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ABSTRACT

The evolution of the human brain was one of the milestones in the history of
information after the emergence of life. The underlying biological, chemical, and
physical processes of the brain have amazed scientists for a long time. It is still a
mystery how the human brain computes a simple arithmetical operation like 2+2 = 4.
This enigma has spurred investigations into understanding the intrinsic architecture
of the brain.

This thesis delves into two primary models for brain architecture: Feedforward
Neural Networks and Nearest Neighbor (NN) Representations. Both models are
treated under the hypothesis that our brain does not work with “large” numbers and
expressive power is derived from connectivity. Thus, when examining a network or,
more precisely, a single neuron model, we strive to minimize the bit resolution of
weights, potentially increasing depth or circuit complexity.

For the NN representations, the memory is defined by a set of vectors in R𝑛 (that
we call anchors), computation is performed by convergence from an input vector
to a nearest neighbor anchor, and the output is a label associated with an anchor.
Limited bit resolution in the anchor entries may result in an increase of the size of
the NN representation.

In the digital age, computers universally employ the binary numeral system, ensur-
ing the enduring relevance of Boolean functions. This study specifically explores
the trade-off between resolution and size for the computation models for Boolean
functions. It is established that “low resolution” models may require a polynomial or
even an exponential increase in the size complexity of the “high resolution” model,
potentially making the practical implementation infeasible. Building upon prior
research, our goal is to optimize these blow-ups by narrowing the gaps between
theoretical upper and lower bounds under various constraints. Additionally, we aim
to establish connections between NN representations and neural network models by
providing explicit NN representations for well-known Boolean functions in Circuit
Complexity Theory.
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C h a p t e r 1

INTRODUCTION

The evolution of the human brain was one of the milestones in the history of
information after the emergence of life. The human brain enabled us the use
of natural languages and it was the first instance of which we are aware when an
information system was able to begin understanding itself and utilize the surrounding
information in many different ways to build, to store, and to share information,
similar to DNA but much more extensive. It is still a mystery how the human brain
computes a simple arithmetical operation like 2 + 2 = 4 biologically, chemically,
and physically. Its capabilities and capacity are not unlimited, though. Even
the first computers were able to outperform human brain in terms of speed and
computation precision for even more complex tasks. Nevertheless, at least for
image processing and pattern recognition, even a baby was more successful than
computers for a long time. This intrigued the researchers who sought to understand
the intrinsic architecture of the brain and, therefore, inspired many scientists to
develop some mathematical models. In this thesis, we consider two main models
for the brain architecture: the first is the feedforward neural networks, which has
been well known for decades and is immensely popular; the second is a relatively
new associative computation model by Nearest Neighbor Representations. An
important observation is that memory happens to be embedded in the connectivity
patterns of the neural networks and one can argue that the brain does not obey
von Neumann Computer Architecture which has a distinction between computation
and memory. Considering the integrated architecture of the brain, computation and
memory are indistinguishable. Motivated by this, we propose a model of Associative
Computation where the memory is defined by a set of vectors in R𝑛 (that we call
anchors), the computation is performed by convergence from an input vector to a
Nearest Neighbor anchor, and the output is a label associated with an anchor. This
paradigm relates to the ability of the brain to quickly classify objects and map those
to the syntax of natural languages, for example, it is instantaneous and effortless,
even for a child, to recognize a ‘dog’, a ‘cat’, or a ‘car’.
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1.1 Neural Networks and Complexity Parameters
Historically, the first abstract mathematical models for neurons were developed in
the 1940’s and 1950’s, which are called perceptrons (McCulloch and Pitts, 1943;
Rosenblatt, 1958). More precisely, a perceptron is a function that computes a
weighted summation of real inputs (i.e. 𝑧 =

∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖) and feeds it to a real valued

activation function 𝜎(𝑧). By connecting perceptrons in a big network, it was
hypothesized that the computation capability of the brain could have been achieved.
There were three important questions, though. Given a target function that we want
to compute, how can we adjust or “learn” the perceptron weights? How deep and
large should the neural network be? What would be the largest weight size (or the
number of bits to represent it) of the network?

The first question is answered by using backpropagation to learn a target function in
Machine Learning (Rumelhart, Hinton, and R. J. Williams, 1986). The technique
relied on perceptrons having differentiable activation functions. Over the years, it
became the backbone of the deep learning algorithms and its practical use is shown
in many fields including the trending Generative Artifical Intelligence in Natural
Language Processing(NLP) and Diffusion models in Image Processing.

In contrast, the answer to the second question did not give any practical answer
even though it was theoretically demonstrated that any real-valued function can be
approximated by a depth-2 perceptron circuit with sigmoid activation function (Cy-
benko, 1989; Hornik, 1991). This is called the Universal Approximation Theorem.
Nevertheless, in this result, the number of required neurons in the first layer was
unbounded. A complementary result is obtained for Rectified Linear Unit (ReLU)
activations, i.e. ReLU(𝑧) = max(0, 𝑧), where the width of the circuit is bounded but
not the depth (Lu et al., 2017; Park et al., 2021). Alternatively, for bounded width
and depth, the “ambiguity” can be absorbed into the activation functions themselves
(Maiorov and Pinkus, 1999; Guliyev and Ismailov, 2018). Usually, these methods
are not constructive in that there is no explicit algorithm to construct a network with
determined weights to compute a target function.

There has not been a comprehensive treatment of weight sizes of these kind of neural
networks and the weights are typically finite precision real numbers. Theoretically,
for some models of neurons, the weights can get exponentially large in the input
dimension 𝑛 (Alon and Vũ, 1997; Babai et al., 2010; Håstad, 1994; Saburo Muroga,
1971). In contrast, it is reasonable to assert that the brain does not use exponen-
tially “large” numbers (or equivalently, real numbers with “high” bit-resolution) in
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its intrinsic network of neurons and to hypothesize that the complex connectivity
provides the expressive power. This idea is motivated by the fact that weights in
neural networks can be interpreted as the number of synaptic connections (mathe-
matically speaking, this corresponds to the fan-in) among neurons, which cannot be
exponentially large.

Hypothesis. The neurons in the human brain do not use “large” numbers to com-
pute. The connectivity patterns among the neurons achieve the expressive power of
the brain.

Practically speaking, reducing the weights in a neural network has forthcoming ad-
vantages especially in the chip implementation: The multiplication and summation
circuits can be simplified to use a smaller number of bits, which makes computa-
tions faster, more power efficient, and less area consuming. In one extreme, in the
case of binary {0, 1} or ternary weights {−1, 0, 1}, multipliers can be completely
eliminated. In practice, weight quantization can be used to achieve such gains with
a loss in the accuracy of the network output (Hubara et al., 2016; Jacob et al., 2018;
Li, Zhang, and B. Liu, 2016). Surprisingly, given that the neural circuit is large in
size and deep in depth, this loss in the accuracy might be tolerated. However, the
trade-off is difficult to justify theoretically.

We are thus interested in the theoretical justification of the trade-off in the increase
of size and depth while using as small weights as possible and keeping the function
computation exact, that is, we want to compute the target function as it is without
an error. In our analysis, we consider Boolean functions, which is basically a
mapping from {0, 1}𝑛 to {0, 1}. In other words, it is a partitioning of 𝑛-bit binary
vectors into two sets with labels 0 and 1 and one can consider this as a binary
classification framework. Since all the data stored and processed in digital computers
are represented in binary, Boolean functions will remain fundamental for a long time.

1.2 Boolean Functions and their Neural Network Constructions
The roots of the treatment of Boolean functions started from Leibniz as he invented
the binary numeral system (most of the manuscripts are unpublished, see Strickland,
2020). George Boole was the pioneer of the Boolean Algebra and Claude E. Shannon
revolutionized the area in his master’s thesis using relay and switching circuits to
implement systems of logic (Boole, 1847; Shannon, 1938). The Circuit Complexity
Theory essentially started with Shannon’s famous lower bound on the number of
required circuit elements (2-input gates specifically) to compute almost all Boolean
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functions, which is Ω(2𝑛/𝑛) and this is proven to be tight with a construction of
size 𝑂 (2𝑛/𝑛) (Lupanov, 1958; Shannon, 1949). For the lower bound, the proof
idea is only existential but it applies to the vast majority (a fraction of 1 − 𝑜(1)) of
all Boolean functions. An important unresolved question in the circuit complexity
theory is to find an explicit Boolean function such that the number of required gates
is indeed Ω(2𝑛/𝑛).

In the context of neural networks where different activation functions could have
been picked, the “universal approximation” could be achieved for Boolean functions
by explicit constructions. In general, we can use systems of linear equations as de-
scriptive models of the two sets of binary vectors labeled as 0 or 1. For example, the
solution set of the equation

∑𝑛
𝑖=1 𝑋𝑖 = 𝑘 is the 𝑛-bit binary vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛)

where each 𝑋𝑖 ∈ {0, 1} and 𝑘 is the number of 1s in the vectors. In the light of
the questions we ask about neural networks and approximation theory, here we try
to answer three important questions: How expressive can a single linear equation
be? How many equations do we need to describe a Boolean function? Could we
simulate a single equation by a system of equations with smaller integer weights?

Let us begin with an example: 3-input PARITY function where we label binary
vectors with odd number of 1s as 1. We can write it in the following form in a single
equation with a membership check to a set of numbers:

PARITY3(𝑋) = 1
{
(22𝑋3 + 21𝑋2 + 20𝑋1) ∈ {1, 2, 4, 7}

}
(1.1)

where 1{.} is the indicator function with outputs either 0 or 1. We typically use
PARITY𝑛 to emphasize that the function has 𝑛 inputs while we might omit it if
we talk about more generally. In this example, we express the binary vectors as
integers by using binary expansions. Thus, it can be shown that if the weights are
exponentially large in 𝑛, we can express all Boolean functions in this form where we
list the values of the weighted summation where the output is 1. Therefore, given the
power to modify the activation function, a single equation is sufficient to compute
any Boolean function using weights of size 𝑂 (2𝑛). For the 3-input PARITY, an
activation function is depicted in Figure 1.1a.

Now, suppose that we are only allowed to use a single equality check in an indicator
function. Considering the 3-input PARITY function, we can simply obtain system
of equations. Note that the use of matrices is only for demonstration purposes, we
are not interested in the solutions to the system for the moment.
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20 21 22

20 21 22

20 21 22

20 21 22



𝑋1

𝑋2

𝑋3

 =


1
2
4
7


(1.2)

None of the above equations can be satisfied if 𝑋 is labeled as 0. Conversely, if 𝑋
satisfies one of the above equations, we can label it as 1. For an arbitrary Boolean
function of 𝑛 inputs, if we list every integer associated with vectors labeled as 1,
the number of rows may become exponentially large in 𝑛 by keeping the activation
functions much “simpler”. Nevertheless, by the same fashion, we can also compute
PARITY3 by the following system of equations using smaller weights.[

1 1 1
1 1 1

] 
𝑋1

𝑋2

𝑋3

 =

[
1
3

]
(1.3)

Not only there is a simplification on the number of equations, but also the weights are
reduced to smaller sizes. This phenomenon motivates the following question with
more emphasis: For which Boolean functions could we obtain such simplifications
in the number of equations and weight sizes? For the PARITY, this simplification is
possible because it is a symmetric Boolean function, i.e., the output depends only on
the number of 1s of the input 𝑋 . We use |𝑋 | to denote the number of 1s in a binary
vector 𝑋 . Typically, to denote binary vectors, we use the capital letters like 𝑋 and
for other types of integer or real valued vectors, we use the small letters like 𝑥.

Definition 1. A Boolean function is called symmetric if 𝑓 (𝑋) has the same value
for all permutations of the input 𝑋 . Namely, a symmetric Boolean function 𝑓 (𝑋) is
a function of |𝑋 |.

We are particularly interested in simplifications from large weights to small weights
for a class of Boolean functions called threshold functions. In this thesis, 𝑛 always
refers to the quantities related to the number of inputs of the Boolean functions and
we use the word “large” to refer to exponentially large quantities in 𝑛 and the word
“small” to refer to polynomially large quantities (including𝑂 (𝑛0) = 𝑂 (1)) in 𝑛. It is
a well-established fact that threshold functions require exponentially large weights
in 𝑛, i.e., the weights should be as large as 2𝑂 (𝑛 log 𝑛) , which seems to contradict our
hypothesis (Alon and Vũ, 1997; Babai et al., 2010; Håstad, 1994; Saburo Muroga,
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1971). However, by adding more neurons to the network, it might be possible to
reduce the weights to polynomially large quantities in 𝑛, similar to what we did
for the PARITY. To demonstrate credibility towards our hypothesis, we need to
understand the properties of a single neuron, namely, a threshold function in this
context.

𝑥

𝜎(𝑥)

−1 11 2 3 4 5 6 7

−1

1

(a) An activation function 𝜎(𝑥) of the 3-input PARITY function given in Eq. (1.1).

𝑥

𝜎(𝑥)

−2 −1

−1

1

1

2

(b) The activation function 𝜎(𝑥) for linear threshold functions.

𝑥

𝜎(𝑥)

−2 −1

−1

1

1

2

(c) The activation function 𝜎(𝑥) for exact threshold functions.

Figure 1.1: Comparison of different activation functions. We do not consider
arbitrary activation functions usually. Instead, we focus on thresholds and equality
checks.

As noted before, the single perceptron formulation in Eq. (1.1) is very powerful
if we allow arbitrary activation functions in the perceptrons that we use. In this
case all the complexity (or the “ambiguity”) is absorbed into the activation function
itself similar to the case in (Guliyev and Ismailov, 2018). If the activation function
is just a threshold or an equality check, then we call the functions linear threshold
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functions (see (1.4)) for the former and exact threshold functions (see (1.5)) for the
latter. The activation functions are given in Figure 1.1b and 1.1c. We can write
an 𝑛-input threshold function using the indicator function where 𝑤𝑖’s are integer
weights and 𝑏 is a bias (or threshold) term. A device computing the corresponding
threshold function is called a gate of that type.

𝑓 (𝑋) = 1
{ 𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖 ≥ 𝑏

}
(1.4)

𝑔(𝑋) = 1
{ 𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖 = 𝑏

}
(1.5)

To illustrate the concept, we define EQUALITY (denoted by EQ) function which
computes whether an 𝑛-bit integer 𝑋 is equal to another 𝑛-bit integer Y. The linear
threshold counterpart of it is defined as the COMPARISON (denoted by COMP)
function which checks if an 𝑛-bit integer 𝑋 is greater than or equal to another 𝑛-
bit integer Y (see Figure 1.2). In some works, it is also called GREATER-THAN
function, denoted by GT (Hansen and V. V. Podolskii, 2010). In terms of complexity
measures, these functions are referred extensively in this thesis. We present 6-input
COMP and EQ in Figure 1.2.

Definition 2. The 2𝑛-input EQUALITY (denoted by EQ2𝑛) function is an exact
threshold function checking if two unsigned 𝑛-bit integers 𝑋 and 𝑌 are equal.

EQ2𝑛 (𝑋,𝑌 ) = 1
{
𝑋 = 𝑌

}
(1.6)

= 1
{ 𝑛∑︁
𝑖=1

2𝑖−1𝑋𝑖 =

𝑛∑︁
𝑖=1

2𝑖−1𝑌𝑖

}
(1.7)

where 𝑋𝑖 and 𝑌𝑖 are the binary expansions of 𝑋 and 𝑌 .

The 2𝑛-input COMPARISON (denoted by COMP2𝑛) is the linear threshold function
counterpart of the EQ where COMP2𝑛 (𝑋,𝑌 ) = 1{𝑋 ≥ 𝑌 }.

We now ask the previous questions for the EQ and COMP functions: Do we require
exponentially large weights in 𝑛 to compute them using a single threshold function?
For both of these functions, it is known that the weights should be exponentially large
(Babai et al., 2010; Siu and Bruck, 1991). This problem is shown to be equivalent to
the unresolved Erdős’ Distinct Sum Subset problem questioning the optimality of the
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𝑋1

𝑋2

𝑋3

𝑌1

𝑌2

𝑌3

COMP

20
21
22

−20
−21
−22

≥ 0

𝑋1

𝑋2

𝑋3

𝑌1

𝑌2

𝑌3

EQ

20
21
22

−20
−21
−22

= 0

Figure 1.2: The 6-input COMP and EQ functions for integers 𝑋 and 𝑌 com-
puted by linear threshold and exact threshold gates. More explicitly, we can
write COMP(𝑋,𝑌 ) = 1{4𝑋3 + 2𝑋2 + 𝑋1 ≥ 4𝑌3 + 2𝑌2 + 𝑌1} and EQ(𝑋,𝑌 ) =

1{4𝑋3 + 2𝑋2 + 𝑋1 = 4𝑌3 + 2𝑌2 + 𝑌1}.

weights for the EQ and COMP (Babai et al., 2010; Erdős, 1983). The next question
is whether we can compute these functions by circuits of threshold functions using
smaller weights. The answer is yes and the main result in this context is that
although most linear threshold functions cannot be computed by subexponentially
large weights in 𝑛 in depth-1, all of them can be computed by depth-2 threshold
circuits with polynomially large weights and polynomially large size in 𝑛. The
exact theoretical trade-offs between the weight size and the circuit size is one of the
problems on which we focus in this thesis in Chapter 2 building on the previous
works in the literature.

There are “trivial” ways to look at this trade-off between the weight size and the cir-
cuit size. If we allow exponentially large fan-in in our gates and exponentially large
circuit size, then we can replicate the input variables and compute any threshold
function using constant size weights in 𝑛 (e.g. see Figure 1.3). Usually, expo-
nential blow-ups are considered “infeasible” in terms of practical purposes, also
contradicting our hypothesis, and we are interested in polynomial blow-ups in 𝑛.

However, the blow-ups are not necessarily “bad” and it is a common approach
to allow at most polynomially large fan-in in 𝑛 for the practical implementations
of threshold gates and this replication technique can be used if the weights are
polynomially large in 𝑛. For instance, an 𝑛-input MAJORITY (denoted by MAJ𝑛,𝑏
where 𝑏 is the bias term) function is a Boolean function that counts the number
of 1s and decides 1 if the value exceeds the threshold 𝑏. In order to make MAJ
functions more expressive, multiple connections of the same input are allowed up to
polynomially large fan-in in 𝑛 to simulate any threshold function with polynomially
large weights in 𝑛 (Goldmann and Karpinski, 1993; Hansen and V. V. Podolskii,
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𝑋1
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1
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= 2

= 2
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7

≥ 6

𝑋1
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𝑋4

𝑋5

𝑋6

𝑓 (𝑋)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

3
2
3
3
3
3
1

≥ 6

= 2

= 2

= 2

= 2

= 2

= 2

= 2

Figure 1.3: An example of a weight transformation for a single gate (in black) to
construct constant weight circuits. Here, we pick 𝑓 (𝑋) to be some arbitrary function
which may not have the optimal weights and size in the given circuits and therefore,
one should consider this as a toy example. Different gates are colored in red, blue,
and violet and depending on the weight size, each gate is replicated a number of
times. The first layer gates are all 2-input AND gates. The construction on the right
has weights at most as large as 3 except the bias term of the top gate and both circuits
compute the same function using different amount of resources. Moreover, for a
depth-𝑑 threshold circuit, one can verify that this technique introduces a blow-up
which may be exponential in 𝑑.

2010). We use the notation MAJ to denote all possible MAJ functions.

If the weights of the threshold gates are restricted to polynomially large numbers in
𝑛 (for MAJ, it is only 1 except the bias), then the replication idea could not be used
to compute exponentially large weights in 𝑛 threshold function using polynomially
large fan-in (see Figure 1.4 for the application of the replication technique). However,
if the weights of the threshold gates are already exponentially large in 𝑛, then an
arbitrary weight can be computed by a polynomially large fan-in in 𝑛. This gives us
a justification to define a gate with exponentially large weights, specifically, powers-
of-two as they can express large weights and there is a guaranteed binary expansion
for an arbitrary integer value of a weight. We call the function associated to this
gate the DOMINATION function (denoted by DOM𝑛,𝑏), which compares an 𝑛-bit
integer to a fixed integer 𝑏, computing 1 if the former is greater than or equal to
the latter. It is called DOMINATION because it takes the value 1 depending on the
location of the "most significant" 1s in the input vector. Again, we use the notation
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𝑋1

𝑋2

𝑋3

𝑋4

𝑓 (𝑋)
1
2
4
3

≥ 3

𝑋1

𝑋2

𝑋2

𝑋3

𝑋3

𝑋3

𝑋3

𝑋4

𝑋4

𝑋4

𝑓 (𝑋)

1
1
1
1
1
1
1
1
1
1

≥ 3

Figure 1.4: The input replication technique to use a MAJ gate to compute a linear
threshold function with 4-inputs. One can see that the gate on the right side is
equivalent to MAJ10,3. If desired, the bias term can also be made small by adding
the constant 𝑥0 = 1 to the input vector. Both schemes compute the same threshold
function 𝑓 (𝑋). In general, if the weights are exponentially large in 𝑛, the fan-in also
becomes exponentially large in 𝑛 as well. To keep the fan-in polynomially large in
𝑛, we define DOM functions.

DOM to denote all possible DOM functions.

We also allow negative powers-of-two for the weights of a DOM function. More
explicitly, we give a definition below in Eq. (1.8), which uses an abuse of notation by
± to emphasize that any sign combinations for the weights is allowed. We typically
choose all weights positive, i.e., +20, +21, . . . , +2𝑛−1. In this representation, if
necessary, the negative weights can be handled by changing an input 𝑥𝑖 to −𝑥𝑖.

DOM𝑛,𝑏 (𝑋) = 1
{ 𝑛∑︁
𝑖=1

±2𝑛−𝑖𝑋𝑖 ≥ 𝑏

}
(1.8)

A comparison between MAJ and DOM functions is given in Figure 1.5. Both MAJ
and DOM are classes of threshold functions and we allow DOM to have multiple
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connections of the same input in order to make the function more expressive akin
to MAJ. It is an interesting fact that this idea leads us to many new directions in the
treatment of threshold functions as we shall see in Chapter 2. We give a detailed
transformation of threshold functions using a DOM gate in Figure 2.2.

Although DOM functions are not referred as such in literature, implicitly these
functions appear in different contexts (Beigel, 1994; Buhrman, Vereshchagin, and
Wolf, 2007; Siu and Bruck, 1991; Turán and Vatan, 1997). An important example
of DOM functions is the ODD-MAX-BIT function, which is also shown to have
necessarily exponentially large weights in 𝑛 in a single threshold function form.

Definition 3. The 𝑛-input ODD-MAX-BIT (denoted by OMB𝑛) function is a linear
threshold function checking if the index of the leftmost 1 of a binary vector 𝑋 =

(𝑋1, . . . , 𝑋𝑛) has an odd index or not.

OMB𝑛 (𝑋) = 1
{ 𝑛∑︁
𝑖=1

(−1)𝑖−12𝑛−𝑖𝑋𝑖 > 0
}

(1.9)

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

MAJ

1
1
1
1
1
1

≥ 4

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

DOM

20
21
22
23
24
25

≥ 4

Figure 1.5: Examples for 6-input MAJ and DOM with all positive weights. The
bias term can be chosen arbitrarily to shift the threshold. For example, if 𝑋 =

(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6) = (0, 1, 0, 0, 1, 0) with 𝑏 = 4, then MAJ6,4(𝑋) = 0 and
DOM6,4(𝑋) = 1.

Here is a high level summary of our results in this context. We present our results
for Depth-2 Circuit constructions for specific threshold functions in Table 1.1.

• We introduce the Domination Form of Threshold Functions to compute an
arbitrary threshold function using a linear transformation layer and a DOM
gate (see Section 2.1). We remark on how this representation can be used
to obtain smaller size complexity and to achieve asymptotic efficiency. For
this type of constructions, we give upper and lower bounds with explicit
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constructions based on the Chinese Remainder Theorem (CRT) and the Prime
Number Theorem (PNT) (see Section 2.2 and 2.5).

• We reproduce a previously known lower bound in (Roychowdhury, Orlitsky,
and Siu, 1994) by a novel technique using Siegel’s Lemma from linear algebra
and number theory. A converse lemma is used to solve an open problem
and prove the existence of an asymptotically efficient size constant weight
constructions for the EQ (see Section 2.3).

• In addition to this existence result, we explicitly construct such an EQ matrix
with entries {−1, 0, 1} by extending the Sylvester-type Hadamard matrices,
which achieves asymptotical efficiency in size.

• We extend our techniques to obtain an MDS-like structure and show the
existence of a small weight circuits with 𝑂 (𝑛) weights compared to 𝑂 (𝑛2) as
shown in (Amano and Maruoka, 2005). There is no trade-off in the number of
rows asymptotically. To prove this, we refer to one of the anti-concentration
inequalities, namely, Berry-Esseen Theorem. In Circuit Complexity Theory,
the use of anti-concentration inequalities is relatively new (see Diamond and
Yehudayoff, 2022 for another recent result). This result is used to find more
efficient constructions for COMP, CARRY, and OMB in weight size without
no asymptotic trade-off in circuit size.

• By using Domination Form of Threshold Functions, we extend our construc-
tive results to a broader class of threshold functions. Specifically, if the
sparsity parameter S is 1 (see Section 2.1 for the definition), then we can
apply EQ and RMDS matrices to find constructions with smaller weight sizes
with the same circuit size complexity. This class of functions includes the
EQ, COMP, CARRY (i.e. 1{𝑋 + 𝑌 ≥ 2𝑛} for 𝑛-bit unsigned integers 𝑋 and
𝑌 ), and OMB.

1.3 Nearest Neighbor Representations of Boolean Functions
The study of Nearest Neighbors (NN) started in 1950s and they remained one of the
most fundamental models in machine learning (Fix and Hodges, 1951). Intuitively,
each real-life concept is thought to be a real-valued vector in a mathematical sense
and the “closer” the concepts are, the more “similar” they should be. The 𝑘-Nearest
Neighbors algorithm finds the closest 𝑘 concepts to any input vector 𝑥 ∈ R𝑛 and
tries to “describe” it by a weighted average for regression or a majority voting for
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Function This Work Previous Works
Weight Size Constructive Weight Size Constructive

EQ 𝑂 (1) Yes 𝑂 (𝑛)∗ Yes
COMP 𝑂 (𝑛) No 𝑂 (𝑛2)† Yes
CARRY 𝑂 (𝑛) No 𝑂 (𝑛2)† Yes
OMB 𝑂 (𝑛) No 𝑂 (𝑛2)† Yes

∗(Roychowdhury, Orlitsky, and Siu, 1994)
†(Amano and Maruoka, 2005)

Table 1.1: Results for the Depth-2 Circuit Constructions. The results have the
smallest known circuit size asymptotically.

classification. How many concepts do we need to describe a vector as “clear” as
possible? In an information theoretic sense, this question highlights the number of
concepts and description error trade-off, called the infamous curse of dimensionality,
which, loosely speaking, implies that one needs a “large” quantity of concepts to
describe vectors “clearly” when the dimension grows (Cover and Hart, 1967; Weber,
Schek, and Blott, 1998; Beyer et al., 1999). More recently, NN models gained
more attention since Natural Language Processing (NLP) pipelines may contain
large vector databases to store high dimensional real-valued embeddings of words,
sentences, or even images (Johnson, Douze, and Jégou, 2019; P. Lewis et al., 2020).
Thus, the theoretical limits of the database sizes, the approximations of the NN
search algorithms, and the design of “meaningful” embeddings became important
research directions (Indyk and Motwani, 1998; Kushilevitz, Ostrovsky, and Rabani,
1998; Malkov and Yashunin, 2018; Reimers and Gurevych, 2019). An example use
of vector databases in NLP involving NN search algorithms is given in Figure 1.6.

In this thesis, we consider NN models from a relatively novel perspective, which
could play a role in our understanding on how the brain works. Inspired by the
architecture of the brain, neural networks became the backbone of many machine
learning models, and similarly, Nearest Neighbor (NN) Representations are intro-
duced as emerging models of computation (Minsky and Papert, 2017; P. Hajnal, Z.
Liu, and Turán, 2022). NN representations mimic the integrated structure of mem-
ory and computation in the brain where the concepts in the memory are embedded
in anchors. They are specifically defined for Boolean functions where the input
vectors are binary vectors, i.e., 𝑋 ∈ {0, 1}𝑛, and the labels can be either 0 (red) or
1 (blue). We always use a single NN, i.e., we focus on the case 𝑘 = 1, to find the
correct label. Thus, the closest anchor exactly gives the output label of the input
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Figure 1.6: An illustration of an Retrieval Augmented Generation (RAG) pipeline
in NLP (P. Lewis et al., 2020). Each “document”, which can be a single sentence,
a book, or an image of a cat, is converted into a high-dimensional embedding by
Embedding Models and is stored in a vector database. To do knowledge-intensive
tasks, similar “documents” can be found by approximate NN search algorithms.

vector 𝑋 .

One can easily find NN representations for the 2-input Boolean functions AND, OR,
and XOR as given in Figure 1.7. The anchors closest to the input vectors 𝑋 such
that 𝑓 (𝑋) = 1 (or 0) are called positive in blue (or negative in red). These example
functions given in Figure 1.7 are all symmetric Boolean functions.

The information capacity of a Boolean function in this model is associated with two
quantities: (i) the number of anchors (called Nearest Neighbor (NN) Complexity (P.
Hajnal, Z. Liu, and Turán, 2022)) and (ii) the maximal number of bits representing
entries of anchors (called Resolution). We first define mathematically what we
call an NN Representation. Let 𝑑 (𝑎, 𝑏) denote the Euclidean distance between the
vectors 𝑎, 𝑏 ∈ R𝑛. Throughout the thesis, we only consider Euclidean distance.
The Nearest Neighbor Representation and Complexity are defined in the following
manner.

Definition 4. The Nearest Neighbor (NN) Representation of a Boolean function 𝑓

is a set of anchors consisting of the disjoint subsets (𝑃, 𝑁) of R𝑛 such that for every
𝑋 ∈ {0, 1}𝑛 with 𝑓 (𝑋) = 1, there exists 𝑝 ∈ 𝑃 such that for every anchor 𝑛 ∈ 𝑁 ,
𝑑 (𝑋, 𝑝) < 𝑑 (𝑋, 𝑛), and vice versa. The size of the NN representation is |𝑃 ∪ 𝑁 |.

Namely, the size of the NN representation is the number of anchors. Naturally,
we are interested in representations of minimal size to quantify the information to
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Figure 1.7: NN representations for 2-input Boolean functions AND(𝑋) = 𝑥1 ∧ 𝑥2
(left), OR(𝑋) = 𝑥1 ∨ 𝑥2 (middle), and XOR(𝑋) = 𝑥1 ⊕ 𝑥2 (right). Triangles denote
𝑓 (𝑋) = 1 and squares denote 𝑓 (𝑋) = 0. It can be seen that red anchors are closest to
squares and blue anchors are closest to triangles. Separating lines between anchors
pairs are drawn.

represent a Boolean function.

Definition 5. The Nearest Neighbor Complexity of a Boolean function 𝑓 is the
minimum size over all NN representations of 𝑓 , denoted by 𝑁𝑁 ( 𝑓 ).

The second quantity that we use to measure the information capacity of an NN
representation is the resolution. Without loss of generality, one can assume that
the entries can be rational numbers when the inputs are discrete. We define anchor
matrix 𝐴 ∈ Q𝑚×𝑛 of an NN representation where each row is an 𝑛-dimensional
anchor and the size of the representation is𝑚. The resolution of an NN representation
is the maximum number of bits required to represent an entry of the anchor matrix.

Definition 6. The resolution (𝑅𝐸𝑆) of a rational number 𝑎/𝑏 is 𝑅𝐸𝑆(𝑎/𝑏) =

⌈max{log2 |𝑎 + 1|, log2 |𝑏 + 1|}⌉ where 𝑎, 𝑏 ∈ Z, 𝑏 ≠ 0, and they are coprime.

For a matrix 𝐴 ∈ Q𝑚×𝑛, 𝑅𝐸𝑆(𝐴) = max𝑖, 𝑗 𝑅𝐸𝑆(𝑎𝑖 𝑗 ). The resolution of an NN
representation is 𝑅𝐸𝑆(𝐴) where 𝐴 is the corresponding anchor matrix.

For instance, in Figure 1.7, the 2-input AND function has two anchors 𝑎1 = (0.5, 0.5)
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and 𝑎2 = (1, 1). By using the definition, we see that the resolution of this represen-
tation is ⌈log2 3⌉ = 2.

In the context of NN representations, instead of the word “large” (or “small”) to
talk about the magnitude of the anchor entries, we prefer to use the word “high” (or
“low”) for the resolution of the anchor entries.

We emphasize that although Boolean functions are evaluated over binary vectors,
the anchor points can have rational or even real valued entries. Similar to the curse of
dimensionality, we illustrate another intuitive trade-off between the NN complexity
and resolution where “lower” resolution NN representations imply a “larger” NN
complexity. An extreme case would be to consider single-bit resolution anchors,
that is, we consider all the 2𝑛 nodes of the Boolean hypercube as anchors and assign
them to 𝑃 or 𝑁 based on the values of 𝑓 . Any input vector corresponds to an anchor
with 0 distance in this case. This implies that 𝑁𝑁 ( 𝑓 ) ≤ 2𝑛 for any 𝑛-input Boolean
function. Specifically, we define the Boolean Nearest Neighbor Complexity (BNN)
for the case where we restrict all anchors to be binary vectors. It is easy to see
that 𝑁𝑁 ( 𝑓 ) ≤ 𝐵𝑁𝑁 ( 𝑓 ) ≤ 2𝑛 where 𝑁𝑁 ( 𝑓 ) has no explicit resolution constraint
(P. Hajnal, Z. Liu, and Turán, 2022). This upper bound on the NN complexity is
essentially loose for all Boolean functions (see Eq. (1.10)).

Theorem 1 (P. Hajnal, Z. Liu, and Turán, 2022). For every 𝑛-input Boolean function
𝑓 , it holds that

𝑁𝑁 ( 𝑓 ) ≤ (4 + 𝑜(1)) 2𝑛

𝑛
(1.10)

Moreover, for almost all 𝑛-input Boolean functions, we have

𝑁𝑁 ( 𝑓 ) > 2𝑛/2

𝑛
(1.11)

𝑋1 𝑋2 |𝑋 | XOR(𝑋) BNN Representation
0 0 0 0 ©«

0 0
0 1
1 0
1 1

ª®®®¬
0 1 1 1
1 0 1 1
1 1 2 0

Figure 1.8: The 2-input XOR functions with its optimal BNN representation. It is
known that 𝐵𝑁𝑁 (XOR) = 4 whereas 𝑁𝑁 (XOR) = 3.

In general, the smaller the resolution is, the larger the size of the representation
should be. For example, the discrepancy between NN and BNN is illustrated for
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the XOR function in Fig. 1.8. Note that PARITY is a generalization of XOR to 𝑛
variables. By proving corresponding upper and lower bounds on NN complexity,
the following result is obtained for the PARITY.

Theorem 2 (P. Hajnal, Z. Liu, and Turán, 2022). For the 𝑛-input PARITY func-
tion, it holds that 𝑁𝑁 (PARITY𝑛) = 𝑛 + 1 with resolution ⌈log2 (𝑛 + 1)⌉ and
𝐵𝑁𝑁 (PARITY𝑛) = 2𝑛.

Before going into more details, we do a brief overview of previous works on the NN
representations. In this thesis, the main inspiration is from the work of Hajnal, Liu
and Turán in 2022. Their paper provided several NN complexity results, including
the construction for PARITY (see Theorem 2) and bounds on the NN complexity of
arbitrary Boolean functions (see Theorem 1). Optimizing the representation of a set
by using NNs was first discussed in the context of minimizing the size of a training
set, namely, finding a minimal training set that NN represents the original training
set (Salzberg et al., 1995; Wilfong, 1991). The idea to represent Boolean functions
via the NN paradigm was first studied in (Globig and Lange, 1996) where BNN was
considered with distance measures that are chosen to optimize the complexity of the
NN representation. This work was extended to inclusion-based similarity (Satoh,
1998) and it was proved that it provides polynomial size representations for DNF
and CNF formulas.

How can we relate NN representations to the brain? For a large network of neurons,
the first step would be to understand the NN representations of threshold functions.
For the NN representations of linear threshold functions, we see that 𝑁𝑁 ( 𝑓 ) = 2
for linear threshold functions except the constant Boolean functions 𝑓 (𝑋) = 0 and
𝑓 (𝑋) = 1 (P. Hajnal, Z. Liu, and Turán, 2022). The geometrical idea is given in
Figure 1.9. Interestingly, this demonstrates that, in a traditional neural network, the
building blocks are based upon functions with 𝑁𝑁 ( 𝑓 ) = 2. We also see that for
exact threshold functions which are not also linear, 𝑁𝑁 ( 𝑓 ) = 3. We give more
precise results on these results in Section 3.1.

Since we already noted that threshold functions might have exponentially large
weights in 𝑛, the resolution of the NN representation given in Figure 1.9 could be
linear in 𝑛 (see Theorem 17). Previously, we mentioned that considering depth-2
threshold circuits, it is possible to reduce the weights to polynomially large quantities
in 𝑛 (i.e. logarithmic resolution in 𝑛). Therefore, a single threshold gate with large
weights can be computed by a depth-2 threshold circuit with small weights. We
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now ask an analogous question for threshold functions: Is it possible to reduce the
resolution from linear quantities in 𝑛 to logarithmic quantities in 𝑛 by adding at most
a polynomially large number of anchors in 𝑛 to the NN representation of a threshold
function?

𝑤𝑇𝑥 > 𝑏

𝑤𝑇𝑥 < 𝑏

𝑋∗

𝑎1

𝑎2

𝑤𝑇𝑥 > 𝑏

𝑤𝑇𝑥 < 𝑏

Figure 1.9: The NN Representation of a linear threshold function 1{𝑤𝑇𝑋 ≥ 𝑏} and
its 2-anchor NN Representation (left) and a hypothetical NN representation for the
same function with more anchors and less resolution (right).

When arbitrary threshold functions are considered, the answer to this question is
still unclear. One way to tackle this problem is to understand the small weight
depth-2 threshold circuit constructions of threshold functions with large weights
better. However, our knowledge on the NN representations of neural networks even
with depth-2 circuits is very limited. Therefore, we need to obtain and understand
NN representations of neural networks starting with depth-2.

More generally, by composing threshold function and symmetric Boolean functions
together, one can obtain different families of Boolean functions and one of our main
goals is to find explicit NN representations for them. To denote the class of linear (or
exact) threshold functions, we use LT (or ELT). For symmetric Boolean functions,
we use SYM. Also, ◦ denotes function composition. For instance, a neural network
with threshold functions is in fact a composition of LT gates and to understand
the NN representations of neural circuits, the treatment of small depth circuits is
essential.

We especially treat the two classes SYM ◦ LT and SYM ◦ ELT because these
classes appear when one considers small weight threshold circuit constructions
of threshold functions with large weights (Amano and Maruoka, 2005; Hansen
and V. V. Podolskii, 2010; Hofmeister, 1996). Although we cannot find an NN
representation for both of these classes in the arbitrary case, we are able to construct
NN representations under the assumption of some regularity conditions on the
weights of the first layer (see Section 3.5 for the definition of the conditions).
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Another important example would be linear decision lists (denoted by LDL), which
can be computed by depth-2 linear threshold circuits as in Eq. (1.12) (i.e. LDL ⊆
LT ◦ LT) (Turán and Vatan, 1997). A linear decision list of length 𝑚 is a sequential
list of linear threshold functions 𝑓1(𝑋), . . . , 𝑓𝑚 (𝑋) where the output is 𝑧𝑘 ∈ {0, 1}
for 𝑓𝑖 (𝑋) = 0 for 𝑖 < 𝑘 and 𝑓𝑘 (𝑋) = 1 and it is 𝑧𝑚+1 ∈ {0, 1} if all 𝑓𝑖 (𝑋) = 0. Here,
𝑚 is the number of threshold functions in the list. Other works sometimes state that
the length is 𝑚 + 1 if there are 𝑚 threshold functions.

In general, Decision Lists was first proposed similar to NN representations as a
different representation for Boolean functions (Rivest, 1987). Their relation to
circuit complexity is treated in many works (Chattopadhyay, Mahajan, et al., 2019;
Dahiya et al., 2024; Turán and Vatan, 1997; Uchizawa and Takimoto, 2015). The
learnability of decision lists is treated in many Machine Learning applications and
Complexity Theory (Angelino et al., 2018; Hancock et al., 1996; Klivans, Servedio,
and Ron, 2006).

One can similarly define the class of EDL where exact threshold functions are used
and EDL ⊆ LT ◦ ELT. We give an example of a 5-input LDL of depth 3 in Figure
1.10.

𝑙 (𝑋) = 1
{ 𝑚∑︁
𝑖=1

(−1)𝑧𝑖−12𝑚−𝑖 𝑓𝑖 (𝑋) ≥ 1 − 𝑧𝑚+1

}
(1.12)

1{𝑋1 + 𝑋2 ≥ 1}

1{2𝑋1 + 𝑋3 + 𝑋4 ≥ 2} 1

1{𝑋2 − 𝑋5 ≥ 0} 0

1 0

0 1

0 1

0 1

Figure 1.10: A Linear Decision List of Depth 3 with 5 binary inputs.

