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C h a p t e r 3

AUTOMATED TEST SYNTHESIS VIA NETWORK FLOWS: AN
INTRODUCTION

3.1 Introduction
This chapter explores reactive test synthesis for discrete decision-making compo-
nents in autonomous systems. This chapter originated from thinking about how to
find a small set of difficult test cases for discrete decision-making behaviors. For
safety as well as satisfying system requirements, a full-stack autonomous system
must reason over its own state as well as about how the environment might react
to its actions. Oftentimes, this involves reasoning over inputs and states that are
both discrete and continuous valued, and implementations of autonomous systems
accomplish this at various levels of abstraction. In this chapter, we formulate the
test synthesis problem, and introduce the concept of a test objective.

This chapter is adapted from:

A. Badithela, R. M. Murray. (2020). “Synthesis of Static Test Environments
for Observing Sequence-like Behaviors in Autonomous Systems.” arXiv preprint:
https://arxiv.org/pdf/2108.05911.

3.2 Related Work
Due to robustness metrics from their quantitative semantics, signal temporal logic
(STL) and metric temporal logic (MTL), are natural paradigms for reasoning over
trajectories of low-level continuous dynamics [37, 70]. In many instances, the term
testing is used inter-changeably with falsification [39]. Falsification is the problem
of finding initial conditions and input signals that lead to violation of a temporal
logic formula with the goal of finding such failures quickly and for black-box mod-
els [36, 41, 71, 72]. Furthermore, the black-box approaches in the related topics of
falsification of hybrid systems [36], and simulation-based test generation [38, 42],
rely on stochastic optimization algorithms to minimize the robustness of temporal
logic satisfaction. Since dense-time temporal logics better encapsulate the range
of system behaviors at the with continuous dynamics, these techniques are suc-
cessful at falsification at the low-level. However, some of the complexity can be
attributed to the coupling between continuous dynamics with high-level discrete

https://arxiv.org/pdf/2108.05911
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decision-making behaviors, a hierarchical approach to test-case generation could
be effective.

Typically, high-level choices of autonomous robotic systems exhibit discrete decision-
making [73, 74], and LTL specifications are often used to capture mission objec-
tives at higher levels of abstraction. Covering arrays have been used to initialize
discrete parameters of the test configuration at the start of the falsification proce-
dure in [36, 42, 75], but are not reactive. Furthermore, linear temporal logic (LTL)
model checkers for testing has been explored in [71, 76–78], in which counterex-
amples found via model-checking are used to exactly construct test cases. However,
these are usually applied to deterministic systems, thus relying on the knowledge
of the system controller, and become inconclusive if the system behavior deviates
from the expected model. In this chapter and next, we focus on a framework for
testing of high-level specifications in linear temporal logic (LTL) without assuming
knowledge of the system controller.

3.3 Motivation
Here we adopt a different notion of testing – one that is focused on observing the
autonomous agent undertake a certain behavior in its mission. The DARPA Urban
Challenge test courses, that mainly comprised of static obstacles and (dynamic)
human-driven cars, were carefully designed to observe the agent undertaking cer-
tain behaviors [10]. For example, a part of the test course was designed for assess-
ing parking behavior. The static obstacles – barriers blocking the region in front
of the parking lot and other parked cars – were placed such that the agent had to
repeatedly reverse/pull-in to incrementally adjust its heading angle before success-
fully parking in the designated spot. The clever placement of static obstacles in this
scenario made it a challenging test for the agent, as opposed to an environment in
which the agent pulls-in straight into the parking spot. Similarly, carefully designed
scenarios with human-driven cars sought to observe other behaviors of the agent.
In many, but not necessarily all, of these scenarios, the high-level behavior of the
agent can be described as a sequence of waypoints. In the parking lot example, the
sequence of waypoints can be characterized as a sequence of agent states, which
can be characterized as a product of position and heading angle in the high-level
abstraction. As a step towards automatically synthesizing these test scenarios, this
chapter asks the following question.

Problem (Informal): Given a valid, user-defined sequence of waypoints, a reacha-
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bility objective for the mission specification, find a set of possible initial conditions
for the agent (if not specified by user) and determine a set of static constraints,
characterized by transitions that are blocked/restricted, such that:

i. the agent must visit the sequence of waypoints in order before its goal, and

ii. the test environment is minimally restricted.

3.4 Preliminaries
Automata Theory and Temporal Logic
Definition 3.1 (Finite Transition System). A finite transition system (FTS) is the
tuple

TS := (S, A, �, S0, AP, L),

where S denotes a finite set of states, A is a finite set of actions, � : S ⇥ A ! S

the transition relation, S0 the set of initial states, AP the set of atomic propositions,
and L : S ! 2AP denotes the labeling function. We denote the transitions in TS

as TS.E := {(s, s0) 2 S ⇥ S | if 9a 2 A s.t. �(s, a) = s0}. We refer to the states
of TS as TS.S, and similarly denote the other elements of the tuple. An execution
� is an infinite sequence � = s0s1 . . . , where s0 2 S0 and sk 2 S is the state at
time k. We denote the finite prefix of the trace � up to the current time k as �k. A
strategy ⇡ is a function ⇡ : (TS.S)⇤TS.S ! TS.A.

Definition 3.2 (System). The system under test is modeled as a finite transition
system Tsys with a singleton initial set, |Tsys.S0|= 1.

A directed graph G = (V, E) can be induced from Tsys in which the vertices rep-
resent states Tsys.S and the edges represent the transitions Tsys.E, and the labeling
function assigns propositions that are true at each vertex. For a proposition p 2 AP ,
and vertex v 2 V , v ` p means that p evaluates to True at v. A run � = s0s1 . . .

on the graph is an infinite sequence of its nodes where si 2 Tsys.S represents the
system state at time step i.

