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ABSTRACT

Synthetic cells represent the culmination of decades of research aimed at deci-
phering the intricacies of life at its most basic level. The result of the fusion of
biology, chemistry, physics, and engineering, synthetic cells promise to revolution-
ize biotechnology, medicine, and beyond. This thesis focuses on the ramifications
of incorporating a synthetic nucleus within a synthetic cell.

To experimentally study transcription and translation, we use a commercially avail-
able cell-free protein expression system comprising all the purified proteins essential
for protein production (PURE), along with a fluorescent RNA aptamer–malachite
green aptamer (MGapt), and a green fluorescent protein (deGFP). We observed that
the chemical composition of the PURE system significantly impacts MGapt fluo-
rescence, leading to inaccurate RNA calculations. We identify the reducing agent,
dithiothreitol (DTT), to address this challenge as a crucial chemical affecting MGapt
fluorescence. We propose a model that can reliably model MGapt measurements in
commercial PURE. This investigation illuminates the intricate dynamics of MGapt
in PURE and emphasizes the necessity of accounting for environmental factors in
RNA measurements employing aptamers.

Subsequently, to advance our understanding of a synthetic nucleus and analyze the
effects of separating transcription and translation in a cell-free protein expression,
we propose and validate a chemical reaction network model for transcription (TX) in
PURE. Additionally, we used open-source software to expand an existing translation
(TL) model for any arbitrary DNA sequence to create a nearly complete model of
TX-TL in PURE. Leveraging this model, we investigate the effect of introducing
a synthetic nucleus by modulating the RNA diffusion rate and resource allocation.
This detailed model showcases our capability to comprehensively model protein
expression in PURE, enabling insights into the efficacy of segregating transcription
and translation processes within the artificial cell environment. Lastly, we provide
a perspective on the future of synthetic cells with an artificial nucleus and propose
further steps to develop the proposed synthetic nucleus model.
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C h a p t e r 1

INTRODUCTION

Synthetic biology, a rapidly evolving interdisciplinary field, aims to engineer life
from scratch. Leading this engineering challenge is creating synthetic cells. Syn-
thetic cells serve as invaluable tools for understanding the fundamental principles
of life, enabling scientists to probe the origins of cellular complexity and evolution-
ary dynamics. One of the distinctive components of life is the nucleus found in
eukaryotic cells. However, the creation of synthetic nuclei hinges on the ability to
engineer both the physical structure and the biochemical processes within them, to
build tools to model such chemical reactions, and to understand how to leverage the
mechanisms to create and control them. In this thesis, we present new contributions
in modeling cell-free protein expression systems, taking steps towards a synthetic
nucleus. This thesis will break the central dogma apart by building new transcription
and expanded translation models, leading to the first full detailed model of cell-free
protein synthesis. Then, we will combine these models, leading to the understanding
and modeling of a synthetic nucleus.

This chapter describes a method of attacking the problem of creating a synthetic
cell, along with a general background to understand the field and the need for
detailed modeling of cell-free protein synthesis systems. Chapter 2 presents a
new finding and method to accurately interpret RNA production in commercial
cell-free protein expression systems required to build a synthetic nucleus model.
Following discoveries in Chapter 2, in Chapter 3 we propose a model for gene
expression in cell-free systems from a DNA strand based on experimental data.
Finally, leveraging Chapter 3, we separate the transcription and translation models
to effectively simulate a synthetic nucleus in Chapter 4. We will discuss the future
research directions in Chapter 5 of this thesis.

1.1 Building a Synthetic Cell: Starting from “Scratch”
The drive to understand the emergence of life from inert chemical elements and
organic compounds has fueled extensive interdisciplinary research spanning many
decades. Despite significant progress in unraveling the molecular intricacies of
living systems, numerous fundamental questions persist regarding the origin and
evolution of life—from prebiotic chemistry to the intricate cellular and multicel-
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lular organisms we observe today. Fundamental mysteries remain, such as the
molecular mechanisms underlying the evolution of life, including phenomena like
self-organization, emergence, self-replication, autopoiesis, compartmentalization,
and metabolism [1]. Synthetic biology emerges as an interdisciplinary frontier aim-
ing to establish a structured framework for designing and/or redesigning living bio-
logical systems. This field embraces both “top-down” and “bottom-up” approaches,
employing modular parts to systematically reconstruct complex biological systems
and cells, as outlined in Figure 1.1.

Remove 
"unessential" genes

Insert desired plasmid 
and additional 

resources

tRNA Amino 
Acids

P

cAMP

P

P

NAD
P P P

NTPs

CoA

Ribosomes

Various 
proteins

Salts P P P

NTPs Salts

DNA

Encapsulate in lipid 
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Increase complexity: 
organelles, etc.

P

P

P

P P P

P P P

P

P

P

P P P

P P P

Top-down

Bottom-up
Figure 1.1: Approaches to building a synthetic cell. An illustration of the two
main approaches to creating and designing a synthetic cell. (Top) The “top-down”
approach starts with an existing cell and is altered only to contain essential genes.
(Bottom) The “bottom-up” approach begins with chemicals and purified proteins
encapsulated to form a basic cell with the potential to increase complexity by
incorporating organelles or transmembrane proteins. Created with BioRender.
com.

The “top-down” method embraces a proactive design strategy, drawing inspiration
from engineering principles found in living systems. However, biological systems
present inherent challenges—they are complex, nonlinear, functionally context-
dependent, and stochastic, making them challenging to rational engineering [2, 3].
In contrast, the “bottom-up” approach seeks to reconstruct purified biochemical
components into synthetic cells to replicate the fundamental aspects of living sys-
tems. By doing so, researchers gain insights into the chemistry and biochemistry
of cellular processes. This method facilitates the assembly of controllable bio-
chemical properties, often within lipid vesicles or other synthetic compartments,
allowing for mechanistic understanding through the construction of characterized
components [4].

BioRender.com
BioRender.com
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1.2 Cell-Free Protein Synthesis Systems
The “bottom-up” approach relies on cell-free protein synthesis systems. Cell-free
protein synthesis is a biochemical technique that produces proteins in vitro. Cell-free
protein synthesis offers several advantages over in vivo protein synthesis, including
rapid production, the ability to control reaction conditions, and the capacity to
synthesize proteins that might be toxic or difficult to express in living cells [5]. It
is also valuable for studying fundamental aspects of translation and for applications
in biotechnology, such as producing therapeutic proteins, industrial enzymes, or
synthetic biology components. Cell-free protein synthesis systems can be derived
from various sources, including bacteria, yeast, plants, and mammalian cells, each
offering unique advantages and capabilities for protein synthesis. However, cell-free
protein synthesis can generally be divided into two broad categories, highlighted
in Figure 1.2. Unlike traditional protein synthesis that occurs within living cells,
cell-free protein synthesis systems utilize cell lysates or extracts containing the
necessary molecular machinery for protein synthesis, including ribosomes, amino
acids, tRNAs, initiation, elongation, and termination factors, as well as energy
sources (e.g., ATP, GTP).

a

b

c

Figure 1.2: Overview on E. coli based cell-free protein expression systems. (a)
In cell lysate, necessary molecular machinery for protein synthesis is primarily
harvested from E. coli cells. (b) In PURE, individually purified transcription and
translation machinery are combined to rebuild the ‘central dogma.’ (c) OnePot
PURE is a variation of PURE, where transcription and translation machinery are
co-cultured and purified. Created with BioRender.com.

BioRender.com
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The first widely used cell-free protein synthesis is based on cell lysate, first imple-
mented in the 1960s to express synthetic RNAs to decipher the genetic code [6].
Cell lysate-based systems or TX-TL (transcription and translation) systems utilize
cellular machinery harvested from the cell. After multiple stages of growth, lysis,
and clarifying spins, an energy buffer with amino acids is added to the lysate to
create a protein expression system [7, 8], as shown in Figure 1.2a. The widespread
use of TX-TL, now commercially available, has its limitations. The research field
is limited by batch-to-batch variability, affecting lifetime and total protein expres-
sion [9]. The batch-to-batch variability can result from multiple variables such as
cell strain, optical density (OD) at the time of harvest, lysis method, energy mixture
composition, and reagents batches. The ability to achieve ‘design–build–test’ cy-
cles, similar to those found in other traditional engineering fields, is thus ultimately
limited by the cell-free protein synthesis system’s predictability.

The second category of cell-free protein synthesis utilizes purified components
of transcription and translation machinery to reconstruct the “central dogma,” as
shown in Figure 1.2b. The first reported attempt of using purified proteins to express
functional proteins was in 1977 [10], having limited success. Weissbach’s group
provided a starting point to which Ganoza et al. [11] and Pavlov et al. [12, 13] at-
tempted to use precharged aminoacyl-tRNAs or partially purified aminoacyl-tRNA
synthetase alongside purified proteins. Shortly after, in 2001, Shimizu et al. [14]
achieved successful protein production using PURE — Protein synthesis Using
purified Recombinant Elements. The PURE system contains all transcription and
translation proteins required for protein production at known concentrations. The
known composition PURE can help circumvent batch-to-batch and inter-laboratory
variability problems seen in extract-based systems. A variant of PURE is OnePot
PURE, illustrated in Figure 1.2c. In 2019, Lavickova and Maerkl introduced OnePot
PURE [15], a method for co-culturing and purifying all 36 proteins together in a
single workflow that can be completed within a week. This was further devel-
oped by Grasemann et al. in 2021 [16]. An advantage of OnePot PURE is that
it is theoretically more accessible and reproducible. However, reproducibility and
direct comparison to commercial PURE products have been challenging. Addi-
tionally, similar to cell-lysate protein concentrations in OnePot PURE are not ac-
curately known unless analyzed by matrix-assisted laser desorption ionization mass
spectrometry (MALDI-MS) or liquid chromatography-tandem mass spectrometry
(LC-MS/MS) [17].
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1.3 Engineering of a Synthetic Nucleus
The primary difference between prokaryotic and eukaryotic cells is their lack of
compartmentalization, such as a distinct nucleus or other organelles encased in
internal membranes. As a result of these compartments, many new functions
arose; more notably, with the creation of a nucleus, transcription and translation
were separated, allowing for greater control and regulation of the cell’s activities.
Furthermore, little is known about the spatial organization of RNA in bacterial cells;
thus, a systematic approach to studying the compartmentalization of transcription
free of cell limitations is highly desirable.

Historically, when E. coli based cell-free protein synthesis is encapsulated in a lipid
bilayer through various techniques such as the oil-emulsion method, and microflu-
idics [18, 19] transcription and translation remained coupled. Ideally, the synthetic
nucleus would encompass transcription machinery, including components such as
NTPs, RNA polymerases, and DNA, all contained within a larger synthetic cell.
The translation machinery would surround the synthetic nucleus mimicking the
cytoplasm, as depicted in Figure 1.3a.

As cell-free protein synthesis systems and RNA synthesis technologies like PURE
and, notably, OnePot PURE continued to advance, isolating transcription from trans-
lation has become increasingly feasible. This enables a more practical separation
of transcription and translation mechanisms, facilitating their individual and holis-
tic analysis. However, it is crucial to separate transcription from translation while
maintaining some interconnectedness as must be made available to the translation
machinery, highlighted in Figure 1.3b. Prior works that separated transcription
from translations measured the RNA produced in the transcription system. How-
ever, in these studies, transcription and translation interactions were not explored.
For instance, transcription was tested under various conditions, such as the use of
crowding agents at different concentrations, on the production of Fluc mRNA us-
ing the Quant-iT RiboGreen RNA reagent over time [20], but different translation
conditions were not explored.

The interaction between transcription and translation in a segregated system has
yet to be fully explored, either empirically or numerically. The major limitation
is the communication between the subsystems primarily through RNA transport
or diffusion of other smaller chemicals. Potential RNA delivery mechanisms may
draw from several different groups and are illustrated in Figure 1.3c: nuclear lysis,
nuclear fusion, and active translocation of RNA out of the nucleus. Work from
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a

b

c

Figure 1.3: Synthetic nucleus and RNA delivery mechanism. (a) Illustration of
a synthetic cell with a nucleus enclosed by a bilipid membrane, only containing
components needed to produce an RNA strand. (b) Zoomed-in illustration of the
membrane barrier separating the nucleus and cytosol. (c) Three possible RNA de-
livery mechanisms from the synthetic nucleus. (1) Lysis of the synthetic nucleus
using synthetic lipids. (2) Fusion of two vesicles, one containing the transcription
machinery and the second with the translation machinery. (3) Active and unidi-
rectional translation of RNA through the use of cell-penetrating peptide. Created
with BioRender.com.

the Elani group at Imperial College London demonstrated the creation of a stimuli-
responsive vesicle capable of releasing signaling molecules through the utilization
of synthetic lipids [21]. Furthermore, in the Kamat group at Northeastern Uni-
versity, genetic material was isolated from the protein expression machinery, and
two liposomes containing DNA or the cell-lysate-based cell-free protein synthesis
were then combined by fusing the liposome [22], showing the delay of expres-
sion. Lastly, Adamala’s group at the University of Minnesota showed a promising
approach to RNA translocation from a liposome using RNA-binding proteins and
cell-penetrating peptides [23].

To delve into the evolutionary path of the nucleus and the ensuing diversification of
life, we require a more profound comprehension of the underlying principles govern-
ing the construction of our synthetic cell or nucleus—namely, the transcription and

BioRender.com
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translation systems. This requires establishing dependable and accurate techniques
for monitoring transcription, as well as the creation of modeling tools essential for
designing and constructing a synthetic eukaryotic cell.

Monitoring Transcription
Transcription is often considered more challenging to measure due to RNA’s inher-
ent properties and technical considerations: instability, lower abundance, structural
complexity, and calibration challenges. Proper measurement of RNA in cell-free
systems is critical for directly reflecting gene expression levels, understanding reg-
ulatory mechanisms, quality control of expression, and future optimization of syn-
thetic biology applications such as metabolic engineering, protein synthesis, and
biosensor development. While translation can be measured using fluorescent pro-
teins, monitoring transcription relies on RNA aptamers. The malachite green ap-
tamer (MGapt) is an example of an RNA aptamer used to measure RNA production
in lysate-based cell-free protein synthesis [24, 25], though not visibly present in
literature using PURE-based cell-free protein synthesis.

MGapt was initially developed as an alternative to the chromophore-assisted laser
inactivation (CALI) technique [26, 27], used in molecular biology to study the
functions of specific genes. RNA aptamers, characterized by their short length and
single-stranded nature, are oligonucleotides that selectively bind to specific target
molecules. The unique structural attributes of single-stranded oligonucleotides
contribute to their high affinity and specificity in recognizing and interacting with
their designated targets. MGapt was derived through the systematic evolution of
ligands by exponential enrichment (SELEX) [28–30] by Grate and Wilson in 1999.
Starting from a random pool of 5× 1015 RNA molecules, Grate and Wilson isolated
and characterized an in vitro MG-binding RNA motif exhibiting a high affinity and
specificity for binding to the triphenyl-methane dye, malachite green (MGdye) [31].

Malachite green dye is a cationic triphenylmethane dye used since the 1930s as
a fungicide, ectoparasiticide, and antimicrobial in aquaculture [32]. Commer-
cially, MGdye is prepared as the chloride or oxalate salt of its dye cation [33]. When
dissolved independently, MGdyehas almost no fluorescence, with a quantum yield of
7.9×10−5; however, in the presence of MGapt, the fluorescence of MGdye and close
relatives increases approximately 2360-fold [34]. The complex formed between
MGapt and MGdye relies solely on stacking and electrostatic interactions [35, 36].
In addition to the MGapt adaptive binding to the ligand, the uneven charge distribu-
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tion of the MGapt binding pocket is the primary driving force producing structural
changes in the ligand in addition to the MGapt adaptive binding to the ligand [37].
The process by which the MGdye molecule undergoes conformational changes dur-
ing binding to the MGapt results in a red-shift of the absorbance frequency. The
strength of the MGdye-MGapt bond has been reported as having a dissociation con-
stant Kd between 100 nm and 800 nm [31, 34, 38, 39] and is contingent on the
formation of a coplanar configuration [40].

Modeling of Cell-Free Protein Synthesis Reactions
Models of cell-free protein production are indispensable for advancing our un-
derstanding of cellular processes, engineering biological systems, and developing
innovative solutions in fields ranging from biotechnology to medicine. In construct-
ing these models, we utilize the chemical reaction network (CRN) formalism to
create a detailed mechanistic model, employing a CRN compiler named BioCRN-
pyler [41]. The BioCRNpyler tool generates models in the Systems Biology Markup
Language (SBML) [42], a standard format for biological modeling. These SBML
files can be simulated using any compatible SBML simulator. We utilize the Bio-
scrape Python package [43] for simulation. Bioscrape converts the Chemical Reac-
tion Network (CRN) model to ordinary differential equations (ODEs) and employs
Python’s odeint to solve them based on specified initial conditions. Each reaction
rate in the CRN is expressed using mass-action propensity [44] for this conversion.
We opt for Bioscrape because it supports sensitivity analysis, Bayesian inference
tools, and model simulations. Local sensitivity analysis is conducted for each SBML
model to determine the sensitivity of measured species to all parameters over time.
Subsequently, we identify the most sensitive parameters using experimental data.
Parameter identification is achieved through a Bayesian inference algorithm imple-
mented in Bioscrape, utilizing the emcee Python package [45]. By incorporating
experimental data, we obtain probability distributions for each identified parameter
through Bayesian inference. Model simulations, using parameter values sampled
from these posterior probability distributions, are compared against experimental
data to assess model prediction quality. These posterior probability distributions
also quantify the uncertainty in the data, highlighting a significant advantage of
Bayesian inference methods.
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C h a p t e r 2

IMPACT OF CHEMICAL DYNAMICS OF COMMERCIAL PURE
SYSTEMS ON MALACHITE GREEN APTAMER

FLUORESCENCE

The contents of this chapter are reproduced from

[1] Jurado, Zoila and Murray, Richard M. “Impact of chemical dynamics of
commercial PURE systems on malachite green aptamer fluorescence.” ACS
Synthetic Biology (2024, in revision). Available as bioRxiv preprint. doi:
https://doi.org/10.1101/2023.08.14.553301.

