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C h a p t e r 4

FLOW-BASED REACTIVE TEST SYNTHESIS

The previous chapter introduced the problem of automated test strategy synthesis
based on network flow optimization for user-specified temporal logic objectives.
In this chapter, we will consider an bigger class of temporal logic objectives, and
propose an automated test synthesis framework rooted in automata theory and flow
networks. Especially, the routing optimization will be reformulated using two flow-
based optimizations: i) a min-max Stackelberg game with coupled constraint sets,
and ii) a mixed-integer linear programming formulation. The second flow-based
reformulation lends itself to tractable implementations. Additionally, we study how
these automatically found test strategies can be used to synthesize a strategy for a
dynamic test agent.

4.1 Introduction
In this chapter, we will expand the class of temporal logic objectives to include
reachability, avoidance, and reaction sub-tasks that commonly occur in high-level
specifications of robotic missions [81]. A test strategy is feasible if a well-designed
system can succeed in the test. We will formalize notions of feasibility and restric-
tiveness of a test strategy to handle these expanded class of specifications. Further-
more, in addition to the previous chapter, we will formally present the assumptions
and guarantees that the system places on its test environment.

Next, we revisit the routing problem for the expanded class of specifications, and

Figure 4.1: Overview of the flow-based test synthesis framework which consists of
three key parts: i) graph construction, ii) routing optimization, and iii) test environ-
ment synthesis (e.g., reactive test strategy / test agent strategy, static obstacles).
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use automata theory to construct a product graph representing system state evolu-
tion along with progress of the temporal logic objectives. We formulate the routing
problem on this product graph, first as a special class of Stackelberg games, and then
as a mixed-integer linear program. We will motivate the mixed-integer formulation
from the drawbacks of the game formulation. Using the MILP formulation, we can
automatically find a test strategy for different environment types: static obstacles,
reactive obstacles, and dynamic test agents. Even feasible solutions of the MILP
return test strategies that satisfy the temporal logic objectives, and optimal solutions
are guaranteed to not be overly-restrictive. Moreover, this routing optimization is
proven to be NP-hard in the size of the product graph, thus supporting the MILP
formulation. Finally, given a test agent, we are able to match the solution of the
MILP to synthesize a strategy for the test agent. We use a simple counerexample-
guided approach to ensure that the MILP solutions are dynamically feasible for the
test agent.

Finally, the test synthesis framework is demonstrated on simulated grid world set-
tings and on hardware with a pair of quadrupedal robots. For all experiments, our
framework synthesizes test strategies that place the fewest possible restrictions on
the system over the course of the test either by obstacle placement or a dynamic
agent. In experiments with reactive obstacles and dynamic agents, the reactive test
strategy results in a different test execution depending on system behavior. De-
spite this, the system is always routed through the test objective (e.g., being put in
low-fuel state or having to walk over challenging terrain).
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4.2 Related Work
Following the previous chapter, we synthesize test environments from LTL spec-
ifications. We generate tests without specific knowledge of the system controller
such that the test environment adapts or reacts to system behavior at runtime. Our
test synthesis framework requires knowledge of a nondeterministic model of the
system, but is agnostic to the high-level controller of the system, and is completely
black-box to models and controllers at lower levels of abstraction.

Reactive, specification-based testing over discrete logics has been studied in [82–
86]. In [82], reactive synthesis [87] is used to find a test strategy from LTL specifica-
tions of the system and a user-defined fault model, with guarantees that the resulting
test trace will show the fault if the system implementation is faulty with respect to
the fault model. However, this method requires fault models to be carefully spec-
ified over the output states of the system. Though very beneficial for specifying
and catching sub-system level faults, it becomes intractable for specifying complex
system-level faults, especially when the set of output states is large. The test syn-
thesis framework in this chapter is also specification-based and adaptive to system
behavior, but we specify desired test behavior in terms of system and test objec-
tives. Additionally, the procedure in [82] does not account for the freedom of the
system to satisfy its own requirements. In this chapter, we will synthesize reactive
test strategies that demonstrate the test objective while placing minimal restrictions
on the system. The automata-theoretic tools used in this chapter build on concepts
used in correct-by-construction synthesis and model checking [60, 88], and will be
covered in the next section.

Game-based formulations of testing either presume entirely cooperative or entirely
adversarial settings. In [89], testing of reactive systems was formalized as a game
between two players, where the tester and the system try to reveal and hide faults,
respectively. In [90], the test strategy is found by optimizing for reachability and
coverage metrics over a game modeling the system and the tester. Test case gen-
eration in cooperative settings is studied in [91, 92]. However, the test synthesis
problem considered here is neither fully adversarial nor fully cooperative; a well-
designed system is cooperative with the test environment in realizing the system
objective, but since the system is agnostic to test objective, it need not cooperate
with the test environment in realizing it.

In this chapter, in addition to static obstacles that restrict the system throughout the
test, we will also consider reactive obstacles, and a dynamic test agent that is re-
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active to system behavior at runtime. Leveraging network flows, we will first pose
the test synthesis problem as a Stackelberg game, and then present a more efficient
formulation as an MILP. In recent years, network flow optimization frameworks
with tight convex relaxations have led to massive computational speed-ups in solv-
ing robot motion planning problems [93, 94]. Network flow-based mixed integer
programs have also been to synthesize playable game levels in video games [95],
which was then applied to construct playable scenarios in robotics settings [96].

4.3 Preliminaries
In this section, we will revisit concepts from automata theory, and build on the
background of automata theory and flow networks introduced in Chapter 3.

Consider the finite transition system TS, introduced in previous chapter. Once
again, we use LTL to describe the system and test objectives. However, we place
the following additional constraint on the system, requiring it to have at least one
terminal state, to simplify the test objective that we synthesize for.

Definition 4.1 (System). The system under test is modeled as a finite transition
system Tsys with a single initial state, that is, |Tsys.S0|= 1. Furthermore, at least one
of the system states is terminal (i.e., no outgoing edges).

The system designers provide the states S, actions A, transitions �, and a set of
possible initial conditions S0, set of atomic propositions, APsys and a corresponding
label function Lsys : S ! 2APsys . We require a unique initial condition s0 2 S0 to
synthesize the test. If the test designer wishes to select an initial condition, then
they can synthesize the test for each s0 2 S0 and choose accordingly. In addition to
APsys, the test designer can choose additional atomic propositions APtest and define
a corresponding labeling function L : S ! 2AP , where AP := APsys [ APtest. For
test synthesis, the system model is Tsys = (S, A, �, {s0}, AP, L) is defined for the
specific initial condition s0 chosen by the test designer. The terminal state is used
for defining test termination when the system satisfies its objective.

Assumption 4.1. Except for sink states, transitions between states of the system
are bidirectional: 8(s, s0) 2 Tsys.E where s0 is not a terminal state, we also have
(s0, s) 2 Tsys.E.

This assumption is for a simpler presentation, and the framework can be extended
to transition systems without this assumption (see Remark 4.8).
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Definition 4.2 (Test Environment). The test environment consists of one or more
of the following: static obstacles, reactive obstacles, and dynamic test agents. A
static obstacle on (s, s0) 2 Tsys.E is a restriction on the system transition (s, s0)

that remains in place for the entire duration of the test. A reactive obstacle on
(s, s0) 2 Tsys.E is a temporary restriction on the system transition (s, s0) that can
be enabled/disabled over the course of the test. A dynamic test agent can occupy
states in Tsys.S, thus restricting the system from entering the occupied state.

The desired test behavior can be captured via sub-tasks that are defined over atomic
propositions AP . Table 4.1 lists the sub-task specification patterns that are con-
sidered. These specification patterns are commonly used to specify robotic mis-
sions [81]. The desired test behavior is characterized by the system and test ob-
jectives, defined over the set of atomic propositions AP that can be evaluated on
system states Tsys.S.

Table 4.1: Sub-task specification patterns defined over atomic propositions.

Name Formula

Visit
mV
i=1

⇤ pi (s1)

Sequenced Visit ⇤(p0 ^ ( ⇤(p1 ^ . . . ⇤ pm))) (s2)
Safety ⇤¬p (s3)
Instantaneous Reaction ⇤(p! q) (s4)
Delayed Reaction ⇤(p! ⇤ q) (s5)

Definition 4.3 (Test Objective). The test objective 'test comprises of at least one
visit or sequenced visit sub-task or a conjunction of these sub-tasks. The Büchi
automaton Btest corresponds to the test objective 'test.

Definition 4.4 (System Objective). The system objective 'sys contains at least one
visit or sequenced visit sub-task. In addition, it can also contain some conjuction of
safety, instantaneous and/or delayed reaction, and visit and/or sequenced visit sub-
tasks. The Büchi automaton Bsys corresponds to the system objective 'sys. We say
that the system reaches its goal, or the system execution is successful, if the system
trace is accepted Bsys.

Typically, some aspects of a test are not revealed to the system until test time such
as testing the persistence of a robot or prompting it to exhibit a difficult maneuver
by placing obstacles in its path. This is formalized as a test objective and is not
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known to the system. In contrast, the system is aware of the system objective,
which captures its requirements. For example, to test for safety, the system should
know to avoid unsafe areas (4.3). To test a reaction, ⇤(p! q), the system needs to
be aware of the reaction requirement (4.4), and the test objective needs to contain
the corresponding visit requirement ⇤ p to trigger the reaction. Furthermore, the
test objective can contain standalone reachability (visit and/or sequenced visit) sub-
tasks that are not associated with a system reaction sub-task, but require the system
to reach/visit certain states. The test objective is accomplished by restricting system
actions in reaction to the system state via the test harness.

In addition to the system objective, the system must interact safely with the test
environment. The system must also obey the initial condition set by the test de-
signer. For each obstacle/agent of the test environment, the system controller must
respect the corresponding restrictions on its actions (i.e., cannot crash into obsta-
cles/agents). Furthermore, for a valid system implementation, all lower-level plan-
ners and controllers of the system must simulate transitions on T .

Definition 4.5 (System Guarantees). The system guarantees are a conjunction of
the system objective, initial condition, safe interaction with the test environment,
and a system implementation respecting the model Tsys.

Definition 4.6 (System Assumptions). The system assumes that the test environ-
ment satisfies the following conditions:
A1. The test environment can consist of: i) static obstacles (e.g., wall), ii) reactive
obstacles (e.g., door), and iii) test agents whose dynamics are provided to the sys-
tem.
A2. The test environment will not take any action that will inevitably lead to unsafe
behavior (e.g., not restricting a system action after the system has committed to it,
test agents not colliding into the system).
A3. The test environment will not take any action that will inevitably block all paths
for the system to reach its goal (e.g., restrictions will not completely the enclose the
system or block it from progressing to its goal).
A4. If the system and test environment are in a livelock, the system will have the
option to break the livelock and take a different path toward its goal.

A correct system strategy satisfies the system guarantees when the test environment
satisfies the system assumptions. Therefore, a correct system strategy would result
in a successful system execution. The system’s specification cannot be expressed
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as an LTL formula. This is because, in an LTL synthesis setting, the system can
assume that the test harness can behave in a worst-case manner and will never syn-
thesize a satisfying controller. However, the system can assume that the test harness
will always ensure that a path to achieving the system specification remains. This
existence of a satisfying path cannot be easily captured in an LTL assumption.

Now, we will cover background on Büchi automata from the system and test ob-
jectives, and its usefulness for constructing a product graph that tracks both the
evolution of the system state as well as the automaton state as it makes progress in
satisfying its specifications.

Definition 4.7 (Deterministic Büchi Automaton). A non-deterministic Büchi au-
tomaton (NBA) [60, 97] is a tuple B := (Q,⌦, �, Q0, F ), where Q denotes the
states, ⌦ := 2AP is the set of alphabet for the set of atomic propositions AP ,
� : Q ⇥ ⌃ ! Q denotes the transition function, Q0 ✓ Q represents the initial
states, and F ✓ Q is the set of acceptance states. The automaton is a deterministic
Büchi automaton (DBA) iff |Q0| 1 and |�(q, A)| 1 for all q 2 Q and A 2 ⌦.

Remark 4.1. We use deterministic Büchi automata since each input word corre-
sponding to a test execution should have a unique run on the automaton. While
there are several different automata representations, deterministic Büchi automata
are a natural choice for many LTL specifications.

Since the objectives are reach-avoid specifications and do not encode behaviors
that occur “infinitely often”, deterministic finite automata (DFAs) [60] would have
sufficed. The intuition behind this is that we are only using the automata for tracking
the automaton state on the product graph (see the following paragraphs on graph
construction). Using Büchi automata was an implementation choice, and to leave
the possibility for expanding to objectives that can only be characterized by DBAs
and not DFAs. The tool Spot [98] was used to construct a deterministic Büchi
automaton from an LTL formula, which had excellent documentation that made it
easy to access and use. LTL to DFA tools are not as common, though there are
a few tools that translate LTL formulas on finite traces (LTLf) to DFAs such as
LTL_f2DFA [99] and Lisa [100]. Both tools rely on MONA [101], which translates
LTL formulas to finite-state automata; Lisa additionally also depends on the DBA
conversion from Spot to return a DFA.

To track progress with respect to the system and test objectives, we introduce the
specification product, which will be used to construct the product graph.
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Definition 4.8 (Specification Product). A product of two Büchi automata, B1 and
B2 over the alphabet ⌦, is defined as B1 ⌦ B2 := (Q,⌦, �, Q0, F ), with states
Q := B1.Q ⇥ B2.Q, initial state Q0 := B1.Q0 ⇥ B2.Q0, acceptance states F :=

B1.F ⇥ B2.F . The transition relation � is defined as follows, for all (q1, q2) 2 Q,
for all A 2 ⌦, �((q1, q2), A) = (q01, q

0
2) if B1.�(q1, A) = q01 and B2.�(q2, A) =

q02. The specification product is the product B⇡ := Bsys ⌦ Btest, where Bsys is the
Büchi automaton corresponding to the system specification, and Btest is the Büchi
automaton corresponding to the test objective. The states (qsys, qtest) 2 B⇡.Q, where
qsys 2 Bsys and qtest 2 Btest, capture the event-based progression of the test and are
referred to as history variables.

The system reaching its goal would typically mark the end of a test execution.
However, the test engineer can also decide to terminate the test if the system appears
to be stuck or enters an unsafe state. We assume that the test engineer gives the
system a reasonable amount of time to complete the test. Upon test termination in
state sn, we augment the trace � with the infinite suffix s!n for evaluation purposes.

Remark 4.2. As tests have a defined start and end point, we need to bridge the gap
between the finiteness of test executions and the infinite traces that are needed to
evaluate LTL formulae. Augmenting the trace with the infinite suffix allows us to
leverage useful tools available for LTL.

Remark 4.3. The states of the specification product automaton track the states of
the individual Büchi automata, Bsys and Btest, in the form of the Cartesian product
to remember accepting states of the individual automata, which will be necessary
for our framework (see Definitions 4.8, 4.15).

We use the synchronous product operator to construct a product of a transition sys-
tem and a Büchi automaton. In particular, we will use this operator to construct the
virtual product graph and the system product graph (see Section 4.4).

Definition 4.9 (Synchronous Product). The synchronous product of a DBA B and
a FTS Tsys, where the alphabet of B is the labels of Tsys, is the transition system
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(a) Bsys

(b) Btest

q0

q1

q2

q3

q4 q5

q6 q7

(c) B⇡

Figure 4.2: Automata for Example 4.2. Yellow • and blue • nodes in Bsys and Btest

are the respective accepting states. In the product B⇡, we continue to track these
states for the system and test objectives. States in the product B⇡ that are accepting
to both objectives (e.g., q1) are also shaded yellow.

P := Tsys ⌦ B, where:

P.S := Tsys.S ⇥ B.Q,

P.�((s, q), a) := (s0, q0) if 8s, s0 2 Tsys.S, 8q, q0 2 B.Q,

9a 2 Tsys.A, s.t. Tsys.�(s, a) = s0 and B.�(q, Tsys.L(s
0)) = q0,

P.S0 := {(s0, q) | s0 2 Tsys.S0, 9q0 2 B.Q0 s.t.

B.�(q0, Tsys.L(s0)) = q},

P.AP := B.Q,

P.L((s, q)) := {q}, 8(s, q) 2 P.S.

We denote the transitions in P as

P.E := {(s, s0) | s, s0 2 P.S if 9a 2 P.A s.t. P.�(s, a) = s0}. (4.6)

An infinite sequence on P corresponds to a state-history trace # = (s0, q0), . . . ,

(sn, qn)!. We refer to (s, q) 2 P.S as the state-history pair and define the corre-
sponding path to be the finite prefix: #fin = (s, q)0, (s, q)1, . . . , (s, q)n.

Example 4.1. The system under test can transition (N-S-E-W) on the grid world as
illustrated in Fig. 4.3a. The initial condition of the system is marked by S, and the
system is required to visit one of the goal states marked by T , 'sys = ⇤T . The test
objective is to observe the system visit at least one of the I states before the system
reaches its goal, encoded as 'test = ⇤ I .
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(a) Example 4.1.
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(b) Example 4.2.

