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C h a p t e r 2

EVALUATING PERCEPTION FOR SYSTEM-LEVEL TASK
REQUIREMENTS

In safety-critical systems, the goal of perception is to aid downstream decision-
making modules so that the overall system can meet its safety-critical require-
ments. Yet, the metrics we often use to evaluate perception performance do not
account for system-level requirements or interactions between sub-systems. Usu-
ally, not all perception errors are equally safety-critical with respect to system-level
requirements. this chapter argues for the importance of system-level reasoning in
identifying metrics to evaluate perception. First, we show how existing evalua-
tion metrics for object detection tasks, e.g., confusion matrices, can be leveraged to
compute a probabilistic satisfaction of system-level specifications. However, con-
fusion matrices, as traditionally defined, account for all detections equally. The
second contribution of this chapter is in identifying that atomic propositions rele-
vant to downstream planning logic and the system-level specification can be used
to define new metrics for detection which result in less conservative system-level
evaluations. Finally, we illustrate these ideas on a car-pedestrian example in sim-
ulation for confusion matrices constructed from the nuScenes dataset. We validate
the probabilistic system-level guarantees in simulation.
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2.1 Introduction
The presence of deep neural network architectures in the software stack of safety-
critical applications (e.g., self-driving vehicles) necessitates a comprehensive system-
level evaluation of these systems. Figure 1.1 is an illustration of the software stack
of the system in which the perception component involves a deep learning-based
architecture, which perceives the environment and passes its observations as inputs
to the downstream planning and control modules. Using this information, the con-
trol module computes a trajectory for the vehicle to follow and the corresponding
actuation commands to keep the vehicle on the trajectory.

The perception and control modules are typically designed under different prin-
ciples. For example, the perception module often relies on object classification
that is based on deep learning such as the use of convolutional neural networks
to distinguish objects of different classes. These learning-based algorithms are of-
ten evaluated based on the performance measures such as accuracy, precision, and
recall [50, 51].

On the other hand, formal methods have been employed to construct a provably
correct controller given a system model and temporal logic specifications [14–18].
The correctness guarantee, typically specified using a temporal logic formula, re-
lies heavily on the assumption that the input (i.e., the perceived world reported by
perception module) is perfect. For example, if the perception component only re-
ports the most likely class of each object, the control component assumes that the
reported class is correct. Unfortunately, this assumption may not hold in most real-
world systems.

To reason about system-level safety, one might consider the paradigm of specify-
ing formal requirements on the entire system and reasoning about it. However,
specifying formal requirements on the object detection task of perception is not
trivial. Even in the standard classification task of classifying handwritten digits, it

https://arxiv.org/pdf/2303.17751
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is difficult to formally specify how the digits must be classified. Instead of taking
this approach, we leverage metrics that are already used to evaluate learned mod-
els for their performance on object detection and classification tasks — confusion
matrices. Confusion matrices are a statistical model of sensor error, constructed by
evaluating a learned model against a large evaluation set.

The first contribution of this chapter is in identifying confusion matrices as a candi-
date model of sensor error. Leveraging confusion matrices, we can rigorously define
transition probabilities representing the system’s state evolution in the presence of
detection error. On this model of the overall system, we can quantify system-level
satisfaction of specifications via off-the-shelf probabilistic model-checking tools.
An important insight gained from this analysis is that even in simple examples, in-
tuitive design methodologies for detection models, such as maximizing recall with
respect to pedestrians, might not result in safer systems overall.

However, traditionally defined confusion matrices do not account for the system-
level task or the downstream controller. The second contribution of this chapter
is proposing two new logic-based evaluation metrics that to account for the down-
stream planning logic and the system-level task. We replace the object class labels
of a confusion matrix with logical formulas that are informed from the downstream
controller and system-level guarantee.

Related Work
Evaluating and monitoring perception for safety-critical errors is an emerging re-
search topic [26, 52, 53]. Perception is a complex subsystem responsible for tasks
such as detection, localization, segmentation. These recent works have focused on
evaluating object detection in the context of system-level safety. We follow this
early work and focus on object detection task of perception, which refers to both
detecting an object and classifying it correctly. As an initial stage of this study, we
assume a static environment and perfect object localization. These assumptions can
potentially be relaxed based on an analysis that takes into account partial observ-
ability of the environment [54], as discussed in Section 2.8.

The use of Markov chains for probabilistic reasoning about the correctness of high-
level robot behaviors in the presence of perception errors was studied in [49].
However, the algorithms in [49] assumed knowledge of the probabilistic sensor
model. Rigorously constructing these sensor models from confusion matrices was
presented in [55]. In [56], this approach was further extended by providing confi-
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dence intervals on the probabilistic sensor models and was applied to a case study
on guiding aircraft on taxiways introduced by Boeing [57].

For runtime monitoring of perception systems, Timed Quality Temporal Logic
(TQTL) is used to specify spatio-temporal requirements on perception [28, 29] .
However, to specify these requirements, the user has to label each scenario with
critical objects that need to be detected. This approach is useful in evaluating per-
ception in isolation with respect to the requirements defined on a specific scenario.
In [52], temporal diagnostic graphs are proposed to identify failures in object de-
tection during runtime.

In [26], Hamilton-Jacobi reachability was used to account for closed-loop interac-
tions with agents in the environment to identify safety-critical perception zones in
which correct detection is crucial. Our work can be viewed as a complementary
approach to [26] by allowing crucial misclassifications, according to system-level
analysis, to be identified. Task-relevant perception design has been studied in [58]
and [59]. In [58], the codesign of control and perception modules has been explored
for tasks such as state estimation [58] and behavior prediction [59].

2.2 Preliminaries
In this section, we give an overview of linear temporal logic (LTL), a formalism for
specifying system-level requirements. We also describe the performance metrics
used to evaluate object detection and classification models in the computer vision
community. Finally, we setup a simple discrete-state car-pedestrian system as a
running example to illustrate the role of these different concepts.

System-level Task Specifications
System Specification. We use the term system to refer to refer to the autonomous
agent and its environment. The agent is defined by variables VA, and the environ-
ment is defined by variables VE . The valuation of VA is the set of states of the agent
SA, and the valuation of VE is the set of states of the environment SE . Thus, the
states of the overall system is the set S := SA ⇥ SE . Let AP be a finite set of
atomic propositions over the variables VA and VE . An atomic proposition a 2 AP

is a statement that can be evaluated to true or false over states in S.

We specify formal requirements on the system in LTL (see [60] for more details).

