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ABSTRACT

This thesis has two main focuses: (1) surrogate modeling of elastodynamic systems, and (2)
inference methods for the inexpensive characterization of elastodynamic systems. Elastodynamics
is the study of how and why materials move and deform when they are subject to time-varying
loads, covering a wide range of applications from architected materials, to telecommunications,
seismology, sound isolation, non-destructive evaluation, and medical imaging. Here, we explore
how to more efficiently model elastodynamics, and what we can infer about our environment from
observing them.

The next generation of material engineering aims to leverage advanced multi-functional control
over elastodynamic behaviors, but is currently limited by the large computational cost of purely
physics-based modeling methods. Surrogate models aim to alleviate this cost by providing a data-
driven approach to evaluate engineered material systems more efficiently. However, most current
surrogate models lack certain useful traits, diminishing their potential for real-world use. This
thesis begins by surveying the current state of surrogate modeling techniques, and establishes a set
of state-of-the-art traits that greatly augment the utility of surrogate models, offering a perspective
for the future direction of the field.

Next, a data-driven surrogate model based on Gaussian process regression for the computation
of dispersion relations is developed, GPR-dispersion. The model exhibits several of the afore-
mentioned traits, including representation invariance, data efficiency, incorporating direct use of
physical theories, and the provision of both uncertainty estimates on its predictions and gradients
for compatibility with gradient-based design optimization methods. GPR-dispersion is evaluated
in comparison against both deep learning and traditional physics-based models.

The thesis then pivots to inference methods for the inexpensive characterization of material systems
via partial observation of elastodynamic behaviors. Tissue stiffness is a tremendously important
biomarker for a long list of health conditions, but often needs to be evaluated in a medical clinic
with expensive equipment and highly trained workers. At-home health monitoring is a major next-
generation goal of healthcare, but the trajectories of current consumer-grade sensor technology and
biomarker inference methods have not yet fully intersected.

Inspired by a related work (Visual Vibration Tomography), Visual Surface Wave Tomography
(VSWT) is proposed. VSWT observes partial information about the surface waves of layered
elastodynamic systems (such as biological tissue) through monocular video to infer subsurface
constitutive and geometrical information. Simulated experiments are presented to evaluate the
accuracy, sensitivity, and limits of the method under ideal conditions. Real-world experimental
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results are presented using phantom materials that emulate biological tissue to demonstrate a
practical proof of concept.
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C h a p t e r 1

INTRODUCTION

1.1 Research objectives
This thesis explores computational methods based on machine learning, computational imaging,
and inference to advance the design and characterization of elastodynamic systems. There are two
primary goals of the research in this thesis: (1) the efficient modeling of elastodynamic systems via
data-driven surrogate models with useful traits like interpretability, incorporation of physics-based
knowledge, and invariance to data representation; and (2) inferring the interior material properties
of elastodynamic systems using incomplete observational data via computational imaging and
inference methods. The first goal pertains primarily to the computational design of materials
with engineered elastodynamic behaviors, aiming to open possibilities for the design of complex
and innovative elastodynamic devices. The second goal fixes its sights on inferring the interior
mechanical properties of material systems by partially observing the dynamics of the system’s
surface with monocular video, opening new possibilities for inexpensive material characterization
methods, creation of virtual dynamic reprentations of environments or objects, and affordable
at-home health monitoring.

1.2 Background and motivation
Elastodynamics is a branch of continuum mechanics that studies the behavior of elastic materials
under dynamic conditions. When subject to time-dependent loading conditions, materials exhibit
vibration and wave propagation. At present, the study of these phenomena is critical for applications
in signal processing [1–3], seismology and geophysics [4–8], structural analysis [9], material
characterization and imaging [10–12], and even medical treatment applications like breaking apart
kidney stones [13]. For the future, researchers are currently studying the potential role that
elastodynamics could play in applications of architected materials [14–17], expanding the scope
of stimulation-based medical treatments to Parkinson’s Disease [18–21] and targeted drug delivery
[22], acoustic energy harvesting [23], and even quantum computing [24, 25]. The study of
elastodynamic systems is relevant at a huge range of scales, from the small scales of cellular
biology, ultra-compact mechanical signal processing components in smartphones, and the future
of quantum computing, to the massive scales of structural analysis and earthquake engineering.
Of particular relevance to this thesis is the elastodynamic modeling and engineering of architected
materials, and the observation of the elastodynamic behaviors to image the interiors of objects and
environments.
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1.2.1 Advancing data-driven surrogate models for the design of architected materials
Architected materials (also known as structured materials or metamaterials) are materials with
a mesoscale structure designed to yield unique and useful material properties. These mesoscale
structures exist above the atomic and molecular scale, but below the scale of the macroscopic
components that comprise the architected material. This mesoscale architecture, therefore, can exist
at a wide range of scales. Since wave dynamics are so sensitive to the scales of features within their
medium, this freedom of scale enables a tremendous amount of flexibility in designing architected
materials to elastodynamically behave in prescribed ways for specific types of excitations. By
thoughtfully engineering structured materials, we can exert a much greater level of control over
fundamental wave behaviors and properties like refraction, reflection, diffraction, polarization,
interference, phase, and dispersion, and can even achieve behaviors not found in standard materials
like negative refraction [26]. In turn, controlling these fundamental behaviors can be leveraged to
engineer more complex effects like lensing, mode and frequency filtering, anisotropic propagation,
wave guiding, and signal multiplexing.

While the elastodynamics of architected materials have found many applications within academic
research, real-world applications are few and far between. However, this is not for lack of ideas,
and many possible real-world applications have been suggested, including the improvement of
medical imaging and the improvement of mechanical signal processing in mobile telecommunica-
tions devices (including smartphones). At present, there are a few factors contributing to the lack
of architected materials we see in the real-world. First, the manufacturing of architected materi-
als, especially those designed with fine mesoscale structures, is not scalable. While fabrication
technology is improving, the economics of manufacturing architected materials proves to be the
limiting factor in some cases. Second, designing architected materials for specific physical behav-
iors is challenging. While interesting and compelling behaviors have been shown academically,
many real-world applications require a high level of multi-functionality (e.g. requiring behavior
X at frequency A, but behavior Y at frequency B, etc). Ultimately, architected materials exist in
an insurmountably large design space, and navigating this space to determine the perfect archi-
tected material for a specific application remains a non-trivial task, especially if the feasibility of
fabrication is taken into account.

Scientists and engineers have begun to employ state-of-the-art machine learning methods to aid
with this complicated design problem. Machine learning tools are useful for learning complex
relationships from data. In the context of architected materials, they are most often used to learn
the relationship between the way an architected material is designed, and the effective properties
that the design yields. This effort has three major fronts: (1) the curation of data from which to
learn this relationship (2) the development of efficient-to-evaluate surrogate models that learn this
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relationship in the forward direction, often to be paired with design optimization methods, and (3)
the use of generative machine learning that learn the relationship in the inverse direction, to produce
designs that satisfy certain requested properties. Though each of these fronts will be discussed,
this thesis is primarily focused on the second: the surrogate modeling for the efficient evaluation
and design optimization of architected materials.

Traditional forward models as referred to in this thesis, will be defined as models based entirely
on physical principles. They often enjoy favorable convergence behaviors, are highly interpretable,
and are extremely flexible to operate on a wide range of scenarios, able to work with many different
governing equations and a huge range of complex and disparate geometries. While extremely
valuable as the backbone for many avenues of scientific inquiry and engineering solutions, they can
be quite costly to solve.

A surrogate model approximates the input-output relationship of a traditional forward model
with the goal of shedding an undesirable trait of the traditional forward model (often the large
computational cost). Basic surrogate models have long been in development, but they often shed
many of the extremely useful qualities of the physics-based models. They often depend on specific
design paradigms, and are not designed to operate outside of these paradigms, massively limiting
their flexibility to generalize to new scenarios. Further, many basic surrogate models, especially
those based on deep learning, embody "black-box" input-output relationships, and therefore lack
both interpretability and an incorporation of physics-based knowledge. The first major focus of this
thesis analyzes these issues, and and demonstrates ways to incorporate the desirable qualities of
physics-based models back in to surrogate models. In Chapter 2, I discuss the current state of data-
driven surrogate modeling for physical applications in the context of architected materials, giving a
more in depth analysis of these current challenges, offering perspectives for the future direction of
the field, and highlighting a few existing surrogate modeling approaches that are already headed in
this direction. In Chapter 4, I propose a surrogate model based on Gaussian process regression for
the computation of dispersion relations that incorporates physics-based modeling, interpretability,
and representation invariance.

1.2.2 Inference methods for the inexpensive characterization of elastodynamic systems
Elastodynamics are also extremely relevant to inferring characteristics of our environment and
objects in our environment that would otherwise be difficult to know. This happens all over the
place in nature, from the use of acoustics for echo-location in bats [27], dolphins [28], and whales
[29] to the localization of prey and detection of predators in Spiders via elastic vibratory cues [30,
31]. Elephants have been shown to interpret information carried in low frequency geophysical
waves both to communicate with each other and detect potential threats [32–35], and it is suggested
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that some primates use percussive techniques to locate cavities in wood in search of prey [36].

Waves and vibrations carry rich information about our environments. A biomimetic human adap-
tation of echo-location, reflection-based methods like SONAR enable the characterization and
navigation of environments in situations where vision may be obscured. Ultrasonic methods are
used to image the internal elastic properties of objects for medical imaging applications [10, 11],
material characterization [37], and for the non-destructive evaluation of structures [38]. Seismic
wave methods enable us to understand the material properties of subsurface geological features
[5–8, 39].

In the context of medical imaging and the characterization of biological materials, it has been
shown that tissue stiffness is a critical biomarker that can indicate the presence of a wide range of
conditions, including cancer [40, 41], fibrosis both of the liver [42–44] and lungs [45–47], chronic
obstructive pulmonary disease [48, 49], and cardiovascular conditions like hypertension [50–52] and
artherosclerosis [53, 54]. Tissue stiffness can also be used to track the progression of degenerative
diseases like osteoarthritis [55] and muscular distrophy [56, 57], providing guidance to treatments
and interventions. Medical imaging techniques are well-developed to measure tissue stiffness,
including ultrasonic [10], Shear Wave Elastography [11] and magnetic resonance [12] techniques.
These methods can provide incredibly useful biomarker information, but often require thorough
scans performed at medical centers using expensive equipment and highly trained personnel.
Because of this, the economics of providing this kind of health monitoring to the entire population
is currently economically intractable.

As the age of big data, computational inference, and affordable biosensors continues to develop,
however, there are many who believe that wearable technology could play a significant role in
the future of early detection and preventative care [58–61]. Wearable technology has already
revolutionized the monitoring and treatment of diabetes with continuous glucose monitors (CGMs)
[62] and insulin pumps [63]. Wearable cardioverter defibrillators can help detect life threatening
ventricular arrhythmias, and even intervene with difibrillation [64] for people who are known to
be at risk. Even beyond medical-grade wearables, sensors in exercise-based or daily-use devices
such as smartwatches, smartrings, and smartphones can provide mountains of biometric data to
help with health tracking. These devices can deliver near-constant measurements of heartrate,
sleep, blood oxygenation, and temperature. Tracking these trends can deliver useful insights about
whether a person should see a doctor, or provide quality-of-life improvements. Of particular note,
the Oura Ring [65] uses constant biometric measurements, providing a variety of insights including
menstrual tracking. When coupled with an app like Natural Cycles [66] (the first, and currently only,
FDA approved birth control app), this data can even inform a woman about her monthly fertility
cycle, which she can then use to advise her sexual activities [67, 68]. Although using menstrual
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tracking as birth control is not a novel idea (women have been tracking and using this information
themselves even prior to the digitization of the idea), the automated, data-driven approach to this
method greatly increases its effectiveness, and alleviates the burden of manual record-keeping.
Overall, this technology offers a compelling alternative to hormonal or IUD approaches to birth
control.

While some academic research has demonstrated compact wearable devices that can measure
tissue stiffness [69] via on-skin ultrasonic methods, none are currently commercially available.
A significant practical aspect of the problem is getting people to wear the sensors. Although
small ultrasonic transducers could be incorporated into smartwatches and smartphones in the
future, current version of these devices only contain low-frequency haptic actuators (tens to low
thousands of Hertz), and real-estate for additional hardware in smartphones and wearables is often
scarce. Fortunately, the low-frequency behavior of biological materials can tell us a lot about it
characteristics. We believe that coarse information about tissue stiffness can be inferred using
hardware that is already available in consumer-grade electronics. Our vision for this technology
is to provide low-frequency excitations using haptic engines already existing in smartwatches, and
visually observing the tissue response with smartphone camera systems.

In this thesis, we develop two methods to infer the material properties of elastodynamic systems
through the partial observation of their surface dynamics with monocular video. The first method,
Visual Vibration Tomography (VVT, chapter 5), assumes the object in question has a known
geometry, and extracts partial information about the modes of vibration from the video, then
uses a carefully crafted optimization formulation to infer the inhomogeneous distribution of the
relative densities and elastic moduli throughout the full three-dimensional volume of the object.
Simulated experiments are presented on a different geometries, exploring the limits and nuances of
the method in a controlled environment. Real-world experiments on two-dimensional membrane
systems with hidden acrylic defects and three-dimensional Jell-O cubes with hidden internal clay
features demonstrate the real-world feasibility of the method. The second method, Visual Surface
Wave Tomography (VSWT, chapter 6), assumes the object in question is a layered material system,
and extracts partial information about the surface waves supported by the object. After processing
this information into a partial observation of a dispersion relation, VSWT then uses optimization to
infer the elastic moduli and layer thicknesses of the system. Simulated experiments are presented
on several different layered systems, exploring the limits and nuances of the method in a controlled
environment. Real-world experiments on a three-dimensional Jell-O and acrylic layered system are
presented to demonstrate the real-world proof of concept.
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1.3 Code repositories
A series of open-source code respositories was developed during the undertaking of this research,
primarily for the computation of dispersion relations via the finite element method, and via the GPR-
dispersion surrogate model. I wrote these repositories to be easily useable by others, extendable
to new applications, and reasonably well optimized for performance. I encourage the use of these
libraries by anyone and everyone who wants to use them, but ask that you credit me appropriately
(ideally via Github’s "cite this repository", and/or via citing this thesis or the appropriate related
work).

Because I intend to continually expand the capabilites and features of these repositories over time, I
won’t delineate their functionalities in too much detail, nor provide documentation for them in this
thesis. To check on their current functionalities and documentation, please visit the repositories at
the following links.

2D-dispersion
Currently a Matlab library for finite element computation of the dispersion relations of two-
dimensional pixelated unit cells (or representative volume elements).
https://github.com/aco8ogren/2D-dispersion

2D-dispersion-GPR
Currently a Matlab library for using the GPR-dispersion surrogate model for the computation of
dispersion relations of two-dimensional pixelated unit cells (or representative volume elements).
Dependent on 2D-dispersion.
https://github.com/aco8ogren/2D-dispersion-GPR

3D-dispersion-matlab
Currently a Matlab library for finite element computation of the dispersion relations of three-
dimensional pixelated unit cells (or representative volume elements).
https://github.com/aco8ogren/3D-dispersion-matlab

3D-dispersion-GPR
Currently a Matlab library for applying the GPR-dispersion surrogate model to the computation of
dispersion relations of three-dimensional pixelated unit cells (or representative volume elements).
Dependend on 3D-dispersion-matlab.
https://github.com/aco8ogren/3D-dispersion-GPR

Though the following two repositories are more specifically tailored to the needs of my research
projects, and therefore may not be as generally useful to a wide audience, code used for the
development and operation of Visual Surface Wave Tomography can be found at the repositories
below.

https://github.com/aco8ogren/2D-dispersion
https://github.com/aco8ogren/2D-dispersion-GPR
https://github.com/aco8ogren/3D-dispersion-matlab
https://github.com/aco8ogren/3D-dispersion-GPR
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tissue-dispersion
Currently a Matlab library for computing the dispersion relations of unit cells (or representative
volume elements) with periodicity in one direction, and with a fixed (homogeneous dirichlet)
boundary condition along the bottom edge of the domain. For me, this was built to efficiently
compute the dispersion relations of the layered systems studied in the development Visual Surface
Wave Tomography, a tool critical to making the fitting problem computationally feasible.
https://github.com/aco8ogren/tissue-dispersion

tissue-characterization
Currently a Matlab library acting as the "main" repository of the Visual Surface Wave Tomography
method. Currenty private, may become public.
https://github.com/aco8ogren/tissue-characterization

1.4 Outline of chapters
This thesis can be thought of in two major topics, though there is signficant overlap in the subject
matter between the two topics. The first topic is surrogate modeling of elastodynamic systems, and
is discussed in chapters 2, 3, and 4. The second topic is inference problems for the mechanical
characterization of elastodynamic systems, and is discussed in chapters 5 and 6.

Note on terminology
In this thesis, the terms metamaterials, architected materials, and structured materials will be used
interchangably.
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Chapter preface
This section provides a review of the current state of research in data-driven methods for the design
of architected materials. Of particular relevance to this thesis, it explores surrogate modeling
paradigms for the efficient modeling of physical systems. In this context, it establishes the chal-
lenges faced by data-driven surrogate models, common shortcomings of the majority of current
surrogate models, and distills a set of "desirable attributes" from this discussion to guide the future
development of surrogate models, highlighting a few existing state-of-the-art surrogate models that
currently exhibit these traits. Overall, this chapter depicts the current state of the field, and develops
context for the motivations behind the engineering of specific attributes and characteristics into the
data-driven surrogate models discussed in chapters 3 and 4, such as generalizability, representation
invariance, ease of set-up and use, transparent and principled modeling, and inverse-design utility.

2.1 Abstract
Architected materials, or metamaterials, are engineered materials that leverage thoughtfully crafted
internal structures to support exceptional and exotic functionalities. They have been studied in
nearly all major physical domains, including electromagnetics, optics, acoustics, and mechanics,
for exotic properties such as wave filtering, cloaking, negative refraction, or negative Poisson’s ratio.
As researchers continue to demand increasingly sophisticated functionalities, the design space of
architected materials continues to expand. This renders conventional design approaches such as
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topology optimization and Edisonian methods ineffective. The growth of data-driven methods,
such as machine learning (ML) and artificial intelligence (AI) offers solutions that learn from
existing data, that accelerates both the evaluation of material properties as well as the selection of
the materials’ internal structures. In chemistry, for example, data driven approaches have been used
to design new molecular structures and compounds, by reducing the need for expensive simulations
and time-consuming laboratory experiments. In this review, we discuss data-driven AI/ML methods
for architected materials in the aspects of three interconnected pillars that constitute the research
framework: (i) Data curation, (ii) Forward modeling, and (iii) Inverse design. For each, current,
mainstream approaches and examples for architected materials are provided. We also discuss
potential future research directions, where we first emphasize the interpretability and explainability
of ML, and call for more involvement of physics in the data-driven approach. Furthermore, we
propose our vision for future metamaterials research that a software suite be developed to achieve
all design components with minimal human intervention. Finally, we point out required steps for
proposed research endeavors.

2.2 Introduction
2.2.1 What are architected materials?
Architected materials (or metamaterials) are materials with a mesoscale structure designed to yield
unique and useful material properties. These mesoscale structures exist at a scale above those
of atoms and molecules, which determine the properties of the constituent materials that make
up the metamaterial, but below the scale of the components where metamaterials find practical
use. Metamaterials are already employed commercially, for example, in bicycle helmets. At the
macroscale, the structure of a bike helmet is designed to conform to a person’s head, and provide
ventilation through centimeter-scale openings. At the molecular level, these helmets primarily
consist of polystyrene molecules, which provide chemical and thermal stability. At the mesoscale,
the structure of bicycle helmets is dominated by micron-scale cavities to achieve high impact
absorption capabilities, and a lightweight design. Metamaterials have been studied and used in
a variety of settings. They first appeared in the context of electromagnetics where they were
used to manipulate electromagnetic waves. For example, metamaterials were able to achieve
negative permeability and permittivity [70, 71], and negative refractive indices [26]. As a result,
metamaterial can cloak objects, making them invisible in some electromagnetic frequency bands
[72]. Metamaterials later began to make an impact in mechanics and thermodynamics, with a focus
on manipulating mechanical and thermal behaviors of materials, from stiffness and density, to wave
propagation, energy absorption, reprogrammability, and heat transfer. For example, metamaterials
can yield non-standard static properties such as negative Poisson ratio [73] or shear-normal coupling
[74]; elastodynamic behaviors such as the redirection of surface waves [75] or nonlinear focusing of
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waves [76]. Some mechanical metamaterials can act as shape-reconfigurable materials that undergo
dramatic changes in shape and stiffness by leveraging particle-packing physics [77], multi-stabilities
[78], or complex buckling behaviors [79]. Additionally, metamaterials have also been employed in
multiphysics problems. For example, thermomechanical metamaterials can be designed to satisfy
structural requirements for stiffness while minimizing the conduction of heat [80]. Because of
their ability to attain useful and unique properties, metamaterials have the potential for high impact
in fields such as telecommunications, medical imaging, vibration isolation, sustainable structures,
reconfigurable/deployable structures, energy absorbing materials, and many more.

2.2.2 Challenges
The advantages of metamaterials arise from the carefully designed mesoscale structures. With
the advance of additive manufacturing methods, which enable the fabrication of materials with
ever higher structural complexity, a large, parameterized design space ensues, due to the infinite
accessible geometries and material choices. For example, for pixelated or voxelated metamateri-
als, the number of design possibilities grows exponentially with the number of pixels or voxels.
Additionally, parametrically defined geometries such as Bézier-curve based designs exist in a truly
infinite design space. Not only are there endless configurations of parametric operations that can
be combined to form a geometry, but each operation typically relies on one or more continuous
parameters that can assume an infinite number of values. These examples exceed the computational
limit of brute force approaches and other conventional design algorithms. Most previous designs
for metamaterials were largely dependent on the designers’ experience and on extensive trial-and-
error efforts, which led to the creation of periodic architectures of repeating units (i.e., unit cells)
with motifs derived from a limited number of known geometries. However, these approaches are
generally slow, inefficient and often fail to select the best material candidates.

2.2.3 Necessity of using Machine Learning
Machine learning (ML), a branch of artificial intelligence (AI), leverages large and diverse datasets to
learn patterns and make rapid property predictions, reducing the need for costly and time-consuming
experiments or simulations. It also solves inverse design problems using deep generative models.
The advancement of deep learning, particularly transformer models used in large language models
(LLMs), has extended beyond natural language processing to complex applications like protein
folding and drug design. In metamaterial design, integrating domain knowledge about mechanical
and physical mechanisms into ML models enhances their reliability, robustness, and explainability.
Despite widespread use in metamaterial research, there is a push towards developing comprehensive
software that integrates data curation, forward modeling, and inverse design into a unified platform
with minimal human intervention, as depicted in Figure 1.
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In this review, we survey the state-of-the-art in data-driven AI/ML methods for metamaterials,
covering three main pillars: data curation, forward modeling, and inverse design. For each pillar,
we discuss current mainstream approaches and provide examples. We emphasize the importance of
interpretability and explainability in machine learning, advocating for greater integration of physics
in data-driven approaches. Furthermore, we propose a vision for future metamaterials research,
suggesting the development of a comprehensive software suite that minimizes human intervention
in the design process. Figure 1 illustrates the relationship and interaction between these pillars,
forming the basis of our vision for future research directions in metamaterials. We also highlight
the grand challenges facing this field and outline necessary steps to achieve the proposed research
goals.

2.3 Data for Machine Learning
Data is the backbone of machine learning techniques. Within the context of architected materials,
the primary goal of ML is often to learn the relationship between the design and effective properties
of architected materials, and secondarily can be used to compactly represent architected material
designs. The choice of how data is represented and generated can have a significant impact on the
quality of an ML model built from that data. In this section, we discuss the common paradigms for
these choices in the context of architected materials, and survey their benefits and detriments.

2.3.1 Data representation
In this section, we discuss and evaluate common data representations for architected materials, and
some novel techniques that have been used to unify seemingly disparate data representations.

2.3.1.1 Parametric representations

Parametric representations of metamaterial designs are encoded by a typically low-dimensional
set of parameters. Because they comprehensively describe the design with a small number of
parameters they are more compact than other types of design representations. In exchange for this
compactness, however, parametric representations are often locked in to specific design paradigms.
As a result, these types of representations are limited to represent a relatively narrow slice of design
space, and therefore are not considered to be very extensible.

In some cases, parametric design representations directly encode human-interpretable characteris-
tics of the design, such as geometric or constitutive parameters. For example, a structured material
may be described by the radii and center locations of a series of circular holes that define the
mesoscale structure. While this description is quite compact, it is also quite narrowly scoped, as it
cannot describe mesoscale structures that are not defined by a series of circular holes.
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Alternatively, parametric design representations might contain less direct descriptors of their
mesoscale architecture. For example, one might describe parameters that govern the likelihood of
pre-defined geometric features appearing in a randomly generated structure. Although these types
of representations are also compact, and can technically statistically span a larger design space, they
relinquish a tremendous amount of design control. Further, they still rely on pre-defined mesoscale
features, which ultimately restricts the types of designs they can represent.

Non-linear dimensionality reduction (NLDR) techniques offer a unique and clever trick to combine
compactness with extensibility. Examples of NLDR techniques include isomap, locally linear
embeddings, laplacian eigenmaps, kernel PCA, diffusion maps, autoencoders, and more. These
techniques are specifically engineered to reduce the dimensions of high-dimensional data into a
more compact form while preserving the intrinsic information contained within the data as much
as possible. They work by compressing high-dimensional data into a latent space. In the context of
structured materials, these techniques have been demonstrated to be able to describe metamaterial
designs in a much more compact way, while still being able to represent designs that come from
different parametric design paradigms. This offers an interesting and powerful way to combine
datasets that use completely disparate design descriptors, and build a latent space where the union
of the data can be described by a unified set of latent parameters [81, 82].

2.3.1.2 Discretized representations

Discretized representations of structured material designs offer the opposite balance of compactness
to extensibility, as compared to parametric representations. They rely on a spatial discretization
of the structured material, and are typically encoded by relatively large arrays that not only define
the discretization, but also define the relevant constitutive parameters in each region of the dis-
cretization. Because of this, discretized representations tend not to be very compact. In exchange,
they are often very extensible, being able to represent (at the very least in close approximation) an
extremely wide variety of material designs. Examples of discretized representations include mesh-
based representations (which pixel- and voxel-based representations, and STL representations are a
subset of), graph-based representations, and point-cloud representations. Despite being extremely
heavy, they offer a very comprehensive and principled description of the design space, and are used
in the most computationally-impressive realizations of metamaterial design optimization [83].

Discretized representations do not preclude the use of NLDR techniques. In fact, when using NLDR
to unify the description of disparate parametric design representations (as discussed in 2.3.1.1),
parametric representations must first be converted to a universal description as an intermediate
step before being sent to the NLDR algorithm. This universal description is always a discretized
representation.
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2.3.2 Data sources
As we know, the most fundamental requirement for using machine learning methods is that we
must have data that represents a pattern. The central focus of metamaterial design is to understand
the relationship between design and function. For this reason, if we are to use machine learning to
assist with this design problem, it is critical to be able to generate large amounts of data that embody
this relationship. In the context of machine learning, data is often described within the paradigm
of inputs and outputs, often denoted as 𝑥 and 𝑦. For each 𝑥, the machine learning tool is expected
to learn the correct expected output 𝑦. In the context of metamaterials, this often takes the form
of inputs 𝑑 representing a metamaterial design, and outputs 𝑝 representing the effective properties,
behaviors, or functionalities that result from that design. Only by thoughtfully constructing datasets
that contain relevant design-functionality patterns, can we effectively train machine learning models
to help us design metamaterials. In this section we will discuss the methods for data generation,
and the challenges associated with these methods.

2.3.2.1 Real data

Real data (or empirical data) is data that is measured directly from the real world, rather than from
simulation. In the context of structured materials, real data would be collected from real-world
experimental methods that measure the properties of known metamaterial designs. Practically,
this kind of data can be quite difficult to obtain, because experimental methods require plenty of
expertise and care to execute. Further, to obtain large amounts of data that represent a sufficient
breadth of the design-functionality relationship, experimental data generation methods require a
tremendous number of metamaterial samples to be fabricated. While this type of data can be costly
to produce, it can also be quite valuable, since it is the only direct way to sample real-world physics.
Especially in situations where the purpose of the machine learning task is to learn a constitutive
relationship or physical law that is hard or otherwise evasive to pin down mathematically, empirical
methods may be the only reasonable choice for data generation. There is no numerical simulation
quite like real life.

2.3.2.2 Synthetic data

Synthetic data is data that is produced by simulation. We call it synthetic because it often does
not accurately represent real-world relationships, lacking the nuances and details that might be
contained in genuine empirical data. However, synthetic data is often significantly less costly to
generate, and can help evaluate whether a certain machine learning method is valuable to pursue
in the long run. Further, in some cases, complementing real data with synthetic data can be a very
cost effective way to balance the need for real data with the need for lots of data. A final benefit of
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synthetic data, in comparison to real data, is that it can often be made noise-free, which is often not
the case for real data. Noise-free data can offer a "best case scenario" limit, representing a ceiling
for how well a machine learning method could possibly perform when trained on ideal data.

2.4 Forward modeling
2.4.1 Why model architected materials?
The ability to physically model architected materials is critical to their design and development
for real-world use. Ultimately, this means understanding the relationship between the way the
architected material is designed (for example, the geometry and constitution of the material) and
the effective material properties that the architected material exhibits.

Typically, to understand this relationship, we define a function that takes a metamaterial design, 𝑑,
as an input, and gives its material properties, 𝑝, as an output. A model that operates in this direction
is called a forward model. Let us denote this mapping as 𝑝 = 𝑓 (𝑑). Forward models are generally
functions, in the mathematical sense, because for each metamaterial design, there is a single set
of properties that describe it. For example, a metamaterial cannot have two different effective
densities. In the vast majority of cases, a forward model involves solving a partial differential
equation (PDE) which mathematically characterizes the physics of interest. These equations could
involve elasticity, plasticity, heat transfer, electromagnetics, or even a combination of these, among
others.

In contrast, inverse models, which map effective properties onto metamaterial designs, are generally
not functions (i.e. the forward model 𝑓 is not an invertible function). For example, there are many
different ways for a metamaterial to achieve the same effective density. However, we can still obtain
reasonable solutions to inverse problems with forward models by wrapping them in optimization
algorithms, which rely on a repeated evaluation of the forward model to converge on a design
solution that achieves specific design goals. Because of the necessity for repeated evaluation,
forward models that are computationally costly have a particularly cumbersome time working in
tandem with optimization algorithms. In this section, we illustrate how machine learning has shown
considerable promise in improving the efficiency of these forward models.

2.4.2 Conventional modeling of architected materials
There are two main focuses of modeling metamaterials:

1. homogenization, which is the characterization of a representative volume element (RVE),
and

2. characterization of macroscale structures composed of metamaterials, which generally uses
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homogenization to more efficiently model macroscopic designs made from metamaterials.

An RVE is a subdomain of a metamaterial that sufficiently represents the material as a whole. For
this representation to be accurate, it is important for the RVE to be large enough to be statistically
representative of the entirety of the mesoscale architecture. Note that in this section, we will use RVE
as a term that applies to both periodic and aperiodic metamaterials; for periodic metamaterials, the
RVE is equivalent to the unit cell. Because metamaterials rely on their mesoscale structure to yield
interesting properties, physical simulations of them require these mesoscales to be well-resolved.
In the case of macrostructures composed of metamaterials, it is often intractable to explicitly model
every degree of freedom, so scientists and engineers typically turn to homogenization approaches.

Homogenization is a tool used to understand how an RVE behaves when it is part of a larger
material assembly. Generally, this involves performing analysis on one RVE to mathematically
derive the parameters of a reduced-order model for the overall behavior of the metamaterial that
the RVE constitutes. As an analogy, this can be compared to using mathematical analysis of an
atom to understand the larger behavior of a crystal lattice that it is a part of. An example of
homogenization is the computation of an effective material stiffness tensor of the RVE so that it can
be modeled with fewer degrees of freedom in the future. During homogenization, scientists often
employ assumptions to reduce the domain of analysis to a single RVE (for example, the assumption
of periodicity). These clever mathematical shortcuts allow us to avoid modeling the entirety of a
metamaterial lattice (saving greatly on computational cost), while still gaining insight about how any
given unit cell in that lattice will behave. Homogenization can be straightforward and inexpensive
or complicated and costly depending on the nature of the problem at hand. Importantly, to use
homogenization it must be possible to define an RVE of appropriate scale, and a composition that
accurately represents the macroscopic material domain. While this is always possible for periodic
metamaterials (where an easy choice for the RVE is the unit cell), defining an appropriate RVE can
be trickier for aperiodic metamaterials.

Once the RVE has been characterized, scientists and engineers often turn to a homogenized frame-
work for the engineering of the macrostructure. In this framework, each RVE of the macroscale
structure is treated as a homogeneous domain, and is represented by the reduced-order model
found by the homogenization process. Doing this allows us to massively reduce the number of
degrees-of-freedom needed to model macroscale domains composed of architected materials.

2.4.3 Challenges with traditional modeling of architected materials
Often, the reason for modeling a metamaterial is to solve an inverse design problem using optimiza-
tion, repeatedly evaluating and changing a material design until the material exhibits the desired
properties. However, even with impressively efficient theoretical and numerical methods, cutting-
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edge computational techniques (including parallelization and hardware acceleration), and powerful
approaches developed in the field of design optimization, computational limitations still prove to
be a constraint in the modeling and design of metamaterials. For example, one of the most impres-
sive undertakings of design optimization for phononic bandgaps implements a specially-tailored
physics-based homogenization solver on a highly parallelized, GPU-accelerated, distributed com-
puting framework [83]. Despite the formidable setup, the authors needed to limit the resolution
of their studies (in some cases even enforcing design symmetries), and the complexity of their
objective function (maximizing the width of a single bandgap) to make the study possible. Because
the computational cost of the forward model is often a significant limiting factor, the use of ML to
accelerate the forward modeling process holds great potential to expand the scope of current and
future metamaterial design efforts.

