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ABSTRACT

Laboratory experiments and the models they inspire are powerful tools for studying
the plasma universe. This dissertation details possible solutions to two important
problems in the plasma universe, namely how solar flares are generated and how
accretion disks transport angular momentum and generate astrophysical jets.

Addressing the first problem, solar coronal loop physics is simulated in a laboratory
experiment. The loop structure composed of braided strands is replicated. The
MHD kink instability and the magnetic Rayleigh Taylor instability (MRTI) are
observed to disrupt the loop structure. The dependence of the MRTI wavelength
on the axial magnetic field is studied. Transient, localized 7.6-keV X-ray bursts
and a several-kilovolt voltage spike are observed to be associated with the breaking
of braided magnetic flux ropes containing 2 eV plasma. These spikes occur when
the braid strand radius is choked down to be at the kinetic scale by either MHD
kink or magnetic Rayleigh–Taylor instabilities. The observed sequence reveals an
MHD to non-MHD cross-scale coupling that is likely responsible for generating
solar energetic particles and X-ray bursts. All the essential components of this
mechanism have been separately observed in the solar corona.

Magnetic flux ropes, the fundamental building block of magnetohydrodynamic
plasma configurations, have often been observed to wrap around each other to form
a helical braided structure with net axial current as observed from the laboratory
experiment and solar coronal loops. Braiding phenomena extend to astrophysical
jets, double helix nebula, and fusion plasma experiments. The equilibrium of
braided flux ropes is more complicated than familiar axisymmetric systems because
it requires balancing forces between the individual braids. A novel method for
constructing these equilibria is developed. This method generates a double helix
equilibrium with net axial current which is characteristic of observed solar loops and
of laboratory-produced braided magnetic flux ropes. To the best of our knowledge,
no previous model has been able to describe braided structures with net axial current.
The net-axial-current equilibrium presented here reproduces the observed braided
structure of the double helix nebula and is expected to be a powerful tool in other
contexts.

Addressing the second problem, the dissertation introduces a first-principles angu-
lar momentum transport mechanism based only on collisions between neutrals and



vi

charged particles in the presence of gravitational and magnetic fields. The mech-
anism is demonstrated by a 2D N-body simulation of a weakly-ionized system. It
is found that ions and electrons drift in opposite radial directions as a result of col-
liding with Kepler-motion neutrals. This reduces the ordinary angular momentum
of neutrals and increases the canonical angular momentum of charged particles in
a manner such that the net global canonical angular momentum is conserved. The
accumulation of ions at small radius and electrons at large radius produces a radially
outward electric field, while current from the separation of ions and electrons is
radially inward. Consequently, this process provides a gravitational dynamo con-
verting gravitational energy into the electric energy that powers an astrophysical
jet. Because this neutral angular momentum loss depends only on neutrals colliding
with charged particles, it should be ubiquitous. The model predicts an accretion rate
of 3 × 10−8 solar mass per year in good agreement with observed accretion rates.

Based on the conservation of canonical angular momentum and dynamics of charged
particles under collisions with infalling neutrals, the dissertation also investigates the
origin of angular momentum in astrophysical systems. A weakly-ionized, initially
non-rotating cloud of neutral particles is shown to spontaneously start rotating
when infalling. Quantitative scaling predicts an angular momentum generation rate
sufficient to convert neutral infall motion into neutral Keplerian rotation in the outer
region of a protoplanetary accretion disk.
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amplitude 𝐵̄⊥ =

√︃
𝐵̄2
𝑥 + 𝐵̄2
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𝜔𝐾

𝑚𝑖
𝑚𝑛

(𝜒𝑖𝑢𝑖𝑟 − 𝜒𝑒𝑢𝑖𝑟), where 𝜒𝑖 = 𝑛𝑖
𝑛𝑛

and 𝜒𝑒 = 𝑛𝑒
𝑛𝑛

. The
red solid/dashed line shows the ion/electron fraction versus radial
position. (g, h) The neutral drift velocity profile and neutral surface
density 𝑛𝐴 versus radial position of the system of (c, d). The rippling
of 𝑛𝐴 in (g) is from the aliasing of the radial position bin period and
the concentric circle position period and this rippling smooths out as
the random velocity and collisions destroy the imposed initial pattern
of concentric circles of neutrals. . . . . . . . . . . . . . . . . . . . . 61
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C h a p t e r 1

INTRODUCTION

1.1 Plasma Universe
Plasma is often referred to as the fourth state of matter, alongside solids, liquids,
and gases. It is a state of matter in which atoms or molecules are ionized, meaning
they have lost or gained electrons, resulting in a mixture of positively charged ions
and free electrons. This ionized state gives plasma unique properties, such as the
ability to conduct electricity, respond to electric and magnetic fields, and exhibit
complex collective behavior. Figure 1.1 shows typical plasmas and their parameters
of number density and temperature.

Figure 1.1: Characteristics of typical plasmas. This visual tool illustrates the
relative positions of various scientific and natural plasmas based on their number
density 𝑛 and temperature 𝑇 . Credit: Contemporary Physics Education Project.
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Understanding and controlling plasmas is essential in various fields, including fusion
energy research, space science, astrophysics, and materials science. Plasma physics
is the branch of physics that studies the behavior, properties, and applications of
plasmas.

1.2 Plasma Dynamics Models
In plasma dynamics, three main models are commonly used: Vlasov theory, two-
fluid theory, and magnetohydrodynamics (MHD). Each model offers a different
level of detail and complexity in describing plasma behavior. A comprehensive
discussion of plasma physics can be found in the book, Fundamentals of Plasma
Physics by Paul M. Bellan [1].

Kinetic Description
The Vlasov theory is a kinetic modeling approach. It is the most detailed and char-
acterizes plasma dynamics. Rather than studying the evolution of every individual
particle, the Vlasov model follows the temporal evolution of particle distribution
functions 𝑓 (x, v, 𝑡). Given the acceleration of the particles a, we can describe the
evolution of 𝑓 (x, v, 𝑡) using the Vlasov equation

𝜕 𝑓

𝜕𝑡
+ v · 𝜕 𝑓

𝜕x
+ a · 𝜕 𝑓

𝜕v
= 0. (1.1)

Typically, the acceleration is from the Lorentz force with a =
𝑞

𝑚
(E + v × B).

Two-Fluid Description
By taking the integral of the distribution function and various degrees of the velocity,
the averaged fluid description is derived. Fluid description considers the evolution
of fluid quantities of every species 𝜎, density 𝑛𝜎 (x, 𝑡) =

∫
𝑓𝜎 (x, v, 𝑡) 𝑑v, mean

velocity u𝜎 (x, 𝑡) =
∫

v 𝑓𝜎 (x, v, 𝑡) 𝑑v on space. A set of partial differential equa-
tions governing these mean quantities is obtained by integrating various degrees of
velocity with the Vlasov equation and a collision operator.

Continuity Equation
𝜕𝑛𝜎

𝜕𝑡
+ ∇ · (𝑛𝜎u𝜎) = 0 (1.2)

Equation of Motion

𝑛𝜎𝑚𝜎
𝑑u𝜎
𝑑𝑡

= 𝑛𝜎𝑞𝜎 (E + u𝜎 × B) − ∇𝑃𝜎 − R𝜎𝛼 (1.3)

where 𝑃𝜎 is the pressure, and R𝜎𝛼 is the collision force between fluid species 𝜎 and
𝛼.
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The fluid model is obtained through the integration over velocity space, resulting in
the loss of detailed information regarding the velocity distribution function.

MHD Description
Particle motion in the two-fluid system is described by the mean quantities of indi-
vidual species. The MHD model couples together the mean quantities of different
species and approximates the plasma as a single, finite-pressure, electrically con-
ducting fluid. Defining 𝜌 =

∑
𝜎
𝑚𝜎𝑛𝜎, U = 1

𝜌

∑
𝜎
𝑚𝜎𝑛𝜎u𝜎, J =

∑
𝜎
𝑛𝜎𝑞𝜎u𝜎, and

𝑃 =
∑
𝜎
𝑃𝜎, the following are the derived MHD equations:

Continuity Equation
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌U) = 0 (1.4)

Equation of Motion

𝜌
𝑑U
𝑑𝑡

= −∇𝑃 + 1
𝜇0

(∇ × B) × B (1.5)

Induction Equation
𝜕B
𝜕𝑡

= ∇ × (u × B) (1.6)

Equation of State
𝜕𝑃

𝜕𝑡
+𝑈 · ∇𝑃 + 𝛾𝑃∇ ·𝑈 = 0, (1.7)

MHD works for large scale plasma phenomena. It is valid for phenomena with a
length scale larger than the ion skin depth and the ion cyclotron radius and a time
scale longer than the ion cyclotron periods.

An important dimensionless parameter is

𝛽 =
𝑃

𝐵2/2𝜇0
, (1.8)

which is the ratio between the plasma pressure and magnetic pressure. In general,
when 𝛽 is much less than 1 ( 𝛽 ≪ 1), the magnetic field dominates over the plasma
pressure, and the plasma is said to be magnetically dominated. Conversely, when 𝛽
is much greater than 1 (𝛽 ≫ 1), the plasma pressure dominates over the magnetic
pressure, and the plasma is said to be pressure dominated.

There is no intrinsic physical scale inside of the MHD equations. The scaling allows
for three free transformation parameters 𝑎1, 𝑎2, 𝑎3 following invariant transforma-
tions: 𝐿/𝑎1 → 𝐿′, 𝜌0/𝑎2 → 𝜌′, 𝐵0

/√
𝑎3 → 𝐵′, 𝑃0/𝑎3 → 𝑃′,

√︁
𝑎2/𝑎3𝑣0 → 𝑣′.
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This scaling allows one-to-one correspondence between laboratory and astrophysi-
cal scales [2].

1.3 Solar Physics
Solar physics is the branch of astrophysics that focuses on the study of the Sun, our
nearest star. It encompasses a wide range of phenomena occurring in and around
the Sun, including its structure, dynamics, and influence on the solar system and
beyond. Solar physics plays a crucial role in understanding fundamental processes
such as solar particle acceleration, magnetic field dynamics, solar activity cycles,
and space weather.

Figure 1.2: Representation of the different layers and features of the Sun.
Credits: Kelvinsong.

The following is a brief introduction to solar structure and terminology.

Sun’s structure
The Sun has a radius of 696 Mm and is composed of various layers and an exten-
sive atmosphere. From the center outward, it consists of the core, radiative zone,
convective zone, photosphere, chromosphere, and corona. Each of these layers has
distinct characteristics and plays a crucial role in the Sun’s structure and behavior.

Core: At the very center lies the core, where temperatures and pressures are
incredibly high. The core of the Sun extends from the center to about 0.25 solar radii.
Nuclear fusion occurs here, primarily converting hydrogen into helium through
nuclear fusion. This process releases immense amounts of energy, which radiates
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outward.

Radiative Zone: Surrounding the core is the radiative zone from the core out
to about 0.7 solar radii. In this zone, energy generated in the core travels outward
primarily through radiation. Photons generated in the core bounce around, gradually
losing energy as they move toward the surface.

Convection Zone: The Sun’s convection zone extends from 0.7 solar radii to near
the surface. Here, energy is transported by the movement of hot plasma, similar to
the way water boils and circulates in a pot on a stove. This convective motion brings
heat to the surface.

Photosphere: The photosphere is the visible surface of the Sun, where most of
the visible light that we see is emitted. It is a relatively thin layer, approximately
0.5 Mm thick, and is optically thick, meaning that light is absorbed and re-emitted
multiple times before escaping into space. The temperature here is around 5,500 K.
Sunspots are occasionally observed on the photosphere as visibly dark patches.

Chromosphere: Chromosphere is 2.5 Mm thick and optically thin layer above
the photosphere. The temperature of the chromosphere increases gradually with
altitude, ranging up to around 20,000 K near the top.

Corona: The outermost layer of the Sun’s atmosphere is the corona. It extends
millions of kilometers into space and is much hotter than the surface of the Sun,
reaching temperatures of millions of Kelvin. The corona is visible during total solar
eclipses as a faint, white halo around the Sun.

Solar coronal loop
Solar coronal loops are prominent structures in the Sun’s corona, the outermost
layer of its atmosphere, characterized by elongated loops or arcs of hot, glowing
plasma. These loops are formed by the Sun’s complex and dynamic magnetic field
lines, which extend from the solar surface into the corona. The intense magnetic
fields present in the Sun’s atmosphere guide and confine the plasma along these
magnetic field lines, giving rise to the loop-like shapes observed. Coronal loops are
often visible in images of the sun taken in extreme ultraviolet or X-ray wavelengths.
These structures can vary in size, from relatively small loops to giant arcs that
span hundreds of thousands of kilometers. Coronal loops are important features for
understanding the sun’s magnetic activity and are closely studied by solar physicists
to gain insights into processes such as solar flares, coronal mass ejections, and solar
wind acceleration.



6

Solar flare
A solar flare is a relatively intense, localized emission of electromagnetic radiation
in the Sun’s atmosphere generated from magnetic field energy release. The elec-
tromagnetic radiation is of a broad spectrum from thermal emissions of extreme
ultraviolet lights to non-thermal emissions of hard X-rays. Energetic particles are
also observed during a solar flare.

1.4 Protoplanetary Accretion Disk
A protoplanetary disk is a structure formed around a young star during the process of
planetary system formation. It consists of gas and dust particles orbiting the central
star in a flattened, disk-like shape. These disks are often observed around young
stars that are still in the process of accumulating material from their surrounding
molecular clouds. Twenty nearby protoplanetary disk observations are shown in
Figure 1.3. The formation of a protoplanetary disk begins with the collapse of a
dense region within a molecular cloud, which eventually gives rise to a young star
surrounded by a disk of leftover material. As the particles within the disk collide and
stick together, they gradually grow in size through a process called accretion. Over
time, these small particles coalesce to form larger objects, such as planetesimals,
which serve as the building blocks for planets.

Protoplanetary disks are typically cold and weakly ionized. They have inner radii
of a few a.u., outer radii of 100 a.u., and poloidal magnetic fields ∼ 1 milligauss
[5]. Particles in the accretion disk undergo Keplerian motion and gradually accrete
onto the central star. The accretion rates ranges from 10−9 to 10−7 𝑀⊙ yr−1 [6].
Bidirectional astrophysical jets are generated from protoplanetary disks as shown in
Figure 1.4. The lifetime of a protoplanetary disk is around a few million years.

Understanding protoplanetary disks is essential for unraveling the mysteries of planet
formation and the diversity of planetary systems observed in the universe.

Two important questions
Two important questions related to the protoplanetary disk have not been solved.
The first problem is the angular momentum transport. Particles in the accretion disk
are in Kepler motion. The angular momentum is

√
𝐺𝑀∗𝑟. Accretion means the

decrease of the radial distance 𝑟. To maintain the Kepler motion, particles need to
reduce their angular momentum. Consequently, a mechanism is needed to remove
the angular momentum to allow the particles to accrete.
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Figure 1.3: Protoplanetary disks observations. 20 nearby protoplanetary disks
observed by Chile’s Atacama Large Millimeter/submillimeter Array (ALMA) in
2018 for its Disk Substructures at High Angular Resolution Project (DSHARP).
Credits: ALMA (ESO/NAOJ/NRAO) [3], S. Andrews et al [4]

.

The second problem is on the jet generation. Jets are driven by J × B magnetic
force, where J is the electric current density and B is the magnetic field. To sustain
the electric currents required to generate these jets, an energy source is needed to
provide the necessary electrical energy. As the accretion disk is an isolated system,
the electric energy must ultimately come from the gravitational energy released
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during the accretion process. A mechanism is needed to convert gravitational
energy into electrical energy.

Figure 1.4: Jet, disk, and disk atmosphere in the HH 212 protostellar system.
(a) A composite image for the HH 212 jet in different molecules, combining the
images from the Very Large Telescope [7] and ALMA [8–10]. Orange image shows
the dusty envelope+disk mapped with ALMA. (b) A zoom-in to the central dusty
disk. The asterisk marks the position of the protostar. A size scale of our solar system
is shown in the lower right corner for comparison. (c) Atmosphere of the accretion
disk detected with ALMA. In the disk atmosphere, green is for deuterated methanol,
blue for methanethiol, and red for formamide. Credit: ALMA (ESO/NAOJ/NRAO),
Lee et al [8–10]

.

1.5 Laboratory Astrophysics
Laboratory astrophysics is a field that aims to simulate and study astrophysical
phenomena and processes in controlled laboratory settings. By recreating extreme
conditions found in space, researchers can gain insights into fundamental physical
processes, test theoretical models, and interpret astronomical observations.

The constraints on observational access, as well as limitations in desired spatial and
temporal resolutions, pose challenges in astrophysical research. Theoretical models
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and simulations are bound by computational constraints, simplifying assumptions,
and achievable parameters. Laboratory experiments offer a valuable avenue for
exploring configurations similar to astrophysical systems on Earth. Notably, both
laboratory experiments and astrophysical systems adhere to the same fundamental
laws of physics and can be described by dimensionless equations. The scalability of
laboratory experiments to real astrophysical systems is a key advantage, providing
insights into phenomena that are challenging to observe directly. Conducting exper-
iments under controlled conditions allows researchers to isolate specific variables,
explore parameter space, and gain a deeper understanding of the underlying physics.
Laboratory astrophysics advances our understanding of the universe by bridging the
gap between theoretical models, observational data, and empirical knowledge of
fundamental physical processes.

1.6 Thesis Overview
This dissertation explores experimental and theoretical investigations into two sig-
nificant questions: the generation of solar flares (discussed in Chapters 3, 4, and 5)
and the mechanisms by which accretion disks transport angular momentum and give
rise to astrophysical jets (explored in Chapters 6 and 7). The research conducted
in this dissertation encompasses a diverse array of approaches, including labora-
tory experiments, theoretical modeling, and numerical simulations, each addressing
distinct aspects related to these overarching questions.

How solar flares are generated
Chapter 3 presents an experimental study of one MHD instability, magnetic Rayleigh
Taylor instability. We observed MRTI developed on a laboratory plasma loop and
showed that MRTI wavelength increases with the increase of background magnetic
field strength. This provides a possible explanation of the different observed plume
dynamics in the solar prominences and also points out a possible magnetic field
measurement method from the MRTI wavelength.

Chapter 4 covers laboratory-created nanoflares. We replicated the braided feature
of solar coronal loops. Transient, localized 7.6-keV X-ray bursts are observed in
braided magnetic flux ropes of a 2-eV plasma when the braid strand radius is choked
down to be at the kinetic scale by either MHD kink or magnetic Rayleigh–Taylor
instabilities. This X-ray burst is of nanoflare feature with multiple separated ob-
served X-ray bursts observed from multiple strands breaking at different times. This
sequence of observations reveals a cross-scale coupling from MHD to non-MHD
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physics that is likely responsible for generating solar energetic particles and X-ray
bursts.

Chapter 5 presents a helical current wire model to construct the observed braiding
behavior in nature and laboratory. A double helix equilibrium with the net axial
current is derived, which is characteristic of observed solar loops and laboratory-
produced braided magnetic flux ropes.

How accretion disks transport angular momentum and generate astrophysical
jets
Chapters 6 and 7 shift focus to a new topic: the transport of angular momentum
within accretion disks.

Chapter 6 covers a model of angular momentum transport and jet generation based
only on the collisions between neutrals and charged particles and the basic con-
served quantity canonical angular momentum. Collisions between neutrals and
charged particles cause: (i) ions to move radially inwards, (ii) electrons to move ra-
dially outwards, (iii) neutrals to lose ordinary angular momentum, and (iv) charged
particles to gain canonical angular momentum. Neutrals thus spiral inward due to
their decrease of ordinary angular momentum. Quantitative scaling of the model
using plausible disk density, temperature, and magnetic field strength gives an ac-
cretion rate in good agreement with observed accretion rates. This mechanism also
naturally provides a gravitational dynamo process converting gravitational energy
into electric field energy that powers astrophysical jets.

Chapter 7 builds upon the model developed in Chapter 6, extending it to a system
characterized by radially free-falling particles. It provides a possible solution for
spinning up an astrophysical system.



11

C h a p t e r 2

CALTECH SOLAR LOOP EXPERIMENT

2.1 Experimental Setup
The experimental plasma is generated in a 1.5 m long, 1 m diameter stainless steel
chamber having ∼ 10−7 torr base pressure. The chamber is considerably larger than
the plasma and simulates a half-infinite space.

Imacon 200
framing camera

128-channel
X-ray camera

Pinhole mask

x
z

y

X-ray path

Figure 2.1: Experimental set-up. Plasma loop is created between two copper
electrodes. The electrodes are mounted on the end dome of a 1.0-m-diameter, 1.5-
m-long stainless steel vacuum chamber. Two solenoids are behind the electrodes to
generate an arched magnetic field. The capacitor powering the solenoids is charged
to a voltage𝑉𝑏, so the bias magnetic field provided by the solenoids can be expressed
as 𝐵 = 𝛼𝑉𝑏, where 𝛼 is a constant. Define a Cartesian coordinate system, as shown,
with origin at the midpoint between electrodes, 𝑧 along the vertical direction relative
to electrode plane, and 𝑦 along the line between the two electrode centers. Diagnostic
devices include a visible-light fast framing camera, a gated linear spectroscopic array
with a 1-ms time resolution, a 128-channel X-ray scintillators detector array, a high
voltage probe Tektronix P6015 measuring the voltage across the two electrodes, a
Rogowski coil measuring the current flowing through the plasma loop, and magnetic
field probes measuring the magnetic field.



12

The plasma is generated using a plasma gun structure depicted in Figure 2.2. There
are two copper plates. On each plate, there is a large number of gas nozzles to allow
the gas to be puffed into the electrode region. We can control those nozzles to be
open or closed so as to create different configurations of plasma loops. Behind the
two electrodes, there are two solenoids for generating an arched magnetic field in
front of the electrodes. A capacitor bank is connected to the electrodes to apply a
high-voltage that ionizes neutral gas to form plasma.

Gas nozzles

Solenoids

Figure 2.2: Plasma gun structure. Plasma loops are generated between the
two copper plates. There are a large number of nozzles connected to a fast gas
valve and a gas cylinder to allow the gas to be puffed into the electrode region.
Positioned behind the electrodes are two solenoids, responsible for generating an
arched magnetic field. A capacitor bank is linked to the two electrodes, supplying a
discharge voltage to ionize the gas into plasma.

The firing sequence is shown in Figure 2.3. An arched 0.01 T − 0.3 T vacuum
magnetic field called the bias field is produced by solenoids located behind the
electrodes on a slow (ms) timescale so as to penetrate the electrodes. Gas is then
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injected into the electrode region by fast gas valves. High voltage (3 − 6 kV) is
applied across the electrodes on a fast (𝜇s) timescale, breaking down the gas and
creating plasma.

Figure 2.3: Diagram of the single loop apparatus showing the primary steps to
generate a flux rope: (1) generate arched bias background magnetic field, (2) puff
in neutral gas, and (3) switch capacitor bank across electrodes (adapted from [11]
with permission).

The plasma is almost fully ionized, and has density 𝑛 ∼ 1020 − 1021m−3 and
temperature ∼ 2 − 10 eV. The plasma duration is ∼ 10 𝜇s. The distance between
the centers of the two electrodes is 8 cm. Figure 2.1 defines a Cartesian coordinate
system with origin at the midpoint between electrodes, 𝑧 along the vertical direction,
and 𝑦 along the line between the two electrode centers. The capacitor powering
the solenoids is charged to a voltage 𝑉𝑏, so the bias magnetic field provided by
the solenoids can be expressed as 𝐵 = 𝛼𝑉𝑏, where 𝛼 is a constant. Vacuum
measurement of the bias field were made for 𝑉𝑏 = 50 V at 𝑥 = 0 cm, 𝑧 = 3.81 cm
for two different values of 𝑦. These give B = (0.00, 0.02, 0.08) T at 𝑦 = 5.08 cm
and B = (0.00, 0.04, 0.03) T at 𝑦 = 7.62 cm.

2.2 Diagostics
Diagnostic devices include a visible-light fast framing camera, a 128-channel X-
ray scintillators detector array, a gated linear spectroscopic array with a 1-ms time
resolution, a high voltage probe Tektronix P6015 measuring the voltage across the
two electrodes, a Rogowski coil measuring the current across the two electrodes,
and magnetic probes.
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3 cm 30 Mm

(a) (b)

Figure 2.4: Comparison between the Caltech experimental plasma loop and the
solar coronal loop. (a) Experimental plasma loop (b) Solar coronal loop (Credit:
TRACE/NASA).

Visible light framing camera
The visible light emission of the plasma is captured using a DRS Hadland Imacon
200 high-speed camera. This camera comprises seven intensified charge-coupled
device (ICCD) cameras, each capturing two frames from each shot. A beam splitter
is employed to direct the incoming light into one of the seven ICCDs. The minimum
interframe time is 5 ns. In our typical experimental setup, the plasma can be
photographed using an exposure time of 20 ns and an inter-frame time of a few
hundred nanoseconds. Each ICCD produces a 10-bit image with a resolution of
1200 × 980 pixels.

X-ray camera
The 128-channel X-ray detector shown in Figure 2.1 was comprised of a linear
array of 128 LYSO(CE) scintillators (OST Photonics) which were fiber-coupled
to a photomultiplier tube (PMT) array (4×Hamamatsu H7260-100). The PMT
signals were digitized by a 128 channel, 125 MHz digitizer (CAEN R5560). The
X-rays were viewed through a custom 254 µm thick polyimide window. Visible
light was prevented from entering the detector by an 18 µm thick aluminum foil.
Further details about this diagnostic and the X-ray transparent window are described
elsewhere [12]. For pinhole imaging, the 0.7 mm by 51 mm rectangular pinhole
was laser cut into a 0.76 mm thick stainless steel sheet and mounted 16 cm from the
detector surface. The pinhole mask was 69 cm from the center of the electrodes.
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Spectroscopy
We observe line emissions from the elements comprising the plasma. To analyze
this light emission, we pass it through a spectrometer. The light with different
wavelengths is diffracted to different angles and then captured by an intensified
charge-coupled device (ICCD) camera. By comparing the spectrum of the emitted
light with a thermodynamic model, we gain insight into the local state of the plasma.
Doppler shift and Stark broadening can be used to infer the plasma flow velocity
and density, respectively.

Voltage probe
A ×1000 high-voltage oscilloscope probe (Tektronix P6015A) is utilized to measure
the voltage across the plasma, with the probe connected to the two electrodes.
The output of this voltage probe is configured to drive a 1 MΩ oscilloscope input
channel. To enable the output to drive a 50 Ω digitizer input channel, a buffer circuit
is connected to the output of this probe.

Rogowski coil
A Rogowski coil [13] is employed to measure the current flowing through the plasma
loop.

Magnetic probe array
The primary magnetic diagnostic is a 12-channel B-dot probe array. These 12
channels are arranged into four 3-axis clusters to measure the vector magnetic field
at four locations located 17.5, 19.5, 21.5, and 25.5 cm from the electrode plane.

