
Test and Evaluation of Autonomous Systems: Reactive
Test Synthesis and Task-Relevant Evaluation of

Perception

Thesis by
Apurva Srinivas Badithela

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended 21st May, 2024

ii

© 2024

Apurva Srinivas Badithela
ORCID: 0000-0002-9788-2702

All rights reserved

iii

ACKNOWLEDGEMENTS

I have the deepest respect and gratitude for my advisor, Richard M. Murray. Thank
you, for your mentorship, encouragement, and support over the past six years. From
you, I have learned the importance of being patient, persistent, and independent, and
to think deeply about research directions. Most of all, to be optimistic through the
highs and lows, and to handle challenges with courage and preparation. I admire
the integrity, magnanimity, and time management that you bring to each of your
roles as a professor, a leader, and as an advisor. I have much to learn from you, and
you will always inspire me to be a better researcher and colleague. Thank you so
very much for giving me the opportunity to learn from you. Finally, I appreciate
your efforts to make CDS a welcoming and inclusive environment for all.

I am very grateful to Professor Tichakorn (Nok) Wongpiromsarn for her mentorship
over the last several years. Thank you, Nok, for giving me the time and the chance
to work with you and learn from you. I am inspired by our research discussions,
and by your positive attitude and enthusiasm! I enjoy our research discussions
very much, and always leave our meetings feeling more excited. I admire how you
always come up with the simplest possible solution to every problem. Thank you
for being patient, and for giving me this opportunity.

I would like to thank the members of my committee — Professors Joel W. Burdick,
Aaron D. Ames, and K. Mani Chandy. Joel, thank you for taking the time to meet
with me and give me feedback on my research. I have always felt welcome to
approach you with questions, and I am grateful for our research discussions. I look
forward to opportunities to chat about research in the coming years.

Thank you, Dr. Ames, for your valuable feedback over the years on communicating
and presenting my research, including your recommendation to use hardware to
showcase the full impact of my work. I have found your feedback incredibly useful,
especially in writing and conveying my ideas in a more impactful way.

Thank you, Mani, for taking the time to carefully read through my work and for the
technically in-depth discussions. I have found your perspectives valuable, and your
questions push me to communicate my work in a better way.

I am also very grateful to my undergraduate research advisor, Professor Peter J.
Seiler, for taking me under his wing and introducing me to control theory. Pete, I
still remember walking into your office and asking if there was any work in your

iv

lab that I could help out with. Over the years, your advice has always helped me
find my way. Without your support and encouragement, I would have not had these
opportunities.

I would also like to thank other wonderful mentors who created such amazing un-
dergraduate research opportunities for me, and encouraged me to apply to graduate
school. Especially, I would like to thank Professors Neera Jain and Ufuk Topcu,
and Dr. Austin Nash and Dr. Ivan Papusha. I would like to thank Dr. Eric Wolff
and Dr. Tung Phan-Minh for a wonderful summer intership at Motional during my
PhD.

I would like to thank my colleagues and collaborators, who have shaped this PhD
experience. I would like to thank Josefine Graebener for her friendship and col-
laboration over the years. I fondly remember the countless hours we spent brain-
storming at the whiteboard, and the sense of excitement and satisfaction after our
understanding of the problem improved vastly after such whiteboard discussions.
Her determination, effectiveness, and technical skills have inspired me greatly. I
have also had the opportunity to collaborate with Inigo Incer, Wyatt Ubellacker,
Denizalp Goktas, and Prithvi Akella. I would also like to thank Emily Fourney,
Scott Livingston, Ioannis Filippidis, and Professors Eric Mazumdar, Yisong Yue,
Georgia Gkioxari, Chris Umans, Sridhar Duggirala, and Lijun Chen for many in-
sightful discussions that have shaped my research perspectives. I am also fortunate
to have had the opportunity to mentor several talented undegraduates, including
Ranai Srivastav, Kimia Hassibi, Jacob Alderete, Saeshu Karthika, Frida Moreno,
Gerard Decker, Edward Zhang, Andy Dimnaku, and Berlin Del Aguila. Finally, I
am grateful to members and alumni of the Murray Lab, including Kellan Moorse,
Ioannis Mandralis, Nikos Mynhier, Sumanth Dathathri, and Professor ChuChu Fan.
A special thanks to Shih-Hao Tseng and Ugo Rosolia for research discussions, and
most especially their encouragement in the early years of my PhD.

I would like to thank, Adam Wierman, for his service as CMS ombudsperson, for
his support for the CMS climate survey, and for taking the time to meet with me
and share his advice on research. In the effort to make graduate school a more
inclusive environment, I would like to thank Lisa Li, Sara Beery, and Natalie Bernat
for our collaboration on hosting a department-wide townhall on these issues. One
important outcome of that meeting was the establishment of a CMS Ombudsperson,
which has helped several graduate students in the years since. I am also deeply
grateful to the members of the CMS DEI Committee for their efforts in promoting

v

an inclusive climate. I would especially like to acknowledge Elizabeth Qian and
Adam Blank in helping craft the CMS Climate Survey and townhall. Finally, I want
to acknowledge Karena Cai for envisioning and leading the Healthy Collaborations
workshop, and including me in the process. I would like to thank the admins —
Diana, Monica, Carmen, Roberta, Maria, Sydney, and Jolene — for solving many
problems for me during my time here, and for the listening ear when I was having
a rough time.

During this tough journey, spending time with friends and family has brought much
joy and healing. I would like to thank my college friends, Maryam Zahid and Zoë
Harvey; even if we have not spoken in months, we pick up like it was yesterday. I
enjoyed the sparse, yet lovely and meaningful, visits to Minneapolis: they always
fill my cup. Maryam, I still remember that one dinner with your mom, the con-
versation made it one of the loveliest memories of the last few years. Zoë, I loved
visiting your place in St. Paul, our strolls around lakes, visits to coffee shops, lis-
tening to you speak about entomology, and most especially meeting Sylvie. I would
like to thank my Caltech friends, Jacqueline Tawney and Gianfranco Canales, and
I especially remember our bike rides during the pandemic, yoga classes, healing
book club discussions, sharing my Ammamma’s avakaya pickle, and cooking food
together. I would like to thank my friend Josefine Graebener for all the morning cof-
fees before we began work, playing with Lumi, and for all the small celebrations
as we cheered ourselves through the PhD. I thank the first-year friends, Shreya,
Christoph, Daniel, Alex, Matt, and Yousuf, for the laughter, fun conversations, and
support in getting through the first year. Thanks to Nico and Jiaqing for being
wonderful officemates. I am grateful to Carmen Amo Alonso and Anushri Dixit
for their friendship and mentorship over the years. I am grateful to my friend and
former neighbor, Samantha Harris, and her lovely dog, Ruthie, for fun adventures
around town, and for chiding me when I worked on the weekends or did not take
care of myself.

Post-pandemic, I was fortunate to have the chance to form some very meaningful
friendships, for which I am deeply grateful. Angela Gao, thank you for being a
wonderful friend. I love our hangouts, our conversations, cooking food together,
and our adventures going bridal dress shopping. Thanks to you and Zach for all
the warm invitations to your home. I am grateful to Andrew Taylor and Noosha
Razavian for their warm friendship and meaningful conversations. I have a lot of
respect for both of you, and I enjoy your company. I am grateful to Dohyeon Kim

vi

and Jiaqing Jiang for their friendly company, be it working out together or grabbing
brunch and coffee. I am grateful to art nights, hikes, and hangouts with Lauren
Conger, Joudi Hajar, Dohyeon Kim, Jiaqing Jiang. Though I have not been as reg-
ular, I would like to thank Ryan Cosner and the Caltech Triathlon Team, for always
including me in their weekly workouts and cheering me on. I still look forward
to participating in a triathlon one day. I found my love for Carnatic music late in
my PhD, and I am grateful to my teacher, Madhavi Gattu, for conducting Zoom
classes while being flexible with my schedule. I am also grateful to my Bhagvad
Gita teachers, Sravani Jandhyala and Sudha, and the cohort. These experiences
have enriched my PhD experience even if I could not fully commit myself.

I would like to thank my extended family for their support over the years. It has been
years since I have seen some of you, and I cherish those rare moments of quality
time. Many thanks to my cousins, Ruchi, Revanth and Anuhya, Nithin (Sonu),
Akhil and Minu, Anil and Sridevi, Avani and Srinivas, Mahathi and Parth, Suchi,
Teja, Poojitha, Vasisht, and Anirudh for the fun memories; it has always been a joy
to spend time with you which I am very grateful for. I have to especially thank
my uncle and aunt, Anil and Bharati Joshi, and my cousins Divya and Kashyap.
Anil Mamayya, you encouraged and reassured my parents and I that coming to
the US would be a good educational opportunity for me. Thank you all for the
many visits to your home in Champaign, especially when I was doing a SURF at
Purdue. Thanks to Seetha and Sujit for welcoming me whenever I visited Austin.
I am grateful to Arvind and Katyayani Loke for helping me settle in at Caltech,
for warmly inviting us to their home, and for the delicious homemade food. Many
thanks to my maternal aunts and uncles: Sita Koo, Krishna Vojjala, Rajeshwar
Vojjala, and Anita Jalavancha, and their families for embracing me. Many thanks
to my paternal uncle, Prasad Badithela, for checking in on me over the years and
for his blessings and encouragement. I would also like to thank the Badithela and
Kommera families, and cousins for their support when I first came to the US.

I would like to thank Robin Ayling (Mama) and Corey Ayling (Papa) for welcoming
and including me in their family. Mama, I am forever grateful for how you make
everything work, and Papa, I have always found your advice very helpful. I love our
holiday gatherings, the evening walks, the board games, and fun conversation. I am
grateful to Alex’s siblings, Claire, Lindsey, and John, for warmly accepting me, and
for including my sister when she moved to Minneapolis. I am also grateful to Tom,
AnnMarie, and Derek for making these family gatherings memorable. I am grateful

vii

to Alex’s cousin, Sammie, for her warm friendship and for always checking in on
me. Thank you to grandma Corinne Ayling for warmly welcoming me, telling me
about the Ayling family history as I asked a million questions going over old photos,
and for the relaxing visits to Palm Springs. I am grateful for the fun gatherings and
laughter-filled conversations with Uncles Harry and Eben, and Auntie Holly and
Uncle Mark.

To my dearest Ammamma, Prameela Vojjala, you helped raise me and loved me
unconditionally, and in being yourself, you taught me to live life on my own terms.
Little did I know that I would only see you twice after leaving home for college. It
makes me sad that I did not have more time with you, and I miss you every day. I
would like to thank the family matriarch, Savitri Badithela, my Pedda Nainamma,
for always celebrating me and believing in my potential. I remember fondly the
visits to your place in Manthani, and the care packages filled with homemade snacks
that reminded me of home.

To my dearest little sister, Athreyi: you are so brave and strong, and you inspire me
so much. Despite being the youngest, everyone in the family is always amazed at
your witty and wise, and at times very funny remarks. You are unafraid to speak
the truth, no matter how difficult, and you inspire me to be a better person. I find
our phone conversations deeply healing, funny, and exciting, all at the same time.

To my dear parents, Uma Radha and Srinivas Badithela, who have always given me
the best of everything. Amma and Nana, behind every one of your actions, I see
your love and blessings for Athreyi, Alex, and me. Ten years ago, I left home to
pursue my studies in the US and you have always encouraged and given me moral
support from afar. These ten years have passed in the blink of an eye. There were so
many times I wished that I could just come home in an instant and spend time with
both of you. Every day, I miss you both deeply, and I hope for the future where we
live closer and I can come home whenever my heart says so. Your love and support
has given me wings to fly.

To my beloved husband, Alex, without your love and support I could not have come
so far. No words can do justice to express how I feel. Being with you brings me
peace. You bring out the best in me and make me very happy. You have always
cheered me through my best and my worst moments. All the small things we did
— grabbing coffee, going for walks and bike rides, watching movies, laughing at
each others’ jokes, or even just simply hanging out — made the tough days in grad
school bearable. You have always believed in me, and have always encouraged me

viii

to not shy away from having a dream and pursuing it wholeheartedly. From you, I
have learned to focus on what is truly important.

ix

ABSTRACT

Autonomous robotic systems have potential for profound impact on our society —
legged and wheeled robots for search and rescue missions, drones for wildfire man-
agement, self-driving cars for improving mobility, and robotic space missions for
exploration and repair of spacecraft. The complexity of these systems implies that
formal guarantees during the design phase alone is not sufficient; mainstream de-
ployment of these systems requires principled frameworks for test and evaluation,
and verification and validation. This thesis studies two such challenges to main-
stream deployment of these systems.

First, we consider the problem of evaluating perception models in a manner relevant
to the system-level specification and the downstream planner. Perception and plan-
ning modules are often designed under different computational and mathematical
paradigms. This talk will focus on evaluating models for classification and detec-
tion tasks, and leverages confusion matrices which are popularly used in computer
vision to evaluate object detection models to derive probabilistic guarantees at the
system-level. However, not all perception errors are equally safety-critical, and tra-
ditional confusion matrices account for all objects equally. Thus, task-relevant met-
rics such as proposition labeled confusion matrices are introduced. These are con-
structed by identifying propositional formulas relevant to the downstream planning
logic and the system-level specification, and result in less conservative system-level
guarantees. Using this analysis, fundamental tradeoffs in perception models are re-
flected in the tradeoffs of probabilistic guarantees. This framework is illustrated on
a car-pedestrian example in simulation, and the confusion matrices are constructed
from state-of-the-art detection models evaluated on the nuScenes dataset.

Second, we consider the problem of automatically synthesizing tests for autonomous
robotic systems. These systems reason over both discrete (e.g., navigate left or right
around an obstacle) and continuous variables (e.g., continuous trajectories). This
talk presents a flow-based approach for test environment synthesis which handles
discrete variables and is also reactive to the system under test. Reactivity is im-
portant to account for uncertainties in system modeling, and to adapt to system
behavior without knowledge of the system controller. These tests are synthesized
from high-level specifications of desired behavior. Though the problem is shown
to be NP-hard, a flow-based mixed-integer linear program formulation is used that
scales well to medium-sized examples (e.g., >10,000 integer variables). The test

x

environment can consist of static and reactive obstacles as well as dynamic test
agents, whose strategies are synthesized to match the solution of the flow-based
optimization. The overview of the approach is as follows. First, principles of au-
tomata theory are used to translate the high-level system and test objectives, and the
non-deterministic abstraction of the system into a network flow optimization. The
solution of this optimization is then parsed into GR(1) formulas in linear temporal
logic. This GR(1) formula is used to synthesize reactive strategies of a dynamic
test agent in a counterexample-guided fashion. We provide guarantees that the syn-
thesized test strategy will realize the desired test behavior under the assumption
of a well-designed system, the test strategy is reactive and not overly-restrictive.
This framework is illustrated on several simulation and hardware experiments with
quadrupeds, showing promise towards a layered approach to test and evaluation.

xi

PUBLISHED CONTENT AND CONTRIBUTIONS

J. B. Graebener∗, A. S. Badithela∗, D. Goktas, W. Ubellacker, E. V. Mazumdar,
A. D. Ames, R. M. Murray (2024). “Flow-Based Synthesis of Reactive Tests
for Discrete Decision-Making Systems with Temporal Logic Specifications”.
arXiv preprint https://arxiv.org/abs/2404.09888 (In submission to Transactions
on Robotics).
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, hardware experiments,
and writing of the article. The contents of this paper are presented in Chapter 4.

I. Incer, A. Badithela, J. Graebener, P. Mallozzi, A. Pandey, S.-J. Yu, A. Benveniste,
B. Caillaud, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia.
(2024). “Evaluation Metrics of Object Detection for Quantitative System-
Level Analysis of Safety-Critical Autonomous Systems.” Conditionally ac-
cepted to: The ACM Transactions on Cyber-Physical Systems (T-CPS).
arXiv preprint: https://arxiv.org/pdf/2303.17751.
A. Badithela led the case study on “Evaluating the end-to-end autonomy stack".
For this case study, she participated in its conception, theoretical analysis, sim-
ulation code development, and writing of the article. The contents of this paper
are presented in Chapter 2.

A. Badithela, T. Wongpiromsarn, R. M. Murray. (2023). “Evaluation Metrics of
Object Detection for Quantitative System-Level Analysis of Safety-Critical
Autonomous Systems.” In: 2023 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 8651–86581.
DOI: 10.1109/IROS55552.2023.10342465.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, and writing of the article.
The contents of this paper are presented in Chapter 2.

A. Badithela∗, J. B. Graebener∗, W. Ubellacker, E. V. Mazumdar, A. D. Ames,
R. M. Murray. (2023). “Synthesizing Reactive Test Environments for Au-
tonomous Systems: Testing Reach-Avoid Specifications with Multi-Commodity
Flows.” In: 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 12430–12436. DOI: 10.1109/ICRA48891.2023.10160841.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, hardware experiments,
and writing of the article. The contents of this paper are presented in Chap-
ter 4.

A. Badithela∗, J.B Graebener∗, I. Incer∗ , R. M. Murray. (2023). “Reasoning over
Test Specifications Using Assume-Guarantee Contracts.” In: 2023 NASA For-

* denotes equal contribution.

https://arxiv.org/abs/2404.09888
https://arxiv.org/pdf/2303.17751
https://ieeexplore.ieee.org/document/10342465
https://ieeexplore.ieee.org/document/10160841

xii

mal Methods (NFM), pp. 278–294. DOI: 10.1007/978-3-031-33170-1_17.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, and writing of the article.
The contents of this paper are presented in Chapter 5.

J.B Graebener∗, A. Badithela∗, R. M. Murray. (2022). “Towards Better Test Cov-
erage: Merging Unit Tests for Autonomous Systems.” In: 2022 NASA Formal
Methods (NFM), pp. 133–155. DOI: 10.1007/978-3-031-06773-0_7.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, and writing of the article.
The contents of this paper are presented in Chapter 5.

A. Badithela, T. Wongpiromsarn, R. M. Murray. (2021). “Leveraging Classification
Metrics for Quantitative System-Level Analysis with Temporal Logic Speci-
fications.” In: 2021 60th IEEE Conference on Decision and Control (CDC),
pp. 564–571. DOI: 10.1109/CDC45484.2021.9683611.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, and writing of the article.
The contents of this paper are presented in Chapter 2.

A. Badithela, R. M. Murray. (2020). “Synthesis of Static Test Environments for
Observing Sequence-like Behaviors in Autonomous Systems.” arXiv preprint:
https://arxiv.org/pdf/2108.05911.
A. Badithela participated in the conception of the project, theoretical analysis
and algorithm design, simulation code development, and writing of the article.
The contents of this paper are presented in Chapter 3.

https://doi.org/10.1007/978-3-031-33170-1_17
https://doi.org/10.1007/978-3-031-06773-0_7
https://ieeexplore.ieee.org/document/9683611
https://arxiv.org/pdf/2108.05911

xiii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . ix
Published Content and Contributions . xi
Table of Contents . xii
List of Illustrations . xv
List of Tables . xxi
Chapter I: Introduction . 1

1.1 Motivation . 1
1.2 Challenges . 2
1.3 Related Work . 7
1.4 Thesis Overview and Contributions 10

Chapter II: Evaluating Perception for System-level Task Requirements 15
2.1 Introduction . 16
2.2 Preliminaries . 18
2.3 Problem Statement . 21
2.4 Role of Detection Metrics in Quantitative System-level Evaluations . 23
2.5 Markov Chain Analysis . 32
2.6 Experiments . 35
2.7 Lower Bounds for Detection Metrics from System-level Guarantees . 41
2.8 Conclusion . 44

Chapter III: Automated Test Synthesis via Network Flows: An Introduction . 46
3.1 Introduction . 46
3.2 Related Work . 46
3.3 Motivation . 47
3.4 Preliminaries . 48
3.5 Test Objective . 51
3.6 Algorithm for Synthesizing Static Test Environments 54
3.7 Iterative Synthesis of Constraints 58
3.8 Characteristics of the Algorithm . 61
3.9 Examples . 64
3.10 Conclusions . 66

Chapter IV: Flow-based Reactive Test Synthesis 68
4.1 Introduction . 68
4.2 Related Work . 70
4.3 Preliminaries . 71
4.4 Problem Statement . 77
4.5 Graph Construction . 79
4.6 Part I: Flow-based Optimization via Min-Max Stackelberg Games

with Coupled Constraints . 81

xiv

4.7 Part II: Flow-based Optimization via Mixed-Integer Linear Program-
ming . 87

4.8 Test Strategy Synthesis . 95
4.9 Complexity Analysis . 107
4.10 Comparison to Reactive Synthesis 118
4.11 Experiments . 119
4.12 Conclusions and Future Work . 135

Chapter V: Assume-Guarantee Contracts for Compositional Testing 136
5.1 Introduction . 136
5.2 Preliminary Work on Merging Unit Tests 137
5.3 Strong Merge Operator . 141
5.4 Temporal Constraints on Merging Tests 143
5.5 Contract Theory for Formalizing Compositional Testing 153
5.6 Test Structures and Tester Specifications 154
5.7 Combining Tests . 156
5.8 Comparing Tests . 160
5.9 Splitting Tests . 161
5.10 Conclusions and Future Work . 166

Chapter VI: Concluding Remarks . 168
6.1 Thesis Contributions . 168
6.2 Future Directions . 170

Bibliography . 175

xv

LIST OF ILLUSTRATIONS

Number Page

1.1 Typical software stack in a safety-critical system such as a self-driving
vehicle. 3

1.2 National Qualifying Events (NQEs) from the 2007 DARPA Urban
Challenge. The photos are from the perspective of Alice, Caltech’s
entry in the competition, during the track tests. 4

1.3 Cruise vehicles driving in the path of emergency responders. In just
the first half of 2023, 55 such incidents were reported in the city of
San Francisco. 5

1.4 Instrumented track testing at Zoox. These images are taken from
“Putting Zoox to the Test” [1]. 6

2.1 Running example of a car and pedestrian. If there is a pedestrian at
crosswalk cell Ck, that is, xe |= ped, then the car must stop at cell
Ck−1. Otherwise, it must not stop. 20

2.2 Proposition-labeled confusion matrices when evaluations are grouped
solely by distance. Observe that detecting one pedestrian in the
highlighted distance zone will amount to the proposition “there is
a pedestrian” evaluating to true. This would not be an appropriate
evaluation for the driving task. 31

2.3 Grouping evaluations at the same level of abstraction used by the
high-level planner. Evaluating the proposition “there is a pedestrian”
in each segment of the distance zone. 31

2.4 For class-labeled confusion matrices with precision-recall values de-
rived according to Table 2.1. (a) Satisfaction probabilities that the car
stops at Ck−1 for xe = ped under various initial speeds and maxi-
mum speeds Vmax such that 1 ≤ Vmax ≤ 6. (b) Satisfaction proba-
bilities that the car does not stop at Ck−1 for xe = obs under various
initial speeds and maximum speeds Vmax such that 1 ≤ Vmax ≤ 6. . 36

xvi

2.5 System-level probabilistic guarantees for the car-pedestrian exam-
ple. Figure 2.5a shows the satisfaction probability that the car stops
at Ck−1 for xe = ped under various initial speeds and maximum
speeds Vmax such that 1 ≤ Vmax ≤ 6. Figure 2.5b shows the satis-
faction probability that the car does not stop at Ck−1 for xe = obs

under various initial speeds and maximum speeds Vmax such that
1 ≤ Vmax ≤ 6. 39

2.6 Sensitivity plots for satisfaction probability derived from proposition
labeled confusion matrix for the specification that the car does not
stop atCk−1 for xe = ped under various initial speeds and maximum
speeds Vmax such that 1 ≤ Vmax ≤ 6. The sensitivity is shown for
varying true positive rates of detecting pedestrians. 41

2.7 Given a system-level specification Csys = (asys, gsys), and a specifica-
tion for the controller Ccon = (acon, gcon), derive the object detection
specification Cdet = (adet, gdet). 42

4.1 Overview of the flow-based test synthesis framework which consists
of three key parts: i) graph construction, ii) routing optimization, and
iii) test environment synthesis (e.g., reactive test strategy / test agent
strategy, static obstacles). 68

4.2 Automata for Example 4.2. Yellow • and blue • nodes in Bsys and
Btest are the respective accepting states. In the product Bπ, we con-
tinue to track these states for the system and test objectives. States
in the product Bπ that are accepting to both objectives (e.g., q1) are
also shaded yellow. 76

4.3 Grid world layouts for examples. 77
4.4 A possible execution of the system for Example 4.2 as illustrated on

the transition system Tsys and the corresponding product graph G. . . 81
4.5 A possible execution of the system for Example 4.2 as illustrated on

the transition system Tsys and the corresponding product graph G. . . 81
4.6 Illustration of why feasibility constraints are important for identify-

ing a reactive test strategy that respects the system’s assumptions.
Since the system is not aware of the test objective, such a placement
of constraints would lead to all paths being blocked from the system
perspective. 89

xvii

4.7 Static and reactive obstacle placement for running examples. Fig-
ure 4.7a shows static obstacles synthesized for Example 4.1. Fig-
ures 4.7b, 4.9c, and 4.7d show a test environment implementation of
a reactive test strategy for Example 4.2. 96

4.8 Virtual product graph with static cuts in dashed red for the medium
example 4.1. Static obstacles in Fig. 4.7a corresponding to edge cuts
found on this product graph for Example 4.1. States marked S, I ,
and T illustrated in Fig. 4.7a correspond to states S (magenta •),
I (blue •), and T (yellow •) on G as shown here. There are three
edge-disjoint paths on this graph from the source to the target nodes. . 96

4.9 Virtual product graph and system product graphs for Example 4.2.
Fig. 4.9a shows the virtual product graph G, with the source S (ma-
genta •), the intermediate nodes I (blue •), and the target nodes
(yellow •). Edge cut values for each edge in G are grouped by their
history variable q and projected to the corresponding copy of Gsys.
Figs. 4.9b—4.9d show the copies of Gsys with their source (orange

•) and target node (yellow •). The graphs in Figs. 4.9b—4.9d cor-
respond to the history variables q0, q6, and q7 from Bπ shown in
Fig. 4.2c. The constraints (c6)—(c8) ensure that the edge cuts are
such that a path from each source to the target node exists for each
history variable q. 97

4.10 Graphs constructed from a 3SAT formula, where a truth assignment
for the variables can be found using the network flow approach for
static obstacles. 110

4.11 Complexity Analysis for Reactive Setting 117
4.12 Solution returned by GR(1) synthesis and the network flow optimiza-

tion in the case of static constraints 119
4.13 Beaver Rescue Hardware Experiment with door1 on the right and

door2 on the left. 120
4.14 Motion Primitive example: Snapshots of the hardware test execution

on the Unitree A1 quadruped. 122
4.15 Simulated experiment results with test strategy found by solving

MILP-REACTIVE. In (b), system (gray) demonstrates primitives
in the order: stand (1), stand (2), jump (3), and lie (4), before ad-
vancing to goal (5). 123

xviii

4.16 Illustration of dynamically unrealizable (top (a)–(c)) and dynami-
cally realizable reactive obstacles (bottom (d)–(f)). In Figures 4.16a–
4.16c: Reactive obstacles returned by MILP-REACTIVE that can-
not be realized by a dynamic test agent. In Figures 4.16d– 4.16f:
Accepted solution for which a test agent strategy is synthesized. Red
arrow indicates the direction of the restriction; the edge-cuts found
by MILP-REACTIVE are not subject to the (optional) bidirectional
cut constraint. History variable q0 refers to the state of the test exe-
cution before I3 is visited by the system, q15 is the state of the test
execution after only I3 is visited, and q12 is the state of the test exe-
cution after I3 and I2 have been visited. 125

4.17 Yellow boxes in (a) and (b) are pre-defined obstacles to indicate
states that are not navigable in Tsys. Yellow obstacles in (c) are static
obstacles placed by the test environment. Gray quadruped is the sys-
tem, and yellow quadruped in (a) and (b) is the test agent, which
chooses to navigate off-grid after the test objective is realized. 126

4.18 Traces of hardware demos with test environment consisting of static
obstacles. 127

4.19 Mars exploration experiment snapshots from resulting on the Unitree
A1 quadruped for static test environments. The overview is shown
in Fig. 4.18b. 128

4.20 Feasible and optimal solutions for the Mars exploration example.
The hardware experiment corresponded to the feasible solution. . . . 129

4.21 Grid world layout and reactive cuts corresponding to the history
variables for the Maze 2 experiment. (a) Grid world layout with
cells traversible by the test agent marked. Dark gray cells are not
traversible by either agent. (b)–(d) Black edges indicate reactive
cuts corresponding to the history variables for the Maze 2 experi-
ment. Note that the cuts are not bidirectional. The history variable
states q0, q6, and q7 can be inferred from Bπ illustrated in Fig. 4.2c,
and correspond to initial state, visiting I1 first, and visiting I2 first. . . 130

4.22 Resulting test execution for the Maze 2 experiment with a dynamic
test agent. 130

5.1 Contract operators and the partial order, defined in relation to the
refinement operator, of their resulting objects. 137

5.2 Overview of the merging unit tests. 140

xix

5.3 Lane change example with initial (left) and final (right) configura-
tions. The x-coordinates are numbered from left to right, and y-
coordinates are numbered top to bottom, starting from 1. The sys-
tem (red) is required to merge into the lower lane without colliding.
Merging in front of (top), behind (center), or in between (bottom)
tester agents (blue). 141

5.4 Auxiliary game graph construction for the merged test specification
of unit test specifications φtest,1 and φtest,2. Subgraphs Gφtest,1∨φtest,2 ,
Gφtest,1 and Gφtest,2 are copies of the game graph G constructed per
Definition 5.4. InGφtest,1∨φtest,2 , the sets of states at which the progress
propositional formulas of test specifications, φtest,1 and φtest,2, are
satisfied are shaded yellow and blue, respectively. 145

5.5 Snapshots during the execution of the test generated by our frame-
work. The system under test (red car) needs to merge onto the lower
lane between the two test agents (blue cars). 151

5.6 Layout of the unprotected left turn at intersection example. The sys-
tem starts in cell (7,4) and wants to reach the goal cell (0,3), while
the initial positions of the test agents are at the beginning of the road
and crosswalk. 151

5.7 Snapshots during the execution of the unprotected left turn test gen-
erated by our framework. The autonomous vehicle (AV) under test
(red) should take an unprotected left turn and wait for the pedestrian
and the car (blue) individually, which are agents of the test environ-
ment. In the snapshots at time steps 8 and 12, the AV waits just for
the car, and in time step 21 it waits just for the pedestrian. 153

5.8 Block diagram showing contracts specifying the system specification
Csys, the test objective Cobj, and the test environment C tester. 155

5.9 Geometric interpretation of an assume-guarantee contract (A,G) as a pair

of sets of behaviors. The first element of the pair describes the set of behav-

iors for which the assumptions A hold, and the second element describes

the set of behaviors for which G holds or A does not hold. The tester failing

to provide the guarantees G (square) does not satisfy the contract. The set

of desired test executions is in the intersection of the assumptions and guar-

antees (star), and the set of test executions that fall outside the assumptions

(diamond) are because the system under test failed to satisfy its requirements.156

xx

5.10 Test execution snapshots of the car stopping for a pedestrian. Fig-
ure 5.10a shows a test execution satisfying C tester

1 , Figure 5.10b satis-
fies C tester

2 and Figure 5.10c satisfies C tester
2 and C tester

3 160
5.11 Front view of test executions satisfying the original test structure and

the split test structure. 163
6.1 Overview of the planning and control software stack. 170
6.2 Simple switched system example, with position of the system shown

at discrete time intervals. 172

xxi

LIST OF TABLES

Number Page

2.1 Confusion matrices used in simulation for various precision-recall
pairs, where TP, TN, FP, FN are given according to equation (2.15). . . 36

2.2 Class labeled confusion matrix, parametrized by distance computed
from the full nuScenes dataset for the Pointpillars model 37

2.3 Proposition labeled confusion matrix, parametrized by distance com-
puted from the full nuScenes dataset for the pretrained Pointpillars
model . 38

2.4 Proposition labeled confusion matrix, in which evaluations are groupedboth
by distance as well as orientation from the ego. This matrix is derived
for the full nuScenes dataset for the pre-trained Pointpillars model. . 39

2.5 Class Labeled Confusion Matrix computed from the full nuScenes
dataset for the Pointpillars model 40

2.6 Proposition Labeled Confusion Matrix computed from the full nuScenes
dataset for the Pointpillars model 40

4.1 Sub-task specification patterns defined over atomic propositions. . . . 72
4.2 List of outer player constraints used in Optimization 4.21 with nor-

malized flows. 83
4.3 List of inner player constraints used in Optimization 4.21 with nor-

malized flows. 84
4.4 Automata and graph construction runtimes for simulated and hard-

ware experiments . 132
4.5 Routing optimization runtimes for simulated and hardware experi-

ments with static and/or reactive obstacles 132
4.6 Runtimes for simulated and hardware experiments with dynamic agents132
4.7 Run times (with mean and standard deviation) for random grid world

experiments solving MILP-REACTIVE 133
4.8 Run times (with mean and standard deviation) for random grid world

experiments solving MILP-STATIC. 133
4.9 Graph construction runtimes (with mean and standard deviation) for

random grid world experiments . 134
5.1 Subformulas for constructing Gsys and Gobj. 162

xxii

LIST OF ALGORITHMS

1 Class-labeled Confusion Matrix 26
2 Proposition-labeled Confusion Matrix 28
3 Markov Chain Construction . 34
4 Restrict Transitions . 57
5 Finding the test strategy πtest . 93
6 Reactive Test Synthesis . 101
7 Construction of Partial Order and Auxiliary Graph 146
8 Merge Unit Tests (φtest,1, φtest,2, φsys, Tsys, Ttest,1, Ttest,2, ρ) 149

1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
Autonomous robotic systems have the potential for profound impact on our society
— legged and wheeled robots for search and rescue missions, drones for wildfire
management, self-driving cars for improved mobility, and robotic space missions
for exploration and repair of spacecraft. These systems are expected to correctly

reason about and execute tasks in vast operational environments, including inter-
actions with other agents, both human and autonomous. Furthermore, these sys-
tems are incredibly complex: they comprise of several subsystems which are de-
signed under different algorithmic paradigms (e.g., learning-based to model-based)
and operate at different timescales and abstractions (e.g., high-level reasoning and
decision making to low-level control) to accomplish the different functionalities
(e.g., perception, behavior prediction, planning, and control) necessary for correct
system-level behavior.

In light of these complexities, formal guarantees of system behavior during the de-
sign phase alone is not sufficient; mainstream deployment of these systems requires
principled theoretical and algorithmic frameworks for test and evaluation, and ver-
ification and validation, not just to validate software and hardware implementations
of the system, but also to complement formal guarantees derived during system
design. How do we derive a small number of tests that can provide high confidence
that the system can operate safely? These operational tests should ideally cover
salient features of the operating environment such as disturbance and uncertainty,
discrete and continuous inputs, closed-loop behavior of agents in the environment
among others. Furthermore, designing and testing systems for guarantees relies on
definitions of correct behavior, success, or good performance, which differs for
each subsystem and might not be easily identifiable. How do we evaluate subsys-
tems with respect to system-level task requirements?

Driven by these questions, this thesis is focused on testing and evaluating high-
level reasoning and decision making algorithms in safety-critical robotic systems.
We will draw from fundamentals in control and systems theory, convex and com-
binatorial optimization, formal methods, and to address challenges in specification,

2

testing, and evaluation of safety-critical autonomous systems.

1.2 Challenges
This thesis considers the following challenges in that are currently bottlenecks to
safe deployment of complex autonomous systems, especially in safety-critical ap-
plications. We will take the example of self-driving to illustrate these challenges
due to the richness of the example, but these challenges translate to other robotic
applications as well.

Challenge 1: Evaluating Perception Performace with Respect to System-level
Requirements
Consider the high-level overview of a classical software stack in a self-driving car
as shown in Figure 1.1. Variations of this software stack differ in the neat separa-
tion of the perception and planning modules. Typically, the perception and planning
modules are developed under different computational paradigms. The backbone of
perception models is deep learning, while approaches to planning have tradition-
ally included rulebooks and formal methods, sampling based planners, planning
over occupancy grids, and model-based approaches such as model predictive con-
trol for mid-level planning. Due to this, these sub-systems are designed differ-
ently, often optimizing for different performance metrics. Therefore, it becomes
important to establish a safety case that accounts for the interaction between per-
ception and planning modules, and its impact on system-level safety. In its docu-
ment, “A Blueprint for AV Safety: Waymo’s Toolkit For Building a Credible Safety
Case” [2, 3], Waymo defines a safety case as follows:

“A safety case for fully autonomous operations is a formal way to explain how a

company determines that an AV system is safe enough to be deployed on public

roads without a human driver, and it includes evidence to support that determina-

tion.”

In an effort to establish such a safety case, we need to formally and quantitatively
reason about how each subsystem contributes to the overall safety of the system.
Advancements in perception models is often made along metrics that are not clearly
aligned with system-level behavior. Yet, these state-of-the-art models are directly
used in robotic systems such as self-driving cars, without standard methods of as-
sessing whether it is indeed suited for the downstream planning and control task.
For example, in object detection tasks, recall or sensitivity is a metric that quantifies
how well a model can correctly classify a sample with a certain class label given all

3

Figure 1.1: Typical software stack in a safety-critical system such as a self-driving
vehicle.

relevant samples with that true class label. However, as we will see in this thesis,
optimizing models with high recall with respect to pedestrians does not necessarily
translate to better safety guarantees in all scenarios. Thus, we need new theoretical
tools to formalize the interaction of perception errors, including detection and clas-
sification errors, localization errors, tracking errors, among others, on downstream
planning tasks.

Challenge 2: Test and Evaluation, and Verification and Validation of Safety-
Critical Autonomous Systems
For mainstream deployment of safety-critical systems, we need rigorous test and
evaluation protocols to certify that autonomous systems comply with certain re-
quirements. Testing can impact the certification process in by guiding regulators
and designers to aspects of the design that need more careful evaluation.

Current approaches to safety certification can be broadly categorized as follows.
The first category comprises of analysis techniques (e.g., fault tree analysis (FTA)
and hazard analysis and risk assessment (HARA)), which cannot scale with the
complexity in system design and in operational environments. The second category
covers simulation-based testing such as Monte Carlo sampling, simulation-based
falsification, and regression testing. These approaches typically sample continu-
ous test parameters, and even if discrete parameters are sampled, they are typically
kept fixed for the duration of the test (e.g., color of environment car) as opposed
to a discrete test strategy that is reactive to system behavior. The third category
involves collecting real-world experimental data (e.g., miles driven without disen-

4

(a) Static national qualifying test at 2007
Darpa Urban Challenge.

(b) Dynamic national qualifying test at
2007 Darpa Urban Challenge.

Figure 1.2: National Qualifying Events (NQEs) from the 2007 DARPA Urban Chal-
lenge. The photos are from the perspective of Alice, Caltech’s entry in the compe-
tition, during the track tests.

gagement) to build statistical confidence that the system is safe. This approach can
be extremely inefficient in time and cost, and would have to be repeated after each
design iteration [4]. The final approach of manual constructing tests requires test
engineers to rely on their expertise to specify the high-level scenario as well as
design the test harness (e.g., specifying the number and locations of obstacles, dy-
namic agents and their strategies). In the application of autonomous vehicles, there
is ongoing effort to standardize requirement specification, and test and evaluation
procedures [5–8]. Standards such as “ISO 21448:2022 Safety of the Intended Func-
tionality (SOTIF)” [6] provide guidance on verification and validation methods to
demonstrate that self-driving. Listed below are some approaches to testing in the
self-driving industry today.

Track-testing at the DARPA Urban Challenge: The 2007 DARPA Urban Chal-
lenge ushered interest in autonomous driving in urban environments [9]. Participat-
ing vehicles had to pass three small-scale operational test-courses, national qualify-
ing events or NQEs, that were designed to evaluate the autonomous car’s ability to
satisfy safety, basic and advanced navigation requirements, and basic and advanced
traffic scenarios [10]. Exhaustive verification for such complex safety-critical sys-
tems is prohibitive, creating a need for a formal operational testing framework to
certify reliability of these systems [11]. Figure 1.2 shows Caltech’s entry, Alice, in
the test tracks corresponding to a completely static test environment and a dynamic
test environment with other live vehicles. These tests were designed by entirely by
test engineers.

AV companies have long relied on testing on urban roads to demonstrate to gather

5

(a) Cruise vehicle driving in the path of
a fire truck.

(b) Map by Will Jarrett at Mission Lo-
cal [12] using data from the San Fran-
cisco Fire Department. This map shows
locations where Cruise vehicles violated
traffic rules during on-road testing in
their interactions with fire trucks.

Figure 1.3: Cruise vehicles driving in the path of emergency responders. In just the
first half of 2023, 55 such incidents were reported in the city of San Francisco.

data for test and evaluation, and to demonstrate technological readiness. However,
even test driving for millions of miles is not sufficient to demonstrate safety guaran-
tees. In California in the year 2023 alone, six companies with permits for driverless
testing have completed 3,267,792 miles in autonomous driving mode at SAE Level
4. However, it is still not sufficient to demonstrate required levels of safety. For
example, in the first half of 2023, there were 55 incidents of Cruise vehicles driving
in the path of emergency vehicles [12] (also see Figure 1.3). Recently, issues such
as these have led to driverless permits being suspended by the California DMV.

In addition to road testing, the AV industry heavily relies on track testing and
simulation-based testing to ensure the safety of its vehicles. Waymo’s safety method-
ology [5] lists the following methods to evaluate autonomous driving behavior on
its vehicles: i) hazard analysis that tests for robustness against user-defined haz-
ards, ii) scenario-based testing on an instrumented track and in simulation, and
iii) extensive simulation testing that aggregates driving performance across several
simulations. Aside from manually specified scenarios, the industry also relies on
police reports to test its software in challenging scenarios [5]. The self-driving car
company, Zoox, also released a highlight video demonstrating its approach to track
testing, snapshots of which are shown in Figure 1.4. First, scenarios that are diffi-
cult are identified by test engineers, and these scenarios are recreated in simulation
and on the closed-loop track.

6

(a) Road condition: bumpy (b) Road condition: damp

(c) Testing high-speed maneuverability: ob-
stacle course in simulation

(d) Instrumented door to test whether Zoox
car can properly detect and avoid collision.

(e) Scenario design by test engineers prior
to track test shown in Figure 1.4f.

(f) Reactive test scenario in which Zoox car
must respond correctly in reaction to the en-
vironment agent.

Figure 1.4: Instrumented track testing at Zoox. These images are taken from
“Putting Zoox to the Test” [1].

7

These case studies illustrate the need for rigorous approaches to test and evaluation
of these systems. Existing approaches do not provide a definitive answer to the
certification of autonomous systems in safety-critical settings. Now, we will cover
related work that is motivated by these challenges.

1.3 Related Work
Task-Relevant Evaluation of Perception
As discussed in the Challenges, perception and planning modules are typically de-
signed under different computational paradigms. At the NVIDIA AV Team, empiri-
cal studies on how perception design choices affect overall system-level safety have
been studied in a pedestrian jay-walking scenario [13]. These empirical studies re-
flect the need for studying this problem more rigorously. The design paradigms for
planning and control submodules are usually backed by guarantees of safety and
stability. For this related work, we will take the example of formal methods as a
paradigm for control system design, but these insights can extend to other planning
and control frameworks that provide guarantees of correctness.

Formal methods have been employed to construct provably correct planners and
controllers given a system model and temporal logic specifications [14–18]. The
correctness guarantee, typically specified using a temporal logic formula, relies
heavily on the assumption that the input (i.e., the perceived world reported by per-
ception) is perfect. Perception is important for state estimation, which is necessary
for the downstream control and planning logic to effectively react to the environ-
ment. For example, if the perception component only reports the most likely class
of each object, the control component assumes that the reported class is correct.
Unfortunately, this assumption may not hold in most real-world systems, and the
correctness guarantees might no longer hold.

In recent years, verifying neural networks with respect to safety and robustness
properties has grown into an active research area [19–22]. Often, these methods
apply to specific neural net architectures, such as those with piece-wise linear acti-
vation functions [19], or might require knowledge of the safe set in the output space
of the neural network [20, 21]. Furthermore, these methods have been demon-
strated on learning-based controllers with smaller input dimensions, and are not yet
deployed for analysis of perception models. One reason for this is the difficulty in
formally characterizing properties of ML-based perception models, as elaborated
below.

8

First, recent work demonstrates that it is not realistically feasible to formally spec-
ify properties reflecting human-level perception for perception models, in particu-
lar, classification ML models, due to the high dimensional nature of the input, such
as pixels in an image [23]. Finally, not all perception errors are equally safety-
critical. Dreossi et al. reason that not all misclassifications are the same; some
are more likely to result in system-level failure, and therefore, it is necessary to
adopt system-level specifications and contextual semantics in developing a frame-
work for quantitative analysis and verification of perception models [23, 24]. This
has led to work on compositional analysis of perception models in finding system-
level counter-examples [25]. The work in [26] introduced the concept of interaction
zones using Hamilton-Jacobi reachability theory, and illustrated that perception er-
rors in the interaction zone were more likely to result in system-level violations than
those outside of it. This observation was further backed in [27], which demonstrated
instances of both small perception errors (for the task of segmentation over RGB
images) leading to closed-loop system-level failure, and large perception errors still
resulting in safe system-level failures.

While there is work on evaluating performance of perception with temporal logic,
those formal specifications are defined over image data streams, and must be man-
ually formalized for each scenario / data stream [28, 29]. Often, there is high vari-
ability in the performance of perception models in seemingly similar environments,
such as variations in sun angle [30]. Therefore, for any given scenario, it can be
challenging to specify all realizations of the environment that a perception system
might encounter. On the other hand, it is simpler, and more accurate, to define
system-level specifications, such as “maintain a safe distance of 5 m from obsta-
cles” [23, 31–33].

Testing for Autonomous Systems
As described in the Challenges section, tests are often manually designed by test
engineers. This was seen in the DARPA Urban Challenge, and in current prac-
tices at AV companies such as Waymo and Zoox. Test scenarios are often con-
structed first in simulation using tools such as CARLA [34] and Scenic [35]. For
example, Scenic is a probabilistic programming language to model environments
of autonomous cyber-physical systems. A single Scenic program describes a dis-
tribution of environments by declaring random variables (e.g., position of parked
car, location of pedestrians, color of obstacles) and specifying distributions of each
of these random variables. A compiled Scenic program can be sampled to provide

9

concrete scenes, and these concrete scenarios are related by the high-level scenario
(e.g., number of cars and their approximate locations) used to define the Scenic
program. However, Scenic cannot handle the generation of these Scenic programs
from high-level specifications. The automated, reactive test synthesis framework in
Chapters 3– 4 addresses this, and can potentially be interfaced to Scenic to auto-
matically construct scenarios at all levels of the planning stack.

In the formal methods community, research on falsification aims to uncover bugs in
the software of cyber-physical systems with access to just black-box models, and
without any knowledge of the control design [36–40]. Oftentimes, specifications
for these cyber-physical systems are characterized in metric temporal logic (MTL)
and signal temporal logic (STL), which allow for specifying timed requirements
and also lend themselves to quantitative metrics of robustness to characterize the
degree to which a specification is satisfied or violated. The goal of falsification is
search over a specified input domain (typically continuous) to identify an input that
maximizes the degree of violation of the specified requirement. The community has
introduced several toolboxes, e.g., Breach [41] and S-TaLiRo [36, 42], among oth-
ers [43] for this effort. These falsification toolboxes can be interfaced with scenario
definition programs such as Scenic to automatically construct test scenarios, and an
example of such a tool is VerifAI [44]. Note that the user still needs to define the
high-level scenario in Scenic — interfacing with the falsifier returns the worst-case
concrete scenario from the distribution of scenarios.

Aside from traditional black-box optimization methods such as Bayesian optimiza-
tion, cross-entropy method, reinforcement learning has been used to identify fal-
sifying inputs [45–47]. Oftentimes, falsification algorithms are applied over con-
tinuous domains and metrics, and often cannot handle discrete input spaces. How-
ever, complex cyber-physical systems are expected to handle both continuous and
discrete inputs, and reason over continuous and discrete state spaces [48]. Addi-
tionally, falsifying inputs are often open-loop signals that generate the worst-case
trajectory in simlation. However, feedback is a fundamental principle in control
theory that allows us to design systems that are robust to unmodeled dynamics, un-
certainties, and disturbances. The contributions in thesis complements falsification
— our focus is on synthesizing high-level test environments and reactive test strate-
gies that operate over discrete state spaces. In future work, we can search over the
continuous parameters of the synthesized test environment (e.g., continuous pose
values of test agents, friction coefficients, exact timing of events) using falsification

10

algorithms for further concretizing the test scenario.

1.4 Thesis Overview and Contributions
The principles underlying my past and current work are reactive test plans, modular

test and evaluation of subsystems and interfaces between subsystems, and choosing
relevant specifications and evaluation criteria at the system and subsystem levels
by accounting for interactions between subsystems and their impact on system-
level behavior. The theoretical contributions as well as its applications, in both
algorithms and hardware, are outlined below.

Part I: System-level Reasoning for deriving Task-Relevant Metrics of Percep-
tion
Chapter 2 focuses on introducing task-relevant evaluation metrics for object de-
tection and classification models for perception. This work identifies evaluation
metrics of perception tasks that are useful in providing probabilistic guarantees on
system-level behavior. At a high-level, the main contribution of this work is in iden-
tifying standard perception metrics that can be used in a quantitative system-level
analysis, and in proposing new perception metrics that are relevant to the down-
stream planner and the system-level task.

First, we identify popularly used metrics in computer vision confusion matrices
as a candidate model for sensor error, and leverage probabilistic model checking
to quantify the probability of the overall system satisfying its requirements. Prior
work [49] has shown how to leverage a probabilistic model of sensor error in proba-
bilistic model-checking of the overall system with respect to system-level temporal
logic specifications. The work in this chapter was the first to identify confusion
matrices as a model of sensor error for detection and classification tasks, rigorously
define probabilities of misdetection from the confusion matrix, and show how it can
be leveraged in probabilistically model-checking system-level task specifications.

Confusion matrices are popularly used in computer vision to compare and evaluate
models for detection tasks, and a wide-variety of metrics such as accuracy, preci-
sion, recall, among others, can be derived from the confusion matrix. The key idea
was in identifying confusion matrices as a candidate for capturing requirements
on detection tasks, and in rigorously defining probabilities to relate the confusion
matrix to system-level performance with respect to temporal logic specifications.
Even on simple examples, our approach highlighted fundamental insights: perfor-
mance tradeoffs (e.g., precision-recall tradeoff) in detection tasks get reflected in

11

system-level performance, and our method gives sanity checks – both qualitative
and quantitative guidelines on selecting detection models and high-level planners,
which in combination have probabilistic system-level guarantees.

