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C h a p t e r 5

ASSUME-GUARANTEE CONTRACTS FOR COMPOSITIONAL
TESTING

5.1 Introduction
The previous chapters discuss the synthesis of test strategies from system and test
objectives. In this chapter, we will motivate the idea of compositional test plans.
It might be desireable to construct a more complex test objective from simpler unit
tests, or to break-down a complex test into simpler tests, either by testing on smaller
sub-systems or conducting simpler tests. This chapter is a step in the direction to-
wards composable test plans. First, we will introduce a mathematical and algo-
rithmic framework in which simpler test objectives can be merged to form a more
complex test objective. Then, we will introduce mathematical frameworks based
in assume-guarantee contract operations to formally describe test campaigns, and
how tests can be merged or decomposed. For simplicity, we assume that the test
environment has already equipped to handle the test objectives.

This work is adapted from:

J.B Graebener⇤, A. Badithela⇤, R. M. Murray. (2022). “Towards Better Test Cov-
erage: Merging Unit Tests for Autonomous Systems.” In: 2022 NASA Formal
Methods (NFM), pp. 133–155. DOI: 10.1007/978-3-031-06773-0_7.

A. Badithela⇤, J.B Graebener⇤, I. Incer⇤ , R. M. Murray. (2023). “Reasoning over
Test Specifications Using Assume-Guarantee Contracts.” In: 2023 NASA Formal
Methods (NFM), pp. 278–294. DOI: 10.1007/978-3-031-33170-1_17.

The contract-based-design framework was first introduced as a design methodol-
ogy for modular software systems [115–117] and later extended to complex cyber-
physical systems [118–120]. Following the definition of assume-guarantee con-
tracts earlier in the chapter, we will now cover background on other contract oper-
ators [121]. For ease of reading, we will repeat the definition of assume-guarantee
contracts below, and introduce other operators.

Definition 5.1 (Assume-Guarantee Contract). Let B be a universe of behaviors,
then a component M is a set of behaviors M ✓ B. A contract is the pair C =

(A, G), where A are the assumptions and G are the guarantees. A component E is

https://doi.org/10.1007/978-3-031-06773-0_7
https://doi.org/10.1007/978-3-031-33170-1_17
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an environment of the contract C if E |= A. A component M is an implementation
of the contract, M |= C if M ✓ G [ ¬A, meaning the component provides the
specified guarantees if it operates in an environment that satisfies its assumptions.
There exists a partial order of contracts, we say C1 is a refinement of C2, denoted
C1  C2, if (A2  A1) and (G1[¬A1  G2[¬A2). We say a contract C = (A, G)

is in canonical, or saturated, form if ¬A ✓ G.

C

C 0 k C1
iff

C/C 0

C1

(a) Composition and quotient.

C1 • C2

C1 C1 k C2 C2

C1 ^ C2
(b) Order of operations.

Figure 5.1: Contract operators and the partial order, defined in relation to the re-
finement operator, of their resulting objects.

Assume the following contracts are in canonical form. The meet or conjunction of
two contracts exists [118] and is given by C1 ^ C2 = (A1 [ A2, G1 \G2) . Com-
position [122] yields the specification of a system given the specifications of the
components: C1 k C2 = ((A1 \ A2) [ ¬(G1 \G2), G1 \G2) . Given specifications
C and C1, the quotient is the largest specification C2 such that C1 k C2  C [123]:
C/C1 = (A [G1, (G \ A1) [ ¬(A [G1)) . Strong merger [124] yields a specifica-
tion that is satisfied by a system that also satisfies the two given specifications C1
and C2: C1 • C2 = (A1 \ A2, (G1 \G2) [ ¬(A1 \ A2)) . The reciprocal (or mir-
ror) [124, 125] is a unary operation which inverts assumptions and guarantees:
C�1 = (G, A).

Remark 5.1. The statement contract C1 is more refined than contract C2 should be
interpreted as follows. A system implementation for C1 has fewer assumptions on
its environment and must provide more guarantees. In looking at sets of behav-
iors: the system must handle a larger set of environment behaviors while providing
stricter guarantees. Since the guarantees of C1 are stricter than C2, the set of system
behaviors satisfying guarantees of C1 is smaller than that of C2.

5.2 Preliminary Work on Merging Unit Tests
Recall the definition of a discrete-state system introduced in Chapter 4. In the previ-
ous chapter, the system specification could not be described as a GR(1) specification
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since the property that there will always exist a path to satisfying the system goal
could not be characterized as a GR(1) formula. This is because the precise environ-
ment agents for a scenario were not given to the system; the system is only informed
that actions in the test harness can be restricted, but these restrictions will always
be such that the system has a feasible path. In this chapter, we assume that such
a test environment has been constructed according to the test synthesis framework
established in the previous chapter, and it is such that there always exists a path for
the system goal. For simplicity, we consider a class of system objectives which can
be written in the assume-guarantee form. The assumptions specify the dynamics of
the test environment agents that will be used in the test scenario, and tests consid-
ered are such that even the worst-case dynamics of the test agents will not prevent
the system from satisfying its requirements. Since this system objectives is a subset
of the system objective considered in the previous chapter, we will used the term
system specification instead. Let Tsys be the system transition system.

Definition 5.2 (System Specification). A system specification 'sys is the GR(1)

formula,

'sys = ('init
test ^⇤'s

test ^⇤ ⇤'f
test)! ('init

sys ^⇤'s
sys ^⇤ ⇤'f

sys) , (5.1)

where 'init
sys is the initial condition that the system needs to satisfy, 's

sys encode sys-
tem dynamics and safety requirements on the system, and 'f

sys specifies recurrence
goals for the system which is defined to be on a sink state of the system. Likewise,
'init

test, 's
test, and 'f

test represent assumptions the system has on the test environment.

Once again, the objective is to synthesize a test strategy for the test environment
given the test specification. Unlike the system specification, the infinitely often
sub-task specification need not be restricted to be satisfied in a terminal state.

Definition 5.3 (Test Specification). A test specification 'test is the GR(1) formula,

'test := ('init
sys^⇤'s

sys^⇤ ⇤'f
sys)! ('init

test^⇤'s
test^⇤ ⇤'f

test^⇤ s
test^⇤ ⇤ f

test) ,

(5.2)
where 'init

sys , 's
sys and 'f

sys, 'init
test, 's

test and 'f
test are propositional formulas from equa-

tion (5.1). Additionally, ⇤ s
test and ⇤ ⇤ f

test describe the safety and recurrence for-
mulas for the test environment in addition to the dynamics of the test environment
known to the system. Note that the system is unaware of these additional sub-task
specifications (similarly to the previous chapters), and the test environment is such
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that the system is allowed to satisfy its requirements. Defining the test specifica-
tion in this manner allows for i) synthesizing a test in which the system, if properly
designed, can meet 'sys, and ii) specifying additional requirements on the test envi-
ronment, unknown to the system at design time. We assume that test specifications
are defined a priori; we leave automatically finding relevant test specifications to
future work.

Having defined the system and test specifications, we define a product transition
system that represents the turn-based dynamics of the two players: Let Tprod be a
turn-based product transition system constructed from Tsys and Ttest, where Tprod.S :=

Tsys.S ⇥ Ttest.S, Tprod.A := Tsys.A ⇥ Ttest.A, and Tprod.� ✓ Tprod.S ⇥ Tprod.A ⇥
Tprod.S denotes the turn-based transition function. In particular, for every transition
(s, as, s0) 2 Tsys.�, we have ((s, t), (as, at), (s0, t)) 2 Tprod.� where t 2 Ttest.S and
at 2 Ttest.A. The transitions originating due to test agent actions are constructed
similarly. From the product transition system, we can construct a game graph that
maintains two copies of each state — one from which the system player acts and
the other from which the test environment acts.

Definition 5.4 (Game Graph). Let Vsys and Vtest be copies of the states Tprod.S. Let
Esys and Etest correspond to the transitions in the game graph:

Esys ={((s, t), (s0, t)) | 9as 2 Tsys.A, 8at 2 Ttest.A, ((s, t), (as, at), (s
0, t)) 2 Tprod.�},

Etest ={((s, t), (s, t0)) | 9at 2 Ttest.A, 8as 2 Tsys.A, ((s, t), (as, at), (s, t
0)) 2 Tprod.�}.

(5.3)
Then, the game graph is a directed graph G = (V, E) is a directed graph with
vertices V := Vsys [ Vtest and edges E := Esys [ Etest.

On the game graph, a player strategy, and the test execution resulting from it are
given below.

