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ABSTRACT

The galactic census is underway. In the thirty years since the discovery of 51-
Pegasi b, the first extrasolar planet discovered orbiting a main sequence star,
over 5,600 more have been tallied. The known exoplanet population is diverse,
yet no extrasolar system observed to date resembles our own. The radial
velocity (RV) technique, which works by measuring the reflex motion of a star
from a perturbing planet, remains the most capable method for discovering
exo-Earths. An exo-Earth would accelerate its star up to 9 cm s−1, Doppler-
shifting stellar absorption lines across the detector of a modern spectrograph
by 1/10,000th the width of a typical CCD pixel. At this level of precision,
every component of the instrument becomes critical to the overall stability.
Yet, despite many instruments reaching < 30 cm s−1 precision (such as the
Keck Planet Finder; KPF), exoplanet discovery has stalled around the 1 m s−1

level. The primary limitation is now correlated noise introduced by physical
processes on the stellar surface, dubbed “stellar activity,” which manifests RV
variability up to many m s−1 on timescales from minutes to decades.

This thesis has two primary themes. The first is concerned with addressing
the stellar activity problem and improving RV instrument performance. Both
are well-probed using “Sun-as-a-star” observations, as the Sun is the only star
in the universe with all orbiting planets accounted for and its surface resolved
at all timescales, wavelengths, and spatial scales. Chapter 3 presents the Solar
Calibrator (SoCal), an autonomous system that feeds stable, disc-integrated
sunlight to KPF at the W. M. Keck Observatory. With SoCal, KPF acquires
200–800 daily high-resolution (R = 98,000) optical (445-–870 nm) solar spectra
up to a signal-to-noise of 2400, providing a rich and unmatched dataset for
developing novel methods for mitigating stellar activity. We also leveraged
SoCal to discover, diagnose, and fix a detector issue in KPF, and to develop
and optimize the data reduction pipeline. We compared SoCal RVs to solar
RVs from the NEID solar feed and found excellent agreement on intra-day
timescales at the single-measurement photon-noise level (30—40 cm s−1).

The second theme of this thesis is the precise characterization of extrasolar
planets in extremely close-in orbits. These most extreme exoplanets often
constrain planet formation theories the most. Chapter 2 presents the discov-
ery and characterization of TOI-1347 b, the most massive rocky ultra-short-
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period exoplanet discovered to date. We found tentative evidence for a high
mean-molecular-weight atmosphere on the planet, which orbits its star in just
20 hours. An atmosphere on such a highly irradiated world would be unusual,
but not impossible, though JWST follow-up measurements are needed to con-
firm. Chapters 4, 5, 6, and 7 probe the mysterious formation pathways of hot
Jupiters from four unique angles. Archeological clues to their dynamical histo-
ries remain in their present-day stellar obliquity, the angle between the star’s
rotation axis and the planet’s orbital plane. The first is WASP-107 b, a super-
Neptune that must have migrated to explain its ultra-low density and escaping
atmosphere. We measured WASP-107 b to be on a polar orbit, an indicator of
a history of dynamics with its outer planetary companion WASP-107 c. The
second is KELT-18 b, an ultra-hot Jupiter we also found to be on a polar orbit.
The mutually misaligned stellar companion in the system may be to blame.
The third, Kepler-1656 b, is a highly eccentric sub-Saturn that could plausibly
be undergoing migration kick-started by its outer planetary companion. Its
orbit may be aligned, atypical of the traditional picture of high-eccentricity
migration. The fourth, Kepler-1658 b, is actively experiencing tidal orbital
decay around an evolved star, two aspects that strongly constrain orbital re-
alignment timescales. The system either retains its primordial configuration
or constrains tidal efficiencies. Unfortunately, our transit observations are con-
taminated by a massive starspot, which preclude the direct measurement of
the obliquity. This chapter instead explores new methods for directly modeling
starspots in EPRV spectra.



vii

PUBLISHED CONTENT AND CONTRIBUTIONS

Rubenzahl, R. A. et al. (May 2024a). “KPF Confirms a Polar Orbit for KELT-
18 b.” In: Submitted to The Astronomical Journal.
R.A.R. concieved the projected, collected and reduced the data, performed
the analysis, and wrote the manuscript.

Rubenzahl, R. A. et al. (May 2024b). “The Extremely Eccentric Sub-Saturn
Kepler-1656 b Has A Low Obliquity.” In: Submitted to The Astrophysical
Journal Letters.
R.A.R. concieved the projected, collected and reduced the data, performed
the analysis, and wrote the manuscript.

Rubenzahl, R. A. et al. (Apr. 2024c). “The TESS-Keck Survey. XII. A Dense
1.8 R ⊕ Ultra-short-period Planet Possibly Clinging to a High-mean-molecular-
weight Atmosphere after the First Gigayear.” In: The Astronomical Journal
167.4, 153, p. 153. doi: 10.3847/1538-3881/ad28bb. arXiv: 2402.07451
[astro-ph.EP].
R.A.R. performed the light curve and radial velocity analyses, optimized
the RV scheduling, obtained some of the HIRES observations, and wrote
the manuscript. F.D. performed the phase curve and secondary eclipse anal-
ysis.

Rubenzahl, R. A. et al. (Dec. 2023). “Staring at the Sun with the Keck Planet
Finder: An Autonomous Solar Calibrator for High Signal-to-noise Sun-as-
a-star Spectra.” In: Publications of the Astronomical Society of the Pacific
135.1054, 125002, p. 125002. doi: 10.1088/1538- 3873/ad0b30. arXiv:
2311.05129 [astro-ph.IM].
R.A.R. contributed to the instrument conception and design with input from
S.H. and A.W.H., built, tested, and installed the Solar Calibrator hardware
and software, collected and analyzed the data, and wrote the manuscript.
S.H., J.W., G.H., and A.W.H contributed to the instrument design, instal-
lation, and integration at Keck Observatory. M.B. integrated the control
software into the Keck Task Library. Other authors assisted with installa-
tion at Keck and integration with KPF and the DRP.

Rubenzahl, R. A. et al. (Mar. 2021). “The TESS-Keck Survey. IV. A Ret-
rograde, Polar Orbit for the Ultra-low-density, Hot Super-Neptune WASP-
107b.” In: The Astronomical Journal 161.3, 119, p. 119. doi: 10.3847/1538-
3881/abd177. arXiv: 2101.09371 [astro-ph.EP].
R.A.R. analyzed the data, performed the modeling and n-body simulations,
and wrote the manuscript.

https://doi.org/10.3847/1538-3881/ad28bb
https://arxiv.org/abs/2402.07451
https://arxiv.org/abs/2402.07451
https://doi.org/10.1088/1538-3873/ad0b30
https://arxiv.org/abs/2311.05129
https://doi.org/10.3847/1538-3881/abd177
https://doi.org/10.3847/1538-3881/abd177
https://arxiv.org/abs/2101.09371


viii

TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Brief History of Planet Discovery . . . . . . . . . . . . . . . 1
1.2 The Orbits of Close-In Exoplanets . . . . . . . . . . . . . . . . 3
1.3 Techniques For Measuring the Radial Velocity . . . . . . . . . 12
1.4 Techniques For Measuring the Stellar Obliquity . . . . . . . . . 18
1.5 Stellar Activity: Why Stare at the Sun? . . . . . . . . . . . . . 23
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter II: A Dense Ultra-short-period Planet Possibly Clinging to a
High-mean-molecular-weight Atmosphere . . . . . . . . . . . . . . . 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Host Star Properties . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 High Resolution Imaging . . . . . . . . . . . . . . . . . . . . . 35
2.4 TESS Photometry . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Radial Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.8 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter III: The KPF Solar Calibrator . . . . . . . . . . . . . . . . . . 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Instrument Design . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 First Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 85

Chapter IV: A Retrograde, Polar Orbit for the Ultra-low-density, Hot
Super-Neptune WASP-107 b . . . . . . . . . . . . . . . . . . . . . . 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Dynamical History . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 107

Chapter V: KPF Confirms a Polar Orbit for KELT-18 b . . . . . . . . 110
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



ix

5.2 KELT-18 System . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Obliquity of KELT-18 b . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Orbital Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter VI: KPF Constrains the Obliquity of the Extremely Eccentric
Sub-Saturn Kepler-1656 b . . . . . . . . . . . . . . . . . . . . . . . 132
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Obliquity Measurement . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter VII: Starspot Mapping and Obliquity Constraints for the Sub-
giant Kepler-1658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 KPF Observations of Kepler-1658 . . . . . . . . . . . . . . . . 146
7.3 Synthetic CCFs for planets transiting spotted stars . . . . . . . 148
7.4 Directly measuring the spot . . . . . . . . . . . . . . . . . . . . 156
7.5 A Likely Aligned Orbit . . . . . . . . . . . . . . . . . . . . . . 162

Chapter VIII: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



x

LIST OF ILLUSTRATIONS

Number Page
1.1 Known exoplanets with a mass or M sin i measured to better

than 2σ (2177 of the 5602 exoplanets as of April 1, 2024) as
recorded in the NASA Exoplanet Archive. Points are colored
according to discovery method for the four primary techniques.
The Solar System planets are overplotted for context. The di-
agonal striped bands correspond to constant RV semiamplitudes
for a 0.1 M⊙ host star (dashed line) to a 1 M⊙ host star (solid
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 2D sky-plane geometry of a star with a transiting planet (black
circle) along its orbit (thick black line). The star is colored ac-
cording to the projected (solid body) rotational velocity at that
point. The coordinate system is defined with the vertical y-axis
aligned with the stellar rotation axis and the x-axis horizontal.
The planet’s orbit is inclined at an angle λ relative to the rotation
axis of the star and passes a distance b (the impact parameter)
from the center of the star at mid-transit. . . . . . . . . . . . . 7

1.3 Sky-projected stellar obliquities as a function of effective temper-
ature, for giant (≥ 100 M⊕, top) and small (< 100 M⊕, bottom)
exoplanets. Background shading highlights the stellar spectral
types. The Kraft Break at 6250 K is given by the vertical dotted
line. Different fills on the scatter points encode the scaled semi-
major axis a/R∗. The dataset is the same as Figure 1.1 from the
NASA Exoplanet Archive. . . . . . . . . . . . . . . . . . . . . . 8

1.4 Gallery of RV curves (Eq. 1.1) for different eccentricities (e, x-
axis) and arguments of periastron (ω, y-axis). Circular orbits
produce sinusoidal RV variations. As eccentricity increases, the
RV curve becomes more “cuspy” with the bulk of the stellar ac-
celeration occuring near periastron passage. As the orientation
(ω) of the orbit changes relative to the observer, the asymmetry
of the RV variation around periastron passage changes. . . . . . 14



xi

1.5 Example orbital geometries for an aligned (left) and misaligned
(right) 1 RJup exoplanet in a 3.8 d orbit (with iorb = 85◦) around
a 1 R⊙ star with v sin i⋆ = 2 km s−1. The star has lines of latitude
and longitude drawn to visualize its orientation in space; the star
is slightly inclined towards the observer (i⋆ = 70◦) and has its
rotation axis aligned with the vertical axis of the plot. The
middle row plots the subplanet velocity, also called the local RV,
defined in the text. The bottom row plots the corresponding RV
anomaly that a Doppler spectrometer would measure. . . . . . 19

1.6 Gallery of RV variations due to the RM effect for different pro-
jected obliquities (λ, x-axis) and transit impact parameter (b,
y-axis). Prograde (|λ| < 90◦) orbits are characterized by an
up-then-down (red-then-blue) pattern, while retrograde orbits
(|λ| > 90◦) show the opposite effect. The degree of asymme-
try increases as λ deviates from fully aligned/polar/antialigned
(0◦/90◦/180◦) orbits. To detect a polar orbit, the transit im-
pact parameter must be b > 0. As b increases, the transit chord
approaches the limb of the star. The resulting RM curve for mis-
aligned orbits will generally only occult either the approaching
or receding hemisphere, rather than transiting both. . . . . . . 20

1.7 Left: Synthetic CCF (described in Chapter 7) consisting of an
unperturbed stellar line profile broadened by v sin i⋆ = 34 km s−1

(grey dashed), the local CCF from the patch of star within the
planet shadow (blue) as well as within a starspot (red), and the
total (observed) CCF (grey solid) which is equal to the stellar
CCF minus that beneath/within the planet/spot. Right: The
on-sky geometry (same style as Figure 1.2) at the same times-
tamp that the CCFs are computed at, showing the planet oc-
culting blueshifted light and a spot at +30◦ latitude with an
intensity 30% that of the photosphere. . . . . . . . . . . . . . . 22



xii

1.8 Measured RV semiampiltude as a function of year for exoplanets
discovered by RVs (blue) or the transit method (orange). Since
∼2010, RVs have been unable to characterize exoplanets below
about 0.5–1 m s−1. Stellar activity remains the greatest challenge
to breaking this barrier to reach the 9 cm s−1 amplitude of an
exo-Earth (red line). Data from the NASA Exoplanet Archive
(as of Oct 4, 2023). . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 RV landscape of stellar activity for Sun-like stars. The conflu-
ence of multiple phenomena with different temporal and spectral
characteristics at similar RV amplitudes nets a complex RV sig-
nal. The signals of 51 Pegasi b, Jupiter, and the Earth are shown
for context. Nearly all types stellar activity become relevant at
the > 10 cm s−1 level and span the full range of timescales from
minutes to decades. . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Comparison between the HARPS (blue), HARPS-N (orange),
EXPRES (green), NEID (red), and KPF (purple) solar feeds.
Top: wavelength coverage of each instrument. Bottom-Left:
single-exposure S/N (at 5500 Å) vs. spectral resolution. KPF
stands out at S/N > 1000 in the green channel (> 2000 in the
red channel). Bottom-Middle: Number of obsevations per p-
mode oscillation (5.5 minute interval) as a function of exposure
time. KPF utilizes fast exposure times to obtain fast cadence,
which is further sped-up in the fast-readout mode. Bottom-
Right: Single-measurement photon-limited uncertainty σRV vs.
the same quantity binned over 5.5 minutes worth of exposures
(y-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 HIRES spectrum of TOI-1347 in the neighborhood of the lithium
doublet. Nearby Fe I lines are labelled. No absorption attributed
to lithium was detected. . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Contrast curves around TOI-1347 from Gemini/‘Alopeke; the
inset shows the reconstructed image at 832 nm. No companions
are detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xiii