Figure 4.3: Grid world layouts for examples.

Example 4.2. In this example, the system under test can transition (N-S-E-W) on
the grid world as illustrated in Fig. 4.3b. The initial condition of the system is
marked by S, and the system objective is to visit T, 'sys = ⇤T . The test objective
is to observe the system visit states I1 and I2: 'test = ⇤ I1 ^ ⇤ I2.

4.4 Problem Statement
For the improved class of specifications, the test environment synthesis problem
can be stated as follows. Assuming that a test engineer specifies the desired test
behavior (i.e., system and test objectives), we seek to synthesize a reactive test
strategy under which every successful system execution will also be a successful
test execution — every system trace that satisfies the system objective will also
satisfy the test objective. The reactive test strategy restricts system actions that
are available from the test harness. Formally, a reactive test strategy is defined as
follows.

Definition 4.10 (Reactive Test Strategy). A reactive test strategy ⇡test : (Tsys.S)⇤Tsys.S

! 2AH defines the set of restricted system actions at the current system state based
on the prefix of the system trace up to the current state. For some finite prefix �0:k =

s0, . . . , sk starting from the system initial state s0 2 Tsys.S0, ⇡test(�0:k) ✓ H(sk) is
the set of restricted system actions from state sk. A test environment realizes the
strategy ⇡test if it restricts system actions according to ⇡test. The resulting system
trace is denoted as �(⇡sys ⇥ ⇡test).

More concretely, for some finite prefix s0, . . . , si of a system execution � starting
from an initial state s0 2 T.S0, ⇡test(s0, . . . , si) ✓ H(si) denotes the set of actions
unavailable to the system from state si of execution �. These actions can be re-
stricted by the test environment via static and reactive obstacles, and a dynamic test
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agent. The reactive test strategy must be such that it respects the system assump-
tions A1–A4. In turn, a correct system strategy must choose from actions avail-
able following the restrictions placed by the test environment. Formally, suppose
⌃fin := (Tsys.S)⇤Tsys.S be the set of all possible finite trace prefixes for the system,
and at each time step k � 0, the system strategy ⇡sys : ⌃fin ! Tsys.A \ ⇡test(⌃fin)

must pick from unrestricted system actions from its current state.

By use of obstacles and/or test agents, the test environment externally blocks system
transitions, and the system must correctly observe these obstacles and recognize
the corresponding actions to be unsafe. We assume that the system can observe all
restricted actions on its current state before it commits to an action, and therefore, a
correct system strategy ⇡sys must choose from the available actions at each time step.
Depending on the implemnentation, the system might have to re-plan its strategy
⇡sys in response to obstacles placed by the test environment.

Definition 4.11 (Feasibility of a Test Strategy). Given a test environment, system
Tsys, system and test objectives, 'sys and 'test, a reactive test strategy ⇡test is said
to be feasible iff: i) the test environment can realize ⇡test, ii) there exists a correct
system strategy ⇡sys, and iii) any execution corresponding to a correct ⇡sys satisfies
the system and test objectives: �(⇡sys ⇥ ⇡test) ✏ 'test ^ 'sys.

The reactive test strategy does not help the system in achieving the system objec-
tive 'sys; it only restricts the system such that the test objective can be realized. The
system can choose an incorrect strategy ⇡sys, and in such a case, we cannot provide
any guarantees. Furthermore, in routing the system to the test objective, it would be
ideal if the test strategy does not overly restrict the system for the system to demon-
strate decision-making when given the freedom to choose from multiple possible
actions, including those that might be unsafe or lead the system to a livelock. For
this reason, we will revisit the notion of the restrictiveness of tests defined over test
executions. Given any system trace �, every finite prefix �0:k = s0, . . . , sk maps to
some history variable q 2 B⇡.Q. Therefore, we can track this history variable along
with the evolution of the system in a state-history trace # = (s0, q0), (s1, q1), . . .,
where the history variable qk corresponds to the finite prefix �0:k. From now on, we
refer to # as the test execution, and proceed to define the restrictiveness of a test
strategy in terms of the number of possible test executions. In the previous chapter,
restrictiveness of a test was only defined on the system trace. Since we now have a
broader class of specifications and use Büchi automata to track temporal events, we
will define restrictiveness over test executions.
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Definition 4.12 (Restrictiveness of a Test Strategy). State-history traces #1 and #2

are unique if they do not share any consecutive state-history pairs — any two state-
history pairs (s, q) and (s0, q0) do not appear in consecutive time steps in both #1

and #2. For a feasible ⇡test, let ⌃ be the set of all executions corresponding to correct
system strategies, and let ⇥ be the set of all state-history traces corresponding to ⌃.
Let ⇥u ✓ ⇥ be a set of unique state-history traces. A test strategy ⇡test is not overly
restrictive if the cardinality of ⇥u is maximized.

Remark 4.4. The set of all state history traces ⇥ can be infinite. However, the set
⇥u is finite because: i) the system has a finite number of states and the specification
product has a finite number of history variables, and ii) every state-history trace in
⇥u is unique with respect to any other trace in ⇥u.

Problem 4.1 (Finding a Test Strategy). Given a high-level abstraction of the system
model T , test harness H , system objective 'sys, test objective 'test, find a feasible,
reactive test strategy ⇡test that is not overly-restrictive.

To realize the test strategy, the test environment can place obstacles and use dy-
namic agents to restrict actions of the system. In the case of dynamic agents, the
agent strategy must be found such that it simulates the restrictions set forth by the
test strategy.

Problem 4.2 (Reactive Test Agent Strategy Synthesis). Given a high-level abstrac-
tion of the system model T , test harness H , system objective 'sys, test objective
'test, and a test agent modeled by transition system TTA. Find the test agent strategy
⇡TA and the set of static obstacles Obsstatic that: i) satisfy the system’s assumptions
on its environment, and ii) realize a reactive test strategy ⇡test that is not overly-
restrictive and feasible. If the test agent cannot realize at least one reactive test
strategy ⇡test that is not overly-restrictive, then find the ⇡TA that realizes the best
possible ⇡test.

4.5 Graph Construction
To reason about executions of the system in relation to the system and test objec-
tives, automata theory is leveraged to construct the following product graphs.

Definition 4.13 (Virtual Product Graph and System Product Graph). A virtual prod-
uct graph is the product transition system G := Tsys ⌦ B⇡. Similarly, the system
product graph is defined as Gsys := Tsys ⌦ Bsys.
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The virtual product graph G tracks the test execution in relation to both the system
and test objectives while the system product graph Gsys tracks the system objective.
We will find the restrictions on system actions on G, while Gsys represents the
system’s perspective concerning the system objective during the test execution. For
each node u = (s, q) 2 G.S, we denote the corresponding state in s 2 Tsys.S as
u.s := s. Similarly, the state corresponding to v 2 Gsys.S is denoted by v.s := s.
For practical implementation, we remove nodes on the product graphs that are not
reachable from the corresponding initial states, G.S0 or Gsys.S0.

Definition 4.14 (Projections). States from G to Gsys are related via the projection
map PG!Gsys : G.S ! Gsys.S as

PG!Gsys((s, (qsys, qtest))) = (s, qsys). (4.7)

These projections help us to reason about how restrictions found on G map to the
system Tsys and the system product graph Gsys. We can now define the edges on G

that we can restrict with the test harness as follows,

EH ={((s, q), (s0, q0)) 2 G.E| 8s 2 Tsys.S,

8a 2 H(s) s.t. s0 = Tsys.�(s, a)}.
(4.8)

Lemma 4.1. For every path (s, qsys)0, (s, qsys)1, . . . , (s, qsys)n on Gsys, there exists
at least one corresponding path on G.

Proof. Suppose there exists some qtest 0, . . . , qtest n 2 Btest.Q such that (s, (qsys, qtest))0,

. . . , (s, (qsys, qtest))n is a path on G. Then, by construction, there exists a path on Gsys

where (s, (qsys, qtest))k maps to (s, qsys)k for all 0  k  n.

Paths on the virtual product graph G correspond to possible test executions. This is
illustrated in Figures 4.4 and 4.5 for the example 4.2. We identify the nodes on G

that capture the acceptance conditions for the system and test objectives.

Definition 4.15 (Source, Intermediate, and Target Nodes). The source node S rep-
resents the initial condition of the system. The intermediate nodes I correspond to
system states in which the test objective acceptance conditions are met. Finally, the
target nodes T represent the system states for which the acceptance condition for
the system objective is satisfied. Formally, these nodes are defined as follows,

S := {(s0, q0) 2 G.S | s0 2 Tsys.S0, q0 2 B⇡.Q0},

I := {(s, (qsys, qtest)) 2 G.S | qtest 2 Btest.F, qsys /2 Bsys.F},

T := {(s, (qsys, qtest)) 2 G.S | qsys 2 Bsys.F}.
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Figure 4.4: A possible execution of the system for Example 4.2 as illustrated on the
transition system Tsys and the corresponding product graph G.

Figure 4.5: A possible execution of the system for Example 4.2 as illustrated on the
transition system Tsys and the corresponding product graph G.

In addition, we define the set of states corresponding to the system acceptance con-
dition on Gsys as Tsys := {(s, q) 2 Gsys.S | q 2 Bsys.F}.

Proposition 4.1. Every test execution corresponds to a path #n =(s, q)0, . . . , (s, q)n

on G where (s, q)0 2 S. The corresponding system trace �n satisfies the system
objective, � |= 'sys iff (s, q)n 2 T. Furthermore, if � |= 'test, then the path #n

contains a state-history pair (s, q)i 2 I for some 0  i  n.

Provided that there exists a path on G from S to T, identifying a feasible reactive test
strategy corresponds to identifying edges to cut on G. These edge cuts correspond
to restricted system actions. In particular, these edge cuts are such that all paths on
G from source S to target T visit the intermediate I. Now, we will go over two new
flow-based formulations to solve the routing problem.

4.6 Part I: Flow-based Optimization via Min-Max Stackelberg Games with
Coupled Constraints

In the previous chapter, we covered flow-based test synthesis in which flow net-
works that were defined on the transition system of the system under test. The
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temporal logic objectives were also limited to a simple sequence of waypoints de-
fined on the states of the system.

This new flow-based formulation has the following key advances: i) edge-cuts or
restrictions are found on a product graph of the system transition system and a
Büchi automaton representing the system and test objectives, ii) the new flow-based
optimization no longer has exponential number of constraints, and is tractable to
encode, and iii) the synthesized test is reactive to system behavior and no longer
limited to static obstacles. Furthermore, this new flow-based reformulation repre-
sents edge-cuts as continuous variables, but the complexity still remains since the
formulation becomes a min-max Stackelberg game with coupled constraints. In this
part of the chapter, we will introduce the product graph and setup the flow-based
reactive synthesis formulation. This work serves as a prelude to the next section
in which we propose an MILP approach to solving the problem that comes with
guarantees of synthesizing a test that is feasible and not overly-restrictive, and also
lends to a more tractable implementation.

Stackelberg Game Formulation
Leveraging automata theory to represent product graphs leads to the intermediate
node becoming analogous to the waypoints. Instead of a sequence of waypoints on
Tsys.S, the nodes I become the waypoint that the system must be routed through.
Instead of defining flows for every pair of propositions, we will define three flows:
from source to intermediate (fS!I), from intermediate to sink (fI!T), and a bypass
flow (FS!T). The test strategy synthesis problem can be seen as placing restrictions
such that flows fS!I and fI!T are preserved while the bypass flow is cut.

Definition 4.16 (Constrained Min-Max Optimization with Coupled Constraints [102]).
A constrained min-max optimization with dependent feasible sets, also referred to
as a min-max Stackelberg game, between the lead player X with strategy space X
and a follower player Y with strategy space Y can be represented as the following
optimization:

min
x2X

max
y2Y

f(x, y)

s.t. g(x, y) � 0,
(4.9)

where f(x, y) : X ⇥ Y ! R is the objective function and g(x, y) : X ⇥ Y ! Rk

represents the constraints.
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In this Stackelberg formulation, the outer (min) player is the test environment con-
trols the flow variables fS!I and fI!T, edge cuts d, and the auxiliary variable t.
Let 0 < t  1 be an auxiliary variable defined as: t = 1

F , given that F > 0.
Hereafter, all flow variables are normalized with respect to the total flow by mul-
tiplying with t. The objective function is such that the tester maximizes the total
flow F = min{FS!I, FI!T}, and minimizes the total bypass flow FS!T. Likewise,
the system player maximizes bypass flow FS!T. Next, the constraints of the bilevel
optimization are briefly described. A lot of these constraints are formally explained
in the following section with MILPs, and are intuitively described here for brevity.
The objective, which is given as, t + �FS!T, where � > 0 is a regularization pa-
rameter that penalizes the test environment for any non-zero bypass flow through
the network. The auxiliary variable t is useful because the outer (min) player can
minimize this term, thus maximizing the total flow value F . This objective also
works for the inner (max) player, which in the worst-case, seeks to take a bypass
path.

Table 4.2: List of outer player constraints used in Optimization 4.21 with normal-
ized flows.

Outer Player
Constraints

Equation
k 2 {S! I, I! T}

Capacity (exact) 8e 2 E, de 2 {0, t}, 0  f e
k  t. (oc10)

Capacity (approx.) 8e 2 E, 0  de  t, 0  f e
k  t. (oc11)

Conservation 8v 2 S \ {S, T},
X

u:(u,v)
2E

f (u,v)
k =

X

u:(v,u)
2E

f (v,u)
k . (oc12)

Cut 8e 2 E, de + f e
k  t. (oc13)

Minimum
Total Flow 1  FS!I and 1  FI!T (oc14)

Feasibility FGsys(q) � 18q 2 B⇡.Q (oc15)
Static Obstacles d(i,j) = d(k,l) if i.s = k.s and j.s = l.s (oc16)

The three flows satisfy standard network flow constraints concerning capacity and
conservation. The only difference: i) all standard flow constraints are normalized
by multiplying through t, and ii) the cut variable d is relaxed as opposed to being
restricted to vectors with binary elements. Furthermore, the cut variable restricts
flows as follows, for all k 2 {S! I, I! T, S! T}, the cut constraints are:

8e 2 G.E, de + f e
k  t.
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Table 4.3: List of inner player constraints used in Optimization 4.21 with normal-
ized flows.

Inner Player
Constraints Equation

Cut 8e 2 E, de + f e
S!T  t. (ic17)

Capacity
(approx.) 8e 2 E, 0  f e

S!T  t. (ic18)

Conservation 8v 2 S \ {S, T},
X

u2V

f (u,v)
S!T =

X

u:(v,u)2E

f (v,u)
S!T . (ic19)

No I Flow f (u,v)
S!T = 0 if u 2 I or v 2 I. (ic20)

That is, despite having multiple flows, they do not compete for capacity; a cut
de will equally restrict all flows. Note that the above cut constraint for the case
of bypass flow k = S ! T is the coupling constraint between inner and outer
players; the test environment controls the cut and the inner player controls bypass
flow, but they must together respect this cut constraint. The constraints on the
outer and inner players for the game-based network flow optimization are given in
Tables 4.2 and 4.3. The constraint on minimum total flows in equation (ic(4.14)) is
applied to normalized total flow values FS!I and FI!T, and implies that the total
flow F > 0. If this constraint is violated, the constraints are infeasible and no
solution is returned. A detailed approach on these network flow constraints (e.g.,
feasibility constraints in Eq. (ic(4.15))) is given in the next section when we re-use
these constraints to setup the final MILP formulation to solve the routing problem.
The game based network flow optimization formulation is given below.

MCF-OPT(�):

min
fS!IfI!T,d,t,

fSsys!Tsys (q), 8q2B⇡ .Q

max
fS!T

t + �
X

v:e=(S,v)2G.E

f e
S!T

s.t. (oc(4.11))-(oc(4.15)), (ic(4.17))-(ic(4.20)).

(4.21)

This optimization is in the form of a min-max Stackelberg game with dependent
constraint sets studied in [103]. However, there are no known polynomial-time
solutions to solve this optimization since its value function is not convex. Given
below, the value function outputs the optimal value of the inner optimization prob-
lem in Optimization (4.21) for any choice of (f ,d, t). The flow values F and FS!T
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are functions of the edge cuts d — they represent max-flow on their corresponding
flow networks with the capacities reduced by d.

V (f ,d, t) = max
fS!T

t + �FS!T

s.t. (ic(4.17)) – (ic(4.20)).

