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ABSTRACT

This thesis studies applications of Shimura varieties in positive characteristic to
questions on arithmetic invariants of special families of K3-type surfaces.

In the first part, we consider a K3-type surface 𝑋 over Q that arises from cyclic
covers of the projective line P1 and a prime 𝑝 of good reduction. Studying the
geometry of the associated Shimura varieties and Hurwitz spaces, our main theorem
determines all possible Newton polygons of 𝑋 at 𝑝, at least when 𝑝 is sufficiently
large. This establishes several new instances of the Manin problem for K3-type
surfaces. When 𝑋 is a generic supersingular K3 surface in the family, we also
calculate the corresponding Artin invariant.

In the second part, we discuss some applications as corollaries of our calculation
and recent works [3, 17]. For instance, let 𝑋 be a K3 surface over a number field
𝐿 for which the endomorphism algebra of its transcendental lattice is an abelian
field. Then the set of 𝜇-ordinary primes of 𝐿 has density 1 under some conditions.
We remark that the proof is discovered by the authors of [3] for a certain class
of abelian varieties. Our contribution, if any, is simply realizing that with minor
adjustments their techniques also work for K3 surfaces. For another result, we
deduce the existence of infinitely many basic primes for one family of K3 surfaces
over Q which can be thought of an analog of Elkies’s supersingular prime theorem
in our setting.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Shimura varieties are higher-dimensional analogues of modular curves. They play
an important role in the theory of automorphic forms and the Langlands program. In
recent years, Shimura varieties have found new applications in arithmetic geometry
such as the Schottky problem in positive characteristics [15, 16], generalized Elkies’s
supersingular theorem [17], or Serre’s ordinariness conjecture [3]. These questions
can be formulated in terms of a discrete invariant in positive characteristics called
Newton polygon. Here Shimura varieties enter the picture as moduli spaces of
abelian varieties with additional structure in characteristic 𝑝. One of the most
beautiful properties of these moduli spaces is that they admit natural stratifications
by discrete invariants such as the Newton polygon [4, 26, 34]. Studying the resulting
geometry often leads to helpful insights to solve problems. For example, the authors
study Newton stratification of certain Shimura varieties of PEL type to calculate
all possible Newton polygons that occur for special families of Jacobians of cyclic
covers of the projective line [16]. To us, special means the image of the family under
the classifying map to the moduli Shimura variety is open and dense in a Shimura
subvariety1 (see [20, Section 1] for equivalent definitions). It is a natural question
to ask whether their framework can be applied to other settings.

And the answer is positive. The first part of this thesis carries out a similar calculation
for the occurrence of Newton polygons in special families of K3-type surfaces arising
from cyclic covers of the projective line. Our methods are similar to the framework
in [15, 16]. As input for our theorem we use the construction of special K3 type
families from [21]. An analogue of the Manin problem for abelian varieties asks
which Newton polygons occur for a K3-type surface with given degree over a fixed
characteristic 𝑝. Earlier work [27] shows that all possible polygons for a K3 surface
occur in any given characteristic when the degree is sufficiently large. Our result
establishes new instances of Newton polygons for k3-type surfaces that occur in
positive characteristic with fixed degrees.

1In virtue of the recently proven André-Oort conjecture, being special is equivalent to having a
Zariski dense set of special points (or CM points).
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Our main application is a refined version of a conjecture of Serre for K3 surfaces.
For an abelian variety 𝐴 over a number field 𝐿, Serre’s conjecture asserts that there
exists a finite field extension over which the set of good ordinary primes for the base
change of 𝐴 has density 1. The analogue statement for K3 surface over number
field is proven in [2]. Recent works of Sawin [28] and [3] show refined versions of
Serre’s conjecture for abelian surfaces and certain class of simple abelian varieties of
type VI. In particular, they calculate this density explicitly without the passage to a
sufficiently large field extension. We follow [3] to get refined results for K3 surfaces
over a number field 𝐿 equipped with an action of an abelian field satisfying some
mild assumptions. The families from the first part give examples of K3 surfaces
defined over Q that satisfy all hypotheses of the theorem. Another application is a
generalization of Elkies’s supersingular prime theorem [10] for one special family
of K3 surfaces over Q.

1.2 Overview of the results
First we briefly recall the definition of Newton polygon and Artin invariant.

Let 𝑘 be a perfect field of characteristic 𝑝 and𝑊 (𝑘) denote the ring of Witt vectors
over 𝑘 . By a K3-type surface 𝑋 over 𝑘 we mean a smooth projective surface over 𝑘
whose Hodge numbers ℎ𝑖, 𝑗 := dim𝑘 𝐻

𝑗 (𝑋,Ω𝑖
𝑋/𝑘 ) are given by the following Hodge

diamond:

ℎ2,2

ℎ2,1 ℎ1,2

ℎ2,0 ℎ1,1 ℎ0,1

ℎ1,0 ℎ0,1

ℎ0,0

=

1
00

12𝑛 − 21
00

1 .

To the second crystalline cohomology 𝐻2
𝑐𝑟𝑖𝑠

(𝑋/𝑊), one considers a discrete invari-
ant called the Newton polygon of the 𝐹-crystal 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊). It is a lower convex

polygon starting at (0, 0) and ending at (2𝑛, 2𝑛) with integer breakpoints. From 2.5,
there exists an integer ℎ = ℎ(𝑋) ∈ {1, 2, . . . , 𝑛} such that 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊) either has

slopes
(1 − 1/ℎ, 1, 1 + 1/ℎ)

with multiplicities
(ℎ, 2𝑛 − 2ℎ, ℎ),
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or the Newton polygon has slopes 1 only in which case we set ℎ(𝑋) = ∞. We call
this invariant the height of 𝑋 2. If 𝑋 is a K3 surface then 𝑛 = 10.

𝑋 is called ordinary if ℎ(𝑋) = 1 and supersingular if ℎ(𝑋) = ∞.

Assume that 𝑋 is a supersingular K3 surface. It follows from the Tate conjecture
for K3 surfaces over finite fields3 that the Tate module 𝑇𝑋 has rank 22. The bilinear
pairing from Poincaré duality restricted to 𝑇𝑋 is a non-degenerate symmetric form

⟨, ⟩ : 𝑇𝑋 × 𝑇𝑋 → Z𝑝 .

One can show that the discriminant of this form has 𝑝-valuation 2𝜎0 for some integer
𝜎0 ∈ {1, 2, . . . , 10}. The invariant 𝜎0 is called the Artin invariant of 𝑋 (see 2.5).

Next we describe the families we consider for our main results.

In [21], motivated by an analogue of Coleman’s conjecture for K3-type surfaces,
Moonen constructs special families of k3-type surfaces from cyclic covers of the
projective line P1. Each family comes from a tuple (𝐺, 𝑎, 𝑏, 𝑁) called a K3 type
datum (see 3.0.1) where 𝐺 ≃ Z/𝑚Z is the cyclic group of order 𝑚 ≥ 3, 𝑎 =

(𝑎1, . . . , 𝑎𝑁 ) and 𝑏 = (𝑏1, 𝑏2, 𝑏3) are monodromy data, and 𝑁 is the number of
branch points. To be more precise, let 𝐶 and 𝐷 be smooth curves given by the
equations

𝐶 : 𝑦𝑚 = (𝑥 − 𝜆1)𝑎1 (𝑥 − 𝜆2)𝑎2 . . . (𝑥 − 𝜆𝑁 )𝑎𝑁 ,

𝐷 : 𝑧𝑚 = (𝑡 − 𝛾1)𝑏1 (𝑡 − 𝛾2)𝑏2 (𝑡 − 𝛾3)𝑏3 ,

and 𝜇𝑚 be the group scheme of 𝑚𝑡ℎ roots of unity acting on 𝐶 × 𝐷 via

(𝑥, 𝑦, 𝑡, 𝑧) ↦→ (𝑥, 𝜁 𝑦, 𝑡, 𝜁−1𝑧),

where 𝜁 is a choice of a primitive 𝑚𝑡ℎ root. Then the minimal model resolution of
singularities of the GIT quotient (𝐶 ×𝐷)/𝐺 is a smooth projective k3-type surface.
Varying the base point 𝜆 = (𝜆1, . . . , 𝜆𝑁 ) one obtains a family of k3-type surfaces of
dimension 𝑁 − 3.

Let X = X(𝐺, 𝑎, 𝑏, 𝑁) be the family associated to the K3 type datum (𝐺, 𝑎, 𝑏, 𝑁).
Then X admits a smooth model over Z[ 1

2𝑚 ] (see 3). Let 𝑝 ∤ 2𝑚 be a prime and 𝑋
be a k3-type surface in X. By abuse of notation, we use 𝑋 to denote the reduction
of 𝑋 at 𝑝 which is a smooth proper k3-type surface in positive characteristic. Let
𝐸𝑚 be the 𝑚𝑡ℎ cyclotomic field and 𝐸0

𝑚 be its totally real field. We write 𝑑 for the
order of 𝑝 mod 𝑚. Our main theorem is the following.

2The invariant ℎ(𝑋) is also the height of the formal Brauer group of 𝑋 .
3Established by the works of several authors.
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Theorem (Theorem 4.0.9). Let X, 𝑋, 𝑝 and 𝑑 be as above.

1. If 𝑝 is not inert in 𝐸𝑚/𝐸0
𝑚, then 𝑑 divides ℎ(𝑋) and

1 ≤ ℎ(𝑋)
𝑑

≤ 𝑁 − 2.

Furthermore, for any 1 ≤ 𝑖 ≤ 𝑁 − 2, there exists a k3-type surface 𝑋′ in X
such that ℎ(𝑋′) = 𝑖𝑑.

2. If 𝑝 is inert in 𝐸𝑚/𝐸0
𝑚, we assume further that 𝑝 is sufficient large when 𝑁 is

even, then 𝑑 divides ℎ(𝑋) and

1 ≤ ℎ(𝑋)
𝑑

≤ ⌊𝑁 − 2
2

⌋ or ℎ(𝑋) = ∞.

In addition, for any 1 ≤ 𝑖 ≤ ⌊ 𝑁−2
2 ⌋, there exists a k3-type surface 𝑋′ in X

such that ℎ(𝑋′) = 𝑛𝑑.

Moreover, if X corresponds to a family of K3 surfaces, then there exists a
supersingular K3 surface 𝑋′ in X with 𝜎0(𝑋′) = (𝑁 − 2 − ⌊ 𝑁−2

2 ⌋)𝑑.

Section 4 discusses how to obtain an effective bound for 𝑝 in the second part of the
theorem. Table 5.1 lists all special families for 𝑚 ≤ 100 from a brute-force search
done by a computer program. Note that there are no examples for 23 ≤ 𝑚 ≤ 100. It
is an open question whether Table 5.1 is complete.

While we are not able to prove this for k3-type surfaces in general, we can easily
show the following.

Proposition 1.2.1. There are no other special families of K3 surfaces arising from
cyclic covers of the projective line except those listed in Table 5.1.

We remark that our examples cover all the possible heights 1, . . . , 10, and ∞ of a
K3 surface.

Example 1.2.1. The K3 type datum (4, (2, 3, 3), (1, 1, 2), 3) gives rise to a single
K3 surface 𝑋 with complex multiplication by Q[𝑖]. Furthermore, 𝑋 is defined over
Z and has supersingular reduction for all primes 𝑝 ≡ 3 (mod 4). The first example
of this phenomenon goes back to Tate’s K3 surface: 𝑥4 + 𝑦4 + 𝑧4 + 𝑡4 = 0 which also
has supersingular reduction for all primes 𝑝 ≡ 3 (mod 4).
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Example 1.2.2. Let X be the 1-dimensional family of K3 surfaces associated to
(7, (2, 4, 4, 4), (1, 2, 4), 4) and 𝑋 ∈ X. At primes 𝑝 ≡ 1 (mod 7) we have ℎ(𝑋) = 1
or ℎ(𝑋) = 2. At primes 𝑝 ≡ 2, 4 (mod 7) we have ℎ(𝑋) = 3 or ℎ(𝑋) = 6. At primes
𝑝 ≡ 3, 5 (mod 7) we have ℎ(𝑋) = 6 or ℎ(𝑋) = ∞ (and 𝜎0(𝑋) = 6). Finally at
primes 𝑝 ≡ 6 (mod 7) we have ℎ(𝑋) = 2 or ℎ(𝑋) = ∞ (and 𝜎0(𝑋) = 2).

For a fix datum (𝐺, 𝑎, 𝑏, 𝑁) and a prime 𝑝 of good reduction, the set of possible
Newton polygons that occur on the family X has a natural "lying above" order.
With respect to this order, the lowest polygon is called 𝜇-ordinary and the highest
is called basic. Using these notions, the authors show a refined version of Serre’s
ordinariness conjecture for certain type of abelian varieties [3] and a generalized
Elkies’s theorem for a specific family of cyclic covers of the projective line [17].

As a consequence of their results and our calculation, we can deduce the following
results that are new even for K3 surfaces (see Chapter 5 for details and discussion).
For a K3 surface 𝑋 over a number field 𝐿, we write E(𝑋) for the endomorphism
algebra of the transcendental lattice𝑇 (𝑋) of 𝑋 (see 2.4.6) and 𝐿conn for the extension
of 𝐿 that maps to the connected component of the 𝑙-adic monodromy group (see
Section 5, Chapter 5).

Theorem (Theorem 5.0.9). Let 𝑋 be a K3 surface over a number field 𝐿 such that
E(𝑋) is an abelian field 𝐹 and 𝐿conn ⊆ 𝐹𝐿. If 𝐹 is totally real, we assume further
that𝑇 (𝑋)Q has even dimension over E(𝑋). Then the set of primes of 𝐿 of 𝜇-ordinary
reduction has density 1.

Remark 1.2.1. If X(𝐺, 𝑎, 𝑏, 𝑁) corresponds to a family of K3 surfaces, then a
generic surface 𝑋 in the family satisfies the conditions of the theorem.

Theorem (Theorem 5.0.12). Let 𝑋𝛼 be a K3 surface in the family (5, (1, 1, 1, 2), (1, 1, 3), 4).
In particular, 𝑋𝛼 arises from the pair of cyclic covers

𝐶𝛼 : 𝑦𝑚 = 𝑥(𝑥 − 1) (𝑥 − 𝛼)

and
𝐷 : 𝑧𝑚 = 𝑡 (𝑡 − 1).

Assume in addition that 𝑗 := (𝛼2−𝛼+1)3

𝛼2 (𝛼−1)2 ∈ Q ∩ [0, 27
4 ] and the reduction of 𝐶𝛼 at 5 is

singular. Then 𝑋𝛼 can be defined over Q and there exists infinitely many primes at
which the reduction of 𝑋𝛼 has basic Newton polygon.

Remark 1.2.2. The two results together imply that a set of density 0, namely the set
of basic primes, is infinite.
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1.3 The proof strategy
Theorem 4.0.9
The main idea is to reduce the problem to the calculation of discrete invariants that
occur on an intermediate special family of abelian varieties, which we describe next.

Assume that 𝑝 ∤ 2𝑚 is a prime and we work in characteristic 𝑝. By abuse of
notation, a moduli space M also denotes its geometric fiber M ⊗ F𝑝. The Hurwitz
space H(𝐺, 𝑎) is the moduli space of 𝐺-covers of P1 with inertia type 𝑎. The
K3 type family X(𝐺, 𝑎, 𝑏, 𝑁) can be parametrized over H(𝐺, 𝑎) in the following
way. Let 𝜆 ∈ H (𝐺, 𝑎) be a basepoint. By 𝑋𝜆 and 𝐶𝜆 we mean the corresponding
k3-type surface and cyclic cover of P1 above 𝜆. The Jacobian 𝐽 (𝐶𝜆) of 𝐶𝜆 admits a
decomposition up to isogenies into the new part and the old part:

𝐽 (𝐶𝜆) ∼ 𝐽 (𝐶𝜆)𝑛𝑒𝑤 ⊕ 𝐽 (𝐶𝜆)𝑜𝑙𝑑 .

We can show that the Newton polygon of 𝐽 (𝐶𝜆)𝑛𝑒𝑤 determines the Newton polygon
of 𝑋𝜆. Hence it remains to determine the variation of Newton polygons for 𝐽 (𝐶𝜆)𝑛𝑒𝑤

when 𝜆 varies in H(𝐺, 𝑎). Let 𝜃 denote the map 𝐶𝜆 ↦→ 𝐽 (𝐶𝜆)𝑛𝑒𝑤 so we have an
induced morphism

𝜃 : H(𝐺, 𝑎) → A𝑔𝑛𝑒𝑤 ,

where 𝑔𝑛𝑒𝑤 =
𝜙(𝑚) (𝑁−2)

2 is the genus of 𝐽 (𝐶𝜆)𝑛𝑒𝑤 (see 2.3.2 ) and A𝑔𝑛𝑒𝑤 is the
moduli space of polarized abelian varieties of genus 𝑔𝑛𝑒𝑤. From 3.0.2, the image
𝑍 (𝐺, 𝑎) := 𝜃 (H (𝐺, 𝑎)) is open and dense in a certain Shimura variety of PEL type
which we denote by 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤)4. Here 𝑓 𝑛𝑒𝑤 is the signature of the action of 𝐺
on the tangent space of 𝐽 (𝐶𝜆)𝑛𝑒𝑤. It follows that the Zariski closure 𝑍 (𝐺, 𝑎) is
𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤).

The Newton polygons that occur on the Shimura variety side are well-known. From
the moduli point of view, they are the Newton polygons of the corresponding
universal abelian schemes over 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤). In [14], Kottwitz gives a combinatorial
description of the so-called Kottwitz set 𝐵(𝐺, 𝑓 𝑛𝑒𝑤) 5 of admissible Newton polygons
equipped with additional structure from the group-theoretic data at an unramified
prime 𝑝. In our setting, the signature 𝑓 𝑛𝑒𝑤 is simple so the Kottwitz set admits a
total order

𝜈ord =: 𝜈0 ≻ 𝜈1 ≻ · · · ≻ 𝜈𝑙 := 𝜈basic

4These varieties were studied by Deligne and Mostow [7].
5A more common notation is 𝐵(𝐺, 𝜇) where 𝜇 is the local cocharacter describing the polarized

Hodge structure at 𝑝.
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where the maximal element 𝜈ord is called 𝜇-ordinary and minimal 𝜈basic called basic.
This order agrees with the "lying above" order of lower convex polygons. Let 𝑆ℎ[𝜈]
denote the locus of 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) with Newton polygon 𝜈. For the PEL-type Shimura
varieties, Viehman and Wedhorn [34] show that all admissible polygons occur, i.e.,
𝑆ℎ[𝜈] is nonempty ∀𝜈 ∈ 𝐵(𝐺, 𝑓 𝑛𝑒𝑤).

Thus, the question can be reformulated as which Newton strata has nonempty
intersection with the open image 𝑍 (𝐺, 𝑎). Let 𝑍 (𝐺, 𝑎) [𝜈] := 𝑍 (𝐺, 𝑎) ∩ 𝑆ℎ[𝜈]. Via
the geometry of Newton stratification, we can reduce the problem to showing that
𝑍 (𝐺, 𝑎) [𝜈𝑏𝑎𝑠𝑖𝑐] ≠ ∅. This last step can be done by a detailed comparison between
boundary components of the Hurwitz spaceH(𝐺, 𝑎) and the basic locus 𝑆ℎ[𝜈𝑏𝑎𝑠𝑖𝑐],
at least when 𝑝 is large. A discussion on an effective bound for 𝑝 is given in 4.

Theorems 5.0.9 and 5.0.12
For Theorem 5.0.9, we borrow the authors’ proof from [3] with minor adjustments.
For completeness, we summarize the main steps as following:

1. We construct a conjugacy-invariant algebraic function on the 𝑙-adic mon-
odromy group 𝐺𝑋,𝑙 that detects 𝜇-ordinariness and use Serre’s results to
reduce density question to a trace calculation on the connected components
of 𝐺𝑋,𝑙 ;

2. We use the conditions 𝐹 is abelian and 𝐿𝑐𝑜𝑛𝑛 ⊆ 𝐹𝐿 to realize the group of
connected components of 𝐺𝑋,𝑙 as a permutation subgroup the Weyl group of
the orthogonal group;

3. A direct calculation with matrices shows that the trace is non-constant on each
connected component.

We remark that unlike the case of abelian varieties, for K3 surfaces, the techniques
also work when E𝑋 is totally real and 𝑇 (𝑋) has even rank over E𝑋 .

Theorem 5.0.12 follows from the main theorem of [17] and the calculations in 4.

1.4 Future work
This section discusses further directions in increasing order of difficulty.
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Non-cyclic covers
The group 𝐺 can be non-cyclic. Because of the K3 type condition, 𝐷 has to be
branched above 3 points. In particular, 𝐺 has at most two generators. Thus the
next cases to consider will be products or semidirect products of two cyclic groups.
The calculations of the signature via Hurwitz characters and minimal resolution
of singularity, though slightly more complicated, could be done to obtain to new
examples of K3 type families.

Complete occurrence of the Artin invariants
Similar to the Newton polygon, if we could show that the lowest Artin invariant
occurs, then from purity of the stratification, all admissible Artin invariants occur.
The former step would require an analysis of the number of superspecial points in
𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) to verify whether it grows with 𝑝.

Density of primes for other invariants such as the Picard rank
As an analogue to Serre’s conjecture, an interesting direction is studying the density
of primes at which the Picard rank has to be of some "generic type". The strategy
we could carry can be: first calculate of admissible Picard ranks for a K3 surface
with extra endomorphism, then find a conjugacy-invariant algebraic function that
detects genericity of the Picard rank. Since the Picard group consists of Tate classes,
a potential characterization can be related to the eigenvalue 𝑝 of the Frobenius Fr𝔭.

Completeness of all K3-type families arising from cyclic covers of P1

In [20], the author shows that there are precisely 20 special families of Jacobians
that arise from cyclic covers of P1. In a similar light, we can conjecture that there are
no further family of k3-type surfaces arising from cyclic covers of P1 except those
listed in Table 5.1. The nonexistence of further families reduces to the nonexistence
of further integer solutions to the equation involving fractional functions from 3.0.1.
This is perhaps the most open and difficult question.

1.5 Structure of the thesis
In Chapter 2, we introduce general notations and recall some preliminaries. Chapter
3 reviews Moonen’s construction of special families of k3-type surfaces and prove
relevant features. In Chapter 4, we prove our first main theorem. Chapter 5 presents
other theorems as applications.
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C h a p t e r 2

BACKGROUND

2.1 General notations
Throughout, let 𝑘 be a perfect field of positive characteristic 𝑝. We write𝑊 (𝑘) for
ring of Witt vectors over 𝑘 and 𝐾 (𝑘) for its faction field𝑊 (𝑘) [ 1

𝑝
], or just𝑊 and 𝐾

for short. We use 𝜎 to denote the Frobenius automorphism of 𝑘 as well as its lifts
to𝑊 and 𝐾 .

We fix the following notations:

• Q𝑝 is an algebraic closure of Q𝑝;

• C𝑝 is the 𝑝-adic completion of Q𝑝 and we fix an identification C𝑝 ≃ C;

• Q𝑢𝑛𝑝 is the maximal unramified extension Q𝑝 and Z𝑢𝑛𝑝 is its ring of integers;

• For a positive integer 𝑚 ≥ 2, let 𝜇𝑚 denote the group scheme of 𝑚𝑡ℎ roots of
unity, 𝐸𝑚 denote the 𝑚𝑡ℎ cyclotomic field of degree 𝜑(𝑚), and fix a choice
𝜁𝑚 ∈ C of a primitive 𝑚𝑡ℎ root of unity;

• For a ring 𝑅, 𝑅× is the subset of nonzero elements and 𝑅∗ is the subset of
invertible elements.

• For a real number 𝑥, ⟨𝑥⟩ = 𝑥 − ⌊𝑥⌋ is the fractional part of 𝑥.

2.2 The group algebra
Let 𝐺 ≃ Z/𝑚Z be the cyclic group of order 𝑚. The group algebra

Q[𝐺] ≃ Q[𝑋]/(𝑋𝑚 − 1)

is the same as the coordinate ring of the group scheme 𝜇𝑚 of 𝑚𝑡ℎ roots of unity.