2.3 Top: The full 120 s cadence SPOC TESS light curve, binned to
30 min. Rotationally modulated variability is strong and evolves
over time; the three shaded regions highlight example 16 day
windows in which different numbers of maxima/minima are ob-
served. Middle: The 30-min light curve phased to the 16.1 day
rotation period. The red points further bin the folded data to
∼ 8 hour bins. The inset zooms in on these binned phased
data and highlights the tendency for every other set of maxi-
mum/minimum to repeat in amplitude. Bottom: The ACF of
the photometry, showing regular peaks at all multiples of 8 days
(dashed line) with the highest peak at 16 days (dark line). The
red dashed line shows the best-fit SHO model described in Sec-
tion 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Lomb-Scargle periodograms of, from top to bottom, the TESS
photometry, S-Indices, RVs, RVs with the GP model (Section 2.5)
removed, the GP-corrected RVs with the Keplerian model for the
USP subtracted, the GP-corrected RVs with both planets sub-
tracted, and the window function (Dawson and Fabrycky, 2010)
of the RV time series. The periodograms are computed using
astropy.timeseries.LombScargle (Astropy Collaboration et
al., 2022). The blue dashed lines correspond to the orbital peri-
ods of TOI-1347 b and c, and the two dark red lines are drawn
at 8 days (thin) and 16 days (thick). The horizontal yellow line
is the 1% false alarm probability. . . . . . . . . . . . . . . . . . 40

2.5 The 2 min TESS light curves phase-folded and binned using the
orbital periods of TOI-1347 b (top) and c (bottom). The best-fit
transit models are shown with red solid lines. . . . . . . . . . . 42



xiv

2.6 Upper: The phase curve and secondary eclipse of TOI-1347 b as
observed by TESS . The best-fit model is shown by the red curve.
The green dotted line gives the model with no eclipse. The phase
curve is detected at the 2σ level. It is likely a combination of
thermal emission and reflected light in the TESS band (600–
1000 nm). Lower: The thermal emission (red dotted line) and
reflected light (orange solid line) from TOI-1347 b as a function
of the Bond albedo. The blue dashed line and shaded area are
the measured secondary eclipse depth (Fp/F⋆) and its 1σ central
interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 The adopted radial velocity model. Panel a) shows the HARPS-
N and HIRES RV datasets, with the MAP RV model (Keplerian
+ GP and 1σ uncertainty) overplotted in blue. Panel b) shows
the residuals between the data and the MAP RV model. Panels
c) and d) show the data phase-folded to the orbital period of
planets b and c, respectively, with contributions from the other
planet and the GP removed. The red points are equal RV bins
spanning 0.1 in phase. The median and central 68% CI of each
Keplerian model is plotted in blue. The MCMC posteriors for
the recovered semiamplitude and derived M sin i are also sum-
marized in the lower-left annotations. Note that we do not in-
clude the MAP stellar jitter in the plotted errorbars; errorbars
are drawn only as the measurement uncertainties to highlight the
degree of unexplained scatter (i.e., jitter), given by the annotated
residual RMS, to which the stellar jitter fits. . . . . . . . . . . 46



xv

2.8 Mass-radius diagram of known super-Earths (Rp < 2 R⊕, filled
circles) and sub-Neptunes (4 R⊕ > Rp ≥ 2 R⊕, empty circles)
with 5σ or better mass measurements, obtained from the NASA
Exoplanet Archive (NASA Exoplanet Archive, 2019). Bold fill
denotes USPs. Contours from Zeng, Sasselov, and Jacobsen
(2016) are drawn for pure-iron, Earth-like (30% iron, 70% rock),
pure-rock, and pure-water compositions. Contours from Chen
and Rogers (2016) are also drawn for 0.5%, 0.1%, and 0.01%
H/He envelopes surrounding rocky-composition cores, at an age
of 1.4-Gyr-old and at the maximum insolation flux of 400 S⊕ for
their model grids; it is worth noting that TOI 1347 b (1400 K,
A = 0.7) receives an insolation flux of around 3000 S⊕. Our
mass-radius constraints for TOI-1347 b and c (95% upper limit
in mass) are plotted and labelled in red. The size of each point is
proportional to M/σM . TOI-1347 b is the most massive super-
Earth USP to date, while TOI-1347 c is smaller but likely also
rocky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Full posterior distributions for the RV model described in Sec-
tion 2.5. The blue lines denote the MAP values. . . . . . . . . 55

3.1 Block diagram illustrating how SoCal interfaces with the rest
of the KPF system. SoCal is contained in the top dashed-line
box labeled “Observatory Roof.” A pair of optical fibers carry
sunlight to KPF’s Calibration Unit in the observatory basement,
where the “SoCal-Cal” fiber connects to the calibration source se-
lector assembly and the “SoCal-Sci” fiber feeds dedicated calibra-
tion fibers that connect directly to the FIU. The latter path sends
solar light through the same path as starlight from the Keck I
telescope. In this mode, a calibration source (e.g., the etalon)
can be used for simultaneous calibration. The pyrheliometer ir-
radiance is directly recorded by a computer which polls every
second. Also shown are the electronics in the SoCal electronics
box (“e-box” ’), and the power and network connections to the
observatory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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3.2 Top: SoCal’s location on the WMKO roof (green star in the
satellite image on the left), and the shadows of the Keck I and
Keck II domes projected on the sky from this location. The path
of the Sun is shown for the summer and winter solstices in red and
equinoxes in orange. The parts of the sky that the Sun traverses
above airmass < 2 (black circle) during a full year are highlighted
in green. Bottom: Image showing the SoCal enclosure adjacent
to the solar panels, with Keck II in the background. . . . . . . 62

3.3 The SoCal tracker with mounted optics, inside its enclosure with
the lid open. The numbered components are 1. Lens and lens
tube, 2. Integrating sphere, 3. EKO Sun Tracker, 4. GPS sensor,
5. Pyrheliometer, 6. Sun-sensor, 7. Enclosure, and 8. E-box.
The arrow indicates geographic north; i.e., the tracker is pointed
south in this image. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Transmission of the 90 meter SoCal fiber run from the Keck Ob-
servatory roof to the KPF Calibration Bench in the basement
(blue), and the additional fiber run (orange, 130 meters) which
includes the KPF calibration fiber (from the Calibration Bench
to KPF’s Fiber Injection Unit mounted on the Keck I telescope)
and science fiber cable (back from the telescope to KPF spec-
trometer in the observatory basement). . . . . . . . . . . . . . 65

3.5 Webcam image of the SoCal enclosure frozen in a block of ice
after a winter storm in December 2022. . . . . . . . . . . . . . 69
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3.6 Screenshot of the Grafana web page displaying the SoCal teleme-
try for an example day. Grafana is a web-based interactive vi-
sualization software for displaying and plotting values from a
database. In this example near the summer solstice, the tracker
performed a large slew in azimuth through solar noon at near 90◦

elevations. The sun sensor guiding offset is plotted in the upper
right-hand corner (box titled “EKO Sun-Sensor Guiding Offset”).
Near solar noon the sun tracker switches to predictive guiding
mode, hence the gap in recorded guider offsets. The elevation
offset is stable at ∼ 0.5◦ ± 0.05◦ all day. While the azimuth off-
set increases near zenith, the actual angular separation between
the predicted Sun location and the sun tracker’s position is never
more than ∼ 0.5◦. Other panels display weather information and
the status of subsystems. . . . . . . . . . . . . . . . . . . . . . 71

3.7 State machine logic flowchart defining the automation loop for
SoCal operations. Nominal operations begin in the upper left
and flow counter-clockwise. First, the enclosure opens and the
tracker acquires the Sun. As the tracker guides on the Sun,
the KPF spectrometer records solar spectra. At the end of the
day, the dome closes, and the tracker is stowed (see Section 3.3
for more details). Green boxes with solid borders represent the
states of the system, while grey boxes with dashed borders rep-
resent transitions between states. The special states “Offline”
and “ERROR” are visualized with red boxes, while “Recover-
ing” is colored black. The state to which a named transition
moves to may depend on a conditional, which is printed as an if

statement. While most states execute a function upon entering
(on_enter), the Open and Closed states generally immediately
transition to the ensuing state due to the after function of the
transition used to enter those states. . . . . . . . . . . . . . . . 72
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3.8 Example of a clear-sky day (top) and a day with sporadic clouds
(bottom). The upper subplot shows the irradiance time series
(blue) relative to the theoretical model (orange) computed using
pvlib (Holmgren, Hansen, and Mikofski, 2018), with clear times
highlighted in green and non-clear times in red as identified by
the clearness index defined in Section 3.4. The lower subplot
plots the RVs during the same time frame. Note the vertical axis
scale for the RVs on the cloudy day; RVs observed through clouds
show a wide range of sporadic variations from a few to hundreds
of m s−1. The ∼ 5.5 minute p-mode oscillations are clearly seen
in the clear-sky RVs; connecting lines are drawn to help guide
the eye. Faded points are RVs masked according to the clearness
criteria described in Section 3.4. The zoom-ins at A and B in the
cloudy example show the polynomial fit and resulting clearness
index for a reference clear and cloudy window. . . . . . . . . . 78

3.9 All clear-sky SoCal RVs to date, phased to the time-of-day local
time. A daily median value has been subtracted. The raw mea-
sured RVs (no drift correction) are shown as faded points, color-
coded by day. The bolded points show the same data binned
over 5.5 min. The histogram below shows the distribution of
daily RMS for both the binned and unbinned RVs. . . . . . . . 80

3.10 Top: SoCal RVs (green and red) during our CTI test stepping
across a range of exposure times. The large offsets between each
sequence in the green RVs are caused by CTI effects in one of
the four amplifiers. Some gaps exist due to intermittent clouds.
Middle: The same data but recomputed by masking the quad-
rant of the green CCD that is read by the affected amplifier. The
offsets disappear below the instrumental noise, at the expense of
slightly worse RV precision since over 1/4 of the spectrum in
the green channel is not used. Bottom: The same sequence of
exposure times taken on a different day using a 2-amplifier read-
out scheme. By not using the affected amplifier, the CTI effects
disappear and full RV precision is maintained. . . . . . . . . . 82
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3.11 Solar RVs measured by KPF (corrected for drift) and NEID for
a selection of days where both sites had clear weather conditions
and a drift correction was possible for KPF using the simul-
taneous calibration. KPF data (orange points) on two of the
days, June 28 and July 6, were taken in the fast readout mode
(bolded frames), with the rest of the days taken in standard read-
out mode. The NEID RVs are shown in blue. The 5.5 minute
solar p-mode oscillations are clearly observed by both instru-
ments at the same amplitude and phase. The lower panel of
each plot shows the residuals between a spline-interpolation of
the KPF RVs, sampled at the NEID timestamps, and the NEID
RVs. The residual RMS is comparable to the combined instru-
mental noise floor for most days; some days show a smaller RMS
than the combined noise floor. On some days, such as June 22,
the RVs disagree near UT 21:30. This is likely caused by addi-
tional instrumental drift in the KPF RVs due to liquid nitrogen
fills around HST 11:00 (UT 21:00) not being fully removed by
the simple drift model. . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 The RM effect for WASP-107 b. The dark shaded bands show
the 16th–84th (black) and 5th–95th (gray) percentiles from the
posterior distribution of the modeled RV. The red best-fit line
is the maximum a-posteriori (MAP) model. The three vertical
dashed lines denote, in chronological order, the times of transit
ingress, midpoint, and egress. The residuals show the data minus
the best-fit model. Data points are drawn with the measurement
errors and the best-fit jitter added in quadrature. . . . . . . . . 96

4.2 Posterior distribution for λ and v sin i⋆. Although a more anti-
aligned configuration is consistent with the data if v sin i⋆ is
small, the most likely orientations are close to polar. A prograde
orbit (|λ| < 90◦) is strongly ruled out. . . . . . . . . . . . . . . 96
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4.3 Sky-projected orbital configuration of WASP-107 b’s orbit rela-
tive to the stellar rotation axis. The black lines correspond to
posterior draws while the red line is the MAP orbit from Fig. 4.1.
The direction of WASP-107 b’s orbit is denoted by the red ar-
row. The stellar rotation axis (black arrow) and lines of stellar
latitude and longitude are drawn for an inclination of i⋆ = 25◦.
The posterior for i⋆ is illustrated by the shaded gray strip with
a transparency proportional to the probability. . . . . . . . . . 97

4.4 Obliquity of WASP-107 b. The true obliquity ψ is calculated
using the constraints on the stellar inclination as inferred from
the v sin i⋆ posterior (Section 4.3). . . . . . . . . . . . . . . . . 100