Definition 5.5 (Strategy). On the game graph G, a policy for the system is a func-
tion ⇡sys : V ⇤Vsys ! Vtest such that (s, ⇡sys(w.s)) 2 Esys, where s 2 Vsys and
w 2 V ⇤. Similarly defined, ⇡test denotes the test environment policy, where ⇤ is the
Kleene star operator.

Definition 5.6 (Test Execution). A test execution � = v0v1v2 . . . starting from ver-
tex v0 2 V is an infinite sequence of states on the game graph G. Since G is a
turn-based game graph, the states in the test execution alternate between Vsys and



140Framework

7Josefine Graebener Caltech

2/22/22

Merge Test 
Specifications

Test Filter 
Synthesis

Guided Test 
Policy SearchUnit Test 

Specifications

Robustness 
Metric

Reactive Test 
Policy

Test 
Environment

System  
Model

System 
Specification

Defines test track layout 

and test agents

Desired behavior 
that shall 


be observed 
during the test

Simulation model 

of the system

Defines system 
behavior

Characterizes the difficulty 

of the test trace

Merge Test 
Specifications

Test Filter 
Synthesis

Guided Test 
Policy Search

Figure 5.2: Overview of the merging unit tests.

Vtest, so if V1 2 Vsys, then vi+1 = ⇡sys(v0 . . . V1). Let �s0(⇡sys ⇥ ⇡test) be the test
execution starting from state s0 2 Vsys for policies ⇡sys and ⇡test. Let ⌃ denote the
set of all possible test executions on G. A robustness metric ⇢ : ⌃! R is a function
evaluated assigning a scalar value to a test execution.

Problem 5.1. Given system and environment transition systems, Tsys and Ttest, two
unit test objectives 'test,1 and 'test,2, and a robustness metric ⇢, find a test strategy
⇡⇤

test, such that

⇡⇤
test = arg max

⇡test
⇢(�(⇡sys ⇥ ⇡test))

s.t. �(⇡sys ⇥ ⇡test) |= ('test,1 ^ 'test,2) , 8 ⇡sys |= 'sys.
(5.4)

Example 5.1 (Running Example — Lane Change). Consider the lane change sce-
nario illustrated in Figure 5.3. The system (red car) is required to change lanes
into the lower lane before the track ends without colliding with the test environ-
ment agents (blue cars). The system liveness requirement is, 'f

sys := (ysys = 2),
and its safety requirement of no collisions is with test agent labeled i, is: ¬(ysys =

ytest,i^xsys = xtest,i) 2 's
sys. In the first two panels, we observe the test agent chang-

ing lanes in front of and behind a test car, respectively. In the merged test execution
of the third panel, we see the test agent change lanes exactly in between the two
blue cars.
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Figure 5.3: Lane change example
with initial (left) and final (right) con-
figurations. The x-coordinates are
numbered from left to right, and y-
coordinates are numbered top to bot-
tom, starting from 1. The system
(red) is required to merge into the
lower lane without colliding. Merg-
ing in front of (top), behind (center),
or in between (bottom) tester agents
(blue).

5.3 Strong Merge Operator
In this section, we formalize the the construction of a single test specification from
unit test specifications using the strong merge operator from contract theory. Addi-
tionally, we will introduce the notion of adding temporal constraints to the merged
test specification to ensure that the resulting test execution reliably satisfies all the
unit test specifications. Finally, for the merged test specifications, we use Monte-
Carlo Tree Search to find a test strategy on the game graph such that a metric of
difficulty is maximized.

The strong merge operator defines the merge of two contracts C1 and C2 as follows:

C1 • C2 =(a1 ^ a2, (a1 ^ a2)! [(a1 ! g1) ^ (a2 ! g2)])

=(a1 ^ a2,¬a1 _ ¬a2 _ (g1 ^ g2)).
(5.5)

Additionally, other operators from assume-guarantee contract theory such as com-
position and conjunction [122, 124] will be introduced later in the chapter. Among
all these operators, strong merge is the only operator that conjoins assumptions of
the individual contracts, and consequently, enforces all unit test specifications to
hold true. Thus, we choose the strong merge operator to derive the merged test
specification.

Given any two unit test specifications, 'test,1 and 'test,2, the corresponding contracts
are C1 = (a1, a1 ! g1) and C2 = (a2, a2 ! g2), where ai = ('init

sys ^ ⇤'s
sys ^

⇤ ⇤'f
sys) is the assumptions on the system (under test), and gi = ('init

test,i^⇤'s
test,i^

⇤ ⇤'f
test,i ^⇤ s

test,i ^⇤ ⇤ f
test,i) is the guarantees for unit test i. We use the term

gt,i :=  f
test,i) to refer to the liveness portion of the test objective unknown to the

system under test.
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Remark 5.2. We make a few simplifying assumptions on the unit test guarantees
gi. First, we assume that the only recurrence requirements in the test specification
is ⇤ ⇤ f

test,i, which is not known to the system since it is not a part of the system’s
assumptions on the environment. Second, we assume that the merged test environ-
ment Ttest,m is a simple Cartesian product of the unit test environments, Ttest,1 and
Ttest,2. On the merged test environment, we take the agents from the individual tests:
we translate the initial conditions of the agents in the unit tests 'init

test,1 and 'init
test,2, and

test agent dynamics 's
test,1 and 's

test,2 are also the same.

Definition 5.7 (Merged Test Specification). From the merged contract Cm := C1• C2
= (am, am ! gm), the specification 'test,m = am ! gm, where am = a1 ^ a2, and
gm = [(a1 ! g1)^(a2 ! g2)] is the merged test objective. A test environment strat-
egy ⇡test,m for merged test objective 'test,m results in a test execution � |= 'test,m.

The following result is taken from [126].

Lemma 5.1. Given unit test specifications'test,1 and'test,2 such that'test,m = am !
gm is the corresponding merged test specification. Then, for every test execution
� |= 'test,m such that � |= am, we also have that � |= 'test,1 and � |= 'test,2.

Proof. Suppose C1 and C2 are the assume-guarantee contracts corresponding to
unit test specifications 'test,1 and 'test,2. Applying strong merge operator on con-
tracts C1 and C2, we get:

C1 • C2 =(a1 ^ a2, (a1 ^ a2)! [(a1 ! g1) ^ (a2 ! g2)])

=(a1 ^ a2,¬a1 _ ¬a2 _ (g1 ^ g2)).
(5.6)

Thus, the merged test specification 'test,m = ¬a1 _ ¬a2 _ (g1 ^ g2) requires either
one of the assumptions to not be satisfied, or for both the guarantees hold. Since
� |= am = a1 ^ a2, and � |= 'test,m, we get that � |= 'test,1 and � |= 'test,2.

Guarantees g1 and g2 are used guide the choice of a test strategy; strategies that
vacuously satisfy the merged test specification by violating the assumptions are not
returned. This is necessary in order to give the system an opportunity to satisfy its
specification. If the assumptions on the merged test specifications are violated, it
would be because of a fault in system design.

Example 5.2 (Lane Change (continued)). In the lane change example, the unit test
specifications are changing into the lane behind a blue car and changing into the
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lane in front of the blue car. For each specification, the saturated assume guarantee
contracts are defined as C1 = (a1, a1 ! g1) and C2 = (a2, a2 ! g2) with a1 =

'init
sys ^ ⇤'s

sys ^ ⇤ ⇤(y = 2) and g1 = ⇤ ⇤(y = y1 = 2 ^ x = x1 + 1), and
a2 = 'init

sys ^ ⇤'s
sys ^ ⇤ ⇤(y = 2) and g2 = ⇤ ⇤(y = y2 = 2 ^ x = x2 � 1)

being the assumptions and guarantees of the two individual tests. Thus, applying
the strong merge operation to the unit contracts results in the guarantee,

gm = ⇤ ⇤(y = y1 = 2 ^ x = x1 + 1) ^⇤ ⇤(y = y2 = 2 ^ x = x2 � 1). (5.7)

5.4 Temporal Constraints on Merging Tests
Naively merging test objectives might not always result in a merged test execu-
tion that checks the constituent unit test objectives. In the running example on
lane change, lane change maneuver behind a vehicle in the other lane does not al-
ways coincide with a proper lane change in front of another vehicle. That is, there
may exist many test executions of changing lanes behind a vehicle, and some of
them, but not all, coincide with changing lanes in front of another vehicle. In these
scenarios, the test specifications can be merged in parallel, without any additional
temporal constraints on how agents for each test environment must operate.

However, when all executions resulting from a one of the unit test specification also
satisfy the other (as we will see in the unprotected left turn example), the merged
test specification alone is not sufficient. We need to add temporal constraints so that
there is a time in which each test specification is checked individually.