Let T := homQ(Q[𝐺],C). Then T can be identified with 𝐺 via

𝑛 ∈ Z/𝑚Z ↦→ 𝜏𝑛 ∈ 𝑇

where 𝜏𝑛 maps the generator of𝐺 to (𝜁𝑚)𝑛 ∈ C∗. We write 𝜏0 for the trivial character
and 𝜏∗ for the image of 𝜏 under complex conjugation in C; in particular, 𝜏∗𝑛 = 𝜏−𝑛.
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Grouping the characters with the same kernel, we have yet another way to describe
the group algebra

Q[𝐺] ≃
∏
𝑑 |𝑚

𝐸𝑑 .

Each 𝜏 is given by the composition of the projection Q[𝐺] to 𝐸𝑑 with a complex
character of 𝐸𝑑 of order 𝑑. Since Q[𝐺] ⊗ C =

∏
𝜏∈T C, any module Q[𝐺] ⊗ C-

module𝑊 admits a decomposition

𝑊 = ⊕𝜏∈T𝑊𝜏

where each𝑊𝜏 is the Eigenspace on which 𝑔 ⊗ 1 ∈ Q[𝐺] ⊗ C acts as multiplication
by 𝜏(𝑔).

Assume that 𝑝 does not divide the order 𝑚 of 𝐺. Then each character 𝜏 : Q[𝐺] →
C𝑝 (under the identification C𝑝 ≃ C) is unramified at 𝑝 and factors through Q𝑢𝑛𝑝 .
Let us by abuse of notation also use T for homQ(Q[𝐺],Q𝑢𝑛𝑝 ). The Frobenius 𝜎
of Q𝑢𝑛𝑝 induces an automorphism 𝜎 : 𝜏𝑛 ↦→ 𝜏𝑝𝑛 of T . We write 𝔒 for the set of
𝜎-orbits 𝔬 in T ∗ := T −{𝜏0}. The elements in the same orbit 𝔬 have the same kernel
𝑅𝜏 = 𝑅𝔬 ⊂ 𝐺 and order 𝑑𝜏 = 𝑑 (𝔬) = [𝐺 : 𝑅(𝔬)] (if the orbit contains 𝜏𝑛 then this
order is the same as the additive order of 𝑛 in Z/𝑚Z). Each orbit 𝔬 is in bĳection
with a prime 𝑝𝔬 of 𝐸𝑑𝔬 above 𝑝 such that the following decomposition holds

Q[𝐺] ⊗Q Q𝑝 ≃
∏
𝔬∈𝔒

𝐸𝑑𝔬,𝑝𝔬

where 𝐸𝑑𝔬,𝑝𝔬 is the completion of 𝐸𝑑𝔬 at the prime 𝑝𝔬.

2.3 Cyclic covers of the projective line and their Jacobians
Let 𝐺 be as in the previous section. We fix the following numerical data: a positive
integer 𝑁 ≥ 3 and an 𝑁-tuple 𝑎 = (𝑎1, . . . , 𝑎𝑁 ) of elements in 𝐺.

Definition 2.3.1. The datum (𝐺, 𝑎, 𝑁) is called a monodromy datum with inertia
type 𝑎 if it satisfies the following conditions:

1. 𝑎1, ..., 𝑎𝑁 are nontrivial elements that generate the whole group 𝐺;

2. their product
∏

𝑗 𝑎 𝑗 is equal to the identity of 𝐺.

We remark that the above conditions mean 𝑎𝑖 . 0 (mod𝑚) for all 𝑖, gcd(𝐺, 𝑎1, . . . , 𝑎𝑁 ) =
1, and 𝑎1 + · · · + 𝑎𝑚 ≡ 0 (mod 𝑚).
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Fix an 𝑁-tuple 𝜆 = (𝜆1, . . . , 𝜆𝑁 ) where 𝜆𝑖 ≠ 𝜆 𝑗 . A monodromy datum (𝐺, 𝑎, 𝑁)
defines a smooth irreducible curve 𝐶 = 𝐶𝜆 (𝐺, 𝑎, 𝑁) by the equation

𝑦𝑚 = (𝑥 − 𝜆1)𝑎1 (𝑥 − 𝜆2)𝑎2 . . . (𝑥 − 𝜆𝑁 )𝑎𝑁 .

In addition, 𝐶 has the structure of a Galois cover of P1 branched above 𝑁 points
with Galois group 𝐺 (or 𝐺-cover for short) via the covering map (𝑥, 𝑦) ↦→ 𝑥 and the
group scheme 𝜇𝑚 acting via

𝜁𝑚 · (𝑥, 𝑦) := (𝑥, 𝜁𝑚𝑦).

The monodromy conditions ensure that the 𝜇𝑚 action on 𝐶 over P1 is Galois. When
𝜆 is fixed, according to Riemann’s Existence Theorem, the isomorphism classes of
𝐺-covers are in bĳection with branching data up to permutations of the 𝑎𝑖’s and
automorphisms of 𝐺. The later group is isomorphic to (Z/𝑚Z)∗.

Remark 2.3.1. The action of the group scheme 𝜇𝑚 is étale over Z[ 1
𝑚
, 𝜁𝑚]. For

convenience, all schematic constructions will be assumed to be over the base scheme
𝑆 := Spec(Z[ 1

𝑚
, 𝜁𝑚]).

Let 𝐽 (𝐶) = 𝐽 (𝐺, 𝑎) denote the Jacobian of𝐶. The dimension of 𝐽 (𝐶) is equal to the
genus of𝐶 and can be computed from the monodromy datum via Riemann-Hurwitz
formula:

𝑔(𝐶) = 1 +
(𝑁 − 2)𝑚 − ∑𝑁

𝑖=1 gcd(𝐺, 𝑎𝑖)
2

.

The tangent space 𝑉 (𝐶) := Lie(𝐽 (𝐶)) can be identified with the sheaf of holomor-
phic differentials 𝐻0(𝐶,Ω1

𝐶
). The 𝜇𝑚-action on 𝐶 induces an action of the group

algebra Q[𝐺] on 𝐻0(𝐶,Ω1
𝐶
). Then 𝑉 decomposes as a Q[𝐺] ⊗ C-module into

Eigenspaces
𝑉 =

⊕
𝜏∈T

𝑉𝜏

where 𝜇𝐺 acts on 𝑉 via multiplication by 𝜏(𝐺).

The complex dimension 𝑓 (𝜏) of 𝑉𝜏, or multiplicity of 𝜏, can be computed by the
Hurwitz-Chevalley-Weil formula (see [23, Theorem 3.3]):

𝑓 (𝜏𝑛) =


0 if 𝑛 = 0

−1 + ∑𝑁
𝑖=1⟨

−𝑛𝑎𝑖
𝑚

⟩ otherwise.
. (2.1)
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The tuple 𝑓 = ( 𝑓 (𝜏))𝜏∈T is called the signature and only depends on the monodromy
datum, not the base point 𝜆.

Proposition 2.3.1. 𝑓 (𝜏) + 𝑓 (𝜏∗) = 𝑁 − 2 − 𝑙 (𝜏) where 𝑙 (𝜏) = #{𝑖 : 𝑑 (𝜏) | 𝑎𝑖}.

Proof. This follows from Hurwitz-Chevalley-Weil formula and that ⟨−𝑛𝑎𝑖
𝑚

⟩ + ⟨𝑛𝑎𝑖
𝑚
⟩

is 0 if 𝑑 (𝜏) | 𝑎𝑖 and is 1 otherwise. □

Remark 2.3.2. As a corollary, 𝑓 (𝜏) + 𝑓 (𝜏∗) only depends on the orbit 𝔬 of 𝜏. It is
convenient to write 𝑔(𝔬) := 𝑓 (𝜏) + 𝑓 (𝜏∗) for this number.

Each character 𝜏 gives rise to a cyclic quotient𝐺/𝑅𝜏 ≃ Z/𝑑𝜏Z. We write 𝑅 for ker 𝜏
and 𝑑 for 𝑑𝜏. The datum (Z/𝑑Z, 𝑎 (mod 𝑑)) is a monodromy datum for a cyclic
Z/𝑑Z-cover of P1. There is a surjective map

𝐶 (𝐺, 𝑎) → 𝐶 (Z/𝑑Z, 𝑎 (mod 𝑑)), (𝑥, 𝑦) ↦→ (𝑥, 𝑦𝑚/𝑑)

which by functoriality induces an injection

𝐽 (Z/𝑑Z, 𝑎 (mod 𝑑)) ↩→ 𝐽 (𝐺, 𝑎)

as an abelian subvariety. We define the new part of 𝐽 (𝐺, 𝑎) to be

𝐽 (𝐺, 𝑎)𝑛𝑒𝑤 := 𝐽 (𝐺, 𝑎)/(
∑︁

𝑑 |𝑚,𝑑≠𝑚
𝐽 (Z/𝑑Z, 𝑎 (mod 𝑑)))).

Up to isogeny, we have a decomposition

𝐽 (𝐺, 𝑎) ∼
⊕
𝑑 |𝑚

𝐽 (Z/𝑑Z, 𝑎 (mod 𝑑))𝑛𝑒𝑤

that is compatible with the decomposition of the group algebra into the product of
cyclotomic fields 𝐸𝑑 for 𝑑 | 𝑚.

Proposition 2.3.2. The genus of the new part 𝐽 (𝐺, 𝑎)𝑛𝑒𝑤 is 𝑔𝑛𝑒𝑤 =
(𝑁−2)𝜑(𝑚)

2 .

Proof. The genus of 𝐽 (𝐺, 𝑎)𝑛𝑒𝑤 is the same as the dimension of

𝑉𝑛𝑒𝑤 =
⊕

𝜏:𝑑 (𝜏)=𝑚
𝑉𝜏 .

There are 𝜑(𝑚)
2 pairs (𝜏, 𝜏∗) for which 𝑙 (𝜏) = 0, and thus, 𝑓 (𝜏) + 𝑓 (𝜏∗) = 𝑁 − 2. □
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Example 2.3.1. The monodromy datum (Z/5Z, (1, 1, 1, 2), 4) defines a family of
curves 𝐶𝜆 by the affine equation

𝑦5 = 𝑥(𝑥 − 1) (𝑥 − 𝜆).

When 𝜆 varies, we get a 1-dimensional family of 𝐺-covers of P1. A basis for
𝐻0(𝐶𝜆,Ω1) (see [20, Lemma 2.7]) is given by

𝑑𝑥

𝑦2 ,
𝑑𝑥

𝑦3 ,
𝑑𝑥

𝑦4 ,
𝑥𝑑𝑥

𝑦4 .

The action of 𝐺 is defined via 𝑦 ↦→ 𝜁5𝑦 so 𝐺 acts via 𝜏2 on
𝑑𝑥

𝑦3 , 𝜏3 on
𝑑𝑥

𝑦2 , and 𝜏1 on

𝑑𝑥

𝑦4 and
𝑥𝑑𝑥

𝑦4 . It follows that

𝑓 (𝜏2) = 𝑓 (𝜏3) = 1, 𝑓 (𝜏1) = 2, 𝑓 (𝜏4) = 0.

These multiplicities of the eigenspaces agree with Hurwitz-Chevalley-Weil formula.

The Hurwitz space H(𝐺, 𝑎)
Fix a monodromy datum (𝐺, 𝑎) with inertia type 𝑎. Let H(𝐺) be the moduli space
of 𝐺-covers of P1 and H(𝐺) denote its Deligne-Mumford compactification. The
later is the moduli space of stable 𝐺-covers of P1. The moduli space H(𝐺, 𝑎) with
ordered 𝑎 is an irreducible component of H(𝐺) and has a model over Z[ 1

𝑚
]. It

classifies 𝐺-covers with ordered inertia type 𝑎.

Let 𝑈 ⊂ (A1)𝑁 be the complement of the weak diagonal, i.e., the scheme of 𝑁-
tuples of distinct points of A. Consider the projective curve 𝐵 ⊂ P2

𝑈
whose affine

curve over a point 𝜆 ∈ 𝑈 is given by

𝑦𝑚 = (𝑥 − 𝜆1)𝑎1 (𝑥 − 𝜆2)𝑎2 . . . (𝑥 − 𝜆𝑁 )𝑎𝑁 .

There exists an open subscheme 𝑇 ⊂ 𝑈 for which there exists a smooth proper
𝐺-cover 𝐶𝑇 over 𝑇 with inertia type 𝑎. Then H(𝐺, 𝑎) together with its universal
family can be constructed as the stable quotient of 𝐶𝑇 → P1

𝑇
by the action of

Aut(P1) × Sym(𝑁) (see [20], 2.2). From dim𝑇 = dim𝑈 = 𝑁 and dim Aut(P1) = 3,
we deduce that

dimH(𝐺, 𝑎) = 𝑁 − 3. (2.2)

If 𝑝 ∤ 𝑚 is a prime then both H(𝐺, 𝑎) and H(𝐺, 𝑎) have good reduction at 𝑝.



14

The Shimura varieties 𝑆ℎ(𝐺, 𝑓 ) and 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤)
Let 𝐵 be the group algebraQ[𝐺]. Let G := GSp2𝑔∩GL𝐵 be the connected reductive
algebraic group overQ consisting of the endomorphisms of𝐻1(𝐽𝐶 ,Z) that commute
with 𝐵. Let 𝑋 be a G(R)-conjugacy class of the homomorphism ℎ : S1 → 𝐺 (R)
parametrizing the Hodge structure on 𝐻1(𝐽𝐶 ,Z) with an action of 𝐵 prescribed by
𝑓 . Then (G, 𝑋) is a Shimura datum in the sense of Deligne. This datum gives
rise to a moduli variety denoted by 𝑆ℎ(𝐺, 𝑓 ) whose reflex field is contained in
the cyclotomic field 𝐸𝑚. Furthermore, 𝑆ℎ(𝐺, 𝑓 ) has a good integral model over
Z[ 1

𝑚
, 𝜁𝑚]. For a prime 𝑝 not dividing 𝑚, by abuse of notation, we use 𝑆ℎ(𝐺, 𝑓 ) to

denote the reduction modulo 𝑝 and 𝑆ℎ(𝐺, 𝑓 )F𝑝 to denote its geometric fiber.

When the basepoint 𝜆 varies over H(𝐺, 𝑎), the Jacobian 𝐽𝜆 (𝐺, 𝑎) is a principally
polarized abelian variety equipped with the action of Q[𝐺] on the tangent space of
𝐽𝜆 (𝐺, 𝑎) specified by 𝑓 . There exists a classifying morphism defined over Z[ 1

𝑚
, 𝜁𝑚]

𝜙 : H(𝐺, 𝑎) → 𝑆ℎ(𝐺, 𝑓 ), 𝜆 ↦→ 𝐽 (𝐶𝜆).

From [20, (3.3.1)], the dimension of 𝑆ℎ(𝐺, 𝑓 ) is the same as the dimension of G
which can be computed as

dim 𝑆ℎ(𝐺, 𝑓 ) =
∑︁
(𝑙,−𝑙)

𝑓 (𝜏𝑙) 𝑓 (𝜏−𝑙) +

𝑓 (𝜏𝑘) ( 𝑓 (𝜏𝑘)+1)

2 if 𝑚 = 2𝑘 is even,;

0 if 𝑚 is odd
(2.3)

where the sum is over all pairs (𝑙,−𝑙) such that 2𝑙 ≠ 𝑚.

Similarly, we write 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) for the Shimura variety that is the moduli space of
the new part 𝐽 (𝐺, 𝑎)𝑛𝑒𝑤.

2.4 k3-type surface
In this section we work over C.

Definition 2.4.1. An K3 surface over C is a smooth projective surface 𝑋 such that

ℎ1(𝑋,O𝑋) = 0 and 𝜔𝑋 ≃ O𝑋 ,

that is, 𝑋 is simply connected and has trivial canonical bundle.

Example 2.4.1. If 𝑋 is a smooth quartic in P3, then 𝜔𝑋 ≃ O𝑋 via the adjunction
formula, and ℎ1(𝑋,O𝑋) = 0 from taking cohomology of the short exact sequence

0 → OP3 (−4) → OP3 → O𝑋 → 0.

In particular, 𝑋 is a K3 surface.
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Example 2.4.2. If 𝐴 is a abelian surface, then the surface quotient 𝐴/±𝑖𝑑 has 16
singularities of type 𝐴1. Its minimal resolution of singularities Km(𝐴) is a K3
surface, called the Kummer surface associated to 𝐴.

Definition 2.4.2. A Hodge structure of (pure) weight 𝑛 is a free Z-module 𝐻Z of
finite rank together with a (Hodge) decomposition of complex vector spaces

𝐻 := 𝐻Z ⊗ C =
⊕
𝑝+𝑞=𝑛

𝐻𝑝,𝑞

such that 𝐻𝑝,𝑞 = 𝐻𝑝,𝑞.

A rational Hodge structure 𝐻Q is a finite dimensional vector space over Q with a
Hodge decomposition of 𝐻Q ⊗ C. If 𝐻Z is a Hodge structure then 𝐻Z ⊗ Q is a
rational Hodge structure.

The Hodge number ℎ𝑝,𝑞 is the complex dimension dimC 𝐻𝑝,𝑞 and the set S ⊂ Z2 of
(𝑝, 𝑞) with ℎ𝑝,𝑞 ≠ 0 is called the type of 𝐻.

Example 2.4.3. If 𝑋 is a compact Kähler manifold, e.g., the analytic variety as-
sociated to a smooth projective variety, its 𝑛𝑡ℎ Betti cohomology group 𝐻𝑛 (𝑋,Z)
modulo torsion is a pure Hodge structure.

By Chow’s theorem, among the compact Kähler manifolds, the algebraic ones are
those that admit an ample line bundle 𝐿. The embedding by 𝐿 into some projective
space gives rise to a bilinear form𝑄(L) on𝐻𝑛 (𝑋,Z) satisfying certain compatibility
and positivity conditions. Such linear algebra data are captured in the notion of a
polarized Hodge structure.

Definition 2.4.3. A polarized Hodge structure of weight 𝑛 is a Hodge structure
𝐻Z together with a non-degenerate integer bilinear pairing 𝑄 on 𝐻Z whose linear
extension to 𝐻 satisfies the following conditions:

1. 𝑄(𝑥, 𝑦) = (−1)𝑛𝑄(𝑦, 𝑥);

2. 𝑄(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝐻𝑝,𝑞, 𝑦 ∈ 𝐻𝑝′,𝑞′ and 𝑝 ≠ 𝑞′;

3. 𝑖𝑝−𝑞𝑄(𝑥, 𝑥) > 0 for all 𝑥 ∈ 𝐻𝑝,𝑞 and 𝑥 ≠ 0.

Definition 2.4.4. A K3 type Hodge structure is a polarized Hodge structure of weight
2 with Hodge numbers ℎ2,0 = 1, ℎ1,1 = 𝑛, and ℎ0,2 = 1 (here 𝑛 is necessarily even).
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Definition 2.4.5. A k3-type surface 𝑋 is a smooth projective surface such that
ℎ1(𝑋,O𝑋) = 0 and its second Betti cohomology 𝐻2(𝑋,Z) is a K3 type Hodge
structure.

Example 2.4.4. Let (𝑋,L) be an algebraic K3 surface where L is a primitive
ample line bundle (necessarily of degree 2𝑑 for some positive integer 𝑑). The
Chern class 𝑐(L) is a (1, 1)-class and determines the isomorphism class of 𝐿 since
ℎ1,0(𝑋) = 0. Using 𝑐(L), we can change the sign of the intersection pairing to obtain
a polarization form𝑄(L) on 𝐻2(𝑋,Z) so that (𝐻2(𝑋,Z), 𝑄(L)) is a polarized K3
type Hodge structure of rank 22. To construct the moduli of algebraic K3 surfaces,
one fixes the degree of 𝐿 and considers the primitive cohomology 𝐻2

𝑝𝑟𝑖𝑚
(𝑋,Z) :=

𝑐(L)⊥ ⊂ 𝐻2(𝑋,Z) with the restricted bilinear form of signature (2, 19) and rank
21. (𝑋,L) and (𝑋′,L′) are isomorphic polarized K3 surfaces if and only if there
exists a Hodge isometry between (𝐻2(𝑋,Z), 𝑄(L)) and (𝐻2(𝑋′,Z), 𝑄(L′)) taking
𝑐(L) to 𝑐(𝐿′).

We recall the definition of complex multiplication, or CM, for K3 surface analogous
to CM abelian varieties.

Definition 2.4.6. Let 𝑇 (𝑋) denote the orthogonal complement of 𝑁𝑆(𝑋) inside
𝐻2(𝑋 (C),Z) with respect to the Poincaré pairing. The Z-module 𝑇 (𝑋) equipped
with the restricted Poincaré pairing is called the transcendental lattice of 𝑋 .

From 𝑁𝑆(𝑋) ⊗Q = 𝐻2(𝑋,Q) ∩𝐻1,1(𝑋), we deduce that 𝑇 (𝑋)Q is a rational Hodge
structure of K3 type, i.e.,

𝑇 (𝑋) ⊗ C = 𝑇2,0 ⊕ 𝑇1,1 ⊕ 𝑇0,2

where 𝑇1,1 is self-conjugate and 𝑇2,0 = 𝑇0,2 has complex dimension 1. Let E(𝑋)
denote the endomorphism algebra EndHg(𝑇 (𝑋)) of the Hodge structure 𝑇 (𝑋)Q.
One can show that E(𝑋) is commutative via a natural embedding E(𝑋) ↩→
EndC(𝐻2,0(𝑋)) � C. In particular, E(𝑋) is either a totally real or an imaginary
number field. Note that [𝐸 : Q] ≤ 20 for dimension reason.

Definition 2.4.7. 𝑋 is said to have complex multiplication if E(𝑋) is equal to a CM
field 𝐹 and in addition [𝐹 : Q] = rankZ𝑇 (𝑋). In particular, there exists a unique
complex embedding 𝜏 of 𝐿 such that 𝐹 acts on 𝑇 (𝑋)2,0 via multiplication by 𝜏. The
datum of (𝐹, 𝜏) is called the CM-type of 𝑋 .
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2.5 Newton polygon
We recall the definition 𝐹-crystal over 𝑘 and define its Newton polygon.

𝐹-crystals

Definition 2.5.1. An 𝐹-crystal (𝐺, 𝜑) is a free𝑊 (𝑘)-module of finite rank together
with an injective map 𝜑 : 𝑀 → 𝑀 that is both 𝜎-linear and additive.

An 𝐹-isocrystal is a finite dimensional vector space over 𝐾 together with a bĳective
𝜎-linear map 𝜑.

We write 𝑀 for an 𝐹-crystal and omit 𝜑 from the notation without any confusion.

Example 2.5.1. For a smooth projective variety 𝑋 over 𝑘 , its 𝑛𝑡ℎ crystalline coho-
mology group modulo torsion 𝐻 := 𝐻𝑛 (𝑋/𝑊)/torsion is a free 𝑊-module of finite
rank. The absolute Frobenius morphism of 𝑋 induces a 𝜎-linear map 𝜑 : 𝐻 → 𝐻

by functoriality. Poincaré duality induces a perfect pairing

⟨, ⟩ : 𝐻𝑖 × 𝐻2 dim(𝑋)−𝑖 → 𝐻2 dim(𝑋) (𝑋/𝑊) ≃ 𝑊

satisfying
⟨𝜑(𝑥), 𝜑(𝑦)⟩ = 𝑝dim(𝑋)𝜎(⟨𝑥, 𝑦⟩).

Since ⟨, ⟩ is perfect and 𝜎 : 𝑊 → 𝑊 is injective, 𝜑 is injective, and thus, (𝐻, 𝜑) is
an 𝐹-crystal.

Example 2.5.2. Let𝑊 ⟨𝑇⟩ be the non-commutative polynomial ring in one variable
over𝑊 (𝑘) subject to the relations

𝑇𝑥 = 𝜎(𝑥)𝑇 for all 𝑥 ∈ 𝑊 (𝑘).

Let 𝛼 = 𝑟
𝑠
∈ Q≥0 be a rational number in reduced form. Then the𝑊 (𝑘)-module

𝑀𝛼 := 𝑊 ⟨𝑇⟩/(𝑇 𝑠 − 𝑝𝑟)

equipped with 𝜑 : 𝑥 ↦→ 𝑇𝑥 is an 𝐹-crystal (𝑀𝛼, 𝜑) of rank 𝑠. The rational value 𝛼
is called the slope of this 𝐹-crystal.

The next result classifies 𝐹-crystal up to isogeny when 𝑘 is algebraically closed.