For example, consider a car-pedestrian scenario in which the autonomous car needs
to contend with multiple safety requirements — to stop for a pedestrian at a cross-
walk and to not stop unnecessarily if there are no pedestrians at the crosswalk.
While engineers training perception algorithms might optimize for high recall (i.e.,
to never miss a pedestrian even at the cost of false negatives), this will lead to the
car stopping frequently. This intuition was captured quantitatively in my frame-
work. Furthermore, if we have probabilistic system-level guarantees (e.g., meet a
safety requirement to 99%) and given a specific planning logic, we can derive lower
bounds on elements of the confusion matrix such as minimum true positive rate,
minimum false negative rate, and encode requirements on perception tasks in this
manner. The practical impact of this method is the ability to communicate quantita-
tive requirements via confusion matrices, rather than temporal logic specifications,
to engineers training perception algorithms for detection tasks.

The second contribution is in defining new metrics for detection tasks, informed
by the system-level specification as well as the downstream planning logic. This
work stemmed from the insight that not all perception errors are equally safety-
critical, and that current methods to evaluate perception models do not account for
this distinction. For instance, in evaluating models for object detection tasks in
computer vision, all misdetections are given equal weight in the confusion matrix.
However, not all misclassifications or misdetections will have the same impact on
system-level safety. To account for this, we introduced a distance-parametrized,
proposition-labeled confusion matrix, which: i) placed higher weight on correct
detection of objects closer to the ego, and ii) replaced the object class labels of
confusion matrices with atomic propositions that are more relevant to system-level
safety specification.

Guarantees from the distance-parametrized, proposition-labeled confusion matrices
is less conservative than the analysis that used the traditional class-based confusion
matrix. Further extensions of the proposition-labeled confusion matrix, in which
predictions are grouped according to the same level of abstraction used by the high-
level planner, result in system-level satisfaction probabilities that are neither too
relaxed and nor too conservative. Finally, the proposed metrics are used to evaluate
a PointPillars on the real-world nuScenes dataset. The core message of this work

12

is that metrics for evaluating perception tasks need to be carefully informed by
both the system-level specification as well as the downstream planning and control
logic. This work is being packaged as a Python toolbox, TRELPy: Task-Relevant
Evaluation of Perception.

Part II: Reactive Test Synthesis
Chapters 3– 4 focus on reactive test synthesis. These chapters address the problem
of synthesizing tests for high-level reasoning and decision-making in autonomous
robotic applications. Instead of having the entire test be manually designed, we
presume that it is easier for a test engineer to provide a formal description of the
objective of the test. My work focused on automated construction of test scenarios
from these high-level test objectives specified by the user/test engineer. Chapter 5
introduced preliminary directions on compositional test synthesis from unit tests
via assume-guarantee contracts.

Chapters 3– 4: The first contribution of this work is introducing the notion of a test
specification: a high-level description of the objective of the test. This test objective
is not revealed to the system under test, but is consistent with safety and liveness
assumptions the system has on its environment (e.g., there will always exist a path
to the goal, the environment agents will not adversarially collide).

The second contribution is in automatic construction of a reactive test that is con-
sistent with the test objective as well as minimally restrictive to the system. In
particular, the constructed test harness involves placement of static and reactive
constraints to system actions, and the smallest number of restrictions needed for the
test objective are found. These restrictions on system actions are such that if the
system under test is successful in meeting its requirements, the test objective is also
met. The third contribution is in automatically mapping these reactive constraints
to synthesize a reactive strategy of a dynamic test agent. Finally, we also prove that
the reactive test synthesis problem is NP-hard via a reduction from 3-SAT.

Algorithms: Chapter 4 provides algorithms to automate each of the aforemen-
tioned tasks. First, leveraging automata theory and combinatorial graph algorithms,
we formulate a network flow optimization to identify static and/or reactive test con-
straints for the system. The problem data for this algorithm includes the specifi-
cations the system is expected to satisfy, the test objective, and a discrete-state ab-
straction model of the system. Note that the system model is non-deterministic and
does not carry knowledge of the system control; it is just a high-level abstraction

13

representing all possible actions a system can take from any given state. Although
this is a combinatorial problem, we take advantage of the structure in the resulting
product graph to formulate a mixed-integer linear program with discrete variables
representing interdiction of edges in the network that correspond to reactive test
constraints. The choice of using network flows allows for the optimization to han-
dle medium sized problems (5000 integer variables) with a runtime of around 30s
to a few minutes. We prove that the optimal solution corresponds to a set of restric-
tions with the following guarantees: any trajectory of the system that satisfies the
system objective will also satisfy the test objective.

Furthermore, it is easy to augment additional optimization constraints (e.g., some
system actions cannot be constrained). This becomes prominent when synthesizing
a test agent strategy to match the restrictions returned by the optimization. The
optimization is solved offline, and the resulting solution is automatically mapped to
a reactive test strategy for a given dynamic agent. If the solution is not dynamically
feasible for the test agent, we use an efficient counterexample-guided approach to
resolve the MILP. For this, the test constraints are mapped as safety formulas that
the dynamic test agent is expected to satisfy. Additional safety formulas are found
to ensure that the dynamic test agent does not restrict system actions other than
the test constraints. Furthermore, we address livelocks by automatically identifying
potential livelock states, and specify that the test agent, if it occupies these states,
should only transiently occupy it. Finally, the synthesized test strategy chooses
from a set of possible initial conditions and realizes the reactive test constraints
found by the optimization.

Hardware Demos: This framework was demonstrated in hardware using quadrupeds
for robot navigation examples such as search and rescue, and testing motion prim-
itives. In addition to demonstrating the usefulness of this approach to real robotic
systems, the hardware experiments were repeatable and successful immediately af-
ter the test strategy was generated in simulation. These experiments demonstrated
that our framework can handle test objectives beyond simple abstractions of robot
position (e.g., go to a particular cell), but can also capture more complex behav-
iors such as dynamic motion primitives (e.g., jump then stand). Our test synthesis
framework had no knowledge of the control architecture for low-level motion prim-
itives (e.g., standing, walking, jumping) or even the mid-level planning framework
(e.g., waypoint following) on the quadruped. Despite this, the high-level, reactive
test strategy resulted in successful demonstrations in hardware. This experimen-

14

tal success points to promising future directions in decoupling test synthesis for
high-level reasoning and low-level control.

Finally, we also provide an argument for why traditional GR(1) synthesis tech-
niques cannot be used to directly synthesize tests that are not overly-restrictive.
There are two reasons. First, the synthesis of test constraints cannot be cast into an
LTL synthesis problem. In reactive synthesis for LTL or similar temporal logics,
synthesis assumes worst-case behavior of the other player, which is not consistent
with our objectives. Our test harness is not fully cooperative nor fully adversarial:
we do not help the system achieve its requirements yet ensure that there always ex-
ists a path for success. It is possible that this can be cast as a synthesis problem in a
different temporal logic that reasons over path properties (e.g., computational tree
logic (CTL), or hyperLTL). However, the synthesis in those specification languages
is known to be computationally intractable. Second, our optimization finds the
least restrictive set of test constraints, which traditional synthesis methods cannot
provide.

Chapter 5: The main contributions of this chapter are as follows. We estab-
lish a mathematical framework for merging two unit test scenarios using assume-
guarantee contracts. The merged test can be optimized according to an arbitrary
difficulty metric, and we use a receding horizon approach to synthesize winning
sets that guide the test strategy to optimize for the metric.

15

C h a p t e r 2

EVALUATING PERCEPTION FOR SYSTEM-LEVEL TASK
REQUIREMENTS

In safety-critical systems, the goal of perception is to aid downstream decision-
making modules so that the overall system can meet its safety-critical require-
ments. Yet, the metrics we often use to evaluate perception performance do not
account for system-level requirements or interactions between sub-systems. Usu-
ally, not all perception errors are equally safety-critical with respect to system-level
requirements. this chapter argues for the importance of system-level reasoning in
identifying metrics to evaluate perception. First, we show how existing evalua-
tion metrics for object detection tasks, e.g., confusion matrices, can be leveraged to
compute a probabilistic satisfaction of system-level specifications. However, con-
fusion matrices, as traditionally defined, account for all detections equally. The
second contribution of this chapter is in identifying that atomic propositions rele-
vant to downstream planning logic and the system-level specification can be used
to define new metrics for detection which result in less conservative system-level
evaluations. Finally, we illustrate these ideas on a car-pedestrian example in sim-
ulation for confusion matrices constructed from the nuScenes dataset. We validate
the probabilistic system-level guarantees in simulation.

This chapter is adapted from:

A. Badithela, T. Wongpiromsarn, R. M. Murray. (2021). “Leveraging Classifica-
tion Metrics for Quantitative System-Level Analysis with Temporal Logic Specifi-
cations.” In: 2021 60th IEEE Conference on Decision and Control (CDC), pp. 564–
571. DOI: 10.1109/CDC45484.2021.9683611.

A. Badithela, T. Wongpiromsarn, R. M. Murray. (2023). “Evaluation Metrics of
Object Detection for Quantitative System-Level Analysis of Safety-Critical Au-
tonomous Systems.” In: 2023 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 8651–86581.
DOI: 10.1109/IROS55552.2023.10342465.

A. Badithela, R. Srivastav, T. Wongpiromsarn, R. M. Murray, “Task-relevant eval-
uation metrics for object detection.” In Preparation for submission to the Interna-

tional Journal of Robotics Research (IJRR).

https://ieeexplore.ieee.org/document/9683611
https://ieeexplore.ieee.org/document/10342465

16

Section 2.7 has been adapted from:

I. Incer, A. Badithela, J. Graebener, P. Mallozzi, A. Pandey, S.-J. Yu, A. Benveniste,
B. Caillaud, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia. (2024).
“Evaluation Metrics of Object Detection for Quantitative System-Level Analysis
of Safety-Critical Autonomous Systems.” Conditionally accepted to: The ACM

Transactions on Cyber-Physical Systems (T-CPS).
arXiv preprint: https://arxiv.org/pdf/2303.17751.

2.1 Introduction
The presence of deep neural network architectures in the software stack of safety-
critical applications (e.g., self-driving vehicles) necessitates a comprehensive system-
level evaluation of these systems. Figure 1.1 is an illustration of the software stack
of the system in which the perception component involves a deep learning-based
architecture, which perceives the environment and passes its observations as inputs
to the downstream planning and control modules. Using this information, the con-
trol module computes a trajectory for the vehicle to follow and the corresponding
actuation commands to keep the vehicle on the trajectory.

The perception and control modules are typically designed under different prin-
ciples. For example, the perception module often relies on object classification
that is based on deep learning such as the use of convolutional neural networks
to distinguish objects of different classes. These learning-based algorithms are of-
ten evaluated based on the performance measures such as accuracy, precision, and
recall [50, 51].

On the other hand, formal methods have been employed to construct a provably
correct controller given a system model and temporal logic specifications [14–18].
The correctness guarantee, typically specified using a temporal logic formula, re-
lies heavily on the assumption that the input (i.e., the perceived world reported by
perception module) is perfect. For example, if the perception component only re-
ports the most likely class of each object, the control component assumes that the
reported class is correct. Unfortunately, this assumption may not hold in most real-
world systems.

To reason about system-level safety, one might consider the paradigm of specify-
ing formal requirements on the entire system and reasoning about it. However,
specifying formal requirements on the object detection task of perception is not
trivial. Even in the standard classification task of classifying handwritten digits, it

https://arxiv.org/pdf/2303.17751

17

is difficult to formally specify how the digits must be classified. Instead of taking
this approach, we leverage metrics that are already used to evaluate learned mod-
els for their performance on object detection and classification tasks — confusion
matrices. Confusion matrices are a statistical model of sensor error, constructed by
evaluating a learned model against a large evaluation set.

The first contribution of this chapter is in identifying confusion matrices as a candi-
date model of sensor error. Leveraging confusion matrices, we can rigorously define
transition probabilities representing the system’s state evolution in the presence of
detection error. On this model of the overall system, we can quantify system-level
satisfaction of specifications via off-the-shelf probabilistic model-checking tools.
An important insight gained from this analysis is that even in simple examples, in-
tuitive design methodologies for detection models, such as maximizing recall with
respect to pedestrians, might not result in safer systems overall.

However, traditionally defined confusion matrices do not account for the system-
level task or the downstream controller. The second contribution of this chapter
is proposing two new logic-based evaluation metrics that to account for the down-
stream planning logic and the system-level task. We replace the object class labels
of a confusion matrix with logical formulas that are informed from the downstream
controller and system-level guarantee.

Related Work
Evaluating and monitoring perception for safety-critical errors is an emerging re-
search topic [26, 52, 53]. Perception is a complex subsystem responsible for tasks
such as detection, localization, segmentation. These recent works have focused on
evaluating object detection in the context of system-level safety. We follow this
early work and focus on object detection task of perception, which refers to both
detecting an object and classifying it correctly. As an initial stage of this study, we
assume a static environment and perfect object localization. These assumptions can
potentially be relaxed based on an analysis that takes into account partial observ-
ability of the environment [54], as discussed in Section 2.8.

The use of Markov chains for probabilistic reasoning about the correctness of high-
level robot behaviors in the presence of perception errors was studied in [49].
However, the algorithms in [49] assumed knowledge of the probabilistic sensor
model. Rigorously constructing these sensor models from confusion matrices was
presented in [55]. In [56], this approach was further extended by providing confi-

18

dence intervals on the probabilistic sensor models and was applied to a case study
on guiding aircraft on taxiways introduced by Boeing [57].

For runtime monitoring of perception systems, Timed Quality Temporal Logic
(TQTL) is used to specify spatio-temporal requirements on perception [28, 29] .
However, to specify these requirements, the user has to label each scenario with
critical objects that need to be detected. This approach is useful in evaluating per-
ception in isolation with respect to the requirements defined on a specific scenario.
In [52], temporal diagnostic graphs are proposed to identify failures in object de-
tection during runtime.

In [26], Hamilton-Jacobi reachability was used to account for closed-loop interac-
tions with agents in the environment to identify safety-critical perception zones in
which correct detection is crucial. Our work can be viewed as a complementary
approach to [26] by allowing crucial misclassifications, according to system-level
analysis, to be identified. Task-relevant perception design has been studied in [58]
and [59]. In [58], the codesign of control and perception modules has been explored
for tasks such as state estimation [58] and behavior prediction [59].

2.2 Preliminaries
In this section, we give an overview of linear temporal logic (LTL), a formalism for
specifying system-level requirements. We also describe the performance metrics
used to evaluate object detection and classification models in the computer vision
community. Finally, we setup a simple discrete-state car-pedestrian system as a
running example to illustrate the role of these different concepts.

System-level Task Specifications
System Specification. We use the term system to refer to refer to the autonomous
agent and its environment. The agent is defined by variables VA, and the environ-
ment is defined by variables VE . The valuation of VA is the set of states of the agent
SA, and the valuation of VE is the set of states of the environment SE . Thus, the
states of the overall system is the set S := SA × SE . Let AP be a finite set of
atomic propositions over the variables VA and VE . An atomic proposition a ∈ AP
is a statement that can be evaluated to true or false over states in S.

We specify formal requirements on the system in LTL (see [60] for more details).

Definition 2.1 (Linear Temporal Logic [60]). Linear temporal logic (LTL) is a tem-
poral logic specification language that allows reasoning over linear-time trace prop-

19

erties. An LTL formula is defined by (a) a set of atomic propositions, (b) logical
operators such as: negation (¬), conjunction (∧), disjunction (∨), and implication
(=⇒), and (c) temporal operators such as: next (⃝), eventually (⋄), always (□),
and until (U). The syntax of LTL is given as:

φ ::= True | a | φ1 ∧ φ2 |¬φ | ⃝φ | φ1Uφ2,

with a ∈ AP , where AP is the set of atomic propositions, ∧ (conjunction) and ¬
(negation) are the Boolean connectors from which other Boolean connectives such
as→ can be defined, and⃝ (next) and U (until) are temporal operators. Let φ be an
LTL formula over AP . We can define the operators □ (eventually) and □ (always)
as □φ = True Uφ and □φ = ¬ □¬φ. The syntax of LTL is read as follows: (a)
An atomic proposition p is an LTL formula, and (b) if φ and ψ are LTL formulae,
then ¬φ, φ ∨ ψ,⃝φ, φU ψ are also LTL formulae. For an execution σ = s0s1 . . .

and an LTL formula φ, si ⊨ φ iff φ holds at i ≥ 0 of σ. More formally, the
semantics of LTL formula φ are inductively defined over an execution σ = s0s1 . . .

as follows,

• for a ∈ AP , si ⊨ a iff a evaluates to True at si,

• si ⊨ φ1 ∧ φ2 iff si ⊨ φ1 and si ⊨ φ2,

• si ⊨ ¬φ iff ¬(si ⊨ φ),

• si ⊨⃝φ iff si+1 ⊨ φ, and

• si ⊨ φ1Uφ2 iff ∃k ≥ i, sk ⊨ φ2 and sj ⊨ φ1, for all i ≤ j < k.

An execution/trace σ = s0s1 . . . satisfies formula φ, denoted by σ |= φ, iff s0 |=
φ. A strategy π is correct (satisfies formula φ), if the trace σπ resulting from the
strategy satisfies φ.

For an infinite trace σ = s0s1 . . ., where si ∈ 2AP , and an LTL formula φ defined
over AP , we use σ |= φ to denote that σ satisfies φ. For example, the formula
φ = □p represents that the atomic proposition p ∈ AP is satisfied at every state in
the trace, i.e., σ |= φ if and only if p ∈ st,∀t. In this chapter, these traces σ are
executions of the system, which we model using a Markov chain.

Definition 2.2 (Labeled Markov Chain [60]). A discrete-time labeled Markov chain

is a tuple M = (S, Pr, ιinit, AP, L), where S is a non-empty, countable set of

20

Figure 2.1: Running example of a car and pedestrian. If there is a pedestrian at
crosswalk cellCk, that is, xe |= ped, then the car must stop at cellCk−1. Otherwise,
it must not stop.

states, Pr : S × S → [0, 1] is the transition probability function such that for all
states s ∈ S, Σs′∈SPr(s, s

′) = 1, ιinit : S → [0, 1] is the initial distribution such
that Σs∈Sιinit(s) = 1, AP is a set of atomic propositions, and L : S → 2AP is a
labeling function. The labeling function returns the set of atomic propositions that
evaluate to true at a given state. Given an LTL formula φ (defined over AP) that
specifies requirements of a system modeled by the Markov Chain M, the proba-
bility that a trace of the system starting from s0 ∈ S will satisfy φ is denoted by
PM(s0 |= φ). The definition of this probability function is detailed in [60].

Example
Consider a car-pedestrian example, modeled using discrete transition system as il-
lustrated in Figure 2.1. The true state of the environment is denoted by xe. The state
of the car is characterized by its position and speed, sa := (xc, vc) ∈ SA. The safety
requirement on the car is that it “shall stop at the crosswalk if there is a waiting
pedestrian, and not come to a stop, otherwise”. The overall system specifications
are formally expressed as safety specifications in equations (2.1)-(2.3).

1. If the true state of the environment is not a pedestrian, i.e. xe ̸= ped, then
the car must not stop at Ck−1.

φ1 = □((xe ̸= ped)→ ¬(xc = Ck−1 ∧ vc = 0)) . (2.1)

21

2. If xe = ped, the car must stop on Ck−1.

φ2 = □
(
xe = ped→ ((xc = Ck−1 ∧ vc = 0)

∨ ¬(xc = Ck−1))
)
. (2.2)

3. The agent should not stop at any cell Ci, for all i ∈ {1, . . . , k − 2},

φ3 = □¬(
k−2∨
i=1

(xc = Ci ∧ vc = 0)). (2.3)

The overall safety specification for the car is φ := φ1 ∧ φ2 ∧ φ3. Since the car
controller has been designed assuming perfect perception, the specification for the
pedestrian and non-pedestrian environment simplifies to,

φped =□¬(
k−2∨
i=1

(xc = Ci ∧ vc = 0))
∧

□(¬(xc = Ck−1)

∨ (xc = Ck−1 ∧ vc = 0)),

φclass =□¬(
k−1∨
i=1

(xc = Ci ∧ vc = 0)), if class ∈ {obs,empty}.

As mentioned previously, we assume a static environment. We also assume that
the car knows the location of the crosswalk, e.g., from HD map information, and
that it can coarsely localize whether the detected object is on the crosswalk. The
evaluation framework presented in this chapter is valid for any discrete-state control
strategy, both deterministic and probabilistic. To concretize the setup, we consider
a car controller that acts corresponding to the detection model’s prediction of the
environment at the crosswalk. If the car at time step t detects a pedestrian, then it
chooses its speed according to a control strategy for φped to come to a stop before
the crosswalk at cell Ck−1. If the state of the car is such that it is impossible to
find a controller that will bring it to a stop at cell Ck−1, then it decelerates as fast
as possible. Similarly, if an obstacle or empty sidewalk is detected, then the car
chooses its speed according to a control strategy designed correct-by-construction
for φk.

2.3 Problem Statement
Here, we introduce and define the probability of satisfaction of an LTL formula
starting from an initial state, given the true state of the environment.

22

Definition 2.3 (Model of Sensor Error). Let SE denote the set of possible environ-
ment states. Then, a model of sensor error in identifying the state of the environ-
ment M : SE × SE → [0, 1] is defined as follows, M(y, x) = p, where p is the
probability with which the sensor predicts the environment state to be y ∈ SE when
its true state is x ∈ SE .

Definition 2.4 (Transition Probability). Let s1 = (s1,a, xe), s2 = (s2,a, xe) ∈ S

be two states of the overall system, xe be the true class label of the environment,
and let M be a model of sensor error. Let O(s1, s2) denote the set of environment
observations ye ∈ VE that result in the agent controller transitioning from s1,a to
s2,a. The transition probability Pr : S × S → [0, 1] is defined as,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

M(ye, xe) . (2.4)

Since the controller is entirely informed by the outputs of the perception module,
and for each output of the perception module, there is a corresponding control ac-
tion, it is trivial to check that

∑
s2∈S Pr(s1, s2) = 1. Therefore, the transition

probability between any two states is always in the range [0, 1].

Definition 2.5 (Paths). Choose a state s0 = (sa,0, xe) ∈ S for a fixed true en-
vironment state xe. A finite path starting from s0 is a finite sequence of states
σ(s0) = s0, s1, . . . , sn for some n ≥ 0 such that the probability of transition
between consecutive states, Pr(si, si+1) > 0 for all 0 ≤ i < n such that si =

(sa,i, xe) ∈ S. Similarly, an infinite path σ = s0, s1, . . . is an infinite sequence of
states such that Pr(si, si+1) > 0 for all i ≥ 0. We denote the set of all paths starting
from s0 ∈ S by Paths(s0), and the set of all finite paths starting from s0 ∈ S by
Pathsfin(s0). For an LTL formula φ on AP , Pathsφ(s0) ⊂ Paths(s0) is the set
of paths σ = s0, s1, . . . such that σS |= φ.

Semantics
Now, we define probability of satisfaction of a temporal logic formula with respect
to a formal specification based on the following definitions derived from [60]. Let
Ω = Paths(s0) represents the set of all possible outcomes, that is, the set of all
paths of the agent, starting from state s0. Let 2Ω denote the powerset of Ω. Then,
(Ω, 2Ω) forms a σ-algebra. For a path π̂ = s0, s1, . . . , sn∈ Pathsfin(s0), we define
a cylinder set as follows,

Cyl(π̂) = {π ∈ Paths(s0)|π̂ ∈ pref(π)}, (2.5)

23

where pref(π) = {π...j = s0, . . . , sj|j ≥ 0} is the set of all finite prefix path frag-
ments for π = s0, s1, . . ., an infinite path. Let Cs0 = {Cyl(π̂)|π̂ ∈ Pathsfin(s0)}.
The following result can be found in [60], and can be derived from the fundamental
definition of a σ-algebra.

Lemma 2.1. The pair (Paths(s0), 2Cs0) forms a σ-algebra, and is the smallest σ-
algebra containing Cs0 .

The σ-algebra associated with s0 is (Paths(s0), 2Cs0). Then, there exists a unique
probability measure Ps0 such that

Ps0(Cyl(s0, . . . , sn)) =
∏

0≤i≤n

Pr(si, si+1). (2.6)

Definition 2.6. Consider an LTL formula φ over AP with the overall system start-
ing at state s0 = (sa,0, xe). Then, the probability that the system will satisfy the
specification φ from the initial state s0 given the true state of the environment is,

P(s0 |= φ) :=
∑

σ(s0)∈S(φ)

Ps0(Cyl(σ(s0))), (2.7)

where S(φ) := Pathsfin(s0) ∩ Pathsφ(s0). Note that S(φ) need not be a finite
set, but has to be countable.

Definition 2.7 (Controller). For an initial condition s0 ∈ S of the system and en-
vironment, and the system specification φ, the system controller K : SωS → SA

chooses the next system state based on the trace history of system states and envi-
ronment observations.

Problem Formulation

Problem 2.1. Given a model of sensor error M for multi-class classification, a
controller K, a temporal logic formula φ, the initial state of the agent sa,0, and the
true state of the static environment xe, compute the probability P(s0 |= φ) that φ
will be satisfied for a system trace σ starting from initial condition s0 = (sa,0, xe)?

2.4 Role of Detection Metrics in Quantitative System-level Evaluations
In this section, we will introduce x While the confusion matrix provides useful
metrics for comparing and evaluating detection models, we would like to use these
metrics in evaluating the overall system with respect to formal constraints in tem-
poral logic. Not all detection errors are equally safety-critical [25, 26].

24

Confusion Matrix
We consider object detection to include both the detection and the classification
tasks. In this section, we provide background on metrics used to evaluate per-
formance with respect to these perception tasks. Let the evaluation dataset D =

{(fi, bi, di, xi)}Ni=1 consist of N objects across m image frames F = {F1, . . . , Fm}.
For each object, fi ∈ F represents the image frame token, bi specifies the bounding
box coordinates, di denotes the distance of the object to ego, and xi denotes the
true class of the object. When a specific object detection algorithm is evaluated on
D, each object has a predicted bounding box, b̃i, and predicted object class x̃i. We
store these predictions in the set E = {(b̃i, x̃i)}Ni=1.

Definition 2.8 (Confusion Matrix). Let D be an evaluation set of objects and E be
the corresponding predictions by an object detection algorithm. Let C = {c1, . . . , cn}
be a set of object classes in D, and let n denote the cardinality of C. The confusion
matrix corresponding to the classes C and dataset D, and predictions E is an n× n
matrix CM(C, E ,D) with the following properties:

• CM(C, E ,D)[i, j] is the element in row i and column j of CM(C, E ,D), and
represents the number of objects that are predicted to have class label ci ∈ C,
but have the true class label cj ∈ C, and

• the sum of the jth-column of CM(C, E ,D) is the total number of objects in D
belonging to the class cj ∈ C.

Several performance metrics for object detection and classification such as true pos-
itive rate, false positive rate, precision, accuracy, and recall can be derived from the
confusion matrix[50, 51, 61].

Definition 2.9 (Precision [50]). Given the confusion matrix CM for a multi-class
classification, the precision corresponding to class ci is:

P (i) =
CM(i, i)

CM(i, i) +
∑

j ̸=i CM(i,j)|Dj |∑
j ̸=i|Dj |

, (2.8)

where
∑

j ̸=i CM(i,j)|Dj |∑
j ̸=i|Dj | is the false positive rate for class ci, and CM(i, i) is the true

positive rate for class ci.

25

Definition 2.10 (Recall [50]). Given the confusion matrix CM for a multi-class clas-
sification, the recall corresponding to class label ci is:

R(i) =
CM(i, i)

CM(i, i) +
∑

j ̸=i CM(j, i)
, (2.9)

where
∑

j ̸=i CM(j, i) is the false negative rate for class ci.

Maximizing precision typically corresponds to minimizing false positives while
maximizing recall corresponds to minimizing false negatives. However, there is
an inherent trade-off in minimizing both false positives and false negatives for clas-
sification tasks [50], and often, a good operating point is found in an ad-hoc manner.
Typically, safety-critical systems are designed for optimizing recall, but as we will
show in Section 2.6, this is not always the best strategy to satisfy formal require-
ments.

Remark 2.1. In this chapter, we use cn = (referring to the background class) as
an auxiliary class label in the construction of confusion matrices. If an object has
the true class label ci but is not detected by the object detection algorithm, then this
gets counted in CM(C, E ,D)(n, i) as a false negative with respect to class ci. If the
object was not labeled originally, but is detected and classified to have class label
ci, then it gets counted in CM(C, E ,D)(i, n) as a false negative of the emptyclass.
We expect that in a properly annotated dataset, false negatives CM(C, E ,D)(i, n) to
be small. We ignore these extra detections in constructing the confusion matrix
because by not being annotated, they are not relevant to the evaluation of object
detection models.

Definition 2.11 (Transition Probability for Confusion Matrices). Let s1 = (s1,a, xe),
s2 = (s2,a, xe) ∈ S be two states of the overall system, xe be the true class label
of the environment, and CM be the known confusion matrix associated with the
agent’s perception model. Let O(s1, s2) denote the set of environment observa-
tions ye ∈ VE that result in the agent controller transitioning from s1,a to s2,a. The
transition probability Pr : S × S → [0, 1] is defined as,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

CM(ye, xe) . (2.10)

From the definition, and consequently structure, of the confusion matrix in Defini-
tion 2.8, it is trivial to check that

∑
s2∈S Pr(s1, s2) = 1. Therefore, the transition

probability between any two states is always in the range [0, 1].

26

Class-labeled, distance-parametrized Confusion Matrix
This performance metric builds on the class-labeled confusion matrix defined in
Definition 2.8. As denoted previously, let C = {c1, . . . , cn} be the set of different
classes of objects in dataset D. For every object in Dk, the predicted class of the
object will be one of the class labels c1, . . . , cn. For each distance interval zk, we
define the class-labeled confusion matrix as CMclass,k := CM(C, Ek,Dk). Algorithm 2
shows the construction of the class-labeled, distance-parametrized confusion ma-
trix. Therefore, the outcomes of the object detection algorithm will be defined by
the set Outc = {c1, . . . , cn}m, where m is the total number of objects in the true
environment in the distance interval zk. The tuple (Outc, 2Outc) forms a σ-algebra
for defining a probability function over the class-labeled confusion matrix CMclass,k.
Similar to the definition of a probability function, for every class label cj , the prob-
ability function µclass,k(·, cj) : Outc→ [0, 1] is defined as follows,

µclass,k(ci, cj) :=
CMclass,k(ci, cj)∑n
l=1 CMclass,k(cl, cj)

. (2.11)

Algorithm 1: Class-labeled Confusion Matrix

1: procedure ClassCM(Dataset D = {(fi, bi, di, xi)}Ni=1, Classes C, Distance Pa-
rameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) ∈ D do
7: if di ∈ zk then
8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for k ∈ {0, . . . , kmax} do
11: Denote CMclass(C, Ek,Dk) as CMclass,k

12: CMclass,k ← zero matrix
13: for fi ∈ {f1, . . . , fm} do ▷ Loop over images
14: for object in Dk do
15: ci ← Predicted class label of object
16: cj ← True class label of object in Ek
17: CMclass,k(ci, cj)← CMclass,k(ci, cj) + 1

18: CMclass(C, E ,D)= {CMclass(C, Ek,Dk)}kmax
k=0

19: return CMclass(C, E ,D)

Definition 2.12 (Transition probability function for class-labeled confusion matrix).
Let the true environment be represented as a tuple xe corresponding to class labels

27

in the region zk (class labels can be repeated in a tuple xe when multiple objects
of the same class are in region zk). Let sa,1, sa,2 ∈ S be states of the car, and
let O(s1, s2) denote the set of all predictions of the environment that prompt the
system to transition from s1 = (sa,1, xe) to s2 = (sa,2, xe). Likewise, the tuple ye
represents the object detection model’s predictions of the environment. Then, the
transition probability function from state s1 to s2 is defined as follows,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

|ye|∏
i=1

µclass,k(ye(i), xe(i)). (2.12)

For both transition probability functions (2.12) and (2.14), we can check (by con-
struction) that ∀s1 ∈ S,

∑
s2
Pr(s1, s2) = 1. In the running example, if the cross-

walk were to have another pedestrian and a non-pedestrian obstacle, then the prob-
ability of detecting each object is considered independently of the others. This
results in the product of probabilities µclass,k(·, xe(i)) in equation (2.12).

Proposition-labeled Confusion Matrix
In several instances, the high-level planner does not necessarily require correct de-
tection of every single object in a frame to make a correct decision. For instance, for
the planner to decide to stop for a cluster of pedestrians 20m away, knowledge that
there are pedestrians, and not necessarily the exact number of pedestrians is suffi-
cient for the planner to decide to slow down. Accounting for this in quantitative
system-level evaluations would make the analysis less conservative. Therefore, we
introduce the notion of using atomic propositions as class labels in the confusion
matrix instead of the object classes themselves.

Let pi be the atomic proposition: “there exists an object of class ci ∈ C,” and let
P = {p1, . . . , pn} denote the set of all atomic propositions. Let D0 < D1 < . . . <

Dk < . . . < Dkmax denote progressively increasing distances from the autonomous
vehicle. Let Dk ⊂ D be the subset of the dataset that includes objects that are in
the distance interval zk = (Dk−1, Dk) from the autonomous system. Let Ek denote
the predictions of the object detection algorithm corresponding to dataset Dk. For
each parameter k, we define the proposition-labeled confusion matrix CMprop,k =

CMprop(2
P , Ek,Dk) where the classes are characterized by the powerset of atomic

propositions 2P . Algorithm 1 shows the construction of the proposition-labeled
confusion matrix.

28

The true environment is associated with a set of atomic propositions that are a sub-
set of P that evaluates to true. Suppose, there is a pedestrian and a trash can in
the distance interval zk from the ego, then the true class label is {pped, pobs} in the
distance-parametrized confusion matrix CMprop,k. Note that for every possible envi-
ronment, there is only one corresponding class in the proposition-labeled confusion
matrix. Thus, for a given true environment, the predicted class of the environment
at distance interval zk could be any element of the set 2P . Therefore, at each time
step, the set of detection outcomes is Outc = 2P .

Algorithm 2: Proposition-labeled Confusion Matrix

1: procedure PropCM(Dataset D = {(fi, bi, di, xi)}Ni=1, Classes C, Distance Pa-
rameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) ∈ D do
7: if di ∈ zk then
8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for cj ∈ C do
11: pj ≡ “there exists an object of class cj”
12: P ←

⋃
j{pj} ▷ Set of atomic propositions

13: for k ∈ {1, . . . , kmax} do
14: Denote CMprop(2

P , Ek,Dk) as CMprop,k

15: CMprop,k ← zero matrix
16: for f ∈ F do ▷ Loop over image frames
17: Group objects in Dk with image token f .
18: Group predictions in Ek with image token f .
19: Pi ← Predicted set of propositions
20: Pj ← True set of propositions
21: CMprop,k(Pi, Pj)← CMprop,k(Pi, Pj) + 1

22: CMprop(2
P , E ,D)= {CMprop(2

P , Ek,Dk)}kmax
k=0

23: return CMprop(2
P , E ,D)

The tuple (Outc, 2Outc) forms a σ-algebra for defining a probability function over
the proposition-labeled confusion matrix. Since the set Outc is countable, we can
define a probability function µ : Outc → [0, 1] such that

∑
e∈Outc µ(e) = 1.

For a distance-parametrized confusion matrix CMprop,k with class labels in the set
Outc, and for every true environment class label Pj , define a probability function

29

µprop,k(·, Pj) : Outc→ 2Outc as follows,

µprop,k(Pi, Pj) =
CMprop,k[Pi, Pj]∑|2P |
l=1 CMprop,k[Pl, Pj]

, ∀Pi ∈ 2P , (2.13)

where CMprop,k[Pi, Pj] is the element of the confusion matrix CMprop,k with predicted
class label Pi and true class label Pj .

That is, for every confusion matrix CMprop,k where k ∈ {1, . . . , kmax}, we define a to-
tal of 2|P| different probability functions, one for each possible true environmentPj .
Thus, the probability function µprop,k that characterizes the probability of detecting
an environment satisfying propositions Pi, given that the true environment at zk sat-
isfies propositions Pj . This helps to formally define the state transition probability
of the overall system as follows.

Definition 2.13 (Transition probability function for proposition-labeled confusion
matrices). Let xe be the true environment state corresponding to propositions Pj

evaluating to true, and let sa,1, sa,2 ∈ S be states of the car. Let O(s1, s2) denote
the set of all predictions of the environment that prompt the system to transition
from s1 = (sa,1, xe) to s2 = (sa,2, xe). At state s1, let zk be the distance interval
of objects in the environment causing the agent to transition from sa,1 to sa,2. The
corresponding confusion matrix is CMprop,k. Then, the transition probability from
state s1 to s2 is defined as follows,

Pr(s1, s2) :=
∑

Pi∈O(s1,s2)

µprop,k(Pi, Pj). (2.14)

For simplicity, we assume that objects at a specific distance interval influence the
agent to transition from sa,1 to sa,2. However, Definition 2.13 can be extended to
cases in which objects at multiple distances can influence transitions.

Choosing Proposition Labels

Generally, the set of atomic propositionsP depends on the logic used by the planner
to trigger different operation modes. In the running example, the planner outputs
different actions depending on the environment, i.e., pedestrian or other objects. If
the planner responds differently to other types of objects, e.g cars, bicycles, cones,
those should be included in the set of atomic propositions P . Thus, our approach
can generalize to a wider range of scenarios by adapting the set P accordingly.

30

In particular, proposition labels of the confusion matrix can be chosen to match
the set of environment observations SE that are acceptable inputs to the controller
(Definition 2.7). Proposition labels can be propositional formulas comprising of
logical connectives, but not any temporal operators.

31

Figure 2.2: Proposition-labeled confusion matrices when evaluations are grouped
solely by distance. Observe that detecting one pedestrian in the highlighted distance
zone will amount to the proposition “there is a pedestrian” evaluating to true. This
would not be an appropriate evaluation for the driving task.

Grouping Objects for Evaluation

Figure 2.3: Grouping eval-
uations at the same level of
abstraction used by the high-
level planner. Evaluating the
proposition “there is a pedes-
trian” in each segment of the
distance zone.

The choice of evaluation metric for the detection
model depends on the observations received by the
downstream planner, and how the planner processes
these observations to to control the system. Propo-
sition labels are defined over objects in a group, and
each group accounts for a single evaluation of the
model. For meaningful evaluations of the percep-
tion system, the grouping of objects into proposi-
tional formulas should be at the right fidelity for
the planning module. For example, in a robotic
system that has a vision-based perception compris-
ing of only forward-facing cameras and a planner
tasked with driving forward, grouping objects by
distance to the ego might be sufficient for effec-
tively evaluating the perception with the system-
level task. However, in robotic systems equipped
with LiDAR sensors and tasked with navigating arbitrarily, the same evaluations
might no longer be meaningful. In particular, since LiDAR sensor outputs 360◦ ob-
servations, grouping objects solely by ego-centric distance will be too coarse from a
planning standpoint (see Figure 2.2). We denote this proposition-labeled confusion
matrix as CMprop,seg.

32

The perception system localizes objects in the environment and returns detections
in R3 upto some finite distance around the ego. Let G = {C1, . . . , Cm} be a fi-
nite, discretized ego-centric abstraction of R3. The labeling functions of the system
and environment allow for mapping the states of the system and environment to G.
Typically in high-level planning, detections from the perception system are mapped
onto the discretized abstraction G, and this information is used by the planner to
decide on next actions. Therefore, evaluation of the perception system using propo-
sition labels at the fidelity of G would be as follows. Instead of using distance to
group objects into radius bands (lines 17-21 of Algorithm 2), we group objects ac-
cording to the ego-centric abstraction G, and evaluate proposition labels for each
cell (see Figure 2.3) for an illustration).

2.5 Markov Chain Analysis
Our approach to solving Problem 2.1 is based on constructing a Markov chain that
represents the state evolution of the overall system, taking into account the control
logic as well as detection errors. This Markov chain is constructed for a particular
true state of the environment. Given a Markov chain for the state evolution of the
system, it is then straightforward to compute the probability of satisfying a tempo-
ral logic formula on the Markov chain from an arbitrary initial state [60]. Prob-
abilistic model checking can be used to compute the probability that the Markov
chain satisfies the formula using existing tools such as PRISM [62] and Storm [63],
which have been demonstrated to successfully analyze systems modeled by Markov
chains with billions of states. In addition to the efficient off-the-shelf probabilistic
model checkers, our approach is computationally tractable because constructing the
Markov chain from the confusion matrix is linear in the number of classes used for
perception.

For each confusion matrix, we can synthesize a corresponding Markov chain of the
system state evolution as per Algorithm 3. Using off-the-shelf probabilistic model
checkers such as Storm [63], we can compute the probability that the trace of a
system satisfies its requirement, P(s0 |= φ), by evaluating the probability of sat-
isfaction of the requirement φ on the Markov chain. Let O(xe) be the set of all
possible predictions of true environment state xe by the the object detection model.
The system controller K : S × O(xe) → S accepts as inputs the current state
of the agent and the environment, s0 ∈ S, and the environment state predictions
ye ∈ O(xe) from object detection. Based on the predictions, it actuates the agent
resulting in the end state sf ∈ S. At each time step, the agent makes a new ob-

33

servation of the environment (ye) and chooses a control action corresponding to
ye.

Remark 2.2. Markov chain construction aids in evaluating the overall system. In
future work, we plan to address the issue of tracking, in which perception errors are
tracked over multiple temporal frames.

Definition 2.14 (Labeled Markov Chain [60]). A discrete-time labeled Markov
chain is a tuple M = (S,P, ιinit, AP, L), where S is a non-empty, countable set
of states, P : S × S → [0, 1] is the transition probability function such that for all
states s ∈ S, Σs′∈SP(s, s′) = 1, ιinit : S → [0, 1] is the initial distribution such that
Σs∈Sιinit(s) = 1, AP is a set of atomic propositions, and L : S → 2AP is a labeling
function.

The σ-algebra of Markov chainM is (Paths(M, 2CM)), where CM = {Cyl(π̂)|π̂ ∈
Pathsfin(M)} [60]. Let SM(φ) denote all paths of the MCM in Pathsfin(M)∩
Paths(M).

Definition 2.15 (Probability on a Markov Chain). Given an LTL formula φ over
AP , a true state of the environment, xe, an initial system state, s0 = (sa,0, xe), and
a Markov chainM describing the dynamics of the overall system, we denote the
probability that the system will satisfy φ starting from state s0 as PM(s0 |= φs).
This probability can be computed using standard techniques as described in [60].

34

Algorithm 3: Markov Chain Construction

1: procedure Labeled Markov Chain(S, xe, s0, K, CM)
Input: Product states S, True environment xe, Initial condition s0 := (sa,0, xe) ∈

S, Controller K synthesized for s0 and φ, Confusion matrix CM,
Output: Markov ChainM carrying the probability of detection error

2: Pr(s, s′) = 0, ∀s, s′ ∈ S
3: K ← Initialize Controller for initial state s0
4: for si ∈ S do
5: ιinit(si) = 1 ▷ Initial Distribution
6: for ye ∈ O(xe) do
7: sf ← K(si, ye) ▷ Controller
8: Identify zk according to Definitions 2.12, 2.13
9: µclass,k, µprop,k ← Equations (2.11), (2.13).

10: if class-labeled then
11: p←

∏|ye|
i=1 µclass,k(ye(i), xe(i))

12: if proposition-labeled then
13: Pj ← Propositions for true xe
14: Pi ← Propositions for predicted ye
15: p← µprop,k(Pi, Pj)

16: Pr(si, sf)← Pr(si, sf) + p

17: returnM = (S, Pr, ιinit, AP, L)

Proposition 2.1. Given φ as a temporal logic formula over the agent and the en-
vironment states, true state of the environment xe, agent initial state sa,0, and a
Markov chain M constructed via Algorithm 3, then P(s0 |= φ) is equivalent to
computing PM(s0 |= φ), where s0 = (sa,0, xe).

Proof. We begin by considering the transition probabilities Pr and the transition
probabilities on the Markov chain P. Since misclassification errors are the only
source of non-determinism in the evolution of the agent state, by construction, we
have that P(si, sj) = Pr(si, sj) for some si, sj ∈ S. Next, we compare the σ-
algebra of Markov chainM with the σ-algebra associated with state s0. By con-
struction of the Markov chain, observe that any path p ∈ Paths(s0) is also a path
on the MCM, p ∈ Paths(M), and as a result Cs0 ⊂ CM. Similarly, by construc-
tion, there is no finite trace on the Markov chain starting from s0, σ(s0) ∈ SM that

35

is not in S(φ).

P(s0 |= φ) =
∑

σ(s0)∈S(φ)

Ps0(Cyl(σ(s0)))

=
∑

σ(s0)∈S(φ)

∏
0≤i<n

Pr(σi, σi+1)

=
∑

σ(s0)∈S(φ)

∏
0≤i<n

P(σi, σi+1)

=
∑

σ(s0)∈SM(φ)

∏
0≤i<n

PM(Cyl(σ(s0)))

=PM(s0 |= φ)

2.6 Experiments
In this section, we conduct various experiments the car-pedestrian example in sim-
ulation. We present system-level evaluations for the car pedestrian example for
various types of confusion matrices.

Fundamental Tradeoffs. Even in the simplest setting of the traditional class-based
confusion matrix, we can show that these quantitative evaluations highlight funda-
mental tradeoffs in detection, and that the right operating point must be informed
by system-level specifications as well as the down-stream control logic. Often in
autonomous driving applications, maximizing recall is prioritized over precision for
safety purposes. In our example, maximizing recall would correspond with increas-
ing tendency to stop atCk−1, even if xe ̸= ped. In Figure 2.4, we show how varying
precision/recall affects the probability of satisfaction for Vmax = 6. These preci-
sion/recall pairs were chosen to reflect the general precision/recall tradeoff trends
for classification tasks [50]. For the results presented in this chapter, we construct
a confusion matrix as a function of precision (p) and recall (r) as shown in CM(p, r)

of Table 2.1, and are in reference to the class label ped. In Table 2.1, TP, FP, TN, FN
are the number of true positives, false positives, true negatives, and false negatives,
respectively, of the ped class label. These are derived from precision p and recall
r as follows,

TP = r , FP = TP(
1

p
− 1) ,

TN = 2− FP , FN = 1− TP .

(2.15)

Note that this is one of many possible confusion matrices that could be constructed;
we have chosen one of them for illustration, and we use it consistently across all

36

Table 2.1: Confusion matrices used in simulation for various precision-recall pairs,
where TP, TN, FP, FN are given according to equation (2.15).

Predicted True (CM(p, r))
ped obs empty

ped TP FP/2 FP/2
obs FN/2 4TN/10 TN/10
empty FN/2 TN/10 4TN/10

precision/recall pairs.

(a) True environment: ped (b) True environment: obs

Figure 2.4: For class-labeled confusion matrices with precision-recall values de-
rived according to Table 2.1. (a) Satisfaction probabilities that the car stops at Ck−1

for xe = ped under various initial speeds and maximum speeds Vmax such that
1 ≤ Vmax ≤ 6. (b) Satisfaction probabilities that the car does not stop at Ck−1

for xe = obs under various initial speeds and maximum speeds Vmax such that
1 ≤ Vmax ≤ 6.

nuScenes Dataset: We choose nuScenes [64] to illustrate the metrics introduced
in this chapter on a real-world dataset. We choose a state-of-the-art PointPillars
detection model for nuScenes that uses the LiDAR modality [65, 66]. The pre-
trained model1 is evaluated on the validation split of the full nuScenes dataset. The
resulting dataset has 6019 pointcloud samples, with annotated objects common to
urban settings such as pedestrians, cars, trucks, among others. For this detection
model, we tabulate the evaluation results according to the various confusion ma-
trices discussed so far. For the car-pedestrian example and its controller described
previously, we compute the system-level guarantees, i.e., the probability that the
car will satisfy the safety requirements in equations (2.1)-(2.3), given the confu-

1Available open source at this Github repositoryhttps://github.com/open-
mmlab/mmdetection3d/tree/main/configs/pointpillars.

https://github.com/open-mmlab/mmdetection3d/tree/main/configs/pointpillars
https://github.com/open-mmlab/mmdetection3d/tree/main/configs/pointpillars

37

Prediction True Label
1 ≤ d ≤ 10 11 ≤ d ≤ 20 21 ≤ d ≤ 30

ped obs ped obs ped obs
ped 1849 11 369 5443 87 963 4290 271 943
obs 56 5697 47 45 12406 354 191 12939 762

1002 621 6117 2734 1949 12668 2406 3647 8969
31 ≤ d ≤ 40 41 ≤ d ≤ 50 51 ≤ d ≤ 60

ped obs ped obs ped obs
ped 3302 382 213 0 0 0 0 0 0
obs 358 10670 345 0 6981 252 0 0 0

1824 4358 1285 0 4346 709 0 0 0

Table 2.2: Class labeled confusion matrix, parametrized by distance computed from
the full nuScenes dataset for the Pointpillars model

sion matrices from various evaluations of the detection model. Each discrete state
corresponds abstracts a 1m distance on the road.

Each scene is 20 seconds long, with 3D object annotations made at 2 Hz for 23 dif-
ferent classes. All objects with nuScenes annotation “human” are clustered under
the class ped, and all objects annotated as “vehicle”, static obstacles, and mov-
ing obstacles are annotated as obs. We use all 40 pointcloud frames from the
LIDAR-TOP sensor in each scene to form our dataset D. The LiDAR sweeps
accompanying each scene provides distances of annotated objects from the ego
vehicle. We use the birds-eye-view to compare predicted bounding boxes to the
ground truth, comparing for both l2-norm in x, y-positions as well as orientation
error. These evaluations are used to construct the (distance-parametrized) class-
labeled and proposition-labeled confusion matrices from Algorithms 1 and 2 with
10m distance intervals with parameters D0 = 0 and Dkmax = 100m. The class-
labeled and proposition-labeled confusion matrices for each distance bin are listed
in Tables 2.2 and 2.3, respectively.