In Eq. (1.12), the implied top gate (see Figure 1.11) is actually called a DOMINA-
TION gate because the leading one in the vector ( 𝑓1(𝑋), . . . , 𝑓𝑚 (𝑋)) dominates the
importance of the others. In this sense, one can see that LDL ⊆ DOM ◦ LT (or
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EDL ⊆ DOM ◦ ELT). In Figure 1.11, a depth-2 circuit construction of the linear
decision list depicted in Figure 1.10 is given.

𝑋1

𝑋2

1{𝑋1 + 𝑋2 ≥ 1}

1
1 ≥ 1

𝑋1

𝑋3

𝑋4

1{2𝑋1 + 𝑋3 + 𝑋4 ≥ 2}

2
1
1

≥ 2

𝑋2

𝑋5

1{𝑋2 − 𝑋5 ≥ 0}

1
−1 ≥ 0

𝑙 (𝑋)
+22

−21

−20
≥ 0

Figure 1.11: The depth-2 threshold circuit construction of an LDL 𝑙 (𝑋) with a
DOM gate on top. This shows that 𝑙 (𝑋) ∈ LT ◦ LT (or even 𝑙 (𝑋) ∈ DOM ◦ LT).
The signs of the powers of two depends on the labeling of the outputs 𝑧𝑖s. If the first
layer consists of exact threshold gates, then we have an EDL.

The classes of LDL and EDL are in fact related. Note that for the following inclusion
claims, we consider decision lists of polynomially large length in 𝑛. By doing a
transformation from LT gates to ELT gates (idea is given first in Hofmeister, 1996
showing that LT ⊊ OR ◦ ELT), it can be shown that LDL ⊊ EDL (Dahiya et al.,
2024). The strictness is due to OR𝑛 ◦ EQ2𝑛 (Chattopadhyay, Mahajan, et al., 2019).
Moreover, the class EDL is equivalent to the class of decision lists which have
AND𝑟 ◦ LT𝑛 for 𝑟 to be a constant in 𝑛 (Dahiya et al., 2024).

Although linear and exact decision lists are not used in the analysis of low reso-
lution NN representations, they are important to understand the capabilities of NN
representations. Let 𝐿𝐷𝐿 ( 𝑓 ) be the smallest possible length of all linear decision
lists computing the Boolean function 𝑓 . In this thesis, we establish the upper bound
𝑁𝑁 ( 𝑓 ) ≤ 𝐿𝐷𝐿 ( 𝑓 ) + 1 if 𝐿𝐷𝐿 ( 𝑓 ) ≤ 𝑛. The immediate conjecture is that this
bound holds for any length value (see Theorem 33).

A similar lower bound is already known by generalizing linear decision lists to linear
decision trees. In a linear decision tree (denoted by LDT), each node might entail
another linear threshold function. We do not go into the treatment of LDTs but for
the sake of completeness, we give the lower bound based on the complexity measure
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𝐿𝐷𝑇 ( 𝑓 ), which is the smallest possible depth of all linear decision trees computing
a Boolean function 𝑓 (see Gröger and Turán, 1991 and Björner, Lovász, and Yao,
1992). The lower bound not only applies to 𝑁𝑁 ( 𝑓 ) but also 𝑘𝑁𝑁 ( 𝑓 ), called 𝑘-NN
complexity. For 𝑘𝑁𝑁 ( 𝑓 ), one considers the 𝑘 nearest anchors to decide on the label
of 𝑓 (𝑋) by majority voting and 𝑁𝑁 ( 𝑓 ) is a special case of 𝑘𝑁𝑁 ( 𝑓 ) where 𝑘 = 1.
We do not treat 𝑘-NN representations in this thesis.

Theorem 3 (P. Hajnal, Z. Liu, and Turán, 2022). For any 𝑛-input Boolean function
𝑓 , 𝐿𝐷𝑇 ( 𝑓 ) ≤ (3 + 𝑜(1))𝑘𝑁𝑁 ( 𝑓 ).

Here is the scope of our analysis about NN representations.

• Linear Threshold Functions and Exact Threshold Functions (LT and ELT).

• Symmetric Boolean Functions (SYM).

• Depth-2 Threshold Circuits with Symmetric Boolean Function on Top (SYM◦
LT or SYM ◦ ELT).

• Linear Decision Lists (LDL) and Exact Decision Lists (EDL) (DOM◦LT and
DOM ◦ ELT).

• Low Resolution NN Representations for the Threshold Functions EQ, COMP,
and OMB.

We present a summary of our results on NN representations for specific Boolean
functions in Table 1.2. In general, NN representations of threshold functions require
𝑂 (𝑛 log 𝑛) resolution. Thus, in the light of our hypothesis, we conjecture that
there exists polynomially large size NN representations of threshold function with
logarithmic resolution in 𝑛. We obtain several results to resolve this conjecture
partially and the results are related to our NN representation constructions for
depth-2 circuits.

• Explicit constructions for 𝑛-input threshold functions are presented with the
resolution bound𝑂 (𝑅𝐸𝑆(𝑤)) where 𝑤 ∈ Z𝑛 is the weight vector. The size of
the bias term does not matter.

• A new construction is presented for an arbitrary 𝑛-input symmetric Boolean
function 𝑓 (𝑋) with 𝐼 ( 𝑓 ) many anchors and𝑂 (log 𝑛) resolution. 𝐼 ( 𝑓 ) denotes
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the number of intervals for a symmetric Boolean function 𝑓 (see Section 3.2
for the definition).

• The new construction has optimal NN complexity for some symmetric Boolean
functions.

• There is always an optimal NN representation both in size 2 and resolution
𝑂 (1) for any 𝑛-input symmetric linear threshold function.

• The NN representations of some symmetric Boolean functions require the
resolution to be Ω(log 𝑛) so that the new constructions are optimal in resolu-
tion.

• The membership function to a convex polytope, 1{𝐴𝑋 ≤ 𝑏} where 𝐴 ∈ Z𝑚×𝑛

and 𝑏 ∈ Z𝑚, is equivalent to Boolean functions 𝑓 (𝑋) such that 𝑁𝑁 ( 𝑓 ) = 𝑚+1
where there is a single positive anchor. This corresponds to the depth-2 circuits
of type AND𝑚 ◦ LT𝑛.

• For circuits of SYM𝑚 ◦ELT𝑛 with𝑚 many 𝑛-input exact threshold gates under
regularity conditions, there is a NN representation which has

∑
𝑡∈T

( 𝑚
𝑚−𝑡

)
2𝑚−𝑡

many anchors where T contains left interval boundaries for the top symmetric
gate.

• For circuits of SYM𝑚 ◦LT𝑛 with 𝑚 many 𝑛-input linear threshold gates under
regularity conditions, there is a NN representation which has

∑
𝑡∈T

( 𝑚
𝑚−𝑡

)
many anchors where T contains left and right interval boundaries for the top
symmetric gate.

• For a Boolean circuit with 𝑚 many 𝑛-input perceptrons whose first layer has
a weight matrix𝑊 ∈ Z𝑚×𝑛 such that |𝑊𝑖 𝑗 | ≤ 𝐵 for some 𝐵 ∈ Z with mutually
orthogonal rows, there is a NN representation with (2𝑛𝐵 + 1)𝑚 many anchors
and resolution 𝑂 (log 𝑛𝐵).

• For an LDL of length 𝑚, we provide a NN representation with 𝑚 + 1 anchors
if 𝑚 ≤ 𝑛. For an EDL of length 𝑚 under regularity conditions, an NN
representation with (𝑚 + 1)2𝑚 many anchors is provided. Moreover, since
there is an LDL of length 𝐼 ( 𝑓 ) computing an 𝑛-input symmetric Boolean
function 𝑓 , an equivalent construction for symmetric Boolean functions is
presented in this framework independently.
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• For the threshold functions EQ, COMP, and OMB, we construct NN represen-
tations with polynomially large number of anchors and logarithmic resolution.
These functions have actually S = 1 sparsity parameter in domination form
(see Section 2.1 for the definition). It is still an open question if arbitrary
threshold functions have NN representations with similar complexity.

Function
NN Representation
Size ResolutionUpper Bound Lower Bound

PARITY𝑛 2𝑛∗ 2𝑛∗ 1
AND𝑚 ◦ EQ2𝑛 2𝑚 + 1 𝑂 (𝑛)
OR𝑚 ◦ EQ2𝑛 (𝑚 + 2)2𝑚−1 𝑂 (𝑛)

PARITY𝑚 ◦ EQ2𝑛 3𝑚 𝑂 (𝑛)
PARITY𝑚 ◦ COMP2𝑛 2𝑚 𝑂 (𝑛)

IP22𝑛 2𝑛 2𝑛/2∗,† 𝑂 (1)
OMB𝑚 ◦ EQ2𝑛 (𝑚 + 1)2𝑚 𝑂 (𝑛)

PARITY𝑛 (𝑚 + 1)𝑛/𝑚 𝑛 + 1∗,† ⌈log (𝑚 + 1)⌉
EQ2𝑛 2𝑛 + 1 Ω(

√
𝑛) 𝑂 (1)

EQ2𝑛 𝑂 (𝑛/log 𝑛) Ω(
√︁
𝑛/log 𝑛) 𝑂 (log 𝑛)

COMP2𝑛 2𝑛 Ω(
√︁
𝑛/log 𝑛) 𝑂 (log 𝑛)

OMB𝑛 𝑛 + 1 𝑂 (log 𝑛)
∗(P. Hajnal, Z. Liu, and Turán, 2022)
†The lower bound is for arbitrary resolution

Table 1.2: NN Representations For Known Boolean Functions.

In this thesis, we have several contributions in the theory of neural computation.
Even though the details of the computation in the human brain remain mysterious,
mathematical models of it are provably powerful in theory and in practice. Several
theoretical upper and lower bounds on the limits of computation are established.
Even in an associative computation model, such as NN representations, the resolu-
tion could change the feasibility of the representations for high dimensions and we
hope that our treatment would aid in exploring new directions in the area of neural
computation.

This thesis has two main chapters: 1) On the Algebraic Constructions of Neural
Networks with Small Weights and 2) On the Complexity of the Nearest Neighbor
Representations. In the first chapter, we use the DOM gates to represent known
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threshold functions in different forms, which eventually simplifies the complexity
of circuit constructions. We improve on the best results in existential results or
explicit constructions. In the second chapter, we give an extensive treatment of
the NN representations for several classes of Boolean functions as summarized
before. Building on the results in Chapter 2, we resolve the conjecture on the NN
representations of threshold functions.
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C h a p t e r 2

ON THE ALGEBRAIC CONSTRUCTIONS OF NEURAL
NETWORKS WITH SMALL WEIGHTS

Our analysis begins with the treatment of the realization threshold functions in
“small” weights using depth-2 circuits. Although the results are independent, some
of them will be relevant for the NN representations as well. As it was noted in the
introduction, it is possible to construct “small” weight threshold circuits to compute
any threshold function (Amano and Maruoka, 2005; Goldmann and Karpinski, 1993;
Hofmeister, 1996; Siu and Bruck, 1991). This transformation from a circuit of depth
𝑑 with exponentially large weights in 𝑛 to another circuit with polynomially large
weights in 𝑛 is typically within a constant factor of depth (e.g. 𝑑 + 1 if the activation
functions are step functions or 3𝑑 + 3 if the activation functions are Rectified Linear
Unit ReLU(𝑧) = max(0, 𝑧)) (Goldmann and Karpinski, 1993; Vardi and Shamir,
2020). For instance, such a transformation would simply follow if we can replace
any “large” weight threshold function with “small” weight depth-2 circuits so that
the new depth becomes 2𝑑.

We remark that the input replication idea can be used to reduce polynomial size
weights into constant weights (see Figure 1.3). Nevertheless, this would inevitably
introduce a polynomial size blow-up in the circuit size. We further emphasize
that our focus is to achieve this weight size reduction from polynomial weights to
constant weights with at most a constant size blow-up in the circuit size.

The Main Technique to Obtain Upper and Lower Bounds
Suppose that we are given an exact threshold function 𝑓 (𝑋) = 1{𝑤𝑇𝑋 = 𝑏} with
“large” weights and we want to compute this function by using “small” weight
threshold circuits. Here, 𝑤 ∈ Z𝑛 and 𝑏 ∈ Z. We use X𝑤,𝑏 to denote the solution set
of the single linear equation 𝑤𝑇𝑋 = 𝑏 for binary vectors 𝑋 . The formal definition
is given in Eq. (2.1).

X𝑤,𝑏 = {𝑋 ∈ {0, 1}𝑛 |𝑤𝑇𝑋 = 𝑏} (2.1)

X𝐴,𝐵 = {𝑋 ∈ {0, 1}𝑛 |𝐴𝑋 = 𝐵} (2.2)

By definition, if 𝑋 ∈ X𝑤,𝑏, then 𝑓 (𝑋) = 1 and 𝑓 (𝑋) = 0 otherwise. One idea to
reduce the weights could be to find a matrix 𝐴 ∈ Z𝑚×𝑛 and a vector 𝐵 ∈ Z𝑚 so that
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X𝑤,𝑏 = X𝐴,𝐵 (as defined in Eq. (2.2)) and therefore, and 𝑋 ∈ X𝑤,𝑏 is also a solution
to the linear system of equations 𝐴𝑋 = 𝐵. Obviously, we want 𝐴 to have “smaller”
weights and we have an explicit size constraint on the entries of 𝐴, i.e. |𝑎𝑖 𝑗 | ≤ 𝑊

for all 𝑖, 𝑗 where𝑊 ∈ Z.

Thus, one can interpret a transformation from a single gate into a circuit as an
equivalent representation of the solution sets X𝑤,𝑏 and X𝐴,𝐵. More precisely, the
equivalence is sufficient but not necessary. If we can show the equivalence of
solution sets and the existence of an 𝐴 with 𝑚 rows, then we can prove an upper
bound on the complexity of 𝑚, the number of gates in the first layer, given the
weight constraint𝑊 and input size 𝑛.

Given 𝑛 and 𝑊 as parameters and 𝑓 (𝑋), how can we prove lower bounds for the
number of rows for the matrix 𝐴? Suppose that there exist 𝑋,𝑌 ∈ {0, 1}𝑛 such that
𝑋 ≠ 𝑌 and 𝐴𝑋 = 𝐴𝑌 but, in contrast, 𝑤𝑇𝑋 = 𝑏 and 𝑤𝑇𝑌 ≠ 𝑏. Thus, given the
vector 𝐴𝑋 , there is no way to understand whether the input vector 𝑋 solves 𝑤𝑇𝑋 = 𝑏

or not. If we can guarantee the existence of such 𝑋 and 𝑌 for any 𝐴 ∈ Z𝑚×𝑛, then
we can prove a lower bound on the complexity of 𝑚 depending on the values of 𝑛
and𝑊 .

One can see that the analysis of linear threshold functions using solutions sets
is not very different. The ideas are the same after defining that X′

𝑤,𝑏
= {𝑋 ∈

{0, 1}𝑛 |𝑤𝑇𝑋 ≥ 𝑏} and X′
𝐴,𝐵

= {𝑋 ∈ {0, 1}𝑛 |𝐴𝑋 ≥ 𝐵}. In fact, any activation
function can be used in the definition of the solution sets.

Both of the techniques to prove lower and upper bounds rely on linear algebraic
properties of 𝑤𝑇𝑋 = 𝑏 and 𝐴𝑋 = 𝑏. Depending on the context, they can be very
useful or limiting when we try to match the upper and lower bounds. We emphasize
that this linear algebraic view is only a tool to analyze the transformations of
threshold gates with “large” weights into threshold circuits with “small” weights.

A transformation as in Figure 2.1 also entails the use of a top gate. The top gate
is specified when we give upper bounds and constructions. For instance, for the
3-input PARITY example in Eq. (1.2) or Eq. (1.3), the top gate can be taken to be
an 𝑚-input OR gate, i.e., 1{𝑋1 + · · · + 𝑋𝑚 ≥ 1}.

The lower bounds that we prove applies to any top gate for the circuits. This makes
the lower bounds powerful because they are general and apply to any activation
function. However, one caveat is that given a specific top gate, the lower bound
might not be tight.
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𝑋1

𝑋2

...

𝑋𝑛

𝑓 (𝑋)≥ 𝑏...

𝑤1
𝑤2

𝑤𝑛

⇔

𝑋1

𝑋2

...

𝑋𝑛

...
...

𝑋1

𝑋2

...

𝑋𝑛

≥ 𝑏1

≥ 𝑏𝑚

...

𝑎11
𝑎12

𝑎1𝑛

...

𝑎𝑚1
𝑎𝑚2

𝑎𝑚𝑛

𝑓 (𝑋)≥ 𝑏′
...
𝑤′

1

𝑤′
𝑚

Figure 2.1: An arbitrary transformation of a single linear threshold gate into a
depth-2 linear threshold circuit. Instead of a single equation dot-product 𝑤𝑇𝑋 , we
consider a matrix-vector product 𝐴𝑋 where each entry of 𝐴 is bounded by some
“small” integer. We want both circuits to compute the same Boolean function 𝑓 (𝑋).
Although in this circuit, we kept the weights of the top gate, namely, 𝑤′ arbitrary,
they also obey the weight constraints that we impose.

Our results mainly focuses on the EQ function and its linear threshold counterpart
COMP function. Then, we generalize the ideas to the class of the threshold func-
tions using DOM functions. Our key contribution is to push the understanding of
linear algebraic and number theoretic techniques further by the perspective of DOM
functions.

Previously, in (Roychowdhury, Orlitsky, and Siu, 1994), it is shown that to compute
the EQ function using arbitrary perceptrons with a weight matrix 𝐴 ∈ Z𝑚×𝑛 where
|𝑎𝑖 𝑗 | ≤ 𝑛𝑐 for a fixed constant 𝑐, one requires

𝑛

2(𝑐 + 1) (log 2𝑛) ≤ 𝑚 ≤ 𝑛

𝑐 log3 2𝑛
(2.3)

The same lower bound applies to the COMP within a constant factor. The proof
technique for the lower bound is via Communication Complexity arguments, a pop-
ular and powerful technique with many different applications in circuit complexity
theory (Alon, Frankl, and Rödl, 1985; Chattopadhyay and Mande, 2018; Gold-
mann, 1994; Forster, 2002; Paturi and Simon, 1986). To compute the EQ function,
an explicit construction satisfies the upper bound by partitioning the input into log-
arithmic size chunks. An important remark is that when 𝑐 = 0, i.e., |𝑎𝑖 𝑗 | = 𝑂 (1),
the upper bound blows up. The natural open question is to find a construction with
asymptotically the same 𝑚 using constant weights. In this thesis, we prove this
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result both existentially and constructively using techniques in linear algebra and
number theory whose applications are novel in circuit complexity theory.

We start with the idea to compute any threshold gate using a DOM gate using
binary expansion of the weights called the domination form of threshold gates. In
Section 2.2, we give small weight constructions of exact DOM functions using
the Chinese Remainder Theorem (CRT) and the Prime Number Theorem (PNT)
from previous works. We note that the domination form helps us simplify the size
complexity by a factor of 𝑛 for some functions. Then, in Section 2.3, we define
EQ matrices to compute EQ functions using small coefficient matrices. For these
matrices, the number of rows needs to satisfy Eq. (2.3) and we prove this result
alternatively using Siegel’s Lemma (for an English translation of the original result,
see Siegel, 2014). By a converse theorem on Siegel’s Lemma by Beck, we show that
constant coefficient EQ matrices exist with optimal rate (Beck, 2017). Furthermore,
an explicit construction with {−1, 0, 1} entries and optimal rate is given based on
the extensions of Sylvester-type Hadamard matrices. In Section 2.4, an MDS-like
generalization of these matrices is given and an existential result is proven using
Berry-Esseen Theorem (Berry, 1941; Esseen, 1942). In Section 2.5, we give a short
application of Siegel’s Lemma to prove a lower bound on the number of perceptron
needed to compute a DOM function. Finally, in Section 2.6, we apply our results to
construct depth-2 threshold circuits with the best known size and weight complexity
for the DOM functions with S = 1, which includes the EQ, COMP, CARRY, and
OMB.

2.1 Computing Any Threshold Function with a Linear Transformation and
a DOM gate

Typically, a threshold function is characterized by the values of its weights. It was
shown that for the COMP and the EQ functions, the weights should be represented
by Ω(𝑛) bits (Siu and Bruck, 1991; Babai et al., 2010). In general, the weights of
a threshold function can be represented by 𝑂 (𝑛 log 𝑛)-bits and this is a tight bound
(Alon and Vũ, 1997; Babai et al., 2010; Håstad, 1994; Saburo Muroga, 1971).
First, we define 𝐿 to be the least integer satisfying |𝑤𝑖 | < 2𝐿 for all 𝑖. Consider
the linear form 𝐹 (𝑋) =

∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖 − 𝑏 and let us write the binary expansion of

each weight 𝑤𝑖 and 𝑏. Hence, we obtain an 𝐿 × (𝑛 + 1) incidence matrix 𝑊 where
𝑤 𝑗𝑖 is 1 if 2 𝑗−1 is in the binary expansion of 𝑤𝑖 and 0 otherwise. If a weight is
negative, we consider the binary expansion of its magnitude and then invert the sign
(e.g. −5 = −(22 + 20) = −22 − 20). Also, we treat 𝑥0 = 1 as a fixed input for this
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representation with 𝑤0 = −𝑏. We use 𝑤𝑏 to denote the powers of two in ascending
order.

𝐹 (𝑋) =
𝑛∑︁
𝑖=0

𝑤𝑖𝑋𝑖 =

𝑛∑︁
𝑖=0

( 𝐿∑︁
𝑗=1

2 𝑗−1𝑤 𝑗𝑖

)
𝑋𝑖

=

𝐿∑︁
𝑗=1

2 𝑗−1 ( 𝑛∑︁
𝑖=0

𝑤 𝑗𝑖𝑋𝑖

)
=

𝐿∑︁
𝑗=1

2 𝑗−1𝑋′
𝑗

(2.4)

In other words, we fix the weights to be powers of two and represent a threshold
function by a larger input alphabet {−𝑛 − 1, ..., 𝑛 + 1}. We call this representation
Domination Form of Threshold Functions. Even though this alphabet has cardinality
2𝑛 + 3, we call such an alphabet as (𝑛 + 1)-ary as an abuse of notation because
the values are from {−𝑛 − 1, . . . , 𝑛 + 1}. If a power of two 2 𝑗−1 appears in the
binary expansion of weights 𝑤𝑖1 , 𝑤𝑖2 , ..., then the corresponding inputs 𝑋𝑖1 , 𝑋𝑖2 , ...
are grouped together in 𝑋′

𝑗
. In this form, we can compute a threshold function using

an (𝑛 + 1)-ary 𝐿 input DOM gate as in Fig. 2.2. In linear algebra notation, we have
the following notation and equalities assuming 𝑋0 = 1 and 𝑤0 = −𝑏.

𝑤𝑇𝑏 =

[
20 21 · · · 2𝐿−1

]
(2.5)

𝐹 (𝑋) = 𝑤𝑇𝑋 = (𝑤𝑇𝑏𝑊)𝑋 = 𝑤𝑇𝑏 (𝑊𝑋) = 𝑤
𝑇
𝑏𝑋

′ (2.6)

...
...

𝑋0 = 1 +
𝑋′

1

𝑋1 +
𝑋′

2

𝑋2 +
𝑋′

3

𝑋𝑛 +
𝑋′
𝐿

𝑓 (𝑋)
20
21
22...
2𝐿−1

= 0

Figure 2.2: The construction of an exact threshold gate by an exact DOMINATION
gate and a layer of adders. The connectivity of the first layer is given by the incidence
matrix𝑊 .

To realize this construction in general, we only need to compute 𝑊𝑋 in a layer
of adders to obtain 𝑋′ and then feed it to a DOM gate of higher alphabet. The
connectivity graph W has only {−1, 0, 1} weights on edges. In this form, we can
analyze the connectivity graph and the DOM gate separately.
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Firstly, different threshold functions yield different 𝑋′ vectors and we want to quan-
tify the incidence relation between 𝑋 and 𝑋′. We define a metric of the sparsity
of the graph, S, by counting the maximum possible value each 𝑋′

𝑖
can take. That

is, we define S = max𝑋 ′ max𝑖 |𝑋′
𝑖
|. Since an adder is connected to at most (𝑛 + 1)

inputs, it follows that S ≤ 𝑛 + 1 and in general, S = 𝑂 (𝑛). This S quantity was
also of consideration in various other papers with an almost equivalent definition
(Amano and Maruoka, 2005; Hofmeister, 1996). For the COMP and the EQ, we
observe that S = 1 and 𝐿 = 𝑛.

𝑋0 = 1

𝑋1

𝑋2

𝑋3

+
𝑥′1

+
𝑥′2

+
𝑥′3

𝑓 (𝑋)
20

21

22
≥ 0

1
1

−1

−1
1

Figure 2.3: An example of a construction of a linear threshold function by a linear
DOM gate where 𝑓 (𝑋) = 1{−2𝑋1 − 4𝑋2 + 4𝑋3 ≥ −5} with S = 2.

We emphasize that this construction provides a universal method to compute arbi-
trary threshold functions by a graph that depends on the weights and that feeds the
inputs to an (𝑛+1)-ary DOM gate. Namely, if there is a way to simulate a DOM gate
using other types of gates, it can be used to compute any given threshold function.
The analysis of threshold functions in domination forms is novel even though using
binary expansions for weight representations in circuit theory can be found in some
previous works (Siu and Bruck, 1991).

2.2 Small Weight Circuit Constructions of Exact DOM functions
We start by introducing the CRT-based weight reduction technique given in previous
works (Amano and Maruoka, 2005; Hansen and V. V. Podolskii, 2010; Hofmeister,
1996). For an integer 𝑧 and modulo base 𝑝, we denote the modulo operation by
[𝑧] 𝑝, which maps the integer to the values in {0, ..., 𝑝 − 1}.

Theorem 4. Suppose that we are given a function 1{𝐹 (𝑋) ∈ 𝐶} = 1{𝑤0 +∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖 ∈ 𝐶} where 𝐶 is some subset of non-negative integers whose largest

element is denoted by 𝐶𝑚𝑎𝑥 . Let 𝐿 be the least integer satisfying |𝑤𝑖 | < 2𝐿 . Let
𝐶𝑚𝑎𝑥 < 𝑝1 < 𝑝2 < · · · < 𝑝𝑟 be prime numbers and 𝑠 be the smallest integer such
that

∏𝑠
𝑖=1 𝑝𝑖 > (𝑛 + 1)2𝐿 . Then,
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1. If 𝐹 (𝑋) ∈ 𝐶, then [𝐹 (𝑋)] 𝑝𝑖 ∈ 𝐶 for all 𝑝𝑖, 𝑖 ∈ {1, ..., 𝑟}.

2. If 𝐹 (𝑋) ∉ 𝐶, then [𝐹 (𝑋)] 𝑝𝑖 ∈ 𝐶 for less than 𝑠 |𝐶 | many primes.

Furthermore, 𝑠 = 𝑂 (𝐿/log 𝐿) is sufficient and 𝑝𝑟 = 𝑂 (𝐶𝑚𝑎𝑥𝐿) given that 2𝐿

dominates the factor 𝑛 + 1 asymptotically and 𝐶𝑚𝑎𝑥 = 𝑝𝑜𝑙𝑦(𝑛).

Proof. The proof basically follows the same idea in (Hofmeister, 1996). The first
claim is true trivially 𝐹 (𝑋) = 𝑘 = [𝐹 (𝑋)] 𝑝𝑖 for all 𝑖 ∈ {1, . . . , 𝑟} as 𝑘 < 𝐶𝑚𝑎𝑥 <
𝑝1 < · · · < 𝑝𝑟 . For the second claim, suppose to the contrary that [𝐹 (𝑋)] 𝑝𝑖 ∈ 𝐶
for at least 𝑠 |𝐶 | many primes. Then, there is an integer 𝑧 ∈ 𝐶 such that for at
least 𝑠 many primes [𝐹 (𝑋)] 𝑝𝑖 = 𝑧 by Pigeonhole Principle. By the CRT, we can
construct 𝐹 (𝑋) uniquely to find that it is actually 𝑧 because

∏𝑠
𝑖=1 𝑝𝑖 > (𝑛 + 1)2𝐿 .

This contradicts 𝐹 (𝑋) ∉ 𝐶.

To find 𝑠, we first assume that 𝑃 = 𝑝1 < · · · < 𝑝𝑟 for some prime number 𝑃. Then,
let

∏𝑠
𝑖=1 𝑝𝑖 > 𝑃

𝑠 > (𝑛 + 1)2𝐿 . Taking the logarithm of both sides, we have

𝑠 log 𝑃 > 𝐿 + log (𝑛 + 1) (2.7)

Let 𝑃 be the 𝐿/log 𝐿𝑡ℎ prime number and pick large enough 𝑠 ∼ 𝐿/log 𝐿 so that
𝑝1 > 𝑃. Then, 𝑃 ∼ 𝐿 by the PNT and the inequality is satisfied as we assume that
2𝐿 dominates 𝑛 + 1 asymptotically. We pick 𝑟 ≥ 𝑠 |𝐶 | + 1 so that both cases are
separable and we use the PNT to find 𝑝𝑟 = 𝑂 (𝐶𝑚𝑎𝑥𝐿). □

One immediate remark is that for exact threshold functions, 𝐶 = {0}. However, for
linear threshold functions, 𝐶 contains all positive values and Theorem 4 does not
seem useful. However, by first transforming a linear threshold gate into an exact
threshold circuit with an disjoint OR gate on top, it is possible to apply CRT in an
efficient way (Amano and Maruoka, 2005; Hofmeister, 1996).

We reduce each weight by computing [𝑤 𝑗 ] 𝑝𝑖 for each weight𝑤 𝑗 and prime 𝑝𝑖. Let us
define 𝐹𝑖 (𝑋) = [𝑤0] 𝑝𝑖 +

∑𝑛
𝑗=1 [𝑤 𝑗 ] 𝑝𝑖𝑋 𝑗 . If we are to use only exact threshold gates in

the first layer, we need to compute congruences explicitly, that is, we need to check if
𝐹𝑖 (𝑋) = 𝑘 𝑝𝑖 for some integer 𝑘 . To do so, the general approach is to use 𝑛 + 1 gates
together computing 𝐹𝑖 (𝑋) ∈ {0, 𝑝𝑖, 2𝑝𝑖, ..., 𝑛𝑝𝑖} because 𝐹𝑖 (𝑋) < (𝑛+1)𝑝𝑖. Finally,
these gates are connected to a symmetric Boolean gate EXACT𝑟 = 1{|𝑋 | = 𝑟} to
check if

∑𝑛
𝑘=0

∑𝑟
𝑖=1 1{𝐹𝑖 (𝑋) = 𝑘 𝑝𝑖} = 𝑟.

Since we reduce each weight by prime moduli, the maximum weight size becomes
𝑂 (𝑝𝑟) = 𝑂 (𝐿) and the maximum bias term becomes 𝑂 (𝑛𝑝𝑟) = 𝑂 (𝑛𝐿) as we need
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to check if 𝐹𝑖 (𝑋) = 𝑛𝑝𝑖 for the 𝑖th prime. Typically, we ignore the size of the bias
terms when we analyze the weight size of a circuit. In this construction, the total
number of gates is (𝑛 + 1)𝑟 + 1 = 𝑂 (𝑛𝐿/log 𝐿). If we take 𝐿 = 𝑂 (𝑛 log 𝑛), the
circuit size becomes𝑂 (𝑛2). This is the best known size complexity upper bound for
the depth-2 exact threshold circuit constructions with polynomially large weights
in 𝑛. For exact threshold functions, this size result result 𝑂 (𝑛2) was not obtained
previously but the technique was observed fully in (Hansen and V. V. Podolskii,
2010).

For the EQ function, the direct application of CRT gives the same 𝑂 (𝑛2/log 𝑛) size
complexity with 𝑂 (𝑛) weights. Consider the following form of EQ function in Eq.
(2.9). We call it the naïve form of the EQ.

EQ2𝑛 (𝑋,𝑌 ) = 1
{ 𝑛∑︁
𝑖=1

2𝑖−1𝑋𝑖 =

𝑛∑︁
𝑖=1

2𝑖−1𝑌𝑖

}
(2.8)

= 1
{ 𝑛∑︁
𝑖=1

2𝑖−1𝑋𝑖 +
𝑛∑︁
𝑖=1

(−2𝑖−1)𝑌𝑖 = 0
}

(2.9)

Theorem 5. There exists a depth-2 exact threshold circuit for the 2𝑛-input EQ
function with weights in naïve form with 𝑂 (𝑛2/log 𝑛) size complexity and 𝑂 (𝑛)
weights.

Proof. Since our definition of the modulo function is only for positive values, we
get [−2 𝑗−1] 𝑝𝑖 = 𝑝 𝑗 − [2 𝑗−1] 𝑝𝑖 . Therefore, for each prime number 𝑝𝑖, we obtain

𝐹𝑖 (𝑋) =
𝑛∑︁
𝑗=1

[2 𝑗−1] 𝑝𝑖 (𝑋𝑖 − 𝑌𝑖) + 𝑝𝑖 |𝑌 | (2.10)

where |𝑌 | denotes the number of 1s in the vector𝑌 . Therefore, to compute 𝐸𝑄(𝑋,𝑌 )
using CRT and PNT, we have to check 𝐹𝑖 (𝑋) ∈ {0, 𝑝𝑖, . . . , 𝑛𝑝𝑖} necessarily. Since
𝐿 = 𝑛, we obtain 𝑂 (𝑛2/log 𝑛) size and the maximum weight size becomes 𝑂 (𝑛) by
the PNT. We connect the gates into an AND gate to construct the depth-2 circuit. □

In contrast, if the weights of the EQ is in domination form, we can directly reduce
the size complexity to 𝑂 (𝑛/log 𝑛), which is asymptotically optimal (see Eq. (2.3)).
We first give the CRT-based construction for S-ary 𝐿 input DOM functions.

Theorem 6. There exists a depth-2 exact threshold circuit which computes anS-ary
𝐿 input exact DOMINATION function and its size is bounded by𝑂 (S𝐿2/log 𝐿) with
weights at most 𝑂 (𝑆𝐿2).
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Proof. For 𝐿 input DOMINATION functions, recall that |𝑤𝑖 | < 2𝐿 including 𝑤0.
Therefore, Theorem 4 gives an upper bound on 𝑟 = 𝑂 (𝐿/log 𝐿) similar to arbitrary
exact threshold functions.

Since |𝐹𝑖 (𝑋′) | < S𝐿𝑝𝑖, to compute [𝐹 (𝑋′)] 𝑝𝑖 for a given prime number 𝑝𝑖, we
need to check if 𝐹𝑖 (𝑋′) ∈ {−(S𝐿 − 1)𝑝𝑖 ...,−𝑝𝑖, 0, 𝑝𝑖, ..., (S𝐿 − 1)𝑝𝑖}. By the PNT,
𝑝𝑟 = 𝑂 (𝑟 log 𝑟) = 𝑂 (𝐿) and therefore, the maximum weight size becomes 𝑂 (𝐿)
and the largest bias term becomes 𝑂 (S𝐿2). We connect these gates to an EXACT𝑟
gate (i.e. 1{|𝑋 | = 𝑟}) and the size complexity becomes 𝑂 (S𝐿2/log 𝐿). □

It turns out that if S = 𝑂 (𝑛) and 𝐿 = 𝑂 (𝑛 log 𝑛), the size complexity becomes
𝑂 (𝑛3 log 𝑛). This is higher than𝑂 (𝑛2) and it seems that there is no use of computing
an exact threshold function by using an exact DOMINATION gate. Even if when
S = 1, the construction seems not to be optimal. We observe that if S = 1, then the
modulo checks 𝐹𝑖 (𝑋) ∈ {0, 𝑝𝑖, . . . , 𝑛𝑝𝑖} are not necessary except 𝐹𝑖 (𝑋) = 0.

Theorem 7. If S = 1, there exists a depth-2 exact threshold circuit which com-
putes an S-ary 𝐿 input exact DOMINATION function and its size is bounded by
𝑂 (𝐿/log 𝐿) with weights at most 𝑂 (𝐿).

Proof. Basically, we follow Theorem 6 but we will prove that if S = 1, checking
𝐹𝑖 (𝑋′) = 0 suffices.

We observe that if S = 1, the equation
∑𝐿
𝑗=1 2 𝑗−1𝑋′

𝑗
= 0 admits a unique trivial

solution 𝑋′ = 0. If 𝑋′ = 0, 𝐹𝑖 (𝑋′) = ∑𝐿
𝑗=1 [2 𝑗−1] 𝑝𝑖𝑋′

𝑗
= 0 and there is no need to

check if 𝐹𝑖 (𝑋′) = 𝑘 𝑝𝑖 for 𝑘 ≠ 0. Then, the size complexity becomes 𝑂 (𝐿/log 𝐿).
By the PNT, 𝑝𝑟 = 𝑂 (𝑟 log 𝑟) and the weights are bounded by 𝑂 (𝐿). □

For the EQ function, Theorem 7 gives asymptotic efficiency with regards to the
known lower bounds and our lower bound given in Section 2.5 (Roychowdhury,
Orlitsky, and Siu, 1994) (see Theorem 8). We conclude that depending on the
representation of weights, it is possible to obtain different upper bounds on the size
that computes a given function. In the next sections, starting with the EQ function,
we will show how to use the domination form of threshold functions when we apply
weight reduction techniques as well as how to obtain upper and lower bounds.
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𝑓 (𝑋)

𝑋0 +
𝑋′

1

𝑋1 +
𝑋′

2

𝑋𝑛 +
𝑋′
𝐿

...
...

...

1{𝐹1(𝑋) = 0}

1{𝐹𝑟 (𝑋) = (S𝐿 − 1)𝑝𝑟}

[20] 𝑝1
[21] 𝑝1...
[2𝐿−1] 𝑝1

=

[20] 𝑝𝑟
[21] 𝑝𝑟...
[2𝐿−1] 𝑝𝑟

=

1...
1

= −𝑟

Figure 2.4: Depth-2 exact threshold circuit construction of an arbitrary exact thresh-
old gate based on an exact DOMINATION function and the CRT. Notice that this
DOMINATION gate construction is universal and the function is purely determined
by the graph of summation layer. We don’t put the bias terms in the circuit as there
is no sufficient space.

2.3 Bĳective Mappings from Finite Fields to Integer Vectors
Lower Bounds on the EQ Matrices
Now, let us consider the following single linear equation where the weights are fixed
to the ascending powers of two and 𝑥𝑖s are real numbers.

𝑤𝑇𝑏𝑥 =

𝑛∑︁
𝑖=1

2𝑖−1𝑥𝑖 = 0 (2.11)

As the weights of 𝑤𝑏 define a bĳection between 𝑛-bit binary vectors and integers,
𝑤𝑇
𝑏
𝑥 = 0 does not admit a non-trivial solution for the alphabet {−1, 0, 1}𝑛. This

condition also has a combinatorial meaning in the following sense: How small
could the elements of W = {𝑤1, 𝑤2, · · · , 𝑤𝑛} be if W has all distinct subset sums
(DSS)? If the weights satisfy this property, called the DSS property, they can define
a bĳection between {0, 1}𝑛 and integers. Erdős conjectured that the largest weight
𝑤 ∈ W is upper bounded by 𝑐02𝑛 for some 𝑐0 > 0, and therefore choosing powers
of two as the weight set is asymptotically optimal (Erdős, 1983). The best known
result for such weight sets yields 0.22002 · 2𝑛 and currently, the best lower bound is
Ω(2𝑛/

√
𝑛) (Bohman, 1998; Dubroff, Fox, and Xu, 2021; Guy, 2004).

It is shown that the non-trivial solution condition for a single equation is a necessary
and sufficient condition to compute the EQ function given in Eq. (1.7) (Babai et al.,
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2010). We extend this property to 𝑚 many rows to define EQ matrices which give a
bĳection between {0, 1}𝑛 and Z𝑚. We further prove that even though EQ matrices
are not necessary to compute an EQ function, they still satisfy the optimal lower
bounds. Consequently, there is no asymptotic trade-off to choose an EQ matrix to
compute the EQ function given 𝑚 and𝑊 .

Definition 7. A matrix 𝐴 ∈ Z𝑚×𝑛 is an EQ matrix if the homogeneous system 𝐴𝑥 = 0
has no non-trivial solutions in {−1, 0, 1}𝑛.

Theorem 8. To compute EQ2𝑛 (𝑋,𝑌 ) = 1{𝑋 = 𝑌 }, Ω(𝑛/log 𝑛𝑊) many arbitrary
perceptrons with weight constraint𝑊 are needed.

Theorem 8 can be seen as a restatement of the lower bound in Eq. (2.3). In
general, the weight matrix of the first layer of a circuit computing EQ is in the form[
𝐴 𝐵

]
∈ Z𝑚×2𝑛. We will show that both 𝐴 and 𝐵 must be EQ matrices.