The value function is defined over the space of outer player variables that satisfy
constraints (oc(4.17)), (oc(4.18)), (oc(4.19)), (oc(4.20)). If the value function is
convex in the outer player variables, then there exist efficient algorithms to converge
to the Stackelberg equilibrium [102]. However, our value function is not convex be-
cause the inner problem corresponds to solving a max flow problem parameterized
by cuts d, which is not convex. Note that this problem complexity is despite the fact
that the objective and constraints are all affine and defined over continuous valued
domains. The beaver rescue and motion primitive hardware experiments are derived
from solutions to MCF-OPT(�) for � = 1000, which is solved using Pyomo [104].
Also note that all Stackelberg equilibria for MCF-OPT(�) need not correspond to
bypass flow value FS!T being zero. This shortcoming is handled in the MILP for-
mulation presented in the next section, and is largely driven by insights from taking
the dual of the inner maximization, as we shall see below.

However, this approach did not scale to solving medium-sized examples that we
will see later in this chapter. In an effort to address this, the first attempt was to take
the Lagrange dual of the inner maximization, and solve a minimization instead of
a min-max game. In traditional max-flow problems, the Lagrange dual of the max
flow linear program is the minimum cut linear program with Lagrange multipliers
corresponding to edge cuts and partitions [105]. However, in our case, since the
outer player modifies edge cuts d, the Lagrange multipliers correspond to paritions
on the modified graph but do not inform the actual partition that we seek. The
Lagrangian L associated with the inner player is:

L (f ,d, t, fS!T,�,µ,⌫) = t+�FS!T+
X

v2V \{S,I,T}

µi

0

@
X

u2V \I

f (u,v)S!T �
X

u2V \I

f (v,u)S!T

1

A

+
X

(u,v)2E\E(I)
u2T,v2S

⌫(u,v)f (u,v)S!T +
X

e2E\E(I)

�e (t� de � f eS!T) , (4.22)

where �,µ,⌫ are the Lagrange variables; � is associated with edge-cuts and µ

represents the partition of nodes. Finding the optimal Lagrange multipliers results
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in following dual problem:

min
�2R|E|

+ ,µ2R|V |
+

t + �
X

e2E

�e(t� de)

s.t. µS � µT � 1,

�(u,v) � µu + µv � 0, 8(u, v) 2 E \ E(I).

(4.23)

This dual corresponds to the dual of the max-flow problem on the graph (without
nodes I) with edge capacities t � d. In the canonical max-flow problem, µ rep-
resents node partitioning corresponding to minimum cut. In our case, the solution
to this dual problem returns optimal Lagrange multipliers µ as a function of the
outer player variable d. Therefore, the choice of d by the outer player affects µ.
The partition of the graph G \ I, characterized by µ⇤(d⇤), will be the optimal la-
grange multiplier at the equilibrium d⇤. Due to strong duality, we can rewrite the
MCF-OPT(�) equivalently as follows:

OPT-MIN(�)

min
f ,d,t,�2R|E|

+ ,µ2R|V |
+

t + �
X

e2E

�e(t� de)

s.t. µS � µT � 1,

�(u,v) � µu + µv � 0, 8(u, v) 2 E \ E(I),

(oc(4.11))-(oc(4.15)).

(4.24)

Despite being a single minimization, OPT-MIN(�) has the structure of a bilinear
program, which is also a consequence of our min-max Stackelberg game not being
convex-concave. In general, solving a bilinear program is NP-hard in the problem
data [106]. For zero bypass flow, the second bilinear term must be zero. This was
also empirically observed when solving OPT-MIN(�). At zero bypass flow, the
term � becomes equal to the unnormalized cut value d; if d(u,v) = t, then �(u,v)

must equal 1 to partition nodes u and v into separate groups, and if d(u,v) = 0, then
�(u,v) = 0 to ensure that the nodes remain in the same group. First, we can recognize
that the dual variables � and µ can take integer values [105]. This allows us to
formulate the problem as a mixed-integer linear program, where we can encode zero
bypass flow as a constraint by setting �e = de for edges e 2 E \E(I). Furthermore,
this formulation also allows the use of the unnormalized flow and capacity values,
removing the need for the auxiliary parameter t.
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4.7 Part II: Flow-based Optimization via Mixed-Integer Linear Program-
ming

Once again, we revisit a network flow formulation to solve the routing optimization
for the expanded class of specifications. Recall that Paths(S, T) on the graph G

are the set of possible test executions. Therefore, the set of edge cuts on G must
be such that all Paths(S, T) are routed to visit at least one node in the intermediate
set I. The set of edge cuts to achieve this need not be unique, and therefore, we
also require that resulting test strategy to not be overly-restrictive. Additionally, we
also minimize the cardinality of the set of edge cuts to remove unnecessary restric-
tions. In comparison to the previous chapter, the formulation presented defines just
a single flow network. Furthermore, the routing problem is solved as an MILP as
opposed to a min-max game with coupled constraints. This new formulation allows
us to derive guarantees that the optimal solution will provide a test strategy that
solves Problem 4.1. Furthermore, this formulation easily lends itself to extensions
(e.g., adding auxiliary constraints, excluding certain solutions, accommodating var-
ious types of test environments).

Consider the flow network G = (V, E, (S, T)) defined based on the graph G: nodes
are defined exactly as V := G.V , and edges E := G.E\{(u, u) 2 G.E | u 2 V } are
the same as G with the exception of self-loops, and the source and target correspond
to S and T, respectively. The reason for introducing flow networks separately is to
maintain a representation without self-loop transitions which are not relevant when
computing the flow on a graph. Maintaining self-loops on G, however, is important
since it is the product between a transition system and a Büchi automaton. For
simplicity, notation for nodes (V ) and edges (E) is shared between the graph G and
its network G since self-loop transitions are also not a part of the test harness. If
self-loops become important, the notation G.E will be explicitly used. On G, we
introduce the flow vector f 2 R|E| and a Boolean vector d 2 BE\E(I) carries the
edge-cut value for each edge. For some e 2 E, de = 1 denotes that edge e is cut
and the corresponding system action is restricted, and de = 0 denotes that the edge
remains. Immediately, it can be specified that all edges outside the test harness
cannot be restricted:

de 2 {0, 1}, 8e 2 E, and

de = 0, 8e /2 EH .
(c1)

The set E(I) = {(u, v) 2 E | u 2 I or v 2 I} is the set of edges that enter or exit
from a node in set I.
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Objective. Among all possible sets of edge cuts that route test executions through
I (corresponding to satisfying the test objective), we seek a test strategy that is not
overly-restrictive. Thus, we optimize for a set of edge cuts that maximizes the total
flow from S to T on G. Since the edges have unit capacity, the set of edge cuts that
maximize the total flow will also result in the largest set ⇥u (see Lemma 4.3). Thus,
maximizing the flow alone is sufficient to get a test that is not overly-restrictive (see
Remark 4.7). In addition, unnecessary edge-cuts can be reduced by introducing a
second term of subtracting the fraction of edges that are cut from the flow value:

X

(u,v)2E,
u2S

f (u,v) � 1

|E|
X

e2E

de. (4.25)

The regularize 1
|E| is chosen to avoid trade-off between the terms. Due to binary

edge cuts and integer edge capacity, the maximum flow value on the graph will
always be an integer. The second term, however, will always take a fractional value
between 0 and 1 corresponding to none of the edges being cut to all of the edges
being cut. Thus, maximizing the objective will always favor increasing the first
term as much as possible, and then minimizing the number of edges that are cut.

Network Flow Constraints. The flow vector f is subject to the standard network
flow constraints:

Flow constraints (3.1), (3.2), and (3.3) on flow network G. (c2)

Next, an edge that is cut restricts the flow on that edge completely. However, an
edge that is not cut may or may not have flow pushed through it:

8e 2 E, de + f e  1. (c3)

Partition Constraints. In standard max-flow problems, the dual min-cut formula-
tion has partition constraints that group nodes across a cut into two groups, one of
which contains the source and the other that contains the sink [105]. The max-flow
problem (and equivalently, the min-cut problem) is totally unimodular, implying
that there exists an optimal integer solution. Our problem differs from the standard
max-flow/min-cut problem in that we seek all Paths(S, T) to be routed through I.
Alternatively, the set of edge cuts should be such that there exists a positive total
flow on G, but the network (V \ I, E \ E(I), (S, T)) is fully partitioned. To cap-
ture this partitioning requirement, the partition conditions from standard settings is
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(a) A path on G exists despite the cuts not being feasible for the system.

(b) Restrictions from the system perspective before it visits I1 or I2.

Figure 4.6: Illustration of why feasibility constraints are important for identifying a
reactive test strategy that respects the system’s assumptions. Since the system is not
aware of the test objective, such a placement of constraints would lead to all paths
being blocked from the system perspective.

adapted as follows. All nodes except those in I must be partitioned into the source
S group or the sink T group. For this, introduce the variable µ 2 R|V \I| such that:

µS � µT � 1,

0  µv  1, 8v 2 V \ I.
(c4)

The partition condition is applied to edges that are not incoming or outgoing from
I:

d(u,v) � µu + µv � 0, 8(u, v) 2 E \ E(I). (c5)

Despite the vector µ being real-valued, it only appears in these constraints. There-
fore, the partition conditions form a block diagonal in the constraint matrix, and
this block diagonal sub-matrix is totally unimodular. Therefore, we preserve the
partitioning properties from standard min-cut despite adapting the constraint to our
problem.

Feasibility Constraints. These constraints ensure that the synthesized test is fea-
sible from the system’s perspective (see Figure 4.6), that is, restrictions placed by
the test strategy should be such that the system still has a chance of successfully
navigating to the goal if it has not committed to an incorrect action (either unsafe or
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one that inevitably leads to livelock) up to that point. For this, the reactive edge cuts
must respect system assumptions A2 – A4. For every history variable q 2 B⇡.Q,
the function SG : B⇡.Q! G.S is the set of states on G when the the test execution
can enter the history variable q, and is defined as follows,

SG(q) := {(s, q) 2 G.S | 8((s̄, q̄), (s, q)) 2 G.E, q̄ 6= q}. (4.26)

On the system product graph, these states map to the set:

SGsys(q) := {u 2 Gsys.S | u = PG!Gsys(v), v 2 SG(q), and 9 Path(u, Tsys)},
(4.27)

where this set is empty if no path from the node u to Tsys exists on Gsys. For
each q 2 B⇡.Q, for each source in s 2 SGsys(q), define a flow network G(q,s)

sys :=

(Vsys, Esys, (s, Tsys)), where nodes are Vsys := Gsys.S, and edges are Esys := Gsys.E \
{(u, u) 2 Gsys.E|u 2 Gsys.V }. On graph G(q,s)

sys , flow vector is denoted as f (q,s)sys . All
such flow vectors are subject to the standard network flow constraints:

8q 2 B⇡.Q, 8s 2 SGsys(q),

Flow constraints (3.1), (3.2), and (3.3) on network G(q,s)
sys .

(c6)

The edge cut vector d from G is directly related to mapped to edges on each graph
G(q,s)

sys . Then, it is checked whether there exists a Path(s, Tsys) on the system product
graph copy G(q,s)

sys . Since edge-cuts/restrictions are placed reactively, only edge cuts
starting from a state-history pair with history variable q applies to the graph G(q,s)

sys .
Edges are grouped by the history variable using the mapping Gr : B⇡.Q! 2G.E:

Gr(q) := {((s, q), (s0, q0)) 2 G.E}. (4.28)

Then, the edge-cut values d are mapped onto system product graph copies, impact-
ing the flow f (q,s

sys by the cut constraint:

8q 2 B⇡.Q, 8s 2 SGsys(q), 8(u, v) 2 Gr(q), 8(u0, v0) 2 Esys,

d(u,v) + f (q,s)
sys

(u0,v0)  1, if u0.s = u.s and v0.s = v.s.
(c7)

Once the cuts have been mapped, the check for a Path(s, Tsys) is ensured by requir-
ing the flow value on each system product graph copy to be at least 1:

X

(s,v)2Esys

f (q,s)
sys

(s,v) � 1, 8q 2 B⇡.Q, 8s 2 SGsys(q). (c8)

In the reactive obstacle setting, the feasibility constraints (c6)-(c8) group edge cuts
for each history variable q, and check if there is a feasible path for the system. This
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feasibility check is carried out for every history variable q and every possible node
s 2 SG(q) at which the test execution enters history variable q. Since the system
controller is unknown, it becomes imperative to check feasibility on every copy
G(q,s)

sys .

Finally, the routing optimization is characterized as the following mixed-integer
linear program (MILP) with the edge-cut vector d being the integer variable, and
the flow f and partition µ variables being continuous:

MILP-REACTIVE:

max
f ,d,µ,

f
(q,s)
sys 8q2B⇡ .Q 8s2SGsys (q)

F � 1

|E|
X

e2E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8).

(4.29)

Static Constraints. The feasibility constraints are simplified in test environments
comprising only of static obstacles. A static obstacle is one that remains for the
entire duration of the test. That is, an restriction on a system action at a particular
state should always be in place regardless of the current state-history pair of the test
execution. To specify this, the edges in G that correspond to the same transition of
the system in Tsys.E will have the same edge cut value:

d(u,v) = d(u0,v0), 8(u, v), (u0, v0) 2 E, if u.s = u0.s and v.s = v0.s. (c9)

With Eq. (c9), a separate check for feasible paths on copies of the system product
graph is not needed. By the projection map PG!Gsys , a path on G implies a path on
Gsys, and since restrictions do not change with q, the path on Gsys always remains.
Therefore, the MILP formulation for static obstacles can be simplified to be:

MILP-STATIC:
max
f ,d,µ

F � 1

|E|
X

e2E

de

s.t. (c1)-(c3), (c4)-(c5), (c9).
(4.30)

The following lemma and proof was taken from [107].
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Lemma 4.2. For the case of static constraints, due to (c9), ensuring feasibility from
the system’s perspective is guaranteed by checking F > 0 on G. That is, F > 0 on
G is equivalent to checking (c6)-(c8).

Proof. Under (c9), the edge groupings Gr(q) become the same for all q 2 B⇡.Q.
Thus, the constraints (c6)-(c8) can be reduced onto a single flow network Gsys =

(Vsys, Esys, (Ssys, Tsys)), where Ssys := Gsys.I . Equation (c8) being satisfied on Gsys

implies that there is a path on G from S to T via Lemma 4.1. Additionally, if there
is a path on G from S to T with the static constraints (c9), then it must be that there
exists a path from Ssys to Tsys on Gsys.

Remark 4.5. The reactive feasibility check involved checking for feasible paths on
copies of system product graphs. Alternatively, this check can also be carried out
using copies of the network G, as we will see later in the section on computational
complexity (Section 3.8). For implementation purposes, we choose the feasibility
formulation presented in this section since it results in fewer variables and con-
straints in the optimization.

Mixed Constraints. In test environments with a mix of static obstacles and reac-
tive obstacles and/or dynamic test agents, we require the static area Tsys.Estatic ✓
Tsys.E to be given. Transitions in Tsys.Estatic can be restricted using static ob-
stacles. In such mixed settings, the feasibility constraints (c6)–(c8) can be ap-
plied as normal, and the static constraints given in (c9) can be applied on edges
(u, v) 2 E whose mapping onto the system transitions is in the static area, i.e.,
(u.s, v.s) 2 Tsys.Estatic.

MILP-MIXED:
max
f ,d,µ,

f
(q,s)
sys 8q2B⇡ .Q 8s2SGsys (q)

F � 1

|E|
X

e2E

de

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8), (c9).

(4.31)

Auxiliary Constraints. Auxiliary constraints are any additional affine constraints
that are not required but can be added to the optimization to accommodate the test
environment. For example, in some instances such as placing static obstacles like
doors or fences, restricting a directed edge would also require the transition in the
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reverse direction to be blocked. This specific affine constraint can be written as

d(u,v) = d(u0,v0), 8(u, v), (u0, v0) 2 E, if u.s = v0.s and v.s = u0.s. (c10)

Algorithm 5: Finding the test strategy ⇡test

1: procedure FINDTESTSTRATEGY(Tsys, H, 'sys, 'test)
Input: transition system Tsys, test harness H , system objective 'sys, test ob-

jective 'test

Output: test strategy ⇡test

2: Bsys  BA('sys) . System Büchi automaton
3: Btest  BA('test) . Tester Büchi automaton
4: B⇡  Bsys ⌦ Btest . Specification product
5: Gsys  Tsys ⌦ Bsys . System product
6: G Tsys ⌦ B⇡ . Virtual Product Graph
7: S, I, T IDENTIFYNODES(G,Bsys,Btest)
8: G  DEFINENETWORK (G, S, T)
9: Gsys  set() . System Perspective Graphs

10: for q 2 B⇡.Q do
11: for s 2 SGsys(q) do
12: G(s,q)

sys  DEFINENETWORK(Gsys, s, Tsys)

13: Gsys  Gsys [ G(s,q)
sys

14: d⇤  MILP(G, T,Gsys, I, H) . Reactive, static, or mixed.
15: C  {(u, v) 2 G.E |d⇤(u,v) = 1} . Cuts on G
16: ⇡test  Define test strategy according to equation (4.33)
17: return ⇡test

Characterizing Optimization Results
The flow value (3.4) of the network is always integer-valued since the edge cuts
are binary, and therefore, any strictly positive flow value corresponds to at least one
valid test execution. In the following cases, the problem data are inconsistent and a
flow value � 1 cannot be found.
Case 1: There is no path from S to T on G (and equivalently, no path from Ssys to
Tsys on Gsys). In this case, the optimization will not have to place any cuts because
the only possible maximum flow value is 0.
Case 2: There is a path from S to T on G, but there is no path S to T in G visiting an
intermediate node in I. In this case, the partition constraints will cut all paths from
S to T, while by Lemma 4.1 the feasibility constraints require a path to exist from S

to T—a contradiction. The optimization is infeasible in this instance.
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For each MILP, the set of edges that are cut are found from the optimal d⇤ as
follows, C := {(u, v) 2 E \ E(I) | d⇤(u,v) = 1}, resulting in the cut network
Gcut = (V, E \C, (S, T)). The bypass flow value is computed on the network Gbyp :=

(Vbyp, Ebyp, (S, T)), where Vbyp := V \ I, and Ebyp := E \ (E(I) [ C). A strictly
positive bypass flow value indicates the existence of a Path(S, T) on Gcut that does
not visit an intermediate node in I.