For proposition-labeled confusion matrices, ground truth annotations and predic-
tions are grouped according to an occupancy patch that roughly covers the area
occupied by the ego. Concretely, the radius band Dk = (zk, zk+1) is split into oc-
cupancy patches covering the area every θ = zk

2.5
radians. The arc length of 2.5 m

is a user-specified parameter; here, it is chosen to roughly approximate the width
of a car. Table 2.4 is the proposition-labeled confusion matrix, where in addition to
distance, evaluations are grouped by the occupancy patch size. There is a consider-
able difference between the proposition-labeled confusion matrix that is and is not

38

Prediction True Label
1 ≤ d ≤ 10 11 ≤ d ≤ 20

{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}
{} 0 141 94 6 0 110 139 24
{ped} 54 373 9 17 34 363 18 81
{obs} 20 3 2122 210 36 1 2301 388
{ped, obs} 0 3 104 415 1 18 233 1400

21 ≤ d ≤ 30 31 ≤ d ≤ 40
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 84 253 27 0 106 331 48
{ped} 34 246 34 74 31 241 45 128
{obs} 25 14 2109 443 17 12 2200 489
{ped, obs} 8 37 343 1565 0 42 245 1240

41 ≤ d ≤ 50 51 ≤ d ≤ 60
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 0 905 0 0 0 0 0
{ped} 0 0 0 0 0 0 0 0
{obs} 42 0 3396 0 0 0 0 0
{ped, obs} 0 0 0 0 0 0 0 0

Table 2.3: Proposition labeled confusion matrix, parametrized by distance com-
puted from the full nuScenes dataset for the pretrained Pointpillars model

grouped according to an occupancy patch that is planner consistent. For example,
consider the label {ped} in the distance range 1 ≤ d ≤ 10 in in the ungrouped (see
Table 2.3) and the grouped proposition labeled confusion matrices (see Table 2.4).
The true positive rate of matching the label is higher when atomic propositions are
not grouped (see Tables 2.3 and 2.4). This is because the proposition must match
in every occupancy patch, which is finer, as opposed to every radius band.

The satisfaction probabilities for the pedestrian case is shown in Figure 2.5a. The
system-level satisfaction probability in the case of the true environment not having a
pedestrian is given in Figure 2.5b. The full class and proposition labeled confusion
matrices are given in Tables 2.5 and 2.6, respectively. The code for this chapter
is given in the Python package, TRELPY and is available on GitHub2. In both
the class labeled and proposition labeled confusion matrices, notice that after a
distance of 50m, there are no more detections output by the model, beyond which
the nuScenes LiDAR data is sparse and cannot be reliably inferred from [64]; this is
also nuScenes threshold for evaluation and objects beyond 50m are in the far-field
and not annotated [67].

Figure 2.5 illustrates the importance of choosing perception metrics at the right
level of fidelity. The proposition-labeled confusion matrix (green curve) and its dis-

2https://github.com/IowaState-AutonomousSystemsLab/TRELPy

https://github.com/IowaState-AutonomousSystemsLab/TRELPy

39

Prediction True Label
1 ≤ d ≤ 10 11 ≤ d ≤ 20

{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}
{} 0 344 280 6 0 1689 1658 10
{ped} 145 649 10 11 582 3183 77 28
{obs} 29 8 4006 133 262 29 11241 94
{ped, obs} 2 3 44 256 20 12 36 175

21 ≤ d ≤ 30 31 ≤ d ≤ 40
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 1615 3150 16 0 1316 3912 13
{ped} 697 2987 260 17 188 2368 353 22
{obs} 658 149 11878 58 317 286 9978 37
{ped, obs} 9 29 64 71 2 30 26 57

41 ≤ d ≤ 50 51 ≤ d ≤ 60
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 0 4069 0 0 0 0 0
{ped} 0 0 0 0 0 0 0 0
{obs} 245 0 6706 0 0 0 0 0
{ped, obs} 0 0 0 0 0 0 0 0

Table 2.4: Proposition labeled confusion matrix, in which evaluations are
groupedboth by distance as well as orientation from the ego. This matrix is de-
rived for the full nuScenes dataset for the pre-trained Pointpillars model.

(a) True environment: ped (b) True environment: obs

Figure 2.5: System-level probabilistic guarantees for the car-pedestrian example.
Figure 2.5a shows the satisfaction probability that the car stops at Ck−1 for xe =
ped under various initial speeds and maximum speeds Vmax such that 1 ≤ Vmax ≤
6. Figure 2.5b shows the satisfaction probability that the car does not stop at Ck−1

for xe = obs under various initial speeds and maximum speeds Vmax such that
1 ≤ Vmax ≤ 6.

40

Prediction True Label
ped obs

ped 14884 751 2488
obs 650 48693 1760

7966 14921 29748

Table 2.5: Class Labeled Confu-
sion Matrix computed from the full
nuScenes dataset for the Pointpillars
model

Prediction True Label
{empty} {ped} {obs} {ped, obs}

{} 0 441 1722 105
{ped} 153 1223 106 300
{obs} 140 30 12128 1530
{ped, obs} 9 100 925 4620

Table 2.6: Proposition Labeled Con-
fusion Matrix computed from the full
nuScenes dataset for the Pointpillars
model

tance parametrized counterpart (red curve) result in the highest system-level guar-
antees for the pedestrian case (see Figure 2.5a). In comparison, the class-labeled
and proposition-labeled confusion matrices with grouped evaluations result in lower
probabilities of satisfaction. While the class-labeled confusion matrix can result in
overly conservative results, the proposition-labeled confusion matrices (without the
grouped evaluations) might result in overly relaxed guarantees. For example, sup-
pose there are multiple pedestrians in the radius bandDk, and the model detects just
one pedestrian from the LiDAR data. If the pedestrian detected is one that is not
going to interact with the car (e.g., it is located laterally distant from or behind the
vehicle), then this detection is not safety-critical. However, this still gets counted
as a true positive in the proposition-labeled confusion matrix. This coarseness is
reduced when evaluations are grouped, especially in a manner consistent with the
high-level planner’s discrete abstraction. This can be seen in the satisfaction prob-
abilities of the proposition-labeled confusion matrix computed from grouped eval-
uations (brown curve). This satisfaction probability lies between probability curves
for the class-labeled and ungrouped proposition-labeled counterparts, thus illustrat-
ing the importance of choosing the right fidelity in grouping abstractions.

Sensitivity Analysis. this chapter is focused on highlighting the importance of
system-level reasoning of determining perception metrics that are best suited for
system-level analysis. The choice of a stronger object detection model would better
highlight the strength of our evaluation framework, as illustrated in Figure 2.6. For
each true positive rate for the pedestrian class, 20 random instances of the 4 ×
4 proposition-labeled confusion matrix were generated. Even though the class-
labeled confusion matrix is the most conservative, we observe that system-level
satisfaction probability is close to 1 when the true positive rate is high (> 99%).

41

Figure 2.6: Sensitivity plots for satisfaction probability derived from proposition
labeled confusion matrix for the specification that the car does not stop at Ck−1

for xe = ped under various initial speeds and maximum speeds Vmax such that
1 ≤ Vmax ≤ 6. The sensitivity is shown for varying true positive rates of detecting
pedestrians.

2.7 Lower Bounds for Detection Metrics from System-level Guarantees
In this section, we will cover a case study to illustrate how system-level probabilistic
guarantees can inform quantitative evaluation metrics for perception. In particular,
we will derive lower bounds on detection metrics from desired system-level guar-
antees. This was implemented as a case study in the system design and analysis
tool, Pacti [68].

Assume-guarantee contracts are a useful formalism to specify assumptions and
guarantees of individual sub-systems or scenario viewpoints. Building on funda-
mentals in category theory, operators for composition, conjunction, refinement,
quotient, and others can be rigorously defined over assume-guarantee contracts.
This allows for formal reasoning about interactions between component imple-
mentations that respect assume-guarantee contracts, allowing for rigorous system

42

ped obj emp

ped

obj

emp

True environment class

Pr
ed

ic
te

d
cl

as
s

TPped

TPobj

TPemp

 found by sampling and deriving
the tightest affine lower bound

(acon, gcon)
C1

C2

C3

Ck

Environment Perception

Planning &
Control

Car pedestrian
example

System
asys

gsys

adet gdet

acongcon

System-level contract
: distance to objectasys
: Probabilistic safety

specification
gsys

(asys, gsys)
a. System-level architecture and specification b. Controller specification

Controller chooses actions
based detection inputs

c. Confusion Matrices

 has desired lower bounds
on confusion matrix elements

(adet, gdet)

Confusion matrices store
evaluations of the detection model

Key idea: Finding requirements on the
confusion matrix for the system-level

contract to hold

True
positive

rates

Figure 2.7: Given a system-level specification Csys = (asys, gsys), and a specification
for the controller Ccon = (acon, gcon), derive the object detection specification Cdet =
(adet, gdet).

design. In addition to identifying requirements on perception systems from system-
level guarantees of safety, we will use this formalism in Chapter 5 for designing
compositional test plans.

Definition 2.16 (Assume-Guarantee Contract). Let B be a universe of behaviors,
then a component M is a set of behaviors M ⊆ B. A contract is the pair C =

(A,G), where A are the assumptions and G are the guarantees. A component E is
an environment of the contract C if E |= A. A component M is an implementation

of the contract, M |= C if M ⊆ G ∪ ¬A, meaning the component provides the
specified guarantees if it operates in an environment that satisfies its assumptions.
There exists a partial order of contracts, we say C1 is a refinement of C2, denoted
C1 ≤ C2, if (A2 ≤ A1) and (G1∪¬A1 ≤ G2∪¬A2). We say a contract C = (A,G)

is in canonical, or saturated, form if ¬A ⊆ G.

In this case study, we consider the design of a vehicle that has to satisfy a safety
property with a given probability. We understand the vehicle as a system that con-
sists of two subsystems: a perception component (for object detection) and a con-
troller, as shown in Figure 2.7a. From knowledge of a system-level safety contract
and of the specification of the control component, the quotient operator is used to
derive a specification for the perception component.

Consider the car-pedestrian example once again. We encode the notion of safety in
linear temporal logic formulas φc, where c ∈ {ped,obs,empty}. This way, we
can specify safe behavior when an element of each class is present on the crosswalk.
We synthesized controllers to satisfy these safety properties, assuming perfect per-

43

ception. The details of the properties and our synthesis approach can be found in
[55].

System-level contract. Let Pc be the probability that the car will satisfy require-
ment φc when the crosswalk object has true class c. We set the system-level contract
to

Csys = (dl ≤ d ≤ du, gped ∧ gobs ∧ gempty),

where dl, du are bounds on the distance d to the object in the crosswalk, and gc char-
acterizes an affine lower bound of Pc. This system-level contract assumes bounded
distance to the object of interest, and guarantees affine lower bounds (as a function
of d) on probabilistic satisfaction of safety properties. In other words, at the system-
level we allow the probability of satisfaction of the safety property to degrade if the
vehicle is far away from the crosswalk.

Controller contract. As mentioned, we synthesize three controllers, each making
sure that property φc would be satisfied under perfect perception. In order to write
a contract for each of the controllers, we make use of the fact that the perception
component is not perfect. As a result, the controller satisfies its safety specification
probabilistically.

To correlate probabilities of property satisfaction to perception errors, we base our
approach on [55, 69]. The satisfaction probability Pc for the safety property φc is
computed by constructing a Markov chain with transition probabilities derived from
the true positive rates3 of the perception component, and then invoking standard
statistical model-checking tools.

For this example, Pc depends mainly on the true positive rate TPc of the class c. We
determine a tight affine lower bound for Pc as a function of TPc by sampling and
solving a linear program. The data for the linear program is generated by sampling
false negatives for each value of TPc and computing the corresponding Pc (see
Figure 2.7b). This procedure yields the following controller contract corresponding
to each object class c:

Cc = (lc ≤ TPc, ac(TPc) + bc ≤ Pc), (2.16)

where lc, ac, and bc are reals. The three contracts are composed to find the overall
control contract: Ccon = Cped ∥ Cobs ∥ Cempty.

3The true positive rate of a perception component for an object class is defined as the probability
that the component correctly detects an object to be of that class.

44

Object detection contract. Now that we have the specifications for the system
and for the three controllers, we use contract operations to obtain the specification
of the perception component. The detection component contract is found via the
quotient Cdet = Csys/Ccon, where Csys is the system-level contract and Ccon is the
controller contract. Cdet imposes lower bounds on the true positive rates TPc of
each object class c. We illustrate the results numerically for an instance of the
car-pedestrian example. The system contract is set to

Csys = (1 ≤ d ≤ 10, 0.99(1− 0.1d) ≤ Pped ∧ 0.8(1− 0.1d) ≤ Pobs
∧ 0.95(1− 0.1d) ≤ Pempty),

(2.17)

that is, the contract assumes the distance to the crosswalk is bounded between 1 and
10 units, and specifies desired system-level probabilities Pc as a function of distance
d. The controller contracts are computed to be Cped = (0.6 ≤ TPped, 1.58TPped −
0.622 ≤ Pped), Cobs = (0.3 ≤ TPobs, 0.068TPobs + 0.93 ≤ Pobs), and Cempty =

(0.6 ≤ TPempty, 0.2TPempty + 0.799 ≤ Pempty). These contracts impose affine
lower bounds on Pc with respect to the true positive rates TPc. The quotient results
in an object detection contract with true positive rates lower bounded by affine
functions of the distance d:

Cdet = (1 ≤ d ≤ 10, (1.02− 0.063d ≤ TPped) ∧ (0.6 ≤ TPped)∧

(0.3 ≤ TPobs) ∧ (0.6 ≤ TPempty)).
(2.18)

Now that we have obtained the contract for the perception component, we can give
this contract to designers responsible for object detection. The designers can de-
velop the perception component and verify that it satisfies the requirements on true
positive bounds as in Cdet. If it does, we can infer that the overall system with
controller designed according to Ccon will satisfy the system-level requirements.

2.8 Conclusion
The main takeaway of this chapter is that evaluation metrics for perception tasks
should be informed by the downstream control logic as well as system-level metrics
of safety. We focused on the object detection and classification task of perception,
and made the following contributions. First, we proposed the idea of using con-
fusion matrices as probabilistic models of sensor error to inform how system-level
guarantees must be computed. Second, we replaced the labels of the confusion ma-
trix with atomic propositions that are used in the system-level specifications and the
downstream planner. Third, we finetuned the proposition-labeled confusion matrix

45

by grouping evaluations to an abstraction that is consistent with the occupancy size
of the vehicle. Fourth, we illustrated how assume-guarantee contracts, or system
design optimization tools in general, can leverage our framework to inform desired
evaluation criteria for the percpetion module from system-level guarantees. Finally,
we evaluated a state-of-the art detection model on the nuScenes dataset according
to these metrics, and computed the corresponding system-level guarantees for a
discrete-state car-pedestrian example.

There are several exciting directions for future work. As illustrated in Figure 2.5,
the satisfaction probabilities of safety requirements are still relatively low compared
to the high levels of safety guarantees (e.g., 1 − 10−6 to 1 − 10−9) that are often
expected in these applications. This is for several reasons. First, we evaluated a
model trained on one modality (3D object detection from pointcloud); typically
the best models are multi-modal and use data from several different sensors. Sec-
ondly, we do not consider tracking in our evaluation; once an object is detected,
it is tracked across frames and an object misdetected in a single frame need not
drastically change the high-level plan. Given the sensitivity analysis, we expect the
satisfaction trends to improve with the aforementioned extensions and with better
object detection models.

In addition, this paradigm can be extended to evaluate other perception tasks in a
task-relevant manner, to handle scenarios with dynamic environments, to synthe-
size controllers that are optimal for a given perception model, and to validate the
framework via experimental demonstrations. For this, we will consider building
on the work in [54], which studies quantitative analysis of systems that operate in
partially known dynamic environments. It assumes that the environment model be-
longs to a set Menv of Markov chains. The system does not know the true model
of the environment, and instead maintains a belief, which is defined as a probabil-
ity distribution over all possible environment models in Menv. We will extend our
work to derive the belief update function based on the perception performance.

46

C h a p t e r 3

AUTOMATED TEST SYNTHESIS VIA NETWORK FLOWS: AN
INTRODUCTION

3.1 Introduction
This chapter explores reactive test synthesis for discrete decision-making compo-
nents in autonomous systems. This chapter originated from thinking about how to
find a small set of difficult test cases for discrete decision-making behaviors. For
safety as well as satisfying system requirements, a full-stack autonomous system
must reason over its own state as well as about how the environment might react

to its actions. Oftentimes, this involves reasoning over inputs and states that are
both discrete and continuous valued, and implementations of autonomous systems
accomplish this at various levels of abstraction. In this chapter, we formulate the
test synthesis problem, and introduce the concept of a test objective.

This chapter is adapted from:

A. Badithela, R. M. Murray. (2020). “Synthesis of Static Test Environments
for Observing Sequence-like Behaviors in Autonomous Systems.” arXiv preprint:
https://arxiv.org/pdf/2108.05911.

3.2 Related Work
Due to robustness metrics from their quantitative semantics, signal temporal logic
(STL) and metric temporal logic (MTL), are natural paradigms for reasoning over
trajectories of low-level continuous dynamics [37, 70]. In many instances, the term
testing is used inter-changeably with falsification [39]. Falsification is the problem
of finding initial conditions and input signals that lead to violation of a temporal
logic formula with the goal of finding such failures quickly and for black-box mod-
els [36, 41, 71, 72]. Furthermore, the black-box approaches in the related topics of
falsification of hybrid systems [36], and simulation-based test generation [38, 42],
rely on stochastic optimization algorithms to minimize the robustness of temporal
logic satisfaction. Since dense-time temporal logics better encapsulate the range
of system behaviors at the with continuous dynamics, these techniques are suc-
cessful at falsification at the low-level. However, some of the complexity can be
attributed to the coupling between continuous dynamics with high-level discrete

https://arxiv.org/pdf/2108.05911

47

decision-making behaviors, a hierarchical approach to test-case generation could
be effective.

Typically, high-level choices of autonomous robotic systems exhibit discrete decision-
making [73, 74], and LTL specifications are often used to capture mission objec-
tives at higher levels of abstraction. Covering arrays have been used to initialize
discrete parameters of the test configuration at the start of the falsification proce-
dure in [36, 42, 75], but are not reactive. Furthermore, linear temporal logic (LTL)
model checkers for testing has been explored in [71, 76–78], in which counterex-
amples found via model-checking are used to exactly construct test cases. However,
these are usually applied to deterministic systems, thus relying on the knowledge
of the system controller, and become inconclusive if the system behavior deviates
from the expected model. In this chapter and next, we focus on a framework for
testing of high-level specifications in linear temporal logic (LTL) without assuming
knowledge of the system controller.

3.3 Motivation
Here we adopt a different notion of testing – one that is focused on observing the
autonomous agent undertake a certain behavior in its mission. The DARPA Urban
Challenge test courses, that mainly comprised of static obstacles and (dynamic)
human-driven cars, were carefully designed to observe the agent undertaking cer-
tain behaviors [10]. For example, a part of the test course was designed for assess-
ing parking behavior. The static obstacles – barriers blocking the region in front
of the parking lot and other parked cars – were placed such that the agent had to
repeatedly reverse/pull-in to incrementally adjust its heading angle before success-
fully parking in the designated spot. The clever placement of static obstacles in this
scenario made it a challenging test for the agent, as opposed to an environment in
which the agent pulls-in straight into the parking spot. Similarly, carefully designed
scenarios with human-driven cars sought to observe other behaviors of the agent.
In many, but not necessarily all, of these scenarios, the high-level behavior of the
agent can be described as a sequence of waypoints. In the parking lot example, the
sequence of waypoints can be characterized as a sequence of agent states, which
can be characterized as a product of position and heading angle in the high-level
abstraction. As a step towards automatically synthesizing these test scenarios, this
chapter asks the following question.

Problem (Informal): Given a valid, user-defined sequence of waypoints, a reacha-

48

bility objective for the mission specification, find a set of possible initial conditions

for the agent (if not specified by user) and determine a set of static constraints,

characterized by transitions that are blocked/restricted, such that:

i. the agent must visit the sequence of waypoints in order before its goal, and

ii. the test environment is minimally restricted.

3.4 Preliminaries
Automata Theory and Temporal Logic
Definition 3.1 (Finite Transition System). A finite transition system (FTS) is the
tuple

TS := (S,A, δ, S0, AP, L),

where S denotes a finite set of states, A is a finite set of actions, δ : S × A → S

the transition relation, S0 the set of initial states, AP the set of atomic propositions,
and L : S → 2AP denotes the labeling function. We denote the transitions in TS
as TS.E := {(s, s′) ∈ S × S | if ∃a ∈ A s.t. δ(s, a) = s′}. We refer to the states
of TS as TS.S, and similarly denote the other elements of the tuple. An execution
σ is an infinite sequence σ = s0s1 . . . , where s0 ∈ S0 and sk ∈ S is the state at
time k. We denote the finite prefix of the trace σ up to the current time k as σk. A
strategy π is a function π : (TS.S)∗TS.S → TS.A.

Definition 3.2 (System). The system under test is modeled as a finite transition
system Tsys with a singleton initial set, |Tsys.S0|= 1.

A directed graph G = (V,E) can be induced from Tsys in which the vertices rep-
resent states Tsys.S and the edges represent the transitions Tsys.E, and the labeling
function assigns propositions that are true at each vertex. For a proposition p ∈ AP ,
and vertex v ∈ V , v ⊢ p means that p evaluates to True at v. A run σ = s0s1 . . .

on the graph is an infinite sequence of its nodes where si ∈ Tsys.S represents the
system state at time step i.

We introduce the notion of a test harness to specify how the test environment can
interact with the system. A test harness is used to constrain a state-action (s, a) pair
of the system in the sense that the system is prevented from taking action a from
state s ∈ Tsys.S. Let the actions AH ⊆ Tsys.A denote the subset of system actions
that can be restricted by the test harness. The test harness H : Tsys.S → 2AH maps
states of the transition system to actions that can be restricted from that state.

49

In the examples considered in this thesis, every state of the system has a self-loop
transition corresponding to stay-in-place action, though the framework does not
require this. Note that in our examples, AH does not contain self-loop actions.

In this work, we synthesize tests for high-level decision-making components of the
system under test and therefore model it as a discrete-state system. Linear temporal
logic (LTL) has been effective in formally specifying safety and liveness require-
ments for discrete-decision making [14, 15, 18]. For our problem, we use LTL
to capture the system and test objectives. The reach-avoid fragment of LTL is re-
stricted to the use of logical operators and the next, always, and eventually temporal
operators, and can capture a rich set of behaviors such as safety and coverage prop-
erties. Every LTL formula can be transformed into an equivalent non-deterministic
Büchi automaton, which can then be converted to a deterministic Büchi automa-
ton [60].

Flow Networks
We will leverage network flows to model the test synthesis problem. Flow networks
are used in computer science to model several problems on graphs [79]. One of the
main contributions of this thesis is in using flow networks for test synthesis.

Definition 3.3 (Flow Network [80]). A flow network is a tupleN = (V,E, c, (Vs, Vt)),
where V denotes the set of nodes, E ⊆ V × V the set of edges, c ≥ 0 represents
edge capacity, Vs ⊆ V the source nodes, and Vt ⊆ V the sink nodes. On the
flow network N , we can define the flow vector f ∈ R|E|

≥0 to satisfy the following
constraints: i) the capacity constraint

0 ≤ f e ≤ c,∀e ∈ E, (3.1)

ii) the conservation constraint∑
u∈V

f (u,v) =
∑
u∈V

f (v,u),∀v ∈ V \ {Vs, Vt}, and (3.2)

iii) no flow into the source or out of the sink

f (u,v) = 0 if u ∈ Vt or v ∈ Vs. (3.3)

The flow value on the network N is defined as

F :=
∑

(u,v)∈E,
u∈Vs

f (u,v). (3.4)

50

In the following chapters, we will primarily be using the framework of network
flows to identify restrictions on system actions, which will be analogous to cuts on
a graph. An edge represents a transition the system can make. For this reason, it can
suffice to define flow networks that have unit capacity c = 1 on all edges. Unless
otherwise mentioned, all references to a flow network hereafter will assume unit
edge capacities.

Definition 3.4 (Cut [80]). Given a graph G = (V,E), a cut of G is the tuple Cut :=

(S, T) that partitions the vertices of G into disjoint sets S ⊂ V and T ⊂ V , that is,
S ∪ T = V and S ∩ T = . The cut-set C ⊆ E of the cut Cut = (S, T) is the set of
edges that when removed from G results in the disjoint node sets S and T :

C := {(u, v) ∈ E |u ∈ S, v ∈ T}. (3.5)

The expression Gcut(C) := (V,E \ C) refers to the graph resulting from remove
the edges in C from G. We will use the same expression to refer to any graph from
which edges C are removed, even if the set C does not correspond to a Cut (i.e.,
complete partition of the graph G). Any edge that is removed from G is referred to
as an edge-cut.

In finding maximum flow, it becomes important to identify edges on the graph
through which flow can be pushed through and track edges which have already
been saturated. This is the concept of a residual network which is defined below.
For a more detailed exposition with illustrations, see pages 726–727 of [80].

Definition 3.5. Given a graph G = (V,E) and a flow f , the set of residual edges
Ef are defined as

Ef := E ∪ {(u, v) | (v, u) ∈ E and f(v, u) > 0}. (3.6)

The corresponding residual network Gf = (V,Ef) is a flow network with edge
capacities cf : Ef → [0, 1] defined as follows:

cf (u, v) =


1− f(u, v) if (u, v) ∈ E and f(u, v) < 1,

f(v, u) if (v, u) ∈ E,

0 otherwise.

(3.7)

Standard algorithms such as Edmonds-Karp [79] use residual networks to find the
maximum-flow (and equivalently, minimum-cut) of a single source-sink flow prob-
lem in a graph G = (V,E) in O(|V ||E|2) time. Roughly, starting with zero flow,

51

the Edmonds-Karp algorithm iteratively updates the residual network as flow from
the source to target is found. Initially, the residual network is exactly the same as
the original graph G. Then, the algorithm finds paths from source to target on the
residual network until no such paths remain. These paths are known as augmenting
paths, and are used to construct a realization of the maximum flow.

Definition 3.6 (Augmenting Path [80]). Given a graph G = (V,E) with flow
f , an augmenting path from a source s ∈ V to target t ∈ V is a simple path
Path(s, t)(i.e., without any cycles) from s to t on the corresponding residual net-
work Gf .

The time complexity of the Edmonds-Karp algorithm comes from finding the short-
est augmenting path on the residual network in each iteration until no paths re-
main. If G has a maximum possible flow Fmax, then the set of augmenting paths

AP = {Path1(s, t), . . . , PathFmax(s, t)} has cardinality Fmax since all edges in G
have unit capacities. That is, once an augmenting path is identified, all of the edges
in the augmenting path are saturated on the residual network. As a result, any two
paths Pathi(s, t), Pathj(s, t) ∈ AP are always edge-disjoint in the sense that there
does not exist any edge e ∈ E that is in both Pathi(s, t) and Pathj(s, t). The set
of augmenting paths found by the Edmonds-Karp algorithm is denoted as the set of

shortest augment paths SAP. It can be proven that finding the shortest augmenting
paths and updating the residual network accordingly results in finding a realization
of the maximum flow [80].

Proposition 3.1. A set of shortest augmenting paths AP comprises of edge-disjoint
paths.

3.5 Test Objective
We begin by considering reachability specifications as mission objectives for the
agent under test. For the test itself, we wish to observe a sequence-like behavior of
the agent in its attempt to satisfy its mission objectives. Formally, this test behavior
can be described by the temporal logic formula given below.

Definition 3.7 (Test Objective (strict sequence)). The test objective for strict se-
quenced visit is given by the LTL formula:

φtest := □(p1 ∧ □(p2 ∧ □(· · · ∧ □ pn)))
n−1∧
i=1

(¬pi+1U pi) , (3.8)

52

where p1, . . . , pn ∈ AP are propositional formulas. This is a sequence-like formula
since the agent has to eventually visit every vi, but it cannot visit vi+1 before visiting
vi, where vi ⊢ pi, for all i = 1, . . . , n.

The system under test does not have access to the test objective φtest. Since LTL
formulae cannot be evaluated on finite test runs, the length of the test run depends
on the time the agent takes to satisfy its mission objective.

Example 3.1. Consider the gridworld in Figure 3.1 on which the agent can transi-
tion between states (up, down, left, right) with the mission specification of reach-
ing some goal state (formalized as φg = □ g). Of the many possible paths the
agent can take to meet its objective, we are interested in observing it navigate
to the goal while restricted to a class of paths described by the test specification
φtest = □(p1 ∧ □ p2). How would we constrain actions of the agent in certain
states, such that it navigates through the sequence of waypoints before reaching
the goal? Furthermore, is it possible to synthesize these constraints such that the
sequence flow value from p1 to g is maximized?

Figure 3.1: Left: Unrestricted gridworld labeled by propositional formulas. Right: A test
environment synthesized by our algorithm where the transitions (2, 1) → (2, 2), (3, 1) →
(3, 2), (2, 2)→ (3, 2), and (2, 2)→ (2, 3) blocked. Red semi-circle patches illustrate one-
way constraints, that is, transition from state u to state v is restricted, but v to u is allowed,
if arch of the semi-circle is in the grid corresponding to u along the transition from u to v.

Problem Statement
Now, we formalize the test environment synthesis problem. We limit our focus to
static test environments, by which we mean that the test environment does not react
to the actions of the agent during the test, leaving the reactive test synthesis problem
for later in this chapter and the next chapter.

53

Definition 3.8 (Test Graph). Given a labeled directed graph G = (V,E), a mis-
sion/agent specification φsys = □ pn+1, a test specification φtest (equation (3.8)), a
test graph Gcut(C) = (V,E\C) is the directed graph obtained by removing set of
edges C from the original graph G. On Gcut(C), a run σ starting from state v1 will
satisfy the specification,

(3.9)

Definition 3.9 (Minimally Restricted Test Graph). A test graph Gcut(C) is mini-

mally restricted if the total sequence flow value from v1 |= p1 to vn+1 |= pn+1 on
Gcut(C) are maximized.

Remark 3.1. In this chapter, the definition of a minimally restricted graph does not
relate to the actual number of cuts in the cut-set C, but only whether the flow on
Gcut(C) is maximized.

Problem 3.1. Given a system specification ψsys = □ vn+1, a labeled directed graph
G = (V,E) induced by the non-deterministic transition model T of the agent, a test
specification φtest = □(p1 ∧ □(p2 ∧ □(· · · ∧ □ pn))), static constraints C ⊆ E

such that on the resulting test graph Gcut(C) = (V,E\C) is a minimally restricted
test graph.

Here we aim to find a cut that maximizes the flow from a waypoint pi to its consec-
utive waypoint pi+1, while eliminating any flow to waypoints pj (for j > i+ 1) for
all i = 1, · · · , n. In other words, some flows need to be cut while other flows should
be maximized. The problem of constructing a minimally restricted test graph for
observing a sequence-like specification can be cast as the following optimization,

max
C⊂E

fGcut(C)

s.t. fGcut(C) ≤ fGcut(C)(vi, vi+1) ∀i = 1, · · · , n− 1,

fGcut(C)(vi, vj) = 0 ∀i = 1, · · · , j − 2,∀j = 3, · · · , n,
(3.10)

where the variables C ⊂ E are the set of edges to be restricted resulting in the
unit-capacity graph Gcut(C) = (V,E\C), the scalar fGcut(C) represents the total
flow on Gcut(C) from v1 to vn, the scalars fGcut(C)(vi, vj) represent the total flow
from source vi to sink vj . The problem data is the original graph G = (V,E)

and the sequence nodes v1, . . . , vn. Solving this optimization directly will require
constructing an integer linear program (ILP), for which constructing the constraint
set is not straightforward. Furthermore, it would require solving the integer program
with |E| number of integer variables.

54

3.6 Algorithm for Synthesizing Static Test Environments
Let G = (V,E) be a directed graph, with unit capacity on every edge, induced by
the transition system Tsys of the system under test. Assuming that the test environ-
ment has complete freedom to “block” any transition in the graph G allowed by the
test harness H , Algorithm 4 returns a set of edges, C ⊂ E, of the graph G that
must be removed before the test run. First, we make following assumptions on G.
Let dG(v1, v2) denote the length of the shortest path from vertex v1 to vertex v2 on
graph G.

Assumption 3.1. For each i ∈ {1, . . . , n + 1}, let vi denote the vertex v ∈ V s.t
v ⊢ pi. Assume |vi|= 1, for all i = {1, . . . , n+ 1}.

Informally, Assumption 3.1 states that every propositional formula, p1, . . . , pn+1,
has a single vertex in G associated with it.

Assumption 3.2. There exists a set of edges C ⊆ E such that the modified graph
obtained by removing these edges, Gcut(C) = (V,E\C), is such that

dGcut(C)(v1, vn+1) > · · · > dGcut(C)(vn, vn+1) > dGcut(C)(vn+1, vn+1) = 0. (3.11)

Assumption 3.2 is equivalent to the statement that by removing some edges (or
restricting certain transitions) from the original graph G, there exists some set of
initial conditions Q0 for which the only path(s) to the goal g is through the behavior
φtest. This assumption is imperative since there might be instances for which it is
impossible to construct a test graph. For example, in the following simple labeled
graph (Figure 3.2), it is impossible to construct a test graph for the test specification
φtest = □(p1 ∧ □ p2). Once the system is in state v1, it can directly proceed to
the goal state vg without visiting v2. For instances such as this one, a reactive test
environment is necessary.

v2

p2
v1

p1
vg

g

Figure 3.2: An invalid configuration of propositional formulas for test specification φtest =

□(p1 ∧ □ p2)

Overview of the Approach: At a high-level, we identify all edge disjoint path
combinations through the sequence specification to find edge restrictions. This can
be seen as a brute-force approach to solving the problem. As we will discuss in the

55

following chapter, this problem is NP-hard, and therefore, it is not possible to find a
polynomial-time algorithm to solve this problem if we assume that P is not NP. Later
in this chapter and next, we will cover a more efficient optimization formulations
that can capture a wide-range of specification types with faster runtimes.

Definition 3.10 (Sequence Path). Given a graph G and atomic propositions char-
acterizing the sequence specification, p1, . . . , pn, where PathG(vi, vi+1) represent
a simple path from vi to vi+1, for all i = 1, . . . , n. The sequence path from v1 to
vn+1 can be constructed from the individual path segments as PathG(v1, vn+1) =

PathG(v1, v2), . . . , PathG(vn, vn+1). The sequence path PathG(v1, vn+1) is valid

if it does not have a cycle involving two or more path segments. That is, if there
are no edges (u,w), (w, v) ∈ E such that edge (u,w) ∈ PathG(vi, vi+1) and
(w, v) ∈ PathG(vj, vj+1) for some i + 1 ≤ j ≤ n + 1, except for the case in
which both w = vi+1 and j = i+ 1. In other words, except for the sequence nodes
v1 . . . , vn that link individual segments, there are no common nodes linking an ear-
lier path segment to a later segment. Observe that existence of a valid sequence
path implies that Assumption 3.2 is true.

Finding Combinations of Augmenting Paths
Maximum flow realizations on a graph need not be unique; there can exist more
than one set of augmenting paths to capture maximum flow between a source and
target. For some graphG, we will denote the maximum flow from source s to target
t as FmaxG

(s, t) and a set of augmenting paths by APG(s, t) or SAPG(s, t) for the set
of shortest augmenting paths. Let APG(s, t) correspondingly denote the set of sets

of augmenting paths, and let SAPG(s, t) correspondingly denote the set of sets of

shortest augmenting paths. Note that APG(s, t) captures all possible realizations
of maximum flow from s to t on G, and SAPG(s, t) ⊆ APG(s, t). Intuitively,
since the shortest path need not be unique, the set SAPG(s, t) could have multiple
elements.

By definition, on a test graph Gcut, the maximum sequence flow value will be
bounded as follows:

fGcut(v1, vn+1) ≤ min
i=1,...,n

fGcut(vi, vi+1). (3.12)

On a minimally restricted test graph, the total sequence flow fGcut(v1, vn+1) is max-
imized. For each 1 ≤ i ≤ n, note that SAPG(vi, vi+1) is finite since the num-
ber of edges in G are finite, but is combinatorial in the number of edges since

56

it requires enumerating simple paths from vi to vi+1. The total number of aug-
menting path combinations from v1 to vn+1 that can realize the maximum flow
fGcut(v1, vn+1) will be at most Πn

i=1|APG(vi, vi+1)|. Not every augmenting path
combination might lead to a valid test graph since there could exist a combination
of augmenting paths that violates equation (5.2) by resulting in an invalid sequence
path Path(v1, vn). Consider the simple example of the 3×3 grid in Figure 3.4. The
combination of sequence flows (APG(v1, v2), AP2G(v2, v3), APG(v3, v4)) will give us
fGcut(v1, vn+1) = 1, but the combination of (APG(v1, v2), AP1G(v2, v3), APG(v3, v4))
does not have any valid sequence paths.

Figure 3.3: Left: 3× 3 grid for the sequence specification with atomic proposition p1, p2,
and p3. Right: Illustrated with cuts that route the flow from p1 to p4.

′

′

Figure 3.4: In this 3× 3 grid, the left and right figures illustrate two different augmenting
path combinations. Each grid shows a realization of the flow for each pair of nodes: red:
(p1, p2), gold: (p2, p3), and blue: (p3, p4). The main difference between the two figures is
in the flow from p2 to p3. In both figures, the augmenting paths characterizing the flow from
p1 to p2 and p3 to p4 are the same: APG(v1, v2) = {P1, P2} characterizes the maximum
flow from p1 to p2, and APG(v3, v4) = {P5, P6} characterizes the maximum flow from p3
to p4. On the left, AP1G(v2, v3) = {P3, P4}, and on the right, AP2G(v2, v3) = {P ′

3, P
′
4}. It is

possible to form a sequence path on the right with PathG(v1, v4) = P1, P
′
3, P6, but not on

the left. This sequence path is exactly illustrated in Fig. 3.3 (right).

57

Algorithm 4: Restrict Transitions

Input: φtest, φa, G = (V,E, L).
Output: C ⊆ E.
p← {p1, . . . , pn, pn+1}, Vp ← {v1, . . . , vn, vn+1} ▷ vi ⊢ pi
Pcut ←Find-Cut-Paths(G, p)
C = {}
if Assumption 3.3 then

flg ← 1

while Pcut ̸= ∅ do ▷ Repeat until all cuts are found
E ← Edges in Pcut

A,Pkeep, |A|, Fmax ← Sequence-Flows(G, p, flg = 0) ▷ Combinations of
sequence flows

for all j = 0, . . . , |F| do
Af ← A(j) ▷ Selecting a combination (S1, . . . , Sn)
Pkeep ← Pkeep(j) ▷ Augmenting paths for each vi to vi+1

MCkeep ←Min-Cut-Edges(G, p, Pkeep)
Dkeep ← diag(Akeep1)
for all Af ∈ Af do

Df ← diag(Af1)
Acut, Akeep, Dkeep ← ILP-params(Pcut, Pkeep,MCkeep)
x∗, f ∗, b∗ ← ILP(Acut, Akeep, Dkeep, Af , Df) ▷ Call to ILP (3.10)
if 1Tf ∗ = Fmax then

Cnew ← {ei|x∗i = 1}
C ← C ∪ Cnew

break ▷ Breaking out of both for loops
G← G\Cnew

Pcut ← Find-Cut-Paths(G, p)

To avoid this issue, the algorithm searches through all combinations of sequence
flows before constructing the input to the ILP (3.10). Since this is an expensive
computation, a further assumption on the input graph and set of propositions can
ease this bottleneck.

Assumption 3.3. Let fi be the maximum flow on G from source vi to target vi+1)/
Let SAPG(vi, vi+1) = {SAP1G = {P1, . . . , Pfi}}, represent the set of sets of short-
est augmenting paths that characterizes the flow from vi to vi+1 on G. Then, there
exists a combination (SAP1G, . . . , SAP

n
G) on which a maximum sequence flow can be

characterized.

In other words, Assumption 3.3 allows us to reason over combinations of short-
est augmenting path flows, which is combinatorial in all shortest paths, instead of

58

combinations of the set of augmenting flows, which exacerbates the combinatorial
complexity by enumerating all possible paths. All shortest paths are a subset of all
simple paths between two nodes.

3.7 Iterative Synthesis of Constraints
Algorithm 4 details how edge cuts are computed by iteratively solving the following
integer linear program.

max
x∈Bn, f∈Bl

b∈Bm

1Tf

s.t. 1 ≤ Acutx

Akeepx ≤ Dkeepb

b ≤ Akeepx

Dff ≤ Af (1− b) ,

Af (1− b)−Df1+ 1 ≤ f,

(3.13)

where (x, b, f) are the optimization variables, and Acut ∈ Bk×n, Akeep ∈ Bm×n,
Dkeep ∈ Bm×m, Df ∈ Bl×l, Af ∈ Bl×m are problem data described in more detail
below.

Variables: The variable x ∈ Bn, where n = |Ecut|, is the Boolean vector corre-
sponding to edges Ecut such that for some k ≤ n, if xk = 1, then the corresponding
edge is restricted, and xk = 0 means that it is left in the graph for future iterations.
Given Pkeep = (SAP1G, . . . , SAP

n
G) ∈ Pkeep, a combination of set of shortest aug-

menting paths, the variable b ∈ Bm keeps track of whether an augmenting path in
some SAPiG (1 ≤ i ≤ n) is restricted or not.

For some k ≤ m, if bk = 1, then the corresponding augmenting path in some SAPiG
has minimum-cut edge(s) restricted by the ILP, and bk = 0 if none of the minimum-
cut edges of that augmented path have been restricted. The variable f ∈ Bl is the
sequence flow vector for a given sequence flow, Sf , such that l = |Sf | is the number
of edge-disjoint paths constituting the sequence flow.

Constraints: The first constraint of the ILP, Acutx ≥ 1, enforces the requirement
that each path in P ∈ Pcut is restricted. Each row of Acut corresponds to a path
P ∈ Pcut. The q-th row of Acut is constructed as follows:

(Acut)q,r =

1 if Ecut(r) ∈ P = Pcut(q)

0 otherwise.
(3.14)

59

In the second and third constraints, Akeepx ≤ Dkeepb and b ≤ Akeepx, is used to de-
termine the variable b from the variable x. Each row of Akeep ∈ Bm×n corresponds
to some path P ∈ SAPiG, and Dkeep ∈ Bm×m is a diagonal matrix. Suppose the q-th
row of Akeep corresponds to a path P ∈ SAPiG for Pkeep = (SAP1G, . . . , SAP

n
G), and

MCkeep(i) is the set of minimum-cut edges on some path in SAPiG, then the q-th row
is constructed as follows:

(Akeep)q,r :=

1, if Ecut(r) ∈ P ∩MCkeep(i).

0, otherwise.
(3.15)

The q-th diagonal entry of Dkeep stores the total number of minimum-cut edges in
the path corresponding to the q-th row of Akeep:

Dkeep := diag(Akeep1) (3.16)

These two constraints ensure that for some q ≤ n, bq = 1 iff at least one minimum-
cut edge on the path corresponding to the q-th row of Akeep is restricted, and bq = 0

iff none of the minimum-cut edges on the path corresponding to the q-th row of
Akeep are restricted.
The fourth and fifth constraints, Dff ≤ Af (1− b) and f ≥ Af (1− b)−Df1+ 1,
determine the flow value for a given set of sequence flow paths, Sf . Suppose the
q-th row of the matrix Af ∈ Bl×m corresponds to some sequence flow path P =

(P1, . . . , Pn) ∈ Sf . Let R = (r1, . . . , rn) denote the indices of the paths P1, . . . , Pn

according to the ordering of the paths constituting all SAPiG that is consistent with
the construction of Akeep and Dkeep. Then, the q-th row of Af is defined as follows:

(Af)q,r :=

1, if r = ri for some 1 ≤ i ≤ n.

0, otherwise.
(3.17)

The q-th diagonal entry of matrix Df ∈ Bl×l stores the total number of ones in the
q-th row of Af :

Df := diag(Af1). (3.18)

The fourth constraint ensures that if any of the constituent paths, P1, . . . , Pn, in the
q-th sequence flow path P = (P1, . . . , Pn) ∈ Sf (for 1 ≤ q ≤ l), is restricted, then
the flow value, fq = 0. The last constraint ensures that if none of the constituent
paths, P1, . . . , Pn, in the q-th sequence flow path P = (P1, . . . , Pn) ∈ Sf (for
1 ≤ q ≤ l), are restricted, then the flow value, fq = 1.

60

Parameters: The parameters used to construct the problem data for the ILP (3.13)
are the set of paths that need to be restricted, Pcut, the set of paths whose com-
bination constitutes sequence flow and should not be restricted, Pkeep, and the set
of minimum-cut edges, MCkeep, on the paths constituting Pkeep. The set Pkeep =

{(SAP1G, . . . , SAPnG) | SAPiG ∈ SAP i
G} is a set of all combinations of shortest

augmenting paths in the sequence. For a given combination of sets of augmenting
paths, Pkeep = (SAP1G, . . . , SAP

n
G), with the cardinality of SAPiG being denoted as

follows: ki := |SAPiG|, and m := Σn
i=1ki. In Pkeep, suppose a combination of aug-

menting paths, Sf = {P = (P1, . . . , Pn) | Pi ∈ SAPiG}, represents a sequence
flow, then a matrix Af ∈ B|Sf |×m can be constructed to represent the sequence flow
Sf . This construction is outlined in the descriptions of Constraints of the ILP. An
instance of Pkeep can have several sequence flows, Sf , and correspondingly, several
matrices, Af , all of which are collectively denoted by Af . The set of all such Af is
denoted byA, which has cardinality |A|= |Pkeep|, since eachAf corresponds to an
instance of Pkeep. The maximum sequence flow value is given by Fmax.

Cost Function: The cost function computes the maximum sequence flow value.
Algorithm 4 does not proceed to the next iteration of Pcut until it finds the set of
static constraints that return the maximum possible sequence flow value, Fmax. To
guarantee completeness of Algorithm 4, we need to prove that the cuts synthesized
in prior iterations do not preclude feasibility of further iterations with regards to
assumption 3.2. See Section 3.8 for complexity of the subroutines in Algorithm 4.

Sub-routines of Algorithm 4
The MIN-CUT-EDGES sub-routine takes as input a graph G, a list of propositions
{p1, . . . , pn}, and for each 1 ≤ i ≤ n, a non-empty set of shortest augmenting
paths for the source-sink pair (vi, vi+1). This sub-routine returns as output the set
of minimum cut-set on those augmenting paths, which is then used in constructing
the problem data for the ILP.

The SEQUENCE-FLOWS sub-routine takes as input a graph G, a list of propositions
{p1, . . . , pn}, and a parameter to indicate if Assumption 3.3 holds. It then computes
the combination of all augmenting flows (or all shortest augmenting flows) that
can result in a non-zero sequence flow from v1 to vn+1. It returns as output the
set of all sets of matrices that capture sequence-flow paths, A, a set of Pkeep =

{(SAP1G, . . . , SAPnG)|SAPiG ∈ SAP i
G}, the total number of combinations, |A|, and

the maximum possible sequence flow value, Fmax, which is determined when A is

61

constructed.

The sub-routine FIND-BYPASS-PATHS takes as input a graph G and list of propo-
sitions, {p1, . . . , pn}, and uses the Edmonds-Karp algorithm to find bypass paths
for every source-sink pair (vi, vj), where i + 1 ≤ j ≤ n + 1. Specifically, this
sub-routine finds a set of shortest augmenting paths from vi to vj , and to ensure that
they are bypass paths, the sub-routine is applied onGij = G = (V \Vk, E \E(Vk)),
where:

Vk := {vk ⊨ pk | 1 ≤ k ≤ n+ 1 and k ̸= i, k ̸= j},

and the edges associated with Vk are denoted by Ek:

Ek := {(u, v) ∈ E | u ∈ Vk or v ∈ Vk}.

All of these augmenting paths are collectively returned as the output Pcut, and the
edges constituting these cuts are denoted by Ecut. Note that Pcut does not return
all simple paths from vi to vj>i+1, but just a set of edge-disjoint paths. As a result,
transitions are iteratively restricted until Pcut is empty.

3.8 Characteristics of the Algorithm

Lemma 3.1. In a graph G = (V,E), let P represent a maximal set of sequence
flow paths from v1 to vn. Let Pcut be the set of paths that need to restricted, with
the edges constituting the paths in Pcut denoted by Ecut ⊂ E. Then, the set of
constraint edges C ⊆ Ecut can be found such that C does not constrain any path in
P .

Proof. A path Pcut ∈ Pcut can be restricted by removing at least one of its con-
stituent edges. The number of edges of Pcut that are not in some path P ∈ P is
non-zero, since otherwise it would imply that Pcut,i ∈ P , and would not need to be
restricted. The set C can simply be chosen by selecting one or more edges on every
Pcut ∈ Pcut that are not a part of some path in P .

Proposition 3.2. Let Gm = (V,Em) denote the graph for which the m-th iteration
of the ILP (3.13) synthesizes new cuts Cm ⊂ Em. Then, Assumption 3.2 is satisfied
on Gm+1 = (V,Em\Cm).

Proof. In the first iteration, from Assumption 3.2, we know there exists at least
one test graph G′ = (V,E\C) that satisfies equation (3.11). Assume that the m-
th iteration graph Gm = (V,Em) also satisfies Assumption 3.2. We will show

62

by induction that the graph resulting from the the (m + 1)-th iteration, Gm+1 =

(V,Em\Cm), also satisfies Assumption 3.2. By construction, Algorithm 4 chooses
a combination of set of shortest augmenting paths (SAP1G, . . . , SAP

n
G), such that there

exists a non-empty set of sequence flow pathsF = {(P1, . . . , Pn)|Pi ∈ SAPiG} such
that the simple path from v1 to vn characterized by Γ = (P1, . . . , Pn) ∈ F does not
form an ij-cycle for some i < j ≤ n. This implies that on the subgraph comprising
of the edges in Γ, equation (3.11) is satisfied.

If the maximum possible sequence flow in a minimally restricted test graph is Fmax,
then we can find a combination (SAP1G, . . . , SAP

n
G) such that for each i = 1, . . . , n,

there exists a subset of edge-disjoint paths carrying flow Fmax:

Si = {P 1
i , . . . , P

Fmax
i } ⊆ SAPiG,

from which we can construct the set of sequence flow paths:

F ′ = {(P k1
1 , . . . , P kn

n)|P ki
i ∈ Si, 0 ≤ ki ≤ Fmax} ⊆ F .

