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ABSTRACT

Autonomous robots are increasingly present in the world today, being used across
a variety of settings and applications. In order to interact with their surroundings,
robots typically use cameras to see the world, employing computer vision algorithms
to comprehend rich, visual information. While contemporary, learning-based com-
puter vision models provide robots with an accurate and robust understanding of
their surroundings, most off-the-shelf methods rely on supervised deep learning
techniques, requiring abundant labeled data in order to train and prevent overfitting.
However, in many robotic applications and settings, the data landscape is character-
ized by data scarcity and/or the lack of apparent supervisory signals. Since custom
perception solutions are often required for robotic applications, direct adoption of
common computer vision methods proves challenging.

In this thesis, we develop robotic perception approaches across three different ap-
plications that overcome the challenges of such data landscapes. First, we de-
velop learning-based visual terrain-relative navigation (VTRN) approaches for high-
altitude aerial vehicles. This is a problem for which relevant data is available, but
made difficult by the lack of obvious supervisory signals related to the high-level
navigation objective. In the first chapters of the thesis, we show the power of
self-supervised learning approaches to increase VTRN robustness to seasonal and
temporal variations that would otherwise debilitate such systems.

Next, we address the challenge of developing thermal semantic perception algo-
rithms for aerial field robotics. Due to the specialized nature of field environments
and the sensing modality, development of thermal vision algorithms under these
conditions is often characterized by the lack of relevant data. We show how we
develop various thermal semantic segmentation in response to the evolving data
constraints inherent in field robotic projects. In the final part of the thesis, we de-
velop data-efficient, multispectral deep learning algorithms for autonomous driving
applications where the lack of data arises from the need for custom, multispectral
datasets that are synchronized and coregistered.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Over the past three decades, autonomous robots have surged in prominence, evolving
from guided cruise missiles in the late 20th century to the forefront of embodied
artificial intelligence (AI) initiatives in 2024. Today, they play pivotal roles across
diverse domains, from scientific endeavors like space exploration [18], subterranean
exploration [32, 14], and coastal mapping [6] to commercial applications such
as precision agriculture [27], infrastructure inspection, drone delivery, and the
burgeoning realm of self-driving cars. Additionally, they serve critical functions in
search and rescue missions and military operations. This pervasive integration of
robotics in society underscores their versatility and potential to enhance our world.

Central to the operation of these autonomous systems is their ability to perceive and
interpret their surroundings. Imaging sensors, specifically cameras, serve as one of
the primary mechanisms for robots to sense the physical world. When coupled with
advanced algorithms for processing and interpreting visual data, robots can localize
themselves, navigate environments, and execute complex tasks effectively.

Cameras can also come in multiple modalities, operating across the different wave-
lengths of the electromagnetic spectrum. In settings where conventional visual
(RGB) cameras face challenges such as low light or adverse weather conditions, al-
ternative modalities offer advantages. Long-wave infrared (thermal) cameras excel
in detecting heat signatures and are invaluable for enabling autonomy in darkness
and adverse weather conditions like snow and fog [16]. In contrast, other sensors
like lidar and radar offer 3D measurement capabilities which are commonly used for
3D scene perception for autonomous driving [15] and terrain contour matching for
missile guidance [17]. However, they lack the information density and richness that
cameras provide [15], and are less useful in situations where high spatial precision
is desired.

As such, different imaging sensors provide complementary data streams, enabling
robots to navigate and make decisions robustly in wildly diverse environments.
Consequently, the development of computer vision algorithms capable of leveraging
different data streams is imperative. Such algorithms enable robots to interact
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Robust Visual Navigation for 
Uninhabited Aerial Systems (UAS)

Thermal Semantic Perception for Aerial 
Field Robotics in Littoral Environments

RGB-T Deep Sensor Fusion for 
Autonomous Driving

• Terabytes of raw, high-res. aerial imagery
• Lack of clear supervisory signal for objective

• Lack of relevant thermal datasets 
• Di�cult to collect diverse training data due 

to red tape and geographic distribution

• Scarcity of coregistered RGB-T datasets
• Lack of annotations for target objectives

1. A deep transform that injects seasonal 
invariance into existing registration-based 
VTRN methods

2. A method to discover and re-identify 
seasonally-invariant landmarks for more 
compute-e�cient localization.

1. An online adaptation method for water 
segmentation that does not need thermal 
data prior to test time. 

2. A general RGB-T domain adaptation method 
that trains via labeled RGB and unlabeled 
thermal data collected from the �eld.

3. Caltech Aerial RGB-Thermal Dataset: the �rst 
RGB-T dataset tailor-made to create �eld 
robotic perception algorithms.

4. A fast and free method to auto-generate 
semantic segmentation annotations for aerial 
imagery using satellite data.

1. An RGB-T deep fusion framework that 
leverages pretrained single-modality 
networks to mitigate over�tting and speed 
up fusion training time.

Visual terrain-relative navigation (VTRN) systems 
are crucial for precision navigation in GPS-denied 
settings, but struggle with seasonal di�erences 
in imagery.

Thermal imaging is useful for autonomy in 
low-light, but there are no relevant �eld datasets 
that can be used to develop such algorithms. 

Multimodal deep sensor fusion models o�er 
robust perception across diverse conditions but 
need large, coregistered datasets to develop.

Problem

Data Landscape + Constraints

Main Contributions

Application Area / Setting

Figure 1.1: This thesis focuses on developing and improving learning-based visual
perception for robotics in three main application areas and settings, with each
characterized by unique data landscapes that constrain the possible avenues for
machine learning methods.

seamlessly in environments and fulfill their designated roles efficiently. In this
work, we focus on developing learning-based perception solutions using rich image
data from cameras, specifically within the RGB and thermal modalities.

Contemporary computer vision algorithms heavily rely on deep learning techniques.
Unlike traditional computer vision methods that depend on handcrafted features
and techniques, deep learning methods can easily scale to handle various settings
through data-driven approaches [20, 13, 31, 35]. Consequently, deep learning meth-
ods require less manual tuning while being capable of handling different settings
effectively. As such, learning-based methods are quite valuable for robot percep-
tion, allowing perception systems to generalize and perform well across different
environments. An example where learning-based methods significantly improve
robot perception is feature detection, which is commonly used for localization.
Here, learned methods like SuperPoint [13] and R2D2 [30] can enable good feature
matching in low-light conditions, across modalities [2], and in other settings where
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traditional feature detectors fail. This ability to easily handle varied situations makes
learning-based approaches vital for robot perception.

Learning-based robotic perception methods typically harness the power of deep
neural networks like convolutional neural networks (CNNs) and transformers to
address visual tasks such as object detection, semantic segmentation, local feature
detection, and place recognition [8, 29, 34]. Traditionally, these networks are
trained using fully supervised learning, where labeled image data serve as training
inputs. During training, the network processes images and compares its outputs
against ground truth labels, optimizing network weights through backpropagation.
However, this approach requires large amounts of labeled training data to prevent
overfitting. In scenarios characterized by suboptimal data landscapes, conventional
methodologies for developing vision algorithms falter. Examples of such conditions
include data scarcity, lack of annotations, and lack of apparent supervisory signals.

In this thesis, we develop computer vision algorithms for robot perception across
three different applications and settings, with each facing unique data constraints as
outlined in Fig. 1.1:

1. Robust visual navigation for uninhabited aerial systems

2. Thermal semantic perception for aerial field robots

3. RGB-thermal deep sensor fusion for self-driving cars

All three settings that we focus on are unified by the challenge of navigating sub-
optimal data landscapes that prevent adoption of conventional fully-supervised ap-
proaches. In the rest of this chapter, we briefly introduce these main problem settings
along with our respective contributions for each application.

1.2 Robust visual navigation for uninhabited aerial systems
Uninhabited aerial systems (UAS) traditionally rely on Global Navigation Satel-
lite Systems (GNSS) for navigation. However, in GNSS-denied environments or
instances of GNSS failure, aerial robots must resort to a method known as terrain-
relative navigation (TRN). At its core, TRN matches source data (3D terrain in-
formation, 2D imagery, etc...) captured from the robot against georeferenced data
cached onboard in order to provide precise geolocation information. Notable real-
world instances of TRN include terrain contour matching [17] and the Digital Scene
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Matching Area Correlator [7] for cruise missile guidance and the Lander Vision Sys-
tem for planetary entry, descent, and landing (EDL) in the Mars 2020 mission [18].
TRN approaches like [7] and [18] that rely on visual image matching are specifically
known as visual terrain relative navigation (VTRN). These approaches leverage on-
board cameras to capture and match rich visual imagery against high-resolution
imagery. As a result, VTRN methods offer higher localization precision than TRN
approaches based on sensors like radar [17].

Existing VTRN approaches employ image registration techniques for data associa-
tion, which typically fall into two categories: area-based template matching or local
feature-based homography estimation [18]. While proven through consistent real-
world deployments, these methods are susceptible to temporal variations between
source and georeferenced target data, and may result in poor localization matches.
In space exploration applications, such variations manifest as severe illumination
changes. For terrestrial applications, they manifest as varying light conditions at
different times of day, cloud cover, and seasonal ground coverage.

For this problem, we primarily focus on improving VTRN in terrestrial settings,
aiming to mitigate matching errors arising from seasonal and lighting variations by
applying learning-based, data-driven methods. While high-resolution image data
is abundant for deep learning methods in this problem setting, the challenge lies in
determining the suitable supervisory signals to enable training that optimizes our
VTRN objectives.

Contributions
In Chapter 2, we present a simple yet effective method that can inject seasonal-
invariance into any existing VTRN system and increase the robustness of their
image registration backend for localization. Specifically, we propose a CNN-based
image transform as a preprocessing step to strip away unique seasonal content in
source and target imagery, bringing both to a common domain. As the ambiguity
of this objective prevents humans from easily creating optimal labels to enable a
fully-supervised approach, we propose a completely data-driven and self-supervised
method, where the supervisory signal is derived from the way in which we present
training image samples to the CNN. We show that conventional image registration-
based VTRN methods exhibit increased aerial geolocalization performance in the
midst of seasonal variations when used in conjunction with our proposed deep
transformation.
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While the previous method improves the robustness of existing VTRN methods,
it still inherits the computational and storage costs of image registration backends
due to the use of large onboard maps. In Chapter 3, we introduce a self-supervised
landmark discovery algorithm that diverges from current VTRN approaches. Our
approach departs from the traditional reliance on large, georeferenced maps, opting
for a memory-efficient paradigm based on sparse, seasonally-invariant landmarks
ideal for geolocalization across large areas. Unlike recent methods that rely on
potentially biased and suboptimal human guidance for supervised learning [25, 36,
14] or those that completely forsake landmarks [3, 9], leading to limited navigable
areas, we propose the problem of discovering optimal landmarks for vision-based
navigation. We demonstrate that a data-driven, self-supervised method can also
solve this landmark discovery problem.

1.3 Thermal semantic perception for nighttime aerial field robots
Field robots currently rely on visual cameras and deep neural networks for semantic
scene perception [15]. While RGB cameras offer rich visual information, they strug-
gle in low-light settings [33]. In contrast, thermal cameras can provide rich visual
data in such conditions, but with lower resolution and less fine-grained details [16].
Although thermal cameras are being increasingly integrated in autonomous robots to
enable nighttime autonomy [21, 39, 32, 26, 10, 24, 12], integration in field robotics
is difficult due to the lack of large-scale thermal datasets covering field settings of
interest.

For this problem, we aim to develop thermal semantic segmentation models to enable
aerial robots to understand their surroundings and conduct autonomous operations
at night. Specifically, we aim to develop learning-based perception algorithms that
can enable operations in littoral settings, such as rivers and coastlines, to enable
downstream scientific missions [5].

Contributions
In Chapters 4 – 7, we present the development of various thermal semantic per-
ception algorithms for an aerial field robot, starting completely from scratch. The
content in these chapters is organized chronologically, and reflects the particular
data limitations we had during the corresponding phase of the project. Collec-
tively, the chapters illustrate the evolution of field robotic perception algorithms
from deployment-time adaptation approaches to conventional fully-supervised ap-
proaches as our data constraints relaxed over time. Furthermore, we showcase our
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dataset collection and curation process on the path towards enabling fully-supervised
learning, and present a novel method that reduces the time and costs of creating se-
mantic segmentation annotations for imagery collected using aerial robots. The
chapters in this series are summarized as follows.

Chapter 4 marks the beginnings of the project where we had only enough annotated
data to evaluate but not train semantic segmentation algorithms. In this chapter,
we introduce an online self-supervised algorithm designed to adapt to thermal data
during deployment, with a specific focus on water segmentation to enable down-
stream scientific objectives like bathymetry [6]. Specifically, we demonstrate how
our network successfully learns from the amalgamation of weak and noisy heuristic-
based signals, highlighting a pathway for perception development in the early stages
of field robotics projects where offline training data is non-existent. Unlike other
online self-supervised methods [1, 11], we also propose a computational framework
that enables continual segmentation inference at 10 Hz on an embedded device, all
while undergoing online training.

Chapter 5 marks the phase of the project in which we have collected a significant
amount of thermal data which have not yet undergone manual annotation. In
this chapter, we develop an unsupervised domain adaptation (UDA) method that
leverages large-scale annotated RGB datasets with unlabeled thermal data to train
a thermal multiclass semantic segmentation network. Like many existing works,
our method aims to achieve RGB-T UDA via domain confusion of intermediate
network features [19]. We propose a new method to achieve this by using domain-
specific attention modules to align domain-invariant features while preventing forced
alignment of modality-specific features. Our approach outperforms other UDA
methods across two RGB-T domain adaptation experiments and due to its simplicity,
it can be easily adapted for use across various deep learning tasks.

In Chapter 6, we detail our efforts to curate and annotate the thermal imagery we
collected over the course of this project and present the first RGB-thermal (RGB-
T) dataset targeted towards the development of perception algorithms for aerial
field robotic settings. Using our curated dataset, we establish new benchmarks for
thermal and RGB-thermal semantic segmentation, RGB-T image translation, and
thermal visual-inertial odometry (VIO) and simultaneous localization and mapping
(SLAM).

In Chapter 7, we introduce a novel approach that integrates onboard robotic sen-
sors, satellite-derived data products, and visual foundation models to automatically
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annotate aerial thermal imagery for semantic segmentation. We validate our pro-
posed method using the curated dataset from Chapter 6 and demonstrate superiority
over current zero-shot vision-language foundation models that are used to annotate
RGB imagery [22, 38]. We also demonstrate a fully-supervised learning approach
that successfully utilizes our automatically generated labels to train a lightweight,
semantic segmentation network. Lastly, our method provides a quick and low-cost
method to generate semantic segmentation annotations for image data captured from
an aerial robot and is agnostic to sensor modality.

1.4 RGB-thermal deep sensor fusion for self-driving cars
Although RGB and thermal cameras are effective when used individually, using
them jointly in a process known as multimodal deep sensor fusion, if computational
budget allows, improves perception robustness by collectively compensating for the
weaknesses attributed to each individual sensor [15]. While such a process sounds
complex, deep sensor fusion algorithms operate similarly to their single-modality
counterparts: image inputs are encoded by a neural network encoder before being
passed to a decoder and task-specific head to generate the desired task-specific
output. However, in deep sensor fusion models, network representations of each
input modality are combined, i.e. fused, at various points in the model in order
to create multimodal representations [40, 23, 24]. Determining optimal areas for
information fusion is still an active area of research.

Although deep sensor fusion algorithms usually exhibit higher robustness over
single-modality counterparts, they face a stricter data constraint: The various data
inputs used in the model must be coregistered or at minimum, have known spatial
transformations. Consequently, as the number of input modalities increase, the pool
of publicly-available candidate datasets for training such a model drops, increasing
the likelihood of needing custom dataset curation as in Section 1.3. In this problem
setting, we aim to move away from standard end-to-end training approaches [4, 40,
24, 23, 41, 28] and instead, develop a data-efficient deep sensor fusion algorithm
for RGB-T object detection, with a specific focus on applications in autonomous
vehicles such as self-driving cars.

Contributions
In Chapter 8, we propose an RGB-X objection detection model that leverages scene-
specific fusion modules to fuse intermediate data representations. Specifically, we
develop our method in order to take full advantage of pretrained single-modality
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models, using lightweight scene-specific convolutional block attention modules [37]
to perform fusion in the latter stages of the network before passing the fused repre-
sentations to an object detector head. During training, we only update the weights
of the fusion modules, restricting the total trainable parameters of the model to a
minimal amount. In contrast to end-to-end approaches, this strategy enables us to
perform fusion training using small, coregistered multimodal datasets and to do
so very rapidly. We demonstrate our approach on RGB-T and RGB-gated data
and quantify its performance against existing works that perform resource-intensive
end-to-end training.
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C h a p t e r 2

A SEASONALLY INVARIANT DEEP TRANSFORM FOR
VISUAL TERRAIN-RELATIVE NAVIGATION

[1] A. Fragoso, C. Lee, A. McCoy, and S.-J. Chung. “A seasonally invariant
deep transform for visual terrain-relative navigation”. In: Science Robotics
6.55 (2021). doi: 10.1126/scirobotics.abf3320.

2.1 Abstract
Visual Terrain-Relative Navigation (VTRN) is a localization method based on reg-
istering a source image taken from a robotic vehicle against a georeferenced target
image. With high-resolution imagery databases of Earth and other planets now
available, VTRN offers accurate, drift-free navigation for air and space robots even
in the absence of external positioning signals. Despite its potential for high accuracy,
however, VTRN remains extremely fragile to common and predictable seasonal ef-
fects, such as lighting, vegetation changes, and snow-cover. Engineered registration
algorithms are mature and have provable geometric advantages, but cannot accom-
modate the content changes caused by seasonal effects and have poor matching skill.
Approaches based on deep learning can accommodate image content changes, but
produce opaque position estimates that either lack an interpretable uncertainty or re-
quire tedious human annotation. In this work, we address these issues with targeted
use of deep learning within an image transform architecture, which converts seasonal
imagery to a stable, invariant domain that can be used by conventional algorithms
without modification. Our transform preserves the geometric structure and uncer-
tainty estimates of legacy approaches and demonstrates superior performance under
extreme seasonal changes, while also being easy to train and highly generalizable.
We show that classical registration methods perform exceptionally well for robotic
visual navigation when stabilized with the proposed architecture, and are able to
consistently anticipate reliable imagery. Gross mismatches were nearly eliminated
in challenging and realistic visual navigation tasks that also included topographic
and perspective effects.

https://doi.org/10.1126/scirobotics.abf3320
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2.2 Introduction
Remotely-sensed database imagery is a common ground-truth map for Visual
Terrain-Relative Navigation (VTRN). Onboard cameras are passive sensors ideal
for size-, weight-, and power-constrained platforms, and extensive coverage of high-
resolution imagery makes VTRN essential in the absence of Global Navigation
Satellite System (GNSS) capability. Database imagery has been used to provide
absolute position measurements in extraterrestrial robotic entry, descent, and land-
ing (EDL) missions [20, 10], GNSS-denied defense applications [8], backup un-
manned aerial vehicle (UAV) state estimation [9], and offline subpixel geolocation
of remotely sensed data products that can be extremely sensitive to localization
errors [28].

VTRN and geolocation against target images are applications of the more general
image registration problem [19], in which images taken from different poses, at
different times, or with different sensors are transformed into the same coordinate
system. Under ideal conditions, image registration is well-studied and has a number
of mature automatic solutions. Examples include intensity-based template matching
with normalized cross-correlation (NCC) [24], mutual information (MI) similarity
metrics [32], frequency-domain techniques [25], and feature matching [17]. Classi-
cal registration algorithms are also often equipped with geometric and radiometric
invariances that greatly simplify the VTRN problem itself. For example, feature-
based methods can accommodate non-rigid image transformations due to terrain,
with scale-invariant feature transform (SIFT) descriptors [17] in particular being
invariant to scale, 2-D rotation, and linear illumination changes.

In principle, an aerospace robot can be localized to within a few centimeters relative
to a database using onboard imagery and a subpixel-accurate registration algorithm.
High-quality georeferenced terrestrial imagery is updated on a regular basis and
often available at resolutions of 10 centimeters per pixel or better—global cover-
age is available commercially at approximately 30 centimeters per pixel [16]. In
practice, however, aerospace robots that rely on vision regularly encounter severe
appearance changes, such as snow-cover or leaf-drop, that change the texture, illu-
mination, and content of the landscape beneath them. These changes violate the
heuristic radiometric assumptions of classical registration and lead to fragility. In-
deed, manual selection and matching of structures and control points with a stable
appearance remains a respected, if time-consuming practice for offline registra-
tion [4]. Autonomous platforms, however, must reliably perform matching without
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human intervention and have historically relied on comparing radar altimetry [11]
to a topographic database. Although topographic data is more stable than visible
data, terrain matching is less accurate than image registration, and exhibits poor
performance at low altitudes or in flat areas [15].

In order to address the shortcomings of classical approaches, a natural option is
to consider deep-learning approaches that fit stable, high-level features [35]. Al-
though seasonal changes in aerial imagery have received minimal attention, some
deep learning techniques have been successful for challenging fusion and registra-
tion tasks, particularly in medical imaging [13]. A common approach is to train
a deep similarity metric to replace fragile classical metrics using a Siamese archi-
tecture [34]. For remote sensing, [14] learned a similarity score between synthetic
aperture radar and optical images using a pseudo-Siamese architecture, with sepa-
rate fully-convolutional networks for each fed into a common comparison network.
Registration in this manner requires small rigid image chip patches to be repeatedly
sampled from larger images and passed through the network consecutively, which
precludes real-time use.

End-to-end networks accommodate non-rigid registration and avoid repeated eval-
uation of image chips by directly estimating the geometric transformation between
two input images, but lack the engineered advantages of classical approaches. Pure
end-to-end approaches require explicit exposure to all expected transformations in
training, for which examples of real non-rigid transformations are exceptionally
difficult to obtain. Reliability and uncertainty for end-to-end networks are also
extremely difficult to interpret. Furthermore, deep learning does not necessarily
outperform hand-engineered approaches for monomodal registraion, and is often
complementary. [5] observed that monomodal registration of lung imagery under
large deformations benefited from the hybrid use of hand-engineered and learning-
based descriptors. Similarly, [33] augmented SIFT features with robust deep features
taken from the intermediate activations of a pretrained VGG-16 network. Semantic
features can also be extracted and matched using pixel-level segmentation, in which
stable predefined structures such as road networks [12], lunar crater rims [10], or
prescribed semantic elements [22] are labeled using a trained network and matched
to a reference image. Segmentation techniques identify stable structures, but require
extraordinarily tedious human annotation. Structure classes must also be unambigu-
ous and consistently distributed in imagery to be useful, and are prescribed rather
than themselves learned.
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The registration robustness problem can also be posed using domain adaptation the-
ory, in which a non-annotated target data domain supplements an annotated source
domain. The source and target domains are assumed to share content relevant to
a task but differ in their domain-specific statistics—for example, leaf-on and leaf-
off imagery are both useful for navigation even though their vegetation patterns
are different. Relevant content can be identified automatically by mapping two or
more source domains to a common latent domain that is optimized to complete a
task, but in which the original source domains can no longer be distinguished. The
goal is usually to assimilate unlabeled data into a model as efficiently as possible,
which has seen widespread use in remote sensing primarily to improve classifier
robustness while limiting annotation load [29]. Automatic image registration, how-
ever, has received little attention in the domain adaptation literature despite its
extreme sensitivity. The domain adaptation work most relevant to VTRN is based
on image-to-image translation and comes from the automotive community, includ-
ing adaptation for scene segmentation [21] and translation of degraded operating
conditions into ordinary conditions [1].

Main Contribution
In light of these observations, we derive an image transform approach to VTRN that
combines the success of deep learning for image translation and domain adaptation
with the well-known engineered properties of classical image registration. Rather
than attempt to generate an opaque positioning estimate using deep learning and
extensive annotation, we rely on the fact that conventional registration techniques in
principle have perfect performance when their radiometric input assumptions are ex-
actly met. Accordingly, we use deep learning only to modify the appearance of input
images, which is a narrowly-defined task at which it excels. The basis of our tech-
nique is a fully convolutional network (FCN) that serves as a preprocessing step and
transforms input images to a seasonally-invariant domain. This network identifies
and enhances stable structures, serves as an attention mechanism, and is optimized
for robust performance over any well-posed classical registration algorithm. After
sufficient training, a single transform allows leaf-on, leaf-off, and snow-cover test
images to have an identical appearance and registration response, and can mitigate
some higher-frequency appearance changes, such as deep shifting shadows, that
were not explicitly anticipated or trained over in advance. The transform structure
lends seasonal invariance to existing conventional code and techniques without fur-
ther modification or manual annotation. The result is a VTRN pipeline that inherits



17

State estimation Flight 
controller

Absolute positionGPS

Transformed reference 
image retrieval at 

estimated coordinates
Register chip

Odometry

Deep transform

A

Estimated lat. lng.

Figure 2.1: VTRN using the seasonally-invariant deep transform in a GNSS-denied
environment. The UAV determines its absolute position by registering an online
deep-transformed image of the ground into a previously deep-transformed georef-
erenced database image proposed using a running black-box odometry estimate.
The deep transform module (A) removes ephemeral character from both images and
forces them to satisfy the radiometric assumptions of a hand-engineered registration
module that follows. As a result, the UAV can reliably recover its position from the
geometric transformation between the two images using legacy techniques that fail
otherwise.
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geometric invariances from conventional registration without explicit exposure in
training while also relaxing the widely-violated input assumptions that cause them
to break.

2.3 Results
In this section, we demonstrate the effectiveness of our deep transform architecture
for optimizing area-based and feature-based image registration in challenging sea-
sonal conditions. After describing our architecture and the datasets used for training
and testing, we provide experimental performance evaluation results.

Architecture
Our transform serves as an upstream preprocessing step that adds seasonal robustness
to downstream VTRN or registration algorithms, which are themselves unmodified.
The network is trained in advance using diverse seasonal imagery examples and
deployed with locked weights, either aboard an aircraft or space robot (VTRN —
Fig. 2.1) or for general image registration. Input and output image sizes are equal,
but outputs are grayscale as is typically required for registration. We train our
transform using publicly available data that is already co-registered and requires
no further annotation. Suitable training imagery is widely available with global
and extraterrestrial coverage at a high resolution, and captures years of regular
appearance changes.

During training, we expose a U-Net [27] image transform model to matching cross-
seasonal image pairs in Siamese fashion: a single transform is identically shared
between two parallel streams, with registration performance between the outputs
used as a loss function to optimize the transform weights (Fig. 2.2). The training
process is discussed in more detail in Section 2.5.

At run-time, a single stream of incoming imagery, such as a navigation camera
(NAVCAM) image or an unregistered scientific image product, is intercepted and
replaced with transform output. This output is passed, along with a previously
transformed reference image, to the rest of the registration pipeline to calculate the
geometric transformation between the two images. For change detection and other
scientific applications in which image appearance must be preserved, the original
input may simply be warped by the now-known geometric transformation.

VTRN backend and reference image selection: The deep transform architecture
is agnostic to the registration backend as long as the matching score is compatible
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Figure 2.2: Training and evaluation pipeline for feature-based image registration.
During training, the loss function guides the network to transform images such that
corresponding keypoints align in scale and location and their feature descriptors
match. In evaluation mode, the network serves as a preprocessing step to transform
images in different domains to the common domain in which feature-based registra-
tion excels. See Sec. 2.5 for details.
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with the one used in training. For patch matching tasks, we use a sliding window
backend due to its simplicity and maturity as a VTRN technique. More efficient
implementations can be accommodated with no changes to the transform, and in
general the matching backend should be selected to maximize performance.

For any VTRN architecture, reference images must also be proposed before the
registration step. For clarity, we assume that black-box visual-inertial odometry
is available to an accuracy sufficient only for the selection of a large reference
image. In order to exhibit the advantages of a deep transform, we also assume
that odometry cannot locate the onboard image within the selected reference, and
consider matching independently. At the scales (images are roughly 1 km on a side)
and update frame rates (roughly 20 Hz and greater) considered, this is a highly
conservative assumption with extreme noise and drift rates. A lost aircraft with
greater uncertainty searches a larger reference image or database [3], aided by the
increased stability and distinctiveness of deep transformed imagery.

Datasets
We train our transform using publicly available aerial orthoimagery from various
regions of the United States (Fig. 2.3). Full-foliage (leaf-on) and snow-cover imagery
were obtained from the National Agricultural Imagery Program (NAIP) of the United
States Department of Agriculture [30], and absent-foliage (leaf-off) imagery was
obtained from the geospatial data program of the state of Connecticut [7]. Training
and test sets were generated by co-registering cross-seasonal images into matching
pairs. The datasets include man-made structures ranging from urban settlement to
complete absence, with landcover including dense forest, agricultural fields, barren
ground, coastline, and alpine tundra. We include a rugged mountainous dataset
over the states of Wyoming and Montana, where classical registration performs
poorly due to intense contrast changes caused by snowfall and severe mountain
shadows. In addition to orthoimagery, we also test non-rigid transformations due
to topography and off-nadir perspective by warping orthoimages onto co-registered
digital elevation models (DEMs).

We consider two training/test dataset partition strategies, temporal and geographic,
corresponding respectively to performance evaluation for VTRN and general regis-
tration use cases. Practical VTRN missions require a reference imagery database
aboard the aircraft in advance and can always operate over their training dataset
footprint. To evaluate the performance of our transform for VTRN, a representative
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Figure 2.3: Representative images from the datasets along with samples of NCC-
and SIFT-based transforms. (A) Example images from the Connecticut (CT), and
Rockies (RM) datasets in their various domains. (B) NCC transformations of the
CT "leaf-on/leaf-off" image pair. The different effects of training using 600×600,
300×300, and 150×150 image chips are shown. Zoomed-in images outlined in
red and yellow highlight the details present when training with 150×150 image
chips. (C) The presence of a large number of incorrectly-matched features in the
grayscale image pair prevents RANSAC from finding the correct geometric trans-
formation. The SIFT-optimized transform accentuates useful features for matching,
while stripping away noisy, or unstable features that increase the number of outliers
in matching.
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test set is strictly temporally separated from the training set but overlaps with its
geographic area. For general image registration we consider the case in which the
area of interest is too large to be practically contained in a single training set. Under
either assumption, seasonal effects may have been only observed outside of the op-
erating region (for example, extreme snowfall rarely appears in public datasets), so
the ability to abstract structures beyond their specific geographic position is critical.
Accordingly, we also partition the dataset into training and testing sets with strict
geographic separation. For both cases, we assume a 4:1 ratio of training to test data,
with only training data used to optimize the network.

Without loss of generality, any of the domains can serve as a reference image at
run-time depending on particular mission requirements and the operating area. The
map accuracy of each dataset is 6 meters.