2.1 Introduction
Cell-free protein synthesis systems can be broadly categorized into two types. The
first and most commonly used cell-free protein synthesis system is based on cell
lysate. The cell lysate-based system uses cellular machinery harvested from the
cell [7]. The second category contains all the necessary transcription and translation
proteins for E. coli, each cultured and purified individually and combined at known
concentrations, known as PURE — Protein synthesis Using purified Recombinant
Elements [14]. A variant of PURE is OnePot PURE, where all 36 proteins are
co-cultured and purified together [15]. Using PURE facilitates the modeling of the
CPFS system, allowing for the development of a complete model and techniques
to seamlessly integrate it into the “design-build-test” pipeline for genetic circuit
construction or synthetic cell assembly.

Models in recent years have modeled the translation of peptides for PURE using
chemical reaction networks [46, 47], and our previous work has added to these mod-
els by expanding the user peptide and the addition of transcription [48]. Validation
of all models requires accurate transcription and translation monitoring. Proper
measurement of RNA in cell-free systems is critical for directly reflecting gene
expression levels, understanding regulatory mechanisms, quality control of expres-
sion, and future optimization of synthetic biology applications such as metabolic
engineering, protein synthesis, and biosensor development. While translation can
be measured using fluorescent proteins, transcription is more challenging, leading
to the reliance on RNA aptamers, such as malachite green aptamer.

https://doi.org/https://doi.org/10.1101/2023.08.14.553301


10

Malachite green aptamer (MGapt) was initially used to control gene expression
in S. cerevisiae [49], MGapt has been used as a means to study RNA production,
RNA dynamics, and investigating trade-offs between transcription and translation
in cell-free protein systems with protein expression of deGFP [25, 50, 51]. Studies
using MGapt to measure RNA production in cell-free protein synthesis have been
used in lysates [24, 25]. Our use of MGapt in PURExpress reveals surprising
dynamics, which may explain why the MGapt measurements appear absent from the
literature on PURE cell-free protein synthesis. Generally, the exceptional specificity
of aptamers allows the discrimination between closely related isoforms or different
conformational states of the same target molecule [52, 53]. However, MGapt has
been known to bind to other triphenylmethane dyes such as crystal violet (CV),
tetramethylrhodamine (TMR), and Pyronin Y (PY) [34, 39]. Furthermore, it has
been found that free MGapt reduces the amount of RNA folded in the correct
binding conformation, and metal ions, though not required for high-affinity bind [54],
stabilize the complexes with non-native ligands. In contrast, the complex with the
original selection target is stable at low salt and without divalent metal ions [38]. The
destabilization of MGapt through the use of organic solvent, the addition of Mg2+,
DTT, and other ions has been described in the past [33, 39, 55–58].

In this chapter, we demonstrate how the chemical composition of commercial PURE
may destabilize MGapt, leading to different aptamer states corresponding to differ-
ent fluorescence levels. We will first describe the observed MGapt expression in
commercially available PURE and inconsistencies between what we could predict
and what was observed, such as saturation time and dynamics of MGapt when no
transcription is involved. We then discuss the potential effects of DTT in the system
and propose a model that uses DTT as a driving force. Finally, we provide exper-
imental validation of the measured MGapt model of the PURE system accounting
for DTT’s impact on the state of MGapt, allowing for accurate RNA calculations.

2.2 Results and Discussion
Expression and fluorescence of MGapt in different PURE systems. We initially
evaluated the consistency of MGapt dynamics across two distinct PURE systems
to ascertain whether this phenomenon is inherent to PURE. In commercial PURE
systems, the protocol recommends incubating the reaction for 2-4 hours [59, 60],
during which protein production saturates. RNA production would also be expected
to saturate around the 2-hour mark to be consistent with the reaction lifespan. How-
ever, MGapt fluorescence does not saturate at 2 hours. In comparison in PUREx-
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press and OnePot PURE, both expressing MGapt from plasmid DNA with construct
pT7-MGapt-tT7 (light blue) and pT7-MGapt-UTR1-deGFP-tT7 (dark blue), MGapt
fluorescence dynamics were striking, shown in Figure 2.1.

a b

Figure 2.1: MGapt concentration in PURExpress and OnePot-PURE. The
MGapt concentration over time for transcriptions of pT7-MGapt-tT7 (light blue)
and pT7-MGapt-UTR1-deGFP-tT7 (dark blue) at 5 nm, in (a) PURExpress and (b)
OnePot, made in lab. Experimental data consisted of three replicates (circles and
respective error bars).

Experimental results indicate that the two PURE systems had different MGapt dy-
namics, irrespective of the total MGapt production. While each system exhibited
a monotonic upward trend of MGapt fluorescence, the PURExpress reaction (Fig-
ure 2.1a) showed that MGapt fluorescence saturated at around six hours. On the
other hand, the OnePot PURE reaction (Figure 2.1b) showed that MGapt fluores-
cence saturated at around two hours. The MGapt saturation could indicate that
MGapt production continues after two hours in PURExpress, effectively out-living
OnePot PURE’s RNA production. It did not appear logical for the transcription
process to persist beyond the translation. Furthermore, if MGapt fluorescence is
considered an accurate reflection of RNA production, it would also suggest that the
RNA production rate changes around four hours. The significant disparity in MGapt
production dynamics suggested MGapt fluorescence might increase due to chemical
differences between PURExpress and OnePot PURE.

Effects of buffering conditions MGapt fluorescence. Upon investigating the
difference, we first compare the two systems chemical compositions [14, 16];
shown in Table 2.1. We discovered numerous salts in one system but not the
other, which we concluded should not significantly impact MGapt fluorescence.
The one major difference in the two systems was the reducing agent used, tris(2-
carboxyethyl)phosphine (TCEP) versus dithiothreitol (DTT).
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Table 2.1: Reported chemical composition of PURE systems.

Chemical PURExpress OnePot PURE
Magnesium acetate 9 mm 11.8 mm

Potassium phosphate 5 mm -
Potassium glutamate 95 mm 100 mm
Ammonium chloride 5 mm -

Calcium chloride 0.5 mm -
Spermidine 1 mm 2 mm

Creatine phosphate 10 mm 20 mm
Putrescine 8 mm -

Dithiothreitol (DTT) 1 mm -
Tris(2-carboxyethyl)phosphine (TCEP) - 1 mm

PURExpress uses 1 mm of DTT [61] while OnePot PURE uses 1 mm of TCEP [15].
DTT and TCEP both reduce disulfide bonds, but TCEP has the advantages of being
significantly more stable in the absence of a metal chelator and less inhibitive in
labeling with maleimide [62]. Additionally, compared to DTT, TCEP is more
effective, non-volatile, and does not readily oxidize above pH 7.5 [63] the pH at
which the PURE reaction occurs, as shown in Figure 2.2. In Figure 2.2a, we can see
that regardless of the expression condition, the PURE reaction’s pH for a 12 hour
read fluctuates between pH of 7.75 and 8.0. The pH of the PURE reaction was
measured using SNARFTM-5F detailed in Section 2.4 (see Figure 2.14) and does
not negatively affect protein expression as illustrated in Figure 2.2b.

a b

Figure 2.2: Measurement of pH of the PURExpress over time. (a) The pH of
PURExpress under three different expression conditions: none-without DNA or
RNA (gray circles), DNA plasmid of pT7-MGapt-UTR1-deGFP-tT7 (light blue
circles), and RNA of pT7-MGapt-UTR1-deGFP (dark blue circles). (b) Production
of deGFP over pH assay.
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MGapt fluorescent was measured under four different chemical conditions to mea-
sure the effect of the reducing agent on MGapt fluorescence in separate in vitro
reactions. Three different reducing agents were tested: TCEP, glutathione (GSH),
and DTT), and the waste product pyrophosphate (PPi). The experiment consisted of
three replicates of 10 µL reactions with the respective additives (TCEP, GSH, DTT,
and PPi) at experimentally relevant concentrations and purified RNA of MGapt-
UTR1-deGFP at 0.51 µm. MGapt fluorescence was read in BioTek plate reader
(610/650) for six hours at 37 °C and calibrated to µm using the calibration curve
shown in Figure 2.13. The full-time course measurements are depicted in Figure 2.3.
a) DTT b) GSH

c) PPi d) TCEP

Figure 2.3: MGapt measurement in different buffers. Measurements of MGapt
concentration of purified RNA for MGapt-UTR1-deGFP at 0.51 µm in different
reducing agents and waste chemicals over four hours. Each subplot is titled with
the respective buffer used: (a) dithiothreitol (DTT), (b) glutathione (GSH), (c)
pyrophosphate (PPi) and (d) tris(2-carboxyethyl)phosphine (TCEP). The chemical
concentrations are in different shades of blue, respectively. The plot shows the
average of the three replicated with error bars; negative control without MGapt was
subtracted.

The results presented in Figure 2.3 indicate that MGapt fluorescence is stable after
the first 30 min when MGapt is added to a buffer solution containing all tested
reducing agents. The MGapt concentration was averaged over six hours to compare
differences under various conditions, as shown in Figure 2.4.
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Figure 2.4: Measured MGapt concentration under different buffer conditions.
Average measured MGapt concentration of purified RNA coding for MGapt-UTR1-
deGFP in different reducing agents and waste chemicals over six hours. Each section
of the bar plot is titled with the respective buffer used, and the increasing chemical
concentrations are designated with increasing intensity of blue. The negative control
was subtracted from the test conditions, and standard deviations of triplicates are
represented by black bars.

Only TCEP and PPi samples showed concentration effects on the total MGapt
fluorescence. Higher concentrations of TCEP and PPi resulted in higher MGapt
fluorescence, except at 4 mm PPi, where MGapt fluorescence decreased. The re-
sults from Figure 2.4 did not provide conclusive evidence that the reducing agent,
DTT, directly affected MGapt fluorescence nor that other reducing agents (TCEP or
GSH) would be a better alternative. However, these standard titration experiments
involving buffers and MGapt do not capture the chemical dynamics in the PURE
reaction system.

The fluorescence of MGapt is affected by the chemical properties of the PURE
system. While Figure 2.4 implies that the fluctuating concentration of PPi might lead
to increased MGapt fluorescence, it is important to note that waste production would
be directly correlated with system expression. Therefore, we would not anticipate a
greater or quicker production of PPi in the PURExpress than in OnePot PURE. To
avoid any possible interference of transcription products with MGapt, purified RNA
of MGapt-UTR1-deGFP was added, removing the largest PPi production source,
RNA strand elongation. Additionally, to isolate the effect of the PURE reaction
on MGapt fluorescence, the translation reactions were minimized by using RNA
containing only the MGapt. We added 0.49 µm of MGapt-deGFP-RNA and 0.53 µm
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of MGapt-RNA independently into a PURExpress reaction and measured MGapt
fluorescence over 12 hours. In Figure 2.5a, upon first observation in both cases
with 0.49 µm of MGapt-deGFP-RNA (crosses) or 0.53 µm of MGapt-RNA (circles),
the measured MGapt concentration is not constant and that the RNA only containing
MGapt measures lower than the RNA of MGapt-UTR1-deGFP. However, when we
normalize each result by its respective maximum, Figure 2.5b, the concentration of
MGapt appears to increase gradually over time despite the absence of transcription.
Interestingly, the environmental effect seemed similar for both the TL-null and TL-
only conditions, indicating that the additional ribosome binding site and deGFP
sequences could not solely affect MGapt fluorescence.

a b

Figure 2.5: Measured MGapt concentration dynamics in PURExpress starting
from RNA. PURExpress reactions of 10 µL with three technical replicates contain-
ing 10 µm of Malachite Green dye and 8 units of RNAse inhibitor. (a) Starting from
purified RNA of MGapt at 0.53 µm (light blue crosses) and MGapt-UTR1-deGFP
at 0.49 µm (dark blue circles) and after data is normalized (b).

To further demonstrate that the measured MGapt concentration over time was not
dependent on the production of RNA or protein, additional PURE reactions were
performed at different DNA concentrations, Figure 2.6a. The experiment consisted
of three replicates of 10 µL with DNA plasmid pT7-MGapt-UTR1-deGFP-tT7 at
six different DNA concentrations dispensed using an Echo 525 Acoustic Liquid
Handler and the final DNA concentration was calculated on the rounded amount
of DNA that was dispensed. To account for total RNA production, the measured
MGapt concentrations were normalized in Figure 2.6b. The initial RNA production
rate varied based on DNA concentrations, but all normalized MGapt concentration
measurements converged. Notably, all concavity transitions occurred around the 4-
hour mark regardless of RNA production rate, indicating that MGapt dynamics are
unaffected by DNA concentration. The increase in MGapt concentration over time



16

further supports that MGapt fluorescence is affected by the chemical environment
of the commercial PURE system, independent of transcription and translation.

a
DNA concentrations:

b
DNA concentrations:

Figure 2.6: Measured MGapt concentration dynamics in PURExpress at var-
ious DNA concentrations. PURExpress reactions of 10 µL with three technical
replicates containing 10 µm of Malachite Green dye and 8 units of RNAse inhibitor.
(a) Expressing plasmid pT7-MGapt-UTR1-deGFP-tT7 at given DNA concentra-
tions and after data is normalized (b).

The observed inflection point around 4 hours, in Figure 2.5 and Figure 2.6, suggests
the presence of system repression by specific chemical substrates that degrade over
time. As illustrated in a previously published model for PURE translation [46], there
are 483 reactions with a nonzero rate, and 278 reactions occur without the presence
of DNA: tRNA charging, NTP degradation, and energy recycling. These reactions
also occur in OnePot PURE, indicating that this MGapt response would not be
exclusive to one system. This leads back to the distinctions between OnePot PURE
and commercial PURE, particularly their selection of reducing agents—DTT versus
TCEP. While the reducing agent may not directly impact MGapt fluorescence, it
could potentially influence other chemical reactions that affect MGapt fluorescence.

To test the effects of DTT on measured MGapt concentration, DTT was added to
PURExpress expressing DNA plasmids of pT7-MGapt-UTR1-deGFP-tT7 and pT7-
MGapt-tT7 at 5 nm (see Figure 2.7a). DTT was added to reach a final added DTT
concentration of 1 mm, 4 mm,and 9 mm. Following data normalization, Figure 2.7b
showed that increasing DTT concentrations shifted the inflection point of measured
MGapt to the right. Additionally, we observed that the measured MGapt concentra-
tions for both plasmids overlap, indicating that MGapt effects are primarily due to
the addition of DTT.
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a b

c d

Figure 2.7: Measured MGapt concentration dynamics in PURExpress under
different DTT concentrations. PURExpress reactions of 10 µL with three tech-
nical replicates containing 10 µm of Malachite Green dye and 8 units of RNAse
inhibitor. (a) Expression of plasmid pT7-MGapt-UTR1-deGFP-tT7 at 4.93 nm and
pT7-MGapt-tT7 at 5.03 nm with increasing DTT concentration and after data is
normalized (b). (c) Starting from purified RNA of MGapt-UTR1-deGFP at 0.49 µm
and MGapt at 0.53 µm with increasing DTT concentration and after data is normal-
ized (d).

Finally, the previous experiment was repeated with purified RNA to underscore the
concept that DTT has a direct impact and can effectively represent other auxiliary
reactions and chemicals affecting MGapt. In this iteration, purified RNA of MGapt-
UTR1-deGFP and MGapt at approximately 0.5 µm concentration was combined
at the stated concentrations of DTT (see Figure 2.7c). In the normalized data,
Figure 2.7d, data collapse based on added DTT concentration. Consistent with
previous findings, the additional DTT seemed to inhibit MGapt fluoresces as the
DTT concentration increased. Based on these experimental results, we conclude that
DTT acts as a direct or indirect suppressor of MGapt fluorescence, which degrades
over time due to its volatile nature. This signifies that using MGapt measurements
as an indicator for RNA is inaccurate as it does not account for DTT’s effect.
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MGapt transitions different aptamer states with varying levels of fluorescence.
We assert that MGapt in the commercial PURE reaction goes through different
equilibrium and intermediates states, as MGapt has been previously reported [39,
55, 58]. The concentration of DTT plays a crucial role in meditating, promoting,
and/or facilitating the instability of MGapt and the conversion between the two
chemical states, as demonstrated in Figure 2.7. Using DTT as a proxy for the full
chemical reactions responsible for altering MGapt states and thus fluorescence in
the commercial PURE reaction, we propose the model depicting MGapt inhibition
by DTT, as illustrated in Figure 2.8.

Figure 2.8: Inhibition of malachite green aptamer by DTT. Illustration of pro-
posed interaction of DTT on bound fluorescent malachite green aptamer (MGapt).
Adapted from chemical structure Stead et al. [55] and malachite green aptamer
NuPack predicted secondary structure [64]. Created with BioRender.com.

To model the detailed step-by-step inhibition and conversion of MGdye bounded
to MGapt (MGaptbound) to a less fluorescent MGaptaltered, we built a chemical
reaction network (CRN) in a CRN compiler tool called BioCRNpyler [41]. We
utilize the functionalities provided by BioCRNpyler model the reactions shown in
Figure 2.8:

BioRender.com
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MGapt + MGdye
𝑘MGapt−−−−→ MGaptbound (2.1)

MGaptbound + DTT
𝑘𝑏DTT−−−−−⇀↽−−−−−
𝑘𝑢DTT

MGaptaltered (2.2)

MGaptaltered
𝑘𝑢MGapt−−−−−−⇀↽−−−−−−
𝑘𝑏MGapt

MGapt + DTT + MGdye (2.3)

MGapt
𝑘RNAdeg−−−−−→ ∅ (2.4)

DTT
𝑘DTTdeg−−−−−→ ∅. (2.5)

Beginning with transcribed and folded malachite green aptamer state (MGapt), mala-
chite green oxalate (MGdye) binds to MGapt to form fully fluorescent malachite green
aptamer (MGaptbound). Concentrations of DTT induce instability in MGaptbound

through a reversible process, leading to an intermediate state with reduced fluores-
cence (MGaptaltered). The MGaptaltered state can be further destabilized, causing
dissociation into its three components: MGdye, MGapt, and DTT. Finally, unbound
states such as MGapt and DTT are susceptible to degradation. The introduc-
tion of the altered state, MGaptaltered, which exhibits lower fluorescence compared
to MGaptbound, implies that the total MGapt fluorescence is a linear combination
of both states, MGaptmeasured = MGaptbound + c1MGaptaltered. The MGaptmeasured

represents the measured fluorescence detected by the BioTek plate reader or any
other fluorescent reader. Consequently, the measured MGapt concentration in PUR-
Express is a misrepresentation of RNA production without considering or adjusting
for additional MGapt states that may exhibit different fluorescence properties due to
DTT interactions.