Theorem 4.1. The optimal or feasible cuts C returned by each MILP result in a
bypass flow value of 0.

Proof. The partition constraints (c4) and (c5) partition the set of vertices V \ I into
two groups: nodes with potential µ = 0 (e.g., T) and nodes with potential µ = 1

(e.g., S). On any path v0 . . . vk on Gbyp, where v0 = S and vk = T, the difference in
potential values can be expressed as a telescoping sum:

Pk�1
i=0 (µ

i�µi+1) = µS�µT.
Then, by partition constraints (c4) and (c5),

k�1X

i=0

d(vi,vi+1) �
k�1X

i=0

(µi � µi+1) = µS � µT � 1.

Therefore, for at least one edge (vi, vi+1) on the path, where 0  i  k � 1, the
corresponding cut value is d(vi,vi+1) = 1. These edges belong to the set of cut edges
C. Thus, the flow value on Gbyp is zero.

Theorem 4.2. For each MILP, the returned cuts C are such that there always exists
a path to the goal from the system’s perspective.

Proof. First, consider the MILP in the reactive setting. The optimal cuts C satisfy
the feasibility constraints (c6), (c7), and (c8). These constraints ensure that for
each history variable q 2 B⇡.Q, there exists a path for the system from each state
s 2 SGsys(q) to Tsys on Gsys. The edge cuts C are grouped by their history variable
(see equation (4.28)) and mapped to the corresponding G(q,s)

sys (see equation (c7)).
Then, each copy G(q,s)

sys represents all the cuts that can be simultaneously applied
when the state of the test execution is at history variable q. Thus, all restrictions
on system actions at history q are captured by the cuts on G(q,s)

sys . Since this is true
for every q and every source state s at which the test execution enters into q, there
always exists a path to the goal by equation (c8). The proof for the static and mixed
settings follows similarly.
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Remark 4.6. Note that Theorems 4.1 and 4.2 are not limited to optimal solutions
of the MILP, but apply to feasible solutions as well. That is, any time termination of
the MILP provided that a feasible solution has been found is sufficient to find a test
strategy with guarantees that the system assumptions are satisfied, and that there
are no bypass paths. However, only an optimal solution can return a test strategy
that is not overly-restrictive. However, the following lemma only applies to optimal
solutions.

Lemma 4.3. For each MILP, the optimal cuts C correspond to maximizing the
cardinality of ⇥u.

Proof. By construction, a realization of the flow f on G corresponds to a set of
unique state-history traces ⇥u. The MILP objective maximizes the flow, and there-
fore the cardinality of ⇥u is maximized.

Additionally, the feasibility constraints do not induce any conservativeness in terms
of finding a test strategy that is not overly-restrictive. Let Path(S, s) be a path
from the source of the product graph G to node s, where s 2 SGsys(q) for q 2
mathttB⇡.Q is some source at which the execution updates to history variable
q. Since the number of edge-cuts are minimized in the optimization objective, no
Path(S, s) will be restricted unless if necessary to cut a bypass path. Even in this
instance, checking that there exists a Path(s, T) in the feasibility constraints will
not be an issue. If all Path(s, T) are bypass paths, then the optimization will choose
to cut all Path(S, s). Thus, despite the feasibility constraints, the optimal solution
of the MILP still corresponds to a not overly-restrictive strategy.

Remark 4.7. The definition of a not overly-restrictive test strategy, both in this
and the previous chapter, did not account for the number of restrictions placed. In
this chapter, the routing optimization, in addition to providing optimal edge-cuts
corresponding to not overly-restrictive test strategies, also returns the minimum the
number of such restrictions required to realize the strategy. Overly restricting the
system, especially when not necessary, could potentially increase testing effort.

4.8 Test Strategy Synthesis
This section outlines how edge-cuts found solving the optimizations can help con-
struct a test strategy. This section is split into two parts: i) construction of a test
strategy involving static and reactive obstacles matched to the optimization solu-
tion, and ii) synthesis of a test agent strategy for a given dynamic agent such that
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(a) Static Obstacles in
black.

(b) q0 (c) q6 (d) q7

Figure 4.7: Static and reactive obstacle placement for running examples. Fig-
ure 4.7a shows static obstacles synthesized for Example 4.1. Figures 4.7b, 4.9c,
and 4.7d show a test environment implementation of a reactive test strategy for Ex-
ample 4.2.

Figure 4.8: Virtual product graph with static cuts in dashed red for the medium
example 4.1. Static obstacles in Fig. 4.7a corresponding to edge cuts found on this
product graph for Example 4.1. States marked S, I , and T illustrated in Fig. 4.7a
correspond to states S (magenta •), I (blue •), and T (yellow •) on G as shown
here. There are three edge-disjoint paths on this graph from the source to the target
nodes.
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(a) Virtual product graph G. (b)
G(q0,s3)

sys

(c)
G(q6,s1)

sys

(d)
G(q7,s11)

sys

Figure 4.9: Virtual product graph and system product graphs for Example 4.2.
Fig. 4.9a shows the virtual product graph G, with the source S (magenta •), the
intermediate nodes I (blue •), and the target nodes (yellow •). Edge cut values
for each edge in G are grouped by their history variable q and projected to the
corresponding copy of Gsys. Figs. 4.9b—4.9d show the copies of Gsys with their
source (orange •) and target node (yellow •). The graphs in Figs. 4.9b—4.9d cor-
respond to the history variables q0, q6, and q7 from B⇡ shown in Fig. 4.2c. The con-
straints (c6)—(c8) ensure that the edge cuts are such that a path from each source
to the target node exists for each history variable q.

the synthesized strategy matches the restrictions on system actions from the opti-
mization solution.

Test Environments with Static and/or Reactive Obstacles
In this section, we will detail the construction of a test strategy from a solution
of the MILP solved in the static, reactive, or mixed settings. First, consider the
more general reactive setting. A solution (not necessarily optimal) of the MILP
in each setting returns a set of edge-cuts C that can be parsed into a reactive map
C : B⇡.Q! Tsys.E of system restrictions:

C(q) := {(s, s0) 2 Tsys.E | ((s, q), (s0, q0)) 2 C}. (4.32)

The argument of the reactive map is the state history variable q, and intuitively, C(q)
represents the set of all system restrictions that can be active when the test execution
is at the state history variable q. Formally, when the test execution # arrives at a
state (s, q) at some time k � 0 (and correspondingly the system trace � is at s at
k � 0), and the system restriction (s, s0) 2 C(q), the test environment must restrict
the system action corresponding to (s, s0) at this event. Therefore, the test strategy
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is constructed as

⇡test(�0:k) := {a 2 Tsys.A | s0 2 Tsys.�(s, a), q = HIST(�0:k),

(s, s0) 2 C(q)}.
(4.33)

Practically, ⇡test can be realized by the test environment by placing obstacles during
the test execution in reaction to system behavior (given by the trace �). The set
of active obstacles at time step k denoted by Obs(�0:k) is the set of state-action
restrictions that are placed at time k. Note that the set of active obstacles can contain
more restrictions than the test strategy. For example, an action corresponding to
transition (s0, s00) of the system can be restricted even though the system is not at s0

at time k. Intuitively, this might correspond to a static obstacle that is far away from
the system and not blocking it immediately. The set of active obstacles represent
different implementations of the same reactive test strategy. A few implementations
of the reactive test strategy as a set of active obstacles are:

1. Exact Reactive Placement: In this setting, the set of active obstacles corre-
spond exactly the set of actions restricted by the test strategy: Obs(�0:k) :=

{(s, a)|s = �k, a 2 ⇡test(�0:k)}. The obstacle is only active when the system
is in a state from which an action is restricted.

2. Instantaneous Placement: In this setting, the test environment instanta-
neously places all obstacles or the restrictions in C(q) are realized “at once”
when the test execution enters a state-history trace with history variable q.
Concretely, let (sk, qk) be the state-history of the test execution at some time
k � 0, then the set of active obstacles are

Obs(�0:k) := {(s, a) | (s, s0) 2 C(qk) and s0 2 Tsys.�(s, a)}.

3. Accumulative Placement: In this setting, active obstacles are accumulated
as the system trace evolves as long as the history variable does not change.
For some k > 0, let (sk�1, qk�1) and (sk, qk) be the state-history pairs at
time steps k � 1 and k, respectively. If qk�1 6= qk, then the set of active
obstacles becomes Obs(�0:k) := {(sk, a) | a 2 ⇡test(�0:k)}. As the system
trace evolves to state-history pairs (sl, ql), where l > k and ql = qk, the set
of active obstacles are accumulated: Obs(�0:l) =

Sl
j=k Obs(�0:j). When the

history variable advances, i.e., ql 6= qk, then the set of active obstacles are
reset: Obs(�0:l) := {(sl, a) | a 2 ⇡test(�0:l)}.
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All three methods of determining the set of active obstacles will simulate the re-
active test strategy; they are varied implementations of the test environment. The
placement of obstacles need not coincide with when the system observes these ob-
stacles, which depends on the system implementation. However, we assume that
the system can observe all restrictions placed by the test environment on its current
state before it commits to an action.

Remark 4.8 (On Relaxing the Assumption 4.1). Roughly speaking, the feasibility
constraints (c8) ensure that placing obstacles does not block the system from its
goal. This condition is checked by ensuring that there exists feasible path for the
system from every possible source s 2 SGsys(q) for every history variable q when
all restrictions in C(q) have been placed. With Assumption 4.1, the above feasi-
bility constraint is a sufficient check since the system can backtrack to the source
and find an alternative path if it encounters a restriction placed by the test envi-
ronment. However, this assumption is not necessary and can be relaxed in one of
two ways. First, if a restriction were to cause a livelock (i.e., system has no choice
but to remain in the same state or be stuck in a cycle), then the restriction must
be revealed to the system before the livelock becomes inevitable. Second, for ev-
ery cut ((s, q), (s0, q0)) in the set of edge-cuts C, we can check that there exists a
Path((s, q), T) on G after edges C have been removed. If this is not the case, then
the solution corresponding to C can be added as a counterexample constraint to
the MILP, which will then be resolved. This process is repeated until the set of
cuts C are accepted. Implementation of a counterexample constraint is detailed in
section 4.8.

Proposition 4.2. In both the instantaneous and accumulative settings, as long as no
new restrictions that are not in C(q) are introduced, the flow value F remains the
same.

Example 4.2 (Small Reactive (continued)). Fig. 4.7 illustrates a reactive example
on gridworld introduced previously. The reactive test strategy is constructed from
the optimal solution of MILP-REACTIVE. The optimization returns cuts on G,
which is realized as follows: when the system is at the initial state and the test exe-
cution history variable is at q0, the test environment places a restriction as shown in
Fig. 4.7b. If the system chooses to visit I1 first, the restriction does not change even
as the test execution history variable updates to q6 (see Fig. 4.7c). Alternatively,
if the system visits I2 first, the test execution history variable updates to q7, and
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to prevent direct access to goal cell T , the test environment places the restrictions
shown in Fig. 4.7d. These restrictions can be implemented either in the instanta-
neous or the accumulative setting.

Static and Mixed Test Environments: In the special case of test environments
consisting of only static obstacles, the solution of MILP-STATIC returns a set of
edge-cuts which result in a reactive map C in which restrictions do not change based
on the history variable: C(q) = C(q0), 8q, q0 2 B⇡.Q. All system transitions consti-
tute the static area: Tsys.E = Tsys.Estatic, and the test environment instantaneously
places all static obstacles at the start of the test execution:

Obsstatic := {(u.s, v.s) 2 Tsys.Estatic | (u, v) 2 C}, 8k � 0. (4.34)

In the mixed setting, the test strategy is constructed according to Eq. (4.33), and the
set of active obstacles are constructed similar to the reactive setting. Restrictions
that are in the static area Tsys.Estatic can be implemented by placing static obstacles.

Example 4.1 (continued). For the medium-sized grid world example illustrated in
Fig. 4.3a, the static test environment is illustrated in Fig. 4.7a. Figure 4.8 illustrates
edge-cuts that correspond to static obstacles. There are 14 edge-cuts on G that
correspond to 4 static obstacles on Tsys. On G, observe that there is no bypass flow,
and the maximum flow after the cuts is F ⇤ = 3, corresponding to the three different
ways in which the system can be routed through the intermediates.

Algorithm 5 summarizes the following aspects of the framework discussed so far: i)
graph construction, ii) routing optimization using flow networks, and iii) construc-
tion of a reactive test strategy from the optimization solution. Finally, the following
theorem (taken from [107]) shows that the reactive test strategy is feasible and not
overly-restrictive when constructed from the optimal solution of the MILP.

Theorem 4.3. If the problem data are not inconsistent (see Section 4.7), the reactive
test strategy ⇡test found by Algorithm 5 solves Problem 4.1.

Proof. The test environment informs the choice of the MILP (static, reactive, or
mixed). Therefore, the resulting ⇡test will be realizable by the test environment. By
construction of Gsys, any correct system strategy corresponds to a Path(Ssys, Tsys).
By Theorem 4.2, at any point during the test execution, if the system has not
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violated its guarantees, there exists a path on Gsys to Tsys. Therefore, there ex-
ists a correct system strategy ⇡sys, and resulting trace �(⇡sys ⇥ ⇡test), which cor-
responds to the path #sys,n = (s, q)0 . . . (s, q)n on Gsys, where (s, q)0 2 Ssys to
(s, q)n 2 Tsys. By Lemma 4.1 any Path(Ssys, Tsys) on Gsys has a corresponding
Path(S, T) on G and by Theorem 4.1, the cuts ensure that all such paths on G are
routed through the intermediate I. Therefore, for a correct system strategy ⇡sys, the
trace �(⇡sys ⇥ ⇡test) |= 'sys ^ 'test. Thus, ⇡test is feasible and by Proposition 4.2 and
Lemma 4.3, ⇡test is not overly-restrictive. Thus, Problem 4.1 is solved.

The resulting test strategy ensures that as long as the system does not take an in-
correct action, there will always exist a path to its goal. However, the system is not
aided in reaching the goal either — the test strategy will not block actions that lead
to unsafe states. Therefore, a correctly implemented system should be able pass the
test, and if the test fails, then it is the fault of the system design.

Algorithm 6: Reactive Test Synthesis

1: procedure TEST SYNTHESIS(Tsys, TTA, H, 'sys, 'test)
Input: system Tsys, test agent TTA, test harness H , system objective 'sys, test

objective 'test

Output: test agent strategy ⇡TA

2: Tsys.Estatic  Define from Tsys, TTA . Static area (Eq. (4.35)
3: G,Gsys, I, G Setup arguments . Lines 2-13 in Alg. 5
4: Cex  ; . Initialize empty set of excluded solutions
5: Fmax  MILP-AGENT(G,G, I, Tsys, H, Cex = {})
6: while True do
7: F ⇤,d⇤  MILP-AGENT(G,G, I, Tsys, H, Cex)
8: if STATUS(MILP) = infeasible then
9: return infeasible

10: C  {(u, v) 2 G.E |d⇤(u,v) = 1} . Cuts on G
11: Obs Define from C . Static Obstacles (Eq. (4.34))
12: R Define from C . Reactive map (Eq. (4.36))
13: A Assumptions (a1)–(a5) from Tsys, TTA, G, 'sys

14: G Guarantees (g1)–(g7) from Tsys, TTA, R
15: ' (A! G) . Construct GR(1) formula
16: if REALIZABLE(') then
17: ⇡TA  GR1Solve(')
18: return ⇡TA, Obs
19: Cex  Cex [ C
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Strategy Synthesis for a Dynamic Test Agent
In some test scenarios, it might be beneficial to make use of an available dynamic
test agent. Thus, the challenge is to find a tester strategy that corresponds to C while
ensuring that the system’s operational environment assumptions are satisfied. To
accomplish this, we adapt the MILP-MIXED using information about the dynamic
test agent. Then, we find the test agent strategy using reactive synthesis and counter-
example guided search. From the optimal cuts of MILP-MIXED and the resulting
reactive map C, we can find states that the test agent must occupy in reaction to the
system state. Then, we synthesize a strategy for the dynamic test agent using the
Temporal Logic and Planning Toolbox (TuLiP) [108, 109]. If we cannot synthesize
a strategy, we use a counterexample-guided approach to exclude the current solution
and resolve the MILP to return a different set of optimal cuts until a strategy can
be synthesized. Suppose we are given a test agent whose dynamics are given by
the transition system TTA, where TTA.S contains at least one state that is not in
T.S, denoted as park. During the test execution, the test agent can navigate to
these park states, if necessary. These states are required to synthesize a test agent
strategy. From the test agent’s transition system TTA, we determine which states in
T the test agent can occupy. Static obstacles are used to restrict transitions to states
that cannot be occupied by the test agent, and thus the static area is defined as

Tsys.Estatic := {(u, v) 2 Tsys.E | v /2 TTA.S}. (4.35)

Assumption 4.2. In the mixed setting with static obstacles, and a reactive dy-
namic agent, static obstacles can only restrict transitions in Tsys.Estatic as defined
in Eq. (4.35).