Definition 2.1 (Linear Temporal Logic [60]). Linear temporal logic (LTL) is a tem-
poral logic specification language that allows reasoning over linear-time trace prop-
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erties. An LTL formula is defined by (a) a set of atomic propositions, (b) logical
operators such as: negation (¬), conjunction (^), disjunction (_), and implication
( =) ), and (c) temporal operators such as: next (�), eventually (⇧), always (⇤),
and until (U ). The syntax of LTL is given as:

' ::= True | a | '1 ^ '2 |¬' |�' | '1U'2,

with a 2 AP , where AP is the set of atomic propositions, ^ (conjunction) and ¬
(negation) are the Boolean connectors from which other Boolean connectives such
as! can be defined, and� (next) and U (until) are temporal operators. Let ' be an
LTL formula over AP . We can define the operators ⇤ (eventually) and ⇤ (always)
as ⇤' = True U' and ⇤' = ¬ ⇤¬'. The syntax of LTL is read as follows: (a)
An atomic proposition p is an LTL formula, and (b) if ' and  are LTL formulae,
then ¬', ' _  ,�', 'U  are also LTL formulae. For an execution � = s0s1 . . .

and an LTL formula ', si ✏ ' iff ' holds at i � 0 of �. More formally, the
semantics of LTL formula ' are inductively defined over an execution � = s0s1 . . .

as follows,

• for a 2 AP , si ✏ a iff a evaluates to True at si,

• si ✏ '1 ^ '2 iff si ✏ '1 and si ✏ '2,

• si ✏ ¬' iff ¬(si ✏ '),

• si ✏�' iff si+1 ✏ ', and

• si ✏ '1U'2 iff 9k � i, sk ✏ '2 and sj ✏ '1, for all i  j < k.

An execution/trace � = s0s1 . . . satisfies formula ', denoted by � |= ', iff s0 |=
'. A strategy ⇡ is correct (satisfies formula '), if the trace �⇡ resulting from the
strategy satisfies '.

For an infinite trace � = s0s1 . . ., where si 2 2AP , and an LTL formula ' defined
over AP , we use � |= ' to denote that � satisfies '. For example, the formula
' = ⇤p represents that the atomic proposition p 2 AP is satisfied at every state in
the trace, i.e., � |= ' if and only if p 2 st, 8t. In this chapter, these traces � are
executions of the system, which we model using a Markov chain.

Definition 2.2 (Labeled Markov Chain [60]). A discrete-time labeled Markov chain
is a tuple M = (S, Pr, ◆init, AP, L), where S is a non-empty, countable set of
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Figure 2.1: Running example of a car and pedestrian. If there is a pedestrian at
crosswalk cell Ck, that is, xe |= ped, then the car must stop at cell Ck�1. Otherwise,
it must not stop.

states, Pr : S ⇥ S ! [0, 1] is the transition probability function such that for all
states s 2 S, ⌃s02SPr(s, s0) = 1, ◆init : S ! [0, 1] is the initial distribution such
that ⌃s2S◆init(s) = 1, AP is a set of atomic propositions, and L : S ! 2AP is a
labeling function. The labeling function returns the set of atomic propositions that
evaluate to true at a given state. Given an LTL formula ' (defined over AP ) that
specifies requirements of a system modeled by the Markov Chain M, the proba-
bility that a trace of the system starting from s0 2 S will satisfy ' is denoted by
PM(s0 |= '). The definition of this probability function is detailed in [60].

Example
Consider a car-pedestrian example, modeled using discrete transition system as il-
lustrated in Figure 2.1. The true state of the environment is denoted by xe. The state
of the car is characterized by its position and speed, sa := (xc, vc) 2 SA. The safety
requirement on the car is that it “shall stop at the crosswalk if there is a waiting
pedestrian, and not come to a stop, otherwise”. The overall system specifications
are formally expressed as safety specifications in equations (2.1)-(2.3).

1. If the true state of the environment is not a pedestrian, i.e. xe 6= ped, then
the car must not stop at Ck�1.

'1 = ⇤((xe 6= ped)! ¬(xc = Ck�1 ^ vc = 0)) . (2.1)
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2. If xe = ped, the car must stop on Ck�1.

'2 = ⇤
⇣
xe = ped! ((xc = Ck�1 ^ vc = 0)

_ ¬(xc = Ck�1))
⌘
. (2.2)

3. The agent should not stop at any cell Ci, for all i 2 {1, . . . , k � 2},

'3 = ⇤¬(
k�2_

i=1

(xc = Ci ^ vc = 0)). (2.3)

The overall safety specification for the car is ' := '1 ^ '2 ^ '3. Since the car
controller has been designed assuming perfect perception, the specification for the
pedestrian and non-pedestrian environment simplifies to,

'ped =⇤¬(
k�2_

i=1

(xc = Ci ^ vc = 0))
^

⇤(¬(xc = Ck�1)

_ (xc = Ck�1 ^ vc = 0)),

'class =⇤¬(
k�1_

i=1

(xc = Ci ^ vc = 0)), if class 2 {obs,empty}.

As mentioned previously, we assume a static environment. We also assume that
the car knows the location of the crosswalk, e.g., from HD map information, and
that it can coarsely localize whether the detected object is on the crosswalk. The
evaluation framework presented in this chapter is valid for any discrete-state control
strategy, both deterministic and probabilistic. To concretize the setup, we consider
a car controller that acts corresponding to the detection model’s prediction of the
environment at the crosswalk. If the car at time step t detects a pedestrian, then it
chooses its speed according to a control strategy for 'ped to come to a stop before
the crosswalk at cell Ck�1. If the state of the car is such that it is impossible to
find a controller that will bring it to a stop at cell Ck�1, then it decelerates as fast
as possible. Similarly, if an obstacle or empty sidewalk is detected, then the car
chooses its speed according to a control strategy designed correct-by-construction
for 'k.

2.3 Problem Statement
Here, we introduce and define the probability of satisfaction of an LTL formula
starting from an initial state, given the true state of the environment.
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Definition 2.3 (Model of Sensor Error). Let SE denote the set of possible environ-
ment states. Then, a model of sensor error in identifying the state of the environ-
ment M : SE ⇥ SE ! [0, 1] is defined as follows, M(y, x) = p, where p is the
probability with which the sensor predicts the environment state to be y 2 SE when
its true state is x 2 SE .

Definition 2.4 (Transition Probability). Let s1 = (s1,a, xe), s2 = (s2,a, xe) 2 S

be two states of the overall system, xe be the true class label of the environment,
and let M be a model of sensor error. Let O(s1, s2) denote the set of environment
observations ye 2 VE that result in the agent controller transitioning from s1,a to
s2,a. The transition probability Pr : S ⇥ S ! [0, 1] is defined as,

Pr(s1, s2) :=
X

ye2O(s1,s2)

M(ye, xe) . (2.4)

Since the controller is entirely informed by the outputs of the perception module,
and for each output of the perception module, there is a corresponding control ac-
tion, it is trivial to check that

P
s22S Pr(s1, s2) = 1. Therefore, the transition

probability between any two states is always in the range [0, 1].

Definition 2.5 (Paths). Choose a state s0 = (sa,0, xe) 2 S for a fixed true en-
vironment state xe. A finite path starting from s0 is a finite sequence of states
�(s0) = s0, s1, . . . , sn for some n � 0 such that the probability of transition
between consecutive states, Pr(si, si+1) > 0 for all 0  i < n such that si =

(sa,i, xe) 2 S. Similarly, an infinite path � = s0, s1, . . . is an infinite sequence of
states such that Pr(si, si+1) > 0 for all i � 0. We denote the set of all paths starting
from s0 2 S by Paths(s0), and the set of all finite paths starting from s0 2 S by
Pathsfin(s0). For an LTL formula ' on AP , Paths'(s0) ⇢ Paths(s0) is the set
of paths � = s0, s1, . . . such that �S |= '.

