
1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
Autonomous robotic systems have the potential for profound impact on our society
— legged and wheeled robots for search and rescue missions, drones for wildfire
management, self-driving cars for improved mobility, and robotic space missions
for exploration and repair of spacecraft. These systems are expected to correctly
reason about and execute tasks in vast operational environments, including inter-
actions with other agents, both human and autonomous. Furthermore, these sys-
tems are incredibly complex: they comprise of several subsystems which are de-
signed under different algorithmic paradigms (e.g., learning-based to model-based)
and operate at different timescales and abstractions (e.g., high-level reasoning and
decision making to low-level control) to accomplish the different functionalities
(e.g., perception, behavior prediction, planning, and control) necessary for correct
system-level behavior.

In light of these complexities, formal guarantees of system behavior during the de-
sign phase alone is not sufficient; mainstream deployment of these systems requires
principled theoretical and algorithmic frameworks for test and evaluation, and ver-
ification and validation, not just to validate software and hardware implementations
of the system, but also to complement formal guarantees derived during system
design. How do we derive a small number of tests that can provide high confidence
that the system can operate safely? These operational tests should ideally cover
salient features of the operating environment such as disturbance and uncertainty,
discrete and continuous inputs, closed-loop behavior of agents in the environment
among others. Furthermore, designing and testing systems for guarantees relies on
definitions of correct behavior, success, or good performance, which differs for
each subsystem and might not be easily identifiable. How do we evaluate subsys-
tems with respect to system-level task requirements?

Driven by these questions, this thesis is focused on testing and evaluating high-
level reasoning and decision making algorithms in safety-critical robotic systems.
We will draw from fundamentals in control and systems theory, convex and com-
binatorial optimization, formal methods, and to address challenges in specification,

2

testing, and evaluation of safety-critical autonomous systems.

1.2 Challenges
This thesis considers the following challenges in that are currently bottlenecks to
safe deployment of complex autonomous systems, especially in safety-critical ap-
plications. We will take the example of self-driving to illustrate these challenges
due to the richness of the example, but these challenges translate to other robotic
applications as well.

Challenge 1: Evaluating Perception Performace with Respect to System-level
Requirements
Consider the high-level overview of a classical software stack in a self-driving car
as shown in Figure 1.1. Variations of this software stack differ in the neat separa-
tion of the perception and planning modules. Typically, the perception and planning
modules are developed under different computational paradigms. The backbone of
perception models is deep learning, while approaches to planning have tradition-
ally included rulebooks and formal methods, sampling based planners, planning
over occupancy grids, and model-based approaches such as model predictive con-
trol for mid-level planning. Due to this, these sub-systems are designed differ-
ently, often optimizing for different performance metrics. Therefore, it becomes
important to establish a safety case that accounts for the interaction between per-
ception and planning modules, and its impact on system-level safety. In its docu-
ment, “A Blueprint for AV Safety: Waymo’s Toolkit For Building a Credible Safety
Case” [2, 3], Waymo defines a safety case as follows:

“A safety case for fully autonomous operations is a formal way to explain how a
company determines that an AV system is safe enough to be deployed on public
roads without a human driver, and it includes evidence to support that determina-
tion.”

In an effort to establish such a safety case, we need to formally and quantitatively
reason about how each subsystem contributes to the overall safety of the system.
Advancements in perception models is often made along metrics that are not clearly
aligned with system-level behavior. Yet, these state-of-the-art models are directly
used in robotic systems such as self-driving cars, without standard methods of as-
sessing whether it is indeed suited for the downstream planning and control task.
For example, in object detection tasks, recall or sensitivity is a metric that quantifies
how well a model can correctly classify a sample with a certain class label given all

3

Figure 1.1: Typical software stack in a safety-critical system such as a self-driving
vehicle.

relevant samples with that true class label. However, as we will see in this thesis,
optimizing models with high recall with respect to pedestrians does not necessarily
translate to better safety guarantees in all scenarios. Thus, we need new theoretical
tools to formalize the interaction of perception errors, including detection and clas-
sification errors, localization errors, tracking errors, among others, on downstream
planning tasks.

Challenge 2: Test and Evaluation, and Verification and Validation of Safety-
Critical Autonomous Systems
For mainstream deployment of safety-critical systems, we need rigorous test and
evaluation protocols to certify that autonomous systems comply with certain re-
quirements. Testing can impact the certification process in by guiding regulators
and designers to aspects of the design that need more careful evaluation.

Current approaches to safety certification can be broadly categorized as follows.
The first category comprises of analysis techniques (e.g., fault tree analysis (FTA)
and hazard analysis and risk assessment (HARA)), which cannot scale with the
complexity in system design and in operational environments. The second category
covers simulation-based testing such as Monte Carlo sampling, simulation-based
falsification, and regression testing. These approaches typically sample continu-
ous test parameters, and even if discrete parameters are sampled, they are typically
kept fixed for the duration of the test (e.g., color of environment car) as opposed
to a discrete test strategy that is reactive to system behavior. The third category
involves collecting real-world experimental data (e.g., miles driven without disen-

4

(a) Static national qualifying test at 2007
Darpa Urban Challenge.

(b) Dynamic national qualifying test at
2007 Darpa Urban Challenge.

Figure 1.2: National Qualifying Events (NQEs) from the 2007 DARPA Urban Chal-
lenge. The photos are from the perspective of Alice, Caltech’s entry in the compe-
tition, during the track tests.

gagement) to build statistical confidence that the system is safe. This approach can
be extremely inefficient in time and cost, and would have to be repeated after each
design iteration [4]. The final approach of manual constructing tests requires test
engineers to rely on their expertise to specify the high-level scenario as well as
design the test harness (e.g., specifying the number and locations of obstacles, dy-
namic agents and their strategies). In the application of autonomous vehicles, there
is ongoing effort to standardize requirement specification, and test and evaluation
procedures [5–8]. Standards such as “ISO 21448:2022 Safety of the Intended Func-
tionality (SOTIF)” [6] provide guidance on verification and validation methods to
demonstrate that self-driving. Listed below are some approaches to testing in the
self-driving industry today.