Adapting the MILP for test agent: Since an agent can only occupy a single state
at a time, solutions in which multiple edge cuts can be realized by occupying the
same state are incentivized. For this, we introduce the variable dstate 2 R|V |

+ , which
represents whether an incoming edge into a state is cut. This is captured by the
constraint

8(u, v) 2 E, d(u,v)  dv
state, (c11)

where dv
state � 1 corresponds to at least one incoming edge being cut. The adapted

objective is then defined as

F � k
X

e2E

de �m
X

v2V

dv
state,
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where k  1
1+|E| and m  1

|V |(1+|E|) . The objective is chosen such that the total
number of edge cuts, and the number of nodes that are blocked are minimized.
The regularizers are chosen to reflect this order of priority: once the number of
edges are minimized, the number of nodes that are cut are minimized. The optimal
cuts from the resulting MILP are used to synthesize a reactive test agent strategy as
follows. From the optimal cuts C⇤, we find the set of static obstacles Obs ✓ T.Estatic

according to Eq. (4.34) and the reactive map R : B⇡.Q! T.E as follows:

R(q) := {(s, s0) 2 T.E | (s, s0) /2 T.Estatic and ((s, q), (s0, q0)) 2 C⇤}. (4.36)

The reactive map R is used to synthesize a strategy for the test agent. If no strategy
can be found, a counter-example guided approach is used to resolve the MILP.

Reactive Synthesis: From the solution of the MILP, we now construct the specifi-
cation to synthesize the test agent strategy using TuLiP. In particular, we construct a
GR(1) formula with assumptions being our model of the system and the guarantees
capturing requirements on the test agent. Note that we are synthesizing a strategy
for the test agent, where the environment is the system under test. The variables
needed to define the GR(1) formula consist of variables capturing the system’s state
xsys 2 T.S and qhist 2 B⇡.Q, which track how system transitions affect the history
variable q. The test agent state is represented in the variable xTA 2 TTA.S.

First, we set up the subformulae constituting the assumptions on the system model.
The initial conditions of the system are defined as

(xsys = s0 ^ qhist = q0), (a1)

where s0 2 T.S0 and B⇡.Q0. We define the dynamics of the system and the history
variable for each state (s, q) 2 G.S as follows:

⇤
⇣
(xsys = s ^ qhist = q)!

_

(s0,q0)2
succ(s,q)

�(xsys = s0 ^ qhist = q0)
⌘
, (a2)

where succ(s, q) denotes the successors of state (s, q) 2 G.S. For simplicity, we
choose a turn-based setting, in which each player will only take their action if it is
their turn. To track this, we introduce the variable turn 2 B as a test agent variable.
For the system, this is encoded as remaining in place when turn = 1:

^

s2T.S

⇤
⇣
(xsys = s ^ turn = 1)!�(xsys = s)

⌘
. (a3)
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If a turn-based setup is not used, we need to synthesize a Moore strategy for the test
agent since it should account for all possible system actions. The system objective
'sys can be encoded as the formula

⇤ ⇤(xsys = xgoal) ^ 'aux, (a4)

where xgoal is the terminal state of the system and a reachability objective specified
in 'sys. The other objectives specified in 'sys are transformed to their respective
GR(1) forms in 'aux. This transformation of LTL formulas into GR(1) form is
detailed in [110]. In addition, the system is expected to safely operate in the test
agent’s presence. The set of states where collision is possible is denoted by S\ :=

T.S\TTA.S. Thus, the safety formula encoding that the system will not collide into
the tester is given as:

^

s2S\

⇤
⇣
xTA = s!�¬(xsys = s)

⌘
. (a5)

Equations (a1)– (a5) represent the test agent’s assumptions on the system model.
Next, we describe the subformulas for the guarantees of the GR(1) specification.
The initial conditions for the test agent are

_

s2TTA.S0

xTA = s. (g1)

The test agent dynamics are represented by

⇤
⇣
(xTA = s)!

_

(s,s0)2TTA.E

�(xTA = s0)
⌘
. (g2)

The test agent can also move only in its turn and will remain stationary when
turn = 0: ^

s2TTA.S

⇤
⇣
(xTA = s ^ turn = 0)!�(xTA = s)

⌘
. (g3)

The turn variable alternates at each step:

(turn = 1)!�(turn = 0) ^ (turn = 0)!�(turn = 1). (g4)

To satisfy the system assumptions (Def. 4.6), the test agent should not adversarially
collide into the system. This is captured via the following safety formula,

^

s2S\

⇤
⇣
xsys = s!�¬(xTA = s)

⌘
. (g5)
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Now, we enforce the optimal cuts found from the MILP. To enforce cuts reactively
during the test execution, the states occupied by the system are defined as follows,

^

q2B⇡ .Q

^

(s,s0)2R(q)

⇤
⇣
(xsys = s ^ qhist = q ^ turn = 0)! (xTA = s0)

⌘
. (g6)

Essentially, for some history variable q, if (s, s0) 2 R(q) is an edge cut, then the
test agent must occupy the state s0 when the system is in the state s when the test
execution is at history variable q. However, the test agent should not introduce any
additional restrictions on the system, which is formulated as

^

q2B⇡ .Q

^

(s,s0)2T.E
(s,s0) 62R(q)

⇤
⇣
(xsys = s ^ qhist = q ^ turn = 0)! ¬(xTA = s0)

⌘
. (g7)

Intuitively, this corresponds to the requirement that the tester agent shall not restrict
system transitions that are not part of the reactive map R. A test agent strategy
that satisfies the above specifications is guaranteed to not restrict any system action
unnecessarily. However, the test agent can occupy a state that is not adjacent to the
system and block all paths to the goal from the system’s perspective. This could
lead the system to not making any progress towards the goal at all, resulting in a
livelock. To avoid this, we characterize the livelock condition as a safety constraint
that the test agent must satisfy (e.g., if it occupies a livelock state, it must not occupy
it in the next step). The specific safety formula that captures the livelock depends
on the example. We find the states where the tester would block the system from
reaching its goal T.Sblock ✓ TTA.S. The following condition ensures that it will only
transiently occupy blocking states:

^

s2T.Sblock

⇤
⇣
xTA = s!�¬(xTA = s)

⌘
. (g8)

Therefore, we synthesize a test agent strategy ⇡TA for the GR(1) formula with as-
sumptions (a1)–(a5) and guarantees (g1)–(g8).

Counterexample-guided Search: The MILP can have multiple optimal solutions,
some of which may not be realizable for the test agent. If the GR(1) formula is un-
realizable, we exclude the solution and re-solve the MILP until we find a realizable
GR(1) formula. In particular, every new set of optimal cuts C that is unrealizable
is added to the set Cex. Then, the MILP is resolved with an additional set of affine
constraints as follows,

X

e2E

de �
X

e2C

de � 1, 8C 2 Cex. (c12)
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This corresponds to removing the solution C from the constraint set. The adapted
MILP is then defined as follows:

MILP-AGENT:

max
f ,d,dstate,µ,

f
(q,s)
sys 8q2B⇡ .Q,
8s2SGsys (q).

F � 1

1 + |E|
X

e2E

de � 1

(1 + |E|)|V |
X

v2V

dv
state

s.t. (c1)-(c9), (c11), (c12).

(4.37)

This process is repeated until a strategy is synthesized or the MILP-AGENT be-
comes infeasible. Algorithm 6 summarizes the approach for synthesizing the test
agent strategy. The terms Fmax and F ⇤ (lines 5 and 7 in Algorithm 6) denote the
maximum possible flow before and after accounting for counterexamples, respec-
tively. The following lemma and theorem are adapted from [107].

Lemma 4.4. Let ⇡TA be the test agent strategy and let Obs satisfying Assump-
tion 4.2 be the set of static obstacles synthesized from the optimal solution C of
MILP-AGENT according to the GR(1) formula with assumptions (a1)–(a5) and
guarantees (g1)–(g8). Let ⇡test be the reactive test strategy corresponding to the
optimal cuts C⇤. Then ⇡TA and Obs realize ⇡test.

Proof. By construction in Eqs. (4.32), (4.34), (4.36), we have that C(q) = R(q) [
Obs for all history variables q 2 B⇡.Q. Due to guarantee (g6), the synthesized test
agent strategy restricts the transitions in R(q). The test agent is also prohibited from
restricting any other transitions by the guarantee (g7). Therefore, at each step of the
test execution, the system actions restricted as a result of ⇡TA and static obstacles
Obs directly correspond to the system actions restricted by the test strategy ⇡test.

Theorem 4.4. Algorithm 6 is sound with respect to Problem 4.2.

Proof. The test agent strategy is synthesized to satisfy guarantees (g1)-(g8). The
guarantees (g1)-(g4) specify the dynamics of the test agent, which satisfies A1. The
safety guarantee (g5) satisfies A2. Guarantees (g6) and (g7) realize the optimal
cuts from MILP-AGENT. Due to constraint (c8) the optimal cuts ensure that there
always exists a path on Gsys. Together with guarantee (g8), this results in ⇡TA satis-
fying assumptions A3 and A4. By Lemma 4.4, ⇡TA is a realization of a feasible ⇡test

that is not overly-restrictive.
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In Algorithm 6, each iteration of MILP-AGENT is solved to optimality while ex-
cluding the counterexamples. If MILP-AGENT returns with F ⇤ = Fmax, then ⇡TA

corresponds to a ⇡test that is not overly-restrictive. By iteratively removing coun-
terexamples, the agent strategy is synthesized for a reactive test strategy with the
highest possible F ⇤  Fmax. This is valid under Assumption 4.2, which allows
static obstacles only on transitions that cannot be restricted by the test agent. In
MILP-AGENT, this condition is enforced by applying constraint (c9) on the static
area Tsys.Estatic.

If a matching test agent strategy is found for the maximum possible F , the test
agent strategy and obstacles, ⇡TA and Obs, correspond to a not overly-restrictive
reactive test strategy ⇡test possible for that test environment. In future work, we will
exploring relaxing Assumption 4.2.

4.9 Complexity Analysis
This framework comprises of three parts: automata-theoretic graph construction,
flow-based MILP to solve the routing optimization, and finally reactive synthesis
to match the solution of the optimization to a test agent strategy. The automata-
theoretic framework includes construction of Büchi automata from specifications,
which can be doubly exponential in the length of the formula in the worst-case [60].
Then, construction of the product graphs relies on building the Cartesian product
of the transition system and the automaton. The Cartesian product implementation
in this work has a worst-case time complexity of O(|T.S|2|B⇡.Q|2). In this section,
I will discuss the computational complexity of the routing optimization, and prove
that the routing optimization is an NP-hard problem. Finally, the solution of the
routing optimization is mapped to a strategy of the test agent via GR(1) synthesis,
which has time complexity O(|N |3), where N is the number of states required to
define the GR(1) formula.

To establish the computational complexity of the routing optimization, we will first
look at the special case of static obstacles, and then extend the proof to the setting
with reactive obstacles. Consider the problem data of the routing optimization once
again: a graph G = (V, E) with specially denoted nodes S, I, and sink, and the
corresponding flow network G. A bypass path on G is some Path(S, T) which does
not contain an intermediate node v 2 I. For all edges e 2 E \ E(I), the Boolean
variable de carries information on whether the edge e is cut (i.e., de = 1), and the set
C ⇢ E represents the set of all edges that are cut. The flow F on G is the maximum
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flow value from source S to T, computed after accounting for the edge cuts.

The static and reactive obstacle settings are based on the grouping of edges on
G, which become important for checking system feasibility. Static obstacles are
grouped by the corresponding transition in the system transition T since they are
present for the entire test duration. In particular, the static grouping Grstatic : T.E !
G.E groups all edges in G that correspond to the same system transition in T :

Grstatic((s, s
0)) := {(u, v) 2 G.E | u.s = s, v.s = s0}. (4.38)

For some edge (s, s0) 2 T.E, all the corresponding edges in G, that is, all edges e 2
Grstatic((s, s0)) must have the same de value. Similarly, in the reactive setting, edges
are grouped by the history variable q, as given in Eq. (4.28). System feasibility can
then be checked by applying these groupings onto copies of G or Gsys, as detailed
in Remark 4.5.

For purposes of clearly stating the static the optimization and decision versions of
the routing problem, we introduce the label of a valid set of edge cuts. In the static
setting, a valid set of edge cuts C when applied to G is such that: i) there are no
bypass paths, ii) there exists at least one path from S to T, and iii) edges of G respect
the static grouping Grstatic. Note that there can exist graphs G for which there does
not exist a valid set of edge cuts in the static setting. These are graphs for which we
cannot synthesize a test comprising only static obstacles to realize the test objective.
One such example is Beaver Rescue. Now, the optimization version of the routing
problem for the special case of static obstacles is stated as follows,

Problem 4.3 (Routing Problem, Static Setting (Optimization)). Given a graph G,
find a valid set of edge cuts C in the static setting such that the resulting maxi-
mum flow F is maximized over all possible sets of edge cuts, and such that |C| is
minimized for the flow F .

In other words, the optimization follows a two-step procedure: first, identify a valid
set of edge cuts C to maximizes the flow F , and second, tie-break between the
optimal candidates C to choose one with the smallest cardinality |C|. The decision
version of Problem 4.3 can be stated as follows.

Problem 4.4 (Routing Problem, Static Setting (Decision)). Given a graph G and an
integer M � 0, does there exist a valid set of edge cuts C in the static setting such
that |C|M?
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Lemma 4.5. A solution to Problem 4.3 can be used to construct a solution for
Problem 4.4 in polynomial time.

Proof. The solution of Problem 4.3 returns a set of valid edge cuts C. Thus for any
given integer M � 0, we can check in polynomial time if |C|M .

Basics of Complexity Theory: Finding the complexity class of Problem 4.4 will
help in determining the complexity of Problem 4.3 because by Lemma 4.5, we can
infer that Problem 4.3 is at least as hard as Problem 4.4. The class of NP problems
consists of those that are verifiable in a time polynomial to the size of the input to
the problem [80]. A problem is said to be in the class of NP-complete problems if:
i) it is in the class NP, and ii) it is as hard as any problem in NP. Polynomial-time
algorithms for solving NP-complete problems would exist only if P=NP. The class
of NP-hard problems are those that are as hard as a problem in NP. In this section, I
will show that Problem 4.4 is NP-complete, and by extension that Problem 4.6 is an
NP-hard problem in the size of the input: product graph G. This would also support
the choice of a mixed-integer linear programming framework to solve the routing
optimization, since MILPs belong to the class of NP-hard problems as well.

To show that Problem 4.4 is NP-complete, we have to establish its membership in
NP, and then give a polynomial-time reduction of a problem in NP to Problem 4.4.
We will choose the 3-SAT problem and give a polynomial-time reduction algorithm
that maps any instance of the 3-SAT problem to an instance of Problem 4.4. This re-
duction algorithm is such that a solution to the constructed instance of Problem 4.4
can be transformed in polynomial-time to a solution of the 3-SAT instance.

Lemma 4.6. Problem 4.4 is in the class NP.

Proof. Given a solution C, we need to show that verifying that it is a valid set of
edge-cuts for the static setting can be done in polynomial-time. In reference to
the definition of a valid set of edge-cuts, it can be checked in polynomial-time that
there are no bypass paths when the edges in C are cut from G. This would involve a
simple check (e.g., via any max-flow algorithm) to verify zero maximum flow from
S to T on the bypass network Gbyp = (V \ I, E \ E(I), S, T). Similarly, condition
(ii) can also be checked in polynomial-time by running a max-flow algorithm on G
and verifying that the max-flow is at least 1. Finally, condition (iii) can be checked
in polynomial-time by iterating over all edges e 2 T.E, and checking that exactly
one of the following in true: a) Grstatic(e) ✓ C or b) Grstatic(e) \ C = ;.
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(b) Graph resulting from a reduction of the 3SAT formula
f(x1, . . . , x5), where the resulting edge cuts correspond to the
truth assignment of the variables x1, . . . , x5.

