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Abstract 
 

An investigation of combustion instability in solid rocket motors was conducted using 

perturbation techniques, with particular emphasis placed upon understanding the fluid dynamics of the 

chamber environment.  It was shown that although the phenomena generally manifests itself as oscillations 

of pressure, with the frequencies measured in tests well predicted by classical acoustic formulas, important 

aspects of the behavior cannot be explained without due recognition of the two basic processes of fluid 

dynamics—i.e., the compressing/expanding process and the shearing process. 

Thus, a new framework for studying these instabilities that accommodated both linear and 

nonlinear behavior was developed.  The approach differed from previous work in its use of linear stability 

eigenfunctions—that satisfy the no-slip boundary condition—as a basis for the expansion, with adjoints 

used to effect a spatial averaging.  Among other things, this allowed for the self-consistent inclusion of 

vortical flow effects.    

With respect to the linear behavior, two dominant vorticity-related pathways were shown to exist: 

one because of sound creating vorticity, and the other, because of that vorticity, in turn, creating more 

sound.  These effects cancel however and thus to leading order no net contribution exists.  Though this 

finding had been reported in an earlier study, restrictive assumptions were introduced.  In contrast, we 

establish that the result is independent of grain geometry and holds for any fluid motion, turbulent or 

otherwise 

 A nonlinear coupling to the flame zone owing to vorticity creation was also identified.  The term 

was left unevaluated however, since no satisfactory model of the flame response presently exists.  To help 

circumvent this difficulty, i.e., that much remains to be done on modeling nonlinear processes, the 

amplitude equations were studied in a general way using perturbation techniques based on ideas of 

resonance.  The advantage of such an approach is that the nonlinear coefficients need not be specified a 
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priori—only conditions on the linear behavior of the system need to be placed.  Closed form results were 

derived for the limiting periodic behavior when the first mode is unstable and compared against results 

from numerical integration.  Striking agreement was shown. 
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1. INTRODUCTION
 
1.1 Brief Overview  
 

During the development of solid rocket motors in the late 1930s and early 1940s, test firings were 

often marked by erratic behavior.  This included unexpected shifts in the mean pressure, structural 

vibrations and visible changes in the exhaust plume.  That these anomalies were somehow the result of 

acoustic waves in the gaseous products of combustion was hypothesized (e.g., Boys and Schofield 1943; 

Grad 1949) and later established experimentally (e.g., Swanson 1951; Smith and Sprenger 1953) using 

high-bandwidth pressure transducers.  In lieu of a smooth time evolution of chamber pressure, for which 

the systems were designed, large amplitude pressure oscillations with frequencies close to the natural 

acoustic resonances of the chamber were observed.  Much of the research in the field since has focused on 

understanding the underlying mechanisms of, and seeking ways to mitigate the effects of, these so-called 

combustion instabilities.  While significant progress has been made, the continued manifestation of these 

generally unwanted† pressure oscillations—in all types of combustors, from afterburners and ramjets to gas 

turbines—suggests that much work remains.   
 
1.2 Characteristics and Mechanisms  
 

Combustion instability, despite the terminology, has little to do with unstable combustion‡.  

Instead, it is the result of coupling between chemical processes in the flame zone and unsteady flow 

processes within the combustion chamber.  More specifically, from the point of view of the observer, 

combustion instability is an unsteady organized fluid motion—with a strong acoustic component—that 

ultimately is driven by the chemical energy released in some part of the system.  Although the precise 

mechanisms may differ, a fundamental characteristic of this flow transient is that it feeds back and modifies 

the combustion, giving rise to conditions that are sometimes favorable for this self-excited disturbance (i.e., 

a disturbance that grows without benefit of any external influence) to reach amplitudes of finite value. 

To help illustrate how this can occur, suppose for example that the rate of propellant conversion 

within a solid rocket motor increases because of a fluctuation in pressure or temperature, or, enhanced heat 

transfer back to the propellant surface owing to turbulent mixing.  If the resulting perturbations in mass 

 
† In the case of pulse combustors, oscillations are desirable since they lead to enhanced rates of heat 
transfer and/or evaporation (Margolis 1993). 
 
‡ Even though combustion processes may be intrinsically unstable this is not the issue, with rare exception, 
in practical applications. 
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flow and/or heat release are in phase with the initial disturbance, the disturbance grows, and the cycle 

begins again. 

With slight modification, this describes the behavior of a broad class of combustors, for 

combustion is always sensitive to the interplay between chemical kinetics and fluid mechanics.  Thus, it is 

necessary to not only understand the chemical processes from which the energy for driving instabilities is 

ultimately derived, but also the flow processes that determine the environment within which this energy is 

released.  Our focus here is only on the latter. 
 
1.3 Current Challenges in Understanding 
 

Owing to harsh conditions, detailed measurements of the unsteady flow field within solid rocket 

motors do not exist.  What is known is instead based largely on recordings from typically only a few 

pressure transducers as well as externally mounted accelerometers and strain gauges.  Such data indicate 

that frequencies observed during instability are remarkably close to the classical acoustic resonances of the 

chamber.   

That acoustic resonances should be excited is not surprising since nature follows the path of least 

action.  As for why classical formulas accurately predict the values observed—the reason is that influences 

other than the shape and size of the combustor are of higher order in the linear eigenvalue problem that 

defines these resonances.  This is true, for example, of interactions with the mean flow since the Mach 

number that characterizes this motion is generally small.   

Thus, comparison of observed frequencies with those predicted from classical acoustics is not a 

useful test for any theory.  Nonetheless, this agreement has led to the view that to good approximation an 

irrotational description of the unsteady motion is sufficient to capture the controlling mechanisms.  While 

there is no denying the allure of a simple model, one cannot oversimplify the description.   

To consider combustion instabilities solely in terms of perturbations or small departures from 

classical acoustics overlooks the potential impact of other unsteady flow processes.  Although the central 

role of pressure is not at question here, it is essential to recognize that two basic processes of fluid 

dynamics exist—i.e., the compressing/expanding process and the shearing process (cf. Wu et al. 1996).  

Measurements of pressure are a good indicator of the former, but fail to reveal the notable features and 

importance of the latter.  

To shed some light on this issue, consider the Stokes-Helmholtz decomposition, which—owing to 

its kinematic origins—always allows the velocity field to be split into longitudinal (i.e., irrotational) and 

transverse (i.e., vortical) waves.  These waves kinematically represent the two basic aforementioned 
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processes of fluid dynamics, and while they may evolve independently within the interior of the domain, 

more often than not, they are coupled on the boundary.    

For example, the alternate compressions and rarefactions of an acoustic wave do not satisfy the 

no-slip condition; vorticity must therefore be created such that the transverse velocity induced cancels the 

longitudinal slip on the boundary.  Thus, while it may be true that acoustic waves follow their own simple 

scaling laws, at least in terms of their frequencies, they also give rise to vortical motions. 

The validity of neglecting this is certainly open to question, especially within a solid rocket motor, 

because in such an environment the burning process is localized within a thin zone—on the order of 

millimeters—near the propellant surface.  In other words, the irrotational description breaks down 

precisely where the greatest accuracy in modeling the unsteady flow is needed. 

In fact, it has long been realized that something is missing in our understanding of the flow effects 

responsible for the observed combustion response of propellants.  Much experimental data confirms that 

important differences exist when the incidence of the excited acoustic wave is parallel, rather than 

perpendicular to, the burning surface; only in the first instance must unsteady vorticity be created. 

Such changes in behavior were reported, for example, by Brownlee (1959), who studied two 

different motor configurations, both of which were subject to combustion instability.  For acoustic waves of 

perpendicular incidence, no effect on the burning rate was observed, even though amplitudes as high as 

10% of the chamber pressure were recorded.  In contrast, this was not the case for waves of parallel 

incidence, where much smaller amplitudes were shown to strongly affect the burning rate.  To what might 

these differences be due?  The picture has gradually emerged over the years that a variety of unexplained 

flow phenomena might find their origin in vortical and turbulent flow processes (cf. Price 1992).   

Analytical work in this regard has been carried out by Flandro (1995 a, b) who sought a more 

complete and realistic model of the unsteady motions within cylindrical combustion chambers.  

Superimposing a small amplitude, purely axial, acoustic disturbance on a description of the mean flow 

derived earlier by Culick (1966), a solution was sought for the neglected half of the problem.  Shown to 

exist, were waves of vorticity, created on the boundary owing to a kinematic coupling with the acoustic 

field, and convected deep into the interior of the domain by the incoming flow.   

The impact on the combustion processes of such transverse motions becoming unstable 

themselves would likely be significant (cf. Beddini 1998; Lee and Beddini 2000), with effects including—

but not limited to—enhanced heat transfer rate back to the propellant surface owing to increased mixing, 

which as indicated before (e.g., Brownlee 1959), would augment the burning rate.  Insofar as combustion 
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responsiveness is concerned then, acoustically generated vorticity could be the ideal Trojan horse.  For in 

the presence of fluid injection, what better way for turbulence to penetrate regions close to the flame zone, 

than for a turbulent precursor to already exist.  

Thus, to understand the environment to which the propellant must respond, the view that motions 

within the chamber are but small departures from classical acoustics must itself be departed from.  In other 

words, in studying the dynamics of the combustor, it is essential that the interactions between chemical 

kinetics and the two basic fluid processes—i.e., the compressing/expanding process and the shearing 

process—are recognized and assessed.   
 
1.4 Objectives and Thesis Outline 
 

As the unsteady flow in a combustion chamber is governed by a system of nonlinear partial 

differential equations, which is difficult to study mathematically as well as computationally expensive to 

simulate, a useful strategy is to convert this original description of the dynamics into a system of ordinary 

differential equations†.  Typically, this is accomplished by expanding the flow variables in a set of basis 

functions and then spatial averaging over the domain. 

Culick (1976) adopted such a strategy to develop a general framework for studying combustion 

instabilities that accommodated both linear and nonlinear processes.  In choosing a basis, direct advantage 

was taken of the observational result that pressure oscillations during instability closely resemble the 

classical acoustic modes of the chamber, at least in the sense that frequencies measured in tests agree well 

 
† Even as the problems faced suggest perturbation techniques, numerical methods offer another way of 
proceeding.   Formulations based on modal expansion and spatial averaging are useful when the behavior 
of disturbances—superimposed on a given, presumed known, mean flow—is sought.  To more completely 
account for all fluid dynamic and chemical processes, as well as their interactions, numerical integration of 
the complete conservation equations is typically needed.  While many challenges remain in this regard, 
substantial progress has been made over the past five years.  The two-dimensional LES simulations of the 
internal motor flowfield recently carried out by Apte and Yang (2001, 2002), which include computation of 
the burning propellant, are a notable example. 

Despite the allure of a numerical approach however, formulations such as those based on a spatial 
averaging procedure will likely continue to occupy a central position.  Not only do these types of analyses 
produce relatively inexpensive results, they also yield valuable insight into some of the underlying physical 
mechanisms responsible for behavior that is observed to be common among different systems.  In contrast, 
numerical simulations provide information essentially on a case-to-case basis.  Generalizing these findings 
to establish rules of thumb is not easy owing to the nonlinearity of the processes involved.  This drawback 
is a matter of concern, especially from a controls standpoint where simple models that capture much of the 
physics are wanted as a starting point.  
  It follows that the best line of attack would involve using both approaches in parallel, since each 
has its own virtues. 
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with predictions based on classical formulas.  Thus, it was reasonable to use these modes as a basis for 

expanding the compressing/expanding half of the unsteady flow field. 

While application of the resulting framework has been successful over the years in helping 

understand various aspects of observed behavior (cf. Culick 2000 for the most recent review), difficulties 

arise because either not all relevant processes are accounted for, or, more often, information is unavailable 

to model with reasonable accuracy their influence.  For example, most earlier efforts assumed the unsteady 

motions were irrotational in the first approximation; thus, a number of important effects owing to coupling 

with vortical flow processes were not identified.  Flandro (1995 a, b) first recognized and convincingly 

established this to be true for the linear problem by emphasizing the need to pay close attention to the no-

slip boundary condition. 

Broadly speaking then, our intent here is to develop a more complete framework for studying 

energy pathways within combustion chambers, with particular emphasis placed on those that involve the 

unsteady vorticity field.  The remainder of this section summarizes the main objectives and outlines how 

and where they are addressed in the chapters that follow; note that the achievements of other investigators 

will only be lightly brushed on below with further elaboration in due course.   

In Chapter 2, we begin by constructing a substantial extension of the framework originally 

developed by Culick (1976).  The motivation is to allow new physics to be incorporated in a self-consistent 

manner as well as to re-express existing physics in a more insightful way.   This is accomplished by using 

linear stability eigenfunctions to expand flow variables and their adjoints to effect a spatial averaging—a 

common approach in other fields of study.   

As such, with respect to the compressing/expanding process, we use the perturbed rather than the 

unperturbed modes; more importantly, we also construct a basis in which to expand the vortical half of the 

flow field†.  In other words, the linear stability eigenfunctions will satisfy the no-slip boundary condition; 

moreover, results will be obtained for motors whose grain boundaries can locally be described by a general 

orthogonal coordinate system. 
  

 
† It is worth noting here that, different sources of unsteady vorticity within the chamber may exist.  For 
example, large-scale vortices often arise because of shedding from obstacles (cf. Flandro 1986) or as a 
consequence of intrinsic instabilities of the mean flow (cf. Casalis et al. 1998).  That these vortices often 
excite acoustic waves is well-known (cf. Flandro and Jacobs 1974), for this is the basic principle active in 
many wind-driven musical instruments.  To assess the importance of this, while desirable, is far too 
ambitious (at least in the context of this thesis).  We focus here only on the unsteady vorticity that must 
arise for the no-slip condition to be satisfied, by building most notably on the work of Flandro (1995 a, b).   
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Chapter 3 consists of a simple application of the new framework; in particular, purely acoustic 

motions within a chamber of arbitrary shape, enclosed by a rigid boundary and containing a fluid otherwise 

at rest, will be investigated.   Important features of time-dependent motions within combustion chambers 

are identified, even though processes that distinguish such chambers from purely acoustical systems are 

ignored.    

Chapter 4 introduces a methodology to solve for the limiting periodic behavior of the amplitude 

equations. While numerical integration is always possible, results obtained this way are difficult to 

generalize since the system may evolve differently depending upon the values the linear and nonlinear 

coefficients assume.  Thus, perturbation techniques will be utilized instead; the advantage of doing so is 

that the nonlinear coefficients need not be specified a priori—only conditions on the linear behavior of the 

system will need to be placed (e.g., the first mode is unstable while all other modes are stable).  This is of 

great practical value since much work remains to be done on modeling nonlinear processes.  The basic idea 

behind the analysis is that, the long-term behavior of a system of nonlinear ordinary differential equations 

is determined by its resonance structure.  Although this idea is certainly not novel, and dates back to work 

independently done by Stokes and Poincare, the current effort marks the first application to the field of 

combustion instability.  

Ultimately though, to study combustion instability within solid rocket motors it is necessary to 

determine the coefficients in the amplitude equations.  This requires that we solve for the linear stability 

eigenfunctions.  To facilitate such a calculation, we first consider some model problems that allow key 

elements of the physics to be introduced in a simplified setting.  In Chapter 5, we generalize the classic 

Stokes’ problem to include a uniform injection of fluid normal to the boundary; this helps illustrate how the 

mass flux issuing forth from a burning propellant affects vorticity creation.  Then, in Chapter 6, we contrast 

the behavior of the acoustic boundary layer, with and without a uniform injection of fluid through the 

boundary.  Finally, in Chapter 7, we consider the linearized flow field within solid rocket motors, and solve 

for the acoustic, the vorticity and the thermal eigenfunctions. 

Chapter 8 revisits the calculation of linear stability.  While Flandro (1995 a, b) first incorporated 

the effects of vorticity, the applicability of that analysis was limited since the new stability integrals were 

evaluated only for a cylindrical propellant grain under the restrictive assumption that the unsteady vorticity 

distribution remains laminar—a deficiency corrected in the current effort.  Utilizing an energy balance 

formulation, novel formulae that clearly reflect the interaction between vorticity and sound will be derived, 

allowing for a substantial clarification—both in terms of the mathematics and the physics involved—of the 
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mechanisms that allow the former to influence the growth or decay of the latter within solid rockets.  Aside 

from a significantly enhanced physical understanding, what has already been done (Culick 1973; Flandro 

1995 a, b) will be improved upon in two key ways: the results obtained will be independent of propellant 

grain geometry; and the derivation of these results will depend largely on kinematics—as such, the 

conclusions reached will be independent of the dynamics and thermodynamics of the medium, and thus 

applicable for any fluid motion, turbulent or otherwise.   

In Chapter 9, we determine the coefficients in the amplitude equations that correspond to three 

kinds of nonlinear interactions to second order in the wave amplitude: sound-sound, sound-vortical and 

vortical-vortical.  The nonlinear effects of vorticity on combustion instability will then be assessed for 

some prototypical cases; this is another important contribution of the present effort, since all previous work 

has been limited to the linear behavior.   

Finally, Chapter 10 contains a summary of the key results, as well as suggested directions for 

future research. 
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2. GENERAL FRAMEWORK 
 
2.1 Introduction 
 

Culick (1976) developed a general framework for studying combustion instabilities, which 

accommodated both linear and nonlinear processes†.  We construct here a substantial extension of that 

framework. 
 
H istorical Overview 

Since systems modeled by nonlinear partial differential equations are difficult to study 

mathematically as well as computationally expensive to simulate, a useful strategy is to convert this 

original description of the dynamics into a system of ordinary differential equations.  With differences 

mainly in the implementation details, this typically involves expanding the flow variables in a set of basis 

of functions and then spatial averaging in some way. 

Culick (1976) adopted such a strategy to study unsteady motions within combustion chambers.  

Although justifiable on theoretical grounds, experimental data offered the most compelling evidence.  

Pressure oscillations during instability closely resemble the classical acoustic modes of the chamber, at 

least in the sense that frequencies measured in tests agree well with predictions based on classical formulas.  

Thus, it was reasonable to use these modes as a basis for expanding the compressing/expanding half of the 

unsteady flow field.   

What made this strategy effective for treating most‡ problems that arise in practice, in a wide class 

of combustors, is that system specific departures from classical acoustics—at least insofar as the 

 
† This was necessary since a view founded entirely on linear principles can account for only a small part of 
what is observed.  In linearly unstable systems, for example, instabilities that spontaneously emerge from 
the background noise rarely grow without limit.  Instead, such disturbances tend more commonly to some 
finite limiting motion, typically a periodic limit cycle.  Nonlinear processes must act for this to occur.  Even 
if the system is linearly stable, not every disturbance need decay.  Perturbations of finite amplitude 
sometimes increase with time—behavior that is also decidedly nonlinear.   
 
‡ Axial-mode instabilities that are triggered by disturbances of finite amplitude often evolve into steep-
fronted waves that are sufficiently steep to be more accurately interpreted as weak shock waves (cf. 
Brownlee 1964; Bloomshield 2000).  That an approach based on modal expansion/spatial averaging is only 
applicable during the steepening process and thus of limited value in such instances has been suggested (cf. 
Flandro 1985 and Culick 1994 for two different points of view).  In contrast, the first nonlinear analysis of 
combustion instability specifically sought to study the system after shock formation.  In particular, by 
building on the characteristic coordinate perturbation technique (Lighthill 1949; Whitham 1952), Crocco, 
Sirignano and Mitchell (Sirignano 1964; Sirignano and Crocco 1964; Mitchell, Crocco and Sirignano 1969) 
modeled a shock wave traveling back and forth in a one-dimensional chamber, reflecting off a planar 
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compressing/expanding process is concerned—are often small.  Thus, even though these departures are 

inherently related to the damping and driving mechanisms of combustion instabilities, they play essentially 

a perturbative role in most combustors.   

Over the years, application of the resulting framework has been successful in helping understand 

various aspects of nonlinear behavior (cf. Culick 2000 for the most recent review).  With respect to the 

fluid processes incorporated into the analysis, much effort has been concentrated on sound-sound 

interactions (i.e., nonlinear acoustics).  More recently, the effects of noise within the combustion chamber 

have also been considered (Burnley 1996; Seywert 2001).   

However, test results have shown qualitative changes in the nonlinear behavior of combustion 

instabilities not explicable with these processes alone.  The origin of this behavior does not appear to be 

associated with combustion dynamics, either.   
 
T he Present Framework 

Our intent here is to devise a more complete framework for studying pathways of nonlinear energy 

transfer within combustion chambers, such as those that involve the unsteady vorticity field, or, the mean 

flow.  To this end, we construct a substantial extension of the framework originally developed by Culick 

(1976); some of the differences are highlighted below. 

First, in choosing a basis, Culick (1976) took direct advantage of the observational result that 

pressure oscillations during instability resemble classical acoustic modes.  Accordingly, the unsteady 

pressure field was expressed as a synthesis of these (normal) modes with unknown time-varying 

amplitudes.  The acoustic velocity was treated in a corresponding manner.  In contrast, we adopt the well-

established approach of using linear stability eigenfunctions to expand flow variables and their adjoints to 

effect a spatial averaging.  Among other things, this allows us to account for nonlinear energy transfer with 

the mean flow; previous attempts to incorporate this effect have been unsuccessful (cf. Culick 1997).  

Second, both the compressing/expanding process and the shearing process are included in our 

analysis.  More specifically, we will obtain an analytical representation of the linear stability eigenfunctions 

 
combustion zone at one end and a choked nozzle at the other.  Even though their calculations met with 
partial success in reproducing tests performed on laboratory gas-fueled rockets, an analytical tool of 
practical value did not result.  This was chiefly due to the complexity of the technique and the difficulty in 
accommodating more than one spatial dimension.  Nonetheless, the effort provided valuable insight into 
some basic issues of nonlinear behavior that remain the focus of much attention; notably, the possible 
existence of stable limit cycles and the conditions necessary for achieving these end states. 
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that satisfies the no-slip boundary condition for motors whose grain boundaries can locally be described by 

a general orthogonal coordinate system, and use this as a basis to study nonlinear combustion instability.  
 
2.2 Equations of Motion 
 

In this section, the equations that govern the flow of combustion products in a solid rocket motor 

are summarized.  Only that part of the chamber bounded by the propellant surface, the head-end closure 

and the nozzle entrance plane is considered; details of the flow through the nozzle itself are significantly 

more complex and generally omitted. 

To simplify the analysis further, other commonly used approximations are adopted.  These include 

approximating the combustion processes by a time-dependent boundary condition at the propellant surface 

and the combustion products as a fluid with mass-averaged properties (cf. Culick 1975 for further details).  

The justification for the former is the negligible thickness of the combustion zone compared to other 

dimensions of the chamber, while experience has shown that the latter is sufficient for capturing the leading 

order effects of condensed particles within the chamber volume—the most important being a reduction in 

the speed of sound.  

Working with a standard set of non-dimensional variables†, we have: 
 
Conservation of Mass 
 D Dtρ ρ= − ∇ ⋅ +u W  (2.1) 
 
Conservation of Momentum 
 D Dt pρ = −∇ +u F  (2.2) 
 
Conservation of Energy 
 ( )( )1DT Dt p Qρ γ γ= − − ∇ ⋅ +u  (2.3) 
 
Equation of State 
 p Tγ ρ=  (2.4) 

where D Dt t= ∂ ∂ + ⋅∇u .  Contributions to the source terms   and  will be made explicit as 

required. 

,W F Q

                                                 
† The equations are written in terms of a standard set of non-dimensional variables: 

2 3

o o o o o o

o o o o o o

t p T ct p T
R c R c p T c c

R R R Q Q
c c c

ρ ρ
γ ρ

ρ ρ ρ

→ → → → → → → →

→ → →

x ux u

F FW W

p

sc s
 

 

Here suffix denotes chamber stagnation properties, is a characteristic length (e.g., the radius for a 
cylindrical chamber), and

o R

pc is the specific heat at constant pressure.  
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Although (2.1)–(2.4) are enough to determine the state of the flow, transport equations for some 

other thermodynamic variables will also prove useful.  In particular, we have: 
 
Equation for the Pressure 
 ( ) 11Dp Dt p Q Tγ γ γ −= − ∇ ⋅ + − +u W  (2.5) 
 
Equation for the Sound Speed 
 ( ) ( )( )11Dc Dt c c Qγ ρ −= Γ − − ∇ ⋅ +u  (2.6) 

 
Equation for the Entropy 
 ( )( )11T Ds Dt Q Tρ γ γ −= − − W  (2.7) 

where ( )1 2γΓ = + for an ideal gas  (Γ is often referred to as the fundamental derivative). 

Now while pressure is the most common experimental indicator of combustion instability, insofar 

as the mathematics is concerned, it is not the most suitable variable to work with†.  As such, we choose to 

formulate the problem here with respect to sound speed instead.  This requires that the pressure 

gradient in the momentum equation (2.2) be recast, p∇

 ( ) ( )( )1 1 1
21D Dt c c T sρ− − 11 ρ−= − Γ − ∇ + + Γ − ∇u F  (2.8) 

An important consequence of using the ( ),c s thermodynamic framework is that sound-sound interactions 

will now be captured entirely by terms of second order—a result not possible when working with the 

pressure (cf. Culick 1976; Yang et al. 1987, 1988).   

Finally, our choice of coordinate system is justified as follows.  Since the flow behavior in the 

vicinity of the burning propellant is ultimately of concern, to accommodate a variety of grain geometries, 

vectors are decomposed into normal and tangential n ζ components with respect to the surface in question, 

 ( ) ( ) na ζ= ⋅ − × × ≡ +a n a n n n a n a  (2.9) 

Further details of this coordinate system, including the representation of operators, are provided in 

Appendix A. 
 

                                                 

 

† Specifically, pressure does not lead to the greatest number of homogeneous equations; this is to be 
interpreted in the sense of a perturbation expansion and a flow of information down the hierarchical chain.  
By way of illustration, it is worthwhile to note that when Fox (1955) considered the problem of the 
steepening of axial acoustic waves (cf. §C.3 for further details), only a single term in the perturbation 
expansion of the sound speed was needed within the ( ),c s thermodynamic framework. 
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2.3 Expansion in Mean and Fluctuating Parts 
 

The analysis begins by writing all dependent variables as sums of mean (uppercase) and 

fluctuating (lowercase) parts:   

 ( ) ( ) ( ) ( ) ( )3 2, , 1 , , etc.b b b

mean mean

M O M t c O M c t= + + = + +u U x u x x
��������	�������
 �����	����


  (2.10) 

These are measured by the Mach number at the burning surface bM  (which is on the order of 0.001 0.01)−  

and the wave amplitude ε  (i.e., ( ) ( ),c O Oε εu∼ ∼ ,... ), respectively.  Perturbation expansions are 

constructed using these two small parameters, which owing to their physical origins, participate differently 

in the formal procedures.  While the details are elaborated upon in due course, some remarks are in order 

here. 

First, nonlinear behavior refers to effects higher order in ε and following standard practice only 

terms at most linear in bM  are retained.   

Second, with respect to the mean flow—which is produced by the combustion of fuel and 

oxidizer—the strategy adopted here (unlike that of a Reynolds averaged approach) is to analyze this motion 

as though it satisfies its own equations, i.e., is unaffected by the fluctuations.  While certain types of 

behavior can no longer be accomodated†, the equations are greatly simplified with this commonly used 

approximation (cf. Culick 1975; Flandro 1995 a, b).  What is more, since bM  is small compared to unity, 

the mean flow is at leading order incompressible (cf. §B.1 for further details).  Although this ceases to be 

true in the aft end of a motor, where the gaseous products of combustion accelerate through the nozzle to 

supersonic speeds, this part of the chamber is not considered here.   

Third, with respect to the fluctuations, it is important to recall that combustion instability has 

always been identified with the presence of unsteady acoustic motions having well-defined frequencies.  

From the earliest observations to the present, these frequencies closely match those computed for the 

classical acoustic modes of a chamber having the same shape as that in question but with no mean flow 

(i.e., ) and rigid walls.   Thus, despite a combustion chamber containing a non-uniform—and 

possibly turbulent—motion of chemically reacting species, often present in condensed as well as gaseous 

phases, exhausting through a choked nozzle, coherent nearly-classic acoustic waves exist that behave in 

good first approximation according to their own simple scaling laws.  Of course, it is precisely the 

departures from classical acoustics that are responsible for combustion instabilities, and in that sense, this 

0bM =

                                                 

 

† For example, unexpected changes in the mean pressure that sometimes accompany oscillations, often 
called a DC shift, can no longer be accommodated.  These are usually unacceptable in practice and 
sometimes even lead to catastrophic failure.    
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thesis is concerned chiefly with perturbations of a very old problem: standing/travelling waves in an 

enclosure. 

Finally, we remark that an important consequence of this point of view, which forms the setting of 

nearly all investigations of combustion instabilities over the past fifty years (cf. Culick 1994), is that our 

focus is the behavior of acoustical motions in the presence of a mean flow, instead of acoustical motions 

generated by that mean flow.  This distinction is important.  It is not that the latter does not occur, but 

rather that experimental observations have established that during combustion instability what emerges 

from the background (broad-band) noise—which is due in part to turbulent fluctuations, noise emission by 

combustion processes, and possible other unsteady motions such as flow separations—are coherent nearly-

classic acoustic waves. 

Thus, it is the stability and time evolution of acoustic disturbances superimposed on a given, 

presumed known, mean flow unaffected by the unsteady motions that is our principal concern.  Substituting 

the separation implied by (2.10) into the equations described in the previous section, we have that the 

unsteady sound speed and velocity evolve according to: 

 ( ) ( )... ...c cc t∂ ∂ + =L N  (2.11) 
 
 ( ) ( )... ...u ut∂ ∂ + =u L N  (2.12) 

and similarly for the unsteady pressure, temperature† and entropy: 

 ( ) ( )... ...p pp t∂ ∂ + =L N  (2.13) 
 
 ( ) ( )... ...T TT t∂ ∂ + =L N  (2.14) 
 
 ( ) ( )... ...s ss t∂ ∂ + =L N  (2.15) 

Note that operators, which are linear  and nonlinear ( )L ( )N  in the wave amplitude ,ε  have been 

introduced for ease of writing; these are defined in Appendix B. 
 

                                                 
† Contrary to our convention, the unsteady temperature is represented by uppercase notation. 
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2.4 Longitudinal and Transverse Waves 
 

Recall that a key motivation of the present effort is to account for unsteady vorticity within the 

combustion chamber.  To this end, we begin with a Stokes-Helmholtz decomposition.  This theorem of 

vector geometry splits the velocity field into longitudinal and transverse waves†: 

 ϑ ωϕ= ∇ +∇× ≡ +u A u u  (2.16) 

The scalar ϕ  and vector A  potential are related to the dilatation 2
ϑϑ ϕ= ∇ ⋅ = ∇ ⋅ = ∇u u  and the vorticity 

 as follows by taking the divergence and curl of (2.16), respectively.  Transport 

equations for 

2 ,ω= ∇× = ∇× = −∇ω u u A

ϑ  and  follow in the same way (i.e., by taking the divergence and the curl of the 

momentum equation (2.12), respectively), 

ω

 ( ) ( )... ...ut ϑϑ∂ ∂ + = ∇ ⋅L N  (2.17) 
 
 ( ) ( )... ...ut ω∂ ∂ + = ∇×ω L N  (2.18) 

where by construction ( ) ( )... ...uϑ = ∇ ⋅ LL and ( ) ( )... ... .uω = ∇×L L  

That longitudinal and transverse waves represent kinematically the two basic processes of fluid 

dynamics—the compressing/expanding process and the shearing process (cf. Wu et al. 1996)—is well 

known. While transverse (or vorticity) waves are the sole expression of the latter, the 

compressing/expanding process consists of two different types of longitudinal motions—those that are 

reversible and those that are not.  These are approximately represented by acoustic or sound waves 

(denoted ) and thermal or entropy waves (denoted au su ), respectively.  Although by no means exact, this 

decomposition  suffices for the discussion here, since the entropy generated by sound waves 

and the sound generated by entropy waves are higher order effects (cf. Chu and Kovasznay 1958).  

Moreover, we will find that within the chamber volume entropy waves contribute negligibly to 

aϑ +u u u∼ s

ϑu  (cf. 

Chapters 6 and 7) and thus to good approximation .   aϑu u∼
 
2.5 Modal Expansion/Spatial Averaging   
 

In this section, we replace the partial differential equations that govern the unsteady flow in a solid 

rocket motor by a system of ordinary differential equations.  This is accomplished by expanding the flow 

variables in a set of basis functions and then spatial averaging in some way.  Since we construct a 

                                                 

 

† Note that the identity ( ) ( )2∇ = ∇ ∇⋅ −∇× ∇×u u u in Fourier space ( ) (2 ˆ ˆk )ˆ= ⋅ − × ×u k k u k k u establishes 
that dilation waves oscillate longitudinal to—and vorticity waves transverse to—the direction of the wave 
vector this motivates the naming convection adopted. ;k
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substantial extension of the formulation originally developed by Culick (1976), that effort is briefly 

discussed first. 
 
