
Do Robots Dream of Random Trees?
Monte Carlo Tree Search for Dynamical, Partially

Observable, and Multi-Agent Systems

Thesis by
Benjamin Rivière

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy In Aeronautics

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended May 29, 2024

ii

© 2024

Benjamin Rivière
ORCID: 0000-0002-0597-5400

All rights reserved

iii

ACKNOWLEDGEMENTS

To my advisor: Soon-Jo Chung. Thank you for always supporting me and challeng-
ing me to be technically excellent and intellectually unique. I have learned much
about research and life from you, and I am very grateful to have been your PhD
student.

To my committee: Yisong Yue, Fred Hadaegh and Sergio Pellegrino. Thank you
for your invaluable guidance throughout my studies.

To my sponsors: Aerospace Corporation, Supernal, DARPA, Jet Propulsion Labo-
ratory, and United Technologies. Thank you for your feedback and financial sup-
port.

To my principal collaborators: Wolfgang Hoenig, James Ragan and John Lathrop.
I am very lucky and thankful to have worked with and learned from all of you.

To the ARCL lab: Matt Anderson, Sorina Lupu, Rebecca Foust, Xichen Shi, Yash-
wanth Nakka, Karena Cai, Kai Matsuka, Guanya Shi, Hiroyasu Tsukamoto, Michael
O’Connell, SooJean Han, Ellande Tang, Connor Lee, Nikhil Ranganathan, Fengze
Xie, Lu Gan, James Preiss, Vincenzo Capuano, Patrick Spieler, Salar Rahili, Kyu-
nam Kim, Anthony Fragoso, Jedidiah Alindogan, Hannah Grauer, Xingxing Zuo,
Anthony Clark, and Josh Cho. Thank you all for making the lab a supportive and
stimulating environment, I think of you all as my second “work” family.

To my partner Tara: Thank you for always supporting me and for sharing your
beautiful sense of humor.

To my brother and my parents: Thank you for always supporting me and believing
in me.

iv

ABSTRACT

Autonomous robots are poised to transform various aspects of society, spanning
transportation, labor, and scientific space exploration. A critical component to en-
able their capabilities is the algorithm that interprets sensor data to generate intelli-
gent planned behavior. Although reinforcement learning methods that train param-
eterized policies offline from data have shown recent success, they are inherently
limited when robots inevitably encounter situations outside their training domain.
In contrast, optimal control techniques, which compute trajectories in real-time us-
ing numerical optimization, typically yield only locally optimal solutions.

This research endeavors to bridge the gap by developing algorithms that com-
pute trajectories in real-time while converging towards globally optimal solutions.
Building upon the Monte Carlo Tree Search (MCTS) framework—a stochastic tree
search method that simulates future trajectories while balancing exploration and
exploitation—the research focus is twofold: (i) constructing an efficient discrete
representation of continuous systems in a decision trees, and (ii) searching on the
resulting tree while balancing exploration and exploitation to achieve global opti-
mality.

The study spans theoretical analysis, algorithmic design, and hardware demonstra-
tions across dynamical, partially observable, and multi-agent systems. By address-
ing these critical questions, this research aims to advance the field of autonomous
robotics, enabling the deployment of intelligent robots in complex and diverse en-
vironments.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] James Ragan, Benjamin Rivière, and Soon-Jo Chung. “Dreaming to Disam-
biguate: Safe Fault Estimation via Active Sensing Tree Search”. In: (Review
at Science Robotics) (2024).
B.R. co-led project conceptualization and supported algorithm design, the-
oretical analysis, simulation development, hardware experiments, and paper
writing.

[2] Benjamin Rivière*, John Lathrop*, and Soon-Jo Chung. “Monte Carlo Tree
Seach for Dynamical Systems with Spectral Expansion”. In: (Review at Sci-
ence Robotics) (2024).
B.R. co-led project conceptualization, algorithm design, theoretical analysis,
simulation, and paper writing.

[3] James Ragan*, Benjamin Rivière*, and Soon-Jo Chung. “Bayesian Active
Sensing for Fault Estimation with Belief Space Tree Search”. In: AIAA SciTech
(2023). doi: 10.2514/6.2023-0874.
B.R. co-led project conceptualization, algorithm design, theoretical analy-
sis, simulation, and paper writing. Best Graduate Student Paper Award in
Guidance, Navigation and Control at AIAA 2023.

[4] Benjamin Rivière and Soon-Jo Chung. “H-TD2: Hybrid Temporal Differ-
ence Learning for Adaptive Urban Taxi Dispatch”. In: IEEE Transactions on
Intelligent Transportation Systems (2021), pp. 1–10. doi: 10.1109/TITS.
2021.3097297.
B.R. led project conceptualization, algorithm design, theoretical analysis,
simulation, and paper writing.

[5] Benjamin Rivière, Wolfgang Hönig, Matthew Anderson, and Soon-Jo Chung.
“Neural Tree Expansion for Multi-Robot Planning in Non-Cooperative En-
vironments”. In: IEEE Robotics Automation Letters 6.4 (2021), pp. 6868–
6875. doi: 10.1109/LRA.2021.3096758.
B.R. led project conceptualization, algorithm design, theoretical analysis,
simulation, hardware experiments, and paper writing.

[6] Benjamin Rivière, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. “GLAS:
Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Plan-
ning With End-to-End Learning”. In: IEEE Robotics Automation Letters 5.3
(2020), pp. 4249–4256. doi: 10.1109/LRA.2020.2994035.
B.R. led project conceptualization, algorithm design, theoretical analysis,
simulation and hardware experiment, and paper writing. Honorable Men-
tion for Best Paper Award at IEEE RA-L 2020.

The * denotes equal contribution.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
List of Illustrations . viii
Chapter I: Introduction . 1

1.1 Decision-Making Problem . 1
1.2 Principle of Optimality-Based Solutions 1
1.3 Monte Carlo Tree Search . 3
1.4 Thesis Outline . 6

Chapter II: Monte Carlo Tree Search (MCTS) for Dynamical Systems 9
2.1 Motivation . 9
2.2 Problem Formulation . 12
2.3 Spectral Expansion Tree Search . 12
2.4 Theoretical Analysis . 16
2.5 Experimental Results . 21
2.6 Related Work . 32
2.7 Discussion . 37

Chapter III: MCTS for Belief-Space Planning 47
3.1 Motivation . 47
3.2 Problem Statement . 49
3.3 Safe Fault Estimation with Active Sensing Tree Search 53
3.4 Theoretical Result . 58
3.5 Simulation Result . 62
3.6 Hardware Result . 69
3.7 Discussion . 70
3.8 Related Work . 73

Chapter IV: MCTS for Multi-Agent Games 88
4.1 Motivation . 88
4.2 Problem Statement . 89
4.3 Neural Tree Expansion Algorithm 89
4.4 Simulation Results . 94
4.5 Hardware Result . 98
4.6 Related Work . 100

Chapter V: Global-to-Local Learning . 104
5.1 Motivation . 104
5.2 Problem Statement . 104
5.3 Method . 106
5.4 Theoretical Analysis . 109

vii

5.5 Simulation Results . 111
5.6 Hardware Results . 117
5.7 Related Work . 118

Chapter VI: Conclusion . 123
6.1 Contributions . 123
6.2 Future Work . 123

Chapter A: Proofs . 127
A.1 MCTS for Dynamics . 127
A.2 MCTS for Belief-Space Planning 138
A.3 Global to Local Learning . 142

Appendix B: Implementation Details
B.1 MCTS for Dynamics . 146

Appendix C: Hybrid Temporal Difference Learning for Adaptive Urban Taxi
Dispatch
C.1 Motivation . 150
C.2 Problem Description . 153
C.3 Cell-Based Markov Decision Process 154
C.4 Algorithm Description and Analysis: H-TD2 156
C.5 Numerical Experiments . 163
C.6 Related Work . 168

viii

LIST OF ILLUSTRATIONS

Number Page

1.1 The components of a sequential decision-making problem. 2
1.2 Decision-making problem is represented as a tree, and then MCTS

is applied to the resulting tree. 4
2.1 SETS algorithm concept overview and wide-applicability in robotics,

spanning ground, aerial, and space domains. 11
2.2 The Spectral Expansion Operator and its connection to spectrum of

controllability Gramian. 16
2.3 Optimal Convergence Rate and Asymptotic Error for Double Inte-

grator System. 21
2.4 Quadrotor Experiment. 22
2.5 Tracked Vehicle Experiment . 25
2.6 Spacecraft Experiment. 28
2.7 Glider Experiment. 30
3.1 Safe fault estimation on robotic spacecraft. 48
3.2 s-FEAST Method overview. 54
3.3 Validation of s-FEAST: The numerical performance of our algorithm

compared with baselines across several scenarios. 64
3.4 Qualitative analysis of s-FEAST’s collision avoidance under an ad-

versarial fault. 68
3.5 Real-time implementation of s-FEAST 69
3.6 A conceptual comparison of the tree growth of s-FEAST and POMCP. 71
3.7 Related work in fault estimation. 74
4.1 NTE applied to the Bugtrap and Homicidal Chauffeur Problem. . . . 94
4.2 NTE applied to Reach-Target Avoid Game. 95
4.3 Double-integrator performance and strategy examples. 97
4.4 3D Dubin’s vehicle game evaluation: the thick lines indicate the

average performance and the shaded area is the variance over 100
games. 98

4.5 NTE Swarm Game Hardware Demonstration 99
5.1 Neural network architecture consisting of 5 feed-forward compo-

nents. 106

ix

5.2 Example trajectories for baselines (a-c) and GLAS method (d,e). . . . 111
5.3 Success rate and control effort with varying numbers of robots in a

8 m × 8 m space for single integrator systems. Shaded area around
the lines denotes standard deviation over 5 repetitions. The shaded
gray box highlights validation outside the training domain. 114

5.4 Testing loss when training using 10 and 20 % obstacles and 4 or 16
robots. Synthesizing a distributed policy that is consistent with the
global data is harder for high robot densities than for high obstacle
densities. We use the GLAS end-to-end with |D| = 5 M and repeat 5
times. 115

5.5 Effect of sensing radius and amount of training data on robot success
rate. The validation has 4, 8, and 16 robot cases with 10 instances
each. Training and validation were repeated 5 times; the shaded area
denotes the standard deviation. 115

5.6 Success rate and control effort with varying numbers of robots in
a 8 m × 8 m workspace for double integrator systems. Shaded area
around the lines denotes standard deviation over 5 repetitions. The
shaded gray box highlights validation outside the training domain. . . 116

5.7 GLAS Hardware Experiment . 117
B.1 Forces on Spacecraft Capture Problem for two net nodes. 149
C.1 Concept graphic of an intelligent transportation network. Autonomous

taxis, that can include both ground and air vehicles, estimate in real-
time the customer demand and coordinate locally to behave with
bounded sub-optimality. 151

C.2 Overview of H-TD2. 152
C.3 State space representation of a Gridworld simulation with 1000 taxis,

with corresponding value function estimation. In the top subplot, the
blue dots are free taxis positions, the orange dots are positions of
taxis currently servicing customers, and the green dots are the new
customers requests pickup positions. In the bottom subplot, the ap-
proximate value function distribution is shown over the state space. . 154

x

C.4 Cumulative customer waiting time for different algorithms in the
small-scale Gridworld environment. The algorithms behave as ex-
pected: in descending order of performance, Bellman, centralized
temporal difference, H-TD2, distributed temporal difference, followed
by the receding horizon control baseline. The simulation is run 5
times, and the mean with standard deviations is visualized in the plot. 166

C.5 Q-value error trace for different algorithms with respect to the Bellman-
optimal. Initially, the H-TD2 and distributed temporal difference al-
gorithms behave identically, until the trigger condition is satisfied
and the H-TD2 requests a global Bellman-optimal update, bringing
the error to zero. The δd parameter is set to 2.5 % of the norm of the
Bellman solution and is shown with a dashed black horizontal line. . 167

C.6 Performance and scalability analysis of H-TD2 and RHC against
number of taxis. In the top subplot, the average reward is shown
across a variety of taxi density regimes, and the proposed algorithm
outperforms a receding horizon control baseline by at least 50 % in
all taxi-density regimes. In the bottom subplot, the computational
time is approximately linear with number of taxis (and taxi-density)
across 3 orders of magnitude. 168

C.7 Chicago city taxi customer demand across an irregular event: Game
5 of the 2016 Baseball World Series. The map cells show the number
of customer pickup requests, and the green star is Wrigley Field’s
location. Below, we plot the customer demand over time for the cell
containing Wrigley Field to show that a reward model trained using
data from the day does not accurately predict the future behavior. . . 169

C.8 Cumulative customer waiting time for the H-TD2 and the RHC base-
line in a Chicago city environment with with a fleet of 2, 000 taxis
servicing 54, 115 real customer requests during the 2016 Major League
Baseball World Series. The H-TD2 algorithm has a total customer
waiting time of 504 hours, an improvement of 26 % over the RHC
baseline. 170

1

C h a p t e r 1

INTRODUCTION

In this chapter, we present the sequential decision-making problem and its solu-
tions formalized with dynamic programming and calculus of variations. Then, we
introduce Monte Carlo Tree Search and show it is an approximate multi-step Bell-
man operator and a member of the generalized policy iteration (GPI) reinforcement
learning family. Having established the context of reinforcement learning and opti-
mal control, we outline the remainder of the thesis.

1.1 Decision-Making Problem
The components of autonomous decision making are shared by reinforcement learn-
ing and optimal control: the world is described by a state x, that evolves in time un-
der some transition F depending on the action taken by the robot u and the robot’s
goal is to find the policy π that maximizes its expected accumulated reward r over
time, known as the value Vπ.

This can be formulated as follows:

xk = F(xk−1, uk) (1.1)

rk = R(xk, uk) (1.2)

Vπ(x, t) =

K∑
k=t

γk−trt + γK−tD(xK) (1.3)

where the policy selects the action at each timestep, uk = π(xk−1) and k is the
timestep, γ ∈ [0, 1) is the discount factor, K is the horizon and D is the terminal
value boundary condition.

There are many variations to the sequential decision-making problem: continuous
time, partial state information, multi-agent settings, stochastic dynamics, stochastic
policy, infinite horizon, and others. The notation, which is consistent throughout the
thesis, is introduced now to describe the reinforcement learning and optimal control
perspectives. The components are visualized in Fig. 1.1.

1.2 Principle of Optimality-Based Solutions
Richard Bellman coined the principle of optimality in the following statement:

2

x0 x1 x2 x3

u1 u2 u3

r1 r2 r3

Figure 1.1: The components of a sequential decision-making problem.

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

The principle of optimality applied to the optimal value function is called dynamic
programming [1]. In continuous time and space, dynamic programming can be used
to derive the Hamilton-Jacobi-Bellman partial differential equation:

∂V∗

∂t
+ max

u

{
∂V∗

∂x
F(x, u) + R(x, u)

}
= 0 (1.4)

subject to the boundary condition V∗(x,K) = D(x).

In discrete time and space and in the infinite horizon, dynamic programming can be
used to derive the Bellman equations [2]:

V∗(x) = max
u
{R(F(x, u)) + γV∗(F(x, u))} (1.5)

The Bellman equations are the fixed point of the Bellman operator T , which is a
contraction mapping for discounted problems:

(TV)(x) ≡ max
u
{R(x, u) + γV(F(x, u))} (1.6)

|TV1 − TV2| ≤ γ|V1 − V2| (1.7)

The contraction of the Bellman operator is the foundation of Generalized Policy
Iteration (GPI), an important concept in dynamic programming that unifies many
reinforcement learning techniques. In GPI, the algorithm keeps track of a policy and
value function and iteratively updates them with two processes: policy evaluation
(estimate the value function of the current policy) and policy improvement (make
the policy greedy with respect to the current value function).

3

Overall, dynamic programming provides a theoretical foundation for global so-
lutions and provides general intuition for convergence of dynamic programming-
based reinforcement learning. The resulting numerical algorithms have polyno-
mial complexity with respect to the number of states and actions, and are effective
when the state and action spaces are discrete and finite. However, robots exist in
a high-dimensional continuous world, and therefore naive application of dynamic
programming (e.g., discretize then use dynamic programming) are not practical be-
cause of the curse of dimensionality. For example, the number of discrete elements
of a uniformly discretized n-cube is ηn where η is the number of points per dimen-
sion and n is the dimension.

The principle of optimality can also be applied to the optimal trajectory and ana-
lyzed with calculus of variations [3]. The basic calculus of variations problem is
to find the curve that, given boundary conditions, minimizes the its path-integrated
Lagrangian. The Euler-Lagrange equations are derived from the first-order optimal-
ity condition of path minimization and, using Hamilton’s principle of least action,
these equations can be used to describe the motion of mechanical systems. Calcu-
lus of variations also provides a general solution to very old problems like Dido’s
isoperimetric problem (850 BC) and the Brachistochrone (1696 AD). In optimal
control, the reward function is the Lagrangian, and computing first-order necessary
conditions of the optimal value function leads to a result known as Pontryagin’s
maximum principle.

Overall, calculus of variations provides the theoretical foundation for necessary
conditions of solutions in continuous space. However, numerical solutions that use
the calculus of variations results typically only converge to locally-optimal trajec-
tories and can be arbitrarily suboptimal.

The principle of optimality is not the only way to define solutions to the sequen-
tial decision-making problem. For example, policy gradient [4] is an empirically
successful and popular method, and its theoretical foundation is a result that shows
trajectory data can be used to estimate the gradient of the optimal value function
in an unbiased manner. This policy gradient method is classified as stochastic opti-
mization, and is not the focus of this thesis, mentioned here only for context.

1.3 Monte Carlo Tree Search
The decision-making problem can also be represented as a tree search as originally
discussed in [5], and shown in Fig. 1.2. Monte Carlo Tree Search (MCTS) is a

4

x

x

x

x x

x

x x

x

x

x x

x

x x

(u, r)

(u, r)

(u, r) (u, r)

(u, r)

(u, r) (u, r)

(u, r)

(u, r)

(u, r) (u, r)

(u, r)

(u, r) (u, r)

(a) Decision-making problem represented as a tree.

(b) Search after one iterations. (c) Search after two iterations.

(d) Search after three iterations. (e) Search after four iterations.

Figure 1.2: Decision-making problem is represented as a tree, and then MCTS is
applied to the resulting tree.

family of methods that search on the resulting tree by sampling future trajectories
while balancing exploration of unvisited space and exploitation of already-visited
highly valued space [6]. The most common MCTS variant is the Upper Confidence
Bound for Trees (UCT) [7], which was famously used in combination with deep
learning in the AlphaZero algorithm [8] to achieve superhuman performance in the
game of Go.

The convergence result of UCT is that the root node’s value estimate converges to
the optimal value with the number of trajectories in the tree. When UCT rolls out

5

a random trajectory, it gathers samples of the value conditioned on the tree policy
and, if the tree policy was static, the mean of these samples would converge to
the true expectation exponentially fast from Hoeffding’s concentration inequality.
However, because the goal is to converge to the optimal policy, the tree policy
biases towards areas of high reward, creating a non-stationary data distribution and
adding recursive complexity to the convergence analysis. The authors claim this
non-stationarity can be completely addressed by increasing the exploration constant
of the classic online-learning Upper Confidence Bound result [9]. Although the
UCT algorithm is empirically very successful, its theoretical result is disputed in
literature [10, 11] and analyzing Monte Carlo Tree Search algorithms is an active
area of research.

Another important analysis of MCTS is a GPI-based interpretation of AlphaZero’s
self-play and training iteration [12]. In particular, MCTS acts as a approximate
multi-step Bellman Operator: first, we introduce an one-step Bellman operator
where the action is selected with respect to an approximate value function, Ṽ . This
can be extended to a multi-step Bellman operator where the explicit maximization
occurs over a sequence of actions, then greedy with respect to the approximate value
function.

(T̃V)(x) ≡ max
u

R(x, u) + γṼ(F(x, u)) (1.8)

(T̃lV)(x0) ≡ max
u1,...,ul

 l−1∑
k=0

γkR(xk, uk) + γlṼ(xl)

 (1.9)

In the AlphaZero setting, the approximate value function Ṽ is the learned neural
network and the l-step is the depth of the tree. The significance of l-step lookahead
maximization is that by increasing the value of l, we may require a less accurate
value approximation to obtain good performance, at the cost of a more compu-
tationally expensive look-ahead phase. This interpretation is used to explain the
improved learning stability of AlphaZero in challenging planning problems.

MCTS is significant for two reasons: First, it is only algorithm explicitly designed
for real-time generation of globally optimal solutions in large search spaces. Sec-
ond, it can be combined with deep learning in the principled theoretical framework
to create a two-process model for decision making that smoothly transitions be-
tween cheap data-driven memorization with neural networks and expensive causal
reasoning with tree search. However, MCTS is only well defined for finite action

6

spaces and, for the same reason as other dynamic programming techniques, its per-
formance suffers when applied directly to continuous robot optimal control.

1.4 Thesis Outline
In the context of reinforcement learning and optimal control, the goal of my re-
search is to develop algorithms with real-time computation of globally optimal so-
lutions. With this in mind, my research focuses on two questions: (i) constructing
an efficient discrete representation of continuous systems in a decision trees, and
(ii) searching on the resulting tree while balancing exploration and exploitation to
achieve global optimality. Chapters 2 and 3 are focus on the first question in the set-
tings of dynamical and partially observable systems. Chapter 4 develops the second
question and uses decentralized data-driven heuristics to control the tree growth for
N-player games. Chapter 4 builds on the learning techniques developed in Chap-
ter 5.

In Chapter 2, we develop an MCTS algorithm for continuous dynamical systems.
Our method, called Spectral Expansion Tree Search (SETS), is MCTS with a novel
nodal expansion that generates trajectory segments using the spectrum of the locally-
linearized system’s controllability Gramian. SETS is equivalent to running UCT on
an alternative problem, where this alternative problem has a low-complexity dis-
crete action space and its optimal value function is of bounded distance to that of
the original problem. Using this insight, we are the first to prove UCT’s global
optimality convergence in continuous space. We validate the algorithm with three
real-time hardware demonstrations not directly solvable with other methods: (i)
a quadrotor plans through wind field using deep neural network dynamic models,
(ii) a tracked vehicle assists a driver through an adversarial concourse, and (iii) a
team of tethered spacecraft catch and redirect an uncooperative target. We further
validate on a simulated aerodynamic glider environment, where the empirically ob-
served value convergence rates match the rates predicted by theory. We also show
that SETS vastly outperforms comparable state-of-the-art techniques.

In Chapter 3, we develop an MCTS algorithm for planning with uncertainty, spe-
cialized to the active diagnosis problem for stochastic systems subject to sensor
and actuator failure. Our method, called Safe Fault Estimation with Active Sens-
ing Tree Search (s-FEAST), uses a marginalized filter to compute an otherwise
intractable Bayesian update at each nodal expansion. Similarly to the previous
chapter, our analysis shows sFEAST is equivalent to running UCT on an equiva-

7

lent belief-space decision-making problem. Although originally derived for fully
observeable systems, the UCT convergence proof can also be applied to the belief-
space problem, and we use this fact to prove the convergence of our algorithm to the
globally optimal solution. We extend our method to satisfy chance constraints for
general probability distributions with concentration inequalities. Using our robotic
spacecraft simulator, we experimentally validate s-FEAST by safely and success-
fully performing fault estimation while on a collision course with a model comet.
These results are further validated through extensive numerical simulations demon-
strating s-FEAST’s superior performance.

In Chapter 4, we develop an MCTS algorithm for N-player team games for robots.
Our search algorithm, called Neural Tree Expansion (NTE), uses decentralized
data-driven heuristics to guide the tree search. We use a second algorithm to train
the heuristics offline and, at a high level, the training is similar to AlphaZero and
GPI dynamic programming: initializes the heuristics, creates a dataset of NTE self-
play samples, trains the heuristics, and iterate. However, the multi-robot problem is
different from traditional board game problems and therefore our algorithm diverges
from AlphaZero to satisfy critical differences: decentralized evaluation, real-time
evaluation, and continuous action space. We validate NTE on multiple simulated
environments, including an experiment that shows our solutions converge to the an-
alytical solution of the homicidal chauffer differential game. We also validate NTE
on hardware for the three vs three quadrotor Reach-Target-Avoid game.

The previous chapter relies on machine-learning techniques developed in Chapter 5.
There, we develop Global-to-Local safe Autonomy Synthesis (GLAS), an imitation
learning technique for training decentralized policies from centralized data while
providing end-to-end safety guarantees. Our approach combines the advantage of
centralized planning of avoiding local minima with the advantage of decentralized
controllers of scalability and distributed computation. In particular, our synthesized
policies only require relative state information of nearby neighbors and obstacles,
and compute a provably safe action. Our approach has three major components:
i) we generate demonstration trajectories using a global planner and extract local
observations from them, ii) we use deep imitation learning to learn a decentralized
policy that can run efficiently online, and iii) we introduce a novel differentiable
safety module to ensure collision-free operation, thereby allowing for end-to-end
policy training. Our numerical experiments demonstrate that our policies have a 20
% higher success rate than optimal reciprocal collision avoidance, ORCA, across a

8

wide range of robot and obstacle densities. We demonstrate our method on an aerial
swarm, executing the policy on low-end microcontrollers in real-time.

Finally, in Appendix C, we present a multi-agent reinforcement learning algorithm
called Hybrid Temporal Difference Learning for Taxi Dispatch (H-TD2). Although
this algorithm and analysis shares themes of manipulating problem representation
for efficient dynamic programming, it does not use a tree search algorithm and
therefore we choose to exclude it from the main body of the thesis.

9

C h a p t e r 2

MONTE CARLO TREE SEARCH (MCTS) FOR DYNAMICAL
SYSTEMS

How to construct discrete trees from continuous systems?

This chapter is based on the publication:

Benjamin Rivière*, John Lathrop*, and Soon-Jo Chung. “Monte Carlo Tree
Seach for Dynamical Systems with Spectral Expansion”. In: (Review at Sci-

ence Robotics) (2024).

The * denotes equal contribution.

2.1 Motivation
Endowing robots with high-performing and reliable autonomous decision making
is the ultimate goal of robotics research and will enable applications such as sea,
air, and space autonomous exploration, self-driving cars, and urban air mobility. A
conventional metric of robotic autonomy is formalized through the decision making
problem: how well do the robot’s actions optimize an objective over time, subject
to dynamics and environmental effects?

This vision of robotic autonomy remains elusive because exactly solving the continuous-
space decision making problem in high-dimensional systems has a large compu-
tational complexity, as originally shown by a founder of the field, Richard Bell-
man [2]. In light of this complexity, many autonomous robots in deployment avoid
directly solving a general decision making problem and instead exploit particular
problem structure for computational benefits. For example, motion planning can be
solved with sampling-based methods [3–5], trajectory optimization can be solved

10

with convex optimization [6, 7], and high-level discrete decision making can be
solved with value iteration [8]. These methods can also be combined hierarchically
for complex behavior, such as autonomous multi-agent inspection of spacecraft [9],
robotic manipulation [10, 11], and self-driving urban vehicles [12, 13]. Problem-
specific solutions are well-understood, can be made computationally efficient, and
have proven to be effective. However, these solutions are limited because they
cannot be easily transferred to new problems, adding an expanding burden to the
designer for multi-task autonomy. Additionally, there exist problems that cannot
easily be decomposed into computationally tractable sub-problems.

A competing approach uses reinforcement learning to train optimal policies from
trajectory data. Unlike the aforementioned methods, this approach is a general-
ized procedure that can be applied directly to a broader class of problems. This
property enables important new capabilities such as drone racing [14], helicopter
flight [15], grasping [16] and bipedal locomotion [17]. However, these methods
typically require an offline training phase that limits deployment in new or chang-
ing environments. In addition, these black-box approaches are unexplainable and
provide limited guarantees on optimality, stability, or robustness.

Alternative reinforcement learning approaches use tree data structures [18–20] that
strategically explore simulated future trajectories from the current state. These
methods are collectively known as Monte Carlo Tree Search (MCTS) [21]. In con-
trast with learning methods with offline training, MCTS generates near-optimal so-
lutions in real-time: given a cost or reward function, the goal is to return the best
possible plan with the computational budget available. Whereas the tree’s nodes
and edges are naturally defined for discrete spaces, the continuous space of robotics
presents new challenges. Uniform spatial and temporal discretization of continu-
ous spaces leads to very large trees and slow convergence rates: a poor discrete
representation of the underlying continuous problem.

In this work, we present Spectral Expansion Tree Search (SETS), a new algorithm
that finds globally optimal solutions to the deterministic continuous-space decision
making problem in real-time. The new capability of SETS is enabled through effi-
cient representation of the continuous space of future possibilities by constructing
the tree’s edges with trajectories that drive the system along its natural motions,
a concept formalized through the spectrum of the locally linearized controllabil-
ity Gramian. Without further assumptions on the dynamics or reward, the trans-
formed low-complexity form is solved with MCTS. The SETS tree is visualized

11

Figure 2.1: SETS algorithm concept overview and wide-applicability in robotics,
spanning ground, aerial, and space domains.

in Fig 2.1A. Compared to a direct discretization, our method reduces the branch-
ing factor and number of decisions in the time horizon, leading to an exponential
reduction in tree size. Our analysis proves fast convergence to a bound of the glob-
ally optimal solution for decision making problems with deterministic and differen-
tiable dynamics, state-dependent and Lipschitz rewards, and continuous state-action
spaces.

Our hardware and simulation experiments showcase a diverse set of “discovered-
not-designed” behaviors generated in real-time for various robot dynamics and ob-
jectives: (i) a quadrotor solves a dynamically constrained Traveling Salesman Prob-
lem to quickly monitor multiple targets in a windy arena, selectively traversing wind
gusts and avoiding floating ball obstacles; (ii) a tracked vehicle shares control with
a driver through a concourse of ramps, chicane, and sawtooth tracks subject to ad-
versarial degradation; (iii) a team of spacecraft use a net to capture and redirect an
uncooperative target in a frictionless environment; and (iv) in simulation, a glider
experiencing aerodynamic drag detours into a thermal to extract energy from the
environment and survive long enough to achieve its directed task. We use this last
experiment as a case study to empirically validate the theoretical result, compare
our method to state-of-the-art baselines, and tune parameters in a systematic and
informed procedure.

12

2.2 Problem Formulation
We consider a Markov Decision Process (MDP) [22], an abstract problem descrip-
tion written as a tuple of components: 〈X,U, F,R,D,Ω,K, γ〉. Here X ⊆ Rn is a
compact state space, U ⊆ Rm is a compact action space, and F : X×U → X are the
discrete-time dynamics. R : X × U → [0, 1] is the stage reward and D : X → R≥0

is the terminal reward. Ω ⊆ X is a set of unsafe states, K ∈ N is the time horizon,
and γ ∈ [0, 1) is the discount factor.

At an initial state x0, the decision making problem is to select a sequence of actions
that maximizes the sum of the stage reward plus the terminal reward, subject to the
dynamics and state/action constraints:

V∗, x∗[K],u
∗
[K] = argmax

x[K], u[K]

K−1∑
k=0

γkR(xk+1, uk+1) + γKD(xK) (2.1)

s.t. xk = F(xk−1, uk), xk ∈ X \Ω, uk ∈ U, ∀k ∈ [1,K]

A bracket subscript indicates a sequence, e.g. x[K] = [x>1 , x
>
2 , . . . , x

>
K]> ∈ RnK .

This framework of decision making over a horizon is the same setting considered
by the reinforcement learning community and in optimal control. The space of
problems we consider is focused on smooth, deterministic, and nonlinear dynamics
with continuous state and action spaces.

2.3 Spectral Expansion Tree Search
Monte Carlo Tree Search
The pseudocode for SETS is shown in Algorithm 1. SETS performs a Monte Carlo
Tree Search (MCTS) with a specialized nodal expansion operator, defined as Spec-
tral Expansion in the pseudocode. We briefly summarize the procedure of MCTS,
with more in-depth descriptions available in the literature [21]: while the robot has
remaining computational budget, simulate future state trajectories from the current
world state forward to the horizon of the MDP. At each node, the tree policy selects
the best child by balancing exploration of visit counts and exploitation of observed
reward. If a node is not fully expanded, generate a new child by taking an action
and stepping forward in time. When a simulated trajectory terminates, the accu-
mulated reward and visit count information is backpropagated up the tree to update
statistics, and the process iterates.

Whereas the standard MCTS variant [19] uses logarithmic exploration term, SETS
uses a polynomial exploration term (see Line 6 of Algorithm 1), because increasing

13

Algorithm 1: Spectral Expansion Tree Search (SETS)
1 def SpectralExpansionTreeSearch(x0,M,H):

/* set root */
2 i0 = Node(x0) ;
3 for ` = 1, . . . , do

/* initialize path at root then rollout */
4 p = [i0] ;
5 for d = 1, . . . , dK/He do

/* best child with random tiebreak */

6 i∗ = arg maxi∈C(p[−1])
V(i)
n(i) + c

√
n(p[−1])

n(i) ;

7 if i∗ is not expanded then
8 SpectralExpansion(i∗, x0, ū, M, H) ;
9 if i∗ ∈ Ω then break;

10 p.append(i∗) ;
/* backup */

11 for d = 1, . . . , |p| do
12 V(p[d]) +=

∑dK/He
t=d γtHr(p[t]) ;

13 n(p[d]) += 1 ;

/* update optimal value estimate */

14 V̂(x0, `) = max(V̂(x0, ` − 1),
∑dK/He

d=1 γdHr(p[d])) ;

15 yield V̂(x0, `) ;

16 def SpectralExpansion(i, x0, ū, M, H):
/* compute local linearization */

17 Ak, Bk, ck = Linearization(F, x0, ū[H]) ∀k ∈ [0,H − 1] ;
18 zk+1 = Lk(zk, uk+1) = Akzk + Bkuk+1 + ck ∀k ∈ [0,H − 1] ;

/* compute spectrum of normalized controllability Gramian */

19 S = diag({ 2
u j−u j

| ∀ j ∈ [1,m]}) ;

20 C =
[(∏H−1

k=1 Ak
)

B0S ,
(∏H−1

k=2 Ak
)

B1S , . . . , AH−1BH−2S , BH−1S
]

;
21 [v1, v2, . . . , vn], [λ1, λ2, . . . , λn] = eig(CC>) ;

/* compute linear reference trajectory to ith mode */

22 zH = (−1)i%2
√
λi//2vi//2 +

((∏H−1
k=0 Ak

)
z0 +

∑H−1
k=0

(∏H−1
j=k A j

)
ck

)
;

23 uref
[H] = clip(C†zH ,U) ;

24 zref
[H] = LH(z0, uref

[H]) ;
/* track reference trajectory with nonlinear system */

25 Mk = DARE(Ak, Bk,Γx,Γu) ;
26 Kk = (Γu + B>k MkBk)−1B>k MkAk ;
27 u[H] = {clip(uref

k − Kk−1(xk−1 − zref
k−1),U) | ∀k ∈ [1,H]} ;

28 x[H] = FH(x0, u[H]) ;
29 return (x[H], u[H],RH(x0, u[H])) ;

14

the amount of exploration empirically improved the performance of the algorithm.
This technique is supported by other MCTS variants, both in theory [23, 24] and
practice [25]. Although the dynamics, reward, and spectral expansion operator are
deterministic, SETS is a stochastic algorithm because, when multiple children of a
node have not been visited, the algorithm randomly selects one. This stochasticity,
which is the same as the original MCTS algorithm, is noted in Line 5 of Algo-
rithm 1. We adopt for following notation for the pseudocode: p is the “path”, the
list of nodes in one rollout, i is a single node, r(i) is the reward to the node, C(i) are
its children, and n(i) is its number of visits.

Spectral Expansion Operator
The Spectral Expansion operator, specified in Algorithm 1 Lines 16–29, computes
a trajectory of length H. The first step is to compute the linearization and eigende-
composition of the local controllability Gramian. We consider both time-invariant
and time-varying linearizations, where the linearized system data is either computed
once at the current state and a single nominal control input, or over a time-varying
trajectory initialized at the current state, subject to a nominal control sequence. In
practice, we found that time-varying linearization produces more stable trajectories,
especially for highly agile platforms such as a quadrotor, and we select the unforced
dynamics as the default nominal control input, (ū ≡ 0).

From the linearized system, we construct the controllability matrix C, which is
a linear mapping from sequences of control actions to the resulting terminal state.
This matrix and its associated Gramian are well known in linear control theory [26],
with two important properties: Linear systems have elliptical reachable sets: the
set of states reachable with one unit of control energy are an ellipse parameterized
by the spectrum of the Gramian. Pseudoinverse maps to action sequences: the
pseudoinverse of the controllability matrix applied to a feasible desired terminal
state computes the minimum energy control input that drives the system to that
state.

In Lines 19-20 of Algorithm 1, the inputs are scaled by their control limits before
computing the Gramian. This procedure scales the notion of bounded-energy of
the reachable set to the control limits rather than inputs that potentially differ by
orders of magnitude. An alternate preconditioning matrix S could be selected here
to create a different trade-off in control energy. In addition to informing the input
rescaling, the elliptical reachable sets property reveals a simple exploration strategy

15

for linear systems: the vertices of the ellipse, which are computed via the spectrum
of the Gramian, form a bounded covering of the reachable set.

In Lines 22-24, we compute the linearized reference trajectory. First, we select the
desired state for this branch using the spectrum of the controllability Gramian. We
iterate through the modes using the integer floor division and modulus operators,
// and %, respectively. Visiting each mode in the plus and minus direction imply a
total branching factor of 2n, where n is the state dimension. The pseudoinverse of
the controllability matrix mapped onto the desired state yields a trajectory for the
linearized system that, by the psuedoinverse mapping property, is minimum energy
and reaches the target. However, the notion of minimum and bounded energy is
over the entire trajectory and, to verify each individual control actions are valid, we
impose the bounded input constraint with a clip operation: given a vector and an
interval, the values outside the interval are clipped to the interval edges.

Whereas the reference trajectory is feasible for the locally linearized system, the ac-
tual branch trajectory must satisfy nonlinear dynamics. In Lines 25-28, we compute
a feedback controller from the Discrete Algebraic Riccati Equation (DARE) [27]
and rollout a trajectory of the nonlinear system that tracks the linear reference
trajectory to the desired mode. We include a proof of the controller stability in
Lemma 5 in the Supplementary Materials.

Heuristics
At the cost of an increased branching factor, the user can add manually designed
nodal expansion heuristics to guide the search. In the quadrotor experiments, we
use a heuristic to guide the system to the nearest target by including the projection
of the nearest target onto the linear set as a branching option. This is similar to
goal biased sampling used in the sampling-based motion planning community [28].
For the remaining experiments, we did not use heuristics and relied only on the
natural exploration of SETS. In a manner similar to AlphaZero [25] and Neural
Tree Expansion [29], it is also possible to incorporate DNN-based heuristics to
predict the value of the next child state.

The user can also manually decrease the branching factor by prioritizing certain
degrees of freedom. In the quadrotor experiment, we found that only searching
among the velocity and angular velocity modes led to higher performance. Phys-
ically, the system maintains its ability to translate and make attitude adjustments,
as the eigenvectors that maximally excite the velocity and angular velocity coordi-

16

Figure 2.2: The Spectral Expansion Operator and its connection to spectrum of
controllability Gramian.

nates also create changes in the position and attitude, respectively. We expect this
reasoning to be applicable in many second-order systems, and we apply it in all of
our experiments.

2.4 Theoretical Analysis
We outline the proof of our main theoretical result Theorem 1. The full proofs for
the following results are in the Supplemental Materials.

We begin with a few assumptions and definitions to enable analysis, namely we
consider discounted, smooth, and differentiable-dynamics MDPs. While the anal-
ysis relies on these assumptions, the implementation of SETS is more general and
only requires access to the MDP. We recall the definition of Lipschitz functions.

Definition 1 A function g : Rn → Rr is Lipschitz continuous if ∃Lg ≥ 0 s.t. ∀u, v ∈

Rn, ‖g(u) − g(v)‖ ≤ Lg‖u − v‖.

The first assumption is about the smoothness of the dynamics: we assume the dy-
namics function F is class C2 - it is twice differentiable, and those derivatives are
continuous. Notably, this implies the dynamics are Lipschitz and have Lipschitz
gradients, with Lipschitz constant LF and L∇F , respectively. Although our analy-
sis requires twice differentiable functions, our implementation only requires first
derivatives, which can be computed from the dynamics function using finite differ-
ences.

The second assumption restricts the reward structure of the considered class of
MDPs: we assume the reward function is only a function of state. Furthermore,

17

we assume the reward function is Lipschitz continuous with constant LR. The re-
quirement that the reward be a function of state is not burdensome. An integral
control scheme can be set up to include the inputs as part of the state. Additionally,
our analysis can be extended for reward functions that include inputs at the cost of
extra complication of treating Lemma 2.

The final assumption is that the input set is bounded inside a Cartesian product of
intervals, parameterized by the upper and lower limit component-wise vectors u, u:
U ⊆ {u ∈ Rm | u j ≤ u j ≤ u j}. With a small change in analysis, an input ellipse (or
any scaled norm ball) can be considered.

The aforementioned assumptions can be summarized as follows:

Assumption 1 The dynamics F are twice differentiable, the reward R is state-

dependent and Lipschitz, and the input set U is bounded in a product of intervals.