Figure 4.10: Graphs constructed from a 3SAT formula, where a truth assignment
for the variables can be found using the network flow approach for static obstacles.

Now, we introduce the 3-SAT problem .

Definition 4.17 (3-SAT [111]). Let x1, . . . , xn be propositions that can evaluate to
true or false. A literal is a proposition xi or its negation. The propositional logic
formula f(x1, . . . , xn) :=

Vm
j=1 cj is a conjunction of clauses c1, . . . , cm, where

each clause is a disjunction of three Boolean literals. A solution to the 3-SAT
problem is an algorithm that returns True if there exists a satisfying assignment to
f(x1 . . . , xn) and False.

Outline of the Reduction Algorithm: Given any 3-SAT formula, we will construct
a product graph, an instance of 4.4 in polynomial-time. The product graph is con-
structed modularly — each clause in the 3-SAT formula corresponds to a sub-graph
in the larger product graph (Construction 1). Then, using Construction ??, the sub-
graphs are connected to form the product graph instance to Problem 4.4. Finally,
we will prove that any algorithm used to solve Problem 4.4 can be used to solve the
3-SAT problem, thus showing that Problem 4.4 is at least as hard as a problem in
NP. Consequently, Problem 4.4 can be solved in polynomial-time in the size of the
product graph only if there exists a polynomial-time algorithm for 3-SAT which is
only possible if P=NP.

Construction 1 (Clause to Sub-graph). For each clause cj in the given 3-SAT for-
mula, construct the following sub-graph. First, introduce nodes x1,j, . . . , xn,j for
each of the Boolean propositions x1, . . . , xn that constitute the 3-SAT formula. If
j = 0, introduce the nodes s0 and s1, otherwise introduce the node sj . For all
j 2 {1, . . . , m}, the nodes sj�1 and sj represent the beginning and end of each
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sub-graph. Additionally, introduce two more nodes: IT,j and IF,j . These nodes will
serve as intermediate nodes in the constructed graph.

Second, the edges of the sub-graph are added as follows. The intermediate nodes
are connected to the start and end nodes of the sub-graph via the directed edges:
(sj�1, IF,j) and (IT,j, sj). Next, for each xi,j , add the directed edges: (sj�1, xi,j)

and (xi,j, sj). If neither xi nor its negation x̄i appear in the clause cj , then these are
the only directed edges connected to the node xi,j in the sub-graph. If the literal
xi appears, then we add the directed edge (xi,j, IT,j), and if a negated literal x̄i

appears, we add the directed edge (IF,j, xi,j).

From Construction 1, edge-cuts on the sub-graph are related to the Boolean valua-
tions of the propositions as follows. Either the incoming or outgoing edge to each
node xi,j must be cut. As illustrated in Fig. 4.10a, if the edge (sj�1, xi,j) remains in
the sub-graph (and (xi,j, sj) is cut), this implies that the proposition xi is assigned
the value True. Similarly, if the edge (xi,j, sj) remains, then the proposition xi

is assigned the value False. Construction 1 ensures that a satisfying assignment
to the clause cj implies that there exists a Path(sj�1, sj) and all such paths are
routed through the intermediates (sj�1, IF,j) and (IT,j, sj) (see Fig. 4.10b). An as-
signment that evaluates clause cj to False would only be possible if there was no
Path(sj�1, sj). The full graph can be constructed by stitching together the individ-
ual sub-graphs built using Construction 1.

Construction 2 (Reduction). Given a 3-SAT problem with n Boolean propositions
and m clauses, construct the sub-graph for each clause according to Construction 1.
Denote the node s0 as the source S and sm as the sink T. The node sj�1 is common
between the sub-graphs of clauses cj�1 and cj . Let the integer variable M be set
to m ⇥ n. Note that the constructed graph has O(mn) edges and is constructed
in polynomial-time in the number of propositions and clauses of the given 3-SAT
formula.

In addition to constructing the graph, two groups of edges for each Boolean propo-
sition xi are tracked: i) an incoming group of edges {(sj�1, xi,j) | 1  j  m}, and
ii) an outgoing group of edges {(sj�1, xi,j) |1  j  m}. All edges in a group must
share the same edge-cut value, corresponding to the static grouping map Grstatic.
By imposing this constraint, the truth assignment to Boolean propositions across
literals can be guaranteed to be the same.



112

The reduction algorithm takes as input a 3-SAT formula, and applying Construc-
tions 1 and 2, returns a graph with source S = s0, I =

Sm
j=1{IT,j, IF,j}, and edges

are grouped according to Construction 2. Now, we will show that for the static set-
ting, the routing problem is NP-hard. The following proof of Theorem 4.5 is taken
from [107].

Theorem 4.5. Problem 4.4 is NP-complete.

Proof. We will show that Problem 4.4 is NP-hard by showing that Construction 2
is a correct polynomial-time reduction of the 3-SAT problem to Problem 4.4 i.e.,
any polynomial-time algorithm to solve Problem 4.4 can be used to solve 3-SAT in
polynomial-time. Consider the graph constructed by Construction 2 for any propo-
sitional logic formula. The valid set of edge cuts C on this graph with cardinality
|C|M is a witness for Problem 4.4. A witness for the 3-SAT formula is an assign-
ment of the variables x1, . . . , xn. A witness to a problem is satisfying if the problem
evaluates to True under that witness. Next, we show that a valid set of edge cuts C

is a satisfying witness for Problem 4.4 iff the corresponding assignment to variables
x1, . . . , xn is a satisfying witness for the 3-SAT formula.

First, consider a satisfying witness for Problem 4.4. By Construction 2, the cardi-
nality of the witness, |C|= m⇥n will be exactly M , which is the minimum number
of edge cuts required to ensure no bypass paths on the constructed graph. This im-
plies that each variable xi has a Boolean assignment. By Construction 1, a strictly
positive flow on the sub-graph of clause cj implies that cj is satisfied. By Construc-
tion 2, a strictly positive flow through the entire graph implies that all clauses in the
3-SAT formula are satisfied. Therefore, a satisfying witness to the 3-SAT formula
can be constructed in polynomial-time from a satisfying witness for an instance of
Problem 4.4.

Next, we consider a satisfying witness for the 3-SAT formula. The Boolean assign-
ment for each variable xi corresponds to edge cuts on the graph (see Fig. 4.10b).
Any Boolean assignment ensures that there is no bypass path on the graph since
either all incoming edges or all outgoing edges for each variable xi are cut. This
also corresponds to the minimum number of edge cuts required to cut all bypass
paths, corresponding to |C|= m ⇥ n. By Construction 1, a satisfying witness cor-
responds to a Path(sj�1, sj) on the sub-graph for each clause cj . By Construction 2,
observe that there exists a strictly positive flow on the graph. Thus, we can con-
struct a satisfying witness to an instance of Problem 4.4 in polynomial time from a
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satisfying witness to the 3-SAT formula. Therefore, any 3-SAT problem reduces to
an instance of Problem 4.4, and thus, Problem 4.4 is NP-hard. Additionally, Prob-
lem 4.4 is NP-complete since we can check the cardinality of C, and whether C is
a valid set of edge cuts in polynomial time.

Corollary 4.1. Problem 4.3 is NP-hard [112].

Proof. By Theorem 4.5, Problem 4.4 is NP-complete, and therefore by Lemma 4.5,
Problem 4.3 is NP-hard.

These insights can be extended to the complexity analysis for the reactive setting.
In the reactive setting, a valid set of edge cuts is defined similar to the static set-
ting, except in the grouping constraint that the edges must respect, as detailed in
Remark 4.5, and restated below for clarity.

Recall that Gr(q) is the set of possible system transitions in the history variable q.
All restrictions during history variable q are a subset of Gr(q), and in the accumula-
tive placement of reactive constraints, they are all realized in the worst-case. There-
fore, the reactive feasibility constraints (c8) checks if there is a Path(ssys, Tsys) on
Gsys (i.e., from the system perspective, are we ensuring that there is a path to the
goal) when all reactive constraints are accumulated and projected onto Gsys. Instead
of checking on Gsys, we can verify the same condition by checking on G by statically
mapping the edges Gr(q).

Definition 4.18 (Static Mapping). For a network G, let E 0 ✓ G.E be a set of edges
in which each edge has an associated edge-cut value de. The network G is statically
mapped with respect to E 0 if for every edge (u, v) 2 E 0, the following is true:

d(u0,v0) = d(u,v), 8(u0, v0) 2 Grstatic((u.s, v.s)). (4.39)

The static mapping connects restrictions on the same system action across history
variables. The feasibility networks are necessary to ensure that the system restric-
tions do not block the system from its goal.

Definition 4.19 (Reactive Feasibility Networks). For each q 2 B⇡.Q and for every
possible system source s 2 SGsys(q), introduce a copy of Gsys denoted G(q,s)

sys =

(Vsys, Esys, s, Tsys). The set of edges in G that map to some edge (usys, vsys) 2 Esys is

PEsys!E((usys, vsys)) = {(u, v) 2 E|PG!Gsys(u) = usys and PG!Gsys(v) = vsys}.
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Note that multiple edges on G can map to the same edge on Gsys. Furthermore,
reactive restrictions at history variable q are all contained in Gr(q). Therefore, if one
of the edges in PEsys!E((usys, vsys)) \ Gr(q) is restricted, then the edge (usys, vsys)

is restricted on the copy G(q,s)
sys . Let dsys 2 B|Esys| denote the cut values of edges on

G(q,s)
sys . The system restrictions on G are mapped to edge-cuts on G(q,s)

sys only for the
history variable q:

d(usys,vsys)
sys =max d(u,v)

s.t. (u, v) 2 PEsys!E((usys, vsys)) \ Gr(q).
(4.40)

The reactive feasibility networks Gsys is the set of graphs G(q,s)
sys whose edge cut

values are mapped according to Eq. (4.40):

Gsys := {G(q,s)
sys =(Vsys, Esys, s, Tsys)|q 2 B⇡.Q, s 2 SGsys(q) and

G(q,s)
sys is mapped according to Eq. (4.41)}.

(4.41)

In Alg. 5, lines 9–13 correspond to the construction of Gsys. In the implementation
of the optimizations, edge cut variables dsys for system feasibility networks are
not defined since this would dramatically increase the number of integer variables.
Instead, edge cuts on G are directly used to cut the flow on the feasibility networks
(see Eq. (c8)).

When the cut-set C is found for G, the reactive feasibility condition requires that for
every reactive feasibility network G(q,s)

sys 2 Gsys, there exists a path from source s to
target Tsys after the cuts C are applied to G(q,s) via the mapping in Eq. (4.40). For
the purpose of proving computational complexity, it is easier to reduce from 3-SAT
if reasoning over graphs with similar structures. Thus, we consider the following
check for reactive feasibility which reasons over copies of G instead of Gsys.

Definition 4.20 (Statically mapped Reactive Feasibility Networks). For each q 2
B⇡.Q and for every possible source s 2 SG(q), introduce a copy of G denoted
G(q,s) := (V, E, s, T). Each network G(q,s) is statically mapped with respect to the
edges Gr(q). The statically mapped reactive feasibility networks G is the set of all
G(q,s):

G := {G(q,s) =(G.V,G.E, s, T)|q 2 B⇡.Q, s 2 SG(q) and

G(q,s) is statically mapped with respect to Gr(q)}.
(4.42)

In other words, all edges restricted (i.e., de = 1) at history variable q are stati-
cally mapped on G(q,s). When the cut-set C is found for G, the reactive feasibility
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condition (via static mapping) requires that for every statically mapped reactive fea-
sibility network G(q,s) 2 G, there exists a path from source s to target T after the
cuts C are applied to G(q,s) via the static mapping. Checking for the reactive fea-
sibility condition (via static mapping) on G is equivalent to checking the reactive
feasibility condition on Gsys.

Theorem 4.6. The reactive feasibility condition (via static mapping) on G is true
iff the reactive feasibility condition on Gsys is true.

Proof. Suppose the reactive feasibility condition (via static mapping) is true. Then,
the corresponding graphs Gsys will also have a path by theorem relating to why static
checks are enough. If the reactive feasibility condition on Gsys is true, then there
exists a corresponding path on G as well due to lemma 4.1.

For each history variable q 2 B⇡.Q and for every possible system source s 2
SG(q), introduce a copy of G denoted G(q,s) = (V, E, s, T). On this copy G(q,s),
we statically map the edges Gr(q), and check if the flow from s to T is at least 1.
In the reactive setting, a valid set of edge cuts C when applied to G is such that:
i) there are no bypass paths, ii) there exists at least one path from S to T, and iii)
edges of G respect the reactive grouping condition (via static mapping). Finally, the
optimization and decision problems in the reactive setting can be stated as follows.

Problem 4.5 (Routing Problem, Reactive Setting (Optimization)). Given a graph
G, find a valid set of edge cuts C in the reactive setting such that the resulting
maximum flow F is maximized over all possible sets of edge cuts, and such that
|C| is minimized for the flow F .

Problem 4.6 (Routing Problem, Reactive Setting (Decision)). Given a graph G and
an integer M � 0, does there exist a valid set of edge cuts C in the reactive setting
such that |C|M?

Once again, consider the 3-SAT reduction from the static setting. This reduction
will be adapted to construct a polynomial-time reduction of 3-SAT to an instance
of Problem 4.6 with a single history variable q. Similar to the static setting, I will
prove that Problem 4.6 is NP-complete in the size of the product graph G. To do
this, we will first establish that Problem 4.6 is in the class of NP problems.

Lemma 4.7. Problem 4.6 is in the class of NP problems.
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Proof. This proof follows similarly to the proof of Lemma 4.6. Given a solution
C, we need to show that verifying C to be a valid set of edge cuts for the reactive
setting can be carried out in polynomial-time. Conditions (i) and (ii) can be checked
similarly as in, and condition (iii) can also be checked in polynomial-time.

Similar to the static setting, 3-SAT can be reduced to an instance of Problem 4.6.
In this chapter, I will construct the reduction to an instance of Problem 4.6 with a
single history variable.

Construction 3 (Reduction from 3-SAT to Problem 4.6 with single history variable
q). Given a 3-SAT formula with n propositions and m clauses. Construct a graph,
denoted G(q,S), according to Construction 2. In addition, construct a graph G with
nodes and edges according to Construction 2 without applying the constraint that
all edges in a group must have the same edge-cut value. The graph G(q,S) serves
a reactive feasibility network (via static mapping) where S is the source at history
variable q. On the other hand, edges on G are not grouped together. In addition to
graphs, the edge cuts on G and G(q,S) are mapped as follows: the edge-cut value of
a group in G(q,S) is set to the maximum edge-cut value in the equivalent group in G.

Figures 4.11a and 4.11b are constructed from a 3SAT formula for the reactive op-
timization problem, where a truth assignment for the variables can be found by
solving MILP-REACTIVE.

The following theorem and proof is taken from [107].

Theorem 4.7. Problem 4.6 is NP-complete and Problem 4.5 is NP-hard.

Proof. The proof follows similarly from Theorem 4.5. In this setting, a witness
for Problem 4.6 comprises the maximum edge cut value of each group in G. Con-
struction 3 relates edge cuts on G and G(q,S). This implies that edge cuts on G are
found under the condition that there is a strictly positive flow on G(q,S) under a static
mapping of edges. The minimum set of edge cuts which ensures no bypass paths
on G has cardinality n, corresponding to only one of the sub-graphs having edge
cuts. Furthermore, for each xi, there will be one edge-cut in one of the two groups
(incoming or outgoing edges). Therefore, for each xi, only the incoming or the
outgoing edge group will have a maximum edge cut value of 1, corresponding to
the Boolean assignment for xi. A minimum cut on G found under the conditions of
no bypass paths on G and a positive flow on G(q,S) results in a Boolean assignment
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Figure 4.11: (a) Graph G and (b) graph Gsys constructed according to Construc-
tion 3.

that is a satisfying witness to the 3-SAT formula. Thus, we have polynomial-time
construction of a satisfying witness to the 3-SAT formula from a satisfying witness
to Problem 4.6. This follows similarly to Theorem 4.5.

Likewise, a satisfying witness to the 3-SAT formula can be mapped to edge cuts
on one of the sub-graphs of G. These edge cuts will be such that there is no by-
pass path on G, and will be the minimum set of edge cuts to accomplish this task,
corresponding to |C|= n. Additionally, by construction of the graphs, this will
correspond to a strictly positive flow on G(q,S). Thus, we can construct a satisfying
witness to Problem 4.6 in polynomial time from a satisfying witness of the 3-SAT
formula. Therefore, any 3-SAT problem reduces to an instance of Problem 4.6. As
a result, Problem 4.6 is NP-complete and following similarly to Corollary (4.1),
Problem 4.5 is NP-hard.
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4.10 Comparison to Reactive Synthesis
We presented an approach to solve Problems 4.1 and 4.2 leveraging tools from au-
tomata theory and network flow optimization. In particular, for Problem 4.2, we
rely on the optimization solution to construct a GR(1) specification to reactively
synthesize a test agent strategy. One indication of the optimization step being nec-
essary is the computational complexity of the problem. If the problem data are
consistent, there exists a GR(1) specification for the test agent that would solve the
problem, but directly expressing this specification is impractical. Essentially, the
challenge is in finding the restrictions on system actions, which are then captured
in the sub-formulas of the GR(1) specification. In this section, we argue that we
cannot solve Problems 4.1 and 4.2 solely via synthesis from an LTL specification.