Theorem 2.5.1 (Dieudonné-Manin). If 𝑘 is algebraically closed, then the category
of 𝐹-crystals over 𝑘 up to isogeny is semi-simple and the simple objects are of form
(𝑀𝛼, 𝜑) for 𝛼 ∈ Q>0.



18

Definition 2.5.2. Let 𝑀 be an 𝐹-crystal 𝑀 over an algebraically closed field 𝑘 and
consider the decomposition of 𝑀 into the simple objects up to isogeny

𝑀 ∼
⊕
𝛼∈Q≥0

𝑀𝑛𝛼
𝛼 .

The elements in the set
{𝛼 ∈ Q≥0 | 𝑛𝛼 ≠ 0}

are called the Newton slopes of 𝑀 . For each slope 𝛼 of 𝑀 , its multiplicity is defined
as

𝑚𝛼 := 𝑛𝛼 · rank𝑊 (𝑘) .(𝑀𝛼).

The slopes in ascending order

0 ≤ 𝛼1 < · · · < 𝛼𝑙

together with their multiplicities 𝑚1, . . . , 𝑚𝑙 define the Newton polygon of 𝑀 . It can
be equivalently encoded in the lower convex polygon connecting the 𝑙 +1 points with
integer coordinates

{(0, 0), (𝑚1, 𝑚1𝛼1), (𝑚1 + 𝑚2, 𝑚1𝛼1 + 𝑚2𝛼2), . . . , (
𝑙∑︁
𝑖=1

𝑚𝑖,

𝑙∑︁
𝑖=1

𝑚𝑖𝛼𝑖)}.

For an 𝐹-crystal 𝑀 over 𝑘 , its Newton polygon is defined as the Newton polygon of
𝑀 ⊗𝑊 (𝑘) 𝑊 ( 𝑘̄) which is an 𝐹-crystal over 𝑘̄ . Let 𝜈(𝑀) denote this polygon.

Next, as 𝜑 is injective, 𝑀/𝜑(𝑀) is an Artinian 𝑊-module. Using the structure
theorem for Artinian modules over the PID 𝑊 , there exists 𝑠 non-negative integers
ℎ𝑖 and an isomorphism

𝑀/𝜑(𝑀) �
⊕
𝑖≥1

(𝑊/𝑝𝑖𝑊)ℎ𝑖 .

In addition, we define ℎ0 := rank𝑊 (𝑀) −∑
𝑖≥1 ℎ𝑖 . The integers 𝑖 ≥ 0 such that ℎ𝑖 ≠ 0

are called the Hodge slopes of 𝑀 . The Hodge slopes 𝑖 in ascending order together
with their multiplicities ℎ𝑖 define the Hodge polygon of 𝑀 . Let 𝜇(𝑀) denote this
polygon.

The Newton polygon always lies on or above the Hodge polygon. Furthermore, for
smooth proper varieties 𝑋 satisfying certain conditions, the Hodge polygon of its
crystalline cohomology are equivalently encoded in the Hodge numbers.
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Proposition 2.5.2. Let 𝑀 be an 𝐹-crystal over 𝑘 . Then 𝜈(𝑀) lies on or above
𝜇(𝑀).

Theorem 2.5.3 (Mazur, Nygaard, Ogus). Let 𝑋 be a smooth and proper variety
over 𝑘 . If 𝐻𝑛

𝑐𝑟𝑖𝑠
(𝑋/𝑊) is torsion-free and the Frölicher spectral sequence of 𝑋

degenerates at 𝐸1, then ℎ𝑖 = dim𝐻𝑛−𝑖 (𝑋,Ω𝑖
𝑋/𝑘 ) for all 0 ≤ 𝑖 ≤ 𝑛.

The varieties of interest in this thesis are good reductions of smooth projective
varieties in characteristic 0 and hence satisfy the conditions of the theorem.

Example 2.5.3. Let 𝐴 be an abelian variety of dimension 𝑔 over 𝑘 . The crys-
talline cohomology 𝐻1

𝑐𝑟𝑖𝑠
(𝐴/𝑊) is an 𝐹-crystal of rank 2𝑔. Its Hodge polygon is

{(0, 0), (𝑔, 0), (2𝑔, 𝑔)}. Its Newton polygon lies above the Hodge polygon, has the
same endpoints, and has integer breakpoints such that if 𝛼 is a slope with multiplicity
𝑛, then 1 − 𝛼 is also a slope with multiplicity 𝑛.

Definition 2.5.3. A K3 𝐹-crystal of rank 𝑛 is an 𝐹-crystal (𝐻, 𝜑) of rank 𝑛 together
with a symmetric bilinear form

⟨, ⟩ : 𝐻 ⊗𝑊 𝐻 → 𝑊

such that

1. 𝜑 ⊗ 𝑘 has rank 1;

2. 𝑝2𝐻 ⊂ 𝜑(𝐻);

3. ⟨, ⟩ is a perfect pairing;

4. ⟨𝜑(𝑥), 𝜑(𝑦)⟩ = 𝑝2⟨𝑥, 𝑦⟩.

The K3 crystal (𝐻, 𝜑) is called supersingular if in addition it is purely of slope 1.

Example 2.5.4. If 𝑋 is a K3 surface over 𝑘 , then 𝐻 := 𝐻2
𝑐𝑟𝑖𝑠

(𝑋/𝑊) equipped with
the map 𝜑 induced by the absolute Frobenius and the bilinear pairing ⟨, ⟩ from
Poincaré duality is a K3 𝐹-crystal of rank 22.

Proposition 2.5.4. There exists an integer ℎ := ℎ(𝑋) ∈ {1, 2, . . . , 10} such that the
Newton polygon of 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊) has slopes

(1 − 1/ℎ, 1, 1 + 1/ℎ)
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with multiplicities
(ℎ, 22 − 2ℎ, ℎ).

Or the Newton polygon has slopes 1 only in which case we set ℎ(𝑋) = ∞.

Proof. Poincaré duality implies that ⟨𝐹 (𝑥), 𝐹 (𝑦)⟩ = 𝑝2𝜎⟨𝑥, 𝑦⟩ which means the
Newton slopes are closed under the map 𝜆 ↦→ 2 − 𝜆.

As the Hodge numbers of 𝑋 are 1, 20, 1, and the Newton polygon has to lie above
or on the Hodge polygon with integer break points, 𝜈(𝑋) has slopes 1 only or there
exists an integer ℎ that is the 𝑥-coordinate of the first break point (ℎ, ℎ − 1). This
point corresponds to the slope 1−1/ℎwith multiplicity ℎ and so 1+1/ℎmust also be
a slope with multiplicity ℎ. The only remaining slope possible is 1 with multiplicity
22 − 2ℎ.

A priori, 1 ≤ ℎ ≤ 11. One considers an ample line bundle 𝐿 on 𝑋 . Its first Chern
class 𝑐1(𝐿) ∈ 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊) satisfies

𝐹 (𝑐1(𝐿) = 𝑐1(𝐹∗(𝐿)) = 𝑐1(𝐿⊗𝑝) = 𝑝𝑐1(𝐿).

Hence 𝐻2
𝑐𝑟𝑖𝑠

(𝑋/𝑊) has at least one slope 1 and ℎ < 11. □

Remark 2.5.1. We call ℎ(𝑋) the height of 𝑋 . The terminology stems from the fact
that ℎ(𝑋) is also the height of the formal Brauer group of 𝑋 .

Example 2.5.5. If 𝐴 an abelian surface over 𝑘 , then 𝐻2
𝑐𝑟𝑖𝑠

(𝐴/𝑊) ≃ Λ2𝐻1
𝑐𝑟𝑖𝑠

(𝐴/𝑊)
is a K3 𝐹-crystal of rank 6.

Definition 2.5.4. A k3-type surface over 𝑘 is a smooth proper surface 𝑋 such that
ℎ1(𝑋,O𝑋) = 0, the Frölicher spectral sequence of 𝑋 degenerates at 𝐸1, and the
second crystalline cohomology 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊) is a K3 𝐹-crystal.

Artin invariant
There exists a crystalline Chern map

𝑐1 : Pic(𝑋) → 𝐻2
𝑐𝑟𝑖𝑠 (𝑋/𝑊)

which is a homomorphism of abelian groups. We call the image of this map the
Neron-Severi group NS(𝑋). For any 𝐿 ∈ Pic(𝑋),

𝑐1(𝐹∗(𝐿)) = 𝑐1(𝐿⊗𝑝) = 𝑝𝑐1(𝐿)

where 𝐹 is the absolute Frobenius morphism of 𝑋 . This means the image NS(𝑋) in
𝐻2
𝑐𝑟𝑖𝑠

(𝑋/𝑊) is contained in the Z𝑝-submodule of elements 𝑥 such that 𝜑(𝑥) = 𝑝𝑥.
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Definition 2.5.5. Let 𝐻 be a K3 𝐹-crystal. The Tate module of 𝐻 is defined as

𝑇𝐻 := {𝑥 ∈ 𝐻 : 𝜑(𝑥) = 𝑝𝑥}.

Remark 2.5.2. The Tate conjecture (established for K3 surfaces over finite fields due
to works of several authors) implies that 𝑐1 induces an isomorphism after tensoring
with Q𝑝. Hence the Picard rank of 𝑋 is given by

𝜌(𝑋) := rankZ𝑝Pic(𝑋) = rankZ𝑝𝑇𝐻 .

Proposition 2.5.5 (Proposition 4.7, [18]). Let (𝐻, 𝜑, ⟨, ⟩) be a supersingular K3
𝐹-crystal. Then

rank𝑊𝐻 = rankZ𝑝𝑇𝐻

and the bilinear form ⟨, ⟩ restricted to 𝑇𝐻 is non-degenerate form

⟨, ⟩ : 𝑇𝐻 ⊗Z𝑝 𝑇𝐻 → Z𝑝

which is not perfect. In particular,

1. ord𝑝 (𝑇𝐻 , ⟨, ⟩) = 2𝜎0 > 0 for some integer 𝜎0 called the Artin invariant of 𝐻.

2. (𝑇𝐻 , ⟨, ⟩) is determined up to isometry of polarized Z𝑝-lattices by 𝜎0.

3. There exists an orthogonal decomposition

(𝑇𝐻 , ⟨, ⟩) = (𝑇0, 𝑝⟨, ⟩) ⊕ (𝑇1, ⟨, ⟩)

where (𝑇0, ⟨, ⟩) and (𝑇1, ⟨, ⟩) are Z𝑝-lattices with perfect bilinear forms such
that rankZ𝑝𝑇0 = 2𝜎0 and rankZ𝑝𝑇1 = rank𝑊𝐻 − 2𝜎0, respectively.

Thus 𝜎0 is an integer between 1 and 10.

The 𝜇-ordinary polygon and Kottwitz method
The main references of this section are [14, 19, 25].

Let 𝑘 be a perfect algebraically closed field in characteristic 𝑝. We briefly recall Kot-
twitz method to compute the set of admissible Newton polygons of an 𝐹-isocrystals
with compatible bilinear form and an action of a split unramified semi-simple alge-
bra 𝐵 over Q𝑝. Via Morita equivalence, it suffices to consider unramified extension
𝐵 of Q𝑝.



22

Let 𝐵 be a degree 𝑑 unramified extension of Q𝑝 and O𝐵 be a maximal order of 𝐵
with residue field F𝑞.

By an 𝐹-crystal with O𝐵 structure we mean an 𝐹-crystal (𝑀, 𝜑, ⟨.⟩) together with
an injection O𝐵 ↩→ End(𝑀, 𝜑) and an involution ∗ : O𝐵 → O𝐵 such that for all
𝑏 ∈ O𝐵

⟨𝑏−,−⟩ = ⟨−, 𝑏∗−⟩.

Let 𝐼 := Hom(O𝐵,𝑊 (F𝑝)). The group 𝐼 can be identified with Gal(F𝑞/F𝑝) and the
cyclic group Z/𝑑Z. Since 𝑀 is a module over O𝐵 ⊗ 𝑊 (𝑘) and 𝑘 contains F𝑝, we
have a decomposition into character spaces

𝑀 = ⊕𝑖∈𝐼𝑀𝑖 .

For each 𝑖, the map 𝜑 restricts to a 𝜎-linear map 𝜑𝑖 : 𝑀𝑖 → 𝑀𝑖+1. Then 𝜑𝑑 restricts
to a 𝜎𝑑-linear map on each 𝑀𝑖 and 𝜙 is a morphism between the 𝐹-crystals (𝑀𝑖, 𝜙

𝑑)
and (𝑀𝑖+1, 𝜙

𝑑). In particular, the (𝑀𝑖, 𝜙
𝑑) are isogenous summands of (𝑀, 𝜙) - a

slope 𝛼 appears in 𝜈(𝑀, 𝜙) with multiplicity 𝑚 if and only if the slope 𝑑𝛼 appears
in 𝜈(𝑀𝑖, 𝜙

𝑑) with multiplicity 𝑚/𝑑.

Next, we consider the decomposition of Artinian𝑊-modules

𝑀/𝜙(𝑀) = ⊕𝑖𝑀𝑖/𝜙𝑖 (𝑀𝑖−1).

Let 𝜇𝑖 be the Hodge polygon of 𝑀𝑖/𝜙𝑖 (𝑀𝑖−1) so that 𝜇(𝑀) is the amalgamate sum
of the 𝜇𝑖. The 𝜇-ordinary polygon (also called 𝜎-invariant Hodge polygon) of 𝑀 is
defined as

𝜈𝑜𝑟𝑑 :=
1
𝑑

∑︁
𝑖∈Z/𝑑Z

𝜎𝑖 (𝜇(𝑀)).

Here the sum is entry-wise where we organize 𝜇(𝑀) into 𝑑 blocks corresponding
to the 𝜇𝑖 and 𝜎𝑖 (𝜇(𝑀)) is obtained from 𝜇(𝑀) by replacing 𝜇 𝑗 with 𝜇 𝑗+𝑖 for all 𝑗 .

Let us compute the 𝜇-ordinary polygons for the Shimura variety 𝑆ℎ(𝐺, 𝑓 )F𝑝 from
2.3.

Example 2.5.6. Let 𝑥 ∈ 𝑆ℎ(𝐺, 𝑓 ) (F𝑝) and 𝐴𝑥 be the corresponding abelian variety
over F𝑝. The crystalline cohomolgy 𝑀 := 𝐻1

𝑐𝑟𝑖𝑠
(𝐴/𝑊 (F𝑝)) is an 𝐹-crystal together

with endomorphism by the split unramified semi-simple algebra Q[𝐺] ⊗ Q𝑝. The
action of the maximal order

Z[𝐺] ⊗ Z𝑝 =
∏
𝔬∈𝔒

O𝑑𝔬,𝔬
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induces a decomposition
𝑀 = ⊕𝔬∈𝔒𝑀𝔬

into 𝐹-crystals with O𝑑𝔬,𝔬 structure 𝑀𝔬. The 𝜇-ordinary polygon of 𝑀 is defined as
the amalgamate sum of the 𝜇-ordinary polygons of the 𝑀𝔬.

Let 𝑠(𝔬) be the number of distinct values of { 𝑓 (𝜏) | 𝜏 ∈ 𝔬} in [1, 𝑔(𝔬) − 1]. Let
𝐸 (1), . . . , 𝐸 (𝑠(𝔬) denote these distinct values such that

𝐸 (0) := 𝑔(𝔬) > 𝐸 (1) > · · · > 𝐸 (𝑠(𝔬)) > 𝐸 (𝑠(𝔬) + 1) := 0.

Lemma 2.5.1. With notations as above, the 𝜇-ordinary polygon 𝜇𝔬 of 𝑀𝔬 is given
by the 𝑠(𝔬) + 1 distinct slopes

0 ≤ 𝛼(0) < 𝛼(1) < · · · < 𝛼(𝑠(𝔬)) ≤ 1

such that for all 0 ≤ 𝑙 ≤ 𝑠(𝔬)

𝛼(𝑡) = 1
#𝔬

𝑡∑︁
0

#{𝜏 ∈ 𝔬 | 𝑓 (𝜏) = 𝐸 (𝑖)}

with multiplicity
𝑚(𝑡) = #𝔬 · (𝐸 (𝑙) − 𝐸 (𝑙 + 1)).

Proof. For each orbit 𝔬, we identify 𝔬 with Hom(O𝑑𝔬,𝔬,𝑊 (𝐹 𝑝)) and Z/#𝔬Z. Con-
sider the decomposition into character spaces

𝑀𝔬 = ⊕𝜏𝑖∈𝔬𝑀𝑖 .

By a comparison theorem between Betti and algebraic de Rham cohomology, 𝜇𝑖
has the form {0, . . . , 0, 1, . . . , 1} with multiplicities 𝑔(𝔬) − 𝑓 (𝜏𝑖) and 𝑓 (𝜏𝑖). The
formula then follows from averaging over the 𝜇𝑖. □

By [34, Theorem 1.6], the Newton polygons that occur on 𝑆ℎ(𝐺, 𝑓 )F𝑝 are precisely
of the forms ⊕𝔬∈𝔒𝜈𝔬 such that the following conditions hold:

1. If 𝔬∗ ≠ 𝔬, then 𝑀𝔬 � 𝑀∨
𝔬∗ (1), i.e., if 𝜈𝔬 has slopes 𝛼1, . . . , 𝛼𝑠 with multi-

plicities 𝑚1, . . . , 𝑚𝑠 then 𝜈𝔬∗ has slopes 1 − 𝛼1, . . . , 1 − 𝛼𝑠 with multiplicities
𝑚1, . . . , 𝑚𝑠 . If 𝔬∗ = 𝔬, then 𝜈𝔬 is symmetric, i.e. if𝛼 is a slope with multiplicity
𝑚 then 1 − 𝛼 is also a slope with multiplicity 𝑚.
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2. 𝜈𝔬 ⪰ 𝜇𝔬.

3. The multiplicities of slopes in 𝜈𝔬 are divisible by #𝔬.

The polygons satisfying all these conditions are also called admissible. The set of
admissible polygons is called the Kottwitz set and denoted by 𝐵(𝐺, 𝑓 ). The highest
polygon in this set is called the basic polygon.

Let 𝐹 be an abelian extension ofQ of degree𝑚 and 𝑝 be an unramified rational prime
for 𝐹. As 𝐹 is abelian, we have a well-defined Frobenius element Fr𝑝 in Gal(𝐹/Q).
We identify the set of primes of 𝐹 above 𝑝 with the set 𝔒 of Fr𝑝-orbits in Gal(𝐹/Q).
Let 𝐾 be the subfield of 𝐹 over which 𝑝 splits completely, i.e., 𝐾 = 𝐹 ⟨Fr𝑝⟩, and set
𝑑 := [𝐹 : 𝐾]. We have

𝐹 ⊗ Q𝑝 ≃
∏
𝔬∈𝔒

𝐹𝔬

where each 𝐹𝔬 is an unramified extension of degree 𝑑 of Q𝑝. Let 𝜎∗ denote the
image of 𝜎 under the action of complex conjugation in Gal(𝐹/Q). In particular,
𝜎∗ = 𝜎 if 𝐹 is totally real.

Lemma 2.5.2. Let (𝑀, 𝜑, ⟨, ⟩) be a K3 F-crystal over Z𝑝 of rank 𝑛 together with
endomorphism by a maximal order O of 𝐹 ⊗ Q𝑝 such that ⟨𝑏−,−⟩ = ⟨−, 𝑏∗−⟩ for
all 𝑏 ∈ O. Then the following hold:

1. If 𝔬 ≠ 𝔬∗ or 𝑛 > 𝑚, then 𝜇𝑜𝑟𝑑 (𝑀) has slopes 1− 1
𝑑
, 1, 1+ 1

𝑑
with multiplicities

𝑑, 𝑛 − 2𝑑, 𝑑.

2. If 𝔬 = 𝔬∗ and 𝑛 = 𝑚, then 𝜇𝑜𝑟𝑑 (𝑀) is supersingular, i.e., has slopes 1 only.

Proof. Consider the decomposition of (𝑀, 𝜑) into the 𝐹-crystals with O𝐹𝔬 structure
𝑀𝔬 of rank 𝑛/#𝔒

𝑀 ≃ ⊕𝔬∈𝔒𝑀𝔬.

The compatibility condition implies that the Hodge slopes of 𝑀𝔬 and 𝑀𝔬∗ are in
bĳection under the map 𝜆 ↦→ 2 − 𝜆. As the Hodge polygon of 𝑀 has the form
(0, 1, . . . , 1, 2), there exists a unique 𝔢 ∈ 𝔒 such that 𝑀𝔢 has Hodge slope 0. Now a
routine case by case calculation shows that

1. If 𝔬 ≠ 𝔬∗ then 𝜇𝑜𝑟𝑑 (𝑀𝔢) is obtained by averaging over the 𝑑 Hodge polygons
of length 𝑛/𝑚, one of the form {0, 1, . . . , 1} and 𝑑−1 of the form {1, 1, . . . , 1}.
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Similarly, 𝜇𝑜𝑟𝑑 (𝑀∗
𝔢 ) is the average of the 𝑑Hodge polygons of length 𝑛/𝑚: one

of the form {1, . . . , 1, 2} and 𝑑 − 1 of the form {1, 1, . . . , 1}. The remaining
𝑀𝔬 have slopes 1 only.

2. If 𝔬 = 𝔬∗ and 𝑛 > 𝑚 then 𝜇𝑜𝑟𝑑 (𝑀𝔢) is obtained by averaging over the 𝑑
Hodge polygons of length 𝑛/𝑚: one of the form {0, 1, . . . , 1}, one of the form
{1, . . . , 1, 2}, and 𝑑 − 2 of the form {1, 1, . . . , 1}. The remaining 𝑀𝔬 have
slopes 1 only.

3. If 𝔬 = 𝔬∗ and 𝑛 = 𝑚 then 𝜇𝑜𝑟𝑑 (𝑀𝔢) is obtained by averaging over the 𝑑 Hodge
polygons of length 1: one of the form {0}, one of the form {2}, and 𝑑 − 2 of
the form {1}, which results in slopes 1 only.

□

The Artin invariant and Weyl group element
The main references for this section are [9, 22].

In [22], the authors define orthogonal 𝐹-zips and prove that they are classified by
certain elements of the Weyl group of the associated orthogonal group called the
final types. The example of interest to us is the primitive de Rham cohomology
𝐻2
𝑝𝑟𝑖𝑚

(𝑋, 𝑘) of a K3 surface over 𝑘 which is the reduction mod 𝑝 of its primitive K3
F-crystal 𝐻2

𝑝𝑟𝑖𝑚
(𝑋/𝑊). We describe to state the main result from [9] that describes

the correspondence from final types to Newton polygons and Artin invariants.

Let (𝑀, 𝜑, ⟨, ⟩) be a K3 F-crystal of even rank 2𝑛. Let (𝑀, 𝜑, ⟨, ⟩) denote the
reduction mod 𝑝 which is a vector space over 𝑘 equipped with an orthogonal
filtration . Let 𝑆𝑂 (2𝑛) denote the standard special orthogonal group. With a
suitable choice of basis, the Weyl group𝑊𝑆𝑂 (2𝑛) can be identified with the subgroup
of 𝔖2𝑛 of permutations 𝜋 such that 𝜋(𝑖) + 𝜋(2𝑛 + 1− 𝑖) = 2𝑛 + 1 and the number of 𝑖
with 𝜋(𝑖) > 𝑛 + 1 is even. The 𝑛 simple reflections of𝑊𝑆𝑂 (2𝑛) are the permutations
𝑠𝑖 = (𝑖, 𝑖 + 1) (2𝑛− 𝑖, 2𝑛 + 1− 𝑖) for 𝑖 = 1, . . . , 𝑛− 1, and 𝑠𝑛 = (𝑛− 1, 𝑛 + 1) (𝑛, 𝑛 + 2).
The length of a permutation 𝜋 is defined as

𝑙 (𝜋) = #{1 ≤ 𝑖 < 𝑗 ≤ 𝑛 : 𝜋(𝑖) > 𝜋( 𝑗)} + #{1 ≤ 𝑖 < 𝑗 ≤ 𝑛 : 𝜋(𝑖) + 𝜋( 𝑗) > 2𝑛 + 1}.

We set 𝐽 := {𝑠2, . . . , 𝑠𝑛} so that the set of cosets𝑊𝐽⧹𝑊𝑆𝑂 (2𝑛) consists of 2𝑛 elements
𝜔1 ≻ 𝜔2 ≻ · · · ≻ 𝜔2𝑛 with the total Bruhat order.