By construction of the input variables to the ILP (3.13), the constraints of ILP (3.13)
require that the sequence flow variable f has atleast one element that is 1. This is
possible only if there exists a set of edges Cm that constrain Acut,m such that there
exists at least one sequence path P ∈ F that does not have any of its minimum-cut
edges restricted, which is true as shown in Lemma (3.1). Therefore, the new graph
Gm+1 = (V,Em\Cm) satisfies Assumption (3.2).

Theorem 3.1. Under Assumption (3.2), Algorithm 4 is complete and returns a test
graph G′ from Definition 3.8 that satisfies equation (3.11).

Proof. Consider iteration m of the outer while loop in Algorithm 4, and let the
graph at the m-th iteration be Gm = (V,Em). Denote Vp = {vi|vi ⊢ pi, ∀1 ≤
i ≤ n + 1}. Let F i,j

max denote the maximum flow value from vi to vj on Gij =

(V \(Vp\{vi, vj}), Em), for some i, j such that 1 ≤ i < j − 1 ≤ n. That is, Gij is a
copy of Gm, but with nodes in Vp, except for source vi and sink vj , removed.

This implies that there is a set SAPi,jGij
of F i,j

max edge-disjoint paths that characterize
the maximum flow from vi to vj onGij . Let (Pi,j(k))m be the set of all simple paths
from vi to vj that share an edge with the k-th path in SAP

i,j
Gij

. Let (MCi,j)m be the
set of minimum-cut edges on the paths in SAP

i,j
Gij

and let (Ei,j)m ⊂ Em be the set
of all edges on some path from vi to vj on Gij . Clearly, (MCi,j)m ⊆ (Ei,j)m.

63

For every m ≥ 1, we can claim that |(Ei,j)m+1|< |(Ei,j)m| because edges are
removed to constrain SAP

i,j
Gij

in them-th iteration. Let m̃ be the number of iterations
for Gij to become disjoint. In the worst-case, edges continue to be restricted until
iteration m̃ at which (Ei,j)m̃ = (MCi,j)m̃, at which point constraining edges to cut
(SAPi,jGij

)m̃ results in a cut separating vi and vj . Thus, m̃ has to be finite for every
such i, j.

At the same time, from Proposition 3.2, the synthesized cuts are such that As-
sumption 3.2 is maintained as an invariant. Therefore, when the last set of paths
SAP

i,j
Gij

are restricted, the final test graph G′ is such that dG′(v1, vn+1) > . . . >

dG′(vn, vn+1).

In addition to Assumption 3.2, if Assumption 3.3 holds, Algorithm 4 can be modi-
fied by a parameter setting. The proof of Theorem 3.1 still holds.

Lemma 3.2. On the test graph G′, any test run σ starting from state v1 will satisfy
the specification ((5.2)).

Proof. From Assumption 3.1, there is only one node in G′ for each proposition in
characterizing the test specification ((5.2)), and node satisfying proposition pi is
labeled as vi. For every i ∈ {1, · · · , n}, vi is the only state in test graph G′ that
is successor to all states v on paths Paths(vj<i, vn+1) for which dG′(v, vn+1) =

dG′(vi, vn+1) + 1. This is true by construction of the ILP constraints. All paths in
the set Paths(pj<i, g) on the test graph G′ must pass through vi.

Let σ denote the test run of the agent starting at v1. We define a metric on the test
graph G′: mt := mint dG′(σt, vn+1) to be the closest distance to node vn+1 in the
first t steps of the test run. Note three properties of this metric mt: (a) mt ≥ 0, (b)
mt decreases: mt+1 := min{σt+1,mt} ≤ mt, and (c) there exists a successor qt+1

to σt = qt onG′ such that dG′(qt+1, vn+1) = dG′(qt, vn+1)−1 that decreasesmt. The
metric mt starts at m0 ≥ dG′(v1, vn+1) and decreases to 0 at the end of the test run.
Thus, we can observe that σ |= □(p1∧ □(p2 · · ·∧ □ pn+1))∧ni=1 (¬pi+1U pi) ⇐⇒
σ |= □ vn+1 .

From Theorem 3.1 and Lemma 3.2, Algorithm 4 synthesizes a test graph G′ for the
test specification (5.2), solving Problem 3.1.

64

Lemma 3.3. Consider the test graphG′ from Definition 3.8 for the test specification
σ from (5.2). If Assumption 3.2 holds, Algorithm 4 returns a minimally restricted
test graph.

Proof. By construction, the inputs to the ILP (3.13) are constructed based on a
maximal set of sequence flow paths from v1 to vn. By Lemma 3.1, at each iteration
of the ILP (3.13) from which constraint edges are chosen, the maximum sequence
flow value does not decrease at each iteration. Since there are a finite number of
edges, there are a finite number of iterations until test graph is found. Therefore,
the Algorithm 4 returns a minimally restricted test graph.

Complexity of Subroutines in Algorithm 4
Since Find-Cut-Paths is determining a set of augmenting paths for a single source-
sink flow, it has a complexity of Edmonds-Karp algorithm, O(|V ||E|2) time for
graph G = (V,E) [79]. The complexity of Min-cut-Edges is O(|V ||E|3) time
since it runs a max-flow algorithm for each edge in the worst-case. The main com-
putational bottleneck is in the Sequence-Flows subroutine, which constructs sets of
augmenting flows by computing combinations of all simple paths and all shortest
paths. In the worst-case, enumerating all simple paths between two nodes is O|V ! |,
and enumerating all shortest paths is slightly better in several cases.

3.9 Examples
We illustrate the iterative synthesis of restrictions on a simple graph and a small
gridworld, and then show runtimes of Algorithm 4 on random gridworld instances
for both the case for which Assumption 3.2 is true, and the case for which Assump-
tions 3.2 and 3.3 are true.

Simple graph: Consider a simple non-deterministic Kripke structure representing
an autonomous agent, shown in Figure 3.5, with propositional formulas labeled ad-
joining the states. The agent mission objective is to reach g while being restricted
to start from state q0. The test environment seeks to restrict transitions such that the
agent is prompted to pass through waypoint w in its trajectory to g.

Inputs to Algorithm 4 include the labeled graph G induced by the Kripke structure,
the agent specification □ p3, the test specification □ p2, and the initial condition
constraint □ p1. Algorithm 4 constrains the edges {(v2, v4), (v4, v6)} in the first
iteration, and the edges {(v2, v5), (v5, v6)} in the second iteration. Although in this
simple example, searching the set of all augmented paths becomes searching over

65

all paths, in larger examples discussed below, each augmented path represents a
class of paths that share some edge(s) with it.

q0

p1

v2

w
p2

v4

v5

v6 g p3 q0

p1

v2

w
p2

v4

v5

v6 g p3

Figure 3.5: Left: Simple Kripke structure representing states that the agent can occupy.
The waypoint, w, is highlighted in purple to indicate that transitions are restricted corre-
sponding to propositional formula p2 = L(w). Right: A test graph. Dashed edges in red
illustrate transitions that have been restricted/removed from the Kripke structure above.

Simple Gridworld: In Figure 3.6, we illustrate the iterative synthesis of obstacles
in a gridworld instance. Note that this configuration can be synthesized only by
considering all sets of augmenting paths between (p1, p2) and (p2, p3). Since there
is no shortest augmenting path from p2 to p3 that does not form a cycle with some
(in this example, there is only one) shortest augmenting path flow from p1 to p2, it
is imperative to use all sets of augmenting paths in the Sequence-Flows subroutine.

Random Gridworld Instances: For the case of setting all augmenting paths in the
Sequence-Flows subroutine, we ran 50 random instances each for small gridworlds
and propositions and plotted the average runtimes in Figure 3.7a. The number of
propositions are limited by the size of the gridworld instances, which is restricted
by the combinatorial nature of finding all sets of augmenting paths, and all combi-
nations of sets of augmenting paths.

If we choose initial gridworld instances that satisfy Assumption 3.3, then Algo-
rithm 4 can synthesize static constraints for slightly larger t × t grid sizes. The
average runtimes for 50 random iterations for various grid sizes t is plotted in Fig-
ure 3.7b. The small increase to larger grid size is due to the Sequence-Flows sub-
routine reasoning over shortest augmenting paths, and not all augmenting paths.

The average runtimes increase exponentially with the size of the grid. The num-
ber of propositions, denoted by |P |, is labeled n if the test specification φtest (5.2)
is comprised of propositions (p1, . . . , pn). In both Figures 3.7a and 3.7b, the av-
erage runtime for fewer propositions is at times higher that the average runtime
for more propositions. This can be attributed to the Sequence-Flows subroutine

66

(a) Initial grid (b) Iteration 1

(c) Iteration 2 (d) Iteration 3. The colored paths highlight
a sequence flow from p1 to g.

Figure 3.6: Synthesizing static test environment for φtest = □(p1∧ □ p2)∧¬p2U p1 and
φa = □ g.

taking longer to enumerate all simple paths (or all shortest paths in case of As-
sumption 3.3) between two nodes, which could be greater in number due to fewer
propositions constraining the graph.

Another paradigm for the problem of synthesizing static test environments for se-
quence behaviors could be multi-commodity network flows, which will be explored
later in this chapter. The multi-commodity flow setting typically considers multiple
source-sink flows simultaneously drawing from the capacity of each edge, and here
we compute separate network flows for every source-sink pair of nodes.

3.10 Conclusions
An algorithm to synthesize a static test environment to observe sequence-like be-
havior in a discrete-transition system was introduced. First, we formulated this test
environment synthesis problem as a problem of synthesizing cuts on graphs using
concepts of flow networks. Then, we proposed an algorithm which synthesized the
cuts iteratively using an integer linear program. We proved that this algorithm is

67

(a) Small gridworld configurations using all
augmenting flows.

(b) Gridworld configurations using only
shortest augmenting flows.

Figure 3.7: Average runtime over 50 random instances. The number of propositions in
φtest is denoted by |P | in the legend. Error bars represent standard deviation of runtimes.

complete and that the edges restricted by the ILP at each iteration maintain fea-
sibility of the constraint in the next iteration. Finally, we conducted numerical
experiments on random gridworld instances to assess the runtime of our algorithm.
Simulation results preclude this algorithm from being tractable to larger examples.

However, the integer linear program requires reasoning over all possible paths on
the transition system in order to identify the set of augmenting paths with the high-
est flow. This essentially becomes a brute-force approach to finding a set of edge
disjoint paths from S to T that are routed through the propositions p1, . . . , pn in a se-
quence. The poor scalability is due to the exponential number of constraints (in the
number of edges of Tsys) in the ILP formulation. To alleviate this, we will present
an alternative flow-based formulation in the form of a min-max game with coupled
constraints.

68

C h a p t e r 4

FLOW-BASED REACTIVE TEST SYNTHESIS

The previous chapter introduced the problem of automated test strategy synthesis
based on network flow optimization for user-specified temporal logic objectives.
In this chapter, we will consider an bigger class of temporal logic objectives, and
propose an automated test synthesis framework rooted in automata theory and flow
networks. Especially, the routing optimization will be reformulated using two flow-
based optimizations: i) a min-max Stackelberg game with coupled constraint sets,
and ii) a mixed-integer linear programming formulation. The second flow-based
reformulation lends itself to tractable implementations. Additionally, we study how
these automatically found test strategies can be used to synthesize a strategy for a
dynamic test agent.

4.1 Introduction
In this chapter, we will expand the class of temporal logic objectives to include
reachability, avoidance, and reaction sub-tasks that commonly occur in high-level
specifications of robotic missions [81]. A test strategy is feasible if a well-designed
system can succeed in the test. We will formalize notions of feasibility and restric-

tiveness of a test strategy to handle these expanded class of specifications. Further-
more, in addition to the previous chapter, we will formally present the assumptions
and guarantees that the system places on its test environment.

Next, we revisit the routing problem for the expanded class of specifications, and

Figure 4.1: Overview of the flow-based test synthesis framework which consists of
three key parts: i) graph construction, ii) routing optimization, and iii) test environ-
ment synthesis (e.g., reactive test strategy / test agent strategy, static obstacles).

69

use automata theory to construct a product graph representing system state evolu-
tion along with progress of the temporal logic objectives. We formulate the routing
problem on this product graph, first as a special class of Stackelberg games, and then
as a mixed-integer linear program. We will motivate the mixed-integer formulation
from the drawbacks of the game formulation. Using the MILP formulation, we can
automatically find a test strategy for different environment types: static obstacles,
reactive obstacles, and dynamic test agents. Even feasible solutions of the MILP
return test strategies that satisfy the temporal logic objectives, and optimal solutions
are guaranteed to not be overly-restrictive. Moreover, this routing optimization is
proven to be NP-hard in the size of the product graph, thus supporting the MILP
formulation. Finally, given a test agent, we are able to match the solution of the
MILP to synthesize a strategy for the test agent. We use a simple counerexample-
guided approach to ensure that the MILP solutions are dynamically feasible for the
test agent.

Finally, the test synthesis framework is demonstrated on simulated grid world set-
tings and on hardware with a pair of quadrupedal robots. For all experiments, our
framework synthesizes test strategies that place the fewest possible restrictions on
the system over the course of the test either by obstacle placement or a dynamic
agent. In experiments with reactive obstacles and dynamic agents, the reactive test
strategy results in a different test execution depending on system behavior. De-
spite this, the system is always routed through the test objective (e.g., being put in
low-fuel state or having to walk over challenging terrain).

This chapter is adapted from:

J. B. Graebener∗, A. S. Badithela∗, D. Goktas, W. Ubellacker, E. V. Mazumdar,
A. D. Ames, R. M. Murray (2024). “Flow-Based Synthesis of Reactive Tests for
Discrete Decision-Making Systems with Temporal Logic Specifications”. arXiv
preprint https://arxiv.org/abs/2404.09888 (In submission to Transactions on Robotics).

A. Badithela∗, J. B. Graebener∗, W. Ubellacker, E. V. Mazumdar, A. D. Ames,
R. M. Murray. (2023). “Synthesizing Reactive Test Environments for Autonomous
Systems: Testing Reach-Avoid Specifications with Multi-Commodity Flows.” In:
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 12430–
12436. DOI: 10.1109/ICRA48891.2023.10160841.

https://arxiv.org/abs/2404.09888
https://ieeexplore.ieee.org/document/10160841

70

4.2 Related Work
Following the previous chapter, we synthesize test environments from LTL spec-
ifications. We generate tests without specific knowledge of the system controller
such that the test environment adapts or reacts to system behavior at runtime. Our
test synthesis framework requires knowledge of a nondeterministic model of the
system, but is agnostic to the high-level controller of the system, and is completely
black-box to models and controllers at lower levels of abstraction.

Reactive, specification-based testing over discrete logics has been studied in [82–
86]. In [82], reactive synthesis [87] is used to find a test strategy from LTL specifica-
tions of the system and a user-defined fault model, with guarantees that the resulting
test trace will show the fault if the system implementation is faulty with respect to
the fault model. However, this method requires fault models to be carefully spec-
ified over the output states of the system. Though very beneficial for specifying
and catching sub-system level faults, it becomes intractable for specifying complex
system-level faults, especially when the set of output states is large. The test syn-
thesis framework in this chapter is also specification-based and adaptive to system
behavior, but we specify desired test behavior in terms of system and test objec-
tives. Additionally, the procedure in [82] does not account for the freedom of the
system to satisfy its own requirements. In this chapter, we will synthesize reactive
test strategies that demonstrate the test objective while placing minimal restrictions
on the system. The automata-theoretic tools used in this chapter build on concepts
used in correct-by-construction synthesis and model checking [60, 88], and will be
covered in the next section.

Game-based formulations of testing either presume entirely cooperative or entirely
adversarial settings. In [89], testing of reactive systems was formalized as a game
between two players, where the tester and the system try to reveal and hide faults,
respectively. In [90], the test strategy is found by optimizing for reachability and
coverage metrics over a game modeling the system and the tester. Test case gen-
eration in cooperative settings is studied in [91, 92]. However, the test synthesis
problem considered here is neither fully adversarial nor fully cooperative; a well-
designed system is cooperative with the test environment in realizing the system
objective, but since the system is agnostic to test objective, it need not cooperate
with the test environment in realizing it.

In this chapter, in addition to static obstacles that restrict the system throughout the
test, we will also consider reactive obstacles, and a dynamic test agent that is re-

71

active to system behavior at runtime. Leveraging network flows, we will first pose
the test synthesis problem as a Stackelberg game, and then present a more efficient
formulation as an MILP. In recent years, network flow optimization frameworks
with tight convex relaxations have led to massive computational speed-ups in solv-
ing robot motion planning problems [93, 94]. Network flow-based mixed integer
programs have also been to synthesize playable game levels in video games [95],
which was then applied to construct playable scenarios in robotics settings [96].

4.3 Preliminaries
In this section, we will revisit concepts from automata theory, and build on the
background of automata theory and flow networks introduced in Chapter 3.

Consider the finite transition system TS, introduced in previous chapter. Once
again, we use LTL to describe the system and test objectives. However, we place
the following additional constraint on the system, requiring it to have at least one
terminal state, to simplify the test objective that we synthesize for.

Definition 4.1 (System). The system under test is modeled as a finite transition
system Tsys with a single initial state, that is, |Tsys.S0|= 1. Furthermore, at least one
of the system states is terminal (i.e., no outgoing edges).

The system designers provide the states S, actions A, transitions δ, and a set of
possible initial conditions S0, set of atomic propositions, APsys and a corresponding
label function Lsys : S → 2APsys . We require a unique initial condition s0 ∈ S0 to
synthesize the test. If the test designer wishes to select an initial condition, then
they can synthesize the test for each s0 ∈ S0 and choose accordingly. In addition to
APsys, the test designer can choose additional atomic propositions APtest and define
a corresponding labeling function L : S → 2AP , where AP := APsys ∪ APtest. For
test synthesis, the system model is Tsys = (S,A, δ, {s0}, AP, L) is defined for the
specific initial condition s0 chosen by the test designer. The terminal state is used
for defining test termination when the system satisfies its objective.

Assumption 4.1. Except for sink states, transitions between states of the system
are bidirectional: ∀(s, s′) ∈ Tsys.E where s′ is not a terminal state, we also have
(s′, s) ∈ Tsys.E.

This assumption is for a simpler presentation, and the framework can be extended
to transition systems without this assumption (see Remark 4.8).

72

Definition 4.2 (Test Environment). The test environment consists of one or more
of the following: static obstacles, reactive obstacles, and dynamic test agents. A
static obstacle on (s, s′) ∈ Tsys.E is a restriction on the system transition (s, s′)

that remains in place for the entire duration of the test. A reactive obstacle on
(s, s′) ∈ Tsys.E is a temporary restriction on the system transition (s, s′) that can
be enabled/disabled over the course of the test. A dynamic test agent can occupy
states in Tsys.S, thus restricting the system from entering the occupied state.

The desired test behavior can be captured via sub-tasks that are defined over atomic
propositions AP . Table 4.1 lists the sub-task specification patterns that are con-
sidered. These specification patterns are commonly used to specify robotic mis-
sions [81]. The desired test behavior is characterized by the system and test ob-
jectives, defined over the set of atomic propositions AP that can be evaluated on
system states Tsys.S.

Table 4.1: Sub-task specification patterns defined over atomic propositions.

Name Formula

Visit
m∧
i=1

□ pi (s1)

Sequenced Visit □(p0 ∧ (□(p1 ∧ . . . □ pm))) (s2)
Safety □¬p (s3)
Instantaneous Reaction □(p→ q) (s4)
Delayed Reaction □(p→ □ q) (s5)

Definition 4.3 (Test Objective). The test objective φtest comprises of at least one
visit or sequenced visit sub-task or a conjunction of these sub-tasks. The Büchi
automaton Btest corresponds to the test objective φtest.

Definition 4.4 (System Objective). The system objective φsys contains at least one
visit or sequenced visit sub-task. In addition, it can also contain some conjuction of
safety, instantaneous and/or delayed reaction, and visit and/or sequenced visit sub-
tasks. The Büchi automaton Bsys corresponds to the system objective φsys. We say
that the system reaches its goal, or the system execution is successful, if the system
trace is accepted Bsys.

Typically, some aspects of a test are not revealed to the system until test time such
as testing the persistence of a robot or prompting it to exhibit a difficult maneuver
by placing obstacles in its path. This is formalized as a test objective and is not

73

known to the system. In contrast, the system is aware of the system objective,
which captures its requirements. For example, to test for safety, the system should
know to avoid unsafe areas (4.3). To test a reaction, □(p→ q), the system needs to
be aware of the reaction requirement (4.4), and the test objective needs to contain
the corresponding visit requirement □ p to trigger the reaction. Furthermore, the
test objective can contain standalone reachability (visit and/or sequenced visit) sub-
tasks that are not associated with a system reaction sub-task, but require the system
to reach/visit certain states. The test objective is accomplished by restricting system
actions in reaction to the system state via the test harness.

In addition to the system objective, the system must interact safely with the test
environment. The system must also obey the initial condition set by the test de-
signer. For each obstacle/agent of the test environment, the system controller must
respect the corresponding restrictions on its actions (i.e., cannot crash into obsta-
cles/agents). Furthermore, for a valid system implementation, all lower-level plan-
ners and controllers of the system must simulate transitions on T .

Definition 4.5 (System Guarantees). The system guarantees are a conjunction of
the system objective, initial condition, safe interaction with the test environment,
and a system implementation respecting the model Tsys.

Definition 4.6 (System Assumptions). The system assumes that the test environ-
ment satisfies the following conditions:
A1. The test environment can consist of: i) static obstacles (e.g., wall), ii) reactive
obstacles (e.g., door), and iii) test agents whose dynamics are provided to the sys-
tem.
A2. The test environment will not take any action that will inevitably lead to unsafe
behavior (e.g., not restricting a system action after the system has committed to it,
test agents not colliding into the system).
A3. The test environment will not take any action that will inevitably block all paths
for the system to reach its goal (e.g., restrictions will not completely the enclose the
system or block it from progressing to its goal).
A4. If the system and test environment are in a livelock, the system will have the
option to break the livelock and take a different path toward its goal.

A correct system strategy satisfies the system guarantees when the test environment
satisfies the system assumptions. Therefore, a correct system strategy would result
in a successful system execution. The system’s specification cannot be expressed

74

as an LTL formula. This is because, in an LTL synthesis setting, the system can
assume that the test harness can behave in a worst-case manner and will never syn-
thesize a satisfying controller. However, the system can assume that the test harness
will always ensure that a path to achieving the system specification remains. This
existence of a satisfying path cannot be easily captured in an LTL assumption.

Now, we will cover background on Büchi automata from the system and test ob-
jectives, and its usefulness for constructing a product graph that tracks both the
evolution of the system state as well as the automaton state as it makes progress in
satisfying its specifications.

Definition 4.7 (Deterministic Büchi Automaton). A non-deterministic Büchi au-

tomaton (NBA) [60, 97] is a tuple B := (Q,Ω, δ, Q0, F), where Q denotes the
states, Ω := 2AP is the set of alphabet for the set of atomic propositions AP ,
δ : Q × Σ → Q denotes the transition function, Q0 ⊆ Q represents the initial
states, and F ⊆ Q is the set of acceptance states. The automaton is a deterministic

Büchi automaton (DBA) iff |Q0|≤ 1 and |δ(q, A)|≤ 1 for all q ∈ Q and A ∈ Ω.

Remark 4.1. We use deterministic Büchi automata since each input word corre-
sponding to a test execution should have a unique run on the automaton. While
there are several different automata representations, deterministic Büchi automata
are a natural choice for many LTL specifications.

Since the objectives are reach-avoid specifications and do not encode behaviors
that occur “infinitely often”, deterministic finite automata (DFAs) [60] would have
sufficed. The intuition behind this is that we are only using the automata for tracking
the automaton state on the product graph (see the following paragraphs on graph
construction). Using Büchi automata was an implementation choice, and to leave
the possibility for expanding to objectives that can only be characterized by DBAs
and not DFAs. The tool Spot [98] was used to construct a deterministic Büchi
automaton from an LTL formula, which had excellent documentation that made it
easy to access and use. LTL to DFA tools are not as common, though there are
a few tools that translate LTL formulas on finite traces (LTLf) to DFAs such as
LTL_f2DFA [99] and Lisa [100]. Both tools rely on MONA [101], which translates
LTL formulas to finite-state automata; Lisa additionally also depends on the DBA
conversion from Spot to return a DFA.

To track progress with respect to the system and test objectives, we introduce the
specification product, which will be used to construct the product graph.

75

Definition 4.8 (Specification Product). A product of two Büchi automata, B1 and
B2 over the alphabet Ω, is defined as B1 ⊗ B2 := (Q,Ω, δ, Q0, F), with states
Q := B1.Q × B2.Q, initial state Q0 := B1.Q0 × B2.Q0, acceptance states F :=

B1.F × B2.F . The transition relation δ is defined as follows, for all (q1, q2) ∈ Q,
for all A ∈ Ω, δ((q1, q2), A) = (q′1, q

′
2) if B1.δ(q1, A) = q′1 and B2.δ(q2, A) =

q′2. The specification product is the product Bπ := Bsys ⊗ Btest, where Bsys is the
Büchi automaton corresponding to the system specification, and Btest is the Büchi
automaton corresponding to the test objective. The states (qsys, qtest) ∈ Bπ.Q, where
qsys ∈ Bsys and qtest ∈ Btest, capture the event-based progression of the test and are
referred to as history variables.

The system reaching its goal would typically mark the end of a test execution.
However, the test engineer can also decide to terminate the test if the system appears
to be stuck or enters an unsafe state. We assume that the test engineer gives the
system a reasonable amount of time to complete the test. Upon test termination in
state sn, we augment the trace σ with the infinite suffix sωn for evaluation purposes.

Remark 4.2. As tests have a defined start and end point, we need to bridge the gap
between the finiteness of test executions and the infinite traces that are needed to
evaluate LTL formulae. Augmenting the trace with the infinite suffix allows us to
leverage useful tools available for LTL.

Remark 4.3. The states of the specification product automaton track the states of
the individual Büchi automata, Bsys and Btest, in the form of the Cartesian product
to remember accepting states of the individual automata, which will be necessary
for our framework (see Definitions 4.8, 4.15).

We use the synchronous product operator to construct a product of a transition sys-
tem and a Büchi automaton. In particular, we will use this operator to construct the
virtual product graph and the system product graph (see Section 4.4).

Definition 4.9 (Synchronous Product). The synchronous product of a DBA B and
a FTS Tsys, where the alphabet of B is the labels of Tsys, is the transition system

76

(a) Bsys

(b) Btest

q0

q1

q2

q3

q4 q5

q6 q7

(c) Bπ

Figure 4.2: Automata for Example 4.2. Yellow • and blue • nodes in Bsys and Btest

are the respective accepting states. In the product Bπ, we continue to track these
states for the system and test objectives. States in the product Bπ that are accepting
to both objectives (e.g., q1) are also shaded yellow.

P := Tsys ⊗ B, where:

P.S := Tsys.S × B.Q,

P.δ((s, q), a) := (s′, q′) if ∀s, s′ ∈ Tsys.S,∀q, q′ ∈ B.Q,

∃a ∈ Tsys.A, s.t. Tsys.δ(s, a) = s′ and B.δ(q, Tsys.L(s
′)) = q′,

P.S0 := {(s0, q) | s0 ∈ Tsys.S0, ∃q0 ∈ B.Q0 s.t.

B.δ(q0, Tsys.L(s0)) = q},

P.AP := B.Q,

P.L((s, q)) := {q}, ∀(s, q) ∈ P.S.

We denote the transitions in P as

P.E := {(s, s′) | s, s′ ∈ P.S if ∃a ∈ P.A s.t. P.δ(s, a) = s′}. (4.6)

An infinite sequence on P corresponds to a state-history trace ϑ = (s0, q0), . . . ,

(sn, qn)
ω. We refer to (s, q) ∈ P.S as the state-history pair and define the corre-

sponding path to be the finite prefix: ϑfin = (s, q)0, (s, q)1, . . . , (s, q)n.

Example 4.1. The system under test can transition (N-S-E-W) on the grid world as
illustrated in Fig. 4.3a. The initial condition of the system is marked by S, and the
system is required to visit one of the goal states marked by T , φsys = □T . The test
objective is to observe the system visit at least one of the I states before the system
reaches its goal, encoded as φtest = □ I .

77

T

I

I

S

T

I

(a) Example 4.1.

I1

S

T

I2

(b) Example 4.2.

Figure 4.3: Grid world layouts for examples.

Example 4.2. In this example, the system under test can transition (N-S-E-W) on
the grid world as illustrated in Fig. 4.3b. The initial condition of the system is
marked by S, and the system objective is to visit T, φsys = □T . The test objective
is to observe the system visit states I1 and I2: φtest = □ I1 ∧ □ I2.

4.4 Problem Statement
For the improved class of specifications, the test environment synthesis problem
can be stated as follows. Assuming that a test engineer specifies the desired test
behavior (i.e., system and test objectives), we seek to synthesize a reactive test
strategy under which every successful system execution will also be a successful
test execution — every system trace that satisfies the system objective will also
satisfy the test objective. The reactive test strategy restricts system actions that
are available from the test harness. Formally, a reactive test strategy is defined as
follows.

Definition 4.10 (Reactive Test Strategy). A reactive test strategy πtest : (Tsys.S)
∗Tsys.S

→ 2AH defines the set of restricted system actions at the current system state based
on the prefix of the system trace up to the current state. For some finite prefix σ0:k =
s0, . . . , sk starting from the system initial state s0 ∈ Tsys.S0, πtest(σ0:k) ⊆ H(sk) is
the set of restricted system actions from state sk. A test environment realizes the
strategy πtest if it restricts system actions according to πtest. The resulting system
trace is denoted as σ(πsys × πtest).

More concretely, for some finite prefix s0, . . . , si of a system execution σ starting
from an initial state s0 ∈ T.S0, πtest(s0, . . . , si) ⊆ H(si) denotes the set of actions
unavailable to the system from state si of execution σ. These actions can be re-
stricted by the test environment via static and reactive obstacles, and a dynamic test

78

agent. The reactive test strategy must be such that it respects the system assump-
tions A1–A4. In turn, a correct system strategy must choose from actions avail-
able following the restrictions placed by the test environment. Formally, suppose
Σfin := (Tsys.S)

∗Tsys.S be the set of all possible finite trace prefixes for the system,
and at each time step k ≥ 0, the system strategy πsys : Σfin → Tsys.A \ πtest(Σfin)

must pick from unrestricted system actions from its current state.

By use of obstacles and/or test agents, the test environment externally blocks system
transitions, and the system must correctly observe these obstacles and recognize
the corresponding actions to be unsafe. We assume that the system can observe all
restricted actions on its current state before it commits to an action, and therefore, a
correct system strategy πsys must choose from the available actions at each time step.
Depending on the implemnentation, the system might have to re-plan its strategy
πsys in response to obstacles placed by the test environment.

Definition 4.11 (Feasibility of a Test Strategy). Given a test environment, system
Tsys, system and test objectives, φsys and φtest, a reactive test strategy πtest is said
to be feasible iff: i) the test environment can realize πtest, ii) there exists a correct
system strategy πsys, and iii) any execution corresponding to a correct πsys satisfies
the system and test objectives: σ(πsys × πtest) ⊨ φtest ∧ φsys.

The reactive test strategy does not help the system in achieving the system objec-
tive φsys; it only restricts the system such that the test objective can be realized. The
system can choose an incorrect strategy πsys, and in such a case, we cannot provide
any guarantees. Furthermore, in routing the system to the test objective, it would be
ideal if the test strategy does not overly restrict the system for the system to demon-
strate decision-making when given the freedom to choose from multiple possible
actions, including those that might be unsafe or lead the system to a livelock. For
this reason, we will revisit the notion of the restrictiveness of tests defined over test
executions. Given any system trace σ, every finite prefix σ0:k = s0, . . . , sk maps to
some history variable q ∈ Bπ.Q. Therefore, we can track this history variable along
with the evolution of the system in a state-history trace ϑ = (s0, q0), (s1, q1), . . .,
where the history variable qk corresponds to the finite prefix σ0:k. From now on, we
refer to ϑ as the test execution, and proceed to define the restrictiveness of a test
strategy in terms of the number of possible test executions. In the previous chapter,
restrictiveness of a test was only defined on the system trace. Since we now have a
broader class of specifications and use Büchi automata to track temporal events, we
will define restrictiveness over test executions.

79

Definition 4.12 (Restrictiveness of a Test Strategy). State-history traces ϑ1 and ϑ2

are unique if they do not share any consecutive state-history pairs — any two state-
history pairs (s, q) and (s′, q′) do not appear in consecutive time steps in both ϑ1

and ϑ2. For a feasible πtest, let Σ be the set of all executions corresponding to correct
system strategies, and let Θ be the set of all state-history traces corresponding to Σ.
Let Θu ⊆ Θ be a set of unique state-history traces. A test strategy πtest is not overly

restrictive if the cardinality of Θu is maximized.

Remark 4.4. The set of all state history traces Θ can be infinite. However, the set
Θu is finite because: i) the system has a finite number of states and the specification
product has a finite number of history variables, and ii) every state-history trace in
Θu is unique with respect to any other trace in Θu.

Problem 4.1 (Finding a Test Strategy). Given a high-level abstraction of the system
model T , test harness H , system objective φsys, test objective φtest, find a feasible,
reactive test strategy πtest that is not overly-restrictive.

To realize the test strategy, the test environment can place obstacles and use dy-
namic agents to restrict actions of the system. In the case of dynamic agents, the
agent strategy must be found such that it simulates the restrictions set forth by the
test strategy.

Problem 4.2 (Reactive Test Agent Strategy Synthesis). Given a high-level abstrac-
tion of the system model T , test harness H , system objective φsys, test objective
φtest, and a test agent modeled by transition system TTA. Find the test agent strategy
πTA and the set of static obstacles Obsstatic that: i) satisfy the system’s assumptions
on its environment, and ii) realize a reactive test strategy πtest that is not overly-
restrictive and feasible. If the test agent cannot realize at least one reactive test
strategy πtest that is not overly-restrictive, then find the πTA that realizes the best
possible πtest.

4.5 Graph Construction
To reason about executions of the system in relation to the system and test objec-
tives, automata theory is leveraged to construct the following product graphs.

Definition 4.13 (Virtual Product Graph and System Product Graph). A virtual prod-

uct graph is the product transition system G := Tsys ⊗ Bπ. Similarly, the system
product graph is defined as Gsys := Tsys ⊗ Bsys.

80

The virtual product graph G tracks the test execution in relation to both the system
and test objectives while the system product graph Gsys tracks the system objective.
We will find the restrictions on system actions on G, while Gsys represents the
system’s perspective concerning the system objective during the test execution. For
each node u = (s, q) ∈ G.S, we denote the corresponding state in s ∈ Tsys.S as
u.s := s. Similarly, the state corresponding to v ∈ Gsys.S is denoted by v.s := s.
For practical implementation, we remove nodes on the product graphs that are not
reachable from the corresponding initial states, G.S0 or Gsys.S0.

Definition 4.14 (Projections). States from G to Gsys are related via the projection

map PG→Gsys : G.S → Gsys.S as

PG→Gsys((s, (qsys, qtest))) = (s, qsys). (4.7)

These projections help us to reason about how restrictions found on G map to the
system Tsys and the system product graph Gsys. We can now define the edges on G
that we can restrict with the test harness as follows,

EH ={((s, q), (s′, q′)) ∈ G.E| ∀s ∈ Tsys.S,

∀a ∈ H(s) s.t. s′ = Tsys.δ(s, a)}.
(4.8)

Lemma 4.1. For every path (s, qsys)0, (s, qsys)1, . . . , (s, qsys)n on Gsys, there exists
at least one corresponding path on G.

Proof. Suppose there exists some qtest 0, . . . , qtest n ∈ Btest.Q such that (s, (qsys, qtest))0,

. . . , (s, (qsys, qtest))n is a path onG. Then, by construction, there exists a path onGsys

where (s, (qsys, qtest))k maps to (s, qsys)k for all 0 ≤ k ≤ n.

Paths on the virtual product graph G correspond to possible test executions. This is
illustrated in Figures 4.4 and 4.5 for the example 4.2. We identify the nodes on G
that capture the acceptance conditions for the system and test objectives.

Definition 4.15 (Source, Intermediate, and Target Nodes). The source node S rep-
resents the initial condition of the system. The intermediate nodes I correspond to
system states in which the test objective acceptance conditions are met. Finally, the
target nodes T represent the system states for which the acceptance condition for
the system objective is satisfied. Formally, these nodes are defined as follows,

S := {(s0, q0) ∈ G.S | s0 ∈ Tsys.S0, q0 ∈ Bπ.Q0},

I := {(s, (qsys, qtest)) ∈ G.S | qtest ∈ Btest.F, qsys /∈ Bsys.F},

T := {(s, (qsys, qtest)) ∈ G.S | qsys ∈ Bsys.F}.

81

Figure 4.4: A possible execution of the system for Example 4.2 as illustrated on the
transition system Tsys and the corresponding product graph G.

Figure 4.5: A possible execution of the system for Example 4.2 as illustrated on the
transition system Tsys and the corresponding product graph G.

In addition, we define the set of states corresponding to the system acceptance con-
dition on Gsys as Tsys := {(s, q) ∈ Gsys.S | q ∈ Bsys.F}.

Proposition 4.1. Every test execution corresponds to a path ϑn =(s, q)0, . . . , (s, q)n

on G where (s, q)0 ∈ S. The corresponding system trace σn satisfies the system
objective, σ |= φsys iff (s, q)n ∈ T. Furthermore, if σ |= φtest, then the path ϑn

contains a state-history pair (s, q)i ∈ I for some 0 ≤ i ≤ n.

Provided that there exists a path onG from S to T, identifying a feasible reactive test
strategy corresponds to identifying edges to cut on G. These edge cuts correspond
to restricted system actions. In particular, these edge cuts are such that all paths on
G from source S to target T visit the intermediate I. Now, we will go over two new
flow-based formulations to solve the routing problem.

4.6 Part I: Flow-based Optimization via Min-Max Stackelberg Games with
Coupled Constraints

In the previous chapter, we covered flow-based test synthesis in which flow net-
works that were defined on the transition system of the system under test. The

82

temporal logic objectives were also limited to a simple sequence of waypoints de-
fined on the states of the system.

This new flow-based formulation has the following key advances: i) edge-cuts or
restrictions are found on a product graph of the system transition system and a
Büchi automaton representing the system and test objectives, ii) the new flow-based
optimization no longer has exponential number of constraints, and is tractable to
encode, and iii) the synthesized test is reactive to system behavior and no longer
limited to static obstacles. Furthermore, this new flow-based reformulation repre-
sents edge-cuts as continuous variables, but the complexity still remains since the
formulation becomes a min-max Stackelberg game with coupled constraints. In this
part of the chapter, we will introduce the product graph and setup the flow-based
reactive synthesis formulation. This work serves as a prelude to the next section
in which we propose an MILP approach to solving the problem that comes with
guarantees of synthesizing a test that is feasible and not overly-restrictive, and also
lends to a more tractable implementation.

Stackelberg Game Formulation
Leveraging automata theory to represent product graphs leads to the intermediate
node becoming analogous to the waypoints. Instead of a sequence of waypoints on
Tsys.S, the nodes I become the waypoint that the system must be routed through.
Instead of defining flows for every pair of propositions, we will define three flows:
from source to intermediate (fS→I), from intermediate to sink (fI→T), and a bypass
flow (FS→T). The test strategy synthesis problem can be seen as placing restrictions
such that flows fS→I and fI→T are preserved while the bypass flow is cut.

Definition 4.16 (Constrained Min-Max Optimization with Coupled Constraints [102]).
A constrained min-max optimization with dependent feasible sets, also referred to
as a min-max Stackelberg game, between the lead player X with strategy space X
and a follower player Y with strategy space Y can be represented as the following
optimization:

min
x∈X

max
y∈Y

f(x, y)

s.t. g(x, y) ≥ 0,
(4.9)

where f(x, y) : X × Y → R is the objective function and g(x, y) : X × Y → Rk

represents the constraints.

83

In this Stackelberg formulation, the outer (min) player is the test environment con-
trols the flow variables fS→I and fI→T, edge cuts d, and the auxiliary variable t.
Let 0 < t ≤ 1 be an auxiliary variable defined as: t = 1

F
, given that F > 0.

Hereafter, all flow variables are normalized with respect to the total flow by mul-
tiplying with t. The objective function is such that the tester maximizes the total
flow F = min{FS→I, FI→T}, and minimizes the total bypass flow FS→T. Likewise,
the system player maximizes bypass flow FS→T. Next, the constraints of the bilevel
optimization are briefly described. A lot of these constraints are formally explained
in the following section with MILPs, and are intuitively described here for brevity.
The objective, which is given as, t + γFS→T, where γ > 0 is a regularization pa-
rameter that penalizes the test environment for any non-zero bypass flow through
the network. The auxiliary variable t is useful because the outer (min) player can
minimize this term, thus maximizing the total flow value F . This objective also
works for the inner (max) player, which in the worst-case, seeks to take a bypass
path.

Table 4.2: List of outer player constraints used in Optimization 4.21 with normal-
ized flows.

Outer Player
Constraints

Equation
k ∈ {S→ I, I→ T}

Capacity (exact) ∀e ∈ E, de ∈ {0, t}, 0 ≤ f e
k ≤ t. (oc10)

Capacity (approx.) ∀e ∈ E, 0 ≤ de ≤ t, 0 ≤ f e
k ≤ t. (oc11)

Conservation ∀v ∈ S \ {S, T},
∑

u:(u,v)
∈E

f
(u,v)
k =

∑
u:(v,u)
∈E

f
(v,u)
k . (oc12)

Cut ∀e ∈ E, de + f e
k ≤ t. (oc13)

Minimum
Total Flow 1 ≤ FS→I and 1 ≤ FI→T (oc14)

Feasibility FGsys(q) ≥ 1∀q ∈ Bπ.Q (oc15)
Static Obstacles d(i,j) = d(k,l) if i.s = k.s and j.s = l.s (oc16)

The three flows satisfy standard network flow constraints concerning capacity and
conservation. The only difference: i) all standard flow constraints are normalized
by multiplying through t, and ii) the cut variable d is relaxed as opposed to being
restricted to vectors with binary elements. Furthermore, the cut variable restricts
flows as follows, for all k ∈ {S→ I, I→ T, S→ T}, the cut constraints are:

∀e ∈ G.E, de + f e
k ≤ t.

84

Table 4.3: List of inner player constraints used in Optimization 4.21 with normal-
ized flows.

Inner Player
Constraints Equation

Cut ∀e ∈ E, de + f e
S→T ≤ t. (ic17)

Capacity
(approx.)

∀e ∈ E, 0 ≤ f e
S→T ≤ t. (ic18)

Conservation ∀v ∈ S \ {S, T},
∑
u∈V

f
(u,v)
S→T =

∑
u:(v,u)∈E

f
(v,u)
S→T . (ic19)

No I Flow f
(u,v)
S→T = 0 if u ∈ I or v ∈ I. (ic20)

That is, despite having multiple flows, they do not compete for capacity; a cut
de will equally restrict all flows. Note that the above cut constraint for the case
of bypass flow k = S → T is the coupling constraint between inner and outer
players; the test environment controls the cut and the inner player controls bypass
flow, but they must together respect this cut constraint. The constraints on the
outer and inner players for the game-based network flow optimization are given in
Tables 4.2 and 4.3. The constraint on minimum total flows in equation (ic(4.14)) is
applied to normalized total flow values FS→I and FI→T, and implies that the total
flow F > 0. If this constraint is violated, the constraints are infeasible and no
solution is returned. A detailed approach on these network flow constraints (e.g.,
feasibility constraints in Eq. (ic(4.15))) is given in the next section when we re-use
these constraints to setup the final MILP formulation to solve the routing problem.
The game based network flow optimization formulation is given below.

MCF-OPT(γ):

min
fS→IfI→T,d,t,

fSsys→Tsys (q), ∀q∈Bπ .Q

max
fS→T

t+ γ
∑

v:e=(S,v)∈G.E

f e
S→T

s.t. (oc(4.11))-(oc(4.15)), (ic(4.17))-(ic(4.20)).

(4.21)

This optimization is in the form of a min-max Stackelberg game with dependent
constraint sets studied in [103]. However, there are no known polynomial-time
solutions to solve this optimization since its value function is not convex. Given
below, the value function outputs the optimal value of the inner optimization prob-
lem in Optimization (4.21) for any choice of (f ,d, t). The flow values F and FS→T

85

are functions of the edge cuts d — they represent max-flow on their corresponding
flow networks with the capacities reduced by d.

V (f ,d, t) = max
fS→T

t+ γFS→T

s.t. (ic(4.17)) – (ic(4.20)).

The value function is defined over the space of outer player variables that satisfy
constraints (oc(4.17)), (oc(4.18)), (oc(4.19)), (oc(4.20)). If the value function is
convex in the outer player variables, then there exist efficient algorithms to converge
to the Stackelberg equilibrium [102]. However, our value function is not convex be-
cause the inner problem corresponds to solving a max flow problem parameterized
by cuts d, which is not convex. Note that this problem complexity is despite the fact
that the objective and constraints are all affine and defined over continuous valued
domains. The beaver rescue and motion primitive hardware experiments are derived
from solutions to MCF-OPT(γ) for γ = 1000, which is solved using Pyomo [104].
Also note that all Stackelberg equilibria for MCF-OPT(γ) need not correspond to
bypass flow value FS→T being zero. This shortcoming is handled in the MILP for-
mulation presented in the next section, and is largely driven by insights from taking
the dual of the inner maximization, as we shall see below.

However, this approach did not scale to solving medium-sized examples that we
will see later in this chapter. In an effort to address this, the first attempt was to take
the Lagrange dual of the inner maximization, and solve a minimization instead of
a min-max game. In traditional max-flow problems, the Lagrange dual of the max
flow linear program is the minimum cut linear program with Lagrange multipliers
corresponding to edge cuts and partitions [105]. However, in our case, since the
outer player modifies edge cuts d, the Lagrange multipliers correspond to paritions
on the modified graph but do not inform the actual partition that we seek. The
Lagrangian L associated with the inner player is:

L (f ,d, t, fS→T,λ,µ,ν) = t+γFS→T+
∑

v∈V \{S,I,T}

µi

 ∑
u∈V \I

f
(u,v)
S→T −

∑
u∈V \I

f
(v,u)
S→T


+

∑
(u,v)∈E\E(I)

u∈T,v∈S

ν(u,v)f
(u,v)
S→T +

∑
e∈E\E(I)

λe (t− de − f eS→T) , (4.22)

where λ,µ,ν are the Lagrange variables; λ is associated with edge-cuts and µ

represents the partition of nodes. Finding the optimal Lagrange multipliers results

86

in following dual problem:

min
λ∈R|E|

+ ,µ∈R|V |
+

t+ γ
∑
e∈E

λe(t− de)

s.t. µS − µT ≥ 1,

λ(u,v) − µu + µv ≥ 0, ∀(u, v) ∈ E \ E(I).

(4.23)

This dual corresponds to the dual of the max-flow problem on the graph (without
nodes I) with edge capacities t − d. In the canonical max-flow problem, µ rep-
resents node partitioning corresponding to minimum cut. In our case, the solution
to this dual problem returns optimal Lagrange multipliers µ as a function of the
outer player variable d. Therefore, the choice of d by the outer player affects µ.
The partition of the graph G \ I, characterized by µ∗(d∗), will be the optimal la-
grange multiplier at the equilibrium d∗. Due to strong duality, we can rewrite the
MCF-OPT(γ) equivalently as follows:

OPT-MIN(γ)

min
f ,d,t,λ∈R|E|

+ ,µ∈R|V |
+

t+ γ
∑
e∈E

λe(t− de)

s.t. µS − µT ≥ 1,

λ(u,v) − µu + µv ≥ 0, ∀(u, v) ∈ E \ E(I),

(oc(4.11))-(oc(4.15)).

(4.24)

Despite being a single minimization, OPT-MIN(γ) has the structure of a bilinear

program, which is also a consequence of our min-max Stackelberg game not being
convex-concave. In general, solving a bilinear program is NP-hard in the problem
data [106]. For zero bypass flow, the second bilinear term must be zero. This was
also empirically observed when solving OPT-MIN(γ). At zero bypass flow, the
term λ becomes equal to the unnormalized cut value d; if d(u,v) = t, then λ(u,v)

must equal 1 to partition nodes u and v into separate groups, and if d(u,v) = 0, then
λ(u,v) = 0 to ensure that the nodes remain in the same group. First, we can recognize
that the dual variables λ and µ can take integer values [105]. This allows us to
formulate the problem as a mixed-integer linear program, where we can encode zero
bypass flow as a constraint by setting λe = de for edges e ∈ E \E(I). Furthermore,
this formulation also allows the use of the unnormalized flow and capacity values,
removing the need for the auxiliary parameter t.

87

4.7 Part II: Flow-based Optimization via Mixed-Integer Linear Program-
ming

Once again, we revisit a network flow formulation to solve the routing optimization
for the expanded class of specifications. Recall that Paths(S, T) on the graph G
are the set of possible test executions. Therefore, the set of edge cuts on G must
be such that all Paths(S, T) are routed to visit at least one node in the intermediate
set I. The set of edge cuts to achieve this need not be unique, and therefore, we
also require that resulting test strategy to not be overly-restrictive. Additionally, we
also minimize the cardinality of the set of edge cuts to remove unnecessary restric-
tions. In comparison to the previous chapter, the formulation presented defines just
a single flow network. Furthermore, the routing problem is solved as an MILP as
opposed to a min-max game with coupled constraints. This new formulation allows
us to derive guarantees that the optimal solution will provide a test strategy that
solves Problem 4.1. Furthermore, this formulation easily lends itself to extensions
(e.g., adding auxiliary constraints, excluding certain solutions, accommodating var-
ious types of test environments).

Consider the flow network G = (V,E, (S, T)) defined based on the graph G: nodes
are defined exactly as V := G.V , and edgesE := G.E\{(u, u) ∈ G.E |u ∈ V } are
the same asGwith the exception of self-loops, and the source and target correspond
to S and T, respectively. The reason for introducing flow networks separately is to
maintain a representation without self-loop transitions which are not relevant when
computing the flow on a graph. Maintaining self-loops on G, however, is important
since it is the product between a transition system and a Büchi automaton. For
simplicity, notation for nodes (V) and edges (E) is shared between the graph G and
its network G since self-loop transitions are also not a part of the test harness. If
self-loops become important, the notation G.E will be explicitly used. On G, we
introduce the flow vector f ∈ R|E| and a Boolean vector d ∈ BE\E(I) carries the
edge-cut value for each edge. For some e ∈ E, de = 1 denotes that edge e is cut
and the corresponding system action is restricted, and de = 0 denotes that the edge
remains. Immediately, it can be specified that all edges outside the test harness
cannot be restricted:

de ∈ {0, 1}, ∀e ∈ E, and

de = 0, ∀e /∈ EH .
(c1)

The set E(I) = {(u, v) ∈ E |u ∈ I or v ∈ I} is the set of edges that enter or exit
from a node in set I.