Semantics
Now, we define probability of satisfaction of a temporal logic formula with respect
to a formal specification based on the following definitions derived from [60]. Let
⌦ = Paths(s0) represents the set of all possible outcomes, that is, the set of all
paths of the agent, starting from state s0. Let 2⌦ denote the powerset of ⌦. Then,
(⌦, 2⌦) forms a �-algebra. For a path ⇡̂ = s0, s1, . . . , sn2 Pathsfin(s0), we define
a cylinder set as follows,

Cyl(⇡̂) = {⇡ 2 Paths(s0)|⇡̂ 2 pref(⇡)}, (2.5)
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where pref(⇡) = {⇡...j = s0, . . . , sj|j � 0} is the set of all finite prefix path frag-
ments for ⇡ = s0, s1, . . ., an infinite path. Let Cs0 = {Cyl(⇡̂)|⇡̂ 2 Pathsfin(s0)}.
The following result can be found in [60], and can be derived from the fundamental
definition of a �-algebra.

Lemma 2.1. The pair (Paths(s0), 2Cs0 ) forms a �-algebra, and is the smallest �-
algebra containing Cs0 .

The �-algebra associated with s0 is (Paths(s0), 2Cs0 ). Then, there exists a unique
probability measure Ps0 such that

Ps0(Cyl(s0, . . . , sn)) =
Y

0in

Pr(si, si+1). (2.6)

Definition 2.6. Consider an LTL formula ' over AP with the overall system start-
ing at state s0 = (sa,0, xe). Then, the probability that the system will satisfy the
specification ' from the initial state s0 given the true state of the environment is,

P(s0 |= ') :=
X

�(s0)2S(')

Ps0(Cyl(�(s0))), (2.7)

where S(') := Pathsfin(s0) \ Paths'(s0). Note that S(') need not be a finite
set, but has to be countable.

Definition 2.7 (Controller). For an initial condition s0 2 S of the system and en-
vironment, and the system specification ', the system controller K : S!S ! SA

chooses the next system state based on the trace history of system states and envi-
ronment observations.

Problem Formulation

Problem 2.1. Given a model of sensor error M for multi-class classification, a
controller K, a temporal logic formula ', the initial state of the agent sa,0, and the
true state of the static environment xe, compute the probability P(s0 |= ') that '
will be satisfied for a system trace � starting from initial condition s0 = (sa,0, xe)?

2.4 Role of Detection Metrics in Quantitative System-level Evaluations
In this section, we will introduce x While the confusion matrix provides useful
metrics for comparing and evaluating detection models, we would like to use these
metrics in evaluating the overall system with respect to formal constraints in tem-
poral logic. Not all detection errors are equally safety-critical [25, 26].
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Confusion Matrix
We consider object detection to include both the detection and the classification
tasks. In this section, we provide background on metrics used to evaluate per-
formance with respect to these perception tasks. Let the evaluation dataset D =

{(fi, bi, di, xi)}Ni=1 consist of N objects across m image frames F = {F1, . . . , Fm}.
For each object, fi 2 F represents the image frame token, bi specifies the bounding
box coordinates, di denotes the distance of the object to ego, and xi denotes the
true class of the object. When a specific object detection algorithm is evaluated on
D, each object has a predicted bounding box, b̃i, and predicted object class x̃i. We
store these predictions in the set E = {(b̃i, x̃i)}Ni=1.

Definition 2.8 (Confusion Matrix). Let D be an evaluation set of objects and E be
the corresponding predictions by an object detection algorithm. Let C = {c1, . . . , cn}
be a set of object classes in D, and let n denote the cardinality of C. The confusion
matrix corresponding to the classes C and dataset D, and predictions E is an n⇥ n

matrix CM(C, E ,D) with the following properties:

• CM(C, E ,D)[i, j] is the element in row i and column j of CM(C, E ,D), and
represents the number of objects that are predicted to have class label ci 2 C,
but have the true class label cj 2 C, and

• the sum of the jth-column of CM(C, E ,D) is the total number of objects in D
belonging to the class cj 2 C.

Several performance metrics for object detection and classification such as true pos-
itive rate, false positive rate, precision, accuracy, and recall can be derived from the
confusion matrix[50, 51, 61].

Definition 2.9 (Precision [50]). Given the confusion matrix CM for a multi-class
classification, the precision corresponding to class ci is:

P (i) =
CM(i, i)

CM(i, i) +
P

j 6=i
CM(i,j)|Dj |P
j 6=i

|Dj |

, (2.8)

where
P

j 6=i
CM(i,j)|Dj |P
j 6=i

|Dj | is the false positive rate for class ci, and CM(i, i) is the true
positive rate for class ci.
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Definition 2.10 (Recall [50]). Given the confusion matrix CM for a multi-class clas-
sification, the recall corresponding to class label ci is:

R(i) =
CM(i, i)

CM(i, i) +
P

j 6=i CM(j, i)
, (2.9)

where
P

j 6=i CM(j, i) is the false negative rate for class ci.

Maximizing precision typically corresponds to minimizing false positives while
maximizing recall corresponds to minimizing false negatives. However, there is
an inherent trade-off in minimizing both false positives and false negatives for clas-
sification tasks [50], and often, a good operating point is found in an ad-hoc manner.
Typically, safety-critical systems are designed for optimizing recall, but as we will
show in Section 2.6, this is not always the best strategy to satisfy formal require-
ments.

Remark 2.1. In this chapter, we use cn = (referring to the background class) as
an auxiliary class label in the construction of confusion matrices. If an object has
the true class label ci but is not detected by the object detection algorithm, then this
gets counted in CM(C, E ,D)(n, i) as a false negative with respect to class ci. If the
object was not labeled originally, but is detected and classified to have class label
ci, then it gets counted in CM(C, E ,D)(i, n) as a false negative of the emptyclass.
We expect that in a properly annotated dataset, false negatives CM(C, E ,D)(i, n) to
be small. We ignore these extra detections in constructing the confusion matrix
because by not being annotated, they are not relevant to the evaluation of object
detection models.

Definition 2.11 (Transition Probability for Confusion Matrices). Let s1 = (s1,a, xe),
s2 = (s2,a, xe) 2 S be two states of the overall system, xe be the true class label
of the environment, and CM be the known confusion matrix associated with the
agent’s perception model. Let O(s1, s2) denote the set of environment observa-
tions ye 2 VE that result in the agent controller transitioning from s1,a to s2,a. The
transition probability Pr : S ⇥ S ! [0, 1] is defined as,

Pr(s1, s2) :=
X

ye2O(s1,s2)

CM(ye, xe) . (2.10)

From the definition, and consequently structure, of the confusion matrix in Defini-
tion 2.8, it is trivial to check that

