
Dissipative Dynamics of Stars, Planets, and Black Holes

Thesis by
Linhao Ma

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended May 1, 2024



ii

© 2024

Linhao Ma
ORCID: 0000-0001-6117-5750

All Rights Reserved



iii

ACKNOWLEDGEMENTS

I am grateful to my thesis advisor, Professor Jim Fuller, for his patient guidance and
mentorship over the years. I would also like to thank Professor Philip F. Hopkins
for advising me on parts of the works in this dissertation. It is through the countless
interactions and innovative discussions with them that I have been able to complete
this thesis and grow as a researcher.

I extend my thanks to my family and friends for their unwavering support over the
past five years, especially during the pandemic. I am also grateful for the musical
works of the greatest composers, particularly those by Richard Wagner, which have
been my pillar of strength during challenging times.

The scientific context of this dissertation has greatly benefited from in-depth discus-
sions with my colleagues. I would like to thank Evan Bauer, Corinne Charbonnel,
Tassos Fragos, Claude-Andrè Faucher-Giguére, Ylva Götberg, Emily Hu, Luke
Zoltan Kelley, Georges Meynet, Holly Preece, Richard Townsend, and many others
for their valuable comments on the works presented here. I am also thankful to
Selma de Mink and the Max Planck Institute for Astrophysics for organizing the
2023 Kavli Summer Program, which facilitated many of these discussions.

I am grateful to the members of my thesis defense committee: Professor Jim Fuller,
Professor Philip F. Hopkins, Professor Andrew Howard, Professor E. Sterl Phinney,
and Professor Charles Steidel, for their constructive feedback on this thesis. I also
pay special tribute to the Caltech computer cluster “Wheeler,” where many numerical
calculations in this dissertation were performed. Wheeler was retired permanently
on April 30, 2024, the day before I defended this thesis.

The works presented in this dissertation are supported by the following fellowships
and grants: the Robert A. Millikan Graduate Fellowship, the Kavli Summer Pro-
gram in Astrophysics Fellowship, the David and Barbara Groce Travel Fund, NSF
1715847, NSF 1911233, NSF CAREER Grant 1455342, NASA 80NSSC18K0562,
NASA HST-AR-15800.001-A, JPL 1589742, and NASA 20-XRP20 2-0147.



iv

ABSTRACT

In this dissertation, I present a series of theoretical works on two important dissi-
pative mechanisms in the universe, namely dynamical friction and tidal dissipation.
I discuss the physics of these processes, and investigate how they will affect the
dynamical evolution of stars, planets, and black holes.

I develop a new sub-grid dynamical friction estimator based on the discrete nature
of 𝑁-body simulations. This estimator avoids the ambiguously defined quantities
in Chandrasekhar’s dynamical friction formula. I test the estimator in the GIZMO

code, and find that it agrees well with high-resolution simulations where dynamical
friction is fully captured. The additional computational cost with this estimator is
negligible, making it an efficient and implementable solution to sub-grid dynamical
friction modeling.

I study the dynamics of massive black hole seeds in high-redshift galaxies. I analyze
the direct 𝑁-body integration of seed black hole trajectories with high-resolution
cosmological simulations, and calculate the dynamics of randomly generated test
particles in post-processing with dynamical friction. I find that seed black holes less
massive than 108 𝑀⊙ (i.e. all but the already-supermassive seeds) cannot efficiently
sink to the galactic center in typical high-redshift galaxies. This finding provides
new constraints on the formation models of super-massive black holes in the most
distant galaxies.

I study the effects of tidal resonance locking for exoplanet systems, in which the
planet locks into resonance with a tidally excited stellar gravity mode. I find that due
to nonlinear mode damping, resonance locking in Sun-like stars likely only operates
for low-mass planets (𝑀 ≲ 0.1𝑀J), but in stars with convective cores it can likely
operate for all planetary masses. The orbital decay timescale with resonance locking
is typically comparable to the star’s main-sequence lifetime, corresponding to a wide
range in effective stellar quality factor (103 < 𝑄′ < 109), depending on the planet’s
mass and orbital period. I make predictions for several individual systems and
examine the orbital evolution resulting from both resonance locking and nonlinear
wave dissipation.

I investigate the tidal spin-up of subdwarf B (sdB) star binaries. I directly calculate
the tidal excitation of internal gravity waves in realistic sdB stellar models, and
integrate the coupled spin–orbit evolution of sdB binaries. I find that for canonical
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sdB (𝑀sdB = 0.47𝑀⊙) binaries, the transitional orbital period below which they
could reach tidal synchronization in the sdB lifetime is ∼ 0.2 days, with weak
dependence on the companion masses. This value is very similar to the tidal
synchronization boundary evident from observations.

I investigate the scenario of tidal spin-up of Wolf–Rayet–black-hole binaries, which
is a possible way to form the fast-rotating black holes observed from gravitational
wave events. I directly calculate the tidal excitation of oscillation modes in Wolf–
Rayet star models, determining the tidal spin-up rate, and integrating the coupled
spin–orbit evolution for Wolf–Rayet–black-hole binaries. I find that for short-period
orbits and massive Wolf–Rayet stars, the tidal interaction is mostly contributed by
standing gravity modes, in contrast to Zahn’s model of traveling waves which is
frequently assumed in the literature. I show that tidal synchronization is rarely
reached in Wolf–Rayet–black-hole binaries, and the resulting black hole spins have
𝑎 ≲ 0.4 for all but the shortest period (𝑃orb≲ 0.5 d) binaries.
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C h a p t e r 1

INTRODUCTION

Dissipative processes, which transform the kinetic energy into thermal energy, are
ubiquitous in shaping the dynamical evolution of celestial bodies. They connect
the large-scale gravitational forces to the small-scale micro-physics processes in
stars and galaxies. Their outcomes leave unique fingerprints on astronomical ob-
servations, and understanding them is crucial to learn about the universe we live
in.

This dissertation is a disquisition on dissipation. I will present a series of theoretical
works concerning two major dissipative mechanisms related to astrophysical sys-
tems, namely dynamical friction, and tidal dissipation. I will discuss the physics of
these processes, and show how they could affect the dynamics of stars, black holes
and planets.

In the following sections of this introductory chapter, I will talk about the basic
physics of dynamical friction and tidal dissipation, and their related contexts on
black hole inspiral and stellar oscillations. I will then introduce the questions and
existing efforts on these topics. Finally, I will give a detailed outline of the remaining
chapters of this dissertation, which aim to address these questions.

1.1 Dynamical Friction and Black Hole Inspiral
Physics of Dynamical Friction
The physics of dynamical friction can be traced back to the pioneering work of
S. Chandrasekhar in 1943 [6], and is illustrated in the left panel of Figure 1.1:
when a massive object (“test particle”) travels through a sea of lighter objects
(“background particles”), it experiences numerous two-body scattering processes
due to its gravitational interaction with these background particles. In each of these
two-body scatterings, the test particle will exchange some of its momentum with the
other background particle. As a result, the test particle gradually loses its momentum
as it travels, after undergoing many scatters. This is dynamically equivalent to an
effective “friction force” acting on the test particle, and this process is hence called
dynamical friction.

With this picture, we shall be able to derive the strength of dynamical friction
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Figure 1.1: A sketch of dynamical friction explained. Left: When a massive parti-
cle (e.g., a black hole of 106 solar-masses) passes through a sea of lighter particles,
it experiences numerous two-body scattering with these lighter particles. As its
momentum is continuously transferred to the lighter particles, the massive particle
effectively feels a “friction” and loses its momentum. This process is called dynam-
ical friction. Right: In realistic 𝑁-body simulations, the light physical particles
(e.g., stars and dark matter particles) are often not resolved, and are instead repre-
sented by massive simulation particles with some spatial distribution and extension.
As two-body scattering with these simulation particles are different from that with
physical particles, we need sub-grid treatment of dynamical friction to resolve the
full dynamics of individual massive physical particles.

from first principles [6]. We first consider the two-body scattering between a test
particle with mass 𝑀 and velocity v𝑀 , and a background particle with mass 𝑚 and
velocity v𝑚. For weak encounters (𝑚 ≪ 𝑀), the trajectory of the test particle can
be approximated as a straight line. If we coordinate this trajectory with a one-
dimensional distance parameter 𝑠, then during the whole scattering process (from
𝑠 → −∞ to 𝑠 → ∞), the change of the test particle velocity can be derived from the
standard equations of gravitational two-body scattering. It is given by:

Δv∥ =
2𝑚V
𝑀 + 𝑚

[
1 + 𝑏2𝑉4

𝐺2 (𝑀 + 𝑚)2

]−1

, (1.1)

where V ≡ v𝑚 −v𝑀 is the velocity of𝑚 in the rest frame of 𝑀 ,𝐺 is the gravitational
constant and 𝑏 is the impact parameter of the scattering process.

We then assume the background particles form a homogeneous medium, such that
their phase space distribution can be written asN(x, v𝑚) = 𝑛 𝑓 (v𝑚). In the rest frame
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of 𝑀 , the background particle moves a distance of 𝑉d𝑡 in an infinitesimal period of
time d𝑡. The infinitesimal phase space volume filled with the background particles
that shift the velocity of the test particle by Δv∥ is then given by 𝑉d𝑡d𝑝d𝑞d3v𝑚,
where 𝑝 and 𝑞 are the two spatial coordinates perpendicular to the direction of
motion V̂. We can then sum up all background particles in the phase space volumes
to get the collective change of v𝑀 :

d(v𝑀)all =

∫
Δv∥ 𝑛 𝑓 (v𝑚)𝑉d𝑡d𝑝d𝑞d3v𝑚 . (1.2)

From the above expression we can move the d𝑡 term to the left hand side, and this
gives an effective acceleration of dynamical friction:

aDF ≡ d(v𝑀)all

d𝑡
=

∫
Δv∥ 𝑛 𝑓 (v𝑚)𝑉d𝑝d𝑞d3v𝑚 . (1.3)

For a homogeneous distribution of background particles, the integrand in Equation
1.3 only depends spatially on the impact parameter 𝑏. We hence express the (𝑝, 𝑞)
plane in polar coordinates (𝑏, 𝜙), which allows us to write d𝑝d𝑞 = 𝑏d𝑏d𝜙. This
allows us to re-express Equation 1.3 as:

aDF =

∫
Δv∥ 𝑛 𝑓 (v𝑚)𝑉𝑏d𝑏d𝜙d3v𝑚

=

∫
2𝑚V
𝑀 + 𝑚

[
1 + 𝑏2𝑉4

𝐺2 (𝑀 + 𝑚)2

]−1

𝑛𝑉𝑏d𝑏d𝜙 𝑓 (v𝑚)d3v𝑚

≈ 2𝐺2𝑀𝜌

∫
d𝑏d𝜙

∫
V
𝑉3 𝑓 (v𝑚)d

3v𝑚 ,

(1.4)

where we assumed 𝑏2𝑉4 ≫ 𝐺2(𝑀 + 𝑚)2 and 𝑀 ≫ 𝑚 for weak encounters, and
substituted the background mass density 𝜌 = 𝑚𝑛. If the background particles are
distributed over a range of impact parameters between 𝑏min and 𝑏max, the spatial part
of the integral can be carried out, and we arrive at the final expression of dynamical
friction:

aDF = −4𝜋𝐺2𝑀𝜌 lnΛ
∫

v𝑀 − v𝑚
|v𝑀 − v𝑚 |3

𝑓 (v𝑚)d3v𝑚 , (1.5)

where lnΛ ≡ ln(𝑏max/𝑏min) is called the Coulomb logarithm.

We can see from Equation 1.5 that when the test particle moves faster than the
background particles (𝑣𝑀 > 𝑣𝑚), the dynamical friction acceleration is in the
opposite direction of v𝑀 , which means the test particle feels an effective fiction.
We also see that the strength of dynamical friction is proportional to the mass of
the test particle 𝑀 . This means dynamical friction is the most efficient for massive
objects, e.g., massive black holes wandering around in galaxies.
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Figure 1.2: Left: Supermassive black holes are found in many galactic centers, e.g.,
the 7 × 107 𝑀⊙ black hole in the center of Bode’s galaxy (shown, captured with
an 81mm apochromatic telescope at the Joshua Tree National Park in California).
Right: Dynamical friction could cause the inspiral of massive black holes. As these
black holes lose their orbital angular momentum due to dynamical friction, they will
sink to the galactic center in a certain amount of time, which naturally explains the
observations.

Black Hole Inspiral
Observations have confirmed the existence of super-massive black holes in many
galactic centers, whose masses can be thousands to billions of times the mass of the
sun [19, 20, 12]. These black holes are believed to have undergone a prior orbital
inspiral phase, such that they end up sinking into the galactic center. During the
inspiral, they loses their orbital angular momentum due to dynamical friction, as
illustrated in Figure 1.2.

To estimate the timescale of the black hole inspiral phase, we make use of the
dynamical friction formula (Equation 1.5). We assume the background particles in
the galaxy (stars, gas, dark matter) can be described with a Maxwellian distribution
of velocity, characterized by an isotropic Jeans dispersion𝜎. The dynamical friction
to decelerate a black hole with mass 𝑀 is then given by [4]:

aDF = −4𝜋𝐺2𝑀𝜌 lnΛ
𝑣2
𝑀

v𝑀
𝑣𝑀

×
[
erf

(
𝑣𝑀√
2𝜎

)
−

√︂
2
𝜋

𝑣𝑀

𝜎
exp

(
−
𝑣2
𝑀

2𝜎2

)]
. (1.6)

If the black hole is on a circular orbit inside the galaxy at a radius 𝑟orbit, its orbital
velocity is then given by 𝑣𝑀 =

√︁
𝐺𝑚enclosed/𝑟orbit, where 𝑚enclosed = 𝑚(𝑟 < 𝑟orbit) is

the enclosed galactic mass inside the orbit. The dynamical friction inspiral timescale
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is then the time needed for the black hole to damp its velocity:

𝑡inspiral =
𝑣𝑀

|aDF |
. (1.7)

To estimate the numerical value, we note that the velocity dispersion for a typical
high-redshift galaxy is 𝜎 ≃ 200 km/s. The observed flatness of the rotation curves
further suggests an isothermal density profile of the galaxy with a constant circular
velocity 𝑣𝑀 ∼ 𝜎 [40]:

𝜌(𝑟) =
𝑣2
𝑀

4𝜋𝐺𝑅2
orbit

. (1.8)

The value of the Coulomb logarithm depends on the spatial extension of the galaxy,
which is ambiguously defined. Nevertheless, the order of the Coulomb logarithm is
insensitive to the exact 𝑏max selected due it logarithmic dependence on the impact
parameter. We hence set lnΛ = 10 in an ad hoc manner. With the above values, the
inspiral timescale is given by:

𝑡inspiral ≃ 0.92
(

𝑀

108𝑀⊙

)−1 (
𝑅orbit

2 kpc

)2
Gyr , (1.9)

which means a super-massive black hole of 108𝑀⊙ created near (≲ 2 kpc) the
galactic center has a good chance to sink in 1 Gyr. This can explain their existence
in low-redshift galactic centers we observe today.

1.2 Stellar Tides and Oscillations
The rise and fall of sea levels have been noticed by humans since ancient times, but
it was only until 1687 when Sir Isaac Newton firstly gave a satisfactory physical
explanation of tides [33]. The studies on stellar tides are even more recent, and their
detailed modeling has not been established until the second half of the 20th century,
partially due to the lack of knowledge for stellar structure and evolution. The tides
on stars can be classified into equilibrium tides and dynamical tides, and they can
both shape the dynamical evolution of the star and its companion which provides
the tidal potential.

Equilibrium Tides
In the left panel of Figure 1.3, we show the classical picture of equilibrium stellar
tides. The orbiting companion exerts a time-varying tidal potential on the star. As
the fluid of the star responds to this tidal potential, the star has some hydrostatic
deformation, and rises a tidal bulge. In the absence of dissipation in the tides, the
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Figure 1.3: Left: The scenario of equilibrium tides explained. The orbiting com-
panion object has a time-varying tidal potential on the star, and rises a tidal bulge
that rotates with the orbit. The dissipation of this tidal bulge creates a phase-lag of 𝜖
after the orbit of the companion. Right: The scenario of dynamical tides explained.
The same time-varying tidal potential excites the internal stellar oscillations in the
star. Tidal dissipation is then caused by the damping of these oscillations.

tidal bulge would co-rotate with the companion’s orbit. However, as the bulge has
internal viscous dissipation, it never catches up with the orbit of the companion, and
is instead left behind by a phase lag of 𝜖 .

For equilibrium tides, [21] defines the tidal quality factor 𝑄 as the ratio between the
energy stored in tides 𝐸0, and the dissipation of tidal energy in a complete orbital
cycle:

1
𝑄

≡ 1
2𝜋𝐸0

∮ (
− d𝐸

d𝑡

)
d𝑡 . (1.10)

When 𝜖 is small, [26] shows that this tidal quality factor is related to the phase-lag
𝜖 by:

𝑄 =
1
2𝜖
. (1.11)

Hence, the value of 𝜖 reflects the efficiency of the dissipative mechanisms, and larger
𝜖 (smaller 𝑄) corresponds to more efficient tidal dissipation.

Dynamical Tides
Unlike equilibrium tides, dynamical stellar tides are not the hydrostatic deformation
of stars under the tidal potential from their companions. Instead, they are internal
stellar oscillations that are excited by the tidal potential, as shown in the right panel
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of Figure 1.3. For this reason, dynamical tide are also known as tidally excited
oscillations (TEOs).

To understand the excitation mechanism of dynamical tides, we write down the
equations of stellar oscillations under a tidal potential𝑈. For a non-rotating, spher-
ically symmetric star, this set of equations can be obtained with linear perturbation
theory over the static equations of stellar structures [43]:

continuity equation : 𝛿𝜌 + ∇ · (𝜌𝜉𝜉𝜉) = 0 , (1.12)

energy equation :
𝛿𝑃 + (𝜉𝜉𝜉 · ∇) 𝑃

𝑃
= Γ1

𝛿𝜌 + (𝜉𝜉𝜉 · ∇) 𝜌
𝜌

, (1.13)

momentum equation :
𝜕2𝜉𝜉𝜉

𝜕𝑡2
= −∇𝛿𝑃

𝜌
+ ∇𝑃
𝜌2 𝛿𝜌 − ∇𝛿𝜙 − ∇𝑈 , (1.14)

Poisson′s equation : ∇2𝛿𝜙 = 4𝜋𝐺𝛿𝜌 , (1.15)

where 𝑃, 𝜌, 𝜙 are the pressure, density, and self-gravity potential inside the star, and
𝛿𝑃, 𝛿𝜌, 𝛿𝜙 are their Eulerian perturbation values. 𝑡 is the time coordinate and 𝜉𝜉𝜉 is the
Lagrangian perturbed vector displacements of the fluid. Γ1 = (𝜕 ln 𝑃/𝜕 ln 𝜌)adiabatic

is the adiabatic index of the fluid, assuming an adiabatic energy equation.

The above equations can be combined to the following equation of the perturbation
variable 𝜉𝜉𝜉 [38]:

𝜕2𝜉𝜉𝜉

𝜕𝑡2
+ 𝐶 · 𝜉𝜉𝜉 = −∇𝑈 , (1.16)

where 𝐶 is a linear operator that satisfies 𝐶 · 𝜉𝜉𝜉 = 𝜌−1 [−∇(Γ1𝑃∇ · 𝜉𝜉𝜉) + (∇ · 𝜉𝜉𝜉)∇𝑃 −
(∇𝜉𝜉𝜉) · (∇𝑃) + 𝜌(𝜉𝜉𝜉 · ∇)∇𝜙 + 𝜌∇𝛿𝜙]. To solve this equation, we note that we can first
solve the eigenvalue problems of the free oscillation equation:

𝜕2𝜉𝜉𝜉

𝜕𝑡2
+ 𝐶 · 𝜉𝜉𝜉 = 0 , (1.17)

whose set of eigensolutions {𝜉𝜉𝜉𝛼} satisfies

𝐶 · 𝜉𝜉𝜉𝛼 = 𝜔2
𝛼𝜉𝜉𝜉𝛼 . (1.18)

Clearly, this set of solutions {𝜉𝜉𝜉𝛼} is the internal stellar oscillations without the
excitation of the tidal potential. We define a inner product over the vector space
spanned by {𝜉𝜉𝜉𝛼} as ⟨𝜉𝜉𝜉𝛼 |𝜉𝜉𝜉𝛽⟩ ≡

∫
star 𝜉𝜉𝜉

∗
𝛼 · 𝜉𝜉𝜉𝛽 𝜌d𝑉 . We can show that 𝐶 is a Hermitian

operator with this inner product. This means {𝜉𝜉𝜉𝛼} satisfies the orthogonal relations:

⟨𝜉𝜉𝜉𝛼 |𝜉𝜉𝜉𝛽⟩ = 𝛿𝛼𝛽 , (1.19)
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and they form a complete basis for all stellar oscillations. We can then expand the
general solution to equation 1.16 as

𝜉𝜉𝜉 (𝑡) =
∑︁
𝛼

𝑎𝛼 (𝑡)𝜉𝜉𝜉𝛼 , (1.20)

where 𝑎𝛼 (𝑡) is the expansion coefficient that describes the amplitude of 𝜉𝜉𝜉𝛼 under
tidal excitation. By substituting the above expansion into Equation 1.16, and taking
the inner product of 𝜉𝜉𝜉𝛽 with it, we can make use of the orthogonal relation to get:

¥𝑎𝛼 (𝑡) + 𝜔2
𝛼𝑎𝛼 = −⟨𝜉𝜉𝜉𝛼 |∇𝑈⟩ . (1.21)

We see that the equation for the expansion coefficients is a driven harmonic oscillator
equation. The force term −⟨𝜉𝜉𝜉𝛼 |∇𝑈⟩ describes the coupling between the tidal force
and the free oscillation 𝜉𝜉𝜉𝛼, and it produces the tidal forcing of the oscillation.
Hence, in the picture of dynamical tides, it is the individual stellar oscillations that
are excited by the tidal force from the companion, and the oscillations damp due to
their own non-adiabatic dissipative mechanisms.

Stellar Oscillations
We now discuss the details of the free stellar oscillations that can be excited by the
tidal force, i.e. the eigensolutions {𝜉𝜉𝜉𝛼}. We adopt the Cowling approximation [8],
which allows us to ignore the perturbations of the internal gravity 𝛿𝜙. The equations
for the free oscillations now become:

continuity equation : 𝛿𝜌 + ∇ · (𝜌𝜉𝜉𝜉) = 0 , (1.22)

energy equation : 𝛿𝑃 + (𝜉𝜉𝜉 · ∇) 𝑃 = 𝑐2
s (𝛿𝜌 + (𝜉𝜉𝜉 · ∇) 𝜌) , (1.23)

momentum equation :
𝜕2𝜉𝜉𝜉

𝜕𝑡2
= −∇𝛿𝑃

𝜌
+ ∇𝑃
𝜌2 𝛿𝜌 , (1.24)

where 𝑐2
s ≡ Γ1(𝑃/𝜌) is the square of the adiabatic sound speed. Assuming that the

background stellar profiles (𝑃 and 𝜌) are spherically symmetric and only depend on
𝑟, the continuity equation can be expressed in spherical coordinates:

𝛿𝜌 + 𝜕𝜌
𝜕𝑟
𝜉𝑟 +

𝜌

𝑟2
𝜕

𝜕𝑟
(𝑟2𝜉𝑟) + 𝜌∇⊥ · 𝜉𝜉𝜉⊥ = 0 , (1.25)

where ∇⊥ is the angular part of the del operator. The energy equation reduces to:

𝛿𝑃 + 𝜉𝑟
𝜕𝑃

𝜕𝑟
= 𝑐2

s (𝛿𝜌 + 𝜉𝑟
𝜕𝜌

𝜕𝑟
) , (1.26)



9

which can be further rewritten as the following form:

𝛿𝜌

𝜌
=

1
Γ1

𝛿𝑃

𝑃
+ 𝑁

2

𝑔
𝜉𝑟 , (1.27)

where 𝑁2 = 𝑔(Γ−1
1 (𝜕 ln 𝑃/𝜕𝑟) − 𝜕 ln 𝜌/𝜕𝑟) is the square of the Brunt–Väisälä fre-

quency inside the star [44]. This frequency (also known as the buoyancy frequency)
is the oscillatory frequency for a perturbed fluid element under the restoring forces
from buoyancy.

For an perturbed eigensolution 𝛿𝑄, we can assume it has the standard harmonic
dependence over time, i.e. 𝛿𝑄 ∝ 𝑒−𝑖𝜔𝑡 . The momentum equation then reduces to:

𝜌𝜔2𝜉𝑟 =
𝜕

𝜕𝑟
𝛿𝑃 + 𝑔𝛿𝜌 , (1.28)

𝜌𝜔2𝜉𝜉𝜉⊥ = ∇⊥𝛿𝑃 . (1.29)

Equations 1.27 and 1.28 can be combined to cancel the 𝛿𝜌 terms to yield:
𝜕

𝜕𝑟
𝛿𝑃 + 𝑔

𝑐2
s
𝛿𝑃 + 𝜌(𝑁2 − 𝜔2)𝜉𝑟 = 0 , (1.30)

where only partial derivatives on the radial direction are involved. Equations 1.25
and 1.29 can also be combined to the following equation where the 𝜉𝜉𝜉⊥ terms are
canceled:

𝛿𝜌 + 𝜕𝜌
𝜕𝑟
𝜉𝑟 +

𝜌

𝑟2
𝜕

𝜕𝑟
(𝑟2𝜉𝑟) +

1
𝜔2∇

2
⊥𝛿𝑃 = 0 , (1.31)

where the only angular derivative is the one with the angular Laplacian operator ∇2
⊥,

whose eigenfunctions are spherical harmonics 𝑌𝑚
𝑙

. This suggests us to separate the
angular dependence of 𝛿𝑃 as 𝛿𝑃 ∝ 𝑌𝑚

𝑙
, such that:

∇2
⊥𝛿𝑃 = − 𝑙 (𝑙 + 1)

𝑟2 𝛿𝑃 = −
𝐿2
𝑙

𝑐2
s
𝛿𝑃 , (1.32)

where 𝐿2
𝑙
≡ 𝑐2

s 𝑙 (𝑙 + 1)/𝑟2 is the Lamb frequency of degree 𝑙. Equations 1.27 and
1.31 can then be combined to yield:

1
𝑟2
𝜕

𝜕𝑟
(𝑟2𝜉𝑟) −

𝑔

𝑐2
s
𝜉𝑟 +

(
1 −

𝐿2
𝑙

𝜔2

)
𝛿𝑃

𝜌𝑐2
s
= 0 , (1.33)

where we make use of the definition of 𝑁2 and 𝜕𝑃/𝜕𝑟 = −𝜌𝑔 (hydrostatic equilib-
rium). [43] suggests to define the following variables:

𝜉 ≡𝑟2𝜉𝑟 exp
(
−

∫ 𝑟

0

𝑔

𝑐2
s

d𝑟
)
, (1.34)

𝜂 ≡𝛿𝑃
𝜌

exp
(
−

∫ 𝑟

0

𝑁2

𝑔
d𝑟

)
, (1.35)
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such that equations 1.30 and 1.33 become the following canonical form:

𝜕𝜉

𝜕𝑟
= ℎ(𝑟) 𝑟

2

𝑐2
s

(
𝐿2
𝑙

𝜔2 − 1
)
𝜂 , (1.36)

𝜕𝜂

𝜕𝑟
=

1
ℎ(𝑟)𝑟2 (𝜔

2 − 𝑁2)𝜉 , (1.37)

where ℎ(𝑟) = exp(
∫ 𝑟

0 (𝑁2/𝑔 − 𝑔/𝑐2
s )d𝑟). When the oscillations have small wave-

lengths compare to the pressure and density scale heights in the star, their radial
derivatives are always much greater than the derivatives of local properties. We
can hence use the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation to
replace every 𝜕/𝜕𝑟 by 𝑖𝑘𝑟 , where 𝑘𝑟 is the radial wave vector. With these notations
and approximations, the above equations can be combined to yield the following
dispersion relation that must be satisfied by physical oscillations:

𝑘2
𝑟 =

(𝜔2 − 𝐿2
𝑙
) (𝜔2 − 𝑁2)
𝜔2𝑐2

s
. (1.38)

As 𝑘𝑟 is the radial wave number with the JWKB approximation (i.e., 𝜉𝜉𝜉 ∝ 𝑒𝑖𝑘𝑟𝑟),
oscillations can propagate as waves if 𝑘𝑟 is real, while they will be evanescent if
𝑘𝑟 is purely imaginary. Therefore, for propagating waves, we require 𝑘2

𝑟 > 0, or
(𝜔2 − 𝐿2

𝑙
) (𝜔2 − 𝑁2) > 0. Figure 1.4 shows the Brunt–Väisälä frequency and the

𝑙 = 2 Lamb frequency inside a blue supergiant star model, adapted from [25]. We
can see that there are two regions in the frequency space where the above relation
could be satisfied. This kind of figure is called a propagation diagram, and we
analyze the two scenarios below.

Sound waves (p modes)

𝑘2
𝑟 > 0 can be satisfied if 𝜔2 > 𝐿2

𝑙
and 𝜔2 > 𝑁2. This corresponds to the grey

shaded region in Figure 1.4. If we take the limiting case 𝜔2 ≫ 𝐿2
𝑙

and 𝜔2 ≫ 𝑁2,
the dispersion relation 1.38 reduces to

𝑘2
𝑟 =

𝜔2

𝑐2
s
. (1.39)

We can see that this is the dispersion relation for sound waves with a sound speed
𝑐s. Therefore, this scenario corresponds to sound waves inside the star, and the
corresponding restoring forces are the internal pressure. For this reason, this kind
of oscillations are also called p (pressure) modes.
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Figure 1.4: The propagation diagram for a blue supergiant model, adapted from
[25]. The blue and grey lines show the Brunt–Väisälä frequency and the 𝑙 = 2 Lamb
frequency inside the star. Below both frequencies, gravity waves can propagate
(shaded blue region). Above both frequencies, sound waves can propagate (shaded
grey region). Both waves are evanescent in the white regions.

We note from Figure 1.4 that sound waves are often of very high frequencies.
However, only oscillations with comparable frequencies to the stellar companion’s
orbital frequency can be tidally excited efficiently (see the driven oscillator equation
1.21). As orbits of such high frequencies typically do not exist, sound waves are
almost never related to tidally excited oscillations.

Gravity waves (g modes)

𝑘2
𝑟 > 0 can also be satisfied if both 𝜔2 < 𝐿2

𝑙
and 𝜔2 < 𝑁2. This corresponds to

the blue shaded region in Figure 1.4. If we take the limiting case 𝜔2 ≪ 𝐿2
𝑙

and
𝜔2 ≪ 𝑁2, the dispersion relation 1.38 reduces to

𝑘2
𝑟 =

𝑙 (𝑙 + 1)𝑁2

𝑟2𝜔2 . (1.40)

This scenario corresponds to the gravity waves (g modes) inside the star, whose
restoring force is buoyancy. In convective regions of a star, buoyancy cannot restore
a fluid element if its position is perturbed, and the corresponding 𝑁2 vanishes.
Gravity waves hence cannot propagate in convective regions, as shown in Figure 1.4
for the two sub-surface convective zones in the stellar model.
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Figure 1.5: Possible dynamics of tidal dissipation: Left: When the companion mass
is much smaller than the mass of the star where the tides are excited (e.g., for a planet
around a stellar host), the loss of orbital angular momentum of the companion can
cause its orbit to migrate significantly. Right: When the companion has comparable
mass to the central star, the transfer of angular momentum between the orbit and the
star can change its rotation rates significantly. If the star is initially slowly rotating,
this may cause tidal spin-up of the star.

As gravity waves have lower frequencies, they can be tidally excited by the com-
panion’s orbit. As they do not propagate in convective zones, their main dissipation
mechanism is radiative diffusion in the radiative zones of a star.

The above analysis is based on pure hydrodynamic analysis of non-rotating stars.
For rotating stars, Rossby waves (r modes) and inertial modes (i modes), which are
restored by the Coriolis force, can also be tidally excited. For stars with magnetic
fields, Alfvén waves, which are restored by electro-magnetic forces, may also exist.
In reality they may form mixed modes with stellar g and p modes, and the tidal
excitation and dissipation of these mixed oscillations can be very complicated.

1.3 Tidal Evolution
When tides are excited, they exchange energy and angular momentum with the
companion’s orbit. These energy and angular momentum are transferred to/from
the star when the tides dissipate. Therefore, tides can shape the dynamical evolution
of the star and its orbital companion.

We summarize two typical kinds of tidal dynamical evolution in Figure 1.5. In
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cases where the mass of the companion object is much less than the mass of the star
(e.g., for a star hosting a planet), the orbital energy and angular momentum is much
less than the internal energy and angular momentum of the star itself. Therefore,
the dynamics of the star will not change significantly even if tides can transfer
all the orbital energy and angular momentum to the stellar interior. However, if
tides are strong enough in this case, the obits may lose/acquire significant amount
of energy and angular momentum. This typically cause the companion’s orbit to
migrate. Observations have confirmed this kind of tidal migration for the Earth-
Moon system, as well as some other satellites in the solar system.

On the other hand, if the mass of the companion object is comparable to the mass
of the star, tides can significantly alter the rotational evolution of the star even if
only a small amount of orbital angular momentum is transferred between the star
and the orbit, with negligible orbital migration. This is particularly interesting as it
may explain the fast rotations of some stars which should be born slowly rotating,
as they undergo this tidal spin-up process.

1.4 Questions and Existing Efforts
Many questions related to dynamical friction and tidal dissipation are still not fully
solved. These questions might be of pure theoretical interests, or closely related to
recent observational discoveries.

As discussed in 1.1, the process of dynamical friction originates from the gravi-
tational interactions between celestial bodies, hence it should be fully captured if
the dynamics of all particles in a system are resolved. However, this is usually
not the case for galactic simulations in practice. The enormous numbers of lighter
physical particles (e.g., stars and dark matter particles) in these simulations are
often approximately represented by some more massive “simulation particles” with
some spatial distribution and extension, rather than being resolved individually at
sufficient resolution, as shown in Figure 1.1. As the individual dynamics of these
lighter particles are unimportant, this method could significantly reduce the compu-
tational expense of these simulations. However, the two-body scatterings between
a massive object with these simulation particles is quite different from those with
the physical, less-massive particles. Therefore, a sub-grid treatment of dynamical
friction is needed in these simulations.

There have been several existing efforts to implement a general sub-grid model
for dynamical friction into 𝑁-body simulations. Most of these works are based
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on the classical Chandrasekhar’s formula [7, 10, 42, 37], yet they suffer from the
ambiguously defined Coulomb logarithm in the formula, and there is no consis-
tent way to evaluate the particle mass-density 𝜌 directly from 𝑁-body simulations.
Some works make use of a zoom-in approach by resolving the individual particle
dynamics around massive particles in simulations [29], yet these methods are gen-
erally complicated and may increase the computational expenses. Hence, it still
remains a question to develop an accurate dynamical friction estimator that is easily
implemented into 𝑁-body simulations.

The classical picture of massive black hole inspiral with dynamical friction has
also been challenged by observations. Specifically, observations have confirmed the
existence of super-massive black holes in 𝑧 > 7 galaxies [14, 13, 23, 50, 31, 22, 48],
which formed in less than 1 Gyr after the universe was born. The emerging data
from the James Webb Space Telescope (JWST) are pushing this limit to even higher
redshifts [51, 49]. It hence remains a question on whether dynamical friction could
be efficient enough to sink these massive black holes in such a short period of time.

Additionally, the chaotic dynamical processes in high-redshift galaxies may further
complicate the picture of black hole inspiral. The mass distribution in typical
high-𝑧 galaxies is far from the isothermal density profile described in Equation 1.8,
and the chaotic scattering processes can make the inspiral timescale even longer.
Long inspiral processes would challenge the formation scenarios of super-massive
black holes, as the existing growing mechanisms for these black holes could be
very inefficient if they do not sink promptly into the galactic center [46, 47, 1, 5].
Therefore, an investigation into the detailed dynamics of these black holes in high-𝑧
galaxies is needed.

In recent years, NASA Kepler/K2 and TESS missions have greatly increased the
number of known exoplanets around different types of stars. Due to the observational
bias of transits and radial velocity measurements, many of them are discovered as
short period exoplanets where tidal interactions may shape their orbital architectures
through their lifetime. Ground-based follow-up observations have been trying to
directly measure the orbital migration of planets (e.g., [28, 41]), and there has been
at least one confirmed detection of exoplanet orbital decay directly (WASP-12b, see
[27, 35]). These data provide great opportunities to study the tidal evolution of
planets.

Most theoretical works on the tidal migration of planets investigate the classical
picture of equilibrium tides [30, 18, 11, 45], where the tidal quality factor 𝑄 has
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constant dependence on the orbital frequency. Some indirect constraints based on
the stellar spin measurements suggests that this may not be the case [36]. Hence, it
remains a question whether the dynamical excitation of tides can explain the trend
of planet migration found in data, and how it will predict the tidal evolution process
of planets.

The photometric data obtained from Kepler/K2 and TESS not only help to identify
planet transits, but also provide an opportunity to study the properties of stars.
In particular, asteroseismic techniques have allowed for accurate measurements of
stellar rotation rates from photometry [32, 9]. An interesting kind of system is the
short-period subdwarf B (sdB) binary. Observations have shown a clear trend of
spin–orbit synchronization for sdB binaries with orbital periods less than ∼6 hours
[39], which can be a result of tidal synchronization. Therefore, it remains a question
about whether some tidal dissipation mechanism can explain this trend.

The evidence of tidal evolution can not only be found in living stars, but may as
well be discovered in their graveyard. Gravitational wave data from LIGO/Virgo has
confirmed a limited amount of binary stellar-mass black holes with non-negligible
rotation [2, 15], which is inconsistent with the predictions from single stellar evolu-
tion modeling, as most of the angular momentum of the stellar core should be lost
before core-collapse [24, 17]. One possible scenario to produce these rotating black
holes is a prior tidal spin-up phase in massive stellar binaries consisting of a first-
born black hole and a Wolf–Rayet star. If the Wolf–Rayet star can be significantly
spun-up during its lifetime, it may collapse to a fast rotating black hole eventually.

A number of works have been looking at this scenario by calculating the tidal evo-
lution with damped gravity waves inside the Wolf–Rayet star [3, 34, 16]. However,
none of these works calculated the realistic tidal excitation of stellar oscillations,
and they instead used a formalism developed by [52] to estimate the tidal torque. As
this formalism originally applied to massive main-sequence stars, it is questionable
whether they can be used for Wolf–Rayet stars. It is also a question how a realistic
treatment of tidally excited gravity waves will predict about the spins of binary black
holes born from Wolf–Rayet tidal spin-up.

1.5 Thesis Outline
In the remaining chapters of this thesis, I present a series of works addressing the
questions mentioned in the previous section.

In Chapter 2, I develop a new sub-grid dynamical friction estimator. The estimator
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is based on the discrete nature of 𝑁-body simulations, and avoids the ambigu-
ously defined quantities in Chandrasekhar’s dynamical friction formula. I test this
dynamical friction estimator in the GIZMO code, and prove that it is accurate,
easily-implementable, and computationally efficient.

In Chapter 3, I study the dynamics of massive black hole seeds in high-redshift
galaxies. I analyze the direct integration of seed black hole trajectories in high-
resolution cosmological simulations, and carry out post-processing analysis of test
particles with dynamical friction. I show that seed black holes less massive than
108 𝑀⊙ (i.e. all but the already-supermassive seeds) cannot efficiently sink in typical
high-redshift galaxies.

In Chapter 4, I study the effects of tidal resonance locking for exoplanet systems.
I show that the planet orbital decay timescale with resonance locking is typically
comparable to the star’s main-sequence lifetime, corresponding to a wide range in
effective stellar quality factor (103 < 𝑄′ < 109). I make predictions for several
individual systems and examine the orbital evolution resulting from both resonance
locking and nonlinear wave dissipation.

In Chapter 5, I investigate the tidal spin-up of sdB binaries. I directly calculate the
tidal excitation of internal gravity waves in realistic sdB stellar models, and integrate
the coupled spin–orbit evolution of sdB binaries. I show that for canonical sdB
(𝑀sdB = 0.47𝑀⊙) binaries, the transitional orbital period below which they could
reach tidal synchronization in the sdB lifetime is ∼0.2 days, with weak dependence
on the companion masses. This value is very similar to the tidal synchronization
boundary evident from observations.

In Chapter 6, I investigate the scenario of Wolf–Rayet tidal spin-up to form rotating
binary black holes. I show that for short-period orbits and massive Wolf–Rayet stars,
the tidal interaction is mostly contributed by standing gravity modes, in contrast to
Zahn’s model of travelling waves which is frequently assumed in the literature. I
show that tidal synchronization is rarely reached in Wolf–Rayet–black-hole binaries,
and the resulting black hole spins have 𝑎 ≲ 0.4 for all but the shortest period
(𝑃orb≲ 0.5 d) binaries.

I summarize the results in Chapter 7.
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C h a p t e r 2

A NEW N-BODY DYNAMICAL FRICTION ESTIMATOR

[1] Linhao Ma et al. “A new discrete dynamical friction estimator based on N-
body simulations”. In: Monthly Notices of the Royal Astronomical Society
519.4 (2023), pp. 5543–5553. doi: 10.1093/mnras/stad036.

Abstract
A longstanding problem in galactic simulations is to resolve the dynamical friction
(DF) force acting on massive black hole particles when their masses are comparable
to or less than the background simulation particles. Many sub-grid models based
on the traditional Chandrasekhar DF formula have been proposed, yet they suffer
from fundamental ambiguities in the definition of some terms in Chandrasekhar’s
formula when applied to real galaxies, as well as difficulty in evaluating continuous
quantities from (spatially) discrete simulation data. In this work we present a new
sub-grid dynamical friction estimator based on the discrete nature of 𝑁-body sim-
ulations, which also avoids the ambiguously-defined quantities in Chandrasekhar’s
formula. We test our estimator in the GIZMO code and find that it agrees well with
high-resolution simulations where DF is fully captured, with negligible additional
computational cost. We also compare it with a Chandrasekhar estimator and discuss
its applications in real galactic simulations.

2.1 Introduction
An essential element in the study of galactic dynamics is the process of dynamical
friction (DF, [12]), a statistical effect of numerous two-body scatterings which
causes a massive particle to lose its momentum when it travels through a medium
of much lighter background particles. DF is believed to be an important effect
to drive massive black holes (BHs, from intermediate mass BHs to super-massive
BHs) to galactic centers (see, e.g. [43, 56, 13]), and it plays an essential role in the
evolution of globular clusters (see, e.g. [45, 23, 1, 50]). Hence the evaluation of DF
is important in studying the evolution of galaxies, globular clusters, and black holes
in a wide variety of contexts.

In numerical 𝑁-body simulations with sufficient resolution (such as in the limit

https://doi.org/10.1093/mnras/stad036
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in which all bodies such as stars, black holes, or even dark matter particles are
represented by individual 𝑁-body particles), DF will be automatically captured.
However, as DF is an accumulated effect of many weak encounters in the regime
where the “target” mass is much larger than the mass of the “background” particles
masses (𝑀target particle ≫ 𝑀background particle), it is often not possible to fully resolve
this background. This is especially true in large-scale simulations of e.g. galactic
scales, where a typical “𝑁-body particle” can easily have mass much larger than
intermediate and super-massive black holes (≫ 104 𝑀⊙), let alone the masses of
individual stars, dark matter particles, or hydrogen ions. Specifically, when the
𝑁-body particle mass becomes comparable to or larger than the “target” mass, the
explicit results of an 𝑁-body solver will not return the correct DF forces. For
example, in e.g. the “high-resolution” simulations of high-redshift galaxies in Ma
et al. [36, 35, 34], the baryonic mass resolution is Δ𝑚𝑖 ∼ 7000𝑚⊙ and the dark
matter mass resolution is 5 times larger, which makes it impossible to resolve
dynamical friction effects for BHs or other “sink” particles (e.g. particles which
might represent unresolved massive, dense structures such as globular clusters, or
hyper-dense exotic dark matter structures, etc.) less massive than ∼ 105𝑀⊙. Hence,
in these types of simulations, an additional “sub-grid” DF force must be added to
these “target” particles to attempt to recover their real dynamics, to replace the lost
information of individual two-body encounters in the smoothed-out gravity potential
in simulations.

Multiple sub-grid DF models have been proposed in the literature (e.g. [15, 20, 53,
44]) based on the classical Chandrasekhar’s dynamical friction formula ([12], or
C43 hereafter):

aC43
df = −4𝜋𝐺2𝑀𝑚 lnΛ

∫
𝑑3v𝑚 𝑓 (v𝑚)

v𝑀 − v𝑚
|v𝑀 − v𝑚 |3

, (2.1)

where 𝑀 and 𝑚 are the masses of the moving “target” particle and the background
or field particles, respectively. Here v𝑀 and v𝑚 are their velocities, and Λ is
the Coulomb logarithm defined by Λ ≡ 𝑏max/𝑏min where 𝑏max and 𝑏min are the
maximum and minimum impact factors of scattered particles in weak encounters.
𝑓 (v𝑚) is the velocity distribution of field particles, and, with the usual assumption
of a Maxwellian velocity distribution with dispersion 𝜎, the formula reduces to [5]:

aC43
df = −4𝜋2𝐺2𝑀𝜌 lnΛ

𝑉3
𝑀

[
erf

(
𝑣𝑚√
2𝜎

)
−

√︂
2
𝜋𝜎

𝑒−𝑣
2
𝑚/2𝜎2

𝑣𝑚

]
v𝑀 , (2.2)

i.e. the DF acceleration is proportional to the local field particle density 𝜌 and is in
the opposite direction of the particle velocity v𝑀 , effectively acting as a “friction”
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force. Despite its elegance and (often surprising) accuracy in estimating the DF,
Chandrasekhar’s formula suffers from the following shortcomings when applied as
a sub-grid model:

1. In deriving the formula, C43 assumes an isotropic and homogeneous medium
of field particles. This is generally not true for real galaxies. For example,
it has been pointed out that high-redshift galaxies and low-redshift dwarf
galaxies could be chaotic and clumpy (e.g., [55, 39, 21]). The existence of such
systems makes the physical assumptions behind C43 formula questionable.