The following result is taken from [126].

Lemma 5.2. If for two test specifications 'test,1 and 'test,2, and the set of all test
executions ⌃, we have � |= 'test,1 () � |= 'test,28� 2 ⌃, then these tests cannot
be parallel-merged. Instead, the temporal constraint must be enforced on gt,1 and
gt,2.

Proof. We refine the general specification in equation (5.6), which allows any tem-
poral structure, to include the temporal constraints in the guarantees. The tempo-
rally constrained merged test specification is thus defined as '0

test,m = am ! g0
m,

with

g0
m = ¬a1 _ ¬a2 _ ( ⇤(gt,1 ^ ¬gt,2) ^ ⇤(¬gt,1 ^ gt,2) ^ (g1 ^ g2)). (5.8)

Because any trace � satisfying '0
test,m will also satisfy 'test,m, � |= '0

test,m ) � |=
'test,m. Any test trace satisfying this specification will consist of at least one occur-
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rence of visiting a state satisfying gt,1 and not gt,2 and vice versa. Thus the guar-
antees of the specifications for each unit test, gt,1 and gt,2 are checked individually
during the merged test which satisfies the temporal constraints.

Receding Horizon Synthesis of Test strategy Filter
Since the test specification characterizes the set of possible test executions, we need
a strategy for the test environment that is consistent with the test specification. In
this section, we detail the construction of an auxiliary game graph and algorithms
for receding horizon synthesis of the test specification on the auxiliary game graph.
This filter will then be used to find the test strategy using Monte-Carlo Tree Search.

Auxiliary Game Graph Gaux

Assume we are given a game graph G = (V, E) constructed according to Defini-
tion 5.4, and a (merged) test specification 'test,m in GR(1) form as in equation (5.2).
Then, for each recurrence requirement in the test specification, ⇤ ⇤ f

test, we can
find a set of states I = {i1, . . . , in} ✓ V that satisfy the propositional formula  f

test.
For each i 2 I, there exists a non-empty subset of vertices V s ✓ V that can be
partitioned into {V i

0, . . . ,V i
n}. We follow [18] in partitioning the states; V i

k is the
set of states in V that is exactly k steps away from the goal state i. From this par-
tition of states, we can construct a partial order, P i = ({V i

0, . . . ,V i
n},), such that

V i
l  V i

l�1 for all l 2 {0, . . . , n}. This partial order will be useful in the receding
horizon synthesis of the test strategy outlined below [18].

We construct an auxiliary game graph Gaux = (Vaux, Eaux) (illustrated in Figure 5.4)
to accommodate any temporal constraints on the merged test specification before
proceeding to synthesize a filter for the test strategy. Without loss of generality,
we elaborate on the auxiliary graph construction in the case of one recurrence re-
quirement in each unit specification, but this approach can be easily extended to
multiple progress requirements. An illustration of the auxiliary graph is given in
Figure 5.4. Let 'test,1 and 'test,2 be the two unit test specifications, with  f

test,1 and
'f

test,2, respectively. First, we make three copies of the game graph G = (V, E) —
G'test,1_'test,2 = (V1_2, E1_2), G'test,1 = (V1, E1), and G'test,2 = (V2, E2). Note that,
V1_2, V1 and V2 are all copies of V , but are denoted differently for differentiating
between the vertices that constitute Gaux, and a similar argument applies to edges
of these subgraphs. Let V i

0 =
S

V ij
0 ✓ V1_2 be the set of states in G'test,1_'test,2 that

satisfy propositional formula  f
test,1. Likewise, the set of states Vk

0 ✓ V1_2 satisfy
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Figure 5.4: Auxiliary game graph
construction for the merged test
specification of unit test specifica-
tions 'test,1 and 'test,2. Subgraphs
G'test,1_'test,2 , G'test,1 and G'test,2 are
copies of the game graph G con-
structed per Definition 5.4. In
G'test,1_'test,2 , the sets of states at
which the progress propositional for-
mulas of test specifications, 'test,1 and
'test,2, are satisfied are shaded yellow
and blue, respectively.

the propositional formula  f
test,2.

Now, we connect the various subgraphs through the vertices in V i
0 and Vk

0 . Let
(vk

0 , u) be an outgoing edge from a node vk
0 2 Vk

0 , and let u1 be the vertex in sub-
graph Gtest,1 that corresponds to vertex u in G'test,1_'test,2 . Remove edge (vk

0 , u) and
add the edge (vk

0 , u1). Likewise, every outgoing edge from V i
0 [ Vk

0 in G'test,1_'test,2

is replaced by adding edges to G'test,1 and G'test,2 . On subgraphs G'test,1 and G'test,2 ,
vertices are partitioned and partial orders are constructed once again for  f

test,1 and
 f

test,2, respectively. From V i
0 defined on the nodes of the graph G'test,1 , every out-

going edge is replaced by a corresponding edge to G'test,1_'test,2 . Subgraph G'test,2 is
connected back to G'test,1_'test,2 in a similar manner. The construction of the auxil-
iary graph Gaux and partial order P i is summarized in Algorithm 7. Our choice of
constructing the auxiliary graph in this manner is amenable to constructing a simple
partial order as outlined below.

Assumption 5.1. For unit test specifications 'test,1 and 'test,2 with recurrence spec-
ifications 'p

1 and 'p
2, respectively, such that 'p

1 = ⇤ ⇤ f
test,1 and 'p

2 = ⇤ ⇤ f
test,2.

Suppose there exist partial orders P i = ({V i
n, . . . ,V i

0},) and Pk = ({Vk
m, . . . ,Vk

0 },
) on G corresponding to  f

test,1 and  f
test,2, respectively. Assume that at least one of

the following is true: (a) there exists an edge (u1, v2) where u1 2 V i
0 and v2 2 Vk

j

for some j 2 {1, . . . , m}, (b) there exists an edge (u2, v1) where u2 2 Vk
0 and

v1 2 V i
j for some j 2 {1, . . . , n}.

The following Lemma is taken from [126].

Lemma 5.3. If Assumption 5.1 holds, there exists a partial order on Gaux for the
merged recurrence propositional formula,  f

test,m, where  f
test,m is the propositional
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Algorithm 7: Construction of Partial Order and Auxiliary Graph

1: procedure GAUX((G, f
test,1, 

f
test,2))

Input: Game graph G = (V, E), propositional formulas  f
test,1 and  f

test,2
constituting the progress requirements of unit test specifications

Output: Auxiliary game graph Gaux

2:
3: G'test,1_'test,2 := (V, E) G Initialize subgraph
4: G'test,1 := (V1, E1) G Initialize subgraph
5: G'test,2 := (V2, E2) G Initialize subgraph
6: [P i

'test,1_'test,2
,Pk

'test,1_'test,2
] Partial order(G'test,1_'test,2 , [ 

f
test,1, 

f
test,2])

7: P i
'test,1

 Partial order(G'test,1 , 
f
test,1)

8: Pk
'test,2

 Partial order(G'test,2 , 
f
test,2)

9: Er
'test,1_'test,2

✓ E Deleting outgoing edges from V i
0 [ Vk

0 ✓ V within
G'test,1_'test,2

10: Ea
'test,1_'test,2

Adding edges from V i
0[Vk

0 ✓ V to subgraphs G'test,1 and G'test,2

11: Er
'test,1

✓ E1 Deleting outgoing edges from V i
0 ✓ V1 within G'test,1

12: Ea
'test,1

Adding edges from V i
0 ✓ V1 to subgraph G'test,1_'test,2

13: Er
'test,2

✓ E2 Deleting outgoing edges from Vk
0 ✓ V2 within G'test,2

14: Ea
'test,2

Adding edges from Vk
0 ✓ V2 to subgraph G'test,1_'test,2

15: Vaux = V [ V1 [ V2

16: Eaux = (E \Er
'test,1_'test,2

)[ (E1 \Er
'test,2

)[ (E2 \Er
'test,2

)[Ea
'test,2
[Ea

'test,1
[

Ea
'test,1_'test,2

17: Gaux = (Vaux, Eaux)
18: return Gaux,P i

'test,1_'test,2
,Pk

'test,1_'test,2
,P i

'test,1
,Pk

'test,2

formula that evaluates to true at: (i) all v 2 V1_2 such that v |=  f
test,1 ^  

f
test,2, (ii)

all v 2 V1 such that v |=  f
test,1, and (iii) all v 2 V2 such that v |=  f

test,2.