C ulick’s Formulation 

Because combustion instabilities are, in many respects, closely related to classical acoustic 

motions, Culick (1976) began with a nonlinear wave equation for the pressure.  This was obtained by 

subtracting the time derivative of (2.13) from (2.17), 

 2 2 2 ,p p t h p f∇ −∂ ∂ = ⋅∇ = −n  (2.19) 

The boundary condition set on the gradient of was found by taking the normal projection of the 

momentum equation.  The source terms and are defined below

p

h f †.   

The basis functions used in the analysis were the solutions of the unperturbed problem, which we 

denote here by suffix 0 :  

 2 2
0 0 0 00, 0m m m mp k p p∇ + = ⋅∇n =  (2.20) 

This follows by setting and in (2.19), where  is the unperturbed mode shape 

for the  mode and  the corresponding wave number.  The unsteady pressure field was then 

expanded as a series with unknown time varying amplitudes 

0h f= = 0
0

mik t
mp p e−= 0mp

thm 0mk

mη  

  (2.21) ( ) ( )0
1

j j
j

p p η
∞

=

= ∑ x t

The form of spatial averaging used amounted to comparing the unperturbed problem with the 

problem to be analyzed.  In particular, the difference of (2.19) multiplied by and (2.20) by was 

integrated over the domain: 

0mp p

 
2

2
0 0 0 0 02m m m m m

pp dV k p pdV p hdV p f dS
t

∂
− − = +

∂∫ ∫ ∫ ∫v  (2.22) 

Substituting in the modal expansion (2.21), it followed that 

 
( ) { }2

0

2 1
0 0

m
m m m m mp dV

k p hdVη η+ = − +
∫ ∫ ∫x

�� 0p f dSv  (2.23) 

where it must be emphasized that  and contain both linear and nonlinear processes.  Note that when 

evaluating the forcing on the right-hand side of (2.23), the acoustic velocity component 

h f

                                                 
† ( )( ) ( )( ) ( ) ( )... ... ... ...u p ph p t tϑ= −∇ ⋅ −∇ + ∂ − ∂ − ∂ ∂ +∇ ⋅L NL N u  

( )( ) ( )... ...u uf t p= ⋅∂ ∂ + ⋅ −∇ − ⋅n u n nL N  
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( ) ( )2
0

1
0

1 j
a jk

j

p η
∞

=

= ∑u x � j t  was modeled using the leading order in ε  projection of the momentum equation 

onto an irrotational space, i.e., .a t p∂ ∂ −∇u ∼   
 
T he Present Framework 

Rather than derive a nonlinear wave equation for the pressure, we begin by writing the equations 

that describe the compressing/expanding process in vector form 

 ( )
( )

( )
( )

... ...

... ...
c c

u

c
t ϑϑ

⎡ ⎤ ⎡ ⎤⎡ ⎤∂
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇ ⋅∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦ N

L N
L  (2.24) 

where for reasons already stated, we use sound speed as the chief thermodynamic variable†. 

We choose as our basis the linear stability eigenfunctions, the problem statement for which can be 

obtained, following standard practice, by dropping the nonlinear terms in (2.24) and assuming exponential 

time dependence (i.e., …), ,mi k t
mc c e−=

 
( )
( )
...
...

mc
m

m

c
ik

ϑ ϑ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

L
L

 (2.25) 

This can be more succinctly written as 

 ( ),...m mik=fL mf  (2.26) 

where  and [ ]T
m m mc ϑ≡f ( ) ( ) ( ),... ,... ,...

T
m c m mϑ≡ ⎡ ⎤⎣ ⎦f f fL LL .   

In solving (2.26), we obtain not only the desired set of basis functions  but also the wave-

amplifying power of the system   Note that to recover from (2.24) the basis functions used by Culick 

(1976), all damping and driving processes contained in the linear operators need to be dropped.   In other 

words, in contrast with that earlier approach, we expand the acoustic motions here in terms of the perturbed 

rather than the unperturbed modes.   

,mf

.mk

This is not the only difference.  Our unsteady flow model will also satisfy the no-slip condition.  

This requires that we solve (2.26) in concert with the corresponding linearized equation for the vorticity, 

 ( )... m mikω = ωL  (2.27) 

This is another significant contribution of the work presented here: we construct a basis in which to expand 

the vortical half of the flow field.  The details of solving (2.25) and (2.27) iteratively are provided in 

Chapter 7.   

                                                 
† We could just as easily work in terms of the pressure, in which case our starting point would be 

( )
( )

( )
( )

... ...

... ...
p p

u

p
t ϑϑ

⎡ ⎤ ⎡ ⎤⎡ ⎤∂
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇ ⋅∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦

L N
L N
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Regardless of how the eigenfunctions are determined in detail (cf. Chapters 3 and 7), a series 

expansion of the form  

 ( ) ( ) ( ) ( ) ( ) ( )1 1
2 2, , ,j j j j

j j

c t c t t tη ϑ ϑ η
∞ ∞

=−∞ =−∞

= =∑ ∑x x x x  (2.28) 

is considered; negative values of the index denote the complex conjugate.  A similar expansion for the 

vorticity is introduced,  

 ( ) ( ) ( )1
2, j j

j

t tη
∞

=−∞

= ∑ω x ω x  (2.29) 

All that remains is to effect a spatial averaging over the domain.  Because the eigenfunctions 

will in general not form an orthogonal set, it is advantageous to do so by using solutions to the 

adjoint problem.  This is formally defined as (cf. Stakgold 1967) 

mf †
mf

 ( ) ( ) ( )† † †,... , , ,...m m m m dV− ≡ ∇ ⋅∫f f f fL L  (2.30) 

where  is the complex valued inner product *, T dV≡ ∫x y y x .  Note that the volume integral on the 

right-hand side can be expressed solely in terms of the behavior on the boundary by using the divergence 

theorem.  Typically, the boundary conditions for the adjoints are chosen such that this term vanishes 

identically; for this reason it is convenient to define in terms of the scalar potential, as opposed to the 

dilatation, i.e.,  (cf. §C.1 for further details).   Accordingly, the eigenfunctions and their 

adjoints will form a bi-orthogonal set—a very desirable property indeed. 

†
mf

† † † T

m m mc ϕ⎡≡ ⎣f ⎤⎦

Now introducing the series expansion (2.28) into (2.24) and taking the complex inner product with 

 as previously defined, derives the corresponding amplitude equation for the mode: †
mf thm

 ( ) ( ) ( )( )2
†* †* †*1 ... ... ...

m
m m m c m u m m uE

ik c dV dV dSη η ϕ ϕ+ = − ⋅∇ + ⋅∫ ∫ ∫ n� vNN N  (2.31) 

where (2 †* †*1
2m m m m mE c c dϕ ϑ= +∫ ) V .  The operators ( )...cN and ( )...uN contain and c ϑ as well as the 

vorticity field   These are to be replaced by the series expansions (2.28) and (2.29).  .ω

In closing, we note that although our focus is combustion instability within solid rocket motors, 

the framework developed here is far more general.  While no single analysis can hope to accommodate all 

possible instabilities in the different combustors found in operational use, there are nonetheless some 

features common to all combustion systems.  Indeed, it has often been emphasized that characteristics 

shared by combustion systems in many respects dominate the differences—for whatever the system, 

acoustic waves play a key role in the instability (cf. Culick 1994).  Thus, in many respects, their analytical 

treatment will essentially be the same. 
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3. NONLINEAR ACOUSTICS 
 

We now investigate purely acoustic motions within a chamber of arbitrary shape enclosed by a 

rigid boundary and containing a fluid otherwise at rest.  This simple application of the framework 

developed in Chapter 2 introduces important features of time-dependent motions within combustion 

chambers, even though processes that distinguish such chambers from purely acoustical systems are 

presently ignored.    

To begin with, we obtain the bi-orthogonal set of functions used as a basis and a means to effect 

spatial averaging, by solving the linear stability problem  

 
( )
( )

00 0
0

00 0

,
,

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

mc m m
m

mm m

cc
ik

cϑ

ϑ
ϑϑ

L
L

 (3.1) 

and its adjoint (cf. (2.30)), respectively.  This calculation is straightforward since the system (3.1) collapses 

into a single equation for the  mode shape :  thm 0mc

 2 2
0 0 0 00, 0∇ + = ⋅∇nm m m mc k c c =  (3.2) 

with all other flow variables expressible in terms of the  (cf. §C.1 for further details).  Note that the 

condition sets the unsteady velocity normal to the boundary to zero and determines the wave 

numbers .   

0mc

0 0mc⋅∇ =n

0mk

Next, we evaluate the nonlinear forcing in (2.31).  Only terms that describe sound-sound 

interactions are retained when substituting (B.33) and (B.34) for the nonlinear operators ( )...cN  and 

, respectively.  Introducing the modal expansion of the flow field variables as indicated by (2.28) 

leads eventually to 

( )...uN

 ( )
2

, ,1
0

∞ ∞

=−∞ =−∞

+ = ∑ ∑
m

m j k
m m m jE

j k

ik i Iϑϑ kη η η η�  (3.3) 

where the ( ), ,m j kIϑϑ  are a function of the wave numbers and the mode shapes; the exact relationship is given 

below†.   

To evolve the amplitude equations (3.3) numerically, values for the linear and nonlinear 

coefficients must be specified.  This requires that we solve (3.2) for the  Many well-written books 

discuss this problem (e.g., Morse and Ingard 1968).  Since numerical methods (cf. French et al. 1996) are 

0 .mc

                                                 
† In particular, we have 

( ) ( ) ( ) ( ) ( )( )1, , , , , ,1
0 0 0 1 28 1m j k m j k m j k

m j kI k k k I Iϑϑ ϑϑ ϑϑ−= − + + − Γ −  

 
where ( ), ,

1 0 0
m j k

m j k 0I c c c dVϑϑ = ∫  and ( ) ( ) 1, ,
2 0 0 0 0

m j k
j k m j k 0I k k c c c dVϑϑ −

= ∇ ⋅∇∫ . 
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typically needed for complex shapes, it is useful to consider the simple—yet representative—geometry of a 

cylindrical propellant grain, for which the can be obtained in closed form: 0mc

 ( ) ( ) ( ) ( )
( )0

cos
cos

sin
⎧⎪= ⎨
⎪⎩

xm n n s l

n
c J k r k z

n
θ
θ

 (3.4) 

Here the  mode is characterized by three indices thm ( ), , ,l n s  with the wave number given by 
2

0 ≡ +m nsk k 2
lk .  The values of lk l R Lπ= are proportional to the chamber radius-to-length ratio and the 

 are the roots of the derivative of the Bessel function: n sk ( )
1

0n ns r
dJ k r dr

=
= .  Only two prototypical 

cases will be examined in detail: purely axial modes ( ),0,0l  and so-called† purely tangential modes 

.  The corresponding coefficients (0, ,0n ) ( ), ,m j kIϑϑ  are evaluated in §C.2.  Purely radial modes ( )0,0, s  are 

rarely observed experimentally and thus are not considered.     
 
3.1 Axial Modes 
 

First, we consider the case of purely axial modes.  That the compressive portion of any such 

disturbance steepens is well known.  Fox (1955), for example, captured this behavior for motions within a 

closed cylindrical chamber by appealing to the method of characteristics (cf. §C.3 for further details).  The 

close agreement between predictions from that approach and the present method is shown in Figure 3.1. 

We now make a few remarks.  First, we note that purely axial modes involve the lowest 

frequencies of oscillation (since the  would now be proportional to the chamber radius-to-length ratio, 

which is small) and thus typically are more lightly damped and therefore easier to excite.   

0mk

Second, within the mathematical framework introduced here, a necessary condition for such 

modes to steepen is that the nonlinearities describing sound-sound interactions force the system in a 

resonant way.  That this resonant forcing is a consequence of the wave numbers being integer 

multiples of the fundamental (i.e., 

0mk

0 10=mk mk ) will be demonstrated in Chapter 4.   

Finally, we observe that the modal representation on which our analysis is based is valid only up 

until shock formation.  While the amplitude equations (3.3) may still be evolved beyond that point, the 

results cease to be meaningful; Figure 3.2 illustrates this clearly. 

                                                 

 

† Note that tangential here is not to be confused with the normal and tangential coordinate system 
introduced earlier. 
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Figure 3.1 Comparison between Fox’s solution (solid line) and the modal representation 
with 4, 8 and 16 modes respectively (dashed lines); the initial condition consists of an

 sound wave with 1m = 0.1ε =  

 
   

Figure 3.2 Long time integration of the amplitude equations with 16 modes retained
for the same initial conditions as Figure 3.1; the corresponding waveforms at three
representative times are shown on the right—shock formation is seen to occur around

1t ∼  
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The extent to which coupling with other processes, such as combustion, might inhibit the energy 

cascade to higher and higher wave number remains a subject of some controversy (cf. Flandro 1985 and 

Culick 1994 for two different points of view).  However, it is worthwhile to note that when axial-mode 

instabilities are triggered, experimental observations often indicate the presence of steep wavefronts of 

pressure.  This may suggest that for an initial disturbance of high enough amplitude shock formation is so 

rapid, that other processes do not have sufficient time to act before the system transitions to another state.  

The question then becomes whether these processes can unsteepen an already steepend wave.  The answer 

is by no means obvious, since combustion, to use the example given, may respond differently to a shock 

than to a sinusoidal perturbation.  While this matter warrants resolution, further discussion is beyond the 

scope of the present investigation. 
 
3.2 Tangential Modes 
 

We now turn to the problem of purely tangential modes†.   Two key differences exist vis-à-vis 

axial modes of oscillation.  First, tangential modes have higher oscillation frequencies and thus are often 

more heavily damped.  For example, this is certainly true with aluminized propellants.  The aluminum 

oxide smoke significantly attenuates higher frequency motions, and under such conditions, only axial 

modes can typically be driven. 

 

10

Second, and more important for the discussion here, is that the wave numbers no longer 

satisfy any resonant triad conditions as, for instance, would be the case if 

0mk

0 =mk mk  (we will discuss this 

point further in Chapter 4).  The consequences of this are shown in Figure 3.3.   In contrast with purely 

axial modes (cf. Figs 3.1 and 3.2), sound-sound interactions now result in little energy transfer between 

modes, much less an actual steepening of the wavefront.     

Maslen and Moore (1956) first demonstrated this behavior by working with the partial differential 

form of the equations, and constructing a uniformly valid solution to higher order in ε using regular 

perturbations.  The physical explanation offered for the absence of steepening was the continuous 

interruption of this process by the scattering effect of reflection at a curved wall. 

 

 
  

 

                                                 
†

0 1.8412, 3.0542, 4.2011, 5.3176, 6.4156, 7.5012, 8.5778, 9.6474,...mk =  
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By way of illustration, Figure 3.4 depicts the situation when the have been artificially 

assigned the value  with the coefficients 

0mk

10 ,mk ( ), ,m j kIϑϑ  remaining unchanged.  Whether this describes a 

true steepening (i.e., an energy cascade to higher and higher wave numbers) is not the issue.   However, 

there clearly is now significant energy transfer between modes.  This helps establish that the values 

assumed by the wave numbers rather than the nonlinear coefficients are more critical in determining the 

behavior of the system.   We will explore this idea further in Chapter 4. 
 

 
 
 

Figure 3.4 The same situation as
described in Figure 3.3, except that now

0 1mk mk 0=   

 

Figure 3.3 Nonlinear behavior for purely
tangential modes with the same initial
conditions as in Figure 3.1; the results
corresponding to a 4 and 16 mode
truncation are presented (no discernible
difference) 



 23

 

                                                

4. RESONANCE STRUCTURE OF THE AMPLITUDE EQUATIONS 
 
4.1 Introduction 
 

An essential part of any analysis based on modal expansion and spatial averaging is solving the 

resulting amplitude equations.  While numerical integration is always possible, results obtained this way 

are difficult to generalize since the system may evolve differently depending upon the values the linear and 

nonlinear coefficients assume.  Thus, the challenge has been to find a more systematic approach that 

facilitates broad conclusions being drawn. 
 
H istorical Overview 

Historically, within the field of combustion instability, this has been accomplished either with 

analytic solutions or with continuation methods.  

Analytic solutions are quite valuable, but only a few have been found thus far and only for 

problems restricted in important ways.  For example, with sound-sound interactions the only nonlinear 

process taken into account, Awad and Culick (1986) and Yang and Culick (1990) solved for the limiting 

periodic behavior of purely axial and purely tangential modes, respectively.  These solutions were obtained 

after removing the oscillatory part of the motion from the amplitude equations using the principle of time- 

averaging† and then truncating the system to two-modes.  Even though the latter simplification does 

regrettably introduce errors (cf. Jahnke and Culick 1994; Ananthkrishnan and Culick 2002), insightful 

conclusions were drawn nonetheless (cf. Culick 1994 for a concise summary).  

Studying the system with more than two modes retained is however clearly necessary and 

previous effort has relied upon continuation methods to achieve this.  Well known in other fields, Janhke 

and Culick (1994) first adopted this numerical approach to investigate nonlinear combustion instabilities by 

following changes in periodic solutions, usually limit cycles, as one or more parameters were varied.  

While much more information is obtained this way than from numerical simulations alone, use of a 

continuation method does not resolve the difficulty of determining the behavior over broad ranges of 

 
† Culick (1976) first applied the technique of time-averaging (Krylov and Bogoliubov 1947) to motions in 
combustion chambers.  The relative weakness of the disturbing processes justified this approach as excited 
modes typically show only small changes in amplitudes and phases during any given cycle of the 
oscillation.  A coupled system of first order equations governing these slowly changing quantities emerged 
from the analysis, the forcing of which was expressed in terms of weighted integrals of the unaveraged 
forcing taken over the averaging period.  Even though these integrals could only be evaluated in closed 
form when the unperturbed acoustic wave numbers were integer multiples of the fundamental, time 
averaging has proven itself a useful tool by greatly reducing the cost of numerical integration (larger time 
steps are permissible) as well as aiding theoretical work.   
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parameters.  Existing numerical toolsets (Doedal et al. 1991 a, b; Doedal et al. 1997; Doedal et al. 2000) 

allow only a few parameters to be changed simultaneously, and thus an exhaustive search of the parameter 

space is simply not possible.  As such, most investigations (Jahnke and Culick 1994; Burnley 1996; Isella 

2001; Ananthkrishnan and Culick 2002) have focused primarily on the influence of the linear coefficients, 

as well as, more recently, inputs in models of the combustion response.  Although the former are well 

defined, the latter—except when the flame is assumed to respond quasi-steadily—tend to be ad-hoc in 

nature. 
 
P resent Effort 

Unfortunately, this is part of a larger problem, for with the exception of sound-sound interactions, 

much work remains to be done on modeling nonlinear processes.  Thus, without a good basis for assigning 

values to the nonlinear coefficients, one should consider them as parameters.  While the resulting system 

cannot (practically speaking) be studied computationally, even with continuation methods, perturbation 

techniques can be utilized since then the nonlinear coefficients need not be specified a priori—only 

conditions on the linear behavior of the system need to be placed (e.g., the first mode is unstable while all 

other modes are stable). 

The basic idea behind such an analysis is that, the long-term behavior of a system of nonlinear 

ordinary differential equations is determined by its resonance structure.  Although this idea is certainly not 

novel, and dates back to work independently done by Stokes and Poincare, the current effort marks the first 

application to the field of combustion instability.  Essentially, the amplitude equations can be viewed as 

describing the motions of a set of nonlinearly coupled oscillators (cf. Culick 1994 for further discussion), 

with the small terms on the right-hand sides as terms forcing the linear oscillators represented by the left-

hand sides.  In general, the response of such a system is of the same order as the forcing, except when any 

of the forcing terms has the same period as one of the oscillators.  These resonances lead to an enhanced 

response which may after a long time change the amplitude of the oscillators at first order, even though the 

interaction itself is second order or higher.  The examples worked out in Chapter 3 certainly illustrate this 

behavior.  

By using ideas of resonance, we will show how to derive perturbation results for any desired 

number of modes, and in the process identity those nonlinear coefficients that have the greatest impact on 
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the system.  We begin by expanding the forcing in (2.31) to include the nonlinearity expected to naturally 

occur† to second and third order in the wave amplitude ,ε  

 

( ) ( )( )
( ) ( )( )2

, , , ,

,1
, , , , , ,

, ,

m

m j k m j k
r i j k

j k
m m m E m j k l m j k l

r i j
j k l

f i f
ik

f i f

εε εε

εεε εεε

η η
η η

k lη η η

⎛ ⎞+ +
⎜ ⎟

+ = ⎜
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∑

∑
� ⎟  (4.1) 

where  

 
,j k j k

∞ ∞

=−∞ =−∞

=∑ ∑ ∑  (4.2) 

While we are not concerned here with the physical origin of the terms, it is worthwhile to point out that 

sound-sound interactions, as shown in Chapter 3, contribute to ( ), ,m j k
if
εε ; similarly, other effects, such as 

interactions with the unsteady vorticity field, will add to, or subtract from, the coefficients.    

Turning now to the analysis of (4.1), we first consider the case when the are real (cf. §4.2), 

and then study the behavior when the have an imaginary component as well (cf. §4.3).  The basic 

difference is that for the latter, modes also grow or decay exponentially in the linear limit rather than just 

oscillate harmonically. 

mk

mk

 
4.2 Real Wave Numbers 
 

With other techniques exist, we construct here a perturbation solution of (4.1) in terms of a 

hierarchy of successively slower time scales: 2
0 1 2, , ,..., N

Nt t t t t t t tε ε= = = = ε  (cf. Kevorkian and 

Cole 1996).   

We begin by assuming a solution of the form 

 ( ) ( ) ( ) ( )( )2
0 0 1 1 0 1 2 0 1; , ,... , ,... , ,... ...m m m mt t t t t t tη ε ε η εη ε η= + + +  (4.3) 

and then compute 

 2 30 1 0 2 1 0

0 0 1 0 1 2

...m m m m m m md
dt t t t t t t
η η η η η η η

ε ε ε
⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂

= + + + + + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠

 (4.4) 

using the chain rule.   

Next, we substitute (4.3) and (4.4) into (4.1) to obtain the following differential equations for the 

various terms in the expansion of mη  to ( )3O ε : 

 0
0

0

0m
m mik

t
η

η
∂

+ =
∂

 (4.5) 

 

                                                 

 

† By this it is meant terms that arise as the products of flow variables, giving rise to, for example, 
interactions between the sound, thermal and vorticity fields.   
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Terms of ( )O ε  
 

The solution of (4.5) is 

 ( ) ( )( )0 0 1 ,...
0 0 1,... m mi k t t

m mr t e φη − +=  (4.8) 

where at this stage of the analysis ( )0 1,...mr t and ( )0 1,...m tφ are undetermined functions, which may depend 

on the slower time scales  but not on .  Determining these functions is our chief interest here and 

this is accomplished by suppressing resonant terms at higher order. 

1 2, ,..t t . 0t

To help motivate this key idea, let us assume for the moment that 0 1 0.m tη∂ ∂ =  We can then 

immediately solve (4.6) for 1mη : 

  
( )
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, ,
1

1 0 0, ,
,
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In examining this result, the basic principle to bear in mind is that a perturbation expansion is valid only if 

higher order contributions are higher order.  Terms in the sum that satisfy the corresponding resonant triad 

condition ( )j k mk k k O ε+ − ≤  violate this principle, as the denominator would then be ( )O ε or less, and 

thus the contribution to 1mη  would be ( )0mO η .   

To avoid such inconsistent behavior, the forcing of (4.6) should be partitioned into terms, which 

are resonant ( , and terms, which are not )R ( )NR : 

  (4.10) 
( )( )

, , , , ,
j k m j k m

j k j k j k j k j k
k k k k k k+ + /

= + ≡ +∑ ∑ ∑ ∑ ∑
∼ ∼ NRR

Resonant terms effect a response larger than themselves and need to be suppressed.  The procedure for 

doing so is straightforward.  Rather than assume that 0 1 0,m tη∂ ∂ =  we instead set 0 1m tη∂ ∂ equal to these 

terms; after substituting in (4.8), we have 
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The real and imaginary parts of (4.11) give evolution equations for  and 0mr 0mφ , respectively.   

While one typically has to resort to a numerical solution, it has at least been established that significant 
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energy transfer between modes is possible only when at least some resonant triad conditions are satisfied.  

This accounts for basic differences observed in Chapter 3 between purely axial and purely tangential 

modes, as well as the dramatic change in the behavior of the latter when the wave numbers were artificially 

forced to be integer multiples of the fundamental (cf. Figs 3.3 and 3.4). 
 
R esonance Conditions Unsatisfied 

Now we consider what happens if no resonant triad conditions are satisfied.  This, for example, is 

the case for purely tangential modes (cf. §3.2).  Since we are justified in setting 0 1 0,m tη∂ ∂ =  the result for 

1mη  given by (4.9) is indeed valid.  To complete the solution, it remains to determine the behavior of the 

unknown amplitudes and( )0 2 3, ,...mr t t ( )1 1 2, ,...mr t t and phases ( )0 2 3, ,...m t tφ  and  To this end, 

the equations governing the 

(1 1 2, ,... .m t tφ )

( )2O ε  behavior need to be appealed to. 

Recall, the basic idea is that resonant forcing terms must be suppressed.  Consider those terms in 

(4.7) that arise owing to the interaction between the zeroth and first order solutions.  Insofar as the forced 

part of 1jη  is concerned, the form of the dependence on the  scale that results from the product with 0t 0kη  

is ( ) 0 ,j k li k k k te− + + with summation occurring over all three indices.  This same combination also arises from 

the cubic nonlinearity. This suggests that even in the absence of any triad conditions 

( )j k mk k k O ε+ − = being satisfied, resonance occurs owing to self-interaction, i.e., when for instance 

 and    j = −k .l m=

To avoid this it is necessary to let 
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where the coefficients ( ),m j
rσ and ( ),m j

iσ follow from (4.6) and are defined below†.  The first equation 

simply indicates that and( )1 1 2 3, ,...m mr r t t= ( )1 1 2 3, ,... .m m t tφ φ=  Introducing the solution for 0mη  from (4.8), 

we can expand the second equation to obtain 
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The real and imaginary parts of (4.13) give evolution equations for  and 0mr 0mφ , respectively.   As before, a 

numerical solution typically has to be resorted to.    

However, an important simplification does occur when all the ( ),m j
rσ  vanish.  This, for example, 

would be the case if either ( ), ,m j k
rf
εε  or ( ), ,m j k

if
εε  are identically zero, and assuming a third order 

nonlinearity, if ( ), , ,m m j j
rf
εεε −  are zero as well.  We digress to point out that for the sound-sound interactions 

studied in Chapter 3, ( ), 0m j
rσ =  since no contribution to the ( ), ,m j k

rf
εε  coefficients arose.  Had the problem 

been alternatively formulated with pressure, as opposed to sound speed, as the primary thermodynamic 

variable, third order effects would have been entirely captured by ( ), , , ,m j k l
if
εεε  and so similarly ( ), 0.m j

rσ =   

Returning to (4.13), under these conditions a closed form solution exists; in particular, since the real part of 

the forcing would be zero, 0 2 0mr t∂ ∂ = from which it follows that  Integrating what 

remains of (4.13) is straightforward, 

(0 0 3 4, ,... .m mr r t t= )
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, 22
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m
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m m i j mE
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Were the analysis to stop here ( )0 0 3 4, ,...m mr r t t= and ( )0 3 4, ,...m t tφ  would be assumed constant and 

chosen to satisfy the initial conditions.  The leading order solution ( )0 0
0 0

m mi k t
m mr e φη − +=  would then simply 

consist of an ( )2O ε  pertu  

to the wave number mk given by 

4), with this shift in 

frequency a function of: the 

initial amplitudes; the 

unperturbed wave numbers; and 

the nonlinear coefficients.  Such 

a solution clearly exhibits the 

behavior observed in Figure 3.3, 

where no sustained energy 

transfer between modes was seen 

to occur; Figure 4.1 compares the 

analytic solution given above 

with numerical integration of 

(4.1) for a similar example.    

rbation

(4.1

Figure 4.1 Comparison between the closed form analytic solution
(dashed line) and numerical integration (solid line) for the case of 4
purely tangential modes; the initial conditions are m mη ε= where

0.025;ε =  the angle is defined by q miq
m m eη η −=  
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4.3 Complex Wave Numbers 
 

In the previous section, we showed that when the wave numbers are real, for certain types of 

nonlinearity (e.g., sound-sound interactions), resonant triad conditions if not satisfied initially remain 

forever unsatisfied.  However, for the sorts of problems of interest here, the wave numbers will in general 

be complex and of the form 0 ,m m b mk k M k µ= + where bM is the injection Mach number and 

m mk miµ µ µθ α≡ − +  is the perturbation to the unperturbed wave number  (cf. Chapters 7 and 8 for further 

details).  When this is the case, the amplitude equations (4.1) evolve in a decidedly different manner. 

0mk

Figure 4.2 illustrates this clearly with a typical example when the first mode is linearly unstable 

and all other modes are stable.  This is a case of practical interest since energy released by combustion 

processes often causes the first mode to be unstable, while dissipative mechanisms tend to stabilize the 

higher modes.     

 

Figure 4.2 Time evolution of the first four tangential modes when 1 0.003bM k iµ = and 
0.025b mM k µ = − i  for all other modes; the initial disturbance values are the same
1 4 0.05η ε→ = =  
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  What is to be observed (cf. the sequence of images on the right of Figure 4.2) is that now even if 

no resonant triad conditions are initially satisfied, this ceases to be true as the system evolves.  In other 

words, the phases (cf. (4.15) for a precise definition) lock, and on a time scale short in comparison with that 

which measures the energy transfer between modes†.  More surprising perhaps is that the corresponding 

ratios of the absolute values of the amplitudes exhibit the exact same behavior and tend to lock almost in 

sync. 

Our objective here is to explain this behavior mathematically as well as derive formulae that 

predict the limiting state.  To do so, it is more effective to recast the system (4.1) in terms of the energy  

and phase  (cf. Kevorkian and Cole 1996):   

mp

mq
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m m m m mp qη η−≡ ≡ − η  (4.15) 

where 1 2 m
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m mE p eη −=  and as before negative indices denote the complex conjugate. 

Evolution equations for : mp
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j k i m j

f q q q
p k p p p p

f q q

εε

εε

⎛ ⎞
k

kq

− − −
⎜= +
⎜ − −⎝ ⎠

∑� ⎟
⎟−

 (4.16) 

and : mq

 ( )
( ) ( )

( ) ( )

, ,

2
, ,

,

sin

cosm j k

m j k
r m j kj kr

m m E E E m j k
j k m i m j

f q q qp p
q k

p f q q

εε

εε

⎛ ⎞

kq

− − +
⎜= −
⎜ + −⎝ ⎠

∑� ⎟
⎟−

)

                                                

 (4.17) 

can be derived by differentiating (4.15) with respect to time, and substituting (4.1) where appropriate.  Note 

that only second order nonlinearities have been retained.   

A few remarks are now in order.  First, a more general definition of a resonant triad condition than 

that given in §4.2 is  Only when this phase locking occurs can a significant 

amount of energy be transferred between modes.  Second, for the cases of interest here, this energy transfer 

ultimately leads to a stable periodic limit cycle and the phases must then be integral multiples of the 

fundamental.  To capture this long time behavior it is sufficient to consider the resonance structure of the 

equations.  This can be obtained simply by replacing the summation over with that contribution which 

arises when  

constant.j k mq q q+ − ∼

k

.k m j= −

Now we use the (  framework as a starting point to understand the behavior depicted in 

Figure 4.2.  Recall that we are considering a case where only the first mode is unstable; other scenarios can 

,m mp q

 

 

† In studying a two-mode approximation for tangential modes using the set of amplitude equations derived 
earlier by Culick (1976), Burnley (1996) also observed that phases lock on a short time scale (no comment 
was made on the amplitudes); no explanation of this phenomenon was given. 
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also be considered, but we aim here only to illustrate the basic procedure.  We begin by introducing a new 

set of variables: 
 1 ,m

m m mP p p Q mq q1 m≡ ≡ −  (4.18) 

Differentiating (4.18) and making the necessary substitutions, derives evolution equation equations for 

and   In particular, we have mP .mQ

 

( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1

1, ,1
1 112

1 1, ,1
1 1 1
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2
, ,
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2 sin
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j j

m j m j

j j
r ji im

m E E E j jjm j j i j

m j m j
r m j m jm

E E E m j m jj
j m j i m j m j

f Q Q QPP
m k k m

P P P f Q Q Q

f Q Q QP
P P f Q Q Q

εε

εε

εε

εε

−

−

−
−

−
− −

−
−

−
− −

⎛ ⎞− − +
⎜ ⎟= − + ∑
⎜ ⎟+ − −⎝ ⎠

⎛ ⎞− − +
⎜ ⎟−∑
⎜ ⎟+ − −⎝ ⎠

� j

j

−

 (4.19) 

and 
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( ) ( )

( ) ( )
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1 112
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m j m j
r m j m jm
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 (4.20) 

If no resonance conditions are satisfied initially, i.e., ( ) ( )
1 0r r

mmk k− ≠ , what (4.19) and (4.20) 

suggest is that at the outset the should grow linearly and the  exponentially.  Growth as opposed to 

decay of all the  follows provided that

mQ mP

mP ( ) ( )
1 ,i

mk m k< i  which certainly is true if the first mode is unstable 

and the rest of the modes are stable, although we need not be so restrictive.  