2. The Coulomb logarithm is ambiguously defined, and is often selected ad-hoc
in practice, with a case-dependent selection of the minimum and maximum
impact parameters (see, e.g., [53, 44]), which introduces a large systematic
uncertainty in the sub-grid model.

3. The formula has an explicit dependence on the local mass density, which must
be evaluated from discrete 𝑁-body data for collisionless fluid (stars or dark
matter, often “blended” with gas for which the density is continuously defined,
depending on the numerical hydrodynamic method). The choice of how to
do so is arbitrary and has no defined “preferred” scale. Most commonly it is
done with a local kernel density estimator at some multiple of the resolution
scale (see, e.g. [53]), but this is known to be quite noisy, and is not consistent
with the unique local gas density available from hydrodynamic calculations.

4. The velocity integral and 𝑓 (v𝑚) must be estimated with some similar ad-
hoc local estimator, which is also undefined, and different choices can lead
to different directions for the dynamical friction acceleration. Usually the
choice of a local kernel sampling amplifies numerical noise further here and
means that 𝑓 (v𝑚) must be assumed to be Maxwellian (since it cannot be fit to
an arbitrary function given just a few local points).

5. There is no self-consistent way to incorporate force softening, which is nec-
essary in 𝑁-body simulations to avoid spurious divergences in the forces, as
an 𝑁-body particle does not physically represent a point-mass particle. Fail
to incorporate softening can produce inconsistent results between the (of-
ten softened) gravitational acceleration and the additional dynamical friction
acceleration.
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6. As C43 depends on local continuous field parameters but represents long-
range forces, there is no way to self-consistently implement it in a way that
conserves momentum, while in reality dynamical friction should be exactly
conservative since it is derived from an infinite superposition of pair-wise
𝑁-body encounters;

7. Evaluating C43 numerically requires operations which are not algorithmically
identical to the gravity solver in 𝑁-body equations, which introduces not only
additional inconsistencies, but also substantial computational expense. This
also means numerical convergence for C43 applied to 𝑁-body particles is
undefined: there is no formal guarantee of convergence even on idealized,
smooth problems.

To tackle these problems, we develop a new sub-grid DF estimator which can
be efficiently embedded into discrete 𝑁-body calculations in this work. The new
estimator is based on a discrete version of the DF formula which can be applied to
an arbitrary phase-space distribution of field particles, and avoids the fundamental
ambiguity in the definitions of some terms in Chandrasekhar’s formula. It also
naturally embeds force softening and momentum conservation. It can also easily be
generalized to assumptions beyond those of C43 for the nature of DF-like forces.
We test our estimator in both on-the-fly simulations and in post processing, and
compare our results to those from a Chandrasekhar DF estimator. The chapter is
written as follows: in § 2.2 we derived our discrete DF formula. In § 2.3 we describe
the methods we use to test the estimator. In § 2.4 and § 2.5 we present and discuss
the results.

2.2 Derivation of the Discrete Dynamical Friction Formula
Here we present the derivation of our discrete DF formula, and general comments
on its application in 𝑁-body methods.

Derivation
In C43, the classical DF formula is derived as follows: assume a test particle with
mass 𝑀 travels through an infinite, homogeneous and isotropic medium (filled with
background particles with mass 𝑚 ≪ 𝑀), and experiences a number of individual
two-body encounters. During each encounter, along the direction of relative motion,
the test particle velocity in the parallel direction to the initial relative velocity is
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altered by (after integrating along the encounter path 𝑑𝑠 from 𝑠 → −∞ to 𝑠 → +∞)

Δv∥ =
2𝑚V
𝑀 + 𝑚

[
1 + 𝑏2𝑉4

𝐺2 (𝑀 + 𝑚)2

]−1

=
2𝑚V

(𝑀 + 𝑚) (1 + 𝛼2)
,

(2.3)

where V ≡ v𝑚 − v𝑀 (i.e. the velocity of 𝑚 in the rest frame of 𝑀), 𝑏 is the impact
parameter, and 𝛼 ≡ 𝑏𝑉2/𝐺 (𝑀+𝑚) parameterizes the encounter strength. Note that
the perpendicular deflection Δv⊥ will be cancelled by symmetry if the medium is
homogeneous and isotropic so we neglect it for now, but we will return to this below.
To account for the contributions of all encounters, C43 then integrates Eq. 2.3, by
noting that the encounter rate in a differential time 𝑑𝑡 is the sum of encounters within
a cylindrical slice, with surface area 𝑑𝐴 in the plane perpendicular to the relative
motion and height 𝑉 𝑑𝑡, over all relatively velocities and angles

adf ≡
𝑑v𝑀
𝑑𝑡

=

∫
Δv∥ 𝑉 𝑑𝐴N(x, v) 𝑑3v

=

∫
2𝛼

1 + 𝛼2
𝐺 𝑚

𝑏
V̂N(x, v) 𝑑𝑝 𝑑𝑞 𝑑3v ,

(2.4)

where N(x, v) = 𝑑𝑁/𝑑3x 𝑑3 v is the phase space distribution function (by number)
of the background particles; V̂ ≡ V/𝑉 , and 𝑝 and 𝑞 are the two spatial coordinates
perpendicular to the path length 𝑑𝑠, i.e. characterizing the surface 𝑑𝐴 (so 𝑑𝑠 𝑑𝑝 𝑑𝑞 =

𝑑3x). The integral can be easily carried out for an isotropic and homogeneous
distribution with N(x, v) = 𝑛 𝑓M(v), where 𝑛 is the number density (constant) and
𝑓M(v) is the Maxwellian velocity distribution, leading to the classical formula.

To generalize the above formula to an arbitrary phase space distribution sampled by a
discrete set of data points as in our simulations, one might naively attempt to directly
insert the usual 𝑁-body approximation, replacing N(x, v) → ∑

𝑖 (Δ𝑚𝑖/𝑚) 𝛿(x −
x𝑖, v − v𝑖). This treats the distribution function as a sum of Dirac 𝛿-functions, i.e.
point particles, each with 𝑁-body particle mass Δ𝑚𝑖, so representing 𝑁 = Δ𝑚𝑖/𝑚
“background” particles of mass 𝑚. However, the integral in Eq. 2.4 only integrates
over the two-dimensional surface (𝑑𝑝𝑑𝑞) as a slice of the full phase space, which
makes it impossible to discretize directly. The missing integral parameter reflects
the fundamental conceptual difficulty in deriving the DF formula for arbitrary phase
space distribution. In deriving Eq. 2.4, we actually already performed the integral
over the missing degree of freedom when calculating Δv∥ , by integrating over path
length 𝑑𝑠 in each encounter from−∞ to∞, containing the full effect of one two-body
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Figure 2.1: A comparison between the derivation of Chandrasekhar’s DF formula
(C43) and ours: in C43, Chandrasekhar calculates the change of velocity Δv| | for
one full scattering, and integrates over the remaining two dimensions 𝑑𝐴 (perpen-
dicular to the direction of motion) for all field particles, assuming a homogeneous
and isotropic continuum such that the overall contribution is characterized by the
Coulomb logarithm; in our derivation, we estimate the change of velocity 𝑑v| |/𝑑𝑠
over the line of motion (coordinated by 𝑠) at a given point in the scattering process,
which allows us to integrate all field particles over the full configuration space (as the
dimension along the line of motion is now recovered), such that a discrete numerical
sum is possible.

encounter before we sum them up to get the final result. This is only correct if the
background distribution is isotropic and homogeneous, since in principal, the DF
process cannot be evaluated in this manner for any given instant of time, without
knowing all the history and future of the full dynamics, unless the background
profile is static (i.e. isotropic and homogeneous). Nevertheless, it is still suggestive
to consider what an inhomogeneous background particle distribution could bring
(quantitatively) to this story, hence we offer an ad hoc derivation here.

The key conceptual requirement to replace Eq. 2.4 with one that can be discretized for
an arbitrary N is to re-expand the integral that gave rise to Δv∥ (Eq. 2.3) to explicitly
account for the contributions of particles at different distances 𝑠 along their two-body
encounter trajectory, i.e. taking Δv∥ →

∫
⟨𝑑Δv∥/𝑑𝑠⟩deflected 𝑑𝑠 (see comparison in

Fig. 2.1). Recall that the entire point of our derivation is to develop a formula which
can be applied where the explicit 𝑁-body evolution of the mass 𝑀 was not followed.
Since DF fundamentally arises from the “back-reaction” of the medium (i.e. the
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deflection of mass 𝑚 as it feels gravity from 𝑀 creating a net “drag”), we need to
identify the difference between the contribution to 𝑑v𝑀/𝑑𝑡 which 𝑚 would have at a
distance 𝑟 along its encounter trajectory with𝑀 if it had indeed been deflected by𝑀 ,
relative to the acceleration 𝑀 would feel if it saw 𝑚 on an “un-deflected” trajectory.
The latter is, of course, just the “normal” gravitational acceleration on 𝑀 .1 The full
expressions for this are quite cumbersome and cannot be analytically closed; but
they are still, in any case, approximate (as we still ignore many effects such as other
influences on the orbit of 𝑚 during each stage of its 2-body encounter), so we can
safely approximate them to the same order of accuracy by noting that asymptotically
⟨𝑑Δv∥/𝑑𝑠⟩deflected → Δv∥ 𝑏

2/2 (𝑠2 + 𝑏2)3/2 at large 𝑟 ≫ 𝑏 (noting 𝑟2 ≡ 𝑠2 + 𝑏2),
and (for weak encounters, the only case where our derivation is meaningful) near
pericenter (𝑟 = 𝑏 (1 + 𝜖) with 𝜖 ≪ 1) ⟨𝑑Δv∥/𝑑𝑠⟩deflected → Δv∥ (1/2 𝑏). Together
with the identity 1 = (𝑏/2)

∫ +∞
−∞ 𝑏 𝑑𝑠/(𝑠2 + 𝑏2)3/2, we can replace Δv∥ in Eq. 2.4

with this expression, giving:

adf =

∫
2𝛼𝐺 𝑚N(x, v)
𝑏 (1 + 𝛼2)

V̂ 𝑑𝑝 𝑑𝑞 𝑑3v
𝑏

2

∫
𝑠

𝑏 𝑑𝑠

(𝑠2 + 𝑏2)3/2

≈
∫ ∫

𝑠

2𝛼𝐺 𝑚N(x, v)
𝑏 (1 + 𝛼2)

V̂ 𝑑𝑝 𝑑𝑞 𝑑3v
𝑏

2
𝑏 𝑑𝑠

(𝑠2 + 𝑏2)3/2

=

∫
𝛼 𝑏 𝐺 𝑚

(1 + 𝛼2) 𝑟3 V̂N(x, v) 𝑑3x 𝑑3v , (2.5)

where we used 𝑑𝑠 𝑑𝑝 𝑑𝑞 ≡ 𝑑3x, and in the ≈ step, where we move the integrand,
we essentially make a much weaker version of the original Chandrasekhar [12]
approximation, assuming that quantities such as N do not vary strongly over the
timescale during which most of the Δv∥ is imparted by each 2-body encounter. Now,
we can insert the discrete 𝑁-body form of N as a sum of 𝛿 functions to trivially
obtain:

adf →
∑︁
𝑖

𝛼𝑖 𝑏𝑖 𝐺 Δ𝑚𝑖

(1 + 𝛼2
𝑖
) 𝑟3
𝑖

V̂𝑖

=
∑︁
𝑖

(
𝛼𝑖

1 + 𝛼2
𝑖

) (
𝑏𝑖

𝑟𝑖

) (
𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
V̂𝑖 .

(2.6)

1This contribution will differ depending on the sign of 𝑠 at a given 𝑟, i.e. depending on whether
𝑚 is “approaching” or “receding” from 𝑀; however in our application to 𝑁-body simulations, the
sign of V for distant 𝑚 will change frequently, so there is no way to unique identify “approaching” or
“receding” elements without actually performing the full time integral of every encounter (i.e. doing
the full “live” 𝑁-body calculation with 𝑀 , exactly what we wish to avoid). We therefore simply
average between the two, giving ⟨𝑑Δv∥/𝑑𝑠⟩deflected ≡ (1/2 |𝑑𝑠 |) [

∫ −𝑠
−𝑠−𝑑𝑠 (a

′ − a0) 𝑑𝑡 +
∫ 𝑠+𝑑𝑠
𝑠

(a′ −
a0) 𝑑𝑡], where a′ ≡ a𝑀𝑚 [xdeflected

𝑀
(𝑡), xdeflected

𝑚 (𝑡)] and a0 ≡ a𝑀𝑚 [x𝑚−undeflected
𝑀

(𝑡), xundeflected
𝑚 (𝑡)]

are the two-body accelerations assuming 𝑚 follows the deflected and un-deflected trajectories,
respectively (note 𝑀 still “sees” 𝑚 in its un-deflected trajectory, but 𝑚 does not “see” 𝑀 in that case)
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We have of course made a number of assumptions to derive Eq. 2.6, and our final
expression is not necessarily unique. However it has many useful properties. (1) In
a spatially homogeneous medium (i.e. any where we can write N = 𝑛 𝑓 (v)), then
it is trivial to verify by inserting this in Eq. 2.5 that Eq. 2.6 reproduces exactly the
expressions from Chandrasekhar [12] for any 𝑓 (v). (2) Eq. 2.6, as intended, can be
easily applied to an arbitrary 𝑁-body simulation collection of particles of arbitrary
types (summing different components such as dark matter, gas, or stars simply
involves carrying out the sum in Eq. 2.6 with the appropriate Δ𝑚𝑖 and 𝑚 for each
“species”). (3) Eq. 2.6 removes a number of ambiguities: the Coulomb logarithm is
removed (it only “re-appears” if indeed the medium is infinite and homogeneous),
and the V which appears is un-ambiguous (discussed further below). (4) Eq. 2.6
above can be trivially generalized for softened gravity (below). (5) Eq. 2.6 at least
asymptotically captures the relative contributions of near versus far particles 𝑚 to
the DF force, i.e. the dimensional scaling with 𝑟, e.g. correctly capturing the fact
that most of the effect comes from when particles are near-pericenter.

Force Softening
To apply Eq. 2.6 to numerical simulations, we must account for force softening as in
the simulations (since an 𝑁-body particle of mass Δ𝑚𝑖 represents many individual
stars, collocating them at a specific x𝑖, v𝑖 would lead to spurious divergences in the
forces). In Eq. 2.6, note that all but one term are well-behaved: 0 < 𝛼𝑖/(1 + 𝛼2

𝑖
) <

1/2, 0 < 𝑏𝑖/𝑟𝑖 < 1, and |V̂| = 1, so numerical divergence entirely arises from the
term𝐺 Δ𝑚𝑖/𝑟2

𝑖
. But this is just the Newtonian gravity from a point 𝑁-body particle,

i.e. exactly the same term that is force-softened in the simulations. Hence we insert
the same softening kernel 𝑆𝑖 (𝑟𝑖) as used in the actual 𝑁-body simulation (taking
𝐺 Δ𝑚𝑖/𝑟2

𝑖
→ 𝑆𝑖 (𝑟𝑖)𝐺 Δ𝑚𝑖/𝑟2

𝑖
).

For the specific simulations here, this follows from the adaptive gravitational soft-
ening scheme described in [27], corresponding to a cubic spline mass distribution:

𝑆𝑖 (𝑟𝑖) =
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3 𝑞

3
𝑖
− 192

5 𝑞
5
𝑖
+ 32𝑞6

𝑖
0 ≤ 𝑞𝑖 < 1

2

− 1
15 + 64

3 𝑞
3
𝑖
− 48𝑞4

𝑖

+192
5 𝑞

5
𝑖
− 32

3 𝑞
6
𝑖

1
2 ≤ 𝑞𝑖 < 1

1 𝑞𝑖 ≥ 1 ,

(2.7)

where 𝑞𝑖 ≡ 𝑟𝑖/𝐻𝑖 with 𝐻𝑖 ≈ 2.8 𝜖𝑖 the radius of compact support of the kernel
and 𝜖𝑖 the equivalent Plummer softening. This removes the numerical divergence
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and gives the correct result for a uniform density distribution sampled by 𝑁-body
particles. 2

Perpendicular Force
In the above, we only included the parallel DF term (∝ V̂𝑖). However two-body
encounters also produce a perpendicular deflection adf,⊥; this only vanishes in
the C43 derivation because of the assumption of a homogeneous N (giving exact
cancellation). Because we do not assume homogeneous N , we can (if desired)
retain these terms, giving:

adf,⊥ = −
∑︁
𝑖

(
1

1 + 𝛼2
𝑖

) (
𝑏𝑖

𝑟𝑖

) (
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
b̂𝑖 (2.8)

b𝑖 ≡ r𝑖 − (r𝑖 · V̂𝑖) V̂𝑖 .

This differs from the parallel adf, ∥ only by one power of 𝛼𝑖 and, of course, the
direction. The power of 𝛼𝑖 means that the perpendicular deflection can be stronger
(compared to the parallel term) in strong encounters (although 0 < 1/(1+𝛼2

𝑖
) < 1 so

this term is still bounded and cannot produce spurious divergences or forces larger
than the regular/external acceleration). But because the integrated force is always
dominated by weak deflections (where 𝛼𝑖 ≫ 1), then even ignoring cancellations
(which further reduce adf,⊥ even in inhomogeneousN ), this term is generally smaller
than the parallel |adf, ∥ | by one power of ∼ 𝐺 𝑀/𝑟 𝑉2 ∼ 𝑀/𝑀total, galaxy(< 𝑟) ≪ 1.

We show in an additional set of tests that this term is completely negligible for most
galaxy simulation contexts, hence we do not include them in our final expression and
tests below. But we emphasize that it is trivial to include and imposes no additional
cost.

Final Expression
It is straightforward to generalize the above for a spectrum of masses𝑚, i.e. integrat-
ing over the stellar initial mass function (IMF). However for any 𝑀 ≳ 10𝑀⊙, this
makes a negligible difference to our results. Since we do not know the “true” dark
matter particle mass, it is more straightforward to simply assume the limit 𝑀 ≫ 𝑚,
in which case the species masses 𝑚 completely factor out of the salient expressions.

2Note that in principle this softening is not exactly self-consistent with our derivation, since ifΔ𝑚𝑖

represents an extended spatial distribution of particles, each would be deflected slightly differently
in Eq. 2.5. However, this is consistent with the simulations: 𝑁-body softening for collisionless fluids
simply features this ambiguity at a fundamental level, because an individual 𝑁-body particle cannot
actually deform in a fully-Lagrangian manner.
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This gives the expression we will use throughout:

adf =
∑︁
𝑖

Δa𝑖df

Δa𝑖df ≡
(

𝛼𝑖 𝑏𝑖

(1 + 𝛼2
𝑖
) 𝑟𝑖

) (
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
V̂𝑖 ,

(2.9)

with 𝛼𝑖 ≈ 𝑏𝑖 𝑉2
𝑖
/𝐺 𝑀 .

Numerical Implementation
In the form of Eq. 2.9, it is particularly straightforward to implement our estimator.
First, noting that 𝛼𝑖 and 𝑏𝑖 ≡ 𝑟𝑖 |r̂𝑖 − (r̂𝑖 · V̂𝑖) V̂𝑖 | is a function only of r𝑖 and V𝑖,
we see that the only piece of additional of information needed to compute Eq. 2.9,
alongside the usual gravity force, in an 𝑁-body solver is the velocity V (already
known). In other words, we do not need to construct some estimator for values
in the C43 formula, like 𝜌, Λ, ⟨V⟩ which are not actually computed in standard
𝑁-body simulations. Second, we also immediately see that it is completely trivial to
carry out this sum over any arbitrary set of species (e.g. stars+gas+dark matter+other
BHs).

Comparing the form of Eq. 2.9 and the “regular” gravitational acceleration aext:

a𝑀 = aext + adf =
∑︁
𝑖

Δa𝑖ext +
∑︁
𝑖

Δa𝑖df , (2.10)

Δa𝑖ext ≡
(
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
r̂𝑖 , (2.11)

Δa𝑖df ≡
(

𝛼𝑖 𝑏𝑖

(1 + 𝛼2
𝑖
) 𝑟𝑖

) (
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
V̂𝑖 , (2.12)

we immediately see that the operation needed to compute adf is algorithmically
identical to that needed to compute the normal gravitational forces. In Tree-gravity,
Tree-PM, direct 𝑁-body, or many other methods, implementing exact evaluation
of Eq. 2.9 in a manifestly-conservative manner is especially trivial. 3 In e.g. a

3In PM and related methods, where long-range forces are evaluated via computing the potential
from a Particle-Mesh Fourier method, implementing Eq. 2.9 is less trivial: the issue is that the
direction V̂𝑖 differs from r̂𝑖 , so one cannot simply treat asf as a scalar correction to the regular
external gravitational potential, but must compute a separate potential/field. However in hybrid
Tree-PM methods, such as (optionally) implemented in GIZMO, the less-accurate PM forces are
only used at large distances; given this, we find (consistent with Fig. 2.7) that the errors from simply
truncating the sum for adf by including only the contributions from the tree-walk (ignoring the PM
terms in adf) are entirely negligible (below normal integration-error level).
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tree-walk, as one sums up to compute aext, we simply sum the additional term
Δa𝑖df , which scales exactly with the |Δa𝑖ext | multiplied by the numerical pre-factor
𝛼𝑖 𝑏𝑖/(1 + 𝛼2

𝑖
) 𝑟𝑖, and oriented in the different direction V̂𝑖. The gravitational force

softening is also naturally embedded in Eq. 2.9.

Moreover, our Eq. 2.9 is well-behaved when applied to tree nodes/leaves, not just
individual particles: one simply treats each node as a “super-particle” with the
appropriate total Δ𝑚𝑖 and mass-averaged V𝑖, r𝑖, in the same manner as done for the
usual gravity calculation. It is trivial to verify from the form of Eq. 2.9 that the order
of the errors from this approach will always be equal to or better than the order of
errors in aext in the tree (i.e. convergence is equal or faster).

To ensure manifest momentum conservation, we simply enforce equal and opposite
forces, i.e. apply an acceleration ΔaM−to−i = −(𝑀/Δ𝑚𝑖) Δa𝑖df to each particle 𝑖. The
scaling of the pre-factor in Eq. 2.9 is such that it guarantees this “back-reaction”
term is well behaved and does not produce any spurious numerical divergences in
the accelerations of the particles 𝑖.4

2.3 Numerical Validation: Methodology
To study the accuracy of our DF formula, we compare it to both direct high-resolution
simulations and calibrated versions of the local Chandrasekhar’s DF formula, using
both “on-the-fly” applications in simulations (§ 2.3) and post processing methods
(§ 2.3). Here we detail those methods. In what follows, we refer to the “target” or
“sinking” particle as a black hole (BH) of mass 𝑀BH, since this is a particularly
relevant motivating case for our sub-grid model, but of course the “target” particle
could in principle represent any sufficiently compact bound massive object.

On-the-fly Simulations
Numerical Methods

We have implemented the “discrete DF estimator” Eq. 2.9 in the GIZMO multi-
physics code [27], which uses a standard Barnes-Hut tree algorithm to solve the
gravity equations (an improved version of that in [51]). GIZMO is well-tested in
numerous applications of 𝑁-body dynamics problems involving dynamical friction,
𝑁-body resonances and wake problems (see, e.g. [32, 14, 22, 8, 41, 7, 9]), to which
we refer for more detailed descriptions of numerical methods, demonstrations of

4That behavior is not guaranteed if one attempts to conserve momentum by simply applying a
C43-style formula to 𝑀 and then ad-hoc “redistribute” the equal-and-opposite momentum change to
the neighboring 𝑖 around 𝑀 .
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convergence, test problems, etc. As described above we simply evaluate the DF
force adf alongside the “normal” gravitational force (using the identical softening,
etc.) in the tree-walk operation, imposing negligible CPU cost.

Initial Conditions

To test the estimator, we have run a series of test problems. In each, we initialize
a steady-state “halo” of collisionless particles (e.g. “dark matter” or “stars”) using
the GALIC code [58], with a target/BH particle on an initial orbit expected to decay
owing to DF. We have experimented with several different choices for the initial halo
density profile, whether the halo velocity distribution is anisotropic or isotropic, and
other parameters of the halo and orbit (e.g. eccentric versus circular, and initial
position/energy/angular momentum). Our qualitative conclusions and comparison
of methods are identical in each case (and of course, this being a pure 𝑁-body
problem it is scale free), so we focus on and show plots from one example with
typical cosmological units for the sake of clarity.

In our fiducial example, we adopt a Hernquist [25]-profile halo with total mass
2 × 1011 𝑀⊙ with the Yurin and Springel [58] concentration parameter of 4 and
spin parameter 0.04 (consistent with typical dark matter halo parameters, [11],
and sufficient to make the halo mildly anisotropic because of rotation), so that the
Hernquist [25] scale-length 𝑎 = 30.2 kpc. The target/BH is placed 5 kpc away
from the halo center and has a tangential velocity of 59 km/s, which is the circular
velocity of the halo at that radius. The black hole mass is 108 𝑀⊙, much less than
the enclosed dark matter mass inside 5 kpc (∼ 4 × 109 𝑀⊙), to avoid disrupting the
dynamical equilibrium of the galaxy.

Sub-Grid Versus Resolved Simulations

As DF should be fully resolved when the target/BH mass 𝑀BH is much more than
the background (“dark matter” or DM) particle mass 𝑀DM, one would expect that
only in a low resolution simulation (i.e., 𝑀BH ≲ 𝑀DM) a sub-grid treatment of DF
is necessary5. However, if the resolution is too low, the orbital semi-major axis
of the BH particle will be smaller than the inter-particle spacing of the 𝑁-body
simulation and the BH will have essentially “sunk to the center” already — trivially,

5When the resolution lies in between and DF is partially resolved, a sub-grid treatment may
cause “double counting” when calculating DF. While this remains an open question in general, we
find that it can be avoided by multiplying a field-mass-dependent function on the DF formula in our
tests. See discussions in 2.4.
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if it were just one background/DM particle inside of the initial 5 kpc, then there is
no define-able smaller-scale center towards which even a “perfect” sub-grid model
could migrate the target/BH. We hence choose 𝑀DM = 107𝑀⊙ in the tests with
sub-grid DF, so ∼ 400 dark matter particles are enclosed inside the initial 5 kpc.
We further run a set of 50 simulations with the same background halo, but with the
BH particles placed randomly on a 5 kpc-radius sphere with a random direction of
velocity in the tangent plane. By choosing the median between these runs, we can
smooth out the chaotic motions intrinsic in the problem, as well as the effects of
anisotropy (both real, from the halo rotation, and numerical, from 𝑁-body noise)
generating eccentric orbits which produce larger oscillations in the instantaneous
BH speed (making the results more difficult to read).

To test our results, we compare a set of reference simulations at varying resolution
which do not adopt any sub-grid DF, but with the same setups of black hole initial
conditions. At sufficiently high resolution, these simulations satisfy 𝑀BH ≫ 𝑀DM

and so should directly capture the salient effects of DF on the target.

Simulations with a “Fitted” C43 Sub-Grid Model

Finally, we consider a third set of simulations where we again adopt a sub-grid DF
estimator, but instead adopt the local Chandrasekhar DF estimator of Eq. 2.2 as
previously introduced in GADGET in e.g. Cox et al. [16] updated to be essentially
identical to that in Tremmel et al. [53]. Here we assume a Maxwellian velocity
distribution, estimate the mean velocity and dispersion as a kernel-and-cell-mass-
weighted mean, and use the BH kernel density estimator from Wellons et al. [57] to
estimate 𝜌.

We previously noted intrinsic difficulties this method faces: however, for this par-
ticular test problem, the background halo is (by construction) smooth and nearly
isotropic and single-component and nearly-Maxwellian, so this provides a “best-
case scenario” for a C43-like estimator. But this still leaves un-resolved the question
of how to estimate the Coulomb logarithm. We find that common choices (e.g. the
ratio of virial radius to “true” inter-particle spacing) are not only impossible to pre-
dict a-priori in a completely general simulation (they must be put in “by-hand”), but
also appear to give DF forces which differ systematically from the resolved solutions
by tens of percent or up to a factor of two. Therefore, to give this model the best
possible chance, we explicitly fit the Coulomb logarithm, varying it until we find a
model which best matches the BH orbital decay seen in the explicit high-resolution
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set 𝑀DM/𝑀BH sub-grid DF model 𝜖 criterion num. of runs
1 10−1 this paper 𝜖 ∼ Δ𝑥𝑖 50
2 10−1 fitted C43 𝜖 ∼ Δ𝑥𝑖 50
3 100 none 𝜖 < 𝑏min 50
4 10−1 none 𝜖 < 𝑏min 50
5 10−2 none 𝜖 < 𝑏min 50
6 10−3 none 𝜖 < 𝑏min 1
7 10−4 none 𝜖 < 𝑏min 1
8 100 none 𝜖 ∼ Δ𝑥𝑖 50
9 10−1 none 𝜖 ∼ Δ𝑥𝑖 50
10 10−2 none 𝜖 ∼ Δ𝑥𝑖 50
11 10−3 none 𝜖 ∼ Δ𝑥𝑖 1
12 10−4 none 𝜖 ∼ Δ𝑥𝑖 1
13 10−5 none 𝜖 ∼ Δ𝑥𝑖 1

Table 2.1: Representative simulation summary for our idealized tests. Different
sets share the same setup of initial conditions: a 108 𝑀⊙ black hole particle placed
randomly at a 5 kpc radius with a velocity of 59 km/s in a random tangent direction.
The background particles form an Hernquist halo with 𝑀halo = 2 × 1011 𝑀⊙. The
black hole speed from these tests are shown in Fig. 2.3 (when multiple runs are at
present, only the median value is shown).

𝑁-body calculation. We use this, essentially as a way of detecting how our method
compares to a “best-case” C43 estimator calibrated ahead of time to the specific
problem being simulated.

The simulation setups are summarized in Table 2.1.

Post-Processing in Multi-Physics Galaxy Simulations
While comparing our discrete estimator with the Chandrasekhar estimator in the
idealized test problem above can help to test its accuracy, it is of course also
important to apply it to some more “realistic” (or at least more complicated) galaxy
simulations which involve multi-component (gas+star+DM) anisotropic, highly-
inhomogeneous backgrounds. Full applications to such simulations on-the-fly can
be used to make predictions for e.g. demographics of free-floating BHs, IMBHs, and
rates of BH-BH coalescence in galaxy nuclei (e.g. predictions for LISA). However
this is clearly beyond the scope of this work. Instead here we will select some
snapshots of 𝑁-body information from high-redshift galaxies in the Feedback In
Realistic Environments (FIRE; [29, 28]) project, and use these to make some simple
post-processing comparisons in order to see how the full on-the-fly application of
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Figure 2.2: Example trajectories of a black hole particle in our simulations. The
black hole is initially placed 5 kpc away from the halo center (the coordinate origin)
on the 𝑥-axis and has a circular velocity of 59 km/s in the �̂� direction. We see that
in the high-resolution run (green dashed) the black hole sinks to the halo center
in circular orbits as time evolves, which is partially resolved by the low-resolution
runs with sub-grid DF (red and black lines, with the discrete DF and the “calibrated
Chandrasekhar” estimator, respectively), but not by the run without it (blue dashed;
the black hole departs significantly from the halo center in the 𝑧-direction). The low-
resolution runs (with or without sub-grid DF) suffer from dynamical heating which
significantly perturbs the circular orbit. In addition, our discrete estimator matches
well with the calibrated Chandrasekhar estimator, though we have not calibrated our
discrete DF estimator in any way (we are simply using Eq. 2.9 directly, without any
input parameter other than the smoothing length 𝜖).

the estimator used here might differ (or not) from other approaches to including or
ignoring DF in these kinds of systems.

2.4 Results and Discussion
Validation in On-The-Fly Simulations
Figs. 2.2-2.3 show some representative results of our numerical validation tests in
on-the-fly simulations, specifically focusing on an illustrative trajectory of the BHs
as well as the BH velocity as a function of time.

First, we examine the behavior of pure 𝑁-body calculations (without sub-grid DF)
as a function of resolution. Not surprisingly, when the target mass is similar to the
𝑁-body particles (e.g. 𝑚DM ≳ 𝑀BH), no DF is captured. Most previous studies
arguing for different “sufficient” resolutions to capture DF refer to this regime [see
e.g. 54, 15, 10, 28, 44, 4, 6, 33], depending on the specific problems they are
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Figure 2.3: The speed of black hole particles upon time of evolution in our test
problem. The thick red, thick black and dotted lines show the (median of) results
from low-resolution runs with our discrete estimator, with Chandrasekhar’s DF
estimator (with a fitted lnΛ = 4) and from multi-resolution runs without sub-grid
DF, respectively (see Table 2.1). The red-shaded area shows the±𝜎 range for all runs
with the discrete estimator. We see that the speed of black hole particles decreases
significantly as the black holes sink to the halo center. The results from our discrete
estimator matches well with the fitted Chandrasekhar estimator, and matches the
converged results of the no sub-grid DF runs at higher resolution. The convergence
is better for no sub-grid DF runs with smoothing length less than the minimum
impact-parameter (𝜖 < 𝑏min, left panel) than those with (the usually chosen) length
comparable to the inter-particle separation (𝜖 ∼ Δ𝑥𝑖, right panel), as in the later
case the effective Coulomb logarithm is artificially truncated, causing a logarithmic
convergence behaviour (see discussions in §2.4).

choosing. In our case, at better resolution (𝑚DM ≪ 𝑀BH) we see DF but with an
important dependence on how we treat the spatial force softening 𝜖 . If we adopt a
fixed Plummer-equivalent 𝜖 comparable to or smaller than the canonical minimum
impact parameter for strong encounters 𝑏min ∼ 𝐺 𝑀BH/(2𝜎2 + 𝑉2

bh) (here ∼ 60 pc
at the initial BH position), we see excellent convergence once 𝑚DM ≪ 0.1𝑀BH

(Fig. 2.3, left-panel). However, this is not how force softenings are typically set in
𝑁-body simulations which do not resolve the individual point masses: instead, to
prevent spurious noise in other properties, the “optimal” softening is usually chosen
to roughly match the inter-particle separation 𝜖 ∼ Δ𝑥𝑖 ∼ (Δ𝑚𝑖/𝜌𝑖)1/3 (Fig. 2.3, right-
panel; [40, 49, 3, 17, 48]). When we do this, we see notably worse convergence:
in fact, the convergence is logarithmic in 𝑚DM, because we have 𝜖 > 𝑏min, the
effective Coulomb logarithm is artificially truncated (i.e. we artificially suppress
close encounters). This is a known challenge for DF in softened gravity (see e.g., [31]
for more details and extended discussion), and it further emphasizes the importance
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of a sub-grid model like ours: achieving Δ𝑥𝑖 ≪ 𝑏min requires 𝑚DM ≪ 10−5 𝑀BH,
i.e. billions of 𝑁-body particles even for a simple, idealized halo like that here.

We then compare our “sub-grid” DF model (Eq. 2.9) calculated on-the-fly to an
extremely low-resolution IC with 𝑚DM = 0.1𝑀BH,6 using 𝜖 ∼ Δ𝑥𝑖 as would be
applied in typical cosmological simulations. For this low-resolution case, there is
significant variation owing to different eccentric orbits and discreteness noise, so we
show the median and ±1𝜎 range of BH velocities. The median agrees remarkably
well with the converged solution. We stress that Eq. 2.9 contains no other adjustable
parameter beyond the physically motivated 𝜖 : this is an actual prediction.

Next we compare the “fitted” C43 model Eq. 2.2: as described above, in addition
to the arbitrary choice of kernel estimator size and shape (which we set to the
smallest size that reduces noise acceptably), we freely vary the numerical pre-factor
(“effective Coulomb log”) lnΛ in Eq. 2.2 until we find a value which best matches our
high-resolution simulations. For the best-fit value, the result is strikingly similar to
our Eq. 2.9 (perhaps not surprising, given that we start from the same assumptions)
— but we stress that even small, ∼ 10% differences in lnΛ produce significant
disagreement with the high-resolution simulations. Moreover, we have considered a
dozen “standard” estimates of lnΛwidely used in the literature (see references above
and [24, 30, 2, 19]), e.g. Λ ∼ |𝜌/∇𝜌 |/𝑏min, and find that none of them correctly
predicts the best-fit Λ (usually discrepant by factors ∼ 1.3 − 2). This probably owes
at least in part to the fact that the central Hernquist [25] distribution function is
appreciably non-Maxwellian, as discussed in [31], so the fitted lnΛ is essentially
compensating for this error (the “erf (...) − ...” term in Eq. 2.2).

As noted above, these conclusions are robust to the parameters of the initial halo and
orbit, mass profile of the halo assumed, amount of angular momentum (anisotropy
in the distribution function), and other choices of the problem setup: however, we
find as expected that the C43 “effective Coulomb logarithm” must be re-calibrated in
many cases to fit high-resolution simulations. We have also tested other numerical
aspects of the method including e.g. the tree opening criteria [46, 51], timestep

6We find that the results of our sub-grid DF runs are robust and nearly independent of resolution
so long as the dynamical mass of the target/BH particle is at least slightly larger (a factor of ≳ 2− 3)
than the mass-weighted median of the “background” 𝑁-body particles. If the BH particle has mass
lighter than the background, then either sub-grid DF model (C43 or Eq. 2.9) requires additional care,
or else spurious 𝑁-body heating effects can become larger than the true DF forces. So for practical
applications where one wishes to evolve the dynamics of targets with very small masses, it is useful
to follow standard practice [52, 18, 26] and assign a separate “true target/BH mass” used for the DF
calculation and other physics to the 𝑁-body particle “carrying” the target/BH.
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size/integration accuracy [28, 22], and inclusion/exclusion of the perpendicular
force (Eq. 2.8): none of these has a significant effect (consistent with previous
studies, see e.g., [30, 31, 42]).

Given the close agreement between the discrete DF and explicitly calibrated-
Chandrasekhar DF models, it is likely that more detailed differences in orbit shape
we see comparing either of these models and the true, high-resolution simulation
owes not to anything we can simply “further calibrate” (like a Coulomb logarithm),
but rather to fundamental resolution effects (e.g. more accurately recovering the
shape of the background potential itself, hence the “correct” elliptical orbit struc-
ture; or the treatment of subparsec-scale physics around SMBHs, a known issue as
discussed in, e.g. [47, 37, 38]), as well as assumptions of the Chandrasekhar-like
derivation which our DF derivation also implicitly assumes. For example, the as-
sumption of linearity (that the net effect on the BH can be approximated via the
sum of many independent two-body encounters) or forward/backward asymmetry
in the distribution function (implicit in a stronger assumption like homogeneity but
present in a weaker form in our derivation as well).

Post-Processing in Multi-Physics Galaxy Simulations
While the idealized experiments above are important for validation, their simplicity
means that it is difficult to gain insight into possible differences between our Eq. 2.9
and the fitted C43 model. We therefore briefly consider this in post-processing of
a multi-physics galaxy formation simulation. The specific (arbitrary) simulation
and time we select is the “ z5m12b” galaxy at redshift 7.0 described in [33], il-
lustrated in Fig. 2.4. The simulation is multi-component, containing dark matter,
stars, multi-phase gas, and black holes, with complicated cooling, star formation
and “feedback” physics all included on-the-fly. This particular snapshot is cho-
sen because it is dynamically unstable, asymmetric, gas-rich and starforming, and
contains several giant star clusters and molecular cloud complexes, all of which
complicate the dynamics. We compare the results from the discrete estimator with
the Chandrasekhar estimator and discuss their differences and implications.

In Fig. 2.5 we compare the acceleration amplitude 𝑎df ≡ |adf | calculated from
different formulae for a test particle of mass 105 𝑀⊙ in the representative snapshot.
The test particle is placed along an arbitrary 𝑥-axis passing through the galaxy
center with a simulation-frame velocity of V𝑀 = 200 km s−1 �̂� (Fig. 2.4, red dashed
line and arrow). We compare the results from our “full” expression (Eq. 2.9),
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Figure 2.4: The galaxy snapshot we chose for post-processing analysis. The color
scales with the projected total mass density (DM+stars+gas). It is the “z5m12b”
galaxy at redshift 7.0 described in [33], which is clumpy and dynamically unstable.
The post-processing tests are also shown: (a) a test particle of 105 𝑀⊙ placing on the
𝑥-axis with a velocity of 𝑉𝑀 = 200 km/s �̂�; (b) the same particle but with different
velocities (100, 200, 600 and 1000 km/s) in the �̂� direction; (c) a fixed particle at
(1, 0, 0) with 𝑉𝑀 = 200 km/s �̂�. The implications of these tests are described in the
main text.

our expression ignoring force softening (Eq. 2.6), and the classical C43 expression
(Eq. 2.1). Eqs. 2.9 & 2.6 can be directly applied to the simulations without any
processing. To apply Eq. 2.1, we estimate the continuous 𝜌 at each position x𝑀
using a kernel density estimator by averaging through the 0.4 kpc cubic box around
x𝑀 ; we calculate the local velocity integral by converting it into the usual discrete
sum in this box, and we take lnΛ = 5 to be constant, once again fitting it so that the
median/mean acceleration is essentially identical.

The agreement between Eq. 2.9 and Eq. 2.1 is reasonable, but again this requires
choosing Λ specific for the problem and snapshot (we note, for example, that the
effective Λ here differs by almost a factor of two from the value fit to the idealized
Hernquist [25] profile sphere tests in the previous section). Eq. 2.6, which ignores
force softening, is also quite similar, except for occasional “spikes” arising from
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Figure 2.5: Comparison of the DF amplitude calculated from different DF formulas.
The test particle is a 105𝑀⊙ particle with a 200 km/s velocity in the 𝑦 direction, put
at different positions on the 𝑥 axis (Fig. 2.4, red dashed line and arrow). The black,
cyan and red lines show the results from Chandrasekhar’s formula (Eq. 2.1, with a
(fitted) constant Coulomb logarithm lnΛ = 5), our formula without smoothing (Eq.
2.6) and our formula with smoothing (Eq. 2.9), respectively. Our discrete formula
remains very close to Chandrasekhar’s approximation. The smoothing removes
most of the peaks which could be caused by numerical divergence.

close proximity to 𝑁-body particles producing a spurious large force which is not
actually present in the simulations (accounted for correctly in our Eq. 2.9).

Fig. 2.6 similarly compares the direction âdf . Because C43 assume homogeneity,
and their aC43

df has equal contributions from all scales, a major ambiguity in Eq. 2.1
— even after we fit out the Coulomb logarithm — is where/how to evaluate V =

V𝑀 − V𝑚. Should we interpolate to the local value at x𝑀 , weight by contribution
to Λ, or weight by mass (dominated by distant particles)? If we follow the same
procedure above to obtain a “local” V, then we see that usually, the direction of âdf

from Eq. 2.9 and from Eq. 2.1 agree, especially if we assume a test particle 𝑀 with
large lab-frame |V𝑀 | (since then V ≈ V𝑀 , independent of the background v𝑚). But
when V𝑀 is small (the case of interest for sinking), Eq. 2.1 can occasionally “flip”
to point in an unphysical direction in a noisy velocity field.

Our Eq. 2.9 allows us to easily quantify the contributions to the total 𝑎df from all
the mass in radial shells. Fig. 2.7 shows this (specifically 𝑑𝑎df/𝑑 ln 𝑟, integrating
the contributions from all particles in logarithmically-spaced shells of distance 𝑟
from 𝑀) again for a representative example (with 𝑀 at |x𝑀 | = 1 kpc from the origin
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Figure 2.7: The contributions and cumulative results on DF from slices with different
radius around a test particle. The test particle is a 105𝑀⊙ particle at (0, 1, 0) with a
200 km/s velocity in the 𝑦 direction. The particle’s distance to the virial radius where
we cutoff the sum is labelled with a black dashed line. We see that contributions are
mostly from slices near the particle, while those from slices outside the virial radius
are ≳ 1000 times lower, suggesting that our cutoff makes little difference.
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on the 𝑥-axis) in the same snapshot. At small scales (𝑟 ≲ 1 kpc) around 𝑀 , where
the density field is statistically homogeneous (there are local fluctuations, but there
is not a strong systematic dependence of density on distance 𝑟 from 𝑀), we see
the expected Coulomb log behavior (𝑑𝑎df/𝑑 ln 𝑟 ∼ constant). At larger radii, the
contribution falls rapidly. We can, for example, truncate the sum in Eq. 2.9 at
the virial radius (labeled) with negligible loss of accuracy. This is expected if the
galaxy follows a realistic density profile, as in e.g. an isothermal sphere, the density
is not constant, but at 𝑟 ≫ |x𝑀 | falls rapidly (∝ 𝑟−2, giving rapid convergence). As
expected, the behavior at larger 𝑟 does motivate the value of lnΛ we fit: if we take
Λ = 𝑏max/𝑏min, with 𝑏min ∼ max[(𝑚/𝜌)1/3, 𝐺 𝑀/𝑉2] ∼ 1 pc, and 𝑏max ∼ 1 kpc,
we obtain lnΛ ∼ 7, similar to our fitted value.

The above discussions are closely related to cases where the background field
particles have a non-negligible physical bulk motion, like a wandering BH in a
rotating disc-galaxy setup. While studying such simulations in detail is beyond the
scope of this work, we comment that the rotating of star particles in the disc could
largely affect the strength and direction of DF, since their phase space distribution
departs significantly from homogeneity and isotropy. In an extremely dense galactic
environment, we may expect the local disc particles with similar circular velocities
contribute most to the BH’s DF, such that the BH is boosted by the field particles
around it, which is similar to the case we already studied. For a less dense setup,
non-local (halo) particles with different circular velocity could be important, and
their combined contribution to DF with local disc particles could make the BH
dynamics more complicated. Our DF estimator, which applies to an arbitrary phase
space distribution and counts the DF contribution from each individual field particle,
would be ideal for studying such problems. Such topics will be studied in future
work.