2.4.4 ML surrogate models
To accelerate the forward modeling of metamaterials, ML can be used to build surrogate models.
A surrogate model approximates a traditional forward model (which is usually entirely rooted in
physics) with the goal of shedding an undesirable quality of the traditional forward model, such as
high computational cost. In the context of metamaterials, we are typically interested in constructing
a surrogate model, 𝑓 , which can approximate the mapping 𝑝 = 𝑓 (𝑑) while incurring only a fraction
of the computational cost required by the traditional forward model 𝑓 .

Many ML-based surrogate models are data-driven, combining data, priors, and a fitting routine to
form a hypothesis about the function they are trying to emulate. Thoughtfully choosing each of
these components is important: the data must sufficiently represent the input-output relationship of
the forward model, the priors must reflect reasonable assumptions, and the fitting routine must be
able to navigate the model to an accurate and generalizable hypothesis.

2.4.4.1 Desirable attributes for surrogate models

All surrogate models are designed with fundamental goals in mind that are central to the justification
of the surrogate model. For example, a surrogate model must be accurate enough for the problem
at hand, and must be able to make evaluations more quickly than the traditional forward model it
is replacing. Further, a surrogate model should never require so much data to train that the cost of
producing data outweighs the benefit of using the model. Beyond these basic requirements, some
surrogate models go above-and-beyond, and are designed to exhibit additional desirable attributes.
These attributes are not necessary for all use cases, but can greatly add to the value provided by the
surrogate model, as listed below.

1. Generalizability is the model’s capability to apply learned knowledge to unseen data. Al-
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though all surrogate models are expected to make accurate predictions for data in their training
set, and even for unseen in-distribution data, well-designed surrogate models can make ac-
curate predictions even for out-of-distribution data, i.e. data that was not well represented in
the training set.

2. Representation invariance is the ability for a surrogate model to operate in a consistent
way with data of various formats, accepting inputs in different representations and making
predictions at arbitrary resolutions, rather than being locked in to specific representations
or resolutions. This is highly useful for learning from data of various representations, and
enables the model to be flexibly used across a wider variety of scenarios.

3. Ease of set-up and use measures the cost of the overhead required to train and deploy the
model. Models that are quick to train and require less data to learn effectively can be more
easily repurposed to new design tasks.

4. Transparent and principled modeling involves the use of sensible, understandable logic
and/or adherence to physical principles within the model. Models that are designed with
interpretability or physical-laws in mind lend themselves well to scenarios where the reasoning
behind predictions is important, and can offer a higher level of assurance to the user of the
model.

5. Inverse-design utility is the model’s effectiveness in contributing to the design process. For
example, surrogate models that can efficiently supply the gradient of their output with respect
to their input, or provide uncertainty metrics on their predictions can be much more conducive
to efficient explorations of the design space when paired with optimization algorithms.

2.4.4.2 Basic surrogate models

In this section, we describe the most common trends in the construction of surrogate models that
we see in the literature. They are not so fancy, but they get the job done in simple situations, and are
often very easy to set-up and use. Unfortunately, they often lack generalizability, representation
invariance, and transparent and principled modeling.

Selecting predictors
Predictors are the features of the metamaterial design that the surrogate model uses as input to
infer the material properties of the design. Selecting appropriate predictors is a key decision when
constructing a surrogate model, and has a strong influence on both the performance of the surrogate
model and its ability to generalize well in unfamiliar situations. The simplest choice of predictors is
a set of variables that parametrically define the geometry. This choice generally allows for a much
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simpler model, but it also severely narrows the scope of the model, limiting it to interact only with
designs that can be described by that same set of variables. A more general choice for predictors,
pixel or voxel material values have the ability to represent a much wider array of designs, but often
require more complex models, and models based on these predictors often do not generalize well
to designs represented by alternative discretization schemes.

Parameter-to-property mapping
In the most basic form, ML can be used to directly learn the mapping between a set of design
parameters and the effective material properties of interest. For example, the predictors d might be
a radius, height, and elastic modulus that parametrically describe the design of a unit cell. Because
the set of predictors is relatively small, this typically results in simple models that need only a
small amount of data, and can be trained relatively quickly. These models are relatively easy to set
up, and are excellent for learning one-off mappings for a specific design situation, but are not able
to generalize to scenarios that depart from the specific predetermined parametric design paradigm
used by the training data.

Discretization-to-property mapping
Using mesh-based design representations, for example pixel- or voxel-based representations, as
predictors offer a much larger degree of generalizability. As previously discussed, pixels and
voxels can represent metamaterial designs much more flexibly than parametric representations.
When used as a predictor, d, the pixel/voxel values are typically passed to the surrogate model as a
multidimensional array in an orientation that spatially represents the design. Because convolutional
neural networks (CNNs) excel at capturing trends based on spatially-structured data, they have been
extensively used as surrogate models for these types of predictors. These models are typically far
more complex than parameter-to-property models, requiring larger training sets and longer training
routines, but can operate over a wider range of scenarios.

For example, Finol et al. [84] demonstrated that a CNN can learn the function that maps two-
dimensional pixelated unit cell designs to their dispersion relations, which describe the propagation
of elastic waves in the metamaterial. The neural network inputs are formulated as arrays that
represent the material properties at each pixel of the unit cell, concatenated with the wavevector,
and the outputs are points on the dispersion relation. With sufficient training data, the model learns
the relationship between the pixelated design of the unit cell, and the corresponding dispersion
relation.

Even within this framework, there are limits to the generalizability of the model. For example, the
relationship that is learned is specific to the discretization scheme established by the training set.
If the model is applied to scenarios that deviate from this scheme (for example, if the arrangement,
size, or shape of the pixels changes), the learned spatial interpretation of pixel values and their
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relationship to material properties is no longer relevant.

2.4.4.3 Advanced surrogate models

Advanced surrogate models go above-and-beyond to achieve two or more of the desirable properties
of surrogate models. While they may require more critical thought and effort to develop, they offer
a range of truly advantageous qualities.

Neural operators and operator learning
Typical neural network architectures are designed to learn mappings between finite dimensional
spaces. While they can be effectively used to build surrogate models for fixed representations of
metamaterials, they are not useful for building representation-invariant models that can consistently
operate on data that uses a different discretization or representation scheme.

In contrast, a new paradigm of representation-invariant machine learning has been recently in-
troduced, termed operator learning. One specific class of model within operator learning is the
neural operator (NO). NOs extend deep learning from mappings between finite-dimensional vector
spaces to mappings between infinite-dimensional vector spaces (function spaces). To provide this
functionality, the authors replace the traditional finite-dimensional linear transformations between
neural network layers (taking the form of matrix multiplications) with infinite-dimensional linear
operators (taking the form of parameterized integral operators or multiplication in the spectral
domain). In practice, even these infinite-dimensional, continuous operations must be implemented
discretely in a computational setting, but when sufficiently discretized the neural operator exhibits
resolution-independent error, and converges to a continuum operator in the limit of discretization
refinement. This principled approach abstracts away the specifics of discretization schemes while
maintaining important neural network properties such as universal approximation, producing a
mathematically rigorous framework for operator learning. The application they consider is to solve
PDEs by mapping the coefficient functions defining the PDE to the solution of the PDE. Because
of the widespread use of PDEs in the modeling of a wide variety of physical phenomena, this is
fundamentally relevant to the forward modeling of metamaterials.

They introduce four subclasses of neural operators, demonstrating that the fundamental mechanism
of neural operators can be applied in a variety of modern neural network architectures: graph
neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural
operators, each of which offer model parameterizations designed to be efficient for modeling in
different types of scenarios. For example, Fourier neural operators are parameterized to be efficient
in scenarios where the problem can be represented and solved more efficiently in the spectral
domain. Finally, they demonstrate the application of neural operators to solving well-known PDEs
such as Burgers, Darcy subsurface flow, and Navier-Stokes. In the field of metamaterials, other
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researchers have extended the use of neural operators to build surrogate models for composite
material systems [85], and even paired the neural operator model with optimization algorithms to
inversely design photonic metamaterials [86].

Physics-based surrogate models
While many surrogate models learn mappings purely from data, some surrogate models have been
designed to work together with traditional physics-based models, combining the benefits of learning
from data with the grounding of principled, physics-based computations. Because these types of
models use physics-based computations, they typically do not offer as steep of a speed-up factor as
physics-agnostic models, but tend to exhibit a higher level of interpretability, and can often learn
more effectively from smaller amounts of data than their black-box counterparts.

A physics-based surrogate model built on a Gaussian Process Regression (GPR) framework was
recently introduced to accelerate the computation of dispersion relations [87], which describe wave
propagation in materials. The authors combine a novel data-driven covariance function (the core
element of most Gaussian Process-based models) with sparse measurements of the true underlying
solution (supplied by a small number of physics-based computations) to infer the remainder of
the solution. Because the model leverages physical computations, the time required for evaluation
is larger than that required by most physics-agnostic models. In exchange, the model enjoys an
elevated level of interpretability and physical basis, and a lower requirement for training data. The
authors demonstrate the use of this model for the accelerated computation of dispersion relations
for 2D unit cells.

The GPR-dispersion model never directly observes design variables 𝑑, and is only informed by them
through the sparse physics-based simulations. Not only does this construction allow for the physics-
based model to be modularly swapped for faster or more accurate physics-based methods that may
be introduced in the future, but it also allows for representation invariance, since any metamaterial
design can be modeled by some choice of a physics-based method. Further, because the model
relies on a Gaussian process, it estimates predictive distributions rather than being limited to point
estimations, and can therefore offer uncertainty metrics, indicating where and to what degree it
is confident (or unconfident) in its predictions. In addition to representation invariance, physical-
basis, and the provision of uncertainty metrics, the authors establish a mathematical framework for
the GPR-dispersion model to provide gradients for compatibility with gradient-based optimization
methods, offering inverse-design utility.

2.4.4.4 Challenges with convergence

Traditional physics-based models (such as FEA or other numerical methods) are generally expected
to converge to an exact solution with mesh refinement. In contrast, most ML surrogate models
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exhibit a fixed (or at least limited), imperfect accuracy based on the size, resolution, and quality
of the training data, the priors used to construct the model (such as network architecture, or other
assumptions about the parameterization of the mapping), and the fitting methods used to train the
model. These factors often cannot be changed after the model has been trained without incurring
costs such as the computation of fresh, higher-quality training data and model fitting, both of which
can be expensive processes. Because of these complications, ML surrogate models often do not
offer promises of convergence to an exact solution in the same way that traditional physics-based
models do. Some models such as the GPR-dispersion model and the neural operator model offer a
tunable trade-off between the accuracy of the model and the cost of model evaluation, but even these
models do not exhibit convergence to an exact analytical solution when implemented with practical
computing limitations on the training data and model parameterizations. Fortunately, most design
problems do not require exact solutions, and can tolerate some amount of approximation. For this
reason, surrogate models can often still be reasonably used for metamaterial design despite their
inability to exactly converge.

2.5 Inverse design and optimization
One major motivation for building surrogate forward models is to solve inverse design problems
more efficiently. In the spirit of this, surrogate models are often designed to work in tandem with
traditional optimization methods, providing important design information such as design gradients
or prediction uncertainties (examples of inverse-design utility). Commonly, topology optimization
methods rely on gradient-based approaches, where design variables are updated according to a
gradient computation based on minimizing or maximizing a differentiable objective function. In
some cases, especially when gradients may not be available, black box optimization methods
including population-based methods like the genetic algorithm and statistically-based methods like
Bayesian optimization have also been used. Statistics-based methods can often benefit from the
provision of prediction uncertainties by surrogate models.

Alternatively, machine learning can be used for design in a more direct way. As previously
discussed, while the forward mapping from design to property (𝑝 = 𝑓 (𝑑)) is often a function, 𝑓 is
often not invertible, meaning that there does not exist a 𝑔 = 𝑓 −1 such that 𝑑 = 𝑔(𝑝). This is for
a few reasons. First, there is no guarantee that the requested material properties 𝑝 are achievable
by a design 𝑑. They simply might not be physically possible. Second, assuming they are possible,
there may be many designs 𝑑 that would yield properties 𝑝. Traditional optimization methods can
handle this relatively easily by computing multiple solutions in parallel with different randomized
initializations. However, traditional, function-emulating machine learning models cannot. Because
of this, it is usually a better idea to use generative machine learning method, which learns statistic
relationships rather than emulating a function. That is, a generative machine learning model,
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rather than (unsuccessfully) trying to learn 𝑑 = 𝑔(𝑝), will (more successfully) try to learn the
probability of a design given some requested properties, P(𝑑 |𝑝). Mathematically, this allows for
both the multiplicity of solutions, and the possibility that the requested properties 𝑝, if not physically
realizable, do not result in any likely designs 𝑑. In this section, we will cover a few of the generative
models most commonly used for inverse design of architected materials.

2.5.1 Deep generative models
Generally speaking, deep generative models (DGMs) compress the high-dimensional design input
into a lower-dimensional latent space to represent and to eventually generate new material designs.
Often using deep neural networks, DGMs model a joint probability distribution, aiming to learn a
correlation between the training data and their labels. Once the generative networks are trained, the
latent variable is fed into the network to which new data is generated as output. Among all DGMs,
we highlight generative adversarial networks (GANs) and variational autoencoders (VAEs) along
with their usage in metamaterial inverse design.

2.5.1.1 Generative Adversarial Networks

Consisting of two consisting networks, a generator and a discriminator, a GAN is trained when
these two networks reach a Nash equilibrium: the generator learns how to generate new data
that mimics training data and fools the discriminator, while the discriminator learns how to better
differentiate the generated data from the training data, as illustrated in the first row of Fig. 4.
Various GAN techniques have been used to inversely design metamaterials. An et al. presented a
design approach for free-form all-dielectric metasurface devices combining a conditional generative
adversarial network (CGAN) and a Wasserstein Generative Adversarial Network (WGAN) [88].
CGAN, a variant of GAN, can generate designs conditioned on class labels. As another variant of
GANs, WGAN introduces the earth-mover distance to quantify dissimilarity, which measures the
minimum amount of work to change one distribution into the other. The CGAN trains a generator
that maps design conditions and a Gaussian noise vector to generate a target (fake) design, and
a discriminator that calculates the earth-mover distance between the real and generated samples.
The generator and discriminator are trained to minimize and maximize the earth-mover distance,
respectively. Amplitude and phase profiles of EM waves were used as the design conditions, and
the GAN was trained with EM responses from numerical simulations. Using this method, the
authors demonstrated several multifunctional metasurfaces including a bifocal lens, a polarization-
multiplexed beam deflector, and two multifunctional metalenses.

Shen and Buehler proposed a StyleGAN framework to design bio-inspired hierarchical metama-
terials [89]. StyleGAN is a generative image modeling network that can control scale-specific
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features for designing hierarchical structures. This variant GAN model uniquely operates with the
typical latent space of GAN and an intermediate latent space calculated from the typical latent
space via a learning mapping network. Intermediate latent-space vectors are fed into the generator
as input. GA was incorporated with a convolutional neural network (CNN) surrogate model that
predicts effective material properties of the generated structure such as effective elastic modulus.
The authors also showed that retraining the StyleGAN on the original dataset plus an additional
dataset can broaden the design space. They demonstrated several material designs inspired by leaf
microstructures via training their StyleGAN on a dataset of leaf micrographs. Jiang et al. developed
a deep learning approach to bridge structural topology and the properties of elastic metamaterials,
where the CNN and CGAN were employed for the forward and inverse problems [90]. Specifically,
the authors focused on the prediction of dispersion relation for a given structural configuration
and the proactive design of near-optimal structures based on the target dispersion relations. They
showed that the developed framework is more likely to generate a feasible structure if the modes
of the bands and their interrelationships are not substantially altered. They demonstrated material
designs for bandgap engineering by re-customizing the existing dispersion relations based on band
compression, stretching, and translation, as targets for the inverse design. The main principle of
GANs, competition of the generator and discriminator, may lead to slow training. In addition,
GANs may be unstable when the generator is only able to produce a small number of outputs.

2.5.1.2 Variational AutoEncoders

A VAE consists of an encoder that compresses input data (such as the metamaterial structure)
into a lower-dimensional latent space, and a decoder that reconstructs a sampled variable from a
distribution in the latent space to generate new data, as illustrated in the bottom row of Fig. 4. As
metamaterial design examples, Wang et al. used a VAE to organize complex microstructures into
a continuous and highly structured latent space [81]. They combined the VAE with a regressor
for mechanical properties of interest, both trained on a metamaterial database. The generated
metamaterials were integrated into the design of aperiodic and functionally graded multiscale
metamaterials. Additionally, graph-based combinatorial optimization was employed to select the
best microstructure and ensure compatibility between adjacent unit cells.

Wang et al. presented a deep learning framework for unsupervised generative design and opti-
mization of cellular metamaterials for bandgap width and stiffness [91]. The authors used the
Gaussian mixture beta VAE (GM-VAE) to extract latent features as design variables, which en-
ables unsupervised clustering through DGMs. Gaussian Process (GP) regression models were also
trained to predict the relationship between latent features and properties for property-driven design
optimization. They adopted GA, with the GP model, to find the optimal latent variables. The
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generated designs were validated by simulations and replaced the low-performance designs in the
training dataset, and the GM-VAE model was subsequently re-trained for the next iteration. They
showed that their proposed designs outperformed ones obtained by topology optimization, in both
stiffness and bandgap width.

Kudyshev et al. developed an optimization framework based on an extended adversarial autoencoder
[92]. The authors used the conditional adversarial autoencoder (c-AAE) network where the encoder
and decoder networks learn to compress and decompress input data while a discriminator network
is additionally incorporated and trained to distinguish between samples from the compressed
design space distribution and a predefined model. The design approach was applied to optimize
thermal emitters for thermophotovoltaics utilizing GaSb photovoltaic cells. To rapidly estimate
the performance of generated designs from the trained generator network, the c-AAE network is
coupled to a conditional Visual Geometry Groupnet (c-VGGnet) that conducts the performance
estimation based on the input binary image of antennas. Their optimized design exhibited 96% in-
band emissivity and substantially suppressed the out-of-band emission, with lower computational
cost compared to the previously demonstrated AAE-based local optimization frameworks. A major
known drawback of VAEs is their tendency to produce blurry generative outputs even when they are
trained using datasets with sharp boundaries, which arises from the formulation of loss functions.
This may be unrealistic in material design problems.

2.6 Challenges and future directions
2.6.1 Interpretability and explainability of ML solutions
Often seen as a highly overparameterized black box, deep neural networks are notoriously difficult
to interpret, making it challenging to learn design principles from design samples screened by
a forward surrogate modeling and inverse designs generated by a DGM. Alternatively, while
researchers have also resorted to intrinsically interpretable decision tree models in inverse design
tasks [93], they are usually less powerful than deep learning models. However, despite the power of
deep learning models, they have a generally acknowledged trade-off relation between accuracy and
interpretability. For this, researchers have aimed at improving the interpretability and explainability
of deep models for metamaterials by pursuing better mechanistic understanding and discovering
interpretable key patterns within the metamaterial unit-cells related to properties of interest. Chen
et al. proposed two concepts in the design of pixelized metamaterials: (1) shape frequency features,
the occurrence frequency of certain shapes in the unit-cell; (2) unit-cell templates, arrangements of
constituent materials in specific regions of the unit-cell [94]. Lee et al. utilized gradient-weighted
activation maps to interpret the predicted sound absorption characteristics of metamaterials [95].
Such approaches fall in explainable AI (XAI) territory, which also include methods like SHAP
(SHapley Additive exPlanations) [96], DeepLIFT (Deep Learning Important FeaTures) [97], and
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LIME (Local Interpretable Model-Agnostic Explanations) [98]. XAI may help scientists and
engineers unwrap the deep learning black-box and ultimately gain insights into what makes new
metamaterial designs so effective.

2.6.2 Generalizability
Currently, much of the available data pertaining to the design of metamaterials is context-specific.
For example, many datasets contain non-generalizable geometry definitions. Although ML models
have been successful at learning relationships in these data independently, they often have trouble
operating on data that is defined by different contexts. To enable truly large-scale, next-generation
ML models (potentially with billions of parameters), it will be critical for scientists to converge
on efficient, yet generalizable languages to describe metamaterial designs and their corresponding
properties.

For this context-independent data to be useful, it is important to construct model architectures
that leverage the data in principled and generalizable ways. Although the majority of existing
models are simple-form models, focusing on learning a context-dependent mapping, some ML
approaches have already started to work toward solutions to these problems, for example exhibiting
representation invariance, incorporating physics-based computations, and describing metamaterial
designs from different design paradigms in a unified latent-space design language. The continued
development of data curation and data-driven methods within this paradigm is a cornerstone for the
next steps in data-driven physical modeling and design.
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Chapter preface
This chapter develops a surrogate model that exhibits transparent and principled modeling and
inverse-design utility, two desirable attributes for surrogate models established in chatper 2, through
the incorporation of geometric interpretability, and the ability to inexpensively directly sample
designs from the surrogate model.

Here, we explore the development of two novel methods shape-frequency features and unit cell
templates, which provide an interpretable framework for the surrogate modeling and elastodynamic
design of periodic architected materials. The surrogate models are focused on predicting whether
a band gap will exist within pre-specified frequency ranges, based on a binary 15-dimensional
pixelated design space of stiff and soft pixels, conforming to the p4mm plane symmetry group.
This approach allows an engineer to design band gaps into periodic material systems without
repeatedly performing the expensive process of dispersion computations.

Each method is presented in detail, and evaluated against a variety of other ML methods. Finally,
the unit cell template method is used to design a mechanical demultiplexer, which takes a multi-
frequency input signal, and leverages band gap physics to split the signal into three frequency
ranges. This design is validated numerically in a finite size setting with frequency domain analysis.

https://doi.org/10.1016/j.eml.2022.101895
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3.1 Abstract
Machine learning models can assist with metamaterials design by approximating computation-
ally expensive simulators or solving inverse design problems. However, past work has usually
relied on black box deep neural networks, whose reasoning processes are opaque and require
enormous datasets that are expensive to obtain. In this work, we develop two novel machine
learning approaches to metamaterials discovery that have neither of these disadvantages. These
approaches, called shape-frequency features and unit-cell templates, can discover 2D metamaterials
with user-specified frequency band gaps. Our approaches provide logical rule-based conditions on
metamaterial unit-cells that allow for interpretable reasoning processes, and generalize well across
design spaces of different resolutions. The templates also provide design flexibility where users can
almost freely design the fine resolution features of a unit-cell without affecting the user’s desired
band gap.

3.2 Introduction

stiff soft or stiff

Shape frequency Unit-cell template

sliding window

softoccurs at 15% locations

a b Example unit-cells 
match with the template

soft stiff soft/stiff

generatelearn

coarse resolution unit-cell
(training data)

finer resolution unit-cells
with target property

c

Figure 3.1: Examples of interpretable key patterns discovered by the proposed method. a. A shape
frequency feature (this one is shaped like a “+”). How frequently this shape appears in the unit-cell
is a useful predictor of a band gap. b. A unit-cell template, which considers specific global patterns
in the unit-cell. Here, regardless of whether we place stiff or soft materials at each green pixel in
the unit-cell, as long as the stiff and soft materials are in the positions defined by the template in
yellow and purple, there will be a band gap within the user’s desired range. c. The patterns are
learned from coarse resolution training data but can be robustly transfered to finer resolution, and
generate fine resolution unit-cells with the target property.
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Metamaterials are traditionally designed through empirical trial-and-error or intuition [99] or
computationally expensive topology optimization [99–103] which often produces designs out of
predetermined geometrical building blocks. Recently, machine learning methods (ML) have gain
popularity for metamaterial design. For example, machine learning models can be trained to predict
material properties from unit cells defined by a finite set of pixels/voxels, and used as faster surrogate
models for computationally expensive simulations [104–108]. Using deep generative models and
neural network inversion techniques, some recent works [109–115] aim to directly solve the inverse
design problem for metamaterials, i.e., generating the designs given the target property. However,
the ML models used in these work are usually gigantic black boxes, whose decision processes are
hard to understand. This is undesirable for scientific discovery purposes because scientists may
also want to gain insights into what geometric features are important for a given target property,
such a particular frequency band gap. In addition, these massive models are data hungry and not
robust to distributional shift – they usually require a huge simulated dataset that covers most of the
design space. These models also tend to perform poorly on datasets they have not seen before, such
as unit-cells in a finer resolution space.

In this paper, instead of relying on existing black box approaches, we propose two novel rule-based
ML approaches for metamaterial design that have major advantages:

• Interpretability: The approach allows us to discover interpretable key patterns within unit-
cells that are related to a physical property of interest (see Figure 3.1a and 3.1b). We
consider two types of patterns: (i) local patterns called shape frequency features, which
calculate the occurrence frequency of certain shapes in the unit-cell; (ii) global patterns,
called unit-cell templates, which look for arrangements of constituent materials in specific
regions of the metamaterials’ unit-cells. The unit-cell templates are optimized with binary
integer programming to find global patterns within unit cells that give the metamaterial a
desired property.

• Leverages Multi-resolution Properties: An important observation underpinning our method-
ology is that a pattern in the coarser resolution design space also exists in finer resolution
design space, with one coarse pixel replaced by many finer pixels. As a result, if a pattern
can robustly characterize the target property at the coarse resolution design space, it will
also be predictive at the finer resolution design space. This leads to computationally-efficient
discovery of many valuable metamaterial designs possessing the desired properties. In partic-
ular, our method allows us to construct a scaffold of patterns that allows interpretable coarse
scale information discovered at low resolutions to be reliably transferred to make accurate
predictions for high resolution designs (see Figure 3.1c).
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• Flexible Metamaterial Designs: Our unit-cell templates (e.g., the one in Figure 3.1b) enables
flexibility in unit-cell designs at any resolution. Simply, unit-cell templates specify regions
where one can almost freely design unit-cell features without changing the target band gap
property (e.g., in Fig 3.1b constituent phases can be arranged at will in the green regions
determined by our algorithm). Such flexibility in design might be useful to satisfy practicality
constraints such as connectivity or other design constraints such as overall stiffness.

Section 3.3 discusses related works on ML approaches for metamaterial designs. In Section 3.4, we
introduce the problem setting. In Section 3.5, we provide the proposed methods and explain how
they deal with the four core objectives of data-driven approaches that are important to materials
scientists: (a) design-to-property prediction; (b) property-to-design sampling; (c) identify key
patterns; (d) transfer to finer resolution. We then evaluate performance of the proposed methods in
Section 3.6 and test them on practical applications. We discuss and conclude in Section 3.7.

3.3 Related Works
Metamaterials are architected materials with engineered geometrical micro- and meso-structures
that can lead to uncommon physical properties. As mentioned in the introduction, many existing
works apply machine learning models for designing metamaterials, i.e., assembling constituent
materials into metamaterials that have specific physical properties.

Much past work focuses on structure-to-property prediction. Because of the expensive compu-
tational cost of numerical simulations, these works train machine learning models (mostly deep
learning models) to approximate the simulation results [104–108]. Using these ML models as a fast
replacement of the simulator, materials satisfying the design objective can be found more efficiently
using rejection sampling, i.e., randomly picking a structure in the design space until it satisfies the
design objective. However, given the immense size of the design space, finding materials through
rejection sampling can still be computationally inefficient. Therefore, some recent works apply
deep generative models and neural network inverse modeling [109–115] to train a more efficient
materials sampler, aiming to solve the inverse design problems for metamaterials, i.e., property-to-
structure sampling. See [116–118] for reviews on using deep learning methods for metamaterial
designs.

Almost all modern existing work on this topic uses black box models like deep neural networks.
Such approaches are unable to answer key questions such as “What patterns in a material’s design
would lead to a specific desirable property?” A link between the specific design and the target
property could be useful for further research; i.e., to determine whether there is an agreement with
domain knowledge, and if not, to potentially discover new knowledge.
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Other work also stresses the importance of interpretability for metamaterial design [93, 112, 119].
These works are very different from ours, and cannot solve the challenge we want to address.
Ma et al. [112] try to make the latent space of deep generative models interpretable. Their
interpretable features describe general geometrical information such as size and shape of holes in
the material but these properties are not associated with the target property. In contrast, our goal
is to find key patterns within unit cells that result in the target property (in our case, a band gap).
Elzouka et al. [119] and Zhu et al. [93] also build rule-based models, namely decision trees, but
the design problems they are solving are different and much simpler than the problem we try to
solve. Specifically, their materials are described by several continuous features, e.g., thickness of
the materials, while we work on pixelated metamaterials whose features are just raw pixels made
of constituent materials. Discovering interpretable patterns directly from raw pixels is a more
challenging and fundamental problem.

Another serious issue with using black box models like deep neural networks is that they require
large labeled training datasets, and the training and testing data should come from the same
distribution so that the model generalizes between training and test. However, constructing these
large datasets is extremely expensive because the labels (i.e., material properties) of metamaterials
are calculated by simulation, which is computationally expensive. In fact, this whole process could
be so expensive that one might find it less expensive to use the simulator to get the results on the
test set directly rather than go through the process of collecting a training set at all. Note that deep
generative models like GANs [120, 121] do not address the simulation bottleneck because training
a GAN requires co-training a generator and a discriminator which requires even more training
data than just training a structure-to-property predictor. Ma et al. [122] propose a self-supervised
learning approach that can utilize randomly generated unlabeled data during training to reduce the
amount of training data. However, this work can only handle structure-to-property prediction but
not the problem of inverse design considered here. Our method instead alleviates this simulation
bottleneck through a multi-resolution approach: our unit-cell template models are trained using a
(relatively small amount of) coarse-resolution data but can extrapolate and generate a (large amount
of) finer-resolution metamaterial designs. This is helpful because the coarse resolution space is
much smaller than the fine-resolution space, and gives us a bird’s eye view of what might happen
when we sample at the finer scale throughout the space of possible metamaterials.

3.4 Problem Setting
Here, we introduce the setting of the metamaterial design problem we are trying to solve, including
the inputs and target of the dataset and their physical meanings.

We aim to design and characterize 2-D pixelated metamaterials made by tiling a 10 × 10 unit-
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Figure 3.2: Input and target of our metamaterial design problem. a. 2-D phononic material
constructed with the raw features. Upper Left: raw 15 dimensional input feature vector. Lower
left: the feature vector defines the triangle in the lower right of the unit-cell. The triangle is copied
using lines of symmetry to define the full unit-cell. Right: the unit-cell is tiled to obtain the full
material. For the Bloch-Floquet boundary conditions, the tiling is infinite in all dimensions; b. The
design objective is the frequency band gaps.

cell. Such materials can be stacked to form 3D structures, and can direct, reflect or scatter waves,
depending on the choice of unit-cell’s material selection and geometry. In our framework, the
unit-cell is a square with side length 𝑎 = 0.1 m. However, transferring to a different length scale
for a different application is easily doable by a simple scaling transformation on the dispersion
relations. For a 10 × 10 unit-cell, the pixel side length is 1 cm; for 20 × 20 unit-cell, the pixel side
length is 0.5 cm. Each unit-cell is made of two constituent materials: one is soft and lightweight,
with elastic modulus 𝐸 = 2 GPa1 and density 𝜌 = 1,000 kg/m3, and the other is stiff and heavy with
𝐸 = 200 GPa, and 𝜌 = 8,000 kg/𝑚3. These two sets of material properties are representative of
a polymer and steel respectively. Our unit-cells are symmetric, with four axes of symmetry (𝑥,𝑦
and ±45◦). Under the symmetry constraints, the coarsest resolution (10 × 10) unit-cell has only 15
irreducible pixels. As a result, the raw input features of a sample in our dataset is a 15-dimensional
binary vector: 0 means the soft constituent material in that location, and 1 means stiff constituent
material. Thus, the full coarse space can be characterized, having 215 total states. Figure 3.2 shows
how to construct a material from the representation involving the 15 raw input features.

The material property we desire in our engineered materials is a band gap within a specific frequency
range, given by the user. A band gap is a range of frequencies within which elastic waves cannot
propagate and are instead reflected.

To identify the existence of a band gap, one can examine the effect of dispersion in metamaterials by
calculating dispersion relations. Dispersion relations are functions that relate the wavenumber of a

1GPa is gigapascals, a unit used to quantify elastic modulus.
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wave to its frequency, and they contain information regarding the frequency dependent propagation
and attenuation of waves. Dispersion relations are found by computing elastic wave propagation
solutions over a dense grid of wavevectors. A band gap exists when there is a range of frequencies
in the dispersion relation for which no wave propagation solutions exist (see Figure 3.2 b).

Dispersion relation computations use Bloch-Floquet periodic boundary conditions, i.e., they assume
that a given unit-cell is tiled infinitely in space. The physics revealed in dispersion analysis (infinite-
tiling) can be leveraged in more realistic finite-tiling scenarios, as we will demonstrate later, which
makes dispersion relation computations very useful for exploration and design of real materials.
Our dispersion relation simulations are implemented using the finite element method.

More details about the simulation can be found in the Supplementary Information A.

We are looking for materials with band gaps in a certain frequency range. To define this task as a
supervised classification problem, we create a binary label based on existence of a band gap in a
given frequency range (e.g. [10, 20] kHz): 1 means one or more band gaps exist, 0 means no band
gap exists. In other words, if a band gap range intersects with the target frequency range, the label
is 1, otherwise the label is 0. One can also flexibly adjust the band gap label for different practical
uses. For example, we can set the label to 1 only when the intersection of the band gap and the
target frequency range is above a minimum threshold. We can also set the label to 1 when the
band gap covers the entire target range, or even create a label for band gap properties in multiple
frequency ranges.

3.5 Method
This section introduces proposed methods. Section 3.5.1 explains the shape-frequency features and
how they can be used to optimize different objectives. Inspired by the efficiency of shape-frequency
features, we then propose unit-cell template sets in Section 3.5.2.