Now consider the equation for : 2Q�

 

( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1

2 2

1, ,1
1 112

2 1 2 1, ,1
1 1 1
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r jr r
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f Q Q QP
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f Q Q QP
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−

−
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⎜ ⎟− − −⎝ ⎠
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⎜ ⎟− − −⎝ ⎠

∑

∑

� j

j
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 (4.21) 

The key here is to identify the dominant nonlinear term.  Consider the first sum.  Because the  grow 

exponentially to begin with, the ratio 

mP

1 1 11j j jP P P P P j− −=  gets progressively smaller over time for all 

 hence, no terms in this sum are of concern.  Now consider the second sum.  Since the numerator of the 

ratio 

;j

2 2j jP P P −  is the same for all terms (and grows exponentially), we need only identify the term 

with the smallest denominator.  Clearly, this occurs when 1,j =  since then 2 1 1.j jP P P− = =   Thus, to 

leading order  

 ( ) ( )( ) ( ) ( )( )2 1 1

2,1,1 2,1,12
2 1 2 2 22 sinr r

r iE E EQ k k P f Q f Qεε εε− − −� ∼ 2cos  (4.22) 
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Since  grows linearly initially, the expression in parenthesis in the second term will oscillate 

about zero.  Consequently, because  grows exponentially, there comes a time when the two terms 

balance and thus   If this is a stable limit point,  remains constant thereafter; however, this can 

only occur if  has also become constant.  Therefore, we need also consider the equation for  and 

identify the dominant nonlinear term.  Since the amplitude ratios in the two sums are the same for both 

equations, we have 

2Q

2P

2 0.Q� ∼ 2Q

2P 2P�

 ( ) ( )( ) ( ) ( )(
2 1 1

2,1,1 2,1,122
1 2 2 2 2

2

2 cos
2

i i
r iE E E

P
k k P f Q f Q

P
εε εε− − +

�
∼ )sin  (4.23) 

Essentially then, the pair (4.22) and (4.23) define the approach to the first resonance, after which 

the respective left-hand sides are zero and the limiting values of  and  can be obtained: 2Q 2P

 
( ) ( )

( )
( )

( ) ( )

( )
( )

2

2

2

2

2,1,1 2,1,1

2 2,1,1 2,1,1
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r

i

r
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K
i rK

K
r iK

f f
Q

f f

εε εε

εε εε
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−
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and 
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( ) ( )
2 1 1 2 1 1

2 2
2 2,1,1 2,1,1 2,1,1 2,1,12 2
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1 1
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K K
P

f Q f Q f Q f Qεε εε εε εε
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− +
∼
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 (4.25) 

where ( ) ( ) ( )... ... ...
2 1 22K k k= − .    

Note that when the first mode is unstable, the resonance conditions are successively satisfied, first 

, then , etc.  Although we offer no formal proof of this statement, that this is so can be seen from 

Figure 4.2 (which recall is a typical example) as well as the structure of the equations.  Reasoning similar to 

that used to obtain the limiting values of  and  can be applied to find , ,  and   (as well as 

higher modes).  The behavior of each successive resonance depends on the behavior of the previous ones 

and Table 4.1 identifies the additional linear and nonlinear coefficients on which there is a functional 

dependence.  Since the rest of the calculations involve more algebra, we refer to Appendix D for details. 

2Q 3Q

2Q 2P 3Q 3P 4Q 4P

 
  

 
2Q  (4.24),  (4.25)  2P

 
( ) ( ) ( ) ( )2,1,1 2,1,1
2 2

r i
r iK K f fεε εε  

3Q  (D.4),  (D.5) 3P ( ) ( ) ( ) ( )3,2,1 3,2,1
3 3

r i
r iK K f fεε εε  

4Q  (D.8),  (D.9) 4P ( ) ( ) ( ) ( ) ( ) ( )4,2,2 4,2,2 4,3,1 4,3,1
4 4

r i
r i r iK K f f f fεε εε εε εε

 

Table 4.1 Linear and nonlinear coefficients on which the resonances have a functional dependence 
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Given that we are considering here the case of first mode instability, it is enough to retain only 

four modes in the truncation to capture the correct qualitative behavior (cf. Ananthkrishnan et al. 2002).  

However, all the necessary reasoning has been explained to extend the algorithm to include more modes.  

Since the ratios 1
m

mP p p= m mand differences in phase 1mQ mq q≡ − are all known, all that remains is to 

determine the amplitude of  Starting from (4.16) with 1.p k m j= − and substituting in for 2
2 1p p P= 2 , 

etc., a polynomial equation for the limit of  is easily derived, 1p
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1,4, 3 1,4, 3 32
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3 4
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εε εε

εε εε
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⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪+ − − −⎨ ⎬
⎪ ⎪⎩ ⎭

+
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 (4.26) 

 

Figure 4.3 compares the limiting values predicted analytically using the preceding formulas, with 

those calculated numerically for the situation described in Figure 4.2.  Figure 4.4 compares the above 

results with the behavior computed using the continuation method encoded in AUTO 2000.  The agreement 

is quite remarkable, and the analytic results of considerable practical value, especially since the nonlinear 

coefficients did not have to be specified a priori. 

 

Figure 4.3 Comparison between the result shown in Figure 4.2 (black curves) and the analytic
approximation for the limiting values (red lines)  
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Figure 4.4 Tangential mode instability, 4 mode approximation with 2 4b µ µ 0.025M α → , an= − d 
n 0;θ =  red curve (AUTO 2000) corresponds to the original amplitude equations; black (dashed)

curve (AUTO 2000) coincides with the behavior given by the resonance structure; and the blue
curve corresponds to the simple analytic approximation  

 
Finally, we remark that the same techniques used here to derive analytic results for the limiting 

ehavior when the first mode is unstable, can also be applied to treat other problems, such as, for example, 

hen the second mode is unstable.  The algebra then becomes slightly more complicated, since more 

odes need to be retained in the truncation to capture the correct qualitative behavior; however, this is not 

 serious obstacle, especially if software capable of symbolic manipulation is used (e.g., Mathematica).  

ven if additional closed form solutions are not derived however, the viewpoint presented here would help 

n the identification of the nonlinear coefficients that most significantly impact system behavior, which 

tself would be an important development given that much work remains to be done on modeling nonlinear 

rocesses. 
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5. VORTICITY CREATION  
 

To use our general framework to study combustion instability within solid rocket motors it is 

necessary to determine the coefficients in the amplitude equations.  In part, this requires that we solve for 

the linearized vorticity field.  Our concern here is to facilitate such a calculation, by illustrating how the 

mass flux issuing forth from a burning propellant affects vorticity creation.  To this end, we generalize the 

classic Stokes’ problem (i.e., the incompressible, viscous flow established by an infinite flat plate moving 

parallel to itself) to include a uniform injection of fluid normal to the boundary. 
 
5.1 A Generalization of Stokes’ Problem 
 
E xact Solution 

We obtain here the exact solution of our model problem.  For reasons of symmetry, the flow only 

depends on the coordinate and time   Thus, the momentum equation—in dimensional form—reduces to n .t

 nu
t n
ζ ζ

ζ ν
∂ ∂

× + =
∂ ∂

u ω
n ω  (5.1) 

where nζ ζ= ×∂ ∂ω n u  is the vorticity, ν is the kinematic viscosity and n is the unit normal vector 

pointing into the fluid domain.  By virtue of mass conservation 0,nu n∂ ∂ =  the normal velocity  

everywhere equals its value at the plate; since uniform injection is assumed,  is taken to be constant and 

positive.   

nu

nu

Although we can solve (5.1) for ,ζu  more insight into vorticity creation comes from applying this 

equation to the boundary and enforcing the no-slip condition ( ) ( )0, tζ t= Uζu  (note that contrary to our 

earlier convention, ζU  here is the velocity of the plate and not the steady part of ζu ),  

 n

d
u

n dt
ζ ζ

ζ ζ ν
∂

≡ − = − ×
∂

ω U
σ ω n  (5.2) 

This derives the so-called vorticity source strength ζσ , which establishes the physical sources of boundary 

vorticity (i.e., d dζ t= − ×σ n Uζ ) as well as the transport mechanisms responsible for sending this 

vorticity into the domain (i.e., nu nζ ζ ζν= − ∂ ∂σ ω ω

                                                

).  Lighthill (1963) first† introduced this quantity in 

studying vorticity creation from a solid boundary.  The basic difference that results from a continuous 

 
† Since then, much research on this subject has taken place (cf. Wu and Wu 1996 for a thorough review of 
the literature). 
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injection of fluid through (or from) the boundary is that, convection competes† with viscous diffusion, and 

both mechanisms transport boundary vorticity into the domain.   

Before discussing the consequences of this, we take the curl of (5.1) 

 
2

2nu
t n n
ζ ζ ζν

∂ ∂ ∂
+ =

∂ ∂ ∂

ω ω ω
 (5.3) 

and solve for the vorticity field, assuming the fluid and boundary are initially at rest with an arbitrary 

source of vorticity ζσ  imposed thereafter (i.e., ( ) 0 for 0t tζ = <σ ).  As standard methods suffice‡, only 

the result is quoted here: 

 ( ) ( ) ( )
0

1, , ,
nu

n

n t n t e n t d
u

η
ν

ζ η η
η

∞
−⎛ ⎞∂

= + +⎜⎜ ∂⎝ ⎠
∫

χω χ ⎟⎟  (5.4) 

where 

 ( ) ( ) ( )2

3 2
0

, exp
42

t
nt n unn t dζ τ τ

τ
νττπν

⎛ ⎞− −
⎜= −
⎜
⎝ ⎠

∫
σ

χ ⎟
⎟

 (5.5) 

 
Inviscid Limit 
 

To help establish how introducing another mechanism for transporting boundary vorticity affects 

vorticity creation, we now pose the following question: Does our solution behave differently when 0ν →  

and when 0ν = ? 

Consider first the inviscid limit (i.e., 0ν → ).  The asymptotic expansion of the first term in the 

solution of ζω  can be obtained by appealing to Laplace’s Method¶ (cf. Bleistein and Handelsman 1975), 

while the second term vanishes identically.  It follows that 

                                                 
† That the amount of vorticity sent into the domain is independent of how it is sent can be seen by 
integrating the curl of (5.1) over the domain and then introducing (5.2) to obtain 

 (
0

d dn d dt
dt ζ ζ ζ

∞

= = − ×∫ω σ n U )   

This also establishes that ζσ  is indeed a measure of vorticity creation. 
 
‡ For example, the problem can be solved using Laplace transforms.   In doing so, it is easier to introduce 

nu ζ ζ nν≡ − ∂ ∂χ ω ω  as the dependent variable (note that (5.5) gives the inverse of this relationship), since 
even though a linear equation of the same form as ζω must be satisfied, the boundary condition 

 is much simpler.  ( ) (0, t ζ=χ σ )t
 
¶ ( ) ( ) ( ) ( ) ( ) ( )( )0

1 2
0 0lim 2

b
pp

a
I e q d e q pτ ετ ε

ε ε τ τ τ πε−−
→ ′′= ∫ ∼ 0τ  

 
   where 0τ is the absolute minimum of ( )p τ ; for (5.5), clearly 0 .nn uτ =  
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 ( )0
1 1lim ,

n n

n t t n
u uν ζ ζ→

⎛ ⎞
= −⎜

⎝ ⎠
ω σ ⎟  (5.6) 

Remarkably, this same result is found for a strictly inviscid fluid (i.e., 0ν = ), where 

 ( ) ( )0, 0,n nt u n u t tζ ζ ζ∂ ∂ + ∂ ∂ = =ω ω ω σζ  (5.7) 

Why is this uniformity in convergence significant?  When a small parameter such as ν multiplies 

derivatives of highest order, setting that parameter equal to zero reduces the order of the governing 

equation and typically causes some boundary conditions to be given up (cf. Lagerstrom 1964).  This is 

certainly true for a solid boundary, where a pure sliding motion exists when 0ν =  (if 0,ν ≠ vorticity 

diffuses into the domain and induces on the boundary a velocity that satisfies the no-slip condition).  In 

stark contrast, as demonstrated above, with fluid injection one can get around the viscous origin of the no-

slip condition to simply retain it in a mathematical analysis of inviscid flow†.  This special behavior is a 

consequence of having introduced another mechanism for transporting boundary vorticity into the 

domain—convection.   
 
W hen is Convection the Controlling Transport Mechanism? 

While our analysis in subsequent chapters does not assume that the fluid is inviscid, flows where 

the transport of boundary vorticity is controlled by convective rather than diffusive mechanisms will be of 

interest.   

To determine the condition for this to be so, we first substitute (5.5) in (5.4) and carry out the 

required integration, 

 ( ) ( ) ( ) ( )1 2
0 0

10, erfc
t tt

t e d tζ βτ
ζ ζ

τ
dτ β ν τ βτ τ

τπν
−−

= − −∫ ∫
σ

ω σ  (5.8) 

Now if ζσ  is not singular, we can asymptotically expand this exact result for large 2 4 .nuβ ν≡  It then 

follows from (5.2) that the convective and diffusive contributions of ζσ  are given by 

 ( ) ( ) ( ) ( )2

1 1 1 10, ...
4 8nu t t t tζ ζ ζ ζβ β

′ ′′− +ω σ σ σ∼ +

                                                

 (5.9) 

 
† This fact can also be shown by working with the velocity and so we are justified in inferring from (5.6) 
that the no-slip condition is satisfied.  Note that the tangent component of can be obtained by integrating 
the vorticity distribution (5.4),  

u

 ( ) ( ) ( ) ( )1
2 20 0

erfc erfc
n

n
ut tnn u n ut d e tτ ν

ζ ζ ζντ ντ2
n dττ τ τ−⎛ ⎞

′ ′= − + −⎜ ⎟∫ ∫⎜ ⎟
⎝ ⎠

u U U τ+   

 

Once again, the Euler limit, i.e., ( ) ( )0lim , ,nn t t n uν ζ ζ→ = −u U  converges uniformly to the solution for 
an Euler flow.  It must be emphasized that whether such a result applies for flows more complex than those 
considered in the thesis remains an open question.  



 38

and 

 
( ) ( ) ( )2

0, 1 1 1 1 ...
4 8

t
t t

n
ζ

ζ ζν
β β

∂
′ ′′− +

∂

ω
σ σ∼ +  (5.10) 

respectively.  Taking the ratio of these results, we find 

 
( )

( ) ( )
0,

0,
nu t

t n O t
ζ

ζ

β
ν ∂ ∂ ∂ ∂

ω
ω

∼  (5.11) 

where ( ) 1O t −∂ ∂ is a characteristic time scale of ζσ  (e.g., the period of oscillation for an oscillating plate). 

Thus, the transport of boundary vorticity is controlled by convective rather than diffusive 

mechanisms when ( )O tβ ∂ ∂ is large.  We assess the consequences of this for the flow as a whole in §5.2. 
  
5.2 An Oscillating Plate 
 

Thus far, the discussion has been for a general in-plane motion of the plate.  We now consider the 

specific case of a harmonic oscillation, i.e., ( ) 1
iktt Ueζ =U ζ .  Our objective here is to compare the 

magnitude of boundary vorticity generated and the depth to which this vorticity penetrates the flow, with 

and without a uniform injection of fluid through the boundary. 

Since only the limiting periodic behavior (i.e., t ) is wanted for our comparison, seeking a 

solution of the form 

→∞

( ) ( ) ( )
2, 0,0 i kt nn t e λ

ζ ζω
−=ω ζ  is simpler than using (5.4).  The complex constants 

 and (0,0ζω ) λ  are determined by substituting into (5.2) and (5.3), respectively.   

For the case of fluid injection, we are interested in the behavior when the transport of boundary 

vorticity is controlled by convective rather than diffusive mechanisms.  Recall from (5.11) that this is so   

when ( )O tβ ∂ ∂ is large; thus we effect a perturbation of our exact solution† for large 

 
( )

2

Re nu k
O t

β
ν

≡
∂ ∂

∼  (5.12) 

Taking the real part of the solution and retaining terms up to ( )1ReO −  yields 

 
( )

( ) ( )( 2

,
sin 1 Ren

n
n

n t
e k t n u

k u U
ζ δ−− − −

ω
∼ )ζ  (5.13) 

where ( )Renu kδ ≡ is a good measure of the penetration depth, since the vorticity wave decays 

exponentially with  .n

                                                 
† The exact solution is 

( )
( ) ( )

( ) ( )( )

3
1 10 1 ...

2 Re 3 Re
2 4

2 2

0,0 2 3 1 79 11 ...
2 8Re Re1 1 4 Re

Re 2 1 51 1 4 Re 1 ... 1 ...
2 RRe Re

i

n

n

i e
k u U i

i i i
k u

π
ζω

λ

⎛ ⎞− + +⎜ ⎟
⎝ ⎠⎛ ⎞= − +⎜ ⎟

⎝ ⎠+ +

⎛ ⎞ ⎛= − + − + − − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

∼

∼
e

⎞
⎟
⎠
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By a similar calculation, the classic result for a solid boundary (denoted here by suffix c) can also 

be obtained: 

 
( ) ( 2

,
cos 4

2
cc n

c
c

n t
e kt n

U
ζ δ δ π

δ
−= − +

ω
)ζ  (5.14) 

Here ( )1 22c kδ ν= .   

Both solutions are depicted in Figure 5.1.  From the ratio of penetration depth 

 3 21
2

Recδ δ ∼  (5.15) 

vorticity is seen to propagate significantly further into the domain when fluid is injected through the 

boundary.   However, the magnitude of this vorticity is notably reduced 

 ( ) ( ) 1 20, 0, Rect tζ ζ
−ω ω ∼  (5.16) 

Figure 5.1 Comparison between the classic Stokes solution (red) for
an oscillating plate and the generalized case (black) when fluid is 
injected through the boundary at 8 equally spaced times for 
all axes are normalized with respect to the classic Stokes parameters 

Re 16;=
 
           

Another important consequence of fluid injection worth pointing out is that, less work is done by 

the plate against frictional stresses during each cycle.   That this is so follows since 

 3 22 Rec c cζ ζ δ δ −⋅ ⋅τ u τ u ∼ ∼  (5.17) 

where µ= ×τ ω n  is the shear stress on the boundary and  denotes the time average. 
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5.3 Some Final Remarks 
 

We note here that while an exact solution was found for the simple model problem considered, 

flows that are more complex require the application of either numerical or perturbation techniques.  Our 

concern is with the latter and the insight gained in the present chapter can be used to guide the selection 

process.      

Typically, a small parameter multiplying the highest order derivative suggests the application of 

singular perturbation techniques (Lagerstrom 1988).  However, for a boundary with fluid injection, another 

transport mechanism is introduced that achieves the same end as the physics that derivatives of highest 

order describe.  As such, a reduction in the order of the equation does not imply a sacrifice of the boundary 

conditions.  This is reflected in the convergence of the Euler limit to the solution for a strictly Euler flow; in 

other words, the inviscid approximation now adheres to the boundary.  The mathematics, in part, is 

divorced from the physics, as the solution does not concern itself with how events on the boundary 

ultimately came to pass.   

However, viscous diffusion still plays a role; through its slow, but cumulative action, vorticity that 

flows into the domain is damped.  Such behavior, is reminiscent—at least for the case of the oscillating 

plate—of the gradual decay of periodic solutions first calculated by the astronomer Lindstedt (cf. 

Kevorkian and Cole 1996), and suggests the possible effectiveness of the method of multiple scales.  The 

applicability of this technique to the generalization of Stokes’ second problem is illustrated in Appendix E. 
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6. ACOUSTIC BOUNDARY LAYER 
 

In Chapter 5, we established that fluid injected through (or from) a boundary fundamentally 

changes the vorticity creation process, as convection now competes with viscous diffusion, and both 

mechanisms transport boundary vorticity into the domain.  Before investigating how this affects the 

linearized vorticity field within solid rocket motors (cf. Chapter 7), it is instructive to contrast the behavior 

of the acoustic boundary layer, with and without a uniform injection of fluid through the boundary.  While 

this problem is only a slight generalization of Stokes’ oscillating plate considered in §5.2 (at least in terms 

of the vorticity field), key elements of the physics can again be introduced in a simplified setting.   
 
6.1 Equations of Motion 
 

We use here the conservation equations introduced in Chapter 2; however, the linear operators are 

much simplified since the mean flow now just describes a uniform injection of fluid through the boundary  

(i.e.,  with  being the unit normal vector pointing into the fluid domain).  Writing out the 

momentum equation 

=U n n

( )... 0ut∂ ∂ + =u L  then, we have 

 ( )1 1Re ReD Dt p ϑ ωϑ− −= −∇ − − ∇×u ω  (6.1) 

where bD Dt t M n= ∂ ∂ + ∂ ∂ , bM  is the injection Mach number and Reω is defined below (cf. (6.5)).  

The no-injection limit is recovered by setting 0.bM =    

To proceed, we partition the flow into longitudinal and transverse waves, which as previously 

noted, are given kinematic expression in the dilatation and the vorticity.  Transport equations for ϑ and 

follow naturally from the divergence and curlω  of (6.1), respectively.  A direct partition of the momentum 

equation into irrotational and solenoidal spaces can also be effected owing to the simplicity of the 

convective term.  In particular, we have  

 ( )1ReD Dt pϑ ϑ ϑ−= −∇ −u  (6.2) 
and 

 1ReD Dtω ω
−= − ∇×u ω  (6.3) 

The vorticity transport equation (or (6.3) for that matter) is sufficient to solve for the shearing 

process.  When treating the compressing/expanding process, a useful strategy is to combine the equation for 

the pressure ( )... 0,pp t∂ ∂ + =L  the temperature ( )... 0,TT t∂ ∂ + =L  the entropy ( )... 0ss t∂ ∂ + =L  and 

the dilation ( )... 0utϑ∂ ∂ +∇ ⋅ =L  to obtain the following coupled system (cf. Morse and Ingard 1968): 

 ( ) ( )( )
2

2 2
2

1 1, 1
Re Pr Re

D D Ds Dp T p T p T
Dt Dt DtDt ϑ ω

γ γ
⎛ ⎞

− ∇ − = ∇ = − − = ∇⎜ ⎟
⎝ ⎠

2  (6.4) 
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where†

 ( )
2

14
3Re , Re Re , Pr s po o

v s
s

cc k
ω ϑ ω

µρ
µ µ

µ κ
−

≡ ≡ + ≡

e

 (6.5) 

 
6.2 Waves 
 
6 .2.1 Acoustic Wave 

Our objective here is to understand the similarities and differences in how and why a plane 

acoustic wave oriented tangent to the boundary, i.e., 

 1cos itp ζ∼  (6.6) 

gives rise to vorticity and thermal waves, with and without a uniform injection of fluid through the 

boundary.  To this end, we focus more on the ratio of various characteristic parameters rather than the 

mathematical solution itself, which is given in Appendix F. 
 
6 .2.2 Vorticity Wave 

First, we seek to understand how sound generates vorticity by appealing to the vorticity source 

strength ζσ .  Applying the tangent component of the momentum equation to the boundary and enforcing 

the no-slip condition, we have 

 ( 11 Re
RebM p M

n
ζ

ζ ζ ϑ
ω

)b nu ϑ−∂
≡ − = − ×∇ + −

∂

ω
σ ω n  (6.7) 

Recall that this establishes the physical sources of boundary vorticity as well as the transport mechanisms 

responsible for sending this vorticity into the domain (cf. §5.1).    

With or without fluid injection, the dominant physical source here is the gradient of pressure 

tangent to the boundary; the other terms are much smaller in comparison.  This gradient gives rise to a 

longitudinal motion of fluid that does not satisfy the no-slip condition.  Vorticity must therefore be created 

such that on the boundary an equal and opposite fluid motion is induced.   

This can be seen most clearly when 0,bM =  since substituting the tangent component of (6.2) 

into (6.7) gives 
 tζ ϑ= ×∂ ∂σ n u  (6.8) 

which essentially defines a Stokes problem (cf. Chapter 5).  Thus, sound creates vorticity by making it 

appear as if the boundary oscillates parallel to itself.   

                                                 

 

† Since the problem here has no characteristic length scale, the reference length is chosen to be R oR c k=  
where  is the frequency of the acoustic wave.  Note also that k sµ and vµ  are the dynamic viscosities for 
the shearing and the compressing/expanding process, respectively; pc is the specific heat at constant 
pressure; and is the thermal conductivity. κ
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As for how this vorticity is transported into the domain, when 0,bM ≠  convection competes with 

viscous diffusion to achieve this end.  The relative efficacy with which these two mechanisms act depends 

upon the values assumed by the parameters bM  and Re .ω   We can establish this as well as some important 

scales of the problem by considering the vorticity transport equation†

 
2

2

1
RebM

t n n
ζ ζ ζ

ω

∂ ∂ ∂
+

∂ ∂ ∂

ω ω
∼

ω
 (6.9) 

Now if convection dominates, the terms on the left-hand side can be equated and it follows that 

( 1 .bn O M −∂ ∂ ∼ )
)

 This is valid however only if the diffusive contribution is higher order.  That 

must be small for this to be so can be seen by estimating the magnitude of the viscous term 

using 

( 12 RebM ω

−

( 1 .bn O M −∂ ∂ ∼ )   Note that this same condition was derived in an alternative way for the Stokes 

problem (cf. (5.12)); the appearance of the injection Mach number bM  here is simply an artifact of having 

normalized velocities by the sound speed.  The other limiting case is when the transport of vorticity is 

controlled by diffusive mechanisms—the simplest manifestation of which is when   For this case, 

we have by equating the first and third terms that 

0.bM =

( )1 2Re .n O ω∂ ∂ ∼  

As standard methods suffice in solving (6.9) for a source of vorticity given by  only 

the results are discussed here.  From the ratio of penetration depth    

,pζ − ×∇σ n∼

 ( )3 221
2

Reinjection bM ωδ δ ∼  (6.10) 

vorticity is seen to propagate significantly further into the domain when fluid is injected through the 

boundary.   However, the magnitude of this vorticity is notably reduced 

 ( ) ( ) ( ) 1 220, 0, Rebinjection
t t Mζ ζ

−
ω ω ∼ ω  (6.11) 

Not surprisingly, the same behavior was found for Stokes’ oscillating plate (cf. (5.15) and (5.16), 

respectively).  

Once the vorticity field is known, there are several ways to obtain the induced velocity.  For 

example, one can first solve the Poisson equation 2∇ = −A ω and then take the curl of the vector 

potential A  (since ).  This yields, in part, an unsteady component of flow in the normal 

direction 

ω ≡ ∇×u Α

—nuω a new feature of the present example (vis-à-vis Stokes’ oscillating plate).  When 0,bM =  

the amplitude ratio of the resulting flow pattern is 1 2Renu uω ωζ ω
−∼ .  In contrast, when 0bM ≠  and 

convective rather than diffusive mechanisms dominate, we have .n bu u Mω ωζ ∼   Since uωζ is of the same 

order of magnitude for both cases by virtue of the no-slip condition, it follows that 

                                                 

 

† Note that for the viscous and heat conduction terms, gradients in the normal direction dominate; in this 
context then the Laplacian is approximated by 2 2 2 .n∇ ∂ ∂∼    
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 ( ) ( ) ( )1 220, , 0, , Ren n binjection
u t u t Mω ωζ ζ ∼ ω  (6.12) 

That nuω plays a more prominent role when 0bM ≠ can be attributed to the diminished 

importance of viscous processes.  Although is but a small correction of nuω —uωζ with or without fluid 

injection—this component of velocity is quite important, especially since on the boundary.  The 

physical significance of this is elaborated upon below.   

0nuω ≠

Having established how sound generates vorticity, we now consider whether this vorticity 

generates additional sound.  To this end, we examine the case when 0bM = by way of illustration.  With 

the boundary assumed perfectly rigid, fluctuations of velocity normal to the boundary must be suppressed.  

Introducing the no-through condition into (6.1) and substituting the normal projection of (6.3), we have 

 ( )1Rep
n t

ω
ϑ ϑ− ∂∂

− = ⋅
∂ ∂

u
n  (6.13) 

Now for an irrotational flow, the right-hand side of (6.13) vanishes identically; this is not the case, 

however, when the flow is made to satisfy the no-slip condition as demonstrated above.  Accordingly, this 

result indicates how vorticity, once created, feeds back and modifies the pressure distribution.  More 

specifically, (6.13) conveys that vorticity creates additional sound by making it appear as if the boundary 

oscillates normal to itself.  Thus, despite the absence of any physical motion, sound is generated 

aerodynamically through an action similar to that of a speaker (cf. Lighthill 1952 for the earliest discussion 

of this idea).   
 
6 .2.3 Thermal Wave 

Following Morse and Ingard (1968), we solve for the thermal wave by considering the thermal 

effect on the pressure as higher order.  Thus, the pressure is treated as a known forcing in the heat equation 

(i.e., the equation on the right of (6.4)), suggesting an ansatz of the form 

 ( )1sT T pγ= + −  (6.14) 

Here sT is the departure from purely isentropic flow, which is driven in part by the need to avoid a slip in 

temperature on the boundary.  Substituting (6.14) into the equation on the right of (6.4), we have  

 
2

2

1
Pr Re

s s
b

T T
M

t n ω

∂ ∂ ∂
+

∂ ∂
sT

n∂
∼  (6.15) 

Since this has a formal resemblance to the vorticity transport equation (6.9), it follows that the thermal and 

the vorticity wave share many features in common. 

Our principal interest here is the induced thermal velocity su .  We can solve for this by starting 

with the continuity equation, appropriately recast, Dp Dt Ds Dtϑ+ =  and partitioning the dilatation into 
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leading order contributions owing to acoustic and entropy waves, i.e., .a sϑ ϑ ϑ+∼  It follows that 

( ) 12 2Pr Re ,s s sDs Dt Tωϑ ϕ −= ∇ = ∇∼  which gives 

 1
Pr Res s T

ω

ϕ s= ∇u ∼ ∇

)

 (6.16) 

Physically, this describes a flow of fluid up the temperature gradient, i.e., from regions of cold to 

regions of hot†.  While the tangential component of this motion is negligible—scaling as —this is 

not necessarily true for the normal component.  Using the estimates for 

( 1ReO ω
−

n∂ ∂  (cf. the discussion following 

(6.9)), when  we have 0,bM = ( )( ) ( )1 2Pr Res n su O O Tω
−∼  and 1 2Pr .s n n su u Tω

−∼   In contrast, when 

, 0bM ≠ ( ) ( )( ) ( )
12 Re Prs n b bu O M M O Tω

−
∼ s  and ( ) 11 2Pr Re .s n n b su u M Tω ω

−−∼    

Thus, in analogy with the vorticity wave, the thermal wave cancels out the effect of temperature 

fluctuations on the boundary at the expense of a contribution to  The essential point to be observed 

however is that the thermal velocity no longer plays an important role when fluid is injected through the 

boundary, since we assume 

.nu

( 12 RebM ω )
−

 to be small.  This departs from the behavior for the classic case, 

where the flow induced in the normal direction by both the vorticity and entropy wave is of comparable 

magnitude.  In other words, while becomes more significant owing to fluid injection (cf. (6.12)), the 

opposite is true for 

nuω

,s nu  

 ( ) ( ) ( ) 1 21 2 20, , 0, , Pr Res n s n binjection
u t u t M ωζ ζ

−−∼  (6.17) 

 

                                                 

 

† Although perhaps counter-intuitive, this is required by conservation of mass.  Entropy diffusion predicts 
that a local temperature maximum is not sustained over time, and thus from the equation of state, the 
density must be simultaneously increasing—fluid must flow toward the temperature maximum for this to 
be so (cf. Morse and Ingard 1968).   
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7. LINEAR STABILITY EIGENFUNCTIONS  
 

Having discussed the physics of a few model problems in previous chapters, we now consider the 

linearized flow field within solid rocket motors and solve for the acoustic, the vorticity and the thermal 

eigenfunctions. 
 