Track-testing at the DARPA Urban Challenge: The 2007 DARPA Urban Chal-
lenge ushered interest in autonomous driving in urban environments [9]. Participat-
ing vehicles had to pass three small-scale operational test-courses, national qualify-
ing events or NQEs, that were designed to evaluate the autonomous car’s ability to
satisfy safety, basic and advanced navigation requirements, and basic and advanced
traffic scenarios [10]. Exhaustive verification for such complex safety-critical sys-
tems is prohibitive, creating a need for a formal operational testing framework to
certify reliability of these systems [11]. Figure 1.2 shows Caltech’s entry, Alice, in
the test tracks corresponding to a completely static test environment and a dynamic
test environment with other live vehicles. These tests were designed by entirely by
test engineers.

AV companies have long relied on testing on urban roads to demonstrate to gather

5

(a) Cruise vehicle driving in the path of
a fire truck.

(b) Map by Will Jarrett at Mission Lo-
cal [12] using data from the San Fran-
cisco Fire Department. This map shows
locations where Cruise vehicles violated
traffic rules during on-road testing in
their interactions with fire trucks.

Figure 1.3: Cruise vehicles driving in the path of emergency responders. In just the
first half of 2023, 55 such incidents were reported in the city of San Francisco.

data for test and evaluation, and to demonstrate technological readiness. However,
even test driving for millions of miles is not sufficient to demonstrate safety guaran-
tees. In California in the year 2023 alone, six companies with permits for driverless
testing have completed 3,267,792 miles in autonomous driving mode at SAE Level
4. However, it is still not sufficient to demonstrate required levels of safety. For
example, in the first half of 2023, there were 55 incidents of Cruise vehicles driving
in the path of emergency vehicles [12] (also see Figure 1.3). Recently, issues such
as these have led to driverless permits being suspended by the California DMV.

In addition to road testing, the AV industry heavily relies on track testing and
simulation-based testing to ensure the safety of its vehicles. Waymo’s safety method-
ology [5] lists the following methods to evaluate autonomous driving behavior on
its vehicles: i) hazard analysis that tests for robustness against user-defined haz-
ards, ii) scenario-based testing on an instrumented track and in simulation, and
iii) extensive simulation testing that aggregates driving performance across several
simulations. Aside from manually specified scenarios, the industry also relies on
police reports to test its software in challenging scenarios [5]. The self-driving car
company, Zoox, also released a highlight video demonstrating its approach to track
testing, snapshots of which are shown in Figure 1.4. First, scenarios that are diffi-
cult are identified by test engineers, and these scenarios are recreated in simulation
and on the closed-loop track.

6

(a) Road condition: bumpy (b) Road condition: damp

(c) Testing high-speed maneuverability: ob-
stacle course in simulation

(d) Instrumented door to test whether Zoox
car can properly detect and avoid collision.

(e) Scenario design by test engineers prior
to track test shown in Figure 1.4f.

(f) Reactive test scenario in which Zoox car
must respond correctly in reaction to the en-
vironment agent.

Figure 1.4: Instrumented track testing at Zoox. These images are taken from
“Putting Zoox to the Test” [1].

7

These case studies illustrate the need for rigorous approaches to test and evaluation
of these systems. Existing approaches do not provide a definitive answer to the
certification of autonomous systems in safety-critical settings. Now, we will cover
related work that is motivated by these challenges.

1.3 Related Work
Task-Relevant Evaluation of Perception
As discussed in the Challenges, perception and planning modules are typically de-
signed under different computational paradigms. At the NVIDIA AV Team, empiri-
cal studies on how perception design choices affect overall system-level safety have
been studied in a pedestrian jay-walking scenario [13]. These empirical studies re-
flect the need for studying this problem more rigorously. The design paradigms for
planning and control submodules are usually backed by guarantees of safety and
stability. For this related work, we will take the example of formal methods as a
paradigm for control system design, but these insights can extend to other planning
and control frameworks that provide guarantees of correctness.

Formal methods have been employed to construct provably correct planners and
controllers given a system model and temporal logic specifications [14–18]. The
correctness guarantee, typically specified using a temporal logic formula, relies
heavily on the assumption that the input (i.e., the perceived world reported by per-
ception) is perfect. Perception is important for state estimation, which is necessary
for the downstream control and planning logic to effectively react to the environ-
ment. For example, if the perception component only reports the most likely class
of each object, the control component assumes that the reported class is correct.
Unfortunately, this assumption may not hold in most real-world systems, and the
correctness guarantees might no longer hold.

In recent years, verifying neural networks with respect to safety and robustness
properties has grown into an active research area [19–22]. Often, these methods
apply to specific neural net architectures, such as those with piece-wise linear acti-
vation functions [19], or might require knowledge of the safe set in the output space
of the neural network [20, 21]. Furthermore, these methods have been demon-
strated on learning-based controllers with smaller input dimensions, and are not yet
deployed for analysis of perception models. One reason for this is the difficulty in
formally characterizing properties of ML-based perception models, as elaborated
below.

8

First, recent work demonstrates that it is not realistically feasible to formally spec-
ify properties reflecting human-level perception for perception models, in particu-
lar, classification ML models, due to the high dimensional nature of the input, such
as pixels in an image [23]. Finally, not all perception errors are equally safety-
critical. Dreossi et al. reason that not all misclassifications are the same; some
are more likely to result in system-level failure, and therefore, it is necessary to
adopt system-level specifications and contextual semantics in developing a frame-
work for quantitative analysis and verification of perception models [23, 24]. This
has led to work on compositional analysis of perception models in finding system-
level counter-examples [25]. The work in [26] introduced the concept of interaction
zones using Hamilton-Jacobi reachability theory, and illustrated that perception er-
rors in the interaction zone were more likely to result in system-level violations than
those outside of it. This observation was further backed in [27], which demonstrated
instances of both small perception errors (for the task of segmentation over RGB
images) leading to closed-loop system-level failure, and large perception errors still
resulting in safe system-level failures.

While there is work on evaluating performance of perception with temporal logic,
those formal specifications are defined over image data streams, and must be man-
ually formalized for each scenario / data stream [28, 29]. Often, there is high vari-
ability in the performance of perception models in seemingly similar environments,
such as variations in sun angle [30]. Therefore, for any given scenario, it can be
challenging to specify all realizations of the environment that a perception system
might encounter. On the other hand, it is simpler, and more accurate, to define
system-level specifications, such as “maintain a safe distance of 5 m from obsta-
cles” [23, 31–33].