We introduce the notion of a test harness to specify how the test environment can
interact with the system. A test harness is used to constrain a state-action (s, a) pair
of the system in the sense that the system is prevented from taking action a from
state s 2 Tsys.S. Let the actions AH ✓ Tsys.A denote the subset of system actions
that can be restricted by the test harness. The test harness H : Tsys.S ! 2AH maps
states of the transition system to actions that can be restricted from that state.
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In the examples considered in this thesis, every state of the system has a self-loop
transition corresponding to stay-in-place action, though the framework does not
require this. Note that in our examples, AH does not contain self-loop actions.

In this work, we synthesize tests for high-level decision-making components of the
system under test and therefore model it as a discrete-state system. Linear temporal
logic (LTL) has been effective in formally specifying safety and liveness require-
ments for discrete-decision making [14, 15, 18]. For our problem, we use LTL
to capture the system and test objectives. The reach-avoid fragment of LTL is re-
stricted to the use of logical operators and the next, always, and eventually temporal
operators, and can capture a rich set of behaviors such as safety and coverage prop-
erties. Every LTL formula can be transformed into an equivalent non-deterministic
Büchi automaton, which can then be converted to a deterministic Büchi automa-
ton [60].

Flow Networks
We will leverage network flows to model the test synthesis problem. Flow networks
are used in computer science to model several problems on graphs [79]. One of the
main contributions of this thesis is in using flow networks for test synthesis.

Definition 3.3 (Flow Network [80]). A flow network is a tuple N = (V, E, c, (Vs, Vt)),
where V denotes the set of nodes, E ✓ V ⇥ V the set of edges, c � 0 represents
edge capacity, Vs ✓ V the source nodes, and Vt ✓ V the sink nodes. On the
flow network N , we can define the flow vector f 2 R|E|

�0 to satisfy the following
constraints: i) the capacity constraint

0  f e  c, 8e 2 E, (3.1)

ii) the conservation constraint
X

u2V

f (u,v) =
X

u2V

f (v,u), 8v 2 V \ {Vs, Vt}, and (3.2)

iii) no flow into the source or out of the sink

f (u,v) = 0 if u 2 Vt or v 2 Vs. (3.3)

The flow value on the network N is defined as

F :=
X

(u,v)2E,
u2Vs

f (u,v). (3.4)
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In the following chapters, we will primarily be using the framework of network
flows to identify restrictions on system actions, which will be analogous to cuts on
a graph. An edge represents a transition the system can make. For this reason, it can
suffice to define flow networks that have unit capacity c = 1 on all edges. Unless
otherwise mentioned, all references to a flow network hereafter will assume unit
edge capacities.

Definition 3.4 (Cut [80]). Given a graph G = (V, E), a cut of G is the tuple Cut :=

(S, T ) that partitions the vertices of G into disjoint sets S ⇢ V and T ⇢ V , that is,
S [ T = V and S \ T = . The cut-set C ✓ E of the cut Cut = (S, T ) is the set of
edges that when removed from G results in the disjoint node sets S and T :

C := {(u, v) 2 E | u 2 S, v 2 T}. (3.5)

The expression Gcut(C) := (V, E \ C) refers to the graph resulting from remove
the edges in C from G. We will use the same expression to refer to any graph from
which edges C are removed, even if the set C does not correspond to a Cut (i.e.,
complete partition of the graph G). Any edge that is removed from G is referred to
as an edge-cut.

In finding maximum flow, it becomes important to identify edges on the graph
through which flow can be pushed through and track edges which have already
been saturated. This is the concept of a residual network which is defined below.
For a more detailed exposition with illustrations, see pages 726–727 of [80].

Definition 3.5. Given a graph G = (V, E) and a flow f , the set of residual edges
Ef are defined as

Ef := E [ {(u, v) | (v, u) 2 E and f(v, u) > 0}. (3.6)

The corresponding residual network Gf = (V, Ef ) is a flow network with edge
capacities cf : Ef ! [0, 1] defined as follows:

cf (u, v) =

8
>>><

>>>:

1� f(u, v) if (u, v) 2 E and f(u, v) < 1,

f(v, u) if (v, u) 2 E,

0 otherwise.

(3.7)

Standard algorithms such as Edmonds-Karp [79] use residual networks to find the
maximum-flow (and equivalently, minimum-cut) of a single source-sink flow prob-
lem in a graph G = (V, E) in O(|V ||E|2) time. Roughly, starting with zero flow,



51

the Edmonds-Karp algorithm iteratively updates the residual network as flow from
the source to target is found. Initially, the residual network is exactly the same as
the original graph G. Then, the algorithm finds paths from source to target on the
residual network until no such paths remain. These paths are known as augmenting
paths, and are used to construct a realization of the maximum flow.

Definition 3.6 (Augmenting Path [80]). Given a graph G = (V, E) with flow
f , an augmenting path from a source s 2 V to target t 2 V is a simple path
Path(s, t)(i.e., without any cycles) from s to t on the corresponding residual net-
work Gf .

The time complexity of the Edmonds-Karp algorithm comes from finding the short-
est augmenting path on the residual network in each iteration until no paths re-
main. If G has a maximum possible flow Fmax, then the set of augmenting paths
AP = {Path1(s, t), . . . , PathFmax(s, t)} has cardinality Fmax since all edges in G

have unit capacities. That is, once an augmenting path is identified, all of the edges
in the augmenting path are saturated on the residual network. As a result, any two
paths Pathi(s, t), Pathj(s, t) 2 AP are always edge-disjoint in the sense that there
does not exist any edge e 2 E that is in both Pathi(s, t) and Pathj(s, t). The set
of augmenting paths found by the Edmonds-Karp algorithm is denoted as the set of
shortest augment paths SAP. It can be proven that finding the shortest augmenting
paths and updating the residual network accordingly results in finding a realization
of the maximum flow [80].

