actions, A and B. The transition function P in the
MDP is given by P (0, A, 1) = 1, P (0, B, 2) = .5, P (0, B, 3) = .5, P (1, A, 3) = 1,
P (1, B, 3) = 1, P (2, A, 2) = 1, P (2, B, 2) = 1, P (3, A, 3) = 1, P (3, B, 3) = 1.
In other words, choosing action A in the initial state immediately leads to
a sniffed packet, which subsequently leads to the packet being delivered by
any action. Alternatively, choosing action B in the initial state has a 50− 50
chance of having the packet stolen or immediately delivered, regardless of
action. Once, stolen, it remains stolen. Once delivered, the packet remains
delivered, regardless of action. The states are labelled as L(0) = L(3) =“safe”.
The specification is to always stay in safe states: “G(safe)”. Let all the costs
be 1. The Product-MDP can be seen in Figure 7.2 Right.

The probability-optimal and cost-optimal policy is then choosing B is state
0 and then arbitrarily afterward. The maximum probability of satisfying the
policy is 50% because 50% of the time the packet gets stolen. Though this is
an infinite horizon problem, as there is no terminal state, we allow a maximum
horizon of H = 100 in our experiments. Thus, the average number of timesteps

233

should be .5 ∗H = 50.

Similarly to Pacman, for the shaped LCRL baseline, we use progression through
the LDBA as a “reward”: if the agent progresses to a new state in the automaton
then the cost of that transition is .5 instead of 1.

Infinite Loop This environment (pictured in Fig 7.1 Left) is a 2x5 gridworld.
The agent starts in the bottom right corner. The agent has 4 cardinal direc-
tions at each state in addition to a “do nothing” action. We consider two
specifications:

φ1: The LTL specification is to perpetually visit the office (in the top right
corner) followed by the coffee room (top left corner): “GF(o & XFc)”, where
the office is labelled o and the coffee room is labelled c. The Product MDP is
illustrated in Figure 7.2 Center.

φ2: We require the agent to
“G((c -> XXXXXo) & (o ->XXXXXc)) & Xo”, (E.9)

meaning to get to first get to office in 1 step, then repeatedly reach the coffee
room in 5 steps followed by the office in 5 steps.

Similarly to Pacman, for the shaped LCRL baseline, we use progression through
the LDBA as a “reward”: if the agent progresses to a new state in the automaton
then the cost of that transition is .5 instead of 1.

Hyperparameters
We use the following hyperparameters for our experiments. Each set of hyper-
parameters was run with 20 seeds, with the exception of Safe Delivery which
was run with 40 seeds.

Table E.4: Hyperparameters.

Param(s) Infinite Loop φ1 Infinite Loop φ2 Safe Delivery Pacman MC
V̄ 50 50 10 100 150
cmin 1 1 1 1 1
cmax 1 1 1 1 1
φ GF(o & XFc) See φ2 in (E.9) G(!unsafe) F(food0) & G!ghost Fgoal
ϵ 3 3 3 3 10
δ .1 .1 .1 .1 .1

LCRL Params Infinite Loop Infinite Loop 2 Safe Delivery Pacman MC
Max Traj len. 100 100 100 100 200

γ .99 .99 .99 .99 .95
Learning rate .95 .95 .95 .95 .9

234

Additonal Results

35 40 45 50

Total Number of Samples

35

40

45

50

Safe Delivery

LCP (Ours)

LCRL (shaped)

LCRL

Max (Expected)

B
etter

B
etter

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
 o

f
S
a
ti
sf

a
ct

io
n

20

40

60

80

100

T
im

es
te

ps

Infinite Loop

2 43 5 6

Total Number of Samples (× 103)

B
etter

B
etter

7 55 60

0.35

0.40

0.45

0.50

ϕ2

Figure E.3: Additional Results. (Left Column) Infinite Loop 2. φ is a specific
trajectory that needs to be followed: first get to the office in 1 timestep and then
the coffee room in 5 and then back to the office in 5, over and over. (Right)
Safe Delivery (Right Column). φ is to always be safe.

In this section we examine additional results for the experiments we ran.

For the Infinite Loop environment under φ2, we see (Figure E.3 Left Column)
that our method is able to follow the trajectory specified by φ2 even in low
sample regimes. The learning signal for LCRL is very poor as the episode
terminates extremely quickly if the agent does not get to the next location
that it needs to be in within the allotted time. The shaped LCRL only does
marginally better, but still struggles to satisfy the LTL with any probability.