Testing for Autonomous Systems
As described in the Challenges section, tests are often manually designed by test
engineers. This was seen in the DARPA Urban Challenge, and in current prac-
tices at AV companies such as Waymo and Zoox. Test scenarios are often con-
structed first in simulation using tools such as CARLA [34] and Scenic [35]. For
example, Scenic is a probabilistic programming language to model environments
of autonomous cyber-physical systems. A single Scenic program describes a dis-
tribution of environments by declaring random variables (e.g., position of parked
car, location of pedestrians, color of obstacles) and specifying distributions of each
of these random variables. A compiled Scenic program can be sampled to provide

9

concrete scenes, and these concrete scenarios are related by the high-level scenario
(e.g., number of cars and their approximate locations) used to define the Scenic
program. However, Scenic cannot handle the generation of these Scenic programs
from high-level specifications. The automated, reactive test synthesis framework in
Chapters 3– 4 addresses this, and can potentially be interfaced to Scenic to auto-
matically construct scenarios at all levels of the planning stack.

In the formal methods community, research on falsification aims to uncover bugs in
the software of cyber-physical systems with access to just black-box models, and
without any knowledge of the control design [36–40]. Oftentimes, specifications
for these cyber-physical systems are characterized in metric temporal logic (MTL)
and signal temporal logic (STL), which allow for specifying timed requirements
and also lend themselves to quantitative metrics of robustness to characterize the
degree to which a specification is satisfied or violated. The goal of falsification is
search over a specified input domain (typically continuous) to identify an input that
maximizes the degree of violation of the specified requirement. The community has
introduced several toolboxes, e.g., Breach [41] and S-TaLiRo [36, 42], among oth-
ers [43] for this effort. These falsification toolboxes can be interfaced with scenario
definition programs such as Scenic to automatically construct test scenarios, and an
example of such a tool is VerifAI [44]. Note that the user still needs to define the
high-level scenario in Scenic — interfacing with the falsifier returns the worst-case
concrete scenario from the distribution of scenarios.

Aside from traditional black-box optimization methods such as Bayesian optimiza-
tion, cross-entropy method, reinforcement learning has been used to identify fal-
sifying inputs [45–47]. Oftentimes, falsification algorithms are applied over con-
tinuous domains and metrics, and often cannot handle discrete input spaces. How-
ever, complex cyber-physical systems are expected to handle both continuous and
discrete inputs, and reason over continuous and discrete state spaces [48]. Addi-
tionally, falsifying inputs are often open-loop signals that generate the worst-case
trajectory in simlation. However, feedback is a fundamental principle in control
theory that allows us to design systems that are robust to unmodeled dynamics, un-
certainties, and disturbances. The contributions in thesis complements falsification
— our focus is on synthesizing high-level test environments and reactive test strate-
gies that operate over discrete state spaces. In future work, we can search over the
continuous parameters of the synthesized test environment (e.g., continuous pose
values of test agents, friction coefficients, exact timing of events) using falsification

10

algorithms for further concretizing the test scenario.

1.4 Thesis Overview and Contributions
The principles underlying my past and current work are reactive test plans, modular
test and evaluation of subsystems and interfaces between subsystems, and choosing
relevant specifications and evaluation criteria at the system and subsystem levels
by accounting for interactions between subsystems and their impact on system-
level behavior. The theoretical contributions as well as its applications, in both
algorithms and hardware, are outlined below.

Part I: System-level Reasoning for deriving Task-Relevant Metrics of Percep-
tion
Chapter 2 focuses on introducing task-relevant evaluation metrics for object de-
tection and classification models for perception. This work identifies evaluation
metrics of perception tasks that are useful in providing probabilistic guarantees on
system-level behavior. At a high-level, the main contribution of this work is in iden-
tifying standard perception metrics that can be used in a quantitative system-level
analysis, and in proposing new perception metrics that are relevant to the down-
stream planner and the system-level task.

First, we identify popularly used metrics in computer vision confusion matrices
as a candidate model for sensor error, and leverage probabilistic model checking
to quantify the probability of the overall system satisfying its requirements. Prior
work [49] has shown how to leverage a probabilistic model of sensor error in proba-
bilistic model-checking of the overall system with respect to system-level temporal
logic specifications. The work in this chapter was the first to identify confusion
matrices as a model of sensor error for detection and classification tasks, rigorously
define probabilities of misdetection from the confusion matrix, and show how it can
be leveraged in probabilistically model-checking system-level task specifications.

Confusion matrices are popularly used in computer vision to compare and evaluate
models for detection tasks, and a wide-variety of metrics such as accuracy, preci-
sion, recall, among others, can be derived from the confusion matrix. The key idea
was in identifying confusion matrices as a candidate for capturing requirements
on detection tasks, and in rigorously defining probabilities to relate the confusion
matrix to system-level performance with respect to temporal logic specifications.
Even on simple examples, our approach highlighted fundamental insights: perfor-
mance tradeoffs (e.g., precision-recall tradeoff) in detection tasks get reflected in

11

system-level performance, and our method gives sanity checks – both qualitative
and quantitative guidelines on selecting detection models and high-level planners,
which in combination have probabilistic system-level guarantees.

For example, consider a car-pedestrian scenario in which the autonomous car needs
to contend with multiple safety requirements — to stop for a pedestrian at a cross-
walk and to not stop unnecessarily if there are no pedestrians at the crosswalk.
While engineers training perception algorithms might optimize for high recall (i.e.,
to never miss a pedestrian even at the cost of false negatives), this will lead to the
car stopping frequently. This intuition was captured quantitatively in my frame-
work. Furthermore, if we have probabilistic system-level guarantees (e.g., meet a
safety requirement to 99%) and given a specific planning logic, we can derive lower
bounds on elements of the confusion matrix such as minimum true positive rate,
minimum false negative rate, and encode requirements on perception tasks in this
manner. The practical impact of this method is the ability to communicate quantita-
tive requirements via confusion matrices, rather than temporal logic specifications,
to engineers training perception algorithms for detection tasks.

The second contribution is in defining new metrics for detection tasks, informed
by the system-level specification as well as the downstream planning logic. This
work stemmed from the insight that not all perception errors are equally safety-
critical, and that current methods to evaluate perception models do not account for
this distinction. For instance, in evaluating models for object detection tasks in
computer vision, all misdetections are given equal weight in the confusion matrix.
However, not all misclassifications or misdetections will have the same impact on
system-level safety. To account for this, we introduced a distance-parametrized,
proposition-labeled confusion matrix, which: i) placed higher weight on correct
detection of objects closer to the ego, and ii) replaced the object class labels of
confusion matrices with atomic propositions that are more relevant to system-level
safety specification.