F ∈ C2(X × U; X) R ∈ Lip1(X;R) U ⊆ {u ∈ Rm | u j ≤ u j ≤ u j}

where Lip1(X;R) is the space of Lipschitz functions from X to R. As X is compact
and R is Lipschitz, R is therefore bounded.

We recall a previous result that discrete, finite MDPs can be solved with the Upper
Confidence Bounds for Trees (UCT) algorithm [30]:

Lemma 1 Consider an MDP 〈X,U, F,R,D,K, γ〉 with a finite input set |U | = b. For

initial state x0, UCT running on a decision tree of depth K and branching factor b

overM yields a value estimate, as a function of number of iterations `.

V∗(x0) − E[V̂(x0, `)] ≤ O
(
bK log(`) + bK

`

)
, (2.2)

Remark 1 The UCT result [30] considers randomness in the algorithm, dynamics,

and reward. We consider deterministic dynamics and reward, and thus the expecta-

tion is only over the randomness in the algorithm as indicated in Line 5.

Remark 2 This result does not include the notion of non-allowable states Ω. We

can consider a modification of the input set to be state-dependent, U(x), where in

the deterministic setting, the only allowable actions are those that send you to an

allowable next state:

U(x) = {u | F(x, u) ∈ X \Ω} (2.3)

18

The UCT [19] result uses non-stationary bandit analysis to show that the tree pol-
icy’s logarithmic exploration guarantees convergence of the value estimate. While
a useful tool, this result only applies to MDPs with a finite action set, and additional
treatment is required to apply it to the setting of continuous action spaces. Com-
pared to the a naive “discretize-then-search” approach, SETS provides complexity
reduction in both the branching factor and depth.

The last preliminary definition is the reachable set and the Hausdorff distance be-
tween sets:

Definition 2 Given an initial state x0, a dynamical model F, and a set of actions

U, the reachable set is the set of states after rolling out each of the actions:

RF(x0,U) = {F(x0, u) | ∀u ∈ U} (2.4)

Definition 3 Consider a point a ∈ Rn and a set M ⊂ Rn. The point-set distance

between a and M is d(a,M) = infm∈M ‖a − m‖. Consider two sets M,N ⊂ Rn.

The Hausdorff distance (standard set distance) between M and N is the symmetric

function dS (M,N) = max
{
supm∈M d(m,N), supn∈N d(M, n)

}
.

Convergence to bound of global optimal
The bulk of our analysis is showing that SETS abstracts the original MDP into a
discrete MDP of bounded equivalent optimal value, which we accomplish in two
steps: (i) the optimal value function of any two MDPs with shared reward and
dynamics is bounded by the set distance between their reachable sets and (ii) the
reachable set induced by SETS has a bounded distance with the reachable set of the
original MDP.

We present the first step about the equivalence of two MDPs.

Lemma 2 Consider two MDPs satisfying the preceding assumptions:

M1 = 〈X,U1, F,R,D,K, γ〉 (2.5)

M2 = 〈X,U2, F,R,D,K, γ〉 , (2.6)

Let V∗1 and V∗2 denote the respective optimal value functions of the two problems.

The difference in optimal value function between the two problems is uniformly

19

bounded by a constant times the maximum set distance between their reachable

sets:

‖V∗1 − V∗2‖∞ ≤
LR + γLV

1 − γ
max
x∈X

dS (RF(x,U1),RF(x,U2)) (2.7)

We now state the second step: the reachable set induced by SETS has a bounded
distance with the reachable set of the original MDP (allowing us to apply Lemma
2).

Proposition 1 Consider an MDP 〈X,U, F,R,D,K, γ〉. When performing Spectral

Expansion at state x0 with horizon H, the H-step reachable set RFH (x0,UH) differs

from the reachable set generated by spectral expansion RFH (x0,USETS) as:

dS (RFH (x0,UH),RFH (x0,USETS) ≤
L∇Fε

2

2
(LF)H−1
LF − 1

(2.8)

+ 2σmax(S)LF
(LF)H−1
LF − 1

+
L∇Fclε

2

2
1 − αH

1 − α
(2.9)

for a ε-ball centered at (x0, ū) containing RFH (x0,UH). We recall that S is the input

rescaling matrix specified in Line 19 of Algorithm 1.

The intuition for this result is supported by the visualization in Fig. 2.2. We seek
to show that the collection of discrete points generated by SETS (green dots) cover
the original problem’s nonlinear reachable set (green continuous). We do this by
introducing two intermediate sets: the reachable set of the linear system subject to
energy constraints (blue continuous) and the collection of states constructed from
the spectrum of the controllability Gramian (blue dots). To compute an upper bound
for the desired set distance, we apply the triangle inequality and use the operations
of Spectral Expansion to bound each of the terms:

dS (RFH (x0,UH),RFH (x0,USETS)) ≤ dS (RFH (x0,UH),RLH (x0,UH))︸ ︷︷ ︸
Taylor’s Theorem

+ dS (RLH (x0,UH), {zi
H}

2n
i=1)︸ ︷︷ ︸

Linear Analysis

+ dS ({zi
H}

2n
i=1, {x

i
H}

2n
i=1)︸ ︷︷ ︸

Contraction-Theoretic Control

(2.10)

Our main theoretical result follows from applying Lemma 2 and Proposition 1:
SETS abstracts the continuous MDP into a bounded equivalent discrete MDP, UCT
solves discrete MDPs, and the desired result follows from application of the triangle
inequality:

20

Theorem 1 Consider an MDP 〈X,U, F,R,D,K, γ〉. For initial state x0, SETS with

horizon H yields a value estimate, as a function of number of iterations `, satisfying:

|V∗(x0) − E[V̂(x0, `)]| . O
 (2nK) log(`)

H`
+

(2n)
K
H

`

︸ ︷︷ ︸
convergence

+
C0 + γH

1 − γH

(
C1(1 + C2∆t)H + C3

)
︸ ︷︷ ︸

steady-state error

,

(2.11)

where n is the dimension of the state space X and C0,1,2,3 are problem-specific con-

stants, independent of H or `.

To unpack the terms in Theorem 1, the first term, labeled convergence, is a decreas-
ing function of both the SETS horizon H (which indicates the branch length of the
tree search) and the number of iterations `. The first term goes to zero as the number
of iterations ` increases and an increase of the hyperparameter H improves the con-
vergence speed of the value estimate: a longer branch length results in fewer overall
decisions, and therefore a faster convergence. While providing faster convergence,
the trade-off of a longer branch length is a larger asymptotic error, shown in the
second term, labeled steady-state error. We visualize the trade-off in Fig. 2.3 for
a motion planning problem, where a 2D double integrator starts at the blue dot on
the left and is tasked to reach the green dot on the right. We vary the branch length
parameter H and the number of simulations L and each plot is shaded by the value
of its trajectory. The empirical trend of the value is predicted by theory: large H

trees converge quickly to sub-optimal solutions, and small H trees converge slowly
to highly optimal solutions.

The error term can also be controlled with other parameters. For example, the
term with the worst growth behavior, (1 + C2∆t), can be made arbitrarily small
by decreasing the integration time of the simulator. However, making this change
incurs a higher computational cost per trajectory, limiting the number of trajectories
`, finished by the end of the allocated planning budget. Similarly, the entire error
term can also be controlled by decreasing the discount factor γ, at the cost of using
less information about the future.

Our theoretical analysis validates the algorithm and provides an explainable inter-
pretation of the decision making process. In addition, the discussion of the effect
of branch length H and, to a lesser extent ∆t and γ, makes it clear that our anal-
ysis also enables systematic parameter design of various decision making agents.

21

Figure 2.3: Optimal Convergence Rate and Asymptotic Error for Double Integrator
System.

For example, if a robot operates in a dynamic environment and has to re-plan fre-
quently to react to new information, the designer can tune parameters to sacrifice
some combination of asymptotic error (larger H), dynamics fidelity (larger ∆t), or
long-term planning (smaller K). Alternatively, when a robot operates in a relatively
static environment, but has complex long-term behavior to discover, the designer
should allocate more budget to each plan. The former example corresponds to our
quadrotor experiment in Sec. 2.5 and the latter example corresponds to the glider
experiment in Sec. 2.5.

2.5 Experimental Results
In this section, we present the results of our algorithm in four experiment, three on
different robotic platforms and one in simulation. SETS demonstrates new deci-
sion making capabilities on a quadrotor in a windy arena, a ground vehicle driving
through an obstacle course, and a team of spacecraft catching and redirecting a
piece of debris in a fictitious space environment. Our breadth of experiments high-
lights the ease of deploying SETS to new robotic platforms. We compare against
state-of-the-art baselines in simulation, and analyze the empirical results of our the-
oretical guarantees. The implementation details and videos for all experiments are
included in the Supplemental Materials.

22

Figure 2.4: Quadrotor Experiment.

Quadrotor navigates a dangerous wind field
Our first experiment uses SETS to plan trajectories for a quadrotor to monitor mul-
tiple targets in a cluttered 3D environment of dangerous wind drafts and moving
obstacles and is shown in Fig. 2.4.

This experiment is designed to test the ability of SETS to quickly plan in high-
dimensional space subject to quadrotor’s dynamics and external forcing from aero-
dynamic interactions. In particular, the dynamics model used by SETS is the stan-
dard quadrotor model augmented with a DNN to model the learned residual wind
force. In addition, the algorithm must run in real-time to offer corrections to drift
and to react to new information.

This problem is challenging for existing solutions because the varying wind strength
and its effect on the dynamics determine path feasibility. Therefore, the prob-

23

lem is not decomposable into position path planning then tracking control. Fur-
thermore, an indicator reward, dense obstacle configuration, and multiple goal re-
gions make it challenging to accurately model with conventional motion planning
or optimization-based frameworks. Instead, the algorithm must find a global solu-
tion by searching through complex dynamics.

The experimental arena, shown in Fig. 2.4A, is a cube with 3 m side lengths where
the Caltech Real Weather Wind Tunnel generates controlled columns of air to sus-
pend and move spherical obstacles and observation targets. In addition to the phys-
ical obstacles, there exist dangerous and benign regions of flow of varying speed
that affect the planning problem. The search tree is visualized by projecting the 12-
dimensional state trajectories onto the 2-dimensional surface of the fan array. The
branches are colored by when they were expanded: purple are the first trajectories
in the tree and yellow are the last trajectories in the tree. Monte Carlo Tree Search
algorithms adaptively concentrate on promising trajectories, and therefore the yel-
low trajectories serve as an indicator of the plan of the algorithm: we can see that
these trajectories concentrate to stretch between the origin and each of the target
locations.

The SETS tree is constructed with the spectrum of the locally linearized control-
lability Gramian, shown in Fig. 2.4B. The modes in still air are intuitive: the first
mode (column) of the spectrum corresponds to accelerating the vertical velocity, vz,
and the next two modes correspond to a pitch and roll maneuver, φ and θ, respec-
tively. The modes in the thermal are more diffuse and are beyond human intuition,
yet they are a provably efficient representation of the complex dynamics. For ex-
ample, it becomes much harder for the quadrotor to excite the yaw, ψ, degree of
freedom independently from the other degrees of freedom.

The resulting trajectory from this experiment is shown in Fig. 2.4C, where we see
the quadrotor visit all the targets while avoiding obstacles and dangerous winds. In
order to observe the target, the quadrotor has to be within a sensing radius of 50 cm
of the center of the target (visualized in Fig. 2.4B). The physical size of the target
creates an obstacle of 30 cm radius, leaving a feasible viewing volume of 0.3 m3 for
each target. The ability to find and stitch these “needle-in-a-haystack" pieces of the
solution while executing a precise and dynamically stable maneuver demonstrates
the precision of SETS’s exploration.

The overall mission progress is described the by the the distance to each target
over time is plotted and the cumulative number of targets observed, as shown in

24

Fig. 2.4D. The quadrotor visits all the targets in 37 seconds, with the final transition
through the narrow corridor of thermals taking the longest time to find a solution.
The solution’s nature is reminiscent of the Traveling Salesman Problem [31], where
SETS discovers the cost between targets and the optimal path to visit them all.
Discovering this solution automatically, rather than prescribing a sequence of way-
points, has two advantages: first, the burden on the designer to enumerate and in-
tegrate many behaviors is relieved, extending the operational envelope of the robot
and second, SETS may solve problems beyond the intuition of the designer. For ex-
ample, it is not clear to a designer at what fan strength and size a wind gust becomes
too dangerous to cross safely.

Tracked vehicle shares autonomy
Our second experiment, shown in Fig. 2.5, uses SETS for driver assist of a tracked
vehicle subject to antagonistic terrain effects, tipping constraints, obstacle avoid-
ance, and actuator degradation. This human-in-the-loop collaboration is also called
“parallel autonomy” in the self-driving car literature [13]. These experiments were
developed during the DARPA Learning Introspective Control (LINC) research pro-
gram, with various versions of the algorithm tested at the Sandia National Labora-
tory Robotic Vehicle Range. A video of this experiment is presented in Movies 2
and 3.

In the experiment, the tracked vehicle is tasked to assist a driver to traverse a 20 m ×
10 m test circuit with slippery slopes, a variety of obstacles, and a thin chicane track,
shown in Fig. 2.5A/C. In Fig. 2.5D, we zoom in on one section of the chicane track,
in which our algorithm automatically adjusts the driver’s command to maintain
safety. Passing through a particularly narrow portion of the track (less than 5 cm
clearance), without the need for an updated command from the driver, the robot
slows and turns to avoid hitting the walls from a nominal speed of 1 m/s to 0.25
m/s. SETS predicts a collision if no diversionary maneuver is taken, then creates
and executes an updated plan.

This problem is difficult to solve with existing methods because in our experiments,
human pilots prefer an interface that tracks commanded speed, rather than com-
manded waypoints, meaning a position-space goal region for motion planning does
not capture the human-robot interaction well. In addition, optimization-based ap-
proaches are challenging because exploration is needed to consider nearby candi-
date trajectories to assist the driver. For example, the human driver may command

25

Figure 2.5: Tracked Vehicle Experiment

26

a forward velocity, not understanding there exists an impending collision or risk
of tipping over, and instead of coming to a halt, our method explores alternative
plans including slowing down, backing up, and turning that ultimately provide the
commanded velocity tracking and match the operator intention. SETS adjusts the
pilot’s command to maintain safety while maintaining forward progress, displaying
intricate maneuvers such as navigating closely around obstacles, decelerating when
traversing ridges to avoid tip-over, and executing reverse turning maneuvers in tight
corners, all while experiencing adversarial track degradation and time-varying dy-
namics.

While moving through the track, the vehicle is subject to actuator degradation that
scales the control limits of each drive motor by 25% in an alternating sequence of
separate degradation and mixed degradation. This attack signal is randomly toggled
on and off with a period of approximately ten seconds. SETS is able to efficiently in-
terpret this attack signal through the local spectrum of the tracked vehicle, shown in
Fig. 2.5E/F. Here, the locally linearized dynamics have a two-dimensional control-
lable subspace, one dimension associated with moving forward/backward and one
dimension associated with turning left/right. First, we note the effect of degrading
the actuator on the spectrum: the controllability of turning mode is decreased, pro-
viding the tree search an expressive interpretation of the current physical situation.
Second, we note that the mode numbers 3, 4, and 5 have zero magnitude, imply-
ing the tracked vehicle is not locally controllable [32]. Our method provides an
informal notion of nonlinear global controllability for systems that are not locally
controllable. By stitching locally linear trajectories, SETS creates motions that are
not available to the linearized systems on their own. For example, a sideways trans-
lation can be achieved through the sequential combination of a forward snaking
motion followed by a backward snaking motion, reminiscent to motion planning
strategies in literature [33].

In program demonstrations, the same professional driver drove through the track
with and without an autonomy driver assist. Throughout the experiment, the expert
driver was asked to command the vehicle in the same adversarial manner with in-
tentional commands to try to force a safety error. We show the number of safety
violations in a selected run of the test circuit where adversarial and changing distur-
bances are present in Fig 2.5B, where we see SETS outperformed the driver alone
and completely prevented safety violations. In the chicane section, at 2:36 in Movie
1, SETS causes the robot to turn and avoid a collision with the track, despite a driver

27

command that would cause an impact. In the chicane section, at 2:45 in Movie 1,
SETS causes the robot to act more conservative, slowing down as it traverses the
narrow section. In addition, during program demonstrations, using SETS, even an
inexperienced driver is able to safely navigate the course.

SETS acts as a planning module which interacts with custom perception, con-
trol, and safety algorithms. Running in real-time model-predictive control fashion,
SETS runs at 10 Hz, generating trajectories 1.6 seconds into the future. SETS’s
ability to solve general MDPs facilitates its interaction with the other autonomy
components. For example, the hazard map combines foundational vision models
for segmentation with geometric and dynamic information to predict traversability,
enabling complex behavior: in one case, the vehicle is on a narrow path with a
large rock and a brick blocking the way. Using information from the hazard map,
SETS is able to plan a safe trajectory, rolling over the brick while avoiding the rock.
The problem is infeasible if the algorithm naively considered both obstacles as im-
passable. Only by integrating the unstructured information of the hazard map, is
SETS able to generate a safe plan. SETS also interacts with an adaptive controller,
which compensates for terrain changes and actuator degradation using parameter
adaptation to rapidly update the corresponding dynamic function. SETS uses the
system identification of the adaptive controller to update the dynamics function of
the MDP. The real-time nature of SETS and its ability to plan over a wide class of
dynamics allow it to incorporate nonlinear dynamics updates and benefit from this
real-time interaction.

Spacecraft team redirects debris
In the third and final hardware experiment, we deploy SETS on a team of space-
craft to capture and redirect a piece of space debris with a tether, reminiscent of
a NASA mission concept to capture and redirect a near-Earth asteroid [34]. This
experiment tests the ability of SETS to coordinate multiple agents and plan through
high-dimensional nonlinear dynamics induced from contact forces and tether dy-
namics.

The experiment, depicted in Fig. 2.6A, takes place in an arena with a smooth and
flat acrylic floor, where spacecraft robots hover on air bearings and are actuated with
onboard thrusters to simulate a frictionless space environment. SETS controls the
two cooperative and tethered spacecraft, and the third spacecraft is used to model an
uncooperative target that does not use its thrusters. The cooperative spacecraft are

28

Figure 2.6: Spacecraft Experiment.

tasked to arrest the motion of the target and shepherd it to exit the arena in a desired
direction. SETS predicts the motion of the three bodies and the tether, which is
modeled with a spring-mass-damper finite-element-model, while only controlling
the thruster inputs of the two cooperative spacecraft. This high-dimensional and
underactuated problem tests the ability of SETS to plan for complex dynamics over
a horizon. In particular, the two controlled spacecraft can only affect the dynamics
of the target through contact with the center of the net, and the center of the net can
only be influenced by the thrusters after propagating through the lattice elements of
the tether. This chain of dynamics requires deliberate maneuvering of the controller
spacecraft to redirect the target.

Despite these challenges, SETS automatically generates an efficient representation:
in Fig. 2.6B, the controllable modes of the system capture this networked structure

29

of the finite element tether model. The most controllable states are those associated
with the outermost nodes in the network, which are exactly the controlled space-
craft. The controllability of the nodes in the net decreases towards the center of the
structure. Importantly, the spectrum reveals that actuating the target is impossible
before contact.

SETS interprets this discrete representation of the dynamics to efficiently find near-
optimal solutions. Four trials are tested by varying the target’s initial position and
velocity. In the first, the target spacecraft is stationary and SETS finds a trajectory
that sequentially deploys, captures, and redirects. In the second and third configu-
rations, the target is initialized moving parallel to the initial cooperative spacecraft
configuration, and quick motion is required of the tethered spacecraft to move into
its way for capture. In the fourth, the target is initialized moving towards the initial
cooperative spacecraft configuration, and they execute a “trampoline-like” maneu-
ver, pulling the tether taut to springboard the target back in the desired direction.

The trajectory data for each case are shown in Fig. 2.6C. The polar plot shows
the relative angle between the x-and y-components of the target’s velocity over
time, and the two standard plots show the absolute velocities over time. The po-
lar plot, which is coordinate-aligned with the snapshots in Fig. 2.6A, shows the
relative angle for each trial converge to 270◦, which is the desired mission behavior.
Successfully controlling this high-dimensional and highly underactuated system in
real-time is only possible with SETS and ultimately enables an important new mis-
sion concept.

Aerodynamic glider performs persistent observation
In this numerical experiment, we use SETS a six degree-of-freedom glider is tasked
with target observation in the presence of a thermal updraft shown in Fig. 2.7. We
analyze tree data to make observations about the policy and value convergence and
select the branch parameter H in a principled way. We also use this experiment to
compare against external baselines and make ablation studies.

The environment is a 2 × 2 × 1 km3 volume arena and takes place over 10 min-
utes in simulation time, shown in Fig. 2.7A. The glider dynamics, parameters, and
aerodynamic coefficients are from the Aerosonde UAV [35]. The interaction of
aerodynamics, the observation objective, and the environmental thermal makes this
an interesting planning problem. In order to generate enough lift to counteract
gravity, the glider needs to average approximately 30 meters per second forward

30

Figure 2.7: Glider Experiment.

velocity. At the same time, drag drains the system’s kinetic energy and, without
exploiting the thermal, would cause the glider to crash into the ground after about
4 minutes. However, the glider can save itself by flying into the thermal, extracting
energy from the environment, and resuming its observation task. SETS discovers
this solution in real-time, running in model-predictive control fashion by generating
100 seconds of trajectory in every 45 seconds of real time on a standard laptop pro-
cessor. The trade-off between kinetic and potential energy in this periodic solution
are visualized in Fig. 2.7B. This periodic solution is challenging to generate with
existing motion planning or convex-optimization frameworks because a path to a
static goal region would either eventually cause the glider to crash or never observe
the target, and the detour to the thermal is in contradiction of the smoothed reward
gradient to the goal.

The data for the two subfigures, Fig. 2.7C/D, are generated by running SETS from
a given state, and analyzing the tree data. In Fig. 2.7C, we plot SETS’s root node
value estimate versus the number of simulations. As predicted by our theoretical
result, Theorem 1, the branch length parameter controls the trade-off between con-
vergence rate and error: short branches have slow convergence to small steady-state
error, and long branches have fast convergence to large steady-state error. The H =

31

500 case induces such a high complexity problem that it is unable to overtake the
H = 1000 estimate within the operating regime of 105 simulations (10 minutes of
wall-clock time). This plot informs our decision to select the optimal branch length
H = 1000.

We use the same value estimate data in the baseline study, which is designed to iso-
late the effect of representation and exploration strategy. For choices of representa-
tion (low-level construction of nodes and edges), we implement spectral expansion
(SE), uniform discretization (UD), and double progressive widening (DPW) [36].
The SE method is ours, the UD approach discretizes the action space with η dis-
crete points per dimension, and the DPW method samples from the action space
where more samples are given to promising nodes. For choices of exploration strat-
egy (high-level search on existing nodes and edges), we implement Monte Carlo
Tree Search (MCTS) [19] and predictive sampling (PS) [37], where PS is a uni-
form sampling approach that returns the best trajectory found. The baselines and
our method in Fig. 2.7C are a straightforward permutation of representation and
exploration strategy. Finally, the baseline data in Fig. 2.7C is generated by running
each solver over 10 random seeds for branch lengths H = 100, 500, 1000, 2000 and
discretization levels η = 3, 5, 7, 11, where only the best variant of each baseline is
shown. Other than our approach, the only algorithm that performs well is spectral
expansion with predictive sampling, (SE-PS). In fact, SE-PS H = 1000 outperforms
SETS H = 500, suggesting that representation, not exploration strategy, is the most
important component of optimal decision making for dynamical systems.

In Fig. 2.7D, we define a measure of the tree’s confidence at a particular depth
as the most visited node’s fraction of the total visit count, and plot it versus the
depth and size of the tree. The relative visitation frequency is a metric for the tree’s
confidence in its action selection because of the Upper Confidence Bound rule of
Monte Carlo Tree Search [19]: actions are selected by their optimistic estimated
value and when the visitations are highly concentrated to a single action, the opti-
mistic estimated value of the other actions is less than that of the highly visited (and
therefore well-estimated) selected action. As the number of simulation increases,
concentration occurs deeper in the tree, indicating the plan is being refined further
into the future, and that the tree has reached sufficient confidence in the plan until
that point. When running in receding-horizon fashion, the time between replanning
steps should allow a highly confident plan to develop.

32

2.6 Related Work
We present a qualitative comparison with existing approaches and provide perspec-
tives on how our work will impact the future of robotics.

Optimization and gradient-based planning
Some decision making problems can be solved with convex optimization tech-
niques [6, 7]. Taking advantage of fast numerical solvers (e.g. [38]), this family
of methods has been shown to solve, in real-time, a variety of challenging dynami-
cal problems including quadrotor drone racing [39], in-orbit assembly[40], bipedal
locomotion [41], swarm coordination [42] and swarm coverage [43]. A variety
of techniques, including sequential convex programming [6], collocation [41], and
single and multiple shooting methods [44–46] enable this method to be applied
to non-convex problems, though theoretical analysis of these methods has shown
convergence is limited to a local minima [47, 48]. However, the general decision
making problem’s state, input, dynamics, and reward specifications can each cre-
ate local minima traps under which a pure exploitation strategy will fail to find the
global optimal solution. The classical example is the bug trap problem [28], where
the obstacle configuration will cause methods that do not explore to converge to a
highly sub-optimal point. Recent inspired work [49] has proposed avoiding local
minima in motion planning by partitioning the environment into convex sets and
solving a relaxed mixed-integer program.

Compared to these approaches, SETS provides globally optimal solutions by per-
forming a discrete search on a carefully constructed representation. For example,
the quadrotor navigates around local minima traps from obstacles and wind gusts
and the glider temporarily ignores the high reward of visiting the target and instead
navigates to the thermal to maintain altitude and energy constraints.

Sampling-based motion planning
The standard robotics approach to overcome the nonconvexities inherent in prob-
lem data, such as traps from obstacle configurations, is sampling-based search [5].
Foundational methods such as Probabilistic Roadmaps (PRM) [4], Rapidly-Exploring
Random Trees (RRT) [3] and their variations (e.g. RRT* [50]) sample configura-
tions and use a local planner to build trees and graphs on which to perform global
optimization. Although RRT was originally designed for kinodynamic planning,
these planners are most commonly used as geometric path planners.

Applying sampling-based planning for dynamical systems has two challenges: first,

33

the higher-order states increase the dimensionality of the system, resulting in slow
convergence and poor performance and second, these methods rely on the existence
of a local planner capable of solving arbitrary two-point boundary value problems.
Addressing these challenges is an active area of research. For example, Stable-
Sparse-RRT (SST) [51] relaxes the knowledge of a local planner by sampling con-
trol inputs to generate dynamically feasible paths, then prunes redundant edges to
maintain a sparse tree. Another work [52] considers quasi-Monte Carlo sampling
to speed convergence of tree search for control-affine and driftless control-affine
systems. Discontinuity-bounded A* [53] is similar to our work in that they plan for
high-dimensional dynamical systems over a discrete structure of motion primitives,
and is different because their motion primitives are generated offline by sampling
input and goal states. The generation and integration of motion primitives into dis-
crete planning has a rich history [54–56].

As in our work, the Differential Fast Marching Tree method [57] mentions the con-
trollability Gramian for planning. Whereas this work considers two-point boundary
value problems for linear systems with drift, and uses the Gramian to check reach-
ability from states sampled from the high-dimensional space, we consider a broad
class of nonlinear systems and non-convex rewards, and avoid sampling the high-
dimensional space by using the Gramian’s spectrum to direct exploration. Other
inspired works that blend control and planning are LQR-trees [58] and funnel li-
brary planning [59], both of which rely on sum-of-square programming to compute
regions of attraction upon which the discrete planner searches.

The search strategy of SETS is unique in that it does not sample from the state
or control space, a strategy which scales poorly in high-dimensional spaces, and
instead rely on the spectrum of the locally linearized dynamics to automatically
construct motion primitives in real-time. This conceptual difference manifests it-
self in new robotic capabilities: to the best of our knowledge, there do not exist
kinodynamic motion planners that search in real-time through a high-dimensional
nonlinear dynamics such as a 12-dimensional quadrotor with DNN-modeled wind
effects.

In addition to the differences in search strategies, our work differentiates itself in
the generality of the problem assumptions. Whereas the conventional motion plan-
ning problem requires a static, position-space goal region [60], the decision making
problem relaxes this assumption. This is useful in instances where a goal region
does not capture the essence of the problem, or when the goal region is difficult

34

or impossible to define. For example, in chess, a notion of a goal region could be
“the set of all positions in which the opponent king is checkmated”, but this set
is challenging to enumerate or path to with a motion planning method. With this
in mind, the experiments in this paper are selected because they are easily formu-
lated as decision making problems, but they cannot be cast as motion planning. For
example, in the tracked vehicle experiments, human drivers preferred interfacing
with an algorithm that tracks their commanded velocity rather than navigates to a
waypoint, implying a conventional motion planning framework with a position goal
region does not model the human-robot interaction well. The minimally invasive
velocity-tracking interaction is similar to that presented in [61]. In the glider exper-
iment, the glider is not tasked to plan between the thermal and target, but to simply
find the best way to observe the target. A static goal region does not exist because
the optimal behavior is to oscillate between observing the target and the thermal.
Besides immediately growing the set of feasible robot behaviors, the more general
problem framework places decision making as a more natural foundation to extend
to stochastic dynamics [23], partially observable [62–64], and game-theoretic [65]
settings.

There is a recent body of work on sampling-based model predictive control meth-
ods, including cross-entropy motion planning [66] and model predictive path in-
tegral control [67]. By sampling many trajectories then performing a weighted
average, these methods have shown impressive performance in scenarios including
autonomous driving [67] and manipulation [68]. These methods have also shown
straightforward integration with high-fidelity simulators [69] and learned dynamics
models [67]. These strategies traditionally perturb inputs with Gaussian noise to
promote exploration, but without careful tuning of noise distributions and averag-
ing temperature, this can lead to slow exploration or the generated policies getting
stuck in local minima. Alternative sampling strategies have been investigated, such
as sampling splines in state space [68], but their theoretical role is unclear. In con-
trast, our method uses MCTS to automatically balance exploration and exploitation
with an established theoretical mechanism based on minimum regret online learn-
ing [30], ultimately enabling our algorithm to avoid local minima and guarantee
global convergence.

Sampling-based search is also investigated in the partially observable case. Al-
gorithms for handling continuous state and action spaces have focused on particle
filtering methods, with specializations to overcome the challenges inherent in un-

35

certain observations such as sharing observation data in the tree [70], progressive
widening [63], or linear filtering [64]. We bring our attention to the fully observed
case to focus on the difficulty of decision making, rather than combined decision
making and information gathering. There is recent work that transforms a stochastic
planning problem into a deterministic planning problem [71], moving the difficulty
of dealing with stochastic dynamics and observations into same decision making
framework we consider.

Reinforcement learning
The decision making problem in its full generality is studied in the reinforcement
learning community. The most comparable technology in this field is the plan-
ning component of model-based reinforcement learning; once the dynamics and
reward model are learned, the planning component finds the optimal value and
policy. The classical planning methods using dynamics and reward models are
value and policy iteration [2, 8]. The fundamental issue with these methods, which
persists in modern approaches, is that representing a high-dimensional continuous
space has a high complexity [72, 73]. The direct approach is to discretize the state
and action space and run value iteration, but this has a storage complexity that is
exponential in the state dimension, making these methods computationally infea-
sible for high-dimensional robot applications. Research has developed in multi-
grid [74] and adaptive-grid [75] representations, but the practical gains in scaling
to high-dimensional systems are marginal. Recent inspired work [76] has proposed
a tensor-based method that exploits a low-rank decomposition of value functions,
enabling efficient discretization and improved policy generation on systems of com-
parable dimensionality to our experiments.

An alternate reinforcement learning approach is that of model-free methods that
directly learn correlations between observations and optimal actions without ex-
plicitly using a dynamics or reward function [77, 78]. Policy gradient methods
have offered a powerful technique to handle continuous state and action spaces,
with methods such as Proximal Policy Optimization [79] becoming a standard tool
in the community. In special cases, such as linear-quadratic regulation [80], global
convergence results exist. However, the general convergence of these algorithms
in continuous space is limited to local stationary points [81]. Additional work
has gone on to classify these stationary points between problems, drawing con-
clusions about structural similarities that help policy gradient methods converge
globally [82]. These methods, while powerful and general, require large datasets

36

and an offline training phase. These methods suffer fundamentally from domain

shift, the difference between the offline training environments and the environment
of the deployed system. In contrast to data-driven reinforcement learning methods,
our algorithm is able to run on a never-before-seen problem with guaranteed global
convergence to an optimal solution, thus avoiding the danger of domain shift.

A natural direction to develop real-time intelligence is via anytime algorithms that
can be stopped at an arbitrary point, returning satisfactory solutions that increase
in quality as more time is given. In the world of decision making, the prototyp-
ical example is Monte Carlo Tree Search [21], an algorithm that simulates ran-
dom trajectories while biasing towards actions of high reward. Exhaustive [83] and
uniformly random searches [37] have been shown to be effective in some scenar-
ios, but the improved strategic exploration of MCTS enables convergence in prob-
lems where simpler techniques fail to efficiently search the combinatorially large
space. Although MCTS can perform very well in traditional artificial intelligence
settings such as games, the complexity of the high-dimensional and continuous
world presents a fundamental challenge. Directly sampling the action space [23],
even with sophisticated strategies [84, 85], induces trees with large width (sam-
pling high-dimensional continuous action space, creating a high branching factor)
and large depth (discretizing time and making a large number of decisions over the
horizon).

Temporal abstraction, or options [86], is a principled framework to make decisions
over sequences of actions and reduce the complexity of decision making. Options
in decision making are analogous to motion primitives in motion planning. There
has been work in option construction [87, 88] by hand [89] and by using previously
generated solutions to speed up an online evaluation and in option construction [90]
in the partially observable setting. In contrast, our solution automatically generates
options in a provably correct and widely applicable framework.

Data-driven methods [91], and combinations with gradient-based techniques [92–
94], have also been deployed for decision making. However, their reliance on large
amounts of demonstration data during an offline training phase limits their applica-
bility to systems and scenarios where the complete problem data is known ahead
of time. In contrast, our method can be deployed on a never-before-seen problem,
and, for any allowed computational budget, produce a plan of approximately opti-
mal decisions that increases in quality with more time.

37

2.7 Discussion
We expect SETS to positively impact design of autonomous systems and funda-
mental research in decision making. From a design perspective, SETS provides
many important advantages: first, SETS interfaces naturally with other autonomy
components, as demonstrated in Sec. 2.5, and can be used for new and diverse tasks
and systems, relieving the burden on the designer and extending the operational en-
velope of an autonomous robot. Second, because the search tree of SETS can be
visualized and analyzed, it has a high degree of explainability and can be tuned and
verified by the user. Third, because SETS is efficient enough to run in real-time, it
reacts to new information on-the-fly. For these reasons, we believe SETS can be a
default choice for planners in a wide range of autonomy applications.

From a research perspective, SETS builds an important connection between dynam-
ical systems and machine learning. To develop this connection, we can interpret
the tree policy as an online learning process of a categorical distribution on each
node’s children. Our theoretical result, which applies to a broad class of dynami-
cal systems, suggests the spectrum of the local controllability Gramian can be used
as proveably correct and widely applicable learning features. These features en-
able real-time learning for complex dynamical systems by simplifying the decision
making problem to selecting among a set of natural motions of the system. Al-
though beyond the scope of this work, we foresee the application of these features
for offline policy learning, kinodynamic motion planning, and other sampling-based
planning [85], providing reduction in computational complexity and improved con-
vergence rates.

From the algorithmic complexity perspective, SETS reduces complexity in two sep-
arate mechanisms as compared to the uniform-discretization approach: First, as
SETS plans over trajectories instead of individual actions, the total tree depth is
decreased by a factor of H, where H is the duration of a trajectory generated by
the spectral nodal expansion. Second, the width of the tree (branching factor) is
decreased from an exponential dependency on control dimension to a linear depen-
dency on state dimension. This is enabled because each child node uniquely tracks
one of the basis vectors of the controllable subpsace and, from linear theory, the
number of basis vectors is upper bounded by the state dimension. In contrast, for
a uniform discretization, the number of elements in the m-cube has an exponential
dependence on the m. The number of combinations in the tree, (i.e. width to the
power of depth) is important because it appears in the convergence rate analysis of

38

MCTS.

39

BIBLIOGRAPHY

[1] Benjamin Rivière*, John Lathrop*, and Soon-Jo Chung. “Monte Carlo Tree
Seach for Dynamical Systems with Spectral Expansion”. In: (Review at Sci-
ence Robotics) (2024).

[2] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] Steven LaValle. “Rapidly-exploring random trees: A new tool for path plan-
ning”. In: Research Report 9811 (1998).

[4] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[5] Andreas Orthey, Constantinos Chamzas, and Lydia E Kavraki. “Sampling-
Based Motion Planning: A Comparative Review”. In: Annual Review of Con-
trol, Robotics, and Autonomous Systems 7 (2023).

[6] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. “Model predictive
control of swarms of spacecraft using sequential convex programming”. In:
Journal of Guidance, Control, and Dynamics 37.6 (2014), pp. 1725–1740.

[7] Danylo Malyuta et al. “Convex optimization for trajectory generation”. In:
arXiv preprint arXiv:2106.09125 (2021).

[8] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Intro-
duction. MIT press, 2018.

[9] Yashwanth Kumar Nakka et al. “Information-Based Guidance and Control
Architecture for Multi-Spacecraft On-Orbit Inspection”. In: Journal of Guid-
ance, Control, and Dynamics 45.7 (2022), pp. 1184–1201. doi: 10.2514/1.
G006278.

[10] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and mo-
tion planning in the now”. In: IEEE International Conference on Robotics
and Automation. 2011, pp. 1470–1477.

[11] Caelan Reed Garrett et al. “Integrated task and motion planning”. In: Annual
review of control, robotics, and autonomous systems 4 (2021), pp. 265–293.

[12] Brian Paden et al. “A survey of motion planning and control techniques for
self-driving urban vehicles”. In: IEEE Transactions on intelligent vehicles
1.1 (2016), pp. 33–55.

[13] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. “Planning and
decision-making for autonomous vehicles”. In: Annual Review of Control,
Robotics, and Autonomous Systems 1 (2018), pp. 187–210.

40

[14] Yunlong Song et al. “Reaching the limit in autonomous racing: Optimal
control versus reinforcement learning”. In: Science Robotics 8.82 (2023),
eadg1462. doi: 10.1126/scirobotics.adg1462.

[15] Pieter Abbeel et al. “An Application of Reinforcement Learning to Aerobatic
Helicopter Flight”. In: Advances in Neural Information Processing Systems.
Ed. by B. Schölkopf, J. Platt, and T. Hoffman. Vol. 19. MIT Press, 2006. url:
https://proceedings.neurips.cc/paper_files/paper/2006/
file/98c39996bf1543e974747a2549b3107c-Paper.pdf.

[16] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep Learning for Detecting
Robotic Grasps”. In: Proceedings of Robotics: Science and Systems. Berlin,
Germany, June 2013. doi: 10.15607/RSS.2013.IX.012.

[17] Guillermo A Castillo et al. “Robust feedback motion policy design using re-
inforcement learning on a 3d digit bipedal robot”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2021, pp. 5136–5143.

[18] Michael Kearns, Yishay Mansour, and Andrew Y Ng. “A sparse sampling
algorithm for near-optimal planning in large Markov decision processes”.
In: Machine learning 49 (2002), pp. 193–208.

[19] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”.
In: European Conference on Machine Learning. Springer. 2006, pp. 282–
293.

[20] Rémi Munos et al. “From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning”. In: Foundations and Trends®
in Machine Learning 7.1 (2014), pp. 1–129.

[21] Cameron B Browne et al. “A survey of monte carlo tree search methods”.
In: IEEE Transactions on Computational Intelligence and AI in games 4.1
(2012), pp. 1–43.

[22] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2014.

[23] David Auger, Adrien Couetoux, and Olivier Teytaud. “Continuous upper
confidence trees with polynomial exploration–consistency”. In: Machine Learn-
ing and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2013, Prague, Czech Republic. Springer. 2013, pp. 194–209.

[24] Devavrat Shah, Qiaomin Xie, and Zhi Xu. “Non-asymptotic analysis of monte
carlo tree search”. In: Abstracts of the 2020 SIGMETRICS/Performance Joint
International Conference on Measurement and Modeling of Computer Sys-
tems. 2020, pp. 31–32.

[25] David Silver et al. “Mastering the game of Go without human knowledge”.
In: Nature 550.7676 (2017), pp. 354–359. url: https://doi.org/10.
1038/nature24270.

41

[26] Stephen Boyd et al. Linear Matrix Inequalities in System and Control The-
ory. SIAM, 1994.

[27] Kemin Zhou and John Comstock Doyle. Essentials of robust control. Vol. 104.
Prentice hall Upper Saddle River, NJ, 1998.

[28] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Plan-
ning Library”. In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012).
https://ompl.kavrakilab.org, pp. 72–82. doi: 10.1109/MRA.2012.
2205651.

[29] Benjamin Riviere et al. “Neural tree expansion for multi-robot planning in
non-cooperative environments”. In: IEEE Robotics and Automation Letters
6.4 (2021), pp. 6868–6875.

[30] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. “Improved monte-
carlo search”. In: Univ. Tartu, Estonia, Tech. Rep 1 (2006), pp. 1–22.