Proof. Let Vm
0 ✓ Vaux denote the non-empty set of states at which  f

test,m evaluates
to true. Then, let Vm

j ✓ Vaux be the subset of states that is at least j steps away
from a vertex in Vm

0 . Then, construct the partial order Pm = ({Vm
l , . . . ,Vm

0 },
), where l is the distance of the farthest vertex connected to Vm

0 . The subset of
vertices

S
j Vm

j ✓ Vaux is non-empty because Vm
0 is non-empty. Furthermore, from

Assumption 5.1, if (a) holds, there exists a j 2 {1, . . . , l} such that Vm
j \ V i

0 is
non-empty. Likewise, if (b) holds, there exists a j 2 {1, . . . , l} such that Vm

j \Vk
0 is

non-empty. Therefore, for some j 2 {1, . . . , l} there exists a test execution � over
the game graph Gaux such that � |= ⇤ ⇤ f

test,m.

Remark 5.3. If Assumption 5.1 is not true, the unit tests corresponding to test
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objectives 'test,1 and 'test,2 cannot be merged.

Receding Horizon Synthesis on Gaux

We use receeding horizon synthesis for a more scalable construction of the winning
set WI — the set of states from which the test environment can still satisfy the test
objective. This winning set will then serve as a safety filter during Monte Carlo
Tree Search to exclude trajectories that do not satisfy the test objectives. Further
details on receeding horizon temporal logic planning can be found in [18].

For a test objective 'test,1 with progress propositional formula  f
test,1, let I be the

set of states on Gaux at which  f
test,1 evaluates to true. Suppose the product state of

the system and environment is some j steps away from a state i 2 I: v 2 V i
j+1. If

we want the test environment to guide the execution to two steps ahead to V i
j�1, the

intermediate specification for the test environment is as follows.

 i
j = (v 2 V i

j+1^�^⇤'s
sys^⇤ ⇤'f

sys)! (⇤ ⇤(µi
visited,j�1)^⇤'s

test^⇤ s
test^⇤�),

(5.9)
where � is the invariant condition that ensures that  i

j is realizable, and µi
visited,j�1 is

an auxiliary variable which becomes true (and remains true) once the product state
v has reached a state j � 1 steps away from i: v 2 V i

j�1. The construction of the
invariant set � is given in [18]. It is sufficient to for the test environment to guide
the execution to at least one node i 2 I, which can be formally stated as,

 I
j = _i2I  i

j . (5.10)

The set of states of Gaux from which the test environment has a strategy to satisfy
equation (5.10) is denoted by WI

j . This set serves as a short-horizon filter to guide
the test strategy from j steps away to the goal set I.

Consider the set of shortest paths: {Path(v, i)|v 2 V, i 2 I}. Let jmax denote the
length of the longest path in this set. The overall winning set filter is the union of
individual winning sets:

WI =
jmax[

j=1

WI
j . (5.11)

Construction of WI , and its use as a safety filter for finding test strategies using
MCTS is outlined in Algorithm 8. For the merged test objective, WI is generated on
Gaux where I is the set of states corresponding to  f

test,m. We will need the following
notation to denote the graph induced by the set WI . Let GWI = (VW , EW) be the
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subgraph of Gaux induced by WI such that VW = WI ✓ Vaux and EW = {(u, v) 2
Eaux | u 2WI ^ v 2WI}.

On WI as a test strategy filter

Inspired by work on shield synthesis [127], we use the winning set WI as a filter to
guide rollouts in the Monte Carlo Tree Search sub-routine for finding the test strat-
egy. Since  I

j is a disjunction of short-horizon GR(1) specifications, it is possible
that an execution always satisfies  I

j without ever satisfying the progress require-
ment ⇤ ⇤ f

test. This happens when the test execution makes progress towards some
i 2 I but never actually reaches a goal in I, resulting in a live lock. Further details
addressing this are given in the Appendix. We assume that the graph is constructed
such that there are no such cycles. In addition to using W I to ensure that  I

j will
always be satisfied, we enforce progress by only allowing the search procedure to
take actions that will lead to a state which is closer to one of the goals i 2 I. Thus,
the search procedure will ensure that for every state vl 2 V i

j , the control strategy for
the next horizon will end in vl0 2 V i

k, such that k  l for at least one goal i 2 I.

The following theorem and proof is taken from [126].

Theorem 5.1. Receding horizon synthesis of test filter WI is such that any test
execution � on GWI starting from an initial state in VW \ V satisfies the test speci-
fication in equation (5.2).

Proof. For the recurrence formula of the merged test specification, ⇤ ⇤ f
test,m,

suppose there exists a single vertex on Gaux that satisfies  f
test,m. Then, it is shown

in [18] that if there exists a partial order ({V i
p, . . . ,V i

0},) on Gaux, we can find a
set of vertices W i ✓ Vaux, such that every test execution � that remains in W i, will
satisfy the safety requirements ⇤'s

test and ⇤ s
test, and the invariant �. Furthermore,

given the partial order ({V i
p, . . . ,V i

0},), one can find a test policy to ensure that
the � makes progress along the partial order such that for some t > 0, �t 2 V i

0.
However, in case of multiple vertices in Gaux that satisfy  f

test,m, we need to extend
the receding horizon synthesis to specification  I

j . We construct the filter WI and
also check that for every test execution �, there exists i 2 I such that for every
k � 0, �k 2 V i

j and �k+1 2 V i
j0 . Therefore, because the auxiliary game graph is

assumed to not have cycles, the test execution makes progress on the partial order
of at least one i 2 I at each timestep, thus eventually satisfying  f

test,m. Thus every
execution of our algorithm will satisfy equation (5.2).
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Algorithm 8: Merge Unit Tests ('test,1,'test,2,'sys, Tsys, Ttest,1, Ttest,2, ⇢)

1: procedure MERGEUNITTESTS(('test,1,'test,2,'sys, Tsys, Ttest,1, Ttest,2, ⇢))
Input: Unit test specifications 'test,1 and 'test,2, system specification 'sys,

System Tsys, unit test environments, Ttest,1 and Ttest,2, and quantitative metric of
robustness ⇢,

Output: Merged test specification 'test,m, Merged test environment Ttest,m,
Merged test policy ⇡test,m

2: C1, C2  Construct contracts for 'test,1 and 'test,2

3: Ttest  Ttest,1 ⇥ Ttest,2 Merged test environment
4: Tprod  Tsys ⇥ Ttest Product transition system
5: G Game graph from product transition system Tprod

6: Cm := (am, am ! gm)  strong merge(C1, C2) Constructing the merged
specification

7: 'test,m  am ! gm Merged test specification
8: Gaux  Auxiliary game graph.
9: I = {s 2 Vaux|s |=  f

test,m} Defining goal states and partial orders
10: for i 2 I do
11: P i := {(V i

p, . . . ,V i
0)} Partial order for goal i

12:  i
j  Receding horizon specification for goal i at distance j

13: WI :=
S
{W i

j} Test policy filter for goal i at a distance of j
14: ⇡test,m  Searching for test policy guided by WI

15: return 'test,m, Ttest,m, ⇡test,m

Test Strategy Synthesis: Monte Carlo Tree Search is used to sample trajectories
on Gaux after applying the safety filter WI to find a reactive test strategy ⇡test,m that
satisfies the merged test objective. This procedure allows for optimizing for a metric
of difficulty while also ensuring that all test strategies do not construct impossible
tests for the system. Using MCTS with an upper confidence bound (UCB) was
introduced in [128] as the upper confidence bound for trees (UCT) algorithm, which
guarantees that given enough time and memory, the tree search converges to the
optimal solution. We use MCTS to find ⇡⇤

test,m, the optimal solution to Problem 5.1
for the merged test objective.

The following theorem and proof are taken from [126].

Theorem 5.2. Algorithm 1 is sound.

Proof. This follows by construction of the algorithm and the use of MCTS with
UCB. Given a test policy ⇡test and a system policy ⇡sys, for every resulting execu-
tion �⇡sys⇥⇡test starting from an initial state in WI , it is guaranteed that � |= 'test,m



150

by Theorem 5.1. This is because for any action chosen by the test environment
according to the policy ⇡test found by MCTS, we are guaranteed to remain in WI

for any valid system policy ⇡sys. If WI = ; or the initial state is not in WI , the
algorithm will terminate before any rollout is attempted and no policy is returned.
It can be shown that the probability of selecting the optimal action converges to 1
as the limit of the number of rollouts is taken to infinity. For convergence analysis
of MCTS, please refer to [128].

Complexity: The time complexity of GR(1) synthesis is in the order of O(|N |3),
where N is the number of states needed to define the GR(1) formula. To improve
scalability, our algorithm uses a receding horizon approach to synthesize the win-
ning sets, which further reduces the time complexity. The upper confidence tree
algorithm of MCTS is given as O(ijkl) with j the number of rollouts, k the branch-
ing factor of the tree, l the depth of the tree, and i the number of iterations.