3.5.1 Shape-Frequency Features
We hypothesize that the occurrence of certain local features in the metamaterials might contribute
to the formation of band gaps. For example, certain local patterns/shapes in the materials can lead
to interference and thus cause band gaps. Because the unit-cells are repeated, the location of such
local patterns does not matter, as long as they occur frequently, the band gap can be formed. Such
physics intuition inspires us to propose shape-frequency features which calculates the number of
times a pattern occurs in the unit cell divided by total number of locations.

Denote the unit-cell as a 𝑛 × 𝑛 binary matrix U ∈ {0, 1}𝑛×𝑛, where U𝑖, 𝑗 = 0 means pixel 𝑖, 𝑗 is
assigned to the soft material and U𝑖, 𝑗 = 1 when the pixel is assigned to the stiff material.

A specific shape 𝑠 can be represented as a set of location offsets𝑂𝑠 whose elements are coordinates
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of pixels with respect to a reference pixel. For example, a 2 × 2 square window can be represented
as {(0, 0), (1, 0), (0, 1), (1, 1)}. A 3 × 3 plus symbol as in Figure 3.1 can be represented as
{(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}. For a specific unit-cell, the feature value corresponding to that
shape is computed by sliding the shape over the unit-cell and calculating the fraction of times that
it is entirely contained within the soft material,

𝑓𝑠 =
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
⊮

©­«
∑︁

(𝑜𝑟 ,𝑜𝑐)∈𝑂𝑠

U𝑖+𝑜𝑟 , 𝑗+𝑜𝑐
ª®¬ = 0

 , (3.1)

where ⊮[·] is the indicator function. It equals 1 if and only if all the pixels in the shape are soft
material (i.e.,

∑
𝑜𝑟 ,𝑜𝑐

U𝑖+𝑜𝑟 , 𝑗+𝑜𝑐 = 0).

We would typically consider a collection of shapes, and have one element in a unit-cell’s feature
vector per shape. Thus, for unit-cell 𝑖, the 𝑗 th component of its feature vector corresponds to how
often the full shape 𝑗 appears in its soft material.

In more detail, consider the collection of shapes, shown within Figure 3.3a (left). Note that this
collection of shapes is the full set used in the results section, not just examples of them. Again,
pixels of the stiff material are in yellow, and the soft material is shown in purple. We slide each
of the shapes (sliding windows) over the unit-cell (Figure 3.3a (middle)) and count the fraction of
positions over which the shape is fully contained within pixels of the soft (purple) material. These
fractions together form the new representation for the unit-cell (Figure 3.3a (right)). Note that, to
calculate the fraction, we should also consider the situation where the sliding window is across the
boundary of two unit-cells, since the entire material is made by tiling the unit-cell. Because the
unit-cells are symmetric, the occurrence of the patterns within the unit-cell are also symmetric: if
we rotated the patterns by 90◦, 180◦ or 270◦, the number of detections of the pattern within the
unit-cell would be identical. Note that the shape-frequency features are different from standard
convolution filters used in computer vision; details are discussed in the Supplementary Information
B. Theoretically, our method can be generalized to nonsquare pixels and unit-cells as well, see
Supplementary Information E.

Once we calculate the shape-frequency features of the unit-cells, they can replace the original raw
features and be used as the inputs of the machine learning models to predict the band gap output.
We show later in Section 3.6.1 that using the shape-frequency features as inputs, machine learning
models can predict the existence of band gaps more accurately than using raw features.

Since shape-frequency features are just new representations of the unit-cells and they are written
in vector form, any type of machine learning model can be trained to predict band gap existence,
taking these features as inputs. These machine learning models can not only be complex models
like neural networks or boosted trees, but can also be interpretable models (e.g., sparse decision
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Figure 3.3: a. The process of calculating shape-frequency features. Left: Collection of shapes
(sliding windows) used to create the shape-frequency features. Middle: An example 10 × 10
unit-cell design (tiled 4 times for better visualization). Right: Shape-frequency features of the
unit-cell, which count the fraction of locations in the unit-cell where the shape is present in the soft
material; b. Optimal sparse decision trees built on shape-frequency features for predicting band
gaps in different frequency ranges; red arrows denote the paths to band gap (BG) nodes. Blue text
on the top-right tree breaks down how the decision tree predicts whether the band gap exists using
shape-frequency features.
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trees). Figure 3.3b shows examples of sparse decision trees that predict the existence of band gaps
from shape frequency features. When making predictions, the decision tree starts from its root
node, checking if the shape shown on the node appears frequently in the unit-cell (e.g., if a 1×4
soft bar occurs in the unit-cell more than 22% of all possible locations). If so, it goes to the right
branch; if not it goes to the left branch. The process is continued until a leaf node (in green or
orange) is reached. At that point, it outputs the prediction of whether a band gap exists, based on
the majority vote of the training data within that leaf. The paths denoted by red arrows in the trees
in Figure 3.3b show how often the local patterns need to occur in the unit-cells to predict an open
band gap. More analysis of these discovered patterns can be found in Section 3.6.3.

3.5.1.1 Optimizing Precision and Support

For regular binary classification problems, we hope the machine learning models have high accuracy
for both positive samples (materials with band gaps) and negative samples (materials with no band
gap). This is also the objective if our goal is to perform only structure-to-property prediction.
However, for the property-to-structure task, where our goal is to produce a number of unit-cell
designs with the target band gap property, prediction accuracy is no longer a good metric. Instead,
we hope all unit-cells that are predicted to have a band gap actually have a band gap, i.e., we prefer
that the model has high precision. We also hope the total number of discovered designs, i.e., the
support, meets the requirement of real applications. Thus, for the property-to-structure task, our
objective is a combination of precision and support.

Most machine learning methods cannot directly optimize custom objectives with constraints, such
as precision, constrained by support. However, there are new approaches that permit direct opti-
mization of custom discrete objectives. We use GOSDT (Generalized and Scalable Optimal Sparse
Decision Trees, [123]) for this task, because it directly optimizes decision trees for customized ob-
jectives. Different from traditional decision tree algorithms which use greedy splitting and pruning,
GOSDT directly searches through the space of all possible tree structures, uses analytical bounds
to reduce a huge amount of search space, and directly outputs a tree that optimizes the customized
objective. We programmed it to maximize the following custom objective to optimality:

max
tree

[
𝑇𝑃tree

𝑇𝑃tree + 𝐹𝑃tree + 𝜖
− 𝐾

𝑇𝑃tree + 𝜖

]
(3.2)

= maxtree

[
𝑃−𝐹𝑁tree

𝑃−𝐹𝑁tree+𝐹𝑃tree+𝜖 −
𝐾

𝑃−𝐹𝑁tree+𝜖

]
. (3.3)

Here, 𝐾 is a parameter that balances the precision and the support; 𝜖 is a small constant for
numerical convenience; 𝑇𝑃, 𝐹𝑃, 𝑇𝑁 , 𝐹𝑁 mean true positives, false postives, true negatives and
false negatives. Equation (3.2) shows precision (first term) and inverse support (second term); we
use inverse support so that if support is large, the term diminishes in importance. The simplification
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in Equation (3.3) shows that the objective is monotonically decreasing with respect to 𝐹𝑁tree and
𝐹𝑃tree. Theorem B.1 of [123] shows that as long as the objective is decreasing with respect to
𝐹𝑁tree and 𝐹𝑃tree, we can find an optimal sparse decision tree using GOSDT’s branch and bound
algorithm.

3.5.1.2 Property-to-structure Sampling

Because we optimize the precision using GOSDT, the false positive rate of our model will be low
enough to work with. At this point, we directly do rejection sampling using the decision tree
to produce unit-cell designs with the target band gap. Specifically, to produce valid designs, the
rejection sampling approach randomly picks structures in the design space, evaluates whether each
of them are predicted to have a band gap, and outputs only these relevant designs. After sampling,
each accepted sample is evaluated with the physics-based finite-element model to determine whether
a band gap is present.

3.5.1.3 Transfer to Finer Resolution

Algorithm 3.5.1 Sampling Fine resolution Unit-cell Designs via Shape-frequency Features

Input: simulated coarse resolution (10 × 10) dataset D := {x𝑖, 𝑦𝑖}215

𝑖=1, x𝑖 ∈ {0, 1}15: raw features; 𝑦𝑖: band gap label
Parameters: set of shapes 𝑆; tree sparsity regularization 𝜆 (see [123]); 𝐾 , 𝜖 (see Section 3.5.1.1)
Output: raw features of a fine resolution unit-cell x̃
1: calculate shape-frequency features xSFF

𝑖
= SFF(x𝑖,𝑆) for all x𝑖 in the dataset (coarse resolution), see Section 3.5.1

2: train an optimal sparse decision tree 𝜏 = GOSDT({xSFF
𝑖
, 𝑦𝑖}215

𝑖=1, 𝜆, 𝐾 , 𝜖), see Section 3.5.1.2
3: while(True):
4: randomly sample a binary vector x̃ as raw features in the fine resolution space
5: calculate shape-frequency features x̃SFF = SFF(x̃,𝑆) (fine resolution), see Section 3.5.1.3
6: if 𝜏(x̃SFF) = 1:
7: return x̃

The raw feature space of finer resolution samples is different from that of coarse resolution samples.
Therefore, for the finer resolution data, we need to slightly modify the approach to obtain shape-
frequency features that are compatible with the coarse resolution shape-frequency features. Suppose
we want to transfer the model from 10 × 10 to 20 × 20 space. Then, there are three changes in
calculating the shape-frequency features:

• The window size should be doubled when moving from coarse resolution to fine resolution;

• The stride of the sliding window should be 2 instead of 1;
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• In counting the shape-frequency values, exact agreement between the window and soft
material (purple) should be replaced with near exact agreement. In particular, when less
than 2 yellow pixels (stiff material) are found in the window, we can consider this to be an
agreement.

When using the shape-frequency features with these modifications, the decision tree model learned
on the coarse resolution data can be directly applied to the fine resolution. Thus, we can also do
rejection sampling on the fine resolution with the model.

Algorithm 3.5.1 shows the entire pipeline of using an optimal sparse decision tree built on shape-
frequency features to sample fine resolution designs with the target band gap property. Visual
illustration of the sampling process can be found in Supplementary Information C.

3.5.2 Unit-cell Template Sets
Here, we introduce another interpretable machine learning model, called unit-cell template sets.
Different from sparse trees on shape-frequency features, which focus on local patterns, a unit-cell
template captures a global pattern for the unit-cell that is related to the target properties. The
unit-cell template is a 𝑛× 𝑛matrix T ∈ {0, 1, ∗}𝑛×𝑛, where T𝑖, 𝑗 = 0 means the pixel is soft material,
T𝑖, 𝑗 = 1 means the pixel is stiff material, and T𝑖, 𝑗 = ∗ means the pixel could be either soft or stiff,
i.e., a free pixel.

Definition (match). We say a unit-cell design U matches the unit-cell template if and only if all
pixels with value 0 on the template are also 0 on the design, and all pixels with value 1 on the
unit-cell template are also 1 on the design. That is, ∀(𝑖, 𝑗) such that T𝑖, 𝑗 ≠ ∗, we have U𝑖, 𝑗 = T𝑖, 𝑗 .

A unit-cell template set contains a set of unit-cell templates, and the sample design is predicted as
positive if and only if it matches at least one unit-cell template in the set. Figure 3.4a shows an
example of a unit-cell template set that consists of five different templates. We proposed unit-cell
templates because we found that some pixels in the unit-cells are more important for the formation
of band gaps than others. For the pixels that are not important, even if they are flipped, the band
gaps remain unchanged; we denote these as free pixels in the unit-cell template. The free pixels
identify unimportant regions where changes do not affect the target band gaps, while the other
pixels form the key global pattern that leads to the band gap. We aim to find a unit-cell template
set that captures a diverse set of global patterns related to the target band gap. The relationships
between unit-cell template sets and other machine learning methods are discussed in Supplementary
Information B. Theoretically, our method can be generalized to nonsquare pixels and unit-cells as
well, see Supplementary Information E.

The training objective of the model is to find a small number of unit-cell templates, such that the
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Figure 3.4: a. An Example of a unit-cell template set. A unit-cell is predicted as positive as long as
it matches at least one unit-cell template in the set; b. unit-cell template sets learned for predicting
band gaps in different frequency ranges. Note that because unit-cells are tiled, a large cross through
the center is identical to a square on the border. (E.g., consider the two upper right unit-cells.)
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training precision of the entire model is high enough, and the model covers as many valid designs
as possible, i.e., maximizing the support under a minimum precision constraint. The reasons for
optimizing precision and support were explained in Section 3.5.1.1, and we set a limit for the
total number of selected unit-cell templates to encourage the unit-cell template sets to contain a
diverse set of unit-cell templates. Because the total number of possible templates is extremely
large, the training process is divided into two steps, a pre-selection of candidate unit-cell templates
that filters out useless templates to reduce the problem size (Section 3.5.2.1), and a integer linear
programming (ILP) formulation to optimally select from the candidates obtained in the first step
(Section 3.5.2.2). Figure 3.4b shows the unit-cell template sets learned by the proposed algorithm
for band gap prediction. More analysis of these discovered patterns can be found in Section 3.6.3.

3.5.2.1 Pre-selection of Templates

Here we consider symmetric unit-cell templates, because designs in our dataset are all symmetric.
By removing all symmetry redundancy, the unit-cell template can be represented by its irreducible
pixels, i.e. a 15 dimensional vector t ∈ {0, 1, ∗}15. The total number of possible templates is 315

which is approximately 14.3 million. This is too large for the ILP in the next step. However, among
the 315 possible templates, most of them would never be selected because either their precision
or support is not high enough. For example, a unit-cell template with precision 80% is not likely
to be used if we want the entire model to have precision above 99%, i.e., we hope the unit-cells
are all having the desired band gap properties. Also, if the support of a unit-cell template, i.e.,
the total number of designs that match it, is very small (e.g., < 10), the model may not generalize
well. Therefore, we pre-select the unit-cell templates by setting minimum thresholds of precision
and support, which reduces the search space only to promising unit-cell templates. We select the
unit-cell template as a candidate only when it meets the minimum thresholds.

Observing that the entries are all binary in the unit-cell designs, we implement the precision
calculation via bit operations, which significantly improves the speed of the pre-selection step.
With the bit-operation implementation, the pre-selection steps of all 315 possible templates finish
in 50 seconds. The number of unit-cell templates that remains is typically in the range of 6000 to
12000, which is now suitable for ILP.

3.5.2.2 ILP for Template Selection

After the pre-selection step, we have a set of candidate unit-cell templates. Since the pre-selection
step significantly cuts down the space of templates, we can directly formulate the template selection
as an optimization problem, and solve it to provable optimality. Specifically, we formulate a ILP to
optimally select from the candidates. Suppose we have 𝑛 designs and 𝑚 candidate templates. The
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goal of the ILP is to choose at most 𝑠 unit-cell templates (𝑠 ≪ 𝑚) whose union forms a model, such
that the support is maximized and the precision of the model is at least 𝑝. Denote the true labels of
all designs by a binary vector y ∈ {0, 1}𝑛, and the predicted labels by ŷ ∈ {0, 1}𝑛. M ∈ {0, 1}𝑛×𝑚

denotes a matching matrix, where 𝑀𝑖, 𝑗 indicates whether design 𝑖 matches template 𝑗 (1 for match,
and 0 for not match). Binary vector c ∈ {0, 1}𝑚 denotes the chosen unit-cell templates, where 𝑐 𝑗
indicates whether template 𝑗 is chosen (1 for choose, and 0 for not choose). We solve the following
ILP for template selection.

max
𝑛∑︁
𝑖=1

𝑦̂𝑖 (optimizing support) (3.4)

s.t.
𝑚∑︁
𝑗=1
𝑐 𝑗 ≤ 𝑠 (sparsity constraint) (3.5)

𝑛∑︁
𝑖=1

𝑦𝑖 · 𝑦̂𝑖 ≥
(
𝑛∑︁
𝑖=1

𝑦̂𝑖

)
· 𝑝 (minimum precision) (3.6)

𝑚∑︁
𝑗=1

𝑀𝑖, 𝑗 · 𝑐 𝑗 ≥ 𝑦̂𝑖, 𝑖 = 1, . . . , 𝑛 (define 𝑦̂𝑖) (3.7)

𝑚∑︁
𝑗=1

𝑀𝑖, 𝑗 · 𝑐 𝑗 ≤ 𝑚 · 𝑦̂𝑖, 𝑖 = 1, . . . , 𝑛 (define 𝑦̂𝑖) (3.8)

𝑐 𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑚 (3.9)

𝑦̂𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛. (3.10)

In this ILP, the objective (3.4) means maximizing the total number of designs predicted as positive,
which is the same as support. Constraint (3.5) controls the sparsity, i.e., choose at most 𝑠 unit-cell
templates. Constraint (3.6) guarantees training precision of the model is at least 𝑝. (3.7) and (3.8)
constraints together define 𝑦̂𝑖, where 𝑦̂𝑖 = 1 if and only if design 𝑖 matches at least one of the chosen
unit-cell templates. In particular, (3.7) says that if design 𝑖 does not match any chosen template
𝑗 (i.e., whenever 𝑐 𝑗 is 1, 𝑀𝑖, 𝑗 happens to be 0), then 𝑦̂𝑖 will be set to 0. (3.8) will ensure that
if there is a match for design 𝑖 to any of the chosen templates (which all have 𝑐 𝑗 = 1), then this
design is assigned 𝑦̂𝑖=1. Using a commercial MIP solver, a problem with around 10000 candidate
templates can be solved to optimality (when the current best solution meets the upper bound of the
best possible solution) or near-optimality in about 10 minutes (running single-threaded on one core
of a 2.66GHz Intel E5640 Xeon Processor). If 𝑠 = 5, it can be solved to optimality all the time, and
when 𝑠 = 10, the optimality gap (difference between current best solution and an upper bound of
the best possible solution as the percentage of the upper bound) is always <20% for a run time of 30
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minutes (running under the same environment); it is worthwhile to note that optimal solutions are
often attained quickly, but the solvers can take a while to prove that the solution is optimal. Note
that, if desired, one can set higher minimum precision and support thresholds for the pre-selection
step to make the problem even smaller, so that the ILP can be solved even faster. We choose 𝑠 = 5
for all the experiments in the main paper.

The result of the ILP is our unit-cell template set.

3.5.2.3 Property-to-structure Sampling

After training the structure-to-property model, the resulting unit-cell template set can be directly
used to solve the inverse property-to-structure problem. An easy sampling procedure to do this
is as follows: first, randomly choose a unit-cell template t from the unit-cell template set, where
the probability to choose each template is proportional to its support; second, for all entries in t
that equal *, randomly assign value 0 or 1 to them. These sampled unit-cells are likely to have the
desired band gap.

3.5.2.4 Transfer to Finer Resolution

The unit-cell template set naturally transfers coarse scale information to finer resolutions. In
particular, by subdividing each pixel in the unit-cell template into four sub-pixels, we directly
obtain a unit-cell template defined on a finer-resolution space.

Algorithm 3.5.2 shows the entire pipeline of using unit-cell template set to sample fine resolution
designs with the target band gap property. Visual illustration of the sampling process can be found
in Supplementary Information C.

Algorithm 3.5.2 Sampling Fine Resolution Unit-cell Designs via Unit-cell Template Set

Input: simulated coarse resolution (10 × 10) dataset D := {x𝑖, 𝑦𝑖}215

𝑖=1, x𝑖 ∈ {0, 1}15: raw features; 𝑦𝑖: band gap label
Parameters: pre-selection support 𝜓pre, pre-selection precision 𝑝pre, sparsity constraint 𝑠, minimum precision 𝑝
Output: raw features of a fine resolution unit-cell x̃
1: pre-select candidate template set 𝑆pre

𝑇
= pre-selecting(D, {0, 1, ∗}15, 𝜓pre, 𝑝pre), see Section 3.5.2.1

2: run ILP to find optimal template set 𝑆∗
𝑇

= ILP(D, 𝑆pre
𝑇

, 𝑠, 𝑝), see Section 3.5.2.2
3: randomly pick a template t ∈ 𝑆∗

𝑇

4: expand t to fine resolution space, get t̃
5: randomly set to 0 or 1 for all * elements in t̃, get x̃
6: return x̃
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3.6 Results
The results are organized according to four objectives we want to achieve with the proposed
methods, including (a) design-to-property prediction; (b) property-to design sampling; (c) identify
key patterns; (d) transfer to finer resolution. We evaluate how well the proposed methods can
achieve these objectives, followed by several tests involving practical applications in materials
discovery.

3.6.1 Objective 1: Structure-to-property Prediction
Here, we test how well the proposed methods can perform structure-to-property prediction. We
chose five frequency ranges ([0, 10], [10, 20], [20, 30], [30, 40] and [40, 50] kHz) to predict the
existence of band gaps; these frequency ranges correspond to five different binary classification
problems. Using balanced accuracy (bacc) as the evaluation metric, we compare the predictive
performance of a diverse set of ML models with and without the shape-frequency features. We
specifically consider linear models like support vector machines with linear kernels (SVMs) and
logistic regression (LR); tree-based models like CART, random forest (RF), and boosted trees
(LightGBM [124]), as well as neural networks including the multi-layer perceptron (MLP). We
also compare the proposed method with convolutional neural networks (CNNs), since they have
been widely used in previous works of ML-based metamaterial design. The baccs of each model
trained on raw feature, SFF, and improvements of SFF over raw features, are shown in Table 3.1
(a). We train each model 5 times and average the accuracy.

Our results show that using the shape-frequency features, rather than the original raw features,
improves the accuracy of classifiers for most machine learning methods, especially tree-based
methods such as boosted trees, but with the exception of MLP (SFF decreases its in [0, 10] kHz,
[10, 20] kHz, and [20, 30] kHz).

One might expect CNNs to achieve great success in classifying band gaps for 2-D metamaterials
since the unit-cells share many similarities with images. However, LightGBM [124] built on shape-
frequency features outperforms ResNet18 [125] in all ranges. In some cases, e.g., within frequency
range [40, 50] kHz, simple models like CART outperform CNNs.

More details of the experiment (e.g., hyper-parameter settings) can be found in Supplementary
Information D.1.

3.6.2 Objective 2: Property-to-structure Sampling
Using the methods discussed in Section 3.5.1.2 and Section 3.5.2.3, we are able to solve the inverse
design (property-to-structure sampling) problem.

In practice, materials scientists need valid designs with the target property, but they do not require
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Model Frequency range
[0, 10]kHz [10, 20]kHz [20, 30]kHz [30, 40]kHz [40, 50]kHz

SVM
raw 71.77% 73.88% 50.85% 54.93% 49.84%

SFF (Ours) 75.62% 77.35% 67.96% 59.89% 49.93%
improvement +3.85% +3.47% +17.11% +4.96% 0.09%

LR
raw 78.03% 75.44% 56.31% 76.59% 90.96%

SFF (Ours) 80.53% 79.55% 69.04% 76.9% 91.32%
improvement +2.50% +4.11% +12.73% +0.31% +0.36%

RF
raw 85.81% 80.04% 73.00% 77.66% 87.54%

SFF (Ours) 85.52% 81.98% 74.53% 81.26% 95.35%
improvement -0.29% +1.94% +1.53% +3.60% +7.81%

CART
raw 84.74% 75.68% 63.40% 73.95% 86.82%

SFF (Ours) 83.63% 80.13% 70.72% 79.73% 94.47%
improvement -1.11% +4.45% +7.32% +5.78% +7.65%

MLP
raw 90.72% 86.39% 78.15% 77.47% 65.90%

SFF (Ours) 85.90% 82.55% 76.01% 77.69% 66.4%
improvement -4.82% -3.84% -2.14% +0.22% +0.50%

LightGBM
raw 91.32% 88.27% 81.11% 82.62% 77.76%

SFF (Ours) 96.10% 90.97% 85.57% 90.01% 94.76%
improvement +4.78% +2.70% +4.46% +7.39% +17.00%

CNN raw 93.24% 89.76% 81.65% 79.56% 84.83%

(a) structure-to-property prediction: testing balanced accuracies (baccs) of different methods. We mark the
models with the best bacc in each frequency range in bold.

Frequency range Raw+LightGBM SFF+LightGBM SFF+GOSDT (Ours) Unit-cell Template Sets (Ours)
[0, 10]kHz 80.77%, 2310 88.93%, 2169 95.77%, 89 98.53%, 339
[10, 20]kHz 93.52%, 4013 95.62%, 4063 98.11%, 423 98.68%, 758
[20, 30]kHz 86.94%, 3654 89.56%, 3811 94.15%, 205 94.08%, 203

(b) Property-to-structure sampling: testing precision and support of different methods. Numbers in the
table cells are formatted as “precision, support.” The testing support here is calculated among 6554 testing
samples (20% of the entire dataset).

Frequency range CNN+resizing LightGBM+resizing SFF+GOSDT (Ours) Unit-cell Template Sets (Ours)
20 × 20 20 × 20 20 × 20 20 × 20 40 × 40 80 × 80

[0, 10]kHz 18.0% 25.0% 72.5% 100.0% 100.0% 100.0%
[10, 20]kHz 58.0% 68.5% 73.5% 98.5% 99.0% 100.0%
[20, 30]kHz 39.5% 52.5% 25.0% 91.0% 96.0% 98.0%

(c) Transfer to finer resolution: transfer precision of different methods.

Table 3.1: Summary of key quantitative results. The results are organized with respect to different
objectives of data-driven metamaterials design. (a) Structure-to-property prediction; (b) Property-
to-structure sampling; (c) Transfer to finer resolution.
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the set of all designs with the property. As such, our performance metric is precision, rather
than recall. We also calculate the support, which is the total number of testing samples predicted
as positive, to ensure the models can generate enough potentially-valid designs. Table 3.1 (b)
lists the precision and support values from different methods. The methods we compared include
GOSDT trained on shape-frequency features (denoted SFF) with the objective in Section 3.5.1.1,
the unit-cell template set, and LightGBMs trained on SFF and raw features.

In terms of precision, SFF+GOSDT and unit-cell template sets significantly outperformed
LightGBMs. This is probably owing to the fact that the proposed methods directly optimize
precision. LightGBMs maintain larger support, while the support of SFF+GOSDT and unit-cell
template sets is much lower. But for practical use, it is sufficient that the model finds dozens of
valid designs. The average sampling time of these methods and the results of unit-cell template
sets with different sparsity constraints can be found in Supplementary Information D.2.

3.6.3 Objective 3: Show Key Patterns
One advantage of the proposed methods is model interpretability; we aim to explicitly identify the
key patterns learned from data that are related to the target property. In this way, domain experts
can verify whether the learned rules are aligned with the domain knowledge, or even discover new
knowledge.

In Figure 3.3b and Figure 3.4b, we visualize the GOSDT+SFF and unit-cell template set learned
for band gaps in several frequency ranges ([0, 6], [6, 12], [12, 18], [18, 24], [24, 30] kHz).

In Figure 3.3b, the top splits of each tree trained on shape-frequency features seem to be looking
for bars in the soft material. Taking the top-right tree in 3.3b as an example, the root node checks if
the 1 × 4 soft bar occurs in more than 22% of the places in the unit-cell. The unit-cell frequencies
need to pass the thresholds to get to the “band gap” node. All band gap nodes are on the left branch
of the deepest decision nodes in the trees. For instance, the deepest decision node of the top-right
tree checks if shape 17, two 1 × 4 soft bars 2 pixels away from each other, occurs with more than
5% frequency in the unit-cell. To reach the band gap prediction node, the sample needs to go
to the left branch, where shape 17 should occur with less than 5% frequency. This indicates the
unit-cells should not have too many soft material patterns. In the field of elastic wave propagation,
it is known that the presence of stiff inclusions in a matrix of a softer material may open a band gap
due to scattering or resonant dynamics. The trees we found seem to be looking for patterns that fit
this description: the deepest node encourages the existence of stiff inclusion while the first node
encourages more soft material.

The unit-cell templates (Figure 3.4b) contrast with the shape frequency features in that they
explicitly identify global (rather than local) patterns. In the unit-cell template sets for different
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frequency ranges, we can observe the existence of soft circles (closed curves) and stiff inclusions
inside the circles, which are responsible for the formation of band gaps. As the frequency range
moves higher, the size of the circle decreases. This supports the physical intuition that the smaller
the stiff inclusions, the higher the frequency of the band gap.

3.6.4 Objective 4: Transfer to Finer Resolution
In Sections 3.5.1.3 and 3.5.2.4, we discussed how the proposed methods can transfer coarse
scale information to finer resolution design space. To evaluate how well the model can transfer
information, we trained the models on coarse resolution (10 × 10) unit-cells and tested them on
finer resolution (20 × 20, 40 × 40 and 80 × 80) unit-cells. Table 3.1(c) shows the transfer precision
of GOSDT+SFF and unit-cell template sets for band gaps in different frequency ranges. Other ML
methods are not directly comparable because standard ML models trained on 10×10 data cannot
take in 20×20 data. Therefore, we compared the proposed methods with baselines with slight
modifications: we resized the fine resolution (20×20) unit-cell to the original size (10×10) and
applied two algorithms (CNN or LightGBM) for rejection sampling. As before, if the CNN or
LightGBM model predicts that the resized design has a band gap, we accept that sample, otherwise
we reject it. The resizing was done via bicubic interpolation. Here, we did not compare with deep
generative models such as GANs. Although GANs (which are notoriously hard to train) might
generate materials faster than rejection sampling, their precision can only be lower because GANs’
discriminators are co-trained with the generator, and thus cannot be more accurate than a CNN
directly trained to predict only the target. For each frequency range, we asked the trained models to
sample 200 unit-cell designs in finer resolution space, and ran the FEA simulation to obtain the true
band gap property for evaluating the transfer precision. For the baseline models and GOSDT+SFF,
we show the results for 20 × 20 design space. As unit-cell template sets performs extremely well
on this task, and generates new designs efficiently, we also show its results in 40 × 40 and 80 × 80
design space. Please see Supplementary Information C for visual illustrations of how to sample
fine resolution designs using each model.

The results in Table 3.1(c) indicate that the unit-cell templates, when transferred to all finer
resolutions (20 × 20, 40 × 40 or 80 × 80), have very high precision, with almost no precision
drop compared to 10×10. GOSDT+SFF and other baselines do not generalize as well as unit-cell
templates to the finer resolution design space. GOSDT+SFF performs better than the resizing
baselines in [0, 10] kHz and [10, 20] kHz, but performs worse than baselines in [20, 30] kHz.
Interestingly, the transfer precisions, of both GOSDT+SFF and unit-cell template sets, decrease
as frequency ranges moves higher, although unit-cell template sets have a much slower precision
decrease than GOSDT+SFF. A possible explanation for the decrease of precision is that, in higher
frequency ranges, the band gaps are physically more related to finer scale features that are not
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included in the coarse resolution dataset. Since the models are trained on coarse resolution data,
they can only transfer physics that occurs in coarse patterns to finer resolution design space, but
cannot discover finer scale physics without supervision. But as shown by the transfer precision
results, we should emphasize that our unit-cell template sets method was capable of extracting
critical coarse resolution features such that this decrease of precision at finer resolution due to
wave physics is minimized (the worst transfer precision is still above 90%). One further potential
improvement to this is to add new samples at each finer resolution design space when transferring
between extreme scales.

In Supplementary Information D.3, we show additional results on sampling with correlation between
green pixels for unit-cell template sets, which demonstrates the surprising flexibility of unit-cell
template sets in terms of designing at finer-resolution design space.

3.6.5 Practicality Test
In our method and simulations so far, we assumed the unit-cell is tiled infinitely for computational
convenience. However, a unit-cell can only be tiled finitely in practice and the results can differ for
infinite and finitely tiled domains due to boundary conditions. To test whether the designs found by
our method work in practice, we simulated the dispersion relations of finitely-tiled materials made
by unit-cell designs discovered by our method. See Supplementary Information D.4 for results of
the finite tiling COMSOL simulation. The results show that our method is robust under finite tiling.

In addition to the finite tiling test, we also tested the practicality of the proposed method on its
ability to create a wave demultiplexer (Figure 3.5), in which waves with different frequencies travel
through the materials in different directions. That is, a signal enters the demultiplexer, and there are
three different possible outputs; which one will be non-zero depends on the frequency of the input
signal. Specifically, we will build the demultiplexer to route signals from three different frequency
ranges in different directions.

We need 5 different materials to build the demultiplexer: one material with band gaps covering
all three ranges, one material allowing band pass in all ranges, and three materials allowing band
pass in one range while blocking the other two ranges. We use homogeneous stiff unit-cells for
the material allowing band pass in all ranges. For other materials, we train a unit-cell template
set to find 20 × 20 unit-cell designs with these properties, and assemble the 5 unit-cells to build
the demultiplexer (top row of Figure 3.5). The bottom row of Figure 3.5 shows the how the
demultiplexer successfully guides waves with different frequencies (11.45, 13.97 and 15.55 [kHz])
towards different directions, which was the goal of the experiment.
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demultiplexer design block all pass 1, block 2&3

pass 2, block 1&3 pass 3, block 1&2

experiment 1 
frequency = 11.45 [kHz]

experiment 2 
frequency = 13.97 [kHz]

experiment 3 
frequency = 15.55 [kHz]

Figure 3.5: Mechanical wave demultiplexer and the displacement fields for input signals frequen-
cies. Each part of the demultiplexer was built using our discovered unit-cells that have desired
properties. Top: The demultiplexer and the unit-cell designs used to make the demultiplexer.
Bottom: Magnitude of displacement fields when signals of different frequencies (11.45, 13.97 and
15.55 [kHz]) are fed into the left side of the demultiplexer. The displacement values are clipped if
they exceed the display range. The signals with different frequencies go through different channels
in the demultiplexer: 11.45 [kHz] goes upward, 13.97 [kHz] goes right, and 15.55 [kHz] goes
downward, as desired. Note that, although the passing signal of experiment 2 is not as strong as
signals in the other experiments, it still pass the channel on the right without fading inside the
channel.
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3.7 Conclusion and Discussion
Our work shows the power of interpretable machine learning tools in material design. The approach
has achieved both mechanistic understanding, e.g., physically interpretable rules of patterns that
lead to band gaps, and designing new materials with desired functionality. The approach has
been demonstrated to be predictive for both infinite domains and realistic finite domains, and
it has been able to design the material geometry for a wave demultiplexer. Additionally, our
multi-resolution framework, which robustly carries coarse-scale knowledge to finer resolutions, is
potentially applicable to a wide range of materials science problems.