Proposition 3.1. A set of shortest augmenting paths AP comprises of edge-disjoint
paths.

3.5 Test Objective
We begin by considering reachability specifications as mission objectives for the
agent under test. For the test itself, we wish to observe a sequence-like behavior of
the agent in its attempt to satisfy its mission objectives. Formally, this test behavior
can be described by the temporal logic formula given below.

Definition 3.7 (Test Objective (strict sequence)). The test objective for strict se-
quenced visit is given by the LTL formula:

'test := ⇤(p1 ^ ⇤(p2 ^ ⇤(· · · ^ ⇤ pn)))
n�1̂

i=1

(¬pi+1U pi) , (3.8)
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where p1, . . . , pn 2 AP are propositional formulas. This is a sequence-like formula
since the agent has to eventually visit every vi, but it cannot visit vi+1 before visiting
vi, where vi ` pi, for all i = 1, . . . , n.

The system under test does not have access to the test objective 'test. Since LTL
formulae cannot be evaluated on finite test runs, the length of the test run depends
on the time the agent takes to satisfy its mission objective.

Example 3.1. Consider the gridworld in Figure 3.1 on which the agent can transi-
tion between states (up, down, left, right) with the mission specification of reach-
ing some goal state (formalized as 'g = ⇤ g). Of the many possible paths the
agent can take to meet its objective, we are interested in observing it navigate
to the goal while restricted to a class of paths described by the test specification
'test = ⇤(p1 ^ ⇤ p2). How would we constrain actions of the agent in certain
states, such that it navigates through the sequence of waypoints before reaching
the goal? Furthermore, is it possible to synthesize these constraints such that the
sequence flow value from p1 to g is maximized?

Figure 3.1: Left: Unrestricted gridworld labeled by propositional formulas. Right: A test
environment synthesized by our algorithm where the transitions (2, 1) ! (2, 2), (3, 1) !
(3, 2), (2, 2)! (3, 2), and (2, 2)! (2, 3) blocked. Red semi-circle patches illustrate one-
way constraints, that is, transition from state u to state v is restricted, but v to u is allowed,
if arch of the semi-circle is in the grid corresponding to u along the transition from u to v.

Problem Statement
Now, we formalize the test environment synthesis problem. We limit our focus to
static test environments, by which we mean that the test environment does not react
to the actions of the agent during the test, leaving the reactive test synthesis problem
for later in this chapter and the next chapter.
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Definition 3.8 (Test Graph). Given a labeled directed graph G = (V, E), a mis-
sion/agent specification 'sys = ⇤ pn+1, a test specification 'test (equation (3.8)), a
test graph Gcut(C) = (V, E\C) is the directed graph obtained by removing set of
edges C from the original graph G. On Gcut(C), a run � starting from state v1 will
satisfy the specification,

(3.9)

Definition 3.9 (Minimally Restricted Test Graph). A test graph Gcut(C) is mini-
mally restricted if the total sequence flow value from v1 |= p1 to vn+1 |= pn+1 on
Gcut(C) are maximized.

Remark 3.1. In this chapter, the definition of a minimally restricted graph does not
relate to the actual number of cuts in the cut-set C, but only whether the flow on
Gcut(C) is maximized.

Problem 3.1. Given a system specification  sys = ⇤ vn+1, a labeled directed graph
G = (V, E) induced by the non-deterministic transition model T of the agent, a test
specification 'test = ⇤(p1 ^ ⇤(p2 ^ ⇤(· · · ^ ⇤ pn))), static constraints C ✓ E

such that on the resulting test graph Gcut(C) = (V, E\C) is a minimally restricted
test graph.

Here we aim to find a cut that maximizes the flow from a waypoint pi to its consec-
utive waypoint pi+1, while eliminating any flow to waypoints pj (for j > i + 1) for
all i = 1, · · · , n. In other words, some flows need to be cut while other flows should
be maximized. The problem of constructing a minimally restricted test graph for
observing a sequence-like specification can be cast as the following optimization,

max
C⇢E

fGcut(C)

s.t. fGcut(C)  fGcut(C)(vi, vi+1) 8i = 1, · · · , n� 1,

fGcut(C)(vi, vj) = 0 8i = 1, · · · , j � 2, 8j = 3, · · · , n,
(3.10)

where the variables C ⇢ E are the set of edges to be restricted resulting in the
unit-capacity graph Gcut(C) = (V, E\C), the scalar fGcut(C) represents the total
flow on Gcut(C) from v1 to vn, the scalars fGcut(C)(vi, vj) represent the total flow
from source vi to sink vj . The problem data is the original graph G = (V, E)

and the sequence nodes v1, . . . , vn. Solving this optimization directly will require
constructing an integer linear program (ILP), for which constructing the constraint
set is not straightforward. Furthermore, it would require solving the integer program
with |E| number of integer variables.
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3.6 Algorithm for Synthesizing Static Test Environments
Let G = (V, E) be a directed graph, with unit capacity on every edge, induced by
the transition system Tsys of the system under test. Assuming that the test environ-
ment has complete freedom to “block” any transition in the graph G allowed by the
test harness H , Algorithm 4 returns a set of edges, C ⇢ E, of the graph G that
must be removed before the test run. First, we make following assumptions on G.
Let dG(v1, v2) denote the length of the shortest path from vertex v1 to vertex v2 on
graph G.

Assumption 3.1. For each i 2 {1, . . . , n + 1}, let vi denote the vertex v 2 V s.t
v ` pi. Assume |vi|= 1, for all i = {1, . . . , n + 1}.

Informally, Assumption 3.1 states that every propositional formula, p1, . . . , pn+1,
has a single vertex in G associated with it.