Analysis and identification of parameters in the proposed model. To analyze
the model of the effects of DTT on MGapt measured, we measured the MGapt
fluorescence in a 10 µL reaction done in triplicate using PURExpress. The reaction
contained 0.22 µm of RNA of MGapt-UTR1-deGFP. To determine the coefficients
of the linear combination, we utilized the lowest concentration measurement to
indicate when 100 % of the aptamer was in the MGaptaltered state. The coefficient
c1 was then determined based on the percentage of MGaptmeasured and total added
RNA (MGapttotal), resulting in the final linear system:

MGaptmeasured = MGaptbound + 0.15 MGaptaltered (2.6)

MGapttotal = MGaptbound + MGaptaltered. (2.7)
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To parameterize the CRN model constructed using BioCRNpyler, we initialized the
parameters by hand-tuning the reactions for bounded conditions by steps. Due to the
time required to prepare the reactions before measuring on BioTek, it was necessary
to determine the initial conditions at the time of reading. Employing the system
of equations, we computed the initial conditions based on the MGaptmeasured,t=0

reading.

The model’s initial conditions parameters depend on the total amount of RNA the
user adds, where

∑
MGapt equals the total RNA containing MGapt. The initial

conditions account for the formation of MGaptbound and MGaptaltered before start-
ing the BioTek read. Our calculations revealed that approximately 45 % and 55 %
of the

∑
MGapt are in the two different states of MGaptbound and MGaptaltered,

respectively. Therefore, MGaptt=0 is zero and MGaptbound,t=0 = 0.45
∑

MGapt,
MGaptaltered,t=0 = 0.55

∑
MGapt, and MGdye,t=0 = MGdye,total –

∑
MGapt. The spe-

cific values of the initial conditions utilized for the training model with
∑

MGapt =
0.22 µm are outlined in Table 2.2.

Table 2.2: MGapt-DTT model initial conditions of training model.

Species Value Unit
MGapt 0 µm

MGaptbound 0.099 µm
MGaptaltered 0.121 µm

DTT 1000 µm
MGdye 9.78 µm

For accurate predictions of the measured MGapt concentration in PURE from the
BioTek readings, we conducted model training using experimental data from the
measured MGapt concentration of 0.22 µm RNA with the MGapt-UTR1-deGFP
construct. Training this model using parameter identification was challenging due
to the combined fluorescence of two distinct states in the measured data. With the
ability to train only on one species, the effective concentration of MGaptbound was
calculated using the set of linear equations. Ultimately, in addressing the inherent
noise in the experimental data, we employ Bayesian inference to derive a distribution
of potential parameter values based on the experimental data. To accomplish both
tasks of evaluating identifiability and determining posterior parameter distributions,
we utilize a biological data analysis pipeline [65] implemented with the Python
package Bioscrape [43].
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Figure 2.9: Modeling, analysis, and parameter inferencing of DTT effects on
MGapt model. (a) The sensitivity of the MGapt to the CRN model parameters
for the initial four hours. (b) The posterior distributions of parameters obtained
after running Bayesian inference on 𝑘MGapt, 𝑘𝑏DTT, 𝑘𝑢MGapt, 𝑘𝑏MGapt, and 𝑘DTTdeg .
The corner plot depicts the covariance of the two parameters, with the contour
showing the 75 % probability region for the parameter values. (c) With parameter
values for 𝑘MGapt, 𝑘𝑏DTT, 𝑘𝑢MGapt, 𝑘𝑏MGapt, and 𝑘DTTdeg sampled from the posterior
distributions, the five model simulations (magenta lines) are shown alongside the
experimental data for three biological replicates (scattered blue points). Code for
all data analysis, parameter inference, and related data are available on Github [66].

Parameters for identification were determined by conducting a local sensitivity
analysis of all species in the model across all parameters and time. The sensitivity
analysis heatmap for DTT’s interaction with RNA of MGapt-UTR1-deGFP model
is depicted in Figure 2.9a. We selected parameters with the highest sensitivity re-
garding MGapt output fluorescence. Among the seven reaction rates in equations
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(2.1)-(2.5), we identify 𝑘MGapt, 𝑘𝑏DTT, 𝑘𝑢MGapt, 𝑘𝑏MGapt, and 𝑘DTTdeg as the most
sensitive parameters. These parameters correspond to the initiation of transcription
and the formation rate of the RNAP-bound GDP and phosphate complex, respec-
tively. Subsequently, we utilize Bayesian inference tools in Bioscrape to ascertain
the posterior parameter distributions for these five parameters. The corner plot
in Figure 2.9b illustrates the posterior parameter distributions and their covariance,
providing a sampling distribution for predicting output using the fitted model. Model
simulations using parameter values drawn from the posterior, alongside experimen-
tal data, are presented in Figure 2.9c. The final parameter values utilized are detailed
in Table 2.3.

Table 2.3: MGapt-DTT model parameters values.

Parameter Description Value Unit
𝑘MGapt Formation of MGaptbound though the 9.5 × 10−4 µm−1 s−1

binding of MGdye and MGapt
𝑘bDTT Binding of DTT to MGaptbound to form 2.0 × 10−6 µm−1 s−1

MGaptaltered

𝑘uDTT Unbinding of DTT from MGaptaltered 8.0 × 10−6 s−1

𝑘uMGapt Unbinding of DTT and MGdye from 0.0675 s−1

MGaptaltered

𝑘bMGapt Rebinding of DTT and MGdye and 0.0762 µm−2 s−1

MGapt to reform MGaptaltered

𝑘RNAdeg Degradation of MGapt 3.2 × 10−4 s−1

𝑘DTTdeg Degradation of DTT 3.2 × 10−4 s−1

The model’s parameter value depends only on the amount of RNA added and the DTT concen-
tration. Other auxiliary reactions, which may play a role in DTT interaction with MGapt, were
not incorporated.

Validation and assessment of model capturing DTT’s impact on MGapt fluo-
rescence. To validate the model of the effects of DTT on MGapt measured, we con-
ducted simultaneous tests using multiple RNA concentrations. The RNA of MGapt-
UTR1-deGFP at final concentrations of 0.41 µm, 0.86 µm, 1.26 µm and 1.67 µm were
read for 12 hours at 37 °C in a BioTek reader at 610/650 (ex/em). The initial concen-
trations of MGapt and MGaptaltered at 𝑡 = 0 were determined as previously outlined
and are listed in Table 2.4. The initial conditions for MGapt and DTT are not
affected by the change of RNA added by the user.
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Table 2.4: MGapt-DTT model initial conditions for validation test.∑
MGapt (µm) MGaptbound (µm) MGaptaltered (µm) MGdye (µm)

0.41 0.1845 0.2255 9.59
0.86 0.387 0.473 9.14
1.26 0.567 0.693 8.74
1.67 0.7515 0.9185 8.33

Finally, utilizing equation (2.6), the MGaptmeasured was computed and superimposed
onto the experimental results using their respective colors shown in Figure 2.10. As
seen in Figure 2.10a, the predicted MGaptmeasured concentration remains reasonably
accurate throughout the measured time for concentrations below 1 µm. The increased
error above below 1 µm of RNA is most likely due to changes in DTT degradation
or increased stability of the MGaptaltered state.

a b

Figure 2.10: Modeled MGaptmeasured at different initial RNA concentrations.
The modeled MGaptmeasured of BioTek at different RNA concentrations (solid line)
overlaying with experimental data, three replicates (circles and error bars, of respec-
tive colors). (a) Full measured time of 12 hours. (b) Zoomed, reaction relevant time
of 4 hours.

Regardless, the model does recapitulate the increase of the measured MGapt con-
centration and its overall dynamics. Furthermore, as indicated in the manuals of
commercial PURE systems, the reaction is generally monitored for a 2 hour- 4 hour
rather than 12 hour. Upon closer examination of the pertinent 4 hour reaction win-
dow, highlighted in Figure 2.10b, it becomes evident that the model accurately
predicts the measured MGaptmeasured. Moreover, Figure 2.11 shows that the model
consistently predicts the measured MGapt within an average of 10 % margin of error
within the initial 4 hour period for RNA concentration is greater than 1 µm, longer
than the recommended reading time.
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Figure 2.11: Error of proposed BioCRNpyler model. (a) Absolute error between
the BioCRNpyler model and experimental data for different initial RNA concen-
trations. (b) Percent error between the BioCRNpyler model and experimental data
for different initial RNA concentrations.The model compared to the mean of the
experimental results for the respective RNA concentrations.

The accuracy and the capturing of the dynamics of measured MGapt fluorescence
demonstrate that DTT can serve as a representative model for MGapt fluorescence,
commonly employed in measuring RNA production. Moreover, the simulation can
be used in reverse to calculate the total RNA in a system by calculating the total
RNA ratio between measured and total to calculate back the amount of RNA; steps
are illustrated in Figure 2.12.

To back-calculate the added RNA concentration from known RNA concentration
measurements, we first start off with Figure 2.12a, the simulated MGapt fluores-
cence of the sample of 0.22 µm. Next, in Figure 2.12b, we calculated the ratio of
MGapt between the sample concentration of 0.22 µm to the simulated measured
concentrations to get the ratio of MGapt. By multiplying the dynamic calibration
curve in Figure 2.12b and the measured MGapt fluorescence of RNA construct
MGapt-UTR1-deGFP (see Figure 2.12c), we can approximately calculate the start-
ing of 0.41 µm, 0.86 µm, 1.26 µm,and 1.67 µm of the added RNA. The final results of
the back-calculation are shown in Figure 2.12d, where the calculated MGapt concen-
trations are overlayed with the true RNA concentration, displaying strong alignment
and supporting the dual purpose of the MGapt and DTT models proposed.
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c d

Figure 2.12: Back calculation of MGapt concentration using proposed model.
(a) Measured MGapt concentration of 0.22 µm of RNA for MGapt-UTR1-deGFP
(circles with error bars) and simulated MGapt measurements (solid line). (b) Pro-
posed dynamic calibration curve for MGapt concentration measurements from data
shown in (a). (c) Measured MGapt of RNA, MGapt-UTR1-deGFP, at concentra-
tions: 0.41 µm, 0.86 µm, 1.26 µm,and 1.67 µm (circles with error bars, at respective
color). (d) Calibrated experimental data from (c) with dynamic calibration curve in
(b) (circles with error bars, at respective color), overlayed with the RNA concentra-
tion used (dashed lines).

2.3 Conclusion
Our experiments reveal that the chemical makeup of commercial PURE systems
influences measured MGapt concentration. Specifically, we observe a correlation
between the chemical properties of DTT, given that DTT is absent in OnePot PURE
but present in other commercial PURE systems. Though DTT and TCEP are
effective reducing agents commonly used in biochemical research, DTT is more
sensitive to oxidation, less stable, and more violative. We hypothesize that the
concentration of DTT suppresses the fluorescence of MGapt by reversibly converting
it into alternative forms with reduced fluorescence, which are indistinguishable and
challenging for readers to account for. The degradation of DTT over time, driven
by its chemical properties, enables MGapt to return to its fully fluorescent state,
dynamics observed using purified RNA.
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We demonstrated that increasing the initial concentration of DTT in the expression
of transcription, translation, or both could lengthen the suppression time. Moreover,
given the inability to reduce the concentration of DTT in most commercial PURE
systems, we introduce a model to predict the measured MGapt concentration by
accounting for DTT’s impact on the state of MGapt. We identified a distribution of
possible parameters in the model with the experimental data at one concentration
of RNA for MGapt-UTR1-deGFP. We validated our model by accurately predicting
the measured MGapt for the same RNA construct at five different concentrations
within the relevant 2 hour period.

This model is essential in comprehending and accurately quantifying transcription
within cell-free expression systems, specifically commercial PURE systems. Em-
ploying our methodology enables the construction of mathematical models based on
the measured MGapt concentration and can be utilized to retroactively calculate the
total quantity of RNA used in the PURE reaction. More importantly, the realization
that MGapt can transition between various fluorescence states in cell-free expres-
sion systems suggests potential inaccuracies in our understanding and assessment
of RNA production. While MGapt is widely and extensively utilized as an aptamer,
this phenomenon may not be exclusive. Exploring other aptamers and monitor-
ing fluorescence changes over time could prove beneficial in identifying additional
chemical reactions or environmental factors that might influence the measured RNA
concentration.

2.4 Materials and Methods
All data analysis, parameter inference, and data presented in this chapter are available
on Github [66].

PURE reactions and fluorescence measurements. The PURE reactions were
prepared according to the NEB PURExpress (E6800) protocol, adapted for a 10 µL
reaction volume, and incubated in a 384-well plate (Nunc) at 37 °C. A concentration
of 5 nm DNA was utilized, unless otherwise specified, along with 8 units of RNAse
inhibitor (NEB), and 10 µm malachite green oxalate added to each reaction. The
RNA concentrations varied and were specified in the corresponding experimental
setup description. DNA and RNA were added using an Echo 525 Acoustic Liquid
Handler, and final concentrations were recalculated based on dispensed volumes.
The remaining components were made into a master mix with 5 % excess, added
to a 384-well plate using a repeater pipette. Fluorescence readings were obtained
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using a BioTek Synergy H1 plate reader (BioTek) at 3-minute intervals for 12 hours
at 37 °C. Excitation/emission wavelengths were set at 610/650 nm for MGapt with
a gain of 150. All samples were analyzed using the same plate reader.

Standard MGapt RNA calibration. The fluorescence calibration curve for MGapt
was generated using single-stranded RNA purchased from Integrated DNA Tech-
nologies (IDT), rArCrUrGrGrArUrCrCrCrGrArCrUrGrGrCrGrArGrArGrCrCrA-
rGrGrUrArArCrGrArArUrGrGrArUrCrCrArArU. The sample arrived lyophilized
in tube and weighed 64.5 nmol (0.92 mg). To achieve the concentration of 100 µm,
645 µL of nuclease-free water (NFW) was added. The sample was vortexed for
several minutes and heated to 55 °C for 5 min before vortexing again. The stock
concentration was measured by a Nanodrop 2000c before serial dilutions in 1X PBS.
Next, respective dilutions were deposited onto the bottom of a Nunc 384 well plate
using an Echo 525 Acoustic Liquid Handler. Each well contained a total volume
of 10 µL with four technical replicates containing 10 µm of Malachite Green dye.

The Nunc 384 well plate was read using a BioTeK H1MF plate reader at 37 °C
and at SI610/650nm (ex/em) and gain 150. Each point on each calibration curve
represents the average of 20 points, and four replicates were read over 10 minutes
at 2.5-minute intervals to generate 5 points per replicate. The points were all
background-subtracted from the negative control such that the 0 µm samples had
zero fluorescence. Points were fit using linear regression and were not forced to go
through the origin. Fits for each calibration curve are indicated in Figure 2.13.

Figure 2.13: Standard MGapt calibration curve. The fluorescence calibration
curve for MGapt is used to convert RFU to µm.
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The pH of a PURE reaction using SNARFTM-5F. The pH calibration curve
in PURExpress was created using SNARFTM-5F 5-(and-6)-carboxylic acid from
Thermo Fisher Scientific (S23922). Eleven solutions with the following pH val-
ues were created: 3.01, 4.12, 5.08, 5.63, 5.97, 6.57, 7.02, 7.43, 8.07, 9.04, and
9.51 consisting of 50 mm HEPES, 1 mm spermidine, 350 mm K-Glutamate, 18 mm
Mg-Glutamate, 50 mm creatine phosphate, and 5 mm dithiothreitol (DTT) [61]. Sub-
sequently, 10 µL of SNARFTM-5F at 100 µm was added to 90 µL of each pH solution.
The PURE reaction samples were mixed as previously described, but for this read
included 1 µL of SNARFTM-5F before adding nuclease-free water to reach 10 µL.

Next, 10 µL of the final pH solutions with SNARFTM-5F and PURE reaction were
added to the Nunc 384 well plate and read using a BioTeK H1MF plate reader
at 37 °C for 12 hours with gain 75 at (ex/em) 543/580 nm and 543/640 nm. The raw
fluorescence units (RFU) at 580 nm was divided by RFU at 640 nm to attain Fig-
ure 2.14a. Finally, the pH calibration curve, shown in Figure 2.14b, was calculated
by averaging the RFU in Figure 2.14a over the 12-hour read and plotting against the
pH of the solution. Based on the ratio of 580 RFU over 640 RFU data of PURE
samples, a linear regression line was fitted between pH 7.02 and pH 8.0 and used to
calculate the pH over the PURE reaction time shown in Figure 2.2.

a b

Figure 2.14: pH calibration curves using SNARFTM-5F. (a) The pH was mea-
sured using SNARF-5F. The ratio of 580 RFU over 640 RFU data of solution, at
respective pH, was used for pH calculations. (b) Calibration curve for pH calcula-
tions. Each point represents the average RFU (580/640) over the 12-hour read. A
linear regression line was fitted between pH 7.02 and pH 8.07.
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Incorporating MGapt into the desired plasmid. Primers used to clone MGapt (G-
GGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATC) into DNA plas-
mid, pTXTL-T7p14-deGFP, originally obtained from myTXTL [67] and to linearize
DNA for RNA purifications.

Table 2.5: List of primers used to make constructs.

Name Sequence Purpose
GAGCCAGGTAACGAATGG

pT7_MGapt_FOR ATCCAATAATTTTGTTTA Cloning in MGapt to
ACTTTAAGAAGGAGATA pTXTL-T7p14-deGFP
TACCATG
ATTGGATCCATTCGTTACC

pT7_MGapt_REV TGGCTCTCGCCAGTCGGG Cloning in MGapt to
ATCCCTCTAGAGGGAAA pTXTL-T7p14-deGFP
CCGTTG

pPCR_MGapt_FOR GTGATGTCGGCGATATA Linearize
GGC pTXTL-T7p14-mGapt

pPCR_MGapt_REV CACTATCGACTACGCGA Linearize
TCATG pTXTL-T7p14-mGapt

pPCR_MGapt-UTR1 GCGTAGAGGATCGAGAT Linearize modified
-deGFP_FOR CTCGATC pTXTL-T7p14-deGFP

pPCR_MGapt-UTR1 CTATCGACTACGCGATC Linearize modified
-deGFP_REV ATGGC pTXTL-T7p14-deGFP

The bold text identifies the binding region of the plasmid.