Let 𝐴 ∈ Z𝑚×𝑛 be an EQ matrix with the weight constraint𝑊 ∈ Z such that |𝑎𝑖 𝑗 | ≤ 𝑊
for all 𝑖, 𝑗 and let 𝑅 denote the rate of the matrix 𝐴, which is 𝑛/𝑚. It is clear that any
full-rank square matrix is an EQ matrix with 𝑅 = 1. Given any 𝑊 , how large can
this 𝑅 be? For the maximal rate, a necessary condition can be proven by Siegel’s
Lemma (Siegel, 2014). There are different variations of Siegel’s Lemma and the
one we use below suits our needs (Bombieri and Gubler, 2006). Conventionally, we
use | |.| |∞ to denote the infinity norm.

Lemma 1 (Siegel’s Lemma). Consider any integer matrix 𝐴 ∈ Z𝑚×𝑛 with 𝑚 < 𝑛

and |𝑎𝑖 𝑗 | ≤ 𝑊 for all 𝑖, 𝑗 and some integer 𝑊 . Then, 𝐴𝑥 = 0 has a non-trivial
solution for an integer vector 𝑥 ∈ Z𝑛 such that | |𝑥 | |∞ ≤ (

√
𝑛𝑊) 𝑚

𝑛−𝑚 .

Lemma 2. For any {−1, 0, 1}𝑚×𝑛 EQ matrix, 𝑅 = 𝑛
𝑚
≤ 1 + log

√
𝑛𝑊 .

Proof. By Siegel’s Lemma, we know that for a matrix 𝐴 ∈ Z𝑚×𝑛, the homogeneous
system 𝐴𝑥 = 0 attains a non-trivial solution in {−1, 0, 1}𝑛 when

| |𝑥 | |∞ ≤ (
√
𝑛𝑊) 𝑚

𝑛−𝑚 ≤ 21−𝜖 (2.12)

for some 𝜖 > 0. Then, we deduce that 𝑅 = 𝑛
𝑚
≥ 1

1−𝜖 log (
√
𝑛𝑊) + 1. Obviously, an

EQ matrix cannot obtain such a rate. Taking 𝜖 → 0, we conclude the best upper
bound is 𝑅 ≤ 1 + log

√
𝑛𝑊 . □
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The previous rate upper bound given in (Roychowdhury, Orlitsky, and Siu, 1994)
and Eq. (2.3) is looser by a constant factor. Therefore, our result gives a tighter
upper bound on the rate. We also note that a similar result can be obtained by the
matrix generalizations of Erdős’ Distinct Subset Sum problem (Costa, Della Fiore,
and Dalai, 2021).

Lemma 2 equivalently states that if 𝑚 = 𝑜(𝑛/log 𝑛𝑊), there does not exist any EQ
matrix. We are now ready to prove Theorem 8.

Proof of Theorem 8. We use the aforementioned technique to prove the lower bound
for the EQ. Suppose that the weight matrix of the first layer of the circuit is

[
𝐴 𝐵

]
∈

Z𝑚×2𝑛 so that it computes 𝐴𝑋 + 𝐵𝑌 . For such a matrix in the circuit computing the
EQ function, a quadruple of 𝑛-bit binary vectors (𝑋,𝑌, 𝑍, 𝑇) such that 𝐴𝑋 + 𝐵𝑌 =

𝐴𝑍 + 𝐵𝑇 and 𝑋 ≠ 𝑌 but 𝑍 = 𝑇 cannot exist. In other words, if EQ(𝑋,𝑌 ) = 0
but EQ(𝑍,𝑇) = 1, they cannot be mapped to the same vector by the weight matrix[
𝐴 𝐵

]
.

Suppose that 𝐵 is not an EQ matrix. Then, if 𝑋 = 𝑍 , we obtain 𝐵(𝑌 − 𝑍) = 0
and there exists a non-trivial solution such that 𝑌 − 𝑍 ∈ {−1, 0, 1}𝑛 by definition.
Therefore, depending on the entries of such a non-trivial solution, we can recover
non-unique 𝑌 and 𝑍 such that the quadruple (𝑋,𝑌, 𝑍, 𝑇) where 𝑋 ≠ 𝑌 but 𝑍 = 𝑇

always exists (for instance, if 𝑌 − 𝑍 = (1, 0, 0,−1), it is clear that 𝑌1 = 1, 𝑍1 = 0
and 𝑌4 = 0, 𝑍4 = 1. On the other hand, 𝑌2 = 𝑍2, 𝑌3 = 𝑍3 and they can be both 0
or 1). Same arguments apply to the matrix 𝐴 by taking 𝑌 = 𝑍 to begin with. In
conclusion, both 𝐴 and 𝐵 must be EQ matrices and 𝑚 = Ω(𝑛/log 𝑛𝑊). □

The sparsity of the EQ matrices can also be treated in an asymptotical manner.
While an EQ matrix can admit a large number of zeros in the entries, if the rows
are sparse, then the rate of the matrix will get lower. To prove this, we can refer
the following version of Siegel’s Lemma which can be proven easily by Pigeonhole
Principle. Then, we follow the same steps in Lemma 2. The maximal {0, 1}-sum of
a vector 𝑣 is defined by max𝑋∈{0,1}𝑛 |𝑣𝑇𝑋 |.

Lemma 3 (Siegel’s Lemma (modified)). Consider any integer matrix 𝐴 ∈ Z𝑚×𝑛

with 𝑚 < 𝑛 and the maximal {0, 1}-sum of all rows of 𝐴 is bounded by 𝐶 ∈ Z in
magnitude. Then, 𝐴𝑥 = 0 has a non-trivial solution for an integer vector 𝑥 ∈ Z𝑛

such that max 𝑗 |𝑥 𝑗 | ≤ 𝐶
𝑚

𝑛−𝑚 .
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Proof. The matrix 𝐴 gives a mapping from Z𝑛 to Z𝑚. Assume that 0 ≤ 𝑥𝑖 ≤ 𝐵

for some integer 𝐵 and all 𝑖 ∈ {1, . . . , 𝑛}. Since each {0, 1}-sum of rows of 𝐴 is
bounded by 𝐶 in magnitude, we have (𝐶𝐵)𝑚 possible integer vectors in the range
of 𝐴. By Pigeonhole Principle, if (𝐵 + 1)𝑛 > (𝐶𝐵)𝑚, then there exist 𝑥, 𝑦 ∈ Z𝑛 such
that 𝐴𝑥 = 𝐴𝑦 and there is a non-trivial solution to 𝐴𝑥 = 0 such that max 𝑗 |𝑥 𝑗 | ≤ 𝐵.
If 𝐵𝑛 = (𝐶𝐵)𝑚, then (𝐵 + 1)𝑛 > (𝐶𝐵)𝑚 is implied. Therefore, max 𝑗 |𝑥 𝑗 | ≤ 𝐶

𝑚
𝑛−𝑚

follows. □

Let 𝑆 be the maximum number of non-zero entries in any row of an EQ matrix.
Since 𝐶 ≤ 𝑆𝑊 , we obtain 𝑅 ≤ 1 + log 𝑆𝑊 . For example, when 𝑆 = 𝑂 (1), the
asymptotically maximal rate 𝑅 = 𝑂 (log 𝑛) is achievable only if𝑊 = 𝑝𝑜𝑙𝑦(𝑛), sim-
ilar to the upper bounds in previous works or CRT-based constructions. Moreover,
if 𝑆 = 𝑊 = 1, then the maximal rate 𝑅 = 1 where the matrix itself can only be a
permutation matrix (negation of the rows is allowed).

Constructions of the EQ Matrices
For an explicit construction, it is possible to achieve the optimal rate 𝑅 = 𝑂 (log 𝑛𝑊)
if we allow 𝑊 = 𝑝𝑜𝑙𝑦(𝑛). This can be done by the Chinese Remainder Theorem
(CRT) and the Prime Number Theorem (PNT) as in Section 2.2. Since we can also
encode an integer 0 ≤ 𝑍 < 2𝑛 by its binary expansion, the CRT gives a bĳection
between Z𝑚 and {0, 1}𝑛 as long as 𝑝1 · · · 𝑝𝑚 > 2𝑛. By taking modulo 𝑝𝑖 of Eq.
(2.11), we can obtain the following matrix, defined as a CRT matrix:


[20]3 [21]3 [22]3 [24]3 [25]3 [26]3 [27]3

[20]5 [21]5 [22]5 [24]5 [25]5 [26]5 [27]5

[20]7 [21]7 [22]7 [24]7 [25]7 [26]7 [27]7

[20]11 [21]11 [22]11 [24]11 [25]11 [26]11 [27]11


(2.13)

=


1 2 1 2 1 2 1 2
1 2 4 3 1 2 4 3
1 2 4 1 2 4 1 2
1 2 4 8 5 10 9 7

4×8

(2.14)

We have 𝑍 < 256 since 𝑛 = 8 and 3 · 5 · 7 · 11 = 1155. Therefore, this CRT matrix is
an EQ matrix. In general, by the PNT, one needs 𝑂 (𝑛/log 𝑛) many rows to ensure
that 𝑝1 · · · 𝑝𝑚 > 2𝑛. Moreover, 𝑊 is bounded by the maximum prime size 𝑝𝑚,
which is 𝑂 (𝑛) again by the PNT (see Theorem 4).
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One of our main contributions for the optimal rate EQ matrices is to prove the
existence of EQ matrices with constant weight size. This is a simple consequence
of Beck’s Converse Theorem on Siegel’s Lemma (Beck, 2017).

Theorem 9 (Beck’s Theorem for the Converse of Siegel’s Lemma (Beck, 2017)).
There is a (small) positive constant 𝑐0 > 0 with the following property: for every
pair 𝑛 > 𝑚 ≥ 1 of positive integers satisfying 𝑛 ≥ 3𝑚/2, there exists a matrix 𝐴
with 𝑚 rows and 𝑛 columns, entries of {−1, 1} such that for every non-trivial integer
solution of the homogeneous system 𝐴𝑥 = 0, we have

max
𝑗

|𝑥 𝑗 | > 𝑐0(
√
𝑛) 𝑚

𝑛−𝑚 (2.15)

In addition, for large 𝑚, the overwhelming majority of the 𝑚 × 𝑛 ±1 matrices 𝐴
satisfy the theorem. The violators represent an exponentially small 𝑂 (2−𝑚/2) part
of the total 2𝑚𝑛.

The condition 𝑛 ≥ 3𝑚/2 is to guarantee that the non-trivial solutions of 𝐴𝑥 = 0
should have sufficient number of multiplicities (repetition of the same numbers)
because otherwise, the RHS of the Eq. (2.15) will be 𝜔(𝑛) (i.e. it will be super-
linear). Our focus is the case when max 𝑗 |𝑥 𝑗 | > 1 and Beck’s argument should
therefore work. The proof idea is based on Halász Theorem on the anti-concentration
inequalities and generating functions (Halász, 1977). In Section 2.4, we also build a
framework on anti-concentration inequalities and independent of Siegel’s Lemma,
it is of no surprise that a similar existential result on EQ matrices is obtained
(see Theorem 13 with 𝑟 = 1). However, Beck’s Converse Theorem is much more
powerful in its scope and in the quantification of the density of EQ matrices over all
{−1, 1}-matrices.

In addition to these existential results, we give an explicit construction where𝑊 = 1
(i.e. 𝑎𝑖 𝑗 ∈ {−1, 0, 1}) and asymptotic efficiency in rate is achieved up to vanishing
terms.


1 1 1 1 1 1 1 0
1 −1 0 1 −1 0 0 1
1 1 1 −1 −1 −1 0 0
1 −1 0 −1 1 0 0 0

4×8

(2.16)

One can verify that the matrix in (2.16) is an EQ matrix by checking 𝐴𝑥 ≠ 0 for
𝑥 ∈ {−1, 0, 1}8 \ {0} and its rate is twice the trivial rate being the same in (2.13).
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Therefore, due to the optimality in the weight size, this construction can replace the
CRT matrices in the constructions of EQ matrices.

The 𝑚 × 𝑛 EQ matrix construction we give here is based on Sylvester’s construction
of Hadamard matrices. It is an extension of it to achieve higher rates with the
trade-off that the matrix is no longer full-rank.

Definition 8. An 𝑛 × 𝑛 Hadamard matrix is a {−1, 1}-matrix with orthogonal
columns. The order of the Hadamard matrix is 𝑛. A Sylvester-type Hadamard
matrix 𝐻2𝑘 is constructed by the following recursion where 𝐻𝑘 is a Hadamard
matrix of order 𝑘 ∈ Z.

𝐻2𝑘 =

[
𝐻𝑘 𝐻𝑘

𝐻𝑘 −𝐻𝑘

]
2𝑘×2𝑘

(2.17)

Theorem 10. Suppose we are given an EQ matrix 𝐴0 ∈ {−1, 0, 1}𝑚0×𝑛0 . At iteration
𝑘 , we construct the following matrix 𝐴𝑘 :

𝐴𝑘 =

[
𝐴𝑘−1 𝐴𝑘−1 𝐼𝑚𝑘−1

𝐴𝑘−1 −𝐴𝑘−1 0

]
(2.18)

𝐴𝑘 is an EQ matrix with 𝑚𝑘 = 2𝑘𝑚0, 𝑛𝑘 = 2𝑘𝑛0( 𝑘2
𝑚0
𝑛0

+ 1) for any integer 𝑘 ≥ 0.

Proof. We will apply induction. The case 𝑘 = 0 is trivial by assumption. For the
system 𝐴𝑘𝑥 = 𝑧, let us partition the vector 𝑥 and 𝑧 in the following way:[

𝐴𝑘−1 𝐴𝑘−1 𝐼𝑚𝑘−1

𝐴𝑘−1 −𝐴𝑘−1 0

] 
𝑥 (1)

𝑥 (2)

𝑥 (3)

 =

[
𝑧(1)

𝑧(2)

]
(2.19)

Then, setting 𝑧 = 0, we have 𝐴𝑘−1𝑥
(1) = 𝐴𝑘−1𝑥

(2) by the second row block. Hence,
the first row block of the construction implies 2𝐴𝑘−1𝑥

(1) + 𝑥 (3) = 0. Each entry of
𝑥 (3) is either 0 or a multiple of 2. Since 𝑥𝑖 ∈ {−1, 0, 1}, we see that 𝑥 (3) = 0. Then,
we obtain 𝐴𝑘−1𝑥

(1) = 𝐴𝑘−1𝑥
(2) = 0. Applying the induction hypothesis on 𝐴𝑘−1𝑥

(1)

and 𝐴𝑘−1𝑥
(2) , we see that 𝐴𝑘𝑥 = 0 admits a unique trivial solution in {−1, 0, 1}𝑛𝑘 .

To see that 𝑚𝑘 = 2𝑘𝑚0 is not difficult. For 𝑛𝑘 , we can apply induction. □

To construct the matrix given in Eq. (2.16), we can use 𝐴0 = 𝐼1 =

[
1
]
, which is a

trivial rate EQ matrix, and take 𝑘 = 2. By rearrangement of the columns, we also
see that there is a 4 × 4 Sylvester-type Hadamard matrix in this matrix.
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Using Lemma 2 for our construction with 𝐴0 =

[
1
]
, we compute the upper bound

on the rate and the real rate

𝑅𝑢𝑝𝑝𝑒𝑟 =
𝑘 + 1 + log (𝑘 + 2)

2
, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟 =

𝑘

2
+ 1 (2.20)

𝑅𝑢𝑝𝑝𝑒𝑟

𝑅𝑐𝑜𝑛𝑠𝑡𝑟
= 1 + log (𝑘 + 2) − 1

𝑘 + 2
=⇒

𝑅𝑢𝑝𝑝𝑒𝑟

𝑅𝑐𝑜𝑛𝑠𝑡𝑟
∼ 1 (2.21)

which concludes that the construction is optimal in rate up to vanishing terms. By
deleting columns, we can generalize the result to any 𝑛 ∈ Z to achieve optimality up
to a constant factor of 2.

We conjecture that one can extend the columns of any Hadamard matrix to obtain an
EQ matrix with entries {−1, 0, 1} achieving rate optimality up to vanishing terms.
In this case, the Hadamard conjecture implies a rich set of EQ matrix constructions.

We can also consider 𝑞-ary representation of integers in a similar fashion by extend-
ing the definition of EQ matrices to this setting. In our analysis, we always treat 𝑞
as a constant value.

Definition 9. A matrix 𝐴 ∈ Z𝑚×𝑛 is an EQ𝑞 matrix if the homogeneous system
𝐴𝑥 = 0 has no non-trivial solutions in {−𝑞 + 1, . . . , 𝑞 − 1}𝑛.

If 𝑞 = 2, then we drop 𝑞 from the notation and say that the matrix is an EQ
matrix. For the EQ𝑞 matrices, the optimal rate given by Siegel’s Lemma is still
𝑅 = 𝑂 (log 𝑛𝑊) and constant weight constructions exist. We give an extension of
our construction to EQ𝑞 matrices where 𝑊 = 1 and asymptotic efficiency in rate is
achieved up to a factor of 𝑞.

Theorem 11. Suppose we are given an EQ𝑞 matrix 𝐴0 ∈ {−1, 0, 1}𝑚0×𝑛0 . At
iteration 𝑘 , we construct the following matrix 𝐴𝑘 :

𝐴𝑘−1 𝐴𝑘−1 𝐴𝑘−1 · · · 𝐴𝑘−1 𝐼𝑚𝑘−1

𝐴𝑘−1 −𝐴𝑘−1 0 · · · 0 0
0 𝐴𝑘−1 −𝐴𝑘−1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −𝐴𝑘−1 0


(2.22)

𝐴𝑘 is an EQ𝑞 matrix with 𝑚𝑘 = 𝑞
𝑘𝑚0, 𝑛𝑘 = 𝑞𝑘𝑛0( 𝑘𝑞

𝑚0
𝑛0

+ 1) for any integer 𝑘 ≥ 0.

Given 𝐴𝑥 = 𝑧 ∈ Z𝑚, we note that there is a linear time decoding algorithm to find
𝑥 ∈ {0, 1}𝑛 uniquely, given in the Appendix A.
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2.4 Maximum Distance Separable Extensions of EQ Matrices
Residue codes are treated as Maximum Distance Separable (MDS) codes (see Tay
and Chang, 2015 for example) because one can extend the CRT matrix by adding
more prime numbers to the matrix (without increasing 𝑛) so that the resulting integer
code achieves the Singleton bound in Hamming distance. However, we do not say
a CRT matrix is an MDS matrix as this refers to another concept.

Definition 10. An integer matrix 𝐴 ∈ Z𝑚×𝑛 (𝑚 ≤ 𝑛) is MDS if and only if no 𝑚 ×𝑚
submatrix 𝐵 is singular.

Definition 11. An integer matrix 𝐴 ∈ Z𝑟𝑚×𝑛 is MDS for 𝑞-ary bĳections with MDS
rate 𝑟 and EQ rate 𝑅 = 𝑛/𝑚 if and only if every 𝑚×𝑛 submatrix 𝐵 is an EQ𝑞 matrix.

Because Definition 11 considers solutions over a restricted alphabet, we denote
such matrices as RMDS𝑞. Remarkably, as 𝑞 → ∞, both MDS definitions become
the same. Similar to the EQ𝑞 definition, we drop the 𝑞 from the notation when
𝑞 = 2. A CRT matrix is not MDS, however, it can be RMDS𝑞.

We can demonstrate the difference of both MDS definitions by the following matrix.
This matrix is an RMDS matrix with EQ rate 2 and MDS rate 5/4 because any
4 × 8 submatrix is an EQ matrix. This is in fact the same matrix in (2.13) with an
additional row with entries [2𝑖−1]13 for 𝑖 ∈ {1, ..., 8}.



1 2 1 2 1 2 1 2
1 2 4 3 1 2 4 3
1 2 4 1 2 4 1 2
1 2 4 8 5 10 9 7
1 2 4 8 3 6 12 11

5×8

(2.23)

Here, the determinant of the 5 × 5 submatrix given by the first five columns is 0.
Thus, this matrix is not an MDS matrix.

Similar to a CRT-based RMDS matrix, is there a way to extend the EQ matrix given
in Section 2.3 without a large trade-off in the weight size? We first give an upper
bound on the MDS rate 𝑟 based on the alphabet size of an RMDS𝑞 matrix.

Theorem 12. An RMDS𝑞 matrix 𝐴 ∈ Z𝑟𝑚×𝑛 with entries from the alphabet Γ =

{𝛾1, ..., 𝛾𝑘 } satisfies 𝑟 ≤ 𝑘 𝑘+1 given that 𝑛 > 𝑘 .
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Proof. The proof is based on a simple counting argument. We rearrange the rows
of a matrix in blocks 𝐵𝑖 for 𝑖 ∈ {1, · · · , 𝑘 𝑘+1} assuming 𝑛 > 𝑘 . Here, each block
contains rows starting with a prefix of length 𝑘 + 1 in the lexicographical order of
the indices, i.e.,

𝐴 =


𝐵1

𝐵2
...

𝐵𝑘 𝑘+1


=


𝛾1 𝛾1 · · · 𝛾1 · · ·
𝛾1 𝛾1 · · · 𝛾2 · · ·
...

...
. . .

...
. . .

𝛾𝑘 𝛾𝑘 · · · 𝛾𝑘 · · ·


(2.24)

For instance, the block 𝐵1 contains the rows starting with the prefix
[
𝛾1 𝛾1 · · · 𝛾1

]
1×𝑘+1

.
It is easy to see that there is a vector 𝑥 ∈ {−1, 0, 1}𝑛 that will make at least one of
the 𝐵𝑖𝑥 = 0 because it is guaranteed that the (𝑘 + 1)-th column will be equal to one
of the preceding elements by Pigeonhole Principle.

Since the matrix is RMDS𝑞, any 𝑚 row selections should be an EQ matrix. There-
fore, any 𝐵𝑖 should not contain more than 𝑚 rows. Again, by Pigeonhole Principle,
𝑟𝑚 ≤ 𝑘 𝑘+1𝑚 and consequently, 𝑟 ≤ 𝑘 𝑘+1. □

If the weights are constant size in 𝑛, then 𝑘 is a constant. This implies that 𝑛 > 𝑘

is typically satisfied and the MDS rate can only be a constant asymptotically if
alphabet is constant size.

Corollary 12.1. An RMDS𝑞 matrix 𝐴 ∈ Z𝑟𝑚×𝑛 weight size 𝑊 = 𝑂 (1) can at most
achieve the MDS rate 𝑟 = 𝑂 (1).

In Section 2.3, we saw that CRT-based EQ matrix constructions are not optimal in
terms of the weight size. For RMDS𝑞 matrices, we now show that the weight size
can be reduced by a factor of 𝑛. The idea is to use the probabilistic method on the
existence of RMDS𝑞 matrices.

Lemma 4. Suppose that 𝑎 ∈ {−𝑊, . . . ,𝑊}𝑛 is uniformly distributed and 𝑥𝑖 ∈
{−𝑞 + 1, . . . , 𝑞 − 1} \ {0} for 𝑖 ∈ {1, . . . , 𝑛} are fixed where 𝑞 is a constant. Then,
for some constant 𝐶,

𝑃𝑟 (𝑎𝑇𝑥 = 0) ≤ 𝐶
√
𝑛𝑊

(2.25)

Proof. We start with a statement of the Berry-Esseen Theorem.
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Lemma 5 (Berry-Esseen Theorem). Let 𝑋1, . . . , 𝑋𝑛 be independent centered ran-
dom variables with finite third moments E[|𝑋3

𝑖
|] = 𝜌𝑖 and let 𝜎2 =

∑𝑛
𝑖=1 E[𝑋2

𝑖
].

Then, for any 𝑡 > 0, ���𝑃𝑟 ( 𝑛∑︁
𝑖=1

𝑋𝑖 ≤ 𝑡
)
−Φ(𝑡)

��� ≤ 𝐶𝜎−3
𝑛∑︁
𝑖=1

𝜌𝑖 (2.26)

where 𝐶 is an absolute constant and Φ(𝑡) is the cumulative distribution function of
N(0, 𝜎2).

Since the density of a normal random variable is uniformly bounded by 1/
√

2𝜋𝜎2,
we obtain the following.

𝑃𝑟

(��� 𝑛∑︁
𝑖=1

𝑋𝑖

��� ≤ 𝑡) ≤ 2𝑡
√

2𝜋𝜎2
+ 2𝐶𝜎−3

𝑛∑︁
𝑖=1

𝜌𝑖 (2.27)

Let 𝑎 (𝑛−1) denote the (𝑎1, . . . , 𝑎𝑛−1) and similarly, let 𝑥 (𝑛−1) denote (𝑥1, . . . , 𝑥𝑛−1).
By the Total Probability Theorem, we have

𝑃𝑟 (𝑎𝑇𝑥 = 0) = 𝑃𝑟
(
𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |
∈ {−𝑊, . . . ,𝑊}

)
𝑃𝑟

(
𝑎𝑇𝑥 = 0

���𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |
∈ {−𝑊, . . . ,𝑊}

)
+ 𝑃𝑟

(
𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |
∉ {−𝑊, . . . ,𝑊}

)
𝑃𝑟

(
𝑎𝑇𝑥 = 0

���𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |
∉ {−𝑊, . . . ,𝑊}

)
= 𝑃𝑟

(
𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |
∈ {−𝑊, . . . ,𝑊}

)
1

2𝑊 + 1
(2.28)

where the last line follows from the fact that 𝑃𝑟 (𝑎𝑛 = 𝑘) for some 𝑘 ∈ {−𝑊, . . . ,𝑊}
is 1

2𝑊+1 . The second conditional probability term is 0 because 𝑃𝑟 (𝑎𝑛 = 𝑘) for any
𝑘 ∉ {−𝑊, . . . ,𝑊} is 0. We will apply Berry-Esseen Theorem to find an upper
bound on the first term.

We note that E[𝑎2
𝑖
𝑥2
𝑖
] = 𝑥2

𝑖

(2𝑊+1)2−1
12 and E[|𝑎3

𝑖
𝑥3
𝑖
|] = |𝑥𝑖 |3 2

2𝑊+1

(
𝑊 (𝑊+1)

2

)2
. Then,
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𝑃𝑟

(�����𝑎 (𝑛−1)𝑇𝑥 (𝑛−1)

|𝑥𝑛 |

����� ≤ 𝑊
)
≤ 2𝑊 |𝑥𝑛 |

√
2𝜋

√︃
(2𝑊+1)2−1

12
∑𝑛−1
𝑖=1 𝑥

2
𝑖

+ 𝐶
2

2𝑊+1

(
𝑊 (𝑊+1)

2

)2 ∑𝑛−1
𝑖=1 |𝑥𝑖 |3(

(2𝑊+1)2−1
12

) 3
2
( ∑𝑛−1

𝑖=1 𝑥
2
𝑖

) 3
2

(2.29)

One can check that the whole RHS is in the form of 𝐶′
√
𝑛−1

for a constant 𝐶′ as we
assume that 𝑞 is a constant. We can bound |𝑥𝑖 |s in the numerator by 𝑞 − 1 and |𝑥𝑖 |s
in the denominator by 1. The order of𝑊 terms are the same and we can use a limit
argument to bound them as well. Therefore, for some 𝐶′′ > 0,

𝑃𝑟 (𝑎𝑇𝑥 = 0) ≤ 𝐶′
√
𝑛 − 1

1
2𝑊 + 1

≤ 𝐶′′
√
𝑛𝑊

(2.30)

□

Lemma 4 is related to the Littlewood-Offord problem and anti-concentration inequal-
ities are typically used in this framework (Halász, 1977; Rudelson and Vershynin,
2008). We specifically use Berry-Esseen Theorem. Building on this lemma and the
union bound, we have the following theorem.

Theorem 13. An RMDS𝑞 matrix 𝑀 ∈ Z𝑟𝑚×𝑛 with entries in {−𝑊, . . . ,𝑊} exists if
𝑚 = Ω(𝑛/log 𝑛) and𝑊 = 𝑂 (𝑟).

Proof. Let 𝐴 be any 𝑚 × 𝑛 submatrix of 𝑀 . Then, by the union bound (as done in
Karingula and Lovett, 2021), we have

𝑃𝑟 (M is not RMDS𝑞) = 𝑃 ≤
(
𝑟𝑚

𝑚

)
𝑃𝑟 (A is not EQ𝑞)

≤ 𝑟𝑚𝑒𝑚𝑃𝑟 (A is not EQ𝑞) (2.31)

We again use the union bound to sum over all 𝑥 ∈ {−𝑞 + 1, . . . , 𝑞 − 1}𝑛 \ {0}
the event that 𝐴𝑥 = 0 by counting non-zero entries in 𝑥 by 𝑘 . Also, notice the
independence of the events that 𝑎𝑇

𝑖
𝑥 = 0 for 𝑖 ∈ {1, . . . , 𝑚}. Let 𝑥 (𝑘) denote an

arbitrary 𝑥 ∈ {−𝑞 + 1, . . . , 𝑞 − 1}𝑛 \ {0} with 𝑘 non-zero entries. Then,
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𝑃𝑟 (A is not EQ𝑞) ≤
∑︁

𝑥∈{−𝑞+1,...,𝑞−1}𝑛\{0}

𝑚∏
𝑖=1

𝑃𝑟 (𝑎𝑇𝑖 𝑥 = 0) (2.32)

≤
𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
(2(𝑞 − 1))𝑘𝑃𝑟 (𝑎𝑇𝑥 (𝑘) = 0)𝑚 (2.33)

We can use Lemma 4 to bound the 𝑃𝑟 (𝑎𝑇𝑥 (𝑘) = 0) term. Therefore,

𝑃 ≤ 𝑟𝑚𝑒𝑚
𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
(2(𝑞 − 1))𝑘

( 𝐶
√
𝑘𝑊

)𝑚
(2.34)

=

𝑇−1∑︁
𝑘=1

(
𝑛

𝑘

)
(2(𝑞 − 1))𝑘

( 𝑟𝐶1√
𝑘𝑊

)𝑚
+

𝑛∑︁
𝑘=𝑇

(
𝑛

𝑘

)
(2(𝑞 − 1))𝑘

( 𝑟𝐶1√
𝑘𝑊

)𝑚
(2.35)

for some 𝐶1, 𝑇 ∈ Z. We bound the first summation by using
(𝑛
𝑘

)
(2(𝑞 − 1))𝑘 ≤

(𝑛(𝑞 − 1))𝑘 and choosing 𝑘 = 1 for the probability term. This gives a geometric
sum from 𝑘 = 1 to 𝑘 = 𝑇 − 1.

𝑇−1∑︁
𝑘=1

(𝑛(𝑞 − 1))𝑘
(𝑟𝐶1

𝑊

)𝑚
=

(𝑟𝐶1

𝑊

)𝑚 ( (𝑛(𝑞 − 1))𝑇 − 1
𝑛(𝑞 − 1) − 1

)
(2.36)

For the second term, we take the highest value term 𝑟𝐶1√
𝑇𝑊

and
∑𝑛
𝑘=𝑇

(𝑛
𝑘

)
2(𝑞 − 1)𝑘 ≤∑𝑛

𝑘=0
(𝑛
𝑘

)
2(𝑞 − 1)𝑘 = (2(𝑞 − 1) + 1)𝑛. Hence,

𝑃 ≤
(𝑟𝐶1

𝑊

)𝑚
𝐶2(𝑛(𝑞 − 1))𝑇 + (2(𝑞 − 1) + 1)𝑛

( 𝑟𝐶1√
𝑇𝑊

)𝑚
(2.37)

≤ 2𝐶3𝑇 log 𝑛(𝑞−1)−𝑚 log𝑊/𝑟𝐶1

+ 2𝑛 log (2(𝑞−1)+1)−𝑚 log (
√
𝑇𝑊/𝑟𝐶1) (2.38)

We take 𝑇 = 𝑂 (𝑛𝑐) for some 0 < 𝑐 < 1. It is easy to see that if 𝑚 = Ω(𝑛/log 𝑛) and
𝑊 = 𝑂 (𝑟), both terms vanish as 𝑛 goes to the infinity.

□
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We remark that the proof technique for Theorem 13 is not powerful enough to obtain
non-trivial bounds on𝑊 when 𝑚 = 1 to attack Erdős’ conjecture on the DSS weight
sets.

The CRT gives an explicit way to construct RMDS𝑞 ∈ Z𝑟𝑚×𝑛 matrices. We obtain
𝑝𝑟𝑚 = 𝑂 (𝑟𝑚 log 𝑟𝑚) = 𝑂 (𝑟𝑛) given that 𝑟 = 𝑂 (𝑛𝑐) for some 𝑐 > 0 and 𝑚 =

𝑂 (𝑛/log 𝑛) by the PNT. Therefore, we have a factor of𝑂 (𝑛) weight size reduction in
Theorem 13 where we show the existence of such RMDS𝑞 matrices with𝑊 = 𝑂 (𝑟).
However, modular arithmetical properties of the CRT do not reflect to RMDS𝑞
matrices. Therefore, an RMDS𝑞 matrix cannot replace a CRT matrix in general (see
Appendix B).

2.5 Lower Bounds for the DOM functions
By using Siegel’s Lemma, we can obtain a lower bound for DOM functions as well.
We first give the bound for the exact DOM functions and then generalize it to linear
DOM functions.

Theorem 14. To compute an (𝑛 + 1)-ary 𝐿 input exact DOMINATION function
𝑓 (𝑋′), Ω(𝐿/log 𝐿𝑊) manyS-ary perceptrons with weight constraint𝑊 are needed.

Proof. We proceed similar to the proof of Lemma 2. Since we consider binary
inputs for the perceptrons, each {0, 1}-sum of rows of the weight matrix is bounded
by 𝐶 = 𝐿𝑊 . Then, by Siegel’s Lemma in the modified form (see Lemma 3), if

| |𝑥 | |∞ ≤ (𝐿𝑊) 𝑚
𝐿−𝑚 ≤ 21−𝜖 (2.39)

𝑚 ≤ 𝐿 (1 − 𝜖)
log 𝐿𝑊 + (1 − 𝜖) (2.40)

for any 0 < 𝜖 < 1, then we have a non-trivial solution to 𝐴𝑥∗ = 0 for 𝑥 ∈ {−1, 0, 1}𝐿

where 𝑤𝑇
𝑏
𝑥∗ ≠ 0. This leads to a contradiction because for the trivial solution 𝑥 = 0,

𝐴𝑥 = 𝐴𝑥∗ = 0. Therefore, taking 𝜖 → 0, we see that 𝑚 = Ω(𝐿/log 𝐿𝑊). □

Theorem 14 actually applies to linear DOM function as well because if 𝐴𝑥∗ = 0
for some 𝑥∗ ∈ {−1, 0, 1}𝐿 \ {0}, then so is its negation −𝑥∗ a non-trivial solution.
Hence, without loss of generality, there exists an 𝑥∗ ∈ {−1, 0, 1}𝐿 such that 𝐴𝑥∗ = 0
but 𝑤𝑇

𝑏
𝑥∗ < 0.

Corollary 14.1. To compute an S-ary linear DOMINATION function 𝑓 (𝑋′) with 𝐿
inputs,Ω(𝐿/log 𝐿𝑊) manyS-ary perceptrons with weight constraint𝑊 are needed.
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We conjecture that the lower bound Ω(𝐿/log 𝐿𝑊) applies to the vast majority of the
arbitrary exact threshold functions if arbitrary perceptrons with weight constraint
𝑊 are used in the construction. Furthermore, we believe that this is not tight for
depth-2 exact threshold circuits with small weights where the best upper bound on
the circuit size is 𝑂 (𝑛𝐿/log 𝐿).

2.6 Application of the EQ and RMDS𝑞 Matrices to DOM functions
Consider an arbitrary exact DOM function 1{𝑤𝑇

𝑏
𝑋′ = 0} where S = 1. Then, the

only solution to this equation is 𝑋′ = 0 similar to EQ function. Therefore, an EQ
matrix and an AND gate can be used to construct a circuit with constant weights
similar to Figure 2.5. Note that we do not consider bias term sizes in our weight
size analysis.

Theorem 15. If S = 1, there exists a depth-2 exact threshold circuit which com-
putes an S-ary 𝐿 input exact DOMINATION function and its size is bounded by
𝑂 (𝐿/log 𝐿) with weights at most 𝑂 (1).

For example, to construct threshold circuits computing the EQ, we select the weights
for each exact threshold gate as the rows of the EQ matrix. Then, we connect the
outputs of the first layer to the top gate, which just computes the 𝑚-input AND
function (i.e. 1{𝑍1 + ... + 𝑍𝑚 = 𝑚} for 𝑍𝑖 ∈ {0, 1}). In Figure 2.5, we give an
example of an EQ construction.

𝑋′
1

𝑋′
2

𝑋′
3

𝑋′
4

𝑋′
5

𝑋′
6

𝑋′
7

𝑋′
8

= 0

= 0

= 0

= 0

EQ= 4

Figure 2.5: An example of EQ16(𝑋,𝑌 ) constructions with 8 𝑋′
𝑖
= 𝑋𝑖 −𝑌𝑖 inputs and

5 exact threshold gates (including the top gate). The black (or red) edges correspond
to the edges with weight 1 (or -1).
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In general, for the exact DOM gate 1{𝑤𝑇
𝑏
𝑥′ = 0}, there are many different small

norm solutions such as 𝑥′ = (−2, 1, 0, ..., 0) and we cannot apply EQ matrices.
Therefore, we do not know if 1{𝑤𝑇

𝑏
𝑥′ = 0} admits constant weight perceptron

constructions at 𝑂 (𝐿/log 𝐿) complexity. The answer is affirmative if weights are
polynomially large in 𝑛 considering CRT-based constructions where modulo gates
(i.e. 𝑔𝑖 (𝑋) = 1{

∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖 ≡ 0 (mod 𝑝𝑖)}) are used instead of exact threshold gates.

We conjecture that the reduction from polynomial weight sizes to constant weights
is true in general.

It is surprising that when S = 1, linear DOM function require more involved
techniques and they have higher size complexity upper bounds. Here, the RMDS𝑞
matrices play an important role in small weight constructions of the linear DOM
functions. Since older techniques relied on the CRT and our work proved the
existence of smaller weight RMDS𝑞 matrices, we can reduce the weights in the small
weight constructions when S = 1. We roughly follow the previous works which
gives 𝑂 (𝑛3/log 𝑛) size complexity and 𝑂 (𝑛2) weights for COMP and CARRY (i.e.
1{𝑋 + 𝑌 ≥ 2𝑛} where 𝑋 and 𝑌 are 𝑛-bit integers) (Amano and Maruoka, 2005).

Let 𝑓 (𝑋) be a linear threshold function with 𝐹 (𝑋) = 𝑤𝑇𝑋 and the domination
form 𝑤𝑇

𝑏
𝑥′ = 0 with S = 1. COMP, CARRY, and OMB functions are examples of

such linear threshold functions (here, CARRY(𝑋,𝑌 ) = 1{𝑋 + 𝑌 ≥ 2𝑛} needs to be
modified either to 1{2𝑋 + 2𝑌 ≥ 2𝑛+1 − 1} or to its complement 1{𝑋 +𝑌 ≤ 2𝑛 − 1}
to make sure that S = 1). First, let us define 𝐹 (𝑙) (𝑋′) =

∑𝐿
𝑖=𝑙+1 2𝑖−𝑙−1𝑥′

𝑖
where

𝐹 (0) (𝑋,𝑌 ) = 𝐹 (𝑋,𝑌 ). We also denote by 𝑋′(𝑙) the most significant (𝑛 − 𝑙)-tuple of
an 𝑛-tuple vector 𝑋′. We have the following observation.

Lemma 6. Let𝐹 (𝑙) (𝑋′) = ∑𝐿
𝑖=𝑙+1 2𝑖−𝑙−1𝑋′

𝑖
and𝐹 (0) (𝑋′) = 𝐹 (𝑋′) for 𝑋′ ∈ {−1, 0, 1}𝐿 .

Then,

𝐹 (𝑋) > 0 ⇔ ∃𝑙 : 𝐹 (𝑙) (𝑋′) = 1 (2.41)

𝐹 (𝑋) < 0 ⇔ ∃𝑙 : 𝐹 (𝑙) (𝑋′) = −1 (2.42)

Proof. It is easy to see that if 𝑋′ = (𝑋′
1, . . . , 𝑋

′
𝑛) = (×, . . . ,×, 1, 0, . . . , 0) where

the vector has a number of significant 0s and ×s denote any of {−1, 0, 1}, we see
that 𝐹 (𝑋) > 0 (this is called the domination property). Similarly, for 𝐹 (𝑋) < 0,
the vector 𝑋′ should have the form (0, 0, . . . , 0,−1,×, . . . ,×) and 𝐹 (𝑋′) = 0 if and
only if 𝑋′ = (0, . . . , 0). The converse holds similarly. □
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In contrast, if we do not use the domination form of threshold functions, Lemma
6 will require 𝐹 (𝑋) > 0 ⇔ ∃𝑙 : 𝐹 (𝑙) (𝑋) ∈ {2, 3} (see Lemma 1 in Amano and
Maruoka, 2005). In this case, the size complexity blows up to 𝑂 (𝑛4/log 𝑛) due to
modulo checks similar to the constructions in Section 2.2. To reduce the complexity,
the use of domination form is implicit in (Amano and Maruoka, 2005) (see Section
3 in Amano and Maruoka, 2005).