[31] Merrill M Flood. “The traveling-salesman problem”. In: Operations research
4.1 (1956), pp. 61–75.

[32] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduc-
tion for Scientists and Engineers. USA: Princeton University Press, 2008.
isbn: 0691135762.

[33] Richard Martin Murray. Robotic Control and Nonholonomic Motion Plan-
ning. University of California, Berkeley, 1991.

[34] Asteroid Redirect Mission Reference Concept. https://www.nasa.gov/
wp - content / uploads / 2015 / 04 / asteroid _ redirect _ mission _
reference_concept_description_tagged.pdf. Accessed: 2024-05-
16.

[35] Randal W Beard and Timothy W McLain. Small Unmanned Aircraft: Theory
and Practice. Princeton university press, 2012.

[36] Adrien Couëtoux et al. “Continuous upper confidence trees”. In: Learning
and Intelligent Optimization: 5th International Conference, LION 5, Rome,
Italy, January 17-21, 2011. Selected Papers 5. Springer. 2011, pp. 433–445.

[37] Taylor Howell et al. “Predictive sampling: Real-time behaviour synthesis
with mujoco”. In: arXiv preprint arXiv:2212.00541 (2022).

[38] MOSEK ApS. MOSEK Fusion for C++ 10.1.21. 2019. url: https://docs.
mosek.com/latest/cxxfusion/index.html.

[39] Philipp Foehn, Angel Romero, and Davide Scaramuzza. “Time-optimal plan-
ning for quadrotor waypoint flight”. In: Science Robotics 6.56 (2021), eabh1221.

[40] Rebecca C Foust et al. “Autonomous in-orbit satellite assembly from a mod-
ular heterogeneous swarm”. In: Acta Astronautica 169 (2020), pp. 191–205.

42

[41] Ayonga Hereid et al. “3D dynamic walking with underactuated humanoid
robots: A direct collocation framework for optimizing hybrid zero dynam-
ics”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2016, pp. 1447–1454.

[42] Daniel Morgan et al. “Swarm assignment and trajectory optimization us-
ing variable-swarm, distributed auction assignment and sequential convex
programming”. In: The International Journal of Robotics Research 35.10
(2016), pp. 1261–1285.

[43] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. “Unifying geometric,
probabilistic, and potential field approaches to multi-robot deployment”. In:
The International Journal of Robotics Research 30.3 (2011), pp. 371–383.

[44] David Mayne. “A second-order gradient method for determining optimal tra-
jectories of non-linear discrete-time systems”. In: International Journal of
Control 3.1 (1966), pp. 85–95.

[45] HG Bock et al. “A direct multiple shooting method for real-time optimiza-
tion of nonlinear DAE processes”. In: Nonlinear model predictive control.
Springer. 2000, pp. 245–267.

[46] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design
for nonlinear biological movement systems”. In: First International Confer-
ence on Informatics in Control, Automation and Robotics. Vol. 2. SciTePress.
2004, pp. 222–229.

[47] Quoc Tran Dinh and Moritz Diehl. “Local convergence of sequential con-
vex programming for nonconvex optimization”. In: Recent Advances in Op-
timization and its Applications in Engineering: The 14th Belgian-French-
German Conference on Optimization. Springer. 2010, pp. 93–102.

[48] Riccardo Bonalli et al. “Gusto: Guaranteed sequential trajectory optimization
via sequential convex programming”. In: 2019 International conference on
robotics and automation (ICRA). IEEE. 2019, pp. 6741–6747.

[49] Tobia Marcucci et al. “Motion planning around obstacles with convex opti-
mization”. In: Science Robotics 8.84 (2023), eadf7843.

[50] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for opti-
mal motion planning”. In: Int. J. Robotics Res. 30.7 (2011), pp. 846–894.
doi: 10.1177/0278364911406761.

[51] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. “Asymptotically opti-
mal sampling-based kinodynamic planning”. In: The International Journal of
Robotics Research 35.5 (2016), pp. 528–564. doi: 10.1177/0278364915614386.

[52] Ernesto Poccia. “Deterministic sampling-based algorithms for motion plan-
ning under differential constraints”. PhD thesis. Master’s thesis, Pisa Univ.,
Pisa, Italy, 2017.

43

[53] Wolfgang Hönig, Joaquim Ortiz de Haro, and Marc Toussaint. “db-A*: Discontinuity-
bounded Search for Kinodynamic Mobile Robot Motion Planning”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2022, Ky-
oto, Japan, October 23-27, 2022. IEEE, 2022, pp. 13540–13547. doi: 10.
1109/IROS47612.2022.9981577.

[54] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Real-time motion plan-
ning for agile autonomous vehicles”. In: Journal of guidance, control, and
dynamics 25.1 (2002), pp. 116–129.

[55] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Maneuver-based mo-
tion planning for nonlinear systems with symmetries”. In: IEEE Transactions
on Robotics 21.6 (2005), pp. 1077–1091.

[56] Matteo Saveriano et al. “Dynamic movement primitives in robotics: A tuto-
rial survey”. In: The International Journal of Robotics Research (2021).

[57] Edward Schmerling, Lucas Janson, and Marco Pavone. “Optimal sampling-
based motion planning under differential constraints: the drift case with lin-
ear affine dynamics”. In: 2015 54th IEEE Conference on Decision and Con-
trol (CDC). IEEE. 2015, pp. 2574–2581.

[58] Russ Tedrake. “LQR-Trees: Feedback motion planning on sparse random-
ized trees”. In: Robotics: Science and Systems (2009).

[59] Anirudha Majumdar and Russ Tedrake. “Funnel libraries for real-time ro-
bust feedback motion planning”. In: The International Journal of Robotics
Research 36.8 (2017), pp. 947–982.

[60] Sertac Karaman and Emilio Frazzoli. “Optimal kinodynamic motion plan-
ning using incremental sampling-based methods”. In: 49th IEEE conference
on decision and control (CDC). IEEE. 2010, pp. 7681–7687.

[61] Wilko Schwarting et al. “Safe nonlinear trajectory generation for parallel au-
tonomy with a dynamic vehicle model”. In: IEEE Transactions on Intelligent
Transportation Systems 19.9 (2017), pp. 2994–3008.

[62] David Silver and Joel Veness. “Monte-Carlo Planning in Large POMDPs”.
In: Advances in Neural Information Processing Systems. Ed. by J. Lafferty
et al. Vol. 23. 2010.

[63] Zachary Sunberg and Mykel Kochenderfer. “Online algorithms for POMDPs
with continuous state, action, and observation spaces”. In: Proceedings of the
International Conference on Automated Planning and Scheduling. Vol. 28.
2018, pp. 259–263.

[64] James Ragan, Benjamin Riviere, and Soon-Jo Chung. “Bayesian Active Sens-
ing for Fault Estimation with Belief Space Tree Search”. In: AIAA Scitech.
Jan. 2023. doi: 10.2514/6.2023-0874.

44

[65] Viliam Lisy et al. “Convergence of Monte Carlo Tree Search in Simultane-
ous Move Games”. In: Advances in Neural Information Processing Systems.
Vol. 26. 2013.

[66] Marin Kobilarov. “Cross-entropy motion planning”. In: The International
Journal of Robotics Research 31.7 (2012), pp. 855–871.

[67] Grady Williams et al. “Aggressive driving with model predictive path integral
control”. In: 2016 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2016, pp. 1433–1440.

[68] Mohak Bhardwaj et al. “Storm: An integrated framework for fast joint-space
model-predictive control for reactive manipulation”. In: Conference on Robot
Learning. PMLR. 2022, pp. 750–759.

[69] Corrado Pezzato et al. “Sampling-based model predictive control leverag-
ing parallelizable physics simulations”. In: arXiv preprint arXiv:2307.09105
(2023).

[70] Neha Priyadarshini Garg, David Hsu, and Wee Sun Lee. “Despot-alpha: On-
line pomdp planning with large state and observation spaces.” In: Robotics:
Science and Systems. Vol. 3. 2019, pp. 3–2.

[71] Yashwanth Kumar Nakka and Soon-Jo Chung. “Trajectory Optimization of
Chance-Constrained Nonlinear Stochastic Systems for Motion Planning Un-
der Uncertainty”. In: IEEE Transactions on Robotics (2022).

[72] Richard S. Sutton. “Planning by Incremental Dynamic Programming”. In:
Machine Learning Proceedings. San Francisco, CA, 1991, pp. 353–357. doi:
https://doi.org/10.1016/B978-1-55860-200-7.50073-8.

[73] Thomas M Moerland et al. “Model-based reinforcement learning: A survey”.
In: Foundations and Trends in Machine Learning 16.1 (2023), pp. 1–118.

[74] Chee-S Chow and John N Tsitsiklis. “An optimal one-way multigrid algo-
rithm for discrete-time stochastic control”. In: IEEE Transactions on Auto-
matic Control 36.8 (1991), pp. 898–914.

[75] Remi Munos and Andrew Moore. “Variable resolution discretization in opti-
mal control”. In: Machine learning 49 (2002), pp. 291–323.

[76] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. “High-dimensional
stochastic optimal control using continuous tensor decompositions”. In: The
International Journal of Robotics Research 37.2-3 (2018), pp. 340–377.

[77] Athanasios S Polydoros and Lazaros Nalpantidis. “Survey of model-based
reinforcement learning: Applications on robotics”. In: Journal of Intelligent
& Robotic Systems 86.2 (2017), pp. 153–173.

[78] Kai Arulkumaran et al. “Deep reinforcement learning: A brief survey”. In:
IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38.

45

[79] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[80] Maryam Fazel et al. “Global convergence of policy gradient methods for the
linear quadratic regulator”. In: International conference on machine learn-
ing. PMLR. 2018, pp. 1467–1476.

[81] Kaiqing Zhang et al. “Global convergence of policy gradient methods to (al-
most) locally optimal policies”. In: SIAM Journal on Control and Optimiza-
tion 58.6 (2020), pp. 3586–3612.

[82] Jalaj Bhandari and Daniel Russo. “Global optimality guarantees for policy
gradient methods”. In: Operations Research (2024).

[83] Edward Schmerling et al. “Multimodal probabilistic model-based planning
for human-robot interaction”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 3399–3406.

[84] Beomjoon Kim et al. “Monte carlo tree search in continuous spaces using
voronoi optimistic optimization with regret bounds”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 34. 2020, pp. 9916–9924.

[85] Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. “Model pre-
dictive path integral control: From theory to parallel computation”. In: Jour-
nal of Guidance, Control, and Dynamics 40.2 (2017), pp. 344–357.

[86] Richard S. Sutton, Doina Precup, and Satinder Singh. “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learn-
ing”. In: Artificial Intelligence 112.1 (1999), pp. 181–211. issn: 0004-3702.
doi: https://doi.org/10.1016/S0004-3702(99)00052-1.

[87] Aijun Bai, Siddharth Srivastava, and Stuart Russell. “Markovian State and
Action Abstractions for MDPs via Hierarchical MCTS”. In: Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence,
New York, NY. Ed. by Subbarao Kambhampati. IJCAI/AAAI Press, 2016,
pp. 3029–3039. url: http://www.ijcai.org/Abstract/16/430.

[88] Yiyuan Lee, Panpan Cai, and David Hsu. “MAGIC: Learning Macro-Actions
for Online POMDP Planning ”. In: Proceedings of Robotics: Science and
Systems. Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.041.

[89] Maarten De Waard, Diederik M Roijers, and Sander CJ Bakkes. “Monte carlo
tree search with options for general video game playing”. In: 2016 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE. 2016,
pp. 1–8.

[90] Arec Jamgochian et al. Constrained Hierarchical Monte Carlo Belief-State
Planning. 2023. arXiv: 2310.20054 [cs.AI].

[91] Richard S Sutton et al. “Policy gradient methods for reinforcement learning
with function approximation”. In: Advances in neural information process-
ing systems 12 (1999).

46

[92] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-
efficient approach to policy search”. In: Proceedings of the 28th International
Conference on machine learning (ICML-11). 2011, pp. 465–472.

[93] Sergey Levine and Vladlen Koltun. “Guided policy search”. In: International
conference on machine learning. PMLR. 2013, pp. 1–9.

[94] Benjamin Rivière et al. “GLAS: Global-to-Local Safe Autonomy Synthe-
sis for Multi-Robot Motion Planning With End-to-End Learning”. In: IEEE
Robotics and Automation Letters 5.3 (2020), pp. 4249–4256. doi: 10.1109/
LRA.2020.2994035.

47

C h a p t e r 3

MCTS FOR BELIEF-SPACE PLANNING

How to construct trees and search over probability distributions?

This chapter is based on the publications:

James Ragan*, Benjamin Rivière*, and Soon-Jo Chung. “Bayesian Active
Sensing for Fault Estimation with Belief Space Tree Search”. In: AIAA

SciTech (2023). doi: 10.2514/6.2023-0874.

James Ragan, Benjamin Rivière, and Soon-Jo Chung. “Dreaming to Disam-
biguate: Safe Fault Estimation via Active Sensing Tree Search”. In: (Review

at Science Robotics) (2024).

The * denotes equal contribution.

3.1 Motivation
Autonomous robots operating independently of human-in-the-loop control offer the
potential for dramatically increased capability by enabling faster operations and
better performance in domains ranging from search and rescue [3] to planetary ex-
ploration [4]. However, a fully autonomous robot must be able to independently
diagnose and recover from various component faults at a system level without wait-
ing for outside guidance, especially when the robot’s safety is time dependent, such
as during autonomous driving [5] or when the system has a limited lifetime due to
environmental degradation [6].

Spacecraft are motivating class of systems because time-delay and real-time au-

48

Figure 3.1: Safe fault estimation on robotic spacecraft.

tonomous operation makes human-in-the-loop interventions difficult if not impos-
sible. As the number of space systems increase, so too do the number of failures.
Over 2009-2016, the world launched an average of 46 small satellites per year, with
42.6% of launches terminating in failure or partial failure, with at least 27 of these
lost missions attributed to actuator or sensor failure [7]. On Earth, unmanned aerial
vehicles have a failure rate on the order of 1 in every 1000 hours of operation [8],
though failures can occur much sooner in some domains and partial failures are
reported to regularly occur as often; as every 10-50 hours [9].

To make robotic systems robust to these failures, previous work [10, 11] have used
Fault Detection, Isolation and Recovery techniques (FDIR) to estimate the likeli-
hood of failures from discrepancies in the system’s onboard sensing. Work has
been done to design ways to excite the system for more rapid fault diagnosis [12],
although these methods are often limited to specific types of systems or distur-
bances, have limited or no ability to simultaneously consider safety, and can be
prohibitively computationally expensive to react to real-time information. To en-
sure safety of a robot subject to state constraints, deterministic approaches often
seek formal guarantees of safety [13] whereas probabilistic approaches typically
try to satisfy a chance constraint over a horizon and solve approximately [14]. In
either safety framework, the system model is usually assumed to be known, so no
simultaneous fault estimation is considered.

We consider robotic spacecraft operating in time sensitive, safety critical environ-

49

ments, such as the approach to a small solar system body shown in Fig. 3.1, where
component failure could jeopardize mission success. In this scenario, we envision
a system level emergency response, where safely and autonomously identifying
the underlying fault as quickly as possible supersedes previous mission objectives.
To this end, we propose s-FEAST (Safe Fault Estimation via Active Sensing Tree
search), a planning-based approach that selects diagnostic actions expected to ex-
cite informative observations for estimating the underlying fault while maintain-
ing system safety, by considering probabilistic state constraints at each planning
step. In Fig. 3.1, an autonomous robotic spacecraft undergoes a failure of both its
retro thrusters while approaching a comet. Traditional passive fault detection ap-
proaches based on a mismatch between the actual and expected sensor observations
or telemetry signals will likely not detect this failure until the spacecraft attempts to
slow down, at which point it will be too late. Similarly, methods of representing the
safety of the spacecraft that are unable to consider uncertainty in the system model
will not properly capture the risk of this worst-case fault.

3.2 Problem Statement
First, we formalize the general partially observable optimal control problem and
specify to our safe active fault estimation setting. Then, we present our algo-
rithm including the marginalization filter, safety condition, and integration into
tree search. Then, we present theoretical analysis of s-FEAST’s optimality con-
vergence. In the final subsection, we isolate the difference between tree-search with
marginalization filtering (s-FEAST) and particle filtering (POMCP) in the context
of information gathering problems.

Partially observable optimal control problem
The general partially observable optimal control problem provides the theoretical
framework to study the active fault estimation problem. We consider control-affine
system dynamics with linear sensing and additive noise processes are defined as:

xk = f (xk−1) + B(xk−1)uk + wk (3.1)

yk = Cxk + vk (3.2)

where k subscript denotes a time index, x ∈ X ⊆ Rn is the physical state, u ∈ U ⊆

Rm is the control input, f (xk) is the unforced dynamics, B(xk) is the input influence
matrix, y ∈ Y ⊆ Rp denotes the measurement, C is the measurement matrix, and
the random process and measurement noise sequences wk, vk are assumed to be mu-
tually independent and i.i.d. For simplicity, we will assume the noise processes are

50

Gaussian with covariance matrices Σw, Σv respectively, but in developing our safety
condition in Sec. 4.4 and our algorithm in Sec. 4.5 we will show our algorithm is
not restricted to only Gaussian noise.

In the presence of state uncertainty, it is common to write the probability distribu-
tion of the state as a belief, which can be computed by updating a prior with an
observation and control input using Bayesian filtering [15]:

bk(x) = P(xk | yk, uk) =
P(yk | xk)

∫
P(xk | xk−1, uk)bk−1(x)dxk−1

P(yk | yk−1, uk)
(3.3)

where b0(x) = P(x0) is the prior and the overbar notation defines a history, e.g.
uK = {u1, . . . , uK}. The space of all possible beliefs is denoted B.

The notion of optimality is defined through the reward function, the policy function,
and the value function. We consider reward functions that are a map from belief to
the scalar reals that specify the objective, and we assume the rewards are bounded
between 0 and 1, R : B → [0, 1]. The policy function is a stochastic map from
belief to action, π : B → U and the set of all policies is denoted Π. For a finite
horizon problem, the value function is the expected return of a policy from an initial
belief:

Vπ(b0) = E

 K∑
k=1

R(bk) | π, b0

 , s.t. Eqs. (3.1), (3.2), (3.3) ∀k (3.4)

where the kth control is generated from the policy, uk = π(bk−1), R is the problem’s
reward function, K is the horizon length and the expectation is over the stochastic
policy, process and measurement noise processes.

Now, we define the partially observable optimal control problem [16]:

Definition 4 (Partially Observable Optimal Control) The partially observable op-

timal control problem for the system given by Eqs. (3.1), (3.2), is to find the policy

that maximizes the expected reward over the planning horizon from an initial belief

b0:

V∗(b0) = max
π∈Π

Vπ(b0) (3.5)

Control policies are closed-loop solutions, selecting a new action at each time step
in response to the belief updated via the new observation.

51

Safe active fault estimation problem formulation
Next we specify the general notation into our active sensing problem: to plan ac-
tions such that the resulting observations converge the belief of the underlying fail-
ure to the true failure as quickly as possible while maintaining safety. We define
the following state and measurement equations, while restricting the control input
to be in a discrete set U:

xk = f (xk−1) + B(xk−1)
(
(I − ΦB)uk + ΦB,1

)
+ wk (3.6)

yk = (I − ΦC)Cxk + ΦC,1 + vk (3.7)

uk ∈ U ⊆ {0, 1}m (3.8)

where, {0, 1}m is the set of binary m-dimensional vectors. The system descrip-
tion differs from the control-affine system only in the fault model, ΦB, ΦC, ΦB,1,
ΦC,1 = diag(φB/C/B,1/C,1) representing changes to actuator dynamics or sensing due
to degradation or bias attacks in the actuators and sensors:

φBi =

1 if i actuator is completely failed

0 if i actuator is nominal

ai if i actuator is partially degraded

, φB = [φB1 , . . . , φBm],

(3.9)

φB,1,i =

1 if i actuator is stuck full on

0 if i actuator is nominal

ai if i actuator is partially biased

, φB,1 = [φB,1,1, . . . , φB,1,m]

(3.10)

where ai ∈ {δφ, 2δφ, . . . , 1 − δφ} and δφ ∈ (0, 1) is the resolution of degradations
considered. The sensor fault models φC, φC,1 are defined analogously. Both com-
plete failure and partial failure (degradation) cases are considered in this paper. We
assume the fault state does not change with time, so we drop the time subscript k

from φ terms, and we define the concatenated vector of all faults:

φk = φk−1 = φ = (φB, φB,1, φC, φC,1) ∈ Φ ⊂ [0, 1]2(m+p) (3.11)

where Φ is the finite set of all possible faults that lives in the continuous space of
2(m + p) dimensional vectors with elements restricted between 0 and 1. We define
the augmented state by composing the physical state and fault state, q = [x; φ]

52

where q ∈ Q = X × Φ. Similar to (3.3), the belief and its update are defined as:

b0(q) = P(q0), bk(q) = P(qk | yk, uk) =
P(yk | qk)

∫
P(qk | qk−1, uk)bk−1(q)dqk−1

P(yk | yk−1, uk)
(3.12)

Next, we define the information gathering reward. First, we define the marginal
beliefs over the failure space and physical states:

bk(φ) =

∫
x∈X

bk(x, φ)dx, bk(x) =
∑
φ∈Φ

bk(x, φ) (3.13)

The information gathering reward and value function are then:

R(bk, uk) =
∑
φ∈Φ

(bk(φ))2 (3.14)

Vπ(b0) = E

 K∑
k=1

R(bk) | π, b0

 , s.t. Eqs. (3.6), (3.7), (3.12), uk = π(bk−1) ∀k

(3.15)

This reward R(bk) corresponds to how confident the current belief is in the under-
lying fault state. Note this reward is minimized when the belief on the fault state is
uniform and maximized when the belief on the fault state is a delta function. This
reward function has previously been proposed as an uncertainty measure [17].

We use a standard superlevel set notion of probabilistic safety:

Definition 5 (α-Safety) Consider a set of safety constraints on the physical state,

{gi} that must all be simultaneously satisfied for a system to be safe (gi(x) ≥ 0,∀i).

Define the safety function h as h(x) = min
i

gi(x), the corresponding set of safe phys-

ical states, Xh as Xh = {x | h(x) ≥ 0}. Define the set of α-safe beliefs Bh,α ⊆ B, as

the beliefs in which the physical state has a probability of at least α of being safe

with respect to α :

Bh,α = {b ∈ B |
∫

X
b(x)1Xh(x)dx ≥ α} (3.16)

where the indicator over the set of safe states is 1Xh(x) = 1 if x ∈ Xh and 0 otherwise.

Similarly, define 1Bh,α(bk) = 1 if bk ∈ Bh,α and 0 otherwise, as the indicator over

α-safe beliefs.

53

We can now define the Safe Active Sensing Fault Estimation problem:

Definition 6 (Safe Active Fault Estimation) The safe active fault estimation prob-

lem for a given safety function, h and safety threshold α, modifies the original

partially observable optimal control problem given by Definition 4, via Eqs. (3.6)-
(3.15) with the additional constraint that each belief is α-safe.

V∗(b0) = arg max
π∈Π

Vπ(b0) s.t. E[1Bh,α(bk) | π, b0] = 1, ∀k (3.17)

where the expectation is across the stochastic policy, measurement and process

noise sequences.

3.3 Safe Fault Estimation with Active Sensing Tree Search
We present the s-FEAST algorithm and discuss the changes with respect to existing
belief-space tree-search. We visualize our algorithm in Fig. 3.2A, and include the
pseudocode in Algorithm 2.

In Fig. 3.2A, we show the diagram of the tree search applied to belief-space plan-
ning problems employed by s-FEAST. Starting from the root node and initial be-
lief, b0(q), an action is selected, and the system propagated in simulation to create
a prior belief for the next time step, b̂1(q). The measurement is also simulated, and
the prior belief updated accordingly. This process is repeated down the tree to the
desired depth, and the resulting rewards are propagated upwards at a discounted
rate. The tree growth is biased towards nodes leading to better rewards (represented
here as darker shading) and the best action is returned, here a1,1. In Fig. 3.2B we
illustrate our marginalized filter representing the position of the robotic spacecraft
conditioned on each possible failure. In Fig. 3.2C, we show the marginalized filter
of a complicated multi-modal distribution can also be represented as a combination
of Gaussians. In Fig. 3.2D, the belief at each time step can be classified as in or
outside of the set of safe beliefs (Bh,α) based on a finite sample Chebyshev bound
on the likelihood of collision with the obstacle (shown as a red semi circle). The
reward function used by s-FEAST, R̃h,α(bk), results in any trajectory of safe beliefs
having a higher cumulative reward than any trajectory with at least one unsafe be-
lief.

Our algorithm s-FEAST is similar to an existing belief-space Monte Carlo Tree
Search algorithm known as Partially Observable Monte Carlo Planning (POMCP) [18].
However, our approach is different because POMCP uses state samples to simul-
taneously estimate the belief and the optimal policy, whereas s-FEAST uses our

54

Figure 3.2: s-FEAST Method overview.

55

marginalization filter to immediately estimate the correct belief. Moreover, s-FEAST
has a special treatment of the chance-constrained safety condition.

In our previous work [19] we empirically showed this marginalized filter approach
is necessary for effective planning in information gathering problems. When the
reward is a function of the belief instead of just the classical state and action reward,
the convergence breaks down of POMCP breaks down. In this work, we formalize
this observation.

POMCP consists of two components, Partially Observable UCT (PO-UCT), which
assumes access to the state belief for a given history, and Monte-Carlo updates
to propagate the belief within the tree in a particle filter like manner. For each
simulation, a particle is sampled from the initial belief, and propagated by running
UCT. At each node encountered during the simulation, the propagated particle is
added to particle belief (or initializes a new one). The resulting belief at each node
is represented as:

bnode(x) =
1

Nnode

Nnode∑
i=1

δ(x = xi) (3.18)

where xi denotes the ith particle at the node for i = 1, . . . ,Nnode and δ is the Kro-
necker delta function. POMCP argues that, at large number of samples N, the belief
is well approximated such that the UCT is solving the equivalent Belief Markov De-
cision Process (BMDP) and inherits the same value convergence of UCT. However
Lemma 1 of [18], which equates the expected rewards for a POMDP and those of
the corresponding derived BMDP, only establishes this for the PO-UCT algorithm,
as this lemma assumes accurate state beliefs for a each history and rewards for each
node. Neither is initially true in the information gathering setting, leading to a "burn
in" phase, until the belief converges enough that this PO-UCT analysis is valid. In
fact, until a repeated particle is added to a node, the information gathering reward
of Eq. (3.14) is inversely correlated to the number of visits to the node, resulting in
a breadth first search and random action selection. Further, standard particle filters
are known to scale exponentially with the number of dimensions [20], exasperating
this behavior.

In Algorithm 2, we show the pseudocode of the tree search methods. In black color,
we show the original POMCP method and we highlight the changes for FEAST
and s-FEAST in yellow and blue: (i) after a node is expanded, the exact Bayesian
update is computed with our Marginalized filter, Eq. (3.19); and (ii) when rolling out

56

after encountering a new node, we compute the full Bayesian update to generate a
value estimate; (iii) we approximate the safety at each node via our safety condition
(Theorem 3). In the next two sections, we specify the marginalized filter and the
safety condition.

Algorithm 2: The POMCP and s-FEAST algorithms for belief-space planning.
For this pseudocode, we adapt the original POMCP algorithm to our notation,
with modifications made to create s-FEAST highlighted in blue [18]. MF refers
to our marginalized filter, approxSafety refers to the approximate safety condi-
tion given by Eq. (3.20) and Theorem 3.

globals: V̂(·)← 0, N(·)← 0
1 def search(b0):
2 for i← 1 to N do
3 simulate(q ∼ b0, ∅, 0, b0) ;

4 return arg maxu V̂({u}) ;

5 def safe(b):
6 for i← 1 to M do
7 xi ∼ b ;
8 hi ← h(xi) ;

9 µ̂h, σ̂h ←

sampleStatistics({h1, ..., hM}) ;
10 return approxSafety(µ̂h, σ̂h,M, α) ;

11 def simulate(qd,Hd, d, b(Hd)):
12 if d > K then
13 return 0 ;

14 ud+1 ←

arg maxu V̂(Hd ∪ u) + c
√

log N(Hd)
N(Hd∪u) ;

15 (qd+1, yd+1) ∼ G(qd, ud+1) ;
16 Hd+1 ← Hd ∪ {ud+1, yd+1} ;
17 if s-FEAST then
18 b(Hd+1)← MF(b(Hd), ud+1, yd+1)

;

19 else
20 b(Hd+1)← b(Hd+1) ∪ qd+1 ;

21 r ← R(b(Hd+1));
22 if s-FEAST then
23 r ←

safe(b(Hd+1), h, α) (r0 + (1 − r0)r)
;

24 r ← r +

γ simulate(qd+1,Hd+1, d + 1, b(Hd+1));

25 if N(H ∪ ud+1) = 0ANDnot
s-FEAST then

26 return r ;

27 N(H)← N(H) + 1 ;
28 N(H ∪ ud+1)← N(H ∪ ud+1) + 1 ;
29 V̂(H∪ud+1)← V(H∪u)+

r−V̂(H∪ud+1)
N(H∪ud+1)

;
30 return r ;

57

Marginalized filter
We present our marginalization filter that is used in the s-FEAST algorithm to es-
timate the belief accurately. The key observation is that the dynamics (3.6) and
measurement (3.7) of the active sensing problem have structure we can exploit to
efficiently compute the belief update. Whereas jointly computing the belief update
for the physical and fault state is intractable, it is possible to condition on a fault
then compute the conditional belief update of the physical state with a standard ex-
tended Kalman Filter (EKF). Any other nonlinear filtering approach can be used
in lieu of EKF. The marginalization approach is similar to the Rao-Blackwellized
filter used in FastSLAM [21], where the posterior is factored into estimations of
each landmark that are conditioned on the robot path.

Our approach can be formalized in the following decomposition of the belief:

bk(q) = P([xk, φ] | yk, uk) = (E)KFφ[yk, uk, bk−1(x)](xk)
Z̃φ(yk, uk, bk−1(q))bk−1(φ)

Z̃(yk, uk, bk−1(q))
(3.19)

where EKFφ[yk, uk, bk−1(x)](xk) is the posterior distribution on xk given by the Ex-
tended Kalman filter conditioned on a particular failure state φ, and the second term
is a unconditional Bayesian update on each possible failure scenario where Z̃φ and
Z̃ are conditional and unconditional measurement likelihood functions. We com-
pute Z̃φ as the measurement relative likelihood given by the prediction step of each
conditional EKF (before measurement innovation). We then note that Z̃ is a nor-
malization factor, so does not need to be computed explicitly. The resulting filter
is visualized in Fig. 3.2B, and resembles using multiple Gaussians to represent a
complicated distribution as in Fig. 3.2C.

We note the conditional physical state estimator can be replaced by any estimator
parameterized by the failure state, including estimators for non-Gaussian processes.
In particular, as the estimation propagation is the primary computational burden in
the tree search, our method will benefit significantly from reusing any efficient es-
timators that may already exist for a system, as opposed to approaches attempting
to estimate the joint physical and fault state directly. For example, one strategy to
amortize real-time computation cost is to train a neural-network based filter from of-
fline data [22]. Another strategy is to perform an additional marginalization step on
any states of the system that do not depend on the considered faults. This will par-
ticularly useful to scale s-FEAST to high-dimensional systems with isolated faults,
as only a subset of the estimation needs to be repeated for each considered fault.

58

Safety condition
In order to assure safety, we have to evaluate the indicator function 1Bh,α(bk) through-
out the tree search. For a general probability distribution, this function is difficult
to compute exactly. Instead, we use the following conservative sampling-based
condition using concentration inequalities that is computationally efficient:

1
M + 1

⌊
M + 1

M

(
σ̂2

h(M − 1)

µ̂2
h

+ 1
)⌋
≤ 1 − α =⇒ b ∈ Bh,α (3.20)

where µ̂h and σ̂2
h are the sample average and standard deviation resulting from sam-

pling the safety condition M > 2 times for a given belief b. In the following subsec-
tion we derive this condition, and use it in our convergence analysis of s-FEAST.

3.4 Theoretical Result
The goal of our analysis is to show that the value estimate of Algorithm 2 converges
to the solution of the safe active sensing for fault estimation problem, Def. 6. The
logic is as follows: we reformulate the constrained problem into an equivalent un-
constrained problem, and we transform the unconstrained problem again using the
conservative safety condition, and finally we run s-FEAST on the resulting prob-
lem and inherit standard convergence guarantees. The proofs for these results are
included in the Supplementary Materials. In the following, we consider constraints
in the decision making problem sense [23]. In particular, by a constraint or safety
constraint, we mean there are states or beliefs that are inadmissible. Conversely, an
unconstrained problem has no inadmissible states.

First, we reformulate the constrained problem into an equivalent unconstrained
problem. This step is necessary because standard Monte Carlo Tree Search (MCTS)
techniques do not explicitly handle constraints. This argument is similar to that
presented in convex optimization [24] with log-barrier objective reformulations,
except we use an affine objective reformulation that produced empirically higher-
performing results for tree search.

The transformed reward function and corresponding value function is defined as
follows:

Rh,α(bk) = 1Bh,α(bk) (r0 + (1 − r0)R(bk)) (3.21)

Vπ
h,α = E

 K∑
k=1

Rh,α(bk) | π, b0

 s.t. Eqs. (3.6), (3.7), (3.12) , uk = π(bk−1) ∀k

(3.22)

59

where r0 = K
K+1 and the expectation is over the noise processes.

The first result is that the solution of the transformed problem is equivalent to the
solution of the original problem (Definition 6), formalized with the following theo-
rem:

Theorem 2 (Equivalent unbounded reformulation) If a global optimal solution

exists to the constrained safe active fault estimation problem, Definition 6, then the

solution of the following unconstrained problem with a transformed value function

given by Eq. (3.22), is also a global optimal solution of Definition 6:

π∗h,α(b0) = arg max
π∈Π

Vπ
h,α(b0) (3.23)

The proof is presented in the Supplementary Materials. Next, we develop our con-
servative approximation of 1Bh,α . Our approach is based on the following finite
sample approximation Chebyshev’s Inequality, first developed in [25] and simpli-
fied in [26]:

P (|Z − µ̂Z | > λσ̂Z) ≤
1

M + 1

⌊
M + 1

M

(
(M − 1)
λ2 + 1

)⌋
(3.24)

where Z is a random variable, and λ is a user-specified scalar. The bound is com-
puted by taking M samples that are weakly exchangeable (i.i.d. is sufficient but not
necessary) with the random variable to compute the empirical average and standard
deviation µ̂Z, σ̂Z. This bound holds for unknown distributions when M ≥ 2 and
λ ≥ 1. For general random variables, the Chebyshev inequality can be shown to be
a tight bound [26], making it well suited to general distributions.

In our setting, the random variable of interest is the safety function applied to a
sample from the physical state belief: h(x) where x ∼ b(x). To compute the empir-
ical average (µ̂h) and standard deviation (σ̂2

h) of this safety value, let x1, . . . , xM be
i.i.d. samples of b(x). We then have:

µ̂h =
1
M

∑
i

h(xi), σ̂2
h =

M + 1
M(M − 1)

∑
i

(h(xi) − µ̂h)2 (3.25)

Our safety condition then follows directly from applying the finite sample Cheby-
shev inequality given by Eq. (3.24) to bound the tail of h that is less than zero (the
unsafe tail).

60

Theorem 3 (Conservative sampling bound) For M > 2, a belief b(x), safety func-

tion h, µ̂h, σ̂h defined according to Eq. (3.25), and µ̂h ≥ σ̂h; satisfying the approxi-

mate safety condition of Eq. (3.20) (repeated below for reference) indicates that the

belief is conservatively α-safe.

1
M + 1

⌊
M + 1

M

(
σ̂2

h(M − 1)

µ̂2
h

+ 1
)⌋
≤ 1 − α =⇒ b ∈ Bh,α (3.20)

The proof is presented in the Supplementary Materials. In general, the condition
presented in Theorem 3 is conservative; it is possible for a solution to be α-safe
and violate the approximate safety condition (Eq. (3.20)). The slackness comes
from two sources, (i) the finite-sample approximation of the Chebyshev inequality
and (ii) the potential slackness of the Chebyshev bound itself in the infinite-sample
limit. In our experiments, we found that we can effectively eliminate the first source
of slackness with M = 100 samples. For this reason, we focus on the second source
and the effect of this slackness on the optimal solution.

In the infinite-sample limit, µ̂h, σ̂h converge to the true statistics µh, σh and Eq. (3.24)
becomes the Chebyshev inequality. We formalize the slackness in the Chebyshev
bound with the following lemma, which states that the set of beliefs that satisfy the
Chebyshev bound are a well defined subset of the α-safe beliefs:

Lemma 3 (Conservative α-safe set) For a belief b, and safety function h with cor-

responding statistics µh, σh; there exists a conservatively α-safe set B̃h,α ⊆ Bh,α,

such that the following safety condition is necessary and sufficient for membership:

σ2
h

µ2
h

≤ 1 − α ⇐⇒ b ∈ B̃h,α (3.26)

The proof is presented in the Supplementary Materials. To account for the slackness
in our safety condition, we modify our reward function and present an additional
conservative problem reformulation. We specify the reward and value functions:

R̃h,α(bk) = 1B̃h,α
(bk) (r0 + (1 − r0)R(bk)) (3.27)

Ṽπ
h,α = E

 K∑
k=1

R̃h,α(bk) | π, b0

 s.t. Eqs. (3.6), (3.7), (3.12) (3.28)

We present the final problem reformulation:

61

Definition 7 (Conservative Safe Active Fault Estimation) The conservative safe

active fault estimation problem is defined as follows:

π̃∗h,α(b0) = arg max
π∈Π

Ṽπ
h,α(b0) (3.29)

with corresponding optimal value Ṽ∗h,α(b0).

The desired behavior of this reformulation is that if the solution of the original
problem lies in the feasible space of the conservative problem reformulation, solv-
ing the conservative problem will produce the original solution. This property is
formalized in the following theorem:

Theorem 4 (Problem reformulation equivalence) If an admissible policy, π(b0),
to the safe active fault estimation problem (Definition 6) exists and satisfies:

E[1B̃h,α
(bk) | π, b0] = 1 ∀k (3.30)

where B̃h,α is given by Lemma 3, then an optimal policy, π̃∗h,α(b0), to the conserva-

tive safe active fault estimation problem (Definition 7) is a sub-optimal solution of

Definition 6 constrained to B̃h,α.

Further, if an optimal policy, π∗(b0), to Definition 6 exists and satisfies Eq. (3.30),
π̃∗h,α(b0) is an optimal solution to Definition 6.

The proof is presented in the Supplementary Materials. We can now state the
main theorem, which is a direct consequence of reformulating the problem into
a search-compatible framework, and then applying existing search convergence re-
sults: s-FEAST converges to the optimal solutions of the problems given by Defi-
nitions 6 and 7.

Theorem 5 (Optimality of s-FEAST) Let µ denote the policy produced by s-FEAST,

and π̃∗h,α(b0) denote an optimal policy to the conservative safe active fault estima-

tion problem (Definition 7). In the limit of M → ∞, the value of these policies

converge:

lim
N→∞

(
Ṽµ

h,α(b0) − Ṽ∗h,α(b0)
)
→ 0 (3.31)

with convergence rate O(log N/N). Further, if an optimal policy, π∗(b0), to Defini-

tion 6 exists and satisfies Eq. (3.30), Vµ(b0) converges to V∗(b0).

62

The proof is presented in the Supplementary Materials. In this section, we have
reformulated the safe active fault estimation problem (Definition 6) to an uncon-
strained form by Theorem 2. We then used Theorem 3 and Lemma 3 to define a
conservative sampling bound and the corresponding B̃h,α to define the conservative
safe active fault estimation problem (Definition 6). Finally Theorem 4 formalizes
when the solution to the two problems are equivalent, and Theorem 5 demonstrates
convergence of s-FEAST to optimal solutions for each.

We make some remarks on this result: First, despite applying the existing search
result from [27] and [18], solving problems with belief-dependent objectives and
chance-constraints for general belief distributions represents a new capability en-
abled by our reformulations. Second, we note that B̃h,α is in general unknown, or
computationally intractable. However, we do not need to know B̃h,α, there just needs
to exist an admissible solution in B̃h,α for s-FEAST to converge. For the safety con-
straints of interest we investigated, we observed in our simulations that solutions
could come close to violating the constraints relative to the size of the safe state
space (such as in Fig. 3.4D), indicating that B̃h,α is tight. Similarly, we observed
empirically that M = 100 was sufficient for converged safety estimates. Third, it
is possible that the optimal solution to the safe active fault estimation problem lies
outside B̃h,α, and in this case s-FEAST will converge to a sub-optimal approxima-
tion of the optimal solution. We argue that the only cases where this occurs is when
the optimal trajectory takes the spacecraft close to violating a safety constraint,
which while within the bounds of the problem, are the most risky trajectories. As
adding safety at the cost of some performance is usually desirable in operation, and
in regards to the previous observation that the approximation is not overly conser-
vative, we believe this sub-optimal algorithm balances well the competing interests
of safety, performance, and computational complexity.