Computational modeling and simulations. This model is based on MGapt differ-
ent states effects by organic solvents found Stead et al., Zhou et al., and Da Costa et
al. [39, 55, 58]. We use the chemical reaction network (CRN) formalism to create the
detailed mechanistic model using a CRN compiler called BioCRNpyler [41]. The
computational model was developed to take a total RNA concentration of MGapt-
UTR1-deGFP and predict the measured MGapt concentration using a BioTek plate
reader. Our CRN model consists of five distinct species and seven total reactions.
Using BioCRNplyer, we identified five out of seven parameters using the experi-
mental data. The final trained model predicts the BioTeK measurement of MGapt
concentration over time for the RNA sequence of MGapt-UTR1-deGFP.
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C h a p t e r 3

A PURE CHEMICAL REACTION NETWORK OF PURE

The contents of this chapter are reproduced from

[1] Jurado, Zoila, Pandey, Ayush, and Murray, Richard M. “A chemical reaction
network model of PURE.” bioRxiv (2023). doi: https://doi.org/10.
1101/2023.08.14.553301.

3.1 Introduction
Over the last decade, multiple TX-TL protein expression models have been put
forth and have shown to accurately model RNA and protein production [24, 25,
68, 69]. However, these models cannot predict expression without characterizing
the models to their specific experimental data sets. Steps have been made towards
more predictive models, modeling the behavior of whole circuits using a software
toolbox and characterizing components of the entire model [70]. Though these
TX-TL models can help understand phenomena or estimate unknown parameters,
they continue to be constrained by the unknown composition of the cellular lysate.

One advantage of using cellular lysate is the retention of biological pathways of the
cell strain, such as glycolysis, allowing for energy regeneration. The extent to which
cellular processes remain functional is still undetermined. Characterization of lysate
as the next step for TX-TL modeling relies on LCMS to measure small molecules,
proteins, and lipids to understand how much of the core metabolism is active,
potential side reactions, and waste generation effects [71]. However, measuring all
proteins, small molecules, and lipids and mapping the chemical reactions associated
with each in lysate is difficult. Thus, having a universal, batch-independent, and
detailed TX-TL model is unlikely.

In contrast to cellular lysate-based cell-free protein synthesis, this allows for batch-to-
batch and inter-laboratory repeatability. Consequently, the PURE system presents an
opportunity for detailed modeling, allowing for reliable computational predictions.
Without requiring recharacterization for every experimental run, these models could
be integrated into pipelines to prototype larger circuits using the PURE system.
Nonetheless, even with complete control and knowledge of the composition, existing
PURE models fall back to the phenomenological modeling of transcription and

https://doi.org/https://doi.org/10.1101/2023.08.14.553301
https://doi.org/https://doi.org/10.1101/2023.08.14.553301
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translation [25, 72–75] by grouping all NTPs as one variable, not modeling each
step of protein production, and employing Hill functions instead of chemical reaction
equations.

In 2017, Shimizu’s group introduced a MATLAB model for the translation mecha-
nisms in PURE [46, 47]. It is a detailed model that distinguishes between NTPs and
incorporates each stage in translating an fMGG peptide. This computational model
comprises 968 mass-action reactions and 241 species, including the 27 components
that initialize the PURE system. Time courses of all components can be tracked in
this model, which provides a valuable method to explore and systematically model
the protein synthesis in PURE. But, fMGG is a small peptide, and extending this
detailed model to the commonly used proteins in PURE is not straightforward. Ex-
plicitly writing each reaction and all possible species would be increasingly tedious
as protein length increases. Moreover, since transcription is not modeled, this model
is an incomplete description of the PURE system and cannot be experimentally val-
idated. To address these limitations, in this chapter, we demonstrate (1) a detailed
model of PURE for the transcription of arbitrary DNA sequences with mechanistic
details for each step in the transcription; (2) a generalization of Shimizu’s group
translation model for arbitrary proteins; and (3) the experimental validation of a
complete transcription and translation model of the PURE system.

3.2 Results and Discussion
Creating a chemical reaction network of transcription for any DNA sequence.
To model the detailed step-by-step mechanistic process of transcription, we built
a chemical reaction network (CRN). The chemical reactions of the transcription
model were initially based on the reactions and rates proposed in the TX-TL model
by Tuza et al. [76]. The user is required to input the DNA sequence of the desired
protein, not including the promoter or terminator portions. To adapt and expand this
model efficiently for any arbitrary RNA sequence, we used a CRN compiler tool
called BioCRNpyler [41].

BioCRNpyler is a Python-based software package that can easily compile CRN
models from simple descriptions of the parts of the system. For the transcription
model, we include a detailed description of the process in such a way that the
transcription mechanisms can be adaptable according to the RNA sequence being
transcribed. BioCRNpyler also contains a library of parts and parameters that can
be used to share parts of the model in other larger system models. We use the
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features in BioCRNpyler to generate species and reactions depending on user input
and to store these mechanisms in a way that can be used in larger models.

Figure 3.1: Schematic of RNA synthesis with a reconstituted E. coli transcrip-
tion system. We split the transcription reactions into three sub-processes: initiation,
elongation, and termination. Auxiliary reactions such as energy recycling or those
explicitly related to translation are not included. Created with BioRender.com.

We split transcription into three groups: initiation, elongation, and termination, as
illustrated in Figure 3.1 for RNAlength=𝑛. We model the detailed mechanisms for
each group to include all PURE components’ interactions. Initiation steps include
NTP degradation and a one-step GTP-dependent activation of T7 RNAP [77]:

RNAP + DNA + GTP
𝑘1−−−→ RNAP ·DNA ·GTP (3.1)

RNAP ·DNA ·GTP
𝑘2−−−→ RNAP ·DNA ·GDP · P𝑖 (3.2)

RNAP ·DNA ·GDP · P𝑖

𝑘3−−−→ RNAP ·DNA + GDP + P𝑖 (3.3)

RNAP ·DNA
𝑘start−−−→ RNAP ·DNA ·RNA0. (3.4)

Elongation steps model each binding state separately for the addition of an NTP:

RNAP ·DNA ·RNA0 + NTP1
𝑘NTPbound−−−−−−→ RNAP ·DNA ·RNA0 ·NTP1 (3.51)

RNAP ·DNA ·RNA0 ·NTP1
𝑘NTPadd−−−−−→ RNAP ·DNA ·RNA1 ·NMP1 · PPi

(3.61)

RNAP ·DNA ·RNA1 ·NMP1 · PPi
𝑘NTPdis−−−−−→ RNAP ·DNA ·RNA1 + NMP1 + PPi.

(3.71)

BioRender.com
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The elongation steps repeat for each nucleic acid addition along the growing RNA
chain of length 𝑛:

RNAP ·DNA ·RNA𝑛−1 + NTP𝑛

𝑘NTPbound−−−−−−→ RNAP ·DNA ·RNA𝑛−1 ·NTP𝑛 (3.5𝑛)

RNAP ·DNA ·RNA𝑛−1 ·NTP𝑛

𝑘NTPadd−−−−−→ RNAP ·DNA ·RNA𝑛 ·NMP𝑛 · PPi
(3.6𝑛)

RNAP ·DNA ·RNA𝑛 ·NMP𝑛 · PPi
𝑘NTPdis−−−−−→ RNAP ·DNA ·RNA𝑛 + NMP𝑛 + PPi.

(3.7𝑛)

Finally, the termination step models the dissociation of the RNA𝑛, DNA, and T7
RNAP:

RNAP ·DNA ·RNA𝑛

𝑘 term−−−→ RNAP + DNA + RNA𝑛. (3.8)

In our transcription reactions, we do not explicitly account for multiple polymerases
simultaneously bound on a singular DNA strand. However, the effects of simul-
taneous transcription can be incorporated into the reaction rates. Additionally, no
auxiliary reactions, such as NTP recycling, are incorporated into the transcription
model.

Parameter inference on the transcription model using pT7-MGapt-tT7 plas-
mid. We measured the T7 RNAP-driven transcription of malachite-green aptamer
(MGapt) without a ribosome binding site (RBS) to parametrize the transcription
models. The lack of RBS limits the reactions associated with translation, allowing
the focus to be on transcription. A 10 µL reaction was done in triplicate using PUR-
Express® In Vitro Protein Synthesis Kit. The reaction contained 5 nm of plasmid
DNA with construct pT7-MGapt-tT7, 10 µm malachite green oxalate, and 8 units of
RNase inhibitor. The samples were mixed in PCR tubes with 5 % excess, then 10 µL
was added to a 384-well plate and read for 3 hours at 37 °C in a BioTek H1MF plate
reader. The total amount of RNA was calculated using dynamic calibration curves
in Figure 3.15 for the respective construct.

Before starting the parameter inferencing, we needed to account for translation
reactions independent of peptide synthesis, such as tRNA charging. As a result,
we modified the initial conditions used in the Bayesian inference pipeline for the
transcription model of DNA construct pT7-MGapt-tT7. The translation model was
run without DNA to determine the amount of ATP and GTP consumed by these
reactions within the first 15 min, giving us initial conditions for the transcription-only
model given in Table 3.1.
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Table 3.1: Initial conditions used in the Bayesian inference pipeline for the
transcription-only model.

Species Value Unit
ATP 2206 µm
GTP 590 µm
CTP 1250 µm
UTP 1250 µm
DNA 5 nm

T7 RNAP 1 µm

To parameterize the CRN model constructed using BioCRNpyler, we initialized the
parameters using the values from Tuza et al. [76]. The initial conditions were taken
from PURE components [78] for NTPs and T7 RNAP concentrations. To get reliable
predictions of transcription in PURE, we trained the model using experimental
data for the MGapt fluorescence. However, this model training using parameter
identification is not straightforward, as the CRN model we have constructed has
many species and parameters. Since data is only available for one species in the
model, it is crucial to assess the empirical identifiability of the model parameters.
Finally, to account for the intrinsic noise observed in the experimental data, we
use Bayesian inference to obtain a distribution of possible parameter values given
the experimental data. To achieve both of these tasks (assessing identifiability
and finding posterior parameter distributions), we use a biological data analysis
pipeline [65] using the Python package Bioscrape [43]. This pipeline provides a
practical interface to the BioCRNpyler model to run these analyses.

We use the local sensitivity analysis of all species in the model against all parameters
and at all times to choose the parameters to identify. The sensitivity analysis heatmap
for the pT7-MGapt-tT7 model is shown in Figure 3.2a. Based on the results using
our initial parameters, Figure 3.2b, we initially choose to fit all eight reaction
rates highlighted in equations (3.1)-(3.8) using a coarse tuning to search within the
parameter space equal to twice the initial parameter given in Table 3A.1.
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Figure 3.2: Modeling, analysis, and parameter learning for the PURE
transcription-only model. (a) The sensitivity of the MGapt fluorescence to the
CRN model parameters for all time. (b) The model simulations (in magenta) with
the original reaction parameters and the experimental data for three biological repli-
cates (blue circles with error bars). (c) The posterior distributions of parameters
were obtained after running Bayesian inference on all eight reaction rates. The
corner plot depicts the covariance of the eight parameters, with the contour showing
the 75 % probability region for the parameter values. (d) With parameter values for
all reaction rates sampled from the posterior distributions, the model simulations (in
magenta) are shown alongside the experimental data for three biological replicates
(blue circles with error bars).
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The initial posterior distributions of parameters, shown in Figure 3A.1, were ob-
tained using the Bayesian inference tools in Bioscrape on all the reaction rates.
Subsequently, the model was re-trained using a narrower standard deviation around
the results from the initial inference. The corner plot in Figure 3.2c shows the
posterior parameter distributions and their covariance. This chart provides us with a
distribution to sample from when predicting the output using the fitted model. The
model simulations with parameter values drawn from the posterior along with the
experimental data are shown in Figure 3.2d.

Table 3.2: Translation initial condition for the 36 proteins of PURE cell-free reaction
model.

Species Value Unit
ATP 3750 µm
GTP 2500 µm
CTP 1250 µm
UTP 1250 µm
DNA 5 nm
CP 10 mm
FD 126.8498943 µm

T7 RNAP 1 µm
CK 10 µm
EFG 4.3 µm
EFTs 13 µm
EFTu 80 µm
IF1 99 µm
IF2 4.1 µm
IF3 4.9 µm
MK 5.6 µm
MTF 2.4 µm
NDK 1.8 µm
PPiase 0.16 µm
RF1 0.2 µm
RF2 0.2 µm
RF3 0.7 µm
RRF 16 µm

Species Value Unit
AAs 300 µm

AlaRS 3 µm
ArgRS 0.12 µm
AsnRS 1.7 µm
AspRS 0.49 µm
CysRS 0.1 µm
GlnRS 0.24 µm
GlyRS 0.35 µm
GluRS 0.9 µm
HisRS 0.34 µm
IleRS 1.5 µm
LeuRS 0.16 µm
LysRS 0.46 µm
MetRS 0.44 µm
PheRS 0.54 µm
ProRS 0.67 µm
SerRS 0.16 µm
ThrRS 0.34 µm
TrpRS 0.11 µm
TyrRS 0.03 µm
ValRS 0.07 µm
RS70S 3 µm
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Once we identified the parameters for all eight reaction rates using transcription-
only data and adjusted initial conditions, we selected the most sensitive parameters:
𝑘2, 𝑘3, 𝑘start, and 𝑘NTPadd , based on our sensitivity analysis in Figure 3.2a. These
parameters were chosen to fully characterize the expression from pT7-MGapt-tT7,
encompassing translation reactions independent of DNA presence. The initial con-
ditions for the transcription and translation model are given in Table 3.2; based on
Version 7 PURE concentration published in Table S1 by Kazuta et al. [61]

a

c

b

Figure 3.3: Modeling, analysis, and parameter learning for the PURE model
without protein production. (a) The PURE model simulations (in magenta) with
the previously fitted reaction parameters and the experimental data for three bio-
logical replicates (blue circles with error bars). This model includes translation
without protein production. (b) We use the MGapt fluorescence to infer the poste-
rior parameter distributions for 𝑘2, 𝑘3, 𝑘start and 𝑘NTPadd . The corner plot depicts the
covariance of the four parameters, with the contour showing the 75 % probability
region for the parameter values. (c) With parameter values drawn from the posterior
distributions shown in (b), the model predictions (magenta) are shown alongside the
experimental data. With parameter values for all reaction rates sampled from the
posterior distributions, the model simulations (in magenta) are shown alongside the
experimental data for three biological replicates (blue circles with error bars).

Finally, we use the Bayesian inference again to identify the posterior parameter
distributions for these four parameters. The protein production independent PURE
simulation with the previously referenced reaction parameters from the translation-
only model is shown in Figure 3.3a. The corner plot in Figure 3.3b shows the
posterior parameter distributions and their covariance. This chart provides a final
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distribution to sample from when predicting the output using the fitted model. The
model simulations with parameter values drawn from the posterior along with the
experimental data are shown in Figure 3.3c. The final parameter values used are
given in Table 3.3.

Table 3.3: Final transcription model parameters for PURE cell-free extract.

Parameter Description Value Unit
𝑘1 Binding of RNAP and GTP to the DNA 9.41 µm−2 s−1

Rate of formation of the RNAP bound GDP
𝑘2 and phosphate complex on the DNA from 5.06 s−1

RNAP bound GTP complex
𝑘3 Unbinding of GDP and Phosphate from the 10.88 s−1

RNAP and DNA complex
𝑘start Start of the initiation of the RNA transcript, 7.64 s−1

(RNA0) from the RNAP and DNA complex
Binding rate of NTP to the RNAP bound

𝑘NTPbound DNA, complex with initiated RNA 2.68 µm−1 s−1

transcript
𝑘NTPadd Rate of elongation of the transcript 102.17 s−1

𝑘NTPdis Unbinding rate of NMP and PPi from the 1306.62 s−1

open complex
𝑘 term Termination rate 45.99 s−1

The model’s number of parameters depends on the transcript sequence. For example, the tran-
scription model for malachite green aptamer has 276 parameters.

Expansion of PURE translation model for an arbitrary set of amino acids. The
MATLAB model for the PURE translation [46, 47] is limited to the case of the fMGG
peptide. The model comprises 968 reactions and 241 species, all explicitly written
out. As a result, the ability to change or extend the peptide is labor-some and futile.
To make peptide variation more tractable, we first converted the MATLAB fMGG
translation model to Python using BioCRNpyler [41]. The comparison between
the BioCRNpyler model (magenta line) and MATLAB model (blue circles) can be
seen in Figure 3.4a, with the error between the two in orange. While retaining
all the reactions and parameters from the spreadsheet-based MATLAB model, the
translation to Python enables user-friendly scripting and loops to iterate over an
arbitrary length of peptide.
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Figure 3.4: Expansion the PURE-TL model. (a) Comparison of original MAT-
LAB model to BioCRNpyler model. BioCRNpyler model (magenta line) and MAT-
LAB model (blue circles) overlap, and the difference between models in (orange
circles) on a secondary axis. (b) Expansion of BioCRNpyler with different amino
acids to the original fMGG peptide. (c) Translation model prediction of deGFP
(magenta line) overlaying experimental result (blue circles). (d) Amino acid list
used as input for the BioCRNpyler translation model.

The expanded PURE translation model in BioCRNpyler was built by adding different
amino acids one by one until all 20 amino acids were incorporated (see Figure 3.4b).
As expected, the amount of the final peptide decreases as the amino acid chain
lengthens. Finally, the model was expanded for repeated amino acids and arbitrary
amino acid sequences of length greater than 21. The translation of green fluorescent
protein (deGFP) (RNA𝑛=805, Pept𝑛=226) was modeled using the BioCRNpyler
translation-only model with the initial conditions adopted from the MATLAB model.
Initial conditions for tRNAs and amino acids not associated with Met or Gly were
absent in the MATLAB model. So, we set the initial conditions of the Gly-amino
acids and tRNAs as previously given in Table 3.2. Modeling the translation of an
experimentally relevant protein such as deGFP enabled us to compare the PURE
models to experimental results (see Figure 3.4c, model in magenta overlays three
experimental repeats in blue).