Simulation Experiments
This framework is illustrated on discrete gridworld examples where the system con-
troller is non-deterministic and the test agents behave according to the synthesized
test strategy. The Temporal Logic and Planning Toolbox (TuLiP) [109] is used for
constructing winning sets [108], and an open-source script1 for the online MCTS
algorithm to find the test strategy. Simulation videos of at the linked GitHub repos-
itory2.

Lane Change
For the lane change example, we define ⇢(�) as the x-value of the cell in which the
system finished its lane change maneuver.The test strategy is found to be consistent
with the test objective in equation (5.7) while also maximizing by maximizing ⇢(�).
The metric ⇢ is the chosen metric of difficulty; the closer to the end of the lane, the
fewer attempts the system will have for a successful lane change. Snapshots of the
resulting test execution are depicted in Figure 5.5.

Unprotected left turn
In this example, the test environment consists of a pedestrian and a blue car, and
the system is the red car, as illustrated in Figure 5.6. The unit tests correspond to

1https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1
2https://github.com/jgraeb/MergeUnitTests

https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1
https://github.com/jgraeb/MergeUnitTests
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T = 0

T = 12

T = 15

T = 36

T = 42

T = 43

Figure 5.5: Snapshots during the execution of the test generated by our framework.
The system under test (red car) needs to merge onto the lower lane between the two
test agents (blue cars).

y
z

Figure 5.6: Layout of the unprotected left turn at intersection example. The system
starts in cell (7,4) and wants to reach the goal cell (0,3), while the initial positions
of the test agents are at the beginning of the road and crosswalk.

waiting for an oncoming car to pass the intersection, and waiting for a pedestrian to
pass before taking a left turn.

The system requirement is to safely take an unprotected left turn. The unit specifi-
cations for waiting for the pedestrian are defined according to equation (5.2):

'init
sys = (xS 2 IS), 'f

sys = (xS 2 SG),  f
test,ped = (xS 2 SP ^ xP 2 TP ) ,

(5.12)

where xS is the system state, IS is the initial state of the system, SG is the set of
goal state following the left turn, xP is the pedestrian state, and SP are the states in
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which the car must wait for the pedestrian if the pedestrian state is in TP . Similarly,
the unit test objective for waiting for the test car is given as follows:

'init
sys = (xS 2 IS), 'f

sys = (xS 2 SG),  f
test,car = (xS 2 SC^xC 2 TC) , (5.13)

where the C denotes the test agent car in blue. The coordinate system has origin
in the upper left corner with cell (y, z) = (0, 0), with the y-axis facing south and
the z-axis facing east. The crosswalk locations are numbered from north to south,
starting at 0.

The initial states of the test agents are xC = (0, 3) and xP = 0, and the initial
state of the system is xS = (7, 4). The goal state for the system is xG = (0, 3).
In this example, xG is the only element in SG. The state in which the system
needs to wait for the pedestrian and the car, SC and SP , respectively, are both
x = (4, 4). When the test agent has not yet approached the intersection or has just
approached the intersection, the system must wait. These states of the test agent
are TC = {(0, 3), (1, 3), (2, 3), (3, 3)}. Similarly, the states of the pedestrian for
which the system has to wait are SP = {1, 2, 3, 4, 5}, which represent the cells on
the crosswalk, that map to grid coordinates. Note that if the pedestrian is in cell 0,
the system is not required to wait for the pedestrian, as she is too far away from the
road. The traffic light sequence is predetermined, the light will be green for a fixed
number of time steps tg, followed by ty time steps of yellow and red for tr time
steps. We are assuming that the system designer supplied the robustness metric as
the time until the traffic light turns red, resulting in a harder test the closer the light
is to red once the system successfully takes the turn.

The robustness metric at a state is defined to be the time left until the traffic light
changes to red, starting at the moment the system enters the intersection. The ro-
bustness over the entire trajectory is the minimum value of the robustness of all
states in the trajectory. The smaller the value of this robustness, the more diffi-
cult the test for the reason that the system has fewer opportunities to successfully
complete its task.

Additionally, this is an example in which all trajectories of the car taking a left turn
while waiting for the pedestrian will also satisfy the condition of waiting for the
test car and vice-versa. That is, � |= ⇤ f

test,ped () � |= ⇤ f
test,car. As a result,

for this example, we add temporal constraints to the merged test objective to ensure
that the two events do not entirely coincide.
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Figure 5.7: Snapshots during
the execution of the unpro-
tected left turn test generated
by our framework. The au-
tonomous vehicle (AV) un-
der test (red) should take
an unprotected left turn and
wait for the pedestrian and
the car (blue) individually,
which are agents of the test
environment. In the snap-
shots at time steps 8 and 12,
the AV waits just for the car,
and in time step 21 it waits
just for the pedestrian.

The resulting test execution is shown in Figure 5.7. As expected, we see the system
first waiting for the test car to pass the intersection. Even after the tester car passes,
the pedestrian is still traversing the crosswalk, causing the system to wait for the
pedestrian, satisfying the temporally constrained merged test objective.

5.5 Contract Theory for Formalizing Compositional Testing
So far, we have seen the use of the strong merge operator in constructing a single test
from unit tests. In this part of the chapter, we explore the use of assume-guarantee
contracts not only to combine tests, but also split complex tests into simpler unit
tests on the overall system or on subsystems. We further explore the algebra of
assume-guarantee contracts, and leverage contract operators to formalize this rea-
soning over test objectives. Finally, we illustrate test executions corresponding to
the combined and split test structures in a discrete autonomous driving example and
an aircraft formation-flying example. This work is a step towards formal methods
to construct test campaigns from unit tests.

To apply concepts from this formalism, we introduce the test structure — a tuple
that carries i) the formal specifications of the system under test, and ii) the test
objective, which is specified by a test engineer. We build on test structures to define
test campaigns and specifications for the tester. We address the following questions
using the formalism of assume-guarantee contracts:

(Q1) Comparing Tests: Is it possible to define an ordering of tests? When is one
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test considered a refinement of another? See Section 5.8.

(Q2) Combining Tests: Can multiple unit test objectives be checked in a single
test execution? See Section 5.7.

(Q3) Splitting Tests: From a complex test objective, can we split into component-
level tests or split the test objective into simpler objectives? See Section 5.9.

5.6 Test Structures and Tester Specifications
For conducting a test, we need i) the system under test and its specification to be
tested and ii) specifications for the test environment that ensure that a set of be-
haviors (specified by the test engineer) can be observed during the test. These sets
of desired test behaviors are characterized by the test engineer in the form of a
specification. The system specifications make some assumptions about the test en-
vironment. The test objective, together with the system specification, is used to
synthesize a test environment and corresponding strategies of the tester agents. As
a result, the test objective is not made known to the system since doing so would
reveal the test strategy to the system. These concepts are formally defined below.

Definition 5.8. The system specification is the assume-guarantee contract denoted
by Csys = (Asys, Gsys), where Asys are the assumptions that the system makes
on its operating environment, and Gsys denotes the guarantees that it is expected to
satisfy if Asys evaluates to >. In particular, Asys are the assumptions requiring a
safe test environment, and ¬Asys

i [Gsys
i are the guarantees on the specific subsystem

that will be tested.

Csys = (Asys,¬Asys [
\

i

(¬A
sys
i [G

sys
i )).

Definition 5.9. A test objective Cobj = (>, Gobj), where Gobj characterizes the
set of desired test behaviors, is a formal description of the specific behaviors that
the test engineer would like to observe during the test.

These contracts can be refined or relaxed using domain knowledge. Using defini-
tions (5.8) and (5.9), we define a test structure, which is the unitary object that we
use to establish our framework and for the analysis in the rest of the chapter.

Definition 5.10. A test structure is the tuple t = (Cobj, Csys) comprising of the
test objective and the system requirements for the test.
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Figure 5.8: Block diagram showing contracts specifying the system specification
Csys, the test objective Cobj, and the test environment Ctester.

Given the system specification and the test objective, we need to determine the spec-
ification for a valid test environment, which will ensure that if the system meets its
specification, the desired test behavior will be observed. The resulting test exe-
cution will then enable reasoning about the capabilities of the system. If the test
is executed successfully, the system passed the test, and conversely, if the test is
failed, it is because the system violated its specification and not due to an erroneous
test environment.

Now we need to find the specification of the test environment, the tester contract
Ctester, in which the system can operate and will satisfy the test objective according
to Figure 5.8, with I, O denoting the inputs and outputs of the system contract. This
contract can be computed as the mirror of the system contract, merged with the test
objective, which is equivalent to computing the quotient of Cobj and Csys [121]:

Ctester = (Csys)�1 • Cobj = Cobj/Csys.