3.5 Simulation Result
To validate our algorithm quantitatively, we consider s-FEAST in four safety criti-
cal scenarios against baselines of Sequential Convex Programming (SCP), Discrete
Control Barrier Functions (D-CBF), greedy, and random policies. Each simulation
is performed on a 3 degree of freedom model of the M-STAR robot, and we evaluate
each algorithm over 1000 trials according to the fraction of trials safe throughout
the experiment and the product of a diagnostic reward and success rate. Details on
these evaluation metrics, along with system descriptions and additional numerical
results are provided in the Supplementary Materials.

63

Overview of baselines

We provide a brief overview of the baselines (random, greedy, D-CBF, SCP) we
compare against in the upcoming simulations. The selection of baselines is de-
signed such that s-FEAST and these baselines cover a permutation of deterministic
vs. probabilistic state representations and greedy vs. planning algorithmic imple-
mentations, with s-FEAST as the probabilistic planning solution. All methods use
the same estimator between time steps and each baseline solves for the next action
to take. Implementation details are provided in the Supplementary Materials.

The first baseline is to randomly selecting actions uniformly from the admissible
control set U. This method performs no optimization for information gathering or
safety. The second baseline is a greedy, active approach with a probabilistic state
representation. It simulates each action once, and selects a safe action with the
best immediate reward computed with the marginalized filter, but only considers a
lookahead horizon of one and does not resample any actions, making it vulnera-
ble to near term danger and outlier simulations. Together, the random and greedy
baselines serve to illustrate the shortcomings of random and one-step planning ap-
proaches in identifying the underlying faults when safety constraints must also be
satisfied.

The next two baselines are deterministic safe control methods. The discrete control
barrier function (D-CBF) [28] method acts greedily, considering safety of the next
time step, whereas the sequential convex programming (SCP) [29, 30] method plans
safe trajectories over a horizon. These algorithms do not have a probabilistic repre-
sentation of the state or system model and require a fully observable state. To adapt
them to our partially observable setting, we use the most likely failure state and its
mean position estimate as the assumed system dynamics and initial position and
add a buffer to each obstacle. It should be noted that when the system model is ac-
curately known, a controller satisfying the D-CBF condition renders all states in the
safe set forward invariant and therefore safe. However, this is not guaranteed if the
most likely model is inaccurate, and we see this method fail in our simulations for
this reason. Like D-CBF based methods, SCP needs a deterministic system dynam-
ics model, but plans the next actions over a horizon. Work has been done to extend
both methods to consider stochastic noise via chance constraints for SCP [31] and
probabilistic safety bounds for D-CBF [32], though neither method is compatible
with the coupled fault mode and physical state uncertainty considered here. These
control baselines serve to illustrate the limitations of the control-estimation separa-

64

Figure 3.3: Validation of s-FEAST: The numerical performance of our algorithm
compared with baselines across several scenarios.

tion principle in safety-critical fault estimation problems.

Overview of scenarios

In each of the following scenarios, we consider a robotic spacecraft initially 10 m
from a circular obstacle which represents some target of interest the robot was inves-
tigating before the failure occurred. For s-FEAST and our safety aware baselines,
we impose a chance constraint that with 90% or higher probability, the spacecraft
avoids collision and deviates no more than 25 m in any direction from its initial po-
sition at each time step. In practice, we see this chance constraint enables s-FEAST
to achieve 90% or higher safety through the experiment, as the robot is near the
obstacles or bounds for only a few time steps.

To highlight various sources of difficulty our method addresses, we consider two

65

fault cases in two increasingly difficult initial conditions. Binary faults, where com-
ponents either work or are completely failed, illustrate the challenges posed when
components fail silently, resulting in ambiguity between fault models. Alterna-
tively, continuous component degradation and biases present a larger challenge for
safety, as actuator biases can destabilize a system if unaddressed.

Scenario: binary fault diagnosis in proximity to an obstacle

In the first scenario, the spacecraft starts with no initial velocity, and up to three
components completely failed, where the underlying binary failure is randomly se-
lected for each trial. This case is selected to examine how well each policy achieves
our desired 90% chance of safety when the spacecraft is not in any immediate dan-
ger, and demonstrate how naive information gathering can put the system at risk.
The results are summarized in the top row of Fig. 3.3.

Examining the safety of each method, we see that the greedy and random baselines
dramatically underperform the other methods. This was observed to be in part due
to their inability to consider safety beyond the next time step or, in the case of the
random baseline, at all. This led to destabilizing actions being selected more often,
making future time steps more likely to have no safe action available. The greedy
method’s slightly worse safety is not surprising. On average, the greedy algorithm
fired 3.73 thrusters for each action, whereas the random method fired 3.66. This
2.0% increase correlates with the 2.4% decrease in final safety values. A plausible
explanation is that actions with larger control inputs were more likely to excite
observations leading to a better belief update, and were therefore selected more
often by the greedy method. But these also are more likely to leave the system in
a higher velocity state, making collisions with an obstacle more likely. We see this
trend continue in other experiments.

Considering the reward and diagnostic success of each method, the s-FEAST al-
gorithms all outperform the CBF and SCP baselines, as do the random and greedy
baselines. This is due to the CBF and SCP baselines not taking any information
gathering actions, or any actions at all until the system is close to becoming un-
safe. So both baselines typically fail to diagnose the underlying failure by the end
of the experiment, leading to low diagnosis success rates of 20.8% and 19.5% re-
spectively. The random and greedy algorithms perform similarly to the s-FEAST
algorithms in diagnosing the underlying fault, but at the price of significantly worse
safety, with final safety values of 17.4% and 17% respectively.

66

Scenario: continuous degradation & biases fault diagnosis in proximity to an
obstacle

In this experiment, we consider the same scenario as before, but now components
can be partially degraded, giving only a fraction of their nominal output. This
could correspond to actuator damage resulting in decreased efficiency or a miss-
calibrated sensor. Components can also be subject to constant biases, correlating to
unexpected behavior such as an actuator stuck on, sensor offset, or even malicious
signal injection. As before, we assume the fault is constant for the duration of
our diagnosis period. Faults are generated by sampling 8 unique biases with 5
component degradations each, for a total of 40 possible faults as before. The true
fault is set to one of these. Details of the fault model and experimental set ups
are provided in Materials and Methods section and the Supplementary Materials
respectively.

The results of this simulation are shown in the second row of Fig. 3.3. Compared
to the previous scenario, we see similar relative behavior, and all methods have a
higher diagnostic reward and a lower safety. This is because the faults are no longer
silent. Any bias injects a signal into the system to enable passive identification of
these faults. However, the active signal makes enforcing safety more challenging,
as bias acceleration can lead to constraint violations. This trade off is seen through a
drop in safety for all policies. For example, from time step 3 to 4, the deterministic
methods (SCP and CBF) start to decline in safety, whereas the diagnostic reward
increases more rapidly than the s-FEAST methods for the first time. This trend
continues through the experiment, with reward increasing but safety dropping.

The ambiguity in component degradation for a given bias provides a likely explana-
tion for this trend. Since neither SCP or CBF methods consider a belief, information
gathering to resolve this ambiguity cannot be explicitly performed. This can result
in an incorrect assessment of both the safety of the current state as well as the con-
trol authority if actuator faults are not yet detected or resolved. When actions are
taken to avoid collision, they may occur too late or with unexpectedly small effect,
leading to safety violation, but also yielding more information on the component
degradation, giving an increase in diagnosis reward. Finally, we note the decrease
in diagnostic reward for the CBF method near the end of the experiment stems from
filter divergence. This is due to large control inputs leading to numerical instability
in the Extended Kalman Filter without converging to a fault estimate.

67

Scenario: collision course under adversarial binary and continuous failures
failures

In the final two scenarios examined, the spacecraft now is subject to the same un-
derlying fault in every trial and is initialized on a collision course with an obstacle.
We consider an adversarial failure for both our binary and continuous degradation
and bias scenarios. In the binary scenario, the two retro thrusters on the spacecraft
are completely off, and in the continuous case, the retro thrusters are subject to an
80% degradation and the forward thrusters are subject to a 10% bias. In both cases,
the spacecraft must first change orientation, then slow down to reliably avoid a col-
lision. Because this behavior requires planning over a horizon, we consider these
to be adversarial faults for this scenario and choose this scenario to demonstrate s-
FEAST’s robustness to outlier failures that pose significant risk to the system. The
spacecraft still starts with a uniform prior over 40 possible failures so must also take
actions to reduce the risk of collision while fully identifying the underlying fault.

The results are shown in the bottom two rows of Fig. 3.3, where we see that all
baselines now achieve less than 40% safety in the binary case (CBF: 37.2% , SCP:
35.8%, Random: 1.8%, Greedy: 1.8%) and less than 4% in the continuous case
(CBF: 3.6% , SCP: 0.1%, Random: 0.3%, Greedy: 1.1%), and are outperformed
by s-FEAST with even the lowest level of planning. These results suggest that
running as little as N = 80 simulations can achieve a final safety rate of 59.1%
in the binary case, 67.2% in the continuous case. For N = 200, the safety rate
is 79.5% and 86.8% for the binary and continuous faults. We use this result to
inform our real-time hardware experiments, where the typical planning amount is
N = 85 simulations per tree due to a tight computational budget. The reward for the
hardware algorithm shown in Fig. 3.1 is similar to that predicted by this simulation
experiment.

We again see that with the binary faults, our CBF and SCP baselines fail to gather
any information until collision is imminent, and only gain diagnostic reward as a
result of attempting to remain safe. Similarly, in the continuous case, the baseline
methods gain some information immediately as a result of the bias signal, but fail to
further diagnose until evasive actions are taken, which occurs sooner and at higher
speed due to acceleration from the bias input. In the next section, we consider an
example to illustrate how s-FEAST succeeds where these baseline methods fail.

68

Figure 3.4: Qualitative analysis of s-FEAST’s collision avoidance under an adver-
sarial fault.

Qualitative interpretation of tree data

The tree data structure provides some qualitative interpretability of the inner work-
ings of s-FEAST. In Fig. 3.4, we see the spacecraft initially on a collision course
under the adversarial failure of both retro thrusters. This is the same binary crash
course scenario examined in the previous subsection, with a higher initial veloc-
ity of 2 m/s to better demonstrate the qualitative behavior of our algorithm. Before
identifying the underlying failure, s-FEAST selects actions to adjust the spacecraft’s
trajectory to the side of the obstacle. This turns out to be a necessary strategy in
this scenario, as after the failure is identified in the third time step, it takes another
seven time steps to reorient and come to a stop. This obstacle avoidance behavior
is also seen in our hardware experiments, such as in Fig. 3.1.

The baseline methods are unable to discover this behavior, as both the greedy and
CBF policies do not consider the possibility of failure beyond the next time step and
the SCP policy does not take any information gathering actions so will be unaware
of the failure until it attempts and fails to slow down. Like our simulation results,
this suggests that proactive information gathering is essential to avoiding model
uncertainty in these safety critical situations, as any unknown component failure
can jeopardize the systems performance in unexpected ways.

69

Figure 3.5: Real-time implementation of s-FEAST

3.6 Hardware Result
We implement s-FEAST on the M-STAR robot [33, 34] using the Caltech Au-
tonomous Robotics and Control Lab’s (ARCL) spacecraft simulator facility, shown
in Fig. 3.1A. The M-STAR robot floats on air bearings on a high precision flat floor
to create a very low friction environment and simulate spacecraft dynamics, and is
actuated using thrusters. A motion capture system provides position and orientation
measurements and noise is artificially added according to our observation model,
shown in Fig. 3.5A.

The robot is tasked to diagnose sensing and actuation faults while on a collision
course with our model comet (Fig. 3.1C). The true failure is the loss of both retro
thrusters (Fig. 3.1B), requiring the M-STAR robot to reorient before it is able slow
down and stabilize itself. The safety constraints are to avoid the comet obstacle as
well as the walls of the simulator room, shown as the red regions in Fig. 3.1D-F,
with a 90% or higher probability. With these settings, s-FEAST is able to success-
fully identify the true failure state while maintaining safety, validating our approach
on hardware. The video of s-FEAST and baselines running on the M-STAR robot
hardware is provided in Movie 1. Still frames are presented in Fig. 3.1, demon-
strating that considering safety or fault estimation alone cannot solve this problem
(Fig. 3.1D), and that s-FEAST can reliably plan evasive actions under uncertain
component failure (Fig. 3.1E,F). A complete time series of s-FEAST and the base-
line methods is presented in the Supplementary Materials.

To deploy s-FEAST in the real-time setting, we implement s-FEAST in a reced-
ing horizon fashion, i.e. the planner recomputes a policy every time step, and ap-
plies only the first action to the physical system. Because the dynamics continue

70

to propagate during the planning computation time, the state of the system when
the planner began solving, xk is different from the state when the selected action is
taken, xk+δt where δt is the propagation time. To synchronize these two states, we
run the same s-FEAST algorithm, except we plan the next action to take from the
expected result of the current action. The modified tree topology is visualized in
Fig. 3.5B. Instead of specifying a number of simulations to run, we take advantage
of s-FEAST’s ability to provide an anytime solution by simulating until the com-
putation budget is exhausted and returning the best action. The selected action is
then applied onboard the robot and the current observation is used by s-FEAST to
compute the next action to take while the system dynamics propagate. For these
experiments, a budget of 0.78 seconds on a 1.10 GHz, 4 core CPU (i5-1035G4)
was used, typically resulting in 85 simulations per time step. We show in numeri-
cal experiments this is sufficient computation to significantly improve over existing
approaches.

3.7 Discussion
Comparison with POMCP
MCTS has been extended to solve POMDPs via the POMCP algorithm [18]. How-
ever, in our previous work [19] we empirically showed that our marginalized fil-
ter approach is necessary for effective planning in information gathering problems.
When the reward is a function of the belief instead of just the classical state and
action reward, the convergence guarantees of POMCP breaks down. In this work,
we formalize this observation.

POMCP consists of two components. First, Partially Observable Upper Confidence
Bound applied to Trees (PO-UCT), which assumes access to the state belief for
a given history, and second, Monte-Carlo updates to propagate the belief within
the tree in a particle filter like manner. For each simulation, a particle is sampled
from the initial belief, and propagated by running PO-UCT. At each belief node en-
countered during the simulation, the propagated state is added to the node’s particle
belief. The resulting belief at each node is a discrete collection of state particles,
one for each visit to the node.

POMCP argues that at large number of samples N, the belief is well approxi-
mated such that the PO-UCT is solving the equivalent Belief Markov Decision Pro-
cess (BMDP) and therefore inherits the value convergence of the fully observable
UCT [27]. However, it only establishes this for the PO-UCT algorithm, as the theo-

71

retical analysis assumes accurate state beliefs for each history and accurate rewards
for each node. Neither is initially true in the information gathering setting, leading
to a “burn in” phase until the belief converges enough that this PO-UCT analysis is
valid. In fact, until a repeated particle is added to a node, the information gathering
reward we introduce in the next section (Eq. (3.14)) is inversely correlated to the
number of visits to the node, resulting in a breadth first search where the MCTS
strategy of biasing towards areas of high reward no longer succeeds, and ultimately
random action selection. This is further exasperated by the exponential scaling of
standard particle filters with the number of dimensions [20]. The difference in tree
growth between s-FEAST and POMCP is visualized qualitatively in Fig. 3.6. In the
Supplementary Materials, we provide additional numerical experiments to validate
these claims. Pseudocode of the two algorithms is presented in the Materials and
Methods.

Figure 3.6: A conceptual comparison of the tree growth of s-FEAST and POMCP.

Real-time performance
Our solver is an anytime algorithm, which means its performance improves given
more computation time, but it can be stopped at any point to return the current best
solution. In our real-time hardware experiments, the solver evaluation is not fast
enough to achieve the highest N = 2000 level of planning we consider in Fig. 3.3
of the numerical results section. Instead, we typically evaluate N = 85 trajectories,
which is sufficient to successfully identify faults and maintain safety while sub-
stantially outperforming baseline methods. This achieves the goal of validating our
conceptual algorithmic innovations, although it is possible to further optimize the
software and hardware implementation for faster run time and better performance.

72

To this end, we note s-FEAST presents two promising opportunities for future per-
formance improvements. First, the marginalized filter we present in the Materi-
als and Methods section factors out the physical state estimators, meaning that s-
FEAST can leverage any existing estimators that may already be optimized for a
system with minimal changes. Second, there exists a growing body of literature
on methods to accelerate partially observable planning through parallelization [35]
and GPU use [36]. We view these types of optimizations as complementary to
s-FEAST’s algorithmic innovations to achieve better scaling through exploitation
of the active sensing problem structure. They also pair well with the anytime na-
ture of our algorithm, as increasing simulation speed directly translates into more
simulations and improved performance, as seen in bottom rows of Fig. 3.3.

The anytime property is also is desirable compared to traditional active fault diagno-
sis methods, which often require the computation to complete before a solution can
be returned and may employ approximations to achieve real-time performance [37].
Instead, we can return the best solution found within any computation budget. We
show in the next section that s-FEAST converges asymptotically to the optimal
solution, a guarantee not provided by existing chance constrained anytime meth-
ods [38].

We expect the ongoing trend of ever increasing computational power onboard space
robotics missions [39, 40] to be enabling for our methodology, especially as pay-
loads are developed for increasingly data-intensive science applications. As our
algorithm only needs to run when a fault is suspected or a safety critical situation is
encountered, we envision a concept of operations where our algorithm is dormant
until needed, in which case it takes priority over non-essential payload operations
to monopolize computing resources for a short duration, before handing back con-
trol when normal operations can resume. Our algorithm could also run at sched-
uled intervals to proactively check for possible faults, resulting in planned payload
down time much like other maintenance operations including charging windows
and course corrections that mission planners currently consider.

Application of s-FEAST to other information gathering problems
The active fault estimation approach we consider is most useful in systems with
high functional redundancy that creates ambiguity between possible failures and
also provides the ability to recover when the fault is identified. Our method will
fail if a safety critical state of the system becomes completely unobservable or un-

73

controllable. However, these situations will be unrecoverable for our baselines and
related work methods as well.

Finally, we note that our approach belief-space planning and sampling-based safety
can be applied to other information-gathering problems where the underlying state
has a computable belief-transition. For example, we can consider the classic prob-
lem of a robot autonomously mapping an unknown environment [41] or future
robotic planetary exploration missions where actions are taken to scout out areas
of potentially high scientific value [42]. In both cases, gathering information is a
key goal, necessitating belief-space planning. And in both cases, the robot might
be subject to additional constraints, ranging from the safety constraints we con-
sider here, to battery or time budgets limiting exploration, where the effect of high
variance makes constraints on expectation alone limiting.

3.8 Related Work
Our work sits at the intersection of several fields that can be applied to this problem
of safe active fault estimation. We qualitatively summarize them according to three
capabilities in Fig. 3.7. First, the flexibility of the system model referring to the
linearity of system equations, any assumptions, and the structure of the uncertainty
model. Second, the flexibility of the safety condition representing if the method
is limited to bounding the expected state alone or if it can also constrain the un-
certainty distribution. Third, for methods that select an action to take, we consider
their ability to be run in real-time. We elaborate on the relevant related work in the
following subsections.

Traditional passive fault detection, isolation, and recover methods

Traditionally, system level approaches to fault estimation methods have been pas-
sive; actions are not taken to determine the underlying failure but are instead based
upon the input-output data during normal operations which is monitored for ab-
normalities [10, 11]. This has also been the case for space systems, which have
historically used passive FDIR algorithms coupled with safe mode and ground-in-
the-loop diagnosis and recovery when faults are detected [43]. Similarly for ter-
restrial robotics, fault estimation methods were historically passive and designed to
alert operators and arrest operations [44], and have been limited by the high levels
of ambiguity [45]. In more recent work, passive fault estimation in robotic sys-
tems has developed to include data-driven models and account for varying levels of

74

Figure 3.7: Related work in fault estimation.

system autonomy [46–48] and distributed systems [49]. These passive approaches
typically estimate between a small number of possible system fault models with
limited noise so are represented as less flexible in Fig. 3.7.

Other approaches to passive fault estimation are constraint-based methods which
check the consistency of input and output constraints for each component through-
out a system. These have been deployed in several settings due to their simplicity,
robustness and ease of user understanding [50, 51]. While a wide range of systems
can be modeled, making them more flexible than other passive methods, these ap-
proaches often need to be custom designed for each failure case. They also have
limited ability to handle uncertainty and noise, and are potentially not robust to
unmodeled scenarios. Because passive FDIR methods do not select actions or con-
sider the safety of those actions, we do not consider them in the context of safety
constraint flexibility or real-time planning performance.

Active fault diagnosis: optimization methods

Passive fault estimation methods can return multiple plausible fault scenarios. A
key idea is to resolve this ambiguity by taking actions to “induce” informative ob-
servations. Active Fault Diagnosis (AFD) approaches offer faster belief conver-

75

gence by selecting control inputs to excite useful observations [12]. Optimality
conditions of active sensing can be derived [52], however general tractable algo-
rithms do not exist. This has given rise to a large body of work on the best input
designs for active fault diagnosis [12]. Early work considered discrete-event sys-
tems with enumerated states and transitions, designing controllers to ensure the
system would be diagnosable [53], including for satellite systems [54, 55].

In linear dynamical systems, the true fault can be determined from multiple pos-
sibilities by solving for actions that yield the least expected overlap in hypothe-
ses [56]. Similar to our s-FEAST method, this approach seeks actions that lead
to the most useful observations over a horizon. However, it is restricted to sys-
tems with Gaussian noise and can only consider constraints on the expected state,
whereas s-FEAST can enforce more general chance constraints. Further, glob-
ally minimizing this measure of hypothesis overlap or the approximate bounds can
become expensive to compute in real-time. An extension of this work [57] has
achieved real-time evaluation in relatively low-dimensional problems, but it can
only optimize control actions greedily over a single timestep.

Another approach is to design input sequences guaranteed to separate the various
fault models in linear systems, provided the disturbances are bounded to zono-
topes [58]. One limitation of this approach is the need for the separating inputs
to be robust to the worst case disturbances. A closed-loop implementation of this
algorithm can lead to less conservative solutions, but may be computationally im-
practical to run online and require a compromise hybrid offline/online approach
to balance conservatism and performance [37]. Similarly, when the uncertainty in
model parameters is energy bounded, it is possible to find minimum energy aux-
iliary signals to distinguish between fault models in linear systems [59], and this
approach has been extended to include small, bounded non-linearities [60] and lin-
earizations [61].

These AFD approaches demonstrate the usefulness of information gathering ap-
plied to fault estimation, and are represented as optimization methods in Fig. 3.7.
However, they are often limited by the types of systems they can be applied to, or
make assumptions on the types of uncertainty, restricting model flexibility. Simi-
larly, the constraints considered are often deterministic or only valid in the bounded
disturbance case, limiting the flexibility of safety constraints. Finally, many of these
methods are computationally intensive and may not provide real-time guarantees.
Onboard real-time systems, anytime algorithms that can be interrupted early and

76

return a valid (if sub-optimal) solution are desirable.

While not directly derived from this body of work, robotic self-modeling, where
an robot continuously performs exploratory actions to update its onboard dynamics
model [62] is a closely related method. Recently, self-identification has been used to
distinguish between multiple possible manipulation models of a robotic hand [63],
as well as to learn visual self models [64].

Partially observable Markov decision processes and tree-based methods

Partially Observable Markov Decision Processes (POMDPs), provide an alterna-
tive framework to consider from a system level both fault estimation and safety as
decision-making problems. A POMDP is used to model the fault estimation prob-
lem in [65]. However, the algorithm used to solve the problem only considers the
partial observability for the first time step, and cannot perform any active infor-
mation gathering. This is a common trend in POMDPs, where solutions are often
limited to small problems, or to being performed offline or inexactly [66].

To approximately solve decision-making problems online, we consider a family of
tree-based planners known as Monte Carlo Tree Search (MCTS) [27]. MCTS ap-
proximates the solution to the fully observable Markov Decision Problem (MDP)
problem by simulating future state trajectories while biasing the tree towards areas
of high reward [67]. This has been extended to partially observable settings by Par-
tially Observable Monte Carlo Planning (POMCP) [18], which uses simulated state
trajectories to simultaneously estimate the optimal solution and the belief distribu-
tion. In the context of FDIR, decision trees have also been used to diagnose faults
in systems by incorporating series of decisions, tests, or temporal information [68,
69].

To consider constraints in POMDPS, prior work has added cost terms that must be
kept within a specified budget [23]. When this budget is set to zero, these prob-
lems can represent hard constraints such as collision avoidance. Offline solutions
to this approach include approximate linear programming [70], dynamic program-
ming [71], and gradient ascent with constraint projection [72]. Online methods have
also been proposed, including hybrid approaches that consider constraint feasibility
up to a sub horizon and approximate the rest of the planning horizon with an offline
estimate [73], an extension of POMCP to discrete constrained POMDPs [14], and
a method that extends online solutions to continuous systems by limiting branch-
ing [74]. A shared limitation is that these methods constrain only the expected

77

cost, which may not be suitable for risk adverse settings or systems with large state
estimation uncertainty.

Alternatively, general probabilistic bounds, or chance constraints, can be applied to
POMDPS. This approach can be shown to be more general than zero cost con-
straints [75], and allows for bounds on statistics other than expectations. Ap-
proximate offline solutions in this setting include using mixed integer linear pro-
gramming [76], and pruning high risk branches [75]. To solve chance constrained
POMDPs online, a heuristic search that is then iteratively improved in an anytime
fashion has been proposed [38], but lacks formal guarantees. Chance constraints
have also been applied in belief-space planning for linear Gaussian systems [77]
and via log barrier function transformations or soft constraints [78].

POMDPs are also solvable with model-free approaches trained during an offline
phase, such as Dreamer V2 [79] and latent policy optimization [80]. However,
compared to online methods, the reliance on an offline training phase makes these
methods vulnerable to out-of-domain events [81]. Furthermore, these methods lack
theoretical guarantees of optimality convergence and safety assurance, which are
especially important for high-cost space missions.

While tree-based online POMDP solvers such as POMCP [18] work well when the
reward is a function of the state, experiments in our prior work [19] suggest they
scale poorly in information gathering problems, due to the need for particle filter
based belief estimates to converge at each node before an accurate value estimate
can be made. This results in the low real-time performance for this setting depicted
in Fig. 3.7. By introducing a marginalized filter, our approach addresses this issue.
The ability to recover efficient tree exploration is one of our key contributions, and
we provide in-depth theoretical arguments for why this modification is necessary in
the Discussion section as well as numerical validation in the Supplementary Materi-
als. We also provide formal guarantees of constraint satisfaction and general bounds
on tail probabilities as opposed to constraints on expectations alone. In this fashion,
we consider our method to be a combination of the desirable theoretical properties
and generality of POMDP methods with the model distinguishing capabilities of
Active Fault Diagnosis.

Information gathering partially observable Markov decision processes

Information gathering POMDPs use a reward that is directly dependent on the
belief, whereas standard POMDPs use a probability-weighted average of state-

78

dependent rewards. Although these information gathering POMDPs have also been
explored, previous work typically does not consider estimating the system dynamics
(such as the fault state) or safety constraints, so we consider them separately from
the related work we contextualize in Fig. 3.7. POMDP solvers can be guided toward
information gathering behavior via sub-goal states, identified by heuristics measur-
ing the entropy of measurement probabilities [82],[83]. However these heuristics
assume low entropy correlates to informative observations, which is not necessarily
true in general.

Alternatively, information gathering can be promoted by action design, such as
by providing high reward when taking a specific action in a state of interest [84],
though this approach requires an action for each such state. Other work provides
online performance for problems where part of the state space can be observed
directly [85]. This approach has also been extended to continuous settings by
augmenting the reward with convex information measures on the belief-space [86]
which includes the information gathering reward we consider in our work.

Safety aware control methods

The final category of related work is optimal control-based approaches to safety.
These include control barrier functions (CBFs), which formalize safety for deter-
ministic and fully observable systems by providing necessary and sufficient condi-
tions on a controller’s ability to ensure safety for every admissible state [13]. These
have recently been extended to discrete time systems [28], including those subject
to stochastic noise [32]. In the face of randomly changing environmental hazards,
metrics to quantify the risk an robot faces can be used to plan safe trajectories, such
as using entropic value at risk to bound tail probabilities [87]. Other planning-based
approaches to real-time optimal control with safety constraints include Sequential
Convex Programming (SCP) [29, 30] which can consider complicated constraints
over horizons [88] and has been extended to systems involving nonlinear stochastic
dynamics and chance constraints [31]. Also, such planning-based approaches can
be combined with tracking control for robustness and stability guarantees [89].

In partially observable settings, safety of a state cannot be directly observed. How-
ever similar probabilistic bounds on the belief of the system’s state can be estab-
lished. In [90], the system state is estimated with a particle filter, and the controller
is designed to keep this estimate within a set of safe beliefs defined by the condi-
tional value at risk, an alternative risk adverse bound on tail probabilities. Partial

79

observability can also occur from uncertain system dynamics, such as the unknown
failures we consider. In [91], uncertainty arises from a number of possible system
modes with differing dynamics, and actions are planned for that are safe for all pos-
sible modes using CBFs, for as long of a planning horizon as possible. Our method
extends this consideration of multiple possible system dynamics by also consider-
ing how the planned actions will help distinguish between the different possibilities,
branching on this information to achieve longer safe horizons.

In comparison with other methods, these control approaches are typically fast to
execute and can handle complicated safety constraints, as we visualize in Fig. 3.7.
However, CBFs and SCP typically only impose deterministic constraints on the
system. They are also limited by the inability to consider multiple system models
and information gain from actions, which we observe limits their performance in
our experiments.

80

BIBLIOGRAPHY

[1] James Ragan*, Benjamin Rivière*, and Soon-Jo Chung. “Bayesian Active
Sensing for Fault Estimation with Belief Space Tree Search”. In: AIAA SciTech
(2023). doi: 10.2514/6.2023-0874.

[2] James Ragan, Benjamin Rivière, and Soon-Jo Chung. “Dreaming to Disam-
biguate: Safe Fault Estimation via Active Sensing Tree Search”. In: (Review
at Science Robotics) (2024).

[3] David C Schedl, Indrajit Kurmi, and Oliver Bimber. “An autonomous drone
for search and rescue in forests using airborne optical sectioning”. In: Science
Robotics 6.55 (2021), eabg1188.

[4] Vandi Verma et al. “Autonomous robotics is driving Perseverance rover’s
progress on Mars”. In: Science Robotics 8.80 (2023), eadi3099.

[5] Tasuku Ishigooka, Shinya Honda, and Hiroaki Takada. “Cost-Effective Re-
dundancy Approach for Fail-Operational Autonomous Driving System”. In:
2018 IEEE 21st International Symposium on Real-Time Distributed Comput-
ing (ISORC). 2018, pp. 107–115. doi: 10.1109/ISORC.2018.00023.

[6] Alan Mantooth, Carl-Mikael Zetterling, and Ana Rusu. “Venus calling sili-
con carbide radio circuits can take the heat needed to phone home from our
hellish sister planet”. In: IEEE Spectrum 58.5 (2021), pp. 24–30.

[7] Stephen A Jacklin. Small-satellite mission failure rates. Tech. rep. NASA
Ames Research Center, 2019.

[8] Federal Aviation Authority. FAA Aerospace Forecast: Fiscal Years 2019-
2039. 2019.

[9] Matthew Osborne et al. “UAS Operators Safety and Reliability Survey: Emerg-
ing Technologies towards the Certification of Autonomous UAS”. In: 2019
4th International Conference on System Reliability and Safety (ICSRS). 2019,
pp. 203–212. doi: 10.1109/ICSRS48664.2019.8987692.

[10] Inseok Hwang et al. “A survey of fault detection, isolation, and reconfigura-
tion methods”. In: IEEE Transactions on Control Systems Technology 18.3
(2009), pp. 636–653.

[11] Alexandra Wander and Roger Förstner. Innovative fault detection, isolation
and recovery strategies on-board spacecraft: state of the art and research
challenges. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth
eV Bonn, Germany, 2013.

[12] Tor Aksel N. Heirung and Ali Mesbah. “Input design for active fault diagno-
sis”. In: Annual Reviews in Control 47 (2019), pp. 35–50. issn: 1367-5788.

81

[13] Aaron D. Ames et al. “Control Barrier Functions: Theory and Applications”.
In: 2019 18th European Control Conference (ECC). 2019, pp. 3420–3431.

[14] Jongmin Lee et al. “Monte-Carlo Tree Search for Constrained POMDPs”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.
Vol. 31. Curran Associates, Inc., 2018.

[15] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Intelligent robotics and autonomous agents. MIT Press, 2005.

[16] J. Speyer, J. Deyst, and D. Jacobson. “Optimization of stochastic linear sys-
tems with additive measurement and process noise using exponential perfor-
mance criteria”. In: IEEE Transactions on Automatic Control 19.4 (1974),
pp. 358–366. doi: 10.1109/TAC.1974.1100606.

[17] Georg Süssmann. “Uncertainty Relation: From Inequality to Equality”. In:
Zeitschrift für Naturforschung A 52.1-2 (1997), pp. 49–52.

[18] David Silver and Joel Veness. “Monte-Carlo planning in large POMDPs”.
In: Advances in neural information processing systems 23 (2010), pp. 2164–
2172.

[19] James Ragan, Benjamin Riviere, and Soon-Jo Chung. “Bayesian Active Sens-
ing for Fault Estimation with Belief Space Tree Search”. In: AIAA Scitech
2023 Forum. 2023, p. 0874.

[20] Simone Carlo Surace, Anna Kutschireiter, and Jean-Pascal Pfister. “How to
Avoid the Curse of Dimensionality: Scalability of Particle Filters with and
without Importance Weights”. In: SIAM Review 61.1 (2019), pp. 79–91.

[21] Michael Montemerlo et al. “FastSLAM: A factored solution to the simultane-
ous localization and mapping problem”. In: Eighteenth National Conference
on Artificial Intelligence 593598 (2002).

[22] Joseph Marino, Milan Cvitkovic, and Yisong Yue. “A General Method for
Amortizing Variational Filtering”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc.,
2018.

[23] Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

[24] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[25] John G Saw, Mark CK Yang, and Tse Chin Mo. “Chebyshev inequality with
estimated mean and variance”. In: The American Statistician 38.2 (1984),
pp. 130–132.

[26] Ata Kaban. “Non-parametric detection of meaningless distances in high di-
mensional data”. In: Statistics and Computing 22 (2012), pp. 375–385.

82

[27] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”.
In: European Conference on Machine Learning. Springer. 2006, pp. 282–
293.

[28] Ayush Agrawal and Koushil Sreenath. “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal robot
navigation.” In: Robotics: Science and Systems. Vol. 13. Cambridge, MA,
USA. 2017, pp. 1–10.

[29] Daniel Morgan et al. “Swarm assignment and trajectory optimization us-
ing variable-swarm, distributed auction assignment and sequential convex
programming”. In: The International Journal of Robotics Research 35.10
(2016), pp. 1261–1285.

[30] Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh. “Model Predictive
Control of Swarms of Spacecraft Using Sequential Convex Programming”.
In: Journal of Guidance, Control, and Dynamics 37.6 (2014), pp. 1725–
1740.

[31] Yashwanth Kumar Nakka and Soon-Jo Chung. “Trajectory Optimization of
Chance-Constrained Nonlinear Stochastic Systems for Motion Planning Un-
der Uncertainty”. In: IEEE Transactions on Robotics (2022).

[32] Ryan K Cosner et al. “Robust Safety under Stochastic Uncertainty with Discrete-
Time Control Barrier Functions”. In: arXiv preprint arXiv:2302.07469 (2023).

[33] Yashwanth Kumar Nakka et al. “A six degree-of-freedom spacecraft dynam-
ics simulator for formation control research”. In: AAS/AIAA Astrodynamics
Specialist Conference. AIAA, 2018.

[34] Rebecca Foust et al. “Autonomous In-Orbit Satellite Assembly from a Mod-
ular Heterogeneous Swarm”. In: Acta Astronautica 169 (Jan. 2020). doi: 10.
1016/j.actaastro.2020.01.006.

[35] Semanti Basu et al. “Parallelizing POMCP to solve complex POMDPs”. In:
Robotics: Science and Systems (RSS) Workshop on Software Tools for Real-
time Optimal Control. 2021.

[36] Panpan Cai et al. “HyP-DESPOT: A hybrid parallel algorithm for online
planning under uncertainty”. In: The International Journal of Robotics Re-
search 40.2-3 (2021), pp. 558–573.

[37] Davide M Raimondo et al. “Closed-loop input design for guaranteed fault
diagnosis using set-valued observers”. In: Automatica 74 (2016), pp. 107–
117.

[38] Sungkweon Hong et al. “An Anytime Algorithm for Chance Constrained
Stochastic Shortest Path Problems and Its Application to Aircraft Routing”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
2021, pp. 475–481. doi: 10.1109/ICRA48506.2021.9561229.

83

[39] Bob Balaram et al. “Mars helicopter technology demonstrator”. In: 2018
AIAA Atmospheric Flight Mechanics Conference. 2018, p. 0023.

[40] Windy S. Slater et al. “Total Ionizing Dose Radiation Testing of NVIDIA
Jetson Nano GPUs”. In: 2020 IEEE High Performance Extreme Computing
Conference (HPEC). 2020, pp. 1–3.

[41] G. Oriolo, G. Ulivi, and M. Vendittelli. “Real-time map building and navi-
gation for autonomous robots in unknown environments”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28.3 (1998),
pp. 316–333. doi: 10.1109/3477.678626.

[42] Philip Arm et al. “Scientific exploration of challenging planetary analog en-
vironments with a team of legged robots”. In: Science Robotics 8.80 (2023),
eade9548.

[43] Massimo Tipaldi and Bernhard Bruenjes. “Survey on fault detection, isola-
tion, and recovery strategies in the space domain”. In: Journal of Aerospace
Information Systems 12.2 (2015), pp. 235–256.

[44] M.L. Visinsky, J.R. Cavallaro, and I.D. Walker. “Robotic fault detection and
fault tolerance: A survey”. In: Reliability Engineering & System Safety 46.2
(1994), pp. 139–158. issn: 0951-8320.

[45] Raffaella Mattone and Alessandro De Luca. “Relaxed fault detection and iso-
lation: An application to a nonlinear case study”. In: Automatica 42.1 (2006),
pp. 109–116.

[46] M.L. McIntyre et al. “Fault detection and identification for robot manip-
ulators”. In: IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004. Vol. 5. 2004, 4981–4986 Vol.5. doi:
10.1109/ROBOT.2004.1302507.

[47] F Baghernezhad and Khashayar Khorasani. “Computationally intelligent strate-
gies for robust fault detection, isolation, and identification of mobile robots”.
In: Neurocomputing 171 (2016), pp. 335–346.

[48] Eliahu Khalastchi and Meir Kalech. “On fault detection and diagnosis in
robotic systems”. In: ACM Computing Surveys (CSUR) 51.1 (2018), pp. 1–
24.

[49] Alessandro Marino, Francesco Pierri, and Filippo Arrichiello. “Distributed
Fault Detection Isolation and Accommodation for Homogeneous Networked
Discrete-Time Linear Systems”. In: IEEE Transactions on Automatic Con-
trol 62.9 (2017), pp. 4840–4847. doi: 10.1109/TAC.2017.2694556.

[50] Sandra Hayden, Adam Sweet, and Scott Christa. “Livingstone model-based
diagnosis of Earth Observing One”. In: AIAA 1st Intelligent Systems Techni-
cal Conference. 2004, p. 6225.

84

[51] Ryan Mackey et al. “On-board model based fault diagnosis for cubesat atti-
tude control subsystem: Flight data results”. In: 2021 IEEE Aerospace Con-
ference. 2021, pp. 1–17.

[52] Miroslav Šimandl and Ivo Punčochař. “Active fault detection and control:
Unified formulation and optimal design”. In: Automatica 45.9 (2009), pp. 2052–
2059.

[53] M. Sampath, S. Lafortune, and D. Teneketzis. “Active diagnosis of discrete-
event systems”. In: IEEE Transactions on Automatic Control 43.7 (1998),
pp. 908–929.

[54] Elodie Chanthery, Yannick Pencole, and Nicolas Bussac. “An AO*-like al-
gorithm implementation for active diagnosis”. In: 10th International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS.
Citeseer. 2010, pp. 75–76.

[55] Elodie Chanthery et al. “Applying active diagnosis to space systems by on-
board control procedures”. In: IEEE Transactions on Aerospace and Elec-
tronic Systems 55.5 (2019), pp. 2568–2580.

[56] Lars Blackmore and Brian Williams. “Finite horizon control design for op-
timal discrimination between several models”. In: Proceedings of the 45th
IEEE Conference on Decision and Control. 2006, pp. 1147–1152.

[57] Joel A. Paulson et al. “Closed-Loop Active Fault Diagnosis for Stochas-
tic Linear Systems”. In: 2018 Annual American Control Conference (ACC).
2018, pp. 735–741. doi: 10.23919/ACC.2018.8431031.

[58] Joseph K. Scott et al. “Input design for guaranteed fault diagnosis using
zonotopes”. In: Automatica 50.6 (2014), pp. 1580–1589.

[59] Stephen L Campbell and Ramine Nikoukhah. Auxiliary signal design for
failure detection. Vol. 11. Princeton University Press, 2015.

[60] S.L. Campbell, K.G. Horton, and R. Nikoukhah. “Auxiliary signal design
for rapid multi-model identification using optimization”. In: Automatica 38.8
(2002), pp. 1313–1325.