Using the extended translation model, we set RNA𝑛 to 0.126 µm, such that the
total deGFP expression is comparable to experimental results of 6 µm, as seen in
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Figure 3.4c. The translation-only model does not accurately predict the first hour
of protein expression. This discrepancy is expected since we start with a nonzero
RNA. In the combined transcription and translation model, RNA would be produced,
resulting in the delay of protein expression. Therefore, the immediate production of
deGFP was expected, but further supports the need for a coupled transcription and
translation model.

Validation of translation model of pT7-MGapt-UTR1-deGFP-tT7. To verify
the extended translation model, we used additional 10 µL PURE reactions with
purified RNA of MGapt-UTR1-deGFP at final concentrations of between 0.22 µm
and 3.38 µm, initially introduced in Chapter 2. Based on the deGFP measurement,
shown in Figure 3.5, we observed that the relationship between RNA added and
deGFP production was non-linear.

0.5866 · ln([deGFP]) + 3.2714

Figure 3.5: Relationship between deGFP production and initial RNA concen-
trations. Translation was initialized by the addition of RNA to achieve final concen-
trations: 0.22 µm, 0.41 µm, 0.86 µm, 1.23 µm, 1.67 µm, 2.53 µm, and 3.38 µm. The
corresponding average deGFP production (black circles with associated error bars)
was fit using a log fit due to RNA’s apparent relationship with deGFP production.
The fitted line overlays the data (dashed black line) with the equation displayed.

This suggests that there may be a limiting species, or the total RNA could be
inhibiting translation, which is not fully captured in the translation model. We
proposed that an effective RNA (RNAeffective) given by the equation,

RNAeffective = 𝑘 (RNA) ·RNA (3.9)

can be used to account for diminishing returns.

Due to the non-linear relationship between RNA and protein production, the RNA
effective multiplication factor (k (RNA)) is a function of RNA. To calculate the
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multiplication factor k (RNA) in equation (3.9) we identified the effective RNA
(RNAeffective) that produces the corresponding deGFP for RNA concentrations
at 0.22 µm and 3.38 µm (see Figure 3.6a). Next, we compute k (RNA) at 0.22 µm
and 3.38 µm. Finally, shown in Figure 3.6b, we plot the computed k (RNA)
against MGapt concentration and using a power trendline, we fit the points giv-
ing k (RNA)––0.1703 RNA–0.801.

a b

0.1703 · [RNA]–0.801

Figure 3.6: Effective RNA required for the model to achieve corresponding
deGFP production. (a) Results from manually tuning the initial RNA concen-
trations to match the deGFP production from the two ends of RNA concentration
experimentally tested: 0.22 µm, and 3.38 µm (circles with error bars). The model
results with manually tuned RNA are shown by solid lines with colors corresponding
to the experimental data it was tuned to. (b) The proposed RNA multiplier function
to calculate the effective RNA concentrations to fit experimental deGFP production
with the translation-only model.

Utilizing the RNA effective multiplication factor, we modeled the translation of
deGFP using purified RNA at 0.41 µm, 0.86 µm, 1.26 µm, 1.67 , and 2.53 µm. Fig-
ure 3.7 shows the comparison between the simulated translation-only deGFP pro-
duction model (solid lines) and the experimental data (circles with error bars) at
various start RNA concentrations in corresponding colors.

The translation model does capture the final deGFP production, with the incorpo-
ration of RNAeffective, with error less than 6 % (see Table 3.4). However, the rate
of deGFP production is not fully captured in the model despite accounting for the
time delay between the start of the reaction and getting it into the plate reader. The
disparity between the translation model and experimental data suggests that tuning
the translation model parameters would be necessary. Unfortunately, due to the
extensive size and time required for parameter fitting of all parameters, we opted to
continue using it as proposed by Matsuura et al. [46].
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Figure 3.7: Simulated deGFP production leveraging effective RNA calculation.
Modeled deGFP production in the translation model starting at various RNA con-
centrations (solid lines) overlaying experimental results (circles with error bars) at
respective colors.

Table 3.4: Absolute error of the translation-only model compared to experimental
results. The table lists the initial RNA conditions not used in calculating and
determining the effective RNA multiplier function and the calculated effective RNA.
The deGFP expressed reflects the concentrations at 2 h for both the simulation and
experiment.

RNAadded RNAeffective deGFPexperimental deGFPsimulated Absolute Error
0.409 µm 1.153 µm 2.71 µm 2.65 µm 2.21 %
0.855 µm 0.178 µm 3.33 µm 3.08 µm 7.81 %
1.264 µm 0.192 µm 3.29 µm 3.31 µm 0.61 %
1.67 µm 0.204 µm 3.71 µm 3.50 µm 5.66 %

2.528 µm 0.221 µm 3.68 µm 3.78 µm 2.99 %

Combination transcription and translation model to achieve a detailed PURE
model. With the successful construction of separate transcription and translation
models for arbitrary sequences, BioCRNpyler easily allows for the combination of
the two models. The reaction and species from both the translations and transcription
models were compiled together, removing any duplicate species such as ATP, GTP,
and PPi, etc. Next, the transcription model’s output, RNAn, and translation model’s
input, RNA, were linked with the uni-direction mass-action reaction:

RNA𝑛

𝑘 linker−−−−→ RNA. (3.10)
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The parameter value of 𝑘 linker is arbitrarily set to 1000 s−1, such that all of the RNA
produced in the transcription model will be instantly available to the translation
model. The inclusion of reaction in equation (3.10) can be omitted by utilizing the
same species as the output and input of the respective models. However, it serves as
a feature and/or replaceable reaction in case diffusion or RNA translations need to
be incorporated. To account for protein folding, the following reaction was added:

deGFP
𝑘folding−−−−−→ deGFP𝑚, (3.11)

where 𝑘folding = 600𝑠−1 [79], completing the combined PURE model. The total
number of reactions of the combined transcription and translation model is 6988
with 6280 species. Unable to obtain the initial conditions of PURExpress from
NEB and found contradicting concentrations across literature, the initial conditions
were set to the Version 7 PURE concentration published in Table S1 [61]. The
one exception is the small molecule creatine phosphate’s (CP) initial concentration
is 10 mm; see Table 3.2 for the initial conditions of all of the proteins and amino
acids. Similar to the translation model by Matsuura et al., the model tracks all
species.

We initially found that the combined PURE model of deGFP production from DNA
construct pT7-MGapt-UTR1-deGFP-tT7 at 5 nm did not accurately predict deGFP
production despite the model’s accuracy of RNA produced within the first 1 h. The
over-prediction of deGFP may be the lingering non-linear correlation between RNA
and deGFP production observed earlier. However, any inhibition of overloading the
translation reaction with RNA would not be as significant, as RNA is being slowly
produced. A more plausible alternative explanation is that incomplete proteins are
produced in PURE cell-free protein synthesis systems compared to lysate-based
cell-free protein synthesis proteins. The synthesis of incomplete peptides from the
DNA construct pT7-UTR1-deGFP-tT7 can be observed using radiolabeled [35S]-
methionine [80] in two cell-free protein synthesis systems. The synthesis of full-
length deGFP is approximately 28 kDa, and thus should measure between 26 kDa
and 34 kDa. The completed translation of deGFP is denoted by the dark band
observed in both BL21 (DE3) E. coli cell-lysate (Figure 3.8a) and NEB PURExpress
(Figure 3.8b).
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(kDa) Lysate

b
PURE

c
without correction factor

with correction factor of 0.7

Figure 3.8: [35S]-methionine labeling of lysate-based and PURE cell-free protein
synthesis systems. Newly synthesized proteins from the DNA construct pT7-UTR1-
deGFP-tT7 using BL21 (DE3) E. coli cell-lysate (a) and NEB PURExpress (b) using
radiolabeled [35S]-methionine. (c) Modeled deGFP expression in the combined
models (magenta line) with correction factor of 0.7 (solid line) and without (dashed
line) overlaying with experimental data, three replicates (blue circles and blue error
bars). Figures (a) and (b) are courtesy of Masami Hazu, a PhD candidate in Prof.
Voorhees’ lab, who collaborated with us to conduct the experiment and contributed
to the final results.

When comparing the newly synthesized proteins between the two cell-free protein
synthesis systems, it is evident that PURExpress, Figure 3.8b, produces a higher
quantity of incomplete proteins. Our combined model does not include early termi-
nation of translation or misfolding of deGFP. Therefore, to fit our deGFP results, we
propose a 30 % reduction of deGFP production due to extenuating factors, depicted
in Figure 3.8c. The final results of the combined model predictions are shown
in Figure 3.9 overlaid with the experimental data (in blue shapes). The absolute
errors of the combined BioCRNpyler model to the experimental data are depicted
in Figure 3.10.

As seen in Figure 3.10a, the model of RNA production is consistent with experiments
until approximately 1 h and RNA saturates approximately at the same time. However
after 1 h the model over predicts MGapt production by 40 %. The difference after 1h
in total MGapt produced between the predicted and experimental data may be
attributed to MGapt degradation or inaccurately posed in the initial conditions.
Additionally, the slight delay observed in the simulated MGapt and experimental
MGapt is likely primarily due to the time elapsed from mixing the reaction and
transferring the plate to the plate reader leading to the 20 % shown in Figure 3.10a.
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Figure 3.9: The combined transcription and translation model for pT7-MGapt-
UTR1-deGFP-tT7, DNA=5 nm, with experimental result in PURExpress. (a)
Modeled RNA production in the combined model (magenta line) overlaying with
experimental data, three replicates (blue circles and blue error bars). (b) Modeled
deGFP expression in the combined model (magenta line) overlaying with experi-
mental data, three replicates (blue circles and blue error bars).

a b

Figure 3.10: Absolute error of combined BioCRNpyler model compared to ex-
perimental results. (a) Modeled RNA production in the combined model (magenta
line) overlayed with experimental data, three replicates (blue circles and blue error
bars), and the absolute error (orange circles) on a secondary axis. (b) Modeled
deGFP expression in the combined model (magenta line) overlayed with experimen-
tal data, three replicates (blue circles and blue error bars), and the absolute error
(orange circles) on a secondary axis.

The expression pattern of deGFP more closely resembles actual experimental data
regarding when expression ceases, compared to the translation-only model presented
earlier. This is clear in comparing the “kink” in Figure 3.4c when the deGFP stops
expressing with a much smoother transition in Figure 3.9b. By including the scaling
factor of 0.70, the model accurately predicts total deGFP production throughout
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the reaction’s lifetime with a 5 % error at the end of the reaction, as shown in
Figure 3.10b. Finally, due to the detailed nature of the model, we can track the
concentrations of all proteins, amino acids, and energy carriers to begin exploring
the limiting factors of PURE.

a

b

Figure 3.11: The concentrations of NXPs and amino acids over time in the
combined transcription and translation model for pT7-MGapt-UTR1-deGFP-
tT7, DNA= 5 nm. (a) Concentrations (µm) of ATP, ADP, AMP, CTP, GTP, GDP,
and UTP over simulation time using log-normal scale. (b) Concentrations (µm) of
all amino acids over simulation time.

By creating heatmaps of the concentrations of energy-related small molecules, in
Figure 3.11a, we can infer that ATP, GTP, and CP are the likely limiting energy
carriers in PURE—the consumption of GTP and ATP limits the model’s RNA
and protein production. The energy source, CP, serves as a phosphate donor for
ATP synthesis and is fully depleted by 2 h. However, experimentally, it has been
found that increasing CP does not increase the reaction lifespan and reduces total
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protein yield, supporting the need for further development of energy generation and
recycling in cell-free protein synthesis. Additionally, Figure 3.11b shows that amino
acids are not limiting in PURE. Figure 3.11b includes the concentrations of only
the free amino acids, those not in a complex with their respective tRNA. The excess
of amino acids is apparent, with none of the 20 amino acid concentrations falling
below 20 µm.

Validation of combined transcription and translation model of pT7-MGapt-
UTR1-deGFP-tT7. To validate the complete detailed PURE model, which com-
bines the transcription and translation model, we ran additional 10 µL PURE reac-
tions with DNA of pT7-MGapt-UTR1-deGFP-tT7 at final concentrations of 0.07 nm,
0.12 nm, 0.26 nm, 0.47 nm, 1.06 nm, and 1.99 nm done in triplicates. By plotting
the average deGFP production at 2 h against added DNA, we observed that the
relationship between DNA added and deGFP production was non-linear (see Fig-
ure 3.12a). We observed diminishing protein production returns as DNA concentra-
tion exceeds 0.5 nm. To further investigate the origin of the nonlinearity, we plotted
the relationship between DNA added to MGapt produced and MGapt produced to
deGFP produced in Figure 3.12b and Figure 3.12c, respectively.

We observed that the relationship between DNA added to MGapt produced (Fig-
ure 3.12b) appears to be linear when the DNA concentration is above 0.5 nm, indi-
cating a change of transcriptional regime at higher DNA concentrations. The shift
in the transcription regime may indicate a transition from a DNA-limited regime.
However, Figure 3.12c shows a diminishing return on protein production when the
maximum concentration of RNA produced surpasses 1 µm. The diminishing return
of deGFP production relative to RNA, previously observed in the translation-only
experiments, may result from the saturation of translation proteins, production of
inhibitory products, or reduced levels of ATP, GTP, and other small molecules not
currently incorporated in the model.

Notably, in the translation-only results shown in Figure 3.5, when purified RNA
was added at 0.855 µm and 2.528 µm, the respective deGFP expression was 3.08 µm
and 3.78 µm. This is approximately 60 % lower than the deGFP expressed at com-
parable synthesized RNA concentrations in Figure 3.12c. These results suggest that
starting with DNA in the PURE reaction is more effective for protein production
than dosing in purified RNA. The reason for this remains to be explored, as our
current model does not capture these experimental results. Consequently, simi-
lar to the validation of the translation-only model, we propose using an effective
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Figure 3.12: Relationship between deGFP and RNA production at varying ini-
tial DNA concentrations. Expression from the plasmids of pT7-MGapt-UTR1-
deGFP-tT7 at DNA the following concentrations: 0.07 nm, 0.12 nm, 0.26 nm,
0.47 nm, 1.06 nm, and 1.99 nm. (a) The average overall deGFP production ver-
sus initial DNA concentration is depicted, followed by a breakdown into (b) RNA
production relative to DNA and (c) deGFP production based on RNA production.
The corresponding experimental data for each subplot is plotted in black circles with
associated error bars.

DNA (DNAeffective) to recapitulate the maximum RNA synthesized experimentally
to the model. Additionally, due to the sharp shift in the transcription regime in
Figure 3.12c, we propose the effective DNA (DNAeffective) given by the equation,

DNAeffective = 𝑘 (DNA) ·DNA. (3.12)

To calculate the multiplication factor k (DNA) in equation (3.12) we identified
the effective DNA (DNAeffective) that produces the corresponding RNA for DNA
concentrations at 0 nm, 0.12 nm, 0.47 nm, and 1.99 nm. Next, we plot the DNAeffective

against the experimental DNA concentration. We used a linear regression to fit the
points when DNA was below 0.5 nm and a logarithmic trendline to fit the points
above 0.5 nm, as shown in Figure 3.13.
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3.8043 · [DNA]

1.5729 · ln([DNA]) + 2.9676

Figure 3.13: Effective DNA required for the model to achieve corresponding
RNA production. The proposed piece-wise DNA function calculates effective
DNA concentrations needed to fit experimental RNA production with the combined
transcription and translation model.

Using the piece-wise DNA effective multiplication factor, we modeled the transcrip-
tion and translation of deGFP at the different DNA concentrations. The simulation
results are shown in Figure 3.14 and Table 3.5. In Figure 3.14, the simulation
results (solid lines) are superimposed on experimental data (circles and error bars)
with the varying DNA concentrations represented by different shades of purple in
descending order.

a b

Figure 3.14: The PURE model for pT7-MGapt-UTR1-deGFP-tT7, at different
initial DNA concentrations, with experimental results in PURExpress. The
simulation results (solid lines) are overlayed with experimental data (circles and
error bars) for the production of (a) RNA and (b) deGFP. The different DNA
concentrations are reflected in the different shades of purple in decreasing order.
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Table 3.5: Absolute error of MGapt and deGFP production of the PURE model over
multiple DNA concentrations. The table includes the tested initial DNA conditions,
corresponding effective DNA, MGapt synthesized, and protein production results
from the model and experimental data. The MGapt and deGFP expressed reflect
the concentrations at 2 h for both the simulation and experiment.

DNAadded (nm) 1.99 1.06 0.47 0.26 0.12 0.07
DNAeffective (nm) 4.05 3.06 1.79 0.99 0.46 0.27
MGaptexp. (µm) 2.28 1.5 0.88 0.56 0.35 0.18

MGaptmodel (µm) 2.26 1.77 1.09 0.63 0.30 0.18
MGapterror (%) 0.88 18.0 23.9 12.5 14.3 0.0
deGFPexp. (nm) 6.55 5.42 4.23 3.11 2.13 1.31

deGFPmodel (µm) 5.77 5.20 3.91 2.55 1.31 0.79
deGFPerror (%) 11.9 4.06 7.57 18.0 38.5 39.7

When comparing the simulated results to the experimental data, it becomes evident
that while we can align the final MGapt production, the model fails to fully capture
the MGapt synthesis’s dynamics fully in Figure 3.14a. The model approximately
aligns with the experimental results up to 45 min, after which there is a noticeable
shift in the MGapt production rate. Furthermore, in Figure 3.14b, the model fails
to capture the final deGFP expression, typically underestimating the final deGFP
concentrations. Therefore, further fitting is required as the model parameters for
the translation reactions were not fit to any data, and the transcription model was
fit to experimental data at 5 nm DNA. Additionally, despite additional reactions
that need to be identified and incorporated, the full PURE model remains useful
to our understanding of PURE systems. The model can capture general trends and
approximate the production of MGapt and deGFP.

3.3 Conclusion
This chapter proposes a complete transcription and translation model of cell-free
protein expression for arbitrary proteins in the PURE system. The existing model of
translation in PURE from Matsuura et al. [46] only modeled the translation of the
fMGG peptide. We have developed a transcription model incorporating each step of
the growing RNA strand and the specific NTP required to transcribe the RNA from
any given DNA sequence. Further, we have expanded on the PURE translation model
so that proteins with any given amino acid sequence can be modeled. By combining
the transcription and translation models that we developed, we present a complete
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model of protein expression in PURE cell-free systems. Using our approach, it is
possible to create mathematical models of the expression of experimentally relevant
proteins in PURE.