The tester contract can therefore directly be computed as

Ctester = (Gsys, Gobj \ Asys [ ¬Gsys). (5.14)

Remark: Since it is the tester’s responsibility to ensure a safe test environment,
Asys, a test is synthesized with respect to the following specification,

\

i

(¬A
sys
i [G

sys
i )! Asys \Gobj. (5.15)

A successful test execution lies in the set of behaviors Asys \ Gsys \ Gobj, and
an unsuccessful test execution is the sole responsibility of the system being unable
to satisfy its specification. Thus, any implementation of Ctester will be an envi-
ronment in which the system can operate and satisfy Cobj if the system satisfies its
specification, a geometric interpretation is shown in Figure 5.9.
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(a) Assumptions A of the contract. (b) Guarantees ¬A [G of the contract.

Figure 5.9: Geometric interpretation of an assume-guarantee contract (A,G) as a pair of
sets of behaviors. The first element of the pair describes the set of behaviors for which the
assumptions A hold, and the second element describes the set of behaviors for which G
holds or A does not hold. The tester failing to provide the guarantees G (square) does not
satisfy the contract. The set of desired test executions is in the intersection of the assump-
tions and guarantees (star), and the set of test executions that fall outside the assumptions
(diamond) are because the system under test failed to satisfy its requirements.

5.7 Combining Tests
Earlier in the chapter, the strong merge operator was used to merge unit test objec-
tives into a single objective. However, it required careful specification of assump-
tions and guarantees in a single GR(1) specification. Using the test structures in-
troduced in the previous section, combining unit test contracts via the strong merge
operator is equivalent to merging unit test specifications. The advantage of the new
formalism is that it allows us to easily compose system and test objectives sepa-
rately, without manual checking. The strong merge of test contracts is defined as
follows.

Proposition 5.1. Ctester
1 • Ctester

2 = (Cobj
1 k Cobj

2 )/
⇣
Csys
1 k Csys

2

⌘
.

Proof. Merging tester contracts yields

Ctester
1 • Ctester

2 =(Cobj
1 /Csys

1 ) • (Cobj
2 /Csys

2 )

=(Cobj
1 • (Csys

1 )�1) • (Cobj
2 • (Csys

2 )�1) ([129], Section 3.1)

=(Cobj
1 • Cobj

2 ) •
⇣
(Csys

1 )�1) • ((Csys
2 )�1)

⌘

=(Cobj
1 • Cobj

2 ) •
⇣
Csys
1 k Csys

2

⌘�1

([121], Table 6.1)

=(Cobj
1 • Cobj

2 )/
⇣
Csys
1 k Csys

2

⌘

=(Cobj
1 k Cobj

2 )/
⇣
Csys
1 k Csys

2

⌘
, (Aobj

1 = A
obj
2 = >))

which is the list (Cobj
1 k Cobj

2 , Csys
1 k Csys

2 ).
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The merged test constract is constructed from parallel compositions of the objective
contracts and system contracts, separately. Composition of the system contracts
should be interpreted as specifications on the subsystems. The composition of test
structures is defined as:

Definition 5.11. Given test structures ti = (Cobj
i , Csys

i ) for i 2 {1, 2}, we define
their composition t1 k t2 as

(Cobj
1 , Csys

1 ) k (Cobj
2 , Csys

2 ) = (Cobj
1 k Cobj

2 , Csys
1 k Csys

2 ).

Example 5.3 (Car Pedestrian). Recall the car-pedestrian example from Chapter 2,
which we will adopt with slight modifications. Consider a test environment shown
in Figure 5.10 consisting of a single lane road, a crosswalk with a pedestrian, and
different visibility conditions. The system under test is an autonomous car driving
on the road which must stop for the pedestrian at the crosswalk no matter the visi-
bility conditions. The first test objective under low visibility is formalized by a test
engineer as:

Cobj
1 = (>, 'car

init ^⇤'vis
low ^ ⇤'ped

cw ^ ('ped
cw ! ⇤'stop

cw )),

where 'vis
low := 'vis |= low, denotes low visibility conditions, 'car

init the initial condi-
tions of the car (position xcar and velocity vcar), 'ped

cw denotes the pedestrian being on
the crosswalk, and 'stop

cw := xcar  Ccw�1 ^ vcar = 0 the stopping maneuver at one
cell before the crosswalk cell Ccw. Similarly, the test objective contract under high
visibility is also given as:

Cobj
2 =

⇣
>, 'car

init ^⇤'vis
high ^ ⇤'ped

cw ^ ('ped
cw ! ⇤'stop

cw )
⌘
,

where 'vis
high := 'vis |= high represents high visibility test environment. Finally, the

dynamics of braking when a pedestrian is detected is given by the contract,

Cobj
3 = (>, 9k : (vcar = Vmax ^ xcar = Ck)! ⇤'stop

k+d),

where the car is required to drive at specified speed Vmax in an arbitrary cell Ck,
and then eventually stop within the stopping distance d specified by the user; 'stop

k+d

specifies that the car must stop at or before cell Ck+d. Note that we assume that the
stopping distance d is large enough such that the car moving at maximum speed can
come to a stop within d steps. This test objective specifies the stopping requirement
on the car irrespective of the environment. Note that none of the test objective con-
tracts reason over the system’s capabilities to detect a pedestrian, only requiring that
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the system needs to stop at the crosswalk if a pedestrian is in it. This is important
since we do not want the test objective contract to have guarantees that depend on
the performance of individual components (e.g., perception) of the system.

Requirements on the system are provided by the system designers and test engi-
neers. Each of the following system contracts assume that the environment is safe
(e.g., the environment agents will not adversarially crash into the car). This is de-
noted as Asys = ⇤'ped

dyn ^ ⇤'vis
dyn, where 'ped

dyn, and 'vis
dyn denote the dynamics of the

pedestrian, and the visibility conditions, respectively.

Csys
1 =

⇣
Asys, ⇤'car

dyn ^⇤ ('vis
low ! v  Vlow) ^

⇤ (detectableped
low ! ⇤'stop

ped ) _ ¬Asys
⌘
,

where 'car
dyn, describes the dynamics of the car. Vlow is the maximum permissible

speed of the car under low-visibility conditions. The expression detectable
ped
low

describes the pedestrian being in a buffer zone in front of the car, and is formally
defined as,

detectable
ped
low := xcar + distlow

min  xped  xcar + distlow
max,

where distlow
min is the minimum distance for the car to reach a full stop, and distlow

max

is the maximum distance at which the car can detect a pedestrian in low visibility
conditions. The second system objective contract describes driving in high visibility
conditions:

Csys
2 =

⇣
Asys, ⇤'car

dyn ^⇤ ('vis
high ! v  Vmax) ^

⇤ (detectableped
high ! ⇤'stop

ped ) _ ¬Asys
⌘
,

where Vmax is the maximum speed, and the expression detectableped
high, defined sim-

ilarly to detectableped
low, denotes the pedestrian being detectable in the ‘buffer’ zone

for high visibility conditions. The third system objective contract for the dynamics
of the car,

Csys
3 =

⇣
Asys, ⇤'car

dyn _ ¬Asys
⌘
,

where 'car
dyn describes the dynamics of the car, including the distance to come to a

full stop as a function of car speed. For each pair of system and test objectives,
a test can synthesized for the specification constructed by equation (5.15). We
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can find combinations of test structures ti = (Cobj
i , Csys

i ) that can be executed
instead of individual tests. Consider the combined test structure t = t2 k t3. The
corresponding combined test objective contract Cobj is:

Cobj = Cobj
2 k Cobj

3 = (>, 'car
init ^⇤'vis

high ^ ⇤'ped
cw ^ 'ped

cw ! ⇤'stop
cw ^

9k : (vcar = Vmax ^ xcar = Ck)! ⇤'stop
k+d).

(5.16)

Likewise, the combined system objective contract is:

Csys = Csys
2 k Csys

3 = (Asys [ ¬(Gsys
2 \G

sys
3 ), G

sys
2 \G

sys
3 ).

The term ¬(Gsys
2 \ G

sys
3 ) can be removed from the assumptions of Csys to relax

the system objective contract for ensuring that the assumptions conform to those
required by Definition 5.8. Therefore, the system objective contract becomes:

Csys =(Asys, ⇤'car
dyn ^⇤ ('vis

high ! v  Vmax) ^

⇤(detectableped
high ! ⇤'stop

ped ) _ ¬Asys).
(5.17)

Equations (5.16) and (5.17) result in a test structure t = (Cobj, Csys), and we
can implement test environments to satisfy equation (5.15) with respect to the test
structure t. The combined test structure t = (Cobj, Csys results in a test which
requires the car to decelerate from Vmax in high visibility conditions and come to a
stop before the crosswalk.