Briefly, one might wonder whether on sufficiently large scales, where the Uni-
verse becomes homogeneous and isotropic, 𝑎df might begin to grow logarithmically
again. However, even if we ignore finite speed-of-gravity effects (i.e. consider pure
Newtonian gravity), on these scales the velocity must include the Hubble flow, so
vphysical = vpeculiar + 𝐻 (𝑧) r. In an isotropic pure Hubble-flow medium, the DF is
identically zero, as there is always equal-and-opposite contributions to adf from
the fact that V ∝ r (i.e. because ⟨V⟩ = 0 on all scales). If we consider a Hubble
flow plus peculiar velocities, then expanding Eq. 2.9 appropriate for large 𝑟 where
⟨𝜌(𝑟)⟩ ∼ constant and 𝐻 𝑟 ≫ ⟨|vpeculiar(𝑟) |2⟩1/2, the contributions to the sum take
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the form
∑
𝐺2 𝑀 ⟨|vpeculiar(𝑟) |2⟩1/2 Δ𝑚𝑖/𝐻3 𝑟6 ∝

∫
𝜌 𝑟−6 𝑑3x, which converges

rapidly as 𝑟 → ∞.

Interpolating the Sub-Grid Model in Simulations With Variable Masses
Finally, one can easily imagine situations such as cosmological simulations with a
range of BH masses where the DF forces are well-resolved for some targets (e.g.
supermassive BHs with 𝑀BH ∼ 1010 𝑀⊙) but not others (e.g. lower-mass BHs). In
these cases applying Eq. 2.9 to all BHs would “double count” for some. A simple
(albeit ad-hoc) approach to avoid double-counting is to multiply Δa𝑖df by a sigmoid
or “switch”-like function 𝑔(Δ𝑚𝑖/𝑀 𝑗 , ...) which has the property 𝑔(𝑥, ...) → 0 for
𝑥 → 0 and 𝑔(𝑥, ...) → 1 for 𝑥 → ∞. It is beyond the scope of our paper here to
develop and test such models, and from Fig. 2.3 we see one complication is that this
should depend on how one treats the force softening (not just particle masses Δ𝑚𝑖),
but a quick examination of the idealized tests in § 2.4 with different 𝑀BH suggests
(if we assume 𝜖 ∼ Δ𝑥, as usually adopted in such simulations) a simple function
like 𝑔 = min(1.0,max(0, (3/log(𝑀BH, 𝑗/Δ𝑚𝑖) − 1)/1.6)) works reasonably well.
Another advantage of our Eq. 2.9 is that because it operates in pairwise fashion, it
can naturally deal with simulations with a wide range of Δ𝑚𝑖 (a common situation),
while attempting to apply such a correction factor “locally” to Eq. 2.1 leaves it
ill-defined which value of Δ𝑚𝑖 to use.

2.5 Conclusion
In numerical simulations, especially of star and galaxy formation, it is common to
encounter the limit where DF should be experienced (𝑀 ≳ 𝑚) by some explicitly-
evolved objects 𝑀 (e.g. black holes, massive stars), but it cannot be numerically
resolved (Δ𝑚𝑖 ≳ 𝑀). As a result, there have been several attempts to develop and
apply “on the fly” sub-grid DF models. Almost all of these amount to some attempt
to calculate and apply the traditional C43 formula (Eq. 2.1) to the masses 𝑀 at each
time (see, e.g., [15, 20, 53, 44]). However, this can introduce a number of prob-
lems in practice, namely the ambiguity of kernel-dependent locally-defined quan-
tities, inconsistency in applying force softening and momentum conservation, the
semi-arbitrary choice of Coulomb logarithm, the necessity of assuming Maxwellian
velocity distribution functions, and additional computational expenses for kernel
estimates.

In this manuscript, we derive a new discrete expression for the DF force, adf , given
in Eq. 2.9. This formula is specifically designed for application to numerical sim-
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ulations, either in post-processing, or “on the fly” when the DF forces cannot be
resolved (e.g. when 𝑁-body particle masses are comparable to the BH mass 𝑀 ,
as a “sub-grid” DF model). While still approximate, this has a large number of
advantages compared to the traditional Chandrasekhar [12] (C43) analytic expres-
sion, including (1) it allows for an arbitrary distribution function, without requiring
an infinite homogeneous time-invariant medium with constant density, Maxwellian
velocity distribution, etc. (but it does reduce identically to a discrete form of
the C43 expression, when these assumptions are actually satisfied); (2) it is de-
signed specifically for simulations so it is represented only as a sum over quantities
which are always well-defined in the simulation for all 𝑁-body particles (e.g. po-
sitions, velocities, masses), and does not require the expensive and fundamentally
ill-defined evaluation of quantities like a “smoothed” density, background mean
velocity/dispersion/distribution function, Coulomb logarithm, etc.; (3) it trivially
incorporates force softening exactly consistent with how it is treated in-code, and
generalizes to arbitrary multi-component 𝑁-body simulations with different species
and an arbitrary range of particle masses; (4) it manifestly conserves total momen-
tum, unlike 𝑁-body implementations of C43; and (5) it can be evaluated directly
alongside the normal gravitational forces with negligible cost, and automatically
inherits all of the desired convergence and accuracy properties of the 𝑁-body solver.
We have implemented this “live” evaluation of Eq. 2.9 in GIZMO, and verified that
all of the properties above apply, that it agrees well with our 𝑁-body simulations,
and that the computational overhead of evaluating it alongside gravity in the tree is
immeasurably small.

There are still uncertainties in our work. In our derivation of the discrete formula,
we inserted an approximate integral kernel, which is not necessarily unique or
best-behaved. We found that even if our discrete estimator closely agrees with the
calibrated-Chandrasekhar DF estimator in our test problems, it still differs from the
the high-resolution simulation results in terms of the detailed particle trajectories,
which might be related to the fundamental Chandrasekhar-like assumptions we have
made in our formula. We also note that it remains an open question how to accurately
avoid “double counting” when some of the DF may be captured self-consistently by
the 𝑁-body code while additional DF is modeled using our sub-grid model. This
is especially the case when the system evolves (such as when supermassive black
holes grow) and the fraction of “resolved” dynamical friction changes with time.
Future work will be needed to make improvements on these points.
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C h a p t e r 3

NON-SINKING OF MASSIVE BLACK HOLES IN HIGH
REDSHIFT GALAXIES

[1] Linhao Ma et al. “Seeds don’t sink: even massive black hole ‘seeds’ cannot
migrate to galaxy centres efficiently”. In: Monthly Notices of the Royal
Astronomical Society 508.2 (2021), pp. 1973–1985. doi: 10.1093/mnras/
stab2713.

Abstract
Possible formation scenarios of supermassive black holes in the early universe
include rapid growth from less massive seed black holes (BHs) via super-Eddington
accretion or runaway mergers, yet both of these scenarios would require seed BHs
to efficiently sink to and be trapped in the galactic center via dynamical friction.
This may not be true for their complicated dynamics in clumpy high-𝑧 galaxies.
In this work we study this “sinking problem” with state-of-the-art high-resolution
cosmological simulations, combined with both direct 𝑁-body integration of seed
BH trajectories and post-processing of randomly generated test particles with a
newly developed dynamical friction estimator. We find that seed BHs less massive
than 108 𝑀⊙ (i.e., all but the already-supermassive seeds) cannot efficiently sink
in typical high-𝑧 galaxies. We also discuss two possible solutions: dramatically
increasing the number of seeds such that one seed can end up trapped in the galactic
center by chance, or seed BHs being embedded in dense structures (e.g. star clusters)
with effective masses above the mass threshold. We discuss the limitations of both
solutions.

3.1 Introduction
Supermassive black holes (SMBHs) are of crucial importance in understanding
galaxy formation and evolution. Observations of high-redshift quasars have con-
firmed the existence of SMBHs in the first billion years after the Big Bang ([34, 33,
76, 144, 96], see Figure 1 of [67] for a summary of observations). One of the long
standing problems with models of SMBHs regards how they could possibly grow
to such an enormous mass in a relatively short time period [132]. Recent discov-
eries have found both extremely massive SMBHs in the early universe (e.g. SDSS

https://doi.org/10.1093/mnras/stab2713
https://doi.org/10.1093/mnras/stab2713
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J010013.02+280225.8 as a 1.2× 1010 𝑀⊙ SMBH at 𝑧 = 6.3, see [145]) and massive
SMBHs in the extremely early universe (e.g. ULAS J1342+0928 as a 7.8 × 108 𝑀⊙

SMBH at 𝑧 = 7.54, see [7]). Continued discoveries of SMBHs at higher redshifts
and masses naturally makes the problem even more intriguing [50, 99].

The existence of such massive black holes (BHs) at such early times poses many
unsolved theoretical challenges. The most well-known is the “timescale problem”:
if seeds begin life as much less massive BHs, they would have to accrete at ∼ 100%
of the Eddington limit, for ≳ 100% of the age of the universe to reach their observed
masses at 𝑧 > 7. But observations at all lower redshifts, and theoretical estimates
of the effect of SNe and BH feedback and BH dynamics all argue for much lower
duty cycles (see, e.g., [68, 143, 2, 95, 48]). An obvious possible solution is to
form more massive seeds: it has been proposed that primordial gas at high-𝑧 could
experience inefficient cooling and fragmentation, producing massive Population
III stars [19] which could collapse to BH seeds as large as ∼ 100𝑀⊙ (e.g., [92,
78, 137, 51]) or even hyper-massive quasi-stars which could leave seeds as large
as ∼ 104 − 105 𝑀⊙ (e.g., [20, 62, 63, 52, 66]), or directly collapsing to BHs as
massive as 105 𝑀⊙ [79, 80]. Yet several authors argue that this requires vanishingly
improbable conditions (see, e.g. [26] and discussions in § 5.2 and § 5.3 from [67]).
But even these most-optimistic models only reduce the timescales by a logarithmic
factor (as timescales scale as log(𝑀SMBH/𝑀seed)): even in these models, a phase
of highly super-Eddington accretion – either resulting from runaway gas capture in
high-gas-density regions (e.g. [91, 1, 82, 104, 109, 98]), or runaway mergers of
massive stars (e.g. [108, 30, 71, 111]) or of other seed BHs (e.g. [27, 81]) at the
center of a common potential minimum undergoing dynamical relaxation – is likely
needed to explain SMBHs at 𝑧 > 7 [49, 72, 103, 65, 114, 123].

However, in the past two decades, many independent studies (e.g., focused on galaxy
mergers [42, 139, 22, 13, 131], dwarf galaxy evolution [125, 12, 16] and/or BH
growth/dynamics [21, 138, 140, 3, 14, 105, 9, 23]) have pointed out that all of
these models face a different and potentially even more severe challenge: what we
refer to as the “sinking problem.” In brief: essentially all of the rapid/efficient
accretion models require that BHs sink “efficiently” and remain tightly bound to
the galaxy center or potential minimum, where densities are on average highest.
This usually requires a well-defined and stable dense central region in a relatively
massive galaxy at lower redshift (𝑧 ≲ 4) [130, 129, 112], but it may not be possible
dynamically for even “high” mass seeds in realistic turbulent, clumpy, high-redshift
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(𝑧 ≳ 7) galaxies which undergo frequent dynamical perturbations (from e.g. mergers
and “bursty” star formation and stellar feedback) and lack such central regions,
especially in the short timescales available. Observationally, SMBHs are seen in
the galactic center for most massive quasi-stellar objects (QSOs) (including those
at high-𝑧 where imaging is possible, e.g. [136, 8, 28, 100, 141], and almost all
massive galaxies comparable to QSO hosts at low redshifts, see e.g. [37, 39, 127,
43, 10]). But in spatially-resolvable low-𝑧 dwarf galaxies where star formation is
known to be “bursty” [142, 118, 35, 134] and there is no well-defined dynamical
center (see e.g. [69]), AGNs are extremely rare and those identified are randomly-
scattered in position around the galaxy [110, 94]. As numerical simulations of
high-𝑧 galaxies have improved in both numerical resolution and incorporating the
physics of star formation and stellar feedback in a turbulent, multi-phase ISM [5,
3, 74], most models have converged toward the prediction that high-𝑧 galaxies are
clumpy, bursty, chaotic, and dynamically-unrelaxed systems (even more so than most
local dwarfs, e.g. [125, 97, 101, 89, 73, 93]), in agreement with deep observations
with the Hubble Space Telescope (HST) [31, 102, 120]. Although there is some
evidence for rotation in some hosts as noted by, e.g. [29, 135], they usually exhibit
very large dispersion with 𝜎 ∼ 𝑣, consistent with the simulations analyzed in [90],
which does not challenge the conclusion. But in almost all models for rapid BH
growth at near-Eddington or super-Eddington rates at 𝑧 ≳ 7, the most optimistic
assumption possible is usually made: namely that the BH remains “anchored” to
the local potential minimum at the center of some well-ordered galaxy (e.g. [78]).
To accrete gas, the BH must first capture it from the surroundings, and dimensional
estimates for the “capture rate” drop highly super-linearly and extremely rapidly
if the BH or background medium are moving relative to one another and/or if the
BH lies outside of the galactic density maximum [64]. Models like runaway stellar
mergers or BH-BH seed mergers for rapid growth fundamentally depend on the idea
that both the “main seed” BH and all other stars/seeds are anchored to and sinking
rapidly towards a common dynamical center [107, 46, 116, 41].

Historically, the “sinking” of BH seeds in high-𝑧 galaxies has largely been studied
by assuming (1) seeds form at the centers of their proto-galaxies (rather than where
stars form or at local density maxima), (2) galaxies are smooth objects with well-
defined dynamical centers and centrally-peaked density profiles (i.e. bulge+disk or
isothermal sphere models, rather than messy, non-relaxed systems), and (3) that BH
and merging galaxy orbits decay according to dynamical friction (DF), which is a
statistical accumulative effect caused by successive two-body gravity encounters,
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effectively acting like a “drag force” proportional to the BH/merging galaxy mass,
in which the traditional [24] (C43) DF formula (assuming a homogeneous, infinite,
idealized background medium) is applied. In this paper, we therefore revisit the
“sinking” and “retention” problems for seed BHs in early galaxies. We use high-
resolution cosmological simulations which include the crucial physics described
above, combined with both direct (“live”) 𝑁-body integration of seed BH trajectories
and semi-analytic orbit integration in post processing, to follow a wide range of
possible BH seed populations with different formation properties and locations.
In post processing, we apply a modified DF estimator developed in a companion
paper (Ma et al. in prep.), which is more flexible, accurate, and computationally
efficient. In § 3.2 we describe our numerical simulations and the semi-analytic
post-processing method.

The plan of this chapter is as follows: in § 3.3 we present the results from simula-
tions and semi-analytical integration of sample orbits, and show that seed BHs are
generally not able to sink efficiently or be retained even at high seed masses. In
§ 3.4, we discuss possible solutions to this problem, but also use our simulations
to highlight how these solutions encounter still other problems. We summarize in
§ 3.5.

Throughout, we assume a standard flat ΛCDM cosmology with Ωm = 0.31, ΩΛ =

1 −Ωm, Ωb = 0.046, and 𝐻0 = 68 km s−1Mpc−1 (e.g. [106]).

3.2 Methods
Direct Simulations
Simulation Details

The simulations we study are re-simulations of the high-redshift (𝑧 > 5) galaxies pre-
sented in [89, 88, 86] based on the Feedback In Realistic Environments (FIRE; [54,
61]) project1. Specifically, we re-simulate the cosmological zoom-in simulations
centered around the galaxies “z9m12a” and “z5m12b”. Each of these represents a
galaxy which has reached a halo mass ≳ 1012 𝑀⊙, a stellar mass > 1010 𝑀⊙, and
a star formation rate ≳ 150𝑀⊙ yr−1 by redshifts 𝑧 ∼ 9 and 5, respectively. As
discussed in [86], these are chosen to be plausible analogues to the observed hosts
of the highest-redshift, brightest QSOs. We note that while there are many other
well-resolved galaxies in each cosmological zoom-in volume, we follow the most
massive galaxy as it is the best candidate for a QSO host (but our conclusions about

1See the FIRE project website: http://fire.northwestern.edu.

http://fire.northwestern.edu
http://fire.northwestern.edu
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failure of BHs to “sink” are even stronger in lower-mass galaxies).

The simulations are run with an identical version of the GIZMO2 code [56] to
their original versions in [88]. We use the mesh-less finite-mass (MFM) mode
for solving hydrodynamic equations, with the identical FIRE-2 implementation of
star formation and stellar feedback. The detailed baryonic physics included are all
described extensively in [61], but briefly summarized here. Gas cooling includes
a variety of processes (molecular, atomic, fine structure, recombination, dust, free-
free, Compton, etc.) accounting for 11 separately tracked species (H, He, C, N,
O, Ne, Mg, Si, S, Ca, and Fe), following the meta-galactic UV background from
[36] with self-shielding. Stars are formed on the free-fall time from gas which is
locally self-gravitating, molecular/self-shielded, denser than 𝑛 > 1000 cm−3, and
Jeans-unstable following [57]. Each star particle, once-formed, represents an IMF-
sampled population of known mass, age, and metallicity, and we explicitly account
for stellar mass-loss (from OB and AGB outflows), core-collapse and Ia supernovae,
and radiative feedback (in the forms of photo-ionization and photo-electric heating,
and single and multiple-scattering radiation pressure), with rates tabulated from
standard stellar evolution models [77].

The only difference between our simulations and those in [88] is that we re-run
them including a “live” model for the formation of a broad spectrum of BH seeds,
which are allowed to follow the full 𝑁-body dynamics. We emphasize that we do
not artificially “force” BHs to follow the potential minimum or decay their orbits via
any prescriptions of sub-grid DF, as in some cosmological simulations (e.g. [119,
60, 59, 58, 117, 6]).

We form BH seeds as follows: whenever gas meets all the star formation criteria
above and is about to be transformed into a star particle, it is assigned a probability
of instead becoming a BH seed. Instead of setting the probability as an adjustable
constant as in, e.g. [11], it is weighted so that BH seeds form preferentially at the
lowest metallicities [130] and highest surface densities/gravitational acceleration
scales: specifically, we adopt 𝑝 ∝ exp (−𝑍/0.01 𝑍⊙) [1 − exp (−Σ/Σ0)] where
Σ ∼ 𝑀/𝑅2 is integrated to infinity with the Sobolev estimator from [61] and Σ0 =

1 g cm−2, with 0.01 𝑍⊙ = 1.4 × 10−4. The metallicity weighting is motivated to be
consistent with our current understanding of seed BH formation models, all requiring
low-metallicities. For instance, Pop III stars and direct collapse models require

2A public version of GIZMO is available at http://www.tapir.caltech.edu/~phopkins/
Site/GIZMO.html

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
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low-metallicity primordial gas, while models of runaway mergers in star clusters
strongly favor low-metallicity due to the lower mass-loss of massive stars in such
environments [41]. The value of Σ0 is specifically chosen because it is the density
where analytic models [32] and numerical simulations [40, 44, 73] of individual
star formation and BH growth have shown robustly that stellar feedback fails to
“blow out” gas from the region efficiently, leading to runaway collapse/accretion.
Exceeding this limit is required in many (but not all) models for massive BH seeds,
either to prevent extended accretion disks from being destroyed by radiation from the
accreting proto-quasi-star in direct collapse models, or as a necessary requirement
to form super-dense star clusters, which are the essential prerequisite for star cluster-
based IMBH formation models (e.g. runaway merging) to initiate rapid growth (see
e.g. [116, 44]). The normalization of 𝑝 is chosen to form the maximum number of
seeds before they begin to represent an appreciable fraction of the total galaxy mass
and therefore perturb the dynamics. If the particle is selected to become a BH seed,
then we draw a BH seed mass uniformly in log𝑀 from 𝑀 = 103 − 107 𝑀⊙.

Because we wish to only study the dynamics of BH seeds, we ignore BH accretion
or feedback. These will be studied in future work.

Resolution and Treatments of (Un)Resolved DF

Our “default” simulations have an approximately constant baryonic mass resolution
ofΔ𝑚𝑖 ∼ 7000𝑀⊙ and a 5 times higher DM resolution. This is sufficient to explicitly
resolve N-body DF and other effects on the more massive seeds (≳ 105 𝑀⊙) we
simulate: depending on the details of the gravity scheme, one generally achieves
this for seed masses 𝑀 ≳ (10 − 100) Δ𝑚𝑖.3 To assess the effects of resolution on
the dynamics of lower-mass BH seeds, we briefly re-simulate one of our galaxies
after applying a super-Lagrangian (AMR-like) refinement step (e.g. [4]), to run
with 800𝑀⊙ baryonic resolution 4 , and measure whether there is any significant

3We enable the additional improvements to the gravitational timestep criteria, tidal force treat-
ment, tree-opening, and integration accuracy detailed in [47, 45] where they were developed for
simulations of star formation which require accurate evolution of stellar binaries and multiples, and
set the force softening of the BH seeds to a very small value (10−3 pc) to represent real sink particles
while using adaptive force softening for all other types to represent a smooth background. Detailed
studies have shown that using adaptive softening as we do to ensure a smooth background force
and with the more strict timestep and integration accuracy criteria used here, DF-like forces can be
accurately captured for BHs with masses ≳ 10 times the background particle mass, while with less
accurate integration often used in cosmological simulations which do not intend to resolve few-body
effects, the pre-factor is more like ∼ 100 [133, 25, 18, 61, 105, 9, 16].

4Since the gravitational acceleration for BHs we study is strongly dominated by baryonic masses
near the galactic center (we confirm the N-body forces from dark matter are sub-dominant by order-of-
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difference in the “sinking rate” of seeds at any BH mass after 100 Myr. We find
no measurable difference. There is a simple reason why the detailed numerical
accuracy of the DF forces on such low mass seeds has little effect: the actual DF
time for low-mass seeds (with e.g. 𝑀 ≪ 105 𝑀⊙) is far longer than the Hubble time
at these (high) redshifts, so DF plays an essentially negligible role in their dynamics
on a galactic scale.

Semi-Analytic Orbital Evolution
Several authors who have implemented DF as a sub-grid routine (e.g., [105]) pointed
out that sub-grid corrections could make a difference in the seed BH orbits. This
may also be an issue for the accuracy of direct simulations, especially for low-mass
seed dynamics. It is therefore useful to check the validity of our simulations with
some alternative approach. Hence, we implement a semi-analytic analysis for the
dynamics of BH seeds in post-processing, both as a check of our direct numerical
simulations, and a way to gain analytic insight and explore even larger parameter
spaces prohibited by the resolution and computational expense of our simulations. In
post-processing, we can create an arbitrary sample of BH seeds at any desired time,
and evolve them in time-independent potentials taken directly from the numerical
simulations, allowing us to map the dynamics in detail.

To do so, we re-calculate the trajectories of 100 BH “test particles,” taking back-
ground potentials from the simulations and adding an analytic DF force explicitly
in post-processing, during which we apply a newly developed DF estimator that is
discussed in a companion paper [85]. We approximate the N-body dynamics of a
seed of mass 𝑀 with an acceleration a𝑀 = aext + adf , where aext is the “normal”
external gravitational acceleration on a test particle (computed identically to how
the forces are computed in-code, for the adaptively force-softened potential from all
N-body particles in the simulation). Then adf is the “DF force” — the next-order
(non-linear) term which represents the drag force arising from deflection of bod-
ies by 𝑀 . Specifically, we adopt the following expressions which can be directly
computed from the simulation data (either on the fly or in post-processing):

aext = −
∑︁
𝑖

(
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
r̂𝑖

adf =
∑︁
𝑖

(
𝛼𝑖 𝑏𝑖

(1 + 𝛼2
𝑖
) 𝑟𝑖

) (
𝑆𝑖 (𝑟𝑖)

𝐺 Δ𝑚𝑖

𝑟2
𝑖

)
V̂𝑖 .

(3.1)

magnitude or more), we did not refine the dark matter mass/force resolution in these re-simulations,
as it is largely irrelevant to our conclusions.
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Here aext and adf are defined as a sum over all N-body particles 𝑖, with N-body masses
Δ𝑚𝑖, relative position r𝑖 ≡ x𝑖−x𝑀 , relative velocity V𝑖 ≡ v𝑖−v𝑀 , 𝑣 ≡ |v| and v̂ = v/𝑣,
with 𝐺 the gravitational constant, 𝛼𝑖 ≡ 𝑏𝑖 𝑉2

𝑖
/𝐺 𝑀 dimensionlessly parameterizing

encounter strength, and 𝑏𝑖 ≡ 𝑟𝑖 |r̂𝑖 − (r̂𝑖 · V̂𝑖) V̂𝑖 | the impact parameter. 𝑆𝑖 (𝑟𝑖) is
the usual dimensionless force-softening kernel to prevent numerical divergences,
defined as

𝑆𝑖 (𝑟𝑖) =


32
3 𝑞

3
𝑖
− 192

5 𝑞
5
𝑖
+ 32𝑞6

𝑖
0 ≤ 𝑞𝑖 < 1

2

− 1
15 + 64

3 𝑞
3
𝑖
− 48𝑞4

𝑖
+ 192

5 𝑞
5
𝑖
− 32

3 𝑞
6
𝑖

1
2 ≤ 𝑞𝑖 < 1

1 𝑞𝑖 ≥ 1 .

(3.2)

We refer interested readers in our expression for adf to the companion paper [85].
But briefly, our expression reproduces exactly the classical [24] (C43) expression
aC43

df = 4𝜋 𝐺2 𝑀 𝜌 ln (Λ)𝑉−2 [erf (𝑉/
√

2𝜎) − (2/𝜋)1/2 (𝑉/𝜎) exp(−𝑉2/2𝜎2)] V̂ in
cases consistent with the assumptions of C43, i.e. when the background distribution
function is spatially homogeneous (constant density and velocity), time-invariant,
Maxwellian, and single-component. But it allows more naturally for cases which
violate these conditions. Our expression also removes the ambiguity of the C43
expression in estimating a number of ill-defined continuum quantities, when applied
to discrete simulation N-body data (e.g. how and on what scales to evaluate 𝜌, 𝜎,
𝑉 , and what value of Λ to use). Usually, 𝛼𝑖 ≫ 1 such that adf ∝

∑
𝛼−1
𝑖

∝ 𝑀 , which
means as expected that the DF acceleration is the largest for the most massive BHs,
and potentially negligible for small BHs.

3.3 Results
Direct Simulations
Here we present the results from direct simulations, focusing on the clustering
behaviour of BH particles. In Figure 3.1 we show a projected image of the galaxy
“z9m12a” at redshift 𝑧 = 10.4, as a typical high redshift snapshot in our simulations.
The left panel shows the total non-BH mass (i.e., including dark matter, gas, and
stars) density distribution, with the galactic center located at the origin. The image
shows the extremely clumpy appearance of typical high-𝑧 galaxies, with multiple
local density maxima near the galactic center, consistent with both other simulations
and observations. In the right panel, we over-plot the positions of BH particles near
the galactic center. The color labels their masses, ranging from 103−107 𝑀⊙, which
cover a wide range of seed BH masses from different formation scenarios. There is
no significant position dependence upon mass for BH particles in the galaxy, with



61

Figure 3.1: Left: Projected total non-BH mass (including dark matter, gas, and stars)
density distribution of one of our simulations (“z9m12a”) at redshift 𝑧 = 10.4, as a
typical simulation snapshot we analyze. The image shows the clumpy structure of
high redshift galaxies. Right: The BH particles in this simulation at this particular
snapshot, ranging from 103−107 𝑀⊙, covering a wide range of possible masses from
different seed BH formation scenarios. BHs appear mostly randomly distributed
in the galaxy, but with enhanced clustering near the galactic center. However we
do not see significant seed-BH mass dependence, and the apparent galactic-center
clustering simply reflects the overall concentration of mass (the galaxy effective
radius here is ∼ kpc).

some mild clustering near the galactic center. No significant mass dependence is
observed.

To analyse the sinking problem of seed BHs, we show the magnitudes of galacto-
centric distance r and velocity v of BH particles selected from 9 different snapshots
in Figure 3.2. Specifically, the BH particles are selected from snapshots in “z5m12b”
at 𝑧 = 9.0, 7.7, 7.0, 5.9, and 5.0, and snapshots from “z9m12a” at 𝑧 = 10.9, 10.4, 9.9
and 9.5. Although snapshots at later redshifts contain BH particles that are already
present at earlier redshifts in the same galaxy, the different snapshots are well
separated in time such that the positions and velocities of these BH particles can
be considered to be statistically independent. If a BH particle is located within 0.5
kpc from the galactic center with a (relative) velocity less than 10 km/s (Figure 3.2
shaded area), we consider it to have “efficiently” undergone sinking and trapping in
the galactic center. Figure 3.2 suggests that none of our BH particles in the mass
range of 103 − 107 𝑀⊙ has achieved this at the redshift they are observed. There is
also no clear dependence of BH positions and velocities on their masses, indicating
their dynamics is basically independent of their masses if BH masses are below
107 𝑀⊙, i.e. the dynamics is dominated by the mass-independent external gravity,
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Figure 3.2: The magnitudes of velocities and galacto-centric distances of simulated
BH particles for a general selection of snapshots in our simulations. We define a
BH particle being trapped and efficiently sinking if it is located within < 0.5 kpc
from the galactic center with a speed less than 10 km s−1 (shaded area). The colors
label the mass of each BH particle. From our simulations there are no BH particles
trapped in this manner, nor any significant dependence on their masses of their
positions and velocities.

while the mass-dependent DF plays a negligible role.

Semi-Analytic Orbital Evolution
Here we present the results from semi-analytic post processing, with our new DF
estimator, to cover a wider range of BH masses. Specifically, we select snapshots
from “z5m12b” at 𝑧 = 5.0, 7.0, 9.0 and “z9m12a” at 𝑧 = 9.5. In each snapshot,
we place 100 test particles to integrate their dynamics, whose initial parameters are
generated in the following way: the masses are randomly selected from 100−1010 𝑀⊙

(uniformly sampling log of mass), while the initial positions and velocities are chosen
randomly from star particles in the corresponding snapshot, which is not only a
convenient sampling method, but physically motivated since we would expect seed
BHs are mostly born in similar locations to star clusters. With such sampling,
are also able to study the effects of initial galacto-centric distances/velocities on
sinking (so we stress that our conclusions are completely independent of how we
perform this sampling). In post processing, we ignore the dynamics of background
particles, i.e. we apply a time-independent gravity potential, as we would expect
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the static background to represent random sample of typical chaotic high-𝑧 galaxies,
not an accurate reflection of some certain galaxy. The assumption of a static but
realistically clumpy mass distribution allows us to gain insight into the effects of
spatial inhomogeneities in the gravitational potential expected in typical, chaotic
high-z galaxies. However, the orbits that we calculate in this way are not necessarily
fully realistic since they neglect the time dependence of the potential. We note,
though, that time dependence of the potential seems unlikely to accelerate sinking
relative to a static-potential calculation; if anything time-dependence of the potential
could further contribute to keeping seeds away from the galactic center. The external
gravity and DF are calculated by Equation 3.1. Essentially, the difference between
our “live” dynamics simulations and these post-processing calculations allows us to
see how the time-dependence of the potential alters (in aggregate) the dynamics of
sinking BH seeds.

To further see how the “clumpiness” of the potential alters the BH dynamics, we
re-run our semi-analytic orbit integration in a “spherically-smoothed” version of the
potential. In these calculations, we take the exact same spherically-averaged mass
profile from the full simulation snapshot studied above, 𝜌(𝑟) ≡ 𝑑𝑀enc(< 𝑟)/4𝜋 𝑟2 𝑑𝑟

in narrow radial annuli 𝑑𝑟 , and then use this as the background potential for our orbit
integration. So, by definition, this has the same spherically-averaged 𝑀enc(< 𝑟) and
circular velocity profile, but no substructure.

In Figure 3.3 we show several sample orbits for test particles of different masses in
the 𝑧 = 7.0 snapshot of “z5m12b” overlaid on its mass density distribution. The
orbits in the original snapshots are shown in the upper panel, while in the lower
panel we show the trajectories integrated from the spherically smoothed version of
this snapshot, with the same test-particle initial conditions. The thin lines show the
trajectories and the black cross shows the final positions of test particles. The test
particles follow chaotic orbits in the clumpy snapshot with no significant dynamical
center (as we would expect for a high-𝑧 galaxy). It appears that for the most massive
test particles 𝑀 ≳ 108 𝑀⊙, their velocities significantly decrease within a Hubble
time at 𝑧 = 7 (∼ 1 Gyr), and their final positions lie within the very central region
of the galaxy. But there is no significant sinking for low-mass test particles. In
the smooth galaxy the particles behave similarly, yet it takes a shorter interaction
time for the most massive test particles to sink. The velocity evolution of one
particular test particle of 8.7 × 107𝑀⊙ is shown in Figure 3.4, and it is shown
that the velocity decay timescale is about one order of magnitude shorter in the
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Figure 3.3: Sample orbits of several test particles (overlaid on top of the mass den-
sity distribution, shown in the blue colorscale) in the 𝑧 = 7 snapshot of “z5m12b”
(upper) and its “spherically smoothed equivalent” (lower) where we take the iden-
tical enclosed mass profile 𝑀enc(< 𝑟) and re-distribute the mass to be a perfectly-
spherically-symmetric potential. The thin lines show the trajectories and the black
cross shows the final positions of test particles. Each panel is 8 kpc across in spatial
scale. We find that in the high-𝑧 galaxy, the most massive test particles do sink to the
galactic center within a Hubble time at 𝑧 = 7 (∼ 1 Gyr), while the low-mass seeds
are simply experiencing chaotic orbits. In the smooth galaxy, the sinking behaviour
is not very different for these five samples, yet for the massive seeds which are able
to sink, their sinking time reduces drastically. This suggests that clumpy galactic
backgrounds generally inhibit the sinking of massive seeds.

smooth galaxy compared to the clumpy galaxy. This suggests that the clumpy
nature of early galaxies may increase the sinking time of seed BHs by an order
of magnitude, by introducing chaotic dynamics to their orbits. In Figure 3.5 we
show the initial and final positions of all test particles we integrate in this particular
snapshot, and its spherically smoothed version. We also show their initial and final
velocity magnitudes as a function of mass in the lower panel. In the clumpy galaxy,
while the test particles are randomly distributed in the galaxy initially, those with
𝑀 ≳ 108 𝑀⊙ show clustering behaviour near the center after the integration, and
their speeds decay to less than a few kilometers per second, indicating that they sink
to the galactic center after the integration. The remaining low-mass particles remain
scattered around, with no significant decay of their speeds. The smooth potential
reduces the minimum sinking mass to ∼ 107 𝑀⊙, when test particles are integrated
over an order of the Hubble time at 𝑧 = 7 5.

5There is a trend of increasing final speed with test particle mass in Figure 3.5 for the smooth
galaxy. This turns out to be a reflection of the different integration time of these particles: we
apply a timestep control proportional to |𝑣/𝑎 | to avoid numerical errors. The massive particles, with
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Figure 3.4: The evolution of the magnitude of the BH velocity as a function of
interaction time for our integration of a 8.7 × 107 𝑀⊙ test particle. We see that in
both the clumpy and spherical smoothed galaxy, the velocity decays within 1 Gyr.
But in the smooth galaxy the decay time is lower by about one order of magnitude
than the clumpy case, suggesting again the clumpy and chaotic nature of early
galaxies may drastically increase the sinking time of seed BHs.

It appears that the clumpy nature of early galaxies may increase the “minimum
sinking mass” by one order of magnitude. It is worth noting that the sinking
massive particles in the clumpy galaxy also do not sink exactly to the same place
near the center (as they do in the smooth galaxy). This implies that a clear definition
of galactic center with resolution of a few hundred pc is still ambiguous for these
galaxies, and has potentially major implications for the demographics of BH-BH
mergers at high redshift.

In Figure 3.6 we show the initial and final magnitudes of galacto-centric distance
r and velocity v of all our test particles across different snapshots. The colored
points show the final velocities and distances of test particles while the thin grey
lines connect their final values with initial values. We define the “sinking” region in
phase space as in § 3.3. Since we are covering a larger mass range of test particles
than what we did in direct simulations for BH particles, some of the most massive
particles do efficiently sink to the “trapped region” this time. Specifically, particles

larger DF (larger 𝑎), hence have smaller timesteps and shorter integration time compared to the less
massive ones (see also the “interaction time” label in Figure 3.3), experiencing less deceleration in
the integration. This effect does not appear in the clumpy galaxy, since the lack of dynamical centers
of these galaxies makes the particle dynamics chaotic, and the gravity and DF for these particles
balance each other when they reach the center, making the interaction time less important.
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Figure 3.5: Upper left: The initial positions of test particles which we semi-
analytically integrate, overlaid on the mass density distribution (grey) for “z5m12b”
at redshift 𝑧 = 7; Upper middle: The final positions of these test particles. Up-
per right: The final positions of these test particles integrated in the spherically
smoothed galaxy. The colors label the test particle masses. Lower: The mag-
nitude of initial velocities and final velocities as a function of the BH mass. We
see that for the clumpy galaxy, the high mass (𝑀 ≳ 108 𝑀⊙) test particles sink to
the galactic center after the integration, while the low mass particles remain ran-
domly distributed. For the smooth galaxy the minimum mass for sinking reduces to
𝑀 ≳ 107 𝑀⊙, about one order of magnitude lower. DF and sinking are negligible
for the lower-mass seeds in both cases 5.

with 𝑀 ≳ 108𝑀⊙ sink to the center region of the galaxy after the integration,
regardless of their initial positions and velocities. For low-mass (𝑀 ≲ 108𝑀⊙)
particles, their final position and velocity distributions appear to be statistically
similar to their initial configurations. This confirms the robustness of our results
from direct simulations, in which all BH particles are less than 108 𝑀⊙ and are
therefore not experiencing significant sinking.

It is also worth noting that the sinking criterion almost depends entirely on the
particle mass, not on initial velocities/distances to galactic center. This is in contrast
to what one would naively infer from the simplest DF-time calculations which
assume a smooth potential with a constant circular velocity and BHs on slowly-
decaying nearly-circular orbits, in which case the sinking time depends explicitly on
the initial distances 𝑡sink ∝ 𝑟2 [15]. Physically, this can be explained by three factors:
(1) for highly-eccentric or radial orbits, the dependence on initial radius is much
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Figure 3.6: The initial and final magnitudes of velocities and galacto-centric dis-
tances of all our test particles across different snapshots. The colored points show
the final velocities and distances (with any final velocities less than 10−3 km/s in-
terpreted as 10−3 km/s for clarity). We define a BH particle as “trapped” as in
Fig. 3.2. The thin grey line connects the final properties with initial properties of
each particle. The colors label the mass of each particle. We can see that after
our integration nearly all particles with masses ≳ 108𝑀⊙ sink to the galactic center
(with a significant decline of velocity and distance), yet lower-mass particles are still
randomly distributed.

weaker, independent of the assumed density profile or details of the DF scaling [55];
(2) the chaotic dynamics of seed BHs in clumpy (i.e. non-smooth) galaxies effective
erase the memories of their previous orbits, which makes the initial positions less
important to their orbital decay; and (3) the traditional 𝑟2 dependence of 𝑡sink depends
explicitly on the implicitly-assumed isothermal mass density profile of the galaxy –
but more generally the DF acceleration scales as 𝑎DF ∝ 𝜌(𝑟)/𝑣2

c . In a clumpy high-𝑧
galaxy, however, the density 𝜌 is not necessarily falling rapidly as in an isothermal
sphere (and is not a trivial smooth monotonic function of galacto-centric radius),
again wiping out the naively-predicted 𝑟-dependence of 𝑡sink.

3.4 Discussion
Possible Solutions
From both direct simulations and semi-analytic post-processing calculations, we
have found that seed BHs less massive than 108 𝑀⊙ generally cannot sink to galactic
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centers via DF in high-𝑧 galaxies. To have at least one seed BH positioned in the
galactic center so that it could accrete to ∼ 109 𝑀⊙ and provide a plausible origin
for luminous high-redshift quasars, we discuss two categories of possible solutions.

Solution 1: A Large Number of Seeds, Forming Continuously

The first option is to use numbers as a trade off for efficiency: although one low-
mass seed BH is not likely to sink and accrete, a large number (which we estimate
quantitatively below) of low-mass seeds could possibly give an opportunity for a
“lucky one” to sink and grow. Since the dynamics of BH particles and star particles
are identically solved in our simulations (both as collisionless dynamics with external
gravity), and the masses of star particles are around 103𝑀⊙, below the low-mass
end where DF drag is significant, we can use the star particles in our simulation
as an ensemble of test particles to estimate the fraction of stars and therefore relics
(ignoring processes like kicks) which can be trapped in local clustering structures
(“clumps”). We apply such analysis to two particular snapshots, namely, “z5m12b”
at 𝑧 = 7.0 and “z9m12a” at 𝑧 = 10.4.

We are only interested in clumps broadly near the galactic center, hence we identify
the four densest clumps within 1.6 kpc near the galactic center for each snapshot
respectively, as shown in the upper panels of Figure 3.7. The center of the clumps
are identified as the local density maxima, and their geometrical shapes are treated
as spherically-symmetric with radius 100 pc enclosing almost all of the clump mass,
a fair approximation as shown in Figure 3.7.

The lower left panel of Figure 3.7 shows the enclosed stellar mass and trapped
stellar mass as a function of radius around each clump. If a star particle at radius
𝑟 has a maximum possible apocentric radius 𝑟max from the clump center (using the
energy and angular momentum of each to evaluate its orbit, assuming the clump is
static over its orbital timescale), we then say it is instantaneously enclosed within
𝑟 and “trapped” within 𝑟max. The gravity potential is calculated assuming a static
potential around each clump with spherical symmetry (the clumps themselves, by
definition, do not have substantial substructure). We see that the stellar masses in
each clump (𝑀enclosed( |r| < 100 pc)) range from 107 to 108 𝑀⊙. The mass fractions
of trapped stars differ for different clumps and around 30%-50% of stellar mass
could be trapped in a ∼ 0.1 kpc radius of the clumps, yet this value decreases as we
go deeper into the clump center, and the clumps could eventually trap only a few
percent of enclosed star particles within ∼ 50 pc. For all clumps, ≳ 90% of their
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Figure 3.7: Behavior of low-mass test particles (e.g. stars) in individual high-
density clumps (the “proto-bulge”) within our simulations. Upper Left: Mass
density distribution of a 𝑧 = 7 galaxy with a total matter mass of 3.8 × 1011 𝑀⊙,
where clumps 1-4 (the most massive bound sub-structures) are identified. Upper
Right: Same for a 𝑧 = 10.4 galaxy with a total matter mass of 2.9×1011 𝑀⊙, where
clumps 5-8 are identified. Lower Left: Enclosed stellar mass inside each clump as
a function of clump-centric distance, and the “trapped” mass (defined as the mass
which is bound with apocentric radii inside this radius, as opposed to e.g. stars on
“plunging” or unbound orbits; see text). Lower Right: Mean stellar metallicity
and age for star particles inside each clump. We see that only a few percent of
the enclosed stellar particles could be trapped well inside (|r| ≲ 50 pc) the clumps.
The metallicity and age also indicate that most star particles (hence the clump)
are formed recently, which leads to new problems for some scenarios for seed BH
growth.
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Figure 3.8: Distribution of “formation distances” for stars identified as enclosed in
clumps in Fig. 3.7. We plot the cumulative distribution of distances between the
center-of-mass of the main clump progenitor and the newly-formed star particle, at
the time each star particle formed. We see that at least > 80 − 90% of star particles
in these clumps form “in situ,” at distances ≪ 1 kpc from the clump center. Only a
small fraction are formed outside the clump and later captured. Of those, almost all
form in the same galaxy at distances < 5 kpc (as opposed to in satellites or different
progenitor galaxies).

mass is in stars (as opposed to gas or dark matter).

Some low-mass objects are trapped in the dense clumps that represent the proto-
bulge of these galaxies. But do they actually “sink” or get trapped dynamically, or
did they simply form in-situ? To track the formation history of these star particles,
we show their distances to their center-of-mass at the particular redshift when most
of them are just formed 6 in Figure 3.8. It turns out for almost all clumps, > 80−90%
of the star particles which we defined as “trapped” in these clumps are formed within
≪ 1 kpc from the clump-progenitor center-of-mass, which means most trapped star
particles are formed in-situ. The only seemingly exception is clump 6, where at
first glance it appears that only about ∼ 70% of the trapped star particles are in
situ particles, but a detailed analysis shows that the remaining particles are actually
formed in another clump which merges with clump 6, which does not challenge
the conclusion (though it does relate to the hypothesis discussed in § 3.4). Taken
together, this means that while it is possible in principle for “lucky” low-mass

6The simulations we use generate one snapshot per 0.01 scalefactor, which is sufficient for this
exercise.
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objects to be “trapped,” it is quite rare: comparing the total stellar mass of the
galaxy to the mass of stars which form ex-situ and are trapped near clump centers
yields a probability of about ∼ 10−5−10−3 (depending on how generously we define
“trapped”) for a low-mass seed formed randomly in the galaxy to migrate to being
“trapped” in the central < 100 pc of a clump by 𝑧 ∼ 7.

Even if this occurs, the metallicity of the star particles which undergo this processes
may create new problems for seed models. While the first Pop III stars or “direct
collapse primordial clouds,” which are candidates for forming massive seed BHs,
could form very early at metallicities 𝑍 ≪ 10−5 𝑍⊙, the metallicity of star particles
enclosed/trapped in clumps (even restricting to the “ex situ” stars) is generally much
higher, and turns out to be the highest for the most massive clump, as shown in
the lower right panel of Figure 3.7. This indicates that the trapped star particles
in these clumps may not represent a fair sample of the ex-situ seed BH particles
which are formed before the clumps themselves are formed. The earliest-forming
stars are actually the least likely to be trapped in such clumps: they tend to form in
mini-halos at much earlier times and therefore across many different progenitors and
thus have to migrate in from the furthest distances, while the “ex situ but trapped”
stars primarily still form in situ (in the same galaxy) just at distances of ∼ 1 kpc
from the clump.

