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ABSTRACT

Bost–Connes–Marcolli systems are an important type of quantum statistical mechan-
ical systems which provide connections between the ergodic theory of dynamical
systems, class field theory and von Neumann algebras. In this thesis, we generalize
the 𝐺𝐿2,Q-system in [CM04] to the case of the Siegel modular variety of degree
two and study its various properties. We show that this dynamical system under-
goes a spontaneous symmetry breaking phase transition and classify its equilibrium
extremal states at different inverse temperatures 𝛽. We next study its symmetry
group and derive an intertwining equality between the action by symmetries and a
subgroup of the Galois group of the Siegel modular field. Finally, we study the von
Neumann algebras associated to the equilibrium states and classify their types.
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C h a p t e r 1

INTRODUCTION

Classical mechanics describes systems of finitely many interacting particles. The
algebra of observables is given by the commutative algebra𝐶∞(𝑀) where (𝑀,𝜔) is
a symplectic manifold of dimension 2𝑛 called the phase space. The time evolution is
determined by a smooth real-valued functions 𝐻 on 𝑀 called the Hamiltonian. For
every observable 𝑓 ∈ 𝐶∞(𝑀), the time evolution is given by Hamilton’s equation:

𝑑𝑓

𝑑𝑡
= {𝐻, 𝑓 }.

In classical statistical mechanics a state is determined by a probability measure
𝜇 on a symplectic manifold 𝑀 of dimension 2𝑛 that assigns to each observable
𝑓 ∈ 𝐶∞(𝑀) an expectation value given by

𝜙( 𝑓 ) =
∫
𝑀

𝑓 d𝜇.

The Gibbs canonical ensemble is a measure defined in terms the Hamiltonian
𝐻 : 𝑀 → R and the symplectic structure of 𝑀 . We let 𝛽 = 1/𝑘𝐵𝑇 be the
inverse temperature parameter, where 𝑘𝐵 is the Boltzmann constant (we will set the
Boltzmann constant to one in the rest of this thesis). The Gibbs measure is given by

d𝜇𝐺 =
1
𝑍
𝑒−𝛽𝐻 dΩ,

where Ω is the Liouville volume form on 𝑀 and 𝑍 =
∫
𝑀
𝑒−𝛽𝐻 dΩ.

In the quantum statistical mechanical framework, the observables form (in general)
a noncommutative C∗-algebra A, which we define formally in §2.1. In this quan-
tum setting, Hamilton’s equation is replaced with the Hamiltonian flow, that is, a
continuous group homomorphism

𝜎𝑡 : R→ Aut(A),

which specifies the time evolution of the system. The observables correspond to self-
adjoint elements of a C∗-algebra A and a state of the quantum system corresponds



to a state 𝜙 on the algebra (cf. §2.1) A:

𝜙 : A → C,

where 𝜙(𝑎) corresponds to the expected value of the observable 𝑎 ∈ A.

The quantum analogue for the Gibbs measure is given by the KMS𝛽 condition
at inverse temperature 𝛽 (cf. Definition 2.1.4). The table below summarizes the
correspondence between the classical and quantum settings.

Classical system Quantum system
𝑓 ∈ 𝐶∞(𝑀)

(𝑀,𝜔) is a symplectic manifold
𝑎 ∈ A, 𝑎 = 𝑎∗

A is a 𝐶∗ algebra
Poisson Bracket:
{𝑎1, 𝑎2}

Commutator:
[𝑎1, 𝑎2]

Hamilton equations:
𝑑𝑓

𝑑𝑡
= {𝐻, 𝑓 }

Hamiltonian flow:
𝜎𝑡 : R→ Aut(A)

Probability measure 𝜇 on 𝑀:
𝜙(𝑋) =

∫
𝑀
𝑓 𝑑𝜇

Positive linear functional of norm 1:
𝜙 : A → C

Partition function:
𝑍 (𝛽) =

∫
𝑀
𝑒−𝛽𝐻𝑑Ω

𝑍 (𝛽) = T𝑟 (𝑒−𝛽𝐻)

Gibbs measure:
𝑑𝜇 = 𝑒−𝛽𝐻𝑑Ω

𝑍 (𝛽)

KMS𝛽 condition:
𝜙(𝑎𝑏) = 𝜙(𝑏𝜎𝑖𝛽 (𝑎))

By the end of the last century, Bost and Connes [BC95], motivated by the work of
B. Julia [Jul90], constructed a 𝐶∗-dynamical system (A, (𝜎𝑡)𝑡∈R) which provided
a quantum statistical reinterpretation of the class field theory of Q. This system
admits the Riemann zeta function 𝜁 (𝛽) as its partition function and exhibits a
spontaneous symmetry braking phase transition at the critical inverse temperature
𝛽𝑐 = 1. On the other hand, the extremal equilibrium states (called KMS𝛽 states) at
zero temperature are parametrized by the points on the zero-dimensional Shimura
variety Sh(±1, 𝐺𝐿1).

The symmetry group of the BC system is 𝐺𝐿1(Ẑ), which acts only by automor-
phisms. Bost and Connes defined a dense rational subalgebraAQ ⊂ A such that the
evaluation of equilibrium states at low temperatures on AQ generates the maximal
abelian extension Qab of Q. It was then shown that the natural action by symme-
tries of the Galois group Gal(Qab/Q) through the class field theory isomorphism is
intertwined with the action on the values of equilibrium states.
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Over the past several years, several generalizations of the Bost-Connes system have
been studied. The original construction was first generalized by Connes and Marcolli
in [CM04] where they introduced the 𝐺𝐿2,Q-system. This system exhibits several
new properties that were not present in the original BC system.

The partition function of the𝐺𝐿2,Q-system is expressed as the product 𝜁 (𝛽)𝜁 (𝛽−1)
and the system exhibits two phase transitions, the first at inverse temperature 𝛽𝑐1 = 1
and 𝛽𝑐2 = 2. The emergence of the region between 𝛽𝑐1 = 1 and 𝛽𝑐2 = 2 is unique
to the 𝐺𝐿2,Q-system. The analysis of the set of equilibrium states within this region
turns out to be rich mathematically. The symmetry group of the 𝐺𝐿2,Q-system
consists in this case of automorphisms and endormorphisms and coincides with the
group 𝐺𝐿2(AQ, 𝑓 )/Q×. This result provided a connection with the Galois theory
of the modular field 𝐹 through the construction of an arithmetic subalgebra A2,Q

(which in this case is a subalgebra of unbounded multipliers) such that the evaluation
of equilibrium states at low temperatures on A2,Q generate a field isomorphic
to the modular field, (this copy is realized via a choice of a generic state as an
embedded subfield of C). The evaluation of states on elements of the subalgebra
A2,Q intertwines the action by symmetries and the Galois group of the modular
field.
In a subsequent work by Connes, Marcolli and Ramachandran [CMR06], the authors
constructed a new system which can viewed as either a generalization of the original
𝐺𝐿1,Q-system to an imaginary quadratic field 𝐾 = Q(

√
−𝑑) or a specialization of

the𝐺𝐿2,Q-system to elliptic curves with complex multiplication by 𝐾 . The partition
function of this new system is the Dedekind zeta function 𝜁K(𝛽) and its group of
symmetries is the Galois group of the maximal abelian extension of 𝐾 , providing
once again a quantum statistical interpretation of the class field theory of 𝐾 . The
following table summarizes some arithmetic properties of these systems.

System G𝑚,Q GL2,Q G𝑚,K,K = Q(
√
−𝑑)

Partition function 𝜁 (𝛽) 𝜁 (𝛽)𝜁 (𝛽 − 1) 𝜁K(𝛽)

Symmetries A×
Q, 𝑓
/Q× 𝐺𝐿2(AQ, 𝑓 )/Q× A×K, 𝑓 /K

×

Automorphisms Ẑ× 𝐺𝐿2(Ẑ) Ô×/O×

Endomorphisms - 𝐺𝐿+2 (Q) Cl(O)

Galois group Gal(Qab/Q) Aut(F) Gal(Kab)/K

Extremal KMS∞ Sh(±1, 𝐺𝐿1) Sh(H±, 𝐺𝐿2) A×K, 𝑓 /K
×
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The construction of Connes and Marcolli was further generalized to arbitrary re-
ductive groups by Ha and Paugam in [HP05]. The former authors reformulated the
𝐺𝐿2,Q system in the adelic language, making explicit its relation to an important
class of moduli spaces in arithmetic geometry, namely Shimura varieties. They
generalized the construction of Bost, Connes and Marcolli to an arbitrary Shimura
datum (𝐺, 𝑋) and over any number field. They introduced a formal definition of
the abstract Bost-Connes-Marcolli system associated to the pair (𝐺, 𝑋) and were
successful in showing, among other features, that these systems admit the Dedekind
zeta function as the partition function and the group of connected components of
the idèle class group acts as the symmetry group.

In this thesis, we generalize the construction of Connes and Marcolli and study
the Bost–Connes-Marcolli (BCM) system associated to the two dimensional Siegel
modular variety. After reviewing the background material in Chapter I, we investi-
gate in Chapter II the thermodynamical properties of this system and study its pure
(extremal) equilibrium states at various inverse temperatures 𝛽 > 0. We compute
its partition function and show that it is a rational function of shifted zeta functions.
We show that two spontaneous phase transitions happen at 𝛽𝑐1 = 3 and 𝛽𝑐2 = 4.
We provide an explicit description of all extremal states within various ranges of
𝛽. More precisely, we show that the system does not admit an equilibrium state in
the range 𝛽 < 3 and provide an explicit formula for the Gibbs states in the range
𝛽 > 4 in terms of the partition function. Within the range 3 < 𝛽 ≤ 4, we show that
a unique equilibrium state exists and can be constructed out of the Haar measures
on the locally compact spaces underlying the system.

In Chapter III we compute the symmetry group and make the connection with the
theory of Siegel modular forms. We then construct an arithmetic subalgebra of the
algebra of multipliers of the algebra of observables and prove an equality which
intertwines the action by symmetries and the Galois action of a subgroup of the
Galois Group of the Siegel modular field.

Finally, in Chapter IV we focus on the type of von Neumann algebras generated
by the states in the GNS construction. We study the type of these algebras at
various inverse temperatures 𝛽 and show that a phase transition occurs at the level
of von Neumann algebras. We prove that the type of these algebras is I∞ for the
low temperature region and transitions to a III1 factor as 𝛽 decreases to the range
3 < 𝛽 ≤ 4.
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C h a p t e r 2

BACKGROUND

The goal of this chapter is to provide an overview of different results and techniques
that will be useful throughout this work. It is divided into three main sections. We
first review the theory of 𝐶∗-dynamical system including the notion of observables,
compactification, multipliers, time evolution and KMS𝛽 states. Readers already
familiar with this topic should feel free to skip this section. The second part of this
chapter provides a brief review of the theory of von Neumann algebras and their
classification. We will focus on crossed products and their classification in terms of
the properties of the group action. The last section reviews the adelic construction
of BCM systems associated to an arbitrary Shimura datum (𝐺, 𝑋).

2.1 𝐶∗-dynamical systems
Given a𝐶∗-algebraA, we know from Gelfand–Naimark theorem ([BR87, Theorem
2.1.10]) that the algebra A is isomorphic to a norm-closed self-adjoint algebra
of bounded operators on a Hilbert space. This result, together with the axioms
of quantum mechanics, motivates the following operator algebraic formulation of
quantum statistical mechanical systems.

Definition 2.1.1. A quantum statistical mechanical system (A, (𝜎𝑡)𝑡∈R) is a C∗-
algebra A together with a strongly continuous one-parameter group of automor-
phisms (𝜎𝑡)𝑡∈R; that is, the map

𝑡 → 𝜎𝑡 (𝑎)

is norm continuous for every 𝑎 ∈ A.

In practice, the algebra A may not be unital. Although any 𝐶∗-algebra contains an
approximate unit, it is necessary sometimes to realize the algebraA as a subalgebra
of a unital 𝐶∗-algebra. There are two ways one can achieve this. The first consists
of considering the “one-point compactification” of A. Let

Ã = C ⊕ A,

and define a product, involution and a norm on Ã as follows:



(𝛼1, 𝑎) (𝛼2, 𝑏) := (𝛼1𝛼2, 𝑎𝑏 + 𝛼1𝑏 + 𝛼2𝑎)
(𝛼, 𝑎)∗ := (𝛼̄, 𝑎∗).

One then obtains that Ã is a unital 𝐶∗-algebra such thatA is a maximal ideal in Ã.
There exists another type of compactification of A which requires the construction
the multiplier algebra of A.

Definition 2.1.2. Given a non-unital 𝐶∗-algebraA, the multiplier algebra 𝑀 (A) is
a unital 𝐶∗-algebra with the property that A ⊂ 𝑀 (A) is an essential ideal1.

The multiplier algebra 𝑀 (A) can be constructed using double centralizers and
satisfies the following universal property ([Bla06]): whenever 𝐷 is a unital 𝐶∗-
algebra containing A as an ideal, there exists a unique ∗-homomorphism 𝐷 →
𝑀 (A) with kernel

A⊥ = {𝑑 ∈ 𝐷 : ∀𝑎 ∈ A, 𝑑𝑎 = 0},

and restricts to the identity map on A.

This type of compactification corresponds to the Stone–Čech compactification in the
commutative case. In fact, if A is a commutative C∗-algebra then it is necessarily
isomorphic to the algebra 𝐶0(𝑋) for a locally compact Hausdorff space 𝑋 and
𝑀 (𝐴) = 𝐶 (𝛽𝑋) where 𝛽𝑋 is the Stone–Čech compactification of 𝑋 .

A bounded multiplier on a 𝐶∗-algebra A is a bounded linear map

𝑇 : A → A,

such that 𝑇 (𝑎𝑏) = 𝑎𝑇 (𝑏) for all 𝑎, 𝑏 ∈ A. Similarly, an unbounded multiplier on
A is a linear operator

𝑇 : D(𝑇) → A,

defined on a dense ideal D(𝑇) of A with the property that 𝑇 (𝑎𝑏) = 𝑎𝑇 (𝑏) for all
𝑎 ∈ D(𝑇) and 𝑏 ∈ A.

Certain types of positive linear functionals play a key role in the representation
theory of 𝐶∗-algebras and their quantum physical interpretation. We next recall the

1That is, for 𝑥 ∈ 𝑀 (A), if 𝑥𝑎 = 𝑎 for all 𝑎 ∈ A, then 𝑥 = 0.
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definition and properties of a particular type of continuous linear functionals over
A.

Definition 2.1.3. A state 𝜙 on a unital C∗-algebra A is a linear functional over A
satisfying the following normalization and positivity conditions:

𝜙(𝑒) = 1, 𝜙(𝑎∗𝑎) ≥ 0.

Note that we did not require from the functional 𝜙 to be continuous as this a
consequence of the positivity condition. The state 𝜙 is said to be faithful if 𝜙(𝑎∗𝑎) =
0 implies 𝑎 = 0.

To obtain a state on a non-unital 𝐶∗-algebra A, we replace the normalization
condition 𝜙(𝑒) = 1 by

∥𝜙∥ := sup
𝑥∈A,∥𝑥∥≤1

|𝜙(𝑥) | = 1. (2.1)

The Gelfand–Neumark–Segal construction is an important method used to build
representations of any 𝐶∗-algebra from states.

Theorem 2.1.1 (The GNS representation). let 𝜙 is a state of a 𝐶∗-algebraA. Then
there exists a unique (up to unitary equivalence) cyclic representation 𝜋𝜙 ofA on a
Hilbert space H𝜙 and a unit cyclic vector 𝑥𝜙 for 𝜋𝜙 (i.e., 𝜋𝜙 (A)𝑥𝜙 is dense in H𝜙)
such that

𝜙(𝑎) = (𝜋𝜙 (𝑎)𝑥𝜙, 𝑥𝜙), 𝑎 ∈ A.

Proof. See [BR87, Theorem 2.3.16] □

KMS𝛽 states on C∗-algebras
In statistical mechanics, we are interested in the so-called thermal equilibrium states
at inverse temperature 𝛽 = 1/𝑇 . To motivate the definition of a KMS𝛽 state, we
consider first a finite dimensional 𝐶∗-dynamical system (𝑀𝑎𝑡𝑛 (C), (𝜎𝑡)𝑡∈R), where
the time evolution is given by

𝜎𝑡 (𝑎) = 𝑒𝑖𝑡𝐻𝑎𝑒−𝑖𝑡𝐻 , 𝑎 ∈ 𝑀𝑎𝑡𝑛 (C),

and 𝐻 = 𝐻∗ is the Hamiltonian. Any state 𝜙 on 𝑀𝑎𝑡𝑛 (C) has the form
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𝜙(𝑎) = 𝑇𝑟 (𝑄𝑎),

where𝑄 is a positive semi-definite matrix in 𝑀𝑎𝑡𝑛 (C) of trace one (density matrix).
The free energy at inverse temperature 𝛽 associated to the state 𝜙 is given by
𝐹 (𝜙) = −𝑇𝑟 (𝑄 log(𝑄)) + 𝛽𝜙(𝐻). The equilibrium state is the state of minimal free
energy and is given by the Gibbs state

𝜙𝛽 (𝑎) =
𝑇𝑟 (𝑒−𝛽𝐻𝑎)
𝑇𝑟 (𝑒−𝛽𝐻)

.

Define the function

𝑓 (𝑡) := 𝜙𝛽 (𝑎𝜎𝑡 (𝑏)), 𝑡 ∈ R. (2.2)

By analytic continuation from R to R + 𝑖𝛽 and the cyclicity of the trace, we can see
that

𝑓 (𝑡 + 𝑖𝛽) = 𝜙𝛽 (𝜎𝑡 (𝑏)𝑎), 𝑎, 𝑏 ∈ 𝑀𝑎𝑡𝑛 (C). (2.3)

Equations (2.2) and (2.3) motivate the following definition, proposed by Haag,
Winnik and Hugenholtz [HHW67; Rud92] as an equilibrium condition in the 𝐶∗-
algebraic setting of quantum statistical mechanics.

Definition 2.1.4. Let (A, (𝜎𝑡)𝑡∈R) be a 𝐶∗-dynamical system and 𝜙 a state on A.
For 0 < 𝛽 < ∞, we say that 𝜙 is a KMS𝛽 state if for all 𝑎, 𝑏 ∈ A, there exists a
bounded continuous function 𝑓 on the strip

Ω𝛽 = 𝑧 ∈ C : 0 ≤ Im(𝑧) ≤ 𝛽,

such that 𝑓 is holomorphic in the interior of Ω𝛽 and

𝑓 (𝑡) = 𝜙(𝑎𝜎𝑡 (𝑏)), 𝑓 (𝑡 + 𝑖𝛽) = 𝜙(𝜎𝑡 (𝑏)𝑎), ∀𝑡 ∈ R. (2.4)
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0

𝑖𝛽 𝑓 (𝑡 + 𝑖𝛽) = 𝜙(𝜎𝑡 (𝑏)𝑎)

𝑓 (𝑡) = 𝜙(𝑎𝜎𝑡 (𝑏))Im(𝑧) = 0

Im(𝑧) = 𝛽

Figure 2.1: The strip Ω𝛽 in the 𝐾𝑀𝑆𝛽 condition.

In practice we will often use the following equivalent characterization of the KMS𝛽
condition. We recall that given a 𝐶∗-dynamical system (A, (𝜎𝑡)𝑡∈R), an element
𝑎 ∈ A is said to be𝜎-analytic if the function 𝑡 → 𝜎𝑡 (𝑎) extends to an entire function
of 𝑧 ∈ C. The set A𝜎 of 𝜎-analytic elements of A is dense in the norm topology.

Proposition 2.1.1. Let 𝜙 be state over a 𝐶∗-dynamical system (A, (𝜎𝑡)𝑡∈R). Then
𝜙 is a KMS𝛽 state if and only if

𝜙(𝑎𝑏) = 𝜙(𝑏𝜎𝑖𝛽 (𝑎)), (2.5)

for all 𝑎, 𝑏 in a norm dense 𝜎-invariant ∗-subalgebra of A𝜎.

Proof. See [BR96, Proposition 5.3.7] □

Using this condition, we can show that the function 𝑔 : 𝑧 ↦→ 𝜙(𝜎𝑧 (𝑎))where 𝑎 ∈ A𝜎

is analytic and bounded on C. By Liouville’s theorem this implies that the function
𝑔 is constant and by the density ofA𝜎 this can be extended to all observables 𝑎 ∈ A.
Hence the KMS𝛽 condition guarantees that the state 𝜙 is stationary:

𝜙 = 𝜙 ◦ 𝜎𝑡 , 𝑡 ∈ R,

which is the simplest condition for an equilibrium.
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For 𝛽 < ∞, the set of KMS𝛽 states, which we denote by E𝛽 , is a convex, weak∗-
compact simplex. It is then natural to consider the set of its extremal points as these
states describe the pure thermodynamic phases of the system (A, (𝜎𝑡)𝑡∈R).

When working with non-unital 𝐶∗-dynamical system (A, (𝜎𝑡)𝑡∈R), we will often
need to extend a state on A to the multiplier algebra 𝑀 (A). The following result
guarantees that it is always possible to perform such an extension. We denote
by 𝑀 (A)𝜎 ⊂ 𝑀 (A) the 𝐶∗-subalgebra of elements on 𝑀 (A) such that the map
𝑡 → 𝜎𝑡 (𝑥) is norm continuous.

Proposition 2.1.2. Let 𝜙 be a state onA. Then 𝜙 admits a canonical extension 𝜙 to
the multiplier algebra 𝑀 (A). If 𝜙 is a KMS𝛽 state, then 𝜙 still satisfies the KMS𝛽
condition on the subalgebra 𝑀 (A)𝜎.

Proof. See [CM19, Proposition 3.10] □

When 𝛽 = ∞, there are two ways we can define the notion of an equilibrium state 𝜙
on the algebra A at zero temperature. The first consists of requiring the existence,
for each 𝑎, 𝑏 ∈ A, of a bounded holomorphic function 𝐹𝑎,𝑏 (𝑧) on the upper half
plane such that

𝐹𝑎,𝑏 (𝑡) = 𝜙(𝑎𝜎𝑡 (𝑏)).

In the literature, a state 𝜙 satisfying this property is called a ground state. In this
thesis, we use the following natural and stronger definition of a KMS∞ state.

Definition 2.1.5. KMS∞ states on the system (A, (𝜎𝑡)𝑡∈R) are weak limits of KMS𝛽
states as 𝛽→∞, that is,

𝜙∞(𝑎) = lim
𝛽→+∞

𝜙𝛽 (𝑎), ∀𝑎 ∈ A.

Symmetries of 𝐶∗-dynamical systems
We review from [CM04] some general facts on symmetry groups of quantum me-
chanical statistical systems.

We first introduce symmetries by automorphisms.

Definition 2.1.6. We say that a locally compact group 𝐺 is a group of symmetries
by automorphisms of a 𝐶∗-dynamical system (A, (𝜎𝑡)𝑡∈R) if there is an embedding
𝛼 : 𝐺 ↩→ Aut(A) such that
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𝜎𝑡𝛼𝑔 = 𝛼𝑔𝜎𝑡 , ∀𝑔 ∈ 𝐺,∀𝑡 ∈ R. (2.6)

There is a natural action of 𝐺 on the set of KMS𝛽 states. This action is given by
pull backs, that is,

(𝑔∗𝜙) (𝑎) = 𝜙(𝛼𝑔 (𝑎)),

so that
(𝑔1𝑔2)∗𝜙 = 𝑔∗2(𝑔

∗
1𝜙), 𝑔1, 𝑔2 ∈ 𝐺.

Denote by A𝜎
𝑈

the unitary group of the fixed point algebra of 𝜎𝑡 :

A𝜎
𝑈 := {𝑢 ∈ A : 𝑢∗𝑢 = 𝑢𝑢∗ = 1, 𝜎𝑡 (𝑢) = 𝑢, ∀𝑡 ∈ R}.

Every element 𝑢 ∈ A𝜎
𝑈

acts on the dynamical system (A, (𝜎𝑡)𝑡∈R) by inner auto-
morphisms as follows:

ad(𝑢)𝑥 = 𝑢𝑥𝑢∗, ∀𝑥 ∈ A. (2.7)

It turns out that the induced action of ad(𝑢)∗, 𝑢 ∈ A𝜎
𝑈

on the set of KMS𝛽 states is
trivial.

Proposition 2.1.3. Let 𝜙 be any KMS𝛽 state of the system (A, (𝜎𝑡)𝑡∈R) and 𝑢 ∈ A𝜎
𝑈

.
Then

ad(𝑢)∗(𝜙) = 𝜙.

Proof. Recall that the KMS𝛽 condition implies that

𝜙(𝑎𝑏) = 𝜙(𝑏𝜎𝑖𝛽 (𝑎)), (2.8)

for all 𝑎, 𝑏 in a norm dense and 𝜎-invariant ∗-subalgebra of A. Hence for have

ad(𝑢)∗(𝜙) (𝑥) = 𝜙(𝑢𝑥𝑢∗) = 𝜙(𝑥𝑢∗𝜎𝑖𝛽 (𝑢)) = 𝜙(𝑥), ∀𝑥 ∈ A,

where 𝜎𝑖𝛽 (𝑎) denotes the analytic continuation 𝑧 → 𝜎𝑧 (𝑎) of 𝑡 → 𝜎𝑡 (𝑎). □

Next we introduce symmetries by endomorphisms, which is a more general type of
symmetries.
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Definition 2.1.7. An endomorphism 𝛼 of a 𝐶∗-dynamical system (A, 𝜎𝑡) is a ∗-
homomorphism 𝛼 : A → A such that

𝜎𝑡𝛼 = 𝛼𝜎𝑡 , ∀𝑡 ∈ R. (2.9)

An endomorphism 𝛼 of (A, 𝜎𝑡) acts on a KMS𝛽 state 𝜙 by pullback, provided that
the idempotent element 𝛼(1) satisfies 𝜙 ◦ 𝛼(1) ≠ 0:

(𝛼∗𝜙) (𝑎) :=
𝜙 ◦ 𝛼(𝑎)
𝜙 ◦ 𝛼(1) , ∀𝑎 ∈ A. (2.10)

Denote by A𝜎
𝐼

the set of isometries that are eigenvectors of the time evolution,
namely

A𝜎
𝐼 := {𝑢 ∈ A | 𝑢∗𝑢 = 1, ∃𝜆 ∈ R∗+, 𝜎𝑡 (𝑢) = 𝜆𝑖𝑡𝑢,∀𝑡 ∈ R}.

Any element 𝑢 ∈ A𝜎
𝐼

defines an inner endomorphism ad(𝑢) of (A, 𝜎𝑡) as in (2.7).
Similarly to the case of symmetries by automorphisms we have the following:

Lemma 2.1.1. Let 𝜙 be any KMS𝛽 state of the system (A, (𝜎𝑡)𝑡∈R) and 𝑢 ∈ A𝜎
𝐼

.
Then the inner endomorphism ad(𝑢) acts trivially on the set of KMS𝛽 states.

Proof. We obtain from the KMS𝛽 condition (2.8) that 𝜙(𝑢𝑢∗) = 𝜆−𝛽 ≠ 0, 𝜆 ∈ R∗+.
Hence the pullback ad(𝑢)∗(𝜙) of any KMS𝛽 state 𝜙 is well defined. We then have

ad(𝑢)∗(𝜙) (𝑥) = 𝜙(𝑢𝑥𝑢∗)
𝜙(𝑢𝑢∗) = 𝜆𝛽𝜙(𝑥𝑢∗𝜎𝑖𝛽 (𝑢)) = 𝜙(𝑥).

□

Groupoid C∗-algebras
In this section, we briefly review the basic construction of groupoid𝐶∗-algebras. We
refer the reader to the work by J. Renault in [Ren06] for a more detailed treatment.
We first recall the notion of groupoid.

Definition 2.1.8. A groupoid is a set G endowed with a product map (𝑥, 𝑦) ↦→ 𝑥𝑦 :
G2 → G, where G2 is a subset of G × G, called the set of composable pairs, and an
inverse map 𝑥 ↦→ 𝑥−1 : G → G such that the following relations are satisfied:
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(i). (𝑥−1)−1 = 𝑥 for all 𝑥 ∈ G.

(ii). Given (𝑥, 𝑦), (𝑦, 𝑧) ∈ G2, then (𝑥𝑦, 𝑧), (𝑥, 𝑦𝑧) ∈ G2 and (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)

(iii). (𝑥−1, 𝑥) ∈ G2 for all 𝑥 ∈ G and if (𝑥, 𝑦) ∈ G2, then 𝑥−1(𝑥𝑦) = 𝑦

(iv). (𝑥, 𝑥−1) ∈ G2 for all 𝑥 ∈ G and if (𝑧, 𝑥) ∈ G2, then (𝑧𝑥)𝑥−1 = 𝑧

For 𝑥 ∈ G, the map 𝑠 : 𝑥 ↦→ 𝑥−1𝑥 is called the source map and 𝑟 : 𝑥 ↦→ 𝑥𝑥−1 is the
range map. The pair (𝑥, 𝑦) is composable iff 𝑟 (𝑦) = 𝑠(𝑥). The setG0 = 𝑠(G) = 𝑟 (G)
is the unit space ofG (since 𝑥𝑠(𝑥) = 𝑟 (𝑥)𝑥 = 𝑥). A groupoidG is said to be principal
if the map 𝑥 ↦→ (𝑟 (𝑥), 𝑠(𝑥)) : G → G0 × G0 is one-to-one. The groupoid G is said
to be transitive if this map is onto. For 𝑥, 𝑦 ∈ G0 we set G𝑥 = 𝑟−1(𝑥), G𝑦 = 𝑠−1(𝑦)
and G𝑥𝑦 = G𝑥 ∩ G𝑦. The set G𝑥𝑥 , which is a group, is called the isotropy group at 𝑥.

Given a groupoid G, we consider the small category whose set of objects is G0 and
for any 𝑥, 𝑦 ∈ G0, we put

Hom(𝑥, 𝑦) = {𝑧 ∈ G | 𝑠(𝑧) = 𝑥, 𝑟 (𝑧) = 𝑦}.

If we define the composition of morphisms to be the groupoid composition operation,
we easily see that a groupoid G is simply a small category in which all morphisms
are invertible.

𝑠(𝑧) 𝑟 (𝑧) 𝑠(𝑥) 𝑟 (𝑥)
𝑧

𝑧−1

𝑦 𝑥

𝑦𝑧

(𝑥𝑦)𝑧
𝑥𝑦

A topological groupoid is a groupoid G endowed with a topology under which the
inverse map is continuous and the product map is continuous with respect to the
subspace topology on G2. To ensure that the topology is well behaved, we will
always assume that a topological groupoid G is locally compact, second countable
and Hausdorff.
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Definition 2.1.9. A locally compact, second countable and Hausdorff topological
groupoidG is said to be étale if the range map 𝑠 : G → G is a local homeomorphism.

Remark 1. It follows from the definition that the source map 𝑠 is also a local
homeomorphism since 𝑠(𝑥) = 𝑟 (𝑥−1).

We fix a locally compact, second countable and Hausdorff étale groupoid G and
consider the set C𝑐 (G) of continuous compactly supported complex functions on G.
To build a C∗-algebra out of C𝑐 (G), we need a ∗-structure on C𝑐 (G). We define the
product of two elements 𝑓1, 𝑓2 ∈ 𝐶𝑐 (G) by the convolution

( 𝑓1 ∗ 𝑓2) (𝑔) :=
∑︁
𝑔1𝑔2=𝑔

𝑓1(𝑔1) 𝑓2(𝑔2) =
∑︁

ℎ∈G𝑟 (𝑔)

𝑓1(ℎ) 𝑓2(ℎ−1𝑔), ∀𝑔 ∈ G, (2.11)

and the involution of an element 𝑓 ∈ 𝐶𝑐 (G) by:

𝑓 ∗(𝑔) = 𝑓 (𝑔−1), ∀𝑔 ∈ G. (2.12)

Note that the sum in (2.11) is finite since 𝑓1 and 𝑓2 are compactly supported and the
fibers G𝑟 (𝑔) of an étale groupoid are discreet.

Let 𝑢 be a unit on an étale groupoid. For each 𝑎 in 𝐶𝑐 (G) and 𝜉 ∈ 𝑙2(𝑠−1{𝑢}) =
𝑙2(G𝑢), the formula

(𝜋𝑢 (𝑎)𝜉) (𝑔) =
∑︁

ℎ∈G𝑟 (𝑔)

𝑎(ℎ)𝜉 (ℎ−1𝑔), 𝑔 ∈ G𝑢,

defines a representation 𝜋𝑢 : 𝐶𝑐 (G) → B(𝑙2(G𝑢)) of 𝐶𝑐 (G) and the norm of 𝜋𝑢 (𝑎)
is bounded by a constant that depends only on 𝑎 and not 𝑢. We then have the
following definition.

Definition 2.1.10. LetG be a locally compact, second countable and Hausdorff étale
groupoid. Its reduced 𝐶∗-algebra, which we denote by 𝐶∗𝑟 (G), is the completion of
𝐶𝑐 (G) in the norm

∥𝑎∥ := 𝑠𝑢𝑝𝑢∈G0 ∥𝜋𝑢 (𝑎)∥.
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2.2 Von Neumann algebras arising from C∗-dynamical systems
von Neumann algebras
In what follows we shall review some basic facts about von Neumann algebras and
how they naturally arise from quantum statistical mechanical systems. A detailed
exposition of this material can be found in [BR87] and [BR96].

Let H be a separable Hilbert space and denote by 𝐵(H) the algebra of bounded
linear operators on H . Recall that the weak operator topology on 𝐵(H) is the
topology induced by the semi-norms 𝑇 ↦→ |𝑦(𝑇𝑥) | where 𝑦 ∈ 𝐻∗ (continuous dual)
and 𝑥 ∈ H . We then have the following definition.

Definition 2.2.1. A von Neumann algebra is a weakly closed ∗-subalgebra M of
𝐵(H).

The von Neumann double commutant theorem provides the following algebraic
characterization of a von Neumann algebra: M ⊂ 𝐵(H) is a von Neumann algebra
iffM is closed under the ∗-operation and equal to its double commutant, i.e.,

M =M′′,

whereM′ := {𝑎 ∈ 𝐵(H) | 𝑎𝑚 = 𝑚𝑎,∀𝑚 ∈ M} is the commutant ofM.

The von Neumann algebra CM = 𝑀 ∩ M′ is called the center of M and a von
Neumann algebra with a trivial center is called a factor.

We say that 𝑝 ∈ M is a projection if 𝑝 = 𝑝∗ = 𝑝2 and we denote by 𝑃(M) the set of
projections inM. For 𝑝 ∈ 𝑃(M), we say that 𝑝M𝑝 is a compression (or a corner)
of 𝑀 . It is a standard fact that 𝑝M𝑝 is itself a von Neumann algebra acting on 𝑝H .

For 𝑝, 𝑞 ∈ M, we write 𝑝 ≤ 𝑞 if 𝑝𝑞 = 𝑝. The set of 𝑃(M) can be equipped with
the following equivalence relation ∼:

𝑝1 ∼ 𝑝2 ⇔ ∃𝑢 ∈ M such that 𝑝1 = 𝑢∗𝑢, 𝑝2 = 𝑢𝑢∗,

where 𝑢 is a partial isometry (i.e., an isometry on ker(𝑢))⊥).

A projection 𝑝 ∈ 𝑃(M) is said to be:

• minimal if 𝑝 ≠ 0 and 𝑞 ≤ 𝑝 implies 𝑞 = 0 or 𝑞 = 𝑝.
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• abelian if 𝑝𝑀𝑝 is abelian.

• finite if 𝑞 ≤ 𝑝 and 𝑞 ∼ 𝑝 implies 𝑝 = 𝑞.

• semi-finite if there exists a family {𝑝𝑖}𝑖∈𝐼 of pairwise orthogonal, finite pro-
jections such that 𝑝 =

∑
𝑖∈𝐼 𝑝𝑖.