2.3 Scaling to Solar Corona
Figure 2.4 shows the Caltech experimental plasma loop and the solar coronal loop.
They are of similar structure and dominated by MHD physics. The MHD behavior of
the plasma loop can be scaled to the many other situations governed by MHD because
MHD has no intrinsic length scale. As discussed in Chapter 1, MHD scaling [2]
allows for three free parameters: 𝑎1, 𝑎2, 𝑎3, following invariant relations: 𝐿0

𝑎1
→ 𝐿′

, 𝜌0
𝑎2

→ 𝜌′ , 𝐵0√
𝑎3

→ 𝐵′ , 𝑃0
𝑎3

→ 𝑃′, 1
𝑎1

√︃
𝑎3
𝑎2
𝑡 → 𝑡′,

√︃
𝑎2
𝑎3
𝑣0 → 𝑣′ to transform a scale to

another scale having the same plasma beta. This transformation gives a one-to-one
correspondence between systems, allowing laboratory experimental plasmas to be
scaled to equivalent systems in space plasmas. One scaling to solar corona is shown
in the Table of Figure 2.5. It shows characteristic parameters of the experiment,
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the solar corona and the experiment scaled to the solar corona using 𝑎1 = 10−8 ,
𝑎2 = 1 × 105 , 𝑎3 = 9 × 102. The scaled characteristic parameters have magnitudes
similar to that of the solar corona.

Solar CoronaScaled ExperimentExperimentP

5×1065×1060.05Characteris�c length 𝐿 m

101010-6Characteris�c �me 𝑡 s

1001003000Magne�c field 𝐵 G

1.7×10-111.7×10-111.7×10-6Mass density 𝜌 (kg ∙ m−3)

0.320.89800Pressure 𝑃 (Pa)

2.2×1062.2×1062.1×105Alfven velocity 𝑣𝐴(m ∙ s−1)

0.010.020.02Plasma beta 𝛽

Figure 2.5: Plasma parameters of Caltech experiment and scaling to solar
corona. Typical values of the experiment (left column) are scaled according to
the MHD scaling described in the text. The scaled values (center column) are in
good agreement with approximate values for the solar corona (right column). This
close correspondence indicates magnetohydrodynamic similarity between the two
systems and the relevance of the experimental parameter regime to that of the solar
corona. The experiment plasma is hydrogen plasma with a density 1021 m−3 and a
temperature 5 eV. The solar corona has a density 1016 m−3 and a temperature 200
eV [14].

2.4 Previous Work
Many graduate students and postdocs have contributed to the solar loop experiments.
Freddy Hansen explored the interaction between two plasma loops with the same
helicity and reverse helicity [15] and the magnetic flux rope expansion mechanism.
Shreekrishna Tripathi investigates the kinetic jets from the plasma loop [16]. Eve
Stenson explored magnetically driven flows [17]. Bao Ha studied the mechanisms
for flux rope expansion [18]. Magnus Haw examined MHD collimation mechanism
in arched flux ropes [19] and the formation of coronal mass ejection cavity [20].
Pakorn Wongwaitayakornkul investigated apex dips [21] and magnetically induced
current piston [22].
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C h a p t e r 3

MAGNETIC RAYLEIGH TAYLOR INSTABILITY

1. Zhang, Y., Wongwaitayakornkul, P. & Bellan, P. M. Magnetic Rayleigh–
Taylor instability in an experiment simulating a solar loop. The Astrophysical
Journal Letters 889, L32 (2020).

My initial investigation into the solar loop experiment begins with examining the
phenomenon of magnetic Rayleigh Taylor instability (MRTI). Prior to this work,
MRTI had already been observed in a separate laboratory experiment, namely the
Caltech astrophysical jets experiment. In that context, a kink instability constricts
the jet channel, contributing to a secondary acceleration that propels MRTI forward
[23]. In the solar loop experiment, the loop structure is inherently curved, allowing
for expansion and thus creating an effective gravitational force that facilitates MRTI.
We observed MRTI developed on the laboratory plasma loop and showed that MRTI
wavelength increases with the increase of the background magnetic field strength.
This provides a possible explanation of the different observed plume dynamics in
the solar prominences and also points out a possible magnetic field measurement
method from the MRTI wavelength.

3.1 Introduction
The Rayleigh-Taylor Instability (RTI) is an important instability in many astrophysi-
cal and laboratory systems, such as supernova explosions [24–26], solar prominences
[27–30], and inertial confinement fusion [31, 32]. RTI occurs when a heavy fluid
is initially on top of a light fluid . If the low-density fluid is vacuum, the interface
is planar, and there is no magnetic field, the growth rate of this one-dimensional
instability is

𝛾 =
√︁
𝑔𝑘 (3.1)

where 𝑔 is the gravitational acceleration and 𝑘 is the spatial wavenumber. The insta-
bility grows as exp(𝛾𝑡) with a ripple structure initially followed by later development
of plumes and finger-like structures. For a plasma supported above vacuum by a
magnetic field parallel to the planar interface, assuming that there is no magnetic
field shear near the interface and the conducting wall is far away from the MRTI
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location [33–35], the growth rate reduces to

𝛾2 = 𝑔𝑘 − 2 (k · B0)2

𝜇0𝜌
(3.2)

where B0 is the unperturbed magnetic field. For a perturbation with k⊥B0, also
known as an interchange mode, the growth rate is the same as the RTI without a
magnetic field. However, for a perturbation with k ∥ B0, known as an undular mode,
the growth rate is

𝛾2 = 𝑔𝑘 − 2 (𝑘𝐵0)2

𝜇0𝜌
. (3.3)

The undular mode has a critical wavelength

𝜆c =
4𝜋𝐵2

0
𝜇0𝜌𝑔

(3.4)

at which 𝛾 = 0. If 𝜆 < 𝜆c, 𝛾2 < 0, which implies that only perturbations with
wavelength 𝜆 > 𝜆c can grow. Equation 3.3 also shows that there is a fastest growing
wavelength which is given by

𝜆m = 2𝜆c =
8𝜋𝐵2

0
𝜇0𝜌𝑔

(3.5)

and which corresponds to a maximum growth rate

𝛾m =

√︂
𝑔𝑘

2
. (3.6)

Zhai & Bellan [36] derived the MHD theory of the magnetic Rayleigh Taylor
instability on the surface of a magnetically confined cylindrical plasma flux rope.
The Rayleigh-Taylor instability is found to couple to the classic current-driven
instability, resulting in a new type of hybrid instability.

The MRTI is thought to be the mechanism for the formation and dynamics of plumes
in solar prominences. Berger et al. [27] observed the upflows from plumes caused by
the MRTI. Ryutova et al. [28] described how the theoretically predicted growth rates
and behaviors for the MRTI matched observations of quiescent prominence plumes.
Hillier et al. [37] verified the MRTI mechanism for upflows from simulations.
Keppens et al. [38] found the indications of secondary Kelvin-Helmholtz (KH)
instabilities due to shear flows at the bubbles. However, the dependence on magnetic
field strengths and how this dependence affects observed differences is still not
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determined. An example of such differences is that some prominences produce
many small plumes while others produce only large plumes [27].

Previous experiments [39–41] investigated the MRTI using Z-pinch implosions, but
these experiments focused mainly on the growth rate and X-ray production and did
not vary the magnetic field to test for a relation between magnetic field and the
MRTI wavelength.

In the Caltech solar loop experiment, a magnetized plasma loop is generated to
simulate solar flux ropes. We show here the existence of a hoop force driven magnetic
Rayleigh-Taylor instability in this experiment. Detailed measurements indicate a
scaling where the observed axial wavelength 𝜆 increases with axial magnetic field,
and this scaling is shown to be consistent with the MRTI.

3.2 Experimental Results
The image in Figure 3.1 shows a typical observed MRTI. The MRTI occurs in a
positive 𝑦 region (upper region) with 𝑦 = 5 − 8 cm, 𝑧 = 1 − 4 cm as determined
from the images. The growth rate 𝛾observed is determined by measuring the MRTI
amplitude at a sequence of times. The effective gravitational acceleration 𝑔effective is
determined from the 𝑦 direction motion of the loop at the location where the MRTI
takes place. The wavelength 𝜆 is obtained from the image when the MRTI first
appears and ranges from 0.5 cm to 2.5 cm. We assume the observed MRTI is the
fastest growing mode and compare the calculated growth rate 𝛾calculated = 𝛾max =√︁
𝜋𝑔observed/𝜆 to the observed growth rate. The table in Figure 3.1 presents this

comparison and shows that the observed growth rate is in good agreement with the
calculated growth rate; this confirms that the observed structure is the MRTI.

Another question concerns the mechanism providing the effective gravity. We now
show that this mechanism is provided by the hoop force acceleration. A circular,
current-carrying hoop [42] with major radius 𝑅, minor radius 𝑎, internal inductance
per unit length 𝑙i, and current 𝐼 experiences an outward radial force per unit length

𝑓hoop =
𝜇0𝐼

2

4𝜋𝑅

[
ln

(
𝑅

𝑎

)
+ 1.08 + 𝑙i

2

]
. (3.7)

Assuming the current is uniformly distributed, 𝑙i = 0.5, so

𝑓hoop =
𝜇0𝐼

2

4𝜋𝑅

[
ln

(
𝑅

𝑎

)
+ 1.33

]
(3.8)
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Figure 3.1: MRTI observation. The image shows the MRTI in a time series images
of N2 plasma loop evolution. The table shows comparison between the observed
growth rate and the calculated growth rate from the MRTI theory and comparison
between the observed acceleration and the calculated acceleration from hoop force
theory.

which gives an acceleration

𝑔hoop =
𝑓hoop

𝜌𝜋𝑎2 =
𝜇0𝐼

2

4𝜋2𝜌𝑎2𝑅

[
ln

(
𝑅

𝑎

)
+ 1.33

]
. (3.9)

𝑅 and 𝑎 are obtained from the images and 𝐼 is obtained from a Rogowski coil
measurement. This provides sufficient information to compare the observed accel-
eration 𝑔observed with the calculated acceleration 𝑔calculated from the hoop force. The
MRTI occurs at 𝑡 = 2 − 3 𝜇s and parameters measured at 𝑡 = 2 𝜇s are used with
density assumed to be 𝑛 = 2 × 1021 m−3 [11, 18]. The gas used is N2. The table in
Figure 3.1 shows that the observed acceleration and the calculated acceleration have
order of magnitude agreement. Discrepancies exist presumably because the current
loop in the experiment is not a complete circle. Also, the measured current does
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(b) (c)

(a)

s(
a.
u.
)

Figure 3.2: MRTI dependence on axial magnetic field. (a) Time series images of
N2 plasma loop evolution (upper shot# 7385 and 𝑉𝑏 = 30 V, lower shot# 7281 and
𝑉𝑏 = 60 V). (b) Plot of the wavelength of the MRTI versus different bias voltage.
(c) Plot of 𝑠 versus 𝑉2

𝑏
(each data point is from 10 shots and the error bar represents

the spread over these shots).

not fully flow through the visible loop [18, 43]; this is consistent with the observed
acceleration being smaller than the calculated one.

The bias voltage 𝑉𝑏 (applied on the solenoids) controls the background axial mag-
netic field of the loop. When we increase the bias voltage so as to increase the axial
magnetic field, we find the wavelength of the MRTI increases, as shown in Figure
3.2a. For a sufficiently large bias magnetic field, the MRTI is not observed.

Figure 3.2b shows measurements for a sequence of bias fields 𝑉𝑏 = 30, 40, 50, 60
V, each repeated for 10 shots. This plot indicates that for increasing bias voltage
(which is proportional to the axial magnetic field), the wavelength increases.

This phenomenon is consistent with the MRTI theory, since Equation 3.5 shows that
the increase of magnetic field causes the corresponding fastest growth wavelength
to increase. For a sufficiently large magnetic field, the wavelength is larger than the
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loop dimensions and the MRTI cannot occur. This is most likely the reason for the
absence of the MRTI in previous solar loop simulation experiments where a much
larger axial magnetic field was used (e.g., [17, 21]). In Equation 3.5, besides 𝐵0, the
other two parameters 𝜌, 𝑔 also influence the fastest growth wavelength. In order to
remove the influence of these parameters and verify that the increasing wavelength
corresponds with the MRTI theory, we introduce the parameter 𝑠 = 𝜆𝜌𝑔. Using
Equation 3.5, the fastest growing mode corresponds to

𝑠 =
8𝜋
𝜇0
𝐵2

0 =
8𝜋𝛼2

𝜇0
𝑉2
𝑏 . (3.10)

To determine 𝑠, the quantities 𝜆 and 𝑔 are obtained from the image measurement,
while 𝑛 is determined as a relative density from the light intensity which scales as
𝑛2. Keeping other experimental parameters the same, we set 𝑉𝑏 = 30, 40, 50, 60 V
for 10 shots at each voltage to obtain 𝑠. Figure 3.2c shows 𝑠 plotted versus 𝑉2

𝑏
. The

error bars are determined by the shot-to-shot variation of measured data and the line
shows the best fit. From this figure, it is clear that 𝑠 scales as 𝑉2

𝑏
as predicted by

Equation 3.10.

(a) (c)(b)

(d) (f)(e)

Figure 3.3: Comparison with the MRTI theory under cylinder geometry. (a)
𝑥∗ and 𝛾∗ versus 𝛼 with Φ2 = 3.77. (b - f) Comparison between the observed
growth rate and the calculated growth rate from the MRTI theory under cylindrical
geometry (each data point is from 10 shots and the error bar represents the spread
over these shots).

As the geometry of the experiment is more like a cylinder. The experiment results
can also been used to compare with the magnetic Rayleigh Taylor instability under
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cylindrical geometry derived by Zhai & Bellan [36]. Using the notation in Zhai &
Bellan [36], the growth rate is

𝛾 = 𝛾

(
𝑥, 𝛼,Φ2

)
(3.11)

where 𝑥 = 𝑘𝑎 = 2𝜋𝑎/𝜆, 𝛼 = 𝐵𝑧/𝐵𝜃 , Φ2 = 𝜇0𝜌𝑔𝑎
/
𝐵2
𝜃

and 𝑎 is the radius of the
cylinder. Consider a system with certain values Φ2 and 𝛼 subject to a random
perturbation that contains all possible 𝑥 = 𝑘𝑎. The component 𝑥 that gives the
largest 𝛾 = 𝛾

(
𝑥, 𝛼,Φ2) is defined as 𝑥∗, and the fastest growth rate is defined as

𝛾∗. 𝑥∗
(
𝛼,Φ2) = 𝑥 that maximizes 𝛾 = 𝛾

(
𝑥, 𝛼,Φ2) . Figure 3.3 (a) shows the

dependence of the fastest growing mode on 𝛼 for fixed Φ2 = 3.77. Note that 𝛼
is proportional to the axial magnetic field and 𝑥 corresponds to 1/𝜆. Figure 3.3
(a) shows that with the increase of axial magnetic field, the wavelength increases
and the growth rate decreases, the same trend as predicted for the MRTI in planar
geometry.

We assumed all of the experiments have the same parameters except for axial field
with 𝜌 = 5 × 10−5 m−3, 𝑔 = 3 × 1010 m · s−2, 𝐼 = 104 A, 𝐵𝜃 = 𝜇0𝐼/2𝜋𝑎, and
that the observed mode is the fastest growing mode. The only free parameter in
the determination of Φ2 is 𝑎. From the experimental results, 𝑥∗ can be obtained
and the corresponding 𝛼 and 𝛾∗ can be calculated. The observed growth rate
and the calculated growth rate are compared in Figure 3.3 (b - f) for different 𝑎.
For 𝑎 = 0.015 − 0.025 m, the observed growth rate agrees well with the MRTI
theory in cylindrical geometry. The value for the radius is somewhat larger than the
observed 0.008 m value. This discrepancy may result from simplifying theoretical
assumptions such as uniform density and axial magnetic field and current flowing
through the surface. In [36], the radius used for comparison was also larger than the
observed one from the image.

3.3 Conclusions and Discussions
In conclusion, we have determined a hoop force driven MRTI in a laboratory
experiment. Changing the axial magnetic field shows that the wavelength of the
MRTI increases with increase of axial magnetic field. This scaling is verified to
be consistent with both the planar MRTI theory and the more detailed cylindrical
MRTI theory.

For the experiment, the characteristic length is 𝐿 = 0.01 m and the characteristic time
is 𝜏 = 10−6 s. Plasma density is about 2×1021 m−3. Plasma temperature is assumed
to be 5 eV. The corresponding Debye length 𝜆D =

√︃
𝜀0kB𝑇
𝑛𝑒2 = 3.7 × 10−7 m ≪ L
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and 4𝜋𝑛𝜆2
D
/

3 = 430 ≫ 1. The resistive diffusion time is 𝜇0𝐿
2/𝜂 = 2 × 10−6 s >𝜏,

where the Spitizer resistivity 𝜂 = 6.8 × 10−5 Ω · m. There may be some magnetic
field diffusion effects. Near the MRTI region, the axial magnetic field is measured
to be 0.04 T - 0.1 T when there is no plasma. The toroidal magnetic field generated
by the current is calculated to be 0.2 T - 0.4 T, so we assume a nominal total
magnetic field ∼ 0.3 T. For 𝐵 = 0.3 T, the cyclotron frequency for nitrogen is then
𝜔ci = 2 × 106 s−1 while the characteristic time is 𝜏 = 10−6 s. The system is thus
marginally in the MHD regime. Hall term corrections may thus alter the MRTI
dispersion relation derived from ideal MHD. We do not insert magnetic probes to
measure the magnetic field at the MRTI location because the MRTI scale is so
small that a probe will disturb the MRTI. As the MRTI dispersion relation derived
from ideal MHD can describe this phenomenon properly, we assume the ideal MHD
provides a reasonable description to lowest order.

The MRTI behavior reported here is likely to apply to many other situations governed
by MHD because MHD has no intrinsic length scale. MHD scaling [2] allows for
three free parameters: 𝑎1, 𝑎2, 𝑎3, following invariant relations: 𝐿0

𝑎1
→ 𝐿′ , 𝜌0

𝑎2
→ 𝜌′

, 𝐵0√
𝑎3

→ 𝐵′ , 𝑃0
𝑎3

→ 𝑃′, 1
𝑎1

√︃
𝑎3
𝑎2
𝑡 → 𝑡′,

√︃
𝑎2
𝑎3
𝑣0 → 𝑣′, 𝑎1𝑎2

𝑎3
𝑔0 → 𝑔′ to transform

a scale to another scale having the same plasma beta. This transformation gives
a one-to-one correspondence between systems, allowing laboratory experimental
plasmas to be scaled to equivalent systems in space plasmas.

Figure 3.4 shows the MRTI in a quiescent prominence observed on 2007 August 8th

UT in the H𝛼 line from HINODE Solar Optical Telescope [44]. The mean value of
initial wavelength is about 1 Mm and the characteristic time of the MRTI is about 1
min [27]. For a typical solar prominence, a representative value for mass density is
5×10−10 kg ·m−3 [45]. The pressure is in the range 0.01−0.1 Pa and a representative
value is 0.05 Pa [46]. The magnetic field is about 3 − 26 G and a representative
value is 12 G [47].

The table in Figure 3.4 shows characteristic parameters of the experiment, the solar
quiescent prominence and the experiment scaled to the solar prominence using
𝑎1 = 10−8 , 𝑎2 = 1 × 105 , 𝑎3 = 6 × 104. The scaled characteristic parameters have
magnitudes similar to that of a solar quiescent prominence. From these results,
the variation of magnetic field strength may be a reason for observed differences in
plume dynamics in solar prominences, so that prominences having weak magnetic
field produce many small plumes while those with strong magnetic fields produce
large plumes.
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Figure 3.4: Comparison with solar observation. The image shows the MRTI
in a quiescent prominence observed on 2007 August 8th 20:01:22 and 20:02:24
UT in the H𝛼 line from HINODE Solar Optical Telescope [44]. The table shows
dimensionless scaling of the experiment to solar prominences.
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C h a p t e r 4

LABORATORY NANOFLARES

1. Zhang, Y., Pree, S. & Bellan, P. M. Generation of laboratory nanoflares from
multiple braided plasma loops. Nature Astronomy 7, 655–661 (2023).

In Chapter 3, alongside MRTI, we also observed MHD kink instability within the
single loop structure. When these MHD instabilities choke the loop structure to
the kinetic scale of ion skin depth, we detected hard X-rays associated with this
process, utilizing a single-channel X-ray detector devised by Ryan Marshall [48].
We attempted to link this process with the generation of X-rays from solar coronal
loops. Solar coronal loops typically have a radius on the order of 106 meters,
whereas the ion skin depth for typical solar corona densities is around 10 meters.
Consequently, it would pose a challenge for MHD instabilities to choke a 1 Mm
solar coronal flux rope down to the ion skin depth.

Addressing this challenge prompted us to consider a probable mechanism through
which the solar scenario could still engender kinetic instability. The crucial insight
lies in recognizing that the solar coronal flux rope is not a singular entity but rather
comprises numerous fine strands braiding around each other, each only a few ion
skin depths thick. Consequently, MHD instabilities need only constrict individual
strands by a modest factor to reach the ion skin depth scale.

To validate this braided loop structure concept, we redesigned the electrode structure
with more gas nozzles to generate braided magnetic flux ropes. In this novel
experimental setup, we replicated the braided configuration characteristic of solar
coronal loops. MHD instabilities developed on each strand independently and
choked each strand down at different times. The bursting of individual strands gives
rise to X-ray emissions. Our thorough measurements of these intricately braided
strands and the resulting X-rays reveal a multi-scale process that could possibly be
responsible for the generation of energetic particles and X-rays during solar flares.

4.1 Introduction
Energetic particles and X-ray bursts are generated by solar flares. This generation
cannot be explained by MHD physics and, instead, is presumed to depend on non-
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MHD physics having a characteristic length scale that is smaller than can be modeled
by MHD. Because MHD is valid only for scale lengths greatly exceeding the ion
skin depth which in the solar corona is about 1 to 10 m, it is likely that the scale
length of the non-MHD physics that occurs when MHD breaks down is of this
order. Existing solar observation technology provides significant information about
energetic particles and the X-ray burst generation processes [49–53]. However,
because the best resolution of solar observations is about 105 − 106 m [54, 55] and
so is much coarser than the ion skin depth, many fine details cannot yet be resolved.

Thus, understanding how energetic particles and X-rays are produced is a critical
problem. Parker [56, 57] proposed that energetic particles and X ray bursts are
created by the dissipation of tiny tangential magnetic discontinuities formed from
convection-caused continuous and random motion of magnetic field photospheric
footpoints. He labeled the basic unit of impulsive energy release a “nanoflare” and
proposed that large, X-ray producing solar flares are swarms of nanoflares each
of which is too small to be resolved by existing observational methods. On the
other hand, Alfvén and Carlqvist [58, 59] proposed a related but somewhat different
model wherein a double layer forms in a solar magnetic flux tube when the electric
current density becomes very large and exceeds some threshold. The electric field
associated with the double layer would accelerate particles to high energy.

We report here laboratory observations from a new configuration of the Caltech lab
experiment [17, 18, 20–22, 60] replicating solar coronal loops and interpret these ob-
servations in terms of a combination of the Parker nanoflare and the Alfvén/Carlqvist
double-layer concepts. Specifically, transient localized 7.6 keV X-ray bursts, which
we refer to as nanoflares, are observed to result from the instability of braided mag-
netic flux tubes containing 2 eV plasma. The phenomenological sequence leading
to these bursts is determined by detailed observations using multiple interrelated
diagnostics. These experimental results reveal a clear path where certain types of
MHD dynamics precipitate fine-scale mechanisms, beyond the scope of MHD, that
generate solar X-ray bursts and energetic particles.

4.2 Experimental Results
Figure 2.1 shows the experimental set-up. Plasma-filled, current-carrying magnetic
flux tubes (plasma loops) are created by a magnetized electrode structure having
multiple gas nozzles that can be open or closed to produce different plasma loop
configurations. The plasma loops originate from the gas nozzle positions. This
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arrangement enables creation of multiple braided strands. In this experiment, four
holes are open on each electrode.
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Figure 4.1: Time series images of experimental plasma loop evolution and
X-ray and voltage measurements (a) A two-strand braided structure is observed
in a time series images of hydrogen plasma loop evolution. With the expansion of
the plasma loop, a kink instability occurs near the top of the loop. It chokes the
strand radius down and breaks the strand at later time. A local hard X-ray burst is
observed from the boxed regions in frames 7 and 8. The uncertainty in the origin
of the X-rays is due to the size of the pinhole and the spread of the signal on the
camera. Image is false colored. (b) A 1-D X-ray ‘movie’ of the solar loop plasma.
A localized X-ray source is observed from pixels 20-30 at around 3.6 𝜇s. (c) A line
out of the PMT traces is shown. (d) The voltage across the electrode. Just prior to
the X-ray burst, a transient voltage spike appears across the electrodes.
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Figure 4.1 (a) shows a sequence of high-speed photographs made by an Imacon 200
camera showing the evolution of a braided structure of multiple current-carrying
plasma loops. The main capacitor bank was charged to 5 kV for this sequence and
the bias field coil was charged to 80 V. The braided structure consists of at least 2
strands on its upper part near the electrode (see 2.68 µs image). The hoop force
resulting from the electric current flowing along the plasma loop drives a localized
expanding bulge of the braided loop structure; this bulge becomes the kink instability
seen in the 2.68 µs and 3.08 µs images. A kinking loop segment must lengthen as
a result of the deformation of its axis but because ideal MHD instabilities such as a
kink are incompressible [61], the volume of the segment must remain constant. To
maintain constant volume, the radius of the segment must decrease and so the rapid
lengthening of the loop segment by the kink chokes the loop radius so it becomes a
thin filament and then finally breaks at 3.08-3.48 µs.

When the thin filament breaks, an X-ray burst is detected by the 128-channel X-ray
detector array shown in Figure 2.1. A pinhole is put in front of the X-ray detector.
The location of the X-ray source is determined by tracing a ray passing through the
pinhole from where the ray intercepts the detector to where the ray intercepts the
plasma loop. Using this procedure, the location of the source of the X-ray burst was
determined to be near where the plasma loop breaks as indicated by the white box in
the 3.48 and 3.88 µs frames. The uncertainty in where the X-rays originate, shown
by the box size, results from the pinhole size and the signal spread on the detector
array. As shown in Figure 4.1 (c) and (d), the X-ray burst occurs at the same time
as a voltage spike measured across the plasma loop.