7.1 Acoustic Eigenfunctions 
 

Even though our general framework of combustion instability is formulated using sound-speed, 

we solve for the acoustic eigenfunctions in terms of the pressure to be consistent with earlier analyses (e.g., 

Culick 1973, 1975; Flandro 1995 a, b).  No increase in labor results since to the order of approximation in 

bM  considered, these thermodynamic variables are proportional to one another, i.e.,  ( ) 11 .p c−Γ −∼

Thus in lieu of (2.25), we have as our starting point  

 
( )
( )
...
...

mp
m

m

p
ik

ϑ ϑ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

L
L

 (7.1) 

While exact solutions can only be found under very restrictive conditions, such as those considered in 

Chapter 3, we can still proceed analytically by capitalizing upon the smallness of the injection Mach 

number bM  (which typically is on the order of 0.001 0.01).−  Terms indicating an interaction with the 

mean flow are scaled by this parameter and so the linear operators ( )...pL  and  can be written as ( )...ϑL

 ( ) ( ) ( ) ( ) ( ) ( )0 0... ... ... ..., ... ... ... ...p p b p bM Mµ ϑ ϑ ϑµ= + + = +L L L L L L +  (7.2) 

where ( )0 ,p p ϑ ϑ≡L  and ( ) 2
0 ,pϑ ϑ p≡ ∇L ; the other operators are defined in §G.1. 

Now in solving (7.1), a regular perturbation expansion 

 

0

0

0

...

...

...

m m b m

m m b m

m m b m

k k M k

p p M p

M

µ

µ

µϑ ϑ ϑ

= + +

= + +

= + +

 (7.3) 

suffices.  This can be justified on mathematical grounds; however, the most compelling evidence is 

experimental: frequencies observed during instability are remarkably close to the classical acoustic 

resonances of the chamber.  

Substituting the above expansions in (7.1) recovers to leading order  

 
( )
( )

0 0 0 0
0

00 0 0

,

,

p m m m
m

mm m

p p
ik

pϑ

ϑ

ϑϑ

⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

L

L
 (7.4) 
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)

the behavior of classic acoustics, which has already been discussed in Chapter 3.  Here we are chiefly 

concerned with solving for the perturbations, which are governed by ( bO M

 
( )
( )

( )
( )

0 0 0 0
0

00 0 0

, , ,

, , ,

p m m p m m m m
m m

m mm m m m

p p p p
ik ik

p p

µ µ µ µ
µ

µϑ µ µ ϑ µ

ϑ

ϑ ϑϑ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

U u

U u

L L
L L

 (7.5) 

To this end, we first take the inner product *, T dV≡ ∫x y y x of (7.5) with  to 

obtain (cf. §G.2 for details) 

† † †
0 0 0

T

j j jp ϕ⎡ ⎤= ⎣ ⎦f

 
( ) ( )

( ) ( ) ( )

†* †* 2
0 0 0 0 0

†* 1 †* †*
0 0 0 0 0 0 0 0 0

2

, , , ,

j
m j j m j m m m m

m j m b m u m m j p m m j

i k k p p dV ik E

ik M dS p dV p p dV

µ µ µ

ϑ µ ω µ µ

ϕ ϑ δ

ϕ ϕ−

− + + =

= ⋅ + − ⋅∇ +

∫
∫ ∫ ∫n u u U u U uv L L

 (7.6) 

where ( )2 †* †*1
0 0 0 0 02m m m m mE p p dVϕ ϑ= +∫ and j

mδ  is the discrete Dirac-delta function.    

A few remarks are needed before proceeding.  First, recall that the normal component of the 

acoustic velocity at the boundary is assumed to satisfy the no-through condition in the first approximation.  

However, an  response exists owing to the flame zone, which is denoted here by ( bO M ) ;mϑ µ⋅n u this term 

appears in the first integral on the right-hand side of (7.6).  As for 0mω⋅n u  (which we will show scales 

as ), this is the normal component of the vortical velocity induced at the boundary. ( bO M )
Second, once the leading order solution is known, the unknowns in (7.5) and (7.6) are the 

perturbations to the wave numbers (i.e., mk µ ) and the corrections to the mode shapes (i.e., mp µ  and mµϑ ).  

Leading order solution here refers however not only to the solution for the leading order acoustic field, but 

also the leading order vorticity and thermal fields as well.  The simplest way to demonstrate why this must 

be the case is to note that ( ) ( ), , ,... ...pϑµ = ∇ ⋅ ⋅∇ + ⋅∇ +U u u U U uL  To evaluate this term, for example, all 

contributions to  must be known, not just those that come from acoustics.  The details of solving for the 

vorticity and thermal fields are discussed in §7.2 and §7.3, respectively.   

u

Returning to (7.6), when j m=  the first term on the left-hand side vanishes identically, yielding a 

formula for mk µ : 

 
( ) ( )

( )2
0

†* 1 †*
0 0 0 0 0 01

2 †*
0 0 0

, ,

, ,m

m m m b m u m m m

m m m E
p m m m

ik M dS p dV
ik i

p p dV

ϑ µ ω µ

µ µ µ

µ

ϕ ϕ
α θ

−⎛ ⎞⋅ + − ⋅∇
⎜ ⎟= − − =
⎜ ⎟+⎝ ⎠

∫ ∫
∫

n u u U u

U u

+v L

L
 (7.7) 

Culick (1975) obtained a similar result by starting with a perturbed equation for the pressure, except that no 

vortical terms appeared on the right-hand side as the unsteady motions in that analysis were assumed 

irrotational in the first approximation.  Flandro (1995 a, b) restored the missing terms and provided a model 

to evaluate them for a simple geometry and under somewhat restrictive conditions.  We discuss this further 

in Chapter 8. 
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When  the second term on the left-hand side of (7.6) vanishes identically, yielding an 

expression involving the unknown perturbations to the mode-shapes.   By considering a series expansion of   

j m≠

mp µ  and mµϑ  in terms of the leading order mode shapes, 

  0
1, 1,

,p
m m k k m m k

k k
k m k m

p p ϑ
µ µ µ µ 0kα ϑ α

∞ ∞

= =
≠ ≠

= =∑ ∑ ϑ  (7.8) 

we can use this expression to help determine the coefficients.  Further details of this procedure are provided 

in §G.3.  However, the essential point is that the approach introduced here allows us to solve not only for 

mk µ  but also for mp µ  and mµϑ .   
 
7.2 Vorticity Eigenfunctions 
 
7 .2.1 Historical Overview 

A simplification often introduced when describing the flow field within solid rocket motors is to 

restrict consideration to a cylindrical propellant grain.  Doing so and thus able to draw an analogy to a duct 

with porous wall, Culick (1966) solved for the steady streamlines.   

Most existing unsteady solutions have been constructed by perturbing this steady flow field in one 

way or another.  For example, Varapaev and Yagodkin (1969) first considered the question of stability, 

with more extensive development of the theory by Casalis et al. (1998) and Griffond et al. (2000, 2001).  

These recent additions sought in part a basic understanding of the parietal or surface vortex shedding 

phenomena, which has been identified as a possible source of instability in the ARIANE 5 booster and 

involves large pressure oscillations being driven by so-called crawling vortices (Lupoglazoff and Vuillot 

1992, 1996, 1998).   

Since combustion instability is however generally characterized by excited acoustic modes, 

Flandro (1995 a, b) following a somewhat different approach and bypassed questions regarding the stability 

of the steady flow to focus instead on better understanding the mechanisms and energy pathways that 

govern the growth or decay of the unsteady flow.  Superimposing a purely axial acoustic disturbance upon 

Culick’s (1966) earlier solution, Flandro asked and answered the important question: what is missing? 

Critical of the simplification of allowing oscillatory slip flow on propellant surfaces, a more complete and 

realistic model of the unsteady motions within combustion chambers was developed, by solving for the 

shearing half of the problem using perturbation methods.  Shown to exist were waves of coherent 

acoustically-generated vorticity, created on the boundary owing to a kinematic coupling with the acoustic 

field and convected deep into the interior by the mass flux issuing forth from the burning propellant.  Using 
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details of this solution, the effect of vorticity on system stability was then established, a more in-depth 

discussion of which is deferred to Chapter 8.   

Since that time a number of different investigations (e.g., Majdalani et al. 1998; Zhao et al. 2000; 

Garcia-Shafer et al. 2001) have dealt with the same problem with slight differences in emphasis.  The 

solutions obtained all collapse to the order of approximation considered, and compare well with both 

experiments earlier carried out by Brown et al. (1986) and cold-flow numerical simulations performed by 

Roh (Majdalani and Roh 2000). 
 
T he Present Effort  

The goal here is to extend the range of unsteady laminar flow models, which seek to describe the 

chamber dynamics of potentially unstable solid rocket motors, by solving for the vorticity field using the 

method of multiple scales†.   An important consequence of this approach is that a clear demarcation can be 

made between information required for stability computations, which involve integrations over the domain, 

and information required for determining the detailed structure within the domain.  It turns out, that insofar 

as the former is concerned, surprisingly little is needed.  This allows for a considerable generalization of 

stability results to propellants whose grain boundaries can locally be described by a general orthogonal 

coordinate system; this is realized by introducing a coordinate system based on normal and tangential 

coordinates.  This is a significant contribution since previous results were limited to the vorticity field that 

accompanies a purely axial acoustic wave within a cylindrical chamber. 
 
7 .2.2 Calculation 

We now solve for the vorticity eigenfunctions to leading order.  This means simply that we obtain 

here the linearized vorticity field that induces on the boundary a fluid motion equal and opposite that which 

accompanies the leading order acoustic field. 
 
V orticity Source Strength 

We begin by deriving the vorticity source strength ζσ , i.e., the basic measure of the vorticity 

creation process (cf. §5.1).  Applying the tangent component of the linearized momentum equation to the 

boundary and enforcing the no-slip condition, we have 

                                                 

 

† Although Flandro (1995 a, b) recognized that multiple scales existed, the perturbation machinery needed 
to benefit more fully from this observation was not introduced.   Both Zhao et al. (2000) and Garcia-Shafer 
et al. (2001), motivated by Flandro’s earlier work, corrected for this deficiency, but once again, only a 
cylindrical propellant grain subject to axial-mode instability was considered.    
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 (7.9) 

Recall that this establishes the physical sources of boundary vorticity as well as the transport mechanisms 

responsible for sending this vorticity into the domain.   

The gradient of pressure tangent to the grain boundary is the dominant physical source here as the 

other terms are at least two orders of magnitude in bM  smaller by comparison†; hence  The 

boundary vorticity that results is not only diffused but also convected into the domain by the mass flux 

issuing forth from the burning propellant.  However, when 

.pζ − ×∇σ n∼

( ) 12 RebM ω

−
 is small, convection is the 

controlling mechanism (this was demonstrated for the acoustic boundary layer in §6.2 and will be justified 

further below); since this is true of typical motor systems  (cf. Table 7.1), it follows that 

( ) .bMζ ζ⋅σ n U ω∼   

Now equating the two expressions for ,ζσ  there results an a-priori estimate for the vorticity on 

the boundary:   

 ( ) 1
bboundary

M pζ
−− ⋅ ×ω n U n∼ ∇  (7.10) 

since  is known to leading order from classic acoustics.  This is a result of great importance, with the 

reasons why becoming clear in due course. 

p

An estimate for how normal derivatives of the vorticity field scale can also be obtained, by 

deriving another expression for the vorticity on the boundary and comparing it to (7.10).  To this end, we 

expand the tangent component of ω≡ ∇×ω u and retain only the dominant contribution‡, which gives 

.nζ ωζ×∂ ∂ω n u∼  It follows by virtue of the no-slip condition ωζ ϑζ= −u u and the result 

 from classical acoustics that (O pϑζ ζ∇u ∼ )
 ( ) ( )

boundary
n O n O pζ ωζ×∂ ∂ ∂ ∂ ∇ω n u∼ ∼ ζ  (7.11) 

Comparing  (7.10) and (7.11) then implies 

 ( )1 bn O M∂ ∂ ∼  (7.12) 

which provides a scaling estimate for normal derivatives of the vorticity field.  It should be emphasized that 

(7.10) and (7.12) were derived for ( ) 12 RebM ω

−
 small, and thus do not apply when    0.bM =

 

                                                 

)
† Since the velocity fluctuation at the burning surface is proportional to the injection Mach number, 
both 

nu
( ) (b b n n ( ) bM ζ⋅n u ΩM M U u×∇ ⋅ = ×∇n U u n and  are ( )2 .bO M   Terms scaled by the inverse of the 

Reynolds number contribute even less. 
 

 

‡ The exact result is ( ).nn uζ ωζ ω ω≡ ×∂ ∂ − × ∇ + ⋅ω n u n K u ζ  



 
 

 

51

 
 
( )L m

 

 
( )R m

 

 
bM  

 
Reω  

     
k  

1 1L T
 

 
δ  

 
S  

 
( )bM kδ  

 
11.31−  

 

 
0.951 

 

 
77.0  

 

 
0.0137  

 
 

Small Research Motor 
 

(Culick and Yang 1992) 
 

0.60 0.025 31.7 −  63.32
 

1.84  
  

 
0.005  

 
1083.1  
 

 
0.1920  

 
11.58−  

 

 
15.9  

 

 
50.9

 
 

 
0.0012  

 
 

Tactical Rocket 
 

(typical geometry) 
 

2.03 0.102 33.1 −  71.33  
 

1.84  
  

 
0.117  
 

 
593.9  

 

 
0.0144  

 
29.26−  

 

 
11.4  

 

 
28.1  

 

 
0.0031  

 
 

Cold Flow Experiment 
 

(Shaeffer and Brown 1992) 
 

1.73 0.051 33.3 − 62.71  
 

1.84  
  

 
0.029  
 

 
557.9  

 

 
0.0623  

 
26.27−  

 

 
287  

 

 
27.2  

 

 
0.0001  

 
 

Space Shuttle SRM 
 

35.1 0.70 32.3 −  79.25
 

1.84  
 

 
0.332
 

 
 
800.5

 
 

 
0.0038  

  
Table 7.1 Physical parameters for typical motors systems (cf. Flandro 1995 b) 

 
M otivating the Method of Multiple Scales  

While a regular perturbation expansion sufficed when solving for the acoustic eigenfunctions, 

such an approach is not applicable here since qualitatively different behavior is observed when 0bM =  and 

when bM  is small.   

Let us elaborate on this point further.  When 0,bM =  vorticity creation is controlled entirely by 

viscous processes and singular perturbation techniques apply.  This involves constructing an outer solution, 

which is asymptotically matched to an inner solution valid near the boundary where viscous effects are 

taken into account.  Because this invariably couples the behavior on the boundary, with that in the interior, 

a priori estimation of the former is unrealizable.  In contrast, when 0,bM ≠  diffusion competes with 

convection and both mechanisms transport boundary vorticity into the domain.    

While this argues against the application of either regular or singular perturbation techniques (cf. 

Chapter 5), it remains to motivate the method of multiple scales.  Two key ideas are needed in this regard.  

First, for the cases of interest here, boundary vorticity penetrates substantially further into the domain since 

convection is the controlling transport mechanism.  Second, this vorticity wave propagates with the mean 

flow, while sound waves propagate at the speed of sound.  Given then that both waves coexist spatially and 
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exhibit the same temporal dependence, a convective length scale that reflects the disparity in distance 

traveled per unit time can be introduced. 

To better understand this latter point as well as to motivate the functional form of such a scale, 

consider the vorticity transport equation 

 ( ) 1 2Rebt M ω
−∂ ∂ + ∇× × + × = ∇ω ω U Ω u ω  (7.13) 

 Since normal derivatives of the vorticity field scale as ( )1 bn O M∂ ∂ ∼ ,  it is not difficult to see that the 

term which balances tζ∂ ∂ω is .b nM U ζ n∂ ∂ω  By comparison, the dominant viscous term is 

( )( ) ( )1 2 2 2 1Re Re ;bn O M Oω ζ ω ζ
− −∂ ∂ω ∼ ω  since our analysis assumes that ( ) 12 RebM ω

−
 is small, viscous 

diffusion no longer plays a key role in the transport of vorticity.  However, it does still act to dissipate 

vorticity; we will return to this later.  Thus to leading order (7.13) reduces to a description of a wave 

convected along a characteristic path, 

 0b nt M U nζ ζ∂ ∂ + ∂ ∂ω ω ∼  (7.14) 

By virtue of the arguments advanced then, we define ξ  such that in the first approximation t ξ−  

is a characteristic along which vorticity waves are convected into the interior.  It follows from (7.14) that 

 ( ) 1
b nn M Uξ −∂ ∂ =  (7.15) 

While ξ  can be found by integration, it is sufficient for the analysis here to know that by a suitable choice 

of integration limits ξ  vanishes on the chamber boundary. 

Flandro (1995 b) first recognized the mathematical value of ξ  and used it, in particular, to 

determine the dominant viscous term.  However, the physical origin of the scale was left unmotivated and 

the perturbation machinery needed to benefit more fully from its existence was not introduced.  Instead, the 

analysis relied on heuristic arguments to make simplifications where needed. 

In contrast, we explicitly formulate the problem here using the method of multiple-scales.  As 

such, normal derivatives now transform as 

 1

b nn n n M U
ξ

ξ nξ
∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂
 (7.16) 

It should be emphasized that in carrying out the solution ξ  and n  are treated as independent variables; the 

dimension, in other words, is temporarily increased.  

Now a two-scale expansion for ζω of the form ( ) ( )0 1, , , , ...bt M tζ ζ ζξ ξ+ +ω ω x ω x∼ is sought. 

Substituting this in (7.13) and using (7.16), we find that 0ζω  is governed by a first order wave equation in 

,ξ  
 ( ) ( )0 0, , , , 0t t tζ ζξ ξ ξ∂ ∂ + ∂ ∂ =ω x ω x  (7.17) 
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where  the solution 
 ( ) ( ) ( )0

0 0, , mi k tnt e ξ
ζ ζξ − −=ω x ω x  (7.18) 

is expressed in terms of an unknown function ( )0
n
ζω x  of the original spatial scales.   

Note that the behavior of ( )0
n
ζω x  follows from suppressing secular terms at higher order.  We 

make a few remarks in this regard.  First, it is here that viscous processes enter into the analysis in a 

significant way in causing the vorticity wave to decay.  Second, closed form solutions of ( )0
n
ζω x  are 

generally too difficult to construct, except for simple geometries, such as a cylindrical propellant grain.  

Last, and perhaps of greatest consequence, is that integrals which determine the effects of vorticity on the 

acoustic field can be evaluated without detailed knowledge of ( )0 .n
ζω x  That this is so will be shown in 

§7.2.3.  Only the behavior on the boundary is needed and this can be obtained from (7.10).  Substituting in 

(7.18) and the leading order solution for the pressure field, i.e., ( ) 0
0 0 ,mi k t

mp p p e−= x∼  we have†  

 ( ) 1
0

n
bboundary 0mM pζ

−= − ⋅ ×∇ω n U n  (7.19) 

Solving for  may still be important though and we discuss this further in §7.2.4.   ( )0
n
ζω x

 
C ompleting the Description of the Vorticity Field 

We now seek to complete the description of the vorticity field by solving for the vector potential 

 and the induced velocity A .ωu  

First, we solve the Poisson equation 2∇ = −A ω  for .ζA   This calculation is straightforward since 

derivatives with respect to ξ  dominate in the first approximation, i.e., ( ) ( )2 2 2 1 2 2
b n bM U O Mξ− −∇ ∂ ∂ +∼ 1 .  

Thus the tangent component becomes ( ) 12 2 2 2
0b nM U 0ζ ζξ

−
∂ ∂ = −A ω , and on using (7.18), this can be 

integrated immediately to 

 ( ) ( ) (2
0 0, , , ,b n mt M U k tζ )0ζξ ξ=A x ω x  (7.20) 

Having tacitly fixed the gauge of by requiring that A 0,∇⋅ =A  this condition can be used to find 

0nA .  While we refrain from doing so here since this component of the vector potential is not required for 

subsequent calculations, we note that for any vector  that satisfies f 0n nf n f ζ ζκ∇ ⋅ = ∂ ∂ − +∇ ⋅ =f f and 

has a functional dependence on ξ  similar to that of the vorticity, simple scaling arguments show that 

( ) (0 .n b mf O M k O ζ ζ∇ ⋅f∼ )   For example, this is not only true of 0nA  but also the normal component of 

the vorticity.  

 

 

                                                 

 

† Note that although the vorticity field corresponding to each of the acoustic modes is needed, we omit the 
suffix  to simplify the notation. m
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It remains to determine ,ωu  which follows simply from expanding ∇×A †: 

 ( ) ( ) ( )0 0, , , ,b m nt i M k U tωζ ζ 0ξ ξ= ×u x n ω x  (7.21) 

 ( ) ( ) ( ) ( )( )2 2
0 0, , , ,n b nmu t M k Uω ζξ = ×∇ ⋅x n ω x0 tζ ξ  (7.22) 

This completes the description of the vorticity field.   

In summary, we have obtained the leading order solution for the vortical half of the unsteady flow 

field by using the method of multiple scales.   This solution has been expressed in terms of the normal 

velocity of the steady flow  and nU ( )0 , , tζ ξω x  (and thus the unknown function  of the original 

spatial scales).   Later, it will prove useful to also have an expression for 

( )0
n
ζω x

0 t×∂ ∂n A  in terms of 0ωζu .  

From (7.20) and (7.21), it follows that 

  0 0b n b nt M U M U 0ωζ ϑζ×∂ ∂ = − =n A u u  (7.23) 

Lastly, we examine the behavior of the induced velocity on the boundary by substituting (7.18) for 

(0 , , tζ )ξω x  and (7.19) for ( )0 .n
ζω x  Consider the tangent component first.  From (7.21), we have 

( )0 0mi k pωζ ζ= ∇u 0 .  Given that the solution for the scalar potential is ( )0 0a mi k pϕ = − 0  (cf. (C.2)) it 

follows that the no-slip condition is indeed satisfied, i.e., 0 0 0aζ ωζ+ =u u  (that the tangent velocity induced 

by the thermal wave is negligible will be shown in §7.3).  Now consider the normal component.  From 

(7.22), we have ( )2
0 0 .n b m nu M k U pω ζ

−= − ∇ ⋅ ∇ 0ζ  The physical significance of this not vanishing on the 

grain boundary is succinctly summed up by the latter part of the statement: sound generates vorticity, which 

in turn, generates more sound.   We elaborate upon this further in Chapter 8. 
 
7 .2.3 Evaluating Stability Integrals 

We now show that volume stability integrals involving the vorticity field can be evaluated without 

detailed knowledge of .  These integrals, whether describing linear or nonlinear effects, are of the 

form

( )0
n
ζω x

( ) 0 .mi kI f e dVξ= ∫ x  Because the integrand here consists of some unknown function ( )f x of 

 which changes slowly in comparison with the exponential term that rapidly oscillates about zero 

(with characteristic frequency 

( )0
n
ζω x

0mS k M= b

                                                

), cancellations occur when integrating over the domain.  Thus, 

 
† Expanding in our chosen coordinate system, we obtain ∇×A

( ) ( ) (,n nu A
n

)ω ζ ζ ωζ ζ ζ ζ
∂

= ×∇ ⋅ = × − × ∇ + ⋅
∂

n A u n A n K A  

 

Both expressions here are exact.  Consider first.  As only tangential derivatives arise, no further 
simplification of the expression is possible.  The result (7.22) may be obtained by substituting for 

nuω

0ςA  
from (7.20).  Now consider .ωζu   Since ( )1 bn O M∂ ∂ ∼ clearly the term involving the normal derivative 
dominates, i.e., ( ) .nωζ ζ∂ × ∂u n A∼   Introducing then the expression for given by (7.20), and noting 
that to leading order 

0ςA
( ) 1 ,b nn M U ξ−∂ ∂ = ∂ ∂  we obtain (7.21). 
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it is entirely plausible that the principal contribution arises solely from the value the integrand assumes on 

the boundary. 

Flandro (1995 a, b) made a similar observation, but only after first solving for the detailed 

vorticity distribution within a cylindrical chamber and using this solution to evaluate integrals.  No formal 

asymptotic result was ever derived.   Thus, a clear elucidation of precisely what information was actually 

needed did not result.  In contrast, we clearly differentiate here between the information required to 

evaluate integrals and that required for detailed knowledge of the vorticity field within the chamber.  

Writing out the differential volume element in I for a coordinate system given by ( )1 2, ,n ζ ζ=x  

with corresponding metric coefficients ( )1 21, , ,h h  we have  

  ( ) ( )0 0
1 2 1 2

m mi k i kI f e dV f e h h d d dnξ ξ ζ ζ= =∫ ∫x x  (7.24) 

Now integrating by parts within the multi-scale framework† one obtains 

  ( )
( )( )

0 1 2
1 2

0 0

mi kb b
n n

m m

f h hM M
I i U f d i e U dnd d

k k n
ξ ζ ζ

∂
− +

∂∫ ∫
x

x S∼ v  (7.25) 

Integrating the second term by parts again, we find that its contribution is ( )( )2
0b mO M k .  Thus to leading 

order, we have 

  ( ) ( )0

0

mi k b
n

m

M
I f e dV i U f d

k
ξ= −∫ ∫x ∼ v x S  (7.26) 

This is a result of great practical importance: volume stability integrals that describe the energy 

flux to and from the vorticity field collapse to integration over burning surfaces and in so doing introduce a 

factor of 0b mM k .  Thus, as earlier claimed, detailed knowledge of ( )0
n
ζω x  is not necessary to evaluate 

stability integrals, only the behavior of ( )0
n
ζω x  on the boundary is needed (cf. (7.19)). 

An important consequence is that now stability integrals can be evaluated under far more general 

conditions than previously possible; more specifically, reasonably complex grain geometries can now be 

accommodated provided they can be locally described by a general orthogonal coordinate system.  In 

contrast, Flandro’s analysis (1995 a, b) was limited to the case of axial mode instability in a cylindrical 

chamber; however, our work does build upon many of his ideas insofar as the vorticity field is concerned. 

Finally, it must be emphasized that the asymptotic result (7.26) holds only if the flow remains 

laminar, for only then are cancellations certain to occur.  To minimize the impact of this, we will recast the 

integrals that need evaluation using standard vector identities, such that only the surface integrals will 

contribute when the flow is laminar.  Such a step is important because even if the vortical flow transitions 

                                                 

 

† During intermediary steps, the fast and slow scales are treated as independent variables. 
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downstream of the surface, the behavior at the burning surface is in large measure constrained by 

kinematics.   Equation (7.26) then will only be utilized to show that the remaining volume integrals make a 

negligible contribution when the flow is laminar; whether these integrals contribute when the flow is 

turbulent is something that would need to be assessed.   
 
7 .2.4 Detailed Structure 

Even though stability integrals can be evaluated without detailed knowledge of the vorticity field, 

the caveat here is that vorticity can affect combustion instabilities in more than one way.  For example, the 

highly oscillatory structure of (acoustically-generated) vorticity waves, which on the one hand is 

responsible for the collapse of volume integrations, on the other hand increases the likelihood that these 

waves become unstable themselves.   

If this transition occurs near the boundary (where such vorticity is created) the impact on the 

combustion processes would likely be significant, with effects including—but not limited to—enhancing 

the heat transfer rate back to the burning propellant owing to increased mixing.  In other words, insofar as 

combustion responsiveness is concerned, acoustically generated vorticity could be the ideal Trojan horse.  

What better way for turbulence to penetrate regions close to the flame zone, than for a turbulent precursor 

to already exist, especially given the nature of an injection driven flow†.  This idea was first introduced by 

Beddini (1998), with some preliminary results presented by Lee and Beddini (2000).   

Before the stability of the vorticity field can be assessed however, detailed knowledge of the 

laminar behavior is necessary. As previously noted, closed form results are typically only possible for 

simple geometries.  In §G.4, we take up this problem for one such case—that of a cylindrical chamber.  

Flandro (1995 a, b) and others have studied this problem when only a purely axial acoustic motion exists.  

In contrast, our calculation captures the behavior for a general acoustic motion.   
 
7.3 Thermal Eigenfunctions 
 

We now solve for the thermal eigenfunctions to leading order.  For the case of a classic acoustic 

boundary layer, the normal component of the thermal velocity is equal in magnitude to that induced by the 

vorticity (cf. §6.2.3).  Here we establish whether this is also true when a flow through the boundary exists.  

 
† Much in the same way that boundary layers are blown off, for random motions to penetrate regions close 
to the surface, considerable kinetic energy would be required.   
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As demonstrated in Chapter 6, in solving for the thermal motion, a useful tactic is to combine the 

equation for the pressure ( )... 0,pp t∂ ∂ + =L  the temperature ( )... 0TT t∂ ∂ + =L  and the entropy 

( )... 0,ss t∂ ∂ + =L  to obtain 

 ( )( ) ( )1 1Ds Dt D T p Dt Qγ γ= − − = −  (7.27) 

where bD Dt t M= ∂ ∂ + ⋅∇U  and ( )( ) 1 2 11 Pr Re ReQ Tωγ
− −

ω= − ∇ + Φ .  Examination of (7.27), suggests 

the following ansatz  

 ( )1sT T pγ= + −  (7.28) 

where the first term is the thermal fluctuation associated with the entropy of the fluid (we also have from 

(7.27) that ss T∼ ), in the absence of variations of which, the temperature would follow the pressure in an 

isentropic manner, as reflected by the second term.   

Substituting (7.28) in (7.27) gives 

 21
Pr Re

s
s

DTDs T
Dt Dt ω

= ∼ ∇  (7.29) 

Note that some higher order physical effects have been omitted from the right-hand side.  In particular, the 

flow of heat that accompanies the alternate compressions and rarefactions of the sound wave and the 

irreversible loss of kinetic energy‡ (i.e., dissipation).  

To solve (7.29) for sT , the method of multiple scales is again justified since we need to resolve 

waves that propagate at vastly different rates, i.e., the speed of sound versus the mean flow.  Thermal 

fluctuations associated with the entropy of the fluid clearly fall into the latter class.    

As with the vorticity then, a two-scale expansion for ( ) ( )0 1, , , , ...s s b sT T t M T tξ ξ+ +x x∼  is sought, 

where in accordance with the method, normal derivatives now transform as in (7.16).  It is easily shown, 

upon introducing (7.16) into (7.29), that the leading term of the expansion ( )0 , ,sT tξx  is governed by a first 

order wave equation in ,ξ  i.e., ( ) ( )0 0, , , , 0,s sT t t T tξ ξ∂ ∂ + ∂ ∂x x ξ =  with solution 

 ( ) ( ) ( )0
0 0, , mi k tn

s sT t T e ξξ − −=x x  (7.30) 

As before (cf. §7.2) suppression of secular terms at higher order determines the unknown function ( )0
n

sT x  

of the original spatial scales.   

However, the corresponding thermal velocity 0su  can be determined simply from the functional 

form of 0sT .  Starting with the continuity equation, appropriately recast ,Dp Dt Ds Dtϑ+ =  a leading 

order partition of the dilatation into contributions owing to acoustic and entropy waves, i.e., 0 0a s 0ϑ ϑ ϑ= + , 

                                                 

 

‡ Although the magnitude of the unsteady vorticity in some sense is considered large, a negligible amount 
of heat is generated owing to viscous dissipation, the dominant term of which is .    bMΦ ⋅Ω ω∼
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is simple to effect.  In particular, we have 0 0 .s Ds Dtϑ =  It then follows from (7.29) that 

( ) 12 2
0 0 Pr Re 0s s sTωϑ ϕ −= ∇ = ∇ , and so 

 0 0
1

Pr Re 0s s T
ω

ϕ s= ∇ = ∇u  (7.31) 

The tangential component of this motion is negligible—scaling as ( )1ReO ω
− .  The motion in the normal 

direction is given by 

 ( ) 11 2
0 0

1Pr Re 0s n m b b
n

u i k M M T
Uω

−−= s  (7.32) 

where 0sT  is defined  by (7.30).  Recall in our analysis that ( ) 12 RebM ω

−
 is assumed small.  Thus, in 

contrast with the classical acoustic boundary layer, flow through the boundary reduces the importance of 

the thermal velocity in a solid rocket motor. 
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8. LINEAR STABILITY 
 
8.1 Introduction 
 

Much effort has been devoted to improving predictions of linear stability, since solid rocket 

motors deemed stable during design often exhibit large amplitude pressure oscillations during qualification 

testing†. 

Following the ideas of an energy balance pioneered by Kirchoff, the first stability results appeared 

in the 1960s (McClure et al. 1960; Cantrell and Hart 1964; Hart and McClure 1965).  A different algorithm 

based on a perturbed eigenvalue problem for the pressure was later introduced by Culick (1970, 1973 and 

1975).  It yielded results consistent‡ with earlier work and has since formed the cornerstone of the Standard 

Stability Prediction Program (Lovine et al. 1976; Nickerson et al. 1983), generally referred to by its 

acronym SSPP, now currently in use. 