88

Objective. Among all possible sets of edge cuts that route test executions through
I (corresponding to satisfying the test objective), we seek a test strategy that is not
overly-restrictive. Thus, we optimize for a set of edge cuts that maximizes the total
flow from S to T on G. Since the edges have unit capacity, the set of edge cuts that
maximize the total flow will also result in the largest set Θu (see Lemma 4.3). Thus,
maximizing the flow alone is sufficient to get a test that is not overly-restrictive (see
Remark 4.7). In addition, unnecessary edge-cuts can be reduced by introducing a
second term of subtracting the fraction of edges that are cut from the flow value:∑

(u,v)∈E,
u∈S

f (u,v) − 1

|E|
∑
e∈E

de. (4.25)

The regularize 1
|E| is chosen to avoid trade-off between the terms. Due to binary

edge cuts and integer edge capacity, the maximum flow value on the graph will
always be an integer. The second term, however, will always take a fractional value
between 0 and 1 corresponding to none of the edges being cut to all of the edges
being cut. Thus, maximizing the objective will always favor increasing the first
term as much as possible, and then minimizing the number of edges that are cut.

Network Flow Constraints. The flow vector f is subject to the standard network
flow constraints:

Flow constraints (3.1), (3.2), and (3.3) on flow network G. (c2)

Next, an edge that is cut restricts the flow on that edge completely. However, an
edge that is not cut may or may not have flow pushed through it:

∀e ∈ E, de + f e ≤ 1. (c3)

Partition Constraints. In standard max-flow problems, the dual min-cut formula-
tion has partition constraints that group nodes across a cut into two groups, one of
which contains the source and the other that contains the sink [105]. The max-flow
problem (and equivalently, the min-cut problem) is totally unimodular, implying
that there exists an optimal integer solution. Our problem differs from the standard
max-flow/min-cut problem in that we seek all Paths(S, T) to be routed through I.
Alternatively, the set of edge cuts should be such that there exists a positive total
flow on G, but the network (V \ I, E \ E(I), (S, T)) is fully partitioned. To cap-
ture this partitioning requirement, the partition conditions from standard settings is

89

(a) A path on G exists despite the cuts not being feasible for the system.

(b) Restrictions from the system perspective before it visits I1 or I2.

Figure 4.6: Illustration of why feasibility constraints are important for identifying a
reactive test strategy that respects the system’s assumptions. Since the system is not
aware of the test objective, such a placement of constraints would lead to all paths
being blocked from the system perspective.

adapted as follows. All nodes except those in I must be partitioned into the source
S group or the sink T group. For this, introduce the variable µ ∈ R|V \I| such that:

µS − µT ≥ 1,

0 ≤ µv ≤ 1, ∀v ∈ V \ I.
(c4)

The partition condition is applied to edges that are not incoming or outgoing from
I:

d(u,v) − µu + µv ≥ 0, ∀(u, v) ∈ E \ E(I). (c5)

Despite the vector µ being real-valued, it only appears in these constraints. There-
fore, the partition conditions form a block diagonal in the constraint matrix, and
this block diagonal sub-matrix is totally unimodular. Therefore, we preserve the
partitioning properties from standard min-cut despite adapting the constraint to our
problem.

Feasibility Constraints. These constraints ensure that the synthesized test is fea-
sible from the system’s perspective (see Figure 4.6), that is, restrictions placed by
the test strategy should be such that the system still has a chance of successfully
navigating to the goal if it has not committed to an incorrect action (either unsafe or

90

one that inevitably leads to livelock) up to that point. For this, the reactive edge cuts
must respect system assumptions A2 – A4. For every history variable q ∈ Bπ.Q,
the function SG : Bπ.Q→ G.S is the set of states on G when the the test execution
can enter the history variable q, and is defined as follows,

SG(q) := {(s, q) ∈ G.S | ∀((s̄, q̄), (s, q)) ∈ G.E, q̄ ̸= q}. (4.26)

On the system product graph, these states map to the set:

SGsys(q) := {u ∈ Gsys.S | u = PG→Gsys(v), v ∈ SG(q), and ∃ Path(u, Tsys)},
(4.27)

where this set is empty if no path from the node u to Tsys exists on Gsys. For
each q ∈ Bπ.Q, for each source in s ∈ SGsys(q), define a flow network G(q,s)sys :=

(Vsys, Esys, (s, Tsys)), where nodes are Vsys := Gsys.S, and edges are Esys := Gsys.E \
{(u, u) ∈ Gsys.E|u ∈ Gsys.V }. On graph G(q,s)sys , flow vector is denoted as f (q,s)sys . All
such flow vectors are subject to the standard network flow constraints:

∀q ∈ Bπ.Q,∀s ∈ SGsys(q),

Flow constraints (3.1), (3.2), and (3.3) on network G(q,s)sys .
(c6)

The edge cut vector d from G is directly related to mapped to edges on each graph
G(q,s)sys . Then, it is checked whether there exists a Path(s, Tsys) on the system product
graph copy G(q,s)sys . Since edge-cuts/restrictions are placed reactively, only edge cuts
starting from a state-history pair with history variable q applies to the graph G(q,s)sys .
Edges are grouped by the history variable using the mapping Gr : Bπ.Q→ 2G.E:

Gr(q) := {((s, q), (s′, q′)) ∈ G.E}. (4.28)

Then, the edge-cut values d are mapped onto system product graph copies, impact-
ing the flow f

(q,s
sys by the cut constraint:

∀q ∈ Bπ.Q,∀s ∈ SGsys(q),∀(u, v) ∈ Gr(q), ∀(u′, v′) ∈ Esys,

d(u,v) + f (q,s)
sys

(u′,v′) ≤ 1, if u′.s = u.s and v′.s = v.s.
(c7)

Once the cuts have been mapped, the check for a Path(s, Tsys) is ensured by requir-
ing the flow value on each system product graph copy to be at least 1:∑

(s,v)∈Esys

f (q,s)
sys

(s,v) ≥ 1, ∀q ∈ Bπ.Q, ∀s ∈ SGsys(q). (c8)

In the reactive obstacle setting, the feasibility constraints (c6)-(c8) group edge cuts
for each history variable q, and check if there is a feasible path for the system. This

91

feasibility check is carried out for every history variable q and every possible node
s ∈ SG(q) at which the test execution enters history variable q. Since the system
controller is unknown, it becomes imperative to check feasibility on every copy
G(q,s)sys .

Finally, the routing optimization is characterized as the following mixed-integer
linear program (MILP) with the edge-cut vector d being the integer variable, and
the flow f and partition µ variables being continuous:

MILP-REACTIVE:

max
f ,d,µ,

f
(q,s)
sys ∀q∈Bπ .Q∀s∈SGsys (q)

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8).

(4.29)

Static Constraints. The feasibility constraints are simplified in test environments
comprising only of static obstacles. A static obstacle is one that remains for the
entire duration of the test. That is, an restriction on a system action at a particular
state should always be in place regardless of the current state-history pair of the test
execution. To specify this, the edges in G that correspond to the same transition of
the system in Tsys.E will have the same edge cut value:

d(u,v) = d(u
′,v′), ∀(u, v), (u′, v′) ∈ E, if u.s = u′.s and v.s = v′.s. (c9)

With Eq. (c9), a separate check for feasible paths on copies of the system product
graph is not needed. By the projection map PG→Gsys , a path on G implies a path on
Gsys, and since restrictions do not change with q, the path on Gsys always remains.
Therefore, the MILP formulation for static obstacles can be simplified to be:

MILP-STATIC:
max
f ,d,µ

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c9).

(4.30)

The following lemma and proof was taken from [107].

92

Lemma 4.2. For the case of static constraints, due to (c9), ensuring feasibility from
the system’s perspective is guaranteed by checking F > 0 on G. That is, F > 0 on
G is equivalent to checking (c6)-(c8).

Proof. Under (c9), the edge groupings Gr(q) become the same for all q ∈ Bπ.Q.
Thus, the constraints (c6)-(c8) can be reduced onto a single flow network Gsys =

(Vsys, Esys, (Ssys, Tsys)), where Ssys := Gsys.I . Equation (c8) being satisfied on Gsys

implies that there is a path on G from S to T via Lemma 4.1. Additionally, if there
is a path on G from S to T with the static constraints (c9), then it must be that there
exists a path from Ssys to Tsys on Gsys.

Remark 4.5. The reactive feasibility check involved checking for feasible paths on
copies of system product graphs. Alternatively, this check can also be carried out
using copies of the network G, as we will see later in the section on computational
complexity (Section 3.8). For implementation purposes, we choose the feasibility
formulation presented in this section since it results in fewer variables and con-
straints in the optimization.

Mixed Constraints. In test environments with a mix of static obstacles and reac-
tive obstacles and/or dynamic test agents, we require the static area Tsys.Estatic ⊆
Tsys.E to be given. Transitions in Tsys.Estatic can be restricted using static ob-
stacles. In such mixed settings, the feasibility constraints (c6)–(c8) can be ap-
plied as normal, and the static constraints given in (c9) can be applied on edges
(u, v) ∈ E whose mapping onto the system transitions is in the static area, i.e.,
(u.s, v.s) ∈ Tsys.Estatic.

MILP-MIXED:
max
f ,d,µ,

f
(q,s)
sys ∀q∈Bπ .Q∀s∈SGsys (q)

F − 1

|E|
∑
e∈E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8), (c9).

(4.31)

Auxiliary Constraints. Auxiliary constraints are any additional affine constraints
that are not required but can be added to the optimization to accommodate the test
environment. For example, in some instances such as placing static obstacles like
doors or fences, restricting a directed edge would also require the transition in the

93

reverse direction to be blocked. This specific affine constraint can be written as

d(u,v) = d(u
′,v′), ∀(u, v), (u′, v′) ∈ E, if u.s = v′.s and v.s = u′.s. (c10)

Algorithm 5: Finding the test strategy πtest

1: procedure FINDTESTSTRATEGY(Tsys, H, φsys, φtest)
Input: transition system Tsys, test harness H , system objective φsys, test ob-

jective φtest

Output: test strategy πtest

2: Bsys ← BA(φsys) ▷ System Büchi automaton
3: Btest ← BA(φtest) ▷ Tester Büchi automaton
4: Bπ ← Bsys ⊗ Btest ▷ Specification product
5: Gsys ← Tsys ⊗ Bsys ▷ System product
6: G← Tsys ⊗ Bπ ▷ Virtual Product Graph
7: S, I, T← IDENTIFYNODES(G,Bsys,Btest)
8: G ← DEFINENETWORK (G, S, T)
9: Gsys ← set() ▷ System Perspective Graphs

10: for q ∈ Bπ.Q do
11: for s ∈ SGsys(q) do
12: G(s,q)sys ← DEFINENETWORK(Gsys, s, Tsys)

13: Gsys ← Gsys ∪ G(s,q)sys

14: d∗ ← MILP(G, T,Gsys, I, H) ▷ Reactive, static, or mixed.
15: C ← {(u, v) ∈ G.E |d∗(u,v) = 1} ▷ Cuts on G

16: πtest ← Define test strategy according to equation (4.33)
17: return πtest

Characterizing Optimization Results
The flow value (3.4) of the network is always integer-valued since the edge cuts
are binary, and therefore, any strictly positive flow value corresponds to at least one
valid test execution. In the following cases, the problem data are inconsistent and a
flow value ≥ 1 cannot be found.
Case 1: There is no path from S to T on G (and equivalently, no path from Ssys to
Tsys on Gsys). In this case, the optimization will not have to place any cuts because
the only possible maximum flow value is 0.
Case 2: There is a path from S to T on G, but there is no path S to T in G visiting an
intermediate node in I. In this case, the partition constraints will cut all paths from
S to T, while by Lemma 4.1 the feasibility constraints require a path to exist from S

to T—a contradiction. The optimization is infeasible in this instance.

94

For each MILP, the set of edges that are cut are found from the optimal d∗ as
follows, C := {(u, v) ∈ E \ E(I) | d∗(u,v) = 1}, resulting in the cut network
Gcut = (V,E \C, (S, T)). The bypass flow value is computed on the network Gbyp :=

(Vbyp, Ebyp, (S, T)), where Vbyp := V \ I, and Ebyp := E \ (E(I) ∪ C). A strictly
positive bypass flow value indicates the existence of a Path(S, T) on Gcut that does
not visit an intermediate node in I.

Theorem 4.1. The optimal or feasible cuts C returned by each MILP result in a
bypass flow value of 0.

Proof. The partition constraints (c4) and (c5) partition the set of vertices V \ I into
two groups: nodes with potential µ = 0 (e.g., T) and nodes with potential µ = 1

(e.g., S). On any path v0 . . . vk on Gbyp, where v0 = S and vk = T, the difference in
potential values can be expressed as a telescoping sum:

∑k−1
i=0 (µ

i−µi+1) = µS−µT.
Then, by partition constraints (c4) and (c5),

k−1∑
i=0

d(vi,vi+1) ≥
k−1∑
i=0

(µi − µi+1) = µS − µT ≥ 1.

Therefore, for at least one edge (vi, vi+1) on the path, where 0 ≤ i ≤ k − 1, the
corresponding cut value is d(vi,vi+1) = 1. These edges belong to the set of cut edges
C. Thus, the flow value on Gbyp is zero.

Theorem 4.2. For each MILP, the returned cuts C are such that there always exists
a path to the goal from the system’s perspective.

Proof. First, consider the MILP in the reactive setting. The optimal cuts C satisfy
the feasibility constraints (c6), (c7), and (c8). These constraints ensure that for
each history variable q ∈ Bπ.Q, there exists a path for the system from each state
s ∈ SGsys(q) to Tsys on Gsys. The edge cuts C are grouped by their history variable
(see equation (4.28)) and mapped to the corresponding G(q,s)sys (see equation (c7)).
Then, each copy G(q,s)sys represents all the cuts that can be simultaneously applied
when the state of the test execution is at history variable q. Thus, all restrictions
on system actions at history q are captured by the cuts on G(q,s)sys . Since this is true
for every q and every source state s at which the test execution enters into q, there
always exists a path to the goal by equation (c8). The proof for the static and mixed
settings follows similarly.

95

Remark 4.6. Note that Theorems 4.1 and 4.2 are not limited to optimal solutions
of the MILP, but apply to feasible solutions as well. That is, any time termination of
the MILP provided that a feasible solution has been found is sufficient to find a test
strategy with guarantees that the system assumptions are satisfied, and that there
are no bypass paths. However, only an optimal solution can return a test strategy
that is not overly-restrictive. However, the following lemma only applies to optimal
solutions.

Lemma 4.3. For each MILP, the optimal cuts C correspond to maximizing the
cardinality of Θu.

Proof. By construction, a realization of the flow f on G corresponds to a set of
unique state-history traces Θu. The MILP objective maximizes the flow, and there-
fore the cardinality of Θu is maximized.

Additionally, the feasibility constraints do not induce any conservativeness in terms
of finding a test strategy that is not overly-restrictive. Let Path(S, s) be a path
from the source of the product graph G to node s, where s ∈ SGsys(q) for q ∈
mathttBπ.Q is some source at which the execution updates to history variable
q. Since the number of edge-cuts are minimized in the optimization objective, no
Path(S, s) will be restricted unless if necessary to cut a bypass path. Even in this
instance, checking that there exists a Path(s, T) in the feasibility constraints will
not be an issue. If all Path(s, T) are bypass paths, then the optimization will choose
to cut all Path(S, s). Thus, despite the feasibility constraints, the optimal solution
of the MILP still corresponds to a not overly-restrictive strategy.

Remark 4.7. The definition of a not overly-restrictive test strategy, both in this
and the previous chapter, did not account for the number of restrictions placed. In
this chapter, the routing optimization, in addition to providing optimal edge-cuts
corresponding to not overly-restrictive test strategies, also returns the minimum the
number of such restrictions required to realize the strategy. Overly restricting the
system, especially when not necessary, could potentially increase testing effort.

4.8 Test Strategy Synthesis
This section outlines how edge-cuts found solving the optimizations can help con-
struct a test strategy. This section is split into two parts: i) construction of a test
strategy involving static and reactive obstacles matched to the optimization solu-
tion, and ii) synthesis of a test agent strategy for a given dynamic agent such that

96

T

I

I

S

T

I

(a) Static Obstacles in
black.

(b) q0 (c) q6 (d) q7

Figure 4.7: Static and reactive obstacle placement for running examples. Fig-
ure 4.7a shows static obstacles synthesized for Example 4.1. Figures 4.7b, 4.9c,
and 4.7d show a test environment implementation of a reactive test strategy for Ex-
ample 4.2.

Figure 4.8: Virtual product graph with static cuts in dashed red for the medium
example 4.1. Static obstacles in Fig. 4.7a corresponding to edge cuts found on this
product graph for Example 4.1. States marked S, I , and T illustrated in Fig. 4.7a
correspond to states S (magenta •), I (blue •), and T (yellow •) on G as shown
here. There are three edge-disjoint paths on this graph from the source to the target
nodes.

97

(a) Virtual product graph G. (b)
G

(q0,s3)
sys

(c)
G

(q6,s1)
sys

(d)
G

(q7,s11)
sys

Figure 4.9: Virtual product graph and system product graphs for Example 4.2.
Fig. 4.9a shows the virtual product graph G, with the source S (magenta •), the
intermediate nodes I (blue •), and the target nodes (yellow •). Edge cut values
for each edge in G are grouped by their history variable q and projected to the
corresponding copy of Gsys. Figs. 4.9b—4.9d show the copies of Gsys with their
source (orange •) and target node (yellow •). The graphs in Figs. 4.9b—4.9d cor-
respond to the history variables q0, q6, and q7 from Bπ shown in Fig. 4.2c. The con-
straints (c6)—(c8) ensure that the edge cuts are such that a path from each source
to the target node exists for each history variable q.

the synthesized strategy matches the restrictions on system actions from the opti-
mization solution.

Test Environments with Static and/or Reactive Obstacles
In this section, we will detail the construction of a test strategy from a solution
of the MILP solved in the static, reactive, or mixed settings. First, consider the
more general reactive setting. A solution (not necessarily optimal) of the MILP
in each setting returns a set of edge-cuts C that can be parsed into a reactive map
C : Bπ.Q→ Tsys.E of system restrictions:

C(q) := {(s, s′) ∈ Tsys.E | ((s, q), (s′, q′)) ∈ C}. (4.32)

The argument of the reactive map is the state history variable q, and intuitively, C(q)
represents the set of all system restrictions that can be active when the test execution
is at the state history variable q. Formally, when the test execution ϑ arrives at a
state (s, q) at some time k ≥ 0 (and correspondingly the system trace σ is at s at
k ≥ 0), and the system restriction (s, s′) ∈ C(q), the test environment must restrict
the system action corresponding to (s, s′) at this event. Therefore, the test strategy

98

is constructed as

πtest(σ0:k) := {a ∈ Tsys.A | s′ ∈ Tsys.δ(s, a), q = HIST(σ0:k),

(s, s′) ∈ C(q)}.
(4.33)

Practically, πtest can be realized by the test environment by placing obstacles during
the test execution in reaction to system behavior (given by the trace σ). The set

of active obstacles at time step k denoted by Obs(σ0:k) is the set of state-action
restrictions that are placed at time k. Note that the set of active obstacles can contain
more restrictions than the test strategy. For example, an action corresponding to
transition (s′, s′′) of the system can be restricted even though the system is not at s′

at time k. Intuitively, this might correspond to a static obstacle that is far away from
the system and not blocking it immediately. The set of active obstacles represent
different implementations of the same reactive test strategy. A few implementations
of the reactive test strategy as a set of active obstacles are:

1. Exact Reactive Placement: In this setting, the set of active obstacles corre-
spond exactly the set of actions restricted by the test strategy: Obs(σ0:k) :=

{(s, a)|s = σk, a ∈ πtest(σ0:k)}. The obstacle is only active when the system
is in a state from which an action is restricted.

2. Instantaneous Placement: In this setting, the test environment instanta-
neously places all obstacles or the restrictions in C(q) are realized “at once”
when the test execution enters a state-history trace with history variable q.
Concretely, let (sk, qk) be the state-history of the test execution at some time
k ≥ 0, then the set of active obstacles are

Obs(σ0:k) := {(s, a) | (s, s′) ∈ C(qk) and s′ ∈ Tsys.δ(s, a)}.

3. Accumulative Placement: In this setting, active obstacles are accumulated
as the system trace evolves as long as the history variable does not change.
For some k > 0, let (sk−1, qk−1) and (sk, qk) be the state-history pairs at
time steps k − 1 and k, respectively. If qk−1 ̸= qk, then the set of active
obstacles becomes Obs(σ0:k) := {(sk, a) | a ∈ πtest(σ0:k)}. As the system
trace evolves to state-history pairs (sl, ql), where l > k and ql = qk, the set
of active obstacles are accumulated: Obs(σ0:l) =

⋃l
j=k Obs(σ0:j). When the

history variable advances, i.e., ql ̸= qk, then the set of active obstacles are
reset: Obs(σ0:l) := {(sl, a) | a ∈ πtest(σ0:l)}.

99

All three methods of determining the set of active obstacles will simulate the re-
active test strategy; they are varied implementations of the test environment. The
placement of obstacles need not coincide with when the system observes these ob-
stacles, which depends on the system implementation. However, we assume that
the system can observe all restrictions placed by the test environment on its current
state before it commits to an action.

Remark 4.8 (On Relaxing the Assumption 4.1). Roughly speaking, the feasibility
constraints (c8) ensure that placing obstacles does not block the system from its
goal. This condition is checked by ensuring that there exists feasible path for the
system from every possible source s ∈ SGsys(q) for every history variable q when
all restrictions in C(q) have been placed. With Assumption 4.1, the above feasi-
bility constraint is a sufficient check since the system can backtrack to the source
and find an alternative path if it encounters a restriction placed by the test envi-
ronment. However, this assumption is not necessary and can be relaxed in one of
two ways. First, if a restriction were to cause a livelock (i.e., system has no choice
but to remain in the same state or be stuck in a cycle), then the restriction must
be revealed to the system before the livelock becomes inevitable. Second, for ev-
ery cut ((s, q), (s′, q′)) in the set of edge-cuts C, we can check that there exists a
Path((s, q), T) on G after edges C have been removed. If this is not the case, then
the solution corresponding to C can be added as a counterexample constraint to
the MILP, which will then be resolved. This process is repeated until the set of
cuts C are accepted. Implementation of a counterexample constraint is detailed in
section 4.8.

Proposition 4.2. In both the instantaneous and accumulative settings, as long as no
new restrictions that are not in C(q) are introduced, the flow value F remains the
same.

Example 4.2 (Small Reactive (continued)). Fig. 4.7 illustrates a reactive example
on gridworld introduced previously. The reactive test strategy is constructed from
the optimal solution of MILP-REACTIVE. The optimization returns cuts on G,
which is realized as follows: when the system is at the initial state and the test exe-
cution history variable is at q0, the test environment places a restriction as shown in
Fig. 4.7b. If the system chooses to visit I1 first, the restriction does not change even
as the test execution history variable updates to q6 (see Fig. 4.7c). Alternatively,
if the system visits I2 first, the test execution history variable updates to q7, and

100

to prevent direct access to goal cell T , the test environment places the restrictions
shown in Fig. 4.7d. These restrictions can be implemented either in the instanta-
neous or the accumulative setting.

Static and Mixed Test Environments: In the special case of test environments
consisting of only static obstacles, the solution of MILP-STATIC returns a set of
edge-cuts which result in a reactive map C in which restrictions do not change based
on the history variable: C(q) = C(q′), ∀q, q′ ∈ Bπ.Q. All system transitions consti-
tute the static area: Tsys.E = Tsys.Estatic, and the test environment instantaneously
places all static obstacles at the start of the test execution:

Obsstatic := {(u.s, v.s) ∈ Tsys.Estatic | (u, v) ∈ C}, ∀k ≥ 0. (4.34)

In the mixed setting, the test strategy is constructed according to Eq. (4.33), and the
set of active obstacles are constructed similar to the reactive setting. Restrictions
that are in the static area Tsys.Estatic can be implemented by placing static obstacles.

Example 4.1 (continued). For the medium-sized grid world example illustrated in
Fig. 4.3a, the static test environment is illustrated in Fig. 4.7a. Figure 4.8 illustrates
edge-cuts that correspond to static obstacles. There are 14 edge-cuts on G that
correspond to 4 static obstacles on Tsys. On G, observe that there is no bypass flow,
and the maximum flow after the cuts is F ∗ = 3, corresponding to the three different
ways in which the system can be routed through the intermediates.

Algorithm 5 summarizes the following aspects of the framework discussed so far: i)
graph construction, ii) routing optimization using flow networks, and iii) construc-
tion of a reactive test strategy from the optimization solution. Finally, the following
theorem (taken from [107]) shows that the reactive test strategy is feasible and not
overly-restrictive when constructed from the optimal solution of the MILP.

Theorem 4.3. If the problem data are not inconsistent (see Section 4.7), the reactive
test strategy πtest found by Algorithm 5 solves Problem 4.1.

Proof. The test environment informs the choice of the MILP (static, reactive, or
mixed). Therefore, the resulting πtest will be realizable by the test environment. By
construction of Gsys, any correct system strategy corresponds to a Path(Ssys, Tsys).
By Theorem 4.2, at any point during the test execution, if the system has not

101

violated its guarantees, there exists a path on Gsys to Tsys. Therefore, there ex-
ists a correct system strategy πsys, and resulting trace σ(πsys × πtest), which cor-
responds to the path ϑsys,n = (s, q)0 . . . (s, q)n on Gsys, where (s, q)0 ∈ Ssys to
(s, q)n ∈ Tsys. By Lemma 4.1 any Path(Ssys, Tsys) on Gsys has a corresponding
Path(S, T) on G and by Theorem 4.1, the cuts ensure that all such paths on G are
routed through the intermediate I. Therefore, for a correct system strategy πsys, the
trace σ(πsys × πtest) |= φsys ∧ φtest. Thus, πtest is feasible and by Proposition 4.2 and
Lemma 4.3, πtest is not overly-restrictive. Thus, Problem 4.1 is solved.

The resulting test strategy ensures that as long as the system does not take an in-
correct action, there will always exist a path to its goal. However, the system is not
aided in reaching the goal either — the test strategy will not block actions that lead
to unsafe states. Therefore, a correctly implemented system should be able pass the
test, and if the test fails, then it is the fault of the system design.

Algorithm 6: Reactive Test Synthesis

1: procedure TEST SYNTHESIS(Tsys, TTA, H, φsys, φtest)
Input: system Tsys, test agent TTA, test harness H , system objective φsys, test

objective φtest

Output: test agent strategy πTA

2: Tsys.Estatic ← Define from Tsys, TTA ▷ Static area (Eq. (4.35)
3: G,Gsys, I, G← Setup arguments ▷ Lines 2-13 in Alg. 5
4: Cex ← ∅ ▷ Initialize empty set of excluded solutions
5: Fmax ←MILP-AGENT(G,G, I, Tsys, H, Cex = {})
6: while True do
7: F ∗,d∗ ←MILP-AGENT(G,G, I, Tsys, H, Cex)
8: if STATUS(MILP) = infeasible then
9: return infeasible

10: C ← {(u, v) ∈ G.E |d∗(u,v) = 1} ▷ Cuts on G

11: Obs← Define from C ▷ Static Obstacles (Eq. (4.34))
12: R ←Define from C ▷ Reactive map (Eq. (4.36))
13: A← Assumptions (a1)–(a5) from Tsys, TTA, G, φsys

14: G← Guarantees (g1)–(g7) from Tsys, TTA,R
15: φ← (A→ G) ▷ Construct GR(1) formula
16: if REALIZABLE(φ) then
17: πTA ← GR1Solve(φ)
18: return πTA, Obs
19: Cex ← Cex ∪ C

102

Strategy Synthesis for a Dynamic Test Agent
In some test scenarios, it might be beneficial to make use of an available dynamic
test agent. Thus, the challenge is to find a tester strategy that corresponds to C while
ensuring that the system’s operational environment assumptions are satisfied. To
accomplish this, we adapt the MILP-MIXED using information about the dynamic
test agent. Then, we find the test agent strategy using reactive synthesis and counter-
example guided search. From the optimal cuts of MILP-MIXED and the resulting
reactive map C, we can find states that the test agent must occupy in reaction to the
system state. Then, we synthesize a strategy for the dynamic test agent using the
Temporal Logic and Planning Toolbox (TuLiP) [108, 109]. If we cannot synthesize
a strategy, we use a counterexample-guided approach to exclude the current solution
and resolve the MILP to return a different set of optimal cuts until a strategy can
be synthesized. Suppose we are given a test agent whose dynamics are given by
the transition system TTA, where TTA.S contains at least one state that is not in
T.S, denoted as park. During the test execution, the test agent can navigate to
these park states, if necessary. These states are required to synthesize a test agent
strategy. From the test agent’s transition system TTA, we determine which states in
T the test agent can occupy. Static obstacles are used to restrict transitions to states
that cannot be occupied by the test agent, and thus the static area is defined as

Tsys.Estatic := {(u, v) ∈ Tsys.E | v /∈ TTA.S}. (4.35)

Assumption 4.2. In the mixed setting with static obstacles, and a reactive dy-
namic agent, static obstacles can only restrict transitions in Tsys.Estatic as defined
in Eq. (4.35).

Adapting the MILP for test agent: Since an agent can only occupy a single state
at a time, solutions in which multiple edge cuts can be realized by occupying the
same state are incentivized. For this, we introduce the variable dstate ∈ R|V |

+ , which
represents whether an incoming edge into a state is cut. This is captured by the
constraint

∀(u, v) ∈ E, d(u,v) ≤ dvstate, (c11)

where dvstate ≥ 1 corresponds to at least one incoming edge being cut. The adapted
objective is then defined as

F − k
∑
e∈E

de −m
∑
v∈V

dvstate,

103

where k ≤ 1
1+|E| and m ≤ 1

|V |(1+|E|) . The objective is chosen such that the total
number of edge cuts, and the number of nodes that are blocked are minimized.
The regularizers are chosen to reflect this order of priority: once the number of
edges are minimized, the number of nodes that are cut are minimized. The optimal
cuts from the resulting MILP are used to synthesize a reactive test agent strategy as
follows. From the optimal cutsC∗, we find the set of static obstacles Obs ⊆ T.Estatic

according to Eq. (4.34) and the reactive mapR : Bπ.Q→ T.E as follows:

R(q) := {(s, s′) ∈ T.E | (s, s′) /∈ T.Estatic and ((s, q), (s′, q′)) ∈ C∗}. (4.36)

The reactive mapR is used to synthesize a strategy for the test agent. If no strategy
can be found, a counter-example guided approach is used to resolve the MILP.

Reactive Synthesis: From the solution of the MILP, we now construct the specifi-
cation to synthesize the test agent strategy using TuLiP. In particular, we construct a
GR(1) formula with assumptions being our model of the system and the guarantees
capturing requirements on the test agent. Note that we are synthesizing a strategy
for the test agent, where the environment is the system under test. The variables
needed to define the GR(1) formula consist of variables capturing the system’s state
xsys ∈ T.S and qhist ∈ Bπ.Q, which track how system transitions affect the history
variable q. The test agent state is represented in the variable xTA ∈ TTA.S.

First, we set up the subformulae constituting the assumptions on the system model.
The initial conditions of the system are defined as

(xsys = s0 ∧ qhist = q0), (a1)

where s0 ∈ T.S0 and Bπ.Q0. We define the dynamics of the system and the history
variable for each state (s, q) ∈ G.S as follows:

□
(
(xsys = s ∧ qhist = q)→

∨
(s′,q′)∈
succ(s,q)

⃝(xsys = s′ ∧ qhist = q′)
)
, (a2)

where succ(s, q) denotes the successors of state (s, q) ∈ G.S. For simplicity, we
choose a turn-based setting, in which each player will only take their action if it is
their turn. To track this, we introduce the variable turn ∈ B as a test agent variable.
For the system, this is encoded as remaining in place when turn = 1:∧

s∈T.S

□
(
(xsys = s ∧ turn = 1)→⃝(xsys = s)

)
. (a3)

104

If a turn-based setup is not used, we need to synthesize a Moore strategy for the test
agent since it should account for all possible system actions. The system objective
φsys can be encoded as the formula

□ □(xsys = xgoal) ∧ φaux, (a4)

where xgoal is the terminal state of the system and a reachability objective specified
in φsys. The other objectives specified in φsys are transformed to their respective
GR(1) forms in φaux. This transformation of LTL formulas into GR(1) form is
detailed in [110]. In addition, the system is expected to safely operate in the test
agent’s presence. The set of states where collision is possible is denoted by S∩ :=

T.S∩TTA.S. Thus, the safety formula encoding that the system will not collide into
the tester is given as: ∧

s∈S∩

□
(
xTA = s→⃝¬(xsys = s)

)
. (a5)

Equations (a1)– (a5) represent the test agent’s assumptions on the system model.
Next, we describe the subformulas for the guarantees of the GR(1) specification.
The initial conditions for the test agent are∨

s∈TTA.S0

xTA = s. (g1)

The test agent dynamics are represented by

□
(
(xTA = s)→

∨
(s,s′)∈TTA.E

⃝(xTA = s′)
)
. (g2)

The test agent can also move only in its turn and will remain stationary when
turn = 0: ∧

s∈TTA.S

□
(
(xTA = s ∧ turn = 0)→⃝(xTA = s)

)
. (g3)

The turn variable alternates at each step:

(turn = 1)→⃝(turn = 0) ∧ (turn = 0)→⃝(turn = 1). (g4)

To satisfy the system assumptions (Def. 4.6), the test agent should not adversarially
collide into the system. This is captured via the following safety formula,∧

s∈S∩

□
(
xsys = s→⃝¬(xTA = s)

)
. (g5)

105

Now, we enforce the optimal cuts found from the MILP. To enforce cuts reactively
during the test execution, the states occupied by the system are defined as follows,∧

q∈Bπ .Q

∧
(s,s′)∈R(q)

□
(
(xsys = s ∧ qhist = q ∧ turn = 0)→ (xTA = s′)

)
. (g6)

Essentially, for some history variable q, if (s, s′) ∈ R(q) is an edge cut, then the
test agent must occupy the state s′ when the system is in the state s when the test
execution is at history variable q. However, the test agent should not introduce any
additional restrictions on the system, which is formulated as∧

q∈Bπ .Q

∧
(s,s′)∈T.E
(s,s′)̸∈R(q)

□
(
(xsys = s ∧ qhist = q ∧ turn = 0)→ ¬(xTA = s′)

)
. (g7)

Intuitively, this corresponds to the requirement that the tester agent shall not restrict
system transitions that are not part of the reactive map R. A test agent strategy
that satisfies the above specifications is guaranteed to not restrict any system action
unnecessarily. However, the test agent can occupy a state that is not adjacent to the
system and block all paths to the goal from the system’s perspective. This could
lead the system to not making any progress towards the goal at all, resulting in a
livelock. To avoid this, we characterize the livelock condition as a safety constraint
that the test agent must satisfy (e.g., if it occupies a livelock state, it must not occupy
it in the next step). The specific safety formula that captures the livelock depends
on the example. We find the states where the tester would block the system from
reaching its goal T.Sblock ⊆ TTA.S. The following condition ensures that it will only
transiently occupy blocking states:∧

s∈T.Sblock

□
(
xTA = s→⃝¬(xTA = s)

)
. (g8)

Therefore, we synthesize a test agent strategy πTA for the GR(1) formula with as-
sumptions (a1)–(a5) and guarantees (g1)–(g8).

Counterexample-guided Search: The MILP can have multiple optimal solutions,
some of which may not be realizable for the test agent. If the GR(1) formula is un-
realizable, we exclude the solution and re-solve the MILP until we find a realizable
GR(1) formula. In particular, every new set of optimal cuts C that is unrealizable
is added to the set Cex. Then, the MILP is resolved with an additional set of affine
constraints as follows, ∑

e∈E

de −
∑
e∈C

de ≥ 1, ∀C ∈ Cex. (c12)

106

This corresponds to removing the solution C from the constraint set. The adapted
MILP is then defined as follows:

MILP-AGENT:

max
f ,d,dstate,µ,

f
(q,s)
sys ∀q∈Bπ .Q,
∀s∈SGsys (q).

F − 1

1 + |E|
∑
e∈E

de − 1

(1 + |E|)|V |
∑
v∈V

dvstate

s.t. (c1)-(c9), (c11), (c12).

(4.37)

This process is repeated until a strategy is synthesized or the MILP-AGENT be-
comes infeasible. Algorithm 6 summarizes the approach for synthesizing the test
agent strategy. The terms Fmax and F ∗ (lines 5 and 7 in Algorithm 6) denote the
maximum possible flow before and after accounting for counterexamples, respec-
tively. The following lemma and theorem are adapted from [107].

Lemma 4.4. Let πTA be the test agent strategy and let Obs satisfying Assump-
tion 4.2 be the set of static obstacles synthesized from the optimal solution C of
MILP-AGENT according to the GR(1) formula with assumptions (a1)–(a5) and
guarantees (g1)–(g8). Let πtest be the reactive test strategy corresponding to the
optimal cuts C∗. Then πTA and Obs realize πtest.

Proof. By construction in Eqs. (4.32), (4.34), (4.36), we have that C(q) = R(q) ∪
Obs for all history variables q ∈ Bπ.Q. Due to guarantee (g6), the synthesized test
agent strategy restricts the transitions inR(q). The test agent is also prohibited from
restricting any other transitions by the guarantee (g7). Therefore, at each step of the
test execution, the system actions restricted as a result of πTA and static obstacles
Obs directly correspond to the system actions restricted by the test strategy πtest.

Theorem 4.4. Algorithm 6 is sound with respect to Problem 4.2.

Proof. The test agent strategy is synthesized to satisfy guarantees (g1)-(g8). The
guarantees (g1)-(g4) specify the dynamics of the test agent, which satisfies A1. The
safety guarantee (g5) satisfies A2. Guarantees (g6) and (g7) realize the optimal
cuts from MILP-AGENT. Due to constraint (c8) the optimal cuts ensure that there
always exists a path on Gsys. Together with guarantee (g8), this results in πTA satis-
fying assumptions A3 and A4. By Lemma 4.4, πTA is a realization of a feasible πtest

that is not overly-restrictive.

107

In Algorithm 6, each iteration of MILP-AGENT is solved to optimality while ex-
cluding the counterexamples. If MILP-AGENT returns with F ∗ = Fmax, then πTA

corresponds to a πtest that is not overly-restrictive. By iteratively removing coun-
terexamples, the agent strategy is synthesized for a reactive test strategy with the
highest possible F ∗ ≤ Fmax. This is valid under Assumption 4.2, which allows
static obstacles only on transitions that cannot be restricted by the test agent. In
MILP-AGENT, this condition is enforced by applying constraint (c9) on the static
area Tsys.Estatic.

If a matching test agent strategy is found for the maximum possible F , the test
agent strategy and obstacles, πTA and Obs, correspond to a not overly-restrictive
reactive test strategy πtest possible for that test environment. In future work, we will
exploring relaxing Assumption 4.2.

4.9 Complexity Analysis
This framework comprises of three parts: automata-theoretic graph construction,
flow-based MILP to solve the routing optimization, and finally reactive synthesis
to match the solution of the optimization to a test agent strategy. The automata-
theoretic framework includes construction of Büchi automata from specifications,
which can be doubly exponential in the length of the formula in the worst-case [60].
Then, construction of the product graphs relies on building the Cartesian product
of the transition system and the automaton. The Cartesian product implementation
in this work has a worst-case time complexity of O(|T.S|2|Bπ.Q|2). In this section,
I will discuss the computational complexity of the routing optimization, and prove
that the routing optimization is an NP-hard problem. Finally, the solution of the
routing optimization is mapped to a strategy of the test agent via GR(1) synthesis,
which has time complexity O(|N |3), where N is the number of states required to
define the GR(1) formula.

To establish the computational complexity of the routing optimization, we will first
look at the special case of static obstacles, and then extend the proof to the setting
with reactive obstacles. Consider the problem data of the routing optimization once
again: a graph G = (V,E) with specially denoted nodes S, I, and sink, and the
corresponding flow network G. A bypass path on G is some Path(S, T) which does
not contain an intermediate node v ∈ I. For all edges e ∈ E \ E(I), the Boolean
variable de carries information on whether the edge e is cut (i.e., de = 1), and the set
C ⊂ E represents the set of all edges that are cut. The flow F on G is the maximum

108

flow value from source S to T, computed after accounting for the edge cuts.

The static and reactive obstacle settings are based on the grouping of edges on
G, which become important for checking system feasibility. Static obstacles are
grouped by the corresponding transition in the system transition T since they are
present for the entire test duration. In particular, the static grouping Grstatic : T.E →
G.E groups all edges in G that correspond to the same system transition in T :

Grstatic((s, s
′)) := {(u, v) ∈ G.E | u.s = s, v.s = s′}. (4.38)

For some edge (s, s′) ∈ T.E, all the corresponding edges inG, that is, all edges e ∈
Grstatic((s, s

′)) must have the same de value. Similarly, in the reactive setting, edges
are grouped by the history variable q, as given in Eq. (4.28). System feasibility can
then be checked by applying these groupings onto copies of G or Gsys, as detailed
in Remark 4.5.

For purposes of clearly stating the static the optimization and decision versions of
the routing problem, we introduce the label of a valid set of edge cuts. In the static
setting, a valid set of edge cuts C when applied to G is such that: i) there are no
bypass paths, ii) there exists at least one path from S to T, and iii) edges of G respect
the static grouping Grstatic. Note that there can exist graphs G for which there does
not exist a valid set of edge cuts in the static setting. These are graphs for which we
cannot synthesize a test comprising only static obstacles to realize the test objective.
One such example is Beaver Rescue. Now, the optimization version of the routing
problem for the special case of static obstacles is stated as follows,

Problem 4.3 (Routing Problem, Static Setting (Optimization)). Given a graph G,
find a valid set of edge cuts C in the static setting such that the resulting maxi-
mum flow F is maximized over all possible sets of edge cuts, and such that |C| is
minimized for the flow F .

In other words, the optimization follows a two-step procedure: first, identify a valid
set of edge cuts C to maximizes the flow F , and second, tie-break between the
optimal candidates C to choose one with the smallest cardinality |C|. The decision
version of Problem 4.3 can be stated as follows.

Problem 4.4 (Routing Problem, Static Setting (Decision)). Given a graph G and an
integer M ≥ 0, does there exist a valid set of edge cuts C in the static setting such
that |C| ≤M?

109

Lemma 4.5. A solution to Problem 4.3 can be used to construct a solution for
Problem 4.4 in polynomial time.

Proof. The solution of Problem 4.3 returns a set of valid edge cuts C. Thus for any
given integer M ≥ 0, we can check in polynomial time if |C| ≤M .

Basics of Complexity Theory: Finding the complexity class of Problem 4.4 will
help in determining the complexity of Problem 4.3 because by Lemma 4.5, we can
infer that Problem 4.3 is at least as hard as Problem 4.4. The class of NP problems
consists of those that are verifiable in a time polynomial to the size of the input to
the problem [80]. A problem is said to be in the class of NP-complete problems if:
i) it is in the class NP, and ii) it is as hard as any problem in NP. Polynomial-time
algorithms for solving NP-complete problems would exist only if P=NP. The class
of NP-hard problems are those that are as hard as a problem in NP. In this section, I
will show that Problem 4.4 is NP-complete, and by extension that Problem 4.6 is an
NP-hard problem in the size of the input: product graphG. This would also support
the choice of a mixed-integer linear programming framework to solve the routing
optimization, since MILPs belong to the class of NP-hard problems as well.

To show that Problem 4.4 is NP-complete, we have to establish its membership in
NP, and then give a polynomial-time reduction of a problem in NP to Problem 4.4.
We will choose the 3-SAT problem and give a polynomial-time reduction algorithm
that maps any instance of the 3-SAT problem to an instance of Problem 4.4. This re-
duction algorithm is such that a solution to the constructed instance of Problem 4.4
can be transformed in polynomial-time to a solution of the 3-SAT instance.

Lemma 4.6. Problem 4.4 is in the class NP.

Proof. Given a solution C, we need to show that verifying that it is a valid set of
edge-cuts for the static setting can be done in polynomial-time. In reference to
the definition of a valid set of edge-cuts, it can be checked in polynomial-time that
there are no bypass paths when the edges in C are cut fromG. This would involve a
simple check (e.g., via any max-flow algorithm) to verify zero maximum flow from
S to T on the bypass network Gbyp = (V \ I, E \ E(I), S, T). Similarly, condition
(ii) can also be checked in polynomial-time by running a max-flow algorithm on G
and verifying that the max-flow is at least 1. Finally, condition (iii) can be checked
in polynomial-time by iterating over all edges e ∈ T.E, and checking that exactly
one of the following in true: a) Grstatic(e) ⊆ C or b) Grstatic(e) ∩ C = ∅.

110

S

I

T
FT

S

I

T
FT

(a) Graphs
matching formu-
las with a single
variable x.

S
T

T FF
T

T
TS

FF

T

(b) Graph resulting from a reduction of the 3SAT formula
f(x1, . . . , x5), where the resulting edge cuts correspond to the
truth assignment of the variables x1, . . . , x5.

Figure 4.10: Graphs constructed from a 3SAT formula, where a truth assignment
for the variables can be found using the network flow approach for static obstacles.

Now, we introduce the 3-SAT problem .

Definition 4.17 (3-SAT [111]). Let x1, . . . , xn be propositions that can evaluate to
true or false. A literal is a proposition xi or its negation. The propositional logic
formula f(x1, . . . , xn) :=

∧m
j=1 cj is a conjunction of clauses c1, . . . , cm, where

each clause is a disjunction of three Boolean literals. A solution to the 3-SAT
problem is an algorithm that returns True if there exists a satisfying assignment to
f(x1 . . . , xn) and False.

Outline of the Reduction Algorithm: Given any 3-SAT formula, we will construct
a product graph, an instance of 4.4 in polynomial-time. The product graph is con-
structed modularly — each clause in the 3-SAT formula corresponds to a sub-graph
in the larger product graph (Construction 1). Then, using Construction ??, the sub-
graphs are connected to form the product graph instance to Problem 4.4. Finally,
we will prove that any algorithm used to solve Problem 4.4 can be used to solve the
3-SAT problem, thus showing that Problem 4.4 is at least as hard as a problem in
NP. Consequently, Problem 4.4 can be solved in polynomial-time in the size of the
product graph only if there exists a polynomial-time algorithm for 3-SAT which is
only possible if P=NP.

Construction 1 (Clause to Sub-graph). For each clause cj in the given 3-SAT for-
mula, construct the following sub-graph. First, introduce nodes x1,j, . . . , xn,j for
each of the Boolean propositions x1, . . . , xn that constitute the 3-SAT formula. If
j = 0, introduce the nodes s0 and s1, otherwise introduce the node sj . For all
j ∈ {1, . . . ,m}, the nodes sj−1 and sj represent the beginning and end of each

111

sub-graph. Additionally, introduce two more nodes: IT,j and IF,j . These nodes will
serve as intermediate nodes in the constructed graph.

Second, the edges of the sub-graph are added as follows. The intermediate nodes
are connected to the start and end nodes of the sub-graph via the directed edges:
(sj−1, IF,j) and (IT,j, sj). Next, for each xi,j , add the directed edges: (sj−1, xi,j)

and (xi,j, sj). If neither xi nor its negation x̄i appear in the clause cj , then these are
the only directed edges connected to the node xi,j in the sub-graph. If the literal
xi appears, then we add the directed edge (xi,j, IT,j), and if a negated literal x̄i
appears, we add the directed edge (IF,j, xi,j).

From Construction 1, edge-cuts on the sub-graph are related to the Boolean valua-
tions of the propositions as follows. Either the incoming or outgoing edge to each
node xi,j must be cut. As illustrated in Fig. 4.10a, if the edge (sj−1, xi,j) remains in
the sub-graph (and (xi,j, sj) is cut), this implies that the proposition xi is assigned
the value True. Similarly, if the edge (xi,j, sj) remains, then the proposition xi
is assigned the value False. Construction 1 ensures that a satisfying assignment
to the clause cj implies that there exists a Path(sj−1, sj) and all such paths are
routed through the intermediates (sj−1, IF,j) and (IT,j, sj) (see Fig. 4.10b). An as-
signment that evaluates clause cj to False would only be possible if there was no
Path(sj−1, sj). The full graph can be constructed by stitching together the individ-
ual sub-graphs built using Construction 1.

Construction 2 (Reduction). Given a 3-SAT problem with n Boolean propositions
andm clauses, construct the sub-graph for each clause according to Construction 1.
Denote the node s0 as the source S and sm as the sink T. The node sj−1 is common
between the sub-graphs of clauses cj−1 and cj . Let the integer variable M be set
to m × n. Note that the constructed graph has O(mn) edges and is constructed
in polynomial-time in the number of propositions and clauses of the given 3-SAT
formula.

In addition to constructing the graph, two groups of edges for each Boolean propo-
sition xi are tracked: i) an incoming group of edges {(sj−1, xi,j) | 1 ≤ j ≤ m}, and
ii) an outgoing group of edges {(sj−1, xi,j) |1 ≤ j ≤ m}. All edges in a group must
share the same edge-cut value, corresponding to the static grouping map Grstatic.
By imposing this constraint, the truth assignment to Boolean propositions across
literals can be guaranteed to be the same.

112

The reduction algorithm takes as input a 3-SAT formula, and applying Construc-
tions 1 and 2, returns a graph with source S = s0, I =

⋃m
j=1{IT,j, IF,j}, and edges

are grouped according to Construction 2. Now, we will show that for the static set-
ting, the routing problem is NP-hard. The following proof of Theorem 4.5 is taken
from [107].

Theorem 4.5. Problem 4.4 is NP-complete.

Proof. We will show that Problem 4.4 is NP-hard by showing that Construction 2
is a correct polynomial-time reduction of the 3-SAT problem to Problem 4.4 i.e.,
any polynomial-time algorithm to solve Problem 4.4 can be used to solve 3-SAT in
polynomial-time. Consider the graph constructed by Construction 2 for any propo-
sitional logic formula. The valid set of edge cuts C on this graph with cardinality
|C|≤M is a witness for Problem 4.4. A witness for the 3-SAT formula is an assign-
ment of the variables x1, . . . , xn. A witness to a problem is satisfying if the problem
evaluates to True under that witness. Next, we show that a valid set of edge cuts C
is a satisfying witness for Problem 4.4 iff the corresponding assignment to variables
x1, . . . , xn is a satisfying witness for the 3-SAT formula.