The detector array can alternatively be configured to measure X-ray energy; this is
achieved by replacing the pinhole by multi-layer aluminum foils placed flush against
the scintillators as shown in Figure 4.2 (a). Calibration for this energy-measuring
mode is based on the X-ray intensity 𝐼 through metal foil of thickness 𝑑 having
the dependence 𝐼 = 𝐼0𝑒

− 𝑑
𝜆 where 𝐼0 is the incident signal and 𝜆 is a material-

and energy-dependent attenuation length. The energy-dependence of the X-ray
attenuation length for Aluminum (Al) is shown in Figure 4.2 (b) [62]. When an X-
ray burst is incident on the detector configured as in Figure 4.2 (a), the signal is larger
for detectors having fewer layers of aluminum foil. The X-ray attenuation length is
determined by normalizing each group of signals to the control amplitude (channels
with no foil) and then performing a linear regression on the log of the normalized
signal. This measured attenuation length is then used to obtain the X-ray energy
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by comparing to the attenuation length plot for Al in Figure 4.2 (b). Each group
of 32 channels was considered separately in order to reduce the impact of signal
variation across the 12.8 cm width of the detector and variation in the individual
PMT modules. Figure 4.2 (c) shows the time-dependence of the 128 channel typical
X-ray raw signal using the foil layers, and Figure 4.2 (d) shows the X-ray signal
strength of the 128 channels with the Al filter location/strength overlayed as gray
bars. Measurements from over 100 shots show that the X-ray energy ranges from 6
to 10 keV with an average of 7.6 keV. Seth built the camera. We measure the X-ray
energy together.

The voltage spike indicates a sudden increase in the electrical resistance in series
with the inductive circuit. This can be explained by two associated effects: (i) the
development of a kinetic instability when the electron drift velocity 𝑣𝑑 = 𝐽𝑎𝑥𝑖𝑎𝑙/𝑛𝑒
associated with electric current exceeds a characteristic wave velocity such as Alfvén
velocity and (ii) a geometric stretching effect. When the electron drift velocity
exceeds a threshold, waves are destabilized and increase the local effective electrical
resistivity [58, 63]. The fastest-growing ideal MHD instabilities are incompressible
[61] which means that the volume of the kinking loop segment must remain constant
during the kinking. However, when a loop segment kinks, the length 𝑙 of the
segment axis must increase as seen in Figure 4.1. The constraint that the segment
is incompressible and so has constant volume requires 𝑙𝜋𝑟2 = 𝑐𝑜𝑛𝑠𝑡, where 𝑟 is
the loop radius. The cross section 𝜋𝑟2 of the stretched loop segment thus decreases
as the kinking stretches 𝑙; decrease of the loop cross-section means that the loop
axial current density 𝐽𝑎𝑥𝑖𝑎𝑙 = 𝐼/𝜋𝑟2 increases. The electron drift velocity 𝐽𝑎𝑥𝑖𝑎𝑙/𝑛𝑞𝑒
consequently increases and causes a kinetic instability that increases resistivity
𝜂. Furthermore and even without an increase in resistivity, the segment electrical
resistance 𝑅𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝜂𝑙/𝜋𝑟2 will increase from the geometric stretching (increase
in 𝑙/𝑟2). Thus, stretching not only can instigate a kinetic instability that would
increase local 𝜂, but stretching also increases the resistance 𝑅𝑠𝑒𝑔𝑚𝑒𝑛𝑡 simply from
the change in aspect ratio. The sudden appearance of substantial resistance at the
kink location has an effect equivalent to splicing a large resistor into the circuit at the
location of the instability. The inductive energy of the entire circuit 𝐿𝐼2/2 could in
principle be dumped into this region of increased resistivity. The large voltage jump
along the length of the kinking loop strand segment resulting from 𝐿𝑑𝐼/𝑑𝑡 would
accelerate electrons and ions to extreme energies and the bremsstrahlung radiation
of the electrons would produce X-rays.
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Figure 4.2: X-ray energy measurements. (a) A schematic diagram of the foil array
placed in front of the scintillators of the X-ray detector. The foils arranged along the
detector have either no additional foils (i.e., a control measurement), 36, 72, or 108
micron thick aluminum foils. (b) The NIST values of the attenuation length of X-
rays of different energy through aluminum. The K-shell peak transmission window
around 1.5 keV can be ignored because the polyimide window has a transmission
fraction of < 1 × 10−6 for photon energies less than 2 keV, and the transmission
fraction of the air between the window and the detector surface has a transmission
fraction less than 0.01. (c) An example of the energy measurement. (d) An example
line out of the measured signal. Gray bands indicate the filter placement, with darker
bands indicating a thicker layer.

An electric circuit simulation verifies the idea that the voltage spike associated
with the X-ray burst is induced from a sudden increase of resistivity. The LTspice
circuit simulation software [64] is used to simulate the experimental circuit diagram
presented in Figure 4.3 (a). As there are spikes both from voltage and current
measurements shown in Figure 4.3 (c) and 4.3 (d), the resistance change should
also be a spike-like peak function. To represent the cause of these spikes, as shown
in Figure 4.3 (b), a Gaussian time-dependent function is used to describe the sudden
transient increase of resistivity. This assumed time-dependent resistance causes
the circuit model to produce voltage and current spikes that nearly duplicate the
experimentally measured voltage and current spikes; this is seen by comparing
Figure 4.3 (c) and (d) which are from the experiment with Figure 4.3 (e) and (f)
which are from the circuit simulation. Seth suggested doing the circuit simulation,
which we then both carried out together.
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(e) (f)

(c) (d)

(a) (b)

Figure 4.3: Solar loop experiment circuit simulation. (a) Experiment circuit
diagram. The plasma part of the circuit is represented as an inductor and a time-
dependent resistor. The plasma inductance is assumed to be 50 nH, which is obtained
by simplifying the plasma loop as a half circle loop of wire with 5 cm loop major
radius and 1 cm minor (wire) radius. The voltage and current spikes are both peak
functions, so the corresponding resistance change is presumed to be also a peak
function. We use Gaussian function 𝑅𝑝𝑙𝑎𝑠𝑚𝑎 = 𝑅0 exp(−𝑎(𝑡 − 𝑡0)2) to represent the
transient change of the plasma resistance where 𝑅0 is the peak resistance value, and
𝑡0 is the resistance peak time, and 𝑎 is related to the full width at half maximum
(FWHM). They are chosen according to the relative voltage spike amplitude, voltage
peak time and the voltage spike FWHM. In the simulation, 𝑅0 = 0.4 Ω, 𝑡0 = 3.65 𝜇s
and 𝑎 = 5 𝜇s−2 are used. The corresponding plasma resistance is plotted in (b). (c,
d) Voltage and current measurement from experiment Shot # 9258. As shown in
(a), the voltage measured in (c) is the voltage across the plasma part and an extra
inductor. We also measured the voltage across the plasma part by connecting two
voltage probes directly to the top electrode and bottom electrode and then subtracting
the two voltages. The voltage trace across the plasma is similar but has a several
kV larger voltage spike compared with (c). (e, f) Voltage and current curves from
the simulation. Voltage and current spikes similar to the experimentally observed
spikes are reproduced by the transient resistance increase.
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To see why a kinetic instability should develop when a loop strand is choked, consider
the situation when the electron drift velocity is near the Alfvén velocity. The loop
strand has both an axial magnetic field 𝐵𝑧 and a local azimuthal magnetic field 𝐵𝜑
where the latter is associated with the current density in the strand by Ampere’s law
via 𝜇0𝐽𝑧 = 𝑟

−1𝜕/𝜕𝑟
(
𝑟𝐵𝜑

)
. The ratio of electron drift velocity to the Alfvén velocity

is [23]

𝑣d

𝑣𝐴
=
𝐽𝑧

𝑛𝑒

√
𝜇0𝑛𝑚𝑖

𝐵𝑧
=

√︂
𝑚𝑖

𝜇0𝑛𝑒2
1
𝐵𝑧𝑟

𝜕

𝜕𝑟

(
𝑟𝐵𝜑

)
=
𝑑𝑖

𝐵𝑧𝑟

𝜕

𝜕𝑟

(
𝑟𝐵𝜑

)
.

If 𝐵𝜑 is of order 𝐵𝑧, 𝑣d will become of order 𝑣𝐴 if the length scale of 𝑟 becomes of
the order of 𝑑𝑖. The density of the hydrogen plasma loop is 𝑛 = 1 × 1021 m−3 as
measured from Stark broadening of the H𝛽 line; the ion skin depth is thus 𝑑𝑖 = 0.72
cm. Before the kink instability, the diameter of a single strand is thus very close to 𝑑𝑖.
The choking of the strand by the kink instability will consequently reduce the strand
radius to be smaller than 𝑑𝑖. This enables a kinetic instability in the choked strand
which will increase the resistivity in the strand. This resistivity increase together
with the increase in strand segment 𝑙/𝑟2 increases the local electrical resistance.

A magnetic Rayleigh Taylor instability (MRTI, or Kruskal–Schwarzschild instability
[35]) can also occur in the plasma loop as shown in Figure 4.4 and the MRTI works
similarly to the kink instability to choke the plasma strand radius down to the kinetic
scale.

2.29 μs 2.54 μs 2.79 μs 3.04 μs
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Braided Structure
Rayleigh-Taylor 
instability

Rayleigh-Taylor 
instability

Electrodes

Figure 4.4: Magnetic Rayleigh Taylor instability observation. A four-strand
braided structure is shown in time series images of hydrogen plasma loop evolution.
With the expansion of the plasma loop, a magnetic Rayleigh Taylor instability occurs
on the loop and plays the same role as a kink instability to choke the strand radius
down and break the strand at later time.

We define a single X-ray burst as a laboratory nanoflare and sometimes observe
multiple nanoflares. Figure 4.5 (a) shows an experiment shot where the plasma
loop is composed of two separate strands. Two separate X-ray bursts are detected
in Figure 4.5 (b) and two ∼ 3 kV spikes were measured as shown in Figure 4.5 (c).
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Figure 4.5: Two experimental nanoflare events. (a) The image shows a braided
structure of 2 strands in a time series images of hydrogen plasma loop evolution.
(b) X-ray traces are shown. They show two separate X-ray bursts. (c) The voltage
across the electrodes. Just prior two separate X-ray bursts, two separate voltage
spikes are measured.

These bursts and associated voltage spikes are presumed to be generated as each of
the two strands went unstable and broke via the mechanism described above. Three
laboratory nanoflares in one shot have also been observed.

4.3 Discussion
These experimental results suggest a multi-scale instability sequence wherein solar
loops initially governed by ideal MHD dynamics kink which then chokes the current
channel and trigger kinetic instability which then instigates opening-switch-like
processes that cause solar X-ray bursts.

The MHD behavior reported here can be scaled to the many other situations governed
by MHD because MHD has no intrinsic length scale. MHD scaling [2] allows for
three free parameters: 𝑎1, 𝑎2, 𝑎3, following invariant relations: 𝐿0

𝑎1
→ 𝐿′ , 𝜌0

𝑎2
→ 𝜌′

, 𝐵0√
𝑎3

→ 𝐵′ , 𝑃0
𝑎3

→ 𝑃′, 1
𝑎1

√︃
𝑎3
𝑎2
𝑡 → 𝑡′,

√︃
𝑎2
𝑎3
𝑣0 → 𝑣′ to transform a scale to

another scale having the same plasma beta. This transformation gives a one-to-
one correspondence between systems, allowing laboratory experimental plasmas to
be scaled to equivalent systems in space plasmas. Table 4.1 shows characteristic
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parameters of the experiment, the solar corona and the experiment scaled to the solar
corona using 𝑎1 = 10−8 , 𝑎2 = 1 × 105 , 𝑎3 = 9 × 102. The scaled characteristic
parameters have magnitudes similar to that of the solar corona.

Table 1 Experimental plasma parameters and scaling to the solar corona

Experiment Scaled Experiment Solar Corona

Characteris�c length 𝐿 m 0.05 5×106 5×106

Characteris�c �me 𝑡 s 10-6 10 10

Magne�c field 𝐵 G 3000 100 100

Mass density 𝜌(kg ∙ m−3) 1.7×10-6 1.7×10-11 1.7×10-11

Pressure 𝑃(Pa) 800 0.89 0.32

Alfven velocity 𝑣𝐴(m ∙ s−1) 2.1×105 2.2×106 2.2×106

Plasma beta 𝛽 0.02 0.02 0.01

Lundquist number 𝑆 200 2×1013

Ion skin depth 𝑑𝑖(m) 0.007 2

Table 4.1: Plasma parameters of Caltech experiment and scaling to solar
corona. Typical values of the experiment (left column) are scaled according to
the MHD scaling described in the text. The scaled values (center column) are in
good agreement with approximate values for the solar corona (right column). This
close correspondence indicates magnetohydrodynamic similarity between the two
systems and the relevance of the experimental parameter regime to that of the solar
corona. The experiment plasma has a density 1021 m−3 and a temperature 5 eV. The
solar corona has a density 1016 m−3 and a temperature 200 eV [14].

A critical distinction between the lab and solar situations is that the initial state of
the lab experiment is much closer to kinetic instability than at first consideration
would apparently be the case for the solar situation. The initial current channel
radius in the experiment is around 𝑑𝑖 so that the kink instability does not have to
choke the current channel cross-section very much. In contrast, the nominal radius
of a solar coronal loop is of order of 106 m whereas the ion skin depth for nominal
solar corona densities is of order of 1 to 10 m. The length of the solar loop would
have to increase by an unrealistically large amount to choke the 106 m radius to
be of the order of 10 m. The solar situation could nevertheless develop a kinetic
instability on realizing that a solar coronal flux rope is not monolithic but instead is
a fractal braid of successively smaller braided filamentary flux ropes, i.e., strands.
The finest strand would be close to ion skin depth, i.e., ∼10 m to ∼100 m. Because
of this fractal braiding, an MHD instability only has to choke an individual finest
MHD-governed strand by a small factor to instigate kinetic instability.

A finest scale structure of 10 m is consistent with the required magnetic field
diffusion time. Solar loops are stable for time scales of hours and have an internal
axial current providing the J × B inward force that balances outward forces from
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the pressure gradient in the direction of the loop radius. The time for this current to
become distributed over the loop cross section is the magnetic field diffusion time
𝜏𝑟 = 𝜇0𝑟

2/𝜂, where 𝑟 is the radius and 𝜂 is the resistivity. The temperature of a
solar corona loop is 𝑇 = 200 eV so Spitzer resistivity gives 𝜂 = 7 × 10−7 Ω · m.
Thus, a 3600 s diffusion time corresponds to a 45 m radius. If the solar corona loop
were a monolithic structure (like a solid copper wire) having a 106 m radius rather
than being constituted by fractal strands, the magnetic field diffusion time would be
6 × 104 yr which is orders of magnitude greater than observed characteristic solar
magnetic field evolution time scales. This implies that a fractal structure is necessary
for a solar corona loop to have a distributed current. Filamentary decomposition
of a flux rope is analogous to Litz wire [65], which is composed of braided tiny,
insulated wire strands. This structure can enhance current penetration compared
with a single monolithic conductor and so links more interior flux and increases the
inductance [66].

The essential components of this mechanism have been separately observed in
nature. Solar observations imply that coronal loops are composed of braided flux
ropes because, as imaging resolution has increased over the years, each improvement
in resolution has revealed finer-scale structure [14]. Braided loop structures have
commonly been observed on the Sun, for example by the High-resolution Corona
Imager [49]. Fast-growing ideal MHD instabilities such as the kink instability and
the magnetic Rayleigh Taylor instability are common in solar loop structures [30,
67]. Previous study has shown that a large current flows through the solar loop and
the current disruption from 𝐿𝑑𝐼/𝑑𝑡 can generate voltage spikes up to 106 kV [58].
Fleishman et al. measured the rapid magnetic field decay in a solar flare region,
which implies a strong inductive electric field [51, 53] with associated voltage spike
𝑉 = −𝑑𝜙/𝑑𝑡 = −𝐿𝑑𝐼/𝑑𝑡 where the magnetic flux is 𝜙 =

∫
B · 𝑑S = 𝐿𝐼 and 𝐼 is the

electric current. Nanoflares have also been observed [50, 52].

A specific highly-relevant example is the kink-driven solar flare observed in active
region NOAA 11163 on February 24, 2011 [68] which had an evolution very similar
to what was observed in the Caltech lab experiment. Compared with the Caltech
experiment, it has a bigger length scale (20 Mm) but a slower time scale (10 s).
The MHD behavior of both situations can be scaled and compared using Table
4.1. Figure 4.5 (a-c) presents high-resolution observations of this kink-driven solar
flare as observed by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging
Assembly (AIA) [54] while Figure 4.5 (d-f) show the comparable situation in the
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Caltech lab experiment. In both the active region and the lab experiment, a kink
instability developed on a loop segment and in both cases the axial stretching
produced by the kink chokes the radius of the segment and then the choked segment
breaks. Figure 4.5 (g) shows the hard X-ray signal from RHESSI [69] for the
solar kink-driven instability and Figure 4.5 (h) shows the X-ray signal from the lab
experiment.

20 Mm

5 cm

Figure 4.5: Comparison between solar observation and experimental observa-
tion. (a-c) SDO/AIA 171 (T∼0.6 MK) Å EUV images showing the development of
kink instability, associated CME, and flare which occurred in active region NOAA
11163 on 2011 February 24. (d-f) Experimental images showing the similar pro-
cess as (a-c). (g) RHESSI hard X-ray flux profiles (12–25 and 25–50 keV). Hard
X-ray bursts are observed during the process. (h) hard X-ray signals observed in the
experiment associated with this process. (a, b, c, g) are reproduced by permission
of the AAS [68].

It is thus reasonable to propose the following path for how solar eruptions create
energetic particles and X-rays: (i) A solar flux rope is conjectured to be a braid of
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a very large number of fine-scale flux ropes with the finest scale being somewhat
larger than 𝑑𝑖; (ii) Electric current flows along the flux rope and the corresponding
hoop force causes a segment or segments of the flux rope to bow out; (iii) Each
strand then develops a fast-growing MHD instability, such as the kink instability or
magnetic Rayleigh Taylor instability which then chokes the strand down to a critical
scale at which time kinetic instabilities develop and, together with the stretching of
the length of the unstable strand, increase the resistance of the choked segment; (iv)
This increase in resistance corresponds to an opening switch so the inductive energy
of the entire circuit would be dumped into this region of increased resistance; (v)
A high voltage drop resulting from 𝐿𝑑𝐼/𝑑𝑡 would accelerate electrons and ions to
extreme energies and the bremsstrahlung radiation of the electrons would produce
X-rays.

The particle acceleration mechanism proposed here is also likely relevant to space
and astrophysics regimes. A similar voltage spike double layer structure has been
observed in Earth’s plasma sheet and identified as a cause for particle accelerations
[70].
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C h a p t e r 5

BRAIDED MAGNETIC FLUX ROPES EQUILIBRIUM

1. Zhang, Y. & Bellan, P. M. Magnetic double helix. (under review) (2024).

Braided magnetic flux ropes are observed from the experiment and the solar coronal
loops. However, there is no model describing the braided structure. In this chapter,
we developed a method for constructing the equilibrium of braided magnetic flux
ropes.

Magnetic flux ropes, the fundamental building block of magnetohydrodynamic
plasma configurations, have often been observed to wrap around each other to form
a helical braided structure with net axial current. Braiding has been observed in
astrophysical jets, solar coronal loops, and laboratory experiments. The equilibrium
of braided flux ropes is more complicated than familiar axisymmetric systems
because it requires balancing forces between the individual braids. We present here
a method for constructing these equilibria. This method generates a double helix
equilibrium with net axial current which is characteristic of observed solar loops and
of laboratory-produced braided magnetic flux ropes. To the best of our knowledge,
no previous model has been able to describe braided structures with net axial current
and instead have only described braided structures with no net axial current; these
no-net current structures had equal-magnitude positive and negative axial currents.
The net-axial-current equilibrium presented here reproduces the observed braided
structure of the double helix nebula and is expected to be a powerful tool in other
contexts.

5.1 Introduction
Braided magnetic flux ropes have often been observed in solar and astrophysical
contexts. Examples are the interwoven braided magnetic strands of solar loops
[49], solar prominence [71], the magnetic clouds in the solar wind [72], the double
helix nebula [73], and the double helix structure in Massive Galaxy’s Jet M87 [74].
These examples demonstrate the complexity of magnetic fields in different settings.
Similar structures have also been produced in laboratory experiments, for example
two interacting braided magnetic flux ropes with the same-direction axial currents
have been reported [75]. Contrary to expectations, these flux ropes which were
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wrapped around each other, did not merge like parallel current wires but instead
moved closer and then bounced back. This behavior indicates a more complex
interaction than previously assumed. Additionally, in the UCLA large plasma
device experiment [76], a similar dual braided flux rope structure was created, with
spiky voltage signals detected, presumably linked to magnetic reconnection between
the two strands. This suggests a dynamic interplay between magnetic fields in such
configurations. In the Caltech solar loop experiments, braided loop structures were
produced [77], with different strands behaving independently during an instability
cascade. The bursting of individual strands was observed to produce hard X-rays,
indicating the production of high-energy particles during these events. Similar
helical structures were also observed in toksmak experiments [78], reversed field
pinch experiments [79], Z-pinch experiments [80], spheromak experiments [81],
and plasma jet experiments [82, 83]. Braiding and strand-strand interaction are
likely to be fundamental to magnetic flux rope dynamics [84]. It has been noted
by Marshall and Bellan [85] that a braided structure is a lower-energy configuration
than an unbraided structure containing the same magnetic flux; this implies it is
energetically favorable for systems to be braided in flux-conserving configurations.

A helically symmetric system is the most basic braided system. Using cylindrical
coordinates (𝑟, 𝜃, 𝑧), a system with helical symmetry depends only on radial distance
𝑟 and the helical parameter 𝑢 = 𝜃 − 𝑘𝑧. Setting 𝑢 = const for fixed 𝑟 generates a
helical line in space and all physical scalars remain invariant along this helical
line. An MHD equilibrium differential equation having helical symmetry has been
previously derived and is known as the generalized Grad-Shafranov equation or
the JOKF equation [86]. Due to the complexity of this differential equation, only
a solution with alternating 𝐽𝑧 polarity and no net current has been reported [87]
and this is only obtained under restrictive linear assumptions. The derivation of
an equilibrium solution where all strands have the same 𝐽𝑧 polarity so there is a
net axial current has remained elusive. This is important because, unlike a no-net-
current configuration such a solution would be susceptible to kinking and associated
expansion from hoop forces as observed in actual braided solar structures and in
laboratory experiments.

We now show via a thought experiment that it is possible to construct a braided mag-
netic flux rope equilibrium where all strands have the same 𝐽𝑧 polarity. Specifically,
Figure 5.1 shows braided current wires having a range of axial angular wavenum-
bers 𝑘 = 2𝜋/𝜆 where 𝜆 is the axial wavelength of the helical wire. When 𝜆 goes to
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infinity, corresponding to 𝑘 going to zero, the two wires are parallel. As they have
same-direction axial current, the two wires attract each other. In contrast, when 𝑘
goes to infinity, the two wires form two interspersed tightly coiled same-direction
solenoids, and the interaction force is now radially outward. As the physics is con-
tinuous from 𝑘 = 0 to 𝑘 = ∞, there must be an intermediate state 𝑘𝑒𝑞 where the
interaction force vanishes. This state represents the equilibrium state of the system.

k = 0

I

k=keq k = ∞

I

FF FF

Figure 5.1: A thought experiment on the interaction between two helically
braided current wires under different angular wavenumbers. The 𝑘 = 0 corre-
sponds to two parallel current wires. They attract each other. The 𝑘 = ∞ corresponds
to tightly coiled solenoids. The two helical wires repel each other. As the physics
should be continuous, there must be a 𝑘 = 𝑘𝑒𝑞 as presented in the middle with a
zero interaction force. This corresponds to the equilibrium state.

We present here a model that successfully produces an equilibrium of two braided
magnetic flux ropes with 𝐽𝑧 ≥ 0 everywhere. This could, for example, represent
a braided solar corona loop carrying a net axial current. The magnetic field of
a “point source” helical current wire is first established and then, via the Green’s
function method, is used to obtain the magnetic field of a distributed current. The
net magnetic force summed over the cross-section of one of the two finite-cross-
section helical wires is calculated from the current distribution in the wire and the
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magnetic field constructed using the Green’s function method. Equilibrium is found
by determining the parameters for which this net force vanishes. This successfully
reproduces the observed braided structure of the double helix nebula [73].

5.2 Helical Current Wire Model
To derive the Green’s function, we begin by considering an infinitely long wire that
follows a helical path having radius 𝑟′ and axial wavenumber 𝑘 . The wire has zero ra-
dius and carries a current 𝐼 with J (𝑟, 𝜃, 𝑧) = 𝐼𝑟−1𝛿 (𝑟 − 𝑟′) 𝛿 (𝜃 − 𝑘𝑧 − 𝜑′)

(
𝑧 + 𝑘𝑟′𝜃

)
.

At 𝑧 = 0 the wire is located at azimuthal position 𝜑′; this dependence on 𝑟′ and 𝜑′

will enable a later construction with multiple wires where each has a different 𝑟′ and
𝜑′. The wire thus is at 𝑟 (𝑧) = 𝑟′, 𝜃 (𝑧) = 𝑘𝑧 + 𝜑′.

The magnetic field produced by the helical wire is potential for 𝑟 < 𝑟′ and for 𝑟 > 𝑟′

with a jump at 𝑟 = 𝑟′ determined by the current in the wire. Using these properties
the magnetic field is derived via the discontinuous vacuum magnetic field method
[88] to be

𝑟 < 𝑟′



𝐵𝑟 (𝑟, 𝜃, 𝑧) =
𝜇0𝐼

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼′𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

𝐵𝜃 (𝑟, 𝜃, 𝑧) =
𝜇0𝐼

𝜋
𝑘𝑟′

1
𝑟

∞∑︁
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

𝐵𝑧 (𝑟, 𝜃, 𝑧) =
𝜇0𝐼

2𝜋
𝑘 − 𝜇0𝐼

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

𝑟 > 𝑟′



𝐵𝑟 (𝑟, 𝜃, 𝑧) =
𝜇0𝐼

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾′
𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

𝐵𝜃 (𝑟, 𝜃, 𝑧) =
𝜇0𝐼

2𝜋𝑟
+ 𝜇0𝐼

𝜋
𝑘𝑟′

1
𝑟

∞∑︁
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

𝐵𝑧 (𝑟, 𝜃, 𝑧) = −𝜇0𝐼

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)] .

(5.1)

This magnetic field has the properties that (i) 𝐵𝑟 is continuous at 𝑟 = 𝑟′, (ii) there
is an axial field 𝐵𝑧 = 𝜇0𝐼

2𝜋 𝑘 for 𝑟 ≪ 𝑟′ as befits a radius 𝑟′ solenoid wound of a wire
with pitch 2𝜋/𝑘 , (iii) for 𝑟 ≫ 𝑟′ there is an azimuthal field 𝐵𝜃 =

𝜇0𝐼
2𝜋𝑟 as befits an

axial wire with current 𝐼, (iv) there are jumps in 𝐵𝜃 and 𝐵𝑧 at 𝑟 = 𝑟′ corresponding
to the current in the wire, and (v) the field is potential for 𝑟 < 𝑟′ and for 𝑟 > 𝑟′.
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The magnetic field prescribed by Equation (5.1) is from a point-source helical
current. Using the Green’s function method, we obtain the magnetic field of a
distributed current by replacing the current 𝐼 with an area integration over the
current density of the distributed current. Because the current flowing in the helical
wire can be completely specified by prescribing 𝐽𝑧 in the 𝑧 = 0 plane, we define
𝐽𝑧0(𝑟′, 𝜑′) = 𝐽𝑧 (𝑟′, 𝜑′ − 𝑘𝑧, 𝑧 = 0).