• purely infinite if 𝑝 ≠ 0 and there does not exist any nonero finite projections
𝑞 ≤ 𝑝.

• properly infinite if 𝑝 ≠ 0 and for all nonzero central projections 𝑧 (i.e., 𝑧𝑥 = 𝑥𝑧
for all 𝑥 ∈ M) we have that 𝑧𝑝 is not finite.

The von Neumann algebra M is said to be finite, semi-finite, purely infinite or
properly infinite if 1 ∈ M has the corresponding property.

It is known that every von Neumann algebra can be decomposed as a direct integral
of factors (See [KR86] for a detailed discussion of the decomposition theory of
von Neumann algebras). Hence, factors form the building blocks of von Neumann
algebras and a classification of factors is enough to classify von Neumann algebras.

LetM be a factor and consider its unique (up to a constant) tracial weight 𝜙 (i.e.,
𝜙(𝑎𝑎∗) = 𝜙(𝑎∗𝑎)). Denote by 𝐷 the restriction of 𝜙 to the projections inM. Then
the map 𝐷 is an injection of equivalence classes of projections of M in [0, +∞]
such that

𝐷 (𝑝 + 𝑞) = 𝐷 (𝑝) + 𝐷 (𝑞), whenever 𝑝𝑞 = 𝑞𝑝 = 0.

The following result by Murray and Neumann gives a classification of factors in
terms of the range of the dimension function 𝐷. We refer the reader to [Tak02]
for a comprehensive and detailed treatment of Murray-von Neumann classification
theory.

Theorem 2.2.1. LetM be a factor, 𝑃(M) the set if all its projections and 𝐷 the
dimension function introduced above. Then one of the following cases occurs:

• Type I𝑛: 𝐷 (𝑃(M)) coincides (up to normalization) with the set {1, . . . , 𝑛}.

• Type I∞: 𝐷 (𝑃(M)) coincides (up to normalization) with the set {1, . . . ,∞}.

• Type II1: 𝐷 (𝑃(M)) coincides (up to normalization) with the set [0, 1].
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• Type II∞: 𝐷 (𝑃(M)) coincides with the set [0,∞].

• Type III: 𝐷 (𝑃(M)) coincides with the set {0,∞}.

The type I𝑛 factors are the finite dimensional von Neumann algebras, which are
all isomorphic to a matrix algebra. Type I∞ are all isomorphic to the algebra of
bounded operators on some Hilbert space. Examples of type II1 and II∞ and III can
be constructed from crossed products von Neumann algebras.

Connes Classification of Type III Factors
LetM be a von Neumann algebra. A state 𝜔 onM is called normal if for every
monotone net 𝑇𝛼 of operators bounded above by 𝑆, we have that sup(𝜔(𝑇𝛼)) =
𝜔(sup𝑇𝛼). Let 𝜔 be a faithful normal state onM and assume thatM is already in
its GNS representation on H and let 𝜂 the associated cyclic vector. We define the
following operator

𝑆0 : M𝜂→H
𝑎𝜂 ↦→ 𝑎∗𝜂.

The operator 𝑆0 is preclosed [KR86] and we denote its closure by the 𝑆. We consider
the polar decomposition of 𝑆:

𝑆 = 𝐽Δ
1/2
𝜔 ,

where 𝐽 is an anti-unitary operator and Δ
1/2
𝜔 =

√
𝑆∗𝑆 is a positive self-adjoint

operator. We then have the following theorem by Tomita and Takesaki.

Theorem 2.2.2. LetM be a von Neumann algebra together with a faithful normal
state 𝜔. Let 𝑆, 𝐽 and Δ be the operators defined above. Then

𝐽M𝐽 =M′

Δ𝑖𝑡𝜔MΔ−𝑖𝑡𝜔 =M, 𝑡 ∈ R.

We can then define a canonical automorphism group associated to (M, 𝜔):

Definition 2.2.2. The one-parameter automorphism group defined by

𝜎𝑡 (𝑎) := Δ𝑖𝑡𝜔𝑎Δ
−𝑖𝑡
𝜔 , 𝑡 ∈ R,

is called the modular automorphism group associated to (M, 𝜔).
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In [Con73], Connes refined the classification of type III factors using the invariant
given by:

𝑆(M) :=
⋂
𝜙

{𝑆𝑝𝑒𝑐(Δ𝜙) : 𝜙 is a faithful normal state onM} (2.13)

We summaries this classification in the following theorem.

Theorem 2.2.3. LetM be a factor. Then 𝑀 is of type III if and only if 0 ∈ 𝑆(M).
IfM is of type III, then one of the following cases occurs:

1. Type III0: 𝑆(M) = {0, 1}

2. Type 𝐼 𝐼 𝐼𝜆: 𝑆(M) = {𝜆𝑛; 𝑛 ∈ Z} ∪ {0}, 0 < 𝜆 < 1.

3. Type 𝐼 𝐼 𝐼1: 𝑆(M) = [0,∞)

Crossed Products
LetM be a von-Neumann algebra acting on the Hilbert space H , 𝛼 a continuous
homomorphism of a locally compact group (resp. countable) 𝐺 into 𝐴𝑢𝑡 (M). We
will now construct a new von Neumann algebra acting on the space H̃ = 𝐿2(𝐺,H)
(resp. H̃ = 𝑙2(𝐺,H)). Consider the following two representations, 𝜋𝛼 and 𝜆𝐺 of
M and 𝐺 on H̃ :

(𝜋𝛼 (𝑎)𝜉) (𝑠) := 𝛼𝑠−1 (𝑎)𝜉 (𝑠), 𝜉 ∈ H̃ , 𝑎 ∈ M, 𝑠 ∈ 𝐺,
(𝜆𝐺 (𝑡)𝜉) (𝑠) := 𝜉 (𝑡−1𝑠), 𝑡, 𝑠 ∈ 𝐺.

Definition 2.2.3. The von Neumann algebra

M ⋊𝛼 𝐺 := (𝜋𝛼 (M) ∪ 𝜆𝐺 (𝐺))′′

is called the crossed product ofM and 𝐺 (w.r.t 𝛼).

We consider the case whereM = 𝐿∞(𝑋, F , 𝜇) acting on with 𝑋 is a standard Borel
space equipped with a 𝜎-finite measure 𝜇 and 𝐺 acts on the measure space (𝑋, 𝜇)
via non-singular transformations (i.e., preserve the class of sets of 𝜇-measure 0).
We then have an action of 𝐺 onM defined as

𝛼𝑔 ( 𝑓 ) := 𝑓 ◦ 𝑔−1.
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Definition 2.2.4. The action of 𝐺 on the measure space (𝑋, F , 𝜇) is ergodic if
the following holds: If 𝐴 is any 𝐺-invariant Borel subset of 𝑋 , then 𝜇(𝐴) = 0 or
𝜇(𝐴𝑐) = 0. The action of 𝐺 is said to be essentially free if for every 𝑔 ∈ 𝐺 such
that 𝑔 ≠ 1, then 𝜇({𝑥 ∈ 𝑋 : 𝑔 · 𝑥 = 𝑥}) = 0.

We then have the following important result (cf. [Sun87]).

Theorem 2.2.4. The von Neumann algebraM = 𝐿∞(𝑋, F , 𝜇) ⋊𝛼 𝐺 is a factor if
and only if the action of 𝐺 is essentially free and ergodic. In this case, the type of
M is determined as follows:

• M is of type I or II if and only if there exists a 𝐺-invariant measure 𝜈 which
is mutually absolutely continuous with respect to 𝜇.

• M is of type I𝑛 precisely when the 𝜈 above is totally atomic and F is the
disjoint union of 𝑛 atoms for 𝜈.

• M is of type II when the 𝜈 as above is non-atomic.

• M is type III if and only if there exists no 𝜈 as above.

2.3 Bost–Connes–Marcolli systems
The goal of this section is to introduce the general construction given in [HP05] of
the abstract Bost-Connes-Marcolli system attached to an arbitrary Shimura variety.
Since this material lies at the intersection of Operator Algebras and Algebraic
Number Theory, we propose to briefly review some number theoretic facts which
also serves the purpose of fixing some notations. For a more detailed exposition we
refer the reader to [Pla69].

Let 𝐹 be a number field (a finite extension of the rational numbersQ). Recall that an
absolute value | | : 𝐹 → R+ on 𝐹 is non-Archimedean if and only if the condition
|𝑥 + 𝑦 | ≤ max ( |𝑥 |, |𝑦 |) holds for all 𝑥, 𝑦 ∈ 𝐹. We use 𝑀𝐹 to denote the set of places
of 𝐹 (equivalence classes of absolute values on 𝐹). A place 𝜐 is called finite if
the corresponding absolute value is non-Archimedean. We denote the set of finite
places by 𝑀𝐹, 𝑓 and we write 𝜐 < ∞ if 𝜐 ∈ 𝑀𝐹, 𝑓 . Otherwise we say it is infinite and
we denote by 𝑀𝐹,∞ the set of infinite places and we write 𝜐 |∞ if 𝜐 ∈ 𝑀𝐹,∞. For
𝜐 ∈ 𝑀𝐹 we denote by 𝐹𝜐 the completion of 𝐹 with respect to 𝜐. For 𝜐 < ∞ we use
O𝜐 to denote the valuation ring of 𝐹𝜐:

O𝜐 = {𝑥 ∈ 𝐹𝜐 : |𝑥 |𝜐 ≤ 1}.
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Define Ô :=
∏
𝜐<∞ O𝜐 and let O× = ∏

𝜐<∞ O×𝜐 be its group of units.

For 𝐹 = Q, Ostrowski’s theorem provides an explicit description of nontrivial
absolute values in 𝑀Q. In this case, every infinite place is equivalent to the ordinary
Archimedean absolute value | |∞ while any finite place is equivalent to the 𝑝-adic
absolute value | |𝑝 associated to a prime number 𝑝. Writing any rational number
𝑥 ≠ 0 as 𝑝𝑟𝑚/𝑛 where 𝑟, 𝑚, 𝑛 ∈ Z and 𝑚 and 𝑛 are not divisible by 𝑝, the 𝑝-adic
absolute value is given by |𝑥 |𝑝 = 𝑝−𝑟 and |0|𝑝 = 0.

The set of adèles A𝐹 of 𝐹 is the subset of the direct product
∏
𝜐∈𝑀𝐹

𝐹𝜐 consisting
of those elements 𝑥 = (𝑥𝜐) such that 𝑥𝜐 ∈ O𝜐 for almost all 𝜐 in 𝑀𝐹, 𝑓 . A𝐹 is a ring
with the respect to the usual operations in the direct product. We endow this ring
with the adèle topology. Namely, the base of the open sets consists of sets of the
form

∏
𝜐∈𝑆𝑊𝜐 ×

∏
𝜐∉𝑆 O𝜐 where 𝑆 ⊂ 𝑀𝐹 is a finite subset containing 𝑀𝐹,∞ and

𝑊𝜐 ⊂ 𝐹𝜐 are open subsets for each 𝜐 ∈ 𝑆. This topology turns A𝐹 into a locally
compact topological ring called the ring of adeles.

The canonical embedding 𝐹 ↩→ 𝐹𝜐 induces a diagonal embedding

𝐹 ↩→ A𝐹
𝑥 ↦→ (𝑥, 𝑥, 𝑥, . . . ),

since if 𝑥 ∈ 𝐹 then 𝑥 ∈ O𝜐 for almost all 𝜐 ∈ 𝑀𝐹, 𝑓 . The image of 𝐹 in A𝐹 forms a
ring called the principal adeles which can be shown to be discrete in A𝐹 .

The group of invertible elements I𝐹 of A𝐹 is called the group of idèles. We note
that I𝐹 is not a topological group with respect to the topology induced from A𝐹 . To
turn I𝐹 into a locally compact group one has to introduce the idèle topology which
is the multiplicative analogue of the adele topology (we refer the reader to [Pla69,
Section 1.2] for the details).

Let 𝑆 ⊂ 𝑀𝐹 be a finite set of places and denote by A𝐹,𝑆 the ring of 𝑆-adèles, that
is the image of A𝐹 under the projection onto the product

∏
𝜐∉𝑆 𝐹𝜐. A topology is

introduced on A𝐹,𝑆 in the natural way: for a base of opens sets we take the sets of
the form

∏
𝜐∈𝑇 𝑊𝜐 ×

∏
𝜐∉𝑆∪𝑇 O𝜐 where 𝑇 is a subset of 𝑀𝐹\𝑆 and 𝑊𝜐 is an open

subset of 𝐹𝜐 for every 𝜐 ∈ 𝑇 . We then have A𝐹 = A𝐹,𝑆 ×
∏
𝜐∈𝑆 𝐹𝜐 as topological

rings, where the product
∏
𝜐∈𝑆 𝐹𝜐 is given the product topology. In particular, for
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𝑆 = 𝑀𝐹,∞ we can write
A𝐹 = 𝐴𝐹, 𝑓 ×

∏
𝜐 |∞

𝐹𝜐,

and the ring A𝐹, 𝑓 is called the ring of finite adeles.

Note that we still have an embedding of 𝐹 in 𝐴𝐹,𝑆 under the diagonal map. We then
have the following result (See [Pla69, Theorem 1.5])

Theorem 2.3.1 (Strong Approximation). If 𝑆 ≠ ∅ then the image of 𝐹 under 𝐹
under the diagonal embedding is dense in A𝐹,𝑆

Given an algebraic group 𝐺 over 𝐹, there is a natural way to define 𝐺 (A𝐹) and
𝐺 (A𝐹,𝑆). We fix a faithful representation 𝐺 → 𝐺𝐿𝑛 and let 𝐺 (O𝜐) be the intersec-
tion of 𝐺𝐿𝑛 (O𝜐) with (the image of) 𝐺 (𝐹𝜐) in 𝐺𝐿𝑛 (𝐹𝜐):

𝐺 (O𝜐) = 𝐺𝐿𝑛 (O𝜐) ∩ 𝐺, 𝜐 < ∞.

Let 𝑆 be a finite set of places and consider the ring of 𝑆-adèles of 𝐺:

𝐺 (A𝑆) := {𝑔 = (𝑔𝜐) ∈
∏
𝜐∉𝑆

𝐺 (𝐹𝜐) | 𝑔𝜐 ∈ 𝐺 (O𝜐) for almost all 𝜐 ∉ 𝑆}.

With the natural 𝑆-adelic topology, the topological ring 𝐺 (A𝑆) is locally compact
and contains 𝐹 via the canonical embedding 𝐺 (𝐹) ↩→ 𝐺 (A𝑆). We then have the
following definition.

Definition 2.3.1. An algebraic group 𝐺 over a number field 𝐹 has the strong ap-
proximation with respect to 𝑆 if 𝐺 (𝐹) is dense in 𝐺 (A𝑆).

The strong approximation property will be crucial in the study of Bost-Connes-
Marcolli systems. The following useful result provides a necessary and sufficient
condition for this property to hold for certain class of algebraic groups.

Theorem 2.3.2. (See [Kne65] and [Pla69] ) Let 𝐺 be an absolutely almost simple
simply connected algebraic group over a field 𝐹 with zero characteristic and 𝑆 a
finite nonempty set of places of 𝐹. Then𝐺 has the strong approximation with respect
to 𝑆 if and only if the group 𝐺𝑆 =

∏
𝜐∈𝑆 𝐺 (𝐹𝜐) is noncompact.
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We now introduce the general construction of Bost-Connes-Marcolli systems as-
sociated to a reductive group 𝐺 over Q and a Shimura datum(𝐺, 𝑋, ℎ). We refer
the reader to [HP05] for a more detailed discussion of Shimura varieties and in
particular the definition of a Shimura datum. Here we only recall that 𝑋 is a left
homogeneous space under 𝐺 (R) and ℎ : 𝑋 → Hom(S, 𝐺R) a 𝐺 (R)-equivariant
map with additional axioms from which it follows that 𝑋 has a unique structure of a
complex manifold and can be expressed as a disjoint union of Hermitian symmetric
domains. We also recall that an enveloping semigroup for 𝐺 is a multiplicative
semigroup 𝑀 which is irreducible, normal and such that 𝑀× = 𝐺.

A BCM datum is a tuple D = (𝐺, 𝑋,𝑉, 𝑀) with (𝐺, 𝑋) a Shimura datum, (𝑉, 𝜓)
a faithful representations of 𝐺 and 𝑀 an enveloping semigroup for 𝐺 contained
in End(𝑉). A level structure on D is a triple L = (𝐿, 𝐾, 𝐾𝑀) with 𝐿 ⊆ 𝑉 a
lattice, 𝐾 ⊆ 𝐺 (AQ, 𝑓 ) a compact subgroup and 𝐾𝑀 ⊆ 𝑀 (AQ, 𝑓 ) a compact open
subsemigroup such that

• 𝐾𝑀 stabilizes 𝐿 ⊗Z Ẑ

• 𝜓(𝐾) is contained in 𝐾𝑀 .

The pair (D,L) is called a BCM pair. For the purpose of this exposition, we assume
that the Shimura datum (𝐺, 𝑋) is classical, that is, the Shimura variety associated
to (𝐺, 𝑋) is described as:

Sh(𝐺, 𝑋) ≃ 𝐺 (Q)\𝑋 × 𝐺 (AQ, 𝑓 ).

We let
𝑌D,L := 𝐾𝑀 × Sh(𝐺, 𝑋),

and denote the points of 𝑌D,L by 𝑦 = (𝜌, [𝑧, 𝑙]). We let 𝑌×D,L = 𝐾×
𝑀
× Sh(𝐺, 𝑋) be

the invertible part of 𝑌D,L . We then have a partially defined action of 𝐺 (AQ, 𝑓 ) on
𝑌D,L:

𝑔 · 𝑦 = (𝑔𝜌, [𝑧, 𝑙𝑔−1]) for 𝑦 = (𝜌, [𝑧, 𝑙]).

Consider the subspace

UD,L ⊆ 𝐺 (AQ, 𝑓 ) × 𝑌D,L ,
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of pairs (𝑔, 𝑦) such that 𝑔𝑦 ∈ 𝑌D,L (i.e., 𝑔𝜌 ∈ 𝐾𝑀). This space is a groupoid
with source and target maps 𝑠 : UD,L → 𝑌D,L and 𝑡 : UD,L → 𝑌D,L given by
𝑠(𝑔, 𝑦) = 𝑦 and 𝑡 (𝑔, 𝑦) = 𝑔𝑦. The unit space is 𝑌D,L and composition is given by

(𝑔1, 𝑦1) ◦ (𝑔2, 𝑦2) = (𝑔1𝑔2, 𝑦2) if 𝑦1 = 𝑔2𝑦2.

There is an action of 𝐾2 on the groupoidUD,L given by

(𝛾1, 𝛾2) · (𝑔, 𝑦) := (𝛾1𝑔𝛾
−1
2 , 𝛾2𝑦)

and the quotient stack ℨD,L = [𝐾2\UD,L] has the structure of a stack-groupoid
(see [HP05, Appendix A] ).

Next, we let Γ = 𝐺 (Q) ∩ 𝐾 and consider

Uprinc := {(𝑔, 𝜌, 𝑧) ∈ 𝐺 (Q) × 𝐾𝑀 × 𝑋 | 𝑔𝜌 ∈ 𝐾𝑀)}.

Finally, let 𝑋+ be a connected component of 𝑋 , 𝐺+(Q) = 𝐺 (Q) ∩ 𝐺+(R) (where
𝐺+(R) is the identity component of 𝐺 (R)) and Γ+ = 𝐺+(Q) ∩ 𝐾 and consider the
groupoid

U+ = {(𝑔, 𝜌, 𝑧) ∈ 𝐺+(Q) × 𝐾𝑀 × 𝑋+ | 𝑔𝜌 ∈ 𝐾𝑀)},

The composition inUprinc andU+ is given by

(𝑔1, 𝜌1, 𝑧1) ◦ (𝑔2, 𝜌2, 𝑧2) = (𝑔1𝑔2, 𝜌2, 𝑧2) if (𝜌1, 𝑧1) = (𝑔2𝜌2, 𝜌2𝑧2).

There is a natural action of Γ2 (resp. Γ2
+) onUprinc (resp. U+) given by

(𝛾1, 𝛾2) · (𝑔, 𝜌, 𝑧) := (𝛾1𝑔𝛾
−1
2 , 𝛾2𝜌, 𝛾2𝑧),

and the quotient ℨprinc
D,L (resp. ℨ+D,L) ofUprinc (resp. U+) by Γ2 (resp. Γ2

+) has again
the structure of a stack-groupoid.

For an arbitrary BCM pair (D,L), the relation between the three groupoids ℨD,L
and ℨ

𝑝𝑟𝑖𝑛𝑐

D,L , ℨ+D,L is given by the following important result obtained in [HPB05,
Propositions 5.2, Proposition 5.3].
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Proposition 2.3.1. We denote by ℎ(𝐺, 𝐾) the cardinality of the set𝐺 (Q)\𝐺 (A 𝑓 )/𝐾 .
Assume that ℎ(𝐺, 𝐾) = 1 and the natural map Γ → 𝐺 (Q)/𝐺+(Q) is surjective.
Then the natural maps

ℨ+D,L −→ ℨ
𝑝𝑟𝑖𝑛𝑐

D,L , ℨ
𝑝𝑟𝑖𝑛𝑐

D,L −→ ℨD,L

are isomorphisms.

The conditions of Proposition 2.3.1 are satisfied for both the original Bost-Connes
system and the 𝐺𝐿2-case. It is then natural to consider the algebra H(D,L) :=
𝐶𝑐 (𝑍D,L) of continuous compactly supported functions on the coarse quotient 𝑍D,L
ofUD,L by the action of 𝐾2. We view its elements as functions onUD,L satisfying
the following properties:

𝑓 (𝛾𝑔, 𝑦) = 𝑓 (𝑔, 𝑦), 𝑓 (𝑔𝛾, 𝑦) = 𝑓 (𝑔, 𝛾𝑦), ∀𝛾 ∈ 𝐾, 𝑔 ∈ 𝐺 (AQ, 𝑓 ), 𝑦 ∈ 𝑌D,L .

The convolution product onH(D,L) is defined by the expression

( 𝑓1 ∗ 𝑓2) (𝑔, 𝑦) :=
∑︁

ℎ∈𝐾\𝐺 (A 𝑓 )
ℎ𝑦∈𝑌D,L

𝑓1(𝑔ℎ−1, ℎ𝑦) 𝑓2(ℎ, 𝑦), (2.14)

and the involution is given by

𝑓 ∗(𝑔, 𝑦) := 𝑓 (𝑔−1, 𝑔𝑦).

Let 𝑦 = (𝜌, [𝑧, 𝑙]) ∈ 𝑌D,L and we put 𝐺𝑦 = {𝑔 ∈ 𝐺 (A 𝑓 ) | 𝑔𝜌 ∈ 𝐾𝑀}. We define a
∗-representation 𝜋𝑦 : H(D,L) → B(𝑙2(𝐾\𝐺𝑦)) by

(𝜋𝑦 ( 𝑓 )𝜉) (𝑔) :=
∑︁

ℎ∈𝐾\𝐺𝑦

𝑓 (𝑔ℎ−1, ℎ𝑦)𝜉 (ℎ) for 𝑓 ∈ H (D,L),

where 𝜉 is the standard basis of 𝑙2(𝐾\𝐺𝑦). The operators 𝜋𝑦 ( 𝑓 ), for 𝑦 ∈ 𝑌D,L and
𝑓 ∈ H (D,L), are uniformly bounded [HP05, Lemma 4.16]. We then obtain a
𝐶∗-algebra A after completingH(D,L) in the norm

∥ 𝑓 ∥ = sup
𝑦∈𝑌D,L



𝜋𝑦 ( 𝑓 )

.
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Given a homomorphism

𝑁 : GL(𝑉) → R∗+,

we define a time evolution onH(D,L) by

𝜎𝑡 ( 𝑓 ) (𝑔, 𝑦) = 𝑁 (𝜓(𝑔))𝑖𝑡 𝑓 (𝑔, 𝑦),

so that the operator on 𝑙2(𝐾\𝐺𝑦) given by

(𝐻𝑦𝜁) (𝑔) = log 𝑁 (𝜓(𝑔))𝜁 (𝑔)

is the Hamiltonian. The resulting𝐶∗-dynamical system (A, 𝜎𝑡) is the Bost-Connes-
Marcolli system associated to the BCM pair (D,L). In the rest of this thesis, we
shall explore the rich structure of these systems in the special case of the Siegel
modular varieties which, together with the Hilbert modular varieties, constitutes an
important class of Shimura varieties.
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C h a p t e r 3

PHASE TRANSITION IN THE BOST–CONNES–MARCOLLI
𝐺𝑆𝑝4-SYSTEM

In this chapter we introduce and study the Connes-Marcolli system associated to
the Siegel modular variety of degree two. We classify its KMS𝛽-states for inverse
temperatures 𝛽 > 0 and show that a spontaneous phase transition occurs at 𝛽 = 3.
More precisely, we prove that the system does not admit a KMS𝛽 state for 𝛽 < 3
with 𝛽 ≠ 1, construct the explicit extremal Gibbs states for 𝛽 > 4 and show that a
unique KMS𝛽 state exists for every 𝛽 > 0 with 3 < 𝛽 ≤ 4.

To prove this result, we combine the approach of Laca, Larsen and Neshveyev
in [LLN07] and generalize their ideas to the explicit case of the Shimura variety
(𝐺𝑆𝑝+4 ,H

+
2). There are several complications compared to the 𝐺𝐿Q,2-system. First,

the action of the group 𝑆𝑝4(Z) on the set H+2 ×𝐺𝑆𝑝4(AQ, 𝑓 ) is not free and one can
not easily resolve this issue by excluding the subsetH+2×{04}. Our approach consists
of first replacing the homogeneous spaceH+2 by the quotient𝐾\𝑃𝐺𝑆𝑝+4 (R) (where𝐾
is a compact subgroup of 𝑃𝐺𝑆𝑝+4 (R)) and then prove a one-to-one correspondence
of the KMS𝛽 states between the two systems. We first establish the correspondence
between the set of KMS𝛽 states and Borel measures, which allows us to study the
properties of those measures instead of working directly with the KMS𝛽 states. The
second difficulty arises from the structure of the Hecke pair (𝐺𝑆𝑝2𝑛 (Q), 𝑆𝑝2𝑛 (Z)).
As we will show in this chapter, the case 𝑛 = 2 is already computationally demanding
and even in this case it is not always possible to directly apply some techniques used
in [LLN07] (especially in the critical interval 3 < 𝛽 ≤ 4). As a first result we
show in Theorem 3.2.1 that the 𝐺𝑆𝑝4-system does not admit any KMS𝛽 state for
0 < 𝛽 < 3 and 𝛽 ∉ {1, 2}. We next show that the extremal states in the region
𝛽 > 4 correspond to Gibbs states and give an explicit construction of these states in
Theorem 3.2.2. The final main result (Theorem 3.2.5) is a uniqueness theorem: we
show that in the region 3 < 𝛽 ≤ 4, the 𝐺𝑆𝑝4-system admits a unique KMS𝛽 state.
To show this, we split the proof into two parts. The main ingredient of the first is
the convergence of Dirichlet 𝐿-functions for nontrivial characters. The second part
relies on a variant of the technique used in [LLN07]. As stated above, the structure
of the Hecke pair (𝐺𝑆𝑝2𝑛 (Q), 𝑆𝑝2𝑛 (Z)) becomes less explicit for 𝑛 ≥ 2 and in order
to compute the number of right representatives in a double coset one has to work



with upper bounds instead of explicit formulas. We achieve this by using the root
datum of the group𝐺𝑆𝑝2𝑛 and use the equidistribution of Hecke points for the group
𝐺𝑆𝑝2𝑛 to establish the second ergodicity result.

Throughout this chapter, we fix the following notations.
We use the common notations N,Z,Q,R,C together with R∗+ = (0, +∞) and Z+ =
R∗+ ∩ Z;
If 𝑅 is a ring, we denote its group of multiplicative units by 𝑅×;
We use the notation Mat𝑛 (𝑅) for the ring of square matrices with entries in 𝑅.
We denote by 𝐸𝑖 𝑗 the usual elementary matrix with 1 in the (𝑖, 𝑗) position and 0
elsewhere;
The group of units in the ring Mat𝑛 (𝑅) is denoted by 𝐺𝐿𝑛 (𝑅). If 𝐴 is a square
matrix, then 𝐴𝑡 stands for its transpose. If 𝐴1, . . . , 𝐴𝑛 are square matrices we denote
by diag(𝐴1, . . . , 𝐴𝑛) the square matrix with 𝐴1, . . . , 𝐴𝑛 as diagonal blocks and 0’s
otherwise;
Whenever there is an ambiguity, we shall use 1𝑛 and 0𝑛 to denote the 𝑛 × 𝑛 identity
matrix and the a rectangular zero matrix;
|𝐹 | denotes the cardinality of a finite set 𝐹;
the set of prime numbers is denoted by P;
given a nonempty finite set of prime numbers 𝐹 ⊂ P, we denote by N(𝐹) the unital
multiplicative subsemigroup of N generated by 𝑝 ∈ 𝐹;
for two sequences {𝑎𝑛} and {𝑏𝑛}, we write 𝑎𝑛 ∼ 𝑏𝑛 if lim𝑛 (𝑎𝑛/𝑏𝑛) = 1 and∑︁

𝑛

𝑎𝑛 ∼
∑︁
𝑛

𝑏𝑛

if the two series are simultaneously divergent or convergent;
if 𝑌 is subset of 𝑋 , we denote 𝑌 𝑐 = 𝑋\𝑌 = {𝑎 ∈ 𝑋 : 𝑎 ∉ 𝑌 };
for a number field 𝐾 , we denote by A𝐾 = A𝐾, 𝑓 × A𝐾,∞ the adèle ring of 𝐾 , where
A𝐾, 𝑓 is the ring of finite adèles and A𝐾,∞ the infinite adèles of 𝐾 . The ring of
integers of 𝐾 is denoted by O𝐾 .

Recall from Chapter 1 that given a countable group 𝐺 acting on a locally compact
second countable topological space 𝑋 , one can construct the transformation groupoid
as the space 𝐺 × 𝑋 with unit space 𝑋 with the source and target maps given by
𝑠(𝑔, 𝑥) = 𝑥 and 𝑡 (𝑔, 𝑥) = 𝑔𝑥 and the composition law is defined by

(𝑔, 𝑥) (ℎ, 𝑦) = (𝑔ℎ, 𝑦) if 𝑥 = ℎ𝑦.
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If Γ is a subgroup of 𝐺 and the action of Γ is free and proper, we introduce a new
groupoid Γ\𝐺×Γ 𝑋 by taking the quotient of𝐺×𝑋 by the following action of Γ×Γ:

(𝛾1, 𝛾2) (𝑔, 𝑥) := (𝛾1𝑔𝛾
−1
2 , 𝛾2𝑥). (3.1)

In all our settings, the main motivation for taking the quotient by this action is
physical. In fact, to obtain a well behaved partition function of the 𝐶∗-dynamical
system we will introduce shortly, one should necessarily take the quotient by the
group Γ×Γ (See also [CM04] for another motivation based on theQ-lattice picture).
With these assumptions, the groupoid G = Γ\𝐺×Γ 𝑋 is étale. We then introduce the
algebra 𝐶𝑐 (G) of continuous compactly supported functions on the quotient space
Γ\𝐺 ×Γ 𝑋 with the convolution and involution as in (2.11) and (2.12).

If the action of Γ is proper but not free, the quotient space Γ\𝐺 ×Γ 𝑋 is no longer
a groupoid (cf. Proposition 3.1.5). Under the assumption that 𝑋 is a homogeneous
space of the form 𝑋̃/𝐻, where now the action of 𝐺 on 𝑋̃ is free and proper, we can
still define a natural convolution algebra from the groupoid algebra 𝐶𝑐 (Γ\𝐺 ×Γ 𝑋̃)
as was done in the 𝐺𝐿2-case in [CM04]. More specifically, viewing the elements of
𝐶𝑐 (Γ\𝐺 ×Γ 𝑋̃) as Γ × Γ-invariant functions, we rewrite the convolution product as

( 𝑓1 ∗ 𝑓2) (𝑔, 𝑥) =
∑︁
𝑠∈Γ\𝐺

𝑓1(𝑔𝑠−1, 𝑠𝑥) 𝑓2(𝑠, 𝑥). (3.2)

We then define a convolution algebra on the quotient Γ\𝐺 ×Γ 𝑋 by restricting
the convolution product (3.2) to weight zero functions on 𝐶𝑐 (Γ\𝐺 ×Γ 𝑋̃), namely
functions satisfying

𝑓 (𝑔, 𝑥𝛼) = 𝑓 (𝑔, 𝑥), ∀𝛼 ∈ 𝐻.

For each 𝑥 ∈ 𝑋 , we have a ∗-representation 𝜋𝑥 of 𝐶𝑐 (Γ\𝐺 × 𝑋) on the Hilbert space
𝑙2(Γ\𝐺) defined by

(𝜋𝑥) ( 𝑓 )𝛿Γℎ =
∑︁
𝑔∈Γ\𝐺

𝑓 (𝑔ℎ−1, ℎ𝑥)𝛿Γ𝑔, 𝑓 ∈ 𝐶𝑐 (Γ\𝐺 ×Γ 𝑋).

As in the general groupoid construction introduced in Chapter 1, one can explicitly
show that the operators 𝜋𝑥 ( 𝑓 ) are uniformly bounded [HP05; LLN07] and we denote
by B = 𝐶∗𝑟 (Γ\𝐺 × 𝑋) the completion of 𝐶𝑐 (Γ\𝐺 × 𝑋) in the reduced norm
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∥ 𝑓 ∥ = sup
𝑥∈𝑋
∥𝜋𝑥 ( 𝑓 )∥. (3.3)

Let 𝑌 be any clopen Γ-invariant subset of 𝑋 and denote by Γ\𝐺 ⊠Γ 𝑌 the quotient
of the space

{(𝑔, 𝑦) | 𝑔 ∈ 𝐺, 𝑦 ∈ 𝑌, 𝑔𝑦 ∈ 𝑌 },

by the action of Γ × Γ defined in (3.1). We denote by 𝐶𝑐 (Γ\𝐺 ⊠Γ 𝑌 ) the algebra of
compactly supported functions on Γ\𝐺 ⊠Γ 𝑌 with the convolution product given by

( 𝑓1 ∗ 𝑓2) (𝑔, 𝑦) =
∑︁
𝑠∈Γ\𝐺
𝑠𝑦∈𝑌

𝑓1(𝑔𝑠−1, 𝑠𝑦) 𝑓2(𝑠, 𝑦),

and involution

𝑓 ∗(𝑔, 𝑦) = 𝑓 (𝑔−1, 𝑔𝑦).

We let A be the corner algebra 𝑒B𝑒, where 𝑒 is the Γ × Γ-invariant function on
𝐺 × 𝑋 defined by

𝑒(𝑔, 𝑥) =


1 if (𝑔, 𝑥) ∈ Γ × 𝑌

0 otherwise.

Given 𝑥 ∈ 𝑋 , we put
𝐺𝑥 = {𝑔 ∈ 𝐺 | 𝑔𝑥 ∈ 𝑌 }. (3.4)

Then we have a representation of𝐶𝑐 (Γ\𝐺⊠Γ𝑌 ) on the Hilbert spaceH𝑥 = 𝑙2(Γ\𝐺𝑥)
given by

𝜋𝑥 ( 𝑓 )𝛿Γℎ =
∑︁

𝑔∈Γ\𝐺𝑥

𝑓 (𝑔ℎ−1, ℎ𝑥)𝛿Γ𝑔, 𝑓 ∈ 𝐶𝑐 (Γ\𝐺 ⊠Γ 𝑌 ),

and the algebra A coincides ([LLN07]) with the completion of 𝐶𝑐 (Γ\𝐺 ⊠Γ 𝑌 ) in
the norm defined by

∥ 𝑓 ∥ = sup
𝑦∈𝑌



𝜋𝑦 ( 𝑓 )

.
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We denote this completion by 𝐶∗𝑟 (Γ\𝐺 ⊠Γ 𝑌 ). Next, assume that we are given a
homomorphism

𝑁 : 𝐺 −→ R∗+,

such that Γ ⊆ ker(𝑁). We then define a one-parameter group of automorphisms of
B by

𝜎𝑡 ( 𝑓 ) (𝑔, 𝑥) = 𝑁 (𝑔)𝑖𝑡 𝑓 (𝑔, 𝑥), for 𝑓 ∈ 𝐶𝑐 (Γ\𝐺 × 𝑋).

