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C h a p t e r 6

CONCLUDING REMARKS

6.1 Thesis Contributions
This thesis covered the following two themes: i) evaluating perception models using
metrics that are relevant to system-level specifications as well as the downstream
planning logic, and ii) synthesis of reactive test environments and strategies.

Task-Relevant Evaluation of Perception: In this thesis, we considered the prob-
lem of evaluating the object detection and classification task of perception given
system-level specifications. We identified confusion matrices as an appropriate
model of sensor error for the object detection and classification task, and using
principles of automata theory and probabilistic model checking, we formally de-
fined probability functions to relate the confusion matrix to a probabilistic model
of system state evolution. Confusion matrices are a popular choice for compar-
ing and evaluating detection models in computer vision. This work is the first to
formally establish a link between confusion matrices and system-level probabil-
ity of satisfying a temporal logic specification. Qualitatively, our theoretical ap-
proach matches empirical observations in experimental work conducted in indus-
try [13]. Furthermore, our approach lends a quantitative framework for designers to
choose appropriate detection models based on their specifications. For instance, the
precision-recall tradeoff which is well-known in detection tasks, is manifested in
the system-level performance, and is quantified in the form of probabilistic guaran-
tees. Due to this, we can compute desired lower bounds on detection performance
(e.g., lower bounds on precision, false negative rate etc.) from desired quantitative
system guarantee. We did this as a case study using the system design optimization
tool, Pacti [68].

Based on these theoretical fundamentals, the second contribution in this direction
is proposing new metrics for evaluating detection models that are more relevant
to the system-level specification and the downstream controller. For this, we in-
troduced proposition-labeled confusion matrices, in which traditional class labels
are replaced by propositional formulas that are relevant to controller design. Fur-
thermore, evaluations can be grouped at the same level of abstraction as the down-
stream controller that receives these detections as input. We evaluated a pre-trained
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Pointpillars model that detects objects based on LiDaR data on the entire nuScenes
dataset, and illustrate the result for a car-pedestrian example.

Reactive Test Synthesis: Automated test synthesis is a technical challenge mo-
tivated by the need for certification of safety-critical autonomous systems. These
systems are expected to reason over both discrete and continuous states and inputs.
This thesis studies synthesis of reactive test plans for high-level decision-making
over discrete states and inputs. Specifications of the system are encoded in the
system objective. In addition, user-defined specification of desired test behavior
are encoded in the test objective, which is not revealed to the system under test.
In this thesis, test objectives are manually specified. However, there is potential
for automating this process as discussed in the future directions section later in the
chapter.

In this thesis, we covered a test synthesis framework to restrict system actions re-
actively via a test harness. These restrictions can be implemented by the test envi-
ronment using static and/or reactive obstacles, and dynamic test agents. First, we
construct a product graph that tracks the system dynamics, and realization of the
system and test objectives. Effectively, a path on the product graph represents a
test execution. The routing problem is formulated as an optimization in which the
test execution to realize the test objective without making it impossible for the sys-
tem to realize the system objective. Via a reduction from 3-SAT, the computational
complexity of this routing problem is shown to be NP-hard. This thesis covers two
main approaches to solve the routing problem: Stackelberg game with coupled con-
straints and a mixed-integer linear program. The mixed-integer linear program can
be solved more efficiently, and with guarantees that a feasible solution is a feasible
test strategy. For different test environment types, the mixed-integer program can
be easily modified by adding linear constraints to account for different environment
types and to exclude any solutions. Static obstacles can be implemented as a spe-
cial case of the reactive setting by adding constraints to enforce the non-reactivity of
these restrictions. Furthermore, the dynamic agent strategy is synthesized to realize
the reactive test strategy by matching the optimization solution.

Finally, we conducted hardware experiments using a pair of quadrupedal robots.
The framework is agnostic to the specific controllers at the lower levels of the con-
trol stack, thus illustrating that the high-level tests synthesized by this framework
can be effectively translated to hardware with test environments comprising of static
and reactive obstacles, and dynamic test agents.
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6.2 Future Directions
There are several exciting future directions for research on specification, testing,
and verification of autonomous cyber-physical systems, guided by compelling demon-
strations in hardware and simulation.

Layered, hierarchical test synthesis
Oftentimes, system-level failures in complex systems emerge from poor interfaces
and interactions between subsystems. Current approaches to identifying failures
with respect to specifications relies on black-box optimization methods, which are
typically limited to identifying input signals in the continuous domain. While there
is some work on identifying discrete-valued test inputs, it is often limited to vari-
ables that remain constant throughout the test (e.g., color of objects, the decision to
place static barriers in the scene).