To the authors’ knowledge, directly capturing the different perspectives of the sys-
tem and the tester in this neither fully adversarial nor fully cooperative setting is not
possible with current state-of-the-art approaches in GR(1) synthesis. Particularly in
the reactive setting, the test strategy must ensure that from the system’s perspective,
there always exists a path to the system goal. To capture this constraint, we reason
over a second product graph that represents the system perspective. It is not obvious
how this semi-cooperative setting can be directly encoded as a synthesis problem in
common temporal logics.

In the static setting, the problem can be posed on a single graph. However, it is
difficult to find the set of static obstacles directly from GR(1) synthesis. Every state
in the winning set describes an edge-cut combination, but qualitative GR(1) synthe-
sis cannot maximize the flow or minimize the cuts. Furthermore, the winning set
can include states that vacuously satisfy the formula, i.e., not allowing the system
any path to the goal. Finally, the combinatorial complexity of the problem would
manifest as follows. Although the time complexity of GR(1) synthesis is O(N3) in
the number of states N , we require an exponential number of states to characterize
the GR(1) formula. For example, in Figure 4.12, this is illustrated for the GR(1)
formula:

⇤'dyn
sys ^⇤ ⇤ T! ⇤'dyn

test ^⇤'aux_dyn
test ^⇤ ⇤ Iaux,

where 'dyn
sys captures the system transitions on the gridworld, 'dyn

test are the dynamics
of the test environment, and 'aux_dyn

test and Iaux capture the ⇤ I condition in GR(1)
form. In this example, each edge in the system transition system T can take 0/1
values, and once an edge is cut, it remains cut and the system cannot take a transi-
tion that corresponds to a cut edge. Due to this, the number of states N to describe
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Figure 4.12: Solution returned by GR(1) synthesis and the network flow optimiza-
tion in the case of static constraints

the GR(1) formula includes the 2|T.E| states that characterize the edge cuts. As
seen in Figure 4.12, the direct GR(1) synthesis approach returns a trivial solution
corresponding to an impossible setting for the system. Finally, even when an ac-
ceptable solution is returned, the problem being at least NP-hard will result in the
combinatorial complexity manifesting in the synthesis approach.

One key advantage of the network flow optimization is reasoning over flows as
opposed to paths, which allows for tractable implementations. These insights from
network flow optimization in this work can help in driving further research along
these directions.

4.11 Experiments
We illustrate the synthesized test strategy in simulation and hardware with Unitree
A1 quadrupeds. These experiments show that the high-level abstraction models
is useful in high-level test synthesis as long as the lower levels of the system are
implemented to simulate the high-level abstraction. The low-level control of the
quadruped is managed at the motion primitive layer, which abstracts the underly-
ing dynamics and facilitates transitions between primitives as described in [113].
These primitives include behaviors such as lying down, walking at various speeds,
jumping, standing, and reduced-order model-based tracking of waypoints that rely
on a unicycle or single integrator model. These motion primitives can directly be
commanded from a high-level controller implemented by a temporal logic planning
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Figure 4.13: Beaver Rescue Hardware Experiment with door1 on the right and door2
on the left.

toolbox such as TuLiP [109]. Each motion primitive is implemented in C++, with
control laws, sensing, and estimation executed at 1kHz.

For experiments demonstrating the flow-based synthesis in the MILP formulation,
examples with static test environments solve the routing optimization MILP-STATIC,
examples with reactive test environments solve MILP-REACTIVE, and those with
reactive dynamic agents solve MILP-AGENT, unless otherwise stated. These op-
timizations are solved using Gurobipy [114]. The reactive test agent strategies are
synthesized using the temporal logic planning toolbox TuLiP [109].

Hardware Experiments for Tests Synthesized from solving the Min-Max Stack-
elberg Game
We will see two hardware experiments — beaver rescue and motion primitive ex-
amples — for the flow-based synthesis formulated via min-max Stackelberg games.
These optimizations were implemented in Pyomo [104], which interfaces to Guro-
bipy. These examples will be revisited in simulation and solved using the MILP
framework.

Beaver Rescue Example: This example is inspired by a search and rescue mis-
sion and the hardware trace is shown in Fig. 4.13. In this example, the quadruped
(system under test) is tasked with picking up a beaver (located in the corridor), and
returning to lab safely: 'sys = ⇤ goal, where goal is satisfied when the beaver is
brought into the lab. The lab has two doors which the quadruped can use to navi-
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gate into the corridor. In our implementation of the discretized abstraction of this
experiment, the transitions of the quadruped are as follows,

Tsys.E ={(s0, d1), (s0, d2), (d1, d2), (d2, d1), (d1, b), (d2, b), (b, p1),

(b, p2), (p1, p2), (p2, p1), (p1, g), (p2, g)},
(4.43)

where i) states d1 and d2 are states in the lab adjacent to doors: Tsys.L(d1) =

{door1} and Tsys.L(d2) = {door2}, ii) states p1 and p2 are states in the corridor
adjacent to doors: Tsys.L(p1) = {door1} and Tsys.L(p2) = {door2}, iii) state b

in the hallway is the rescue location of the beaver, and iv) states s0 and g repre-
sent the lab. The test objective is to route the system to visit both doors: 'test =

⇤ door1 ^ ⇤ door2.

There are several ways in which the test environment could have routed the system.
If the system visits door1 from d1 (or likewise door2 from d2), the door could then
be blocked; forcing the system to re-plan to exit into the corridor through the other
door. Alternatively, the system could visit door1 from d1 (or likewise door2 from
d2) and exit into the corridor, and on its return with the beaver, door1 from p1

(or likewise door2 from p2) can be blocked while leaving the other door at p2 (or
likewise at p1) open for the quadruped to re-enter the lab. Our algorithm found
edge-cuts that resulted in the latter test case that allows the system to exit through
the door of its choice and blocks that door on the return path. The synthesized test
is reactive to the choice of system actions — depending on the door approached by
the system, the synthesized constraints are placed accordingly.

Motion Primitive Example: In this example, the quadruped is can execute the fol-
lowing motion primitives: “jump”, “stand”, “lie”, and “walk”. Once again consider
the lab-corridor setup. The quadruped’s goal is to reach the beaver in the corridor:
'sys = ⇤ goal. The test objective is 'test = ⇤ jump ^ ⇤ lie ^ ⇤ stand in order to
test the system to demonstrate the three motion primitives.

Unlike the previous example in which doors were closed to restrict the system, in
this example each door has three lights located at different heights to signal mo-
tion primitives that might unlock the door. There are three such doors, and the
states pi (for i = 1, 2, 3) represents the state of the quadruped standing in front of
doori before demonstrating a motion primitive. The state primi for motion primitive
prim 2 {lie, stand, jump} represents the abstract state of the quadruped performing
the motion primitive in front of doori. After it performs a motion primitive, the
quadruped state transitions to di,prim, from which it can proceed to the goal or be
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Figure 4.14: Motion Primitive example: Snapshots of the hardware test execution
on the Unitree A1 quadruped.

returned to the state pi. The test harness comprises of system actions corresponding
to the following transitions: {(di,prim, goal)}.

For example, if the middle light is blue, it implies that demonstrating the stand
motion primitive could unlock the door (by the light turning green). The test strat-
egy is reactive to the system; depending on the order in which the quadruped ap-
proaches the doors and demonstrates motion primitives, the lights turn red/green to
restrict/permit the system to pass.

In this test execution, the system chooses to approach the middle door (door2) first
which can only be unlocked by the stand motion primitive. The quadruped suc-
cessfully demonstrates this (panel 1 of Fig. 4.14), but the light turns red. Following
this, the quadruped approaches (door1) and demonstrates the jump and stand motion
primitives, but is still not permitted to pass (panels 2 and 3 of Fig. 4.14). Finally,
after approaching door3 on the right, the system demonstrates the lie motion prim-
itive, after which the corresponding light turns green (panels 4 and 5 of Fig. 4.14),
and the quadruped finally navigates to the corridor. In this manner, the test strat-
egy reacts to system behavior and routes the test execution to lead the system to
demonstrate all three motion primitives before being allowed to pass.

Simulated Experiments
First, we will revisit the beaver rescue and motion primitive examples, in which test
strategies will be implemented by the test environment using reactive obstacles For
the beaver rescue example, the test harness consists of doors that connect the lab
and corridor, and system transitions can be restricted by closing the doors. For the
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(a) Beaver rescue. (b) Motion primitive example.

Figure 4.15: Simulated experiment results with test strategy found by solving
MILP-REACTIVE. In (b), system (gray) demonstrates primitives in the order:
stand (1), stand (2), jump (3), and lie (4), before advancing to goal (5).

motion primitive example, the test harness consists of restricting transitions after
motion primitives have been demonstrated. Figure 4.15 shows the simulated ex-
periments for these examples where the test strategy was found by solving MILP-
REACTIVE. The simulated test executions are qualitatively similar to the hardware
demos discussed previously, even with the new MILP formulation. As shown in Ta-
ble 4.4, the graph size |G| for these examples is relatively small compared to other
examples, with the exception of the running examples 4.2 and 4.1. Despite this, the
MILP approach is faster by three orders of magnitude. Both the game formulation
and the MILP formulation aim to solve the problem exactly. However, defining a
single set of flows and directly solving the problem as an MILP makes the problem
much more tractable. A large part of this can be attributed to Gurobi, and the al-
gorithms for solving min-max stackelberg games with coupled constraints have not
been optimized for efficiency as much in comparison to solving MILPs.

Maze 1: This example consists of a system quadruped (gray) navigating on the
grid shown in Fig. 4.17a, and a dynamic test agent (yellow) that can traverse the
middle column. The test agent is restricted to only walk up or stay in a cell. From
the middle cell of the top row, the test agent can navigate off the grid into a parking
state. The system objective is to reach the goal on the top-left corner of the grid,



124

'sys = ⇤ goal, and the test objective is to route the system through intermediate
states I1, I2, and I3: 'test = ⇤ I1 ^ ⇤ I2 ^ ⇤ I3.

Figures 4.16a– 4.16c visualize a counterexample that is not dynamically realizable
by the test agent. This solution is added as a counterexample, and the MILP is
resolved until a realizable solution (see Figures 4.16d– 4.16f) is found.

Brief explanation for counterexample: In Figure 4.16a, an agent would have to
occupy cell (4, 2) when the system occupies the cell (5, 2). This would result in
a livelock — from the system perspective, there is no incentive to back up and
navigate around through I3 since the test agent would block all paths to the goal,
and if the test agent moves out of cell (4, 2), the system can navigate to the goal
without being routed through I3.

The test quadruped first begins in the lower-most row and moves out of the way but
still blocking the path through the center column so that the system is routed through
I3. Once the system visits I3, the test agent walks up to the middle cell in the grid
to block it so it is routed through I2. Similarly, the test agent routes the system
through I1. After the system visits I1 but before it reaches the center cell in the first
row, the test agent walks off the grid, and into its parking state. This is due to the
temporal logic constraint to not over-restrict the system (equation (g7)). When any
cell occupied by the test agent (say v) is adjacent to the system (say occupying cell
u), then the transition (u, v) is registered as a restriction on the system. To avoid
over restricting the system, the test agent navigates of the grid.

Hardware Experiments
Running Example 4.1: The experiment trace for the medium example is given in
Fig. 4.17c. The corresponding solution is shown in Fig. 4.7.

Refueling Example: In this example, the system quadruped (gray) navigates on
the grid shown in Figure 4.18a. In addition to coordinates x = (x, y), the system
state also includes a discretized fuel state fuel. The maximum value of fuel is 10,
and every cell transition on the grid decreases this value by 1. Visiting the refueling
station in the bottom-right corner of the grid resets fuel to its maximum value. The
desired test behavior is to place the system in a state in which its fuel level is not
sufficient for it to directly navigate to the goal. The system objective is given as
'sys = ⇤T ^⇤¬(fuel = 0). The test objective is set to 'test = ⇤(y < 4^fuel <

2), which seeks to place the system in the lower 3 cells of the grid with less than
two units of fuel. The sub-tasks used in describing these objectives are safety and
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(a) q0 (b) q15 (c) q12

(d) q0 (e) q15 (f) q12

Figure 4.16: Illustration of dynamically unrealizable (top (a)–(c)) and dynamically
realizable reactive obstacles (bottom (d)–(f)). In Figures 4.16a– 4.16c: Reactive
obstacles returned by MILP-REACTIVE that cannot be realized by a dynamic test
agent. In Figures 4.16d– 4.16f: Accepted solution for which a test agent strategy
is synthesized. Red arrow indicates the direction of the restriction; the edge-cuts
found by MILP-REACTIVE are not subject to the (optional) bidirectional cut con-
straint. History variable q0 refers to the state of the test execution before I3 is visited
by the system, q15 is the state of the test execution after only I3 is visited, and q12
is the state of the test execution after I3 and I2 have been visited.
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(a) Simulated experiment for Maze 1.

(b) Simulated alternative trace, Maze 2.

(c) Hardware trace for the medium exam-
ple 4.1 with static obstacles found by test
strategy.

Figure 4.17: Yellow boxes in (a) and (b) are pre-defined obstacles to indicate states
that are not navigable in Tsys. Yellow obstacles in (c) are static obstacles placed by
the test environment. Gray quadruped is the system, and yellow quadruped in (a)
and (b) is the test agent, which chooses to navigate off-grid after the test objective
is realized.

reachability. Note that the intermediate states resulting from this test objective also
include states with fuel = 0, but the restrictions from the MILP will not force the
system into these unsafe states, giving the system the option to have a fuel level of
1 and refuel. This still satisfies the test objective without making it impossible for
the system to satisfy the test objective.

The experiment trace of the test execution in shown in Fig. 4.18a, in which the
color of the trace indicates the comparative fuel level at that state. The yellow boxes
represent static obstacles placed to restrict transitions according to the solution of
MILP-STATIC. As given in Tables 4.4 and 4.5, the product graph has over 1000
edges resulting in around 1000 binary variables for the routing optimization. The
optimization is solved to optimality in 0.87 seconds, and the maximum flow is found
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(a) Refueling example experiment trace. (b) Mars exploration experiment trace.

Figure 4.18: Traces of hardware demos with test environment consisting of static
obstacles.

to be 2. The 199 cuts on G correspond to the 8 transitions restricted (bidirectionally)
on the transition system. This example illustrates the usefulness of our framework
— test objectives are not limited to being defined over atomic propositions of the
pose x of the system. The solution to this specific example is not one that can be
easily identified like the previous examples we have discussed thus far.

Mars Exploration Example: This example is inspired by a sample collection mis-
sion on Mars. The sub-tasks reachability, avoidance, and delayed reaction are used
to characterize system and test objectives. The system quadruped (gray) can tra-
verse the grid shown in Figure 4.20a, which has states with “rock” and “ice” sam-
ples, and states designated as sample drop-off locations D, and refueling stations
denoted R. The system is required to reach the goal in the top-level corner (labeled
T ), and must drop-off any samples collected during its navigation without running
out of fuel. The system state carries a fuel level fuel in addition to its pose state
x = (x, y). Similar to the refueling example, the maximum fuel value is 10, it de-
creases by 1 for every transition on the grid, and it can be refueled by visiting the
refueling states R.

The system objective is given by the formula:

'sys = ⇤T ^⇤¬(f = 0) ^⇤(ice _ rock! ⇤ drop-off).

The test objective consists of reachability sub-tasks that include triggers of the re-
action sub-task of the system objective, and also a sub-task to place the system in a
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Mars Exploration Example

Please add a gradient from green to yellow to red to 
the trace, according to the fuel level.

1 2 3

4 5 6

Figure 4.19: Mars exploration experiment snapshots from resulting on the Unitree
A1 quadruped for static test environments. The overview is shown in Fig. 4.18b.

low-fuel state:
'test = ⇤ rock ^ ⇤ ice ^ ⇤(d > f),

where d = |x�xgoal| is the distance to the goal and f is the fuel level. Figure 4.20b
shows a sub-optimal placement of static obstacles with maximum flow F = 1, and
Figure 4.20c shows the optimal placement permitting a maximum flow of F = 2 on
the product graph. The experiment trace (Figure 4.18b) and accompanying demo
(Figures 4.19) are test executions in the test environment realizing the sub-optimal
test strategy. The system begins in the bottom-left corner of the grid with a full fuel
tank. From these figures, we can observe the quadruped being routed to pick up the
rock sample close to the initial condition. Then, the placement of static obstacles in
both the sub-optimal and the optimal settings is such that the system needs to visit
the top-right refueling station at least once. In order to visit that refueling station
without running out of fuel, the system must navigate the state with ice samples. In
the test execution from the experiment, the system is routed to visit states with rock
and ice samples, after which it refuels twice — first at the top-right refueling station
and then at the refueling station at the center of the grid — and finally, drops off
the samples before navigating to goal T . Table 4.5 lists this example as one of the
largest with around 13, 000 integer variables. Despite this, the routing optimization
is solved optimally in about 45 seconds.