To determine when two test structures can be combined, we need to check if the
combined test objective and the combined test structure are satisifiable. Therefore,
two test structures cannot be combined if either of these conditions is untrue. For
example, the combination t1 k t2 is not possible because composition of the con-
stituent test objectives Cobj

1 k Cobj
2 has an empty set of guarantees. This is because

⇤'vis
low and ⇤'vis

high is disjoint since visibility cannot be both high and low at the
same time. Now consider test structures t1 and t3; while these test structures can
be composed to have a non-empty set of guarantees, the resulting test structure is
not realizable by any test environment. The composition t1 k t3 results in a test
structure with the test objective requiring a maximum speed of Vmax, but with the
system constrained to a maximum speed of Vlow < Vmax in low visibility conditions.
Therefore, Gsys \ Gobj = ;, and both the system and test objectives cannot be
satisfied in a single trace of the system.

Figure 5.10 illustrates manually constructed test executions that satisfy test con-
tracts corresponding to t1, t2, and t2 k t3, respectively. The car controller is imple-
mented on a discrete grid world; at some positive speed v the car moves forward by



160

(a) Low visibility with a
stationary pedestrian.

(b) High visibility with a
stationary pedestrian.

(c) High visibility with a
reactive pedestrian.

Figure 5.10: Test execution snapshots of the car stopping for a pedestrian. Fig-
ure 5.10a shows a test execution satisfying Ctester

1 , Figure 5.10b satisfies Ctester
2

and Figure 5.10c satisfies Ctester
2 and Ctester

3 .

v cells. At each time step, the car can choose to continue at the same speed or to
accelerate or decelerate.

In the low visibility setting, the car can drive at a maximum speed of v = 2 and
it can detect a pedestrian up to two cells away as illustrated in Figure 5.10a. The
car is able to detect the pedestrian and come to a full stop in front of the crosswalk.
In a high visibility setting, the car can drive at a maximum speed of vmax = 4,
and it can detect the pedestrian up to 5 cells ahead. In Figure 5.10b, we can see
that the pedestrian is detected and the car slows down gradually until is reaches the
cell in front of the crosswalk. The test for the combined test structure t = t2 k t3
is shown in Figure 5.10c, where we see the pedestrian entering the crosswalk in
high visibility conditions when the car is driving at its maximum speed of v = 4

and is 10 cells away from the crosswalk. This test execution now checks the test
objective of detecting a pedestrian in high visibility conditions and executing the
braking maneuver with the desired constant deceleration from its maximum speed
down to zero.

5.8 Comparing Tests
A test campaign is a set of tests, each characterized by a test structure. Choosing a
test campaign out of several possibilities requires a principled approach to compar-
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ing test campaigns. A more refined test campaign is preferable since the system will
be tested for a more refined set of test objectives and possibly for a more stringent
set of system specifications. Let ti = (Cobj

i , Csys
i ) be test structures for 1  i  n.

When generating tests for ti, we want to ensure that our test execution satisfies the
constraints set out by Cobj

i in the context of system behaviors defined by Csys
i . As

seen in Section 5.6, the tester contract can be computed using the quotient opera-
tor. We characterize a test campaign, TC = {ti}ni=1, as a finite list of test structures
specified by the test engineer. Definition 5.12 allows us to generate a single test
structure from a test campaign.

Definition 5.12. Given a test campaign TC = {ti}ni=1, the test structure generated
by this campaign, denoted ⌧(TC), is

⌧(TC) = t1 k . . . k tn.

A notion of ordering between test structures is necessary for establishing an order-
ing of test campaigns. This order is also important for defining the split of a test
into unit tests, as we shall see later.

Definition 5.13. The test structure (Cobj
1 , Csys

1 ) refines the structure (Cobj
2 , Csys

2 ),
written (Cobj

1 , Csys
1 )  (Cobj

2 , Csys
2 ), if contract refinement occurs element-wise,

i.e., if Csys
1  Csys

2 and Cobj
1  Cobj

2 .

Finally, the order of refinement between test campaigns can be defined as follows.
In a refined test campaign TC of TC

0, the system and test objective contracts of
the test structure corresponding to TC are more refined. That is, the test objective
handles a larger set of system behaviors with stricter requirements (i.e., more con-
straints) on what the desired test execution should look like. In addition, the system
might potentially be required to satisfy stricter guarantees on its behavior under a
larger set of assumptions. For these reasons, it is preferable to choose a refined test
campaign.

Definition 5.14. Given two test campaigns TC and TC
0, we say that TC  TC

0 if
⌧(TC)  ⌧(TC0).

5.9 Splitting Tests
In this section, we explore the notion of splitting test structures. One of our motiva-
tions for doing this is failure diagnostics, in which we wish to look for root causes
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of a system-level test failure. To split test structures, we look for the existence of a
quotient — see [129]. Suppose there exists a test structure t that we want to split,
and suppose one of the pieces of this decomposition, t1, is given to us. Our objec-
tive is to find t2 such that t1 k t2  t. The following result tells how to compute the
optimum t2. This optimum receives the name quotient of test structures.

Proposition 5.2. Let t = (Cobj, Csys) and t1 = (Cobj
1 , Csys

1 ) be two test structures
and let tq = (Cobj/Cobj

1 , Csys/Csys
1 ). For any test structure t2 = (Cobj

2 , Csys
2 ), we

have
t2 k t1  t if and only if t2  tq.

We say that tq is the quotient of t by t1, and we denote it as t/t1.

Proof. t2  tq , Csys
2  Csys/Csys

1 and Cobj
2  Cobj/Cobj

1 , (Cobj
2 k

Cobj
1 , Csys

2 k Csys
1 )  (Cobj, Csys) , t2 k t1  t.

Remark: The method of constructing the quotient test structure in Proposition 5.2
involves taking the quotient of the system contracts as well as the test objectives,
meaning that we remove a subsystem from the overall system, and remove a part
of the test objective. Depending on the use case, we can consider two further situ-
ations, where we can define the test structure t1 such that: i) only removing a sub-
system from the overall system, which gives the quotient tq = (Cobj, Csys/Csys

1 );

and ii) only separating a part of the test objective: tq = (Cobj/Cobj
1 , Csys). The

quotient test structures of type (i) could be useful in adding further test harnesses
to monitor sub-systems under for the same test objective, and test structures of type
(ii) could be useful in monitoring overall system behavior under a more unit test ob-
jective. In future work, we will study automatically choosing the relevant quotient
test structure for specific use cases.

Label Formula
'setgoal ⇤(xinit,i = R1 ! xg,i = R2) ^⇤(xinit,i = R2 ! xg,i = R1)
execute

ccw
swap(ai) ⇤(xi = gi) ^⇤(xi = gi !�(xi = gi)) ^⇤'ccw

traj,i
execute

cw
swap(ai) ⇤(xi = gi) ^⇤(xi = gi !�(xi = gi)) ^⇤'cw

traj,i
'cw

swap,i ⇤(directivecw
swap(ai)! ⇤(xi = gi))

'ccw
swap,i ⇤(directiveccw

swap(ai)! ⇤(xi = gi))
'cw ⇤directivecw

swap(a1) ^ ⇤directivecw
swap(a2)

'ccw ⇤directiveccw
swap(a1) ^ ⇤directiveccw

swap(a2)

Table 5.1: Subformulas for constructing Gsys and Gobj.
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(a) Executions satisfying the original test structure.

(b) Left: Given unit test. Center and right: Possible executions for the split test.

Figure 5.11: Front view of test executions satisfying the original test structure and
the split test structure.

Example 5.4. Consider two aircraft, a1 and a2, flying parallel to each other under-
going a formation flying test shown in Figure 5.11a where two aircraft need to swap
positions longitudinally in a clockwise or counterclockwise spiral motion. Assume
that during this test execution a system-level failure has been observed, but it is
unknown which aircraft is responsible for the failure during which stage of the ma-
neuver. We will make use of our framework to split test structures to help identify
the subsystem responsible for the failure.

The aircraft communicate with a centralized computer that issues waypoint direc-
tives to each aircraft in a manner consistent to the directives issued to other aircraft
to ensure that there are no collisions. The dynamics of aircraft ai on the gridworld is
specified by Gdyn

i , and the safety or no collision requirement on all aircraft is given
in Gsafe. The swap requirement, Gswap

i , specifies the maneuver that each aircraft
must take in the event that a directive is issued.