P
s22S Pr(s1, s2) = 1. Therefore, the transition

probability between any two states is always in the range [0, 1].
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Class-labeled, distance-parametrized Confusion Matrix
This performance metric builds on the class-labeled confusion matrix defined in
Definition 2.8. As denoted previously, let C = {c1, . . . , cn} be the set of different
classes of objects in dataset D. For every object in Dk, the predicted class of the
object will be one of the class labels c1, . . . , cn. For each distance interval zk, we
define the class-labeled confusion matrix as CMclass,k := CM(C, Ek,Dk). Algorithm 2
shows the construction of the class-labeled, distance-parametrized confusion ma-
trix. Therefore, the outcomes of the object detection algorithm will be defined by
the set Outc = {c1, . . . , cn}m, where m is the total number of objects in the true
environment in the distance interval zk. The tuple (Outc, 2Outc) forms a �-algebra
for defining a probability function over the class-labeled confusion matrix CMclass,k.
Similar to the definition of a probability function, for every class label cj , the prob-
ability function µclass,k(·, cj) : Outc! [0, 1] is defined as follows,

µclass,k(ci, cj) :=
CMclass,k(ci, cj)Pn
l=1 CMclass,k(cl, cj)

. (2.11)

Algorithm 1: Class-labeled Confusion Matrix

1: procedure ClassCM(Dataset D = {(fi, bi, di, xi)}Ni=1, Classes C, Distance Pa-
rameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) 2 D do
7: if di 2 zk then
8: Dk  Dk [ {(fi, bi, di, xi)}
9: Ek  Ek [ {(b̃i, x̃i)}

10: for k 2 {0, . . . , kmax} do
11: Denote CMclass(C, Ek,Dk) as CMclass,k

12: CMclass,k  zero matrix
13: for fi 2 {f1, . . . , fm} do . Loop over images
14: for object in Dk do
15: ci  Predicted class label of object
16: cj  True class label of object in Ek
17: CMclass,k(ci, cj) CMclass,k(ci, cj) + 1

18: CMclass(C, E ,D)= {CMclass(C, Ek,Dk)}kmax
k=0

19: return CMclass(C, E ,D)

Definition 2.12 (Transition probability function for class-labeled confusion matrix).
Let the true environment be represented as a tuple xe corresponding to class labels



27

in the region zk (class labels can be repeated in a tuple xe when multiple objects
of the same class are in region zk). Let sa,1, sa,2 2 S be states of the car, and
let O(s1, s2) denote the set of all predictions of the environment that prompt the
system to transition from s1 = (sa,1, xe) to s2 = (sa,2, xe). Likewise, the tuple ye

represents the object detection model’s predictions of the environment. Then, the
transition probability function from state s1 to s2 is defined as follows,

Pr(s1, s2) :=
X

ye2O(s1,s2)

|ye|Y

i=1

µclass,k(ye(i), xe(i)). (2.12)

For both transition probability functions (2.12) and (2.14), we can check (by con-
struction) that 8s1 2 S,

P
s2

Pr(s1, s2) = 1. In the running example, if the cross-
walk were to have another pedestrian and a non-pedestrian obstacle, then the prob-
ability of detecting each object is considered independently of the others. This
results in the product of probabilities µclass,k(·, xe(i)) in equation (2.12).

Proposition-labeled Confusion Matrix
In several instances, the high-level planner does not necessarily require correct de-
tection of every single object in a frame to make a correct decision. For instance, for
the planner to decide to stop for a cluster of pedestrians 20m away, knowledge that
there are pedestrians, and not necessarily the exact number of pedestrians is suffi-
cient for the planner to decide to slow down. Accounting for this in quantitative
system-level evaluations would make the analysis less conservative. Therefore, we
introduce the notion of using atomic propositions as class labels in the confusion
matrix instead of the object classes themselves.

Let pi be the atomic proposition: “there exists an object of class ci 2 C,” and let
P = {p1, . . . , pn} denote the set of all atomic propositions. Let D0 < D1 < . . . <

Dk < . . . < Dkmax denote progressively increasing distances from the autonomous
vehicle. Let Dk ⇢ D be the subset of the dataset that includes objects that are in
the distance interval zk = (Dk�1, Dk) from the autonomous system. Let Ek denote
the predictions of the object detection algorithm corresponding to dataset Dk. For
each parameter k, we define the proposition-labeled confusion matrix CMprop,k =

CMprop(2P , Ek,Dk) where the classes are characterized by the powerset of atomic
propositions 2P . Algorithm 1 shows the construction of the proposition-labeled
confusion matrix.
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The true environment is associated with a set of atomic propositions that are a sub-
set of P that evaluates to true. Suppose, there is a pedestrian and a trash can in
the distance interval zk from the ego, then the true class label is {pped, pobs} in the
distance-parametrized confusion matrix CMprop,k. Note that for every possible envi-
ronment, there is only one corresponding class in the proposition-labeled confusion
matrix. Thus, for a given true environment, the predicted class of the environment
at distance interval zk could be any element of the set 2P . Therefore, at each time
step, the set of detection outcomes is Outc = 2P .

Algorithm 2: Proposition-labeled Confusion Matrix

1: procedure PropCM(Dataset D = {(fi, bi, di, xi)}Ni=1, Classes C, Distance Pa-
rameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) 2 D do
7: if di 2 zk then
8: Dk  Dk [ {(fi, bi, di, xi)}
9: Ek  Ek [ {(b̃i, x̃i)}

10: for cj 2 C do
11: pj ⌘ “there exists an object of class cj”

12: P  
S

j{pj} . Set of atomic propositions
13: for k 2 {1, . . . , kmax} do
14: Denote CMprop(2P , Ek,Dk) as CMprop,k

15: CMprop,k  zero matrix
16: for f 2 F do . Loop over image frames
17: Group objects in Dk with image token f .
18: Group predictions in Ek with image token f .
19: Pi  Predicted set of propositions
20: Pj  True set of propositions
21: CMprop,k(Pi, Pj) CMprop,k(Pi, Pj) + 1

22: CMprop(2P , E ,D)= {CMprop(2P , Ek,Dk)}kmax
k=0

23: return CMprop(2P , E ,D)

The tuple (Outc, 2Outc) forms a �-algebra for defining a probability function over
the proposition-labeled confusion matrix. Since the set Outc is countable, we can
define a probability function µ : Outc ! [0, 1] such that

P
e2Outc µ(e) = 1.

For a distance-parametrized confusion matrix CMprop,k with class labels in the set
Outc, and for every true environment class label Pj , define a probability function
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µprop,k(·, Pj) : Outc! 2Outc as follows,

µprop,k(Pi, Pj) =
CMprop,k[Pi, Pj]

P|2P |
l=1 CMprop,k[Pl, Pj]

, 8Pi 2 2P , (2.13)

where CMprop,k[Pi, Pj] is the element of the confusion matrix CMprop,k with predicted
class label Pi and true class label Pj .

That is, for every confusion matrix CMprop,k where k 2 {1, . . . , kmax}, we define a to-
tal of 2|P| different probability functions, one for each possible true environmentPj .
Thus, the probability function µprop,k that characterizes the probability of detecting
an environment satisfying propositions Pi, given that the true environment at zk sat-
isfies propositions Pj . This helps to formally define the state transition probability
of the overall system as follows.