An important remark is that Lemma 6 helps us compute 𝐹 (𝑋) > 0 or 𝐹 (𝑋) < 0. To
include 𝐹 (𝑋) = 0, we can use 𝐹 (𝑋) < 0 and negate the function (this is required for
CARRY and COMP but not for OMB). We will search for the (𝐿 − 𝑙)-tuple vectors
(𝑋 −𝑌 ) (𝑙) = (0, ..., 0,−1) for all 𝑙 ∈ {0, ..., 𝐿 − 1} to compute 𝐹 (𝑋) < 0. We claim
that if we have an RMDS𝑞 matrix 𝐴 ∈ Z𝑟𝑚×𝐿 , we can detect such vectors by solving
𝐴(𝑙) (𝑋 − 𝑌 ) (𝑙) = −𝑎𝐿−𝑙 where 𝐴(𝑙) is a truncated version of 𝐴 with the first 𝐿 − 𝑙
columns and 𝑎𝐿−𝑙 is the (𝐿 − 𝑙)-th column. Specifically, we obtain the following:

𝐹 (𝑋) < 0 ⇒
𝐿−1∑︁
𝑙=0

1{𝐴(𝑙)𝑋′(𝑙) = −𝑎𝐿−𝑙} ≥ 𝑟𝑚 (2.43)

𝐹 (𝑋) ≥ 0 ⇒
𝐿−1∑︁
𝑙=0

1{𝐴(𝑙)𝑋′(𝑙) = −𝑎𝐿−𝑙} < 𝐿(𝑚 − 1) (2.44)

Here, the indicator function works row-wise, i.e., we have the output vector 𝑧 ∈
{0, 1}𝑟𝑚𝐿 such that 𝑧𝑟𝑚𝐿+𝑖 = 1{(𝐴(𝑙) (𝑋−𝑌 ) (𝑙))𝑖 = −(𝑎𝐿−𝑙)𝑖} for 𝑖 ∈ {1, . . . , 𝑟𝑚} and
𝑙 ∈ {0, . . . , 𝐿−1}. We use an RMDS3 matrix in the construction to map {−1, 0, 1}𝐿−𝑙

vectors bĳectively to integer vectors with large Hamming distance. Note that each
exact threshold function can be replaced by two linear threshold functions and a
summation layer (i.e. 1{𝐹 (𝑋) = 0} = 1{𝐹 (𝑋) ≥ 0} + 1{−𝐹 (𝑋) ≥ 0} − 1) which
can be absorbed to the top gate (see Figure 2.6). This increases the circuit size only
by a factor of two.

If 𝐹 (𝑋) < 0, 𝑧𝑟𝑚𝑙+𝑖 should be 1 for all 𝑖 ∈ {1, . . . , 𝑟𝑚} for some 𝑙 by Lemma 6. For
𝐹 (𝑋) ≥ 0 and any 𝑙, the maximum number of 1s that can appear in 𝑧𝑟𝑚𝑙+𝑖 is upper
bounded by 𝑚 − 1 because A is RMDS3. Therefore, the maximum number of 1s
that can appear in 𝑧 is upper bounded by 𝐿 (𝑚 − 1). A sketch of the construction is
given in Figure 2.7.

In order to make both cases separable, we choose 𝑟 = 𝐿. At the second layer, the top
gate is a MAJ gate (1{∑𝑟𝑚𝐿

𝑖=1 𝑧𝑖 < 𝐿(𝑚 − 1)} = 1{∑𝑟𝑚𝐿
𝑖=1 −𝑧𝑖 ≥ −𝐿 (𝑚 − 1) + 1}). By
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...

−𝑤1−𝑤2

−𝑤𝑛

Figure 2.6: A construction of an arbitrary exact threshold function (1{𝐹 (𝑋) = 0})
using two linear threshold functions (1{𝐹 (𝑋) ≥ 0} and 1{𝐹 (𝑋) ≤ 0}) and a
summation node. This summation node can be removed if its output is connected
to another gate due to linearity.

Theorem 13, there exists an RMDS3 matrix with 𝑚 = 𝑂 (𝐿/log 𝐿) and 𝑊 = 𝑂 (𝐿).
Thus, there are 𝑟𝑚𝐿 + 1 = 𝑂 (𝐿3/log 𝐿) many gates in the circuit, which is the best
known result. The same size complexity can be achieved by a CRT-based approach
with 𝑊 = 𝑂 (𝑝𝑟𝑚) = 𝑂 (𝐿2) by the PNT (Amano and Maruoka, 2005). We give a
sketch of the construction in Figure 2.7.

2.7 Conclusion
We introduced a new way of computation for threshold functions using DOM gates.
The idea to use powers of two as the weights and a larger alphabet in the input
variables is shown to be useful to achieve more efficient constructions in weights
and circuits size. The results are obtained by the application of known mathematical
techniques to circuit complexity theory in a novel way: Siegel’s Lemma (and its
variations) is used to derive lower bounds and Berry-Esseen Theorem is applied
to optimize the weight size for a previously known construction. Additionally,
by extending the Sylvester-type Hadamard matrices, optimal rate EQ matrices are
constructed, settling an open problem on the gap between the upper and lower
bounds on the size of the circuits computing the EQ functions. It is not known if a
similar extension is possible for any Hadamard matrix.

Based on an important property of CRT, a generalization of MDS matrices is
investigated, namely, RMDS𝑞 matrices. Although CRT matrices are constructive
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examples of RMDS𝑞 matrices, it is shown that the weight sizes are not optimal by
an existence argument. It is an interesting research direction to construct such a
matrix explicitly. Moreover, to compute a threshold function using a small weight
depth-2 threshold circuit, modular arithmetic property of the CRT matrices becomes
significant. To construct such circuits, it is not clear if such a property is necessary
or the CRT matrix has optimal size weights.

In this chapter, the constructive results and lower bounds are obtained for threshold
functions whose domination form has sparsity S = 1. For specific threshold func-
tions, the results are given in Table 1.1. For the circuits computing EQ, provably
optimal rate is achieved using constant size weights by an explicit construction. For
circuits computing either COMP, CARRY, and OMB functions, the weight sizes
are reduced by a factor of 𝑛 without an asymptotic increase in the circuit size. The
natural open problem is whether similar algebraic constructions or lower bounds can
be found for any threshold function where S > 1 (even S = 2 seems to be a chal-
lenge) so that these ideas can be developed into a more general weight quantization
technique for neural networks.
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Figure 2.7: A sketch of the small weight LT circuit construction of the linear
threshold function 𝑓 (𝑋) with domination form 1{𝑤𝑇

𝑏
𝑋′ ≥ 0} and S = 1. Each

color specifies an 𝑙 value in the construction. If 𝐹 (𝑋) < 0, all the 𝑟𝑚 many gates in
at least one of the colors will give all 1s at the output. Otherwise, all the 𝑟𝑚 many
gates in a color will give at most (𝑚 − 1) many 1s at the output.
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C h a p t e r 3

ON THE COMPLEXITY OF THE NEAREST NEIGHBOR
REPRESENTATIONS

First of all, we informally summarize the preliminaries for the NN representation
framework. NN representations of Boolean functions consist of anchors in real
space and they classify the vectors on the binary vectors into two groups. The NN
complexity of a Boolean function 𝑓 is the smallest number of anchors required
to represent 𝑓 without any error. The resolution of an NN representation is the
maximum number of required bits to represent an entry of all anchors.

NN complexity gives us a quantitative way to classify Boolean functions. Let us
start from the most simple case: A constant Boolean function 𝑓 (𝑋) = 0 or 𝑓 (𝑋) = 1
can be represented by a single anchor, which can be any real vector. Therefore, we
say that these functions have trivial NN representations. All functions such that
𝑁𝑁 ( 𝑓 ) = 2 are linear threshold functions (P. Hajnal, Z. Liu, and Turán, 2022).
The class of functions 𝑁𝑁 ( 𝑓 ) = 3 implies a convex polytope, which is treated in
Section 3.4. Exact threshold functions are in this class. The characterization for
𝑁𝑁 ( 𝑓 ) ≥ 4 is more difficult, however, some important classes of Boolean functions,
like symmetric Boolean functions, could require this NN complexity.

In the introduction, the resolution-size trade-off is illustrated by comparing NN and
BNN complexities (see Figure 1.8). Basically, when the resolution of the anchor
entries decreases, the number of anchors increases. Although 𝑁𝑁 ( 𝑓 ) = 2 for linear
threshold functions, the resolution of the anchors is, however, 𝑂 (𝑛 log 𝑛) since an
arbitrary linear threshold function requires exponentially large weights in 𝑛(Alon
and Vũ, 1997; Håstad, 1994; Saburo Muroga, 1971). We will show this rigorously in
Theorem 17. In the previous chapter, we investigated how a threshold function with
“large” weights can be computed using “small” weight depth-2 threshold circuits to
give some ground on our hypothesis for the brain. In this chapter, our main goal is
to show a similar result for the NN representations of threshold functions and we
are interested in an answer for the following conjecture.

Conjecture 1. Let 𝑓 (𝑋) be any 𝑛-input linear threshold function. Then, there is
an NN representation of 𝑓 (𝑋) with 𝑂 (𝑝𝑜𝑙𝑦(𝑛)) number of anchors and 𝑂 (log 𝑛)
resolution.
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In brief, the conjecture is true at least for some threshold functions. But, the answer
is not clear in general and there might be an eventual exponential blow-up in the
size (recall that any Boolean function has a BNN representation with at most 2𝑛

anchors and this is “infeasible” for our hypothesis). We will see how the results of
the previous chapter could be applied to the framework of NN representations in
Section 3.7.

To answer the conjecture in this associative computation model, we look for an anal-
ogous result for small weight depth-2 threshold circuit constructions of threshold
functions and need to build the bridge between NN representations and thresh-
old circuits. The following is well-known where L̂T (or ÊLT) denotes the linear
(or exact) threshold functions with polynomially large weights in 𝑛 (Amano and
Maruoka, 2005; Goldmann and Karpinski, 1993; Hansen and V. V. Podolskii, 2010;
Hofmeister, 1996):

LT ⊊ L̂T ◦ L̂T (3.1)

ELT ⊊ ÊLT ◦ ÊLT (3.2)

Essentially, the depth-2 small weight threshold circuit constructions of arbitrary
exact threshold functions is in the form of SYM◦ ÊLT. The techniques are reviewed
in Chapter 2 where CRT and PNT are used. The known results for the constructions
for LT ⊆ L̂T ◦ L̂T rely on the transformations ELT ⊆ SYM ◦ ÊLT and the associated
circuit size and weight size complexities (see Amano and Maruoka, 2005 for the full
details). Hence, we extend the scope of our analysis to SYM ◦ ELT and the related
class SYM ◦ LT where the top gate is an arbitrary symmetric Boolean function.

In addition, the treatment of these depth-2 Boolean circuits is a significant step to
find a correspondence between neural networks and NN representations, which are
both inspired by the brain architecture. It is easy to transform an NN representation
into a neural network: An 𝑚-anchor NN representation of 𝑓 (𝑋) can be used to
compute it by using 𝑂 (𝑚2) gates using a depth-3 linear threshold circuit (P. Hajnal,
Z. Liu, and Turán, 2022; Murphy, 1990). We make this argument explicit in Section
3.3. This is in fact a circuit in the class of OR ◦ AND ◦ LT. Conversely, could
we find an NN representation for a neural network? In a traditional sense, a neural
network is a composition of linear threshold functions which has 𝑁𝑁 ( 𝑓 ) = 2. Thus,
to answer this question, it is essential to understand how function composition plays
a role in the constructions of NN representations.
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In this thesis, we focus on the NN representations of LT, ELT, and SYM functions
and their compositions to answer Conjecture 1. The flow of this chapter is as follows.

• NN Representations of Threshold Functions.

• NN Representations of Symmetric Boolean Functions.

• From NN Representations to Threshold Circuits.

• NN Representations of Convex Polytopes (AND ◦ LT).

• NN Representations of Depth-2 Threshold Circuits with Symmetric Top Gate
(SYM ◦ ELT and SYM ◦ LT).

• NN Representations of Linear and Exact Decision Lists.

• Towards the Low Resolution NN Representations of Threshold Functions.

Before starting our analysis, we give important examples of Boolean functions in
the classes of depth-2 circuits for further motivation.

We start with the symmetric Boolean function PARITY(𝑋) =
⊕𝑛

𝑖=1 𝑥𝑖, which had
a lot of attention from the mathematics and information theory for many decades
(Håstad, 1986; Kautz, 1961; Paturi and Saks, 1990). 𝑛-input PARITY has a nice
recursive structure PARITY𝑛 = PARITY𝑛/𝑚 ◦ PARITY𝑚 ∈ SYM ◦ SYM. Specifi-
cally, PARITY𝑛 = PARITY𝑛/2 ◦ XOR ∈ SYM ◦ ELT. We present results for both
constructions, which are essentially equivalent.

Another significant function in the Circuit Complexity Theory is INNER-PRODUCT-
MOD2 (denoted by IP2) function.

IP22𝑛 (𝑋,𝑌 ) = 𝑋𝑇𝑌 (mod 2) =
𝑛⊕
𝑖=1

𝑥𝑖 ∧ 𝑦𝑖 (3.3)

IP2 is a very intriguing function since it is still an open problem if IP2 ∈ LT ◦ LT
(here, the membership is defined for polynomially large circuits). Some partial
results are known in that IP2 ∉ LT ◦ L̂T, IP2 ∉ L̂T ◦ LT by a discriminator lemma
and unbounded Communication Complexity arguments (Forster, 2002; A. Hajnal
et al., 1993). However, it has 𝑂 (𝑛) size depth-3 threshold circuit constructions by
simply constructing IP22𝑛 = PARITY𝑛 ◦ AND2 (PARITY can be computed by a
depth-2 threshold circuit). For the NN representations with unbounded resolution,
the following lower bound on the NN complexity is shown.
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Theorem 16 (P. Hajnal, Z. Liu, and Turán, 2022). For 2𝑛-input IP2 function,
NN(IP22𝑛) ≥ 2𝑛/2.

We give a construction of IP22𝑛 with 2𝑛 many anchors and 𝑂 (1) resolution using
IP22𝑛 = PARITY𝑛 ◦AND2 ∈ SYM ◦LT. The upper bound is far from optimal (by a
square root of a factor) but the upper bound could be optimal for constant resolution.
We also note the recursive relationship IP22𝑛 = PARITY𝑛/𝑘 ◦ IP22𝑘 , in which 𝑛/𝑘
is an integer, but we provide no construction for it. This recursive structure of IP2
is exploited in (Amano, 2020) to simplify the known upper bounds and this could
inspire future progress to find alternative NN representations for the IP2.

A recent striking result is that when one considers the 𝑘-NN representations with
𝑘 = Ω(𝑛), 𝑘𝑁𝑁 (𝐼𝑃22𝑛) = 𝑂 (𝑛) (DiCicco, V. Podolskii, and Reichman, 2024). This
in fact asymptotically matches a lower bound for the 𝑘-NN complexity of IP2 using
LDTs in (P. Hajnal, Z. Liu, and Turán, 2022) and it is the first example of a Boolean
function where 𝑘-NN and NN complexity have a dramatically different complexity.
More generally, SYM𝑚 ◦AND𝑛 circuits have 𝑘-NN representations with linear size
in 𝑚. It is also shown that a generalized class of 𝑘-NN representations contains the
class EDL (DiCicco, V. Podolskii, and Reichman, 2024).

The function OR𝑛 ◦ EQ2𝑛 is treated in (Chattopadhyay, Mahajan, et al., 2019) to
show that for any LDL, the depth of the list must be 2Ω(𝑛) (note that the number of
inputs is 2𝑛2) using a result by (Impagliazzo and R. Williams, 2010). This function
was useful to separate EDL with LDL and a candidate to attack Conjecture 5 where
we relate the exact cover complexity and NN complexity by 𝑁𝑁 ( 𝑓 ) ≤ 𝑐𝐸𝐶 ( 𝑓 ) for
some constant 𝑐 > 0 for any Boolean function 𝑓 (see Appendix C for definitions
and discussion). Since OR𝑛 ◦ EQ2𝑛 ∈ SYM ◦ ELT, we obtain an NN representation
with exponentially large number of anchors in 𝑛 but it is not known if this is tight.

In the Circuit Complexity Theory, a recent result was obtained for OMB𝑚 ◦ EQ2𝑛 ∈
DOM ◦ ELT, which is an exact decision list, showing that it is the first explicit
example of Boolean functions where any polynomially large size depth-2 linear
threshold circuit computing it requires “large” weights (Chattopadhyay and Mande,
2018). More precisely, OMB𝑚 ◦ EQ2𝑛 ∈ LT ◦ LT but not LT ◦ L̂T or L̂T ◦ LT
when one considers polynomially large circuit sizes in 𝑛. The idea is to use the
sign-rank method from the Communication Complexity Theory. We give an NN
representation with exponentially large number of anchors for this function.

We finally make progress on the main question: Could we transform a depth-2
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threshold circuit with small weights into a NN representation with small size and
logarithmic resolution? For the EQ2𝑛, we establish that the answer is true by using
the AND ◦ ELT construction. Here, we use our results for exact DOM functions
with S = 1 (see Chapter 2) and prove that there are 2𝑛 + 1 size 𝑂 (1) resolution
NN representations for the EQ function. The result essentially works for any
exact threshold function whose domination form have sparsity parameter S = 1.
Moreover, one can reduce the size to 𝑂 (𝑛/log 𝑛) with 𝑂 (log 𝑛) resolution. For
linear threshold functions such as COMP2𝑛 and OMB𝑛, we obtain a similar result.
For these functions, there are 𝑂 (𝑛) size constructions with 𝑂 (log 𝑛) resolution. It
is not clear if the resolution can be reduced to 𝑂 (1) without a large blow-up in
the number of anchors. The general answer to Conjecture 1 for arbitrary threshold
functions is still unclear.

3.1 NN Representations of Threshold Functions
We start with linear threshold functions, which has the smallest NN complexity out
of all Boolean functions except the constant Boolean functions (i.e. 𝑓 (𝑋) = 0 or
𝑓 (𝑋) = 1 where a single anchor suffices). Naturally, we are interested in the NN
representations of non-constant linear threshold functions and we ignore them from
now on in this context.

For linear threshold functions, one can easily see that 𝑁𝑁 ( 𝑓 ) = 2. Firstly, one can
observe that given any single positive-negative anchor pair, one can find the optimal
separating hyperplane by computing the middle point of anchors and the normal
vector. Conversely, we prove that given an 𝑛-input linear threshold function with
weights 𝑤 ∈ Z𝑛, there is a 2-anchor NN construction with resolution 𝑂 (𝑅𝐸𝑆(𝑤)).
The resolution of the bias term itself does not matter. In general, for linear threshold
functions, the resolution of the weights are upper bounded by 𝑂 (𝑛 log 𝑛) (Alon
and Vũ, 1997; Håstad, 1994; Saburo Muroga, 1971). Note that we do not care the
equality case𝑤𝑇𝑋 = 𝑏 for linear threshold functions since without loss of generality,
we can eliminate them by obtaining 1{𝑤𝑇𝑋 ≥ 𝑏} = 1{𝑤𝑇𝑋 ≥ 𝑏 − 0.5}.

Theorem 17. Let 𝑓 (𝑋) be an 𝑛-input non-constant linear threshold function with
weight vector 𝑤 ∈ Z𝑛 and the bias term 𝑏 ∈ Z. Then, there is a 2-anchor NN
representation of 𝑓 (𝑋) with resolution 𝑂 (𝑅𝐸𝑆(𝑤)). In general, the resolution is
𝑂 (𝑛 log 𝑛).

Proof. Geometrically, any 2-anchor NN representation construction of linear thresh-
old functions can be written in the following form for a real number 𝑐 > 0 and an
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𝑤𝑇𝑥 > 𝑏

𝑤𝑇𝑥 < 𝑏

𝑥∗

𝑎1

𝑎2

Figure 3.1: The NN Representation of a Linear Threshold Function 1{𝑤𝑇𝑋 ≥ 𝑏}
and its 2-anchor NN Representation. 𝑥∗ can be any point on the hyperplane.

arbitrary 𝑥∗ ∈ R𝑛 such that 𝑤𝑇𝑥∗ = 𝑏′ where 𝑏′ = 𝑏 − 0.5.

𝑎1 = 𝑥∗ + 𝑐𝑤 (3.4)

𝑎2 = 𝑥∗ − 𝑐𝑤 (3.5)

This can be seen algebraically as well. 𝑑 (𝑎1, 𝑋)2 − 𝑑 (𝑎2, 𝑋)2 = −4𝑐(𝑤𝑇𝑋 − 𝑏′) is
negative if and only if 𝑤𝑇𝑋 > 𝑏′, which corresponds to 𝑓 (𝑋) = 1.

We perturb 𝑏 to 𝑏′ to consider the points on the hyperplane itself. We first claim
that there exists 𝑥∗ such that 𝑅𝐸𝑆(𝑥∗) ≤ 𝑅𝐸𝑆(𝑤).

Since 𝑓 (𝑋) is not constant, there is always a pair of binary vectors 𝑋′ and 𝑋′′ such
that 𝑤𝑇𝑋′ < 𝑏′ < 𝑤𝑇𝑋′′ where 𝑋′

𝑖
= 𝑋′′

𝑖
for all 𝑖 ∈ {1, . . . , 𝑛} except for a unique

𝑖 = 𝑘 ∈ Z. Then, we construct

𝑥∗𝑖 = 𝑋
′
𝑖 for 𝑖 ≠ 𝑘 (3.6)

𝑥∗𝑘 =
𝑏′ − 𝑤𝑇𝑋′

𝑤𝑘
(3.7)

Clearly, 𝑥∗
𝑖
s are binary except 𝑖 = 𝑘 where |𝑏′ − 𝑤𝑇𝑋′| < 𝑤𝑘 because 𝑤𝑇𝑋′ <

𝑏′ < 𝑤𝑇𝑋′′ and therefore, 𝑅𝐸𝑆(𝑥∗
𝑘
) = ⌈log2 𝑤𝑘 + 1⌉. In conclusion, 𝑅𝐸𝑆(𝑥∗) =

⌈log2 𝑤𝑘 + 1⌉ ≤ 𝑅𝐸𝑆(𝑤).

Picking 𝑐 = 1, we see that 𝑅𝐸𝑆(𝐴) = 𝑂 (𝑅𝐸𝑆(𝑤)). Moreover, since 𝑤𝑖 = 2𝑂 (𝑛 log 𝑛)

for 𝑖 ∈ {1, . . . , 𝑛} in general (Alon and Vũ, 1997; Håstad, 1994; Saburo Muroga,
1971), we conclude that 𝑅𝐸𝑆(𝐴) = 𝑂 (𝑛 log 𝑛). □

We define an 𝑛-input symmetric linear threshold function as a symmetric Boolean
function such that 𝑓 (𝑋) = 1{|𝑋 | ≥ 𝑏}, namely, 𝑤𝑖 = 1 for all 𝑖. Interestingly,
depending on the value of 𝑏, these functions can have different orders of BNN
complexities.
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Theorem 18 (P. Hajnal, Z. Liu, and Turán, 2022). Let 𝑓 be an 𝑛-input symmetric
linear threshold function with threshold 𝑏. Then,

• If 𝑏 = 𝑛/2 and 𝑛 is odd, 𝐵𝑁𝑁 ( 𝑓 ) = 2.

• If 𝑏 = 𝑛/2 and 𝑛 is even, 𝐵𝑁𝑁 ( 𝑓 ) = 𝑛/2 + 2. (The lower bound is proven in
DiCicco, V. Podolskii, and Reichman, 2024)

• If 𝑏 = ⌊𝑛/3⌋, 𝐵𝑁𝑁 ( 𝑓 ) = 2Ω(𝑛) .

If all the anchors are on the Boolean hypercube, then the NN complexity can be
as large as 2Ω(𝑛) . However, interestingly, we show that for constant resolution NN
representations, using 2 anchors for symmetric Boolean functions suffices using
Theorem 17. This demonstrates that a slight change in the resolution can simplify
the NN complexity.

Corollary 18.1. Let 𝑓 (𝑋) be an 𝑛-input symmetric linear threshold function with
threshold 𝑏. Then, there is a 2-anchor NN representation of 𝑓 (𝑋) with resolution
𝑂 (1).

Proof. For symmetric linear threshold functions, all weights are 1. We first perturb
the bias term so that 1{|𝑋 | ≥ 𝑏} = 1{|𝑋 | ≥ 𝑏 − 0.5}. Then, we pick 𝑋∗ =

(1, . . . , 1, 1/2, 0, . . . , 0) where 𝑤𝑇𝑋∗ = 𝑏 − 0.5, i.e., there are 𝑏 − 1 many 1s in 𝑋∗

and 𝑋∗ is on the hyperplane 𝑤𝑇𝑥 = 𝑏 − 0.5. Picking 𝑐 = 1, we get

𝑎1 = (0, . . . , 0,−1/2,−1, . . . ,−1) (3.8)

𝑎2 = (2, . . . , 2, 3/2, 1, . . . , 1) (3.9)

which is a valid NN representation where the number of 0s in 𝑎1 (and 2s in 𝑎2) is
𝑏 − 1. The resolution is clearly 𝑂 (1). □

In addition to the result in Theorem 17, we give a similar result for exact threshold
functions. For any exact threshold function 𝑓 which is not a linear threshold function,
it is NN( 𝑓 ) > 2 necessarily. For example, the EQ is such an example and the AND
function is both exact and linear. We show that any exact threshold function which
is not linear has exactly a 3-anchor NN representation where all the anchors are
collinear. The geometrical idea is given in Figure 3.2. Contrary to linear threshold
functions, the converse does not hold, i.e, a Boolean function with a 3-anchor NN
representation need not to be an exact threshold function (see 3-interval symmetric
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Boolean functions such as CQ in the next section). The resolution of the weights is
related to the resolution of the anchors similar to the result in Theorem 17.

Theorem 19. Let 𝑓 (𝑋) be an 𝑛-input non-linear exact threshold function with weight
vector 𝑤 ∈ Z𝑛 and the bias term 𝑏 ∈ Z. Then, there is a 3-anchor NN representation
of 𝑓 (𝑋) with resolution 𝑂 (𝑅𝐸𝑆( | |𝑤 | |22)) with | |.| |2 being the Euclidean norm. In
general, the resolution is 𝑂 (𝑛 log 𝑛).

Proof. We follow the idea in the proof of Theorem 17. In addition to 𝑎1 and 𝑎2, we
put another anchor 𝑎0 which a solution to 𝑤𝑇𝑋 = 𝑏. 𝑎0 have the opposite labeling
of the 𝑎1 and 𝑎2. We assume that 𝑐 > 0.

𝑎0 = 𝑋∗ (3.10)

𝑎1 = 𝑋∗ − 𝑐𝑤 (3.11)

𝑎2 = 𝑋∗ + 𝑐𝑤 (3.12)

Without loss of generality, we can assume that there exist a binary 𝑋∗ such that
𝑤𝑇𝑋∗ = 𝑏 because otherwise, 𝑓 (𝑋) = 0 for all 𝑋 ∈ {0, 1}𝑛, which is a constant
function with a trivial 1-anchor NN representation. We have the following necessary
and sufficient conditions to claim that this representation is valid indeed:

Case 1: 𝑤𝑇𝑋 = 𝑏 ⇔ 𝑑 (𝑎0, 𝑋) < 𝑑 (𝑎𝑖, 𝑋) for 𝑖 = 1, 2 (3.13)

Case 2: 𝑤𝑇𝑋 ≠ 𝑏 ⇔ 𝑑 (𝑎0, 𝑋) > 𝑑 (𝑎𝑖, 𝑋) either for 𝑖 = 1, 2 (3.14)

We get the following when we expand the squared Euclidean distance from the input
vector to an anchor:

𝑑 (𝑎1, 𝑋)2 = |𝑋 | − 2𝑎𝑇1𝑋 + ||𝑎1 | |22 (3.15)

= |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
+ 2𝑐(𝑤𝑇𝑋 − 𝑏) + 𝑐2 | |𝑤 | |22 (3.16)

= 𝑑 (𝑎0, 𝑋)2 + 2𝑐(𝑤𝑇𝑋 − 𝑏) + 𝑐2 | |𝑤 | |22 (3.17)

𝑑 (𝑎2, 𝑋)2 = 𝑑 (𝑎0, 𝑋)2 − 2𝑐(𝑤𝑇𝑋 − 𝑏) + 𝑐2 | |𝑤 | |22 (3.18)

It is clear that min𝑖∈{1,2} 𝑑 (𝑎𝑖, 𝑋)2 = 𝑑 (𝑎0, 𝑋)2 − 2𝑐 |𝑤𝑇𝑋 − 𝑏 | + 𝑐2 | |𝑤 | |22. When we
write the necessary and sufficient conditions more explicitly, we obtain

Case 1: 𝑤𝑇𝑋 = 𝑏 ⇔ 0 < −2𝑐 |𝑤𝑇𝑋 − 𝑏 | + 𝑐2 | |𝑤 | |22 (3.19)

Case 2: 𝑤𝑇𝑋 ≠ 𝑏 ⇔ 0 > −2𝑐 |𝑤𝑇𝑋 − 𝑏 | + 𝑐2 | |𝑤 | |22 (3.20)
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Case 1 is trivial as long as 𝑐 ≠ 0 because 𝑤𝑇𝑋 = 𝑏. For Case 2, we have
𝑐 <

2|𝑏−𝑤𝑇𝑋 |
| |𝑤 | |22

. The minimum value the numerator can take is 1, therefore, the bound

is tightest when 𝑐 < 2
| |𝑤 | |22

. Taking 𝑐 = 1
| |𝑤 | |22

suffices and we immediately see that

𝑅𝐸𝑆(𝐴) = 𝑂 (𝑅𝐸𝑆( | |𝑤 | |22)) given that 𝑋∗ is binary. Since 𝑅𝐸𝑆(𝑤) = 𝑂 (𝑛 log 𝑛),
we obtain the 𝑅𝐸𝑆(𝐴) = 𝑂 (𝑛 log 𝑛) (Babai et al., 2010). □

Compared to Theorem 17, the resolution is upper bounded by the norm of the weights
in Theorem 19. When the weights are constant in 𝑛, the norm of the weights might
be linear in 𝑛 and the resolution may not be constant anymore. Geometrically
speaking, this is due to the fact that if the anchors 𝑎1 and 𝑎2 are too far from the
hyperplane, 𝑎0 might get closer to binary vectors outside the hyperplane itself.

We can similarly define an 𝑛-input symmetric exact threshold function as a sym-
metric Boolean function such that 𝑓 (𝑋) = 1{|𝑋 | = 𝑏}. We will prove later an
important result is that for some symmetric exact threshold functions, 3-anchor NN
representations require Ω(log 𝑛) resolution (see Theorem 24).

𝑤𝑇𝑥 > 𝑏

𝑤𝑇𝑥 = 𝑏

𝑤𝑇𝑥 < 𝑏

𝑎1

𝑎2

𝑎0

Figure 3.2: The NN Representation of an Exact Threshold Function 1{𝑤𝑇𝑋 = 𝑏}
and its 3-anchor NN Representation. The anchors 𝑎1 and 𝑎2 must be close enough
to the hyperplane. All anchors are collinear.

3.2 NN Representation of Symmetric Boolean Functions
Symmetric Boolean functions are useful to prove many complexity results about
Boolean function (Bruck, 1990; Håstad, Jukna, and Pudlák, 1995; Stockmeyer,
1976) and more importantly, in the context of nearest neighbors, any 𝑛-input Boolean
function can be interpreted as an 2𝑛-input symmetric Boolean function (Siu, Roy-
chowdhury, and Kailath, 1991). Therefore, results on symmetric Boolean functions
can provide insights about our understanding of Boolean function complexity. For
𝑛-input symmetric Boolean functions, it is known that there is an NN representation
of size 𝑛 + 1 and resolution 𝑂 (log 𝑛) (P. Hajnal, Z. Liu, and Turán, 2022).

Proposition 1 (P. Hajnal, Z. Liu, and Turán, 2022). For an 𝑛-input symmetric
Boolean function, 𝑁𝑁 ( 𝑓 ) ≤ 𝑛 + 1.
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The PARITY construction mentioned in Theorem 2 can be extended to arbitrary
symmetric Boolean functions. The idea is to assign an anchor point to each value
of |𝑋 |. We have the following construction of an NN representation with an anchor
matrix 𝐴 for the given symmetric Boolean function 𝑓 (𝑋).

|𝑋 | 𝑓 (𝑋)
0 0 → 𝑎1

1 0 → 𝑎2

2 1 → 𝑎3

3 1 → 𝑎4

4 1 → 𝑎5

5 0 → 𝑎6

𝐴 =



0 0 0 0 0
0.2 0.2 0.2 0.2 0.2
0.4 0.4 0.4 0.4 0.4
0.6 0.6 0.6 0.6 0.6
0.8 0.8 0.8 0.8 0.8
1 1 1 1 1


(3.21)

Proposition 1 is proven by construction and in general, the matrix 𝐴 ∈ R(𝑛+1)×𝑛

contains the anchor 𝑎𝑖 = ((𝑖 − 1)/𝑛, . . . , (𝑖 − 1)/𝑛) where 𝑃 and 𝑁 is a partition
of {𝑎1, . . . , 𝑎𝑛+1}. Regardless of the function itself, this construction requires 𝑛 + 1
anchors and we call it the PARITY-based construction. In contrast, we know that
there are examples of symmetric Boolean functions that require a smaller number
of anchors and Proposition 1 is evidently far from being optimal.

|𝑋 | AND(𝑋) OR(𝑋)
0 0 0
1 0 1
2 1 1

Anchors ©«
0 0

0.5 0.5
1 1

ª®¬ ©«
0 0

0.5 0.5
1 1

ª®¬
Figure 3.3: The PARITY-based constructions for 2-input AND and OR functions.
Clearly, the construction given in Fig. 1.7 has smaller size and the same resolution.

One can notice that there is a single transition from 0s to 1s in 𝑓 (𝑋) for both
AND and OR when they are enumerated by |𝑋 |. Furthermore, the correspondence
between 𝑓 (𝑋) and |𝑋 | is particularly useful to measure the complexity of symmetric
Boolean functions in Circuit Complexity Theory (Muroga, 1959; Minnick, 1961;
Siu and Bruck, 1991). These observations motivate us to define the notion of an
interval for a symmetric Boolean function in order to measure the NN complexity.

Definition 12. Let 𝑎 ≤ 𝑏 ≤ 𝑛 be some non-negative integers. An interval [𝑎, 𝑏] for
an 𝑛-input symmetric Boolean function is defined as follows:
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1. 𝑓 (𝑋) is constant for |𝑋 | ∈ [𝑎, 𝑏].

2. If 𝑎 ≠ 0 and 𝑏 ≠ 𝑛, 𝑓 (𝑋1) ≠ 𝑓 (𝑋2) for any |𝑋1 | ∈ [𝑎, 𝑏] and

• If 𝑎 > 0 and 𝑏 < 𝑛, |𝑋2 | = 𝑎 − 1 and |𝑋2 | = 𝑏 + 1.

• If 𝑎 = 0 and 𝑏 < 𝑛, |𝑋2 | = 𝑏 + 1.

• If 𝑎 > 0 and 𝑏 = 𝑛, |𝑋2 | = 𝑎 − 1.

The quantity 𝐼 ( 𝑓 ) is the total number of intervals for a symmetric Boolean function
𝑓 .

We usually refer to an interval [𝑎, 𝑏] for an 𝑛-input symmetric Boolean function
shortly as an interval. The example function in Eq. 3.21 and XOR have 𝐼 ( 𝑓 ) = 3
(see Fig.1.8) while AND and OR have 𝐼 ( 𝑓 ) = 2 (see Fig. 3.3).

It seems natural to simplify the construction in Proposition 1 by assigning an anchor
to each interval to reduce the size of the representation to 𝐼 ( 𝑓 ). We call this an 𝐼 ( 𝑓 )
interval-anchor assignment where there is a one-to-one map between an anchor and
an interval of 𝑓 (𝑋). We assign the 𝑖𝑡ℎ interval [𝑎, 𝑏] to the anchor 𝑎𝑖 and enumerate
the beginning and the end of the interval assigned to it by 𝐼𝑖−1 +1 and 𝐼𝑖 respectively
by using the values of |𝑋 |. We take 𝐼0 = −1 for consistency. The function below is an
example where 𝑓 (𝑋) is a 6-input symmetric function and 𝐼 ( 𝑓 ) = 3 and (𝑎1, 𝑎2, 𝑎3)
is an 𝐼 ( 𝑓 ) interval-anchor assignment.

|𝑋 | 𝑓 (𝑋)
0 0 → 𝑎1 𝐼0 + 1 = 0
1 0 → 𝑎1 𝐼1 = 1
2 1 → 𝑎2 𝐼1 + 1 = 2
3 1 → 𝑎2

4 1 → 𝑎2 𝐼2 = 4
5 0 → 𝑎3 𝐼2 + 1 = 𝐼3 = 5

(3.22)

It might be possible to extend the construction given in Proposition 1 and find
an 𝐼 ( 𝑓 ) interval-anchor assignment by computing and perturbing the centroids of
anchors belonging to each interval. We call this idea PARITY-based extension. The
anchors in PARITY-based extensions are symmetric, i.e., they are equal. Consider
the construction given in Eq. (3.21). One can obtain a 3-anchor NN representation
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by the matrix 𝐴′ ∈ R3×5 using the matrix 𝐴.

|𝑋 | 𝑓 (𝑋)
0 0 → 𝑎′1
1 0
2 1
3 1 → 𝑎′2
4 1
5 0 → 𝑎′3

𝐴′ =


0.1 0.1 0.1 0.1 0.1
0.6 0.6 0.6 0.6 0.6
1.1 1.1 1.1 1.1 1.1

 (3.23)

Unfortunately, PARITY-based extensions cannot be applied to all symmetric Boolean
functions. We give an example where there is no PARITY-based extension in Ap-
pendix D. Informally, symmetric Boolean functions treat each input 𝑥𝑖 with the same
importance and we show that by breaking up the symmetry in the anchor entries and
taking the whole NN representation farther away from the Boolean hypercube, we
can reduce the size of representation to 𝐼 ( 𝑓 ) so that 𝑁𝑁 ( 𝑓 ) ≤ 𝐼 ( 𝑓 ). A non-intuitive
discovery is that for symmetric Boolean functions, optimality in complexity and res-
olution is achieved by anchors that are asymmetric in their entries (see Theorem
20).

Provided that we have 𝑁𝑁 ( 𝑓 ) ≤ 𝐼 ( 𝑓 ), is it true that 𝑁𝑁 ( 𝑓 ) = 𝐼 ( 𝑓 ) for symmetric
Boolean functions? This is still an open problem, however, we are able to prove it
for periodic symmetric Boolean functions (see Theorem 21).

Definition 13. A symmetric Boolean function is called periodic if each interval has
the same length, which is denoted by 𝑇 . 𝑇 is also called period.

More precisely, if 𝑓 is a periodic symmetric Boolean function with period 𝑇 , then
for (𝑘 − 1)𝑇 ≤ |𝑋 | < 𝑘𝑇 , 𝑓 (𝑋) = 0 (or 1) for odd 𝑘 and 𝑓 (𝑋) = 1 (or 0) for even 𝑘 .
PARITY is a periodic symmetric function with period 𝑇 = 1. Periodic symmetric
Boolean functions are useful in other works as well (see the Complete Quadratic
function in Bruck, 1990 where 𝑇 = 2).

Upper Bounds on the NN Complexity of Symmetric Boolean Functions
In this subsection, we present an explicit construction for the NN representation of
symmetric Boolean functions with 𝐼 ( 𝑓 ) intervals.

Theorem 20. For an 𝑛-input symmetric Boolean function 𝑓 , 𝑁𝑁 ( 𝑓 ) ≤ 𝐼 ( 𝑓 ).
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Moreover, a matrix 𝐵 = 1 + 𝜖𝑀 where 𝐵 ∈ R(𝐼 ( 𝑓 )−1)×𝑛 can always be used for a
construction given that 𝜖 > 0 is sufficiently small where 1 is an all-one matrix and
𝑀 ∈ R(𝐼 ( 𝑓 )−1)×𝑛 is a full row rank matrix.

For arbitrary symmetric Boolean functions, we first derive necessary and sufficient
conditions for an 𝐼 ( 𝑓 ) interval-anchor assignment.

Lemma 7. Let 𝑓 be an 𝑛-input symmetric Boolean function and 𝐴 ∈ R𝐼 ( 𝑓 )×𝑛 be
an anchor matrix for an 𝐼 ( 𝑓 ) interval-anchor assignment. Then, the following
condition is necessary and sufficient for any 𝑖 ∈ {2, . . . , 𝐼 ( 𝑓 )} and 𝑘 < 𝑖:

max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑘

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 <
1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

𝑘 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 (3.24)

In general, all 𝑎𝑖 𝑗s can be different compared to PARITY-based extensions. How-
ever, we cannot freely choose them. We have the following observation to prove
Lemma 7.