Guarantees from the distance-parametrized, proposition-labeled confusion matrices
is less conservative than the analysis that used the traditional class-based confusion
matrix. Further extensions of the proposition-labeled confusion matrix, in which
predictions are grouped according to the same level of abstraction used by the high-
level planner, result in system-level satisfaction probabilities that are neither too
relaxed and nor too conservative. Finally, the proposed metrics are used to evaluate
a PointPillars on the real-world nuScenes dataset. The core message of this work

12

is that metrics for evaluating perception tasks need to be carefully informed by
both the system-level specification as well as the downstream planning and control
logic. This work is being packaged as a Python toolbox, TRELPy: Task-Relevant
Evaluation of Perception.

Part II: Reactive Test Synthesis
Chapters 3– 4 focus on reactive test synthesis. These chapters address the problem
of synthesizing tests for high-level reasoning and decision-making in autonomous
robotic applications. Instead of having the entire test be manually designed, we
presume that it is easier for a test engineer to provide a formal description of the
objective of the test. My work focused on automated construction of test scenarios
from these high-level test objectives specified by the user/test engineer. Chapter 5
introduced preliminary directions on compositional test synthesis from unit tests
via assume-guarantee contracts.

Chapters 3– 4: The first contribution of this work is introducing the notion of a test
specification: a high-level description of the objective of the test. This test objective
is not revealed to the system under test, but is consistent with safety and liveness
assumptions the system has on its environment (e.g., there will always exist a path
to the goal, the environment agents will not adversarially collide).

The second contribution is in automatic construction of a reactive test that is con-
sistent with the test objective as well as minimally restrictive to the system. In
particular, the constructed test harness involves placement of static and reactive
constraints to system actions, and the smallest number of restrictions needed for the
test objective are found. These restrictions on system actions are such that if the
system under test is successful in meeting its requirements, the test objective is also
met. The third contribution is in automatically mapping these reactive constraints
to synthesize a reactive strategy of a dynamic test agent. Finally, we also prove that
the reactive test synthesis problem is NP-hard via a reduction from 3-SAT.

Algorithms: Chapter 4 provides algorithms to automate each of the aforemen-
tioned tasks. First, leveraging automata theory and combinatorial graph algorithms,
we formulate a network flow optimization to identify static and/or reactive test con-
straints for the system. The problem data for this algorithm includes the specifi-
cations the system is expected to satisfy, the test objective, and a discrete-state ab-
straction model of the system. Note that the system model is non-deterministic and
does not carry knowledge of the system control; it is just a high-level abstraction

13

representing all possible actions a system can take from any given state. Although
this is a combinatorial problem, we take advantage of the structure in the resulting
product graph to formulate a mixed-integer linear program with discrete variables
representing interdiction of edges in the network that correspond to reactive test
constraints. The choice of using network flows allows for the optimization to han-
dle medium sized problems (5000 integer variables) with a runtime of around 30s
to a few minutes. We prove that the optimal solution corresponds to a set of restric-
tions with the following guarantees: any trajectory of the system that satisfies the
system objective will also satisfy the test objective.

Furthermore, it is easy to augment additional optimization constraints (e.g., some
system actions cannot be constrained). This becomes prominent when synthesizing
a test agent strategy to match the restrictions returned by the optimization. The
optimization is solved offline, and the resulting solution is automatically mapped to
a reactive test strategy for a given dynamic agent. If the solution is not dynamically
feasible for the test agent, we use an efficient counterexample-guided approach to
resolve the MILP. For this, the test constraints are mapped as safety formulas that
the dynamic test agent is expected to satisfy. Additional safety formulas are found
to ensure that the dynamic test agent does not restrict system actions other than
the test constraints. Furthermore, we address livelocks by automatically identifying
potential livelock states, and specify that the test agent, if it occupies these states,
should only transiently occupy it. Finally, the synthesized test strategy chooses
from a set of possible initial conditions and realizes the reactive test constraints
found by the optimization.

Hardware Demos: This framework was demonstrated in hardware using quadrupeds
for robot navigation examples such as search and rescue, and testing motion prim-
itives. In addition to demonstrating the usefulness of this approach to real robotic
systems, the hardware experiments were repeatable and successful immediately af-
ter the test strategy was generated in simulation. These experiments demonstrated
that our framework can handle test objectives beyond simple abstractions of robot
position (e.g., go to a particular cell), but can also capture more complex behav-
iors such as dynamic motion primitives (e.g., jump then stand). Our test synthesis
framework had no knowledge of the control architecture for low-level motion prim-
itives (e.g., standing, walking, jumping) or even the mid-level planning framework
(e.g., waypoint following) on the quadruped. Despite this, the high-level, reactive
test strategy resulted in successful demonstrations in hardware. This experimen-

14

tal success points to promising future directions in decoupling test synthesis for
high-level reasoning and low-level control.

Finally, we also provide an argument for why traditional GR(1) synthesis tech-
niques cannot be used to directly synthesize tests that are not overly-restrictive.
There are two reasons. First, the synthesis of test constraints cannot be cast into an
LTL synthesis problem. In reactive synthesis for LTL or similar temporal logics,
synthesis assumes worst-case behavior of the other player, which is not consistent
with our objectives. Our test harness is not fully cooperative nor fully adversarial:
we do not help the system achieve its requirements yet ensure that there always ex-
ists a path for success. It is possible that this can be cast as a synthesis problem in a
different temporal logic that reasons over path properties (e.g., computational tree
logic (CTL), or hyperLTL). However, the synthesis in those specification languages
is known to be computationally intractable. Second, our optimization finds the
least restrictive set of test constraints, which traditional synthesis methods cannot
provide.

Chapter 5: The main contributions of this chapter are as follows. We estab-
lish a mathematical framework for merging two unit test scenarios using assume-
guarantee contracts. The merged test can be optimized according to an arbitrary
difficulty metric, and we use a receding horizon approach to synthesize winning
sets that guide the test strategy to optimize for the metric.

175

Bibliography

[1] Zoox, “Putting Zoox to the test: preparing for the challenges of the road,”
2021. https://zoox.com/journal/structured-testing/,
Last accessed on 2024-04-11.

[2] Waymo, “A blueprint for av safety: Waymo’s toolkit for building
a credible safety case,” 2020. https://waymo.com/blog/

2023/03/a-blueprint-for-av-safety-waymos/#:~:

text=A%20safety%20case%20for%20fully,evidence%

20to%20support%20that%20determination., Last accessed on
2024-05-05.