Assumption 3.2. There exists a set of edges C ✓ E such that the modified graph
obtained by removing these edges, Gcut(C) = (V, E\C), is such that

dGcut(C)(v1, vn+1) > · · · > dGcut(C)(vn, vn+1) > dGcut(C)(vn+1, vn+1) = 0. (3.11)

Assumption 3.2 is equivalent to the statement that by removing some edges (or
restricting certain transitions) from the original graph G, there exists some set of
initial conditions Q0 for which the only path(s) to the goal g is through the behavior
'test. This assumption is imperative since there might be instances for which it is
impossible to construct a test graph. For example, in the following simple labeled
graph (Figure 3.2), it is impossible to construct a test graph for the test specification
'test = ⇤(p1 ^ ⇤ p2). Once the system is in state v1, it can directly proceed to
the goal state vg without visiting v2. For instances such as this one, a reactive test
environment is necessary.

v2

p2
v1

p1
vg

g

Figure 3.2: An invalid configuration of propositional formulas for test specification 'test =

⇤(p1 ^ ⇤ p2)

Overview of the Approach: At a high-level, we identify all edge disjoint path
combinations through the sequence specification to find edge restrictions. This can
be seen as a brute-force approach to solving the problem. As we will discuss in the
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following chapter, this problem is NP-hard, and therefore, it is not possible to find a
polynomial-time algorithm to solve this problem if we assume that P is not NP. Later
in this chapter and next, we will cover a more efficient optimization formulations
that can capture a wide-range of specification types with faster runtimes.

Definition 3.10 (Sequence Path). Given a graph G and atomic propositions char-
acterizing the sequence specification, p1, . . . , pn, where PathG(vi, vi+1) represent
a simple path from vi to vi+1, for all i = 1, . . . , n. The sequence path from v1 to
vn+1 can be constructed from the individual path segments as PathG(v1, vn+1) =

PathG(v1, v2), . . . , PathG(vn, vn+1). The sequence path PathG(v1, vn+1) is valid
if it does not have a cycle involving two or more path segments. That is, if there
are no edges (u, w), (w, v) 2 E such that edge (u, w) 2 PathG(vi, vi+1) and
(w, v) 2 PathG(vj, vj+1) for some i + 1  j  n + 1, except for the case in
which both w = vi+1 and j = i + 1. In other words, except for the sequence nodes
v1 . . . , vn that link individual segments, there are no common nodes linking an ear-
lier path segment to a later segment. Observe that existence of a valid sequence
path implies that Assumption 3.2 is true.

Finding Combinations of Augmenting Paths
Maximum flow realizations on a graph need not be unique; there can exist more
than one set of augmenting paths to capture maximum flow between a source and
target. For some graph G, we will denote the maximum flow from source s to target
t as FmaxG

(s, t) and a set of augmenting paths by APG(s, t) or SAPG(s, t) for the set
of shortest augmenting paths. Let APG(s, t) correspondingly denote the set of sets
of augmenting paths, and let SAPG(s, t) correspondingly denote the set of sets of
shortest augmenting paths. Note that APG(s, t) captures all possible realizations
of maximum flow from s to t on G, and SAPG(s, t) ✓ APG(s, t). Intuitively,
since the shortest path need not be unique, the set SAPG(s, t) could have multiple
elements.

By definition, on a test graph Gcut, the maximum sequence flow value will be
bounded as follows:

fGcut
(v1, vn+1)  min

i=1,...,n
fGcut

(vi, vi+1). (3.12)

On a minimally restricted test graph, the total sequence flow fGcut
(v1, vn+1) is max-

imized. For each 1  i  n, note that SAPG(vi, vi+1) is finite since the num-
ber of edges in G are finite, but is combinatorial in the number of edges since
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it requires enumerating simple paths from vi to vi+1. The total number of aug-
menting path combinations from v1 to vn+1 that can realize the maximum flow
fGcut

(v1, vn+1) will be at most ⇧n
i=1|APG(vi, vi+1)|. Not every augmenting path

combination might lead to a valid test graph since there could exist a combination
of augmenting paths that violates equation (5.2) by resulting in an invalid sequence
path Path(v1, vn). Consider the simple example of the 3⇥3 grid in Figure 3.4. The
combination of sequence flows (APG(v1, v2), AP2G(v2, v3), APG(v3, v4)) will give us
fGcut

(v1, vn+1) = 1, but the combination of (APG(v1, v2), AP1G(v2, v3), APG(v3, v4))
does not have any valid sequence paths.

Figure 3.3: Left: 3⇥ 3 grid for the sequence specification with atomic proposition p1, p2,
and p3. Right: Illustrated with cuts that route the flow from p1 to p4.

� 

� 

Figure 3.4: In this 3⇥ 3 grid, the left and right figures illustrate two different augmenting
path combinations. Each grid shows a realization of the flow for each pair of nodes: red:
(p1, p2), gold: (p2, p3), and blue: (p3, p4). The main difference between the two figures is
in the flow from p2 to p3. In both figures, the augmenting paths characterizing the flow from
p1 to p2 and p3 to p4 are the same: APG(v1, v2) = {P1, P2} characterizes the maximum
flow from p1 to p2, and APG(v3, v4) = {P5, P6} characterizes the maximum flow from p3
to p4. On the left, AP1G(v2, v3) = {P3, P4}, and on the right, AP2G(v2, v3) = {P 0

3, P
0
4}. It is

possible to form a sequence path on the right with PathG(v1, v4) = P1, P 0
3, P6, but not on

the left. This sequence path is exactly illustrated in Fig. 3.3 (right).
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Algorithm 4: Restrict Transitions

Input: 'test, 'a, G = (V, E, L).
Output: C ✓ E.