We consider a thin helical wire with current 𝑑𝐼 = 𝐽𝑧0 (𝑟′, 𝜑′) 𝑟′𝑑𝑟′𝑑𝜑′; this current
flows through an annular sector in the 𝑧′ = 0 plane located between 𝑟′ and 𝑟′+𝑑𝑟′ and
between 𝜑′ and 𝜑′ + 𝑑𝜑′. Using Equation (5.1), the radial magnetic field provided
by this current 𝑑𝐼 is

𝑑𝐵𝑟 (𝑟, 𝜃, 𝑧) =



for 𝑟 < 𝑟′

𝜇0𝐽𝑧0 (𝑟′, 𝜑′) 𝑟′𝑑𝑟′𝑑𝜑′
𝜋

𝑘2𝑟′

×
∞∑︁
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼′𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

for 𝑟 > 𝑟′

𝜇0𝐽𝑧0 (𝑟′, 𝜑′) 𝑟′𝑑𝑟′𝑑𝜑′
𝜋

𝑘2𝑟′

×
∞∑︁
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾′
𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

. (5.2)

The radial magnetic field generated from a helical current distribution is then the
integral of Equation (5.2) over all (𝑟′, 𝜑′) to give

𝐵𝑟 (𝑟, 𝜃, 𝑧) =
∞∫
𝑟

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)
𝜋

𝑘2𝑟′2

×
∞∑
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼′𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


+

𝑟∫
0

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)
𝜋

𝑘2𝑟′2

×
∞∑
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾′
𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


.

(5.3)
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Similarly, the azimuthal magnetic field and the axial magnetic field can be derived
as

𝐵𝜃 (𝑟, 𝜃, 𝑧) =
∞∫
𝑟

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)
𝜋

𝑘𝑟′2 1
𝑟

×
∞∑
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


+

𝑟∫
0

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)𝑟 ′
2𝜋𝑟 + 𝜇0𝐽𝑧 (𝑟 ′,𝜑′)

𝜋
𝑘𝑟′2 1

𝑟

×
∞∑
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


(5.4)

𝐵𝑧 (𝑟, 𝜃, 𝑧) =
∞∫
𝑟

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)𝑟 ′
2𝜋 𝑘 − 𝜇0𝐽𝑧 (𝑟 ′,𝜑′)

𝜋
𝑘2𝑟′2

×
∞∑
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


−

𝑟∫
0

𝑑𝑟′
2𝜋∫

0

𝑑𝜑′


𝜇0𝐽𝑧 (𝑟 ′,𝜑′)
𝜋

𝑘2𝑟′2

×
∞∑
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾𝑛 (𝑛𝑘𝑟) cos [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]


.

(5.5)

Different localized current density distribution 𝐽𝑧0 (𝑟′, 𝜑′) can be constructed to
model various braided flux ropes situations. Let us consider the simplest multi-
strand helical situation, namely two helically braided current wires each with uniform
current density on a circular cross-section having a radius 𝑏 in the 𝑧 = 0 plane. The
respective centers of these two circular cross sections are at 𝑟 = 𝑎, 𝜃 = 0 and
at 𝑟 = 𝑎, 𝜃 = 𝜋 and through each circular cross-section there is a uniform axial
current density 𝐽𝑧0. The interiors of the two circular cross-sections are defined
by (𝑥 ± 𝑎)2 + 𝑦2 ≤ 𝑏2. Since the wires are helical, the vector current density is
J = 𝐽𝑧0

[
𝑧 + 𝑘𝑟′𝜃

]
inside the two circular cross-sections while outside, J = 0. The

magnetic field resulting from this current distribution is derived in the Appendix A
as Equations (A.5–A.6) using Equations (5.3–5.5). The area of each circular cross
section in the 𝑧 = 0 plane is 𝑆 = 𝜋𝑏2.

The internal pressure distribution in a closed box cannot exert a net body force
on the box because if this happened, the box would be “pulling itself up by its
own bootstraps”. This implies that

∫
𝑆

𝑑𝑆∇𝑃 = 0 showing that the internal pressure

distribution in a wire cannot exert a body force on the wire. Thus, the only possible
net body force on each of the two wires in the double helix is the magnetic force but in
a static equilibrium there must be no net force so f =

∫
𝑆

𝑑𝑆J×B = 0. Consequently,
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the equilibrium condition is that on each wire the net magnetic force per length is

f =
∫
𝑆

𝑑𝑆J × B = 0. (5.6)

Consider the magnetic force on the wire having a circular cross-section in the 𝑧 = 0
plane centered at 𝑟 = 𝑎 and 𝜃 = 0. The integration region 𝑆 is (𝑥 − 𝑎)2 + 𝑦2 ≤ 𝑏2.
The three components of f are:

𝑓𝑥 =

∫
𝑆

𝑑𝑆𝐽𝑧0 [((𝑘𝑟𝐵𝑧 − 𝐵𝜃) cos 𝜃 − 𝐵𝑟 sin 𝜃)] (5.7)

𝑓𝑦 =

∫
𝑠

𝑑𝑆𝐽𝑧0 [((𝑘𝑟𝐵𝑧 − 𝐵𝜃) sin 𝜃 + 𝐵𝑟 cos 𝜃)] (5.8)

𝑓𝑧 =

∫
𝑆

𝑑𝑆𝐽𝑧0 [−𝑘𝑟𝐵𝑟] . (5.9)

Since each component of B is proportional to 𝐽𝑧0, each component of f is proportional
to 𝐽2

𝑧0 and so is insensitive to the sign of 𝐽𝑧0. If it were assumed that 𝑓𝑦 > 0, then,
from symmetry, there would be a body force in the +𝜃 direction on both circular
cross-sections. This body force would cause the entire system to spin up in the
+𝜃 direction and so gain angular momentum. Since the system is self-contained,
it cannot change its own angular momentum and so 𝑓𝑦 must vanish. A similar
argument indicates that 𝑓𝑧 must vanish. However, since 𝑓𝑥 corresponds to the radial
direction, a finite 𝑓𝑥 would not change the center of mass velocity of the system.
Thus, 𝑓𝑥 could be finite, and, if so, would cause a radial expansion or contraction
of the helix; i.e., a change in the radial separation between the two circular cross-
sections. Thus, there is only a radial force between the two helical wires. A more
detailed mathematical proof for 𝑓𝑦 = 𝑓𝑧 = 0 is presented in the Appendix A.

To simplify the notation we define dimensionless lengths normalized to 𝑎, so 𝑥 =

𝑥/𝑎, 𝑏̄ = 𝑏
/
𝑎, 𝑘̄ = 𝑘𝑎. We additionally define the dimensionless force 𝑓𝑥 =

𝑓𝑥

/(
𝜇0𝐽

2
𝑧0𝜋

2𝑏4

4𝜋𝑎

)
, and dimensionless magnetic field B̄ = B

/(
𝜇0𝐽𝑧0𝑏

2

4𝑎

)
. When 𝑘̄ = 0,

𝑓𝑥 = −1. This agrees with the attractive force between two parallel current wires
each having a radius 𝑏 and having centers separated a distance 2𝑎 as this force is
𝜇0𝐽

2
𝑧 𝜋

2𝑏4/4𝜋𝑎.
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(a) (b)

Figure 5.2: Equlibrium of two helically braided current wires. (a) 𝑓𝑥 versus 𝑘̄
under 𝑏̄ = 0.5. 𝑓𝑥 = 0 corresponds to the equilibrium state, and 𝑘𝑒𝑞=0.685. (b) The
equilibrium axial wavenumber 𝑘̄𝑒𝑞 versus minor radius 𝑏̄.

5.3 Main Results
Figure 5.2(a) shows 𝑓𝑥 plotted as a function of 𝑘̄ for 𝑏̄ = 0.5. This plot shows that
as 𝑘̄ increases, 𝑓𝑥 changes from being negative (attractive force) to being positive
(repulsive force) as was shown qualitatively in Figure 5.1. In particular, Figure
5.2(a) shows that, for 𝑏̄ = 0.5, 𝑓𝑥 = 0 occurs at 𝑘̄𝑒𝑞 = 0.685; this is the equilibrium.
The value of 𝑘̄𝑒𝑞 at which equilibrium occurs depends on 𝑏̄; this dependence is
shown in Figure 5.2(b). It is seen that 𝑘̄𝑒𝑞 is an increasing function of 𝑏̄, indicating
that the double helix equilibrium of thicker braided current wires (bigger 𝑏̄) has a
shorter axial wavelength.

Figure 5.3 provides a detailed visualization of the physical characteristics of the
equilibrium state for a helically braided magnetic flux rope system with 𝑏̄ = 0.5
and 𝑘̄𝑒𝑞 = 0.685. Figure 5.3(a) shows a projection of the helically braided current
wire structure in the 𝑦̄ = 0 plane. This projection shows two entwined current
wires; for clarity, the two wires are illustrated using different colors, but it should
be realized that the two wires have identical physical properties. Figures 5.3(b)-(e)
show various physical quantities in the 𝑧 = 0 plane; physical quantities at different
𝑧 can be determined from 𝑧 = 0 solutions utilizing the helical symmetry. Figure
5.3(b) shows the axial current density 𝐽𝑧 = 𝐽𝑧/𝐽𝑧0 while Figure 5.3(c) shows the
azimuthal current density 𝐽𝜃 = 𝐽𝜃/𝐽𝑧0. Figure 5.3(d) shows B̄⊥, the magnetic field
component perpendicular to 𝑧, as lines following B̄⊥ = 𝐵𝑥𝑥 + 𝐵𝑦 𝑦̂; it is seen that
the B̄⊥ lines encircle the two current centers. If the perpendicular magnetic field
component is written as B̄⊥ = 𝐵̄𝑟𝑟 + 𝐵̄𝜃𝜃, it is seen that 𝐵̄𝑟 is an odd function of
𝜃 and 𝐵̄𝜃 is an even function of 𝜃; The colors in Figure 5.3(d) show the amplitude
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𝐵̄⊥ =

√︃
𝐵̄2
𝑥 + 𝐵̄2

𝑦. Figure 5.3(e) shows 𝐵̄𝑧 which is largest at radii internal to the
braided helical wires and reverses direction on moving from inside to outside the
helix. It is seen that 𝐵̄𝑧 is an even function of 𝜃. These symmetries of 𝐵̄𝑟 , 𝐵̄𝜃 , and
𝐵̄𝑧 justify the conclusion that 𝑓𝑦 = 𝑓𝑧 = 0.

(b)

(d)
⊥B

zJ (c)

(e)
zB

θJ

(a)

Figure 5.3: Braided double helix equilibrium with 𝑏̄ = 0.5 and 𝑘̄𝑒𝑞 = 0.685. (a)
The equilibrium diagram with two braiding current wires. Two colors are used to
distinguish the two wires but they are the same. The physical quantities on the 𝑧 = 0
plane are plotted in (b-e). (b) The axial current density 𝐽𝑧 = 𝐽𝑧/𝐽𝑧0 distribution.
Uniform axial current distributes inside of the cross-section (c) The azimuthal
current density 𝐽𝜃 = 𝐽𝜃/𝐽𝑧0 distribution. (d) The 𝑥 − 𝑦 direction magnetic field lines
B̄⊥ = 𝐵𝑥𝑥 +𝐵𝑦 𝑦̂ and, as colored shading, corresponding amplitude 𝐵̄⊥ =

√︃
𝐵̄2
𝑥 + 𝐵̄2

𝑦.
(e) The axial magnetic field 𝐵̄𝑧 distribution.

The equilibrium is determined from the surface integral of the magnetic field force
equaling zero, i.e., 𝑓𝑥 = 0. Inside the circular current-carrying cross section, the
local magnetic force J × B force can be finite, as shown in Figure 5.4(a) and this
force acts to pinch the current wire. This non-zero magnetic force can be balanced
by an internal pressure gradient ∇𝑃. Integration of ∇𝑃 = J × B gives an internal

pressure profile in the wire 𝑃̄ = 𝑃

/(
𝜇0𝐽

2
𝑧0𝑏

2

4

)
. This internal pressure profile is shown

in Figure 5.4(b). ∇𝑃 = J×B requires ∇× (J × B) = 0. The magnetic field generated
from constant current density wires as the double helix current wires automatically
satisfies this curl-free condition ∇ × (J × B) = 0. Details are discussed in the
Appendix A.
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(a) (b)

Figure 5.4: Magnetic force inside of one current wire and the reconstructed
pressure profile (a) magnetic force J × B on 𝑧 = 0 plane. (b) the reconstructed
pressure profile from ∇𝑃 = J × B.

We have thus provided a systematic method for determining the equilibrium of
helically braided systems. This method is straightforward to implement, involving
several key steps: (i) define a current distribution function to represent the helically
braided system; (ii) determine the equilibrium state by setting to zero the net mag-
netic force over the cross-section of one current carrying wire; (iii) calculate the
equilibrium magnetic field using Equations (5.3–5.5) and build the pressure distri-
bution from ∇𝑃 = J × B. An important corollary of this method is that it could be
used to construct a fractally braided system analogous to a braided rope where each
rope braid is composed of strands that, in turn, are composed of smaller braided
strands.

We can reproduce observed helically braided structures using the simple double
helix equilibrium derived from this helical current two-wire model. A specific
example is the braided structure of the double helix nebula [73], shown in Figure
5.5(a). The minor radius is measured as 𝑏̄ ≈ 0.3, and the axial angular wavenumber
𝑘̄ ≈ 0.6. We assume the two wires have the same direction current and this current
is uniformly distributed on a circular cross-section. Using 𝑏̄ = 0.3, the helical wire
model yields an equilibrium 𝑘̄ = 0.623, which is in excellent agreement with the
observed value. Figure 5.5(b) shows the double helix structure predicted by the
helical wire model presented here oriented as in the telescope photo and shows that
this closely replicates the intricate structure of the double helix nebula in Figure
5.5(a).
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(a) (b)

Double Helix 
Structure

Theoretically 
Reprocduced  

Structure 

Figure 5.5: Comparison between the double helix nebula and a double helix
equilibrium reconstructed from the model (a) The double helix nebula, observed
at the infrared wavelength of 24 µm with the MIPS camera on the Spitzer Space
Telescope. The spatial resolution is 6 arcsec. At the 8 kpc distance of the Galactic
Centre, 1 arcmin corresponds to 2.5 pc. The minor radius is measured as 𝑏̄ ≈ 0.3,
and the axial angular wavenumber 𝑘̄ ≈ 0.6. This image is reproduced from [73].
(b) a double helix equilibrium reconstructed from the model with 𝑏̄ = 0.3 and
𝑘̄𝑒𝑞 = 0.623.

In some braided magnetic flux ropes experiments, an external axial magnetic field
was applied, and the rotation of two flux ropes was observed [75, 76]. The helical
current wires model can incorporate axial magnetic field and rotation. They provide
additional radial force to the current wire, so they can be considered as extra forces
in the force balance equation. In the astrophysical jets observation, rotating flow
was also observed [89]. This model can also be expanded for dynamic equilibrium
with helical flow through the structure.

In conclusion, this paper presents a comprehensive helical current wire model that
establishes MHD equilibria. The equilibria correlate with phenomena observed
in both astrophysical environments and controlled laboratory experiments. The
application of this equilibrium model extends broadly to plasma studies, including
but not limited to the reconstruction of magnetic flux ropes [90], magnetic flux rope
interactions [91] and evolutions [92], the study of magnetic helicity [93], magnetic
reconnections [94, 95], and magnetic fusion equilibrium states [96].
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C h a p t e r 6

NEUTRAL-CHARGED-PARTICLE COLLISIONS AS THE
MECHANISM FOR ACCRETION DISK ANGULAR

MOMENTUM TRANSPORT

1. Zhang, Y. & Bellan, P. M. Neutral-charged-particle collisions as the mech-
anism for accretion disk angular momentum transport. The Astrophysical
Journal 930, 167 (2022).

In this chapter, I move into a new area of study: the transport of angular momentum
within accretion disks.

I got to the accretion disk study from Paul M. Bellan’s presentation on his neutral-ion
bonding accretion model [97]. His model investigated the dynamics of a metaparticle
comprised of tightly bonded neutrals and ions across various charge-to-mass ratios.
His findings revealed that under a critical charge-to-mass ratio, the metaparticle
could possess zero canonical angular momentum, causing it to spiral inward and
eventually accrete onto the central star. Intrigued by this concept, I sought to explore
the dynamics further.

Coincidentally, I was also learning N-body simulation techniques for molecules
through Professor José E. Andrade’s ME 201 class. Recognizing the potential of
applying N-body simulation to study accretion disk dynamics at the particle level, I
proposed the idea to Paul M. Bellan, and he enthusiastically supported me in trying
it.

Through N-body simulation, we uncovered fascinating dynamics involving ions
and electrons interacting with neutrals, leading to canonical angular momentum
transport between charged particles and neutrals. When the Kepler motion is of
different polarity with the magnetic field, ions drift inward while electrons drift
outward during collisions with neutrals. This process transports neutrals’ angular
momentum into charged particles’ canonical angular momentum in a manner such
that the net global canonical angular momentum is conserved. Building upon these
findings, we devised an angular momentum transport mechanism solely reliant on
neutral-charged particle collisions. Remarkably, our model predicted an accretion
rate of 3 × 10−8 solar mass per year in good agreement with observed accretion
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rates. Given that this angular momentum transport is contingent solely on neutrals
colliding with charged particles, this mechanism should be ubiquitous.

The accumulation of ions at a smaller radius and electrons at a larger radius generates
a radially outward electric field, whereas the current resulting from the separation
of ions and electrons flows radially inward. Consequently, this mechanism also
naturally gives rise to a gravitational dynamo, converting gravitational energy into
the electric energy that powers an astrophysical jet.

6.1 Introduction
Protoplanetary discs are thin, weakly ionized, cold accretion disks existing during
the early life of a star and typically have associated poloidal magnetic fields and
bidirectional astrophysical jets. Protoplanetary discs have inner radii of a few a.u.,
outer radii of 10-100 a.u., accretion rates of 10−9 to 10−7 𝑀⊙ yr−1 [6] and poloidal
magnetic fields > 1 milligauss [5]. Because accreting particles must shed angular
momentum to satisfy energy constraints, accretion must involve outward transport
of angular momentum [98] but how this works has been a long-standing mystery.
Classical viscosity is insufficient to provide the required angular momentum tran-
port so efforts have been directed towards finding stronger transport mechanisms.
Shakura & Sunyaev [99] proposed turbulence but did not suggest a source for the
postulated turbulence. Balbus & Hawley [100] derived the Magnetorotational Insta-
bility (MRI) and proposed the MRI as the source of turbulence enhancing angular
momentum transport. However, Flaherty et al. [101] measured actual turbulent
levels in a Protoplanetary disc, and found “there is little turbulence throughout the
vertical extent of the disk, contrary to theoretical predictions based on the mag-
netorotational instability.” Ji et al. [102] constructed a laboratory device designed
to demonstrate the MRI, but MRI has not been detected so far; Ji & Balbus [103]
state “To date, however, the MRI has been difficult to identify unambiguously, even
though the required threshold conditions have been exceeded.”

As an alternate to turbulence and MRI, Bellan [97] argued that because the accre-
tion disk is an axisymmetric electromagnetic-gravitational system, the fundamental
conserved quantity is not the ordinary angular momentum (OAM) 𝑚𝑟𝑣𝜃 but rather
the canonical angular momentum (CAM) 𝑚𝑟𝑣𝜃 + 𝑞𝜓/2𝜋 where 𝑞 is the charge, and
𝜓 is the poloidal magnetic flux. The canonical angular momentum conservation is
derived in Appendix B. We report here particle simulations of a weakly ionized,
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collisional accretion disk. The simulated accretion disk is composed of “hard-disk”
neutrals, ions, and electrons (because the simulation is in 2D the particles are “hard
disks” rather than “hard spheres”; note that the word “disk” is being used in two
different contexts – accretion disk and particle disk – which should not be con-
fused). It is found that in the presence of collisions the total accretion disk CAM is
conserved but the total OAM is not. The numerical simulation shows that collisions
cause the charged particle CAM to increase with a corresponding reduction of the
neutral OAM so that total CAM is conserved. In accordance with their decreased
OAM, neutrals spiral inwards, i.e., accrete. The microscopic details of the OAM and
CAM transfer are explained by direct calculation of the average radial velocity of
a charged particle as a result of collisions with Kepler-orbiting neutrals. A radially
outward electric field develops as a result of the radial inward/outward motion of the
ions/electrons and this electric field is just what is required to drive the bidirectional
out-of-plane electric currents flowing along bidirectional astrophysical jets. The
simulations and their interpretation provide a ubiquitous, straightforward model of
angular momentum shedding and jet drive mechanism [97].

6.2 Simulation Method
The simulation has a central body with mass 𝑀∗ at the origin of a cylindrical
coordinate system {𝑟, 𝜃, 𝑧} and a uniform magnetic field 𝐵 = 𝐵𝑧 so the poloidal
flux is 𝜓 = 𝐵𝜋𝑟2. Surrounding the central body are a large number of particles
represented by hard disks restricted to the 𝑧 = 0 plane. When not colliding, the
equation of motion for a particle with mass 𝑚 and charge 𝑞 is

𝑚
𝑑v
𝑑𝑡

= 𝑞v × B − 𝐺𝑀∗𝑚

𝑟2 𝑟 . (6.1)

Using reference parameters 𝑟0 = 1 a.u., 𝑣𝐾0 =
√︁
𝐺𝑀∗/𝑟0, 𝜔𝐾0 =

√︂
𝐺𝑀∗

/
𝑟3

0 ,

normalized quantities 𝑟 = 𝑟/𝑟0, v̄ = v/𝑣𝐾0, 𝑡 = 𝜔𝐾0𝑡,𝜔𝑐 = 𝑞𝐵/𝑚, and 𝜔̄𝑐 = 𝜔𝑐/𝜔𝐾0

are defined so Equation (6.1) becomes

𝑑v̄
𝑑𝑡

= 𝜔̄𝑐v̄ × 𝑧 − 1
𝑟2 𝑟 . (6.2)

The hard-disk particle model means that particles do not interact except when
colliding. Particles are assumed to be disks having radius 𝑎 and center at r𝑖 where
𝑖 = 1 to 𝑁 and 𝑁 is the number of particles. A collision occurs between particle i
and particle j when

��r𝑖 − r 𝑗
�� < 2𝑎. The velocity change of particle i after a collision

is
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𝛿v𝑖 = −
2𝑚 𝑗

𝑚𝑖 + 𝑚 𝑗

(
v𝑖 𝑗 · 𝑛̂𝑖 𝑗

)
𝑛̂𝑖 𝑗 , (6.3)

where v𝑖 𝑗 = v𝑖 − v 𝑗 and 𝑛̂𝑖 𝑗 =
r𝑖−r 𝑗
|r𝑖−r 𝑗 | .

On defining u𝑖 as the mean velocity of species 𝑖, the frictional drag frequency 𝜈𝑖 𝑗 of
species 𝑗 on species 𝑖 is defined by 𝑑u𝑖/𝑑𝑡 = −𝜈𝑖 𝑗 (u𝑖 − u 𝑗 ); integrating this over a
short time 𝑇 gives

Δu𝑖 = −𝜈𝑖 𝑗𝑇 (u𝑖 − u 𝑗 ). (6.4)

If a particle makes 𝑆 collisions in a time 𝑇 then, its change in velocity will be
Δv𝑖 =

∑𝑆
𝑖=1 𝛿v𝑖 (𝑘). The change of the species mean velocity will be

Δu𝑖 =

〈
𝑆∑︁
𝑘=1

𝛿v𝑖 (𝑘)
〉
= −

𝑆∑︁
𝑘=1

2𝑚 𝑗

𝑚𝑖 + 𝑚 𝑗

〈(
v𝑖 𝑗 · 𝑛̂𝑖 𝑗

)
𝑛̂𝑖 𝑗

〉
(6.5)

where the angle brackets denote averaging over particles and over directions 𝑛̂𝑖 𝑗 . By
defining 𝑝 = 𝑧× 𝑣̂𝑖 𝑗 where 𝑧 is out of plane, then 𝑛̂𝑖 𝑗 = 𝑣̂𝑖 𝑗 cos 𝜙+ 𝑝 sin 𝜙 where 𝜙 is a
random angle that differs for each of the 𝑆 collisions. Since

(
v
𝑖
− v 𝑗

)
·𝑛̂𝑖 𝑗 =

��v
𝑖
− v 𝑗

�� cos 𝜙,
then 𝜙 averaging of

(
v
𝑖
− v 𝑗

)
·𝑛̂𝑖 𝑗 𝑛̂𝑖 𝑗 gives

(
v
𝑖
− v 𝑗

)
·𝑛̂𝑖 𝑗 𝑛̂𝑖 𝑗 =

(
v
𝑖
− v 𝑗

)
cos2 𝜙. Av-

eraging over many particles gives
〈(

v
𝑖
− v 𝑗

)
·𝑛̂𝑖 𝑗 𝑛̂𝑖 𝑗

〉
=

(
u
𝑖
− u 𝑗

)
/2 so combining

Equations 6.4 and 6.5 gives

𝜈𝑖 𝑗 =
𝑆

𝑇

𝑚 𝑗

𝑚𝑖 + 𝑚 𝑗

. (6.6)

The collisional drag frequency 𝜈𝑖 𝑗 is thus determined from the numerical simulation
by counting how many collisions 𝑆 are experienced by a particle in a time𝑇 and then
using Equation (6.6). The ergodic assumption that the friction of a single particle
over many collisions is the same as the average instantaneous friction experienced by
many particles allows this determination to be made by following a single numerical
particle.