[3] F. Favarò, L. Fraade-Blanar, S. Schnelle, T. Victor, M. Peña, J. Engstrom,
J. Scanlon, K. Kusano, and D. Smith, “Building a credible case for safety:
Waymo’s approach for the determination of absence of unreasonable risk,”
2023. www.waymo.com/safety.

[4] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability?,” Transporta-
tion Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

[5] N. Webb, D. Smith, C. Ludwick, T. Victor, Q. Hommes, F. Favaro, G. Ivanov,
and T. Daniel, “Waymo’s safety methodologies and safety readiness determi-
nations,” 2020.

[6] I. S. Organization, “Road vehicles: Safety of the intended functional-
ity (ISO Standard No. 21448:2022),” 2022. https://www.iso.org/

standard/77490.html, Last accessed on 2024-04-11.

[7] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence test-
ing for autonomous vehicles: A new approach,” IEEE Transactions on Intel-
ligent Vehicles, vol. 1, no. 2, pp. 158–166, 2016.

[8] H. Winner, K. Lemmer, T. Form, and J. Mazzega, “Pegasus—first steps for
the safe introduction of automated driving,” in Road Vehicle Automation 5,
pp. 185–195, Springer, 2019.

[9] “DARPA Urban Challenge.” https://www.darpa.mil/about-us/
timeline/darpa-urban-challenge.

[10] “Technical Evaluation Criteria.” https://archive.darpa.mil/

grandchallenge/rules.html.

[11] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and
validation,” SAE International Journal of Transportation Safety, vol. 4, no. 1,
pp. 15–24, 2016.

https://zoox.com/journal/structured-testing/
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://waymo.com/blog/2023/03/a-blueprint-for-av-safety-waymos/#:~:text=A%20safety%20case%20for%20fully,evidence%20to%20support%20that%20determination.
https://www.iso.org/standard/77490.html
https://www.iso.org/standard/77490.html
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://archive.darpa.mil/grandchallenge/rules.html
https://archive.darpa.mil/grandchallenge/rules.html

176

[12] J. Eskenazi and W. Jarett, “Explore: See the 55 reports — so far — of robot
cars interfering with SF fire dept.,” 2023. https://missionlocal.

org/2023/08/cruise-waymo-autonomous-vehicle-robot-

taxi-driverless-car-reports-san-francisco/, Last
accessed on 2024-04-11.

[13] H. Zhao, S. K. Sastry Hari, T. Tsai, M. B. Sullivan, S. W. Keckler, and
J. Zhao, “Suraksha: A framework to analyze the safety implications of per-
ception design choices in avs,” in 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE), pp. 434–445, 2021.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[15] M. Kloetzer and C. Belta, “A fully automated framework for control of lin-
ear systems from temporal logic specifications,” IEEE Transactions on Au-
tomatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[16] M. Lahijanian, S. B. Andersson, and C. Belta, “A probabilistic approach for
control of a stochastic system from LTL specifications,” in Proceedings of
the 48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pp. 2236–2241, IEEE, 2009.

[17] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal tempo-
ral logic specifications,” in 53rd IEEE Conference on Decision and Control,
pp. 81–87, IEEE, 2014.

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon tempo-
ral logic planning,” IEEE Transactions on Automatic Control, vol. 57, no. 11,
pp. 2817–2830, 2012.

[19] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in International
Conference on Computer Aided Verification, pp. 97–117, Springer, 2017.

[20] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic verification and
reachability analysis of neural networks via semidefinite programming,” in
2019 IEEE 58th Conference on Decision and Control (CDC), pp. 2726–
2731, IEEE, 2019.

[21] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidefinite
programming,” IEEE Transactions on Automatic Control, 2020.

[22] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNV: The neural network verification tool for

https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/
https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/
https://missionlocal.org/2023/08/cruise-waymo-autonomous-vehicle-robot-taxi-driverless-car-reports-san-francisco/

177

deep neural networks and learning-enabled cyber-physical systems,” in In-
ternational Conference on Computer Aided Verification, pp. 3–17, Springer,
2020.

[23] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic adversarial deep learn-
ing,” in International Conference on Computer Aided Verification, pp. 3–26,
Springer, 2018.

[24] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, S. Shiv-
akumar, M. Vazquez-Chanlatte, and X. Yue, “Formal specification for deep
neural networks,” in International Symposium on Automated Technology for
Verification and Analysis, pp. 20–34, Springer, 2018.

[25] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” Journal of Au-
tomated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[26] S. Topan, K. Leung, Y. Chen, P. Tupekar, E. Schmerling, J. Nilsson, M. Cox,
and M. Pavone, “Interaction-dynamics-aware perception zones for obstacle
detection safety evaluation,” in 2022 IEEE Intelligent Vehicles Symposium
(IV), pp. 1201–1210, IEEE, 2022.

[27] K. Chakraborty and S. Bansal, “Discovering closed-loop failures of vision-
based controllers via reachability analysis,” IEEE Robotics and Automation
Letters, vol. 8, no. 5, pp. 2692–2699, 2023.

[28] A. Dokhanchi, H. B. Amor, J. V. Deshmukh, and G. Fainekos, “Evaluating
perception systems for autonomous vehicles using quality temporal logic,”
in International Conference on Runtime Verification, pp. 409–416, Springer,
2018.

[29] A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh,
H. B. Amor, and G. Fainekos, “Specifying and evaluating quality metrics
for vision-based perception systems,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1433–1438, IEEE, 2019.

[30] B. Bauchwitz and M. Cummings, “Evaluating the reliability of Tesla model
3 driver assist functions,” 2020.

[31] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J. Pappas,
“Courteous cars,” IEEE Robotics & Automation Magazine, vol. 15, no. 1,
pp. 30–38, 2008.

[32] H. Kress-Gazit and G. J. Pappas, “Automatically synthesizing a planning and
control subsystem for the DARPA Urban Challenge,” in 2008 IEEE Interna-
tional Conference on Automation Science and Engineering, pp. 766–771,
IEEE, 2008.

178

[33] T. Wongpiromsarn, S. Karaman, and E. Frazzoli, “Synthesis of provably cor-
rect controllers for autonomous vehicles in urban environments,” in 2011
14th International IEEE Conference on Intelligent Transportation Systems
(ITSC), pp. 1168–1173, IEEE, 2011.

[34] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Conference on Robot Learning, pp. 1–16,
PMLR, 2017.