Definition 2.13 (Transition probability function for proposition-labeled confusion
matrices). Let xe be the true environment state corresponding to propositions Pj

evaluating to true, and let sa,1, sa,2 2 S be states of the car. Let O(s1, s2) denote
the set of all predictions of the environment that prompt the system to transition
from s1 = (sa,1, xe) to s2 = (sa,2, xe). At state s1, let zk be the distance interval
of objects in the environment causing the agent to transition from sa,1 to sa,2. The
corresponding confusion matrix is CMprop,k. Then, the transition probability from
state s1 to s2 is defined as follows,

Pr(s1, s2) :=
X

Pi2O(s1,s2)

µprop,k(Pi, Pj). (2.14)

For simplicity, we assume that objects at a specific distance interval influence the
agent to transition from sa,1 to sa,2. However, Definition 2.13 can be extended to
cases in which objects at multiple distances can influence transitions.

Choosing Proposition Labels

Generally, the set of atomic propositions P depends on the logic used by the planner
to trigger different operation modes. In the running example, the planner outputs
different actions depending on the environment, i.e., pedestrian or other objects. If
the planner responds differently to other types of objects, e.g cars, bicycles, cones,
those should be included in the set of atomic propositions P . Thus, our approach
can generalize to a wider range of scenarios by adapting the set P accordingly.



30

In particular, proposition labels of the confusion matrix can be chosen to match
the set of environment observations SE that are acceptable inputs to the controller
(Definition 2.7). Proposition labels can be propositional formulas comprising of
logical connectives, but not any temporal operators.
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Figure 2.2: Proposition-labeled confusion matrices when evaluations are grouped
solely by distance. Observe that detecting one pedestrian in the highlighted distance
zone will amount to the proposition “there is a pedestrian” evaluating to true. This
would not be an appropriate evaluation for the driving task.

Grouping Objects for Evaluation

Figure 2.3: Grouping eval-
uations at the same level of
abstraction used by the high-
level planner. Evaluating the
proposition “there is a pedes-
trian” in each segment of the
distance zone.

The choice of evaluation metric for the detection
model depends on the observations received by the
downstream planner, and how the planner processes
these observations to to control the system. Propo-
sition labels are defined over objects in a group, and
each group accounts for a single evaluation of the
model. For meaningful evaluations of the percep-
tion system, the grouping of objects into proposi-
tional formulas should be at the right fidelity for
the planning module. For example, in a robotic
system that has a vision-based perception compris-
ing of only forward-facing cameras and a planner
tasked with driving forward, grouping objects by
distance to the ego might be sufficient for effec-
tively evaluating the perception with the system-
level task. However, in robotic systems equipped
with LiDAR sensors and tasked with navigating arbitrarily, the same evaluations
might no longer be meaningful. In particular, since LiDAR sensor outputs 360� ob-
servations, grouping objects solely by ego-centric distance will be too coarse from a
planning standpoint (see Figure 2.2). We denote this proposition-labeled confusion
matrix as CMprop,seg.
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The perception system localizes objects in the environment and returns detections
in R3 upto some finite distance around the ego. Let G = {C1, . . . , Cm} be a fi-
nite, discretized ego-centric abstraction of R3. The labeling functions of the system
and environment allow for mapping the states of the system and environment to G.
Typically in high-level planning, detections from the perception system are mapped
onto the discretized abstraction G, and this information is used by the planner to
decide on next actions. Therefore, evaluation of the perception system using propo-
sition labels at the fidelity of G would be as follows. Instead of using distance to
group objects into radius bands (lines 17-21 of Algorithm 2), we group objects ac-
cording to the ego-centric abstraction G, and evaluate proposition labels for each
cell (see Figure 2.3) for an illustration).

2.5 Markov Chain Analysis
Our approach to solving Problem 2.1 is based on constructing a Markov chain that
represents the state evolution of the overall system, taking into account the control
logic as well as detection errors. This Markov chain is constructed for a particular
true state of the environment. Given a Markov chain for the state evolution of the
system, it is then straightforward to compute the probability of satisfying a tempo-
ral logic formula on the Markov chain from an arbitrary initial state [60]. Prob-
abilistic model checking can be used to compute the probability that the Markov
chain satisfies the formula using existing tools such as PRISM [62] and Storm [63],
which have been demonstrated to successfully analyze systems modeled by Markov
chains with billions of states. In addition to the efficient off-the-shelf probabilistic
model checkers, our approach is computationally tractable because constructing the
Markov chain from the confusion matrix is linear in the number of classes used for
perception.

For each confusion matrix, we can synthesize a corresponding Markov chain of the
system state evolution as per Algorithm 3. Using off-the-shelf probabilistic model
checkers such as Storm [63], we can compute the probability that the trace of a
system satisfies its requirement, P(s0 |= '), by evaluating the probability of sat-
isfaction of the requirement ' on the Markov chain. Let O(xe) be the set of all
possible predictions of true environment state xe by the the object detection model.
The system controller K : S ⇥ O(xe) ! S accepts as inputs the current state
of the agent and the environment, s0 2 S, and the environment state predictions
ye 2 O(xe) from object detection. Based on the predictions, it actuates the agent
resulting in the end state sf 2 S. At each time step, the agent makes a new ob-
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servation of the environment (ye) and chooses a control action corresponding to
ye.

Remark 2.2. Markov chain construction aids in evaluating the overall system. In
future work, we plan to address the issue of tracking, in which perception errors are
tracked over multiple temporal frames.

Definition 2.14 (Labeled Markov Chain [60]). A discrete-time labeled Markov
chain is a tuple M = (S,P, ◆init, AP, L), where S is a non-empty, countable set
of states, P : S ⇥ S ! [0, 1] is the transition probability function such that for all
states s 2 S, ⌃s02SP(s, s0) = 1, ◆init : S ! [0, 1] is the initial distribution such that
⌃s2S◆init(s) = 1, AP is a set of atomic propositions, and L : S ! 2AP is a labeling
function.

The �-algebra of Markov chain M is (Paths(M, 2CM)), where CM = {Cyl(⇡̂)|⇡̂ 2
Pathsfin(M)} [60]. Let SM(') denote all paths of the MC M in Pathsfin(M)\
Paths(M).

Definition 2.15 (Probability on a Markov Chain). Given an LTL formula ' over
AP , a true state of the environment, xe, an initial system state, s0 = (sa,0, xe), and
a Markov chain M describing the dynamics of the overall system, we denote the
probability that the system will satisfy ' starting from state s0 as PM(s0 |= 's).
This probability can be computed using standard techniques as described in [60].
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Algorithm 3: Markov Chain Construction

1: procedure Labeled Markov Chain(S, xe, s0, K, CM)
Input: Product states S, True environment xe, Initial condition s0 := (sa,0, xe) 2

S, Controller K synthesized for s0 and ', Confusion matrix CM,
Output: Markov Chain M carrying the probability of detection error

2: Pr(s, s0) = 0, 8s, s0 2 S
3: K  Initialize Controller for initial state s0
4: for si 2 S do
5: ◆init(si) = 1 . Initial Distribution
6: for ye 2 O(xe) do
7: sf  K(si, ye) . Controller
8: Identify zk according to Definitions 2.12, 2.13
9: µclass,k, µprop,k  Equations (2.11), (2.13).