For all seed BHs, either in-situ or ex-situ, a related problem is related to the tension
between the required clump masses and their ages. In many SMBH formation
mechanisms, seed BHs have a higher probability both to be initially trapped and to
subsequently accrete gas rapidly in the most dense/massive clumps, but these clumps
are preferentially formed later, hence providing less time for BHs to migrate and to
accrete. The average age of star particles inside clumps, as shown in the lower right
panel of Figure 3.7, is far less than the Hubble time at the redshift we examined,
providing a strict constraint on duty cycle if seed BHs are indeed hyper-Eddington
accreting to become SMBHs in these clumps. Nevertheless, it is worth noting that
SMBH seeding prescriptions are still highly uncertain, and other mechanisms may
be able to circumvent these constraints.

Solution 2: High “Effective Masses” for Seeds

From the semi-analytic calculations in section 3.3 we have found that only seed
particles as massive as ≳ 108 𝑀⊙ can efficiently or reliably sink to galactic centers
in a Hubble time. Such a large mass, however, is already a SMBH. On the other
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hand, our analysis in the previous section has shown that dense young star clusters
as massive as 107 − 108 𝑀⊙ are present near the galactic center. In the previous
section we also show that most trapped star particles within those clumps are already
formed in situ. This suggests another possibility: while randomly formed seed BHs
are generally not massive enough to decelerate individually via DF, their preferential
formation in tightly bound structures with large “effective mass” is more realistic,
as clusters could scatter with other components in the galaxy and sink effectively to
the galactic center. Indeed, in [87] we show that the most-massive clumps do merge
efficiently as these simulations are run to lower redshift and form the “proto-bulge”
of the galaxy.

There have been numerous papers arguing that runaway mergers in dense globular
(star) clusters are a potential way to produce intermediate mass black holes (IMBHs,
with typical masses 102 − 105 𝑀⊙, see, e.g. [107, 46, 116, 41]), which naturally
becomes a preferential way to embed massive BH seeds in dense clusters as described
above. Such channels, however, suffer from other problems like large gravitational
recoils that can remove the formed IMBHs from the cluster (e.g. [53]). There are
also works arguing that gas accretion in nuclear star clusters (NSCs) and starburst
clusters can also build up the mass of IMBHs rapidly [75, 98], which could be
another way to apply this solution here. Yet observations have put upper limits
on IMBHs masses (e.g. [83, 84, 70, 146]), which introduce additional constraints
on these channels. It should also be noted that, while globular clusters are usually
assumed to be mainly pristine clusters that formed at very high redshift in mini-halos,
hence define an “old” population for astrophysicists in the local universe, they are
not so much older than the stars at 𝑧 ≳ 7. In fact, the overwhelming majority of the
clusters form in-situ in the galaxy as it evolves from in-situ gas, not from mini-halos
merging in. This means that the metallicity and timing problems discussed in § 3.4
apply to this scenario, as well.

Comparisons to Other Works
Our conclusions are consistent with other recent works focusing on slightly different
aspects of this problem. For instance, [113] and [124] study the co-evolution of
SMBH pairs, finding that galactic clumps (originated either from high-𝑧 star forming
regions or a clumpy interstellar medium created by galaxy mergers) significantly
perturb their orbital evolution, which potentially delay the decay process. [124] and
[125] also point out that SMBH/IMBH pairs are still separated by 0.1 − 2 kpc after
∼ 1 Gyr in their simulations, which is consistent with our findings that no well-
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defined galactic centers can be identified on sub-kpc scales under these conditions.
[17] simulate a 106 𝑀⊙ BH in a non-clumpy galaxy embedded in a cosmological
environment at 𝑧 = 6 − 7 and they show that DF torques are usually unimportant
compared to the large-scale stochastic gravitational torques in determining the BH
decay, even if no clumpy structures are considered. These works support our
conclusion that the chaotic structures of high-𝑧 galaxies could drastically change the
sinking timescale (hence the minimum sinking mass), if only DF is considered.

[105] presented a complementary study to ours, focusing on more idealized simu-
lations analogous to lower-redshift systems, and a smaller number of test cases, but
considering in more detail many of the numerical details of “live” sub-grid BH DF
treatments (e.g. explicitly adding an analytic DF force term in low-resolution sim-
ulations). They concluded that even in idealized galaxies designed by construction
with a well-defined dynamical center and a single, massive, centrally-peaked bulge
(e.g., an exponential-disk and an Hernquist bulge), lower-level clumpiness in the gas
(e.g., GMCs with typical masses∼ 105−106 𝑀⊙) would drive wandering or ejection
of BHs with seeds less massive than ∼ 105 𝑀⊙. They hence concluded that 105 𝑀⊙

is the minimum required mass for a BH to be well stabilized in the center of its host.
Since observed star-forming clumps or complexes are much more massive at high
redshifts (e.g., [122, 38, 121]), this criterion should only move to higher masses at
high-𝑧, consistent with our findings. Further, from post-processing cosmological
simulations of massive galaxies with well-defined dynamical centers merging at
𝑧 < 6, [105] also concluded that it was crucial that BHs are already well-anchored
to the galaxy centers before and throughout mergers, and that the centers are well-
defined and dense enough to avoid tidal disruption, in order for BHs to “sink.” They
specifically concluded that it was crucial that BHs be embedded either in a dense
satellite nucleus or a massive nuclear star cluster. This is essentially identical to our
“solution 2” above. [105] also noted that in the cosmologically simulated galaxies
at earlier times, when the universe is < 1 Gyr old, even with their most massive
(∼ 105 𝑀⊙) seeds, the model for DF does not help in keeping BHs in the center, as
the galaxy is so chaotic that BHs wander no matter the implementation of DF. This
is again in good agreement with our conclusion.

A recent study by [126] provides another excellent illustration of our key conclu-
sions, in a single case-study of a galaxy simulation with “live” AGN accretion
and feedback. While the authors found that they could produce rapid BH growth
by 𝑧 ∼ 6, they (1) had to impose a sub-grid DF model with an artificial super-
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linear density dependence (∝ 𝜌3 at high densities) designed to “anchor” BHs into
high-density regions (essentially our solution 2, again); (2) still found almost no
BH growth until 𝑧 ≲ 8, after the galaxy reaches 𝑀∗ ≫ 109 𝑀⊙ and forms a dense,
strongly-peaked and well-defined central “proto-bulge” structure, very much like the
late-time-forming structures we argue are necessary for BH capture and retention;
and (3) still only reach peak luminosities ≪ 1043 erg s−1 in X-rays, about a factor of
∼ 103 −104 less-luminous than the most luminous QSOs observed at these redshifts
[115], which makes them still challenging to form.

There are some recent studies which might appear to be in contrast to our results
at first glance. For instance, [128] has shown that host galaxies could aid SMBHs
to shorter sinking timescales, and the ROMULUS simulations [130, 129, 112] argue
that it is possible to grow massive black holes by intermediate redshifts. But a closer
comparison shows these simulations are consistent with all of our key conclusions.
In these studies, the BHs are, as the authors note [128], embedded in nuclear
regions of the host galaxy, which are dense enough to avoid tidal disruption and
much more massive than the BHs. The nuclear regions, with high “effective mass”,
hence sink as a whole — again following our “solution 2” above. This is effective
because these studies focus on cases where the galaxies are already massive, with
unambiguous massive central peaks in their density profiles at relatively low redshift
(with 𝑧 ≲ 2 − 4, cf. Fig 4 in [128]). Moreover, in e.g. ROMULUS, the simulations
have an effective seed mass ∼ 106 − 107 𝑀⊙ 7, close to our sinking mass threshold
in a smooth galaxy. These demonstrate that, given enough time and a pre-existing
massive density peak to “anchor” a SMBH, BHs can indeed grow following e.g.
our solution 2 as speculated above. Our focus here is essentially on how the “initial
conditions” of these simulations (at earlier times and smaller mass and spatial scales)
could arise. We focus on galaxies at much higher redshifts, where those dense central
regions either do not exist, or have formed relatively recently (e.g. 𝑧 < 9) and one
wishes to form an extremely-massive SMBH by 𝑧 > 7, significantly shortening the
available time for BH growth, especially from extremely low-mass seeds.

3.5 Conclusion
In this study, we explore high-resolution cosmological galaxy formation simulations
to understand the dynamics of BH seeds at high-𝑧 and their implications for SMBH
formation and growth. Our simulations and semi-analytic DF calculations show

7The authors note that their seed criterion often produces multiple seeds in the same kernel
which are instantly merged, producing a range of effective initial seed masses.
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that BH seeds cannot efficiently “sink” to galaxy centers and/or be retained at high
redshifts unless they are extremely massive already, 𝑀 > 108 𝑀⊙, i.e. already
SMBHs. We show that this threshold is at least an order-of-magnitude higher
than what one would expect in a spherically-symmetric smooth galaxy potential,
as commonly adopted in analytic or older simulation calculations which could not
resolve the complex, clumpy, time-dependent sub-structure of these galaxies. For
smoother galaxies, this mass threshold reduces to 107 𝑀⊙, which does not change
the key conclusion.

We therefore join the growing number of recent studies by different groups which
have reached similar conclusions [see e.g. 3, 14, 131, 105, 12, 9, 16]. All of
these studies, like ours, have concluded that this “sinking problem” for BH seeds
may, in fact, be even more challenging than even other well-known challenges for
explaining the formation and growth of the first SMBHs with masses ≫ 109 𝑀⊙

in galaxy centers at redshifts 𝑧 > 7. Our contributions to extending this previous
work include: (a) studying fully-cosmological simulations with higher resolution, a
broader range of redshifts, a much broader spectrum of BH seed masses, and different
(sometimes more detailed) explicit models for stellar feedback; (b) comparing direct
cosmological simulations which only resolved N-body dynamics to semi-analytic
post-processing models for DF, to verify that these conclusions are robust; and (c)
extending our comparisons to the “test particle limit” by treating all stars as possible
BH seeds.

Like these other studies, we qualitatively conclude that the chaotic, rapidly time-
evolving, clumpy, bursty/dynamical nature of high-redshift galaxies, coupled to the
very short Hubble times (≲ 1 Gyr) make it nearly impossible for any lower-mass
seeds to efficiently “migrate” from ≳ 1 kpc scales to galaxy centers, and is far more
likely to eject seeds than to retain them. Like these authors concluded, the clumpy,
bursty nature of the ISM is crucial for these conclusions: so this can only been seen
in simulations which resolve the cold phases of the ISM and explicitly model stellar
feedback. It is also worth noting that for low-mass galaxies (the progenitors where,
in most models, seeds are supposed to have formed), even at 𝑧 ∼ 0, clumpiness and
burstiness are ubiquitous, and it is not simply a question of dynamical perturbations
but even more basically of the fact that dwarf and high-redshift galaxies do not have
well-defined dynamical centers to which anything could “sink.” This is true even
for well-evolved galaxies such as the LMC today.

In fact, we show that even the extremely massive BHs (≳ 108 𝑀⊙) which do “sink”
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actually do not sink to the same location at sub-kpc scales, where their migration
stalls. This has potentially profound implications for LISA detections of SMBH-
SMBH mergers in high-redshift galaxies. Essentially, the “last parsec problem” so
well-studied in the extremely dense, smooth, well-defined bulges of 𝑧 = 0 galaxies
(where the Hubble time is long) becomes a “last kiloparsec problem” in these
galaxies.

Solutions to the “sinking problem” for SMBH growth/formation generically fall into
one of two categories which we discuss in detail. (1) Either seeds form “in situ”
when the massive bulge finally forms and creates a deep central potential, or a large
number of seeds form so that even the infinitesimally small fraction which have just
the right orbital parameters to be “captured” by this bulge can exist. In either case,
the problem is that we show this deep central potential well does not form until quite
“late,” at redshift 𝑧 ≲ 9, from gas and stars which are already highly metal-enriched
(metallicities ≳ 0.1 𝑍⊙). This would mean popular speculative BH seed formation
channels like Pop III relics or “direct collapse” from hyper-massive quasi-stars could
not provide the origin of the SMBHs. Moreover, the combination of the fact that this
occurs late, and that the stellar IMF is “normal” at these metallicities, means that the
“timescale” problem is much more serious: stellar-relic BHs, if primarily growing
by accretion in such massive bulges, must grow from ∼ 10𝑀⊙ to ≫ 109 𝑀⊙ in
≲ 200 Myr — requiring sustained highly super-Eddington accretion. Alternatively
(2) “seed” BHs must have enormous “effective” masses to form early and remain
“trapped” and/or sink efficiently to the growing galaxy center. Of course, BHs
“born” with 𝑀BH ≫ 107 𝑀⊙ would solve this, but only by bypassing any stage that
could be called a “seed” (moreover, no serious models involving standard-model
physics can produce seeds of such large mass). However, models where seeds
preferentially form tightly-bound in dense star cluster centers owing to physics not
modeled here (for example, runaway stellar mergers in the center of dense, high-𝑧
massive star clusters; see [116]) could (if the cluster is sufficiently dense) have an
“effective” dynamical mass for our purposes of roughly the cluster itself, which
could reach such large values. This suggests these regions may be promising sites
for SMBH seed formation.

In future work, we will explore the role of BH accretion and feedback, and more
explicitly consider models where BH seeds form in resolved star clusters, as well
as a wider range of galaxy simulations. It is likely that all of the scenarios above
require a sustained period of super-Eddington accretion, so we will also explore
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whether this requires seed BHs residing (or avoiding) certain regions within high-𝑧
galaxies. We have also neglected models where non-standard model physics (e.g.
dissipative dark matter, primordial BHs) allows for new formation channels and
test-body dynamics. We will also explore new applications of our numerical DF
approximator, in a variety of other interesting contexts (e.g. pairing of SMBHs in
massive galaxy mergers at low redshifts).
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C h a p t e r 4

ORBITAL DECAY OF EXOPLANETS VIA TIDAL RESONANCE
LOCKING

[1] Linhao Ma and Jim Fuller. “Orbital Decay of Short-period Exoplanets via
Tidal Resonance Locking”. In: The Astrophysical Journal 918.1 (2021),
p. 16. doi: 10.3847/1538-4357/ac088e.

Abstract
A large fraction of known exoplanets have short orbital periods where tidal excitation
of gravity waves within the host star causes the planets’ orbits to decay. We study
the effects of tidal resonance locking, in which the planet locks into resonance with
a tidally excited stellar gravity mode. Because a star’s gravity mode frequencies
typically increase as the star evolves, the planet’s orbital frequency increases in
lockstep, potentially causing much faster orbital decay than predicted by other tidal
theories. Due to nonlinear mode damping, resonance locking in Sun-like stars likely
only operates for low-mass planets (𝑀 ≲ 0.1𝑀Jup), but in stars with convective
cores it can likely operate for all planetary masses. The orbital decay timescale
with resonance locking is typically comparable to the star’s main-sequence lifetime,
corresponding to a wide range in effective stellar quality factor (103 ≲ 𝑄′ ≲ 109),
depending on the planet’s mass and orbital period. We make predictions for several
individual systems and examine the orbital evolution resulting from both resonance
locking and nonlinear wave dissipation. Our models demonstrate how short-period
massive planets can be quickly destroyed by nonlinear mode damping, while short-
period low-mass planets can survive, even though they undergo substantial inward
tidal migration via resonance locking.

4.1 Introduction
Historically, exoplanets have been easiest to detect at short orbital periods through
transits or radial velocity measurements. Consequently, many known exoplanets
orbit at small distances where gravitational forces are strong, allowing the ensuing
tidal effects to shape the planetary architectures we observe today. In most cases,
the orbits of short-period exoplanets are expected to quickly circularize due to
tidal dissipation within the exoplanet, with the spin of the exoplanet aligning and

https://doi.org/10.3847/1538-4357/ac088e
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synchronizing with its orbit (though see [48] for an exception). Subsequent orbital
migration is then driven by tidal dissipation within the star, and it is this case we
study here.

Traditionally, tidal dissipation within the star is parameterized by the effective tidal
quality factor 𝑄′ = 𝑄/𝑘2, where 𝑄 is the inverse of the phase lag between the tidal
potential and the tidal bulge [26] and 𝑘2 is the tidal Love number. In this model, the
value of 𝑄′ is related to the orbital decay rate by

𝑄′ ≡
3𝑀p

𝑀∗

(
𝑅∗
𝑎

)5
𝑡tide(Ωorb −Ωs) , (4.1)

where 𝑀p and 𝑀∗ are the masses of the planet and the star, respectively. 𝑅∗ the
radius of the star, 𝑎 the orbital semi-major axis, Ωorb the angular orbital frequency,
Ωs the stellar spin frequency, and 𝑡tide the tidal migration timescale, defined as

𝑡tide = − 𝑎

¤𝑎tide
=
𝐸orb
¤𝐸orb

. (4.2)

Although widely discussed in the literature, 𝑄′ is difficult to calculate from first
principles and a number of theoretical models have been proposed. Tidal dissipation
in exoplanet host stars is believed to result from a combination of a few dissipation
mechanisms: (1) damping of the equilibrium tidal distortion of the star via turbulent
viscosity in the convective envelope (recent work includes [47, 21, 15, 72]), (2)
damping of dynamically excited inertial waves in the convective envelope (e.g., [53,
51, 1, 46, 29]), and (3) thermal and nonlinear dissipation of tidally excited gravity
waves in the radiative interior of the star [28, 73, 38, 16, 19]. Throughout this paper
we will be focusing on gravity wave damping, which is likely to be most effective
for planets on circular, short-period orbits aligned with the host star’s spin [4].

Most prior theoretical investigations have overlooked an essential aspect of the tidal
migration problem: the coupled evolution of the stellar structure and the planetary
orbit. Even sophisticated models rarely perform full orbital evolution simulations
that solve for tidal dissipation at each time step. Instead, they typically invoke
a constant tidal quality factor 𝑄′, or at best recompute a frequency-averaged 𝑄′

at different timesteps. Such averaging is problematic because the effective 𝑄′ for
gravity waves or inertial waves is a sensitive function of forcing frequency, such
that it has sharp minima over narrow frequency ranges surrounding resonances with
stellar oscillations.

In this work, we examine the possibility of tidal migration driven by “resonance
locking" with stellar oscillation modes, in which a planet can become trapped in a
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resonance with a star’s oscillation mode, often allowing for large amounts of tidal
dissipation and faster orbital migration. Resonance locking has previously been
discussed for binary stars [75, 76, 17, 11, 10, 79], with direct evidence arising from
large-amplitude tidally excited oscillations in eccentric heartbeat stars [30, 18, 12].
Resonance locking within Saturn also appears to drive the orbital expansion of its
outer moons Rhea and Titan [20, 41, 42] at rates 10-100 times faster than most
prior expectations. Resonance locking could have similarly dramatic effects for
the inward or outward migration of short-period exoplanets, and we examine this
possibility for the first time.

In Section 4.2 we discuss the tidal dissipation mechanisms, where in Section 4.2 we
focus on resonance locking, and in Section 4.2 we discuss complications introduced
by nonlinear damping effects. We compare our results with observational con-
straints in Section 4.3. In Section 4.4, we discuss the observational implications of
resonance locking and other nonlinear tidal theories for exoplanet systems, focusing
on individual systems and statistical distributions. We summarize in Section 4.5.

4.2 Tidal Dissipation Mechanisms
Here we describe the basic idea of resonance locking and the tidal migration time
scales it predicts. We also contrast this against tidal migration induced by nonlinear
gravity wave dissipation, and we discuss the corresponding tidal 𝑄′s and domains
of validity of these theories.

Resonance Locking
Resonances between tidal forcing frequencies and stellar oscillation mode frequen-
cies can greatly enhance tidal dissipation rates. Specifically, the orbital energy loss
rate due to a tidally forced mode with angular frequency 𝜔𝛼 excited by the tidal
potential of a circularly orbiting planet with forcing frequency 𝜔f (each measured
in a frame corotating with the star) is given by [19]

¤𝐸orb,tide =
𝑚𝜔𝛼Ωorb |𝛾𝛼 |𝑀∗𝑅2

∗ |Q𝛼 |2𝜔2
f

(𝜔𝛼 − 𝜔f)2 + 𝛾2
𝛼

(
𝑀p

𝑀∗

)2 (
𝑅∗
𝑎

)6
, (4.3)

where 𝛾𝛼 is the mode growth rate and 𝑚 is the mode’s azimuthal index (𝑚 = 2
corresponds to the strongest tidal forcing for aligned orbits). Q𝛼 is a dimensionless
number describing the spatial coupling between oscillations and the tidal potential
defined in [19]. The denominator is smallest near resonance, when𝜔𝛼 ≃ 𝜔f , leading
to the greatest tidal dissipation and the smallest tidal migration timescale, as shown
in the left panel of Figure 4.1.
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Figure 4.1: Left: tidal migration timescale of a 10𝑀⊕ exoplanet as a function of
orbital period for a Sun-like star (blue line) due to linear g mode damping, along
with a typical mode evolution time scale (black line). The orange line represents a
possible modification due to nonlinear damping that saturates g mode resonances.
Right: zoom-in around the g mode resonance at 𝑃orb ≈ 1 days, showing the stable
fixed point where 1.5𝑡evol = 𝑡tide, corresponding to inward migration via resonance
locking. Nonlinear damping makes the resonances shallower, preventing resonance
locking at longer periods (see discussion in Section 4.2 and Appendix 4.6)

The thick radiative zones in main-sequence stars cause internal gravity modes (g
modes) to have a dense spectrum in frequency space (see Figure 4.2, left panel).
Because the star’s internal Brunt-Väisälä frequency typically increases on a stellar
evolution timescale, the g mode frequencies increase on a similar time scale, which
we define as the mode evolution timescale 𝑡𝛼 ≡ 𝜔𝛼/ ¤𝜔𝛼. A planet at angular orbital
frequency Ωorb produces tidal forcing at the frequency 𝜔f = 𝑚(Ωorb − Ωs), where
Ωs is the stellar spin frequency. As the stellar oscillation mode frequencies increase,
one of them will quickly encounter a resonance with the tidal forcing frequency, i.e.,
𝜔𝛼 → 𝜔f (see Figure 4.2, right panel).

As the planet falls into resonance, it can become “trapped” in resonance (resonantly
locked) in the following manner, as shown in Figure 4.1. If the orbit is perturbed
outward such that 𝜔f decreases, it falls deeper into resonance, which increases
the tidal dissipation, such that the planet migrates inward and away from exact
resonance. If the orbit is perturbed inward such that 𝜔f increases, it moves further
from resonance, which decreases the tidal dissipation, allowing the increasing mode
frequency to catch up with the planet and sustain the resonant lock. The planet is thus
forced to “ride the mode” and evolve inwards at the same pace as the mode’s resonant
location (i.e., a resonance lock), and the planet’s orbital frequency increases as the
star’s oscillation mode frequency increases (see Figure 4.2, right panel). The mode
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Figure 4.2: The life of a planet undergoing resonance locking with a 1𝑀⊙ star. Left:
each line marks the frequency of a stellar g mode in the inertial frame, while the red
line is the planet’s tidal forcing frequency, which equals twice the orbital frequency
in the inertial frame. We only plot one out of three g modes for clarity. A planet
born at ∼ 700 Myr in a 3-day orbit will soon get trapped in resonance with one of
the modes, causing it to migrate inward via resonance locking. Right: zoom-in on
the moment where resonance locking is first established.

evolution timescale 𝑡𝛼 ≡ 𝜔𝛼/ ¤𝜔𝛼 hence determines the tidal migration timescale
𝑡tide, which is directly related to 𝑄′ by Equation 4.1.

Stellar Models

To make quantitative predictions, we construct solar-metallicity stellar models with
the MESA stellar evolution code [56, 59, 57, 58, 60], and we compute their non-
adiabatic oscillation modes with the GYRE pulsation code [70, 69, 27]. Example
inlists are given in the supplementary materials. The models start at zero-age main
sequence (ZAMS) with a spin period of 3 days, though we do not include rotational
effects within the MESA model. The nontidal angular momentum loss rate is
assumed to be similar to Skumanich’s law and is calculated via [65, 39]

¤𝐽∗,ex = 𝐾𝑤 𝐼∗Ω
3
s

(
𝑀

𝑀⊙

)−1/2 (
𝑅

𝑅⊙

)1/2
, (4.4)

where 𝐾𝑤 ≈ −6 × 10−12 day is a constant fitted by the Sun’s spin period and age.

In Figure 4.3 we plot mode evolution timescales 𝑡𝛼 for g modes in stellar models
with different masses. The example g modes we plot have periods of 1.5 days in the
inertial frame (i.e., they would be resonant with a planet at 𝑃orb = 3 days) at a stellar
age of 700 Myr. We see that 𝑡𝛼 is usually comparable to the star’s main-sequence
lifetime 𝑡MS. The evolution time scale is slightly shorter near the beginning and
end of the main sequence when the star’s structure changes more rapidly. For the
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Figure 4.3: Mode evolution timescales 𝑡𝛼 ≡ 𝜔𝛼/ ¤𝜔𝛼 of example g modes in 0.8,
1.0 and 1.2𝑀⊙ models. The selected g modes have periods of 1.5 days in the
inertial frame at 700 Myr. The mode frequencies typically increase with the star’s
Brunt-Väisälä frequency as the star evolves. Less massive models have longer mode
evolution timescales due to their longer main-sequence lifetime 𝑡MS. The 1.2𝑀⊙
model has a negative 𝑡𝛼 from about 1.7 to 3.7 Gyr, during which time inward
migration via resonance locking cannot occur.

1.2𝑀⊙ model, the g mode frequencies first increase and then decrease with time due
to a growing convective core, causing the value of 𝑡𝛼 to diverge and then become
negative. During that time, inward migration via resonance locking cannot occur
because the resonance locations move away from the star rather than toward it.

Tidal Migration Timescale and Quality Factor

As discussed above, during resonance locking a star’s mode frequency remains
nearly equal to the tidal forcing frequency [20]: 1

𝜔𝛼 ≃ 𝜔f = 𝑚(Ωorb −Ωs) (4.5)

at all times. Differentiating this equation over time leads to the locking criterion

¤𝜔𝛼 ≃ ¤𝜔f = 𝑚( ¤Ωorb − ¤Ωs) . (4.6)
1In [20] 𝜔𝛼 = 𝑚(Ωs − Ωorb) during resonance locking. Here we flip the sign for convenience

since the stellar spin frequency is usually much smaller than the orbital frequency for short-period
exoplanet systems.
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Combining the above equations and defining the spin evolution timescale 𝑡s ≡
Ωs/ ¤Ωs, we immediately arrive at the (inverse of) the tidal migration timescale

𝑡−1
tide ≡ − ¤𝑎tide

𝑎
=

2
3
¤Ωorb

Ωorb
=

2
3

(
𝑡−1
𝛼 − Ωs

Ωorb
(𝑡−1
𝛼 − 𝑡−1

s )
)
. (4.7)

However, when tidal migration occurs, the planet adds angular momentum to the
stellar spin, which means 𝑡s and 𝑡tide are related. This is especially important for
systems with massive planets, as shown in [42]. Additionally, the system may lose
angular momentum due to magnetic braking of the host star. To account for these
factors, recall that the total angular momentum 𝐽tot of the star-planet system is

𝐽tot = 𝐽∗ + 𝐽p = 𝐼∗Ωs + 𝑀p
√︁
𝐺𝑀∗𝑎 , (4.8)

where 𝐼∗ is the moment of inertia of the star. Defining the system’s change in total
angular momentum as ¤𝐽∗,ex, we have

¤𝐽∗,ex = ¤𝐼∗Ωs + 𝐼∗ ¤Ωs −
1
2
𝐽p𝑡

−1
tide , (4.9)

assuming constant stellar/planetary masses as appropriate in most exoplanet systems.
If we define evolution timescale for the moment of inertia 𝑡𝐼 = 𝐼∗/ ¤𝐼∗ and the external
stellar spin evolution timescale 𝑡s,ex = 𝐽∗/ ¤𝐽∗,ex, this leads us to the relation

𝑡−1
s = 𝑡−1

s,ex − 𝑡−1
𝐼 +

𝐽p

2𝐽∗
𝑡−1
tide . (4.10)

Substituting Equation 4.10 into Equation 4.7, we get the final expression for 𝑡tide

𝑡tide =
3
2
Ωorb
¤Ωorb

=
3
2

(
1 −

𝐼p

3𝐼∗

) [
1
𝑡𝛼

− Ωs

Ωorb

(
1
𝑡𝛼

− 1
𝑡s,ex

+ 1
𝑡𝐼

)]−1
,

(4.11)

where 𝐼p = 𝑀p𝑎
2 is the moment of inertia of the planet’s orbit. The pre-factor

1 − 𝐼p/3𝐼∗ accounts for the angular momentum transport from the planet’s orbit to
the stellar spin, indicating that the tidal migration timescale becomes very short for
massive planets as 𝐼p approaches 3𝐼∗, and resonance locking cannot occur if 𝐼p > 3𝐼∗.
In practice, one can combine Equation 4.9 and Equation 4.11 to get a set of coupled
differential equations for Ωs(𝑡) and Ωorb(𝑡), and hence solve the full evolution of the
spin and orbit numerically. For most short-period exoplanet systems, Ωs is usually
negligible compared to Ωorb. 𝐼p is usually negligible compared to 𝐼∗, except for
high-mass or long-period planets.
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Figure 4.4: Several related timescales in the expression of 𝑡tide (Equation 4.11) for
our 1𝑀⊙ − 10𝑀⊕ model. Absolute values of negative quantities are plotted. At
later ages (𝑡 ≳ 3 Gyr), stellar rotation is negligible and the shortest timescale is
the mode evolution timescale 𝑡𝛼, such that 2𝑡tide/3 ≃ 𝑡𝛼 and the planet undergoes
orbital decay on a structural evolution time scale. At early ages, rapid stellar spin
creates competition between the two terms inside the square bracket of Equation
4.11, raising 𝑡tide.

In Figure 4.4, we plot the relevant evolution timescales for a 1𝑀⊙ star with a 10𝑀⊕

planet. The external spin evolution timescale 𝑡𝑠,ex is usually comparable to the stellar
age, and 𝑡𝐼 is always long during the main sequence. At early times when the star is
rapidly rotating, the second term in brackets in equation 4.11 contributes, increasing
the value of 𝑡tide. The star quickly spins down such that Ω𝑠 ≪ Ωorb, at which point
𝑡tide ∼ 3

2 𝑡𝛼 until the end of the main sequence. Hence, the tidal migration timescale
is primarily determined by the evolution timescale of the stellar oscillation mode in
resonance with the orbit.

The corresponding effective tidal quality factor during resonance locking is

𝑄′
RL =

9
2
𝑀p

𝑀∗

(
𝑅∗
𝑎

)5 (
1 −

𝐼p

3𝐼∗

)
×

[
1
𝑡𝛼

− Ωs

Ωorb

(
1
𝑡𝛼

− 1
𝑡s,ex

+ 1
𝑡𝐼

)]−1
(Ωorb −Ωs) .

(4.12)
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Figure 4.5: Effective tidal quality factor 𝑄′
RL (left) and tidal migration timescale

𝑡tide (right) due to resonance locking between a 1𝑀⊙ star with a 10𝑀⊕ planet. 𝑄′
RL

decreases sharply as the orbital period increases (see Equation 4.12), and increases
slowly with time due to the expansion of the star. In contrast, 𝑡tide remains nearly
constant within this parameter space. The primary exception is the red feature at
very early ages, which is caused by rapid stellar rotation that creates a divergence
in 𝑡tide (Equation 4.11) and 𝑄′

RL. To the left of that feature (hatched regions), 𝑡tide is
negative and inward migration via resonance locking cannot occur.

When Ω𝑠 ≪ Ωorb as appropriate at most stellar ages, this reduces to

𝑄′
RL ≃ 9

2
𝑀p

𝑀∗

(
𝑅∗
𝑎

)5
𝑡𝛼Ωorb

≈ 9
2
(2𝜋)13/3𝑀p𝑅

5
∗

𝐺5/3𝑀
8/3
∗

𝑡𝛼𝑃
−13/3
orb .

(4.13)

By solving for the evolution of internal oscillation mode frequencies in stellar
models, we can quickly compute the corresponding tidal quality factor resulting
from resonance locking. Equation 4.13 evaluates to

𝑄′
RL ≃ 2 × 106×(
𝑀p

𝑀J

) (
𝑀∗
𝑀⊙

)−8/3 (
𝑅∗
𝑅⊙

)5 (
𝑡𝛼

5 Gyr

) (
𝑃orb

2 days

)−13/3
.

(4.14)

That is, 𝑄′
RL is proportional to the planet mass, and it has a −13/3 power-law

dependence on the orbital period. This is very different from the prescription of
constant 𝑄′ that is often assumed in the literature.

Figure 4.5 shows the value of𝑄′
RL for a 1𝑀⊙ star with a 10𝑀⊕ planet as a function of

orbital period and stellar age. 𝑄′
RL decreases sharply as the orbital period increases,

and it increases somewhat as a function of age primarily because the stellar radius
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increases slightly, as we would expect from Equation 4.12. In contrast, the value of
𝑡tide ≃ 3

2 𝑡𝛼 remains nearly constant within this parameter space.

An exception is at early ages, where the stellar spin is larger than a critical frequency
such that the second term in the square bracket of Equation 4.11 is larger than the
first, which occurs at approximately

Ωs = Ωs,crit ≃
|𝑡s,ex |

|𝑡s,ex | + 𝑡𝛼
Ωorb , (4.15)

where we assumed 𝑡s < 0 for main-sequence magnetic braking (spin-down). This
would lead to a divergence of 𝑡tide and 𝑄′

RL. Physically, the divergence signals
the boundary where tidal migration due to resonance locking no longer occurs:
for a higher spin frequency (or lower orbital frequency) the resonant locations
move outward rather than inward. Since Ωs is still less than Ωorb according to
Equation 4.15, tidal dissipation would still push the planet inward, and the planet
would evolve through the resonances rather than becoming locked in resonance.
The colored hatched regions of Figure 4.5 indicate these regions where resonance
locking cannot occur.

At even higher spin frequencies where Ω𝑠 > Ωorb (gray regions of Figure 4.5),
the planet would migrate outward, in the same direction as the resonant locations,
such that outward migration via resonance locking could occur. This effect could
potentially drive rapid outward migration of short-period planets at very young ages,
but we do not study that process in this paper.

Nonlinear Wave Dissipation
Validity of linear theory

The whole theory of resonance locking is based on a linear analysis of dynamical
tides [19]. After the waves get excited at the radiative/convective interface inside
a star, they propagate toward the center and are geometrically focused such that
their amplitudes increase. We thus expect that resonance locking may not occur
if the waves become sufficiently nonlinear near the star’s center. Specifically, the
dominant nonlinear term in the fluid momentum equation is 𝜉 · ∇𝜉 ∼ 𝜉 |𝑑𝜉𝑟/𝑑𝑟 | for g
modes. Hence, the quantity |𝑑𝜉𝑟/𝑑𝑟 | naturally serves as a measure of nonlinearity:
if |𝑑𝜉𝑟/𝑑𝑟 | ≳ 1, then nonlinear effects become very strong, typically causing wave
breaking near the center of the star [6] such that standing g modes no longer exist,
and resonance locking cannot occur. In fact, nonlinear g mode damping occurs at
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smaller g mode amplitudes (see Section 4.2), further limiting the situations in which
resonance locking can operate.

When resonance locking does occur, the amplitude of oscillating modes can be
calculated as follows: the energy and angular momentum dissipation rates are
determined by the tidal migration rate of the planet (Equation 4.11). Since energy
and angular momentum are conserved, this allows us to compute the corresponding
wave amplitude, given a wave damping rate (see [19]).2 The result is

|𝑎𝛼 |RL =
1
2

���� 𝑚Ωorb

𝜒𝛼𝜔𝛼𝛾𝛼𝑡𝛼,in

����1/2
, (4.16)

where 𝜒𝛼 ≡ 12(𝑀∗ + 𝑀p)𝑅2/(𝑀p𝑎
2) − 10/(3𝜅) for 𝑙 = 𝑚 = 2 modes and 𝜅 ≡

𝐼∗/(𝑀∗𝑅2
∗) is the dimensionless moment of inertia of the star. Above, 𝑡𝛼,in ≡ 𝜎𝛼/ ¤𝜎𝛼

is the mode evolution timescale in the inertial frame, with 𝜎𝛼 = 𝜔𝛼 +𝑚Ωs ≃ 𝑚Ωorb.

To test the linear approximation for resonantly locked modes in our models, we
evaluate the magnitude of |𝑑𝜉𝑟/𝑑𝑟 |. Figure 4.6 shows |𝑑𝜉𝑟/𝑑𝑟 | as a function of
radius for a 1.0𝑀⊙ model at 3.2 Gyr and a 1.2𝑀⊙ model 3 at 1.1 Gyr. For each
model we include the mode excited by an off-resonance 1𝑀J hot Jupiter and an on-
resonance 10𝑀⊕ mini-Neptune (with amplitude calculated via equation 4.16), both
of which are put in a 2-day orbit. We find that for all models, the g mode nonlinearity
indeed increases near the center of the star due to geometrical focusing. However,
in the model with a convective core (1.2𝑀⊙ model), gravity waves do not propagate
into the stellar core, and the g mode always remains linear (|𝑑𝜉/𝑑𝑟 | ≲ 10−3). For the
model with a radiative core (1.0𝑀⊙ model), the resonantly locked mode excited by
a mini-Neptune comes close to the wave-breaking threshold (|𝑑𝜉/𝑑𝑟 | ∼ 1) but does
not exceed it. Interestingly, this mode has a larger amplitude than the non-resonant
mode excited by a hot Jupiter, demonstrating the great enhancement in amplitude
produced by the resonant forcing.

We note that the resonant locking amplitude computed above depends on the damp-
ing rate 𝛾𝛼 in equation 4.16. Weak nonlinear damping may increase the effective
value of 𝛾𝛼, decreasing the necessary mode amplitude for resonance locking. We
revisit this issue in Section 4.2.

2Equation 4.16 follows from [19] for 𝑁 = 𝑚 = 2 as appropriate for nearly circular orbits.
3In the 1.2𝑀⊙ model, there is a “jumping core boundary” issue that prevents us from directly

solving the mode evolution timescale. We hence smooth the mode frequency solution by fifth-order
polynomials. This is discussed in detail in Appendix 4.6.
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Figure 4.6: Linearity tests for tidally excited g modes in our 1.0𝑀⊙ (top panel) and
1.2𝑀⊙ (bottom panel) models. For each model we compute the value of |𝑑𝜉𝑟/𝑑𝑟 |
for an off-resonance 1𝑀J hot Jupiter (blue line) and an on-resonance 10𝑀⊕ mini-
Neptune (red line), both of which are put in a 2-day orbit. We see that g modes in
the 1.2𝑀⊙ model are generally far from wave breaking due to their convective cores
(thick lines) which prevent the g modes from propagating near the stellar center. For
the 1𝑀⊙ model with a radiative core, g modes near the stellar center are much more
nonlinear but do not reach wave-breaking amplitudes (gray shaded region).

Wave Breaking

When nonlinear wave breaking occurs near the stellar center, the waves overturn
the stratification and are efficiently absorbed [5, 6]. The tidally excited gravity
waves can then be treated as traveling waves rather than standing g modes, and the
corresponding energy dissipation rates have been closely examined in several works
[78, 25, 28, 4]. Specifically, [5] compute the corresponding tidal quality factor for
wave breaking:

𝑄′
WB = 105

(
G⊙
G

) (
𝑀

𝑀⊙

)2 (
𝑅⊙
𝑅

) (
𝑃tide

0.5 days

)8/3
, (4.17)

where 𝑃tide = 2𝜋/𝜔f is the tidal forcing period and G is a parameter that depends
on the stellar structure and is defined in [4].

Nonlinear wave breaking in Sun-like stars only occurs for planets with 𝑀 ≳
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3𝑀J(𝑃/1 d)−1/6, according to [5]. This appears roughly consistent with the calcula-
tion of linear mode amplitude in Figure 4.6. Hence, in our calculations of planetary
evolution in Section 4.4, we only use equation 4.17 for the most massive exoplanets.

Weakly Nonlinear Damping

[16] have examined the nonlinear damping of g modes tidally excited by hot Jupiters
with periods 𝑃 ≲ 4 days in Sun-like stars. They examined the weakly nonlinear case
where the g waves do not break, but they are sufficiently nonlinear to excite daughter
and granddaughter modes that dissipate their energy. They found that even for
off-resonance hot Jupiters (like the model shown in Figure 4.6), nonlinear damping
is sufficient to wipe out resonances, i.e., the energy dissipation rate is the same
for resonant and non-resonant modes. Our on-resonance mini-Neptune in Figure
4.6 excites even larger oscillations than an off-resonance hot Jupiter, meaning that
nonlinear damping will dominate over linear damping before the resonant amplitude
of equation 4.16 is reached.

However, [16] also found that nonlinear energy dissipation is much smaller for
off-resonance planets with 𝑀𝑝 ≲ 0.3𝑀J. For a 10𝑀⊕ planet, this implies that
the nonlinear energy dissipation rate is small away from resonance and will greatly
increase as the planet moves toward a resonance such that the mode amplitude
increases and nonlinear dissipation ramps up. In essence, the total damping rate 𝛾
in the expression for the mode amplitude is itself a function of the mode amplitude
in this situation. If 𝛾 becomes too large near resonance, the resonance will be
“saturated" (i.e., the blue curve in Figure 4.1 will be moved upward near resonance)
such that the resonance locking fixed point does not exist.

To address this possibility, in Appendix 4.6 we attempt to extrapolate the results of
[16] to low-mass planets below ≃ 0.3𝑀J. Using the resulting nonlinear damping
rate in place of the linear damping rate in equation 4.3 results in the orange curve
in Figure 4.1, in which the nonlinear damping makes the resonance wells much
shallower and wider. The planet may become trapped in resonance if its orbital
period is short enough (𝑃orb ≲ 1.7 days in Figure 4.1), though we emphasize
that more detailed nonlinear coupling calculations are needed for reliable results.
This suggests that resonance locking may occur for sufficiently low-mass planets at
sufficiently short periods, though the exact mass threshold requires a more accurate
calculation of nonlinear damping.

[16] finds that the following quality factor provides a good fit to their calculations
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for sufficiently massive planets around Sun-like stars:

𝑄′
EW = 2 × 105

(
𝑀p

𝑀J

)1/2 (
𝑃tide

0.5 days

)2.4
. (4.18)

Based on their results, equation 4.18 breaks down for planet masses with 𝑀 ≲

0.3𝑀J, so we only use this formula for planets in the range 0.3𝑀J ≤ 𝑀𝑝 ≤ 3𝑀J in
our calculations of orbital evolution in Section 4.4.

We see that in both Equation 4.17 and Equation 4.18, the effective tidal quality factor
increases with the orbital period, in stark contrast to the prediction of resonance
locking where 𝑄′ decreases with orbital period. This entails that resonance locking
may be more important at longer orbital periods (so long as it can operate), while
nonlinear dissipation is likely to dominate at short orbital periods, with important
differences in long-term behavior of real systems (see Section 4.4).

We conclude that resonance locking will not be prevented by nonlinear effects in
stars with convective cores, but nonlinear damping will prevent resonance locking
from occurring for hot Jupiters around Sun-like stars. It is unclear whether nonlinear
damping will prevent resonance locking of low-mass (𝑀 ≲ 0.3𝑀J) planets, and this
should be studied in future work.

4.3 Comparison with Observations
Comparison with Penev et al. 2018
[63] analyzed 188 known hot Jupiter systems to constrain their effect tidal factors
based on an improved method from [62]. They managed to constrain two-sided
limits on 𝑄′ for 35 systems, and to derive lower bounds on 𝑄′ for another 40
systems, while the remaining systems in their sample did not lead to meaningful
constraints. Of the 75 systems they studied, they found a clear trend toward lower
𝑄′ for larger 𝑃tide, where 𝑃tide ≡ (𝑃−1

orb − 𝑃
−1
spin)

−1/𝑚. The trend is then fitted by the
following power-law formula (see Figure 4.7 or Figure 2 in [63]):

𝑄′ = max
[
106.0

(
𝑃tide

1days

)−3.1
, 105

]
. (4.19)

When resonance locking occurs and stellar spin is negligible compared to the orbit,
Equation 4.14 predicts 𝑄′ ≈ 2 × 106 (𝑃tide/1 day)−13/3 for fiducial hot Jupiter pa-
rameters. This simple analysis immediately leads to a similar power-law trend to
the fitted formula 4.19, but with no free parameters. In reality, we expect significant
scatter due to the variation of other factors in equation 4.14 away from fiducial
parameters (e.g., variations in 𝑅∗ and 𝑀p translate to variations in 𝑄′).
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Figure 4.7: Dependence of 𝑄′ on tidal period as predicted by resonance locking
(red line), nonlinear damping (blue line) and wave breaking (green line) for models
of a Sun-like star with a 1𝑀J planet. We also plot the inferred values of 𝑄′ for
individual systems from [63], and their power-law fit (orange dashed line). Black
points are cases for which 𝑄′ was bounded within two orders of magnitude, while
thinner gray symbols are cases with weaker constraints. While the prediction of
resonance locking is very similar to the trend from [63], other explanations for this
trend may be possible (see text).