[35] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli,
and S. A. Seshia, “Scenic: a language for scenario specification and scene
generation,” in Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 63–78, 2019.

[36] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro:
A tool for temporal logic falsification for hybrid systems,” in International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 254–257, Springer, 2011.

[37] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications
for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42,
pp. 4262–4291, 2009.

[38] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel, “Verification
of automotive control applications using s-taliro,” in 2012 American Control
Conference (ACC), pp. 3567–3572, IEEE, 2012.

[39] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal properties
of hybrid systems using the cross-entropy method,” in Proceedings of the
15th ACM international conference on Hybrid Systems: Computation and
Control, pp. 125–134, 2012.

[40] S. Bak, S. Bogomolov, A. Hekal, N. Kochdumper, E. Lew, A. Mata, and
A. Rahmati, “Falsification using reachability of surrogate koopman models,”
in Proceedings of the 27th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC ’24, (New York, NY, USA), Associ-
ation for Computing Machinery, 2024.

[41] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hy-
brid systems,” in International Conference on Computer Aided Verification,
pp. 167–170, Springer, 2010.

[42] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based adver-
sarial test generation for autonomous vehicles with machine learning com-
ponents,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1555–1562,
IEEE, 2018.

179

[43] C. Menghi, P. Arcaini, W. Baptista, G. Ernst, G. Fainekos, F. Formica,
S. Gon, T. Khandait, A. Kundu, G. Pedrielli, et al., “Arch-comp 2023 cat-
egory report: Falsification,” in 10th International Workshop on Applied Ver-
ification of Continuous and Hybrid Systems. ARCH23, vol. 96, pp. 151–169,
2023.

[44] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-
Chanlatte, and S. A. Seshia, “Verifai: A toolkit for the formal design and
analysis of artificial intelligence-based systems,” in International Conference
on Computer Aided Verification, pp. 432–442, Springer, 2019.

[45] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive
stress testing with reward augmentation for autonomous vehicle validatio,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 163–
168, IEEE, 2019.

[46] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu, “Dense re-
inforcement learning for safety validation of autonomous vehicles,” Nature,
vol. 615, no. 7953, pp. 620–627, 2023.

[47] X. Qin, N. Arechiga, J. Deshmukh, and A. Best, “Robust testing for cyber-
physical systems using reinforcement learning,” in Proceedings of the 21st
ACM-IEEE International Conference on Formal Methods and Models for
System Design, MEMOCODE ’23, (New York, NY, USA), p. 36–46, Asso-
ciation for Computing Machinery, 2023.

[48] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Toward verified artificial intelli-
gence,” Commun. ACM, vol. 65, p. 46–55, jun 2022.

[49] B. Johnson and H. Kress-Gazit, “Probabilistic analysis of correctness of
high-level robot behavior with sensor error,” 2011.

[50] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2019.

[51] X. Wang, R. Li, B. Yan, and O. Koyejo, “Consistent classification with gen-
eralized metrics,” 2019.

[52] P. Antonante, H. Nilsen, and L. Carlone, “Monitoring of perception systems:
Deterministic, probabilistic, and learning-based fault detection and identifi-
cation,” arXiv preprint arXiv:2205.10906, 2022.

[53] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava,
L. Karam, and G. Fainekos, “Encoding and monitoring responsibility sensi-
tive safety rules for automated vehicles in signal temporal logic,” in Proceed-
ings of the 17th ACM-IEEE International Conference on Formal Methods
and Models for System Design, pp. 1–11, 2019.

180

[54] T. Wongpiromsarn and E. Frazzoli, “Control of probabilistic systems un-
der dynamic, partially known environments with temporal logic specifica-
tions,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pp. 7644–7651, 2012.

[55] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Leveraging classifica-
tion metrics for quantitative system-level analysis with temporal logic spec-
ifications,” in 2021 60th IEEE Conference on Decision and Control (CDC),
(Austin, TX, USA (virtual)), pp. 564–571, IEEE, 2021.

[56] C. S. Pasareanu, R. Mangal, D. Gopinath, S. G. Yaman, C. Imrie, R. Cali-
nescu, and H. Yu, “Closed-loop analysis of vision-based autonomous sys-
tems: A case study,” arXiv preprint arXiv:2302.04634, 2023.

[57] S. Beland, I. Chang, A. Chen, M. Moser, J. Paunicka, D. Stuart, J. Vian,
C. Westover, and H. Yu, “Towards assurance evaluation of autonomous sys-
tems,” in Proceedings of the 39th International Conference on Computer-
Aided Design, pp. 1–6, 2020.

[58] Y. V. Pant, H. Abbas, K. Mohta, R. A. Quaye, T. X. Nghiem, J. Devietti,
and R. Mangharam, “Anytime computation and control for autonomous sys-
tems,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2,
pp. 768–779, 2021.

[59] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A differen-
tiable and modular control stack for autonomous vehicles,” in Proceedings of
The 6th Conference on Robot Learning (K. Liu, D. Kulic, and J. Ichnowski,
eds.), vol. 205 of Proceedings of Machine Learning Research, pp. 2170–
2180, PMLR, 14–18 Dec 2023.

[60] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[61] O. Koyejo, N. Natarajan, P. Ravikumar, and I. S. Dhillon, “Consistent mul-
tilabel classification.,” in NeurIPS, vol. 29, (Palais des Congrès de Montréal,
Montréal CANADA), pp. 3321–3329, Advances in Neural Information Pro-
cessing Systems, 2015.

[62] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in International conference on computer
aided verification, pp. 585–591, Springer, 2011.

[63] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is coming: A
modern probabilistic model checker,” in International Conference on Com-
puter Aided Verification, pp. 592–600, Springer, 2017.

[64] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset
for autonomous driving,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11621–11631, 2020.

181

[65] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (Los Alamitos, CA, USA), pp. 12689–12697, IEEE Computer So-
ciety, jun 2019.

[66] M. Contributors, “MMDetection3D: OpenMMLab next-generation plat-
form for general 3D object detection.” https://github.com/open-
mmlab/mmdetection3d, 2020.

[67] S. Gupta, J. Kanjani, M. Li, F. Ferroni, J. Hays, D. Ramanan, and S. Kong,
“Far3det: Towards far-field 3d detection,” in 2023 IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), (Los Alamitos, CA,
USA), pp. 692–701, IEEE Computer Society, jan 2023.