[61] SL Campbell et al. “Model based failure detection using test signals from
linearizations: A case study”. In: 2006 IEEE Conference on Computer Aided
Control System Design, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intelligent Control. 2006,
pp. 2659–2664.

[62] Josh Bongard, Victor Zykov, and Hod Lipson. “Resilient machines through
continuous self-modeling”. In: Science 314.5802 (2006), pp. 1118–1121.

[63] Kaiyu Hang et al. “Manipulation for self-identification, and self-identification
for better manipulation”. In: Science Robotics 6.54 (2021), eabe1321.

85

[64] Boyuan Chen et al. “Fully body visual self-modeling of robot morphologies”.
In: Science Robotics 7.68 (2022), eabn1944.

[65] Kathleen A. Svendsen and Mae L. Seto. “Partially Observable Markov Deci-
sion Processes for Fault Management in Autonomous Underwater Vehicles”.
In: 2020 IEEE Canadian Conference on Electrical and Computer Engineer-
ing (CCECE). 2020, pp. 1–7. doi: 10.1109/CCECE47787.2020.9255782.

[66] Guy Shani, Joelle Pineau, and Robert Kaplow. “A survey of point-based
POMDP solvers”. In: Autonomous Agents and Multi-Agent Systems 27.1
(2013), pp. 1–51.

[67] Cameron Browne et al. “A Survey of Monte Carlo Tree Search Methods”.
In: IEEE Trans. Comput. Intell. AI Games 4.1 (2012), pp. 1–43.

[68] G Friedrich and I Obreja. “Model-based decision tree generation for diagno-
sis and measurement selection”. In: IFAC Proceedings Volumes 22.19 (1989),
pp. 109–115.

[69] Luca Console, Claudia Picardi, and D Theseider Dupre. “Temporal decision
trees: Model-based diagnosis of dynamic systems on-board”. In: Journal of
Artificial Intelligence Research 19 (2003), pp. 469–512.

[70] Pascal Poupart et al. “Approximate linear programming for constrained par-
tially observable Markov decision processes”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 29. 1. 2015.

[71] Dongho Kim et al. “Point-based value iteration for constrained POMDPs”.
In: Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI). Vol. 11. 2011, pp. 1968–1974.

[72] Kyle Hollins Wray and Kenneth Czuprynski. “Scalable Gradient Ascent for
Controllers in Constrained POMDPs”. In: 2022 International Conference on
Robotics and Automation (ICRA). 2022, pp. 9085–9091.

[73] Aditya Undurti and Jonathan P. How. “An online algorithm for constrained
POMDPs”. In: 2010 IEEE International Conference on Robotics and Au-
tomation. 2010, pp. 3966–3973.

[74] Arec Jamgochian, Anthony Corso, and Mykel J Kochenderfer. “Online plan-
ning for constrained POMDPs with continuous spaces through dual ascent”.
In: Proceedings of the International Conference on Automated Planning and
Scheduling. Vol. 33. 1. 2023, pp. 198–202.

[75] Sylvie Thiebaux, Brian Williams, et al. “RAO*: An algorithm for chance-
constrained POMDP’s”. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence. Vol. 30. 1. 2016.

[76] Majid Khonji, Ashkan Jasour, and Brian C Williams. “Approximability of
Constant-horizon Constrained POMDP.” In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). 2019, pp. 5583–5590.

86

[77] Michael P. Vitus and Claire J. Tomlin. “Closed-loop belief space planning
for linear, Gaussian systems”. In: 2011 IEEE International Conference on
Robotics and Automation. 2011, pp. 2152–2159. doi: 10.1109/ICRA.2011.
5980257.

[78] Vadim Indelman, Luca Carlone, and Frank Dellaert. “Planning in the con-
tinuous domain: A generalized belief space approach for autonomous navi-
gation in unknown environments”. In: The International Journal of Robotics
Research 34.7 (2015), pp. 849–882.

[79] Danijar Hafner et al. “Mastering atari with discrete world models”. In: arXiv
preprint arXiv:2010.02193 (2020).

[80] Rafael Rafailov et al. “Offline reinforcement learning from images with la-
tent space models”. In: Proceedings of Machine Learning Research. 2021,
pp. 1154–1168.

[81] Dibya Ghosh et al. “Offline RL Policies Should Be Trained to be Adaptive”.
In: Proceedings of the 39th International Conference on Machine Learn-
ing. Vol. 162. Proceedings of Machine Learning Research. 17–23 Jul 2022,
pp. 7513–7530.

[82] Ruijie He, Emma Brunskill, and Nicholas Roy. “PUMA: Planning under un-
certainty with macro-actions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 24. 1. 2010, pp. 1089–1095.

[83] Hang Ma and Joelle Pineau. “Information gathering and reward exploitation
of subgoals for POMDPs”. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. Vol. 29. 1. 2015.

[84] Matthijs TJ Spaan, Tiago S Veiga, and Pedro U Lima. “Decision-theoretic
planning under uncertainty with information rewards for active cooperative
perception”. In: Autonomous Agents and Multi-Agent Systems 29 (2015),
pp. 1157–1185.

[85] Louis Dressel and Mykel Kochenderfer. “Efficient decision-theoretic target
localization”. In: Proceedings of the International Conference on Automated
Planning and Scheduling. Vol. 27. 2017, pp. 70–78.

[86] Juan Carlos Saborio and Joachim Hertzberg. “Towards Domain-independent
Biases for Action Selection in Robotic Task-planning under Uncertainty.” In:
International Conference on Agents and Artificial Intelligence. 2018, pp. 85–
93.

[87] Anushri Dixit, Mohamadreza Ahmadi, and Joel W. Burdick. “Risk-Sensitive
Motion Planning using Entropic Value-at-Risk”. In: 2021 European Control
Conference (ECC). 2021, pp. 1726–1732.

[88] Richard H Byrd, Jean Charles Gilbert, and Jorge Nocedal. “A trust region
method based on interior point techniques for nonlinear programming”. In:
Mathematical programming 89 (2000), pp. 149–185.

87

[89] Hiroyasu Tsukamoto et al. “CaRT: Certified Safety and Robust Tracking in
Learning-Based Motion Planning for Multi-Agent Systems”. In: 2023 62nd
IEEE Conference on Decision and Control (CDC). 2023, pp. 2910–2917.

[90] Matti Vahs and Jana Tumova. “Risk-aware Control for Robots with Non-
Gaussian Belief Spaces”. In: arXiv preprint arXiv:2309.12857 (2023).

[91] Zakariya Laouar et al. “Feasibility-Guided Safety-Aware Model Predictive
Control for Jump Markov Linear Systems”. In: arXiv preprint arXiv:2310.14116
(2023).

88

C h a p t e r 4

MCTS FOR MULTI-AGENT GAMES

How to construct trees and search with multiple rational agents?

This chapter is based on the publications:

Benjamin Rivière et al. “Neural Tree Expansion for Multi-Robot Planning in
Non-Cooperative Environments”. In: IEEE Robotics Automation Letters 6.4
(2021), pp. 6868–6875. doi: 10.1109/LRA.2021.3096758.

4.1 Motivation
Multi-agent interactions in non-cooperative environments are ubiquitous in robotic
applications such as self-driving, space exploration, urban air mobility, and human-
robot collaboration. Planning in these settings requires a prediction model of the
other agents, which can be generated through a game theoretic framework.

Recently, the success of AlphaZero [2] at the game of Go has popularized a self-
improving machine learning algorithm: bias a Monte Carlo Tree Search with value
and policy neural networks, use the tree statistics to train the networks with su-
pervised learning and then iterate over these two steps to improve the policy and
value networks over time. Although this approach has been demonstrated for clas-
sical artificial intelligence problems like chess or Go, its application applications
in multi-robot domains, with different assumptions such as continuous state-action
space, decentralized evaluation, partial information, and limited computational re-
sources, requires new algorithm development and hardware validation.

89

4.2 Problem Statement
We consider N agents in the index set, I = {0, 1, . . . ,N}. For each agent i, we
specify the dynamics and reward function:

xi
k+1 = F i(xi

k, u
i
k+1) (4.1)

ri
k = Ri(xk, uk) (4.2)

where xi and ui is the ith agent state and action and x, u are the global state and
action of all agents.

Given an initial state, the ith agent’s policy πi, and the policy of all other agents π−i,
we compute the value:

V(x0, π
i, π−i) =

K∑
k=1

γkri
k + γHDi(xK) s.t. (4.1), (4.2) (4.3)

where Di is a boundary condition.

The Nash Equillibrium (NE) is the notion of optimality in non-cooperative games [3].
A set of policies {π1,∗, . . . , πN,∗} are NE if no agent has incentive to change its policy:

V∗(x0, π
i,∗, π−i,∗) ≥ V(x0, π

i, π−i,∗) ∀i ∈ I (4.4)

For notation compactness, we sometimes denote the problem data withM:

M = 〈{Xi}i∈I, {U}i∈I, {F i}i∈I, {Ri}i∈I, {Di}i∈I,K, γ〉 (4.5)

4.3 Neural Tree Expansion Algorithm
We present our method, which is composed of a tree search algorithm, an offline
training algorithm, and a global-to-local supervised learning technique. We sum-
marize our policy notation: optimal policy π∗, heuristic policy π̃, offline tree policy
πe, and real-time tree policy πl. The value function follows similar notation: optimal
policy V∗, heuristic value Ṽ , etc..

Neural Tree Search
We use the conventional Monte Carlo Tree Search (MCTS) algorithm from [4],
modified with our neural heuristics, shown in Algorithm 3. The tree search is used
in real-time deployment and offline data generation.

MCTS begins at some start state x and grows the tree until its computational budget
is exhausted, measured by the number of nodes in the tree, L. Each node in the

90

tree is a state, x, each edge is an action u, and each child is the new state after
propagating the dynamics. Each node stores: the state vector, x(q), the action-to-
node u(q), the reward-to-node r(q), the total value V(q), the number of visits to the
node, N(q) and its children set, C(q). The growth iteration in the main function,
Search, has four steps: (i) Select, selects a node to balance exploration of space and
exploitation of rewards (ii) Expand, creates a child node by forward propagating
the selected node with an action either constructed by the neural network or by
random sampling, (iii) DefaultPolicy collects terminal reward statistics by rolling
out a simulated state trajectory from the new node, and (iv) Backpropagate updates
the number of visits and cumulative reward up the tree. Each depth in the tree
corresponds to the turn of an agent and their action is predicted by selecting the
best node for their cost function. The final action returned by the search is the child
of the root node with the most visits.

The changes we propose from standard MCTS are the integration of a policy and
value neural networks heuristics. First, the policy network modifies the Expand
function by, with some frequency βπ, generating actions from a learned probabil-
ity distribution, rather than sampling uniformly from the action space. Second, the
value network changes the DefaultPolicy function by, with some frequency βV , re-
placing a sample of the value of a random rollout with a learned prediction of the
value. The details of training these heuristics are presented later.

Both the offline policy πe and real-time tree policy πl use this same algorithm for
tree search, with two key differences: First, the number of simulations in the tree
L, is much larger for the offline policy than in the real-time setting. The motiva-
tion for this change is that the real-time setting has a limited computational budget
and, although the offline setting does not have this restriction, it has the additional
requirement of producing high quality data to train the neural network heuristics.
Second, the offline policy is centralized, i.e. it outputs a joint-space action for all
agents, whereas the real-time policy is decentralized, i.e. it is run in parallel for
each agent, and outputs an action for a single agent. We require a decentralized
real-time deployment to ensure operation in the case of agent failure and to provide
high scalability in the number of agents. We use a centralized training phase to
provide coordinated maneuvers in the dataset, this

91

Algorithm 3: Neural Tree Expansion
1 def Search(x, π̃, Ṽ):
2 q← Node(x,None) ;
3 for l = 1, . . . , L do
4 ql ← Expand(Select(q0), π̃) ;
5 v← DefaultPolicy(x(ql), Ṽ) ;
6 Backpropagate(ql, v) ;

7 q∗ = arg maxq′∈C(q0) V(q′)) ;
8 return V(q∗)u(q∗);

9 def Select(q):
10 return arg maxq′∈q(C)

q′(V)
q′(N) + c

√
log(q(N))

q′(N) ;

11 def Expand(q, π̃):
12 α ∼ U(0, 1) ;
13 if α < βπ then
14 u← [u1, . . . , u|I|], ui ∼ π̃i(x), ∀i ∈ I

15 else
16 u← [u1, . . . , u|I|], ui ∼ U(U i), ∀i ∈ I ;

17 q′ ← Node(F(x, u), q) ;
18 return q′ ;

19 def DefaultPolicy(x, Ṽ):
20 α ∼ U(0, 1) ;
21 if α < βV then
22 v ∼ Ṽ(x) ;

23 else
24 v = 0 ;
25 while x is not terminal do
26 u← [u1, . . . , u|I|], ui ∼ U(U i), ∀i ∈ I ;
27 x← F(x, u) ;
28 v += R(x, u);

29 return v ;

30 def Backpropagate(q, v):
31 while q is valid do
32 N(q)← N(q) + 1 ;
33 V(q)← V(q) + v ;
34 q← P(q) ;

92

Offline Training
The offline algorithm trains the neural network heuristics, π̃ and Ṽ , and its pseu-
docode is presented in Algorithm 4.

The desired behavior of a single iteration of the offline training loop is to improve
the policy heuristic by decreasing the distance between the heuristic policy network
and the optimal policy function:

‖π̃k+1 − π
∗‖ ≤ ‖π̃k − π

∗‖ (4.6)

where π∗ is the unknown optimal policy function, π̃k is the policy network we train,
and k is the iteration of the training loop.

The strategy for satisfying the policy improvement condition (4.6) is in two steps:
(i) create a dataset of tree search examples where each demonstration data is closer
to optimal than the heuristic:

Dπ
k = {x, πe

k(x)} s.t. ‖π∗(x) − πe
k(x)‖ ≤ ‖π∗(x) − π̃k(x)‖ (4.7)

and, (ii) supervised learning to train new heuristics that imitate the improved demon-
stration data:

π̃k+1 = arg min
π̃

∑
(x,πe(x))∈D

‖π̃(x) − πe(x)‖ (4.8)

This is a training loop empirically popularized by [5] and theoretically analyzed
in [6]. The process for the value learning is analogous. Both processes are summa-
rized in the Algorithm 4, and Lπ are the respective loss functions.

Policy Network: The tree search is guided by N policy heuristic functions for
each robot i. These functions maps state observations to the action distribution
for a single robot, and they are used in the tree search to create edges to children
nodes. The desired behavior of the policy network is to generate individual robot
actions with a high probability of being near-optimal expansions given the current
observation, i.e. generate edges to nodes with a high number of visits in the expert
search. The training of a decentralized policy from centralized data is a global-to-
local learning technique [7].

Our implementation of the policy function is different from the AlphaZero methods;
whereas AlphaZero’s policy selects from a set of existing discrete set, our expansion
generates an action from a learned probability distribution. This additional step is
necessary to search in the robot’s continuous action space.

93

Algorithm 4: Offline Training
1 def Offline Training(M):
2 π̃0, Ṽ0 = None,None
3 for k = 0, . . . ,K do
4 Dπ

k ,D
V
k = {}, {}

5 for j = 0, . . . , |D| do
6 x j ∼ X
7 Ve(x j), ue(x j) = πe(x j, π̃k, Ṽk),M)
8 Dπ

k .add(x j, ue(x j))
9 DV

k .add(x j,Ve(x j))
10 end
11 for i ∈ I do
12 π̃i

k+1 = arg minπ̃
∑

(x,πe(x))∈DV
k
Lπ(π̃(x), πe(x))

13 end
14 Ṽk+1 = arg minṼ

∑
(x,Ve(x))∈DV

k
‖Ṽ(x) − Ve(x)‖

15 end

The dataset for each robot i’s policy network is composed of observation action
pairs. The action label is calculated by querying the expert at some state, extracting
the root node’s child distribution, and calculating the average of the action distribu-
tion weighted by the relative number of visits:

ui
l =

∑
q′∈C(q0)

N(q′)
N(q0)

Ai(q0, q′) (4.9)

where ui
l is the action label, q0 is the root node, C(·) is the set of child nodes, N(·) is

the number of visits to a node, and Ai(q0, q′) is the ith robot’s action from root node
q0 to child node q′.

The policy network outputs the mean and variance of a multivariate Gaussian distri-
bution An action sample ûi

l can then be computed by sampling ε and transforming
it by the neural network’s mean and variance output:

ûi
l = µ(xl) + σ(xl)ε, ε ∼ N(0, I) (4.10)

The input, xl, is encoded with a DeepSet [8] feedforward architecture similar to [7]
that is compatible with a variable number of neighboring robots. The maximum
likelihood solution to the multivariate Gaussian problem is found by minimizing

94

(a) Bugtrap Problem. (b) Homicidal Chauffeur Problem

Figure 4.1: NTE applied to the Bugtrap and Homicidal Chauffeur Problem.

the following loss function:

Lπ =
∑

l

(ui
l − µ)Tσ−1(ui

l − µ) +
1
2

ln|σ| (4.11)

π̃i = arg min
π̃i∈Πi

∑
xl,ui

l∈D

L(µ(xl), σ(xl), ui
l) (4.12)

where µ and σ are generated by the neural network given xl, and ui
l is the target.

Value Network: The value network is used to gather reward statistics in place
of a policy rollout and its desired behavior is to predict the outcome of games if
they were rolled out with the current policy network. Our implementation of the
value function is the same as AlphaZero methods. The value network outputs state-
dependent mean and variance of a Gaussian distribution, and is trained with a sim-
ilar loss function as the policy network (4.11), using a learning target of the value
labels. The value is also queried from the neural network in a similar fashion (4.10)
and uses a similar model architecture as the policy network, permitting variable
input size of x.

4.4 Simulation Results
Bugtrap and Homicidal Chauffer
Neural Tree Expansion (NTE) can be applied to decision-making problems such
as single agent motion planning and canonical differential games. Here we present
two visual examples, before presenting an in-depth quantitative analysis in the next
section.

95

(a) NTE scales to high dimensional
team games for the 10 agent vs.
10 agent “Reach-Target-Avoid” with
double-integrator dynamics.

(b) NTE is compatible with arbitrary
dynamics, here is the “Reach-Target-
Avoid” game with 3D Dubin’s vehicle
dynamics.

Figure 4.2: NTE applied to Reach-Target Avoid Game.

In Fig. 4.1a NTE finds the intuitive value and policy function for the “bugtrap”
motion planning problem. The robot starts at the orange dot, and terminates at the
green square after reaching the goal. In Fig. 4.1b The state trajectories generated
by NTE approximate the primary solution and barrier surface for the “homicidal
chauffeur” game [9]. The plot is shown in Isaac’s reduced space with an example
trajectory in blue terminating in a capture condition.

Reach Target Avoid Game with Double Integrators
A well-studied differential game is the Reach-Target-Avoid game [9]. For two
teams of robots, team A gets points for robots that reach the goal region, and team
B gets points for defending the goal by tagging the invading robots first. The teams
are specified with index sets IA and IB, respectively, where the union of the two
teams represents all robots, IA ∪ IB = I. An example of the Reach-Target-Avoid
game is shown in Fig. 4.2a, where the red robots try to tag the blue robots before
the blue robots reach the green goal region. The x and o on the trajectory indicates
tagged state and reached goal.

Variants and Baseline: In order to evaluate our method, we test the multiple learn-
ers and expert policies, each equipped with networks after k learning iterations. To
isolate the effect of the neural expansion, we consider the k = 0 case for both learner
and expert as an unbiased MCTS baseline solution.

As an additional baseline for the double-integrator game, we use the solution from [10].
Their work adapts the exact differential game solution for simple-motion and single-
robot teams proposed in [9] to a double-integrator, multi-robot team setting. How-

96

ever, their adapted solution is not exact because it assumes a constant acceleration
magnitude input and relies on composition of pair-wise matching strategies. For
this reason, our solution will be able to outperform this hand-crafted strategy.

Experiment: We evaluate our expert and learner by initializing 100 different initial
conditions of a 3 attacker, 2 defender game in a 3 m space. Then, we rollout every
combination of variants, learning iterations, and baseline for both team A and team
B policies, for a total of 12 100 games. For a single game, the performance crite-
ria for team A policies is the terminal reward and, in order to have consistency of
plots (higher is better), the performance criteria for team B policies is one minus the
terminal reward. An example game with a different number of agents and environ-
ment size is shown in Fig. 4.2a and its animation is provided in the supplemental
video. The 10 vs. 10 game illustrates the natural scalability in number of agents of
the decentralized approach and the generalizability of the neural networks, as they
were only trained with data containing up to 5 robots per team.

The statistical results of the 3 vs. 2 experiment are shown in Fig. 4.3a where the
thick lines denote the average performance value and the shade is the performance
variance. We find the expected results; for both team A and team B, the learner
with no bias has the worst performance, and learner with fully trained networks
surpasses the centralized and expensive unbiased expert and approaches the biased
expert. The baseline attacker is about the same strength as the unbiased expert,
whereas the baseline defender is much stronger than the unbiased expert. In both
cases, the fully-trained biased expert and learner are able to significantly outperform
the baseline.

To investigate the qualitative advantages of our method, we looked at the games
where our learner defense outperformed the baseline defense and found two prin-
cipal advantages: first, the learner defense sometimes demonstrated emergent coor-
dination that is more effective than a pairwise matching strategy, e.g. one defender
goes quickly to the goal to protect against greedy attacks while the other defender
slowly approaches the goal to maintain its maneuverability, see Fig. 4.3b. Second,
the learner attacker is sometimes able to exploit the momentum of the baseline de-
fender and perform a dodge maneuver, e.g. the bottom left interaction in Fig. 4.3c,
whereas the learner defense is robust to this behavior. These examples show the
learner networks can generate sophisticated, effective maneuvers.

As an additional experiment, we evaluate the learner (without retraining) in an en-
vironment with static and dynamic obstacles for 100 different initial conditions; an

97

(a) Double-integrator game evaluation: the thick lines indicate the average perfor-
mance and the shaded area is the variance over 100 games.

(b) Learner defense (orange) finds
emergent cooperative strategies to
defend the goal (green).

(c) Baseline defense (orange) is vul-
nerable to learner’s offensive (blue)
dodge maneuver.

Figure 4.3: Double-integrator performance and strategy examples.

example is shown in the supplementary video. In this environment, the fully trained
learner outperforms the unbiased learner 0.246 ± 0.022, this value is calculated by
summing the performance criteria difference across attacking and defending poli-
cies. This result demonstrates the natural compatibility of tree-based planners with
safety constraints and the robustness of the performance gain in out-of-training-
domain scenarios.

Reach Target Avoid Game with 3D Dubin’s vehicles
As shown in Fig. 4.2, NTE can be applied to arbitrary game settings and dynamics.
We evaluate the same Reach-Target-Avoid game with 3D Dubin’s vehicle dynamics

98

Figure 4.4: 3D Dubin’s vehicle game evaluation: the thick lines indicate the average
performance and the shaded area is the variance over 100 games.

as a relevant model for fixed-wing aircraft applications, shown in Fig. 4.2b. We con-
sider the state, action, and dynamics: xt = [xt, yt, zt, ψt, γt, φt, vt]T , ut = [γ̇t, φ̇t, v̇t]T

xt+1 = F(xt, ut) = xt +

vt cos(γt) sin(ψt)
vt cos(γt) cos(ψt)
−vt sin(γt)

g
vt

tan(φt)
ut

 ∆t (4.13)

where x, y, z are inertial position, v is speed, ψ is the heading angle, γ is the flight
path angle, and φ is the bank angle and g is the gravitational acceleration. The
game is bounded to x = x =5 m with a maximum linear acceleration of 2.0 m/s2

and maximum angular rates of 36 deg/s, and g is set to 0.98 m/s2 to scale to our
game length scale.

We initialize 2 attacker, 2 defender games for 100 different initial conditions in a
5 m region and test the policy variants, without an external baseline, for a total of
81 000 games. The performance results are shown in Fig. 4.4, where we see the
same trend that the learner and expert policies improve over learning iterations. In
addition, the biased learner’s performance quickly surpasses the unbiased expert
(k = 0).

4.5 Hardware Result
To test our algorithm in practice, we fly in a motion capture space, where each
robot (CrazyFlie 2.x, see Fig. 4.5) is equipped with a single marker, and we use

99

Figure 4.5: NTE Swarm Game Hardware Demonstration

the Crazyswarm [11] for tracking and scripting. The centralized system simu-
lates distributed operation by collecting the full state, computing local observations
and local policies, and broadcasting only the output of each robot’s learner pol-
icy. For a given double-integrator policy, we evaluate the learner to compute an
action, forward-propagate double-integrator dynamics, and track the resulting posi-
tion and velocity set-point using a nonlinear controller for full quadrotor dynamics.
Planning in a lower-dimensional double-integrator state and then tracking the full
system is enabled by the timescale separation of position and attitude dynamics of
quadrotors.

We evaluate the double-integrator learner for up to 3 attacker, 2 defender games in
an aerial swarm flight demonstration. We show the results of the experiments in our
supplemental video. We use the same parameters as in simulation in Sec. 4.4. Our
learner evaluation takes an average of 11 ms with a standard deviation of 6 ms, with
each robot policy process running in parallel on an Intel(R) Core(TM) i7-8665U.
By comparison, the biased expert takes 329±144 ms to execute and the unbiased
expert takes 277±260 ms. Our computational tests show that the learner has a sig-
nificant (≈ 25 times) computational advantage over the baseline unbiased expert.
Our physical demonstration shows that our learner is robust to the gap between
simulation and real world and can run in real-time on off-the-shelf hardware.

100

4.6 Related Work
Our work relates to multiple communities: planning, machine learning, and game
theory.

Planning, or sequential decision-making, problems can be solved in an online set-
ting with Monte Carlo Tree Search (MCTS) [12]. MCTS searches through the large
decision-making space by rolling out simulated trajectories and biasing the tree
growth towards areas of high reward [4]. MCTS was first popularized by the Upper
Confidence Bound for Trees algorithm [13] that uses a discrete-action, multi-armed
bandit solution to balance exploration and exploitation in node selection. Recent
work uses a non-stationary bandit analysis to propose a polynomial, rather than
logarithmic, exploration term [14]. As an anytime algorithm, the space and time
complexity of MCTS is user-determined by the desired number of simulations. Re-
cent finite sample complexity results of MCTS [14, 15] show the error in root node
value estimation converges at a rate of the order n−1/2 where n is the number of
simulations.

Application of MCTS to a dynamically-constrained robot planning setting requires
extending the theoretical foundations to a continuous state and action space. In
general, the recent advances in this area answer two questions: i) how to select an
action from the continuous space, and ii) how to determine when a node is fully
expanded. Regarding the former question, some solutions select an action using
the extension of the multi-armed bandit in continuous domains [16], and other ap-
proaches sample uniformly from the continuous space. In contrast, our approach
uses a policy network to learn a distribution from which we sample to generate
actions. Regarding the latter question, a popular method to determine whether a
node is expanded is to use progressive widening and variants; we adapt one such
method, the Polynomial Upper Continuous Trees (PUCT) algorithm [17]. Despite
the advance in theory for continuous action spaces, there have been relatively few
studies of biasing continuous MCTS with deep neural networks [18].

The key idea of AlphaZero [2] is using MCTS as a policy improvement operator;
i.e. given a policy neural network to guide MCTS, the resulting search produces
an action closer to the optimal solution than that generated by the neural network.
Then, the neural network is trained with supervised learning to imitate the superior
MCTS policy, matching the quality of the network to that of MCTS in the training
domain. By iterating over these two steps, the model improves over time. The
first theoretical analysis of this powerful method is recently shown for single-agent

101

discrete action space problems [14]. In comparison, our method is applied to a
continuous state-action, multi-agent setting. Whereas AlphaZero methods use the
policy network to bias the node selection process, i.e. given a list of actions, select
the best one, our policy network is an action generator for the expansion process to
create edges to children, i.e. given a state, generate an action. A neural expansion
operator has previously been explored in motion planning [19], but not decision-
making. In addition, our method’s supervised learning step is closer to imitation
learning, as used in DAgger [20], because the learner benefits from an adaptive
dataset generation of using self-play to query from an expert.

Although the AlphaZero methods use a form of supervised learning to train the
networks, they can be classified as a reinforcement learning method because the
networks are trained without a pre-existing labelled dataset. Policy gradient [21] is
a conventional reinforcement learning solution and there are many recent advances
in this area [22]. Adding an underlying tree structure to deep reinforcement learn-
ing provides a higher degree of interpretability and a more stable learning process,
enabled by MCTS’s policy improvement property.

In contrast to data-driven methods, traditional analytical solutions can be studied
and derived through differential game theory. The game we study, Reach-Target-
Avoid, was first introduced and solved for simple-motion, 1 vs. 1 systems [9]. Later,
multi-robot, single-integrator solutions have been proposed [23, 24]. Solutions con-
sidering multi-robots with non-trivial dynamics, such as the double-integrator [10],
are an active area of research. Shepherding, herding, and perimeter defense are
variants of the Reach-Target-Avoid game and are also active areas of research [25–
28].

102

BIBLIOGRAPHY

[1] Benjamin Rivière, Wolfgang Hönig, Matthew Anderson, and Soon-Jo Chung.
“Neural Tree Expansion for Multi-Robot Planning in Non-Cooperative En-
vironments”. In: IEEE Robotics Automation Letters 6.4 (2021), pp. 6868–
6875. doi: 10.1109/LRA.2021.3096758.

[2] David Silver et al. “A general reinforcement learning algorithm that mas-
ters chess, shogi, and Go through self-play”. In: Science 362.6419 (2018),
pp. 1140–1144.

[3] Tamer Basar and Georges Zaccour. Handbook of dynamic game theory. Springer,
2018.

[4] Cameron Browne et al. “A Survey of Monte Carlo Tree Search Methods”.
In: IEEE Trans. Comput. Intell. AI Games 4.1 (2012), pp. 1–43.

[5] David Silver et al. “Mastering the game of Go without human knowledge”.
In: Nature 550.7676 (2017), pp. 354–359. url: https://doi.org/10.
1038/nature24270.

[6] Devavrat Shah, Qiaomin Xie, and Zhi Xu. “Non-asymptotic analysis of monte
carlo tree search”. In: Abstracts of the 2020 SIGMETRICS/Performance Joint
International Conference on Measurement and Modeling of Computer Sys-
tems. 2020, pp. 31–32.

[7] Benjamin Rivière et al. “GLAS: Global-to-Local Safe Autonomy Synthe-
sis for Multi-Robot Motion Planning With End-to-End Learning”. In: IEEE
Robot. Autom. Lett. 5.3 (May 2020), pp. 4249–4256.

[8] Manzil Zaheer et al. “Deep Sets”. In: Neural Inf. Process. Syst. 2017, pp. 3391–
3401.

[9] Rufus Isaacs. Differential games; a mathematical theory with applications to
warfare and pursuit, control and optimization. Wiley, 1965.

[10] Mitchell Coon and Dimitra Panagou. “Control Strategies for Multiplayer
Target-Attacker-Defender Differential Games with Double Integrator Dy-
namics”. In: IEEE 56th Annual Conf. on Decis. and Control. 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). 2017, pp. 1496–1502.

[11] James A. Preiss* et al. “Crazyswarm: A large nano-quadcopter swarm”. In:
Proc. IEEE Int. Conf. Robot. Autom. 2017, pp. 3299–3304. url: https:
//doi.org/10.1109/ICRA.2017.7989376.

[12] Mykel J. Kochenderfer et al. Decision Making Under Uncertainty: Theory
and Application. 1st Ed. The MIT Press, 2015.

[13] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Plan-
ning”. In: Eur. Conf. Mach. Learn. Vol. 4212. Springer, 2006.

103

[14] Devavrat Shah, Qiaomin Xie, and Zhi Xu. “Non-Asymptotic Analysis of
Monte Carlo Tree Search”. In: SIGMETRICS (Abstracts). ACM, 2020, pp. 31–
32.

[15] W. Mao et al. “POLY-HOOT: Monte-Carlo Planning in Continuous Space
MDPs with Non-Asymptotic Analysis”. In: Neural Inf. Process. Syst. 2020,
pp. 1–11.

[16] Christopher R. Mansley, Ari Weinstein, and Michael L. Littman. “Sample-
Based Planning for Continuous Action Markov Decision Processes, and Schedul-
ing”. In: Int. Conf. on Autom. Planning and Scheduling. 2011, pp. 335–338.

[17] David Auger, Adrien Couëtoux, and Olivier Teytaud. “Continuous Upper
Confidence Trees with Polynomial Exploration – Consistency”. In: Eur. Conf.
Mach. Learn. Vol. 8188. Springer, 2013.

[18] Thomas M. Moerland et al. “A0C: Alpha Zero in Continuous Action Space”.
In: Eur. Workshop on Reinforcement Learn. 14. 2018, pp. 1–10.

[19] Binghong Chen et al. “Learning to Plan in High Dimensions via Neural
Exploration-Exploitation Trees”. In: Int. Conf. on Learn. Repres. 2020.

[20] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. “A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learning”.
In: Proc. Int. Conf. Artif. Intell. and Statist. 2011.

[21] Richard S. Sutton et al. “Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation”. In: Neural Inf. Process. Syst. 1999.

[22] Manish Prajapat et al. “Competitive Policy Optimization”. In: Conf. on Un-
certainty in Artif. Intell. 2021.

[23] Eloy Garcia, David W. Casbeer, and Meir Pachter. “Optimal Strategies for
a Class of Multi-Player Reach-Avoid Differential Games in 3D Space”. In:
IEEE Robot. Autom. Lett. 5.3 (2020), pp. 4257–4264.

[24] Rui Yan et al. “Matching-Based Capture Strategies for 3D Heterogeneous
Multiplayer Reach-Avoid Differential Games”. In: CoRR (2019).

[25] Aditya A Paranjape et al. “Robotic herding of a flock of birds using an un-
manned aerial vehicle”. In: IEEE Trans. Robot. 34.4 (2018), pp. 901–915.

[26] Junyan Hu et al. “Occlusion-Based Coordination Protocol Design for Au-
tonomous Robotic Shepherding Tasks”. In: IEEE Trans. on Cogn. and De-
velop. Syst. (2020), pp. 1–1.

[27] Simone Nardi, Federico Mazzitelli, and Lucia Pallottino. “A Game Theoretic
Robotic Team Coordination Protocol For Intruder Herding”. In: IEEE Robot.
Autom. Lett. 3.4 (2018), pp. 4124–4131.

[28] Daigo Shishika, James Paulos, and Vijay Kumar. “Cooperative Team Strate-
gies for Multi-Player Perimeter-Defense Games”. In: IEEE Robot. Autom.
Lett. 5.2 (2020), pp. 2738–2745.

104

C h a p t e r 5

GLOBAL-TO-LOCAL LEARNING

This chapter is based on the publications:

Benjamin Rivière et al. “GLAS: Global-to-Local Safe Autonomy Synthesis
for Multi-Robot Motion Planning With End-to-End Learning”. In: IEEE

Robotics Automation Letters 5.3 (2020), pp. 4249–4256. doi: 10.1109/
LRA.2020.2994035.

5.1 Motivation
Teams of robots that are capable of navigating in dynamic and occluded environ-
ments are important for applications in next generation factories, urban search and
rescue, and formation flying in cluttered environments or in space. Current central-
ized approaches can plan such motions with completeness guarantees, but require
full state information not available to robots on-board, and are too computationally
expensive to run in real-time. Distributed approaches instead use local decoupled
optimization, but often cause robots to get trapped in local minima in cluttered envi-
ronments. Our approach, GLAS, bridges this gap by using a global planner offline
to learn a decentralized policy that can run efficiently online. We can thus auto-
matically synthesize an efficient policy that avoids getting trapped in many cases.
Unlike other learning-based methods for motion planning, GLAS operates in con-
tinuous state space with a time-varying number of neighbors and generates provably
safe, dynamically-coupled policies. We demonstrate in simulation that our policy
achieves significantly higher success rates compared to ORCA, a state-of-the-art de-
centralized approach for single integrator dynamics. We also extend our approach
to double integrator dynamics, and demonstrate that our synthesized policies work
well on a team of quadrotors with low-end microcontrollers.

5.2 Problem Statement
Let I denote the set of N robots, G = {g1, . . . , gN} denote their respective goal
states, x0 = {x1

0, . . . , x
N
0 } denote their respective start states, and Ω denote the set of

m static obstacles. At time t, each robot i makes a local observation, oi, uses it to
formulate an action, ui, and updates its state, xi, according to the dynamical model.
Our goal is to find a controller, u : O → U that synthesizes actions from local

105

observations through:

oi = o(i, x), ui = u(oi), ∀i, t (5.1)

to approximate the solution to the optimal control problem:

u∗ = arg min
{ui |∀i,t}

c(x, u) s.t.

ẋi = F(xi, ui) ∀i, t

xi(0) = xi
0, xi(t f) = gi, x ∈ Xs ∀i

‖ui‖2 ≤ umax ∀i, t

(5.2)

where O, U, and X are the observation, action, and state space, h is the local ob-
servation model, c is some cost function, F is the dynamical model, Xs ⊂ X is the
safe set capturing safety of all robots, t f is the time of the simulation, and umax is
the maximum control bound.

Dynamical Model: We consider 2d single and double integrator systems. For each
agent, the single integrator state and action are position and velocity vectors in R2,
respectively. For each agent, the double integrator state is a stacked position and
velocity vector in R2, and the action is a vector of accelerations in R2. We use a
2d workspace, but our algorithm and analysis is also applicable to a 3d workspace.
The dynamics of the ith robot for single and double integrator systems are:

ẋi = ṗi = ui and ẋi =

ṗi

v̇i

 =

vi

ui

 , (5.3)

respectively, where pi and vi denote position and velocity.

Observation Model: We are primarily focused on studying the transition from
global to local, which is defined via an observation model, h : I × X → O. An
observation is:

oi =
[
eii, {xi j} j∈N i

I
, {xi j} j∈N i

Ω

]
, (5.4)

where eii = gi − xi and N i
I
, N i

Ω
denote the neighboring set of robots and obstacles,

respectively. These sets are defined by the observation radius, rsense, e.g.,

N i
I

= { j ∈ I | ‖pi j‖2 ≤ rsense}. (5.5)

We encode two different neighbor sets because we input robots and obstacles through
respective sub-networks of our neural network architecture in order to generate het-
erogeneous behavior in reaction to different neighbor types. We denote the union
of the neighboring sets as N i.

106

Figure 5.1: Neural network architecture consisting of 5 feed-forward components.

5.3 Method
In this section, we derive the method of GLAS, Global-to-Local Autonomy Synthesis,
to find policy u:

u(oi) = α(oi)π(oi) + (1 − α(oi))b(oi), (5.6)

where π : O → U is a learned function, b : O → U is a safety control module to
ensure safety, and α : O → [0, 1] is an adaptive gain function. We discuss each
of the components of the controller in this section. The overview of our controller
architecture is shown in Fig. 5.1.

Neural Policy Synthesis via Deep Imitation Learning
We describe how to synthesize the neural policy π that imitates the behavior of
an expert, where the expert refers to a global optimal planner. Explicitly, we take
batches of observation-action pairs from an expert demonstration dataset and we
train a neural network by minimizing the loss on output action given an observa-
tion. To use this method, we need to generate an observation-action pair dataset
from expert demonstration and design a deep learning architecture compatible with
dynamic sensing network topologies.

Generating Demonstration Data

Our dataset is generated using expert demonstrations from an existing centralized
planner [2]. This planner is resolution-complete and avoids local minima; it is com-

107

putationally efficient so we can generate large expert demonstration datasets; and it
uses an optimization framework that can minimize control effort, so the policy imi-
tates a solution with high performance according to the previously defined metrics.
Specifically, we create our dataset by generating maps with (i) fixed-size static ob-
stacles with random uniformly sampled grid positions and (ii) start/goal positions
for a variable number of robots, and then by computing trajectories using the cen-
tralized planner. For each timestep and robot, we retrieve the local observation, oi

by masking the non-local information with the observation model h, and retrieving
the action, ui through the appropriate derivative of the robot i trajectory. We repeat
this process ncase times for each robot/obstacle case. Our dataset,D, is:

D = {(oi, ui)k | ∀i ∈ I,∀k ∈ {1 . . . ncase},∀t}. (5.7)

Model Architecture with Deep Sets

The number of visible neighboring robots and obstacles can vary dramatically dur-
ing each operation, which causes the dimensionality of the observation vector to be
time-varying. Leveraging the permutation invariance of the observation, we model
variable number of robots and obstacles with the Deep Set architecture [3, 4]. The-
orem 7 from [3] establishes this property:

Theorem 6 Let F : [0, 1]l → R be a permutation invariant continuous function iff

it has the representation:

f (x1, . . . , xl) = ρ

 l∑
m=1

φ(xm)

 , (5.8)

for some continuous outer and inner function ρ : Rl+1 → R and φ : R → Rl+1,

respectively. The inner function φ is independent of the function F.