Since our method learns robust coarse-scale features that can generalize to finer-resolution design
space, it might also be useful in future studies for determining how to collect finer-resolution
training data for rapidly capturing fine-scale physics. Using these new data, we might be able to
fine tune the model so that it can more efficiently capture physics at multiple scales.

Data Availability
All electronic structure data and the simulation code developed in this paper are available upon
request.

Code Availability
The code for replicating our results will be available upon acceptance.

Acknowledgements
The authors are grateful to M. Bastawrous, A. Lin, K. Liu, C. Zhong, O. Bilal, W. Chen, C.
Tomasi, and S. Mukherjee for the feedback and assistance they provided during the development
and preparation of this research. The authors acknowledge funding from the National Science
Foundation under grant OAC-1835782, Department of Energy under grant DE-SC0021358 and
DE-SC0023194, and National Research Traineeship Program under NSF grant DGE-2022040 and
CCF-1934964.

Competing Interests
The authors declare no competing interests.



50

C h a p t e r 4

GAUSSIAN PROCESS REGRESSION AS A SURROGATE MODEL FOR THE
COMPUTATION OF DISPERSION RELATIONS

[1] Alexander C. Ogren et al. “Gaussian Process Regression as a Surrogate Model for the
Computation of Dispersion Relations”. In: Computer Methods in Applied Mechanics and
Engineering 420 (Feb. 15, 2024), p. 116661. issn: 0045-7825. doi: 10.1016/j.cma.
2023.116661. url: https://doi.org/10.1016/j.cma.2023.116661 (visited on
04/14/2024).

Author contributions
A.C.O. conceptualized the project, wrote and revised of the manuscript (with greatly appreciated
help from B.T.F, and suggestions from C.D. and K.L.B.), wrote the simulation code, developed
and tested the surrogate model. B.T.F. performed the comparison against Convolutional Neural
Networks.

Chapter preface
This chapter develops a surrogate model, GPR-dispersion, for the efficient computation of full
dispersion relations. Dispersion relations, the key mathematical descriptors for wave propagation
through media, are usually computed only partially, and are rarely computed in full due to their
computational cost. This limitation confines the elastodynamic design of engineered materials to
simple objectives, for example, one or two bandgaps or wave speeds. This work enables the efficient
computation of full dispersion relations through a data-driven surrogate model based on Gaussian
process regression, opening doors for the design of wave propagation in engineered materials in a
truly multi-functional context.

Fundamentally, GPR-dispersion accelerates the computation of dispersion relations by reducing the
number of wavevectors for which modal eigenvalue problems need to be solved. Importantly, this
number is not reduced to zero, and GPR-dispersion still directly samples the physics of the problem
through a purely physics-based model. While most Gaussian process models use standard isotropic
covariance functions, GPR-dispersion innovates by employing an elegant and simple data-driven
covariance function learned through direct covariance measurements. Of the desired attributes for
surrogate models, as put forth in chapter 2, GPR-dispersion exhibits transparent and principled
modeling through the direct use of physics-based dispersion computations, representation invari-
ance through the thoughtful selection of representation-agnostic predictors, inverse-design utility
through the provision of design gradients and uncertainty metrics, ease of set-up and use through

https://doi.org/10.1016/j.cma.2023.116661
https://doi.org/10.1016/j.cma.2023.116661
https://doi.org/10.1016/j.cma.2023.116661
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data efficiency and an extremely inexpensive and deterministic training process, and demonstrates
generalizability by performing well on out-of-distribution data.

Although GPR-dispersion was initially designed with the application of engineered materials in
mind, it also may have utility in inference problems to accelerate fitting routines, as discussed in
chapter 6.
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Figure 4.1: A graphical depiction of our surrogate model pipeline. The model first observes a
dataset to construct the covariance function of the Gaussian process model. Using this covariance
function, the model builds its acquisition function, determining the locations of the regression
points it will sample. Finally, the model observes the value of the dispersion relation at the selected
regression points, and infers the dispersion solution everywhere in the irreducible Brillouin zone.
The surrogate model makes this inference two orders of magnitude faster than the exact calculation,
and one order of magnitude faster than an equivalent-error linear interpolation model.

4.1 Abstract
The ability to design materials for wave propagation behaviors has high potential for impact in
medical imaging, telecommunications, and signal processing. The dispersion relation is the key
mathematical object that describes linear elastic wave propagation behavior in a material. To
date, the design of wave propagation behavior in materials has been limited to one or two design
objectives, for example, designing for one or two bandgaps or wavespeeds. This is a result of the
complicated relationship between a material and its dispersion relation, and the hefty computational
cost of traditional dispersion computations. Decreasing the amount of time required to perform
dispersion computations will streamline the design process of wave devices, allowing for more
thorough design optimization workflows, more highly resolved design features, and multi-functional
materials.

In this work, we demonstrate a specialized Gaussian Process Regressor as a surrogate model for the
computation of dispersion relations to alleviate the immense computational cost of the traditional
model. By measuring covariance information from relatively small training sets (10s to 1000s
of dispersion relations), our surrogate model efficiently infers the full dispersion relation after
solving for the dispersion relation at only a sparse set of wavevector points. Further, we provide a
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mathematical framework to use this model for material design through gradient-based optimization
methods.

4.2 Introduction
The structure and constitution of a material dictate the properties of the waves it can support, which
are thoroughly described by the material’s dispersion relation. A material’s dispersion relation
is the relationship between the frequencies and wavevectors of all linear elastic waves that can
travel in the material. Dispersion relations contain information about bandgaps (frequencies at
which waves experience spatial attenuation), group velocity (the velocity with which energy can be
transported by waves in the material), and phase velocity (the velocity at which a wave peak will
move in the material). Bandgap information can be leveraged to engineer filtering and reflection,
and group velocity and phase velocity information can be leveraged to achieve refraction. These
fundamental behaviors can in turn be utilized to design complex wave propagation devices such
as wave guides[14, 126, 127], wave lenses [15, 128, 129], wave multiplexers [14, 126, 130], and
more.

Current methods to calculate dispersion relations are based on numerically computing the eigen-
values of the elastic wave equation [131]. Computational limitations are especially restrictive when
these expensive forward models are used to solve the inverse problem of design [16, 132–135]. As a
result, scientists and engineers are often forced to simplify design workflows by limiting the design
space to be relatively narrow, considering only partial dispersion information and/or relatively basic
design objectives [14–17, 126, 132, 135].

Our method aims to increase the accessibility of full dispersion relations to alleviate the need for
simplifications such as partial dispersion computations. Full dispersion relations are defined over
a region of reciprocal space (wavevector space) called the irreducible Brillouin zone (IBZ). Due to
computational costs, dispersion relations are often computed only along one-dimensional slices of
these regions called irreducible Brillouin zone contours (IBZ contours). However it’s been recently
shown that using this simplification can lead to errors [136]. Further, plane symmetry groups
without mirror symmetries do not have a uniquely defined IBZ contour. For unit cells belonging
to these plane symmetry groups, dispersion analysis along a contour will yield different results
depending arbitrarily on the choice of contour. As a second example, a common shortcut when
designing for group velocity is to compute the dispersion relation at only a handful of wavevectors
or frequencies of interest. This is useful for achieving desired wave behavior in specific directions of
propagation [16], or at specific frequencies of interest [17]. Although these methods are sufficient
for designing simple wave devices, the design of next-generation, multi-functional wave devices
will require the efficient computation of full dispersion relations.
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Techniques have been developed specifically to efficiently solve dispersion problems such as Bloch
mode synthesis [137, 138], spectral X-FEM [139], specialized mixed-variational formulations
[140], reduced Bloch mode expansion [141], reduced Bloch operator finite element methods [142],
and wave finite element methods (WFEM) [143, 144]. However, even these specially tailored
methods executed by a highly parallelized and optimized implementation on a multi-CPU multi-
GPU cluster admit the need for more efficient ways to explore the design space [135]. To perform
design optimization on a 483 voxel domain, a distributed computing setup using 16 NVIDIA GTX-
780 GPUs takes 6.5 minutes per optimization iteration, even when computing the dispersion relation
only along the IBZ contour rather than over the full IBZ [135]. Fundamentally, each of [137–144]
reduces the cost of dispersion computations by reducing the number of effective degrees of freedom
involved in the model, thereby reducing the size of the eigenvalue problem that needs to be solved
at each wavevector point. In contrast, our surrogate model reduces the total number of eigenvalue
problems that need to be solved. Due to this construction, our surrogate model can seamlessly
integrate with any of these aforementioned techniques to produce an efficiency improvement that
compounds with that of the physics-based technique being paired with our model.

Surrogate models, often involving machine learning, have been proposed in a variety of settings
to reduce the computational cost of purely physics-based methods. The applications range from
multi-scale modeling [145–148], to dynamics [149], statics [150], turbulence [151], optics [152],
and many others. For dispersion relation computations specifically, a fixed-resolution convolutional
neural network (CNN) surrogate model has been proposed [84]. This CNN model is shown to vastly
outperform the traditional densely connected neural network, suggesting that the convolutional
architecture is more appropriate for these types of problems. Because CNNs can make predictions
so quickly once the model is trained, it seems like a very attractive option. However, neural
networks often require large amounts of training data, which are expensive to compute (hundreds
of thousands of precomputed dispersion relations [84]) and require a lengthy training period (13
minutes on a GPU reported just for the 1D problem [84]). Unless the trained model is subsequently
used to make predictions for more dispersion relations than were included in the training set, the
time used to generate the training data outweighs the time saved by using the model. Further,
the CNNs architecture locks the user into a fixed unit cell resolution and fixed dispersion relation
resolution. If a user desires to change the resolution of the discretization of the unit cell or IBZ, a
new model architecture needs to be trained on a new training set with the corresponding resolution.
Recently, there has been a push towards surrogate models that exhibit resolution independence,
meaning that the model can train on data of one spatio-temporal resolution, and make predictions
at another resolution [153–155]. In the spirit of this effort, the surrogate model we propose exhibits
resolution independence both in terms of unit cell discretization and IBZ discretization.
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We propose using Gaussian process regression [156] to obtain principled surrogate models of full
dispersion relations. In particular, we propose a data-driven covariance function that only requires
a small training set of dispersion relations (tens to thousands) and allows for an efficient acquisition
function. In comparison to deep learning-based surrogate models, our model achieves higher
accuracy with less training data and is invariant to unit cell representation.

The key features of our model are:

1. The model is independent of unit cell representation. For example, if the model learned
covariance information from a dataset of parametrically defined unit cells, it can still be used
to make predictions for pixelated designs, and vice versa.

2. The model requires a relatively low amount (tens to thousands) of training data samples to
make accurate predictions. The model learns from data by measuring covariance information,
which takes less than 20 seconds even for reasonably large training set sizes.

3. The model uses a physics-based method to sample the dispersion relation at various points
in the IBZ. This physics-based method is a modular component of the model that can be
swapped for other, faster physics-based methods for dispersion computations. Because of
this, the efficiency gains provided by our model directly augment the efficiency gains of the
physics-based model.

4. The model not only supplies predictions, but also offers uncertainty estimates.

5. The model is differentiable, allowing for its use in gradient-based topology optimization.

In this paper, we first discuss the traditional methods currently used for the computation of dispersion
relations and gradient-based optimization of dispersion relations. We then go on to provide a brief
overview of Gaussian process regression (GPR). Next, we describe the details of our model and
demonstrate how it would be applied to one-dimensional problems. Finally, we apply our model
to two-dimensional unit cells and evaluate its performance against traditional methods as well as
another existing surrogate model.

4.3 Traditional computation of dispersion relations
To compute the dispersion relation of a periodic structured material, the physical domain of analysis
is reduced to a single unit cell. The frequency domain dynamics of linear-elastic periodic solids are
governed by the harmonic elastic wave equation with Bloch-Floquet periodic boundary conditions.
The harmonic elastic wave equation looks for wave mode solutions that obey linear elasticity, and
assumes that these solutions will be temporally sinusoidal. The Bloch-Floquet boundary conditions
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enforce that the solution is periodic (since the domain is periodic), but with a complex phase offset.
The complex phase offset is used to make sure we are finding modal wave solutions with a variety of
different wavelengths (not just wavelengths that are integer divisors of the unit cell’s dimensions).

The harmonic elastic wave equation in 𝐷 dimensions is

− 𝜌(𝑥)𝜔2𝑢𝑖 =
𝜕

𝜕𝑥 𝑗

[
𝐶𝑖 𝑗 𝑘𝑙 (𝑥)

1
2

(
𝜕𝑢𝑘

𝜕𝑥𝑙
+ 𝜕𝑢𝑙
𝜕𝑥𝑘

)]
, 𝑖, 𝑗 , 𝑘, 𝑙 = 1, ..., 𝐷, (4.1)

and the Bloch-Floquet periodic boundary conditions are

𝑢(𝑥 + 𝑎𝑛) = 𝑢(𝑥)𝑒i𝛾·𝑎𝑛 ∀𝑥 ∈ {𝑥 ∈ Θ | 𝑥 + 𝑎𝑛 ∈ Θ}, 𝑛 = 1, ..., 𝐷. (4.2)

The density, 𝜌(𝑥), and the material stiffness tensor, 𝐶𝑖 𝑗 𝑘𝑙 (𝑥), define the linear-elastic material
properties of the unit cell, Θ. The wavevector, 𝛾, and the eigenfrequency, 𝜔, inversely describe the
length and time scales of the wave. The displacement field, 𝑢(𝑥), describes the vibrational mode
by which the wave travels. Finally, the lattice vectors, 𝑎𝑛, define the lattice of the periodic material,
and i is the imaginary unit. The equation is a generalized eigenvalue problem with 𝑢(𝑥) and 𝜔2

as the eigenvector and eigenvalue respectively. To compute the dispersion relation, the eigenvalues
of this equation must be determined as a function of 𝛾, ∀𝛾 ∈ Γ (letting Γ denote the irreducible
Brillouin zone).

With the exception of a few simple cases, analytical solutions for dispersion relations are not
obtainable. For this reason, numerical solutions are often used to discretize the generalized
eigenvalue problem (Eq. 4.1). Although there are many numerical methods to compute dispersion
relations, one of the most well-known (though not necessarily the most efficient) is the Finite
Element Method. Within the framework of FEM, the dispersion relation can be computed by
assembling the stiffness and mass matrices,𝐾 (𝛾), and𝑀 (𝛾), and solving the generalized eigenvalue
problem for each 𝛾 in a discretization of the IBZ:[

𝐾 (𝛾) − 𝜔(𝛾)2𝑀 (𝛾)
]
𝑢(𝛾) = 0. (4.3)

There are several other specially tailored variational methods that have been shown to converge faster
than the finite element method when solving this particular PDE [140]. We note that the surrogate
model we have developed can be used in conjunction with any of these more highly-specialized
variational methods.

4.4 Traditional gradient-based optimization of dispersion relations
Gradient-based optimization is a powerful design tool that can be used in many contexts (including
wave propagation [16, 132, 135]) to obtain material designs that exhibit desired behaviors. Designs
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are represented by a design vector, 𝜃, containing parameter values that uniquely determine the
geometry and constitutive properties of the unit cell design. The goal of design optimization is to
determine a 𝜃 that results in the desired wave behavior, often achieved by maximizing or minimizing
an objective function (which encodes design objectives) via gradient-based methods. To use these
gradient-based methods, gradients of the objective function are needed, which in turn depend on
gradients of quantities embedded in the dispersion relation. In this section, we quickly step through
a few known equations commonly used in optimization problems surrounding wave behavior. In
this context, 𝐾 and 𝑀 are not only functions of the wavevector, but also of the design vector, 𝜃.
Derivations of these equations can be found in 4.10.3.

To modify the frequency, 𝜔, at a specific wavevector by incrementally changing the design variable,
the following sensitivity equation is useful. Assume all eigenvectors are normalized by the mass
matrix; i.e., 𝑢∗𝑀𝑢 = 1 where (·)∗ denotes conjugate transpose. For ease of reading, assume here
that 𝜃 is a scalar. These equations can easily be extended to vector 𝜃 by repeating the following
computations for each entry of 𝜃. The gradient of one frequency in the dispersion relation with
respect the design variable is given by

𝜕𝜔

𝜕𝜃
=

1
2𝜔
𝑢∗

[
𝜕𝐾

𝜕𝜃
− 𝜔2 𝜕𝑀

𝜕𝜃

]
𝑢. (4.4)

To modify the group velocity, 𝜕𝜔
𝜕𝛾

, at a specific wavevector, the sensitivity computation is more
complicated and more computationally expensive. The group velocity can be computed analytically
by

𝜕𝜔

𝜕𝛾
=

1
2𝜔
𝑢∗

[
𝜕𝐾

𝜕𝛾
− 𝜔2 𝜕𝑀

𝜕𝛾

]
𝑢. (4.5)

The design sensitivity of the group velocity can be computed analytically by
𝜕
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]
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∗
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2𝜔
𝑢∗
𝜕𝐴

𝜕𝜃
𝑢 + 1

2𝜔
𝑢∗𝐴

𝜕𝑢

𝜕𝜃
(4.6)

where 𝐴 = 𝜕𝐾
𝜕𝛾

− 𝜔2 𝜕𝑀
𝜕𝛾

, and 𝜕𝑢
𝜕𝜃

can be computed by solving the linear system:
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𝜕𝜃

)
𝑢]

Re[ 1
2𝑢

∗ 𝜕𝑀
𝜕𝜃
𝑢]

0


(4.7)
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Not only is it computationally expensive to compute dispersion relations, but it is also computation-
ally expensive to compute the design sensitivities of dispersion relations. Lu et al. report sensitivity
analysis accounting for nearly half the time consumed by one iteration of optimization [135]. Later,
we will explain how our surrogate model gives multiple options for computing sensitivities, opening
the possibility for further computational savings. We also provide explicit equations for how to
compute these gradients when using the surrogate model.

4.5 Gaussian process regression
4.5.1 Overview
Gaussian process regression (GPR) is a probabilistic regression method that constructs a predictive
distribution for an unknown function, 𝑓 (𝑥), by combining observations of the function with prior
information [156]. Because the function is unknown, we think of 𝑓 (𝑥) as being a random function
distributed according to a Gaussian process GP(𝑚(𝑥), 𝑘 (𝑥, 𝑥′)) defined by mean function 𝑚(𝑥)
and covariance function 𝑘 (𝑥, 𝑥′).

𝑓 (𝑥) ∼ GP(𝑚(𝑥), 𝑘 (𝑥, 𝑥′)) (4.8)

Evaluation of this function at any finite number of points is described by a joint Gaussian distribution.
Let 𝑚 and 𝑘 operate row-wise when given matrix input, with 𝑚(𝑋) yielding the mean vector
corresponding to the points indicated by the rows of 𝑋 , and 𝑘 (𝑋, 𝑋′) yielding the covariance
matrix for the points in 𝑋 and 𝑋′. With matrix 𝑋∗ and vector 𝑓∗ denoting the set of points for which
we would like to make evaluations, the prior distribution is

𝑓∗ ∼ N (𝑚(𝑋∗), 𝑘 (𝑋∗, 𝑋∗)) (4.9)

where N denotes a normal distribution.

Given a dataset 𝑅 = {(𝑥𝑖, 𝑦𝑖) |𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀, 𝜀 ∼ N(0, 𝜎2
𝑓
)}𝑁
𝑖=1 of (possibly noisy) observations of

𝑓 (𝑥), the predictive distribution is formed by conditioning the prior distribution on the observa-
tions. With 𝑋 and 𝑦 denoting the observations, and 𝐼 denoting the identity matrix, the predictive
distribution is

𝑓∗ | 𝑋∗, 𝑋, 𝑦 ∼ N
(
𝑚(𝑋∗) + 𝑘 (𝑋∗, 𝑋)

[
𝑘 (𝑋, 𝑋) + 𝜎2

𝑓 𝐼

]−1
𝑦,

𝑘 (𝑋∗, 𝑋∗) − 𝑘 (𝑋∗, 𝑋)
[
𝑘 (𝑋, 𝑋) + 𝜎2

𝑓 𝐼

]−1
𝑘 (𝑋, 𝑋∗)

)
.

(4.10)

Numerically, Eq. 4.10 is often implemented in two steps. The first step is to find the model weights,
𝛼, which are independent of the prediction locations, by solving the linear system in Eq. 4.11.
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Subsequently, predictions can be made at arbitrary locations 𝑋∗ using the pre-computed model
weights 𝛼 in Eq. 4.10 rather than solving the system anew.

𝛼 = [𝑘 (𝑋, 𝑋) + 𝜎2
𝑓 𝐼]

−1𝑦 (4.11)

Because GPR yields a predictive distribution, we not only infer a prediction as the mean of the
distribution, but also a measure of uncertainty as the variance of the distribution.

4.5.2 Eigenfunction analysis of the covariance function
In later sections, we perform eigenfunction analysis of our proposed covariance function. Eigen-
function analysis is often used to assess the convergence and expressive power of a Gaussian process
regressor. A function 𝜙(𝑥) is an eigenfunction of the covariance function 𝑘 (𝑥, 𝑥′) with eigenvalue
𝜆, with respect to measure 𝜇(𝑥) if it satisfies∫

𝑘 (𝑥, 𝑥′) 𝜙(𝑥)𝑑𝜇(𝑥) = 𝜆𝜙 (𝑥′) . (4.12)

These eigenfunctions form a basis which spans the space of all possible functions that can be attained
by the mean function of the Gaussian process regressor, which is called the hypothesis space. A
Gaussian process regressor can exactly represent any function in the span of the eigenfunctions
with nonzero eigenvalues. A covariance function with an infinite number of nonzero eigenvalues
is said to be nondegenerate, while one with only a finite number of nonzero eigenvalues is said to
be degenerate.

A Gaussian process regressor with a nondegenerate covariance function has almost unlimited
expressive power since its hypothesis space is the span of an infinite eigenbasis. In the limit
of infinite observations, the model can exactly fit any function that can be represented by the
generalized fourier series

∑∞
𝑖=1 𝑎𝑖𝜙𝑖 (𝑥). In other words, for a GP regressor with a nondegenerate

covariance function, the posterior mean function will converge to the expected value of the true
underlying distribution as the number of observations goes to infinity (assuming the true underlying
distribution is reasonably well-behaved).

In contrast, a Gaussian process regressor with a degenerate covariance function has limited ex-
pressive power, since its eigenfunctions span only a finite dimensional hypothesis space. For a GP
regressor with a degenerate covariance function, in the limit of infinite observations, the posterior
mean function will instead converge to the best 𝜇-weighted 𝐿2 approximation of the expected value
of the true underlying distribution within the span of the eigenfunctions. Practically, this means
that although a Gaussian process regressor with a degenerate covariance function may not converge
to the exact solution in the limit of infinite regression points, it can still make a highly accurate
prediction if its eigenbasis is comprehensive enough for the desired application.
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4.6 Methods
In this section, we give the specifics of our surrogate model, and demonstrate its application to
relatively simple one-dimensional dispersion computations. This toy problem is meant only to
serve as an example - the substance of our results can be found in the following section. Traditional
dispersion computations require the solution of an eigenvalue problem at each wavevector in a
discretization of the irreducible Brillouin zone (IBZ). The goal of our surrogate model is to predict
the eigenvalue solutions for each wavevector after solving the eigenvalue problems at only a small
subset of these wavevectors. For most unit cells, which have many physical degrees of freedom,
it’s common in dispersion analysis to only consider the smallest 𝑁 eigenvalues. In our surrogate
model framework, we use 𝑁 separate GPR models to fit the 𝑁 eigenvalue bands, {𝜔𝑖 (𝛾)}𝑁𝑖=1.

The structures used in this section for demonstration are periodic one-dimensional bars. They can
only transmit waves along their axis and have relatively simple dispersion relations. We randomly
generate unit cell designs which have smoothly varying constitutive properties, except at randomly
selected interfaces where the property values are allowed to be discontinuous (details in 4.10.1).
These interfaces lead to wave scattering behavior in the material – a mechanism well-known to cause
band gaps in the dispersion relation. Examples of these unit cells and their dispersion relations are
shown below in Fig. 4.2.
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Figure 4.2: (a) and (b) Two different 1-D unit cell designs and the first four bands of each design’s
dispersion relation, computed on a 50-point discretization of the IBZ. Each design in this figure has
two interfaces of material property discontinuity (one in the interior of the unit cell and one at the
boundary). (c) A dataset of the first band of the dispersion relations computed for 5 random 1-D
structures drawn from the same distribution as the designs in (a) and (b), evaluated on a 10-point
discretization of the IBZ.

4.6.1 Mean function
Our model uses a zero mean function (𝑚(𝑥) = 0). This is common in GPR, and does not mean
that the predictive distribution will have a zero mean. Nonzero mean functions are often used
when the function to be fit has an underlying trend that can be written explicitly (such as a signal
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that, on average, increases linearly with time but has unpredictable variations around that average).
Because dispersion relations have no such trends that can be explicitly written, we leave our mean
function as zero. This leaves the entirety of the model’s capacity to be carried by the covariance
function.

4.6.2 Covariance function
The covariance function is usually the most crucial component in any Gaussian process model
because it encodes the statistical coupling between function values at each point in the domain,
defining underlying patterns and relationships in the data. Often, Gaussian process models use
simple isotropic covariance functions such as the squared exponential or the Matérn covariance
functions. Isotropic covariance functions are functions only of the distance between points in input
space, meaning that they can only encode assumptions about the underlying function globally. These
functions offer a convenient starting point for basic applications of Gaussian process modeling;
however, they lack the expressiveness that can be offered by more thoughtful constructions of the
covariance function. We propose a non-isotropic covariance function that encodes richer covariance
information in a principled way that varies throughout the domain.

Our surrogate model uses a dataset of precomputed dispersion relations to construct its covariance
function. Given a dataset𝑇 = {(𝛾, 𝜔)𝑖} of dispersion relations evaluated at a fixed set of wavevectors
Γ𝑇 , we measure the covariance between the frequency values at all pairs of wavevectors in Γ𝑇 . This
covariance computation is extremely fast, especially when compared to the training process of
neural networks. For example, to compute the covariance matrix for 10,000 dispersion relations
with 10,000 points evaluated in each dispersion relation, only 6 seconds on a 9th generation Intel
Core i7-9750H are required. Once the covariance matrix is computed, we use cubic interpolation of
the measured covariance values to define the covariance function, 𝑘 : Γ𝑝×Γ𝑞 → R𝑝×𝑞 mapping any
two lists of wavevectors to the appropriate covariance matrix. Each eigenvalue band is described by
its own separate covariance function. Although this data-driven covariance function is degenerate
(i.e., in the limit of infinite regression points, the estimated dispersion relation converges to the
best solution spanned by the finite eigenbasis rather than the exact numerical solution), it achieves
higher accuracy than a data-agnostic covariance function given a limited number of regression
points. Convergence to the exact numerical solution is not necessary in practical design problems,
since even the exact solution does not perfectly represent real-world physics.

To demonstrate how this works for the one-dimensional case, we compute the covariance between
frequency values at each pair of wavenumbers for the dataset shown in the right-most panel of Fig.
4.2. The results of this computation are shown in Fig. 4.3. For this demonstration, the dataset is
small, with only 5 dispersion relations, and coarse, with the domain discretized into only 10 points.
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Even so, we can see that we’ve already captured critical information about the type of function we
are trying to fit. For example, we see that the variance is 0 at 𝛾 = 0, and that the frequency at this
wavenumber has no covariance with the frequencies at any other wavenumber. This makes sense
because, for the first eigenvalue band, this frequency is always zero, representing a rigid body mode,
regardless of the rest of the dispersion relation. Conversely, the variance is maximum at 𝛾 = 𝜋,
and the frequency at this wavenumber is covariant with the frequency at many other wavenumbers,
especially those nearby.
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Figure 4.3: (a) The covariance matrix computed directly from the coarse version of the dataset, using
a 10-point discretization of Γ. (b) The covariance function generated by applying interpolation to
the coarse covariance matrix. (c) the covariance matrix computed from the high resolution version
of the same dataset, but using a 100-point discretization of Γ. This panel represents a visualization
of the true covariance function. (d) The error fraction induced by approximating the high resolution
covariance matrix with interpolation of coarse resolution covariance matrix. The error fraction is
small, achieving a maximum absolute deviation of about 2%.

In later sections, when working with 2D structures, there are two wavevector components to
consider. In these cases, the covariance function should be thought of as a continuous scalar-valued
function of four scalar variables, and covariance interpolation must happen in this four-dimensional
space. Regardless, for all computational operations other than interpolation, standard matrix
operations can still be applied after reshaping the four-dimensional covariance array into a matrix.

With the covariance and mean functions defined, our Gaussian process prior is defined. We can
visualize our prior by sampling it. With the exception that the samples are allowed to assume
negative values, they have characteristics similar to the dispersion bands (see the first panel of Fig.
4.4). This shows that our covariance function yields a prior that encodes an appropriate hypothesis
space, even before sampling any regression points.

4.6.3 Acquisition function
To fit the model to a specific dispersion relation, we supply it with a set of points (regression
points) sampled from that dispersion relation. Because each regression point has a computational
cost, it is beneficial to try to minimize the number of regression points needed, and maximize the
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information that each regression point contributes. An acquisition function is a function that tells
the model how to select the locations of regression points. Here, we propose a greedy acquisition
function that sequentially determines the most informative next point to sample. The acquisition
function we have constructed uses the covariance function to evaluate the posterior variance over a
discretization of the IBZ. The variance can be computed by evaluating the diagonal entries of the
posterior covariance, 𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , given by

𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑘 (Γ∗, Γ∗) − 𝑘 (Γ∗, Γ𝑅)
[
𝑘 (Γ𝑅, Γ𝑅) + 𝜎2

𝜔𝐼
]−1

𝑘 (Γ𝑅, Γ∗) (4.13)

where Γ∗ are the wavevectors constituting the discretization of the IBZ, Γ𝑅 are the wavevectors
representing the locations of the optimal regression points, and 𝐼 denoting the identity matrix.

Starting with no regression points (Γ𝑅 is empty, and the entire second term is zero), we consider the
wavevector in Γ∗ with the highest variance to be the most informative next wavevector to sample,
so it becomes the next regression point location. We append this wavevector to Γ𝑅, re-evaluate
𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , and repeat. This process can be iterated until a desired number of regression point
locations is obtained.

When this process is finished, Γ𝑅 represents an ordered list of optimal regression points. During
the fitting process (described in section 4.6.4), subsets of Γ𝑅 can be selected by taking the first
𝑁 elements if the computational budget does not permit the solution of the phononic eigenvalue
problem for every wavevector in Γ𝑅. Because our covariance function is degenerate, there is a finite
limit on the number of regression points that can be effectively used by the model, and Γ𝑅 will
not be able to grow beyond this size (the inversion in Eq. 4.13 will run into conditioning issues).
This limit can be quite large, and depends on the size and resolution of the dataset that was used to
construct the covariance function.

Conveniently, our acquisition function is entirely independent of the observed values of the re-
gression points. This means the locations (wavevectors) of the optimal regression points can be
determined ahead of time without actually making observations of the regression points themselves,
allowing for the parallel computation of regression point values (frequencies) later. Additionally,
this means that the final Γ𝑅 is dependent only on the covariance function, and does not change as a
function of the specific dispersion relation that the model is being fit to.

We visualize how our acquisition function works for a simple one-dimensional problem in the
bottom row of panels of Fig. 4.4 below. Without performing eigenvalue computations, we
iteratively evaluate the posterior variance, and append the point of maximum variance to the
ordered list of regression points.
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Figure 4.4: Top row: samples generated from the posterior (predictive) distribution with 0, 1, 2,
and 10 regression points sampled (note that when 0 points are sampled, the posterior is the prior).
As more points are sampled, the posterior distribution becomes much tighter, as can be seen by the
decrease in variation of samples drawn from the posterior distribution. Bottom row: the variance
of the posterior distribution with 0, 1 2, and 10 points sampled. The first three panels of the bottom
row demonstrate the first three sequential steps of the algorithm used to determine the order in
which points are sampled.

4.6.4 Fitting the model
With the mean, covariance, and acquisition functions determined, we can fit the GP model to a
specific dispersion relation. To fit the model, we supply it with a set of regression points sampled
from that dispersion relation. Our acquisition function determines the locations (wavevectors) of
these points ahead of time. To perform the fit, we need to observe the eigenfrequency solutions
associated with these wavevectors by solving the corresponding eigenvalue problem. Because the
locations of the regression points have been determined ahead of time, these computations can be
done in parallel. After observing regression points (Γ𝑅,Ω𝑅), we compute the model weights 𝛼 by
solving the linear system

𝛼 = [𝑘 (Γ𝑅, Γ𝑅) + 𝜎2
𝜔𝐼]−1Ω𝑅 (4.14)

where Γ𝑅 and Ω𝑅 are the wavevectors and frequencies of the regression points, 𝜎2
𝜔 is the assumed

variance of the noise on the regression point measurements, and 𝐼 is the identity matrix. Because
our regression points are generated by a well-chosen finite element model, it is reasonable to assume
values of 𝜎2

𝜔 as low as 0, if assuming the eigenvalue solutions are exact, or 10−16 to represent the
uncertainty associated with using double precision floating point data format. We find that using
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𝜎2
𝜔 = 0 works well for our purposes, and doesn’t produce significantly different behavior from

using 𝜎2
𝜔 = 10−16.