[68] I. Incer, A. Badithela, J. Graebener, P. Mallozzi, A. Pandey, S.-J. Yu, A. Ben-
veniste, B. Caillaud, R. M. Murray, A. Sangiovanni-Vincentelli, et al., “Pacti:
Scaling assume-guarantee reasoning for system analysis and design,” arXiv
preprint arXiv:2303.17751, 2023.

[69] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Evaluation metrics of
object detection for quantitative system-level analysis of safety-critical au-
tonomous systems,” in 2023 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), (Detroit, MI, USA), p. To Appear., IEEE,
2023.

[70] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in International Conference on Formal Modeling and Anal-
ysis of Timed Systems, pp. 92–106, Springer, 2010.

[71] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety properties
in hybrid systems,” International Journal on Software Tools for Technology
Transfer, vol. 15, no. 4, pp. 305–320, 2013.

[72] G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay, “Us-
ing control synthesis to generate corner cases: A case study on autonomous
driving,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 37, no. 11, pp. 2906–2917, 2018.

[73] T. Wongpiromsarn, M. Ghasemi, M. Cubuktepe, G. Bakirtzis, S. Carr, M. O.
Karabag, C. Neary, P. Gohari, and U. Topcu, “Formal methods for au-
tonomous systems,” arXiv preprint arXiv:2311.01258, 2023.

[74] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers for path
planning: A temporal logic approach,” in Proceedings of the 44th IEEE Con-
ference on Decision and Control, pp. 4885–4890, 2005.

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

182

[75] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey, “Paracosm:
A language and tool for testing autonomous driving systems,” arXiv preprint
arXiv:1902.01084, 2019.

[76] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with linear tem-
poral logic,” in Proceedings of the 2004 IEEE International Conference on
Information Reuse and Integration, 2004. IRI 2004., pp. 493–498, IEEE,
2004.

[77] G. Fraser and F. Wotawa, “Using LTL rewriting to improve the performance
of model-checker based test-case generation,” in Proceedings of the 3rd In-
ternational Workshop on Advances in Model-Based Testing, pp. 64–74, 2007.

[78] G. Fraser and P. Ammann, “Reachability and propagation for LTL require-
ments testing,” in 2008 The Eighth International Conference on Quality Soft-
ware, pp. 189–198, IEEE, 2008.

[79] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2009.

[80] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2022.

[81] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger, “Specifi-
cation patterns for robotic missions,” IEEE Transactions on Software Engi-
neering, vol. 47, no. 10, pp. 2208–2224, 2019.

[82] R. Bloem, G. Fey, F. Greif, R. Könighofer, I. Pill, H. Riener, and F. Röck,
“Synthesizing adaptive test strategies from temporal logic specifications,”
Formal methods in system design, vol. 55, no. 2, pp. 103–135, 2019.

[83] J. Tretmans, “Conformance testing with labelled transition systems: Imple-
mentation relations and test generation,” Computer Networks and ISDN Sys-
tems, vol. 29, no. 1, pp. 49–79, 1996.

[84] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Software Testing, Ver-
ification and Reliability, vol. 25, no. 8, pp. 716–748, 2015.

[85] R. Hierons, “Applying adaptive test cases to nondeterministic implementa-
tions,” Information Processing Letters, vol. 98, no. 2, pp. 56–60, 2006.

[86] A. Petrenko and N. Yevtushenko, “Adaptive testing of nondeterministic sys-
tems with FSM,” in 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering, pp. 224–228, IEEE, 2014.

[87] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 179–190, 1989.

183

[88] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis
of reactive (1) designs,” Journal of Computer and System Sciences, vol. 78,
no. 3, pp. 911–938, 2012.

[89] M. Yannakakis, “Testing, optimization, and games,” in Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science, 2004., pp. 78–
88, IEEE, 2004.

[90] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp,
“Optimal strategies for testing nondeterministic systems,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 4, pp. 55–64, 2004.

[91] A. David, K. G. Larsen, S. Li, and B. Nielsen, “Cooperative testing of timed
systems,” Electronic Notes in Theoretical Computer Science, vol. 220, no. 1,
pp. 79–92, 2008.

[92] E. Bartocci, R. Bloem, B. Maderbacher, N. Manjunath, and D. Ničković,
“Adaptive testing for specification coverage in CPS models,” IFAC-
PapersOnLine, vol. 54, no. 5, pp. 229–234, 2021.

[93] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths
in graphs of convex sets,” SIAM Journal on Optimization, vol. 34, no. 1,
pp. 507–532, 2024.

[94] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion plan-
ning around obstacles with convex optimization,” Science Robotics, vol. 8,
no. 84, p. eadf7843, 2023.

[95] H. Zhang, M. Fontaine, A. Hoover, J. Togelius, B. Dilkina, and S. Nikolaidis,
“Video game level repair via mixed integer linear programming,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, pp. 151–158, 2020.

[96] M. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis, “On the
Importance of Environments in Human-Robot Coordination,” in Proceedings
of Robotics: Science and Systems, (Virtual), July 2021.

[97] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic,
pp. 425–435. New York, NY: Springer New York, 1990.

[98] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, É. Renault, and
L. Xu, “Spot 2.0 — a framework for ltl and omega-automata manipulation,”
in Automated Technology for Verification and Analysis (C. Artho, A. Legay,
and D. Peled, eds.), (Cham), pp. 122–129, Springer International Publishing,
2016.

[99] F. Fuggitti, “Ltlf2dfa,” June 2020.

184

[100] S. Bansal, Y. Li, L. Tabajara, and M. Vardi, “Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 9766–9774, Apr.
2020.

[101] N. Klarlund and A. Møller, MONA Version 1.4 User Manual. BRICS, De-
partment of Computer Science, University of Aarhus, January 2001. Notes
Series NS-01-1. Available from http://www.brics.dk/mona/.

[102] D. Goktas and A. Greenwald, “Convex-concave min-max Stackelberg
games,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[103] I. Tsaknakis, M. Hong, and S. Zhang, “Minimax problems with coupled lin-
ear constraints: computational complexity, duality and solution methods,”
arXiv preprint arXiv:2110.11210, 2021.

[104] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson,
J. D. Siirola, J.-P. Watson, and D. L. Woodruff, Pyomo–optimization model-
ing in python, vol. 67. Springer Science & Business Media, third ed., 2021.

[105] V. V. Vazirani, Approximation algorithms, vol. 1. Springer, 2001.