p {p1, . . . , pn, pn+1}, Vp  {v1, . . . , vn, vn+1} . vi ` pi
Pcut  Find-Cut-Paths(G, p)
C = {}
if Assumption 3.3 then

flg  1

while Pcut 6= ; do . Repeat until all cuts are found
E  Edges in Pcut

A,Pkeep, |A|, Fmax  Sequence-Flows(G, p, flg = 0) . Combinations of
sequence flows

for all j = 0, . . . , |F| do
Af  A(j) . Selecting a combination (S1, . . . , Sn)
Pkeep  Pkeep(j) . Augmenting paths for each vi to vi+1

MCkeep  Min-Cut-Edges(G, p, Pkeep)
Dkeep  diag(Akeep1)
for all Af 2 Af do

Df  diag(Af1)
Acut, Akeep, Dkeep  ILP-params(Pcut, Pkeep, MCkeep)
x⇤, f ⇤, b⇤  ILP(Acut, Akeep, Dkeep, Af , Df ) . Call to ILP (3.10)
if 1Tf ⇤ = Fmax then

Cnew  {ei|x⇤
i = 1}

C  C [ Cnew

break . Breaking out of both for loops
G G\Cnew

Pcut  Find-Cut-Paths(G, p)

To avoid this issue, the algorithm searches through all combinations of sequence
flows before constructing the input to the ILP (3.10). Since this is an expensive
computation, a further assumption on the input graph and set of propositions can
ease this bottleneck.

Assumption 3.3. Let fi be the maximum flow on G from source vi to target vi+1)/
Let SAPG(vi, vi+1) = {SAP1G = {P1, . . . , Pfi}}, represent the set of sets of short-
est augmenting paths that characterizes the flow from vi to vi+1 on G. Then, there
exists a combination (SAP1G, . . . , SAPnG) on which a maximum sequence flow can be
characterized.

In other words, Assumption 3.3 allows us to reason over combinations of short-
est augmenting path flows, which is combinatorial in all shortest paths, instead of
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combinations of the set of augmenting flows, which exacerbates the combinatorial
complexity by enumerating all possible paths. All shortest paths are a subset of all
simple paths between two nodes.

3.7 Iterative Synthesis of Constraints
Algorithm 4 details how edge cuts are computed by iteratively solving the following
integer linear program.

max
x2Bn, f2Bl

b2Bm

1Tf

s.t. 1  Acutx

Akeepx  Dkeepb

b  Akeepx

Dff  Af (1� b) ,

Af (1� b)�Df1+ 1  f,

(3.13)

where (x, b, f ) are the optimization variables, and Acut 2 Bk⇥n, Akeep 2 Bm⇥n,
Dkeep 2 Bm⇥m, Df 2 Bl⇥l, Af 2 Bl⇥m are problem data described in more detail
below.

Variables: The variable x 2 Bn, where n = |Ecut|, is the Boolean vector corre-
sponding to edges Ecut such that for some k  n, if xk = 1, then the corresponding
edge is restricted, and xk = 0 means that it is left in the graph for future iterations.
Given Pkeep = (SAP1G, . . . , SAPnG) 2 Pkeep, a combination of set of shortest aug-
menting paths, the variable b 2 Bm keeps track of whether an augmenting path in
some SAPiG (1  i  n) is restricted or not.

For some k  m, if bk = 1, then the corresponding augmenting path in some SAPiG
has minimum-cut edge(s) restricted by the ILP, and bk = 0 if none of the minimum-
cut edges of that augmented path have been restricted. The variable f 2 Bl is the
sequence flow vector for a given sequence flow, Sf , such that l = |Sf | is the number
of edge-disjoint paths constituting the sequence flow.

Constraints: The first constraint of the ILP, Acutx � 1, enforces the requirement
that each path in P 2 Pcut is restricted. Each row of Acut corresponds to a path
P 2 Pcut. The q-th row of Acut is constructed as follows:

(Acut)q,r =

8
<

:
1 if Ecut(r) 2 P = Pcut(q)

0 otherwise.
(3.14)
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In the second and third constraints, Akeepx  Dkeepb and b  Akeepx, is used to de-
termine the variable b from the variable x. Each row of Akeep 2 Bm⇥n corresponds
to some path P 2 SAP

i
G, and Dkeep 2 Bm⇥m is a diagonal matrix. Suppose the q-th

row of Akeep corresponds to a path P 2 SAP
i
G for Pkeep = (SAP1G, . . . , SAPnG), and

MCkeep(i) is the set of minimum-cut edges on some path in SAP
i
G, then the q-th row

is constructed as follows:

(Akeep)q,r :=

8
<

:
1, if Ecut(r) 2 P \MCkeep(i).

0, otherwise.
(3.15)

The q-th diagonal entry of Dkeep stores the total number of minimum-cut edges in
the path corresponding to the q-th row of Akeep:

Dkeep := diag(Akeep1) (3.16)

These two constraints ensure that for some q  n, bq = 1 iff at least one minimum-
cut edge on the path corresponding to the q-th row of Akeep is restricted, and bq = 0

iff none of the minimum-cut edges on the path corresponding to the q-th row of
Akeep are restricted.
The fourth and fifth constraints, Dff  Af (1� b) and f � Af (1� b)�Df1+ 1,
determine the flow value for a given set of sequence flow paths, Sf . Suppose the
q-th row of the matrix Af 2 Bl⇥m corresponds to some sequence flow path P =

(P1, . . . , Pn) 2 Sf . Let R = (r1, . . . , rn) denote the indices of the paths P1, . . . , Pn

according to the ordering of the paths constituting all SAPiG that is consistent with
the construction of Akeep and Dkeep. Then, the q-th row of Af is defined as follows:

(Af )q,r :=

8
<

:
1, if r = ri for some 1  i  n.