To compute the exact value of 𝑄′ as a function of 𝑃tide for resonance locking, we
construct a 1𝑀⊙ stellar model with MESA and compute non-adiabatic oscillation
modes. Assuming a stellar rotational evolution based on the modified Skumanich
law (Equation 4.4), we track the run of 𝑄′ upon 𝑃tide for a typical 1𝑀J planet
at the stellar age of 5 Gyr, using equation 4.12. The results are shown in Figure
4.7. We find that the predicted trend is remarkably similar to the power-law fit by
[63], though slightly offset to higher values of 𝑄′. Overall, the resonance locking
prediction fits the data very well. We also plot the predicted relations from wave
breaking (Equation 4.17) and weakly nonlinear dissipation (Equation 4.18). Those
models predict that 𝑄′ increases as 𝑃orb increases, opposite to the trend inferred by
[63].

While these results at first glance appear to provide compelling evidence for the
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operation of resonance locking in hot Jupiter systems, we caution that other ex-
planations for the trend in 𝑄′ from [63] should be examined. From a theoretical
perspective, resonance locking likely cannot operate for Jupiter-mass planets around
Sun-like stars due to the nonlinear damping discussed in Section 4.2. Hence, we are
hesitant to ascribe the trend in𝑄′ from [63] to resonance locking, though resonance
locking could provide a nice explanation if nonlinear mode dissipation is much less
efficient than found by [16].

Another possibility worth considering is that the inferred trend in𝑄′ from [63] does
not arise from tidal spin-up of the host stars. [63] infer the value of the host stars’
𝑄′ by combining age estimates with measurements of spin period. Rapidly rotating
host stars (compared to typical field stars) are often inferred to have been tidally
spun up by their hot Jupiter companions, entailing that the tidal spin-up time scale is
comparable to the main-sequence life time of the host star. This can be seen because
much shorter tidal spin-up times would result in the synchronization of the star or the
destruction of the hot Jupiter, while much longer ones would not increase the star’s
rotation significantly. Assuming 𝑡𝑠 = Ωs/ ¤Ωs = 10 Gyr, some algebra shows that
this requires a scaling𝑄′ ∼ 2× 106(𝑃tide/1 day)−4(𝑃spin/10days) (𝑀p/𝑀J)2, almost
identical to the trend shown in Figure 4.7. Hence, if one does not have accurate age
estimates and assumes that hot Jupiter hosts have similar ages to typical field stars,
it could yield a spurious scaling of 𝑄′ that is very similar to the trend found by [63].

Instead, we speculate that moderately rotating host stars of hot Jupiters are (in some
cases) simply young stars that are still spinning down, and that they have not been
substantially spun up by tides. This may be consistent with the young average ages of
hot Jupiter host stars found by [31]. In this case, it is very difficult to observationally
constrain the host star’s 𝑄′, except perhaps to place a lower limit. For massive
planets where nonlinear effects prevent resonance locking, we expect a trend in 𝑄′

similar to that predicted by [16] and [4]. Future work could aim to more accurately
constrain the ages of the hot Jupiter host stars in [63] to determine whether their
rapid rotation arises from youth or tidal spin-up.

Individual Hot Jupiter Systems
Here we summarize our prediction for the effective tidal𝑄′s of 15 real systems based
on resonance locking. Most of the systems are chosen from [55], who argue that
the orbital decay of these systems should be the easiest to observe. We also study
TRES-3b and WASP-4b which have new observational constraints [9, 45], and we
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include WASP-128b, a system with a very massive hot Jupiter.

The observational properties of these systems are summarized in Table 4.2. For each
system, we construct a number of stellar models to fit their host stars with different
initial masses and metallicities within the observational errors and locate the model
that matches the other observed properties of the star. We are able to fit the masses,
radii, metallicities, ages, and effective temperatures within the observational error
(see Table 4.2 for a summary) for all the host stars except KELT-16b. A typical
inlist file is given in the supplementary material.

For each stellar model, we compute ℓ = 2 non-adiabatic oscillation modes with
GYRE, with typical inlist files given in the supplementary material. For each
system, we assume a negligible spin of the host star and identify the oscillation
mode resonant with the tidal forcing, and we calculate the value of 𝑡𝛼 for that
mode. The effective tidal𝑄′s are then calculated via Equation 4.12 using our model
properties. We summarize the predictions for resonance locking in Table 4.1, along
with predictions for tidal migration rates due to wave breaking [4] and nonlinear
dissipation by Equation 4.18 [16]. Below are detailed discussions for each system.
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Name 𝑄′
obs 𝑄′

RL 𝑄′
WB 𝑄′

EW Core Status 𝑡tide,RL (Gyr)
HAT-P-23b > (3.6 ± 1.1) × 105 6.0 × 107 3 × 105 4.6 × 105 radiative? 5.6
HATS-18b 2.1 × 108 7 × 104 1.9 × 105 radiative 9.7
KELT-16b > (0.5 ± 0.1) × 105 5.1 × 108 5 × 105 3.1 × 105 convective 9.8
OGLE-TR-56b > (4.4 ± 1.3) × 105 1.1 × 108 106 3.7 × 105 convective 12.9
TRES-3b (5.5 ± 4.2) × 104 1.2 × 107 4.3 × 105 5.3 × 105 radiative 8.0
WASP-4b (1.8 ± 0.2) × 104 1.1 × 107 2 − 3 × 105 4.4 × 105 radiative 9.9
WASP-12b (1.1 ± 0.1) × 105 1.9 × 108 0.18 − 3 × 106 3.0 × 105 convective? 7.2
WASP-18b > (1.0 ± 0.2) × 106 3.3 × 108 2 × 106 5.8 × 105 convective 4.7
WASP-19b (3.1 ± 0.9) × 105 2.2 × 108 0.4 − 0.5 × 105 1.2 × 105 radiative 9.7
WASP-43b > (2.5 ± 0.2) × 105 2.3 × 108 1 × 105 1.7 × 105 radiative 26.6
WASP-72b > (1.2 ± 0.8) × 103 4.5 × 106 > 2 × 1012 1.7 × 106 radiative 0.8
WASP-103b > (6.4 ± 0.6) × 104 4.0 × 108 2 × 105 2.1 × 105 convective 9.7
WASP-114b 4.5 × 107 2 × 106 7.6 × 105 convective 7.9
WASP-122b 6.4 × 106 2.3 × 105 8.2 × 105 convective 2.4
WASP-128b (no RL) 0.03 − 1.3 × 108 8.2 × 106 radiative 20.9

Table 4.1: Observed/calculated tidal quality factor 𝑄′, core status and resonance locking induced 𝑡tide, RL of the systems we study. 𝑄′
obs shows the

observed constraints from [55, 9] and [45]. 𝑄′
RL is the predicted tidal factor from the best-fit resonance locking model. 𝑄′

WB is the predicted tidal factor
from gravity wave breaking [4], and 𝑄′

EW is the predicted tidal factor from nonlinear g mode dissipation [16]. We also show the convective/radiative
core status of our models. We emphasize that for massive planets like these, resonance locking is only expected to occur in stars with convective cores,
and wave breaking/nonlinear dissipation is expected to dominate stars with radiative cores. We bold the 𝑄′ values of our inference of the appropriate
tidal theory for each system, while the other values are left for reference. The 𝑡tide, RL values show that most system have long tidal migration timescales
if they experience resonance locking. Note: some authors use a different definition of 𝑄′ from ours. We have corrected their results to make them
consistent with our definition, so the numbers here may appear different from the original literature.
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1. HAT-P-23b: A planet of 2.09𝑀J in a 1.21-day orbit around a G-type dwarf
[3]. Our best-fit model is a 1.10𝑀⊙ star with a radiative core. Lack of detected
orbital decay requires 𝑄′ > (3.6 ± 1.1) × 105 [55]. Our resonance locking
calculation predicts 𝑄′

RL = 6.0 × 107, with 𝑡tide = 5.6 Gyr, but resonance
locking is not expected due to nonlinear effects in the radiative core. [4]
predicts 𝑄′

WB = 3 × 105 from calculations of wave breaking, but the best-fit
model in that work has a convective core. Weak nonlinear mode damping
gives 𝑄′

EW = 4.6 × 105. This is a promising system in which to observe tidal
decay if the core is indeed radiative.

2. HATS-18b: A planet of 1.98𝑀J in a 0.84-day orbit around a G-type star [61].
Our best-fit model is a 1.03𝑀⊙ star with a radiative core. No reliable constraint
on 𝑄′ could be found due to the lack of data [55]. Our resonance locking
calculation predicts 𝑄′

RL = 2.1 × 108, with 𝑡tide = 9.7 Gyr, but resonance
locking is not expected due to nonlinear effects since the star has a radiative
core and a massive planet. [4] predicts 𝑄′

WB ≈ 7 × 104 from calculations
of wave breaking, weak nonlinear mode damping predicts 𝑄′

EW = 1.9 × 105.
The results make HATS-18b a very promising candidate in which to observe
orbital decay.

3. KELT-16b: A planet of 2.75𝑀J in a 0.97-day orbit around an F-type star
[50]. Our best-fit model is a 1.18𝑀⊙ star with a convective core. Lack of
detected orbital decay requires 𝑄′ > (0.5 ± 0.1) × 105 [55]. Our resonance
locking calculation predicts 𝑄′

RL = 5.1 × 108, with 𝑡tide = 9.8 Gyr, which is
consistent with the observed lower limit, indicating no tidal decay should have
been observed.

4. OGLE-TR-56b: A planet of 1.39𝑀J in a 1.21-day orbit around an F-type star
[64, 68]. Our best-fit model is a 1.23𝑀⊙ star with a convective core. Lack of
detected orbital decay requires 𝑄′ > (4.4 ± 1.3) × 105 [55]. Our resonance
locking calculation predicts 𝑄′

RL = 1.1 × 108, with 𝑡tide = 12.9 Gyr, which is
consistent with the observed lower limit, indicating no tidal decay should be
observed.

5. TRES-3b: A planet of 1.92𝑀J in a 1.306-day orbit around an G-type dwarf
[49]. Our best-fit model is a 0.89𝑀⊙ star with a radiative core. Observations
indicate𝑄′ ≈ (5.5± 4.2) × 104 [45], potentially detecting rapid orbital decay.
Our resonance locking calculation predicts 𝑄′

RL = 1.2 × 107, with 𝑡tide =
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8.0 Gyr, but resonance locking is not expected due to nonlinear damping in
the radiative core. [4] predicts 𝑄′

WB = 4.3 × 105 from calculations of wave
breaking, slightly larger than the measured value. Weak nonlinear mode
damping predicts 𝑄′

EW = 5.3 × 105. Further observations should attempt to
verify the result of [45] and will help calibrate models of orbital decay via
nonlinear g mode damping in the core.

6. WASP-4b: A planet of 1.186𝑀J in a 1.338-day orbit around a main-sequence
star [9, 66]. Our best-fit model is a 0.83𝑀⊙ star with a radiative core.
Observations suggest 𝑄′ = (1.8 ± 0.2) × 104 [9], but [8] recently discovered
a third massive companion that might cause the shift in transit times. Our
resonance locking calculation predicts 𝑄′

RL = 1.1 × 107, with 𝑡tide = 9.9 Gyr,
but resonance locking is not expected due nonlinear damping in the radiative
core. [4] predicts𝑄′

WB = 2−3×105 from calculations of wave breaking. Weak
nonlinear mode damping predicts𝑄′

EW = 4.4×105. Further observations will
shed more light on the system and have a good chance of confirming the
detection of orbital decay.

7. WASP-12b: A planet of 1.47𝑀J in a 1.09-day orbit around a late F-type
main-sequence star or a subgiant [33, 74, 13]. Our best-fit model is a 1.44𝑀⊙

star with a convective core, but sub-giant models without convective cores
are also compatible with the data [2]. Observations indicate orbital decay
with a quality factor 𝑄′ = (1.1 ± 0.1) × 105 [54, 55]. Our resonance locking
calculation predicts𝑄′

RL = 1.9×108, three orders of magnitude too high, with
𝑡tide = 7.2 Gyr. [4] finds𝑄′

WB ranging from 1.8×105 to 3×106 assuming that
gravity waves break near a radiative core, based on different stellar models
they choose. Weak nonlinear mode damping predicts 𝑄′

EW = 3.0 × 105.
The measured decay rate thus indicates that the star is indeed a sub-giant
undergoing orbital decay via nonlinear gravity wave damping.

We speculate that WASP-12b was previously migrating inward slowly via
resonance locking when the host star was on the main sequence and had
a convective core. When the core became radiative at the end of the main
sequence, nonlinear damping became effective, driving the much faster orbital
decay we see today. This may help alleviate fine-tuning problems in formation
models for WASP-12b, allowing the planet to survive until the end of the main
sequence, while also explaining the rapid inward migration at the start of the
subgiant phase.
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8. WASP-18b: A massive planet of 11.4𝑀J in a 0.94-day orbit around a rel-
atively hot (𝑇eff = 6431 K) F-type star [36, 67]. The mass of the host star
is a bit uncertain, with a measurement of 1.46 ± 0.29𝑀⊙ reported. Our
best-fit model falls at the low end of the mass measurement, with a mass
of 1.17𝑀⊙ and a convective core. Lack of detected orbital decay requires
𝑄′ > (1.0 ± 0.2) × 106 [55]. Our resonance locking calculation predicts
𝑄′

RL = 3.3 × 108, with 𝑡tide = 4.7 Gyr, which is consistent with the observed
lower limit, indicating no tidal decay should have been observed.

9. WASP-19b: A planet of 1.139𝑀J in a 0.79-day orbit around a Sun-like star,
making it the hot Jupiter system with the shortest period yet observed [34,
44]. Our best-fit model is a 0.91𝑀⊙ star with a radiative core. Observations
indicate 𝑄′ = (3.1 ± 0.9) × 105, but the authors encourage caution due to the
scanty data [55]. Our resonance locking calculation predicts𝑄′

RL = 2.2×108,
with 𝑡tide = 9.7 Gyr, but resonance locking is not expected due to nonlinear
effects in the radiative core. [4] predicts𝑄′

WB ≈ 4− 5× 104 from calculations
of wave breaking, smaller than the observational constraint. Weak nonlinear
mode damping predicts𝑄′

EW = 1.2×105. Further observations of this system
will hence be very useful to constrain tidal theories.

10. WASP-43b: A planet of 2.034𝑀J in a 0.81-day orbit around a K-type dwarf
[35, 22]. Our best-fit model is a 0.70𝑀⊙ star with a radiative core. Lack of
detected orbital decay requires 𝑄′ > (2.5 ± 0.2) × 105 [55]. Our resonance
locking calculation predicts 𝑄′

RL = 2.3 × 108, with 𝑡tide = 26.6 Gyr, but
resonance locking is not expected due to nonlinear effects in the radiative core.
[4] predicts 𝑄′

WB ≈ 105 from calculations of wave breaking, comparable to
the lower limit from observations. Weak nonlinear mode damping predicts
𝑄′

EW = 1.7 × 105. This is another good candidate for orbital decay to be
detected in the near future.

11. WASP-72b: A planet of 1.546𝑀J in a 2.22-day orbit around an F-type
star [24]. Our best-fit model is a 1.33𝑀⊙ subgiant with a radiative core.
Lack of detected orbital decay requires 𝑄′ > (1.2 ± 0.8) × 103 [55]. Our
resonance locking calculation predicts 𝑄′

RL = 4.5 × 106, with 𝑡tide = 0.8 Gyr,
but resonance locking is not expected due to nonlinear damping in the radiative
core. [4] predicts a very large𝑄′

WB > 1012 from calculations of wave breaking.
However, that work appears to use a stellar model with surface temperature
much higher than the observed temperature of 𝑇 = 6250 ± 100 K from [24],



114

likely translating to a predicted value of𝑄′ that is far too high. Weak nonlinear
mode damping predicts 𝑄′

EW = 1.7 × 106. Future models should re-examine
the theoretical predictions.

12. WASP-103b: A planet of 1.51𝑀J in a 0.93-day orbit around a late F-type star
[23, 14]. Our best-fit model is a 1.18𝑀⊙ star with a convective core. Lack of
detected orbital decay requires 𝑄′ > (6.4 ± 0.6) × 104 [55]. Our resonance
locking calculation predicts 𝑄′

RL = 4.0 × 108, with 𝑡tide = 9.7 Gyr, which is
consistent with the observed lower limit, indicating no tidal decay should have
been observed.

13. WASP-114b: A planet of 1.769𝑀J in a 1.55-day orbit around an early G-
type star [7]. Our best-fit model is a 1.24𝑀⊙ star with a convective core.
Being a newly discovered system, no reliable constraint on 𝑄′ could be found
due to its lack of data [55]. Our resonance locking calculation predicts
𝑄′

RL = 4.5 × 107, with 𝑡tide = 7.9 Gyr, and the linearity of resonant modes
shows resonance locking could occur. Orbital decay is unlikely to be detected
for this system unless the star is less massive and contains a radiative core.

14. WASP-122b: A planet of 1.284𝑀J in a 1.71-day orbit around a G-type star
[71]. Our best-fit model is a 1.25𝑀⊙ star with a convective core. Being a
newly discovered system, no reliable constraint on𝑄′ could be found due to its
lack of data [55]. Our resonance locking calculation predicts𝑄′

RL = 6.3×106,
with 𝑡tide = 2.4 Gyr, and the linearity of resonant modes shows resonance
locking could occur. Orbital decay is unlikely to be detected for this system
unless the star is less massive and contains a radiative core.

15. WASP-128b: A brown dwarf of 37.19𝑀J in a 2.209-day orbit around an
G-type dwarf [37]. Our best-fit model is a 1.13𝑀⊙ star with a radiative
core. No observational constraint on 𝑄′ is available at current time. The
large companion mass makes the tidal stellar spin-up important, and we do
not expect resonance locking in this system because 𝐼p > 3𝐼∗ in Equation 4.11
such that resonance cannot be maintained. [4] predicts 𝑄′

WB from 3 × 106 to
1.3 × 108 from calculations of wave breaking, based on the different rotation
periods in the stellar models in that work. Weak nonlinear mode damping
predicts 𝑄′

EW = 8.2 × 106. Further observations should attempt to measure
the stellar spin rate and could potentially detect orbital decay.
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To summarize, for the hot Jupiter systems above, we predict orbital decay timescales
of a few gigayears for host stars with convective cores in which resonance locking
can operate. Orbital decay via nonlinear mode damping [16] or wave breaking [4]
is likely to operate in stars with radiative cores, causing shorter tidal decay time
scales that can be more easily observed. Future observations can help confirm our
prediction of more rapid orbital decay of hot Jupiters in stars with radiative cores.

4.4 Discussion
System Evolution: The Big Picture
We have argued that resonance locking, nonlinear g mode dissipation, and gravity
wave breaking can all operate in short-period exoplanet systems. In general, one
must solve for the angular momentum evolution (equation 4.9) with appropriate tidal
dissipation physics (i.e. the appropriate value of 𝑄′ from equation 4.1) to track the
full orbital evolution of the system. We expect that resonance locking is the dominant
tidal dissipation mechanism for stars massive enough to have convective cores
(𝑀 ≳ 1.1𝑀⊙), where nonlinear damping is weak and g modes can be resonantly
excited. In these stars, equation 4.11 can be used to estimate the tidal dissipation
rate. Heartbeat stars with large-amplitude, tidally excited g modes (e.g., [19]) are
proof that nonlinear damping does not prevent resonant mode excitation in these
stars, even for stellar-mass companions.

For stars with radiative cores, a planet more massive than a few Jupiter masses causes
gravity wave breaking near the core [5] such that tidal dissipation is determined by
equation 4.17. For Jupiter-mass exoplanets approximately in the range 0.3𝑀J ≲

𝑀𝑝 ≲ 3𝑀J, wave breaking does not occur, but nonlinear mode damping prevents
resonant excitation and produces tidal dissipation according to equation 4.18 [16].
Resonance locking is likely to be the dominant dissipation mechanism for less
massive planets with 𝑀 ≲ 0.3𝑀J, though future work is needed to quantify this
number more accurately (see Section 4.2).

We hence study the orbital evolution of three fiducial exoplanet systems with masses
of 10𝑀⊕, 1𝑀J and 5𝑀J, in which resonance locking, nonlinear damping, and wave
breaking apply, respectively. We initialize calculations of orbital evolution for
planets in 3-day orbits around a 1𝑀⊙ star at an age of 700 Myr. We integrate the
combined equations of orbital decay (equation 4.2), spin evolution (equation 4.10)
and tidal theories (equation 4.12, 4.17 or 4.18) to track the full evolution of the
systems. We also integrate a system without planets (i.e. a star spinning down
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Figure 4.8: Left: the evolution of planetary orbital period (solid lines) and stellar
spin period (dashed lines) for a 1𝑀⊙ host star with a 10𝑀⊕ mini-Neptune model (red
lines), along with 1𝑀J (blue lines) and 5𝑀J (green lines) hot Jupiter models. In the
mini-Neptune model, resonance locking is at work, leading to a significant decrease
in orbital period during the evolution. Nonlinear mode damping for the 1𝑀J planet
and wave breaking for the 5𝑀J planet lead to tidal disruption on timescales of a few
gigayears. Right: the corresponding effective stellar tidal quality factor, 𝑄′, over
the course of each evolution.

purely by magnetic braking) for comparison. The results are shown in Figure 4.8.

For the 10𝑀⊕ mini-Neptune, resonance locking causes significant orbital decay
during the main sequence, with 𝑡tide ∼ 𝑡MS as typically expected from resonance
locking. We note that the effective tidal quality factor driving this planet’s inward
migration is initially quite small, with 𝑄′ < 105. Consequently, the planet migrates
much farther than typical parameterized tidal models with𝑄′ ∼ 105−106. Compared
to prior work, resonance locking typically predicts substantially more tidal migration
for low-mass planets at orbital periods 𝑃 ≳ 2 days. In this example, the planet has
migrated to ultrashort periods by the end of the main sequence, but it does not
plunge into its host star because the value of 𝑄′ increases at short periods in order
to maintain 𝑡tide ∼ 𝑡𝛼. Due to the relatively low mass of the planet, the stellar spin
is hardly influenced by the angular momentum input from the planet’s orbit.

For the 1𝑀J hot Jupiter where nonlinear mode damping dominates the dissipation,
the orbit initially decays more slowly than what resonance locking would predict
during the first∼ 7 Gyr, because resonance locking would predict a path very similar
to that of the 10𝑀⊕ planet above. The slow initial migration is due to the strong
period dependence of𝑄′ from equation 4.18, producing an initially large value of𝑄′.
However, the orbit decays very rapidly after the planet migrates to a critical period
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𝑃 ≲ 2 days, after which the planet is quickly tidally disrupted. Hence, nonlinear
mode coupling predicts rapid orbital decay for hot Jupiters with the shortest periods
of 𝑃orb ≲ 2 days, so that such systems are expected to be rare around Sun-like stars
with radiative cores. The final plunge also spins up the host star by a factor of ≈ 3.

A similar evolution occurs for the 5𝑀J planet, which is massive enough to trigger
wave breaking. The mass dependence of this mechanism (equation 4.17) entails
shorter migration times for more massive planets, so it takes less time (∼ 3.5 Gyr)
for tidal disruption to occur. The host star is highly spun up during the final plunge.

Hence, we conclude that hot Jupiters on short-period orbits around Sun-like stars
are likely to be destroyed during the main sequence. Short-period super-Earths and
mini-Neptunes are more likely to survive, though their orbits are expected to decay
significantly due to resonance locking.

Compatibility with Host Star Populations
Our main predictions appear to be consistent with the recent finding that hot Jupiter
host stars are on average slightly younger than field stars [31], implying that a
substantial fraction of hot Jupiters are destroyed before their host star evolves off the
main sequence. More detailed population modeling will be required to predict an
exact number, but we also predict that host stars of short-period (e.g., 𝑃orb ≲ 3 d) hot
Jupiters will be younger than host stars of long-period (e.g., 𝑃orb ≳ 4 d) hot Jupiters.
Noting also the well-known trend that higher-mass hot Jupiters have shorter orbital
periods on average (e.g., [52]), we predict that host stars of high-mass hot Jupiters
will be younger than host stars of low-mass hot Jupiters, for host stars of nearly the
same mass.

In stars with radiative cores, we predict that orbital decay for massive planets
(𝑀 ≳ 0.3𝑀J) at short periods (𝑃 ≲ 2 days) proceeds much more rapidly due to
nonlinear damping processes. Tidal destruction takes much longer if these processes
do not operate (Figure 4.8). Our resonance locking models indicate that wave
breaking rarely occurs in stars with convective cores, and the damping produced by
nonlinear mode coupling is also likely to be strongly reduced relative to Sun-like
stars. Hence, we predict slower orbital decay at short orbital periods and a higher
main-sequence survival fraction of hot Jupiters in stars with 𝑀 ≳ 1.2𝑀⊙ than of
their lower-mass counterparts.

For mini-Neptunes or less massive planets (𝑀 ≲ 0.1𝑀J), resonance locking is
probably the dominant tidal dissipation mechanism for stars both with and without
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convective cores. Resonance locking predicts 𝑡tide ≈ 10 Gyr for Sun-like stars
regardless of planet mass and orbital period, corresponding to an effective quality
factor of

𝑄′ ∼ 8 × 106 𝑀𝑝

3𝑀⊕

(
𝑃orb

0.5 day

)−13/3
. (4.20)

This is very close to the inferred constraint from [32] for ultrashort-period planets
(USPs), though we caution against comparing 𝑄′ values because they are very
sensitive to the stellar radius. Our predicted tidal migration time scale is comparable
to the main-sequence lifetime, consistent with the old ages of USP host stars, but
also allowing tidal orbital decay to have significantly shortened the period without
destroying the planet.

We can also rule out a naive extrapolation of the nonlinear damping model of [16]
to ultrashort-period planets, which predicts a tidal migration time scale of only
𝑡tide ≃ 4 Myr

(
𝑀𝑝/3𝑀⊕

)−0.5 (𝑃orb/0.5 d)6.7, corresponding to a tidal quality factor
of 𝑄′ ≃ 6 × 103 (

𝑀𝑝/3𝑀⊕
)0.5 (𝑃orb/0.5 day)2.4. This is inconsistent with the old

ages of host stars from [32], and corresponding inferred lower limits of 𝑄′ ≳ 107

for most USPs. Hence, the scaling of the nonlinear migration rate (Equation 4.18)
must break down for lower-mass planets as predicted by [16], likely because the
tidally excited gravity modes do not reach sufficient amplitude to transfer energy to
daughter modes.

System Evolution: Statistical Distributions
Resonance locking makes unique predictions for the statistical distributions of ex-
oplanet orbits. Consider exoplanets born at a given orbital period 𝑃i at a constant
rate 𝑅 = 𝑑𝑁 (𝑃i)/𝑑𝑡, and then migrating inward due to resonance locking/nonlinear
dissipation. For a steady-state distribution, the rate of planets migrating through
shorter periods is constant, i.e.

𝑑𝑁 (𝑃)
𝑑𝑡

=
𝑑𝑁 (𝑃i)
𝑑𝑡

= 𝑅 (4.21)

or

𝑑𝑁 (𝑃)
𝑑𝑎

=
𝑑𝑁 (𝑃)
𝑑𝑡

𝑑𝑡

𝑑𝑎
=
𝑅

¤𝑎
⇒ 𝑑𝑁 (𝑃)

𝑑 ln 𝑃
=

2
3
𝑅𝑡tide . (4.22)

For low-mass planets migrating inward via resonance locking, we expect 𝑡tide is
roughly constant, which entails 𝑑𝑁/𝑑 ln 𝑃 = constant, i.e., a uniform distribution
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over log 𝑃. For more massive planets migrating inward via nonlinear wave damping,
𝑡tide becomes strongly dependent on 𝑃. For nonlinear mode coupling, this implies

𝑑𝑁 (𝑃)
𝑑 ln 𝑃

∝ 𝑡tide ∝ 𝑃6.7 , (4.23)

such that the number of planets should fall very sharply with decreasing orbital
period.

However, there are many uncertainties that complicate this simple picture. First, the
observed distribution of exoplanets is not necessarily in a steady state. The number
of short-period exoplanets may be growing as more numerous exoplanets born at
longer periods migrate inward. Second, the birth-period distribution is also likely to
be a strong function of period [43], which complicates interpretation. To first order,
we expect resonance locking to shift the birth-period distribution to shorter periods
without changing its shape. We therefore expect a flatter distribution of exoplanets
at short periods when resonance locking operates, compared to nonlinear dissipation
or models with a constant stellar𝑄′ which destroy short-period planets more rapidly.

Recent studies may provide evidence for a distribution of Kepler planets sculpted by
resonance locking migration. For instance, Figures 2 and 3 of [80] show a relatively
uniform occurrence rate of planets with 𝑅p ≲ 2𝑅⊕ within the orbital period range
0.6 days ≲ 𝑃orb ≲ 2 days, which agrees with the basic prediction of resonance
locking. In contrast, the occurrence rate of hot Jupiters falls steeply toward short
orbital periods, as expected from nonlinear g mode damping for massive planets. A
prediction of resonance locking is that the occurrence rate of hot Jupiters should show
a flatter trend with orbital period around slightly more massive stars with convective
cores. Since resonance locking in individual hot Jupiter systems is generally hard to
detect due to the long tidal migration timescale, this may serve as the best prospect to
justify whether resonance locking is occurring in these systems. Future population
modeling should examine the short-period exoplanetary distribution resulting from
resonance locking in more detail.

As resonance locking typically predicts tidal migration timescales 2 − 3 orders of
magnitudes longer than nonlinear g mode dissipation for hot Jupiters at orbital
periods of ∼ 1 day (Table 4.1), we might expect short-period hot Jupiters orbiting
stars with convective cores (where resonance locking is operating) to be more
common than those orbiting Sun-like stars with radiative cores (where nonlinear
dissipation dominates). However, several additional factors may complicate this
picture: if the hot Jupiters are born at some minimum period (e.g., 3 days), the slow
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tidal migration induced by resonance locking might prevent them from reaching
short orbital periods before the massive star evolves off the main sequence. The
observed hot Jupiter population may also suffer from observational biases that
preferentially detect systems with certain types of host stars. While disentangling
these effects is beyond the scope of this paper, future population analyses may shed
more light on this issue.

Early and Late-time evolution
We have avoided modeling the early evolution (𝑡 ≲ 500 Myr) and post-main-
sequence evolution of exoplanet systems in this work. At early times, it is often
the case that inward migration via resonance locking cannot occur because resonant
locations move outward, as discussed in Section 4.2. However, in this case, rapidly
rotating young stars with 𝑃s < 𝑃orb could instead drive outward migration via res-
onance locking. It is not clear how far planets could be driven outward, but this
possibility should be investigated in future work. For example, resonance locking
via 𝑚 = 0 modes during the pre-main sequence evolution of stellar binaries likely
helps to circularize their orbits [79].

After the main sequence, the timescales for stellar evolution and those for mode
frequency evolution, 𝑡𝛼, decrease dramatically, naively resulting in much faster mi-
gration via resonance locking. However, post-main-sequence stars contain strongly
stratified radiative cores, likely making nonlinear damping in the core even more
efficient than in Sun-like stars. Hence, it is not clear whether resonance locking can
ever occur in subgiants or stars ascending the red giant branch.

Nonlinear damping and the maximum period for resonance locking
For massive planets, nonlinear damping likely dominates over linear mode damping
processes. This causes the resonances to saturate at lower mode amplitudes, de-
creasing the maximum period 𝑃max above which resonance locking cannot operate.
The orange line in Figure 4.1 demonstrates this qualitatively, but the crudeness of
our approximation of nonlinear damping prevents a quantitative prediction for 𝑃max.
Realistic calculations of nonlinear mode damping rates are needed to reliably predict
𝑃max. These calculations should be performed for planets of different masses and
orbital periods, as well as for stars of different masses and ages. This would allow
for better predictions of the statistical distribution of exoplanets as a function of
planet mass, orbital period, stellar mass, and stellar age.
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4.5 Conclusion
In this work, we study the orbital decay of short-period exoplanets via tidal resonance
locking, where planets fall into resonance with stellar oscillation modes and migrate
along with the resonant locations (Figure 4.2). When resonance locking between
planets and stellar gravity modes (g modes) operates, planetary orbits typically decay
on a mode evolution timescale, which is usually similar to the star’s main-sequence
lifetime. The tidal migration time scale is nearly independent of planet mass and
orbital period, such that the effective tidal quality factor 𝑄′ decreases toward longer
orbital periods and lower-mass planets (equation 4.14).

Resonance locking can be prevented by nonlinear damping that saturates (or elim-
inates) resonant mode excitation. Both the stellar structure and the planet mass
influence the nonlinearity of the tidally excited g modes. For solar-type host stars
with radiative cores, nonlinear effects become very important near the center of the
star, wiping out resonances. Hot Jupiters of 𝑀 ≳ 0.3𝑀J trigger efficient nonlinear
dissipation of gravity modes [16], and more massive planets (𝑀 ≳ 3𝑀J) cause
wave breaking [4]. In either case, energy dissipation has a very strong power-
law dependence on orbital frequency, with the tidal migration timescale increasing
sharply with orbital period. Resonance locking may operate for low-mass planets
(𝑀 ≲ 0.1𝑀J) around solar-type hosts, and future work should examine this regime.
Additionally, resonance locking can likely operate for planets of any mass that orbit
massive host stars with convective cores, which prevent gravity waves from reaching
the stellar center.

Based on stellar spin measurements, [63] recently inferred a strong period depen-
dence of the tidal quality factor𝑄′ of hot Jupiter host stars (Figure 4.7). If resonance
locking occurs in hot Jupiter systems, it produces a remarkably similar power-law
dependence of 𝑄′, which could provide evidence in favor of resonance locking.
However, since nonlinear dissipation likely prevents resonance locking from occur-
ring in these systems, other potential explanations should be explored. We have
suggested that many moderately rotating hot Jupiter hosts (which were inferred to
have been tidally spun up, thereby placing a constraint on 𝑄′) are instead simply
younger than average [31]. In this scenario, their more rapid rotation stems primarily
from their youth, and only a lower limit of𝑄′ can be inferred. Future age constraints
for those systems may determine which explanation is more likely.

We apply resonance locking to 15 observed hot Jupiter systems and predict that
these systems generally have 𝑄′s in the range 106 − 109, which is typically 2 − 3
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orders of magnitude higher than observed lower limits. This means their orbital
decay will be hard to measure if resonance locking is operating, as we expect for
stars with convective cores. However, nonlinear damping likely operates in host
stars possessing radiative cores, leading to much smaller 𝑄′s, like that measured for
WASP-12b [55]. Further observations of these systems can thus help to improve
our understanding of which tidal process operates.

We examine the long-term orbital evolution of exoplanets, combining theories based
on resonance locking and nonlinear dissipation/wave breaking (Figure 4.8). We pre-
dict that hot Jupiters migrate inwards via nonlinear wave damping and are frequently
destroyed during the main sequence for solar-type host stars. This may help to ex-
plain the recent finding that hot Jupiter host stars are on average slightly younger
than field stars [31]. For hot Neptunes and super-Earths, we predict that resonance
locking can operate, driving inward migration on a stellar evolution time scale. This
can result in a tidal quality factor of 𝑄′ ≲ 105, causing much more orbital decay
than prior expectations. However, the corresponding quality factor at short orbital
periods can exceed𝑄′ ≳ 107, allowing the planets to survive at ultrashort periods for
extended lengths of time, consistent with the observed old ages of ultrashort-period
planet hosts [32].

Since nonlinear dissipation occurs for massive planets orbiting stars with radiative
cores, we predict a sharp decline in the population of short-period (𝑃orb ≲ 2 days)
hot Jupiters orbiting solar-type host stars. We predict a more gradual decline for
low-mass planets and host stars with convective cores, where resonance locking
is at work, producing a much smoother distribution with orbital period. Future
observations will help test this prediction, provided that effects of tidal migration
can be distinguished from the birth-period distribution (e.g., [43]).

Acknowledgements
We thank Hang Yu, Rich Townsend, and Josh Winn for very helpful discussion
and feedback. This work is partially supported by NASA through grant 20-XRP20
2-0147. JF is thankful for support through an Innovator Grant from The Rose Hills
Foundation, and the Sloan Foundation through grant FG-2018-10515.

4.6 Appendix
Table of observed and modelled system properties
See Table 4.2 for details. References for observations as labeled in the table: 1. [3],
2. [61], 3. [50] , 4. [68], 5. [49], 6. [9], 7. [13], 8. [36], 9. [44], 10. [22], 11. [24],
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12. [14], 13. [7], 14. [71], 15. [37].
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Name 𝑀∗/𝑀⊙ 𝑅∗/𝑅⊙ 𝑇eff/K age/Gyr [Fe/H] 𝑀p/𝑀J 𝑃/day
HAT-P-23b1 1.13(4) 1.20(7) 5905(80) 4.0(1.0) 0.15(4) 2.09(11) 1.21
(model) 1.102 1.25 5985 4.74 0.176
HATS-18b2 1.04(5) 1.02(6) 5600(120) 4.2(2.2) 0.28(8) 1.980(77) 0.84
(model) 1.032 1.02 5627 5.6 0.337
KELT-16b3 1.21(5) 1.36(6) 6236(54) 3.1(3) -0.002(90) 2.75(16) 0.97
(model) 1.183 1.42 6197 2.7 0.074
OGLE-TR-56b4 1.23(8) 1.36(9) 6050(100) 3.1(1.2) 0.22(10) 1.39(18) 1.21
(model) 1.227 1.38 6032 3.0 0.283
TRES-3b5 0.90(15) 0.80(5) 5720(150) 1.92(23) 1.306
(model) 0.889 0.82 5570 1.52 0.0
WASP-4b6 0.86(18) 0.89(7) 5400(180) 7.0(2.0) -0.07(38) 1.19(20) 1.338
(model) 0.825 0.83 5573 7.23 -0.078
WASP-12b7 1.43(1) 1.66(5) 6360(140) 2.0(1.0) 0.33(17) 1.470(76) 1.09
(model) 1.435 1.70 6238 1.8 0.337
WASP-18b8 1.46(29) 1.29(5) 6431(48) 1.0(5) 0.00(9) 11.4(1.4) 0.94
(model) 1.172 1.25 6408 1.0 -0.027
WASP-19b9 0.94(4) 1.02(1) 5460(90) 10.2(3.8) 0.14(11) 1.139(36) 0.79
(model) 0.906 1.02 5510 13.2 0.237
WASP-43b10 0.72(3) 0.67(1) 4520(120) -0.01(12) 2.034(52) 0.81
(model) 0.696 0.67 4560 6.75 0.085
WASP-72b11 1.39(6) 1.98(24) 6250(100) 3.2(6) -0.06(9) 1.546(59) 2.22
(model) 1.331 2.19 6347 2.78 0.028
WASP-103b12 1.21(11) 1.42(4) 6110(160) 4.0(1.0) 0.06(13) 1.51(11) 0.93
(model) 1.179 1.46 6163 3.0 0.063
WASP-114b13 1.29(5) 1.43(60) 5940(140) 4.0(2.0) 0.14(7) 1.769(64) 1.55
(model) 1.244 1.54 6079 3.08 0.178
WASP-122b14 1.24(4) 1.52(3) 5720(130) 5.11(80) 0.32(9) 1.284(32) 1.71
(model) 1.252 1.53 5713 5.03 0.406
WASP-128b15 1.16(8) 1.15(4) 5950(100) 2.2(1.8) 0.01(24) 37.19(1.70) 2.209
(model) 1.127 1.15 6019 2.52 0.207

Table 4.2: Properties of the systems we study. For each system, the first line shows the values inferred from observational literature, with numbers in brackets
corresponding to 95% confidence intervals. The second line shows the parameters of our best-fit MESA models. Planetary parameters (𝑀p and 𝑃) are taken directly
from the literature.
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Figure 4.9: Mode frequencies of a 1.2𝑀⊙ MESA model. For models with convective
cores, it is generally difficult for MESA to accurately determine the boundary of
the convective core. This can cause unphysical jumping in the computed mode
frequencies (left panel). We smooth the mode frequencies in time by fitting fifth-
order polynomials (right panel), giving a more accurate estimate of mode evolution
timescales.

Solving Modes for MESA Models with Convective Cores
Throughout the paper, we have constructed MESA models to track the evolution
of the stellar structure. We then use GYRE to solve the stellar oscillation modes
for individual profiles generated by MESA and study the evolution of the modes by
tracking the same mode across different profiles at different stellar ages. While this
process is straightforward for models of Sun-like stars, it frequently fails for models
of massive stars with convective cores.

In Figure 4.9 we describe what we refer to the “jumping core boundary” issue
for models with convective cores. It is generally difficult for MESA to accurately
determine the position of convective core boundaries in the presence of composition
gradients. As a result, the mode frequencies solved by GYRE exhibit unphysical
jumping, due to the discontinuous jumps in the core boundary. We find that turning
on predictive mixing and element diffusion in MESA, as well as choosing smaller
time steps and mesh spacing, helps to decrease the unphysical jumping (as shown
in Figure 4.9, left panel). However, this is still not satisfactory when solving for
mode evolution timescales, which is related to the derivatives of the frequency, so
that even small jumps in the frequencies result in large errors.

Therefore, we choose an alternative approach to determine the mode evolution
timescale. Instead of solving the derivatives directly, we fit the frequency solutions
with fifth-order polynomials (as shown in Figure 4.9, right panel). This enables us
to compute smoothly varying mode evolution time scales 𝑡𝛼, as shown in Figure 4.3.
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Estimate of nonlinear damping rate
Nonlinear mode damping can be modeled as an additional amplitude-dependent
damping term 𝛾NL. The increased damping will cause the Lorentzian dips in 𝑡tide in
Figure 4.1 to become broader and shallower, altering where resonance locking can
operate.

To estimate the nonlinear damping rate, we first realize that the maximum damping
rate achievable is the rate at which waves propagate from the convective envelope
(where they are excited) to the center of the star (where they are dissipated). This
damping rate is the inverse group travel time, 𝛾NL,max ∼ −1/𝜏2, where

𝜏2 =

∫ 𝑟𝑐

𝑟0

𝑑𝑟

𝑣𝑔

=

√
6
𝜔2

∫ 𝑟𝑐

𝑟0

𝑑𝑟

𝑟
𝑁 , (4.24)

where we have used the g mode dispersion relation 𝜔2 = 𝑁2ℓ(ℓ + 1)/𝑘2𝑟2 where
ℓ = 2 is the mode’s spherical harmonic index for tidally excited gravity waves.
𝑟0 ≃ 0 is the inner turning point, 𝑟𝑐 is the outer turning point at the base of the
convective envelope. We note that 𝜏2 =

∫ 𝑟𝑐

𝑟0
𝑘𝑑𝑟/𝜔 = 𝑛𝜋, hence 𝜏2 scales with the

frequency spacing Δ𝜔𝑔 as 𝜏2 = 𝜋/Δ𝜔𝑔.

The maximum damping rate 𝛾NL,max ∼ −1/𝜏2 will be achieved for modes with
large enough amplitude, which dissipate efficiently after one wave crossing time.
Nonlinear wave breaking can be approximated by this damping rate, but sufficiently
strong three-mode coupling could produce the same effective damping rate. Modes
at smaller amplitudes 𝑎 will be damped at smaller rates. In Sun-like stars, nonlinear
g mode damping is caused by a nonlinear instability in which daughter modes are
driven to larger amplitude by the tidally excited parent mode [40, 73]. The instability
only occurs above a threshold amplitude 𝑎NL, hence we expect very little nonlinear
damping below this threshold. The nonlinear damping rate should fall sharply for
|𝑎 | ≲ |𝑎NL |, hence we model the nonlinear damping via an ad hoc relation

𝛾NL ∼ − 1
𝜏2

exp
(
−

(
𝑎NL

𝑎

)2)
. (4.25)

Defining the dimensionless parameter �̄� = −𝜏2𝛾NL > 0. we have (𝑎NL/𝑎)2 =

− ln(�̄�).

To estimate the value of 𝑎NL, we examine the results of [16] for Sun-like stars.
They find that the orbital decay rate for off-resonance modes is weakly dependent
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on planet mass (and hence mode amplitude) for planets with mass 𝑀p ≳ 0.3𝑀J,
while the energy dissipation rate is strongly amplitude-dependent for 𝑀p ≲ 0.3𝑀J.
There appears to be a very weak dependence of this cutoff on orbital period, as we
might expect since the g mode nonlinearity scales as |𝑘𝑟𝜉𝑟 | ∝ 𝑃1/6. Therefore, their
results suggest that 𝑎 ≃ 𝑎NL for planets with 𝑀 ≃ 0.3𝑀J and resonant detuning
| (𝜔𝛼 − 𝜔f) | = Δ𝜔 ≃ Δ𝜔𝑔/2. Since the tidally excited mode amplitude scales as
𝑎 ∝ 𝑀𝑝 and 𝑎 ∝ (Δ𝜔2 + 𝛾2)−1/2, we expect at low amplitudes that

ln(�̄�) ∼ −
(
0.3𝑀J

𝑀p

)2 (
Δ𝜔2 + (𝛾rad + 𝛾NL)2

(Δ𝜔𝑔/2)2 + (𝛾rad + 1/𝜏2)2

)
. (4.26)

Near resonance, the nonlinear damping is expected to be strong such that 𝛾rad can
be neglected. With Δ𝜔𝑔𝜏2 = 𝜋 we have

�̄�2 + (1 + (𝜋/2)2)
(
𝑀p

0.3𝑀J

)2
ln(�̄�) + 𝜏2

2Δ𝜔
2 = 0 . (4.27)

When 𝑀p ≪ 0.3 MJ, we expect �̄�2 = exp(−2(𝑎NL/𝑎)2) to be exponentially smaller
than (𝑀p/0.3𝑀J)2 ln(�̄�) ∼ (𝑀p/0.3𝑀J)2(𝑎NL/𝑎)2, such that we can neglect the
first term, yielding

𝛾NL ≃ − 1
𝜏2

exp
(
−

𝜏2
2Δ𝜔

2

(𝜋/2)2 + 1

(
0.3𝑀J

𝑀p

)2)
. (4.28)

We note that the threshold amplitude 𝑎NL inferred above is not necessarily the ac-
tual threshold amplitude for a nonlinear instability, because Figure 1 of [16] shows
that even an off-resonance 0.1𝑀J planet excites a parent mode above the nonlin-
ear threshold energy. However, the growth rate of the instability (and hence the
amount of nonlinear damping) does apparently change rapidly with planet mass in
this regime. A more accurate (but more complicated) model of nonlinear damping
should incorporate the rapid increase in |𝛾NL | at small mode amplitudes, the more
gradual dependence |𝛾NL | ∝ |𝑎 | at intermediate amplitudes [40, 77], and the satu-
ration |𝛾NL | ∼ 1/𝜏2 at wave-breaking amplitudes. While such a model is beyond
the scope of this work, it could significantly change both the width and depth of the
resonant dips in Figure 4.1.
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C h a p t e r 5

TIDAL SPIN-UP OF SUBDWARF B STARS

Abstract
Hot subdwarf B (sdB) stars are stripped helium-burning stars that are often found
in close binaries, where they experience strong tidal interactions. The dissipation
of tidally excited gravity waves alter their rotational evolution throughout the sdB
lifetime. While many sdB binaries have well-measured rotational and orbital fre-
quencies, here have been few theoretical efforts to accurately calculate the tidal
torque produced by gravity waves. In this work, we directly calculate the tidal
excitation of internal gravity waves in realistic sdB stellar models, and integrate
the coupled spin–orbit evolution of sdB binaries. We find that for canonical sdB
(𝑀sdB = 0.47𝑀⊙) binaries, the transitional orbital period below which they could
reach tidal synchronization in the sdB lifetime is ∼0.2 days, with weak dependence
on the companion masses. For low-mass sdBs (𝑀sdB = 0.37𝑀⊙) formed from more
massive progenitor stars, the transitional orbital period becomes ∼0.15 days. These
values are very similar to the tidal synchronization boundary (∼ 0.2 days) evident
from observations. We discuss the dependence of tidal torques on stellar radii, and
we make predictions for the rapidly rotating white dwarfs formed from synchronized
sdB binaries.