Proposition 2.5.6 (Theorem 7.1. [9]). With notations as above, we have:
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1. 𝑀 has finite height ℎ ≤ 𝑛 if and only if 𝑀 has final type 𝜔ℎ.

2. 𝑀 is supersingular with Artin invariant 𝜎0 ≤ 𝑛 if and only if 𝑀 has final type
𝜔2𝑛+1−𝜎0 .

Lemma 2.5.3. Let 𝐵 be a degree 𝑑 unramified extension of Q𝑝 and (𝑀, 𝜑, ⟨, ⟩) be
K3 crystal with O𝐵 structure of rank 𝑚 over O𝐵. Assume that we are in the situation
where 𝑏∗ ≠ 𝑏, then

1. If 𝑀 has finite height ℎ, then 𝑑 divides ℎ.

2. If 𝑀 is supersingular with Artin invariant 𝜎0, then 𝑑 divides 𝜎0.

Proof. 1. We recall the decomposition into character spaces that are isogenous
𝐹-crystals

𝑀 = ⊕𝜏∈𝐼𝑀𝜏 .

In particular, in the case of finite height, the multiplicity ℎ is divisible by the
cardinality 𝑑 of 𝐼.

2. From ⟨𝑏𝑥, 𝑦⟩ = ⟨𝑥, 𝑏∗𝑦⟩ and 𝑏 ≠ 𝑏∗, we deduce that the bilinear form admits
an orthogonal decomposition

(𝑀, ⟨, ⟩) = ⊕𝜏∈𝐼 (𝑀𝜏, ⟨, ⟩𝜏).

By definition, the Artin invariant is the 𝑝-ordinal of the discriminant of ⟨, ⟩
restricted to a basis of Tate classes of 𝑀 . Let 𝑥 = (𝑥𝜏𝑖 )𝜏𝑖∈𝐼 and 𝑦 = (𝑦𝜏𝑖 )𝜏𝑖∈𝐼
be two Tate classes, i.e., 𝜑(𝑥) = 𝑝𝑥 and 𝜑(𝑦) = 𝑝𝑦. Since 𝜑 : 𝑀𝜏𝑖 → 𝑀𝜏𝑖+1 ,
we nave 𝜑(𝑥𝜏𝑖 ) = 𝑝𝑥𝜏𝑖+1 and 𝜑(𝑦𝜏𝑖 ) = 𝑝𝑦𝜏𝑖+1 .

It suffices to show that the discriminant of each ⟨, ⟩𝜏 is the same, i.e., for all
𝜏𝑖 ∈ 𝐼, we have

⟨𝑥𝜏𝑖 , 𝑦𝜏𝑖⟩𝜏𝑖 = ⟨𝑥𝜏𝑖+1 , 𝑦𝜏𝑖+1⟩𝜏𝑖+1 .

Indeed we can verify that

𝑝2⟨𝑥𝜏𝑖 , 𝑦𝜏𝑖⟩𝜏𝑖 = ⟨𝜑(𝑥𝜏𝑖 ), 𝜑(𝑦𝜏𝑖 )⟩𝜏𝑖 = ⟨𝑝𝑥𝜏𝑖+1 , 𝑝𝑦𝜏𝑖+1⟩𝜏𝑖 = 𝑝2⟨𝑥𝜏𝑖+1 , 𝑦𝜏𝑖+1⟩𝜏𝑖+1 .

□
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C h a p t e r 3

CALCULATION OF FAMILIES OF K3-TYPE SURFACES

In this chapter, we review the construction and show important features of the
families for which our main theorems apply.

Inventory of examples
Let 𝐶 = 𝐶 (𝐺, 𝑎, 𝑁𝐶) and 𝐷 = 𝐷 (𝐺, 𝑏, 𝑁𝐷) be two monodromy data. The group
scheme 𝜇𝐺 acts diagonally on the product 𝐶 × 𝐷 via

(𝑥, 𝑦, 𝑧, 𝑡) ↦→ (𝑥, 𝜁 𝑦, 𝑧, 𝜁−1𝑡).

Let C[𝐶] and C[𝐷] denote the affine coordinate rings over C. We consider the GIT
quotient 𝑆 := (𝐶 × 𝐷)/𝜇𝐺 which has isolated singularities of cyclic-quotient type.
After blowing up all these singularities, we get a smooth surface 𝑆 that may not be
minimal in general. One can compute the minimal model 𝑋 := 𝑆min by searching
and blowing down the (-1)-divisors.

Definition 3.0.1. We call the monodromy datum (𝐺, 𝑎, 𝑏, 𝑁𝐶 , 𝑁𝐷) a K3 type pair
if the resulting surface 𝑋 is of K3 type.

Using the birational invariance of ℎ2,0 and Kunneth formula, we can show that

ℎ2,0(𝑋) = ℎ2,0((𝐶 × 𝐷)/𝜇𝐺) = dimC 𝐻2,0(𝐶 × 𝐷)𝐺 =
∑︁
(𝜏,𝜏∗)

𝑓𝐶 (𝜏) 𝑓𝐷 (𝜏∗).

Proposition 3.0.1. 𝑋 is a K3 type if and only if there exists a unique 𝜏 ∈ T such
that 𝑓𝐶 (𝜏) 𝑓𝐷 (𝜏∗) = 1 and 𝑓𝐶 (𝜏) 𝑓𝐷 (𝜏∗) = 0 otherwise.

Proof. This follows directly from the definition of k3-type surface and the Kunneth
formula for ℎ2,0(𝑋). □

Corollary 3.0.2. If the monodromy data𝐶 (𝐺, 𝑎, 𝑁𝐶) and 𝐷 (𝐺, 𝑏, 𝑁𝐷) is a K3 type
pair, then 𝑁𝐶 = 3 or 𝑁𝐷 = 3. Assume that 𝑁𝐷 = 3, then 𝑁𝐶 −3 = dim 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤

𝐶
).

Proof. From Proposition 2.3.1, 𝑓𝐶 (𝜏𝑙)+ 𝑓𝐶 (𝜏−𝑙) = 𝑁𝑐−2 and 𝑓𝐶 (𝜏𝑙)+ 𝑓𝐶 (𝜏−𝑙) = 𝑁𝐷−
2 for any 𝑙 ∈ (Z/𝑚Z)∗. This means the unique index 𝑙 such that 𝑓𝐶 (𝜏𝑙) 𝑓𝐷 (𝜏−𝑙) = 1
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is in (Z/𝑚Z)∗. Assume on the contrary that both 𝑁𝐶 and 𝑁𝐷 are greater than 3 so
that 𝑁𝑐 − 2 and 𝑁𝐷 − 2 are both greater than 1. Thus, 𝑓𝐶 (𝜏−𝑙) and 𝑓𝐷 (𝜏𝑙) are both
at least 1 so 𝑓𝐶 (𝜏−𝑙) 𝑓𝐷 (𝜏𝑙) is at least 1, which is a contradiction.

Without loss of generality, assume that 𝑁𝐷 = 3 so { 𝑓𝐷 (𝜏𝑙), 𝑓𝐷 (𝜏−𝑙)} = {0, 1} for
every 𝑙 ∈ (Z/𝑚Z)∗. Let 𝑙0 be the unique index such that 𝑓𝐷 (𝜏𝑙0) = 𝑓𝐶 (𝜏−𝑙0) = 1 so
𝑓𝐶 (𝜏𝑙0) 𝑓𝐶 (𝜏−𝑙0) = 𝑁𝐶 − 3. For other 𝑙 ∈ (Z/𝑚Z)∗, 𝑓𝐶 (𝜏𝑙) 𝑓𝐶 (𝜏−1) = 0 since if both
are nonzero then 𝑓𝐷 (𝜏𝑙) = 𝑓𝐷 (𝜏−𝑙) = 0 but their sum is 1.

It follows from 2.3 that dim 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤
𝐶

) = ∑
𝑓𝐶 (𝜏𝑙) 𝑓𝐶 (𝜏−𝑙) = 𝑁𝐶 − 1. □

The unique 𝜏 in 3.0.1 can be chosen to be 𝜏−1 without changing the isomorphism
class of the monodromy datum and this choice corresponds to normalizing the
inertia data such that ∑︁

𝑎𝑖 = 2𝑚 and
∑︁

𝑏𝑖 = 𝑚.

To summarize, we shall work with normalized K3 type datum (𝐺, 𝑎, 𝑏, 𝑁) satisfying
the following conditions:

1. 𝑎1 + · · · + 𝑎𝑁 = 2𝑚 and gcd(𝑎1, . . . , 𝑎𝑁 , 𝑚) = 1;

2. 𝑏1 + 𝑏2 + 𝑏3 = 𝑚 and gcd(𝑏1, 𝑏2, 𝑏3, 𝑚) = 1;

3. 𝑓𝐶 (𝜏−1) 𝑓𝐷 (𝜏1) = 1 and 𝑓𝐶 (𝜏−𝑖) 𝑓𝐷 (𝜏𝑖) = 0 for 𝑖 ≠ 1.

Remark 3.0.1. Moonen only considered the case 𝑁𝐶 ≥ 4 to obtain examples of
positive dimensional families but the construction also works for 𝑁𝐶 = 3. The
following example illustrates how to compute the minimal model of the resolution
of singularities.

Example 3.0.1. Take (5, (3, 3, 4), (1, 1, 3), 3) to be the datum. This datum defines
affine curves

𝐶 : 𝑦5 = 𝑥3(𝑥 − 1)3

and
𝐷 : 𝑧5 = 𝑡 (𝑡 − 1).

They correspond to a K3 type pair since 𝑓𝐶 = (0, 1, 0, 1) and 𝑓𝐷 = (1, 1, 0, 0). The
action of 𝜇5 on the product is given by (𝑥, 𝑦, 𝑡, 𝑧) ↦→ (𝑥, 𝜁5𝑦, 𝑡, 𝜁

−1
5 𝑧). The ring of

invariants is generated by 𝑥, 𝑡, and 𝑦𝑧.
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The surface 𝑆 = (𝐶 × 𝐷)/𝜇5 has affine model

(𝑦𝑧)5 = 𝑥3(𝑥 − 1)3𝑡 (𝑡 − 1).

On 𝑆 the singularities are of the form (𝑃𝑖, 𝑄 𝑗 ) where 𝑃𝑖 ∈ {0, 1,∞} and 𝑄 𝑗 ∈
{0, 1,∞}.

Let 𝑌𝑖 be the image of {𝑃𝑖} × 𝐷 in 𝑆 and 𝑍̄ 𝑗 be the image of 𝐶 × {𝑄 𝑗 } under the
quotient map 𝐶 × 𝐷 → 𝑆. Then 𝑌𝑖 ∩ 𝑍̄ 𝑗 = {(𝑃𝑖, 𝑄 𝑗 )} and each point (𝑃𝑖, 𝑄 𝑗 ) is a
cyclic-quotient singularity of type (𝑛, 𝑟) = (𝑛(𝑖, 𝑗), 𝑟 (𝑖, 𝑗)) as in the following table:

(5, 3) (5, 3) (5, 4) 𝑍̄1

(5, 3) (5, 3) (5, 4) 𝑍̄2

(5, 1) (5, 1) (5, 3) 𝑍̄3

𝑌1 𝑌2 𝑌3

Resolving these singularities we obtain 𝑆 → 𝑆 that looks like:

−3
−2

−3
−2

−3
−2

−3
−2

−3
−2

−2
−2

−2−2

−2
−2

−2−2

−1 −1 −2

𝑌1 𝑌2 𝑌3

𝑍1

𝑍2

𝑍3
−5 −5

−2

−2

−1

𝑆

where 𝑌𝑖, 𝑍 𝑗 are the strict transforms of 𝑌𝑖, 𝑍̄ 𝑗 to 𝑆. The continued fraction rep-
resentation of 𝑛/𝑟 determines the string of exceptional divisors 𝐸 (𝑘)

𝑖, 𝑗
connecting

𝑌𝑖 and 𝑍 𝑗 together with their self-intersection numbers. We can also compute the
self-intersection number of the canonical sheaf 𝐾2

𝑆
= −4. To get a minimal surface,

we first blow down the (-1)-curves 𝑌1, 𝑌2, and 𝑍3. After blowing down 𝑍3, 𝐸 (2)
3,3

becomes a (-1)-curve so we blow down this divisor and arrive at a surface 𝑋 with
𝐾2
𝑋
= 0, or in other words, 𝑋 is a K3 surface.

Minimal model of resolution of singularities
We now describe the well-known procedure in general which involves 2 main steps:
first resolve all singularities on 𝑆 to get a non-singular resolution 𝑆; then perform



30

a search for (-1)-exceptional divisors on 𝑆 and blown them down to get a minimal
model 𝑋 .

Resolving singularities (see [24, Section 1.2]). Let 𝑠 : 𝑆 → 𝑆 be the total blowup
of singularities associated to the K3 type data (𝐺, 𝑎, 𝑏, 𝑁). Let 𝑃𝑖 ∈ {𝜆1, . . . , 𝜆𝑁 }
and 𝑄 𝑗 ∈ {0, 1,∞}. Let 𝑌𝑖 be the image of {𝑃𝑖} × 𝐷 in 𝑆 and 𝑍̄ 𝑗 be the image of
𝐶 × {𝑄 𝑗 } under the quotient map 𝐶 × 𝐷 → 𝑆. We set

ℎ = 𝑙𝑐𝑚(gcd(𝐺, 𝑎𝑖), gcd(𝐺, 𝑏 𝑗 )),

𝑛(𝑖, 𝑗) = 𝑚

ℎ
,

𝑐(𝑖) = ( 𝑎𝑖

gcd(𝐺, 𝑎𝑖)
)−1 ∈ (Z/gcd(𝐺, 𝑎𝑖)Z)∗,

𝑑 ( 𝑗) = (
𝑏 𝑗

gcd(𝐺, 𝑏 𝑗 )
)−1 ∈ (Z/gcd(𝐺, 𝑏 𝑗 )Z)∗,

𝑟 (𝑖, 𝑗) = 𝑐(𝑖)𝑑 ( 𝑗)−1 ∈ (Z/𝑛(𝑖, 𝑗)Z)∗.

Then 𝑌𝑖 and 𝑍̄ 𝑗 intersect in gcd(𝑎𝑖, 𝑏 𝑗 , 𝑚) singular points of cyclic-quotient type
given by the pair (𝑛, 𝑟). Let 𝑌𝑖, 𝑍 𝑗 be the strict transforms of 𝑌𝑖, 𝑍̄ 𝑗 to 𝑆, and let
𝑛/𝑞 = [𝑟1, . . . , 𝑟𝑡] be the continued fraction expansion. For each 𝑅 ∈ 𝑌𝑖 ∩ 𝑍̄ 𝑗 ,
the exceptional fiber 𝑠−1(𝑅), so-called the Hirzbrunch-Jung string, consists of a
chain 𝐸1, . . . , 𝐸𝑡 of rational curves such that in the sequence 𝑍 𝑗 , 𝐸1, . . . , 𝐸𝑡 , 𝑌𝑖 each
curve transversally intersects the next and the self-intersection number is given by
𝐸2
𝑘
= −𝑟𝑘 for 𝑘 = 1, . . . , 𝑡.

Furthermore, if 𝑍𝑖 contains 𝑣 singularities of types (𝑛𝑘 , 𝑟𝑘 ) for 𝑘 = 1, . . . , 𝑣 then
its self-intersection number 𝑍2

𝑖
=

∑𝑣
𝑘=1 −𝑟𝑘/𝑛𝑘 . On the other hand, if 𝑌 𝑗 contains

𝑣 singularities of types (𝑛𝑘 , 𝑟𝑘 ) for 𝑘 = 1, . . . , 𝑣 then the self-intersection number
𝑌2
𝑗
=

∑𝑣
𝑘=1 −𝑟′𝑘/𝑛𝑘 where 𝑟′

𝑘
is the inverse of 𝑟𝑘 (mod 𝑛𝑘 ) (see [24, Proposition 2.8]).

Finally, the self-intersection number of 𝑆 is given by

𝐾2
𝑆
=

8(𝑔𝐶 − 1) (𝑔𝐷 − 1)
𝑚

+
∑︁

𝑅∈Sing(𝑆)
ℎ𝑅

with

ℎ𝑅 = 2 − 2 + 𝑟 + 𝑟′
𝑛

−
𝑡∑︁
𝑘=1

(𝑟𝑘 − 2)

where 𝑅 has singularity type (𝑛, 𝑟) = [𝑟1, . . . , 𝑟𝑡] and 𝑟′ is the inverse of 𝑟 (mod 𝑛)
(see [24, Proposition 2.5]).
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Getting the minimal model. We first write down the intersection matrix whose
rows correspond to all strict transforms and exceptional divisors in the Hirzbrunch-
Jung strings. In each iteration, we simply look for the next divisor whose self-
intersection number is -1 and whose coefficient in 𝐾𝑆 is positive, remove the cor-
responding row, and update our matrix accordingly. It follows that the only curves
that may be blown down must come from following types:

1. the (-1)-strict transforms 𝑌𝑖 for which 𝑚−𝑎𝑖
gcd(𝐺,𝑎𝑖) > 1;

2. the (-1)-strict transforms 𝑍 𝑗 for which 𝑏 𝑗

gcd(𝐺,𝑏 𝑗 ) > 1;

3. the exceptional components 𝐸𝑘 in the Hirzbrunch-Jung strings such that either
𝑌𝑖 or 𝑍 𝑗 got blown down.

Once we have exhausted all such divisors, we arrive at the minimal model 𝑋 with self-
intersection number 𝐾2

𝑋
= 𝐾2

𝑆
+𝑤 where 𝑤 is the number of (-1)-curves which were

blown down. This process can be efficiently done via a computer program: given as
input the data (𝐺, 𝑎, 𝑏, 𝑁), the output 𝐾2

𝑋
determines the Kodaira dimension of 𝑋 .

Moonen shows that 𝑋 is a K3 surface if 𝐾2
𝑋
= 0 and is of general type otherwise.

Ring of definition.
Let Z ⊂ 𝑅 ⊂ C be a ring. We shall show that if 𝐶 and 𝐷 are defined over 𝑅, so is 𝑋 .

Proposition 3.0.3. Assume that𝐶 and 𝐷 are defined over 𝑅. Then the affine subring
of invariants C[𝐶 × 𝐷]𝐺 ⊂ C[𝐶 × 𝐷] is defined over 𝑅.

Proof. We have C[𝐶 × 𝐷] ≃ C[𝑥, 𝑦, 𝑧, 𝑡]/[𝑦𝑚 =
∏
𝑖 (𝑥 − 𝜆𝑖)𝑎𝑖 , 𝑡𝑚 =

∏
𝑗 (𝑧 − 𝜇 𝑗 )𝑏 𝑗 ],

where 𝜆 and 𝜇 ∈ 𝑅. Since the 𝐺-action does not change the degree of a monomial,
it suffices to find the ring of invariant monomials. This set consists of precisely the
monomials whose 𝑦’s degree and 𝑡’s degree are equal, i.e.,

C[𝐶 × 𝐷]𝐺 = C[𝑥, 𝑧, 𝑦𝑡]/[(𝑦𝑡)𝑚 =
∏
𝑖

(𝑥 − 𝜆𝑖)𝑎𝑖
∏
𝑗

(𝑧 − 𝜇 𝑗 )𝑏 𝑗 ],

and this descends to 𝑅[𝑥, 𝑧, 𝑦𝑡]/[(𝑦𝑡)𝑚 =
∏
𝑖 (𝑥 − 𝜆𝑖)𝑎𝑖

∏
𝑗 (𝑧 − 𝜇 𝑗 )𝑏 𝑗 ] which is

defined over 𝑅. □

As a corollary from GIT, the quotient 𝑆 := (𝐶 × 𝐷)/𝐺 is defined over 𝑅. Further-
more, the (-1)-divisors are rational, i.e., isomorphic to P1, so the minimal model 𝑋
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is defined over 𝑅. In particular, if𝐶 and 𝐷 are defined over Z, then 𝑋 is defined over
Z. The reduction mod 𝑝 of 𝑋 when 𝑝 ∤ 𝑚 is smooth a projective k3-type surface
over F𝑝.

Polarization.
We construct a polarization on 𝑋 as following. On 𝐶 × 𝐷 we consider the tensor
product 𝐿 := 𝐿1 ⊗ 𝐿2 of principal ample line bundles on 𝐶 and 𝐷. Then the tensor
power 𝐿𝑚 is a 𝐺-invariant ample line bundle on 𝐶 × 𝐷 where 𝐺 acts via 𝑚𝑡ℎ roots
of unity. Then we take the pushforward of 𝐿𝑚 under the finite map 𝐶 × 𝐷 → 𝑆 to
obtain an ample line bundle 𝐿′ on 𝑆. By the projection formula and the birational
invariance of ℎ2,0(𝑆, 𝐿′), we get an ample line bundle of degree 2𝑚 on 𝑋 . One can
extend this construction to a family by considering an ample line bundle over the
base H(𝐺, 𝑎).

Corollary 3.0.4. For any K3 type datum (𝐺, 𝑎, 𝑏, 𝑁), the family X(𝐺, 𝑎, 𝑏, 𝑁) has
a model over Z[ 1

2𝑚 ].
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C h a p t e r 4

PROOF OF THE FIRST MAIN THEOREM

Let X = X(𝐺, 𝑎, 𝑏, 𝑁) be the family associated to the K3 type datum (𝐺, 𝑎, 𝑏, 𝑁).
Let 𝑝 ∤ 2𝑚 be a prime and 𝑋 be a k3-type surface in X. By abuse of notation, we
use 𝑋 to denote the reduction of 𝑋 at 𝑝 which is a smooth proper k3-type surface in
positive characteristic.

We calculate the Newton polygon variation in the family X when 𝐶 moves in the
family parametrized by H(𝑚, 𝑎) via two steps:

1. We first show how the Newton polygon of 𝑋 can be determined from that of
𝐶 and 𝐷. In particular, when 𝐷 is fixed and𝐶 varies in a family, each Newton
polygon of 𝑋 corresponds one-to-one to a Newton polygon of 𝐽 (𝐶)𝑛𝑒𝑤.

2. We find all possible Newton polygons of 𝐽 (𝐶)𝑛𝑒𝑤.

The technical tools for our calculation are crystalline cohomology and 𝐹-crystals
with additional structure. We first recall the following wonderful result due to
Ekedahl.

Proposition 4.0.1. [8, Proposition 4.1] Let 𝑆 be smooth projective surface over
𝑘 . Suppose 𝐺 is a finite group acting on 𝑆 whose order is prime to 𝑝. Let
𝑋 be the minimal resolution of singularities of 𝑆/𝐺. Then 𝐻2

𝑐𝑟𝑖𝑠
(𝑋/𝑊 (𝑘)) =

𝐻2(𝑆/𝑊 (𝑘))𝐺 ⊕𝐶 where𝐶 is the𝑊 (𝑘)-submodule generated by the Chern classes
of the exceptional divisors of 𝑋 → 𝑆/𝐺. Furthermore, the decomposition is
orthogonal with respect to Poincaré pairing product and the pairing restricted
to 𝐶 is perfect.

As Chern classes all have slope 1, Ekedahl’s result reduces the problem to calculating
the slopes of 𝐻2

𝑐𝑟𝑖𝑠
(𝐶 ×𝐷/𝑊 (𝑘))𝐺 . The Kunneth formula and 𝐺 acting trivially on

𝐻0
𝑐𝑟𝑖𝑠

and 𝐻2
𝑐𝑟𝑖𝑠

implies that

𝐻2
𝑐𝑟𝑖𝑠 (𝐶×𝐷)𝐺 = 𝐻0

𝑐𝑟𝑖𝑠 (𝐶)⊗𝐻2
𝑐𝑟𝑖𝑠 (𝐷)⊕𝐻0

𝑐𝑟𝑖𝑠 (𝐷)⊗𝐻2
𝑐𝑟𝑖𝑠 (𝐶)⊕(𝐻1

𝑐𝑟𝑖𝑠 (𝐶)⊗𝐻1
𝑐𝑟𝑖𝑠 (𝐷))𝐺 .