0, otherwise.
(3.17)

The q-th diagonal entry of matrix Df 2 Bl⇥l stores the total number of ones in the
q-th row of Af :

Df := diag(Af1). (3.18)

The fourth constraint ensures that if any of the constituent paths, P1, . . . , Pn, in the
q-th sequence flow path P = (P1, . . . , Pn) 2 Sf (for 1  q  l), is restricted, then
the flow value, fq = 0. The last constraint ensures that if none of the constituent
paths, P1, . . . , Pn, in the q-th sequence flow path P = (P1, . . . , Pn) 2 Sf (for
1  q  l), are restricted, then the flow value, fq = 1.
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Parameters: The parameters used to construct the problem data for the ILP (3.13)
are the set of paths that need to be restricted, Pcut, the set of paths whose com-
bination constitutes sequence flow and should not be restricted, Pkeep, and the set
of minimum-cut edges, MCkeep, on the paths constituting Pkeep. The set Pkeep =

{(SAP1G, . . . , SAPnG) | SAP
i
G 2 SAP i

G} is a set of all combinations of shortest
augmenting paths in the sequence. For a given combination of sets of augmenting
paths, Pkeep = (SAP1G, . . . , SAPnG), with the cardinality of SAPiG being denoted as
follows: ki := |SAPiG|, and m := ⌃n

i=1ki. In Pkeep, suppose a combination of aug-
menting paths, Sf = {P = (P1, . . . , Pn) | Pi 2 SAP

i
G}, represents a sequence

flow, then a matrix Af 2 B|Sf |⇥m can be constructed to represent the sequence flow
Sf . This construction is outlined in the descriptions of Constraints of the ILP. An
instance of Pkeep can have several sequence flows, Sf , and correspondingly, several
matrices, Af , all of which are collectively denoted by Af . The set of all such Af is
denoted by A, which has cardinality |A|= |Pkeep|, since each Af corresponds to an
instance of Pkeep. The maximum sequence flow value is given by Fmax.

Cost Function: The cost function computes the maximum sequence flow value.
Algorithm 4 does not proceed to the next iteration of Pcut until it finds the set of
static constraints that return the maximum possible sequence flow value, Fmax. To
guarantee completeness of Algorithm 4, we need to prove that the cuts synthesized
in prior iterations do not preclude feasibility of further iterations with regards to
assumption 3.2. See Section 3.8 for complexity of the subroutines in Algorithm 4.

Sub-routines of Algorithm 4
The MIN-CUT-EDGES sub-routine takes as input a graph G, a list of propositions
{p1, . . . , pn}, and for each 1  i  n, a non-empty set of shortest augmenting
paths for the source-sink pair (vi, vi+1). This sub-routine returns as output the set
of minimum cut-set on those augmenting paths, which is then used in constructing
the problem data for the ILP.

The SEQUENCE-FLOWS sub-routine takes as input a graph G, a list of propositions
{p1, . . . , pn}, and a parameter to indicate if Assumption 3.3 holds. It then computes
the combination of all augmenting flows (or all shortest augmenting flows) that
can result in a non-zero sequence flow from v1 to vn+1. It returns as output the
set of all sets of matrices that capture sequence-flow paths, A, a set of Pkeep =

{(SAP1G, . . . , SAPnG)|SAPiG 2 SAP i
G}, the total number of combinations, |A|, and

the maximum possible sequence flow value, Fmax, which is determined when A is
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constructed.

The sub-routine FIND-BYPASS-PATHS takes as input a graph G and list of propo-
sitions, {p1, . . . , pn}, and uses the Edmonds-Karp algorithm to find bypass paths
for every source-sink pair (vi, vj), where i + 1  j  n + 1. Specifically, this
sub-routine finds a set of shortest augmenting paths from vi to vj , and to ensure that
they are bypass paths, the sub-routine is applied on Gij = G = (V \Vk, E \E(Vk)),
where:

Vk := {vk ✏ pk | 1  k  n + 1 and k 6= i, k 6= j},

and the edges associated with Vk are denoted by Ek:

Ek := {(u, v) 2 E | u 2 Vk or v 2 Vk}.

All of these augmenting paths are collectively returned as the output Pcut, and the
edges constituting these cuts are denoted by Ecut. Note that Pcut does not return
all simple paths from vi to vj>i+1, but just a set of edge-disjoint paths. As a result,
transitions are iteratively restricted until Pcut is empty.

3.8 Characteristics of the Algorithm

Lemma 3.1. In a graph G = (V, E), let P represent a maximal set of sequence
flow paths from v1 to vn. Let Pcut be the set of paths that need to restricted, with
the edges constituting the paths in Pcut denoted by Ecut ⇢ E. Then, the set of
constraint edges C ✓ Ecut can be found such that C does not constrain any path in
P .

Proof. A path Pcut 2 Pcut can be restricted by removing at least one of its con-
stituent edges. The number of edges of Pcut that are not in some path P 2 P is
non-zero, since otherwise it would imply that Pcut,i 2 P , and would not need to be
restricted. The set C can simply be chosen by selecting one or more edges on every
Pcut 2 Pcut that are not a part of some path in P .

Proposition 3.2. Let Gm = (V, Em) denote the graph for which the m-th iteration
of the ILP (3.13) synthesizes new cuts Cm ⇢ Em. Then, Assumption 3.2 is satisfied
on Gm+1 = (V, Em\Cm).

Proof. In the first iteration, from Assumption 3.2, we know there exists at least
one test graph G0 = (V, E\C) that satisfies equation (3.11). Assume that the m-
th iteration graph Gm = (V, Em) also satisfies Assumption 3.2. We will show
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by induction that the graph resulting from the the (m + 1)-th iteration, Gm+1 =

(V, Em\Cm), also satisfies Assumption 3.2. By construction, Algorithm 4 chooses
a combination of set of shortest augmenting paths (SAP1G, . . . , SAPnG), such that there
exists a non-empty set of sequence flow paths F = {(P1, . . . , Pn)|Pi 2 SAP

i
G} such

that the simple path from v1 to vn characterized by � = (P1, . . . , Pn) 2 F does not
form an ij-cycle for some i < j  n. This implies that on the subgraph comprising
of the edges in �, equation (3.11) is satisfied.