The operator on 𝑙2(Γ\𝐺𝑥) given by

𝐻𝑥𝛿Γ𝑔 = log 𝑁 (𝑔) · 𝛿Γ𝑔

is the Hamiltonian and the dynamics 𝜎𝑡 is then spatially implemented as

𝜋𝑥 (𝜎𝑡 (𝑎)) = 𝑒𝑖𝑡𝐻𝑥𝜋𝑥 (𝑎)𝑒−𝑖𝑡𝐻𝑥 , ∀𝑥 ∈ 𝑋,∀𝑎 ∈ B.

The following result will be the starting point of our KMS𝛽-analysis of the dynamical
system (A, 𝜎𝑡).

Proposition 3.0.1. Let 𝐺, 𝑋 and 𝑌 as described earlier and suppose Γ acts freely
on 𝑋 . Then for 𝛽 > 0 there exists a one-to-one correspondence between KMS𝛽
weights 𝜙 onA with domain of definition containing𝐶𝑐 (Γ\𝑌 ) and Radon measures
𝜇 on 𝑌 such that

𝜇(𝑔𝐵) = 𝑁 (𝑔)−𝛽𝜇(𝐵)

for every 𝑔 ∈ 𝐺 and every Borel compact subset 𝐵 ⊆ 𝑌 such that 𝑔𝐵 ⊆ 𝑌 . If 𝜈
denotes the induced measure on Γ\𝑌 , then this correspondence is given by

∫
𝑌

𝑓 (𝑦)𝑑𝜇(𝑦) =
∫
Γ\𝑌

( ∑︁
𝑦∈𝑝−1 (𝑡)

𝑓 (𝑦)
)
𝑑𝜈(𝑡) for 𝑓 ∈ 𝐶𝑐 (𝑌 ),

where 𝑝 : 𝑌 → Γ\𝑌 is the quotient map. The induced weight 𝜙 is given by

𝜙( 𝑓 ) =
∫
Γ\𝑌

𝑓 (𝑒, 𝑦)𝑑𝜈(𝑦) for 𝑓 ∈ 𝐶𝑐 (Γ\𝐺 ⊠Γ 𝑌 ). (3.5)
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Proof. See [LLN07, Proposition 2.1] □

Recall that if 𝐺 be a group and Γ a subgroup, the pair (𝐺, Γ) is called is called a
Hecke pair if for any 𝑔 ∈ 𝐺 we have

[Γ : Γ ∩ 𝑔−1Γ𝑔] < ∞.

If (𝐺, Γ) is a Hecke pair then every double coset of Γ contains finitely many right
and left cosets of Γ:

Γ𝑔Γ =
⊔

𝛾∈Γ\(Γ∩ 𝑔Γ𝑔−1)
𝛾𝑔Γ =

⊔
𝛾∈(Γ∩ 𝑔−1Γ𝑔)\Γ

Γ𝑔𝛾,

so that |Γ\Γ𝑔Γ| = [Γ : Γ∩𝑔−1Γ𝑔]. We denote the cardinality of this set by degΓ (𝑎).

Let 𝛽 ∈ R and 𝑆 is a semisubgroup of 𝐺 containing Γ. Then we define

𝜁𝑆,Γ (𝛽) :=
∑︁
𝑠∈Γ\𝑆

𝑁 (𝑠)−𝛽 =
∑︁

𝑠∈Γ\𝑆/Γ
𝑁 (𝑠)−𝛽 degΓ (𝑠). (3.6)

If 𝐺 is a group acting on a set 𝑋 and (𝐺, Γ) is a Hecke pair, the Hecke operator
associated to 𝑔 ∈ 𝐺 is the operator 𝑇𝑔 acting on Γ-invariant functions on 𝑋 defined
by

(𝑇𝑔 𝑓 ) (𝑥) =
1

degΓ (𝑔)
∑︁

ℎ∈Γ\Γ𝑔Γ
𝑓 (ℎ𝑥). (3.7)

3.1 Bost–Connes–Marcolli system for the Siegel Modular Variety
The Symplectic Group
We recall that a linear connected algebraic group 𝐺 over Q is called reductive if any
faithful semisimple representation remains semisimple over its the algebraic closure
of Q. Let 𝑅 be a commutative Q-algebra and 𝑛 ∈ N. The symplectic group of
similitude of degree 𝑛 is the reductive group defined by

𝐺𝑆𝑝2𝑛 (𝑅) = {𝑔 ∈ 𝐺𝐿2𝑛 (𝑅) : ∃ 𝜆(𝑔) ∈ 𝑅× | 𝑔𝑡 Ω 𝑔 = 𝜆(𝑔)Ω},

where

Ω =

(
0 1𝑛
−1𝑛 0

)
, 1𝑛 is the 𝑛 × 𝑛 identity matrix.
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The function 𝜆 : 𝐺𝑆𝑝2𝑛 (𝑅) → 𝑅× is called the multiplier homomorphism. Its
kernel is the symplectic group 𝑆𝑝2𝑛 (𝑅) and there is an exact sequence

1 −→ 𝑆𝑝2𝑛 (𝑅) −→ 𝐺𝑆𝑝2𝑛 (𝑅) −→ 𝑅× −→ 1. (3.8)

If 𝑔 =

(
𝐴 𝐵

𝐶 𝐷

)
∈ 𝐺𝑆𝑝2𝑛 (𝑅), the following assertions are equivalent:

(i) 𝜆(𝑔) = 𝜆(𝑔𝑡)

(ii) The inverse of the matrix 𝑔 is given by:

𝑔−1 = 𝜆(𝑔)−1

(
𝐷𝑡 −𝐵𝑡

−𝐶𝑡 𝐴𝑡

)
. (3.9)

(iii) The blocks 𝐴, 𝐵, 𝐶, 𝐷 satisfy the conditions

𝐴𝑡𝐶 = 𝐶𝑡𝐴, 𝐵𝑡𝐷 = 𝐷𝑡𝐵, 𝐴𝑡𝐷 − 𝐶𝑡𝐵 = 𝜆(𝑔)1𝑛. (3.10)

(iv) The blocks 𝐴, 𝐵, 𝐶, 𝐷 satisfy the conditions

𝐴𝐵𝑡 = 𝐵𝐴𝑡 , 𝐶𝐷𝑡 = 𝐷𝐶𝑡 , 𝐴𝐷𝑡 − 𝐵𝐶𝑡 = 𝜆(𝑔)1𝑛. (3.11)

For 𝑟 ∈ 𝑅×, we put

𝑆𝑛 (𝑟) := {𝑔 ∈ 𝐺𝑆𝑝2𝑛 (𝑅) | 𝜆(𝑔) = 𝑟}.

We then obtain an embedding of symplectic groups of different degrees as follows.
Given 𝑟 ∈ N and 0 < 𝑗 < 𝑛, define the map

𝑆 𝑗 (𝑞) × 𝑆𝑛− 𝑗 (𝑞) → 𝑆𝑛 (𝑞)
(𝑔1, 𝑔2) ↦→ 𝑔1 ⊙ 𝑔2,

where

𝑔1 ⊙ 𝑔2 :=

©­­­­­«
𝐴1 0 𝑗×(𝑛− 𝑗) 𝐵1 0 𝑗×(𝑛− 𝑗)

0(𝑛− 𝑗)× 𝑗 𝐴2 0(𝑛− 𝑗)× 𝑗 𝐵2

𝐶1 0 𝑗×(𝑛− 𝑗) 𝐷1 0 𝑗×(𝑛− 𝑗)
0(𝑛− 𝑗)× 𝑗 𝐶2 0(𝑛− 𝑗)× 𝑗 𝐷2

ª®®®®®¬
,
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and

𝑀1 =

(
𝐴1 𝐵1

𝐶1 𝐷1

)
, 𝑀2 =

(
𝐴2 𝐵2

𝐶2 𝐷2

)
.

Under the appropriate conditions on the size, we note that

(𝑀1 ⊙ 𝑀2) · (𝑁1 ⊙ 𝑁2) = (𝑀1𝑁1) ⊙ (𝑀2𝑁2). (3.12)

Consider the following elements of 𝑆𝑝2𝑛 (𝑅):(
1𝑛 𝛼1𝐸𝑖𝑖

0𝑛 1𝑛

)
,

(
1𝑛 0𝑛
𝛼2𝐸𝑖𝑖 1𝑛

)
,

(
1𝑛 𝛼3(𝐸𝑖 𝑗 + 𝐸 𝑗𝑖)
0𝑛 1𝑛

)
, (3.13)(

1𝑛 0𝑛
𝛼4(𝐸𝑖 𝑗 + 𝐸 𝑗𝑖) 1𝑛

)
,

(
1𝑛 + 𝛼5𝐸𝑖 𝑗 0𝑛

0𝑛 1𝑛 − 𝛼5𝐸 𝑗𝑖

)
,

where 𝛼1, . . . , 𝛼5 ∈ 𝑅. If 𝐹 is a field, then the group 𝑆𝑝2𝑛 (𝐹) is generated [OMe78]
by the matrices given in (3.13) with 𝛼1, . . . , 𝛼5 ∈ 𝐹.

An algebraic group is called a torus if it is isomorphic to a product of copies of
G𝑚 over a finite separable extension of Q. It is called split if it is isomorphic to
a product of copies of G𝑚 over Q. For the group 𝐺𝑆𝑝2𝑛, the center 𝑍 consists of
scalar matrices and the standard maximal torus is

𝑇 = {diag(𝑢1, . . . , 𝑢𝑛, 𝑣1, . . . , 𝑣𝑛) : 𝑢1𝑣1 = · · · = 𝑢𝑛𝑣𝑛 ≠ 0}.

If 𝑡 ∈ 𝑇 , we often write

𝑡 = diag(𝑢1, . . . , 𝑢𝑛, 𝑢
−1
1 𝜆(𝑡), . . . , 𝑢

−1
𝑛 𝜆(𝑡)), (3.14)

We also recall that a root datum consists of a quadruple (𝑋,Φ, 𝑋∨,Φ∨) consisting of
the lattice 𝑋 of characters of the maximal torus, the dual lattice 𝑋∨, a set of roots Φ
and coroots Φ∨. We refer the unfamiliar reader to [Spr98] for a thorough exposition
of this material. We shall now describe the root datum of the group 𝐺𝑆𝑝2𝑛.

We fix the following characters 𝑒𝑖 ∈ Hom(𝑇, 𝐺𝑚):

𝑒𝑖 (𝑡) = 𝑢𝑖, 𝑖 = 0, 1, . . . , 𝑛 where 𝑢0 := 𝜆(𝑡).
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and cocharacters 𝑓𝑖 ∈ Hom(𝐺𝑚, 𝑇):

𝑓0(𝑢) = diag(1, . . . , 1︸   ︷︷   ︸
𝑛

, 𝑢, . . . , 𝑢︸   ︷︷   ︸
𝑛

),

𝑓1(𝑢) = ( 𝑢, 1, . . . , 1︸      ︷︷      ︸
𝑛

, 𝑢−1, 1, . . . , 1︸         ︷︷         ︸
𝑛

),

...

𝑓𝑛 (𝑢) = ( 1, . . . , 1, 𝑢︸      ︷︷      ︸
𝑛

, 1, . . . , 1, 𝑢−1︸         ︷︷         ︸
𝑛

).

Proposition 3.1.1. The root datum of 𝐺𝑆𝑝2𝑛 is described as follows. We set

𝑋 = Z𝑒0 ⊕ Z𝑒1 ⊕ . . . Z𝑒𝑛,
𝑋∨ = Z 𝑓0 ⊕ Z 𝑓1 ⊕ . . . Z 𝑓𝑛,

and let ⟨·, ·⟩ the natural pairing on 𝑋 × 𝑋∨:

⟨𝑒𝑖, 𝑓 𝑗 ⟩ = 𝛿𝑖 𝑗 .

Then we have the following set of simple roots:

𝛼1(𝑡) = 𝑢−1
𝑛−1𝑢𝑛, . . . 𝛼𝑛−1(𝑡) = 𝑢−1

1 𝑢2, 𝛼𝑛 (𝑡) = 𝑢2
1𝑢
−1
0 ,

where 𝑡 has the form in (3.14). In terms of the basis 𝑒𝑖, 𝑖 = 0, 1, . . . , 𝑛, we have

𝛼1 = 𝑒𝑛 − 𝑒𝑛−1, . . . 𝛼𝑛−1 = 𝑒2 − 𝑒1, 𝛼𝑛 = 2𝑒1 − 𝑒0.

The corresponding coroots are

𝛼∨1 = 𝑓𝑛 − 𝑓𝑛−1, . . . 𝛼∨𝑛−1 = 𝑓2 − 𝑓1, 𝛼∨𝑛 = 𝑓1.

Let 𝑅 = {𝛼1, . . . , 𝛼𝑛} and 𝑅∨ = {𝛼∨1 , . . . , 𝛼
∨
𝑛 }. Then

(𝑋, 𝑅, 𝑋∨, 𝑅∨).
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is the root datum of 𝐺𝑆𝑝2𝑛. The Cartan matrix is given by

⟨𝛼𝑖, 𝛼∨𝑗 ⟩ =

©­­­­­­­­­­­­­«

2 −1
−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2 −1
−2 2

ª®®®®®®®®®®®®®¬
.

Proof. See [Tad94, page 134-136] □

As noted in section 2.3, the definition of the Bost-Connes-Marcolli system associated
to a general Shimura datum (𝐺, 𝑋) requires the notion of an enveloping semigroup
which plays the role of Mat2,Q in the case of the 𝐺𝐿2,Q-system. For a given a
reductive group 𝐺, it is always possible to construct an enveloping semigroup 𝑀
(see [HP05, Appendix B.2]). For the case 𝐺 = 𝐺𝑆𝑝2𝑛 we are considering in
this work, we have the following explicit description of 𝑀 . Given a commutative
Q-algebra 𝑅 we have

𝑀 (𝑅) := 𝑀𝑆𝑝2𝑛 (𝑅) = {𝑚 ∈ Mat2𝑛 (𝑅) | ∃ 𝜆(𝑚) ∈ 𝑅, 𝑚𝑡Ω𝑚 = 𝜆(𝑚)Ω}, (3.15)

since 𝑚 ∈ 𝑀𝑆𝑝2𝑛 (𝑅)× if and only if 𝜆(𝑚) ∈ 𝑅×.

The group Γ𝑛 = 𝑆𝑝2𝑛 (Z) is called the Siegel modular group of degree 𝑛. For𝑚 ∈ N,
we denote by 𝑈𝑚 = 𝐺𝐿𝑚 (Z) the unimodular group of degree 𝑚 and note that Γ𝑛 ⊆
𝑈2𝑛 with equality if 𝑛 = 1. We let 𝑀𝑆𝑝+2𝑛 (Z) = {𝑀 ∈ 𝑀𝑆𝑝2𝑛 (Z) | 𝜆(𝑀) > 0}.
Then given any 𝑀 ∈ 𝑀𝑆𝑝+2𝑛 (Z), we denote by Γ𝑛𝑀Γ𝑛 the double coset generated
by 𝑀 and put

D(Γ𝑛𝑀Γ𝑛) := {𝐷 ∈ Mat𝑛 (Z) such that there exists

(
𝐴 𝐵

0 𝐷

)
∈ Γ𝑛𝑀Γ𝑛}.

For each 𝐷 ∈ D(Γ𝑀Γ), we set

B(𝐷, Γ𝑛𝑀Γ𝑛) := {𝐵 ∈ Mat𝑛 (Z) such that there exists

(
𝐴 𝐵

0 𝐷

)
∈ Γ𝑛𝑀Γ𝑛}.

We define the following equivalence relation on B(𝐷):

𝐵 ∼ 𝐵′⇔ (𝐵 − 𝐵′)𝐷−1 ∈ Sym𝑛 (Z), (3.16)
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and we write 𝐵 ≡ 𝐵′ mod 𝐷 if 𝐵 ∼ 𝐵′. For 𝑟 ∈ N, we put

𝑆𝑛 (𝑟) = {𝑔 ∈ 𝐺𝑆𝑝2𝑛 (Z) | 𝜆(𝑔) = 𝑟}.

Let𝑀 ∈ Mat𝑚 (Z) with det(𝑀) > 0 and 𝑁 ∈ 𝑆𝑛 (𝑟). Then by the Elementary Divisor
Theorem (See [Kri90, Theorem 2.2, Chapter V]) the double cosets 𝑈𝑚𝑀𝑈𝑚 and
Γ𝑛𝑁Γ𝑛 contain unique representatives of the form

Elm(𝑀) = diag(𝑎1, 𝑎2, . . . , 𝑎𝑚), 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ N, (3.17)

with 𝑎1 | 𝑎2 | · · · | 𝑎𝑚 and

Elm(𝑁) = diag(𝑎1, . . . , 𝑎𝑛, 𝑑1, . . . , 𝑑𝑛), 𝑎1, . . . , 𝑎𝑛, 𝑑1, . . . , 𝑑𝑛 ∈ N, (3.18)

such that 𝑎𝑖𝑑𝑖 = 𝑟, 𝑖 = 1, . . . , 𝑛 and 𝑎1 | 𝑎2 | . . . 𝑎𝑛 | 𝑑𝑛 | · · · | 𝑑𝑛−1 | 𝑑1.

Theorem 3.1.1. Let 𝑀 ∈ 𝑀𝑆𝑝+2𝑛 (Z). Then a set of representatives of the right
cosets relative to Γ𝑛 in Γ𝑛𝑀Γ𝑛 is given by the matrices(

𝐴 𝐵

0 𝐷

)
, 𝐴 = 𝜆(𝑀) (𝐷𝑡)−1,

where

1. 𝐷 runs through a set of representatives of 𝐺𝐿𝑛 (Z)\D(Γ𝑛𝑀Γ𝑛);

2. 𝐵 runs through a set of representatives of mod 𝐷 incongruent matrices in
B(𝐷, Γ𝑛𝑀Γ𝑛).

Proof. See [Kri90, Theorem 3.4, Chapter VI] □

Proposition 3.1.2. Let 𝑝 be a prime number and 𝑙 ∈ N. Then the set 𝑆𝑛 (𝑝𝑙)
decomposes into finitely many right cosets relative to Γ𝑛. A set of representatives
is given by (

𝑝𝑙 (𝐷𝑡)−1 𝐵

0 𝐷

)
, (3.19)

where 𝐷 runs through a set of representatives of

𝐺𝐿𝑛 (Z)\
{
𝐷 ∈ Mat𝑛 (Z) | Elm(𝐷) = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛), 𝑑𝑖 | 𝑝𝑙 , 𝑖 = 1, 2, . . . , 𝑛

}
,

and 𝐵 runs through a set of representatives of mod 𝐷 incongruent matrices in

𝐵(𝐷) := {𝐵 ∈ Mat𝑛 (Z) | 𝐵𝑡𝐷 = 𝐷𝑡𝐵}. (3.20)
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Proof. Every right coset Γ𝑛𝑀 contains a representatives of the form in (3.19).
Suppose we have two representatives 𝑁 and 𝑀 of this form:

𝑁 =

(
𝐴 𝐵

0 𝐷

)
, 𝑀 =

(
𝐴′ 𝐵′

0 𝐷′

)
,

with Γ𝑛𝑁 = Γ𝑛𝑁 . Then since

{(𝐴 𝐵

0 𝐷

)
∈ Γ𝑛

}
=

{(𝑈𝑡 0
0 𝑈−1

) (
1𝑛 𝑆

0 1𝑛

)
| 𝑈 ∈ 𝐺𝐿𝑛 (Z) , 𝑆 ∈ Sym𝑛 (Z)

}
, (3.21)

we obtain from the conditions in (3.10)-(3.11) that there exists 𝑈 ∈ 𝐺𝐿𝑛 (Z) such
that 𝐷 (𝐴′)𝑡 = 𝜆(𝑀)𝑈−1 and hence

𝐷 (𝐷′)−1 = 𝑈−1.

This shows that 𝐷 = 𝐷′ and consequently 𝐴 = 𝐴′. Moreover from the equality
(3.21) we know that there exists 𝑆 ∈ Sym𝑛 (Z) such that

−𝐴(𝐵′)𝑡 + 𝐵(𝐴)𝑡 = −𝐴(𝐵′)𝑡 + 𝐴𝐵𝑡 ,
= 𝜆(𝑀)𝑆.

Since 𝐴𝑡𝐷 = 𝜆(𝑀) = 𝜆(𝑁) we obtain that 𝐵 − 𝐵′ = 𝑆𝐷, i.e., 𝐵 ≡ 𝐵′ mod 𝐷. □

Lemma 3.1.1. Let 𝑝 be a prime number, 𝑙 ∈ N, 𝐷 ∈ Mat𝑛 (Z) such that Elm(𝐷) =
diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) with 𝑑𝑖 |𝑝𝑙 for 𝑖 = 1, 2, . . . , 𝑛 and 𝐵(𝐷) is as in equation (3.20).
Given𝑈,𝑉 ∈ 𝐺𝐿𝑛 (Z), then

1. |𝐵(𝐷) mod 𝐷 | = |𝐵(𝑈𝐷𝑉) mod 𝑈𝐷𝑉 |,

2. |𝐵(𝐷) mod 𝐷 | = 𝑑𝑛1𝑑
𝑛−1
2 . . . 𝑑𝑛.

Proof. Since𝑈,𝑉 ∈ U𝑛 (Z), we have the following bĳection

𝐵(𝐷) → 𝐵(𝑈𝐷𝑉)
𝑀 ↦→ (𝑈𝑡)−1𝑀𝑉.

This proves the first claim. Hence we can suppose that 𝐷 = Elm(𝐷) to prove the
second assertion. Since 𝑑1 | . . . |𝑑𝑛, we can write

𝐵(𝐷) = {𝑀 = (𝑏 𝑗 𝑘 ) | 𝑏 𝑗 𝑘 ∈ Z, 𝑏 𝑗 𝑘 = 𝑏𝑘 𝑗
𝑑𝑘

𝑑𝑙
for 𝑗 ≤ 𝑘}.

By definition of the relation in (3.16) the entries 𝑏 𝑗 𝑘 may be reduced mod 𝑑𝑘 . This
shows that 𝐵(𝐷) consists exactly of 𝑑𝑛1𝑑

𝑛−1
2 . . . 𝑑𝑛 equivalence classes mod 𝐷. □
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Let 𝑟 ∈ N and define

𝑅Γ𝑛 (𝑟) :=
∑︁

𝑔∈Γ𝑛\𝑆𝑛 (𝑟)/Γ𝑛

degΓ𝑛 (𝑔).

Proposition 3.1.3. The function 𝑅Γ𝑛 : N → N is a multiplicative function, i.e.,
given relatively prime numbers 𝑞, 𝑟 ∈ N, we have

𝑅Γ𝑛 (𝑞𝑟) = 𝑅Γ𝑛 (𝑞)𝑅Γ𝑛 (𝑟).

Proof. Observe first that if 𝑔 ∈ 𝑆𝑛 (𝑞𝑟), then Elm(𝑔) = Elm(𝑔1)Elm(𝑔2) for some
𝑔1 ∈ 𝑆𝑛 (𝑞) and 𝑔2 ∈ 𝑆𝑛 (𝑟). Hence

𝑅Γ𝑛 (𝑞𝑟) =
∑︁

𝑔∈Γ𝑛\𝑆𝑛 (𝑞𝑟)/Γ𝑛

degΓ𝑛 (𝑔) =
∑︁

𝑔2∈Γ𝑛\𝑆𝑛 (𝑞)/Γ𝑛

∑︁
𝑔1∈Γ𝑛\𝑆𝑛 (𝑟)/Γ𝑛

degΓ𝑛 (𝑔1𝑔2),

hence it is enough to show that deg(𝑔1𝑔2) = deg(𝑔1) deg(𝑔2). We decompose the
double cosets Γ𝑛\𝑔1/Γ𝑛 and Γ𝑛\𝑔2/Γ𝑛 into finitely many right cosets: Γ𝑛𝑄𝑖, 𝑖 =

1, . . . , deg(𝑔1) and Γ𝑛𝑅𝑖, 𝑖 = 1, . . . , deg(𝑔2). Then consider the right cosets given
by Γ𝑄𝑖𝑅 𝑗 . Suppose hat Γ𝑄𝑖𝑅 𝑗 = Γ𝑄𝑘𝑅𝑙 . Then there exists some 𝛾 ∈ Γ𝑛 and a
matrix 𝑀 ∈ 𝐺𝑆𝑝2𝑛 (Q) such that

𝑀 = 𝑄−1
𝑘 𝛾𝑄𝑖 = 𝑅𝑙𝑅

−1
𝑗 , 𝜆(𝑄𝑘 ) = 𝜆(𝑄𝑖) = 𝑞, 𝜆(𝑅𝑘 ) = 𝜆(𝑅𝑖) = 𝑟.

Recall from (3.9) that 𝑄𝑘 = 𝜆(𝑄𝑘 )−1Ω−1𝑄𝑡
𝑘
Ω and so after writing 𝑀 = { 𝑛𝑖 𝑗

𝑚𝑖 𝑗
}𝑖 𝑗

where (𝑛𝑖 𝑗 , 𝑚𝑖 𝑗 ) = 1, we see that the integers𝑚𝑖 𝑗 divide 𝜆(𝑄𝑘 ) = 𝑞 and similarly𝑚𝑖 𝑗
divide 𝜆(𝑅 𝑗 ) = 𝑟. By assumption (𝑞, 𝑟) = 1 so 𝑀 ∈ Γ𝑛 since 𝜆(𝐴) = 1. This shows
that Γ𝑛𝑄𝑘 = Γ𝑛𝑄𝑖 and Γ𝑛𝑅𝑙 = Γ𝑛𝑅𝑘 , in other words 𝑖 = 𝑘 and 𝑙 = 𝑗 . To conclude
we simply observe that the cosets Γ𝑄𝑖𝑅 𝑗 form a partition of Γ𝑛\𝑔1𝑔2/Γ𝑛. □

Let 𝑝 be a prime and 𝑙 ∈ N. For arbitrary 𝑛, it is in general not possible to obtain a
closed formula for deg(𝑎) if 𝑎 ∈ 𝑆𝑝𝑙 is given in its elementary form. On the other
hand, an upper bound of deg(𝑎) will be enough in most of our calculations. We first
suppose that 𝑎 is given by

𝑎 = diag(𝑝𝑘1 , 𝑝𝑘2 , . . . , 𝑝𝑘𝑛 , 𝑝𝑙−𝑘1 , . . . , 𝑝𝑙−𝑘𝑛), [𝑙/2] ≤ 𝑘1 ≤ 𝑘2 ≤ · · · ≤ 𝑘𝑛
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Note that this is not the elementary symplectic form of 𝑎 since 𝑘1 ≥ [𝑙/2]. We shall
use the root datum of𝐺𝑆𝑝2𝑛 given in Proposition 3.1.1. The set Φ+ of positive roots
is given by (see [Tad94, page 167])

𝑒 𝑗 − 𝑒𝑖, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑒 𝑗 + 𝑒𝑖 − 𝑒0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

2𝑒𝑖 − 𝑒0, 1 ≤ 𝑖 ≤ 𝑛.

where we have used our choice of the basis 𝑒𝑖, 𝑖 = 1, . . . , 𝑛 (the choice of the basis
used in [Tad94] is different but the computations are essentially the same). Hence

2𝜌 =
∑︁
𝛼∈Φ+

𝛼 = 2
𝑖=𝑛−1∑︁
𝑖=0
(𝑛 − 𝑖)𝑒𝑛−𝑖 −

1
2
𝑛(𝑛 + 1)𝑒0.

We set

𝜆 =

𝑖=𝑛∑︁
𝑖=1

𝑘𝑖 𝑓𝑖 + 𝑙 𝑓0.

Observe that ⟨𝜆, 𝛼⟩ ≥ 0 for all𝛼 ∈ Φ+. Then using the degree formula in Proposition
7.4 in [Gro98] (see also the proof of Corollary 1.9 in [COU01] for a similar result
in the case of 𝐺𝐿𝑛) we obtain

deg(𝑎) = 𝑝 (
∑𝑖=𝑛−1

𝑖=0 2(𝑛−𝑖)𝑘𝑛−𝑖)− 1
2𝑛(𝑛+1)𝑙 (1 +𝑂 (𝑝−1)). (3.22)

where the big 𝑂 depends only on 𝑛. If 𝑎 ∈ 𝑆𝑝𝑙 is given in its elementary symplectic
form (3.17) , we apply left and right (symplectic) permutations matrices to 𝑎 (which
leaves invariant the degree) and use formula (3.22).

Structure theorems of the symplectic group
For a prime 𝑝, we denote by Q𝑝 the field of 𝑝-adic numbers and Z𝑝 its compact
subring of 𝑝-adic integers. We consider AQ, 𝑓 the ring of finite adèles of Q and
we denote by 𝐼Q = A×

Q, 𝑓
the idèle group. We denote by Ẑ = lim←−−𝑁>1

Z/𝑁Z the
ring of profinite integers and we write 𝑀2𝑛 (Ẑ) for the ring of 2𝑛 × 2𝑛-matrices
with coefficients in Ẑ. Note that by the Chinese remainder theorem we have that
Ẑ =

∏
𝑝 Z𝑝, which is a maximal compact subring of AQ, 𝑓 . The profinite compact
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group 𝐺𝐿2𝑛 (Ẑ) = lim←−−𝑁>1
𝐺𝐿2𝑛 (Z/𝑁Z) is a subset of 𝑀2𝑛 (Ẑ) and consists of

invertible matrices. The subgroup 𝑆𝑝2𝑛 (Ẑ) ⊳𝐺𝐿2𝑛 (Ẑ) is defined by exactness of the
sequence (3.8).

As seen in the previous section, the class number ℎ(𝐺, 𝐾) plays an important role
in the definition of the abstract BCM system. The aim of this section is to show that
for 𝐺 = 𝐺𝑆𝑝2𝑛, we have that ℎ(𝐺, 𝐾) = 1 where 𝐾 is any open compact subgroup
of𝐺𝑆𝑝4(AQ, 𝑓 ). The proof relies on the notion of strong approximation in algebraic
groups (cf. Section 2.3).

We have from Theorem 2.3.2 that the symplectic group 𝐺 = 𝑆𝑝2𝑛 (over Q) has the
strong approximation with respect to 𝑆 = {∞}. We provide an elementary proof of
this result using matrix factorization. For this, we first put

Γ𝑛 (𝑁) = {𝛾 ∈ Γ𝑛 | 𝛾 ≡ 12𝑛 mod 𝑁}, (3.23)

for every positive integer 𝑁 .

Lemma 3.1.2. Let 𝜋𝑁 be the projection 𝜋𝑁 : 𝑆𝑝2𝑛 (Z) → 𝑆𝑝2𝑛 (Z/𝑁Z) defined by
𝜋𝑁 (𝛾) = 𝛾 mod 𝑁 . Then the sequence

12𝑛 −→ Γ𝑛 (𝑁) −→ Γ𝑛
𝜋𝑁−→ 𝑆𝑝2𝑛 (Z/𝑁Z) −→ 12𝑛

is exact.

Proof. The only nontrivial part is the surjectivity of the map 𝜋𝑁 . This follows
directly from [NS64, Theorem 1] □

Proposition 3.1.4. 𝑆𝑝2𝑛 (Z) is dense in 𝑆𝑝2𝑛 (Ẑ).

Proof. Since 𝑀2𝑛 (Ẑ) = lim←−−𝑁>1
𝑀2𝑛 (Z/𝑁Z) is a profinite ring, a system of neigh-

borhoods of the zero matrix is given by {𝑁𝑀2𝑛 (Ẑ) | 𝑁 ∈ N} and thus a sys-
tem of neighborhood of 12𝑛 in 𝑆𝑝2𝑛 (Ẑ)) is given by {𝑈𝑁 | 𝑁 ∈ N} where
𝑈𝑁 = {1 + 𝑁𝑀2𝑛 (Ẑ)} ∩ 𝑆𝑝2𝑛 (Ẑ)}. Given 𝑁 ∈ N, consider the projection map
𝜋𝑁 : 𝑆𝑝2𝑛 (Ẑ) → 𝑆𝑝2𝑛 (Z/𝑁Z) and note that ker 𝜋𝑁 = 𝑈𝑁 . By Lemma 3.1.2 the pro-
jection 𝜋𝑁 restricted to 𝑆𝑝2𝑛 (Z) is surjective. Hence for any given 𝑥 ∈ 𝑆𝑝2𝑛 (Ẑ) and
𝑁 ∈ N, we choose 𝛾𝑁 ∈ 𝑆𝑝2𝑛 (Z) such that 𝜋𝑁 (𝛾𝑁 ) = 𝜋𝑁 (𝑥).Then 𝑥−1𝛾𝑁 ∈ 𝑈𝑁 , that
is, 𝛾𝑁 ∈ 𝑥𝑈𝑁 . Taking 𝑁 large enough shows that 𝑆𝑝2𝑛 (Z) is dense in 𝑆𝑝2𝑛 (Ẑ). □
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Theorem 3.1.2. The algebraic group 𝐺 = 𝑆𝑝2𝑛 (over Q) has the strong approxima-
tion with respect to the infinite place 𝑆 = {∞}.

Proof. We denote by 𝐻 the closure of 𝑆𝑝2𝑛 (Q) in 𝑆𝑝2𝑛 (AQ, 𝑓 ). We have a dense
diagonal embedding of Q inside AQ, 𝑓 , whence the subgroup 𝐻 contains the group
generated by the matrices of the form (3.13) with 𝛼1, . . . , 𝛼5 ∈ AQ, 𝑓 . In particular,
given any prime number 𝑝, the subgroup 𝐻 contains the set of matrices of the form
(3.13) with (𝛼𝑖)𝑞 = 1 for 𝑞 ≠ 𝑝 and 𝑖 = 1, . . . , 5. Since 𝑆𝑝4(Q𝑝) is generated by these
type of matrices, we see that 𝐻 contains the elements 𝑀 = (𝑀𝑝)𝑝 ∈ 𝑆𝑝2𝑛 (AQ, 𝑓 ),
with 𝑀𝑝 ∈ 𝑆𝑝2𝑛 (Q𝑝) and 𝑀𝑞 = 1 for 𝑞 ≠ 𝑝. Hence for any finite set of primes 𝐹,
we have the inclusion

{(𝑥)𝑞 ∈ 𝑆𝑝2𝑛 (AQ, 𝑓 ) | ∀𝑞 ∈ 𝐹, 𝑥𝑞 ∈ 𝑆𝑝2𝑛 (Q𝑝) and 𝑥𝑞 = 12𝑛 if 𝑞 ∉ 𝐹} ⊆ 𝐻.

The result follows since the union of these subsets over all finite set of primes 𝐹 is
dense in 𝑆𝑝2𝑛 (AQ, 𝑓 ). □

We can now establish the following important Corollary.

Corollary 3.1.1. Let 𝐾 be an open compact subgroup of𝐺𝑆𝑝2𝑛 (A 𝑓 ). Then 𝜆(𝐾) ⊆
Ẑ× and if 𝜆(𝐾) = Ẑ×, we have

𝐺𝑆𝑝2𝑛 (A 𝑓 ) = 𝐾 · 𝐺𝑆𝑝+2𝑛 (Q) = 𝐺𝑆𝑝
+
2𝑛 (Q) · 𝐾 (3.24)

In particular we get that ℎ(𝐺, 𝐾) = 1 for the maximal open compact subgroup
𝐾 = 𝐺𝑆𝑝2𝑛 (Ẑ).