Intuitively, the φ function acts as a contribution from each element in the set, and the
ρ function acts to combine the contributions of each element. In effect, the policy
can learn the contribution of the neighboring set of robots and obstacles with the
following network structure:

π(oi)n = Ψ([ρΩ(
∑
j∈N i

Ω

φΩ(xi j)); ρI(
∑
j∈N i

V

φI(xi j))]),

π(oi) = π(oi)n min{
πmax

‖π(oi)n‖2
, 1},

(5.9)

108

where the semicolon denotes a stacked vector and Ψ, ρΩ, φΩ, ρI, φI are feed-forward
networks of the form:

FF(x) = W lσ(. . .W1σ(x)), (5.10)

where FF is a feed-forward network on input x, W l is the weight matrix of the lth
layer, and σ is the activation function. We define the parameters for each of the 5
networks in Sec. 5.5. We also scale the output of the π network to always be less
than πmax, to maintain consistency with our baselines.

End-to-End Training

We train the neural policy π with knowledge of the safety module b, to synthesize
a controller u with symbiotic components. We train through the output of u, not π,
even though b has no tunable parameters. In effect, the parameters of π are updated
such that the policy π smoothly interacts with b while imitating the global planner.
With respect to a solution that trains through the output of π, end-to-end learning
generates solutions with lower control effort, measured through the rp metric (5.21),
see Fig. 5.2.

Additional Methods in Training

We apply additional preprocessing methods to the observation to improve our train-
ing process performance and to regularize the data. We denote the difference be-
tween the original observation and the preprocessed data with an apostrophe; e.g.,
the input to the neural network is an observation vector denoted by oi′.

We scale the relative goal vector observation as follows:

eii′ = αgeii, where αg= min{
rsense

‖eii‖
, 1}. (5.11)

This regularizes cases when the goal is beyond the sensing radius. In such cases, the
robot needs to avoid any robots/obstacles and continue toward the goal. However,
the magnitude of eii outside the sensing region is not important.

We cap the maximum cardinality of the neighbor and obstacle sets with NI and
NΩ, e.g.,

N i
I

′
= { j ∈ N i

I
| NI-closest robots w.r.t. ‖pi j‖}. (5.12)

This enables batching of observation vectors into fixed-dimension tensors for fast
training, and upper bounds the evaluation time of π to guarantee real-time perfor-
mance on hardware in large swarm experiments.

109

5.4 Theoretical Analysis
We adopt the formulation of safe sets used in control barrier functions and define
the global safe set Xs as the super-level set of a global safety function g : X → R.
We define this global safety as the minimum of local safety functions, h : O → R

that specify pairwise collision avoidance between all objects in the environment:

Xs = {x ∈ X | g(x) > 0}, (5.13)

g(x) = min
i, j

h(pi j), h(pi j) =
‖pi j
‖ − rsafe

rsense − rsafe
, (5.14)

where pi j denotes the vector between the closest point on object j to center of
object i. This allows us to consistently define rsafe as the radius of the robot, where
rsafe < rsense. Intuitively, if a collision occurs between robots i, j, then h(pi j) < 0
and g(x) < 0, implying that the system is not safe. In order to synthesize local
controls with guaranteed global safety, we need to show non-local safety functions
cannot violate global safety. Consider a pair of robots outside of the neighborhood,
‖pi j
‖ > rsense. Clearly, h(pi j) > 1, implying this interaction is always safe.

Controller Synthesis
We use these safety functions to construct a global potential function, Ψ : X → R

that becomes unbounded when any safety is violated, which resembles logarithmic
barrier functions used in the interior point method in optimization [5]. Similarly,
we can construct a local function, Ψi : O→ R:

Ψ(x) = − log
∏

i

∏
j∈N i

h(pi j), (5.15)

Ψi(oi) = − log
∏
j∈N i

h(pi j). (5.16)

We use the local potential Ψi to synthesize the safety control module b. We first
state some assumptions.

Assumption 2 Initially, the distance between all objects is at least rsafe + ∆r, where

∆r is a user-specified parameter.

Assumption 3 We assume robot i’s geometry not to exceed a ball of radius rsafe

centered at pi.

Here we present the single integrator case:

110

Theorem 7 For the single integrator dynamics (5.3), the safety defined by (5.13)
is guaranteed under the control law (5.6) with the following b(oi) and π(oi) for a

scalar gains kp > 0 and kc > 0:

b(oi) = −kp∇piΨi(oi) (5.17)

απ(oi) =

(kp−kc)‖∇pi Ψ

i(oi)‖2

kp‖∇pi Ψi(oi)‖2+|〈∇pi Ψi(oi),π(oi)〉| ∆h(oi) < 0

1 else
(5.18)

with ∆h(oi) = min j∈N i h(pi j) − ∆r, and ∇piΨi as in (A.97).

Next, we present the double integrator case:

Theorem 8 For the double integrator dynamics given in (5.3), the safety defined by

(5.13) is guaranteed under control law (5.6) for the barrier-controller and the gain

defined as:

b = −kv(vi + kp∇piΨi) − kp
d
dt
∇piΨi − kp∇piΨi,

απ =

a1−kc(kpΨi+ 1

2 ‖v−k‖2)
a1+|a2 |

∆h(oi) < 0

1 else
, (5.19)

a1 = kv‖vi + kp∇piΨi‖2 + k2
p‖∇piΨi‖2,

a2 = 〈vi, kp∇piΨi〉 + 〈vi + kp∇piΨi, π + kp
d
dt
∇piΨi〉,

where kp > 0, kc > 0, and kv > 0 are scalar gains, ∆h is defined as in Theorem 7,
d
dt∇piΨi is defined in (A.105) and the dependency on the observation is suppressed

for legibility.

We make some remarks on the results of the proofs.

Remark 3 The setup for this proof is to give π maximal authority without violating

safety. This trade-off is characterized through the design parameter ∆r, and the

gains kp and kv that control the measure of the conservativeness of the algorithm.

For the discrete implementation of this algorithm, we introduce a parameter, ε � 1,

to artificially decrease απ such that απ = 1 − ε when ∆h > 0. The results (in

continuous time) of the proof still hold as απ is a scalar gain on a destabilizing

term, so a lower απ further stabilizes the system. The gain kc can be arbitrarily

small, in simulation we set it to 0.

111

(a) Global (b) ORCA
(c) GLAS Bar-
rier

(d) GLAS Two-
stage

(e) GLAS End-
to-end

Figure 5.2: Example trajectories for baselines (a-c) and GLAS method (d,e).

Remark 4 Intuitively, ∆h(oi) defines an unsafe domain for robot i. In safe settings,

i.e. ∆h > 0, απ = 1 − ε and so the barrier has little effect on the behavior. In

most unsafe cases, the barrier will be activated, driving a large magnitude safety

response. However, in dense multi-robot settings, it is possible for safety responses

to cancel each other out in a gridlock, resulting in dangerous scenarios where small

disturbances can cause the system to violate safety. In this case, we use the above

result to put an adaptive gain, π (5.18,5.19) on the neural policy and to drive απ
to 0, cancelling the effect of απ. Thus, we use a convex combination of the neural

optimal policy and the safety control module to guarantee safety in all cases.

Remark 5 In Theorem 7, we synthesize a local nominal control that guarantees

the global safety of the system. In Theorem 8, we use Lyapunov backstepping to

provide the same nominal control through a layer of dynamics. This method is

valid for a large class of nonlinear dynamical systems known as full-state feedback

linearizeable systems [6]. By following this method, GLAS can be extended to other

nonlinear dynamical systems in a straightforward manner.

5.5 Simulation Results
Performance Metrics:
To evaluate performance, we have two criteria as specified by the optimal control
problem. We define our metrics over the set of successful robots, Is, that reach
their goal and have no collisions:

Is = {i ∈ I | xi(t f) = gi and ‖pi j
t ‖ > rsafe, ∀ j, t}. (5.20)

Our first metric of success, rs, is the number of successful robots, and our second
metric, rp, is the cost of deploying a successful robot trajectory. For example, if the

112

cost function c(x, u) is the total control effort, the performance metrics are:

rs = |Is|, and rp=
∑
i∈I

∫ t f

0
‖ui‖2dt. (5.21)

We now present results of simulation comparing GLAS and its variants with state-
of-the-art baselines as well as experimental results on physical quadrotors. Our
supplemental video includes additional simulations and experiments.

Learning Implementation and Hyperparameters
For data generation, we use an existing implementation of a centralized global
trajectory planner [2] and generate ≈ 2×105 (200 k) demonstrations in random
8 m × 8 m environments with 10 or 20 % obstacles randomly placed in a grid pattern
and 4, 8, or 16 robots (e.g., see Fig. 5.2 for 10 % obstacles and 8 robots). We sam-
ple trajectories every 0.5 s and generate |D| = 40×106 (40 M) data points in total,
evenly distributed over the 6 different environment kinds. We use different datasets
for single and double integrator dynamics with different desired smoothness in the
global planner.

We implement our learning framework in Python using PyTorch [7]. The φΩ and
φV networks have an input layer with 2 neurons, one hidden layer with 64 neurons,
and an output layer with 16 neurons. The ρΩ and ρV networks have 16 neurons in
their input and output layers and one hidden layer with 64 neurons. The Ψ network
has an input layer with 34 neurons, one hidden layer with 64 neurons, and outputs
π using two neurons. All networks use a fully connected feedforward structure
with ReLU activation functions. We use an initial learning rate of 0.001 with the
PyTorch optimizer ReduceLROnPlateau function, a batch size of 32 k, and train for
200 epochs. During manual, iterative hyperparameter tuning, we found that the
hidden layers should at least use 32 neurons. For efficient training of the Deep Set
architecture, we create batches where the number of neighbors |NV | and number of
obstacles |NΩ| are the same and limit the observation to a maximum of 6 neighbors
and 6 obstacles.

GLAS Variants
We study the effect of each component of the system architecture by comparing
variants of our controller: end-to-end, two-stage, and barrier. End-to-end and two-
stage are synthesized through (5.6), but differ in how π is trained. For end-to-
end we calculate the loss on u(oi), while for two-stage we calculate the loss on

113

π(oi). Comparing these two methods isolates the effect of the end-to-end training.
The barrier variant is a linear feedback to goal controller with our safety module.
Essentially, barrier is synthesized with (5.6), where the π heuristic is replaced with
a linear goal term: Keii, where, for single integrator systems, K = kpI, and for
double integrator systems, K = [kpI, kvI], with scalar gains kp and kv. Studying the
performance of the barrier variant isolates the effect of the global-to-local heuristic
training.

Single Integrator Dynamics
We compare our method with ORCA, a state-of-the-art decentralized approach for
single integrator dynamics. Unlike GLAS, ORCA requires relative velocities with
respect to neighbors in addition to relative positions. All methods compute a veloc-
ity action with guaranteed safety.

We show example trajectories for the global planner, ORCA, and GLAS variants in
Fig. 5.2. In Fig. 5.2b/5.2c, the purple and brown robots are getting stuck in local
minima caused by obstacle traps. In Fig. 5.2d/5.2e, our learned policies are able to
avoid those local minima. The end-to-end approach produces smoother trajectories
that use less control effort, e.g., red and brown robot trajectories in Fig. 5.2e.

Evaluation of Metrics

We deploy the baseline and variants over 100 validation cases with 2, 4, 8, 16,
and 32 robots and 10 % and 20 % obstacle density (10 validation instances for each
case) and empirically evaluate the metrics defined in (5.21). Our training data only
contains different examples with up to 16 robots. We train 5 instances of end-to-end
and two-stage models, to quantify the effect of random-weight initialization in the
neural networks on performance, see Fig. 5.3.

In the top row, we consider the success metric rs. In a wide range of robot/obstacle
cases (2–16 robots/64 m2), our global-to-local methods outperform ORCA by 20 %,
solving almost all instances. Our barrier variant has a similar success rate as ORCA,
demonstrating that the neural heuristic π is crucial for our high success rates. The
two-stage approach generalizes better to higher-density cases beyond those in the
training data. We observe the inverse trend in the double integrator case and ana-
lyzing this effect is an interesting future direction.

In the bottom row, we measure control effort rp. Our end-to-end approach uses less
control effort than the two-stage approach. ORCA has the lowest control effort,

114

Figure 5.3: Success rate and control effort with varying numbers of robots in a
8 m × 8 m space for single integrator systems. Shaded area around the lines denotes
standard deviation over 5 repetitions. The shaded gray box highlights validation
outside the training domain.

because the analytical solution to single integrator optimal control is a bang-bang
controller, similar in nature to ORCA’s implementation.

Effect of Complexity of Data on Loss Function

At some robot/obstacle density, local observations and their actions will become
inconsistent, i.e., the same observation will match to different actions generated by
the global planner. We quantify this data complexity limit by recording the value of
the validation loss when training using datasets of varying complexity, see Fig. 5.4.

Here, we train the end-to-end model with |D| = 5 M using isolated datasets of 10
and 20 % obstacles and with 4 and 16 robots, as well as a mixed dataset. We see
that the easiest case, 4 robots and 10 % obstacles, results in a the smallest loss,
roughly 1 % of the maximum action magnitude of the expert. The learning task is
more difficult with high robot density compared to high obstacle density. A mixed
dataset, as used in all other experiments, is a good trade-off between imitating the
expert very well and being exposed to complex situations.

115

Figure 5.4: Testing loss when training using 10 and 20 % obstacles and 4 or 16
robots. Synthesizing a distributed policy that is consistent with the global data is
harder for high robot densities than for high obstacle densities. We use the GLAS
end-to-end with |D| = 5 M and repeat 5 times.

Figure 5.5: Effect of sensing radius and amount of training data on robot success
rate. The validation has 4, 8, and 16 robot cases with 10 instances each. Training
and validation were repeated 5 times; the shaded area denotes the standard devia-
tion.

Effect of Radius of Sensing on Performance

We quantify the transition from local-to-global by evaluating the performance of
models trained with various sensing radii and dataset size. We evaluate performance
on a validation set of 4, 8, and 16 robot cases with 10 % and 20 % obstacle densities.
First, we found that there exists an optimal sensing radius for a given amount of
data, which increases with larger datasets. For example, in the 20 % obstacle case,
the optimal sensing radius for |D| = 300 k is around 2 m and the optimal radius for
|D| = 30 M is 8 m. Second, we found that between models of various dataset sizes

116

Figure 5.6: Success rate and control effort with varying numbers of robots in a
8 m × 8 m workspace for double integrator systems. Shaded area around the lines
denotes standard deviation over 5 repetitions. The shaded gray box highlights vali-
dation outside the training domain.

the performance gap at small sensing radii is smaller compared to the performance
gap at large sensing radii. This result suggests that little data is needed to use local
information well, and large amounts of data is needed to learn from global data.

Double Integrator Dynamics
We extend our results to double integrator dynamical systems to demonstrate GLAS
extends naturally as a dynamically-coupled motion planner. Similar to the single
integrator evaluation, we show double integrator statistical evaluation with respect
to the performance metrics (5.21), for varying robot and obstacle density cases. We
use the same setup as in the single integrator case (see Sec. 5.5), but with a different
dataset (|D| = 20 M). Results are shown in Fig. 5.6.

In the top row, we consider the success metric rs. In a wide range of robot den-
sity cases (2–16 robots/64 m2), our global-to-local end-to-end method again out-
performs the barrier baseline by 15 % to 20 %. In the 32 robots/64 m2 case, the
barrier baseline outperforms the global-to-local methods. We suspect this is a com-

117

Figure 5.7: GLAS Hardware Experiment

bination of our method suffering from the significantly higher complexity of the
problem and the naive barrier method performing well because the disturbances
from the robot interaction push the robot out of local minima obstacle traps. In
contrast to the single integrator case, the end-to-end solution generalizes better than
the two-stage in higher robot densities. We conjecture that having a much larger
training set can significantly improve performance.

In the bottom row, we consider the performance metric rp. For double integrator
systems, the cost function c(x, u) corresponds to the energy consumption of each
successfully deployed robot. The end-to-end variant uses less effort (≤ 6.25 %)
than the two-stage method on average.

5.6 Hardware Results
We implement the policy evaluation (π, απ, b) in C to enable real-time execution on-
board of Crazyflie 2.0 quadrotors using double integrator dynamics (see Fig. 5.7).
The quadrotors use a small STM32 microcontroller with 192 kB SRAM running at
168 MHz. Our policy evaluation takes 3.4 ms for 1 neighbor and 5.0 ms for 3 neigh-
bors, making it computationally efficient enough to execute our policy in real-time
at 40 Hz. On-board, we evaluate the policy, forward-propagate double integrator
dynamics, and track the resulting position and velocity setpoint using a nonlinear
controller. The experimental validation demonstrates that our policy generalizes to

118

novel environments where the obstacles are arranged in continuous space, as op-
posed to on a grid.

We use a double integrator GLAS end-to-end policy in three different scenarios
with up to 3 obstacles and 12 quadrotors. We fly in a motion capture space, where
each robot is equipped with a single marker, using the Crazyswarm [8] for tracking
and scripting. Our demonstration shows that our policy works well on robots and
that it can also handle cases that are considered difficult in decentralized multi-robot
motion planning, such as swapping positions with a narrow corridor.

5.7 Related Work
Multi-robot motion planning is an active area of research because it is a non-convex
optimization problem with high state and action dimensionality. We compare the
present work with state-of-the-art methods: (a) collision avoidance controllers, (b)
optimal motion-planners, and (c) deep-learning methods.

Collision Avoidance: Traditional controller-level approaches include Optimal Re-
ciprocal Collision Avoidance (ORCA) [9], Buffered Voronoi Cells [10], Artificial
Potential Functions [11–13], and Control Barrier Functions [14]. These methods
are susceptible to trapping robots in local minima. We address this problem ex-
plicitly by imitating a complete global planner with local information. For optimal
performance, we propose to learn a controller end-to-end, including the safety mod-
ule. Existing methods that are based on optimization [9, 10, 14] are challenging for
backpropagation for end-to-end training. Existing analytic methods [11] do not
explicitly consider gridlocks, where robots’ respective barriers cancel each other
and disturbances can cause the system to violate safety. Thus, we derive a novel
differentiable safety module. This system design of fully differentiable modules
for end-to-end backpropagation is also explored in reinforcement learning [15] and
estimation [16].

Motion Planners: Motion planners are a higher-level approach that explicitly solves
the optimal control problem over a time horizon. Solving the optimal control prob-
lem is non-convex, so most recent works with local guarantees use approximate
methods like Sequential Convex Programming to quickly reach a solution [2, 17].
Motion planners are distinguished as either global and centralized [2] or local and
decentralized [17, 18], depending on whether they find solutions in joint space or
computed by each robot.

GLAS is inherently scalable because it is computed at each robot. Although it has

119

no completeness guarantee, we empirically show it avoids local minima more often
than conventional local methods. The local minima issue shared by all the local
methods is a natural trade-off of decentralized algorithms. Our method explores
this trade-off explicitly by imitating a complete, global planner with only local in-
formation.

Deep Learning Methods: Recently, there have been new learning-based approaches
for multi-robot path planning [19–23]. These works use deep Convolutional Neu-
ral Networks (CNN) in a discrete state/action domain. Such discretization prevents
coupling to higher-order robot dynamics whereas our solution permits tight cou-
pling to the system dynamics by operating in a continuous state/action domain us-
ing a novel network architecture based on Deep Sets [3]. Deep Sets are a relatively
compact representation that leverages the permutation-invariant nature of the un-
derlying interactions, resulting in a less computationally-expensive solution than
CNNs. In contrast to our work, the Neural-Swarm approach [4] uses Deep Sets to
augment a tracking controller for close proximity flight.

Imitation Learning (IL) can imitate an expensive planner [19–21, 24], thereby re-
placing the optimal control or planning solver with a function that approximates the
solution. GLAS uses IL and additionally changes the input domain from full state
information to a local observation, thereby enabling us to synthesize a decentralized
policy from a global planner.

120

BIBLIOGRAPHY

[1] Benjamin Rivière, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. “GLAS:
Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Plan-
ning With End-to-End Learning”. In: IEEE Robotics Automation Letters 5.3
(2020), pp. 4249–4256. doi: 10.1109/LRA.2020.2994035.

[2] Wolfgang Hönig et al. “Trajectory Planning for Quadrotor Swarms”. In: 34.4
(2018), pp. 856–869. url: https://doi.org/10.1109/TRO.2018.
2853613.

[3] Manzil Zaheer et al. “Deep Sets”. In: Advances in Neural Information Pro-
cessing Systems 30. 2017, pp. 3391–3401. url: http://papers.nips.cc/
paper/6931-deep-sets.

[4] Guanya Shi et al. “Neural-Swarm: Decentralized Close-Proximity Multiro-
tor Control Using Learned Interactions”. In: Proc. IEEE Int. Conf. Robot.
Autom. 2020. url: https://arxiv.org/abs/2003.02992.

[5] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2014. isbn: 978-0-521-83378-3. doi: 10.1017/CBO9780511804441.
url: https://web.stanford.edu/%5C%7Eboyd/cvxbook/.

[6] Hassan K Khalil. Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall,
2002. isbn: 978-0130673893. url: https : / / cds . cern . ch / record /
1173048.

[7] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems
32. 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

[8] James A. Preiss* et al. “Crazyswarm: A large nano-quadcopter swarm”. In:
Proc. IEEE Int. Conf. Robot. Autom. 2017, pp. 3299–3304. url: https:
//doi.org/10.1109/ICRA.2017.7989376.

[9] Jur van den Berg et al. “Reciprocal n-Body Collision Avoidance”. In: Int.
Symp. on Robot. Res. Vol. 70. Springer Tracts in Advanced Robotics. Springer,
2009, pp. 3–19. url: https://doi.org/10.1007/978-3-642-19457-
3%5C_1.

[10] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y. Hadaegh. “Prob-
abilistic and Distributed Control of a Large-Scale Swarm of Autonomous
Agents”. In: 33.5 (2017), pp. 1103–1123. doi: 10.1109/TRO.2017.2705044.
url: https://doi.org/10.1109/TRO.2017.2705044.

121

[11] Oussama Khatib. “Real-Time Obstacle Avoidance for Manipulators and Mo-
bile Robots”. In: Autonomous Robot Vehicles. Springer, 1990, pp. 396–404.
url: https://doi.org/10.1007/978-1-4613-8997-2%5C_29.

[12] Elon Rimon and Daniel E. Koditschek. “Exact robot navigation using artifi-
cial potential functions”. In: 8.5 (1992), pp. 501–518. url: https://doi.
org/10.1109/70.163777.

[13] Herbert G. Tanner and Amit Kumar. “Formation Stabilization of Multiple
Agents Using Decentralized Navigation Functions”. In: Robotics: Science &

Systems. 2005, pp. 49–56. url: http://www.roboticsproceedings.
org/rss01/p07.html.

[14] Li Wang, Aaron D. Ames, and Magnus Egerstedt. “Safety Barrier Certifi-
cates for Collisions-Free Multirobot Systems”. In: 33.3 (2017), pp. 661–674.
url: https://doi.org/10.1109/TRO.2017.2659727.

[15] Richard Cheng et al. “Control Regularization for Reduced Variance Rein-
forcement Learning”. In: Proc. Int. Conf. Machine Learning. Vol. 97. 2019,
pp. 1141–1150. url: http://proceedings.mlr.press/v97/cheng19a.
html.

[16] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. “Differentiable Par-
ticle Filters: End-to-End Learning with Algorithmic Priors”. In: Robotics:
Science & Systems. 2018. url: http: //www.roboticsproceedings .
org/rss14/p01.html.

[17] Daniel Morgan et al. “Swarm assignment and trajectory optimization using
variable-swarm, distributed auction assignment and sequential convex pro-
gramming”. In: I. J. Robotics Res. 35.10 (2016), pp. 1261–1285. url: https:
//doi.org/10.1177/0278364916632065.

[18] Carlos E. Luis and Angela P. Schoellig. “Trajectory Generation for Multia-
gent Point-To-Point Transitions via Distributed Model Predictive Control”.
In: 4.2 (2019), pp. 375–382. url: https://doi.org/10.1109/LRA.
2018.2890572.

[19] Guillaume Sartoretti et al. “PRIMAL: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning”. In: 4.3 (2019), pp. 2378–2385. url: https:
//doi.org/10.1109/LRA.2019.2903261.

[20] Qingbiao Li et al. “Graph Neural Networks for Decentralized Multi-Robot
Path Planning”. In: CoRR abs/1912.06095 (2019). url: http://arxiv.
org/abs/1912.06095.

[21] Arbaaz Khan, Vijay Kumar, and Alejandro Ribeiro. “Graph Policy Gradi-
ents for Large Scale Unlabeled Motion Planning with Constraints”. In: CoRR
abs/1909.10704 (2019). url: http://arxiv.org/abs/1909.10704.

122

[22] Arbaaz Khan et al. “Learning Safe Unlabeled Multi-Robot Planning with
Motion Constraints”. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2019,
pp. 7558–7565. doi: 10.1109/IROS40897.2019.8968483. url: https:
//doi.org/10.1109/IROS40897.2019.8968483.

[23] Dhananjay Raju, Suda Bharadwaj, and Ufuk Topcu. “Decentralized Runtime
Synthesis of Shields for Multi-Agent Systems”. In: CoRR abs/1910.10380
(2019). url: http://arxiv.org/abs/1910.10380.

[24] Yunpeng Pan et al. “Agile Autonomous Driving using End-to-End Deep Imi-
tation Learning”. In: Robotics: Science & Systems. 2018. url: http://www.
roboticsproceedings.org/rss14/p56.html.

123

C h a p t e r 6

CONCLUSION

6.1 Contributions
My research exists at the intersection of optimal control and reinforcement learning
and develops algorithms that compute trajectories in real-time and converge to the
globally-optimal solution. In Chapter 2, we present a global solution to the classic
optimal control problem with complex dynamics. In Chapter 3, we present a global
solution to the partially-observeable optimal control problem provided with a filter,
which can be derived for the case of sensor and actuator failures. In Chapter 4, we
present an algorithmic solution to N-player games using data-driven, decentralized
heuristics, supported by global-to-local learning techniques developed in Chapter 5.

The ability to solve a spectrum of important problem settings with a common algo-
rithm blurs the definition of Monte Carlo Tree Search between numerical algorithm
and a more general intelligence: if a robot can predict its effect on the future, use
that information to refine its plan, accumulate memory with neural heuristics, and
perform these processes efficiently enough, it will have sufficient autonomy to ex-
plore caves on the moon, drive a car, or compete in sports. In addition, the robot’s
thought process will be interpretable by humans through analysis of the tree data
structure. For example, we will be able to ask: what was the robot’s understanding
of the world state? what future did the robot believe its actions were leading to? and
why did it think this behavior was optimal? This thesis build towards this vision,
provide fundamental results, and suggests exciting new research directions.

6.2 Future Work
Revisiting Foundations of Global Convergence
In Chapters 2 and 3, we manipulated representation of continuous space to apply
the UCT global optimality for discrete systems. As discussed in Chapter 1, the
UCT result uses results from the online learning field to balance exploration and
exploitation: nonstationary concentration inequalities are used to estimate the value
of the tree policy and while simultaneously changing the tree policy. Although
empirically successful, this strategy is not satisfying theoretically because it hides
the planning process evolution in the non-stationarity assumptions. An alternative
approach could be to fix the tree policy, consider the visit count of nodes in the tree

124

as a Markov Chain, and analyze the conditions of its convergence as the number
of visits in the tree grows. This alternative formulation would expose the dynamics
of tree search and provide a more fulfilling understanding of real-time intelligence.
Furthermore, an alternative theoretical foundation could provide a path forward for
tighter instance-specific rates or convergence in sequential games.

Efficient Discrete Representation of Continuous Systems
In Chapter 2, numerical results demonstrated that a naive algorithm with an efficient
representation will outperform a sophisticated algorithm in a poorly chosen repre-
sentation. In addition, decision-making textbooks consider the problem data (state,
action, dynamics, reward) a given, but that is not the case for a robot operating
without limited human intervention. Therefore, there is a need for to develop rig-
orous approaches to construct efficient representations from sensor data. The field
of machine learning studies variations of this problem, yet the field of robotics has
an additional constraint that the resulting representation be interpretable by human
users and designers.

Integrating Reasoning and Memory (Search and Deep Learning)
In Chapter 4, the Neural Tree Expansion (NTE) algorithm used data-driven heuris-
tics and MCTS in a two-process model that smoothly transitions between computationally-
cheap, data-driven memorization via neural networks and computationally-expensive,
causal reasoning with tree search. Although this combination has proven empiri-
cally successful in this work and others, the interface of deep learning and tree
search is still ad-hoc because the effect of the heuristic on convergence is not for-
malized. Building a fundamental understanding of this memory/reasoning interface
will allow us to continue aggressively pushing the limits of data-driven deep learn-
ing while inheriting real-time planning’s robustness to domain shift, and search
trace’s explainability and interpretability.

Parallel Algorithm Design
In all the work we have presented, the robot’s performance is dependent on the
number of simulations it can generate in real-time. Depending on the problem’s
complexity, processor capability, and re-planning rate, the typical number of sim-
ulations in our experiments is between 100 to 10,000. However, all of these cases
are limited because the UCT algorithm is not efficiently parallelized, and therefore
the number of simulations are generated in a sequential, serial fashion. In fact, the

125

tree policy computation, which requires global memory based on aggregates of tra-
jectory data, is very cheap compared to simulating trajectories, which requires only
local memory. Therefore, if we imagine an algorithm that simulates the trajectories
in parallel while not violating the convergence result, we can apply Amdahl’s rea-
soning [1] to predict the algorithm will produce a large multiplicative factor more
number of simulations in a fixed time. Applying the convergence result, this corre-
sponds to more optimal real-time robot behavior.

126

BIBLIOGRAPHY

[1] Gene M Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: AFIPS Conference Proceedings 30
(1967), pp. 483–485.

127

A p p e n d i x A

PROOFS

A.1 MCTS for Dynamics
In this section, unless otherwise specified, all norms are the 2-norm.

Proof of Lemma 2

Before we begin, we will introduce a piece of machinery to help us in the proof.
This is a variation of the Discrete Gronwall Lemma [1] with a vanishing distur-
bance.

Lemma 4 Let (X, ‖ · ‖X) be a metric space. Consider the sequence {an}n∈N ⊆ X and

a nonnegative real sequence {bn}n∈N satisfying

lim
n→∞

an = a∞, bn+1 ≤ γbn + d(an) (A.1)

where d : X → R≥0. For 0 ≤ γ < 1, if d is bounded on X and continuous at a∞ then

lim sup
n→∞

bn ≤
1

1 − γ
d(a∞) (A.2)

Proof 1 Fix ε > 0. Denote the uniform bound of d as M: |d(a)| ≤ M ∀a ∈ X.

Let ν, η > 0 be such that νb0 + νM
1−γ +

η

1−γ < ε.

Let N1 be such that |d(ai) − d(a∞)| < η ∀i ≥ N1. N1 exists due to the convergence of

{an}n∈N and the continuity of d at a∞.

Let N2 be such that γi < ν ∀i ≥ N2. For all n ≥ N1 + N2, one can show by induction

that:

bn ≤ γ
nb0 +

n−1∑
i=0

γn−1−id(ai) (A.3)

= γnb0 +

N1−1∑
i=0

γn−1−id(ai) +

n−1∑
i=N1

γn−1−id(ai) (A.4)

For the first term, we can see that as n ≥ N2, γnb0 ≤ νb0.

128

In the second term, n − 1 − i ≥ N2 ∀i = 0, . . .N1 − 1. Therefore
N1−1∑
i=0

γn−1−id(ai) ≤ γN2

N1−1∑
i=0

γn−N2−1−id(ai) ≤ ν
N1−1∑
i=0

γn−N2−1−id(ai) (A.5)

≤ ν

N1−1∑
i=0

γn−N2−1−iM = νM
γn−N1−N2 − γn−N2

1 − γ
(A.6)

≤
νM

1 − γ
(A.7)

For the third term, as i ≥ N1:
n−1∑
i=N1

γn−1−id(ai) =

n−1∑
i=N1

γn−1−i(d(a∞) − d(ai)) +

n−1∑
i=N1

γn−1−id(a∞) (A.8)

≤

n−1∑
i=N1

γn−1−i|d(a∞) − d(ai)| +
n−1∑
i=N1

γn−1−id(a∞) (A.9)

≤

n−1∑
i=N1

γn−1−iη +

n−1∑
i=N1

γn−1−id(a∞) (A.10)

= η
1 − γn−N1

1 − γ
+ d(a∞)

1 − γn−N1

1 − γ
(A.11)

≤
η

1 − γ
+

d(a∞)
1 − γ

(A.12)

Therefore

bn ≤ νb0 +
νM

1 − γ
+

η

1 − γ
+

d(a∞)
1 − γ

≤ ε +
d(a∞)
1 − γ

(A.13)

and observing that the bound is not a function of n,

sup
m≥n

bm ≤ ε +
d(a∞)
1 − γ

(A.14)

Therefore, by the definition of a limit,

lim sup
n→∞

bn := lim
n→∞

sup
m≥n

bm ≤
d(a∞)
1 − γ

(A.15)

Now we will present the proof to Lemma 2.

Proof 2 Consider two sequences of value functions formed through the Bellman

iteration associated with each problem:

V j+1 = (T1V j)(x) := max
u1∈U1

R(F(x, u1), u1) + γV j(F(x, u1)) (A.16)

W j+1 = (T2W j)(x) := max
u2∈U2

R(F(x, u2), u2) + γW j(F(x, u2)) (A.17)

129

For discounted MDPs (γ < 1), there exists an optimal value function, the unique

fixed point of Bellman iteration. We show the limiting difference of the two se-

quences is bounded. Consider the sequence formed by the max norm of the differ-

ence between V j and W j:

Z j := ‖V j −W j‖∞ = max
x∈X
|V j(x) −W j(x)| (A.18)

Note that

Z j+1 = ‖V j+1 −W j+1‖∞ (A.19)

= ‖T1V j − T2W j‖∞ (A.20)

= ‖T1V j − T1W j + T1W j − T2W j‖∞ (A.21)

≤ ‖T1V j − T1W j‖∞ + ‖T1W j − T2W j‖∞ (A.22)

The first term is bounded through the contracting properties of the Bellman opera-

tor:

‖T1V j − T1W j‖∞ ≤ γ‖V j −W j‖∞ = γZ j (A.23)

Considering the second term, ∀x ∈ X:

|T1W j(x) − T2W j(x)| = . . .

=

∣∣∣∣∣ max
u1∈U1

(
R(F(x, u1), u1) + γW j(F(x, u1))

)
− max

u2∈U2

(
R(F(x, u2), u2) + γW j(F(x, u2))

) ∣∣∣∣∣
rearranging,

=

∣∣∣∣∣ max
u1∈U1

min
u2∈U2

(R(F(x, u1), u1) − R(F(x, u2), u2)) + γ
(
W j(F(x, u1)) −W j(F(x, u2))

) ∣∣∣∣∣
≤ max

u1∈U1
min
u2∈U2

{∣∣∣R(F(x, u1), u1) − R(F(x, u2), u2)
∣∣∣ + γ

∣∣∣W j(F(x, u1)) −W j(F(x, u2))
∣∣∣}

as R is only a function of state,

≤ max
u1∈U1

min
u2∈U2

{∣∣∣R(F(x, u1)) − R(F(x, u2))
∣∣∣ + γ

∣∣∣W j(F(x, u1)) −W j(F(x, u2))
∣∣∣}

as W j,R are Lipschitz

≤ max
u1∈U1

min
u2∈U2

{
LR‖F(x, u1) − F(x, u2)‖ + γLW j‖F(x, u1) − F(x, u2)‖

}
= (LR + γLW j) max

u1∈U1
min
u2∈U2

{
‖F(x, u1) − F(x, u2)‖

}
by the definition of Hausdorff distance,

≤ (LR + γLW j)dS (RF(x,U1),RF(x,U2))

130

And hence

‖T1W j − T2W j‖∞ ≤ (LR + γLW j) max
x∈X

dS (RF(x,U1),RF(x,U2)) (A.24)

Therefore, the sequence Z j satisfies

Z j+1 ≤ γZ j + (LR + γLW j) max
x∈X

dS (RF(x,U1),RF(x,U2)) (A.25)

We note that all W j inherit Lipschitz-ness from R and F, and as X is compact, they

are also bounded. Therefore, Lip(W) is a seminorm and therefore a continuous and

bounded mapping, so by Lemma 4,

lim sup
j→∞

Z j ≤
(LR + γLV)

1 − γ
max
x∈X

dS (RF(x,U1),RF(x,U2)) (A.26)

where LV is the Lipschitz constant of V∗2 . Note that using the other cross term re-

sults in the same analysis but with the Lipschitz constant of V∗1 , and hence write

just “LV”. We additionally note that the exact value of LV cannot be known with-

out knowledge of the optimal solution. However, it can be upper bounded by the

Lipschitz constant of the dynamics and reward functions.

As ‖ · ‖∞ is continuous and lim j→∞ V j = V∗1 , lim j→∞W j = V∗2 , we note that the limit

exists and conclude that

‖V∗1 − V∗2‖∞ ≤
(LR + γLV)

1 − γ
max
x∈X

(dS (RF(x,U1),RF(x,U2))) . (A.27)

Proof of Proposition 1

In preparation of for this lemma, we have some additional preliminaries.

The distance between two flows initialized at the same state and evolving under
nonlinear dynamics and the corresponding local linearization is bounded.

Remark 6 Consider the full nonlinear dynamics F(x, u) and its linearization about

an initial guess (x̄, ū), L(x, u) = F(x̄, ū)+∇xF|(x̄,ū)(x− x̄)+∇uF|x̄,ū(u−ū). For all states

and inputs in an ε-ball centered at (x̄, ū), the difference between the two functions

is bounded as:

‖F(x, u) − L(x, u)‖ ≤
1
2

(L∇F)ε2 ∀(x, u) ∈ B̄ε((x̄, ū)) (A.28)

where L∇F is the Lipschitz constant of the gradient of the dynamics. The proof

follows directly from Taylor’s Theorem.

131

Remark 7 is a structural observation that for deterministic MDPs, deciding an input
separately along H timesteps is the same as deciding all H inputs at once.

Remark 7 Consider a problemM = 〈X,U, F,R,D,K, γ〉. We denote the H-horizon

transcription of M as MH =
〈
XH,UH, FH,RH,D,K/H, γH

〉
, where state x[1:H] =

[x1, . . . , xH] transfers according to input u[H+1:2H] = [uH+1, . . . , u2H] as:

FH(x[1:H], u[H+1:2H]) =

F(xH, uH+1)

F(F(xH, uH+1), uH+2)
...

F(. . . F(F(xH, uH+1), uH+2), . . . , u2H)

(A.29)

RH(x[H+1:2H], u[H+1:2H]) =

H−1∑
k=0

γkR(xH+k+1, uH+k+1) (A.30)

s.t. x[H+1:2H] = FH(x[1:H], u[H+1:2H]) (A.31)

For notational simplicity, assume that K is an integer multiple of H; the extension

to other cases is theoretically straightforward but notationally complicated. We

note thatM andMH share the same optimal value function (noting existence of V∗

when γ < 1). The proof is shown by writing out Equation (2.1) for both MDPs and

observing they are the same problem, and hence share the same optimal solution.

The last preliminary shows the Discrete Algebraic Riccati Equation (DARE) con-
troller induces a contracting system.

Lemma 5 Consider a linear system, a dynamically feasible reference trajectory

zref
[H], uref

[H], and a feedback controller:

zk+1 = Azk + Buk+1 + c (A.32)

uk+1 = uref
k+1 − K(zk − zref

k) (A.33)

If the gain matrix K is selected as (Γu + B>MB)−1(B>MA), M solves the discrete

algebraic Riccati equation (DARE) and Γu � 0, Γx � 0 then the system is contract-

ing [2] at some rate α ∈ [0, 1).

The proof is given in Sec. A.1.

Now, we are ready to prove Prop. 1.

132

Proof 3 The procedure of spectral expansion proceeds in three main steps (i) lin-

earization of the full system, (ii) computation of the H-step controllable modes

of the linearized system and (iii) feedback control to track the linear controllable

modes with the nonlinear system.

As such, we will compare the full H-step reachable set to the linearized reachable

set, to its discretization into controllable modes, and to the nonlinear system track-

ing the controllable modes.

RFH (x0,UH)
nonlinearity

error
←→ RLH (x0,UH)

discrete
eigenmodes
←→ {zi

H}
2n
i=1

tracking linear
trajectories
←→ {xi

H}
2n
i=1 (A.34)

With the last being the reachable set under spectral expansion, and henceRFH (x0,USETS) =

{xi
H}

2n
i=1. As dS is a metric,

dS (RFH (x0,UH), {xi}
2n
i=1) ≤ dS (RFH (x0,UH),RLH (x0,UH))

+ dS (RLH (x0,UH), {zi}
2n
i=1)

+ dS ({zi}
2n
i=1, {xi}

2n
i=1)

(A.35)

We will bound each term of Equation (A.35) in turn.