If the maximum possible sequence flow in a minimally restricted test graph is Fmax,
then we can find a combination (SAP1G, . . . , SAPnG) such that for each i = 1, . . . , n,
there exists a subset of edge-disjoint paths carrying flow Fmax:

Si = {P 1
i , . . . , P Fmax

i } ✓ SAP
i
G,

from which we can construct the set of sequence flow paths:

F 0 = {(P k1
1 , . . . , P kn

n )|P ki
i 2 Si, 0  ki  Fmax} ✓ F .

By construction of the input variables to the ILP (3.13), the constraints of ILP (3.13)
require that the sequence flow variable f has atleast one element that is 1. This is
possible only if there exists a set of edges Cm that constrain Acut,m such that there
exists at least one sequence path P 2 F that does not have any of its minimum-cut
edges restricted, which is true as shown in Lemma (3.1). Therefore, the new graph
Gm+1 = (V, Em\Cm) satisfies Assumption (3.2).

Theorem 3.1. Under Assumption (3.2), Algorithm 4 is complete and returns a test
graph G0 from Definition 3.8 that satisfies equation (3.11).

Proof. Consider iteration m of the outer while loop in Algorithm 4, and let the
graph at the m-th iteration be Gm = (V, Em). Denote Vp = {vi|vi ` pi, 81 
i  n + 1}. Let F i,j

max denote the maximum flow value from vi to vj on Gij =

(V \(Vp\{vi, vj}), Em), for some i, j such that 1  i < j � 1  n. That is, Gij is a
copy of Gm, but with nodes in Vp, except for source vi and sink vj , removed.

This implies that there is a set SAPi,jGij
of F i,j

max edge-disjoint paths that characterize
the maximum flow from vi to vj on Gij . Let (Pi,j(k))m be the set of all simple paths
from vi to vj that share an edge with the k-th path in SAP

i,j
Gij

. Let (MCi,j)m be the
set of minimum-cut edges on the paths in SAP

i,j
Gij

and let (Ei,j)m ⇢ Em be the set
of all edges on some path from vi to vj on Gij . Clearly, (MCi,j)m ✓ (Ei,j)m.
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For every m � 1, we can claim that |(Ei,j)m+1|< |(Ei,j)m| because edges are
removed to constrain SAP

i,j
Gij

in the m-th iteration. Let m̃ be the number of iterations
for Gij to become disjoint. In the worst-case, edges continue to be restricted until
iteration m̃ at which (Ei,j)m̃ = (MCi,j)m̃, at which point constraining edges to cut
(SAPi,jGij

)m̃ results in a cut separating vi and vj . Thus, m̃ has to be finite for every
such i, j.

At the same time, from Proposition 3.2, the synthesized cuts are such that As-
sumption 3.2 is maintained as an invariant. Therefore, when the last set of paths
SAP

i,j
Gij

are restricted, the final test graph G0 is such that dG0(v1, vn+1) > . . . >

dG0(vn, vn+1).

In addition to Assumption 3.2, if Assumption 3.3 holds, Algorithm 4 can be modi-
fied by a parameter setting. The proof of Theorem 3.1 still holds.

Lemma 3.2. On the test graph G0, any test run � starting from state v1 will satisfy
the specification ((5.2)).

Proof. From Assumption 3.1, there is only one node in G0 for each proposition in
characterizing the test specification ((5.2)), and node satisfying proposition pi is
labeled as vi. For every i 2 {1, · · · , n}, vi is the only state in test graph G0 that
is successor to all states v on paths Paths(vj<i, vn+1) for which dG0(v, vn+1) =

dG0(vi, vn+1) + 1. This is true by construction of the ILP constraints. All paths in
the set Paths(pj<i, g) on the test graph G0 must pass through vi.

Let � denote the test run of the agent starting at v1. We define a metric on the test
graph G0: mt := mint dG0(�t, vn+1) to be the closest distance to node vn+1 in the
first t steps of the test run. Note three properties of this metric mt: (a) mt � 0, (b)
mt decreases: mt+1 := min{�t+1, mt}  mt, and (c) there exists a successor qt+1

to �t = qt on G0 such that dG0(qt+1, vn+1) = dG0(qt, vn+1)�1 that decreases mt. The
metric mt starts at m0 � dG0(v1, vn+1) and decreases to 0 at the end of the test run.
Thus, we can observe that � |= ⇤(p1^ ⇤(p2 · · ·^ ⇤ pn+1))^ni=1 (¬pi+1U pi) ()
� |= ⇤ vn+1 .

From Theorem 3.1 and Lemma 3.2, Algorithm 4 synthesizes a test graph G0 for the
test specification (5.2), solving Problem 3.1.
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Lemma 3.3. Consider the test graph G0 from Definition 3.8 for the test specification
� from (5.2). If Assumption 3.2 holds, Algorithm 4 returns a minimally restricted
test graph.

Proof. By construction, the inputs to the ILP (3.13) are constructed based on a
maximal set of sequence flow paths from v1 to vn. By Lemma 3.1, at each iteration
of the ILP (3.13) from which constraint edges are chosen, the maximum sequence
flow value does not decrease at each iteration. Since there are a finite number of
edges, there are a finite number of iterations until test graph is found. Therefore,
the Algorithm 4 returns a minimally restricted test graph.