Once the model is fit to the regression points, the predictive distribution can be computed (Eq.
4.15). Because the predictive distribution is Gaussian, the maximum a posteriori estimate of the
full dispersion relation is the mean of the predictive distribution. Further, the diagonal of the
covariance matrix of the predictive distribution is the variance of each point being predicted. The
variance gives us a metric for the model’s predictive uncertainty at each wavevector in Γ∗. The
predictive distribution is

Ω∗ | Γ∗, Γ𝑅,Ω𝑅 ∼ N
(
𝑘 (Γ∗, Γ𝑅) 𝛼,

𝑘 (Γ∗, Γ∗) − 𝑘 (Γ∗, Γ𝑅)
[
𝑘 (Γ𝑅, Γ𝑅) + 𝜎2

𝜔𝐼
]−1

𝑘 (Γ𝑅, Γ∗)
) (4.15)

where Γ∗ are the wavevectors at which we would would like to predict the frequency values of the
dispersion band, and Ω∗ are the predicted frequencies. In the top row of Fig. 4.4, we draw samples
from this predictive distribution to show its evolution as more regression points are used. When
fewer regression points are used, the predictive distribution is quite broad, indicating uncertainty
in the prediction. However, as more regression points are used, the predictive distribution becomes
extremely tight, indicating much more certainty.

4.6.5 Gradients for gradient-based optimization
So far, we have detailed how to make predictions with our model. However, to use our model in
gradient-based design optimization, we must be able to supply efficient design sensitivity compu-
tations. In this subsection, we describe how to compute gradients for frequency optimization and
group velocity optimization.

4.6.5.1 Gradients for frequency optimization

Typically, computing the design sensitivity of the frequency at one wavevector requires not only
the eigenvalue solution, but also the eigenvector solution (Eq. 4.4). However, our model predicts
only the eigenvalue, not the eigenvector. There are at least two ways to amend this.

First, we could simply use the surrogate model to infer the dispersion relation, and use this inference
to determine the wavevector at which we need to optimize the frequency. Then we could solve the
eigenvalue problem corresponding to that single wavevector, and compute the design sensitivity
using Eq. 4.4. This is a great option if we only need to compute the design sensitivity of the
frequency at a single wavevector, but do not know a priori at which wavevector (e.g. for bandgap
optimization).
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Alternatively, if the eigenvalue problems are particularly expensive, or if there are many wavevectors
at which we desire to optimize the frequency, we can use a trick to avoid solving more eigenvalue
problems. By employing the chain rule we can compute the gradient of any set of frequencies
without performing additional eigenvalue computations. To do this, we first compute the gradient
of the frequency at any wavevector with respect to the frequencies measured at the regression
points. This gradient is defined by the GPR model. Then, since we do know the eigenvector at the
regression points, we compute the gradient of the frequency at the regression point with respect
to the design variables. This second gradient is defined by Eq. 4.4. We then multiply these two
quantities to obtain the design sensitivity of any frequencies we are interested in optimizing. That
is,

𝜕Ω∗
𝜕𝜃

=
𝜕Ω∗
𝜕Ω𝑅

𝜕Ω𝑅

𝜕𝜃
(4.16)

where
𝜕Ω∗
𝜕Ω𝑅

= 𝑘 (Γ∗, Γ𝑅) (𝑘 (Γ𝑅, Γ𝑅) + 𝜎2
𝜔𝐼)−1 (4.17)

and (
𝜕Ω𝑅

𝜕𝜃

)
𝑖, 𝑗

=
1

2(Ω𝑅)𝑖
(𝑈∗

𝑅)𝑖,:
[
𝜕𝐾

𝜕𝜃 𝑗
− (Ω𝑅)2

𝑖

𝜕𝑀

𝜕𝜃 𝑗

]
(𝑈𝑅):,𝑖 (4.18)

where 𝑈𝑅 is a matrix containing the eigenvectors of the regression points, (·)∗ denotes conjugate
transpose, and the colon subscript indicates every element along the corresponding axis of the array
(e.g. (𝑈𝑅):,𝑖 represents the 𝑖th column of 𝑈𝑅). Note that although this method does not require
further eigenvalue solutions, it does require traditional sensitivity computations for a potentially
large number of regression points. In practice, these two costs should be weighed against each
other.

4.6.5.2 Gradients for group velocity optimization

Frequency is not the only subject of dispersion optimization. Group velocity is also a common
optimization objective [16]. Computing the design sensitivity of group velocity again requires
eigenvector information at the wavevector of interest. It should be noted that traditional sensitivity
computations for group velocities are more expensive than traditional sensitivity computations
for frequencies because they require solving an extra system of equations. As with frequency
optimization, there are two methods that we can use which will be advantageous in different
situations.

First, we can use the surrogate model to infer the dispersion relation, and identify a wavevector of
interest. Then we can solve the eigenvalue problem at that wavevector, and use Eqs. 4.6, 4.7 to
compute the group velocity design sensitivities.
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Alternatively, we can avoid group velocity sensitivity computations altogether by employing the
chain rule. Using the surrogate model, the analytical expression for the predicted group velocity,
Ψ∗, is

Ψ∗ = 𝑔(Γ∗, Γ𝑅)𝛼 (4.19)

where 𝑔 is the gradient of the covariance function with respect to its first input. Since the covariance
function is fixed, this can be estimated numerically once, and stored for further use. Subsequently,
we apply the chain rule to write the sensitivity of the predicted group velocity with respect to the
design variables:

𝜕Ψ∗
𝜕𝜃

=
𝜕Ψ∗
𝜕Ω𝑅

𝜕Ω𝑅

𝜕𝜃
(4.20)

where
𝜕Ψ∗
𝜕Ω𝑅

= 𝑔(Γ∗, Γ) (𝑘 (Γ, Γ) + 𝜎2
𝜔𝐼)−1 (4.21)

and 𝜕Ω𝑅
𝜕𝜃

is again given by Eq. 4.18.

Using the second method requires traditional frequency sensitivity computations for a potentially
large number of regression points. However, it gracefully avoids the need for any traditional group
velocity sensitivity computations, which require solving a rather large linear system. This second
method is advantageous to use when we desire to optimize group velocity at a large number of
wavevector points.

4.7 Results
In this section, we apply our surrogate model to dispersion relations of two-dimensional materials
and evaluate its performance against traditional methods and an existing deep-learning-based
surrogate model.

4.7.1 Two-dimensional dispersion relations
When modeling materials in two dimensions, the evaluation of the dispersion relation becomes
more complicated and more computationally costly than in one dimension. This is for two reasons.
First, a two-dimensional material requires more degrees of freedom to be accurately modeled.
Second, wave propagation in a 2-D material must be described by a wavevector, rather than a
wavenumber, since wave propagation may occur in any combination of the two directions. This
means that one must sweep over a 2-D parameter space of wavevectors, solving an eigenvalue
problem at each point in this 2-D space. These issues are further exacerbated when working with
3-D materials.

For this reason, when considering 2-D and 3-D materials, engineers and scientists often evaluate
the dispersion relation only on the IBZ contour or a “virtual IBZ contour” rather than the full IBZ.
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The definition of the IBZ contour is dependent on the symmetries of the unit cell, and is defined as
the boundary of the IBZ for symmetry groups with reflection or glide-reflection symmetries. For
symmetry groups without reflection or glide-reflection symmetries, the IBZ contour is not defined
since the IBZ can be arbitrarily rotated, giving an infinite number of possible choices for the IBZ
contour, and an infinite number of possible resulting dispersion band diagrams.

For example, Fig. 4.5 shows a unit cell lacking symmetry. Unit cells lacking symmetry belong to
the 𝑝1 plane symmetry group (or wallpaper group). The IBZs of unit cells in the 𝑝1 symmetry
group can be rotated arbitrarily, so a unique IBZ contour is not defined. As a substitute, the authors
of [136] use a “virtual IBZ contour”. Although the construction of this contour is entirely artificial,
we include it because many people in the acoustics and phononics field are accustomed to seeing
dispersion information in this format. Even for unit cells that have well-defined IBZ contours, the
commonly used contour shortcut yields only partial information about wave propagation through the
medium. The goal of our surrogate model is to increase the accessibility of dispersion information
over the full IBZ.

In Fig. 4.5, we show the unit cell along with the first three bands of its dispersion relation evaluated
along the “virtual IBZ contour”, and over the full IBZ. We also show the inference of the surrogate
model over these domains.
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Figure 4.5: (a) The dispersion relation of a bimaterial unit cell evaluated over the full IBZ. The
true dispersion band is shown in the left column, and the inference given by the surrogate model
is shown in the right column. Here, the surrogate model uses a training set of 2000 dispersion
relations to construct the covariance function, and uses 50 regression points (regression points not
shown). (b) The same dispersion relation evaluated along the “virtual IBZ contour”, Γ𝑋𝑀Γ𝑌𝑂Γ.
The unit cell design is shown in the inset, where yellow represents a stiff and heavy material
(𝐸 = 200GPa, 𝜌 = 8000kg/m3) and blue represents a softer and less dense material (𝐸 = 200MPa,
𝜌 = 800kg/m3). The side length of the unit cell is 𝑎 = .01m. This unit cell has no symmetry,
making it part of symmetry group 𝑝1 [136]. The IBZ of this symmetry group can be arbitrarily
rotated, so a well-defined IBZ contour does not exist [136]. However, since so many are accustomed
to visualizing dispersion information in this format, we’ve included the dispersion relation evaluated
on the “virtual IBZ contour” as defined in [136]. Here, we again show the true dispersion relation
along with the inferred dispersion relation.

4.7.2 Generating random designs
In this section, we consider 2D unit cell designs of the 𝑝1 symmetry group (i.e. no symmetry)
using a plane stress model. To generate random unit cell designs, we sample a Gaussian process
with a 2-D periodic covariance function. To construct this covariance function, we start with a 1-D
periodic covariance function,

𝑘per-1D (𝑥, 𝑥′) = 𝜎2
𝑓 exp

(
− 2
ℓ2 sin2

(
𝜋
|𝑥 − 𝑥′|
𝑝

))
(4.22)

where 𝜎 𝑓 controls the overall variance of the Gaussian process, ℓ controls the lengthscale of the
randomness, and 𝑝 is the period. In our case, we set 𝑝 to be the side length, 𝑎, of the unit cell. We
form the 2-D periodic covariance function as the product of the 1-D periodic covariance function
applied to each direction:

𝑘per-2D (𝑥, 𝑦, 𝑥′, 𝑦′) = 𝑘per-1D (𝑥, 𝑥′) 𝑘per-1D (𝑦, 𝑦′) (4.23)
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where 𝑥 and 𝑦 are the horizontal and vertical coordinates of locations in the unit cell. We
emphasize that the Gaussian process used to generate unit cell designs has no direct connection
with the Gaussian process used by the surrogate model for inference.

Beyond the periodic covariance parameters (which control the variance and the lengthscale of
features in the unit cell), there are several other parameters that define the unit cell. The lattice
parameter 𝑎 dictates the side length of the square unit cell. The resolution of the unit cell is
determined by the integer 𝑁𝑝𝑖𝑥 , which defines the number of pixels both vertically and horizontally.
The constitutive properties of each pixel are bounded by 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 , 𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥 , 𝜈𝑚𝑖𝑛, and 𝜈𝑚𝑎𝑥 ,
corresponding to elastic modulus, mass density, and Poisson’s ratio respectively. The number of
unique materials in each design is controlled by 𝑁𝑚𝑎𝑡 (for example, a bimaterial unit cell would be
defined by 𝑁𝑚𝑎𝑡 = 2). Further details of unit cell design generation are given in 4.10.1. Examples
of how these unit cells might look are provided in section 4.7.6.

4.7.3 Visualization of the acquisition function for the two-dimensional problem
In this section, we visualize the covariance and acquisition functions for the two-dimensional
problem. In Fig. 4.6, we show the evolution of the acquisition function and the resulting variance
fields for a covariance function constructed from a dataset of 2000 dispersion relations.1 As we
compute the order of regression point sampling, we can observe that points that are not near to
each other can be highly covariant. For example, the covariance function is taking advantage of
the periodicity of the dispersion relation. In the example shown in Fig. 4.6, the unit cells in the
dataset used to construct the covariance function belong to the p1 plane symmetry group (they have
no symmetry), which is a superset of all other plane symmetry groups. Due to the construction
of this symmetry group’s IBZ and the periodicity of the dispersion relation, the solution along the
boundary of the IBZ must be symmetric across the line 𝛾𝑥 = 0. Indeed, we see from the (1, 1) and
(2, 1) panels that a single regression point on the far left side of the IBZ causes a “cold spot” in the
variance field on the right side of the IBZ in the region that is “close” to the regression point when
considering the periodicity of the dispersion surface. This indicates that the model gains insight
about the function value on the right side of the domain from information observed on the left. Our
covariance function is able to implicitly learn crucial patterns such as periodicity and symmetry
from the data, without the need for a user to manually encode these assumptions.

1The dataset was constructed with the following parameters: 𝜎 𝑓 = 1, ℓ = 0.5, 𝑎 = 1 m, 𝑁𝑝𝑖𝑥 = 16, 𝑁𝑚𝑎𝑡 = 2,
𝐸𝑚𝑖𝑛 = 200 MPa, 𝐸𝑚𝑎𝑥 = 200 GPa, 𝜌𝑚𝑖𝑛 = 800 kg/m3, 𝜌𝑚𝑎𝑥 = 8000 kg/m3, 𝜈𝑚𝑖𝑛 = 0, 𝜈𝑚𝑎𝑥 = 0.5. The wavevector
resolution of each dispersion relation in the dataset is 101 × 51.
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Figure 4.6: Left column: from top to bottom, we show the progression of regression point selection
for 0, 1, 2, 5, 20, 50 regression points. Right column: the true dispersion relation for one particular
unit cell design. Each image in this column is identical. Center three columns: three random
samples drawn from the posterior distribution for 0, 1, 2, 5, 20, 50 regression points. Note
that when the model uses 0 regression points, the posterior distribution is identical to the prior
distribution. Also, we observe that as more regression points are used, the samples become more
similar to each other, and to the true dispersion relation in the right column. Further, note that
the posterior mean function is the final hypothesis of the surrogate model, not a randomly drawn
posterior sample.

4.7.4 Inference examples
We now show examples of our surrogate model infering the dispersion relation for two-dimensional
structures using a sparse set of regression points in Fig. 4.7. In each case, the model uses a dataset
of 2000 dispersion relations (the same dataset used to generate Fig. 4.6) and 50 regression points
(the same regression points shown in the bottom left panel of 4.6). The dataset was constructed
with the following parameters: 𝜎 𝑓 = 1, ℓ = 0.5, 𝑎 = 1 m, 𝑁𝑝𝑖𝑥 = 16, 𝑁𝑚𝑎𝑡 = 2, 𝐸𝑚𝑖𝑛 = 200 MPa,
𝐸𝑚𝑎𝑥 = 200 GPa, 𝜌𝑚𝑖𝑛 = 800 kg/m3, 𝜌𝑚𝑎𝑥 = 8000 kg/m3, 𝜈𝑚𝑖𝑛 = 0, 𝜈𝑚𝑎𝑥 = 0.5. The wavevector
resolution of each dispersion relation in the dataset is 101 × 51. In Fig. 4.7 we use 50 regression
points to achieve a relatively accurate prediction; however, in practice, the number of regression
points can be adjusted fluidly to strike the right balance of accuracy versus computational cost
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depending on the application.
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Figure 4.7: A comparison of the prediction against the truth for the first eigenvalue band of two
different unit cells over the full IBZ. In each case, the surrogate model uses a covariance function
trained on 2000 dispersion relations and 50 regression points. The absolute error is shown on the
right for each scenario.

4.7.5 Eigenanalysis of the covariance function
In this section, to examine the relationship between the size of the covariance function training
set and the expressivity of the model, we examine the spectra of covariance functions based on
datasets of different sizes. Recall from section 4.5.2 that the number of nonzero eigenvalues of
the covariance function corresponds to the size of the covariance function’s eigenbasis, which
is the basis the model uses to fit to the regression points. A covariance function with a more
comprehensive eigenbasis results in a model with more expressive power, and a model that can
make use of a larger number of regression points.

For a range of logarithmically spaced dataset sizes, we compute the spectrum of the corresponding
covariance function, and plot the spectra in Fig. 4.8. As the size of the dataset increases, the
number of nonzero eigenvalues increases, meaning that the covariance function’s eigenbasis is
expanding to be more expressive. Eventually, however, the addition of more dispersion relations
to the dataset has a decreasing effect on the spectrum of the covariance function. For the largest
dataset size (20,000 dispersion relations) we plot the eigenfunctions corresponding to the 10 largest
eigenvalues of the covariance function in Fig. 4.9. These eigenfunctions are the first ten elements
of the eigenbasis, and can be thought of as the ten most prominent and fundamental function shapes
that the model uses to fit a dispersion relation.



72

100 101 102 103
10!15

10!10

10!5

100

105

1010

20
30
45
68
102
153
229
344
516

775
1163
1747
2622
3937
5910
8873
13322
20000

Eigenvalues of covariance function

Number of dispersion relations
in covariance training set

E
ig

en
va

lu
e

Eigenvalue index

Figure 4.8: The spectra of covariance matrices computed from datasets containing different numbers
of dispersion relations. The wavevector resolution of the datasets is 101×51, and the unit cell designs
are 16×16 pixels. Because we plot in log scale, eigenvalues that are zero are not plotted. As expected
from basic statistics, we observe that datasets with larger numbers of dispersion relations produce
covariance matrices with more nonzero eigenvalues. This indicates that covariance functions
generated from larger datasets will have larger eigenbases, and therefore have more expressive
power. However, we observe that the change in spectrum appears to slow down at some point, and
we get diminishing returns after about 1700 dispersion relations. We can expect this "saturation"
effect to happen at different points in different scenarios, and will depend on many factors including
the resolution of the dispersion relations in the datasets and the method of generating unit cell
designs.
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Figure 4.9: The first 10 eigenfunctions of the covariance function that uses training set containing
20,000 dispersion relations. The eigenfunctions form a basis for the hypothesis space of the
Gaussian process regressor.

The expressivity of the model (i.e. the broadness of the hypothesis space) depends on the dataset



73

used to construct the covariance function. In general, larger datasets will allow for more expressivity.
This is not surprising, since other data-driven methods such as neural networks require larger
amounts of data to characterize more complex functions. However, there is a difference in how the
model complexity is determined. For a neural network, the hypothesis space is determined by the
network architecture, which is typically determined before training the model. If too little training
data is supplied, the hypothesis space of the network remains large, but the model’s performance will
be low since the training data was not sufficient to narrow down the hypothesis space. In contrast,
the expressivity of our model’s data-driven covariance function is determined by the dataset itself.
With our method of covariance function construction, a small dataset will automatically result in a
smaller hypothesis space, and a larger dataset will automatically result in a larger hypothesis space,
without the need to adjust complicated model hyperparameters (such as network architecture).

4.7.6 Model evaluation
In the following subsections, we compare the performance of the GPR model against two other
models in the context of the two-dimensional problem. The first model is linear interpolation,
representing the traditional model for computing dispersion relations.2 The second model is an
existing convolutional neural network surrogate model from the literature [84].

4.7.6.1 The datasets

To evaluate the performance of the GPR model, we consider the accuracy of the model as a
function of the size of the covariance training set and the number of regression points for both
in-distribution and out-of-distribution scenarios. We generate three datasets, one for training
the covariance function, one for testing in-distribution performance, and one for testing out-of-
distribution performance. The training dataset contains dispersion relations of 5000 unit cells
generated as described in section 4.7.2, with periodic kernel parameters 𝜎 𝑓 = 1 and 𝑙 = 0.5 at a
resolution of 32 × 32 (𝑁𝑝𝑖𝑥 = 32). The unit cells have a lattice parameter 𝑎 = 1 m, are divided
into 2 materials (𝑁𝑚𝑎𝑡 = 2), and have material properties 𝐸𝑚𝑖𝑛 = 200 MPa, 𝐸𝑚𝑎𝑥 = 200 GPa,
𝜌𝑚𝑖𝑛 = 800 kg/m3, 𝜌𝑚𝑎𝑥 = 8000 kg/m3, 𝜈𝑚𝑖𝑛 = 0, and 𝜈𝑚𝑎𝑥 = 0.5. The in-distribution test dataset
contains dispersion relations of 100 unit cells randomly generated using the same parameters as
the training set (hence, in-distribution). The out-of-distribution test dataset contains dispersion
relations of 100 unit cells randomly generated with the same parameters as the training set, except
𝑙 = 1, 𝑁𝑚𝑎𝑡 = 3, 𝐸𝑚𝑖𝑛 = 200 GPa, 𝐸𝑚𝑎𝑥 = 200 TPa. These four parameters cause the distributional
shift between the training set and the out-of-distribution test set. Although the elastic moduli in
the out-of-distribution dataset are outside of the range of realistic materials, we use them to show

2For the traditional linear interpolation model, one simply evaluates the dispersion relation on a grid of evenly
spaced points and linearly interpolates if evaluation is needed at points that do not belong to the grid.
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that our model works when the material properties and frequency ranges of the training set and test
set are vastly different. The training set uses a wavevector resolution of 101 × 51, and the test sets
use a wavevector resolution of 501 × 251. Examples of unit cells drawn from each distribution are
shown in Fig. 4.10.

In-distribution Out-of-distribution

Figure 4.10: A visualization of the unit cell designs for the two distributions used to generate the
datasets. Blue represents 0, teal represents 0.5, and yellow represents 1. On the left we show
in-distribution designs, generated with the same parameters as the training set. On the right, we
show out-of-distribution designs, generated by parameters different from the training set. The
out-of-distribution dataset is generated with a larger length scale parameter, an extra material, and
elastic moduli 1000× larger (note that the colorscale does not show this stiffness increase).

4.7.6.2 Performance metrics

To measure the error of the model, we use the 𝐿2 norm and the 𝐻1 norm, defined in Eqs. 4.24, 4.25.
The 𝐿2 norm allows us to assess how well the model infers frequency values, and the 𝐻1 norm to
assess how well the model infers group velocity values. Errors are evaluated at the resolution of
the test sets, which are about five times more resolved along each of the two wavevector directions,
as described in section 4.7.6.1. After evaluating model error on each eigenvalue band of each
dispersion relation in the test set, we average over eigenvalue bands, and take the 0.95 quantile over
dispersion relations to get a sense for worst-case error. The norms are given as

∥ 𝑓 ∥𝑝
𝐿𝑝

=

∫
𝐷

∥ 𝑓 (𝑥)∥𝑝 d𝑥 (4.24)
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where 𝜕𝛼 denotes the multi-index partial differential operator, |𝛼 | = ∑
𝑖 𝛼𝑖, and 𝐷 is some domain

over which we are interesting in measuring the function. In our case, 𝐷 will be the IBZ, and the
function 𝑓 will be the error of the model.
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4.7.6.3 Comparison against linear interpolation model

To compare against the linear interpolation model, we consider the number of regression points
used by each model and the error that each model incurs in its prediction. In this subsection,
because of the 1000× shift in elastic modulus of the out-of-distribution test set, we divide the out-
of-distribution errors by

√
1000 so that they can be readily compared to the in-distribution errors.3

We find that the GPR model always uses fewer regression points than the corresponding linear
interpolation model achieving the same accuracy. At most, in this particular study, the GPR model
uses 7.75 times fewer regression points than the equivalent linear interpolation model. Because
almost all of the computational cost is due to regression point eigenvalue computations, this can be
seen as a speed up of approximately the same factor. The results are shown below in Fig. 4.11.
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Figure 4.11: A comparison of the GPR model against the traditional linear interpolation model.
Performance is evaluated on two datasets: in-distribution and out-of-distribution. In both cases,
the GPR model performs substantially better than the linear interpolation model. In the 𝐻1 plot
for in-distribution performance, the GPR model is shown to achieve the same error as the linear
interpolation model while using up to 7.75× fewer regression points.

4.7.6.4 Comparison against existing CNN surrogate model

We compare our model performance to the performance of the CNN surrogate model proposed by
Finol et al. [84]. Please refer to 4.10.2 for details about the CNN architecture and training. Note
that the CNN uses the material properties of the unit cell in the input array. This is in contrast to

3This exactly transforms the errors to what their values would be if the modulus range were 1000× smaller, since
the dispersion relation of a unit cell whose modulus is increased by 1000× will experience an upshift in frequency at
a factor of

√
1000, and because both the linear interpolation and GPR models’ predictions (and therefore errors) are

linearly proportional to the frequency values of the regression points.
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the GPR model, which does not directly observe the material properties of the unit cell, but instead
observes regression points of the dispersion relation.

In this subsection, we allow the GPR models to observe only 50 regression points, and limit both
the CNN and GPR models training set sizes to range from only 50 to 5000 dispersion relations.
For each training set size, we train the CNN for a maximum of 30 epochs with early stopping
based on a validation set. Training the CNN on the training set of 5000 dispersion relations takes
approximately 24 minutes/epoch on an NVIDIA GeForce RTX 3080 Ti GPU. For each training set
size, we also compute a new covariance function for the GPR, taking only 1 second for the largest
training set size (5000). Because training a neural network depends on the randomly initialized
weights of the network, we repeat the training 10 times with different random initializations to get
a sense for the variation in results. After measuring the 𝐿2 and 𝐻1 norms of the error, we average
over all 10 eigenvalue bands, and take the 95% quantile error over unit cells. Additionally, for the
CNN, we measure the standard deviation of this error over the ten trials and plot the ± one standard
deviation spread.

The results (Fig. 4.12) show that the GPR model achieves errors significantly lower than the CNN
for all training set sizes. This is because we are using relatively small training sets, and neural
networks typically require more data to train effectively. For reference, Finol et al. used a minimum
of 20,000 and up to 100,000 dispersion relations to train their CNN. In general, it is a nontrivial
task to adjust the architecture (and therefore expressivity) of a neural network to be appropriate for
the amount of training data that you have. This process generally involves a substantial amount of
trial-and-error and hyperparameter tuning, which can be costly in terms of time and effort. Note
that in this section, we do not adjust the out-of-distribution errors by the factor of

√
1000 because

this transformation would not be valid for the CNN, so in-distribution and out-of-distribution results
cannot be directly compared against each other. For both in-distribution and out-of-distribution, we
see the CNN gradually improve with training set size in the 𝐿2 norm, but not in the 𝐻1 norm. This
makes sense, because the loss function that the CNN uses (mean squared error) is not sensitive to
mismatches in gradients (𝐻1 error).
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Figure 4.12: Comparison of GPR surrogate model against CNN surrogate model for in-distribution
and out-of-distribution performance in 𝐿2 and 𝐻1 norms. The GPR model performs with much
lower error than the CNN for these relatively small training set sizes.

4.7.7 Three-dimensional performance evaluation
This section is not included in the version of the manuscript as published on Computer Methods
in Applied Mechanics and Engineering. Here, we demonstrate an extension of the surrogate
model to three-dimensional material systems, showing a drastic increase in benefit as compared to
two-dimensional setting.

In this section, only out-of-distribution performance is evaluated. Examples of in-distribution
(training) and out-of-distribution (test) unit cells used to generate the dispersion relations in the
training sets are shown below in Fig. 4.13. The unit cell designs of both datasets are defined on
a 10 × 10 × 10 voxel grid. The in-distribution dataset unit cell designs allow an infinite number
of constituent materials (material property values are not rounded to some finite set of values),
while the out-of-distribution dataset adheres to a bimaterial design paradigm. The in-distribution
dataset unit cells also uses a longer feature lengthscale (𝑙 = 1) than the out-of-distribution dataset
(𝑙 = 0.5). Lastly, the dispersion relations of the in-distribution (training) dataset are computed at a
resolution of 11 × 11 × 6, whereas those of the out-of-distribution (test) dataset are computed at a
resolution of 21× 21× 11. The out-of-distribution (test) set contains 100 dispersion relations. Two
different sizes of training sets are used. The smaller training set contains 234 dispersion relations,
and the larger training set uses 1322 dispersion relations. The model exhibits larger efficiency
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gains than demonstrated in the two-dimensional setting. Recall that the improvement observed
in the two-dimensional setting was approximately a 7.75× speed-up factor in the best case for in-
distribution performance (whereas we are now only measuring out-of-distribution performance),
with a training set of 5000 dispersion relations. In the results shown (Fig. 4.14), the model achieves
an impressive out-of-distribution performance of a 20× speed-up as compared to traditional linear
interpolation models, with substantially fewer dispersion relation examples in the training sets than
in the two-dimensional case. These results in particular show potential for the use of this model in
the engineering of real three-dimensional materials.

In-distribution Out-of-distribution

Figure 4.13: Examples of in-distribution and out-of-distribution unit cells for the evaluation of the
GPR-dispersion model in a three-dimensional setting.

E
rr

or

Number of regression points Number of regression points
100 101 102 103 104 105

102

103

H1

100 101 102 103 104 105

102

103

L2

linear
GPR - 234 training samples
GPR - 1322 training samples

linear
GPR - 234 training samples
GPR - 1322 training samples

Figure 4.14: A comparison of the GPR-dispersion surrogate model against linear interpolation.
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4.8 Discussion
Interest in the design of multi-functional wave devices and the high computational cost of dis-
persion relation computations motivate the need for more efficient methods of dispersion relation
evaluation, including surrogate models. We have introduced a new GPR-based surrogate model for
the accelerated computation of dispersion relations over the full irreducible Brillouin zone.

The GPR model builds its covariance function from data and is able to learn from datasets that
are 2-3 orders of magnitude smaller than datasets required by the demonstrated deep learning
approaches to date. Instead of involving a typical deep learning training process, the model uses
only a simple covariance calculation to capture the data trends. The low requirement for data, along
with the avoidance of a typical training process, massively reduces the overhead cost to set up the
model, allowing the model to be more easily repurposed for new design tasks.

Because the model never directly observes the parameters governing the unit cell design, it can
seamlessly train on unit cells represented in one format (e.g. pixelated/voxelated) and subsequently
generalize its predictions to unit cells of other representations (e.g. parametric). This inherent
quality makes the model versatile, emphasizing its potential to be effectively applied across a wide
spectrum of design scenarios.

Finally, the model can supply analytically computed gradients for use with gradient-based design
optimization, along with uncertainty estimates - both highly useful tools for design tasks. For
optimization problems where deviation from the solution of the variational method cannot be
tolerated, the surrogate model can simply be used for the first several iterations of optimization and
then handed-off to a slower, but more exact dispersion evaluation method. Further, the model can
work in tandem with existing, highly specialized variational methods for dispersion computations.
We hope that by increasing the computational accessibility of full dispersion relations we will
alleviate the need for current wave analysis shortcuts and design simplifications, and enable the
design of next-generation, highly multi-functional wave devices.

A current limitation to our surrogate model is that the covariance function treats each eigenvalue
band separately, rather than considering information from all bands together to make more informed
predictions. Not only does this likely reduce the accuracy-per-regression-point of the model, but
it also means that the order in which regression points are acquired by the model is different for
each eigenvalue band, which is inconvenient for computations where multiple bands are to be con-
sidered simultaneously. As a first order improvement, this could be explored by simply expanding
the covariance function to consider the covariance between eigenfrequencies in different bands.
However, if this method is taken to the extreme, the covariance matrix that the covariance function
interpolates from can quickly become large enough to be a concern for memory requirements.4 For

4For example, if a dataset of dispersion relations has a resolution in reciprocal space of 201 × 201, the covariance
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this reason, it may be important to examine more efficient ways of storing covariance information.
For example, it may be reasonable to only consider covariance information between bands that are
within 𝑁 bands of each other. Another alternative could be to characterize the covariance function
in a compressed representation as a neural network rather than an explicit interpolation function.

Further, integration of this GPR model with existing physics-based techniques [137–144] has the
potential to enable the hyper-efficient computation of dispersion relations. This could be done
simply by using these techniques to carry out regression point computations within the GPR model,
or even to generate the training sets that are used to inform the covariance function.

Other future work may involve determining more optimal patterns for regression point sampling.
Although the current method works well, it is greedy, and more optimal acquisition functions likely
exist. For example, one may consider at each iteration selecting the point that most reduces the
variance field in some 𝐿𝑝 norm, or may even consider setting up an optimization problem to jointly
determine the optimal locations of a fixed number of regression points.

These improvements may improve the practical applicability of this surrogate model and may further
decrease the computational barrier to accessing full dispersion information, enabling exciting
advances in the design of wave devices.
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matrix is of size 40401 × 40401, occupying 13.06GB of memory when stored in double precision. This means that
if the covariance between even two bands at this resolution is considered, the resulting covariance matrix will be
80802 × 80802, occupying 52.24GB of memory.

https://github.com/aco8ogren/2D-dispersion
https://github.com/aco8ogren/2D-dispersion-GPR
https://github.com/aco8ogren/3D-dispersion-matlab
https://github.com/aco8ogren/3D-dispersion-GPR
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4.10 Supplementary information
The following sections give supplementary information for this chapter, including details on how
random designs were generated, the architecture and training of the CNN that GPR-dispersion
was compared to, and a mathematical derivation of the gradients used for design optimization of
dispersion relations in the context of the finite element method.

4.10.1 Generation of random designs
One dimension
We generate random 1-D unit cell designs with material properties that vary smoothly except at
interfaces where the material properties are allowed to be discontinuous. To accomplish this, we
draw the exponents of the material properties from a Gaussian process (distinct from the Gaussian
process used for regression) using a Matérn covariance function modified to have block-diagonal
support. The Matérn covariance structure allows us to impose smoothness semiglobally over the
unit cell, while the block diagonal support allows for the interfaces of discontinuity in material
property values.

Two dimensions
To generate a random design, we draw a random function from the constitutive Gaussian process
(described in section 4.7.2) at the resolution determined by 𝑁𝑝𝑖𝑥 . We use a mean function of
𝑚(𝑥) = 0.5 for the constitutive Gaussian process. Any values below 0 or above 1 are trimmed to
0 and 1 respectively. Finally, each pixel’s value is rounded to the nearest of 𝑁𝑚𝑎𝑡 equally spaced
values between 0 and 1. The material properties of each pixel are then linearly interpolated between
the maximum and minimum constitutive property values.