10: if class-labeled then
11: p 

Q|ye|
i=1 µclass,k(ye(i), xe(i))

12: if proposition-labeled then
13: Pj  Propositions for true xe

14: Pi  Propositions for predicted ye
15: p µprop,k(Pi, Pj)

16: Pr(si, sf ) Pr(si, sf ) + p

17: return M = (S, Pr, ◆init, AP, L)

Proposition 2.1. Given ' as a temporal logic formula over the agent and the en-
vironment states, true state of the environment xe, agent initial state sa,0, and a
Markov chain M constructed via Algorithm 3, then P(s0 |= ') is equivalent to
computing PM(s0 |= '), where s0 = (sa,0, xe).

Proof. We begin by considering the transition probabilities Pr and the transition
probabilities on the Markov chain P. Since misclassification errors are the only
source of non-determinism in the evolution of the agent state, by construction, we
have that P(si, sj) = Pr(si, sj) for some si, sj 2 S. Next, we compare the �-
algebra of Markov chain M with the �-algebra associated with state s0. By con-
struction of the Markov chain, observe that any path p 2 Paths(s0) is also a path
on the MC M, p 2 Paths(M), and as a result Cs0 ⇢ CM. Similarly, by construc-
tion, there is no finite trace on the Markov chain starting from s0, �(s0) 2 SM that
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is not in S(').

P(s0 |= ') =
X

�(s0)2S(')

Ps0(Cyl(�(s0)))

=
X

�(s0)2S(')

Y

0i<n

Pr(�i, �i+1)

=
X

�(s0)2S(')

Y

0i<n

P(�i, �i+1)

=
X

�(s0)2SM(')

Y

0i<n

PM(Cyl(�(s0)))

=PM(s0 |= ')

2.6 Experiments
In this section, we conduct various experiments the car-pedestrian example in sim-
ulation. We present system-level evaluations for the car pedestrian example for
various types of confusion matrices.

Fundamental Tradeoffs. Even in the simplest setting of the traditional class-based
confusion matrix, we can show that these quantitative evaluations highlight funda-
mental tradeoffs in detection, and that the right operating point must be informed
by system-level specifications as well as the down-stream control logic. Often in
autonomous driving applications, maximizing recall is prioritized over precision for
safety purposes. In our example, maximizing recall would correspond with increas-
ing tendency to stop at Ck�1, even if xe 6= ped. In Figure 2.4, we show how varying
precision/recall affects the probability of satisfaction for Vmax = 6. These preci-
sion/recall pairs were chosen to reflect the general precision/recall tradeoff trends
for classification tasks [50]. For the results presented in this chapter, we construct
a confusion matrix as a function of precision (p) and recall (r) as shown in CM(p, r)

of Table 2.1, and are in reference to the class label ped. In Table 2.1, TP, FP, TN, FN
are the number of true positives, false positives, true negatives, and false negatives,
respectively, of the ped class label. These are derived from precision p and recall
r as follows,

TP = r , FP = TP(
1

p
� 1) ,

TN = 2� FP , FN = 1� TP .
(2.15)

Note that this is one of many possible confusion matrices that could be constructed;
we have chosen one of them for illustration, and we use it consistently across all
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Table 2.1: Confusion matrices used in simulation for various precision-recall pairs,
where TP, TN, FP, FN are given according to equation (2.15).

Predicted True (CM(p, r))
ped obs empty

ped TP FP/2 FP/2
obs FN/2 4TN/10 TN/10
empty FN/2 TN/10 4TN/10

precision/recall pairs.

(a) True environment: ped (b) True environment: obs

Figure 2.4: For class-labeled confusion matrices with precision-recall values de-
rived according to Table 2.1. (a) Satisfaction probabilities that the car stops at Ck�1

for xe = ped under various initial speeds and maximum speeds Vmax such that
1  Vmax  6. (b) Satisfaction probabilities that the car does not stop at Ck�1

for xe = obs under various initial speeds and maximum speeds Vmax such that
1  Vmax  6.

nuScenes Dataset: We choose nuScenes [64] to illustrate the metrics introduced
in this chapter on a real-world dataset. We choose a state-of-the-art PointPillars
detection model for nuScenes that uses the LiDAR modality [65, 66]. The pre-
trained model1 is evaluated on the validation split of the full nuScenes dataset. The
resulting dataset has 6019 pointcloud samples, with annotated objects common to
urban settings such as pedestrians, cars, trucks, among others. For this detection
model, we tabulate the evaluation results according to the various confusion ma-
trices discussed so far. For the car-pedestrian example and its controller described
previously, we compute the system-level guarantees, i.e., the probability that the
car will satisfy the safety requirements in equations (2.1)-(2.3), given the confu-

1Available open source at this Github repositoryhttps://github.com/open-
mmlab/mmdetection3d/tree/main/configs/pointpillars.

https://github.com/open-mmlab/mmdetection3d/tree/main/configs/pointpillars
https://github.com/open-mmlab/mmdetection3d/tree/main/configs/pointpillars
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Prediction True Label
1  d  10 11  d  20 21  d  30

ped obs ped obs ped obs

ped 1849 11 369 5443 87 963 4290 271 943
obs 56 5697 47 45 12406 354 191 12939 762

1002 621 6117 2734 1949 12668 2406 3647 8969
31  d  40 41  d  50 51  d  60

ped obs ped obs ped obs

ped 3302 382 213 0 0 0 0 0 0
obs 358 10670 345 0 6981 252 0 0 0

1824 4358 1285 0 4346 709 0 0 0

Table 2.2: Class labeled confusion matrix, parametrized by distance computed from
the full nuScenes dataset for the Pointpillars model

sion matrices from various evaluations of the detection model. Each discrete state
corresponds abstracts a 1m distance on the road.

Each scene is 20 seconds long, with 3D object annotations made at 2 Hz for 23 dif-
ferent classes. All objects with nuScenes annotation “human” are clustered under
the class ped, and all objects annotated as “vehicle”, static obstacles, and mov-
ing obstacles are annotated as obs. We use all 40 pointcloud frames from the
LIDAR-TOP sensor in each scene to form our dataset D. The LiDAR sweeps
accompanying each scene provides distances of annotated objects from the ego
vehicle. We use the birds-eye-view to compare predicted bounding boxes to the
ground truth, comparing for both l2-norm in x, y-positions as well as orientation
error. These evaluations are used to construct the (distance-parametrized) class-
labeled and proposition-labeled confusion matrices from Algorithms 1 and 2 with
10m distance intervals with parameters D0 = 0 and Dkmax

= 100m. The class-
labeled and proposition-labeled confusion matrices for each distance bin are listed
in Tables 2.2 and 2.3, respectively.