Proof. The first assertion follows from the fact that the map 𝜆 : 𝐺𝑆𝑝2𝑛 (A 𝑓 ) → A×𝑓
is continuous and Z×𝑝 is the unique maximal subgroup of Q×𝑝 . To show (3.24), let
𝑔 ∈ 𝐺𝑆𝑝2𝑛 (A 𝑓 ) so that 𝜆(𝑔) ∈ A×

𝑓
. Since A×

Q, 𝑓
= Q×Ẑ× , we can write

𝜆(𝑔) = 𝛼 · 𝑥,

for some 𝛼 ∈ Q× (we choose 𝛼 > 0 if necessary) and 𝑥 ∈ Ẑ× = 𝜆(𝐾). Thus we can
choose 𝑘 ∈ 𝐾 such that 𝜆(𝑘) = 𝑥. Consider the matrix

𝑔′ = diag(𝛼−1, 1, . . . , 𝛼−1, 1︸                ︷︷                ︸
𝑛

, 1, 𝛼−1, . . . , 1, 𝛼−1︸                ︷︷                ︸
𝑛

) 𝑔𝑘−1.
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Observe that 𝑔′ ∈ 𝑆𝑝2𝑛 (A 𝑓 ) and by Theorem 3.1.2 the open set 𝑔′ · 𝑆𝑝2𝑛 (Ẑ) ⊆
𝑆𝑝2𝑛 (A 𝑓 ) contains 𝜂 ∈ 𝑆𝑝2𝑛 (Q) such that 𝜂 = 𝑔′ · ℎ for some ℎ ∈ 𝑆𝑝2𝑛 (Ẑ).
Moreover by Proposition 3.1.4 the group 𝑆𝑝2𝑛 (Z) is dense in 𝑆𝑝2𝑛 (Ẑ), hence we
can find 𝛾 ∈ 𝑆𝑝2𝑛 (Z) such that 𝛾 ∈ 𝑔′−1𝜂𝑈, where 𝑈 = 𝐾 ∩ 𝑆𝑝2𝑛 (Ẑ). This shows
that 𝑔 ∈ 𝐾 · 𝐺𝑆𝑝+2𝑛 (Q) as desired. Considering the automorphism 𝑥 ↦→ 𝑥−1 for
𝑥 ∈ 𝐺𝑆𝑝2𝑛 (A 𝑓 ), we see that 𝐺𝑆𝑝2𝑛 (A 𝑓 ) = 𝐺𝑆𝑝+2𝑛 (Q) · 𝐾 . □

Siegel upper half plane

Definition 3.1.1. The Siegel upper half plane of degree 𝑛 consists of all symmetric
complex 𝑛 × 𝑛-matrices whose imaginary part is positive definite:

H+𝑛 = {𝜏 = 𝜏1 + 𝑖𝜏2 ∈ Mat𝑛 (C) | 𝜏𝑡 = 𝜏, 𝜏2 > 0}. (3.25)

Let 𝑀 =

(
𝐴 𝐵

𝐶 𝐷

)
∈ 𝐺𝑆𝑝+2𝑛 (R) and 𝜏 ∈ H+𝑛 . Then the matrix 𝐶𝜏 + 𝐷 is invertible

and if we define
𝑔 · 𝜏 := (𝐴𝜏 + 𝐵) (𝐶𝜏 + 𝐷)−1,

then the map
𝜏 ↦→ 𝑔 · 𝜏 (3.26)

is an action of 𝐺𝑆𝑝+2𝑛 (R) on H+𝑛 [Pit19] . If we write 𝜏 = 𝜏1 + 𝑖𝜏2 ∈ H+𝑛 and
𝑑𝜏 = 𝑑𝜏1𝑑𝜏2 is the Euclidean measure, then the element of volume on H+𝑛 given by

𝑑∗𝜏 := det(𝜏2)−(𝑛+1)𝑑𝜏, (3.27)

is invariant under all transformations of the group 𝐺𝑆𝑝+2𝑛 (R), i.e.,

𝑑∗(𝑔 · 𝜏) = 𝑑∗𝜏, for all 𝑔 ∈ 𝐺𝑆𝑝+2𝑛 (R).

Given an element 𝜏 = 𝜏2 + 𝑖𝜏2 ∈ H+𝑛 , the relation(
1𝑛 𝜏1

0𝑛 1𝑛

) (
𝜏

1/2
2 0𝑛
0𝑛 𝜏

−1/2
2

)
· 𝑖1𝑛 = 𝜏

shows that the action of𝐺𝑆𝑝+2𝑛 (R) is transitive. The stabilizer of 𝑖1𝑛 is the subgroup

𝑆 =

{( 𝐴 𝐵

−𝐵 𝐴

)
∈ 𝐺𝐿2𝑛 (R)

}
∩ 𝐺𝑆𝑝+2𝑛 (R), (3.28)
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Hence the group 𝑍 (R)\𝐺𝑆𝑝+2𝑛 (R) (where 𝑍 (R) denotes the center of 𝐺𝑆𝑝+2𝑛 (R) )
acts transitively on H+𝑛 and we have the following identification

H+𝑛 = 𝑃𝐺𝑆𝑝
+
2𝑛 (R)/𝐾, (3.29)

where 𝐾 is the compact group 𝐾 = 𝑍 (R)\𝑆 ≃ U𝑛/{±1𝑛} and U𝑛 is isomorphic
to the unitary group of order 𝑛. The restriction of the action defined in (3.26) to
the arithmetic subgroup 𝑆𝑝2𝑛 (Z) will be of special importance to us. Note that
from the identification (3.29) we see that the action of Γ𝑛 on H+𝑛 is proper since
Γ𝑛 = 𝑆𝑝2𝑛 (Z) is discrete and the subgroup 𝐾 in (3.29) is compact. The action
of 𝑆𝑝2𝑛 (Z) on H+𝑛 admits a fundamental domain and thanks to a result by Siegel
[Sie64], it has the following concrete description [Nam06]. Let𝑈𝑛 be the subset of
matrices 𝜏 = 𝜏1 + 𝑖𝜏2 ∈ H+𝑛 satisfying the following conditions:

1. |det(𝐶𝜏 + 𝐷) | ≥ 1 for every

(
𝐴 𝐵

𝐶 𝐷

)
∈ 𝑆𝑝2𝑛 (Z);

2. 𝜏2 = (𝜏2)𝑖 𝑗 is Minkowski reduced, i.e.,

𝑎𝑡𝜏2𝑎 ≥ (𝜏2)𝑘𝑘 , 1 ≤ 𝑘 ≤ 𝑛 for all 𝑎 =

©­­­­­«
𝑎1

...

𝑎𝑛

ª®®®®®¬
∈ Z𝑛 where (𝑎1, . . . , 𝑎𝑛) = 1;

3.
��(𝜏1)𝑖 𝑗

�� ≤ 1/2.

Then𝑈𝑛 is a fundamental domain of 𝑆𝑝2𝑛 (Z) onH+𝑛 of finite volume with the respect
to the element of volume (3.27):

vol(𝑈𝑛) = 2
𝑛∏
𝑖=1

𝜋−𝑘Γ(𝑖)𝜁 (2𝑖),

where Γ(𝑠) denotes the Gamma function and 𝜁 (𝑠) is the Riemann zeta function.

Bost-Connes-Marcolli system: the 𝐺𝑆𝑝2𝑛-case
We consider the connected Shimura datum (𝐺𝑆𝑝+2𝑛,H

+
𝑛) together with the BCM

pair

𝐺+ = 𝐺𝑆𝑝+2𝑛, 𝑋+ = H+𝑛 , 𝑉 = Q2𝑛, 𝑀 = 𝑀𝑆𝑝2𝑛 (Ẑ),
𝐿 = Z2𝑛, 𝐾 = 𝐺𝑆𝑝2𝑛 (Ẑ), 𝐾𝑀 = 𝑀𝑆𝑝2𝑛 (Ẑ).
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Let 𝑀 ∈ 𝐺𝑆𝑝+2𝑛 (Q) ∩ 𝐺𝑆𝑝2𝑛 (Ẑ). Since Ẑ ∩ Q = Z it is clear that 𝑀 ∈ 𝑀𝑆𝑝2𝑛 (Z)
and there exists 𝑀′ ∈ 𝑀𝑆𝑝+2𝑛 (Z) such that 𝑀𝑀′ = 1 so that 𝜆(𝑀) = 1, that is
Γ+ = 𝐺𝑆𝑝+2𝑛 (Q) ∩𝐺𝑆𝑝2𝑛 (Ẑ) = Γ𝑛. From Corollary 3.1.1 we have that ℎ(𝐺, 𝐾) = 1,
hence by Proposition 2.3.1 it is enough to consider the space ℨ+

D,L . As in the case
of the 𝐺𝐿2 system, the first difficulty comes from the presence of points in H+𝑛 with
nontrivial stabilizers:

Proposition 3.1.5. The groupoid structure on 𝔘+
D,L does not pass to the quotient

by the action of Γ𝑛 × Γ𝑛.

Proof. Let 𝑔 =

(
1𝑛 0𝑛
0𝑛 1

21𝑛

)
∈ 𝐺𝑆𝑝+2𝑛 (Q) and assume the groupoid composition is

defined when we pass to the quotient. Since 𝑔 · 1
2𝑖12𝑛 = 𝑖12𝑛 we obtain that

(𝑔, 0, 𝑖12𝑛) (𝑔, 0,
1
2
𝑖12𝑛) = (𝑔2, 0,

1
2
𝑖12𝑛),

where the equality holds in the quotient. On the other hand, let 𝛾 =

(
0𝑛 −1𝑛
1𝑛 0𝑛

)
so

that 𝑔𝛾−1𝑔 = −1
2𝛾 and 𝛾 · 𝑖12𝑛 = 𝑔 · 1

2𝑖12𝑛. We then have the following equality in
the quotient:

(𝑔2, 0,
1
2
𝑖12𝑛) = (𝑔𝛾−1, 0, 𝛾 · 𝑖12𝑛) (𝑔, 0,

1
2
𝑖12𝑛) = (𝑔𝛾−1𝑔, 0,

1
2
𝑖12𝑛).

Hence there exist 𝛾1, 𝛾2 ∈ Γ𝑛 = 𝑆𝑝2𝑛 (Z) satisfying the following two conditions:

𝛾2 · 𝑖12𝑛 = 𝑖12𝑛,

𝛾1𝑔
2𝛾−1

2 =
1
2

(
0𝑛 1𝑛
−1𝑛 0𝑛

)
.

The first condition implies that 𝛾2 is of the form 𝛾2 =

(
𝐴 𝐵

−𝐵 𝐴

)
while the second

condition gives

𝛾1 =

(
1
2𝐵 −2𝐴
1
2𝐴 2𝐵

)
.

Note that since 𝛾1 ∈ 𝑆𝑝2𝑛 (Z) we get(
1
4 (𝐵𝐴 − 𝐴𝐵) 𝐴2 + 𝐵2

−𝐵2 − 𝐴2 4(𝐵𝐴 − 𝐴𝐵)

)
= Ω,

that is, 𝐼 = 4(𝐴′2 + 𝐵′2) for some 𝐴′, 𝐵′ ∈ Mat𝑛 (Z), which is a contradiction. □
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The 𝐺𝑆𝑝4,Q-system
We restrict our attention to the case 𝑛 = 2 and fix the following notation. We let
𝑌 = H+2 × 𝑀𝑆𝑝4(Ẑ), 𝑋 = 𝐺𝑆𝑝+4 (Q)𝑌 = H+2 × 𝑀𝑆𝑝4(AQ, 𝑓 ) and Γ2 = 𝑆𝑝4(Z). As
observed above the action of Γ2 on 𝑌 is not free and it turns out that the set of points
in 𝑌 with nontrivial stabilizers strictly contains H+2 × {04}. Let

𝐹𝑌 = {ℎ ∈ 𝑀𝑆𝑝4(Ẑ) | rankQ𝑝
(ℎ𝑝) ≤ 2 for all primes 𝑝}.

Then the action of Γ2 on 𝑌 = 𝑌\(H+2 × 𝐹𝑌 ) is free. To see this, we suppose that for
some 𝛾 ∈ Γ2 we have 𝛾 · 𝜏 = 𝜏 and 𝛾ℎ𝑝 = ℎ𝑝 for some 𝜏 ∈ H+2 and ℎ𝑝 ∈ 𝑀𝑆𝑝4(Q𝑝)
with rankQ𝑝

(ℎ𝑝) > 2 for some prime 𝑝. Then we can find 𝑇 ∈ 𝐺𝐿4(Q𝑝) such that

𝑇𝛾𝑇−1 =

©­­­­­«
1 0 0 𝑥1

0 1 0 𝑥2

0 0 1 𝑥3

0 0 0 𝑥4

ª®®®®®¬
,

for some 𝑥1 . . . , 𝑥4 ∈ Q𝑝. Since the entries of 𝛾 are in Z we see that 𝑥4 ∈ Q and
thus 𝐶Q,𝛾 (𝑥) = (𝑥 − 1)3(𝑥 − 𝑥4). On the other hand, since 𝛾 fixes a point in H+2 , then
there exists 𝑃 ∈ 𝑆𝑝4(R) such that

𝑃𝛾𝑃−1 =

(
𝑎1 𝑏1

−𝑏1 𝑎1

)
⊙

(
𝑎2 𝑏2

−𝑏2 𝑎2

)
, 𝑎𝑖, 𝑏𝑖 ∈ R 𝑎2

1 + 𝑏
2
1 = 𝑎2

2 + 𝑏
2
2 = 1,

So𝐶C,𝛾 (𝑥) = (𝑥−𝜆1) (𝑥−𝜆1) (𝑥−𝜆2) (𝑥−𝜆2) where 𝜆1 = 𝑎1+ 𝑖𝑏1 and 𝜆2 = 𝑎2+ 𝑖𝑏2.
Hence 𝜆1 = 𝜆2 = 1 and 𝛾 = 1. It is easy to see that the set of points in 𝑌 with
nontrivial stabilizers is strictly larger than H+2 × {0}.

The fact that 𝐹𝑌 is not invariant under scalar matrices in 𝐺𝑆𝑝+4 (Q) creates a new
difficulty that was not present in the 𝐺𝐿2-system. For this reason, and for the
purpose of KMS𝛽 analysis, instead of working with the quotientH+2 = 𝐺𝑆𝑝+4 (R)/𝐾 ,
we consider first the quotient 𝑃𝐺𝑆𝑝+4 (R) = 𝐺𝑆𝑝+4 (R)/𝑍 (R), where 𝑍 (R) is the
center of the group 𝐺𝑆𝑝+4 (R). From now on we refer to this system as the 𝐺𝑆𝑝4-
system and we call the original dynamical system (corresponding to the Shimura
datum (𝐺𝑆𝑝+4 ,H

+
2)) the Connes-Marcolli 𝐺𝑆𝑝4-system. We will show later that the

two systems have the same thermodynamical properties. Since now 𝑃𝐺𝑆𝑝+4 (R) is
a group, we get the following:

Proposition 3.1.6. For 𝛽 ≠ 0, there exists a correspondence between KMS𝛽 states
on the 𝐺𝑆𝑝4-system and Γ2-invariant measures 𝜇 on 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 )
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such that

𝜈(Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ)) = 1, 𝜇(𝑔𝐵) = 𝜆(𝑔)−𝛽𝜇(𝐵) (3.30)

for any 𝑔 ∈ 𝐺𝑆𝑝+4 (Q) and Borel compact subset 𝐵 ⊂ 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 ).
Here 𝜈 denotes the measure on Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 ) corresponding to 𝜇.

Proof. Since the action of Γ2 on 𝑃𝐺𝑆𝑝+4 (R) is free, Proposition 3.0.1 applied to
the group 𝐺 = 𝐺𝑆𝑝+4 (Q) and the spaces 𝑋 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 ) and
𝑌 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ) gives a one-to-one correspondence between the set
of KMS𝛽 states on (A, 𝜎) and Γ2-invariant measures 𝜇 on 𝑌 such that 𝜇(𝑔𝐵) =
𝜆(𝑔)−𝛽𝜇(𝐵) if 𝑔𝑍 and 𝑍 are measurable subsets of 𝑌 . The equality 𝑀𝑆𝑝4(A 𝑓 ) =
𝐺𝑆𝑝+4 (Q)𝑀𝑆𝑝4(Ẑ) allows us to extend ([LLN07, Lemma 2.2]) this measure to
a Radon measure on 𝑋 such that 𝜇(𝑔𝐵) = 𝜆(𝑔)−𝛽𝜇(𝐵) for every Borel subset
𝐵 ⊆ 𝑋 . Since the algebra A is not unital, from the normalization condition (2.1)
and equation (3.5) we obtain that 𝜈 is a probability measure on Γ2\𝑌 . □

From now on, we let𝑌 = 𝑃𝐺𝑆𝑝+4 (R)×𝑀𝑆𝑝4(Ẑ) and 𝑋 = 𝑃𝐺𝑆𝑝+4 (R)×𝑀𝑆𝑝4(AQ, 𝑓 ).
For 𝛽 > 0, we denote by E𝛽 the set of Radon measures on 𝑋 satisfying the properties
in Proposition 3.1.6. Note that the extremal KMS𝛽 states correspond to point mass
measures.

3.2 KMS𝛽 states analysis
High temperature region
We begin the KMS𝛽-analysis of the 𝐺𝑆𝑝4-system by first considering the high
temperature region 0 < 𝛽 < 3. Our first goal is to show that the 𝐺𝑆𝑝4-system
constructed above does not admit a KMS𝛽 state for 0 < 𝛽 < 3 with 𝛽 ∉ {1, 2}. We
first show some useful lemmas.

Lemma 3.2.1. Let 𝐹 be a finite set of prime numbers and let 𝑔 = (𝑔𝑝)𝑝∈𝐹 be an
element of

∏
𝑝∈𝐹 𝑀𝑆𝑝4(Z𝑝) ⊂

∏
𝑝∈𝐹 𝑀𝑆𝑝4(Q𝑝) with 𝜆(𝑔𝑝) ≠ 0 for all 𝑝 ∈ 𝐹.

Then there exist 𝑔1 ∈ 𝑆𝐹 and 𝑔2 ∈
∏

𝑝∈𝐹 𝐺𝑆𝑝4(Z𝑝) such that 𝑔 = 𝑔1𝑔2.

Proof. It follows from Corollary 3.1.1 that we can find 𝑔1 ∈ 𝐺𝑆𝑝+4 (Q) and 𝑔2 ∈
𝐺𝑆𝑝4(Z𝑝) such that 𝑔 = 𝑔1𝑔2 with 𝑔1 ∈ 𝐺𝑆𝑝4(Z𝑞), 𝑞 ≠ 𝑝 and 𝑔1 ∈ 𝑀𝑆𝑝4(Z𝑝) and
𝜆(𝑔1) ∈ N𝐹 , that is, 𝑔1 ∈ 𝑆𝐹 . □
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For 𝑘0, 𝑘1, 𝑘2 ∈ Z, we set

𝑃𝑘0 :=

(
0 0
0 𝑝𝑘0

)
⊙ 02, 𝑃𝑘1,𝑘2 :=

(
0 0
0 𝑝𝑘1

)
⊙

(
0 0
0 𝑝𝑘2

)
.

𝑍
(0)
𝑘0

:= 𝑆𝑝4(Z𝑝) 𝑃𝑘0 𝐺𝑆𝑝4(Z𝑝), 𝑍
(1)
𝑘1,𝑘2

:= 𝑆𝑝4(Z𝑝) 𝑃𝑘1,𝑘2 𝐺𝑆𝑝4(Z𝑝). (3.31)

Lemma 3.2.2. The sets 𝑍 (0)
𝑘0

and 𝑍 (1)
𝑘1,𝑘2

, 𝑘0, 𝑘1, 𝑘2 ∈ Z are pairwise disjoint. More-
over, given any nonzero matrix 𝑎 ∈ 𝑀𝑆𝑝4(Q𝑝) with 𝜆(𝑎) = 0, then 𝑎 ∈ 𝑍 (0)

𝑘0
∪𝑍 (1)

𝑘1,𝑘2

for some 𝑘0, 𝑘1, 𝑘2 ∈ Z.

Proof. We first fix some notations. For 1 ≤ 𝑖, 𝑗 ≤ 4, let 𝐸𝑖 𝑗 be the elementary
matrix with coefficient 1 at the position (𝑖, 𝑗) and 0 otherwise. For 𝑈 ∈ 𝐺𝐿2(Z𝑝)
and 𝑆 ∈ Sym2(Z𝑝), we put

𝐽 (𝑈) =
(
𝑈𝑡 02

02 𝑈−1

)
, 𝐽 (𝑆) =

(
12 𝑆

02 12

)
.

Consider 𝑔 ∈ 𝑀𝑆𝑝4(Q𝑝) with 𝜆(𝑔) = 0. Let 𝑔0 be any entry of 𝑔 with maximal
𝑝-adic valuation and we write 𝑔0 = 𝑎0𝑝

𝑘0 , where 𝑎0 ∈ Z×𝑝 . Using the matrices Ω
and 𝐽1(𝑃) (where 𝑃 is a permutation matrix), we may assume that 𝑔11 = 𝑔0. If 𝑎 is
an entry of the matrix 𝑔, we set

𝑈𝑎 = 12 − 𝑔−1
0 𝑎𝐸21, 𝑆𝑎 = −𝑔−1

0 𝑎𝐸11, 𝑆𝑎 = −𝑔−1
0 𝑎(𝐸12 + 𝐸21).

Observe that by maximality, these matrices are in 𝑆𝑝4(Z𝑝). We multiply 𝑔 from the
right by

𝐽 (𝑈𝑔12
)𝐽 (𝑆𝑔13+𝑔11𝑔12𝑔14

)𝐽 (𝑆𝑔14
).

to obtain a matrix whose first row is 𝑔0e1. Taking the transpose and repeating this
process, we obtain a matrix whose first column is equal to 𝑔0e1

𝑡 . The symplectic
relations 3.10 and 3.11 imply that this matrix has the following form:

(
𝑔0 0
0 0

)
⊙ 𝑀, 𝑀 ∈ Mat2(Q𝑝), det(𝑀) = 0.

If 𝑀 = 0, then one has
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(
0 −1
1 0

)
⊙ 12 ·

(
𝑔0 0
0 0

)
⊙ 𝑀 ·

(
0 𝑎−1

0
1 0

)
⊙

(
0 𝑎−1

0
1 0

)
=

(
0 0
0 𝑝𝑘0

)
⊙ 02 ∈ 𝑃𝑘0 .

Otherwise, we can use right and left multiplication to find 𝛾1 ∈ 𝑆𝐿2(Z𝑝) and

𝛾2 ∈ 𝐺𝐿2(Z𝑝) such that 𝛾1𝑀𝛾2 =

(
0 0
0 𝑝𝑘1

)
, for some 𝑘1 ∈ Z. Then the matrix

(
0 −1
1 0

)
⊙𝛾1 ·

(
𝑔0 0
0 0

)
⊙𝑀 ·

(
0 𝑎−1

0
−𝑎𝑜 det(𝛾2) 0

)
⊙𝛾2 =

(
0 0
0 𝑝𝑘0

)
⊙

(
0 0
0 𝑝𝑘1

)
∈ 𝑃𝑘0,𝑘1

has the desired form. One can easily check that this decomposition is unique. □

Lemma 3.2.3. Let 𝑝 be a prime and we put

𝑔1,𝑝 := diag(1, 1, 𝑝, 𝑝), 𝑔2,𝑝 := diag(𝑝, 𝑝, 𝑝, 𝑝), 𝑔3,𝑝 := diag(1, 𝑝, 𝑝2, 𝑝).

A set of representatives of the right cosets relative to Γ2 in Γ2𝑔1,𝑝Γ2 is given by the
matrices

©­­­­­«
𝑝 0 0 0
0 𝑝 0 0
0 0 1 0
0 0 0 1

ª®®®®®¬
,

©­­­­­«
𝑝 0 0 0
0 1 0 𝑘1

0 0 1 0
0 0 0 𝑝

ª®®®®®¬
,

©­­­­­«
1 −𝑘2 𝑘3 0
0 𝑝 0 0
0 0 𝑝 0
0 0 𝑘2 1

ª®®®®®¬
,

©­­­­­«
1 0 𝑘4 𝑘5

0 1 𝑘5 𝑘6

0 0 𝑝 0
0 0 0 𝑝

ª®®®®®¬
,

where 0 ≤ 𝑘1, 𝑘2, . . . , 𝑘6 < 𝑝.

A set of representatives of the right cosets relative to Γ2 in Γ2𝑔3,𝑝Γ2 is given by the
matrices

©­­­­­«
𝑝2 0 0 0
0 𝑝 0 0
0 0 1 0
0 0 0 𝑝

ª®®®®®¬
,

©­­­­­«
𝑝 −𝑝𝑟1 0 0
0 𝑝2 0 0
0 0 𝑝 0
0 0 𝑟1 1

ª®®®®®¬
,

©­­­­­«
𝑝 0 0 𝑝𝑟2

0 1 𝑟2 𝑟3

0 0 𝑝 0
0 0 0 𝑝2

ª®®®®®¬
,

©­­­­­«
1 −𝑟4 𝑟5𝑟4 + 𝑟6 𝑟5

0 𝑝 𝑝𝑟5 0
0 0 𝑝2 0
0 0 𝑝𝑟7 𝑝

ª®®®®®¬
,

©­­­­­«
𝑝 0 𝑟8 𝑟9

0 𝑝 𝑟9 𝑟10

0 0 𝑝 0
0 0 0 𝑝

ª®®®®®¬
,

where 1 ≤ 𝑟1, 𝑟2, 𝑟4, 𝑟5 < 𝑝, 1 ≤ 𝑟3, 𝑟6 < 𝑝2, and 0 ≤ 𝑟8, 𝑟9, 𝑟10 < 𝑝 are such that

𝑟𝑝

(
𝑟8 𝑟9

𝑟9 𝑟10

)
= 1, where 𝑟𝑝 (𝐵) denotes the rank of the matrix 𝐵 ∈ Mat2(Z) over
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Z/𝑝Z. In particular we have:

degΓ2
(𝑔1,𝑝) = (1 + 𝑝) (1 + 𝑝2)

degΓ2
(𝑔2,𝑝) = 1

degΓ2
(𝑔3,𝑝) = 𝑝 + 𝑝2 + 𝑝3 + 𝑝4.

Proof. Recall that 𝑆2(𝑝) denotes the set of matrices 𝑔 ∈ 𝐺𝑆𝑝4(Z) such that 𝜆(𝑔) =
𝑝. This set consists of a single coset:

𝑆2(𝑝) = Γ𝑔1,𝑝Γ. (3.32)

From this we can see that

D(Γ2𝑔1,𝑝Γ2) = {Γ1

(
1 0
0 1

)
Γ1, Γ1

(
1 0
0 𝑝

)
Γ1, Γ1

(
𝑝 0
0 𝑝

)
Γ1}.

The decomposition of Γ𝑔1,𝑝Γ into right cosets follows then from applying Theorem
3.21 with 𝑛 = 2 and 𝑛 = 1 (notice that we are using the convention that for 𝑛 impair,
the matrices 𝐵 are under the diagonal).

The decomposition of Γ𝑔2,𝑝Γ is trivial. To decompose the double cosets Γ𝑔3,𝑝Γ,
we use the following simple criterion:

𝑀 ∈ Γ2𝑔3,𝑝Γ2 ⇔ 𝑟𝑝 (𝑀) = 1 and𝑀 ∈ 𝐺𝑆𝑝4(Z).

We then obtain

D(Γ2𝑔3,𝑝Γ2) = {Γ1

(
1 0
0 𝑝

)
Γ1, Γ1

(
𝑝 0
0 𝑝

)
Γ1, Γ1

(
𝑝 0
0 𝑝2

)
Γ1}.

For each 𝐷 ∈ 𝑈2\D(Γ2𝑔3,𝑝Γ2), the setB(𝐷, Γ2𝑔3,𝑝Γ2) is then obtained by applying
again Theorem 3.21 and using the relations

𝐴𝑡𝐷 = 𝑝212, 𝐵𝑡𝐷 = 𝐷𝑡𝐵, 𝐴𝐵𝑡 = 𝐵𝐴𝑡 .

□

Lemma 3.2.4. Let 𝑝 be a prime and denote by 𝐺 𝑝 the subgroup of 𝐺𝑆𝑝+4 (Q)
generated by Γ2 and the matrices 𝑔1,𝑝, 𝑔2,𝑝 and 𝑔3,𝑝 defined in Lemma 3.2.3. Suppose
that 𝜇𝑝 is a Γ2-invariant measure on 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝑝) such that
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1. 𝜇𝑝 (𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝑝)) < ∞

2. 𝜇𝑝 (𝑔𝑍) = 𝜆(𝑔)−𝛽𝜇𝑝 (𝑍) for all 𝑔 ∈ 𝐺 𝑝 and Borel 𝑍 ⊆ 𝑃𝐺𝑆𝑝+4 (R) ×
𝑀𝑆𝑝4(Q𝑝).

If 𝛽 ∉ {1, 2, 3} then 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Q𝑝) is a subset of full measure in
𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝑝)

Proof. We denote 𝜈𝑝 the corresponding measure on Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝑝).
Then for a Γ2-invariant Borel set 𝑍 ⊆ 𝑀𝑆𝑝4(Q𝑝), we define a measure 𝜇̃𝑝 on the
𝜎-algebra of Γ2-invariant Borel sets of on 𝑀𝑆𝑝4(Q𝑝) by

𝜇̃𝑝 (𝑍) = 𝜈𝑝 (Γ2\𝑃𝐺𝑆𝑝+4 (Γ2R) × 𝑍).

Note that by assumption we have 𝜇̃𝑝 (𝑀𝑆𝑝4(Z𝑝)) < ∞. For any 𝑔 ∈ 𝐺 𝑝 and any
positive integrable Γ2-invariant function on 𝑀𝑆𝑝4(𝑄𝑝) we get from the second
condition and [LLN07, Lemma 2.6] that

∫
𝑀𝑆𝑝4 (Q𝑝)

𝑇𝑔 𝑓 d𝜇̃𝑝 = 𝜆(𝑔)𝛽
∫
𝑀𝑆𝑝4 (Q𝑝)

𝑓 d𝜇̃𝑝 . (3.33)

For 𝑘0, 𝑘1, 𝑘2 ∈ Z, consider the functions 𝑓 (0)
𝑘0

= 𝐼
𝑍
(0)
𝑘0

and 𝑓
(1)
𝑘1,𝑘2

= 𝐼
𝑍
(1)
𝑘1 ,𝑘2

, where the

sets 𝑍 (0)
𝑘0

and 𝑍 (1)
𝑘1,𝑘2

are as in equation (3.31). Given 𝑔 ∈ 𝐺𝑆𝑝+4 (Q), we have that the
function 𝑇𝑔 𝑓 (1)0,0 is continuous and Γ-invariant. By Proposition 3.1.4 the group Γ is
dense in 𝑆𝑝4(Z𝑝), whence 𝑇𝑔 𝑓 (1)0,0 is left 𝑆𝑝4(Z𝑝)-invariant. For 𝑘1, 𝑘2 ∈ Z, we can
expand the expression 𝑇𝑔−1

2, 𝑝𝑔1, 𝑝
𝑓
(1)

0,0 (𝑃𝑘1,𝑘2) using the explicit representatives given
in Lemma 3.2.3 as follows:

deg(𝑔−1
2,𝑝𝑔1,𝑝)−1

(
𝑓
(1)

0,0

©­­­­­«
©­­­­­«
0 0 0 0
0 0 0 0
0 0 𝑝𝑘1−1 0
0 0 0 𝑝𝑘2−1

ª®®®®®¬
ª®®®®®¬
+
𝑝−1∑︁
𝑘=0

𝑓
(1)

0,0

©­­­­­«
©­­­­­«
0 0 0 0
0 0 0 𝑘 𝑝𝑘2−1

0 0 𝑝𝑘1−1 0
0 0 0 𝑝𝑘2

ª®®®®®¬
ª®®®®®¬

+
∑︁

0≤𝑘 ′,𝑎≤𝑝−1
𝑓
(1)

0,0

©­­­­­«
©­­­­­«
0 0 𝑘′𝑝𝑘1−1 0
0 0 0 0
0 0 𝑝𝑘1 0
0 0 𝑎𝑝𝑘1−1 𝑝𝑘2−1

ª®®®®®¬
ª®®®®®¬
+

∑︁
0≤𝑎,𝑏,𝑛≤𝑝−1

𝑓
(1)

0,0

©­­­­­«
©­­­­­«
0 0 𝑏𝑝𝑘1−1 𝑛𝑝𝑘2−1

0 0 𝑛𝑝𝑘1−1 𝑏𝑝𝑘2−1

0 0 𝑝𝑘1 0
0 0 0 𝑝𝑘2

ª®®®®®¬
ª®®®®®¬
)
.
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Since 𝑇𝑔−1
2, 𝑝𝑔1, 𝑝

𝑓
(1)

0,0 (𝛾1𝑃𝑘1,𝑘2𝛾2) = 𝑇𝑔−1
2, 𝑝𝑔1, 𝑝

𝑓
(1)

0,0 (𝑃𝑘1,𝑘2𝛾2) for 𝛾1 ∈ 𝑆𝑝4(Z𝑝) and 𝛾2 ∈
𝐺𝑆𝑝4(Z𝑝), it follows that deg(𝑔−1

2,𝑝𝑔1,𝑝)𝑇𝑔−1
2, 𝑝𝑔2, 𝑝

𝑓
(1)

0,0 is equal to

𝑓
(1)

1,1 + 𝑓
(1)

1,0 + (𝑝 − 1) 𝑓 (1)1,1 + 𝑓
(1)

0,1 + (𝑝
2 − 1) 𝑓 (1)1,1 + (𝑝 − 1) 𝑓 (1)1,0 + (𝑝 − 1)2 𝑓 (1)1,1

+ 𝑓 (1)0,0 + (𝑝 − 1) 𝑓 (1)1,1 + (𝑝 − 1) 𝑓 (1)0,1 + (𝑝 − 1)2 𝑓 (1)1,1 + (𝑝 − 1)2 𝑓 (1)1,1 + (𝑝 − 1)3 𝑓 (1)1,1

= 𝑓
(1)

0,0 + 𝑝 𝑓
(1)

1,0 + 𝑝 𝑓
(1)

0,1 + (𝑝
3 + 𝑝2 − 𝑝) 𝑓 (1)1,1 .

Similarly, the expansion of 𝑇𝑔−2
2, 𝑝𝑔3, 𝑝

𝑓0,1(𝑃𝑘1,𝑘2) is given by

deg(𝑔−2
2,𝑝𝑔3,𝑝)−1

(
𝑓0,1

©­­­­­«
©­­­­­«
0 0 0 0
0 0 0 0
0 0 𝑝𝑘1−2 0
0 0 0 𝑝𝑘2−1

ª®®®®®¬
ª®®®®®¬
+

∑︁
0≤𝑎≤𝑝−1

𝑓0,1

©­­­­­«
©­­­­­«
0 0 0 0
0 0 0 0
0 0 𝑝𝑘1−1 0
0 0 𝑎𝑝𝑘1−2 𝑝𝑘2−2

ª®®®®®¬
ª®®®®®¬

+
∑︁

0≤𝑏≤𝑝−1
0≤𝑐≤𝑝2−1

𝑓0,1

©­­­­­«
©­­­­­«
0 0 0 𝑏𝑝𝑘2−1

0 0 𝑏𝑝𝑘1−2 𝑐𝑝𝑘2−2

0 0 𝑝𝑘1−1 0
0 0 0 𝑝𝑘2

ª®®®®®¬
ª®®®®®¬
+

∑︁
𝑟𝑝

©­­«
𝑏1 𝑏2

𝑏2 𝑏3

ª®®¬=1

𝑓0,1

©­­­­­«
©­­­­­«
0 0 𝑏1𝑝

𝑘1−2 𝑏2𝑝
𝑘2−1

0 0 𝑏2𝑝
𝑘1−2 𝑏3𝑝

𝑘2−2

0 0 𝑝𝑘1−1 0
0 0 0 𝑝𝑘2−1

ª®®®®®¬
ª®®®®®¬

+
∑︁

0≤𝑙≤𝑝2−1
0≤𝑘,𝑑≤𝑝−1

𝑓0,1

©­­­­­«
©­­­­­«
0 0 (𝑘𝑑 + 𝑙)𝑝𝑘1−2 𝑘 𝑝𝑘2−2

0 0 𝑘 𝑝𝑘1−1 0
0 0 𝑝𝑘1 0
0 0 𝑑𝑝𝑘1−1 𝑝𝑘2−1

ª®®®®®¬
ª®®®®®¬
)
.