Both schools of thought adopted the widely accepted point of view that combustion instability 

stems from perturbations to the classical acoustic resonances of the chamber, with stability represented as 

an additive set of stability integrals.  Difficulties arise because either not all relevant processes are 

accounted for, or, more often, information is unavailable to model with reasonable accuracy their influence.  

A number of investigations have focused on interactions between the acoustic field and combustion, 

condensed species, the nozzle, etc. (cf. Culick and Yang 1992 for a thorough review).   

However, one serious omission of these earlier efforts followed from the assumption that the 

unsteady motions are irrotational in the first approximation.  Thus, the original set of stability integrals did 

not include a number of important effects owing to coupling with vortical flow processes.  Flandro (1995 a, 

b) first recognized and convincingly established this to be true by emphasizing the need to pay close 

attention to the no-slip boundary condition. 
  

 
† Although instabilities can be triggered in linearly stable systems by disturbances of sufficiently large 
amplitude, we refer here to situations where motors are in fact linearly unstable, despite predictions to the 
contrary.  
 
‡ To avoid the loss of acoustic energy within the volume being compensated by the gain of energy for the 
mean flow, a correct representation of the former, as noted by Culick (1975), is required.  This change 
needs to be made in some early work based on an energy balance approach to yield entirely self-consistent 
results.  
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A  Brief History of Flow Turning 

In retrospect, a correction accounting for the energy loss due to vorticity generation was 

incorporated into the acoustic instability algorithm much earlier.  However, from the time of inclusion in 

the mid 1970s up until only recently, it was not recognized as such. 

To help clarify how the flow field established by a burning surface couples to acoustic motions 

tangent to the grain boundary, Culick (1973) developed a one-dimensional formulation of the rocket motor 

stability problem.  What resulted was a novel damping effect—christened flow turning—that was attributed 

to gas particles produced in the flame zone having to turn in order to acquire the motion of the acoustic 

flow.   

An inviscid, multidimensional treatment of the same problem (Culick 1975) that did not explicitly 

account for vortical flow effects recovered no such result, however.  The one-dimensional stability integral 

was then patched on and argued to give reasonable approximation to a process believed otherwise too 

complicated to model.  While not an unusual strategy, much debate followed regarding its merits. 

An oft-cited reason for the absence of flow turning in Culick’s multidimensional formulation was 

the omission of processes of viscous decay near the flame zone (cf. Culick and Yang 1992).  Experimental 

investigations even sought to measure this effect directly (Magiawala et al. 1979); although certainly 

important, no definitive answers were forthcoming.  Partial resolution of this issue was only recently 

provided by Flandro (1995 a, b). 

For any rocket motor chamber that supports pressure oscillations tangent to the grain boundary, a 

purely acoustic representation of the unsteady flow field fails to satisfy the no-slip condition.  Critical of 

this, Flandro found both an inviscid (1995 a) and a viscous (1995 b) solution for the unsteady vorticity field 

within a cylindrical chamber.  This was accomplished by superimposing a purely axial acoustic disturbance 

on a steady flow established by a uniform injection from the boundary, and solving for the other half the 

problem.   

Then restoring all rotational terms that were dropped in the earlier analysis (Culick 1975), and 

evaluating these new stability integrals using the laminar models for the unsteady vorticity field obtained, 

Flandro first identified a term that yielded—in both cases—a damping effect indistinguishable from the 

flow turning loss.  This was a significant finding. 

What Flandro (1995 a, b) essentially showed was that the no-slip condition is key to flow turning 

naturally reappearing in a multidimensional treatment of the stability problem.  This, in fact, is why 

Culick’s (1973) original one-dimensional formulation first captured the flow turning effect.  Although not a 
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requirement of the mathematical protocol, the unsteady motions in that analysis were forced to enter 

normal to the propellant boundary; the no-slip condition was for all practical purposes imposed.   

Had this been Flandro’s only result, use of an irrotational description might have been entirely 

justified, at least insofar as questions of linear stability, for even though such a description of the fluid 

dynamics is not rich enough to satisfy the no-slip condition, effective modeling (Culick 1973) at first 

glance circumvents that inherent limitation.   
 
A nother Finding: Radial Pumping. 

However, another important result of Flandro’s analysis (1995 a, b) was a destabilizing radial 

pumping mechanism† shown to exist on the chamber boundary, owing to the normal component of velocity 

induced by vorticity being non-zero there. 

This effect has also led to much debate.  Apart from its physical origin being somewhat unclear—

questions for instance arose as to whether a new source of mass needed to be found within the combustion 

zone—for the particular configuration considered, i.e., a cylindrical propellant grain subject to axial mode 

instability, a key mathematical observation was that the energy gained because of this radial pumping 

compensated the loss due to flow turning.  

In other words, to the order of approximation considered, no net contribution existed owing to the 

effects of vorticity.  A physical explanation of this rather surprising result was not offered.  Was this merely 

a fortuitous finding or rather a deeper reflection of the underlying physics? 
 
T he Present Effort 

We aim to address this question here.  We do so, in part, by deriving novel formulae that clearly 

reflect the interaction between vorticity and sound, allowing for a substantial clarification—both in terms of 

the mathematics and the physics involved—of the mechanisms that allow the former to influence the 

growth or decay of the latter within solid rockets.  Aside from a significantly enhanced physical 

understanding, what has already been done (Culick 1973; Flandro 1995 a, b) is improved upon in two key 

ways.   

First, the results obtained are independent of propellant grain geometry.  The importance of this 

can hardly be overestimated.  Flandro’s analysis (1995 a, b) relied heavily on the assumption of a 

cylindrical chamber with only the case of a purely axial acoustic wave examined; the setting considered by 

 
† Culick (1973) first demonstrated the existence of such a mechanism in the context of an acoustic 
boundary layer over an impermeable surface.  While it was hypothesized that this periodic radial pumping 
may affect the losses/gains at a permeable surface, this process was inadvertently overlooked in later work. 
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Culick (1973) was even simpler.  Second, the derivation of these results depends largely on kinematics.  In 

other words, the conclusions reached are independent of the dynamics and thermodynamics of the medium, 

and thus applicable for any fluid motion, turbulent or otherwise.   
   
8.2 Problem Formulation 
 

As noted earlier, linear stability can be formulated either by using an acoustic energy balance or as 

a perturbed eigenvalue problem.  Formulas for the latter approach were derived in §7.1.   From these the 

perturbations to the wave numbers mk µ and thus the growth rates mµα and the shifts in frequency mµθ can 

be obtained (as well as the corrections to the acoustic mode shapes).  In contrast, an acoustic energy 

balance only determines the growth rates.  However, working with the energy of the disturbance results in 

an improved understanding of the physical mechanisms involved.  Thus, we first formulate linear stability 

along these lines and then evaluate the relevant formulas from §7.1 in §H.1. 

Now whether acoustic waves grow or decay can be determined by evaluating the time rate-of-

change of the potential 21
2 p dV≡ ∫P and kinetic 1

2 dVϑ ϑ ϑ≡ ⋅∫ u uK energy they carry.  In doing so, some 

care is required since two different time scales exist: one associated with the frequency of the oscillation 

and the other with processes of modulation, i.e., damping and driving.  The energy transfer affecting the 

latter takes place slowly, and to leading order, the shape of the wave remains unchanged during any given 

cycle (cf. Morse and Ingard 1968).  Thus only the time average behavior is typically needed, which is 

denoted here by ... .   It follows that 

 1
2m

ϑ
µ ϑα

+
= +� �

P K
P K  (8.1) 

Note that we are justified in calling this an acoustic energy balance even though ϑK is the kinetic 

energy of the unsteady longitudinal motions and thus includes contributions from both acoustic and entropy 

waves, since as shown in §7.3 the velocity induced by the latter is negligible. 
 
P otential Energy 

The equation for p p tdV= ∂ ∂∫�P is obtained by substituting from (2.13) for p t∂ ∂ and retaining 

only terms linear in ;ε this gives ( )... .p pdV= −∫�P L  Now replacing ( )...pL by (B.30) and applying some 

vector identities, we have after omitting effects owing to the condensed phase (cf. Culick and Yang 1992 

for the more general result) that   

 ( )21
2 1bM p dS p dV pQdϑ γ= − ⋅ − + −∫ ∫ ∫n U� VvP  (8.2) 

 



 63

We choose here not to focus on the physical mechanisms involved, except to note that the last term, which 

involves the energy source  describes Rayleigh’s Criterion, and shows that unsteady heat addition may 

encourage oscillations (cf. Culick 1994 for a more detailed discussion of this important mechanism). 

,Q

 
K inetic Energy  

In deriving an equation for ,tdVϑ ϑ ϑ= ⋅∂ ∂∫u u�K it is more convenient† to first rewrite this as 

.t dS tdVϑ ϑϕ ϕ ϑ= ⋅∂ ∂ − ∂ ∂∫ ∫n u� vK  Now substituting from (2.17) for tϑ∂ ∂ and retaining only terms 

linear in ,ε we have after using the momentum equation evaluated on the boundary that 

 ( )...ut dS dVϑ ωϕ= − ⋅∂ ∂ − ⋅∫ ∫n u u�
ϑvK L  (8.3) 

Much of the focus here will be on studying ϑ
�K  since it is here that the effects of vorticity arise; for 

example, the first term contains the normal component of the vortical velocity. 
 
8.3 Energy Transfer between the Longitudinal and Transverse Fields 
 

To help understand how energy is transferred between the longitudinal and transverse fields, we 

start with the kinetic energy of the unsteady velocity field, i.e., 1
2 ,dV≡ ⋅∫ u uK  and introduce the Stokes-

Helmholtz decomposition ϑ ωϕ= ∇ +∇× ≡ +u A u u .  It follows that ,ϑ ϑ ω ω↔= + +K K K K  where 
1
2 dVϑ ϑ ϑ≡ ⋅∫ u uK  and 1

2 dVω ω ω≡ ⋅∫ u uK  give the kinetic energy of the longitudinal and transverse 

fields, respectively.  That the energy flux between the two is described by the time rate-of-change of 

seems plausible and will indeed be shown.  It is useful to write this as dVϑ ω ϑ ω↔ ≡ ⋅∫u uK

ϑ ω ϑ ω ω↔ →= −� � �K K K ϑ→ , where 

 t dV tdVϑ ω ω ϑ ω ϑ ϑ ω→ →≡ ⋅∂ ∂ ≡ − ⋅∂ ∂∫ ∫u u u u� �K , K  (8.4) 

In this section, we investigate ϑ ω→
�K and ω ϑ→

�K in detail.  To elucidate more clearly the physical 

mechanisms, we use as the backdrop for part of the discussion the classic acoustic boundary layer; this is a 

useful setting since exact relationships can be derived.  We are justified in doing so, since the fluxes in 

question follow from a Stokes-Helmholtz decomposition of u  and thus are not unique to a solid rocket 

motor.  We will show that ϑ ω→
�K  occurs because of sound generating vorticity and ω ϑ→

�K  because of that 

vorticity in turn generating sound.   
 

                                                 

 

† In contrast with earlier work (e.g., Cantrell and Hart 1964), the unsteady flow is not assumed irrotational 
here.  Thus, to obtain an expression for ,tϑ∂ ∂u  the momentum equation ( )... 0ut∂ ∂ + =u L  would need 
to be projected onto a curl-free space. Although possible, this step requires a Stoke-Helmholtz 
decomposition of the operator ( )...uL , which is generally cumbersome.  Instead, we can use a simple 
identity  to obtain the more convenient formula given by (8.3). dV dS dVα α α∇ ⋅ = ⋅ − ∇ ⋅∫ ∫ ∫a n a av
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8 .3.1 Sound Generating Vorticity  

To establish the mechanism of ϑ ω→
�K , we first express this flux as a surface integral 

 ( )t dV t dSϑ ω ω ϑ ϑ→ ≡ ⋅∂ ∂ = − ⋅ ×∂ ∂∫ ∫u u A n u� vK  (8.5) 

and then relate tϑ×∂ ∂n u  to the creation of vorticity.  The basic idea is that longitudinal waves create 

transverse waves by making it appear as if the boundary oscillates parallel to itself.  Stated another way: to 

satisfy the no-slip condition, vorticity must be created such that on the boundary a fluid motion equal and 

opposite tϑ×∂ ∂n u  is induced.     

This is most clearly seen for the classic acoustic boundary layer—recall from (6.8) that 

,tζ ϑ= ×∂ ∂σ n u  which essentially defines a Stokes problem.  A similar results holds, albeit only 

approximately, for a solid rocket motor, where to leading order .tϑ p∂ ∂ −∇u ∼  Since the gradient of 

pressure tangent to the grain boundary is the dominant physical source of boundary vorticity (cf. §7.2), i.e., 

 it follows that ,pζ − ×∇σ n∼ .tζ ϑ×∂ ∂σ n u∼   Substituting in (8.5), we have 

 dSϑ ω ζ→ − ⋅∫ A σ� ∼ vK  (8.6) 

This demonstrates conclusively that ϑ ω→
�K  is intimately related to the creation of vorticity given that the 

vorticity source strength ζσ  is most basic measure of this process.  

 Having established the mechanism of ,ϑ ω→
�K  we now consider how this flux relates to .ϑ

�K   Even 

though the expression for ϑ ω→
�K  is the same for both the classic acoustic boundary layer and a solid rocket 

motor, what differs is the transport mechanism by which boundary vorticity enters the domain: viscous 

diffusion in one instance, and convection by the mass flux issuing forth from a burning propellant, in the 

other.  This difference will be reflected in how ϑ ω→
�K relates to .ϑ

�K  

For the classic acoustic boundary layer, it can be show that (cf. §H.2 for details) 

 ... ... 0withϑ ϑ ω ϑ ω→ →= − + ≥� � �K K K  (8.7) 

This clearly indicates that when a longitudinal wave excites a transverse wave through coupling on the 

boundary, it loses energy in the process.   

Insofar as a solid rocket motor is concerned, while ϑ ω→
�K does not directly appear in the equation 

for ,ϑ
�K  in §8.5 a mathematical connection will be shown to exist between this flux and Culick’s flow 

turning (1973).  
 
8 .3.2 Vorticity Generating Sound 

To establish the mechanism of ω ϑ→
�K , we first express this flux as a surface integral  

 tdV t dSω ϑ ϑ ω ωϕ→ ≡ − ⋅∂ ∂ = − ⋅∂ ∂∫ ∫u u n u� vK  (8.8) 
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and then relate tω⋅∂ ∂n u to the creation of sound.  The basic idea is that transverse waves create 

longitudinal waves by making it appear as if the boundary oscillates normal to itself.       

Once again, this is most clearly seen for the classic acoustic boundary layer.  Recall from (6.13) 

that ( )1Re ,p nϑ ϑ−∂ − ∂ = ⋅∂ ∂n u tω  which indicates that sound is generated aerodynamically through an 

action similar to that of a speaker despite the absence of any physical motion (cf. Lighthill 1952 for the 

earliest discussion of this idea).   

While (8.8) helps identify the mechanism of ω ϑ→
�K , to evaluate this flux (which is necessary since 

it is the first term in the expression for ϑ
�K  as given by (8.3)) it is useful to first rewrite it as  

 ( )t dSω ϑ ϑ→ = − ⋅ ×∂ ∂∫ u n A� vK  (8.9) 

Now recall from (7.23) that for a solid rocket motor ( )bt M ωζ×∂ ∂ − ⋅n A n U u∼ .  Substituting this result 

in (8.9), we obtain 

 ( ) 0bMω ϑ ϑ ζ ω ζ→ dS⋅ ⋅ ≥∫ u u n U� ∼ vK  (8.10) 

where the sign of the integrand is simply a consequence of the no-slip condition .ωζ ϑζ= −u u   Since 

 and   from (8.3), it follows that this mechanism is destabilizing (i.e., it amplifies 

rather than attenuates instabilities).  Stated another way: the sound created by vorticity constructively 

interferes with the sound responsible for creating that vorticity.  

0ω ϑ→ ≥�K ...ϑ ω ϑ→= +� �K K

There are a few remarks to be made on the generality of our estimate for ω ϑ→
�K .  First, it must be 

emphasized that only the behavior on the boundary was needed to arrive at (8.10).  Let us elaborate on this 

point further.  The essential step was to use (7.23).  Recall that in obtaining this result only two key 

elements of the physics were used, specifically the scaling derived from the no-slip condition and that 

vorticity created on the boundary is chiefly convected into the domain by the mean flow at a rate, which is 

smaller than that at which sound waves propagate. Because these key elements are likely 

unaffected by any probable downstream transition to turbulence, this bodes well for the generality of  

(8.10).  Second, with respect to more complex geometries, the result can be applied to any propellant grain 

that can be locally described by a general orthogonal coordinate system. 

( )bO M

Lastly, we observe that ω ϑ→
�K  is essentially Flandro’s (1995 a, b) controversial radial pumping 

correction.  However, the calculation in that analysis was only valid for the special case of axial mode 

instability in a cylindrical chamber, with no clear elucidation of the physics involved.  In contrast, not only 

has a far more general estimate been obtained here, but also a deeper understanding of the mechanism has 

been achieved.  
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8.4 Kinetic Energy of the Longitudinal Field  
 

We now turn to the evaluation of ϑ
�K .  Substituting (B.29) for ( )...uL  in (8.3), we find 

 p dS p dV dϑ ω ϑ ϑ ϑ ϑϑ→ ↔= − − ⋅ + + ⋅∫ ∫ ∫U n u u� � � VvK K K F  (8.11) 

The first term on the right is the rate of energy transfer from the transverse field; this flux has already been 

evaluated in §8.3, with the result given by (8.10).  The second term describes the interactions with the mean 

flow; these will be discussed in detail below.  The integrand in the third term indicates the classical linear 

pressure coupling with the flame zone† (cf. Culick and Yang 1992) and the fourth term reflects the effect of 

pressure within the interior.  An integral of identical form but opposite sign appears in the equation (8.2) 

for and so this is simply the well-known mechanism for the reversible energy exchange between 

potential and kinetic.  Finally, the last term involves the momentum source  and while other 

contributions may exist, those due to viscous effects are negligible

�P

,F
‡.

 
I nteractions with the Mean Flow 

We now consider the interactions with the mean flow   Following Flandro (1995 a, b) these 

can be expressed as 

.ϑ↔U
�K

 ( )( )bM dVϑ ϑ↔ = ⋅ ∇ ⋅ + × + ×∫U u U u ω U Ω u�K  (8.12) 

To use this as the starting for our calculation however complicates the analysis unnecessarily.  For 

example, not only is detailed knowledge of the unsteady vorticity field needed to evaluate some of the 

terms but also the physical mechanisms are unclear. 

In contrast, we proceed here by first recasting (8.12) using standard vector identities (cf. §H.3 for 

further details) 

 
( ) ( )

( )

1
2

,
b

dS dS dV
M

dV

ϑ ϑ ϑζ ωζ ϑ ϑ

ϑ

ω ϑ

↔

⎛ ⎞⋅ ⋅ + ⋅ ⋅ + ⋅∇ ⋅
⎜ ⎟=
⎜ ⎟+ ⋅⎝ ⎠

∫ ∫ ∫
∫

U

u u n U u u n U u U u

u f u U
� v vK  (8.13) 

                                                 
† The reacting surface is commonly represented by an effective admittance—future emphasis needs to be 
placed on assessing the sensitivity of the combustion processes to a rotational flow environment.   
 
‡ Those terms that describe viscous effects are  

( )1 1Re Re RedV dS dS dVϑ ω ϑ ϑ ϑ ϑϑ ϑ− −⋅ = ⋅ × + ⋅ −∫ ∫ ∫u u ω n n u 1 2− ∫v vF  

 

With respect to the first integral, since longitudinal motions slip, effecting a scrubbing of the surface, the 
work done by the shearing stresses 1Reω

−= ×τ ω n  is no longer zero.  To estimate the contribution, recall 
from (7.10) that  and so ( 1

bO Mζ
−ω ∼ ) ( ) ( )( ) ( )1 2 1Re Re .bdS O M O Mω ϑ ω

− −⋅ ×∫ u ω n ∼v b

)
 Thus, this flux is 

not generally significant since ( 12 RebM ω

−
 is small for the cases of interest here (cf. Table 7.1).  The 

second and third terms contribute even less. 
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where .( ),ϑ ϑ ϑ ϑ≡ ⋅∇ +∇ ⋅ − ×f u U u U U u Ω u  While (8.12) and (8.13) are formally equivalent, the latter 

representation of offers significant advantages from both a mathematical and a physical point of 

view.  The reasons for this will become clear in due course. 

ϑ↔U
�K

First, let us consider the terms in (8.13) that an irrotational analysis (e.g., Cantrell and Hart 1964; 

Culick 1975) would recover.  We choose here not to focus on the physical mechanisms involved and 

simply note that using the leading order solution for the acoustic field, it can be shown that (cf. §H.4 for 

further details) 

 ( ) 21
2 0dS dV p dSϑ ϑ ϑ ϑ⋅ ⋅ + ⋅∇ ⋅ ⋅ ≤∫ ∫ ∫u u n U u U u n U∼v 1

2v  (8.14) 

Next, we consider the vortical terms in (8.13).  With respect to the volume integral, this can be 

collapsed to integration over burning surfaces by applying the earlier asymptotic result (7.26); because of 

the factor of 0b mM k  that is introduced, the contribution of this integral is and thus negligible.  

However, it must be emphasized that this only applies if the flow remains laminar.  To account for the 

effect of turbulence in estimating this term requires additional modeling—a proposition that is beyond the 

scope of the present investigation.  

( )2
bO M

What remains in (8.13) is a stabilizing flux of energy from the longitudinal motions to the mean 

flow,  
 ( ) 0bMϑ ϑζ ωζ→ dS≡ ⋅ ⋅ ≥∫U u u n U� vK  (8.15) 

Unlike with the volume integral discussed above, it must be emphasized that the only condition required for 

an evaluation is no-slip ωζ ϑζ= −u u  (this also accounts for the sign of the integrand).  This constraint is 

purely kinematic, and thus valid for any motion whatsoever, turbulent or otherwise.  Moreover, since only 

vector identities were used to obtain (8.13), it follows that the result is not limited to any particular 

geometry.  In §8.5, we discuss the physics of  as well as the different manifestations of this flux 

recovered in earlier analyses (Culick 1973; Flandro 1995 a, b). 

ϑ→U
�K

 
S ummary 

Let us summarize our findings for ϑ
�K ; our primary concern recall was to understand the effects of 

vorticity.  Combining (8.11), (8.13) and (8.15) we have that to leading order these are given by  

 ...ϑ ω ϑ ϑ→ →− +U
� � �∼K K K  (8.16) 

where we reiterate that only if the flow is turbulent might the last integral in (8.13) contribute.    
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What is striking to observe now is that ϑ ω ϑ→U
� �∼K K →  (cf. (8.10) and (8.15)).  Thus, to the order 

of approximation considered, no net contribution exists owing to the effects of vorticity and so (8.16) 

reduces to 

 21
2bp dS M p dS p dVϑ ϑ ϑ− ⋅ − ⋅ +∫ ∫ ∫n u n U� ∼ v vK  (8.17) 

While this completes the mathematical part of the discussion, much remains in terms of the physics. 
 
8.5 Physical Interpretation 
 

It seems somewhat remarkable that, to the order of approximation considered, no net contribution 

exists to the stability (or instability) of the acoustic field owing to the effects of vorticity.  This, as shown in 

the previous section, is a consequence of ϑ ω ϑ→U
� �∼K K → .  We aim to address here whether this is merely a 

fortuitous finding or rather a deeper reflection of the underlying physics. 
 
8 .5.1 Revisiting Flow Turning 

We begin by establishing that ( )bM dSϑ ϑζ ωζ→ ≡ ⋅ ⋅∫U u u n U� vK  is the multidimensional analog of 

Culick’s flow turning (1973).  Enforcing the no-slip condition ωζ ϑζ= −u u and substituting the leading 

order solution of the longitudinal field, i.e., ( )0 ,mi k pϑζ ζ− ∇u ∼  we find  

 ( ) 22
0b mM k pϑ ζ→ − ∇∫U n U� ∼ dS⋅vK  (8.18) 

This recovers the one-dimensional stability result Culick first derived, if one replaces the tangential 

gradient in pressure by the derivative in the axial direction.  Not only does this validate Culick’s original 

patching procedure, but also it clearly establishes that vortical flow effects are key to flow turning naturally 

reappearing in a multidimensional analysis. 

Flandro (1995 a, b) reached the same conclusion by evaluating ( ) .bM dVϑ ⋅ ×∫u ω U   However, 

this required detailed knowledge of the unsteady vorticity distribution within the chamber, which insofar as 

practical application is concerned, is a serious limitation for the following reasons.  First, the unsteady 

vorticity distribution can be obtained analytically only for very simple geometries.  Second, and perhaps 

more important, the laminar solution in all likelihood will not remain a valid description; the very nature of 

the vorticity field makes it an ideal candidate to become unstable itself.  

Thus, despite Flandro having recovered flow turning, what remained unanswered was the 

dependence of such a recovery on the level of approximation introduced.  In other words, it had not been 

resolved whether an energy gain, for example, was a plausible outcome instead under more realistic flow 

conditions, or, if upon integration over the domain, a loss always results—as suggested by Culick’s 

analysis 
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To address this issue, as well as to accommodate more complex grain geometries, for which 

previous analyses provide little guidance, appeal to numerical simulations seemed inevitable.  Fortunately, 

however, such a tack, which has its own host of associated difficulties, is unnecessary if the transformation 

from (8.12) to (8.13) is first effected.  Recall that what resulted from recasting the interactions with the 

mean flow with the help of vector identities was ( )bM dSϑ ϑζ ωζ→ ≡ ⋅ ⋅∫U u u n U� vK . 

What must be stressed here is that this new surface integral, now correctly identified as flow 

turning, requires only the statement of no-slip condition for its evaluation.  The merit of such advancement 

is that not only are more complex grain geometries just as easily accommodated, but also any concerns 

regarding the influence of turbulence, at least insofar as this interaction is concerned, are completely laid to 

rest†.  Enormous practical advantage is thereby offered over the volume integral that Flandro (1995 a, b) 

asserted was the multidimensional analog of this important damping effect first discovered by Culick 

(1973). 
 
T he Mechanism of Flow Turning 

Apart from being simple, mathematically rigorous, and dependent only upon kinematics for its 

derivation, the new definition of flow turning introduced here, plays an equally important role in enhancing 

our understanding of the physical mechanism involved. 

For all the insight offered by Flandro’s analysis (1995 a, b), Culick’s (1973) original interpretation 

remained unquestioned: flow turning was still attributed to gas particles produced in the flame zone having 

to turn in order to acquire the motion of the acoustic flow.  Even though this is not incorrect from a certain 

point of view, a much sharper picture emerges by relating  flow turning to the creation of vorticity. 

While Flandro certainly recognized the importance of satisfying the no-slip condition, and 

underscored the central role played by vorticity in this important damping effect, no connection with 

vorticity creation was ever established.   The point is best made by noting that the term Flandro identified 

as flow turning involved integration over the volume of the domain, whereas vorticity is only‡ created on 

the boundary for the problem considered.   

                                                 
† Note that if the flow becomes turbulent, the last term in (8.13), i.e., ( ),b ,M dVω ϑ⋅∫ u f u U may contribute.  
However, regarding the terms retained, the steps leading to (8.15) are independent of whether the flow is 
laminar or turbulent. 
 

 

‡ Vorticity is also generated in the flame zone, but this was not part of the model considered by Flandro 
(1995 a, b). 
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In contrast, by using our new definition, it can be shown that (cf. §H.5 for details) 

 dSϑ→ − ⋅∫U A σ� ∼ ζvK  (8.19) 

This clearly establishes that flow turning is intimately related to the creation of vorticity given that the 

vorticity source strength ζσ  is the most basic measure of this process.  This also allows us to place flow 

turning in the larger context of energy pathways between the longitudinal and transverse fields, since recall 

from (8.6) that  and therefore   dSϑ ω ζ→ − ⋅∫ A σ� ∼ vK

 ϑ ϑ→U
� �∼K K ω→  (8.20) 

 
8 .5.2 On the Net Contribution of Vorticity  

As noted earlier, Flandro (1995 a, b) reported (for the simple case considered) that the gain owing 

to radial pumping compensated the loss due to flow turning.  The reasons why however were never 

explained, largely because a clear understanding of the physical mechanisms did not exist.   

That is why (8.20) is so important, for it establishes that flow turning describes one pathway, i.e., 

the flow of energy from the longitudinal to the transverse field owing to the creation of vorticity.   The 

controversial radial-pumping effect was already shown in §8.3.2 to describe the complementary flux, i.e., 

the flow of energy from the transverse to the longitudinal field.  Thus, a very elegant physical picture, 

supported by quite simple mathematical formulae, emerges: sound generates vorticity, which in turn, 

generates more sound; Culick’s flow turning and Flandro’s radial pumping describe, respectively, the two 

halves of this process. 

Having now understood the mechanisms, the conclusion reached basically establishes that: the 

rate of energy loss experienced by the sound field in generating vorticity is compensated by the rate of 

energy gain owing to generation of more sound by that vorticity.  More succinctly stated, the energy flux 

between the longitudinal and transverse fields is—to leading order—reversible.  What is important to 

realize is that this finding ϑ ω ϑ→U
� �∼K K →  is a reflection of the underlying physics of the problem.  With 

fluid injected through the boundary, convection as opposed to viscous diffusion becomes the dominant 

mechanism for transporting (acoustically-generated) boundary vorticity into the domain.  The manner in 

which this vorticity creates sound, moreover, via the appearance of an oscillating boundary—essentially 

mimicking the action of a speaker—is already effectively inviscid in nature.   As such, it is not an 

unforeseen consequence that, since dissipative effects no longer substantially enter into either of the 

creation mechanisms, the means for making the kinetic energy unrecoverable no longer exists.   
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8.6 Implications for SSPP 
 

Summing together (8.2) and (8.16), we find 

 ( )22 1m bp dS M p dS pQdVϑ µ ϑ ϑα γ+ = + − ⋅ − ⋅ + −∫ ∫ ∫n u n U� � ∼ v vP K P K  (8.21) 

A few final remarks are useful in closing.  Aside from a greatly enhanced physical 

understanding—which helps explain the mathematical observations—the current effort improves on what 

has been done (Culick 1973; Flandro 1995 a, b) in two key ways: the results obtained are independent of 

grain geometry; and the derivation of these results depends largely on kinematics.  Accordingly, the 

conclusions reached can be applied to reasonably complex grain geometries, irrespective of whether the 

motion is turbulent or not.   

The conclusions, in other words, support but also significantly extend the findings of an earlier 

study by Flandro (1995 a, b), in which the importance of incorporating vortical flow effects in the acoustic 

instability algorithm was first demonstrated.  What limited the applicability of that analysis, however, is 

that the new stability integrals were evaluated only for a cylindrical propellant grain under the quite 

restrictive assumption that the unsteady vorticity distribution remains laminar.  On a practical level then 

much has been gained with the present advancement. 

Of course, the ultimate test of any theory is based on comparison with experiment.  The Standard 

Stability Prediction Program (Lovine et al. 1976, Nickerson et al. 1983) has often failed to give satisfactory 

results with flow turning patched on (cf. Flandro 1995 a, b).  In other words, stability trends were more 

accurately predicted without this correction.  The present effort provides insight for this observation 

obtained from practitioners in the field. 

Specifically, the reason is not that flow turning does not exist, at least not in the modified sense 

introduced here, but rather that the complementary process, i.e., the transfer of energy from the transverse 

to the longitudinal field, needs also to be accounted for.  This energy pathway is recovered only when 

vortical flow effects are taken into account.  Owing to the energy flux between longitudinal and transverse 

fields being reversible in the first approximation, there is no net contribution. 
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9. NONLINEAR BEHAVIOR 
 

Basis functions for expanding the longitudinal (i.e., acoustic and thermal) and transverse (i.e., 

vortical) parts of the unsteady flow field were derived in Chapter 7.  These functions were then utilized in 

Chapter 8 to re-examine the calculation of linear stability, with emphasis placed on understanding the 

effects of vorticity.  Now we turn to the nonlinear behavior and consider three kinds of nonlinear 

interactions to second order in the wave amplitude: sound-sound, sound-vortical and vortical-vortical.    
 
9.1 Energy Balance Considerations 
 

We begin by motivating why effects of vorticity might play an important role.  For that purpose, 

the energy balance, first introduced in Chapter 8, is extended to accommodate nonlinear terms.  Recall that 

an improved physical understanding of some underlying mechanisms resulted by formulating linear 

stability along such lines.  In particular, Culick’s (1973) flow turning and Flandro’s (1995 a, b) radial 

pumping were shown to represent the energy flux from the longitudinal to the transverse field and vice-

versa, respectively.  Given this earlier success, it is reasonable to expect that valuable insight into the 

nonlinear behavior can also be gained.   