5.1 Introduction
Hot subdwarf B (sdB) stars, first observed by [33], are compact and faint stars with
surface temperatures between 20,000 and 40,000 K and masses below 0.5𝑀⊙ [32,
31, 86]. These stars have helium-burning cores and thin envelopes [28], and they
are thought to be stripped cores of helium-burning red giants, whose envelopes are
previously lost due to some binary interactions [29, 30, 57]. About half of the
observed sdB systems are found in binaries [46, 48, 26, 14], with many of them in
close (𝑃orb ≲ 10 d) orbits. This suggests that a prior common envelope phase might
be responsible for the the ejection of their envelopes, as well as the inspirals of their
companions to their current orbital configuration [36].

For binaries with short orbital periods, tidal interactions can shape both the mi-
gration of their orbits and the spin evolution of individual stars. Historically, sdB
binaries are sometimes assumed to have reached tidal synchronization, such that
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their orbital parameters can be derived from measurements of sdB rotation rates
(see, e.g., [37, 25]), even if the companions (typically white dwarfs or M dwarfs) are
too faint to be seen. However, this assumption has been seriously challenged by ob-
servations from the past decade, especially those with high-precision measurements
with TESS and Kepler/K2, where both spin and orbital frequencies are available (see
the summary of observation results in Figure 5.3). These studies have found that
sdB binaries with orbital periods as short as ∼7 hours are not always synchronized
[69]. Nevertheless, these emerging new data provide an excellent opportunity to
test theoretical modelling of tidal interactions in sdB binaries.

For stars with convective cores and radiative envelopes like sdBs, tidally excited
gravity waves in their envelopes are thought to be the most efficient form of tidal
interaction [85]. These waves are excited by the tidal potential from the companion,
and when they propagate through the stellar interior, the fluid damp via radiative
diffusion, exerting effective tidal torques that transfer the angular momentum from
the orbit to the stellar spin [84]. This classical theory of dynamical tides was
originally proposed for massive stars, and several works have calculated the tidal
evolution of sdB binaries with this model or its adaptions [25, 50, 60].

However, [43] recently pointed out that an assumption in Zahn’s model may not be
true for stripped helium-burning stars, like Wolf-Rayet stars in the case of massive
stars, and sdBs in the case of low-mass stars. While [84] assumed that the waves are
all efficiently damped when they propagate to the stellar surface, in these stripped
stars they may be otherwise reflected and form standing waves. This is particularly
true for high-frequency gravity waves excited by short-period orbits, with less effi-
cient radiative damping in stellar envelopes. By direct calculations of tidally excited
oscillations with radiative damping, [43] showed that real tidal torques should have
more complicated frequency dependence than the simple power-law relation derived
from Zahn’s model. This new approach brings concerns to the existing predictions
of sdB rotation rates based on Zahn’s tidal calculation.

In this paper, we build sdB models and calculated their tidal evolution with the
method in [43]. We carry out direct calculations of stellar oscillations and their
tidal response, and we find that standing waves indeed exist in these sdBs. The
tidal torques are hence different from Zahn’s, and our results for sdB rotation rates
are consistent with the observed trends of tidal synchronization for these systems.
The manuscript is organized as follows: in Section 5.2 we describe the physics of
sdB spin-up from tidally excited g-mode oscillations; in Section 5.3 we describe our
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Figure 5.1: A sketch of the physics of sdB tidal spin-up. Gravity waves, propagating
in the radiative envelope, can be tidally excited by the gravity from the orbiting
companion. In the hydrogen-rich outer envelope, the waves damp (either partially
or fully) and deposit their angular momentum into the star, transferring angular
momentum from the orbit to the stellar spin. The color scale shows the hydrogen
fraction in the radiative envelope.

model setup and in 5.3 and 5.3 we describe how we calculate the oscillation modes
and the binary evolution. We show the results for tidal torque calculations and the
spin–orbit evolution of sdB binaries in Section 5.4. We discuss the limitations of
our models and the various related physical processes in Section 5.5. We finally
conclude in Section 5.6.

5.2 Tidal Physics
For subdwarf B binaries, the tidal dissipation inside the sdB star is thought to
be responsible for its tidal evolution. In this picture, the tides are excited by the
tidal gravity potential from the companion star, which is usually an M–dwarf (dM)
or a white dwarf (WD). When the binary orbit is faster than the stellar spin, the
tidal dissipation transfers energy and angular momentum from the orbit to the star.
For sdB stars with convective cores and radiative envelopes, two possible tidal
dissipation mechanisms could be at work: namely the turbulent viscous dissipation
of equilibrium tidal bulges in the stellar core [18, 17], and the radiative damping of
tidally excited gravity waves in the envelope [84, 85]. Studies have found that the
former is usually inefficient for close-in subdwarf binaries, as the orbital periods
might be shorter than the convective turnover time in the core, such that convective
viscous dissipation is suppressed [59]. We hence focus on the latter scenario to be
the dominant process for tidal evolution.

We sketch the physics picture of radiative dissipation of tidally excited gravity
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waves in Figure 5.1. Gravity waves, propagating in the radiative envelope of the
star, can be tidally excited by the orbit of the companion. In the outer envelope with
large thermal diffusion, these waves damp partially or fully by radiative diffusion,
releasing their energy and angular momentum, and hence exert a tidal torque on
the star. The orbital angular momentum is thus transferred to the stellar spin. In
previous studies, radiative dissipation is often assumed to be efficient so that these
gravity waves damp completely in the radiative envelope [84], while in principle
they might reflect back and instead forming standing waves, i.e. oscillation modes
[43]. Hence, a realistic estimate of tidal torques requires calculation of individual
stellar oscillation modes.

For an aligned and circular orbit, the tidal torque for a tidally-excited oscillation
mode 𝛼 is given by [43]:

𝜏𝛼 = −
𝑚𝜔𝛼𝛾𝛼𝑞

2𝑀1𝑅
2
1 |𝑊𝑙𝑚𝑄𝛼 |2𝜔2

f

(𝜔𝛼 − 𝜔f)2 + 𝛾2
𝛼

(
𝑅1

𝑎

)2(𝑙+1)
, (5.1)

where 𝜔𝛼 and 𝛾𝛼 are the mode frequency and growth rate (with 𝛾𝛼 < 0 for damped
modes, and the corresponding 𝜏𝛼 > 0), and 𝜔f = 𝑚(Ωorb − Ωspin) is the tidal
forcing frequency (measured in the frame co-rotating with the sdB), and Ωspin is
the sdB’s angular rotation frequency. 𝑀1 and 𝑅1 are the mass and radius of the
sdB, 𝑞 = 𝑀2/𝑀1 is the mass ratio of the companion to the sdB, 𝑎 and Ωorb are
the semi-major axis and the angular frequency of the orbit. 𝑙 and 𝑚 are the mode’s
angular and azimuthal wave numbers and𝑊𝑙𝑚 is an expansion coefficient of the tidal
potential. 𝑄𝛼 ≡ ⟨𝜉𝛼 |∇(𝑟 𝑙𝑌𝑙𝑚)⟩/𝜔2

𝛼 is the dimensionless overlap integral describing
the spatial coupling between the mode and the tidal potential, which is calculated
by the relation 𝑄𝛼 = −(2𝑙 + 1)𝛿Φ𝛼/(4𝜋𝜔2

𝛼) [21], where 𝛿Φ𝛼 is the surface gravity
potential perturbation. For weak damping (𝛾𝛼 < 𝜔𝛼), the excitation of individual
oscillation modes is independent from each other, such that the total tidal torque can
be expressed as

𝜏tide =
∑︁
𝛼

𝜏𝛼 . (5.2)

Hence, by solving for the internal oscillation modes (with 𝜔𝛼, 𝛾𝛼 and Q𝛼) inside the
sdB, we are able to calculate the torque and the angular-momentum transfer rate,
given a companion mass and orbit. We stress that there are no free parameters in
estimating the strength of tidal torques with this method.
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5.3 Methods
We calculate the tidal evolution of sdB binaries with the similar method developed for
Wolf—Rayet—Black–hole binaries in [43]. We first build realistic single evolving
sdB models throughout their helium-burning lifetime (Section 5.3). We then solve
for stellar oscillations based on these models to estimate the tidal torques (Section
5.3). Finally, we numerically integrate the coupled spin–orbit evolution of sdB
binaries with interpolation between the previously calculated sdB models and tidal
torques, with different choices of initial binary parameters, i.e. the initial orbital
periods and companion masses (Section 5.3).

Stellar Models
We build single sdB models with the MESA stellar evolution code (r12778; [51,
53, 52, 54, 55, 34]). We build two sdB models to represent the two types of sdBs
formed from progenitors of different masses, summarized in Sections 5.3 and 5.3.
We turn on element diffusion for 1H, 4He, 12C, 14N and 16O in the MESA models,
to account for correct treatments of gravitational settling and radiative acceleration
for these atoms.

0.47 Solar-mass Canonical SdB Model

This model represents the most abundant sdBs (“canonical” sdBs) that are formed
from low-mass (𝑀 ≲ 2𝑀⊙) main-sequence progenitor stars. When these stars
evolve off main-sequence, they start hydrogen shell burning which deposits helium
into their helium core, until they reach the tip of the red giant branch (TRGB)
when the helium core exceeds 0.46𝑀⊙. At this moment, an off-center helium
flash is triggered and the helium burning propagates to the center of the core,
while the star loses most of its envelope through binary processes (e.g., a common
envelope event), leaving a core helium-burning sdB star with a little of its envelope
(∼ 0.01𝑀⊙) retained. SdB stars formed this way are insensitive to the masses of
their progenitors, and have universal masses of ≈ 0.47𝑀⊙. We establish this sdB
model by evolving a 1.2𝑀⊙ star from zero-age main-sequence (ZAMS) to TRGB,
and then apply an artificial stellar wind to remove its envelope, until the off-center
helium burning propagates to the stellar center. This happens at the moment when
the envelope mass reaches the desired mass (see details in 5.3), due to the specific
wind scaling factor we chose. The model then becomes a zero-age canonical sdB
model and we evolve it until core helium depletion.
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0.37 Solar-mass Low-mass SdB Model

For stars of ∼2 − 3𝑀⊙, they can also ignite core helium burning without forming a
fully degenerate core, at helium core masses less than 0.46𝑀⊙. Hence, they usually
form sdBs of lower masses compared to canonical sdBs. To simulate this scenario,
we evolve a 2.7𝑀⊙ star from ZAMS to TRGB, and then remove its envelope by a
similar artificial wind until its envelope mass reaches the desired mass (see details
in 5.3). The model then triggers central helium burning as a zero-age sdB star. The
sdB model we build this way has a mass of 0.37𝑀⊙.

Envelope Mass Setup

SdBs are known to retain a small amount of hydrogen envelope above their helium
cores. The amount of hydrogen can be constrained from their spectroscopic prop-
erties, and are found to be between 0.001 – 0.005𝑀⊙ (see, e.g., Figure 10 of [38]).
We hence adjust the artificial winds such that the stellar models start core helium
burning (zero-age sdB) when they have 10−3 𝑀⊙ hydrogen left. After that moment,
we turn off stellar winds as the envelope-stripping phase is considered completed.
We note that, real sdB stars can possibly retain more hydrogen than 10−3 𝑀⊙. How-
ever, we found many unstable stellar oscillations in sdB models with more massive
envelopes, and we are not able to calculate the tidal dissipation of these modes with
our current method. We discuss the influence of envelope masses and these unstable
modes in more detail in Section 5.5.

Convective Core Boundary Setup

The excitation of gravity waves is sensitive to the size of the convective core,
which in turn can be sensitive to how its boundary is treated in stellar evolution
models. Unlike the standard convective-overshooting paradigm which has been
established for main-sequence stars (see, e.g., the MIST project; [12]), overshooting
parameters for stars with a helium-burning convective core, like sdBs, are poorly
constrained. Nevertheless, asteroseismic measurements of core helium-burning
stars suggest the existence of bigger cores compared to theoretical modeling [13, 8,
49]. We hence turn off overshooting for our stellar models in the core helium-burning
phase, instead applying the “predictive mixing” scheme for convection [54]. This
allows for a steady growth of the convective core during core helium-burning, more
consistent with asteroseismic observations than other choices for convective mixing.
Furthermore, the predictive mixing scheme helps prevent “breathing pulses” at late
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stages of the core helium-burning phase, which may split the convective core to
create small radiative zones, in which very high-order gravity waves can be trapped.
Breathing pulses have been argued to be numerical artifacts [7], and we aim to avoid
the associated difficulties in computing gravity modes.

Rotation Setup

When stars evolve off main-sequence, their core contracts and spins up, while their
envelope expands and spins down. The shear created between the core and the
envelope could trigger hydrodynamical and magneto-hydrodynamical instabilities,
which transfer some of the core angular momentum to the envelope, forming slowly
rotating stellar cores [24, 74]. Asteroseismic measurements of red clump stars have
shown that their core rotation periods are typically ∼ 100 days [47]. Therefore, if
these stellar cores form sdBs, they should also be slowly rotating.

We applied the modified Taylor-Spruit torque as described in [24] in our stellar
models, and we found that the stellar models at the end of the envelope-stripping
phase rotate slowly, with rotation rates insensitive to the initial rotation at ZAMS.
The slow rotation rates are consistent with the slow sdB rotation rates measured in
wide binaries, where tidal effects are not important (see, e.g., Figure 5.3). We hence
set the sdB models to be non-rotating at the start of their helium burning phase.
Since we only compute our spin–orbit evolution by post-processing of the stellar
models, without actually updating their rotation rates in MESA (see details in 5.3),
the single sdB models remain non-rotating throughout their lifetime.

Calculation of Oscillation Modes
We calculate the internal oscillation modes for the individual snapshots of our
sdB models with the GYRE stellar oscillation code [73, 71, 27]. We solve for
non-adiabatic oscillations which account for radiative damping in the oscillation
equations. We use the second order Magnus differential scheme, as it proves to
be the most reliable when dealing with low-frequency oscillations. We specify our
search to 𝑙 = 𝑚 = 2 modes as this is the dominant part of the tidal potential in
aligned and circular orbits, with the corresponding 𝑊22 =

√︁
3𝜋/10. When solving

for modes, we find that the Brunt-Väisälä frequency [76] profiles solved from MESA
are sometimes not consistent with the density and pressure profiles from the same
model, which may lead to inaccurate mode solutions. We hence slightly adjust the
stellar profiles with the process described in Appendix 5.7 for our stellar models.
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We checked that the change of stellar structure due to this process is negligible.

In principle, we need to sum over all modes to get the total tidal torque through Equa-
tion 5.2. This is practically not possible as there are infinite number of modes which
could be excited at all frequencies. Nevertheless, we note from Equation 5.1 that
for a given tidal forcing frequency 𝜔f , typically only the few nearly resonant modes
with 𝜔𝛼 close to 𝜔f contribute significant torques. Torques from other non-resonant
modes are usually negligible due to the (𝜔𝛼−𝜔f)2 term in the denominator of Equa-
tion 5.1. We hence restricted our mode solutions to a finite period range, namely
from 0.005 days to 0.5 days, and we hence found a finite number of modes. We can
then calculate the total tidal torques as long as the forcing frequency 𝜔f is between
2𝜋/(0.5 d) = 12.57 d−1 and 2𝜋/(0.005 d) = 1257 d−1. The 𝜔f calculated from our
spin–orbit evolution usually lies well within this range, except for some systems that
reach tidal synchronization, whose 𝜔f should approach zero. We hence stop the
evolution when 𝜔f reaches the minimum mode frequency 12.57 d−1. We checked
that our binary models reaching this condition are at least at 80% synchronization,
so we define all systems with Ωspin ≥ 0.8Ωorb as tidally synchronized.

Spin–Orbit Evolution
We integrate the spin–orbit evolution of the sdB binaries from the stellar models
and tidal torques we computed. As the tidal dissipation in the companion star is
negligible, the companion is assumed a point mass and its spin evolution is not
coupled. We also assume the orbits are circular. Throughout the evolution, the
orbital angular momentum of the system is lost due to gravitational wave (GW)
radiation and tides, while the sdB receives spin from the tidal torque:

¤𝐽orb = −𝜏GW − 𝜏tide , (5.3)
¤𝐽spin = 𝜏tide , (5.4)

where 𝜏GW = (32/5) (𝐺/𝑎)7/2𝑐−5𝑀2
1𝑀

2
2
√
𝑀1 + 𝑀2 is the effective torque by GW

radiation [58]. The GW orbital decay timescale is then given by

𝑇GW = 5𝑐5(1 + 𝑞)1/3𝑃
8/3
orb /(64(4𝜋2)4/3𝐺5/3𝑀

5/3
1 𝑞)

≈ 180 Myr (𝑃orb/1 h)8/3 (5.5)

for an equal mass sdB binary (𝑞 = 1), with a 0.46𝑀⊙ canonical sdB star, comparable
to the sdB lifetime of ∼ 150 Myr for very short-period systems. This means GW
orbital decay needs to be included in the spin–orbit evolution.
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As we expect efficient angular momentum transport during the core-helium burning
phase ([24, 23]; see discussions in 5.3), we assume rigid rotation for the sdB star,
with a uniform rotational frequencyΩspin. We discuss the case of differential rotation
in Section 5.5. The coupled spin–orbit evolution can then be integrated by:

¤Ωspin =
¤𝐽spin

𝐼spin
−Ωspin

¤𝐼spin

𝐼spin
, (5.6)

¤Ωorb =
¤𝐽orb

𝐼orb
−Ωorb

¤𝐼orb

𝐼orb
= −3

¤𝐽orb

𝐼orb
, (5.7)

where 𝐼spin is the moment of inertia of the sdB star, 𝐼orb = 𝜇𝑎2 is the moment of
inertia of the orbit and we made use of Kepler’s Third Law to simplify Equation
5.7. This means the spin of the sdB star may also change due to the changes of its
internal structure and hence moment of inertia.

We make use of the integration machinery constructed in [43], with the same
interpolation method. As sdB lifetime is typically longer than the Wolf–Rayet stars
in [43], we choose the integration timestep to be 0.1 times the values derived from
the timestep control method described in [43]. We integrate the evolution from 1
year after the start of the sdB helium-burning phase, and we stop when the model
depletes its core helium (defined by the time when the core helium fraction drops
below 1%) or when the system reaches 𝜔f ≲ 12.57 d−1 (see Section 5.3). The
initial rotational period of sdBs is set to be 60 days, to match the observed values
from single sdB stars [69]. While single sdBs may not represent a fair sample of
binary sdBs at birth, this assumed initial rotational frequency is very low and never
important for systems that reach synchronization. We vary the companion masses
between 0.1𝑀⊙ and 0.8𝑀⊙, and choose the initial orbital periods to be between 1
to 18 hours, covering the observed parameter space of close-in sdB binaries [66].
We checked our results are robust against different choices of timestep resolution.

5.4 Results
In this section, we show the results of our tidal torque calculation and spin–orbit
evolution.

Tidal Torque
In Figure 5.2, we show our calculated tidal torque magnitude with its dependence on
the period of tidal forcing (𝑃f ≡ 2𝜋/𝜔f). The calculation is based on the 0.47𝑀⊙

sdB model with a companion of 0.4𝑀⊙, when its central helium fraction drops to
60%, and we assume the sdB is non-rotating such that 𝜔 𝑓 = 𝑚Ωorb. The torque
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Figure 5.2: Left: The tidal torque calculated for a 0.47𝑀⊙ sdB model with a
companion of 0.4𝑀⊙, when the central helium fraction is 60%, assuming the sdB is
non-rotating. The thick black line shows the total torque calculated by summing over
contributions from individual tidally excited g modes (thin lines). We also show the
torque calculated from Zahn’s formalism for comparison. At short periods, the total
tidal torque is dominated by resonance peaks from individual standing g modes,
different from the power-law dependence on forcing period of Zahn’s formalism. At
longer periods, g modes are more efficiently damped and the torque agrees better
with Zahn’s model. Right: the mode eigenfunctions for an example standing mode
(blue line) and an example traveling wave (red line) in the left panel. The standing
mode has nodes in its eigenfunction, while the traveling wave efficiently damps near
the surface.

generally has a complicated dependence on the forcing period. By plotting the
torque contributions from each individual oscillation mode 𝐽𝛼, we see that this
dependence is caused by summing over the resonance peaks of many modes with
different frequencies. When the tidal forcing frequency gets close to one of the
mode frequencies, the (𝜔𝛼 − 𝜔 𝑓 )2 term in Equation 5.1 vanishes, and the total
torque becomes dominated by the strong resonance peak of that mode. Therefore,
the frequencies/periods of these peaks are the frequencies/periods of individual
oscillation modes inside the star. These peaks have a nearly uniform period spacing,
a feature expected for gravity (g) modes. In the right panel of Figure 5.2, we show
some example eigenfunctions of these modes, and we can see that they are indeed g
modes that propagate inside the radiative envelope of the star.

Previous studies involving the tidal dissipation of gravity waves in sdBs usually
use Zahn’s model for dynamical tides [25, 50, 60], which assumes these waves are
efficiently damped as they reach the stellar surface (“traveling-wave limit”). We
see from the right panel of Figure 5.2 that this is clearly not always the case for
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individual resolved stellar oscillations. The blue line shows the eigenfunction of
an example oscillation at short (𝑃𝛼 ≲ 0.14 days) period. We see that instead of
efficiently damping near the stellar surface, the wave reflects back at the stellar
surface and forms a standing wave with nodes. This means Zahn’s picture may
overestimate the mode damping rate, hence the tidal dissipation.

For comparison, we show the tidal torques calculated based on Zahn’s formalism
with a modified formula given by [42]:

𝜏Zahn = 𝛽2
𝐺𝑀2

2
𝑟c

(
𝑟c

𝑎

)6
𝑠

8/3
c
𝜌c

�̄�c

(
1 − 𝜌c

�̄�c

)2
, (5.8)

where 𝑠c =
√︁

3/(𝜋𝐺�̄�c) |Ωorb − Ωspin |, while 𝑟c, 𝜌c and �̄�c are the convective core
radius, the density at the core boundary, and the average density of the core, respec-
tively. 𝛽2 is a dimensionless coefficient solved from stellar structures, and different
main-sequence and Wolf–Rayet stellar models have 𝛽2 ≈ 1 [42]. Its dependence on
the tidal forcing period is mostly the power-law term in 𝑠8/3

𝑐 𝑎−6, as seen in Figure
5.2. This is clearly different from the resonance peak dependence we find from
realistic mode calculations. We see that at short periods, if the binary orbit has an
off-resonance tidal forcing period (i.e., not close to any stellar oscillation modes),
the real tidal torque can be orders of magnitude lower than Zahn’s prediction. On
the other hand, if the orbit is on resonance, the torque can be significantly larger
than Zahn’s prediction.

However, as the star and the orbit evolves, both the oscillation mode period (hence
the location of the resonance peaks) and the tidal forcing period change over time,
so the system can quickly pass through resonances (as long as resonance locking
does not happen, see discussions in Section 5.5). Since the resonances are narrow,
the system spends more time out of resonance than in resonance (i.e., with torques
much weaker than Zahn’s prediction), the accumulated angular momentum received
by the sdB star should be less than the predictions from Zahn’s theory.

At longer periods, gravity waves have larger wave numbers, and are expected to
damp more efficiently with radiative damping. With larger 𝛾𝛼, the 𝛾2

𝛼 term becomes
more important in the denominator of Equation 5.1, smoothing out the resonance
peaks. We see in Figure 5.2 that this is exactly the case for the tidal torques at long
period (𝑃f > 0.14 d), when the individual modes damp so much that the resonance
structure gets smoothed out. In addition, the example eigenfunction (red line) shown
in the right panel of Figure 5.2 becomes a traveling wave that efficiently damps near
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the stellar surface, as Zahn’s formalism assumes. The tidal torque’s dependence on
tidal forcing period also gets closer to Zahn’s power-law dependence as expected.
This further shows that Zahn’s traveling wave picture is a limit case of realistic tidal
torques at long periods.

Tidal Synchronization
With the tidal torques calculated, we are able to integrate the coupled spin–orbit
evolution of our models. In Figure 5.3, we show the calculation for our 0.47𝑀⊙

canonical sdB model and 0.37𝑀⊙ low-mass sdB model with a fixed companion
mass of 0.4𝑀⊙, with different initial orbital periods. The rotational and orbital
periods are evaluated at the end of the spin–orbit evolution (defined in Section) 5.3,
and some ultra-short-orbit synchronized systems that reaches 𝑃orb < 0.02 d due to
gravitational wave orbital decay are not shown. We see that for the 0.47𝑀⊙ sdB
model, all systems with orbital periods less than ∼0.2 days reach tidal synchroniza-
tion, while for the 0.37𝑀⊙ sdB model, the synchronization period becomes ∼0.15
days.

To compare with observations, we plot the measured rotational and orbital periods
for short-period sdB binaries on top of Figure 5.3. The different colors show the
sdB rotation rates derived from spectral line measurements (HS 0705+6700, [16];
CD-30 11223, [78]; SDSS J162256.66+473051.1, [65]; PTF1 J0823+0819, [40];
PTF1 J011339.09+225739.1, [83]; ZTF J2130+4420, [41]; ZTF J2055+4651, [39];
SDSS J082053.53+000843.4, [64]; HW Vir, [19]; and EPIC 216747137, [68]),
asteroseismic p-mode frequency splitting (NY Vir, [10]; Feige 48, [77]; V1405 Ori,
[62]; and HD 265435, [56]), or g-mode frequency splitting (KIC 11179657 and
KIC 2991403, [50]; FBS 1903+432, [70]; KIC 7664467, [2]; EQ Psc and PHL
457, [3]; KIC 2438324, [63]; TYC1 4544-2658-1, [69]; and PG 0101+039, [45]),
respectively.

We see that all the observed systems with 𝑃orb ≲ 0.2 d are close to tidal synchro-
nization, while all but two systems1 above this period are not synchronized. This
matches strikingly well with the theoretical prediction from our sdB models. In
addition, the models with 0.3 d ≲ 𝑃orb ≲ 0.6 d are tidally spun-up to a rotational pe-
riod of a few days, also consistent with the observed partially-synchronized systems

1The two exceptional systems are Feige 48 and V1405 Ori. For Feige 48, there are some
discrepancies on its orbital and rotational periods measured (see, e.g., [20, 60, 4]). For V1405 Ori,
there are some evidences that it might a differentially rotating sdB [62], such that its envelope can
be synchronized at longer periods while its interior is not (see discussions in Section 5.5).
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Figure 5.3: The observed trend of tidal synchronization (defined by 0.8 ≤
Ωspin/Ωorb ≤ 1, shaded grey region) for short-period sdB binaries (crosses) ver-
sus the calculation results from binary spin–orbit evolution (dots). The red, purple
and green crosses indicate rotational measurements from spectral line broadening,
p-mode frequency splitting and g-mode frequency splitting. The red and blue dots
indicate the modeled sdB binaries with the 0.47𝑀⊙ and the 0.37𝑀⊙ sdB primary,
respectively. All modeled binaries have a 0.4𝑀⊙ companion and initial orbital
periods ranging from 1 to 18 hours. For 0.47𝑀⊙ sdB binaries, we see that all
systems with orbital periods less than ∼0.2 days reach tidal synchronization, while
for 0.37𝑀⊙ sdB binaries, this synchronization period becomes ∼ 0.15 days due to
weaker torques on these smaller sdBs. These results match the observed trends of
sdB tidal synchronization. In addition, most systems with 0.3 d ≲ 𝑃orb ≲ 0.6 d
are spun-up to rotational periods of a few days, which also agree with the observed
period range of partially synchronized binaries.
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in that period range. Hence, our theoretical calculations agree with the observation
data. Note that in Figure 5.3 the spin and orbital frequencies are shown at the end
of the spin–orbit evolution, while measurements for realistic systems usually occur
when the sdB still undergoes core-helium burning. Therefore, it is illustrative to
show the tidal synchronization timescales calculated for our models, and to compare
them with the sdB lifetime 𝑇EHB. If the synchronization time is shorter, then we
expect those systems are likely to reach tidal synchronization to be observed. As
we consider systems with 80% synchronization as synchronized (see discussions in
Section 5.3), we define the tidal synchronization timescale throughout the whole
evolution as:

𝑇sync ≡


𝑡Ωspin/Ωorb=0.8 , if synchronized

0.8𝑇EHB

(
Ωspin
Ωorb

)−1

final
, if not

(5.9)

where 𝑡 is the stellar age since the start of sdB core helium-burning. We then run
a grid of spin–orbit evolution for both of our 0.47𝑀⊙ and 0.37𝑀⊙ sdB models,
with initial orbital periods of (1, 2, 3, 4, 5, 6, 7, 8) hours and companion masses of
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) solar-masses, and calculated their tidal synchro-
nization timescale defined by Equation 5.9.

We show the interpolated results for the ratio 𝑇sync/𝑇EHB based on this grid in
the whole parameter space in Figure 5.4. On the 𝑦-axis we also label the typical
companion masses for sdB+dM and sdB+WD binaries [66]. We see that this ratio
ranges from 10−1.5 to 101.5, with weak dependence on the masses of the companion
star. This is an expected result from our tidal torque formula (Equation 5.1): the
torque depends on the mass-ratio (hence the secondary mass) as 𝜏𝛼 ∝ 𝑞2𝑎−6, where
𝑎 = (𝐺 (𝑀1 + 𝑀2)/Ω2

orb)
1/3 ∝ (1 + 𝑞)1/3, hence 𝜏𝛼 ∝ 𝑞2/(1 + 𝑞)2. For typical

sdB binaries, 𝑞 ranges from 0.3 to 1.5, and the corresponding torque scaling is
maximally different by only a factor of ∼7. In contrast, 𝑇sync/𝑇EHB varies by a factor
of ∼103 over the period range shown in Figure 5.4, due to its strong dependence on
semi-major axis.

The blue colored regions in Figure 5.4 show the parameter space where𝑇sync/𝑇EHB <

1, or where the binaries are expected to be synchronized. We see that for 0.47𝑀⊙

sdB binaries, systems with initial orbital periods less than ∼ 0.15 − 0.22 days
have synchronization timescales shorter than the 164 Myrs sdB lifetime, while for
0.37𝑀⊙ sdB this period becomes ∼ 0.10 − 0.17 days for its 444 Myrs lifetime,
depending on the companion masses. As binaries at these orbital periods produce
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Figure 5.4: The ratio between the tidal synchronization timescale 𝑇sync and the
the sdB lifetime 𝑇EHB interpolated between different choices of companion masses
and initial orbital periods. The blue regions show the parameter space where
𝑇sync < 𝑇EHB. The brackets on the 𝑦 axis indicate the typical companion masses for
sdB+WD or sdB+dM systems [66]. Left: The results for the 0.47𝑀⊙ sdB model,
with 𝑇EHB = 164 Myrs. We see that for systems in orbits less than ∼0.15 − 0.22 d,
the synchronization timescale is less than the stellar lifetime, meaning these systems
are likely to be observed as tidally synchronized. The results have weak dependence
on companion masses. Right: The results for the 0.37𝑀⊙ sdB model. The
critical orbital period below which systems become synchronized now becomes
∼0.10 − 0.17 d.

weak GW emission, their orbital periods are nearly constant, and these results
confirm the critical orbital periods for synchronization shown in Figure 5.3.

We note from Figure 5.4 that, even though systems below the synchronization
periods can reach tidal synchronization in the sdB lifetime, in most of the parameter
space their synchronization timescales are not less than the corresponding sdB
lifetime by one order of magnitude. This is especially true for sdB+dM binaries
with 𝑀companion ≲ 0.3𝑀⊙, and we can see that 𝑇sync < 0.1𝑇EHB is only achieved
for those binaries in 𝑃orb ≲ 0.05 d ≈ 1 hour orbits. This is consistent with the
findings that sdB binaries with small companions (dMs or brown dwarfs) can be
slightly sub-synchronized even at orbital periods less than ∼2.5 hours (e.g., SDSS
J162256.66+473051.1, a 64% synchronized system with 𝑃orb = 1.67 h, [65]; and
SDSS J082053.53+000843.4, a 65% synchronized system with 𝑃orb = 2.3 h, [64]).

[64] further points out that synchronized binaries locate further away from the zero-
age extreme horizontal branch (ZAEHB) on the log 𝑔 − 𝑇eff diagram compared to
these sub-synchronized systems, suggesting that those synchronized binaries might
be older. Our findings that the tidal synchronization timescales at small orbital
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periods are shorter than the sdB lifetime (but not by orders of magnitude), agrees
with this explanation.

Historically, the orbital inclinations and companion masses are hard to acquire for
non-eclipsing sdB binaries. Some works hence assume tidal synchronization for
short-period binaries, and derive the orbital parameters from the orbital periods by
setting 𝑃orb = 𝑃rot (e.g., [25]). However, if we can assume tidal synchronization
for systems with 𝑇sync < 0.1𝑇EHB, we see that this method should only apply to
binaries with 𝑃orb ≲ 1 h. This is much shorter than the synchronization period
(𝑃orb, sync = 1.2 d) assumed in [25], meaning that in their work the companion
masses/inclinations might be over/underestimated.

Additionally, binaries with 𝑃orb ≲ 1 h can undergo significant orbital decay due to
gravitational-wave radiation, and it is questionable whether these systems can ever
reach 100% tidal synchronization, as tides at sub-synchronization may not be strong
enough for Ωspin to fully catch up with Ωorb (as in the case of WD binaries, see,
e.g., [67]). Mass-transfer may also happen for these binaries, making their evolution
more complicated [7].

5.5 Discussion
Tidal Torque Scaling with Stellar Radii
We saw in Section 5.4 that the binary orbital period required to reach tidal syn-
chronization is shorter for the 0.37𝑀⊙ low-mass sdB, compared to the 0.47𝑀⊙

canonical sdB. This means the tidal torque must be weaker for low-mass sdBs. To
explain the reason, we consider an equal-mass binary (𝑞 = 1), and rewrite the mode
torque of equation 5.1 as

𝜏𝛼 = − 𝑓 (𝜔f)𝛾𝛼𝐽𝛼𝐶𝛼𝑆(𝑅1) , (5.10)

where

𝑓 (𝜔f) ≡
𝜔2

f

(𝜔𝛼 − 𝜔f)2 + 𝛾2
𝛼

(5.11)

is a dimensionless function describing the resonance dependence of the torque on𝜔f ,
whose scaling should be of similar order for different stellar models. The quantity

𝐽𝛼 ≡ 𝑚𝜔𝛼𝑀1𝑅
2
1⟨𝜉𝛼 |𝜉𝛼⟩ (5.12)

is the angular momentum of the oscillation mode 𝛼 with azimuthal wave number
𝑚, which roughly scales as 𝐽𝛼 ∝ 𝑀1𝑅

2
1 for stars of similar structure at the same
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Figure 5.5: Left: The magnitude of 𝛾𝛼𝐽𝛼𝐶𝛼 (defined in the main text) for different
sdB models. This quantity determines the tidal torque of each mode per unit tidal
forcing strength, and we see that they are of similar orders of magnitude without
clear dependence on the different stellar models. Hence, the physical torque should
be roughly proportional to the tidal forcing strength which scales as 𝑅6. Note that
sdB models with hydrogen masses greater than 10−3 𝑀⊙ have some unstable modes,
and their tidal excitation can not be treated with our current method. Right: Stellar
radii as a function of age for different sdB models. More massive systems with more
hydrogen left in the envelope have larger radii, and the tidal torques are expected to
be stronger based on the 𝑅6 scaling.

mode frequency. For dissipating modes, the rate for mode 𝛼 to dissipate its angular
momentum (i.e., exerting a torque) is 𝛾𝛼𝐽𝛼. The quantity

𝐶𝛼 ≡ |𝑊𝑙𝑚𝑄𝛼 |2
⟨𝜉𝛼 |𝜉𝛼⟩

(5.13)

describes the dimensionless coupling of the tidal potential and the oscillation mode,
and 𝑆(𝑅1) ≡ (𝑅1/𝑎)2(𝑙+1) is the scaling of the tidal forcing strength.

With this notation, we can see that the quantity 𝛾𝛼𝐽𝛼𝐶𝛼 represents the rate at which
mode 𝛼 deposits its angular momentum into the star (i.e., the tidal torque), per tidal
forcing strength. We plot this quantity for the 0.47𝑀⊙ and 0.37𝑀⊙ sdB models
in Figure 5.5, and we see that they have similar orders of magnitude without clear
dependence on the different stellar models. This is expected as these sdB stars have
very similar internal structures.

Therefore, the main scaling of the physical tidal torque comes from the forcing
strength 𝑆(𝑅1). As shown in right panel of Figure 5.5, the 0.37𝑀⊙ sdB is more
compact than the 0.47𝑀⊙ sdB due to its lower mass, and its radius 𝑅1 is smaller by
a factor of ∼ 2. For 𝑙 = 2 modes, this produces a difference in the tidal torque by
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(𝑅0.37/𝑅0.47)6 ∼ 1/64. Since the 0.37𝑀⊙ sdB has a smaller moment of inertia by
a factor of a few, its synchronization time scale is about ten times longer. We can
confirm this result from Figure 5.4: the tidal synchronization timescale at 𝑃 ∼0.2 d
for 0.47𝑀⊙ sdB binaries is 𝑇EHB,0.47 = 164 Myrs, roughly 10 times shorter than the
timescale of 0.37𝑀⊙ sdB binaries at the same period (a few times 𝑇EHB,0.37 = 444
Myrs).

The above analysis can also provide insight into the tidal torques for sdBs with
different hydrogen envelope masses. Detailed sdB modeling has shown that hy-
drogen envelope masses range from 0.001 to 0.005𝑀⊙ [38]. This small amount
of hydrogen never affects the core structure of the helium-burning sdBs, but it can
greatly change the stellar radius.

In the right panel of Figure 5.5 we show the stellar radii for some 0.47𝑀⊙ sdB
models that retained more hydrogen than 10−3 𝑀⊙. Compared to the original
10−3 𝑀⊙ hydrogen model, we can see even that a slight increase of hydrogen could
increase the sdB radius by a factor of ∼ 1.5 − 2. We further plot the 𝛾𝛼𝐽𝛼𝐶𝛼
calculated for these models in the left panel of Figure 5.5, and we see that despite
some scatter, they are similar to the 10−3 𝑀⊙ hydrogen model. We hence expect the
𝜏 ∝ 𝑅6 scaling roughly holds for these models, and the tidal torque for these larger
sdBs could be larger by a factor of ∼10−50, which will increase the synchronization
transitional period.

We note, however, there is a reason that we did not actually compute the tidal torques
for these more extensive sdB models. We see in Figure 5.5 that for sdB models with
𝑀H > 10−3 𝑀⊙, there exist a period range where the mode growth rate 𝛾𝛼 is positive,
i.e. where the modes are unstable. This is caused by the so-called 𝜅-mechanism in
these stars, where the partial ionization of iron creates an opacity bump, generating
self-excited oscillations [11, 9]. Our torque in equation 5.1 only holds for damped
oscillation modes, and it is unclear how these self-excited oscillations would interact
with tidal forcing (see, e.g., [22]). These unstable modes have periods of∼0.05−0.1
days, so they could be very important for the tidal evolution of sdBs in ∼0.1 − 0.2
day orbits. Future works should investigate how these modes will behave under tidal
excitation.

The above analysis also explains the discrepancies between the tidal synchronization
period we calculated and those estimated by [60], who applied Zahn’s traveling wave
limit. The synchronization periods we found for the 0.47𝑀⊙ canonical sdB model
are longer than the periods from their work, which means the tidal torque in our
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cases is stronger. This might be because [60] used an sdB model with only 10−4 𝑀⊙

hydrogen left, whose radius is smaller than our model. Hence, even though the
gravity waves are more damped with Zahn’s traveling wave limit in their models,
the tidal torque can still be weaker due to its strong dependence on the stellar radius.

Resonance Locking
In binary systems, if the tidal torque consists of many resonance peaks from individ-
ual modes, a process called resonance locking may occur [81, 82]. In this scenario,
the forcing frequency of the binary enters a resonance with one of the oscillation
modes 𝛼, and stays as

𝜔f ≡ 𝑚(Ωorb −Ωspin) ≃ 𝜔𝛼 (5.14)

throughout the binary lifetime. As 𝜔𝛼 evolves on its own timescale which is
independent of the binary separation, this scenario may result in very different
binary evolution history compared to other tidal theories.

To see whether resonance locking can happen for sdB binaries, we write the evolution
of forcing frequency as

¤𝜔f = 𝑚

(
3(𝜏tide + 𝜏GW)

𝐼orb
− 𝜏tide

𝐼spin

)
, (5.15)

where we substitute Equations 5.3, 5.4, 5.6 and 5.7, and neglect the ¤𝐼spin term as the
stellar structure and moment of inertia only changes slowly during the evolution. To
maintain a resonance lock, we must have ¤𝜔f = ¤𝜔𝛼. For helium-burning subdwarfs,
their g-mode frequency increases over time, hence the necessary (but not sufficient)
condition for resonance locking to occur is ¤𝜔f > 0, or

1 + 𝜏GW

𝜏tide
>

𝐼orb

3𝐼spin
. (5.16)

For binaries of order-of-unity mass ratios, 𝐼orb = 𝜇𝑎2 ∼ 𝑀1𝑎
2 ≫ 𝑀1𝑅

2
1 > 𝐼spin. The

above relation hence never holds for realistic sdB binaries, unless 𝜏GW ≫ 𝜏tide. This
can happen either for already close-to-synchronization binaries or wide binaries,
where 𝜏tide becomes very small in both cases. In the former case, the low-frequency
oscillating g-modes that contribute most to the tidal torque should be very efficiently
damped (see Section 5.4), which prevents resonance peaks from forming. In the
latter case, tidal evolution is not important, because it would occur on a gravitational
wave inspiral time which is very long for wide binaries. We hence do not expect
resonance locking to happen for sdB binaries, which is confirmed with our numerical
spin–orbit evolution calculations.
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Differential Rotation
As we expect very efficient angular momentum transport inside the sdBs, we assume
they are rigidly rotating in our spin–orbit evolution calculations. Observationally,
asteroseismology can measure the internal rotation of stars via frequency splittings
of g-mode and p-mode oscillations [1]. Since g-modes mainly probe the deeper
region of the star, while p-modes probe the outer layers, a difference between the
rotational rates derived from their frequency splittings may suggest the level of
differential rotation between the stellar core and the outer layers.

With Kepler/K2, there have now been a handful of pulsating sdBs with both p-mode
and g-mode frequency splitting measured. [35] reports that for the sdB+WD system
KIC 11558725, the rotational rate derived from p-mode splitting is 𝑃p = 40.2 ±
0.3 days, while the rate from g-mode splitting is found to be 𝑃g = 45.1 ± 7.8 days,
showing that KIC 11559725 is roughly rigidly-rotating. Similar results are found
for for sdBs EPIC 220422705 ([44]; where 𝑃p ∼ 29 days and 𝑃g ∼ 32 days) and
PG 0101+039 ([45]; where 𝑃p = 8.60 ± 0.16 days and 𝑃g = 8.81 ± 0.06 days). We
note that the slightly faster rotation rates measured from p-mode splitting for these
systems are consistent with our tidal spin-up picture with dissipating gravity waves:
as gravity waves mostly dissipate in the outer envelopes of the star (Figure 5.1),
they exert local tidal force mostly in the these regions, and angular momentum is
subsequently transported inwards.

However, the above systems all have slow rotation rates compared to the typical
rotational periods (𝑃rot ≲ 0.3 d) of tidal synchronization calculated from our models.
This means the tidal torque should be weak for these systems. We pay particular
attention to one system V1405 Ori (also EPIC 246683636 or KUV 04421+1416),
which is an sdB+dM binary with an orbital period of 0.498 days [61]. [62] obtained
the p-mode and g-mode splitting from K2 observations, and determined a p-mode
derived rotation rate of 0.555±0.029 days and (marginally) a g-mode derived rotation
rate of 4.2 ± 0.4 days. If the 𝑃g measurements are reliable, this appears to be an
sdB with substantial differential rotation, whose envelope is almost synchronized
while the interior is not. This means for strong tidal torques acting in the sdB outer
envelope, the assumption of rigid rotation might break down. As the stellar core,
which carries most of the stellar mass and moment of inertia, is weakly coupled to
the envelope in this case, our calculated tidal synchronization orbital period might
be shorter than that needed to synchronize the envelope.