Figure 6.1: Overview of the
planning and control software
stack.

Figure 6.1 illustrates the vertical stack of the plan-
ning and control modules. The high-level planner,
which operates at a slower timescale, is respon-
sible for long-horizon decision-making which in-
volves reasoning over fundamentally discrete vari-
ables. At the mid-level, trajectories with way-
points are planned for the robotic system. Finally
the low-level controller, operating at faster speeds,
executes the mid-level plan. In this thesis, we stud-
ied test environment synthesis for the high-level
planner. The falsification approaches to identifying
test cases are traditionally used to find failures at
the mid-level and low-level. Furthermore, falsifica-
tion algorithms often output open-loop trajectories,
instead of reactive test strategies.

An open question is to identify falsifying instances
resulting from a combination of poor high-level de-
cision making together with continuous nonlinear
dynamics at the low-level (e.g., incorrectly switching to a different dynamical mode,
causing the system to violate safety or progress specifications). This is non-trivial
even in simple hybrid system examples, especially when the system architecture
and control design are black-box to the tester, and attempts to identify these fail-
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ures by jointly searching over discrete and continuous parameters will not scale.
To address this challenge, we would need to i) infer how high-level commands af-
fect continuous dynamics, and ii) infer when switches to different high-level modes
result in dynamically unsafe trajectories. In addition to falsifying components at
different levels of the control stack, we would also need to falsify the interfaces that
map between them.

As an example, consider a simple switched system shown in Figure 6.2. The sys-
tem in this example is a point-mass which must avoid the unsafe regions shaded in
blue, and has two operating modes: a north-south mode, and an east-west mode.
The tester has access to a switch command: when a switch command is issued,
the system must eventually switch to the other operating mode. The system is
a 2-dimensional double integrator, and has a simple model-predictive controller
with a quadratic cost consisting of: i) position error with respect to the north-
south and east-west axes, ii) control effort, and iii) terminal cost defined on the
system state. The terminal cost function is a 2-norm of the distance to the goal
(north/south/east/west) with zero velocity along either axis. The optimization in-
cludes constraints on control effort that can be exerted in each direction.

With no knowledge of the control design, and a couple of trials of commanding
a single switch, the trajectories of this system would indicate a safe implementa-
tion. For example, see Figure 6.2a, in which the system safely avoids the unsafe
region in executing the switch command. However, two switch commands in quick
succession result in a falsifying trajectory of the system, highlighting the flaw in
controller. In this example, the decision to switch twice is a fundamentally discrete
choice, which current falsification algorithms typically cannot handle. The role of
reactivity and layered architecture also becomes evident: i) the second switch is
command in reaction to the system response to the first switch, and ii) the dynami-
cal behavior (low-level behavior) of the system in response to the switch command
combined with its decision to switch modes immediately without regard for safety
(high-level decision) is what ultimately results in the failing trace.

Incorporating low-level dynamics
A challenge in hierarchical test and evaluation is in identifying the appropriate sur-
rogate model of the system on which to test. As discussed previously, suppose the
system-under-test is black-box to the test engineer, that is, the planning and control
architecture and implementation is unknown to the tester. This would also imply
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(a) Point mass (system) starting
from the north position and in north-
south mode (in blue), and com-
manded to switch to east-west mode
(in orange).

(b) Point mass (system) starting
from the west position and in east-
west mode (in orange), and then
commanded to switch twice in quick
succession. The blue portion of
the trajectory indicates the system
switching to north-south mode be-
fore reverting to the east-west mode
as shown in orange.

Figure 6.2: Simple switched system example, with position of the system shown at
discrete time intervals.

that the system models used by the designers is also unknown to the test engineer.
Therefore, the only entities known to the test engineer are the system specifications,
the operational domain, and a black-box simulator or the physical system.