[106] M. Fischetti and M. Monaci, “A branch-and-cut algorithm for mixed-
integer bilinear programming,” European Journal of Operational Research,
vol. 282, no. 2, pp. 506–514, 2020.

[107] J. B. Graebener, A. S. Badithela, D. Goktas, W. Ubellacker, E. V. Mazumdar,
A. D. Ames, and R. M. Murray, “Flow-based synthesis of reactive tests for
discrete decision-making systems with temporal logic specifications,” arXiv
preprint arXiv:2404.09888, 2024.

[108] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “Tulip: a
software toolbox for receding horizon temporal logic planning,” in Proceed-
ings of the 14th international conference on Hybrid systems: computation
and control, pp. 313–314, 2011.

[109] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with tulip: The temporal logic plan-
ning toolbox,” in 2016 IEEE Conference on Control Applications (CCA),
pp. 1030–1041, IEEE, 2016.

[110] S. Maoz and J. O. Ringert, “Gr (1) synthesis for ltl specification patterns,”
in Proceedings of the 2015 10th joint meeting on foundations of software
engineering, pp. 96–106, 2015.

[111] S. A. Cook, “The complexity of theorem-proving procedures,” in Logic, Au-
tomata, and Computational Complexity: The Works of Stephen A. Cook,
pp. 143–152, 2023.

185

[112] C. H. Papadimitriou, Computational complexity, p. 260–265. GBR: John
Wiley and Sons Ltd., 2003.

[113] W. Ubellacker and A. D. Ames, “Robust locomotion on legged robots
through planning on motion primitive graphs,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 12142–12148, 2023.

[114] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.

[115] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation
of programs,” Communications of the ACM, vol. 18, no. 8, pp. 453–457,
1975.

[116] L. Lamport, “win and sin: Predicate transformers for concurrency,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 12,
no. 3, pp. 396–428, 1990.

[117] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[118] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis, “Multiple viewpoint contract-based specification and design,” in
Formal Methods for Components and Objects: 6th International Symposium,
FMCO 2007, Amsterdam, The Netherlands, October 24-26, 2007, Revised
Lectures (F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
eds.), (Berlin, Heidelberg), pp. 200–225, Springer Berlin Heidelberg, 2008.

[119] A. L. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems,” Eur. J.
Control, vol. 18, no. 3, pp. 217–238, 2012.

[120] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa,
“A platform-based design methodology with contracts and related tools for
the design of cyber-physical systems,” Proceedings of the IEEE, vol. 103,
no. 11, pp. 2104–2132, 2015.

[121] I. Incer, The Algebra of Contracts. PhD thesis, EECS Department, University
of California, Berkeley, May 2022.

[122] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. L. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
K. G. Larsen, et al., “Contracts for system design,” Foundations and Trends
in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–400, 2018.

[123] I. Incer, A. L. Sangiovanni-Vincentelli, C.-W. Lin, and E. Kang, “Quotient
for assume-guarantee contracts,” in 16th ACM-IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE’18,
pp. 67–77, October 2018.

186

[124] R. Passerone, Í. Íncer Romeo, and A. L. Sangiovanni-Vincentelli, “Coherent
extension, composition, and merging operators in contract models for sys-
tem design,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, pp. 1–23, 2019.

[125] R. Negulescu, “Process spaces,” in CONCUR 2000 — Concurrency The-
ory (C. Palamidessi, ed.), (Berlin, Heidelberg), pp. 199–213, Springer Berlin
Heidelberg, 2000.

[126] J. B. Graebener^*, A. Badithela^*, and R. M. Murray, “Towards better
test coverage: Merging unit tests for autonomous systems,” in NASA For-
mal Methods (J. V. Deshmukh, K. Havelund, and I. Perez, eds.), (Cham),
pp. 133–155, Springer International Publishing, 2022. A. Badithela and J.B.
Graebener contributed equally to this work.

[127] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, “Shield synthesis,”
in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 533–548, Springer, 2015.

[128] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Euro-
pean conference on machine learning, pp. 282–293, Springer, 2006.

[129] I. Incer, L. Mangeruca, T. Villa, and A. Sangiovanni-Vincentelli, “The quo-
tient in preorder theories,” arXiv:2009.10886, 2020.

[130] O. Hussien, A. Ames, and P. Tabuada, “Abstracting partially feedback lin-
earizable systems compositionally,” IEEE Control Systems Letters, vol. 1,
no. 2, pp. 227–232, 2017.

[131] P. Tabuada, G. J. Pappas, and P. Lima, “Composing abstractions of hybrid
systems,” in International Workshop on Hybrid Systems: Computation and
Control, pp. 436–450, Springer, 2002.

[132] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone
systems,” in Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control, HSCC ’15, (New York, NY, USA),
p. 58–67, Association for Computing Machinery, 2015.

[133] J. Liu and N. Ozay, “Abstraction, discretization, and robustness in temporal
logic control of dynamical systems,” in Proceedings of the 17th international
conference on Hybrid systems: computation and control, pp. 293–302, 2014.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Motivation
	Challenges
	Related Work
	Thesis Overview and Contributions

	Evaluating Perception for System-level Task Requirements
	Introduction
	Preliminaries
	Problem Statement
	Role of Detection Metrics in Quantitative System-level Evaluations
	Markov Chain Analysis
	Experiments
	Lower Bounds for Detection Metrics from System-level Guarantees
	Conclusion

	Automated Test Synthesis via Network Flows: An Introduction
	Introduction
	Related Work
	Motivation
	Preliminaries
	Test Objective
	Algorithm for Synthesizing Static Test Environments
	Iterative Synthesis of Constraints
	Characteristics of the Algorithm
	Examples
	Conclusions

	Flow-based Reactive Test Synthesis
	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Graph Construction
	Part I: Flow-based Optimization via Min-Max Stackelberg Games with Coupled Constraints
	Part II: Flow-based Optimization via Mixed-Integer Linear Programming
	Test Strategy Synthesis
	Complexity Analysis
	Comparison to Reactive Synthesis
	Experiments
	Conclusions and Future Work

	Assume-Guarantee Contracts for Compositional Testing
	Introduction
	Preliminary Work on Merging Unit Tests
	Strong Merge Operator
	Temporal Constraints on Merging Tests
	Contract Theory for Formalizing Compositional Testing
	Test Structures and Tester Specifications
	Combining Tests
	Comparing Tests
	Splitting Tests
	Conclusions and Future Work

	Concluding Remarks
	Thesis Contributions
	Future Directions

	Bibliography