We validated the models using experimental data. We identified a distribution of
possible parameters in the model with the experimental data for MGapt fluorescence.
We showed that the validated model accurately predicts the MGapt fluorescence for
two different plasmids — one where MGapt is expressed in an isolated manner
and another where it is expressed together with deGFP. The combined model of
the PURE cell-free system with the validated transcription model and the extended
translation model was then used to predict deGFP expression. The model predictions
agree with the experimental results.

This detailed model of the PUREexpress system is a step towards cell-free protein
synthesis predictability. It can be used as a platform to guide the design of future
probing experiments with biological circuits in PURE. Utilizing this detailed model
with OnePot PURE [15], a version of PURE where all 36 proteins are co-cultured and
purified together, can help circumvent batch-to-batch and inter-laboratory variability
problems seen in extract-based systems. Using quantitative proteomics [81] initial
conditions of each OnePot batch can be measured and simulated to predict batch
yield and improve the reproducibility of OnePot PURE. Beyond this, the model can
be instrumental in identifying potential directions for further research, particularly
regarding the coupling between the transcription and the translation mechanisms.

The model can be improved by incorporating reactions that model potential in-
hibitory interactions, such as inorganic phosphates, pyrophosphates, and pH. Ad-
ditional reactions could include DNA polymerases for DNA replication and ri-
bosomal loading reactions. Modeling of incomplete transcription and translation
products [82] could also be beneficial in improving the accuracy of the predictions.
We hope this model will combine multiple research groups by compiling data from
fluorescent or LCMS measurements of different experimental conditions. Together,
we can build a library of characterized parts for PURE or OnePot PURE to achieve
a robust ‘design–build–test’ cycle.

3.4 Materials and Methods
All data analysis, parameter inference, and data presented in this chapter are available
on Github [83].
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Dynamic MGapt RNA calibration. The dynamic fluorescence calibration curve
for MGapt was generated using purified RNA of MGapt at 0.522 µm and MGapt-
UTR1-deGFP at 0.548 µm in a 10 µL PURExpress reaction done in three technical
replicates. The PURE reaction with the purified RNA containing the MGapt was
loaded to a Nunc 384 well plate and was read using a BioTeK H1MF plate reader
at 37 °C and at SI610/650nm (ex/em) and gain 150. The relative fluorescence
units (RFU) for each of the RNA units tested are shown in Figure 3.15a (MGapt)
and Figure 3.15b (MGapt-UTR1-deGFP). Subsequently, dynamic calibration curves
for RNA of MGapt (Figure 3.15c) and MGapt-UTR1-deGFP (Figure 3.15d) were
obtained by dividing RFU measurements in Figure 3.15a and Figure 3.15b by
their respective RNA concentrations, then smoothed. The dynamic fluorescence
calibration curve for MGapt is specific to the PURE reaction and RNA measured.

a MGapt b MGapt-UTR1-deGFP

c d

Figure 3.15: Dynamic MGapt calibration curve. Measured RFU of RNA of
MGapt at 0.522 µm (a) and MGapt-UTR1-deGFP at 0.548 µm (b) done in triplicates
(circles with error bars). Respective dynamic calibration curves for MGapt (c) and
MGapt-UTR1-deGFP (d) RNA, calculated by dividing RFU measurement in (a)
and (b) by respective RNA concentration then smooth.
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Standard deGFP calibration curves. The fluorescence calibration curve for deGFP
was generated using purchased purified eGFP from Cell Biolabs (STA-201). Sam-
ples were prepared as described in the myTXTL manual [67]. The 1 mg mL−1 eGFP
(29.0 kDa was estimated to have a concentration of 34.483 µm). The eGFP stock was
diluted in series in 1X PBS, and 10 µL of each dilution was pipetted onto the wall of
a Nunc 384 well plate, spun down, and then sealed with a plastic film. The plate was
allowed to sit for 45 min at room temperature before being read in a BioTek H1MF
plate reader at 30 °C and at SI485/515nm (ex/em) and gain of 61. Each point on the
calibration curve represents the average of 12 points; three replicates were read over
3 minutes at 1-minute intervals to generate 4 points per replicate. The points were
all background-subtracted such that the PBS-only samples had zero fluorescence.
Points were fit using linear regression and were not forced to go through the origin.
Fits for each calibration curve are indicated in the 3.16.

Figure 3.16: Standard deGFP calibration curve. The fluorescence calibration
curve for deGFP is used to convert RFU to µm.

PURE reactions and fluorescence measurements. PURE reactions were mixed by
following the protocol by PURExpress (E6800), adjusted for a 10 µL reaction, and
allowed to run in a 384-well plate (Nunc) at 37 °C. DNA at 5 nm was used, unless
otherwise stated, 0.8 units of RNAse inhibitor (NEB), and 10 µm of malachite-green
dye was added to each reaction. Fluorescence measurements were read in a Synergy
H1 plate reader (Biotek) at 3 min intervals using excitation/emission wavelengths
set at 610/650 nm (MGapt) at gain 150 and 485/515 nm(deGFP) at gain 61. All
samples were read in the same plate reader, and for deGFP relative fluorescence
units (RFUs) were converted to nm of protein using a purified eGFP standard by
following the protocol in paper [67]. Calibration curves for MGapt and deGFP are
depicted in Figure 3.15 and Figure 3.16.
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Computational modeling and simulations. BioCRNpyler outputs the model in
the standard biological modeling language called the Systems Biology Markup
Language (SBML) [42]. The exported SBML files can be simulated with any
compatible SBML simulator. We use the Bioscrape [43] Python package to simulate
the SBML models. The CRN model is converted to an ordinary differential equation
by Bioscrape and solved using Python odeint for desired initial conditions. To
convert the CRN to an ODE, each reaction rate is written using the mass-action
propensity [44]. We use Bioscrape because it supports sensitivity analysis and
Bayesian inference tools for SBML models and the model simulations. For each
SBML model, we run the local sensitivity analysis to obtain the sensitivity of the
measured species with all parameters and at all times. Then, we aim to identify the
most sensitive parameters for the model using the experimental data. We perform
the parameter identification using a Bayesian inference algorithm implemented in
Bioscrape with emcee Python package [45]. Given the experimental data, we obtain
a probability distribution for each identified parameter with Bayesian inference.
Model simulations with parameter values sampled from these posterior probability
distributions are then plotted against the experimental data to evaluate the quality
of the model predictions. These posterior probability distributions also quantify
the uncertainty in the data, which is an important advantage of Bayesian inference
methods.

All calculations and plotting were performed using the standard stack of Python
packages: NumPy [84], SciPy [85], Pandas [86], Matplotlib [87], Bokeh [88],
and Seaborn [89]. The run time for each simulation depends on the model. The
simulation time varies from less than a second to a couple of hours on a personal
computer running AMD Ryzen 7 4700U 2.0 GHz with 16GB of RAM. Running
the model simulations on a high-performance computing cluster can speed up the
simulation times and Bayesian inference routines by around 10x.
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3.A Appendix A
Initial transcription-only model parameters used in the transcription-only
model. The initial parameter values for the transcription model are given in Ta-
ble 3A.1. The initial chemical reaction rates of the transcription model were based
initially on the TX-TL model by Tuza et al. [76].

Table 3A.1: Initial transcription model parameters for PURE cell-free expression.

Parameter Description Value Unit
𝑘1 Binding of RNAP and GTP to the DNA 6.10 µm−2 s−1

Rate of formation of the RNAP bound GDP
𝑘2 and phosphate complex on the DNA from 2.95 s−1

RNAP bound GTP complex
𝑘3 Unbinding of GDP and Phosphate from the 7.82 s−1

RNAP and DNA complex
𝑘start Start of the initiation of the RNA transcript, 5.24 s−1

(RNA0) from the RNAP and DNA complex
Binding rate of NTP to the RNAP bound

𝑘NTPbound DNA, complex with initiated RNA 1.47 µm−1 s−1

transcript
𝑘NTPadd Rate of elongation of the transcript 23.59 s−1

𝑘NTPdis Unbinding rate of NMP and PPi from the 985.89 s−1

open complex
𝑘 term Termination rate 32.38 s−1
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Bayesian inference posterior distributions from the coarse tuning of the transcription-
only model.

Figure 3A.1: Initial coarse Bayesian inference posterior distributions. The initial
posterior distributions of parameters on all eight reaction rates. The corner plot
depicts the covariance of the eight parameters, with the contour showing the 75 %
probability region for the parameter values having limited information on accurate
parameter values.
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C h a p t e r 4

SEPARATION OF TRANSCRIPTION AND TRANSLATION

4.1 Introduction
The primary distinction between prokaryotic and eukaryotic cells is the absence
of compartmentalization, such as a distinct nucleus or other organelles enclosed in
internal membranes. As a result of these compartments, many new functions arose.
We focus on creating a membrane-bound organelle containing the cell’s genetic
information, the nucleus, an evolutionary milestone around 2.1 billion years ago as
supported by the fossil record [90]. Regardless of the events leading to the ancestral
eukaryotic cells acquiring a nucleus [91], transcription and translation were forever
separated.

The separation of transcription and translation in eukaryotic cells allowed for greater
control and regulation of gene expression through the development and use of post-
translational modifications (e.g., splicing) and at the transcription level. Governed
by natural selection, these finer gene expression controls must have provided them
with beneficial traits, improving their survival and reproduction rate. To understand
the evolution of the nucleus and its benefits, we studied the compartmentalization
of transcription from translation. Using the transcription and expanded translation
models introduced in Chapter 3, we have successfully developed an initial model of
a synthetic cell with a nucleus. By isolating the transcription model, we will explore
the benefits and limitations of separating transcription and translation measured by
the total protein production and changes in dynamics such as duration and production
rate.

Alongside simulating the synthesis of deGFP using synthetic nuclei, we have mod-
eled the expression of the HiBiT peptide. The HiBiT peptide was promising in the
initial experimental design proposals of the synthetic nucleus, given its short RNA
strand of only 87 base pairs, which yields a peptide consisting of 12 amino acids.
As a short peptide, HiBiT comprises a restricted set of amino acids. As illustrated
in Figure 4.1a, depicting the frequency of each amino acid, not all amino acids are
present within the peptide. Unlike deGFP, which requires the presence of all amino
acids for expression, the most frequent amino acids in deGFP are glycine, leucine,
lysine, aspartic acid, valine, threonine, and alanine as depicted in Figure 4.1b.
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a) HiBiT peptide

b) deGFP

Figure 4.1: Amino acid frequency for simulated protein. A graph depicting the
amount of each amino acid in the HiBiT peptide (a) and deGFP (b).

The HiBiT peptide is part of the Nluc system that binds to the Large BiT (LgBiT),
forming a complex. The completed enzyme consumes the substrate furimazine,
generating a bright luminescent signal detectable with a luminescent reader [92,
93]. Despite encountering challenges in implementing these experimental designs,
the numerical simulations still address broader questions regarding the benefits of a
synthetic nucleus.

4.2 Results and Discussion
Modeling of a synthetic cell with a nucleus. The synthetic cell with an artificial
nucleus is depicted in Figure 4.2 as two compartments. The “nucleus” (Figure 4.2b)
is a self-contained system focused solely on transcription. The “cytoplasm” (Fig-
ure 4.2c) functions as the synthetic cytoplasm, accepting the RNA generated by the
synthetic nucleus for protein synthesis. The “nucleus” and “cytoplasm” interact by
a selectively permeable membrane. The membrane and its permeability to RNA are
captured in the linker reaction illustrated in Figure 4.2.
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a) Model schematic

b) Transcription (TX) schematic c) Translation (TL) schematic

Figure 4.2: Modeling a synthetic nucleus: combining transcription and transla-
tion system models. (a) Model schematic of a transcription and translation system
joined by a membrane system that allows diffusion of mRNA. (b) The transcription
schematic and (c) the translation schematic, introduced in Chapter 3. The tran-
scription and translation systems are joined by a membrane system that allows the
diffusion of mRNA. Following peptide formation, additional folding and maturation
reactions are included for deGFP. Illustration of translation model (c) was adapted
from Matsuura et al. [46]. Created with BioRender.com.

The membrane only allows for the unidirectional translocation of RNA. Initially,
it combines the two models seamlessly, such that all the RNA produced in the
translation model is instantaneously available for the translation model through the
reaction in equation (3.10); mRNAn* 𝑘 linker−−−−→ mRNAn. However, the membrane
reactions can be modified to follow the diffusion of additional small molecules
such as NTPs. Following peptide formation, additional folding and maturation
reactions are included for deGFP. The depiction of the synthetic cell model with an
artificial nucleus serves as an abstraction of the synthetic nucleus for reference, as
the models do not currently incorporate explicit dependence on membrane surface
area or volume.

Impact of membrane permeability with shared resources. In our initial inves-
tigation into the consequences of engineering a synthetic nucleus, we established
a numerical experiment in which energy resources like GTP, CTP, UTP, and ATP

BioRender.com
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were shared between the transcription and translation models. In these models,
no distinction is made between ATP and GTP available for use by any part of the
model, reflecting a synthetic cell scenario where NTPs can freely pass through the
membrane. The impact on protein production with variable membrane permeabil-
ity was investigated and tested by decreasing the values of 𝑘 linker by orders of 10
from 1 s−1 to 0.0001 s−1. The 𝑘 linker parameter value of 1 s−1 is equivalent to a
non-compartmentalized system and will be distinguished by the color magenta. The
synthetic cell simulation with shared resources was run with two different constructs:
pT7-MGapt-UTR1-deGFP-tT7 and pT7-UTR1-HiBiT-tT7, at 5 nm of DNA shown
in Figure 4.3.

a Transcribed RNA
𝑘 linker =

Translocated RNA
𝑘 linker =

Expressed Protein
𝑘 linker =

𝑘 linker =b 𝑘 linker = 𝑘 linker =

Figure 4.3: Impact on protein expression in PURE model with shared resources
and varying RNA permeability. Simulation results of PURE-based cell-free pro-
tein expression of DNA constructs: (a) T7-MGapt-UTR1-deGFP-tT7 and (b) pT7-
UTR1-HiBiT-tT7 at 5 nm with varying RNA permeability represented by different
colors and dash type. The simulation results for each construct are divided into three
columns: (Left) the total quantity of RNA transcribed by the “nucleus” (transcribed
RNA), (Middle) the total quantity of RNA in the “cytoplasm” accessible to the
translation machinery (translocated RNA), and (Right) the total quantity of protein
produced (expressed protein).

The simulation results for each construct are split into three columns: the total
amount of RNA transcribed by the “nucleus” (transcribed RNA), the total amount
of RNA in the “cytoplasm” accessible to the translation machinery (translocated
RNA), and the total amount of protein produced (expressed protein). Starting
with the expression of deGFP, an observation emerged when comparing transcribed
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RNA in Figure 4.3a: the total transcribed RNA varies with different membrane
permeabilities. The observation that transcription increases with decreased RNA
translocation suggest that resource competition may limit transcription. Inhibiting
RNA translocation may allow for a greater allocation of energy to transcribing the
RNA strand. This energy trade-off does not exhibit a one-to-one relationship, as
depicted in Figure 4.3a. While protein yield decreases with reduced membrane
permeability across all tested parameter values of 𝑘 linker, supporting the conclusion
that severely hampering RNA permeability leads to a significant decline in protein
expression.

The results for the expression of the HiBiT peptide are shown in Figure 4.3b. The
HiBiT peptide is about 20× smaller than the deGFP protein. Consequently, our
models show that the total RNA transcribed and protein translated is higher than
that of deGFP in Figure 4.3a. However, we see that neither the production of RNA
nor protein increases by 20×. The disproportional increase of RNA and DNA is
likely due to the inefficient energy usage of the entire system.

a c

b d

Figure 4.4: Resource depletion in the PURE reaction without DNA or RNA.
Simulation results of PURE-based cell-free protein expression if run without DNA
or RNA. (a) Plots of the transcribed RNA (magenta solid line) and the translocated
RNA (grey dashed line) and (b) show the HiBiT peptide produced. c) Normalized
concentrations of RNA, ATP, ADP, AMP, CTP, GTP, GDP, CP, and UTP over the
simulation time. (d) Normalized concentrations of amino acids in the HiBiT peptide
over the simulation time alongside FD and the HiBiT peptide.
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For example, in Figure 4.4, when the DNA and RNA concentration was set to 0 nm
despite no RNA synthesis (Figure 4.4a) or protein production (Figure 4.4b), ATP
and GTP would continuously be used in auxiliary reactions (Figure 4.4c). As seen
in Figure 4.4d, the normalized concentrations of unbound amino acids are below 1,
indicating the charging of tRNAs without peptide formation. Additional auxiliary
reactions include complex formation with elongation, initiation, and release factors.
Figure 4.4 helps explain why the reaction’s lifespan will never exceed 2 h when
energy resources are shared.

a

b

Figure 4.5: The concentrations of NXPs and amino acids over time in the
combined transcription and translation model expressing the deGFP. (a) Nor-
malized concentrations of RNA, ADP, ATP, GDP, CP, CTP, UTP, AMP, and GMP
over the simulation time. (b) Normalized concentrations of amino acids over the
simulation time alongside FD and deGFP peptide and 𝑘 linker= 1 s−1.

Examining the heatmaps of the PURE simulation expressing deGFP in Figure 4.5,
we observe that RNA and deGFP production saturation occurs around the same
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time creatine phosphate (CP) and ADP are fully consumed. However, in Fig-
ure 4.6, when modeling the HiBiT peptide, the limiting resource appears to be
10-formyltetrahydrofolate (FD). FD is a formyl donor essential to producing the first
amino acid, synthesis-formylmethionine (fMet).

a

b

Figure 4.6: The concentrations of NXPs and amino acids over time in the
combined transcription and translation model expressing the HiBiT peptide.
(a) Normalized concentrations of RNA, ATP, ADP, AMP, CTP, GTP, GDP, CP, and
UTP over the simulation time. (b) Normalized concentrations of amino acids in the
HiBiT peptide over the simulation time and 𝑘 linker= 1 s−1.