Counting the number of instances where the indices are divisible by 𝑝, we find that
deg(𝑔−2

2,𝑝𝑔3,𝑝)𝑇𝑔−2
2 𝑔3

𝑓
(1)

0,0 is equal to

𝑓
(1)

2,1 + 𝑓
(1)

1,2 + (𝑝 − 1) 𝑓 (1)2,2 + 𝑓
(1)

1,0 + (𝑝 − 1) 𝑓 (1)1,1 + (𝑝
2 − 𝑝) 𝑓 (1)1,2

+ (𝑝 − 1) 𝑓 (1)2,1 + (𝑝 − 1)2 𝑓 (1)2,1 +
(
(𝑝 − 1) (𝑝2 − 1) − (𝑝 − 1)2

)
𝑓
(1)

2,2

+ (𝑝 − 1) 𝑓 (1)1,2 + (𝑝 − 1) 𝑓 (1)2,1 + (𝑝 − 1)2 𝑓 (1)2,2 + 𝑓
(1)

0,1 + (𝑝 − 1) 𝑓 (1)1,2

+ (𝑝 − 1) 𝑓 (1)1,1 + (𝑝 − 1)2 𝑓 (1)2,2 + (𝑝 − 1) 𝑓 (1)1,1 +
(
(𝑝2 − 1) − (𝑝 − 1)

)
𝑓
(1)

2,1

+ (𝑝 − 1)2 𝑓 (1)1,2 +
(
(𝑝2 − 𝑝) (𝑝 − 1)

)
𝑓
(1)

2,2 + (𝑝 − 1)2 𝑓 (1)1,1

+
(
(𝑝2 − 𝑝) (𝑝 − 1)

)
𝑓
(1)

2,1 + 𝑝(𝑝 − 1)2 𝑓 (1)1,2 +
(
(𝑝 − 1)2(𝑝2 − 1) − 𝑝(𝑝 − 1)2

)
𝑓
(1)

2,2

= 𝑓
(1)

0,1 + 𝑓
(1)

1,0 + (𝑝
2 + 𝑝 − 2) 𝑓 (1)1,1 + 𝑝

3 𝑓
(1)

1,2 + 𝑝
3 𝑓
(1)

2,1 + (𝑝
4 − 𝑝3) 𝑓 (1)2,2 .
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Similar computations lead to the following identities:

deg(𝑔−1
2,𝑝)𝑇𝑔−1

2, 𝑝
𝑓
(1)

0,0 = 𝑓
(1)

1,1 ,

deg(𝑔−2
2,𝑝𝑔1,𝑝)𝑇𝑔−2

2, 𝑝𝑔1, 𝑝
𝑓
(1)

0,0 = 𝑓
(1)

1,1 + 𝑝 𝑓
(1)

2,1 + 𝑝 𝑓
(1)

1,2 + (𝑝
3 + 𝑝2 − 𝑝) 𝑓 (1)2,2 ,

deg(𝑔−2
2,𝑝)𝑇𝑔−2

2, 𝑝
𝑓
(1)

0,0 = 𝑓
(1)

2,2 .

We then have

𝑓
(1)

0,0 = deg(𝑔−1
2,𝑝𝑔1,𝑝)𝑇𝑔−1

2, 𝑝𝑔1, 𝑝
𝑓
(1)

0,0 − 𝑝 deg(𝑔−1
2,𝑝𝑔3,𝑝)𝑇𝑔−1

2, 𝑝𝑔3, 𝑝
𝑓
(1)

0,0

− (𝑝 + 𝑝3) deg(𝑔−1
2,𝑝)𝑇𝑔−1

2, 𝑝
𝑓
(1)

0,0 + 𝑝
3 deg(𝑔−2

2,𝑝𝑔1,𝑝)𝑇𝑔−2
2, 𝑝𝑔1, 𝑝

𝑓
(1)

0,0

− 𝑝6 deg(𝑔−2
2,𝑝)𝑇𝑔−2

2, 𝑝
𝑓
(1)

0,0 .

Since deg(𝑔−𝑖2,𝑝𝑔𝑘,𝑝) = deg(𝑔𝑘 ), 𝑖 ∈ N, 𝑘 = 1, 2, 3, it follows from equation (3.33)
that

𝜇̃𝑝 (𝑍 (1)0,0 ) = 𝑅(𝑝, 𝛽) 𝜇̃𝑝 (𝑍
(1)
0,0 ), (3.34)

where

𝑅(𝑝, 𝛽) = 𝑝1−𝛽 + 𝑝2−𝛽 + 𝑝3−𝛽 + 𝑝−𝛽 − 𝑝1−2𝛽 − 𝑝2−2𝛽 − 2𝑝3−2𝛽 − 𝑝4−2𝛽 − 𝑝5−2𝛽

+ 𝑝3−3𝛽 + 𝑝4−3𝛽 + 𝑝5−3𝛽 + 𝑝6−3𝛽 − 𝑝6−4𝛽

= 1 − 𝑝6
(
𝑝−𝛽 − 1

) (
𝑝−𝛽 − 𝑝−1

) (
𝑝−𝛽 − 𝑝−2

) (
𝑝−𝛽 − 𝑝−3

)
.

We can repeat the same computations with the functions 𝑇𝑔 𝑓 (0)0 , 𝑔 ∈ 𝐺𝑆𝑝+4 (Q)
instead. As a summary we get

deg(𝑔−1
2,𝑝𝑔1,𝑝)𝑇𝑔−1

2, 𝑝𝑔1, 𝑝
𝑓
(0)

0 = (1 + 𝑝) 𝑓 (0)0 + (𝑝3 + 𝑝2) 𝑓 (0)1

deg(𝑔−1
2,𝑝𝑔3,𝑝)𝑇𝑔−1

2, 𝑝𝑔3, 𝑝
𝑓
(0)

0 = 𝑓
(0)

0 + (𝑝2 − 1 + 𝑝3 + 𝑝) 𝑓 (0)1 + 𝑝4 𝑓
(0)

2

deg(𝑔−1
2,𝑝)𝑇𝑔−1

2, 𝑝
𝑓
(0)

0 = 𝑓
(0)

1

deg(𝑔−2
2,𝑝𝑔1,𝑝)𝑇𝑔−2

2, 𝑝𝑔1, 𝑝
𝑓
(0)

0 = (1 + 𝑝) 𝑓 (0)1 + (𝑝3 + 𝑝2) 𝑓 (0)2

deg(𝑔−2
2,𝑝)𝑇𝑔−2

2, 𝑝
𝑓
(0)

0 = 𝑓
(0)

2 ,
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and

𝜇̃𝑝 (𝑍 (0)0 ) = 𝑅(𝑝, 𝛽) 𝜇̃𝑝 (𝑍
(0)
0 ). (3.35)

Suppose that 𝜇̃𝑝 (𝑍 (1)0,0 ) ≠ 0. Since 𝛽 ∉ {1, 2, 3}, by equation (3.34) we get that
𝛽 = 0. Hence

𝜇̃𝑝 (𝑍 (1)𝑘1,𝑘2
) = 𝜇̃𝑝 (𝑍 (1)𝑘1+2,𝑘2+2), 𝑘1, 𝑘2 ∈ Z. (3.36)

This is a contradiction since 𝜇̃𝑝 (𝑀𝑆𝑝4(Z𝑝)) < ∞. This shows that 𝜇̃𝑝 (𝑍 (1)0,0 ) = 0
and by induction we see that 𝜇̃𝑝 (𝑍 (1)𝑘1,𝑘2

) = 0 for 𝑘1, 𝑘2 ∈ N (by considering suitable
elements of 𝑔 ∈ 𝐺 𝑝). The same argument shows that 𝜇̃𝑝 (𝑍 (0)𝑘 ) = 0 for 𝑘 ∈ Z.
It follows from Lemma 3.2.2 that the 𝜇̃𝑝-measure of the set of nonzero matrices
𝑔 ∈ 𝑀𝑆𝑝4(Q𝑝) with 𝜆(𝑔) = 0 is zero. □

Corollary 3.2.1. We denote by𝑀𝑆𝑝4(A 𝑓 )∗ the set of elements ℎ ∈ 𝑀𝑆𝑝4(A 𝑓 ) such
that 𝜆(𝑚𝑝) ≠ 0 for all primes 𝑝. Let 𝜇𝛽 be a measure in E𝛽 and 𝛽 ∉ {0, 1, 2, 3}. Then
𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(A 𝑓 )∗ is a subset of full measure in 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(A 𝑓 ).

Proof. Given a prime 𝑝, consider the restriction of 𝜇𝛽 to the set

𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝑝) ×
∏
𝑝≠𝑞

𝑀𝑆𝑝4(Z𝑞),

and the measure 𝜇𝛽,𝑝 on 𝑃𝐺𝑆𝑝+4 (R)×𝑀𝑆𝑝4(Q𝑝) obtained from the projection on the
first two coordinates. Since 𝜇𝛽 ∈ K𝛽 we have that 𝜇𝛽,𝑝 (𝑃𝐺𝑆𝑝+4 (R) ×𝑀𝑆𝑝4(Z𝑝)) <
∞. Given any 𝑔 ∈ 𝐺 𝑝 and Borel 𝑍 ∈ 𝑃𝐺𝑆𝑝4(R)+ × 𝑀𝑆𝑝4(Q𝑝) we get

𝜇𝛽,𝑝 (𝑔𝑍) = 𝜇𝛽 (𝑔(𝑍 ×
∏
𝑞≠𝑝

𝑀𝑆𝑝4(Z𝑞))) = 𝜆(𝑔)−𝛽𝜇𝛽,𝑝 (𝑍).

Thus the measure 𝜇𝛽,𝑝 satisfies the conditions of Lemma 3.2.4, whence 𝑃𝐺𝑆𝑝+4 (R)×
𝐺𝑆𝑝4(Q𝑝) is a subset of full 𝜇𝛽,𝑝-measure. This shows that the 𝜇𝛽-measure of the
set

{𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝑝) ×
∏
𝑝≠𝑞

𝑀𝑆𝑝4(Z𝑞) | 𝜆(ℎ𝑝) = 0}
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is zero. Finally observe that the complement of H+2 × 𝑀𝑆𝑝
+
4 (A 𝑓 ) is equal to

⋃
𝑝∈P

𝐺𝑆𝑝+4 (Q){𝑃𝐺𝑆𝑝
+
4 (R) × 𝑀𝑆𝑝4(Q𝑝) ×

∏
𝑝≠𝑞

𝑀𝑆𝑝4(Z𝑞) | 𝜆(ℎ𝑝) = 0},

which completes the proof. □

Given a prime number 𝑝 ∈ P and 𝛽 ∈ R∗+, we consider the subsemigroup of
𝐺𝑆𝑝+4 (Q) given by

𝑆2,𝑝 =
⋃
𝑙≥0

𝑆2(𝑝𝑙).

Note that Γ2 ⊆ 𝑆2,𝑝 for any prime number 𝑝 and the corresponding Dirichlet series
(cf. Definition 3) is

𝜁𝑆2, 𝑝 ,Γ2 (𝛽) =
∑︁

𝑔∈Γ2\𝑆2, 𝑝/Γ2

𝜆(𝑔)−𝛽 degΓ2
(𝑔) =

∞∑︁
𝑙=0

𝑝−𝛽𝑙𝑅Γ2 (𝑝𝑙). (3.37)

Proposition 3.2.1. Suppose 𝛽 ∈ R∗+. Then 𝜁𝑆2,Γ2 (𝛽) < ∞ if and only if 𝛽 > 3. In
this case we have that

𝜁𝑆2, 𝑝 ,Γ2 (𝛽) =
1 − 𝑝2−2𝛽

(1 − 𝑝3−𝛽) (1 − 𝑝2−𝛽) (1 − 𝑝1−𝛽) (1 − 𝑝−𝛽)
. (3.38)

Proof. We combine the results from Proposition 3.1.2 and Lemma 3.1.1 to first
compute 𝑅Γ2 (𝑝𝑙):

𝑅Γ2 (𝑝𝑙) =
∑︁

𝑑1 |𝑑2 |𝑝𝑙
degΓ1

(
(
𝑑1 0
0 𝑑2

)
)𝑑2

1𝑑2

=
∑︁

𝑙1≤𝑙2≤𝑙
degΓ1

(
(
𝑝𝑙1 0
0 𝑝𝑙2

)
)𝑝2𝑙1+𝑙2

=

𝑙∑︁
𝑖=0

𝑙−𝑖∑︁
𝑘=0

degΓ1
(
(
𝑝𝑖 0
0 𝑝𝑘+𝑖

)
)𝑝2𝑖𝑝𝑖+𝑘

=

𝑙∑︁
𝑖=0

𝑝3𝑖 +
𝑙∑︁
𝑖=0

𝑙−𝑖∑︁
𝑘=1

𝑝𝑘−1(1 + 𝑝)𝑝3𝑖+𝑘

=
1

(1 − 𝑝)2(1 + 𝑝 + 𝑝2)

(
1 − 𝑝2𝑙 (𝑝 + 𝑝2 + 𝑝3) + 𝑝3𝑙 (𝑝2 + 𝑝4)

)
,
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since degΓ1

(
𝑝𝑙1 0
0 𝑝𝑙2

)
= 𝑝𝑙2−𝑙1−1 for 𝑙2 ≠ 𝑙1 [Kri90, Theorem 4.1, Chapter IV]. It is

then clear that the series 𝜁𝑆2,Γ2 (𝛽) converges if and only if 𝛽 > 3 and

𝜁𝑆2, 𝑝 ,Γ2 (𝛽) =
1

(1 − 𝑝)2(1 + 𝑝 + 𝑝2)

( (1 − 𝑝)2(1 + 𝑝 + 𝑝2)𝑝−𝛽 (𝑝 + 𝑝𝛽)
(1 − 𝑝3−𝛽) (1 − 𝑝−𝛽) (1 − 𝑝2−𝛽)

)
=

1 − 𝑝2−2𝛽

(1 − 𝑝3−𝛽) (1 − 𝑝2−𝛽) (1 − 𝑝1−𝛽) (1 − 𝑝−𝛽)
,

for 𝛽 > 3 as desired. □

We are now ready to prove the main theorem of this section.

Theorem 3.2.1. The 𝐺𝑆𝑝4-system (A, (𝜎𝑡)𝑡∈R+) does not admit a KMS𝛽 state for
0 < 𝛽 < 3 with 𝛽 ∉ {1, 2}.

Proof. We fix a prime 𝑝 ∈ P and put

𝑌𝑝 := 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Z𝑝) ×
∏
𝑞≠𝑝

𝑀𝑆𝑝4(Z𝑞), (3.39)

and note that

𝑃𝐺𝑆𝑝+4 (R) × (𝑀𝑆𝑝4(Z𝑝) ∩ 𝐺𝑆𝑝4(Q𝑝)) ×
∏
𝑞≠𝑝

𝑀𝑆𝑝4(Z𝑞) =
⋃

𝑠∈Γ2\𝑆2, 𝑝/Γ2

Γ2𝑠𝑌𝑝 .

(3.40)
It is easy to see that the sets Γ2𝑠𝑌𝑝 are disjoint for 𝑠 ∈ Γ2\𝑆2,𝑝/Γ2 and the complement
of their union in H+2 × 𝑀𝑆𝑝4(Ẑ) is a subset of (H+2 × 𝑀𝑆𝑝

+
4 (A 𝑓 ))

𝑐, whence by
Lemma 3.2.4 it has full measure for 𝛽 ∉ {1, 2, 3}. Let 𝜇𝛽 ∈ E(𝐾𝛽) and 𝜈𝛽 its
corresponding measure on the quotient space. Note that if 𝑔 ∈ 𝐺 𝑝 ∩𝐺𝑆𝑝4(Z𝑝) then
necessarily 𝜆(𝑔) = 1 and 𝑔 ∈ 𝑀𝑆𝑝4(Z), hence 𝐺 𝑝 ∩ 𝐺𝑆𝑝4(Z𝑝) = Γ. We can then
apply [LLN07, Lemma 2.7] to the group 𝐺 𝑝 (a simple calculation shows that any
elementary matrix in 𝑆2,𝑝 is generated by 𝑔1,𝑝, 𝑔2,𝑝 and 𝑔3,𝑝) and the spaces 𝑋̃ and
𝑌0 = 𝑌𝑝. We obtain that for any 𝑔 ∈ Γ2\𝑆2,𝑝/Γ2, we have

𝜈𝛽 (Γ2\Γ2𝑔𝑌𝑝) = 𝜆(𝑔)−𝛽 degΓ2
(𝑔)𝜈𝛽 (Γ2\𝑌𝑝).

Observe that
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𝜈𝛽 (Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ)) =
∑︁

𝑔∈Γ2\𝑆2, 𝑝/Γ2

𝜈𝛽 (Γ2\Γ2𝑔𝑌𝑝)

=
∑︁

𝑔∈Γ2\𝑆2, 𝑝/Γ2

𝜆(𝑔)−𝛽 degΓ2
(𝑔)𝜈𝛽 (Γ2\𝑌𝑝).

Hence

1 = 𝜁𝑆2, 𝑝 ,Γ2 (𝛽)𝜈𝛽 (Γ2\𝑌𝑝), (3.41)

which is not possible for 𝛽 < 3 by Proposition 3.2.1. This shows that there are no
KMS𝛽-states for 𝛽 < 3 and 𝛽 ∉ {0, 1, 2}. □

Low temperature region and Gibbs states

Theorem 3.2.2. For 𝛽 > 4, the extremal KMS states of the GSp4-system are given
by the Gibbs states

𝜙𝛽 ( 𝑓 ) =
𝜁 (2𝛽 − 2)Tr(𝜋𝑦 ( 𝑓 )𝑒−𝛽𝐻𝑦 )

𝜁 (𝛽)𝜁 (𝛽 − 1)𝜁 (𝛽 − 2)𝜁 (𝛽 − 3) , (3.42)

where 𝑦 ∈ 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ).

Proof. Let 𝐹 be an arbitrary finite set of primes and denote by 𝐺𝐹 the group
generated by 𝐺 𝑝 for 𝑝 ∈ 𝐹. We denote by 𝑀𝑆𝑝+4 (Z) = 𝐺𝑆𝑝

+
4 (Q) ∩ 𝑀𝑆𝑝4(Z) and

we put

𝑆𝐹 := {𝑚 ∈ 𝑀𝑆𝑝+4 (Z) | 𝜆(𝑚) ∈ N(𝐹)},

and

𝑌𝐹 = 𝑃𝐺𝑆𝑝+4 (R) ×
∏
𝑝∈𝐹

𝐺𝑆𝑝4(Z𝑝) ×
∏
𝑞∉𝐹

𝑀𝑆𝑝4(Z𝑞).

Similarly to the proof of Theorem 3.2.1 (we replace 𝑌𝑝 by 𝑌𝐹 and 𝑆2,𝑝 by 𝑆𝐹), we
get

1 = 𝜈𝛽 (Γ2\𝑌𝐹)𝜁𝑆𝐹 ,Γ2 (𝛽) = 𝜈𝛽 (Γ2\𝑌𝐹)
∏
𝑝∈𝐹

𝜁𝑆2, 𝑝 ,Γ2 .
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Note that 𝑌𝐹 ⊆ 𝑌𝐹′ for 𝐹′ ⊆ 𝐹 and the intersection of 𝑌𝐹 over all finite primes is the
set 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ). Hence for 𝛽 > 4, we get

𝜈𝛽 (Γ2\(𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ)) = 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1,

where

𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽) =
∏
𝑝∈P

𝜁𝑆2, 𝑝 ,Γ2 =
𝜁 (𝛽)𝜁 (𝛽 − 1)𝜁 (𝛽 − 2)𝜁 (𝛽 − 3)

𝜁 (2𝛽 − 2) . (3.43)

On the other hand, the sets Γ2𝑠(𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ)) are disjoints for 𝑠 in
Γ2\𝑀𝑆𝑝+4 (Z)/Γ2. We thus obtain that the 𝜈𝛽-measure ofΓ2\𝑀𝑆𝑝+4 (Z) (𝑃𝐺𝑆𝑝

+
4 (R)×

𝐺𝑆𝑝4(Ẑ)) is given by∑︁
𝑠∈Γ2\𝑀𝑆𝑝+4 (Z)/Γ2

𝜈𝛽 (Γ2\Γ2𝑠(𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ))),

which is equal to

𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)𝜈𝛽 (Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ)) = 1.

Hence 𝑀𝑆𝑝+4 (Z) (𝑃𝐺𝑆
+
4 (R)×𝐺𝑆𝑝4(Ẑ)) has full measure in 𝑃𝐺𝑆𝑝+4 (R)×𝑀𝑆𝑝4(Ẑ)

and by Corollary 3.1.2 the subset 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(A 𝑓 ) has full measure in
𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(A 𝑓 ). Conversely, any probability Γ2-invariant measure on
𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ) extends [LLN07, Lemma 2.4] uniquely to a measure on
𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(A 𝑓 ) satisfying condition 3.30.

Suppose now that 𝜇𝛽 ∈ E𝛽 is a Dirac measure centered on 𝑦 ∈ 𝑃𝐺𝑆𝑝+4 (R) ×
𝐺𝑆𝑝4(Ẑ). Then

𝜙( 𝑓 ) =
∑︁

𝑠∈Γ2\𝑀𝑆𝑝+4 (Z)/Γ2

∫
Γ2\Γ2𝑠(𝑃𝐺𝑆𝑝+4 (R)×𝐺𝑆𝑝4 (Ẑ))

𝑓 (1, 𝜔)𝑑𝜈𝛽 (𝜔)

= 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1
∑︁

𝑠∈Γ2\𝑀𝑆𝑝+4 (Z)/Γ2

𝜆(𝑠)−𝛽
∑︁

ℎ∈Γ2\Γ2𝑠Γ2

𝑓 (1, ℎ𝑦)

= 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1
∑︁

ℎ∈Γ2\𝑀𝑆𝑝+4 (Z)
𝜆(ℎ)−𝛽 𝑓 (1, ℎ𝑦)

=
Tr(𝜋𝑦 ( 𝑓 )𝑒−𝛽𝐻𝑦 )

Tr(𝑒−𝛽𝐻𝑦 )
,

since the operator 𝐻𝑦 is positive and 𝐺𝑦 = 𝑀𝑆𝑝
+
4 (Z) for 𝑦 ∈ 𝐺𝑆𝑝+4 (R) ×𝐺𝑆𝑝4(Ẑ).

□
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The critical region
We denote by Ê𝛽 the subset of right 𝐺𝑆𝑝4(Ẑ)-invariant measures in E𝛽. The next
proposition shows that this set is not empty for 3 ≤ 𝛽 < 4.

Proposition 3.2.2. For each 𝛽 ∈ (3, 4], the GSp4-system {A, (𝜎𝑡)𝑡∈R} admits at
least one KMS𝛽-state.

Proof. We generalize the construction in [LLN07]. By the correspondence in Propo-
sition 3.1.6, it is enough to construct a measure 𝜇𝛽 on 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 )
such that 𝜇𝛽 ∈ E𝛽. For each prime 𝑝 and 3 < 𝛽 ≤ 4, we consider the normalized
Haar measure on 𝐺𝑆𝑝4(Z𝑝) so that the total volume is 𝜁𝑆2, 𝑝 ,Γ2 (𝛽)−1 (we denote
this measure by meas𝛽,𝑝). Observe that 𝐺𝑆𝑝4(Q𝑝) = 𝐺 𝑝𝐺𝑆𝑝4(Z𝑝) and hence by
[LLN07, Lemma 2.4] we can uniquely extend this measure to a measure 𝜇𝛽,𝑝 on
𝐺𝑆𝑝4(Q𝑝) such that if 𝑍 is a compact measurable subset in 𝐺𝑆𝑝4(Q𝑝), then

𝜇𝛽,𝑝 (𝑍) =
∑︁
𝑔∈𝐺 𝑝

|𝜆(𝑔) |−𝛽𝑝 meas𝛽,𝑝 (𝑔𝑍 ∩ 𝐺𝑆𝑝4(Z𝑝)),

where |𝑎 |𝑝 denotes the 𝑝-adic valuation of 𝑎. Since 𝜇𝛽,𝑝 (ℎ𝑍) = |𝜆(ℎ) |𝛽𝑝𝜇𝛽,𝑝 (𝑍)
for 𝑔 ∈ 𝐺𝑆𝑝4(Q𝑝), it is clear that 𝜇𝛽,𝑝 is left 𝐺𝑆𝑝4(Z𝑝)-invariant. It is also
right 𝐺𝑆𝑝4(Z𝑝)-invariant since the Haar measure meas𝛽,𝑝 is right translation in-
variant. We extend the measure 𝜇𝛽,𝑝 (𝑍) to a measure on 𝑀𝑆𝑝4(Q𝑝) by setting
𝜇𝛽,𝑝 (𝑍) := 𝜇𝛽,𝑝 (𝑍 ∩ 𝐺𝑆𝑝4(Q𝑝)) for Borel 𝑍 ⊆ 𝑀𝑆𝑝4(Q𝑝). To extend this mea-
sure to 𝑀𝑆𝑝4(AQ, 𝑓 ) we first check that 𝜇𝛽,𝑝 (𝑀𝑆𝑝4(Z𝑝)) = 1. The proof of Lemma
3.2.4 applied to the space 𝑀𝑆𝑝4(Q𝑝) shows that the set 𝑀𝑆𝑝4(Z𝑝) ∩ 𝐺𝑆𝑝4(Q𝑝)
has full measure. Since this set is precisely 𝑆2,𝑝𝐺𝑆𝑝4(Z𝑝), then similarly to the
calculation in the proof of Theorem 3.2.1 we get

𝜇𝛽,𝑝 (𝑀𝑆𝑝4(Z𝑝)) =
∑︁

𝑔∈Γ2\𝑆2, 𝑝/Γ2

𝜆(𝑔)−𝛽 degΓ2
(𝑔)𝜇𝛽,𝑝 (𝐺𝑆𝑝4(Z𝑝)) = 1.

We thus define a measure on 𝑀𝑆𝑝4(AQ, 𝑓 ) by 𝜇𝛽, 𝑓 =
∏

𝑝∈P 𝜇𝛽,𝑝. Then we have that
for any 𝑔 ∈ 𝐺𝑆𝑝4(Q) and measurable subset 𝑍 ⊆ 𝑀𝑆𝑝4(A 𝑓 ), we get

𝜇𝛽, 𝑓 (𝑔𝑍) =
( ∏
𝑝∈P
|𝜆(𝑔) |𝛽𝑝

)
𝜇𝛽, 𝑓 (𝑍) = 𝜆(𝑔)−𝛽𝜇𝛽, 𝑓 (𝑍).

If we denote by 𝜇𝛽,𝑃𝐺𝑆𝑝+4 (R) the normalized Haar measure on 𝑃𝐺𝑆𝑝+4 (R) such that
𝜈𝛽,𝑃𝐺𝑆𝑝+4 (R) is a probability measure on Γ2\𝑃𝐺𝑆𝑝+4 (R), then it is clear that the
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measure defined by 𝜇𝛽 := 𝜇𝛽,𝑃𝐺𝑆𝑝+4 (R) × 𝜇𝛽, 𝑓 is an element of K𝛽. By construction,
𝜇𝛽 is also right 𝐺𝑆𝑝4(Ẑ)-invariant; that is, 𝜇𝛽 ∈ Ê𝛽. □

Our next goal is to show that for 3 < 𝛽 ≤ 4, the KMS𝛽 constructed in Proposition
3.2.2 is the unique equilibrium state. We first recall the definition of an ergodic
action.

Definition 3.2.1. If 𝜇 ∈ E𝛽, the action of 𝐺 on the measure space (𝑋, 𝜇) is ergodic
if the following holds: If 𝐴 is any 𝐺-invariant Borel subset of 𝑋 , then 𝜇(𝐴) = 0 or
𝜇(𝐴𝑐) = 0.

Recall that if 𝑊 is a locally compact group, then a character of 𝑊 is a continuous
homomorphisms 𝜒 : 𝑊 → T.

Lemma 3.2.5. For 𝑛 ∈ N, we let 𝐺𝑛 = 1 + 𝑝𝑛Z×𝑝 ⊆ Z𝑝 and 𝜒 be any character of
Z×𝑝 . Then 𝐺𝑘 ⊆ ker(𝜒) for some 𝑘 ∈ N.

Proof. Consider the open subset of T given by

𝑉 = {𝑧 ∈ T | Re(𝑧) > 0}. (3.44)

Observe first that the only subgroup of 𝑉 is {1} and a fundamental system of
neighborhood of the neutral element of Z×𝑝 is given by the subgroups

𝐺1 ⊃ 𝐺2 ⊃ · · · ⊃ 𝐺𝑛 . . .

Consider now the open subset of T given in (3.44). Since the character 𝜒 is contin-
uous, there exists an integer 𝑘 ≥ 1 such that 𝜒(𝐺𝑘 ) ⊆ 𝑉 . Now 𝜒 is homomorphism
and therefore the subset 𝜒(𝐺𝑘 ) is a subgroup of 𝑉 , that is 𝜒(𝐺𝑘 ) = 1. □

Lemma 3.2.6. Let 𝑚 be an integer and 𝐵 a finite set of prime numbers. Then the
set

{(𝑛, . . . , 𝑛) ∈
∏
𝑝∈𝐵
Z×𝑝 | 𝑛 ∈ Z and (𝑛, 𝑝) = 1 ∀𝑝 ∈ 𝐵} (3.45)

is dense in
∏

𝑝∈𝐵 Z
×
𝑝 .

Proof. Any 𝑎 ∈ Z×𝑝 admits a 𝑝-adic expansion of the form
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𝑎 =
∑︁
𝑖≥0

𝑐𝑖𝑝
𝑖, 0 < 𝑐𝑖 < 𝑝.

Hence, given 𝜖 > 0 and 𝑥 = (𝑥1, . . . , 𝑥 |𝐵 |) ∈
∏

𝑝∈𝐵 Z
×
𝑝 , we choose 𝑎𝑘 ∈ Z and

𝑒𝑘 ∈ N such that

|𝑥𝑘 − 𝑎𝑘 |𝑝𝑘 <
𝜖

2
, (𝑎𝑘 , 𝑝𝑘 ) = 1, 𝑝

−𝑒𝑘
𝑘

<
𝜖

2

for 𝑘 = 1, . . . , |𝐵 |. By the Chinese remainder theorem, the congruence system

𝑛 ≡ 𝑎𝑘 mod 𝑝
𝑒𝑘
𝑘
, 1 ≤ 𝑘 ≤ |𝐵 |

has a solution 𝑛 ∈ Z. The condition (𝑎𝑘 , 𝑝𝑘 ) implies that (𝑛, 𝑝𝑘 ) = 1 for all
1 ≤ 𝑘 ≤ |𝐵 |. Hence

|𝑛 − 𝑥𝑘 |𝑝𝑘 ≤ |𝑛 − 𝑎𝑘 |𝑝𝑘 + |𝑎𝑘 − 𝑥𝑘 |𝑝𝑘 ≤ 𝑝𝑒𝑘 +
𝜖

2
≤ 𝜖,

as desired.

□

Given 𝑚 ∈ N, a Dirichlet character modulo 𝑚 is a function 𝜒𝑚 : Z → C obtained
by extending a character of (Z/𝑚Z)× to 0 on Z/𝑚Z and lifted to Z by composition.
The corresponding Dirichlet 𝐿-function is defined by

𝐿 (𝑠, 𝜒𝑚) =
∞∑︁
𝑛=1

𝜒(𝑛)/𝑛𝑠, 𝑠 ∈ C.

Theorem 3.2.3. Let 𝜇̂𝛽 ∈ Ê𝛽 and 𝐴 = 𝐿∞(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 ), 𝜇̂𝛽). We
have that

𝐴𝑃𝐺𝑆𝑝
+
4 (R)×𝐺𝑆𝑝

+
4 (Q) = C. (3.46)

Proof. It is enough to show that the action of 𝐺𝑆𝑝+4 (Q) on (𝑀𝑆𝑝4(AQ, 𝑓 ), 𝜇̂𝛽, 𝑓 )
(where 𝜇̂𝛽, 𝑓 is the measure on 𝑀𝑆𝑝4(AQ, 𝑓 ) obtained by projecting onto the second
factor) is ergodic. The strategy extends the ideas in [Nes02] and [LLN07]. Since
every 𝐺𝑆𝑝+4 (Q)-invariant subset is completely determined by its intersection with
𝑀𝑆𝑝4(Ẑ), it is enough to show that the closed subspace
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𝐻 = { 𝑓 ∈ 𝐿2(𝑀𝑆𝑝4(Ẑ), 𝜇̂𝛽, 𝑓 ) | 𝑉𝑚 𝑓 = 𝑓 ,∀𝑚 ∈ 𝑀𝑆𝑝+4 (Z)}, (𝑉𝑚 𝑓 ) (𝑥) := 𝑓 (𝑚𝑥),

consists of constant functions. Denote by 𝑃 the orthogonal projection onto 𝐻. Since
every function in 𝐻 is Γ2-invariant, it is enough to show that 𝑃 maps Γ2-invariants
functions to constants.

Consider the subspace

𝐻𝐹 = { 𝑓 ∈ 𝐿2(𝑀𝑆𝑝4(Ẑ)), d𝜇̂𝛽, 𝑓 ) | 𝑉𝑠 𝑓 = 𝑓 ,∀𝑠 ∈ 𝑆𝐹},

and denote by 𝑃𝐹 the orthogonal projection onto 𝐻𝐹 . Consider the subset

𝑊𝐹 =
∏
𝑝∈𝐹

𝐺𝑆𝑝4(Z𝑝) ×
∏
𝑞∉𝐹

𝑀𝑆𝑝4(Z𝑞).

Note that by Lemma 3.2.1 and Corollary 3.2.6 the disjoint union∪𝑠∈Γ2\𝑆𝐹/Γ2𝑠𝑊𝐹 has
full measure. Hence given any Γ2-invariant function 𝑓 ∈ 𝐿2(𝑀𝑆𝑝4(Ẑ)), d𝜇̂𝛽, 𝑓 ),
we deduce from [LLN07, Lemma 2.9] that

𝑃𝐹 𝑓 = 𝜁𝑆𝐹 ,Γ2 (𝛽)−1
∑︁

𝑠∈Γ2\𝑆𝐹/Γ2

𝜆(𝑠)−𝛽𝑅Γ2 (𝑠)𝑇𝑠 𝑓 . (3.47)

We fix a finite set of primes 𝐵 such that 𝐵 ∩ 𝐹 = ∅ and consider the functions in
𝐿2(𝑀𝑆𝑝4(Ẑ), d𝜇𝛽, 𝑓 ) of the form

𝜒𝐵 (𝑥) =

𝜒(𝜆((𝑥𝑝)𝑝∈𝐵)) if 𝑥 ∈ 𝑊𝐵

0 otherwise
,

where 𝜒 is a character of the compact abelian group
∏

𝑝∈𝐵 Z
×
𝑝 .