Patrolling Quadruped: This examples involves a dynamic test agent whose strat-
egy is synthesized to be consistent with the solution of the routing optimization in
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(a) Empty grid for Mars
exploration example. Re-
fueling stations, rock and
ice sample locations are de-
noted. Drop-off locations
are denoted by the basket.

(b) Static obstacles for
Mars exploration example
with a feasible solution of
MILP-STATIC (max-flow
F=1).

(c) Static obstacles for
Mars exploration example
with an optimal solution of
MILP-STATIC (max-flow
F = 2).

Figure 4.20: Feasible and optimal solutions for the Mars exploration example. The
hardware experiment corresponded to the feasible solution.

MILP-AGENT. The context of this example is similar to the refueling example
except that the test environment can now consist of static obstacles and a dynamic
test agent (see Figure 4.1). The system (gray quadruped) is tasked with beginning
in the lower right corner of the grid, and reaching the target cell in the lower-left
corner without running out of fuel. Additionally, the system must not collide with
obstacles. The test objective is to put the system in a low-fuel state similar to the
Mars exploration example. The test agent dynamics allow it to traverse up and
down the center column of the grid, and from the center cells of the top and bottom
rows, it can choose to move off the grid into a parking state. Thus, the system and
test objectives are given by the formulas: 'sys = ⇤T ^⇤¬(fuel = 0), and the test
objective is 'test = ⇤(d > f), where d = |x� xgoal| is the distance to the goal.

As seen in Figure 4.1, the test environment places a static obstacle near the initial
state of the system (panel 1 snapshot). Then, as the system proceeds to go to the
goal, the test agent blocks the quadruped from crossing the center column of the
grid — in panels 1 and 2, the test agent blocks the system in the lowermost row, and
when the system advances up in panels 3 and 4, the test agent continues to block the
system. The test agent blocks the system until the it can no longer directly navigate
to the goal, and must refuel. Thus, the system refuels and is then able to navigate to
T without any further interactions with the test agent. Some implementation details
are as follows. the system controller in this test execution resynthesizes its strategy
each time it is restricted by the test agent. Furthermore, the optimization MILP-
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(a) Grid world lay-
out.
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Figure 4.21: Grid world layout and reactive cuts corresponding to the history vari-
ables for the Maze 2 experiment. (a) Grid world layout with cells traversible by the
test agent marked. Dark gray cells are not traversible by either agent. (b)–(d) Black
edges indicate reactive cuts corresponding to the history variables for the Maze 2
experiment. Note that the cuts are not bidirectional. The history variable states q0,
q6, and q7 can be inferred from B⇡ illustrated in Fig. 4.2c, and correspond to initial
state, visiting I1 first, and visiting I2 first.

(a) Maze 2 trace.

Quadruped Plus

1 2 3

4 5 6

(b) Maze 2 experiment snapshots.

Figure 4.22: Resulting test execution for the Maze 2 experiment with a dynamic
test agent.

AGENT with the modified objective is solved to minimize the occupied states.

Maze 2: The grid world layout for this example is shown in Figure 4.21a, in which
the gray boxes denote states that the system cannot navigate to. The system is
tasked with navigating to goal T from state S: 'sys = ⇤T . The test objective is to
route the system to visit states I1 and I2: 'test = ⇤ I1^ ⇤ I2. The test environment
has access to a dynamic test agent that can traverse the center column and row of
the grid as illustrated in yellow lines in Figure 4.21a. In addition, the test agent can
walk off the grid into a parking state from the four cells at the boundaries of the
grid (top and bottom cell of center column, and left-most and right-most cells of the
center row). While the test environment can also place static obstacles, it chooses
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to restrict the system using just the test agent.

The specification product is exactly the same as the running example 4.2, and is
illustrated in Figure 4.2c. Observe that to route the test execution through the test
objective acceptance states, we need to find cuts for the history variables q0 (initial
state), q6 (I1 has been visited but not I2), and q7 (I2 has been visited but not I1). The
reactive cuts found by the flow-based synthesis procedure are shown in Figs. 4.21b-
4.21d. The trace and snapshots of the resulting test execution is shown in Figs. 4.22a
and 4.22b. We observe that the system quadruped decides to take the top path first,
visits I2 (see panel 2 in Fig. 4.22b), and is blocked by the test agent (see panel 3). It
then decides to try navigating through the center of the grid, and is again blocked by
the test agent (see panel 4). Subsequently, it decides to try the bottom path, visits
I1 (see panel 5), and successfully reaches the goal without any further test agent
intervention. If the system decided to visit I1 first, the adaptive test agent strategy
would have blocked the system from reaching the goal directly from I1 until it visits
I2. This is an example with a maximum flow of F = 2, corresponding to the two
unique ways for the system to reach the goal. For an alternative system controller
in which the system chooses to approach the goal through I1, the simulated trace
resulting from the test agent strategy is shown in Fig. 4.17b.

Runtimes
Tables 4.5 and 4.6 list the optimization size and runtimes for all the simulated and
hardware experiments discussed prior. Table 4.5 corresponds to experiments that
identify static and/or reactive obstacles, and Table 4.6 corresponds to experiments
in which a test agent strategy is synthesized from the output of the routing optimiza-
tion. The problem size (e.g., automaton size, graph size) and graph construction
times for all experiments are given in Table 4.4. The sizes of automata, transition
systems, and product graphs are listed by the tuple (|V |, |E|).

To further study the scalability of the routing optimization, I tabulate the runtimes
for randomized gridworld experiments for various specification sub-tasks in Ta-
bles 4.7 and 4.8. These computations were conducted on an Apple M2 Pro with
16 GB of RAM using Gurobipy [114]. The construction of DBAs from specifica-
tions was implemented using Spot [98]. In the randomized experiments, the Gurobi
solver for the MILP has a timeout condition set at 10 minutes to find at least a feasi-
ble solution. Once the solver finds a feasible solution, it is given another minute to
return a solution with the optimality guarantee. If the solver cannot guarantee opti-
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Table 4.4: Automata and graph construction runtimes for simulated and hardware
experiments

Experiment |B⇡| |T | |G| G[s]
Example 4.1 (4, 9) (15, 53) (27, 96) 0.0270
Refueling (6, 18) (265, 1047) (332, 1346) 0.6655
Mars Exploration (36, 354) (376, 1522) (4073, 17251) 75.8313
Example 4.2 (8, 27) (6, 17) (20, 56) 0.0452
Beaver Rescue (12, 54) (7, 19) (15, 39) 0.0470
Motion Primitives (16, 81) (15, 42) (72, 207) 0.4286
Maze 1 (16, 81) (26, 80) (196, 604) 1.6226
Patrolling (6, 18) (386, 1539) (210, 831) 0.4573
Maze 2 (8, 27) (21, 66) (80, 252) 0.2195

Table 4.5: Routing optimization runtimes for simulated and hardware experiments
with static and/or reactive obstacles

Experiment |BinVars| |ContVars| |Constraints| Opt[s] Flow |cuts|

Solving MILP-STATIC
Example 4.1 73 87 540 0.0003 3.0 14
Refueling 1014 1261 19819 0.8682 2.0 199
Mars Exploration 13178 16604 1646480 46.6209 2.0 1641
Solving MILP-REACTIVE
Example 4.2 25 115 409 0.0003 2.0 4
Beaver Rescue 8 154 441 0.0001 2 2
Motion Primitives 106 761 2606 0.0005 3.0 15

Table 4.6: Runtimes for simulated and hardware experiments with dynamic agents

Experiment BinVars Opt[s] Controller[s] |Cex| Flow |cuts|
Solving MILP-AGENT
Maze 1 355 0.0010 100.0 4 1.0 3
Patrolling 621 6.0535 16.1191 0 1.0 13
Maze 2 176 0.0292 7.151 8 2.0 8
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Table 4.7: Run times (with mean and standard deviation) for random grid world
experiments solving MILP-REACTIVE

Experiment 5⇥ 5 10⇥ 10 15⇥ 15 20⇥ 20
|AP | |B⇡| Optimization[s], Success Rate (%)
Reachability:
2 (4, 9) 5.63± 13.43 100 64.62± 38.75 100 67.38± 25.47 100 68.63± 31.12 100
3 (8, 27) 23.36± 38.15 100 61.68± 35.12 100 91.54± 31.41 100 117.82± 34.89 100
4 (16, 81) 22.49± 36.33 100 83.52± 29.25 100 171.49± 50.72 100 317.62± 89.08 100
Reachability & Reaction:
3 (6, 21) 5.97± 13.21 100 61.06± 34.67 100 71.64± 41.03 100 85.20± 19.49 100
5 (20, 155) 17.19± 25.51 100 78.44± 34.71 100 159.91± 76.63 100 279.86± 148.23 90
7 (68, 1065) 52.71± 41.23 100 331.32± 187.28 90 585.21± 67.58 15 600.00± 0.00 0
Reachability & Safety:
3 (6, 18) 0.76± 1.52 100 70.82± 89.70 100 63.68± 27.54 100 80.58± 20.79 100
4 (6, 18) 0.15± 0.29 100 71.47± 80.61 100 59.59± 38.92 100 76.02± 27.11 100
5 (6, 18) 0.12± 0.18 100 94.68± 88.04 100 71.34± 30.89 100 82.54± 22.69 100

Table 4.8: Run times (with mean and standard deviation) for random grid world
experiments solving MILP-STATIC.

Experiment 5⇥ 5 10⇥ 10 15⇥ 15 20⇥ 20
|AP | |B⇡| Optimization [s], Success Rate (%)
Reachability:

2 (4, 9) 8.17± 13.14 100 54.07± 17.98 100 60.17± 0.12 100 60.17± 0.10 100
3 (8, 27) 27.78± 21.71 100 60.17± 0.10 100 60.48± 0.86 100 74.02± 38.70 100
4 (16, 81) 52.60± 14.05 100 60.42± 0.34 100 82.02± 41.26 100 265.41± 203.51 80

Reachability & Reaction:
3 (6, 21) 10.62± 14.85 100 60.09± 0.06 100 60.23± 0.24 100 60.34± 0.46 100
5 (20, 155) 20.41± 19.21 100 67.77± 31.90 100 95.31± 116.65 95 268.50± 222.14 75
7 (68, 1065) 36.64± 23.34 100 110.63± 92.81 100 419.77± 214.30 55 556.38± 131.06 10

Reachability & Safety:
3 (6, 18) 1.27± 1.47 100 60.08± 0.06 100 57.27± 12.61 100 60.32± 0.24 100
4 (6, 18) 0.17± 0.23 100 60.06± 0.05 100 60.14± 0.10 100 60.30± 0.19 100
5 (6, 18) 0.11± 0.16 100 54.15± 17.80 100 60.17± 0.09 100 60.29± 0.26 100

mality in that time frame, the feasible solution is returned. If the optimizer returns
at least a feasible solution, the run is counted as a success. An empirical observation
is that Gurobi often finds an optimal solution but takes even longer to produce an
optimality guarantee. For the randomized experiments, gridworlds from size 5⇥ 5

to 20 ⇥ 20 are considered, and for each gridsize, problem instances are randomly
generated. In the allotted time, if the optimization returns that a problem instance
is infeasible, then the instance is discarded and a new one is generated in its place.

Tables 4.7 and 4.8 tabulate the optimization runtimes and success rate for solving
MILP-REACTIVE and MILP-STATIC, respectively. The optimization runtime
lists the mean and standard deviation for 20 instances. The success rate indicates
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Table 4.9: Graph construction runtimes (with mean and standard deviation) for
random grid world experiments

Experiment 5⇥ 5 10⇥ 10 15⇥ 15 20⇥ 20
|AP | |B⇡| Graph Construction [s]
Reachability:

2 (4, 9) 0.046± 0.001 0.224± 0.0056 0.554± 0.009 1.078± 0.011
3 (8, 27) 0.344± 0.007 1.661± 0.022 4.004± 0.048 7.376± 0.061
4 (16, 81) 1.997± 0.077 9.895± 0.109 23.512± 0.179 43.188± 0.454

Reachability & Reaction:
3 (6, 21) 0.090± 0.001 0.424± 0.016 1.037± 0.004 2.044± 0.013
5 (20, 155) 1.628± 0.087 7.560± 0.023 18.019± 0.129 33.539± 0.144
7 (68, 1065) 44.809± 0.996 209.612± 1.732 488.611± 6.308 869.060± 16.870

Reachability & Safety:
3 (6, 18) 0.102± 0.002 0.508± 0.010 1.278± 0.022 2.557± 0.023
4 (6, 18) 0.116± 0.002 0.590± 0.009 1.485± 0.024 2.918± 0.046
5 (6,18) 0.179± 0.027 0.960± 0.037 2.329± 0.072 4.482± 0.116

the percentage of instances in which at least one feasible solution was returned
within the allotted time. In addition to the gridsize, the specification length was also
scaled for three classes of system and test objectives: i) reachability, ii) reachability
and reaction, and iii) reachability and safety. In the first case with reachability
objectives, the system and test specification are 'sys = ⇤ p0 and 'test =

Vn
i=1 ⇤ pi,

and the total number of atomic propositions are |AP |= |{p0, . . . , pn}|= n + 1,
scaled upto n = 3 (or |AP |= 4). For the reachability and reaction objectives, the
system objective comprises of a reachability objective and a conjunction of delayed
reaction specification pattern: 'sys = ⇤ p0^

Vn
i=1 ⇤(pi ! ⇤ qi). The test objective

for this case is a conjunction of the triggers corresponding to the system objective:
'test =

Vn
i=1 ⇤ pi. Therefore, the total number of atomic propositions are |AP |=

|{p0, . . . , pn, q1, . . . , qn}|= 2n + 1, scaled upto n = 3. Finally, in the reaction and
safety case, the system objective consists of reachability and safety specifications:
'sys = ⇤ p1^

Vn
i=2 ⇤¬pi and the test objective is a single reachability specification

'test = ⇤ p0. The total number of atomic propositions are |AP |= |{p0, . . . , pn}|=
n+1, scaled upto n = 3. Note that only the length of the system objective changes
as the specification size is increased.

Table 4.9 lists the sizes of the specifications as well as runtimes for graph con-
struction (mean and standard deviation across 20 instances). The product graph
construction is a basic implementation in Python, and is not optimized for speed.
In future work, off-the-shelf symbolic methods can be leveraged to compute the
product graphs much more quickly.



135

4.12 Conclusions and Future Work
This work on flow-based synthesis of test strategies can help test engineers auto-
matically synthesize test environments (e.g., where should obstacles be placed, how
should the test agent strategy be implemented) that are guaranteed to meet speci-
fied system and test objectives. This chapter simplifies the routing optimization
introduced in the previous chapter, and presents MILP formulations for the differ-
ent types of test environments. Furthermore, this chapter shows how a reactive test
strategy can inform the choice of a test agent and also find an agent strategy that
implements the reactive test strategy. This is made possible by via GR(1) synthesis
and a counter-example guided approach to resolving the MILP to exclude dynam-
ically infeasible test strategies. Another important contribution of this chapter is
in establishing the computational complexity of the routing problem, which means
that using an MILP for the routing problem is an appropriate choice. Despite the
combinatorial nature of the problem, extensive experiments show that it can handle
medium-sized problem instances (thousands of integer variables) in a reasonable
time. The synthesized test strategies are reactive to system behavior, and route it
through the test objective, and if the system demonstrates unsafe behavior, it is a
fault in the system design. When the routing problem is solved to optimality, the
resulting test strategy is not overly-restrictive, and the is realized with the fewest
number of obstacles.

There are several exciting directions for future work. First, this framework can be
extended to automatically select from a library of test agents to optimize for test-
ing cost. Secondly, the use of symbolic methods in graph construction to improve
the overall runtime of the framework. Thirdly, finding good convex relaxations to
the MILP would result in dramatic speed-up since we would only have to solve a
linear program. However, a straight-forward convex relaxation on the binary vari-
ables does not return meaningful solutions; finding an often-tight convex solution
would require more careful study. Fourth, integrating the high-level test synthesis
in this work with dynamics from lower levels of the control hierarchy is an im-
portant open problem. This effort would include: i) interfacing with falsification
tools to automatically synthesis difficult tests, and ii) incorporate timing constraints
into system and test objectives. Finally, we must relate the synthesized tests to a
notion of coverage, and choose system and test objectives that that maximize the
coverage metric. A more comprehensive discussion on future directions is given in
Chapter 6.
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