The slope of 𝐻0
𝑐𝑟𝑖𝑠

(𝐶) (resp. 𝐻0
𝑐𝑟𝑖𝑠

(𝐷)) is 0 and 𝐻2
𝑐𝑟𝑖𝑠

(𝐷) (resp. 𝐻2
𝑐𝑟𝑖𝑠

(𝐶)) is 1 (by
compatibility of Poincaré duality), and thus, their tensor product has slope 1 and
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Artin invariant 0 (coming from the determinant of the Kronecker product of the two
pairings). The action of 𝐺 � 𝜇𝑚 on 𝐶 and 𝐷 induces an action of

Z[𝜇𝑚] ⊗ Z𝑝 =
∏
𝔬∈𝔒

O𝑑𝔬,𝔬

on crystalline cohomology by functoriality and thus decompositions of 𝐹-crystals

𝐻1
𝑐𝑟𝑖𝑠 (𝐶) =

⊕
𝔬∈𝔒

𝑀𝔬 (𝐶) and 𝐻1
𝑐𝑟𝑖𝑠 (𝐷) =

⊕
𝔬∈𝔒

𝑀𝔬 (𝐷).

In particular

(𝐻1
𝑐𝑟𝑖𝑠 (𝐶) ⊗ 𝐻1

𝑐𝑟𝑖𝑠 (𝐷))𝐺 =
⊕
𝔬∈𝔒

𝑀𝔬 (𝐶) ⊗O𝑑𝔬 ,𝔬
𝑀𝔬∗ (𝐷),

where ⊗O𝑑𝔬 ,𝔬
is the tensor product between 𝐹-crystals with O𝑑𝔬,𝔬-module structure.

Now let 𝜈𝔬 (𝐶) and 𝜈𝔬 (𝐷) denote the Newton polygon of 𝑀𝔬 (𝐶) and 𝑀𝔬 (𝐷) respec-
tively. Let 𝔒′ denote the set of orbits 𝔬 such that 𝑑𝔬 ∤ 𝑏 𝑗 for all 𝑗 . We show the
following:

Proposition 4.0.2. Each 𝜈𝔬∗(𝐷) is isoclinic with slope 𝜆𝑜∗(𝐷). Furthermore

1. if 𝔬 ∈ 𝔒′, the Newton polygon of 𝑀𝔬 (𝐶) ⊗O𝑑𝔬 ,𝔬
𝑀𝔬∗ (𝐷) is obtained by adding

𝜆𝑜∗(𝐷) to the slopes of 𝜈𝔬 (𝐶);

2. if 𝔬 ∉ 𝔒′, the component 𝑀𝔬 (𝐶) ⊗O𝑑𝔬 ,𝔬
𝑀𝔬∗ (𝐷) is trivial.

Proof. From the multiplication type of 𝐷, 𝑀𝔬∗ (𝐷) � O𝑑𝔬,𝔬 if 𝔬 ∈ 𝔒′ and is 0
otherwise, hence the second part. Suppose that we are now in the case 𝔬 ∈ 𝔒′.
Then a calculation using Kottwitz method implies that 𝑀𝔬∗ (𝐷) is isoclinic with
slope 𝜆𝔬∗ (𝐷) = 𝑛𝔬∗ (𝐷)

#𝔬∗ where 𝑛𝔬∗ (𝐷) = #{𝑖 ∈ 𝔬∗ | 𝑓𝐷 (𝑖) = 1}. Hence the first part
follows. □

Proposition 4.0.3. Suppose that 𝔬 ∈ 𝔇′ and 1 ∉ 𝔬, then 𝑀𝔬 (𝐶) ⊗O𝑑𝔬 ,𝔬
𝑀𝔬∗ (𝐷) is

isoclinic with slope 1.

Proof. We first show that 𝑓𝐶 (𝔬) has a single nonzero multiplicity, i.e., 𝑓𝐶 (𝑖) ∈
{0, 𝑔𝐶 (𝔬)} for all 𝑖 ∈ 𝔬. Indeed, assume on the contrary that there exists 𝑖 ≠ 𝑗 ∈ 𝔬

such that 𝑔𝐶 (𝔬) ≥ 𝑓𝐶 (𝑖) > 𝑓𝐶 ( 𝑗) > 0. Hence, 𝑓𝐶 ( 𝑗∗) = 𝑔𝐶 (𝔬) − 𝑓𝐶 ( 𝑗) > 0. It
follows from 𝑓𝐶 (𝑙) 𝑓𝐷 (𝑙∗) = 0 for all 𝑙 ≠ 1 that both 𝑓𝐷 ( 𝑗) and 𝑓𝐷 ( 𝑗∗) must be 0:
this cannot happen since 𝑓𝐷 ( 𝑗) + 𝑓𝐷 ( 𝑗∗) = 𝑔𝐷 (𝔬) = 1.
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A calculation using Kottwitz method for 𝜈𝔬 (𝐶) implies that it has a single slope
𝑛𝔬 (𝐶)

#𝔬 where 𝑛𝔬 (𝐶) = #{𝑖 ∈ 𝔬 | 𝑓 (𝑖) = 𝑔𝐶 (𝔬)}. It also follows from 𝑓𝐶 (𝑙) 𝑓𝐷 (𝑙∗) = 0
for all 𝑙 ≠ 1 that there is a bĳection between the set of nonzero multiplicities in 𝑓𝐶 (𝔬)
and the set of zero multiplicities in 𝑓𝐷 (𝔬∗). Hence 𝑛𝔬 (𝐶) + 𝑛𝔬∗ (𝐷) = #𝔬 = #𝔬∗ and
from the previous proposition 𝜈𝔬 (𝐶) + 𝜈𝔬∗ (𝐷) has slope 1 only. □

Corollary 4.0.4. When 𝐷 is fixed and 𝐶 varies in a family, the Newton polygon of
𝑋 varies in one-to-one correspondence to the Newton polygon of 𝐽 (𝐶)𝑛𝑒𝑤.

Proof. Since the orbit of 1 is contained in the new part of 𝐻1
𝑐𝑟𝑖𝑠

(𝐶), it follows from
the two previous propositions that the slopes of𝐻2

𝑐𝑟𝑖𝑠
(𝑋) are uniquely determined by

the slopes of the new part of 𝐻1
𝑐𝑟𝑖𝑠

(𝐶). For a smooth and proper curve, 𝐻1
𝑐𝑟𝑖𝑠

(𝐶) =
𝐻1
𝑐𝑟𝑖𝑠

(𝐽𝐶) so their new parts are isomorphic as well. □

Deligne and Mostow [5] show that the classifying morphism

𝜃 : H(𝑚, 𝑎) → 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤)

for the family 𝐽 (𝐶)𝑛𝑒𝑤 is dominant and quasi-finite onto 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤). In particular,
the Zariski closure 𝑍new(𝐺, 𝑎) is 𝑆ℎ(𝐺, 𝑓 ).

On one hand, Kottwitz [14] gives a combinatorial description of a set 𝐵(𝐺, 𝑓 𝑛𝑒𝑤)
of admissible Newton polygons equipped with the extra structure from 𝐸𝑚 and
multiplication type 𝑓 𝑛𝑒𝑤. The Kottwitz set in the case of interest to us admits a total
order

𝜈ord =: 𝜈0 ≻ 𝜈1 ≻ · · · ≻ 𝜈𝑙 := 𝜈basic

where the maximal element 𝜈ord is called 𝜇-ordinary and minimal 𝜈basic called
basic. Let 𝑆ℎ[𝜈𝑖] denote the locus of 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) with Newton polygon 𝜈𝑖 - from
the moduli point of view, the locus of abelian schemes with Newton polygon 𝜈𝑖. On
the other hand, Viehman-Wedhorn [34] show that all admissible polygons occur, i.e.,
𝑆ℎ[𝜈𝑖] is nonempty∀𝑖, for the PEL type Shimura variety 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤). Furthermore,
these loci give rise to the so-called Newton stratification by locally closed subsets

𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) = 𝑆ℎ[𝜈0] ⊔ 𝑆ℎ[𝜈1] ⊔ · · · ⊔ 𝑆ℎ[𝜈𝑙]

that satisfies

1. 𝑆ℎ[𝜈𝑖] is equidimensional of codimension 𝑖 and open in the Zariski closure
𝑆ℎ[𝜈𝑖];
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2. 𝑆ℎ[𝜈𝑖] = ⊔ 𝑗≥𝑖𝑆ℎ[𝜈 𝑗 ];

3. codim(𝑆ℎ[𝜈𝑖+1], 𝑆ℎ[𝜈𝑖]) = 1;

4. (de Jong’s purity) for a smooth irreducible subvariety inside 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤), the
induced Newton stratification goes up in codimension 1.

Let 𝑍 [𝜈] := 𝑍 ∩ 𝑆ℎ(𝐺, 𝑓 ) [𝜈] for any admissible 𝜈. The next result reduces our
calculation to showing 𝑍new(𝐺, 𝑎) [𝜈basic] ≠ ∅.

Proposition 4.0.5. If 𝑍new(𝐺, 𝑎) [𝜈basic] ≠ ∅, then 𝑍new(𝐺, 𝑎) [𝜈𝑖] ≠ ∅ for all 𝑖.

Proof. Firstly, 𝑍new(𝐺, 𝑎) [𝜈ord] ≠ ∅ since both 𝑍new(𝐺, 𝑎) and 𝑆ℎ(𝐺, 𝑓 ) [𝜈ord] are
open and dense inside 𝑆ℎ(𝐺, 𝑓 ). Then de Jong’s purity and 𝑍new(𝐺, 𝑎) [𝜈basic] ≠ ∅
implies that the induced Newton stratification on 𝑍new(𝐺, 𝑎) goes up exactly 𝑙 times
(otherwise the basic locus would have had incorrect codimension inside 𝑆ℎ(𝐺, 𝑓 )).
In other words, 𝑍new(𝐺, 𝑎) [𝜈𝑖] ≠ ∅ for all 𝑖. □

As 𝑍new(𝐺, 𝑎) = 𝑆ℎ(𝐺, 𝑓 ), the basic polygon 𝜈basic occurs on 𝑍new(𝐺, 𝑎). But it is
not straightforward to see why 𝜈basic already occurs on the smooth locus 𝑍new(𝐺, 𝑎).
From the moduli point of view, this means there exists a smooth curve 𝐶 (𝐺, 𝑎) for
which 𝐽new

𝐶
has basic polygon. The next section shows that this is indeed the case,

at least when 𝑝 is sufficiently large.

Boundary of Hurwitz space and basic locus
The following relies on the boundary behavior of the Hurwitz space H(𝐺, 𝑎) (see
[35, Chapter 4] and [16, Section 5.2]). Since 𝑍new is the image of H(𝐺, 𝑎) under
the classifying map, a moduli point [𝐽new

𝐶
] on the boundary 𝜕𝑍new := 𝑍new(𝐺, 𝑎) −

𝑍new(𝐺, 𝑎) comes from the new part of the Jacobian of a singular curve𝐶 = 𝐶 (𝐺, 𝑎)
of compact type. In particular, 𝐶 is obtained via clutching a pair of compatible
curves 𝐶1 = 𝐶 (𝐺, 𝑎1) and 𝐶2 = 𝐶 (𝐺, 𝑎2). Such compatible (𝑎1, 𝑎2) is called a
degeneration type of𝐶 (𝐺, 𝑎). By definition a degeneration type satisfies 𝑓1+ 𝑓2 = 𝑓

and the Newton polygon of𝐶 is the amalgamate sum of that of𝐶1 and𝐶2. For a fixed
monodromy datum (𝐺, 𝑎), we denote by 𝑇 = 𝑇 (𝐺, 𝑎) the set of all degeneration
types. What is important to us is that 𝑇 is finite and 𝑓 𝑛𝑒𝑤 is of a particularly simple
form so the compatibility condition ensures that 𝑓1𝑛𝑒𝑤 and 𝑓2

𝑛𝑒𝑤 must have simple
forms. Recall that the new part of the signature records the multiplicities of the
action of 𝐸𝑚.
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Definition 4.0.1. Let 𝑛 ≥ 3. A signature 𝑓 for an 𝐸𝑚-module is called simple of
rank 𝑛−2 if { 𝑓 (𝑖), 𝑓 (𝑖∗)} = {1, 𝑛−3} for a unique 𝑖 ∈ (Z/𝑚Z)∗ and { 𝑓 (𝑖), 𝑓 (𝑖∗)} =
{0, 𝑛 − 2} otherwise.

If 𝑓 is simple of rank 𝑛 − 2 then dim 𝑆ℎ(𝐺, 𝑓 ) = 𝑛 − 3. In our case, 𝑓 𝑛𝑒𝑤 is simple
of rank 𝑁 − 2 so it follows from 2.3 that dim 𝑆ℎ(𝐺, 𝑓 𝑛𝑒𝑤) = 𝑁 − 3. By definition,
if (𝑎1, 𝑎2) is a degeneration type of (𝐺, 𝑎) then we can assume that

𝑓1
new + 𝑓2

new = 𝑓 new and 𝑓1
new is simple.

That is, 𝑓1new is simple of rank 𝑛1 − 2, 𝑓2new satisfies { 𝑓2(𝑖), 𝑓2(𝑖∗)} = {0, 𝑛2 − 2}
for all 𝑖 ∈ (Z/𝑚Z)∗, and 𝑛 = 𝑛1 + 𝑛2 − 2.

In what follows, we look that the new parts of the corresponding Jacobians and
Shimura varieties only so we can drop new from the notation of the signature for
abbreviation without any confusion.

Proposition 4.0.6. Suppose that 𝑓 is simple of rank 𝑁 −2 and let 𝔢 ∈ 𝔒 be the orbit
of the unique 𝑖 where 𝑓 (𝑖) = 1. Let 𝑑 := #𝔢 and 𝑛 := #{ 𝑗 ∈ 𝔢 : 𝑓 ( 𝑗) = 𝑁 − 2}.

1. If 𝔢 ≠ 𝔢∗, or equivalently, 𝔭 is not inert in 𝐸𝑚/𝐸0
𝑚, then

#𝐵(𝐺, 𝑓 ) = 𝑁 − 2;

𝜈basic,𝔢 is isoclinic of slope 𝑛
𝑑
+ 1
𝑑 (𝑁−2) ;

dim 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic] = 0.

2. If 𝔢 = 𝔢∗, or equivalently, 𝔭 is inert in 𝐸𝑚/𝐸0
𝑚, then

#𝐵(𝐺, 𝑓 ) = ⌊ 𝑁2 ⌋;

𝜈basic,𝔢 is isoclinic of slope 1
2 ;

dim 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic] = 𝑁 − 2 − ⌊ 𝑁2 ⌋ .

Proof. This is a direct calculation from the combinatorial description of 𝐵(𝐺, 𝑓 ).
Recall that any 𝜈 ∈ 𝐵(𝐺, 𝑓 ) has a decomposition 𝜈 = ⊕𝔬𝜈𝔬. For any 𝔬 ≠ 𝔢, since 𝑓 is
simple, there is a single nonzero multiplication in 𝑓 (𝔬). This means 𝜈ord,𝔬 = 𝜈basic,𝔬.
Hence, it suffices to find all possible polygons for 𝜈𝔢.

Case 1. 𝔢 ≠ 𝔢∗
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𝜈ord,𝔢 has slopes: 𝑛
𝑑

with multiplicity 𝑑 (𝑁 − 3) and 𝑛+1
𝑑

with multiplicity 𝑑.

The Newton polygon of 𝜈ord,𝔢 can be drawn in the plane with endpoints {(0, 0), (𝑑 (𝑁−
2), 𝑛(𝑁 − 2) + 1)} and an integer breakpoint (𝑑 (𝑁 − 3), 𝑛(𝑁 − 3)). An admissible
polygon corresponds to a choice of an integer breakpoint on the segment connecting
(0, 0) and (𝑑 (𝑁 − 3), 𝑛(𝑁 − 3)) whose first coordinate is a multiple of 𝑑. There
are 𝑁 − 2 such choices and the basic one corresponds to a straight line of slope
𝑛
𝑑
+ 1
𝑑 (𝑁−2) .

By de Jong’s purity, dim 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic] = 𝑁 − 2 − #𝐵(𝐺, 𝑓 ) = 0.

Case 2. 𝔢 = 𝔢∗ so 𝑑 has to be even and 𝑛 = 𝑑
2 − 1

𝜈ord,𝔢 has slopes: 1
2 −

1
𝑑

with multiplicity 𝑑, 1
2 with multiplicity 𝑑 (𝑁 − 4), and 1

2 +
1
𝑑

with multiplicity 𝑑.

The Newton polygon of 𝜈ord,𝔢 is symmetric with endpoints {(0, 0), (𝑑 (𝑁−2), 𝑑2 (𝑁−
2))} and 2 integer break points {(𝑑, 𝑑2 −1), (𝑑 (𝑁−3), 𝑑2 (𝑁−3)−1)}. Any admissible
polygon corresponds to a choice of an integer breakpoint on the left-half of the
segment connecting 𝑑

2 (𝑁 − 2)) and (𝑑, 𝑑2 − 1) whose first coordinate is a multiple
of 𝑑. There are ⌊ 𝑁2 ⌋ such choices and the slopes of the basic one are all 1

2 (a
supersingular polygon).

By de Jong’s purity, dim 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic]) = 𝑁 − 2 − #𝐵(𝐺, 𝑓 ) = 𝑁 − 2 − ⌊ 𝑁2 ⌋.

□

Suppose that ( 𝑓1, 𝑓2) is a degeneration of 𝑓 = 𝑓 𝑛𝑒𝑤. There is a natural inclusion of
Shimura varieties

𝑆ℎ(𝐺, 𝑓1) × 𝑆ℎ(𝐺, 𝑓2) ↩→ 𝑆ℎ(𝐺, 𝑓 )

compatible with taking the amalgamate sum of Newton polygons. In what follows,
we drop 𝐺 from the notation for abbreviation.

Theorem 4.0.7. If 𝑁 is odd or 𝑝 is sufficiently large, the basic locus 𝑆ℎ( 𝑓 ) [𝜈basic]
is not contained in ⋃

(𝑎1,𝑎2)∈𝑇
𝑆ℎ( 𝑓1) × 𝑆ℎ( 𝑓2).

Proof. Assume on the contrary that

𝑆ℎ( 𝑓 ) [𝜈basic] ⊂
⋃

(𝑎1,𝑎2)∈𝑇
𝑆ℎ( 𝑓1) × 𝑆ℎ( 𝑓2).
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Then the compatibility with Newton stratification implies that in fact

𝑆ℎ( 𝑓 ) [𝜈basic] ⊂
⋃

(𝑎1,𝑎2)∈𝑇
𝑆ℎ( 𝑓1) [𝜈1,basic] × 𝑆ℎ( 𝑓2) [𝜈2,basic] . (4.1)

In particular, 𝜈basic = 𝜈1,basic ⊕ 𝜈2,basic. The following follows directly from Kottwitz
method: 𝜈2,basic is isoclinic of slope 𝑛

𝑑
and dim 𝑆ℎ( 𝑓2) = 0.

Case 1. 𝔢 ≠ 𝔢∗: From the previous proposition, the basic slope 𝑛
𝑑
+ 1
𝑑 (𝑁−2) of 𝜈basic

in 𝔢 is not the same as the basic slope 𝑛
𝑑
+ 1
𝑑 (𝑁1−2) of 𝜈1,basic in 𝔢: a contradiction.

Case 2. 𝔢 = 𝔢∗: In this case, all basic polygons are supersingular. Comparing
dimensions of both sides of the inclusion yields

𝑁 − 2 − ⌊𝑁
2
⌋ ≤ 𝑁1 − 2 − ⌊𝑁1

2
⌋ .

This holds only when 𝑁 is even, 𝑁1 = 𝑁 − 1, and 𝑁2 = 3.

On one hand, Li et el ([16, Theorem 8.1]) show that when 𝑁 is even and 𝑓 is simple,
the number of irreducible components of 𝑆ℎ( 𝑓 ) [𝜈basic] grows to infinity with 𝑝.
On the other hand, Xiao and Zhu ([36, Theorem 1.1.4]) show that if 𝑁1 is odd, 𝑓1
is simple, and 𝔭 | 𝑝 is inert in 𝐸𝑚/𝐸0

𝑚, the number of irreducible components of
𝑆ℎ( 𝑓1) [𝜈1,basic] is bounded at all unramified primes. Thus, we have arrived at a
contradiction when 𝑝 is sufficiently large. □

Proposition 4.0.8. Assume that 𝑁 is odd or 𝑝 ≫ 0, then 𝑍new(𝐺, 𝑎) [𝜈basic] ≠ ∅.

Proof. Assume on the contrary that

𝜕𝑍new(𝐺, 𝑎) ⊃ 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic] .

The discussion on boundary of Hurwitz space implies that⋃
(𝑎1,𝑎2)∈𝑇

𝑆ℎ(𝐺, 𝑓1) × 𝑆ℎ(𝐺, 𝑓2) ⊃ 𝜕𝑍new(𝐺, 𝑎).

We arrive at a contradiction to the previous theorem⋃
(𝑎1,𝑎2)∈𝑇

𝑆ℎ(𝐺, 𝑓1) × 𝑆ℎ(𝐺, 𝑓2) ⊃ 𝑆ℎ(𝐺, 𝑓 ) [𝜈basic] .

□
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Stratification of the supersingular locus by Artin invariant
Assume that X(𝐺, 𝑎, 𝑏, 𝑁) is a family of K3 surfaces and we are in Case 2 of Propo-
sition 4.0.6 and Theorem 4.0.7. In particular, the basic polygon 𝜈𝑏𝑎𝑠𝑖𝑐 is the super-
singular polygon. As a unitary Shimura variety with simple signature, 𝑆ℎ(𝐺, 𝑓 )
is fully Hodge-Newton decomposable, i.e., 𝑍new(𝐺, 𝑎) [𝜈𝑠𝑠] = 𝑆ℎ(𝐺, 𝑓 ) [𝜈𝑠𝑠] is a
union of strata by the final type of 𝑀𝔢 (𝐶), each of codimension 1 in the previous
one ([12, Theorem 3.3]).

From Proposition 4.0.6, there are 𝑁−2− ⌊ 𝑁−2
2 ⌋ such strata. The final type of 𝑀𝔢 (𝐶)

determines the final type of 𝑋 via 𝑀𝔢 (𝐶) ⊗O𝑑,𝔢
𝑀𝔢 (𝐷), or equivalently, its Artin

invariant from Proposition 2.5.6. Hence, on X[𝜈𝑠𝑠] we have a further stratification
into 𝑁 − 2− ⌊ 𝑁−2

2 ⌋ strata by the Artin invariant for which the inclusion order agrees
with the Bruhat order of final type of 𝑀𝔢 (𝐶) ⊗O𝑑,𝔢

𝑀𝔢 (𝐷).

Main theorem: proof

Theorem 4.0.9. Let X, 𝑋, 𝑝 and 𝑑 be as above.

1. If 𝑝 is not inert in 𝐸𝑚/𝐸0
𝑚, then 𝑑 divides ℎ(𝑋) and

1 ≤ ℎ(𝑋)
𝑑

≤ 𝑁 − 2.

Furthermore, for any 1 ≤ 𝑖 ≤ 𝑁 − 2, there exists a k3-type surface 𝑋′ in X
such that ℎ(𝑋′) = 𝑖𝑑.

2. If 𝑝 is inert in 𝐸𝑚/𝐸0
𝑚, we assume further that 𝑝 is sufficient large when 𝑁 is

even. Then 𝑑 divides ℎ(𝑋) and

1 ≤ ℎ(𝑋)
𝑑

≤ ⌊𝑁 − 2
2

⌋ or ℎ(𝑋) = ∞.

In addition, for any 1 ≤ 𝑖 ≤ ⌊ 𝑁−2
2 ⌋, there exists a k3-type surface 𝑋′ in X

such that ℎ(𝑋′) = 𝑖𝑑.

Moreover, if X corresponds to a family of K3 surfaces, then there exists a
supersingular K3 surface 𝑋′ in X with 𝜎0(𝑋′) = (𝑁 − 2 − ⌊ 𝑁−2

2 ⌋)𝑑.

Proof. 1. Because 𝑝 is not inert in 𝐸𝑚/𝐸0
𝑛 if and only if 𝔢 ≠ 𝔢∗, we are in

Case 1 of Proposition 4.0.6 and Theorem 4.0.7. In particular, there are 𝑁 − 2
admissible polygons for 𝑀𝔢 (𝐶). For each 𝑖 = 1, . . . , 𝑁 −2, the 𝑖-th admissible
polygon has slopes 𝑖𝑛+1

𝑖𝑑
and 𝑛

𝑑
. On the other hand, 𝑀𝔢 (𝐷) has slope 1 − 𝑛

𝑑
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only. Thus the Newton polygon of 𝑋 has slopes 𝑖𝑑+1
𝑖𝑑

and 1, i.e., ℎ(𝑋) = 𝑖𝑑.
The result follows from the fact that all admissible polygons occur for some
𝐶 in the family of cyclic covers (Proposition 4.0.5 and 4.0.8).