We will first show that 𝑃𝜒𝐵 (𝑥) is constant a.e. This is easy to prove if the character
𝜒 is trivial. Indeed, in this cases 𝜒𝐵 = 1𝐵 and the projection formula (3.47) we get
that 𝑃𝐵𝜒𝐵 = 𝜁𝑆𝐵,Γ2 (𝛽)−1. Since 𝑃 = 𝑃𝑃𝐵 the result follows. We now consider the
case where 𝜒 is non-trivial. We first write 𝜒 =

∏
𝑝∈𝐵 𝜒𝑝, where 𝜒𝑝 is a character of

Z×𝑝 given by

𝜒𝑝 (𝑎) = 𝜒(1, . . . , 𝑎, . . . , 1).
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Then by Lemma 3.2.5 for each prime 𝑝 ∈ 𝐵 there exists an integer 𝑘 𝑝 ∈ N such that
𝐺𝑘 𝑝 ⊆ ker(𝜒𝑝). Let 𝑚 =

∏
𝑝∈𝐵 𝑝

𝑘 𝑝 and define 𝜒𝑚 : Z→ C by

𝜒𝑚 (𝑛) =

𝜒((𝑛, . . . , 𝑛)) if (𝑛, 𝑚) = 1

0 otherwise

It is clear that 𝜒𝑚 is multiplicative and 𝜒𝑚 (𝑛 + 𝑚) = 𝜒𝑚 (𝑛) if (𝑛, 𝑚) ≠ 1. Suppose
that (𝑛, 𝑚) = 1 so that 𝑛 ∈ Z×𝑝 . Hence

𝜒𝑚 (𝑛 + 𝑚) =
∏
𝑝∈𝐵

𝜒𝑝 (𝑛 + 𝑚) =
∏
𝑝∈𝐵

𝜒𝑝 (𝑛)𝜒𝑝 (1 + 𝑚𝑛−1) =
∏
𝑝∈𝐵

𝜒𝑝 (𝑛) = 𝜒𝑚 (𝑛),

since 𝑝𝑘 𝑝 divides 𝑚. Hence 𝜒𝑚 is a Dirichlet character modulo 𝑚. We claim that
𝜒𝑚 is nontrivial. Indeed, let 𝑎 ∈ ∏

𝑝∈𝐵 Z
×
𝑝 such that 𝜒(𝑎) ≠ 1. By Lemma 3.2.1 the

set

{(𝑛, . . . , 𝑛) ∈
∏
𝑝∈𝐵
Z×𝑝 | 𝑛 ∈ Z and (𝑛, 𝑚) = 1}

is dense in
∏

𝑝∈𝐵 Z
×
𝑝 . Since 𝜒 is continuous there exists 𝑛0 ∈ Z with (𝑛0, 𝑚) = 1

and 1 ≠ 𝜒(𝑛0, . . . , 𝑛0) = 𝜒𝑚 (𝑛0) as desired.

Since 𝐹 ∩ 𝐵 = ∅, for 𝑠 ∈ 𝑆𝐹 we can write

(𝑇𝑠𝜒𝐵) (𝑥) =

𝜒(𝜆((𝑥𝑝)𝑝∈𝐵))𝜒𝑚 (𝜆(𝑠)) if 𝑥 ∈ 𝑊𝐵

0 otherwise.

This allows us to obtain an explicit upper bound of the 𝐿2-norm of 𝑃𝜒𝐵 as follows.
Since 𝑃 = 𝑃𝑃𝐹 , from the projection formula (3.47) we get

∥𝑃𝜒𝐵∥ = ∥𝑃𝑃𝐹 𝜒𝐵∥ ≤ ∥𝑃𝐹 𝜒𝐵∥ ≤ 𝜁𝑆𝐹 ,Γ2 (𝛽)−1

������ ∑︁
𝑠∈Γ 𝑆𝐹/Γ

𝜆(𝑠)−𝛽𝑅Γ2 (𝑠)𝜒𝑚 (𝜆(𝑠))

������
= 𝜁𝑆𝐹 ,Γ2 (𝛽)−1

������ ∑︁
𝑛∈N(𝐹)

𝑛−𝛽𝑅Γ2 (𝑛)𝜒𝑚 (𝑛)

������
= 𝜁𝑆𝐹 ,Γ2 (𝛽)−1

�����∏
𝑝∈𝐹

∞∑︁
𝑙=0

𝑝−𝑙𝛽𝑅Γ2 (𝑝𝑙)𝜒𝑚 (𝑝𝑙)
�����,
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since the function 𝑅Γ2 (𝑛) is multiplicative by Lemma 3.1.3. As in the proof of
Proposition 3.2.1 we get

∥𝑃𝜒𝐵∥ ≤ 𝜁𝑆𝐹 ,Γ2 (𝛽)−1
∏
𝑝∈𝐹

����( 1
1 − 𝜒𝑚 (𝑝)𝑝−𝛽

− 𝑝 + 𝑝2 + 𝑝3

1 − 𝜒𝑚 (𝑝)𝑝2−𝛽 +
𝑝2 + 𝑝4

1 − 𝜒𝑚 (𝑝)𝑝3−𝛽

)����
=

∏
𝑝∈𝐹

��� (1+𝑝1−𝛽 (𝜒𝑚 (𝑝)−1)−𝑝2−2𝛽 𝜒𝑚 (𝑝)) (1−𝑝3−𝛽) (1−𝑝2−𝛽) (1−𝑝−𝛽)
(1−𝜒𝑚 (𝑝)𝑝3−𝛽) (1−𝜒𝑚 (𝑝)𝑝2−𝛽) (1−𝜒𝑚 (𝑝)𝑝1−𝛽) (1−𝜒𝑚 (𝑝)𝑝−𝛽) (1−𝑝2−2𝛽)

���
=

����� (
∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−3 ) (

∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−2 ) (

∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−1 )

𝜁N(𝐹) (𝛽 − 3)𝜁N(𝐹) (𝛽 − 2)𝜁N(𝐹) (𝛽 − 1)

�����∏
𝑝∈𝐹

����1 + 𝜒𝑚 (𝑝)𝑝1−𝛽

1 + 𝑝1−𝛽

����
≤

����� (
∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−3 ) (

∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−2 ) (

∑
𝑛∈N(𝐹)

𝜒𝑚 (𝑛)
𝑛𝛽−1 )

𝜁N(𝐹) (𝛽 − 3)𝜁N(𝐹) (𝛽 − 2)𝜁N(𝐹) (𝛽 − 1)

�����
≤ 𝐿 (𝛽 − 3, 𝜒𝑚)𝐿 (𝛽 − 2, 𝜒𝑚)𝐿 (𝛽 − 1, 𝜒𝑚)
𝜁N(𝐹) (𝛽 − 3)𝜁N(𝐹) (𝛽 − 2)𝜁N(𝐹) (𝛽 − 1) .

Since the character 𝜒𝑚 is nontrivial and 3 < 𝛽 ≤ 4, it follows from [Ser70, Propo-
sition 12, Chapter VI] that the right-hand side above can be made arbitrary small as
𝐹 ↗ P (with 𝐹 ∩ 𝐵 = ∅). This shows that 𝑃𝜒𝐵 = 0, in particular 𝑃𝜒𝐵 is again a
constant function when 𝜒 is a nontrivial character.

Consider now the functions 𝐹𝐵 ∈ 𝐿2(𝑀𝑆𝑝4(Ẑ), 𝜇̂𝛽, 𝑓 ) of the form

𝐹𝐵 (𝑥) =

𝑓 ((𝑥𝑝)𝑝∈𝐵) if 𝑥 ∈ 𝑊𝐵

0 otherwise.

where 𝑓 ∈ 𝐿2(∏𝑝∈𝐵 𝐺𝑆𝑝4(Z𝑝), d𝜇̂𝐵) and 𝜇̂𝐵 = (𝜋𝐵)∗( 𝜇̂𝛽, 𝑓 ), where 𝜋𝐵 is the
projection 𝜋𝐵 : 𝑀𝑆𝑝4(Ẑ) →

∏
𝑝∈𝐵 𝑀𝑆𝑝4(Z𝑝). We first show that it is enough to

assume that 𝑓 is Γ2-invariant. Indeed, when this is not the case, we denote by 𝑄 the
projection onto the space of 𝑆𝑝4(Ẑ)-invariant functions. We have that

𝑄𝐹𝐵 (𝑥) =
∫
𝑆𝑝4 (Ẑ)

𝐹𝐵 (𝑔𝑥) d𝑔 =


∫∏

𝑝∈𝐵 𝑆𝑝4 (Z𝑝)
𝑓 (𝑔𝑥) d𝑔𝐵 if 𝑥 ∈ 𝑊𝐵

0 otherwise,

Observe that 𝑃𝑄 = 𝑃 since Γ2 is dense in 𝑆𝑝4(Ẑ)), hence we can assume that 𝑓
is Γ2-invariant. Then again by the density of Γ2 in

∏
𝑝∈𝐵 𝑆𝑝4(Z𝑝), we see that the

function 𝑓 depends only on 𝜆((𝑥𝑝)𝑝∈𝐵), i.e.,

63



𝐹𝐵 (𝑥) =

𝑓 ′(𝜆(𝑥𝑝)𝑝∈𝐵) if 𝑥 ∈ 𝑊𝐵

0 otherwise,

where 𝑓 ′ is a square integrable function in
∏

𝑝∈𝐵 Z
×
𝑝 (with the natural pushforward

measure). The linear span of 𝜒 (where 𝜒 is a character of
∏

𝑝∈𝐵 Z
×
𝑝) form a dense

subspace of such square integrable functions and we have shown that 𝑃𝜒𝐵 is constant.
It follows that 𝑃𝐹𝐵 is constant.

We can easily verify that the adjoint of the operator 𝑉𝑠 (where 𝑠 ∈ 𝑆𝐵) is given by

(𝑉∗𝑠 ℎ) (𝑥) =

𝜆(𝑠)𝛽ℎ(𝑠−1𝑥) if 𝑥 ∈ 𝑠𝑀𝑆𝑝4(Ẑ)

0 otherwise.

Hence the map 𝜆(𝑠)−𝛽/2𝑉∗𝑠 maps isometrically the functions of the form 𝐹𝐵 to
functions in 𝐿2(𝑀𝑆𝑝4(Ẑ), d𝜇̂𝛽, 𝑓 ) of the form

𝐺𝐵 (𝑥) =

𝑔((𝑥𝑝)𝑝∈𝐵) if 𝑥 ∈ 𝑠𝑊𝐵

0 otherwise,
(3.48)

where 𝑔 ∈ 𝐿2(𝑠∏𝑝∈𝐵 𝐺𝑆𝑝4(Z𝑝), d𝜇𝐵). It follows then from 𝑃 = 𝑃𝑉∗𝑠 that the
projection 𝑃 maps every function of the form (3.48) to a constant function. The
set ∪𝑠∈Γ2\𝑆𝐵/Γ2𝑠𝑊𝐵 has full measure in 𝑀𝑆𝑝4(Ẑ) and thus 𝑃 maps functions de-
pending only on (𝑥𝑝)𝑝∈𝐵 to constants. Finally observe that as 𝐵 ↗ P, the union
of 𝐿2(∏𝑝∈𝐵 𝑀𝑆𝑝4(Z𝑝), d𝜇𝐵) over all finite sets of primes is a dense subspace of
𝐿2(𝑀𝑆𝑝4(Ẑ), d𝜇̂𝛽, 𝑓 ) (this follows from weak convergence of measures). Since 𝑃
maps this dense subspace to constant functions, this finishes the proof.

□

Lemma 3.2.7. Let 𝑓 be a smooth function on Γ\𝑃𝐺𝑆𝑝+4 (R) with a compact support
and let Ω be any compact subset of Γ\𝑃𝐺𝑆𝑝+4 (R). If we denote by 𝜇 the normalized
Haar measure on Γ\𝑃𝐺𝑆𝑝+4 (R) and 𝑓 =

∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 𝑑𝜇, then for all 𝜖 > 0 there
exist 𝜅1(𝜖) > 0, 𝜅2 > 0 and 𝑀2 > 0 (depending on 𝑓 ) such that the inequality

1
𝑅Γ2 (𝑚)

∑︁
𝑎∈Γ2\𝑆𝑚/Γ2

��(𝑇𝑎 𝑓 ) (𝜏) − 𝑓 �� deg(𝑎) ≤ 𝜅1𝑚
(2𝜖−1)

𝑖=𝑙∏
𝑖=1
(1+𝜅2𝑝

−1
𝑖 )

1
(1 − 𝑝−2𝜖−1

𝑖
)2
,

holds for all 𝜏 ∈ Ω and every integer𝑚 with prime factorization of the form
∏𝑖=𝑙
𝑖=1 𝑝

𝑙𝑖
𝑖

where min{𝑝1, . . . , 𝑝𝑙} > 𝑀2.
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Proof. Let 𝑝 be a given prime and 𝑙 ∈ N. The formula of 𝑅Γ2 (𝑝𝑙) in the proof of
Proposition 3.2.1 gives

(𝑅Γ2 (𝑝𝑙) − 𝑝3𝑙) (1 − 𝑝)2(1 + 𝑝 + 𝑝2) = 1 − 𝑝3𝑙 − 𝑝1+2𝑙 − 𝑝2+2𝑙 − 𝑝2+2𝑙 + 𝑝1+3𝑙

+ 𝑝3+3𝑙

≥ 1 + 3𝑝3𝑙 − 𝑝2+2𝑙

≥ 𝑝3𝑙 (1 − 𝑝2−𝑙) ≥ 0, ∀𝑙 ≥ 2.

A simple verification for the case 𝑙 = 1 shows that

(𝑅Γ2 (𝑝𝑙) − 𝑝3𝑙) (1 − 𝑝)2(1 + 𝑝 + 𝑝2) ≥ 0, ∀𝑙 ∈ N,

that is

𝑅Γ2 (𝑝𝑙)𝑝−3𝑙 ≥ 1. (3.49)

We suppose now that𝑚 ∈ N has the form𝑚 =
∏𝑖=𝑟
𝑖=1 𝑝

𝑙𝑖
𝑖
. Then by [COU01, Theorem

1.7 and section 4.7] together with the calculations for𝐺 = 𝐺𝑆𝑝2𝑛, 𝑛 ≥ 2 in [COU01,
pages 22–23] and the degree formula in (3.22) applied to 𝑛 = 2 (recall that the big
𝑂 depends only on 𝑛), we can find 𝜅1 > 0, 𝜅2 > 0 and 𝑀2 > 0 (depending on 𝑓 )
such that

1
𝑅Γ2 (𝑚)

∑︁
𝑎∈Γ2\𝑆𝑚/Γ2

�����(𝑇𝑎 𝑓 ) (𝜏) − ∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 𝑑𝜇

����� deg(𝑎)

≤ 𝜅1
𝑅Γ2 (𝑚)

∑︁
𝑘𝑖 𝑗≤𝑚𝑖 𝑗≤[𝑙𝑖/2]

𝑖=𝑟∏
𝑖=1
(𝑝2𝑙𝑖−2𝑘𝑖 𝑗−2𝑚𝑖 𝑗 )𝜖− 1

2 𝑝
3𝑙𝑖−4𝑘𝑖 𝑗−2𝑚𝑖 𝑗

𝑖
(1 +𝑂 (𝑝−1

𝑖 ))

≤ 𝜅1

𝑅Γ2 (𝑚)𝑝−3𝑙𝑖

𝑖=𝑙∏
𝑖=1

∑︁
𝑘𝑖 𝑗≤𝑚𝑖 𝑗≤[𝑙𝑖/2]

𝑝𝑙𝑖 (2𝜖−1) 𝑝
(−3−2𝜖)𝑘𝑖 𝑗+(−1−2𝜖)𝑚𝑖 𝑗

𝑖
(1 + 𝜅2𝑝

−1
𝑖 )

≤ 𝜅1𝑚
2𝜖−1

𝑖=𝑙∏
𝑖=1

∑︁
𝑘𝑖 𝑗≤𝑚𝑖 𝑗≤[𝑙𝑖/2]

𝑝−(3+2𝜖)𝑘𝑖 𝑗−(1+2𝜖)𝑚𝑖 𝑗 (1 + 𝜅2𝑝
−1
𝑖 )

≤ 𝜅1𝑚
2𝜖−1

𝑖=𝑙∏
𝑖=1
(1 + 𝜅2𝑝

−1
𝑖 )

∞∑︁
𝑚𝑖 𝑗=0

∞∑︁
𝑘𝑖 𝑗=0

𝑝−(3+2𝜖)𝑘𝑖 𝑗−(1+2𝜖)𝑚𝑖 𝑗

≤ 𝜅1𝑚
2𝜖−1

𝑖=𝑙∏
𝑖=1
(1 + 𝜅2𝑝

−1
𝑖 )

1
(1 − 𝑝−1−2𝜖

𝑖
)2
,
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holds for min{𝑝1, . . . , 𝑝𝑙} > 𝑀2 as desired. □

For the next proposition, we define the operator 𝑇𝐹 acting on the set of bounded
functions on Γ2\𝑃𝐺𝑆𝑝+4 (R) as follows:

(𝑇𝐹 𝑓 ) (𝜏) = 𝜁−1
𝑆𝐹 ,Γ2

∑︁
𝑠∈Γ2\𝑆𝐹/Γ2

𝜆(𝑠)−𝛽 degΓ2
(𝑠) (𝑇𝑠 𝑓 ) (𝜏).

Proposition 3.2.3. Let 𝐽 be any nonempty finite set of prime numbers, 3 < 𝛽 ≤ 4, 𝑓
a continuous function on Γ\𝑃𝐺𝑆𝑝+4 (R) with a compact support and Ω any compact
subset of Γ\𝑃𝐺𝑆𝑝+4 (R). Then for any 𝛿 > 0, there exists a set 𝐹 consisting of finite
prime numbers that are disjoint from 𝐽 and such that for all 𝜏 ∈ Ω we have�����(𝑇𝐹 𝑓 ) (𝜏) − ∫

Γ2\𝑃𝐺𝑆𝑝+4 (R)
𝑓 𝑑𝜇

����� < 𝛿.
Proof. Given 3 < 𝛽 ≤ 4, we fix 0 < 𝜖 < 𝛽−3

2 ≤
1
2 and choose 𝜅1, 𝜅2 and 𝑀2 as in

Lemma 3.2.7. Let 𝑀1 > 0 be such that

𝑥𝛽 (1 − 𝑥2𝜖−1 − 𝜅2𝑥
2𝜖−2) > 𝜅2 ∀𝑥 > 𝑀1, (3.50)

and we set 𝑀 := max{𝑀1, 𝑀2}. Let 𝐹 be a finite set of prime numbers with
𝐹 ∩ 𝐽 = ∅ and min{𝑝 ∈ 𝐹} > 𝑀 . Then by Lemma 3.2.7, we have

�����(𝑇𝐹 𝑓 ) (𝜏) − ∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 𝑑𝜇

�����
≤ 𝜅1𝜉𝑆𝐹 ,Γ (𝛽)−1(

∑︁
𝑚∈N(𝐹)

𝑚 (2𝜖−1)
𝑖=𝑙∏
𝑖=1
(1 + 𝜅2𝑝

−1
𝑖 )

1
(1 − 𝑝−2𝜖−1

𝑖
)2
𝑅Γ (𝑚)𝑚−𝛽)

≤ 𝜅1𝜉𝑆𝐹 ,Γ (𝛽)−1(
∏
𝑝∈𝐹

∞∑︁
𝑙=0

𝑝𝑙 (2𝜖−1)𝑅Γ (𝑝𝑙)𝑝−𝑙𝛽 (1 + 𝜅2𝑝
−1) 1
(1 − 𝑝−2𝜖−1)2

)

≤ 𝜅1𝜉𝑆𝐹 ,Γ (𝛽)−1(
∏
𝑝∈𝐹
(1 + 𝜅2𝑝

−1)
∏
𝑝∈𝐹

1
(1 − 𝑝−2𝜖−1)2∏

𝑝∈𝐹

1 + 𝑝2𝜖−1𝑝𝛽−1

1 + 𝑝𝛽−1
𝜁N(𝐹) (𝛽 − 2 − 2𝜖)𝜁N(𝐹) (𝛽 − 1 − 2𝜖)𝜁N(𝐹) (𝛽 − 2𝜖)

𝜁N(𝐹) (𝛽 − 3)𝜁N(𝐹) (𝛽 − 2)𝜁N(𝐹) (𝛽 − 1) .
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Notice that by our choice of 𝑀 and 𝐹, Equation (3.50) gives

(1 + 𝜅2𝑝
−1)1 + 𝑝

2𝜖−2+𝛽

1 + 𝑝𝛽−1 < 1, ∀𝑝 ∈ 𝐹.

Hence��(𝑇𝐹 𝑓 ) (𝜏) − 𝑓 �� ≤ 𝜅1
∏
𝑝∈𝐹

𝜁N(𝐹) (𝛽 − 2 − 2𝜖)𝜁N(𝐹) (𝛽 − 1 − 2𝜖)𝜁N(𝐹) (𝛽 − 2𝜖)
(1 − 𝑝 (−2𝜖−1))𝜁N(𝐹) (𝛽 − 3)𝜁N(𝐹) (𝛽 − 2)𝜁N(𝐹) (𝛽 − 1)

.

As 𝐹 ↗ P with 𝐹 ∩ 𝐽 = ∅, the right-hand side can be made arbitrary small since
3 < 𝛽 ≤ 4, 𝛽 − 2 − 2𝜖 > 1 and 𝜖 > 0, □

Theorem 3.2.4. Let 𝜇̂𝛽 ∈ Ê𝛽 and 𝐴 = 𝐿∞(𝑃𝐺𝑆𝑝+4 (R) ×𝑀𝑆𝑝4(A 𝑓 ), 𝜇̂𝛽). We have
that

𝐴𝐺𝑆𝑝
+
4 (Q)×𝐺𝑆𝑝4 (Ẑ) = C. (3.51)

Proof. Consider the space H = 𝐿2(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ), 𝜇̂𝛽). Observe that
any 𝐺𝑆𝑝+4 (Q) ×𝐺𝑆𝑝4(Ẑ)-invariant subset of 𝐺𝑆𝑝+4 (R) ×𝑀𝑆𝑝4(A 𝑓 ) is completely
determined by its intersection with 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ), hence it is enough
to show that any 𝑀𝑆𝑝+4 (Z) × 𝐺𝑆𝑝4(Ẑ)-invariant function in H is constant. We
denote by 𝐻 the closed subspace of 𝑀𝑆𝑝+4 (Z) × 𝐺𝑆𝑝4(Ẑ)-invariant functions in
H and denote by 𝑃 the orthogonal projection onto 𝐻. We will show that the
image under 𝑃 of a dense subspace consists of constant functions. Given any
non-empty finite sets of primes 𝐹 and 𝐽, we denote by 𝐻𝐹 the closed subspace of
𝑆𝐹-invariant functions in H and by 𝑃𝐹 the orthogonal projection onto 𝐻𝐹 . Let
H𝐽 be the subspace of Γ2 ×

∏
𝑝∈𝐽 𝐺𝑆𝑝4(Z𝑝)-invariant functions depending only on

𝐺𝑆𝑝+4 (R) ×
∏

𝑝∈𝐽 𝑀𝑆𝑝4(Z𝑝).

Recall that 𝑆𝐽𝑌𝐽 is a subset of full measure, whence by [LLN07, Lemma 2.9] given
any function 𝑓 inH𝐽 we get

𝑃𝐽 𝑓 = 𝜁𝑆𝐹 ,Γ2 (𝛽)−1
∑︁

Γ2\𝑆𝐽/Γ2

𝜆(𝑠)−𝛽 degΓ2
(𝑠)𝑇𝑠 𝑓 . (3.52)

It follows that the value 𝑃𝐽 𝑓 (𝜏, 𝑚) depends only on 𝜏 ∈ 𝐺𝑆𝑃+4 (R). We can then
write
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𝑃𝐽 𝑓 (𝑥) =

𝑓 (𝜏) if 𝑥 = (𝜏, 𝑚) ∈ 𝑌𝐽
0 otherwise

We put 𝑓𝐽 := 𝑃𝐽 𝑓 . Observe that since 𝑓𝐽 is 𝑆𝐽-invariant we get that 𝑓 is Γ2-invariant
and therefore can view it as a square integrable function on Γ2\𝑃𝐺𝑆𝑝+4 (R). We first
suppose that 𝑓 is smooth with compact support Ω. For 𝐹 ∩ 𝐽 = ∅, the projection
formula (3.52) gives

𝑃𝐹 𝑓𝐽 (𝑥) =

𝑇𝐹 𝑓 (𝜏) if 𝑥 = (𝜏, 𝑚) ∈ 𝑌𝐽
0 otherwise.

We put (𝑇𝐹 𝑓 )𝐽 := 𝑃𝐹 𝑓𝐽 (𝑥). Given 𝜖 > 0, by Proposition 3.2.3 there exists some
finite set of primes 𝐹 disjoint from 𝐽 such that�����𝑇𝐹 𝑓 (𝜏) − ∫

Γ2\𝑃𝐺𝑆𝑝+4 (R)
𝑓 d𝜇

����� < 𝜖, ∀𝜏 ∈ Ω.
Since 𝑃𝑃𝐽 = 𝑃𝑃𝐹 = 𝑃, we get






𝑃 𝑓 − 𝑃1𝑌𝐽 ∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇







2

=






𝑃𝑃𝐽 𝑓 − 𝑃1𝑌𝐽 ∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇







2

=






𝑃𝑃𝐹𝑃𝐽 𝑓 − 𝑃1𝑌𝐽 ∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇







2

≤





𝑃𝐹𝑃𝐽 𝑓 − 1𝑌𝐽 ∫

Γ2\𝑃𝐺𝑆𝑝+4 (R)
𝑓 d𝜇







2

≤





(𝑇𝐹 𝑓 )𝐽 − 1𝑌𝐽 ∫

Γ2\𝑃𝐺𝑆𝑝+4 (R)
𝑓 d𝜇







2

< 𝜖.

Hence using the projection formula 3.52 with 𝑓 = 1𝑌𝐽 we get

𝑃 𝑓 = 𝑃1𝑌𝐽

∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇 = 𝑃𝑃𝐽1𝑌𝐽
∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇

= 𝜁𝑆𝐽 ,Γ2 (𝛽)−1
∫
Γ2\𝑃𝐺𝑆𝑝+4 (R)

𝑓 d𝜇,
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which is constant. Any integrable functions on Γ2\𝑃𝐺𝑆𝑝+4 (R) can be approximated
by a compactly supported smooth function and hence 𝑃 𝑓 is constant for all Γ2-
invariant functions in H𝐽 . The results follows since the union of H𝐽 over all finite
set of primes is dense in the space of square integrable Γ2 × 𝐺𝑆𝑝4(Ẑ)-invariant
functions.

□

Theorem 3.2.5. For 3 < 𝛽 ≤ 4, The 𝐺𝑆𝑝4-system admits a unique KMS𝛽 state.

Proof. We will show that the set E𝛽 consists of a single point. We first use [LLN07,
Proposition 4.6] together with Theorem 3.2.3 and Theorem 3.2.4 to conclude that
𝐴𝐺𝑆𝑝

+
4 (Q) = C where 𝐴 = 𝐿∞(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(AQ, 𝑓 ), 𝜇̂𝛽) for any 𝜇̂𝛽 ∈ Ê𝛽 and

3 < 𝛽 ≤ 4, in other words there exists a unique right 𝐺𝑆𝑝4(Ẑ)-invariant measure
𝜇̂𝛽 in E𝛽. Suppose now that 𝜐𝛽 is any other point of E𝛽. Then the measure defined
by

𝜔 =

∫
𝐺𝑆𝑝4 (Ẑ)

𝑔 · 𝜐𝛽 d𝑔

is an element of E𝛽 and by unicity we get that 𝜔 = 𝜇̂𝛽, 𝑓 . Since the point 𝜇̂𝛽, 𝑓 is
extremal we conclude that 𝜇̂𝛽, 𝑓 = 𝜐𝛽. This completes the proof. □

Remark 2. We have studied the𝐺𝑆𝑝4-system in the region 𝛽 > 0 with 𝛽 ∉ {1, 2, 3}.
Let us now consider the cases where the inverse temperature is a pole of the Dirichlet
series (3.38). If 𝛽 = 2, it is possible to construct explicit measures 𝜇2 ∈ E2. We
consider the normalized Haar measure on AQ, 𝑓 such that meas(Ẑ) = 1 and

meas(𝑎𝐸) =
∏
𝑝

|𝑎𝑝 |𝑝 meas(𝐸). (3.53)

for any 𝑎 ∈ A×
Q, 𝑓

and measurable subset 𝐸 ⊆ AQ, 𝑓 . Let 𝜇 𝑓 be the product measure
on A4

Q, 𝑓
. Since

©­­­­­«
0 0 0 0 𝑥1

0 0 0 0 𝑥2

0 0 0 0 𝑥3

0 0 0 0 𝑥4

ª®®®®®¬
∈ 𝑀𝑆𝑝4(AQ, 𝑓 ), 𝑥1, . . . , 𝑥4 ∈ 𝐴Q, 𝑓

we may consider 𝜇 𝑓 as a measure on 𝑀𝑆𝑝4(𝐴Q, 𝑓 ) such that 𝜇 𝑓 (𝑀𝑆𝑝4(Ẑ)) = 1.
We claim that 𝜇2 = 𝜇∞ × 𝜇 𝑓 ∈ E2. By construction it is enough to show that 𝜇2
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satisfies the scaling condition (3.30). Given 𝑔 ∈ 𝐺𝑆𝑝+4 (Q), we can find 𝛾1, 𝛾2 ∈ Γ2

and a diagonal matrix 𝐷 ∈ 𝐺𝑆𝑝+4 (Q) such that 𝑔 = 𝛾1𝐷𝛾2. Since 𝛾Ẑ4 = Ẑ4

for any 𝛾 ∈ Γ2 and the Haar measure is translation invariant we conclude that
𝜇2(𝑔𝐵) = 𝜆−2(𝑔)𝜇2(𝐵) for any Borel subset of 𝑀𝑆𝑝4(AQ, 𝑓 ).

One would expect to use a similar construction for 𝛽 = 1 and 𝛽 = 3. However, since
the only subspace of A4

Q, 𝑓
stable under the action of 𝐺𝑆𝑝+4 (Q) is A4

Q, 𝑓
itself, this

argument fails in the case 𝛽 = 1 or 𝛽 = 3. We conjecture that the𝐺𝑆𝑝4-system does
not admit any KMS𝛽 state in these two cases.

Remark 3. The results we prove in this paper completely classify the KMS𝛽 states
on the Bost-Connes-Marcolli 𝐺𝑆𝑝4-system. In fact, we will show that given 𝛽 > 0
with 𝛽 ∉ {1, 2, 3}, there exists a one-to-one correspondence between KMS𝛽 on the
Connes-Marcolli 𝐺𝑆𝑝4-system and the 𝐺𝑆𝑝4 system (A, 𝜎𝑡). Recall the set

𝐹𝑌 = {ℎ ∈ 𝑀𝑆𝑝4(Ẑ) | rankQ𝑝
(ℎ𝑝) ≤ 2 for all 𝑝 ∈ P},

and consider the dynamical system 𝐼 = 𝐶∗𝑟 (Γ2\𝐺𝑆𝑝+4 (Q) ⊠Γ2 (H+2 × 𝐹𝑌 )). We
claim that 𝐼 can not have any KMS𝛽 states. To see this, observe that any 𝐾𝑀𝑆𝛽
state on 𝐼 gives rise to a regular Γ2-invariant measure 𝜇𝛽 on the space H+2 × 𝐹𝑌
(note that unlike the case where the underlying space is an 𝑟-discreet principal
groupoid, the support of this measure is not necessarily contained in H+2 × 𝐹𝑌 .) By
the KMS𝛽 condition, this measure still satisfies the scaling property 3.1.6. Now
since H+2 = (U2/{±14})\𝑃𝐺𝑆𝑝+4 (R), we can define a measure on 𝑃𝐺𝑆𝑝+4 (R) × 𝐹𝑌
by the formula

∫
𝑃𝐺𝑆𝑝+4 (R)×𝐹𝑌

𝑓 (𝑥)𝑑𝜇̃𝛽 (𝑥) =
∫
H+2×𝐹𝑌

( ∫
U2/{±14}

𝑓 (𝑥𝑔) d𝑔
)

d𝜇𝛽 (𝑥).

The measure 𝜇̃𝛽 satisfies the condition 3.1.6. There is a canonical extension of this
measure to a Γ2-invariant measure 𝜇𝛽 ∈ E𝛽 on the space 𝑃𝐺𝑝+4 (R) × 𝑀𝑆𝑝4(A 𝑓 ).
This leads to a contradiction since the set 𝑃𝐺𝑆𝑝+4 (R) × 𝐹𝑌 has measure zero by
Corollary 3.2.1. This shows that the set H+2 × 𝐹𝑌 can be ignored in the analysis of
KMS𝛽 states for 𝛽 > 0 and 𝛽 ∉ {1, 2, 3} and if we let 𝑌 = 𝑌\𝐹𝑌 , it is clear that
different KMS𝛽 state on 𝐶∗𝑟 (Γ2\𝐺𝑆𝑝+4 (Q) ⊠Γ2 𝑌 ) give rise to different KMS𝛽 state
on the 𝐺𝑆𝑝4-system (A, 𝜎𝑡).
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71

C h a p t e r 4

SYMMETRIES AND GALOIS ACTION OF THE SIEGEL
MODULAR FIELD

In addition to their interesting thermodynamical behavior, BCM systems are closely
related to the class field theory of the number field underlying their structure. This
connection is made possible thanks to one important object: the symmetry group.
In this chapter, we propose to study the symmetry group of the Connes-Marcolli
𝐺𝑆𝑝4-system. The full symmetry group will take into account both actions by
automorphisms and endomorphisms. This will allow us to construct an action of a
subgroup of the Siegel modular field and derive an equality which intertwines the
action by symmetries at zero temperature and the Galois action of a subgroup of
the Siegel modular field on the values of the equilibrium states. Throughout this
chapter, it will be necessary to work with the algebra A = 𝐶∗𝑟 (Γ2\𝐺 ⊠Γ2 𝑌 ), where
𝑌 = H+2 × 𝑀𝑆𝑝4(Ẑ).

4.1 Symmetry group of the Bost–Connes–Marcolli GSp4-system
Recall that the space 𝑌 admits a right action by the profinite group 𝐺𝑆𝑝4(Ẑ) as
follows:

ℎ · (𝜏, 𝜌) := (𝜏, 𝜌ℎ), ℎ ∈ 𝐺𝑆𝑝2𝑛 (Ẑ). (4.1)

Lemma 4.1.1. The action (4.1) induces an action of 𝐺𝑆𝑝4(Ẑ) by automorphisms
on the Connes-Marcolli 𝐺𝑆𝑝4-system (A, (𝜎𝑡)𝑡∈R+) as follows:

𝛼ℎ ( 𝑓 ) (𝑔, 𝜏, 𝜌) = 𝑓 (𝑔, 𝜏, 𝜌ℎ), ∀ 𝑓 ∈ A, ∀ℎ ∈ 𝐺𝑆𝑝4(Ẑ).

Proof. Since the action commutes with the left action of 𝐺𝑆𝑝+4 (Q), we get

𝛼ℎ ( 𝑓1 ∗ 𝑓2) = 𝛼ℎ ( 𝑓1) ∗ 𝛼ℎ ( 𝑓2) 𝑓1, 𝑓2 ∈ A.

Hence the action of 𝐺𝑆𝑝4(Ẑ) defines automorphisms of the algebraA. This action
is compatible with the time evolution since

𝜎𝑡𝛼ℎ ( 𝑓 ) (𝑔, 𝜏, 𝜌) = 𝜆(𝑔)𝑖𝑡 𝑓 (𝑔, 𝜏, 𝜌ℎ) = 𝛼ℎ𝜎𝑡 ( 𝑓 ) (𝑔, 𝜏, 𝜌).