Connecticut set: The Connecticut set (CT) consists of 3638 co-registered leaf-
on (summer 2016 and 2018) and leaf-off (early spring 2016) database image pairs
randomly sampled over the US State of Connecticut (Fig. 2.3A, left). Leaf-off
database images were resampled to match the 0.6 m/pixel NAIP resolution data,
with dimensions 1270×1270. In order to evaluate performance when database
images can be used in training, we use the 2016 leaf-on dataset collected two years
before the training version (2018) for testing.

We also demonstrate a VTRN application with a simulated aircraft (Section 2.3)
using 308 pairs taken over northwestern Connecticut. This imagery has an associated
10 cm DEM used to warp imagery and incorporate the effects of topography and
off-nadir perspective. We note that this dataset is consistently more rugged and
forested than the Connecticut set as a whole. The leaf-on images serve as NAVCAM
imagery and are drawn from the same earlier edition used only for testing, and
leaf-off images serve as a reference database.

Rockies set: The Rockies set (RM) is comprised of 90 co-registered NAIP
quarter-quadrangle image pairs, taken between 2012 and 2018, capturing sum-
mer and snow-cover conditions in the Rocky Mountains of Wyoming and Montana
(Fig. 2.3A, right). For training and testing, we subdivide the quarter-quadrangles
into 1200×1200 non-overlapping tiles with a resolution of 1 meter per pixel. We
note that this dataset is challenging even for manual registration due to extensive
barren areas, a complete lack of man-made structure, snow and ice coverage, and
severe mountain shadows. As with the Connecticut set, we also use earlier editions
of the summer set solely for testing VTRN use cases.
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Performance Evaluation
After training, we evaluate transform performance by comparing the accuracy of
widely-used registration algorithms against a grayscale control. The test set consists
of cross-seasonal pairs of source and reference images 𝑆 and 𝑅 that respectively
produce registration queries and targets. We experimentally determine the best
training procedure by restricting or combining different training sets and evaluating
generality.

Because the typical failure mode of cross-seasonal registration is gross mismatch,
we consider the correct match rate of image chips randomly drawn from each
𝑆 and registered against the corresponding 𝑅 as an estimate of the performance
improvements afforded by a deep transform. This test is representative of typical
VTRN operation, in which a NAVCAM images a small area within a database image,
as well as non-rigid image registration in which translated chips are used to seed
more complex transformations.

We use Intersection over Union (IoU) thresholds to identify match rates at varying
levels of tolerance, as is standard for evaluating bounding box performance for
detectors. If the IoU between a test chip and its predicted counterpart in the reference
image is greater than the threshold, the registration is counted as successful. If the
IoU is less than the threshold, it is counted as unsuccessful. We note that the limited
map accuracy can prevent perfect IoU scores from being realized even with perfect
matching.

For performance evaluation, we tested 𝐾 = 50 randomly selected chips for each
image pair in the test sets. As discussed above, we report match rate results for both
temporally-separated and geographically-separated test sets.

Area methods: For area-based registration, we test a transform optimized for
registration by NCC before discussing its relation to distribution-based methods.
NCC is simply the linear correlation coefficient between two image patches, with a
score of 1 if two images are perfectly positively correlated and a score of 0 if they
are uncorrelated. The NCC score and training process are developed in more detail
in Section 2.5.

We first subject the training process to three sets of experiments to determine best
practices: we consider the effect of training chip size on detail recovered by the
transform, the volume of training data required for a transform to perform well on
areas it has not been exposed to, and the volume of additional data required to
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perform well on areas with different landcover. Because each of these experiments
consider the generality of the transform, we use the geographically partitioned test
set.

Although performance at test time always improves with larger test chip sizes, we
observed that a smaller training chip size produces better results. Test chips were
fixed at 300 pixels on a side throughout our experiments, but training chips that
were 150 pixels on a side outperformed larger chips, generated sharply localized
structures, and enhanced detail in challenging areas such as uniform deciduous
forests (Figs. 3–4).

Additional training data improves performance in a geographically separated test
set, but with returns that increase with IoU threshold due to to improved sharpness
(Fig. 2.4). Exposure to the full training dataset, rather than a randomly-selected
subset a tenth of its size, offers a 8 percentage-point improvement for the Connecticut
set at an IoU threshold of 0.75, while increasing the IoU threshold to the range of 0.95
affords a 21 percentage-point improvement. Similarly, evaluation on the Rockies
set yields a 4 percentage-point improvement at an IoU threshold of 0.75, but an 11
percentage-point improvement at a threshold of 0.95.

We also observe that additional training data with landcover different from the test
set also improves matching rates (Fig. 2.4). On both the Rockies and Connecticut
test sets, the best performance was achieved by training the network over all available
Connecticut and Rockies training pairs rather than using each training set separately.
For an IoU threshold of 0.9 and geographic partition of test and training sets, this
network achieved match rates of 0.92 on the Connecticut set and 0.96 on the Rockies
set, compared to Connecticut-only and Rockies-only values of 0.83 and 0.94 and
grayscale control values of 0.50 and 0.66. We note that the merged training set
offered a greater improvement on the Connecticut test set than on the Rockies test
set, particularly at IoU thresholds above 0.85. This asymmetry is largely due to
the complete absence of man-made structures in the Rockies set. The Rockies
set provides relevant training samples away from built-up areas in Connecticut,
but Connecticut training samples cause the deep transform to rely on man-made
structures that are irrelevant in wilderness environments. Unsurprisingly, we also
find that training sets must contain some landcover similar to the test set to offer
increased performance over the grayscale control — training over Connecticut alone
led to poor performance over the Rockies set and vice versa.

In order to consider VTRN use-cases in which the flight area is known in advance,
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Figure 2.4: NCC image registration results. Models in the first three rows were
evaluated with geographically-partitioned data while those in the last row were
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trained specifically for VTRN perform on-par with the best performing transforms
from row A.
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we merged the geographically-separated training and test sets into a single training
set and considered performance on additional leaf-on test sets separated temporally
from the original sets (Fig. 2.4). Overall, we observe little impact from including
the geographic area of the test area in training, with a small increase in performance
at high IoU thresholds and a small decrease in performance at lower IoU thresholds.
With the exception of those containing permanent structural changes, pairs that fail
only when exposed to the additional data typically have intra-domain landcover
changes that were not covered in the training set. Because only one example of each
domain was presented for each pair during training, this behavior is a symptom of
overtraining a particular scene on a particular leaf-on appearance that can change
severely at test time. On the other hand, the subtle increase at high IoUs appears
to be due to increased sharpness afforded by inclusion of highly relevant training
samples. The fact that overall matching performance is relatively insensitive to
geographic coverage, however, suggests that features learned by the transform are
abstract and high-level rather than tied to landmarks with a specific location.

Normalized Mutual Information
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ty

Figure 2.5: Distributions of mutual information values for mismatched and matched
300 × 300 image chips evaluated on a combined Connecticut and Rockies test set.

We also attempted to train a transform to directly optimize a normalized MI ob-
jective, but observed unstable training even with extremely small learning rates
and deliberate overtraining over a single image pair also used for testing. This
behavior is consistent with ill-posedness of MI as an optimization objective; the op-
timal transform is highly non-unique because MI and related distributional methods
are invariant to any invertible deterministic function. Furthermore, MI is non-
differentiable and cannot be used for backpropagation without the use of a smooth
approximation. Fortunately, the NCC training objective can also be used to train
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transforms that improve MI-based registration. Although a full-resolution test of
normalized MI performance over image chips is intractable (coarse-to-fine architec-
tures are required even if heading and and altitude are known [2]), the NCC-trained
transform enhances the ability of normalized MI to distinguish matching and non-
matching pairs. On a set of 11600 matching and 11600 non-matching image chip
pairs randomly drawn from the both test sets and exposed to our best-performing
network, the Kullback-Leibler (KL) divergence between MI distributions for match-
ing and mismatching grayscale image pairs was 0.22, while application of the NCC
transform increases KL divergence to 1.58 (Fig. 2.5).

Feature methods: Unlike the straightforward loss functions available for optimiz-
ing area methods, adapting our transform for feature-based registration performance
requires simultaneous optimization of detector and descriptor response. We illus-
trate our approach using SIFT features [17], to which our transform adds seasonal
invariance to well-known rotation, scale, and linear-brightness invariance proper-
ties. SIFT features fail spectacularly in grayscale control tests across seasonal pairs
because most features detected are small and associated with unreliable ephemeral
landscape textures such as vegetation. Instead, we simultaneously optimize a deep
transform for detector reproduciblilty, descriptor reproducibility, and descriptor dis-
tinctiveness to remove unreliable seasonal content (see Section 2.5 for details of the
optimization objective and training procedure).

As in Section 2.3, we evaluate the performance of our deep transform using
geographically-partitioned and temporally-partitioned training and testing sets. In
order to evaluate VTRN for a nadir-looking NAVCAM with no other sensors avail-
able (area methods assume a known orientation and height), we consider 640 ×
480 pixel test chips extracted from cross-seasonal pairs and subjected to randomly-
varying translations, rotations, and scale transformations. We add the effect of
topography and off-nadir perspective angles in Section 2.3.

We observe that our deep transform offers major performance advantages over
grayscale control across all IoU thresholds (Fig. 2.6) and over all test sets and training
strategies considered. Feature-based methods appear more sensitive to the landcover
encountered in training than area methods, however, and exposure to impertinent
samples can degrade performance. Merging the Rockies and Connecticut datasets
improved match rates on the Connecticut test set at all IoU thresholds, largely due to
improved feature density in forested areas, but worsened match rates on the Rockies
test set due to a reliance on man-made structures that are not present at test time.



28

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

Exp. 100% (1)

Exp. 100% (2)

CT 100% + RM 100% (1)

CT 100% + RM 100% (2)

Ctrl. grayscale (1)

Ctrl. grayscale (2)

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

Exp. 100% (1)

Exp. 100% (2)

Exp. 100% + test (1)

Exp. 100% + test (2)

Ctrl. grayscale (1)

Ctrl. grayscale (2)

IoU threshold

M
at

ch
 ra

te

Connecticut Rockies

A

B

Figure 2.6: SIFT matching performance on geographically- and temporally-
separated test sets evaluated using 640 × 480 test image chips. Test pairs that
lack sufficient keypoints to calculate a camera pose are counted as mismatches in
experiments denoted (1), but assumed useless for navigation in experiments denoted
(2) and not counted. (A) For geographically-separated evaluations, we compare the
matching rates of transformations trained on a single set (Exp. 100%, for CT or
RM) against transformations trained on both sets (CT 100% + RM 100%). (B) To
determine the effect of training over an anticipated flight area, we compare transfor-
mations trained on geographically-separated data (Exp. 100%) to transformations
specifically trained over the same area as the test set, but from different years (Exp.
100% + Test).

In addition to improving match rates, the deep transform also provides a realistic
assessment of the navigational utility of an image and fails far more gracefully than
grayscale imagery. Images devoid of navigational cues, such as open water or uni-
form deciduous forest, simply do not have enough features available for registration
after exposure to the transform and result in a failure. Grayscale imagery, on the
other hand, often has enough spurious features available to return a registration es-
timate, and tends to generate mismatches when it should instead fail. Accordingly,
we report experiments that both reject and retain failed test pairs in Fig. 2.6.

Finally, including the area of a temporally-separated test set within the training set
slightly reduces the number of rejected pairs on the Rockies set, but with essentially
no improvement on the Connecticut test set and a slight decrease in matching skill
on accepted pairs in both sets. This decrease in performance is consistent with
overtraining on the leaf-on appearance of the scene in training.
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Figure 2.7: VTRN demonstration with a simulated flight over northwestern Con-
necticut. (A) The figure-eight flight trajectory is shown with a few select NAVCAM
images (640 × 480) seen by the aircraft. The trajectory contains a mixture of small
towns, agricultural areas, dense deciduous forest, and occasional open water. (B)
NCC-based registration match rate at various distance thresholds from the ground
truth positions. (C) SIFT-based registration distance-from-ground-truths at the 50th,
68th, 90th, and 95th percentiles.

Demonstration: Seasonally-Invariant VTRN
We evaluate our transform under realistic VTRN conditions during a simulated flight
over a relatively undeveloped and rugged area of Northwest Connecticut (Fig. 2.7).
The conditions encountered during the flight are considerably more challenging
overall than the Connecticut set, and contain large uninterrupted expanses of decid-
uous forest with steeper terrain and sparser development. The flight area is covered
by a DEM and a temporally separated test set, which are used to simulate imagery
from a NAVCAM aboard a fixed-wing aircraft. As a result of the steep terrain and
rolling motion of the aircraft, image registration involves a complex geometric trans-
formation incorporating aircraft translation, attitude, and height changes along with
and perspective effects due to a combination of camera optics, off-nadir viewing,
and topography. Reference imagery is drawn from a database of leaf-off orthopho-
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tography, with the NAVCAM imagery taken in full leaf-on conditions separated by
two years from the training data. Due to the complexity of this transformation and
the intense seasonal changes, both the content invariance of deep transforms and the
geometric advantages of conventional registration are needed to generate reliable
absolute position updates.

We consider both NCC- and SIFT-based navigation along with associated deep
transforms and a grayscale control set. SIFT can accommodate complex geometric
transforms, in principle, as long as the number of features matched is adequate, while
NCC assumes nadir-looking shots as well as an estimate of heading provided by a
compass and an estimate of height provided by an altimeter. We do not supply SIFT
with a heading estimate because of its rotational invariance, but NCC is supplied with
perturbed (+/- 2 degrees) on-nadir shots and noisy heading estimates (+/- 5 degrees)
to evaluate realistic operating conditions with instrument error. Contrary to typical
practice, we also evaluate NCC without the benefit of online orthorectification. In
order to isolate seasonal effects on performance from geometric effects, we also
include a control NCC test with online orthorectification, perfect altimetry, and
perfect compass measurements.

The test NAVCAM sequence consists of 200 image chips with dimensions 640×480,
taken approximately every 180 meters along a 36 km figure-eight aircraft trajectory
roughly 200 m above the terrain. Due to the frequent and sequential nature of the
imagery, shots are somewhat correlated and cluster in challenging areas that were
far less abundant in the full Connecticut set. We use a database image of 1270×1270
pixels for NCC and a smaller 800×800 pixel image for SIFT due to its sparser nature
and use with poorly-constrained transformations. We also note that three of the 200
shots contained only open water, and were either mismatched or rejected for lacking
navigational content by the registration algorithms in all experiments.

For NCC, the VTRN backend was performed with a patch-based sliding window
method, while SIFT features were matched using standard brute-force sum-of-
absolute-differences (SAD) scores. Extremely noisy onboard odometry was simu-
lated and used to select 0.6 m/pixel reference images that contain the aircraft location
somewhere within the prescribed map size. This odometry error assumption far ex-
ceeds the average interval between shots of 180 meters. Each shot was treated
as independent, and odometry was not allowed to influence the initial pre-VTRN
uncertainty beyond the size of the reference image.

Test images were subjected to the best-performing NCC and SIFT transforms de-
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termined in Sections 2.3 and 2.3, which were trained over Connecticut and Rockies
training data consolidated into a single set. SIFT feature detection, extraction, and
matching were performed using OpenCV with default settings, and random sample
consensus (RANSAC) was used to estimate a full-affine geometric transformation
without knowledge of the aircraft height or attitude. Off-nadir perspective and to-
pography allow test images to differ in shape from ground truth and prevent perfect
IoU scores even if localization is perfect, so navigation performance was evaluated
using the centroid distance between registered images and ground truth. We also
calculate several centroid distance statistics, including circular error probable (CEP),
R68, R90, and R95 scores, which correspond respectively to the 50th, 68th, 90th,
and 95th percentiles of centroid distance.

VTRN performance: When used with a deep transform, NCC proved to be a
powerful and robust navigation tool, even in the presence of steep topography and
viewing angle perturbations that violated its geometric assumptions. The deep
transform had far fewer mismatches than grayscale and also localized close matches
more accurately (Fig. 2.7). The CEP for the unmodified transformed image was
14 m, compared to 3 m for the idealized geometry, 40 m for unmodified grayscale,
16 m for the idealized grayscale geometry, and 168 m for a set of 100 randomly
guessed centroids per frame. The deep transform had few gross mismatches, with
transformed imagery having an R68 score of 19 m, an R90 score of 46 meters, and
an R95 score of 115 m, compared to 4 m, 7 m, and 14 m for idealized conditions.
Because each of these scores are considerably smaller than the size of the NAVCAM
image even at high percentiles, this divergence suggests that much of the error was
caused by the impossibility of matching distorted test images against rectangular,
orthorectified ground truth using a rigid translation. Grayscale control imagery,
on the other hand, had an R68 score of 150 m, an R90 score of 233 m and R95
score of 262 m, which improved to 32 m, 228 m, and 260 m under ideal imaging
geometries. The departure in R68 but approximate convergence in R90 and R95
score between these two experiments suggests that grayscale was highly sensitive to
topography and viewing angle. Furthermore, grayscale was also plagued by gross
mismatches caused by seasonal content, as evidenced by comparison to random
centroid guessing scores of 197 m, 241 m, and 258 m.

SIFT was able to provide accurate and reliable accurate position estimates from deep
transformed imagery even with a camera as the sole navigation instrument, but at the
price of a much lower update rate. Although the deep transform was able to stabilize
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Table 2.1: Runtime and memory consumption of the deep transform for various
input image sizes.

Image size GPU I/O (s) GPU (s) CPU (s) Memory (GB)

300×300 0.0003 0.0192 0.700 0.67
640×480 0.0004 0.0597 2.734 2.13
1280×720 0.0008 0.1722 8.139 6.25
1600×1200 0.0015 0.3623 17.250 12.95

imagery, it struggled to enhance and concentrate adequate numbers of strong features
in the most challenging areas. The stabilizing effect, however, recovered high levels
of accuracy among useful images identified using an empirical feature match count.
11 percent of images were accepted as reliable in the transformed imagery, with a
CEP of 14 meters and a maximum error of 76 meters. In contrast, grayscale control
imagery was unable to anticipate reliable or unreliable frames at any feature count
threshold. For the same experiment, 53 percent of images were accepted, with a
CEP of 116 m and an R95 of 263 m, for a minor advantage over random guess
values of 192 m and 301 m respectively.

Hardware and Runtime Metrics
Our machines were configured with Intel Core i9-7900x processors with 128GB
of memory. We trained the deep transforms using Nvidia Quadro RTX 8000
(48GB) and the Titan RTX (24GB) GPUs. Since VTRN requires image chips to
be transformed in an online setting, we recorded runtime and memory usage for
various navigation chip sizes, including those used in our VTRN demonstration.
We benchmarked the deep transform using the Titan RTX and report these results in
Table 2.1. We find that the GPU-accelerated deep transform can process 640 × 480
chips at 17 Hz and even larger 1600×1200 chips at 2.7 Hz. For small image chips,
the deep transform can still operate at reasonable speeds even without a GPU, but at
a cost of a slower position update rate. We do not report metrics for larger database
images, which are not transformed in real-time but instead calculated offline in
advance and cached for quick lookup.

2.4 Discussion
Overall, our transform learns highly general, abstract features that are semantic in
nature rather than landmarks tied to specific geographic locations. Our transform
need not be trained over the exact area where it will be used, and only small amounts
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of data were required to surpass performance on standard grayscale imagery. The
advantages of isolating geometry to an engineered conventional back-end, rather
than training, were also apparent in feature-based experiments. Using a SIFT back-
end, deep transforms were able to accurately assess reliability and accommodate
complex topographic and perspective transformations despite training only on or-
thophotography. We also find that NCC is an extraordinarily powerful tool when
supplemented with a deep transform despite its simplicity. Deep transformed NCC
exhibited robust performance against severe seasonal effects and perturbed imag-
ing conditions that violated its translation-only, mutually orthorectified geometric
assumptions.

The usual case of more data improving performance remains largely true, but tar-
geted training set design can help achieve better results. Training sets must include
at least some landcover similar to what will be encountered at test time to be ef-
fective, with increasing volumes improving the spatial precision of the transform.
Including as much data as possible improved matching for area-based methods even
if additional training examples had highly dissimilar landcover, but feature-based
approaches required care to avoid crippling a deep transform with irrelevant samples.
Although the inclusion of roadless areas from the Rockies training set improved fea-
ture matching away from built-up areas in Connecticut, for example, overexposure
to buildings in training also hindered the ability of the deep transform to construct
useful SIFT features in images where they were not present. Consequently, systems
designed to operate entirely away from man-made structures, such as for extrater-
restrial applications, should not use training sets dominated by them. Our transform
also accommodated ephemeral changes that were not anticipated in advance, which
suggests that general time-series data is useful for stabilizing VTRN even if seasonal
disturbances are not expected. Deep mountain shadows that change throughout the
day and year, for example, had improved matching as natural consequence of their
presence in the set and the self-supervised architecture (Fig. 2.8). This tendency
is further evidenced by the possibility of overtraining over specific leaf-on appear-
ances, which caused inclusion of VTRN database imagery in training to decrease
performance on a temporally-separated test set in some cases.

Although feature-based methods using SIFT features are more flexible in the geo-
metric transformations that they can accommodate, the NCC training objective was
much more robust in the most challenging and unstable areas. Unless operational
considerations preclude the use of NCC and require feature-based approaches, such
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Grayscale NCC: 0.21 Transform NCC: 0.63

Figure 2.8: Example of improved robustness to severe mountain shadows in test
data. Self-supervised training causes the transform to attempt to mitigate any
unstable content without explicit annotation. Intense lighting changes, for example,
were occasionally present in the Rockies dataset and were addressed by the transform
even though they were not specifically identified as a relevant seasonal disturbance.
Despite information loss to saturation, areas in deep shadow were brightened (left,
red and blue boxes are co-registered) and stable landscape features were enhanced.
The transform was not exposed to either image during training.

as the presence of extreme topography at low altitudes or the lack of an attitude es-
timate, the additional information afforded by NCC-based matching is preferable to
the geometric flexibility of SIFT when severe content changes are present. NCC was
able to infer reproducible structure in aggressively changing environments where
SIFT had difficulty finding features, and also proved to be robust to local topographic
and viewpoint perturbations that would ordinarily call for the use of feature-based
approaches. Nonetheless, the deep transform enhanced the reliability of SIFT-based
navigation in areas that were impossible for grayscale imagery—unusable shots sim-
ply lacked features and were consistently identified in advance. Unlike grayscale,
which proposed over-confident matches little better than random guessing, unusable
shots were discarded rather than being naively allowed to disrupt navigation.

The NCC objective also supported registration by mutual information maximization
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without incurring its extreme computational expense or the complexity of back-
propagation through a nondifferentiable objective [31]. NCC is well-known to be
equivalent to MI for normally-distributed random variables, and transforms trained
on NCC improved the separation of matching and non-matching mutual information
scores (Fig. 2.5) while also being much easier and faster to train. Because such trans-
forms are already directly optimized for NCC, MI-based registration architectures
and their inherent difficulties can be replaced entirely by a real-time NCC-based
architecture with a deep transform.

Finally, the results presented here isolate difficulties associated with content changes,
and consider odometry and filtering only to the extent that they generate reference
images including the aircraft location. Filtering can serve not only to improve
running estimates of position, as with any navigation technique, but aid the VTRN
matching process itself by restricting the size of a registration problem to a tight
uncertainty. If position and attitude are sufficiently well known, a registration
solution can be proposed in advance and VTRN used to modify and confirm it
within tight bounds. Feature-based approaches stand much to gain from filtering in
particular, as the relatively unconstrained nature of the geometric transformations
they solve benefits highly from reliable initial guesses and bounds.

2.5 Materials and Methods
We structure our transform as an FCN, with a self-supervised training architecture
that assumes co-registered image pairs but identifies and extracts seasonally-stable
structures on its own. During training (Fig. 2.2), image pairs with cross-seasonal
differences (leaf-on vs leaf-off or summer vs snow) are consecutively exposed to
the FCN with shared weights, which outputs a pair of single-channel transformed
images with the same dimensions as the inputs. The network is trained using a
loss function calculated from the performance of a specified registration technique
(for example, NCC or SIFT) on an auxiliary chip-matching task. Although the
specific structure of the loss function depends on the choice of registration backend,
the transform can be trained to optimize any algorithm with a differentiable and
well-posed matching score. In doing so, we harness the statistical power of deep
learning to add seasonal robustness to legacy techniques.

After training, the FCN constitutes a single-stream image transform that strips source
and reference images of their seasonally-unstable content for stable registration. In
the rest of this section, we highlight specific network details and consider the
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construction of seasonally-invariant transforms for area-based and feature-based
registration.

Network Architecture
We chose U-Net [27] as an example model, although any FCN architecture that
preserves image resolution will suffice. In a deep transform context, U-Net maps
an input grayscale image of dimension𝑊 × 𝐻, with intensity values between [0,1],
to an output grayscale image of the same size and compressed to [0,1] using a
sigmoid function. Inputs are normalized using a fixed mean and standard deviation
derived from the training set. In order to avoid checkerboard artifacts associated
with deconvolution, we replace the deconvolution layers of original U-Net with
blocks consisting of an upsampling operation with bicubic interpolation followed
by a convolution [23].

Loss function and regularization: During training, the loss function is calcu-
lated by passing pairs of transformed chips (𝑇1

𝑖
, 𝑇2
𝑖
) to the matching function of a

desired image registration algorithm. The matching function generates a normal-
ized similarity score 𝑦̂(𝑇1

𝑖
, 𝑇2
𝑖
) ∈ [0, 1]. The normalized similarity score 𝑦̂ is in

turn compared to a binary label 𝑦𝑖 that indicates whether the chips were originally
co-registered (𝑦𝑖 = 1) or not (𝑦𝑖 = 0). The loss L is the sum of the contributions
from each image pair and is used to update the network weights by backpropagation.
Accordingly, the chip pair (𝑇1

𝑖
, 𝑇2
𝑖
) contributes

L (𝑖) = ∥ 𝑦̂(𝑇1
𝑖 , 𝑇

2
𝑖 ) − 𝑦𝑖∥ (2.1)

to L, where ∥ · ∥ is a differentiable norm. The only requirement for 𝑦̂ is that
the matching score be differentiable with respect to the network parameters and
well-posed for backpropagation.

To avoid trivial transforms, such as setting all pixels identically to zero, non-matching
samples with 𝑦𝑖 = 0 must be presented during training. Co-registered (positive)
chips are selected with probability 0.5 and driven towards a perfect matching score,
while non-matching (negative) samples are driven towards either a worst-case mis-
match score or separation margin.

Implementation and training details: Our U-Net architecture is based off of the
github repository, Pytorch-UNet [18], and adapted by replacing the deconvolutions
to resolve checkerboard artifacts as mentioned before. All transforms were trained
using the Adam optimizer with a learning rate of 1e-5 over 300 epochs. The learning
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rate was decayed at an exponential rate of 0.995 every two epochs. Batch size was
adjusted depending on training chip size to fit on the GPU, but no larger than 16. We
relied on the OpenCV and Kornia Python libraries to implement the loss function
for SIFT-based image registration [6, 26].

Area Methods
Our training procedure for area-based registration methods directly optimizes regis-
tration performance on the training set. All area-based registration techniques use a
similarity score based on intensity values to determine whether image chips match or
not, which is simply driven towards perfect (matching) or worst-case (non-matching)
values to train our network. As discussed in Section 2.4, the NCC objective is widely
applicable and also useful for MI and related area-based methods.

Normalized Cross-Correlation: For a chip pair (𝑇1
𝑖
, 𝑇2
𝑖
), the zero-mean NCC

score is defined as

𝑦̂NCC
𝑖 =

1
𝑛𝜎𝑢𝜎𝑣

∑︁
𝑢,𝑣

(𝑇1
𝑖 (𝑢, 𝑣) − 𝜇1) (𝑇2

𝑖 (𝑢, 𝑣) − 𝜇2), (2.2)

where 𝑢, 𝑣 are pixel coordinates in the chips, 𝑛 is the number of pixels in each
chip, and 𝜇1, 𝜎1 and 𝜇2, 𝜎2 are the respective means and standard deviations of the
transformed chips. To optimize the transform, we drive the similarity score 𝑦̂NCC

𝑖

towards the label 𝑦𝑖 = 1 for positive samples and 𝑦𝑖 = 0 for negative samples using
squared error over 𝐾 pairs:

LNCC =
1
𝐾

𝐾∑︁
𝑖=0
∥ 𝑦̂NCC
𝑖 − 𝑦𝑖∥22. (2.3)

Feature Methods
Unlike area methods, feature-based methods consist of two objectives that must
be optimized: detection, in which reliable feature locations are identified, and
extraction, in which descriptors that consistently represent unique structures are
selected at detected locations (Fig. 2.2).

Scale-Invariant Feature Transform: To optimize for SIFT, we incorporate the
two objectives mentioned above into our loss function. Detector response is driven to
a common domain using NCC optimization over the difference-of-Gaussian (DoG)
pyramids from a pair of transformed image chips (𝑇1

𝑖
, 𝑇2
𝑖
) :

Ldet =
1
𝐾

𝐾∑︁
𝑖=0
∥ 𝑦̂NCC(𝑃1

𝑗 , 𝑃
2
𝑗 ) − 𝑦𝑖∥22 (2.4)
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where (𝑃1
𝑗
, 𝑃2

𝑗
) are pairs of 64 × 64 patches sampled from the DoG pyramids of the

transformed input pair. During training, we randomly extract 100 pyramid sample
pairs from each input image with a negative matching rate of 0.5.

To optimize descriptor performance, we calculate the pairwise distance between the
𝑀 detected keypoints in 𝑇1

𝑖
and the 𝑁 detected keypoints in 𝑇2

𝑖
(eq. 2.5). During

training, 𝑀 and 𝑁 are each fixed at 500. Normalized descriptor pairs (𝐷1
𝑚, 𝐷2

𝑛)
are extracted from each image, where 𝐷1

𝑚 is the 𝑚th descriptor extracted from 𝑇1
𝑖

and 𝐷2
𝑛 is the 𝑛th descriptor extracted from 𝑇2

𝑖
. The Euclidean distance between the

descriptor pairs 𝑦̂desc
𝑚,𝑛 is driven towards a label 𝑦𝑚,𝑛, which is 0 if the corresponding

keypoints match in scale and location, and driven towards the maximum margin
𝑎 = 2 if they do not:

𝑦̂desc
𝑚,𝑛 = | |𝐷1

𝑚 − 𝐷2
𝑛 | |2 (2.5)

Ldesc =
1
𝑀𝑁

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑦𝑚,𝑛 · 𝑦̂desc
𝑚,𝑛 + (1 − 𝑦𝑚,𝑛) ·max(0, 𝑎 − 𝑦̂desc

𝑚,𝑛 ). (2.6)

The two loss functions are then jointly optimized as

L = 𝛽Ldet + Ldesc, (2.7)

where 𝛽 is empirically chosen to be 10. In order to handle more keypoints at different
scales, we randomly and identically scale the input pairs between 0.6 and 1.4, and
crop to 256 × 256, 400 × 400, or 512 × 512 pixels before transformation.
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C h a p t e r 3

SELF-SUPERVISED LANDMARK DISCOVERY FOR LARGE
SCALE VISUAL TERRAIN-RELATIVE NAVIGATION

[1] C. Lee, E. Mesic, and S.-J. Chung. “Self-Supervised Landmark Discovery for
Terrain-Relative Navigation”. In: ICRA 2023 Workshop on Unconventional
spatial representations: Opportunities for robotics. Available at https://
usr2023.github.io/papers/Landmark.pdf. 2023.