2. We are in Case 2 of Proposition 4.0.6 and Theorem 4.0.7. In particular, there
are ⌊ 𝑁−2

2 ⌋ admissible polygons for 𝑀𝔢 (𝐶). A similar arguments holds: for
each 𝑖 = 1, . . . , ⌊ 𝑁−2

2 ⌋, the 𝑖-th admissible polygon has slopes 1
2 + 1

𝑖𝑑
and 1

2 ,
and 𝑀𝔢 (𝐷) has slope 1

2 .

Regarding the Artin invariant, from Lemma 2.5.3, the ⌊ 𝑁−2
2 ⌋ strata with finite

heights correspond to the final elements 𝜔𝑑 , . . . , 𝜔⌊ 𝑁−2
2 ⌋𝑑 . The supersingular

locus X[𝜈𝑠𝑠] is further stratified by the Artin invariant into 𝑁 − 2 − ⌊ 𝑁−2
2 ⌋

strata. These correspond to final elements 𝜔(𝑁−2)𝑑+1−𝜎0 such that 𝑑 divides
𝜎0 and

⌊𝑁 − 2
2

⌋𝑑 < (𝑁 − 2)𝑑 + 1 − 𝜎0 ≤ (𝑁 − 2)𝑑.

It follows that the open Artin stratum in X[𝜈𝑠𝑠] is the largest admissible one
𝜎0 = (𝑁 − 2 − ⌊ 𝑁−2

2 ⌋)𝑑 and has to occur for some 𝑋′ in X.

□

Sufficient bound for 𝑝
Assume that we are in Case 2 of Theorem 4.0.7. From 4.1, we want 𝑝 such that
the number of irreducible components of 𝑆ℎ( 𝑓 ) [𝜈basic] is larger than the number of
irreducible components of

⋃
(𝑎1,𝑎2)∈𝑇

𝑆ℎ( 𝑓1) [𝜈1,basic] × 𝑆ℎ( 𝑓2) [𝜈2,basic].

Fix 𝑥 ∈ 𝑆ℎ( 𝑓 ) [𝜈basic] and let 𝐴𝑥 denote the corresponding abelian variety endowed
with the PEL structure. We write 𝐼 = 𝐼𝑥 for the group of quasi-isogenies of 𝐴𝑥 that
are compatible with the 𝐸𝑚 action and the polarization. From [16, Proposition 8.5]
and [11, Proposition 2.13], a lower bound for the number of irreducible components
of 𝑆ℎ( 𝑓 ) [𝜈basic] can be given by

2−[(𝑁−2) 𝜙 (𝑚)
2 +1]𝐿 (𝑀𝐼)𝜏(𝐼)

𝑝 (𝑁−2) 𝜙 (𝑚)
2 − 1

𝑝
𝜙 (𝑚)

2 + 1

where

• 𝑀𝐼 is the Artin-Tate motive attached to 𝐼 by Gross;

• 𝐿 (𝑀𝐼) is the value of the 𝐿-function of 𝑀𝐼 at 0;
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• 𝜏(𝐼) is the Tamagawa number of 𝐼.

The number of degeneration types |𝑇 | can be bounded above by
(𝑁

2
)
. For each

(𝑎1, 𝑎2), the Shimura variety 𝑆ℎ( 𝑓2) is a single special point. From [36, The-
orem 1.1.4(1)], the number of irreducible components of 𝑆ℎ( 𝑓1) [𝜈basic] is equal
to the dimension of the middle Borel-Moore homology group dim𝐻𝐵𝑀

𝑁1−3(𝑆ℎ( 𝑓1))
(note that 𝑁1 = 𝑁 − 1). It follows that the number of irreducible components of⋃
(𝑎1,𝑎2)∈𝑇

𝑆ℎ( 𝑓1) [𝜈1,basic] × 𝑆ℎ( 𝑓2) [𝜈2,basic] can be bounded above by

(
𝑁

2

)
max
𝑎1∈𝑇

(dim𝐻𝐵𝑀
𝑁−4(𝑆ℎ( 𝑓1)).

The following result is an easy consequence of the discussion above.

Proposition 4.0.10. Suppose that 𝑝 is inert in 𝐸𝑚/𝐸0
𝑚. With the above notations,

𝑍new(𝐺, 𝑎) [𝜈basic] ≠ ∅ when 𝑝 satisfies

2−[(𝑁−2) 𝜙 (𝑚)
2 +1]𝐿 (𝑀𝐼)𝜏(𝐼)

𝑝 (𝑁−2) 𝜙 (𝑚)
2 − 1

𝑝
𝜙 (𝑚)

2 + 1
>

(
𝑁

2

)
max
𝑎1∈𝑇

(dim𝐻𝐵𝑀
𝑁−4(𝑆ℎ( 𝑓1)).
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C h a p t e r 5

APPLICATIONS

Table 5.1 list all special families together with all the possible Newton polygons.
Our examples have all the possible heights in {1, . . . , 10,∞}.

Proposition 5.0.1. All monodromy data (𝐺, 𝑎, 𝑏, 𝑁) such that X(𝐺, 𝑎, 𝑏, 𝑁) is a
family of K3 surfaces are from in Table 5.1.

Proof. IfX(𝐺, 𝑎, 𝑏, 𝑁) is a family of K3 surface then the transcendental lattice𝑇 (X)
has rank at most 22. The rank of 𝑇 (X) is 𝜙(𝑚) (𝑁 − 2) so that 𝜙(𝑚) (𝑁 − 2) ≤ 22.
From the bound 𝜙(𝑚) ≥

√︁
𝑚
2 , we deduce that 𝑚 ≤ 968 and a brute-force computer

search yields all 𝑚 together with the monodromy data given in Table 5.1. □

Example 5.0.1. The examples with 𝑁 = 3 are K3 surfaces with complex mul-
tiplication by the 𝑚-th cyclotomic field 𝐸𝑚. Our theorem implies that they are
supersingular with Artin invariant 𝜎0 = 𝑑/2 iff 𝑝 is inert in 𝐸𝑚/𝐸0

𝑚. The first
example of this phenomenon is due to Tate: the K3 surface 𝑥4 + 𝑦4 + 𝑧4 + 𝑡4 = 0 is
supersingular over any field of characteristic 𝑝 ≡ 3 (mod 4).

Example 5.0.2. When 𝑁 = 3 and 𝑑 = 2, or equivalently, 𝑝 ≡ −1 (mod 𝑚), 𝑋 is
a K3 surface with Artin invariant 1. It is known that such surface has a unique
isomorphism class over F𝑝 and admits a model over F𝑝. Here as an application of
our computations, we have found an explicit equation for 𝑋 .

Remark 5.0.1. The Manin problem for K3 surfaces can be formulated as which
Newton strata are nonempty in the moduli stack M2𝑙 ⊗ F𝑝 of K3 surfaces equipped
with a line bundle of degree 2𝑙 in characteristic 𝑝. The most general result due to
Rizov [27] asserts that all polygons occur when 𝑑 and 𝑝 are sufficiently large. Here
our families provide a positive answer to many explicit pairs of invariants 𝑙 = 𝑚

and ℎ as listed in Table 5.1.

A refinement of Serre’s conjecture for K3 surfaces
Let 𝑋 be a K3 surface over a number field 𝐿. We assume the following:

(A1) 𝐹 := E(𝑋) is an abelian extension of Q;
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(A2) 𝑋 does not have CM and 𝑛 = rank𝐹 (𝑇 (𝑋)) is even if 𝐹 is totally real.

We consider the 𝑆 of primes 𝔭 of 𝐿 such that:

• 𝑋 has good reduction at 𝔭;

• 𝔭 has degree 1.

Then 𝑆 has density 1 since the set of primes of degree 1 has density 1 and 𝑋 has
good reduction at all but finitely many primes of 𝐿.

Let 𝔭 ∈ 𝑆 and denote by 𝑋𝔭 the K3 surface over the residue field F𝑝. Let 𝑝 be
the rational prime in Q below 𝔭. Let 𝐾 be the largest subfield of 𝐹 over which 𝑝
splits completely and set 𝑑 := [𝐹 : 𝐾]. The Newton polygon of 𝑋𝔭 lies above a
certain polygon called 𝜇-ordinary, denoted by 𝜇𝔭, that only depends on the splitting
behavior of 𝑝 in 𝐹.

Remark 5.0.2. (A1) allows us to realize the group connected components of the
𝑙-adic monodromy group as a subgroup of certain Weyl group. On (A2), if 𝑋 has
complex multiplication by 𝐹, then an analogue of the Shimura-Taniyama formula for
CM abelian varieties shows that the Newton polygon of 𝑋𝔭 is uniquely determined
by the splitting of 𝑝 in 𝐹 (see [13, Theorem 1.1]) and coincides with 𝜇𝔭. So in this
case, every good prime of 𝐿 is 𝜇-ordinary.

We fix an embedding of 𝐿 into C and write 𝑋C for the corresponding complex K3
surface. Let 𝑋

𝐿
denote the base change of 𝑋 to 𝐿.

Proposition 5.0.2. 𝜇𝔭 has slopes 1 − 1
𝑑
, 1, 1 + 1

𝑑
with multiplicities 𝑑, 22 − 2𝑑, 𝑑.

Proof. We first consider the comparison theorem between Betti and 𝑝-adic coho-
mologies

𝐻2(𝑋C,Z) ⊗Z Q𝑝 ≃ 𝐻2(𝑋
𝐿
,Q𝑝)

compatiple with Poincare pairing and Chern class map. In particular

𝐻2(𝑋
𝐿
,Q𝑝) ≃ (𝑇 (𝑋C) ⊕ 𝑁𝑆(𝑋C)) ⊗ Q𝑝 .

Next, let 𝐵𝑐𝑟𝑖𝑠 denote Fontaine’s crystalline period field - an extension of Q𝑝 with
an action of Gal(𝐿/𝐿) such that 𝐵Gal(𝐿/𝐿)

𝑐𝑟𝑖𝑠
= Q𝑝. There exists a functor

𝐷𝑐𝑟𝑖𝑠 (𝐻2(𝑋
𝐿
,Q𝑝)) := (𝐻2(𝑋

𝐿
,Q𝑝) ⊗ 𝐵𝑐𝑟𝑖𝑠)Gal(𝐿/𝐿)
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such that there exists an isomorphism

𝐷𝑐𝑟𝑖𝑠 (𝐻2(𝑋
𝐿
,Q𝑝)) ≃ 𝐻2

𝑐𝑟𝑖𝑠 (𝑋𝔭/Q𝑝)

compatible with the Frobenius action, Poincaré pairing, and Chern class map.

Since Gal(𝐿/𝐿) acting on 𝑋
𝐿

preserves the space spanned by algebraic classes
𝑁𝑆(𝑋C) and the Frobenius acting on the Chern class of a line bundle is multiplication
by 𝑝, the image 𝐷𝑐𝑟𝑖𝑠 (𝑁𝑆(𝑋C) ⊗ Q𝑝) lies in the Tate module of 𝐻2

𝑐𝑟𝑖𝑠
(𝑋𝔭/Q𝑝). As

these classes have slope 1 only, the complement𝐷𝑐𝑟𝑖𝑠 (𝑇 (𝑋C)⊗Q𝑝) ⊂ 𝐻2
𝑐𝑟𝑖𝑠

(𝑋𝔭/Q𝑝)
is a K3 F-isocrystal with an action of the endomorphism algebra 𝐹 ⊗ Q𝑝 and
determines the Newton polygon of 𝐻2

𝑐𝑟𝑖𝑠
(𝑋𝔭/Q𝑝). Thus, the slopes of 𝜇𝔭 can be

computed to be of the desired form following Proposition 2.5.2. □

The condition (A2) also ensures that we are in the case 𝑛 ≠ 𝑚 of Proposition 2.5.2.

Fix a prime 𝑙 and consider the 𝑙-adic representation on the étale cohomology

𝜌𝑋,𝑙 : Gal(𝐿/𝐿) → 𝐺𝐿 (𝐻2(𝑋
𝐿
,Q𝑙)).

The 𝑙-adic monodromy group, denoted by 𝐺𝑋,𝑙 , is defined as the Zariski closure
of the image of 𝜌𝑋,𝑙 in 𝐺𝐿 (𝐻2(𝑋

𝐿
,Q𝑙)). Let 𝐺◦

𝑋,𝑙
be the identity component of

𝐺𝑋,𝑙 viewed as an algebraic group over Q𝑙 . Let 𝜋0(𝐺𝑋,𝑙) be the group of connected
components of 𝐺𝑋,𝑙 which is a finite group. By Galois theory, there exists a finite
field extension 𝐿conn of 𝐿 such that Gal(𝐿conn/𝐿) ≃ 𝜋0(𝐺𝑋,𝑙).

We assume one further condition:

(A3) 𝐿𝑐𝑜𝑛𝑛 ⊆ 𝐹𝐿.

Next, let us choose a polarization of degree 2𝑚 on 𝑋 , or equivalently, a polarization
form 𝜓 on 𝐻2(𝑋C,Z). Let S denote the Deligne torus and let ℎ : S → 𝐺𝑂 (𝜓) (R)
be the structure homomorphism of the rational polarized K3 Hodge structure on
(𝐻2(𝑋C,Q), 𝜓) where 𝐺𝑂 (𝜓) denotes the group of orthogonal similitudes of
(𝐻2(𝑋C,Q), 𝜓). The Mumford-Tate group of 𝑋 is the smallest algebraic subgroup
𝑀𝑇𝑋 of 𝐺𝑂 (𝜓) over Q such that 𝑀𝑇𝑋 (R) contains the image of ℎ in 𝐺𝑂 (𝜓) (R).

The Mumford-Tate conjecture asserts that there exists a canonical isomorphism

𝐺◦
𝑋,𝑙 ≃ 𝑀𝑇𝑋 ⊗ Q𝑙 .
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The Mumford-Tate conjecture holds for K3 from the works of Tankeev [32, 33].

On the other hand, considering the decomposition

𝐻2(𝑋,Q) = 𝑁𝑆(𝑋)Q ⊕ 𝑇 (𝑋)Q,

one has 𝑀𝑇𝑋 fix 𝑁𝑆(𝑋) as these are precisely the Q-span of Hodge classes. Since
𝑇 (𝑋)Q with the restricted polarization 𝜓 is again a K3 polarized Hodge structure,
we can identify 𝑀𝑇𝑋 with the Mumford-Tate group of (𝑇 (𝑋)Q, 𝜓 |𝑇 (𝑋)) which is
contained in 𝐺𝑂 (𝑇 (𝑋), 𝜓). From the definition of E(𝑋) = 𝐹, we deduce that the
Mumford-Tate group of 𝑇 (𝑋) is contained in the centralizer of 𝐹 in 𝐺𝑂 (𝑇 (𝑋), 𝜓).

Theorem 5.0.3 (Zarhin, [37]). With notations as above, the Mumford-Tate group of
the polarized Hodge structure (𝑇 (𝑋), 𝜓) is the centralizer of 𝐹 in 𝐺𝑂 (𝑇 (𝑋), 𝜓).

Let 𝑇𝑙 := 𝑇 (𝑋) ⊗ Q𝑙 = 𝑁𝑆(𝑋)⊥ ⊗ Q𝑙 ⊂ 𝐻2(𝑋
𝐿
,Q𝑙) together with the bilinear form

𝜓𝑙 := 𝜓 ⊗Q𝑙 . Because Hodge classes of K3 surfaces are absolute Hodge, the Galois
action of Gal(𝐿/𝐿) leaves 𝑁𝑆(𝑋) ⊗Q𝑙 invariant. It follows that 𝜌𝑋,𝑙 factors through
𝐺𝑂 (𝑇𝑙 , 𝜓𝑙) and the identity component 𝐺◦

𝑋,𝑙
commutes with 𝐹 ⊗ Q𝑙 .

The discussion above implies the following:

Corollary 5.0.4. With notations as above, the identity component 𝐺◦
𝑋,𝑙

can be
identified with the centralizer of 𝐹 ⊗ Q𝑙 in 𝐺𝑂 (𝑇𝑙 , 𝜓𝑙).

Let us consider the orthogonal similitude 𝜒 which is a 1-dimensional representation
of 𝐺𝑋,𝑙 . For each prime 𝔭 ∈ 𝑆 above a rational prime 𝑝, the Frobenius Fr𝔭 ∈
Gal(𝐿/𝐿) is well defined up to conjugacy. By abuse of notation, let us also use
Fr𝔭 for its image under 𝜌𝑋,𝑙 . Recall that 𝑑 = [𝐹 : 𝐾] where 𝐾 is the subfield
of 𝐹 over which 𝑝 splits completely. The trace on the algebraic representation
∧𝑑𝐻2(𝑋

𝐿
,Q𝑙) ⊗ 𝜒−𝑑 gives a well-defined invariant

𝑎𝔭 := Tr(Fr𝔭 | ∧𝑑𝐻2(𝑋
𝐿
,Q𝑙) ⊗ 𝜒−𝑑).

The following proposition is similar to [3, Proposition 3.11].

Proposition 5.0.5. With notations as above, 𝔭 is not 𝜇-ordinary if and only if 𝑎𝔭 is
an integer in [−𝐶,𝐶] where 𝐶 =

(22
𝑑

)
.

Proof. The characteristic polynomial of Fr𝔭 acting on 𝐻2(𝑋
𝐿
,Q𝑙) has the form

𝑃(𝑇) := 𝑇22 + 𝑐1𝑇
21 + · · · + 𝑐21𝑇 + 𝑐22.
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It is known from Deligne’s works on the Weil’s conjecture for K3 surfaces [5, 6]
that the action of Fr𝔭 is semi-simple and the 𝑐𝑖 are integers, independent of 𝑙. Let
us split 𝑃(𝑇) over Q into

𝑃(𝑇) = (𝑇 − 𝛼1) . . . (𝑇 − 𝛼22).

From the Weil’s conjecture, the 𝛼𝑖 are algebraic integers in O𝐿 with Archimedean
absolute value 𝑝 and 𝔮-adic units for any prime 𝔮 of 𝐿 away from 𝑝.

It is also known that the 𝑝-adic valuations of 𝛼𝑖 are encoded in the slopes with
multiplicities of the Newton polygon of 𝐻2

𝑐𝑟𝑖𝑠
(𝑋𝔭/𝑊) (see [1, Chapter 8]). The

trace of Fr𝔭 on ∧𝑑𝐻2(𝑋
𝐿
,Q𝑙) is given by

𝑏 := Tr(Fr𝔭 | ∧𝑑𝐻2(𝑋
𝐿
,Q𝑙)) =

∑︁
𝐼⊂{1,...,22},#𝐼=𝑑

Π𝑖∈𝐼𝛼𝑖

which is an integer as 𝑏 can be written as a polynomial with integer coefficients
in the 𝑐𝑖. Since 𝔭 is not 𝜇-ordinary, from Proposition 5.0.2, the smallest slope of
𝐻2
𝑐𝑟𝑖𝑠

(𝑋𝔭/𝑊) is greater than 1 − 1
𝑑
. Thus, the sum of any 𝑑 slopes of 𝐻2

𝑐𝑟𝑖𝑠
(𝑋𝔭/𝑊)

is greater than 𝑑 − 1, i.e., the 𝑝-valuation of Π𝑖∈𝐼𝛼𝑖 is greater than 𝑑 − 1. Hence,
the 𝑝-valuation of 𝑏 must be at least 𝑑 or 𝑝𝑑 divides 𝑏. In addition, as each 𝛼𝑖 has
absolute value 𝑝, we deduce that

−𝑝𝑑
(
22
𝑑

)
≤ 𝑏 ≤ 𝑝𝑑

(
22
𝑑

)
.

The result then follows from the fact that Fr𝔭 acts on 𝜒 via multiplication by 𝑝. □

The next discussion follows [3, Section 4.1].

Let Γ denote the image of Gal(𝐿/𝐿) under 𝜌𝑋,𝑙 . We have the following commutative
diagram of groups

𝐺◦
𝑋,𝑙

≃ G𝐹 Gal(𝐿/𝐿) ∋ Fr𝔭

𝐺𝑋,𝑙 ≃ Γ Gal(𝐹𝐿/𝐿) ∋ 𝜎 Gal(𝐹/Q)

𝜋0(𝐺𝑋,𝑙) Gal(𝐿𝑐𝑜𝑛𝑛/𝐿).

𝜌𝑋,𝑙

𝜋0 𝜅

𝜄

≃
𝜌𝑋,𝑙

Our assumptions ensure that 𝜅 is a surjection and 𝜄 is an injection between abelian
groups.
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Let 𝜎 ∈ Gal(𝐹𝐿/𝐿) be the element that corresponds to Fr𝔭 ∈ Gal(𝐿/𝐿) restricted
to 𝐹𝐿. Let 𝑆𝜎 ⊂ 𝑆 be the set of primes of 𝐿 whose Frobeni restrict to 𝜎. The
subfield 𝐾 of 𝐹 over which 𝑝 splits completely is the same as 𝐹 ⟨𝜄(𝜎)⟩. Let 𝐺 (𝜎)

𝑋,𝑙
be

the connected component of 𝐺𝑋,𝑙 corresponding to 𝜅(𝜎). We define the following
conjugacy-invariant algebraic function that only depends on 𝜎.

𝑏𝜎 := Tr(− | ∧𝑑𝐻2(𝑋,Q𝑙) ⊗ 𝜒−𝑑) : 𝐺 (𝜎)
𝑋,𝑙

→ Q𝑙 .

The next result is similar to [3, Proposition 4.9] and [28, Theorem 1].

Proposition 5.0.6. The density of the set of non 𝜇-ordinary prime is equal to the
number of 𝜎 ∈ Gal(𝐹𝐿/𝐿) for which 𝑏𝜎 is a constant, divided by [𝐹𝐿 : 𝐿].

Proof. Let us fix 𝜎 ∈ 𝜎 ∈ Gal(𝐹𝐿/𝐿). Since Γ is a closed and compact subgroup
of 𝐺𝐿 (𝐻2(𝑋

𝐿
,Q𝑙)), it is an 𝑙-adic analytic subgroup and admits a normalized Haar

measure of 1. Let 𝜎Γ denote the image of the coset 𝜎Gal(𝐿/𝐹𝐿) ⊂ Gal(𝐿/𝐿)
under 𝜌𝑋,𝑙 so that 𝜎Γ has measure 1

[𝐹𝐿:𝐿] .

For each integer 𝑛 ∈ [−𝐶,𝐶] where 𝐶 is as in Proposition 5.0.5, let 𝑇𝑛 be the subset
of 𝐺 (𝜎)

𝑋,𝑙
where 𝑏𝜎 is equal to 𝑛. Then 𝑇𝑛 is a conjugacy-invariant closed subset of

𝐺𝑋,𝑙 as 𝜋0(𝐺𝑋,𝑙) is abelian and 𝑏𝜎 is algebraic. Let 𝑍 be the union of all 𝑇𝑛 which
is again conjugacy-invariant and closed.

Let 𝑍′ := 𝑍 ∩ 𝜎Γ. The boundary of 𝑍′ has measure 0 since it is an 𝑙-adic analytic
subset of Γ. From Proposition 5.0.5, any non 𝜇-ordinary prime 𝔭 ∈ 𝑆𝜎 has Fr𝔭 in
𝑍′. By Chebotarev’s density and [29, Corollary 6.10], the density of these primes
is the same as the Haar measure of 𝑍′. Since 𝜎Γ is Zariski dense in 𝐺 (𝜎)

𝑋,𝑙
, Serre’s

results [29, Proposition 5.12 and 5.2.1.2] imply that the measure of 𝑍′ is 1 if 𝑍
contains 𝐺 (𝜎)

𝑋,𝑙
and 0 otherwise.