A reflective boundary at an inner radius 𝑟 = 0.1 − 𝑎̄ is used to avoid the infinite
gravitational force when particles move close to the origin. This reflective boundary
means that a particle is reflected back with an opposite radial velocity when it
tries to penetrate inside a circle having radius 𝑟 = 0.1. Because this reflection is
radial, it conserves both canonical and ordinary angular momentum. There is no
boundary at large radius. Unless specified otherwise, 𝑎̄ = 0.01 and the number of
particles is 𝑁 = 16128. The ion mass is set to 𝑚̄𝑖 = 𝑚𝑖/𝑚𝑛 = 1, and the electron
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mass is set to 𝑚̄𝑒 = 𝑚𝑒/𝑚𝑛 = 0.1. The simulation starts at 𝑡 = 0 with particles
located in concentric circles ranging from 𝑟 = 0.3 to 𝑟 = 1.9, with a spacing
𝑑 = 2.5𝑎̄ between adjacent concentric circles. The particles are arranged at 𝑡 = 0
with uniform azimuthal spacing on each circle with inter-particle angular separation
Δ𝜃 = 2𝜋

/⌈
2𝜋𝑟

/
𝑑
⌉

where
⌈
2𝜋𝑟

/
𝑑
⌉

means the nearest integer greater than or equal
to 2𝜋𝑟

/
𝑑. Particles are assigned an initial Kepler velocity with v̄ =

√︁
1/𝑟𝜃. The

magnetic field direction is opposite to the Kepler rotation sense, i.e., 𝐵 < 0. A Boris
method [104] is used for pushing the particles and the time step is Δ𝑡 = 10−4. The
total system dimensionless CAM is

𝑃̄𝜃 =
𝑃𝜃

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑
𝑗=1

(
𝑚 𝑗𝑟 𝑗𝑣𝜃 𝑗 + 1

2𝑞 𝑗𝐵𝑟
2
𝑗

)
𝑚𝑛𝑟0𝑣𝐾0

=

𝑁∑︁
𝑗=1

(
𝑚̄ 𝑗𝑟 𝑗 𝑣̄𝜃 𝑗 +

1
2
𝜔̄𝑐 𝑗𝑟

2
𝑗

)
(6.7)

and the total system dimensionless OAM is

𝐿̄𝜃 =
𝐿𝜃

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑
𝑗=1
𝑚 𝑗𝑟 𝑗𝑣𝜃 𝑗

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑︁
𝑗=1
𝑚̄ 𝑗𝑟 𝑗 𝑣̄𝜃 𝑗 . (6.8)

6.3 Main Results
Figure 6.1 displays simulation results when there is an ion (red dot) and an electron
(black dot) and a large number of neutrals (blue and grey dots). The neutrals
neighboring the ion-electron pair at 𝑡 = 0 are shown as dark blue dots. The ion is
at initial position (𝑟, 𝜃) = (1, 0) with 𝜔̄𝑐𝑖 = −50. The electron is at initial position
(𝑟, 𝜃) = (1.025, 0) with 𝜔̄𝑐𝑒 = +500. By counting the number of collisions made
by the electrons and ions in one Kepler period, it is found that 𝜈̄𝑖𝑛 = 56.6 and
𝜈̄𝑒𝑛 = 253.1. Figures 6.1 (a-d) show the system state at 𝑡 = 0, 0.34, 0.68 and 1.
Figure 6.1 (e) displays the time dependence of the total system CAM 𝑃̄𝜃 as defined
by Equation (6.7) and the total system OAM 𝐿̄𝜃 as defined by Equation (6.8). Figure
6.1 (e) thus verifies that the basic conserved quantity is not the system OAM but
rather the system CAM. Figure 6.1 (f) plots the ion and electron radial positions and
shows the ion moves radially inwards while the electron moves radially outwards.
Figure 6.1 (g) plots the time dependence of the CAM of the ion and of the electron
and shows that the ion and electron CAM are both increasing. Because total system
CAM 𝑃̄𝜃 is conserved and the ion and electron CAM are increasing, the OAM of
the neutrals decreases as shown in Figure 6.1 (h). Effectively, the neutral OAM is
transferred to the ion and electron CAM as the system evolves. Since OAM scales
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as 𝑟1/2, removing OAM from neutrals corresponds to the neutrals accreting towards
the star. Neutral-neutral collisions will conserve neutral OAM so it is possible for
some neutrals to move inwards while others move outwards in a way that conserves
OAM; unlike collisions with charged particles this process will not cause global loss
of neutral OAM.

We now explain why an ion and an electron have opposite average radial displace-
ment as a result of collisions with neutrals and then relate this to angular momentum
transport. The equation of motion for charged particles 𝜎 moving in a sea of neutral
particles is

𝑑u𝜎
𝑑𝑡

≈ 𝜔𝑐𝜎u𝜎 × 𝑧 − 𝜈𝜎𝑛 (u𝜎 − u𝑛) (6.9)

where 𝜈𝜎𝑛 is given by Equation (6.6). The gravitational force on the charged particles
is ignored because |𝜔̄𝑐𝜎 | ≫ 1. The exact solution for Equation (6.9) is

u𝜎 = (u𝐿 cos (𝜔𝑐𝜎𝑡) +u𝐿 × 𝑧 sin (𝜔𝑐𝜎𝑡)) 𝑒−𝜈𝜎𝑛𝑡 +
1

1 + 𝜈2
𝜎𝑛

𝜔2
𝑐𝜎

(
𝜈𝜎𝑛

𝜔𝑐𝜎
u𝑛 × 𝑧 +

𝜈2
𝜎𝑛

𝜔2
𝑐𝜎

u𝑛
)
.

(6.10)
On time-averaging over a cyclotron period the terms containing cos (𝜔𝑐𝜎𝑡) and
sin (𝜔𝑐𝜎𝑡) vanish. On defining 𝜉𝜎 =

𝜈𝜎𝑛
𝜔𝑐𝜎

the time-averaged charged particle velocity
is

u𝜎 =
𝜉𝜎u𝑛×𝑧 + 𝜉2

𝜎u𝑛
1+𝜉2

𝜎

. (6.11)

We presume that the neutrals are in Kepler motion so u𝑛 is in the 𝜃 direction. The
radial component of the time-averaged charged particle velocity is thus

𝑢𝜎𝑟 =
𝜉𝜎

1 + 𝜉2
𝜎

𝑢𝑛𝜃 . (6.12)

Because ions and electrons have opposite polarity, their 𝜔𝑐𝜎 and hence their 𝜉𝜎
have opposite sign so 𝑣𝑖𝑟 and 𝑣𝑒𝑟 have opposite signs. The simulation has 𝐵 < 0
and Kepler rotation with 𝑣𝑛𝜃 > 0. Equation (6.12) gives negative radial velocity for
ions and positive for electrons so ions move radially inwards and electrons move
radially outwards as seen in the simulations. Because 𝐵 < 0, the CAM magnetic
component 𝑞𝐵𝑟2/2 thus increases for both electrons and ions. Furthermore, it is
seen that the radial velocity of charged particles of type 𝜎 has a maximum of 1/2
which occurs when |𝜉𝜎 | = 1. Because the total CAM of the two particles involved
in each collision is conserved, the system total CAM is conserved. The OAM of
the neutrals must decrease as a result of collisions with both electrons and ions
because, on average, collisions cause an increase in the CAM of both electrons and
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Figure 6.1: Simulation results when there is an electron-ion pair in the system.
The ion is at initial position (𝑟, 𝜃) = (1, 0) with 𝜔̄𝑐𝑖 = −50 and 𝜈̄𝑖𝑛 = 56.6. The
electron is at initial position (𝑟, 𝜃) = (1.025, 0) with 𝜔̄𝑐𝑒 = +500 and 𝜈̄𝑒𝑛 = 253.1.
(a-d) The particle trajectory of the whole system at time 𝑡 = 0, 0.34, 0.68 and 1.
Neutral particles are blue and grey. The ion is red, and the electron is black. The
neutrals surrounding the electron-ion pair at 𝑡 = 0 are dark blue. (e) The total
canonical angular momentum of the system and the total angular momentum of the
system. (f) The radial positions of the ion and electron (g) The canonical angular
momentum of the ion and electron. (h) The angular momentum of the neutrals and
the total canonical angular momentum of the system.

ions. The mechanism is insensitive to the polarity of the magnetic field, because
if 𝐵 > 0, Equation (6.12) shows ions move radially outwards and electrons move
radially inwards, so the CAM of the charged particles increases, in which case the
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neutral OAM will again decrease.

Assuming a constant collision frequency and using 𝑣̄𝑛𝜃 = 1/𝑟1/2, Equation (6.12)
can be integrated to give

𝑟𝜎 (𝑡) =
(
3
2

𝜉𝜎

1 + 𝜉2
𝜎

𝑡 + 𝑟
3
2
𝜎 (𝑡 = 0)

) 2
3

. (6.13)

Figures 6.2 (a-c) compare the time dependence of the radial position of an ion from a
simulation with the dependence predicted by Equation (6.13); the ion initial position
is (𝑟, 𝜃) = (1, 0). Figure 6.2 (d) presents the 𝜉𝑖 dependence of the average radial
velocity |𝑣̄𝑖𝑟 | = |𝑟𝑖 (𝑡 = 1) − 𝑟𝑖 (𝑡 = 0) |. The simulation motion and radial velocity
agree well with Equation (6.13) and also confirm that the ion radial velocity has
maximum value when |𝜉 | = 1. The discrepancy of some simulated points in Figure
6.2 (d) is presumed to be from the friction collision force approximation and radial
velocity of colliding neutrals. The friction collision force is derived from averaging
over the finite number of collisions so if the number of collisions is not large, there
will be significant variation in how the velocity of the charged particle decreases.
An additional effect is that at 𝑡 = 0 neutrals have no radial velocity component but
then some neutrals develop a radial velocity upon colliding with charged particles,
and in subsequent collisions this neutral radial velocity can accelerate or decelerate
the radial motion of charged particles. Figure 6.2 (c) presents a simulation with a
small |𝜉𝑖 |. The oscillations from cyclotron motion are visible in the radial motion
because the collision frequency is much smaller than the cyclotron frequency. Even
in this regime, the ion continues to move radially inwards and Equation (6.12) still
holds. In this low collisionality limit, the average radial velocity can be evaluated
by averaging the jumps in guiding center Δr𝑔𝑐 = − 1

𝜔𝑐
𝑧×Δv as a result of collisions;

this corresponds to Equation (6.12) in the small |𝜉𝜎 | limit and yields an average
guiding center radial velocity 𝑣𝜎𝑟 = 𝜉𝜎𝑣𝑛𝜃 .

The radial velocity of neutrals is now derived from the conservation of total system
CAM. Consider a collisional system where at a specific radius neutrals have density
𝑛𝑛 and average azmuthal velocity 𝑢𝑛𝜃 , ions have density 𝑛𝑖 and average azmuthal
velocity 𝑢𝑖𝜃 and electrons have density 𝑛𝑒 and average azmuthal velocity 𝑢𝑒𝜃 . The
CAM density at this radius is thus

P𝜃 = 𝑛𝑛𝑚𝑛𝑟𝑛𝑢𝑛𝜃 + 𝑛𝑖𝑚𝑖𝑟𝑖𝑢𝑖𝜃 + 𝑛𝑒𝑚𝑒𝑟𝑒𝑢𝑒𝜃 +
1
2
𝑛𝑖𝑞𝑖𝐵𝑟

2
𝑖 +

1
2
𝑛𝑒𝑞𝑒𝐵𝑟

2
𝑒 = const. (6.14)
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(a) (b) (c) (d)

Figure 6.2: Verification of the derived radial velocity. (a-c) Comparison between
the simulated motion of one ion in the system (blue circles) and the predicted
motion from Equation (6.13) (red lines). In (a) to (c), respectively, 𝜔̄𝑐𝑖 = −12, -50,
-100, 𝜈̄𝑖𝑛 = 28.8, 53.6, 9.4 which give 𝜉 = −2.40, -1.07, -0.09. (d) Comparison
between the simulated velocity of one ion in the system (blue diamonds and black
circles) and the predicted velocity from Equation (6.12) (red lines) with |𝑣̄𝑖𝑟 | =
|𝑟𝑖 (𝑡 = 1) − 𝑟𝑖 (𝑡 = 0) |. For (c) and the black circles in (d) the simulation has
𝑎̄ = 0.025 and 𝑑 = 4𝑎̄ with N=1183 particles arranged on concentric circles from
𝑟 = 0.3 to 𝑟 = 1.9.

During a small time Δ𝑡, the change of the CAM density is

ΔP𝜃 = 𝑛𝑛𝑚𝑛 (Δ𝑟𝑛𝑢𝑛𝜃 + 𝑟𝑛Δ𝑢𝑛𝜃) + 𝑛𝑖𝑚𝑖 (Δ𝑟𝑖𝑢𝑖𝜃 + 𝑟𝑖Δ𝑢𝑖𝜃) + 𝑛𝑒𝑚𝑒 (Δ𝑟𝑒𝑢𝑒𝜃 + 𝑟𝑒Δ𝑢𝑒𝜃)
+ 𝑛𝑖𝑞𝑖𝐵𝑟𝑖Δ𝑟𝑖 + 𝑛𝑒𝑞𝑒𝐵𝑟𝑒Δ𝑟𝑒 = 0.

(6.15)
The system temporal evolution can be decomposed into two types of interspersed
intervals, namely time intervals where there are collisions and time intervals where
there are no collisions. Only the time intervals when there are collisions could
contribute to angular momentum transport between charged particles and neutrals.
Because the two particles involved in a collision have the same 𝑟 at the time of
their collision and because there is no change in the total momentum of these two
particles as a result of the collision, 𝑛𝑛𝑚𝑛𝑟𝑛Δ𝑢𝑛𝜃 + 𝑛𝑖𝑚𝑖𝑟𝑖Δ𝑢𝑖𝜃 + 𝑛𝑒𝑚𝑒𝑟𝑒Δ𝑢𝑒𝜃 = 0.
Ignoring 𝑛𝑖𝑚𝑖Δ𝑟𝑖𝑢𝑖𝜃 + 𝑛𝑒𝑚𝑒Δ𝑟𝑒𝑢𝑒𝜃 because it is much smaller than the magnetic
parts of the CAM, Equation (6.15) reduces to

𝑛𝑛𝑚𝑛Δ𝑟𝑛𝑢𝑛𝜃 + 𝑛𝑖𝑞𝑖𝐵𝑟𝑖Δ𝑟𝑖 + 𝑛𝑒𝑞𝑒𝐵𝑟𝑒Δ𝑟𝑒 = 0. (6.16)

Assuming 𝑢𝑛𝜃 = 𝑣𝐾 =
√︁
𝐺𝑀/𝑟𝑛 and dividing by Δ𝑡, the radial velocity of neutrals

is obtained as
𝑢𝑛𝑟 = −𝜔𝑐𝑖

𝜔𝐾

𝑚𝑖

𝑚𝑛
(𝜒𝑖𝑢𝑖𝑟 − 𝜒𝑒𝑢𝑖𝑟) (6.17)

where 𝜒𝑖 = 𝑛𝑖
𝑛𝑛

and 𝜒𝑒 =
𝑛𝑒
𝑛𝑛

are the ion and electron density fraction. Assuming
𝜒𝑖 = 𝜒𝑒 = 𝜒, then

𝑢𝑛𝑟 = −𝜒𝜔𝑐𝑖
𝜔𝐾

𝑚𝑖

𝑚𝑛
(𝑢𝑖𝑟 − 𝑢𝑖𝑟) (6.18)
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Using Equation (6.12) this becomes

𝑢𝑛𝑟 = −𝜒𝜔𝑐𝑖
𝑚𝑖

𝑚𝑛

(
𝜉𝑖

1 + 𝜉2
𝑖

− 𝜉𝑒

1 + 𝜉2
𝑒

)
𝑟𝑛. (6.19)

Although we assume a uniform magnetic field for the sake of simplicity, the radial
velocity expression still holds for a non-uniform magnetic field situation.

Figure 3 (a-b) presents the radial motion of 43462 neutrals, 440 ions and 440
electrons initially uniformly distributed between 𝑟 = 0.95 and 𝑟 = 2 while Figure 3
(c-d) shows for comparison a reference situation having neutrals only (no charged
particles). These simulations have an initial velocity which is Kepler plus a small
random velocity (essential for collisions to occur in the neutral-only reference case
since without random velocities, neutrals in circular Kepler orbits would never
collide with each other). Figure 3 (e-f) compares the 𝑢𝑛𝑟 dependence on 𝑟 from
the simulation with the prediction calculated from 𝑢𝑖𝑟 using a modified form of
Equation (6.17) with 𝑢𝑛𝑟 = −𝜔𝑐𝑖

𝜔𝐾

𝑚𝑖
𝑚𝑛

(𝜒𝑖𝑢𝑖𝑟 − 𝜒𝑒𝑢𝑖𝑟), where 𝜒𝑖 = 𝑛𝑖
𝑛𝑛

and 𝜒𝑒 =
𝑛𝑒
𝑛𝑛

becasue the ions and electrons moves to different radius and the fraction of ions
does not equal to the fraction of electrons for some regions. The electric field from
this charge separation is ignored in the simulation. The slight jaggedness of the
prediction (circles) is because of the limited number of charged particles in each
radius bin. The 𝑢𝑛𝑟 from the simulation has excellent agreement with the Equation
(6.17) prediction in Figure 3 (f) between 𝑟 = 1 and 𝑟 = 1.8 where the ionization
fraction is relatively stable. In contrast, Figure 3(h) shows that when there are
no ions 𝑢𝑛𝑟 is zero in the central region and there is only a small diffusive flux
at the edges associated with the density gradient. Comparison between Figures
3 (f) and (h) of 𝑢𝑛𝑟 in the interior region 1 < 𝑟 < 1.8, (i.e., no edge diffusion)
clearly shows that there is a substantial radial inward neutral flow only when ions
are present. For the system with ions, the total system CAM is conserved with
𝑃̄𝜃 = 5.4 × 104 while the total system OAM decreases from 𝐿̄𝜃 (𝑡 = 0) = 5.4 × 104

to 𝐿̄𝜃 (𝑡 = 0.8) = 3.7 × 104. For the neutrals-only system, the total system OAM is
conserved with 𝐿̄𝜃 (𝑡 = 0) = 𝐿̄𝜃 (𝑡 = 0.8) = 5.4 × 104.

The simulation conserves the total energy𝑊 = sum of kinetic and potential energies.
For a single particle in a pure circular Kepler orbit the total energy in dimensioned
parameters is 𝑊 = 𝐿2/(2𝑚𝑟2) − 𝑚𝑀∗𝐺/𝑟 = −𝑚𝑀∗𝐺/(2𝑟) so total energy would
not be conserved if a particle moved from a pure circular Kepler orbit at one radius
to a pure circular Kepler orbit at a different radius. Thus, particles cannot change
radius while simultaneously conserving energy and maintaining a pure circular
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Kepler orbit. In a real disk, the energy released from decrease of particle radial
position would be extracted as blackbody radiation and electrical power expended
in driving the astrophysical jets. This energy release from the disk would enable
particles to maintain nearly circular Kepler orbits as their radial position decreased.
If it is assumed that particles maintain a pure circular Kepler orbit as their radius
decreases, Equation (17) becomes modified to give a 𝑢𝑛𝑟 that is double that of
Equation (17); this comes from assuming that 𝑛𝑛𝑚𝑛Δ (𝑟𝑛𝑢𝑛𝜃) = 1

2𝑛𝑛𝑚𝑛𝑢𝑛𝜃Δ𝑟𝑛 since
for a pure circular Kepler orbit 𝑢𝑛𝜃 ∼ 𝑟−1/2 and 𝑛𝑛𝑚𝑛𝑟𝑛Δ𝑢𝑛𝜃 = −1

2𝑛𝑛𝑚𝑛𝑢𝑛𝜃Δ𝑟𝑛.

The mass accretion rate is ¤𝑀 = −2𝜋𝑟𝑣𝑛𝑟Σ where Σ ≈ 𝑛𝑚𝑛ℎ is the surface density
and ℎ is the scale height. Using the radial velocity of neutrals given by Equation
(6.18), the accretion rate is thus

¤𝑀 = 2𝜋𝜒𝑛𝑟2ℎ |𝑞𝐵|
(

|𝜉𝑖 |
1 + 𝜉2

𝑖

+ |𝜉𝑒 |
1 + 𝜉2

𝑒

)
. (6.20)

The friction collision frequency between charged particles and neutrals taking into
account dipole moment effects of neutrals is 𝜈𝜎𝑛 = 𝑚𝑛

𝑚𝑛+𝑚𝜎 𝑛𝑛⟨𝜎𝑣⟩𝜎𝑛 where typical
values of the rate coefficients are ⟨𝜎𝑣⟩𝑖𝑛 = 1.9 × 10−9 cm3 · s−1 and ⟨𝜎𝑣⟩𝑒𝑛 =

1.0 × 10−15 cm2
(

128𝑘𝑇𝑒
9𝜋𝑚𝑒

) 1
2 [105]. At 𝑟 = 1 a.u., we presume 𝑛𝑛 = 1020 m−3

[106], 𝐵 = 5 mG [5], 𝜒 = 10−12 [107, 108], 𝑇𝑒 = 100 K, ℎ = 0.1 a.u., 𝑚𝑖 =
𝑚𝐻 = 1.66 × 10−27 kg, 𝑚𝑛 = 𝑚𝐻2 = 3.32 × 10−27 kg. Then |𝜉𝑖 | = 2627 and
|𝜉𝑒 | = 9.44. Since |𝜉𝑖 | ≫ |𝜉𝑒 | ≫ 1 Equation (6.19) gives the mass accretion rate as
¤𝑀 = 2𝜋𝜒𝑛𝑟2ℎ |𝑞𝐵/𝜉𝑒 | = 2.9×10−8 𝑀⊙ ·year−1. This agrees well with observations

that the mass accretion rate is 10−9 to 10−7 𝑀⊙ · year−1.

The accumulation of ions at small radius and accumulation of electrons at large
radius establishes a radial electric field 𝐸𝑟 > 0. The radial inward motion of the ions
and outward motion of the electrons corresponds to a radial electric current 𝐽𝑟 < 0.
Because 𝐸𝑟𝐽𝑟 < 0 the process acts as an electric generator and so is a dynamo that
converts gravitational potential energy into electrical energy. The radial electric
field provides an electric force that opposes the radial inward motion of the ions and
outward motion of the electrons. The maximum radial electric field on the disk plane
𝐸𝑟 max = −𝐵𝑣n𝜃 = −𝐵

√︃
𝐺𝑀∗
𝑟

is achieved when the charge accumulation stops; this
maximum will occur if there is no means to drain the charge accumulation and at this
maximum radial electric field the time-average radial velocity of charged particles
goes to zero so the electric current would cease. However, if a mechanism such as
an astrophysical jet circuit exists to drain the charge accumulation, the radial electric
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(a)

(h)(g)

(b) (c) (d)

(f)(e)

Figure 6.3: Simulation results when there are a lot of ions and electrons in the
system. (a, b) The particle trajectory of a system with ions at times 𝑡 = 0 and
0.8. The simulation has 𝑎̄ = 3 × 10−3, 𝑑 = 5𝑎 and 𝜔̄𝑐𝑖 = −50 with 𝑁𝑛 = 43462
neutrals and 𝑁𝑖 = 440 ions and 𝑁𝑒 = 440 electrons located in concentric circles
ranging from 𝑟 = 0.95 to 𝑟 = 2. The initial velocity is a Kepler velocity plus
a random thermal velocity having 10% of the Kepler velocity magnitude, that is
v̄ (𝑡 = 0) =

√︁
1/𝑟𝜃 + 0.1

√︁
1/𝑟𝑣̂𝑟𝑎𝑛𝑑𝑜𝑚 where 𝑣̂𝑟𝑎𝑛𝑑𝑜𝑚 is a random direction vector.

(c, d) The particle trajectory of a reference system having neutrals only at times
𝑡 = 0 and 0.8 with the same initial condition for neutrals as in (a). (e, f) The neutral
radial drift velocity profile and ionization fraction of the system in (a, b). The blue
line is the radial drift velocity profile of neutrals obtained from the simulation. The
average radial velocity at a certain radius 𝑟 is obtained as the average velocity of
particles that are in a bin between radial position 𝑟 − Δ𝑟 and 𝑟 + Δ𝑟 with Δ𝑟 = 0.05.
The blue circles are the radial velocity of neutrals calculated as a function of the ion
radial velocity and electron radial velocity as predicted by a modified expression of
Equation (6.17) with 𝑢𝑛𝑟 = −𝜔𝑐𝑖

𝜔𝐾

𝑚𝑖
𝑚𝑛

(𝜒𝑖𝑢𝑖𝑟 − 𝜒𝑒𝑢𝑖𝑟), where 𝜒𝑖 = 𝑛𝑖
𝑛𝑛

and 𝜒𝑒 =
𝑛𝑒
𝑛𝑛

.
The red solid/dashed line shows the ion/electron fraction versus radial position. (g,
h) The neutral drift velocity profile and neutral surface density 𝑛𝐴 versus radial
position of the system of (c, d). The rippling of 𝑛𝐴 in (g) is from the aliasing of the
radial position bin period and the concentric circle position period and this rippling
smooths out as the random velocity and collisions destroy the imposed initial pattern
of concentric circles of neutrals.

field in the 𝑧 = 0 plane will drive an out-of-plane electric current and this electric
field will be less than 𝐸𝑟 max. The bidirectional jet electric currents are directed away
from the accretion disk in the small radius region (ion accumulation region). The
slight 𝑟 component of the out-of-plane electric current and its associated azimuthal
magnetic field 𝐵𝜙 produce 𝐽𝑟𝐵𝜙 forces that drive bidirectional astrophysical jets
flowing away from the disk plane; this adds to axial pressure gradients that also
drive a flow away from the disk plane [97, 109].



62

(a) (b)

(c)

Figure 6.4: Caltech astrophysical jet experiment. (a) The experiment electrode
structure. there is a conducting disc and a coplanar annulus surrounding the disc
and separated by a small gap. (b) The power supply. Poloidal current is produced
by a power supply imposing a radial electric field between a conducting disc and a
coplanar conducting annulus. (c) Typical jets generated from the experiment. Eight
collimated “spider legs” merge on axis to form a central column jet that collimates
and propagates into the vacuum vessel.

The configuration for generating jets bears topological resemblance to the Caltech
astrophysical jet experiment [110–112] as shown in Figure 6.4. In this setup, a
poloidal current is induced by a power supply that applies a radial electric field
between a conducting disc positioned in the 𝑧 = 0 plane and a coplanar conducting
annulus encircling the disc, with a small gap between them. Figure 6.4 (a) illus-
trates the electrode structure comprising a conducting disc and an adjacent coplanar
annulus, separated by a narrow gap, housed within a vacuum chamber. The circuit
diagram in Figure 6.4 (b) presents the connection of the power supply to the disc
and the annulus. The power supply ionizes the gas puffed and generates a poloidal
electric current. Figure 6.4 (c) shows a typical experimental jet formation sequence,
starting from the formation of “spider legs” due to the poloidal current, progressing
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to collimation, and forming a jet. Notably, the accumulation of ions at smaller radii
and electrons at larger radii mirrors the setup of the astrophysical jet experiment,
enabling the generation of a poloidal current and the propulsion of a jet from the
disc.

6.4 Conclusions
(i) The fundamental conserved quantity is the canonical angular momentum 𝑚𝑟𝑣𝜃 +
𝑞𝜓/2𝜋, not the ordinary angular momentum 𝑚𝑟𝑣𝜃 . Ordinary angular momentum
and canonical angular momentum are identical for a neutral but are very different
for charged particles.