While the current sample is limited, we expect further observations with TESS can
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provide us more sdB pulsators with differential rotation measured [5, 4, 75]. It is
beyond the scope of this work to develop methods for the spin–orbit evolution of
differentially rotating sdB models, but we comment that it might be a crucial factor
to understand sdB tidal spin-up.

Implications for Rotation Periods of CO WDs
Rotating sdBs can potentially form rapidly rotating carbon–oxygen (CO) white
dwarfs after their nuclear burning stops. If the spin angular momentum is conserved
after the core-helium-burning phase, the rotation periods of CO WDs are then given
by:

𝑃rot,WD =
𝐼WD

𝐼sdB, end
𝑃rot, end , (5.17)

where 𝐼sdB, end and 𝑃rot, end are the the moment of inertia and the rotation period of
the sdB at the end of its helium-burning phase (defined by the time when the central
helium fraction drops below 1%), and 𝐼WD is the moment of inertia of the CO WD.
Evolving our 0.47𝑀⊙ sdB model until it forms a CO WD, we find that the stellar
moment of inertia decreases from 𝐼sdB, end = 3×1051 g cm2 to 𝐼WD = 1.8×1050 g cm2

in 50 Myrs, due to the shrinking of the star after nuclear burning stops.

Since tidal synchronization occurs at orbital periods less than≈0.2 d, rapidly rotating
CO WDs formed from tidally synchronized sdBs should have 𝑃rot,WD ≲ (1.8 ×
1050/3 × 1051) × 0.2 d ≈ 17 min. At orbital periods 𝑃orb ≲ 1 h, the gravitational-
wave decay timescale becomes less than the sdB lifetime, so the sdB does not
form a WD before mass transfer with its companion. This gives a lower-limit of
𝑃rot,WD ≳ (1.8×1050/3×1051) ×1 h ≈ 4 min if mass transfer has not occurred. We
hence crudely estimate that rapidly rotating CO WDs formed from synchronized
sdB stars can have rotation periods between 4 to 17 minutes. This corresponds to
rotation rates roughly a hundred times larger than ordinary WDs.

In the above analysis, we ignored any tidal torques after the core-helium-burning
phase. Since the star can rotate much faster than the orbit as it contracts, tidal
dissipation may spin it back down, producing longer rotation periods than those listed
above. Future works should investigate this scenario to have more realistic estimates
of the rotation rates of CO WDs originating from sdB binaries. Nonetheless, future
observations of rapidly rotating CO WDs in close binaries may indicate that they
were tidally spun up during a sdB phase of evolution.
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Limitations with the Mode Decomposition Method
Throughout this work, we calculate the total tidal torque by expanding it into a
summation of tidal torques from individual oscillation modes (Equation 5.2). [72]
recently pointed out a potential issue with this “mode decomposition” method.
They found that the magnitude of off-resonance torques could be different from the
magnitude calculated from direct solving of fluid equations under the same tidal
potential. [15] further shows that the discrepancy might be caused by the fact that
non-adiabatic mode solutions generally do not form a complete and orthogonal
basis for the torque expansion. However, the correction they introduced for viscous
damping cannot directly apply to the radiative dissipation of tidally excited g-modes.

Nevertheless, when tidal torques are dominated by resonant modes, the correction to
the tidal torque magnitude is likely only significant when the tidal forcing frequency
is off-resonance [72]. As the torques at these frequencies are typically orders of
magnitude weaker than the on-resonance case (see Figure 5.2), we do not expect
them to dominate the tidal evolution. Our results should still be valid as long as
most tidal-spin up is caused by on-resonance torques.

When the tidal forcing is on resonance with one of the oscillation modes, the
mode amplitude becomes so large that it can trigger nonlinear wave dissipation.
In this scenario, the oscillation mode excites a number of nearby daughter and
granddaughter modes, and the overall damping rate by this sea of coupled modes
could be much larger than the radiative damping of individual modes [6, 80].

There are no theoretical works on estimating this nonlinear dissipation on core
helium burning stars (except for some toy models, see, e.g., [43]). Nevertheless,
because our calculated tidal synchronization periods match observed trends fairly
well, we suspect nonlinear dissipation does not greatly increase mode damping rates.
Future works should look into the nonlinear effects and their potential influence on
sdB tidal spin-up.

Other Caveats
There are some other caveats with our methods. We calculate the oscillation modes
based on pre-calculated non-rotating stellar models. As the star gets significant
spin-up, the modes may start to behave differently. This matters the most when
Ωspin becomes comparable with 𝜔𝛼. As the the mode contributing mostly to the
tidal torque is the one with 𝜔𝛼 ≈ 𝜔f ≡ 𝑚(Ωorb − Ωspin), the rotational effects on
mode solutions could be significant when 𝜔𝛼 ∼ Ωorb ∼ Ωspin , i.e., when the system
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is close to synchronization. However, the tidal torque becomes negligible when the
system is synchronized, so we do not expect these rotational effects to change our
results much.

We set the initial orbital periods of our binary systems as a unified 𝑃orb = 60 days,
while in reality close-in sdB binaries can be born from two separate channels,
namely a prior mass-transfer phase, or a common-envelope ejection. In general,
sdB binaries born from these channels could have different initial spin periods,
but the detailed outcome of these processes is highly uncertain. Nevertheless, we
comment that, as long as tides are responsible for most of the sdB angular momentum
for synchronized systems, our calculations should be insensitive to the initial orbital
setup.

We did not include mass-transfer in the sdB evolution phase, even though it could
happen for sdB binaries born at orbital periods less than 2−3 hours [7]. Mass-transfer
may remove the sdB outer hydrogen envelope, and hence changes the strength of
the tides (see discussion in Section 5.3). However, we suspect tidal synchronization
will remain efficient for these stars since they fill their Roche lobes.

5.6 Conclusion
In this manuscript, we investigated the tidal spin-up of close-in subdwarf B (sdB)
binaries. We considered the dissipation of tidally excited gravity waves in the
envelopes of sdB stars, and calculated the tidal torques by directly computing the
amplitudes of tidally driven oscillation modes in sdB stellar models. We integrated
the coupled spin-orbit evolution of these binaries and calculated the resulting sdB
rotation rates.

We showed that in contrast to the usual assumption that gravity waves are efficiently
damped near the surface (“Zahn’s traveling wave limit”), these waves can actually be
less damped, and can reflect back to form standing waves in the radiative envelope
of sdB stars. The resulting tidal torque is then significantly less than Zahn’s theory
predicted, and has a complicated resonant dependence on the frequency of the tidal
force. At longer periods, the waves are more highly damped and the tidal torque
approaches Zahn’s limit.

For binaries containing a 0.47𝑀⊙ canonical sdB, our models predict the system
will be tidally synchronized if the orbit is less than ∼ 0.2 days. For those with
a 0.37𝑀⊙ low-mass sdB, this tidal synchronization period becomes ∼ 0.15 days.
These values are very similar to the observed spin rates of sdB binaries (Figure 5.3),
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which are tidally synchronized at orbital periods less than ∼ 0.2 days. The tidal
synchronization timescale has weak dependence on the companion star mass, and
is mostly determined by the orbital period.

We investigated how the amount of hydrogen in the sdB envelope could affect the
strength of the tidal torque. Since sdBs with more hydrogen have larger radii, and
the tidal torque magnitude could scale with the stellar radius as 𝜏 ∝ 𝑅6, tidal torques
may be stronger for stars with more hydrogen. However, the existence of unstable
oscillations for our sdB models with thicker hydrogen envelopes complicate the
calculation of tidal torques.

When tidally synchronized sdBs evolve into carbon–oxygen white dwarfs, we es-
timate their rotation periods to be between 4 to 17 minutes (if tidal effects after
the core-helium-burning phase can be neglected), which corresponds to spin rates
roughy a hundred times faster than typical white dwarfs. We pointed out that
resonance locking cannot happen in the tidal spin-up phase of sdB binaries, and dis-
cussed the limitations of our mode decomposition method to calculate tidal torques.
Differential rotation and rotational effects on oscillation may also be important. Fu-
ture works should investigate the above scenarios, and compare to growing numbers
of rotation rate measurements for sdBs in close binaries.

The agreement between our models and measurements for sdB binaries is very
encouraging for the prospect of reliable tidal synchronization predictions. In partic-
ular, we expect the physics of tidal spin-up in sdBs to be very similar to that of more
massive helium stars in close binaries [43], which are progenitors of gravitational
wave sources and exotic supernovae. We believe the results of this paper increase
the credibility of predictions for black hole spins presented in that work.
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5.7 Appendix: Fixing MESA Profiles
To calculate the tidal response, we solve for internal stellar oscillations with the
GYRE stellar oscillation code [73, 71, 27]. The code reads stellar snapshots from
MESA as unperturbed background profiles of density, pressure, etc., and then solves
the linear perturbation equations of stellar oscillations. The oscillation equations
GYRE aims to solve are simplified by assuming hydrostatic equilibrium and mass
conservation of the background stellar profile, hence the MESA snapshots provided
to GYRE should satisfy the following equations:

𝑑𝑃

𝑑𝑟
= −𝜌𝑔 , (5.18)

𝑑𝑀𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 , (5.19)

where 𝑃, 𝜌, 𝑀𝑟 and 𝑔 = 𝐺𝑀𝑟/𝑟2 are the pressure, density, enclosed mass and gravity
inside the star. Further, the Brunt-Väisälä frequency profile inside the stellar model
should also satisfy the following equation by definition:

𝑁2 ≡ 𝑔
(

1
Γ1

𝑑 ln 𝑃
𝑑𝑟

− 𝑑 ln 𝜌
𝑑𝑟

)
= 𝑔

(
− 𝑔

𝑐2
s
− 𝑑 ln 𝜌

𝑑𝑟

)
, (5.20)

where we made use of 𝑐2
s ≡ Γ1𝑃/𝜌. We rewrite the above equation into the following

form:
𝑑 ln 𝜌
𝑑𝑟

= −𝑁
2

𝑔
− 𝑔

𝑐2
s
, (5.21)

and plot the ratios between the LHS and RHS of Equations 5.18, 5.19 and 5.21 for one
of our MESA stellar snapshots in the upper panels of Figure 5.6. While they should
all be unity, we notice that in the original MESA profile, the ratio between the LHS
and RHS for equation 5.21 departs significantly from 1 at the density discontinuity
near the convective core boundary at 0.025 𝑅⊙. In the radiative envelope, this ratio
also departs from unity by a few percent at some radii. The GYRE oscillation
solutions solved by assuming Equation 5.21 are hence problematic. In practice, we
find that this inconsistency often causes the mode solutions to change drastically
between successive MESA snapshots, while in principle we expect them to vary
gradually as the modes evolve.

We hence need to fix the stellar profiles provided by MESA to get correct oscillation
solutions. As g mode oscillations are most sensitive to the Brunt-Väisälä frequency
profile, we aim to keep the value of 𝑁 as output by MESA, and adjust the density
and pressure profiles to satisfy Equations 5.18, 5.19 and 5.21. Hence, we rewrite
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Figure 5.6: Upper: The ratios between the LHS and RHS of Equations 5.18, 5.19
and 5.21 for an example MESA snapshot, which should all be unity. We see that in
the original stellar profile calculated from MESA, Equation 5.21 is sometimes not
satisfied, with the largest discrepancy happening at the convective core boundary
with a density discontinuity. We fix the 𝑃, 𝑀𝑟 and 𝜌 profiles by the method described
in Appendix 5.7, and the fixed profiles satisfy Equation 5.21 better. Lower: The
original and fixed 𝑃, 𝑀𝑟 , 𝜌 and Γ1 profiles of the example MESA snapshot. The
pressure, density and enclosed mass are almost identical to original MESA profiles,
so the change of stellar structure after the fixing process is negligible. Γ1 is different
by a small amount in some regions of the star, which means that the energy processes
in the fixed stellar model are in general not consistent.

these equations into the following matrix form:

𝑑

𝑑𝑟


𝑃

ln 𝜌
𝑀𝑟

 =


−𝐺𝑀𝑟 𝜌

𝑟2

−𝑁2𝑟2

𝐺𝑀𝑟
− 𝐺𝑀𝑟

𝑟2𝑐2
s

4𝜋𝑟2𝜌

 . (5.22)

The equations then become a first order ordinary differential equation of the form
𝑑y/𝑑𝑟 = 𝑓 (y, 𝑟; 𝑁2, 𝑐2

s ) where y(𝑟) = [𝑃(𝑟), ln 𝜌(𝑟), 𝑀𝑟 (𝑟)] is an unknown func-
tion to be solved numerically, and 𝑁2 and 𝑐2

s are the ODE parameters that can be
fitted from the original stellar profile. To solve for y, we need a set of bound-
ary conditions for 𝑃, 𝜌 and 𝑀𝑟 , which is naturally given by the following physical
requirements:

𝑃(𝑅star) = 𝑃original(𝑅star) (original surface pressure) ; (5.23)

𝜌(0) = 𝜌original(0) (original central density) ; (5.24)

𝑀𝑟 (0) = 0 (vanishing central enclosed mass) . (5.25)
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We note that, however, the above boundary conditions can not be directly used by
numerical solvers, as there exists a coordinate divergence at 𝑟 = 0 for 𝑓 (y, 𝑟; 𝑁2, 𝑐2

s ),
as seen from Equation 5.22. Nevertheless, for sufficiently small 𝜖 > 0, we can expand
𝜌 and 𝑀𝑟 at 𝑟 = 𝜖 to the leading order:

𝜌(𝜖) ≈ 𝜌(0) +
(
𝑑𝜌

𝑑𝑟

)
𝑟=0
𝜖 ≈ 𝜌(0) , (5.26)

𝑀𝑟 (𝜖) ≈ 𝑀𝑟 (0) +
(
𝑑𝑀𝑟

𝑑𝑟

)
𝑟=0
𝜖 +

(
𝑑2𝑀𝑟

𝑑𝑟2

)
𝑟=0

𝜖2

2
+

(
𝑑3𝑀𝑟

𝑑𝑟3

)
𝑟=0

𝜖3

6
=

4𝜋𝜌(0)
3

𝜖3 ,

(5.27)

(5.28)

where we made use of Equation 5.19 to calculate 𝑑3𝑀𝑟/𝑑𝑟3. This means Equation
5.22 can be solved on the interval 𝜖 ≤ 𝑟 ≤ 𝑅star with the following boundary
conditions:

𝑃(𝑅star) = 𝑃original(𝑅star) ; (5.29)

𝜌(𝜖) = 𝜌original(0) ; (5.30)

𝑀𝑟 (𝜖) =
4𝜋𝜌original(0)

3
𝜖3 , (5.31)

such that the divergence at 𝑟 = 0 can be avoided. Once the solutions are found, the
values at 𝑟 = 0 are acquired by 𝑃(0) = 𝑃(𝜖), 𝜌(0) = 𝜌(𝜖) and 𝑀𝑟 (0) = 0, with
Equations 5.26 and 5.27, and the relation 𝑃(𝜖) ≈ 𝑃(0) by Taylor expansion of 𝑃
near 𝑟 = 0 to the leading order.

In practice, 𝜖 should be much smaller than the scale length of 𝑃, 𝜌 and 𝑀𝑟 , such that
the higher-order terms in the expansions can be neglected. This condition is always
satisfied for the scales of the spatial resolution in a valid stellar model. Therefore,
we choose 𝜖 to be the spatial coordinate of the innermost grid in the MESA model,
and we can then solve for Equation 5.22 with the boundary conditions described by
Equations 5.29, 5.30 and 5.31.

We use the integrate.solve_bvp function in the SciPy python package [79]
to solve for the fixed 𝑃, 𝑀𝑟 and 𝜌 profiles, using the original MESA profiles as
our initial guess. We show the comparison between our fixed and original MESA
profiles in Figure 5.6. The fixed 𝑃, 𝑀𝑟 and 𝜌 profiles are almost identical to
the original density profile, but they more accurately satisfy Equation 5.21 in the
radiative envelope. While there is still some inconsistency at the convective core
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boundary due to the density discontinuity, it is likely unimportant as gravity waves
are evanescent in the convective core.

We note that, as the adiabatic index Γ1 ≡ 𝜌𝑐2
s/𝑃 is now calculated from the fixed 𝑃

and 𝜌 and the original sound speed profile, it can be different from the original Γ1 by
a small amount inside the star. Physically, this means the energy transport processes
in this fixed stellar profile may not be consistent with its hydrostatic structure,
and future works should investigate a more self-consistent way to deal with this
problem. Nevertheless, we find that, after fixing the MESA profiles, GYRE is able
to get oscillation solutions that vary gradually across nearby MESA snapshots.
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C h a p t e r 6

SPINNING BLACK HOLES BORN FROM TIDALLY
INTERACTING BINARIES

[1] Linhao Ma and Jim Fuller. “Tidal Spin-up of Black Hole Progenitor Stars”.
In: The Astrophysical Journal 952.1 (2023), p. 53. doi: 10.3847/1538-
4357/acdb74.

Abstract
Gravitational wave observations indicate the existence of merging black holes (BHs)
with high spin (𝑎 ≳ 0.3), whose formation pathways are still an open question. A
possible way to form those binaries is through the tidal spin-up of a Wolf–Rayet
(WR) star by its BH companion. In this work, we investigate this scenario by
directly calculating the tidal excitation of oscillation modes in WR star models,
determining the tidal spin-up rate, and integrating the coupled spin–orbit evolution
for WR–BH binaries. We find that for short-period orbits and massive WR stars,
the tidal interaction is mostly contributed by standing gravity modes, in contrast to
Zahn’s model of travelling waves which is frequently assumed in the literature. The
standing modes are less efficiently damped than traveling waves, meaning that prior
estimates of tidal spin-up may be overestimated. We show that tidal synchronization
is rarely reached in WR–BH binaries, and the resulting BH spins have 𝑎 ≲ 0.4 for all
but the shortest period (𝑃orb≲ 0.5 d) binaries. Tidal spin-up in lower-mass systems
is more efficient, providing an anti-correlation between the mass and spin of the
BHs, which could be tested in future gravitational wave data. Nonlinear damping
processes are poorly understood but may allow for more efficient tidal spin-up. We
also discuss a new class of gravito-thermal modes that appear in our calculations.

6.1 Introduction
The spins of stellar-mass black holes (BHs) are still not fully understood. Most
BHs detected from LIGO/Virgo events have low aligned components of their spins
[1, 57, 28, 42, 58], which agrees with predictions of efficient angular momentum
(AM) transport within the interiors of massive stars. Such processes remove the
majority of AM from the stellar core, predicting slowly rotating remnants after core-
collapse [16, 25]. These theories are approximately consistent with core-rotation
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rate measurements of low-mass red giants from asteroseismology [5, 29, 8, 9, 51,
18], with a few discrepancies [11]. Yet, among a small fraction of LIGO/Virgo
BHs and a majority of high-mass X-ray binaries [27], high BH spins are measured.
Therefore it still remains a theoretical challenge to explain the existence of these
rapidly rotating objects (see, e.g. discussions in [39, 6, 12]).

A natural scenario to form high-spin BHs is through binary interactions, as nearly
all BHs with spin measurements are found via BH mergers or X-ray binaries. One
possible progenitor of BH binaries are Wolf–Rayet–BH binaries. Such a system is
formed from an ordinary massive binary system, where the primary collapses to a
(likely slowly rotating) BH, and then strips off the envelope of the secondary, making
it a Wolf–Rayet (WR) star. Tidal interactions during the WR phase could possibly
spin up the latter, forming a rapidly spinning BH. Many studies have investigated this
scenario and made predictions for the spins of the second-born BHs [24, 38, 4, 7, 31,
15], finding they can be large for sufficiently close binary systems (𝑃orb ≲ 1 day).

However, in most of these studies, the tidal response of the WR star to the BH
companion is not calculated directly. Instead, an effective tidal torque calculated
from Zahn’s theory of dynamical tides ([55, 56], see also [20]) is often assumed. The
basic picture of Zahn’s theory is as follows: gravity waves are tidally excited near
the convective core-radiative envelope interface inside a star. The waves propagate
outwards and damp due to radiative diffusion near the surface of the star. The
damping is often so strong that the waves dissipate before reaching the surface
and behave as travelling waves rather than standing waves. The energy and AM
deposited by the waves can be calculated and translated to an effective tidal torque.
While this picture is often assumed in studies of tidally excited waves, it has not
been closely examined in binaries involving a WR star.

In this work, we directly solve for oscillation modes of WR stellar models, quan-
tifying their tidal coupling strengths and dissipation rates. We then compute AM
transfer rates and model their spin evolution and resulting BH spins, comparing to
those from Zahn’s theory. The plan of this paper is as follows: in §6.2 we review
the basic formalism of dynamical tides for calculating tidal torques based on stellar
evolution models, and we summarize the setups of our models of the WR stars; in
§6.3 and §6.4 we present our analysis for the tidally excited modes and the stellar
spin evolution. We discuss our results in §6.5 and conclude in §6.6.
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6.2 Tidal Torques by Dynamical Tides
In classical tidal theory, tides can be decomposed into two components: equilibrium
tides and dynamical tides. The former corresponds to the global distortion of the
star, while the latter is composed of internal oscillations, which is believed to be
a dominant cause of tidal dissipation. From [26], the energy dissipation rate of a
tidally forced oscillation mode 𝛼 excited by the tidal potential of an aligned and
circular orbiting secondary is given by

¤𝐸𝛼 =
𝑚𝜔𝛼Ωorb𝛾𝛼𝑞

2𝑀1𝑅
2
1 |𝑊𝑙𝑚𝑄𝛼 |2𝜔2

f

(𝜔𝛼 − 𝜔f)2 + 𝛾2
𝛼

(
𝑅1

𝑎

)2(𝑙+1)
, (6.1)

where𝜔𝛼 and 𝛾𝛼 are the mode frequency and damping rate, and𝜔f = 𝑚(Ωorb−Ωspin)
is the tidal forcing frequency (measured in the frame co-rotating with the primary),
and Ωspin is the star’s angular rotation frequency. 𝑀1 and 𝑅1 are the mass and radius
of the primary, 𝑞 = 𝑀2/𝑀1 is the mass ratio of the secondary to the primary, 𝑎 and
Ωorb are the semi-major axis and the angular frequency of the orbit. 𝑙 and 𝑚 are the
mode’s angular and azimuthal wave numbers and 𝑊𝑙𝑚 is an expansion coefficient
of the tidal potential. 𝑄𝛼 ≡ ⟨𝜉𝛼 |∇(𝑟 𝑙𝑌𝑙𝑚)⟩/𝜔2

𝛼 is the dimensionless overlap integral
describing the spatial coupling between the mode and the tidal potential, which
is calculated by the relation 𝑄𝛼 = −(2𝑙 + 1)𝛿Φ𝛼/(4𝜋𝜔2

𝛼) [13], where 𝛿Φ𝛼 is the
surface gravity potential perturbation. The mode angular momentum dissipation
rate is related to the energy dissipation by [13]

¤𝐽𝛼 =
¤𝐸𝛼

Ωorb
, (6.2)

assuming a circular orbit. Hence, by solving for the internal oscillation modes (with
𝜔𝛼, 𝛾𝛼 and Q𝛼) inside the primary, we are able to calculate the energy dissipation
and tidal spin-up rate, given a companion mass and orbit.

Stellar Models
We built our WR star models with the MESA stellar evolution code [32, 34, 33,
35, 36]. Instead of using the binary options in MESA, we construct our models
as follows: we start with a number of zero-age main-sequence (ZAMS) single star
models with a variety of masses, summarized in Table 6.1. The stars evolve to
core hydrogen depletion before the stripping-off process occurs. We simulate this
process by artificially removing the outer hydrogen envelope immediately after hy-
drogen depletion (defined by the time when the central hydrogen fraction drops
below 10−5), producing a helium star as the initial setup for the WR star. We
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model 𝑀ZAMS 𝑀WR Dutch factor desired 𝑍
1 15𝑀⊙ 3𝑀⊙ 0.5 10−2𝑍⊙
2 20𝑀⊙ 5𝑀⊙ 0.5 10−2𝑍⊙
3 30𝑀⊙ 10𝑀⊙ 0.5 10−2𝑍⊙
4 45𝑀⊙ 18𝑀⊙ 0.5 10−2𝑍⊙
5 60𝑀⊙ 27𝑀⊙ 0.5 10−2𝑍⊙
6 80𝑀⊙ 38𝑀⊙ 0.5 10−2𝑍⊙
7 100𝑀⊙ 50𝑀⊙ 0.5 10−2𝑍⊙
8 120𝑀⊙ 62𝑀⊙ 0.5 10−2𝑍⊙
9 15𝑀⊙ 3𝑀⊙ 4.0 𝑍⊙
10 20𝑀⊙ 5𝑀⊙ 4.0 𝑍⊙
11 30𝑀⊙ 10𝑀⊙ 4.0 𝑍⊙
12 45𝑀⊙ 18𝑀⊙ 4.0 𝑍⊙
13 60𝑀⊙ 26𝑀⊙ 3.0 𝑍⊙
14 80𝑀⊙ 38𝑀⊙ 2.0 𝑍⊙
15 100𝑀⊙ 49𝑀⊙ 1.7 𝑍⊙
16 120𝑀⊙ 61𝑀⊙ 1.5 𝑍⊙

Table 6.1: Parameters of our Wolf–Rayet star models. We fixed the metallicities of
all models to 𝑍 = 0.01 𝑍⊙ and adapted their Dutch wind scaling factors to match
the mass-loss rates for the desired metallicities. See discussions in the main text.

then restart the evolution until the end of core helium depletion (when the central
helium fraction drops below 10−5), and we output the stellar pulsation parame-
ters to be used later for spin-evolution calculations. Example MESA inlists are
available on Zenodo under an open-source Creative Commons Attribution license:
https://doi.org/10.5281/zenodo.7935443, and the model parameters are summarized
in Table 6.1.

During the helium burning phase, we compute the internal oscillations of the models
with the GYRE stellar oscillation code [50, 49, 21]. We use the second order Magnus
differential scheme to calculate non-adiabatic modes, as it proves to be the most
reliable when dealing with low-frequency oscillations. We specify our search to
𝑙 = 𝑚 = 2 modes since this is the dominant part of the tidal potential in aligned and
circular orbits, with the corresponding 𝑊22 =

√︁
3𝜋/10. Example GYRE inputs are

available on Zenodo under an open-source Creative Commons Attribution license:
https://doi.org/10.5281/zenodo.7935443. Once we have the mode solutions, we
integrate the spin–orbit evolution with Eq. 6.1 and 6.2, summing over all modes.
We assume the primary remains rigidly rotating during the evolution, due to the
strong AM diffusion inside WR stars [15]. We use our non-rotating mode solutions
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all along in the integration, as we will see that most systems never get to tidal
synchronization, such that the rotational effects can be ignored.

An important process related to the spin–orbit evolution is the large wind mass loss
experienced by WR stars (e.g., [44]), which removes AM from both the spin and
the orbit. The mass loss rates of high-mass WR stars are somewhat uncertain [44,
52], especially at low-metallicity, hence there are few reliable observed/modelled
values to compare with. We simulate the mass loss with the “Dutch” wind scheme
[30] in MESA with 𝜂 = 0.5 and include its effects in our integration. The mass-
loss rate has a strong dependence on the metallicity of the star. However, we find
that GYRE was unable to solve the oscillations correctly for some of our massive
models at solar metallicity due to MESA’s artificial treatment of super-Eddington
near-surface layers. We hence used a universal metallicity 𝑍 = 0.01 𝑍⊙ in all our
models so that the stellar structure can be more accurately modeled. Oscillations
solved from these models are reasonable approximations since the mode properties
are mostly determined by the deep internal structure of the stars which are not
strongly dependent on metallicity.

To estimate the evolution and mass loss rates of higher metallicity stars, we increase
the wind scaling factor to match the mass-loss rate of an alternative model with the
desired metallicity. For instance, to simulate a 10𝑀⊙ WR star at solar metallicity,
we use a wind scaling factor of 𝜂 = 4 for our 𝑍 = 0.01 𝑍⊙ model of the same
mass, which produces roughly the same mass loss rate as a 𝑍 = 𝑍⊙ model with
𝜂 = 0.5. In the following, we will simply reference the models with their desired
metallicity, yet the readers should keep in mind that the underlying models actually
have 𝑍 = 0.01 𝑍⊙ and adapted Dutch factors, which are summarized in Table 6.1.

6.3 Mode Morphology
Figure 6.1 shows some example mode eigenfunctions from a 10𝑀⊙ WR star model
at solar metallicity during the helium burning phase. We see that there is a distinction
between the high-frequency (𝑃 ≲ 0.8 d, green line) and low-frequency (𝑃 ≳ 0.8 d,
blue and red lines) modes. For a typical high-frequency mode, the eigenfunction
appears to be a standing low-order gravity wave trapped in the radiative envelope
of the star. This is in contrast with the [55] model for travelling waves that damp
near the stellar surface. When the tidal forcing frequency 𝜔f becomes close to
the frequency of one of these modes, a resonance occurs and the energy/angular
momentum dissipation becomes dominated by it (cf. Equation 6.1). The tidal torque
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Figure 6.1: Left: Example mode eigenfunctions for a 10𝑀⊙ Wolf–Rayet star
model at solar metallicity during helium burning. For high-frequency modes, we
see a standing g-mode (green line) excited near the convective core (red region)
boundary, in contrast with Zahn’s assumption of travelling waves. As the frequency
decreases, the modes become travelling gravity waves (blue line), damping near
the surface (Zahn’s formalism). When the frequency continues to decrease, the
modes become mixed modes with a travelling g-mode component and a thermal
mode component. The red star marks the transition point, calculated by the local
maximum of the eigenfunction. Right: A detailed look at the transition points
between g-modes and thermal modes (stars). The lines show the frequencies of all
modes and the colored lines correspond to the example modes in the left panel. The
transition points agree well with the theoretically derived ones where𝜔𝛼 = 𝜔crit (the
boundary between two propagation regions, cf. Appendix 6.7). At higher frequency
the thermal mode region (shaded) gets narrower and disappears.

contributed by this standing mode is different from Zahn’s theory, and we will see
in §6.4 that Zahn’s results on spin–orbit evolution are significantly altered.

At lower frequency, the modes turn to travelling waves (blue line) as Zahn as-
sumed, since the g-mode dispersion relation indicates an imaginary wave number
Im(𝑘𝑟) ∝ 1/𝜔2

𝛼 (see Appendix 6.7), i.e., the spatial evanescence becomes larger
at lower frequency. For even lower frequency, the eigenfunction becomes a mixed
mode which can be separated into two components: a gravity wave inner region
of the radiative envelope, and a thermal wave region in the outer envelope. We
show in Appendix 6.7 and 6.7 that the transition occurs around a critical fre-
quency 𝜔crit ≡ (4𝜆𝑁2𝜔T)1/3, where 𝜔𝑇 = 𝜅/𝑟2 is the thermal frequency, and
𝜅 = 16𝜎B𝑇

3/(3𝜌2𝑐P𝜅R) is the thermal diffusivity. The thermal mode exists where
|𝜔crit | > 𝜔𝛼, while the g-mode exists where |𝜔crit | < 𝜔𝛼, as seen in the right panel of
Figure 6.1. For higher frequency waves the thermal mode region becomes narrower
and disappears. Since the thermal mode components only exist near the very sur-
face of the star, where the density is very low, we would expect that the mechanical
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Figure 6.2: The overlap integral |𝑄𝛼 | as a function of mode period from a 10𝑀⊙
Wolf–Rayet star model at solar metallicity during helium burning (same as Figure
6.1). Circle colors indicate mode damping rates |𝛾𝛼 |, while line color indicates the
mode type (the thick lines show the corresponding modes in Figure 6.1 left panel).
“Strange mode” solutions often appear at long periods with excess damping rates
and unusual period spacings (see Appendix 6.7).

torques are mostly contributed by the travelling g-mode component excited in the
deep interior as Zahn’s theory assumed. Hence at low tidal forcing frequency the
tidal torques should be similar to Zahn’s model, as we will see in §6.4.

Figure 6.2 shows the periods, damping rates and overlap integrals 𝑄𝛼 of all modes
we solved for the same 10𝑀⊙ model. We see that most modes have a nearly constant
period spacing, matching the expectations for g-modes. The damping rates for most
modes are at the same order of magnitude, except at high-frequency where the
damping is significantly lower. This is due to their low radial wave numbers 𝑘𝑟 and
the damping rate 𝛾𝛼 ∝

∫
star 𝑘

2
𝑟 𝜅 |𝜉𝛼 |2𝑑𝑚. Low-frequency modes become traveling

waves whose damping rate is roughly the wave crossing time.

The overlap integral |𝑄𝛼 | typically decreases as the mode frequency decreases, but
with significant scatter and with “hills and valleys” as the frequency decreases. Since
the on-resonance AM dissipation ¤𝐽𝛼 ∝ 𝛾𝛼 |𝑄𝛼 |2, we expect to see the same “hills and
valleys” features in the tidal synchronization rate, as the tidal forcing frequency is
moving across different modes with varying 𝑄𝛼. This is also different from Zahn’s
theory, which predicts a “smooth” power-law relation for the AM deposition rate as
a function of orbital period ([24], or Equation 6.6 in this paper).

In the frequency ranges where mixed modes appear, we notice that GYRE suffers
from numerical convergence problems as it starts looking for extremely high-order
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modes. We identified some of the mode solutions in that regime as “strange modes”,
and an example is labelled in Figure 6.2. These modes often have excess damping
rates and unusual winding numbers (mode radial order), and do not obey the usual
frequency spacing of g-modes. In addition, their eigenfunctions appear to be artifi-
cially truncated as they reach deeper inside the star, unlike other modes with an inner
g-mode component at similar frequencies, which are truncated near the convective
core boundary. We are not sure if these modes are physical or caused by numerical
artifacts from GYRE, hence we do not include them in the spin–orbit integration.
A detailed discussion of these modes is presented in Appendix 6.7.

6.4 Evolution of WR Spins
We integrate the spin–orbit evolution of WR–BH binaries from the WR star models
and oscillations modes we have computed. Throughout the evolution, the orbital
AM of the system is lost due to winds from the primary, gravitational radiation and
tidal AM transfer:

¤𝐽orb = ¤𝐽wind,orb − ¤𝐽GW − ¤𝐽tide , (6.3)

where ¤𝐽wind,orb = ¤𝑀1Ωorb(𝑀2𝑎/(𝑀1 + 𝑀2))2 and ¤𝐽tide is given by summing over all
modes from Equation 6.2. At short orbits, the orbital decay timescale by gravitational
wave radiation is given by [37] (assuming circular orbits)

𝑡GW ≡ 𝑎

|⟨𝑑𝑎/𝑑𝑡⟩| =
5

64(4𝜋2)4/3
𝑐5(1 + 𝑞)1/3

𝐺5/3𝑀
5/3
1 𝑞

𝑃
8/3
orb , (6.4)

where 𝑞 = 𝑀2/𝑀1 is the mass ratio. For equal mass binaries (𝑞 = 1), this gives
𝑡GW ≈ 206 Myr × (𝑀1/10𝑀⊙)−5/3(𝑃orb/0.3 d)8/3, much greater than the typical
WR lifetime (≲ 1 Myr). Hence, gravitational radiation is not important in our case,
but we still include the term ¤𝐽GW = (32/5) (𝐺/𝑎)7/2𝑐−5𝑀2

1𝑀
2
2
√
𝑀1 + 𝑀2 in our

evolution.

The primary receives spin AM from the orbit at ¤𝐽tide, and it loses AM through winds:

¤𝐽spin = ¤𝐽tide + ¤𝐽wind,spin , (6.5)

where ¤𝐽wind,spin = ¤𝑀1Ωspin𝑅
2
1. The spin of the primary may also change due to the

changes of its internal structure and hence moment of inertia. Since the secondary
is a BH in our case, its spin is not coupled.
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For comparison, we also integrate each evolution based on Zahn’s formalism, with
an adapted AM transfer rate from [24]:

¤𝐽tide,Zahn =
𝐺𝑀2

2
𝑟c

(
𝑟c

𝑎

)6
𝑠

8/3
c
𝜌c

�̄�c

(
1 − 𝜌c

�̄�c

)2
, (6.6)

where 𝑠c =
√︁

3/𝜋𝐺�̄�c |Ωorb−Ωspin |, while 𝑟c, 𝜌c and �̄�c are the convective core radius,
the density at the core boundary, and the average density of the core, respectively.

We construct the integration machinery of the spin–orbit evolution as follows: after
generating a grid of stellar model snapshots throughout the star’s evolution, we
solve for oscillation modes for each snapshot with GYRE. We begin our integration
at the start of the helium burning phase (defined by the instant when 2% of the
core helium burning lifetime has passed). We carefully apply an adaptive time step
control to avoid i) sudden crossing of resonance locations; ii) sudden changes of
mode frequencies; iii) changes of more than 2% of the total evolution phase lifetime;
and iv) sudden change of stellar spin by 2%, in one time step. To evaluate physical
quantities (e.g. mode frequencies, stellar masses) between two model snapshots,
we estimate them by interpolating these snapshots and their corresponding GYRE
solutions. In doing so, we track the modes by their radial orders 𝑛pg, and only include
the mode eigenfunctions existing in both snapshots. We carried out resolution tests
with half our selected timesteps and we confirm that the results are nearly identical.

Theories have suggested that the strong magnetic coupling between the stellar core
and envelope (e.g. Taylor-Spruit dynamo, [45, 17]) removes the majority of core
AM immediately after the main sequence [25], before the envelope can be stripped
off. Hence, we assume initially non-rotating WR stars. We run models with initial
orbital periods of 0.3, 0.5, or 0.8 days. We find that longer period orbits exhibit very
little tidal spin-up.

In this work we specify our calculations to equal mass binaries (𝑞 = 1), since they
are the most relevant for binary black holes. For cases with different mass ratios, one
would expect from Equation 6.1 that the tidal dissipation rate (hence the tidal spin-
up rate) naïvely scales as 𝑞2, as we verified in some additional test runs. However,
extreme mass ratios could allow for orbital decay and resulting processes such as
resonance locking or binary mergers. We hope to generalize our calculations to such
systems in future works.

Figure 6.3 shows the spin and orbital evolution for a few of the systems we studied.
Since the WR primary burns helium and loses mass throughout the evolution, the
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Figure 6.3: The spin and orbital evolution for our Wolf–Rayet–BH binaries. All
systems have equal mass companions initially. The solid and dashed lines show the
spin and orbital frequencies, respectively. Line colors indicate the evolving central
helium mass fraction. The stars mark the end of evolution (core helium depletion),
and the red “ZF” symbols show the spins if Zahn’s formalism (Equation 6.6) is
assumed. Left: Systems with initial orbital periods of 0.3 days and a mass-loss rate
equivalent to solar metallicity. Mass loss is very significant for high-mass models
and the final spins depart from Zahn’s formalism for them. Middle: Systems
with initial orbital periods of 0.8 days and a mass-loss rate equivalent to solar
metallicity. Mass loss overpowers tidal spin-up and the primaries are not spun up
much, consistent with Zahn’s results. Right: Systems with initial orbital periods
of 0.3 days and a mass-loss rate equivalent to 0.01 solar metallicity. Mass loss is
negligible for most systems and the primaries are partially spun up, but not as much
as Zahn’s formalism predicts. None of these models reach tidal synchronization.

mass and central helium fraction can be seen as time coordinates, as shown. For
systems with short initial orbits and high metallicities (𝑃orb,i = 0.3 d, 𝑍 = 𝑍⊙, left
panel), we see that the primaries get significantly spun up, yet they are not tidally
synchronized even at the end of evolution. In addition, the final spins of massive
models are never higher than what one would expect from Zahn’s theory.

When we increase the initial periods (𝑃orb,i = 0.8 d, middle panel of Figure 6.3), the
tidal torques decrease as expected. At these long periods, the tidal torque is domi-
nated by traveling waves and the results agree well with Zahn’s formalism. However,
the tidal torque is unable to compete with mass loss, which almost completely re-
moves the spin AM the star accumulated during the first half of the evolution, leaving
a slowly spinning primary.

Tidal spin-up is followed by mass-loss induced spin-down in the middle of the
evolution for solar-metallicity models (Figure 6.3, left and middle panel) due to
an increase in the wind mass loss rate. This occurs when the helium envelope
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Figure 6.4: The mass and spin evolution of a 38𝑀⊙ Wolf–Rayet star at solar
metallicity, with an initial orbit of 0.3 days. The shaded regions show the dominant
composition as a function of mass coordinate (right axis). At an age of ∼ 3.3 Myr,
mass loss exposes the carbon-rich core, greatly enhancing the mass loss and spin
down rates.

is lost completely, exposing the CO-rich core, and greatly increasing the mass
loss rate according to the “Dutch" mass loss prescription (Figure 6.4). In several
thousand years the winds remove the star’s spin AM until the mass loss rate decreases
somewhat, allowing tidal spin-up to proceed. However, ongoing mass loss and a
widened orbit prevent tides from spinning up the star to synchronization.

When we consider short initial periods but move to low-metallicity models (𝑃orb,i =

0.3 d, 𝑍 = 0.01 𝑍⊙, right panel of Figure 6.3), the mass loss becomes negligible
and the spin evolution is dominated by tidal effects. The orbits do not change
significantly. We see that the primaries get significantly spun up, yet still not
reaching tidal synchronization, and the resulting spin is much slower than Zahn’s
prediction, except for the lowest mass models. This is because the transition period
from standing modes to travelling waves increases as the stellar mass increases.
Hence the evolution is more likely to depart from Zahn’s formalism for more massive
primaries (see §6.5).

The evolution of spin frequencies show “step-like” features (most easily seen in
Figure 6.3 middle panel) characterized by sudden increases in spin frequency. This
is caused by the resonance-crossing of standing modes with the tidal forcing, as
illustrated in Figure 6.5. When the tidal forcing frequency gets close to one of the
mode frequencies, a near-resonance occurs (cf. Equation 6.1) and the tidal torque
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Figure 6.5: The evolution of the mode frequencies (black lines) and tidal forcing
frequency (red line) of a WR–BH binary with a 26𝑀⊙, 1.0 𝑍⊙ WR star, an equal
mass companion and an initial orbit of 0.8 days. The mode frequencies increase
as the star evolves, while the forcing frequency decreases, preventing resonance
locking. Ωspin increases rapidly while 𝜔f decreases rapidly at resonance crossings,
creating the “step-like” features we see in the spin frequency evolution (Figure 6.3).

drastically increases, leading to high spin-up rate. The occasional crossings of these
resonances create the “step-like” features.

6.5 Discussion
Comparison to Zahn’s Formalism
To understand why and how the tidal evolution differs from Zahn’s formalism, in
the upper panel of Figure 6.6 we show the tidal torques calculated for a 10𝑀⊙

WR star model for different tidal forcing periods 𝑃tide = 2𝜋/Ωtide with these two
approaches. For short tidal periods, the tidal torque has sharp peaks at standing
g-mode frequencies, in contrast to the power-law dependence of Zahn’s prediction.
This is caused by low damping rates of standing modes at short mode periods (cf.
Figure 6.2 and Figure 6.6 lower right panel).

As the mode and orbital frequencies evolve, resonance crossings occur, hence the
accumulated tidal spin-up must be evaluated by integrating ¤𝐽tide over time. Zahn’s
theory for travelling waves generally overestimates the tidal spin-up in this case,
as the resonance peaks are narrow, and during the majority of evolution, the tidal
torque is much less than what Zahn’s formalism estimates. This helps to explain the
departure of final spins shown in Figure 6.3 for short-period systems (left and right
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Figure 6.6: Upper: Our calculated ¤𝐽tide by summing over modes (thick black
line) and by Zahn’s formalism (thick orange line) as a function of tidal forcing
period 𝑃tide = 2𝜋/Ωtide, for a 10𝑀⊙ Wolf–Rayet model with 90% central helium
abundance. The contributions from individual modes are represented by thin gray
lines. At short tidal forcing periods 𝑃tide ≲ 0.35 d (e.g., the green dot), the tidal
torque is dominated by resonance peaks from individual standing modes, and is very
different from what Zahn predicts. At long forcing periods (e.g., the red dot), the
tidal torque is no longer dominated by individual modes, but arises from a multitude
of highly-damped travelling modes. This is exactly Zahn’s assumption, and hence
the torques are similar at long periods. Lower Left: The same as the upper
panel but for a more massive 38𝑀⊙ Wolf–Rayet model with 90% central helium
abundance. We see that the mode-period spacing becomes larger, and the standing
wave region extends to longer tidal forcing period. Lower Right: Eigenfunctions
of the most resonant mode at the green and red dots in the upper panel. We see
clearly that one is a standing mode while the other is a travelling mode.
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panel) from Zahn’s predictions.

When the systems are in long-period orbits, or already at a stage whereΩspin becomes
comparable toΩorb (close to tidal synchronization), the tidal forcing periods become
long and the tidal torques are mostly contributed by modes at low frequencies.
These modes, in contrast to their high-frequency partners, have large damping and
are essentially travelling waves (cf. Figure 6.2 and Figure 6.6 lower right panel).
Therefore, the tidal torque is no longer dominated by resonance with an individual
mode, but instead has contributions from many strongly damped modes, effectively
forming a “continuum” (Figure 6.6, red dot). This continuum formed by traveling
waves is exactly what Zahn’s formalism assumes, so the torques should be similar to
Zahn’s formalism, which is confirmed in Figure 6.6. This explains the consistency
between our results and Zahn’s for long-period initial orbits (Figure 6.3 middle
panel).