Next, we prove that 𝑍 contains 𝐺 (𝜎)
𝑋,𝑙

if and only if 𝑏𝜎 is a constant on 𝐺 (𝜎)
𝑋,𝑙

. As
𝐺

(𝜎)
𝑋,𝑙

is connected and 𝑍 is the preimage of finitely many points, if 𝑍 contains 𝐺 (𝜎)
𝑋,𝑙

,
then 𝑏𝜎 is a constant. On the other hand, if 𝑏𝜎 is a constant 𝑐 on 𝐺 (𝜎)

𝑋,𝑙
, it suffices to

prove that 𝑐 is an integer in [−𝐶,𝐶]. By Chebotarev’s density, there exist infinitely
many primes in 𝑆𝜎 above distinct rational primes 𝑝 and 𝑝′ whose Frobeni lie in 𝜎Γ.
At these primes 𝑐 is equal to 𝑏𝑝/𝑝𝑑 and 𝑏𝑝′/𝑝′𝑑 , respectively, where 𝑏𝑝 and 𝑏𝑝′ are
integers. We deduce that 𝑐 is a rational number whose denominator is a divisor of
both 𝑝 and 𝑝′, hence an integer. Because −𝑝𝑑𝐶 ≤ 𝑏𝑝 ≤ 𝑝𝑑𝐶, we have 𝑐 ∈ [−𝐶,𝐶].

The proposition follows from summing over all 𝜎 ∈ Gal(𝐹𝐿/𝐿). □
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Because the density in Proposition 5.0.6 is preserved under matrix scaling and
restriction to the kernel of the orthogonal similitude, we may replace 𝐺◦

𝑋,𝑙
with the

group of 𝐹-linear special isometries 𝑆𝑂𝐹 (𝑇𝑙 , 𝜓𝑙). For abbreviation, let us write G
for the 𝑙-adic algebraic group 𝑆𝑂 (𝑇𝑙 , 𝜓𝑙) and G𝐹 for 𝑆𝑂𝐹 (𝑇𝑙 , 𝜓𝑙) as a subgroup.

The next discussion follows [3, Section 4.2, 4.3] in order to pick a basis to realize
G𝐹 in block diagonal form inside 𝑆𝑂 (𝑇𝑙 , 𝜓𝑙) after a sufficiently large extension of
Q𝑙 . The trace 𝑏𝜎 remains the same after passing to extensions of Q𝑙 .

If 𝐹 is CM field, we assume that 𝐹 has degree 2𝑚 and 𝑇 (𝑋) has rank 2𝑚𝑛. Let
𝐹0 be the maximal totally real subfield of 𝐹 of degree 𝑚. We have the following
decomposition into character spaces as an 𝐹0 ⊗ Q𝑙-module

𝑇𝑙 ⊗ Q𝑙 =
⊕

𝜏∈Gal(𝐹0/Q)
(𝑇 𝜏𝑙 , 𝜓

𝜏
𝑙 ),

where each 𝑇 𝜏
𝑙

has dimension 2𝑛. From Hodge symmetry, the bilinear symmetric
form 𝜓𝜏

𝑙
on 𝑇𝜎

𝑙
⊕ 𝑇𝜎∗

𝑙
has the form (

0 𝐽𝜏

𝐽𝜏 0

)
for some diagonal matrix 𝐽𝜏. So there is a further decomposition

𝑇𝑙 ⊗ Q𝑙 =
⊕

(𝜎,𝜎∗)∈Gal(𝐹/Q)
𝜎 |𝐹0=𝜏

(𝑇𝜎𝑙 ⊕ 𝑇𝜎∗

𝑙 , 𝜓𝜏𝑙 ). (5.1)

If 𝐹 is totally real, we assume that 𝐹 has degree 𝑚 and 𝑇𝑙 has rank 2𝑛 over 𝐹 ⊗ Q𝑙 .
In this case, complex conjugation is the identity map on Gal(𝐹/Q) and we have the
following decomposition into character spaces as an 𝐹 ⊗ Q𝑙-module:

𝑇𝑙 ⊗ Q𝑙 =
⊕

𝜏∈Gal(𝐹/Q)
(𝑇 𝜏𝑙 , 𝜓

𝜏
𝑙 ), (5.2)

where again 𝑇 𝜏
𝑙

has dimension 2𝑛 and 𝜓𝜏
𝑙

is a symmetric form.

The next lemma is an adaptation of [3, Lemma 4.12].

Lemma 5.0.1. With notations as above:

1. If 𝐹 is CM, we have
𝑚∏
𝑖=1

𝑆𝐿𝑛 ≃ G𝐹 ↩→ G
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given by
(𝑀1, . . . , 𝑀𝑚) ↦→ diag(𝑀1, 𝑀

∗
1 , . . . , 𝑀𝑚, 𝑀

∗
𝑚),

where 𝑀∗
𝑖

:= 𝐽−1
𝜏𝑖
𝑀⊤
𝑖
𝐽𝜏𝑖 for all 𝜏𝑖 ∈ Gal(𝐹0/Q).

2. If 𝐹 is totally real, we have
𝑚∏
𝑖=1

𝑆𝑂2𝑛 ≃ G𝐹 ↩→ G

given by
(𝑀1, . . . , 𝑀𝑚) ↦→ diag(𝑀1, . . . , 𝑀𝑚),

where 𝑀⊤
𝑖
𝜓
𝜏𝑖
𝑙
𝑀𝑖 = 𝜓

𝜏𝑖
𝑙

for all 𝜏𝑖 ∈ Gal(𝐹/Q).

Proof. Over Q𝑙 , the action of 𝐹 ⊗ Q𝑙 can be diagonalized with respect to the
eigenspaces 𝑇𝜎

𝑙
of dimension 𝑛 for 𝜎 ∈ Gal(𝐹/Q).

1. If 𝐹 is CM, a matrix 𝐴 ∈ G that commutes with such diagonal matrix must
be of block diagonal form, say

𝐴 = diag(𝑀1, 𝑀
′
1, . . . , 𝑀𝑚, 𝑀

′
𝑚),

where (𝑀𝑖, 𝑀
′
𝑖
) corresponds to conjugate pair (𝜏𝑖, 𝜏∗𝑖 ). From (5.1), the or-

thogonal condition 𝐴⊤𝜓𝑙𝐴 = 𝜓𝑙 is satisfied if and only if 𝑀′
𝑖
= 𝑀∗

𝑖
where

𝑀∗
𝑖

:= 𝐽−1
𝜏𝑖
𝑀⊤
𝑖
𝐽𝜏𝑖 for all 𝜏𝑖.

2. The totally real case follows similarly from (5.2).

□

Let 𝑇 be a maximal torus of G𝐹 given by diag(𝑇1, 𝑇
−1
1 , . . . , 𝑇𝑚, 𝑇

−1
𝑚 ) where each 𝑇𝑖

is diagonal of size 𝑛. Because 𝑇 has rank 𝑛𝑚, it is also a maximal torus of G. The
Weyl group 𝑊G := 𝑁G (𝑇)/𝑇 of G can be realized as a subgroup of the symmetric
group 𝔖2𝑚𝑛. We consider the set of permutations of {±1,±2, . . . ,±𝑚𝑛} where
the index set {±(𝑖𝑛 − 𝑛 + 1), . . . ,±𝑖𝑛} corresponds to the pair (𝑇𝑖, 𝑇−1

𝑖
). Then 𝑊G

consists of permutations 𝜋 for which 𝜋(𝑖) + 𝜋(−𝑖) = 0 and such that there is an even
number of 1 ≤ 𝑖 ≤ 𝑚𝑛 for which 𝜋(𝑖) > 0.

We consider two subgroups of𝑊G:

𝐻 := 𝑁G (G𝐹) ∩ 𝑁G (𝑇)/𝑇,
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and the Weyl group of G𝐹 :

𝑊𝐹 := 𝑁G𝐹 (𝑇)/𝑇.

If 𝐹 is CM, the group 𝑊𝐹 can be identified with the product of symmetric groups∏𝑚
𝑖=1 𝔖𝑛 and embedded in𝑊G via (𝜋1, . . . , 𝜋𝑚) ↦→ (𝜋1, 𝜋1, . . . , 𝜋𝑚, 𝜋𝑚).

If 𝐹 is totally real, the group 𝑊𝐹 can be identified with the product of orthogonal
Weyl groups

∏𝑚
𝑖=1𝑊𝑆𝑂2𝑛 via (𝜋1, . . . , 𝜋𝑚) ↦→ (𝜋1, . . . , 𝜋𝑚).

The next proposition is similar to [3, Proposition 4.14].

Proposition 5.0.7. We have a natural isomorphism

𝑁G (G𝐹)/G𝐹 ≃ 𝐻/𝑊𝐹 .

Proof. We define a map from 𝑁G (G𝐹) to 𝐻/𝑊𝐹 whose kernel is G𝐹 . Let 𝑔 ∈
𝑁G (G𝐹) and consider 𝑔𝑇𝑔−1 which is a maximal torus of G𝐹 . Since maximal tori
are conjugates, there exists 𝑔0 ∈ G𝐹 up to 𝑁G𝐹 (𝑇) such that 𝑔𝑇𝑔−1 = 𝑔0𝑇𝑔

−1
0 . It

follows that 𝑔−1
0 𝑔 is in 𝑁G (G𝐹) ∩ 𝑁G (𝑇) and the map

𝑔 ↦→ 𝑔−1
0 𝑔𝑊𝐹

is well defined. The kernel of this map consists of 𝑔 such that 𝑔−1
0 𝑔 ∈ 𝑁G𝐹 (𝑇) or

𝑔 ∈ G𝐹 . □

Let G𝑋 := G ∩ 𝐺𝑋,𝑙 so that 𝜋0(G𝑋) = 𝜋𝑜 (𝐺𝑋,𝑙). Because this group is abelian, G𝑋
is contained in 𝑁G (G𝐹). The previous proposition yields a well-defined injective
homomorphism

𝜙 : 𝜋0(G𝑋) ↩→ 𝑁G (G𝐹)/G𝐹 ≃ 𝐻/𝑊𝐹 .

The next lemma is an adaptation of [3, Lemma 4.15].

Lemma 5.0.2. With notations as above, there is an isomorphism

𝜖 : 𝐻/𝑊𝐹 ≃ 𝑆 ⋊𝔖𝑚,

where 𝑆 ⊆ {±1}𝑚 is the subgroup with an even number of minuses.

Proof. Because 𝐻 normalizes G𝐹 which is in block diagonal form, 𝐻 consists of
block permutation matrices of block size 𝑛 × 𝑛 in the CM case and 2𝑛 × 2𝑛 in the
totally real case. Since𝑊𝐹 consists of products of permutations within 𝑛× 𝑛 blocks
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in the CM case and within 2𝑛 × 2𝑛 blocks in the real case, the quotient coset 𝐻/𝑊𝐹

is specified by a permutation of the 𝑚 blocks together with an interchange within a
block. The result then follows from the fact that 𝐻 as a subgroup of the Weyl group
𝑊𝑆𝑂2𝑚𝑛

has an even number of 1 ≤ 𝑖 ≤ 𝑚𝑛 such that 𝜋(𝑖) < 0.

□

We adapt the proof of the main theorem [3, Theorem 4.20] to our setting.

Recall that for a 𝜎 ∈ Gal(𝐹𝐿/𝐿), its imagine in 𝜋0(G𝑋) is 𝜌(𝜅(𝜎)) and while its
image in Gal(𝐹/Q) is 𝜄(𝜎). In addition, 𝐾 = 𝐹 ⟨𝜎⟩ and 𝑑 is equal to the order of 𝜎
in Gal(𝐹/Q). It follows that the order of 𝜌(𝜅(𝜎)) in 𝜋0(G𝑋) is a divisor 𝑒 of 𝑑.

Next we pick a coset representative 𝐵𝜎 in 𝑁G (G𝐹) of G𝐹 such that

𝐵𝜎G𝐹 = G (𝜎)
𝑋
.

Let 𝑞 : 𝑁G (G𝐹) → 𝐻/𝑊𝐹 denote the quotient from Proposition 5.0.7. Then we
need to pick 𝐵 such that

𝜖 (𝑞(𝐵𝜎)) = 𝜙(𝜌(𝜅(𝜎))).

From the discussion above, we have a decomposition

𝐵𝜎 = 𝑃𝜎𝑇𝜎 ∈ 𝑁G (G𝐹)

where 𝑃𝜎 is the block permutation matrix that corresponds to 𝜙(𝜌(𝜅(𝜎))) and 𝑇𝜎
is a diagonal matrix in 𝑇 . Then as a permutation 𝑃𝜎 has order 𝑒 that divides 𝑑.

Proposition 5.0.8. With notations as above, for any 𝜎 ∈ Gal(𝐹𝐿/𝐿), the function

𝑏𝜎 = Tr(− | ∧𝑑𝐻2(𝑋,Q𝑙) ⊗ 𝜒−𝑑) : 𝐵𝜎G𝐹 → Q𝑙

is not a constant function.

Proof. It suffices to show that Tr(𝑃𝜎𝑇𝜎𝐴 | ∧𝑑𝐻2(𝑋,Q𝑙) ⊗ 𝜒−𝑑) is not a constant
when 𝐴 varies in G𝐹 . Assume that 𝐹 is CM. Let 𝑇𝜎 = (𝑇1, 𝑇

−1
1 , . . . , 𝑇𝑚, 𝑇

−1
𝑚 ),

𝐴 = (𝐴1, 𝐴
∗
1, . . . , 𝐴𝑚, 𝐴

∗
𝑚), and set

𝐶 := 𝑇𝜎𝐴 = (𝐶1, 𝐸1, . . . , 𝐶𝑚, 𝐸𝑚).
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Let Ω denote the set of cycle types 𝜏 in 𝔖𝑑 , #𝜏 denote the number of permutations
in 𝔖𝑑 with cycle type 𝜏, and define Tr𝜏 (𝑀) :=

∏
𝑙∈𝜏 Tr(𝑀 𝑙). The permutation form

of the exponential formula ([31], Chap 7) yields

Tr(𝑃𝜎𝐶 | ∧𝑑𝐻2(𝑋,Q𝑙)) =
1
𝑑!

∑︁
𝜏∈Ω

#𝜏 Tr𝜏 (𝑃𝜎𝐶).

Because 𝑃𝜎 is a block permutation matrix of order 𝑒 and 𝐶 is block diagonal,
for 𝑙 divisible by 𝑒, the matrix (𝑃𝜎𝐶)𝑙 has block diagonal form, i.e., it has non-
vanishing trace. Taking 𝐴 to be the identity matrix 𝐼 or a matrix of the form
(𝐴1, 𝐴

∗
1, . . . , 𝐼𝑚, 𝐼𝑚), one sees that 𝑏𝜎 is not a constant.

The totally real case is similar except that we work with block permutation matrices
of block size 2𝑛.

□

Propositions 5.0.8 and 5.0.11 imply the following theorem:

Theorem 5.0.9. Let 𝑋 be a K3 surface over a number field 𝐿 such that E(𝑋) is an
abelian field 𝐹 and 𝐿conn ⊂ 𝐹𝐿. If 𝐹 is totally real then we assume further that
𝑇 (𝑋) has even rank as an E(𝑋)-module. Then the set of primes of 𝐿 of 𝜇-ordinary
reduction has density 1.

Corollary 5.0.10. The set of primes of 𝐿 with ordinary reduction has density 1
[𝐹𝐿:𝐿] .

Proof. Because the 𝜇-ordinary polygon is ordinary if and only if 𝑝 is totally split
in 𝐹/Q, the set of ordinary primes of 𝐿 is the set of primes 𝔭 such that 𝜄(𝜎) is the
identity element in Gal(𝐹/Q). This set has density 1

[𝐹𝐿:𝐿] by Chebotarev’s density.

□

Proposition 5.0.11. If X(𝐺, 𝑎, 𝑏, 𝑁) corresponds to a family of K3 surfaces, then a
generic surface 𝑋 in the family satisfies the conditions of Theorem 5.0.12.

Proof. Let 𝑋 be a generic point that corresponds to the cyclic cover𝐶𝛼. This means
𝑋 is defined over 𝐿 = Q(𝛼1, . . . , 𝛼𝑁 ) and 𝐹 = 𝐸𝑚 the 𝑚-th cyclotomic field. From
the definition of 𝐿𝑐𝑜𝑛𝑛, it suffices to show that the image of Gal(𝐹𝐿) under 𝜌𝑋,𝑙 is
contained in 𝐺◦

𝑋,𝑙
= G𝐹 , i.e., Gal(𝐹𝐿) commutes with the 𝐹-action. This follows

from the fact that the 𝐹-action is multiplication to the coordinates 𝑦 and 𝑧 in the
defining equations of 𝐶𝛼 and 𝐷.

□
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An analogue of Elkies’s supersingular prime theorem

Theorem 5.0.12. Let 𝑋𝛼 be a K3 surface in the family (5, (1, 1, 1, 2), (1, 1, 3), 4).
In particular, 𝑋𝛼 arises from the pair of cyclic covers

𝐶𝛼 : 𝑦5 = 𝑥(𝑥 − 1) (𝑥 − 𝛼)

and
𝐷 : 𝑧5 = 𝑡 (𝑡 − 1).

Assume in addition that 𝑗 := (𝛼2−𝛼+1)3

𝛼2 (𝛼−1)2 ∈ Q ∩ [0, 27
4 ] and the reduction of 𝐶𝛼 at 5 is

singular. Then 𝑋𝛼 can be defined over Q and there exists infinitely many primes at
which the reduction of 𝑋𝛼 has basic Newton polygon.

Proof. In [17], the authors show that 𝐶𝛼 is defined over Q and there exist infinitely
many basic rational primes for 𝐶𝛼. From Corollary 3.0.4, 𝑋𝛼 is defined over Q.
From Corollary 4.0.4, 𝑋𝛼 has basic polygon at 𝑝 if and only if 𝐶𝛼 has basic polygon
at 𝑝. Hence 𝑋𝛼 has infinitely rational primes of basic reduction. □

Corollary 5.0.13. With notations as above, there exist infinitely many primes 𝑝 at
which the Picard rank of 𝑋𝛼 jumps up.

Proof. The family of K3 surfaces has 𝑚 = 5 and 𝑁 = 4 so the Picard rank in
characteristic zero is 22 − 𝜙(𝑚) (𝑁 − 2) = 14. At basic primes congruent to 2, 3, 4
mod 5, the basic polygon coincides with the supersingular polygon. Because the
Picard rank is 22 at a supersingular prime (Tate’s conjecture), it follows that there
exist infinitely many primes at which the Picard rank of 𝑋𝛼 jumps up by 8. □

Remark 5.0.3. This phenomenon is recently proven in general for any K3 surface
over a number field in [30]. Our examples confirm their result and further calculate
the explicit jump.
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APPENDIX

With the help of a computer program, we can search for all K3 type monodromy
data with 𝑚 ≤ 100. The following table lists the families with 𝑚 ≤ 22. Note that
there are no examples when 23 ≤ 𝑚 ≤ 100. The two last columns list all admissible
heights and Artin invariants that occur for our families at all the primes.