4.5 Evolution of WASP-107 b’s true obliquity (ψb, solid line) through-
out the the N -body simulation using the system parameters
given in Table 4.2. The outer planet has Mc = M sin iorb,c and
was initialized with an obliquity of ψc = 60◦ (dashed line). The
obliquity of planet b oscillates between ψc±ψc every ∼ 2.5 Myr
due to nodal precession. If sin iorb,c < 1 then the largerMc simply
produces a shorter nodal precession timescale. The right panel
shows the evolution of the inclinations with the difference in the
longitudes of ascending node. . . . . . . . . . . . . . . . . . . . 102
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4.6 Top: polar plot showing the absolute sky-projected obliquity
as the azimuthal coordinate and normalized orbital distance as
the radial coordinate, for <100 M⊕ planets around stars with
Teff < 6250 K (similar mass planets around hotter stars are
shown as faded gray points). The red point is WASP-107 b.
Other noteworthy systems are shown with various colors and
markers (see Section 4.1 for references). Data compiled from
TEPCat as of 2020 October (Southworth, 2011). Only WASP-
107, HAT-P-11, and π Men have distant giant companions de-
tected. Kepler-56 (Huber et al., 2013) is another similar system
but is not included in this plot as it is an evolved massive star.
Bottom: the fraction of a nodal precession cycle spent in a given
obliquity bin (left). The true obliquity ψ is assumed to vary as
cos[(π/2)ψ(t)/ψmax] = sin2(πt/τ), where t ∈ [0, τ = 1]. This
recreates the shape of the oscillating inclination in Fig. 4.5. The
amplitude ψmax is twice the outer planet’s inclination which is
plotted for three different distributions (shown on the right): uni-
form between [0◦, 90◦] (gray), uniform between [40◦, 60◦] (red),
and using the von-Mises Fisher distribution from Masuda, Winn,
and Kawahara (2020) calculated in a hierarchical manner in-
corporating their posterior distribution for the shape parame-
ter σ for all. In all three cases the true obliquity is shown as
a dashed histogram. The sky-projected obliquity is computed
given a transiting geometry (iorb,b = 90◦) and is marginalized
over stellar inclination angle (solid histogram). Mp < 100 M⊕

planets with observed sky-projected obliquities are shown as a
filled histogram for comparison. Note that while the gray and
black predictions are relatively similar, an excess of polar orbits
can be observed if the mutual inclination distribution is clustered
around ∼ 40–60◦. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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5.1 Analysis of the rotation period using TESS photometry. The top
three panels show the 1 hour binned TESS photometry described
in Section 5.2. The fourth panel displays a Lomb-Scargle peri-
odogram. We marked the 0.707 d period from M17 with a red
dashed line, KELT-18’s orbital period with a grey dashed line,
and the maximum peak with a blue dashed line. The bottom
panel shows all TESS data points (grey) phase-folded to that
period with the maximum power. Red points show the data
evenly binned in phase with bin size 0.05. . . . . . . . . . . . . 115

5.2 The timeseries of CCFloc measured with KPF. The top panel
shows each 1D CCFloc, with out-of-transit observations in grey
and in-transit observations colored according to the timestamp.
The bottom panel displays the same data as a 2D heatmap with
time relative to mid-transit on the y-axis and colored by flux.
The shadow of KELT-18 b if it were aligned is traced by the
grey dashed lines. Black rows correspond to gaps in the time
series; the narrow hourly bands correspond to etalon calibration
images and the large band near +1.8 hrs is when the tip/tilt
guiding system failed. . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 The extracted local RVs and the best-fit RRM models (SB=solid
body, DR=differential rotation, CLV=center-to-limb variations
as a linear (lin) or quadratic (quad) effect in ⟨µ⟩). The solid
lines are the MAP model while the shaded regions cover the
16th–84th percentile of posterior distribution of models. Thee
bottom panel compares the residuals between the data and the
MAP fit for each model. . . . . . . . . . . . . . . . . . . . . . . 121

5.4 The contrast (top) and FWHM (bottom) of CCFloc as a func-
tion of the flux-weighted center-to-limb position ⟨µ⟩. The color
scale is the same used in Figure 5.2 based on the observation
timestamps (purple=ingress, green=mid transit, yellow=egress). 123
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5.5 The best-fit convective velocity profiles within the patches of
star occulted by KELT-18 b as a function of center-to-limb po-
sition (left) and time (right). The vconv for models with DR are
consistent with zero, i.e. the DR models are primarily fit by
extreme DR. The velocity contribution from DR alone is shown
by the dashed red line, which plots the difference between the
DR-only and SB-only models. Residuals (data minus model) to
the SB-only model are plotted in black; these points represent
the amount of local RV that must be coming from either DR or
CLVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 The posterior distributions for all RRM parameters. The models
with DR are colored red while SB models are colored blue, and
models with no, linear, or quadratic CLVs are given progressively
darker colors. All models generally agree on the value of λ, while
models with DR tend towards extreme values of α at near-polar
i⋆. This degeneracy arises because of the tight prior on v sin i⋆

(2nd column), which all models are confined to. . . . . . . . . . 125
5.7 On-sky geometry of the KELT-18 system. KELT-18 and KELT-

18 b (and its orbit) are drawn to scale in size and relative orienta-
tion. The black arrow denotes the normal to KELT-18 b’s orbital
plane and the grey arrow denotes the rotation axis of KELT-18;
the angle between these in 3D space is the stellar obliquity, ψ,
while λ is the sky-projection of this angle and is independent
of the stellar inclination. The separation between KELT-18 and
KELT-18 B is not to scale and is drawn at an arbitrary orien-
tation on-sky. KELT-18 is colored according to its rotational
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6.1 Eccentricity-semimajor axis diagram for transiting exoplanets.
Giant planets, defined as >100 M⊕ or >8 R⊕ if there is no mass
measurement, are plotted as faded points. Following Dong et
al. (2021), the y-axis is scaled uniformly in e2, and the high-
eccentricity migration track is shaded in light grey. The dashed
grey line traces a = 0.05/(1−e2), corresponding to the minimum
semimajor axis to excite f-mode oscillations and produce rapid
orbital decay (Wu, 2018). Planets above this line would therefore
be extremely rare. The black dashed upper boundary (0.034/(1−
e2)) represents the line of constant angular momentum where
a 1 MJ , 1.3 RJ exoplanet would become tidally disrupted at
its closest approach to a solar mass star (Dong et al., 2021);
no giant planets can persist above this boundary. The lower
boundary (0.1/(1− e2) corresponds to a final semimajor axis of
0.1 AU, beyond which circularization timescales become much
longer than typical system ages. The boundaries are not exact
as they depend on the strength and efficiency of tides in the
system. Exoplanets with e > 0.6 are labelled; Kepler-1656 b is
the only sub-Saturn firmly in the HEM track. Data are from
the NASA Exoplanet Archive, accessed on 2024-04-01 (NASA
Exoplanet Archive, 2019). . . . . . . . . . . . . . . . . . . . . . 134

6.2 Left: The KPF RV time series, in black, during the transit of
Kepler-1656 b. The blue curve shows the median RV from the
posterior distribution of the full model, with the shaded band
denoting the 16th–84th percentiles. The red curve shows the
same for the aligned model where λ is fixed to 0◦. The bottom
panel shows the residuals to the median full model. Right:
The posterior distribution for λ and v sin i⋆ for the full model.
Misaligned λ requires v sin i⋆ > 3 km s−1. . . . . . . . . . . . . 136
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6.3 Projected obliquity λ for measured systems as a function of ec-
centricity, for single-star systems (left) and multi-star systems.
The shaded bar on the left plot covers ±20◦, the range of obliq-
uities for which CHEM could operate given an appropriate com-
panion with zero stellar obliquity. The shaded bands on the
multi-star plot highlight ±10◦ around the angles ±40◦ and ±130◦

corresponding to the bimodal peaks of the expected true obliq-
uity distribution from star-planet Kozai (Anderson, Storch, and
Lai, 2016). Note that these angles refer to the true orbital in-
clinations, while the data points are for λ, the sky projection.
The true obliquity ψ is between λ and sign(λ)90◦. The data
are the same from Figure 6.1, supplemented with updates for
HD 80606 b (42 ± 8◦; Hébrard, G. et al., 2010) and 55 Cnc e
(11+17

−20
◦ Zhao et al., 2023a), and the addition of TIC 241249530 b

(163.5+9.4
−7.7

◦; Gupta, A. et al. in review), TOI-3362 b (1.2± 2.8◦;
Espinoza-Retamal et al., 2023), TOI 677 b (0.3±1.3◦; Sedaghati
et al., 2023; Hu et al., 2024), and of course Kepler-1656 b, where
we have drawn the 1σ upper-limit of 50◦ (this work). . . . . . . 139

6.4 Three-body simulations of the orbits of Kepler-1656 b (black)
and c (grey), for variable initial mutual inclinations ibc, (5◦, 10◦,
15◦, and 120◦ from left to right). The top row shows the evo-
lution of the mutual inclination (grey) and the inner planet’s
obliquity (black), as a function of semimajor axis. The lower
panel shows the eccentricity evolution of planet b (black) and c
(grey). The first three (ibc ≤ 15◦) are initialized as described in
Section 6.3. The fourth (ibc = 120◦) is an example of a simulation
from Angelo et al. (2022) initalized in-situ with a circular planet
b. All four scenarios can reproduce the observed Kepler-1656
system (red and yellow data points). Though, ibc ≤ 15◦ requires
starting planet b at a more distant orbit that subsequently mi-
grates through its present-day location, before circularizing in
∼100Myr; larger mutual inclinations excite large eccentricities
without triggering migration, with brief excursions to low obliq-
uity over many ∼Gyr. The measured projected obliquity is plot-
ted for the positive-λ scenario (to match ψb > 0) in the top panel
at 35◦ with errorbars covering 0◦–50◦. . . . . . . . . . . . . . . 140
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7.1 Left: KPF CCFs for Kepler-1658, shifted to the stellar rest
frame. The colorbar denotes the time of the observation. The
inset zooms-in on the region which contains the perturbation
from the starspot. Right: Bisectors computed from the ob-
served CCFs. The C-shape above 0.4 in depth is from a general
asymmetry, which only translates as the spot progresses. The
distortion below 0.4 is from the spot’s effect on the rotational
broadening profile. . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Top: CCFloc for the out-of-transit observations. Since the aver-
age CCF is removed, these show a symmetric residual Doppler
shift from pre to post-transit. Middle: CCFloc for the in-transit
observations. The bumps and wiggles are consistent with the
self-subtraction of the average starspot; the planet shadow is
not visible by eye. The colorscale in this and the top panel is
the same as in Figure 7.1. Bottom: 2D heatmap of the above,
with time on the vertical axis. The planet shadow is not visible. 149

7.3 Example grid in the x-y sky-plane. The white points are an
example N = 10000 grid across the stellar disk generated using
the sunflower pattern (Eq. 7.8). The opacity of each point is
given by I(x, y)/I(0) for u1 = u2 = 0.3. The blue points are
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centered at the position of a mock transiting planet at a random
time. The red grid covers the boundary contained within a 10◦

radius starspot at 45◦ latitude and 30◦ longitude. . . . . . . . . 152
7.4 Left: Example starspots generated at lat = ±30◦ at a series of

longitudes. Right: The projected area of the spot on the visible
hemisphere as it rotates in and out of view. The solid line is the
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7.7 The same as Figure 7.1 but for synthetic KPF CCFs generated
for a spot geometry tuned by-eye. The inset in the lower left
shows the geometry of the spot, which has a radius of 10◦ (con-
trast 0.8) with an outer annulus at 15◦ (contrast 0.4). The lines
of longitude on the star have been rotated according to the ve-
locity at that latitude given the differential rotation law. . . . . 157

7.8 a) Observed CCFs (blue) and a model CCF (orange) of just
the star with no spots. b) On-sky geometry of the spot+planet
model. The spot is created by two concentric spots of different
radii, which act as an umbra/penumbra to create a deep core
with broader wings. c) The residual from panel (a) obtained by
subtracting the model CCF from the data. Both the spot and
planet signal are remaining. d) Simulated spot+planet residual,
which qualitatively agrees with panel (c) but cannot reproduce
the asymmetry or time-varying depth observed in the data. . . 158

7.9 Properties derived from a Bi-Gaussian fit to the observed CCFspot

time series. From top to bottom, the local RV, FWHM, depth,
equivalent width, bisector inverse slope, and asymmetry. The
vertical dashed lines denote the predicted transit ingress, mid-
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7.10 The residuals of CCFspot after subtracting their fitted Bi-Gaussian,
for the out-of-transit (top) and in-transit (middle) observations.
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7.11 Local RV on the stellar surface spanned by the planet shadow
(blue) and the spot (red) as a function of projected orbital mis-
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C h a p t e r 1

INTRODUCTION

“The universe is a pretty big place.
If it’s just us, seems like an awful waste of space.”

— Carl Sagan, Contact

1.1 A Brief History of Planet Discovery

For millennia, only our Earth and the five naked-eye visible planētēs (Greek
for “wanderers”)—Mercury, Venus, Mars, Jupiter, and Saturn—were known to
humans. Following Galileo’s invention of the telescope in 1609, it wasn’t until
1781 that William Herschel became the first to observe Uranus (Herschel and
Watson, 1781). Over the following decades, subsequent measurements revealed
Uranus’s path around the Sun was not a perfect ellipse, much unlike the other
planets. In 1846, Urbain Le Varrier (and independently, John Couch Adams)
hypothesized that an unseen gravitational body was perturbing Uranus’ orbit
and calculated the position in the sky that such a body must be located to
have the observed effect (Le Verrier, 1846; Adams, 1846). Le Varrier mailed
his calculation to Johann Galle, who later that night pointed his telescope to
the predicted location and found Neptune within 1◦ (Galle, 1846).

The same principle of inferring the presence of an unseen planet by observing
its gravitational perturbation on something we can see is how we discover plan-
ets orbiting other stars (exoplanets) today. One hundred years after Neptune’s
discovery, Otto Struve laid out the foundation for how such a measurement
could be made (Struve, 1952). The gravitational influence of an orbiting planet
will cause its host star to move in its own smaller and slower orbit. The part
of this motion along our line of sight, called the radial velocity, will Doppler-
shift the star’s spectrum as recorded by an observer with a spectrograph. This
method, called the radial velocity (RV) technique (discussed in more detail in
Section 1.3), was successfully utilized in 1989 to discover the first sub-stellar
companion to a another main sequence star (Latham et al., 1989). Soon after,
the first bona-fide explanets were discovered orbiting a neutron star (using
pulsar timing variations; Wolszczan and Frail, 1992) and then around a solar-
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type star (51 Pegasi b, using RVs; Mayor and Queloz, 1995). Curiously, 51
Pegasi b looked nothing like the planets we then knew of. At roughly half the
mass of our Jupiter, it takes just 4.2 days to complete a single orbit. Using
the RV method, astronomers quickly found many more of these “hot Jupiters”
around other nearby, bright stars (e.g., Butler et al., 1997; Butler et al., 1998).