4.10.2 CNN description
Recall that each unit cell is 32 × 32 pixels, and each pixel has its own elastic modulus, density, and
poisson ratio. Therefore each unit cell can be represented by a constitutive array, 𝐴𝑐𝑜𝑛𝑠𝑡 , of size
32 × 32 × 3. To form the CNN input array, we concatenate 𝐴𝑐𝑜𝑛𝑠𝑡 with two more matrices, 𝛾𝑥 and
𝛾𝑦, which are matrices of size 32×32 with all elements equal to the x and y wavevector components
respectively. The input array, 𝑋𝐶𝑁𝑁 , has size 32 × 32 × 5. The output array, 𝑦𝐶𝑁𝑁 , is a vector
of length 10 containing the 10 lowest eigenfrequencies corresponding to the given unit cell and
wavevector. For model architecture, we borrow from Finol et al. [84]. The model architecture is as
follows: an input layer matching the size of the input, followed by two Conv2D ReLU layers with
275 filters of size 2 × 2, followed by a MaxPooling2D layer of size 2 × 2, followed by a flattening
layer (to transition to fully connected layers), followed by two fully connected ReLU layers each
with 500 nodes, finally followed by the output layer of size 10.
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4.10.3 Derivation of gradients for optimization of dispersion relations
In order to optimize the dynamic properties of material designs, we need to be able to efficiently
compute the gradient of those properties with respect to design variables. To do this, we start with
the generalized eigenvalue equation used for dispersion analysis of periodic materials.

(𝐾 (𝛾) − 𝜇𝑀)𝑢 = 0 (4.26)

Note that, due to the hermitian symmetry of 𝐾 and 𝑀 , the following is also true (and will be used
later).

𝑢∗(𝐾 (𝛾) − 𝜇𝑀) = 0 (4.27)

where ∗ denotes conjugate transpose.

By taking a gradient with respect to a generic variable 𝜃, we obtain Eq. 4.28. For now, consider 𝜃
to be a scalar. To generalize to vector 𝜃 (possibly as a design vector or a wavevector), simply repeat
these computations for each entry of 𝜃. The product rule is used here.

𝜕𝐾

𝜕𝜃
𝑢 − 𝜕𝜇

𝜕𝜃
𝑀𝑢 − 𝜇𝜕𝑀

𝜕𝜃
𝑢 + (𝐾 − 𝜇𝑀) 𝜕𝑢

𝜕𝜃
= 0 (4.28)

There are two things that can be done with this equation. First, if we only want the gradient of the
eigenvalue with respect to a design vector, we can left-multiply Eq. 4.28 by 𝑢∗. Then, applying Eq.
4.27, we can see that

𝜕𝜇

𝜕𝜃
= 𝑢∗( 𝜕𝐾

𝜕𝜃
− 𝜇𝜕𝑀

𝜕𝜃
)𝑢 (4.29)

Alternatively, if the gradient of the eigenvector 𝑢 is also desired, Eq. 4.28 can be rearranged to

(𝐾 − 𝜇𝑀) 𝜕𝑢
𝜕𝜃

− 𝜕𝜇

𝜕𝜃
𝑀𝑢 = −( 𝜕𝐾

𝜕𝜃
− 𝜇𝜕𝑀

𝜕𝜃
)𝑢 (4.30)

If 𝜃 ∈ R and 𝐾, 𝑀 ∈ R𝑛, then this system has 𝑛 equations but 2𝑛 unknowns (or in general if
𝜃 ∈ R𝑑 , and 𝐾, 𝑀 ∈ R𝑛, then this system has 𝑛𝑑 equations but 𝑛(𝑑 +1) unknowns). This is because
eigenvectors are only determined up to their scale. To provide the extra 𝑛 equations required to
solve, we can use an eigenvector normalization equation. It’s standard to normalize eigenvectors
by their mass matrix.

𝑢∗𝑀𝑢 = 1 (4.31)



83

By differentiating, we arrive at

𝜕 (𝑢∗)
𝜕𝜃

𝑀𝑢 + 𝑢∗ 𝜕𝑀
𝜕𝜃

𝑢 + 𝑢∗𝑀𝜕𝑢

𝜕𝜃
= 0

( 𝜕𝑢
𝜕𝜃

)∗𝑀𝑢 + 𝑢∗ 𝜕𝑀
𝜕𝜃

𝑢 + 𝑢∗𝑀𝜕𝑢

𝜕𝜃
= 0

( 𝜕𝑢
𝜕𝜃

)∗𝑀𝑢 + 𝑢∗𝑀𝜕𝑢

𝜕𝜃
= −𝑢∗ 𝜕𝑀

𝜕𝜃
𝑢 (4.32)

If our eigenvector 𝑢 were purely real, we could say:

( 𝜕𝑢
𝜕𝜃

)𝑇𝑀𝑢 = (( 𝜕𝑢
𝜕𝜃

)𝑇𝑀𝑢)𝑇 = 𝑢𝑇𝑀
𝜕𝑢

𝜕𝜃

This would make Eq. 4.32 easy to rewrite so that the unknowns on the LHS only receive operations
from the left.

Then we could solve


𝐾 − 𝜇𝑀 −𝑀𝑢

−𝑢𝑇𝑀 0


{

𝜕𝑢
𝜕𝜃
𝜕𝜇

𝜕𝜃

}
=

{
−

(
𝜕𝐾
𝜕𝜃

− 𝜇 𝜕𝑀
𝜕𝜃

)
𝑢

1
2𝑢
𝑇 𝜕𝑀
𝜕𝜃
𝑢

}
(4.33)

However, in this case, our Bloch-Floquet periodic boundary conditions cause our eigenvector 𝑢 to
be complex, so in general

( 𝜕𝑢
𝜕𝜃

)∗𝑀𝑢 ≠ (( 𝜕𝑢
𝜕𝜃

)∗𝑀𝑢)∗ = 𝑢∗𝑀𝜕𝑢

𝜕𝜃
(4.34)

and therefore

( 𝜕𝑢
𝜕𝜃

)∗𝑀𝑢 = (𝑢∗𝑀𝜕𝑢

𝜕𝜃
)∗ (4.35)

By substituting Eq. 4.35 into Eq. 4.32, we can arrive at

(𝑢∗𝑀𝜕𝑢

𝜕𝜃
)∗ + 𝑢∗𝑀𝜕𝑢

𝜕𝜃
= −𝑢∗ 𝜕𝑀

𝜕𝜃
𝑢 (4.36)
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In other words,

2 Re
[
𝑢∗𝑀

𝜕𝑢

𝜕𝜃

]
= −𝑢∗ 𝜕𝑀

𝜕𝜃
𝑢 (4.37)

And there is no constraint on the imaginary component. In other words,

Im
[
𝑢∗𝑀

𝜕𝑢

𝜕𝜃

]
= anything (4.38)

To solve this, I can break up the imaginary and real equations, and write them individually. This
turns 3 complex equations into 5 real equations. The reason I don’t obtain 6 real equations from
the 3 complex equations (as one may expect) is that Eq. 4.36 actually only provides one real
equation (note that of Eqs. 4.37, 4.38, only Eq. 4.37 tells us something useful). Luckily, because
our eigenvectors are complex, they not only need a constraint in magnitude, but also in complex
angle. Note that if 𝑢 is an eigenvector, then 𝑢𝑅𝑒𝑖𝛽 is also an eigenvector for any 𝑅, 𝛽 ∈ R. In other
words, the eigenvector can be multiplied by any complex scalar, and still be an eigenvector. For
this reason, we not only need to constrain the magnitude of 𝑢 (as we have done with Eq. 4.31), we
also need to constrain the complex angle of the entries of 𝑢. To do this, we can simply enforce that
the first entry of 𝑢 is purely real. This can be written as

Im
[
𝜕𝑢

𝜕𝜃

]
= 0 (4.39)

Finally, we convert Eq. 4.37 into a form conducive to being encoded into a matrix by noting that

Re
[
𝑢∗𝑀

𝜕𝑢

𝜕𝜃

]
= Re [𝑢∗𝑀] Re

[
𝜕𝑢

𝜕𝜃

]
− Im [𝑢∗𝑀] Im

[
𝜕𝑢

𝜕𝜃

]
(4.40)

Finally, we can combine Eqs. 4.30, 4.37, 4.39 to write the following matrix equation.
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

Re[𝐾 − 𝜇𝑀] − Im[𝐾 − 𝜇𝑀] Re [−𝑀𝑢] − Im[−𝑀𝑢]

Im[𝐾 − 𝜇𝑀] Re[𝐾 − 𝜇𝑀] Im [−𝑀𝑢] Re [−𝑀𝑢]

Re [𝑢∗𝑀] − Im [𝑢∗𝑀] 0 0

0 · · · 0 1 0 · · · 0 0 0





Re[ 𝜕𝑢
𝜕𝜃
]

Im[ 𝜕𝑢
𝜕𝜃
]

Re[ 𝜕𝜇
𝜕𝜃
]

Im[ 𝜕𝜇
𝜕𝜃
]



=



Re[−
(
𝜕𝐾
𝜕𝜃

− 𝜇 𝜕𝑀
𝜕𝜃

)
𝑢]

Im[−
(
𝜕𝐾
𝜕𝜃

− 𝜇 𝜕𝑀
𝜕𝜃

)
𝑢]

Re[ 1
2𝑢

∗ 𝜕𝑀
𝜕𝜃
𝑢]

0


(4.41)

Now, let’s say we want to optimize the group velocity of a wave. The group velocity is the gradient
of the frequency, 𝜔, with respect to the wavevector, 𝛾. As with 𝜃, it is helpful to think of 𝛾 as a
scalar initially, then generalize to vector 𝛾 by repeating the computation for each component of the
wavevector. First, we know from Eq. 4.29 that the gradient of the eigenvalue, 𝜔2, with respect to
the wavevector, 𝛾, for a given branch and wavevector can be determined by

𝜕𝜇

𝜕𝛾
= 𝑢∗( 𝜕𝐾

𝜕𝛾
− 𝜇𝜕𝑀

𝜕𝛾
)𝑢 (4.42)

Note that Eq. 4.42 gives 𝜕𝜔2

𝜕𝛾
, and does not directly give the group velocity, which is 𝜕𝜔

𝜕𝛾
. To obtain

the group velocity, we can use the chain rule. Consider two functions 𝑓 (𝛾) and 𝑔(𝛾), such that
𝑓 (𝛾) = 𝑔(𝛾)2.

𝑔(𝛾) =
√︁
𝑓 (𝛾)

𝜕𝑔(𝛾)
𝜕𝛾

=
1
2
𝑓 −

1
2
𝜕 𝑓

𝜕𝛾
(4.43)

Letting 𝑓 (𝛾) = 𝜇 = 𝜔2 (so 𝑔(𝛾) = 𝜔), we arrive at

𝜕𝜔

𝜕𝛾
=

1
2𝜔

𝜕𝜇

𝜕𝛾
(4.44)

Using Eq. 4.42, 4.44, we can write an analytical equation to compute the group velocity.

𝜕𝜔

𝜕𝛾
=

1
2𝜔
𝑢∗( 𝜕𝐾

𝜕𝛾
− 𝜇𝜕𝑀

𝜕𝛾
)𝑢 (4.45)
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Note that this same equation can be used to compute the design sensitivity of the eigenfrequency,
𝜔, (in contrast to Eq. 4.29, which computes the gradient of the eigenvalue, 𝜇).

𝜕𝜔

𝜕𝜃
=

1
2𝜔
𝑢∗( 𝜕𝐾

𝜕𝜃
− 𝜇𝜕𝑀

𝜕𝜃
)𝑢 (4.46)

By taking the gradient of Eq. 4.42 with respect to a design vector, we can aim to obtain the design
sensitivity that would be used for a gradient-based optimization of group velocity.

First, to simplify notation, define the matrix 𝐴 as follows.

𝐴 =
𝜕𝐾

𝜕𝛾
− 𝜇𝜕𝑀

𝜕𝛾
(4.47)

Substituting into Eq. 4.45 shows

𝜕𝜔

𝜕𝛾
=

1
2𝜔
𝑢∗𝐴𝑢 (4.48)

Next, take the gradient with respect to a design vector, 𝜃.

𝜕

𝜕𝜃

[
𝜕𝜔

𝜕𝛾

]
=
𝜕2𝜔

𝜕𝜃𝜕𝛾
=
𝜕

𝜕𝜃

[
1

2𝜔

]
𝑢∗𝐴𝑢

+ 1
2𝜔

𝜕𝑢

𝜕𝜃

∗
𝐴𝑢

+ 1
2𝜔
𝑢∗
𝜕𝐴

𝜕𝜃
𝑢

+ 1
2𝜔
𝑢∗𝐴

𝜕𝑢

𝜕𝜃

(4.49)

Next, let’s note how to find some of the quantities needed to use Eq. 4.49.

• 𝜕
𝜕𝜃

[ 1
2𝜔

]
= − 1

2𝜔2
𝜕𝜔
𝜕𝜃

= − 1
2𝜔2

1
2𝜔𝑢

∗
(
𝜕𝐾
𝜕𝜃

− 𝜇 𝜕𝑀
𝜕𝜃

)
𝑢 = − 1

4𝜔3𝑢
∗
(
𝜕𝐾
𝜕𝜃

− 𝜇 𝜕𝑀
𝜕𝜃

)
𝑢

• 𝜕𝑢
𝜕𝜃

can be found by solving the linear system given by Eq. 4.41.

• 𝜕𝐴
𝜕𝜃

= 𝜕
𝜕𝜃

[
𝜕𝐾
𝜕𝛾

− 𝜇 𝜕𝑀
𝜕𝛾

]
= 𝜕2𝐾

𝜕𝜃𝜕𝛾
− 𝜕𝜇

𝜕𝜃
𝜕𝑀
𝜕𝛾

− 𝜇 𝜕2𝑀
𝜕𝜃𝜕𝛾

As for computing the derivatives of the system matrices 𝐾, 𝑀 , we can recall that they are con-
structed by applying wavevector-dependent transformation matrices to design-dependent full system
matrices 𝐾 𝑓 , 𝑀 𝑓 .
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𝐾 (𝜃, 𝛾) = 𝑇∗(𝛾)𝐾 𝑓 (𝜃)𝑇 (𝛾)
𝑀 (𝜃, 𝛾) = 𝑇∗(𝛾)𝑀 𝑓 (𝜃)𝑇 (𝛾)

(4.50)

𝐾 = 𝑇∗𝐾 𝑓𝑇

𝑀 = 𝑇∗𝑀 𝑓𝑇
(4.51)

𝜕𝐾

𝜕𝛾
=
𝜕𝑇

𝜕𝛾

∗
𝐾 𝑓𝑇 + 𝑇∗𝐾 𝑓

𝜕𝑇

𝜕𝛾

𝜕𝑀

𝜕𝛾
=
𝜕𝑇

𝜕𝛾

∗
𝑀 𝑓𝑇 + 𝑇∗𝑀 𝑓

𝜕𝑇

𝜕𝛾

(4.52)

𝜕𝐾

𝜕𝜃
= 𝑇∗ 𝜕𝐾 𝑓

𝜕𝜃
𝑇

𝜕𝑀

𝜕𝜃
= 𝑇∗ 𝜕𝑀 𝑓

𝜕𝜃
𝑇

(4.53)

𝜕2𝐾

𝜕𝜃𝜕𝛾
=
𝜕𝑇

𝜕𝛾

∗ 𝜕𝐾 𝑓

𝜕𝜃
𝑇 + 𝑇∗ 𝜕𝐾 𝑓

𝜕𝜃

𝜕𝑇

𝜕𝛾

𝜕2𝑀

𝜕𝜃𝜕𝛾
=
𝜕𝑇

𝜕𝛾

∗ 𝜕𝑀 𝑓

𝜕𝜃
𝑇 + 𝑇∗ 𝜕𝑀 𝑓

𝜕𝜃

𝜕𝑇

𝜕𝛾

(4.54)
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Chapter preface
This chapter marks a change of focus of this thesis, pivoting from the first main focus (data-driven
surrogate modeling of elastodynamic systems) to the second main focus of study during my PhD:
inference problems for elastodynamic systems. Wave propagation and vibration phenomena are
used extensively to evaluate and characterize the interiors of objects. This is tremendously useful
in medical situations, for example, to more precisely navigate delicate biological structures with
ultrasound-guided inverventions. In seismology, these concepts are used to assess the mechanical
state of different regions of soil to advise construction and earthquake engineering. In many
applications of elastodynamic imaging techniques, sensors such as accelerometers or piezoelectric
transducers are placed directly on the surface of the system being characterized in order to collect
data for inference. However, there are many applications where it may not be feasible to outfit a
system with a full set of sensors. Here, we explore a low-data approach to this problem, using only
visual observations of the object under excitation to characterize the otherwise-unseen features of
its interior.

This chapter introduces Visual Vibration Tomography (VVT), a method to mechanically character-
ize the full three-dimensional volume of an object by observing the vibration of the object through
monocular video. The method extracts sub-pixel motions from the video to understand partial
information about the the vibrational modes of the object, then uses optimization to converge on
a physics-based model that best explains the modal observations. VVT is tested extensively in
simulated experiments to understand the accuracy and limits of the approach, and demonstrates a

https://doi.org/10.1109/CVPR52688.2022.01575
https://doi.org/10.1109/CVPR52688.2022.01575
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real-world proof-of-concept in the characterization of two-dimensional inhomogeneous membrane
systems and three-dimensional inhomogeneous solid systems.

Input Video Extract Modal Motion

mode @ 39.33 Hz

mode @ 5.52 Hz

Extract Motion Field Sample Mesh Points Recover Material Properties

mode @ 5.52 Hz

mode @ 39.33 Hz

horizontal disp.
(frame t)

vertical disp.
(frame t)
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Figure 5.1: Method overview. Starting with a video showing vibration of an object, we extract
the motion fields across time and then decompose this motion into image-space modes. From the
image-space modes sampled at visible mesh points, we are able to recover a voxelized volume of
the Young’s modulus and density throughout the interior of the object.

5.1 Abstract
An object’s interior material properties, while invisible to the human eye, determine motion ob-
served on its surface. We propose an approach that estimates heterogeneous material properties of
an object from a monocular video of its surface vibrations. Specifically, we show how to estimate
Young’s modulus and density throughout a 3D object with known geometry. Knowledge of how
these values change across the object is useful for simulating its motion and characterizing any
defects. Traditional non-destructive testing approaches, which often require expensive instruments,
generally estimate only homogenized material properties or simply identify the presence of defects.
In contrast, our approach leverages monocular video to (1) identify image-space modes from an
object’s sub-pixel motion, and (2) directly infer spatially-varying Young’s modulus and density
values from the observed modes. We demonstrate our approach on both simulated and real videos.

5.2 Introduction
The subtle motions of objects around us are clues to their physical properties. Among such
properties are stiffness and density, which dictate how an object will respond to environmental
forces. As humans, we can vaguely characterize how stiff or heavy a material is, such as when
we infer that a rubber basketball will bounce higher than a ceramic bowling ball by tapping on its
surface. Most engineering applications, however, require a greater level of detail, such as when an
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aeronautical engineer must faithfully simulate how an airplane wing will react to wind turbulence.
In computer vision and graphics, a full characterization of an object’s material properties allows
one to faithfully simulate its behavior. These scenarios require non-destructive testing to obtain
physical properties of the object without altering it.

We propose visual vibration tomography, a method to estimate material properties of an object
directly from vibration signals extracted from monocular video. Much of non-destructive testing
(NDT) has focused on measuring vibrations to identify the presence of defects in structures with
a known geometry. However, NDT tools are not generally used to determine the precise spatial
distribution of physical properties in objects with a heterogeneous interior structure.

We show that we can measure vibrations as sub-pixel motion in 2D video and then use this motion
to constrain 3D material-property estimation. Videos have several advantages over existing NDT
techniques: while contact sensors and laser vibrometers take point measurements, videos offer
spatially dense measurements of surface vibrations. While laser vibrometers are expensive and
specialized, cameras are ubiquitous and general-purpose. While existing image-based techniques
require stereo cameras for 3D motion tracking, our method shows that in many cases, a monocular
view is all you need.

Our motivating insight is that, under fixed geometry, an object’s material properties determine its
motion. The inverse direction is also true: motion determines material properties up to a scaling
factor. If the motion is small, it can be decomposed into independent modes at natural frequencies,
lending itself to a concise mathematical equation linking modes and material properties. This link
lays the foundation for our physics-constrained optimization approach. The key challenge of our
task is to deal with incomplete and 2D (as opposed to full-field) modes. Despite these challenges,
we show that we can estimate material properties from image-space motion and recover full-field
modes.

In this paper, we first review related work and the theoretical relationship between modes and
material properties. We then show how to extract image-space modes from video and recover
material properties (Fig. 5.1 shows an overview of the method). We demonstrate our approach on
simulated data of 3D geometries and discuss the effects of damping and model mismatch. Finally,
we present proof-of-concept experiments on real data, showing that we are able to image the shape
of unseen material inhomogeneities on drum heads and the presence of a defect in a real 3D Jello
cube. These experiments demonstrate promise for the future of the approach in more challenging
environments. 1

1Project website: http://imaging.cms.caltech.edu/vvt

http://imaging.cms.caltech.edu/vvt
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5.3 Related Work
5.3.1 Material Analysis from Images and Video
In computer vision, scene understanding is an important goal that includes, among many tasks,
characterization of materials. Previous work has estimated material categories [157–159] and
surface properties [160, 161] from images. In contrast to static images, videos have been used to
estimate material properties, although these are often restricted to specific object categories, such
as fabrics [162–166] and trees [167]. Other work has inferred material properties from 3D point
clouds [168, 169] and known external forces [170], but such measurements are harder to obtain than
a 2D video. “Visual vibrometry” [171, 172] uses a video’s motion spectrum to estimate stiffness
and damping of fabrics and rods. This is a promising step towards a general approach for estimating
material properties, but it is restricted to homogenized properties. In a similar vein, others have
used video data to identify structural modes [173–175]. Davis et al. demonstrated how to visualize
image-space modes and use them for plausible simulation [176, 177].

5.3.2 Traditional NDT
Non-destructive testing (NDT) is an umbrella term for any technique that collects data of a material
or structure without damaging it. Usually, the goal is to identify defects or material inconsistencies
that would change the expected behavior of the object. Laser vibrometry [178] and digital image
correlation (DIC) [179] are popular tools for measuring surface displacements. Laser vibrometry
has been used to examine the integrity of building structures [180, 181] and materials [182, 183].
DIC also has been used to identify defects in 2D structures [184–188]. Both laser vibrometry [189,
190] and DIC [191, 192] can be used for modal analysis, which involves identifying modal fre-
quencies and shapes of a structure. While usually regarded as a verification tool rather than a
means to directly infer material properties, recovered modal information has been used to solve
for homogenized material properties [171, 193]. However, to our knowledge, modal analysis has
not been used to solve the more challenging inverse problem of quantifying the heterogeneous
properties addressed in this paper.

5.4 Background
5.4.1 Modal Analysis
Every object has resonant, or natural, frequencies. At each resonant frequency, the object vibrates
periodically in a particular shape, called a mode. The vibration of a linear elastic object can be
decomposed into independent modes.

In the finite element method (FEM), we model an object as a mesh, composed of elements that each
take on material-property values. The mechanical properties that determine an object’s vibration
are Young’s modulus (𝐸), Poisson’s ratio (𝜈), and density (𝜌). 𝐸 and 𝜈 define the stiffness of
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connections between vertices, while 𝜌 defines the mass distribution. In this discretized model, the
𝑛×𝑛 stiffness matrix 𝐾 describes the stiffness between each pair of 𝑛 total DOFs, and the 𝑛×𝑛mass
matrix 𝑀 describes the mass concentrated between each pair of DOFs. A mode 𝑢 and frequency
𝜔 are an eigenvector-eigenvalue solution of the generalized eigenvalue problem:

𝐾𝑢 = 𝜔2𝑀𝑢. (5.1)

As Fig. 5.2 illustrates, a small change in material properties (within a fixed geometry) results in
a small change in modal motion. As most solid materials have Poisson’s ratio ≈ 0.3 [194], the
principal properties affecting motion are Young’s modulus, which determines𝐾 , and density, which
determines 𝑀 . Our method is based on the insight that mode shapes on the surface of an object
may reveal internal spatial inhomogeneities in these properties.
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Figure 5.2: Small changes in material properties affect motion. Here a small region of a circular
membrane becomes stiffer from “Original” to “Original + Defect.” This change appears as a slight
change in the mode shown. We propose using small changes in observed modal motion to recover
the locations and shapes of defects.

5.4.2 Challenge of Monocular Material Estimation
We begin by setting up a simplified version of the inverse problem. Assuming we perfectly measure
all modes 𝑢 and frequencies 𝜔, then by Eq. 5.1, we have the following minimization problem:

𝐾∗, 𝑀∗ = arg min
𝐾,𝑀

∥𝐾𝑈 − 𝑀𝑈Λ∥2
2 , (5.2)

where 𝑈 is the matrix whose columns are modes 𝑢, and Λ is the diagonal matrix containing
eigenvalues 𝜔2. For a known geometry, this is a convex problem with respect to 𝐾 and 𝑀 .
However, Eq. 5.2 requires that we have access to all 3D modes and frequencies. In contrast, we will
be working with experimentally-observed, image-space modes, incurring the following challenges:

1. Unseen degrees of freedom (DOFs). We typically only observe a fraction of an object. For



93

example, when observing a 3D cube with a monocular camera, one can see at most three of
its sides, projected onto two directions of motion. Consider an 8x8x8 cubic mesh, which
has (8 + 1)3 = 729 vertices. With three directions of motion, it has 3 × 729 = 2187 total
DOFs. But a single monocular view of three sides of the cube can only observe 217 vertices,
moving in two directions of motion, amounting to 2 × 217 = 434 image-space DOFs. This
alone limits us to observing fewer than 20% of the full-field DOFs for an 8x8x8 cube.

2. Unseen modes. Theoretically, for discrete meshes, there are as many modes as there are
DOFs. However, we can only capture modes at frequencies below the Nyquist sampling rate
of the camera, which is FPS/2.

3. Noise. Aside from camera noise, there is noise from motion extraction, particularly in
non-textured regions.

Due to limited data, the problem of solving for 𝐾 and 𝑀 (Eq. 5.2) is ill-posed.2 As Fig. 5.3 shows,
observed data typically accounts for a tiny fraction of the matrices involved.
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Figure 5.3: The generalized eigenvalue equation (Eq. 5.1) defines the relationship between 𝐾 , 𝑀
and 𝑈, 𝜔2. The matrix 𝑈 has columns corresponding to modes and rows corresponding to DOFs.
The vector 𝜔2 contains associated eigenvalues. We would like to solve for 𝐾 and 𝑀 given partial
information about𝑈 and 𝜔2.

5.5 Approach
Our aim is to use motion features from a video to estimate material properties. This involves two
stages: (1) motion extraction and image-space mode identification, and (2) solving for material
properties that best match the observed image-space modes. The input is a video of an object,
of which a mesh is known, and we assume that it is vibrating under linear elasticity (i.e., small
motion). The output is two 3D images showing voxelized Young’s modulus and density values
throughout the object.

2For a known geometry and complete mode and eigenvalue information, 𝐾 and 𝑀 are fully determined up to a
scaling factor.
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5.5.1 Extracting Image-Space Modes from Video
Motion extraction: Since our approach relies on small, often imperceptible, motions, we need a
way to extract sub-pixel motions from video. To quantify the displacements, we use the phase-
based approach of Wadwha et al. [195], which computes local phase shifts in a complex steerable
pyramid [196–198]. This method has the advantage over other tracking methods (e.g., optical
flow) of being robust to tiny motion, down to 0.001 pixel [171]. The phase shifts are converted to
pixel displacements using the approach proposed by Fleet and Jepson [199, 200]. To increase the
signal-to-noise ratio, we filter out outlier pixels (i.e., top 1% of displacement magnitudes) and then
apply an amplitude-weighted Gaussian blur. The result of this step is a motion field for each frame,
which quantifies the horizontal and vertical displacement at each pixel relative to the first frame.

Identifying image-space modes: Modes are simply periodic motions occurring at particular
frequencies, so we would expect them to appear as peaks in the power spectrum of motion amplitude.
As is done in previous work that extracts image-space modes [172, 176, 177], we perform a discrete
Fourier transform on the motion fields to analyze them in frequency space. To make this more
concrete, let Δ𝑥𝑡 (𝑥, 𝑦) and Δ𝑦𝑡 (𝑥, 𝑦) be the horizontal and vertical displacements, respectively,
at each pixel (𝑥, 𝑦) at frame 𝑡. The 1D FFT across time of these displacement fields results in
complex-valued Δ̂𝑥ℓ (𝑥, 𝑦) and Δ̂𝑦ℓ (𝑥, 𝑦), corresponding to frequencies 𝑓ℓ = (FPS · ℓ/𝑇) Hz for

ℓ ∈ [1, 𝑇]. The motion power at frequency 𝑓ℓ is then defined as



[Δ̂𝑥ℓ, Δ̂𝑦ℓ]


2

2
(dropping (𝑥, 𝑦)

notation for clarity). A peak ℓ∗ in the power spectrum ideally corresponds to a natural frequency
𝑓ℓ∗ and image-space mode given by

[
Re

(
Δ̂𝑥ℓ∗

)
,Re

(
Δ̂𝑦ℓ∗

)]
.

Sampling image-space modes at mesh vertices: To approximate the 3D-to-2D projection matrix,
a user manually identifies the pixel locations of several “reference” mesh vertices, and 𝑃 is the
projection matrix that best maps the corresponding mesh coordinates to the image. Using 𝑃, we
map all of the mesh vertices from their 3D coordinates to 2D image coordinates. We then sample
each image-space mode at the pixel locations of visible mesh vertices. For mode 𝑗 , we construct
a vector 𝛾 𝑗 that contains the horizontal and vertical displacements of each mesh vertex at the
corresponding natural frequency. Supposing we observe 𝑞′ out of 𝑞 mesh vertices, the vector 𝛾 𝑗
has the form

𝛾 𝑗 =
[
Δ𝑥1,Δ𝑦1, . . . ,Δ𝑥𝑞′,Δ𝑦𝑞′, 0, . . . , 0

]⊺ ∈ R2𝑞, (5.3)

where Δ𝑥𝑖 is the horizontal (pixel) displacement and Δ𝑦𝑖 the vertical (pixel) displacement of vertex
𝑖. Unseen vertices are assigned displacements of 0, and for notational clarity, we position them at
the end of the vector.
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5.5.2 Estimating Material Properties
The matrices 𝐾 and 𝑀 are functions of Young’s modulus and density. While typically expressed
as global matrices, they can be decomposed into local matrices, which scale linearly with local
material properties. As a result, 𝐾 and 𝑀 can each be written as a weighted sum of “unit” local
matrices. Specifically, we voxelize the volume containing the mesh so that each voxel contains a
sub-collection of mesh elements. Given Young’s modulus 𝑤𝑒 and density 𝑣𝑒 for each voxel, we
express the global matrices as

𝐾 =

𝑚∑︁
𝑒=1

𝑤𝑒𝐾𝑒 and 𝑀 =

𝑚∑︁
𝑒=1

𝑣𝑒𝑀𝑒, (5.4)

where 𝐾𝑒 and 𝑀𝑒 are “unit” local stiffness and mass matrices, which we assemble using
FEniCS [201], and 𝑚 is the number of voxels. This allows us to represent 𝐾 and 𝑀 as functions of
vectors 𝑤, 𝑣 ∈ R𝑚.

5.5.2.1 Optimization Formulation

Data-matching objective: Suppose we have 𝑘 modal observations, where 𝛾̂𝑖 and 𝜔𝑖 are the 𝑖-
th observed image-space mode and natural frequency, respectively. We would like to determine
the voxel-wise Young’s modulus values 𝑤 and density values 𝑣 that, when assembled into global
stiffness and mass matrices, result in 3D modes 𝑢1, . . . , 𝑢𝑘 that agree with 𝛾̂1, . . . , 𝛾̂𝑘 when projected
onto image-space. Since we do not know the full-field 3D modes, we need to include them as
decision variables. Intuitively, the data-matching objective is to minimize ∥𝑃𝑢𝑖 − 𝛾̂𝑖∥ for each 𝑖.

Regularization: To make the solution well-defined, we choose to minimize total squared variation
(TSV) of 𝑤 and 𝑣, which encourages spatial smoothness. Moreover, since we are estimating both
stiffness and mass, the objective function can become arbitrarily low if we do not constrain the
range of material-property values; this is because scaling 𝐾 and 𝑀 by a factor of 𝑠 still satisfies
the generalized eigenvalue equation: (𝑠𝐾)𝑢 = 𝜔2(𝑠𝑀)𝑢. To resolve this ambiguity, we choose to
minimize the deviation of 𝑤 from a mean value 𝑤̄. Regardless of 𝑤̄, the relative differences in 𝑤∗,
𝑣∗ will not change, and for defect characterization, we generally only care about relative changes.
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The resulting optimization problem is written as

𝑤∗, 𝑣∗ = arg min
𝑤,𝑣∈R𝑚
𝐾,𝑀∈R𝑛×𝑛

𝑢𝑖 ∈R𝑛 ,𝑖=1,...,𝑘

{
𝛼𝑢

2𝑘

𝑘∑︁
𝑖=1

∥𝑃𝑢𝑖 − 𝛾̂𝑖 ∥2
2 (5.5)

+ 𝛼𝑤
2𝑚



∇2𝑤


2

2 +
𝛼𝑣

2𝑚


∇2𝑣



2
2 +

(
𝑚∑︁
𝑒=1

𝑤𝑒/𝑚 − 𝑤̄
)2 }

s.t. 𝐾 =

𝑚∑︁
𝑒=1

𝑤𝑒𝐾𝑒, 𝑀 =

𝑚∑︁
𝑒=1

𝑣𝑒𝑀𝑒,

𝐾𝑢𝑖 = 𝜔
2
𝑖𝑀𝑢𝑖 , 𝑖 = 1, . . . , 𝑘,

where 𝛼𝑢, 𝛼𝑤, and 𝛼𝑣 are hyperparameters that balance the objective terms. The effects of the
regularization weights (𝛼𝑤 and 𝛼𝑣) are discussed in the supplementary material.