Recall from §8.2 that the time rate of change of kinetic energy stored by the longitudinal motions 

is given by .t dS tdVϑ ϑϕ ϕ ϑ= ⋅∂ ∂ − ∂ ∂∫ ∫n u� vK   Substituting from (2.17) for ,tϑ∂ ∂  we find 

 ( ) ( )... ...u udS dV dV
t
ω

ϑ ϑϕ
∂

= − ⋅ − ⋅ + ⋅
∂∫ ∫ ∫
u

n u� vK L N ϑu  (9.1) 

where the third term represents the nonlinear effects; of these, our concern is the energy flux to and from 

the transverse field.  This can be studied by setting ( )...u = − ⋅∇u uN .  Using standard vector identities, we 

have  

 ( )
( ) ( )
( ) ( )

...
...

u

dS dV
dV

dV dV

ϑ ω ϑ ω

ϑ

ϑ ϑ ϑ ω ϑ ω

ϑ⎛ ⎞− ⋅ ⋅ + ⋅ −
⎜ ⎟⋅ =
⎜ ⎟− ⋅ ∇ ⋅ + ⋅ ∇ ⋅ +⎝ ⎠

∫ ∫
∫

∫ ∫

u u n u u u
u

u u u u u u

vN  (9.2) 

While the physics of all the terms here may be elaborated upon†, we focus on the surface integral 

(for reasons that become clear in due course).  This can be rewritten as 

 ( ) ( ) 2
dS dS dSϑ ω ϑζ ωζ ϑζ⋅ ⋅ ⋅ ⋅ = − ⋅∫ ∫ ∫u u n u u u n u u n u∼v v v  (9.3) 

since: the contribution from n nu uϑ ω  is ( )2 2
bO Mε  and thus negligible; and ϑζ ωζ= −u u by virtue of the no-

slip condition. 

                                                 

 

† For example, the third and fourth terms describe the flux of energy that results when longitudinal velocity 
gradients stretch or compress the local streamtubes corresponding to the longitudinal and the transverse 
fields, respectively.   
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We now make two key observations.  First, a striking similarity exists between (9.3) and the new, 

more robust, definition of flow turning ( )bM dSϑ ϑζ ωζ→ ≡ ⋅ ⋅∫U u u n U� vK introduced in §8.4.  Thus, by 

analogy, the flux here can be interpreted as a nonlinear energy transfer owing to vorticity creation, for just 

as the mean flow convects unsteady vorticity into the domain, so does the unsteady flow.  Second, since 

unsteady combustion processes help determine the behavior of ⋅n u  (which is not constrained to be 

inwardly pointing), this flux indicates a natural—vis-à-vis velocity coupling perhaps (cf. Price 1992)—

nonlinear interaction with the flame zone that can be either stabilizing or destabilizing.   

This clearly establishes the importance of accounting for vortical flow effects, absent which, only 

the third term in (9.2) remains.  The difficulty in using an energy balance to do so however is that, energy 

transfer between individual modes cannot be resolved (that this may not be a serious limitation has been 

suggested by Flandro 1985).  To capture this coupling what is required in some respects is a projection of 

not on ( )...uN ϑu , but rather on each of the modes from which this motion may be synthesized.  With this, 

we return to the framework developed in Chapter 2.  
 
9.2 Nonlinear Interactions 
 

For the purposes of our discussion here, the nonlinearities in the amplitude equations  

 ( ) ( ) ( )( )2
†* †* †*1 ... ... ...

m
m m m c m u m m uE

ik c dV dV dSη η ϕ ϕ+ = − ⋅∇ + ⋅∫ ∫ ∫ n� vNN N  (9.4) 

for our general framework of combustion instability, can be written as 

 ( )2
1 ...+ = + + + +
m

m m m E
ik I I I Iϑϑ ϑω ωωη η� B  (9.5) 

where ( )†* ...m uI dSϕ= ⋅∫ n NvB is a boundary term, which will be elaborated upon shortly, and ,Iϑϑ  

Iϑω and Iωω are the sound-sound, the sound-vortical and the vortical-vortical interactions, respectively.  

Substituting (B.33) and (B.34) for the nonlinear operators ( )...cN  and  and omitting from 

consideration non-isentropic effects

( )... ,uN
†, we find 

 
 ( ) ( ) ( )†* †* 2 †*1 1 1

2 1 21m m mI c c dV c c dV c dVϑϑ
ϑ ϑ ϑϑ ϕΓ−= − ⋅∇ − Γ − + ∇ + ⋅ ⋅∇∫ ∫ ∫u u u  (9.6) 

 
 ( ) ( )†* †*

m mI c c dV dVϑω
ω ϑ ω ω ϑ ϕ= − ⋅∇ + ⋅∇ + ⋅∇ ⋅∇∫ ∫u u u u u  (9.7) 

 
 ( ) †*

mI dVωω
ω ω ϕ= ⋅∇ ⋅∇∫ u u  (9.8) 

Note that the nonlinearities these terms give rise to were studied in a general way in Chapter 4, 

starting with a system of the form 

                                                 

 

† As with the linear problem, contributions owing to viscous effects are negligible. Thus, it is sufficient to 
set ( ) 1

1...u c cΓ−= − ⋅∇ − ∇N u u and ( ) ( )... 1cN c cϑ= − ⋅∇ − Γ −u . 
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 ( ) ( )( )2
, , , ,1

,m

m j k m j k
m m m r i jE

j k
ik f i fεε εε

kη η+ = +∑� η η  (9.9) 

Essentially, our goal here is to now determine the nonlinear coefficients. 
 
S ound-Sound Interactions 

Consider first the sound-sound interactions .Iϑϑ   Using some vector identities to recast (9.6), we 

have 

 
( ) ( ) ( )

( )

†* †* 2 †*1 1 1
2 1 2

2 †*1 1 1
2 1 2

1m m

m

mI c c dV c c dV c dV

c dS

ϑϑ
ϑ ϑ ϑ

ϑ ϑ

ϑ ϑ

ϕ

Γ−

Γ−

= − ⋅∇ − Γ − − + ⋅ +

+ + ⋅ ⋅∇

∫ ∫ ∫
∫

u u

u u n

u

v
 (9.10) 

In evaluating (9.10), we could use the perturbed eigenfunctions obtained in Chapter 7; this would yield an 

correction to the leading order expression found in Chapter 3, that describes a nonlinear energy 

flux with the mean flow.   However, we refrain from doing so since the new terms involve parameters such 

as the flame response for which no satisfactory model presently exists.   Thus, for the purposes of our 

discussion here, we take (cf. Chapter 3)  

( 2
bO Mε )

 ( ) ( ) ( ) ( ) ( )( )1, , , , , ,1
0 0 0 1 28 1m j k m j k m j k

m j kI k k k I Iϑϑ ϑϑ ϑϑ−= − + + − Γ −  (9.11) 

where 

 

( )

( ) ( )

, ,
1 0 0 0

1, ,
2 0 0 0 0

m j k
m j k

m j k
j k m j k

I c c c dV

0I k k c c c dV

ϑϑ

ϑϑ −

=

= ∇ ⋅∇

∫

∫
 (9.12) 

 
S ound-Vortical Interactions 

Consider next the sound-vortical interactions .Iϑω   Using some vector identities to recast (9.7), we 

have   

 
( ) ( ) ( )( )

( )( )

†* †* †* †*

†* †* †*

m m m

m m m

mI dS c c dS

c c dV

ϑω
ω ϑ ϑ ϑ

ϑ ϑ

ϕ ϕ ϑ

ϕ ϑ

= ⋅∇ ⋅ + × ⋅ ∇× ×∇ − − ∇ +

+ ⋅∇× ∇× ×∇ − − ∇

∫ ∫
∫

u n u n A u u

A u u

v v  (9.13) 

We can evaluate the volume integral here by applying the earlier asymptotic result (7.26), which 

collapses volume integrations to integration over burning surfaces; because of the factor of 0b mM k  that is 

introduced in the process, it follows that the contribution of this term is negligible since the vector 

potential A also scales as 0b mM k  (cf. (7.20).  That this finding only applies if the flow remains laminar 

must be emphasized; to account for the effect of turbulence, additional modeling is required.  

With respect to the surface integrals in (9.13), the first one simplifies to 

 by using the no-slip condition and retaining terms at ( ) ( )†* †*
m dS dSω ϑ ϑζ ζϕ⋅∇ ⋅ − ⋅∇ ⋅∫ ∫u n u u n u∼v v m ϑϕ
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most linear in .bM  To evaluate the second integral, a series expansion for on the boundary is 

needed.  This follows from (2.29) and (7.23).  In particular    

×n A

 ( ) ( )( ) ( )1
2 2

0

1, i
j j b n j

j j j

t t M U
kζ jζη ϕ η

∞ ∞

=−∞ =−∞

⎛ ⎞
× = × ∇⎜⎜

⎝ ⎠
∑ ∑n A x n A x ∼ ⎟⎟  (9.14) 

Now after a tedious, but straightforward calculation, we have 

 ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 00 0 0

0 0 0 0

, , , , , ,
1 0 2 2

1
8 1 , , , ,,

3 31

j m jk m k

k j j k

k k kk k km j k m j k m k j
mk k k k

b j km j k m k jj k

I k I I
I M

I I

ϑω ϑω ϑω

ϑω

ϑω ϑω
η η

+ +

Γ−

⎛ ⎞+ + +
⎜ ⎟− ⎜ ⎟⎜ ⎟− Γ − +⎝ ⎠

∑∼  (9.15) 

where 

 

( )

( ) (

( )

)

( )

, ,
1 0 0

0 0

, ,
2 02 2

0 0 0

, ,
3 0 0

0 0

1

1

1

m j k
n m j k

j k

m j k
n j k m

j k m

m j k
m j k

j m

I U c c c
k k 0

0 0

dS

I U c c c dS
k k k

I c c dS
k k

ϑω
ζ ζ

ϑω
ζ

ϑω
ζ ζ µϕ

≡ ∇ ⋅∇

≡ ∇ ⋅∇× ∇ ×∇

≡ ∇ ⋅∇ ⋅∇

∫

∫

∫ n

v

v

v

 (9.16) 

 
V ortical-Vortical Interactions 

Consider now the vortical-vortical interactions .Iωω   Using some vector identities to recast (9.8), 

we have  

 ( ) ( ) ( )†* †*= × ⋅∇ ⋅∇ − ⋅∇ ∇ ⋅∫ ∫n A u u um mI dS dVωω
ω ωϕ ϕv ω  (9.17) 

That the surface integral here can also be expressed as ( )†*
m dSω ωϕ⋅∇ ⋅∫ u n uv is worth noting, since 

by combining this expression with the first term in (9.13), we obtain ( )†* .m dSω ϕ⋅∇ ⋅∫ u n uv  This can be 

interpreted as the modal projection of the nonlinear flow turning analog 

( ) 2
dS dSω ϑ ϑζ⋅ ⋅ − ⋅∫ ∫u u n u u n u∼v v identified in §9.1.  Returning now to the form of the surface integral 

introduced in (9.17), by using the no-slip condition and retaining terms at most linear in ,bM we have 

 ( ) ( ) ( ) ( )†* †*× ⋅∇ ⋅∇ − × ⋅∇ ⋅∇∫ ∫n A u n A um dS dSω ϕ ∼v v mϑζ ζ ϕ  (9.18)  

Recall that a series expansion for ×n A is given by (9.14). 

Insofar as the volume integral in (9.17) is concerned, it describes a transfer of energy owing to a 

stretching/compressing of the local unsteady vortical streamtube.   Expanding the integrand, we have  

 

n
n n n

n n

f
u f u

n

u f
n

ω ω ω ωζ ζ ωζ ζ ω

ζ
ω ωζ ωζ ωζ ωζ ζ ζ ωζ

∂⎛ ⎞⋅∇ ⋅ = + ⋅∇ + ⋅ ⋅ +⎜ ⎟∂⎝
∂

⎠

+ ⋅ − ⋅ ⋅ + ⋅∇ ⋅
∂

u f u u u K f

f
u u K u u f u

 (9.19) 
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where †*.mϕ= ∇f  Now by applying the earlier asymptotic result (7.26), integration of these terms over the 

volume of the domain can be collapsed to integration over burning surfaces; because of the factor of 

0b mM k  that is introduced in the process, any term in (9.19) that is ( )bO M on the boundary or less makes 

a negligible contribution.  Thus, we find 

 ( ) ( )†* †*
m dV dVω ω ωζ ζ ζ ωζϕ⋅∇ ∇ ⋅ ⋅∇ ∇ ⋅∫ ∫u u u u∼ mϕ  (9.20) 

That this simplification only applies if the flow remains laminar must be emphasized.  To account for the 

effect of turbulence in estimating ( )†*
m dVω ϕ⋅∇ ∇ ⋅∫u ωu  requires additional modeling. 

Combining (9.18) and (9.20), it follows that (9.17) reduces to  

 ( ) ( ) ( )†* †*
m mI dS dVωω

ϑζ ζ ωζ ζ ζ ωζϕ ϕ− × ⋅∇ ⋅∇ − ⋅∇ ∇ ⋅∫ ∫n A u u u∼ v  (9.21) 

We evaluate this expression in §I.3.  The result is 

 ( )
( ) ( )( ) ( )( )00 0

0 0 0 0

, , , , 2 , ,1
0 1 1 28 1

,

jk m

j k j k

kk m j k m k j k m j k
b m j kk k k k

j k

I M k I I Iωω ωω ωωωω η η+Γ− + −∑∼  (9.22) 

where 

 

( ) ( )

( )

( )

, ,
1 02 2

0 0 0

, ,
2

0 02
0 0 0

1

0, if
1

m j k
n j k m

j k m

m j k

n j m k
j k m

0 0

0

I U c c c dS
k k k

j k
I U c c c dS

k k k

ωω
ζ ζ ζ

ωω

ζ ζ ζ ζ

≡ ∇ ⋅∇ ∇ ⋅∇

= −⎧
⎪≡ ⎨ ∇ ⋅∇ ∇ ⋅∇⎪
⎩

∫

∫

v

v

 (9.23) 

 
B oundary Terms 

Finally, we consider the boundary term ( )†* ... .m uI dSϕ= ⋅∫ n NvB   Substituting (B.34) for ( )... ,uN  

we have  

 ( ) 1
1... ...n

u n
u cu c
n nΓ−

∂ ∂
⋅ = − − +

∂ ∂
n N  (9.24) 

since terms involving the tangent component of velocity vanish due to the no-slip condition. 

 Note that we can obtain an expression for c n∂ ∂  by using the normal projection of the linearized 

momentum equation on the boundary†.  In particular, we have 

 
( )1

1 ... ...n nn n
b

U uu uc M M
n t n t nΓ−

∂∂ ∂∂
= − − + − − +

∂ ∂ ∂ ∂ ∂
∼ n

b n
u

U
∂

                                                

 (9.25) 

where the term neglected in the approximation on the far right is proportional to the square of the injection 

Mach number. 

 

 

† This is valid since would in any case be replaced by a series expansion in terms of the linear stability 
eigenfunctions. 

c
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Now substituting (9.25) into (9.24) and splitting the velocity using a Stokes-Helmholtz 

decomposition, we have 

 
( )...

...

n n n n
u n n n n

n n n n
b n b n

u u u u
u u u u

n n n n
u u u u

c M U c M U
t n t n

ϑ ω ϑ ω
ϑ ϑ ω ω

ω ω ϑ ϑ

∂ ∂ ∂ ∂
⋅ − − − − +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂⎛ ⎞ ⎛

+ + + +⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

n N ∼

⎞
+⎟

⎠

 (9.26) 

The advantage of using (9.26) to evaluate I B is that contributions owing to sound-sound and sound-

vortical interactions are clear.   

We derive an alternative expression for ( )...u⋅n N however and sacrifice clarity for conciseness.   

We begin by noting that on the boundary†  

 nu n unϑ κ∂ ∂ = +  (9.27) 

By combining (9.24), (9.25) and (9.27), it follows that 

 ( )... ...n
u n b n

u
u c M U

t
ϑ

∂⎛ ϑ ⎞⋅ − + + +⎜ ∂⎝ ⎠
n N ∼ ⎟  (9.28) 

Now using (9.28) and following the same procedure as before, we have 

 
( )( ) ( )

( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

00

0 0

0 0 0 00 0

0 0 0 0 0

, , , ,1 1
0 1 0 11 1

1
8 , , , , , ,,

2 3 31 1

1 1 jk

j k

j k j jk k

m j m k m

kk m j k m k j
k jk k

b j kk k k kk km j k m k j m j kj k
k k k k k

k I k I
I M

I I I
η η

Γ− Γ−

+
Γ − Γ −

⎛ ⎞+ + + −
⎜ ⎟− ⎜ ⎟
⎜ ⎟− + + + +
⎝ ⎠

∑∼

B B

B

B B B
 (9.29) 

where, 

 

( ) ( )

( ) ( )

, ,
1 0 0

0 0 0

, , , ,
2 0 0 0 3 0 0

1

,

m j k
n j k m

j k m

m j k m j k
n m j k m j k

I U c c c
k k k 0 dS

I U c c c dS I c c dS

ζ ζ

µϕ

≡ ∇ ⋅∇

≡ ≡

∫

∫ ∫ n

v

⋅∇v v

B

B B

 (9.30) 

 
 

 

                                                 
† We begin with the Stokes-Helmholtz decomposition .ϑ ω= +u u u   Now since ωu  is divergence free, i.e., 

0,n nu n uω ω ω ζ ωζκ∇ ⋅ = ∂ ∂ − +∇ ⋅ =u u  it follows by using the no-slip condition ωζ ϑζ ζ ϕ= − = −∇u u that 
on the boundary 

 
2 2 2

2
2 2 2

n n nn
n

u u uu
u

n n n nn n n
ϑ ω ω

nuζ ωζ ω ζ ω
ϕ ϕ ϕκ ϕ

∂ ∂ ∂∂ ∂ ∂ ∂
= + = + = −∇ ⋅ + = +∇ +

∂ ∂ ∂ ∂∂ ∂ ∂
u κ   

 
This can be more succinctly written as n nu n uϑ κ∂ ∂ = +  since 2 2 2 2 .n n ζϑ ϕ ϕ κ ϕ= ∇ = ∂ ∂ − ∂ ∂ +∇ ϕ  
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A Final Remark 
 

 Having evaluated all the nonlinear forcing terms, we observe that all but two of the integrals that 

comprise ,Iϑω Iωω  and I B are real (cf. (9.16), (9.23) and (9.30), respectively).  Thus, these effects only 

contribute to the ( ), ,m j k
rf
εε  coefficient in (9.9); sound-sound interactions, in contrast, only contribute to the 

( ), ,m j k
if
εε  coefficient.   

The integrals that are the exceptions, i.e., ( ) ( ) ( )1, ,
3 0 0 0 0

m j k
j m m j kI k k c c dSϑω

ζ ζ µϕ
−

= ∇ ⋅∇ ⋅∇∫ nv  and 
( ), ,

3 0 0 ,m j k
m j kI c c dSµϕ≡ ⋅∇∫ nvB involve the flame response, which typically has both a real and an imaginary 

component; the real component will contribute to ( ), ,m j k
rf
εε  and the imaginary component will contribute to 

( ), , .m j k
if
εε    

 
9.3 Some Results 
 

Figures 9.1and 9.2 contrast the behavior of purely axial and purely tangential modes, with and 

without the effects of vorticity included (results for the integrals are given in Appendix I).  Although little 

difference can be observed, vorticity may still play an important role in the nonlinear behavior, since those 

oefficients that required the flame response as input (i.e., ( ), ,
3

m j kIϑω  and ( ), ,
3

m j kI B ) were left unevaluated.    c 

 

Figure 9.1 Axial mode instability, 4 mode approximation with
2 4b µ µ 0.025M α → , and n= − 0θ = ; red curve (AUTO 2000)

corresponds to the inclusion of sound-sound, sound-vortical, vortical-
vortical and boundary interactions; blue curve (AUTO 2000)
corresponds to the inclusion of sound-sound, sound-vortical and
vortical-vortical interactions; black (dashed) curve (AUTO 2000)
coincides with the behavior solely owing to the sound-sound
interaction 
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Figure 9.2 Tangential mode instability, 4 mode approximation with
2 4b µ µ 0.025M α → , and n= − 0θ = ; red curve (AUTO 2000)

corresponds to the inclusion of sound-sound, sound-vortical, vortical-
vortical and boundary interactions; black (dashed) curve (AUTO
2000) coincides with the behavior solely owing to the sound-sound
interaction 
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10. Final Remarks 
 

The problem of combustion instability in solid rocket motors has been studied in the present effort 

with a focus on the two basic fluid dynamic processes—i.e., the compressing/expanding process and the 

shearing process.  The main contributions/conclusions can be summarized as follows. 

In Chapter 2, we constructed a general framework for studying combustion instabilities that 

accommodates both linear and nonlinear processes.  This was a substantial extension of Culick’s (1976) 

original analysis, accomplished by using linear stability eigenfunctions—that satisfied the no-slip boundary 

condition—to expand flow variables and their adjoints to effect a spatial averaging.   

The resulting amplitude equations were then studied in Chapter 4 using perturbation techniques 

based on ideas of resonance.  Closed form results were derived for the limiting periodic behavior when the 

first mode is unstable and compared against results from numerical integration.  The agreement was quite 

remarkable and demonstrated the merit of the approach, especially since the nonlinear coefficients did not 

have to be specified a priori.  The same methodology can also be applied to treat other problems, such as, 

for example, when the second mode is unstable.  Even if additional closed form solutions are not obtained 

however, the approach introduced helps identify the nonlinear coefficients that most significantly impact 

system behavior. This is an important development given that much work remains to be done on modeling 

nonlinear processes. 

Ultimately though, to study combustion instability within solid rocket motor, it was necessary to 

determine the coefficients in the amplitude equations.  This required solving for the linear stability 

eigenfunctions.  To facilitate such a calculation, some model problems that allowed key elements of the 

physics to be introduced in a simplified setting were first considered.  In Chapter 5, for example, the classic 

Stokes’ problem was generalized to include a uniform injection of fluid normal to the boundary; this helped 

illustrate how the mass flux issuing forth from a burning propellant affects vorticity creation.  

In particular, it was shown that with fluid injection, convection competes with viscous diffusion, 

and both mechanisms transport boundary vorticity into the domain.  The consequences of this for the flow 

as a whole were significant.  Most striking was that the Euler (inviscid) limit converged uniformly to the 

solution for a strictly Euler (inviscid) flow.  It was found, in other words, that one can sometimes get 

around the viscous origin of the no-slip condition to simply retain it in a mathematical analysis of inviscid 

flow.  This result notwithstanding, the analysis in subsequent chapters did not assume that the fluid was 

inviscid; however, flows where the transport of boundary vorticity was controlled by convective rather than 
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diffusive mechanisms were of interest.  Under such conditions, vorticity was shown to propagate 

significantly further into the domain; the magnitude of this vorticity was however notably reduced. 

Then, in Chapter 6, we contrasted the behavior of the acoustic boundary layer, with and without a 

uniform injection of fluid through the boundary; this problem was only a slight generalization of the 

oscillating Stokes’ flow.  The new feature exhibited was an unsteady component of flow in the normal 

direction—a consequence of the vorticity and the thermal wave canceling out velocity and temperature 

fluctuations on the boundary, respectively.   In the absence of fluid injection, both contributions were of 

comparable magnitude.   In contrast, with fluid injection and convective rather than diffusive mechanisms 

dominating, the normal component of the vortical velocity was more significant, with the opposite being 

true for the thermal velocity. 

The linearized flow field within solid rocket motors was next considered in Chapter 7.  Solutions 

were obtained for the acoustic, the thermal and the vorticity eigenfunctions, with the method of multiple 

scales used to solve for the latter.  An important consequence of this approach—vis-à-vis Flandro’s earlier 

analysis (1995 a, b)—was the clear demarcation between information required to evaluate stability integrals 

that determine the effects of vorticity, and information required for determining the detailed structure of the 

vorticity field within the chamber.  It turned out, that insofar as the former was concerned, only the 

behavior on the boundary was needed; more specifically, an asymptotic result was derived, which showed 

that volume integrations collapse to integration over burning surfaces.  

Linear stability was then revisited in Chapter 8.  Flandro (1995 a, b) had previously shown that for 

a cylindrical propellant grain subject to axial mode instability, no net contribution exists owing to the 

effects of vorticity, since energy gained because of radial pumping compensates the loss due to flow 

turning.  A physical explanation of this surprising result was never offered.  To ascertain whether this was 

merely fortuitous, novel formulae that clearly reflect the interaction between vorticity and sound were 

derived.  What emerged was a very elegant physical picture.  Sound generates vorticity, which in turn, 

generates more sound; Culick’s flow turning and Flandro’s radial pumping where shown to describe, 

respectively, the two halves of this process.  That these two effects cancel then basically establishes that: 

the rate of energy loss experienced by the sound field in generating vorticity is compensated by the rate of 

energy gain owing to generation of more sound by that vorticity.  More succinctly stated, the energy flux 

between the longitudinal and transverse fields is—to leading order—reversible.   

It is important to realize that this finding is a reflection of the underlying physics.  With fluid 

injected through the boundary, convection as opposed to viscous diffusion becomes the dominant 



 82

 

mechanism for transporting (acoustically-generated) boundary vorticity into the domain.  The manner in 

which this vorticity creates sound, moreover, via the appearance of an oscillating boundary—essentially 

mimicking the action of a speaker—is already effectively inviscid in nature.   As such, it is not an 

unforeseen consequence that, since dissipative effects no longer substantially enter into either of the 

creation mechanisms, the means for making the kinetic energy unrecoverable no longer exists.   

Aside from a greatly enhanced physical understanding then—which helps explain the 

mathematical observations—the current effort improved on what has been done (Culick 1973; Flandro 

1995 a, b) in two key ways: the linear stability results obtained were independent of grain geometry; and 

the derivation of these results depended largely on kinematics.  Accordingly, the conclusions reached can 

be applied to reasonably complex grain geometries, irrespective of whether the motion is turbulent or not.  

The conclusions, in other words, support but also significantly extend the findings of an earlier study by 

Flandro (1995 a, b), in which the importance of incorporating vortical flow effects in the acoustic 

instability algorithm was first demonstrated.   

Finally, Chapter 9 examined the nonlinear effects of vorticity.  We first extended the energy 

balance introduced in Chapter 8 to accommodate nonlinear terms; shown to exist, was a flow-turning 

analog that provided a natural nonlinear coupling with the flame zone—a key feature not present in earlier 

analyses.  Motivated by this finding, we then returned to the amplitude equations and determined the 

coefficients that model sound-sound, sound-vortical and vortical-vortical interactions.  While simulation of 

some prototypical cases revealed qualitatively similar behavior with and without the effects of vorticity 

included, no definitive conclusions could be drawn, since those coefficients describing nonlinear 

interactions with the vorticity field that required the flame response as input were left unevaluated.  

Building the requisite models to correct for this omission would be an important area of future research.   
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A. Normal-Tangential Coordinate System 
 

To accommodate a variety of grain geometries, we use a general orthogonal coordinate system 

cast in terms of normal and tangential n ζ  components.  In such a system, vectors can be uniquely written 

as     
 nc ζ= +c n c  (A.1) 
where 

 ( ),nc ζ= ⋅ = − × ×n c c n n c  (A.2) 

which follows by setting in the identity = =a b n ( ) ( ) ( ).⋅ = ⋅ − × ×a b c a c b a b c    

Differential operators can also be similarly decomposed; this can be shown in a number of 

different ways.  We choose here to follow the work of Tai (1992), who introduced the following concise 

representation 

 i

i i ih v
∂

∇ =
∂∑ e ffD D  (A.3) 

Here  is some kind of useful tensor product,  denotes a unit vector, is the variable in that direction 

and  the corresponding shape factor.  For simplicity, we take 

D ie iv

ih 1 .=e n  To ensure that the coordinate 

system is orthogonal, we must have 1 1,h =   

 1 1when and j i i i
i

i j j i j j k k

h h
i j

v h v v h v h v
⎛ ⎞∂ ∂ ∂ ∂

= ≠ = − +⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

e e
e 1 i

j k
h∂

⎟⎟e e  (A.4) 

(cf. Tai 1992 for further details).  

We now introduce the tangent operator ζ∇ ; this is to be interpreted in the same way as (A.3),   

 
2,3

i

i i ih vζ
=

∂
∇ =

∂∑ e ffD D  (A.5) 

except that only tangent derivatives arise.   
    
C urvature 

Before proceeding, we note that the curvature tensor is formally defined as  the trace 

of which gives the first (or principle) curvature 

,ζ≡ −∇K n

 ( ) 32

2 2 3 3 2 3

1 1 hh
h v h v h n h nζκ

⎛ ⎞ ⎛ ∂∂∂ ∂
≡ − ∇ ⋅ = − ⋅ + ⋅ = − +⎜ ⎟ ⎜ 32 ⎞

⎟∂ ∂ ∂⎝ ⎠ ⎝

ee n nn
∂ ⎠

 (A.6) 

 
G radient 

Using (A.3) and (A.5), the gradient of a scalar can be written as 

 i

i i i

f ff
h v n ζ

∂ ∂
∇ = = +∇

∂ ∂∑ e
n f  (A.7) 
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D ivergence 

Consider now the divergence of a vector: 

 
( )

,

j ji i

i i ji i i i

f

h v h v

∂∂
∇ ⋅ = ⋅ = ⋅

∂ ∂∑ ∑
ee eff  (A.8) 

This can be written out as 

 
( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 1 1 1 131 2

1 1 1 1 2 2 3 3

f f f f f
h v v v h v h v ζ ζ

∂ ∂ ∂ ∂ ∂⎛ ⎞
∇ ⋅ = ⋅ + + + ⋅ + ⋅ +∇ ⋅⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠

e e e e eee e
f f  (A.9) 

where ζ ζ∇ ⋅ f is to be interpreted in the same way as (A.8), except that only tangent derivatives and 

components arise (i.e., the dummy indices and start from ).  The other terms can be more concisely 

expressed as 

i j 2

;nf n fκ∂ ∂ − n  this can be shown using (A.4) and (A.6).  Thus, we have 

 n
n

f
f

n ζ ζκ
∂

∇ ⋅ = − +∇ ⋅
∂

f f  (A.10) 

 
C url 

Lastly, we consider the curl of a vector: 

 i

i i ih v
∂

∇× = ×
∂∑ e ff  (A.11) 

This can be written out as 

 
( )

, ,

1j j ji i i
ijk k i

i i j i j ii i i i i i i

f f
f

h v h v h v h v
ε

∂ ∂ ∂∂
∇× = × = × = + ×

∂ ∂ ∂∑ ∑ ∑ ∑
ee e eff i

i∂
e

e  (A.12) 

where ijkε is the permutation tensor.  Expanding further, we have 

 
( ) ( )3 3 2 2 3 3 31 2 1

1 2
2 3 2 3 3 3 1 3 1 1 2 2 2 1

1 1 1h f h f f f hf f f
h h v v h v v h v v h v h v

∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
∇× = − + − − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

f u u 2 2
3

f h∂
u  (A.13) 

That this may be far more concisely expressed as 

 ( ) ( ) ( ) ( ) (, nn f
n

)ζ ζ ζ ζ ζζ

∂
∇× = ×∇ ⋅ ∇× = × − × ∇ + ⋅

∂
f n f f n f n K f  (A.14) 

is a simple exercise of algebraic manipulation. 
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B. Governing Equations 
 
B.1 The dimensional equations that govern the flow of combustion products in a solid rocket motor are   
 
Conservation of Mass 
 D Dtρ ρ= − ∇ ⋅ +u W  (B.1) 
 
Conservation of Momentum 
 D Dt pρ = −∇ +u F  (B.2) 
 
Equation for the Pressure†

 ( ) 11Dp Dt p Q pγ γ ρ−= − ∇ ⋅ + − +u W  (B.3) 
 
Equation of State 
 p Tρ= R  (B.4) 

where D Dt t= ∂ ∂ + ⋅∇u and contributions to the mass  momentum and energy  source terms 

will be made explicit as required. 