Struve also noted that a planet orbiting its star edge-on to our line-of-sight
would appear to transit its star once per orbit, and in doing so would block
a fraction of the starlight in proportion to its size. This approach, called
the transit method, was successfully used just five years after 51 Pegasi b’s
discovery to detect HD 209458 b (Charbonneau et al., 2000; Henry et al., 2000).
It, too, was a hot Jupiter. Following the launch of the Kepler space telescope
in 2009 (Borucki et al., 2010) and more recently the TESS mission (Ricker et
al., 2015) in 2018, the number of known exoplanets has exploded to over 5,600
as of this writing. Around 75% of these (∼ 4200) have been discovered by the
transit method, primarily from the Kepler and TESS missions. An additional
7,000 planet candidates from TESS still await confirmation (NASA Exoplanet
Archive, 2019). The RV method accounts for about 1,100 exoplanets, while
other techniques such as direct imaging (Chauvin et al., 2004) and microlensing
(Gaudi, 2012) have supplied the remaining ∼300.

One conclusion we can already draw is that exoplanets are ubiquitous. Though,
due to selection biases, we are still not sensitive to Solar System analogs. The
propensity for discovering hot Jupiters in the early days of exoplanet astron-
omy was not because they are common, but because they are the easiest to
detect. Their RV signals (tens to hundreds of m s−1) and transit depths (> 1%)
are large, while their short (< 10 day) orbital periods are more readily fully
observed. In contrast, it has barely been a single Saturnian year (29.4 Earth
years) since the discovery of 51 Pegasi b. As such, we are only just now be-
coming sensitive to exo-Jupiters and exo-Saturns amongst the systems with
the longest observational baselines (Rosenthal et al., 2021; Fulton et al., 2021).

Exo-Earths, on the other hand, present an even greater challenge. Their signals
are much smaller; around a Sun-like star, the RV signal is just 9 cm s−1. The
likelihood that we would see such a planet transit is about 0.5%, and it would
only block 0.01% of its star’s light. As we will discuss in Section 1.3, modern
and next-generation extreme-precision RV spectrographs are pushing down
into the tens of cm s−1 stability levels. Though, we must now contend with
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Figure 1.1: Known exoplanets with a mass or M sin i measured to better than
2σ (2177 of the 5602 exoplanets as of April 1, 2024) as recorded in the NASA
Exoplanet Archive. Points are colored according to discovery method for the
four primary techniques. The Solar System planets are overplotted for context.
The diagonal striped bands correspond to constant RV semiamplitudes for a
0.1 M⊙ host star (dashed line) to a 1 M⊙ host star (solid line).

noise sources arising from magnetic and photospheric activity on the stars
themselves (Section 1.5), which can produce RV variability at the m s−1 level,
swamping or even mimicking small planetary signals.

1.2 The Orbits of Close-In Exoplanets

“But there seems to be no compelling reason why the hypothetical stellar planets
should not, in some instances, be much closer to their parent stars than is the case
in the solar system. It would be of interest to test whether there are any such
objects.”

— Otto Struve, Proposal For A Project Of High-Precision Stellar Radial Velocity
Work, 1952

Indeed, as we just discussed, Struve had correctly predicted the existence
of hot Jupiters (HJs). The discovery of 51 Pegasi b had not only marked
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the beginning of the exoplanet era, it also completely turned upside-down
our understanding of planet formation. How can a Jupiter-mass planet form
in a 4-day orbit? Shouldn’t Jupiter-mass planets live in Jupiter-like orbits?
Remarkably, we have yet to reach a consensus on HJ formation to this day.

Formation of Hot Jupiters

The problem begins in the same disk of dust and gas from which a planet
forms. In the traditional model of core-accretion (Pollack et al., 1996), a solid
core grows (e.g., via pebble accretion or giant impacts) up to a critical mass
(∼10 M⊕). This phase is relatively quick, on the order of 105 yr. Then, the core
slowly (on the order of ∼Myr) accretes a gaseous envelope under hydrostatic
equilibrium. When the mass of the gaseous envelope becomes comparable to
the mass of the core, the rate of gas accretion becomes exponential. Within
100 kyr the planet accretes enough H/He to grow its mass ten-fold. However,
gas in the protoplanetary disk will dissipate after a few to 10 Myr (Fedele et al.,
2010; Barenfeld et al., 2016). Giant planet formation is thus a race to assemble
a 10 M⊕ core early enough so that it can achieve runaway gas accretion before
the disk dissipates. As a result, one might expect giant planet formation to
be more efficient beyond the water-ice line (around 1 AU around solar-type
stars) where it is cool enough in the disk for water-ice to condense. This both
enriches the solid material budget and fosters an environment where these
wide-orbiting (i.e., slower) particles have “stickier” collisions, enhancing core
assembly. Indeed, this is where giant planet occurrence peaks; 10–15% of FGK
stars host a giant planet in the 2–8 AU range (Cumming et al., 2008; Fulton et
al., 2021). HJs are about ten-times more rare, occurring around just 0.5%–1%
of FGK stars (Howard et al., 2012; Wright et al., 2012).

At typical HJ orbital distances, the low budget of available solid materials
and faster orbital velocities makes growing a massive enough core challenging
(Bodenheimer, Hubickyj, and Lissauer 2000, see Dawson and Johnson 2018 for
a review). A core could potentially be grown out of successive mergers of super-
Earth (1–10 M⊕) “protocores,” at which point core-accretion could proceed to
form a HJ in situ (Boley, Granados Contreras, and Gladman, 2016; Batygin,
Bodenheimer, and Laughlin, 2016). While super-Earths do commonly exist in
compact multi-planet systems (Howard et al., 2010b; Rowe et al., 2014), the
disk itself will damp orbital excitation, preventing orbit crossings until after
the gas disk dissipates (Lee and Chiang, 2016). Gravitational instability is
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also not an option, as the gas is too hot, too fast, and too low density at HJ
orbital distances to self-collapse (Rafikov, 2005).

Consequently, leading theories of HJ formation invoke migration to transport
giant planets from more favorable formation locations into close-in orbits. The
two plausible migration pathways are disk migration (see Baruteau et al. 2014
for a review) and high-eccentricity migration (HEM; see Dawson and Johnson
2018 and references therein). The former occurs after a giant planet accretes
all the material along its orbital path, opening an annular gap in the proto-
planetary disk. An imbalance in tidal and viscous torques between the inner
and outer portions of the now-divided disk keeps the planet centered in its
gap, which moves inwards as the gas accretes onto the star (Goldreich and
Tremaine, 1980; Lin and Papaloizou, 1986; Lin, Bodenheimer, and Richard-
son, 1996). The migration can be rapid (≲ 105 kyr) and is terminated at
the edge of the central magnetospheric cavity at an orbital period of ∼3 days
(Rice, Armitage, and Hogg, 2008; Batygin, Adams, and Becker, 2023), match-
ing the observed pile-up in HJ occurrence (Wright et al., 2009; Howard et al.,
2012). The rate of migration must be fast enough to transport the HJ inward
before the disk disperses, but not so fast that the HJ is engulfed by its star.

In the HEM scenario, the HJ instead migrates after the protoplanetary disk
has dissipated. If the distant giant planet’s eccentricity were perturbed to very
high values (e.g., > 0.99) such that the periastron distance becomes very close
to the star (≲0.04 AU), the extreme change in tidal forces at each periastron
passage raises significant tidal distortions on the planet. The planet’s orbital
angular momentum is converted into heat dissipated into the planet’s interior,
causing the orbit to shrink and circularize. The excitation of eccentricity
could come from planet-planet scattering (Rasio and Ford, 1996), secular chaos
(Wu and Lithwick, 2011), or secular interactions with an inclined or eccentric
outer companion (Kozai, 1962; Lidov, 1962; Naoz, 2016) which itself could be
another planet (Naoz et al., 2011; Teyssandier et al., 2013; Petrovich, 2015a) or
a star (Fabrycky and Tremaine, 2007; Petrovich, 2015b). Eccentricity damping
during periastron passage may come from tidal friction (Eggleton, Kiseleva,
and Hut, 1998; Wu and Murray, 2003; Fabrycky and Tremaine, 2007) or
chaotic tides (Wu, 2018; Vick, Lai, and Anderson, 2019). Once the planet
migrates far enough, general relativistic precession will decouple the proto-
HJ from its outer perturber, quenching any further secular oscillations (Dong,
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Katz, and Socrates, 2014). The migration continues to transport the HJ to its
final semimajor axis with other orbital parameters (e.g., inclination) frozen-in
(Anderson, Storch, and Lai, 2016). The typical final semimajor axis is around
0.04 AU, which also corresponds to a 3 day orbit around solar-type stars.

Clues From Stellar Obliquities

A key observable that can distinguish these formation scenarios is the stellar
obliquity, sometimes referred to simply as the obliquity, ψ. Defined as the an-
gle between the spin vector of the star and the normal to the planet’s orbital
plane, the obliquity traces the dynamical history of the star-planet system. In
our own solar system, the orbital planes of the planets1 are all within 0.3–2◦ of
the invariable plane (Souami and Souchay, 2012), the plane normal to the total
angular momentum vector passing through the solar system barycenter (domi-
nated by Jupiter’s orbit); the inclination of Earth’s orbit is 1.57◦. The rotation
axis of the Sun is inclined about 5.9◦ (Gomes, Deienno, and Morbidelli, 2017)
relative to the invariable plane (7.155±0.002◦ relative to Earth’s orbital plane,
Beck and Giles, 2005). This relatively low stellar obliquity and coplanarity of
the planets inspired the nebular hypothesis of planet formation, in which the
protoplanetary disk and the central rotating star inherit their angular mo-
menta from the same collapsing cloud of gas and dust (Kant, 1755; Laplace,
1796). The fact that the solar obliquity is nonzero could be due to ongoing
processes such as nodal precession from an unseen Planet Nine (Batygin and
Brown, 2016; Bailey, Batygin, and Brown, 2016; Lai, 2016; Gomes, Deienno,
and Morbidelli, 2017), or arose early in the solar system’s history from torques
by a stellar flyby on the protoplanetary disk (Heller, 1993) or by solar winds
10-100 Myr after the planets formed (Spalding, 2019).

In extrasolar systems, HJs formed in-situ or via disk migration inherit the
orbital plane of the protoplanetary disk in which they formed, which itself can
be significantly misaligned through magnetic warping by the young star (Lai,
Foucart, and Lin, 2011). HJs formed by HEM can obtain any obliquity from
aligned (prograde) to anti-aligned (retrograde) (Fabrycky and Tremaine, 2007;
Chatterjee et al., 2008; Naoz et al., 2011; Anderson, Storch, and Lai, 2016;
Vick, Su, and Lai, 2023). The stellar obliquity is readily measured in extrasolar
systems by observing a transit with high-resolution spectroscopy. We discuss

1Except Mercury, inclined 6.35◦, which is far more susceptible to chaotic evolution away
from its initial orbital configuration (e.g., Batygin, Morbidelli, and Holman, 2015).
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b

λ

Figure 1.2: 2D sky-plane geometry of a star with a transiting planet (black
circle) along its orbit (thick black line). The star is colored according to the
projected (solid body) rotational velocity at that point. The coordinate system
is defined with the vertical y-axis aligned with the stellar rotation axis and the
x-axis horizontal. The planet’s orbit is inclined at an angle λ relative to the
rotation axis of the star and passes a distance b (the impact parameter) from
the center of the star at mid-transit.

the measurement itself in more detail in Section 1.4, but in brief, the planet
occults different patches of the rotating stellar surface along its transit chord,
removing that patch’s contribution to the rotationally broadened line profile.
The precise variation across the transit depends on how the transit chord
intersects the rotating stellar disk on the sky; in other words, the sky-projected
stellar obliquity (λ) is directly measurable (see Figure 1.2).

This technique was applied to HD 209458 b just 18 days after it became the first
exoplanet seen to transit (Queloz et al., 2000). Like the solar system planets,
HD 209458 b’s orbit is aligned with its star, with λ = −4.4 ± 1.4◦ (Queloz
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Figure 1.3: Sky-projected stellar obliquities as a function of effective temper-
ature, for giant (≥ 100 M⊕, top) and small (< 100 M⊕, bottom) exoplanets.
Background shading highlights the stellar spectral types. The Kraft Break at
6250 K is given by the vertical dotted line. Different fills on the scatter points
encode the scaled semimajor axis a/R∗. The dataset is the same as Figure 1.1
from the NASA Exoplanet Archive.

et al., 2000; Winn et al., 2005). Over the next eight years, stellar obliquity
measurements were made for ten other extrasolar systems; all were aligned. It
seemed as if alignment was the norm. Then, Hébrard et al. (2008) measured
XO-3 b, an object on the giant-planet-brown-dwarf boundary, and found it to
be highly misaligned (λ = 70±15◦). More misaligned planets were found soon
after, including several on retrograde orbits (e.g., Triaud et al., 2010). Winn
et al. (2010a) and Schlaufman (2010) noted that it was only the HJs orbiting
hot stars which were misaligned, while the cool stars hosted aligned HJs. The
top panel of Figure 1.3 plots the current sample of HJ obliquities, in which this
pattern can still be clearly seen today. Either obliquity excitation mechanisms
only operate around hot stars, or misalignment is a common outcome of HJ
formation but orbits are efficiently realigned around cool stars.