For the Safe Delivery environment, we see (Figure E.3 Left Right) that our
method picks out the probability-optimal policy. LCRL is nearly optimal. The
sparsity of this problem is significantly less as the feedback for spec satisfaction
verification comes after a single timestep. Interestingly, cost shaping in Safe
Delivery performs worse than straight LCRL. This isn’t surprising since, as
noted, the verification feedback comes after a single timestep and is more
important than any cost-shaping. However, cost-shaping muddles the feedback
making shaped LCRL perform worse. We speculate that with only a few
hundred or thousand more samples, both LCRL and shaped LCRL would reach
the optimal policy. Recall that LCRL and shaped LCRL are not the same as

235

Q-learning, as they operate in the product-MDP rather than the underlying
MDP. Thus, these observations are still consistent with our Motivation section
(Section 7.1), insisting that Q-learning would have trouble in this environment.

Policies

(1)

(1)

(2)

(3)

Figure E.4: Types of policies for different φ. (Left) Infinite Loop φ1. φ1 is to
go perpetually walk between the office and the coffee room (Right) Infinite Loop
φ2. φ2 is to get to the office in 1 time step then perpetually, take 5 timesteps
to get to the coffee room and 5 steps back to the office.

In this section we examine the policies induced by different specificity in
specifications. In particular, we consider the Infinite Loop environment with
two different specifications φ1, φ2, see Section E.5, E.5 for a description. For
φ1, we only require that the agent “eventually” navigate between the office and
coffee room. The agent is incentivized to stay in place (create a cost-1 cycle)
for as long as possible and very infrequently take a random action. Of course,
eventually taking random actions will loop the agent between the office and
coffee room. This behavior is illustrated in Figure E.4 Left, where the agent is
always in LDBA state 1 and takes random actions with low probability and
does nothing with high probability. It takes exponential time for the agent to
make a single loop between the office and coffee room.

On the other hand, we may want the agent to move quickly. In this case, we can
be more specific and use specification φ2. The behavior for an agent satisfying
φ2 is illustrated in Figure E.4 Right. The agent gets to LDBA state 2 by first
reaching the office in a single time step. Then the agent loops between LDBA
states 2 and 3 by reaching the coffee room and office, repeatedly, within the
allotted time. If the agent does not reach the office or chair within the allotted

236

time, there is a fourth LDBA state (unpictured) which is a sink denoting failure
of the spec. In essence, the LDBA has created the options, or hierarchy, of
solving the problem, as noted in Section 7.1. It takes 10 timesteps for the agent
to make a single loop between the office and coffee room.

Notice that the high level description of the task is unchanged, but the details
of how the task is accomplished is much more specific in φ2 rather than φ1.
This demonstrates that writing LTL task specifications is flexible, but requires
thought about “how” the task should be accomplished.

237

Appendix F

CHAPTER 6 APPENDIX

F.1 Experiments
Environment Details
The environment and experiment details are summarized in Table F.1.

Table F.1: Environment Details.

Environment Experiment SM AM Dynamics LTL Formula

Minecraft Q-learning Discrete Discrete Deterministic GF (y & XF (b)) & (G¬r)
Pacman Q-learning Discrete Discrete Stochastic F (food) & (G¬ghost)
Flatworld 1 Q-learning R2 Discrete Deterministic FGy
Flatworld 2 Q-learning R2 Discrete Deterministic GF (y & XF (r)) & (G¬b)
Flatworld 3 PPO R2 [0, 1]2 Deterministic FGy
Flatworld 4 PPO R2 [0, 1]2 Deterministic GF (y & XF (r)) & (G¬b)
Carlo PPO R5 [−1, 1]2 Deterministic GF (zone1 & XF (zone2)) & (G¬crash)

Experiment Setup
Each experiment is run with 10 random seeds. Results from Figure 8.2 are
from an average over the seeds.

Q-learning experiments. Let k be the greatest number of jump transitions
available in some LDBA state k = maxb∈SB |AB(b)|. Let m = maxs∈SM |AM(s)|.
The neural network Qθ(s) takes as input s ∈ SM and outputs R(m+k)×|SB| a
(m+ k)-dim vector for each b ∈ SB. For our purposes, we consider Qθ(s, b) to
be the single (m+ k)-dim vector cooresponding to the particular current state
of the LDBA b.