Finally, in both constructed models, decreased membrane permeability decreases
total protein production. We observe decreasing transcribed RNA as membrane
permeability decreases only when expressing the HiBiT peptide, which contradicts
results from deGFP models. The conflicting observation suggests that transcription
may exhibit self-inhibitory behavior by depleting itself from ADP and GDP.
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Impact of membrane permeability with split resources. Specifically from Fig-
ure 4.3b, we also observe that unless RNA’s accessibility to the transcription ma-
chinery is severely restricted, the total protein yield remains unchanged. Given that
the ribosome concentration is fixed at 3 µm, any RNA expression beyond 3 µm is
redundant and results in an inefficient utilization of total energy. Therefore, the
transcription model’s NTPs can be constricted without protein production loss, in-
creasing the synthetic cell’s total efficiency. Realistically, the membrane was made
impermeable to NTP concentrations in the transcription model to constrict the con-
centrations of NTPs. As a result, the NTPs in the model were designated for the
transcription or the translation model, further functionally splitting the “nucleus”
and “cytoplasm” compartments.

Table 4.1: The allocation of energy resources of NTPs between the
“nucleus” and “cytoplasm.”

Nucleus
Species Concentration (µm)
ATPtx 3750 p
GTPtx 2500 p
CTPtx 1250 p
UTPtx 1250 p

Cytoplasm
Species Concentration (µm)
ATPtl 3750 - ATPtx

GTPtl 2500 - GTPtx

The NTP and its respective concentration associated with each compartment are
identified with the subscript ‘tx’ for the “nucleus” or ‘tx’ for the “cytoplasm.” The
variable p indicates the explicit portion allocated to the transcriptions model; all
NTPs are uniformly decreased by this factor. The combined amount of GTP and ATP
remains constant across both systems.

The “nucleus” comprises only the essential components necessary for RNA strand
synthesis: DNA, T7 RNAP, and NTPS. Meanwhile, the “cytoplasm” contains the
remaining 35 essential PURE proteins along with ATP, GTP, CP, FD, ribosomes,
amino acids, and tRNAs. To deepen our exploration and comprehension of en-
ergy usage in the model, alongside reducing membrane permeability to RNA, we
decreased the concentrations of NTPs in the “nucleus” compartment while main-
taining a constant total concentration within the synthetic cell. Therefore, except
for the initial NTP conditions, all other species remain unchanged from the original
model, as listed in Table 3.2. The initial concentrations of NTPs in the “nucleus”
were established by proportionally dividing the concentration of the NTP by a factor
of p, with the remainder allocated to the cytoplasm shown in Table 4.1. Three values
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of the factor p were tested: p––50 %, p––25 %, and p––10 % for the DNA constructs
expressing the HiBiT peptide or deGFP.

a Transcribed RNA
𝑘 linker =

p––50 %

Translocated RNA
𝑘 linker =

Expressed HiBiT
𝑘 linker =

b 𝑘 linker =

p––25 %

𝑘 linker = 𝑘 linker =

c 𝑘 linker =

p––10 %

𝑘 linker = 𝑘 linker =

Figure 4.7: Impact on the HiBiT peptide expression in PURE model with
shared resources and varying RNA permeability. Simulation results of PURE-
based cell-free protein expression of DNA constructs, T7-UTR1-HiBiT-tT7 at 5 nm
with varying RNA permeability (different colors and dash type) at different energy
allocation. The transcription energy was reduced by the factor p at (a) 50 %,
(b) 25 %, and (c) 10 % while maintaining the total energy across transcription and
translation constant.

The simulation results depicting the expression of RNA and protein production from
the pT7-UTR1-HiBiT-tT7 plasmid at 5 nm, with transcription further isolated from
the translation at different allocated NTP concentrations are illustrated in Figure 4.7.
As depicted in Figure 4.3b, when NTPs were shared resources, there was a decrease
in protein yield with decreasing membrane permeability. Conversely, upon isolating
transcription, we no longer observe diminishing transcribed RNA as the permeability
of RNA decreases. The total amount of NTP in the compartment determines the
maximum RNA transcribed, decreasing proportionally as the concentration of NTPs
decreases. Furthermore, while increasing GTP and ATP slightly affects the rate of
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HiBiT production, the maximum yield of the HiBiT peptide is unperturbed due to
the limitation of FD or the rate of consumption of GTP and ATP. The effect of the
limited ribosomes can be observed in the inflection point observed in Figure 4.7a
and Figure 4.7b most noticeably when 𝑘 linker is 0.001 s−1.

a Transcribed RNA
𝑘 linker =

𝑝=50 %

Translocated RNA
𝑘 linker =

Expressed deGFP
𝑘 linker =

b 𝑘 linker =

𝑝=25 %

𝑘 linker = 𝑘 linker =

c 𝑘 linker =

𝑝=10 %

𝑘 linker = 𝑘 linker =

Figure 4.8: Impact on deGFP expression in PURE model with shared resources
and varying RNA permeability. Simulation results of PURE-based cell-free pro-
tein expression of DNA constructs, T7-MGapt-UTR1-deGFP-tT7 at 5 nm with vary-
ing RNA permeability (different colors and dash type) at different energy allocation.
The total energy of the transcription and translation system was kept constant as the
transcription energy was reduced by the factor p at (a) 50 %, (b) 25 %, and (c) 10 %.

Running the numerical experiment with the larger pT7-MGapt-UTR1-deGFP-tT7
construct, as depicted in Figure 4.8, reveals both similarities and differences com-
pared to the expression of pT7-UTR1-HiBiT-tT7. Similar to the expression of the
HiBiT peptide, RNA transcription is independent of membrane permeability, while
deGFP yield decreases with reduced permeability and is limited by NTP concentra-
tions. However, the expression of pT7-MGapt-UTR1-deGFP-tT7 does not enter the
ribosome-saturated regime when the RNA concentration is greater than 3 µm. As a
result, an intriguing observation arises when comparing the production of deGFP
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in Figure 4.8a and Figure 4.8b. We observe a trade-off between RNA and energy
concentrations for deGFP, indicating that an increase in ATP and GTP can offset the
potential decrease in protein production due to reduced RNA availability.

a) ATP Expression of HiBiT peptide Expression of GFP

b) GTP

c) UTP

d) CTP

Figure 4.9: Depletion of NTP by transcription during the expression of the
HiBiT peptide and deGFP. The depletion of (a) ATP, (b) GTP, (c) CTP, and (d)
UTP in specified nucleus models with different allocations of energy between the
“nucleus” and “cytoplasm” compartments.
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Drawing from the findings presented in Figure 4.8 and Figure 4.7, we sought to com-
pare energy utilization across the various membrane models under different energy
allocations. To achieve this, we opted to quantify the energy consumed by transcrip-
tion, recognizing that an increase in RNA production does not necessarily correlate
with higher protein yields in either HiBiT peptide or deGFP expression. The en-
ergy expended on transcription was computed by calculating the difference between
the start and end concentration of each NTPtx in the NTP impermeable membrane
model. For the model with shared resources, the difference between the starting
and ending concentrations of UTPtx and CTPtx was calculated similarly. However,
for ATPtx and GTPtx, the total RNA produced was multiplied by the required ATP or
GTP to form the RNA strand. Although this method may underestimate the energy
used for transcription, it still provides a basis for comparing energy consumption
between the two processes. The results are illustrated in Figure 4.9.

In Figure 4.9, it is evident that whether simulating the expression of HiBiT pep-
tide or deGFP, the energy consumed by the transcription process is approximately
equivalent when the membrane is permeable, allowing shared NTPs, compared to
when energy is evenly allocated, and the membrane is impermeable to NTPs. Fur-
thermore, there is no notable difference in deGFP production when the system’s
energy is divided with 25 % allocated to the “nucleus” and 75 % to the “cytoplasm”
compartments, respectively (see Figure 4.8). This suggests that in Figure 4.9, the
difference in RNA produced in the membrane permeable model compared to the
membrane permeable nucleus model, with energy divided between transcription
and translation at 25 %and 75 % respectively, serves no apparent purpose and only
competes for translation resources.

Expanding on this insight, we held the energy constant in the transcription process
while adjusting the energy allocated to translation. In this simulation, we modeled
the expression of deGFP with ATP and GTP at 25 %, 50 %, and 90 % of the maxi-
mum ATP and GTP of 3.75 mm and 2.5 mm respectively. The results are shown in
Figure 4.10 with initial ATP and GTP values listed above each figure. The heatmap
of selected transcription species and translation species for the expression of deGFP
at the reduced translation energies are presented in Figure 4.11. Figure 4.10 and Fig-
ure 4.11 reveal that we can increase total protein production by increasing the initial
concentrations of ATP and GTP in translation without maximizing RNA production,
finding that at 90 % of maximum concentrations of ATP and GTP (Figure 4.10d and
Figure 4.11d), we achieve the higher deGFP production of 6.78 µm.
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a

𝑘 linker =
ATP= 0.9375 mm, GTP= 0.625 mmb

𝑘 linker =
ATP= 1.875 mm, GTP= 1.25 mm c ATP= 3.375 mm, GTP= 2.25 mm

𝑘 linker =

Figure 4.10: Effect of total energy for translation on the expression of deGFP.
Simulation results of PURE-based cell-free protein expression of DNA constructs,
T7-MGapt-UTR1-deGFP-tT7 at 5 nm with varying RNA permeability (different
colors and dash type) at different energy allocation. The total energy between
transcription and translation was not constant. While the transcription energy was
reduced by 25 % for all simulations and the translation energy was (a) 25 %, (b) 50 %,
and (c) 90 % of the original ATP and GTP concentrations of 3.75 mm and 2.5 mm,
respectively.

If maximizing protein production is not the goal of the design goal, Figure 4.10 and
Figure 4.11 also suggest that the lifespan of the reaction can be increased by reducing
ATP and GTP concentrations. Lifespan is an important characterization of cell-free
protein expression reaction, as it limits potential circuits or implementations of the
cell-free protein expression system. We observe that Figure 4.10a and Figure 4.11b
has the longest reaction lifespan, which can be increased further by tuning the
membrane permeability. Unfortunately, the trade-off with increased lifespan is
a reduction in protein yield. Translation efficiency continues to be affected by
extraneous reactions constraining available energy.

Regardless, from our model, we find that by segregating transcription and transla-
tion, we can increase energy efficiency to make proteins. With transcription and
translation isolated, we can design our synthetic cell to maximize the production of
the HiBiT peptide while increasing energy efficiency by including ATP at 375 µm,
GTP at 250 µm, UTP at 125 µm, and CTP at 125 µm in the “nucleus” compartment
and ATP at 1875 µm, GTP at 1250 µm in the “cytoplasm” compartment; reducing
overall energy by 40 %. Additionally, we observed in Figure 4.10b that by reducing
the total energy of the synthetic cell by 25 %, our protein yield only decreases by
approximately 11.5 % resulting in improved translation efficiency. These numerical
experiments support the idea that establishing and isolating a “nucleus” can enhance
translation efficiency and enable adjustable protein dynamics.
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a) Transcription species

b) Translation species at 25 % total energy

c) Translation species at 50 % total energy

d) Translation species at 90 % total energy

Figure 4.11: The concentrations of NXPs and amino acids over time in the
PURE model expressing the deGFP at different energies in the cytoplasm. (a)
Normalized concentrations of transcription species and selected translation species
in deGFP at translation energies reduced to (b) 50 %, (c) 25 %, and (d) 10 % of the
shared model and 𝑘 linker= 1 s−1.

Utilization of resources between transcription and translation. The capabil-
ity to decrease overall energy without sacrificing protein production in the HiBiT



71

simulations raises concerns regarding transcription’s potential self-inhibition and
inhibition of translation. Comparing our models regarding the ATP and GTP regen-
eration cycle with a “nucleus” possessing a membrane permeable to NTP or not, the
reason may be evident. As depicted in Figure 4.12, PURE-based cell-free protein
expression systems use the protein creatine kinase (CK) to catalyze creatine phos-
phate (CP) and ADP to produce creatine (Cr) and ATP. Nucleoside diphosphate
kinase (NDK) then generates GTP from GDP and ATP. Both chemical reactions
rely on the cycling between ADP ↔ ATP and GDP ↔ GTP, and consequently, the
transcription process becomes a sink for GTP and ATP. Assuming CTP and UTP
are not the limiting resources, in Figure 4.12a, we see that when transcription is
not isolated from translation, all the ATP utilized in RNA strand synthesis leads to
the production of pyrophosphate (PPi), as does most of the GTP. The thinner arrow
indicating GDP production from transcription is specific only to the polymerase
binding to the DNA and not to RNA strand elongation.

ADP

ATP

GTP

GDPCK NDK

TL

CP Cr

TX

PPi
a

ATP

GTP
GDP

TX

PPi

ADP

CK NDK

TL

CP Cr

GDP

GTP

ATP

b

“Nucleus” “Cytoplasm”
Figure 4.12: Schematic of energy regeneration system use in PURE. (a) Repre-
sents a synthetic cell where energy resources are shared or can freely defuse through
the membrane, while (b) illustrates models energy generation when the membrane
is impermeable to NTPs. Created with BioRender.com.

BioRender.com
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By implementing a membrane impermeable to NTPs, as depicted in Figure 4.12b,
the recycling of ATP and GTP forms a closed loop, which persists until the creatine
phosphate (CP) is consumed. Moreover, we can finely tune the RNA production
while considering the RNA translocation rate to best suit the desired expression
dynamics. Another method to achieve similar results would be to limit CTP and
UTP concentrations, which are not shown. Limiting CTP and UTP would not
neutralize transcription’s effect on itself or translation nor enable modulation protein
production as precisely as having a separate “nucleus” only permeable to RNA.

a Transcribed RNA
𝑘 linker =

NTP permeable

Translocated RNA
𝑘 linker =

Expressed Protein
𝑘 linker =

𝑘 linker =b

NTP impermeable

𝑘 linker = 𝑘 linker =

Figure 4.13: Effect of doubling creatine phosphate (CP) on the expression
of deGFP. Simulation results of deGFP expression when “nucleus” that is (a)
permeable or (b) impermeable to NTPs at different RNA translocating rates.

Expanding on the same premise, augmenting the quantity of creatine phosphate
(CP) alone does not lead to higher protein expression without creating an isolated
“nucleus” compartment. To underscore this, Figure 4.13 illustrates that doubling the
creatine phosphate content in both nucleus models yields equivalent protein outputs,
with the NTP-segregated model producing one-third of RNA. We observe that at
twice the creatine phosphate initial concentration when the nucleus is NTP perme-
able (Figure 4.13a), RNA production is predicted to continue past the simulated
time of 3 h, no longer NTP limited.

By generating heatmaps of the concentrations of selected species, as shown in
Figure 4.14, we can conclude that under these conditions, deGFP production is
limited by the translocation rate and the ribosome concentrations, and ultimately,
it is capped by the availability of the amino acid glycine. These observations are
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mirrored in the NTP impermeable "nucleus" model (Figure 4.13b), where the over-
translation of deGFP is slower owing to the RNA presence. Consequently, this leads
to an extended lifespan that is more perceptible at faster translocation rates.

a

b

Figure 4.14: Selected translation species concentrations of “nucleus” models
expressing deGFP at double the creatine phosphate (CP) concentration. Mem-
brane permeable to NTPs (a) and membrane impermeable to NTPs (b) at double
the original creatine phosphate (CP) concentration of 10 mm and 𝑘 linker= 1 s−1.

For completeness, we reduced creatine phosphate concentration by half; results are
plotted in Figure 4.15. Here, we see that the maximum transcribed RNA in the NTP
permeable membrane, Figure 4.15a, reduces by approximately 60 % and saturates
around 1 h. In Figure 4.15b, the transcribed RNA dynamics remain unchanged with
the NTP impermeable membrane.
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a Transcribed RNA
𝑘 linker =

NTP permeable

Translocated RNA
𝑘 linker =

Expressed Protein
𝑘 linker =

NTP impermeable

b 𝑘 linker = 𝑘 linker = 𝑘 linker =

Figure 4.15: Effect of halving creatine phosphate on the expression of deGFP.
Simulation results of deGFP expression when “nucleus” that is (a) permeable or (b)
impermeable to NTPs at different RNA translocating rates.

Furthermore, the extended lifespan observed with doubled creatine phosphate con-
centration is no longer present, although the translation rate with the permeable
membrane remains slightly faster. We can next investigate the limiting factor of
deGFP production by generating heatmaps of the concentrations of selected species,
as shown in Figure 4.16. We can identify creatine phosphate (CP) as the limiting
factor in deGFP production, leading to the cessation of energy recycling. This is
observed as deGFP production saturates as creatine phosphate is fully depleted in
both membrane conditions.

We observe that the increased RNA production results in an increased depletion
of the energy carriers ATP and GTP, which are necessary for the energy recycling
pathway utilized in PURE. Comparing the effective removal of all NTP available
for translation is demonstrated in Figure 4.17 under specified nucleus model con-
ditions, considering NTP permeability or impermeability at specific initial creatine
phosphate concentrations. Comparing the different nucleus models, it is clear that
more NTPs are permanently consumed when the “nucleus” membrane is permeable
to NTPs. Due to other limiting factors, we observe that granting unrestricted access
to NTPs for transcription may accelerate RNA production, minimizing deGFP satu-
ration time. This expedited process comes at an energy trade-off that is not balanced
by the total protein expression.
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a

b

Figure 4.16: Selected translation species concentrations of “nucleus” models
expressing deGFP at various creatine phosphate concentrations. Membrane
permeable to NTPs (a) and membrane impermeable to NTPs (b) at half the original
creatine phosphate concentration of 10 mm and 𝑘 linker= 1 s−1.

Finally, as demonstrated previously, PURE reactions often yield incomplete transla-
tion. Utilizing the model and previous simulations, we can calculate the percentage
of completed peptides as another metric to evaluate any advantages of incorporating
a synthetic nucleus. This metric was calculated by dividing the concentrations of
completed translation by the sum of incomplete peptides. The incomplete peptides
can include those that terminated early, but in our model, they stall due to a lack of
resources.
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a

b

c

d

Figure 4.17: Depletion of NTP by transcription. The depletion of (a) ATP, (b)
GTP, (c) CTP, and (d) UTP in specified nucleus models.
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Figure 4.18: The percentage of complete deGFP translation. The percentage
is calculated by taking the matured deGFP protein and deciding over the sum of
remaining incomplete peptides at the end of the simulation in specified nucleus
models.