3.1 Abstract
We present a landmark discovery algorithm to automatically detect and identify op-
timal landmarks for aerial localization in visual terrain-relative navigation (VTRN)
pipelines for Global Navigation Satellite Systems (GNSS) denied navigation. Our
method employs self-supervised contrastive learning to identify and encode visual
landmarks despite illumination, viewpoint, and seasonal changes. Using publicly
available aerial imagery, we demonstrate that our approach can detect and re-identify
sparse landmarks across seasons and enable localization within 10 meters. Lastly,
our method minimizes the storage requirement compared to current VTRN methods,
expanding the navigable area size.

3.2 Introduction
In absence of Global Navigation Satellite Systems (GNSS), uninhabited aerial ve-
hicles (UAV) can pinpoint their exact geolocation by matching images from their
navigational camera (NAVCAM) to known, georeferenced images, in a process
known as visual terrain-relative navigation (VTRN). In the last few decades, image
registration-based VTRN approaches have dominated GNSS-denied robotic naviga-
tion systems, driving applications like planetary entry, landing, and descent (EDL)
and cruise missile guidance [3, 10]. These approaches typically rely on regis-
tration backends, powered by area-based template matching and/or feature-based
homography estimation, to provide precise geolocation [10]. However, they face
two problems: First, they fail when faced with seasonal or illumination variation,
relying on strategic mission planning [3, 10] or deep learning to compensate [7].
Second, they require georeferenced imagery or extracted local feature descriptors to
be stored on memory-constrained UAVs, which limits navigation area size.

https://usr2023.github.io/papers/Landmark.pdf
https://usr2023.github.io/papers/Landmark.pdf
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Figure 3.1: Examples images from the dataset and proposed landmarks via our
discovery module. F2/3/4 are resolution streams of the network activations that the
landmarks were extracted from (F4 is lowest). Landmarks from each stream are
displayed prior to non-maximum suppression and may overlap with those in other
streams. Note that not all discovered landmarks are required to have a matching pair
across seasons for localization to work.

In contrast, landmark-based VTRN approaches are robust and lightweight, providing
accurate but sparser geolocation updates by re-identifying a small set of known
landmarks [6, 12, 14]. These landmarks can be encoded with invariances to common
VTRN perturbations like seasonal variation and cached as low-dimensional vectors.
For landmark-based approaches, the main challenge is choosing a set of landmarks
that is large enough to provide a steady rate of geolocation updates, but with each
landmark being easily re-identifiable.

Today, convolutional neural networks (CNN) have made it possible to easily detect
and identify such landmarks despite appearance and illumination variations, but
expert guidance is generally still used to select good landmarks for CNN training.
Examples of this include crater detection for lunar EDL [6], and detection of various
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human-made structures (roads, houses, and buildings) for UAV navigation over
urban/suburban areas [16, 13]. Although human expertise helps in these settings,
there are three downsides: First, human cognitive and visual biases could result
in potentially-useful landmarks being overlooked [11, 9]. Second, humans are not
good at pattern recognition in unstructured and noisy terrain, whereas learning-based
methods are good, when provided enough data. Third, having humans-in-the-loop
means manual and tedious mission planning.

In this work, we propose a self-supervised landmark-based VTRN pipeline for UAV
localization across seasons. Our primary contribution is a landmark discovery
algorithm that learns to automatically identify navigationally-useful and seasonally-
robust landmarks (Fig. 3.1) without requiring human expertise. We investigate the
localization potential and robustness of individual components and demonstrate
their efficiency over current VTRN techniques.

This work is outlined as follows: we briefly go over prior works in Sec. 3.3 and
follow with our approach (Sec. 3.4), results (Sec. 3.5), and conclusion (Sec. 3.6).

Learned networks via self-supervision
Landmark-based VTRN components

NAVCAM Landmark Discovery 1

N

300
300

128

N
NAVCAM Landmark Encoding 2

2

0

128

M  

Database Landmark 
Discovery + Encoding 

3 Landmark Matching
Latitude, Longitude

UAV State Estimation
Estimated UAV position

Associated
 geocoordinates

HRNet

Resnet18

NAVCAM image

Figure 3.2: Flowchart of our proposed landmark-based localization method in a
UAV state estimation pipeline. The landmark discovery module (Step 1) extracts
cropped landmark proposals based on the activations of a CNN. Landmark crops
are encoded using a separate network (Step 2) and matched (Step 3) against a
precomputed database of georeferenced landmark encodings (Step 0).
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3.3 Related Work
Compared to local feature-based approaches, current landmark-based VTRN ap-
proaches tend to focus on landmarks with more semantic meaning, such as lunar
craters, roads, and buildings [6, 16, 13]. They typically consist of three components:
landmark detection, encoding, and matching. For example, [6] localizes lunar craters
using a CNN and matches the geometric characteristics of found craters against a
georeferenced crater database to get location. Recent works [16, 13] also leverage
human-selected landmarks such as road networks and buildings for aerial naviga-
tion, but do not operate outside of urban environments. These current approaches
reduce the storage overhead of local features but rely on humans to select landmark
classes for CNN training. In our work, we seek to automate landmark discovery by
directly learning from image data using a self-supervised learning scheme.

Recent VTRN approaches eschew landmarks and directly match globally encoded
NAVCAM and database images. [2] trains a CNN autoencoder to densely encode
database images along a 1.1 km flight path for fast location querying using a global
NAVCAM descriptor during flight. Similarly, [4] discretizes database images of a
small UAV flight area along a grid prior to encoding and perform pose refinement
via learned local feature matching after reducing location uncertainty via global de-
scriptor matching. [18] also uses global descriptor matching, but requires onboard
storage and preprocessing of georeferenced database images before encoding to
achieve illumination and viewpoint invariance. In our work, we use global descrip-
tors with discovered landmarks to perform localization with a low storage overhead
to enable navigation in larger areas.

3.4 Approach
An overview of our VTRN pipeline (Fig. 3.2) is as follows: Prior to flight, landmarks
are discovered in georeferenced images using a CNN, encoded with another CNN
and tagged with geocoordinates, and cached in an onboard landmark database.
During flight, landmarks from NAVCAM images are detected, encoded, and queried
against database encodings to find a match. UAV position is updated, and position
uncertainty is used to restrict the database search space.

We give an overview of the self-supervised learning scheme we use for CNN training
before detailing the landmark discovery, encoding, and matching components that
comprise our proposed method.



46

Self-supervised Contrastive Learning
We use a self-supervised contrastive learning (SSCL) scheme similar to [5]. Our
training procedure is as follows: for an image x, we generate two views x̃i, x̃j

via random visual perturbations commonly encountered in flight. The views are
encoded into 128-d vectors, hi, hj, via CNN encoder 𝑓 . We maximize the cosine
similarity between positive vector pairs (generated from the same x) and minimize
between negative pairs (sampled from within the batch). For a positive pair, the loss
is formally defined

L(hi, hj) = − log
exp(𝑆𝑐 (hi, hj)/𝜏)∑2𝑁

𝑘=1 1[𝑘≠𝑖] exp(𝑆𝑐 (hi, hk)/𝜏)
, (3.1)

where 𝑆𝑐 denotes cosine similarity and 𝜏 is a temperature parameter set to 0.1.

Landmark Discovery, Encoder, and Matching
Landmark discovery: Our algorithm uses the activations of an HRNet CNN feature
extractor [15] to find landmarks. The HRNet is followed by a global average pool
and a fully-connected layer. To focus the network on invariant landmarks, we
train this network (Sec. 3.4) to predict if two image encodings describe the same
location (positive) or not (negative). We create image pairs using random seasonal
variations (leaf-on and leaf-off), rotation, perspective, color jitter, and motion blur
augmentations.

To localize landmarks, we extract the final activations from the three lowest-
resolution streams of the HRNet (Fig. 3.2), denoted F2, F3, F4 from highest to
lowest resolution. Each activation is channel-wise averaged before upsampling to
input size and binarized via thresholding. Thresholds are chosen based on percentile
values computed over training set activations. Landmarks are localized via contour
detection and fitted with a tight bounding box (Fig. 3.1). Overlapping landmarks
with an intersection-over-union (IoU) ≥ 0.4 are non-maximum suppressed (NMS),
with preference for landmarks extracted at higher thresholds.

Landmark encoder: We use a Resnet-18 [8] encoder to encode discovered land-
marks for lightweight storage and matching. This network is trained on discovered
landmark crops (300 × 300) using the same augmentations as before.

Landmark matching: Prior to flight, landmarks are detected over a target area,
encoded, and cached with their associated geocoordinates. During flight, we match
NAVCAM landmark encodings against database encodings within 𝑅 meters of the
current position estimate. A landmark pair is a match if its similarity is over a
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Figure 3.3: Joint landmark discovery and encoding matching results. Matching was
done with 2.5 km and 25 km search radii. Ground truth matches were counted if a
landmark pair were within 10 m or 30 m of one another.

threshold and has the maximum similarity over other possible pairs. 𝑅 is hardcoded
in this work, but we note that it could possibly be adapted based on current position
uncertainties.

Implementation and Training Details
We implement networks in PyTorch using the timm library [17]. For landmark
discovery, convolutions used reflection padding to avoid border effects in activation
maps. We train for 1000 epochs, using a batch size of 128 and the Adam optimizer
with a learning rate of 1e−4.
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Figure 3.4: Ablation on landmark discovery and encoding using the Connecticut test
set. (a) Metrics of coinciding landmarks discovered at different resolution streams
and various percentile threshold values. (b) Effect of common VTRN perturbations
(seasons only, geometry only, all) on the encoding similarities of known matching
and non-matching landmark pairs.

3.5 Results
Datasets
We train and evaluate our method using the aerial image dataset from [7]. It consists
of 3639 coregistered image pairs taken over the state of Connecticut (CT) in the
United States during Spring and Summer 2016. Human-made structures, wooded
forests, agricultural fields, and bodies of water are present, with “leaf-on vs. leaf-
off” seasonal variation. We partition each 1270×1270 image into 600×600 crops
with a 10 percent overlap and create train, val, and test splits at a 70:15:15 ratio.
Each image has a resolution of 0.6m/pixel, resulting in 2112 km2 of total landmass
covered.

Seasonal effects like snow cover is not captured over this landmass and we leave
explicit training and analysis of winter seasonal-invariance for future work. Also,
we chose this setting with intuitive landmarks like buildings to easily validate our
discovery algorithm, as the landmarks it proposes should overlap with those obvious
to humans. In future work, we look to extend to less intuitive settings.

Localization Performance
Evaluation method: We evaluate matching performance of our VTRN pipeline
via precision-recall analysis and use database search radii 𝑅 of 2.5 and 25 km,
simulating local (relatively lost) and global localization (completely lost) scenarios,
respectively. Landmark pairs with maximum cosine similarities are considered
as proposed matches in the evaluation. Distances between such landmark pairs are
computed using the UTM coordinates at their bounding box centers and we consider
ground truth matches to be within 10 and 30 m. Finally, similarity thresholds are
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applied to generate the precision-recall curves.

We test different configurations of resolution streams and percentile thresholds
(Fig. 3.3) and find that small, highly salient landmarks (F2@P97.5, F3@P97.5)
provide reliable position estimates within 10 m of ground truth, especially when
paired with tighter search radii. Within 30 m of ground truth, using larger landmarks
(F4@P70, F4@P97.5) yields best match rates. Aggregating landmarks from various
resolution streams and thresholds does not achieve best performance but has the
benefit of more landmarks for more location updates.

Ablation Studies
Landmark discovery: We quantify the number and size of the coinciding landmarks
discovered using various resolution streams and percentile thresholds (Fig. 3.4a).
In general, masking HRNet activations using high percentile thresholds (P97.5)
increases the rate of landmark coincidence and favors small, sparse landmarks.
Landmarks are generally easier to match when fewer but more salient landmarks are
used, apart from very large landmarks (F4@P70).

Landmark encoding: Our landmark encoder outperforms other common image
descriptors when faced with geometric and seasonal perturbations (Fig. 3.4b). We
conduct precision-recall analysis by attempting to distinguish the encodings of an
equal number of known matching and non-matching landmark pairs. We compare
against ImageNet encodings (512-d) and VLAD [1] descriptors (2048-d). All
encodings performed well with random geometrically-transformed landmarks from
the same season, but only our encoding method was robust when seasons were varied
in each pair, illustrating the benefit of explicitly training for such perturbation.

Computation Benchmarks
We benchmark landmark discovery and encoding using 600×600 NAVCAM images.
Using a Nvidia Titan RTX and an Intel Core i9-7900X, images can be processed
at 17 Hz. Benchmarks on an Nvidia Jetson AGX Orin, simulating small UAV use
cases, sees slower rates of 8 Hz, due to slower processing during the CPU portions
of the landmark localization step. We note that significant speed improvements can
be made with smaller network architectures.

As our landmarks are sparse and low-dimensional, our method usually requires
less onboard storage compared to techniques that densely encode a flight area [2,
4] or require onboard reference orthoimagery [3, 7, 13, 18]. For example, to
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localize over Salisbury, CT, which covers 155 km2 of farmland, forests, and suburbs,
1.5 Gb is needed to store high-resolution, orthorectified reference images (assuming
0.6 m/pixel NAIP imagery) for methods that use database images during flight.
Furthermore, an encoder-based method that lacks landmark detection like [2] would
require roughly 19 Gb (extrapolated from their benchmarks). In contrast, our method
requires between 90 to 200 Mb for the same landmass depending on configuration.

3.6 Conclusion
We presented the first landmark discovery algorithm for aerial VTRN. We showed
that SSCL can find optimal landmarks for aerial navigation without human guid-
ance and can consistently re-identify them across seasons. In conjunction with
a seasonally-invariant CNN encoder, our discovery algorithm proposes landmarks
that enable robust localization capabilities over large landmasses while demanding
much less storage memory required by other methods. For future work, we aim to
leverage our approach to better utilize sparse local features for more precise local-
ization and pose estimation, integrate into a state estimation pipeline for UAV flight,
and test in rugged mountainous and desert terrain where landmark selection is not
as intuitive for humans.
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C h a p t e r 4

ONLINE SELF-SUPERVISED THERMAL WATER
SEGMENTATION FOR AERIAL VEHICLES

[1] C. Lee, J. G. Frennert, L. Gan, M. Anderson, and S.-J. Chung. “Online
Self-Supervised Thermal Water Segmentation for Aerial Vehicles”. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2023, pp. 7734–7741. doi: 10.1109/IROS55552.2023.10342016.

4.1 Abstract
We present a new method to adapt an RGB-trained water segmentation network to
target-domain aerial thermal imagery using online self-supervision by leveraging
texture and motion cues as supervisory signals. This new thermal capability enables
current autonomous aerial robots operating in near-shore environments to perform
tasks such as visual navigation, bathymetry, and flow tracking at night. Our method
overcomes the problem of scarce and difficult-to-obtain near-shore thermal data
that prevents the application of conventional supervised and unsupervised meth-
ods. In this work, we curate the first aerial thermal near-shore dataset, show that
our approach outperforms fully-supervised segmentation models trained on lim-
ited target-domain thermal data, and demonstrate real-time capabilities onboard an
Nvidia Jetson embedded computing platform.

4.2 Introduction
Water segmentation is advantageous for uninhabited aerial vehicles (UAV) operating
in near-shore environments. It can enable GPS-denied visual navigation [40], and
assist tasks such as bathymetry [8]. However, current water segmentation algorithms
operate on color (RGB) images and do not work well at night. Thermal cameras,
on the other hand, can highlight details in conditions in which color cameras fail.
In this paper, we look to develop a thermal water segmentation algorithm to bring
autonomous nighttime capabilities to aerial robotics operating in near-shore settings
like rivers, lakes, and coastlines.

Compared to RGB water segmentation, which has been well studied in context
of uninhabited surface vehicles (USV) [6, 41, 7], thermal water segmentation has
received little attention. As result, it lacks data, especially from aerial platforms,

https://doi.org/10.1109/IROS55552.2023.10342016
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which prevents modern, state-of-the-art convolutional neural networks (CNN) from
being easily applied. Moreover, three problems make it difficult to collect an
aerial thermal near-shore data diverse enough for CNN training: Water bodies
often coincide with no-fly zones; municipal-specific permits are required for non-
recreational UAV usage; and distinct bodies of water are geographically dispersed,
slowing diverse dataset collection for training and validation.

Aside from dataset limitations, thermal imagery is out-of-distribution relative to
RGB imagery. As such, harnessing RGB data for thermal model training requires
domain adaptation. Due to ongoing interest in self-driving cars, RGB-thermal
domain adaptation has been well explored in urban settings [22, 3, 24, 10, 34, 44].
However, such works still require training over target thermal data. Because we
lack aerial, near-shore thermal data, we cannot effectively apply existing domain
adaptation methods.

In this work, we propose a thermal water segmentation algorithm for UAVs that
adapts to incoming thermal images during flight. Our contributions are as follows:

1. We present an online self-supervised approach that uses thermal water cues to
adapt a RGB-pretrained water segmentation network to the near-shore thermal
domain during flight.

2. We demonstrate superior performance on aerial near-shore datasets compared to
baselines.

3. We present ablation studies of our self-supervision cues and test different RGB
pretraining methods to assist online thermal adaptation.

4. We release our algorithm as a Robot Operating System [35] (ROS) package and
demonstrate real-time online training and inference on a Nvidia Jetson AGX
Orin.

5. We release an annotated thermal water segmentation dataset, capturing aerial
and ground near-shore settings, to bootstrap future work in this area.

4.3 Related Work
RGB water segmentation: RGB water segmentation methods typically leverage
various combinations of water appearance, reflections, and location priors to seg-
ment water. To detect water for uninhabited ground vehicle (UGV) navigation, [37]
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Figure 4.1: Schematic of our proposed online self-supervised training for thermal
water segmentation. A few online training loops are performed prior to network
inference on the current scene.

fuses color, texture, stereo range, and horizon line cues to systematically identify
true water pixels. [36] takes a similar approach but utilizes correlation between
color and water reflections at predetermined distances to segment water. In river
settings, [28] exploits the shallow viewing angle of USVs to estimate and segment
the river plane via water reflection symmetry. In contrast to these works, our aerial
application precludes the use of water reflections as they are less prominent in the
thermal domain and less accentuated at higher altitudes. We use texture cues and
horizon line estimation in this work, but not color, as hue and saturation do not exist
in thermal data.

Other water segmentation algorithms leverage geometric priors based on their tar-
get setting and vehicle. For USV navigation, [2] trains an online self-supervised
classifier to segment rivers, by assuming that shore regions above the horizon line
are similar to shore regions below. Their assumption does not extend to our UAV
setting, however, as the horizon line is not necessarily always in the frame due
to aircraft pitch. [23] proposes an obstacle segmentation algorithm for USVs in
maritime environments, using the horizontal stacking of water, land/horizon, and
sky as location priors for components in a Gaussian Mixture Model. However,
these location priors are exclusive to USVs in maritime environments where shore-
line generally isn’t visible on either sides and the camera is always near the water
surface. [7] extends this by incorporating inertial measurement unit-based (IMU)
horizon line estimates into the location priors and enforcing stereo constraints for
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obstacle detection.

Recent deep learning-based approaches leverage small annotated RGB water datasets
to train supervised CNN segmentation models [6, 41, 5]. These methods are more
robust and require less parameter tuning compared to earlier approaches such as
[37], but require large, i.i.d datasets to properly train. As segmentation datasets
are expensive and time-consuming to assemble, these works focus on maximizing
generalization performance on existing, but limited, water segmentation datasets.

Thermal water segmentation: Little work has been done in this domain. RGB
images have been used directly as input to train CNNs for thermal maritime obstacle
segmentation [30] but were found to perform poorly compared to training on mar-
itime thermal imagery [29]. To the best of our knowledge, this is the only public
thermal water segmentation dataset that exist today and was released around the time
of our work. However, this dataset targets USV maritime environments and does not
yield good performance on our aerial near-shore data (Table 4.3). As aerial thermal
near-shore datasets do not yet exist, we opt for an online self-supervised approach
in this work instead of these offline supervised methods. However, we do leverage
such methods for network pretraining and further improve thermal segmentation
performance via online self-supervised learning.

RGB-thermal domain adaptation: RGB-thermal (RGB-T) domain adaptation
(DA) has been well studied in urban environments due to their applications to self-
driving cars and have been used to harness large RGB datasets in conjunction with
thermal data to train thermal networks. Generative methods like image translation
have been used to automatically synthesize fake thermal imagery with labels from
annotated RGB datasets for thermal model training [24, 44]. However, they are
known to hallucinate and introduce spatial structures that don’t appear in the target
domain [21]. Unsupervised domain adaptation (UDA) methods like [22] and [18]
seek to align RGB and thermal CNN features by training with shared weights and
adversarial losses using annotated RGB data and unlabeled thermal data. Because
public datasets of aerial thermal near-shore settings did not exist at the time of this
work, we use collected aerial thermal near-shore data for validation and operate
under the assumption of having no target domain data available.

Self-supervised learning (SSL): In SSL, labels are automatically generated from
data rather than from annotation. SSL is a broad topic and has been used in offline
settings with applications including monocular road detection [46, 15, 13], terrain
traversability [39], and general representation learning [11, 12]. It has also been used
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to adapt semantic segmentation networks to out-of-distribution data by enforcing
augmentation consistency via a momentum network [4] which we leverage in our
work.

SSL can be applied online to adapt to new environments: For RGB river segmen-
tation, [2], as previously discussed, uses visual cues with horizon line river priors
to create training patches for online classifier training. [42] creates training labels
for a river segmentation network by assigning labels to unsupervised segmentation
output based on the response of an onboard LiDAR sensor. [14] performs online
SSL on lightweight CNNs using stereo information for ground plane segmentation
and is most related to our work. In this work, we use online SSL to adapt an RGB-
pretrained water segmentation network to the aerial thermal near-shore domain by
generating labels from water texture and motion cues, and horizon line estimates.

4.4 Method
We develop a thermal water segmentation method for UAVs that does not see thermal
data prior to test time. Our method adapts an RGB-pretrained CNN segmentation
model with online SSL to compensate for RGB-T covariate shift (Fig. 4.1). Self-
supervised labels are generated by exploiting texture and motion differences between
land and water. To increase robustness, we utilize IMU-based horizon line estimation
to remove false positive water pixels in the sky and use an alternative CNN-based
sky segmentation when IMU data is corrupted or unavailable. We now outline our
preprocessing procedure for 16-bit thermal images, RGB-based network pretraining
method, self-supervised label generation process, and the online learning algorithm.

Thermal Image Preprocessing
Raw 16-bit thermal images are contrast stretched using the 1st and 99th percentile
pixel values and followed by Contrast Limited Adaptive Histogram Equalization
[32]. In Sec. 4.4, image pairs are stretched with the maximum of the 2nd percentile
and the minimum of the 98th.

Segmentation Network Pretraining
We pretrain a segmentation network to speed up online training convergence. As
UAVs are resource-constrained, we choose a compute-efficient Feature Pyramid
Network (FPN) built on a MobileNetV3-small backbone with 2.3 million parame-
ters [25, 19]. The network takes in 1 × 𝐻 ×𝑊 images and outputs 2 × 𝐻 ×𝑊 class
probability maps.
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Table 4.1: Network pretraining dataset breakdown.

Dataset # Train # Val. Water-Related Indices

ADE20k 1743 163 22, 27, 61, 114, 129
COCO-Stuff 10,977 458 148, 155, 178, 179
River Dataset [26] 300 0 —
Flickr 1,220 0 —

We train the network using water-related RGB images from ADE20K [45], COCO-
stuff [9], and a river segmentation dataset [26]. We supplement with Flickr images,
found by querying keywords like aerial river and drone ocean, and annotated using
an ADE20K-pretrained segmentation network from [45], resulting in 14,240 training
images. Annotations are converted into water or non-water classes. Dataset-specific
label indices and training set composition are shown in Table 4.1.

As thermal images are single-channel, we transform 3-channel RGB images into
1-channel grayscale between [0, 1] prior to training using one of these methods:

1. Grayscale: OpenCV’s default RGB to grayscale conversion method.

2. Random mix: Weighted channel-wise mean with randomly selected weights.
Random inversion is applied to simulate thermal temperature inversion.

3. Random mix (PCA): RGB channels are decorrelated via principle components
analysis (PCA). The first 2 channels are randomly mixed, normalized, and ran-
domly inverted.

4. RGB2Thermal: RGB images are translated to thermal using contrastive un-
paired translation [31] after training on the MassMIND thermal, MaSTr1325 [6],
and our RGB dataset.

Self-Supervision from Texture Cues
Given image 𝐼, we create a soft water/non-water label for online SSL (Fig. 4.2b) by
observing that water tends to have less texture compared to surrounding land. We
first perform unsupervised segmentation on 𝐼 via Simple Linear Iterative Clustering,
creating superpixels similar in shape and size [1]. Each image pixel is assigned a
class label based on the texture of the encompassing superpixel. We quantify
texture using the Difference-of-Gaussian (DoG) keypoint detector [27] and compute
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a probability map of non-water pixels

𝑃𝑇¬𝑊 (𝑖, 𝑗) =
(
𝐺 ⊛

𝑆𝑘 𝑝

𝛼𝑇

)
[𝑖, 𝑗] (4.1)

by normalizing the keypoint count of each superpixel 𝑆𝑘 𝑝 with a parameter 𝛼𝑇 and
smoothing with a Gaussian kernel 𝐺. The probability of water pixels 𝑃𝑇

𝑊
is the

inverse 1 − 𝑃𝑇¬𝑊 . Although the DoG detector filters out edge responses, we further
mitigate jagged edge responses, such as along river banks, by pruning keypoints
within 2 pixels of superpixel boundaries.
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Figure 4.3: (a) Water segmentation results (red) from a pretrained RGB network;
our method with texture, and motion, and both cues; and ground truth.
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Self-Supervision from Motion Cues
In near-shore settings with fast flowing water like coastlines, water can appear choppy
which breaks the assumption of the texture cue. However, this non-uniformity allows
us to use water motion as another indicator of water pixels. We estimate water motion
magnitude between successive image frames 𝐼𝑡−Δ𝑡 and 𝐼𝑡 using a two-step process.

First, we discount UAV-attributed motion by aligning successive frames using
feature-based image registration. We match ORB features [38] detected in 𝐼𝑡−Δ𝑡

and 𝐼𝑡 and compute a homography matrix 𝐻 using Random Sample Consensus [17].
Because camera pose does not change significantly between successive frames,
matches should consist mainly of shore features. 𝐻 is used to align the image
coordinate frames via image warp T before cropping to the greatest common area.
We then assume

𝐼
crop
𝑡 ≈ T (𝐼𝑡−Δ𝑡 ;𝐻)crop (4.2)

effectively removing any UAV motion-induced transformations. We note that static
shore regions must be in view in order to mitigate the risk of aligning based on water
motion.

Second, to create a probability map of water pixels 𝑃𝐹
𝑊
(𝑥, 𝑦), we quantify water

motion using Farneback’s algorithm [16], F , to compute the dense optical flow
field

𝑉 = [𝑉𝑥 , 𝑉𝑦]⊤=F
(
𝐼
crop
𝑡 ,T (𝐼𝑡−Δ𝑡 ;𝐻)crop) (4.3)

between the aligned image frame crops. We normalize the flow field magnitude by
𝛼𝐹 to create a water probability map

𝑃𝐹𝑊 (𝑥, 𝑦) =

∥𝑉 (𝑥,𝑦)∥2

𝛼𝐹
, if 𝑥 ∈ [𝑥1, 𝑥2], 𝑦 ∈ [𝑦1, 𝑦2]

0, otherwise
(4.4)

and the non-water probabilities 𝑃𝐹¬𝑊 arise as the inverse. We set 𝛼𝐹 to be the 75th

percentile of the flow magnitudes.

Discerning Sky and Water Pixels
Sky and water may both have little texture, causing issues for texture cues. To fix
this, we use horizon line estimation or sky segmentation to correct any resulting
false positive water labels.

Horizon line estimation with IMU data: Horizon (vanishing) line estimation
allows us to unequivocally label all pixels above the horizon as non-water [7, 2].
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We estimate it by projecting distant points xu in the UAV coordinate frame that lay
within the camera’s field-of-view, to image coordinates xc via the relation

xc = PcRc
i Ri

uxu, (4.5)

where Ri
u, Rc

i represent rotation matrices from UAV-to-IMU and IMU-to-camera,
and Pc is the camera projection matrix. We find the horizon by fitting a line to xc

and take all pixels above to be non-water.

Sky segmentation without IMU data: In situations where IMU data is not
accessible, we use a lightweight Fast-SCNN [33] segmentation network to quickly
segment the sky. We remove the second bottleneck layer in the feature extractor to
reduce computational burden. We train on MassMIND [29], KAIST Pedestrian [20]
with segmentation labels from [22], SODA [24], and FLIR aligned [43] data after
reducing annotations to sky and not-sky.

The FLIR aligned dataset does not have segmentation annotations. To create them,
we segment FLIR RGB images using the same pretrained RGB network used to label
Flickr images (Sec. 4.4), creating sky masks. As the masks may be rough, and sky is
usually the coldest part in a thermal image, we refine each mask by binary searching
the corresponding 14-bit thermal pixel values for a threshold that generates a new
mask whose area falls within 10 % of the RGB mask’s area. We visually inspect the
results and retain 4,201 annotations out of 5,142 for sky segmentation training.

Online Training
To perform online training (Algorithm 1), we initialize our pretrained segmentation
network 𝑓 from Sec. 4.4. We freeze the encoder and the first two decoder blocks to
reduce trainable parameters. Like [4], we initialize a separate momentum network
𝑔 which is a copy of 𝑓 . Network 𝑔 generates a soft self-label 𝑃𝑔 that is improved
by ensembling with other cues and is updated with 𝑓 ’s weights at a rate of 𝜆 = 0.3
after every training loop.