When SM is discrete then we parametrize Qθ(s, b) as a table. Otherwise,
Qθ(s, b) is parameterized by 3 linear layers with hidden dimension 128 with
intermediary ReLU activations and no final activation. After masking for how
many jump transitions exist in b, we can select arg maxi∈[0,...,|AB(b)|] Qθ(s, b)i the
highest Q-value with probability 1− η and uniform with η probability. Here,
η is initialized to η0 and decays linearly (or exponentially) at some specified
frequency (see Table F.2).

At each episode (after a rollout of length T), we perform K gradient steps with

238

different batches of size given in Table F.3. We use Adam optimizer [107] with
a learning rate also specified by the table.

When in a continuous state space, we implement DDQN [86] (rather than
DQN) with a target network that gets updated at some frequency specified by
Table F.3.

Table F.2: Hyperparameters for Q-learning experiments (Discrete Action
Space).

η η Decay

Experiment η0 Min η Type Rate Freq Batch size K (batches) LR Target update T γ

Minecraft .3 0 Exp .9 100 128 20 - - 100 .99
Pacman .4 0 Linear .05 400 512 200 - - 100 .999
Flatworld 1 .8 .15 Exp .9 100 128 5 .001 15 20 .95
Flatworld 2 .8 .15 Exp .9 100 128 5 .001 15 50 .95

PPO experiments. Let k be the greatest number of jump transitions available
in some LDBA state k = maxb∈SB |AB(b)|. The neural network fθ(s) takes
as input s ∈ SM and outputs R(k+2)×|SB| is a (k + 2)-dim vector for each
b ∈ SB. For our purposes, we consider fθ(s, b) to be the single (k + 2)-dim
vector cooresponding to the particular current state of the LDBA b.

fθ(s, b) is parameterized by 3 linear layers with hidden dimension 64 with
intermediary ReLU activations. The first dimension corresponds to sam-
pling a Gaussian action a ∼ N (fθ(s, b)[0], diag(σ2)) where σ is initialized to
σ0 (see Table F.3) and decays exponentially (at a rate given in the table)
every 10 episodes. The remaining k + 1 dimensions (after proper masking
to account for the size of |AB(b)| and softmax) represent the probability
p = [pa, pϵ0 , . . . , pϵk] of taking either the MDP action a or a some jump transi-
tion ϵi. We sample from a Categorical(p) variable to select whether to return
a ∼ N (Tanh(fθ(s, b)[0]), diag(σ2)) or a = ϵi for some i. The density can be
calculated by multiplying pa by the Gaussian density when a is selected, and
pϵi otherwise.

For the critic, we have a parametrized network fφ(s, b)→ R of 3 linear layers
with hidden dimension 64 with intermediary Tanh activations and no final
activation.

At each episode (after a rollout of length T), we perform 5 gradient steps with
different batches of size given in Table F.3. The importance sampling term

239

in PPO is clipped to 1 ± .4. The critic learning rate is .01. We use Adam
optimizer [107] for both the actor and critic.

Table F.3: Hyperparameters for PPO experiments (Continuous Action Space).

Experiment σ0 σ Decay Rate Min σ Batch size LR Actor T

Flatworld 3 1.8 .98 .3 128 .001 20
Flatworld 4 1.8 .99 .1 128 .001 50
Carlo .5 .999 .3 16 .0001 500

240

F.2 Constructing feasible trajectories for policy gradient during rollout

Algorithm 20 LCER for Policy Gradient (Option 2)
Require: Dataset D. Trajectory τ of length T .

1: Set T0 ← {(s0, b)|b ∈ B}
2: for (st, at, st+1) ∈ τ do
3: Form Tt according to Eq (F.1)
4: Set D ← D ∪ TT
5: return D

Suppose we wanted to generate feasible trajectories in realtime while the
policy is being rolled out. That is, we have a partial trajectory of the form
τt = (s0, b0, a0, . . . , st, bt) generated by running π in P . Let at = a ∈ A be the
t-th action taken by π and st+1 = s′ ∈M be the next observed state observed
in the MDP.

Let Tt be the current set of feasible (partial) trajectories at timestep t. Elements
τk = (s0, b0, a0, . . . , sk, bk) ∈ Tt denote k-step (partial) trajectory, not necessarily
part of the trajectory observed during the course of a rollout of π. Here, k ≥ t.
Then, for each τk ∈ Tt, one of 4 cases holds:

Case 1. Action a is not a jump transition (ie. a ∈ AM(sk)) and there are
no jump transitions available in bk (AB(bk) = ∅). Then we can form the
concatenation: τk+1 = τk ∪ (a, s′, bk+1) where bk+1 = PB(bk, LM(s′)). We set
Tϵ = ∅.