Proposition 2. For any 𝐼 ( 𝑓 ) interval-anchor assignment with an anchor matrix
𝐴 ∈ R𝐼 ( 𝑓 )×𝑛, 𝑎𝑖 𝑗 > 𝑎 (𝑖−1) 𝑗 for all 𝑖 ∈ {2, . . . , 𝐼 ( 𝑓 )} and 𝑗 ∈ {1, . . . , 𝑛}.

Proof. Consider two Boolean vectors 𝑋 = (𝑥1, . . . , 0, . . . , 𝑥𝑛) and 𝑋′ = (𝑥1, . . . , 1, . . . , 𝑥𝑛)
where they only differ at 𝑡𝑡ℎ location. Assume that this occurs at the boundary for
an interval, i.e., 𝑋 and 𝑋′ are closer to 𝑎𝑖−1 and 𝑎𝑖 respectively. Then,

𝑑 (𝑎𝑖−1, 𝑋)2 − 𝑑 (𝑎𝑖, 𝑋)2 < 0 (3.25)

𝑑 (𝑎𝑖−1, 𝑋
′)2 − 𝑑 (𝑎𝑖, 𝑋′)2 > 0 (3.26)

Subtracting both inequalities, we get 𝑑 (𝑎𝑖−1, 𝑋)2 − 𝑑 (𝑎𝑖−1, 𝑋
′)2 − (𝑑 (𝑎𝑖, 𝑋)2 −

𝑑 (𝑎𝑖, 𝑋′)2) < 0. Since 𝑋 and 𝑋′ differ only at the 𝑡𝑡ℎ location, we get (2𝑎 (𝑖−1)𝑡 −
1) − 2(𝑎𝑖𝑡 − 1) < 0, hence, 𝑎𝑖𝑡 > 𝑎 (𝑖−1)𝑡 . □

Proof of Lemma 7. We begin by writing the simplest necessary and sufficient con-
dition for an 𝐼 ( 𝑓 ) interval-anchor assignment. Consider any two anchors 𝑎𝑖 and 𝑎𝑘
and assume that |𝑋 | ∈ [𝐼𝑖−1 + 1, 𝐼𝑖] so that 𝑋 is closer to 𝑎𝑖.

𝑑 (𝑎𝑖, 𝑋)2 − 𝑑 (𝑎𝑘 , 𝑋)2 < 0 (3.27)
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which can be written as
𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑥 𝑗 )2 −
𝑛∑︁
𝑗=1

(𝑎𝑘 𝑗 − 𝑥 𝑗 )2 < 0 (3.28)

for 𝑖 ∈ {2, . . . , 𝐼 ( 𝑓 )} and 𝑘 < 𝑖. This implies

1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

𝑘 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |∈[𝐼𝑖−1+1,𝐼𝑖]

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 (3.29)

The RHS term is minimized when |𝑋 | = ∑𝑛
𝑗=1 𝑥 𝑗 = 𝐼𝑖−1+1 by Proposition 2 because

each 𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 > 0. Then,

1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

𝑘 𝑗 ) < min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 (3.30)

We similarly do the analysis for the anchors 𝑎𝑖 and 𝑎𝑘 but this time assuming that
|𝑋 | ∈ [𝐼𝑘−1 + 1, 𝐼𝑘 ] so that 𝑋 is closer to 𝑎𝑘 . We still take 𝑘 < 𝑖. Then,

1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑘 𝑗 − 𝑎

2
𝑖 𝑗 ) < min

𝑋∈{0,1}𝑛:|𝑋 |∈[𝐼𝑘−1+1,𝐼𝑘]

𝑛∑︁
𝑗=1

(𝑎𝑘 𝑗 − 𝑎𝑖 𝑗 )𝑥 𝑗 (3.31)

1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

𝑘 𝑗 ) > max
𝑋∈{0,1}𝑛:|𝑋 |∈[𝐼𝑘−1+1,𝐼𝑘]

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗

= max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑘

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 (3.32)

Now, the RHS is maximized when |𝑋 | = 𝐼𝑘 by Proposition 2. By combining (3.30)
and (3.32), we complete the proof. □

It is possible to simplify the necessary and sufficient conditions given in Lemma 7.
We prove that looking at (𝑘, 𝑖) pairs in the form (𝑖 − 1, 𝑖) still provides the necessary
and sufficient information compared to all (𝑘, 𝑖) pairs such that 𝑘 < 𝑖.

Lemma 8. Let 𝑓 be an 𝑛-input symmetric Boolean function and 𝐴 ∈ R𝐼 ( 𝑓 )×𝑛 be
an anchor matrix for an 𝐼 ( 𝑓 ) interval-anchor assignment. Then, the following
condition is necessary and sufficient for any 𝑖 ∈ {2, . . . , 𝐼 ( 𝑓 )}:

max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 )𝑥 𝑗 <
1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

(𝑖−1) 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 )𝑥 𝑗 (3.33)
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Proof of Lemma 8. It is obvious that this is necessary if we apply 𝑘 = 𝑖 − 1. We
will show that we can use the Eq. (3.33) to obtain Lemma 7 by summing them
telescopically until some fixed 𝑘 < 𝑖.

max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 )𝑥 𝑗

<
1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

(𝑖−1) 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 )𝑥 𝑗

...

max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑘

𝑛∑︁
𝑗=1

(𝑎 (𝑘+1) 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗

<
1
2

𝑛∑︁
𝑗=1

(𝑎2
(𝑘+1) 𝑗 − 𝑎

2
𝑘 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑘+1

𝑛∑︁
𝑗=1

(𝑎 (𝑘+1) 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗

Let us combine the inequalities and focus on the RHS.

𝑖∑︁
𝑙=𝑘+1

min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑙−1+1

𝑛∑︁
𝑗=1

(𝑎𝑙 𝑗 − 𝑎 (𝑙−1) 𝑗 )𝑥 𝑗 (3.34)

We can replace the constraint sets of all of the minimization expressions with 𝐼𝑖−1+1
because

min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑙−1+1

𝑛∑︁
𝑗=1

(𝑎𝑙 𝑗 − 𝑎 (𝑙−1) 𝑗 )𝑥 𝑗

< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑙 𝑗 − 𝑎 (𝑙−1) 𝑗 )𝑥 𝑗 (3.35)

by Proposition 2 and 𝑙 ≤ 𝑖. Then, we combine the objective functions telescopically
again so that

1
2

𝑛∑︁
𝑗=1

(𝑎2
𝑖 𝑗 − 𝑎2

𝑘 𝑗 ) < min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖−1+1

𝑛∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 )𝑥 𝑗 (3.36)

The LHS can be handled in a similar manner. Then, we can obtain Lemma 7
exactly. □
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We can now prove Theorem 20 by finding explicit sets of anchors satisfying Lemma
8.

Proof of Theorem 20. Let us define a matrix 𝐵 ∈ R𝐼 ( 𝑓 )−1×𝑛 where 𝑏𝑖 𝑗 = 𝑎 (𝑖+1) 𝑗−𝑎𝑖 𝑗 .
Rewriting the condition in Lemma 8 using the 𝐵 matrix and transforming 𝑖 to 𝑖 + 1,
we get

max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝑥 𝑗

<
1
2

𝑛∑︁
𝑗=1

(
− 𝑏2

𝑖 𝑗 + 2𝑏𝑖 𝑗
𝑖∑︁
𝑘=1

𝑏𝑘 𝑗 + 2𝑏𝑖 𝑗𝑎1 𝑗

)
< min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖+1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝑥 𝑗 (3.37)

where the middle term is computed by the identity 𝑎𝑖 𝑗 = 𝑎1 𝑗 +
∑𝑖−1
𝑘=1 𝑏𝑘 𝑗 = 𝑎1 𝑗 −

𝑏𝑖 𝑗 +
∑𝑖
𝑘=1 𝑏𝑘 𝑗 .

1
2

𝑛∑︁
𝑗=1

(𝑎2
(𝑖+1) 𝑗 − 𝑎

2
𝑖 𝑗 ) =

1
2

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗 (𝑏𝑖 𝑗 + 2𝑎𝑖 𝑗 ) (3.38)

=
1
2

𝑛∑︁
𝑗=1

(
𝑏2
𝑖 𝑗 + 2𝑏𝑖 𝑗

(
𝑎1 𝑗 − 𝑏𝑖 𝑗 +

𝑖∑︁
𝑘=1

𝑏𝑘 𝑗

))
(3.39)

=
1
2

𝑛∑︁
𝑗=1

(
− 𝑏2

𝑖 𝑗 + 2𝑏𝑖 𝑗
𝑖∑︁
𝑘=1

𝑏𝑘 𝑗 + 2𝑏𝑖 𝑗𝑎1 𝑗

)
(3.40)

Let us take a convex combination of the LHS and RHS with some 𝜆𝑖 ∈ (0, 1) to
make it equal to the middle term for each 𝑖 ∈ {1, . . . , 𝐼 ( 𝑓 ) − 1}. Therefore, we want
to solve 𝑎1 = (𝑎11, . . . , 𝑎1𝑛) for the 𝐵𝑎1 = 𝑐 where

(𝐵𝑎1)𝑖 = 𝑐𝑖 =
1
2

𝑛∑︁
𝑗=1

𝑏2
𝑖 𝑗 −

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗

𝑖∑︁
𝑘=1

𝑏𝑘 𝑗

+ 𝜆𝑖 max
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝑥 𝑗

+ (1 − 𝜆𝑖) min
𝑋∈{0,1}𝑛:|𝑋 |=𝐼𝑖+1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗𝑥 𝑗 (3.41)

As long as this system of linear equations is consistent, we have a solution for 𝑎1 and
a construction for 𝐼 ( 𝑓 ) interval-anchor assignment. If 𝐵 is a full row rank matrix,
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the system is guaranteed to be consistent. As long as the LHS is smaller than the
RHS in Eq. (3.37), any full row rank 𝐵matrices will work. Therefore, we can claim
that 𝐵 = 1 + 𝜖𝑀 for sufficiently small 𝜖 > 0 and full row rank 𝑀 can be used to
construct an anchor matrix for an arbitrary symmetric Boolean function. □

In Theorem 20, the 𝐵 matrix is actually constructed by 𝑏𝑖 𝑗 = 𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 for
𝑖 ∈ {2, . . . , 𝐼 ( 𝑓 )} and 𝑗 ∈ {1, . . . , 𝑛}. Intuitively, as long as the entries of 𝐵 do
not differ much, we can find anchors where the LHS and the RHS in Eq. (3.33)
should hold. Therefore, 𝐵 = 1 + 𝜖𝑀 is a valid choice for sufficiently small 𝜖 > 0.
We also remark that the full row rank 𝐵 matrix property is only sufficient to find a
construction. For example, if 𝑏𝑖 𝑗 = 1/𝑛 for all 𝑖, 𝑗 , this construction can be reduced
to the PARITY-based construction given in (P. Hajnal, Z. Liu, and Turán, 2022).

In general, the PARITY-based approach results in𝑂 (log 𝑛) resolution. We can pick
𝐵 such that any symmetric Boolean function can also have𝑂 (log 𝑛) resolution with
𝐼 ( 𝑓 ) anchors. We present a family of examples of 𝐵 with 𝑂 (log 𝑛) resolution in
Section 3.2. Such an example was already given in Appendix D.

Lower Bounds on the NN Complexity of Symmetric Boolean Functions
There are various circuit complexity lower bounds on symmetric Boolean functions
(Paturi and Saks, 1990; Siu, Roychowdhury, and Kailath, 1991; Spielman, 1992).
Similarly, lower bounds for the number of anchors can be proven for PARITY using
{1, 2}-sign representations of Boolean functions (P. Hajnal, Z. Liu, and Turán, 2022;
Hansen and V. V. Podolskii, 2015). We prove a more general result for periodic
symmetric Boolean functions.

Theorem 21. For a periodic symmetric Boolean function of 𝐼 ( 𝑓 ) intervals, 𝑁𝑁 ( 𝑓 ) ≥
𝐼 ( 𝑓 ).

To prove this Theorem, we use a necessary condition for any NN representation of
a periodic symmetric Boolean function.

Proposition 3. Consider an NN representation of a periodic symmetric Boolean
function 𝑓 (𝑋) of period𝑇 with an anchor matrix 𝐴 ∈ R𝑚×𝑛. Assume that

∑𝑇
𝑗=1 𝑎1 𝑗 ≥∑𝑇

𝑗=1 𝑎𝑖 𝑗 for any 𝑖 ≥ 2. Then, no binary vectors that are closest to 𝑎1 can have all
0s in the first 𝑇 coordinates.

We first claim that the assumption in Proposition 3 can be assumed without loss
of generality by first observing that the NN representations of symmetric Boolean
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functions are equivalent up to permutations of anchors in Proposition 4. Then, we
find the anchor with the maximal 𝑇 sum in the entries and rearrange the rows and
columns so that the claim

∑𝑇
𝑗=1 𝑎1 𝑗 ≥

∑𝑇
𝑗=1 𝑎𝑖 𝑗 for any 𝑖 ≥ 2 holds.

Proposition 4. Suppose that an anchor matrix 𝐴 ∈ R𝑚×𝑛 is an NN representation
with 𝑚 anchors for an 𝑛-input symmetric Boolean function. Then, any permutation
of rows and columns of 𝐴 is an NN representation for the same function.

Proof. Permutation of rows is trivial and can be done for any NN representation.
For the columns, we can use the definition of symmetric Boolean functions where
𝑓 (𝑋) = 𝑓 (𝜎(𝑋)) for any permutation 𝜎(.). The closest anchor to a Boolean vector
𝑋 can be found by

arg min
𝑖
𝑑 (𝑎𝑖, 𝑋)2 = arg min

𝑖
|𝑋 | − 2(𝐴𝑋)𝑖 + ||𝑎𝑖 | |22 (3.42)

= arg max
𝑖

(
2𝐴𝑋 − diag(𝐴𝐴𝑇 )

)
𝑖

(3.43)

where | |.| |2 denotes the Euclidean norm and diag(𝑀) is the all-zero matrix except
the diagonal entries of 𝑀 . Let 𝑃 ∈ {0, 1}𝑛×𝑛 be a permutation matrix. Then,

arg max
𝑖

(
2𝐴(𝑃𝑋) − diag(𝐴𝐴𝑇 )

)
𝑖

(3.44)

is an anchor index assigned to the same anchor type (either positive or negative)
because 𝑓 is symmetric. Note that Eq. (3.44) is equivalent to

arg max
𝑖

(
2(𝐴𝑃)𝑋 − diag((𝐴𝑃) (𝐴𝑃)𝑇 )

)
𝑖

= arg max
𝑖

(
2(𝐴𝑃)𝑋 − diag(𝐴𝐴𝑇 )

)
𝑖

(3.45)

□

Proof of Proposition 3. We use a similar idea used for Proposition 2. Assume that
there is a vector 𝑋 = (0, . . . , 0, 𝑥𝑇+1, . . . , 𝑥𝑛) assigned to 𝑎1 for contradiction. Let
𝑋′ = (1, . . . , 1, 𝑥𝑇+1, . . . , 𝑥𝑛). Then,

𝑑 (𝑎1, 𝑋)2 < 𝑑 (𝑎𝑖, 𝑋)2 ∀𝑖 ≥ 2 (3.46)

𝑑 (𝑎1, 𝑋
′)2 > 𝑑 (𝑎𝑖, 𝑋′)2 for some 𝑖 ≥ 2 (3.47)

We get Eq. (3.46) by the assumption for contradiction. Eq. (3.47) is obtained by
the fact that 𝑓 (𝑋) ≠ 𝑓 (𝑋′) because we have a jump of length 𝑇 for a given value of
|𝑋 |. Subtracting both, we get

𝑇∑︁
𝑗=1
𝑎1 𝑗 <

𝑇∑︁
𝑗=1
𝑎𝑖 𝑗 (3.48)
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for some 𝑖 ≥ 2, which is the desired contradiction. □

Proof of Theorem 21. Let 𝑓 be a periodic symmetric Boolean function with period
𝑇 so that 𝑛 = 𝐼 ( 𝑓 )𝑇 . Suppose that the NN representation for this function has an
anchor matrix 𝐴 ∈ R𝑚×𝑛 where

𝑘𝑇∑︁
𝑗=(𝑘−1)𝑇+1

𝑎𝑘 𝑗 ≥
𝑘𝑇∑︁

𝑗=(𝑘−1)𝑇+1

𝑎𝑖 𝑗 (3.49)

for any 𝑘 ∈ {1, . . . , 𝑚 − 1} and 𝑘 < 𝑖. This holds without loss of generality because
we can rank the maximal sums of the 𝑘 entries of the anchors and rearrange the rows
and columns of 𝐴 by Proposition 4.

Iteratively, for each 𝑘 ∈ {1, . . . , 𝑚 − 1}, we see that if 𝑋𝑖 = 0 for 𝑖 ∈ {1, . . . , 𝑘𝑇},
then (𝑎1, . . . , 𝑎𝑘 ) cannot be assigned to 𝑋 by Proposition 3. Since 𝑛 = 𝐼 ( 𝑓 )𝑇 for a
periodic symmetric Boolean function, if𝑚 < 𝐼 ( 𝑓 ), there will remain 𝑋 vectors with
different 𝑓 (𝑋) values assigned to a single anchor, leading to a contradiction. □

Proving that 𝑁𝑁 ( 𝑓 ) = 𝐼 ( 𝑓 ) for all symmetric Boolean functions is incomplete and
we conjecture that this statement is true.

Conjecture 2. Let 𝑓 (𝑋) be an 𝑛-input Symmetric Boolean function with 𝐼 ( 𝑓 ) many
intervals. Then, NN( 𝑓 ) = 𝐼 ( 𝑓 ).

We verify the conjecture for 𝐼 ( 𝑓 ) ≤ 4 because it holds that if 𝐼 ( 𝑓 ) ≤ 3, any 3-anchor
NN representation should be an interval-anchor assignment except 2 counterexam-
ples. This is proven in Lemma 10.

Lemma 9. Let 𝑓 be an 𝑛-input symmetric Boolean function with 𝐼 ( 𝑓 ) ≤ 4. Then,
NN( 𝑓 ) ≥ 𝐼 ( 𝑓 ).

We give a necessary condition for all NN representations except the constant func-
tions 𝑓 (𝑋) = 0 and 𝑓 (𝑋) = 1 by a geometrical argument.

Proposition 5. For an arbitrary NN representation of size at least 2, pick any
positive and negative anchor, 𝑎 and 𝑏. Let X and Y be the set of binary vectors
closest to 𝑎 and 𝑏, respectively. Then, 𝑐𝑜𝑛𝑣(X) ∩ 𝑐𝑜𝑛𝑣(Y) = ∅ where 𝑐𝑜𝑛𝑣(A)
denotes the convex hull of a set A.
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Proof. Let |X| = 𝑘 and |Y| = 𝑙. We assume that X = {𝑋1, . . . , 𝑋𝑘 } and Y =

{𝑌1, . . . , 𝑌𝑙}. Also, let 𝑢 and 𝑣 be arbitrary convex combinations for the sets X and
Y. That is, 𝑢 =

∑𝑘
𝑖=1 𝜆𝑖𝑋𝑖 and 𝑣 =

∑𝑙
𝑖=1 𝜇𝑖𝑌𝑖 where 𝑋𝑖 ∈ X, 𝑌𝑖 ∈ Y, 𝜆𝑖 ∈ [0, 1],∑𝑘

𝑖=1 𝜆𝑖 = 1, 𝜇𝑖 ∈ [0, 1], and
∑𝑙
𝑖=1 𝜇𝑖 = 1.

We know that 𝑑 (𝑎, 𝑋𝑖)2 < 𝑑 (𝑏, 𝑋𝑖)2 for 𝑖 ∈ {1, . . . , 𝑘} and 𝑑 (𝑎,𝑌𝑖)2 > 𝑑 (𝑏,𝑌𝑖)2

for 𝑖 ∈ {1, . . . , 𝑙}. Suppose for contradiction that there is a set of 𝜆s and 𝜇s so that
𝑢 = 𝑣.

𝑑 (𝑎, 𝑢)2 − 𝑑 (𝑏, 𝑢)2 = | |𝑎 | |2 − ||𝑏 | |2 − 2(𝑎 − 𝑏)𝑇
𝑘∑︁
𝑖=1

𝜆𝑖𝑋𝑖 (3.50)

=

𝑘∑︁
𝑖=1

𝜆𝑖

(
| |𝑎 | |2 − 2(𝑎 − 𝑏)𝑇𝑋𝑖 − ||𝑏 | |2

)
(3.51)

=

𝑘∑︁
𝑖=1

𝜆𝑖

(
𝑑 (𝑎, 𝑋𝑖)2 − 𝑑 (𝑏, 𝑋𝑖)2

)
< 0 (3.52)

where we use 𝜆𝑖 ≥ 0 and
∑𝑘
𝑖=1 𝜆𝑖 = 1. We do the same for 𝑣 since 𝑢 = 𝑣, to obtain

𝑑 (𝑎, 𝑣)2 − 𝑑 (𝑏, 𝑣)2 =

𝑙∑︁
𝑖=1

𝜇𝑖

(
𝑑 (𝑎,𝑌𝑖)2 − 𝑑 (𝑏,𝑌𝑖)2

)
> 0 (3.53)

resulting in a contradiction. □

Lemma 10. Let 𝑓 be an 𝑛-input symmetric Boolean function with 3 intervals. Then,
any 𝐼 ( 𝑓 )-anchor NN representation of 𝑓 needs to be an interval-anchor assignment
except for the function 𝑓 (𝑋) = 1 (or 0) for |𝑋 | ∈ {0, 𝑛} and 0 (or 1) otherwise.

An alternative NN representation for the 5-input function in in Lemma 10 is given
below where the middle interval is shared by two blue anchors and the red anchor
(0.5, 0.5, 0.5, 0.5, 0.5) is closest to the all-0 and all-1 vectors.

|𝑋 | 𝑓 (𝑋)
0 0
1 1
2 1
3 1
4 1
5 0

𝐴′ =


0 0.57 0.57 0.57 0.57

0.5 0.5 0.5 0.5 0.5
1 0.43 0.43 0.43 0.43

 (3.54)
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Proof of Lemma 10. There are only two possible anchor assignments for symmetric
Boolean functions with 3 intervals besides an interval-anchor assignment: Either
𝑎2 is assigned to the region |𝑋 | ∈ [𝐼1 + 1, 𝐼2] and 𝑎1 & 𝑎3 shares the rest (Case 1)
or 𝑎2 & 𝑎3 shares the same region |𝑋 | ∈ [𝐼1 + 1, 𝐼2] and 𝑎1 is assigned to the rest
(Case 2).

For Case 1: We pick 𝑋1 and 𝑋2 assigned either both to 𝑎1 or 𝑎3 where |𝑋1 | = 𝑡1 <
𝐼1+1 and |𝑋2 | = 𝑡2 > 𝐼2. Consider also an integer 𝑡 ∈ [𝐼1+1, 𝐼2] independently. This
is always possible except the function given in the description. However, for that
function, this case implies an interval-anchor assignment as there are unique vectors
both for |𝑋 | = 0 and |𝑋 | = 𝑛. We denote the set of coordinates where 𝑋1 = 𝑋2 = 1
by S1, 𝑋1 = 1, 𝑋2 = 0 by S2, 𝑋1 = 0, 𝑋2 = 1 by S3, and finally, 𝑋1 = 𝑋2 = 0 by S4.
Clearly, 𝑡1 = |S1 | + |S2 |, 𝑡2 = |S1 | + |S3 |, |S1 | + |S2 | + |S3 | + |S4 | = 𝑛. Consider the
following as an example.

𝑋1 = (1, . . . , 1, 1, . . . , 1, 0, . . . , 0, 0, . . . , 0) (3.55)

𝑋2 = (1, . . . , 1︸   ︷︷   ︸
S1

, 0, . . . , 0︸   ︷︷   ︸
S2

, 1, . . . , 1︸   ︷︷   ︸
S3

, 0, . . . , 0︸   ︷︷   ︸
S4

) (3.56)

Note that the example representation given in Eq. (3.55) and (3.56) can be assumed
without loss of generality by the reordering of indices. Also, S3 ≠ ∅ is necessary
by the choice of 𝑡1, 𝑡2, and 𝑡. It is also clear that |S3 | = 𝑡2 − 𝑡1 + |S2 | ≥ 𝑡 − 𝑡1 and
|S3 | = 𝑡2 − |S1 | ≥ 𝑡 − |S1 |.

It can be easily verified that the convex combination 𝑋′ = 𝑡2−𝑡
𝑡2−𝑡1 𝑋1 + 𝑡−𝑡1

𝑡2−𝑡1 𝑋2 lies on
the hyperplane |𝑋 | = 𝑡. We further claim that it is in the convex hull of the set of
binary vectors 𝑋s where |𝑋 | = 𝑡.

Let 𝑌 be the average of all binary vectors on the hyperplane |𝑋 | = 𝑡 with 𝑡1 many 1s
at the locations of 1s of 𝑋1, 𝑆4 many 0s at the location of 0s of 𝑋1. That is, we put the
remaining 𝑡 − 𝑡1 many ones to the indices in S3. It is clear that there are

( 𝑆3
𝑡−𝑡1

)
many

such vectors. The average value in theS3 region is𝐾 =
( |S3 |−1
𝑡−𝑡1−1

)
/
( |S3 |
𝑡−𝑡1

)
= (𝑡−𝑡1)/|S3 |.

Similarly, we define 𝑍 as the average of all binary vectors on the hyperplane |𝑋 | = 𝑡
with all 1s for the indices in S1 and the 𝑡 − |S1 | = remaining 1s will be distributed
in the region S3. The average value in the S3 region is 𝐿 =

( |S3 |−1
𝑡−|S1 |−1

)
/
( |S3 |
𝑡−|S1 |

)
=

(𝑡 − |S1 |)/|S3 |.

𝑌 = (1, . . . , 1, 1, . . . , 1, 𝐾, . . . , 𝐾, 0 . . . , 0) (3.57)

𝑍 = (1, . . . , 1︸   ︷︷   ︸
S1

, 0, . . . , 0︸   ︷︷   ︸
S2

, 𝐿, . . . , 𝐿︸    ︷︷    ︸
S3

, 0, . . . , 0︸   ︷︷   ︸
S4

) (3.58)
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Then, it is easy to verify that 𝑋′ = 𝑡2−𝑡
𝑡2−𝑡1𝑌 + 𝑡−𝑡1

𝑡2−𝑡1 𝑍 as 𝐾 (𝑡2 − 𝑡)/(𝑡2 − 𝑡1) + 𝐿 (𝑡 −
𝑡1)/(𝑡2 − 𝑡1) = (𝑡 − 𝑡1)/(𝑡2 − 𝑡1).

For Case 2: When 𝑎2 & 𝑎3 share the interval [𝐼1 + 1, 𝐼2], all the vectors such that
|𝑋 | = 𝑡 for 𝑡 ∈ [𝐼1 + 1, 𝐼2] cannot be assigned to one of the anchors as this will
reduce to Case 1. Therefore, 𝑎2 & 𝑎3 must share |𝑋 | = 𝑡 for any 𝑡 ∈ [𝐼1 + 1, 𝐼2].

Let 𝑋1 ≠ 𝑋2, and the S𝑖 be the same as in Case 1 except |𝑋1 | = |𝑋2 | = 𝐼1 + 1. We
can choose 𝑋1 and 𝑋2 closest to 𝑎2 or 𝑎3 respectively. In this case, S2 and S3 are not
empty. We define 𝑋3 for 𝑋1&𝑋2 such that |𝑋3 | = 𝐼2 and 𝑋3 has all 1s for the indices
in S1 and S2 except the entry in the first index for S2 is zero. Also, we keep the first
entry in S3 to be zero as well and fill the rest of the indices arbitrarily. Hence, by
construction, we have 𝐼2 < 𝑛 − 1.

𝑋3 = (1, . . . , 1︸   ︷︷   ︸
S1

, 0, 1, . . . , 1︸      ︷︷      ︸
S2

, 0, 1, 0, . . . , 1︸         ︷︷         ︸
S3∪S4

) (3.59)

Similarly, by reversing the roles of 0s and 1s, we can obtain 𝐼1 > 0 condition.
Therefore, the construction of 𝑋3 is possible whenever either 𝐼1 > 0 or 𝐼3 < 𝑛 − 1.
The only exception is when 𝑓 (𝑋) = 1 (or 0) for |𝑋 | ∈ {0, 𝑛} and 0 (or 1) otherwise.

Notice that 𝑋3 is constructed by using S depending both on 𝑎2 and 𝑎3. In general,
𝑋3 can be assigned either to 𝑎2 or 𝑎3. Assume that it is assigned to 𝑎2. Otherwise,
change 𝑋1 to 𝑋2 in the following calaims: Let 𝑌 = 𝑋1 ∧ 𝑋3 and 𝑍 = 𝑋1 ∨ 𝑋3.
Clearly, |𝑌 | ≤ 𝐼1 − 1 and |𝑍 | ≥ 𝐼2 + 1 and they are both assigned to 𝑎1. We finally
claim that 𝑌/2 + 𝑍/2 = 𝑋1/2 + 𝑋3/2.

In conclusion, both cases contradict Proposition 5 and an interval-anchor assignment
is necessary. □

Proof of Lemma 9. The cases when 𝐼 ( 𝑓 ) ∈ {1, 2} is trivial. When 𝐼 ( 𝑓 ) = 3, we
can use Proposition 2. Now, assume that 3-anchor NN representations exist for
symmetric Boolean functions with 𝐼 ( 𝑓 ) = 4. Then, the assignment of anchors
to the intervals can only belong to two cases: 𝑎1 is assigned to the first and third
intervals where 𝑎2 & 𝑎3 shares the binary vectors for the second and fourth intervals,
and vice versa. In both cases, there is a structure similar to Case 1 of the proof of
Lemma 10. By following similar steps, we can obtain a contradiction to Proposition
5 and conclude that 3-anchor NN representations do not exist for symmetric Boolean
functions with 𝐼 ( 𝑓 ) = 4. □
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The Resolution of the NN Representations of Symmetric Boolean Functions
It is known that the PARITY-based construction for symmetric Boolean functions
results in ⌈log2 (𝑛 + 1)⌉ resolution. We claim that the construction presented in
Section 3.2 can admit 𝑂 (log 𝑛) resolution. Let Moore-Penrose pseudoinverse of a
matrix 𝐴 be denoted by 𝐴+.

Theorem 22. Suppose that we are given a rational matrix 𝐵 ∈ Q𝑚×𝑛 such that
𝐵 = 1𝑚×𝑛 + 𝜖 𝐼𝑚,𝑛 where 1𝑚×𝑛 is an all-one matrix, 𝜖 is a rational constant, and 𝐼𝑚,𝑛
is a submatrix of the 𝑛 × 𝑛 identity matrix with the first 𝑚 rows. Then, 𝑅𝐸𝑆(𝐵+) =
𝑂 (log 𝑛).

We refer to Theorem 3 in (Meyer, 1973) to find the entries of 𝐵+ explicitly and to
prove Theorem 22.

Theorem 23 (Meyer, 1973). Suppose that we are given a matrix 𝐴 ∈ R𝑚×𝑛 and
column vectors 𝑐 ∈ R𝑚,𝑑 ∈ R𝑛. Then, if 𝑐 is in the column space of 𝐴 and the
quantity 𝛽 = 1 + 𝑑𝑇 𝐴+𝑐 ≠ 0, we have

(𝐴 + 𝑐𝑑𝑇 )+ = 𝐴+ + 1
𝛽
𝑣𝑇 𝑘𝑇 𝐴+

− (||𝑘 | |2𝑣𝑇 + 𝑘𝛽) ( | |𝑣 | |2𝑘𝑇 𝐴+ + ℎ𝛽)
𝛽( | |𝑘 | |2 | |𝑣 | |2 + 𝛽2)

(3.60)

where 𝑣 = 𝑑𝑇 (𝐼 − 𝐴+𝐴), 𝑘 = 𝐴+𝑐, and ℎ = 𝑑𝑇 𝐴+.

Proof of Theorem 22. To apply Theorem 23, we pick 𝑐 = 1𝑚 and 𝑑 = 1𝑛 where 1𝑘
denotes the all-one vector in R𝑘 for an integer 𝑘 . Also, pick 𝐴 = 𝜖 𝐼𝑚,𝑛. Therefore,
𝐴+ = 1

𝜖
𝐼𝑇𝑚,𝑛.

We compute the pseudoinverse of 1𝑚×𝑛 + 𝜖 𝐼𝑚,𝑛 as the following closed form expres-
sion. (

1𝑚×𝑛 + 𝜖 𝐼𝑚,𝑛
)+

=

[
1
𝜖
𝐼𝑚×𝑚 − 1+𝑛/𝜖

𝑚(𝑛−𝑚)+(𝑚+𝜖)21𝑚×𝑚
1

𝑚(𝑛−𝑚)+(𝑚+𝜖)21(𝑛−𝑚)×𝑚

]
(3.61)

Since 𝑚 ≤ 𝑛 and 𝜖 is a rational constant, the denominator of all entries of the
pseudoinverse is a function of 𝑂 (𝑛2) (and 𝑂 (𝑛) for the numerator). Therefore, the
resolution of the entries of 𝐵+ is 𝑂 (log 𝑛). □

Corollary 23.1. For every 𝑛-input symmetric Boolean function, there is an anchor
matrix 𝐴 ∈ Q𝐼 ( 𝑓 )×𝑛 such that 𝑅𝐸𝑆(𝐴) = 𝑂 (log 𝑛).
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Proof. For the matrix 𝐵 = 1𝑚×𝑛 + 𝜖𝑀 in Theorem 20 with 𝑚 = 𝐼 ( 𝑓 ) − 1, we pick
𝜖 = 1/2 and 𝑀 = 𝐼𝑚,𝑛 where 𝐼𝑚,𝑛 is a submatrix of 𝑛×𝑛 identity matrix with the first
𝑚 rows. It can be easily verified that this 𝐵 matrix where 𝑏𝑖 𝑗 = 𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 satisfies
the necessary and sufficient condition (3.33) for the interval-anchor assignment. The
first anchor 𝑎1 can be obtained by 𝐵+𝑐 where 𝑐 is given in Eq. (3.41).

With 𝜆𝑖 = 1/2 for all 𝑖 ∈ {1, . . . , 𝑚}, each entry of 𝑐 depends on the entries on 𝐵 and
𝑛 polynomially. By Theorem 22, 𝐵+ has entries with at most 𝑂 (log 𝑛) resolution
and therefore, we see that the entries of 𝑎1 = 𝐵+𝑐 has at most 𝑂 (log 𝑛) resolution
(consequently, 𝑎2, . . . , 𝑎𝑚). In conclusion, we can always obtain an interval-anchor
assignment with 𝑂 (log 𝑛) resolution. □

The natural question is whether 𝑂 (log 𝑛) resolution is optimal for some symmetric
Boolean functions. In general, the answer is negative. We have shown that for
symmetric linear threshold functions have 2 intervals, one can obtain optimal NN
representations in size with constant resolution with anchors

𝑎1 = (0, . . . , 0,−1/2,−1, . . . ,−1) (3.62)

𝑎2 = (2, . . . , 2, 3/2, 1, . . . , 1) (3.63)

is always an NN representation where the number of 0s in 𝑎1 (and 2s in 𝑎2) is 𝑏 − 1.
This is given by Corollary 18.1.

However, if the number of intervals is at least 3, the resolution is lower bounded by
Ω(log 𝑛) for some symmetric Boolean functions and the construction presented in
Section 3.2 has optimal resolution by Corollary 18.1.

Theorem 24. Let 𝑓 be an 𝑛-input symmetric Boolean function where 𝑓 (𝑋) = 1
for |𝑋 | = ⌊𝑛/2⌋ + 1 and 0 otherwise. Then, any 3-anchor NN representation has
Ω(log 𝑛) resolution.

There is an anchor matrix 𝐴 for the function in Theorem 24 such that 𝑅𝐸𝑆(𝐴) =
𝑂 (log 𝑛) via PARITY-based extensions.

To prove Theorem 24, we use Lemma 10 so that all 3 anchor representations are
interval-anchor assignments. Therefore, we can use the necessary and sufficient
condition in Lemma 8 to prove the resolution lower bound.

Proof of Theorem 24. For the 𝑛-input symmetric Boolean function given in the
Theorem, we always have an interval-anchor assignment by Lemma 10. For an
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interval-anchor assignment, let 𝐵 ∈ R2×𝑛 𝑏𝑖 𝑗 = 𝑎 (𝑖+1) 𝑗 − 𝑎𝑖 𝑗 > 0 for 𝑖 ∈ {1, 2} and
𝑗 ∈ {1, . . . , 𝑛}. Then, let us write the necessary and sufficient conditions by Lemma
8. Without loss of generality, assume that 0 < 𝑏11 ≤ 𝑏12 ≤ · · · ≤ 𝑏1𝑛 as we can
always reorder the columns of 𝐵. Then, the first condition will be

max
𝑋∈{0,1}𝑛:|𝑋 |=⌊𝑛/2⌋

𝑛∑︁
𝑗=1

𝑏1 𝑗𝑥 𝑗 <
1
2

𝑛∑︁
𝑗=1

𝑏1 𝑗 (𝑏1 𝑗 + 2𝑎1 𝑗 )

< min
𝑋∈{0,1}𝑛:|𝑋 |=⌊𝑛/2⌋+1

𝑛∑︁
𝑗=1

𝑏1 𝑗𝑥 𝑗 (3.64)

We have two important inequalities based on this condition.

𝑏1(𝑛−
√
𝑛) < 𝑏1(

√
𝑛+1) +

1
√
𝑛
𝑏11 (3.65)

𝑏1𝑛 < 2𝑏1
√
𝑛 ≤ 2𝑏1(

√
𝑛+1) (3.66)

To prove Eq. (3.65), we assume the contrary such that 𝑏1(𝑛−
√
𝑛) ≥ 𝑏1(

√
𝑛+1) + 1√

𝑛
𝑏11.

Also, 𝑏1(𝑛−
√
𝑛+ 𝑗) ≥ 𝑏1(𝑛−

√
𝑛) for 1 ≤ 𝑗 ≤

√
𝑛 and 𝑏1(

√
𝑛+1) ≥ 𝑏1 𝑗 for 1 ≤ 𝑗 ≤

√
𝑛 + 1.

Hence, if we sum over 𝑗 ∈ {1, . . . ,
√
𝑛}, we get

√
𝑛∑︁

𝑗=1
𝑏1(𝑛−

√
𝑛+ 𝑗) ≥

√
𝑛∑︁

𝑗=1

(
𝑏1( 𝑗+1) +

1
√
𝑛
𝑏11

)
(3.67)

Let us add 𝑏1 𝑗 for 𝑗 ∈ {𝑛 − ⌊𝑛/2⌋ + 1, . . . , 𝑛 −
√
𝑛} to both sides. Then, we get

𝑛∑︁
𝑗=𝑛−⌊𝑛/2⌋+1

𝑏1 𝑗 ≥

√
𝑛∑︁

𝑗=1

(
𝑏1( 𝑗+1) +

1
√
𝑛
𝑏11

)
+

𝑛−
√
𝑛∑︁

𝑗=𝑛−⌊𝑛/2⌋+1

𝑏1 𝑗 (3.68)

where the LHS has ⌊𝑛/2⌋ many terms and the RHS has ⌊𝑛/2⌋ + 1 many terms. This
contradicts Eq. (3.64).

Similarly, to prove Eq. (3.66), we assume the contrary such that 𝑏1𝑛 ≥ 2𝑏1
√
𝑛 ≥

𝑏11 + 𝑏12. If we add both sides
∑𝑛−1
𝑖=𝑛−⌊𝑛/2⌋+1 𝑏1𝑖, we get

𝑛∑︁
𝑖=𝑛−⌊𝑛/2⌋+1

𝑏1𝑖 ≥ 𝑏11 + 𝑏12 +
𝑛−1∑︁

𝑖=𝑛−⌊𝑛/2⌋+1

𝑏1𝑖 (3.69)

where the LHS has ⌊𝑛/2⌋ many terms and the RHS ⌊𝑛/2⌋ + 1 many terms, contra-
dicting Eq. (3.64).