(ii) Collisions transfer neutral ordinary angular momentum to charged particle
canonical angular momentum so neutrals spiral inward.

(iii) The accumulation of ions at small radius and electrons at large radius creates a
radial electric field. Since 𝐸𝑟𝐽𝑟 < 0, the disk acts as a gravity-powered dynamo.

(iv) The accumulation of ions at small radius drives an axially outward out-of-plane
poloidal electric current along the poloidal magnetic field at small radius. This
current and its associated magnetic field produce forces that drive bidirectional
astrophysical jets flowing away from the disk. The increasing energy in the jets as
they lengthen is powered by the gravitational disk dynamo.
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C h a p t e r 7

MECHANISM FOR GENERATION OF ANGULAR
MOMENTUM IN AN ASTROPHYSICAL SYSTEM

1. Zhang, Y. & Bellan, P. M. Mechanism for generation of angular momentum
in an astrophysical system. (to be submitted) (2024).

Why astrophysical entities rotate and so have angular momentum has long been a
mystery. In this chapter, we utilized N-body simulations to investigate a weakly
ionized plasma system featuring radially free-fall neutrals, aiming to unravel the
mechanisms behind their rotation. Upon colliding with the free-falling neutrals, ions
and electrons exhibit disparate mean velocities. This velocity difference causes ions
and electrons to decrease their canonical angular momentum 𝑃𝜃 = 𝑚𝑟𝑣𝜃 + 𝑞𝜓/2𝜋
while at the same time the neutrals gain ordinary angular momentum 𝐿 = 𝑚𝑟𝑣𝜃 .
The net result is that the total system canonical angular momentum is conserved as
predicted by Langrangian mechanics for an axisymmetric system. These findings
demonstrate that a weakly-ionized, initially non-rotating cloud of neutral particles
will spontaneously acquire rotation during infall. Furthermore, quantitative scaling
analyses forecast an angular momentum generation rate capable of converting neutral
infall motion into neutral Keplerian rotation in the outer regions of a protoplanetary
accretion disk.

7.1 Introduction
Rotation is common in astrophysics: protoplanetary disks, molecular clouds, and
galaxies rotate about a star or proto-stellar core while planets rotate both about
their axis and about a star. This indicates that angular momentum generation is
ubiquitous yet why this is so is an unanswered question. A specific example of this
question is what causes the transition from free-fall motion to Keplerian rotation in
a protoplanetary disk. Measurements of the protoplanetary disk rotation velocity
profile show that in the inner region particles are in Kepler rotation, but in the outer
region particles are radially infalling [3, 113, 114]. How particle motion changes
from infalling radial motion to azimuthal Kepler motion has not been explained.

Magnetic fields are common in astrophysical systems and have milligauss magni-
tudes in protoplanetary disks [5] and microgauss magnitudes in molecular clouds
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[115]. Lagrangian mechanics shows that when charged particles are in azimuthally
symmetric fields, the conserved quantity is not the ordinary angular momentum
(OAM) 𝐿 = 𝑚𝑟𝑣𝜃 , but rather the canonical angular momentum (CAM) 𝑃𝜃 =

𝑚𝑟𝑣𝜃 + 𝑞𝜓/2𝜋 where 𝑞 is the charge and 𝜓 is the poloidal magnetic flux [116].
The CAM magnetic term 𝑞𝜓/2𝜋 is typically orders of magnitude larger than the
OAM term 𝑚𝑟𝑣𝜃 for Kepler motion so, even in very weakly ionized systems where
the fraction of charged particles is extremely small, the charged particles contain
substantial CAM. Because 𝜓 depends on position, the total canonical angular mo-
mentum of the charged particles will change if ions and electrons radially separate.
However, if the global system is axisymmetric, then the total system CAM is con-
served so any change in total charged particle CAM must be compensated by an
equal and opposite change in the OAM of the much larger number of neutral par-
ticles. Thus, any mechanism that causes a radial separation of ions from electrons
provides a means for either generation or shedding of neutral particle OAM.

MHD is often used to model accretion disk dynamics but MHD is a fluid model
based on the assumption that ions and electrons have nearly the same velocities
perpendicular to the magnetic field. This is a simplifying assumption asserted in
the derivation of the MHD Ohm’s law which is not necessarily correct. Deviation
from this assumption, known as the Hall term, can significantly affect accretion disk
formation dynamics [117, 118]; it has been shown that the Hall term can spin up an
accretion disk [117].

Bellan [119] proposed a complete electric circuit for an accretion disk acting as an
electrical power supply driving an astrophysical jet and showed that the dynamics
could be interpreted in terms of CAM conservation. The 𝑧 direction is defined by
the disk rotation sense and a cylindrical coordinate system (𝑟, 𝜃, 𝑧) is used. There
are poloidal magnetic fields (𝐵𝑟 , 𝐵𝑧) and toroidal magnetic fields (𝐵𝜃) as well as
poloidal electric currents (𝐽𝑟 , 𝐽𝑧) and toroidal electric currents (𝐽𝜃). The accretion
disk acts as a gravitationally-powered dynamo (effective battery) driving the jet
poloidal current. Symmetry arguments show that in the disk the magnetic field
is axial and the current is radial. The inner accretion disk has 𝐵𝑧 negative while
the outer disk radius has 𝐵𝑧 positive. However, 𝐽𝑟 is negative throughout the disk
givng a resulting torque −𝑟𝐽𝑟𝐵𝑧 which creates angular momentum at large radius
but removes (sheds) angular momentum at small radius.

In a previous paper [116] we demonstrated an angular momentum shedding mech-
anism based on Kepler-orbiting neutral particles in the accretion disk inner region
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colliding both with each other and with charged particles. This first principles cal-
culation of particle dynamics avoids imposing fluid assumptions inherent in MHD
and so captures basic physics phenomena missing from MHD. The collisions were
observed to cause a radial separation of the charged particles and this involved a
conversion of the neutral particle OAM into charged particle CAM in a manner
such that total system CAM was conserved. Quantitative scaling predicted a mass
accretion rate consistent with observations.

Here we consider the opposite situation, namely generation of neutral OAM in the
outer disk region, i.e., spinning up. We assume that neutrals are initially not spinning
but instead are radially falling inwards in the gravity of a star. Using a 2D N-body
simulation of a weakly ionized accretion disk, we show that an initially zero angular
momentum system develops angular momentum as a result of collisions between
neutrals and charged particles. The key principle is that because of the large ion to
electron mass ratio and the similarity between neutral and ion mass, neutrals entrain
ions but not electrons. The electrons are instead nearly frozen into the magnetic
field. Collisions between infalling neutrals and ions cause the ions to have nearly
the same inward radial motion as the infalling neutrals whereas electrons are left
behind. The radially inward moving ions experience a magnetic force which gives
the ions an azimuthal velocity. However, since the ions are collisionally bound to
the neutrals, this ion azimuthal velocity causes the neutrals to develop an azimuthal
velocity also. At the particle level, collisions convert a change in charged particle
CAM into a change in neutral OAM. These changes are manifested by the neutrals
spinning up (OAM increase) and the ions and electrons radially separating (CAM
decrease). This process can equivalently be explained using fluid theory by stating
that a magnetic torque −𝑟𝐽𝑟𝐵𝑧 spins up the system. Quantitative scaling shows
that this mechanism efficiently converts free fall motion into Kepler rotation in the
protoplanetary accretion disk outer region. Similar processes may cause angular
momentum generation in molecular clouds and galaxies.

7.2 Simulation Method
The simulation has a central body with mass 𝑀∗ at the origin of a cylindrical
coordinate system {𝑟, 𝜃, 𝑧} and a uniform magnetic field B = 𝐵𝑧 with 𝐵 > 0 so
𝜓 = 𝐵𝜋𝑟2 is positive. Surrounding the central body are a large number of particles
represented by hard disks restricted to the 𝑧 = 0 plane. When not colliding, the
equation of motion for a particle with mass 𝑚𝜎 and charge 𝑞𝜎 is



67

𝑚𝜎
𝑑v
𝑑𝑡

= 𝑞𝜎v × B − 𝐺𝑀∗𝑚𝜎
𝑟2 𝑟 . (7.1)

In contrast to our previous paper [116] where a reference radius of 1 a.u. was
used to denote examination of the inner region of a protoplanetary disk, here we
use a reference radius 𝑟0 = 100 a.u. to denote examination of the outer region
of a protoplanetary disk. As before, the Kepler velocity is 𝑣𝐾0 =

√︁
𝐺𝑀∗/𝑟0 and

the Kepler frequency is 𝜔𝐾0 =

√︂
𝐺𝑀∗

/
𝑟3

0 . Normalized quantities are defined as

𝑟 = 𝑟/𝑟0, v̄ = v/𝑣𝐾0, 𝑡 = 𝜔𝐾0𝑡, and 𝜔̄𝑐𝜎 = 𝜔𝑐𝜎/𝜔𝐾0 where 𝜔𝑐𝜎 = 𝑞𝜎𝐵/𝑚𝜎. With
these definitions Equation (7.1) becomes

𝑑v̄
𝑑𝑡

= 𝜔̄𝑐𝜎v̄ × 𝑧 − 1
𝑟2 𝑟 . (7.2)

Assuming the magnetic field is 1 𝜇G at 100 a.u. and using 𝑞𝑖 = 1.6 × 10−19C,
and 𝑚𝑖 = 𝑚𝐻 = 1.66 × 10−27kg the ion cyclotron frequency is 𝜔𝑐𝑖 = 9.6 × 10−3s−1

whereas the Kepler frequency is 2.0 × 10−10s−1 for 𝑀∗ = 𝑀⊙. Thus, 𝜔̄𝑐𝑖 >
107 while for electrons the magnitude of 𝜔̄𝑐𝑒 will be even larger. The Kepler
frequency decays as ∼ 𝑟− 3

2 and assuming 𝐵 decays as ∼ 𝑟−3 it is seen that 𝜔𝑐𝑖/𝜔𝐾 =

4.8 × 107(𝑟/100a.u.)−
3
2 . The ion cyclotron frequency thus would only equal the

Kepler frequency at 𝑟 = 1.3 × 107a.u. which would be much larger than the typical
2.5 × 105a.u. interstellar distance.

The hard-disk particle model means that particles do not interact except when
colliding [116]. The particle radius is 𝑎̄ = 0.001. Unless specified otherwise
the number of particles is 𝑁 = 95, 240. Masses are normalized to the neutral
particle mass. The ion mass is set to be the same as the neutral particle mass so
𝑚̄𝑖 = 𝑚𝑖/𝑚𝑛 = 1. The normalized electron mass is set to 𝑚̄𝑒 = 𝑚𝑒/𝑚𝑛 = 0.01.
The simulation starts at 𝑡 = 0 with particles located in concentric circles ranging
from 𝑟 = 1 to 𝑟 = 2 (i.e., 100 to 200 a.u. in un-normalized distance). Particles are
assumed to be initially in free fall and so have an initial velocity v̄ = −

√︁
2/𝑟𝑟. A

Boris method [104] with a time step Δ𝑡 = 10−4 is used for pushing the particles.

In this simulation, our emphasis lies in demonstrating fundamental concepts and
particle-level physics. Therefore, we simplify the magnetic field by setting it as a
constant. This approach aids in easier analysis and interpretation of results. In real
situations, the magnetic field should evolve with plasma motion.
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The total system dimensionless CAM is

𝑃̄𝜃 =
𝑃𝜃

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑
𝑗=1

(
𝑚 𝑗𝑟 𝑗𝑣𝜃 𝑗 + 1

2𝑞 𝑗𝐵𝑟
2
𝑗

)
𝑚𝑛𝑟0𝑣𝐾0

=

𝑁∑︁
𝑗=1

(
𝑚̄ 𝑗𝑟 𝑗 𝑣̄𝜃 𝑗 +

1
2
𝜔̄𝑐 𝑗𝑟

2
𝑗

)
(7.3)

and the total system dimensionless OAM is

𝐿̄𝜃 =
𝐿𝜃

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑
𝑗=1
𝑚 𝑗𝑟 𝑗𝑣𝜃 𝑗

𝑚𝑛𝑟0𝑣𝐾0
=

𝑁∑︁
𝑗=1
𝑚̄ 𝑗𝑟 𝑗 𝑣̄𝜃 𝑗 . (7.4)

7.3 Main Results
Figure 7.1 displays simulation results when there is one ion (red dot), one electron
(black dot) and 95,238 neutrals (blue dots). The ion is initially at (𝑟, 𝜃) = (1.2, 0),
𝜔̄𝑐𝑖 = +30, and 𝜈̄𝑖𝑛 = 45 where 𝜈̄𝑖𝑛 is the effective collision frequency between the ion
and neutrals. The electron is at initial position (𝑟, 𝜃) = (1.2, 0.01) with 𝜔̄𝑐𝑒 = −3000
and 𝜈̄𝑒𝑛 = 238. The effective collision frequency 𝜈𝜎𝑛 is determined [116] from the
numerical simulation by counting how many collisions 𝑆 are experienced by an ion
or an electron in a time 𝑇 and then using 𝜈𝜎𝑛 = 𝑆

𝑇
𝑚𝑛

𝑚𝑛+𝑚𝜎 . Figures 7.1 (a-c) show
the system at 𝑡 = 0, 0.2, and 0.4 and indicate that neutrals move radially inward as
manifested by the shrinking inner and outer radii of the blue annulus. Figure 7.1 (d)
displays the time dependence of the respective radial positions of the ion and of the
electron. The ion, entrained by the infalling neutrals, moves radially inwards while
the electron, approximately frozen to the magnetic field, is left behind at nearly its
initial radial position. Figure 7.1 (e) displays the time dependence of the total system
CAM 𝑃̄𝜃 as defined by Equation (7.3), the CAM of the ion and electron 𝑃̄𝑖𝜃 + 𝑃̄𝑒𝜃 ,
and the OAM of the neutrals 𝑃̄𝑛𝜃 . The total system CAM remains constant, verifying
that the entire system conserved quantity is the system total CAM. The CAM of the
ion and electron decreases, and thus the OAM of the neutrals increases, as shown in
Figure 7.1 (e). Charged particle CAM is effectively transferred to neutral particle
OAM as the system evolves.

We now explain why an ion and an electron develop different radial drift velocities
upon colliding with neutrals and then relate this to angular momentum transport.
Dimensioned variables will be used for this explanation.

The equation of motion for an ensemble of charged particles 𝜎 moving in a sea of
neutral particles is

𝑑u𝜎
𝑑𝑡

≈ 𝜔𝑐𝜎u𝜎 × 𝑧 − 𝜈𝜎𝑛 (u𝜎 − u𝑛) (7.5)
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ion
electron
neutral

(a) (b) (c)

(d) (e) (f)

Figure 7.1: Simulation results when there is an electron-ion pair in the system.
The ion and electron are initially at 𝑟 = 1.2 and are separated by a small azimuthal
angle; 𝜔̄𝑐𝑖 = +30, 𝜈̄𝑖𝑛 = 45, 𝜔̄𝑐𝑒 = −3000 and 𝜈̄𝑒𝑛 = 238. (a-c) The system at
𝑡 = 0, 0.2, and 0.4. Neutral particles are blue, the ion is red, and the electron is
black. (d) The radial positions of the ion and electron. (e) The total system CAM
𝑃̄𝜃 , and the total neutral OAM 𝑃̄𝑛𝜃 , and the total CAM of the electron-ion pair
𝑃̄𝑖𝜃 + 𝑃̄𝑒𝜃 . (f) Comparison between the simulated velocity ratio 𝑢𝑖𝑟/𝑢𝑛𝑟 of the ion
and the predicted velocity from Equation (7.8) (blue lines). This is obtained from
different simulations by varying 𝜔𝑐𝑖 and 𝜈𝑖𝑛.

where 𝜈𝜎𝑛 is the effective frictional drag collision frequency between the charged
particle ensemble and the neutrals and u𝑛 is the mean velocity of the neutrals.
This effective frictional drag has meaning for an ensemble of charged particles,
but not for an individual particle as an individual particle has discrete hard body
collisions whereas the ensemble experiences an average over these collisions. This
average can be considered as the continuous drag frictional collision frequency. The
gravitational force on the charged particle is ignored because the gravitational force
is seven orders of magnitude smaller than the magnetic force. The exact solution
for Equation (7.5) is

u𝜎 = (u𝐿 cos (𝜔𝑐𝜎𝑡) − 𝑧 × u𝐿 sin (𝜔𝑐𝜎𝑡)) 𝑒−𝜈𝜎𝑛𝑡 +
𝜉2
𝜎u𝑛 + 𝜉𝜎u𝑛 × 𝑧

1 + 𝜉2
𝜎

(7.6)

where 𝜉 = 𝜈𝜎𝑛/𝜔𝑐𝜎. On time-averaging, the terms containing cos (𝜔𝑐𝜎𝑡) and
sin (𝜔𝑐𝜎𝑡) vanish so the time-averaged velocity of the ensemble of charged particles
𝜎 is
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u𝜎 =
𝜉2
𝜎u𝑛 + 𝜉𝜎u𝑛 × 𝑧

1 + 𝜉2
𝜎

. (7.7)

We presume that the neutrals are in free-fall motion so u𝑛 is in the negative 𝑟
direction. The radial component of the time-averaged charged particle velocity is
thus

𝑢𝜎𝑟 =
𝜉2
𝜎

1 + 𝜉2
𝜎

𝑢𝑛𝑟 (7.8)

which is negative.

Equation (7.8) shows that a charged particle is entrained with the neutrals if 𝜉𝜎 ≫ 1
but is radially at rest if 𝜉𝜎 ≪ 1. Using 𝜔̄𝑐𝑖 = +30 and 𝜈̄𝑖𝑛 = 45 gives 𝜉𝑖 = 1.5
so 𝑢𝑖𝑟 = 0.7𝑢𝑛𝑟 while using 𝜔̄𝑐𝑒 = −3000 and 𝜈̄𝑒𝑛 = 238 gives 𝜉𝑒 = 0.08 so
𝑢𝑒𝑟 = 0.006𝑢𝑛𝑟 . The ions are thus nearly entrained with the infalling neutrals
whereas the electrons are nearly stationary. This causes ions to drift radially inwards
whereas electrons are left behind. The radial motion difference between ions and
electrons reduces total charged particle CAM and so neutrals gain OAM due to the
conservation of overall system CAM.

Figure 7.1 (f) compares the 𝜉𝑖 dependence of 𝑢𝑖𝑟/𝑢𝑛𝑟 observed in different simula-
tions with the Equation (7.8) prediction. The velocity is obtained at 𝑡 = 0.2 from the
simulations which are arranged to be different by varying the cyclotron frequency
𝜔𝑐𝑖 and the collision frequency 𝜈𝑖𝑛. The radial velocity from the simulations agrees
well with Equation (7.8).

The predicted neutral particle OAM generation rate is derived by considering the
total system CAM in a thin annulus having nominal radius 𝑟 and containing colliding
neutrals, electrons, and ions. The CAM in this annulus is

𝑃𝜃 = 𝑚𝑛

𝑁𝑛∑︁
𝑗=1
𝑟𝑛 𝑗𝑣𝑛𝜃 𝑗 +

𝑞𝑖

2𝜋

𝑁𝑖∑︁
𝑗=1
𝜓(𝑟𝑖 𝑗 ) +

𝑞𝑒

2𝜋

𝑁𝑒∑︁
𝑗=1
𝜓(𝑟𝑒 𝑗 ) (7.9)

where 𝑁𝑛, 𝑁𝑖, and 𝑁𝑒 are the respective numbers of neutrals, ions, and electrons and
𝑟𝑛 𝑗 is the position of the 𝑗 𝑡ℎ neutral, 𝑣𝑛𝜃 𝑗 is the 𝜃 component of the velocity of the
𝑗 𝑡ℎ neutral, etc. The OAM of the charged particles has been dropped because it is
negligible compared to the magnetic part of their CAM. Because a colliding pair of
particles are at the same position at the instants before and after they collide, 𝜓 does
not change during a collision because it is a function of position. Thus, because 𝜓
and OAM are conserved in a collision, a collision does not change the CAM of a
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pair of colliding particles. Finally, the CAM of individual particles is individually
conserved for time intervals between collisions. Thus, the total system CAM is
conserved in the collisional axisymmetric system.

This conservation can be expressed as

Δ𝑃𝜃 =

𝑁𝑛∑︁
𝑗=1

Δ
(
𝑚𝑛𝑟𝑛 𝑗𝑣𝑛𝜃 𝑗

)
+ 𝑞𝑖

2𝜋

𝑁𝑖∑︁
𝑗=1

Δ𝜓(𝑟𝑖 𝑗 ) +
𝑞𝑒

2𝜋

𝑁𝑒∑︁
𝑗=1

Δ𝜓(𝑟𝑒 𝑗 ) = 0 (7.10)

and remains true after a short time Δ𝑡 during which the 𝑗 𝑡ℎ particle of species
𝜎 makes the incremental displacement Δ𝑟 𝑗 = 𝑣𝜎𝑟 𝑗Δ𝑡 in which case Δ𝜓(𝑟𝜎 𝑗 ) =
𝜕𝜓

𝜕𝑟
𝑣𝜎𝑟 𝑗Δ𝑡 = 2𝜋𝐵𝑟𝜎 𝑗𝑣𝜎𝑟 𝑗Δ𝑡.

Since Δ𝑡 is small, 𝑟𝑛 𝑗 ≃ 𝑟𝑖 𝑗 ≃ 𝑟𝑒 𝑗 ≃ 𝑟 so Equation (7.10) can be re-arranged as

𝑁𝑛∑︁
𝑗=1

Δ
(
𝑚𝑛𝑟𝑣𝑛𝜃 𝑗

)
Δ𝑡

= −𝑟𝐵 ©­«𝑞𝑖
𝑁𝑖∑︁
𝑗=1
𝑣𝑖𝑟 𝑗 + 𝑞𝑒

𝑁𝑒∑︁
𝑗=1
𝑣𝑒𝑟 𝑗

ª®¬ . (7.11)

On defining the volume of the annulus to be 𝑉 , the respective neutral, ion, and
electron densities are 𝑛𝑛 = 𝑁𝑛/𝑉, 𝑛𝑖 = 𝑁𝑖/𝑉 and 𝑛𝑒 = 𝑁𝑒/𝑉 so Equation (7.11) can
be written as

Δ (𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃)
Δ𝑡

= −𝑟𝐵 (𝑞𝑖𝑛𝑖𝑢𝑖𝑟 + 𝑞𝑒𝑛𝑒𝑢𝑒𝑟) (7.12)

where 𝑢𝑛𝜃 = 𝑁−1
𝑛

∑𝑁𝑛
𝑗=1 𝑣𝑛𝜃 𝑗 is the mean neutral 𝜃 velocity and 𝑢𝑖𝑟 , 𝑢𝑒𝑟 are the

mean radial velocities of ions and electrons. The radial current density is 𝐽𝑟 =

𝑞𝑖𝑛𝑖𝑢𝑖𝑟 + 𝑞𝑒𝑛𝑒𝑢𝑒𝑟 so
Δ (𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃)

Δ𝑡
= −𝑟𝐽𝑟𝐵. (7.13)

From the particle point of view, Equation (7.12) shows that ions and electrons drift
at different radial velocities and convert their CAM into neutral particle OAM. From
the macroscopic (fluid) point of view, Equation (7.13) shows that magnetic torque
caused by the radial current density interacting with the magnetic field generates the
fluid OAM.

Figure 7.2 displays simulation results with a large number of ions and electrons.
Figure 7.2 (a-c) show the system at 𝑡 = 0, 0.2, and 0.4. Figure 7.2 (d) presents

the average radial position of ions and electrons with ⟨𝑟𝑖⟩ =
𝑁𝑖∑
𝑗=1
𝑟𝑖 𝑗

/
𝑁𝑖 and ⟨𝑟𝑒⟩ =

𝑁𝑒∑
𝑗=1
𝑟𝑒 𝑗

/
𝑁𝑒. Ions drift inward, but electrons are left behind. The total CAM is

conserved during this process, as presented in Figure 7.2 (e). With the decrease of
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charged particle CAM, neutral OAM increases by an equal amount. Figure 7.2 (f)
shows the neutral particle OAM generation rate at time 𝑡 = 0.2; this rate is in good
agreement with Equation (7.12).

(a) (b) (c)

(d) (e) (f)

ion
electron
neutral

Figure 7.2: Simulation results when there are a lot of ions and electrons in the
system. (a, b, c) Particle trajectories at 𝑡 = 0, 0.2 and 0.4 for 𝑁𝑛 = 91430 neutrals,
𝑁𝑖 = 1905 ions and 𝑁𝑒 = 1905 electrons initially located in concentric circles
ranging from 𝑟 = 1 to 𝑟 = 2. The ions and electrons are initially in adjacent pairs
separated by a small azimuthal angle. The initial velocity is a free-fall velocity. (d)
The average radial position of ions and electrons. (e) The total system CAM, total
neutral OAM, and total charged particle CAM. (f) Comparison of simulated radial
angular momentum density change rate with theoretical prediction by Equation
(7.12) at 𝑡 = 0.2.

From Equations (7.12) and (7.13), the sign of the angular momentum generation rate
depends on the magnetic field direction. As a result, the rotation direction should be
the same as the magnetic field direction for angular momentum generation by ions
entrained by infalling neutrals. This magnetic field dependence has been observed
previously from a Hall-MHD simulation of the disk formation showing that the disk
rotation direction is the same as the initial magnetic field direction [117].

We now estimate the characteristic time needed to generate a Keplerian angular
momentum density. Substituting Δ (𝑛𝑛𝑚𝑛𝑟𝑛𝑢𝑛𝜃) = 𝑛𝑛𝑚𝑛𝑟𝑛𝑣𝐾 in Equation (7.12)
and using Equation (7.8), the characteristic time is
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𝜏 ∼ 1

− 𝑚𝑖
𝑚𝑛
𝜒𝜔𝑐𝑖

𝑢𝑛𝑟
𝑣𝐾

(
𝜉2
𝑖

1+𝜉2
𝑖

− 𝜉2
𝑒

1+𝜉2
𝑒

) (7.14)

where 𝜒 = 𝑛𝑖/𝑛𝑛 is the ionization fraction.