Though specifications are defined on the overall system, the subsystems responsible
for the satisfaction of these specifications depends partly on the system implemen-
tation. For example, the requirement that the robot must remain safe likely requires
multiple subsystems working together to satisfy safety. However, the requirement
that the system exhibit certain motion primitives, e.g., quadruped must walk at a
certain speed, might be the responsibility of a low-level controller. Depending on
the scenario, certain specifications become prerequisites for other specifications.
For example, the safety specification of the quadruped requires to evade an adver-
sary might require it to consistently execute the walk motion primitive at a certain
speed. For a broadly defined scenario such as evasion, if we are able to automati-
cally order specifications according to this notion of pre-requisites, we can use the
pre-requisite specifications to construct a model of high-level behavior of the sys-
tem. In the literature on hybrid cyber-physical systems, this is related to work on
constructing high-level system abstractions from low-level controllers using tools
including reachability analysis. A concrete first step would be to review the litera-
ture on abstraction for control synthesis [130–133], and leveraging these methods
to build a similar paradigm for abstraction, and discretization for testing.
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The previous subsection is largely concerned with the case in which an abstrac-
tion of the system is assumed, and we need an efficient approach to testing that
includes reasoning over both discrete and continuous variables. In this subsection,
we are concerned with finding abstractions suitable for testing. There are two high-
level directions for future work. First, how can we use prerequisite specifications to
gather data from the system, and construct abstractions to model high-level behav-
ior? These abstractions can include quantitative metrics of difficulty of executing
lower level motion primitives. Second, what are the fundamental limitations of con-
structing these abstractions given the black-box nature of the system? Construct-
ing these abstractions would potentially require a combination of model-based and
data-driven methods — model-based in the sense that the physical dynamics, but
not the control implementation, of the system might be known to the tester, and
data-driven to get statistical data on the specific system implementation.

Criticality, coverage, and compositionality of test plans
Identifying critical test objectives is ill-posed when the operational design domain
(ODD) is vast and difficult to characterize. While it might be hard to define a
critical scenario in general, can we comparatively evaluate the criticality of two
test scenarios? We can begin by studying the criticality of scenarios from a con-
trols perspective (assuming perfect perception) before expanding to criticality from
the system perspective (including all tasks pertaining to perception, reasoning, and
control). There are two contending perspectives. On the one hand, criticality of a
scenario will depend partly on the system controller — a scenario that is challeng-
ing (e.g., in terms of control effort, optimality, robustness) for one controller need
not be equally challenging for another. Yet, at the same time, some scenarios seem
universally less critical than others. For example, a safe unprotected left turn at a
T-intersection amidst busy two-way traffic is more compelling than taking the same
unprotected left turn without traffic. When are scenarios comparable? How do we
quantify comparative criticality, and can we identify a class of controllers for which
one scenario is more critical than the other?

The aforementioned question also relates to coverage. Ideally, successfully passing
a more critical test should imply high confidence that the system would pass the less
critical test. We would need to define a coverage metric that is consistent with this
notion of criticality while also capturing the diversity of possible scenarios that are
not easily comparable. For example, would reactive test scenarios (e.g., test agents
moving in an office space) cover “open-loop” tests in which the test environment is
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completely static (e.g., static yet cluttered office environment)?

Another direction to tackle the coverage question is to decompose it to the subsys-
tem level as opposed to the scenario level. Since the ODD is often vast and difficult
to define, we can focus on coverage for inputs to various subsystems in the con-
trol stack, which can be relatively low-dimensional in comparison to multi-modal
sensor data received by the perception system. Can we then compose coverage
guarantees from testing the individual subsystems during development to infer cov-
erage at the system-level? Can we rely on this analysis to identify operational tests
that check multiple unit-level tests at once?

Task-relevant metrics for perception
While this thesis identifies task-relevant metrics for object detection and classifi-
cation tasks, corresponding metrics for other perception tasks such as tracking and
behavior prediction still remain to be studied. Secondly, it is not clear which metrics
offer the tightest system-level guarantees. This thesis offers preliminary results —
confusion matrices chosen based on system-level specifications and downstream
control logic result in less conservative evaluations overall. However, further re-
search on investigating the tightness of these guarantees needs to be studied, along
with hardware validation of the derived system-level guarantees.

Thirdly, one can extend these principles to perception-planning-control architec-
tures where the interfaces between modules are less distinct. The confusion matrix
only accounts for the final layer of the model’s neural network, which outputs a
scalar value to classify the object. However, higher dimensional learned features of
the model could contain rich information on the model’s performance which can be
exploited. In which system-level architectures is the confusion matrix a sufficient
metric of detection error? Which learned features of the detection models are a
better representation of model performance with respect to the system-level task?
Finally, these task-relevant evaluation criteria are often meant for offline evalua-
tions of perception models, and the resulting system-level guarantees are limited
to scenarios from the distribution used for model evaluations. Future work should
study the how these guarantees can be updated via runtime monitoring or how they
can degrade if a scenario is out-of-distribution.
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