We now want to bound the middle term in Eq. (3.64). We divide the sum in three
parts. Essentially, we want to show that the main contribution in the value of the
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whole summation is due to the middle term.
√
𝑛∑︁

𝑗=1
𝑏1 𝑗 (𝑏1 𝑗 + 2𝑎1 𝑗 ) +

𝑛−
√
𝑛∑︁

𝑗=
√
𝑛+1

𝑏1 𝑗 (𝑏1 𝑗 + 2𝑎1 𝑗 )+

𝑛∑︁
𝑗=𝑛−

√
𝑛+1

𝑏1 𝑗 (𝑏1 𝑗 + 2𝑎1 𝑗 ) (3.70)

We also divide the middle term in Eq. (3.70) into two parts depending on whether
the 𝑏1 𝑗 + 2𝑎1 𝑗 terms are positive or not. Let J+ denote the indices 𝑗 where
𝑏1 𝑗 + 2𝑎1 𝑗 > 0 and J− otherwise. Then, we define S+ =

∑
𝑗∈J+ (𝑏1 𝑗 + 2𝑎1 𝑗 ) and

S− =
∑
𝑗∈J − (𝑏1 𝑗 + 2𝑎1 𝑗 ) so that

𝑛−
√
𝑛∑︁

𝑗=
√
𝑛+1

𝑏1 𝑗 (𝑏1 𝑗 + 2𝑎𝑖 𝑗 ) > 𝑏1(
√
𝑛+1)S+ + 𝑏1(𝑛−

√
𝑛)S− (3.71)

> 𝑏1(
√
𝑛+1)

(
S+ + S−

)
−
√
𝑛2𝑟+1𝑏1(

√
𝑛+1) (3.72)

where 𝑟 denotes the resolution of the representation. If 𝑟 is the resolution of the
representation (and hence, the anchor matrix 𝐴), it is clear that |𝑏1 𝑗 + 2𝑎1 𝑗 | =
|𝑎1 𝑗 + 𝑎2 𝑗 | ≤ |𝑎1 𝑗 | + |𝑎2 𝑗 | < 2𝑟+1 and we can rewrite Eq. 3.65 so that 𝑏1(𝑛−

√
𝑛) <

𝑏1(
√
𝑛+1)

(
1 + 1√

𝑛

)
. We also have the loose bound S− > −𝑛2𝑟+1 and by using these,

we can obtain Eq. (3.72).

We find lower bounds for the first term in Eq. (3.70) by −𝑏1(
√
𝑛+1)2𝑟+1√𝑛 and the

third term by −𝑏1𝑛2𝑟+1√𝑛 > −2
√
𝑛𝑏1(

√
𝑛+1)2𝑟+1.

We combine everything and the upper bound in Eq.(3.64) should hold for the
expression that we obtain. We again use Eq. (3.65).

𝑏1(
√
𝑛+1)

(
S+ + S− −

√
𝑛2𝑟+3

)
< 2

⌊𝑛/2⌋+1∑︁
𝑗=1

𝑏1 𝑗 < 2
⌊𝑛/2⌋+1∑︁
𝑗=1

𝑏1(𝑛−
√
𝑛)

< 2𝑏1(
√
𝑛+1)

(
⌊𝑛/2⌋ + 1

) (
1 + 1

√
𝑛

)
(3.73)

S+ + S− < 𝑛 +𝑂 (
√
𝑛) +

√
𝑛2𝑟+3 (3.74)

Let us rewrite
∑𝑛
𝑗=1(𝑎1 𝑗 + 𝑎2 𝑗 ) =

∑𝑛
𝑗=1(𝑏1 𝑗 + 2𝑎1 𝑗 ) = S+ +S− +∑√

𝑛

𝑗=1(𝑏1 𝑗 + 2𝑎1 𝑗 ) +∑𝑛

𝑗=𝑛−
√
𝑛+1(𝑏1 𝑗 + 2𝑎1 𝑗 ). Then,

𝑛∑︁
𝑗=1

(𝑎1 𝑗 + 𝑎2 𝑗 ) <
(
S+ + S− + 2

√
𝑛2𝑟+1

)
(3.75)
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by |𝑏1 𝑗 + 2𝑎1 𝑗 | < 2𝑟+1. Let 𝑟 < 𝑐 log2 𝑛 for some constant 0 < 𝑐 < 1/2. Clearly, the
RHS of Eq.(3.75) is less than 𝑛 +𝑂 (𝑛𝜖 ) where 1/2 < 𝜖 < 1 is a constant.

Similarly, we obtain the corresponding lower bound and use the other necessary and
sufficient condition to prove another inequality corresponding to Eq. (3.77). For a
constant 1/2 < 𝜖 < 1, we have

𝑛 −𝑂 (𝑛𝜖 ) <
𝑛∑︁
𝑗=1

(𝑎1 𝑗 + 𝑎2 𝑗 ) < 𝑛 +𝑂 (𝑛𝜖 ) (3.76)

𝑛 −𝑂 (𝑛𝜖 ) <
𝑛∑︁
𝑗=1

(𝑎3 𝑗 + 𝑎2 𝑗 ) < 𝑛 +𝑂 (𝑛𝜖 ) (3.77)

Subtracting both, we get

−𝑂 (𝑛𝜖 ) <
𝑛∑︁
𝑗=1
𝑎3 𝑗 − 𝑎1 𝑗 < 𝑂 (𝑛𝜖 ) (3.78)

and therefore, 0 < 1
22𝑟 ≤ |𝑎3 𝑗 − 𝑎1 𝑗 | < 𝑂 (𝑛𝜖 )

𝑛
for 𝑖 ∈ {1, 2} and some 𝑗 ∈ {1, . . . , 𝑛}.

Hence, 𝑅𝐸𝑆(𝐴) = 𝑟 = Ω(log 𝑛). □

3.3 From NN Representations to Threshold Circuits
Another important aspect of NN representations is their place in the circuit class
hierarchy. Suppose that we are given an 𝑚-anchor NN representation of a Boolean
function. One can construct a linear threshold circuit of depth-3 with 𝑂 (𝑚2) many
linear threshold gates (P. Hajnal, Z. Liu, and Turán, 2022; Hansen and V. V. Podolskii,
2015). This circuit transformation helps us relate the circuit complexity lower
bounds to NN representation bounds and conversely, given an NN representation,
it can help us find depth-3 threshold circuit constructions and upper bounds on
the size. However, we cannot obtain an NN representation easily given a Boolean
circuit. We try to answer this partially in the next sections.

Theorem 25. Suppose that 𝑓 (𝑋) is an 𝑛-input Boolean function with an 𝑚 anchor
NN representation with the set of positive (or negative) anchors 𝑃 (or 𝑁). Then,
there is a threshold circuit that can compute 𝑓 (𝑋) in the form OR ◦ AND ◦ LT of
size |𝑃 | |𝑁 | + |𝑃 | + 1.

Proof. The label of the nearest neighbor can be found by the following formula.

arg min
𝑖
𝑑 (𝑎𝑖, 𝑋)2 = arg min

𝑖
|𝑋 | − 2(𝐴𝑋)𝑖 + ||𝑎𝑖 | |22 (3.79)

= arg max
𝑖

2(𝐴𝑋)𝑖 − ||𝑎𝑖 | |22 (3.80)
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where | |.| |2 denotes the Euclidean norm. Let 𝑃 (or 𝑁) be the set of positive (or
negative) anchors {𝑎1, . . . , 𝑎 |𝑃 |} (or, {𝑏1, . . . , 𝑏 |𝑁 |}.

𝑥1

𝑥2
...
𝑥𝑛

1
{
2(𝑎1 − 𝑏1)𝑇𝑋 ≥ ||𝑎1 | |22 − ||𝑏1 | |22

}
...

𝑤1
𝑤2

𝑤𝑛

≥ 𝑏

...
𝑥1

𝑥2
...
𝑥𝑛

1
{
2(𝑎1 − 𝑏 |𝑁 |)𝑇𝑋 ≥

||𝑎1 | |22 − ||𝑏 |𝑁 | | |22
}

𝑤1
𝑤2

𝑤𝑛

≥ 𝑏

...
...

𝑥1

𝑥2
...
𝑥𝑛

1
{
2(𝑎 |𝑃 | − 𝑏1)𝑇𝑋 ≥

||𝑎 |𝑃 | | |22 − ||𝑏1 | |22
}

𝑤1
𝑤2

𝑤𝑛

≥ 𝑏

...
...

𝑥1

𝑥2
...
𝑥𝑛

1
{
2(𝑎 |𝑃 | − 𝑏 |𝑁 |)𝑇𝑋 ≥ ||𝑎 |𝑃 | | |22 − ||𝑏 |𝑁 | | |22

}
𝑤1
𝑤2

𝑤𝑛

≥ 𝑏

∧...

...

∧...

∨...

Figure 3.4: A sketch of a transformation from an NN representation to a linear
threshold circuit of depth 3. The first layer consists of linear threshold gates while
the second and third layer is an AND − OR network. The gates with 𝑤𝑖 inside with
𝑤0 as the bias is LT(𝑋), the gates with ∧ inside is AND(𝑋), and the gates with ∨
inside is OR(𝑋).

The constructive transformation is given in Fig. 3.4. In the first layer, we simply
compare the distances of all individual positive anchors, say 𝑎𝑖, to all negative
anchors {𝑏1, . . . , 𝑏 |𝑁 |} using Eq. (3.79). Hence, there are |𝑃 | |𝑁 | many threshold
gates in the first layer. There is an AND gate corresponding to each positive anchor
and the top gate is an OR gate, implying that the claimed circuit size is correct.
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Assume first that 𝑓 (𝑋) = 1. The linear threshold function

1
{
2𝑎𝑇𝑖 𝑋 − ||𝑎𝑖 | |22 ≥ 2𝑏𝑇𝑗 𝑋 − ||𝑏 𝑗 | |22

}
(3.81)

evaluates 1 for some 𝑖 ∈ {1, . . . , |𝑃 |} and for all 𝑗 ∈ {1, . . . , |𝑁 |} because a positive
anchor must be closer to 𝑋 than any negative anchor. Hence, the output of the
corresponding 𝑖𝑡ℎ AND gate will be 1 and consequently, the output of the circuit is
1.

Conversely, assume 𝑓 (𝑋) = 0. Then, there always exist some 𝑗 such that Eq. (3.81)
is 0 for all 𝑖 because the nearest neighbor to 𝑋 is negative (i.e. in 𝑁). Therefore, all
of the second layer AND gates compute 0 so that the output of circuit is 0. □

We remark that the threshold circuit in Figure 3.4 computes the union of different
convex polytopes. These polytopes cannot be arbitrary, each depends on a given
positive anchor and all negative anchors simultaneously.

3.4 NN Representations of Convex Polytopes (AND𝑚 ◦ LT𝑛)
The membership function to a convex polytope, i.e.,1{𝐴𝑋 ≤ 𝑏} can be thought as an
AND◦LT circuit where each row is a linear threshold function. We show that (𝑚+1)-
size NN representation with a single positive anchor is a membership function of a
convex polytope with 𝑚 half-spaces. And, conversely, given a membership function
of a convex polytope with 𝑚 half-spaces, i.e. 1{𝐴𝑋 ≤ 𝑏}, one can construct an
(𝑚 + 1)-size NN representation with a single positive anchor. This equivalence is
in fact a generalization of the equivalence between linear threshold functions and
Boolean functions with 𝑁𝑁 ( 𝑓 ) = 2.

First direction is easy to see: Given the anchor matrix and anchor labels, we can
find optimal separating hyperplanes between them. We provide the proof for the
other direction where the geometric idea is given in Figure 3.5. We use the notation
diag(𝐴𝐴𝑇 ) ∈ Q𝑚 to denote the squared Euclidean norms of each row of a matrix
𝐴 ∈ Q𝑚×𝑛.

Theorem 26. Let 𝐴 ∈ Z𝑚×𝑛 and 𝑏 ∈ Z𝑚 define a convex polytope in R𝑛 by the
intersection of half-spaces 𝐴𝑋 ≤ 𝑏. Then, there exists an NN representation with
𝑚 + 1 anchors and resolution 𝑂 (𝑅𝐸𝑆(diag(𝐴𝐴𝑇 )).

Proof. Without loss of generality, we assume that there is an binary interior point
in the convex polytope 𝐴𝑋 ≤ 𝑏. To ensure strict feasibility, we can modify 𝐴𝑋 ≤ 𝑏
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𝐴𝑥 ≤ 𝑏 𝐴𝑥 > 𝑏

𝑎1

𝑎2

𝑎3𝑎4

𝑎5

𝑎0

Figure 3.5: A convex polytope defined by the intersection of half-spaces 𝐴𝑥 ≤ 𝑏

and its NN representation by the “reflection” argument. The interior of the polytope
is closest to 𝑎0 and the exterior is closest to one of 𝑎1, . . . , 𝑎5.

to 𝐴𝑋 ≤ 𝑏 + 0.5 where both inequalities have the same solution sets for 𝑋 ∈ {0, 1}𝑛

and if there is no such binary vector, then 1{𝐴𝑋 ≤ 𝑏} is in fact a constant Boolean
function with value 0.

The geometrical idea is to compute the reflection of the feasible point 𝑎0 ∈ {0, 1}𝑛

with respect to 𝐴𝑥 = 𝑏. We take 𝑎0 a positive anchor and we consider the other
anchors negative as follows:

𝑎𝑖 = 𝑎0 + 2𝑐𝑖𝐴𝑖 (3.82)

for 𝑖 ∈ {1, . . . , 𝑚} where 𝐴𝑖 denotes the 𝑖𝑡ℎ row of the matrix 𝐴 and 𝑐𝑖 is a real
constant that will be specified later. We also assume that 𝑎0 + 𝑐𝑖𝐴𝑖 is a point
on the 𝐴𝑇

𝑖
𝑥 = 𝑏𝑖 to correctly reflect 𝑎0 to 𝑎𝑖. Then, we have 𝐴𝑇

𝑖
(𝑎0 + 𝑐𝑖𝐴𝑖) =

𝐴𝑇
𝑖
𝑎0 + 𝑐𝑖 | |𝐴𝑖 | |22 = 𝑏𝑖 and therefore 𝑐𝑖 =

𝑏𝑖−𝐴𝑇𝑖 𝑎0

| |𝐴𝑖 | |22
. Implicitly, all 𝑐𝑖 > 0 because of

the feasibility condition.

Note that whenever 𝐴𝑇
𝑖
𝑋 = 𝑏𝑖, the anchors 𝑎𝑖 and 𝑎0 are equidistant and we use a

classical perturbation argument: 𝐴𝑋 ≤ 𝑏 has the same solution set as 𝐴𝑋 ≤ 𝑏 + 0.5
for 𝑋 ∈ {0, 1}𝑛.

When we expand the squared Euclidean form 𝑑 (𝑎𝑖, 𝑋)2, we obtain

𝑑 (𝑎𝑖, 𝑋)2 = |𝑋 | − 2𝑎𝑇0𝑋 + ||𝑎0 | |22
− 4𝑐𝑖 (𝐴𝑇𝑖 𝑋 − 𝐴𝑇𝑖 𝑎0) + 4𝑐2

𝑖 | |𝐴𝑖 | |22 (3.83)

= 𝑑 (𝑎0, 𝑋)2 + 4
| |𝐴𝑖 | |22

(𝑏𝑖 − 𝐴𝑇𝑖 𝑎0) (𝐴𝑇𝑖 𝑎0 − 𝐴𝑇𝑖 𝑋)

+ 4
| |𝐴𝑖 | |22

(𝑏𝑖 − 𝐴𝑇𝑖 𝑎0)2 (3.84)
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= 𝑑 (𝑎0, 𝑋)2 + 4
| |𝐴𝑖 | |22

(𝑏𝑖 − 𝐴𝑇𝑖 𝑎0) (𝑏𝑖 − 𝐴𝑇𝑖 𝑋) (3.85)

We have two cases: either 𝐴𝑇
𝑖
𝑋 < 𝑏𝑖 for all 𝑖 ∈ {1, . . . , 𝑚} or 𝐴𝑇

𝑖
𝑋 > 𝑏 for

some 𝑖 ∈ {1, . . . , 𝑚}. To compare the distance of 𝑋 to 𝑎0 and 𝑎𝑖, we simplify the
expression to

𝑑 (𝑎𝑖, 𝑋)2 − 𝑑 (𝑎0, 𝑋)2 =
4

| |𝐴𝑖 | |22
(𝑏𝑖 − 𝐴𝑇𝑖 𝑎0) (𝑏𝑖 − 𝐴𝑇𝑖 𝑋) (3.86)

Case 1: If 𝐴𝑇
𝑖
𝑋 < 𝑏𝑖 for all 𝑖 ∈ {1, . . . , 𝑚}, we need 𝑑 (𝑎𝑖, 𝑋)2 − 𝑑 (𝑎0, 𝑋)2 > 0.

Then, since 𝑏𝑖 − 𝐴𝑇𝑖 𝑎0 > 0 by definition, the RHS of Eq. (3.86) is greater than 0 if
and only if 𝐴𝑇

𝑖
𝑋 < 𝑏𝑖 for all 𝑖 ∈ {1, . . . , 𝑚}.

Case 2: If 𝐴𝑇
𝑖
𝑋 > 𝑏𝑖 for some 𝑖 ∈ {1, . . . , 𝑚}, we need 𝑑 (𝑎𝑖, 𝑋)2 − 𝑑 (𝑎0, 𝑋)2 < 0

for such 𝑖. Then, since 𝑏𝑖 − 𝐴𝑇𝑖 𝑎0 > 0 by definition, the RHS of Eq. (3.86) is less
than 0 if and only if 𝐴𝑇

𝑖
𝑋 > 𝑏𝑖.

For 𝐴𝑇
𝑖
𝑋 > 𝑏𝑖, we do not care which anchor is closest to 𝑥 among 𝑎𝑖 for 𝑖 ∈

{1, . . . , 𝑚} since they all have the same labeling. Therefore, the proposed scheme
is indeed an NN representation for the convex polytope defined by 𝐴𝑋 ≤ 𝑏.

We now prove the resolution bound. For 𝑐𝑖 =
𝑏𝑖−𝐴𝑇𝑖 𝑎0

| |𝐴𝑖 | |22
, we see that 𝑏𝑖 − 𝐴𝑇

𝑖
𝑎0 ≤

2| |𝐴𝑖 | |22 loosely. We assume that the bias term can be at most | |𝐴𝑖 | |22 other-
wise the threshold function is trivial. Then, the resolution of the 𝑎0 + 2𝑐𝑖𝐴𝑖 is
𝑂 (𝑅𝐸𝑆(diag(𝐴𝐴𝑇 )) and the claim holds by considering all Euclidean norms. □

We note that by the selection of anchors provided in Theorem 26, if we construct
the circuit in Figure 3.4, we obtain exactly a circuit deciding if 𝐴𝑋 ≤ 𝑏 by seeing
that 𝑎𝑖 − 𝑎0 = 2𝑐𝑖𝐴𝑖 and | |𝑎𝑖 | |22 − ||𝑎0 | |22 = 4𝑐𝑖𝐴𝑇𝑖 (𝑎0 + 𝑐𝑖𝐴𝑖) = 4𝑐𝑖𝑏𝑖. Hence,
1{2(𝑎𝑖 − 𝑎0)𝑇𝑋 ≤ ||𝑎𝑖 | |22 − ||𝑎0 | |22} = 1{𝐴𝑇

𝑖
𝑋 ≤ 𝑏𝑖} (recall that 𝑐𝑖 > 0 for all 𝑖 ∈

{1, . . . , 𝑚}). Since there is a single positive anchor, the top OR gate is unnecessary.

It is also possible to replace linear threshold functions with exact threshold functions
in that the AND of two linear threshold functions 1{𝐴𝑇

𝑖
𝑋 ≤ 𝑏𝑖} and 1{𝐴𝑇

𝑖
𝑋 ≥ 𝑏𝑖}

implies 1{𝐴𝑇
𝑖
𝑋 = 𝑏𝑖}. This gives us a way to construct NN representations for

1{𝐴𝑋 = 𝑏} where each row corresponds to an exact threshold function, i.e., an
AND◦ELT circuit. We can again perturb the bias terms by 0.5 and obtain 1{𝐴𝑇

𝑖
𝑋 =

𝑏𝑖} as the AND of 1{𝐴𝑇
𝑖
𝑋 ≤ 𝑏𝑖 +0.5} and 1{𝐴𝑇

𝑖
𝑋 ≥ 𝑏𝑖−0.5} so that there is always

an interior point 𝑎0 ∈ {0, 1}𝑛 in the polytope. Otherwise, there is no binary interior
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𝑋1

𝑋2
...

𝑋𝑛

1{𝐴𝑇
𝑖
𝑋 ≤ 𝑏𝑖 + 0.5}

...

𝑎𝑖1
𝑎𝑖2

𝑎𝑖𝑛

≤ 𝑏𝑖

+0.5

𝑋1

𝑋2
...

𝑋𝑛
1{𝐴𝑇

𝑖
𝑋 ≥ 𝑏𝑖 − 0.5}

...

𝑎𝑖1
𝑎𝑖2

𝑎𝑖𝑛

≥ 𝑏𝑖

−0.5

∧ 1{𝐴𝑇
𝑖
𝑋 = 𝑏𝑖}

Figure 3.6: The subcircuit for the 1{𝐴𝑇
𝑖
𝑋 = 𝑏𝑖} = 1{𝐴𝑇

𝑖
𝑋 ≤ 𝑏𝑖 + 0.5} ∧ 1{𝐴𝑇

𝑖
𝑋 ≥

𝑏𝑖 − 0.5} for binary inputs 𝑋 ∈ {0, 1}𝑛.

point and the function is the constant function 𝑓 (𝑋) = 0 with a trivial 1-anchor NN
representation.

Theorem 27. For a system of linear equations 𝐴𝑥 = 𝑏 where 𝐴 ∈ Z𝑚×𝑛 and
𝑏 ∈ Z𝑚, there exist an NN representation with 2𝑚 + 1 anchors and resolution
𝑂 (𝑅𝐸𝑆(diag(𝐴𝐴𝑇 )) checking if 𝐴𝑋 = 𝑏 or not for 𝑋 ∈ {0, 1}𝑛.

An interesting fact for this case is that AND ◦ ELT = ELT, i.e., the class of exact
threshold functions is closed under AND operation (Hansen and V. V. Podolskii,
2010). This means that the bounded solutions of 𝐴𝑥 = 𝑏 in integers can be verified
by a single exact threshold function with an exponential blow-up in the number of
equations 𝑚 for the weight sizes. Consequently, any system of linear equations with
binary solutions can be represented by a 3-anchors NN representation with “high”
resolution.

Theorem 28. For a system of linear equations 𝐴𝑥 = 𝑏 where 𝐴 ∈ Z𝑚×𝑛 and
𝑏 ∈ Z𝑚, there exist an NN representation with 3 anchors and resolution𝑂 (𝑚 log 𝑛+
𝑚𝑅𝐸𝑆(𝐴)) checking if 𝐴𝑋 = 𝑏 or not for 𝑋 ∈ {0, 1}𝑛.

Proof. We follow the steps in the proof of Proposition 6 in (Hansen and V. V.
Podolskii, 2010). Let |𝑎𝑖 𝑗 | ≤ 𝑊 for some 𝑊 ∈ Z for all 𝑖, 𝑗 . Then, |𝐴𝑇

𝑖
𝑋 −

𝑏𝑖 | ≤ 2𝑛𝑊 (we assume that 𝑏𝑖 is bounded by 𝑛𝑊). The exact threshold function
1
{ ∑𝑚

𝑗=1(4𝑛𝑊) 𝑗−1(𝐴𝑇
𝑖
𝑋−𝑏𝑖) = 0

}
evaluates 1 if and only if 𝐴𝑋 = 𝑏. The maximum

weight in this exact threshold function is 𝑊 (4𝑛𝑊)𝑚 and the resolution becomes
𝑂 (𝑚 log 𝑛 + 𝑚𝑅𝐸𝑆(𝐴)) by Theorem 19. □
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We finally remark that the NN representation idea for convex polytopes can apply to
NN representations whose input vectors are from an alphabet larger than the binary
{0, 1}. This is true as long as the interior point of 𝐴𝑥 ≤ 𝑏 is not empty for 𝑥 ∈ R𝑛

and consequently, the existence of a feasible point is guaranteed after perturbing the
bias terms by a sufficiently small amount.

Lemma 11 (Maass, 1993). Consider a system 𝐴𝑥 ≤ 𝑏 where 𝐴 ∈ Z𝑚×𝑛 and 𝑏 ∈ Z𝑚

with entries bounded in absolute value by 𝑊 ∈ Z. If this system has a solution in
R𝑛, then it also has a solution in the form 𝑥 = (𝑠1/𝑡, . . . , 𝑠𝑚/𝑡) where 𝑠1, . . . , 𝑠𝑚, 𝑡
are integers of absolute value ≤ (2𝑛 + 1)!𝑊2𝑛+1.

3.5 NN Representations of Depth-2 Threshold Circuits with Symmetric Top
Gate (SYM ◦ ELT and SYM ◦ LT)

For AND ◦ LT or AND ◦ ELT, what happens if we replace the AND with the OR
gate? For OR ◦LT, the answer is easy because NN representations are closed under
complement operation (as we can revert the labeling of anchors) and the complement
of OR ◦ LT is AND ◦ LT, therefore, we already have a solution by Theorem 26.
However, for OR ◦ ELT, we cannot do the same as the complement of an exact
threshold function needs not to be exact. The set of functions in OR ◦ ELT is also
interesting from another complexity perspective. This class of circuits computes the
Boolean functions with Exact Cover Representations. Since we do not treat Exact
Cover Representations in a deep way, we summarize important details in Appendix
C with some conjectural relationship to NN representations.

Obtaining a construction for OR ◦ ELT is not straight-forward and the arbitrary
case is still unresolved. We define the following set of regularity conditions which
allows us to explicitly construct NN representations for many depth-2 circuits. Let
𝑊 ∈ Z𝑚×𝑛 be the weight matrix of the first layer and 𝑏 ∈ Z𝑛 be the bias vector of
the first layer.

1. The weights of each gate has the same norm. | |𝑊𝑖 | |22 = | |𝑊 𝑗 | |22 for all 𝑖, 𝑗 .

2. The weights of each gate are mutually orthogonal,𝑊𝑇
𝑖
𝑊 𝑗 = 0 for all 𝑖 ≠ 𝑗 .

3. There exists an 𝑋∗ ∈ {0, 1}𝑛 such that𝑊𝑋∗ = 𝑏.

The regularity conditions hurt the generality but the result is still very useful and
applicable to many functions. For example, if all gates have disjoint inputs and have
the same norm for their weights, then all conditions are satisfied.
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Theorem 29. Suppose that there is an 𝑛-input Boolean function 𝑓 (𝑋) such that
𝑓 (𝑋) ∈ SYM◦ELT obeying the regularity conditions with 𝑚 many gates in the first
layer. Let 𝑔(𝑍) be the top symmetric Boolean function where 𝑍 ∈ {0, 1}𝑚.

There exists an NN representation of 𝑓 (𝑋) with
∑
𝑡∈T

( 𝑚
𝑚−𝑡

)
2𝑚−𝑡 many anchors

where T = {𝐼0 + 1, 𝐼1 + 1, . . . , 𝐼𝐼 (𝑔)−1 + 1} contains the left interval boundaries
for the top symmetric gate 𝑔(𝑍). The resolution of the construction is 𝑂 (log𝑚 +
𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).

Proof. The anchors we construct are as follows.

𝑎
(𝑡)
𝑗 𝑘

= 𝑋∗ + 𝑑𝑢(𝑡)
𝑗 𝑘

(3.87)

We will design 𝑢(𝑡)
𝑗 𝑘

and 𝑑 ∈ Z will be picked later. 𝑡 ∈ Z is the type of the anchor
and 𝑗 , 𝑘 are indices to be determined later. We denote 𝑤𝑖 to be the 𝑖th row of the
weight matrix𝑊 .

The squared Euclidean distances will be

𝑑 (𝑎 (𝑡)
𝑗 𝑘
, 𝑋)2 = |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22

− 2𝑑𝑢(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) + 𝑑2 | |𝑢(𝑡)

𝑗 𝑘
| |22 (3.88)

Since |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22 is the same for all anchors, we do not care its value
when we compare distances. Now, we pick 𝑢(𝑡)

𝑗 𝑘
as the all plus-minus combinations

of the 𝑚 − 𝑡 combinations of all 𝑚 weight vectors in𝑊 for any 𝑡 ∈ {0, . . . , 𝑚}. That
is, there are

( 𝑚
𝑚−𝑡

)
selections of weight vectors for each 𝑡 for 𝑢(𝑡)

𝑗 𝑘
. We also use an

abuse of notation here: ±𝑤1 ± 𝑤2 is a compact form to denote all {𝑤1 + 𝑤2, 𝑤1 −
𝑤2,−𝑤1 + 𝑤2,−𝑤1 − 𝑤2}. We can write all 𝑢(𝑡)

𝑗 𝑘
s as follows.

𝑢
(0)
𝑗 𝑘

∈
{
± 𝑤1 ± 𝑤2 ± · · · ± 𝑤𝑚

}
(3.89)

𝑢
(1)
𝑗 𝑘

∈
{
± 𝑤1 ± · · · ± 𝑤𝑚−1, . . . ,±𝑤2 ± · · · ± 𝑤𝑚

}
(3.90)

...

𝑢
(𝑚−1)
𝑗 𝑘

∈
{
± 𝑤1,±𝑤2, . . . ,±𝑤𝑚

}
(3.91)

𝑢
(𝑚)
𝑗 𝑘

∈ ∅ (3.92)



87

Now, we define 𝑢(𝑡)
𝑗 𝑘

s more precisely. Let 𝑗1, . . . , 𝑗𝑚−𝑡 be the binary expansion of
( 𝑗 − 1) ∈ Z with {0, 1} entries. The index 𝑗 denotes the unique sign pattern for 𝑤s
in 𝑢(𝑡)

𝑗 𝑘
.

For the anchor type 𝑡, we define the family of index sets F (𝑡) =
( [𝑚]
𝑚−𝑡

)
. Alternatively,

F (𝑡) = (I (𝑡)
𝑘

)𝑘∈𝐾 (𝑡 ) . Here I (𝑡)
𝑘

is an index set with size
( 𝑚
𝑚−𝑡

)
from the elements

{1, . . . , 𝑚} and 𝐾 (𝑡) = {1, . . . ,
( 𝑚
𝑚−𝑡

)
}. In other words, for 𝑢(𝑡)

𝑗 𝑘
s, the index 𝑘 denotes

a specific 𝑚 − 𝑡 selection out of {1, . . . , 𝑚}. We thus obtain

𝑢
(𝑡)
𝑗 𝑘

=

𝑚−𝑡∑︁
𝑖=1

(−1) 𝑗𝑖𝑤I (𝑡 )
𝑘 𝑖

for 𝑡 < 𝑚 (3.93)

𝑢
(𝑚)
𝑗 𝑘

= 0 (3.94)

For instance, consider 𝑚 = 7, 𝑡 = 4, ( 𝑗 − 1) = 2, and 𝑘 = 6. First, we enumerate all(7
3
)

combinations in an order to find the correct selection of weights.{
{𝑤1, 𝑤2, 𝑤3}, {𝑤1, 𝑤2, 𝑤4}, {𝑤1, 𝑤2, 𝑤5}, {𝑤1, 𝑤2, 𝑤6},

{𝑤1, 𝑤2, 𝑤7}, {𝑤1, 𝑤3, 𝑤4}, . . . , {𝑤5, 𝑤6, 𝑤7}
}

(3.95)

The corresponding index sets are the subscripts of the weights, e.g., I (4)
4 = {1, 2, 6}.

For 𝑘 = 6, we pick I (4)
6 = {1, 3, 4}. Since 𝑗 − 1 has the binary expansion for

( 𝑗1, 𝑗2, 𝑗3) = (0, 1, 0), we obtain the sign pattern (1,−1, 1), implying that we have
𝑢
(4)
36 = 𝑤1 − 𝑤3 + 𝑤4.

Let 𝑔(𝑍) be the symmetric Boolean function for the top gate of the circuit with 𝐼 (𝑔)
many intervals where 𝑍 ∈ {0, 1}𝑚. In the construction, we only include 𝑢(𝑡)

𝑗 𝑘
for

𝑡 ∈ T = {𝐼0 + 1, 𝐼1 + 1, . . . , 𝐼𝐼 (𝑔)−1 + 1}.

Claim: If 𝑍 is in the 𝑙𝑡ℎ interval of 𝑔(𝑍), i.e., |𝑍 | ∈ [𝐼𝑙−1 + 1, 𝐼𝑙], then the closest
anchor is of type 𝑡 = 𝐼𝑙−1 + 1. That is,

𝐼𝑙−1 + 1 = arg min
𝑡

−2𝑑𝑢(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) + 𝑑2 | |𝑢(𝑡)

𝑗 𝑘
| |22 where

𝑤𝑇𝑖 𝑋 = 𝑏𝑖 for |𝑍 | many 𝑖s from {0, 1, . . . , 𝑚} (3.96)

If the claim is true, then depending on the value 𝑔(𝑍) for that interval, we label all
the corresponding type of anchors to 0 or 1 and the construction follows.

To prove the claim, we first pick 𝑑 = 1
𝑚 | |𝑤 | |22

where | |𝑤 | |22 = | |𝑤1 | |22 = · · · = | |𝑤𝑚 | |22
and by orthogonality, we have | |𝑢(𝑡)

𝑗 𝑘
| |22 = (𝑚 − 𝑡) | |𝑤 | |22. Then, from Eq. (3.88), we
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obtain

− 2𝑑𝑢(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) + 𝑑2 | |𝑢(𝑡)

𝑗 𝑘
| |22

=
−2

𝑚 | |𝑤 | |22

(
𝑢
(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) − 0.5

(𝑚 − 𝑡)
𝑚

)
(3.97)

Suppose that 𝑢(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) > 𝑢(𝑣)

𝑗 𝑘
(𝑋 − 𝑋∗) for any 𝑣 ∈ {0, . . . , 𝑚}. Then, recalling

that 𝑋∗ ∈ {0, 1}𝑛, (
𝑢
(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) − 0.5

(𝑚 − 𝑡)
𝑚

)
(3.98)

≥
(
𝑢
(𝑣)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) + 1 − 0.5

(𝑚 − 𝑡)
𝑚

)
(3.99)

≥
(
𝑢
(𝑣)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) + 0.5

)
(3.100)

>

(
𝑢
(𝑣)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗)

)
(3.101)

>

(
𝑢
(𝑣)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) − 0.5

(𝑚 − 𝑣)
𝑚

)
(3.102)

and thus, the 𝑡 value that minimizes Eq. (3.96) always have the largest 𝑢(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗)

value.

If 𝑢(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) = 𝑢(𝑣)

𝑗 𝑘
(𝑋 − 𝑋∗) for some 𝑣, then(
𝑢
(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) − 0.5

(𝑚 − 𝑡)
𝑚

)
(3.103)

>

(
𝑢
(𝑣)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) − 0.5

(𝑚 − 𝑣)
𝑚

)
(3.104)

only if 𝑡 > 𝑣. Therefore, the 𝑡 value that minimizes Eq. (3.96) is the maximum
among the 𝑡 values maximizing 𝑢(𝑡)

𝑗 𝑘
(𝑋 − 𝑋∗).

Expanding 𝑢(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) using Eq. (3.93), we obtain

𝑢
(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) =

𝑚−𝑡∑︁
𝑖=1

(−1) 𝑗𝑖 (𝑤𝑇
I (𝑡 )
𝑘 𝑖

𝑋 − 𝑏I (𝑡 )
𝑘 𝑖

) (3.105)

Given the value of |𝑍 | where 𝑧𝑖 = 1{𝑤𝑇
𝑖
𝑋 = 𝑏𝑖} for 𝑖 ∈ {1, . . . , 𝑚}, let I be the

index set where 𝑤𝑇
𝑖
𝑋 ≠ 𝑏𝑖. It is actually a selection of 𝑚 − |𝑍 | out of 𝑚 values and

therefore, I = I ( |𝑍 |)
𝑘

for a combination enumerated by some 𝑘 . It can be seen that
𝑢
(𝑡)
𝑗 𝑘
(𝑋 − 𝑋∗) is maximized if I ( |𝑍 |)

𝑘
= I and whether 𝑤𝑇

𝑖
𝑋 < 𝑏𝑖 or 𝑤𝑇

𝑖
𝑋 > 𝑏𝑖 is of

no importance since there is a pair 𝑗 , 𝑘 such that

max
𝑗 ,𝑘,𝑡

𝑢
(𝑡)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) =

∑︁
𝑖∈I

|𝑤𝑇𝑖 𝑋 − 𝑏𝑖 | (3.106)
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The optimal 𝑡 value is less than or equal to |𝑍 | because I contains 𝑚 − |𝑍 | values.
Any superset for the index set I will include 𝑤𝑇

𝑖
𝑋 = 𝑏𝑖 for some 𝑖 and the value

of the dot product 𝑢𝑇
𝑗 ′𝑘 ′ (𝑋 − 𝑋∗) cannot increase. Mathematically, for the optimal

𝑗 , 𝑘, 𝑗 ′, 𝑘′ choices,

𝑢
(𝑝)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) = 𝑢(𝑞)

𝑗 ′𝑘 ′
𝑇
(𝑋 − 𝑋∗)

for 𝑝, 𝑞 ∈ {0, . . . , 𝐼𝑙−1 + 1} (3.107)

𝑢
(𝑝)
𝑗 𝑘

𝑇
(𝑋 − 𝑋∗) > 𝑢(𝑞)

𝑗 ′𝑘 ′
𝑇
(𝑋 − 𝑋∗)

for 𝑝 ∈ {0, . . . , 𝐼𝑙−1 + 1} and

𝑞 ∈ {𝐼𝑙 + 1, . . . , 𝐼𝐼 (𝑔)−1 + 1} (3.108)

By our previous observation about the maximal 𝑡, we conclude that 𝑡 = 𝐼𝑙−1 + 1.
This proves the claim and hence, completes the validation of the construction. The
number of anchors is

∑
𝑡∈T

( 𝑚
𝑚−𝑡

)
2𝑚−𝑡 , which is easy to verify.

For the resolution, we see that 1
𝑚 | |𝑤 | |22

(𝑤1+· · ·+𝑤𝑚). The maximum value for the nu-

merator can be 𝑚 | |𝑤 | |22 and it holds that 𝑅𝐸𝑆(𝐴) = 𝑂 (log𝑚 + 𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).
□

Theorem 29 is powerful since it provides constructions to many important functions
in Circuit Complexity Theory. Hence, it is an important milestone to find NN
representations with size and resolution upper bounds.

Corollary 29.1. Let 𝑓 (𝑋) be an 2𝑚𝑛-input Boolean function SYM𝑚 ◦ EQ2𝑛 where
there are 𝑚 many disjoint 𝑛-input EQ functions in the first layer. Then, we obtain
the following table of results.

Function NN Representation
Size Resolution

AND𝑚 ◦ EQ2𝑛 2𝑚 + 1 𝑂 (𝑛)
OR𝑚 ◦ EQ2𝑛 (𝑚 + 2)2𝑚−1 𝑂 (𝑛)

PARITY𝑚 ◦ EQ2𝑛 3𝑚 𝑂 (𝑛)

First of all, the AND𝑚 ◦ EQ2𝑛 result also follows from Theorem 27 and it holds
that Theorem 29 is a generalization of it in the case of same norm weights. For
OR◦EQ, we see that T = {0, 1} and for PARITY◦EQ, T = {0, 1, 2, . . . , 𝑚} where
the representation size formula corresponds to the binomial expansion of (1 + 2)𝑚.
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Hence, changing the top gate could greatly change the number of anchors in the NN
representation.

It is remarkable that not only the number of intervals for the top symmetric Boolean
function is significant, but also the location of the intervals changes the size of the
construction. OR and AND are symmetric linear threshold functions (i.e., 𝐼 ( 𝑓 ) = 2),
however, their composition with EQ gives completely different sizes (one is linear
in 𝑚, the other is exponential in 𝑚) of NN representations.

We also obtain a construction for SYM ◦ LT. Compared to the Theorem 29, the
difference is in the set of intervals boundaries where Theorem 30 includes both
boundaries. In contrast, because each linear threshold function requires 2 anchors
instead of 3 as for exact threshold functions, we do not see an extra exponential term
2𝑚−𝑡 in the binomial sum.

Theorem 30. Suppose that there is an 𝑛-input Boolean function 𝑓 (𝑋) such that
𝑓 (𝑋) ∈ SYM ◦ LT obeying the regularity conditions with 𝑚 many gates in the first
layer. Let 𝑔(𝑍) be the top symmetric Boolean function where 𝑍 ∈ {0, 1}𝑚.

There exists an NN representation of 𝑓 (𝑋) with
∑
𝑡∈T

( 𝑚
𝑚−𝑡

)
many anchors where

T = {𝐼1, 𝐼1 + 1, . . . , 𝐼𝐼 (𝑔)−1, 𝐼𝐼 (𝑔)−1 + 1} contains the all the interval boundaries
for the top symmetric gate 𝑔(𝑍). The resolution of the construction is 𝑂 (log𝑚 +
𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).

Proof. The proof is essentially the same as the proof of Theorem 29 except we do
not have 𝑗 parameter in the anchor construction. All sign patterns are fixed to −1s.
Then, we have

𝑎
(𝑡)
𝑘

= 𝑋∗ + 𝑑𝑢(𝑡)
𝑘

(3.109)

𝑢
(𝑡)
𝑘

=

𝑚−𝑡∑︁
𝑖=1

−𝑤I (𝑡 )
𝑘 𝑖

for t < m (3.110)

𝑢
(𝑚)
𝑘

= 0 (3.111)

for the same definition of the family of index sets. We again pick 𝑑 = 1
𝑚 | |𝑤 | |22

.