In Figure 4.18, we see that across all model conditions, the fully segregated “nu-
cleus” was more effective at producing fully translated protein when compared to
its counterpart at the same creatine phosphate concentration. Furthermore, we
more clearly see that increasing initial creatine phosphate concentration only yields
more fully translated proteins when translocation rates are above 0.1 s−1 otherwise,
translation must compete with the other reactions for resources.

4.3 Conclusion
In this chapter, we have leveraged models from Chapter 3 to explore the advantages
and limitations of separating transcription and translation. We examined two sepa-
ration conditions dictated by whether or not the membrane separating transcription
from translation is permeable to NTPs. Additionally, we explored the effects of
RNA translocation rates on RNA and protein production in both separation condi-
tions. We further investigated how the incorporation of “nucleus” would impact the
expression of two DNA constructs: pT7-MGapt-UTR1-deGFP-tT7 and pT7-UTR1-
HiBiT-tT7, both at 5 nm. All models and results from the numerical experiments
presented in this chapter are documented and accessible on GitHub [83].
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These numerical experiments have uncovered evidence supporting an energy trade-
off between transcription and translation. We observed that when the membrane is
permeable to NTPs, inhibiting RNA translocation may allow for a greater allocation
of energy to transcription, albeit up to a certain threshold. We noted a reduction in
transcribed RNA for smaller transcripts as membrane permeability decreased, which
may result from transcription self-inhibition. These models show that transcription
may compete for energy resources against translation and itself. However, the
internal resources allocation and adverse effects of transcription on RNA production
and translation can be mitigated by limiting the initial concentration of CTP and
UTP or negated by implementing a membrane impermeable to NTPs. Although
a nuclear pore exclusively permeable to RNA seems conceptually implausible, in
the current context of synthetic cell development with an artificial nucleus, this
represents our current capability, given the absence of nuclear pore proteins or the
formation of channels facilitating passive NTP transport.

Our results support that the complete separation of transcription and translation
would increase protein production due to our energy generation system, which de-
pends on limited creatine phosphate. The numerical experiments show that increas-
ing creatine phosphate concentration does not constantly produce higher protein
expression when shared or segregated resources. However, we can exclusively
increase protein production in the NTP impermeable membrane condition by in-
creasing creatine phosphate concentrations or energy allocation to the “cytoplasm”
resulting in a more energy-efficient cell. By explicitly isolating transcription, we can
also improve the longevity of the energy carriers GTP and ATP required to maximize
protein production and/or the length of the lifespan of the reaction. Ultimately, we
have found that adjusting one condition to optimize specific parameters often comes
at a cost to another aspect of the system. The cost-benefit analysis ultimately lies in
the hands of the cell engineers and depends on the system’s intended purpose.
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C h a p t e r 5

CONCLUSIONS & FUTURE WORK

5.1 Conclusions
Cell-free expression systems provide a method for rapid DNA circuit prototyping
and functional protein synthesis. While crude extracts remain a black box with
many components carrying out unknown reactions, the PURE system contains only
the required transcription and translation components for protein production. The-
oretically, all proteins and small molecules are at known concentrations, allowing
detailed modeling for reliable computational predictions. We utilized our knowl-
edge and experience with cell-free systems to shed light on the transcription and
translation processes and build a chemical reaction network to capture protein ex-
pression in PURE. Through our models, we were driven to explain phenomena not
yet described in the literature.

In this thesis, we have demonstrated that protein production is not always directly
correlated with RNA production due to the competition for energy between tran-
scription and translation. Our models predict that transcription competes with
translation for resources, depleting the total energy carriers needed for energy gen-
eration. However, faster RNA production can lead to higher protein expression,
as translation also competes for resources against auxiliary reactions not directly
leading to protein production. Although our models are not all-encompassing,
they represent a step toward developing a synthetic nucleus, showing that we can
build and leverage models to understand the relationship between transcription and
translation in a cell-free protein expression system.

5.2 Potential PURE Model Improvements
Our model and conclusion position us on the verge of new insights, ready to be ex-
plored. Unfortunately, without the feasibility of easily adjusting the concentration of
any energy carriers in the commercial PURE or chemically separating transcription
from translation, we are prevented from physically engineering a synthetic nucleus.
Our models and findings underscore the need for dependable, reproducible, and
customizable PURE-based cell-free protein reaction systems. As such, systems are
crucial for advancing our understanding and enabling experimental setups so our
models can evolve and our comprehension of cellular processes can expand.
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To continue improving and advancing our understanding of cell-free systems and to
approach the complexity of a cellular nucleus, we propose the following:

1. Characterizing the effects of crowding, small molecules, proteins, tempera-
ture, and localization on transcription and translation.

2. Transitioning to the use of non-commercial PURE systems. Homemade
PURE or OnePot grants the flexibility to modulate protein concentration and
salt levels systematically, facilitating the exploration of various experimental
conditions. Furthermore, the accurate compositions of the system can be
measured and reported.

3. Incorporating of DNA replication. One of the many attributes of BioCRNpyler
is the ease of creating chemical reaction networks that can be combined.
Slowly, we can build and compile the model cellular mechanism, taking steps
towards a virtual synthetic cell that can better inform us how to engineer one
physically.

4. Creation of a PURE-based cell-free protein expression system data reposi-
tory. Running all possible permutations of PURE would be time-consuming
and costly; with so many groups studying cell-free protein expression sys-
tems to build a cell, creating a repository will allow for better modeling and
understanding.

5.3 Unactualized Experiments
In our pursuit of exploring the synthetic nucleus’s potential benefits, we initially
focused on creating a synthetic nucleus. However, physically isolating transcription
from translation while allowing RNA translocation proved more challenging than
anticipated. Initially, we utilized E. coli Rosetta2 lysate-based cell-free protein ex-
pression systems and encountered minor hurdles, such as isolating transcription and
translation reactions. These were addressed by employing DNA constructs driven
by a T7 promoter. The E. coli Rosetta2 lysate-based cell-free protein expressions
lacked native T7 RNAP, enabling us to use a commercial or in-house transcription
system for transcription-only reactions and generate purified RNA for translation-
only reactions. The translation-only reaction could be achieved by omitting DNA
and adding purified T7 RNAP, resulting in separate and controllable transcription
and translation reactions.
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The major obstacle arose when attempting to compartmentalize the transcription and
the translation reaction. Trying to restrict the diffusion to RNA only or RNA and
other small molecules, as in our synthetic nucleus models in Chapter 4, between the
“nucleus” and the “cytoplasm” compartment was not straightforward. Constrained
by our capability to create vesicles and transport RNA between the compartments,
we investigated two experimental setups to isolate transcription from translation:
temporal separation using an Echo 525 Acoustic Liquid Handler to add the tran-
scription to the translation reactions sequentially and spatial separation using dialysis
cassettes of different sizes in a 24-well plate.

Temporal separation using an Echo 525 Acoustic Liquid Handler
Since the chemical separation of transcription and translation was not feasible, we
opted for physical separation. We achieved this by running the transcription reac-
tion initially and then adding the products to the crude cell lysate as our translation
reaction. In this experiment, illustrated in Figure 5.1, we ran an in vitro transcrip-
tion reaction (IVTx) using a transcription mix made in-house. The transcription
reaction was initiated at different times(t ––−5 h, −4 h, −2 h, and 0 h) so that t=0
would correspond to inoculation of the translation reaction with the transcription
reaction products. At each respective start times two 50 µL transcription reactions
were freshly mixed, one containing 5 nm of DNA expressing deGFP and incubated
at 37 °C.

IVTx  Start: 
S5

-5 hrs -4 hrs

IVTx  Start: 
S4

IVTx  Start: 
S2

-2 hrs

IVTx  Start: 
S0

0 hrs

S5+ S4+ S2+
S2-S4-S5-

S0-

S5+ S4+ S2+

S5+ S4+ S2+

 IVTx w/DNA

S5- S2- S0-S4-

S5- S2- S0-S4-

+ DNA     

 IVTx

Add respective IVTx rxn to
lysate based TX-TL

CFPS Reaction:
● Lysate- based 

CFPS
● X μL IVTx rxn

○ 2.0 μL
○ 1.0 μL
○ 0.5 μL
○ 0.25 μL

● NFW up to 10 μL

Incubate 
at 37°C

Figure 5.1: Experimental schematic of deGFP expression with temporal sep-
aration of transcription and translation. Overall experiment setup where the
transcription reaction was run initially in separate tubes with and without DNA
expressing deGFP. After variable incubation times at 37 °C, DNA was added to
experimental samples that did not initially contain DNA. Next, the transcription
reaction was added to lysate-based TX-TL at various volumes. The expression of
deGFP was measured in a BioTek over 12 h at 29 °C. Created with BioRender.com.
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Following incubation, at t –– 0 h, 5 nm of DNA expressing deGFP was added to the
samples that did not already contain DNA. Next, using an Echo 525 Acoustic Liquid
Handler, the entirety of the transcription was added to 7.5 µL lysate-based cell-
free protein expression system in volumes of 0.25 µL, 0.5 µL, 1.0 µL,and 2.0 µL.
Nucleus-free water (NFW) was then added to bring the total reaction volume
to 10 µL. The expression of deGFP was measured using the BioTek at 29 °C,
485/515 nm (ex/em), and gain of 61 in triplicates. Figure 5.2 depicts our prediction
and the final results. We predicted that in the control samples (see Figure 5.2a),
where the transcription reaction was incubated without DNA, the total deGFP pro-
duced would remain unaffected regardless of the incubation time, or the amount
of the transcription reaction added. However, in the samples incubated with DNA
(see Figure 5.2b), we anticipated that longer incubation times would yield higher
RNA concentrations, leading to increased protein production. Similarly, we pre-
dicted that adding larger volumes of the transcription reaction would enhance protein
production.

Predicted trendsExperimental overview

S5+ S4+ S2+

S5+ S4+ S2+

 IVTx w/DNA

deGFP
IVTx volume added:

as IVTx incubation time increases

deGFP

as IVTx incubation volume increases

0.25 μL0.5 μL1.0 μL2.0 μL

deGFP

deGFP

deGFP

IVTx volume added:

as IVTx incubation time increases

as IVTx incubation volume increases

0.25 μL0.5 μL1.0 μL2.0 μL
S5- S2- S0-S4-

S5- S2- S0-S4-

+ DNA     

 IVTx
Experimental Results

deGFP expression with pre-incubated IVTx

deGFP expression with pre-transcribed IVTx

a

b

Figure 5.2: Prediction and results of deGFP expression with temporal sepa-
ration of transcription and translation. Cartoon of the experimental conditions
tested, alongside the predicted trends and results for (a) control samples, where the
transcription reaction was incubated without DNA, and (b) test samples, where the
transcription reaction was incubated with DNA. The deGFP concentration was nor-
malized to the effective DNA (DNAeff) in each well, and the results for incubation
time of t –– 0 h are repeated in (a) and (b). Created with BioRender.com.

Due to the varying amounts of DNA added to each test sample, the deGFP concen-
tration was normalized to the effective DNA (DNAeff) in each well. In the control
samples, Figure 5.2a shows that there was an insignificant difference between all
controls, with an average ratio of deGFP concentration (µm) to effective DNA (nm)

BioRender.com
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of 9.355 µm nm−1 and a standard deviation of 0.48 µm nm−1. Unexpectedly, the
experimental samples in Figure 5.2b, contradict our prediction, showing that as
incubation time increases, the ratio of deGFP concentration (µm) to effective DNA
(nm) decreases and is unaffected by the volume of the transcription reaction added.
However, the results from the control samples show that incubating the transcription
mix alone was insufficient to affect deGFP expression. Therefore, the reduction in
deGFP production suggests that transcription products may negatively affect transla-
tion. Waste’s inhibition on translation has been previously reported in literature [71]
but primarily focuses on metabolic trade-offs in cell-lysate cell-free protein syn-
thesis systems [51, 71, 94] and not explicitly a trade-off between transcription and
translation due to waste produced from transcription. The results suggested the
possibility of inhibition due to waste accumulation from transcription, underscoring
the potential advantages of the nucleus.

Nonetheless, an experimental setup that functionally isolates transcription from
translation is necessary to investigate further the effects of the trade-off between
transcription and translation. The temporal separation of transcription and transla-
tion is insufficient because DNA and T7 RNAP remain present in the final transla-
tion reaction. Distinguishing protein translated from previously transcribed RNA
or directly from the DNA becomes impossible. The DNA and T7 RNAP must be
contained away from the lysate-based cell-free protein synthesis system to guarantee
that protein production solely stems from RNA.

Spatial separation using dialysis cassettes
To ensure translation exclusively relied on RNA produced in the transcription re-
action rather than the DNA present and to prevent simultaneous transcription and
translation, we transitioned to using dialysis cassettes as the "nucleus" in our syn-
thetic nucleus experiments. The dialysis cassettes (0.5 µL Slide-A-Lyzer®TM MINI
Dialysis Devices) from Thermo Scientific®TM were purchased in various sizes:
3.5K MWCO, 10K MWCO, 7K MWCO, and 20K MWCO and placed in a 24-well
plate. Each dialysis cassette’s top, just above the edge of the cassette, was trimmed
using a razor. Subsequently, the cassettes were inserted into a 3D-printed holder,
preventing the bottom from touching the plate’s bottom depicted in Figure 5.3a.

Before inserting the dialysis cassette into the well, we added 300 µL of the translation
reaction to the bottom of the 24-well plate. This experiment used crude extract (TX-
TL) externally; due to the volume required to cover the bottom of the well, using any
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PURE system would not have been financially feasible. Then 50 µL of the in vitro
transcription reaction, containing T7 RNAP, NTPs, and salts, was added inside the
dialysis cassettes along with DNA expressing the HiBiT and placed into the well.
The HiBiT peptide, as previously mentioned, is a part of the Promega system [93].
In our setup, illustrated in Figure 5.3b, it was postulated that the DNA-HiBiT would
produce mRNA-HiBiT and diffuse through the dialysis membrane at different rates.
Upon reaching the other side, mRNA-HiBiT would be translated into a peptide that
binds to an LgBiT protein, forming an enzyme. This enzyme would catalyze the
supplied substrate, leading to luminescence detected by the BioTek reader, enabling
measurement of total protein expression in the separated system.

Translation: Lysate-based CFPS, 
LgBiT, and furimazine

(300 μL)

Transcription:
T7 RNAP, 

HiBiT DNA
(50 μL)

a

5' - - - 3'Transcription

5' - - - 3'
Diffusion through membrane

Translation

+

Inside Dialysis Cassette

Dialysis Membrane

HiBiT
+ LgBiT Nluc=

LgBiT- HiBiT

Furimazine
Nluc

In-vitro 
Transcription
RNAP + DNA

In-vitro translation/TX-TL
LgBiT, Furimazine

Outside Dialysis Cassette

+            +
Furimamide

Light

b

Figure 5.3: Illustration of the experiment separating transcription from trans-
lation using the Nano-Glo® HiBiT system. (a) An illustration depicting the sus-
pended dialysis cassette in a 24-well plate, along with the corresponding compart-
ments and their contents. (b) Cartoon of the transcription, translation, and enzymatic
process of the HiBiT system. The transcription reaction is added to the inner com-
partment, and the translation mix is added to the outer compartment. The inner
compartment transcribes DNA to mRNA. Then, RNA diffuses through the dialysis
membrane pores and is translated into a peptide. The HiBiT peptide binds to the
LgBiT protein in the outer compartment to complete an enzyme that consumes a
substrate, creating luminescence. Created with BioRender.com.

We aimed to investigate the impact of dialysis size on RNA transport by evaluating
protein expression dynamics and total protein yield through luminescence reading.
Notably, the molecular weight of plasmid DNA and ribosomes is at least 10 3

greater than any dialysis cassettes used. Unfortunately, after multiple attempts, we
found that achieving reproducible results was challenging: the bleed-through of
luminescence to neighboring wells limited the number of replicates and conditions
that could be run on one experimental run. Additionally, luminescence dynamics
made quantifying total protein production arduous due to the multiple conditions
needing calibration.

BioRender.com
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Looking into alternative systems, we moved to a split-GFP system (GFP1-10 and
GFP11) [95]. Similar to the HiBiT system, the smaller subunit, GFP11, would be
transcribed inside the cassette, next the mRNA-GFP11 would diffuse outside the
cassette and be translated. The GFP11 peptide would bind with GFP1-10, purified
separately, to form a completed GFP protein. The split-GFP system provides a
stable and one-to-one protein qualification and removes any unknown components
that come from using a commercial kit. However promising the split-GFP system
appeared, we found that the purification of the GFP1-10 protein was not reliably
reproducible due to the formation of inclusion bodies during the protein purification
process. We also concluded that relying on crude extract would not allow the
complete separation of transcription and translation. However, shifting to a fully
in vitro commercial system would not be feasible due to the required volume and
associated cost.

5.4 The Future of a Synthetic Nucleus
To continue our goals of constructing a cell and deepening our comprehension of
cellular processes, we must prioritize the development of reliable, reproducible, and
accessible systems. During the initial years of synthetic cell research, I was struck
by the challenges I encountered in vesicle formation or the fickleness of lysate-
based cell-free protein expression. While it is possible to separate transcription
components from translation components using One-Pot PURE or a combination
of T7-driven DNA constructs and E. coli Rosetta2 crude lysate, as we have demon-
strated, a robust experimental system is still needed. One promising tool would be
the implementation and expanded use of cell-penetrating peptides [23] to control-
lable translocate RNA from the “nucleus” compartment to the “cytoplasm.” The
utilization of cell-penetrating peptides still relies on consistent vesicle formation
within the broader synthetic cell community, particularly the creation of nested
vesicles. Demonstrating that constructing a synthetic cell, and even more so, a more
complex synthetic cell with eukaryotic traits, necessitates building upon a strong
foundation of constructing liposomes, cell-free protein synthesis systems, and tools
for studying RNA and protein production. These foundational requirements must
be fulfilled without prolonged troubleshooting for synthetic cells to realize their full
potential. This approach should be universal and foster collaboration; otherwise,
we only inhibit our goals.
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