First, consider a satisfying witness for Problem 4.4. By Construction 2, the cardi-
nality of the witness, |C|= m×nwill be exactlyM , which is the minimum number
of edge cuts required to ensure no bypass paths on the constructed graph. This im-
plies that each variable xi has a Boolean assignment. By Construction 1, a strictly
positive flow on the sub-graph of clause cj implies that cj is satisfied. By Construc-
tion 2, a strictly positive flow through the entire graph implies that all clauses in the
3-SAT formula are satisfied. Therefore, a satisfying witness to the 3-SAT formula
can be constructed in polynomial-time from a satisfying witness for an instance of
Problem 4.4.

Next, we consider a satisfying witness for the 3-SAT formula. The Boolean assign-
ment for each variable xi corresponds to edge cuts on the graph (see Fig. 4.10b).
Any Boolean assignment ensures that there is no bypass path on the graph since
either all incoming edges or all outgoing edges for each variable xi are cut. This
also corresponds to the minimum number of edge cuts required to cut all bypass
paths, corresponding to |C|= m × n. By Construction 1, a satisfying witness cor-
responds to a Path(sj−1, sj) on the sub-graph for each clause cj . By Construction 2,
observe that there exists a strictly positive flow on the graph. Thus, we can con-
struct a satisfying witness to an instance of Problem 4.4 in polynomial time from a

113

satisfying witness to the 3-SAT formula. Therefore, any 3-SAT problem reduces to
an instance of Problem 4.4, and thus, Problem 4.4 is NP-hard. Additionally, Prob-
lem 4.4 is NP-complete since we can check the cardinality of C, and whether C is
a valid set of edge cuts in polynomial time.

Corollary 4.1. Problem 4.3 is NP-hard [112].

Proof. By Theorem 4.5, Problem 4.4 is NP-complete, and therefore by Lemma 4.5,
Problem 4.3 is NP-hard.

These insights can be extended to the complexity analysis for the reactive setting.
In the reactive setting, a valid set of edge cuts is defined similar to the static set-
ting, except in the grouping constraint that the edges must respect, as detailed in
Remark 4.5, and restated below for clarity.

Recall that Gr(q) is the set of possible system transitions in the history variable q.
All restrictions during history variable q are a subset of Gr(q), and in the accumula-
tive placement of reactive constraints, they are all realized in the worst-case. There-
fore, the reactive feasibility constraints (c8) checks if there is a Path(ssys, Tsys) on
Gsys (i.e., from the system perspective, are we ensuring that there is a path to the
goal) when all reactive constraints are accumulated and projected onto Gsys. Instead
of checking on Gsys, we can verify the same condition by checking on G by statically
mapping the edges Gr(q).

Definition 4.18 (Static Mapping). For a network G, let E ′ ⊆ G.E be a set of edges
in which each edge has an associated edge-cut value de. The network G is statically

mapped with respect to E ′ if for every edge (u, v) ∈ E ′, the following is true:

d(u
′,v′) = d(u,v), ∀(u′, v′) ∈ Grstatic((u.s, v.s)). (4.39)

The static mapping connects restrictions on the same system action across history
variables. The feasibility networks are necessary to ensure that the system restric-
tions do not block the system from its goal.

Definition 4.19 (Reactive Feasibility Networks). For each q ∈ Bπ.Q and for every
possible system source s ∈ SGsys(q), introduce a copy of Gsys denoted G(q,s)sys =

(Vsys, Esys, s, Tsys). The set of edges in G that map to some edge (usys, vsys) ∈ Esys is

PEsys→E((usys, vsys)) = {(u, v) ∈ E|PG→Gsys(u) = usys and PG→Gsys(v) = vsys}.

114

Note that multiple edges on G can map to the same edge on Gsys. Furthermore,
reactive restrictions at history variable q are all contained in Gr(q). Therefore, if one
of the edges in PEsys→E((usys, vsys)) ∩ Gr(q) is restricted, then the edge (usys, vsys)

is restricted on the copy G(q,s)sys . Let dsys ∈ B|Esys| denote the cut values of edges on
G(q,s)sys . The system restrictions on G are mapped to edge-cuts on G(q,s)sys only for the
history variable q:

d(usys,vsys)
sys =max d(u,v)

s.t. (u, v) ∈ PEsys→E((usys, vsys)) ∩ Gr(q).
(4.40)

The reactive feasibility networks Gsys is the set of graphs G(q,s)sys whose edge cut
values are mapped according to Eq. (4.40):

Gsys := {G(q,s)sys =(Vsys, Esys, s, Tsys)|q ∈ Bπ.Q, s ∈ SGsys(q) and

G(q,s)sys is mapped according to Eq. (4.41)}.
(4.41)

In Alg. 5, lines 9–13 correspond to the construction of Gsys. In the implementation
of the optimizations, edge cut variables dsys for system feasibility networks are
not defined since this would dramatically increase the number of integer variables.
Instead, edge cuts on G are directly used to cut the flow on the feasibility networks
(see Eq. (c8)).

When the cut-set C is found for G, the reactive feasibility condition requires that for
every reactive feasibility network G(q,s)sys ∈ Gsys, there exists a path from source s to
target Tsys after the cuts C are applied to G(q,s) via the mapping in Eq. (4.40). For
the purpose of proving computational complexity, it is easier to reduce from 3-SAT
if reasoning over graphs with similar structures. Thus, we consider the following
check for reactive feasibility which reasons over copies of G instead of Gsys.

Definition 4.20 (Statically mapped Reactive Feasibility Networks). For each q ∈
Bπ.Q and for every possible source s ∈ SG(q), introduce a copy of G denoted
G(q,s) := (V,E, s, T). Each network G(q,s) is statically mapped with respect to the
edges Gr(q). The statically mapped reactive feasibility networks G is the set of all
G(q,s):

G := {G(q,s) =(G.V,G.E, s, T)|q ∈ Bπ.Q, s ∈ SG(q) and

G(q,s) is statically mapped with respect to Gr(q)}.
(4.42)

In other words, all edges restricted (i.e., de = 1) at history variable q are stati-
cally mapped on G(q,s). When the cut-set C is found for G, the reactive feasibility

115

condition (via static mapping) requires that for every statically mapped reactive fea-
sibility network G(q,s) ∈ G, there exists a path from source s to target T after the
cuts C are applied to G(q,s) via the static mapping. Checking for the reactive fea-
sibility condition (via static mapping) on G is equivalent to checking the reactive
feasibility condition on Gsys.

Theorem 4.6. The reactive feasibility condition (via static mapping) on G is true
iff the reactive feasibility condition on Gsys is true.

Proof. Suppose the reactive feasibility condition (via static mapping) is true. Then,
the corresponding graphs Gsys will also have a path by theorem relating to why static
checks are enough. If the reactive feasibility condition on Gsys is true, then there
exists a corresponding path on G as well due to lemma 4.1.

For each history variable q ∈ Bπ.Q and for every possible system source s ∈
SG(q), introduce a copy of G denoted G(q,s) = (V,E, s, T). On this copy G(q,s),
we statically map the edges Gr(q), and check if the flow from s to T is at least 1.
In the reactive setting, a valid set of edge cuts C when applied to G is such that:
i) there are no bypass paths, ii) there exists at least one path from S to T, and iii)
edges ofG respect the reactive grouping condition (via static mapping). Finally, the
optimization and decision problems in the reactive setting can be stated as follows.

Problem 4.5 (Routing Problem, Reactive Setting (Optimization)). Given a graph
G, find a valid set of edge cuts C in the reactive setting such that the resulting
maximum flow F is maximized over all possible sets of edge cuts, and such that
|C| is minimized for the flow F .

Problem 4.6 (Routing Problem, Reactive Setting (Decision)). Given a graphG and
an integer M ≥ 0, does there exist a valid set of edge cuts C in the reactive setting
such that |C| ≤M?

Once again, consider the 3-SAT reduction from the static setting. This reduction
will be adapted to construct a polynomial-time reduction of 3-SAT to an instance
of Problem 4.6 with a single history variable q. Similar to the static setting, I will
prove that Problem 4.6 is NP-complete in the size of the product graph G. To do
this, we will first establish that Problem 4.6 is in the class of NP problems.

Lemma 4.7. Problem 4.6 is in the class of NP problems.

116

Proof. This proof follows similarly to the proof of Lemma 4.6. Given a solution
C, we need to show that verifying C to be a valid set of edge cuts for the reactive
setting can be carried out in polynomial-time. Conditions (i) and (ii) can be checked
similarly as in, and condition (iii) can also be checked in polynomial-time.

Similar to the static setting, 3-SAT can be reduced to an instance of Problem 4.6.
In this chapter, I will construct the reduction to an instance of Problem 4.6 with a
single history variable.

Construction 3 (Reduction from 3-SAT to Problem 4.6 with single history variable
q). Given a 3-SAT formula with n propositions and m clauses. Construct a graph,
denoted G(q,S), according to Construction 2. In addition, construct a graph G with
nodes and edges according to Construction 2 without applying the constraint that
all edges in a group must have the same edge-cut value. The graph G(q,S) serves
a reactive feasibility network (via static mapping) where S is the source at history
variable q. On the other hand, edges on G are not grouped together. In addition to
graphs, the edge cuts on G and G(q,S) are mapped as follows: the edge-cut value of
a group in G(q,S) is set to the maximum edge-cut value in the equivalent group in G.

Figures 4.11a and 4.11b are constructed from a 3SAT formula for the reactive op-
timization problem, where a truth assignment for the variables can be found by
solving MILP-REACTIVE.

The following theorem and proof is taken from [107].

Theorem 4.7. Problem 4.6 is NP-complete and Problem 4.5 is NP-hard.

Proof. The proof follows similarly from Theorem 4.5. In this setting, a witness
for Problem 4.6 comprises the maximum edge cut value of each group in G. Con-
struction 3 relates edge cuts on G and G(q,S). This implies that edge cuts on G are
found under the condition that there is a strictly positive flow onG(q,S) under a static
mapping of edges. The minimum set of edge cuts which ensures no bypass paths
on G has cardinality n, corresponding to only one of the sub-graphs having edge
cuts. Furthermore, for each xi, there will be one edge-cut in one of the two groups
(incoming or outgoing edges). Therefore, for each xi, only the incoming or the
outgoing edge group will have a maximum edge cut value of 1, corresponding to
the Boolean assignment for xi. A minimum cut on G found under the conditions of
no bypass paths on G and a positive flow on G(q,S) results in a Boolean assignment

117

S
T

T FF
T

T

T FF
T

Reactive Diagram

S

(a) Constructed graph G for an arbitrary 3SAT formula f(x).

S
T

T FF
T

T

T FF
T

Reactive Diagram

S

(b) Statically mapped cuts on G for every subgraph.

Figure 4.11: (a) Graph G and (b) graph Gsys constructed according to Construc-
tion 3.

that is a satisfying witness to the 3-SAT formula. Thus, we have polynomial-time
construction of a satisfying witness to the 3-SAT formula from a satisfying witness
to Problem 4.6. This follows similarly to Theorem 4.5.

Likewise, a satisfying witness to the 3-SAT formula can be mapped to edge cuts
on one of the sub-graphs of G. These edge cuts will be such that there is no by-
pass path on G, and will be the minimum set of edge cuts to accomplish this task,
corresponding to |C|= n. Additionally, by construction of the graphs, this will
correspond to a strictly positive flow on G(q,S). Thus, we can construct a satisfying
witness to Problem 4.6 in polynomial time from a satisfying witness of the 3-SAT
formula. Therefore, any 3-SAT problem reduces to an instance of Problem 4.6. As
a result, Problem 4.6 is NP-complete and following similarly to Corollary (4.1),
Problem 4.5 is NP-hard.

118

4.10 Comparison to Reactive Synthesis
We presented an approach to solve Problems 4.1 and 4.2 leveraging tools from au-
tomata theory and network flow optimization. In particular, for Problem 4.2, we
rely on the optimization solution to construct a GR(1) specification to reactively
synthesize a test agent strategy. One indication of the optimization step being nec-
essary is the computational complexity of the problem. If the problem data are
consistent, there exists a GR(1) specification for the test agent that would solve the
problem, but directly expressing this specification is impractical. Essentially, the
challenge is in finding the restrictions on system actions, which are then captured
in the sub-formulas of the GR(1) specification. In this section, we argue that we
cannot solve Problems 4.1 and 4.2 solely via synthesis from an LTL specification.

To the authors’ knowledge, directly capturing the different perspectives of the sys-
tem and the tester in this neither fully adversarial nor fully cooperative setting is not
possible with current state-of-the-art approaches in GR(1) synthesis. Particularly in
the reactive setting, the test strategy must ensure that from the system’s perspective,
there always exists a path to the system goal. To capture this constraint, we reason
over a second product graph that represents the system perspective. It is not obvious
how this semi-cooperative setting can be directly encoded as a synthesis problem in
common temporal logics.

In the static setting, the problem can be posed on a single graph. However, it is
difficult to find the set of static obstacles directly from GR(1) synthesis. Every state
in the winning set describes an edge-cut combination, but qualitative GR(1) synthe-
sis cannot maximize the flow or minimize the cuts. Furthermore, the winning set
can include states that vacuously satisfy the formula, i.e., not allowing the system
any path to the goal. Finally, the combinatorial complexity of the problem would
manifest as follows. Although the time complexity of GR(1) synthesis is O(N3) in
the number of states N , we require an exponential number of states to characterize
the GR(1) formula. For example, in Figure 4.12, this is illustrated for the GR(1)
formula:

□φdyn
sys ∧□ □ T→ □φdyn

test ∧□φaux_dyn
test ∧□ □ Iaux,

where φdyn
sys captures the system transitions on the gridworld, φdyn

test are the dynamics
of the test environment, and φaux_dyn

test and Iaux capture the □ I condition in GR(1)
form. In this example, each edge in the system transition system T can take 0/1
values, and once an edge is cut, it remains cut and the system cannot take a transi-
tion that corresponds to a cut edge. Due to this, the number of states N to describe

119

Figure 4.12: Solution returned by GR(1) synthesis and the network flow optimiza-
tion in the case of static constraints

the GR(1) formula includes the 2|T.E| states that characterize the edge cuts. As
seen in Figure 4.12, the direct GR(1) synthesis approach returns a trivial solution
corresponding to an impossible setting for the system. Finally, even when an ac-
ceptable solution is returned, the problem being at least NP-hard will result in the
combinatorial complexity manifesting in the synthesis approach.

One key advantage of the network flow optimization is reasoning over flows as
opposed to paths, which allows for tractable implementations. These insights from
network flow optimization in this work can help in driving further research along
these directions.

4.11 Experiments
We illustrate the synthesized test strategy in simulation and hardware with Unitree
A1 quadrupeds. These experiments show that the high-level abstraction models
is useful in high-level test synthesis as long as the lower levels of the system are
implemented to simulate the high-level abstraction. The low-level control of the
quadruped is managed at the motion primitive layer, which abstracts the underly-
ing dynamics and facilitates transitions between primitives as described in [113].
These primitives include behaviors such as lying down, walking at various speeds,
jumping, standing, and reduced-order model-based tracking of waypoints that rely
on a unicycle or single integrator model. These motion primitives can directly be
commanded from a high-level controller implemented by a temporal logic planning

120

Figure 4.13: Beaver Rescue Hardware Experiment with door1 on the right and door2
on the left.

toolbox such as TuLiP [109]. Each motion primitive is implemented in C++, with
control laws, sensing, and estimation executed at 1kHz.

For experiments demonstrating the flow-based synthesis in the MILP formulation,
examples with static test environments solve the routing optimization MILP-STATIC,
examples with reactive test environments solve MILP-REACTIVE, and those with
reactive dynamic agents solve MILP-AGENT, unless otherwise stated. These op-
timizations are solved using Gurobipy [114]. The reactive test agent strategies are
synthesized using the temporal logic planning toolbox TuLiP [109].

Hardware Experiments for Tests Synthesized from solving the Min-Max Stack-
elberg Game
We will see two hardware experiments — beaver rescue and motion primitive ex-
amples — for the flow-based synthesis formulated via min-max Stackelberg games.
These optimizations were implemented in Pyomo [104], which interfaces to Guro-
bipy. These examples will be revisited in simulation and solved using the MILP
framework.

Beaver Rescue Example: This example is inspired by a search and rescue mis-
sion and the hardware trace is shown in Fig. 4.13. In this example, the quadruped
(system under test) is tasked with picking up a beaver (located in the corridor), and
returning to lab safely: φsys = □ goal, where goal is satisfied when the beaver is
brought into the lab. The lab has two doors which the quadruped can use to navi-

121

gate into the corridor. In our implementation of the discretized abstraction of this
experiment, the transitions of the quadruped are as follows,

Tsys.E ={(s0, d1), (s0, d2), (d1, d2), (d2, d1), (d1, b), (d2, b), (b, p1),

(b, p2), (p1, p2), (p2, p1), (p1, g), (p2, g)},
(4.43)

where i) states d1 and d2 are states in the lab adjacent to doors: Tsys.L(d1) =

{door1} and Tsys.L(d2) = {door2}, ii) states p1 and p2 are states in the corridor

adjacent to doors: Tsys.L(p1) = {door1} and Tsys.L(p2) = {door2}, iii) state b
in the hallway is the rescue location of the beaver, and iv) states s0 and g repre-
sent the lab. The test objective is to route the system to visit both doors: φtest =

□ door1 ∧ □ door2.

There are several ways in which the test environment could have routed the system.
If the system visits door1 from d1 (or likewise door2 from d2), the door could then
be blocked; forcing the system to re-plan to exit into the corridor through the other
door. Alternatively, the system could visit door1 from d1 (or likewise door2 from
d2) and exit into the corridor, and on its return with the beaver, door1 from p1

(or likewise door2 from p2) can be blocked while leaving the other door at p2 (or
likewise at p1) open for the quadruped to re-enter the lab. Our algorithm found
edge-cuts that resulted in the latter test case that allows the system to exit through
the door of its choice and blocks that door on the return path. The synthesized test
is reactive to the choice of system actions — depending on the door approached by
the system, the synthesized constraints are placed accordingly.

Motion Primitive Example: In this example, the quadruped is can execute the fol-
lowing motion primitives: “jump”, “stand”, “lie”, and “walk”. Once again consider
the lab-corridor setup. The quadruped’s goal is to reach the beaver in the corridor:
φsys = □ goal. The test objective is φtest = □ jump ∧ □ lie ∧ □ stand in order to
test the system to demonstrate the three motion primitives.

Unlike the previous example in which doors were closed to restrict the system, in
this example each door has three lights located at different heights to signal mo-
tion primitives that might unlock the door. There are three such doors, and the
states pi (for i = 1, 2, 3) represents the state of the quadruped standing in front of
doori before demonstrating a motion primitive. The state primi for motion primitive
prim ∈ {lie, stand, jump} represents the abstract state of the quadruped performing
the motion primitive in front of doori. After it performs a motion primitive, the
quadruped state transitions to di,prim, from which it can proceed to the goal or be

122

Figure 4.14: Motion Primitive example: Snapshots of the hardware test execution
on the Unitree A1 quadruped.

returned to the state pi. The test harness comprises of system actions corresponding
to the following transitions: {(di,prim, goal)}.

For example, if the middle light is blue, it implies that demonstrating the stand
motion primitive could unlock the door (by the light turning green). The test strat-
egy is reactive to the system; depending on the order in which the quadruped ap-
proaches the doors and demonstrates motion primitives, the lights turn red/green to
restrict/permit the system to pass.

In this test execution, the system chooses to approach the middle door (door2) first
which can only be unlocked by the stand motion primitive. The quadruped suc-
cessfully demonstrates this (panel 1 of Fig. 4.14), but the light turns red. Following
this, the quadruped approaches (door1) and demonstrates the jump and stand motion
primitives, but is still not permitted to pass (panels 2 and 3 of Fig. 4.14). Finally,
after approaching door3 on the right, the system demonstrates the lie motion prim-
itive, after which the corresponding light turns green (panels 4 and 5 of Fig. 4.14),
and the quadruped finally navigates to the corridor. In this manner, the test strat-
egy reacts to system behavior and routes the test execution to lead the system to
demonstrate all three motion primitives before being allowed to pass.

Simulated Experiments
First, we will revisit the beaver rescue and motion primitive examples, in which test
strategies will be implemented by the test environment using reactive obstacles For
the beaver rescue example, the test harness consists of doors that connect the lab
and corridor, and system transitions can be restricted by closing the doors. For the

123

(a) Beaver rescue. (b) Motion primitive example.

Figure 4.15: Simulated experiment results with test strategy found by solving
MILP-REACTIVE. In (b), system (gray) demonstrates primitives in the order:
stand (1), stand (2), jump (3), and lie (4), before advancing to goal (5).

motion primitive example, the test harness consists of restricting transitions after
motion primitives have been demonstrated. Figure 4.15 shows the simulated ex-
periments for these examples where the test strategy was found by solving MILP-
REACTIVE. The simulated test executions are qualitatively similar to the hardware
demos discussed previously, even with the new MILP formulation. As shown in Ta-
ble 4.4, the graph size |G| for these examples is relatively small compared to other
examples, with the exception of the running examples 4.2 and 4.1. Despite this, the
MILP approach is faster by three orders of magnitude. Both the game formulation
and the MILP formulation aim to solve the problem exactly. However, defining a
single set of flows and directly solving the problem as an MILP makes the problem
much more tractable. A large part of this can be attributed to Gurobi, and the al-
gorithms for solving min-max stackelberg games with coupled constraints have not
been optimized for efficiency as much in comparison to solving MILPs.

Maze 1: This example consists of a system quadruped (gray) navigating on the
grid shown in Fig. 4.17a, and a dynamic test agent (yellow) that can traverse the
middle column. The test agent is restricted to only walk up or stay in a cell. From
the middle cell of the top row, the test agent can navigate off the grid into a parking
state. The system objective is to reach the goal on the top-left corner of the grid,

124

φsys = □ goal, and the test objective is to route the system through intermediate
states I1, I2, and I3: φtest = □ I1 ∧ □ I2 ∧ □ I3.

Figures 4.16a– 4.16c visualize a counterexample that is not dynamically realizable
by the test agent. This solution is added as a counterexample, and the MILP is
resolved until a realizable solution (see Figures 4.16d– 4.16f) is found.

Brief explanation for counterexample: In Figure 4.16a, an agent would have to
occupy cell (4, 2) when the system occupies the cell (5, 2). This would result in
a livelock — from the system perspective, there is no incentive to back up and
navigate around through I3 since the test agent would block all paths to the goal,
and if the test agent moves out of cell (4, 2), the system can navigate to the goal
without being routed through I3.

The test quadruped first begins in the lower-most row and moves out of the way but
still blocking the path through the center column so that the system is routed through
I3. Once the system visits I3, the test agent walks up to the middle cell in the grid
to block it so it is routed through I2. Similarly, the test agent routes the system
through I1. After the system visits I1 but before it reaches the center cell in the first
row, the test agent walks off the grid, and into its parking state. This is due to the
temporal logic constraint to not over-restrict the system (equation (g7)). When any
cell occupied by the test agent (say v) is adjacent to the system (say occupying cell
u), then the transition (u, v) is registered as a restriction on the system. To avoid
over restricting the system, the test agent navigates of the grid.

Hardware Experiments
Running Example 4.1: The experiment trace for the medium example is given in
Fig. 4.17c. The corresponding solution is shown in Fig. 4.7.

Refueling Example: In this example, the system quadruped (gray) navigates on
the grid shown in Figure 4.18a. In addition to coordinates x = (x, y), the system
state also includes a discretized fuel state fuel. The maximum value of fuel is 10,
and every cell transition on the grid decreases this value by 1. Visiting the refueling
station in the bottom-right corner of the grid resets fuel to its maximum value. The
desired test behavior is to place the system in a state in which its fuel level is not
sufficient for it to directly navigate to the goal. The system objective is given as
φsys = □T ∧□¬(fuel = 0). The test objective is set to φtest = □(y < 4∧fuel <
2), which seeks to place the system in the lower 3 cells of the grid with less than
two units of fuel. The sub-tasks used in describing these objectives are safety and

125

(a) q0 (b) q15 (c) q12

(d) q0 (e) q15 (f) q12

Figure 4.16: Illustration of dynamically unrealizable (top (a)–(c)) and dynamically
realizable reactive obstacles (bottom (d)–(f)). In Figures 4.16a– 4.16c: Reactive
obstacles returned by MILP-REACTIVE that cannot be realized by a dynamic test
agent. In Figures 4.16d– 4.16f: Accepted solution for which a test agent strategy
is synthesized. Red arrow indicates the direction of the restriction; the edge-cuts
found by MILP-REACTIVE are not subject to the (optional) bidirectional cut con-
straint. History variable q0 refers to the state of the test execution before I3 is visited
by the system, q15 is the state of the test execution after only I3 is visited, and q12
is the state of the test execution after I3 and I2 have been visited.

126

(a) Simulated experiment for Maze 1.

(b) Simulated alternative trace, Maze 2.

(c) Hardware trace for the medium exam-
ple 4.1 with static obstacles found by test
strategy.

Figure 4.17: Yellow boxes in (a) and (b) are pre-defined obstacles to indicate states
that are not navigable in Tsys. Yellow obstacles in (c) are static obstacles placed by
the test environment. Gray quadruped is the system, and yellow quadruped in (a)
and (b) is the test agent, which chooses to navigate off-grid after the test objective
is realized.

reachability. Note that the intermediate states resulting from this test objective also
include states with fuel = 0, but the restrictions from the MILP will not force the
system into these unsafe states, giving the system the option to have a fuel level of
1 and refuel. This still satisfies the test objective without making it impossible for
the system to satisfy the test objective.

The experiment trace of the test execution in shown in Fig. 4.18a, in which the
color of the trace indicates the comparative fuel level at that state. The yellow boxes
represent static obstacles placed to restrict transitions according to the solution of
MILP-STATIC. As given in Tables 4.4 and 4.5, the product graph has over 1000
edges resulting in around 1000 binary variables for the routing optimization. The
optimization is solved to optimality in 0.87 seconds, and the maximum flow is found

127

(a) Refueling example experiment trace. (b) Mars exploration experiment trace.

Figure 4.18: Traces of hardware demos with test environment consisting of static
obstacles.

to be 2. The 199 cuts onG correspond to the 8 transitions restricted (bidirectionally)
on the transition system. This example illustrates the usefulness of our framework
— test objectives are not limited to being defined over atomic propositions of the
pose x of the system. The solution to this specific example is not one that can be
easily identified like the previous examples we have discussed thus far.

Mars Exploration Example: This example is inspired by a sample collection mis-
sion on Mars. The sub-tasks reachability, avoidance, and delayed reaction are used
to characterize system and test objectives. The system quadruped (gray) can tra-
verse the grid shown in Figure 4.20a, which has states with “rock” and “ice” sam-
ples, and states designated as sample drop-off locations D, and refueling stations
denoted R. The system is required to reach the goal in the top-level corner (labeled
T), and must drop-off any samples collected during its navigation without running
out of fuel. The system state carries a fuel level fuel in addition to its pose state
x = (x, y). Similar to the refueling example, the maximum fuel value is 10, it de-
creases by 1 for every transition on the grid, and it can be refueled by visiting the
refueling states R.

The system objective is given by the formula:

φsys = □T ∧□¬(f = 0) ∧□(ice ∨ rock→ □ drop-off).

The test objective consists of reachability sub-tasks that include triggers of the re-
action sub-task of the system objective, and also a sub-task to place the system in a

128

Mars Exploration Example

Please add a gradient from green to yellow to red to
the trace, according to the fuel level.

1 2 3

4 5 6

Figure 4.19: Mars exploration experiment snapshots from resulting on the Unitree
A1 quadruped for static test environments. The overview is shown in Fig. 4.18b.

low-fuel state:
φtest = □ rock ∧ □ ice ∧ □(d > f),

where d = |x−xgoal| is the distance to the goal and f is the fuel level. Figure 4.20b
shows a sub-optimal placement of static obstacles with maximum flow F = 1, and
Figure 4.20c shows the optimal placement permitting a maximum flow of F = 2 on
the product graph. The experiment trace (Figure 4.18b) and accompanying demo
(Figures 4.19) are test executions in the test environment realizing the sub-optimal
test strategy. The system begins in the bottom-left corner of the grid with a full fuel
tank. From these figures, we can observe the quadruped being routed to pick up the
rock sample close to the initial condition. Then, the placement of static obstacles in
both the sub-optimal and the optimal settings is such that the system needs to visit
the top-right refueling station at least once. In order to visit that refueling station
without running out of fuel, the system must navigate the state with ice samples. In
the test execution from the experiment, the system is routed to visit states with rock
and ice samples, after which it refuels twice — first at the top-right refueling station
and then at the refueling station at the center of the grid — and finally, drops off
the samples before navigating to goal T . Table 4.5 lists this example as one of the
largest with around 13, 000 integer variables. Despite this, the routing optimization
is solved optimally in about 45 seconds.

Patrolling Quadruped: This examples involves a dynamic test agent whose strat-
egy is synthesized to be consistent with the solution of the routing optimization in

129

(a) Empty grid for Mars
exploration example. Re-
fueling stations, rock and
ice sample locations are de-
noted. Drop-off locations
are denoted by the basket.

(b) Static obstacles for
Mars exploration example
with a feasible solution of
MILP-STATIC (max-flow
F=1).

(c) Static obstacles for
Mars exploration example
with an optimal solution of
MILP-STATIC (max-flow
F = 2).

Figure 4.20: Feasible and optimal solutions for the Mars exploration example. The
hardware experiment corresponded to the feasible solution.

MILP-AGENT. The context of this example is similar to the refueling example
except that the test environment can now consist of static obstacles and a dynamic
test agent (see Figure 4.1). The system (gray quadruped) is tasked with beginning
in the lower right corner of the grid, and reaching the target cell in the lower-left
corner without running out of fuel. Additionally, the system must not collide with
obstacles. The test objective is to put the system in a low-fuel state similar to the
Mars exploration example. The test agent dynamics allow it to traverse up and
down the center column of the grid, and from the center cells of the top and bottom
rows, it can choose to move off the grid into a parking state. Thus, the system and
test objectives are given by the formulas: φsys = □T ∧□¬(fuel = 0), and the test
objective is φtest = □(d > f), where d = |x− xgoal| is the distance to the goal.

As seen in Figure 4.1, the test environment places a static obstacle near the initial
state of the system (panel 1 snapshot). Then, as the system proceeds to go to the
goal, the test agent blocks the quadruped from crossing the center column of the
grid — in panels 1 and 2, the test agent blocks the system in the lowermost row, and
when the system advances up in panels 3 and 4, the test agent continues to block the
system. The test agent blocks the system until the it can no longer directly navigate
to the goal, and must refuel. Thus, the system refuels and is then able to navigate to
T without any further interactions with the test agent. Some implementation details
are as follows. the system controller in this test execution resynthesizes its strategy
each time it is restricted by the test agent. Furthermore, the optimization MILP-

130

(a) Grid world lay-
out.

I2

S

T

I1

’q0’

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

Reactive Constraints

(b) Reactive cuts in
q0.

I2

S

T

I1

’q0’

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

Reactive Constraints

(c) Reactive cuts in
q6.

I2

S

T

I1

’q0’

I2

S

T

I1

’q7’

I2

S

T

I1

’q6’

Reactive Constraints

(d) Reactive cuts in
q7.

Figure 4.21: Grid world layout and reactive cuts corresponding to the history vari-
ables for the Maze 2 experiment. (a) Grid world layout with cells traversible by the
test agent marked. Dark gray cells are not traversible by either agent. (b)–(d) Black
edges indicate reactive cuts corresponding to the history variables for the Maze 2
experiment. Note that the cuts are not bidirectional. The history variable states q0,
q6, and q7 can be inferred from Bπ illustrated in Fig. 4.2c, and correspond to initial
state, visiting I1 first, and visiting I2 first.

(a) Maze 2 trace.

Quadruped Plus

1 2 3

4 5 6

(b) Maze 2 experiment snapshots.

Figure 4.22: Resulting test execution for the Maze 2 experiment with a dynamic
test agent.

AGENT with the modified objective is solved to minimize the occupied states.

Maze 2: The grid world layout for this example is shown in Figure 4.21a, in which
the gray boxes denote states that the system cannot navigate to. The system is
tasked with navigating to goal T from state S: φsys = □T . The test objective is to
route the system to visit states I1 and I2: φtest = □ I1∧ □ I2. The test environment
has access to a dynamic test agent that can traverse the center column and row of
the grid as illustrated in yellow lines in Figure 4.21a. In addition, the test agent can
walk off the grid into a parking state from the four cells at the boundaries of the
grid (top and bottom cell of center column, and left-most and right-most cells of the
center row). While the test environment can also place static obstacles, it chooses

131

to restrict the system using just the test agent.

The specification product is exactly the same as the running example 4.2, and is
illustrated in Figure 4.2c. Observe that to route the test execution through the test
objective acceptance states, we need to find cuts for the history variables q0 (initial
state), q6 (I1 has been visited but not I2), and q7 (I2 has been visited but not I1). The
reactive cuts found by the flow-based synthesis procedure are shown in Figs. 4.21b-
4.21d. The trace and snapshots of the resulting test execution is shown in Figs. 4.22a
and 4.22b. We observe that the system quadruped decides to take the top path first,
visits I2 (see panel 2 in Fig. 4.22b), and is blocked by the test agent (see panel 3). It
then decides to try navigating through the center of the grid, and is again blocked by
the test agent (see panel 4). Subsequently, it decides to try the bottom path, visits
I1 (see panel 5), and successfully reaches the goal without any further test agent
intervention. If the system decided to visit I1 first, the adaptive test agent strategy
would have blocked the system from reaching the goal directly from I1 until it visits
I2. This is an example with a maximum flow of F = 2, corresponding to the two
unique ways for the system to reach the goal. For an alternative system controller
in which the system chooses to approach the goal through I1, the simulated trace
resulting from the test agent strategy is shown in Fig. 4.17b.

Runtimes
Tables 4.5 and 4.6 list the optimization size and runtimes for all the simulated and
hardware experiments discussed prior. Table 4.5 corresponds to experiments that
identify static and/or reactive obstacles, and Table 4.6 corresponds to experiments
in which a test agent strategy is synthesized from the output of the routing optimiza-
tion. The problem size (e.g., automaton size, graph size) and graph construction
times for all experiments are given in Table 4.4. The sizes of automata, transition
systems, and product graphs are listed by the tuple (|V |, |E|).

To further study the scalability of the routing optimization, I tabulate the runtimes
for randomized gridworld experiments for various specification sub-tasks in Ta-
bles 4.7 and 4.8. These computations were conducted on an Apple M2 Pro with
16 GB of RAM using Gurobipy [114]. The construction of DBAs from specifica-
tions was implemented using Spot [98]. In the randomized experiments, the Gurobi
solver for the MILP has a timeout condition set at 10 minutes to find at least a feasi-
ble solution. Once the solver finds a feasible solution, it is given another minute to
return a solution with the optimality guarantee. If the solver cannot guarantee opti-

132

Table 4.4: Automata and graph construction runtimes for simulated and hardware
experiments

Experiment |Bπ| |T | |G| G[s]
Example 4.1 (4, 9) (15, 53) (27, 96) 0.0270
Refueling (6, 18) (265, 1047) (332, 1346) 0.6655
Mars Exploration (36, 354) (376, 1522) (4073, 17251) 75.8313
Example 4.2 (8, 27) (6, 17) (20, 56) 0.0452
Beaver Rescue (12, 54) (7, 19) (15, 39) 0.0470
Motion Primitives (16, 81) (15, 42) (72, 207) 0.4286
Maze 1 (16, 81) (26, 80) (196, 604) 1.6226
Patrolling (6, 18) (386, 1539) (210, 831) 0.4573
Maze 2 (8, 27) (21, 66) (80, 252) 0.2195

Table 4.5: Routing optimization runtimes for simulated and hardware experiments
with static and/or reactive obstacles

Experiment |BinVars| |ContVars| |Constraints| Opt[s] Flow |cuts|

Solving MILP-STATIC
Example 4.1 73 87 540 0.0003 3.0 14
Refueling 1014 1261 19819 0.8682 2.0 199
Mars Exploration 13178 16604 1646480 46.6209 2.0 1641
Solving MILP-REACTIVE
Example 4.2 25 115 409 0.0003 2.0 4
Beaver Rescue 8 154 441 0.0001 2 2
Motion Primitives 106 761 2606 0.0005 3.0 15

Table 4.6: Runtimes for simulated and hardware experiments with dynamic agents

Experiment BinVars Opt[s] Controller[s] |Cex| Flow |cuts|
Solving MILP-AGENT
Maze 1 355 0.0010 100.0 4 1.0 3
Patrolling 621 6.0535 16.1191 0 1.0 13
Maze 2 176 0.0292 7.151 8 2.0 8

133

Table 4.7: Run times (with mean and standard deviation) for random grid world
experiments solving MILP-REACTIVE

Experiment 5× 5 10× 10 15× 15 20× 20
|AP | |Bπ| Optimization[s], Success Rate (%)
Reachability:
2 (4, 9) 5.63± 13.43 100 64.62± 38.75 100 67.38± 25.47 100 68.63± 31.12 100
3 (8, 27) 23.36± 38.15 100 61.68± 35.12 100 91.54± 31.41 100 117.82± 34.89 100
4 (16, 81) 22.49± 36.33 100 83.52± 29.25 100 171.49± 50.72 100 317.62± 89.08 100
Reachability & Reaction:
3 (6, 21) 5.97± 13.21 100 61.06± 34.67 100 71.64± 41.03 100 85.20± 19.49 100
5 (20, 155) 17.19± 25.51 100 78.44± 34.71 100 159.91± 76.63 100 279.86± 148.23 90
7 (68, 1065) 52.71± 41.23 100 331.32± 187.28 90 585.21± 67.58 15 600.00± 0.00 0
Reachability & Safety:
3 (6, 18) 0.76± 1.52 100 70.82± 89.70 100 63.68± 27.54 100 80.58± 20.79 100
4 (6, 18) 0.15± 0.29 100 71.47± 80.61 100 59.59± 38.92 100 76.02± 27.11 100
5 (6, 18) 0.12± 0.18 100 94.68± 88.04 100 71.34± 30.89 100 82.54± 22.69 100

Table 4.8: Run times (with mean and standard deviation) for random grid world
experiments solving MILP-STATIC.

Experiment 5× 5 10× 10 15× 15 20× 20
|AP | |Bπ| Optimization [s], Success Rate (%)
Reachability:

2 (4, 9) 8.17± 13.14 100 54.07± 17.98 100 60.17± 0.12 100 60.17± 0.10 100
3 (8, 27) 27.78± 21.71 100 60.17± 0.10 100 60.48± 0.86 100 74.02± 38.70 100
4 (16, 81) 52.60± 14.05 100 60.42± 0.34 100 82.02± 41.26 100 265.41± 203.51 80

Reachability & Reaction:
3 (6, 21) 10.62± 14.85 100 60.09± 0.06 100 60.23± 0.24 100 60.34± 0.46 100
5 (20, 155) 20.41± 19.21 100 67.77± 31.90 100 95.31± 116.65 95 268.50± 222.14 75
7 (68, 1065) 36.64± 23.34 100 110.63± 92.81 100 419.77± 214.30 55 556.38± 131.06 10

Reachability & Safety:
3 (6, 18) 1.27± 1.47 100 60.08± 0.06 100 57.27± 12.61 100 60.32± 0.24 100
4 (6, 18) 0.17± 0.23 100 60.06± 0.05 100 60.14± 0.10 100 60.30± 0.19 100
5 (6, 18) 0.11± 0.16 100 54.15± 17.80 100 60.17± 0.09 100 60.29± 0.26 100

mality in that time frame, the feasible solution is returned. If the optimizer returns
at least a feasible solution, the run is counted as a success. An empirical observation
is that Gurobi often finds an optimal solution but takes even longer to produce an
optimality guarantee. For the randomized experiments, gridworlds from size 5× 5

to 20 × 20 are considered, and for each gridsize, problem instances are randomly
generated. In the allotted time, if the optimization returns that a problem instance
is infeasible, then the instance is discarded and a new one is generated in its place.

Tables 4.7 and 4.8 tabulate the optimization runtimes and success rate for solving
MILP-REACTIVE and MILP-STATIC, respectively. The optimization runtime
lists the mean and standard deviation for 20 instances. The success rate indicates

134

Table 4.9: Graph construction runtimes (with mean and standard deviation) for
random grid world experiments

Experiment 5× 5 10× 10 15× 15 20× 20
|AP | |Bπ| Graph Construction [s]
Reachability:

2 (4, 9) 0.046± 0.001 0.224± 0.0056 0.554± 0.009 1.078± 0.011
3 (8, 27) 0.344± 0.007 1.661± 0.022 4.004± 0.048 7.376± 0.061
4 (16, 81) 1.997± 0.077 9.895± 0.109 23.512± 0.179 43.188± 0.454

Reachability & Reaction:
3 (6, 21) 0.090± 0.001 0.424± 0.016 1.037± 0.004 2.044± 0.013
5 (20, 155) 1.628± 0.087 7.560± 0.023 18.019± 0.129 33.539± 0.144
7 (68, 1065) 44.809± 0.996 209.612± 1.732 488.611± 6.308 869.060± 16.870

Reachability & Safety:
3 (6, 18) 0.102± 0.002 0.508± 0.010 1.278± 0.022 2.557± 0.023
4 (6, 18) 0.116± 0.002 0.590± 0.009 1.485± 0.024 2.918± 0.046
5 (6,18) 0.179± 0.027 0.960± 0.037 2.329± 0.072 4.482± 0.116

the percentage of instances in which at least one feasible solution was returned
within the allotted time. In addition to the gridsize, the specification length was also
scaled for three classes of system and test objectives: i) reachability, ii) reachability
and reaction, and iii) reachability and safety. In the first case with reachability
objectives, the system and test specification are φsys = □ p0 and φtest =

∧n
i=1 □ pi,

and the total number of atomic propositions are |AP |= |{p0, . . . , pn}|= n + 1,
scaled upto n = 3 (or |AP |= 4). For the reachability and reaction objectives, the
system objective comprises of a reachability objective and a conjunction of delayed
reaction specification pattern: φsys = □ p0∧

∧n
i=1 □(pi → □ qi). The test objective

for this case is a conjunction of the triggers corresponding to the system objective:
φtest =

∧n
i=1 □ pi. Therefore, the total number of atomic propositions are |AP |=

|{p0, . . . , pn, q1, . . . , qn}|= 2n + 1, scaled upto n = 3. Finally, in the reaction and
safety case, the system objective consists of reachability and safety specifications:
φsys = □ p1∧

∧n
i=2□¬pi and the test objective is a single reachability specification

φtest = □ p0. The total number of atomic propositions are |AP |= |{p0, . . . , pn}|=
n+1, scaled upto n = 3. Note that only the length of the system objective changes
as the specification size is increased.

Table 4.9 lists the sizes of the specifications as well as runtimes for graph con-
struction (mean and standard deviation across 20 instances). The product graph
construction is a basic implementation in Python, and is not optimized for speed.
In future work, off-the-shelf symbolic methods can be leveraged to compute the
product graphs much more quickly.

135

4.12 Conclusions and Future Work
This work on flow-based synthesis of test strategies can help test engineers auto-
matically synthesize test environments (e.g., where should obstacles be placed, how
should the test agent strategy be implemented) that are guaranteed to meet speci-
fied system and test objectives. This chapter simplifies the routing optimization
introduced in the previous chapter, and presents MILP formulations for the differ-
ent types of test environments. Furthermore, this chapter shows how a reactive test
strategy can inform the choice of a test agent and also find an agent strategy that
implements the reactive test strategy. This is made possible by via GR(1) synthesis
and a counter-example guided approach to resolving the MILP to exclude dynam-
ically infeasible test strategies. Another important contribution of this chapter is
in establishing the computational complexity of the routing problem, which means
that using an MILP for the routing problem is an appropriate choice. Despite the
combinatorial nature of the problem, extensive experiments show that it can handle
medium-sized problem instances (thousands of integer variables) in a reasonable
time. The synthesized test strategies are reactive to system behavior, and route it
through the test objective, and if the system demonstrates unsafe behavior, it is a
fault in the system design. When the routing problem is solved to optimality, the
resulting test strategy is not overly-restrictive, and the is realized with the fewest
number of obstacles.

There are several exciting directions for future work. First, this framework can be
extended to automatically select from a library of test agents to optimize for test-
ing cost. Secondly, the use of symbolic methods in graph construction to improve
the overall runtime of the framework. Thirdly, finding good convex relaxations to
the MILP would result in dramatic speed-up since we would only have to solve a
linear program. However, a straight-forward convex relaxation on the binary vari-
ables does not return meaningful solutions; finding an often-tight convex solution
would require more careful study. Fourth, integrating the high-level test synthesis
in this work with dynamics from lower levels of the control hierarchy is an im-
portant open problem. This effort would include: i) interfacing with falsification
tools to automatically synthesis difficult tests, and ii) incorporate timing constraints
into system and test objectives. Finally, we must relate the synthesized tests to a
notion of coverage, and choose system and test objectives that that maximize the
coverage metric. A more comprehensive discussion on future directions is given in
Chapter 6.

136

C h a p t e r 5

ASSUME-GUARANTEE CONTRACTS FOR COMPOSITIONAL
TESTING

5.1 Introduction
The previous chapters discuss the synthesis of test strategies from system and test
objectives. In this chapter, we will motivate the idea of compositional test plans.
It might be desireable to construct a more complex test objective from simpler unit
tests, or to break-down a complex test into simpler tests, either by testing on smaller
sub-systems or conducting simpler tests. This chapter is a step in the direction to-
wards composable test plans. First, we will introduce a mathematical and algo-
rithmic framework in which simpler test objectives can be merged to form a more
complex test objective. Then, we will introduce mathematical frameworks based
in assume-guarantee contract operations to formally describe test campaigns, and
how tests can be merged or decomposed. For simplicity, we assume that the test
environment has already equipped to handle the test objectives.

This work is adapted from:

J.B Graebener∗, A. Badithela∗, R. M. Murray. (2022). “Towards Better Test Cov-
erage: Merging Unit Tests for Autonomous Systems.” In: 2022 NASA Formal

Methods (NFM), pp. 133–155. DOI: 10.1007/978-3-031-06773-0_7.

A. Badithela∗, J.B Graebener∗, I. Incer∗ , R. M. Murray. (2023). “Reasoning over
Test Specifications Using Assume-Guarantee Contracts.” In: 2023 NASA Formal

Methods (NFM), pp. 278–294. DOI: 10.1007/978-3-031-33170-1_17.

The contract-based-design framework was first introduced as a design methodol-
ogy for modular software systems [115–117] and later extended to complex cyber-
physical systems [118–120]. Following the definition of assume-guarantee con-
tracts earlier in the chapter, we will now cover background on other contract oper-
ators [121]. For ease of reading, we will repeat the definition of assume-guarantee
contracts below, and introduce other operators.

Definition 5.1 (Assume-Guarantee Contract). Let B be a universe of behaviors,
then a component M is a set of behaviors M ⊆ B. A contract is the pair C =

(A,G), where A are the assumptions and G are the guarantees. A component E is

https://doi.org/10.1007/978-3-031-06773-0_7
https://doi.org/10.1007/978-3-031-33170-1_17

137

an environment of the contract C if E |= A. A component M is an implementation

of the contract, M |= C if M ⊆ G ∪ ¬A, meaning the component provides the
specified guarantees if it operates in an environment that satisfies its assumptions.
There exists a partial order of contracts, we say C1 is a refinement of C2, denoted
C1 ≤ C2, if (A2 ≤ A1) and (G1∪¬A1 ≤ G2∪¬A2). We say a contract C = (A,G)

is in canonical, or saturated, form if ¬A ⊆ G.

C

C ′ ∥ C1
iff

C/C ′

C1

(a) Composition and quotient.

C1 • C2

C1 C1 ∥ C2 C2

C1 ∧ C2
(b) Order of operations.

Figure 5.1: Contract operators and the partial order, defined in relation to the re-
finement operator, of their resulting objects.

Assume the following contracts are in canonical form. The meet or conjunction of
two contracts exists [118] and is given by C1 ∧ C2 = (A1 ∪ A2, G1 ∩G2) . Com-
position [122] yields the specification of a system given the specifications of the
components: C1 ∥ C2 = ((A1 ∩ A2) ∪ ¬(G1 ∩G2), G1 ∩G2) . Given specifications
C and C1, the quotient is the largest specification C2 such that C1 ∥ C2 ≤ C [123]:
C/C1 = (A ∪G1, (G ∩ A1) ∪ ¬(A ∪G1)) . Strong merger [124] yields a specifica-
tion that is satisfied by a system that also satisfies the two given specifications C1
and C2: C1 • C2 = (A1 ∩ A2, (G1 ∩G2) ∪ ¬(A1 ∩ A2)) . The reciprocal (or mir-
ror) [124, 125] is a unary operation which inverts assumptions and guarantees:
C−1 = (G,A).

Remark 5.1. The statement contract C1 is more refined than contract C2 should be
interpreted as follows. A system implementation for C1 has fewer assumptions on
its environment and must provide more guarantees. In looking at sets of behav-
iors: the system must handle a larger set of environment behaviors while providing
stricter guarantees. Since the guarantees of C1 are stricter than C2, the set of system
behaviors satisfying guarantees of C1 is smaller than that of C2.

5.2 Preliminary Work on Merging Unit Tests
Recall the definition of a discrete-state system introduced in Chapter 4. In the previ-
ous chapter, the system specification could not be described as a GR(1) specification

138

since the property that there will always exist a path to satisfying the system goal
could not be characterized as a GR(1) formula. This is because the precise environ-
ment agents for a scenario were not given to the system; the system is only informed
that actions in the test harness can be restricted, but these restrictions will always
be such that the system has a feasible path. In this chapter, we assume that such
a test environment has been constructed according to the test synthesis framework
established in the previous chapter, and it is such that there always exists a path for
the system goal. For simplicity, we consider a class of system objectives which can
be written in the assume-guarantee form. The assumptions specify the dynamics of
the test environment agents that will be used in the test scenario, and tests consid-
ered are such that even the worst-case dynamics of the test agents will not prevent
the system from satisfying its requirements. Since this system objectives is a subset
of the system objective considered in the previous chapter, we will used the term
system specification instead. Let Tsys be the system transition system.