We adapt to the current scene by performing 𝑁 training iterations using images from
a buffer that holds the past 𝐿 images seen, including the current image frame 𝐼𝑡 . For
each image in the buffer, we find the horizon line or sky segmentation depending on
IMU availability, and generate our self-supervised labels. We merge the labels with
𝑃𝑔 using a per-class weighted average

𝑦water = 𝑤1𝑃
𝑔

𝑊
+ 𝑤2𝑃

𝐹
𝑊 + 𝑤3𝑃

𝑇
𝑊 (4.6)

𝑦non-water = 𝜉1𝑃
𝑔

¬𝑊 + 𝜉2𝑃
𝐹
¬𝑊 + 𝜉3𝑃

𝑇
¬𝑊 (4.7)
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Algorithm 1 Online Training and Inference
1: Input: Network weights 𝜃, Image buffer length 𝐿
2: Output: Segmentation masks 𝑀0,1,...𝑡
3: Initialize: Networks 𝑓𝜃 , 𝑔𝜃 , Image buffer 𝑄
4:
5: while camera on do
6: Grab current image frame 𝐼𝑡
7: Add 𝐼𝑡 to 𝑄 and remove 𝐼𝑡−Δ𝑡𝐿 if exists
8:
9: if train at time 𝑡 then

10: D ← CreateBatches(𝑄)
11: for 𝑛 = 1 : 𝑁 do
12: Sample batch (𝐼𝑛, 𝑃𝐹

𝑊,𝑛
, 𝑃𝑇

𝑊,𝑛
) from D

13: 𝑃
𝑔
𝑛 ← 𝑔(𝐼𝑛)

14: 𝑦𝑛 ←MergeLabels(𝑃𝑔
𝑛, 𝑃

𝐹
𝑊,𝑛

, 𝑃𝑇
𝑊,𝑛
) ⊲ Eq. 4.6-4.7

15: 𝜃 𝑓 ← 𝜃 𝑓 + 𝛾∇𝜃 𝑓
Lbce ( 𝑓 (𝐼𝑛), 𝑦𝑛)

16: end for
17: 𝜃𝑔 ← 𝜆 · 𝜃 𝑓 + (1 − 𝜆) · 𝜃𝑔 ⊲ Momentum update
18: end if
19: 𝑃

𝑓
𝑡 ← 𝑓 (𝐼𝑡 ) ⊲ Inference on current frame

20: Apply channel-wise argmax on 𝑃 𝑓
𝑡 to create 𝑀𝑡

21: yield 𝑀𝑡

22: end while

and mark locations of sky pixels, or those above the horizon line, as definitively
non-water. Network 𝑓 is trained on these soft labels using the binary cross entropy
loss Lbce.

Lbce(𝑦, 𝑦̂) =
∑︁
𝑖, 𝑗 ,𝑘

𝑦 · log 𝑦̂ + (1 − 𝑦) · log(1 − 𝑦̂) (4.8)

During online training, images of size 512×640 are randomly cropped to 320×320
and subject to random horizontal flips. After 𝑁 training iterations, we perform
inference on 𝐼𝑡 using 𝑓 to get 𝑃 𝑓 and apply a channel-wise argmax to create seg-
mentation mask 𝑀𝑡 . We clean up the mask using morphological operations and
keep the largest segmented contour as water. When IMU data is available, we also
remove any water pixels still present above the horizon line. Lastly, we note that
it is not necessary to perform online training prior to every inference call as image
frames within a narrow time window are very similar.

4.5 Results
Dataset
Our dataset consists of aerial and ground thermal sequences covering river, coastal,
and lake scenery (Table 4.2) captured in 16-bit1 using a FLIR ADK long-wave

1The data from Duck, NC was captured in 8-bit format using a separate sensor stack and does
not have IMU information available.
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Table 4.2: Thermal river, lake, and coastal datasets

Dataset Near-shore
Category

Capture
Method # Images # Annot. # Seq.

Kentucky River, KY River UAV Flight 7826 94 1
Colorado River, CA River UAV Flight 84,993 659 2
Duck, NC† Coast UAV Hover 4143 68 7
Castaic Lake, CA Lake UAV Flight 101,999 128 2
Big Bear Lake, CA Lake Ground 48,676 282 8
Arroyo Seco, CA Stream Ground 7 7 —

† Captured and stored in processed 8-bit data.

thermal camera (Fig. 4.3, 4.4). These datasets are provided as ROS bag files,
and also as individual frames with synchronized IMU and geolocation data for
convenience. Frames were sampled for annotation at 2 second intervals, but at
12 second intervals for lengthy sequences from Castaic Lake. Some frames were
skipped, at annotators’ discretion, if indistinguishable to preceding frames. A single
frame was used per Arroyo Seco sequence due to minimal change in each recording.

Aerial sequences were used for experimental validation while ground sequences
were used for training and ablations in non-target settings (see Table 4.4 for list
of sequences). Overall, the locations are very distinct and the datasets consist of
a rich variety of sun positions, shore topography, water body size and shape, and
surrounding flora. Aerial data from the Kentucky River (near Shakers Ferry Rd),

Figure 4.4: Our UAV operating over the Colorado River, CA, and the sensor stack
mounted to the UAV showing the time-synchronized FLIR ADK thermal camera
and VN100 IMU. Visible light cameras were not used as part of this work.

KY; Colorado River (near Parker Dam), CA; Castaic Lake, CA; and the coastline
at Duck, NC, were nominally recorded between 40 and 50 m above the water
surface. Lower altitude imagery was also captured to enlarge the dataset for use in
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future work. Ground-level datasets from Big Bear Lake, CA and the Arroyo Seco
(Pasadena), CA feature much shallower viewing angles of water and scenes with
reduced visibility due to fog.

Network Training Details
The RGB-pretrained network from Sec. 4.4 and the sky segmentation network
from Sec. 4.4 were trained as follows: Training images were resized to a longest
dimension of 512, rescaled between 0.5 and 2.0, and randomly cropped to 320 ×
320. Random horizontal flips, rotations (within 10°), and color jitter followed prior
to single channel conversion if needed. We used stochastic gradient descent (SGD)
with a momentum of 0.9, a learning rate of 1 × 10−2, 𝐿2 weight decay of 1 × 10−4,
and a batch size of 32.

Thermal-trained networks used as baselines in Sec. 4.5 were trained using the
same hyperparameters and data augmentations as above. However, 16-bit thermal
images were first normalized using the thermal preprocessing technique described
in Sec. 4.4, but contrast stretched with random low and high values bounded by the
5th and 95th percentiles.

Online Training Setup
For online training, we used the Adam optimizer with learning rate 1 × 10−3 and
𝐿2 weight decay 1 × 10−4. Batch normalization was turned off. To increase speed,
we scaled down images by 0.5 prior to label generation. By default, each round of
online training ran for 𝑁 = 8 iterations with an 8 image buffer and a batch size of 4.
Online training was performed every 120 frames and before each annotated frame,
with every 4th image added into the buffer.

We set texture cue generation 𝛼𝑇 = 10 and set cue merging parameters 𝑤 = [1, 1, 1]
and 𝜉 = [1, 0, 1]. When a cue is not used, its corresponding weights are set to 0,
e.g. 𝑤 = [1, 1, 0] and 𝜉 = [1, 0, 0] when only the motion cue is in use. We test
networks initialized with weights via grayscale, random mixing, and PCA random
mixing pretraining.

Performance Evaluation
We demonstrate our method’s robustness and superiority in a no-data regime over
standard supervised segmentation with limited data. We compare our online SSL
method against five thermal segmentation networks by testing in the primary aerial
near-shore settings of this work: river, lake, and coast. These baselines were trained
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Table 4.3: Performance evaluation of our online method in target aerial settings
compared to fully-supervised networks trained with limited thermal data.

Method Training Set Aerial Test Setting mIoU

River Lake Coast

MobilenetV3 + FPN Arroyo Seco 0.619 0.560 0.583
MobilenetV3 + FPN Big Bear Lake 0.687 0.526 0.638
MobilenetV3 + FPN Big Bear Lake + Arroyo 0.794 0.630 0.719
MobilenetV3 + FPN Colorado River — 0.745 0.436
MobilenetV3 + FPN MassMIND [29] 0.454 0.310 0.445

Online SSL (Grayscale) + TC — 0.902 0.909 0.623
Online SSL (Grayscale) + MC — 0.451 0.275 0.713
Online SSL (Grayscale) + All — 0.885 0.911 0.668

Online SSL (Rand. Mix) + TC — 0.900 0.891 0.617
Online SSL (Rand. Mix) + MC — 0.482 0.275 0.726
Online SSL (Rand. Mix) + All — 0.884 0.904 0.659

Online SSL (PCA) + TC — 0.895 0.889 0.611
Online SSL (PCA) + MC — 0.474 0.746 0.805
Online SSL (PCA) + All — 0.878 0.909 0.654

TC – Texture Cue MC – Motion Cue

Table 4.4: Near-shore water segmentation ablation in different thermal sequences.

Setting Dataset Sequence PT PT +
Self-Train TC Only MC Only w/o Sky Seg. nor Horizon Est. w/ Sky Segmentation w/ Horizon Est.

PT + TC PT + MC PT + All PT + TC PT + MC PT + All PT + TC PT + MC PT + All

Aerial
River

Kentucky River 2-1 0.700 0.528 0.787 0.506 0.859 0.809 0.834 0.881 0.797 0.860 0.884 0.810 0.857
Colorado River 1 0.500 0.453 0.796 0.476 0.894 0.295 0.881 0.897 0.295 0.884 0.898 0.295 0.886
Colorado River 3 0.513 0.690 0.798 0.440 0.886 0.315 0.881 0.898 0.315 0.888 0.902 0.317 0.892

Avg. Seq. mIoU 0.571 0.557 0.794 0.474 0.880 0.473 0.865 0.892 0.469 0.877 0.895 0.474 0.878

Aerial
Lake

Castaic Lake 2 0.324 0.241 0.830 0.521 0.901 0.701 0.911 0.804 0.227 0.826 0.886 0.703 0.918
Castaic Lake 4 0.552 0.495 0.775 0.417 0.876 0.790 0.876 0.890 0.322 0.889 0.893 0.789 0.900

Avg. Seq. mIoU 0.438 0.368 0.802 0.469 0.889 0.746 0.893 0.847 0.275 0.857 0.889 0.746 0.909

Aerial
Coast

Duck 4 0.799 0.915 0.366 0.541 0.448 0.933 0.469 0.499 0.693 0.499 — — —
Duck 5 0.347 0.854 0.674 0.870 0.792 0.931 0.859 0.375 0.500 0.456 — — —
Duck 6 0.519 0.842 0.500 0.683 0.506 0.832 0.562 0.460 0.601 0.517 — —
Duck 10 0.743 0.782 0.489 0.551 0.457 0.740 0.461 0.493 0.552 0.498 No IMU
Duck 13 0.300 0.260 0.546 0.164 0.579 0.429 0.573 0.578 0.429 0.572 — —
Duck 14 0.532 0.454 0.770 0.684 0.758 0.963 0.817 0.758 0.963 0.817 — — —
Duck 15 0.838 0.819 0.673 0.779 0.738 0.809 0.838 0.738 0.803 0.839 — — —

Avg. Seq. mIoU 0.583 0.704 0.574 0.610 0.611 0.805 0.654 0.557 0.649 0.600 — — —

Ground
Lake

Big Bear Lake 23 0.430 0.423 0.251 0.352 0.278 0.406 0.295 0.429 0.433 0.436 0.785 0.759 0.783
Big Bear Lake 27 0.638 0.687 0.355 0.518 0.408 0.399 0.431 0.653 0.485 0.703 0.713 0.378 0.749
Big Bear Lake 30 0.471 0.424 0.317 0.472 0.345 0.374 0.353 0.506 0.382 0.518 0.611 0.413 0.613
Big Bear Lake 34 0.643 0.702 0.436 0.391 0.504 0.696 0.511 0.857 0.705 0.834 0.857 0.524 0.842
Big Bear Lake 37 0.479 0.495 0.313 0.420 0.307 0.475 0.308 0.597 0.457 0.584 0.743 0.465 0.710
Big Bear Lake 40 0.741 0.820 0.532 0.368 0.652 0.430 0.662 0.854 0.456 0.851 0.818 0.457 0.819
Big Bear Lake 44 0.756 0.846 0.376 0.400 0.289 0.772 0.375 0.830 0.828 0.802 0.824 0.843 0.832
Big Bear Lake 50 0.642 0.630 0.280 0.356 0.318 0.719 0.340 0.555 0.683 0.569 0.609 0.697 0.661

Avg. Seq. mIoU 0.600 0.628 0.357 0.410 0.388 0.534 0.409 0.660 0.554 0.662 0.745 0.567 0.751

PT – Base Pretrained Network TC – Texture Cue MC – Motion Cue
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on the recently released MassMIND thermal USV segmentation dataset, the thermal
ground-based data from Table 4.2, and the aerial Colorado River dataset (Table 4.3).

The baseline performances confirm our suspicions of poor generalization capabil-
ities and overfitting due to limited dataset size, diversity, and covariate shift from
surface/ground to aerial (Table 4.3). Notably, neither networks trained on ground-
level lake data (Big Bear Lake + Arroyo) nor networks trained on aerial river data
(Colorado River) perform well when moving to aerial lake, and the lackluster per-
formance of the MassMIND-trained network in these settings further motivates the
collection and curation of aerial thermal datasets for nighttime UAV applications.

In contrast, we report strong evidence favoring our texture- and motion-based online
SSL over the fully-supervised networks: All three online variants using texture-
based adaptation attain roughly 0.9 mIoU, outperforming the best thermal-trained
networks in the aerial river (0.794 mIoU) and lake (0.745 mIoU) domains (Table 4.3).
Motion-based online adaptation performs best in the aerial coastal setting where
wave motion and currents are highly visible. Here, the PCA-initialized variant
outperforms the best thermal supervised network by a 0.08 margin, while the other
two variants match performance. None of the motion-based variants perform well
in rivers and lakes likely due to calmer waters. Likewise, texture-based cues do not
perform well in coastal scenes due to confusion with highly-textured, fast-moving
waves. Lastly, we see no significant advantages in leveraging both cues at the
same time: river and lake settings see minor improvements while coastal settings
see a performance drop. We finally note that these observations could be used to
select suitable weights for cue merging (Eq. 4.6-4.7) during mission planning for
operations in known near-shore environments.

Ablation Study
Influence of online SSL: Using the overall best online model (PCA) from Sec. 4.5,
we analyze the role of the texture and motion cues in the aerial near-shore settings
(Table 4.4). Overall, we find that cues do not provide adequate segmentation when
used alone (Table 4.4, TC/MC Only) and should be used to adapt a pretrained
network as intended. They are necessary for online training robustness as self-
training alone (PT+Self-Train) performs inconsistently. Our SSL cues, when used
in appropriate online settings, i.e. texture-based with river/lake and motion-based
with coastal, generally see mIoUs increase. Segmentation results with different SSL
cues are displayed in Fig. 4.3a.
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To find the limits of our method, we perform further ablations on the ground-level Big
Bear Lake sequences and find lower overall performance compared to aerial scenes
(Table 4.4). We attribute this to three things: First, a ground-level viewing angle
from land causes water bodies to appear smaller, making the effect of noisy labels
more pronounced. Second, water reflections tend to be more intense at shallower
angles which texturizes water even when still. Lastly, dense fog and thermal sensor
noise in some of sequences obscure the scene, making sky, background land, and
water appear very uniform. Despite this, texture-based adaptation (PT+TC) still
outperforms motion-based (PT+MC) by 0.11 mIoU with sky segmentation and 0.18
mIoU with IMU-based horizon estimation, reaffirming its use in calm water settings.

Horizon estimation and sky segmentation: When IMU is available, horizon
estimation can be used to boost segmentation performance (Table 4.4). Moreover,
as it does not rely on vision, it can mitigate the impact of fog and cloud obfuscations,
as evident in the Big Bear Lake sequences where using the horizon yields over 0.35
gain in texture-based (PT+TC) mIoU versus having no knowledge of the sky or
horizon. Sky segmentation via Fast-SCNN is less robust but still works well in the
river settings and Castaic Lake 4. However, it is prone to mistaking far-field water
as sky in Castaic Lake 2 and coastal scenes at Duck, leading to mIoU drop. It
shows marked improvement over no sky segmentation in the Big Bear Lake scenes,
demonstrating some robustness to fog, but still leaves room for improvement.

Table 4.5: Pretraining method ablation using all thermal sequences.

Pretraining Method River Lake Coast Ground Avg. mIoU

Grayscale 0.365 0.443 0.482 0.422 0.428
Rand. Mixing 0.419 0.390 0.447 0.503 0.440
Rand. Mixing (PCA) 0.563 0.441 0.642 0.574 0.555
RGB2Thermal 0.291 0.276 0.224 0.370 0.290
MassMIND [29] 0.454 0.310 0.445 0.488 0.424

Network pretraining ablation: We evaluate the RGB-pretrained networks (Sec. 4.4)
on our thermal data in absence of online SSL (Table 4.5). PCA channel mixing out-
performs others, possibly because it can modulate the amount of image detail shown
However, we leave a thorough investigation and explanation of this observation for
future work. RGB-T image translation does not perform well likely because it had
limited access to target domain data and introduced numerous structural artifacts
that affected segmentation training.
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UAV Embedded System Benchmarks
To demonstrate deploying our algorithm in real-time on UAV hardware, we im-
plement our algorithm in ROS and test with bagfiles on an Nvidia Jetson AGX
Orin.

ROS architecture: A node (Fig. 4.5) processes incoming thermal imagery
(Sec. 4.4) and estimates horizon line based on IMU readings or segments the sky us-
ing Fast-SCNN if IMU is unavailable. Texture- and/or motion-based labeling nodes
generate segmentation labels in parallel. Thermal images and labels are cached in a
buffer and training begins once the buffer is full. A third inference network segments
incoming images continuously and receives weights from the training network after
each online SSL cycle.

/thermal/image_raw

/imu/imu

Image/IMU 
sync. 

/thermal/image_norm

/mask/horizonMotion cue 
generator

Texture cue 
generator

/mask/motion

/mask/texture
Online training and 

inference

/segmentation
10/4 HzTrain rate: 1/1.2 Hz10 Hz

20 Hz

20 Hz

20 Hz

60 Hz

180 Hz

ROS Node Topic/message Optional

Sky seg.
(No IMU)

/mask/sky
20 Hz

Figure 4.5: ROS architecture for real-time online learning and water segmentation
on a Nvidia Jetson AGX Orin.

Computation benchmarks: We benchmarked our system using training pa-
rameters from Sec. 4.5 and list component frequencies in Fig. 4.5. Texture- and
motion-based adaptation perform online updates at 1 and 1.2 Hz respectively. Ac-
tual training takes 0.5 s for 8 iterations with the rest of the time spent filling the
training buffer. The inference network produces segmentations at 10 and 4 Hz when
using texture and motion cues respectively. Code optimization, better paralleliza-
tion strategies, and lower online SSL update rates should allow us to attain closer
to 15-20 Hz. Overall, we find these metrics to be suitable to enable our future work
in nighttime navigation and planning in near-shore areas, as well as other work in
bathymetry.
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4.6 Conclusion
We presented a CNN-based thermal water segmentation algorithm that provides
UAVs operating in near-shore environments with nighttime capabilities. We demon-
strated that our online SSL approach with simple water cues can achieve strong and
consistent results in the aerial setting despite the lack of aerial thermal data. Fur-
thermore, we showed that our method is superior and more robust compared to
fully-supervised networks trained on existing thermal data. This work can enable
thermal vision-based UAV science missions in near-shore settings for tasks such as
bathymetry and coastline mapping. In the future, we look to use this to assist UAV
navigation and planning in near-shore environments, and to help curate a larger,
aerial thermal near-shore dataset to enable fully-supervised training.
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C h a p t e r 5

UNSUPERVISED RGB-TO-THERMAL DOMAIN ADAPTATION
VIA MULTI-DOMAIN ATTENTION NETWORK

[1] L. Gan, C. Lee, and S.-J. Chung. “Unsupervised RGB-to-Thermal Domain
Adaptation via Multi-Domain Attention Network”. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2023, pp. 6014–6020.
doi: 10.1109/ICRA48891.2023.10160872.

5.1 Abstract
This work presents a new method for unsupervised thermal image classification
and semantic segmentation by transferring knowledge from the RGB domain us-
ing a multi-domain attention network. Our method does not require any thermal
annotations or co-registered RGB-thermal pairs, enabling robots to perform visual
tasks at night and in adverse weather conditions without incurring additional costs
of data labeling and registration. Current unsupervised domain adaptation meth-
ods look to align global images or features across domains. However, when the
domain shift is significantly larger for cross-modal data, not all features can be
transferred. We solve this problem by using a shared backbone network that pro-
motes generalization, and domain-specific attention that reduces negative transfer
by attending to domain-invariant and easily-transferable features. Our approach
outperforms the state-of-the-art RGB-to-thermal adaptation method in classifica-
tion benchmarks, and is successfully applied to thermal river scene segmenta-
tion using only synthetic RGB images. Our code is made publicly available at
https://github.com/ganlumomo/thermal-uda-attention.

5.2 Introduction
Cameras are critical for robot perception as they provide dense measurements and
rich environmental information. However, most existing vision models are devel-
oped for cameras operating in the visible spectrum due to their ubiquity and the
accessibility of large-scale RGB datasets [5, 18]. Although these models allow
robotic systems such as autonomous vehicles (AV) to work well in ideal conditions
with sufficient illumination, their performance is largely degraded at night and in
adverse conditions. Thermal cameras, on the other hand, detect electromagnetic

https://doi.org/10.1109/ICRA48891.2023.10160872
https://github.com/ganlumomo/thermal-uda-attention
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Figure 5.1: Our RGB-to-thermal unsupervised domain adaptation (UDA) leverages
knowledge learned from a synthetic annotated RGB dataset to perform semantic
segmentation on thermal river scenes without requiring thermal annotations.

waves beyond the visible spectrum that penetrate through dust, smoke, and light fog,
enabling around-the-clock robotic operations.

One popular approach towards robust vision is to leverage thermal images in con-
junction with RGB via multi-spectral sensor fusion. These methods have largely
benefited from recent interests in AV technology, resulting in curated datasets [6,
19] being made publicly available. Notable examples are GAFF [43] and CFT [25],
two multi-spectral object detection networks trained on paired RGB-thermal image
datasets for feature extraction and fusion. In particular, the fusion network in [25]
sees a 25% performance improvement over a single RGB branch on the FLIR-aligned
dataset [6]. Urban semantic segmentation has also been improved for nighttime and
adverse weather after integrating thermal capabilities [10, 45, 14, 36]. However,
these models are fully-supervised, using annotated images or co-registered RGB-
thermal pairs which are expensive to acquire and small in scale [15]. In non-AV
applications, the lack of thermal data and cost of labeling hinder the development
of thermal vision models, especially when current vision models, like Transfomers,
have been trending larger [11].

To overcome this issue, we look to leverage existing large-scale RGB datasets to
learn thermal models via unsupervised domain adaptation (UDA) techniques. UDA
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aims to transfer the knowledge learned in a labeled source domain to an unlabeled
target domain [38]. Although most UDA methods focus on domains from different
environments but within the same modality (mainly RGB images), such as GTAV-
to-Cityscapes [32, 12], the underlying assumption that a domain-invariant feature
representation exists also applies to cross-modal data, especially for semantic-related
tasks.

In this work, we aim to transfer knowledge learned from labeled RGB images
to unlabeled thermal images. This is challenging for two reasons: First, cross-
modal domains have larger domain shifts and more dissimilar features compared to
domains within same modalities. UDA methods that match global images or feature
distributions of both domains can hurt generalization and lead to negative transfer
in which untransferable features are forcefully aligned [44, 37], [42]. Second, UDA
methods based on generative adversarial networks (GANs) need a large amount of
unlabeled target data to be well-trained [38] which can also be unavailable in the
thermal domain.

We surmount these challenges by designing a multi-domain attention network with a
shared backbone and domain-specific attention for RGB-to-thermal adaptation. This
shared backbone promotes generalization across domains, prevents feature over-
alignment, and relaxes the thermal dataset size requirement. For feature alignment,
we train the target-specific attention using adversarial learning to attend to and
transfer more domain-invariant and transferable features among all shared features
to alleviate negative transfer. The main contributions of our work are as follows:

1. We establish an unsupervised RGB-to-thermal domain adaptation method using
a multi-domain attention network and adversarial attention learning.

2. We evaluate our method on thermal image classification tasks and outperform
the state-of-the-art RGB-to-thermal adaptation approach on two benchmarks.

3. We demonstrate the versatility of our approach, leveraging it to perform thermal
river scene segmentation, and to the best of our knowledge, are the first to utilize
synthetic RGB data for thermal semantic segmentation.

5.3 Related Work
Unsupervised Domain Adaptation: UDA has been successfully applied to a variety
of vision tasks including image classification [7, 34, 29, 20, 1], semantic segmen-
tation [12, 32, 9], and 2D/3D object detection [40, 22]. Domain alignment is the
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fundamental principle of UDA, and can be achieved by two main methodologies:
domain mapping and domain-invariant feature learning [38]. Domain mapping can
be viewed as pixel-level alignment which maps images from one domain to another
via image translation. For instance, PixelDA [2] and CyCADA [12] map source
training data into the target domain using conditional GANs and train the down-
stream model on the fake target data. Pixel-level alignment can remove the domain
differences in the input space to some extent but such differences are primarily
low-level [38]. Other works achieve domain adaptation by domain-invariant feature
learning or feature-level alignment. By mapping source and target input data to the
same feature distribution, a downstream predictor trained on such domain-invariant
features from source can also work well on the target domain. This is typically done
by minimizing a distance defined on distributions [29], or by adversarial training
via a domain discriminator that attempts to distinguish between source and target
features [7, 34, 20, 32, 1]. Our method is similar to these works and can be viewed
as an instance of the general pipeline in [34] by leveraging multi-domain network
and attention mechanisms.

RGB-to-Thermal UDA: Despite the success of UDA on visible images, adapting
models from visible to thermal remains challenging due to their larger domain gap.
Existing RGB-to-thermal adaptation works like MS-UDA [14] and HeatNet [36]
distill knowledge from a semantic segmentation network pretrained on RGB datasets
to their two-stream network by pseudo-labeling RGB-thermal image pairs. However,
as the pseudo-labels are generated for the RGB image in a pair, the main domain gap
here is intra-modal, between the pretraining dataset and RGB images in the paired
dataset, rather than inter-modal.

Our work is mostly related to SGADA [1] and Marnissi et al. [22] which aim to
transfer knowledge from RGB to thermal without requiring thermal annotations
or RGB-thermal pairs. For pedestrian detection, Marnissi et al. [22] incorporates
alignment at difficult levels into Faster R-CNN [28] using adversarial training.
SGADA [1] is built upon ADDA [34] with an additional self-training procedure.
For pseudo-labeling, not only the model prediction and confidence are considered,
but also the prediction and confidence from the domain discriminator. It achieves the
best results on MS-COCO [18] to FLIR ADAS [6] adaptation benchmark, however,
its performance largely depends on the quality of pseudo labels generated by ADDA.

Attention Networks: Attention mechanisms allow models to dynamically attend to
certain parts of the input that are more effective for a task, and become important
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Figure 5.2: The network architecture and training procedure of our proposed unsu-
pervised RGB-to-thermal domain adaptation method. The specific architecture is
shown for image classification task.

concepts in neural networks. Attention can be grouped into different types, including
sequence attention, channel attention [13], and spatial attention [39], etc. For domain
adaptation, Wang et al. [37] and Zhang et al. [42] propose transferable attention
networks using self-attention mechanisms to highlight transferable features. The
spatial attention they employed attend to different regions in a feature map. Instead,
we use channel-wise attention [13] to attend to different feature maps and use
residual adapters [27] to align them, with the intuition that certain types of features
are more transferable than others. The transferability difference in feature types (i.e.,
channels) should be focused on more than in feature regions (i.e., spatial locations)
for cross-modal domains.

5.4 Method
Multi-Domain Attention Network
Our multi-domain attention network design draws ideas from multi-domain learn-
ing [27] and task attention mechanisms in multi-task learning [21]. Both works
use a shared backbone network and domain/task-specific parameters to separate a
shared representation learned from all domain/tasks and domain/task-specific mod-
eling capabilities. It has been shown that sharing weights across domains/tasks
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promotes the generalization ability. In contrast with encouraging disentanglement
in a supervised setup [27, 21], we use domain-specific attention with adversarial
learning to facilitate domain-invariant feature extraction and alignment for domain
adaptation.

Our multi-domain attention network consists of an encoder-decoder backbone,
shared by both source and target domains, with domain-specific attention mod-
ules attached at various stages of the encoder. For UDA classification (Fig. 5.2), the
architecture consists of the shared backbone and classifier (blue), source-specific
(green), and target-specific (red) attention modules. Hypothesizing that different
sensor modality favors different types of features, we use channel-wise attention, i.e.,
Squeeze-and-Excitation (SE) [13], to highlight more domain-invariant and easily-
transferable feature maps among all shared features, and use residual adapters [27]
to align them across domains.

Let 𝐹𝑐 ∈ Rℎ×𝑤×𝐶
′ denote a convolutional layer of 𝐶 kernels of size ℎ × 𝑤 op-

erating on 𝐶′ input channels, we have 𝐹𝑐 : 𝑥 → 𝑓 , 𝑥 ∈ R𝐻′×𝑊 ′×𝐶′ , 𝑓 ∈ R𝐻×𝑊×𝐶 ,
where 𝑓 = [ 𝑓1, 𝑓2, ..., 𝑓𝐶] represent 𝐶 output feature maps. A SE module [13] first
“squeezes” 𝑓 into a low-dimensional channel descriptor 𝑑 ∈ R𝐶

𝑟 with reduction
ratio 𝑟 . This is done using global average pooling followed by a fully connected
(FC) layer with ReLU activations. The channel descriptor is then transformed into
channel-wise weight coefficients 𝑠 = [𝑠1, 𝑠2, ...𝑠𝐶], 𝑠𝑐 ∈ (0, 1) through another FC
layer and a sigmoid function. Finally, 𝑠 is used to “excite” different feature maps in 𝑓
by feature channel reweighting: 𝑓̃𝑐 = 𝑠𝑐 · 𝑓𝑐. In our network, we use domain-specific
SE blocks operating on the shared feature maps right before the residual addition in
residual blocks, as shown in Fig. 5.2.

By attaching domain-specific SE modules to the shared backbone network, they
have the ability to accentuate more domain-invariant and transferable features in
the shared features while attenuate less-transferable ones. To further align the
reweighted features across domains, we leverage residual adapters [27] to directly
and dynamically adapting the shared feature extractors 𝐹𝑐 to domain-specific feature
extractors 𝐺𝑑 . Specifically, 𝑑 = 𝑐 in our network.

Given a shared convolutional layer of 𝐶 kernels 𝐹𝑐 ∈ Rℎ×𝑤×𝐶
′ , a domain-specific

convolutional layer with 𝐷 filters 𝐺𝑑 ∈ Rℎ×𝑤×𝐶
′ can be simply constructed as an

affine transformation of 𝐹𝑐 using only a small amount of additional parameters
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𝛼 = {𝛼𝑑𝑐}:

𝐺𝑑 =

𝐶∑︁
𝑐=1

𝛼𝑑𝑐𝐹𝑐 . (5.1)

Here, 𝛼 ∈ R𝐷×𝐶 are the trainable residual adapter parameters [27]. This linear
parameterization reduces constructing 𝐺𝑑 for each domain to the shared 𝐹𝑐 with a
small amount of domain-specific parameters 𝛼. The works [27, 26] further show
that 𝛼 can be reparameterized and implemented as a convolutional layer of 1 × 1
filters connected in parallel with the shared convolutional layer. In our network, we
add residual adapters to the middle 3 × 3 convolutional layer in residual blocks for
feature alignment, as shown in Fig. 5.2.