We also assume that the bias vector 𝑏 is replaced with 𝑏 − 0.5 to ensure the equality
cases do not appear for the linear threshold functions in the first layer. In this case,
we need to be careful about the choice of 𝑋∗ since there is no𝑊𝑋 = 𝑏−0.5 such that
𝑋 ∈ {0, 1}𝑛. We remedy this by using the first two regularity conditions so that 𝑋∗

in the third regularity condition is replaced by 𝑋∗− 1
2| |𝑤 | |22

(𝑤1+· · ·+𝑤𝑚) where | |𝑤 | |22
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is the norm of a row of 𝑊 . This does not increase the resolution asymptotically at
the end since 𝑅𝐸𝑆(𝑋∗) = 𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ).

Given the value of |𝑍 | where 𝑧𝑖 = 1{𝑤𝑇
𝑖
𝑋 > 𝑏𝑖} for 𝑖 ∈ {1, . . . , 𝑚} and |𝑍 | ∈

[𝐼𝑙−1 + 1, 𝐼𝑙], let I be the index set 𝑤𝑇
𝑖
𝑋 < 𝑏𝑖. It is actually a selection of 𝑚 − |𝑍 |

out of 𝑚 values and 𝑢(𝑡)
𝑘
(𝑋 − 𝑋∗) is maximized if I ( |𝑍 |)

𝑘
= I.

max
𝑘,𝑡

𝑢
(𝑡)
𝑘

𝑇
(𝑋 − 𝑋∗) =

∑︁
𝑖∈I

(𝑏𝑖 − 𝑤𝑇𝑖 𝑋) (3.112)

For the optimal 𝑘, 𝑘′ choices, we have

𝑢
(𝑝)
𝑘

𝑇
(𝑋 − 𝑋∗) < 𝑢(𝑝+1)

𝑘 ′
𝑇
(𝑋 − 𝑋∗)

for 𝑝 ∈ {0, . . . , |𝑍 | − 1} (3.113)

𝑢
(𝑝)
𝑘

𝑇
(𝑋 − 𝑋∗) > 𝑢(𝑝+1)

𝑘 ′
𝑇
(𝑋 − 𝑋∗)

for 𝑝 ∈ {|𝑍 |, . . . , 𝑚} (3.114)

Since |𝑍 | ∈ [𝐼𝑙−1 + 1, 𝐼𝑙], the optimal 𝑡 value will either be 𝐼𝑙−1 + 1 or 𝐼𝑙 . Since
we include both interval boundaries in this construction and both types 𝑡 = 𝐼𝑙−1 + 1
and 𝑡 = 𝐼𝑙 have the same label, the construction follows. The resolution is similar
to the previous proof and the increase in the resolution of 𝑋∗ makes no difference
asymptotically. □

It is an open question if the interval boundaries can be reduced only to left (or right)
boundaries in Theorem 30. For the cases where the top gate is symmetric linear
threshold functions or the PARITY, this simplification do not matter.

Corollary 30.1. Let 𝑓 (𝑋) be an 𝑚𝑛-input Boolean function SYM𝑚 ◦ LT𝑛 where
there are 𝑚 many disjoint 𝑛-input LT functions in the first layer with same norm
weight vectors. Then, we obtain the following table of results.

Function NN Representation
Size Resolution

AND𝑚 ◦ LT𝑛 𝑚 + 1 𝑂 (𝑛 log 𝑛)
OR𝑚 ◦ LT𝑛 𝑚 + 1 𝑂 (𝑛 log 𝑛)

PARITY𝑚 ◦ LT𝑛 2𝑚 𝑂 (𝑛 log 𝑛)

Contrary to the drastic difference in the number of anchors for OR ◦EQ and AND ◦
EQ, there is no difference in the number of anchors for OR ◦ COMP and AND ◦
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COMP, which is expected because these circuits can be thought as the complement
of each other loosely speaking (the complement of 1{𝑋 ≥ 𝑌 } is 1{𝑌 > 𝑋}).

As a sanity check, by using Theorem 30, we can construct basic BNN representations
for any symmetric Boolean function by using 1{𝑥𝑖 ≥ 1} for 𝑖 ∈ {1, . . . , 𝑛} where
there are 𝑛 many linear threshold functions in the first layer (this can be though as
1-input AND function). For instance, the BNN construction for PARITY where
all {0, 1}𝑛 is included can be constructed by using PARITY𝑛 = PARITY𝑛 ◦ AND1

and applying Theorem 30. This type of constructions effectively comprises all
𝑋 ∈ {0, 1}𝑛 vectors around boundaries as anchors, which is not optimal in general
(consider MAJ in Theorem 18).

It is remarkable that for the IP22𝑛 function, Corollary 30.1 provides a construction
with 2𝑛 anchors and constant resolution since IP22𝑛 = PARITY𝑛 ◦ AND2 ∈ SYM ◦
LT. This is far from the lower bound where there is no explicit resolution bound.
For constant resolution, the construction we provide could be optimal. We give an
NN representation for IP26 in Appendix E.3.

We finally provide a construction for the circuits of SYM ◦ SYM where the weights
of the first layer are mutually orthogonal. The idea is based on a brute-force
minimization argument by applying derivative test.

Theorem 31. Suppose that there is an 𝑛-input Boolean function 𝑓 (𝑋) in a circuit
where the first layer has𝑚 many 𝑛 input perceptrons with a weight matrix𝑊 ∈ Z𝑚×𝑛

where |𝑊𝑖 𝑗 | ≤ 𝐵 for some integer 𝐵. Also, let rows of the matrix 𝑊 be mutually
orthogonal.

Then, there exist an NN representation with (2𝑛𝐵 + 1)𝑚 anchors with resolution
𝑂 (log 𝑛𝐵).

Proof. This construction can be written as a single matrix product in the most
abstract linear form. Let 𝐴 ∈ Z𝑀×𝑛 anchor matrix and 𝐶 ∈ Z𝑀×𝑚 be a coefficient
matrix to be determined later. 𝑀 is the number of anchors.

𝐴 = 𝐶𝑊 (3.115)

𝑎𝑖 =

𝑚∑︁
𝑗=1
𝑐𝑖 𝑗𝑤𝑖 (3.116)
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When we extend the squared Euclidean distance, we get

𝑑 (𝑎𝑖, 𝑋)2 = |𝑋 | − 2
𝑚∑︁
𝑗=1
𝑐𝑖 𝑗𝑤

𝑇
𝑗 𝑋 +

𝑚∑︁
𝑗=1
𝑐2
𝑖 𝑗 | |𝑤 𝑗 | |2 (3.117)

since we assume 𝑤𝑇
𝑖
𝑤 𝑗 = 0 for all 𝑖 ≠ 𝑗 .

By taking the partial derivatives with respect to 𝑐𝑖 𝑗 , the distance is minimized if

𝑐𝑖 𝑗 =
𝑤𝑇

𝑗
𝑋

| |𝑤 𝑗 | |2
. To see that, we apply the second derivative test where the Hessian

matrix is diagonal with positive entries. The 𝑖 values correspond to the values in
the range of 𝑤𝑇

𝑗
𝑋 , which is bounded by 𝑛𝐵, and there are (2𝑛𝐵 + 1)𝑚 mappings for

𝑊𝑋 and hence 𝑀 = (2𝑛𝐵 + 1)𝑚. We label each anchor according to the output of
the function. The resolution bound is easy to verify. □

Theorem 31 is an almost trivial construction which can interestingly achieve opti-
mality in some cases.

Corollary 31.1. For the 𝑛-input PARITY function where PARITY𝑛 = PARITY𝑛/𝑚 ◦
PARITY𝑚, there are NN representations (𝑚+1)𝑛/𝑚 size and resolution ⌈log (𝑚 + 1)⌉.

Corollary 31.1 follows by the observation that PARITY𝑛 = PARITY𝑛/𝑚◦PARITY𝑚.
For 𝑚 = 1, we obtain the optimal BNN construction and for 𝑚 = 𝑛, we have the
optimal size NN construction with 𝑂 (log𝑚) resolution. For 𝑘 = 2, we have (

√
3)𝑛

many anchors. In general, for constant resolution, the size is super-polynomial,
which we conjecture to be optimal.

Since PARITY2 = XOR, we can use PARITY𝑛 = PARITY𝑛/2 ◦ XOR. Because
XOR(𝑋1, 𝑋2) = 1{𝑋1 + 𝑋2 = 1} is an exact threshold function, we can apply Theo-
rem 29 to prove the same upper bounds on size and resolution. Both constructions
are equivalent.

Conjecture 3. For 𝑛-input PARITY function, the number of anchors is 2Ω(𝑛) if the
resolution of the representation is 𝑂 (1).

It seems that the conjecture could be true for any symmetric Boolean functions with
𝐼 ( 𝑓 ) ≥ 3. We know that it is false when 𝐼 ( 𝑓 ) = 2 (see Corollary 18.1).

3.6 NN Representations of Linear and Exact Decision Lists
A linear decision list of length 𝑚, denoted by LDL, is a sequential list of linear
threshold functions 𝑓1(𝑋), . . . , 𝑓𝑚 (𝑋) where the output is 𝑧𝑘 ∈ {0, 1} for 𝑓𝑖 (𝑋) = 0
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for 𝑖 < 𝑘 and 𝑓𝑘 (𝑋) = 1 and it is 𝑧𝑚+1 ∈ {0, 1} if all 𝑓𝑖 (𝑋) = 0. In other words, the
output labels depends only on the first positively evaluated linear threshold function.
Therefore, the main characteristic of decision lists is the domination principle where
the threshold gates in the higher location will determine the output independent of
what the lower level threshold gate outputs are. We design the location of the anchors
based on this observation. The geometric approach to find an NN representation for
LDLs is shown in Figure 3.7.

Theorem 32. Suppose that an 𝑛-input Linear Decision List 𝑙 (𝑋) of depth𝑚 is given
under regularity conditions with a weight matrix 𝑊 ∈ R𝑚×𝑛. Then, there is an NN
representation for 𝑙 (𝑋) with𝑚+1 anchors and resolution𝑂 (𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).

Proof. For linear threshold gates, the third regularity condition contradicts the
desirable property that there should be no 𝑋 ∈ {0, 1}𝑛 on the hyperplanes themselves.
We will describe a way to solve this issue by modifying this condition as it is done
in the proof of Theorem 30.

We previously perturbed the bias terms by 0.5 to ensure that there is no binary vectors
on the hyperplanes. Alternatively, this can be done by seeing that 1{𝑤𝑇𝑋 ≥ 𝑏}
is equivalent to 1{2𝑤𝑇𝑋 ≥ 2𝑏 − 1}. Although both methods are equivalent, this
change makes the steps in the proof cleaner.

Given that there is a binary vector 𝑋∗ ∈ {0, 1}𝑛 such that 𝑊𝑋∗ = 𝑏, we can find
𝑋′ = 𝑋∗ − 1

2| |𝑤 | |22
(𝑤1 + · · · + 𝑤𝑚) so that 2𝑊𝑋′ = 2𝑏 − 1 where | |𝑤 | |22 is the norm

of the original weights. In this case, the resolution of the weights increases by 1 bit
because of the doubling and the resolution of 𝑋∗ is at most 𝑂 (𝑅𝐸𝑆( | |𝑤 | |22).

Therefore, without loss of generality, we can modify the third regularity condition
in the following way: There exists 𝑋∗ ∈ Q𝑛 such that 𝑊𝑋∗ = 𝑏 with “sufficiently”
small resolution and there is no binary 𝑋 ∈ {0, 1}𝑛 such that𝑊𝑋 = 𝑏.

To imitate the linear decision list and obtain the domination principle, we construct

the anchors as follows where 𝑐𝑖 =
(

1
2| |𝑤 | |22

) 𝑖
.

𝑎𝑖 = 𝑋
∗ −

∑︁
𝑗<𝑖

𝑐 𝑗𝑤 𝑗 + 𝑐𝑖𝑤𝑖 for 𝑖 = 1, . . . , 𝑚 (3.118)

𝑎𝑚+1 = 𝑋∗ −
∑︁
𝑗<𝑚

𝑐 𝑗𝑤 𝑗 − 𝑐𝑚𝑤𝑚 (3.119)
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𝑤𝑇1𝑥 < 𝑏1

𝑤𝑇1𝑥 = 𝑏1

𝑤𝑇1𝑥 > 𝑏1

𝑤𝑇2𝑥 > 𝑏2
𝑤𝑇2𝑥 = 𝑏2

𝑤𝑇2𝑥 < 𝑏2

𝑋∗

𝑎2𝑎3𝑌 ∗

𝑎1

(a) Anchor placement idea for the NN Representation for an LDL of depth 2. Each anchor takes care
of a leaf of the LDL.

𝑎2𝑎3

𝑎1

(b) The approximate decision regions for the NN representation. The closer 𝑎2 and 𝑎3 are to each
other, the better the bottom region will approximate a half-space.

Figure 3.7: Anchor placement idea for the NN Representation for an LDL of depth
2. In this example, the labels of the anchors are arbitrary.

The labeling of 𝑎𝑖 directly corresponds to the labels of 𝑧𝑖 for the decision list. We
claim that for any 𝑘 , if the location of the leading one in the decision list is 𝑘 , i.e.,
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(𝑤𝑇1𝑋 < 𝑏1, . . . , 𝑤
𝑇
𝑘−1𝑋 < 𝑏𝑘−1, 𝑤

𝑇
𝑘
𝑋 > 𝑏𝑘 ,×, . . . ,×) with × being don’t cares,

then 𝑎𝑘 is the closest to the input vector. Hence, the following two conditions are
necessary and sufficient. Roughly, the first condition states that if the output is 1,
𝑎𝑘 dominates all the rest and the second condition states that if the output is 0, one
should proceed to the next anchor.

𝑤𝑇𝑘 𝑋 > 𝑏𝑘 ⇒ 𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑙 , 𝑋)2 < 0 ∀𝑘 < 𝑙 (3.120)

𝑤𝑇𝑘 𝑋 < 𝑏𝑘 ⇒ 𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑘+1, 𝑋)2 > 0

∀𝑘 ∈ {1, . . . , 𝑚} (3.121)

Using the orthogonality of 𝑤𝑖s, the squared Euclidean distances can be written as

𝑑 (𝑎𝑖, 𝑋)2 = |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
+ 2

∑︁
𝑗<𝑖

𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑏 𝑗 ) + | |𝑤 | |22
∑︁
𝑗<𝑖

𝑐2
𝑗

− 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2
𝑖 | |𝑤 | |22 (3.122)

For the condition in Eq. (3.120), we obtain the following.

𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑙 , 𝑋)2 = −4𝑐𝑘 (𝑤𝑇𝑘 𝑋 − 𝑏𝑘 )

− 2
𝑙−1∑︁
𝑗=𝑘+1

𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑏 𝑗 )

+ 2𝑐𝑙 (𝑤𝑇𝑙 𝑋 − 𝑏𝑙) − ||𝑤 | |22
𝑙∑︁

𝑗=𝑘+1
𝑐2
𝑗 < 0 (3.123)

We optimize this inequality in an adversarial sense where the contribution of the
negative terms are smallest and of the positive terms are largest possible. Note
that we bound |𝑤𝑇

𝑗
(𝑋 − 𝑋∗) | ≤ 2| |𝑤 | |22 loosely. We see that 𝑤𝑇

𝑘
𝑋 − 𝑏𝑘 = 1 and

𝑤𝑇
𝑗
𝑋 − 𝑏 𝑗 = −2| |𝑤 | |22 for 𝑗 > 𝑘 gives the tightest bounds. 𝑗 = 𝑚 or 𝑗 = 𝑚 + 1 does

not matter. Then, putting the values of 𝑐s, we get

𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑙 , 𝑋)2 = − 4
2𝑘 | |𝑤 | |2𝑘2

+
𝑙∑︁

𝑗=𝑘+1

2
(2| |𝑤 | |22) 𝑗−1

−
𝑙∑︁

𝑗=𝑘+1

1
22 𝑗 | |𝑤 | |4 𝑗+2

2

< 0 (3.124)
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The first term dominates the second term for any finite value of 𝑙 using a geometric
series argument. For 𝑙 → ∞,

− 4
(2| |𝑤 | |22)𝑘

+ 2
(2| |𝑤 | |22)𝑘

1
1 − 1

2| |𝑤 | |22

(3.125)

= − 4
(2| |𝑤 | |22)𝑘

+ 2
(2| |𝑤 | |22)𝑘

2| |𝑤 | |22
2| |𝑤 | |22 − 1

≤ 0 (3.126)

The fraction 2| |𝑤 | |22
2| |𝑤 | |22−1 is at most 2 for | |𝑤 | |22 = 1 and the expression is strictly negative

for | |𝑤 | |22 > 1. Due to the third negative term in Eq. (3.124), the claim is true.

The proof for the second condition (Eq. (3.121)) is similar. We first compute
𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑘+1, 𝑋)2 and consider 𝑘 < 𝑚.

𝑑 (𝑎𝑘 , 𝑋)2 − 𝑑 (𝑎𝑘+1, 𝑋)2 = −4𝑐𝑘 (𝑤𝑇𝑘 𝑋 − 𝑏𝑘 )
+ 2𝑐𝑘+1(𝑤𝑇𝑘+1𝑋 − 𝑏𝑘+1) − 𝑐2

𝑘+1 | |𝑤 | |
2
2 > 0 (3.127)

Since 𝑤𝑇
𝑘
𝑋 − 𝑏𝑘 < 0, we take the value −1, making the contribution of the first term

positive and small. Similarly, we take 𝑤𝑇
𝑘+1𝑋 − 𝑏𝑘+1 = −2| |𝑤 | |22. Hence,

4
(2| |𝑤 | |22)𝑘

− 2
(2| |𝑤 | |22)𝑘

− 1
(22𝑘+2 | |𝑤 | |4𝑘+2

2 )
(3.128)

=
2

(2𝑘 | |𝑤 | |2𝑘2 )
− 1

(22𝑘+2 | |𝑤 | |4𝑘+2
2 )

> 0 (3.129)

The last inequality holds since | |𝑤 | |22 ≥ 1 and 𝑘 ≥ 1.

Finally, we consider 𝑘 = 𝑚 separately and since 𝑤𝑇𝑚𝑋 < 𝑏𝑚, we have

𝑑 (𝑎𝑚, 𝑋)2 − 𝑑 (𝑎𝑚+1, 𝑋)2 = −4𝑐𝑚 (𝑤𝑇𝑚𝑋 − 𝑏𝑚) > 0

The resolution claim follows by how small 𝑐𝑚 = 1
(2| |𝑤 | |22)𝑚

is. Therefore, it becomes

𝑂 (𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))). The resolution of the point 𝑋∗ is bounded by the resolution
of | |𝑤 | |22 so asymptotically, it makes no difference in the resolution of the anchors. □

In addition, we can replace the regularity conditions in Theorem 32 only with the
condition 𝑚 ≤ 𝑛 where 𝑚 is the depth of the list. Let 𝐴+ denote the Moore-Penrose
inverse of a matrix 𝐴 ∈ R𝑚×𝑛.

Theorem 33. Suppose that an 𝑛-input Linear Decision List 𝑙 (𝑋) of depth 𝑚 is
given with a weight matrix 𝑊 ∈ Z𝑚×𝑛 where 𝑚 ≤ 𝑛 and a bias vector 𝑏 ∈ Z𝑚.
Then, there is an NN representation for 𝑙 (𝑋) with 𝑚 + 1 anchors and resolution
𝑂 (𝑅𝐸𝑆(𝑊+) + 𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).
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Proof. First of all, this proof depends on the proof of Theorem 32 with an explicit
algorithm to find 𝑋∗, which is the most crucial step and will be done later in the
proof.

We first assume that 𝑤𝑇
𝑖
𝑋 ≠ 𝑏𝑖 for any 𝑋 ∈ {0, 1}𝑛 without loss of generality simply

by changing the bias vector 𝑏 to 𝑏 − 0.5. Compared to Theorem 32, since we
do not assume any regularity conditions, this change is sufficient. In addition, we
can assume without loss of generality that 𝑊 is full-rank by another perturbation
argument. For example, for very small 𝜖 > 0, we take 𝑊′ = 𝑊 + 𝜖 𝐼𝑚,𝑛 where 𝐼𝑚,𝑛
is the 𝑚 × 𝑛 sub-identity matrix with the first 𝑚 rows of the 𝐼𝑛×𝑛 and the threshold
functions 1{𝑤𝑇

𝑖
𝑋 ≥ 𝑏𝑖 − 0.5} are the same as 1{𝑤𝑇

𝑖
𝑋 + 𝜖𝑋𝑖 ≥ 𝑏𝑖 − 0.5} when

𝜖 < 1/2. Let𝑊𝑚×𝑚 denote the 𝑚×𝑚 sub-matrix of𝑊 . 𝑊′ is full-rank if and only if

det(𝑊′(𝑊′)𝑇 ) = det
(
𝑊𝑊𝑇 + 𝜖 (𝑊𝑚×𝑚 + (𝑊𝑚×𝑚)𝑇 )

+ 𝜖2𝐼𝑚×𝑚
)
≠ 0 (3.130)

Because Eq. (3.130) is a finite polynomial in 𝜖 with at most 2𝑚 many roots, there
are infinitely many choices for 0 < 𝜖 < 1/2.

We have the same construction in the proof of Theorem 32 with an additional
assumption: Whenever we subtract 𝑐𝑖𝑤𝑖 from 𝑋∗ − ∑

𝑗<𝑖 𝑐 𝑗𝑤 𝑗 , the vector should
satisfy 𝑤𝑇

𝑖+1𝑥 = 𝑏𝑖+1. Define 𝑋∗
(𝑖) = 𝑋

∗ − ∑
𝑗<𝑖 𝑐 𝑗𝑤 𝑗 and 𝑋∗

(1) = 𝑋
∗.

𝑎𝑖 = 𝑋
∗ −

∑︁
𝑗<𝑖

𝑐 𝑗𝑤 𝑗 + 𝑐𝑖𝑤𝑖 for 𝑖 = 1, . . . , 𝑚 (3.131)

𝑎𝑚+1 = 𝑋∗ −
∑︁
𝑗<𝑚

𝑐 𝑗𝑤 𝑗 − 𝑐𝑚𝑤𝑚 (3.132)

where 𝑤𝑇
𝑖
𝑋∗
(𝑖) = 𝑏𝑖.

Under this assumption, we see that the squared distance differences are equivalent
to the ones in the proof of Theorem 32 (see Eq. (3.123)). For 𝑖 < 𝑚, we have

𝑑 (𝑎𝑖, 𝑋)2 = |𝑋 | − 2𝑋𝑇𝑋∗
(𝑖) + ||𝑋∗

(𝑖) | |
2
2

− 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑤𝑇𝑖 𝑋∗
(𝑖)) + 𝑐

2
𝑖 | |𝑤𝑖 | |22

= |𝑋 | − 2𝑋𝑇 (𝑋∗ −
∑︁
𝑗<𝑖

𝑐 𝑗𝑤 𝑗 ) + | |𝑋∗ −
∑︁
𝑗<𝑖

𝑐 𝑗𝑤 𝑗 | |22

− 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2
𝑖 | |𝑤𝑖 | |22

= |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
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+ 2
∑︁
𝑗<𝑖

𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑤𝑇𝑗 𝑋∗) +
(∑︁
𝑗<𝑖

𝑐 𝑗𝑤 𝑗

)2

− 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2
𝑖 | |𝑤𝑖 | |22

= |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
+ 2

∑︁
𝑗<𝑖

(
𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑤𝑇𝑗 𝑋∗ +

∑︁
𝑘< 𝑗

𝑐𝑘𝑤
𝑇
𝑗 𝑤𝑘 )

)
+

∑︁
𝑗<𝑖

𝑐2
𝑗 | |𝑤 𝑗 | |22 − 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2

𝑖 | |𝑤𝑖 | |22

= |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
+ 2

∑︁
𝑗<𝑖

𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑤𝑇𝑗 (𝑋∗ −
∑︁
𝑘< 𝑗

𝑐𝑘𝑤𝑘 ))

+
∑︁
𝑗<𝑖

𝑐2
𝑗 | |𝑤 𝑗 | |22 − 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2

𝑖 | |𝑤𝑖 | |22

= |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |22
+ 2

∑︁
𝑗<𝑖

𝑐 𝑗 (𝑤𝑇𝑗 𝑋 − 𝑏 𝑗 ) +
∑︁
𝑗<𝑖

𝑐2
𝑗 | |𝑤 𝑗 | |22

− 2𝑐𝑖 (𝑤𝑇𝑖 𝑋 − 𝑏𝑖) + 𝑐2
𝑖 | |𝑤𝑖 | |22 (3.133)

One can observe that Eq.(3.133) is the same as Eq. (3.122) except the squared
norms of 𝑤𝑖. Therefore, for a correct selection of 𝑐𝑖s, the construction should follow
by satisfying the conditions Eq. (3.120) and (3.121). We pick 𝑐𝑖 = 𝑐𝑖−12| |𝑤 | |22 and
𝑐1 = 1 for simplicity where | |𝑤 | |22 = max𝑘 | |𝑤𝑘 | |22. By similar bounding arguments,
the same steps in the proof of Theorem 32 could be followed.

Now, we have to find an explicit 𝑋∗ to conclude the proof. Recall that 𝑤𝑇
𝑖
𝑋∗
(𝑖) = 𝑏𝑖

where 𝑋∗
(𝑖) = 𝑋∗ − ∑

𝑗<𝑖 𝑐 𝑗𝑤 𝑗 . Then, 𝑤𝑇
𝑖
𝑋∗ = 𝑏𝑖 +

∑
𝑗<𝑖 𝑐 𝑗𝑤

𝑇
𝑖
𝑤 𝑗 . Clearly, this

defines a linear system𝑊𝑋∗ = 𝐵 where 𝐵 ∈ Q𝑚 and 𝐵𝑖 = 𝑏𝑖 +
∑
𝑗<𝑖 𝑐 𝑗𝑤

𝑇
𝑖
𝑤 𝑗 . Since

𝑊 is full-rank without loss of generality, there always exists 𝑋∗ = 𝑊+𝐵which solves
the system exactly.

We observe that 𝑏𝑖 ≤ ||𝑤𝑖 | |2 and |𝑤𝑇
𝑖
𝑤 𝑗 | ≤ max𝑘 | |𝑤𝑘 | |22. Since 𝑐𝑖s shrink geomet-

rically, the resolution is 𝑂 (𝑚 diag(𝑊𝑊𝑇 )) so that 𝑅𝐸𝑆(𝐵) = 𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 )).
Hence, the resolution of 𝑋∗ becomes 𝑂 (𝑅𝐸𝑆(𝑊+) +𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ). We con-
clude that the resolution of the construction is𝑂 (𝑅𝐸𝑆(𝑊+) +𝑚𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).

□

Corollary 33.1. For any symmetric Boolean function 𝑓 (𝑋) with 𝐼 ( 𝑓 ) many inter-
vals, 𝑁𝑁 ( 𝑓 ) ≤ 𝐼 ( 𝑓 ).
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Even though the proof techniques are not exactly the same, Corollary 33.1 is in fact
equivalent to what we had in Section 3.2 with a couple of tweaks. Corollary follows
by a simple construction of symmetric Boolean functions as LDLs. For instance,
we describe the LDL construction for an 8-input symmetric Boolean function 𝑓 (𝑋)
with 𝐼 ( 𝑓 ) = 5 where each interval has the form [𝐼𝑖−1 + 1, 𝐼𝑖] for 𝑖 ∈ {1, . . . , 5} (take
𝐼0 = −1). It is easy to verify that the LDL with depth 4 given in Figure 3.8 computes
𝑓 (𝑋). This function is the counterexample we mention in Section 3.2 where there
is no PARITY-based extension for 5-anchor NN representations.

|𝑋 | 𝑓 (𝑋)
0 1 𝐼1 = 0
1 0 𝐼2 = 1
2 1
3 1
4 1
5 1
6 1 𝐼3 = 6
7 0 𝐼4 = 7
8 1 𝐼5 = 8

(3.134)

1{|𝑋 | ≤ 0}

1{|𝑋 | ≤ 1} 1

1{|𝑋 | ≤ 6} 0

1{|𝑋 | ≤ 7} 1

1 0

0 1

0 1

0 1

0 1

Figure 3.8: A Linear Decision List of depth 4 for the symmetric Boolean function
in Eq.(3.134) with 𝐼 ( 𝑓 ) = 5.

Conjecture 4. Let 𝑓 (𝑋) be a Boolean function. Then, 𝑁𝑁 ( 𝑓 ) ≤ 𝐿𝐷𝐿 ( 𝑓 ) + 1
where 𝐿𝐷𝐿 ( 𝑓 ) is the smallest depth of linear decision lists computing 𝑓 (𝑋).
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By Theorem 33, the conjecture is true when 𝐿𝐷𝐿 ( 𝑓 ) ≤ 𝑛.

We now focus on the NN representations of EDLs. For EDLs, we give a construction
idea similar to circuits of OR◦ELT with a slight change in parameters to implement
the domination principle.

Theorem 34. Suppose that an 𝑛-input Exact Decision List 𝑙 (𝑋) of depth 𝑚 is given
under regularity conditions. Then, there is an NN representation for 𝑙 (𝑋) with
(𝑚 + 1)2𝑚 anchors and resolution 𝑂 (log𝑚 + 𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))).

Proof. We essentially construct a NN representation for the OR ◦ ELT type of
circuits (consider Corollary 29.1) and modify it to obtain the domination principle.
We consider the anchors as follows similar to the proof of Theorem 29 with two
types. We assume 𝑑 > 𝑐𝑖 and all 𝑐𝑖 > 0 except 𝑑 = 𝑐𝑚+1 > 0.

𝑎 𝑗 𝑘 = 𝑋
∗ + 𝑑𝑢 𝑗 𝑘 + (−1) 𝑗𝑚𝑐𝑘𝑤𝑘 for 𝑘 ∈ {1, . . . , 𝑚} (3.135)

𝑎 𝑗 (𝑚+1) = 𝑋
∗ + 𝑑𝑢 𝑗𝑚 + (−1) 𝑗𝑚𝑐𝑚+1𝑤𝑚 (3.136)

where 𝑢 𝑗 𝑘 = ±𝑤1 ± · · · ± 𝑤𝑘−1 ± 𝑤𝑘+1 ± · · · ± 𝑤𝑚 (only 𝑤𝑘 is excluded) for 𝑘 ∈
{1, . . . , 𝑚} and 𝑗𝑚 ∈ {0, 1}. Also, 𝑐𝑚+1 = 𝑑. The sign pattern is given by the binary
expansion of 𝑗 − 1 in 𝑚 − 1 bits as in the proof of Theorem 29. For example, for
𝑚 = 5, 𝑗 − 1 = 4 gives ( 𝑗1, 𝑗2, 𝑗3, 𝑗4) = (0, 0, 1, 0) and 𝑢52 = 𝑤1 +𝑤3 −𝑤4 +𝑤5. If,
in addition, 𝑗5 = 0, then we find 𝑎52 = 𝑑 (𝑤1 +𝑤3−𝑤4 +𝑤5) + 𝑐2𝑤2. In comparison,
if 𝑗5 = 1, we obtain 𝑎 (20)2 = 𝑑 (𝑤1 + 𝑤3 − 𝑤4 + 𝑤5) − 𝑐2𝑤2.

We have the following squared Euclidean norm expression for this construction.

𝑑 (𝑎 𝑗 𝑘 , 𝑋)2 = |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |2

− 2𝑑𝑢𝑇𝑗 𝑘 (𝑋 − 𝑋∗) + 𝑑2 | |𝑢 𝑗 𝑘 | |22
− 2 𝑗𝑚𝑐𝑘 (𝑤𝑇𝑘 𝑋 − 𝑏𝑘 ) + 𝑐2

𝑘 | |𝑤𝑘 | |
2
2

− 2 𝑗𝑚𝑑𝑐𝑘𝑤𝑇𝑘𝑢 𝑗 𝑘 (3.137)

By the orthogonality assumption and the constructions of 𝑢 𝑗 𝑘s, we have 𝑤𝑇
𝑘
𝑢 𝑗 𝑘 = 0.

Since our goal is to find the anchor minimizing the Euclidean distance, there is a
𝑗 = 𝑗∗ such that

𝑑 (𝑎 𝑗∗𝑘 , 𝑋)2 = |𝑋 | − 2𝑋𝑇𝑋∗ + ||𝑋∗ | |2

− 2𝑑
∑︁
𝑖≠𝑘

|𝑤𝑇𝑖 𝑋 − 𝑏𝑖 | + 𝑑2(𝑚 − 1) | |𝑤 | |22

− 2𝑐𝑘 |𝑤𝑇𝑘 𝑋 − 𝑏𝑘 | + 𝑐2
𝑘 | |𝑤 | |

2
2 (3.138)
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Given the optimal selection of 𝑗s minimizing the Euclidean distance, we have to
find the argument 𝑘 which will globally minimize this.

For an EDL, we see that 𝑧𝑙 is picked if and only if (𝑤𝑇1𝑋 ≠ 𝑏1, . . . , 𝑤
𝑇
𝑙−1𝑋 ≠

𝑏𝑙−1, 𝑤
𝑇
𝑙
𝑋 = 𝑏𝑙 ,×, . . . ,×) where we have inequalities for 𝑘 < 𝑙 and a don’t care

region for 𝑙 < 𝑘 . We will deal with (𝑤𝑇1𝑋 ≠ 𝑏1, . . . , 𝑤
𝑇
𝑚𝑋 ≠ 𝑏𝑚) later.

We want 𝑎 𝑗∗𝑘 to be the closest anchor to 𝑋 for 𝑘 = 𝑙 and some 𝑗∗ for (𝑤𝑇1𝑋 ≠

𝑏1, . . . , 𝑤
𝑇
𝑙−1𝑋 ≠ 𝑏𝑙−1, 𝑤

𝑇
𝑙
𝑋 = 𝑏𝑙 ,×, . . . ,×). Hence, when we compare different

𝑘, 𝑙 we get

𝑑 (𝑎 𝑗∗𝑙 , 𝑋)2 − 𝑑 (𝑎 𝑗+𝑘 , 𝑋)2

= −2(𝑑 − 𝑐𝑘 ) |𝑤𝑇𝑘 𝑋 − 𝑏𝑘 | + (𝑐2
𝑙 − 𝑐

2
𝑘 ) | |𝑤 | |

2
2 < 0 (3.139)

Note that 𝑤𝑇
𝑙
𝑋 = 𝑏𝑙 so that term does not appear.

Case 1 (𝑙 < 𝑘): This is the simple case. The inequality in Eq. (3.139) is the tightest
when |𝑤𝑇

𝑘
𝑋 − 𝑏𝑘 | = 0. Then, for 𝑘 ≤ 𝑚, we obtain 𝑐𝑙 < 𝑐𝑘 for 𝑙 < 𝑘 as a

necessary condition. 𝑘 = 𝑚 + 1 is trivial since 𝑑 > 𝑐𝑖 for all 𝑖 ∈ {1, . . . , 𝑚} and
𝑑 (𝑎 𝑗∗𝑙 , 𝑋)2 − 𝑑 (𝑎 𝑗+ (𝑚+1) , 𝑋)2 = (𝑐2

𝑙
− 𝑑2) | |𝑤 | |22 < 0.

Case 2 (𝑘 < 𝑙 ≤ 𝑚): The tightest Eq. (3.139) becomes is when |𝑤𝑇
𝑘
𝑋 − 𝑏𝑘 | = 1 and

we have
𝑐2
𝑘 −

2
| |𝑤 | |22

𝑐𝑘 + 2
𝑑

| |𝑤 | |22
− 𝑐2

𝑙 > 0 (3.140)

Let 𝑑 = 1/| |𝑤 | |22 and 𝑐𝑖 = 𝑖

(𝑚+1) | |𝑤 | |22
for 𝑖 ∈ {1, . . . , 𝑚}. Then, we obtain

𝑘2

(𝑚 + 1)2 − 2
𝑘

𝑚 + 1
+ 2 − 𝑙2

(𝑚 + 1)2 > 0 (3.141)

Since 𝑙 ≤ 𝑚, the tightest this inequality becomes is when the value of the fourth
term is 1. Then, we obtain ( 𝑘

(𝑚 + 1)2 − 1
)2
> 0 (3.142)

which is true for since 𝑘 ≠ 𝑚 + 1.

Case 3 (𝑙 = 𝑚 + 1): Finally, we consider (𝑤𝑇1𝑋 ≠ 𝑏1, . . . , 𝑤
𝑇
𝑚𝑋 ≠ 𝑏𝑚). For this

case, we claim that for any 𝑘 ∈ {1, . . . , 𝑚},

𝑑 (𝑎 𝑗∗ (𝑚+1) , 𝑋)2 − 𝑑 (𝑎 𝑗+𝑘 , 𝑋)2

= −2(𝑑 − 𝑐𝑘 ) |𝑤𝑇𝑘 𝑋 − 𝑏𝑘 | + (𝑑2 − 𝑐2
𝑘 ) | |𝑤 | |

2
2 < 0 (3.143)
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Take |𝑤𝑇
𝑘
𝑋 − 𝑏𝑘 | = 1 similarly. Then,

𝑐2
𝑘 −

2
| |𝑤 | |22

𝑐𝑘 + 2
𝑑

| |𝑤 | |22
− 𝑑2 > 0 (3.144)

Consider 𝑑 = 1/| |𝑤 | |22 and 𝑐𝑖 = 𝑖

(𝑚+1) | |𝑤 | |22
for 𝑖 ∈ {1, . . . , 𝑚}. We get

𝑘2

(𝑚 + 1)2 − 2
𝑘

𝑚 + 1
+ 2 − 1 > 0 (3.145)( 𝑘

𝑚 + 1
− 1

)2
> 0 (3.146)

which is true since 𝑘 ≠ 𝑚 + 1.

This shows that the construction works. The size of representation is (𝑚 + 1)2𝑚 by
counting through 𝑗s and 𝑘s. Similar to the proof of Theorem 29, the resolution is
𝑂 (log𝑚 + 𝑅𝐸𝑆(diag(𝑊𝑊𝑇 ))). □

We note that the idea for Theorem 34 works for LDLs as well with (𝑚 + 1)2𝑚 many
anchors and a possible resolution improvement from 𝑂 (𝑚) to 𝑂 (log𝑚).

Corollary 34.1. Let 𝑓 (𝑋) be the 2𝑛𝑚-input Boolean function OMB𝑚 ◦EQ2𝑛 where
there are 𝑚 many disjoint 2𝑛-input EQ functions in the first layer. Then, there is an
NN representation with (𝑚 + 1)2𝑚 anchors and 𝑂 (𝑛) resolution.

3.7 Towards the Low Resolution NN Representations of Threshold Functions
The main problem we are interested in is whether there exists NN representations
for threshold functions with polynomially large size in 𝑛 and logarithmic resolution.
Since threshold functions can be computed by small weight (i.e. logarithmic reso-
lution) depth-2 threshold circuits, it is a natural direction to find NN representations
for these depth-2 threshold circuits based on the techniques we developed in the
previous sections.

In Chapter 2, it is established that ELT ⊆ SYM ◦ ÊLT and it seems natural to apply
our results in Section 3.5. However, the regularity conditions are not satisfied for
this transformation, and even if they are, there is a superpolynomial blow-up in
the size of the NN representation for these constructions. Therefore, it seems that
following this idea might not be very useful. We again emphasize that the known
results for LT ⊆ L̂T ◦ L̂T rely on the transformations ELT ⊆ SYM ◦ ÊLT and we
thus have similar obstacles.
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Nevertheless, for threshold functions like the EQ, COMP, and OMB, whose dom-
ination form have the sparsity parameter S = 1, we can explicitly construct NN
representations of polynomial size and at most logarithmic resolution. Whether
similar NN representations exist for arbitary threshold functions is not clear.

Low Resolution NN Representations for the EQ
In Chapter 2, we showed that there are constant weight EQ matrices that can be used
to compute the EQ function to optimize the number of the threshold gates using
AND ◦ ELT circuits. Using the results in Section 3.4, specifically Theorem 27, it
is clear that we can obtain a low resolution NN representation for the EQ function.
Here, we give a more specialized proof.

Theorem 35. Consider an EQ matrix 𝐴 ∈ Z𝑚×𝑛 with no all-zero rows. Then,
there is a 2𝑚 + 1-anchor NN representation for the 2𝑛-input EQ function with
𝑂 (𝑅𝐸𝑆(diag(𝐴𝐴𝑇 ))).

Proof. The anchors we construct are in the following form for 𝑖 ∈ {1, . . . , 𝑚}. We
define𝑊 =

[
𝐴 −𝐴

]
𝑚×2𝑛

.