,W F Q

Now we introduce a standard set of dimensionless variables that fit the needs of the general 

combustion instability problem: 

 

2 3

o o o o o o

o o o o o o

t p T ct p T
R c R c p T c c

R R R Q Q
c c c

ρ ρ
γ ρ

ρ ρ ρ

→ → → → → → → →

→ → →

x ux u

W W F F

p

sc s
 (B.5) 

Here suffix denotes chamber stagnation properties,  is a characteristic length (e.g., the radius for a 

cylindrical chamber), and

o R

pc is the specific heat at constant pressure.  Note that to help emphasize the 

central role of compressibility in the unsteady field, velocities are referenced to the speed of sound and time 

is made dimensionless by introducing the acoustic time scale .oR c  

 Substituting (B.5) into (B.1)—(B.3), we have 
 
Conservation of Mass 
 D Dtρ ρ= − ∇ ⋅ +u W  (B.6) 
 
Conservation of Momentum 
 D Dt pρ = −∇ +u F  (B.7) 
 
Equation for the Pressure 
 ( ) 11Dp Dt p Q Tγ γ γ −= − ∇ ⋅ + − +u W  (B.8) 
 

                                                 

 

† This can be derived by differentiating (2.4) and substituting (2.1) and the energy equation (i.e., 

vc DT Dt p Qρ = − ∇ ⋅ +u ) where appropriate. 
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While these equations can be solved using some sort of numerical analysis, to proceed 

analytically, we begin by writing all dependent variables as sums of mean ( )x  and fluctuating ( )x′  parts 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , , etc.t t p p pρ ρ ρ′ ′ ′= + = + = +u u x u x x x x x t  (B.9) 

where the latter are taken to be all of the same order in the wave amplitude ε  

(i.e., ).  The rationale for such an approach is discussed in §2.3.  It is sufficient 

here to note that the mean flow is assumed to satisfy its own equations, i.e., is unaffected by the 

fluctuations.  This gives 

( ) ( ),O Oε ρ ε′ ′u ∼ ∼ , ...

 
Equations for the Mean Flow 

 ( ) ( ) 11 1, , 1p p p Qρ ρρ γ −∇ ⋅ = ⋅∇ = − ∇ + ⋅∇ = − ∇ ⋅ + − +u u u u uW WF Tγ γ  (B.10) 
 
Equations for the Fluctuations 

 ( ) ( )tρ ρ ρ ρ′ ′ ′ ′ ′∂ ∂ +∇ ⋅ + = −∇ ⋅ +u u u W ′  (B.11) 
 
 ( ) ( )

1 1t p pρ
ρ ρ ρ ρρ ρ ρ ρ ρ ρ

′
′ ′+ +′ ′+

′ ′ ′ ′ ′ ′ ′∂ ∂ + ⋅∇ + ⋅∇ + ⋅∇ = − ∇ + ∇ + −u u u u u u u F Fρ′
+  (B.12) 

 

 
( )

( )1

1p t p p p p p p Q

T T T

γ γ γ γ

γ −

′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ + ⋅∇ + ⋅∇ + ⋅∇ = − ∇ ⋅ − ∇ ⋅ − ∇ ⋅ + − +

′ ′ ′ ′+ + +

u u u u u u

W W W

′
 (B.13) 

which can be more succinctly written as  

 ( ) ( )... ...t ρ ρρ′∂ ∂ + =L N  (B.14) 
  
 ( ) ( )... ...u ut′∂ ∂ + =u L N  (B.15) 
  
 ( ) ( )... ...p pp t′∂ ∂ + =L N  (B.16) 

by introducing operators, which are linear  and nonlinear ( )L ( )N  in the wave amplitude .ε   Note that it is 

these unsteady equations (which can also be cast in terms of the entropy and sound speed) that our analysis 

is principally concerned with. 

It remains to establish how we evaluate the mean flow in the above operators.   Setting the source 

terms to zero for simplicity, it follows from (B.10) that  

 ( ) 10, ,p p pρρ γ∇ ⋅ = ⋅∇ = − ∇ ⋅∇ = − ∇ ⋅u u u u u  (B.17) 

Now before discussing the case of a solid rocket motor, we consider some model problems 

examined in the thesis, for which the mean flow has a simple description.  For example, Chapter 3 

considers the problem of purely acoustic motions within a chamber of arbitrary shape enclosed by a rigid 

boundary and containing a fluid otherwise at rest.  In this instance, we have  

 0, 1, 1pρ γ= = =u  (B.18) 
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In Chapter 6, we consider the acoustic boundary layer, with and without a uniform injection of 

fluid through the boundary.   For the latter, the mean flow is given by (B.18), and for the former, we have 

 , 1, 1bM pρ γ= = =u n  (B.19) 
Here  is the unit normal vector pointing into the fluid domain andn bM  is the injection Mach number.   

That (B.19) is not a small bM  expansion must be emphasized; bM=u n  is simply the exact 

description of a uniform injection of fluid through the boundary.  This example serves to underscore that 

we are concerned with studying acoustical motions in the presence of a mean flow versus acoustical 

motions generated by that mean flow (cf. §2.3 for further discussion of this point). 

Returning to the case of a solid rocket motor, to avoid confusion, we first rescale the variables 

 1 , ,bM p pρ ρ−= = =u u �� �  (B.20) 
so that the velocity is now referenced to the injection velocity and not the speed of sound.  This gives 

 ( ) 2

10, ,
b

p p p
M

ρ γ
ρ

∇ ⋅ = ⋅∇ = − ∇ ⋅∇ = − ∇ ⋅u u u u�� � � � � � �
�

u�  (B.21) 

Now if we put 

 2 4 1 2 4 2 4
0 1 2 1 2 1 2..., 1 ..., 1 ...b b b b b bM M M M p M P M Pν ρ γ−= + + + = = + Ν + Ν + = + + +u U U U � �� �  (B.22) 

and substitute these expansions into (B.21), we recover at leading order the incompressible Euler equations: 

 0 0 00, P1∇⋅ = ⋅∇ = −∇U U U  (B.23) 

with  the incompressible pressure.  This (along with the appropriate boundary conditions) defines the 

base state for our analysis.  While complex geometries invariably require numerical integration, a closed 

form solution does exist for the case of a cylindrical propellant grain; further details are given in §G.3.  

1P

In analyzing the unsteady flow, only terms at most linear in bM  are retained.  Therefore, when 

substituting in for the mean velocity, only the first term in the expansion is needed, i.e., ...bM= +u U (the 

suffix is dropped for simplicity); similarly, the mean thermodynamic state is approximately uniform, i.e., 0

1 ..., etc.p γ= +    

Making these changes in the momentum equation (B.12) for example, and omitting the primes on 

the unsteady flow components, we have 

 ( ) 1 1bt M p pρ ρ
ρ ρ+ +∂ ∂ + ⋅∇ + ⋅∇ + ⋅∇ = −∇ + ∇ + −u U u u U u u F F  (B.24) 

which recall can be more succinctly written as   

 ( ) ( )... ...u ut∂ ∂ + =u L N  (B.25) 

with 

 ( ) ( )...u b linearM p= ⋅∇ + ⋅∇ +∇ −U u u U FL  (B.26) 

and 
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 ( ) ( )1 1...u nonlinearpρ ρ
ρ ρ+ += − ⋅∇ + ∇ + −u u F FN  (B.27) 

Following the same procedure, the other unsteady equations can be simplified; the corresponding operators 

are given in §B.2. 
 

B.2 Operator Definitions 

Linear Operators 

 ( ) ( )( )... 1c b linM c Qγ= ⋅∇ − Γ − −∇ ⋅ +U uL ear  (B.28) 
 
 ( ) ( )( ) ( ) ( )1 1

2... 1 1u b linear
1M c−= ∇ ⋅ + × + × + Γ − ∇ − − Γ − ∇U u ω U Ω u FL s−  (B.29) 

 

 ( ) ( ) 1... 1p b linear linearM p Qγ γ −= ⋅∇ +∇ ⋅ − − −U uL W  (B.30) 

 
 ( ) ( ) ( )... 1 1T b linearM T Qγ γ γ= ⋅∇ + − ∇ ⋅ − −U uL  (B.31) 
 

 ( ) ( )( )1... 1s b linear linearM s Qγ γ −= ⋅∇ − − −UL W  (B.32) 

 
Nonlinear Operators  
 
 ( ) ( )( )1... 1 c c

c nonlinear c cc c Q ρ ρ
ρ ργ γ + +

+ + += − ⋅∇ + Γ − − ∇ ⋅ + −u uN Q  (B.33) 
 
 ( ) ( ) ( ) ( )( )1 11 1

2 1... 1 1u nonlinearc c T sρ
ρ

− −

+= −∇ ⋅ − × − Γ − ∇ + + Γ − ∇u u ω u F - FN 2  (B.34) 

 
 ( ) ( ) 1... 1p nonlinear nonlinearp p Q Tγ γ γ γ− −= − ⋅∇ − ∇ ⋅ + − + +u u 1N W W  (B.35) 
 
 ( ) ( )( )1

1... 1 p
T nonlinearT Qγ ρ ρ

γ ρ ργ γ −
+= − ⋅∇ + − − ∇ ⋅ + −u uN 1 Q+  (B.36) 

 
 ( ) ( )( )1 1

1... 1 T T
s nonlinear nonlinearT Ts Q Qρ ρ ρ

ρ ρ ργ γ+ + − −
+ + + += − ⋅∇ + − − − +u 1γN W W

1
ω
− Φ

 (B.37) 

Note that if we neglect the effect of condensed particles, and retain only viscous and heat conduction 

contributions, the source terms reduce to 

  (B.38) ( )( ) 11 1 20, Re Re , 1 Pr Re ReQ Tω ϑ ωϑ γ
−− −= = ∇× − ∇ = − ∇ +ωFW
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C. Calculations for Chapter 3 
 

C.1 Writing out the linear stability problem  

 
( )
( )

( )
( )

00 0
01 2

0 00 0

0 1,
, 1 0

mc m m
m

m mm m

c cc
ik

cϑ

ϑ
ϑϑ −

Γ −⎡ ⎤⎡ ⎤ 0m

ϑ
⎡ ⎤ ⎡

= ⎢ ⎥⎢ ⎥
⎤

=⎢ ⎥ ⎢Γ − ∇ ⎥
⎣ ⎦ ⎣⎢ ⎥⎣ ⎦ ⎣ ⎦

L
L ⎦

0m

 (C.1) 

we have 

  (C.2) ( )( ) ( )1 1
0 0 0 0 01 , 1m m m m mi k c ik cϕ ϑ

− −= − Γ − = Γ −

This expresses the acoustic velocity field in terms of the  0 .mc
 
A djoint Problem 

Recall that the adjoint problem is formally defined as (cf. Stakgold 1967) 

 ( ) ( ) ( )† † †,... , , ,...m m m m dV− ≡ ∇ ⋅∫f f f fL L  (C.3) 

with  the complex valued inner product *, .  Using (C.1) and the vector identity T dV≡ ∫x y y x

( )2 2 ,α β β α α β β α∇ − ∇ = ∇ ⋅ ∇ − ∇  we have  

 ( ) ( ) ( ) ( )1† † † †* †*
0 0 0 0 0 0 0 0, , 1m m m m m m m mc c dϕ−− = Γ − ⋅∇ − ⋅∇∫f f f f n nvL L Sϕ  (C.4) 

where  and  † † †
0 0 0

T

m m mc ϕ⎡ ⎤≡ ⎣ ⎦f

 ( ) ( )
( )

1 †2
† † 0

0 †
0

0 1
1 0

m
m

m

c
ϕ

−⎡ ⎤ ⎡ ⎤Γ − ∇
≡ ⎢ ⎥ ⎢ ⎥

Γ −⎢ ⎥ ⎣ ⎦⎣ ⎦
fL  (C.5) 

Since hardwall boundary conditions are assumed for both the acoustic field and its adjoint, the 

right-hand side of (C.4) vanishes, leaving ( ) ( )† †
0 0 0 0, ,m m m m=f f f fL L † .  Accordingly, the eigenfunction 

problem for the adjoint operator is given by ( )† † * †
0 0 ,m mik= −fL 0mf  which can be written out as follows 

 ( ) ( )† 1 † † 2 †
0 0 0 0 0 01 , 1m m m m m mik c ik cϕ ϑ ϕ−= Γ − = ∇ = − Γ − †

0m

0

0

 (C.6) 

after noting that the eigenvalues are real (i.e.,    *
0 0 ).m mk k=

Now by combining the equations of (C.6), it can be shown that and so 

  This completes the expression of the adjoint field in terms of the  

2 † 2 †
0 0m m mc k c∇ = −

†
0 .m mc c= 0 .mc

 

C.2 Here we give results for the nonlinear coefficients that describe sound-sound interactions. 
 
Axial Modes 
 ( ) ( ) ( ) ( )2 2

1 1, , , ,
1 22 2,E Em j k m j kj k j k j k j k

m m m mI Iϑϑ ϑϑδ δ δ δ− + − += + = −  (C.7) 
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Tangential Modes 

 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )

, , , ,
1 12

, , , , , , , , , ,
2 2 2 2 22

m j k m j k j k j k
m m

m j k m j k m j k m j k m j kj k j
m m

I c

I c c c c

ϑϑ ϑϑπ

ϑϑ ϑϑ ϑϑ ϑϑ ϑϑπ
α β α β

δ δ

δ δ

− +

− +

= +

= + + − k

 (C.8) 

The integrals ( ), ,
1

m j kcϑϑ , ( ), ,
2

m j kcϑϑα  and ( ), ,
2

m j kcϑϑβ :  

  (C.9) ( ) ( ) ( ) ( )
1

, ,
1 0 0

0

m j k
m m j j k kc r J k r J k r J kϑϑ = ∫ 0 r dr

 ( ) ( ) ( ) ( )( ) ( )(11, ,
2 0 0 0 0 0

0

m j k
j k m m j j k k

r
c k k rJ k r d J k r dr d J k r drϑϑ

α

−

=
= ∫ )dr  (C.10) 

 ( ) ( ) ( ) ( ) ( ) ( )
1

, , 1
2 0 0 0 0 0

0

m j k
j k m m j j k k

r
c j k k k r J k r J k r J k rϑϑ

β
−

=

⎛ ⎞= ∫⎜ ⎟
⎝ ⎠

dr  (C.11) 

must be evaluated numerically.  
 

C.3 By appealing to the method of characteristics, Fox (1955) described the steepening behavior of purely 

axial acoustic motions within a cylindrical chamber, enclosed by a rigid boundary and containing a fluid 

otherwise at rest.  We briefly review that solution here.   

The starting point for the analysis is a coupled system of nonlinear equations for the sound 

speed and the acoustic velocity( ),c c z t= ( ),a a z zu z tϑ = =u u e , found by taking the axial component of 

(2.11) and (2.12) for a flow assumed adiabatic, 

 ( )( ) ( )11 1 , 1
1

a z a z a z
a z a z

u u uc cu c u
t z z t z

∂ ∂ ∂ cc
z

∂ ∂ ∂
+ = − Γ − + + = − +

∂ ∂ ∂ ∂ ∂ Γ − ∂

)

 (C.12) 

The essential point to be observed is that by introducing characteristic coordinates ( ,ς υ defined by 

 ( ) ( )1 , 1a z a z
z t zc u c u t
ς ς υ
∂ ∂ ∂

= + + = − + −
∂ ∂ ∂ υ

∂
∂

 (C.13) 

the original nonlinear system (C.12) can be transformed† into a linear one 

 1 0, 0
1 1a z a zu c u c

ς υ
∂ ∂⎛ ⎞ ⎛ 1 ⎞+ = −⎜ ⎟ ⎜∂ Γ − ∂ Γ −⎝ ⎠ ⎝

=⎟
⎠

                                                

 (C.14) 

 
† Using (C.13) it can be shown that space and time derivatives transform as 

 
( )( ) ( )( )

( )
( )( )

( )
( )( )

1 11 1 ,
2 1 2 1 2 1 2 1

a z a zc u c u

z c t c t t c t c tς ς υ υ ς ς

+ − + +∂ ∂ ∂ ∂ ∂
= − = +

∂ + ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ + ∂ ∂υ υ
∂
∂

 

 
Substituting into (C.12) and taking linear combinations of the results derives (C.14). 
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Thus, when considered as functions of ( ), ,ς υ  both  and c  can be solved for exactly a zu

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , 1a zu r l c r lς υ υ ς ς υ υ ς= + = Γ − −  (C.15) 

where and are determined by satisfying the initial conditions.  Even though more complex behavior can 

be accommodated, consideration is restricted here to the case of a sound wave that initially coincides with 

an axial acoustic mode: 

r l

 ( ) ( ) ( ),0 0, ,0 cosa z lu z c z k zε= =  (C.16) 

with  the acoustic wave number and lk ε  the small parameter that characterizes the wave amplitude.  If we 

choose, for simplicity, the parameterization of the initial line 0t = as ,z ς υ= =  it then follows from 

(C.15) and (C.16) that 

 ( ) ( ) ( ) (1 1cos , cos
2 1 2 1ll k rε ε )lkς ς υ= − = υ
Γ − Γ −

 (C.17) 

Upon substituting this result back into (C.15) and using some trigonometric identities, we have 

 ( ) ( ), sin sin , , cos cos
1 2 2 2 2a z l l l lu k k c k kε ς υ ς υ ς υ ς υς υ ς υ ε+ − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜Γ − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− ⎞
⎟  (C.18) 

which recall is the exact solution. 

The perturbation comes in determining the characteristic directions from (C.13).  Consider an 

expansion for space and time of the form 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1, , , ..., , , ,z z z t t tς υ ς υ ε ς υ ς υ ς υ ε ς υ ...+ + +∼ ∼ +  (C.19) 

To satisfy the parameterization of the line 0t = introduced, the first approximations are given by 

  ( ) ( )0 0, , ,
2 2

z tς υς υ ς υ ς υ+ −
= =  (C.20) 

Introducing this result into (C.18) recovers—not surprisingly—the behavior of classic acoustics  

 ( ) ( ) ( ) ( ) ( ) (0 0 0, sin sin , , cos cos
1a z l l l lu k z k t c k zες υ ς υ ε

Γ −
∼ ∼ )0k t  (C.21) 

absent any nonlinear interaction.   

Steepening effects first manifest themselves in the ( )O ε corrections to the characteristic 

directions.  Substituting (C.19) into (C.13), we have  
 

 
( ) ( ) ( ) ( )1 1 1 10 ,a z a z

z t z tt
c u c u 0t

ς ς υ
∂ − ∂ +

υ
∂ ∂

= + = − −
∂ ∂ ∂ ∂

 (C.22) 

with solution 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

1

1

1, cos cos
8 1

1 1 2, cos cos sin s
8 1 4 1

l l

l l l
l

z k k

t k k k
k

ς υ υ ς ς υ

in lkς υ υ ς ς υ υ

Γ
= − −

Γ −

Γ Γ −
= − + + −

Γ − Γ −
ς

 (C.23) 
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Even though the calculation is easily extended to ( )2 ,O ε  the result here suffices.  The algorithm 

for determining the behavior at a given point in ( ),z t space involves numerically inverting (C.19) to find 

the corresponding values for the characteristic coordinates ( ), ;ς υ  the acoustic velocity and the sound 

speed then follow from (C.18).   
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D. Calculations for Chapter 4 
 

We consider first the equation for : 3Q

 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1

3 3

1, ,1
1 112

3 3 1, ,1
1 1 1

3, ,3
3 332

3, ,3
3 3 3

sin
3

cos

sin

cos

j j

j j

j j
r jr

E E E j j
j j j i j

j j
r j j

E E E j j
j j j i j j

f Q Q QP
Q K

P P f Q Q Q

f Q Q QP
P P f Q Q Q

εε

εε

εε
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where ( ) ( ) ( )... ... ...
3 1 33K k k= − and identify the dominant nonlinear term using arguments similar to those 

introduced in §4.3,  

 ( ) ( ) ( ) ( ) (( )
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3 3 3 2 3 2
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 (D.2) 

Since  grows linearly to begin with (there will be a change in slope after the first resonance 

condition is satisfied owing to the fact that  has reached its limit point) and  grows exponentially, 

there comes a time when the two terms balance and .  For this to be a stable limit point,  as 

governed by 

3Q Q−

2Q 3P

3 0Q� ∼ 3P
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must also have reached its limit point.  Solving (D.2) and (D.3) for these limiting values, we have 
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where ( ) ( )
3 2 1

3,2,12 2
3

r
rE E EF f εε= and ( ) ( )

3 2 1
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3 .i

iE E EF f εε=   This defines the behavior after the second resonance 

condition has been satisfied. 

Now consider the dominant terms in the equations for : 4Q
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and : 4P
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where ( ) ( ) ( )... ... ...
4 1 44K k k= − .  This defines the approach to the third resonance, after which the respective 

left-hand sides are zero and the limiting values of and can be obtained:  4Q 4P
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where ( )
4

rF  and ( )
4

iF   given by 
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E. The Method of Multiple Scales: A Simple Example 
 

We use here the method of multiple scales to compute the vorticity field established by Stokes’ 

oscillating plate generalized to include a uniform injection of fluid normal to the boundary.  Recall from 

(5.2)–(5.3) that  

 
2

2 ,n nu u
t n nn
ζ ζ ζ ζ

ζ ζν ν
∂ ∂ ∂ ∂

+ = − =
∂ ∂ ∂∂

ω ω ω ω
ω σ at 0n =  (E.1) 

where the vorticity source strength ζσ is now taken to be a harmonic function.   

In solving (E.1), the essential idea is that coexisting spatial scales of different order control the 

physics; a fast scale 
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describes the oscillatory behavior, where the mα are constants independent of to be determined, and a 

slow scale  

Re

 1
Ren

kn
u

=� n  (E.3) 

describes the cumulative effect of viscous decay.  Since these scales are separated by  this 

suggests the mathematical approximation of treating them as independent variables during the solution 

process.  Thus, the chain rule gives 
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 (E.5) 

Introducing this transformation into (E.1), we find 
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where  with the frequency of oscillation. ,t kt+ = k

Now a two-scale expansion for ζω  of the form 

 ( ) ( ) ( ) ( )0 1
1, , , ;Re , , , , ...

Re
n t n n t n n t n n tζ ζ ζ ζ

+ + + + + += +ω ω ω ω� �∼ +�  (E.7) 

is sought.  Substituting into (E.6), we have that ( )0 , ,n n tζ
+ +ω �  is governed by a first-order wave equation in 

he fast scale  ,n+t 
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with solution 

 ( ) ( ) ( )(0 0
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n n t n t n n
uζ ζρ+ + + += − +ω σ� � )0θ �  (E.9) 

where  and  to satisfy the boundary condition.  It must be emphasized that( )0 0 1ρ = ( )0 0 0θ = ( )0 nρ � and 

are no longer constants of integration but functions of the slow scale  determined by suppressing 

secular terms at higher order.  

( )0 nθ � n�

This leads us to the next term of the expansion (E.7), which is also governed by a first-order wave 

equation in the fast scale  ,n+
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except the equation is now forced.  Using (E.9) to evaluate the right-hand side and noting that since ζσ is 

assumed harmonic , we have ( ) ( )tζ ζ
+′′ = −σ σ t+

 ( ) (1 1 0 0
0 0 0

1 1

n n

d d
t n t n

u dn u dnt n
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That both forcing terms here are secular follows because they are homogenous solutions of the operator on 

the left-hand side.  If no mechanism existed to suppress them, the perturbation to the leading order solution 

would grow without bound—behavior not reflected by the physics of the problem.  To avoid this, we set 

 0
0 0, 0

d d
dn dn
ρ

ρ 0θ+ =
� �

=  (E.12) 

Taking account of the boundary conditions, we have ( )0
nn eρ −= ��  and ( )0 0nθ =� .  This determines ζω  to 

  ( )1 .O

Now we proceed further and extend the results to ( )1Re .O −   Because no forcing terms remain in 

(E.11), 1ζω  is driven entirely by the boundary, consideration of which, gives 
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uζ ζρ+ + + +′= − − +ω σ� � )1θ �

.

 (E.13) 

where and   Once again the unknown functions( )1 0 1ρ = ( )1 0 0θ = ( )1 nρ � and of the slow spatial 

scale are determined by suppressing secular terms at higher order,  

( )1 nθ �
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Without carrying out the details, we can use the results calculated so far to evaluate the right-hand side.  All   

terms are found to be secular and we suppress them by setting 
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Thus 2 2,α = −  and taking account of the boundary conditions, we have ( )1
nn eρ −= ��  and ( )1 0nθ =� .  This 

determines ζω  to   ( 1Re .O − )
To summarize, the first two terms in the multiple scale solution of the vorticity field, established 

by Stokes’ oscillating plate with fluid injected through the boundary, are 
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n t e t n t n
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This recovers the perturbation expansion of the exact solution given in §5.2 (cf. (5.13) specifically) if we 

set ( ) 2sint kU tζ
+ += −σ ζ .   
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F. Results for Chapter 6 
 
Table F.1 Summary of the results for the vortical and thermal waves generated within an acoustic boundary 
layer, with and without a uniform injection of fluid through the boundary 
         

Without Injection 0bM =  
        

With Injection  0bM ≠
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G. Calculations for Chapter 7 
 

G.1 Terms indicating an interaction with the mean flow are scaled by the injection Mach number bM  and 

so the linear operators  and ( )...pL ( )...ϑL can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )0 0... ... ... ..., ... ... ... ...p p b p bM µ ϑ ϑ ϑµ= + + = +L L L L L LM +  (G.1) 

where 
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Note that contributions owing to source terms have been omitted for simplicity. 

G.2 To establish that 
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we begin by taking the inner product *, T dV≡ ∫x y y x of (7.5), i.e., 
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with  to obtain † † †
0 0 0
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where ( )2 †* †*1
0 0 0 0 02m m m m mE p p dVϕ ϑ= +∫  and j

mδ  is the discrete Dirac-delta function.   

Now using the operator definitions (cf.§G.1), the identity ( )2 2α β β α α β β α∇ − ∇ = ∇ ⋅ ∇ − ∇  and 

the leading order acoustic solution from §C.1 (i.e., ), some of the terms in (G.5) can be 

rewritten.  In particular, we find 
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Substituting these results into (G.5) yields 
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  (G.7) 
It remains to consider the first term on the right-hand side of (G.7).  Expanding the normal 

projection of the momentum equation on the boundary 

 ( ) ( )...u m m m mik ik ϑ ω⋅ = ⋅ = ⋅ +n n u n uL mu  (G.8) 

using (7.2), (7.3) and the multi-scale expansion for the vortical component of the flow (i.e., 
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Note that unlike 0mϑ⋅n u , which is taken to satisfy the no-through condition, 0mω⋅n u  is non-zero but does 

scale as  (cf. (7.22)).  Collecting terms of ( bO M ) ( )bO M  in (G.9), we find 
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Now substituting this into (G.7), we obtain the desired result (G.3).  
 

G.3 To solve for the perturbations ( bO M
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we multiply the first equation by  the second equation by †*
0 ,jp †*

0 ,jϕ  and then integrate both over the 

domain.  We then substitute in a series expansion in terms of the leading order mode shapes, i.e.,  
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and use the fact that ,  and , to obtain  † 1 †
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when .   Expressions for the coefficientsj m≠ p
m kµα and m k

ϑ
µα follow by taking linear combinations of the 

above.  We have 
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and 
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A djoint Problem  

A simple way to derive an expression for the perturbations to the adjoint mode shapes is to use the 

bi-orthogonality condition, i.e.,  
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when  To ensure that this is satisfied, we set and 
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,m

k k

E p
m k m k m kE

k k
k m k m

p p ϑ
µ µ µ

2
0

2
* †

0
mE

m kE µα ϕ α
∞ ∞

= =
≠ ≠

= − = −∑ ∑ ϕ  (G.17) 

where p
m kµα and m k

ϑ
µα are given by (G.14) and (G.15), respectively.  

 

G.4 Steady Flow  
 

Following Berman (1953) and White (1962), we use here a similarity approach to solve for the 

steady incompressible flow within a cylindrical, uniformly porous tube—this is a commonly used model 

for the flow field inside a solid rocket motor with a cylindrical propellant grain†.  That no new contributions 

are presently made should be emphasized. 

 We begin by considering the boundary conditions that constrain the flow: 

 
0, 0 at 0

1, 0 at 1

r z

r z

U U r r

U U r

= ∂ ∂ = =

= − = =
 (G.18) 

If the endwall is taken to be non-burning, a global mass balance yields ( ) 2 ,zU z z=  where the overbar 

denotes a cross-sectional average, defined by 

 ( )
21

0 0

1 22z z z
r

U z rU dr U d z
A

π

λ

π
π= =

2λ= =∫ ∫ =

                                                

 (G.19) 

 

 

† Given the fine line between mathematical intractability and physical irrelevance, it is worth considering 
why this is a good description.  First, even though the flame zone is characterized by complex chemistry 
and multiphase flow effects, the distance over which the propellant burns is on the order of millimeters—a 
scale that pales in comparison with other dimensions of the chamber.  Thus, approximating the reacting 
surface by a transpiring one is a valid simplification of the description.  Second, while gases generated by 
combustion processes are accelerated through the nozzle to supersonic speeds, compressibility effects only 
dominate in the aft end of a motor.  Thus, the incompressible approximation is valid for the bulk of the 
chamber, especially when the slenderness ratio L R is large compared with unity.  
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with 2 2.rλ π=   This motivates the following ansatz ( ) ,zU z fπ λ′=  which satisfies (G.19) provided that 

( )2f π =1 . and  The equation of continuity ( )0 0f = ( )1 0r zr rU r U z− ∂ ∂ + ∂ ∂ =  then gives 

( ) ,rrU f λ= −  which allows us to solve for the stream function ( )z f λΨ =  and the azimuthal component 

of the vorticity ( )2 .r z fθ π λ′′Ω = −  

Now substituting the above solution into the azimuthal component of the vorticity transport 

equation , derives a nonlinear ODE of the form ( ) 1 2Reθ ω
−⋅∇× × = ⋅∇e Ω U e Ωθ

 (2 2
Re

iv

b

f f f f f f
M ω

λ )′ ′′ ′′′ ′′′− = +  (G.20) 

for the unknown function  subject to the following constraints: ,f

 
( )0 0lim 0, lim 0

1, 0 at 2

f f

f f

λ λλ λ λ

λ π

→ → ′′= =

′= = =
 (G.21) 

This constitutes an exact self-similar description of the steady incompressible flow field within a 

cylindrical, uniformly porous tube.  

In solving (G.20), a small parameter multiplying the highest order derivative ordinarily implies the 

existence of some form of boundary layer.  However, there is no mechanism to hold such a layer steadily in 

place against the convective effect of fluid injected through the boundary (Proudman 1960).  Thus, the 

inviscid solution, which is governed by an equation of lower order  

 0f f f f′ ′′ ′′′− =  (G.22) 

must satisfy all the original boundary conditions; viscosity, in other words, has a negligible effect on the 

steady flow.  The laminar analyses of Taylor (1956), Culick (1966) and others also recovered this same 

inviscid  rotational result: 

 ( ) ( ) ( ) ( )2, , ,r zrU f U z f z f r z fθλ π λ λ π λ′ ′′= − = Ψ = Ω = −  (G.23) 

where ( ) sin .f λ λ=     

Comparing (G.23) with his own experimental data, Taylor (1956) noted the striking agreement.  

More recently, Dunlap et al. (1974) have experimentally confirmed the adequacy of this flow description in 

the upstream region of a cylindrical chamber with porous wall.  Numerical simulations (Vuillot and Avalon 

1991)—both inviscid and viscous steady-state—with an exit Mach number of 0.10, are also in agreement. 
 
U nsteady Flow 

We now solve for the unsteady vorticity field that induces on the boundary a fluid motion equal 

and opposite that which accompanies the leading order acoustic field.  Closed form solutions are generally 

too difficult to construct, except for simple geometries—here we consider the case of a cylindrical 
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propellant grain.  Thus, we have that ( ) ( ) ( )0
0 cos ,mi k t n

n ns lp J k r k z e ι θ− += where 2
0 ≡ +m nsk k 2

lk  with 

lk l R Lπ=  proportional to the chamber radius-to-length ratio and  the roots of the derivative of the 

Bessel function, i.e., 

n sk

( )
1

0n ns r
dJ k r dr

=
= .  Note that a traveling wave representation in the azimuthal 

direction is assumed; 1ι = ± for right– and leftward traveling waves—the behavior for a standing wave 

follows from superposition.   

Recall from §7.2 that a two-scale expansion for ( ) ( )0 1, , , , ...bt M tζ ζ ζξ ξ+ +ω ω x ω x∼ is sought, 

where ( ) ( ) ( )0
0 0, , .mi k tnt e ξ

ζ ζξ − −=ω x ω x  The objective here is to determine the unknown function ( )0
n
ζω x  

of the original spatial scales by suppressing secular terms at higher order.  The correspondence between the 

normal-tangential coordinate framework used earlier and cylindrical polar coordinates is given by 

.  Thus ( ) (, , ,n r θ=ζ )z z zζ θ θω ω= +ω e e  with 

 ( ) ( ) ( ) ( ) ( ) ( )0
0 0 0 0, , , , ,mi k t i k tr

z zt e t e 0mrξ ξ
θ θω ξ ω ω ξ ω− −= =x x x x − −  (G.24) 

In terms of the behavior on the boundary, since the tangent gradient operator is now  

 ( ) 1
z

f ff
z rθ θ
∂ ∂

×∇ = − +
∂ ∂

n u u  (G.25) 

it follows from (7.10) that 

 ( ) (0
0 0

1 1,l b z bboundary boundary
b b

p
O k M O M

M z Mθω ω
θ

∂
= − =

∂
∼ )0 1

p∂
∂

∼  (G.26) 

While Flandro (1995 a) derived the formula on the left, and offered the interpretation that when acoustic 

waves are parallel to the combustion zone a fluctuating pressure gradient acts across the incoming flow 

streamlines, the difference here—apart from the way in which the problem is formulated—is that the 

pressure is no longer assumed to be purely axial.   