5.5.2.2 Optimization Strategy

As defined in Eq. 5.6, we approximately solve Eq. 5.5 via a dual formulation of the problem. The
eigen-constraints in Eq. 5.5 are too strict to enforce directly, so we incorporate them as quadratic
penalties in the dual problem. The weight of each penalty term is a dual variable, 𝑦𝑖, and we apply
dual ascent to gradually increase these penalty weights.

𝑤∗, 𝑣∗ = arg min
𝑤,𝑣∈R𝑚
𝐾,𝑀∈R𝑛×𝑛

𝑢𝑖 ∈R𝑛 ,𝑖=1,...,𝑘

{
1

2𝑘

𝑘∑︁
𝑖=1

𝑦𝑖


𝐾𝑢𝑖 − 𝜔2

𝑖𝑀𝑢𝑖


2

2 (5.6)

+ 𝛼𝑢
2𝑘

𝑘∑︁
𝑖=1

∥𝑃𝑢𝑖 − 𝛾̂𝑖 ∥2
2

+ 𝛼𝑤
2𝑚



∇2𝑤


2

2 +
𝛼𝑣

2𝑚


∇2𝑣



2
2 +

(
𝑚∑︁
𝑒=1

𝑤𝑒/𝑚 − 𝑤̄
)2 }

s.t. 𝐾 =

𝑚∑︁
𝑒=1

𝑤𝑒𝐾𝑒, 𝑀 =

𝑚∑︁
𝑒=1

𝑣𝑒𝑀𝑒 .

Eq. 5.6 is a non-convex problem, but it is quadratic with respect to 𝑤, 𝑣 for fixed 𝑢𝑖, and it is
quadratic with respect to 𝑢𝑖 for fixed 𝑤, 𝑣. Our procedure is to iteratively compute the closed-form
solution for 𝑈 = [𝑢1 . . . 𝑢𝑘 ] and then 𝑧 = [𝑤⊺, 𝑣⊺]⊺, thereby minimizing the objective function at
each step. We update the dual variables according to

𝑦𝑡+1
𝑖 = 𝑦𝑡𝑖 + 𝜂



𝐾 𝑡+1𝑢𝑡+1
𝑖 − 𝜔2

𝑖𝑀
𝑡+1𝑢𝑡+1

𝑖




2 , (5.7)

where 𝜂 > 0 is the dual-variable update rate. Once the decision variables have converged, we
output the minimizing solution 𝑧∗ = [𝑤∗⊺, 𝑣∗⊺]⊺. 𝑤∗ and 𝑣∗ are the voxel-wise estimated Young’s
modulus and density values.
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5.6 Simulated Experiments
We test our approach on the simulated vibration of 3D cubes with “defects," and we discuss the
practical concerns of complex geometries, model mismatch, and damping.

5.6.1 Creating Synthetic Data
Cube model: We model a cube as a 10x10x10 hexahedral mesh, similar to a voxel grid. Each of
the 1000 voxels is assigned a Young’s modulus and density that correspond to either the primary
material or a defect material. The material properties are chosen to resemble Jello and clay,
respectively (𝐸jello = 9000 Pa, 𝜌jello = 1270 kg/m3, 𝐸clay = 5 × 106 Pa, 𝜌clay = 7620 kg/m3). We
set a homogeneous Poisson’s ratio of 𝜈 = 0.3 [194].

Vibration animation: Once the cube’s mesh and material properties have been defined, we run
a transient analysis in COMSOL [202], a commercial FEM software. The analysis calculates
the cube’s deformation over time given an initial condition. We choose an initial condition that
mimics “plucking” a corner of the cube (e.g., an initial displacement vector of (0.5, 0.5, 0.5) cm of
the top-front corner) and keep the bottom surface fixed. The resulting simulation represents free
vibration with a Dirichlet boundary condition. The simulation is 6 seconds long at 2000 FPS. From
the calculated displacements, we create an animation of the cube deforming over time by plotting
the motion of random points on the surface of the cube with matplotlib [203].

5.6.2 Implementation and Evaluation Details
Mode selection: We use scipy’s [204] peak-finder to automatically identify peaks in the log-power
spectrum of motion amplitude, as described in Sec. 5.5.1. For a given simulation, this leads to
around 20–30 selected peaks. Most peaks correspond to either a true mode or a linear combination
of true modes whose frequencies fall in the same FFT frequency bin. However, a few peaks do
not correspond to a true mode; we include these false modes in the synthetic results to best mimic
analysis of real videos.

Inference cube mesh: We infer on an 8x8x8 hexahedral mesh. Since the simulations are done
with a 10x10x10 mesh, our results indicate robustness to a slight mesh mismatch. In the results
presented, the simulation model and inference model use linear elements.

Hyperparameters: For every presented result from simulated data, 𝛼𝑤 = 10−10, 𝛼𝑣 = 10−7, and
𝑤̄ = 9000. Keeping these hyperparameters fixed, we ran a hyperparameter search on a dataset of
12 cubes with various defects to identify good values for 𝛼𝑢 (Eq. 5.6) and 𝜂 (Eq. 5.7). After testing
all combinations of 𝛼𝑢 ∈ {1, 10, 100, 1000} and 𝜂 ∈ {0.1, 0.5, 1, 2, 5, 10}, we determined to set
𝛼𝑢 = 10 if the number of input modes is ≥ 10; otherwise, 𝛼𝑢 = 1. The dual variables 𝑦 are always
initialized to 1, with 𝜂 = 1. The decision variables 𝑤 and 𝑣 are initialized to homogeneous values
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(a)

8 modes 10 modes 15 modes 20 modes True

corr = 0.44 0.49 0.67 0.73 0.72 0.74 0.68 0.70

(b)

0.28 0.32 0.43 0.42 0.46 0.45 0.51 0.51

Figure 5.4: Reconstruction on two synthetic cubes with different defects. The given motion-
extracted image-space modes range from the 8–20 lowest extracted modes. Normalized correlation
generally increases as the number of modes increases. (b) is more challenging because the defect
is smaller and closer to the bottom of the cube, where there is no motion.

of 9000 [Pa] and 1270 [kg/m3], respectively (the true values of the primary material).

Evaluation: Our method recovers relative changes in material properties (see Sec. 5.5.2.1). As
such, the normalized 3D images of estimated Young’s modulus and density should match the true
normalized properties. We use normalized correlation between the estimated image and ground-
truth image as the reconstruction score. Another way to assess estimated properties is to verify
that they produce the same image-space modes and natural frequencies as the true properties (see
supplementary material).
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Figure 5.5: Reconstruction for the Stanford Bunny from (true) image-space modes. Slices along
the 𝑦-axis are shown.

5.6.3 Results
Fig. 5.4 shows results for two different cubes with defects appearing at different locations. These
results are obtained from noisy, motion-extracted image-space modes. As more modes are observed,
the inverse problem becomes better constrained, sharpening the image of the interior defect. Also
note that a defect near the top of the cube is easier to identify than one near the bottom. This is
because the base of the cube is fixed and thus provides less motion signal.

Complex geometry: To demonstrate the approach on a more complex geometry, Fig. 5.5 shows
a volumetric reconstruction of material properties for the Stanford Bunny [205]. We voxelize the
volume containing the tetrahedral mesh3 of the bunny into an 8x8x8 grid and match each mesh
element to the nearest voxel, resulting in about 21 elements per voxel. 20 true image-space modes
of the monocular view of the bunny shown are used for this reconstruction.

We next consider some challenges that may arise with real-world data: geometric mismatch and
damping. More investigations into model mismatch are provided in the supplementary material.

5.6.3.1 Geometric Mismatch
Fig. 5.6 shows what happens when the dimensions of the inference mesh do not match the cube’s
true dimensions. We gradually increase the length of the inferred cube geometry in the 𝑥-direction
from 1 to 1.4 times the true length. Scaling the length in one direction results in a gradually

3The bunny surface mesh is from https://www.thingiverse.com/thing:151081, and tetrahedralization is done
with TetWild [206].

https://www.thingiverse.com/thing:151081
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degrading estimate of the defect size. However, even with 30% geometric error, we are still able to
distinguish that there is a defect located in the central region of the cube.

True 1.1x 1.4x1x

x

y
z

x

y
z

1.2x 1.3x

Figure 5.6: Geometric model mismatch. From 10 motion-extracted image-space modes, we infer
on a mesh of various incorrect geometries, extending the inferred geometry width by a multiple
of the true width. Results on Young’s modulus show that some geometric mismatch can be
accommodated.

5.6.3.2 Damping

Real-world objects exhibit various types of damping, which can affect both the frequencies and
relative phases of its modes. To simulate damping, we incorporate Rayleigh damping into our
synthetic cubes. Our damping parameters were estimated following the procedure outlined by
Davis and Bouman et al. [171], who fit a Lorentzian curve to a peak in the motion power spectrum
to estimate the damping ratio. We find that Jello cubes exhibit significant damping: from a real
video of one, we estimated critical damping ratios of 0.01749 at 12.5 Hz and 0.01999 at 15.5 Hz.

Through realistic simulations in COMSOL, we find that damping poses the additional challenge
of fewer observable modes. We can increase the number of observed modes by extracting modes
from multiple simulations with different initial conditions. For example, “plucking" the top-back
corner of a cube will cause slightly different modal expression than “plucking" its top-front corner.
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Fig. 5.7 shows reconstruction for damped cubes. From two different plucking conditions, we are
able to extract between 7–15 modes and use these modes to coarsely reconstruct the defect.

correlation = 0.26 0.44

Recon.True Damped Log-Power Spectrum

(a)

(b)

correlation = 0.27 0.31

7 distinct modes

12 distinct modes

Figure 5.7: Reconstructions from two simulated damped cubes. Animations (3 seconds at 2000
FPS) of two different forcings are done: (1) a small initial displacement of the cube’s top-front corner
(“Top-Front Pluck") and (2) a small initial displacement of its top-back corner (“Top-Back Pluck”).
Modes (marked as dots on the line plot) are selected based on the log-power spectrum of motion
amplitude. Asymmetry plays a role in determining how many distinct modes are observable. As a
cube becomes more asymmetric in its material-property distribution, its repeated eigenfrequencies
become more separated. Since the defect in (b) is more off-center than the defect in (a), more
distinct modes are identifiable in those simulations. In (a), with only 7 observed image-space
modes, the reconstruction quality is consistent with Fig. 5.4, which shows only a coarse defect
reconstruction when given 8 modes. (Note: in (b), although the number of observed modes is
> 10, we show the reconstruction for 𝛼𝑢 = 1 instead of 10.)
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5.7 Real-World Experiments
To demonstrate the potential of our approach in the real world, we applied it to real videos of drum
heads and Jello cubes. With drum heads, we achieve reconstructions that allow one to discern
distinct defect shapes, providing a proof-of-concept for defect discovery and characterization using
our approach. The damping of 3D Jello cubes poses a challenge for extracting enough image-space
modes for high-fidelity defect reconstruction; nonetheless, we are able to identify heterogeneity
in the cube. Please refer to the supplementary material for details about the experiment setups,
inference models, and hyperparameters.

1 Circle (Acrylic)Bar (Gel) 1 Circle (Gel) 2 Circles (Acrylic)

Before After

5.4 cm

St
iff

ne
ss

D
en

si
ty

Before After Before After Before After

Figure 5.8: Reconstruction from real videos of drums. The defects shown are a gel bar, gel circle,
acrylic circle, and two acrylic circles, applied to the underside of the drum head. For each defect,
we recorded a video of the drum pre- and post-defect. One cannot see the defect in a video frame,
but after applying our method, we were able to image the defects as changes in stiffness and density.
For each type of defect, the “Before” and “After” material properties are plotted with the same
normalized colormap.

5.7.1 Real Drums
We tested our method on a dataset of real drum heads, each altered with a defect beneath the
surface. The defects were created from two materials: nail hardening gel (painted beneath the
surface) or acrylic plastic circles (glued onto the bottom of the surface). Although all DOFs of the
2D membrane are visible in the video, solving for material properties is still ill-posed because we
observe a limited number of projected modes (see Fig. 5.9).

Results: Fig. 5.8 shows estimated Young’s moduli and densities for various drum heads, before and
after defects were included. For both materials, the defect appears as a bright region in stiffness.
Interestingly, gel and acrylic appear differently in their density estimations. For gel defects, there
is a bright, filled region in the density map that corresponds to a higher mass from the defect.
For acrylic defects, this change only appears on the edges of the defect. This is possibly because
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Figure 5.9: Extracted image-space modes from real videos of a drum, before and after a defect was
introduced. The defect shown here is a gel rectangle, which was painted on the bottom of the drum
head. Only vertical motion is shown.
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Figure 5.10: Extracted image-space modes from real videos of a Jello cube with an interior clay
defect (“Real”). The true image-space modes identified from a COMSOL simulation of a cube
with a defect are shown for comparison (“Simulated”). Each observed image-space mode has a
corresponding simulated mode that appears similar in both image-space and eigenfrequency.

the acrylic circles are much stiffer than gel, which bends along with the rubber membrane. These
results indicate that our proposed approach could be used to identify not just the presence of a
defect, but also its shape.

5.7.2 Real Cubes
To gain further insight into practical challenges, we conducted an experiment on a real Jello
cube with an interior clay defect. This object is more challenging than the drum membrane in
two respects: (1) the high damping of Jello, perhaps due to its water content, and (2) the large
proportion of unseen DOFs in the cube geometry. The cube had dimensions 4.9 x 4.7 x 4.5 cm,
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Figure 5.11: Reconstruction from real data vs. reconstructions from simulated data of the defect
cube and a homogeneous cube. All reconstructions use 6 image-space modes and the same
hyperparameters and are plotted with the same colormaps. As Fig. 5.10 shows, there is a one-
to-one correspondence between the modes given for (a) and the modes given for (b). (a) is more
similar to (b) than to (c), indicating that with 6 modes, we can differentiate between a cube with a
defect and a homogeneous one.

while the rectangular clay defect was of size 2.2 x 2.9 x 1.4 cm. We recorded three videos of the
cube under different initial deformation conditions (e.g., in one video, we lifted and then quickly
released the top-front corner of the cube). Multiple videos allowed us to identify more unique
modes and average duplicate ones.

We created two COMSOL models that would be comparable to the real Jello cube: one simulated
cube had a clay defect and the other did not. The Young’s modulus values of the Jello and clay
were set so that the natural frequencies would agree with those observed. The Rayleigh damping
parameters were estimated following the method mentioned in Sec. 5.6.3.2. As illustrated in
Fig. 5.10, the COMSOL image-space modes of the simulated cube with a defect appear similar to
those captured from the real Jello cube.

Results: Fig. 5.11 shows the result of our approach applied to real video data of the Jello cube. The
reconstruction is obtained using six unique, motion-extracted image-space modes. As expected
based on our findings in Figs. 5.4 and 5.7, we are able to recover only a large-scale estimation of
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material properties with six constraining modes. Still, it is very promising to have identified inho-
mogeneities in a real 3D object with our method. We further compare this real-data reconstruction
to reconstructions obtained from simulated data of a homogeneous cube and one with a defect,
showing that we achieve a solution that resembles the solution for the simulated defect cube more
than it resembles the solution for the simulated homogeneous cube (Fig. 5.11).

We have shown one example of attaining simulation quality on a real cube. Further work needs to
be done to achieve consistent results across a variety of objects. Additional camera views are one
plausible, simple solution.

5.8 Limitations
Our method assumes that materials are isotropic and linear elastic. Linear elasticity is only satisfied
if the object’s motion is small. Further, we assume that the geometry is, at least roughly, known
ahead of time (see Fig. 5.6).

For now, we have validated our method with a high-speed camera. We have not yet demonstrated the
approach with consumer-grade cameras that bring additional challenges such as image compression
and noise. Generally, the hardware required depends on the amplitude and frequencies of the
modes. For large structures that vibrate below 100 Hz [207–209], a smartphone camera theoretically
provides enough temporal frequency. Objects that vibrate more quickly require high-speed cameras.
Tricks such as temporal aliasing via a strobe may expand the capabilities of a camera.

The primary challenge with applying this technique to real-world objects is capturing enough
image-space modes to recover interior defects with high fidelity. Damping causes a reduction in
the number of modes that can be extracted. We demonstrated that for damped Jello cubes, we
could still recover some information from only six image-space modes (Sec 5.7.2). Even so, in
many objects, damping will pose a more significant challenge. In the future, acquiring more modal
observations could be solved by exciting modes through mechanical vibration tables.

5.9 Conclusion
We have shown that it is possible to recover spatially-varying material properties of 3D objects from
monocular video, even in regions unseen in the image. This can be done by decomposing 2D surface
motion into image-space modes, and then solving for the Young’s modulus and density values that
agree with the observed modes. We demonstrated our method on synthetic and real-world data of
objects ranging from 2D drum heads to a 3D bunny.

Our results highlight that monocular videos are a simple, yet powerful, source of data for under-
standing the physical properties of objects around us. We believe that videos are a promising
domain for further research into non-destructive testing, turning everyday visual sensors into tools
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for material characterization.

5.10 Supplementary
5.10.1 Optimization Runtime
Recall that the optimal material properties and 3D modes are found by iteratively updating the
solutions to the following optimization problem:

𝑤∗, 𝑣∗ = arg min
𝑤,𝑣∈R𝑚
𝐾,𝑀∈R𝑛×𝑛
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For an 8x8x8 cube with linear hexahedral elements, one iteration takes 2–3 seconds (tested on an
8-core Intel Core i9, 32 GB RAM), and convergence usually happens within 100 iterations.

5.10.2 Simulated Experiments
5.10.2.1 Predicted Image-Space Modes

In addition to normalized correlation, a way to assess estimated material properties is to verify that
they produce the same image-space modes and natural frequencies as the true properties. Recall
that 3D modes are a decision variable in our optimization scheme (Eq. 5.8). As Fig. 5.12 shows, it
is informative to compare the true FEM modes, observed modes, optimized modes, and predicted
FEM modes, in image-space. The optimization process usually de-noises observed modes. For
some modes, spatially correlated noise may make it difficult to recover the true mode, but it is
possible for the predicted FEM modes to still be similar to the truth (see example (2) in Fig. 5.12).

5.10.2.2 Effect of Regularization

The strength of spatial regularization on material properties affects the smoothness of the estimation.
In Eq. 5.8, the regularization weights for Young’s modulus and density are 𝛼𝑤 and 𝛼𝑣, respectively.
In Fig. 5.13, we show how the estimated density image becomes sharper as 𝛼𝑣 decreases (keeping
all else fixed). This can result in a crisper picture of the defect, but can also make reconstruction
more sensitive to noise.
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Figure 5.12: (a) Similarity of predicted image-space modes to true, observed, and optimized
image-space modes for the cube sample shown in Fig. 5.14. “Obs.” mode is often a noisy version
of “FEM (true).” “Opt.” refers to the optimized solution 𝑈∗ in Eq. 5.8. “FEM (pred.)” is the
image-space mode resulting from the estimated material properties. (b) Predicted eigenfrequencies
vs. true eigenfrequencies. The frequencies of the 10 given motion-extracted image-space modes
are marked by scatter dots.

5.10.2.3 Intrinsic Resolution

Fig. 5.14 demonstrates how, as the number of input image-space modes increases, the intrinsic
resolution of the reconstruction improves.
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Figure 5.13: Effect of regularization. Here we show the estimated density for a cube sample (same
as in Fig. 5.14). Keeping all else fixed, as 𝛼𝑣 decreases, the image of the defect becomes crisper, but
more sensitive to noise. Each estimation uses the same 10 motion-extracted image-space modes.

5.10.3 Simulated Experiments: Model Mismatch
In the main material, we discussed geometry mismatch. Here, we investigate the effects of model
mismatch in the Poisson’s ratio and the mesh element order.

5.10.3.1 Poisson’s Ratio Mismatch

The Poisson’s ratio is a measure of the deformation of a material perpendicular to an applied force
and ranges from 0.1 to 0.45 [210]. Since our optimization formulation only estimates Young’s
modulus and density, we assume that every voxel has the same Poisson’s ratio. Fig. 5.15 shows that
this assumption does not significantly hurt the reconstruction of a defect, especially when assuming
a Poisson’s ratio that is closer to that of the main material.

5.10.3.2 Mesh Element Order Mismatch

In general, it is better to use higher-order elements to model a real-life object. However, there is a
tradeoff in efficiency. A quadratic element approximates node displacements more accurately, but
contains more DOFs than a linear element. Fig. 5.16 shows what happens when the forward model
uses quadratic elements, while the inference model uses linear elements. For real-world objects,
one should choose the order that strikes the right balanace between approximation accuracy and
computational cost.
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Figure 5.14: Intrinsic resolution of reconstructed volumes. Based on normalized correlation with
the ground-truth material properties smoothed at different scales, one can approximate the intrinsic
resolution of the reconstructed material properties. In (a), we plot normalized correlation versus
Gaussian blur standard deviation 𝜎, for the reconstruction of Young’s modulus using different
numbers of image-space modes (keeping all other hyperparameters fixed). As the number of
observed modes increases, the reconstructed resolution also increases (i.e., smaller 𝜎). (b) shows
the true Young’s modulus image blurred at the intrinsic resolution (IR) of the reconstruction given
10 image-space modes (𝜎∗ = 1.4 voxels).

5.10.4 Drum Experiment
5.10.4.1 Drum Construction

The drums were constructed by fixing a thin rubber sheet over a 4"x4" PVC adaptor with a rubber
band. We tested defects of two materials: nail hardening gel and acrylic plastic circles. For each
defect, we recorded a video of the homogeneous drum before the defect was applied for comparison.
We drew a speckle pattern on the drum head for texture.

5.10.4.2 Vibration-Capture Setup

Fig. 5.17 shows a schematic of the setup. We taped the drum onto an optical table, with the high-
speed camera standing on the same optical table. The excitation source was a PreSonus Sceptre S8
loudspeaker, which sat on a platform separate from the optical table and was pointed at the drum.
For each video, we recorded the drum head’s vibration in response to a 3.5-second linear frequency
sweep (50–1000 Hz) played by the speaker.
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𝜈 = 0.3True 𝜈 = 0.45

0.48 0.63 0.73 0.82correlation =
Figure 5.15: The effect of assuming a homogeneous Poisson’s ratio. In the true cube, the main
material has a Poisson’s ratio of 𝜈 = 0.45, while the defect material has a Poisson’s ratio of 0.3
(roughly corresponding to the values for Jello and clay, resp.). When inferring material properties,
we assume a uniform Poisson’s ratio across the entire cube. We find that this assumption does not
hurt the reconstruction much, especially when 𝜈 is set to the Poisson’s ratio of the main material.
Both estimations use the same 20 motion-extracted image-space modes.

5.10.4.3 Video Capture

Our camera was a Phantom V1610 high-speed camera. Each video was captured at 6000 FPS at
an image resolution of 288 × 384. To reduce noise, we averaged every two frames for a resulting
temporal frequency of 3000 FPS. Note that in Fig. 9 in the main material, the drums vibrate at
frequencies below 120 Hz. While we chose to first demonstrate our approach using a high-speed
camera, where compression and camera noise are less challenging, many modal frequencies can
be captured on a consumer camera.

5.10.4.4 Extracting Image-Space Modes

We found that in real videos, some level of manual selection was necessary to verify peaks in the
motion amplitude spectrum as modal motion. For instance, spurious camera motion would often
appear as spikes in the spectrum. Verification was done by visually inspecting the magnified motion
in the video at the frequency in question (following the method proposed in [195]). We believe that
in the future this step could be automated. The number of extracted modes ranged from 12 to 31,
depending on the video.
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Figure 5.16: Element order mismatch. As (a) shows, when using linear elements in the forward
model, any element order ≥ 1 suffices in the inference model. However, in (b), reconstruction
quality degrades when attempting to model a quadratic-element cube with linear elements.

5.10.4.5 Inference Details

We modeled each drum as a triangular membrane mesh with 1530 linear elements and inferred
material properties on a 20x20 pixel grid. In the presented results, the hyperparameter values are
𝛼𝑢 = 1012, 𝜂 = 1, 𝛼𝑤 = 0.1, 𝛼𝑣 = 0.1, and 𝑤̄ = 106. 𝑤 and 𝑣 are initialized to uniform values of
106 [Pa] and 103 [kg/m3], respectively, and reflect the estimated stiffness and density of latex.

5.10.5 Jello Cube Experiment
5.10.5.1 Inference Details

Our inference model was a 10x10x10 hexadral mesh with linear elements. The optimization
hyperparameters were 𝛼𝑢 = 0.1, 𝜂 = 1, 𝛼𝑤 = 10−10, 𝛼𝑣 = 10−8, and 𝑤̄ = 10000. 𝑤 and 𝑣 were
initialized to 10000 [Pa] and 1500 [kg/m3], which are the estimated Young’s modulus and measured
density values of Jello.
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Figure 5.17: Experimental setup for real drums. Vibrations were induced by a loudspeaker and
recorded with a high-speed camera.
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C h a p t e r 6

VISUAL SURFACE WAVE TOMOGRAPHY: INFERRING SUBSURFACE
MATERIAL PROPERTIES FROM MONOCULAR VIDEO

[1] Alexander C. Ogren et al. “Visual Surface Wave Tomography: Inferring Subsurface Material
Properties from Monocular Video”. In: preparation (2024).
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Chapter preface
This chapter continues with the theme of inexpensive characterization of elastodynamic systems.
Surface wave dynamics can subtley communicate information about the subsurface features and
constitution of material systems. Conveniently, surface waves are also the most visibly apparent
wave dynamics of most systems. In the interest of developing inexpensive at-home methods to
characterize the mechanical stiffness of tissue, an important biomarker for health tracking, the work
presented in this chapter Inspired by Visual Vibration Tomography (chapter 5), which imaged the
interior heterogeneous mechanical properties of objects by observing partial information about
their modes of vibration with a monocular video, Visual Surface Wave Tomography (VSWT) char-
acterizes layered material systems via the partial observation of surface wave dynamics through
monocular video. By inferring the dispersive characteristics of the system from the surface dis-
placements, VSWT uses optimization to converge on a physics-based model that best explains the
observations, yielding an inference of the constitutive and geometric parameters of the systems
layers.

6.1 Abstract
The mechanical characterization of biological materials is crucial for medical diagnosis and pre-
ventative care, real-time imaging during medical procedures, and fundamental science surrounding
the modeling of biomechanical systems. To date, the existing techniques to mechanically charac-
terize and image biological materials are ultrasound-based technologies. These methods are quite
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impressive with what they can achieve, but because they rely on expensive ultrasonic equipment
and highly trained experts to operate, they are often inaccessible outside of medical centers. Nu-
merous studies have demonstrated the importance of early diagnosis and preventative care [211,
212]. This research aims to increase the accessibility of inexpensive, at-home screening methods
for the early detection of detrimental health conditions, and thereby improve the overall patient
outcome and healthcare experience. In layered wave media, the behavior of surface waves can
be strongly affected by subsurface features [39]. Because of this, a principled examination of the
surface waves of a system can reveal rich information about the geometry and material properties
of features below the surface [213–215]. Further, it has been shown by previous works such as
Visual Vibration Tomography [216] that even partial observations of excitations on the surfaces
of dynamic systems measured by common equipment such as cameras can provide enough infor-
mation to form a hypothesis about the object’s interior. In this work, we present an inexpensive
method to mechanically characterize layered wave systems, such as biological systems containing
skin, muscle, fat, and bone. The method uses low frequency excitations to incite surface waves, and
observes the system response through monocular video. Using this partial information, computa-
tional imaging and inference techniques are employed to form a hypothesis about the mechanical
properties governing the system.

6.2 Introduction
Wave-based imaging techniques are used across a wide variety of disciplines as a way to non-
destructively infer characteristics about the interior of an object, unseen features in an environment,
or other information that would be otherwise unobservable. These methods usually rely on an
understanding of how the characteristics of the object or environment affect wave propagation, and
align a physics-based hypothesis to fit the observed signal. For example, echo-based navigation
systems like RADAR and SONAR assume a constant wave speed, and estimate the distance to
objects based on the time it takes for a wave to travel to and from an object. MRI imaging relies on
an understanding of how radiofrequency waves will be absorbed and re-emitted by different types
of tissues in the body. Based on this understanding, highly detailed images of interiors of our bodies
can be reconstructed for diagnostics and biological science. Ultrasonic imaging techniques leverage
phased-array transducers to send and receive high-frequency mechanical excitations, processing
the reflected signals to triangulate the positions and reflectivity of subsurface features. In some
cases, such as Shear Wave Elastography, ultrasonic imaging can even be used to characterize the
wavespeeds, and therefore elasticity, of biological features such as tissues and organs.

Medical imaging techniques that characterize the mechanical properties of tissue, such as elasticity,
are highly useful for disease detection. For example, tumors often stiffen the tissues they inhabit [40,
41], while degenerative diseases like osteoarthritis [55] and muscular distrophy [56, 57] lead to the
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softening of cartilage and muscle tissue respectively. Liver diseases such as fibrosis and cirrhosis
are characterized by a progressive stiffening of the liver [42–44]. In the context of cardiovascular
health, hypertension [50–52] and atherosclerosis [53, 54] can be indicated by an increase in stiffness
of arterial walls. Pulmonary diseases such as pulmonary fibrosis [45–47] and chronic obstructive
pulmonary disease (COPD) (bronchitis and emphysema) [48, 49] alter the mechanical properties
of lung tissue, affecting its ability to expand and contract. Ophthalmic conditions such as glaucoma
can be characterized by a change in stiffness of the optic nerve and the cornea [217]. For people
with aneurysms, the risk of rupture can often be assessed by understanding the mechanical state
of the vessel wall [218], and can be a critically important piece of information to guide surgical
interventions.

For many of these conditions, ultrasonic or magnetic resonance approaches are used for diagnosis,
such as Transient Elastography [10], Shear Wave Elastography [11], and Magnetic Resonance
Elastography [12]. For ophthalmic conditions, optical methods including Optical Coherence
Tomography [219] and Optical Coherence Elastography [220] are used. Overall, current methods
to detect these conditions often require not only high-end, expensive imaging equipment, but also
highly trained medical specialists to operate and maintain the equipment and to interpret the results
[221, 222]. These factors make regular screening of patients infeasible, making early detection and
disease prevention difficult.

There are many signs to indicate that our society is interested in making at-home health monitoring
more accessible, and more advanced. Wearable devices initially began as fitness trackers that would
count steps or provide GPS tracking of exercise activities. Eventually, these devices began to see
the integration of heart rate monitoring, allowing a more accurate inference of exercise intensity,
and for the first time, allowing quantitative and affordable at-home monitoring of sleep quality and
stress level. Recently, we’ve seen wearable devices capable of 𝑆𝑝𝑂2 and 𝑉𝑂2 max measurements,
temperature measurements, and even basic ECG capabilities. As wearable sensor technology
advances and large amounts of biometric data become increasingly available, our ability to leverage
this data for health inference has significantly improved. These inferences can range from early
disease detection, to physical rehabilitation tracking, metabolism tracking, and menstrual tracking.

While many medical imaging techniques use bulk waves (e.g. shear waves and pressure waves for
ultrasound, and electromagnetic waves for magnetic resonance), surface waves can also be highly
useful for subsurface imaging. Surface waves are waves that travel predominantly along the surface
boundary of a medium. They are studied across a wide span of physical sciences, including fluid
dynamics, solid mechanics, optics, atmospheric science, and geophysical and seismic science. In
the context of geophysics and siesmology imaging, surface waves are used to infer constitutive and
geometric information about strata (the geological layers making up the Earth) [6–8, 39, 213–215].
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This is possible because although surface waves require a surface boundary in order to exist, their
dynamics extend to some depth below the surface. Because of this, they can be highly sensitive
to features and variations in material properties below the surface. Because these techniques only
require data from the surface of the medium, and do not require comprehensive scans (which
often require phased-arrays), surface-wave-based imaging techniques often require less equipment
and operating cost than their bulk-wave counterparts. Although they often are constrained by
more limitations that bulk-wave based imaging technology, surface-wave-based imaging methods
offer an inexpensive alternative to provide quick and approximate characterizations of subsurface
materials and features. Geophysical techniques that utilize surface wave physics include Seismic
Refraction and Reflection [5], Multichannel Analysis of Surface Waves (MASW) [6], Ambient
Noise Tomography [7], Spectral Analysis of Surface Waves (SASW) [8], and more generally,
Surface Wave Dispersion, Rayleigh Wave Analysis, and Love Wave Analysis. Of specific relevance
to my work, MASW and SASW analyze the spatiotemporal spectral properties (in other words, the
dispersion relation) of surface waves to infer the stiffnesses and thicknesses of subsurface strata.
Of interest for future directions of this work, Ambient Noise Tomography utilizes continuous,
low-level background seismic noise to construct images of the Earth’s subsurface, without the need
for externally applied excitations.

Interestingly, these types of surface-wave-based techniques have not been extensively studied in the
field of medical imaging. From the well-established surface wave methods in seismology, it is clear
that surface waves carry rich subsurface information. From Visual Vibration Tomography, we know
that we can leverage partial surface information obtained via camera to infer the interior properties
of dynamic systems. Visual Surface Wave Tomography combines these ideas, leveraging the
observation of surface waves via monocular video to infer the properties of the subsurface strata.
It is our hope that this research will advance the field of at-home, routine biometric inference
via generally affordable technology (e.g. smartphone cameras or wearables) to enable the next
generation of accessible health tracking for early detection and preventative care.

6.3 Problem setting
The ultimate goal of this research is to use monocular observations of surface wave displacements to
fully characterize the strata of an elastic layered system. This characterization includes a hypothesis
of the elastic constants governing each layer, and the thicknesses of each layer. As a first approach
to this problem, we define a relatively simple system consisting of two layers of elastic material.
The first layer will represent bone, and the surface layer will represent soft tissue (such as skin,
muscle, or fat). In comparison to the soft tissue, the bone material will be nearly rigid (at least
three orders of magnitude stiffer than the soft tissue layer). For this system, we will aim to estimate
the thickness and elastic modulus of the soft tissue.
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6.4 Methods
In this section, we delineate the methods by which we carry out this inference. The pipeline involves
the following steps:

1. Provide an excitation to the layered system to incite surface waves.

2. Observe these surface waves with a camera.

3. Use phase-based motion extraction to obtain the surface displacements.

4. Extract the dispersion relation of the surface waves via FFT of the surface displacements.

5. Infer the elastic modulus and thickness of the soft tissue by fitting a physics-based model to
match the observed dispersion relation.