We emphasize the differences of our attention modules from those in [27, 21].
The multi-domain learning in [27] and multi-task learning in [21] are essentially
supervised. Their objective is to learn a domain/task-invariant feature representation
𝑓𝑖𝑛𝑣 and domain/task-specific attention 𝜃𝑎, 𝜃𝑏, so that 𝜃𝑎 ( 𝑓𝑖𝑛𝑣) = 𝑓𝑎, 𝜃𝑏 ( 𝑓𝑖𝑛𝑣) = 𝑓𝑏,
where 𝑓𝑎 and 𝑓𝑏 are features tailored for domain/task A and B respectively. In
contrast, for our UDA problem, we learn discriminative features 𝑓𝑠 for a given task
using supervised training in the source domain and target-specific attention 𝜃𝑡 using
adversarial training for feature alignment, i.e. 𝜃𝑠 ( 𝑓𝑠ℎ) = 𝑓𝑠, 𝜃𝑡 ( 𝑓𝑠ℎ) = 𝑓𝑡→𝑠, where
𝜃𝑠 and 𝜃𝑡 are source and target attention, 𝑓𝑠ℎ and 𝑓𝑡→𝑠 are the shared features and
the target features aligned with 𝑓𝑠 respectively.

Adversarial Attention Learning
To perform unsupervised domain adaptation, we train subsets of network parameters
in an alternating fashion. We denote the shared parameters, including the backbone
network and the decoder, as 𝜃𝑠ℎ, and the source- and target-specific attention modules
as 𝜃𝑠 and 𝜃𝑡 respectively. We train 𝜃𝑠ℎ and 𝜃𝑠 using labeled data from the source
domain and train the task-specific attention modules 𝜃𝑡 adversarially in an alternating
fashion.

Let𝑀 denote the proposed multi-domain attention network, and letD𝑠 = {(𝑥𝑖𝑠, 𝑦𝑖𝑠)}
𝑛𝑠
𝑖=1

andD𝑡 = {(𝑥 𝑗𝑡 )
𝑛𝑡
𝑗=1} denote the annotated training data in the source domain and the

unlabeled target training data respectively. The shared and source-specific network
parameters can be trained with supervision by minimizing the standard cross-entropy
loss. For a classification problem, the loss can be written as

L𝑡𝑎𝑠𝑘 (𝑥𝑠, 𝑦𝑠) = −
𝐶∑︁
𝑐=1

1[𝑐=𝑦𝑠] log𝑀 (𝑥𝑠; 𝜃𝑠ℎ+𝑠), (5.2)
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Algorithm 2 Multi-Domain Attention Network for Unsupervised Domain Adapta-
tion

1: Input: Training data: D𝑠,D𝑡 ,
2: Network: 𝑀 = {𝜃𝑠ℎ, 𝜃𝑠, 𝜃𝑡}, Discriminator: 𝐷
3: Learning rate: 𝛼, 𝛽, 𝛾
4: Initialize 𝑀0, 𝐷0

5: for 𝑛 = 1 to 𝑁 do
6: Sample batch data (𝑥𝑠, 𝑦𝑠) from D𝑠, and 𝑥𝑡 from D𝑡
7: 𝑙𝑡𝑎𝑠𝑘 ← L𝑡𝑎𝑠𝑘 (𝑥𝑠, 𝑦𝑠) ⊲ Evaluate (5.2)
8: 𝜃𝑛

𝑠ℎ+𝑠 = 𝜃
𝑛−1
𝑠ℎ+𝑠 − 𝛼∇𝜃𝑛−1

𝑠ℎ+𝑠
𝑙𝑡𝑎𝑠𝑘

9: 𝑙𝑎𝑑𝑣 ← L𝑎𝑑𝑣 (𝑥𝑡 , 𝐷𝑛−1) ⊲ Evaluate (5.5)
10: 𝜃𝑛𝑡 = 𝜃

𝑛−1
𝑡 − 𝛽∇𝜃𝑛−1

𝑡
𝑙𝑎𝑑𝑣

11: 𝑙𝑑𝑖𝑠 ← L𝑑𝑖𝑠 (𝑥𝑠, 𝑥𝑡 , 𝑀𝑛) ⊲ Evaluate (5.4)
12: 𝐷𝑛 = 𝐷𝑛−1 − 𝛾∇𝐷𝑛−1 𝑙𝑑𝑖𝑠
13: end for
14: Output: 𝑀𝑁 , 𝐷𝑁

where (𝑥𝑠, 𝑦𝑠) are source data-label pairs drawn fromD𝑠,1[𝑥] is an indicator function
so that 1[𝑥] = 1 if 𝑥 = 1, and 0 otherwise, and 𝐶 is the number of categories.

We train the target-specific attention in our network adversarially by forcing the target
attention to attend to domain-invariant features from the shared features and further
align them with the source feature distributions. Adversarial attention learning
can be achieved by approaching the following minimax game [8, 34] between the
target-specific attention 𝜃𝑡 and a domain discriminator 𝐷:

min
𝜃𝑡

max
𝐷
L(𝐷, 𝜃𝑡) = (5.3)

E𝑥𝑠∼D𝑠
log𝐷 ( 𝑓𝑠) + E𝑥𝑡∼D𝑡

log(1 − 𝐷 ( 𝑓𝑡)),

where 𝑓𝑠 and 𝑓𝑡 are source and target features from the entire encoder with weights
𝜃𝑠ℎ+𝑠 and 𝜃𝑠ℎ+𝑡 , respectively.

Specifically, the minimax loss in (5.3) is split into two objectives, where the domain
discriminator plays the adversarial role and attempts to distinguish between source
features 𝑓𝑠 and target features 𝑓𝑡 by minimizing the following loss:

L𝑑𝑖𝑠 (𝑥𝑠, 𝑥𝑡 , 𝑀) = − log𝐷 ( 𝑓𝑠) − log (1 − 𝐷 ( 𝑓𝑡)), (5.4)

and the target-specific attention is trained to fool the domain discriminator and
increase domain confusion by minimizing an adversarial loss:

L𝑎𝑑𝑣 (𝑥𝑡 , 𝐷) = − log𝐷 ( 𝑓𝑡). (5.5)
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Figure 5.3: Visualized training loop to perform unsupervised domain adaptation
through acheiving domain confusion.

The three-step training procedure of our multi-domain attention network is given in
Algorithm 2 and depicted in Fig. 5.3.

Advantages of this alternating training are twofold. First, when training 𝜃𝑠ℎ+𝑠

using L𝑡𝑎𝑠𝑘 (𝑥𝑠, 𝑦𝑠), it reduces to training a supervised source model and the feature
extractor learns to extract the most discriminative features for the given task. When
training 𝜃𝑡 with fixed 𝜃𝑠ℎ, 𝜃𝑡 learns to select and adapt the most domain-invariant
ones among the discriminative features, leading to better adaptation performance.
Second, it eliminates a weighting hyperparameter for two loss functions and makes
the training procedure more stable.

Self-Training
We further fine-tune the model with a single self-training step using the pseudo
labels generated for the target training data. Following [1], we save the prediction
and corresponding confidence (the maximum of softmax probabilities) of the model
𝑀 trained in Sec. 5.4 for all unlabeled target training samples. In the meantime,
the prediction and confidence of the domain discriminator 𝐷 are also recorded. For
target samples that successfully fool the discriminator (𝐷 predicts them as source
samples with a high confidence), we assign them pseudo-labels according to the
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Figure 5.4: Examples of the prepared data from MS-COCO [18] and M3FD Detec-
tion datasets [19].

model prediction. For those target samples that the discriminator recognize but with
low domain confidence, we also include them in pseudo-labeling. The pseudo-labels
are further filtered by the model prediction confidence.

In this stage, we only train the target-specific attention parameters using a cross-
entropy loss in a supervised setup:

L𝑠𝑡 (𝑥𝑡 , 𝑦̂𝑡) = −
𝐶∑︁
𝑐=1

1[𝑐=𝑦̂𝑡 ] log𝑀 (𝑥𝑡 ; 𝜃𝑡), (5.6)

where 𝑦̂𝑡 is the generated pseudo-label for target training data 𝑥𝑡 . This way, we
can further improve the performance in target while keeping the performance in
source, so that we have a single unified model that performs well on both source and
target data. This learning-without-forgetting [17] property is another benefit of our
multi-domain attention network.

5.5 Results
Implementation
For a fair comparison, we employ the same backbone architecture used in other
methods, i.e. a ResNet-50 pretrained on ImageNet [5]. We use a FC classifier and a
FC discriminator for image classification, and use an Atrous Spatial Pyramid Pool-
ing [4] decoder and a fully-convolutional discriminator for semantic segmentation.
Parameters are all updated using the ADAM optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999
and weight decay of 2.5 × 10−5. The learning rate 𝛼, 𝛽, 𝛾 in Algorithm 2 is set to
1 × 10−4, 1 × 10−5 and 1 × 10−3, respectively. All experiments are conducted on a
NVIDIA Quadro RTX 8000 GPU with 48GB memory.
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Table 5.1: Data statistics of MS-COCO versus M3FD dataset.

Bus Car Light Motor. People Truck Total

MS-COCO Train 3,887 36,830 12,139 6,330 200,831 7,232 267,249
Val 189 1,623 603 229 8,331 315 11,290

M3FD
Train 441 12,969 1,902 382 8,770 696 25,160
Val 55 1,621 238 48 1,096 87 3,141
Test 55 1,620 237 47 1,096 86 3,141
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Figure 5.5: Task-specific attention visualization for classes in the FLIR dataset and
Grad-CAM [30] visualizations of the residual adapters for that class.

Ablation Study
To investigate the effects of different attention modules and training strategies on
adaptation performance, we conduct a thorough ablation study on 9 training com-
binations resulting from two types of attention modules, i.e. with (✓) and without
the residual adapter/SE module, and three different strategies to train them:

1. 𝜃𝑠ℎ+𝑠+𝑡 : We jointly train all network parameters using the sum ofL𝑡𝑎𝑠𝑘 in (5.2)
and L𝑎𝑑𝑣 in (5.5), reducing the three training steps in Algorithm 2 to only
alternatively training the model 𝑀 and domain discriminator 𝐷.

2. 𝜃𝑠ℎ, 𝜃𝑠+𝑡 : We alternatively train the shared parameters 𝜃𝑠ℎ and all domain-
specific parameters 𝜃𝑠+𝑡 . In this setting, only 𝜃𝑠ℎ is updated using L𝑡𝑎𝑠𝑘 ,
while 𝜃𝑠+𝑡 are adversarially trained using a cross-entropy domain loss in [33]
instead of L𝑎𝑑𝑣 in Algorithm 2.
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Table 5.2: Ablation study of different attention modules and training strategies on
MS-COCO to FLIR ADAS dataset.

Training Strategy Residual
Adapter

Squeeze &
Excitation Bicycle Car Person Average

𝜃𝑠ℎ+𝑠+𝑡

✓ 89.43 97.14 88.89 91.83
✓ 91.72 93.79 83.96 89.83

✓ ✓ 87.82 94.34 91.52 91.23

𝜃𝑠ℎ, 𝜃𝑠+𝑡
✓ 81.84 96.36 96.66 91.62

✓ 82.03 93.18 95.84 90.35
✓ ✓ 79.54 96.69 96.99 91.07

𝜃𝑠ℎ+𝑠, 𝜃𝑡
✓ 90.57 97.22 89.83 92.54

✓ 85.75 97.48 95.85 93.03
✓ ✓ 89.20 96.87 95.59 93.88
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Figure 5.6: The t-SNE visualization of the encoded features of all target test samples
by different methods (ST: Self-training).

3. 𝜃𝑠ℎ+𝑠, 𝜃𝑡 : The training procedure given in Algorithm 2.

Table 5.2 lists the ablation study results using top-1 accuracy. From the table,
alternatively training 𝜃𝑠ℎ+𝑠 and 𝜃𝑡 has better performance compared with the other
two training strategies, and with both residual adapter and SE, it achieves the best
result among all configurations. This observation aligns with the discussion in
Sec. 5.4. In the following experiments, we use setting 3 with both attention modules
for our method.

Unsupervised Thermal Image Classification
MS-COCO to FLIR ADAS: We first compare our method with SGADA [1]
which achieves the best performance on MS-COCO to FLIR ADAS classifica-
tion benchmark [24] and several other the state-of-the-art general UDA methods.
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MS-COCO [18] is a large-scale RGB dataset and FLIR ADAS [6] is a popular
thermal image dataset for urban environments. We use the dataset prepared by [1]
including three categories, i.e., bicycle, car and person, in this experiment. Same
as [1], we train our network for 15 epochs with a batch size of 32. Per-class accuracy
of all methods are given in Table 5.3, where the proposed method outperforms other
methods by a significant margin even without self-training. In this particular data
setting, the results indicate that our method (ours + ST) performs on par with fully-
supervised training on target domain data (target only) while other UDA methods do
not. Here, the fully-supervised "target only" method marks the gold-standard classi-
fication performance since the amount of target samples in this dataset is sufficiently
large to directly apply fully-supervised learning.

MS-COCO to M3FD: MS-COCO to FLIR ADAS dataset has 633440 unannotated
target samples [1]. To further evaluate the adaptation performance when target train-
ing samples are scarce, we prepare a new RGB-to-thermal adaptation benchmark
using MS-COCO and M3FD [19] including 6 categories for evaluation, following
the data preparation process in [1]. Examples and statistics of the prepared dataset
are given in Fig. 5.4 and Table 5.1. Due to less training data, we train all networks
for 30 epochs using a batch size of 32. We have similar observations from Table 5.4
as from previous experiment, except that all methods outperform the "target only"
model which shows the effectiveness of UDA when sufficient annotated data is un-
available. The "target only" model performs poorly in this setting due to the dearth
of target domain training data compared to the prior setting.

Experiment Analysis: We visualize the feature representations for all test samples
on target domain using t-SNE [35] in Fig. 5.6, where the better feature separation
in (d) and (e) shows our method can learn discriminative features for the given
task. To examine the effectiveness of attention modules in our method, we further
visualize the trained target-specific attentions in Fig. 5.5 by plotting the features
they attend to. For SE modules, we plot the feature map with the highest and the
lowest attention weight in the first residual block. As for residual adapters, we plot
the Grad-CAM [30] of the last task-specific adapter layer.

We have several interesting observations. First, for bicycle and person categories,
the feature maps that the SE highlights the most tend to have high activation on
the object contour, which suggests that contour-sensitive features are more domain-
invariant and transferable between RGB and thermal domains, aligning with the
conclusion in [3]. Second, we notice that cars in thermal images are usually brighter
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Table 5.3: Top-1 accuracy for MS-COCO to FLIR ADAS.

Method Bicycle Car Person Average

Source only 69.89 83.89 86.52 80.10
Pixel-DA [2] 62.53 89.99 76.73 76.42
DTA [16] 75.45 97.65 92.45 88.52
MCD-DA [29] 81.71 94.90 91.83 89.48
DANN [7] 78.16 95.07 96.24 89.82
CDAN [20] 78.16 97.10 94.82 90.03
ADDA [34] 86.67 96.95 89.10 90.90
SGADA [1] 87.13 94.44 92.03 91.20
Ours 89.20 96.87 95.59 93.88
Ours + ST 89.63 97.06 96.03 94.24
Target only 87.59 98.78 96.35 94.24

Table 5.4: Top-1 accuracy for MS-COCO to M3FD.

Method Bus Car Light Motor. People Truck Average

Source only 63.64 76.98 91.14 4.26 94.07 56.98 64.51
MCD-DA [29] 89.09 76.98 95.36 76.59 93.89 30.23 77.00
DANN [7] 89.09 82.72 51.90 68.09 92.15 74.42 76.4
CDAN [20] 89.09 88.58 72.15 46.81 93.98 45.35 72.7
ADDA [34] 96.36 85.86 60.34 51.06 76.73 87.21 76.26
SGADA [1] 94.55 87.22 70.04 51.06 77.01 81.40 76.88
Ours 90.91 85.37 72.57 74.47 93.80 51.16 78.05
Ours + ST 90.91 84.26 85.65 70.21 95.44 56.98 80.57
Target only 94.55 92.53 83.12 21.28 90.24 20.93 67.11

at the bottom due to the high temperature in those regions, as opposed to cars in
RGB images which appear darker at the bottom due to shadows. The feature maps
that the SE module attends to eliminate this phenomenon and appear visually similar
to that of cars from an RGB image. Those observations show the effectiveness of
our attention network in extracting domain-invariant and transferable features.

Unsupervised Thermal River Scene Segmentation
We present an effective and inexpensive approach for thermal semantic segmentation
by adapting from synthetic RGB images using the proposed method, and test on
thermal river scene segmentation. We collect 8 sequences of thermal images at
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Table 5.5: Thermal segmentation performance before and after our adaptation using
Intersection over Union (IoU).

Method Non-water Water Average

Source only 78.33 32.90 55.62
Our adapted model 85.67 54.77 70.22

60 Hz using a hand-held FLIR ADK Longwave Infrared (LWIR) thermal camera
with an NUC Ruby Mini PC at Big Bear Lake, CA. We sample images every 100
frames from the collected 48676 sequential frames and form an unlabeled training
set of 486 thermal images. As our ultimate goal is to enable the nighttime coastline
exploration ability of our aerial robots [41, 23] by thermal river segmentation, we
manually annotate 282 diverse test images with pixel-level ground truth water labels
for evaluation. Examples of collected thermal images are shown in Fig. 5.1 (4th
column).

Due to the lack of annotated RGB dataset for natural scenes similar to our river-
ine environment, we generate synthetic RGB images with automatically obtained
semantic labels using the AirSim simulator [31]. To that end, we use a publicly
available simulation environment, i.e. the Landscape Mountains, and simulate a
drone platform with a mounted RGB camera to follow a simple survey trajectory
around rivers using the built-in simple flight controller. Following our thermal cam-
era, we set the simulated RGB camera to have 75-degree FoV and capture 640×480
images. We acquire RGB images and the corresponding semantic labels at 2Hz,
and obtain a synthetic labeled river scene RGB dataset of 1357 samples. We further
convert the RGB images to grayscale and invert the intensity values (except for the
foliage class), resulting in training samples visually close to our thermal images.
Examples of the synthetic RGB images, semantic labels, and inverted grayscale
images are shown in the first three columns of Fig 5.1.

We train the network for 50 epochs using a batch size of 8 without performing self-
training. From Table 5.5, our adapted model obtains a performance gain of 14.6%
mIoU and 21.87% water-class IoU over the source only model. The effectiveness of
our method can be also seen in Fig. 5.1 and Fig. 5.7, where the adapted model corrects
a large portion of false positive foliage prediction. This experiment demonstrates
that thermal vision models can be effectively learned from synthetic RGB data using
the proposed method without any manual annotations, even in the source domain.
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Thermal Image Source Only w/ UDA Ground Truth

Foliage Landscapes Cli�s Gravel Sky Non-waterWater

Figure 5.7: Qualitative results of our unsupervised thermal river segmentation model
adapted from synthetic RGB data.

5.6 Conclusion
This work presented an unsupervised RGB-to-thermal domain adaptation method
using multi-domain attention network and adversarial attention learning, and demon-
strated its effectiveness on both image classification and semantic segmentation
tasks. Vision models adapted by our method achieved a large performance gain over
source-only models, and performed on-par with supervised models trained on target.
The proposed method can enable robots thermal vision ability without incurring the
exorbitant costs of data labeling. In addition, our adaptation method is designed
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to keep the source performance, i.e. learn without forgetting, providing a unified
vision model for both RGB and thermal images.
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C h a p t e r 6

AERIAL RGB-THERMAL DATASET IN THE WILD

[1] C. Lee*, M. Anderson*, N. Raganathan, X. Zuo, K. Do, G. Gkioxari, and
S.-J. Chung. “CART: Caltech Aerial RGB-Thermal Dataset in the Wild”. In:
arXiv preprint arXiv:2403.08997 (2024). Available at https://arxiv.
org/abs/2403.08997.

6.1 Abstract
We present the first publicly available RGB-thermal dataset designed for aerial
robotics operating in natural environments. Our data-set captures a variety of ter-
rains across the continental United States, including rivers, lakes, coastlines, deserts,
and forests, and consists of synchronized RGB, long-wave thermal, global position-
ing, and inertial data. Furthermore, we provide semantic segmentation annotations
for 10 classes commonly encountered in natural settings in order to facilitate the
development of perception algorithms robust to adverse weather and nighttime con-
ditions. Using this dataset, we propose new and challenging benchmarks for thermal
and RGB-thermal semantic segmentation, RGB-to-thermal image translation, and
visual-inertial odometry. We present extensive results using state-of-the-art meth-
ods and highlight the challenges posed by temporal and geographical domain shifts
in our data.
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6.2 Introduction
Current field robots rely predominantly on sensors such as visual cameras, lidar,
and radar to perceive their surroundings [16, 18]. While these sensors enhance
robustness of downstream vision algorithms, their performance degrades in low-
light and adverse weather (snow, fog, rain) conditions [68]. In contrast, thermal
cameras exploit long-wave infrared wavelengths to capture emitted heat, offering
dense, visual information even in conditions in which other methods struggle [19].
Recently, thermal cameras have been used in multimodal perception algorithms for
autonomous vehicle applications and are increasingly being explored for field robotic
applications to enable nighttime autonomy [36, 74, 69, 11, 76, 48, 12]. However,
successful integration of thermal imagery requires extensive datasets across diverse
settings, preventing widespread adoption in field robotics.

Existing thermal datasets primarily focus on urban environments for autonomous
driving applications (Fig. 6.1). They typically comprise of thermal-only im-
agery [74, 36] or RGB-Thermal (RGB-T) pairs [17, 22, 69, 40], with some including
global positioning (GPS/GNSS) and inertial measurements (IMU) for visual-inertial
odometry (VIO) and simultaneous localization and mapping (SLAM) [76, 11, 60].
While comprehensive, these datasets rarely extend beyond urban areas. They lack
data depicting natural settings like rivers and forests, which are typical operating ar-
eas for field robotics that perform coastline mapping and bathymetry [4] or monitor
activity during forest fires [30].

Due to the lack of thermal benchmarks for algorithms like semantic segmentation and
SLAM, field robots cannot easily operate at night or in adverse conditions, requiring
online learning [70, 34] or unsupervised domain adaptation to compensate [20, 32,
69] which still require labeled data for evaluation. As such, enabling thermal
perception for field robotics requires collecting and annotating field-specific data
from scratch. However, curating such a dataset is more complex than doing so
for RGB: First, thermal data is hard to crowdsource and web-scrape due to the
cost and nicheness of thermal cameras. Hence, acquiring a dataset for algorithm
development requires physically going to distinct field environments, increasing
time and cost. Second, operating most field robotics, especially uninhabited aerial
vehicles (UAV), usually require special permits unique to each location-of-capture.
This further complicates the creation of a comprehensive thermal dataset for field
robotics research.

In this work, we present the first dataset targeting thermal scene perception for
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field robotics and for wider use by the computer vision community. The dataset
consists of oblique-facing imagery captured from a UAV, supplemented with image
sets captured at ground level, and focuses on littoral settings within various desert,
forest, and coastal environments across the United States. We contribute new bench-
marks for thermal and RGB-T semantic segmentation, RGB-T image translation, and
VIO/SLAM algorithms, with unique challenges characterized by temporal and geo-
graphical domain shift for learning-based methods and periodic feature sparsity for
motion tracking algorithms.

This chapter is organized as follows: Section 6.3 reviews relevant datasets, bench-
marks, and algorithms. Section 6.4 describes our dataset details and curation
process, and Section 6.5 presents benchmark results. Section 6.6 offers concluding
remarks.

6.3 Related Work
Datasets and Benchmarks
Thermal/RGB-T benchmarks for urban robotics: Current urban thermal and
RGB-T datasets primarily focus on autonomous vehicle (AV) technology and surveil-
lance applications. AV-related datasets cover tasks such as object detection [17, 40,
11], semantic segmentation [36, 22, 69, 74], and localization [76, 11, 60]. Some
include data from other spectra, benchmarking not only thermal algorithms but also
RGB-T [40, 11, 22, 69] and other multispectral models. In contrast, datasets for
surveillance applications use fixed cameras [29] and UAVs [65] to detect personnel,
vehicles, and other objects. Despite many urban thermal benchmarks, they cannot
be directly used to develop algorithms for robots operating in natural environments
due to the urban/non-urban domain gap.

Thermal/RGB-T benchmarks for field robotics: Datasets for robots operating
in non-urban environments remain limited. MassMIND [48] and PST900 [61]
benchmark thermal semantic segmentation for maritime and subterranean robotic
environments, respectively. WIT-UAS [30] provides UAV-borne thermal images
for object detection in wildfire-prone environments. [34] proposes an aerial RGB-
T dataset for thermal water segmentation in littoral areas but only provides 1272
labels consisting of a single water class. Benchmarks like [3, 7] depict natural
environments but are targeted towards wildlife tracking. To address this gap, we
present an aerial RGB-T dataset which can be used to benchmark multiple tasks,
including semantic segmentation, RGB-T image translation, and localization, across
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diverse natural environment robotic applications. Specifically, we build upon the
dataset from [34] by extending the number of semantic classes from 1 to 10 and
adding additional RGB-T data captured from air and ground, resulting in a total of
4195 semantic segmentation annotations.

UAV-based semantic segmentation datasets: Aside from [34], existing UAV-
captured semantic segmentation datasets [47, 10, 44, 6, 46] cover urban environ-
ments. Wth the exception of [46] which provides 400 thermal image samples, all of
these datasets contain only RGB data. Although they provide images with similar
view angles as in our dataset, the RGB-T modality gap and their focus on urban
semantic content makes them impractical for field robotic applications.

Algorithms using Thermal Datasets
Thermal semantic segmentation: Since thermal images are spatially identical
to their RGB counterparts, popular RGB semantic segmentation algorithms [52, 8,
5, 72] can be applied directly. However, some works [36, 74, 50] develop models
specifically for thermal imagery, and leverage edge priors to overcome low resolution
and blurriness due to thermal crossover [55].

Although specifically designed for thermal, these models only marginally outper-
form standard RGB segmentation models [50] and their performance in field set-
tings, where edges are less structured, remains untested. Aside from architectural
advancements, improvements in thermal semantic segmentation come from domain
adaptation (DA) methods [20, 36, 69, 67] that use labeled RGB data with unlabeled
thermal data. To provide fair comparisons, we do not provide DA baselines in our
benchmarks as performance varies based on the choice of RGB data.

RGB-T semantic segmentation: RGB-T semantic segmentation methods compen-
sate for the weaknesses of each modality via deep feature fusion, data augmentation,
and adversarial training. Most approaches [22, 64, 63, 59, 77] utilize encoder-
decoder architectures with modality-specific encoders and shared decoders, and
show significant improvements over channel-stacked RGB-T inputs. Works like [38,
79] make improvements by integrating RGB and thermal features at multiple stages
within the encoders, while [61] eschews RGB-T training pairs by processing RGB-T
inputs sequentially. Other methods include random input masking to reduce re-
liance on a single modality [59] and adversarial training to adapt to different times
of day [69].

RGB-T image translation: RGB-T image translation is vital as it may enable
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thermal training data to be generated from large-scale RGB datasets. Works based
on generative adversarial networks (GAN) such as [41, 27, 80, 51, 35] can be used
without RGB-T image pairs. However, GANs like [28, 71] that require paired im-
agery provide better translations for both visual appeal and domain adaptation [36].
Recent diffusion methods [57, 56] have demonstrated remarkable results on RGB
imagery, but have not been tested on RGB-T image translation.

Thermal VIO and SLAM: Low signal-to-noise ratio, reduced contrast, and blurred
boundaries in thermal images present challenges for VIO and SLAM. Several stud-
ies [2, 13, 24, 26, 14] use indirect methods by tracking keypoints extracted from
thermal images for visual constraints and rely on image normalization techniques
to improve keypoint extraction. In contrast, [31] uses a direct method to extract
and track high-gradient points by minimizing radiometric error. Other works utilize
learned local and global features to improve feature tracking [78] and loop closure
detection [58], respectively.

6.4 The Aerial RGB-Thermal Dataset
Data Acquisition Hardware
To capture this dataset, we developed a custom sensor stack with synchronized
RGB-thermal imagery, IMU, and global positioning data (Fig. 6.2). The sensor
stack features a non-radiometric FLIR ADK thermal camera (640×512 px and
75° horizontal FoV, 60 Hz) flanked by a pair of FLIR Blackfly electro-optical (EO)
monochrome and color cameras1 (960×600 px and 75° horizontal FoV, 30 Hz). Pose
information is provided by a VectorNav VN100 IMU (200 Hz) and a u-blox M8N
GPS (5 Hz). All three cameras and the VN100 are hardware synchronized using a
dedicated signal generator and are rigidly attached to each other using a stiff, 3D
printed mount. A Simply NUC Ruby Mini PC (AMD Ryzen 7 4800U, 32 GB RAM)
is used for the compute, and the entire system is interfaced using ROS Noetic. Our
cameras and IMU were calibrated following the procedures found in Supplementary
Material Sec S2.2 and were not disassembled from each other between any of the
dataset collections.

The sensor stack is mounted rigidly onboard an Aurelia X6 hexacopter (Fig. 6.2)
without gimbal stabilization at angles between 0° (level with the horizon) to 45° down-
wards to provide different viewpoints. When mounted to a UAV, we also log the
position and attitude estimates from the UAV at 20 Hz providing improved po-

1BFLY-U3-23S6M-C mono/color with Tamron M112FM08 lenses
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Figure 6.2: (a) The Aurelia X6 hexacopter and sensor stack used to capture our
aerial dataset. (b) Geographic distribution of our data collection sites and collection
times.

sitioning accuracy from the onboard RTK GPS. Additionally, the sensor stack’s
modularity allows us to capture datasets on foot by mounting it to a tripod where
flight restrictions are in-place.

Data Collection and Processing
Data capture: We captured 37 aerial and ground trajectories covering lakes, rivers,
coastlines, deserts, and mountains from around Southern California, Kentucky,
and North Carolina (Fig. 6.2). Aerial trajectories (18) involve high motion with
intermittent hovering, and mostly depict scenes from 40 m altitude. Ground-level
trajectories (19) were captured on foot, with 7 captured without any movement for
VIO debugging purposes. For more details, see Supplementary Materials Tab. S2
and Sec. S2.1.