From (7.21), the tangent components of velocity are given by 

 ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )0 0

0 0

0 0 0 0 0 0, , , , ,m m

r r
z

i k t i k tr r
b m r z z b m r

u u

u t i M k U e u t i M k U e
ωθ ω

ξ ξ
ωθ ω θξ ω ξ ω− − − −= − =

x x

x x x����������	���������
 ����������	���������
x (G.27) 

and from (7.22) the radial velocity is 

 ( ) ( ) ( ) ( )( )
( )

( )0

0

2 2 1
0 0 0 0, , m

r
r

i k tr r
r b m r z

u

u t M k U r z e

ω

ξ
ω θξ ω θ ω − −−= ∂ ∂ − ∂ ∂

x

x x x
���������������������	��������������������


 (G.28) 
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Since only  needs to be determined, we begin with the tangent component of the vorticity 

transport equation (7.13)

( )0
r
ζω x

†, 

 ( )21
Re

z
r z z z

b

r r
r z

uU
U U

r z z z
M

t U u u
u u

r r z r r

ζ ζ θ
θ

ζ

ζ
ωθ θ θ θ θ θ

θ θ

ω

ω
ϑ

θ

⎛ ∂ ∂ ⎞⎛ ⎞ ∂∂⎛ ⎞+ − +Ω +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎜ ⎟+ =⎜ ⎟∂ ∂Ω ∂Ω Ω Ω ∂⎛ ⎞⎜ ⎟+ − + + − − + Ω⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

ω ω
e

ω
ω

e
∇  (G.29) 

By introducing the multiple radial length scales ( ) 1 ,b rr M U rξ−∂ ∂ = ∂ ∂ + ∂ ∂  we obtain  

 

2

2 2 2
0

1 1 z
r z z z

m r
b

r r
r z

uU
U U

r z z zk U
M

t U u u
u u

r r z r r

ζ ζ ζ θ
θ

ζ ζ

θ θ θ θ θ θ
θ θ

ω
δ ξ

ξ ω
ϑ

θ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂∂⎛ ⎞⎜ ⎟+ − − +Ω⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂ ⎝⎜ ⎟⎝ ⎠+ = − ⎜ ⎟∂ ∂ ∂Ω ∂Ω Ω Ω ∂⎛ ⎞⎜ ⎟+ − + + − − + Ω⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

ω ω ω
e

ω ω

e

+
⎠  (G.30) 

A few remarks are in order here.  First, note that ; while this can be evaluated 

explicitly

( ) 1 1

1

r

b rr M U drξ − −= ∫
‡, it should be emphasized that expressing the unsteady solution in terms of integrals of the steady 

flow is more general, since different representations of the latter can then be incorporated.  Second, has 

no functional dependence on 

U

ξ  and thus is unaffected by the above transformation.  Finally, only the 

dominant viscous term is retained, i.e., ( ) ( )2 2 2 1 2 2
b r bM U O Mξ− −∇ ∂ ∂ +∼ 1 , with 3

0Reb
2
mM kωδ ≡ being a 

measure of the damping. 

In solving (G.30), recall that a two-scale expansion for ζω of the form 

is sought, where ( ) ( )0 1, , , , ...bt M tζ ζ ζξ ξ+ω ω x ω x∼ + ( ) ( ) ( )0
0 0, , .mi k trt e ξ

ζ ζξ − −=ω x ω x  The objective here 

is to determine the unknown function ( )0
r
ζω x  of the original spatial scales by suppressing secular terms at 

higher order.   Without substituting and carrying out the details, it should be apparent that the right-hand 

side of (G.30) represents the forcing of those effects that lead to secular behavior need to be identified.   1;ζω

With exception of the diffusive contribution, the ( )bO M forcing terms in (G.30) are composed of 

the product of a steady with an unsteady flow component—only when this combination exhibits a 

dependence on ,ξ  does the possibility of secularity arise.  By such arguments, acoustic/mean flow 

interactions clearly do not require suppression.  The same does not hold true for thermal motions induced 

by entropy fluctuations, since such motions are also carried along by the steady flow; however, the 

magnitude of 0su  is negligible (cf. §7.3).  Essentially then, it is the interaction between the unsteady 

                                                 
† Some terms have been recast.  In particular, we set ( ) ( )( ) (r z zU r r u u zθ θ )ω θ θ∂ ∂ + Ω ∂ ∂ = Ω ∂ ∂ .  This 
follows simply from the definition of vorticity, since 1

r zr u u zω ωθω θ−= ∂ ∂ − ∂ ∂ and zU rθΩ = −∂ ∂  
(recall that ). ( )r rU U z≠
 

 

‡ Using the steady flow model derived earlier, we have ( ) ( ) ( )1 ln tan 2bMξ λ π λ−= − with 2 2rλ π= .   
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vorticity field and the steady flow that leads to secular behavior; if not suppressed, 1ζω would grow 

without bound—a reality not reflected by the physics of the problem. 
 
A xial Component of Vorticity 

Consider first the axial component of (G.30).  Suppressing secular terms leads to an equation for 

: ( )0 , ,r
z r zω θ

 0 0 0
0 02

1 1 0
r r r
z z r r z

r z z z
r

uU
U U

r z z zU
ωθ

θ

ω ω
ω ω

δ
∂ ∂ ∂∂

+ + − −Ω
∂ ∂ ∂ ∂

=  (G.31) 

Some simplifications are possible here.  First, since  is divergence free, we can recast U zU z∂ ∂  as 

( )1
rr rU−− ∂ ∂r , and thus combine the first and fourth terms.  Second, since ( )0 0

r r
b m r zu i M k Uωθ 0ω= −  

the last term is at least an  smaller than the others and can therefore be omitted from further 

consideration—in other words, vorticity stretching and tilting effects do not significantly modify the axial 

vorticity distribution.  After introducing these simplifications, we have 

( bO M )

  
( ) ( ) ( )0 0

02

1 1 0
r r

r z r z r
r z r

r

rU rU
U U rU

r z U

ω ω
ω

δ

∂ ∂
+ +

∂ ∂
∼z  (G.32) 

Now a simple way to solve (G.32) for ( )0 , ,r
z r zω θ  is by introducing a Von Mises’ like 

transformation.  By changing dependent variables from ( ),r z to ( ),r ,Ψ  where is the mean flow 

streamfunction,  

Ψ

 ,zrU rU
r r z r
∂ ∂ ∂ ∂
= + = −

∂
∂ ∂ ∂Ψ ∂ ∂Ψ

 (G.33) 

the convective operator r zU r U∂ ∂ + ∂ ∂z  becomes rU r∂ ∂ ; 0
r
zω  is then readily found from simple 

quadrature 

 ( ) ( ) (0
1, , 1, ,rr

z
r

r e
rU

φω θ ω θ )0
r
zΨ = − Ψ  (G.34) 

Note that the function represents the effects of viscous damping and is evaluated 

explicitly below

( ) 1 3

1

r

rr Uφ δ − −≡ − ∫ dr
†.  Since  is directed inwards (rU ( ) 0rφ ≥ ) and tends to zero as  it follows that 

viscous effects become increasingly more important as the chamber axis of symmetry is approached.    

0,r →

                                                 
† Using the steady flow model derived earlier, we have 

 ( ) 2
2

1 1 cos 11
sin sin sin

d
λ

π

λ λ σφ λ
δ λ λ σπ
⎛ ⎛ ⎞= − − − − ∫⎜ ⎜ ⎟

⎝ ⎠⎝ ⎠
σ ⎞
⎟   

where following Flandro (1995 b) the last integral can be approximated by a series expansion: 

3 5 77 311
18 1800 105840

2
2Catalan ..., Catalan 0.915966

sin
d

λ

π

σ σ λ λ λ
σ

λ− + + +∫ + +∼ ∼  
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On the boundary, we have from (G.26) that  

 ( ) ( ) ( )0
11, , cosr i

z n ns
b

i nJ k k e
M

n
l

ι θω θ ι −Ψ = − Ψ  (G.35) 

 
A zimuthal Component of Vorticity 

Having determined one component of ( )0
r
ζω x  it remains to determine the other.  Suppressing 

secular terms in the azimuthal component of (G.30) leads to an equation for : ( )0 , ,r
z r zω θ

 
( ) ( ) ( ) ( )0 0

0

0
2

1 1
r r r

r
r z

r

r r ur
U U r

r z rU
θ θ

θ

ωθθ
ω ω

ω
δ θ

∂ ∂ ∂Ω
+ +

∂ ∂
∼

∂
 (G.36) 

where only the significant terms have been retained†.  Since ( )0 0
r r

b m r zu i M k Uωθ 0ω= −  is known, it can be 

treated as a forcing.  Solving (G.36) is not especially difficult; the procedure follows the earlier strategy, 

except a particular solution is now also needed.  The result is 

 ( ) ( ) ( ) ( )( ) ( ) ( )0
0 0 0

1, ,
, , 1, ,

r
zrr r

b mr re i M k r rφ
θ θ θ

ω θ
ω θ ω θ χ

θ

⎛ ⎞∂ Ψ
Ψ = Ψ + Ω⎜ ⎟⎜ ⎟∂⎝ ⎠

 (G.37) 

where and the behavior of ( ) ( ) 12

1

r

rr r U dχ
−

≡ ∫ r ( )0 , ,r rθω θ Ψ on the boundary follows from (G.26),  

 ( ) ( ) ( )0 1, , sinr l
n ns l

b

k
J k k e

M
i nι θ

θω θ −Ψ = Ψ  (G.38) 

Thus unlike 0zω , two sources of azimuthal vorticity exist: acoustic coupling on the boundary, as 

evidenced by the first term, and stretching of the mean vorticity by the azimuthal component of the 

rotational velocity, as indicated by the second.  To help assess the importance of the latter, we substitute 

into (G.37) the expressions for ( )0 1, ,r
θω θ Ψ  and ( )0 1, ,r

zω θ Ψ  from (G.38) and (G.35) respectively, 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )22
0 0 0, , sin cosrr i nl

n ns l b m l m l
b

k
r J k re k iM k k n k r k

M
φ e ι θ

θω θ π χ −Ψ = Ψ − Ψ Ψ  

  (G.39) 

                                                 
† With all the terms retained, we have 

 
( ) ( ) ( ) ( ) ( ) ( )0 0

0

0
0 02

1 1 0
r r r

r r r
r z r z

r

r r ur r r
U U r u u

r z r z rU
θ θ

θ

ωθθ θ θ
ω ω

ω ω
ω

δ θ

∂ ∂ ∂∂ Ω ∂ Ω Ω
+ + + + −

∂ ∂ ∂ ∂ ∂
=   

 

However, some terms can be omitted owing to their negligible contribution.  For example, consider the 
fifth term; this describes the convection of the steady vorticity by the axial component of the unsteady 
vortical velocity.  We can assess the order of magnitude of this effect, by first recalling that since θΩ  is 
proportional to  the axial derivative removes this dependence and thus the possibility of having to 
multiply by the chamber length-to-radius ratio.  Then, because 

,z
( )0 0

r r
z b m ru i M k U 0ω θω=  (cf. (G.27)) is 

smaller than 
0

( bO M ) r
θ

ω , the effect is negligible in comparison with the complementary physics, i.e., the 
convection of the unsteady vorticity by the steady velocity.  Similar arguments show that the fourth term 
contributes even less.   
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where we used the fact that 2 .rθ πΩ = Ψ  Since, the steady flow stream function is proportional to the 

streamwise coordinate, i.e., ( )( )*L R z LΨ ∝ , with the superscript *  used here to denote a dimensional 

quantity, vis-à-vis the first term in the parenthesis, whose maximum value is unity, the second term 

effectively scales as ( )( )2
bO M L R . 

Having solved for , the solution is complete.  To help visualize the results, we consider 

two limiting cases.  Absent any axial dependence for the acoustic wave, i.e., 

( )0
r
ζω x

( )0, ,n s , we have  

 ( ) ( ) ( )( 0
0

1 1 mi k t nr
z n ns

b r

i s nJ k e e
M rU

)ξ ι θφω − − +=  (G.40) 

 ( ) ( ) ( )( ) ( ) ( ) ( )(0 0

2

0 0 2 2
0 0

1 1,m mi k t n i k t nr r
n ns r b n ns r

m m

n nu s J k e e u M J k U e e
k r k r

)ξ ι θ ξ ι θφ φ
ωθ ω

− − + − − += ∼  (G.41) 

Although 0zuω will also be non-zero in this instance—arising solely due to the stretching effect—it scales 

as .  Figures G.1 and G.2 illustrate the time sequence for the azimuthal and radial 

 velocity components when 

( bO M ) 0

0

0au uθ ωθ+

0a r ru uω+ ( )0,1,0 . 

The other limiting case is that of a purely axial acoustic wave ( ),0,0l : 

 ( ) ( ) ( )0
0 sin mr i kl

l
b

k
re k e

M
tφ ξ

θω
− −= Ψ  (G.42) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 03
0 0

1sin , cosm mr i k t r i k
z r l r b r lu i rU e k e u M rU e k e

r
tφ ξ φ

ω ω
− − − −= Ψ = Ψ ξ

0

 (G.43) 

This recovers Flandro’s (1995 b) original viscous solution.  The behavior of the axial and radial 

velocity components when  is shown in Figures G.3 and G.4, respectively. 

0a z zu uω+

0ruω 1l =
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Figure G.1 Time sequence for the azimuthal velocity u 0a 0uθ ωθ+ corresponding to the case
for parameters typical of a Tactical Rocket  (0,1,0)

Figure G.2 Time sequence for the radial velocity u 0a r r 0uω+ corresponding to the case
for parameters typical of a Tactical Rocket  (0,1,0)
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Figure G.3 Time sequence for the axial velocity u 0a z z 0uω+ corresponding to the case
for parameters typical of a Tactical Rocket  (1,0,0)
Figure G.4 Time sequence for the radial velocity u corresponding to the case
for parameters typical of a Tactical Rocket  

0rω

)(1,0,0
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H. Calculations for Chapter 8 
 

H.1 We seek here to evaluate the formulas for ,mk µ
p
m jµα and .m j

ϑ
µα  Substituting in (7.7), (G.14) and 

(G.15) for and ( )0 0, ,p m mpµ U uL ( )0 0, ,u m mpµ U uL from (G.2), we have 

 

( ) ( ) ( )( )

( )
( ) ( )( ) ( )

( ) ( )( )

2
0

0 0
2 2 2 2 2 2

0 0 0 0 0 0

, , , ,11
12

, , ,1 , , ,,

m

j m

m j j m j j

m m m m m m
m m m E

k km j m j m j m jp
m j m ji k k E i k k E

ik i I I I

I I I I

ω ϑ ϑ
µ µ µ

ω ϑ ω ϑϑ
µ µ

α θ

α α −

− −

= − − = + +

= + = + 1

 (H.1) 

where 

 ( ) ( ), †* 1 †*
0 0 0 0 0 0

m j
m j b m m m jI ik M dS dVω

ω ω ωϕ ϕ−= ⋅ − ⋅∇ + ⋅∇ ⋅∇∫ ∫n u U u u Uv  (H.2) 

and 
 

 ( ) ( ) ( )0

0

, , †* †* †*
0 0 0 0 0 0 0

m

j

km j
m j m m m j j mkI ik dS dV p p dV

ι
ϑ ι

ϑ µ ϑ ϑϕ ϕ= ⋅ − ⋅∇ + ⋅∇ ⋅∇ + ⋅∇∫ ∫ ∫n u U u u U Uv  (H.3) 

Consider those terms that arise owing to vortical flow effects first.  To simply ( ),m jIω , we use 

some results from vector analysis.  More specifically, we use ( )dS dSα α⋅∇× = − ⋅ ×∇∫ ∫n a a nv v  to rewrite 

the first term in (H.2) and†: 

 ( ) ( ) ( )dV dS dVω ω ωζ ζ ωα α α α⋅∇ + ⋅∇ ⋅∇ = ⋅∇ ⋅ + ⋅ ∇ ⋅∇ +∇ ⋅∇ − ×∇∫ ∫ ∫U u u U u n U u U U Ω αv  (H.4) 

to rewrite the second term; this gives  

 ( ) ( ) ( )0, †* †* †* †*
0 0 0 0 0 0 0

m

b

ikm j
j m n m m j j jMI U dSω

ωζ ωϕ ϕ ϕ= ∇ ⋅ × − − ⋅ ∇ ⋅∇ +∇ ⋅∇ − ×∇∫ ∫n A u u U U Ωv dVϕ  (H.5) 

Now applying the earlier asymptotic result (7.26), we find that when the flow is laminar, the 

volume integral in (H.5) scales as the injection Mach number and thus contributes negligibly.  The surface 

integral vanishes as well owing to the behavior on the boundary, cf. (7.23).  Therefore, to the order of 

approximation considered ( ), 0,m jIω ∼ which indicates that no net contribution exists owing to the effects of 

vorticity. 
  

                                                 

)

† Note that 

 

( )
( ) ( )( )( )
( ) ( ) (
( ) ( )( ) ( )

ω ω

ω ω

ω ω ω

ω ω ω

α

α α α

α α α α α

α α α α

⋅∇ + ⋅∇ ⋅∇ =

= ⋅∇ ⋅∇ + ⋅ ∇ ⋅∇ − ⋅∇ ∇

= ⋅∇ ⋅∇ − ⋅∇ ⋅∇ + ⋅ ∇ ⋅∇ +∇ ⋅∇ − ×∇

= ∇⋅ ⋅∇ − ⋅∇ + ⋅ ∇ ⋅∇ +∇ ⋅∇ − ×∇

U u u U

U u u U U

U u u U u U U Ω

u U U u u U U Ω α

  

 

where the first step follows from using ( )∇ ⋅ = ∇ ⋅ −∇ ⋅a b a b b a  to rewrite some of the terms, the second 
step from substituting for ( )α⋅∇ ∇U  from ( ) ( ) ( )⋅∇ + ⋅∇ = ∇ ⋅ + ∇× × + ∇× ×a b b a a b b a a b  and the third 
step from using the divergence-free property of both and .U ωu   Integrating over the domain, and combing 
the two surface integrals that arise by using the fact that 0ζ =U on the boundary, gives (H.4). 
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Turning to ( ), , ,m jIϑ ι we first substitute ( )0 0 0 ;m m m mϑ ϑ ϑ ϑ⋅∇ + ⋅∇ = ∇ ⋅ + ×U u u U U u Ω u 0  this gives 

 ( ) ( ) ( )0

0

, , †* †* †* †*
0 0 0 0 0 0 0 0

m

j

km j
m j m j m m j j mkI ik dS dV dV p p dV

ι
ϑ ι

ϑ µ ϑ ϑϕ ϑ ϕ= ⋅ + ⋅ − ⋅ ×∇ + ⋅∇∫ ∫ ∫ ∫n u U u Ω u Uv  (H.6) 

Now introducing the leading order solution for the acoustic field from §C.1, we have 

 ( ) ( ) (00 0

0 0 0 0 0

, , 1
0 0 0

jm m

j m j j m

kk km j
j m j m m jk k k k k )0 0I p dS p p dV p p

ι
ϑ ι

ϑ µ
⎛ ⎞= ⋅ + + ⋅∇ + ⋅ ∇ ×∇⎜ ⎟
⎝ ⎠∫ ∫ ∫n u U Ωv dV  (H.7) 

Note that when  and j m= 1,ι = this result simplifies to 

 ( ), ,1 2
0 0

m m
m m mI p dS pϑ

ϑ µ= ⋅ + ⋅∫ ∫n u n UdSv v  (H.8) 
 

H.2 We seek here to establish that for the classic acoustic boundary layer,  

 ... ...ϑ ϑ ω→= − +� �K K  (H.9) 

where  0.dSϑ ω ζ→ = − ⋅ ≥∫ A σ� vK

We start by taking the inner product of (6.2), i.e., the irrotational projection of the momentum 

equation ( )1Ret pϑ ϑ ϑ−∂ ∂ = −∇ −u , with ϑu to obtain 

 ( )1 2 1Re Rep dV dV p dSϑ ϑ ϑϑ ϑ ϑ− −= − − − ⋅∫ ∫ ∫ n u�
ϑvK  (H.10) 

Now by virtue of the no-through condition, it follows that on the boundary .ϑ ω⋅ = − ⋅n u n u   Making this 

substitution in the last integral, using the identity ( )dS dSα α⋅∇× = − ⋅ ×∇∫ ∫n a a nv v  and introducing 

( 1Repζ )ϑ ϑ−= − ×∇ −σ n  from (6.7) , we have  

 1 2Rep dV dVϑ ϑϑ ϑ−
→= − −∫ ∫�K ϑ ω
�K  (H.11) 

 That  follows by substituting in the solution given in Table F.1. 0ϑ ω→ ≥�K
 

H.3 To establish that ( )( )bM dVϑ ϑ↔ = ⋅ ∇ ⋅ + × + ×∫U u U u ω U Ω u�K can be written as  

 
( ) ( )

( )

1
2

b

dS dV dS
M

dV

ϑ ϑ ϑ ϑ ϑζ ωζ

ϑ

ω ϑ ϑ ϑ

↔

⎛ ⎞⋅ ⋅ + ⋅∇ ⋅ + ⋅ ⋅
⎜ ⎟=
⎜ ⎟+ ⋅ ⋅∇ +∇ ⋅ − ×⎝ ⎠

∫ ∫ ∫
∫

U

u u n U u U u u u n U

u u U U u Ω u
� v vK  (H.12) 

we start with the well-known identity ( ) ( ) ( ) ,⋅∇ + ⋅∇ = ∇ ⋅ + ∇× × + ∇× ×a b b a a b b a a b  set ,=a U  

and take the inner product of both sides with =b u ,ϑu to obtain 

 

( )( ) ( )
( ) ( )
( )( ) ( )1

2

ϑ ϑ

ϑ ϑ ϑ ϑ ω ω

ϑ ϑ ϑ ϑ ϑ ω ω

⋅ ∇ ⋅ + × + × = ⋅ ⋅∇ + ⋅∇

= ⋅ ⋅∇ + ⋅∇ + ⋅ ⋅∇ + ⋅∇

= ⋅∇ ⋅ + ⋅∇ ⋅ + ⋅ ⋅∇ + ⋅∇

u U u ω U Ω u u U u u U

u U u u U u U u u U

U u u u U u u U u u U

 (H.13) 

It follows that 

 ( ) (( )1
2b )M dS dV dVϑ ϑ ϑ ϑ ϑ ϑ ω ω↔ = ⋅ ⋅ + ⋅∇ ⋅ + ⋅ ⋅∇ + ⋅∇∫ ∫ ∫U u u n U u U u u U u u U� vK  (H.14) 

Now using (H.4) to rewrite the last group of integrals yields the desired result (H.12). 
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H.4 Using the leading order solution for the acoustic field, we seek here to establish that 

 ( ) 21
2 dS dV p dSϑ ϑ ϑ ϑ⋅ ⋅ + ⋅∇ ⋅ ⋅∫ ∫ ∫u u n U u U u n U∼v 1

2v  (H.15) 

To do so, we first use the following easily verified identity†: 

 ( ) ( )1
2 dS dV dS dVϑ ϑ ϑ ϑ ϑ ϑ ϑϑ⋅ ⋅ + ⋅∇ ⋅ = ⋅ ⋅ − ⋅∫ ∫ ∫ ∫u u n U u U u U u n u U uv v  (H.16) 

Note that the surface integral on the right-hand side scales as ( )2
bO M since on the boundary.  

To compute the volume integral on the right-hand side, we substitute the leading order acoustic solution 

from §C.1, i.e., 

(nu O Mϑ ∼ )b

0mik pϑ ∼  and ( )0 ;mi k pϑ − ∇u ∼  because quadratic combinations of the variables appear 

however, it is first necessary to take the real parts of the variables involved, 

 21
2dV p pdV p dSϑϑ ⋅ − ⋅∇ − ⋅∫ ∫ ∫U u U n U∼ ∼ v  (H.17) 

Introducing (H.17) in (H.16) yields the desired result. 
 

H.5 To place flow turning ( )bM dSϑ ϑζ ωζ→ ≡ ⋅ ⋅∫U u u n U� vK correctly in the larger context of energy 

pathways between the longitudinal and transverse fields, we seek here to establish that 

 dSϑ→ − ⋅∫U A σ� ∼ ζvK  (H.18) 

Using the identity ( ) ,⋅∇× = ∇ ⋅ × + ⋅∇×b a a b a b  with =a A  (i.e., the vector potential) and 

 and the no-slip condition ,ω= = ∇×b u A ,ωζ ϑζ= −u u  we have  

 ( ) ( ) (2
nuϑζ ωζ ω ω ω⋅ = −∇ ⋅ × − ⋅ + −∇ ⋅ × − ⋅ +u u A u A ω A u A ω∼ )2

bO M  (H.19) 

Note that the simplification on the far right follows since ( )n bu O Mω ∼ .   

We now consider the divergence term in (H.19), the dominant contribution of which is‡  

 ( ) ( )( ) ( bO M
nω ωζ ζ
∂

∇ ⋅ × ⋅ × +
∂

A u u n A∼ )  (H.20) 

and introduce some details of our solution for the vorticity field on the boundary.  Specifically, since 

( )2
0b mM k pζ ζ⋅ ×A n U n∼ ∇  and ( )0mi k pωζ ζ∇u ∼  are 2π out of phase on the boundary (cf. (7.20) and 

                                                 
† Taking the inner product of ( )1

2ϑ ϑ ϑ ϑ⋅∇ = ∇ ⋅u uu u  with we have ,U ( )1
2 .ϑ ϑ ϑ ϑ⋅∇ ⋅ = ∇ ⋅ ⋅u u U u u U   The 

left-hand side can be re-expressed by noting that ( )ϑ ϑ ϑ∇ ⋅ = ∇ ⋅ −∇ ⋅u U U u U u ; this follows from the 
identity .  We also use ( )∇ ⋅ = ∇ ⋅ +∇ ⋅a b a b b a ( )α α α∇⋅ = ∇ ⋅ + ∇ ⋅a a a  to re-express the right-hand side, 
taking note of the fact that  Thus, 0.∇⋅ =U
 ( ) ( )( )1

2ϑ ϑ ϑ ϑ ϑ ϑ⋅∇ ⋅ − ⋅∇ ⋅ = ∇ ⋅ ⋅u U u u U u u u U   

Re-expressing the first term using ( ) ( )( ) ( ) ,ϑ ϑ ϑ ϑ ϑ ϑ⋅∇ ⋅ = ∇ ⋅ ⋅ − ⋅u U u U u u U u we have the desired result 
after rearranging slightly 

( )( ) ( )( ) ( )1
2 ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ∇ ⋅ ⋅ + ⋅∇ ⋅ = ∇ ⋅ ⋅ − ⋅u u U u U u U u u U u  

 

 

‡ The exact result is ( ) ( ) ( )( ) ( ).n nn Aω ωζ ζ ζ ωζ ωκ∇ ⋅ × = ∂ ∂ − ⋅ × +∇ ⋅ × − ×A u u n A n u n Au ζ  
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(7.21), respectively)), it follows that ( ) 0,ωζ ζ⋅ ×u n A ∼  where ...  denotes the time average.  

Therefore 0ω∇ ⋅ ×A u ∼ ; using (H.19) this implies that .ϑζ ωζ⋅ − ⋅u u A ω∼  Substituting into our 

definition of , we have ϑ→U
�K ( )bM dSϑ ζ→ − ⋅ ⋅∫U A n U ω� ∼ vK .  

It remains to recall that for the problems of interest here ( )bMζ ζ⋅σ n U ω∼ since the transport of 

boundary vorticity is controlled by convective rather than diffusive mechanisms (cf. §7.2.2).  Combining 

this expression with the result from the previous paragraph derives (H.18). 
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I. Calculations for Chapter 9 
 
I.1 Sound-Sound Interactions 
 

The expressions are already given in §C.2. 
 
I.2 Sound-Vortical Interactions 
 

Recall that  

 

( )

( ) (

( )

)

( )

, ,
1 0 0

0 0

, ,
2 02 2

0 0 0

, ,
3 0 0

0 0

1

1

1

m j k
n m j k

j k

m j k
n j k m

j k m

m j k
m j k

j m

I U c c c
k k 0

0 0

dS

I U c c c dS
k k k

I c c dS
k k

ϑω
ζ ζ

ϑω
ζ

ϑω
ζ ζ µϕ

≡ ∇ ⋅∇

≡ ∇ ⋅∇× ∇ ×∇

≡ ∇ ⋅∇ ⋅∇

∫

∫

∫ n

v

v

v

 (I.1) 

 
A xial Modes 

 ( ) ( ) ( ), , , ,2
1 1 2,m j k m j kj k j k

m mI E Iϑω ϑωδ δ− + 0= − − =  (I.2) 
 
T angential Modes 

It is a simply matter to show that on the surface, 

 ( )
2 2

0 0 0 0 0
0 0 0 2

1 1 1j k m m k
j k m

c c c c c
c c c

r r rr rζ θ θ θ
∂ ⎛ ⎞∂ ∂ ∂ ∂

∇ ⋅∇× ∇ ×∇ = −⎜∂ ∂ ∂∂ ∂⎝ ⎠
2 ⎟  (I.3) 

Therefore, we have  

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

0 0

0 0

0

0 0

, ,
1 0 0 02

1
0 0, ,

2 02 1
0 0

j k

m m

j

k k

m j k j j k j kk
m m j j k k m mk k

j m j mm
m m k kk km j k j

j jk j k j kk
k k m m m mk k

k k

I J k J k J k

J k J k
I J k

J k J k

ϑω π

ϑω π

δ δ

δ δ

δ δ

− +

− +

− +

= − −

⎛ ⎞′′ − −
⎜ ⎟=
⎜ ⎟′′− −⎝ ⎠

 (I.4) 

 
I.3 Vortical-Vortical Interactions 
 

Evaluating the surface integral (9.18) is straightforward, and leads to 

 ( ) ( ), ,
1 02 2

0 0 0

1m j k
n j k m

j k m
0 0I U c c c dS

k k k
ωω

ζ ζ ζ≡ ∇ ⋅∇ ∇ ⋅∇∫v  (I.5) 

 How we evaluate ( )†*
m dVωζ ζ ζ ωζϕ⋅∇ ∇ ⋅∫u u  requires some elaboration.  Of course, the basic idea 

is the same.  We expand ωζu  in a basis of eigenfunctions (cf. (7.21)),  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
02 2, en

j j b n j j j j
j j

t t i M U k ikωζ ωζ ζη ξ
∞ ∞

=−∞ =−∞

= ×∑ ∑u x u x n ω x∼ 0xp tη  (I.6) 
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It follows that the integrand assumes the form 

 ( ) ( ) ( ) ( )( ),†*
0 0

,
expj k

m j
j k

f i k kωζ ζ ζ ωζ k j kϕ ξ η η⋅∇ ∇ ⋅ +∑u u x∼  (I.7) 

were ( ) ( ),j kf x is a function of the original spatial coordinates.   

When , the integrand has a dependence on j k≠ − ξ , and so we can apply the earlier asymptotic 

result (7.26).  This collapses volume integrations to integration over burning surfaces.  After some work, 

this leads to   

 ( ) ( )
( )( )0

0 0

2 , ,†* 1
28 1

,

m

j k

k m j k
m b k k

j k
j k

dV M Iωωωζ ζ ζ ωζ j kϕ η η+Γ−

≠−

⋅∇ ∇ ⋅ ∑∫u u ∼  (I.8) 

where  

 ( ) ( ), ,
2 02

0 0 0

1m j k
n j m k

j k m
0 0I U c c c dS

k k k
ωω

ζ ζ ζ ζ≡ ∇ ⋅∇ ∇ ⋅∇∫v  (I.9) 

When , the exponential term in (I.7) vanishes, and so (7.26) is no longer applicable.  This 

is not cause for concern however, since no resonant triad conditions can be satisfied when 

j = −k

kj = −  (cf. 

Chapter 4).  Thus, this value of the coefficient does not play an important role in determining the dynamics 

of the system and can therefore be safely omitted.   
 
A xial Modes 

 

( ) ( ) ( )( )
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0 0

, , 2 1 1
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ωω

δ δ δ δ

δ δ

− + − +
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 (I.10) 

 
T angential Modes 
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2 0 0 02
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 (I.11) 

 
I.4 Boundary Terms 
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A xial Modes 
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T angential Modes 
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