𝑎0 = 0.51 (3.147)

𝑎2𝑖−1 = 0.51 + 𝑐𝑖𝑊𝑖 (3.148)

𝑎2𝑖 = 0.51 − 𝑐𝑖𝑊𝑖 (3.149)

We have two cases similar to the proof of Theorem 19 to prove where 𝑎0 is closest
to vectors 𝑋 = 𝑌 and 𝑎𝑖 is closest to 𝑋 ≠ 𝑌 for some 𝑖 ∈ {1, . . . , 2𝑛}. We also use
(𝑋,𝑌 ) ∈ {0, 1}2𝑛 to denote the input vector. When we expand the squared Euclidean
distance, we get

𝑑 (𝑎0, (𝑋,𝑌 ))2 = 𝑛/2 (3.150)

𝑑 (𝑎2𝑖−1, (𝑋,𝑌 ))2 = 𝑛/2 − 2𝑐𝑖𝐴𝑇𝑖 (𝑋 − 𝑌 ) + 2𝑐2
𝑖 | |𝐴𝑖 | |22 (3.151)

𝑑 (𝑎2𝑖, (𝑋,𝑌 ))2 = 𝑛/2 + 2𝑐𝑖𝐴𝑇𝑖 (𝑋 − 𝑌 ) + 2𝑐2
𝑖 | |𝐴𝑖 | |22 (3.152)

Since 𝑋 −𝑌 ∈ {−1, 0, 1}𝑛, 𝐴(𝑋 −𝑌 ) = 0 if and only if 𝑋 = 𝑌 . Therefore, if 𝑋 = 𝑌 ,
𝑑 (𝑎0, (𝑋,𝑌 ))2 < 𝑑 (𝑎𝑖, (𝑋,𝑌 ))2 for all 𝑖 ∈ {1, . . . , 2𝑛} as long as 𝑐𝑖 > 0.

Conversely, if 𝑋 ≠ 𝑌 , then |𝐴𝑇
𝑖
(𝑋 − 𝑌 ) | ≥ 1 for some 𝑖 ∈ {1, . . . , 𝑛}. Depending

on the sign of 𝐴𝑇
𝑖
(𝑋 −𝑌 ), one of the 𝑎2𝑖−1 or 𝑎2𝑖 will be closer to (𝑋,𝑌 ). Hence, if
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𝑐𝑖 =
1

2| |𝐴𝑖 | |22
, then

−2𝑐𝑖 |𝐴𝑇𝑖 (𝑋 − 𝑌 ) | + 2𝑐2
𝑖 | |𝐴𝑖 | |22 = −

|𝐴𝑇
𝑖
(𝑋 − 𝑌 ) | − 0.5
| |𝐴𝑖 | |22

< 0 (3.153)

so that either 𝑎2𝑖−1 or 𝑎𝑖 will be closest to (𝑋,𝑌 ). The resolution bound is easy to
verify by the selection of 𝑐𝑖s. □

The properties of EQ matrices directly translate into the NN representations of the
EQ. We obtain the following corollary concluding our results in this context. We
give examples NN representations for each type in Corollary 35.1 in Appendix E.1.

Corollary 35.1. For the 2𝑛-input EQ function, there are NN representations such
that

Size Resolution
3 𝑂 (𝑛)

2𝑛 + 1 𝑂 (1)
𝑂 (𝑛/log 𝑛) 𝑂 (log 𝑛)

Proof. For the first result, we use the EQ matrix with exponentially large weights
taking 𝑚 = 1. This gives the linear resolution construction. For the second result,
we use 𝐴 = 𝐼, which is a full-rank matrix for the EQ function where 𝑚 = 𝑛. Since
each row has norm 1, this gives 𝑂 (1) resolution. Finally, for the third result, we use
our results on EQ matrices (see Theorem 10 for example). In this case, the number
of rows is asymptotically 𝑂 (𝑛/log 𝑛) and each row norm is bounded by 𝑛, giving a
logarithmic resolution. □

Low Resolution NN Representations for the COMP and OMB
One can notice that for the COMP and OMB, the most significant bits in the input
determine the output. This is called the domination principle and the property
used implicitly in many works (Amano and Maruoka, 2005; Bohossian, Riedel,
and Bruck, 1998). In order to decide the label of the anchor using the domination
principle, a procedure based on a sequential decision making could be useful similar
to decision lists. Therefore, loosely speaking, some anchors should be “closer” more
often than the others.

One can see the following necessary and sufficient conditions for the COMP with
the convention 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) and binary expansion
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𝑖=1 2𝑛−𝑖𝑋𝑖. Below, ×s denote don’t cares.

𝑋 > 𝑌 ⇔ 𝑋 − 𝑌 = (0, . . . , 0, 1,×, . . . ,×) (3.154)

𝑋 < 𝑌 ⇔ 𝑋 − 𝑌 = (0, . . . , 0,−1,×, . . . ,×) (3.155)

𝑋 = 𝑌 ⇔ 𝑋 − 𝑌 = (0, . . . , 0, 0, 0, . . . , 0) (3.156)

This is an altered version of the result in Lemma 6. The vector 𝑋 − 𝑌 has leading
0s and the most significant digit determines if 𝑋 > 𝑌 or not. The idea to construct
an NN representation for the COMP relies on this observation and we depict the
idea in Figure 3.9. First, we consider the hyperplane 𝑥1 = 𝑦1 and put two anchors
whose midpoint is 𝑋∗ = 0.51, which is on the hyperplane itself so that 𝑎1 is closer
to 𝑋1 > 𝑌1 and 𝑎2 is closer to 𝑋1 < 𝑌1. Then, alongside the intersection of 𝑥1 = 𝑦1

and 𝑥2 = 𝑦2, we put two more anchors 𝑎3 and 𝑎4 to take care of 𝑋2 > 𝑌2 and 𝑋2 < 𝑌2

and we continue like this. To ensure that we have the domination principle, 𝑎3 and
𝑎4 are farther away from 𝑋∗. Since COMP(𝑋,𝑌 ) = 1 when 𝑋 = 𝑌 , we make the
anchors skewed by a little amount so that 𝑋 = 𝑌 vectors are closer to blue anchors.

Theorem 36. For the 2𝑛-input COMP, there is an NN representation with 2𝑛
anchors and 𝑂 (log 𝑛) resolution.

Proof. We will show that the following is an NN representation for the COMP2𝑛

function for 𝑖 ∈ {1, . . . , 𝑛} and𝑊 =

[
𝐼 −𝐼

]
𝑛×2𝑛

𝑋∗ = 0.51 (3.157)

𝑎2𝑖−1 = 𝑋∗ + 𝑐2𝑖−1𝑊𝑖 (3.158)

𝑎2𝑖 = 𝑋
∗ − 𝑐2𝑖𝑊𝑖 (3.159)

for 𝑐𝑖 = 1
2 + 𝑖−1

4𝑛 for 𝑖 ∈ {1, . . . , 2𝑛}. This selection gives the desired resolution
bound.

Let (𝑋,𝑌 ) denote the 2𝑛-dimensional input vector and let (X,Y) (𝑘) be the set of
vectors where 𝑋𝑖 = 𝑌𝑖 for 𝑖 < 𝑘 , 𝑋𝑘 = 1 and 𝑌𝑘 = 0. For 𝑖 > 𝑘 , the values can be
arbitrary. Clearly, 𝑋 > 𝑌 for any vector in (𝑋,𝑌 ) (𝑘) ∈ (X,Y) (𝑘) (see Eq. (3.154)).
We claim that the closest anchor to any (𝑋,𝑌 ) (𝑘) is 𝑎2𝑘−1.

𝑑 (𝑎2𝑖−1, (𝑋,𝑌 ) (𝑘))2

= | (𝑋,𝑌 ) (𝑘) | − 2(0.51 + 𝑐2𝑖−1𝑊𝑖)𝑇 (𝑋,𝑌 ) (𝑘)

+ ||0.51 + 𝑐2𝑖−1𝑊𝑖 | |22
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𝑥1 > 𝑦1

𝑥1 = 𝑦1

𝑥1 < 𝑦1

𝑋∗

𝑎1

𝑎2

(a) The placement of anchors 𝑎1 and 𝑎2 for the hyperplane 𝑥1 = 𝑦1. 𝑋∗ = 0.51 for simplicity.

𝑥1 > 𝑦1

𝑥1 = 𝑦1

𝑥1 < 𝑦1
𝑥2 > 𝑦2

𝑥2 = 𝑦2
𝑥2 < 𝑦2

𝑋∗
𝑎3

𝑎4

𝑎1

𝑎2

(b) The placement of 𝑎3 and 𝑎4 for the hyperplanes 𝑥1 = 𝑦1 and 𝑥2 = 𝑦2. They are farther away from
the 𝑋∗ compared to 𝑎1 and 𝑎2 to ensure the domination principle.

Figure 3.9: The construction idea for the COMP(𝑋,𝑌 ) function depicting the first
two iterations. For 2𝑛-inputs, there will be 𝑛 iterations resulting in 2𝑛many anchors.

= −2𝑐2𝑖−1(𝑋𝑖 − 𝑌𝑖) +
𝑛

2
+ 2𝑐2

2𝑖−1 | |𝑊𝑖 | |22

=
𝑛

2
+ 1

2
+ 𝑖 − 1

𝑛
+ 2

( 𝑖 − 1
2𝑛

)2
−

(
1 + 𝑖 − 1

𝑛

)
(𝑋𝑖 − 𝑌𝑖) (3.160)
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Since −1
2 + 2

(
𝑘−1
2𝑛

)2
< 0 < 1

2 + 𝑖−1
𝑛

+ 2
(
𝑖−1
2𝑛

)2
for any 𝑖 < 𝑘 , 𝑎2𝑘−1 is closer to

(𝑋,𝑌 ) (𝑘) than 𝑎2𝑖−1 for 𝑖 < 𝑘 . For 𝑖 > 𝑘 , the smallest distance value is attained

when 𝑋𝑖 −𝑌𝑖 = 1. For this, we see that −1
2 + 2

(
𝑘−1
2𝑛

)2
< −1

2 + 2
(
𝑖−1
2𝑛

)2
for 𝑖 > 𝑘 since

this expression is monotonically increasing.

We now look at the distance between (𝑋,𝑌 ) (𝑘) and 𝑎2𝑖s.

𝑑 (𝑎2𝑖, (𝑋,𝑌 ) (𝑘))2 =
𝑛

2
+ 1

2
+ 2𝑖 − 1

2𝑛
+ 2

(2𝑖 − 1
4𝑛

)2

+
(
1 + 2𝑖 − 1

2𝑛

)
(𝑥𝑖 − 𝑦𝑖) (3.161)

When we compare 𝑑 (𝑎2𝑖−1, (𝑋,𝑌 ) (𝑘))2 and 𝑑 (𝑎2𝑖, (𝑋,𝑌 ) (𝑘))2 for 𝑖 < 𝑘 , we have

−1
2 + 2

(
𝑘−1
2𝑛

)2
< 0 < 1

2 + 2𝑖−1
2𝑛 + 2

(
2𝑖−1
4𝑛

)2
. Also, for 𝑖 = 𝑘 , 𝑑 (𝑎2𝑘−1, (𝑋,𝑌 ) (𝑘)) <

𝑑 (𝑎2𝑘 , (𝑋,𝑌 ) (𝑘)) because 𝑥𝑘 − 𝑦𝑘 > 0. For 𝑖 > 𝑘 , the minimum distance value is

attained when 𝑥𝑖 − 𝑦𝑖 = −1, so we obtain −1
2 +

(
2𝑘−2

4𝑛

)2
< −1

2 +
(

2𝑖−1
4𝑛

)2
. Hence, we

conclude that 𝑎2𝑖−1 is closer to (𝑋,𝑌 ) (𝑘) than 𝑎2𝑖 for any 𝑖.

The proof is similar for 𝑋 < 𝑌 . For 𝑋 = 𝑌 , we see that 𝑎1 is always the closest
anchor with the correct label because 𝑐1 is the smallest. Hence, the construction
works indeed. □

An example NN representation with𝑂 (log 𝑛) resolution for 6-input COMP is given
in Appendix E.2.

We finish this section with the construction for the OMB. Note that in this context,
we use 𝑋 = (𝑋1, . . . , 𝑋𝑛) with 𝑋1 being the most significant bit.

Theorem 37. For the 𝑛-input OMB, there is an NN representation with 𝑛+1 anchors
with 𝑂 (log 𝑛) resolution.

Proof. The construction we give here is very simple, which can be thought as a
special case of a wider family of constructions that we do not cover here. We have
the anchor matrix 𝐴 ∈ Q(𝑛+1)×𝑛 with resolution 𝑂 (log 𝑛) for 𝑖 ∈ {1, . . . , 𝑛 + 1} and
𝑗 ∈ {1, . . . , 𝑛}.

𝑎𝑖 𝑗 =


1 − 𝑖−1

𝑛
if 𝑖 = 𝑗

0 otherwise
(3.162)

The label of 𝑎𝑖 is blue for odd 𝑖 and red for even 𝑖. Moreover, the last anchor 𝑎𝑛+1

corresponds to the all-zero vector and it is labeled red because OMB(0) = 0 by
definition.
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By X (𝑘) , we denote the family of vectors where 𝑋 𝑗 = 0 necessarily for 𝑗 < 𝑘 and
𝑥𝑘 = 1. That is, for any 𝑋 ∈ X (𝑘) 𝑋 = (0, . . . , 0, 1,×, . . . ,×). For 𝑗 > 𝑘 , we have
don’t cares.

We claim that all 𝑋 ∈ X (𝑘) are closest to 𝑎𝑖. By expanding the squared Euclidean
distance, we have

𝑑 (𝑎𝑖, 𝑋)2 = |𝑋 | − 2𝑎𝑇𝑖 𝑋 + ||𝑎𝑖 | |2 (3.163)

=


|𝑋 | +

(
1 − 𝑖−1

𝑛

)2
if 𝑖 < 𝑘

|𝑋 | − 2
(
1 − 𝑖−1

𝑛

)
𝑋𝑖 +

(
1 − 𝑖−1

𝑛

)2
if 𝑘 ≤ 𝑖 ≤ 𝑛

|𝑋 | if 𝑖 = 𝑛 + 1

(3.164)

Since 𝑋𝑘 = 1 and −2
(
1 − 𝑖−1

𝑛

)
+

(
1 − 𝑖−1

𝑛

)2
< 0 <

(
1 − 𝑖−1

𝑛

)2
, 𝑎𝑘 is closer to 𝑋 than

𝑎𝑖s for 𝑖 < 𝑘 . Since −2
(
1− 𝑖−1

𝑛

)
+
(
1− 𝑖−1

𝑛

)2
= −1+

(
𝑖−1
𝑛

)2
is monotone increasing in

𝑖 and always negative, the closest anchor is 𝑎𝑘 indeed. This concludes the proof. □

We remark that the inclusion of the all-zero anchor for the NN representation of
OMB is not necessary when 𝑛 is even because the label of 𝑎𝑛 and 𝑎𝑛+1. In this case,
the representation size is exactly 𝑛. Two examples of NN representations for the
OMB using this result are given in Appendix E.2.

3.8 Conclusion
Boolean functions in the new associative computation model are studied. Several
important classes of Boolean functions are examined: LT, ELT, SYM, SYM ◦ LT,
SYM ◦ ELT, DOM ◦ LT, and DOM ◦ ELT.

Explicit resolution bounds for the NN representations for LT and ELT are constructed
using 2 and 3 anchors respectively. In general, both functions require weights as large
as 2𝑂 (𝑛 log 𝑛) and therefore, the resolution of the NN representations are 𝑂 (𝑛 log 𝑛).
Also, the NN complexity and resolution bounds are optimized for their symmetric
versions, namely, symmetric linear and symmetric exact Boolean functions.

It is shown that the complexity of symmetric Boolean functions rely on the number
of intervals they have. For some cases, the constructions are optimal in size or
resolution, which is logarithmic. For symmetric Boolean functions, it is an open
question if adding polynomially large number of anchors can reduce the resolution
to sublogarithmic quantities.
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NN representations for SYM ◦ ELT and SYM ◦ LT are given under regularity
conditions where the number of anchors depends on the number of intervals and
the interval locations of the top symmetric gate. These constructions give us new
NN representations for many significant functions in circuit complexity theory and
Boolean analysis.

An important relationship between NN representations and LDLs is shown. If the
length of an LDL is less than the number of inputs 𝑛, then there is NN representation
with 𝑛 + 1 anchors (the regularity condition is not necessary). Special cases are
symmetric Boolean functions for which LDL complexity is smaller than 𝑛. For
EDLs, an NN representation with exponentially large number of anchors in 𝑛 is
obtained under regularity conditions.

Finally, polynomial size NN representations with logarithmic (or constant) resolu-
tion are constructed for the EQ, COMP, and OMB. These functions have domination
forms with sparsity parameter S = 1. It remains a challenge to address the Conjec-
ture 1 fully and seems that new methods or tools to understand DOM functions with
S ≥ 2 are required.
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C h a p t e r 4

CONCLUSION AND OPEN PROBLEMS

This thesis delves into the enigma of the the computational processes of the human
brain, by exploring two key models: Feedforward Neural Networks and Nearest
Neighbor Representations. Emphasizing the importance of connectivity over “large”
numerical values, the study navigates the intricate balance between bit resolution
(or weight size) and computational depth. The associative computation model of
NN representations could enlighten how the concepts are stored and processed in
neural computation. The brain does not have unlimited resources and understanding
the theoretical capabilities in this “low resolution” regime seems significant. Using
novel techniques and different ways of representing Boolean functions, previously
known results are re-established and extended to give deeper insights on the neural
network representations.

Using the domination form of threshold functions and binary expansion of the
weights has many merits, especially when S = 1. For this family of Boolean func-
tions, by the introduction of EQ matrices and RMDS property, powerful techniques
such as Siegel’s Lemma and Berry-Esseen Theorem are applied for the first time in
circuit complexity theory to optimize the lower bounds up to constant factors and
to reduce the weight sizes without an asymptotic increase in the circuit size. In
addition, the recursive construction of EQ matrices might inspire other construc-
tions for different applications since the construction is connected to the Hadamard
matrices algebraically. The only method to generate RMDS matrices relies on the
CRT and an alternative constructive method could be interesting. In addition, our
understanding of threshold functions whose domination form has sparsity S ≥ 2 is
limited. The role of S needs a more careful treatment in the analysis of threshold
functions. Some of these comments also apply to NN representations of threshold
functions with logarithmic resolution and a similar gap between S = 1 and S ≥ 2
cases exists.

Starting from the NN representations of threshold functions, we obtain several
important constructions and lower bounds for some famous Boolean functions.
Since the input vectors are {0, 1} vectors, it seems reasonable to put anchors near
the hypercube. However, for symmetric Boolean functions, we have shown that
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the optimization of the representation size might move the representation far away
from the hypercube. This counter-intuitive result illustrates the intrinsic difficulty
of proving upper and lower bounds for NN complexity and resolution.

There are still many remaining mysteries for NN representations. The obvious open
problem is to prove the conjecture to find low resolution NN representations for
arbitrary threshold functions with at most a polynomially large size increment in 𝑛.
Although affirmative results are provided for the EQ, COMP, and OMB (threshold
functions with S = 1), it is not clear if this is true in general. An important
observation is to consider 𝑘-NN representations since for a “complex” function like
IP2, 𝑘-NN complexity is shown to be 𝑂 (𝑛) in a recent work. It could be possible
that the conjecture is false for 1-NN but true for 𝑘-NN with 𝑘 = Ω(𝑛).

While it seems likely that 𝑁𝑁 ( 𝑓 ) = 𝐼 ( 𝑓 ) for any symmetric Boolean function, we
can only prove it for 𝐼 ( 𝑓 ) ≤ 4. More sophisticated techniques are required to make
progress for higher number of intervals. The role of resolution is also ambiguous
for the NN representations of symmetric Boolean functions. An interesting result
would be to prove that there is no polynomial size NN representation for the PARITY
function with constant resolution.

The removal of regularity conditions for the NN representation constructions for
SYM ◦ LT, SYM ◦ ELT and EDLs is also an important direction. We believe that
the removal of regularity conditions for the NN representations of LDLs could be
beneficial for future progress.

For LDLs, if the depth constraint𝑚 ≤ 𝑛 can be removed, this could imply a new way
to construct NN representations for arbitrary Boolean functions. The idea is to use
fact that any 𝑛-input Boolean function can be interpreted as a 2𝑛-input symmetric
Boolean function. A definition for the intervals of a Boolean function would be
relevant in this context.

Finally, relationships between different complexity measures of Boolean functions
can be conjectured. It is known that NN complexity is bounded below by 𝐿𝐷𝑇 ( 𝑓 )
and we conjecture that 𝑁𝑁 ( 𝑓 ) ≤ 𝐿𝐷𝐿 ( 𝑓 ) + 1. We verify this for 𝑚 ≤ 𝑛 where
𝑚 is the depth of the list. It is also an important problem to find the relationships
between exact covers and NN representations. This is treated in more detail in the
Appendix C. The relationship between circuit size lower bounds for small weight
constructions and NN complexity is intriguing because it is not clear if the size of
the low resolution NN constructions for EQ, COMP, and OMB is optimal.



113

BIBLIOGRAPHY

Aaronson, James et al. (2021). “Exact hyperplane covers for subsets of the hyper-
cube”. In: Discrete Mathematics 344.9, p. 112490.

Alon, Noga, Peter Frankl, and Vojtěch Rödl (1985). “Geometrical realization of set
systems and probabilistic communication complexity”. In: 26th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1985). IEEE, pp. 277–280.

Alon, Noga and Zoltán Füredi (1993). “Covering the Cube by Affine Hyperplanes”.
In: European Journal of Combinatorics 14.2, pp. 79–83. issn: 0195-6698. doi:
https://doi.org/10.1006/eujc.1993.1011. url: https://www.
sciencedirect.com/science/article/pii/S0195669883710115.
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A p p e n d i x A

THE DECODING ALGORITHM FOR THE VECTORS MAPPED
BY THE EQ MATRIX IN THEOREM 10

Suppose that 𝐴𝑘𝑥 = 𝑧 is given where 𝐴𝑘 is an 𝑚 × 𝑛 EQ matrix given in Theorem
10 starting with 𝐴0 =

[
1
]
. One can obtain a linear time decoding algorithm in 𝑛 by

exploiting the recursive structure of the construction. Let us partition 𝑥 and 𝑧 in the
way given in (2.19). It is clear that 𝑥 (3) = [𝑧(1) + 𝑧(2)]2. Also, after computing 𝑥 (3) ,
we find that 𝐴𝑘−1𝑥

(1) = (𝑧(1) + 𝑧(2) − 𝑥 (3))/2 and 𝐴𝑘−1𝑥
(2) = (𝑧(1) − 𝑧(2) − 𝑥 (3))/2.

These operations can be done in 𝑂 (𝑚𝑘−1) time complexity. Let 𝑇 (𝑚) denote the
time to decode 𝑧 ∈ Z𝑚. Then,𝑇 (𝑚) = 2𝑇 (𝑚/2) +𝑂 (𝑚) and by the Master Theorem,
𝑇 (𝑚) = 𝑂 (𝑚 log𝑚) = 𝑂 (𝑛).

An Example for the Decoding: Consider the following system Ax = b:


1 1 1 1 1 1 1 0
1 −1 0 1 −1 0 0 1
1 1 1 −1 −1 −1 0 0
1 −1 0 −1 1 0 0 0





𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8



=


4
−2
−1
0


Here is the first step of the algorithm:

𝑎 =

[
4
−2

]
, 𝑏 =

[
−1
0

]
⇒

[
𝑥7

𝑥8

]
= [𝑎 + 𝑏]2 =

[
[3]2

[−2]2

]
=

[
1
0

]
Then, we obtain the two following systems:

[
1 1 1
1 −1 0

] 
𝑥1

𝑥2

𝑥3

 =

𝑎 + 𝑏 −
[
1
0

]
2

=

[
1
−1

]
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[
1 1 1
1 −1 0

] 
𝑥4

𝑥5

𝑥6

 =

𝑎 − 𝑏 −
[
1
0

]
2

=

[
2
−1

]

For the first system, we find that 𝑥3 = [1 − 1]2 = 0. Then,

𝑥1 =
1 − 1 − 0

2
= 0 (A.1)

𝑥2 =
1 + 1 − 0

2
= 1 (A.2)

For the second system, we similarly find that 𝑥6 = [2 − 1]2 = 1. Then,

𝑥4 =
2 − 1 − 1

2
= 0 (A.3)

𝑥5 =
2 + 1 − 1

2
= 1 (A.4)

Thus, we have 𝑥 =
[
0 1 0 0 1 1 1 0

]𝑇
.
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A p p e n d i x B

A MODULAR ARITHMETICAL PROPERTY OF THE CRT
MATRIX

Consider the following equation with powers of two in 8 variables and the corre-
sponding 4 × 8 CRT matrix, say 𝐴.

𝑤𝑇𝑏𝑥 =

8∑︁
𝑖=1

2𝑖−1𝑥𝑖 = 0 (B.1)

𝐴 =


[20]3 [21]3 [22]3 [24]3 [25]3 [26]3 [27]3

[20]5 [21]5 [22]5 [24]5 [25]5 [26]5 [27]5

[20]7 [21]7 [22]7 [24]7 [25]7 [26]7 [27]7

[20]11 [21]11 [22]11 [24]11 [25]11 [26]11 [27]11


(B.2)

=


1 2 1 2 1 2 1 2
1 2 4 3 1 2 4 3
1 2 4 1 2 4 1 2
1 2 4 8 5 10 9 7

4×8

(B.3)

For the prime 𝑝𝑖, the elements in the row 𝑖 are congruent to the elements of𝑤𝑏. The 𝑖th

element of the 𝐴𝑥 vector should be divisible by 𝑝𝑖 whenever 𝑤𝑇
𝑏
𝑥 = 0. For instance,

one can pick 𝑥 =

[
2 1 1 3 0 1 −1 0

]𝑇
as a solution for 𝑤𝑇

𝑏
𝑥 = 0 and we

see that 𝐴𝑥 =

[
12 15 14 33

]𝑇
=

[
4 · 3 3 · 5 2 · 7 3 · 11

]𝑇
. This property is

essential in the construction of small weight depth-2 circuits for arbitrary threshold
functions while the RMDS𝑞 matrices do not behave in this manner necessarily.
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A p p e n d i x C

EXACT COVER REPRESENTATIONS

Exact Cover Representation (denoted by EC) of a Boolean function 𝑓 (𝑋) is a set
of hyperplanes required to exactly cover all binary vectors such that 𝑓 (𝑋) = 1.
Obviously, the exact cover representation sizes for 𝑓 (𝑋) and its complement 𝑓 (𝑋)
need not to be the same. We define the Exact Cover Complexity to be the summation
of the sizes of the exact cover representations of 𝑓 (𝑋) and 𝑓 (𝑋).

Definition 14. Let H = {𝐻1, . . . , 𝐻𝑚} be a set of finite number of hyperplanes in
R𝑛 and 𝑓 (𝑋) be a Boolean function where 𝑋 ∈ {0, 1}𝑛. Then, H is an Exact Cover
Representation of 𝑓 if

{𝑋 ∈ {0, 1}𝑛 | 𝑓 (𝑋) = 1} =
𝑚⋃
𝑖=1

𝐻𝑖 ∩ {0, 1}𝑛 (C.1)

We say that H covers 𝑓 if H is an exact cover representation of 𝑓 . The Exact Cover
Complexity of 𝑓 is denoted by EC( 𝑓 ) and EC( 𝑓 ) = |H | + |H | has minimal value
where H covers 𝑓 (𝑋) = 1 and H covers 𝑓 (𝑋) = 0.

Given the exact cover representation as a set of hyperplanes {𝐻1, . . . , 𝐻𝑚}, it is
straight-forward compute 𝑓 (𝑋) by a depth-2 circuit of OR𝑚 ◦ ELT𝑛. Therefore, for
a Boolean function 𝑓 (𝑋), if the number of exact threshold gates in the OR𝑚 ◦ELT𝑛
is lower bounded by 𝑚, we have a lower bound on the EC complexity. The converse
does not hold since OR𝑚 ◦ ELT𝑛 is not closed under complement operation. An
upper bound on 𝑚 for OR𝑚 ◦ELT𝑛 circuits cannot be used to bound EC complexity
in general because the behavior of the complement of the function could be different.

Now, we give some important examples of exact cover representations. One can
cover the whole Boolean hypercube {0, 1}𝑛 using 2 hyperplanes, e.g., 𝑥1 = 0
and 𝑥1 = 1. This is clearly optimal since a single hyperplane is not sufficient to
cover the whole hypercube. In addition, by using powers-of-two, one can provide
parallel hyperplanes to cover any set 𝑓 (𝑋) = 1 and 𝑓 (𝑋) = 0 using

∑𝑛
𝑖=1 2𝑖−1𝑥𝑖 ∈

{0, . . . , 2𝑛 − 1}. Therefore, 𝐸𝐶 ( 𝑓 ) ≤ 2𝑛 in general. The first non-trivial results
for exact cover complexity starts by covering {0, 1}𝑛 \ {0} using 𝑛 hyperplanes,
which is optimal (Alon and Füredi, 1993). Achieving this complexity value is easy,
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𝑥1+· · ·+𝑥𝑛 = 0 covers 0 and 𝑥𝑖 = 1 for 𝑖 ∈ {1, . . . , 𝑛} covers the {0, 1}𝑛\{0}. Proving
a corresponding lower bound requires some work using multilinear polynomials and
Nullstellensatz (Alon and Füredi, 1993).

Since then, a number of related results on EC complexity is obtained (Aaronson
et al., 2021; Clifton and Huang, 2020; Diamond and Yehudayoff, 2022). A striking
result is that the 2𝑛-input disjointedness function (i.e. DISJ2𝑛 (𝑋) =

∨𝑛
𝑖=1(𝑥𝑖 ∧ 𝑦𝑖))

has EC(DISJ2𝑛 (𝑋)) = 2Ω(𝑛) (Diamond and Yehudayoff, 2022). One direction is
easy since this is only a circuit of OR𝑛 ◦ AND2. The non-trivial direction is to
show that one requires 2Ω(𝑛) hyperplanes to exactly cover the hypercube where
DISJ2𝑛 (𝑋) = 1. They use anti-concentration inequalities to prove this result. In
contrast, DISJ2𝑛 has a 𝑛-anchor constant resolution NN representation since it is a
member of AND ◦ LT and we have a construction for this class.

For a symmetric Boolean function 𝑓 (𝑋), using all the hyperplanes |𝑋 | = 𝑘 where
𝑘 ∈ {0, . . . , 𝑛}, it can be shown that EC( 𝑓 ) ≤ 𝑛+1 both for 𝑓 (𝑋) = 1 and 𝑓 (𝑋) = 0.
Also, for a linear threshold function 𝑓 (𝑋), EC( 𝑓 ) = 𝑂 (𝑛2 log 𝑛) by simply using
results from (Amano and Maruoka, 2005; Hansen and V. V. Podolskii, 2010), which
we do not prove here (see the proof of Theorem 7 in Hansen and V. V. Podolskii,
2010).

To compute a Boolean function 𝑓 (𝑋), its NN representation and a circuit of
OR ◦ AND ◦ LT can be used (see Section 3.3). NN representations are closed
under complement operation (one can reverse the labeling of the anchors). EC rep-
resentations, on the other hand, are not closed under complement operation because
the complement of the function could require a large number of hyperplanes (e.g.
DISJ function). Since the class OR ◦ AND ◦ LT seems to be more expressive than
OR ◦ ELT, we conjecture that the EC( 𝑓 ) is always larger than NN( 𝑓 ) by a constant
factor 𝑐. A weaker version could apply if there is a polynomial dependency between
EC( 𝑓 ) and NN( 𝑓 ). To attack this conjecture, it is essential to analyze the NN
representations of OR ◦ ELT circuits, as we do in Section 3.5.

Conjecture 5 (Strong Version). Let 𝑓 (𝑋) be a Boolean function where 𝑋 ∈ {0, 1}𝑛.
Then, NN( 𝑓 ) ≤ 𝑐EC( 𝑓 ) for some constant 𝑐 > 0.

Conjecture 6 (Weak version). Let 𝑓 (𝑋) be a Boolean function where 𝑋 ∈ {0, 1}𝑛.
Then, NN( 𝑓 ) = 𝑂 (𝑝𝑜𝑙𝑦(EC( 𝑓 ))).
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A p p e n d i x D

A COUNTEREXAMPLE FOR THE PARITY-BASED
EXTENSIONS FOR NN REPRESENTATIONS OF SYMMETRIC

BOOLEAN FUNCTIONS

Let 𝑓 (𝑋) be the function given in Eq. (3.134). For the sake of contradiction,
we assume that there exist a PARITY-based extension to this symmetric function,
namely, 𝑎𝑖 𝑗 = 𝑎𝑖𝑘 for any 𝑖 ∈ {1, . . . , 5} and 𝑗 , 𝑘 ∈ {1, . . . , 8}.

|𝑋 | 𝑓 (𝑋)
0 1 𝐼1 = 0
1 0 𝐼2 = 1
2 1
3 1
4 1
5 1
6 1 𝐼3 = 6
7 0 𝐼4 = 7
8 1 𝐼5 = 8

(D.1)

We can rewrite the necessary and sufficient conditions given in Lemma 8. We also
know that 𝑎𝑖 𝑗 + 𝑎 (𝑖−1) 𝑗 (or 𝑎𝑖 𝑗 − 𝑎 (𝑖−1) 𝑗 ) has the same value for all 𝑗 ∈ {1, . . . , 8}
and 𝑖 ∈ {2, . . . , 5}. Then, we get

𝐼𝑖−1
(
𝑎𝑖1 − 𝑎 (𝑖−1)1

)
< 4

(
𝑎𝑖1 − 𝑎 (𝑖−1)1

) (
𝑎𝑖1 + 𝑎 (𝑖−1)1

)
< (𝐼𝑖−1 + 1)

(
𝑎𝑖1 − 𝑎 (𝑖−1)1

)
(D.2)

𝐼𝑖−1

4
<

(
𝑎𝑖1 + 𝑎 (𝑖−1)1

)
<
𝐼𝑖−1 + 1

4
(D.3)

Recall that Proposition 2 still applies here. Therefore, 𝑎1 𝑗 < 𝑎2 𝑗 < 𝑎3 𝑗 < 𝑎4 𝑗 < 𝑎5 𝑗

for all 𝑗 ∈ {1, . . . , 8}. More explicitly, we have the following system of inequalities

𝑎11 < 𝑎21 < 𝑎31 < 𝑎41 < 𝑎51 (D.4)

0 < 𝑎21 + 𝑎11 <
1
4

(D.5)

1
4
< 𝑎31 + 𝑎21 <

2
4

(D.6)
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6
4
< 𝑎41 + 𝑎31 <

7
4

(D.7)

7
4
< 𝑎51 + 𝑎41 <

8
4

(D.8)

Firstly, we multiply Eq. (D.5) and (D.7) with −1 and sum all Eq. (D.5),(D.6),(D.7),
and (D.8). Secondly, we multiply Eq. (D.6) with −1 and add it to Eq. (D.7). Thus,

0 < 𝑎51 − 𝑎11 < 1 (D.9)

1 < 𝑎41 − 𝑎21 < 1.5 (D.10)

which is inconsistent with Eq. (D.4).

The following is a construction for the function in Eq. (3.134) using our techniques.
We use 2 significant digits to fit the matrix here.

17.78 2.28 −5.72 −21.22 −1.53 −1.53 −1.53 −1.53
19.28 3.28 −4.72 −20.22 −0.53 −0.53 −0.53 −0.53
20.28 4.78 −3.72 −19.22 0.47 0.47 0.47 0.47
21.28 5.78 −2.22 −18.22 1.47 1.47 1.47 1.47
22.28 6.78 −1.22 −16.72 2.47 2.47 2.47 2.47


(D.11)
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A p p e n d i x E

EXPLICIT NN REPRESENTATIONS FOR THE FUNCTIONS IN
TABLE 1.2

Although our results are usually theoretical, for the functions described in Table
1.2 we provide some numerical examples for their NN representations using fixed
number of inputs. These examples illustrate resolution-size trade-off in the analysis
of NN representations of Boolean functions.

Function
NN Representation
Size ResolutionUpper Bound Lower Bound

EQ2𝑛 3 3 𝑂 (𝑛)
EQ2𝑛 2𝑛 + 1 Ω(

√
𝑛) 𝑂 (1)

EQ2𝑛 𝑂 (𝑛/log 𝑛) Ω(
√︁
𝑛/log 𝑛) 𝑂 (log 𝑛)

COMP2𝑛 2𝑛 Ω(
√︁
𝑛/log 𝑛) 𝑂 (log 𝑛)

OMB𝑛 𝑛 + 1 𝑂 (log 𝑛)
IP22𝑛 2𝑛 2𝑛/2∗ 𝑂 (1)

∗The lower bound is for arbitrary resolution

Table E.1: A summary of the NN representations (Summarized from Table 1.2)

E.1 The NN Representations for the EQ function
In this section, we give low resolution NN representations for the EQ function based
on Corollary 35.1. One can verify that the following is a 3-anchor NN representation
for the EQ function using the weights as the powers of two.


0.500000 0.500000 0.500000 0.500000 0.500000 0.500000
0.595238 0.547619 0.523810 0.404762 0.452381 0.476190
0.404762 0.452381 0.476190 0.595238 0.547619 0.523810

 (E.1)

The following is a 7-anchor NN representation for the 6-input EQ function with
input (𝑋,𝑌 ) = (𝑋3, 𝑋2, 𝑋1, 𝑌3, 𝑌2, 𝑌1) using the identity EQ matrix.
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0.5 0.5 0.5 0.5 0.5 0.5
1 0.5 0.5 0 0.5 0.5
0 0.5 0.5 1 0.5 0.5

0.5 1 0.5 0.5 0 0.5
0.5 0 0.5 0.5 1 0.5
0.5 0.5 1 0.5 0.5 0
0.5 0.5 0 0.5 0.5 1

7×6

(E.2)

In contrast, we can use the following 2 × 3 EQ matrix for the EQ function with
6 inputs (recall that EQ matrices are for (𝑋 − 𝑌 ) ∈ {−1, 0, 1}𝑛 while we need
(𝑋,𝑌 ) ∈ {0, 1}2𝑛 to construct the anchors).[

1 1 1
1 −1 0

]
(E.3)

This matrix gives us a 5-anchor NN representation for the 6-input EQ function.
Here, we give the entries of the matrix for 3 significant digits but the construction
can be obtained simply by using Theorem 35.



0.500 0.500 0.500 0.500 0.500 0.500
0.667 0.667 0.667 0.333 0.333 0.333
0.750 0.250 0.500 0.250 0.750 0.500
0.333 0.333 0.333 0.667 0.667 0.667
0.250 0.750 0.500 0.750 0.250 0.500

5×6

(E.4)

E.2 Low Resolution NN representations for the COMP and OMB
For the COMP, we give an 6-anchor NN representation for 6 inputs. Here, we take
the input vector as (𝑋,𝑌 ) = (𝑋3, 𝑋2, 𝑋1, 𝑌3, 𝑌2, 𝑌1) where 𝑋3 and 𝑌3 are the most
significant bits. We give 4 significant digits for the anchor matrix.



1.0000 0.5000 0.5000 0.0000 0.5000 0.5000
−0.0833 0.5000 0.5000 1.0833 0.5000 0.5000
0.5000 1.1667 0.5000 0.5000 −0.1667 0.5000
0.5000 −0.2500 0.5000 0.5000 1.2500 0.5000
0.5000 0.5000 1.3333 0.5000 0.5000 −0.3333
0.5000 0.5000 −0.4167 0.5000 0.5000 1.4167

6×6

(E.5)

For the OMB, we first give 8-input NN representation with 8 anchors according to
Theorem 37. We exclude the all-zero anchor since the smallest norm anchor has
already red label. The input vector is assumed to be (𝑋1, 𝑋2, . . . , 𝑋8) where 𝑋1 is
the most significant bit.
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1.000 0 0 0 0 0 0 0
0 0.875 0 0 0 0 0 0
0 0 0.750 0 0 0 0 0
0 0 0 0.625 0 0 0 0
0 0 0 0 0.500 0 0 0
0 0 0 0 0 0.375 0 0
0 0 0 0 0 0 0.250 0
0 0 0 0 0 0 0 0.125

8×8

(E.6)

And similarly, we give a 10-anchor NN representation for the 9-input OMB.



1.000 0 0 0 0 0 0 0 0
0 0.889 0 0 0 0 0 0 0
0 0 0.778 0 0 0 0 0 0
0 0 0 0.667 0 0 0 0 0
0 0 0 0 0.556 0 0 0 0
0 0 0 0 0 0.444 0 0 0
0 0 0 0 0 0 0.333 0 0
0 0 0 0 0 0 0 0.222 0
0 0 0 0 0 0 0 0 0.111
0 0 0 0 0 0 0 0 0

10×9

(E.7)

E.3 A Constant Resolution NN Representation for the IP2
Based on Theorem 30, we construct the following 8-anchor NN representation for
the 6-input IP2 with (𝑋,𝑌 ) = (𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑋3, 𝑌3) by using IP22𝑛 = PARITY𝑛 ◦
AND2.



0.5 0.5 0.5 0.5 0.5 0.5
1 1 0.5 0.5 0.5 0.5

0.5 0.5 1 1 0.5 0.5
0.5 0.5 0.5 0.5 1 1
0.5 0.5 1 1 1 1
1 1 0.5 0.5 1 1
1 1 1 1 0.5 0.5
1 1 1 1 1 1

23×6

(E.8)
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