Complexity of Subroutines in Algorithm 4
Since Find-Cut-Paths is determining a set of augmenting paths for a single source-
sink flow, it has a complexity of Edmonds-Karp algorithm, O(|V ||E|2) time for
graph G = (V, E) [79]. The complexity of Min-cut-Edges is O(|V ||E|3) time
since it runs a max-flow algorithm for each edge in the worst-case. The main com-
putational bottleneck is in the Sequence-Flows subroutine, which constructs sets of
augmenting flows by computing combinations of all simple paths and all shortest
paths. In the worst-case, enumerating all simple paths between two nodes is O|V ! |,
and enumerating all shortest paths is slightly better in several cases.

3.9 Examples
We illustrate the iterative synthesis of restrictions on a simple graph and a small
gridworld, and then show runtimes of Algorithm 4 on random gridworld instances
for both the case for which Assumption 3.2 is true, and the case for which Assump-
tions 3.2 and 3.3 are true.

Simple graph: Consider a simple non-deterministic Kripke structure representing
an autonomous agent, shown in Figure 3.5, with propositional formulas labeled ad-
joining the states. The agent mission objective is to reach g while being restricted
to start from state q0. The test environment seeks to restrict transitions such that the
agent is prompted to pass through waypoint w in its trajectory to g.

Inputs to Algorithm 4 include the labeled graph G induced by the Kripke structure,
the agent specification ⇤ p3, the test specification ⇤ p2, and the initial condition
constraint ⇤ p1. Algorithm 4 constrains the edges {(v2, v4), (v4, v6)} in the first
iteration, and the edges {(v2, v5), (v5, v6)} in the second iteration. Although in this
simple example, searching the set of all augmented paths becomes searching over
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all paths, in larger examples discussed below, each augmented path represents a
class of paths that share some edge(s) with it.

q0

p1
v2

w
p2

v4

v5

v6 g p3 q0

p1
v2

w
p2

v4

v5

v6 g p3

Figure 3.5: Left: Simple Kripke structure representing states that the agent can occupy.
The waypoint, w, is highlighted in purple to indicate that transitions are restricted corre-
sponding to propositional formula p2 = L(w). Right: A test graph. Dashed edges in red
illustrate transitions that have been restricted/removed from the Kripke structure above.

Simple Gridworld: In Figure 3.6, we illustrate the iterative synthesis of obstacles
in a gridworld instance. Note that this configuration can be synthesized only by
considering all sets of augmenting paths between (p1, p2) and (p2, p3). Since there
is no shortest augmenting path from p2 to p3 that does not form a cycle with some
(in this example, there is only one) shortest augmenting path flow from p1 to p2, it
is imperative to use all sets of augmenting paths in the Sequence-Flows subroutine.

Random Gridworld Instances: For the case of setting all augmenting paths in the
Sequence-Flows subroutine, we ran 50 random instances each for small gridworlds
and propositions and plotted the average runtimes in Figure 3.7a. The number of
propositions are limited by the size of the gridworld instances, which is restricted
by the combinatorial nature of finding all sets of augmenting paths, and all combi-
nations of sets of augmenting paths.

If we choose initial gridworld instances that satisfy Assumption 3.3, then Algo-
rithm 4 can synthesize static constraints for slightly larger t ⇥ t grid sizes. The
average runtimes for 50 random iterations for various grid sizes t is plotted in Fig-
ure 3.7b. The small increase to larger grid size is due to the Sequence-Flows sub-
routine reasoning over shortest augmenting paths, and not all augmenting paths.

The average runtimes increase exponentially with the size of the grid. The num-
ber of propositions, denoted by |P |, is labeled n if the test specification 'test (5.2)
is comprised of propositions (p1, . . . , pn). In both Figures 3.7a and 3.7b, the av-
erage runtime for fewer propositions is at times higher that the average runtime
for more propositions. This can be attributed to the Sequence-Flows subroutine
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(a) Initial grid (b) Iteration 1

(c) Iteration 2 (d) Iteration 3. The colored paths highlight
a sequence flow from p1 to g.

Figure 3.6: Synthesizing static test environment for 'test = ⇤(p1^ ⇤ p2)^¬p2U p1 and
'a = ⇤ g.

taking longer to enumerate all simple paths (or all shortest paths in case of As-
sumption 3.3) between two nodes, which could be greater in number due to fewer
propositions constraining the graph.

Another paradigm for the problem of synthesizing static test environments for se-
quence behaviors could be multi-commodity network flows, which will be explored
later in this chapter. The multi-commodity flow setting typically considers multiple
source-sink flows simultaneously drawing from the capacity of each edge, and here
we compute separate network flows for every source-sink pair of nodes.

3.10 Conclusions
An algorithm to synthesize a static test environment to observe sequence-like be-
havior in a discrete-transition system was introduced. First, we formulated this test
environment synthesis problem as a problem of synthesizing cuts on graphs using
concepts of flow networks. Then, we proposed an algorithm which synthesized the
cuts iteratively using an integer linear program. We proved that this algorithm is
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(a) Small gridworld configurations using all
augmenting flows.

(b) Gridworld configurations using only
shortest augmenting flows.

Figure 3.7: Average runtime over 50 random instances. The number of propositions in
'test is denoted by |P | in the legend. Error bars represent standard deviation of runtimes.

complete and that the edges restricted by the ILP at each iteration maintain fea-
sibility of the constraint in the next iteration. Finally, we conducted numerical
experiments on random gridworld instances to assess the runtime of our algorithm.
Simulation results preclude this algorithm from being tractable to larger examples.

However, the integer linear program requires reasoning over all possible paths on
the transition system in order to identify the set of augmenting paths with the high-
est flow. This essentially becomes a brute-force approach to finding a set of edge
disjoint paths from S to T that are routed through the propositions p1, . . . , pn in a se-
quence. The poor scalability is due to the exponential number of constraints (in the
number of edges of Tsys) in the ILP formulation. To alleviate this, we will present
an alternative flow-based formulation in the form of a min-max game with coupled
constraints.
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