Consider two trajectories with the same initial condition x0, driven by the same

inputs, one with the full dynamics F and one with linearized dynamics L about a

nominal trajectory starting at x0:

Lk(z, u) = F(x̄k, ūk+1) + ∇xF|(x̄k ,ūk+1)(z − x̄k) + ∇uF|x̄k ,ūk+1(u − ūk+1) (A.36)

= ∇xF|x̄k ,ūk+1︸ ︷︷ ︸
Ak

z + ∇uF|x̄k ,ūk+1︸ ︷︷ ︸
Bk

u + F(x̄k, ūk+1) − ∇xF|x̄k ,ūk+1 x̄k − F(x̄k, ūk+1)ūk+1︸ ︷︷ ︸
ck

(A.37)

= Akz + Bku + ck (A.38)

The corresponding dynamical systems are

xk+1 = F(xk, uk+1), ∀k ∈ [0,H − 1], x0 = x0 (A.39)

zk+1 = Lk(xk, uk+1), ∀k ∈ [0,H − 1], z0 = x0 (A.40)

133

Note that, ∀k ∈ [0,H − 1]:

‖xk+1 − zk+1‖ = ‖F(xk, uk+1) − Lk(zk, uk+1)‖ (A.41)

= ‖F(xk, uk+1) − F(zk, uk+1) + F(zk, uk+1) − Lk(zk, uk+1)‖ (A.42)

by the triangle inequality, (A.43)

≤ ‖F(xk, uk+1) − F(zk, uk+1)‖ + ‖F(zk, uk+1) − Lk(zk, uk+1)‖ (A.44)

as F is Lipschitz, and by Remark 6 (A.45)

≤ LF‖xk − zk‖ +
1
2

L∇Fε
2 (A.46)

Now as x0 = z0, the trajectories satisfy

‖xk − zk‖ ≤
(LF)k − 1

LF − 1

(
1
2

L∇Fε
2
)
∀k ∈ [1,H] (A.47)

Evaluating this inequality at timestep k = H and considering all pairs of linear and

nonlinear trajectories yields a reachable set distance of:

dS (RFH (x0,UH),RLH (x0,UH)) ≤
(LF)H − 1

LF − 1

(
1
2

L∇Fε
2
)

(A.48)

Now considering the linear reachable set RLH (x0,UH), we note that

RLH (x0,UH) = {zH | zH = z̄H + Cv[H] s.t. ‖v[H]‖∞ ≤ 1} (A.49)

where z̄H = LH(x0, ū[H]) is the endpoint of the free linearized trajectory from x0 and

C =
[(∏H−1

k=1 Ak

)
B0S ,

(∏H−1
k=2 Ak

)
B1S , . . . , AH−1BH−2S , BH−1S

]
(A.50)

is the input-normalized controllability matrix of the linearized system. Here v[H] is

a transformation of the input such that u[H] ∈ U =⇒ ‖v[H]‖∞ ≤ 1.

Our algorithm uses a singular value decomposition of C to extract the controllabil-

ity information of our linear system. The left-singular vectors and singular values

are the controllable directions and a measure of their controllability. Let the set

{zi}
2n
i=1 be each left-singular vector of C times plus/minus its corresponding singular

value, which we call the controllable modes of the system. We now quantify the dis-

tance between RLH (x0,UH) and {zi}
2n
i=1. ∀zH ∈ RLH (x0,UH), by Hölder’s inequality,

‖zH − z̄H‖2 ≤ ‖Cv[H]‖2 ≤ ‖C‖2‖v[H]‖∞ ≤ ‖C‖2 (A.51)

where ‖C‖2 = σmax(C) is the largest singular value of C.

134

As σmax(·) is an induced matrix norm, we note that is submultiplicative. Using the

block structure of C,

σmax(C) ≤
H−1∑
l=0

σmax

(H−1∏
k=l+1

Ak)BlS

 (A.52)

≤

H−1∑
l=0

 H−1∏
k=l+1

σmax(Ak)

σmax(Bl)σmax(S)

 (A.53)

which we bound by considering the maximum-singular value linearization over the

state space. Noting the Lipschitz constant of F is defined as

LF = max
x∈X,u∈U

σmax

([
∇xF|x,u ∇uF|x,u

])
(A.54)

then max
x∈X,u∈U

σmax(∇xF|x,u) ≤ LF and max
x∈X,u∈U

σmax(∇uF|x,u) ≤ LF , and consequently

σmax(C) ≤
H−1∑
l=0

 H−1∏
k=l+1

LF

 LFσmax(S)

 =

H−1∑
l=0

[
(LF)H−l−1LFσmax(S)

]
(A.55)

=

H−1∑
l=0

[
(LF)lLFσmax(S)

]
= σmax(S)LF

(
(LF)H − 1

LF − 1

)
(A.56)

And now, noting that {zi}
2n
i=1 ⊆ RLH (x0,UH),

dS (RLH (x0,UH), {zi}
2n
i=1) = max

x∈RLH (x0,UH)
min

i
‖zi − x‖ (A.57)

= max
x∈RLH (x0,UH)

min
i
‖zi − z̄H + z̄H − x‖ (A.58)

≤ max
x∈RLH (x0,UH)

min
i
‖zi − z̄H‖ + ‖x − z̄H‖ (A.59)

≤ 2σmax(S)LF

(
(LF)H − 1

LF − 1

)
(A.60)

Finally, an analogous argument to the first term gives a bound for the third term.

For each controllable mode, we consider a desired trajectory to be the linear tra-

jectory that terminates at zi. We fix a controller as a discrete algebraic Riccati

controller tracking the desired trajectory (zref
[H], u

ref
[H]) to form autonomous nonlinear

and linearized systems:

Fcl(xk) = F(xk, uref
k+1 − Kk(xk − zref

k)) (A.61)

Lcl,k(zk) = F(zk, uref
k+1 − Kk(zk − zref

k)) (A.62)

135

Applying Lemma 5, this controller creates a contracting linear system with con-

traction rate α. Then, we treat the nonlinear system as a perturbed linear system,

where the disturbance is the difference between the linear and nonlinear dynamics,

and apply a robust contraction result [2] to bound the difference between the linear

and nonlinear trajectory evolution. For all k = 0, ...,H − 1

xk+1 = Fcl(xk) = Lcl,k(xk) + Fcl(xk) − Lcl,k(xk) (A.63)

xk+1 − zk+1 = Lcl,k(xk) − Lcl,k(zk) + Fcl(xk) − Lcl,k(xk) (A.64)

‖xk+1 − zk+1‖ ≤ α‖xk − zk‖ + Fcl(xk) − Lcl,k(xk) (A.65)

‖xk+1 − zk+1‖ ≤ α‖xk − zk‖ +
1
2

(L∇Fcl)ε
2 (A.66)

and hence for all k = 1, ...,H:

‖xk − zk‖ ≤ α
k‖x0 − zref

0 ‖ +
1 − αk

1 − α

(
1
2

(L∇Fcl)ε
2
)

(A.67)

noting that Fcl inherits Lipschitz gradients from F, and furthermore L∇Fcl ≤ L∇F .

As the trajectories start from the same initial condition, we are left with only the

second term. Hence the nonlinear rollout error associated with tracking (zref
[H], u

ref
[H])

is bounded as

‖xH − zH‖ ≤
1 − αH

1 − α

(
1
2

(L∇Fcl)ε
2
)

(A.68)

As this bound holds for each controllable mode endpoint zi,

dS ({zi}
2n
i=1, {xi}

2n
i=1) ≤

1
2

(L∇Fcl)ε
2 1 − αH

1 − α
(A.69)

Substituting into (A.35) completes the proof.

Remark 8 Although the term (LF)H is discouraging, it arises from a linear ap-

proximation of a nonlinear dynamical system and it may be unavoidable because,

in general, computing a nonlinear reachable set is NP-Hard. Despite its exponen-

tial growth, we can control this term when F is derived as an Euler integration over

∆t of a continuous dynamical system ẋ = f (x, u). When f is Lipschitz with constant

L f , then LF = 1+∆tL f . For a fixed H, shrinking ∆t controls the growth of this term.

For a fixed effective planning horizon (constant H∆t), increasing ∆t and decreasing

H proportionally shrinks this term.

136

Proof of Lemma 5:

Proof 4 Combine the system and controller to write the closed loop system and its

differential dynamics:

zk+1 = Azk + Buref
k+1 − BK(zk − zref

k) + c (A.70)

δzk+1 = (A − BK)︸ ︷︷ ︸
Acl

δzk (A.71)

Recall the definition of discrete-time contraction from [3]: A discrete-time system

is contracting with time-invariant metric M iff

A>clMAcl − α
2M � 0 (A.72)

where Acl is the closed loop dynamics of the differential system and α ∈ [0, 1) is the

contraction rate.

Compute the left-hand-side of the contraction condition, and we will seek to show

it is negative definite to prove contraction (A.72):

LHS = (A − BK)>M(A − BK) − α2M (A.73)

= A>MA − A>MBK −K>B>MA +K>B>MBK − α2M (A.74)

Manipulate this term,K>B>MBK , by plugging in the definition ofK , add/subtracting

K>ΓuK and grouping terms:

K>B>MBK = K>B>MB(Γu + B>MB)−1(B>MA) (A.75)

= K>B>MB(Γu + B>MB)−1(B>MA) +K>ΓuK −K
>ΓuK (A.76)

= K>(Γu + B>MB)(Γu + B>MB)−1(B>MA) − K>ΓuK (A.77)

= K>B>MA − K>ΓuK (A.78)

Plug back into LHS:

LHS = A>MA − A>MBK −K>ΓuK − α
2M (A.79)

Recall the definition of the discrete algebraic Riccati equation, DARE(A, B,Γx,Γu) [4]:

M = A>MA − A>MB(Γu + B>MB)−1(B>MA) + Γx (A.80)

Let M solve DARE(A, B,Γx,Γu). Plug into LHS:

LHS = −Γx − K
>ΓuK + (1 − α2)M (A.81)

Because K>ΓuK � 0, if we select Γx to be sufficiently large, the system is contract-

ing with rate α.

137

Proof of Theorem 1

Proof 5 As in Remark 7, let MH denote the H-horizon transcription of M. The

optimal value function ofMH andM are the same:

(VH)∗(x) = V∗(x) ∀x ∈ X (A.82)

The algorithm SETS constructs and solves a new MDP

MSETS =
〈
X,USETS, FH,RH,V,K/H, γH

〉
using UCT to navigate the decision tree. We note that the branching factor of

MSETS is finite and bounded by twice the state dimension n. As γH < 1, there exists

a unique optimal value function V∗SETS associated withMSETS. Let V̂(x0, `) denote

the value estimate formed by the lth iteration of UCT running onMSETS. By Lemma

1, V̂(x0, l) satisfies

V∗SETS(x0) − E[V̂(x0, `)] ≤ O
(
(2n)(K/H) log(`) + (2n)(K/H)

`

)
(A.83)

By Lemma 2 and Proposition 1, asMSETS andMH share the same problem infor-

mation apart from the input set,

‖(VH)∗ − V∗SETS‖∞ ≤
LR + γHLV

1 − γH

(1
2

(L∇F)ε2 (LF)H − 1
LF − 1

(A.84)

+ 2σmax(S)LF

(
(LF)H − 1

LF − 1

)
+

1
2

(L∇Fcl)ε
2 1 − αH

1 − α

)
(A.85)

The triangle inequality yields the relationship:

V∗(x0) − E[V̂(x0, `)] =
(
V∗(x0) − (VH)∗(x0)

)
+

(
(VH)∗(x0) − V∗SETS(x0)

)
(A.86)

+
(
V∗SETS(x0) − E[V̂(x0, l)]

)
(A.87)

≤ 0 +
LR + γHLV

1 − γH

(1
2

(L∇F)ε2 (LF)H − 1
LF − 1

+ 2σmax(S)LF

(
(LF)H − 1

LF − 1

)
(A.88)

+
1
2

(L∇Fcl)ε
2 1 − αH

1 − α

)
+ O

(
(2n)(K/H) log(`) + (2n)(K/H)

`

)
(A.89)

Noting the feedback control term is bounded as:

1
2

(L∇Fcl)ε
2 1 − αH

1 − α
≤

1
2

(L∇Fcl)ε
2 1
1 − α

(A.90)

138

rearrangement with

C0 =
LR

LV
, C1 =

LV(L∇Fε
2 + 4σmax(S)LF)

2(LF − 1)
, C2 = L f , (A.91)

C3 =
LV L∇Fclε

2

2(1 − α)
−

LV(L∇Fε
2 + 4σmax(S)LF)

2(LF − 1)
(A.92)

completes the proof.

A.2 MCTS for Belief-Space Planning

Lemma 6 (Equivalent POMDP reformulation) If a global optimal solution ex-

ists to the constrained safe active fault estimation problem, Definition 6, then the

solution of the following POMDP is also a global optimal solution of Definition 6

in the discretization limit of state and observation space:

〈Q,U,Y,Rh,α,T,Z〉,

T (qk, uk, qk+1) = P

xk

φk

 =

 f (xk−1) + B(xk−1)
(
(I − ΦB)uk + ΦB,1

)
+ wk

φk−1

 , (S8)

Z(qk, uk, yk) = P
(
yk = (I − ΦC)Cxk + ΦC,1 + vk

)
where Q = X×Φ, U, Y are as in Definition 6, Rh,α is given by Eq. (3.21), and the be-

lief updates are given by Eq. (3.12). Further, when Rh,α is replaced by R̃h,α(bk) given

by Eq. (3.29), then the global optimal solution of this POMDP is a global optimal

solution of the conservative safe active fault estimation problem (Definition 7).

Proof 6 By assumption the policy π∗(b0), a global optimal solution to the original

problem (Definition 6), exists and is feasible. The equivalence of the two problems

is shown if π∗(b0) is also an optimal solution of this POMDP. By Theorem 2, the

existence of π∗(b0) indicates the existence of π∗h,α(b0), another optimal solution to

Definition 6 satisfying:

π∗h,α(b0) = arg max
π∈Π

Vπ
h,α(b0) (3.23)

So we have the following

V
π∗h,α
h,α (b0) ≥ Vπ

h,α(b0) ∀π ∈ Π (S9)

Because the POMDP given by Eq. (S8) also uses Rh,α given by Eq. (3.21) as a

reward, it shares the value function given by Eq. (3.22) with the reformulation

139

given by Theorem 2. Therefore, π∗h,α(b0) and π∗(b0) maximize the value function

of Eq. (S8), so, by definition, the solution of Definition 6 is an optimal policy of

Eq. (S8) and the problems are equivalent. The same logic applies when Rh,α is

replaced by R̃h,α(bk), showing equivalence with the conservative safe active fault

estimation problem as well.

Theorem 9 (Equivalent unbounded reformulation) If a global optimal solution

exists to the constrained safe active fault estimation problem, Definition 6, then the

solution of the following unconstrained problem with a transformed value function

given by Eq. (3.22), is also a global optimal solution of Definition 6:

π∗h,α(b0) = arg max
π∈Π

Vπ
h,α(b0) (3.23)

Proof 7 The equivalence of the problems is shown if the optimal policy of the orig-

inal problem given by Definition 6, Eq. (3.17) has the same value as the optimal

policy of the reformulated problem given by Eq. (3.23). The reformulated problem

is constructed such that any policy resulting in an expected α-safe trajectory (Def-

inition 5) has a minimum expected cumulative reward of Kr0, which is higher than

the maximum expected cumulative reward of an expected unsafe trajectory, K − 1,

as Kr0 = K2

K+1 >
K2−1
K+1 = K − 1.

E[1Bh,α(bk) | π, b0] = 1 ∀k ⇐⇒ Vπ
h,α(b0) ≥ Kr0 (S1)

∃k : E[1Bh,α(bk) | π, b0] , 1 ⇐⇒ Vπ
h,α(b0) < Kr0 (S2)

By assumption, the policy π∗(b0), a global optimal solution to Definition 6, exists

and is feasible. From the constraints of Eq. (3.17), this solution must satisfy:

E[1Bh,α(bk) | π∗, b0] = 1 ∀k =⇒ Vπ∗

h,α(b0) ≥ Kr0 (S3)

Since π∗h,α(b0) is the optimal solution to the reformulation given by Eq. (3.23):

V
π∗h,α
h,α (b0) ≥ Vπ

h,α(b0),∀π; V
π∗h,α
h,α (b0) ≥ Kr0 =⇒ E[1Bh,α(bk) | π∗h,α, b0] = 1∀k (S4)

So π∗h,α(b0) satisfies the original problem constraints (Definition 6). Because π∗h,α(b0)
is admissible for the original problem, by optimality of π∗, V∗(b0) ≥ Vπ∗h,α(b0).
Note that for trajectories satisfying the original problem constraints (Definition 6),

the transformed objective is an affine transformation and is monotonic, so with

Eq. (S4):

V∗(b0) ≥ Vπ∗h,α(b0) =⇒ Vπ∗

h,α(b0) ≥ V
π∗h,α
h,α (b0) =⇒ Vπ∗

h,α(b0) = V
π∗h,α
h,α (b0) (S5)

140

Further the argument of the extrema is preserved, therefore, π∗h,α = π∗ when there is

a unique optimal solution.

Theorem 10 (Conservative sampling bound) For M > 2, a belief b(x), safety

function h, µ̂h, σ̂h defined according to Eq. (3.25), and µ̂h ≥ σ̂h; satisfying the ap-

proximate safety condition of Eq. (3.20) indicates that the belief is conservatively

α-safe.

1
M + 1

⌊
M + 1

M

(
σ̂2

h(M − 1)

µ̂2
h

+ 1
)⌋
≤ 1 − α =⇒ b ∈ Bh,α (3.20)

Proof 8 Defining the physical state associated with the belief as: Z ∼ b(x), a ran-

dom variable, the condition for α-safety is P (h(x) ≥ 0) ≥ α =⇒ P (h(x) < 0) ≤
1 − α. Adding and subtracting the empirical mean and upper bounding the one

sided tail probability with a two-sided condition we have:

P (h(x) < 0) = P (h(xi) − µ̂h < −µ̂h) ≤ P (|h(x) − µ̂h| > µ̂h) (S6)

Using Eq. (3.24), and choosing λ = µ̂h/σ̂h we have:

P (|h(x) − µ̂h| > µ̂h) ≤
1

M + 1

⌊
M + 1

M
(
σ̂2

h(M − 1)

µ̂2
h

+ 1)
⌋

(S7)

Combining Eqs. (S6) and (S7), we arrive at the desired result.

Lemma 7 (Conservative α-safe set) For a belief b, and safety function h with cor-

responding statistics µh, σh; there exists a conservatively α-safe set B̃h,α ⊆ Bh,α,

such that the following safety condition is necessary and sufficient for membership:

σ2
h

µ2
h

≤ 1 − α ⇐⇒ b ∈ B̃h,α (3.26)

Proof 9 We note for a given belief, the mean and standard deviation are determin-

istic, so B̃h,α = {b ∈ B : σ2
h(b)
µ2

h(b) ≤ 1 − α} is well defined. In the limit as M → ∞,

Eq. (3.20) becomes σ2
h
µ2

h
≤ 1 − α so by Theorem 3 or Chebyshev’s inequality we have

∀b ∈ B̃h,α, b ∈ Bh,α, so B̃h,α ⊆ Bh,α.

Theorem 11 (Problem reformulation equivalence) If an admissible policy, π(b0),
to the safe active fault estimation problem (Definition 6) exists and satisfies:

E[1B̃h,α
(bk) | π, b0] = 1 ∀k (3.30)

141

where B̃h,α is given by Lemma 3, then an optimal policy, π̃∗h,α(b0), to the conserva-

tive safe active fault estimation problem (Definition 7) is a sub-optimal solution of

Definition 6 constrained to B̃h,α. Further, if an optimal policy, π∗(b0), to Definition 6

exists and satisfies Eq. (3.30), π̃∗h,α(b0) is an optimal solution to Definition 6.

Proof 10 We start with the second claim. From Theorem 2, π̃∗h,α(b0), is optimal

on the the safe active fault estimation problem (Definition 6) restricted to B̃h,α. As

E[1B̃h,α
(bk) | π∗, b0] = 1 ∀k, relaxing the restriction to Bh,α does not change the

optimal value, so π̃∗h,α(b0) is an optimal solution to Definition 6.

For the first claim, when a feasible policy of Definition 6 generates expected beliefs

in B̃h,α (∃π satisfying Eq. (3.30)), restricting the safe active fault estimation problem

to B̃h,α provides a new safe active fault estimation problem with at least one feasible

solution. Optimality of π̃∗h,α(b0) for this problem then follows from Theorem 2.

Here we present an equivalent reformulation to make s-FEAST compatible with
existing search methods, then use this compatibility to inherit their convergence
guarantees and prove the optimality of s-FEAST.

Theorem 12 (Optimality of s-FEAST) Let µ denote the policy produced by s-FEAST,

and π̃∗h,α(b0) denote an optimal policy to the conservative safe active fault estima-

tion problem (Definition 7). In the limit of M → ∞, the value of these policies

converge:

lim
N→∞

(
Ṽµ

h,α(b0) − Ṽ∗h,α(b0)
)
→ 0 (3.31)

with convergence rate O(log N/N). Further, if an optimal policy, π∗(b0), to Defini-

tion 6 exists and satisfies Eq. (3.30), Vµ(b0) converges to V∗(b0).

Proof 11 From Lemma 3 we have that in the limit of M → ∞, B̃h,α is the set

for which Eq. (3.26) is a necessary and sufficient condition for membership, and

B̃h,α ⊆ Bh,α. From Theorem 4 we have that if s-FEAST solves the conservative

safe active sensing problem (Definition 7) with the stated convergence rate, we

achieved both the claimed results. To show s-FEAST solves Definition 7, we note

that Definition 7 can be equivalently reformulated as a POMDP by Lemma 6. To

solve the equivalent POMDP, s-FEAST employs the marginalized filter given by

Eq. (3.19) to perform an Bayesian update when creating a new node in the tree

search, and incurs an accurate reward. Therefore, we are performing PO-UCT

from (46) and inherit the convergence rate from their Theorem 1.

142

A.3 Global to Local Learning

Theorem 13 For the single integrator dynamics (5.3), the safety defined by (5.13)
is guaranteed under the control law (5.6) with the following b(oi) and π(oi) for a

scalar gains kp > 0 and kc > 0:

b(oi) = −kp∇piΨi(oi) (A.93)

απ(oi) =

(kp−kc)‖∇pi Ψ

i(oi)‖2

kp‖∇pi Ψi(oi)‖2+|〈∇pi Ψi(oi),π(oi)〉| ∆h(oi) < 0

1 else
(A.94)

with ∆h(oi) = min j∈N i h(pi j) − ∆r, and ∇piΨi as in (A.97).

Proof 12 We prove global safety by showing boundedness of Ψi(oi), because a

bounded Ψ(x) implies no safety violation. Since Ψ(x) is a sum of functions Ψi(oi),
it suffices to show that all Ψi(oi) are bounded. To prove the boundedness of Ψi(oi),
we use a Lyapunov method. First, we note that Ψi(oi) is an appropriate positive

Lyapunov function candidate as Ψi(oi) > 0 ∀oi, using the fact that − log(x) ∈
(0,∞), ∀x ∈ (0, 1). Second, we show x ∈ ∂Xi

s =⇒ Ψ̇i(oi) < 0, where the

boundary-layer domain ∂Xi
s ⊂ X is defined as:

∂Xi
s = {x | 0 < min

j∈N i
h(pi j) < ∆r}. (A.95)

This result implies that upon entering the boundary-layer of the safe set, ∂Xi
s, the

controller will push the system back into the interior of the safety set, X \ ∂Xi
s.

We take the time derivative of Ψi along the system dynamics, and plug the single

integrator dynamics (5.3) and controller (5.6) into Ψ̇i:

Ψ̇i = 〈∇xΨ
i, ẋ〉 =

N∑
i=1

〈∇xiΨi, ẋi〉 =

N∑
i=1

〈∇piΨi, ui〉

=

N∑
i=1

〈∇piΨi, αππ + (1 − απ)b〉, (A.96)

where ∇piΨi =
∑
j∈N i

pi j

‖pi j
‖(‖pi j

‖ − rsafe)
. (A.97)

From here, establishing that any element of the sum is negative when x ∈ ∂Xi
s

implies the desired result. Expanding an arbitrary element at the i index with the

definition of b:

= −kp‖∇piΨi‖2 + απ(〈∇piΨi, π〉 + kp‖∇piΨi‖2)

≤ −kp‖∇piΨi‖2 + π(|〈∇piΨi, π〉| + kp‖∇piΨi‖2)

143

By plugging π from (5.18) into (A.98), we arrive at the following:

〈∇piΨi, παπ + (1 − αpi)b〉 ≤ −kc‖∇piΨi‖2 (A.98)

Thus, every element is strictly negative, unless ∇piΨi equals zero; caused either by

reaching the safety equilibrium of the system at h(pi j) ≥ 1,∀ j ∈ N i, or in the case

of deadlock between robots.

Theorem 14 For the double integrator dynamics given in (5.3), the safety defined

by (5.13) is guaranteed under control law (5.6) for the barrier-controller and the

gain defined as:

b = −kv(vi + kp∇piΨi) − kp
d
dt
∇piΨi − kp∇piΨi,

απ =

a1−kc(kpΨi+ 1

2 ‖v−k‖2)
a1+|a2 |

∆h(oi) < 0

1 else
(A.99)

a1 = kv‖vi + kp∇piΨi‖2 + k2
p‖∇piΨi‖2,

a2 = 〈vi, kp∇piΨi〉 + 〈vi + kp∇piΨi, π + kp
d
dt
∇piΨi〉,

where kp > 0, kc > 0, and kv > 0 are scalar gains, ∆h is defined as in Theorem 7,
d
dt∇piΨi is defined in (A.105) and the dependency on the observation is suppressed

for legibility.

Proof 13 We take the same proof approach as in Theorem 7 to show boundedness

of ψi. We define a Lyapunov function, V augmented with a backstepping term:

V = kpΨ
i +

1
2
‖v − k‖2, (A.100)

where v is the stacked velocity vector, v = [v1; . . . ; vN] and k is the stacked nom-

inally stabilizing control, k = −kp[∇p1Ψ1; . . . ;∇pN ΨN]. For the same reasoning

as the previous result, V is a positive function, and thus an appropriate Lyapunov

candidate. Taking the derivative along the system dynamics (5.3):

V̇ =

N∑
i=1

kp〈∇xiΨi, ẋi〉 + 〈vi − ki, ui − k̇i〉 (A.101)

=

N∑
i=1

kp〈∇piΨi, vi〉 + 〈vi − ki, ui − k̇i〉. (A.102)

144

From here, establishing that an arbitrary element of the sum is negative when x ∈

∂Xi
s implies the desired result. We rewrite the first inner product in this expression

as:

〈∇piΨi, vi〉 = 〈∇piΨi, ki〉 + 〈∇piΨi, (vi − ki)〉

= −kp‖∇piΨi‖2 + 〈∇piΨi, (vi − ki)〉. (A.103)

Next, we expand the second inner product of (A.102), and plug ki,ui, and b into (A.102):

〈vi + kp∇piΨi, ui + kp
d
dt
∇piΨi〉 (A.104)

= −kv‖vi + kp∇piΨi‖2 − kp〈∇piψi, vi + kp∇piΨi〉

+ π〈vi + kp∇piΨi, απ − b〉

where
d
dt
∇piΨi =

∑
j∈N i

vi

‖pi j
‖(‖pi j

‖ − rsafe)

−
〈pi, vi〉pi

‖pi j
‖(‖pi j

‖ − rsafe)(‖p
i j
‖2 + (‖pi j

‖ − rsafe)2)
(A.105)

Combining both terms back into the expression:

kp〈∇piΨi, vi〉 + 〈vi − ki, ui − k̇i〉 = −k2
p‖∇piΨi‖2

−kv‖vi + kp∇piΨi‖2 + π〈vi + kp∇piΨi, απ − b〉 (A.106)

Expanding the last term with the definition of b, and upper bounding it:

〈vi + kp∇piΨi, π − b〉 (A.107)

= (kv‖vi + kp∇piΨi‖2 + k2
p‖∇piΨi‖2)

+ (〈vi, kp∇piΨi〉 + 〈vi + kp∇piΨi, π + kp
d
dt
∇piΨi〉)

= a1 + a2 ≤ a1 + |a2|

where the terms in parentheses are grouped into a1, a2 to improve legibility. By

plugging απ from (5.19) into (A.106), we arrive at V̇ =
∑N

i=1 −kcV, which results

in exponential stability that guarantees the system will remain safe by pushing it

towards a safety equilibrium where h(pi j) ≥ 1,∀ j ∈ N i. It also makes the system

robust to disturbances [5].

145

BIBLIOGRAPHY

[1] Andrew Stuart and Anthony R Humphries. Dynamical Systems and Numeri-
cal Analysis. Vol. 2. Cambridge University Press, 1998.

[2] Winfried Lohmiller and Jean-Jacques E. Slotine. “On Contraction Analysis
for Non-linear Systems”. In: Automatica 34.6 (1998), pp. 683–696. doi: 10.
1016/S0005-1098(98)00019-3. url: https://doi.org/10.1016/
S0005-1098(98)00019-3.

[3] Hiroyasu Tsukamoto, Soon-Jo Chung, and Jean-Jacques E. Slotine. “Con-
traction theory for nonlinear stability analysis and learning-based control: A
tutorial overview”. In: Annual Reviews in Control 52 (2021), pp. 135–169.
doi: 10.1016/J.ARCONTROL.2021.10.001. url: https://doi.org/10.
1016/j.arcontrol.2021.10.001.

[4] D.E. Kirk. Optimal Control Theory: An Introduction. Dover Books on Elec-
trical Engineering. Dover Publications, 2012. isbn: 9780486135076. url:
https://books.google.com/books?id=onuH0PnZwV4C.

[5] Hassan K Khalil. Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall,
2002. isbn: 978-0130673893. url: https : / / cds . cern . ch / record /
1173048.

146

A p p e n d i x B

IMPLEMENTATION DETAILS

B.1 MCTS for Dynamics
Problem Data and Equations of Motion
Quadrotor

The state and action space are specified with the following parameters:

X =

−1.3 −1.3 −3.2 −6.0 −6.0 −6.0 −0.8 −0.8 −10.0 −5.0 −5.0 −5.0
1.3 1.3 −2.2 6.0 6.0 6.0 0.8 0.8 10.0 5.0 5.0 5.0

>
(B.1)

U =

 0.0 −0.012 −0.012 −0.002
12.0 0.012 0.012 0.002

> (B.2)

For the dynamical model, we opt for the convention from [13] for a 6DOF model of
the quadrotor, rather than standard compact notation [14], because it will be reused
for the glider model in Sec. B.1. The dynamics of the nominal physical system are
the following:

ṗn

ṗe

ṗd

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

u

v

w

u̇

v̇

ẇ

 =

rv − qw

pw − ru

qu − pv

 +
1
m

fx

fy

fz

φ̇

θ̇

ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

p

q

r

ṗ

q̇

ṙ

 =

Γ1 pq − Γ2qr

Γ5 pr − Γ6(p2 − r2)
Γ7 pq − Γ1qr

 +

Γ3l + Γ4n

1
Jy

m

Γ4l + Γ8n

where (i) s, c, t are shorthand notation for sin, cos, and tan, (ii) m, {Γi}

8
i=1 are mass

and moment of inertia constants, (iii) fx, fy, fz are the external forces in body frame
and n, m, l are the external torques.

147

Tracked Vehicle

The nominal tracked vehicle dynamics are the following:

F

x

y

θ

v

ω

,

vd

ωd

=

x

y

θ

v

ω

+ ∆t

v cos θ
v sin θ
ω

1
τv

(−v + vd)
1
τω

(−ω + ωd)

(B.3)

for parameters ∆t = 0.1, τv = 0.2, τω = 0.15.

The state space and action space are specified with the following parameters:

X =

−100 −100 −100 −10π −1.8 −1.5
100 100 100 10π 1.8 1.5

> U =

−1.0, −1.0
1.0, 1.0

> (B.4)

Glider

The external forces are computed with a first-order Taylor expansion of the follow-
ing longitudinal and lateral components:

flift =
1
2
ρV2

a S CL(α, q, δe) fy =
1
2
ρV2

a S CY(β, p, r, δa, δr) (B.5)

fdrag =
1
2
ρV2

a S CD(α, q, δe) l =
1
2
ρV2

a S bCl(β, p, r, δa, δr) (B.6)

m =
1
2
ρV2

a S cCm(α, q, δe) n =
1
2
ρV2

a S bCn(β, p, r, δa, δr) (B.7)

where (i) flift and fdrag are rotated into fx and fy, (ii) S , c, b are the planar area of the
wing surface, mean chord length, and wind span of the drone, (iii) α and β are the
angle of attack and slip angle.

The state and action space are hypercubes with the following upper and lower lim-
its:

X =

−1000 −1000 −750 −600 −600 −600 −2 −2 −100 −50 −50 −50
1000 1000 −0.2 600 600 600 2 2 100 50 50 50

>
(B.8)

U =

−0.5 −0.5 −0.5
0.5 0.5 0.5

> (B.9)

148

Spacecraft

We model each spacecraft as a planar double integrator, with px and py positions in
meters and vx and vy velocities in meters per second. We use a 1-dimensional finite
element mesh for the net model, with four nodes.

The state and action spaces are hypercubes, where each x and y position is con-
strained to the hypercube (px, py) ∈ [−3.0, 5.0]2, and velocities to (vx, vy) ∈ [−0.25, 0.25]2.

We model the external forces on each spacecraft and net nodes to model the dy-
namics. The two controlled spacecraft are each actuated by forces in the x and y

direction.

Between the net nodes and the edge net nodes and the controlled spacecraft, we
consider a linear tension-only spring-damper. The symmetric force, aligned in the
direction of the net, for net segment i is

Fnet,i = (li > l)(kn(li − l) − cnl̇i) (B.10)

for nominal length l, net stiffness kn, and damping coefficient cn. Here the length
li is the magnitude of the position difference between two nodes: ‖[px,i py,i]> −
[px,i−1 py,i−1]>‖.

Between each of the net nodes and the target spacecraft, we model the collision as
a stiff spring-damper, with a similar form to above. For node i, the contact force
between the net node and the target is

Fcontact,i = (di < rt)(kc(di − rt) − ccḋi) (B.11)

for target radius rt, collision stiffness kc, and collision damping cc. Here di is the
distance between node i and the target: ‖[px,i py,i]> − [px,t py,t]>‖. A visualization of
the forces involved in this scenario is available in the figure below.

The reward is a composite function of three terms:

R(x) =c1s(‖[px,centroid py,centroid]> − [px,t py,t]>‖, a1) (B.12)

+ c2s(‖[vx,centroid vy,centroid]> − [vx,d vy,d]>‖, a2) (B.13)

+ c3s(‖[vx,t vy,t]> − [vx,d vy,d]>‖, a3) (B.14)

D(x) ≡ 0 (B.15)

where [px,centroid py,centroid]> is the centroid of the controlled spacecraft and net struc-
ture. Here s is a normalization function: s(d, a) = 1 − 2

π
arctan(d

a). The first term

149

Fcontact,4,y

Fcontact,4,x

Fcontact,1,y

Fcontact,1,x

Fcontact,2,y

Fcontact,2,x

Fnet,1,+

Fnet,1,-

Fnet,2,+Fnet,2,-

Fnet,0,+

Fnet,3,-

Fcontrol,0,y

Fcontrol,0,x

Fcontrol,3,y

Fcontrol,3,x

0

1

2

3

4

Figure B.1: Forces on Spacecraft Capture Problem for two net nodes.

serves to guide the centroid of the controlled spacecraft and net toward the target.
The second and third terms encourage the captured target and controller spacecraft
to move in the desired direction.

150

A p p e n d i x C

HYBRID TEMPORAL DIFFERENCE LEARNING FOR
ADAPTIVE URBAN TAXI DISPATCH

This chapter is based on the publication:

Benjamin Rivière and Soon-Jo Chung. “H-TD2: Hybrid Temporal Differ-
ence Learning for Adaptive Urban Taxi Dispatch”. In: IEEE Transactions on

Intelligent Transportation Systems (2021), pp. 1–10. doi: 10.1109/TITS.
2021.3097297.

C.1 Motivation
Coordinating a large fleet of automated taxis in complex and dynamic urban envi-
ronments is an anticipated challenge for transportation network companies such as
Uber, Lyft, Waymo, and Tesla. A typical urban mobility problem for these com-
panies is taxi dispatch, where a fleet of taxis service customers and the remaining,
idle taxis are coordinated with a dispatch algorithm to minimize the customer wait-
ing time of future requests. In practice, a transportation network company might
be composed of a dispatch center equipped with complete information and a large
computational budget and a fleet of taxis, each operating with local information and
a limited amount of processing power and communication bandwidth (see Fig. C.1).
In this manner, the transportation network company network can be decomposed
into an underlying star-topology network between taxis and the dispatch center, and
an arbitrary peer-to-peer network between taxis. The proposed algorithm, H-TD2,
exploits this topology explicitly by proposing a hybrid algorithm with two distinct
behaviors: the central node computes exact, large-batch policies infrequently, and
each taxi computes approximate, online updates with local information.

The overview of H-TD2 is shown in Fig. C.2. At a given timestep, the closest taxis
service the new customer requests, and the rest of the free taxis are dispatched to
reduce expected waiting time of future requests. The free taxis coordinate with
a distributed game theoretic scheme to optimize their policy estimate, where the
policy is estimated as follows: the servicing taxis communicate the customer data to
their neighboring taxis, where the expected reward (e.g. customer waiting time) is
estimated with a distributed estimation algorithm. Then, all taxis use the estimated

151

Figure C.1: Concept graphic of an intelligent transportation network. Autonomous
taxis, that can include both ground and air vehicles, estimate in real-time the cus-
tomer demand and coordinate locally to behave with bounded sub-optimality.

reward to update their policy estimate with temporal difference learning. If any of
the taxis determine that their policy estimate error is larger than the user specified
threshold, the taxi signals to the dispatch center for a centralized policy update.

The contributions of the paper are stated as follows:

We derive a novel optimality bound by leveraging distributed estimation meth-
ods in local online policy estimation and introduce a trigger condition to
the batch update, permitting the user to explicitly specify the policy’s com-
putational and communication expense vs. bounded sub-optimality trade-
off. This advances the state of the art by enabling distributed operation with
bounded sub-optimality.

We propose a taxi-dispatch solution that is adaptive, model-free, and coordi-
nated. Unlike state-of-the-art reinforcement-learning dispatch methods, our
method directly adapts the policy based on real-time data, thereby provid-
ing a property of robustness to irregular urban mobility events such as traffic,
weather, and major public events. This advancement is enabled by two step
approach: first we propose a hybrid policy estimation in a finite-dimensional,
agent-agnostic cell abstraction, and then we interface the resulting policy esti-

152

Figure C.2: Overview of H-TD2.

mation for agent-based coordination with a local prescriptive game-theoretic
task assignment.

We demonstrate the performance and computational properties of our method with
numerical experiments: our algorithm reduces customer waiting time compared to
a receding horizon control baseline and the simulation runtime is linear with the
number of agents. We also validate our claim that adaptive algorithms are robust to
general irregular events with a case study of the Chicago City taxis during the 2016
Major League Baseball World Series.

In Fig. C.2, blue represents the taxi network, yellow represents the customers, and
green represents the dispatch center. The ith taxi estimates the dispatch policy with
local operations: distributed estimation of reward, Ri

t computed in (C.9), and tem-
poral difference learning to update the policy, Qi

t, (C.13). If any of the taxis deter-
mines that its policy estimate error, δe, is larger than the user specified threshold,
δd, the taxi signals to the dispatch center to receive a centralized policy update,
Qb

t (C.6). Finally, each free taxi uses the policy in a game theoretic formulation,
Φ (C.20), to find its dispatch position vector, ui

t.

The remainder of the paper is organized as follows: in Sec. C.6, we review the
related literature and compare our method with the state of the art. In Sec. C.2,
we present the taxi dispatch problem description and a motivating example. In
Sec. C.3, we present the cell-based Markov Decision Process (MDP). In Sec. C.4,

153

we discuss the exact and approximate solutions to the MDP and the integration of
the learned policy into a game theoretic method. In Sec. C.5, we present numerical
experiments demonstrating the advantages of our algorithm compared to a receding
horizon control baseline in simulated and real customer datasets.

C.2 Problem Description
Notation: We denote vectors with a bold symbol, matrices with plain uppercase,
scalars parameters with plain lowercase, functions with italics, and we use cali-
graphic symbols for operators and sets. We denote a taxi index with an i or j super-
script, a customer index with a k superscript, and the time index with a subscript t.
Also, In denotes the n-dimensional identity matrix.

Problem Statement: We consider the urban taxi dispatch problem, where we control
a fleet of taxis to minimize customer waiting time. At each timestep, each customer
requests is serviced by the nearest taxi. These servicing taxis use customer infor-
mation to update their reward model and exchange information with neighboring
taxis. The remaining free taxis are dispatched to locations in the map according to
the proposed dispatch algorithm. The overall fleet control is summarized in Algo-
rithm 5.

Algorithm 5: Fleet Control Problem
1 initialize taxi fleet;
2 for t ∈ [t0 : t f] do
3 broadcast local customer requests to taxis;
4 assign closest free taxis to service customers;
5 dispatch free taxis to locations in the map;
6 end

The system, as shown in Fig. C.3, is composed of customers and taxis. The kth-
customer state, ck, is composed of the time of request, trip duration, pickup location,
and dropoff location, i.e. ck = [tk

r , t
k
d,p

k,p,pk,d] and its pickup location is shown in
green in the top subplot. The ith-taxi is defined by a position vector, pi

t and an
operation mode: free (shown in blue) or servicing (shown in orange). The dispatch
solution is a desired position vector for each of the free taxis, ui

t, that results in
minimizing customer waiting time over a time horizon. Our method estimates the
optimal policy, visualized with the value function over the state-space in the bottom
subplot, that maximizes the expected reward over time.