Definition 5.2 (System Specification). A system specification φsys is the GR(1)
formula,

φsys = (φinit
test ∧□φs

test ∧□ □φ
f
test)→ (φinit

sys ∧□φs
sys ∧□ □φ

f
sys) , (5.1)

where φinit
sys is the initial condition that the system needs to satisfy, φs

sys encode sys-
tem dynamics and safety requirements on the system, and φf

sys specifies recurrence
goals for the system which is defined to be on a sink state of the system. Likewise,
φinit

test, φ
s
test, and φf

test represent assumptions the system has on the test environment.

Once again, the objective is to synthesize a test strategy for the test environment
given the test specification. Unlike the system specification, the infinitely often
sub-task specification need not be restricted to be satisfied in a terminal state.

Definition 5.3 (Test Specification). A test specification φtest is the GR(1) formula,

φtest := (φinit
sys∧□φs

sys∧□ □φ
f
sys)→ (φinit

test∧□φs
test∧□ □φ

f
test∧□ψs

test∧□ □ψ
f
test) ,

(5.2)
where φinit

sys , φ
s
sys and φf

sys, φ
init
test, φ

s
test and φf

test are propositional formulas from equa-
tion (5.1). Additionally, □ψs

test and □ □ψ
f
test describe the safety and recurrence for-

mulas for the test environment in addition to the dynamics of the test environment
known to the system. Note that the system is unaware of these additional sub-task
specifications (similarly to the previous chapters), and the test environment is such

139

that the system is allowed to satisfy its requirements. Defining the test specifica-
tion in this manner allows for i) synthesizing a test in which the system, if properly
designed, can meet φsys, and ii) specifying additional requirements on the test envi-
ronment, unknown to the system at design time. We assume that test specifications
are defined a priori; we leave automatically finding relevant test specifications to
future work.

Having defined the system and test specifications, we define a product transition
system that represents the turn-based dynamics of the two players: Let Tprod be a
turn-based product transition system constructed from Tsys and Ttest, where Tprod.S :=

Tsys.S × Ttest.S, Tprod.A := Tsys.A × Ttest.A, and Tprod.δ ⊆ Tprod.S × Tprod.A ×
Tprod.S denotes the turn-based transition function. In particular, for every transition
(s, as, s

′) ∈ Tsys.δ, we have ((s, t), (as, at), (s
′, t)) ∈ Tprod.δ where t ∈ Ttest.S and

at ∈ Ttest.A. The transitions originating due to test agent actions are constructed
similarly. From the product transition system, we can construct a game graph that
maintains two copies of each state — one from which the system player acts and
the other from which the test environment acts.

Definition 5.4 (Game Graph). Let Vsys and Vtest be copies of the states Tprod.S. Let
Esys and Etest correspond to the transitions in the game graph:

Esys ={((s, t), (s′, t)) | ∃as ∈ Tsys.A, ∀at ∈ Ttest.A, ((s, t), (as, at), (s
′, t)) ∈ Tprod.δ},

Etest ={((s, t), (s, t′)) | ∃at ∈ Ttest.A, ∀as ∈ Tsys.A, ((s, t), (as, at), (s, t
′)) ∈ Tprod.δ}.

(5.3)
Then, the game graph is a directed graph G = (V,E) is a directed graph with
vertices V := Vsys ∪ Vtest and edges E := Esys ∪ Etest.

On the game graph, a player strategy, and the test execution resulting from it are
given below.

Definition 5.5 (Strategy). On the game graph G, a policy for the system is a func-
tion πsys : V ∗Vsys → Vtest such that (s, πsys(w.s)) ∈ Esys, where s ∈ Vsys and
w ∈ V ∗. Similarly defined, πtest denotes the test environment policy, where ∗ is the
Kleene star operator.

Definition 5.6 (Test Execution). A test execution σ = v0v1v2 . . . starting from ver-
tex v0 ∈ V is an infinite sequence of states on the game graph G. Since G is a
turn-based game graph, the states in the test execution alternate between Vsys and

140Framework

7Josefine Graebener Caltech

2/22/22

Merge Test
Specifications

Test Filter
Synthesis

Guided Test
Policy SearchUnit Test

Specifications

Robustness
Metric

Reactive Test
Policy

Test
Environment

System
Model

System
Specification

Defines test track layout

and test agents

Desired behavior
that shall

be observed
during the test

Simulation model

of the system

Defines system
behavior

Characterizes the difficulty

of the test trace

Merge Test
Specifications

Test Filter
Synthesis

Guided Test
Policy Search

Figure 5.2: Overview of the merging unit tests.

Vtest, so if V1 ∈ Vsys, then vi+1 = πsys(v0 . . . V1). Let σs0(πsys × πtest) be the test
execution starting from state s0 ∈ Vsys for policies πsys and πtest. Let Σ denote the
set of all possible test executions onG. A robustness metric ρ : Σ→ R is a function
evaluated assigning a scalar value to a test execution.

Problem 5.1. Given system and environment transition systems, Tsys and Ttest, two
unit test objectives φtest,1 and φtest,2, and a robustness metric ρ, find a test strategy
π∗

test, such that

π∗
test = arg max

πtest
ρ(σ(πsys × πtest))

s.t. σ(πsys × πtest) |= (φtest,1 ∧ φtest,2) , ∀ πsys |= φsys.
(5.4)

Example 5.1 (Running Example — Lane Change). Consider the lane change sce-
nario illustrated in Figure 5.3. The system (red car) is required to change lanes
into the lower lane before the track ends without colliding with the test environ-
ment agents (blue cars). The system liveness requirement is, φf

sys := (ysys = 2),
and its safety requirement of no collisions is with test agent labeled i, is: ¬(ysys =

ytest,i∧xsys = xtest,i) ∈ φs
sys. In the first two panels, we observe the test agent chang-

ing lanes in front of and behind a test car, respectively. In the merged test execution
of the third panel, we see the test agent change lanes exactly in between the two
blue cars.

141

Figure 5.3: Lane change example
with initial (left) and final (right) con-
figurations. The x-coordinates are
numbered from left to right, and y-
coordinates are numbered top to bot-
tom, starting from 1. The system
(red) is required to merge into the
lower lane without colliding. Merg-
ing in front of (top), behind (center),
or in between (bottom) tester agents
(blue).

5.3 Strong Merge Operator
In this section, we formalize the the construction of a single test specification from
unit test specifications using the strong merge operator from contract theory. Addi-
tionally, we will introduce the notion of adding temporal constraints to the merged
test specification to ensure that the resulting test execution reliably satisfies all the
unit test specifications. Finally, for the merged test specifications, we use Monte-
Carlo Tree Search to find a test strategy on the game graph such that a metric of
difficulty is maximized.

The strong merge operator defines the merge of two contracts C1 and C2 as follows:

C1 • C2 =(a1 ∧ a2, (a1 ∧ a2)→ [(a1 → g1) ∧ (a2 → g2)])

=(a1 ∧ a2,¬a1 ∨ ¬a2 ∨ (g1 ∧ g2)).
(5.5)

Additionally, other operators from assume-guarantee contract theory such as com-

position and conjunction [122, 124] will be introduced later in the chapter. Among
all these operators, strong merge is the only operator that conjoins assumptions of
the individual contracts, and consequently, enforces all unit test specifications to
hold true. Thus, we choose the strong merge operator to derive the merged test
specification.

Given any two unit test specifications, φtest,1 and φtest,2, the corresponding contracts
are C1 = (a1, a1 → g1) and C2 = (a2, a2 → g2), where ai = (φinit

sys ∧ □φs
sys ∧

□ □φf
sys) is the assumptions on the system (under test), and gi = (φinit

test,i∧□φs
test,i∧

□ □φ
f
test,i ∧□ψs

test,i ∧□ □ψ
f
test,i) is the guarantees for unit test i. We use the term

gt,i := ψf
test,i) to refer to the liveness portion of the test objective unknown to the

system under test.

142

Remark 5.2. We make a few simplifying assumptions on the unit test guarantees
gi. First, we assume that the only recurrence requirements in the test specification
is □ □ψ

f
test,i, which is not known to the system since it is not a part of the system’s

assumptions on the environment. Second, we assume that the merged test environ-
ment Ttest,m is a simple Cartesian product of the unit test environments, Ttest,1 and
Ttest,2. On the merged test environment, we take the agents from the individual tests:
we translate the initial conditions of the agents in the unit tests φinit

test,1 and φinit
test,2, and

test agent dynamics φs
test,1 and φs

test,2 are also the same.

Definition 5.7 (Merged Test Specification). From the merged contract Cm := C1• C2
= (am, am → gm), the specification φtest,m = am → gm, where am = a1 ∧ a2, and
gm = [(a1 → g1)∧(a2 → g2)] is the merged test objective. A test environment strat-
egy πtest,m for merged test objective φtest,m results in a test execution σ |= φtest,m.

The following result is taken from [126].

Lemma 5.1. Given unit test specificationsφtest,1 andφtest,2 such thatφtest,m = am →
gm is the corresponding merged test specification. Then, for every test execution
σ |= φtest,m such that σ |= am, we also have that σ |= φtest,1 and σ |= φtest,2.

Proof. Suppose C1 and C2 are the assume-guarantee contracts corresponding to
unit test specifications φtest,1 and φtest,2. Applying strong merge operator on con-
tracts C1 and C2, we get:

C1 • C2 =(a1 ∧ a2, (a1 ∧ a2)→ [(a1 → g1) ∧ (a2 → g2)])

=(a1 ∧ a2,¬a1 ∨ ¬a2 ∨ (g1 ∧ g2)).
(5.6)

Thus, the merged test specification φtest,m = ¬a1 ∨ ¬a2 ∨ (g1 ∧ g2) requires either
one of the assumptions to not be satisfied, or for both the guarantees hold. Since
σ |= am = a1 ∧ a2, and σ |= φtest,m, we get that σ |= φtest,1 and σ |= φtest,2.

Guarantees g1 and g2 are used guide the choice of a test strategy; strategies that
vacuously satisfy the merged test specification by violating the assumptions are not
returned. This is necessary in order to give the system an opportunity to satisfy its
specification. If the assumptions on the merged test specifications are violated, it
would be because of a fault in system design.

Example 5.2 (Lane Change (continued)). In the lane change example, the unit test
specifications are changing into the lane behind a blue car and changing into the

143

lane in front of the blue car. For each specification, the saturated assume guarantee
contracts are defined as C1 = (a1, a1 → g1) and C2 = (a2, a2 → g2) with a1 =

φinit
sys ∧ □φs

sys ∧ □ □(y = 2) and g1 = □ □(y = y1 = 2 ∧ x = x1 + 1), and
a2 = φinit

sys ∧ □φs
sys ∧ □ □(y = 2) and g2 = □ □(y = y2 = 2 ∧ x = x2 − 1)

being the assumptions and guarantees of the two individual tests. Thus, applying
the strong merge operation to the unit contracts results in the guarantee,

gm = □ □(y = y1 = 2 ∧ x = x1 + 1) ∧□ □(y = y2 = 2 ∧ x = x2 − 1). (5.7)

5.4 Temporal Constraints on Merging Tests
Naively merging test objectives might not always result in a merged test execu-
tion that checks the constituent unit test objectives. In the running example on
lane change, lane change maneuver behind a vehicle in the other lane does not al-
ways coincide with a proper lane change in front of another vehicle. That is, there
may exist many test executions of changing lanes behind a vehicle, and some of
them, but not all, coincide with changing lanes in front of another vehicle. In these
scenarios, the test specifications can be merged in parallel, without any additional
temporal constraints on how agents for each test environment must operate.

However, when all executions resulting from a one of the unit test specification also
satisfy the other (as we will see in the unprotected left turn example), the merged
test specification alone is not sufficient. We need to add temporal constraints so that
there is a time in which each test specification is checked individually.

The following result is taken from [126].

Lemma 5.2. If for two test specifications φtest,1 and φtest,2, and the set of all test
executions Σ, we have σ |= φtest,1 ⇐⇒ σ |= φtest,2∀σ ∈ Σ, then these tests cannot
be parallel-merged. Instead, the temporal constraint must be enforced on gt,1 and
gt,2.

Proof. We refine the general specification in equation (5.6), which allows any tem-
poral structure, to include the temporal constraints in the guarantees. The tempo-
rally constrained merged test specification is thus defined as φ′

test,m = am → g′m,
with

g′m = ¬a1 ∨ ¬a2 ∨ (□(gt,1 ∧ ¬gt,2) ∧ □(¬gt,1 ∧ gt,2) ∧ (g1 ∧ g2)). (5.8)

Because any trace σ satisfying φ′
test,m will also satisfy φtest,m, σ |= φ′

test,m ⇒ σ |=
φtest,m. Any test trace satisfying this specification will consist of at least one occur-

144

rence of visiting a state satisfying gt,1 and not gt,2 and vice versa. Thus the guar-
antees of the specifications for each unit test, gt,1 and gt,2 are checked individually
during the merged test which satisfies the temporal constraints.

Receding Horizon Synthesis of Test strategy Filter
Since the test specification characterizes the set of possible test executions, we need
a strategy for the test environment that is consistent with the test specification. In
this section, we detail the construction of an auxiliary game graph and algorithms
for receding horizon synthesis of the test specification on the auxiliary game graph.
This filter will then be used to find the test strategy using Monte-Carlo Tree Search.

Auxiliary Game Graph Gaux

Assume we are given a game graph G = (V,E) constructed according to Defini-
tion 5.4, and a (merged) test specification φtest,m inGR(1) form as in equation (5.2).
Then, for each recurrence requirement in the test specification, □ □ψ

f
test, we can

find a set of states I = {i1, . . . , in} ⊆ V that satisfy the propositional formula ψf
test.

For each i ∈ I, there exists a non-empty subset of vertices V s ⊆ V that can be
partitioned into {V i

0, . . . ,V i
n}. We follow [18] in partitioning the states; V i

k is the
set of states in V that is exactly k steps away from the goal state i. From this par-
tition of states, we can construct a partial order, P i = ({V i

0, . . . ,V i
n},≤), such that

V i
l ≤ V i

l−1 for all l ∈ {0, . . . , n}. This partial order will be useful in the receding
horizon synthesis of the test strategy outlined below [18].

We construct an auxiliary game graph Gaux = (Vaux, Eaux) (illustrated in Figure 5.4)
to accommodate any temporal constraints on the merged test specification before
proceeding to synthesize a filter for the test strategy. Without loss of generality,
we elaborate on the auxiliary graph construction in the case of one recurrence re-
quirement in each unit specification, but this approach can be easily extended to
multiple progress requirements. An illustration of the auxiliary graph is given in
Figure 5.4. Let φtest,1 and φtest,2 be the two unit test specifications, with ψf

test,1 and
φf

test,2, respectively. First, we make three copies of the game graph G = (V,E) —
Gφtest,1∨φtest,2 = (V1∨2, E1∨2), Gφtest,1 = (V1, E1), and Gφtest,2 = (V2, E2). Note that,
V1∨2, V1 and V2 are all copies of V , but are denoted differently for differentiating
between the vertices that constitute Gaux, and a similar argument applies to edges
of these subgraphs. Let V i

0 =
⋃
V ij
0 ⊆ V1∨2 be the set of states in Gφtest,1∨φtest,2 that

satisfy propositional formula ψf
test,1. Likewise, the set of states Vk

0 ⊆ V1∨2 satisfy

145

…
⋮ ⋮

⋮ ⋮"i1
p

"in
p "in

jn
"in0

"i10"i1
j1

…
⋮ ⋮

⋮ ⋮"k1
p

"km
p "km

jm
"km0

"k10"k1
j1

Gφtest,1 ∨ φtest,2

Gφtest,2

Gφtest,1

Figure 5.4: Auxiliary game graph
construction for the merged test
specification of unit test specifica-
tions φtest,1 and φtest,2. Subgraphs
Gφtest,1∨φtest,2 , Gφtest,1 and Gφtest,2 are
copies of the game graph G con-
structed per Definition 5.4. In
Gφtest,1∨φtest,2 , the sets of states at
which the progress propositional for-
mulas of test specifications, φtest,1 and
φtest,2, are satisfied are shaded yellow
and blue, respectively.

the propositional formula ψf
test,2.

Now, we connect the various subgraphs through the vertices in V i
0 and Vk

0 . Let
(vk0 , u) be an outgoing edge from a node vk0 ∈ Vk

0 , and let u1 be the vertex in sub-
graph Gtest,1 that corresponds to vertex u in Gφtest,1∨φtest,2 . Remove edge (vk0 , u) and
add the edge (vk0 , u1). Likewise, every outgoing edge from V i

0 ∪ Vk
0 in Gφtest,1∨φtest,2

is replaced by adding edges to Gφtest,1 and Gφtest,2 . On subgraphs Gφtest,1 and Gφtest,2 ,
vertices are partitioned and partial orders are constructed once again for ψf

test,1 and
ψf

test,2, respectively. From V i
0 defined on the nodes of the graph Gφtest,1 , every out-

going edge is replaced by a corresponding edge to Gφtest,1∨φtest,2 . Subgraph Gφtest,2 is
connected back to Gφtest,1∨φtest,2 in a similar manner. The construction of the auxil-
iary graph Gaux and partial order P i is summarized in Algorithm 7. Our choice of
constructing the auxiliary graph in this manner is amenable to constructing a simple
partial order as outlined below.

Assumption 5.1. For unit test specifications φtest,1 and φtest,2 with recurrence spec-
ifications φp

1 and φp
2, respectively, such that φp

1 = □ □ψ
f
test,1 and φp

2 = □ □ψ
f
test,2.

Suppose there exist partial ordersP i = ({V i
n, . . . ,V i

0},≤) andPk = ({Vk
m, . . . ,Vk

0 },≤
) on G corresponding to ψf

test,1 and ψf
test,2, respectively. Assume that at least one of

the following is true: (a) there exists an edge (u1, v2) where u1 ∈ V i
0 and v2 ∈ Vk

j

for some j ∈ {1, . . . ,m}, (b) there exists an edge (u2, v1) where u2 ∈ Vk
0 and

v1 ∈ V i
j for some j ∈ {1, . . . , n}.

The following Lemma is taken from [126].

Lemma 5.3. If Assumption 5.1 holds, there exists a partial order on Gaux for the
merged recurrence propositional formula, ψf

test,m, where ψf
test,m is the propositional

146

Algorithm 7: Construction of Partial Order and Auxiliary Graph

1: procedure GAUX((G,ψf
test,1, ψ

f
test,2))

Input: Game graph G = (V,E), propositional formulas ψf
test,1 and ψf

test,2
constituting the progress requirements of unit test specifications

Output: Auxiliary game graph Gaux

2:
3: Gφtest,1∨φtest,2 := (V,E)← G Initialize subgraph
4: Gφtest,1 := (V1, E1)← G Initialize subgraph
5: Gφtest,2 := (V2, E2)← G Initialize subgraph
6: [P i

φtest,1∨φtest,2
,Pk

φtest,1∨φtest,2
]← Partial order(Gφtest,1∨φtest,2 , [ψ

f
test,1, ψ

f
test,2])

7: P i
φtest,1

← Partial order(Gφtest,1 , ψ
f
test,1)

8: Pk
φtest,2

← Partial order(Gφtest,2 , ψ
f
test,2)

9: Er
φtest,1∨φtest,2

⊆ E Deleting outgoing edges from V i
0 ∪ Vk

0 ⊆ V within
Gφtest,1∨φtest,2

10: Ea
φtest,1∨φtest,2

Adding edges from V i
0∪Vk

0 ⊆ V to subgraphsGφtest,1 andGφtest,2

11: Er
φtest,1

⊆ E1 Deleting outgoing edges from V i
0 ⊆ V1 within Gφtest,1

12: Ea
φtest,1

Adding edges from V i
0 ⊆ V1 to subgraph Gφtest,1∨φtest,2

13: Er
φtest,2

⊆ E2 Deleting outgoing edges from Vk
0 ⊆ V2 within Gφtest,2

14: Ea
φtest,2

Adding edges from Vk
0 ⊆ V2 to subgraph Gφtest,1∨φtest,2

15: Vaux = V ∪ V1 ∪ V2
16: Eaux = (E \Er

φtest,1∨φtest,2
)∪ (E1 \Er

φtest,2
)∪ (E2 \Er

φtest,2
)∪Ea

φtest,2
∪Ea

φtest,1
∪

Ea
φtest,1∨φtest,2

17: Gaux = (Vaux, Eaux)
18: return Gaux,P i

φtest,1∨φtest,2
,Pk

φtest,1∨φtest,2
,P i

φtest,1
,Pk

φtest,2

formula that evaluates to true at: (i) all v ∈ V1∨2 such that v |= ψf
test,1 ∧ ψ

f
test,2, (ii)

all v ∈ V1 such that v |= ψf
test,1, and (iii) all v ∈ V2 such that v |= ψf

test,2.

Proof. Let Vm
0 ⊆ Vaux denote the non-empty set of states at which ψf

test,m evaluates
to true. Then, let Vm

j ⊆ Vaux be the subset of states that is at least j steps away
from a vertex in Vm

0 . Then, construct the partial order Pm = ({Vm
l , . . . ,Vm

0 },≤
), where l is the distance of the farthest vertex connected to Vm

0 . The subset of
vertices

⋃
j Vm

j ⊆ Vaux is non-empty because Vm
0 is non-empty. Furthermore, from

Assumption 5.1, if (a) holds, there exists a j ∈ {1, . . . , l} such that Vm
j ∩ V i

0 is
non-empty. Likewise, if (b) holds, there exists a j ∈ {1, . . . , l} such that Vm

j ∩Vk
0 is

non-empty. Therefore, for some j ∈ {1, . . . , l} there exists a test execution σ over
the game graph Gaux such that σ |= □ □ψ

f
test,m.

Remark 5.3. If Assumption 5.1 is not true, the unit tests corresponding to test

147

objectives φtest,1 and φtest,2 cannot be merged.

Receding Horizon Synthesis on Gaux

We use receeding horizon synthesis for a more scalable construction of the winning
setWI — the set of states from which the test environment can still satisfy the test
objective. This winning set will then serve as a safety filter during Monte Carlo
Tree Search to exclude trajectories that do not satisfy the test objectives. Further
details on receeding horizon temporal logic planning can be found in [18].

For a test objective φtest,1 with progress propositional formula ψf
test,1, let I be the

set of states on Gaux at which ψf
test,1 evaluates to true. Suppose the product state of

the system and environment is some j steps away from a state i ∈ I: v ∈ V i
j+1. If

we want the test environment to guide the execution to two steps ahead to V i
j−1, the

intermediate specification for the test environment is as follows.

ψi
j = (v ∈ V i

j+1∧Φ∧□φs
sys∧□ □φ

f
sys)→ (□ □(µ

i
visited,j−1)∧□φs

test∧□ψs
test∧□Φ),

(5.9)
where Φ is the invariant condition that ensures that ψi

j is realizable, and µi
visited,j−1 is

an auxiliary variable which becomes true (and remains true) once the product state
v has reached a state j − 1 steps away from i: v ∈ V i

j−1. The construction of the
invariant set Φ is given in [18]. It is sufficient to for the test environment to guide
the execution to at least one node i ∈ I, which can be formally stated as,

ΨI
j = ∨i∈I ψi

j . (5.10)

The set of states of Gaux from which the test environment has a strategy to satisfy
equation (5.10) is denoted byWI

j . This set serves as a short-horizon filter to guide
the test strategy from j steps away to the goal set I.

Consider the set of shortest paths: {Path(v, i)|v ∈ V, i ∈ I}. Let jmax denote the
length of the longest path in this set. The overall winning set filter is the union of
individual winning sets:

WI =

jmax⋃
j=1

WI
j . (5.11)

Construction of WI , and its use as a safety filter for finding test strategies using
MCTS is outlined in Algorithm 8. For the merged test objective,WI is generated on
Gaux where I is the set of states corresponding to ψf

test,m. We will need the following
notation to denote the graph induced by the setWI . Let GWI = (VW , EW) be the

148

subgraph of Gaux induced byWI such that VW =WI ⊆ Vaux and EW = {(u, v) ∈
Eaux |u ∈ WI ∧ v ∈ WI}.

OnWI as a test strategy filter

Inspired by work on shield synthesis [127], we use the winning setWI as a filter to
guide rollouts in the Monte Carlo Tree Search sub-routine for finding the test strat-
egy. Since ΨI

j is a disjunction of short-horizon GR(1) specifications, it is possible
that an execution always satisfies ΨI

j without ever satisfying the progress require-
ment □ □ψ

f
test. This happens when the test execution makes progress towards some

i ∈ I but never actually reaches a goal in I, resulting in a live lock. Further details
addressing this are given in the Appendix. We assume that the graph is constructed
such that there are no such cycles. In addition to using W I to ensure that ΨI

j will
always be satisfied, we enforce progress by only allowing the search procedure to
take actions that will lead to a state which is closer to one of the goals i ∈ I. Thus,
the search procedure will ensure that for every state vl ∈ V i

j , the control strategy for
the next horizon will end in vl′ ∈ V i

k, such that k ≤ l for at least one goal i ∈ I.

The following theorem and proof is taken from [126].

Theorem 5.1. Receding horizon synthesis of test filter WI is such that any test
execution σ on GWI starting from an initial state in VW ∩ V satisfies the test speci-
fication in equation (5.2).

Proof. For the recurrence formula of the merged test specification, □ □ψ
f
test,m,

suppose there exists a single vertex on Gaux that satisfies ψf
test,m. Then, it is shown

in [18] that if there exists a partial order ({V i
p, . . . ,V i

0},≤) on Gaux, we can find a
set of verticesW i ⊆ Vaux, such that every test execution σ that remains inW i, will
satisfy the safety requirements □φs

test and □ψs
test, and the invariant Φ. Furthermore,

given the partial order ({V i
p, . . . ,V i

0},≤), one can find a test policy to ensure that
the σ makes progress along the partial order such that for some t > 0, σt ∈ V i

0.
However, in case of multiple vertices in Gaux that satisfy ψf

test,m, we need to extend
the receding horizon synthesis to specification ΨI

j . We construct the filterWI and
also check that for every test execution σ, there exists i ∈ I such that for every
k ≥ 0, σk ∈ V i

j and σk+1 ∈ V i
j′ . Therefore, because the auxiliary game graph is

assumed to not have cycles, the test execution makes progress on the partial order
of at least one i ∈ I at each timestep, thus eventually satisfying ψf

test,m. Thus every
execution of our algorithm will satisfy equation (5.2).

149

Algorithm 8: Merge Unit Tests (φtest,1, φtest,2, φsys, Tsys, Ttest,1, Ttest,2, ρ)

1: procedure MERGEUNITTESTS((φtest,1, φtest,2, φsys, Tsys, Ttest,1, Ttest,2, ρ))
Input: Unit test specifications φtest,1 and φtest,2, system specification φsys,

System Tsys, unit test environments, Ttest,1 and Ttest,2, and quantitative metric of
robustness ρ,

Output: Merged test specification φtest,m, Merged test environment Ttest,m,
Merged test policy πtest,m

2: C1, C2 ← Construct contracts for φtest,1 and φtest,2

3: Ttest ← Ttest,1 × Ttest,2 Merged test environment
4: Tprod ← Tsys × Ttest Product transition system
5: G← Game graph from product transition system Tprod
6: Cm := (am, am → gm) ← strong merge(C1, C2) Constructing the merged

specification
7: φtest,m ← am → gm Merged test specification
8: Gaux ← Auxiliary game graph.
9: I = {s ∈ Vaux|s |= ψf

test,m} Defining goal states and partial orders
10: for i ∈ I do
11: P i := {(V i

p, . . . ,V i
0)} ← Partial order for goal i

12: ψi
j ← Receding horizon specification for goal i at distance j

13: WI :=
⋃
{W i

j} ← Test policy filter for goal i at a distance of j
14: πtest,m ← Searching for test policy guided byWI

15: return φtest,m, Ttest,m, πtest,m

Test Strategy Synthesis: Monte Carlo Tree Search is used to sample trajectories
on Gaux after applying the safety filterWI to find a reactive test strategy πtest,m that
satisfies the merged test objective. This procedure allows for optimizing for a metric
of difficulty while also ensuring that all test strategies do not construct impossible
tests for the system. Using MCTS with an upper confidence bound (UCB) was
introduced in [128] as the upper confidence bound for trees (UCT) algorithm, which
guarantees that given enough time and memory, the tree search converges to the
optimal solution. We use MCTS to find π∗

test,m, the optimal solution to Problem 5.1
for the merged test objective.

The following theorem and proof are taken from [126].

Theorem 5.2. Algorithm 1 is sound.

Proof. This follows by construction of the algorithm and the use of MCTS with
UCB. Given a test policy πtest and a system policy πsys, for every resulting execu-
tion σπsys×πtest starting from an initial state inWI , it is guaranteed that σ |= φtest,m

150

by Theorem 5.1. This is because for any action chosen by the test environment
according to the policy πtest found by MCTS, we are guaranteed to remain in WI

for any valid system policy πsys. If WI = ∅ or the initial state is not in WI , the
algorithm will terminate before any rollout is attempted and no policy is returned.
It can be shown that the probability of selecting the optimal action converges to 1
as the limit of the number of rollouts is taken to infinity. For convergence analysis
of MCTS, please refer to [128].

Complexity: The time complexity of GR(1) synthesis is in the order of O(|N |3),
where N is the number of states needed to define the GR(1) formula. To improve
scalability, our algorithm uses a receding horizon approach to synthesize the win-
ning sets, which further reduces the time complexity. The upper confidence tree
algorithm of MCTS is given as O(ijkl) with j the number of rollouts, k the branch-
ing factor of the tree, l the depth of the tree, and i the number of iterations.

Simulation Experiments
This framework is illustrated on discrete gridworld examples where the system con-
troller is non-deterministic and the test agents behave according to the synthesized
test strategy. The Temporal Logic and Planning Toolbox (TuLiP) [109] is used for
constructing winning sets [108], and an open-source script1 for the online MCTS
algorithm to find the test strategy. Simulation videos of at the linked GitHub repos-
itory2.

Lane Change
For the lane change example, we define ρ(σ) as the x-value of the cell in which the
system finished its lane change maneuver.The test strategy is found to be consistent
with the test objective in equation (5.7) while also maximizing by maximizing ρ(σ).
The metric ρ is the chosen metric of difficulty; the closer to the end of the lane, the
fewer attempts the system will have for a successful lane change. Snapshots of the
resulting test execution are depicted in Figure 5.5.

Unprotected left turn
In this example, the test environment consists of a pedestrian and a blue car, and
the system is the red car, as illustrated in Figure 5.6. The unit tests correspond to

1https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1
2https://github.com/jgraeb/MergeUnitTests

https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1
https://github.com/jgraeb/MergeUnitTests

151

T = 0

T = 12

T = 15

T = 36

T = 42

T = 43

Figure 5.5: Snapshots during the execution of the test generated by our framework.
The system under test (red car) needs to merge onto the lower lane between the two
test agents (blue cars).

y
z

Figure 5.6: Layout of the unprotected left turn at intersection example. The system
starts in cell (7,4) and wants to reach the goal cell (0,3), while the initial positions
of the test agents are at the beginning of the road and crosswalk.

waiting for an oncoming car to pass the intersection, and waiting for a pedestrian to
pass before taking a left turn.

The system requirement is to safely take an unprotected left turn. The unit specifi-
cations for waiting for the pedestrian are defined according to equation (5.2):

φinit
sys = (xS ∈ IS), φf

sys = (xS ∈ SG), ψf
test,ped = (xS ∈ SP ∧ xP ∈ TP) ,

(5.12)

where xS is the system state, IS is the initial state of the system, SG is the set of
goal state following the left turn, xP is the pedestrian state, and SP are the states in

152

which the car must wait for the pedestrian if the pedestrian state is in TP . Similarly,
the unit test objective for waiting for the test car is given as follows:

φinit
sys = (xS ∈ IS), φf

sys = (xS ∈ SG), ψf
test,car = (xS ∈ SC∧xC ∈ TC) , (5.13)

where the C denotes the test agent car in blue. The coordinate system has origin
in the upper left corner with cell (y, z) = (0, 0), with the y-axis facing south and
the z-axis facing east. The crosswalk locations are numbered from north to south,
starting at 0.

The initial states of the test agents are xC = (0, 3) and xP = 0, and the initial
state of the system is xS = (7, 4). The goal state for the system is xG = (0, 3).
In this example, xG is the only element in SG. The state in which the system
needs to wait for the pedestrian and the car, SC and SP , respectively, are both
x = (4, 4). When the test agent has not yet approached the intersection or has just
approached the intersection, the system must wait. These states of the test agent
are TC = {(0, 3), (1, 3), (2, 3), (3, 3)}. Similarly, the states of the pedestrian for
which the system has to wait are SP = {1, 2, 3, 4, 5}, which represent the cells on
the crosswalk, that map to grid coordinates. Note that if the pedestrian is in cell 0,
the system is not required to wait for the pedestrian, as she is too far away from the
road. The traffic light sequence is predetermined, the light will be green for a fixed
number of time steps tg, followed by ty time steps of yellow and red for tr time
steps. We are assuming that the system designer supplied the robustness metric as
the time until the traffic light turns red, resulting in a harder test the closer the light
is to red once the system successfully takes the turn.

The robustness metric at a state is defined to be the time left until the traffic light
changes to red, starting at the moment the system enters the intersection. The ro-
bustness over the entire trajectory is the minimum value of the robustness of all
states in the trajectory. The smaller the value of this robustness, the more diffi-
cult the test for the reason that the system has fewer opportunities to successfully
complete its task.

Additionally, this is an example in which all trajectories of the car taking a left turn
while waiting for the pedestrian will also satisfy the condition of waiting for the
test car and vice-versa. That is, σ |= □ψ

f
test,ped ⇐⇒ σ |= □ψ

f
test,car. As a result,

for this example, we add temporal constraints to the merged test objective to ensure
that the two events do not entirely coincide.

153

Figure 5.7: Snapshots during
the execution of the unpro-
tected left turn test generated
by our framework. The au-
tonomous vehicle (AV) un-
der test (red) should take
an unprotected left turn and
wait for the pedestrian and
the car (blue) individually,
which are agents of the test
environment. In the snap-
shots at time steps 8 and 12,
the AV waits just for the car,
and in time step 21 it waits
just for the pedestrian.

The resulting test execution is shown in Figure 5.7. As expected, we see the system
first waiting for the test car to pass the intersection. Even after the tester car passes,
the pedestrian is still traversing the crosswalk, causing the system to wait for the
pedestrian, satisfying the temporally constrained merged test objective.

5.5 Contract Theory for Formalizing Compositional Testing
So far, we have seen the use of the strong merge operator in constructing a single test
from unit tests. In this part of the chapter, we explore the use of assume-guarantee
contracts not only to combine tests, but also split complex tests into simpler unit
tests on the overall system or on subsystems. We further explore the algebra of
assume-guarantee contracts, and leverage contract operators to formalize this rea-
soning over test objectives. Finally, we illustrate test executions corresponding to
the combined and split test structures in a discrete autonomous driving example and
an aircraft formation-flying example. This work is a step towards formal methods
to construct test campaigns from unit tests.

To apply concepts from this formalism, we introduce the test structure — a tuple
that carries i) the formal specifications of the system under test, and ii) the test
objective, which is specified by a test engineer. We build on test structures to define
test campaigns and specifications for the tester. We address the following questions
using the formalism of assume-guarantee contracts:

(Q1) Comparing Tests: Is it possible to define an ordering of tests? When is one

154

test considered a refinement of another? See Section 5.8.

(Q2) Combining Tests: Can multiple unit test objectives be checked in a single
test execution? See Section 5.7.

(Q3) Splitting Tests: From a complex test objective, can we split into component-
level tests or split the test objective into simpler objectives? See Section 5.9.

5.6 Test Structures and Tester Specifications
For conducting a test, we need i) the system under test and its specification to be
tested and ii) specifications for the test environment that ensure that a set of be-
haviors (specified by the test engineer) can be observed during the test. These sets
of desired test behaviors are characterized by the test engineer in the form of a
specification. The system specifications make some assumptions about the test en-
vironment. The test objective, together with the system specification, is used to
synthesize a test environment and corresponding strategies of the tester agents. As
a result, the test objective is not made known to the system since doing so would
reveal the test strategy to the system. These concepts are formally defined below.

Definition 5.8. The system specification is the assume-guarantee contract denoted
by Csys = (Asys, Gsys), where Asys are the assumptions that the system makes
on its operating environment, and Gsys denotes the guarantees that it is expected to
satisfy if Asys evaluates to ⊤. In particular, Asys are the assumptions requiring a
safe test environment, and ¬Asys

i ∪G
sys
i are the guarantees on the specific subsystem

that will be tested.

Csys = (Asys,¬Asys ∪
⋂
i

(¬Asys
i ∪Gsys

i)).

Definition 5.9. A test objective Cobj = (⊤, Gobj), where Gobj characterizes the
set of desired test behaviors, is a formal description of the specific behaviors that
the test engineer would like to observe during the test.

These contracts can be refined or relaxed using domain knowledge. Using defini-
tions (5.8) and (5.9), we define a test structure, which is the unitary object that we
use to establish our framework and for the analysis in the rest of the chapter.

Definition 5.10. A test structure is the tuple t = (Cobj, Csys) comprising of the
test objective and the system requirements for the test.

155

Figure 5.8: Block diagram showing contracts specifying the system specification
Csys, the test objective Cobj, and the test environment Ctester.

Given the system specification and the test objective, we need to determine the spec-
ification for a valid test environment, which will ensure that if the system meets its
specification, the desired test behavior will be observed. The resulting test exe-
cution will then enable reasoning about the capabilities of the system. If the test
is executed successfully, the system passed the test, and conversely, if the test is
failed, it is because the system violated its specification and not due to an erroneous
test environment.

Now we need to find the specification of the test environment, the tester contract
Ctester, in which the system can operate and will satisfy the test objective according
to Figure 5.8, with I, O denoting the inputs and outputs of the system contract. This
contract can be computed as the mirror of the system contract, merged with the test
objective, which is equivalent to computing the quotient of Cobj and Csys [121]:

Ctester = (Csys)−1 • Cobj = Cobj/Csys.

The tester contract can therefore directly be computed as

Ctester = (Gsys, Gobj ∩ Asys ∪ ¬Gsys). (5.14)

Remark: Since it is the tester’s responsibility to ensure a safe test environment,
Asys, a test is synthesized with respect to the following specification,⋂

i

(¬Asys
i ∪Gsys

i)→ Asys ∩Gobj. (5.15)

A successful test execution lies in the set of behaviors Asys ∩ Gsys ∩ Gobj, and
an unsuccessful test execution is the sole responsibility of the system being unable
to satisfy its specification. Thus, any implementation of Ctester will be an envi-
ronment in which the system can operate and satisfy Cobj if the system satisfies its
specification, a geometric interpretation is shown in Figure 5.9.

156

(a) Assumptions A of the contract. (b) Guarantees ¬A ∪G of the contract.

Figure 5.9: Geometric interpretation of an assume-guarantee contract (A,G) as a pair of
sets of behaviors. The first element of the pair describes the set of behaviors for which the
assumptions A hold, and the second element describes the set of behaviors for which G
holds or A does not hold. The tester failing to provide the guarantees G (square) does not
satisfy the contract. The set of desired test executions is in the intersection of the assump-
tions and guarantees (star), and the set of test executions that fall outside the assumptions
(diamond) are because the system under test failed to satisfy its requirements.

5.7 Combining Tests
Earlier in the chapter, the strong merge operator was used to merge unit test objec-
tives into a single objective. However, it required careful specification of assump-
tions and guarantees in a single GR(1) specification. Using the test structures in-
troduced in the previous section, combining unit test contracts via the strong merge
operator is equivalent to merging unit test specifications. The advantage of the new
formalism is that it allows us to easily compose system and test objectives sepa-
rately, without manual checking. The strong merge of test contracts is defined as
follows.

Proposition 5.1. Ctester
1 • Ctester

2 = (Cobj
1 ∥ Cobj

2)/
(
Csys
1 ∥ Csys

2

)
.

Proof. Merging tester contracts yields

Ctester
1 • Ctester

2 =(Cobj
1 /Csys

1) • (Cobj
2 /Csys

2)

=(Cobj
1 • (Csys

1)−1) • (Cobj
2 • (Csys

2)−1) ([129], Section 3.1)

=(Cobj
1 • Cobj

2) •
(
(Csys

1)−1) • ((Csys
2)−1)

)
=(Cobj

1 • Cobj
2) •

(
Csys
1 ∥ Csys

2

)−1

([121], Table 6.1)

=(Cobj
1 • Cobj

2)/
(
Csys
1 ∥ Csys

2

)
=(Cobj

1 ∥ Cobj
2)/

(
Csys
1 ∥ Csys

2

)
, (Aobj

1 = A
obj
2 = ⊤))

which is the list (Cobj
1 ∥ Cobj

2 , Csys
1 ∥ Csys

2).

157

The merged test constract is constructed from parallel compositions of the objective
contracts and system contracts, separately. Composition of the system contracts
should be interpreted as specifications on the subsystems. The composition of test
structures is defined as:

Definition 5.11. Given test structures ti = (Cobj
i , Csys

i) for i ∈ {1, 2}, we define
their composition t1 ∥ t2 as

(Cobj
1 , Csys

1) ∥ (Cobj
2 , Csys

2) = (Cobj
1 ∥ Cobj

2 , Csys
1 ∥ Csys

2).

Example 5.3 (Car Pedestrian). Recall the car-pedestrian example from Chapter 2,
which we will adopt with slight modifications. Consider a test environment shown
in Figure 5.10 consisting of a single lane road, a crosswalk with a pedestrian, and
different visibility conditions. The system under test is an autonomous car driving
on the road which must stop for the pedestrian at the crosswalk no matter the visi-
bility conditions. The first test objective under low visibility is formalized by a test
engineer as:

Cobj
1 = (⊤, φcar

init ∧□φvis
low ∧ □φ

ped
cw ∧ (φped

cw → □φ
stop
cw)),

where φvis
low := φvis |= low, denotes low visibility conditions, φcar

init the initial condi-
tions of the car (position xcar and velocity vcar), φped

cw denotes the pedestrian being on
the crosswalk, and φstop

cw := xcar ≤ Ccw−1 ∧ vcar = 0 the stopping maneuver at one
cell before the crosswalk cell Ccw. Similarly, the test objective contract under high
visibility is also given as:

Cobj
2 =

(
⊤, φcar

init ∧□φvis
high ∧ □φ

ped
cw ∧ (φped

cw → □φ
stop
cw)

)
,

where φvis
high := φvis |= high represents high visibility test environment. Finally, the

dynamics of braking when a pedestrian is detected is given by the contract,

Cobj
3 = (⊤, ∃k : (vcar = Vmax ∧ xcar = Ck)→ □φ

stop
k+d),

where the car is required to drive at specified speed Vmax in an arbitrary cell Ck,
and then eventually stop within the stopping distance d specified by the user; φstop

k+d

specifies that the car must stop at or before cell Ck+d. Note that we assume that the
stopping distance d is large enough such that the car moving at maximum speed can
come to a stop within d steps. This test objective specifies the stopping requirement
on the car irrespective of the environment. Note that none of the test objective con-
tracts reason over the system’s capabilities to detect a pedestrian, only requiring that

158

the system needs to stop at the crosswalk if a pedestrian is in it. This is important
since we do not want the test objective contract to have guarantees that depend on
the performance of individual components (e.g., perception) of the system.

Requirements on the system are provided by the system designers and test engi-
neers. Each of the following system contracts assume that the environment is safe
(e.g., the environment agents will not adversarially crash into the car). This is de-
noted as Asys = □φped

dyn ∧ □φvis
dyn, where φped

dyn, and φvis
dyn denote the dynamics of the

pedestrian, and the visibility conditions, respectively.

Csys
1 =

(
Asys, □φcar

dyn ∧□ (φvis
low → v ≤ Vlow) ∧

□ (detectableped
low → □φ

stop
ped) ∨ ¬Asys

)
,

where φcar
dyn, describes the dynamics of the car. Vlow is the maximum permissible

speed of the car under low-visibility conditions. The expression detectable
ped
low

describes the pedestrian being in a buffer zone in front of the car, and is formally
defined as,

detectable
ped
low := xcar + distlow

min ≤ xped ≤ xcar + distlow
max,

where distlow
min is the minimum distance for the car to reach a full stop, and distlow

max

is the maximum distance at which the car can detect a pedestrian in low visibility
conditions. The second system objective contract describes driving in high visibility
conditions:

Csys
2 =

(
Asys, □φcar

dyn ∧□ (φvis
high → v ≤ Vmax) ∧

□ (detectableped
high → □φ

stop
ped) ∨ ¬Asys

)
,

where Vmax is the maximum speed, and the expression detectableped
high, defined sim-

ilarly to detectableped
low, denotes the pedestrian being detectable in the ‘buffer’ zone

for high visibility conditions. The third system objective contract for the dynamics
of the car,

Csys
3 =

(
Asys, □φcar

dyn ∨ ¬Asys
)
,

where φcar
dyn describes the dynamics of the car, including the distance to come to a

full stop as a function of car speed. For each pair of system and test objectives,
a test can synthesized for the specification constructed by equation (5.15). We

159

can find combinations of test structures ti = (Cobj
i , Csys

i) that can be executed
instead of individual tests. Consider the combined test structure t = t2 ∥ t3. The
corresponding combined test objective contract Cobj is:

Cobj = Cobj
2 ∥ Cobj

3 = (⊤, φcar
init ∧□φvis

high ∧ □φ
ped
cw ∧ φped

cw → □φ
stop
cw ∧

∃k : (vcar = Vmax ∧ xcar = Ck)→ □φ
stop
k+d).

(5.16)

Likewise, the combined system objective contract is:

Csys = Csys
2 ∥ Csys

3 = (Asys ∪ ¬(Gsys
2 ∩Gsys

3), G
sys
2 ∩Gsys

3).

The term ¬(Gsys
2 ∩ Gsys

3) can be removed from the assumptions of Csys to relax
the system objective contract for ensuring that the assumptions conform to those
required by Definition 5.8. Therefore, the system objective contract becomes:

Csys =(Asys, □φcar
dyn ∧□ (φvis

high → v ≤ Vmax) ∧

□(detectableped
high → □φ

stop
ped) ∨ ¬Asys).

(5.17)

Equations (5.16) and (5.17) result in a test structure t = (Cobj, Csys), and we
can implement test environments to satisfy equation (5.15) with respect to the test
structure t. The combined test structure t = (Cobj, Csys results in a test which
requires the car to decelerate from Vmax in high visibility conditions and come to a
stop before the crosswalk.

To determine when two test structures can be combined, we need to check if the
combined test objective and the combined test structure are satisifiable. Therefore,
two test structures cannot be combined if either of these conditions is untrue. For
example, the combination t1 ∥ t2 is not possible because composition of the con-
stituent test objectives Cobj

1 ∥ Cobj
2 has an empty set of guarantees. This is because

□φvis
low and □φvis

high is disjoint since visibility cannot be both high and low at the
same time. Now consider test structures t1 and t3; while these test structures can
be composed to have a non-empty set of guarantees, the resulting test structure is
not realizable by any test environment. The composition t1 ∥ t3 results in a test
structure with the test objective requiring a maximum speed of Vmax, but with the
system constrained to a maximum speed of Vlow < Vmax in low visibility conditions.
Therefore, Gsys ∩ Gobj = ∅, and both the system and test objectives cannot be
satisfied in a single trace of the system.

Figure 5.10 illustrates manually constructed test executions that satisfy test con-
tracts corresponding to t1, t2, and t2 ∥ t3, respectively. The car controller is imple-
mented on a discrete grid world; at some positive speed v the car moves forward by

160

(a) Low visibility with a
stationary pedestrian.

(b) High visibility with a
stationary pedestrian.

(c) High visibility with a
reactive pedestrian.

Figure 5.10: Test execution snapshots of the car stopping for a pedestrian. Fig-
ure 5.10a shows a test execution satisfying Ctester

1 , Figure 5.10b satisfies Ctester
2

and Figure 5.10c satisfies Ctester
2 and Ctester

3 .

v cells. At each time step, the car can choose to continue at the same speed or to
accelerate or decelerate.

In the low visibility setting, the car can drive at a maximum speed of v = 2 and
it can detect a pedestrian up to two cells away as illustrated in Figure 5.10a. The
car is able to detect the pedestrian and come to a full stop in front of the crosswalk.
In a high visibility setting, the car can drive at a maximum speed of vmax = 4,
and it can detect the pedestrian up to 5 cells ahead. In Figure 5.10b, we can see
that the pedestrian is detected and the car slows down gradually until is reaches the
cell in front of the crosswalk. The test for the combined test structure t = t2 ∥ t3
is shown in Figure 5.10c, where we see the pedestrian entering the crosswalk in
high visibility conditions when the car is driving at its maximum speed of v = 4

and is 10 cells away from the crosswalk. This test execution now checks the test
objective of detecting a pedestrian in high visibility conditions and executing the
braking maneuver with the desired constant deceleration from its maximum speed
down to zero.

5.8 Comparing Tests
A test campaign is a set of tests, each characterized by a test structure. Choosing a
test campaign out of several possibilities requires a principled approach to compar-

161

ing test campaigns. A more refined test campaign is preferable since the system will
be tested for a more refined set of test objectives and possibly for a more stringent
set of system specifications. Let ti = (Cobj

i , Csys
i) be test structures for 1 ≤ i ≤ n.

When generating tests for ti, we want to ensure that our test execution satisfies the
constraints set out by Cobj

i in the context of system behaviors defined by Csys
i . As

seen in Section 5.6, the tester contract can be computed using the quotient opera-
tor. We characterize a test campaign, TC = {ti}ni=1, as a finite list of test structures
specified by the test engineer. Definition 5.12 allows us to generate a single test
structure from a test campaign.

Definition 5.12. Given a test campaign TC = {ti}ni=1, the test structure generated

by this campaign, denoted τ(TC), is

τ(TC) = t1 ∥ . . . ∥ tn.

A notion of ordering between test structures is necessary for establishing an order-
ing of test campaigns. This order is also important for defining the split of a test
into unit tests, as we shall see later.

Definition 5.13. The test structure (Cobj
1 , Csys

1) refines the structure (Cobj
2 , Csys

2),
written (Cobj

1 , Csys
1) ≤ (Cobj

2 , Csys
2), if contract refinement occurs element-wise,

i.e., if Csys
1 ≤ Csys

2 and Cobj
1 ≤ Cobj

2 .

Finally, the order of refinement between test campaigns can be defined as follows.
In a refined test campaign TC of TC′, the system and test objective contracts of
the test structure corresponding to TC are more refined. That is, the test objective
handles a larger set of system behaviors with stricter requirements (i.e., more con-
straints) on what the desired test execution should look like. In addition, the system
might potentially be required to satisfy stricter guarantees on its behavior under a
larger set of assumptions. For these reasons, it is preferable to choose a refined test
campaign.