For free fall neutrals, 𝑢𝑛𝑟 = −
√︁

2𝐺𝑀∗/𝑟𝑛 = −
√

2𝑣𝐾 giving

𝜏 ∼ 1
√

2 𝑚𝑖
𝑚𝑛
𝜒𝜔𝑐𝑖

(
𝜉2
𝑖

1+𝜉2
𝑖

− 𝜉2
𝑒

1+𝜉2
𝑒

) . (7.15)

To check the efficiency of this angular momentum generation mechanism, we com-
pare the characteristic time with the free fall time 𝜏 𝑓 𝑟𝑒𝑒 𝑓 𝑎𝑙𝑙 ∼ 𝑟𝑛/𝑢𝑛𝑟 =

√
2
/
𝜔𝐾

𝜏

𝜏 𝑓 𝑟𝑒𝑒 𝑓 𝑎𝑙𝑙
∼ 1

𝑚𝑖
𝑚𝑛
𝜒
𝜔𝑐𝑖
𝜔𝐾

(
𝜉2
𝑖

1+𝜉2
𝑖

− 𝜉2
𝑒

1+𝜉2
𝑒

) . (7.16)

Let us consider the transition from free-fall to Kepler motion at 𝑟 = 100 a.u.
in a protoplanetary accretion disk using physically realistic approximations for
collision frequencies and ionization fraction. The collision frequency between
charged particles and neutrals, taking into account dipole moment effects of neutrals,
is 𝜈𝜎𝑛 =

𝑚𝑛
𝑚𝑛+𝑚𝜎 𝑛𝑛⟨𝜎𝑣⟩𝜎𝑛 where typical values of the rate coefficients [105] are

⟨𝜎𝑣⟩𝑖𝑛 = 1.9 × 10−9 cm3 · s−1 and ⟨𝜎𝑣⟩𝑒𝑛 = 1.0 × 10−15 cm2
(

128𝑘𝑇𝑒
9𝜋𝑚𝑒

) 1
2 . At

𝑟 = 100 a.u., we presume 𝑛𝑛 = 1014 m−3 [106] and 𝐵 = 1 𝜇G [5]. No direct
measurement of the ionization fraction exists but numerical models [107, 108,
120] predict 𝜒 is 10−9 to 10−6. We assume 𝜒 = 10−7, 𝑇𝑒 = 10 K, 𝑚𝑖 = 𝑚𝐻 =

1.66 × 10−27 kg, 𝑚𝑛 = 𝑚𝐻2 = 3.32 × 10−27 kg. Then |𝜉𝑖 | = 14 and |𝜉𝑒 | = 0.014.
Thus, 𝜏

/
𝜏 𝑓 𝑟𝑒𝑒 𝑓 𝑎𝑙𝑙 ∼ 0.42. This result is fairly insensitive to the precise values of 𝜉𝑖

and of 𝜉𝑒 so long as the former is much larger than unity and the latter is much smaller
than unity. As the characteristic time is around the order of the free fall time, this
angular momentum mechanism can efficiently cause initially free-falling neutrals
to develop Kepler rotation. This creation of angular momentum is energetically
favorable since the kinetic energy of an infalling neutral at a radius 𝑟 is twice that
of the same neutral undergoing Kepler rotation at this radius. Angular momentum
is not conserved, but this is not a problem because what counts, namely canonical
angular momentum, is conserved.

We now consider how these results relate to an actual measured accretion disk
system. From Equation (7.12), Δ

Δ𝑡
𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃 = 𝑑

𝑑𝑡
𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃 = 𝜕

𝜕𝑡
𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃 + ∇ ·
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Figure 7.3: Rotation velocity radial distribution profile of L1527 IRS from 50
a.u. to 100 a.u. The scattered points are observation measurements extracted from
reference [114]. The red line is a power law fit with 𝑟−1.17. Reasonable assumptions
on the magnetic field and ionization fraction can generate this power law fit.

𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃u. For steady state and only considering the radial derivative, 𝜕
𝜕𝑡
𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃 =

0 and ∇ · 𝑛𝑛𝑚𝑛𝑟𝑢𝑛𝜃u ≈ 1
𝑟
𝜕
𝜕𝑟
𝑟𝑛𝑛𝑚𝑛𝑢𝑛𝑟𝑟𝑢𝑛𝜃 . Assuming that ions are tightly coupled

with the neutrals while electrons are not, 𝑢𝑖𝑟 ≈ 𝑢𝑛𝑟 and 𝑢𝑒𝑟 ≈ 0. Then,

1
𝑟

𝜕

𝜕𝑟

(
𝑟2𝑛𝑛𝑢𝑛𝑟𝑚𝑛𝑢𝑛𝜃

)
= −𝑟𝑛𝑛𝑢𝑛𝑟𝑞𝑖𝐵𝑖𝜒. (7.17)

ALMA measurements [114] of the rotation velocity of accretion disk L1527 IRS
are plotted in Figure 7.3 and show that the rotation velocity from 50 a.u. to 100
a.u. is fit by the power law dependence 𝑢𝑛𝜃 ∝ 𝑟 𝑘 where 𝑘 = −1.17. Assuming that
the other factors in Equation7.17 follow the power laws 𝑟2𝑛𝑛𝑢𝑛𝑟 ∝ 𝑟𝛼, 𝜒 ∝ 𝑟 𝛽, and
𝐵 ∝ 𝑟𝜂 it is seen that Equation7.17 implies 𝜂+ 𝛽 = 𝑘−1 = −2.17.Models by Woitke
et al. [120] and by Walsh et al. [108] predict that the ionization fraction increases
with radius with 𝛽 ≈ 1 which consequently implies the quite plausible magnetic
decay factor 𝜂 ≃ −3. A detailed test of this model could be made by simultaneous
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measurements of 𝑘 , 𝜂 and 𝛽.

This mechanism also sheds light on the origin of the angular momentum of other
astrophysical systems, such as galaxies [121] and molecular clouds [122], where the
rotation may be a clue to the physical conditions under which these systems formed.
Certainly, the angular momentum related rotation is an important test of any theory
for the origin of rotating astrophysical systems [122].

In summary, we have presented a robust angular momentum generation mechanism
that operates in a weakly ionized plasma having a magnetic field. Ions and electrons
colliding with neutrals drift inwards at different velocities because of a magnetic
field and so convert their CAM into neutral OAM by magnetic torque. The process
is shown in the diagram of Figure 7.4.

Figure 7.4: Diagram of the spinning up mechanism in a disk system. Radial
neutral flow entrains ions but not electrons so generate a radial current. The magnetic
toque from the J × B force spins up the system. This diagram also applies to
a 3D collapsing cloud system where inhomogeneous angular momentum may be
generated along different axes while the total angular momentum will be a net in a
certain orientation due to inhomogeneity and magnetic field direction.
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C h a p t e r 8

SUMMARY AND FUTURE WORKS

8.1 Summary
This dissertation describes investigations of two big questions: how solar flare
is generated and how accretion disk transports angular momentum and generates
astrophysical jets. Through experiments and associated models, significant insights
have been attained. The key findings include:

The dependence of the magnetic Rayleigh-Taylor instability on magnetic fields
We observed that magnetic Rayleigh-Taylor instability developed on a laboratory
plasma loop and showed that magnetic Rayleigh-Taylor instability wavelength in-
creases with the increase of background magnetic field strength. This provides a
possible explanation of the different observed plume dynamics in the solar promi-
nences and also points out a possible magnetic field measurement method from the
magnetic Rayleigh-Taylor instability wavelength.

Laboratory nanoflares generated from braided magnetic flux ropes
We replicated the braided feature of solar coronal loops. Transient, localized 7.6-keV
X-ray bursts and a several-kilovolt voltage spike are observed in braided magnetic
flux ropes of a 2-eV plasma when the braid strand radius is choked down to be
at the kinetic scale by either MHD kink or magnetic Rayleigh–Taylor instabilities.
The energy burst is of nanoflare feature with multiple separated observed X-ray
bursts observed from multiple strands breaking at different time. This sequence of
observations reveals a cross-scale coupling from MHD to non-MHD physics that is
likely responsible for generating solar energetic particles and X-ray bursts.

Equilibrium of braided magnetic flux ropes with the same direction current
We provided a systematic method for constructing braided magnetic flux rope equi-
libria. This method generates a double helix equilibrium with net axial current
which is characteristic of observed solar loops and of laboratory-produced braided
magnetic flux ropes. To the best of our knowledge, no previous model has been
able to describe braided structures with net axial current and instead has only de-
scribed braided structures with no net axial current; these no-net current structures
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had equal-magnitude positive and negative axial currents. The net-axial-current
equilibrium presented here reproduces the observed braided structure of the double
helix nebula and is expected to be a powerful tool in other contexts.

Accretion disk angular momentum shedding mechanism
We proposed an angular momentum transport mechanism based only on the col-
lisions between neutrals and charged particles and the basic conserved quantity
canonical angular momentum. Collisions between neutrals and charged particles
cause: (i) ions to move radially inwards, (ii) electrons to move radially outwards,
(iii) neutrals to lose ordinary angular momentum, and (iv) charged particles to gain
canonical angular momentum. Neutrals thus spiral inward due to their decrease
of ordinary angular momentum. Quantitative scaling of the model using plausible
disk density, temperature, and magnetic field strength gives an accretion rate of 3 ×
10−8 solar mass per year, which is in good agreement with observed accretion rates.
This mechanism also naturally provides a gravitational dynamo process converting
gravitational energy into electric field energy that powers astrophysical jets.

Mechanism for generation of angular momentum in an astrophysical system
We presented a mechanism for the spontaneous generation of angular momentum in
astrophysical contexts. This mechanism depends on the combined presence of gravi-
tational and magnetic fields and generates angular momentum via collisions between
small numbers of charged particles and numerous, free-falling neutral particles. The
mechanism is demonstrated by a 2D simulation of an N-body weakly-ionized sys-
tem where ions and electrons develop different mean velocities upon colliding with
free-falling neutrals. This velocity difference causes ions and electrons to decrease
their canonical angular momentum while at the same time the neutrals gain ordinary
angular momentum. The net result is that the total system canonical angular mo-
mentum is conserved as predicted by Langrangian mechanics for an axisymmetric
system. This shows that a weakly-ionized initially non-rotating cloud of neutral par-
ticles will spontaneously start rotating when infalling. Quantitative scaling predicts
an angular momentum generation rate sufficient to convert neutral infall motion into
neutral Keplerian rotation in the outer region of a protoplanetary accretion disk.

8.2 Future Work
Following the thesis work, numerous intriguing avenues for further investigation
have emerged. This thesis has laid the groundwork for exploring particle acceleration
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resulting from the coupling between MHD instabilities and kinetic instabilities,
the dynamics of braided magnetic flux ropes, and the particle-level dynamics of
accretion disk. Here are several potential projects that could be pursued in the
future:

Kinetic simulation of the particle acceleration process
Experimental measurements in Chapter 4 have provided insights into electron accel-
eration, although ion acceleration remains unmeasured due to limitations in detector
size. However, understanding ion acceleration in detail is crucial. Particularly, the
energy distribution of accelerated ions is of significant interest. Expanding on this
experimental setup, a kinetic simulation can be developed to closely replicate the
experimental conditions. This simulation enables a more detailed investigation of
the particle acceleration process for both electrons and ions. Specifically, we can
extract the energy spectrum of charged particles and compare it with the power law
distribution of solar energetic particles.

Experiment verification of braided magnetic flux ropes equilibrium
In Chapter 6, we developed a helical current wire model capable of attaining a double
helix equilibrium with currents flowing in the same direction. This equilibrium
configuration has the potential to be reproduced in laboratory settings using two
braided current wires. Initial experiments, conducted by Adele Payman, Joshua
Morgan, and myself, utilized direct current, but we encountered challenges due to
limitations in the exerted force. Typically, the magnetic force involved is relatively
weak, requiring the generation of high currents to overcome the bending force
exerted by the materials. Currently, we are in the process of designing a pulsed
power setup aimed at generating a significantly stronger current and magnetic force.

Self-similar braided magnetic flux ropes
In magnetohydrodynamics, there is not an inherent scale, meaning the braiding
behavior persists until reaching the kinetic scale, specifically the ion skin depth.
A self-similar object exhibits exact or approximate similarity to a portion of itself.
Figure 8.1 illustrates the self-similar structure of braided magnetic flux ropes, where
this structure implies that one flux rope within a system of two braided magnetic
flux ropes can be composed of a second level of two braided magnetic flux ropes.
The magnetic field energy of such a system is described by the equation:∫

𝐵2

2𝜇0
𝑑3𝑟 =

𝐿𝐼2

2
=
𝐿2𝐼2

2𝐿
=
Φ2

2𝐿
(8.1)
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where 𝐿 represents the system inductance and Φ = 𝐿𝐼 denotes the magnetic flux. In
a system conserving magnetic flux, higher inductance corresponds to lower magnetic
field energy. Hence, a flux-conserving system tends to exhibit higher inductance.
The self-similar braided magnetic flux rope structure possesses higher inductance
compared to an unbraided flux rope structure. Consequently, the braided structure
represents a lower-energy configuration than an unbraided structure containing the
same magnetic flux, indicating that it is energetically favorable for systems to exhibit
braided configurations in order to conserve flux.

To my knowledge, no study of self-similar braided magnetic flux ropes has been
done. However, using the current wire model discussed in Chapter 5, an equilibrium
for the self-similar structure can be constructed.

It is also possible to explore the self-similar structure in laboratory experiments.
Braided structures have been successfully generated in the solar loop experiment.
The strand radius is very close to ion skin depths, so we do not have the observation
of a self-similar structure. However, the strand radius closely approximates ion
skin depths, precluding the observation of a self-similar structure. Achieving self-
similarity requires the strand to have a larger radius compared to the ion skin depth.
Although the current setup does not facilitate this observation, it is conceivable to
design an experiment specifically tailored to study the self-similar structure.

Accretion disk magnetic field
Measurements indicate that the magnetic field within an accretion disk is around
the miligauss level at a distance of a few a.u. If we presume that this field originates
solely from the central star, which has a sun radius equivalent to 0.00465 a.u., and
follows a decay proportional to 𝑟−3, then a magnetic field of 1 tesla would be required
at the star surface. This is significantly greater than the average surface magnetic
field of a star, which typically measures around 1 gauss. Consequently, it suggests
that the magnetic field within the accretion disk must stem from an alternative
source.

To date, there is no comprehensive model detailing the generation of magnetic fields
within accretion disks. In Chapters 6 and 7, our focus primarily centers on the
radial motion of charged particles. However, by considering the azimuthal motion
of these particles, it becomes feasible to generate an azimuthal current capable
of driving a poloidal magnetic field. By deriving the distribution of azimuthal
current density, denoted as 𝐽𝜃 (𝑟, 𝑧), it becomes possible to calculate the magnetic
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Figure 8.1: Self-similar braided magnetic flux ropes. (a) double helix braided
magnetic flux ropes (b) self-similar braided magnetic flux ropes of (a). The blue
flux rope is composed a new double helix braided magnetic flux ropes.

field under a specific current distribution. This process can be executed utilizing a
Green’s function method akin to the one employed in Chapter 5.

A comprehensive model for the dynamics in the accretion disk
In our previous studies, we have examined various physical processes within the ac-
cretion disk independently, including angular momentum transport in the Keplerian
motion region, angular momentum generation in the free-fall region, and the gener-
ation of astrophysical jets. My aim is to integrate the physics of different regions to
elucidate the complete dynamics of particle motion and establish a closed current
circuit for the astrophysical jets within the accretion disk, as depicted in Figure 8.2.
To accomplish this objective, it is imperative to develop a coherent 3D three-fluid
simulation of the disk. Such a simulation will allow us to unveil the dynamics of
different species and the associated physics across various regions of the accretion
disk.
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Figure 8.2: A comprehensive diagram for the dynamics in the accretion disk.
Dense weakly ionized gas inside dotted line ellipse. The accumulation of ions at
smaller radius and accumulation of electrons at bigger radius drives currents away
from the z-axis. These currents drive astrophysical jets away from the z-axis and
flow back to large radius along poloidal flux surfaces. This Figure is adapted from
[97].
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A p p e n d i x A

GREEN’S FUNCTION METHOD

A.1 Double Helix Current Wire Magnetic Field Calculation
We consider two helically braided current wires each with uniform current density
on a circular cross-section having radius 𝑏 in the 𝑧 = 0 plane; these cross-sections
are the red circles in Figure 6.3(b). These wires will be referred to as wire #1
and wire #2. The respective centers of the two circular cross sections of wires
#1 and #2 are, respectively, at (𝑟, 𝜃) = (𝑎, 0) and (𝑟, 𝜃) = (𝑎, 𝜋). Through each
circular cross-section there is a uniform axial current density 𝐽𝑧 (𝑟′, 𝜙′) = 𝐽𝑧0 for
(𝑥 ± 𝑎)2 + 𝑦2 ≤ 𝑏2 and 𝐽𝑧 (𝑟′, 𝜙′) = 0 elsewhere. Using Equations (5.3-5.5), the
magnetic field at 𝑎 − 𝑏 ≤ 𝑟 ≤ 𝑎 + 𝑏 can be derived; this magnetic field is needed to
calculate the force on the wires as prescribed by Equation 5.6.

Consider the radial magnetic field 𝐵𝑟,#1 at 𝑎 − 𝑏 < 𝑟 < 𝑎 + 𝑏 generated from
wire #1 which has its circular cross-section in the 𝑧 = 0 plane centered at 𝑟 = 𝑎

and 𝜃 = 0. The integration surface 𝑆′ with finite 𝐽𝑧0 is the interior of the circle
cross-section defined by (𝑟′ cos(𝜑′) − 𝑎)2 + (𝑟′ sin(𝜑′))2 ≤ 𝑏2. For a given 𝑟′ with
𝑎−𝑏 < 𝑟′ < 𝑎+𝑏, the integration interval for 𝜑′ is from [−𝑐 (𝑟′) , 𝑐 (𝑟′)], where these
limits define the edge of the circle cross-section. The limits ±𝑐 (𝑟′) are determined
by defining three vectors: a which goes from 𝑥 = 0, 𝑦 = 0 to the center of the circle
𝑥 = 𝑎, 𝑦 = 0, r′ which has magnitude 𝑟′ and goes from 𝑥 = 0, 𝑦 = 0 to the upper
edge of the circle, and b which has magnitude 𝑏 and goes from the center of the
circle 𝑥 = 𝑎, 𝑦 = 0 to the tip of r′. Thus r′ − a = b so 𝑟′2 − 2r′ · a + 𝑎2 = 𝑏2. Using
r′ · a = 𝑟′𝑎 cos(𝑐 (𝑟′)) gives 𝑐 (𝑟′) = arccos

(
𝑟 ′2+𝑎2−𝑏2

2𝑎𝑟 ′

)
.

To simplify the notation, we define 𝑅 = 𝑛𝑘𝑟 , 𝜉 = 𝑛𝑘𝑟′,

𝑄𝑛 (𝑅) = 𝐼′𝑛 (𝑅)
𝑛𝑘 (𝑎+𝑏)∫
𝑅

𝑑𝜉𝜉2𝐾′
𝑛 (𝜉) sin [𝑛𝑐 (𝜉/𝑛𝑘)] + 𝐾′

𝑛 (𝑅)
𝑅∫

𝑛𝑘 (𝑎−𝑏)

𝑑𝜉𝜉2𝐼′𝑛 (𝜉) sin [𝑛𝑐 (𝜉/𝑛𝑘)]

(A.1)
and

𝑊𝑛 (𝑅) = 𝐼𝑛 (𝑅)
𝑛𝑘 (𝑎+𝑏)∫
𝑅

𝑑𝜉𝜉2𝐾′
𝑛 (𝜉) sin [𝑛𝑐 (𝜉/𝑛𝑘)]+𝐾𝑛 (𝑅)

𝑅∫
𝑛𝑘 (𝑎−𝑏)

𝑑𝜉𝜉2𝐼′𝑛 (𝜉) sin [𝑛𝑐 (𝜉/𝑛𝑘)] .

(A.2)
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Using Equation (5.3), we can then express the radial magnetic field from wire #1 in
a more compact form as

𝐵𝑟,#1 (𝑟, 𝜃, 𝑧) =
𝑎+𝑏∫
𝑟

𝑟′𝑑𝑟′
𝑐(𝑟 ′)∫

−𝑐(𝑟 ′)

𝑑𝜑′
𝜇0𝐽𝑧0

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐾′
𝑛 (𝑛𝑘𝑟′) 𝐼′𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

+
𝑟∫

𝑎−𝑏

𝑟′𝑑𝑟′
𝑐(𝑟 ′)∫

−𝑐(𝑟 ′)

𝑑𝜑′
𝜇0𝐽𝑧0

𝜋
𝑘2𝑟′

∞∑︁
𝑛=1

𝑛𝐼′𝑛 (𝑛𝑘𝑟′) 𝐾′
𝑛 (𝑛𝑘𝑟) sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜑′)]

=
2𝜇0𝐽𝑧0

𝜋𝑘

∞∑︁
𝑛=1

1
𝑛3 sin [𝑛 (𝜃 − 𝑘𝑧)] 𝑄𝑛 (𝑅).

(A.3)

Wire #2 is centered at (𝑟, 𝜃) = (𝑎, 𝜋). By replacing sin [𝑛 (𝜃 − 𝑘𝑧)] with sin [𝑛 (𝜃 − 𝑘𝑧 − 𝜋)] =
(−1)𝑛 sin [𝑛 (𝜃 − 𝑘𝑧)] in Equation (A.3), we can derive the radial magnetic field
𝐵𝑟,#2 generated from wire #2 as

𝐵𝑟,#2 =
2𝜇0𝐽𝑧0

𝜋𝑘

∞∑︁
𝑛=1

(−1)𝑛

𝑛3 sin [𝑛 (𝜃 − 𝑘𝑧)] 𝑄𝑛 (𝑅) . (A.4)

Adding the radial magnetic fields of wires #1 and #2, the radial magnetic field
generated from the two wires is

𝐵𝑟 (𝑟, 𝜃, 𝑧) =
4𝜇0𝐽𝑧

𝜋𝑘

∞∑︁
𝑛=2𝑖
𝑖=1

1
𝑛3 sin [𝑛 (𝜃 − 𝑘𝑧)] 𝑄𝑛 (𝑅). (A.5)

Similarly, 𝐵𝜃 and 𝐵𝑧 are calculated as below

𝐵𝜃 (𝑟, 𝜃, 𝑧) =
2𝜇0𝐽𝑧

𝜋𝑟

𝑟∫
𝑎−𝑏

𝑑𝑟′𝑟′𝑐 (𝑟′) + 4𝜇0𝐽𝑧

𝜋𝑘2𝑟

∞∑︁
𝑛=2𝑖
𝑖=1

1
𝑛3 cos [𝑛 (𝜃 − 𝑘𝑧)]𝑊𝑛 (𝑅) (A.6)

𝐵𝑧 (𝑟, 𝜃, 𝑧) =
2𝜇0𝐽𝑧𝑘

𝜋

𝑎+𝑏∫
𝑟

𝑑𝑟′𝑟′𝑐 (𝑟′) − 4𝜇0𝐽𝑧

𝜋𝑘

∞∑︁
𝑛=2𝑖
𝑖=1

1
𝑛3 cos [𝑛 (𝜃 − 𝑘𝑧)]𝑊𝑛 (𝑅) .

(A.7)
The magnetic field at 𝑟 < 𝑎 − 𝑏 can be obtained by referring back to Equation (5.2)
and realizing that all the current is such that 𝑟 < 𝑟′ and this current is located in
the range 𝑎 − 𝑏 < 𝑟′ < 𝑎 + 𝑏. This implies that the integration uses the 𝑟 < 𝑟′

prescription for the magnetic field and is over the range 𝑎 − 𝑏 < 𝑟′ < 𝑎 + 𝑏. This
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can be accomplished by replacing the 𝑟 limits in the two integrals on the right hand

side of Equation (A.3) by 𝑎 − 𝑏, i.e.,
𝑎+𝑏∫
𝑟

+
𝑟∫

𝑎−𝑏
→

𝑎+𝑏∫
𝑎−𝑏

+
𝑎−𝑏∫
𝑎−𝑏

→
𝑎+𝑏∫
𝑎−𝑏

. Similarly the

magnetic field at 𝑟 > 𝑎 + 𝑏 is obtained by replacing the 𝑟 limits in the two integrals
on the right hand side of Equation (A.3) by 𝑎 + 𝑏. These replacements should be
used for evaluating 𝑄𝑛 (𝑅) and 𝑊𝑛 (𝑅) when calculating the magnetic field in the
region 𝑟 < 𝑎 − 𝑏 or in the region 𝑟 > 𝑎 − 𝑏.

A.2 Magnetic Force Calculation
For the magnetic force in Equation (5.7-5.9), the integration region 𝑆 is (𝑥 − 𝑎)2 +

𝑦2 ≤ 𝑏2, so
∫
𝑑𝑆 =

𝑎+𝑏∫
𝑎−𝑏

𝑟𝑑𝑟

𝑐(𝑟)∫
−𝑐(𝑟)

𝑑𝜃. From Equation (A.5-A.7), 𝐵𝑟 and (𝑘𝑟𝐵𝑧 − 𝐵𝜃) sin 𝜃+

𝐵𝑟 cos 𝜃 are an odd function of 𝜃, so 𝑓𝑦 = 0 and 𝑓𝑧 = 0. Using Equation (5.7), 𝑓𝑥
can be calculated as

𝑓𝑥 =
𝑎+𝑏∫
𝑎−𝑏

𝑟𝑑𝑟

𝑐(𝑟)∫
−𝑐(𝑟)

𝑑𝜃𝐽𝑧0 [(𝑘𝑟𝐵𝑧 − 𝐵𝜃) cos 𝜃 − 𝐵𝑟 sin 𝜃] . (A.8)

We define the dimensionless force 𝑓𝑥 = 𝑓𝑥

/(
𝜇0𝐽

2
𝑧0𝜋

2𝑏4

4𝜋𝑎

)
and then use Equations

(A.5)-(A.7) in Equation (A.8) to obtain

𝑓𝑥 =
32𝑎

𝜋2𝑘3𝑏4


𝑘3

2

𝑎+𝑏∫
𝑎−𝑏

𝑑𝑟

(
−

𝑟∫
𝑎−𝑏

𝑑𝑟′𝑟′𝑐 (𝑟′) + 𝑘2𝑟2
𝑎+𝑏∫
𝑟

𝑑𝑟′𝑟′𝑐 (𝑟′)
)

sin 𝑐 (𝑟)

−
∞∑
𝑛=2𝑖
𝑖=1

𝑛𝑘 (𝑎+𝑏)∫
𝑛𝑘 (𝑎−𝑏)

𝑑𝑅


𝑛 cos 𝑐( 𝑅𝑛𝑘 ) sin 𝑛𝑐( 𝑅𝑛𝑘 )−sin 𝑐( 𝑅𝑛𝑘 ) cos 𝑛𝑐( 𝑅𝑛𝑘 )

𝑛4(𝑛2−1)
(
1 +

(
𝑅
𝑛

)2
)
𝑊𝑛 (𝑅)

+ cos 𝑐( 𝑅𝑛𝑘 ) sin 𝑛𝑐( 𝑅𝑛𝑘 )−𝑛 sin 𝑐( 𝑅𝑛𝑘 ) cos 𝑛𝑐( 𝑅𝑛𝑘 )
𝑛4(𝑛2−1)

𝑅
𝑛
𝑄𝑛 (𝑅)




.