For proposition-labeled confusion matrices, ground truth annotations and predic-
tions are grouped according to an occupancy patch that roughly covers the area
occupied by the ego. Concretely, the radius band Dk = (zk, zk+1) is split into oc-
cupancy patches covering the area every ✓ = zk

2.5 radians. The arc length of 2.5 m
is a user-specified parameter; here, it is chosen to roughly approximate the width
of a car. Table 2.4 is the proposition-labeled confusion matrix, where in addition to
distance, evaluations are grouped by the occupancy patch size. There is a consider-
able difference between the proposition-labeled confusion matrix that is and is not
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Prediction True Label
1  d  10 11  d  20

{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}
{} 0 141 94 6 0 110 139 24
{ped} 54 373 9 17 34 363 18 81
{obs} 20 3 2122 210 36 1 2301 388
{ped, obs} 0 3 104 415 1 18 233 1400

21  d  30 31  d  40
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 84 253 27 0 106 331 48
{ped} 34 246 34 74 31 241 45 128
{obs} 25 14 2109 443 17 12 2200 489
{ped, obs} 8 37 343 1565 0 42 245 1240

41  d  50 51  d  60
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 0 905 0 0 0 0 0
{ped} 0 0 0 0 0 0 0 0
{obs} 42 0 3396 0 0 0 0 0
{ped, obs} 0 0 0 0 0 0 0 0

Table 2.3: Proposition labeled confusion matrix, parametrized by distance com-
puted from the full nuScenes dataset for the pretrained Pointpillars model

grouped according to an occupancy patch that is planner consistent. For example,
consider the label {ped} in the distance range 1  d  10 in in the ungrouped (see
Table 2.3) and the grouped proposition labeled confusion matrices (see Table 2.4).
The true positive rate of matching the label is higher when atomic propositions are
not grouped (see Tables 2.3 and 2.4). This is because the proposition must match
in every occupancy patch, which is finer, as opposed to every radius band.

The satisfaction probabilities for the pedestrian case is shown in Figure 2.5a. The
system-level satisfaction probability in the case of the true environment not having a
pedestrian is given in Figure 2.5b. The full class and proposition labeled confusion
matrices are given in Tables 2.5 and 2.6, respectively. The code for this chapter
is given in the Python package, TRELPY and is available on GitHub2. In both
the class labeled and proposition labeled confusion matrices, notice that after a
distance of 50m, there are no more detections output by the model, beyond which
the nuScenes LiDAR data is sparse and cannot be reliably inferred from [64]; this is
also nuScenes threshold for evaluation and objects beyond 50m are in the far-field
and not annotated [67].

Figure 2.5 illustrates the importance of choosing perception metrics at the right
level of fidelity. The proposition-labeled confusion matrix (green curve) and its dis-

2https://github.com/IowaState-AutonomousSystemsLab/TRELPy

https://github.com/IowaState-AutonomousSystemsLab/TRELPy
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Prediction True Label
1  d  10 11  d  20

{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}
{} 0 344 280 6 0 1689 1658 10
{ped} 145 649 10 11 582 3183 77 28
{obs} 29 8 4006 133 262 29 11241 94
{ped, obs} 2 3 44 256 20 12 36 175

21  d  30 31  d  40
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 1615 3150 16 0 1316 3912 13
{ped} 697 2987 260 17 188 2368 353 22
{obs} 658 149 11878 58 317 286 9978 37
{ped, obs} 9 29 64 71 2 30 26 57

41  d  50 51  d  60
{} {ped} {obs} {ped, obs} {} {ped} {obs} {ped, obs}

{} 0 0 4069 0 0 0 0 0
{ped} 0 0 0 0 0 0 0 0
{obs} 245 0 6706 0 0 0 0 0
{ped, obs} 0 0 0 0 0 0 0 0

Table 2.4: Proposition labeled confusion matrix, in which evaluations are
groupedboth by distance as well as orientation from the ego. This matrix is de-
rived for the full nuScenes dataset for the pre-trained Pointpillars model.

(a) True environment: ped (b) True environment: obs

Figure 2.5: System-level probabilistic guarantees for the car-pedestrian example.
Figure 2.5a shows the satisfaction probability that the car stops at Ck�1 for xe =
ped under various initial speeds and maximum speeds Vmax such that 1  Vmax 
6. Figure 2.5b shows the satisfaction probability that the car does not stop at Ck�1

for xe = obs under various initial speeds and maximum speeds Vmax such that
1  Vmax  6.
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Prediction True Label
ped obs

ped 14884 751 2488
obs 650 48693 1760

7966 14921 29748

Table 2.5: Class Labeled Confu-
sion Matrix computed from the full
nuScenes dataset for the Pointpillars
model

Prediction True Label
{empty} {ped} {obs} {ped, obs}

{} 0 441 1722 105
{ped} 153 1223 106 300
{obs} 140 30 12128 1530
{ped, obs} 9 100 925 4620

Table 2.6: Proposition Labeled Con-
fusion Matrix computed from the full
nuScenes dataset for the Pointpillars
model

tance parametrized counterpart (red curve) result in the highest system-level guar-
antees for the pedestrian case (see Figure 2.5a). In comparison, the class-labeled
and proposition-labeled confusion matrices with grouped evaluations result in lower
probabilities of satisfaction. While the class-labeled confusion matrix can result in
overly conservative results, the proposition-labeled confusion matrices (without the
grouped evaluations) might result in overly relaxed guarantees. For example, sup-
pose there are multiple pedestrians in the radius band Dk, and the model detects just
one pedestrian from the LiDAR data. If the pedestrian detected is one that is not
going to interact with the car (e.g., it is located laterally distant from or behind the
vehicle), then this detection is not safety-critical. However, this still gets counted
as a true positive in the proposition-labeled confusion matrix. This coarseness is
reduced when evaluations are grouped, especially in a manner consistent with the
high-level planner’s discrete abstraction. This can be seen in the satisfaction prob-
abilities of the proposition-labeled confusion matrix computed from grouped eval-
uations (brown curve). This satisfaction probability lies between probability curves
for the class-labeled and ungrouped proposition-labeled counterparts, thus illustrat-
ing the importance of choosing the right fidelity in grouping abstractions.

Sensitivity Analysis. this chapter is focused on highlighting the importance of
system-level reasoning of determining perception metrics that are best suited for
system-level analysis. The choice of a stronger object detection model would better
highlight the strength of our evaluation framework, as illustrated in Figure 2.6. For
each true positive rate for the pedestrian class, 20 random instances of the 4 ⇥
4 proposition-labeled confusion matrix were generated. Even though the class-
labeled confusion matrix is the most conservative, we observe that system-level
satisfaction probability is close to 1 when the true positive rate is high (> 99%).
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Figure 2.6: Sensitivity plots for satisfaction probability derived from proposition
labeled confusion matrix for the specification that the car does not stop at Ck�1

for xe = ped under various initial speeds and maximum speeds Vmax such that
1  Vmax  6. The sensitivity is shown for varying true positive rates of detecting
pedestrians.

2.7 Lower Bounds for Detection Metrics from System-level Guarantees
In this section, we will cover a case study to illustrate how system-level probabilistic
guarantees can inform quantitative evaluation metrics for perception. In particular,
we will derive lower bounds on detection metrics from desired system-level guar-
antees. This was implemented as a case study in the system design and analysis
tool, Pacti [68].

Assume-guarantee contracts are a useful formalism to specify assumptions and
guarantees of individual sub-systems or scenario viewpoints. Building on funda-
mentals in category theory, operators for composition, conjunction, refinement,
quotient, and others can be rigorously defined over assume-guarantee contracts.
This allows for formal reasoning about interactions between component imple-
mentations that respect assume-guarantee contracts, allowing for rigorous system
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Figure 2.7: Given a system-level specification Csys = (asys, gsys), and a specification
for the controller Ccon = (acon, gcon), derive the object detection specification Cdet =
(adet, gdet).

design. In addition to identifying requirements on perception systems from system-
level guarantees of safety, we will use this formalism in Chapter 5 for designing
compositional test plans.