Gswap
i =⇤(directivecw

swap(ai)! execute
cw
swap(ai))^

⇤(directiveccw
swap(ai)! execute

ccw
swap(ai)).
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For example, in the case of a counter-clockwise swap directive issued to aircraft
a1 starting in region R1, the aircraft must eventually reach the counter-clockwise
swap goal, R2, by traveling in the counter-clockwise direction, and upon reaching
the goal must stay there as long as no new directive is issued. These maneuvers are
specified in the execute subformulas in Table 5.1. The swap goals, gi, for the
aircraft are determined by their respective positions, xinit,i, when the directives are
issued (see Table 5.1).

In this example, the tester fills the role of the supervisor. If the tester decides on all
aircraft swapping clockwise, then the clockwise directives to each aircraft will be
issued: 'cw = ⇤directivecw

swap(a1) ^ ⇤directivecw
swap(a2). Similarly, 'ccw

denotes the eventual issue of counter-clockwise swap directives to both aircraft.
All the temporal logic formulas required to construct the test structure associated
with this example are summarized in Table 5.1. Moreover, no new directives are
issued until all current directives are issued and all aircraft have completed the swap
executions corresponding to the current directives (labeled as Gdir

limit). Finally, the
aircraft are never issued conflicting swap directions — all aircraft are instructed to
go clockwise or counterclockwise (labeled as Gdir

safe ). For simplicity, we choose not
to write out Gdir

limit and Gdir

safe in their extensive forms. Thus, the requirements for the
system under test are as follows:

Csys = (Asys, Gsys) = (Gdir

limit ^Gdir

safe , Gsafe ^
^

i

Gswap
i ^Gdyn

i ). (5.18)

That is, assuming that the supervisor issues consistent directives, and issues new
directives only when all aircraft have completed the executions corresponding to the
current round of directives, the aircraft system is required to guarantee safety and
successful execution of the swap maneuver corresponding to the current directive.
If we were to write the system requirements for a single aircraft, the corresponding
contract would be similar:

Csys
i = (A

sys
i , G

sys
i ) = (Gdir

limit ^Gdir

safe , Gswap
i ^Gdyn

i ). (5.19)

Cobj =(>, Gobj),

Gobj =⇤((directivecw
swap(a1) ^ directivecw

swap(a2)) _ (directiveccw
swap(a2)

^ directiveccw
swap(a1))! ⇤(x1 = R2 ^ x2 = R1)).

(5.20)

Observe that Gobj represents the tester issuing either clockwise or counter-clockwise
swap directives. One of the unit tests is to the have the aircraft a1 starting at
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xinit,1 = R1 (and as a result, xg = R2) get the counter-clockwise swap direc-

tive to reach xg = R2. The corresponding unit test structure t1 = (Cobj
1 , Csys

1 ) can
be written as follows:

Cobj
1 = (>, G

obj
1 ) = (>, ⇤directiveccw

swap(a1)) (5.21)

Csys
1 = (A

sys
1 , G

sys
1 ) = (Gdir

limit ^Gdir

safe , Gswap
1 ^Gdyn

1 ). (5.22)

Following Proposition 5.2, the second unit test structure can be derived by sepa-
rately applying the quotient operator on the test objectives and the system contract.
Applying the quotient on the test objective, we substitute > for the assumptions to
simplify, and we refine the quotient contract Cobj/Cobj

1 by replacing its assump-
tions with >:

Cobj/Cobj
1 =(A \G

obj
1 , G \ A

obj
1 [ ¬(A \G

obj
1 ))

= (G
obj
1 , G [ ¬G

obj
1 ) � (>, Gobj [ ¬G

obj
1 ).

Designer input is important for refining this contract resulting from applying the
quotient; a similar observation has been documented for quotient operators in pre-
vious work [123]. Domain knowledge can be helpful in refining the contracts.
Using ¬G

obj
1 as context, the contract (>, Gobj [ ¬G

obj
1 ) can be simplified to

(>,¬G
obj
1 _ '1 _ '2), where '1 = ( ⇤directiveccw

swap(a2) ^ ¬'cw) and '2 =

'cw^¬'ccw. Then, ¬G
obj
1 is discarded and the test objective of the second unit test

can be defined as a refinement of this simplified contract arising from the quotient:

Cobj
a2 =(>,'1 _ '2)  (>,¬G

obj
1 _ '1 _ '2). (5.23)

In equation (5.23), there are two types of test executions that would be the unit con-
tract obtained by applying the quotient operator: i) A counter-clockwise directive
is issued to aircraft a2 and no clockwise directives are issued to either aircraft, or ii)
Both aircraft are issued clockwise directives and no counter-clockwise directives.
Note that '1 and '2 cannot be implemented in the same test by construction. Fi-
nally, the unit system contract can also by found by applying the quotient operator:

Csys/Csys
1 =(Asys \G

sys
1 , Gsys \ A

sys
1 [ ¬(Asys \G

sys
1 ))

=(Gdir
limit ^Gdir

safe ^Gswap
1 ^Gdyn

1 , (Gsafe ^Gswap
2 ^Gdyn

2 )

_ ¬(Gswap
1 ^Gdyn

1 ^Gdir
limit ^Gdir

safe))

=(Gdir
limit ^Gdir

safe ^Gswap
1 ^Gdyn

1 , (Gsafe ^Gswap
2 ^Gdyn

2 )).

(5.24)
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We refine the quotient contract by keeping the assumptions to be true.

Csys
a2 =(>,¬(Gcomm

1 ^Gdyn
1 ) _ (Gsafe ^

^

i

Gcomm
i ^Gdyn

i )) (5.25)

=(>,¬(Gcomm
1 ^Gdyn

1 ) _ (Gsafe ^Gdyn
2 ^Gdyn

2 )). (5.26)

Remark: Observe that equation (5.24) carries the swap and dynamics requirements
of aircraft a1 in its assumptions. Since we choose to separate aircraft a1 from the
overall aircraft system, this quotient contract can be satisfied by making aircraft
a1 a part of the tester. For a test execution of t2, the tester can choose to keep
aircraft a1 as a part of the test harness for the operational test involving aircraft
a2, or choose to not deploy a1 during the test execution. Assuming that aircraft a1

satisfies its swap requirements, and that the supervisor satisfies the requirements
on the directives, Gdir

limit and Gdir
safe, then this unit system contract guarantees that the

aircraft a2 satisfies its swap requirements, and all the aircraft together satisfy the
safety requirements.

The system requirement Csys
2 = Csys/Csys

1 and the test objective together result in
the following possible tester specifications,

Ctester
'1

=
⇣
Gsafe ^Gswap

2 ^Gdyn
2 , Gdir

limit ^Gdir
safe ^Gswap

1 ^Gdyn
1

^ ⇤directiveccw
swap(a2) ^ ¬'cw

⌘
.

(5.27)

Ctester
'2

=
⇣
Gsafe ^Gswap

2 ^Gdyn
2 , Gdir

limit ^Gdir
safe ^Gswap

1 ^Gdyn
1

^ ⇤directivecw
swap(a1) ^ ⇤directivecw

swap(a2) ^ ¬'ccw
⌘
.

(5.28)

From equation (5.27), we see that the tester does not require aircraft a1 for any
dynamic maneuvers, so it need not be deployed. In equation (5.28), even though
aircraft a1 would be a part of the test harness, it needs to be deployed for the tester
contract, Ctester

'2
, to be satisfied. These tests resulting from the quotient test struc-

ture will help with determining the source of the failure that arose in the more
complex test.

5.10 Conclusions and Future Work
In this chapter, we covered how assume-guarantee contract operations can aid in
merging, comparing, and splitting specifications that define individual tests. While
the previous chapter synthesized a test environment and strategy from the system
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abstraction, here we assume that such an environment is already synthesized. The
ideas in this chapter are preliminary, and further research is needed for practical
and large-scale construction of test campaigns while exploiting notions of compo-
sitionality. Yet, our framework based on the mathematical foundations of assume-
guarantee contracts provides a useful formalism to reason about sets of behaviors
that are covered by a test objective. An interesting direction of future work is to
investigate how coverage arguments can be built from synthezing tests in this man-
ner. Given a set of behaviors covered by a test structure, one could optimize for the
worst-case test strategy using a robustness metric, preliminary versions of which
were illustrated earlier in the chapter. This can be significantly expanded to sys-
tems with dynamics and specifications with timing constraints. Additionally, we
would need to derive a guarantee that evaluations and conclusions from running the
most difficult test for a test contract determines with high probability the success of
possible other test executions in the same test contract.
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