154

Figure C.3: State space representation of a Gridworld simulation with 1000 taxis,
with corresponding value function estimation. In the top subplot, the blue dots
are free taxis positions, the orange dots are positions of taxis currently servicing
customers, and the green dots are the new customers requests pickup positions. In
the bottom subplot, the approximate value function distribution is shown over the
state space.

C.3 Cell-Based Markov Decision Process
The previous section described the dispatch problem with a agent-based perspec-
tive, i.e. in terms of positions and actions of individual taxis and customers. Next,
we will introduce the cell-based Markov Decision Process (MDP), where cell-based
refers to an Eulerian perspective in which we analyze values like location and re-
ward with respect to cells of a discretized map as shown in Fig. C.3. The cell-based
formulation decouples the decision making problem from the number of agents,
permitting a finite dimensional policy representation. The decision making prob-
lem is formalized with a MDP,M, defined as a tuple of state space, action space,
transition model, reward model, and discount factor [2]:

M = 〈S,A,P,R, γ〉. (C.1)

• The state space, S, is defined as the set of map cells shown in Fig. C.3, where
the state of the ith-taxi, si

t is the cell index that contains that taxi’s position.
The number of cells in the environment is denoted by the cardinality of the
set, |S|.

155

• The action space,A, is defined as a movement between map cells for for taxi
i. The taxi on dispatch has 5 actions: ai

t ∈ A = {stay, right, up, left, down},
defined with respect to its current map cell in S.

• The transition function, P : S × A × S → P is defined as P(si
t, a

i
t, s

i
t+1) =

P(si
t+1|s

i
t, a

i
t). We define P with a deterministic, cell-based dynamical model,

f:

si
t+1 = f(si

t, a
i
t) where P(si

t, a
i
t, s

i
t+1) = 1. (C.2)

If the next state is valid, the cell-based dynamical model moves the taxi from
the initial state, si

t to the neighboring state si
t+1 according to its action. If the

next state is not valid, the dynamical model returns the initial state.

• The reward function Rt : S × A → R is defined to be the negative of the ex-
pected customer waiting time and is estimated from reward samples; reward
is the negative of the time it takes the taxi to go from its current position to the
dispatch position defined by the cell-action, and then from that position to the
customer request. The reward has a subscript t because we assume the reward
changes over time due to the changing customer distribution. We equivalently
write the Rt function as a vector of state-action pairs, Rt(s, a) = Rt[s|A|+ i(a)]
and Rt ∈ R

nq , where nq = |S||A| and i(a) denotes the action’s index. Given
a customer request, ck, we compute a sample of the reward function, ri

t that
can be used to estimate the underlying reward, Rt according to an observation
model:

ri
t(si

t, a
i
t) = −(η(pi

t,u
i
t) + η(ui

t,p
k,p)) (C.3)

ri
t = Hi

tRt + vi
t (C.4)

Recall that pi
t is the position of the ith-taxi, ui

t is the dispatch desired position,
and pk,p is the kth-customer pickup position. Also, η is the estimated time-of-
arrival function that accepts position vectors and returns a scalar time value. It
is parameterized by the average taxi velocity vtaxi. The measurement noise is
sampled from a normal distribution with variance ς, vi

t ∼ N(0, ςI). Finally,
the cell-based observation model, Hi

t ∈ R
nq×nq , is a binary diagonal matrix

with unity elements at the state-actions pairs where the customer request ck

contains information of the corresponding state-action pair, and 0 otherwise.

• Note that γ is the discount rate of the system. This parameter determines the
trade-off between greedy and long-term optimal behavior.

156

C.4 Algorithm Description and Analysis: H-TD2

We describe the details of H-TD2 in this section, defining the exact and approxi-
mate policy estimation, the hybrid switching behavior, and the game theoretic task
assignment. The overview of the method is given in Algorithm 6.

Algorithm 6: H-TD2 at timestep t
1 input: set of total, free, and servicing taxis: I,I f ,Is

2 output: action profile for free taxis, ut

/* Hybrid Temporal Difference */
3 for ∀i ∈ I do
4 if δe > δd (C.15) then
5 slow update Qi

t with aggregated global information (C.6) at the central
node;

6 else
7 fast update Qi

t with local information (C.13) at each taxi;
8 end
9 end
/* Game Theoretic Task Assignment */

10 randomly initialize cell-based action profile At;
11 while At not converged do
12 randomly pick i ∈ I f that has not converged;
13 consider current action, ai

t;
14 propose random action ai′

t ;
15 compute marginal utility, J with Qi

t (C.20);
16 stochastically assign action with J (C.21);
17 check ith-taxi action convergence;
18 end
19 Convert cell-based actions ai

t to position vectors ui
t;

Centralized Q-value Computation
We present the idealized Bellman solution to the cell-based decision making prob-
lem specified in (C.1). The solution is a policy function that maps states to an action
that maximizes the discounted reward over time and can be represented as a value
function, as shown in Fig. C.3, or an action-value function known as Qb

t -values. We
use the latter and use the superscript b notation to denote the policy that is synthe-
sized with a Bellman iteration method. We adopt the conventional optimal Qb

t -value
function as follows:

Qb
t (st, at) = Es∼P(s′t |st ,at)[Rt + γEa′t∼πbQb(s′t , a

′
t)] (C.5)

157

We specify this general formulation with some assumptions. First, we use a finite-
dimensional tabular Qb

t and write the Qb
t function as a vector of state-action pairs,

Qb
t ∈ R

nq , as done with the reward in Sec. C.3. Next, we apply the deterministic
transition function, P(si

t, a
i
t, s

i
t+1), as specified in (C.2) to remove the outer expecta-

tion. We remove the inner expectation by specifying the policy πb to be a transi-
tion kernel matrix Fb such that FbQb

t (si
t) = maxai

t
Qb

t (si
t, a

i
t). Combining these, we

rewrite a simplified expression for Qb
t as the fixed point of the Bellman operator T :

Qb
t = Rt + γFbQb

t = TQb
t (C.6)

The Bellman iteration can be solved using conventional value iteration or policy
iteration methods from batch customer data. For the purpose of this paper, we
use a Modified Policy Iteration (MPI) method [3] to solve line 5 of Algorithm 6.
However, there are complications with implementing a pure Bellman approach,
which we address in the next subsection.

Distributed Reward Estimation and Q-value Iteration
We present a policy approximation that overcomes the Bellman solution’s practical
limitations. The first issue with a pure Bellman solution is that in an online setting,
the reward information is hidden a priori and received incrementally in samples,
ri

t. So the expectation of the reward is not immediately available. Furthermore,
each taxi only has access to local information. To overcome these problems, we
assume the hidden reward evolves as a random walk process and synthesize linear
estimators for the hidden reward Rt:

Rt+1 = Rt + wt (C.7)

Rc
t+1 = Rc

t +
∑
j∈I

K j
t (r j

t − H j
t Rc

t) (C.8)

Ri
t+1 = Ri

t +
∑
j∈I

Ai j
t (r j

t − Ri
t) (C.9)

Recall ri
t is the reward sample defined in (C.4). Also Rc

t ,Ri
t ∈ R

nq are centralized
and distributed reward estimators that will be used in the upcoming temporal dif-
ference learning, where the superscript c denotes a centralized quantity. The Hi

t

matrix is the ith-taxi’s measurement model defined in (C.4) and the Ki
t matrix are

the corresponding estimator gains. The process noise, wt ∼ N(0, εI) is sampled
from a normal distribution where the parameter ε is computed offline from training
data. The row-stochastic adjacency block matrix, At, specifies the local information

158

available to each agent and is defined as:

Ai j
t = Bi j

t /

ni∑
j=1

Bi j
t , where Bi j

t =

K j
t H j

t j ∈ Ii
t

0nq×nq else
(C.10)

Ii
t = { j ∈ I | ‖pi

t − p j
t ‖ < Rcomm}. (C.11)

with diagonal block matrices Ai j
t , B

i j
t ∈ R

nq×nq and full matrices At, Bt ∈ R
ninq×ninq .

The ith agent constructs the Bi j
t matrices from the gain and measurement matrices

shared by its neighbors j ∈ Ii
t. The local observation is parameterized by the radius

of communication, Rcomm.

The second issue with the Bellman approach is an intrinsic drawback that at higher
state/action dimensions the Bellman-iteration calculation becomes computationally-
expensive and cannot be quickly evaluated online. Instead, temporal difference
learning [4] can be used as an approximate method to estimate Q-values online
using Rc

t :

Qc
t+1 = Qc

t + α(Rc
t + γFcQc

t −Qc
t) (C.12)

where α ∈ R is the system learning rate and Fc is the transition kernel for this
policy.

This formulation requires a central node to collect the data, compute a policy, and
broadcast the new information at every timestep, scaling the computation complex-
ity, bandwidth, and network delay with the number of taxis. To address this limita-
tion, we introduce a distributed algorithm using communication between the taxis,
and propose a policy update computed at each taxi using only local information:

Qi
t+1 = Qi

t + α(Ri
t + γF iQi

t −Qi
t) (C.13)

where this temporal difference (C.13), with the distributed reward estimation (C.9)
defines line 7 of Algorithm 6.

Using the approximate temporal difference method and estimating with only local
information hurts the quality of the final policy used by each taxi. We derive the up-
per bound of the negative effect of these approximations through a optimality bound
analysis, comparing the policy synthesized with the proposed algorithm (C.13) and
the Bellman-optimal solution (C.6).

159

Theorem 15 The expected distance between an arbitrary taxi Q-value estimates,

Qi
t, and the Bellman-optimal solution Qb

t is upper bounded by:

E‖Qi
t −Qb

t ‖2 ≤
2
√

nq(ε + ς)

(1 − γ)(1 −
√

1 − λmin(
∑

j∈I Ai j
t))

(C.14)

where λmin(.) denotes the smallest eigenvalue of a matrix.

Proof 14 First, we write the distributed iteration as an application of the Bellman

operator on the previous timestep with a disturbance. Then we solve for the distur-

bance to derive the final bound.

Step 1: Consider (C.13) and add and subtract αRt:

Qi
t+1 = Qi

t + α(Ri
t + γF iQi

t −Qi
t) + αRt − αRt

= Qi
t + α(Rt + γF iQi

t −Qi
t) + α(Ri

t − Rt)

= Qi
t + α(TQi

t −Qi
t) + αei

t

where ei
t = Ri

t − Rt. The system is contracting at rate 1 − α(1 − γ), implying the

system geometrically converges to an equilibrium about TQi
t = Qi

t. In addition,

from Banach’s fixed point theorem [5], T contracts to a unique fixed point, Qb
t .

Applying Discrete Gronwall’s lemma [5]:

‖Qi
t −Qb

t ‖ ≤
‖ei

t‖

1 − γ

Note that the decaying initial condition term does not appear because we assume

that the policy estimate is initialized with the Bellman solution, i.e. Qi
0 = Qb

0.

Step 2: Here we need to bound the value ‖ei
t‖, i.e. the error between the estimated

reward and the true reward. We write the dynamics of the error vector ei
t by sub-

tracting (C.7) from (C.9):

ei
t+1 = (I −

∑
j∈I

Ai j
t)ei

t + dt

where dt = wt +
∑

j∈I Ai j
t v j

t . By applying Weyl’s interlacing eigenvalue theorem [6],

we prove that the ith system is contracting at rate lower bounded by λi
t = 1 −

λmin(
∑

j∈I Ai j
t).

We rewrite the disturbance as the product of an input matrix, M, and the stacked

noise, zt ∼ N(0,W):

dt = Mtzt

160

where zt =
[
wt; v1

t ; . . . ; vni
t

]
, Mt =

[
Inq , A

i,1
t , . . . , A

i,ni
t

]
and W = blkdiag(εInq , ςInq , ..., ςInq).

By application of the convergence theorem of discrete stochastic contracting sys-

tems [7, 8], the expected error of a single agent is upper bounded by:

E‖ei
t‖ ≤

2
√

C

1 −
√

1 − λmin(
∑

j∈I Ai j
t)

C = trace(MT
t MtW)

It remains to calculate the value C:

C = ε trace(Inq) + ς
∑
j∈I

trace
(
(Ai j

t)T Ai j
t

)
≤ nq(ε + ς)

where we use the linearity of the trace operation to move it outside of the sum, then

we use the non-negativity and row-stochasticity of At to bound
∑

j∈I(Ai j
t)T Ai j

t ≤ Inq .

The final result is found by plugging the result from Step 2 into the result from Step

1.

Remark 9 The optimality bound is driven by the contraction rate of the system λi
t,

a combined graph and observeability quantity. Intuitively, this corresponds to a

non-zero value when taxi i and its neighbors taxis j can measure the entire state-

action vector. We can also consider a batch measurement over a time interval, nT

and an average contraction rate, λi
t. This time interval approach exists in the multi-

agent adaptive control literature, where λi
t > 0 is analogous to an excitation level

in the Collective Persistency of Excitation condition [9].

Remark 10 The proposed online method is used to estimate the optimal policy in

a dynamic environment, i.e. the reward model, Rt is time-dependent. In this case,

the optimal policy is non-stationary, i.e. Qb
t+1 , Qb

t . In order to guarantee the con-

vergence of the TD-algorithm, we require that there exists a timescale separation

between the convergence of the TD-algorithm and the dynamics of Qb:

‖Qb
t+1 −Qb

t ‖ � (1 − γ)(1 −
√

1 − λmin(
∑

Ai j
t))

Remark 11 The adjacency matrix At dictates that each agent takes a convex com-

bination of the neighboring measurements. Further, the estimation gain matrices,

Ki
t are chosen with a Distributed Kalman Information Filter, whose proof of op-

timality with respect to mean-squared-error can be found in [10, 11]. Thus, the

agents weigh the neighboring measurements appropriately.

161

Hybrid Temporal Difference Algorithm
We define the switching condition in line 4 of Algorithm 6 with two parameters,
δe, the estimated error in the system, and δd, the user specified desired error in the
system.

Proposition 2 If we define:

δe =
2
√

nq(ε + ς)

(1 − γ)(1 −
√

1 − λmin(
∑

j∈I Ai j
t))

(C.15)

the expected policy sub-optimality will be bounded by δd.

Nominally, the system evolves with the distributed temporal difference method (C.13),
computing δe at each timestep. Each agent is able to compute this value because
ε, ς, and γ are known system parameters and each agent keeps track of its own
λmin(

∑
j∈I Ai j

t) values. Applying the result from Theorem 15, the expected policy
suboptimality is identically δe, so, if δe exceeds the desired error, δd, the desired
sub-optimality is violated. However, if this condition occurs at time t, the system
resets all taxis with a central policy update (C.6), i.e. Qi

t = Qb
t , ∀i ∈ I. Therefore,

the H-TD2 algorithm maintains the distance between the estimated policy and a true
optimal policy to user specification. In effect, δd controls the trade-off of compu-
tational expense to policy sub-optimality, where δd → 0 produces a solution with
no regret but maximum computational effort and δd → ∞ produces a solution with
potentially infinite regret with little computational effort.

Game Theoretic Task Assignment
In this section, we propose a game-theoretic task assignment to coordinate the taxis
according to the Qi

t-values estimated in Sec. 19. The Qi
t policy does not account

for the actions of the other taxis and, without additional coordination, the taxis
would behave greedily by all going to the highest value cell, increasing the overall
customer waiting time. To avoid this behavior, we design a potential game and
a local action profile iteration to maximize each agent’s marginal utility. This is
implemented in Algorithm 6, Lines 10-18.

First, we introduce a global action profile, At and a local action profile for the ith

taxi, Ai
t:

At = {a j
t | ∀ j ∈ I}, and Ai

t = {a j
t | ∀ j ∈ Ii

t} (C.16)

162

where the jth-neighbor taxi communicates its action, a j
t , to the ith-taxi, where a j

t is
defined in (C.1).

Next, we introduce the current global fleet distribution Ωt, i.e. the number of taxis
in each cell, as a function of the action profile:

Ωt(s,At) =
1
ni

∑
j∈I

I(s = f(s j
t , a

j
t)) (C.17)

where I denotes the indicator function and f is the dynamics model specified in (C.1).
The local fleet distribution, Ωi

t, is found with the same calculation but summing only
over the neighboring agents, j ∈ Ii

t. By defining the radius of communication as
Rcomm = 3ds where ds is the length of a cell in the environment, we guarantee that
the ith taxi can always calculate the fleet distribution in neighboring cells, Si, within
one action of the current cell of the ith taxi.

Next, we describe the desired fleet distribution using the Q-values as computed
in (C.9). Consider the following Boltzmann exploration strategy [4] strategy to
synthesize a desired distribution, Ω∗, from the Q-value estimates:

Ω∗(s,Qi
t) =

exp
(
βmaxa∈AQi

t(s, a)
)

∑
a′∈A exp

(
βQi

t(s, a′)
) (C.18)

Recall thatA are the local actions available to each taxi defined in (C.1) and β ∈ R
is an exploration/exploitation design constant. For simplicity of notation, we have
written the action-values in its functional form, Qi

t.

The goal of the game theoretic task assignment is to find an action profile, At

through local iteration methods that minimizes the distribution distance between
the current distribution, Ωt and the desired distribution Ω∗. We describe a poten-
tial and noncooperative game meaning that the taxis will try to converge to a Nash
equilibrium with a high potential function value. The global and marginal potential
functions, Φ and J are defined as follows:

Φ(At) = −
∑
s∈S

(Ω∗(s,Qi
t) −Ω(s,At))2 (C.19)

J(Ai
t) = −

∑
s∈Si

(Ω∗(s,Qi
t) −Ω(s,Ai

t))
2 (C.20)

For the calculation of J, we only require the indices that correspond to neighboring
cells of the current cell of the ith-taxi, thereby permitting a local calculation.

163

Remark 12 The game’s utility function, Φ(At) has an analogy to sample-based

planners if each taxi in the fleet is considered as a sampled action of a stochastic

policy, Ω∗(s,Qi
t). This choice of utility function is interesting because it could be

the utility function chosen by a centralized algorithm but we can maximize it with

local calculations through J.

Remark 13 Note that J is indeed the marginal contribution on the global potential

function:

Φ(A′t) − Φ(At) = J(Ai′
t) − J(Ai

t)

where A
′

t = {a j
t | ∀ j ∈ I/{i}} ∪ {ai′

t } is the global alternative action set.

We use a game-theoretic reinforcement learning technique, binary log-linear learn-
ing [12] to iterate to an action set At, shown in line 10-19 of Algorithm 6. At each
timestep, t, the action set, At is randomly initialized. While all other taxi’s actions
are held, a randomly selected ith-taxi chooses between the previously held action,
ai

t, and an alternate action ai′
t with probability pi

t(A
i
t,A

i′
t):

pi
t(A

i
t,A

i′
t) =

exp (J(Ai
t)/τ)

exp (J(Ai
t)/τ) + exp (J(Ai′

t)/τ)
(C.21)

whereAi′
t = {a j

t | ∀ j ∈ Ii
t/{i}}∪{a

i′
t } is the local alternative action set. The coefficient

τ ∈ R>0 is a design parameter specifying how likely taxi i chooses a sub-optimal
action, to specify the trade-off between exploration and exploitation. The action
set is chosen once the iteration has converged, completing the game-theoretic task
assignment. Then, the cell-based action ai

t is converted to a dispatch vector ui
t,

where ui
t is a randomly sampled position vector in the cell after the dispatch action

is taken.

C.5 Numerical Experiments
Baseline and Variants
We compare our H-TD2 solution with a receding horizon control (RHC) baseline
dispatch algorithm, adapted from the baseline in [13]. For this section, we use
independent notation from the rest of the paper, matching the notation in [13]. The

164

RHC dispatch algorithm is formulated as the following linear program:

u∗ = arg max
t0+trhc∑

t=t0

γt−t0
M∑

i=1

min(wt,i − xt,i, 0) s.t.

M∑
j=1

ui j,t = xt+1,i,

M∑
i=1

ui j,t = xt,i

ui j,t = 0 ∀ j < Si, xt0,i = X0,i

(C.22)

where the state variable, xt ∈ Z
|S |, is the number of free taxis in each cell, the control

variable ui j,t is the number of taxis moving from cell i into cell j at time t and trhc is
the RHC planning horizon. The first two constraints are conservation constraints:
(i) the number of taxis in cell i is the number of taxis moving into cell i, and (ii)
the number of taxis moving from cell i is equal to the number of taxis previously
in cell i. The third constraint is that each taxi can only move to a neighboring cell.
The fourth constraint is the initial condition. For large fleets, a proper assumption
from [13] is to relax ui j,t from integers to real numbers, resulting in a linear program
in ui j,t. The reward is the difference of customer demand and taxi supply, where
wt,i is the expected customer demand and is computed from offline training data
with a calculation proposed in [13, 14]. The baseline is chosen to demonstrate the
advantage of fast adaption over learned prediction: static prediction methods (either
explicit in model-based or implicit in model-free) are vulnerable to events occurring
outside of the training domain.

We study the effect of each component of the policy estimation algorithm by com-
paring variants of the policy: Centralized Temporal Difference (C-TD), Distributed

Temporal Difference (D-TD), and Bellman-optimal. All of these variants control the
fleet with binary log-linear learning (C.21), but they differ in how Q is synthesized:
C-TD uses (C.8) and (C.12), D-TD uses (C.9) and (C.13), and the Bellman-optimal
policy is synthesized with (C.6). Equivalently, the D-TD and Bellman-optimal al-
gorithms can be interpreted as the limiting behavior of H-TD2 corresponding to the
respective cases where δd = ∞ and δd = 0.

Customer Demand Datasets
We consider two datasets of customer requests: a synthetic dataset for a Gridworld
environment and the real customer taxi dataset from the city of Chicago [15]. Recall
each customer request is defined as follows: ck = [tk

r , t
k
d,p

k,p,pk,d].

The synthetic dataset is generated as follows: At each timestep, t ∈ [t0, t0 + ∆t],
the customer request model is sampled nc times, where nc is the number of cus-

165

tomers per timestep of the simulation. The time of the request, tk
r is uniformly

randomly sampled in the timestep. The pickup location, pk,p, is found by sampling
a 2-dimensional Gaussian Mixture Model (GMM), where translating Gaussian dis-
tributions capture the underlying dynamic customer demand. The dropoff location,
pk,d is a randomly sampled position in the map, and the duration of the trip, tk

d is
given by η(pk,p,pk,d). The GMM model is parameterized by the number of Gaussian
distributions, nG, the speed of the distributions, vG, the variance, σG, and the initial
position, and unit velocity vector of the centroid for each distribution.

The real customer dataset is taken from the city taxi dataset of Chicago [15] filtered
by start and end timestamp. The Socrata API permits importing raw data in the ck

format, where the location data is specified in longitude, latitude coordinates. For
this experiment, we load a city map of Chicago as a shapefile and perform minor
geometric processing with the Shapely Python toolbox.

Results
Gridworld Simulations: We present variants of our H-TD2 algorithm against a RHC
baseline in a Gridworld environment as shown in Fig. C.3. This flexible, synthetic
environment permits us to test on a range of system parameters.

First, we introduce the algorithms in a small-scale simulation. We synthesize a
dataset with parameters: nc = 5, nG = 2, vG = 0.02625, σG = 0.014, and randomly
initialize the mean and direction of the distributions. Our simulation parameters
are: ni = 100, |S| = 85, γ = 0.9, α = 0.75, nT = 10, ς = 0.014, ε = 0.0187,
δd = 0.025‖Qb

0‖, β = 150, vtaxi = 0.125, τ = 0.0001, and tRHC = 10. We run
this experiment for each of the algorithms for 5 trials. This experiment is shown in
Fig. C.3, modified with ni = 1000.

Next, we collect statistics on the cumulative reward of each algorithm, and plot
the results in Fig. C.4. The algorithms behave as expected: in descending order
of performance, Bellman, centralized temporal difference, H-TD2, distributed tem-
poral difference, followed by the receding horizon control baseline. At the cost
of computational effort, the user can tune the performance of H-TD2 between the
distributed temporal difference and Bellman-optimal solution by changing δd. The
simulation is run 5 times, and the mean with standard deviations is visualized in the
plot.

To explain the performance difference between the variants of our method, we show
an error trace of the policy in Fig. C.5. For a given policy Q, we calculate the error

166

0 20 40 60 80 100
Time

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e

Cu
st

om
er

 W
ai

tin
g

Ti
m

e

RHC
D-TD
C-TD
Bellman
H-TD^2

Figure C.4: Cumulative customer waiting time for different algorithms in the small-
scale Gridworld environment. The algorithms behave as expected: in descending
order of performance, Bellman, centralized temporal difference, H-TD2, distributed
temporal difference, followed by the receding horizon control baseline. The sim-
ulation is run 5 times, and the mean with standard deviations is visualized in the
plot.

with respect to the Bellman solution: eQ
t = ‖Qb

t −Qt‖/‖Qb
t ‖. For this experiment, we

set the δd parameter is set to 2.5 % of the norm of the Bellman solution, indicated by
the dashed horizontal line. Initially, the H-TD2 and distributed temporal difference
(D-TD) algorithms behave identically, until the trigger condition is satisfied and the
H-TD2 requests a global Bellman-optimal update, thereby bringing its error to zero.
As expected, the centralized-temporal difference method, C-TD, generally tends to
estimate the Q-values better than its distributed counterpart, D-TD.

Next, we test the proposed algorithm and baseline’s scalability and performance
across a wide range of taxi-densities and plot the results in Fig. C.6. We fix the
parameters from the small-scale simulation and only change the number of taxis
and number of customers, where we maintain the ratio ni/nc = 10. In the top
figure, the average reward is shown across a variety of taxi density regimes, where
the H-TD2 algorithm outperforms a RHC baseline by almost a factor of 2 in all
taxi-density regimes. In the bottom figure, we show that the computational time
is approximately linear with number of taxis (and taxi-density) across 3 orders of

167

0 20 40 60 80 100
Time

0.00

0.02

0.04

0.06

0.08

Er
ro

r T
ra

ce

Q-Values Mean Squared Error
D-TD
C-TD
H-TD^2

Figure C.5: Q-value error trace for different algorithms with respect to the Bellman-
optimal. Initially, the H-TD2 and distributed temporal difference algorithms behave
identically, until the trigger condition is satisfied and the H-TD2 requests a global
Bellman-optimal update, bringing the error to zero. The δd parameter is set to 2.5 %
of the norm of the Bellman solution and is shown with a dashed black horizontal
line.

magnitude. The computational complexity of both RHC and H-TD2 scales with the
spatial resolution of the simulation, and in practice, we limit the maximum number
of cells to 200.

Chicago City Simulations We present the H-TD2 against an RHC baseline using real
customer data from the city of Chicago public dataset [15], in a Chicago map envi-
ronment. We show that our algorithm outperforms the baseline in practical datasets
and demonstrate that online algorithms are robust in irregular urban mobility events.

In Fig. C.7, we present the Chicago city taxi customer demand across an irregular
event: Game 5 of the 2016 Baseball World Series. The map cells show the num-
ber of customer pickup requests, and the green star is Wrigley Field’s (baseball
stadium) location. Below, we plot the customer demand over time for the cell con-
taining Wrigley Field. We show that a reward model trained using data from the
day before would not accurately predict the behavior of the next day.

We evaluate the algorithms and plot the results in Fig. C.8. Our simulation param-

168

0.5

1.0

1.5

2.0

Av
er

ag
e

Cu
st

om
er

 W
ai

tin
g

Ti
m

e

RHC
H-TD^2

10 50 100 500 1000
Number of Taxis

102

103

104

Si
m

ul
at

io
n

Ru
nt

im
e

[s
]

RHC
H-TD^2

Figure C.6: Performance and scalability analysis of H-TD2 and RHC against num-
ber of taxis. In the top subplot, the average reward is shown across a variety of taxi
density regimes, and the proposed algorithm outperforms a receding horizon con-
trol baseline by at least 50 % in all taxi-density regimes. In the bottom subplot, the
computational time is approximately linear with number of taxis (and taxi-density)
across 3 orders of magnitude.

eters are: ni = 2000, |S| = 156, γ = 0.8, α = 0.1, nT = 10, ς = 0.0001, ε = 0.0001,
δd = 0.025‖Qb

0‖, β = 1, vtaxi = 22 miles per hour, τ = 0.0001, and tRHC = 10. We
train a reward model using the data from October 29th, 2016 with a total of 91, 165
customer requests. Then, we collect 54, 115 customer requests from October 30th,
2016, which we reveal real-time to the H-TD2 and RHC dispatch algorithms. In
total, the H-TD2 algorithm has a total customer waiting time of 501 hours an im-
provement of 26 % over the RHC baseline of a cumulative customer waiting time
of 684 hours. This result demonstrates the robustness of adaptive algorithms to
irregular events.

C.6 Related Work
Recent urban mobility research has developed dynamic and scalable methods. A
well-studied example is the vehicle routing and dial-a-ride problems [16, 17] where
taxis find a minimum cost path through a routing graph, and its dynamic extension,
where part or all of the customer information is unknown and revealed dynam-
ically. Recent dynamic routing research proposes scalable solutions to dynamic

169

Chicago
October 29, 2016 October 30, 2016

Time of Day
0.00

0.05

0.10

0.15

No
rm

al
ize

d
Cu

st
om

er
 D

em
an

d

October 30, 2016
October 29, 2016

Figure C.7: Chicago city taxi customer demand across an irregular event: Game 5
of the 2016 Baseball World Series. The map cells show the number of customer
pickup requests, and the green star is Wrigley Field’s location. Below, we plot the
customer demand over time for the cell containing Wrigley Field to show that a
reward model trained using data from the day does not accurately predict the future
behavior.

routing problems with bio-inspired methods [18], data-driven methods [19–21],
and model-based methods [22, 23]. In this paper, we study a variant of the dynamic
routing problem, taxi dispatch, where we propose a novel two-stage approach: dis-
tributed estimation with temporal difference learning, and game-theoretic coordina-
tion. This advances the state of the art by permitting adaptive distributed operation
with bounded sub-optimality with respect to the optimal centralized policy.

Taxi dispatch is an emerging urban mobility problem where free taxis are dispatched
to locations in the map to minimize customer waiting time of future requests. Re-
cent approaches have adopted model-based [14, 24] and model-free [13] methods.
An online model-based method like [14] uses real-time data to fit a system pre-
diction model (for example, customer demand and taxi supply) and then compute
a receding horizon control solution in response to that model. Pre-specified sys-
tem models can be over-restrictive, and recent reinforcement-learning model-free
methods [13, 25, 26] have been used successfully to overcome this limitation. In
a model-free method, events are not explicitly modelled, they are captured by the
arbitrary dynamics of the underlying reward. In regular operation, this reward is

170

Time of Day

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e

Cu
st

om
er

 W
ai

tin
g

Ti
m

e
[H

ou
rs

]

H-TD^2
RHC

Figure C.8: Cumulative customer waiting time for the H-TD2 and the RHC baseline
in a Chicago city environment with with a fleet of 2, 000 taxis servicing 54, 115 real
customer requests during the 2016 Major League Baseball World Series. The H-
TD2 algorithm has a total customer waiting time of 504 hours, an improvement of
26 % over the RHC baseline.

periodic, and can be accurately predicted (either explicitly or implicitly) and used
for fleet control. However, it is possible that an irregular event occurs out of training
domain and causes the reward dynamics to be unpredictable. In this case, we argue
that it is better to adapt in real-time than predict with irrelevant data. Our model-free
approach adapts the policy directly in response to real-time data, achieving perfor-
mance that is robust to unpredictable, irregular events such as weather, accidents,
and major public events.

Our method leverages results from reinforcement learning in convergence of tem-
poral difference iteration [27–29] in a dynamic environment, i.e. when the reward
or transition probabilities are changing over time. An alternative online model-
free approach is online actor-critic [30], where our work differs from this result in
two ways: we consider a general non-quadratic reward function and we consider
a multi-agent setting by analyzing a hierarchical system of a temporal difference
iteration with distributed estimation of the reward model. To the best of the authors
knowledge, the only other work to propose a distributed temporal difference algo-
rithm is recent work [31] that addresses the convergence properties of consensus on
model parameters in the case of linear function approximations.

171

In general, multi-agent reinforcement learning research is challenging because the
MDP’s state and action space dimensionality is coupled to the number of agents,
which is typically handled by using either (i) function approximation methods such
as deep neural networks or (ii) decoupled, decentralized solutions. A survey pa-
per on multi-agent reinforcement learning discusses additional methods [32]. In
contrast to an agent-based (or Lagrangian) approach, our method uses a naturally
scalable cell-based (or Eulerian) model that decouples the problem dimensional-
ity from the number of agents, inspired by a method used in probabilistic swarm
guidance [33].

Because of the cell-based abstraction, our algorithm requires an additional task as-
signment component to coordinate taxis. Task assignment is a canonical operations
research problem and there exists many available centralized [34–37] and decen-
tralized [38–40]. Among these options, we use a distributed prescriptive game the-
ory [12] approach that leverages existing asymptotic game theoretic optimality and
convergence results. In contrast to conventional descriptive game theory, prescrip-

tive game theory designs multi-agent local interactions to achieve desirable global
behavior. Using one such method, binary log-linear learning [12], the taxis achieve
global cooperative behavior with only local information.

172

BIBLIOGRAPHY

[1] Benjamin Rivière and Soon-Jo Chung. “H-TD2: Hybrid Temporal Differ-
ence Learning for Adaptive Urban Taxi Dispatch”. In: IEEE Transactions on
Intelligent Transportation Systems (2021), pp. 1–10. doi: 10.1109/TITS.
2021.3097297.

[2] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.

[3] Puterman and Shin. “Modified Policy Iteration Algorithms for Discounted
Markov Decision Problems”. In: Management Science 24.11 (1978).

[4] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2010.

[5] A M. Stuart and Tony Humphries. Dynamical Systems and Numerical Anal-
ysis. 1996.

[6] Roger A. Horn and Charles R. Johnson. Matrix Analysis, 2nd Ed. Cambridge
University Press, 2012.

[7] Winfried Lohmiller and Jean-Jacques E. Slotine. “On Contraction Analysis
for Non-Linear Systems”. In: Automatica 34.6 (1998), pp. 683–696. doi: 10.
1016/S0005-1098(98)00019-3.

[8] H. Tsukamoto and S. -J. Chung. “Robust Controller Design for Stochastic
Nonlinear Systems via Convex Optimization”. In: IEEE Trans. Autom. Con-
trol (2021), pp. 1–1. doi: 10.1109/TAC.2020.3038402.

[9] Patrick M. Wensing and Jean-Jacques E. Slotine. “Cooperative Adaptive Con-
trol for Cloud-Based Robotics”. In: Proc. IEEE Int. Conf. Robot. Autom.
2018, pp. 6401–6408.

[10] Reza Olfati-Saber. “Kalman-Consensus Filter : Optimality, stability, and per-
formance”. In: Proc. IEEE Int. Conf. Decision Control. 2009, pp. 7036–7042.

[11] Saptarshi Bandyopadhyay and Soon-Jo Chung. “Distributed Bayesian filter-
ing using logarithmic opinion pool for dynamic sensor networks”. In: Auto-
matica 97 (2018), pp. 7–17.

[12] Jason R. Marden and Jeff S. Shamma. “Revisiting log-linear learning: Asyn-
chrony, completeness and payoff-based implementation”. In: Games Econ.
Behav. 75.2 (2012), pp. 788–808.

[13] Takuma Oda and Carlee Joe-Wong. “MOVI: A Model-Free Approach to Dy-
namic Fleet Management”. In: INFOCOM. IEEE, 2018, pp. 2708–2716.

173

[14] Fei Miao et al. “Taxi Dispatch With Real-Time Sensing Data in Metropolitan
Areas: A Receding Horizon Control Approach”. In: IEEE Trans. Autom. Sci.
Eng. 13.2 (2016), pp. 463–478.

[15] “Chicago Data Portal”. In: (). https://data.cityofchicago.org/Transportation/Taxi-
Trips/wrvz-psew.

[16] Sin C. Ho et al. “A survey of dial-a-ride problems: Literature review and
recent developments”. In: Transportation Research Part B: Methodological
111 (2018), pp. 395–421. issn: 0191-2615. doi: https://doi.org/10.
1016/j.trb.2018.02.001.

[17] Victor Pillac et al. “A review of dynamic vehicle routing problems”. In: Eur.
J. Oper. Res. 225.1 (2013), pp. 1–11.

[18] Rutger Claes, Tom Holvoet, and Danny Weyns. “A Decentralized Approach
for Anticipatory Vehicle Routing Using Delegate Multiagent Systems”. In:
IEEE Trans. Intell. Transp. Syst. 12.2 (2011), pp. 364–373.

[19] Kunal Menda et al. “Deep Reinforcement Learning for Event-Driven Multi-
Agent Decision Processes”. In: IEEE Trans. Intell. Transp. Syst. 20.4 (2019),
pp. 1259–1268.

[20] Abubakr O. Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. “DeepPool:
Distributed Model-Free Algorithm for Ride-Sharing Using Deep Reinforce-
ment Learning”. In: IEEE Trans. Intell. Transp. Syst. 20.12 (2019), pp. 4714–
4727.

[21] Jintao Ke et al. “Optimizing Online Matching for Ride-Sourcing Services
with Multi-Agent Deep Reinforcement Learning”. In: CoRR abs/1902.06228
(2019).

[22] Renshi Luo, Ton J. J. van den Boom, and Bart De Schutter. “Multi-Agent
Dynamic Routing of a Fleet of Cybercars”. In: IEEE Trans. Intell. Transp.
Syst. 19.5 (2018), pp. 1340–1352.

[23] Zhao Zhou et al. “Two-Level Hierarchical Model-Based Predictive Control
for Large-Scale Urban Traffic Networks”. In: IEEE Trans. Contr. Sys. Techn.
25.2 (2017), pp. 496–508.

[24] Rick Zhang and Marco Pavone. “Control of robotic mobility-on-demand
systems: A queueing-theoretical perspective”. In: Int. J. Robot. Res. 35.1-3
(2016), pp. 186–203.

[25] Xiaocheng Tang et al. “A Deep Value-network Based Approach for Multi-
Driver Order Dispatching”. In: KDD. ACM, 2019, pp. 1780–1790.

[26] Zhe Xu et al. “Large-Scale Order Dispatch in On-Demand Ride-Hailing Plat-
forms: A Learning and Planning Approach”. In: KDD. ACM, 2018, pp. 905–
913.

174

[27] Michael L. Littman and Csaba Szepesvári. “A Generalized Reinforcement-
Learning Model: Convergence and Applications”. In: Proc. Int. Conf. Ma-
chine Learn. 1996.

[28] Balázs Csanád Csáji and László Monostori. “Value Function Based Rein-
forcement Learning in Changing Markovian Environments”. In: J. Mach.
Learn. Res. 9 (2008), pp. 1679–1709.

[29] Csaba Szepesvári and Michael L. Littman. “A Unified Analysis of Value-
Function-Based Reinforcement-Learning Algorithms”. In: Neural Computa-
tion 11.8 (1999), pp. 2017–2060.

[30] Kyriakos G. Vamvoudakis and Frank L. Lewis. “Online actor-critic algorithm
to solve the continuous-time infinite horizon optimal control problem”. In:
Autom. 46.5 (2010), pp. 878–888.

[31] Thinh T. Doan, Siva Theja Maguluri, and Justin Romberg. “Finite-Time Anal-
ysis of Distributed TD(0) with Linear Function Approximation on Multi-
Agent Reinforcement Learning”. In: ICML. Vol. 97. Proc. Machine Learn.
Res. PMLR, 2019, pp. 1626–1635.

[32] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “Multi-Agent Re-
inforcement Learning: A Survey”. In: Proc. Int. Conf. Contr. Autom. Robot.
Vision. 2006, pp. 1–6.

[33] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y. Hadaegh. “Prob-
abilistic and Distributed Control of a Large-Scale Swarm of Autonomous
Agents”. In: IEEE Trans. Robot. 33.5 (2017), pp. 1103–1123.

[34] Harold W. Kuhn. “The Hungarian Method for the Assignment Problem”. In:
50 Years of Integer Programming. Springer, 2010, pp. 29–47.

[35] D. P. Bertsekas. “The auction algorithm: A distributed relaxation method for
the assignment problem”. In: Annals of Operations Research 14.1 (1988),
pp. 105–123.

[36] Dimitri P. Bertsekas and David A. Castañon. “Parallel Synchronous and Asyn-
chronous Implementations of the Auction Algorithm”. In: Parallel Comput.
17.6-7 (1991), pp. 707–732.

[37] John Bellingham et al. “Multi-Task Allocation and Path Planning for Co-
operating UAVs”. In: Cooperative Control: Models, Applications and Algo-
rithms. Ed. by Sergiy Butenko, Robert Murphey, and Panos M. Pardalos.
Boston, MA: Springer US, 2003, pp. 23–41.

[38] Daniel Morgan et al. “Swarm assignment and trajectory optimization using
variable-swarm, distributed auction assignment and sequential convex pro-
gramming”. In: Int. J. Robot. Res. 35.10 (2016), pp. 1261–1285.

[39] D. Dionne and C. A. Rabbath. “Multi-UAV Decentralized Task Allocation
with Intermittent Communications: the DTC algorithm”. In: Proc. American
Control Conf. 2007, pp. 5406–5411.

175

[40] P. B. Sujit and R. Beard. “Distributed Sequential Auctions for Multiple UAV
Task Allocation”. In: 2007 American Control Conf. 2007, pp. 3955–3960.