The proximity of the transition from alignment to misalignment to the Kraft
Break (Kraft, 1967) at 6100–6250 K was immediately suspicious. The Kraft
Break corresponds to a change in stellar internal structure, below which (cooler)
stars have deep convective envelopes and strong magnetic dynamos, and above
which (hotter) stars have radiative envelopes and weak magnetic dynamos.
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Magnetic breaking efficiently slows the rotation rates of cool stars, but is un-
able to affect hotter stars, producing a sharp transition in the v sin i⋆ distribu-
tion. Just as stars raise tides on their planets, planets too raise tides on their
stars. The tidal potential across the (fluid) stellar interior excites waves that
then dissipate into heat, yielding an energy sink that drains angular momen-
tum from the planet’s orbit. This damps the orbital inclination, effectively
realigning the planet’s orbit to the stellar rotation axis (Hut, 1980; Hut, 1981;
Winn et al., 2005). Tidal dissipation is more efficient in convective regions, and
so cooler stars can more easily realign their planets. The associated timescale
for hotter stars far exceeds the ages of those systems (Winn et al., 2010a;
Albrecht et al., 2012; Dawson, 2014).

The same tides raised on the star also act to damp the orbital semimajor axis.
The tidal bulge raised on the star lags behind a HJ, which orbits its star more
quickly than the star rotates. As a result, the bulge torques and slows the
orbit of the planet, causing it to inspiral until eventually crossing its Roche
boundary and tidally shearing into a stream of particles that fall into the star.
In the classical equilibrium tide theory (e.g., Hut, 1980; Rasio et al., 1996), it
turns out that semimajor axis decay is more rapid than obliquity damping; in
other words, the planet is destroyed before it realigns. Lai (2012) alleviated
this problem by showing that the excitation of inertial waves in the convective
layers of cool stars leads to the obliquity damping without removing orbital
energy, i.e., without orbital decay. Rogers and Lin, 2013 showed that this
inertial wave dissipation cannot cannot torque retrograde orbits all the way
back to prograde, they either tend towards 90◦ or 180◦. More recent studies
which combined both equilibrium tides and inertial wave dissipation (Xue et
al., 2014) and the effects of magnetic breaking (Li and Winn, 2016) found that
while the obliquity does stall at polar and anti-aligned orientations, close-in
giant planets do eventually damp all the way to 0◦.

A lingering challenge with inertial wave dissipation is that hot stars would
have had convective envelopes pre-main-sequence (Amard et al., 2019), so HJs
must form later. Misaligned HJs do tend to orbit older stars, which supports
late-arrival theories (Hamer and Schlaufman, 2022). However inertial wave
dissipation scales with the rotation rate of the host star, which is likely too slow
for cool stars after a few hundred Myr for obliquity damping to occur within
typical system ages (Spalding and Winn, 2022). There is also still a problem



10

with initially retrograde systems being torqued into anti-alignment, which is
not observed in the exoplanet population (Albrecht, Dawson, and Winn, 2022).
Zanazzi, Dewberry, and Chiang (2024) recently showed that resonance locking
of the orbital frequency with stellar g-modes in the radiative cores of cool stars
can enhance tidal torquing of the stellar spin axis into alignment with the
planet’s orbit, reproducing the transition at the Kraft Break even for initially
retrograde systems while naturally avoiding engulfment.

Suffice it to say, dissipative mechanisms are an ongoing area of theoretical
investigation but are likely at play based on observations. Rice, Wang, and
Laughlin (2022) showed that the transition in the obliquity distribution at
the Kraft Break disappears when selecting only eccentric HJs, which can be
explained by dissipative mechanisms which damp eccentricity faster than obliq-
uity. Another clue is the broad tendency for small planets to be misaligned,
even around cool stars (bottom panel of Figure 1.3) (Attia et al., 2023). Small
planets have longer realignment timescales (which scale as M−2

p ) (Albrecht,
Dawson, and Winn, 2022) but are also susceptible to ongoing secular interac-
tions with outer perturbers (Yee et al., 2018; Rubenzahl et al., 2021).

If misalignment instead arose during the disk phase, perhaps by an outer
stellar perturber torquing the protoplanetary disk (Batygin, 2012), then the
strong magnetic dynamos of cool stars could realign their disks through mag-
netic torquing to produce the observed transition at the Kraft Break (Spalding
and Batygin, 2015). HJs like WASP-47 b (Hellier et al., 2012), which have
inner planetary companions (Becker et al., 2015), are most compatible with
disk migration since HEM would have ejected the inner planets. WASP-47 b
(Sanchis-Ojeda et al., 2015) and the ∼half-dozen similar known systems (Rad-
zom et al., 2024) are well-aligned, hinting at a tendency towards primordial
alignment of protoplanetary disks. Additionally, all directly imaged young
(< 100 Myr) systems still in the disk phase show alignment (e.g., Hirano et al.
2020; Kraus et al. 2020b, see Albrecht, Dawson, and Winn 2022). Evidence
for primordial misalignment exists in systems such as K2-290 A, which has a
coplanar planetary system consisting of a HJ and a sub-Neptune, but is highly
misaligned (retrograde) (Hjorth et al., 2021). The companion star K2-290 B is
at the right distance to have torqued K2-290 A’s protoplanetary disk into mis-
alignment, though chaotic evolution as a result of the third star in the system
(K2-290 C) could instead have produced the retrograde orbits post-formation
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(Best and Petrovich, 2022). Warped disks have also been observed (e.g., Kraus
et al., 2020a), and such broken-disk morphologies are expected to further am-
plify stellar obliquities through resonance crossings (Epstein-Martin, Becker,
and Batygin, 2022). Even in isolated single-star systems, the stellar spin di-
rection may randomly tumble due to propagating internal gravity waves in
hot stars (Rogers et al., 2013), further blurring the distribution. Overall, ob-
servational evidence and theoretical hypotheses exist for both primordial and
post-formation obliquity excitation (and subsequent damping), and are com-
patible with both the disk migration and HEM formation channels.

Another testable prediction is that HJs which underwent HEM should have
outer companions which triggered their migration. Distant planetary compan-
ions to inner small planets are common (∼50%; Knutson et al., 2014; Bryan
et al., 2016) as systems which can form outer giant planets can also likely
form smaller inner planets (Bryan and Lee, 2024). A similar fraction of HJs
have binary stellar companions between 50–2000 AU, but these companions
are weakly coupled to giant planets in the 1–5 AU range and thus unable to
induce HEM by the Kozai mechanism (Fabrycky and Tremaine, 2007; Ngo
et al., 2016). For close-in smaller planets with outer giant companions, secular
interactions driven by resonance crossings during the disk-dispersal stage can
also excite large obliquities (Petrovich et al., 2020). The census of distant gi-
ant companions is quite incomplete, a consequence of the multi-year observing
baselines required to trace out their orbits (e.g., Rosenthal et al., 2021; Van
Zandt et al., 2023).

This thesis studies several planetary systems which are each a unique probe
of HJ formation pathways. WASP-107 b is a super-inflated Neptune mass
exoplanet whose extremely low density is only consistent with a history of
migration (Piaulet et al., 2021). In Chapter 4, WASP-107 b’s orbit is confirmed
to be polar and is likely continuing to be affected by the outer planetary
companion WASP-107 c. A number of polar hot Neptunes with escaping
atmospheres have now been discovered around cool stars (e.g., Yee et al., 2018;
Bourrier et al., 2018; Stefànsson et al., 2022; Attia et al., 2023), suggestive of
common formation mechanisms. While the noted preference for polar orbits
among HJs (Albrecht et al., 2022) is not yet statistically significant (Dong and
Foreman-Mackey, 2023; Siegel, Winn, and Albrecht, 2023), Chapter 5 adds one
more polar HJ around a hot star to the population; KELT-18 b is a binary star
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system, with the binary companion’s orbit likely inclined relative to KELT-
18 b. As such, it could have triggered HEM via the Kozai-Lidov mechanism
so long as KELT-18 b formed well beyond the ice-line. An overabundance of
polar orbits within the obliquity distribution would challenge HJ formation
theories to explain such a preferred outcome.

Planets caught in the act of HEM would provide direct insight into the pro-
cess. Chapter 6 provides an obliquity measurement for Kepler-1656 b, a sub-
Saturn with an extreme eccentricity consistent with either active tidal migra-
tion or ongoing eccentricity oscillations caused by its distant giant companion.
Kepler-1656 b, and the one other similar system (TOI-3362; Dong et al., 2021;
Espinoza-Retamal et al., 2023) are consistent with aligned orbits. Perhaps
HEM and the companions which initiate it are more gentle than previously
thought, in which case post-migration dynamics would play a key role in set-
ting the present-day obliquity.

Finally, an especially unique test of realignment mechanisms is to measure
planets around evolved stars. In particular, stars more massive than > 1.2 M⊙,
which have evolved across the Kraft Break. Such stars have only recently
acquired the ability to realign their planets. Chapter 7 investigates a transit
of Kepler-1658 b, which is itself an even more powerful laboratory for testing
tidal theories as it is also experiencing tidal orbital decay (Vissapragada et al.,
2022). Growing this sample will provide new insights into the evolution of
exoplanetary orbits (Saunders, N. accepted to AJ).

1.3 Techniques For Measuring the Radial Velocity

“If the mass of this [hypothetical 1 day orbital period] planet were equal to that of
Jupiter, it would cause the observed radial velocity of the parent star to oscillate
with a range of ±0.2 km s−1–a quantity that might be just detectable with the most
powerful Coudé spectrographs in existence.”

— Otto Struve, Proposal For A Project Of High-Precision Stellar Radial Velocity
Work, 1952

A bound star-planet system will co-orbit their common center-of-mass. The
radial velocity (RV) of the star from the observer’s line of sight may be cal-
culated from Kepler’s laws of motion and Newtonian gravity, which leads to
(Lovis and Fischer, 2010)

vr(t) = γ +K [cos (ω + f(t)) + e cosω] , (1.1)
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where
K =

Mp

M∗ +Mp

2πa sin iorb

P
√
1− e2

, (1.2)

is the semiamplitude, dependent on the planet mass (Mp), semimajor axis
(a), orbital inclination iorb, orbital period P , and eccentricity e, as well as the
stellar mass M∗. γ is the bulk RV offset while the term in square brackets
depends on the argument of periastron (ω) and the true anomaly f(t), which
can be computed numerically by solving Kepler’s Equation

M = E − e sinE (1.3)

for the eccentric anomaly E, given the mean anomaly M = 2π
P
(t− t0) and the

time of periastron passage t0. Then cos f = (cosE − e)/(1− e cosE).

The RV (vr) can be measured thanks to the Doppler effect, which gives the
change in wavelength of emitted light due to the (non-relativistic) motion of
the source relative to the observer,

vr
c

=
∆λ

λ0
=
λ− λ0
λ0

, (1.4)

where c ≡ 299, 792, 458 m s−1 is the speed of light. Thus, we can create a RV
time series to search for Keplerian signals of the form in Eq. 1.1 by monitoring
the wavelengths λ of the cores of spectral lines, relative to a reference mea-
surement (λ0). The amplitude of the Keplerian signal constrains the planet’s
mass while its shape (see Fig 1.4) constrains the planet’s orbital properties.
Modern spectrometers are able to simultaneously measure thousands of spec-
tral lines from the near-UV to the near-IR at high spectral resolving power
R = δλ/λ0 ≳ 100, 000 using cross-dispersed echelle spectroscopy, a method
that neatly formats the high-resolution 1-D spectrum into a 2-D rectangular
area that fits conveniently on an imaging array (Gibson, 2013). To isolate
the motion of the star from the motion of the observatory along the line of
sight, vr and its associated timestamp t must be transformed into the solar
system barycenteric frame (Kanodia and Wright, 2018). With the modern In-
ternational Celestial Reference System (ICRS) and a precise timing of photon-
arrival-times as a function of wavelength, as traced by a chromatic exposure
meter (Blackman, Ong, and Fischer, 2019), this “barycentric correction” can
be applied to below the 1 cm s−1 level.

For a 1 M⊕ planet in a circular 1 year orbit around a 1 M⊙ star, the RV from
Eq. 1.1 is 8.9 cm s−1. This simple fact defines the < 10 cm s−1 precision goal
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Figure 1.4: Gallery of RV curves (Eq. 1.1) for different eccentricities (e, x-axis)
and arguments of periastron (ω, y-axis). Circular orbits produce sinusoidal RV
variations. As eccentricity increases, the RV curve becomes more “cuspy” with
the bulk of the stellar acceleration occuring near periastron passage. As the
orientation (ω) of the orbit changes relative to the observer, the asymmetry of
the RV variation around periastron passage changes.
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of the Extreme Precision Radial Velocity (EPRV) community (Fischer et al.,
2016). In Struve’s day, the 1950s state-of-the-art Coudé spectrographs could
achieve ∼300-500 m s−1 stability, at best. Griffin (1973) was the first to point
out that this poor precision was primarily due to the wavelength reference, an
emission lamp with heated gas such as thorium argon (ThAr), not following
the same optical path as the starlight. Griffin (1973) argued that a reference
that followed the same optical path already existed: telluric lines from Earth’s
atmosphere. As such, these lines would move in lockstep with the stellar lines
through the spectrometer and could provide ∼10 m s−1 Doppler precision.
Griffin (1973) also pointed out many of the major elements of what we now
call the RV “error budget” that would have to be controlled to reach this level:
spectral type, wavelength coverage, exposure time, opto-mechanical stability,
thermal stability, telluric contamination, and the barycentric correction.