Thermal image normalization: For the baselines presented in this work, we
typically normalize 16-bit thermal data by rescaling between the 1st and 99th per-
centile pixel values and follow with contrast limited adaptive histogram equalization
(CLAHE). We keep normalized data as floats to minimize information loss, and only
convert to 8-bit format when necessary or for visualization. Semantic segmenta-
tion annotation: To aid development of scene perception algorithms for field
robots, we annotated a subset of thermal images for semantic segmentation with
classes in Fig. 6.3. To avoid redundancy, images were sampled every 3 s when
moving and every 20 s when still, resulting in 4195 samples. We considered a frame
in motion if the distance moved within the past 2 seconds exceeded 0.5 meters, with
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Figure 6.3: Semantic segmentation classes in our dataset. The color mapping is
used throughout this paper. (a) Hourly distribution of annotated thermal images.
(b) Histogram of semantic classes.

distances computed using GPS coordinates. Labeling was outsourced to an external
contractor and underwent 3 rounds of review. More details of the annotation process
can be found in the supplement (Sec. S2.3).

RGB-thermal image alignment: To align thermal and RGB image pairs, we
stereo rectified the RGB-T image pairs using the camera matrices obtained from
calibration (Sec. S2.2) and projected the thermal image into the larger RGB image
frame to preserve RGB resolution. As our baseline is small compared to the depth
of the scenes we capture, image pairs are near-coregistered after rectification. Due
to differences in optics, the field-of-view of the aligned image pairs is narrower
compared to that of the thermal camera.

Dataset Splits
General (benchmark) split: This is our primary split for semantic segmentation
and image translation benchmarks. We randomly partition the annotated thermal
dataset (Section 6.4) into train/val/test sets at a 75:12.5:12.5 ratio.

Temporal split: To promote studies into the effect of different time-of-day capture
of the thermal images, we split the dataset using three time periods: twilight/sunrise
(5 AM - 7 AM), daytime (10 AM - 5 PM), and nighttime (7 PM - 4 AM). We ran-
domly partition the daytime images into train/val/test sets using the ratio from above
and leave the twilight and nighttime sets for testing.

Geographical split: The geographical splits are intended to test algorithm adapt-
ability to unseen settings. We provide two splits:

1. Terrain-based: This split partitions data into the following terrain cate-
gories: aerial river, aerial lake, aerial coast, and ground-captured images.
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Train/val/test splits are created per category with a 50:15:35 ratio.

2. Region-based: This split partitions data based on the general area of the
United States that the data was captured. The regions include California
(CA), Kentucky (KY), and North Carolina (NC), with train/val/test splits
created in the same manner as the terrain split.

6.5 Experiments
We provide baselines for the following benchmarks: thermal semantic segmenta-
tion, RGB-T semantic segmentation, RGB-T image translation, and VIO/SLAM.
Furthermore, we explore the zero-shot thermal segmentation capabilities of large
vision-language models on our dataset and perform further ablation studies.

Table 6.1: Supervised model performance (mIoU), framerate (FPS at batch size 1),
and floating point operations (FLOP) for various semantic segmentation network
baselines.

Model Bare
ground

Rocky
terrain

Develop.
struct. Road Shrubs Trees Sky Water Vehicles Person Stuff Object All Orin

(GPU)
NUC
(CPU)

FLOPS
(G)

FastSCNN [52] 0.807 0.907 0.728 0.631 0.694 0.776 0.956 0.965 0.384 0.058 0.808 0.221 0.690 124.2 85.6 1.0
MobileNetV3-S 0.75 [25] 0.802 0.914 0.676 0.633 0.704 0.814 0.955 0.976 0.383 0.111 0.809 0.247 0.697 75.2 24.0 3.3
MobileNetV3-L 0.75 0.801 0.914 0.701 0.615 0.713 0.793 0.959 0.976 0.432 0.148 0.809 0.290 0.705 59.0 15.5 4.8
MobileViTV2 0.50 [45] 0.822 0.913 0.759 0.650 0.694 0.781 0.954 0.970 0.222 0.030 0.818 0.126 0.680 60.1 10.7 5.5
EfficientViT-B0 [5] 0.825 0.917 0.777 0.618 0.710 0.793 0.961 0.965 0.495 0.191 0.821 0.343 0.725 51.2 5.5 3.9
EfficientNet-Lite0 [66] 0.819 0.908 0.769 0.601 0.709 0.805 0.962 0.968 0.380 0.079 0.818 0.229 0.700 47.7 12.8 7.2
EfficientNet-Lite2 0.825 0.920 0.765 0.614 0.698 0.805 0.958 0.971 0.386 0.118 0.820 0.252 0.706 38.9 11.2 9.4
Segformer-B0 [72] 0.804 0.910 0.690 0.624 0.696 0.788 0.960 0.970 0.195 0.000 0.805 0.097 0.664 38.3 5.9 10.2
Segformer-B1 0.814 0.909 0.773 0.603 0.713 0.799 0.960 0.965 0.366 0.000 0.817 0.183 0.690 30.3 3.5 19.9
ResNet18 [23] 0.810 0.905 0.766 0.618 0.711 0.807 0.959 0.966 0.431 0.158 0.818 0.294 0.713 69.3 12.4 22.4
ResNet50 0.819 0.916 0.747 0.658 0.711 0.799 0.961 0.974 0.361 0.182 0.823 0.272 0.713 29.9 6.1 45.4
ResNeXt50 [73] 0.825 0.919 0.773 0.653 0.709 0.794 0.964 0.976 0.436 0.137 0.827 0.287 0.719 23.0 5.6 45.5
ConvNext-T [43] 0.799 0.909 0.719 0.608 0.706 0.808 0.961 0.970 0.363 0.003 0.810 0.183 0.685 25.8 3.3 47.4
ConvNext-S 0.810 0.913 0.771 0.603 0.718 0.810 0.965 0.964 0.492 0.048 0.819 0.270 0.709 19.1 2.3 75.0
ConvNext-B 0.810 0.921 0.697 0.611 0.706 0.803 0.963 0.972 0.348 0.112 0.811 0.230 0.694 14.6 1.4 130.5
ConvNext-B (CLIP) [54] 0.813 0.918 0.683 0.632 0.718 0.813 0.965 0.972 0.517 0.137 0.814 0.327 0.717 14.6 1.4 130.4
ConvNext-B (CLIP)^ 0.773 0.887 0.713 0.487 0.656 0.756 0.946 0.951 0.158 0.019 0.771 0.089 0.635 14.6 1.4 130.4
DINOv2 [49] (linear head) 0.800 0.907 0.681 0.606 0.693 0.796 0.956 0.967 0.375 0.079 0.801 0.227 0.686 15.2 2.1 —
DINOv2 (linear head)^ 0.705 0.844 0.619 0.419 0.558 0.725 0.922 0.920 0.356 0.158 0.714 0.257 0.623 15.2 2.1 —
DINOv2 (nonlin. head) 0.810 0.916 0.708 0.635 0.700 0.819 0.959 0.973 0.399 0.119 0.815 0.259 0.704 15.2 2.1 —
DINOv2 (nonlin. head)^ 0.796 0.903 0.732 0.606 0.691 0.794 0.954 0.963 0.471 0.149 0.805 0.310 0.706 15.2 2.1 —
FTNet† [50] 0.755 0.867 0.635 0.576 0.643 0.653 0.787 0.947 0.234 0.024 0.733 0.129 0.613 11.1 1.4 100.5

†Thermal-specific model ^ Frozen encoder

Thermal Semantic Segmentation
We run multiple baselines on our general split before choosing a specific model
to test on the geographic and temporal splits. We go over our baselines before
analyzing their performance on our benchmarks.

Baselines: Motivated by robotic applications, we are interested in both infer-
ence speed and segmentation performance. Our baselines place an emphasis on
lightweight, real-time networks, but also on foundation models like DINOv2 [49]
and ConvNext-B (CLIP) [43, 54] to explore any latent multimodal capabilities.
We also test a thermal-specific model, FTNet [50], which uses an edge-based loss
function to compensate for blurred boundaries in thermal images.
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Figure 6.4: Thermal images and semantic segmentation labels from each capture
area with inference results from EfficientViT, FastSCNN, and ConvNext-B (CLIP).

Besides FastSCNN [52], EfficientViT [5], Segformer [72], DINOv2, and FTNet,
all network encoders in Table 6.1 feed into a DeepLabV3+ segmentation head. In
particular, DINOv2 was employed with linear and non-linear, multi-scale heads in
order to study the generalization capacity of its pretrained features to the thermal
modality. All baselines except DINOv2 and ConvNext-B (CLIP) were trained from
pretrained ImageNet weights. All networks, besides FTNet, were trained using the
cross entropy loss. Further details on baseline implementation and training can be
found in Supplementary Material Sec. S3.1.

General benchmark: We use the general (random) split (Section 6.4) to compare
thermal semantic segmentation performance between baselines (Table 6.1). With
field robotic applications in mind, we analyze segmentation results in context of
GPU and CPU frame rates, which were measured onboard the Nvidia Jetson AGX
Orin (GPU) and the Ruby NUC (CPU) embedded platforms, respectively2.

In general, we found that larger models provide marginal benefit over smaller,
compute-efficient models. In particular, a 0.027 mIoU difference between the
largest (ConvNext-B) and fastest (FastSCNN) baselines comes at the cost of 130×
more FLOPs. Overall, EfficientViT-B0 performed the best, attaining the highest
mIoU (0.725) while performing 50 Hz inference on the Jetson AGX Orin.

While large RGB foundation models show little gain over ImageNet pretraining,
2Models of input size 512×640 were converted to ONNX and inference speed was averaged over

50 forward passes after a warm-up period.
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their features do extend to the thermal modality. Specifically, a frozen DINOv2
(linear head) outperforms the thermal-specific FT-Net. With a nonlinear head, it
matches the performance of other end-to-end trained networks. While this shows
the benefit of large-scale RGB pretraining, the choice of RGB pretraining data
or learning strategy seems to matter. Notably, the frozen ConvNext-B (CLIP)
model gives marginal gain over the frozen DINOv2 (linear head), despite a larger,
nonlinear segmentation head. Overall, foundation models do not confer significant
performance advantages for semantic segmentation on our dataset in order to justify
their computational cost.

Overall, all baselines can segment stuff classes well but none excel with the rare
object classes: vehicle and person. Future models would likely need to consider
weighted loss functions, smarter data augmentation, or domain adaptation tech-
niques in order to improve on object classes. Lastly, we note that the thermal-
specific model, FTNet, performs poorly, likely as its edge priors are less effective in
unstructured, natural environments compared to urban environments.
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Figure 6.5: (a) Thermal semantic segmentation failures due to intra-class seman-
tic variations when testing on geographically-partitioned, out-of-domain data. (b)
Failures due to photometric variations between day (in-domain) and night (out-of-
domain).

Geographically-partitioned benchmarks: We retrained our best baseline
(Tab. 6.1) on geographically-partitioned sets to evaluate intra-thermal generaliza-
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tion. Given the cost and effort of collecting diverse aerial thermal data of field
settings, we aim to determine the least amount of annotated data required to ef-
fectively deploy. We performed two experiments using EfficientViT-B0: one on
generalization across geographic regions and another across differing terrain types.
In the first experiment, we trained on thermal data from CA and tested on images
from KY and NC (Table 6.2a). Despite common classes in each region, results
show poor generalization to class variations across geographic areas. We see this
again when repeating with the NC split. In the second experiment, we divided our
data into three terrain types, aerial river, aerial lake, and aerial coast. Remaining
ground-captured images were lumped into a fourth ground category. We trained
and tested all pairwise combinations and found poor generalization across terrain
types as well (Table 6.2b). Notably, we found low, in-domain performance for the
lake setting but saw gains after training on aerial data from other terrain and further
improvements after training on ground level images. Overall, our results reiterate
the benefit of having training data representative of the testing environment, but also
show that gains can be made by including out-of-domain (OOD) data from different
terrain and different view points.

Overall, the geographic benchmark presents a difficult domain adaptation problem,
requiring both inter- and intra-modality domain adaptation techniques to overcome.
Although such techniques could perform well in this challenge, the results also
highlight a need for an even larger and more diverse thermal dataset capturing
common field environments than what we presented.

Temporally-partitioned benchmark:

Here, we assess EfficientViT-B0’s performance against intra-thermal, temporal dis-
tribution shift due to thermal inversion. We train the model on images from the
daytime and test on images captured at sunrise and at night. The model achieved
mIoUs of 0.242 at sunrise, 0.193 at night, and 0.777 on a separate daytime test

Table 6.2: Thermal semantic segmentation results on geographically-split data

(a) Region-based split

Train Area
Test Area Avg.

mIoUCA NC KY
CA 0.666 0.084 0.193 0.314
NC 0.084 0.508 0.031 0.208
All 0.648 0.525 0.587 0.586

(b) Terrain-based split

Training Terrain
Testing Terrain Avg.

mIoURiver Lake Coast
River 0.668 0.196 0.117 0.327
Lake 0.196 0.364 0.061 0.207
Coast 0.127 0.119 0.522 0.256
All 0.646 0.415 0.493 0.518
All + ground 0.658 0.416 0.520 0.532
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Table 6.3: RGB-Thermal semantic segmentation network baseline results (mIoU).

Model Bare
ground

Rocky
terrain

Devel.
struct. Road Shrubs Trees Sky Water Vehicles Person All FLOPS

(G)
RGB Only† 0.790 0.873 0.808 0.559 0.664 0.752 0.891 0.967 0.399 0.000 0.670 45
Thermal Only† 0.766 0.835 0.789 0.536 0.654 0.749 0.907 0.971 0.399 0.000 0.661 45
EAEFNet [38] 0.805 0.863 0.813 0.545 0.702 0.802 0.937 0.976 0.481 0.000 0.692 358
CRM [59] 0.816 0.900 0.851 0.616 0.695 0.779 0.923 0.974 0.377 0.206 0.714 310
CMNeXt [77] 0.830 0.900 0.861 0.607 0.718 0.808 0.933 0.980 0.560 0.190 0.740 148

† DeepLabV3+ (w/ ResNet50 encoder)

split. Despite training on daytime images from the same location, the model fails on
nighttime scenes, struggling to classify water due to thermal inversion (Fig. 6.5b).
As such, to perform well on this split, future algorithms need to augment datasets
to simulate such inversions or intentional collect data capturing such phenomena.

RGB-T Semantic Segmentation
We use the paired RGB-T dataset (Section 6.4) and partition it using the general
split (Section 6.5). Recall that RGB and thermal input sizes are 960×600 pixels and
the thermal FoV is narrower than in the previous benchmarks (Section 6.5).

Baselines: We test three RGB-T semantic segmentation algorithms achieving state-
of-the-art results in urban RGB-T scene segmentation benchmarks: CRM [59],
EAEFNet [38], and CMNeXt [77]. To compare against single-modality models,
we train two additional ResNet50/DeepLabV3+ segmentation models on RGB and
thermal data accordingly (Section 6.5).

Performance analysis: All RGB-T models outperform the single-modality base-
lines, with CMNeXt outperforming the next best RGB-T model by 0.026 mIoU
(Table 6.3). Overall, incorporating RGB imagery into the segmentation pipeline
greatly improved the distinction between land-based stuff classes which can be hard
to distinguish in thermal due to thermal crossover. However, these improvements
come at a high computational cost and would not currently be suitable for field robotic
applications. Excelling in this benchmark would involve improving segmentation
performance of the object classes, possibly by leveraging RGB data in unsupervised
domain adaptation training schemes, as well as increasing computational efficiency
through prudent architectural design choices.

RGB-Thermal Image Translation
We use the RGB-T paired dataset from Section 6.5 to benchmark image translation
algorithms operating in the RGB→T direction.
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Table 6.4: RGB-Thermal image translation results

Method Method Type
RGB→ Thermal

PSNR ↑ SSIM ↑ mIoU ↑
UNIT [41] Unpaired GAN 12.85 0.421 0.189
MUNIT [27] Unpaired GAN 16.08 0.459 0.173
Edge-guided RGB-T [35] Unpaired GAN 12.20 0.436 0.225
Pix2Pix [28] Paired GAN 20.06 0.547 0.354
Pix2PixHD [71] Paired GAN 20.05 0.579 0.379
VQGAN [15] Paired GAN 18.09 0.540 0.388
Palette [57] Paired Diffusion 11.51 0.399 0.194

Baselines: We benchmark GAN methods that need RGB-T pairs (Pix2Pix [28],
Pix2PixHD [71], VQGAN [15]) and unpaired methods (UNIT [41], MUNIT [27],
[35]) that do not. We also evaluate Palette [57], a paired diffusion approach.

RGB Real thermalPalettePix2PixHDPix2PixMUNITUNITEdge-Guided 
RGBT VQGAN

Figure 6.6: RGB-to-thermal image translation results. Zoom-in to see fine-details.

Image translation metrics: We quantify RGB-T image translation using the
Peak-Signal-to-Noise ratio (PSNR) and the Structural Similarity Index (SSIM). In
addition, we propose a third metric: the thermal mIoU. This is equivalent to the FCN-
score used in RGB image translation works [28]. Instead of an RGB network, our
metric uses our EfficientViT thermal segmentation network (Table 6.1) to segment
translated thermal images before evaluating with ground truth.

Performance analysis: Paired GANs outperform unpaired GANs and diffusion
methods, achieving higher values across all three metrics (Table 6.4). Qualitative
assessment (Fig. 6.6) shows poor translations from unpaired techniques, with most
retaining geometric artifacts unique to RGB (ocean waves and shadows) and ignoring
relative temperature characteristics. Paired GANs produce results that appear similar
to real thermal images but with inconsistent details upon closer inspection. Likewise,
the diffusion method produces accurate translations but is not consistent. Overall,
RGB-T translation still requires improvements before being able to provide a reliable
source of thermal training data from existing RGB datasets. For domain adaptation



107

purposes, we emphasize that maximizing the thermal mIoU score is more important
than photometric consistency.

Motion Tracking
To quantify VIO/SLAM robustness, we select 12 clipped sequences from our dataset
ranging in motion tracking difficulty: from urban sports fields (easy) to our natural
environments (hard). We normalize thermal images using the 5th and 95th percentile
pixel values (Section 6.4) to enable feature detection.

Table 6.5: VIO/SLAM performance (Absolute Trajectory Error [m]) on aerial
sequences

Method Type Modality
North Field Castaic Lake, CA Duck, NC

N1 N2 N3 N4 N5 N6 C1 C2 C3 C4 D1 D2
VINS-Fusion SLAM RGB 2.883 7.530 4.036 2.009 4.045 0.834 1.555 — 3.277 1.566 1.031 0.700
VINS-Fusion Thermal 9.454 12.26 9.854 2.926 11.00 5.114 7.296 1.513 5.321 2.025 0.879 —
VINS-Fusion VIO RGB 5.458 9.509 6.518 2.121 6.026 1.277 1.555 — 3.277 1.377 1.031 0.725
VINS-Fusion Thermal 13.82 12.86 11.99 2.926 13.98 5.194 7.284 10.60 5.321 2.034 0.879 —
Open-VINS VIO RGB 22.80 36.15 37.15 5.165 — 3.896 — 3.573 — — 0.475 0.700
Open-VINS Thermal 14.43 30.64 16.12 2.258 — 1.562 — 5.311 — — 1.073 —

Trajectory length (m) 1533 1326 1253 153 1104 642 310 65 174 137 88 80

Baselines: We evaluate VINS-Fusion [53] (graph optimization-based) and Open-
VINS [21] (filtering-based). We test VINS-Fusion in VIO and SLAM modes, with
and without loop closure constraints, respectively, and report Absolute Trajectory
Error [62] averaged over four runs.

Performance analysis: This benchmark reveals challenges due to fast motion
at altitude and periodic feature sparsity in littoral environments. In such scenes,
motion tracking frequently failed due to loss of features, requiring sequences to
be clipped for quantifiable evaluations (Table 6.5). VINS-Fusion outperformed
Open-VINS mainly due to higher feature tracking reliability. VINS-Fusion works
better on RGB images than on thermal images in general. However, VINS-Fusion
demonstrates superior feature tracking on thermal images compared to RGB on the
C2 sequence of Castaic Lake, where the thermal contrast of stone grains on the lake
coast was particularly pronounced in the late afternoon. This observation motivates
future research on integrating thermal and RGB cameras for motion tracking with
enhanced robustness and versatility. Our benchmark presents a difficult challenge
for VIO and SLAM algorithms in extreme environments where water and reflections
off water surfaces dominate image scenes, providing a unique test bed to invigorate
interest in robust feature matching and motion tracking in natural texture-deficient
scenarios.
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Further Analysis
Zero-shot foundation models on thermal imagery: Current foundation models
work well on RGB imagery but have not been tested in the thermal domain, especially
in non-urban environments. To evaluate foundation models on thermal imagery,
specifically for zero-shot segmentation and semantic segmentation, we compare
RGB and thermal performance using the aligned set (Section 6.4). With this set, we
isolate modality as the root cause for any performance difference. In the following
experiments, our metrics do not include the rare object classes (vehicle and person)
as they drop metrics to near-uniform values for both modalities, making it difficult
to compare.
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Figure 6.7: Zero-shot foundation models on RGB-T pairs. Oversegmented SAM
outputs differ across modalities but are similar with ground truth semantics added.
Semantic segmentation models (prompted with all classes) perform better on RGB
imagery.

We quantify Segment Anything’s (SAM) [33] zero-shot segmentation sensitivity to
modality change by measuring the spatial alignment of its mask outputs. We apply it
to the RGB set and the 8-bit thermal image set (Section 6.4) with the default 32×32
grid points to segment everything (Fig. 6.7). We compute the average precision
(AP) of the predicted thermal masks, using the predicted RGB masks as ground
truth, and compare the thermal AP against the APs of a color-jittered RGB set and
a grayscale set. Results show that SAM is sensitive to photometric changes, with
sizable performance drops from color-jitter to grayscale to thermal (Table 6.6a).

Next, we test large vision-language models (Grounded-SAM [42], OV-Seg [37],
and ODISE [75]) in zero-shot semantic segmentation. We prompt the models
with a list of classes in our dataset; generate semantic segmentation masks for
RGB, color-jittered RGB, grayscale, and thermal image sets; and compute the



109

Table 6.6: RGB foundation model performances on thermal imagery

(a) Instance segmentation via SAM on thermal and augmented color images using coreg-
istered color image segmentations as ground truth

Modality AP†all APsmall APmed APlarge

Thermal 0.018 0.007 0.022 0.204
Color (grayscale) 0.538 0.536 0.531 0.601
Color (col. jitter) 0.800 0.792 0.801 0.841

†refers to AP@0.5::0.95, following MSCOCO [39]

(b) Zero-shot semantic segmentation (mIoU) on coregistered color and thermal imagery

Method Color Color
(gray)

Color
(jitter) Thermal

SAM [33] + GT ann.‡ 0.704 0.698 0.700 0.653
Grounded SAM [42] 0.380 0.351 0.361 0.193
OV-Seg [37] 0.362 0.340 0.365 0.217
ODISE [75] 0.504 0.450 0.486 0.232

‡ Most frequent ground truth class label in a SAM mask assigned as label for entire mask

mIoU of their outputs using our ground truth annotations. Although RGB, RGB-
variants, and thermal modalities all yield poor semantic segmentation performance
(Table 6.6b), all RGB variants outperform thermal by at least 0.13 mIoU, indicating
low generalization to the thermal modality (Fig. 6.7).

Finally, we create semantic SAM masks by assigning class labels to SAM instances
based on the most frequent ground truth class within an instance (Fig. 6.7). We
find that semantic SAM masks attain much higher mIoU score (0.653) compared to
the other zero-shot methods. Based on the overall results (Table 6.6), we conclude
that SAM can delineate object boundaries in the thermal domain reasonably well
but can oversegment instances resulting in poor AP scores when compared to RGB
(which can also oversegment). When paired with ground truth semantic labels, this
behavior is hidden.

Transfer learning with urban thermal datasets: We test if pretraining on
thermal urban datasets can assist transfer to field settings. We sample 40k unlabeled
thermal images from FLIR ADAS [17], Freiburg [69], HIT UAV [65], KAIST
Pedestrian [11], M3FD [40], MFN [22], MS2 [60], and SCUT-Seg [74] and pretrain
networks of various sizes using MoCoV2 [9]. To assess their usefulness, we train
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Table 6.7: Network pretraining methods for downstream thermal segmentation.

Model mIoU #
Params. (M)None ImageNet Therm. Urban

FastSCNN 0.640 0.690 0.688 1.1
EfficientViT 0.687 0.725 0.714 4.8
ResNet18 0.702 0.713 0.706 12.3
ResNet50 0.682 0.713 0.728 26.7
ConvNext-B 0.625 0.717 0.697 89.4

segmentation networks starting from the pretrained weights and evaluate on our test
set. Overall, we find sparse evidence suggesting any advantage of pretraining with
existing urban thermal datasets (Table 6.7). Instead, off-the-shelf ImageNet weights
can provide strong performance in the thermal field domain, especially over training
from scratch, without the effort and costs of pretraining.

6.6 Conclusion
We presented the Aerial RGB-Thermal Dataset, the first publicly available dataset
specifically tailored towards advancing thermal semantic perception and motion
tracking algorithms in natural environments. We created four distinct benchmarks
encompassing semantic segmentation in both thermal and RGB-T domains, RGB-T
image translation, and motion tracking, and use these benchmarks to demonstrate
the current challenges faced by thermal-based robot perception and localization
algorithms. Current semantic segmentation and image translation methods were
particularly affected by geographical domain shifts, reflecting the diverse intra-
class and inter-scenery distributions in our dataset, as well as temporal domain
shifts due to thermal inversion and crossover. Motion tracking algorithms, on
the other hand, suffered from poor feature tracking in the thermal modality due
to reduced spatial quality as compared to RGB and encountered failures when
faced with challenging, feature-sparse scenarios. However, such scenarios are
commonly encountered during real-world deployments with failures of significant
cost and consequence [1]. Our motion tracking benchmark greatly penalizes current
VIO/SLAM algorithms for assuming ideal feature-tracking conditions, serving as a
unique testbed for algorithm improvements in this area. This dataset, along with the
benchmarks, can be used into the future to help develop algorithms that help expand
the operating domains of both robotics and computer vision in general.
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C h a p t e r 7

SEMANTICS FROM SPACE: SATELLITE-GUIDED THERMAL
SEMANTIC SEGMENTATION ANNOTATION FOR AERIAL

FIELD ROBOTS

[1] C. Lee, S. Soedarmadji, M. Anderson, A. Clark, and S.-J. Chung. “Semantics
from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for
Aerial Field Robots”. In: arXiv preprint arXiv:2403.08997 (2024). Available
at https://arxiv.org/abs/2403.14056.

7.1 Abstract
We present a new method to automatically generate semantic segmentation anno-
tations for thermal imagery captured from an aerial vehicle by utilizing satellite-
derived data products alongside onboard global positioning and attitude estimates.
This new capability overcomes the challenge of developing thermal semantic per-
ception algorithms for field robots due to the lack of annotated thermal field datasets
and the time and costs of manual annotation, enabling precise and rapid annotation
of thermal data from field collection efforts at a massively-parallelizable scale. By
incorporating a thermal-conditioned refinement step with visual foundation mod-
els, our approach can produce highly-precise semantic segmentation labels using
low-resolution satellite land cover data for little-to-no cost. It achieves 98.5% of
the performance from using costly high-resolution options and demonstrates be-
tween 70-160% improvement over popular zero-shot semantic segmentation meth-
ods based on large vision-language models currently used for generating annotations
for RGB imagery.

7.2 Introduction
Uninhabited Aerial Vehicles (UAVs) have been extensively used in field robotic
applications, including precision agriculture [36], wildlife conservation [6], coastal
mapping [8], and wildfire management [19]. To enable operations during nighttime
and adverse weather conditions, UAVs can be equipped with long-wave thermal
infrared cameras [13, 25] that provide dense scene perception in such settings.
However, developing thermal scene perception for aerial field robotics requires
ample data in order to train deep learning models for semantic segmentation [34].

https://arxiv.org/abs/2403.14056


120

This poses a challenge due to the scarcity of in-domain thermal data capturing
typical aerial field robotic operational areas such as deserts [30], forests [19], and
coastlines [35, 8].

Although several thermal semantic segmentation datasets of urban scenes have
been curated for autonomous driving applications [27, 17, 42], few datasets exist
that specifically target natural environments from an aerial viewpoint [26, 25].
To compensate for limited thermal data, existing works leverage large, annotated
RGB datasets via domain adaptation techniques like image translation [27] and
domain confusion [16, 22], as well as online learning [25] for thermal test-time
adaptation. Despite reducing reliance on thermal training data, such methods still
require annotated thermal data for comprehensive evaluation and robustness testing.
While thermal datasets exist for field environments, most lack annotations relevant
for aerial semantic segmentation [19, 35, 39] besides [26]. As a result, collecting and
annotating thermal datasets for semantic segmentation is still necessary to further
improve thermal scene perception results via supervised training.

Capturing and annotating thermal field data presents unique challenges. Unlike
in RGB, publicly-available thermal imagery is scarce due to the high costs and
specialized nature of thermal sensors. Consequently, relevant thermal imagery
cannot be scraped from the web and field roboticists must travel to various locations
for data collection. This process incurs significant time and financial expenses,
as it requires extensive travel and permits for flying and data capture. Moreover,
annotating thermal imagery adds further costs and delays due to its distinct visual
characteristics. This requires multiple rounds of attentive expert review and re-
annotation [26], and adds more time to the curation process.

In this study, we propose a method to significantly reduce the time and cost of
annotating aerial thermal field imagery for semantic segmentation. We contribute
the following:

1. An algorithm that automatically generates high-quality segmentation labels for
aerial thermal imagery using estimated camera pose and satellite-derived data.

2. Experiments comparing segmentation labels generated from various satellite-
derived data products, demonstrating competitive results with free options.

3. Extensive ablation studies showcasing the robustness of our method to noisy cam-
era pose estimation and temporal misalignments between thermal and satellite
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imagery.

4. A demonstration for aerial field robotics perception by training a semantic seg-
mentation network solely on labels generated using our method, yielding promis-
ing results.
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Figure 7.1: Proposed pipeline for automatically generating semantic segmentation
annotations from satellite-derived data. Coarse segmentation labels for thermal
images are rendered from Land Use and Land Cover (LULC) datasets and Digital
Elevation Maps (DEM). The labels are refined using Segment Anything [23] to
capture fine details between segmentation instances.

7.3 Related Work
Semantic Segmentation: Semantic segmentation models perform per-pixel classi-
fication and are typically built upon convolutional neural networks and transformer
architectures [11, 18, 29]. While conventional fully-supervised models achieve im-
pressive results, they need large annotated training datasets for generalization. In
applications like thermal semantic segmentation where labeled data is scarce, unsu-
pervised domain adaptation (UDA) techniques are often employed. UDA methods
like [27] synthesize labeled thermal training data from existing RGB datasets via
image translation, while other works [16, 22] leverage RGB training for thermal



122

inference by maximizing RGB-thermal domain confusion during training. How-
ever, UDA methods still face challenges: they require significant target domain data
and thermal annotations for evaluation, and typically exhibit lower performance
compared to fully-supervised methods [32].