𝑚 𝑁 𝑎 𝑏 𝐾2 ℎ 𝜎0

3 3 (2, 2, 2) (1, 1, 1) 0 1, ∞ 1
4 3 (2, 3, 3) (1, 1, 2) 0 1, ∞ 1
5 3 (3, 3, 4) (1, 1, 3) 0 1, ∞ 1, 2
6 3 (3, 4, 5) (1, 1, 4) 0 1, ∞ 1
6 3 (2, 5, 5) (1, 2, 3) 0 1, ∞ 1
7 3 (4, 5, 5) (1, 1, 5) 0 1, 3, ∞ 1, 3
7 3 (4, 4, 6) (1, 2, 4) 0 1, 3, ∞ 1, 3
7 3 (3, 5, 6) (1, 3, 3) 0 1, 3, ∞ 1, 3
7 3 (2, 6, 6) (2, 2, 3) 0 1, 3, ∞ 1, 3
8 3 (4, 5, 7) (1, 2, 5) 0 1, 2, ∞ 1
8 3 (5, 5, 6) (1, 2, 5) 0 1, 2, ∞ 1
8 3 (3, 6, 7) (1, 3, 4) 0 1, 2, ∞ 1
8 3 (3, 6, 7) (2, 3, 3) 0 1, 2, ∞ 1
9 3 (5, 6, 7) (1, 1, 7) 0 1, 3, ∞ 1, 3
9 3 (5, 5, 8) (1, 3, 5) 0 1, 3, ∞ 1, 3
9 3 (5, 6, 7) (1, 3, 5) 0 1, 3, ∞ 1, 3
9 3 (4, 6, 8) (1, 4, 4) 0 1, 3, ∞ 1, 3
9 3 (2, 8, 8) (2, 3, 4) 0 1, 3, ∞ 1, 3
9 3 (4, 6, 8) (2, 3, 4) 0 1, 3, ∞ 1, 3
10 3 (5, 7, 8) (1, 1, 8) 0 1, ∞ 1, 2
10 3 (5, 7, 8) (1, 2, 7) 0 1, ∞ 1, 2
10 3 (6, 7, 7) (1, 2, 7) 0 1, ∞ 1, 2
10 3 (5, 6, 9) (1, 3, 6) 0 1, ∞ 1, 2
10 3 (4, 7, 9) (1, 4, 5) 0 1, ∞ 1, 2
10 3 (5, 7, 8) (1, 4, 5) 0 1, ∞ 1, 2
10 3 (6, 7, 7) (1, 4, 5) 0 1, ∞ 1, 2
10 3 (2, 9, 9) (2, 3, 5) 0 1, ∞ 1, 2
10 3 (3, 8, 9) (2, 3, 5) 0 1, ∞ 1, 2
10 3 (5, 6, 9) (2, 3, 5) 0 1, ∞ 1, 2
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10 3 (3, 8, 9) (3, 3, 4) 0 1, ∞ 1, 2
10 3 (5, 6, 9) (3, 3, 4) 0 1, ∞ 1, 2
11 3 (6, 8, 8) (1, 2, 8) 0 1, 5, ∞ 1, 5
11 3 (6, 8, 8) (1, 2, 8) 0 1, 5, ∞ 1, 5
11 3 (6, 7, 9) (1, 3, 7) 0 1, 5, ∞ 1, 5
11 3 (5, 8, 9) (1, 5, 5) 0 1, 5, ∞ 1
11 3 (6, 6, 10) (2, 3, 6) 0 1, 5, ∞ 1
11 3 (6, 6, 10) (2, 3, 6) 0 1, 5, ∞ 1
11 3 (4, 8, 10) (2, 4, 5) 0 1, 5, ∞ 1
11 3 (6, 6, 10) (2, 3, 6) 0 1, 5, ∞ 1
11 3 (3, 9, 10) (3, 3, 5) 0 1, 5, ∞ 1
12 3 (7, 8, 9) (1, 2, 9) 0 1, 2, ∞ 1
12 3 (6, 7, 11) (1, 4, 7) 0 1, 2, ∞ 1
12 3 (7, 7, 10) (1, 4, 7) 0 1, 2, ∞ 1
12 3 (7, 8, 9) (1, 4, 7) 0 1, 2, ∞ 1
12 3 (5, 8, 11) (1, 5, 6) 0 1, 2, ∞ 1
12 3 (5, 9, 10) (1, 5, 6) 0 1, 2, ∞ 1
12 3 (6, 7, 11) (2, 3, 7) 0 1, 2, ∞ 1
12 3 (7, 7, 10) (2, 3, 7) 0 1, 2, ∞ 1
12 3 (7, 7, 10) (2, 3, 7) 0 1, 2, ∞ 1
12 3 (7, 8, 9) (2, 3, 7) 0 1, 2, ∞ 1
12 3 (5, 8, 11) (2, 5, 5) 0 1, 2, ∞ 1
12 3 (5, 9, 10) (2, 5, 5) 0 1, 2, ∞ 1
12 3 (3, 10, 11) (3, 4, 5) 0 1, 2, ∞ 1
12 3 (5, 8, 11) (2, 5, 5) 0 1, 2, ∞ 1
12 3 (5, 8, 11) (3, 4, 5) 0 1, 2, ∞ 1
12 3 (5, 9, 10) (3, 4, 5) 0 1, 2, ∞ 1
13 3 (8, 9, 9) (1, 3, 9) 0 1, 3, ∞ 1, 2, 3
13 3 (8, 8, 10) (1, 4, 8) 0 1, 3, ∞ 1, 2, 3
13 3 (7, 9, 10) (1, 5, 7) 0 1, 3, ∞ 1, 2, 3
13 3 (8, 9, 9) (1, 3, 9) 0 1, 3, ∞ 1, 2, 3
13 3 (6, 8, 12) (3, 4, 6) 0 1, 3, ∞ 1, 2, 3
13 3 (5, 9, 12) (3, 5, 5) 0 1, 3, ∞ 1, 2, 3
13 3 (4, 10, 12) (4, 4, 5) 0 1, 3, ∞ 1, 2, 3
14 3 (7, 10, 11) (1, 2, 11) 0 1, 3, ∞ 1, 3
14 3 (7, 9, 12) (1, 4, 9) 0 1, 3, ∞ 1, 3
14 3 (7, 10, 11) (1, 5, 8) 0 1, 3, ∞ 1, 3
14 3 (7, 9, 12) (2, 3, 9) 0 1, 3, ∞ 1, 3
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14 3 (9, 9, 10) (2, 3, 9) 0 1, 3, ∞ 1, 3
14 3 (5, 10, 13) (2, 5, 7) 0 1, 3, ∞ 1, 3
14 3 (5, 11, 12) (2, 5, 7) 0 1, 3, ∞ 1, 3
14 3 (6, 11, 11) (2, 5, 7) 0 1, 3, ∞ 1, 3
14 3 (7, 10, 11) (2, 5, 7) 0 1, 3, ∞ 1, 3
14 3 (7, 9, 12) (3, 3, 8) 0 1, 3, ∞ 1, 3
14 3 (3, 12, 13) (3, 4, 7) 0 1, 3, ∞ 1, 3
14 3 (6, 9, 13) (3, 4, 7) 0 1, 3, ∞ 1, 3
14 3 (7, 9, 12) (3, 4, 7) 0 1, 3, ∞ 1, 3
14 3 (9, 9, 10) (3, 4, 7) 0 1, 3, ∞ 1, 3
14 3 (5, 11, 12) (4, 5, 5) 0 1, 3, ∞ 1, 3
14 3 (7, 10, 11) (4, 5, 5) 0 1, 3, ∞ 1, 3
15 3 (8, 10, 12) (1, 2, 12) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 11, 11) (1, 3, 11) 0 1, 2, 4, ∞ 1, 2
15 3 (9, 10, 11) (1, 3, 11) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 10, 12) (1, 4, 10) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 9, 13) (1, 5, 9) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 10, 12) (1, 6, 8) 0 1, 2, 4, ∞ 1, 2
15 3 (7, 10, 13) (1, 7, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (7, 11, 12) (1, 7, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 10, 12) (2, 4, 9) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 8, 14) (2, 5, 8) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 10, 12) (2, 5, 8) 0 1, 2, 4, ∞ 1, 2
15 3 (6, 10, 14) (2, 6, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 8, 14) (3, 4, 8) 0 1, 2, 4, ∞ 1, 2
15 3 (8, 10, 12) (3, 4, 8) 0 1, 2, 4, ∞ 1, 2
15 3 (3, 13, 14) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (5, 11, 14) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (6, 11, 13) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (7, 9, 14) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (7, 10, 13) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (7, 11, 12) (3, 5, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (4, 12, 14) (4, 4, 7) 0 1, 2, 4, ∞ 1, 2
15 3 (4, 12, 14) (4, 5, 6) 0 1, 2, 4, ∞ 1, 2
16 3 (8, 11, 13) (1, 2, 13) 0 1, 2, 4, ∞ 1, 2
16 3 (8, 11, 13) (1, 4, 11) 0 1, 2, 4, ∞ 1, 2
16 3 (10, 11, 11) (1, 4, 11) 0 1, 2, 4, ∞ 1, 2
16 3 (9, 11, 12) (1, 6, 9) 0 1, 2, 4, ∞ 1, 2
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16 3 (7, 11, 14) (1, 7, 8) 0 1, 2, 4, ∞ 1, 2
16 3 (7, 12, 13) (1, 7, 8) 0 1, 2, 4, ∞ 1, 2
16 3 (9, 11, 12) (2, 3, 11) 0 1, 2, 4, ∞ 1, 2
16 3 (8, 9, 15) (2, 5, 9) 0 1, 2, 4, ∞ 1, 2
16 3 (7, 12, 13) (2, 7, 7) 0 1, 2, 4, ∞ 1, 2
16 3 (8, 9, 15) (3, 4, 9) 0 1, 2, 4, ∞ 1, 2
16 3 (9, 9, 14) (3, 4, 9) 0 1, 2, 4, ∞ 1, 2
16 3 (3, 14, 15) (3, 5, 8) 0 1, 2, 4, ∞ 1, 2
16 3 (5, 12, 15) (3, 5, 8) 0 1, 2, 4, ∞ 1, 2
16 3 (5, 13, 14) (4, 5, 7) 0 1, 2, 4, ∞ 1, 2
16 3 (7, 10, 15) (4, 5, 7) 0 1, 2, 4, ∞ 1, 2
16 3 (5, 12, 15) (5, 5, 6) 0 1, 2, 4, ∞ 1, 2
17 3 (10, 12, 12) (2, 3, 12) 0 1, ∞ 1, 2, 4, 8
17 3 (10, 10, 14) (2, 5, 10) 0 1, ∞ 1, 2, 4, 8
17 3 (8, 12, 14) (2, 7, 8) 0 1, ∞ 1, 2, 4, 8
17 3 (9, 10, 15) (3, 5, 9) 0 1, ∞ 1, 2, 4, 8
17 3 (7, 12, 15) (3, 7, 7) 0 1, ∞ 1, 2, 4, 8
17 3 (5, 14, 15) (5, 5, 7) 0 1, ∞ 1, 2, 4, 8
18 3 (9, 13, 14) (1, 3, 14) 0 1, 3, ∞ 1, 3
18 3 (11, 12, 13) (1, 4, 13) 0 1, 3, ∞ 1, 3
18 3 (9, 11, 16) (1, 6, 11) 0 1, 3, ∞ 1, 3
18 3 (11, 11, 14) (1, 6, 11) 0 1, 3, ∞ 1, 3
18 3 (8, 13, 15) (1, 8, 9) 0 1, 3, ∞ 1, 3
18 3 (11, 12, 13) (1, 8, 9) 0 1, 3, ∞ 1, 3
18 3 (9, 13, 14) (2, 3, 13) 0 1, 3, ∞ 1, 3
18 3 (10, 13, 13) (2, 3, 13) 0 1, 3, ∞ 1, 3
18 3 (10, 11, 15) (2, 5, 11) 0 1, 3, ∞ 1, 3
18 3 (7, 12, 17) (2, 7, 9) 0 1, 3, ∞ 1, 3
18 3 (7, 14, 15) (2, 7, 9) 0 1, 3, ∞ 1, 3
18 3 (9, 11, 16) (3, 4, 11) 0 1, 3, ∞ 1, 3
18 3 (11, 12, 13) (3, 4, 11) 0 1, 3, ∞ 1, 3
18 3 (9, 10, 17) (3, 5, 10) 0 1, 3, ∞ 1, 3
18 3 (7, 13, 16) (3, 7, 8) 0 1, 3, ∞ 1, 3
18 3 (9, 13, 14) (3, 7, 8) 0 1, 3, ∞ 1, 3
18 3 (4, 15, 17) (4, 5, 9) 0 1, 3, ∞ 1, 3
18 3 (10, 11, 15) (4, 5, 9) 0 1, 3, ∞ 1, 3
18 3 (7, 12, 17) (4, 7, 7) 0 1, 3, ∞ 1, 3
18 3 (5, 15, 16) (5, 5, 8) 0 1, 3, ∞ 1, 3
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18 3 (5, 14, 17) (5, 6, 7) 0 1, 3, ∞ 1, 3
18 3 (7, 14, 15) (5, 6, 7) 0 1, 3, ∞ 1, 3
18 3 (9, 10, 17) (5, 6, 7) 0 1, 3, ∞ 1, 3
19 3 (12, 12, 14) (3, 4, 12) 0 1, 3, 9, ∞ 1, 3, 9
19 3 (11, 12, 15) (3, 5, 11) 0 1, 3, 9, ∞ 1, 3, 9
19 3 (9, 14, 15) (3, 7, 9) 0 1, 3, 9, ∞ 1, 3, 9
19 3 (10, 12, 16) (4, 5, 10) 0 1, 3, 9, ∞ 1, 3, 9
19 3 (8, 14, 16) (4, 7, 8) 0 1, 3, 9, ∞ 1, 3, 9
19 3 (7, 15, 16) (5, 7, 7) 0 1, 3, 9, ∞ 1, 3, 9
20 3 (12, 13, 15) (1, 6, 13) 0 1, 2, 4 ∞ 1, 2
20 3 (11, 14, 15) (1, 8, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 15, 16) (1, 9, 10) 0 1, 2, 4 ∞ 1, 2
20 3 (10, 13, 17) (2, 5, 13) 0 1, 2, 4 ∞ 1, 2
20 3 (11, 13, 16) (2, 5, 13) 0 1, 2, 4 ∞ 1, 2
20 3 (13, 13, 14) (2, 5, 13) 0 1, 2, 4 ∞ 1, 2
20 3 (11, 14, 15) (2, 7, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 15, 16) (2, 9, 9) 0 1, 2, 4 ∞ 1, 2
20 3 (12, 13, 15) (3, 4, 13) 0 1, 2, 4 ∞ 1, 2
20 3 (12, 13, 15) (3, 6, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (7, 15, 18) (3, 7, 10) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 15, 16) (3, 7, 10) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 15, 16) (3, 8, 9) 0 1, 2, 4 ∞ 1, 2
20 3 (10, 11, 19) (4, 5, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (10, 13, 17) (4, 5, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (11, 11, 18) (4, 5, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (11, 12, 17) (4, 5, 11) 0 1, 2, 4 ∞ 1, 2
20 3 (7, 15, 18) (4, 7, 9) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 12, 19) (5, 6, 9) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 13, 18) (5, 6, 9) 0 1, 2, 4 ∞ 1, 2
20 3 (7, 14, 19) (5, 7, 8) 0 1, 2, 4 ∞ 1, 2
20 3 (7, 16, 17) (5, 7, 8) 0 1, 2, 4 ∞ 1, 2
20 3 (9, 14, 17) (5, 7, 8) 0 1, 2, 4 ∞ 1, 2
20 3 (7, 15, 18) (6, 7, 7) 0 1, 2, 4 ∞ 1, 2
3 4 (1, 1, 2, 2) (1, 1, 1) 0 1, 2, ∞ 1
4 4 (1, 1, 3, 3) (1, 1, 2) 0 1, 2, ∞ 1
4 4 (1, 2, 2, 3) (1, 1, 2) 0 1, 2, ∞ 1
5 4 (1, 3, 3, 3) (1, 1, 3) 0 1, 2, 4, ∞ 1, 2
5 4 (2, 2, 2, 4) (1, 2, 2) 0 1, 2, 4, ∞ 1, 2
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6 4 (1, 1, 5, 5) (1, 2, 3) 0 1, 2, ∞ 1
6 4 (1, 2, 4, 5) (1, 2, 3) 0 1, 2, ∞ 1
6 4 (1, 3, 3, 5) (1, 1, 4) 0 1, 2, ∞ 1
6 4 (1, 3, 3, 5) (1, 2, 3) 0 1, 2, ∞ 1
6 4 (1, 3, 4, 4) (1, 1, 4) 0 1, 2, ∞ 1
6 4 (1, 3, 4, 4) (1, 2, 3) 0 1, 2, ∞ 1
6 4 (2, 2, 3, 5) (1, 2, 3) 0 1, 2, ∞ 1
6 4 (2, 3, 3, 4) (1, 1, 4) 0 1, 2, ∞ 1
6 4 (2, 3, 3, 4) (1, 2, 3) 0 1, 2, ∞ 1
7 4 (2, 4, 4, 4) (1, 2, 4) 0 1, 2, 3, 6, ∞ 1,3
7 4 (3, 3, 3, 5) (1, 3, 3) 0 1, 2, 3, 6, ∞ 1,3
8 4 (1, 3, 6, 6) (1, 3, 4) 0 1, 2, 4, ∞ 1
8 4 (1, 5, 5, 5) (1, 2, 5) 0 1, 2, 4, ∞ 1
8 4 (2, 4, 5, 5) (1, 2, 5) 0 1, 2, 4, ∞ 1
8 4 (3, 3, 3, 7) (1, 3, 4) 0 1, 2, 4, ∞ 1
8 4 (3, 3, 3, 7) (2, 3, 3) 0 1, 2, 4, ∞ 1
8 4 (3, 3, 4, 6) (1, 3, 4) 0 1, 2, 4, ∞ 1
8 4 (3, 3, 4, 6) (2, 3, 3) 0 1, 2, 4, ∞ 1
9 4 (1, 5, 5, 7) (1, 3, 5) 0 1, 2, 3, 6, ∞ 1, 3
9 4 (2, 4, 4, 8) (2, 3, 4) 0 1, 2, 3, 6, ∞ 1, 3
9 4 (3, 5, 5, 5) (1, 3, 5) 0 1, 2, 3, 6, ∞ 1, 3
9 4 (4, 4, 4, 6) (1, 4, 4) 0 1, 2, 3, 6, ∞ 1, 3
9 4 (4, 4, 4, 6) (2, 3, 4) 0 1, 2, 3, 6, ∞ 1, 3
10 4 (1, 4, 7, 8) (1, 4, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (1, 5, 7, 7) (1, 2, 7) 0 1, 2, 4, ∞ 1, 2
10 4 (1, 5, 7, 7) (1, 4, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (2, 3, 6, 9) (2, 3, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (2, 4, 7, 7) (1, 4, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (3, 3, 5, 9) (2, 3, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (3, 3, 5, 9) (3, 3, 4) 0 1, 2, 4, ∞ 1, 2
10 4 (3, 3, 6, 8) (2, 3, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (3, 5, 6, 6) (1, 3, 6) 0 1, 2, 4, ∞ 1, 2
10 4 (3, 5, 6, 6) (2, 3, 5) 0 1, 2, 4, ∞ 1, 2
10 4 (4, 4, 5, 7) (1, 4, 5) 0 1, 2, 4, ∞ 1, 2
12 4 (1, 5, 8, 10) (1, 5, 6) 0 1, 2, 4, ∞ 1
12 4 (1, 7, 7, 9) (1, 4, 7) 0 1, 2, 4, ∞ 1
12 4 (2, 6, 7, 9) (1, 4, 7) 1 1, 2, 4, ∞ 1
12 4 (2, 7, 7, 8) (2, 3, 7) 0 1, 2, 4, ∞ 1
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12 4 (3, 5, 5, 11) (3, 4, 5) 0 1, 2, 4, ∞ 1
12 4 (3, 5, 6, 10) (3, 4, 5) 0 1, 2, 4, ∞ 1
12 4 (3, 5, 8, 8) (1, 5, 6) 1 1, 2, 4, ∞ 1
12 4 (3, 7, 7, 7) (1, 4, 7) 0 1, 2, 4, ∞ 1
12 4 (3, 7, 7, 7) (2, 3, 7) 0 1, 2, 4, ∞ 1
12 4 (4, 5, 5, 10) (1, 5, 6) 0 1, 2, 4, ∞ 1
12 4 (4, 5, 5, 10) (3, 4, 5) 0 1, 2, 4, ∞ 1
12 4 (4, 6, 7, 7) (1, 4, 7) 0 1, 2, 4, ∞ 1
12 4 (4, 6, 7, 7) (2, 3, 7) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 5, 9) (1, 5, 6) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 5, 9) (2, 5, 5) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 5, 9) (3, 4, 5) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 6, 8) (1, 5, 6) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 6, 8) (2, 5, 5) 0 1, 2, 4, ∞ 1
12 4 (5, 5, 6, 8) (3, 4, 5) 0 1, 2, 4, ∞ 1
14 4 (1, 5, 11, 11) (2, 5, 7) 2 1, 2, 3, 6, ∞
14 4 (1, 9, 9, 9) (3, 4, 7) 3 1, 2, 3, 6, ∞
14 4 (2, 5, 10, 11) (2, 5, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (3, 3, 9, 13) (3, 4, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (3, 4, 9, 12) (3, 4, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (3, 7, 9, 9) (2, 3, 9) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (3, 7, 9, 9) (3, 4, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (4, 6, 9, 9) (3, 4, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (5, 5, 5, 13) (2, 5, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (5, 5, 7, 11) (2, 5, 7) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (5, 5, 7, 11) (4, 5, 5) 0 1, 2, 3, 6, ∞ 1, 3
14 4 (5, 5, 8, 10) (2, 5, 7) 0 1, 2, 3, 6, ∞ 1, 3
15 4 (2, 8, 8, 12) (2, 5, 8) 0 1, 2, 4, 8, ∞ 1, 2
15 4 (3, 7, 7, 13) (3, 5, 7) 0 1, 2, 4, 8, ∞ 1, 2
15 4 (4, 8, 8, 10) (3, 4, 8) 0 1, 2, 4, 8, ∞ 1, 2
15 4 (5, 7, 7, 11) (3, 5, 7) 0 1, 2, 4, 8, ∞ 1, 2
15 4 (6, 8, 8, 8) (2, 5, 8) 0 1, 2, 4, 8, ∞ 1, 2
15 4 (7, 7, 7, 9) (3, 5, 7) 0 1, 2, 4, 8, ∞ 1, 2
16 4 (7, 7, 7, 11) (1, 7, 8) 0 1, 2, 4, 8, ∞ 1, 2
18 4 (4, 5, 12, 15) (4, 5, 9) 0 1, 2, 3, 6, ∞ 1, 3
18 4 (5, 5, 11, 15) (4, 5, 9) 0 1, 2, 3, 6, ∞ 1, 3
18 4 (7, 7, 7, 15) (2, 7, 9) 0 1, 2, 3, 6, ∞ 1, 3
18 4 (7, 7, 10, 12) (2, 7, 9) 0 1, 2, 3, 6, ∞ 1, 3
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22 4 (7, 7, 13, 17) (4, 7, 11) 0 1, 2, 5, 10, ∞ 1, 5
22 4 (9, 9, 9, 17) (2, 9, 11) 0 1, 2, 5, 10, ∞ 1, 5
3 5 (1, 1, 1, 1, 2) (1, 1, 1) 0 1, 2, 3, ∞ 1, 2
4 5 (1, 1, 1, 2, 3) (1, 1, 2) 0 1, 2, 3, ∞ 1, 2
4 5 (1, 1, 2, 2, 2) (1, 1, 2) 0 1, 2, 3, ∞ 1, 2
5 5 (2, 2, 2, 2, 2) (1, 2, 2) 0 1 - 4, ∞ 1, 2, 4
6 5 (1, 1, 1, 4, 5) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 1, 2, 3, 5) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 1, 2, 4, 4) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 1, 3, 3, 4) (1, 1, 4) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 1, 3, 3, 4) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 2, 2, 2, 5) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 2, 2, 3, 4) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (1, 2, 3, 3, 3) (1, 1, 4) 1 1, 2, 3, ∞ 1, 2
6 5 (1, 2, 3, 3, 3) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
6 5 (2, 2, 2, 3, 3) (1, 2, 3) 0 1, 2, 3, ∞ 1, 2
8 5 (1, 3, 3, 3, 6) (1, 3, 4) 0 1 - 4, 6, ∞ 1, 2
8 5 (3, 3, 3, 3, 4) (1, 3, 4) 0 1 - 4, 6, ∞ 1, 2
8 5 (3, 3, 3, 3, 4) (2, 3, 3) 0 1 - 4, 6, ∞ 1, 2
9 5 (2, 4, 4, 4, 4) (2, 3, 4) 0 1, 2, 3, 6, 9, ∞ 1, 2, 3, 6
10 5 (1, 1, 4, 7, 7) (1, 4, 5) 0 1 - 4, ∞ 1, 2, 4
10 5 (1, 4, 4, 4, 7) (1, 4, 5) 0 1 - 4, ∞ 1, 2, 4
10 5 (2, 3, 3, 3, 9) (2, 3, 5) 0 1 - 4, ∞ 1, 2, 4
10 5 (2, 3, 3, 6, 6) (2, 3, 5) 0 1 - 4, ∞ 1, 2, 4
10 5 (3, 3, 3, 3, 8) (2, 3, 5) 0 1 - 4, ∞ 1, 2, 4
10 5 (3, 3, 3, 5, 6) (2, 3, 5) 0 1 - 4, ∞ 1, 2, 4
12 5 (1, 5, 5, 5, 8) (1, 5, 6) 0 1 - 4, 6, ∞ 1, 2
12 5 (3, 5, 5, 5, 6) (3, 4, 5) 0 1 - 4, 6, ∞ 1, 2
12 5 (4, 5, 5, 5, 5) (1, 5, 6) 0 1 - 4, 6, ∞ 1, 2
12 5 (4, 5, 5, 5, 5) (3, 4, 5) 0 1 - 4, 6, ∞ 1, 2
14 5 (2, 5, 5, 5, 11) (2, 5, 7) 0 1, 2, 3, 6, 9, ∞ 1, 2, 3, 6
14 5 (3, 3, 4, 9, 9) (3, 4, 7) 0 1, 2, 3, 6, 9, ∞ 1, 2, 3, 6
14 5 (5, 5, 5, 5, 8) (2, 5, 7) 0 1, 2, 3, 6, 9, ∞ 1, 2, 3, 6
3 6 (1, 1, 1, 1, 1, 1) (1, 1, 1) 0 1 - 4, ∞ 1, 2
4 6 (1, 1, 1, 1, 1, 3) (1, 1, 2) 0 1 - 4, ∞ 1, 2
4 6 (1, 1, 1, 1, 2, 2) (1, 1, 2) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 1, 1, 3, 5) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 1, 1, 4, 4) (1, 2, 3) 0 1 - 4, ∞ 1, 2
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6 6 (1, 1, 1, 2, 2, 5) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 1, 2, 3, 4) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 1, 3, 3, 3) (1, 1, 4) 1 1 - 4, ∞
6 6 (1, 1, 1, 3, 3, 3) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 2, 2, 2, 4) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 1, 2, 2, 3, 3) (1, 2, 3) 0 1 - 4, ∞ 1, 2
6 6 (1, 2, 2, 2, 2, 3) (1, 2, 3) 0 1 - 4, ∞ 1, 2
8 6 (1, 3, 3, 3, 3, 3) (1, 3, 4) 0 1 - 4, 6, 8, ∞ 1, 2
10 6 (2, 3, 3, 3, 3, 6) (2, 3, 5) 0 1 - 4, 8, ∞ 1, 2, 4
10 6 (3, 3, 3, 3, 3, 5) (2, 3, 5) 0 1 - 4, 8, ∞ 1, 2, 4
4 7 (1, 1, 1, 1, 1, 1, 2) (1, 1, 2) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 1, 1, 1, 2, 5) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 1, 1, 1, 3, 4) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 1, 1, 2, 2, 4) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 1, 1, 2, 3, 3) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 1, 2, 2, 2, 3) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
6 7 (1, 1, 2, 2, 2, 2, 2) (1, 2, 3) 0 1 - 5, ∞ 1, 2, 3
10 7 (2, 3, 3, 3, 3, 3, 3) (2, 3, 5) 0 1 - 5, 8, ∞ 1 - 4, 6
4 8 (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 2) 0 1 - 6, ∞ 1, 2, 3
6 8 (1, 1, 1, 1, 1, 1, 1, 5) (1, 2, 3) 0 1 - 6, ∞ 1, 2, 3
6 8 (1, 1, 1, 1, 1, 1, 2, 4) (1, 2, 3) 0 1 - 6, ∞ 1, 2, 3
6 8 (1, 1, 1, 1, 1, 2, 2, 3) (1, 2, 3) 0 1 - 6, ∞ 1, 2, 3
6 8 (1, 1, 1, 1, 1, 1, 3, 3) (1, 2, 3) 0 1 - 6, ∞ 1, 2, 3
6 8 (1, 1, 1, 1, 2, 2, 2, 2) (1, 2, 3) 0 1 - 6, ∞ 1, 2, 3
6 9 (1, 1, 1, 1, 1, 1, 1, 1, 4) (1, 2, 3) 0 1 - 7, ∞ 1 - 4
6 9 (1, 1, 1, 1, 1, 1, 1, 2, 3) (1, 2, 3) 0 1 - 7, ∞ 1 - 4
6 9 (1, 1, 1, 1, 1, 1, 2, 2, 2) (1, 2, 3) 0 1 - 7, ∞ 1 - 4
6 10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 3) (1, 2, 3) 0 1 - 8, ∞ 1 - 4
6 10 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2) (1, 2, 3) 0 1 - 8, ∞ 1 - 4
6 11 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) (1, 2, 3) 0 1 - 9, ∞ 1 - 5
6 12 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1, 2, 3) 0 1 - 10, ∞ 1 - 5

Table 5.1: Special families of k3-type surfaces