Definition 5.14. Given two test campaigns TC and TC′, we say that TC ≤ TC′ if
τ(TC) ≤ τ(TC′).

5.9 Splitting Tests
In this section, we explore the notion of splitting test structures. One of our motiva-
tions for doing this is failure diagnostics, in which we wish to look for root causes

162

of a system-level test failure. To split test structures, we look for the existence of a
quotient — see [129]. Suppose there exists a test structure t that we want to split,
and suppose one of the pieces of this decomposition, t1, is given to us. Our objec-
tive is to find t2 such that t1 ∥ t2 ≤ t. The following result tells how to compute the
optimum t2. This optimum receives the name quotient of test structures.

Proposition 5.2. Let t = (Cobj, Csys) and t1 = (Cobj
1 , Csys

1) be two test structures
and let tq = (Cobj/Cobj

1 , Csys/Csys
1). For any test structure t2 = (Cobj

2 , Csys
2), we

have
t2 ∥ t1 ≤ t if and only if t2 ≤ tq.

We say that tq is the quotient of t by t1, and we denote it as t/t1.

Proof. t2 ≤ tq ⇔ Csys
2 ≤ Csys/Csys

1 and Cobj
2 ≤ Cobj/Cobj

1 ⇔ (Cobj
2 ∥

Cobj
1 , Csys

2 ∥ Csys
1) ≤ (Cobj, Csys) ⇔ t2 ∥ t1 ≤ t.

Remark: The method of constructing the quotient test structure in Proposition 5.2
involves taking the quotient of the system contracts as well as the test objectives,
meaning that we remove a subsystem from the overall system, and remove a part
of the test objective. Depending on the use case, we can consider two further situ-
ations, where we can define the test structure t1 such that: i) only removing a sub-
system from the overall system, which gives the quotient tq = (Cobj, Csys/Csys

1);

and ii) only separating a part of the test objective: tq = (Cobj/Cobj
1 , Csys). The

quotient test structures of type (i) could be useful in adding further test harnesses
to monitor sub-systems under for the same test objective, and test structures of type
(ii) could be useful in monitoring overall system behavior under a more unit test ob-
jective. In future work, we will study automatically choosing the relevant quotient
test structure for specific use cases.

Label Formula
φsetgoal □(xinit,i = R1 → xg,i = R2) ∧□(xinit,i = R2 → xg,i = R1)
executeccw

swap(ai) □(xi = gi) ∧□(xi = gi →⃝(xi = gi)) ∧□φccw
traj,i

executecw
swap(ai) □(xi = gi) ∧□(xi = gi →⃝(xi = gi)) ∧□φcw

traj,i
φcw

swap,i □(directivecw
swap(ai)→ □(xi = gi))

φccw
swap,i □(directiveccw

swap(ai)→ □(xi = gi))
φcw □directive

cw
swap(a1) ∧ □directive

cw
swap(a2)

φccw □directive
ccw
swap(a1) ∧ □directive

ccw
swap(a2)

Table 5.1: Subformulas for constructing Gsys and Gobj.

163

(a) Executions satisfying the original test structure.

(b) Left: Given unit test. Center and right: Possible executions for the split test.

Figure 5.11: Front view of test executions satisfying the original test structure and
the split test structure.

Example 5.4. Consider two aircraft, a1 and a2, flying parallel to each other under-
going a formation flying test shown in Figure 5.11a where two aircraft need to swap
positions longitudinally in a clockwise or counterclockwise spiral motion. Assume
that during this test execution a system-level failure has been observed, but it is
unknown which aircraft is responsible for the failure during which stage of the ma-
neuver. We will make use of our framework to split test structures to help identify
the subsystem responsible for the failure.

The aircraft communicate with a centralized computer that issues waypoint direc-
tives to each aircraft in a manner consistent to the directives issued to other aircraft
to ensure that there are no collisions. The dynamics of aircraft ai on the gridworld is
specified by Gdyn

i , and the safety or no collision requirement on all aircraft is given
in Gsafe. The swap requirement, Gswap

i , specifies the maneuver that each aircraft
must take in the event that a directive is issued.

Gswap
i =□(directivecw

swap(ai)→ executecw
swap(ai))∧

□(directiveccw
swap(ai)→ executeccw

swap(ai)).

164

For example, in the case of a counter-clockwise swap directive issued to aircraft
a1 starting in region R1, the aircraft must eventually reach the counter-clockwise
swap goal, R2, by traveling in the counter-clockwise direction, and upon reaching
the goal must stay there as long as no new directive is issued. These maneuvers are
specified in the execute subformulas in Table 5.1. The swap goals, gi, for the
aircraft are determined by their respective positions, xinit,i, when the directives are
issued (see Table 5.1).

In this example, the tester fills the role of the supervisor. If the tester decides on all
aircraft swapping clockwise, then the clockwise directives to each aircraft will be
issued: φcw = □directive

cw
swap(a1) ∧ □directive

cw
swap(a2). Similarly, φccw

denotes the eventual issue of counter-clockwise swap directives to both aircraft.
All the temporal logic formulas required to construct the test structure associated
with this example are summarized in Table 5.1. Moreover, no new directives are
issued until all current directives are issued and all aircraft have completed the swap
executions corresponding to the current directives (labeled as Gdir

limit). Finally, the
aircraft are never issued conflicting swap directions — all aircraft are instructed to
go clockwise or counterclockwise (labeled as Gdir

safe). For simplicity, we choose not
to write out Gdir

limit and Gdir
safe in their extensive forms. Thus, the requirements for the

system under test are as follows:

Csys = (Asys, Gsys) = (Gdir
limit ∧Gdir

safe , G
safe ∧

∧
i

Gswap
i ∧Gdyn

i). (5.18)

That is, assuming that the supervisor issues consistent directives, and issues new
directives only when all aircraft have completed the executions corresponding to the
current round of directives, the aircraft system is required to guarantee safety and
successful execution of the swap maneuver corresponding to the current directive.
If we were to write the system requirements for a single aircraft, the corresponding
contract would be similar:

Csys
i = (A

sys
i , G

sys
i) = (Gdir

limit ∧Gdir
safe , G

swap
i ∧Gdyn

i). (5.19)

Cobj =(⊤, Gobj),

Gobj =□((directivecw
swap(a1) ∧ directivecw

swap(a2)) ∨ (directiveccw
swap(a2)

∧ directiveccw
swap(a1))→ □(x1 = R2 ∧ x2 = R1)).

(5.20)

Observe thatGobj represents the tester issuing either clockwise or counter-clockwise
swap directives. One of the unit tests is to the have the aircraft a1 starting at

165

xinit,1 = R1 (and as a result, xg = R2) get the counter-clockwise swap direc-

tive to reach xg = R2. The corresponding unit test structure t1 = (Cobj
1 , Csys

1) can
be written as follows:

Cobj
1 = (⊤, Gobj

1) = (⊤, □directive
ccw
swap(a1)) (5.21)

Csys
1 = (A

sys
1 , G

sys
1) = (Gdir

limit ∧Gdir
safe , G

swap
1 ∧Gdyn

1). (5.22)

Following Proposition 5.2, the second unit test structure can be derived by sepa-
rately applying the quotient operator on the test objectives and the system contract.
Applying the quotient on the test objective, we substitute ⊤ for the assumptions to
simplify, and we refine the quotient contract Cobj/Cobj

1 by replacing its assump-
tions with ⊤:

Cobj/Cobj
1 =(A ∩Gobj

1 , G ∩ Aobj
1 ∪ ¬(A ∩Gobj

1))

= (G
obj
1 , G ∪ ¬Gobj

1) ≥ (⊤, Gobj ∪ ¬Gobj
1).

Designer input is important for refining this contract resulting from applying the
quotient; a similar observation has been documented for quotient operators in pre-
vious work [123]. Domain knowledge can be helpful in refining the contracts.
Using ¬Gobj

1 as context, the contract (⊤, Gobj ∪ ¬Gobj
1) can be simplified to

(⊤,¬Gobj
1 ∨ φ1 ∨ φ2), where φ1 = (□directive

ccw
swap(a2) ∧ ¬φcw) and φ2 =

φcw∧¬φccw. Then, ¬Gobj
1 is discarded and the test objective of the second unit test

can be defined as a refinement of this simplified contract arising from the quotient:

Cobj
a2 =(⊤, φ1 ∨ φ2) ≤ (⊤,¬Gobj

1 ∨ φ1 ∨ φ2). (5.23)

In equation (5.23), there are two types of test executions that would be the unit con-
tract obtained by applying the quotient operator: i) A counter-clockwise directive
is issued to aircraft a2 and no clockwise directives are issued to either aircraft, or ii)
Both aircraft are issued clockwise directives and no counter-clockwise directives.
Note that φ1 and φ2 cannot be implemented in the same test by construction. Fi-
nally, the unit system contract can also by found by applying the quotient operator:

Csys/Csys
1 =(Asys ∩Gsys

1 , Gsys ∩ Asys
1 ∪ ¬(Asys ∩Gsys

1))

=(Gdir
limit ∧Gdir

safe ∧G
swap
1 ∧Gdyn

1 , (Gsafe ∧Gswap
2 ∧Gdyn

2)

∨ ¬(Gswap
1 ∧Gdyn

1 ∧Gdir
limit ∧Gdir

safe))

=(Gdir
limit ∧Gdir

safe ∧G
swap
1 ∧Gdyn

1 , (Gsafe ∧Gswap
2 ∧Gdyn

2)).

(5.24)

166

We refine the quotient contract by keeping the assumptions to be true.

Csys
a2 =(⊤,¬(Gcomm

1 ∧Gdyn
1) ∨ (Gsafe ∧

∧
i

Gcomm
i ∧Gdyn

i)) (5.25)

=(⊤,¬(Gcomm
1 ∧Gdyn

1) ∨ (Gsafe ∧Gdyn
2 ∧G

dyn
2)). (5.26)

Remark: Observe that equation (5.24) carries the swap and dynamics requirements
of aircraft a1 in its assumptions. Since we choose to separate aircraft a1 from the
overall aircraft system, this quotient contract can be satisfied by making aircraft
a1 a part of the tester. For a test execution of t2, the tester can choose to keep
aircraft a1 as a part of the test harness for the operational test involving aircraft
a2, or choose to not deploy a1 during the test execution. Assuming that aircraft a1
satisfies its swap requirements, and that the supervisor satisfies the requirements
on the directives, Gdir

limit and Gdir
safe, then this unit system contract guarantees that the

aircraft a2 satisfies its swap requirements, and all the aircraft together satisfy the
safety requirements.

The system requirement Csys
2 = Csys/Csys

1 and the test objective together result in
the following possible tester specifications,

Ctester
φ1

=
(
Gsafe ∧Gswap

2 ∧Gdyn
2 , Gdir

limit ∧Gdir
safe ∧G

swap
1 ∧Gdyn

1

∧ □directive
ccw
swap(a2) ∧ ¬φcw

)
.

(5.27)

Ctester
φ2

=
(
Gsafe ∧Gswap

2 ∧Gdyn
2 , Gdir

limit ∧Gdir
safe ∧G

swap
1 ∧Gdyn

1

∧ □directive
cw
swap(a1) ∧ □directive

cw
swap(a2) ∧ ¬φccw

)
.

(5.28)

From equation (5.27), we see that the tester does not require aircraft a1 for any
dynamic maneuvers, so it need not be deployed. In equation (5.28), even though
aircraft a1 would be a part of the test harness, it needs to be deployed for the tester
contract, Ctester

φ2
, to be satisfied. These tests resulting from the quotient test struc-

ture will help with determining the source of the failure that arose in the more
complex test.

5.10 Conclusions and Future Work
In this chapter, we covered how assume-guarantee contract operations can aid in
merging, comparing, and splitting specifications that define individual tests. While
the previous chapter synthesized a test environment and strategy from the system

167

abstraction, here we assume that such an environment is already synthesized. The
ideas in this chapter are preliminary, and further research is needed for practical
and large-scale construction of test campaigns while exploiting notions of compo-
sitionality. Yet, our framework based on the mathematical foundations of assume-
guarantee contracts provides a useful formalism to reason about sets of behaviors
that are covered by a test objective. An interesting direction of future work is to
investigate how coverage arguments can be built from synthezing tests in this man-
ner. Given a set of behaviors covered by a test structure, one could optimize for the
worst-case test strategy using a robustness metric, preliminary versions of which
were illustrated earlier in the chapter. This can be significantly expanded to sys-
tems with dynamics and specifications with timing constraints. Additionally, we
would need to derive a guarantee that evaluations and conclusions from running the
most difficult test for a test contract determines with high probability the success of
possible other test executions in the same test contract.

168

C h a p t e r 6

CONCLUDING REMARKS

6.1 Thesis Contributions
This thesis covered the following two themes: i) evaluating perception models using
metrics that are relevant to system-level specifications as well as the downstream
planning logic, and ii) synthesis of reactive test environments and strategies.

Task-Relevant Evaluation of Perception: In this thesis, we considered the prob-
lem of evaluating the object detection and classification task of perception given
system-level specifications. We identified confusion matrices as an appropriate
model of sensor error for the object detection and classification task, and using
principles of automata theory and probabilistic model checking, we formally de-
fined probability functions to relate the confusion matrix to a probabilistic model
of system state evolution. Confusion matrices are a popular choice for compar-
ing and evaluating detection models in computer vision. This work is the first to
formally establish a link between confusion matrices and system-level probabil-
ity of satisfying a temporal logic specification. Qualitatively, our theoretical ap-
proach matches empirical observations in experimental work conducted in indus-
try [13]. Furthermore, our approach lends a quantitative framework for designers to
choose appropriate detection models based on their specifications. For instance, the
precision-recall tradeoff which is well-known in detection tasks, is manifested in
the system-level performance, and is quantified in the form of probabilistic guaran-
tees. Due to this, we can compute desired lower bounds on detection performance
(e.g., lower bounds on precision, false negative rate etc.) from desired quantitative
system guarantee. We did this as a case study using the system design optimization
tool, Pacti [68].

Based on these theoretical fundamentals, the second contribution in this direction
is proposing new metrics for evaluating detection models that are more relevant
to the system-level specification and the downstream controller. For this, we in-
troduced proposition-labeled confusion matrices, in which traditional class labels
are replaced by propositional formulas that are relevant to controller design. Fur-
thermore, evaluations can be grouped at the same level of abstraction as the down-
stream controller that receives these detections as input. We evaluated a pre-trained

169

Pointpillars model that detects objects based on LiDaR data on the entire nuScenes
dataset, and illustrate the result for a car-pedestrian example.

Reactive Test Synthesis: Automated test synthesis is a technical challenge mo-
tivated by the need for certification of safety-critical autonomous systems. These
systems are expected to reason over both discrete and continuous states and inputs.
This thesis studies synthesis of reactive test plans for high-level decision-making
over discrete states and inputs. Specifications of the system are encoded in the
system objective. In addition, user-defined specification of desired test behavior
are encoded in the test objective, which is not revealed to the system under test.
In this thesis, test objectives are manually specified. However, there is potential
for automating this process as discussed in the future directions section later in the
chapter.

In this thesis, we covered a test synthesis framework to restrict system actions re-
actively via a test harness. These restrictions can be implemented by the test envi-
ronment using static and/or reactive obstacles, and dynamic test agents. First, we
construct a product graph that tracks the system dynamics, and realization of the
system and test objectives. Effectively, a path on the product graph represents a
test execution. The routing problem is formulated as an optimization in which the
test execution to realize the test objective without making it impossible for the sys-
tem to realize the system objective. Via a reduction from 3-SAT, the computational
complexity of this routing problem is shown to be NP-hard. This thesis covers two
main approaches to solve the routing problem: Stackelberg game with coupled con-
straints and a mixed-integer linear program. The mixed-integer linear program can
be solved more efficiently, and with guarantees that a feasible solution is a feasible
test strategy. For different test environment types, the mixed-integer program can
be easily modified by adding linear constraints to account for different environment
types and to exclude any solutions. Static obstacles can be implemented as a spe-
cial case of the reactive setting by adding constraints to enforce the non-reactivity of
these restrictions. Furthermore, the dynamic agent strategy is synthesized to realize
the reactive test strategy by matching the optimization solution.

Finally, we conducted hardware experiments using a pair of quadrupedal robots.
The framework is agnostic to the specific controllers at the lower levels of the con-
trol stack, thus illustrating that the high-level tests synthesized by this framework
can be effectively translated to hardware with test environments comprising of static
and reactive obstacles, and dynamic test agents.

170

6.2 Future Directions
There are several exciting future directions for research on specification, testing,
and verification of autonomous cyber-physical systems, guided by compelling demon-
strations in hardware and simulation.

Layered, hierarchical test synthesis
Oftentimes, system-level failures in complex systems emerge from poor interfaces
and interactions between subsystems. Current approaches to identifying failures
with respect to specifications relies on black-box optimization methods, which are
typically limited to identifying input signals in the continuous domain. While there
is some work on identifying discrete-valued test inputs, it is often limited to vari-
ables that remain constant throughout the test (e.g., color of objects, the decision to
place static barriers in the scene).

Figure 6.1: Overview of the
planning and control software
stack.

Figure 6.1 illustrates the vertical stack of the plan-
ning and control modules. The high-level planner,
which operates at a slower timescale, is respon-
sible for long-horizon decision-making which in-
volves reasoning over fundamentally discrete vari-
ables. At the mid-level, trajectories with way-
points are planned for the robotic system. Finally
the low-level controller, operating at faster speeds,
executes the mid-level plan. In this thesis, we stud-
ied test environment synthesis for the high-level
planner. The falsification approaches to identifying
test cases are traditionally used to find failures at
the mid-level and low-level. Furthermore, falsifica-
tion algorithms often output open-loop trajectories,
instead of reactive test strategies.

An open question is to identify falsifying instances
resulting from a combination of poor high-level de-

cision making together with continuous nonlinear

dynamics at the low-level (e.g., incorrectly switching to a different dynamical mode,
causing the system to violate safety or progress specifications). This is non-trivial
even in simple hybrid system examples, especially when the system architecture
and control design are black-box to the tester, and attempts to identify these fail-

171

ures by jointly searching over discrete and continuous parameters will not scale.
To address this challenge, we would need to i) infer how high-level commands af-
fect continuous dynamics, and ii) infer when switches to different high-level modes
result in dynamically unsafe trajectories. In addition to falsifying components at
different levels of the control stack, we would also need to falsify the interfaces that
map between them.

As an example, consider a simple switched system shown in Figure 6.2. The sys-
tem in this example is a point-mass which must avoid the unsafe regions shaded in
blue, and has two operating modes: a north-south mode, and an east-west mode.
The tester has access to a switch command: when a switch command is issued,
the system must eventually switch to the other operating mode. The system is
a 2-dimensional double integrator, and has a simple model-predictive controller
with a quadratic cost consisting of: i) position error with respect to the north-
south and east-west axes, ii) control effort, and iii) terminal cost defined on the
system state. The terminal cost function is a 2-norm of the distance to the goal
(north/south/east/west) with zero velocity along either axis. The optimization in-
cludes constraints on control effort that can be exerted in each direction.

With no knowledge of the control design, and a couple of trials of commanding
a single switch, the trajectories of this system would indicate a safe implementa-
tion. For example, see Figure 6.2a, in which the system safely avoids the unsafe
region in executing the switch command. However, two switch commands in quick
succession result in a falsifying trajectory of the system, highlighting the flaw in
controller. In this example, the decision to switch twice is a fundamentally discrete
choice, which current falsification algorithms typically cannot handle. The role of
reactivity and layered architecture also becomes evident: i) the second switch is
command in reaction to the system response to the first switch, and ii) the dynami-
cal behavior (low-level behavior) of the system in response to the switch command
combined with its decision to switch modes immediately without regard for safety
(high-level decision) is what ultimately results in the failing trace.

Incorporating low-level dynamics
A challenge in hierarchical test and evaluation is in identifying the appropriate sur-
rogate model of the system on which to test. As discussed previously, suppose the
system-under-test is black-box to the test engineer, that is, the planning and control
architecture and implementation is unknown to the tester. This would also imply

172

(a) Point mass (system) starting
from the north position and in north-
south mode (in blue), and com-
manded to switch to east-west mode
(in orange).

(b) Point mass (system) starting
from the west position and in east-
west mode (in orange), and then
commanded to switch twice in quick
succession. The blue portion of
the trajectory indicates the system
switching to north-south mode be-
fore reverting to the east-west mode
as shown in orange.

Figure 6.2: Simple switched system example, with position of the system shown at
discrete time intervals.

that the system models used by the designers is also unknown to the test engineer.
Therefore, the only entities known to the test engineer are the system specifications,
the operational domain, and a black-box simulator or the physical system.

Though specifications are defined on the overall system, the subsystems responsible
for the satisfaction of these specifications depends partly on the system implemen-
tation. For example, the requirement that the robot must remain safe likely requires
multiple subsystems working together to satisfy safety. However, the requirement
that the system exhibit certain motion primitives, e.g., quadruped must walk at a
certain speed, might be the responsibility of a low-level controller. Depending on
the scenario, certain specifications become prerequisites for other specifications.
For example, the safety specification of the quadruped requires to evade an adver-
sary might require it to consistently execute the walk motion primitive at a certain
speed. For a broadly defined scenario such as evasion, if we are able to automati-
cally order specifications according to this notion of pre-requisites, we can use the
pre-requisite specifications to construct a model of high-level behavior of the sys-
tem. In the literature on hybrid cyber-physical systems, this is related to work on
constructing high-level system abstractions from low-level controllers using tools
including reachability analysis. A concrete first step would be to review the litera-
ture on abstraction for control synthesis [130–133], and leveraging these methods
to build a similar paradigm for abstraction, and discretization for testing.

173

The previous subsection is largely concerned with the case in which an abstrac-
tion of the system is assumed, and we need an efficient approach to testing that
includes reasoning over both discrete and continuous variables. In this subsection,
we are concerned with finding abstractions suitable for testing. There are two high-
level directions for future work. First, how can we use prerequisite specifications to
gather data from the system, and construct abstractions to model high-level behav-
ior? These abstractions can include quantitative metrics of difficulty of executing
lower level motion primitives. Second, what are the fundamental limitations of con-
structing these abstractions given the black-box nature of the system? Construct-
ing these abstractions would potentially require a combination of model-based and
data-driven methods — model-based in the sense that the physical dynamics, but
not the control implementation, of the system might be known to the tester, and
data-driven to get statistical data on the specific system implementation.

Criticality, coverage, and compositionality of test plans
Identifying critical test objectives is ill-posed when the operational design domain
(ODD) is vast and difficult to characterize. While it might be hard to define a
critical scenario in general, can we comparatively evaluate the criticality of two
test scenarios? We can begin by studying the criticality of scenarios from a con-
trols perspective (assuming perfect perception) before expanding to criticality from
the system perspective (including all tasks pertaining to perception, reasoning, and
control). There are two contending perspectives. On the one hand, criticality of a
scenario will depend partly on the system controller — a scenario that is challeng-
ing (e.g., in terms of control effort, optimality, robustness) for one controller need
not be equally challenging for another. Yet, at the same time, some scenarios seem
universally less critical than others. For example, a safe unprotected left turn at a
T-intersection amidst busy two-way traffic is more compelling than taking the same
unprotected left turn without traffic. When are scenarios comparable? How do we
quantify comparative criticality, and can we identify a class of controllers for which
one scenario is more critical than the other?

The aforementioned question also relates to coverage. Ideally, successfully passing
a more critical test should imply high confidence that the system would pass the less
critical test. We would need to define a coverage metric that is consistent with this
notion of criticality while also capturing the diversity of possible scenarios that are
not easily comparable. For example, would reactive test scenarios (e.g., test agents
moving in an office space) cover “open-loop” tests in which the test environment is

174

completely static (e.g., static yet cluttered office environment)?

Another direction to tackle the coverage question is to decompose it to the subsys-
tem level as opposed to the scenario level. Since the ODD is often vast and difficult
to define, we can focus on coverage for inputs to various subsystems in the con-
trol stack, which can be relatively low-dimensional in comparison to multi-modal
sensor data received by the perception system. Can we then compose coverage
guarantees from testing the individual subsystems during development to infer cov-
erage at the system-level? Can we rely on this analysis to identify operational tests
that check multiple unit-level tests at once?

Task-relevant metrics for perception
While this thesis identifies task-relevant metrics for object detection and classifi-
cation tasks, corresponding metrics for other perception tasks such as tracking and
behavior prediction still remain to be studied. Secondly, it is not clear which metrics
offer the tightest system-level guarantees. This thesis offers preliminary results —
confusion matrices chosen based on system-level specifications and downstream
control logic result in less conservative evaluations overall. However, further re-
search on investigating the tightness of these guarantees needs to be studied, along
with hardware validation of the derived system-level guarantees.

Thirdly, one can extend these principles to perception-planning-control architec-
tures where the interfaces between modules are less distinct. The confusion matrix
only accounts for the final layer of the model’s neural network, which outputs a
scalar value to classify the object. However, higher dimensional learned features of
the model could contain rich information on the model’s performance which can be
exploited. In which system-level architectures is the confusion matrix a sufficient
metric of detection error? Which learned features of the detection models are a
better representation of model performance with respect to the system-level task?
Finally, these task-relevant evaluation criteria are often meant for offline evalua-
tions of perception models, and the resulting system-level guarantees are limited
to scenarios from the distribution used for model evaluations. Future work should
study the how these guarantees can be updated via runtime monitoring or how they
can degrade if a scenario is out-of-distribution.

175

Bibliography

[1] Zoox, “Putting Zoox to the test: preparing for the challenges of the road,”
2021. https://zoox.com/journal/structured-testing/,
Last accessed on 2024-04-11.

[2] Waymo, “A blueprint for av safety: Waymo’s toolkit for building
a credible safety case,” 2020. https://waymo.com/blog/
2023/03/a-blueprint-for-av-safety-waymos/#:~:
text=A%20safety%20case%20for%20fully,evidence%
20to%20support%20that%20determination., Last accessed on
2024-05-05.

[3] F. Favarò, L. Fraade-Blanar, S. Schnelle, T. Victor, M. Peña, J. Engstrom,
J. Scanlon, K. Kusano, and D. Smith, “Building a credible case for safety:
Waymo’s approach for the determination of absence of unreasonable risk,”
2023. www.waymo.com/safety.

[4] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability?,” Transporta-
tion Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

[5] N. Webb, D. Smith, C. Ludwick, T. Victor, Q. Hommes, F. Favaro, G. Ivanov,
and T. Daniel, “Waymo’s safety methodologies and safety readiness determi-
nations,” 2020.

[6] I. S. Organization, “Road vehicles: Safety of the intended functional-
ity (ISO Standard No. 21448:2022),” 2022. https://www.iso.org/
standard/77490.html, Last accessed on 2024-04-11.

[7] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence test-
ing for autonomous vehicles: A new approach,” IEEE Transactions on Intel-
ligent Vehicles, vol. 1, no. 2, pp. 158–166, 2016.

[8] H. Winner, K. Lemmer, T. Form, and J. Mazzega, “Pegasus—first steps for
the safe introduction of automated driving,” in Road Vehicle Automation 5,
pp. 185–195, Springer, 2019.

[9] “DARPA Urban Challenge.” https://www.darpa.mil/about-us/
timeline/darpa-urban-challenge.

[10] “Technical Evaluation Criteria.” https://archive.darpa.mil/
grandchallenge/rules.html.

[11] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and
validation,” SAE International Journal of Transportation Safety, vol. 4, no. 1,
pp. 15–24, 2016.

https://zoox.com/journal/structured-testing/
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://www.iso.org/standard/77490.html
https://www.iso.org/standard/77490.html
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://archive.darpa.mil/grandchallenge/rules.html
https://archive.darpa.mil/grandchallenge/rules.html

176

[12] J. Eskenazi and W. Jarett, “Explore: See the 55 reports — so far — of robot
cars interfering with SF fire dept.,” 2023. https://missionlocal.
org/2023/08/cruise-waymo-autonomous-vehicle-robot-
taxi-driverless-car-reports-san-francisco/, Last
accessed on 2024-04-11.

[13] H. Zhao, S. K. Sastry Hari, T. Tsai, M. B. Sullivan, S. W. Keckler, and
J. Zhao, “Suraksha: A framework to analyze the safety implications of per-
ception design choices in avs,” in 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE), pp. 434–445, 2021.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[15] M. Kloetzer and C. Belta, “A fully automated framework for control of lin-
ear systems from temporal logic specifications,” IEEE Transactions on Au-
tomatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[16] M. Lahijanian, S. B. Andersson, and C. Belta, “A probabilistic approach for
control of a stochastic system from LTL specifications,” in Proceedings of
the 48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pp. 2236–2241, IEEE, 2009.

[17] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal tempo-
ral logic specifications,” in 53rd IEEE Conference on Decision and Control,
pp. 81–87, IEEE, 2014.

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon tempo-
ral logic planning,” IEEE Transactions on Automatic Control, vol. 57, no. 11,
pp. 2817–2830, 2012.

[19] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in International
Conference on Computer Aided Verification, pp. 97–117, Springer, 2017.

[20] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic verification and
reachability analysis of neural networks via semidefinite programming,” in
2019 IEEE 58th Conference on Decision and Control (CDC), pp. 2726–
2731, IEEE, 2019.

[21] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidefinite
programming,” IEEE Transactions on Automatic Control, 2020.

[22] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNV: The neural network verification tool for

https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/
https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/
https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/

177

deep neural networks and learning-enabled cyber-physical systems,” in In-
ternational Conference on Computer Aided Verification, pp. 3–17, Springer,
2020.

[23] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic adversarial deep learn-
ing,” in International Conference on Computer Aided Verification, pp. 3–26,
Springer, 2018.

[24] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, S. Shiv-
akumar, M. Vazquez-Chanlatte, and X. Yue, “Formal specification for deep
neural networks,” in International Symposium on Automated Technology for
Verification and Analysis, pp. 20–34, Springer, 2018.

[25] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” Journal of Au-
tomated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[26] S. Topan, K. Leung, Y. Chen, P. Tupekar, E. Schmerling, J. Nilsson, M. Cox,
and M. Pavone, “Interaction-dynamics-aware perception zones for obstacle
detection safety evaluation,” in 2022 IEEE Intelligent Vehicles Symposium
(IV), pp. 1201–1210, IEEE, 2022.

[27] K. Chakraborty and S. Bansal, “Discovering closed-loop failures of vision-
based controllers via reachability analysis,” IEEE Robotics and Automation
Letters, vol. 8, no. 5, pp. 2692–2699, 2023.

[28] A. Dokhanchi, H. B. Amor, J. V. Deshmukh, and G. Fainekos, “Evaluating
perception systems for autonomous vehicles using quality temporal logic,”
in International Conference on Runtime Verification, pp. 409–416, Springer,
2018.

[29] A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh,
H. B. Amor, and G. Fainekos, “Specifying and evaluating quality metrics
for vision-based perception systems,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1433–1438, IEEE, 2019.

[30] B. Bauchwitz and M. Cummings, “Evaluating the reliability of Tesla model
3 driver assist functions,” 2020.

[31] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J. Pappas,
“Courteous cars,” IEEE Robotics & Automation Magazine, vol. 15, no. 1,
pp. 30–38, 2008.

[32] H. Kress-Gazit and G. J. Pappas, “Automatically synthesizing a planning and
control subsystem for the DARPA Urban Challenge,” in 2008 IEEE Interna-
tional Conference on Automation Science and Engineering, pp. 766–771,
IEEE, 2008.

178

[33] T. Wongpiromsarn, S. Karaman, and E. Frazzoli, “Synthesis of provably cor-
rect controllers for autonomous vehicles in urban environments,” in 2011
14th International IEEE Conference on Intelligent Transportation Systems
(ITSC), pp. 1168–1173, IEEE, 2011.

[34] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Conference on Robot Learning, pp. 1–16,
PMLR, 2017.

[35] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli,
and S. A. Seshia, “Scenic: a language for scenario specification and scene
generation,” in Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 63–78, 2019.

[36] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro:
A tool for temporal logic falsification for hybrid systems,” in International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 254–257, Springer, 2011.

[37] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications
for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42,
pp. 4262–4291, 2009.

[38] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel, “Verification
of automotive control applications using s-taliro,” in 2012 American Control
Conference (ACC), pp. 3567–3572, IEEE, 2012.

[39] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal properties
of hybrid systems using the cross-entropy method,” in Proceedings of the
15th ACM international conference on Hybrid Systems: Computation and
Control, pp. 125–134, 2012.

[40] S. Bak, S. Bogomolov, A. Hekal, N. Kochdumper, E. Lew, A. Mata, and
A. Rahmati, “Falsification using reachability of surrogate koopman models,”
in Proceedings of the 27th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC ’24, (New York, NY, USA), Associ-
ation for Computing Machinery, 2024.

[41] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hy-
brid systems,” in International Conference on Computer Aided Verification,
pp. 167–170, Springer, 2010.

[42] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based adver-
sarial test generation for autonomous vehicles with machine learning com-
ponents,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1555–1562,
IEEE, 2018.

179

[43] C. Menghi, P. Arcaini, W. Baptista, G. Ernst, G. Fainekos, F. Formica,
S. Gon, T. Khandait, A. Kundu, G. Pedrielli, et al., “Arch-comp 2023 cat-
egory report: Falsification,” in 10th International Workshop on Applied Ver-
ification of Continuous and Hybrid Systems. ARCH23, vol. 96, pp. 151–169,
2023.

[44] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-
Chanlatte, and S. A. Seshia, “Verifai: A toolkit for the formal design and
analysis of artificial intelligence-based systems,” in International Conference
on Computer Aided Verification, pp. 432–442, Springer, 2019.

[45] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive
stress testing with reward augmentation for autonomous vehicle validatio,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 163–
168, IEEE, 2019.

[46] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu, “Dense re-
inforcement learning for safety validation of autonomous vehicles,” Nature,
vol. 615, no. 7953, pp. 620–627, 2023.

[47] X. Qin, N. Arechiga, J. Deshmukh, and A. Best, “Robust testing for cyber-
physical systems using reinforcement learning,” in Proceedings of the 21st
ACM-IEEE International Conference on Formal Methods and Models for
System Design, MEMOCODE ’23, (New York, NY, USA), p. 36–46, Asso-
ciation for Computing Machinery, 2023.

[48] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Toward verified artificial intelli-
gence,” Commun. ACM, vol. 65, p. 46–55, jun 2022.

[49] B. Johnson and H. Kress-Gazit, “Probabilistic analysis of correctness of
high-level robot behavior with sensor error,” 2011.

[50] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2019.

[51] X. Wang, R. Li, B. Yan, and O. Koyejo, “Consistent classification with gen-
eralized metrics,” 2019.

[52] P. Antonante, H. Nilsen, and L. Carlone, “Monitoring of perception systems:
Deterministic, probabilistic, and learning-based fault detection and identifi-
cation,” arXiv preprint arXiv:2205.10906, 2022.

[53] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava,
L. Karam, and G. Fainekos, “Encoding and monitoring responsibility sensi-
tive safety rules for automated vehicles in signal temporal logic,” in Proceed-
ings of the 17th ACM-IEEE International Conference on Formal Methods
and Models for System Design, pp. 1–11, 2019.

180

[54] T. Wongpiromsarn and E. Frazzoli, “Control of probabilistic systems un-
der dynamic, partially known environments with temporal logic specifica-
tions,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pp. 7644–7651, 2012.

[55] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Leveraging classifica-
tion metrics for quantitative system-level analysis with temporal logic spec-
ifications,” in 2021 60th IEEE Conference on Decision and Control (CDC),
(Austin, TX, USA (virtual)), pp. 564–571, IEEE, 2021.

[56] C. S. Pasareanu, R. Mangal, D. Gopinath, S. G. Yaman, C. Imrie, R. Cali-
nescu, and H. Yu, “Closed-loop analysis of vision-based autonomous sys-
tems: A case study,” arXiv preprint arXiv:2302.04634, 2023.

[57] S. Beland, I. Chang, A. Chen, M. Moser, J. Paunicka, D. Stuart, J. Vian,
C. Westover, and H. Yu, “Towards assurance evaluation of autonomous sys-
tems,” in Proceedings of the 39th International Conference on Computer-
Aided Design, pp. 1–6, 2020.

[58] Y. V. Pant, H. Abbas, K. Mohta, R. A. Quaye, T. X. Nghiem, J. Devietti,
and R. Mangharam, “Anytime computation and control for autonomous sys-
tems,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2,
pp. 768–779, 2021.

[59] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A differen-
tiable and modular control stack for autonomous vehicles,” in Proceedings of
The 6th Conference on Robot Learning (K. Liu, D. Kulic, and J. Ichnowski,
eds.), vol. 205 of Proceedings of Machine Learning Research, pp. 2170–
2180, PMLR, 14–18 Dec 2023.

[60] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[61] O. Koyejo, N. Natarajan, P. Ravikumar, and I. S. Dhillon, “Consistent mul-
tilabel classification.,” in NeurIPS, vol. 29, (Palais des Congrès de Montréal,
Montréal CANADA), pp. 3321–3329, Advances in Neural Information Pro-
cessing Systems, 2015.

[62] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in International conference on computer
aided verification, pp. 585–591, Springer, 2011.

[63] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is coming: A
modern probabilistic model checker,” in International Conference on Com-
puter Aided Verification, pp. 592–600, Springer, 2017.

[64] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset
for autonomous driving,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11621–11631, 2020.

181

[65] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (Los Alamitos, CA, USA), pp. 12689–12697, IEEE Computer So-
ciety, jun 2019.

[66] M. Contributors, “MMDetection3D: OpenMMLab next-generation plat-
form for general 3D object detection.” https://github.com/open-
mmlab/mmdetection3d, 2020.

[67] S. Gupta, J. Kanjani, M. Li, F. Ferroni, J. Hays, D. Ramanan, and S. Kong,
“Far3det: Towards far-field 3d detection,” in 2023 IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), (Los Alamitos, CA,
USA), pp. 692–701, IEEE Computer Society, jan 2023.

[68] I. Incer, A. Badithela, J. Graebener, P. Mallozzi, A. Pandey, S.-J. Yu, A. Ben-
veniste, B. Caillaud, R. M. Murray, A. Sangiovanni-Vincentelli, et al., “Pacti:
Scaling assume-guarantee reasoning for system analysis and design,” arXiv
preprint arXiv:2303.17751, 2023.

[69] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Evaluation metrics of
object detection for quantitative system-level analysis of safety-critical au-
tonomous systems,” in 2023 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), (Detroit, MI, USA), p. To Appear., IEEE,
2023.

[70] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in International Conference on Formal Modeling and Anal-
ysis of Timed Systems, pp. 92–106, Springer, 2010.

[71] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety properties
in hybrid systems,” International Journal on Software Tools for Technology
Transfer, vol. 15, no. 4, pp. 305–320, 2013.

[72] G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay, “Us-
ing control synthesis to generate corner cases: A case study on autonomous
driving,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 37, no. 11, pp. 2906–2917, 2018.

[73] T. Wongpiromsarn, M. Ghasemi, M. Cubuktepe, G. Bakirtzis, S. Carr, M. O.
Karabag, C. Neary, P. Gohari, and U. Topcu, “Formal methods for au-
tonomous systems,” arXiv preprint arXiv:2311.01258, 2023.

[74] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers for path
planning: A temporal logic approach,” in Proceedings of the 44th IEEE Con-
ference on Decision and Control, pp. 4885–4890, 2005.

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

182

[75] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey, “Paracosm:
A language and tool for testing autonomous driving systems,” arXiv preprint
arXiv:1902.01084, 2019.

[76] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with linear tem-
poral logic,” in Proceedings of the 2004 IEEE International Conference on
Information Reuse and Integration, 2004. IRI 2004., pp. 493–498, IEEE,
2004.

[77] G. Fraser and F. Wotawa, “Using LTL rewriting to improve the performance
of model-checker based test-case generation,” in Proceedings of the 3rd In-
ternational Workshop on Advances in Model-Based Testing, pp. 64–74, 2007.

[78] G. Fraser and P. Ammann, “Reachability and propagation for LTL require-
ments testing,” in 2008 The Eighth International Conference on Quality Soft-
ware, pp. 189–198, IEEE, 2008.

[79] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2009.

[80] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2022.

[81] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger, “Specifi-
cation patterns for robotic missions,” IEEE Transactions on Software Engi-
neering, vol. 47, no. 10, pp. 2208–2224, 2019.

[82] R. Bloem, G. Fey, F. Greif, R. Könighofer, I. Pill, H. Riener, and F. Röck,
“Synthesizing adaptive test strategies from temporal logic specifications,”
Formal methods in system design, vol. 55, no. 2, pp. 103–135, 2019.

[83] J. Tretmans, “Conformance testing with labelled transition systems: Imple-
mentation relations and test generation,” Computer Networks and ISDN Sys-
tems, vol. 29, no. 1, pp. 49–79, 1996.

[84] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Software Testing, Ver-
ification and Reliability, vol. 25, no. 8, pp. 716–748, 2015.

[85] R. Hierons, “Applying adaptive test cases to nondeterministic implementa-
tions,” Information Processing Letters, vol. 98, no. 2, pp. 56–60, 2006.

[86] A. Petrenko and N. Yevtushenko, “Adaptive testing of nondeterministic sys-
tems with FSM,” in 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering, pp. 224–228, IEEE, 2014.

[87] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 179–190, 1989.

183

[88] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis
of reactive (1) designs,” Journal of Computer and System Sciences, vol. 78,
no. 3, pp. 911–938, 2012.

[89] M. Yannakakis, “Testing, optimization, and games,” in Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science, 2004., pp. 78–
88, IEEE, 2004.

[90] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp,
“Optimal strategies for testing nondeterministic systems,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 4, pp. 55–64, 2004.

[91] A. David, K. G. Larsen, S. Li, and B. Nielsen, “Cooperative testing of timed
systems,” Electronic Notes in Theoretical Computer Science, vol. 220, no. 1,
pp. 79–92, 2008.

[92] E. Bartocci, R. Bloem, B. Maderbacher, N. Manjunath, and D. Ničković,
“Adaptive testing for specification coverage in CPS models,” IFAC-
PapersOnLine, vol. 54, no. 5, pp. 229–234, 2021.

[93] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths
in graphs of convex sets,” SIAM Journal on Optimization, vol. 34, no. 1,
pp. 507–532, 2024.

[94] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion plan-
ning around obstacles with convex optimization,” Science Robotics, vol. 8,
no. 84, p. eadf7843, 2023.

[95] H. Zhang, M. Fontaine, A. Hoover, J. Togelius, B. Dilkina, and S. Nikolaidis,
“Video game level repair via mixed integer linear programming,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, pp. 151–158, 2020.

[96] M. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis, “On the
Importance of Environments in Human-Robot Coordination,” in Proceedings
of Robotics: Science and Systems, (Virtual), July 2021.

[97] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic,
pp. 425–435. New York, NY: Springer New York, 1990.

[98] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, É. Renault, and
L. Xu, “Spot 2.0 — a framework for ltl and omega-automata manipulation,”
in Automated Technology for Verification and Analysis (C. Artho, A. Legay,
and D. Peled, eds.), (Cham), pp. 122–129, Springer International Publishing,
2016.

[99] F. Fuggitti, “Ltlf2dfa,” June 2020.

184

[100] S. Bansal, Y. Li, L. Tabajara, and M. Vardi, “Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 9766–9774, Apr.
2020.

[101] N. Klarlund and A. Møller, MONA Version 1.4 User Manual. BRICS, De-
partment of Computer Science, University of Aarhus, January 2001. Notes
Series NS-01-1. Available from http://www.brics.dk/mona/.

[102] D. Goktas and A. Greenwald, “Convex-concave min-max Stackelberg
games,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[103] I. Tsaknakis, M. Hong, and S. Zhang, “Minimax problems with coupled lin-
ear constraints: computational complexity, duality and solution methods,”
arXiv preprint arXiv:2110.11210, 2021.

[104] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson,
J. D. Siirola, J.-P. Watson, and D. L. Woodruff, Pyomo–optimization model-
ing in python, vol. 67. Springer Science & Business Media, third ed., 2021.

[105] V. V. Vazirani, Approximation algorithms, vol. 1. Springer, 2001.

[106] M. Fischetti and M. Monaci, “A branch-and-cut algorithm for mixed-
integer bilinear programming,” European Journal of Operational Research,
vol. 282, no. 2, pp. 506–514, 2020.

[107] J. B. Graebener, A. S. Badithela, D. Goktas, W. Ubellacker, E. V. Mazumdar,
A. D. Ames, and R. M. Murray, “Flow-based synthesis of reactive tests for
discrete decision-making systems with temporal logic specifications,” arXiv
preprint arXiv:2404.09888, 2024.

[108] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “Tulip: a
software toolbox for receding horizon temporal logic planning,” in Proceed-
ings of the 14th international conference on Hybrid systems: computation
and control, pp. 313–314, 2011.

[109] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with tulip: The temporal logic plan-
ning toolbox,” in 2016 IEEE Conference on Control Applications (CCA),
pp. 1030–1041, IEEE, 2016.

[110] S. Maoz and J. O. Ringert, “Gr (1) synthesis for ltl specification patterns,”
in Proceedings of the 2015 10th joint meeting on foundations of software
engineering, pp. 96–106, 2015.

[111] S. A. Cook, “The complexity of theorem-proving procedures,” in Logic, Au-
tomata, and Computational Complexity: The Works of Stephen A. Cook,
pp. 143–152, 2023.

185

[112] C. H. Papadimitriou, Computational complexity, p. 260–265. GBR: John
Wiley and Sons Ltd., 2003.

[113] W. Ubellacker and A. D. Ames, “Robust locomotion on legged robots
through planning on motion primitive graphs,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 12142–12148, 2023.

[114] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.

[115] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation
of programs,” Communications of the ACM, vol. 18, no. 8, pp. 453–457,
1975.

[116] L. Lamport, “win and sin: Predicate transformers for concurrency,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 12,
no. 3, pp. 396–428, 1990.

[117] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[118] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis, “Multiple viewpoint contract-based specification and design,” in
Formal Methods for Components and Objects: 6th International Symposium,
FMCO 2007, Amsterdam, The Netherlands, October 24-26, 2007, Revised
Lectures (F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
eds.), (Berlin, Heidelberg), pp. 200–225, Springer Berlin Heidelberg, 2008.

[119] A. L. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems,” Eur. J.
Control, vol. 18, no. 3, pp. 217–238, 2012.

[120] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa,
“A platform-based design methodology with contracts and related tools for
the design of cyber-physical systems,” Proceedings of the IEEE, vol. 103,
no. 11, pp. 2104–2132, 2015.

[121] I. Incer, The Algebra of Contracts. PhD thesis, EECS Department, University
of California, Berkeley, May 2022.

[122] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. L. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
K. G. Larsen, et al., “Contracts for system design,” Foundations and Trends
in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–400, 2018.

[123] I. Incer, A. L. Sangiovanni-Vincentelli, C.-W. Lin, and E. Kang, “Quotient
for assume-guarantee contracts,” in 16th ACM-IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE’18,
pp. 67–77, October 2018.

186

[124] R. Passerone, Í. Íncer Romeo, and A. L. Sangiovanni-Vincentelli, “Coherent
extension, composition, and merging operators in contract models for sys-
tem design,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, pp. 1–23, 2019.

[125] R. Negulescu, “Process spaces,” in CONCUR 2000 — Concurrency The-
ory (C. Palamidessi, ed.), (Berlin, Heidelberg), pp. 199–213, Springer Berlin
Heidelberg, 2000.

[126] J. B. Graebener^*, A. Badithela^*, and R. M. Murray, “Towards better
test coverage: Merging unit tests for autonomous systems,” in NASA For-
mal Methods (J. V. Deshmukh, K. Havelund, and I. Perez, eds.), (Cham),
pp. 133–155, Springer International Publishing, 2022. A. Badithela and J.B.
Graebener contributed equally to this work.

[127] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, “Shield synthesis,”
in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 533–548, Springer, 2015.

[128] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Euro-
pean conference on machine learning, pp. 282–293, Springer, 2006.

[129] I. Incer, L. Mangeruca, T. Villa, and A. Sangiovanni-Vincentelli, “The quo-
tient in preorder theories,” arXiv:2009.10886, 2020.

[130] O. Hussien, A. Ames, and P. Tabuada, “Abstracting partially feedback lin-
earizable systems compositionally,” IEEE Control Systems Letters, vol. 1,
no. 2, pp. 227–232, 2017.

[131] P. Tabuada, G. J. Pappas, and P. Lima, “Composing abstractions of hybrid
systems,” in International Workshop on Hybrid Systems: Computation and
Control, pp. 436–450, Springer, 2002.

[132] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone
systems,” in Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control, HSCC ’15, (New York, NY, USA),
p. 58–67, Association for Computing Machinery, 2015.

[133] J. Liu and N. Ozay, “Abstraction, discretization, and robustness in temporal
logic control of dynamical systems,” in Proceedings of the 17th international
conference on Hybrid systems: computation and control, pp. 293–302, 2014.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Motivation
	Challenges
	Related Work
	Thesis Overview and Contributions

	Evaluating Perception for System-level Task Requirements
	Introduction
	Preliminaries
	Problem Statement
	Role of Detection Metrics in Quantitative System-level Evaluations
	Markov Chain Analysis
	Experiments
	Lower Bounds for Detection Metrics from System-level Guarantees
	Conclusion

	Automated Test Synthesis via Network Flows: An Introduction
	Introduction
	Related Work
	Motivation
	Preliminaries
	Test Objective
	Algorithm for Synthesizing Static Test Environments
	Iterative Synthesis of Constraints
	Characteristics of the Algorithm
	Examples
	Conclusions

	Flow-based Reactive Test Synthesis
	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Graph Construction
	Part I: Flow-based Optimization via Min-Max Stackelberg Games with Coupled Constraints
	Part II: Flow-based Optimization via Mixed-Integer Linear Programming
	Test Strategy Synthesis
	Complexity Analysis
	Comparison to Reactive Synthesis
	Experiments
	Conclusions and Future Work

	Assume-Guarantee Contracts for Compositional Testing
	Introduction
	Preliminary Work on Merging Unit Tests
	Strong Merge Operator
	Temporal Constraints on Merging Tests
	Contract Theory for Formalizing Compositional Testing
	Test Structures and Tester Specifications
	Combining Tests
	Comparing Tests
	Splitting Tests
	Conclusions and Future Work

	Concluding Remarks
	Thesis Contributions
	Future Directions

	Bibliography