We note, however, that the transition period between standing waves and travelling
waves depends on the stellar mass: for higher mass models, the frequency range for
standing waves extends to longer periods, as shown for the 38𝑀⊙ model in the lower
left panel of Figure 6.6. Hence, the tidal evolution of massive WR stars departs
more strongly from Zahn’s formalism, as we see in the left and right panels of Figure
6.3.

This distinction is caused by the different structures of low and high-mass WR stars.
For higher mass stars, a larger fraction of the total internal pressure is contributed
by radiation pressure since they are hotter and more luminous. Radiation pressure,
however, contributes smaller buoyancy forces because the Brunt-Väisälä frequency
𝑁 is zero for a star supported purely by radiation pressure. Indeed, the Brunt-Väisälä
frequencies within our high-mass models are smaller than those within our low-mass
models (Figure 6.7). This increases the g-mode period spacing (proportional to 𝑁−1)
of high-mass stars and decreases the radial wave number at the same frequency (as
𝑘𝑟 ∝ 𝑁). Hence, the mode damping rate 𝛾𝛼 ∝

∫
star 𝑘

2
𝑟 𝜅 |𝜉𝛼 |2𝑑𝑚 is also decreased. A

secondary effect is that the convective cores are larger in more massive stars, making
the radiative envelopes and g-mode cavities narrower. These combined effects make
the resonance peaks narrower and more widely spaced for higher mass models, and
further from the travelling wave limit of Zahn’s formalism.
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Figure 6.7: The Brunt-Väisälä frequency (solid lines) and the ratio of radiation
pressure to total pressure (dashed lines) of two WR models of 10 (blue) and 38𝑀⊙
(red), the same models in Figure 6.6. The radiation pressure fraction is higher for
the more massive model, making its Brunt-Väisälä frequency lower. This causes its
resonance peaks to be narrower and more separated, as seen in Figure 6.6.

Resonance Locking
When the tidal dissipation is dominated by resonant modes, an important process
called resonance locking may occur [53]. However, we argue that this is unlikely
to occur for WR–BH binaries. Resonance locking can happen when the mode’s
frequency evolves at the same rate as the tidal forcing frequency:

¤𝜔𝛼 = ¤𝜔f = 𝑚( ¤Ωorb − ¤Ωspin) . (6.7)

We see from our example evolution tracks (Figure 6.3) that in most cases ¤Ωorb < 0
and ¤Ωspin > 0, which means ¤𝜔f < 0, in contrast to the fact that ¤𝜔𝛼 > 0 due to stellar
evolution (Figure 6.5). Hence the above relation never holds and resonance locking
can never happen. Instead, the system rapidly passes through resonances, creating
the step-like features in Figure 6.3.

We note that when mass loss dominates the spin evolution, we could occasionally
have ¤Ωspin < 0 (Figure 6.3, left and middle panels) and resonance locking may
happen during this phase. This may prevent a star from rapidly spinning down, but
it cannot cause tidal spin-up. However we find that during these phases the Brunt-
Väsäilä frequency of the star increases rapidly, such that ¤𝜔𝛼 exceeds ¤𝜔f even at
resonance, in contrast to the resonance locking criterion. Hence, resonance locking
does not appear to occur in any of our modeled systems.
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Implications for BH Spins
A rapidly rotating WR star can probably collapse to a fast-spinning BH, forming
a high-spin binary BH system. If angular momentum is conserved during the
core-collapse process, the dimensionless spin parameter of the resulting BH is

𝑎 =
𝑐𝐽WR

𝐺𝑀2
BH

. (6.8)

In Figure 6.8, we show the resulting black-hole spins of our WR star models,
assuming that they preserve their masses and angular momenta after helium burning
and during the core-collapse process. We also show the predicted BH spins with
Zahn’s formalism. We see that lower-mass systems can form faster-spinning BHs,
as their tidal spin-up is more efficient. It is only in ultra-short orbits that these
systems form fast-spinning BHs. For solar metallicity systems, tidal spin-up cannot
overcome AM loss from winds, resulting in low spins for systems starting at long
(𝑃orb,i ≳ 0.5 d) orbital periods. Low-metallicity (1% 𝑍⊙) systems with 0.5 d ≲
𝑃orb,i ≲ 1 d produce larger BH spins with 0.1 ≲ 𝑎 ≲ 0.8, compared to 𝑎 ∼ 0.01
predicted by single star evolution models [16]. For high-mass systems, the spins are
much smaller than Zahn’s predictions.

Our predicted BH spins are roughly compatible with some LIGO measurements with
moderate spins (0.1 ≲ 𝜒eff ≲ 0.5) [1, 2, 3], but would have a tough time matching
any events with large 𝜒eff . The relationship between orbital period, mass, and spin
is different than what Zahn’s theory predicts. Whereas we typically find higher
spins for 𝑀BH ≲ 10𝑀⊙, Zahn’s theory predicts smaller spins for lower mass BHs.
There may be an anti-correlation between mass and spin [43] which would support
our new models. A mass-spin correlation from future LIGO-VIRGO data will help
distinguish between these models. None of our high-mass models predict spins
comparable to some high-spin measurements (𝑎 ≳ 0.9) from X-ray binaries [27],
and the uncertainty of such measurements is still under debate [6, 12]. However,
those measurements are for the first-born BH, while our models only apply to the
second-born BH.

Previous works on tidal interactions between WR–BH binaries have predicted black
hole spins similar to our “Zahn’s results” in Figure 6.8, in which Zahn’s formalism
is assumed [38, 4, 7, 31, 15]. These results likely overestimate the black hole
spins when standing waves are present, which applies primarily to massive BHs
(𝑀BH ≳ 10𝑀⊙). [10] also investigated tidal spin-up of WR stars, but used different
prescriptions for tidal dissipation, winds, and orbital AM losses. Unlike our results
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Figure 6.8: The dimensionless spin of resulting black holes for our Wolf–Rayet
star models if their masses and angular momenta at the end of helium burning is
preserved. Zahn’s predictions for the same system are also shown, and are assumed
1 (maximum rotating) if the progenitors have 𝐽 > 𝐺𝑀2/𝑐. For short initial orbits,
the models typically predict higher spins than individual stellar evolution models,
where the spins could be as low as 10−2. However, the spins are usually lower than
Zahn’s predictions, especially for high-mass systems.

and those listed above, they found that tidal spin-up coupled with mass loss frequently
caused the orbits to decay and instigate mass transfer. This outcome is more likely
with small companion masses (e.g., neutron stars) whose orbits must decay more in
order to tidally spin-up the WR star.

Nonlinear dissipation
Throughout the paper, we have assumed that the tidally forced modes are linear.
However, this is not true when a mode is close to resonance, especially for massive
models with larger on-resonance mode amplitudes. To examine how nonlinearity
may affect our conclusions, we estimate the nonlinear damping rate for a mode 𝛼
in Appendix 6.7. For weakly nonlinear modes, an approximate nonlinear damping
rate may be

𝛾𝛼,NL ∼ (𝑑𝜉𝛼,𝑟/𝑑𝑟)max

𝜏𝛼,2
, (6.9)

where the numerator is the mode nonlinearity (i.e., the peak value of 𝑑𝜉𝑟/𝑑𝑟 within
the star, which is much less than unity for a weakly nonlinear mode) and the
denominator is the wave crossing time of the envelope. We rerun our evolution
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Figure 6.9: The dimensionless spin of resulting black holes for our Wolf–Rayet
star models with the nonlinear damping rates we estimate in Appendix 6.7. Zahn’s
predictions are also shown. The black hole spins are significantly increased when
including nonlinear damping, especially for high-mass black holes and short-period
systems. Hence, nonlinear effects could be an important factor in these systems.

models with this nonlinear damping rate, and we find that nearly all models achieve
more tidal spin-up compared to linear damping only.

In Figure 6.9, we show the predicted BH spins for our systems with nonlinear
damping, compared to the predictions from Zahn’s theory. We see that for very
short-period orbits (𝑃 ∼ 0.3 d), the strong tidal forcing triggers substantial nonlinear
damping, spinning up the BHs to nearly the same rotation rates as predicted by Zahn’s
theory, where maximum damping occurs. Nonlinear effects are the most significant
for low-metallicity and high-mass (𝑀 ≳ 30𝑀⊙) models, which have lower order
g-modes dominating their tidal processes and less linear damping (see discussion in
§6.5).

However, our nonlinear damping model is crude, so these predictions are not very
reliable. A more detailed study of the nonlinear interactions has to be carried out to
establish firm conclusions for the final BH spins.

Caveats
Throughout this paper, we have assumed very efficient angular momentum transport
within the WR star, such that it remains rigidly rotating. This is justified by the
asteroseismically callibrated models of magnetic angular momentum transport [16]



190

that predict nearly rigid rotation during the helium-burning phase [15]. However, if
angular momentum transport is inefficient, gravity waves damping near the stellar
surface will preferentially spin up those layers until they are synchronized. This will
create a critical layer at which subsequent waves are absorbed [20], synchronizing
the star from the outside inwards. Recent works have investigated the formation of
critical layers and subsequent absoroption of incoming waves [46, 22], though they
do not include magnetic torques that may allow angular momentum transport to
prevent critical layer formation. If a critical layer can form, it will absorb outgoing
waves, such that Zahn’s model applies once again.

We have ignored the influence of the Coriolis force in our calculations. This will
become significant once the star’s have been partially spun up and the tidal forcing
frequency becomes smaller than the rotation frequency. However, the prograde
ℓ = 𝑚 = 2 modes that dominate the tidal interaction have eigenfunctions that are
only slightly changed by Coriolis forces (see, e.g., [14]), so we don’t expect any of
our conclusions to be greatly affected.

We have adopted the “Dutch” wind models with an artificial scaling factor to simulate
the mass-loss rates for Wolf–Rayet stars at different metallicities. However, the
wind physics for these stripped stars are highly uncertain [52], and different wind
models could result different rates for the removal of spin angular momentum from
the primary, introducing uncertainties in the final black hole spins. Nevertheless,
we don’t expect these uncertainties to exceed the differences between our solar-
metallicity models and the 0.01 𝑍⊙ models, as they represent extreme cases of large
and negligible mass-loss, respectively. Hence, the final black hole spins with the
“correct” wind physics should lie between the data points representing models with
the same initial mass and periods but different metallicities in our Figure 6.8. The
conclusion that these black holes are not spun up to maximal rotation appears robust.

Our stellar models were run at low metallicity in order to reliably calculate the
near-surface structure and mode eigenfunctions. Higher metallicity stars will have
somewhat different structure and mode eigenfunctions near the surface, particularly
around the iron group opacity peak. If this significantly affects mode damping
rates, then the tidal synchronization efficiency would be similarly altered. We set up
additional test models with 0.02, 0.03 and 0.2 𝑍⊙ and find that the oscillation mode
parameters (frequencies, damping rates and overlap integrals) show no significant
differences, nor specific trends towards higher metallicities, hence we expect our
treatment to be appropriate. However, these models all have weak winds, while the
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strong winds in solar-metallicity models may also alter the eigenmode properties.
[41, 40] present detailed models of the transition from the hydrostatic star the
hydrodynamic wind in the near-surface layers. Future work should investigate how
those types of stellar models affect mode eigenfunctions and damping rates.

Finally, our calculations are performed by summing up the contribution of individual
tidally excited oscillation modes. If non-resonant modes outside our computed
frequency range contribute to the tidal dissipation, or if our eigenmode calculations
miss highly non-adiabatic thermal modes that contribute to the dissipation, then the
tidal dissipation rate could possibly increase. It would be interesting to compare to
calculations performed by directly computing the forced tidal response, as outlined
in [47].

6.6 Conclusion
In this work, we investigate the dynamical tidal spin-up of Wolf–Rayet stars from
black hole companions. We build Wolf–Rayet star models with different metal-
licities, and then calculate their oscillation mode frequencies, damping rates, and
eigenfunctions. We use these to integrate the coupled spin–orbit evolution of the
binary based on the tidal excitation of these oscillation modes. We also make
predictions for the resulting BH spins upon core-collapse of the Wolf–Rayet star.

We study the properties of the oscillation modes and find that at shorter orbital
period, the tidal forcing is mostly contributed by standing g-modes, in contrast
to the usual assumption of travelling waves proposed by [55]. The standing g-
mode spectra contributes a resonance structure, and during most of the spin–orbit
evolution phase, the tidal response lies between resonances and the interaction
strength is weaker than Zahn’s prediction. The tidal forcing transits to Zahn’s
travelling wave limit at longer periods, in which Zahn’s estimate is more accurate.
However, the specific transition frequency depends on the stellar masses, and the
structure for more massive stars (supported significantly by radiation pressure) tend
to have lower transition frequencies, allowing systems in longer-period orbits to
evolve differently compared to Zahn’s prediction.

We find that it is difficult to tidally synchronize Wolf–Rayet stars during helium-
burning. For solar-metallicity Wolf–Rayet stars, strong winds tend to remove the
majority of angular momentum deposited by tides, leaving slowly spinning stars
and black holes. At low metallicity, the stellar wind is weaker and the stars are
significantly tidally spun up, yet still less than Zahn’s prediction, especially for
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massive stars and short-period orbits.

Tidal interactions can significantly spin up the resulting BHs compared to single-
star models. Yet the predicted black hole spins 𝑎 are still ≲ 0.4 for all but our
shortest period (𝑃orb ≲ 0.5 d) models. These predictions are consistent with some
low/moderate-spin measurements from LIGO/Virgo black hole merger events, but
cannot explain high-spin X-ray binaries events since only the second-born black
hole has large spin in these models.

We have discussed a new class of gravito-thermal modes that appear in our calcu-
lations, yet we do not reach a firm conclusion whether these modes are physical or
caused by numerical artifacts. Future work should investigate the origins of these
modes, and any effect they could have on tidal spin-up.

There are also caveats to our work. We have assumed rigid rotation of the Wolf–
Rayet star during our spin–orbit evolution calculations, as expected if there are
strong internal AM transport processes caused by magnetic torques. However,
weak AM transport could enable surface critical layer formation, allowing Zahn’s
model to apply. We did not realistically calculate the near-surface structure of our
solar-metallicity models, which could alter our estimate of the mode damping rates.
We also point out that nonlinear damping effects could be significant for our most
massive models, which can produce more tidal dissipation than our predictions from
linear theory. This should be studied and improved in future work.
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6.7 Appendix
Mode Dispersion Relation with Thermal Diffusion and Radiation Pressure
To understand the effects of thermal diffusion on stellar oscillation modes, we modify
the derivations in the appendices of [25], assuming the stellar interior has a mixture
of ideal gas and radiation pressure, and constant molecular weight. The internal
energy density is given by

𝑢 = 𝑐V,g𝑇 + 𝑎𝑇4 , (6.10)
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where 𝑇 is the temperature of the fluid, and 𝑐V,g = 𝑛𝑘B/(𝛾g − 1) is the heat capacity
for gas at constant volume, and 𝑎 is the radiation constant, 𝑛 is the number density of
gas particles and 𝛾g is the heat capacity ratio for ideal gas (𝛾g = 5/3 for mono-atomic
gas). The pressure of the mixture is given by

𝑃 = 𝑃gas + 𝑃rad = 𝑛𝑘B𝑇 + 1
3
𝑎𝑇4 . (6.11)

Now we consider a change in entropy: from the first law of thermodynamics, we
have 𝑑𝑆 = (𝑑𝑈 + 𝑝𝑑𝑉)/𝑇 . This immediately leads to the change in entropy density

𝑑𝑠 = 𝑛𝑘B

[(
1

𝛾g − 1
+ 12𝜂

1 − 𝜂

)
𝑑 ln𝑇 − 1 + 3𝜂

1 − 𝜂 𝑑 ln 𝜌
]
, (6.12)

where we defined 𝜂 ≡ 𝑃rad/𝑃 and used 𝑑 ln 𝜌 = −𝑑 ln𝑉 , where 𝜌 is the gas density.
Taking the derivative of Equation 6.11, we have the following relation:

𝑑 ln 𝑃 = (1 − 𝜂)𝑑 ln 𝜌 + (1 + 3𝜂)𝑑 ln𝑇 . (6.13)

We substitute this relation into Equation 6.12 to have two alternative forms of the
entropy derivative:

𝑑𝑠 = 𝑛𝑘B

[(
1

𝛾g − 1
+ 12𝜂

1 − 𝜂 + (1 + 3𝜂)2

(1 − 𝜂)2

)
𝑑 ln𝑇 − 1 + 3𝜂

(1 − 𝜂)2 𝑑 ln 𝑃
]
, (6.14)

and

𝑑𝑠 = 𝑛𝑘B

[(
1

𝛾g − 1
+ 12𝜂

1 − 𝜂

)
1

1 + 3𝜂
𝑑 ln 𝑃 −

(1 − 𝜂 + 12(𝛾g − 1)𝜂
(𝛾g − 1) (1 + 3𝜂) + 1 + 3𝜂

1 − 𝜂

)
𝑑 ln 𝜌

]
.

(6.15)
From Equations 6.14 and 6.15 we can calculate the following thermodynamic quan-
tities:

𝑐P ≡ 𝑇
(
𝜕𝑠

𝜕𝑇

)
𝑃

=

(
𝜕𝑠

𝜕 ln𝑇

)
𝑃

=

(
1

𝛾g − 1
+ 12𝜂

1 − 𝜂 + (1 + 3𝜂)2

(1 − 𝜂)2

)
𝑛𝑘B , (6.16)

Γ1 ≡
(
𝜕 ln 𝑃
𝜕 ln 𝜌

)
𝑠

= 1 − 𝜂 +
(𝛾g − 1) (1 + 3𝜂)2

1 − 𝜂 + 12(𝛾g − 1)𝜂 . (6.17)

We now derive the energy equation for the mixture of ideal gas and radiation. With
thermal diffusion, the entropy changes at a rate

𝑑𝑠

𝑑𝑡
=
𝜕𝑠

𝜕𝑡
+ v · ∇𝑠 = 𝑐P𝜅

𝑇
∇2𝑇 , (6.18)
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where 𝜅 is the thermal diffusivity. We assume a static and spherically symmetric
stellar background and the usual harmonic time dependence of perturbations 𝛿𝑄 ∝
𝑒−𝜎𝑡 = 𝑒−𝑖𝜔𝑡 . The above equation reduces to

−𝜎
(
𝛿𝑠 + 𝜉𝑟

𝜕𝑠

𝜕𝑟

)
= −𝑐P𝜅𝑘

2𝛿 ln𝑇 , (6.19)

where 𝜉𝑟 is the radial displacement and we used the WKB approximation∇2 → −𝑘2.
From Equations 6.15 and 6.17, we have

𝜕𝑠

𝜕𝑟
=

1 − 𝜂
1 + 3𝜂

𝑐P

(
1
Γ1

𝜕 ln 𝑃
𝜕𝑟

− 𝜕 ln 𝜌
𝜕𝑟

)
=

1 − 𝜂
1 + 3𝜂

𝑐P

𝑔
𝑁2 , (6.20)

where 𝑁2 ≡ 𝑔(Γ−1
1 𝜕 ln 𝑃/𝜕𝑟 − 𝜕 ln 𝜌/𝜕𝑟) is the Brunt-Väisälä frequency. We can

further express 𝛿𝑠 and 𝛿 ln𝑇 in terms of 𝛿𝑃 and 𝛿𝜌 from Equations 6.15 and 6.13.
We substitute them and the above equation into Equation 6.19, and arrive at our
energy equation: (

1 − 𝜅𝑘2

𝜎

)
𝛿𝜌

𝜌
=

(
1
Γ1

− 𝜅𝑘2

𝜎

1
1 − 𝜂

)
𝛿𝑃

𝑃
+ 𝑁

2

𝑔
𝜉𝑟 . (6.21)

It is straightforward to verify that Equation 6.21 reduces to the energy equation in
[25] when 𝜂 = 0, i.e. radiation is neglected.

We now consider the dynamics of the fluid. The perturbed momentum equation
reads:

𝜌𝜔2𝜉𝑟 = 𝑖𝑘𝑟𝛿𝑃 + 𝑔𝛿𝜌 , 𝜌𝜔2𝜉⊥ = ∇⊥𝛿𝑃 , (6.22)

where we again used the WKB approximation ∇𝑟 → 𝑖𝑘𝑟 . The continuity equation
with the incompressible approximation1 gives

∇ · 𝜉 ≈ 𝑖𝑘𝑟𝜉𝑟 + ∇⊥ · 𝜉⊥ = 0 . (6.23)

When the angular dependence of perturbation variables are expanded in spherical
harmonics, we have ∇2

⊥ → −𝜆/𝑟2 where 𝜆 = 𝑙 (𝑙 + 1). Combining the above
equations with the energy equation, we arrive at the dispersion relation

1 − 𝜅𝑘2

𝜎
+ 𝜆

𝑘2𝑟2
𝑁2

𝜎2 =

(
1
Γ1

− 𝜅𝑘2

𝜎

1
1 − 𝜂

)
𝑖𝑘𝑟

𝑘2𝐻
, (6.24)

where 𝐻 ≡ 𝑃/(𝜌𝑔) is the pressure scale height. With the WKB approximation,
𝑘 ≈ 𝑘𝑟 and 𝑘𝑟𝐻 ≫ 1, the first term in the bracket of the right hand side can be
neglected, and the dispersion relation becomes

1 − 𝜅𝑘2
𝑟

𝜎

(
1 − 1

1 − 𝜂
𝑖

𝑘𝑟𝐻

)
≈ − 𝜆

𝑘2
𝑟 𝑟

2
𝑁2

𝜎2 . (6.25)

1The result is similar without this approximation.
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Gravity and Thermal Mixed Modes
When gas pressure is non-negligible, we always have 1 − 𝜂 ∼ 1 and the second
term in the bracket of the left hand side of Equation 6.25 can usually be neglected
under WKB approximation 𝑘𝑟𝐻 ≫ 1. The dispersion relation hence reduces to the
quadratic equation (

𝜔𝑇

𝜎
𝑘2
𝑟 𝑟

2
)2

−
(
𝜔𝑇

𝜎
𝑘2
𝑟 𝑟

2
)
− 1

4
𝜔3

crit
𝜎3 = 0 , (6.26)

where 𝜔𝑇 = 𝜅/𝑟2 is the thermal frequency, and

𝜔crit ≡ (4𝜆𝑁2𝜔𝑇 )1/3 (6.27)

is the critical frequency between different types of modes. The solution to Equation
6.26 is

𝑘2
𝑟 𝑟

2𝜔𝑇

𝜎
=

1
2
± 1

2

(
1 +

𝜔3
crit
𝜎3

)1/2
, (6.28)

which has two important limits.

1. High-frequency region(|𝜔crit | ≪ |𝜎 |): the solution reduces to

𝑘2
𝑟 𝑟

2𝜔𝑇

𝜎
≃ 1

2
± 1

2

(
1 + 1

2
𝜔3

crit
𝜎3

)
. (6.29)

The “+” sign solution further reduces to the (radial) thermal diffusion solution
𝑘2
𝑟 𝜅 ≃ 𝜎. The “−” sign solution reduces to 𝑘2

𝑟 = −𝜆𝑁2/𝑟2𝜎2, which is the
g-mode dispersion relation. With 𝜎 = 𝑖(𝜔 + 𝑖𝛾), under the weakly damped
limit 𝛾 ≪ 𝜔, we have

𝑘𝑟 ≈ ±
√
𝜆𝑁

𝑟𝜔2 (𝜔 − 𝑖𝛾) , (6.30)

which means the wave amplitude increases/decreases as it gets closer to the
envelope, at a rate ℑ(𝑘𝑟) = ±

√
𝜆𝑁𝛾/(𝑟𝜔2).

2. Low-frequency region(|𝜔crit | ≫ |𝜎 |): The solutions reduce to

𝑘2
𝑟 𝑟

2 ≃ ±
(
𝜆𝑁2

𝜔𝑇𝜎

)1/2
. (6.31)

Under the weakly damped limit, 𝜎 = 𝑖(𝜔 + 𝑖𝛾) ≈ 𝑖𝜔, we hence have

𝑘𝑟 ≈
𝑒𝑖𝜃

𝑟

(
𝜆𝑁2

𝜔𝑇𝜔

)1/4
, (6.32)
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Figure 6.10: 𝑘𝑟 for the thermal mode on the complex plane. The four solutions
correspond to rapidly increasing, slowly increasing, rapidly decreasing and slowly
decreasing thermal modes, respectively.

where 𝜃 = 3𝜋/8, 7𝜋/8, 11𝜋/8 or 15𝜋/8, corresponding to the four solu-
tions of rapidly increasing, slowly increasing, rapidly decreasing and slowly
decreasing thermal modes, respectively (Figure 6.10). Physically, these
waves are gravito-thermal modes in which both buoyancy and thermal dif-
fusion play important roles. For the rapidly evanescent modes, ℑ(𝑘𝑟) =

±(𝜆𝑁2/𝜔𝑇𝜔)1/4 cos(𝜋/8)/𝑟, while for the slowly evanescent modes, ℑ(𝑘𝑟) =
±(𝜆𝑁2/𝜔𝑇𝜔)1/4 sin(𝜋/8)/𝑟, both of which are independent of 𝛾.

Since 𝜔crit explicitly depends on the local stellar properties, modes of a given
frequency can behave as either gravity or thermal waves in different parts of the star,
as we see in Figure 6.1. Modes can therefore behave as “mixed modes", with gravity
mode character in the core of the star where thermal diffusion is unimportant, and
thermal mode character near the surface of the star where thermal diffusion is very
important. Such modes have rarely been examined in asteroseismology because
their high damping rates mean that they will not be visible as stellar pulsation
modes. However, these damping rates also mean they could be very important for
energy dissipation via tidal excitation.
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Figure 6.11: Left: All mode eigenfunctions for mode periods between 0.1 to 2 days
solved by GYRE for a 10𝑀⊙ Wolf–Rayet star model at solar metallicity during
helium burning. In addition to the normal modes (black lines, including standing
g-modes, travelling g-modes and mixed modes, discussed in §6.3), a strange mode
solution (red line) exists. This mode has much higher damping rate because it is
localized near the stellar surface, as indicated by its rapidly decreasing amplitude
towards the core. Right: The periods and winding numbers (𝑛pg) for mode
solutions, showing an outlying strange mode solution.

Strange Modes
When solving for high-order, low-frequency mixed modes, GYRE occasionally
returns solutions which we identified as “strange modes”. An example is given in
Figure 6.11. The strange modes are usually distinct in the following aspects: 1)
the modes have higher damping rates, often one order of magnitude larger than the
normal modes. This causes stronger spatial evanescence as the waves propagate
inwards, as seen from Equation 6.31. 2) The modes have unusual winding numbers
𝑛pg (defined in [48], and treated as mode radial orders in GYRE), departing from
the normal 𝑛pg-period relation of normal modes (Figure 6.11, right panel). 3) The
modes do not obey the uniform period spacing shared by normal g-modes. 4)
The strange mode eigenfunctions seem to be artificially truncated in the radiative
envelope, once they reach a minimum amplitude. We confirm that there are no
special physical conditions inside the star where they are truncated. Resolution
tests also show that the strange mode solutions do not converge even at very high
spatial/frequency resolution.

We guess that the strange modes are effectively gravito-thermal mixed modes that
are trapped in the near surface region where the waves behave as thermal waves
(|𝜔crit | ≫ |𝜎 |). Because they are trapped in the surface layers, their damping rates
are much larger than normal modes, similar to the acoustic strange modes found at
high frequencies [19] . Because their eigenfunctions evanesce so rapidly towards the
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core, their amplitudes apparently drop below the numerical precision of GYRE near
the core, causing the artificial behavior of the eigenfunction at small radii seen in
Figure 6.11. This also causes the value of 𝑛pg computed by GYRE to be incorrect,
and explains why their exact frequencies/eigenfunctions do not converge at high
spatial resolution.

In our calculations, the strange modes only exist in the low-frequency range of mode
spectra. Hence, if actually physically present, these modes will only be relevant at
the late stage of spin–orbit evolution, when the star has already been significantly
spun up. Hence, we believe our main results to be robust against the uncertainties
surrounding strange modes, but these modes should be studied in more detail in
future work.

Nonlinear Damping of Modes
Our tidal calculations are based entirely on linear theory, yet under certain cir-
cumstances nonlinear effects could be important. The dominant nonlinear term in
the fluid momentum equation is 𝜉 · ∇𝜉 ∼ 𝜉 (𝑑𝜉𝑟/𝑑𝑟), hence 𝑑𝜉𝑟/𝑑𝑟 serves as an
approximate measure of linearity, which only holds when 𝑑𝜉𝑟/𝑑𝑟 ≪ 1. For our
most massive models, the modes become nonlinear very close to resonance, so
nonlinear effects will be important during resonance crossings. While developing
a complete nonlinear theory is beyond the scope of this work, here we propose an
ad-hoc estimate of the nonlinear damping rates of modes.

We have pointed out that the nonlinearity can be estimated by 𝑑𝜉𝑟/𝑑𝑟. Specifically,
we define

𝜙𝛼 ≡ (𝑑𝜉𝛼,𝑟/𝑑𝑟)max = 𝐴𝛼 (𝑑𝜉𝛼,𝑟/𝑑𝑟)max (6.33)

as the parameter to characterize nonlinearity of mode 𝛼, where 𝜉𝛼,𝑟 is the normalized
eigenfunction solution of𝛼 and 𝐴𝛼 is the mode amplitude due to linear driving, given
by [13]:

𝐴𝛼 =
1
2

𝑊𝑙𝑚𝑄𝛼𝜔f√︁
(𝜔𝛼 − 𝜔f)2 + (𝛾𝛼 + 𝛾𝛼,NL)2

(
𝑀p

𝑀∗

) (
𝑅∗
𝑎

) 𝑙+1
. (6.34)

Note that we have replaced the damping rate by 𝛾𝛼 + 𝛾𝛼,NL, where we denote 𝛾𝛼
as the usual radiative damping rate we adopted in linear theory, and 𝛾𝛼,NL as the
damping rate caused by nonlinear effects. From our convention, 𝛾𝛼,NL is a function
of 𝜙𝛼, i.e. 𝛾𝛼,NL = 𝛾𝛼,NL(𝜙𝛼). While the detailed functional form of 𝛾𝛼,NL requires
a thorough examination of the nonlinear damping mechanisms, physically we expect

𝛾𝛼,NL(0) = 0 , 𝛾𝛼,NL(𝜙𝛼 ≳ 1) ≃ 𝛾𝛼,NL,max , (6.35)
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i.e., no nonlinear damping when the mode amplitude is zero, and maximum damping
when the 𝜙𝛼 parameter reaches 1. The maximum damping rate 𝛾𝛼,NL,max can be
estimated by the inverse group travel time 𝜏𝛼,2 defined in [26]:

𝛾𝛼,NL,max ≃ − 1
𝜏𝛼,2

= −
(√

6
𝜔2
𝛼

∫
rad

𝑁𝑑𝑟

𝑟

)−1
, (6.36)

where the integral is carried out in the radiative zone of the star, and 𝑁 is the Brunt-
Väisälä frequency. Several authors suggest that the nonlinear damping rate should
scale as 𝛾𝛼,NL ∝

√
𝐸𝛼 ∝ 𝐴𝛼 (see, e.g., [23, 54]). This suggests 𝛾𝛼,NL(𝜙𝛼) is linearly

proportional to the mode amplitude, such that

𝛾𝛼,NL(𝜙𝛼) ≃ min(1, 𝜙𝛼)𝛾𝛼,NL,max . (6.37)

Note that this ad-hoc expression 6.37 should most likely to hold when 𝜙𝛼 ≪ 1 and
𝜙𝛼 ≳ 1, since we only know the properties of this function under these two limits.
This further suggests we can assume (𝛾𝛼 + 𝛾𝛼,NL)2 ≃ 𝛾2

𝛼 + 𝛾2
𝛼,NL, since one of the

two terms will always dominate the expression under these two limits. With this
convention, combining Equations 6.33, 6.34 and 6.37, we have a quadratic equation
for 𝐴2

𝛼 (when 𝜙𝛼 < 1)
(𝐴2

𝛼)2 + 2𝐵𝛼𝐴2
𝛼 − 𝐶𝛼 = 0 , (6.38)

where

𝐵𝛼 =((𝜔𝛼 − 𝜔f)2 + 𝛾2
𝛼)/(2�̄�2

𝛼) , (6.39)

𝐶𝛼 =𝑊2
𝑙𝑚𝑄

2
𝛼 (𝜔f/2�̄�𝛼)2(𝑀p/𝑀∗)2(𝑅∗/𝑎)2(𝑙+1) , (6.40)

and �̄�𝛼 ≡ (𝑑𝜉𝛼,𝑟/𝑑𝑟)max𝛾𝛼,NL,max. The positive solution of 𝐴2
𝛼 gives

𝐴𝛼 = (
√︃
𝐵2
𝛼 + 𝐶𝛼 − 𝐵𝛼)1/2 . (6.41)

Hence the nonlinear damping rate is given by

𝛾𝛼,NL = −min
[
1,

(√︃
𝐵2
𝛼 + 𝐶𝛼 − 𝐵𝛼

)1/2(𝑑𝜉𝛼,𝑟/𝑑𝑟)max
]
𝜏−1
𝛼,2 . (6.42)
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C h a p t e r 7

SUMMARY

In this thesis, I study the physical processes of dynamical friction and tidal dissipa-
tion, and investigated how they will affect the dynamics of stars, planets, and black
holes.

I derive a new discrete expression for the dynamical friction force. This formula
is specifically designed for application to numerical simulations, either in post-
processing, or “on the fly” when the dynamical friction forces cannot be resolved. I
develop a new discrete dynamical friction estimator based on this formula, which is
directly implementable into 𝑁-body simulations.

The formula I derived has a large number of advantages compared to the traditional
Chandrasekhar’s analytic expression, which is often used for sub-grid dynamical
friction modeling. These advantages include: (1) it allows for an arbitrary distri-
bution function, without requiring an infinite homogeneous time-invariant medium
with constant density, Maxwellian velocity distribution, etc.; (2) it is designed specif-
ically for simulations so it is represented only as a sum over quantities which are
always well-defined in the simulation for all 𝑁-body particles (e.g. positions, veloci-
ties, masses), and does not require the expensive and fundamentally ill-defined eval-
uation of quantities like density, background mean velocity/dispersion/distribution
function, Coulomb logarithm, etc.; (3) it trivially incorporates force softening ex-
actly consistent with how it is treated in-code, and generalizes to arbitrary multi-
component 𝑁-body simulations with different species and an arbitrary range of
particle masses; (4) it manifestly conserves total momentum, unlike 𝑁-body imple-
mentations of Chandrasekhar’s formula; (5) it can be evaluated directly alongside
the normal gravitational forces with negligible cost, and automatically inherits all
of the desired convergence and accuracy properties of the 𝑁-body solver.

I implemented the dynamical friction estimator in GIZMO, and verified that it agrees
well with the 𝑁-body simulations, and that the computational overhead of evaluating
it alongside gravity in the tree is immeasurably small.

There are still uncertainties in this work. In the derivation of the discrete for-
mula, an approximate integral kernel is inserted, which is not necessarily unique
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or best-behaved. I found that even if the discrete estimator closely agrees with
the calibrated-Chandrasekhar dynamical friction estimator in the test problems, it
still differs from the the high-resolution simulation results in terms of the detailed
particle trajectories, which might be related to the fundamental Chandrasekhar-like
assumptions made in the formula. I also note that it remains an open question how
to accurately avoid “double counting” when some of the dynamical friction may be
captured self-consistently by the 𝑁-body code while additional dynamical friction
is modeled using the sub-grid model. This is especially the case when the system
evolves (such as when a super-massive black hole (SMBH) grow) and the fraction
of resolved dynamical friction changes with time.

I study the dynamics of black hole seeds at high-redshift with high-resolution cosmo-
logical galaxy formation simulations. This helps to understand their implications for
super-massive black hole formation and growth. The simulations and semi-analytic
dynamical friction calculations show that black hole seeds cannot efficiently sink
to galactic centers or be retained at high redshifts, unless they are extremely mas-
sive already (𝑀 > 108 𝑀⊙, i.e. already super-massive black holes). I show that
this threshold is at least an order-of-magnitude higher than what one would expect
in a spherically-symmetric smooth galaxy potential, as commonly adopted in ana-
lytic or older simulation calculations which could not resolve the complex, clumpy,
time-dependent sub-structure of these galaxies. For smoother galaxies, this mass
threshold reduces to 107 𝑀⊙, which does not change the key conclusion.

I qualitatively conclude that the chaotic nature of high-redshift galaxies, coupled
to the very short Hubble times (≲ 1 Gyr) make it impossible for any lower-mass
seeds to efficiently migrate from ≳ 1 kpc scales to galactic centers at 𝑧 > 7. As
the formation models of super-massive black holes often require their seeds to be
placed in the galactic center, I hence point out that the non-sinking of them provides
a great challenge in explaining the formation and growth of the first SMBHs with
masses ≫ 109 𝑀⊙ in the centers of the earliest galaxies.

I also show that even the most massive sinking BHs (≳ 108 𝑀⊙) do not sink to the
same location at sub-kpc scales, where their migration stalls. This has potentially
profound implications for LISA detection of SMBH-SMBH mergers in high-redshift
galaxies. I also discuss two possible scenarios which may solve this sinking problem.

The first solution states that seed black holes may form in-situ when the massive
bulge finally forms and creates a deep central potential, or a large number of seeds
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may form so that a small fraction of them may have just the right orbital parameters
to be captured by this bulge. However, I show that this deep central potential well
does not form until redshift 𝑧 ≲ 9, from gas and stars which are already highly metal-
enriched (𝑍 ≳ 0.1 𝑍⊙). This means popular speculative black hole seed formation
channels like Pop III relics or direct collapse from hyper-massive quasi-stars could
not provide the origin of the SMBHs. Moreover, stellar-relic black holes, if primarily
growing by accretion in these massive bulges that do not exist until 𝑧 ≲ 9, must
grow with sustained highly super-Eddington accretion, which is also a challenge for
their accretion mechanisms.

The second solution states that seed black holes may have enormous effective
masses when they are trapped in structures like star clusters, so that they can sink
early and may remain trapped in the growing galaxy center. However, for 𝑧 > 7
galaxies, the overwhelming majority of the clusters form in-situ in the galaxy as it
evolves from in-situ gas, or the massive clusters which formed later. This will limit
the time for these seed black holes to grow in these clusters.

I study the orbital decay of short-period exoplanets via tidal resonance locking,
where planets fall into resonance with stellar oscillation modes and migrate along
with the resonant locations. When resonance locking between planets and stellar
gravity (g) modes operates, I find that planetary orbits typically decay on a mode
evolution timescale, which is usually similar to the star’s main-sequence lifetime.
The tidal migration time scale is nearly independent of planet mass and orbital
period, such that the effective tidal quality factor 𝑄′ decreases toward longer orbital
periods and lower-mass planets.

I show that resonance locking can be prevented by nonlinear damping that saturates
(or eliminates) resonant mode excitation. Both the stellar structure and the planet
mass influence the nonlinearity of the tidally excited g modes. For solar-type host
stars with radiative cores, nonlinear effects could become very important near the
center of the star, wiping out resonances. Hot Jupiters of𝑀 ≳ 0.3𝑀J trigger efficient
nonlinear dissipation of gravity modes, and more massive planets (𝑀 ≳ 3𝑀J) cause
wave breaking. In either case, energy dissipation has a very strong power-law
dependence on orbital frequency, with the tidal migration timescale increasing
sharply with orbital period. On the other hand, resonance locking can likely operate
for planets of any mass that orbit massive host stars with convective cores, which
prevent gravity waves from reaching the stellar center.



209

Based on stellar spin measurements, some studies inferred a strong period depen-
dence of the tidal quality factor 𝑄′ of hot Jupiter host stars. If resonance locking
occurs in hot Jupiter systems, I show that it produces a remarkably similar power-
law dependence of 𝑄′, which could provide evidence in favor of resonance locking.
However, since nonlinear dissipation likely prevents resonance locking from occur-
ring in these systems, other potential explanations should be explored. I suggest
that many moderately rotating hot Jupiter hosts (which were inferred to have been
tidally spun up, thereby placing a constraint on 𝑄′) are instead simply younger than
average. In this scenario, their more rapid rotation stems primarily from their youth,
and only a lower limit of𝑄′ can be inferred. Future age constraints for those systems
may determine which explanation is more likely.

I apply resonance locking to 15 observed hot Jupiter systems and predict that these
systems generally have 𝑄′s in the range 106 − 109, which is typically 2 − 3 orders
of magnitude higher than observed lower limits. This means their orbital decay
will be hard to measure if resonance locking is operating, as expected for stars
with convective cores. However, nonlinear damping likely operates in host stars
possessing radiative cores, leading to much smaller 𝑄′s, like that measured for
WASP-12b. Further observations of these systems can thus help to improve the
understanding of which tidal process operates.

I examine the long-term orbital evolution of exoplanets, combining theories based
on resonance locking and nonlinear dissipation/wave breaking. I predict that hot
Jupiters migrate inwards via nonlinear wave damping and are frequently destroyed
during the main sequence for solar-type host stars. This may help to explain the
finding that hot Jupiter host stars are on average slightly younger than field stars.
For hot Neptunes and super-Earths, I predict that resonance locking can operate,
driving inward migration on a stellar evolution time scale. This can result in
a tidal quality factor of 𝑄′ ≲ 105, causing much more orbital decay than prior
expectations. However, the corresponding quality factor at short orbital periods can
exceed 𝑄′ ≳ 107, allowing the planets to survive at ultrashort periods for extended
lengths of time, consistent with the observed old ages of ultrashort-period planet
hosts.

Since nonlinear dissipation occurs for massive planets orbiting stars with radiative
cores, I predict a sharp decline in the population of short-period (𝑃orb ≲ 2 days)
hot Jupiters orbiting solar-type host stars. I predict a more gradual decline for
low-mass planets and host stars with convective cores, where resonance locking
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is at work, producing a much smoother distribution with orbital period. Future
observations will help test this prediction, provided that effects of tidal migration
can be distinguished from the birth-period distribution.

I investigate the tidal spin-up of close-in subdwarf B (sdB) binaries. I consider
the dissipation of tidally excited gravity waves in the envelopes of sdB stars, and
calculate the tidal torques by directly computing the amplitudes of tidally driven
oscillation modes in sdB stellar models. I integrate the coupled spin-orbit evolution
of these binaries and calculated the resulting sdB rotation rates.

I show that in contrast to the usual assumption that gravity waves are efficiently
damped near the surface (“Zahn’s traveling wave limit”), these waves can actually
be less damped, and can reflect back to form standing waves in the radiative envelope
of sdB stars. The resulting tidal torque is then significantly less than Zahn’s theory
predicted, and has a complicated resonant dependence on the frequency of the tidal
force. At longer periods, the waves are more highly damped and the tidal torque
approaches Zahn’s limit.

For binaries containing a 0.47𝑀⊙ canonical sdB, my models predict the system will
be tidally synchronized if the orbit is less than ∼0.2 days. For those with a 0.37𝑀⊙

low-mass sdB, this tidal synchronization period becomes ∼0.15 days. These values
are very similar to the observed spin rates of sdB binaries, which are tidally synchro-
nized at orbital periods less than ∼ 0.2 days. The tidal synchronization timescale
has weak dependence on the companion star mass, and is mostly determined by the
orbital period.

I investigate how the amount of hydrogen in the sdB envelope could affect the
strength of the tidal torque. Since sdBs with more hydrogen have larger radii, and
the tidal torque magnitude could scale with the stellar radius as 𝜏 ∝ 𝑅6, tidal torques
may be stronger for stars with more hydrogen. However, the existence of unstable
oscillations for the sdB models with thicker hydrogen envelopes complicate the
calculation of tidal torques.

I point out that resonance locking cannot happen in the tidal spin-up phase of sdB
binaries, and discussed the limitations of the mode decomposition method to calcu-
late tidal torques. Differential rotation and rotational effects on oscillation may also
be important. Future works should investigate the above scenarios, and compare to
growing numbers of rotation rate measurements for sdBs in close binaries.
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I also investigate the dynamical tidal spin-up of Wolf–Rayet stars from black hole
companions. I build Wolf–Rayet star models with different metallicities, and then
calculate their oscillation mode frequencies, damping rates, and eigenfunctions. I
use these results to integrate the coupled spin–orbit evolution of the binary based
on the tidal excitation of these oscillation modes. I also make predictions for the
resulting BH spins upon core-collapse of the Wolf–Rayet star.

I study the properties of the oscillation modes and find that at shorter orbital period,
the tidal forcing is mostly contributed by standing g-modes, in contrast to the usual
assumption of travelling waves proposed by Zahn. The standing g-mode spectra
contributes a resonance structure, and during most of the spin–orbit evolution phase,
the tidal response lies between resonances and the interaction strength is weaker
than Zahn’s prediction. The tidal forcing transits to Zahn’s travelling wave limit at
longer periods, in which Zahn’s estimate is more accurate. However, the specific
transition frequency depends on the stellar masses, and the structure for more
massive stars (supported significantly by radiation pressure) tend to have lower
transition frequencies, allowing systems in longer-period orbits to evolve differently
compared to Zahn’s prediction.

I find that it is difficult to tidally synchronize Wolf–Rayet stars during helium-
burning. For solar-metallicity Wolf–Rayet stars, strong winds tend to remove the
majority of angular momentum deposited by tides, leaving slowly spinning stars
and black holes. At low metallicity, the stellar wind is weaker and the stars are
significantly tidally spun up, yet still less than Zahn’s prediction, especially for
massive stars and short-period orbits.

I show that tidal interactions can significantly spin up the resulting BHs compared
to single-star models. Yet the predicted black hole spins 𝑎 are still ≲ 0.4 for all but
the shortest period (𝑃orb ≲ 0.5 d) models. These predictions are consistent with
some low/moderate-spin measurements from LIGO/Virgo black hole merger events,
but cannot explain high-spin X-ray binaries events since only the second-born black
hole has large spin in these models.
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