□



We denote by 𝐺 = 𝐺𝑆𝑝+4 (Q), 𝑋 = H+2 × 𝑀𝑆𝑝4(AQ, 𝑓 ) and Γ2 = 𝑆𝑝4(Z). Recall
that the algebra A is the reduction 𝑒B𝑒 of the algebra B = 𝐶∗𝑟 (Γ2\𝐺 ×Γ2 𝑋) by the
idempotent multiplier 𝑒 given by the Γ2 × Γ2 invariant function

𝑒(𝑔, 𝜏, ℎ) =


1 if (𝑔, ℎ) ∈ Γ2 × 𝑀𝑆𝑝4(Ẑ)

0 otherwise.

Let ℎ ∈ 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ). Then 𝜆(ℎ) ∈ A×
Q, 𝑓

can be uniquely written
[KL06] as

𝜆(ℎ) = 𝜆Q(ℎ)𝜆Ẑ(ℎ), 𝜆Q(ℎ) ∈ Q×+ , 𝜆Ẑ ∈ Ẑ
×. (4.2)

In particular the maps ℎ ↦→ 𝜆Q(ℎ) and ℎ ↦→ 𝜆Ẑ(ℎ) are well defined. Hence consider
the map 𝜂 : 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ) → {𝛾 ∈ 𝐺𝑆𝑝4(AQ, 𝑓 ), 𝛾−1 ∈ 𝑀𝑆𝑝4(Ẑ)}
defined by

𝜂(ℎ) := ℎ𝜆Q(ℎ)−1. (4.3)

Proposition 4.1.1. The map 𝜂 in (4.3) is a semigroup homomorphism.

Proof. We first check that the map (4.3) is well defined. Let ℎ ∈ 𝑀𝑆𝑝4(Ẑ) ∩
𝐺𝑆𝑝4(AQ, 𝑓 ). Clearly 𝜂(ℎ) ∈ 𝐺𝑆𝑝4(AQ, 𝑓 ) so we need to show that 𝜂(ℎ)−1 ∈
𝑀𝑆𝑝4(Ẑ). From (3.9) we obtain that

𝜂(ℎ)−1 = ℎ−1𝜆Q(ℎ)
= ℎ−1𝜆(ℎ)𝜆Ẑ(ℎ)

−1

=

(
𝐷𝑡 −𝐵𝑡

−𝐶𝑡 𝐴𝑡

)
𝜆Ẑ(ℎ)

−1 ∈ 𝑀𝑆𝑝4(Ẑ), ℎ =

(
𝐴 𝐵

𝐶 𝐷

)
.

Finally, the map 𝜂 is a semigroup homomorphism by the unicity of the decomposition
in (4.2). □

Lemma 4.1.2. The following action of 𝐺𝑆𝑝4(AQ, 𝑓 ) on the algebra B defines an
action by automorphisms:

𝛼ℎ ( 𝑓 ) (𝑔, 𝜏, 𝜌) = 𝑓 (𝑔, 𝜏, 𝜌ℎ), ∀ 𝑓 ∈ B, ∀ℎ ∈ 𝐺𝑆𝑝4(AQ, 𝑓 ). (4.4)

If ℎ ∈ {𝛾 ∈ 𝐺𝑆𝑝4(AQ, 𝑓 ), 𝛾−1 ∈ 𝑀𝑆𝑝4(Ẑ)}, the restriction 𝛼ℎ |A defines an endo-
morphism of the algebra A.
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Proof. The proof that (4.4) defines an action by automorphisms is similar to Lemma
4.1.1. Note that the action in (4.4) extends naturally to an action on the algebra of
multipliers. Hence for ℎ ∈ {𝛾 ∈ 𝐺𝑆𝑝4(AQ, 𝑓 ), 𝛾−1 ∈ 𝑀𝑆𝑝4(Ẑ)}, we obtain

(𝛼ℎ (𝑒)𝑒) (𝑔, 𝜏, 𝜌) =
∑︁

𝑠∈Γ2\𝐺𝑆𝑝+4 (Q)
𝛼ℎ (𝑒) (𝑔𝑠−1, 𝑠 · 𝜏, 𝑠𝜌)𝑒(𝑠, 𝜏, 𝜌)

= 𝛼ℎ (𝑒) (𝑔, 𝜏, 𝜌)𝑒(1, 𝜏, 𝜌)
= 𝛼ℎ (𝑒) (𝑔, 𝜏, 𝜌),

where the last equality holds since ℎ−1 ∈ 𝑀𝑆𝑝4(Ẑ). This shows that

𝛼ℎ (𝑒𝑥𝑒) = 𝑒𝛼ℎ (𝑒𝑥𝑒)𝑒 ∈ A, 𝑥 ∈ B,

which completes the proof. □

We then obtain an action of 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ) on the algebra A:

𝛼ℎ := 𝛼𝜂(ℎ) |A , ℎ ∈ 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 )

and

𝛼ℎ ( 𝑓 ) (𝑔, 𝜏, 𝜌) =

𝑓 (𝑔, 𝜏, 𝜌𝜂(ℎ)) if (𝜌𝜂(ℎ), 𝑔𝜌𝜂(ℎ)) ∈ 𝑀𝑆𝑝4(Ẑ) × 𝑀𝑆𝑝4(Ẑ)

0 otherwise
(4.5)

Let 𝐺 be the group of transformations of KMS𝛽 states on the system (A, (𝜎𝑡)𝑡∈R)
and consider the semigroup homomorphism 𝜃 : 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ) −→ 𝐺

given by 𝜃 (ℎ) := 𝛼ℎ.

Proposition 4.1.2. For ℎ = diag(𝑛, 𝑛, 𝑛, 𝑛), 𝑛 ∈ N we have that 𝜃 (ℎ) = 1.

Proof. Consider the multiplier element given by

𝜇ℎ (𝑔, 𝜏, 𝜌) =


1 if 𝑔 ∈ Γ2ℎ

0 otherwise.

and observe that

73



𝜇∗𝑛 (𝑔, 𝜏, 𝜌) =


1 if 𝑔 ∈ Γ2ℎ
−1 and ℎ−1𝜌 ∈ 𝑀𝑆𝑝4(Ẑ)

0 otherwise.

For any 𝑓 ∈ A we compute

ad(𝜇ℎ) ( 𝑓 ) (𝑔, 𝜏, 𝜌) =
∑︁

𝑠∈Γ2\𝐺𝑆𝑝+4 (Q)
𝜇ℎ (𝑔𝑠−1, 𝑠 · 𝜏, 𝑠𝜌) ( 𝑓 ∗ 𝜇∗ℎ) (𝑠, 𝜏, 𝜌)

=
∑︁

𝑠∈Γ2\𝐺𝑆𝑝+4 (Q)
𝑓 (ℎ−1𝑔𝑠−1, 𝑠 · 𝜏, 𝑠𝜌)𝜇∗ℎ (𝑠, 𝜏, 𝜌)

= 𝑓 (𝑔, 𝜏, 𝜌ℎ−1)
= 𝛼ℎ ( 𝑓 ) (𝑔, 𝜏, 𝜌),

since we can assume (𝜌ℎ−1, 𝑔𝜌ℎ−1) ∈ 𝑀𝑆𝑝4(Ẑ) ×𝑀𝑆𝑝4(Ẑ). A direct computation
shows that

𝑓 ∗ (𝜇∗ℎ ∗ 𝜇) = 𝑓 , ∀ 𝑓 ∈ A,

and that 𝜇ℎ is an eigenvector of the time evolution. Hence the action of 𝛼ℎ on the
set of KMS states is trivial. □

We now combine the previous results to obtain the following important theorem.

Theorem 4.1.1. There exists a unique homomorphism 𝜃 : Q×\𝐺𝑆𝑝4(AQ, 𝑓 ) −→ 𝐺

such that the diagram

𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ) 𝐺

Q×\𝐺𝑆𝑝4(AQ, 𝑓 )

𝜃

𝜋
𝜃

𝜃

commutes. In particular, we obtain an action of the group

𝑆 = Q×\𝐺𝑆𝑝4(AQ, 𝑓 )

by symmetries on the set of KMS𝛽 states of the 𝐺𝑆𝑝4-Connes-Marcolli system.
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Proof. By the decomposition in Corollary 3.1.1 and clearing the denominators if
necessary we see that the projection 𝜋 is a surjective homomorphism. Hence any
map 𝜃 such that 𝜃 (𝜋(𝑥)) := 𝜃 (𝑥) must be unique.

For 𝑥, 𝑦 ∈ 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝4(AQ, 𝑓 ), one has

𝜋(𝑥) = 𝜋(𝑦) ⇔ ∃𝑞1, 𝑞2 ∈ Q× such that diag(𝑞1, . . . , 𝑞1)𝑥 = diag(𝑞2, . . . , 𝑞2)𝑦
⇔ ∃𝑛1, 𝑛2 ∈ N such that diag(𝑛1, . . . , 𝑛1)𝑥 = diag(𝑛2, . . . , 𝑛2)𝑦.

By Proposition 4.1.2 we conclude that 𝜃 (𝑥) = 𝜃 (𝑦) and thus the homomorphism
𝜃 (𝑦) := 𝜃 (𝑥) where 𝑦 = 𝜋(𝑥) is well defined and satisfies the desired property. □

Proposition 4.1.3. Let 4 < 𝛽 < ∞ and consider the extremal KMS𝛽 state 𝜙𝛽,𝑦1

associated to 𝑦1 = (𝜏1, 𝜌1) ∈ H+2 × 𝐺𝑆𝑝4(Ẑ). Given ℎ1 ∈ 𝑀𝑆𝑝+4 (Z), we write

𝜌1ℎ1 = ℎ2𝜌2 ∈ 𝐺𝑆𝑝+4 (Q)𝐺𝑆𝑝4(Ẑ),

and put
𝜏2 := ℎ−1

2 · 𝜏1.

Then ℎ2 ∈ 𝑀𝑆𝑝+4 (Z) and

𝜙𝛽,𝑦1 ◦ 𝛼ℎ1 = 𝜆(ℎ1)−𝛽𝜙𝛽,𝑦2
, (4.6)

where 𝑦2 = (𝜏2, 𝜌2) ∈ H+2 × 𝐺𝑆𝑝4(Ẑ).

Proof. First observe that ℎ2 ∈ 𝑀𝑆𝑝+4 (Z) since 𝜌1ℎ1𝜌
−1
2 ∈ 𝐺𝑆𝑝

+
4 (Q) ∩ 𝑀𝑆𝑝4(Ẑ) =

𝑀𝑆𝑝+4 (Z). By (4.1) we get

𝜙𝛽,𝑦 (𝛼ℎ1 ( 𝑓 )) = 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1
∑︁

ℎ∈Γ2\𝑀𝑆𝑝+4 (Z)
ℎ𝜌1𝜂(ℎ1)∈𝑀𝑆𝑝4 (Ẑ)

𝜆(ℎ)−𝛽 𝑓 (1, ℎ · 𝜏1, ℎ𝜌1𝜂(ℎ1)).

(4.7)

Note that 𝜆(ℎ1) = 𝜆(ℎ2) so that

ℎ𝜌1𝜂(ℎ1) ∈ 𝑀𝑆𝑝4(Ẑ) ⇔ ℎ𝜂(ℎ2)𝜌2 ∈ 𝑀𝑆𝑝4(Ẑ) ⇔ ℎ ∈ 𝑀𝑆𝑝4(Ẑ)𝜂(ℎ2)−1.

If we write ℎ = 𝑥𝜂(ℎ2)−1 ∈ 𝑀𝑆𝑝4(Z)+ with 𝑥 ∈ 𝑀𝑆𝑝4(Ẑ) then

𝑥 ∈ 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝+4 (Q) = 𝑀𝑆𝑝
+
4 (Z),
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so ℎ ∈ 𝑀𝑆𝑝+4 (Z)𝜂(ℎ2)−1. Conversely if ℎ ∈ 𝑀𝑆𝑝+4 (Z)𝜂(ℎ2)−1 then ℎ ∈ 𝑀𝑆𝑝+4 (Z)
since 𝜂(ℎ2)−1 ∈ 𝑀𝑆𝑝4(Ẑ) ∩ 𝐺𝑆𝑝+4 (Q) .We can thus replace the right hand side of
(4.7) by the sum

𝜙𝛽,𝑦 (𝛼ℎ1 ( 𝑓 )) =𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1∑︁
ℎ′∈Γ2\𝑀𝑆𝑝+4 (Z)

𝜆(ℎ′𝜂(ℎ2)−1)−𝛽 𝑓 (1, ℎ′ℎ−1
2 𝜆(ℎ2) · 𝜏1, ℎ

′ℎ−1
2 𝜌1ℎ1)

=𝜆(ℎ1)−𝛽𝜙𝛽,𝑦2 ,

since ℎ−1
2 𝜆(ℎ2) · 𝜏1 = 𝜏2 (scalar matrices act trivially on H+2) and ℎ−1

2 𝜌1ℎ1 = 𝜌2. □

4.2 Siegel modular forms
Let Γ𝑛 (𝑁) be the arithmetic subgroup of 𝑆𝑝2𝑛 (Z) defined in (3.23). A function

𝑓 : H+𝑛 → C

is called a Siegel modular form of degree (genus) 𝑛, weight 𝑘 ∈ N and level 𝑁 if it
is holomorphic1 and satisfies the following condition:

𝑓 (𝑔 · 𝜏) = det(𝐶𝜏 + 𝐷)𝑘 𝑓 (𝜏), 𝑔 =

(
𝐴 𝐵

𝐶 𝐷

)
∈ Γ𝑛 (𝑁), 𝜏 ∈ H+𝑛 .

Every Siegel modular form 𝑓 admits a Fourier expansion (or 𝑞-expansion) of the
form

𝑓 (𝜏) =
∑︁
𝑔

𝑎𝑔𝑞
𝑔, 𝑎𝑔 ∈ C, 𝑞𝑔 := exp(2𝜋𝑖Tr(𝑔 · 𝜏)/𝑁), (4.8)

where 𝑔 runs over all 𝑛 × 𝑛 positive semi-definite symmetric matrices over half in-
tegers with integral diagonal entries. The Fourier series is absolutely and uniformly
convergent on any compact subset of H+𝑛 .

1One has to require that the function 𝑓 is holomorphic at the cusps. This condition is automati-
cally satisfied for 𝑛 ≥ 2 by Koecher principle [Kli90, Chapter 4, Theorem 1].
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We denote by 𝑀𝑘 (Γ𝑛 (𝑁)) the set of Siegel modular forms of weight 𝑘 and level 𝑁 .
Let F𝑁 be the field

F𝑁 :=
{ 𝑓1
𝑓2
| 𝑓1, 𝑓2 ∈ 𝑀𝑘 (Γ𝑛 (𝑁)) for some 𝑘 ∈ N,

with 𝑞-expansion coefficients in Q(𝜁𝑁 )
}
,

and

F :=
∞⋃
𝑁=1
F𝑁 .

Proposition 4.2.1. There exists a homomorphism

𝜗 : 𝐺𝑆𝑝2𝑛 (AQ, 𝑓 ) → Aut(F ),

satisfying the following properties:

1. If 𝑓 ∈ F and 𝑔 ∈ 𝐺𝑆𝑝+2𝑛 (Q), then

𝑓 𝜗(𝑔) (𝜏) = 𝑓 (𝑔 · 𝜏), ∀𝜏 ∈ H+𝑛 . (4.9)

2. The sequence

1→ Q× 𝜄−→ 𝐺𝑆𝑝2𝑛 (AQ, 𝑓 )
𝜗−→ Aut(F ),

is exact.

Proof. See [Shi00, Theorem 8.10] □

We define the following left action of 𝐺𝑆𝑝2𝑛 (AQ) on F :

Aut(𝛼) · 𝑓 := 𝑓 𝜗(𝛼
−1) . (4.10)

It is known [KSY19] that F𝑁 is a finite Galois extension over F1 with

Gal(F𝑁/F1) ≃ 𝐺𝑆𝑝2𝑛 (Z/𝑁Z)/(±12𝑛).

Given an even integer 𝑘 , let

𝐸𝑛𝑘 (𝜏) =
∑︁
(𝐶,𝐷)

det(𝐶𝜏 + 𝐷)𝑘 , 𝜏 ∈ H+𝑛 (4.11)
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be the Siegel Eisenstein series of degree 𝑛 and weight 𝑘 . Here the sum is

over elements of the form

(
∗ ∗
𝐶 𝐷

)
over a complete set of representatives of{( ∗ ∗

0𝑛 ∗

)}
\𝑆𝑝2𝑛 (Z). The right-hand side of (4.11) converges absolutely and lo-

cally uniformly for 𝑘 > 𝑛 + 1.

We say that a point 𝜏 ∈ H+𝑛 is a generic point if the evaluation map

𝐼𝜏 : F → C

is an embedding. In this case we have

Aut𝜏 (𝑔) · 𝐼𝜏 (ℎ) = 𝐼𝜏 (Aut(𝑔) · ℎ), ∀𝑔 ∈ 𝐺𝑆𝑝2𝑛 (AQ),∀ℎ ∈ F . (4.12)

4.3 The arithmetic subalgebra
A function 𝑓 ∈ 𝐶 (Γ2\𝐺 ⊠Γ2 𝑌 ) is called arithmetic if the following conditions are
satisfied:

1. 𝑓 has finite support in the variable 𝑔 ∈ 𝐺𝑆𝑝+2𝑛 (Q)

2. The functions 𝑓𝑔,𝜌 (𝜏) := 𝑓 (𝑔, 𝜏, 𝜌) fulfill

𝑓𝑔,𝜌 ∈ F , ∀(𝑔, 𝜌) ∈ 𝐺𝑆𝑝+4 (Q) × 𝑀𝑆𝑝4(Ẑ).

3. If 𝑔𝜌1 = 𝜌2𝑔2, with 𝑔1, 𝑔2 ∈ 𝐺𝑆𝑝+2𝑛 (Q) and 𝜌1, 𝜌2 ∈ 𝐺𝑆𝑝2𝑛 (Ẑ), then

𝑓𝑔,𝜌1𝜌 = Aut(𝜌1) · 𝑓𝑔2,𝜌, 𝜌 ∈ 𝑀𝑆𝑝4(Ẑ). (4.13)

We denote by Aarith
Q

the linear space of arithmetic functions in 𝐶 (Γ2\𝐺 ⊠Γ2 𝑌 ).

Proposition 4.3.1. We have thatAarith
Q

is a subalgebra of the algebra of unbounded
multipliers of the 𝐶∗-algebra A.

Proof. It is enough to show that the condition (4.13) is stable under convolution.
Consider 𝑓1, 𝑓2 ∈ Aarith

Q
. By Proposition 4.2.1 we obtain that
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( 𝑓1 ∗ 𝑓2)𝑔,𝜌 =
∑︁

𝑠∈Γ2\𝐺𝑆𝑝+4 (Q)
𝑠𝜌∈𝑀𝑆𝑝4 (Ẑ)

Aut(𝑠−1) · ( 𝑓1)𝑔𝑠−1,𝑠𝜌 ( 𝑓2)𝑠,𝜌 .

Let 𝛼 ∈ 𝐺𝑆𝑝4(Ẑ) and write 𝑔𝛼 = 𝛼̃𝑔̃ and 𝑠𝛼 = 𝛼′𝑠′ where 𝛼̃, 𝛼′ ∈ 𝐺𝑆𝑝4(Ẑ) and
𝑔̃, 𝑠′ ∈ 𝐺𝑆𝑝+4 (Q). Using the condition (4.13), we need to show that

Aut(𝛼′−1) · ( 𝑓1)𝑔𝑠−1,𝑠𝛼𝜌 = ( 𝑓1)𝑔̃𝑠′−1,𝑠′𝜌 .

This follows again from condition (4.13) since 𝑔̃𝑠′−1𝛼′−1 = 𝑔̃𝛼−1𝑠−1 = 𝛼̃−1𝑔𝑠−1.

□

4.4 KMS states at zero temperature
We are now ready to prove the main theorem of this chapter.

Theorem 4.4.1. Let 𝑦 = (𝜏, 𝜌) ∈ 𝑌 such that 𝜌 ∈ 𝐺𝑆𝑝4(Ẑ) and 𝜏 is a generic
point in H+2 . Then the homomorphism in (2) induces an isomorphism 𝜗−1 : 𝑆′→ 𝑆

between a subgroup 𝑆′ of Aut(F ) and the symmetry group 𝑆 which intertwines the
Galois action on the values of the states with the action by symmetries:

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝜙∞,𝑦 ( 𝑓 ), ∀ 𝑓 ∈ Aarith

Q , ∀𝑔 ∈ 𝑆′ (4.14)

Proof. The first assertion follows from the exactness of the sequence in (2) and

𝑆′ := Img(𝜃) ≃ 𝑆.

Suppose first that 𝜗−1(𝑔) is an action by automorphisms, i.e., 𝜗−1(𝑔) ∈ 𝐺𝑆𝑝4(Ẑ).
Then

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = 𝐼𝜏 ( 𝑓1,𝜌𝜗−1 (𝑔)) ∀ 𝑓 ∈ A𝑎𝑟𝑖𝑡ℎ.

Since 𝑓 ∈ A𝑎𝑟𝑖𝑡ℎ and 𝜏 is regular, we obtain by (4.12) and property (4.13) that

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = 𝐼𝜏 (Aut(𝜌𝜗−1(𝑔)𝜌−1) · 𝑓1,𝜌)

= Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝐼𝜏 ( 𝑓1,𝜌)
= Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝜙∞,𝑦 ( 𝑓 ).
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Consider now the case where 𝜗−1(𝑔) acts by endomorphisms. Since 𝜌 ∈ 𝐺𝑆𝑝4(Ẑ)
and ℎ = diag(𝑛, 𝑛, 𝑛, 𝑛) ∈ ker(𝜃), we can always find 𝑛 ∈ N large enough so that
the action of 𝛼𝜗−1 (𝑔) = 𝛼ℎ𝜗−1 (𝑔) by pullback on zero-temperature states vanishes
identically. To obtain a nontrivial action, we use the warming-up/cooling down
process described in [CM04]. Hence the action of 𝛼𝜗−1 (𝑔) is obtained by taking the
weak limit

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) = lim

𝛽→+∞
𝛼∗
𝜗−1 (𝑔) (𝜙𝛽,𝑦).

Up to multiplication by ℎ = diag(𝑛, 𝑛, 𝑛, 𝑛) ∈ ker(𝜃) for 𝑛 ∈ N large enough we
can assume that 𝜗−1(𝑔) ∈ 𝑀𝑆𝑝+4 (Z). Given any 𝛽 > 4 we can now compute the
normalized pullback (cf. Equation (2.10)) as follows

𝛼∗
𝜗−1 (𝑔) (𝜙𝛽,𝑦) ( 𝑓 ) =

(𝜙𝛽,𝑦 ◦ 𝛼𝜗−1 (𝑔)) ( 𝑓 )
𝜙𝛽,𝑦 (𝑒𝜗−1 (𝑔))

, 𝑓 ∈ A𝑎𝑟𝑖𝑡ℎ,

where 𝑒𝜗−1 (𝑔) is the characteristic function of the set 𝑀𝑆𝑝4(Ẑ)𝜂−1(𝜗−1(𝑔)). We
write

𝜌𝜗−1(𝑔) = ℎ2𝜌2 ∈ 𝐺𝑆𝑝+4 (Q)𝐺𝑆𝑝4(Ẑ).

Since 𝜆(ℎ2) = 𝜆(𝜗−1(𝑔)) we obtain

𝜙𝛽,𝑦 (𝑒𝜗−1 (𝑔)) = 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1
∑︁

ℎ∈Γ2\𝑀𝑆𝑝+4 (Z)
ℎ𝜌𝜂(𝜗−1 (𝑔))∈𝑀𝑆𝑝4 (Ẑ)

𝜆(ℎ)−𝛽

= 𝜁𝑀𝑆𝑝+4 (Z),Γ2 (𝛽)−1
∑︁

ℎ′∈Γ2\𝑀𝑆𝑝+4 (Z)
𝜆((ℎ′𝜂(ℎ2)))−𝛽

= 𝜆(𝜗−1(𝑔))−𝛽.

Hence applying Proposition 4.1.3 we get

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = lim

𝛽→+∞
𝜙𝛽,𝑦2 ( 𝑓 ) = 𝜙∞,𝑦2 ( 𝑓 ), 𝑦2 = (𝜏2, 𝜌2),

where 𝜏2 = ℎ−1
2 · 𝜏.

Letting 𝑔1 = 𝑔2 = 1 ∈ 𝐺𝑆𝑝+4 (Q), 𝜌 = 1 ∈ 𝑀𝑆𝑝4(Ẑ) and 𝜌1 = 𝜌2 in (4.13), we get

𝜙∞,𝑦2 ( 𝑓 ) = 𝐼𝜏2 ( 𝑓1,𝜌2) = 𝐼𝜏2 (Aut(𝜌2) · 𝑓1,1) = 𝐼𝜏 (Aut(ℎ2𝜌2) · 𝑓1,1),
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where the last equality follows from Proposition (4.9). Using again property (4.13)
and the regularity of the point 𝜏 ∈ H+2 , we have

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = 𝐼𝜏 (Aut(𝜌𝜗−1(𝑔)𝜌−1)Aut(𝜌) · 𝑓1,1)

= Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝐼𝜏 (Aut(𝜌) · 𝑓1,1)
= Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝐼𝜏 ( 𝑓1,𝜌),

which concludes the proof since 𝐼𝜏 ( 𝑓1,𝜌) = 𝜙∞,𝑦 ( 𝑓 ). □
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82

C h a p t e r 5

VON NEUMANN ALGEBRAS ARISING FROM THE
BOST–CONNES–MARCOLLI GSP4-SYSTEM

We have seen that the Connes-Marcolli 𝐺𝑆𝑝4-system undergoes a phase transition
at the critical inverse temperatures 𝛽𝑐1 = 3 and 𝛽𝑐2 = 4. In this chapter, we will
study the structure of the von Neumann algebras generated by the KMS𝛽 states and
show that a phase transition happens at the level of these algebras as well.

We start by fixing some terminology and notations. The type of a state 𝜙 on the
algebraA corresponds to the type of the von Neumann algebra 𝜋𝜙 (A)′′ it generates
in the GNS representation. For the rest of this chapter, we set

𝐺 = 𝐺𝑆𝑝+4 (Q), Γ2 = 𝑆𝑝4(Z),
𝑋 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(A 𝑓 ,Q), 𝑌 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ).

We denote as usual by P the set of prime numbers and for any finite set of primes
𝐹 ⊂ P, we put

Q𝐹 =
∏
𝑝∈𝐹
Q𝑝, Z𝐹 =

∏
𝑝∈𝐹
Z𝑝,

and

𝑋𝐹 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Q𝐹), 𝑌𝐹 = 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹).

We denote by 𝜋𝐹 the factor map 𝑋 → 𝑋𝐹 . Given a function 𝑓 on 𝑋𝐹 , we define the
function 𝑓𝐹 on 𝑋 by

𝑓𝐹 (𝑥) =

𝑓 (𝜋𝐹 (𝑥)) if 𝑥𝑝 ∈ 𝑀𝑆𝑝4(Z𝑝) for all 𝑝 ∈ 𝐹𝑐,

0 otherwise.

Given a prime 𝑝 ∈ P, recall from the proof of Lemma 3.2.3 that

{𝑔 ∈ 𝑀𝑆𝑝4(Z) : |𝜆(𝑔) | = 𝑝} = Γ2𝑔1,𝑝Γ2,



and
degΓ2

(𝑔1,𝑝) = (1 + 𝑝) (1 + 𝑝2).

We put

𝐴𝑝 := {(𝜏, 𝑥) ∈ 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ) such that 𝑥𝑝 ∈ 𝐺𝑆𝑝4(Z𝑝)}, (5.1)

𝐵𝑝 := {(𝜏, 𝑥) ∈ 𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ) such that |𝜆(𝑥) |𝑝 = 𝑝−1}. (5.2)

5.1 Ratio set of group actions
Consider the action of the countable group 𝐺 on the measure space (𝑋, F , 𝜇). We
recall the following definition from [Kri06].

Definition 5.1.1. The ratio set 𝑟 (𝐺) of the action of 𝐺 on (𝑋, F , 𝜇) consists of all
real numbers 𝜆 ≥ 0 such that for every 𝜖 > 0 and any 𝐴 ∈ F of positive measure,
there exists 𝑔 ∈ 𝐺 such that

𝜇

({
𝑥 ∈ 𝑔𝐴 ∩ 𝐴 :

����𝑑𝑔∗𝜇d𝜇
(𝑥) − 𝜆

���� < 𝜖}) > 0,

where the measure 𝑔∗𝜇 is defined by 𝑔∗𝜇(𝐵) = 𝜇(𝑔−1(𝐵)).

The ratio set depends only on the equivalence relation R = {(𝑥, 𝑔𝑥) | 𝑥 ∈ 𝑋, 𝑔 ∈
𝐺} ⊂ 𝑋 × 𝑋 and the measure class of 𝜇 (hence will denote the ratio by 𝑟 (R, 𝜇)).
Moreover one can show that the set 𝑟 (R, 𝜇)∗ := 𝑟 (R, 𝜇)∩(0,∞) is a closed subgroup
of 𝑅∗+. We then have the following result (cf. [Sun87, Proposition 4.3.18]).

Theorem 5.1.1. Let 𝐺 be a countable group 𝐺 acting by automorphisms on a
measure space (𝑋, F , 𝜇). Assume that the action of 𝐺 on (𝑋, F , 𝜇) is free and
ergodic. Then 𝐿∞(𝑋, F , 𝜇) ⋊ 𝐺 is a factor of type III1 if and only 𝑟 (R, 𝜇)∗ = 𝑅∗+.

This result motivates the following definition.

Definition 5.1.2. The action of 𝐺 on the measure space (𝑋, F , 𝜇) is said to be of
type III1 if 𝑟 (R, 𝜇) ∩ (0,∞) = R∗+.

5.2 Type I∞ factors and Gibbs states

Theorem 5.2.1. Let 𝑦 ∈ 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ) and 𝛽 > 4. Then the KMS𝛽 state
given by
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𝜙𝛽,𝑦 ( 𝑓 ) =
𝜁 (2𝛽 − 2)Tr(𝜋𝑦 ( 𝑓 )𝑒−𝛽𝐻𝑦 )

𝜁 (𝛽)𝜁 (𝛽 − 1)𝜁 (𝛽 − 2)𝜁 (𝛽 − 3) for 𝑓 ∈ A

is extremal of type of type I∞.

Proof. We have seen that the zeta function 𝜁D,L associated to the Connes-Marcolli
GSp4-system is given in equation (3.43). Since it converges for 𝛽 > 4, the result
follows from [HP05, Proposition 6.5]. We reproduce the proof for the reader’s
convenience. We need to show that the algebraA associated to the Connes-Marcolli
GSp4-system generates a factor in the GNS representation of the state 𝜙𝛽,𝑦. Consider
the following representation of A defined by

𝜋̃𝑦 : A −→ B(H𝑦 ⊗ H𝑦)
𝑎 ↦→ 𝜋𝑦 (𝑎) ⊗ 𝑖𝑑H𝑦

and denote by Ω𝛽,𝑦 the unitary vector given by

Ω𝛽,𝑦 = 𝜁𝑀𝑆𝑝4 (Z),Γ2
(𝛽)−1/2

∑︁
ℎ∈Γ2\𝐺𝑦

𝜆(ℎ)−𝛽/2𝛿Γ2ℎ
⊗ 𝛿Γ2ℎ

.

A direct computation shows that

𝜙𝛽,𝑦 = ⟨𝜋̃𝑦 ( 𝑓 )Ω𝛽,𝑦,Ω𝛽,𝑦⟩, ∀ 𝑓 ∈ A.

and

𝜋̃𝑦 ( 𝑓 )Ω𝛽,𝑦 = 𝜁𝑀𝑆𝑝4 (Z),Γ2 (𝛽)−1/2
∑︁

𝑔,ℎ∈Γ2\𝐺𝑦

𝜆(ℎ)−𝛽/2 𝑓 (𝑔ℎ−1, ℎ𝑦)𝛿Γ2𝑔
⊗ 𝛿Γ2ℎ

.

By choosing 𝑓 with a sufficiently small support, we see that 𝜋̃𝑦 (A)Ω𝛽,𝑦 is dense
in H𝑦 ⊗ H𝑦. This shows that the GNS representation is equivalent to the triple
(H𝑦 ⊗ H𝑦, 𝜋̃𝑦,Ω𝛽,𝑦). By [Con79, Proposition VII.5 b)] the commutant of 𝜋𝑦 (A)
is generated by the right regular representation of the isotropy group G𝑦𝑦 of the
groupoid G = Γ2\(𝐺 ⊠ 𝑌 ). Since 𝑦 ∈ 𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ), the isotropy group
G𝑦𝑦 is trivial which implies that 𝜋𝑦 (A)′ = C. Hence
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𝜋̃𝑦 (A)′′ = (𝜋𝑦 (A)′ ⊗ 𝐵(H𝑦))′

= 𝐵(H𝑦) ⊗ C
≃ 𝐵(H𝑦)

This shows that 𝜙𝛽,𝑦 is an extremal state of type 𝐼∞. □

5.3 Type III1 factors
Our next goal is to study the type of the von Neumann algebra generated by the
unique KMS𝛽 state 𝜙𝛽 on the 𝐺𝑆𝑝4-system in the range 3 < 𝛽 ≤ 4. For 𝛽 > 4,
it was possible to proceed with a constructive approach and compute the type of
any Gibbs state by finding an explicit formula for the GNS representation (which is
unique up to unitary equivalence). For 3 < 𝛽 ≤ 4, we use a different strategy by
extending the approach in [BC95] and [Nes11].

For 3 < 𝛽 ≤ 4, consider the unique KMS state 𝜙𝛽 on the Connes-Marcolli 𝐺𝑆𝑝4-
system and denote by 𝜇𝛽 the corresponding Γ2-invariant measure on 𝑋 given in
Proposition 3.1.6. We choose a 𝜇𝛽-measurable fundamental domain 𝐹 for the
action of Γ2 on 𝑌 . Then (See [FM77] and [LLN07, Remark 2.3] ) the algebra
𝜋𝜙𝛽 (A)′′ (recall that A = 𝐶∗𝑟 (Γ2\𝐺 ⊠Γ2 𝑌 )) induced by the state 𝜙𝛽 is isomorphic
to the reduction of the von Neumann algebra of the 𝐺-orbit equivalence relation on
(𝑋, 𝜇𝛽) by the projection 1𝐹 , that is

𝜋𝜙𝛽 (A)′′ ≃ 1𝐹 (𝐿∞(𝑋, 𝜇𝛽) ⋊ 𝐺)1𝐹 . (5.3)

Denote by 𝜆∞ the Lebesgue measure on R. We have three commuting actions of 𝐺,
R and 𝐺𝑆𝑝4(Ẑ) on the space (R+ × 𝑋, 𝜆∞ × 𝜇𝛽) as follows:

𝑔(𝑡, 𝑥) =
(𝑑𝑔∗𝜇

d𝜇
(𝑔𝑥) 𝑡, 𝑔𝑥

)
, 𝑠(𝑡, 𝑥) = (𝑒−𝑠𝑡, 𝑥) ∀𝑔 ∈ 𝐺,∀𝑠 ∈ R,

ℎ(𝑡, 𝑥) = (𝑡, 𝑥ℎ) ∀ℎ ∈ 𝐺𝑆𝑝4(Ẑ).

The following results will be useful.

Proposition 5.3.1. If the action of 𝐺 on (𝑋/𝐺𝑆𝑝4(Ẑ), 𝜇𝛽) is of type III1 then the
action of 𝐺 on (R+ × 𝑋, 𝜆∞ × 𝜇) is ergodic.