Case 2. Action a is a jump transition and is currently feasible in bk (ie.
a ∈ AM(bk)). Then we can form the concatenation τk+1 = τk ∪ (a, s′, bk+1)
where bk+1 = PB(bk, a). We set Tϵ = ∅.

Case 3. Action a is a not a jump transition (ie. a ∈ AM(sk)), but there is at
least one feasible jump transition in bk (ie. AB(bk) ̸= ∅). Then, in addition to
forming τk+1 from Case 1, we have all the possible jumps:

Tϵ = {τk ∪ (ϵ, sk, bk+1, a, s
′, bk+2)|∀ϵ ∈ AB(bk),bk+1 = PB(bk, ϵ),

bk+2 = PB(bk+1, at)}.

Case 4. Action a is a jump transition is infeasible in bk (ie. a ̸∈ AB(bk)). In
this case, we just pass this trajectory. Setting τk+1 = τk and Tϵ = ∅.

At the end of iterating over each element of τk ∈ Tt and forming τk+1 and Tϵ,

241

we can update our current set of feasible trajectories:

Tt+1 = ∪τk∈Tt

(
(Tt \ {τk}) ∪ {τk+1} ∪ Tϵ

)
. (F.1)

To put this process simply, we are swapping out τk for τk+1 and also adding in
any jump transitions if they are available. The algorithm can be seen in Algo
20.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Motivation and Goal
	Guarantee from existing data: Off Policy Evaluation (OPE)
	Guarantee from restructuring learning: Learning with Guarantees

	Foundations
	Preliminaries to Policy Learning, and Markov Decision Processes
	Preliminaries to OPE
	Preliminaries to Linear Temporal Logic
	Policy Learning With Guarantees

	Off Policy Evaluation
	Caltech OPE Benchmark and Empirical Study
	Benchmarking Design & Methodology
	Empirical Evaluation
	Discussion and Future Directions

	Advances in Model Based OPE
	Introduction to Model-Based OPE and OPO
	Preliminaries
	Minimax Model Learning (MML) for OPE
	Off-Policy Optimization (OPO)
	Scenarios & Considerations
	Experiments
	Other Related Work
	Discussion and Future Work

	Advances in Model Free OPE
	Fitted Q Evaluation (FQE) for Off Policy Evaluation
	Generalization Guarantee of FQE
	Empirical Analysis

	Policy Learning with Guarantees
	Value-Based Guarantees
	Introduction
	Problem Formulation
	Proposed Approach
	Theoretical Analysis
	Empirical Analysis
	Other Related Work
	Discussion

	LTL-based Guarantees in Discrete Domains
	Motivating Examples
	Background and Problem Formulation
	Approach
	End-To-End Guarantees
	Empirical Analysis
	Related Work
	Discussion

	LTL-based Guarantees in Continuous Domains
	Problem Formulation
	RL-Friendly Form: Eventual Discounting
	LTL Counterfactual Experience Replay
	Experiments
	Related Work
	Discussion

	Appendix
	Chapter 1 Appendix
	Glossary of Terms
	Ranking of Methods
	Supplementary Folklore Backup
	Model Selection Guidelines
	Methods
	Environments
	Experimental Setup
	Additional Supporting Figures

	Chapter 2 Appendix
	OPE
	OPO
	Additional theory
	Scenarios & Considerations
	Experiments

	Chapter 3 Appendix
	Preliminaries to Analysis of Fitted Q Evaluation (FQE)
	Generalization Analysis of Fitted Q Evaluation

	Chapter 4 Appendix
	Equivalence between Regularization and Constraint Satisfaction
	Convergence Proofs
	End-to-end Generalization Analysis of Main Algorithm
	Preliminaries to Analysis of Fitted Q Iteration (FQI)
	Finite-Sample Analysis of Fitted Q Iteration (FQI)
	Additional Instantiation of Meta-Algorithm (algorithm 4)
	Additional Experimental Details

	Chapter 5 Appendix
	Notation and Overview
	Analysis: Statements with Proof
	Conjecture on Sample Complexity
	Additional Algorithms
	Experiments

	Chapter 6 Appendix
	Experiments
	Constructing feasible trajectories for policy gradient during rollout