These steps can be roughly broken up into experimental and computational methods. Experimental
methods involve the techniques used to excite the system and observe the response. Computational
methods involve the processing of the observed signal, and the inference of the underlying system
parameters from that data.

6.4.1 Exciting surface waves
This method fundamentally relies on being able to observe surface waves as the system responds to
an excitation. To excite surface waves in our system, we prescibe a vertical excitation on the surface
of the medium. In real-world experiments, we apply the excitation through the use of a shaker.
We aim to excite waves over a range of frequencies, allowing us to observe a more comprehensive
realization of the dispersion relation. To do this, we use a chirp excitation, which is a sinusoidal
signal that has a continuously time-varying frequency. These types of excitations are commonly
used to provide information about the response of a system over a frequency range in a much more
efficient manner than a discrete frequency sweep, where the excitation would consist of a series of
excitations at single fixed frequencies. In the context of real-world experiments, this is incredibly
important, because we need to be able to capture information about many frequencies in a short
amount of time such that they can be reasonably captured on video in a way that isn’t excessively
demanding in terms of file storage or processing. For real-world applications, it would be important
to extend this work to examine the effect of using simpler excitation methods, such as impulses,
since frequency-controlled excitations may not be available in common settings, and a major pillar
of this work is to be accessible without expensive equipment. Alternatively, it may be feasible to
generate a chirp using a smartwatch haptic engine.
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Figure 6.1: An example of a chirp excitation with a gradual variation in amplitude, along with a
spectrogram showing the time-varying frequency content of the chirp. This particular chirp sweeps
from 40 Hz to 300 Hz

In practice, to ensure that the system does not experiences impulses (which may cause unexpected
behavior both numerically and experimentally), we make sure to turn the chirp on and off gradually.
We use a smoothed heaviside function with a continuous second derivative ( 𝑓 𝑙𝑐2ℎ𝑠, credit to
Comsol Multiphysics) to achieve this, whose equation is given in Eq. 6.1 below, and demonstrated
graphically in Fig. 6.2. It is important that this function specifically has a continuous second
derivative, because this means that any inertial forces (which are related to acceleration, the second
derivative of displacement) caused by the excitation will change in a continuous manner.

𝑓 𝑙𝑐2ℎ𝑠(𝑥, 𝑑) =


0, if 𝑥 ≤ −𝑑
1, if 𝑥 ≥ 𝑑

0.5 + 0.9375 · ( 𝑥
𝑑
) − 0.625 · ( 𝑥

𝑑
)3 + 0.1875 · ( 𝑥

𝑑
)5, if − 𝑑 < 𝑥 < 𝑑

(6.1)

For this study, we assume the excited waves will be plane waves. Because we aim to initially attack
this problem from the simplified two-dimensional standpoint, the numerical model implementa-
tions involved in this research are currently based on a plane-strain assumption. For real-world
applications, it would be important to extend this work to three-dimensional geometry, since ex-
citations in real objects like the body are unlikely to follow two-dimensional assumptions such as
plane-strain.
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Figure 6.2: Chirp excitation with smoothed heaviside filter.

6.4.2 Extracting displacements
After exciting the system, we observe the surface waves supported by the system, which carry
rich information about the medium they are traveling on. In real-world experiments, we do this
by observing the system with a camera, and applying phase-based motion extraction to the video
[223]. Note that displacements at depth are not available, since the camera cannot see below
the surface of the system. The result is a series of frames that show surface displacements in
image space, both vertically and horizontally. Image space is the two-dimensional projection of
the three-dimensional physical world onto the sensor of the camera. For clarity, these directions in
image space will be referred to as image-space horizontal and image-space vertical, for example,
to differentiate from directions in three-dimensions. Currently, we orient the camera such that the
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plane waves travel directly in the image-space horizontal direction. Conveniently, this allows us
to approximately ignore image space to physical space projections, and still get reasonable results.
For real-world applications, it would be important to more precisely account for this projection,
since observations are not always guaranteed the convenient orientations that we have engineered
into our experiments.

6.4.3 Extracting dispersion relations
After surface displacements are computed, we convert them into information that more directly and
concisely describe how waves travel in the layered medium. We estimate the dispersion relation
from the displacements by taking their Fourier transform over both space and time. The dispersion
relation, therefore, encapsulates the relationship between the spatial and temporal periodiocity of
the waves supported by the layered medium. The information contained in the dispersion relation is
fundamentally the information that we are using to make an inference as to properties of the strata.

6.4.4 Inference problem
With the observed dispersion relation of the system characterized, we can use this information to
infer the properties of the strata. To do this, we employ a Bloch model representing a layered
wave medium, and try to determine the optimal strata properties used in the Bloch model that best
agree with the observed data. We define the following score function, and aim to find the system
parameters that maximize it. The score function is given by

𝐸 =

𝑁∑︁
𝑖=1

∫ 1

0
𝑓 ( ®𝑐𝑖 (𝑠)) 𝑑𝑠 (6.2)

where 𝐸 represents the score, 𝑓 (®𝑥) gives the power of the observed dispersion relation for any
wavevector-frequency pair ®𝑥, and ®𝑐𝑖 (𝑠) parameterizes the bands of the dispersion relation found
by the Bloch model, for contour parameter 𝑠 ∈ [0, 1]. Put simply, the score increases when the
bands of the Bloch model overlay with regions of high power in the observed dispersion relation,
and decreases when this agreement does not happen. This score function rewards good agreement
between the observed data and the physical model.

In the current implementation, the fitting algorithm we use is a comprehensive grid search. Although
this solution is quite heavy-handed and wasteful, it is indispensable in the research-and-development
phase in that it can accurately reveal the entire score landscape without guesswork. In real-world
applications of this research, it would be important to determine more computationally efficient
ways to perform this fitting problem. Ideally, the fitting routing would be able to run quickly on
low-powered devices such as smartphones, smartwatches, or other wearable devices. In the absence
of a more elegant fitting algorithm, a real-world realization of this technology could also rely on
off-device computing.
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6.4.4.1 Bloch model

The Bloch model we employ uses in-house code library, tissue-dispersion, for the hyper-
efficient calculation of the numerical dispersion relation (https://github.com/aco8ogren/t
issue-dispersion). Efficiency is key when using this model, because there is a need for repeated
evaluation of the model during the fitting problem, especially when paired with the comprehensive
grid search fitting algorithm previously described. The model attains this efficiency by using
intelligent meshing (regions that are not expected to have high strain gradients do not need fine
meshes), cleverly avoiding quadrature calculations, and circumventing the overhead that would
typically be associated with using non-specialized, commercially available FEM packages.

Fundamentally, the model uses the finite element method with linear quadrilateral elements. The
mesh is designed entirely with rectangular elements. This construction enables us to precompute
the element stiffness matrices as a function of their size and constitution, allowing us to entirely
circumvent the computational costs of quadrature (which is typically dependent on an arbitrary
element geometry) in the assembly of the mass and stiffness matrices, leading to significant
computational savings. Further, tissue-dispersion employs efficient data typing (e.g. sparse
matrices), vectorized assembly of system matrices, parallelized eigenvalue computations, and an
efficient, symmetry-aware eigenvalue solver.

6.5 Results
6.5.1 Numerical experiments
In this section, we demonstrate the use of our method on numerically simulated systems. This study
provides an evaluation of the method in a noise-controlled and assumption-controlled environment.

6.5.1.1 Scenarios

We examine 5 scenarios of varying thickness to assess whether the method can differentiate between
these cases. For each case, the elastic modulus of the soft region (upper layer) is 5 kPa, while
that of the stiff region (lower layer) is 100 MPa. This is a 20, 000× difference in elastic modulus,
representative of the stark difference between the low modulus of soft tissue and the high modulus
of the underlying bone. The thickness of the bone layer in each scenario is 30 mm. The thicknesses
of the soft tissue in each scenario are 𝑡ℎ𝑠 = 5 mm, 10 mm, 20 mm, 30 mm, and 40 mm. The
density of both layers is 1000 kg/m3 for all scenarios. The poisson ratio of both layers is 0.45 for
all scenarios.

https://github.com/aco8ogren/tissue-dispersion
https://github.com/aco8ogren/tissue-dispersion
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6.5.1.2 Transient models

As a stand-in for the observation of real-world materials, we numerically simulate layered systems
using the finite element method in Comsol Multiphysics, a commercial software for physical
simulation. In these simulations, we employ transient models so that we can directly simulate
how a layered wave system would response to a surface excitation over time. In these numerical
experiments, excitations are provided by simply enforcing a time-dependent dirichlet boundary
condition on a small patch of the surface of the domain, defined by a smoothed chirp excitation
from 40 [Hz] to 225 [Hz]. A diagram showing the layout of the transient model for the 20 mm
thickness case is shown in Fig. 6.3 below.

Symmetry

Prescribed displacement (vertical chirp excitation)

Free

Fixed Low-re�ecting

Soft layer (soft tissue)

Sti� layer (bone)

Figure 6.3: A diagram showing the geometry and boundary conditions of the transient model for
the 20 mm case.

The full domain for each transient simulation measures 30 cm horizontally, and its height is defined
by the sum of the thickness of the stiff layer and the soft layer. Temporally, each simulation spans
0.5 seconds and records displacements at 1000 timesteps. In Comsol, the time-stepping scheme
is set to ’strict’, meaning that Comsol will compute the solution at each of the 1000 timesteps
where the solution is recorded, but is also allowed to take additional time steps in order to satisfy
convergence tolerance parameters, for example. This ensures that the time resolution is sufficient
to resolve the chirp excitation, since a measurement rate of 1000 samples/sec means the Nyquist
frequency is 500 Hz, well above the maximum frequency of 225 Hz provided by the chirp.

The mesh of the transient model uses quadrilateral linear elements. We resolve the mesh finely
enough such that even the highest frequency content included in the chirp will be well represented
by the span of the element shape functions. The mesh resolution is controlled such that the element
size in the soft layer is identical across all scenarios. The side length of each element in the soft
region is 5 × 10−4 m across all scenarios, about 10× smaller than any wavelength induced by
the chirp excitation (using Rayleigh surface wave solution to estimate the frequency-wavelength
relationship). The stiff layer always has the same mesh across all scenarios, since its thickness
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does not change. We use a coarse mesh for the stiff layer to save on computational cost since large
gradients in the solution are not expected in this region. A zoomed in (and therefore horizontally
truncated) view of this mesh for the 5 mm case is shown in Fig. 6.4 below.
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transient model mesh for soft tissue thickness = 5 [mm]

Figure 6.4: A zoomed in (and horizontally truncated) view of the mesh used for the transient model
representing the 5 mm case.

6.5.1.3 Mesh controls to match discretization between Bloch models and transient models

In any simulation, physics is being only approximately represented. As the discretization used by
a simulation is refined, we often expect the solution to converge to an analytically correct solution.
Practically, this means that models using different discretization schemes may yield slightly different
results. To encourage greater agreement between the Bloch model and the transient model, we
carefully control the discretization of each model so that their meshes will capture approximately
the same physics. To achieve this we simply create the Bloch model mesh such that the element
size is the same as that used in the transient model. Because the Bloch model is often evaluated
with soft tissue thickness parameters that are not integer multiples of the transient model element
size, we pick the Bloch model element size that is closest to matching. The calculations to achieve
this are given in Eqs. 6.4 below.

𝑁ele,Bloch = round
(
𝑡ℎs,Bloch

ℎele,transient

)
(6.3)

ℎele,Bloch = 𝑡ℎs,Bloch · 𝑁ele,Bloch (6.4)
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6.5.1.4 Displacements

In this section, we show the displacement profiles for each scenario. Surface displacements are
extracted by querying the finite element solution at an evenly spaced array of points along the
surface boundary of the domain at each point in time. We measure displacements only along
the surface because this is the only information we will have access to in real-world applications.
Displacements at depth are not visible to the camera. There is no noise associated with these
displacement measurements. Visualizations of these displacements can be found in Fig. 6.5.

6.5.1.5 Observed dispersion relations

We apply FFT in each direction to extract the dispersion relation from the surface displacements.
It should be noted that because we are only measuring surface displacements, only modes that
participate in surface motion will show up in this measurement of the dispersion relation. That
means that modes that are primarily bulk wave modes may exhibit much lower power in the FFT,
or may not show up at all. These dispersion relations are shown in Fig. 6.5 alongside their
corresponding displacements. It is evident that the dispersion relation is more sensitive to the
thickness of the soft layer for shallower thicknesses. This is entirely expected, since surface waves
are only affected by subsurface features up to certain depths, often related to the wavelength of the
wave.

6.5.1.6 Inference: fitting a physics-based model to observed data

To infer the underlying parameters that define the strata of the observed wave medium (specifically
the thickness and elastic modulus of the soft tissue layer), we find the Bloch model that best fits
the observed data. Using an exhaustive grid search, we comprehensively sweep over a region of
parameter space around the true parameters, evaluating the Bloch dispersion model for each set of
parameters, and assessing its score against the observed data using Eq. 6.2. For this study, the
resolution of the grid search is 80 × 80. The Bloch model computes 6 eigenvalue bands.

The results for the inference problem are shown in Fig. 6.6 for each scenario. Note that the inference
problem works fantastically for each of the cases from 5 mm to 30 mm, but seems to break down
for the 40 mm case. We find that the mechanism for this that a Bloch model with very high
thickness will have bands that are very close together, and can all overlap with the same "hot spot"
in the observed dispersion relation. This is an unintended behavior of the current scoring function,
and is a good candidate for improvement in a future version of this research. For each scenario,
comparisons of the Bloch dispersion relation overlayed on the observed dispersion relation for both
the true strata parameters and the inferred strata parameters in Fig. 6.7.
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It is somewhat unsurprising that systems with greater layer thickness are more difficult to charac-
terize. Firstly, surface waves are only affected by subsurface strata up to a certain depth below the
surface. This is because most of the dynamics of these modes are concentrated near the surface,
and extend to a depth below the surface roughly proportional to the wavelength of the wave.

6.5.1.7 Sensitivity analysis: how sensitive is this method to small changes in parameters?

It’s exciting that this method can accurately estimate the parameters of a simple layered system for
parameter values that are far apart. However, we also want to understand how sensitive the method
is to tracking small changes in the properties of the strata. To help answer this question, we perform
a sensitivity analysis, where we make small changes to the true parameters of the observed system,
and repeat the inference problem for each perturbation. Because this requires running a large
number of transient simulations (which are expensive), this study is only feasible at a relatively
small scale. Further, because we have to run the inference fitting problem many times, we reduce
the resolution at which we perform the comprehensive grid search from 80 × 80 to 20 × 20 to save
on computational cost. For each scenario, we perturb the parameters by 10% in each direction,
and perform the inference problem for each of these perturbed parameter values. The results for
this study are depicted in Fig. 6.8, showing that VSWT can quite effectively differentiate between
systems with parameter changes smaller than 10% perfectly for the 5, 10, and 20 mm cases. The
method begins to show some signs of failure, but still performs overall quite well for the 30 mm
scenario. As expected from the results of the previous section, the 40 mm case is outside the
safe range of operation for the current version of VSWT, showing that for all parameter cases, the
method strongly artificially gravitates toward the solutions with the greatest soft tissue thickness.
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The inference problem breaks down for the 40 mm case.
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for the 5 mm scenario.



129

4 4.5 5 5.5 6
thickness [m] #10-3

4000

4500

5000

5500

6000

m
od

ul
us

 [P
a]

5 [mm]

0.008 0.009 0.01 0.011 0.012
thickness [m]

4000

4500

5000

5500

6000

m
od

ul
us

 [P
a]

10 [mm]

0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024
thickness [m]

4000

4500

5000

5500

6000

m
od

ul
us

 [P
a]

20 [mm]

0.024 0.026 0.028 0.03 0.032 0.034 0.036
thickness [m]

4000

4500

5000

5500

6000
m

od
ul

us
 [P

a]

30 [mm]

0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048
thickness [m]

4000

4500

5000

5500

6000

m
od

ul
us

 [P
a]

40 [mm]

true
inferred
search region boundary

Figure 6.8: Results for the sensitivity analysis of each of the five scenarios.



130

6.5.2 Real-world experiments
6.5.2.1 Materials

To construct a real life layered system, we use brand name Jell-O (peach flavor). Jell-O is a gelatin
based hydrogel commonly used in culinary endeavors for desserts. We pick this material because
it has the rare combination of having both relatively low stiffness and low damping, meaning that
excitations will be easier to observe. In addition, the mechanics of many tissues in the body
are predominantly governed by another hydrogel, the Extracellular Matrix (ECM), based mostly
on collagen and elastic fibers [224–228]. Because gelatin-based hydrogels and the ECM share
many hydrogel-based characteristics, they are often used as phantom materials in biomechanical
studies [229–231]. The per-volume costs of actual biological tissue, or collagen and elastin can be
extremely high in comparison to Gelatin.

For the stiff layer below the Jell-O, we use acrylic. Since we set the Jell-O in the acrylic container,
we expect the interface between these two materials to be relatively slip-less. Two samples are used.
Sample A has an unknown true thickness (the thickness was measured before Jell-O polymerization,
and we believe the thickness changed during the setting process). Sample B has a true thickness
of 16 mm. Neither sample A nor B has a known elastic modulus. Preliminary rheological
experiments have been performed to gain a ground truth measurement of the sample properties, but
we are currently skeptical of the results. As a result, the rheological results are not reported here.

6.5.2.2 Excitation

To provide a chirp excitation to the surface of the sample, we use a B and K shaker along with a
custom crafted chirp excitation ranging from 40 Hz to 300 Hz. Because this research is currently
being done in two-dimensions, we have to modify our three-dimensional experiment to emulate the
two-dimensional plane strain conditions. To do this, we use an actuator head that encourages the
formation of a plane wave. An image of the actuation geometry is shown below in Fig. 6.9.
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Figure 6.9: Views of the actuation mechanism from two angles. The black cylinder is the B and K
shaker. The white attachment is the actuation head, custom designed to encourage the formation
of plane waves.

6.5.2.3 Observation: high speed camera

For the current state of this research, we use a high speed camera to observe the surface excitations.
We operate the high speed camera at 1000 fps. Because biological materials are soft, they support
relatively low frequency waves, and do not require high frequency sensing to detect. However,
for now, the use of the high speed camera allows us to more easily develop the method without
worrying about confounding effects that could be caused using a less science-oriented camera with
a lower framerate and smaller lens.

In the future, we are interested in evaluating this method with more affordable equipment (e.g.
smartphone cameras). In addition, although the high speed camera is capable of framerates over
100, 000 fps, we observe our system at only 1000 fps. Ultimately, the observation of surface waves
traveling on biological materials should be within the reach of consumer-grade devices such as
smartphones and wearables. In fact, the Samsung Galaxy S23 (2023), one of the most popular
flagship smartphones, has the capability to capture video at 960 fps, while the Xiaomi 14 Ultra
(co-engineered with prominent camera company, Leica) (2024) supports video recording up to
1920 fps.

6.5.2.4 Extracting displacements

To extract displacements, we use phase-based motion extraction [223], which allows us to observe
subpixel displacements. This allows us to ensure that the sample stays in the linear elastic regime
during excitation, since we do not need to excite superpixel displacements. To improve the quality
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of motion tracking, we speckle the surface of our sample with garlic powder. An image of the
sample is shown in Fig. 6.9. Examples of the extracted displacements are shown in Fig. 6.10.

6.5.2.5 Conversion of image-space displacements to physical displacements

To convert from image-space displacement to physical displacements, a signpost method is used.
This means that we measure the physical size of an in-frame object, and use it’s pixel measurement
to determine the approximate physical size of a pixel, for pixels in the same plane of focus as the
signpost. This neglects the fact that the physical size of a pixel is not constant across a frame, even
if the plane of focus is kept constant, since objects near the periphery of the frame will be slightly
further from the lens than those in the center of the frame. More rigorously accounting for the
transformation between image space and physical space is a worthwhile future improvement for
this project. However, the current signpost method is sufficient for a proof-of-concept.

Because the camera viewing angle is orthogonal to the direction of wave propagation, we define
the basis for our quasi-two-dimensional wave propagation to be aligned with this viewing angle.
As a result, horizontal displacements in image space can be approximately equated to horizontal
displacements in physical space. Vertical displacements in image space can be approximately
considered to be directly proportional to vertical displacements in physical space.

6.5.2.6 Extracting observed dispersion relations

To convert the observed data to a useful format, we apply the same FFT processing as for the
numerical experiments. However, we first must convert the signal to have only one spatial dimension
and one temporal dimension. To do this, we average the signal across pixels that are in the same
column, over a very small window of pixels. Further, we crop the signal spatially and temporally
such that the signal only repeats once, and we only observe surface waves on one side of the actuator
head, with the actuator head out of frame. The resulting signal is visualized in Fig. 6.11.

After doing this processing, the observed dispersion relation is computed with FFT. Two examples
are shown in Fig. 6.12.

6.5.2.7 Inference fit on real observations

After computing the observed dispersion relation via FFT, we attempt an inference fit. Unfortu-
nately, at the current state of this research, the automated fitting routine fails. Among the factors
that may contribute to this:

1. The gap between real-world physics (observed) and linear elasticity (Bloch model used for
fitting). Hydrogels are real-world materials that only somewhat obey linear elasticity. In
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reality, they are fiber-based materials that have complicated physics and are being actively
studied today. Of primary importance to this research are the frequency dependent mechanics,
and viscoelastic effects.

2. The gap between three-dimensional physics and our two-dimensional Bloch model. There
will be three-dimensional modes and effects that are not well represented by our Bloch model
that could affect the inference fit.

3. The gap between the true physical displacements that are occuring, and our observation of
them. Cameras are subject to noise, and our processing of the data is imperfect. For example,
we only approximately account for the conversion between image-space and physical-space.
Further, the averaging we perform across pixels may not be the best way to average. Averaging
in FFT space (possibly even across multiple observations of excitations) may be a more robust
approach.

For these reasons, the converged-upon solution is not accurate. Alternatively we can attempt a
manual fit, using our own visual estimation for which Bloch model best fits the observed data. The
manual fit is performed with the help of the tipiX tool, maintained by Adrian Dalca, details of which
can be found at https://github.com/adalca/tipiX. This method yields more reasonable
results, but it is clear that a more complex physics-based model will be needed in the future to better
represent real-world physics of hydrogels. The results of the manual fit are shown in Fig. 6.12.

https://github.com/adalca/tipiX
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vertical. Surface waves can be observed traveling from the actuator head.
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Figure 6.12: First row: two examples of experimentally observed dispersion relations. Second row:
Bloch model overlayed on observations using strata parameters from a manually performed fit of
the observed data.

6.6 Conclusion
Overall, this research demonstrates the feasibility of using visual data of surface waves to make
inferences about subsurface features. As the availability, affordability, and quality of consumer-
grade sensors (smartwatches, smartphones) increases, the massive amount of available biometric
data needs scientifically grounded interpretations in order to be useful. Visual Surface Wave
Tomography, even in it’s preliminary stages, shows considerable promise in a future of delivering
physics-based, medically relevant information for early detection via frequent at-home screening.

While the numerics of this research already show excellent results, there is room for improvement
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with the real-world experimental results. Future directions for this research include:

1. Improving the observation processing pipeline to better account for real-world effects, like
the fact that the pixel-to-distance ratio is not constant across the frames of the video.

2. Allowing for scenarios with a spatial variation in strata properties. This can likely be achieved
with short-time fourier transform applied to the spatial dimension of the data.

3. Incorporating three-dimensional physics into the inference problem. Extending the inference
paradigm to encompass three-dimensional modes could provide important information to
make this method more robust and accurate, and may allow us to estimate anisotropic
qualities of layered systems.

4. Making the fitting process more computationally efficient by using surrogate models (e.g.,
GPR-dispersion surrogate model from Ch. 4) and/or implementing a fitting routine more
elegant than comprehensive grid search.

5. Developing more accurate models for biological and/or hydrogel-based materials (for ex-
ample, by including more complex constitutive behaviors in the inference process, like
viscoelasticity, poroelasticity, anisotropy, etc).

6. Incorporate basic observational data from on-surface measurements (representing accelerom-
eter data from a smartwatch, for example).

7. Performing experimental validations with truly affordable cameras.

8. Using numerical experiments to determine if a larger number of strata can be characterized,
and understand what the limits surrounding this might be .
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C h a p t e r 7

CONCLUSION

7.1 Summary of contributions
This thesis has explored the integration of state-of-the-art computational methods to elastodynamic
applications, from architected material modeling and design to the inference and imaging of systems
based on their elastodynamic behaviors.

The application of machine learning and data-driven methods to the surrogate modeling and
design of architected materials was explored. The current state of the field was assessed, and
perspectives were given on the challenges associated with the design of architected materials and
with the application of data-driven methodologies to this design problem. Within these perspectives,
certain desirable traits for surrogate models were proposed offering a set of guiding principles for
the future development of surrogate models for physical systems. Interpretable machine learning
methods were developed, including shape-frequency features, unit cell templates, and hierarchical
unit cell templates. These models allow for high levels of geometric interpretability, offering
an interesting alternative approach in a scientific landscape mostly dominated by uninterpretable,
black-box deep learning models. Next, a surrogate model, GPR-dispersion, was developed to
more efficiently compute the dispersion relations of engineered material systems, aimed at the
application of optimization-based design of multi-functional elastodynamic engineered materials.
GPR-dispersion was constructed to exhibit several of the desirable traits for surrogate models
mentioned prior, including representation invariance, incorporation of physics-based modeling,
data efficiency, interpretability, and the provision of uncertainty metrics and gradients for added
utility when used for inverse design. It was tested against traditional purely-physics based methods,
and another existing surrogate model based on deep learning.

Then, with a change of theme, two methods were introduced to characterize unseen interiors of
material systems via the partial visual observation of their surface dynamics through monocular
video. Visual Vibration Tomography (VVT) offers a methodology for estimating the relative elastic
modulus and density through the volume of an object by partially observing surface displacements
through monocular video, estimating the vibrational modes of the object, and fitting a physics-based
model to the observations. The performance of VVT was demonstrated extensively in simulated
experiments and real-world experiments. Inspired by VVT, Visual Surface Wave Tomography
(VSWT) offers a methodology for inferring the subsurface material properties of layered material
systems, with the application of inexpensive health tracking in mind. VSWT partially observes the
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surface wave dynamics of the system through monocular video to build an understanding of the
medium’s dispersive properties. Subsequently, a physics-based model is fit to the observed data
to yield estimations of the layer moduli and thicknesses. The performance, sensitivity, and limits
of VSWT were explored thoroughly in simulated experiments, and real-world proof-of-concept
experiments were demonstrated with gelatin-based hydrogel phantom materials, emulating the
material properites of biological soft tissue.

7.2 Perspectives on future research directions for surrogate modeling and material design
With the ever-accelerating development of data-driven methods, many new possibilites for the
modeling and design of engineering are opened. As discussed in this thesis, data-driven surrogate
modeling is a critical facet of this effort. This section discusses perspectives on new possibilities
for research in the surrogate modeling of physical systems.

7.2.1 Intersection and intercompatibility of advanced methods for material design
While impressive advancements have been made on many fronts of material design, there are gaps
between these fronts. On one front, researchers have delivered impressive advancements in areas
related to the traditional methods of material design. These areas include principled physics-based
modeling [137–141], and implementation of these methods in extremely optimized and massively
parallel computing environments [83]. On a separate front, researchers have developed increasingly
advanced data-driven surrogate models both for the efficient forward modeling and inverse design
of architected materials [84, 94, 154, 232]. As of yet, these two fronts have not fully intersected. As
discussed in this thesis, the advanced methods developed in each front often lack intercompatibility
with each other. Instead of working together with each other to achieve compounding positive
effects, they are often constructed in a paradigm that ignores the other camp, except to compete.
An extremely compelling paradigm for future work is the engineering of intercompatibility and
intersection between these two fronts to form hybridized design systems that benefit in a combined
way from the robust physical basis of traditional methods, the massively parallel implementations
of state-of-the-art design optimization routines, and the evident power of data-driven learning
methods.

7.2.2 Representation invariant surrogate models
As discussed in this thesis, an overwhelming number of surrogate models for physical systems rely
on specific discretization schemes, or specific parametric representation schemes that contrain the
model’s use cases to a narrow slice of design space. These reliances harm the practical applicability
of surrogate models, and their ability to be reused for new applications. Especially in the context of
data-driven approaches, it is extremely desirable for a model, which may have cost a large amount
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of data to construct, to be usable in a wide variety of settings. Models that are cornered into their
own narrow region of design space, while academically interesting, are often not useful in practice.

Continued investment in representation invariant models is a promising paradigm to stick to for
the future development of surrogate models for physical systems. Representation invariance can
be built directly into the architecture of the model, as in the case of operator learning, or can be
implicitly embedded by incorporating data-driven models "on top" of physical models, as in the
case of GPR-dispersion. The discovery of new mechanisms by which to introduce representation
invariance would be highly beneficial to the design of architected materials.

7.2.3 Incorporation of empirical physical data into surrogate models
This thesis explored the importance of incorporating physical laws into data-driven surrogate
models. With all of the excitement surrounding data-driven methods, it is critical that we keep
them grounded to principled and interpretable rules. However, there are plenty of physical that are
not currently well understood. In these cases, surrogate models can be trained on empirical data in
order to represent physics that is not well-represented by current physics-based models. A major
challenge scientists face when attempting this is that empirical data can be extremely expensive,
and data-driven methods often require lots of data to train adequately. It may be interesting to
study how transfer learning can be employed to alleviate this, training a model initially on a large
volume of synthetic data with reasonably faithful physics, then fine tuning the resulting model on a
small volume of empirical data. This could open interesting avenues for research in the context of
architected material design to leverage more advanced physical phenomena, and could even spill
over to have implications for elastodynamic imaging and inference problems (as discussed in the
following section, sec. 7.3.2 )

7.3 Perspectives on future research directions for inexpensive material characterization
VVT and VSWT propose compelling visual approaches to the mechanical characterization of
systems using elastodynamic information. They also open the doors to a variety of new avenues
for future research. This section explores some of the most promising directions.

7.3.1 Incorporation of surrogate models for inference problems
The formulations of the inference problems utilized by these novel techniques rely on the evaluation
of physical models in order to fit a physics-based hypothesis to explain the observed data, and
yield an inference. The practical implementation of these methods usually rely on optimization
formulations, which in turn demand the physical models to be evaluated repeatedly. Even when
implemented in highly optimized ways (as in this thesis), this can lead to significant computational
cost, which may discourage the real-world deployment of the method. An interesting future avenue
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could leverage data-driven surrogate models to make this process more efficient and compelling in
a low-powered computing settings, such as at-home health monitoring.

7.3.2 Development of higher fidelity physical models for inference problems
As stated, inference problems rely on the idea that a physics-based hypothesis can be fit to a set of
observed data. For example, in the research presented in this thesis, the physics-based hypothesis
were rooted in linear-elasticity. Gaps between real-world physics and linear-elasticity were partially
responsible decreases in the real-world performance of the inference methods, as suggested by the
delta between the performance of the methods in simulated settings versus real settings. Not only
would the incorporation of more accurate physical models likely lead to more robust inference
performance, but would also allow the characterization of more complex materials. For example,
each of these methods could be extended to infer the viscoelastic characteristics of systems by
estimating the parameters of basic damping models, or could relax the assumption of isotropy to
infer directional characteristics of systems.

With these extensions would come challenges. Selection of a physical model appropriate to a
specific system is a non-trivial task, and may (at least initially) require some amount of intuitive
selection. Even with an appropriate physical model selected, deviation from simple models like
linear-elasticity often means that the parameter fitting process will have a vastly larger parameter
space to search through, which could lead to practical computational challenges. It’s possible that
the development of data-driven models based on empirical observations, as desicribed in sec. 7.2.3
could be useful here.

7.3.3 Real-world extension to more complex geometries
VVT and VSWT both leverage strong geometric priors in order to function. VVT assumes a
geometry is known, and results were presented demonstrating the error induced when the geometric
prior is incorrect. Real-world experiments were demonstrated on circular membrane systems
and cubic solid systems with known geometries, and simple occlusion relationships between the
surfaces. It would be interesting to combine this method with geometry estimation technologies
(for example, LIDAR-based) that could provide and estimation of this geometric prior to form a
more complete imaging system. VSWT assumes a very simple class of geometry, layered material
systems with layer thicknesses that are constant in the in-plane directions. A future extension of
this method could allow variability in layer thicknesses, for example, through the use of Short-Time
Fourier Transform methods (applied in the spatial dimension) to understand the spatial variations in
the spectral representations of surface wave dynamics. It also assumes that the elastodynamics of
the system are well-represented by quasi-two-dimensional approximations like plane-strain, which
could be allieviated in the future by the use of three-dimensional Bloch models.
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7.3.4 Combined inference with multiple types of observed data
While it is impressive that VVT and VSWT can make inferences and feature detections with only
monocular video taken from one angle, and it would be interesting to see the full limits of how far
visual information can take us, it would also be impactful to develop methods to allow the combined
use of additional observations of the system in question. This could be as simple as viewing the
system from an additional angle (thereby gathering a more complete understanding of the surface
data), or allowing the use of multi-modal data from one or more inexpensive sensors placed on the
surface of the system. For example, in the application of health tracking via wearables, VSWT
may benefit from the addition of basic, low-frequency accelerometer data that may be available
from a smartwatch. Incorporating these additional observations could be implemented through a
multi-faceted optimization approach, fitting different physical models to each type of observation,
as appropriate, and could provide each method with more information to yield a higher quality
inference.
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