The first dedicated RV searches for exoplanets (Campbell, Walker, and Yang,
1988; Walker et al., 1995) made the next breakthrough by placing a cell of ab-
sorptive gas in the optical path, superimposing the gas absorption spectrum on
the stellar spectrum (Campbell and Walker, 1979). Absorption lines from the
gas provided a wavelength reference that was much more stable than telluric
lines. Apart from being extremely poisonous to humans and corrosive to glass,
the gas of choice (hydrogen fluoride) had relatively few absorption lines over
a narrow wavelength range; the resulting RV prevision was ∼15 m s−1. This
led Butler et al. (1996) to make the next breakthrough to the ∼3 m s−1 level
by instead using iodine gas, which has a much denser forest of thousands of
absorption lines (and did not endanger the observer). When other factors were
not limiting, the iodine technique could measure RVs as precise as 1.5 m s−1

(e.g., on HIRES after the CCD upgrade in 2004; Vogt et al., 1994).

However, 1.5 m s−1 is about where the iodine technique bottoms-out. The
iodine spectrum still covers a narrow wavelength range (510–620 nm), limiting
the usable portion of the stellar spectrum from which the RV can be derived.
A complex forward model is required to convolve the instrument line-spread
function (LSF) with the product of a lab-measured iodine spectrum (with
R = 106 from a Fourier Transform Spectrograph; FTS) and an iodine-free
template stellar spectrum (itself deconvolved by the LSF) Doppler shifted by
some amount ∆λ, which can then be fit to the observed star+iodine spectrum.
As a result, high signal-to-noise (S/N) is needed (200 per pixel for 1.8 m s−1
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performance) as well as a detailed understanding of the LSF (to < 1%, which
can be measured from the same FTS iodine spectrum and observations of B
stars with iodine; Valenti, Butler, and Marcy, 1995).

At the same time that the iodine technique was being developed at Lick Obser-
vatory (Vogt, 1987; Vogt et al., 2014) and Keck Observatory (Vogt et al., 1994),
an alternative technique was being developed in Europe. Baranne et al. (1996)
built the ELODIE spectrograph, which was fiber-fed (rather than slit-fed at
Lick and Keck), held in a temperature-controlled room, and relied on its intrin-
sic stability rather than a simultaneous wavelength reference (Brown, 1990).
ELODIE achieved ∼7 m s−1 precision, good enough for the Nobel Prize win-
ning discovery of 51 Pegasi b (Mayor and Queloz, 1995). The lessons learned
from ELODIE led to the conception of HARPS (Mayor et al., 2003), the first
purpose-built Doppler spectrometer for planet hunting. HARPS combined the
fiber-fed stability of ELODIE with the principle of simultaneous wavelength
reference from the iodine technique by using a second fiber to measure a ThAr
spectrum directly adjacent to the stellar spectrum (Rupprecht et al., 2004).
With the full wavelength coverage of the spectrometer now available for com-
puting RVs, along with other innovations that further improved stability (e.g.,
fiber scrambling; Avila and Singh, 2008), HARPS became the first instrument
to break the m s−1 precision barrier by achieving 0.5–0.8 m s−1 performance
at S/N ≥ 200 (Fischer et al., 2016).

A comprehensive accounting of the RV error budget (e.g., Podgorski et al.,
2014; Fischer et al., 2016; Halverson et al., 2016; Blackman et al., 2020) has led
to the current generation of fiber-fed spectrometers built on highly stabilized
optical platforms, inside precisely thermally controlled vacuum chambers, with
fiber scrambling (agitation) for spatial (modal) noise suppression (Halverson et
al., 2015). A laser frequency comb (LFC; Murphy et al., 2007; Ycas et al., 2012;
Phillips et al., 2012) or a Fabry-Perot etalon (Wildi et al., 2010; Halverson et
al., 2014) now serves as the idealized wavelength reference, thanks to their
full wavelength coverage and regularly (and precisely) spaced emission lines of
homogeneous intensity. Still, it is impossible to hold an instrument perfectly
still, so in practice the instrumental drift must be monitored. Generally, a
ThAr (or Uranium Neon, UNe) lamp is used to obtain a reference absolute
wavelength solution, since the emission line positions are both known from
quantum mechanical transitions and empirically measured using FTS spectra
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(Redman, Nave, and Sansonetti, 2014). LFC spectra can then be tied to this
absolute scale, and since the spacing between lines is both precisely known
and regular, the wavelength corresponding to any given pixel on the detector
can be traced based on how much the apparent LFC line positions deviate
over time (e.g., due to thermal expansion). LFCs are extremely expensive,
highly complex optomechanically, and come with high operating costs, so a
(significantly cheaper but less long-term stable) etalon is used as the workhorse
simultaneous reference taken alongside stellar observations to “connect the
dots” between daily LFC and ThAr calibration sets (Bauer, Zechmeister, and
Reiners, 2015). Currently, LFCs used in EPRV systems do not provide light
bluer than ∼490 nm, so another source (e.g., ThAr) must supplement for
full wavelength coverage. The modern generation of EPRV systems, which
includes (in the optical) HARPS-N (Cosentino et al., 2012), ESPRESSO (Pepe
et al., 2013), EXPRES (Jurgenson et al., 2016), NEID (Schwab et al., 2016),
MAROON-X (Seifahrt et al., 2018), and KPF (Gibson et al., 2020), is pushing
to 10–30 cm s−1 precision (Pepe, F. et al., 2021). Concurrently, instruments
like HPF (Mahadevan et al., 2012) and PARVI (Gibson, 2023) are overcoming
challenges to instrumental stability in the near-infrared (NIR).

With such stable, high-resolution spectra across a broad wavelength range,
uncontaminated by a superimposed gas spectrum, new methods of extracting
the RV are being actively developed. The RV is traditionally computed by
cross-correlating the stellar spectrum with a spectral line mask, optimized for
the particular stellar spectral type (Baranne et al., 1996; Pepe et al., 2002),
and measuring the location of the peak. Originally done optically in the focal
plane by a physical mask with holes cut-out at the locations of spectral lines
(Fellgett, 1955; Griffin, 1967; Baranne, Mayor, and Poncet, 1979), nowadays
this is done numerically. The cross-correlation function (CCF) is effectively
the averaged spectral line across the detector, which also smears across noise
properties which may themselves vary across the detector. New methods that
derive RVs at the line-by-line (LBL) level (Dumusque, X., 2018) are opening
the way to characterizing instrumental drift across the detector (Cretignier et
al., 2021; Cretignier et al., 2023). Improved modeling of telluric contamination
(Bedell et al., 2019) and wavelength calibration (Zhao et al., 2021) lead the
way to optimized spectral extraction. As we will discuss in Section 1.5, the
now-primary (and perhaps fundamental) limit to the RV technique is stellar
variability at the 0.1–1 m s−1 level from phenomena on the stellar surface.



18

1.4 Techniques For Measuring the Stellar Obliquity

Perhaps the first measurement of a stellar obliquity was performed on our Sun
by Christoph Scheiner, a Jesuit astronomer who geometrically determined the
inclination of the Sun’s rotation axis relative to the ecliptic by tracing the
path of thousands of sunspots (Casanovas, 1997). While we cannot directly
observe the motion of a starspot, a transiting planet may in some cases obscure
a starspot, producing a detectable “bump” in the light curve. The next time
the stellar rotation period and planetary orbital period conspire to rotate the
starspot into the visible hemisphere during a transit, whether or not the tran-
sit chord intersects the spot again depends on the projected spin-orbit angle λ.
This “spot-crossing” technique (Sanchis-Ojeda et al., 2011) has been used to
measure the stellar obliquity for heavily spotted stars. Rapidly rotating stars
have enhanced brightness at their poles as a result of their oblate figure reduc-
ing the surface gravity at high latitudes, a feature that also enables obliquity
measurements (“gravity darkening,” Barnes, 2009). Asteroseismology has also
been used to determine stellar inclinations, and thus obliquities, for several
transiting planets (Huber et al., 2013). Statistical studies at the population
level can leverage stellar rotation rates to infer the parent obliquity distri-
bution for transiting planets (e.g. Louden et al., 2021; Louden et al., 2024).
This thesis utilizes the spectroscopic transit technique, which is more broadly
applicable to all stellar types and transiting geometries.

The Rossiter-McLaughlin Technique

As alluded to in Chapter 1.2, the stellar obliquity can be measured by observ-
ing an exoplanet transit its star with a RV spectrograph. This possibility was
first noted by J. R. Holt (Holt, 1893) and was observed for the first time (on
binary star systems) independently by Rossiter (Rossiter, 1924) and McLaugh-
lin (McLaughlin, 1924). The Rossiter-McLaughlin (RM) effect, which bears
their names, refers to the anomalous Doppler-shift recorded by a RV spectro-
graph due to a transiting object occulting the rotating stellar disk, altering
the rotationally broadened line profile of the star. A planet on a prograde
orbit would first transit the approaching (blueshifted) hemisphere of the star,
thereby causing the observer to measure a disk-integrated line profile that is
distorted slightly red. The opposite effect happens after the planet crosses the
stellar rotation axis. If the planet were instead orbiting retrograde, this effect
would play out in reverse. The shape and asymmetry of the RV variation
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Figure 1.5: Example orbital geometries for an aligned (left) and misaligned
(right) 1 RJup exoplanet in a 3.8 d orbit (with iorb = 85◦) around a 1 R⊙ star
with v sin i⋆ = 2 km s−1. The star has lines of latitude and longitude drawn
to visualize its orientation in space; the star is slightly inclined towards the
observer (i⋆ = 70◦) and has its rotation axis aligned with the vertical axis of
the plot. The middle row plots the subplanet velocity, also called the local
RV, defined in the text. The bottom row plots the corresponding RV anomaly
that a Doppler spectrometer would measure.

throughout the transit depend on the projected obliquity and the transit im-
pact parameter. Figure 1.5 plots an example geometry and corresponding RV
variation for an aligned and misaligned planet. All the possible “RM curves”
are plotted in Figure 1.6.

Theoretical modeling of the RM effect has grown in complexity as RV precision
has pushed to the m s−1 level and below (Kopal, 1942; Hosokawa, 1953; Hirano
et al., 2011). The anomalous RV is the intensity-weighted velocity of the stellar
photosphere within the planet shadow (the “subplanet velocity,” middle row in
Figure 1.5), normalized by the fraction of the total flux obscured by the planet
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Figure 1.6: Gallery of RV variations due to the RM effect for different pro-
jected obliquities (λ, x-axis) and transit impact parameter (b, y-axis). Pro-
grade (|λ| < 90◦) orbits are characterized by an up-then-down (red-then-blue)
pattern, while retrograde orbits (|λ| > 90◦) show the opposite effect. The de-
gree of asymmetry increases as λ deviates from fully aligned/polar/antialigned
(0◦/90◦/180◦) orbits. To detect a polar orbit, the transit impact parameter
must be b > 0. As b increases, the transit chord approaches the limb of the
star. The resulting RM curve for misaligned orbits will generally only occult
either the approaching or receding hemisphere, rather than transiting both.
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(lower panel in Figure 1.5, see Albrecht, Dawson, and Winn 2022 for more
details). The subplanet velocity is affected not just by rotation, but also by
convection (Beckers and Nelson, 1978; Shporer and Brown, 2011; Cegla et al.,
2016a) which itself can be impacted by active regions (Haywood et al., 2016).
A useful quantity is the expected amplitude of the RM signal (i.e., anomaly
at ingress or egress) from the rotational effect alone (Albrecht, Dawson, and
Winn, 2022),

∆RVmax ≈ 15 m s−1

(
Rp/RJup

R∗/R⊙

)2(
v sin i⋆

2 km s−1

)√
1− b2. (1.5)

While the RM signal scales with v sin i⋆, Doppler precision is degraded at high
v sin i⋆ due to broadened lines having more centroid uncertainty than steeper,
narrower lines, as well as uncertainty introduced from line blending (Bouchy,
Pepe, and Queloz, 2001). Stars with v sin i⋆ ≳ 10 km s−1 are generally not
amenable to precise RVs, but are instead more amenable to directly resolving
perturbation from the transiting planet to the line profile itself.

The Reloaded Rossiter-McLaughlin Technique

The RM effect manifests in RV time series from the act of measuring the cen-
troid of a spectral line, for example with the CCF technique (see Chapter 1.3).
Physically, the planet’s shadow removes that patch of the photosphere’s contri-
bution to the stellar spectrum, and thus the CCF, which biases the measured
RV. In cases where v sin i⋆ is large enough, the distortion can be directly re-
solved in the CCF. The toy model shown in Figure 1.7 shows that both a
transiting planet and a starspot will have this effect. In practice, the con-
tribution of the starspot is not simply a reduced-intensity copy of the stellar
photosphere, but is itself a cooler photosphere with its own intrinsic spectrum.

The Doppler Tomography (DT; Donati et al., 1997; Collier Cameron et al.,
2010) technique directly models this distortion by fitting a combination of two
Gaussians to the CCF; one Gaussian represents the unperturbed CCF (“star”
in Figure 1.7) and the other represents the bump from the planet (“planet” in
Figure 1.7), also called the “Doppler shadow.” The amplitude of the Doppler
shadow (Ashadow) depends on how much of that particular velocity is removed
by the planet. Said another way, it is related to the amplitude of the stellar
CCF (Astar) by the ratio of the the planet’s area to the area on the stellar disk
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Figure 1.7: Left: Synthetic CCF (described in Chapter 7) consisting of an un-
perturbed stellar line profile broadened by v sin i⋆ = 34 km s−1 (grey dashed),
the local CCF from the patch of star within the planet shadow (blue) as well
as within a starspot (red), and the total (observed) CCF (grey solid) which is
equal to the stellar CCF minus that beneath/within the planet/spot. Right:
The on-sky geometry (same style as Figure 1.2) at the same timestamp that
the CCFs are computed at, showing the planet occulting blueshifted light and
a spot at +30◦ latitude with an intensity 30% that of the photosphere.

within the vertical strip in Figure 1.7 (Albrecht, Dawson, and Winn, 2022),

Ashadow(t)

Astar
≈ 1

4

(
Rp

R∗

)
1√

1− x(t)2
. (1.6)

The width of the Doppler shadow is determined by the amount of broadening
that occurs within the shadow, i.e. the local RV gradient across the shadow
2(Rp/R∗)v sin i⋆. The centroid of the Doppler shadow in velocity space is the
subplanet velocity, defined in the previous section. The Doppler shadow’s
dependence on (Rp/R∗) rather than (Rp/R∗)

2 makes it more amenable to
characterizing smaller planets, so long as rotational broadening is the domi-
nant broadening mechanism. From Eq. 1.6, characterization of terrestrial-size
exoplanets requires LSF stability at the 100 ppm level.