Proof. Theorem 3.2.4 together with the assumption imply that
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𝐿∞(𝑋, 𝜇𝛽)𝐺 = C, 𝐿∞(R+ × 𝑋/𝐺𝑆𝑝4(Ẑ), 𝜇𝛽)𝐺 = C.

The result follows from [LLN07, Proposition 4.6] since the actions of 𝐺, R and
𝐺𝑆𝑝4(Ẑ) on the space (R+ × 𝑋, 𝜆∞ × 𝜇𝛽) commute, 𝐺𝑆𝑝4(Ẑ) is profinite and R is
connected. □

Lemma 5.3.1. Given 3 < 𝛽 ≤ 4 and 𝜔 > 1, there exist two sequences of distinct
primes {𝑝𝑛}𝑛≥1 and {𝑞}𝑛≥1 such that

lim
𝑛

𝑞
𝛽
𝑛

𝑝
𝛽
𝑛

= 𝜔, and
∑︁
𝑛

1
𝑝
𝛽−3
𝑛

=
∑︁
𝑛

1
𝑞
𝛽−3
𝑛

= ∞.

Proof. This result follows from the proof of [BZ00, Theorem 2.9]. □

Lemma 5.3.2. Let 3 < 𝛽 ≤ 4, 𝑝 ∈ P a prime number and 𝑔1,𝑝 as in Lemma 3.2.3.
Then for the operator 𝑚(𝐴𝑝)𝑇𝑔1, 𝑝𝑚(𝐵𝑝) acting on the space 𝐿2(Γ\𝑋, 𝜈𝛽) we have
that



𝑚(𝐴𝑝)𝑇𝑔1, 𝑝𝑚(𝐵𝑝)


 ≤ 𝜈𝛽 (Γ2\𝐵𝑝)−1/2.

Proof. Combining the factorization in Corollary 3.1.1 and equation (3.32), we
have that for any 𝑔 ∈ 𝐵𝑝 we can find 𝛾1, 𝛾2 ∈ 𝑆𝑝4(Z) and 𝑔′ ∈ 𝐴𝑝 such that
𝑔 = 𝛾1𝑔1,𝑝𝑔

′𝛾2, in other words we have that 𝐵𝑝 = Γ2𝑔1,𝑝𝐴𝑝. Next recall from
Lemma 3.2.3 we have that degΓ2

(𝑔1,𝑝) = (1+ 𝑝) (1+ 𝑝2). We then fix representatives
{ℎ𝑖}1≤𝑖≤(1+𝑝) (1+𝑝2) of Γ2\Γ2𝑔1,𝑝Γ2 and choose a fundamental domain 𝑈 for the
action of the discreet group Γ2 on 𝐴𝑝. We claim that the sets Γ2ℎ𝑖𝑈 ∩ Γ2ℎ 𝑗𝑈 = ∅
for 𝑖 ≠ 𝑗 and the projection map 𝜋 : 𝑋 → Γ2\𝑋 is injective on the sets ℎ𝑖𝑈.
Indeed, if ℎ−1

𝑗
𝛾ℎ𝑖𝑥1 = 𝑥2, for some 𝛾 ∈ Γ2 and 𝑥1, 𝑥2 ∈ 𝐴𝑝, then necessarily

ℎ−1
𝑗
𝛾ℎ𝑖 ∈ 𝐺𝑆𝑝4(Z𝑝) ∩ 𝐺 𝑝 = Γ2 as shown in the proof of Theorem 3.2.1. Since 𝜋

is injective on 𝑈, we obtain that 𝑥1 = 𝑥2 and since the action of Γ2 on 𝐴𝑝 is free, it
follows that 𝑖 = 𝑗 . Given any 𝑓 ∈ 𝐿2(Γ2\𝑋, 𝜈𝛽), we have that

��𝑇𝑔 ( 𝑓 )��2 ≤ 𝑇𝑔 ( | 𝑓 |2)
pointwise since the function 𝑡 ↦→ 𝑡2 is convex. Since

𝜆(ℎ𝑖) = 𝑝 ∀𝑖 = 1, . . . , (1 + 𝑝) (1 + 𝑝2)

and the 𝜋(ℎ𝑖𝑈), 𝑖 = 1, . . . , (1 + 𝑝) (1 + 𝑝2) are disjoint, we obtain
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𝑚(𝐴𝑝)𝑇𝑔1, 𝑝𝑚(𝐵𝑝) ( 𝑓 )


2

2 =


𝑚(𝐴𝑝)𝑇𝑔1, 𝑝 ( 𝑓 )



2
2

≤
∫
Γ2\𝐴𝑝

��𝑇𝑔1, 𝑝 ( 𝑓 )
��2 d𝜈𝛽

≤
∫
Γ2\𝐴𝑝

𝑇𝑔1, 𝑝 ( | 𝑓 |)2 d𝜈𝛽

=
1

degΓ2
(𝑔1,𝑝)

(1+𝑝) (1+𝑝2)∑︁
𝑖=1

∫
𝑈

| 𝑓 (𝑝(ℎ𝑖 ·) |2 d𝜇𝛽

=
𝑝𝛽

degΓ2
(𝑔1,𝑝)

(1+𝑝) (1+𝑝2)∑︁
𝑖=1

∫
ℎ𝑖𝑈

( 𝑓 ◦ 𝑝)2 d𝜇𝛽

≤ 𝑝𝛽

degΓ2
(𝑔1,𝑝)

∥ 𝑓 ∥22.

Thus 

𝑚(𝐴𝑝)𝑇𝑔1, 𝑝𝑚(𝐵𝑝)


 ≤ 𝑝𝛽/2 degΓ2

(𝑔1,𝑝)−1/2.

On the other hand, recall that for 3 < 𝛽 ≤ 4, the measure 𝜇𝛽 om 𝑋 is given by the
proof of Proposition 3.2.2. Using the computation leading to (3.41), we have that

𝜇𝛽,𝑝 (𝐺𝑆𝑝4(Z𝑝)) = 𝜁𝑆2, 𝑝 ,Γ2 (𝛽)−1.

Since 𝐵𝑝 = Γ2𝑔1,𝑝𝐴𝑝, we can now compute 𝜈𝛽 (Γ2\𝐵𝑝) using the scaling property
of 𝜇𝛽,𝑝. Hence

𝜈𝛽 (Γ2\𝐵𝑝) = 𝑝−𝛽 degΓ2
(𝑔1,𝑝)𝜈𝛽 (Γ2\𝐴𝑝) ≤ 𝑝−𝛽 degΓ2

(𝑔1,𝑝),

which concludes the proof since degΓ2
(𝑔1,𝑝) = (1 + 𝑝) (1 + 𝑝2). □

Lemma 5.3.3. Given 𝑟 ∈ 𝐺𝑆𝑝4(Q𝐹) and a finite set of primes 𝐹, we set

𝑍 := Γ2\𝑃𝐺𝑆𝑝+4 (R) × (𝐺𝑆𝑝4(Z𝐹)𝑟𝐺𝑆𝑝4(Z𝐹)).

Assume 𝑓 is a continuous right 𝐺𝑆𝑝4(Z𝐹)-invariant function on 𝑍 with compact
support. Then for any 𝜖 > 0, there exits a constant 𝐶 (𝜖) such that for any compact
subset Ω of 𝑍 and any finite subset 𝑆 of 𝐹𝑐, we have that����𝑇𝑔 𝑓 (𝑥) − 𝜈𝛽,𝐹 (𝑍)−1

∫
𝑍

𝑓 d𝜈𝛽,𝐹
���� < 𝐶 (𝜖) ∏

𝑝∈𝑆
𝑝2𝜖−1 for all 𝑥 ∈ Ω,

where 𝑔 =
∏

𝑝∈𝑆 𝑔1,𝑝 and 𝑔1,𝑝 is as in Lemma 3.2.3.
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Proof. We let
𝐻 = 𝐺𝑆𝑝4(Z𝐹) ∩ 𝑟𝐺𝑆𝑝4(Z𝐹)𝑟−1,

and

𝐾 = 𝐻 ×
∏
𝑝∈𝐹𝑐

𝐺𝑆𝑝4(Z𝑝).

By viewing 𝐺𝑆𝑝4(Z𝐹) and
∏

𝑝∈𝐹𝑐 𝐺𝑆𝑝4(Z𝑝) as subgroups of 𝐺𝑆𝑝4(Ẑ) (e.g., by
considering 𝐺𝑆𝑝4(Z𝐹) as the subgroup of 𝐺𝑆𝑝4(Ẑ) consisting of elements with
coordinates 1 for 𝑝 ∈ 𝐹𝑐 ), we obtain the following homeomorphism

Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Z𝐹)/𝐻 ≃ Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ)/𝐾.

The quotient 𝐺𝑆𝑝4(Z𝐹)/𝐻 can be unidentified with the 𝐺𝑆𝑝4(Z𝐹)-space
𝐺𝑆𝑝4(Z𝐹)𝑟𝐺𝑆𝑝4(Z𝐹). Hence we can consider 𝑓 as function on

Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝐺𝑆𝑝4(Ẑ)/𝐾.

Next, we have that 𝐺𝑆𝑝4(Ẑ) = Γ2𝐾 . In fact, since 𝐾 is an open compact subgroup
of 𝐺𝑆𝑝4(Ẑ), this follows from the proof of Corollary 3.1.1 if the surjectivity of the
map 𝜆 : 𝐻 → Ẑ× is assumed.

Let 𝑥 ∈ Z×
𝐹

and consider a diagonal element 𝛼 ∈ 𝐺𝑆𝑝4(Z𝐹) such that 𝜆(𝛼) = 𝑥.
We choose 𝛾1, 𝛾2 ∈ 𝐺𝑆𝑝4(Z𝐹) and 𝑟 a diagonal element of 𝐺𝑆𝑝4(Q𝐹) such that
𝑟 = 𝛾1𝑟𝛾2 (this follows from the proof of the Elementary Divisor Theorem since the
𝑝-adic ring of integers is a PID). Then it is clear that 𝛾1𝛼𝛾

−1
1 ∈ 𝐻 since 𝛼 = 𝑟𝛼𝑟−1.

Since 𝜆(𝛾1𝛼𝛾
−1
1 ) = 𝜆(𝛼), we conclude that 𝜆(𝐻) = Z×

𝐹
.

We can now proceed as in the proof of Proposition 3.2.3 and use [COU01, Theorem
1.7 and section 4.7] to obtain the upper bound. □

Lemma 5.3.4. Let 𝐹 be a finite set of primes and 𝑓 be any positive continuous
right 𝐺𝑆𝑝4(Z𝐹)-invariant function on Γ2\(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹)) ⊂ Γ2\𝑋𝐹
with

∫
Γ2\𝑋𝐹

𝑓 d𝜈𝛽,𝐹 = 1. Then given any 0 < 𝛿 < 1, there exists 𝑀 > 0 such that∫
Γ2\𝑋𝐹

(𝑇𝑔1, 𝑝 𝑓 ) (𝑇𝑔1,𝑞 𝑓 ) d𝜈𝛽,𝐹 ≥ (1 − 𝛿)5 for 𝑝, 𝑞 > 𝑀, 𝑝, 𝑞 ∈ 𝐹𝑐 .
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Proof. Fix 0 < 𝛿 < 1 and we consider the following decomposition

Γ2\𝑃𝐺𝑆4(R) × (𝐺𝑆𝑝4(Q𝐹) ∩ 𝑀𝑆𝑝4(Z𝐹)) =
⋃
𝑘≥1

𝑍𝑘 ,

where 𝑍𝑘 = Γ2\(𝑃𝐺𝑆+4 (R) × (𝐺𝑆𝑝4(Z𝐹)𝑔𝑘𝐺𝑆𝑝4(Z𝐹)) and (𝑔𝑘 )𝑘≥1 are represen-
tatives of the double coset

𝐺𝑆𝑝4(Z𝐹)\(𝐺𝑆𝑝4(Q𝐹) ∩ 𝑀𝑆𝑝4(Z𝐹))/𝐺𝑆𝑝4(Z𝐹).

Given any 𝑁 ∈ N and any compact subsets 𝐶𝑘 of 𝑍𝑘 , 𝑘 = 1, . . . , 𝑁 , we can use
Lemma 5.3.3 to find 𝑀 > 0 such that if 𝑝 ∈ 𝐹𝑐 with 𝑝 > 𝑀 , then

����𝑇𝑔1, 𝑝 𝑓 (𝑥) − 𝜈𝛽,𝐹 (𝑍𝑘 )−1
∫
𝑍𝑘

𝑓 d𝜈𝛽,𝐹
���� < 𝛿𝜈𝛽,𝐹 (𝑍𝑘 )−1

∫
𝑍𝑘

𝑓 d𝜈𝛽,𝐹 , ∀𝑥 ∈ 𝐶𝑘 ,

where 1 ≤ 𝑘 ≤ 𝑁 . Hence for two distinct primes 𝑝 and 𝑞 such that 𝑝, 𝑞 > 𝑀 , we
get

∫
Γ2\𝑋𝐹

(𝑇𝑔1, 𝑝 𝑓 ) (𝑇𝑔1,𝑞 𝑓 ) d𝜈𝛽,𝐹 ≥
𝑁∑︁
𝑘=1

∫
𝐶𝑘

(𝑇𝑔1, 𝑝 𝑓 ) (𝑇𝑔1,𝑞 𝑓 ) d𝜈𝛽,𝐹

≥ (1 − 𝛿)2
𝑁∑︁
𝑘=1

( ∫
𝑍𝑘

𝑓 d𝜈𝛽,𝐹
)2
𝜈𝛽,𝐹 (𝑍𝑘 )−2𝜈𝛽,𝐹 (𝐶𝑘 ).

By regularity of the measure 𝜈𝛽,𝐹 , we can choose the compact subsets 𝐶𝑘 such that

𝜈𝛽,𝐹 (𝑍𝑘 ) − 𝜈𝛽,𝐹 (𝐶𝑘 ) < 𝛿𝜈𝛽,𝐹 (𝑍𝑘 ), 1 ≤ 𝑘 ≤ 𝑁. (5.4)

Moreover, recall that the subset ∪𝑘𝑍𝑘 ⊂ Γ2\𝑋𝐹 has full measure, hence we choose
𝑁 large such that

∫
Γ2\𝑋𝐹

𝑓 d𝜈𝛽,𝐹 −
𝑁∑︁
𝑘=1

∫
𝑍𝑘

𝑓 𝜈𝛽,𝐹 < 𝛿. (5.5)

Combining equations (5.4) and (5.5), we obtain by Jensen’s inequality that for any
𝑝, 𝑞 > 𝑀 , we have
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∫
Γ2\𝑋𝐹

(𝑇𝑔1, 𝑝 𝑓 ) (𝑇𝑔1,𝑞 𝑓 ) d𝜈𝛽,𝐹

≥ (1 − 𝛿)3
( 𝑁∑︁
𝑘=1

𝜈𝛽,𝐹 (𝑍𝑘 )
) 𝑁∑︁
𝑘=1

𝜈𝛽,𝐹 (𝑍𝑘 )∑𝑁
𝑘=1 𝜈𝛽,𝐹 (𝑍𝑘 )

( 1
𝜈𝛽,𝐹 (𝑍𝑘 )

∫
𝑍𝑘

𝑓 d𝜈𝛽,𝐹
)2

≥ (1 − 𝛿)3∑𝑁
𝑘=1 𝜈𝛽,𝐹 (𝑍𝑘 )

( 𝑁∑︁
𝑘=1

∫
𝑍𝑘

𝑓 d𝜈𝛽,𝐹
)2

≥ (1 − 𝛿)5,

since
∫
Γ2\𝑋𝐹

𝑓 d𝜈𝛽,𝐹 = 1 and
⋃𝑁
𝑘=1 𝑍𝑘 ⊂ Γ2\𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹).

□

Lemma 5.3.5. Let 𝐵 be a measurable Γ2-invariant subset of 𝑌 and define 𝜙 ∈
𝐿2(Γ2\𝑋, 𝑑𝜈𝛽) as follows:

𝜙 = 𝜈−1
𝛽 (Γ2\𝐵) 1Γ2\𝐵.

Then there exists a finite set of primes 𝐹 and a function 𝑓 ∈ 𝐿2(Γ\𝑋𝐹 , 𝑑𝜈𝛽,𝐹) such
that ∫

Γ2\𝑋𝐹
𝑓 𝑑𝜈𝛽,𝐹 = 1,

and
∥ 𝑓𝐹 − 𝜙∥2 → 0 as 𝐹 ↗ P .

Proof. Let

𝑓 := 𝜈−1
𝛽,𝐹 (Γ2\𝜋𝐹 (𝐵)) 1Γ2\𝜋𝐹 (𝐵) .

Hence ∫
Γ2\𝑋
| 𝑓𝐹 |2𝑑𝜈𝛽 =

∫
Γ2\𝑌
| 𝑓 ◦ 𝜋𝐹 |2𝑑𝜈𝛽

= 𝜈−1
𝛽,𝐹 (Γ2\𝜋𝐹 (𝐵)).

On the other hand we have ∫
Γ2\𝑋
|𝜙 |2𝑑𝜈𝛽 = 𝜈−1

𝛽 (Γ2\𝐵).
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Hence ∥ 𝑓𝐹 ∥2 → ∥𝜙∥2 as 𝐹 ↗ P, which concludes the proof since ( 𝑓𝐹 , 𝜙) = ∥𝜙∥2.

□

Lemma 5.3.6. Let 𝛽, 𝜔 ∈ R∗+ such that 3 < 𝛽 ≤ 4 and 𝜔 > 1 and set

𝜅 :=
𝜔(3−𝛽)/2𝛽

1 + 𝜔(3−𝛽)/𝛽
.

Then given any finite set of primes 𝐹 and any positive continuous right 𝐺𝑆𝑝4(Z𝐹)-
invariant function on Γ2\(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹)) with

∫
Γ2\𝑋𝐹

𝑓 d𝜈𝛽,𝐹 = 1, there
exist two sequences of distinct primes {𝑝𝑛}𝑛≥1 and {𝑞𝑛}𝑛≥1 in 𝐹𝑐 and Γ2-invariant
measurable subsets 𝑋1𝑛, 𝑋2𝑛, 𝑌1𝑛 and 𝑌2𝑛, 𝑛 ≥ 1 of 𝑋 such that:

1. lim𝑛

���𝑞𝛽𝑛/𝑝𝛽𝑛 − 𝜔��� = 0

2. The sets 𝑌1𝑛 and 𝑌2𝑛, 𝑛 ≥ 1 are mutually disjoint;

3.
∑∞
𝑛=1

(
𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)
∥𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)∥ 𝑓𝐹 ,

𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)
∥𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)∥ 𝑓𝐹

)
≥ 𝜅 where 𝑔𝑛 := 𝑔1,𝑝𝑛 and

ℎ𝑛 := 𝑔1,𝑞𝑛 .

Proof. Let 𝐹 ⊂ P be any nonempty finite set of primes and 𝑓 any positive con-
tinuous right 𝐺𝑆𝑝4(Z𝐹)-invariant function on Γ2\(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹)) with∫
Γ2\𝑋𝐹

𝑓 d𝜈𝛽,𝐹 = 1 and fix 𝜖 > 0. By Lemma 5.3.1 we can find two disjoint
sequences of prime numbers {𝑝𝑛}𝑛≥1 and {𝑞𝑛}𝑛≥1 in 𝐹𝑐 such that

lim
𝑛
𝑞
𝛽
𝑛/𝑝𝛽𝑛 = 𝜔,

and

∞∑︁
𝑛=1

1
𝑝
𝛽−3
𝑛

= ∞. (5.6)

We let 𝐵(1)𝑛 = ∪𝑘=𝑛−1
𝑘=1 𝐵𝑝𝑘 and 𝐵(2)𝑛 = ∪𝑘=𝑛−1

𝑘=1 𝐵𝑞𝑘 (where 𝐵𝑝𝑘 and 𝐵𝑞𝑘 are as in (5.2))
and set

𝑋1𝑛 := 𝐴𝑝𝑛\𝐵
(1)
𝑛 , 𝑌1𝑛 := 𝐵𝑝𝑛\𝐵

(1)
𝑛 ,

𝑋2𝑛 := 𝐴𝑞𝑛\𝐵
(2)
𝑛 , 𝑌2𝑛 := 𝐵𝑞𝑛\𝐵

(2)
𝑛 ,
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where 𝐴𝑝𝑛 , 𝐴𝑞𝑛 are as in (5.1). By construction the sets 𝑌1𝑛 and 𝑌2𝑛, 𝑛 ≥ 1 are
mutually disjoint so it remains to show the last assertion. By Lemma 5.3.4, we
choose 𝑀 > 0 and the sequences {𝑝𝑛}𝑛≥1, {𝑞𝑛}≥1 such that

∫
Γ2\𝑋𝐹

(𝑇𝑔𝑛 𝑓 ) (𝑇ℎ𝑛 𝑓 ) d𝜈𝛽,𝐹 ≥ (1 − 𝜖)1/2, ∀𝑛 ≥ 1. (5.7)

Observe that if 𝑔 ∈ Γ2𝑔1,𝑝𝑛Γ2 then 𝑔𝑋1𝑛 ⊂ 𝑌1𝑛 since 𝑔𝐴𝑝𝑛 ⊂ 𝐵𝑝𝑛 and |𝜆(𝑔) |𝑝𝑘 = 𝑝
−1
𝑘

for all 1 ≤ 𝑘 < 𝑛. By definition of the Hecke operator 𝑇𝑔1, 𝑝𝑛
we get that

𝑚(𝑋1𝑛)𝑇𝑔1, 𝑝𝑛
𝑚(𝑌1𝑛) 𝑓𝐹 = 𝑚(𝑋1𝑛) (𝑇𝑔1, 𝑝𝑛

𝑓 )𝐹 .

Similarly, we have

𝑚(𝑋2𝑛)𝑇𝑔1,𝑞𝑛
𝑚(𝑌2𝑛) 𝑓𝐹 = 𝑚(𝑋2𝑛) (𝑇𝑔1,𝑞𝑛

𝑓 )𝐹 .

By Lemma 5.3.2 and Equation (5.7) we obtain

∞∑︁
𝑛=1

( 𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)

𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)


 𝑓𝐹 , 𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)

𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)



 𝑓𝐹 )
≥
∞∑︁
𝑛=1
(𝜈𝛽 (Γ2\𝐵𝑝𝑛)𝜈𝛽 (Γ2\𝐵𝑞𝑛))1/2𝜈𝛽 (Γ2\𝑋1𝑛 ∩ 𝑋2𝑛)

∫
Γ2\𝑋𝐹

(𝑇𝑔𝑛 𝑓 ) (𝑇ℎ𝑛 𝑓 ) d𝜈𝛽,𝐹

≥
∞∑︁
𝑛=1
(𝜈𝛽 (Γ2\𝐵𝑝𝑛)𝜈𝛽 (Γ2\𝐵𝑞𝑛))1/2( 𝑛−1∏
𝑘=1
(1 − 𝜈𝛽 (Γ2\𝐵𝑝𝑘 ∪ 𝐵𝑞𝑘 ))

)
𝜈𝛽 (Γ2\𝐴𝑝𝑛)𝜈𝛽 (Γ2\𝐴𝑞𝑛) (1 − 𝜖)1/2.

Since

𝜈𝛽 (Γ2\𝐴𝑝𝑛)𝜈𝛽 (Γ2\𝐴𝑞𝑛) = 𝜁𝑆2, 𝑝𝑛 ,Γ2 (𝛽)−1𝜁𝑆2,𝑞𝑛 ,Γ2 (𝛽)−1,

and

𝜈𝛽 (Γ2\𝐵𝑝𝑛)𝜈𝛽 (Γ2\𝐵𝑞𝑛)
= (𝑝𝑛𝑞𝑛)−𝛽 degΓ2

(𝑔1,𝑝𝑛) degΓ2
(𝑔1,𝑞𝑛)𝜁𝑆2, 𝑝𝑛 ,Γ2 (𝛽)−1𝜁𝑆2,𝑞𝑛 ,Γ2 (𝛽)−1,

we obtain that
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(𝜈𝛽 (Γ2\𝐵𝑝𝑛)𝜈𝛽 (Γ2\𝐵𝑞𝑛))1/2𝜈𝛽 (Γ2\𝐴𝑝𝑛)𝜈𝛽 (Γ2\𝐴𝑞𝑛)
𝜈𝛽 (Γ2\𝐵𝑝𝑛 ∪ 𝐵𝑞𝑛)

∼ (𝑝𝛽𝑛𝑞𝛽𝑛)3−𝛽/2𝛽

(𝑝3−𝛽
𝑛 + 𝑞3−𝛽

𝑛 − (𝑝𝑛𝑞𝑛)3−𝛽)
,

since 3 < 𝛽 ≤ 4. Hence we can choose the sequences {𝑝𝑛}𝑛≥1 and {𝑞𝑛}≥1 such that
for all 𝑛 ≥ 1, we have

(𝜈𝛽 (Γ2\𝐵𝑝𝑛)𝜈𝛽 (Γ2\𝐵𝑞𝑛))1/2𝜈𝛽 (Γ2\𝐴𝑝𝑛)𝜈𝛽 (Γ2\𝐴𝑞𝑛)
𝜈𝛽 (Γ2\𝐵𝑝𝑛 ∪ 𝐵𝑞𝑛)

>
𝜔(3−𝛽)/2𝛽

1 + 𝜔(3−𝛽)/𝛽
(1 − 𝜖)1/2.

Since

∞∑︁
𝑛=1

𝜈𝛽 (Γ2\𝐵𝑝𝑛 ∪ 𝐵𝑞𝑛) ≥
∞∑︁
𝑛=1

𝜈𝛽 (Γ2\𝐵𝑝𝑛) ∼
∞∑︁
𝑛=1

1
𝑝
𝛽−3
𝑛

= ∞

by equation (5.6), we finally obtain that

∞∑︁
𝑛=1

( 𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)

𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)


 𝑓𝐹 , 𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)

𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)



 𝑓𝐹 ) ≥ 𝜔(3−𝛽)/2𝛽

1 + 𝜔(3−𝛽)/𝛽
(1 − 𝜖),

where the last inequality follows from the fact that

∞∑︁
𝑛=1

𝜈𝛽 (Γ2\𝐵𝑝𝑛 ∪ 𝐵𝑞𝑛)
( 𝑛−1∏
𝑘=1
(1 − 𝜈𝛽 (Γ2\𝐵𝑝𝑘 ∪ 𝐵𝑞𝑘 ))

)
= 1.

Since 𝜖 was arbitrary, this completes the proof. □

We are now ready to state and prove the main Theorem of this chapter.

Theorem 5.3.1. Let 3 < 𝛽 ≤ 4. Then the unique KMS𝛽 state on the Connes-Marcolli
𝐺𝑆𝑝4-system is of type III1.

Proof. In view of the isomorphism in (5.3) and Theorem 5.1.1, we need to show
that the action of 𝐺 on (𝑋, 𝜇𝛽) is of type III1. This is the case ( [Nes11]) if and
only if the action of 𝐺 on (R+ × 𝑋, 𝜆∞ × 𝜇) is ergodic. Hence by Proposition
5.3.1 it is enough to show that the action of 𝐺𝑆𝑝+4 (Q) on the space (𝑃𝐺𝑆𝑝+4 (R) ×
𝑀𝑆𝑝4(A 𝑓 )/𝐺𝑆𝑝4(Ẑ), 𝜈𝛽) is of type III1. Since 𝑟 (R, 𝜇)∗ is a closed subgroup of
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R∗+, it is enough to show that any real number 𝜔 > 1 belongs to the ratio set
𝑟 (R, 𝜇𝛽) corresponding to this action. Fix 𝜖 > 0 and let 𝐵 be any measurable right
𝐺𝑆𝑝4(Ẑ)-invariant subset of 𝑋 with positive measure.

Let 𝐹 be any finite set of primes, 𝑓 any positive continuous right𝐺𝑆𝑝4(Z𝐹)-invariant
function with compact support in Γ2\(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Z𝐹)), 𝑋1𝑛, 𝑋2𝑛, 𝑌1𝑛, 𝑌2𝑛

any mutually disjoint Γ2-invariant measurable subsets of 𝑋 and {𝑝𝑛}𝑛≥1, {𝑞𝑛}𝑛≥1

any two sequences of distinct primes in 𝐹𝑐. To ease the notation we set

𝑇
(1)
𝑛 =

𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)

𝑚(𝑋1𝑛)𝑇𝑔𝑛𝑚(𝑌1𝑛)


 , 𝑇

(2)
𝑛 =

𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)

𝑚(𝑋2𝑛)𝑇ℎ𝑛𝑚(𝑌2𝑛)


 ,

𝑒
(1)
𝑛 := 𝑚(𝑌1𝑛), 𝑒

(2)
𝑛 := 𝑚(𝑌2𝑛).

Let 𝜙 ∈ 𝐿2(Γ2\𝑋, 𝑑𝜈𝛽). Since



𝑇 (1)𝑛




 =




𝑇 (2)𝑛




 = 1 and 𝑒′𝑛, 𝑒′′𝑛 are projections, we
obtain by Cauchy-Schwartz that

∑︁
𝑛

(𝑇 (1)𝑛 𝜙,𝑇
(2)
𝑛 𝜙) ≥

∑︁
𝑛

(𝑇 (1)𝑛 𝑓𝐹 , 𝑇
(2)
𝑛 𝑓𝐹) −




𝑒(1)𝑛 ( 𝑓𝐹 − 𝜙)



2




𝑒(2)𝑛 𝑓𝐹





2

−



𝑒(2)𝑛 ( 𝑓𝐹 − 𝜙)




2




𝑒(1)𝑛 𝜙





2

≥
∑︁
𝑛

(𝑇 (1)𝑛 𝑓𝐹 , 𝑇
(2)
𝑛 𝑓𝐹) −

(∑︁
𝑛




𝑒(1)𝑛 ( 𝑓𝐹 − 𝜙)


2

2

)1/2 (∑︁
𝑛




𝑒(2)𝑛 𝑓𝐹




2

2

)1/2

−
(∑︁

𝑛




𝑒(2)𝑛 ( 𝑓𝐹 − 𝜙)


2

2

)1/2 (∑︁
𝑛




𝑒(1)𝑛 (𝜙)


2

2

)1/2

≥
∑︁
𝑛

(𝑇 (1)𝑛 𝑓𝐹 , 𝑇
(2)
𝑛 𝑓𝐹) − ∥ 𝑓𝐹 − 𝜙∥2(∥ 𝑓𝐹 ∥2 + ∥𝜙∥2).

Since the subset 𝐺𝑆𝑝+4 (Q)𝐵 is completely determined by its intersection with
𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ), there exists 𝑔0 such that the intersection 𝐵0 := 𝑔0𝐵 ∩
(𝑃𝐺𝑆𝑝+4 (R) × 𝑀𝑆𝑝4(Ẑ)) has positive measure. We set

𝜙 := 𝜈𝛽 (Γ2\Γ2𝐵0)1Γ2\Γ2𝐵0 .

Let 𝜅 = 𝜔 (3−𝛽)/2𝛽

1+𝜔 (3−𝛽)/𝛽 . By Lemma 5.3.5 there exists 𝑓 and 𝐹 ⊂ P large enough such
that

∥ 𝑓𝐹 − 𝜙∥2(∥ 𝑓𝐹 ∥2 + ∥𝜙∥2) < 𝜅,
∫
Γ2\𝑋𝐹

𝑓 𝑑𝜈𝐹,𝛽 = 1.
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Hence by Lemma 5.3.6 there exists 𝑚 ∈ N such that (𝑇 (1)𝑚 𝜙,𝑇
(2)
𝑚 𝜙) > 0. This

implies that (𝑇𝑔𝑚𝜙,𝑇ℎ𝑚𝜙) > 0, in particular this shows that the subset Γ2𝑔
−1
𝑚 Γ2𝐵0 ∩

Γ2ℎ
−1
𝑚 Γ2𝐵0 ⊂ 𝑋 has positive measure. Thus there exist 𝑔 ∈ Γ2𝑔𝑚Γ2 and ℎ ∈

Γ2ℎ𝑚Γ2 such that 𝑔−1𝐵0 ∩ ℎ−1𝐵0 has positive measure, which implies that the set
𝑔−1

0 ℎ𝑔−1𝑔0𝐵 ∩ 𝐵 has positive measure. If we set 𝑔̃ := 𝑔−1
0 ℎ𝑔−1𝑔0, we get by the

scaling condition 3.30 that

���� d𝑔̃∗𝜇𝛽
d𝜇𝛽

(𝑥) − 𝜔
���� = ��𝜆(𝑔−1

0 ℎ𝑔−1𝑔0)𝛽 − 𝜔
�� = �����𝑞𝛽𝑚𝑝𝛽𝑚 − 𝜔

����� < 𝜖, ∀𝑥 ∈ 𝑔̃𝐵 ∩ 𝐵.
This shows that 𝜔 ∈ 𝑟 (R, 𝜇𝛽), which completes the proof. □
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C h a p t e r 6

CONCLUSION

The aim of this thesis was to study three different aspects of the Connes-Marcolli
system associated to the Siegel modular variety of degree 2. At inverse temperature
𝛽 = 3, we proved that this quantum dynamical system undergoes a spontaneous
symmetry breaking phase transition reminiscent of a Higgs mechanism. We then
proved an inequality which intertwines the action by symmetries at zero temperature
and the Galois action of a subgroup of the Siegel modular field on the values of the
equilibrium states. Finally, we showed that a phase transition occurs at the level
of the von Neumann algebras generated by the equilibrium states. The following
theorem summarizes these results.

Theorem 6.0.1. For the Connes-Marcolli 𝐺𝑆𝑝4-system, the following assertions
hold:

1. There is no KMS𝛽 state in the range 0 < 𝛽 < 3 and 𝛽 ∉ {1, 2}.

2. There exists a unique KMS𝛽 state of type III1 in the range 3 < 𝛽 ≤ 4.

3. For 4 < 𝛽 < ∞, every extremal KMS𝛽 state is of type I∞ and is given by the
explicit formula

𝜙𝛽,𝑦 ( 𝑓 ) =
𝜁 (2𝛽 − 2)Tr(𝜋𝑦 ( 𝑓 )𝑒−𝛽𝐻𝑦 )

𝜁 (𝛽)𝜁 (𝛽 − 1)𝜁 (𝛽 − 2)𝜁 (𝛽 − 3) , 𝑦 ∈ H+2×𝐺𝑆𝑝4(Ẑ), ∀ 𝑓 ∈ A.

4. In the range 4 < 𝛽 ≤ ∞, the set of extremal states is identified with the
Shimura variety Sh(𝐺𝑆𝑝4,H

±
2 ),

E𝛽 ≃ 𝐺𝑆𝑝4(Q)\H±2 × 𝐺𝑆𝑝4(AQ, 𝑓 ).

5. For 𝛽 = ∞ and a generic point 𝜏 ∈ H+𝑛 , there exists a subgroup 𝑆′ of Aut(𝐹)
and an isomorphism 𝜗−1 : 𝑆′ → 𝑆 = Q×\𝐺𝑆𝑝4(AQ, 𝑓 ) which intertwines the
Galois action on the values of the states with the action by symmetries as
follows:

𝛼∗
𝜗−1 (𝑔) (𝜙∞,𝑦) ( 𝑓 ) = Aut𝜏 (𝜌𝜗−1(𝑔)𝜌−1) · 𝜙∞,𝑦 ( 𝑓 ), ∀ 𝑓 ∈ Aarith

Q , ∀𝑔 ∈ 𝑆′.



Future work
One possible approach to generalize the results of this thesis is to consider the
arbitrary case where 𝑛 > 2. For these higher dimensional systems, one needs an
alternative approach to obtain a closed formula of 3.37 and prove an analogue of
Lemma 3.2.4. Another promising direction would be to utilize the ideas and tools
used in this research to study the Connes-Marcolli system associated to the Hilbert
Modular Surface. Finally, the author also believes that the tools presented in this
thesis can provide a starting point for a full analysis of new systems which can be
constructed out of other linear algebraic groups.
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