Definition 2.16 (Assume-Guarantee Contract). Let B be a universe of behaviors,
then a component M is a set of behaviors M ✓ B. A contract is the pair C =

(A, G), where A are the assumptions and G are the guarantees. A component E is
an environment of the contract C if E |= A. A component M is an implementation
of the contract, M |= C if M ✓ G [ ¬A, meaning the component provides the
specified guarantees if it operates in an environment that satisfies its assumptions.
There exists a partial order of contracts, we say C1 is a refinement of C2, denoted
C1  C2, if (A2  A1) and (G1[¬A1  G2[¬A2). We say a contract C = (A, G)

is in canonical, or saturated, form if ¬A ✓ G.

In this case study, we consider the design of a vehicle that has to satisfy a safety
property with a given probability. We understand the vehicle as a system that con-
sists of two subsystems: a perception component (for object detection) and a con-
troller, as shown in Figure 2.7a. From knowledge of a system-level safety contract
and of the specification of the control component, the quotient operator is used to
derive a specification for the perception component.

Consider the car-pedestrian example once again. We encode the notion of safety in
linear temporal logic formulas 'c, where c 2 {ped,obs,empty}. This way, we
can specify safe behavior when an element of each class is present on the crosswalk.
We synthesized controllers to satisfy these safety properties, assuming perfect per-
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ception. The details of the properties and our synthesis approach can be found in
[55].

System-level contract. Let Pc be the probability that the car will satisfy require-
ment 'c when the crosswalk object has true class c. We set the system-level contract
to

Csys = (dl  d  du, gped ^ gobs ^ gempty),

where dl, du are bounds on the distance d to the object in the crosswalk, and gc char-
acterizes an affine lower bound of Pc. This system-level contract assumes bounded
distance to the object of interest, and guarantees affine lower bounds (as a function
of d) on probabilistic satisfaction of safety properties. In other words, at the system-
level we allow the probability of satisfaction of the safety property to degrade if the
vehicle is far away from the crosswalk.

Controller contract. As mentioned, we synthesize three controllers, each making
sure that property 'c would be satisfied under perfect perception. In order to write
a contract for each of the controllers, we make use of the fact that the perception
component is not perfect. As a result, the controller satisfies its safety specification
probabilistically.

To correlate probabilities of property satisfaction to perception errors, we base our
approach on [55, 69]. The satisfaction probability Pc for the safety property 'c is
computed by constructing a Markov chain with transition probabilities derived from
the true positive rates3 of the perception component, and then invoking standard
statistical model-checking tools.

For this example, Pc depends mainly on the true positive rate TPc of the class c. We
determine a tight affine lower bound for Pc as a function of TPc by sampling and
solving a linear program. The data for the linear program is generated by sampling
false negatives for each value of TPc and computing the corresponding Pc (see
Figure 2.7b). This procedure yields the following controller contract corresponding
to each object class c:

Cc = (lc  TPc, ac(TPc) + bc  Pc), (2.16)

where lc, ac, and bc are reals. The three contracts are composed to find the overall
control contract: Ccon = Cped k Cobs k Cempty.

3The true positive rate of a perception component for an object class is defined as the probability
that the component correctly detects an object to be of that class.
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Object detection contract. Now that we have the specifications for the system
and for the three controllers, we use contract operations to obtain the specification
of the perception component. The detection component contract is found via the
quotient Cdet = Csys/Ccon, where Csys is the system-level contract and Ccon is the
controller contract. Cdet imposes lower bounds on the true positive rates TPc of
each object class c. We illustrate the results numerically for an instance of the
car-pedestrian example. The system contract is set to

Csys = (1  d  10, 0.99(1� 0.1d)  Pped ^ 0.8(1� 0.1d)  Pobs
^ 0.95(1� 0.1d)  Pempty),

(2.17)

that is, the contract assumes the distance to the crosswalk is bounded between 1 and
10 units, and specifies desired system-level probabilities Pc as a function of distance
d. The controller contracts are computed to be Cped = (0.6  TPped, 1.58TPped �
0.622  Pped), Cobs = (0.3  TPobs, 0.068TPobs + 0.93  Pobs), and Cempty =

(0.6  TPempty, 0.2TPempty + 0.799  Pempty). These contracts impose affine
lower bounds on Pc with respect to the true positive rates TPc. The quotient results
in an object detection contract with true positive rates lower bounded by affine
functions of the distance d:

Cdet = (1  d  10, (1.02� 0.063d  TPped) ^ (0.6  TPped)^

(0.3  TPobs) ^ (0.6  TPempty)).
(2.18)

Now that we have obtained the contract for the perception component, we can give
this contract to designers responsible for object detection. The designers can de-
velop the perception component and verify that it satisfies the requirements on true
positive bounds as in Cdet. If it does, we can infer that the overall system with
controller designed according to Ccon will satisfy the system-level requirements.

2.8 Conclusion
The main takeaway of this chapter is that evaluation metrics for perception tasks
should be informed by the downstream control logic as well as system-level metrics
of safety. We focused on the object detection and classification task of perception,
and made the following contributions. First, we proposed the idea of using con-
fusion matrices as probabilistic models of sensor error to inform how system-level
guarantees must be computed. Second, we replaced the labels of the confusion ma-
trix with atomic propositions that are used in the system-level specifications and the
downstream planner. Third, we finetuned the proposition-labeled confusion matrix
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by grouping evaluations to an abstraction that is consistent with the occupancy size
of the vehicle. Fourth, we illustrated how assume-guarantee contracts, or system
design optimization tools in general, can leverage our framework to inform desired
evaluation criteria for the percpetion module from system-level guarantees. Finally,
we evaluated a state-of-the art detection model on the nuScenes dataset according
to these metrics, and computed the corresponding system-level guarantees for a
discrete-state car-pedestrian example.

There are several exciting directions for future work. As illustrated in Figure 2.5,
the satisfaction probabilities of safety requirements are still relatively low compared
to the high levels of safety guarantees (e.g., 1 � 10�6 to 1 � 10�9) that are often
expected in these applications. This is for several reasons. First, we evaluated a
model trained on one modality (3D object detection from pointcloud); typically
the best models are multi-modal and use data from several different sensors. Sec-
ondly, we do not consider tracking in our evaluation; once an object is detected,
it is tracked across frames and an object misdetected in a single frame need not
drastically change the high-level plan. Given the sensitivity analysis, we expect the
satisfaction trends to improve with the aforementioned extensions and with better
object detection models.

In addition, this paradigm can be extended to evaluate other perception tasks in a
task-relevant manner, to handle scenarios with dynamic environments, to synthe-
size controllers that are optimal for a given perception model, and to validate the
framework via experimental demonstrations. For this, we will consider building
on the work in [54], which studies quantitative analysis of systems that operate in
partially known dynamic environments. It assumes that the environment model be-
longs to a set Menv of Markov chains. The system does not know the true model
of the environment, and instead maintains a belief, which is defined as a probabil-
ity distribution over all possible environment models in Menv. We will extend our
work to derive the belief update function based on the perception performance.
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