The Reloaded RM (RRM) method, developed by Cegla et al. (2016b), expands
upon the DT technique. For rapidly rotating stars, the stellar line profile is not
a Gaussian, but a rotation profile (Gray, 2005). The RRM method directly
measures this by constructing a template CCF, CCFout, by averaging all the
observations taken outside the planet transit. This template is then subtracted
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from each in-transit CCF, yielding

CCFloc = CCFout − CCFin = (star)− (star − shadow) = shadow. (1.7)

Thus, the CCFloc are a direct measurement of the Doppler shadow itself. The
RRM prescription fits these CCFloc with Gaussian profiles and extracts their
centroid, RVloc, which are modelled by the subplanet velocity. Computing the
model is relatively cheap, as only a few coordinate rotations are needed to
identify the patch of star beneath a given point (x, y) on the sky and project
the rotational velocity at that point along the line of sight. Adding the effects
of center-to-limb variations can be accomplished by a simple polynomial model
(Cegla et al., 2016b). Thus, the RRM technique effectively constructs a 1-D
velocity time series that is efficiently fit. If the planet traverse multiple stellar
latitudes, then this method also becomes sensitive to the stellar differential
rotation (Roguet-Kern, Cegla, and Bourrier, 2022).

Generally, the presence of stellar activity produces only a linear trend in the
classical RM time series, since the rotation period (days–weeks) is typically
many times the typical transit duration (hours). However, line distortions
(e.g., Figure 1.7) can blur the planet shadow if they overlap, making measure-
ments of the obliquity more difficult.

1.5 Stellar Activity: Why Stare at the Sun?

The 1 m s−1 Stellar Activity Barrier

Despite EPRV instruments, facilities, and survey architectures maturing to
the technical capability needed for measuring exo-Earths (Crass et al., 2021;
Newman et al., 2023), exoplanet mass measurements with the RV technique
have bottomed-out around 1 m s−1 (see Figure 1.8). At the sub-m s−1 level,
phenomena on the surfaces of stars become the limiting noise source across all
timescales (See Fig 1.9):

• On minutes timescales, acoustic oscillations restored by pressure (p-
mode) in a star’s convective zone cause the stellar radius to pulsate
(Brown et al., 1991; Kjeldsen and Bedding, 1995; Kjeldsen et al., 2008),
inducing m s−1 level Doppler shifts. While there are many oscillation
modes with overlapping frequencies, this noise source can be efficiently
binned down by tuning exposure times (or better, taking sequences of
fast exposures) to average over the characteristic frequency νmax (Chap-
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Figure 1.8: Measured RV semiampiltude as a function of year for exoplanets
discovered by RVs (blue) or the transit method (orange). Since ∼2010, RVs
have been unable to characterize exoplanets below about 0.5–1 m s−1. Stellar
activity remains the greatest challenge to breaking this barrier to reach the
9 cm s−1 amplitude of an exo-Earth (red line). Data from the NASA Exoplanet
Archive (as of Oct 4, 2023).

lin et al., 2019; Gupta and Bedell, 2023). This corresponds to ∼5 min
for solar type stars, but can be hours for hotter or evolved stars.

• Evolving convective patterns on small (granulation, hours) and large
(supergranulation, tens of hours, see Rincon and Rieutord 2018) spatial
scales distort spectral line shapes and positions, producing m s−1 level
Doppler shifts when fitting line centroids (Dravins, Lindegren, and Nord-
lund, 1981; Del Moro, 2004). Like p-modes, granulation can be partially
binned down by averaging exposures taken several hours apart within
a given night (Dumusque, X. et al., 2011a). However, longer timescale
supergranulation is difficult to resolve given the day-night cycle of Earth.
3D magnetohydrodynamical simulations have been the primary method
for modeling granulation effects in spectra (Meunier, N. et al., 2015;
Cegla et al., 2018; Palumbo et al., 2022).

• Magnetic activity manifesting as active regions (e.g. starspots, facu-
lae, plage) are modulated by the star’s rotation period, producing RV
variability up to many m s−1 on weeks–months timescales. While ac-
tive regions break the flux-symmetry across the star’s rotational velocity
profile (Saar and Donahue, 1997; Meunier, Desort, and Lagrange, 2010;
Boisse, I. et al., 2011; Dumusque, X. et al., 2011b), a larger effect is the
suppression of the convective blueshift within active regions (dominant
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Figure 1.9: RV landscape of stellar activity for Sun-like stars. The confluence
of multiple phenomena with different temporal and spectral characteristics at
similar RV amplitudes nets a complex RV signal. The signals of 51 Pegasi b,
Jupiter, and the Earth are shown for context. Nearly all types stellar activity
become relevant at the > 10 cm s−1 level and span the full range of timescales
from minutes to decades.

source in the Sun; Meunier, N., Lagrange, A.-M., and Desort, M., 2010a;
Meunier, N. and Lagrange, A.-M., 2013; Haywood et al., 2016; Milbourne
et al., 2019). Both produce quasi-periodic noise as active regions, grow,
shrink, and move across the stellar disk. A common strategy is to use
Gaussian Process (GP) regression in the time domain, often by training
the GP on activity indicators (Haywood et al., 2014; Rajpaul et al., 2015;
Aigrain and Foreman-Mackey, 2023). However, GPs are susceptible to
overfitting and/or absorbing planetary signals (Blunt et al., 2023).

• Long-term magnetic activity cycles can produce RV variations on decades
timescales (Baliunas et al., 1995; Meunier, N., Lagrange, A.-M., and Des-
ort, M., 2010b; Lovis et al., 2011; Luhn et al., 2022) as a star increases
and decreases in activity level (11 years for the Sun).

Stellar activity does not just bury the small signals of exoplanets. The quasi-
periodic nature of active regions can also masquerade as exoplanet signals,
yielding false positive detections (e.g., Lubin et al., 2021). Even with decades
long surveys and thousands of observations per star, stellar activity remains
the fundamental limit in our ability to detect exo-Earths (Langellier et al.,
2021; Luhn et al., 2023; Gupta and Bedell, 2023). To detect true positive
exo-Earths to characterize with next-generation NASA flagship missions like
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the Habitable Worlds Observatory (HWO), we must develop pipelines which
derive RV time series unaffected by activity.

Traditional methods compute the RV by fitting the centroid of the cross cor-
relation function (CCF) of a line mask with the observed spectrum. The RV
time series is then detrended against a so-called “activity indicator,” a metric
which is highly correlated with stellar activity. Common indices use the chro-
mospheric magnetically sensitive Ca H&K lines (S-index, logR′

HK) (Isaacson
and Fischer, 2010a), Hα (Kürster et al., 2003), or line shape changes traced by
the full width at half maximum (FWHM) or the bisector inverse slope (BIS)
of the CCF (Queloz, D. et al., 2009). These have the advantage of being com-
puted from the same spectrum as the RVs, but do not correlate perfectly with
the activity-related component of the full-spectrum CCF RV. Aigrain, Pont,
and Zucker (2012) developed a spot model to predict RVs in a similar way
based on observed photometric variability (FF’). Troublingly, even photomet-
rically quiet stars can exhibit unaccounted RV noise up to tens of m s−1 (likely
granulation, Bastien et al., 2014).

Dumusque, X. (2018) took a different approach. By computing RVs at the
individual line level (line-by-line, or LBL), they could combine only activity-
insensitive lines (i.e. lines whose individual RVs were uncorrelated with activity
indicators) for a more robust CCF RV, though at the cost of degraded precision
(due to fewer lines being used). A followup study showed that the depth of
individual spectral lines is strongly correlated with activity (Cretignier et al.,
2020). Siegel et al. (2022) built upon this work to combine the LBL technique
with FF’ and GPs using a novel activity indicator based on line depth, the
“depth metric.” This method reduced the root-mean-square (RMS) of HARPS
RVs of α Cen B from 2.67 to 1.02 m s−1 and could recover injected planetary
signals as small as 1 m s−1. Another promising novel activity indicator is
∆αB2, a proxy for unsigned magnetic flux (Lienhard et al., 2023). While
these approaches are superior to traditional detrending methods when strictly
comparing the RMS reduction, Zhao et al. (2022) showed that methods often
don’t agree on distinguishing planetary signals from activity. On stars, the
residual RMS is an unknown combination of both.

New methods which utilize the full wealth of spectral information are needed
to make progress. While the spectral fingerprint of activity is a change in line
shape, an exoplanet induces an achromatic Doppler shift. This fundamental
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difference may be leveraged to extract activity-invariant RVs. A promising
approach used the principle components of the CCF to recover injected planet
signals down to 40 cm s−1 (Collier Cameron et al., 2021). A more granular
LBL approach could utilize all spectral information to push this even further.

Staring at the Sun

Observations of our Sun are unequivocally our best laboratory for directly con-
necting active processes to EPRV measurements, because we have the “answer
in the back of the book.” Utilizing the precise JPL ephemerides of the solar
system planets, all planetary signals can be removed to below the mm s−1

level (Wright and Kanodia, 2020). Surface features are resolved in exquisite
detail from the ground (e.g. DKIST; Rimmele et al., 2020) and from space
(e.g. NASA Solar Dynamics Observatory, SDO; Schou et al., 2012).

As such, there is a growing network of instruments that feed disc-integrated
sunlight into EPRV spectrographs. The Low Cost Solar Telescope (LCST;
Phillips et al., 2016) for HARPS-N was the first, beginning operations in 2015.
In 2018, a similar instrument (HELIOS) was added to HARPS. The current
generation of EPRV spectrometers have begun to include solar feeds during
their development stages, as they are particularly helpful for developing and
testing various aspects of the instrument (e.g., optical alignment, data re-
duction pipeline) and assessing overall performance during the commissioning
stage without requiring expensive nighttime allocations on the telescope. The
NEID Solar Feed (Lin et al., 2022) and Lowell Observatory Solar Telescope
(LOST; Llama in prep) both began operations in 2020 and have proven valu-
able in these regards. EPRV facilities which do not currently have solar feeds
either have one planned, such as PoET for ESPRESSO (Leite et al., 2022) and
ABORAS for HARPS-3 (Jentink et al., 2022), or are actively being installed
(e.g., MAROON-X, PARVI, NIRPS). Each of these facilities utilize the same
principle: an autonomous solar tracker on the roof of the observatory acquires
the Sun, focuses sunlight into an integrating sphere which spatially scrambles
the input sunlight, and long optical fiber run transports the homogenized sun-
light to the spectrograph within the observatory. Chapter 3 presents the solar
feed for KPF, the Solar Calibrator (SoCal). Figure 1.10 compares SoCal to
other EPRV solar feeds.
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Figure 1.10: Comparison between the HARPS (blue), HARPS-N (orange),
EXPRES (green), NEID (red), and KPF (purple) solar feeds. Top: wave-
length coverage of each instrument. Bottom-Left: single-exposure S/N (at
5500 Å) vs. spectral resolution. KPF stands out at S/N > 1000 in the green
channel (> 2000 in the red channel). Bottom-Middle: Number of obseva-
tions per p-mode oscillation (5.5 minute interval) as a function of exposure
time. KPF utilizes fast exposure times to obtain fast cadence, which is fur-
ther sped-up in the fast-readout mode. Bottom-Right: Single-measurement
photon-limited uncertainty σRV vs. the same quantity binned over 5.5 min-
utes worth of exposures (y-axis).

The only cross-instrument solar comparison study to date was recently con-
ducted by Zhao et al. (2023b). The authors compared one month of solar data
between HARPS, HARPS-N, EXPRES, and NEID, focusing on the agree-
ment between instruments. They found an exceptional 15–30 cm s−1 RMS
on intra-day timescales. On inter-day timescales, a larger 50–60 cm s−1 RMS
was observed. The difference was attributed to unshared observing conditions
(e.g. differential extinction due to variable airmass and solar disk position
at each site at a given time). The authors noted qualitative agreement in
quasi-periodic variability on the solar rotation period, but left a quantitative
assessment to future work. At the moment, such studies suffer from a data
availability problem. Only the first three years of HARPS-N solar data (2015–
2018) have been published (Collier Cameron et al., 2019; Dumusque et al.,
2021), but recent data is proprietary. A public database for EXPRES solar
data is also still in-development (J. Llama, private communication). Only the
NEID and KPF solar data are immediately available on a public archive. Im-
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proved data availability will yield massive, rich training datasets for developing
novel methods for mitigating stellar activity.

By correlating synthetic RVs from the active and quiet parts of the Sun (com-
puted using the SDO Helioseismic and Magnetic Imager (HMI) maps with
SolAster, Ervin et al., 2022) to observed line shape changes, the source of
activity may be identified. Lakeland et al. (2024) showed that synthetic RVs
from the quiet part of the solar surface (i.e., not in a spot/faculae/plage) show
a stable 1 m s−1 variability over their entire 7 yr baseline, with no correlation
to known activity indicators. This granulation and supergranulation noise may
be discernible by line bisector changes (Palumbo and Ford, 2024), though this
requires very high spectral resolution and S/N to resolve individual line shape
changes. Line-shape distortions from active regions likewise require ultra-high
spectral S/N (Dravins and Ludwig, 2024). Machine learning methods such as
neural networks (de Beurs et al., 2022) and auto-encoders (Liang, Winn, and
Melchior, 2024) may be able to learn the difference between line shape changes
and achromatic Doppler shifts, but require immense (and accurate) training
sets to be reliably deployed for planet-hunting.