Alternatively, recent large vision-language models like ODISE [45] and OV-Seg [28]
can perform zero-shot semantic segmentation across the RGB spectrum by leverag-
ing user-provided text prompts. Similarly, the Segment Anything Model [23] (SAM)
can provide precise segmentations for any object but lacks semantic information.
In general, the zero-shot semantic segmentation methods perform worse on thermal
imagery compared to RGB [26]. Despite this, [26] finds that SAM can perform well
in a semantic segmentation task if its segmentation outputs are assigned ground
truth class labels. We leverage this finding in our approach.

Automatic Semantic Segmentation Annotation: Most works using automatic
semantic segmentation labeling can be found in self-training and self-supervised
learning literature. However, many focus on specialized applications with niche
classes [25, 12] and are not relevant for general scene segmentation. For generalized
semantic segmentation tasks, [3] self-trains their model using noisy labels predicted
by their network for intra-RGB domain adaptation. In contrast, [46] adopts an
incremental training approach and utilizes humans to select good network outputs as
annotations and manually correct bad ones before retraining. Other works manually
annotate a subset of frames in video data, before propagating them to remaining
frames using optical flow [31] or learned generative models [4].

As discussed, visual foundation models can also be used for annotation efforts.
Zero-shot semantic segmentation models [45, 28, 38] are being used to provide
labels, but do not transfer directly to non-RGB domains. [15] generates object
detection labels for thermal imagery by using SAM on aligned RGB images and
does not work in low-light settings.

In contrast to other works, [7] uses 3D information to generate semantic segmen-
tation labels for construction sites and is most similar to our work. They register
Building Information Models with point clouds from photogrammetry and render
the labeled 3D points to an image frame. Unlike other works, methods like this
operate independently of an image and can work for any imaging modality.
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7.4 Preliminaries
In this section, we briefly go over the different satellite-derived data products we
use in our approach (Sec. 7.5).

Land Use and Land Cover Datasets: Publicly-available Land Use and Land Cover
(LULC) datasets like Dynamic World [9] and Impact Observatory [21] derive from
satellite rasters obtained through the Sentinel-2 program. These datasets have a
low spatial resolution of 10 m/pixel but have global coverage, and are updated
using semantic segmentation networks that use multiple data bands for landcover
classification. While daily coverage is possible, availability depends on factors like
cloud coverage.

In contrast, high-resolution LULC like the Chesapeake Bay Program [37] and Ope-
nEarthMap [44] offer sub-meter resolution but are limited in geographical and
temporal coverage. While segmentation models can be trained on these datasets
with high-resolution imagery, they may not generalize to different geographical
areas.

High-Resolution Raster Imagery: These include imagery from aerial vehicles and
satellites. Aerial imagery providers include the National Agricultural Imagery Pro-
gram (NAIP) [40] while satellite imagery comes from providers like Planet, Maxar,
and Airbus. Image resolutions range from 0.3 m/pixel to 3 m/pixel. Imagery can
be available daily at a premium cost while free alternatives are captured triannually.

Lidar-Derived 3D Data Products: Digital surface (DSM) and digital elevation
models (DEM) are raster data whose values denote the height at the corresponding
geographic location. DSMs consider features above the ground like foliage and
rocky terrain while DEMs report bare earth elevation. In this work, we use DEMs
and DSMs with 1 m/pixel to 3 m/pixel resolution from the 3D Elevation Program
(3DEP) from the United States Geological Survey [41] .

7.5 Approach
We present a three-step method to automatically generate semantic segmentation
annotations for thermal images captured from an aerial vehicle using satellite-
derived data (Fig. 7.1).

Step 1: Generating 3D Semantic Maps from Satellite Data
We start by downloading relevant satellite data (LULC rasters, DEM or DSM, and
high-resolution imagery) around the aerial vehicle’s global position and resample
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them to the highest resolution via bicubic interpolation. To simplify future calcula-
tions, we convert to UTM coordinates before merging the DEM and LULC rasters.
Since current freely-available LULC data is low resolution (10 m), we optionally
refine them by conditioning on high resolution imagery as described below. Al-
ternatively, high-resolution LULC can also be created using a pretrained LULC
segmentation network on high resolution imagery (see Sec. 7.7).

Land-Use-Land-Cover Refinement: We use dense conditional random fields [24]

Near-daily coverage / 
10m resolution

CRF re�nement on NAIP

Triennial coverage / 1m resolution Near-daily coverage / 3m resolution

CRF re�nement on PlanetScopeDynamic World LULC

Figure 7.2: Dense CRF refinement of Dynamic World land cover raster using NAIP
and PlanetScope imagery of Castaic Lake, CA. Results via PlanetScope convey the
actual scenery at time of thermal image capture due to its high revisit frequency
but at a lower 3 m spatial resolution. NAIP refinement offers 1 m resolution but
is susceptible to changes in the terrain (notably, water levels of lakes) due to its
triennial capture cycle. Zoom in to see key differences (outlined in dashed boxes).

(CRF) to refine 10 m resolution LULC rasters with 1 m-3 m resolution aerial imagery
(Fig. 7.2). To summarize, a dense CRF is defined by a Boltzmann distribution with
energy function

𝐸 (X|I) =
∑︁
𝑖

𝜓𝑢 (𝑥𝑖 |𝐼𝑖) +
∑︁
𝑖< 𝑗

𝜓𝑝 (𝑥𝑖, 𝑥 𝑗 |𝐼𝑖). (7.1)

This function models the relationship between labels x ∈ X and the conditioning
image 𝐼 ∈ R𝐻×𝑊×𝐶 . Here, 𝜓𝑢 is a unary potential taken to be raw logits from a
semantic segmentation network and 𝜓𝑝 is a pairwise potential that encourages label
consistency among adjacent pixels with similar intensities.

In our method, we set 𝜓𝑢 to be the logits from the model that generated our LULC
labels. Like [20], we use a generalized 𝜓𝑝 to condition on multi-band raster images:

𝜓𝑝 (fi, fj) = 𝜇 ·
[
𝑤 (1) exp

(
−1

2
p̄⊤𝑖 𝑗𝚺𝛼p̄𝑖 𝑗 −

1
2

Ī⊤𝑖 𝑗𝚺𝛽Ī𝑖 𝑗
)

+ 𝑤 (2) exp
(
−1

2
p̄⊤𝑖 𝑗𝚺𝛾p̄𝑖 𝑗

)]
. (7.2)
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Here, p̄𝑖 𝑗 = [p𝑖 − p 𝑗 ] ∈ R3 is the difference between positions of pixel 𝑖 and 𝑗 , and
Ī𝑖 𝑗 = [I𝑖 − I 𝑗 ] ∈ R𝐶 is the difference between image features at pixels 𝑖 and 𝑗 . We
set 𝜇 as the standard Potts compatibility function [24].

We optimize the CRF by tuning weight parameters 𝑤 (1) and 𝑤 (2) , and the Gaussian
bandwidth parameters 𝚺𝛼 = 𝜃𝛼, 𝚺𝛾 = 𝜃𝛾, and 𝚺𝛽 = diag

(
𝜃
(1)
𝛽
, ..., 𝜃

(𝐶)
𝛽

)
. We mini-

mize the boundary loss [5] which is the complement of the F1 score with precision
𝑃 and recall 𝑅 where

𝑃 =

∑
𝑏(ŷ) ⊙ 𝑏ex(y)∑

𝑏(ŷ) 𝑅 =

∑
𝑏(y) ⊙ 𝑏ex(ŷ)∑

𝑏(y) (7.3)

and

𝑏(𝑥) = Pool3×3
max [1 − 𝑥] − (1 − 𝑥) (7.4)

𝑏ex(𝑥) = Pool5×5
max

[
𝑏(𝑥)

]
. (7.5)

We use this instead of cross entropy to account for imprecise labels at class bound-
aries due to low LULC resolution.

Step 2: LULC Projection to Aerial Camera Image Frame
To generate an LULC-derived semantic label for an image at time 𝑡, we start by
transforming the world coordinates of each pixel X𝑤 ∈ R3 into the camera coordinate
frame. This requires the position of the host vehicle xuav

𝑡 ∈ R3, taken from the
onboard EKF-fused GPS position and barometric altitude, the orientation quaternion
q𝑡 ∈ H, taken from the EKF-fused IMU readings, and the offset between the aircraft
and camera reference points. Using the calibrated camera intrinsic matrix K, we
can then project to image coordinates x𝑐𝑡 ∈ Z2. Formally, this is[

x𝑐𝑡
1

]
= K

[
R(q𝑡) T(xuav

𝑡 )
01×3 1

] [
X𝑤

1

]
(7.6)

where R is a rotation matrix and T is a translation vector. We use OpenGL to render
the projected LULC, using 3D coordinates as vertices, associated class labels as
vertex colors, and depth-testing to avoid rendering occluded semantics.

To optimize memory and speed, we only consider 3D semantics within a specified
distance in front of and on both sides of the camera. We also exponentially increase
spacing between sampled vertices as distance from the camera increases, exploiting
the compression of far-field points in the image frame. This enables us to use only
250 × 200 points when rendering within a 10 km×8 km bounding box.
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Algorithm 3 SAM-based Label Refinement
1: Input: Projected (unrefined) label mask 𝐿 ∈ N𝐻×𝑊 ,
2: Thermal image 𝐼 ∈ R𝐻×𝑊
3: Output: Refined semantic segmentation label 𝑀
4: Initialize: Segment Anything Model 𝑓sam
5:
6:

{
𝑀 𝑖

sam
}𝑁

0 ← 𝑓sam(𝐼) ⊲ SAM produces binary masks
7: Initialize zero-array 𝑀 of size 𝐻 ×𝑊
8:
9: for 𝑚sam ∈ {𝑀 𝑖

sam}𝑁0 do
10: 𝑥𝑖𝑑𝑥 ← [𝑚sam == 1] ⊲ Get mask indices
11: 𝑦cls ← 𝐿 [𝑥𝑖𝑑𝑥] .mode() ⊲ Find most freq. class in mask
12: 𝑀 [𝑥𝑖𝑑𝑥] = 𝑦cls
13: end for
14:
15: return 𝑀

Step 3: Rendered Label Refinement
Though the semantic segmentation labels have been rendered, they do not align well
with the thermal images. This is primarily caused by poor spatial resolution and
temporal misalignment, but could also stem from errors in LULC label generation
and camera pose estimation. To improve alignment, we refine the labels by gen-
erating binary segmentation masks of the corresponding thermal image using the
Segment Anything Model. Then, we assign each mask a semantic class based on
the most prevalent LULC class within it (Alg. 3).
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Figure 7.3: Class mappings between LULC datasets and our ground truth evaluation
set. The UAV thermal dataset was created in Chapter 6.

7.6 Low Altitude Aerial Dataset
We test our method using a thermal field robotics dataset, which includes off-nadir
(20°-45°) aerial views of rivers (Kentucky River, KY and Colorado River, CA), lakes
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(Castaic Lake, CA), and coastal (Duck, NC) areas across the United States [25, 26].
The dataset, captured from a multirotor, comprises 15 flight trajectories ranging
from 40 m to 100 m in altitude and contains time-synchronized thermal imagery,
GPS, and IMU measurements. Four trajectories are excluded from testing due
to GPS data collection errors. While the dataset provides ground truth semantic
segmentation annotations for 10 classes, we condense the classes into 6 categories
in order to better conform with land cover classes. We end up with ground truth, 6-
class semantic segmentation labels for 1304 sub-sampled images (CM-6) and further
condense the classes again to create two additional class-sets, CM-5 (5 classes) and
CM-3 (3 classes). A mapping of segmentation labels is shown in Fig. 7.3.

7.7 Results
We outline our experimental setup, including data acquisition and generation, and
specific method parameters, before presenting our results.
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Figure 7.4: Generated segmentations from the baseline (ODISE [45]), our methods,
and the ground truth (GT) using class mappings and colors from Fig. 7.3. Mis-
matches between CM-6 labels and GT can occur depending on the LULC source
used but are resolved with CM-3. Segmentations for classes containing small,
sparse, and thin instances (CM-6), e.g. low vegetation and built, are hard to render
due to low LULC resolution and low thermal contrast during label refinement.

Experimental Setup
Raster Acquisition: We acquired 10 m resolution Dynamic World LULC, 3D
terrain data (3 m DEM, 1 m DEM, 2 m DSM) from USGS 3DEP, and high-resolution
nadir imagery from NAIP (1 m) and Planet (3 m). Data was obtained via Microsoft
Planetary Computer and Google Earth Engine.
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Table 7.1: Evaluation of dense CRF refinement of Dynamic World LULC on NAIP
imagery with ground truth labels from Chesapeake Bay Program (see class mapping
in Fig. 7.3).

CRF cond.
source

Boundary
Loss ↓ mIoU ↑

Dense CRF Parameters
𝑤1 𝑤2 𝜃𝛾 𝜃𝛼 𝜃

{0}
𝛽

𝜃
{1}
𝛽

𝜃
{2}
𝛽

𝜃
{3}
𝛽

None 0.945 0.432 — — — — — — — —
RGB† 0.914 0.441 1.00 1.00 200 195 7.00 7.00 7.00 —
RGB 0.777 0.452 47.2 2.63 33.3 149 1.14 1.14 1.14 —
RGB-NIR 0.749 0.453 47.4 0.14 61.5 194 128 0.22 125 2.71

†tuned by minimizing weighted cross entropy instead of boundary loss

LULC from High-Resolution Imagery: We used networks trained on Chesa-
peake Bay Program (CBP) and OpenEarthMap (OEM) datasets to produce two
more high-resolution LULC sources alongside Dynamic World. For OEM-derived
LULC, we used the pretrained U-Net model from [44]. To produce CBP-derived
LULC, we fine-tuned a geospatial foundation model [33] on the CBP dataset, using
the 7-class set from [37].

We trained for 1000 epochs with a batch size of 16, a 1e−3 learning rate, and RGB-
NIR inputs of size 512×512. To perform inference on large raster images, we use
tiles with 50 % overlap and applied flips for test-time augmentation.

LULC Refinement with Dense CRFs: We refined the 10 m Dynamic World LULC
rasters on RGB-NIR imagery from NAIP and Planet (Fig. 7.2) using parameters from
Tab. 7.1. Parameters were found using Bayesian optimization with Optuna [2]. The
search was done using NAIP as conditioning imagery and 1 m resolution labels from
CBP as ground truth (see Fig. 7.3 for class mapping). For this use case, boundary
loss was superior to standard cross-entropy loss (Tab. 7.1).

Rendered Label Refinement: For SAM refinement of the projected LULC labels,
we used the default ViT-H model. We prompted with 32×32 grid points and lowered
the box non-maximum suppression threshold to 0.5.

Thermal Image Preprocessing: We rescaled raw 16-bit thermal pixel intensities
to sit between the 2nd and 98th percentiles before applying a contrast-limited adaptive
histogram equalization with a 0.02 clip limit, following [25]. This was done for both
visualization and algorithm input.
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Table 7.2: LULC-generated semantic segmentation label assessment (mIoU) when
compared to ground truth annotations, with comparisons against zero-shot visual
foundation model baselines.

Method /
LULC source

Dense CRF
refinement src. 3D source

Dataset mIoU ↑ Trajectory avg. mIoU ↑
CM-6 CM-5 CM-3 CM-6 CM-5 CM-3

ODISE [45] — — 0.299 0.262 0.330 0.264 0.304 0.413
OV-Seg [28] — — 0.201 0.240 0.385 0.183 0.233 0.390
Chesapeake Bay (NAIP) — DEM (3m) 0.453 0.481 0.857 0.417 0.478 0.848
Chesapeake Bay (Planet) — DEM (3m) 0.236 0.305 0.657 0.201 0.251 0.555
Open Earth Map (NAIP) — DEM (3m) 0.549 0.562 0.868 0.440 0.528 0.864
Open Earth Map (Planet) — DEM (3m) 0.502 0.509 0.825 0.360 0.428 0.816
Dynamic World — DEM (3m) 0.577 0.572 0.876 0.450 0.518 0.860
Dynamic World NAIP DEM (3m) 0.556 0.535 0.868 0.441 0.504 0.865
Dynamic World Planet DEM (3m) 0.573 0.557 0.887 0.455 0.510 0.870

Table 7.3: Ablation studies

(a) 3D source ablation

Method 3D source
Traj. avg. mIoU

CM-6 CM-5 CM-3

Dynamic World
+ SAM

DEM (3m) 0.450 0.518 0.860
DEM (1m) 0.441 0.507 0.842
DSM (2m) 0.439 0.504 0.848

(b) Label refinement ablation

Method Projected label
refine method

Traj. avg. mIoU
CM-6 CM-5 CM-3

Dynamic World
+ DEM (3m)

SAM 0.450 0.518 0.860
SLIC 0.392 0.452 0.711
Felzenszwab 0.369 0.426 0.677

Satellite-based Semantic Segmentation Label Generation
We compare our LULC-generated semantic segmentation labels to manually-annotated,
ground truth labels. Due to class differences between LULC data and ground truth,
we evaluate on three ground truth-derived class sets of increasing generality (CM-
6, CM-5, CM-3). We report the overall dataset mIoU and the trajectory-averaged
mIoU in Tab. 7.2.

Overall, our method delivers thermal semantic segmentation labels consistent with
ground truth (Fig. 7.4). Notably, our best variants greatly outperform the zero-
shot semantic segmentation models, ODISE [45], and OV-Seg [28], which were
prompted with a list of classes present in the dataset. We note that ODISE and
OV-Seg are occasionally effective on thermal images, but lack consistency.
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Among our methods without LULC refinement, semantic segmentation label gen-
eration using Dynamic World and DEM (3 m) as a 3D source generally outper-
forms other variants using CBP- and OEM-derived LULC sources. LULC created
from the OEM network on NAIP data provides improvements (0.005 - 0.01 mIoU)
in trajectory-averaged mIoU over Dynamic World for the CM-5 and CM-3 class
sets. Despite marginal gains, this is likely due to the higher resolution (1 m) of
OEM/NAIP-derived LULC, which enables segmentation renderings of small or thin
classes that are present in CM-5, such as roads (see Fig. 7.4). This is not possible
with Dynamic World due to its lower 10 m resolution.

Conversely, LULC generated from Planet imagery provides poor results due to
domain differences between OEM/CBP training images and Planet. When used for
dense CRF refinement of 10 m Dynamic World rasters, however, Planet imagery
uniquely provides ∼0.01 boost for both mIoU metrics on the most general CM-3
class set. This behavior is absent when refining on NAIP imagery due to terrain
changes between thermal and NAIP acquisition dates.

Furthermore, we note that our method can handle temporal mismatches between
satellite and thermal data even as environments naturally evolve. For example,
coastal tide patterns and varying lake levels (Fig. 7.5, Castaic Lake) may shift class
boundaries within short time periods. Due to SAM’s ability to capture entire class
instances, our rendered label refinement step (Sec. 7.5) is notably able to overcome
such changes as long as most of the true class is still rendered.

Due to its accessibility and competitive performance, we advocate using Dynamic
World LULC for satellite-based semantic segmentation label generation efforts, with
potential refinement via temporally-relevant, high resolution imagery. However, this
will inevitability change with advancements in LULC creation and as sub-meter data
products with high temporal coverage become more freely-accessible.

Ablation Study
In these ablations, we use Dynamic World as our semantic source. Unless otherwise
specified, we use 3 m DEMs to add 3D context and do not use any CRF refinement.

3D Data Source: First, we compare LULC-based semantic segmentation label
generation with 3 m DEMs against two additional 3D data sources: 2 m DSMs
and 1 m DEMs. Due to limited coverage, we lack DSMs and 1 m DEMs over the
thermal data capture areas of Colorado River and Duck, respectively, and resort to
3 m DEMs in those areas. Our results show that 3 m DEMs provide consistently
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Figure 7.5: Rendered label refinement process with SAM [23].

higher trajectory-averaged mIoU across all three class sets, despite the other two
sources supposedly providing more accurate and precise 3D terrain data (Tab. 7.3a).
Reasons for this may include temporal differences or spatial misalignment during
orthorectification. Nonetheless, all 3D sources generally perform well and any one
of these 3D products can be used for our method when the other two are unavailable.

Raster Spatial Resolution: To assess the impact of LULC spatial resolution on
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Figure 7.6: Effect of LULC spatial resolution on semantic segmentation label
generation.

label generation, we generate labels from Dynamic World LULC rasters resampled
to 10 m (native), 5 m, and 1 m resolution. We use nearest neighbor interpolation on
the LULC directly, and CRF refinement on NAIP and Planet rasters (resampled to
10 m, 5 m, and 1 m resolutions via bicubic interpolation).

Our results (Fig. 7.6) suggest that LULC spatial resolution matters more for more
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specific class sets (CM-6/CM-5), and becomes less critical as class sets generalize
(CM-3). Moreover, we find greater benefits from CRFs when conditioning on higher-
resolution imagery, especially when dealing with the larger and more specific class
sets (CM-6/CM-5). This is likely due to smoothing over small or thin class instances
that comprise of a few pixels when refining at lower resolutions.

Segment Anything vs. Classical Methods for Projected LULC Refinement: We
compare our choice of SAM for projected LULC label refinement against SLIC [1]
and Felzenszwab [14] superpixels. We use implementations fromscikit-image [43],
setting SLIC’s number of segments to 100 and compactness to 10, and Felzenszwab’s
scale parameter to 1e4. We select these parameters to maximize segmentation area
while remaining within class instances.

Overall, SAM consistently outperforms the other methods, with mIoU margins
increasing from 0.06 (Tab. 7.3b). This is because SAM can produce semantically
distinct masks in the thermal domain, albeit less reliably than in RGB. This allows
minor imperfections to be ignored through majority vote (Alg. 3). In contrast,
classical methods produce fragmented, semantic-agnostic masks which offer little
benefit.
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Figure 7.7: Effect of global pose estimate precision on semantic segmentation label
generation with SAM refinement.

State Estimate Precision: To quantify the effect of global pose estimation preci-
sion on our label generation process, we systematically perturb these measurements
by sampling from a normal distribution with increasing variance. Our analysis
reveals that, with 95 % confidence, label generation remains robust for global posi-
tioning and altitude estimates within roughly 4 m and for orientations within roughly
3.5° (Fig. 7.7). These findings are consistent across class sets. During development,
both synchronizing the timing of image capture to the IMU data was shown to be
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critical, as was the SAM refinement stage for compensation for attitude estimate
errors (see Kentucky River in Fig. 7.5).

Application: Semantic Segmentation Model Training
To demonstrate our method for field robot perception, we trained an EfficientViT-B0
semantic segmentation network [10] using the aerial thermal dataset and general
train/val/test split from [26]. Three sets of labels (CM-6, CM-5, and CM-3) were
generated for training and validation using our method, with ground truth labels
converted accordingly for testing and baseline training. All networks were trained
following the thermal training procedure from [26].

Our semantic segmentation results (Tab. 7.4a) closely match the mIoU of the gener-
ated annotations (Tab. 7.2). Networks trained with CM-3 classes resulted in 0.889
mIoU during testing, compared to 0.962 mIoU for those trained with ground truth
labels. Networks trained on CM-5 and CM-6 show larger gaps (Tab. 7.4a) but still
show the benefit of our method. We find this is largely due to difficulties in accu-
rately rendering land-based classes, specifically low vegetation and built (Tab. 7.4b).
These classes contain small and thin entities like sparse shrubs or roads, and are not
always precisely shown in LULC data. Also, they can be missed during rendered
label refinement (Sec. 7.5) due to blurred and low-contrast appearance in thermal
imagery. Despite this, our method can effectively train semantic segmentation mod-
els, particularly with the CM-3 class set, and support field robotic applications like
nighttime river navigation [25].

Table 7.4: Test results (mIoU) of semantic segmentation networks trained on LULC-
generated labels and networks trained on manually-annotated ground truth.

(a) Segmentation results after training on CM-6 (least inclusive), CM-5, and CM-3 (most
inclusive) class sets.

Annotation Method
Class set

CM-6 CM-5 CM-3
LULC-generated 0.542 0.547 0.889
Ground truth 0.819 0.836 0.962

(b) Per-class IoU for networks trained using the CM-6 class set.

Annotation Method water trees low veg. built ground sky
Generated 0.880 0.529 0.165 0.289 0.521 0.868
Ground truth 0.963 0.787 0.702 0.653 0.854 0.955
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Computational Costs and Pricing
Our method annotates a single image in 3 s, 2.86 s of which is due to SAM. Annota-
tions are free when using only Dynamic World LULC but cost ∼$10 USD/km2 with
CRF refinement due to the price of realtime, high-resolution satellite imagery. With
our method, annotating 2 000 images takes 1.6 hours on a single workstation, in
contrast with the usual 2-4 week timeframe and $3 000 to $8 000 USD outsourcing
cost1. We note that CRF refinement can be cost-effective for large data volumes in
a concentrated area due to its one-time cost, but 98.5 % of its performance (CM-6,
CM-3) is achievable with free 10 m resolution LULC (Sec. 7.7).

7.8 Conclusion
We presented a novel method for automatically generating high-quality semantic
segmentation annotations for classes often encountered by aerial robots in field
settings. Our approach leverages satellite data products and employs refinement
steps to achieve fine precision at class boundaries even with low-resolution satel-
lite data, achieving 98.5% of the performance of costly high-resolution options.
We demonstrated the robustness of our method to global positioning and attitude
estimation errors, indicating that it can provide good segmentations even with inex-
pensive sensors and slight data desynchronization, and identified limitations due to
small and thin class instances. Lastly, we demonstrated its application to field robot
perception by successfully training a semantic segmentation network solely with
generated labels. This method enables rapid training of thermal perception stacks
using incremental learning as new field data is collected.
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C h a p t e r 8

RGB-X OBJECT DETECTION VIA SCENE-SPECIFIC FUSION
MODULES

[1] S. A. Deevi*, C. Lee*, L. Gan*, S. Nagesh, G. Pandey, and S.-J. Chung.
“RGB-X Object Detection via Scene-Specific Fusion Modules”. In: 2024
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
2024, pp. 7351–7360. doi: 10.1109/WACV57701.2024.00720.

8.1 Abstract
Multimodal deep sensor fusion has the potential to enable autonomous vehicles
to visually understand their surrounding environments in all weather conditions.
However, existing deep sensor fusion methods usually employ convoluted archi-
tectures with intermingled multimodal features, requiring large coregistered mul-
timodal datasets for training. In this work, we present an efficient and modular
RGB-X fusion network that can leverage and fuse pretrained single-modal models
via scene-specific fusion modules, thereby enabling joint input-adaptive network
architectures to be created using small, coregistered multimodal datasets. Our ex-
periments demonstrate the superiority of our method compared to existing works
on RGB-thermal and RGB-gated datasets, performing fusion using only a small
amount of additional parameters.

8.2 Introduction
Autonomous vehicles rely on object detection algorithms to understand and interact
with their surrounding environments. In order to be robust against different driving
conditions, these algorithms operate on data from various sensor modalities ranging
from optical cameras to LiDAR, each with their own advantages and disadvantages.
Because no single sensor modality is robust to all possible conditions that may be
encountered during driving, multiple sensor modalities are often used in conjunction
via deep sensor fusion (DSF) to boost performance during normal driving operations,
as well as to ensure segmentation and object detection reliability in adverse weather
conditions [8].

Unlike traditional sensor fusion which merges processed sensor data outputs coming
from independent pipelines, current works in DSF generally require joint end-to-end

https://doi.org/10.1109/WACV57701.2024.00720
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Figure 8.1: Our multimodal object detection approach combines RGB and ther-
mal pretrained networks using lightweight, scene-specific fusion modules. Fusion
modules are trained using categorized scene images and are used adaptively during
inference with an auxiliary scene classifier.

training of multi-branch sensor networks on large multimodal datasets [1, 3, 39, 17,
25, 40] such as NuScenes [2], Berkeley Deep Drive [38], and Waymo [28] prior
to deployment in the wild [8]. This means that fusion architectures must undergo
time-consuming and potentially expensive retraining (in cost and carbon emissions)
anytime a sensor modality is removed or added [24], and that they fail to take full
advantage of state-of-the-art RGB pretrained networks.

In this paper, we propose the use of existing, well-known attention blocks as
lightweight, scene-specific attention modules in order to easily fuse pretrained
networks and to better adapt to common weather disturbances. We demonstrate
our approach (Fig. 8.1) for object detection applications, training RGB-thermal and
RGB-gated fusion models on RGB, thermal, and gated imagery collected in adverse
driving conditions such as night, fog, snow, and rain [1, 20, 9]. We also leverage the
attention modules as a method to visually interpret the contributions of each sen-
sor modality. Compared to prior works, our approach takes us another step closer
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to enabling a modular, drag-and-drop design for deep sensor fusion that absolves
the need for extensive and expensive retraining while delivering on-par or better
performance. Our contributions are as follows:

1. A lightweight, modular RGB-X fusion network for object detection that leverages
pretrained single-modality networks.

2. A scene-adaptive fusion approach that selectively uses different fusion modules
for different scene/weather conditions.

3. Extensive experiments on publicly available RGB-X datasets that demonstrate the
superiority of our approach in terms of detection performance and computational
efficiency.

8.3 Related Work
Object Detection: Most modern methods for detecting objects utilize convolutional
neural networks (CNN) or transformers. CNN object detectors include two-stage
and single-shot detectors [27, 26, 21, 31]. A two-stage detector has an additional
region proposal step while a single-shot detector relies only on a feature extractor
and a detection head that directly predicts bounding boxes and classes, resulting in
faster inference [43]. To deploy on mobile devices, neural architecture search (NAS)
has been used to develop faster and lighter networks and detection architectures [14,
31]. In this work, we adopt the EfficientDet [31] detection architecture to target self-
driving car applications that operate on mobile computing devices. Recent large
vision transformer models have achieved state-of-the-art object detection results,
but are not suitable for real-time use on robotic platforms [4, 22].

Deep Sensor Fusion: Robotic perception applications, notably for self-driving
cars, rely on DSF to add sensor redundancy and to increase perception robustness
and performance in both common and adverse operating scenarios. Current DSF
algorithms consume multimodal data using deep networks and are trained end-to-
end, combining different features at various points throughout a network depending
on their particular fusion policy [8, 7]. Early fusion policies aggregate raw inputs or
features extracted early on in the network [32, 19] while mid-fusion approaches [16,
35] operate on deeper, intermediate representations. Late fusion methods operate
directly on bounding box outputs and can be used directly with pretrained detectors,
but are subject to the performance of pretrained models [5]. In our work, we opt
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for a mid-fusion approach in order to take full advantage of the different feature
modalities at various stages.

Regardless of fusion policies, current DSF algorithms and datasets for self-driving
cars mainly focus on incorporating sensors like LiDAR and radar with RGB cam-
eras [35, 38, 2, 28, 12]. In our work, we are interested in supplementing RGB with
2D image data from thermal and gated cameras due to the rich semantic information
they provide and their robustness to fog and lighting in driving scenarios [8].