(A.9)
The dimensionless force 𝑓𝑥 is calculated numerically, and the summation on 𝑛 stops
when the relative error |Δ 𝑓𝑥/ 𝑓𝑥 | < 10−5.

A.3 Curl of Magnetic Force
Static equilibrium ∇𝑃 = J × B requires the magnetic force to be curl-free, that is
∇ × (J × B) = 0.

Let us consider a general case for a helical current density J (𝑟, 𝜃, 𝑧) = 𝐽𝑧 (𝑟, 𝑢)
[
𝑘𝑟𝜃 + 𝑧

]
,

where 𝑢 = 𝜃 − 𝑘𝑧 is the helical parameter. The magnetic field can be calculated
from Equations (5.3-5.5) as B (𝑟, 𝜃, 𝑧) = B (𝑟, 𝑢) = 𝐵𝑟𝑟 + 𝐵𝜃𝜃 + 𝐵𝑧𝑧. As the system
is helically symmetric with physical quantities depending only on 𝑟 and 𝑢 = 𝜃 − 𝑘𝑧,
it is seen that 𝜕

𝜕𝜃
= 𝜕

𝜕𝑢
and 𝜕

𝜕𝑧
= −𝑘 𝜕

𝜕𝑢
= −𝑘 𝜕

𝜕𝜃
. The curl can be calculated as
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∇ × (J × B) =
(
𝜕

𝜕𝑟
(𝐽𝑧𝑟𝐵𝑟) −

𝜕

𝜕𝜃
𝐽𝑧 (𝑘𝑟𝐵𝑧 − 𝐵𝜃)

)
1
𝑟

[
𝑘𝑟𝜃 + 𝑧

]
. (A.10)

From ∇ · B = 0, it is seen that 𝜕
𝜕𝑟

(𝑟𝐵𝑟) − 𝜕
𝜕𝜃

(𝑘𝑟𝐵𝑧 − 𝐵𝜃) = 0, so Equation (A.10)
can be expressed as

∇ × (J × B) =
[
𝑟𝐵𝑟

𝜕

𝜕𝑟
𝐽𝑧 − (𝑘𝑟𝐵𝑧 − 𝐵𝜃)

𝜕

𝜕𝜃
𝐽𝑧

]
1
𝑟

[
𝑘𝑟𝜃 + 𝑧

]
(A.11)

and the curl-free condition becomes

𝑟𝐵𝑟
𝜕

𝜕𝑟
𝐽𝑧 − (𝑘𝑟𝐵𝑧 − 𝐵𝜃)

𝜕

𝜕𝜃
𝐽𝑧 = 0. (A.12)

The uniform-current density distribution assumed here automatically satisfies Equa-
tion (A.12). In order to have a static equilibrium ∇𝑃 = J × B for a non-uniform
current density, the current distribution and associated magnetic field would have to
satisfy Equation (A.12). If ∇ × (J × B) ≠ 0, a torque will be exerted on the plasma
which would drive vortex flows. These flows could develop a steady-state if this
torque is balanced by a viscous drag.



95

A p p e n d i x B

CANONICAL ANGULAR MOMENTUM CONSERVATION

In an electromagnetic system exhibiting azimuthal symmetry, the electric field E
and the magnetic field B does not depend on the azimuthal angle 𝜃. The same is
true for the magnetic potential A and the electric potential 𝜙. The poloidal magnetic
flux 𝜓 (𝑟, 𝑧) =

∫
B · 𝑑S is defined as the magnetic flux across a circular crosssection

centered at (𝑟, 𝜃, 𝑧) = (0, 0, 𝑧). As
∫

B · 𝑑S =
∫
(∇ × A) · 𝑑S =

∮
A · 𝑑l = 2𝜋𝑟𝐴𝜃 ,

𝜓 (𝑟, 𝑧) = 2𝜋𝑟𝐴𝜃 . (B.1)

B.1 One Particle System
Considering a charged particle with mass 𝑚 and charge 𝑞 in this system with a
massive central body 𝑀∗ at the center, the lagrangian is

𝐿 =
1
2
𝑚

(
¤𝑟2 + 𝑟2 ¤𝜃2 + ¤𝑧2

)
+ 𝐺𝑀∗𝑚√

𝑟2 + 𝑧2
+ 𝑞

(
¤𝑟𝐴𝑟 + 𝑟 ¤𝜃𝐴𝜃 + ¤𝑧𝐴𝑧

)
− 𝑞𝜙. (B.2)

The canonical angular momentum is defined as 𝑃𝜃 = 𝜕𝐿

𝜕 ¤𝜃 . Defining the azimuthal
velocity 𝑣𝜃 = 𝑟 ¤𝜃 and using Equation B.1,

𝑃𝜃 = 𝑚𝑟𝑣𝜃 +
𝑞

2𝜋
𝜓. (B.3)

From Lagrange’s equation,

𝑑

𝑑𝑡
𝑃𝜃 =

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝜃
=
𝜕𝐿

𝜕𝜃
= 0. (B.4)

Then,
𝑃𝜃 = 𝑚𝑟𝑣𝜃 +

𝑞

2𝜋
𝜓 = Const. (B.5)
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B.2 Two Particles System
Considering a system with two particles, particle 𝑖 and particle 𝑗 , the lagrangian is

𝐿 =
1
2
𝑚

(
¤𝑟2
𝑖 + 𝑟2

𝑖
¤𝜃2
𝑖 + ¤𝑧2

𝑖

)
+ 𝐺𝑀∗𝑚𝑖√︃

𝑟2
𝑖
+ 𝑧2

𝑖

+ 𝑞𝑖
(
¤𝑟𝑖𝐴𝑟𝑖 + 𝑟𝑖 ¤𝜃𝑖𝐴𝜃𝑖 + ¤𝑧𝑖𝐴𝑧𝑖

)
− 𝑞𝑖𝜙𝑖

+ 1
2
𝑚

(
¤𝑟2
𝑗 + 𝑟2

𝑗
¤𝜃2
𝑗 + ¤𝑧2

𝑗

)
+
𝐺𝑀∗𝑚 𝑗√︃
𝑟2
𝑗
+ 𝑧2

𝑗

+ 𝑞 𝑗
(
¤𝑟 𝑗 𝐴𝑟 𝑗 + 𝑟 𝑗 ¤𝜃 𝑗 𝐴𝜃 𝑗 + ¤𝑧 𝑗 𝐴𝑧 𝑗

)
− 𝑞 𝑗𝜙 𝑗

+ 𝑓𝑖 𝑗

(��r𝑖 − r 𝑗
��2)

(B.6)

where 𝑓𝑖 𝑗
(��r𝑖 − r 𝑗

��2) is the interaction potential between particle i and j.

As
𝜕 𝑓𝑖 𝑗

𝜕𝜃𝑖
=

𝜕 𝑓𝑖 𝑗

𝜕
��r𝑖 − r 𝑗

��2 𝜕
��r𝑖 − r 𝑗

��2
𝜕

(
𝜃𝑖 − 𝜃 𝑗

) 𝜕 (
𝜃𝑖 − 𝜃 𝑗

)
𝜕𝜃𝑖

(B.7)

and
𝜕 𝑓𝑖 𝑗

𝜕𝜃 𝑗
=

𝜕 𝑓𝑖 𝑗

𝜕
��r𝑖 − r 𝑗

��2 𝜕
��r𝑖 − r 𝑗

��2
𝜕

(
𝜃𝑖 − 𝜃 𝑗

) 𝜕 (
𝜃𝑖 − 𝜃 𝑗

)
𝜕𝜃 𝑗

= −
𝜕 𝑓𝑖 𝑗

𝜕𝜃𝑖
(B.8)

𝜕𝐿

𝜕𝜃𝑖
+ 𝜕𝐿

𝜕𝜃 𝑗
=
𝜕 𝑓𝑖 𝑗

𝜕𝜃𝑖
+
𝜕 𝑓𝑖 𝑗

𝜕𝜃 𝑗
= 0. (B.9)

Using Lagrange’s equation,

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕 ¤𝜃𝑖
+ 𝜕𝐿

𝜕 ¤𝜃 𝑗

)
=
𝜕𝐿

𝜕𝜃𝑖
+ 𝜕𝐿

𝜕𝜃 𝑗
= 0, (B.10)

so the total canonical angular momentum

𝑃𝜃𝑖 + 𝑃𝜃 𝑗 =
𝜕𝐿

𝜕 ¤𝜃𝑖
+ 𝜕𝐿

𝜕 ¤𝜃 𝑗
= 𝑚𝑖𝑟𝑖𝑣𝜃𝑖 +

𝑞

2𝜋
𝜓𝑖 + 𝑚 𝑗𝑟 𝑗𝑣𝜃 𝑗 +

𝑞

2𝜋
𝜓 𝑗

= Const

. (B.11)

B.3 N Particles System
For a system with N particles, the lagrangian is

𝐿 =

𝑁∑︁
𝑖

[
1
2𝑚

(
¤𝑟2
𝑖
+ 𝑟2

𝑖
¤𝜃2
𝑖
+ ¤𝑧2

𝑖

)
+ 𝐺𝑀∗𝑚𝑖√

𝑟2
𝑖
+𝑧2
𝑖

+ 𝑞𝑖
(
¤𝑟𝑖𝐴𝑟𝑖 + 𝑟𝑖 ¤𝜃𝑖𝐴𝜃𝑖 + ¤𝑧𝑖𝐴𝑧𝑖

)
− 𝑞𝑖𝜙𝑖 +

𝑁∑
𝑗>𝑖

𝑓𝑖 𝑗

(��r𝑖 − r 𝑗
��2) ]

(B.12)
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where 𝑓𝑖 𝑗

(��r𝑖 − r 𝑗
��2) is the interaction potential between particle i and j. From

Newton’s third law, every force in nature there is an equal and opposite reaction, so
𝜕 𝑓𝑖 𝑗
𝜕𝜃𝑖

+ 𝜕 𝑓𝑖 𝑗
𝜕𝜃 𝑗

= 0. Using Lagrange’s equation,

𝑑

𝑑𝑡

𝑁∑︁
𝑖

𝜕𝐿

𝜕 ¤𝜃𝑖
=

𝑁∑︁
𝑖

𝜕𝐿

𝜕𝜃𝑖
=

𝑁∑︁
𝑖

𝑁∑︁
𝑗>𝑖

𝜕 𝑓𝑖 𝑗

(��r𝑖 − r 𝑗
��2)

𝜕𝜃𝑖
= 0, (B.13)

so the total canonical angular momentum

𝑃𝜃 =

𝑁∑︁
𝑖

𝜕𝐿

𝜕 ¤𝜃𝑖
=

𝑁∑︁
𝑖

𝑚𝑖𝑟𝑖𝑣𝑖𝜃 +
𝑞𝑖

2𝜋
𝜓𝑖 = Const. (B.14)
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A p p e n d i x C

CONNECTING THE PARTICLE-LEVEL PHYSICS TO
FLUID-LEVEL PHYSICS

In Chapter 6, we study accretion disk dynamics by analyzing the motion of single
particles and deriving the neutral radial velocity and mass accretion rates based
on the conservation of canonical angular momentum. Most researchers study the
accretion disk from single MHD equations and Non-ideal MHD effects [123]. This
appendix bridges the gap between particle-level motion and fluid-level motion. We
derive the radial velocity and mass accretion rate from fluid equations, providing a
comprehensive understanding of the underlying dynamics from different aspects.

C.1 The Radial Velocity of Charged Particles and Neutrals Derived from
Fluid Equations.

The equation of motion for neutrals is

𝜌𝑛
𝑑u𝑛
𝑑𝑡

= −∇𝑃𝑛 − 𝜌𝑛∇Φ − p𝑛𝑖 − p𝑛𝑒 (C.1)

where Φ is the gravitational potential, and p𝑛𝑖 and p𝑛𝑒 are the rate of momentum
exchange due to collisions between the neutrals and the ions/electrons, respectively.
In the astrophysics community, the notation p𝑛𝜎 is commonly used to represent
momentum exchange, while in the plasma physics community, the notation R𝑛𝜎 is
typically employed for the same purpose.

Similar equations apply to the charged species, but have the addition of Lorentz
forces,

𝜌𝑖
𝑑u𝑖
𝑑𝑡

= −∇𝑃𝑖 − 𝜌𝑖∇Φ + 𝑍𝑒𝑛𝑖 (E + u𝑖 × B) − p𝑖𝑛 (C.2)

𝜌𝑒
𝑑u𝑒
𝑑𝑡

= −∇𝑃𝑒 − 𝜌𝑒∇Φ − 𝑒𝑛𝑒 (E + u𝑒 × B) − p𝑒𝑛. (C.3)

where E and B are the electric and magnetic fields. 𝑍 is the ion charge number.

The rate of the momentum exchange/drag forces are given by

p𝑖𝑛 = −p𝑛𝑖 = 𝑛𝑖𝑚𝑖𝜈𝑖𝑛 (u𝑖 − u𝑛) = 𝑛𝑖
𝑚𝑖𝑚𝑛

𝑚𝑖 + 𝑚𝑛
𝑛𝑛⟨𝜎𝑣⟩𝑖𝑛 (u𝑖 − u𝑛) (C.4)
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and

p𝑒𝑛 = −p𝑛𝑒 = 𝑛𝑒𝑚𝑒𝜈𝑒𝑛 (u𝑒 − u𝑛) = 𝑛𝑒
𝑚𝑒𝑚𝑛

𝑚𝑒 + 𝑚𝑛
𝑛𝑛⟨𝜎𝑣⟩𝑒𝑛 (u𝑒 − u𝑛) (C.5)

where typical values [105] are

⟨𝜎𝑣⟩𝑖𝑛 = 1.9 × 10−9cm3 · s−1 (C.6)

and

⟨𝜎𝑣⟩𝑒𝑛 = 10−15cm2
(
128𝑘𝐵𝑇
9𝜋𝑚𝑒

) 1
2

= 8.3 × 10−10
(
𝑇

𝐾

) 1
2

cm3 · s−1. (C.7)

The timescale for the macroscopic evolution of the fluid is generally much longer
than the timescale for collisional or magnetic forces to alter a charged particle’s
momentum. Therefore, we can ignore all terms in the momentum equations for the
charged species except for the Lorentz and collisional terms. This means that for
ions and elections, we have

𝑍𝑒𝑛𝑖 (E + u𝑖 × B) − p𝑖𝑛 = 0 (C.8)

−𝑒𝑛𝑒 (E + u𝑒 × B) − p𝑒𝑛 = 0. (C.9)

The charged particle fluid velocities can be solved for from Equations C.8 and C.9
as

u𝜎 =
1

1 + 𝜉2
𝜎

[
𝜉𝜎

(
E
𝐵
+ u𝑛 ×

B
𝐵

)
+ E × B

𝐵2 + 𝜉2
𝜎u𝑛 +

(u𝜎 · B) B
𝐵2

]
(C.10)

For the motion in the midplane with u𝜎 · B = 0, this solution reduces to

u𝜎 =

𝜉𝜎

(
E
𝐵
+ u𝑛 × B

𝐵

)
+ E×B

𝐵2 + 𝜉2
𝜎u𝑛

1 + 𝜉2
𝜎

. (C.11)

If the electric field is zero, this velocity reduces to

u𝜎 =
𝜉𝜎u𝑛 × B

𝐵
+ 𝜉2

𝜎u𝑛
1 + 𝜉2

𝜎

(C.12)

This is the same as Equation 6.11 in this thesis.

Using charge neutrality 𝑛𝑒 = 𝑍𝑛𝑖 and current density J = 𝑒𝑛𝑒 (u𝑖 − u𝑒), and sum-
ming C.8 and C.9, we have

J × B = p𝑖𝑛 + p𝑒𝑛. (C.13)
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The equation of motion for neutrals becomes

𝜌𝑛
𝑑u𝑛
𝑑𝑡

= −∇𝑃𝑛 − 𝜌𝑛∇Φ + J × B. (C.14)

The azimuthal component of Equation C.14 is

𝜌𝑛

(
𝜕𝑢𝑛𝜃

𝜕𝑡
+ 𝑢𝑛𝑟

𝜕𝑢𝑛𝜃

𝜕𝑟
+ 𝑢𝑛𝑧

𝜕𝑢𝑛𝜃

𝜕𝑧
+ 𝑢𝑛𝜃𝑢𝑛𝑟

𝑟

)
= −𝐽𝑟𝐵𝑧 . (C.15)

As particles in accretion disk evolve as Kepler velocity with 𝑢𝑛𝜃 =

√︃
𝐺𝑀∗
𝑟

, then,
𝜕𝑢𝑛𝜃
𝜕𝑡

= 0, 𝜕𝑢𝑛𝜃
𝜕𝑧

= 0, 𝜕𝑢𝑛𝜃
𝜕𝑟

= −𝑢𝑛𝜃2𝑟 . This becomes

𝜌𝑛
𝑢𝑛𝑟𝜔𝐾

2
= −𝐽𝑟𝐵𝑧 (C.16)

so using 𝐽𝑟 = 𝑛𝑒𝑒 (𝑢𝑖𝑟 − 𝑢𝑒𝑟) and 𝜌𝑛 = 𝑛𝑛𝑚𝑛 this becomes

𝑢𝑛𝑟 =
−2𝑛𝑒𝑒 (𝑢𝑖𝑟 − 𝑢𝑒𝑟) 𝐵𝑧

𝜌𝑛𝜔𝐾
= −2

𝑛𝑒

𝑛𝑛

𝑚𝑖

𝑚𝑛

(𝑢𝑖𝑟 − 𝑢𝑒𝑟)
𝜔𝐾

𝑒𝐵𝑧

𝑚𝑖
(C.17)

Defining the ion cyclotron frequency 𝜔𝑐𝑖 = 𝑒𝐵𝑧/𝑚𝑖 and the ionization fraction
𝜒 = 𝑛𝑒/𝑛𝑛 this becomes

𝑢𝑛𝑟 = −2𝜒
𝜔𝑐𝑖

𝜔𝐾

𝑚𝑖

𝑚𝑛
(𝑢𝑖𝑟 − 𝑢𝑒𝑟) (C.18)

This is similar to Equation 6.18 with a factor 2 difference. Factor 2 is from keeping
particles as Kepler velocity. Detailed discussion for factor 2 can be found in the
paragraph before Equation 6.20. Similarly, the mass accretion rate can be derived
from the neutrals’ radial velocity with a factor 2 difference.

Equation C.18 has not been previously discussed in the other literature. Most
researchers follow a traditional approach, deriving the neutral velocity and accretion
rate from a neutral fluid momentum equation that does not include the drag force
from charged particles. For example, see Equation (53) in Reference [123].

From Equation C.11, the electric field would reduce the radial velocity of ions and
elections, so would oppose the accretion. In the real system, there can be a certain
level of electric field, but it can not equal to −u𝑛 × B, as this would result in a
zero radial velocity for the neutrals. Removing the build-up of the charged particles
requires a 3D picture with a closed electric circuit, including the astrophysical jets.
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C.2 Non-ideal MHD Effects
Other researchers often reframe Equation B.9 to include non-ideal MHD effects and
may be curious about which non-ideal effects prevail in the parameter we utilized
to compute the mass accretion rate. Now, I will proceed to derive the equation for
non-ideal MHD effects.

Dividing by 𝑒𝑛𝑒, the electrons’ momentum equation C.9 can be expanded to

E + [u𝑛 + (u𝑒 − u𝑖) + (u𝑖 − u𝑛)] × B + 𝑚𝑒𝜈𝑒𝑛
𝑒

[(u𝑒 − u𝑖) + (u𝑖 − u𝑛)] = 0. (C.19)

As the temperature of a protoplanetary disk is much smaller than 106 K,���� p𝑖𝑛p𝑒𝑛

���� = 𝑚𝑖

𝑚𝑒

𝑚𝑒 + 𝑚𝑛
𝑚𝑖 + 𝑚𝑛

𝑛𝑖

𝑛𝑒

⟨𝜎𝑣⟩𝑖𝑛
⟨𝜎𝑣⟩𝑒𝑛

���� (u𝑖 − u𝑛)
(u𝑒 − u𝑛)

���� ≈ 1
𝑍

𝑚𝑖

𝑚𝑒

1(
𝑇
𝐾

) 1
2
≫ 1. (C.20)

Then from Equation C.13

J × B ≈ p𝑖𝑛 = 𝜌𝑖𝜈𝑖𝑛 (u𝑖 − u𝑛) . (C.21)

Then,

𝑚𝑒𝜈𝑒𝑛

𝑒
(u𝑖 − u𝑛) ≈

𝑚𝑒𝜈𝑒𝑛

𝑒

J × B
𝜌𝑖𝜈𝑖𝑛

= 𝑍
𝑚𝑒𝜈𝑒𝑛

𝑚𝑖𝜈𝑖𝑛

J × B
𝑛𝑒𝑒

≈ 𝑚𝑒

𝑚𝑖

√︂
𝑇

𝐾
(u𝑒 − u𝑖)×B ≪ (u𝑒 − u𝑖)×B.

(C.22)

The last term in Equation C.19 can thus be ignored. Equation C.19 becomes

E + [u𝑛 + (u𝑒 − u𝑖) + (u𝑖 − u𝑛)] × B + 𝑚𝑒𝜈𝑒𝑛
𝑒

(u𝑒 − u𝑖) = 0. (C.23)

Using u𝑒 − u𝑖 = − J
𝑛𝑒𝑒

and u𝑖 − u𝑛 = J×B
𝜌𝑖𝜈𝑖𝑛

, Equation C.19 becomes

E + u𝑛 × B − J × B
𝑛𝑒𝑒

+ (J × B) × B
𝜌𝑖𝜈𝑖𝑛

− 𝑚𝑒𝜈𝑒𝑛

𝑛𝑒𝑒
2 J = 0. (C.24)

Taking the curl of the equation, we obtain

𝜕B
𝜕𝑡

= ∇ ×
[
u𝑛 × B − J × B

𝑛𝑒𝑒
+ (J × B) × B

𝜌𝑖𝜈𝑖𝑛
− 𝑚𝑒𝜈𝑒𝑛

𝑛𝑒𝑒
2 J

]
. (C.25)

On the right side of the equation, the first term is defined as the induction term

𝐼 = u𝑛 × B, (C.26)
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and the second term is defined as the Hall term

𝐻 =
J × B
𝑛𝑒𝑒

, (C.27)

and the third term is defined as the ambipolar term

𝐴 =
(J × B) × B

𝜌𝑖𝜈𝑖𝑛
, (C.28)

and the last one is defined as the ohmic term

𝑂 =
𝑚𝑒𝜈𝑒𝑛

𝑛𝑒𝑒
2 J. (C.29)

Then, the scaling of each of these terms relative to the Hall term H is

𝐼

𝐻
∼ 𝑢𝑛

𝑢𝑖 − 𝑢𝑒
(C.30)

𝐴

𝐻
∼ 𝜔𝑐𝑖

𝜈𝑖𝑛
=

1
|𝜉𝑖 |

(C.31)

𝑂

𝐻
∼ 𝜈𝑒𝑛

𝜔𝑐𝑒
= |𝜉𝑒 | (C.32)

The parameters we used in Chapter 6 are 𝑟 = 1 a.u., 𝑛𝑛 = 1020 m−3, 𝐵 = 5 mG,
𝜒 = 10−12, 𝑇𝑒 = 100 K, ℎ = 0.1 a.u., 𝑚𝑖 = 𝑚𝐻 = 1.66 × 10−27 kg, 𝑚𝑛 = 𝑚𝐻2 =

3.32 × 10−27 kg. Then 𝜔𝑐𝑖 = 48 s−1, 𝜔𝑐𝑒 = 8.8 × 104 s−1, 𝜈𝑖𝑛 = 1.3 × 105 s−1,
𝜈𝑒𝑛 = 8.3 × 105 s−1, |𝜉𝑖 | = 2627 and |𝜉𝑒 | = 9.44. The mass accretion rate is
¤𝑀 = 2.9 × 10−8 𝑀⊙ · year−1. The ohmic effect dominates under this case with
𝑂 > 𝐻 > 𝐴.

It is just one possible set of parameters we choose. The mass accretion rate is
also reasonable under parameters with other nonideal MHD effects dominating.
For example, if we adjust 𝑛𝑛 = 1019 m−3 and 𝐵 = 50 mG while keeping other
parameters unchanged, then |𝜉𝑖 | = 26.27 and |𝜉𝑒 | = 0.0944. The mass accretion
rate becomes ¤𝑀 = 3.5 × 10−8 𝑀⊙ · year−1. The Hall effect dominates under this
case with 𝐻 > 𝑂 > 𝐴.

Equation C.25 can also be written as a diffusivities equation, with

𝜕B
𝜕𝑡

= ∇ ×
[
u𝑛 × B − 𝜂𝐻

(∇ × B) × B
𝐵

+ 𝜂𝐴
((∇ × B) × B) × B

𝐵2 − 𝜂𝑂 (∇ × B)
]

(C.33)
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where

𝜂𝐻 =
𝐵

𝜇0𝑛𝑒𝑒
(C.34)

𝜂𝐴 =
𝐵2

𝜇0𝜌𝑖𝜈𝑖𝑛
(C.35)

𝜂𝑂 =
𝑚𝑒𝜈𝑒𝑛

𝜇0𝑛𝑒𝑒2 . (C.36)

It is a common practice to define dimensionless numbers in association with non-
ideal effects in order to quantify their relative importance in the induction equation.
Elsasser numbers can be defined as

Λ𝐻,𝐴,𝑂 =
𝑉2
𝐴

𝜔𝐾𝜂𝐻,𝐴,𝑂
=

𝐵2

𝜇0𝑛𝑛𝑚𝑛𝜔𝐾𝜂
(C.37)

Then,
Λ𝑂 = 𝜒𝑖

𝜔𝑐𝑖

𝜉𝑒𝜔𝐾

𝑚𝑖

𝑚𝑛
(C.38)

Λ𝐻 = 𝜒𝑖
𝜔𝑐𝑖

𝜔𝐾

𝑚𝑖

𝑚𝑛
(C.39)

Λ𝐴 = 𝜒𝑖
𝜈𝑖𝑛

𝜔𝐾

𝑚𝑖

𝑚𝑛
. (C.40)

Using the parameters outlined after Equation C.32, Λ𝑂 = 1.3 × 10−5, Λ𝐻 = 1.2 ×
10−4, Λ𝐴 = 0.31.

C.3 Summary
To sum up, the radial velocities of ions, electrons, and neutrals, derived from a
single particle’s motion and canonical angular momentum conservation in Chapter
6, can also be obtained from fluid equations. Unlike the conventional approach of
converting the electron fluid momentum equation to an equation of non-ideal MHD
effects, we directly derive the velocities of ions, electrons, and neutrals. The angular
momentum transport and accretion can be understood from two different languages.
At the particle level, neutrals accrete due to the transport of angular momentum
into canonical angular momentum of charged particles. At the fluid level, magnetic
torque from J × B removes the angular momentum of neutrals, leading to their
accretion.
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