RGB-Thermal Object Detection: Current RGB-thermal (RGB-T) object detection
methods typically operate on aligned RGB-thermal image pairs and utilize some
form of attention-based modules to perform mid-fusion on RGB and thermal image
features. [40] utilizes intra-modality and inter-modality spatial attention modules
to enhance and adaptively fuse intermediate features, respectively, prior to passing
downstream to a detection head. Recently, [3] proposed mid-fusion modules that uti-
lize channel attention to dynamically swap RGB and thermal feature channels. This
helps to maximize feature usefulness before enhancing local features via parameter-
free spatial attention. Other works including [10, 42, 25] fuse multi-modal data
in a similar fashion but instead leverage transformer-based attention modules that
increase model size and computational cost. [1] does not use thermal images, but
similarly fuses RGB, gated, and projected LiDAR and radar data using local entropy
masks in lieu of attention. In our work, we demonstrate that pretrained, single-
modality detectors can be fused using simple, scene-specific channel and spatial
attention modules to achieve strong RGB-T object detection performance.

8.4 Approach
We propose a modular RGB-X fusion network for object detection that is built
upon pretrained single-modal detection architecture and multi-stage convolutional
block attention modules (CBAM) [34] for cross-modal feature fusion. This mod-
ularity separates the training of single-modal backbones that contain the majority
of network parameters and the training of a small fusion module, mitigating the
requirement of large-scale multi-modal training data. The overall architecture for
RGB-X fusion is shown in Fig. 8.2 using RGB-T as an example. We have an indi-
vidual EfficientDet [31] for each image modality consisting of an EfficientNet [30]
backbone network, a bidirectional feature pyramid network (BiFPN) and a detector
head. While we choose to use EfficientDet to demonstrate our approach, we note
that this architecture can be built using any single-modal detection network.
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Figure 8.2: Overall framework of our scene-adaptive CBAM model for RGB-X
fusion illustrated by RGB-T fusion. RGB and thermal images are processed by
separate EfficientNet backbones, followed by BiFPNs. The features from BiFPNs
are used for cross-modal feature fusion using modules selected by the scene classifier.
The detector head utilizes these fused features to obtain the final detection results.
The right side of the figure illustrates the CBAM fusion module, consisting of
channel and spatial attention blocks, for feature fusion.

We employ CBAM to fuse the RGB and thermal features output from the respective
BiFPN at various stages. Each CBAM fuses features at the same scale, resulting in 5
CBAM fusion modules. During training, only CBAM parameters are updated while
pretrained object detector weights are frozen. CBAM modules are trained per scene
category and are selected for use during inference time using an auxiliary scene
classifier. In the rest of this section, we go over the details of our fusion mechanism
and the auxiliary scene classifier, before describing the overall scene-adaptive fusion
algorithm for RGB-X object detection.

Convolutional Block Attention Fusion
We use CBAM to fuse RGB and thermal (or gated) CNN feature maps Frgb and
Fx, respectively. We concatenate features from both modalities across the channel
dimension to create an input feature map F for CBAM:

F = [Frgb; Fx] ∈ R𝐵×𝐶×𝐻×𝑊 , (8.1)

where 𝐵 denotes the batch size, and 𝐶, 𝐻,𝑊 denote the channel and spatial dimen-
sions of the feature, respectively. Following the notation in [34], a CBAM module
takes the feature map F and masks it using channel and spatial attention operators
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𝑀𝑐, 𝑀𝑠 such that

F′ = 𝑀𝑐 (F) ⊗ F, (8.2)

F′′ = 𝑀𝑠 (F′) ⊗ F′, (8.3)

where ⊗ denotes element-wise multiplication. We further convolve F′′ with 𝐶/2
kernels resulting in 𝐶/2 channels which is the original feature dimension.

Channel attention operator 𝑀𝑐 is computed via

𝑀𝑐 (F) = 𝜎(W1W0Fc
avg +W1W0Fc

max), (8.4)

where 𝜎, W, Fc
avg, Fc

max denotes the sigmoid function, linear layer weights, the
global average and max pooled features, respectively. Spatial attention is computed
via

𝑀𝑠 (F) = 𝜎( 𝑓 7×7( [Fc
avg; Fc

max])), (8.5)

where Fc
avg,Fc

max are computed via channel-wise mean and max operations and 𝑓 7×7

denotes convolution with a kernel size of 7.

Auxiliary Scene Classification
We utilize a simple scene classifier during inference time to adaptively select the
most suitable set of fusion modules for the current setting, based on the intuition that
the fusion module should attend different modalities under different scene/weather
conditions. The scene classifier consists of a 2D adaptive average pooling operator
followed by a fully connected layer, taking in the features from the RGB object
detector encoder and outputs probabilities of possible scene categories. We choose
RGB features as the input for scene classification due to their high variance in
different scenes.

Scene-Specific Fusion
We train different CBAM fusion modules for various scenes by considering scene-
specific dataset splits (Table 8.2). The number of parameters in different parts of
the proposed fusion model is shown in Table 8.1. The total number of trainable
parameters per scene is significantly less than the total number of parameters, making
our approach expeditious. During inference of scene-adaptive fusion, we use the
CBAM fusion modules trained on the scene with the highest probability, as indicated
by the scene classifier.
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Table 8.1: Parameter statistics of the proposed RGB-X fusion model.

Network Part # Parameters

Backbones (RGB + X) 24.8 M
BiFPNs (RGB + X) 0.12 M
Detection Head 1.60 M
Fusion Modules (one per fusion level) 0.21 M

Total 26.7 M
Total Trainable (per scene) 0.21 M

8.5 Results
Implementation and Training Details
Our code is written in PyTorch and based on the EfficientDet1 repository. Pretrained
RGB detectors on COCO dataset [18] were taken from the same repository. All
other networks were trained using the Adam optimizer, a batch size of 8, an initial
learning rate of 1e−3 with an exponential learning rate schedule, and a 𝐿2 weight
decay of 1e−3. The maximum number of epochs is set to 300 and 50 for pretraining
single modality networks and fine-tuning RGB-X fusion networks, respectively. The
scene classifier is trained for 50 epochs while the RGB backbone remains frozen.
Networks were trained using an Nvidia P100 GPU.

Datasets
We use the following RGB-X datasets to validate our method and compare against
state-of-the-art baselines. The train/val/test split statistics we use for various datasets
and scene conditions are shown in Table 8.2.

FLIR Aligned: The FLIR Aligned dataset [39] consists of 5,142 aligned RGB-
thermal image pairs from the original FLIR ADAS object detection dataset [9].
This derived dataset consists of bounding box annotations for person, bicycle and
car classes. The provided train and test splits contain 4,129 and 1,013 image pairs,
respectively. We manually divided them into day and night scene categories based
on the appearance.

M3FD: The M3FD object detection dataset consists of 4,200 coregistered, time-
synchronized RGB-thermal image pairs [20]. Bounding box annotations for people,
car, bus, motorcycle, truck, and lamp classes are provided. The data is also split
into four scene categories (day, night, overcast, challenge) in [20] according to

1https://github.com/rwightman/efficientdet-pytorch

https://github.com/rwightman/efficientdet-pytorch
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Table 8.2: Dataset scene and train/val/test splits in our experiments.

(a) Seeing Through Fog (STF)

Split
Clear Fog Snow

Day Night Day Night Day Night

Train 2147 1572 712 438 1365 1455
Val 537 393 438 110 342 364
Test 895 655 297 183 570 607

(b) FLIR Aligned [39]

Split Scene Condition

Day Night

Train 3476 653
Val — —
Test 702 311

(c) M3FD [20]

Split Scene Condition

Day Night Overcast Challenge

Train 992 488 746 484
Val 216 108 190 122
Test 323 140 205 156

environment characteristics. We use the train/val/test splits provided by [17] due to
the unavailability in the original dataset.

Seeing Through Fog: The Seeing Through Fog (STF) multispectral object detection
dataset [1] consists of synchronized RGB/gated/LiDAR/radar/unaligned thermal
data for a variety of weather conditions. The dataset also provides bounding box
annotations for pedestrian, truck, car, cyclist, and dontcare classes. For training our
scene-adaptive model, we considered the scene splits in Table 8.2a due to overlaps
in original splits. For evaluation, we follow the original scene splits including clear,
light fog, dense fog, and snow/rain. We use pairs of aligned 12-bit RGB and 10-bit
gated images throughout this work.

Performance Evaluation
In this section, we validate the proposed method on the three datasets for RGB-X
object detection. Auxiliary scene classification is employed to adaptively select
suitable fusion modules per input image.

Auxiliary Scene Classification: We train our scene classifiers using ground truth
scene labels provided in Table 8.2 by minimizing the standard cross-entropy loss
for image classification. Top-1 accuracy of the scene classification is reported
in Table 8.3, where the classifier attains high accuracy for categorizing various
scenes in M3FD, FLIR, and STF-Clear (the subset of STF dataset consists of clear-
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Figure 8.3: Qualitative detection results on M3FD dataset. Zoomed-in images (yel-
low rectangle) are shown on the right of the original images for better visualization.

Table 8.3: Top-1 Accuracy (%) of our scene classifier on the test set of three datasets.

Dataset M3FD FLIR STF (Clear) STF (Full)

Accuracy 91.42 96.35 96.01 77.02

day and clear-night) datasets. The classifier does not perform as high for STF-Full,
possibly because a large portion of snow images are also foggy and confused the
classifier.

Scene-Adaptive Object Detection: This subsection reports quantitative and qual-
itative object detection results of our proposed methods, compared with existing
works. From Table 8.4, our scene-adaptive CBAM model outperforms exist-
ing methods on the M3FD dataset using the mean Average Precision IoU = 0.5
(mAP@0.5) metric used in [17, 20]. On the full test set, it outperforms EAEFNet
[17] by 1.4% and the scene-agnostic CBAM model (in which only one set of
CBAM fusion modules are trained using all training images) by 1%. A compar-
ison of qualitative detection results on M3FD dataset between the scene-agnostic
and scene-adaptive models is shown in Fig. 8.3. From the zoomed-in area of the
figures, we can see that the scene-adaptive model detects some occluded, blurred
objects that the scene-agnostic model fails to detect. Note that the single-modality
models used in this experiment are pretrained on COCO and further fine-tuned on
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Figure 8.4: Qualitative detection results on FLIR Aligned dataset with day examples
in the upper rows and night examples in the lower rows. The input RGB and thermal
images are overlaid with ground truth (GT) bounding boxes. For each fusion model,
we plot the detected bounding boxes and Eigen-CAM [23] visualizations of the
CBAM fusion module. (d) and (f) are visualizations of (c) and (e), respectively.
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Figure 8.5: Object detection results on STF dataset in various scene conditions.
From top to bottom: RGB images, gated images, scene-agnostic CBAM detections,
and scene-adaptive CBAM detections. RGB and gated images are overlaid with
ground truth bounding boxes.

Table 8.4: Object detection results (mAP@0.5) and speed (s) on M3FD dataset.
Due to the difference in scene splits between baselines and our models, only results
on the full test set are comparable across all methods.

Method
Test Scene Inference

Speed (s)Day Night Overcast Challenge Full

RGB only 71.59 91.06 81.55 80.03 77.79 0.016
Thermal only 65.68 89.17 79.66 76.39 74.64 0.016

U2F [36] 73.80 86.8 73.10 97.6 77.5 0.129†
TarDAL [20] 74.50 89.30 74.10 98.30 77.80 0.047†
EAEFNet [17] 78.30 89.50 78.60 97.90 80.10 —
Scene-Agnostic CBAM (ours) 74.53 93.09 84.11 81.06 80.46 0.028
Scene-Adaptive CBAM (ours) 75.92 92.55 85.14 82.72 81.46 0.032

† Includes image fusion and object detection inference time.
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Table 8.5: Object detection results and speed (s) on FLIR Aligned dataset. AP@0.5
for each object category is reported.

Method Person Bicycle Car mAP@0.5 mAP@0.75 mAP† Inference
Speed (s)

RGB only 60.79 37.25 73.94 57.32 17.6 24.7 0.016
Thermal only 82.86 50.80 82.83 72.16 33.4 37.0 0.016

GAFF [40] 76.60 59.40 85.50 72.9 32.9 37.5 0.061
CFR_3[39] 74.49 57.77 84.91 72.93 — — 0.050
RetinaNet + MFPT[42] 78.1 65.0 87.3 76.80 — — 0.050
UA-CMDet[29] 83.20 64.30 88.40 78.60 — — —
CFT [25] — — — 78.7 35.5 40.2 0.026
CSAA[3] — — — 79.20 37.4 41.3 0.031
FasterRCNN + MFPT[42] 83.2 67.7 89.0 80.00 — — 0.080
LRAF-Net[10] — — — 80.50 — 42.8 —
Scene-agnostic CBAM (ours) 88.26 77.43 90.68 85.45 43.3 46.8 0.028
Scene-adaptive CBAM (ours) 88.92 78.61 90.94 86.16 43.0 47.1 0.032

† mAP refers to mAP@0.5:0.95

RGB (GT) Thermal (GT) Agnostic CBAM Adaptive CBAM

Figure 8.6: Example of failure cases on M3FD dataset. Both models struggled
with distant small objects in night and overcast images and cluttered objects in day
images.

the M3FD training set for better performance. We also show some failure cases on
M3FD in Fig. 8.6 where both fusion models struggled with distant small objects in
overcast and night scenes, and cluttered objects under daylight.

For the FLIR Aligned dataset, we evaluate fusion networks built from an RGB
network pretrained on COCO and a thermal network trained on the unaligned FLIR
thermal training set. In general, both our scene-agnostic and scene-adaptive fusion
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(a) M3FD-Day (b) M3FD-Overc. (c) M3FD-Night (d) M3FD-Chall.

(e) FLIR-Day (f) FLIR-Night (g) FLIR-Full (h) M3FD-Full

Figure 8.7: Normalized attention weights for 256 feature channels in CBAM fusion
module trained on different scenes. Thermal channels are in black, and RGB
channels in crimson. The fusion module trained on the entire dataset (g-h) exhibits
similar attention patterns across all scene/weather conditions, whereas from day
to overcast to night, the scene-specific fusion module (a-f) attends increasingly on
thermal features.

Table 8.6: Quantitative detection AP on the clear scene and unseen scenes for car
following the KITTI evaluation [13] used in [1]. Models are all trained on the
training set of the clear scene. Our scene-adaptive CBAM model is trained on
clear-day and clear-night splits.

Method
Clear Light Fog Dense Fog Snow/Rain

easy mod. hard easy mod. hard easy mod. hard easy mod. hard

RGB only 90.14 87.56 80.87 91.19 88.47 82.02 90.43 85.59 80.79 89.44 82.87 77.81
Gated only 88.51 80.09 74.65 87.98 78.92 73.59 80.52 75.86 70.42 80.58 75.59 69.52

Fusion SSD [1] 87.73 78.02 69.49 88.33 78.65 76.54 74.07 68.46 63.23 85.49 75.28 67.48
Deep Fusion [1] 90.07 80.31 77.82 90.60 81.08 79.63 86.77 77.28 73.93 89.25 79.09 70.51
Deep Entropy Fusion [1] 89.84 85.57 79.46 90.54 87.99 84.90 87.68 81.49 76.69 88.99 83.71 77.85
Scene-agnostic CBAM (ours) 90.33 88.53 81.16 91.43 89.05 84.94 90.75 88.66 82.07 89.99 86.57 79.79
Scene-adaptive CBAM (ours) 90.29 88.53 81.07 91.13 89.13 84.20 90.77 88.37 81.68 89.96 86.30 79.74

Table 8.7: Quantitative detection AP on all scenes for pedestrian, truck, car, and
cyclist following the KITTI evaluation [13] used in [1]. Models are trained on the
training set of all scenes. The last column shows mAP@0.5 for all objects on all
test images.

Method Clear Light Fog Dense Fog Snow/Rain Full All
easy mod. hard easy mod. hard easy mod. hard easy mod. hard easy mod. hard

RGB only 87.05 83.88 82.93 89.68 88.88 87.99 88.61 88.28 87.90 88.92 86.01 83.73 84.22 79.94 76.30 80.85
Gated only 81.69 76.19 74.57 85.63 84.01 80.19 83.40 82.00 79.88 84.03 79.54 77.38 80.70 73.58 70.13 75.15

Scene-agnostic
CBAM (ours) 88.65 85.12 84.25 90.30 89.68 88.95 89.78 89.18 88.82 89.25 87.01 85.77 86.11 81.84 78.52 83.01

Scene-adaptive
CBAM (ours) 88.60 85.24 84.22 90.53 89.39 88.89 89.79 89.33 89.03 89.37 87.46 85.69 86.13 81.85 78.48 83.11
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models outperform the baselines by a large margin (Table 8.5), due to the increase
in data the thermal and RGB networks had access to. Some qualitative detection
results on FLIR test images along with attention visualizations are given in Fig. 8.4.
We observe that scene-adaptive model tends to detect bicycles more successfully
than scene-agnostic model, especially when the bicycle is rode by a person (see
row 2 and 6 in Fig. 8.4). The higher margin of AP@0.5 for bicycle in Table 8.5
also aligns with this observation. In order to exam the effects of scene-adaptive
CBAM, we visualize the CBAM using class activation map (CAM) [23] where the
spatial attention is shown by a heat map. From the visualization, we can see there is
generally no difference between scene-agnostic CBAM and scene-adaptive CBAM
for day images. However, the spatial attention in scene-adaptive CBAM attend more
on small areas.

We visualize the channel attention of the scene-specific fusion module by plotting
the normalized attention weights of thermal (black) and RGB (crimson) features for
various scenes in Fig. 8.7. Higher value implies CBAM attends more on that feature
channel. We find that scene-agnostic CBAM exhibits similar channel attention
patterns across all scenes, while scene-adaptive CBAM shows tailored attention
patterns per scene. Moreover, we observe attention weight increases on thermal
features compared with RGB features from day to overcast to night images, likely
as RGB images contain less information under lower illumination.

For the STF dataset, we first follow [1] and train our fusion modules only on clear-day
and clear-night RGB-gated image pairs for fair comparison. As shown in Table 8.6,
the scene-agnostic and scene-adaptive CBAM models achieve similar performance
on different scenes and outperform the baseline models using even more modalities
than RGB-gated images [1]. When training on all scenes in Table 8.7, we can see
that our scene-adaptive model outperforms the scene-agnostic model by 0.1% on
mAP@0.5. Single-modality models used for this experiment are also further trained
on STF training data, due to their use of 10 and 12 bit gated and RGB imagery.
Fig. 8.5 presents a few examples of the qualitative detection results in various scenes.

Computational Benchmarks: We compiled our CBAM fusion models using
TorchInductor and conducted benchmarks on a Titan RTX. The inference time for
the scene-adaptive fusion model is 0.032 seconds per individual image pair, while
the scene-agnostic variant clocks in at 0.028 seconds. These times are comparable
with other recent multimodal object detection approaches (Table 8.4, 8.5) and meet
the speed requirements for real-time autonomous driving applications.
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Table 8.8: Ablation study on different fusion modules. Object detection results
(mAP@0.5) on M3FD dataset are reported.

Fusion Module Train/Search
Scene

Test Scene

Day Night Overcast Challenge Full

RGB only

Full

71.59 91.06 81.55 80.03 77.79
Thermal only 65.68 89.17 79.66 76.39 74.63
ECAAttn (Tr) 73.38 93.39 83.55 82.28 80.17
ECAAttn (RH) 72.25 92.83 81.98 80.53 78.81
ECAAttn (TH) 74.02 93.38 84.25 81.48 80.32
ShuffleAttn (Tr) 73.47 94.56 84.61 80.91 80.17
ShuffleAttn (RH) 72.78 92.63 83.61 80.37 79.28
ShuffleAttn (TH) 74.07 93.21 84.19 81.43 80.34
CBAM (Tr) 73.11 93.01 83.11 80.17 79.33
CBAM (RH) 72.85 92.46 83.54 80.73 79.21
CBAM (TH) 74.53 93.09 84.11 81.06 80.46

ECAAttn
(TH)

Day 74.75 94.51 84.16 81.09 80.65
Night 72.00 91.84 83.56 79.74 78.74
Overcast 71.96 92.67 84.44 80.09 79.18
Challenge 73.25 93.11 83.78 81.88 80.14

ShuffleAttn
(TH)

Day 75.28 94.64 84.72 81.85 81.04
Night 71.79 92.21 83.30 78.95 78.21
Overcast 73.57 92.42 84.32 80.95 80.00
Challenge 72.42 92.90 84.21 81.27 79.62

CBAM
(TH)

Day 76.04 94.07 84.89 80.78 81.07
Night 72.68 92.55 83.20 78.77 78.62
Overcast 73.30 92.53 85.15 80.67 79.94
Challenge 74.10 94.28 82.70 82.61 80.93

DSF-NAS

Day 75.68 94.25 84.35 81.85 81.03
Night 72.32 91.94 83.85 80.51 79.12
Overcast 73.15 93.46 83.79 80.60 79.52
Challenge 72.90 93.44 83.29 81.59 79.81
Full 74.68 92.65 83.90 81.67 80.56

Tr – Trained head TH – Thermal head RH – RGB head
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Table 8.9: Object detection results (mAP@0.5) of our scene-adaptive CBAM model
trained using decreasing amounts of data.

Dataset
% of Original Training Set

100% 50% 25% 1%

FLIR 86.16 85.70 84.60 75.72
M3FD 81.46 78.34 77.65 41.94
STF-Clear 80.65 80.73 80.10 73.76
STF-Full 83.11 83.06 82.99 75.64

Ablation Studies
Fusion Module Design: We conduct an ablation study using the M3FD dataset
to explore the effects of different fusion modules and architectures (Table 8.8).
We compare our CBAM-based RGB-X fusion approach against two other attention
modules: ECAAttn [33, 6] and ShuffleAttn [41]. Furthermore, we also compare
against custom fusion modules (DSF-NAS) designed purposely for this fusion task
via neural architecture search. In particular, we use Bilevel Multimodal Neural
Architecture Search [37] (BM-NAS) to automate this design as its gradient-based
optimization approach makes it faster compared to other NAS methods based on
reinforcement learning and genetic algorithms. Specifically, we allow BM-NAS to
optimize over sequential applications of two operations chosen from sum, spatial
attention, channel attentions from CBAM and ECAAttn, and 2D convolution of
concatenated features.

We first train for fusion using scene-agnostic CBAM, ECAAttn, and ShuffleAttn
modules along with either a trainable, frozen thermal, or frozen RGB detector head.
We find that training with a frozen detector head initialized with thermal weights
performs the best in Table 8.8, possibly due to the lower variance of thermal data
across different scenes. We repeat the study under the scene-adaptive regime, with
the previous three attention modules and frozen thermal detection heads, along with
DSF-NAS fusion modules. Overall, we find similar performance between DSF-
NAS and CBAM-based fusion networks. However, CBAM fusion models exhibit
better performance on scene-specific data verifying its use in our proposed modular
framework.

Effect of Training Dataset Size on Fusion: As our proposed fusion method looks
to fuse pretrained networks with lightweight fusion modules, the fusion process
should still be effective and be able to generalize even when done with limited
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Table 8.10: Object detection results (mAP@0.5) of our scene-adaptive CBAM
model on unknown scenes in M3FD dataset.

Test
Excluded Training Scene

Day Night Overcast Challenge

Excluded Scene 73.17 93.50 84.18 80.74
All Scenes 80.48 81.30 81.27 80.98

amounts of training data. To determine the extent of this, we perform fusion using
100%, 50%, 25%, and 1% of the original datasets in Table 8.9. Overall, we find
that competitive results can still be achieved using only 25% of the original training
data results, with the exception of M3FD which decays quicker than the rest.

Performance on Unknown Scenes: As our proposed method requires scenes to
be known during training, we further investigate the performance of our method
on unknown/unexpected scenes. In this experiment, our scene-specific CBAM
fusion modules and scene classifiers are trained with one scene data excluded, and
tested on that excluded scene and all test images. We observed minor regression in
overall performance (row 2 in Table 8.10) compared with our scene-adaptive model
trained on all scenes (81.46 in Table 8.4), which is expected as there is no fusion
module trained specifically for that unknown scene. However, the overall mAP@0.5
in all cases is still higher than scene-agnostic model trained on all scenes (80.46
in Table 8.4). Specifically, in the case of night or overcast scene excluded, the object
detection performance on the unknown scene (row 1 in Table 8.10) is higher than the
scene-agnostic model. This is possibly because our scene classifier tends to select
a fusion module trained on a similar scene, for instance, classifying night image as
overcast and vice versa.

8.6 Limitations and Future Work
Our method requires aligned RGB-X data, which is not always available. The scene-
specific modules require scenes to be known during training, and the approach is
not expected to work as well in unexpected weather conditions. Future work looks
to incorporate unsupervised [11] and online learning [15] to adapt to unexpected
conditions.

8.7 Conclusion
We presented a novel RGB-X object detection model that improves autonomous
vehicle perception in different weather and lighting conditions. We showed that
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our method is superior compared to existing works on two RGB-T and one RGB-
gated object detection benchmarks, demonstrating the robustness of our scene-
adaptive models and generalizability to different modalities. Furthermore, our use
of lightweight fusion modules brings us closer to achieving a more modular design
for deep sensor fusion. For future work, we look to train and leverage larger
pretrained models for both RGB and thermal modalities via multitask learning and
to incorporate into an online learning framework to adapt to unexpected weather
patterns.
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C h a p t e r 9

CONCLUSION

This thesis addressed critical challenges in learning-based perception for robotics.
Although current computer vision models and approaches can serve as powerful
visual front-ends for robots to visually comprehend their surrounding world, most
common and popular off-the-shelf methods are based on supervised deep learning
which ideally has access to abundant training data in order to perform well during
deployment time. For robotic applications, however, this data landscape is not
always ideal and bespoke solutions are often required. In this thesis, we confronted
problems in robotic perception characterized by challenges such as data scarcity and
the lack of apparent signals for supervised model training.

9.1 Visual Terrain Relative Navigation
In Chapter 2, we demonstrated the power of self-supervised approaches to improve
existing visual terrain-relative navigation for high-altitude aerial vehicles in the
presence of seasonal and other temporal variations. Despite the abundance of
relevant high-resolution aerial imagery, the absence of obvious supervisory signals
for the high-level navigation objective posed the primary challenge. To address this,
we presented a CNN-based deep transform that can inject seasonal robustness into
existing image registration-based VTRN pipelines.

Notably, we found that a deep transform optimized for area-based matching is
highly effective against significant seasonal content variations. On the other hand, a
deep transform optimized for feature-based matching is less robust but can reliably
identify regions where registration is impractical and reduce false positive matches.
Above all, we demonstrated how targeted integration of deep learning into classical
visual perception systems can effectively handle edge cases that would otherwise
compromise such systems.

In Chapter 3, we looked to reduce the storage demands required by image registration-
driven VTRN methods by introducing a landmark-based approach for localization.
Specifically, we focused on the problem of optimal landmark discovery and proposed
a data-driven method, thus circumventing the need for human guidance. This enables
scalability to larger geographic areas while removing human cognitive and visual bi-
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ases, which could potentially lead to suboptimal outcomes in non-anthropomorphic
regions. To accomplish this, we showed how reframing a subjective question—what
is a useful landmark for aerial navigation in this image?—into a binary one enables
us to formulate a simple, self-supervised contrastive loss function for a deep learn-
ing model whose network activations, after training, highlight salient image regions
where such useful landmarks reside.

9.2 Thermal perception for aerial field robots
Next, we solved the problem of developing semantic perception algorithms for
aerial robotics in littoral field settings where relevant dataset coverage is lacking.
Our proposed strategies reflect the various states of the constantly, evolving data
landscape of typical field robotic projects.

Chapter 4 marked the beginning of this project, a stage in which field roboticist have
little to no data, and possibly just enough for model evaluation. Here, we developed a
water segmentation algorithm to enable nighttime flights along coastlines and rivers,
as well as to support downstream scientific studies such as bathymetry. Under tight
data constraints, we developed an online, self-supervised algorithm that adapts to
thermal data in real-time by taking advantage of visual water cues and inertial
sensors. Furthermore, we devised a deployment methodology that permits online
training and inference at 10 Hz. While our method is specific to water segmentation,
we note that our overall online approach and deployment strategy offers a versatile
framework applicable to other perception objectives.

By Chapter 5, our data landscape progressed such that we have enough diverse
thermal data for model training but do not yet have annotations to enable supervised
training. As such, we developed an unsupervised domain adaptation algorithm
to train thermal perception models by harnessing large, annotated RGB datasets
in conjunction with our unlabeled thermal data. Like prior works, we aimed to
perform domain adaptation by achieving domain confusion. However, we proposed
the use of domain-specific attention modules that prevent the forceful alignment of
difficult-to-align, modality-specific features, while enabling the rest of the network to
produce easily-generalizable, domain-invariant features. We demonstrated that our
method outperforms other works in classification benchmarks before demonstrating
its versatility by applying it towards semantic segmentation in aerial field settings.

In Chapter 6, we introduced the Caltech Aerial RGB-Thermal Dataset, compiled
from collection efforts spanning the project’s duration. We presented our robotic
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platform, our thermal camera calibration process, and the challenges of annotating
thermal imagery for semantic segmentation. Along with the dataset, we provided
new benchmarks for evaluating thermal and RGB-T semantic segmentation models,
RGB-T image translation, and thermal motion tracking. We placed emphasis on
real-time performance, and highlighted challenges due to geographic and temporal
distribution shifts. In contrast to prior benchmarks, ours focus on natural field
settings and provide unique challenges due to less structured surroundings and
drastic lighting changes. Furthermore, we analyzed the effectiveness of visual
foundation models in the thermal domain. We found that while most models struggle
with the modality shift, the Segment Anything Model shows promise when paired
with ground truth semantics.

In Chapter 7, we presented our method to automatically generate semantic seg-
mentation labels for aerial thermal images captured from robotic platforms. Our
method generates labels by warping land use land cover data from satellite imagery
into the thermal camera frame, using knowledge of the local and global pose of
the robot. We showed that this process can generate highly-precise segmentation
labels from freely-available low-resolution land cover data by applying pre- and
postprocessing refinement steps via dense CRFs and the Segment Anything model,
respectively. This allows us keep annotation costs low by eliminating the need for
costly, high-resolution land cover data.

9.3 RGB-thermal deep sensor fusion for autonomous driving
In Chapter 8, we turned our attention towards RGB-T deep sensor fusion perception
algorithms for autonomous driving. This setting also faces a lack of data due to the
need for custom RGB-T datasets that are synchronized and coregistered. To address
this, we presented a data-efficient, deep sensor fusion method for object detection
that can take full advantage of pretrained, single-modality networks. Our method
makes fusion training much faster than existing end-to-end methods while surpassing
or maintaining performance on various benchmarks. This moves us closer towards
a modular, drag-and-drop paradigm that could enable faster real-world deployments
after sensor re-configurations.
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