The KPF Solar Calibrator (SoCal), presented in Chapter 3, was built to fill
this niche. SoCal spectra reach a maximum S/N of 2400, compared to ∼400
of existing EPRV solar feeds, though at lower resolution (see Figure 1.10).
The fast cadence of SoCal additionally enables more effective binning over p-
modes (binning noise described in Zhao et al., 2023b) to better isolate other
noise sources. In a typical 6–8 hour day, EPRV solar feeds collect hundreds of
spectra. The longitudinal coverage of HARPS, HARPS-N, EXPRES/NEID,
and KPF yields 20 hours of continuous solar observations in the summer
months and ∼17 hours in the winter, opening the door to studying intermedi-
ate timescale phenomena such as granulation. Critically, common variability
in such multi-instrument contemporaneous datasets can be uniquely attributed
to astrophysical processes on the Sun, while variability seen in only one instru-
ment can be diagnosed as internal systematic errors. Both need to be better
understood to usher in the era of exo-Earth discovery and characterization.

1.6 Thesis Outline

This thesis centers around the Keck Planet Finder (KPF), a newly commis-
sioned EPRV spectrograph at W. M. Keck Observatory, but begins pre-KPF
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with the confirmation and mass measurement of the largest rocky ultra-short-
period planet discovered to date, TOI-1347 b, in Chapter 2. This measurement
highlights the importance of mitigating stellar activity in RV datasets. Chap-
ter 3 presents the Solar Calibrator, an instrument for Sun-as-a-star observing
with KPF. SoCal spectra are the highest S/N of their kind and will serve as
a rich, public dataset for developing novel methodologies for mitigating stel-
lar activity. SoCal gives us confidence in the immediate short-term stability
(hardware and software) of KPF, which permits measurements of exoplanet
stellar obliquities via spectroscopic transits.

The remaining chapters concern stellar obliquity measurements of four exo-
planets, each of which provides a unique lens on HJ formation. The first is
WASP-107 b, a super-Neptune that requires migration (via interactions with
its outer companion) to explain its ultra-low density and extraordinarily large
envelope mass fraction. Chapter 4 adds WASP-107 b to the growing popu-
lation of polar hot Neptunes around cooler stars with escaping atmospheres,
suggestive of common formation mechanisms.

Chapters 5, 6, and 7 present obliquity measurements made with KPF. The
first is KELT-18 b, a proof of concept for KPF and another definitive “polar
planet” with a stellar companion. The second, Kepler-1656 b, is a highly ec-
centric sub-Saturn that could plausibly be undergoing migration kick-started
by its outer planetary companion. Curiously, its orbit may be aligned, atypical
of the traditional picture of high-eccentricity migration. Lastly, in Chapter 7,
is Kepler-1658 b, an exoplanet undergoing active orbital decay around a star
that evolved across the Kraft Break, making it a unique dynamical laboratory
for constraining tidal efficiencies. However, the transit we observed is con-
taminated by a massive starspot, which precludes the direct measurement of
the obliquity and thus a dynamical interpretation. However, the starspot sig-
nal opens a new window into probing the effect of starspots on EPRV spectra.
This dataset is thus an exciting union of the two primary themes in this thesis:
stellar activity and the orbits of close-in exoplanets.

Finally, Chapter 8 concludes and looks to the exciting future of RV exoplanet
astronomy.
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C h a p t e r 2

A DENSE ULTRA-SHORT-PERIOD PLANET POSSIBLY
CLINGING TO A HIGH-MEAN-MOLECULAR-WEIGHT

ATMOSPHERE

Rubenzahl, R. A. et al. (Apr. 2024). “The TESS-Keck Survey. XII. A Dense 1.8
R ⊕ Ultra-short-period Planet Possibly Clinging to a High-mean-molecular-
weight Atmosphere after the First Gigayear.” In: The Astronomical Journal
167.4, 153, p. 153. doi: 10.3847/1538-3881/ad28bb. arXiv: 2402.07451
[astro-ph.EP].

2.1 Introduction

Ultra-short-period planets, or USPs, are exoplanets that orbit their stars with
short orbital period (< 1 day). USPs tend to not exceed 2 R⊕ in size, save
for the closest of the hot Jupiter (HJ) population. This “hot-Neptune desert”
(Mazeh, Holczer, and Faigler, 2016) has been hypothesized to be sculpted
by mass loss mechanisms, such as photoevaporation (Owen and Wu, 2017)
or core-powered mass loss (Gupta and Schlichting, 2019). Such mechanisms
destroy the atmospheres of smaller planets, whereas giant planets can bet-
ter resist mass loss (in fact, HJ atmospheres can become inflated; Batygin,
Stevenson, and Bodenheimer, 2011; Grunblatt et al., 2017). The Kepler mis-
sion (Borucki et al., 2010) took the first steps to map out the demographics
of close-in transiting planets and revealed that USPs exist around ∼0.5–0.8%
of GK stars (Sanchis-Ojeda et al., 2014). Another key discovery from Kepler
was the “radius gap” around 1.7–1.9 R⊕, which separated the bimodal peaks
corresponding to the smaller super-Earth population (no atmosphere) and the
larger sub-Neptunes (≳1% H/He atmosphere) (Fulton et al., 2017; Fulton and
Petigura, 2018).

To date, only two non-giant USPs have been discovered with radii larger than
2 R⊕. TOI-849 b (Armstrong et al., 2020) is a massive (∼40 M⊕) rocky world
that is likely the stripped core of a giant planet (perhaps via giant collisions).
LTT-9779 b (29 M⊕, 0.79 days; Jenkins et al., 2020) defies its environment
with a substantial (9% by mass) H/He atmosphere and a 4.6 R⊕ radius. This

https://doi.org/10.3847/1538-3881/ad28bb
https://arxiv.org/abs/2402.07451
https://arxiv.org/abs/2402.07451
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suggests some USPs can retain atmospheres. If so, where is the boundary
between bare rocky cores and those with residual (or secondary) atmospheres?

A close-in orbiting planet will reflect starlight and emit thermal radiation,
causing the observed brightness of the system to vary with the planet’s orbital
position. This variation, called the phase curve, depends on the planet’s albedo
and day-night temperature contrast. Phase curve variations have been used
to directly probe the surfaces of several USPs, finding some to be bare rock
(LHS 3844 b; Kreidberg et al., 2019; Kane et al., 2020) and others to perhaps
possess high mean-molecular weight atmospheres (55 Cnc e; Demory et al.,
2016).

Unlike Kepler, which observed a single patch of sky for four years, the Transit-
ing Exoplanet Survey Satellite (TESS ; Ricker et al., 2015) is an all-sky transit
survey that has discovered thousands of close-in planets around nearby bright
stars that are amenable to radial velocity (RV) follow-up measurements. RVs
provide key insight into the existence of exoplanetary atmospheres by mea-
suring the planet’s mass, thereby constraining the bulk density, planet surface
gravity (which is related to atmospheric scale height), and its ability to resist
photoevaporation. Our collaboration, the TESS -Keck Survey (TKS; Chontos
et al., 2022), has been monitoring 86 TESS systems with RV follow-up using
the HIgh Resolution Echelle Spectrometer (HIRES; Vogt et al., 1994) at the
Keck-I Telescope. As part of TKS, we have measured the masses of several
USPs, such as TOI-561 b (Weiss et al., 2021) and TOI-1444 b (Dai et al.,
2021), both of which have rocky compositions. In this paper, we present the
discovery and mass measurement of the USP TOI-1347 b. The heaviest of the
non-giant USPs1 to date, TOI-1347 b shows hints of phase curve variability
and a secondary eclipse in its TESS photometry, which may indicate the pres-
ence of a high mean-molecular-weight atmosphere. We also detected a second
transiting planet in the system at 4.84 d, TOI-1347 c, in line with the com-
mon trend for USPs to have nearby outer companions which can shepherd the
migrations of their USPs into their present sub-day orbits (Millholland and
Spalding, 2020).

This paper is structured as follows. In Section 2.2 we characterize the host
star using spectroscopy. We rule out stellar companions using speckle imaging

1Other than the exceptional LTT-9779 b and TOI-849 b, which likely belong to a sepa-
rate class of planets than the ≲ 10 M⊕ USPs (Dai et al., 2021).
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in Section 2.3. In Section 2.4 we analyze the TESS light curve to measure the
stellar rotation period, planetary transits, and tentative phase-curve variability
and secondary eclipse. In Section 2.5 we present our RV measurements and the
resulting mass constraints for both planets. Finally, we discuss the implications
of our observations for the TOI-1347 system in Section 2.6.

2.2 Host Star Properties

Spectroscopic Properties

TOI-1347 (TIC 229747848) is a late G type (Teff = 5464± 100 K) star that is
relatively active (logR′

HK = −4.66), showing strong variability in both pho-
tometry (see Section 2.4) and RVs (see Section 2.5).

We obtained high-resolution spectra of TOI-1347 with HIRES (with the B3
decker, R = 67, 000) and HARPS-N (R = 115, 000); see Section 2.5 for de-
tails. We applied the SpecMatch-Synthetic (Petigura, 2015) algorithm to
the HIRES spectrum to measure Teff, M⋆, Fe/H, and log g. These parameters,
as well as the J and K magnitudes from the TICv8 catalog (Paegert et al.,
2021) and the Gaia parallax (Gaia Collaboration et al., 2023), were input into
isoclassify (Huber et al., 2017a; Berger et al., 2020) to constrain R⋆. We also
used KeckSpec (Polanski in prep) to compute alpha elemental abundances.
Stellar parameters for TOI-1347 are included in the catalog of MacDougall et
al. (2023). We verified that our values agree with the values therein to within
1σ.

We similarly derived spectroscopic parameters from the co-added HARPS-N
spectra of TOI-1347 using the FASMA spectral synthesis package (Tsantaki
et al., 2018; Tsantaki, Andreasen, and Teixeira, 2020). We verified that all
derived quantities were in agreement with the HIRES values. In particular,
the HARPS-N data are of sufficient resolution to detect v sin i⋆, whereas with
HIRES we only obtain an upper limit. Table 2.1 lists our adopted stellar
parameters.

Age

We constrained the age of the host star using several methods. Using a stel-
lar rotation period of 16.1 ± 0.3 days (see Section 2.4 for details), we es-
timated the gyrochronological age of the star. The scaling relation of Ma-
majek and Hillenbrand (2008) gives an age of 1.33 ± 0.06 Gyr. Using the
latest empirical relations of Bouma, Palumbo, and Hillenbrand (2023a), the
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Figure 2.1: HIRES spectrum of TOI-1347 in the neighborhood of the lithium
doublet. Nearby Fe I lines are labelled. No absorption attributed to lithium
was detected.

age is 1.7 ± 0.1 Gyr. We also obtained an age estimate using chromospheric
activity in the Ca II H &K lines from our HIRES spectra. We measured
logR′

HK = −4.66 ± 0.05 using the method of Isaacson and Fischer (2010b).
Combining with the calibration of Mamajek and Hillenbrand (2008), the cor-
responding age is 1.6 ± 0.4 Gyr. We also looked for the lithium doublet in
our HIRES spectra, but were unable to detect the lithium doublet above the
noise floor in the continuum (see Fig. 2.1). We placed an upper limit of 2 mÅ
(95% confidence) on the equivalent width. According to Berger, Howard, and
Boesgaard (2018), the star is consistent with field stars and is most likely older
than the Hyades cluster (∼650 Myr). Lastly, MacDougall et al. (2023) derived
an age of 0.8+1.1

−0.6 Gyr from isochronal fitting.

The age uncertainties above do not account for systematic errors. Therefore,
we combined age indicators with an unweighted mean. We adopted a wide age
uncertainty of 0.4 Gyr to reflect the systematic uncertainties between the dif-
ferent age estimators. Our best age estimate for TOI-1347 is thus 1.4±0.4 Gyr.
Importantly, this age is longer than the timescale on which photoevaporation
operates, which is typically confined to the first few hundred Myr when the
star is active in X-rays and extreme UV (Ribas et al., 2005; Tu et al., 2015).
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Figure 2.2: Contrast curves around TOI-1347 from Gemini/‘Alopeke; the inset
shows the reconstructed image at 832 nm. No companions are detected.

2.3 High Resolution Imaging

To help validate the transiting planets, we observed TOI-1347 with the ‘Alopeke
(Scott et al., 2021) dual-channel speckle imaging instrument on Gemini-N (PI:
Crossfield) with a pixel scale of 0.01 arcsec/pixel and a full width at half
maximum resolution of 0.02 arcsec. With ‘Alopeke we obtained simultaneous
speckle imaging at 562 and 832 nm, with a total of seven observing blocks
each consisting of one thousand 60 ms exposures.

We processed these images with the speckle pipeline of Howell et al. (2011),
which yielded the 5-sigma sensitivity curves and reconstructed image shown
in Fig. 2.2. The curves do not show companions at angular separations of
0.5 arcsec or greater at a contrast of 4.12 mag at 562 nm and 6.52 mag at 832
nm (Fig. 2.2).

2.4 TESS Photometry

TOI-1347 was observed by TESS in sectors 14–26, 40, 41, and 47–60, which
span UT Jul 18 2019 to Jan 18 2023. The Science Processing Operations
Center (SPOC; Jenkins et al., 2016) detected two transiting planet candidates
which were subsequently diagnosed and vetted as TESS Objects of Interest
(TOIs) 1347.01 (b) and 1347.02 (c) (Guerrero et al., 2021).

We downloaded the 20 s and 120 s cadence SPOC light curves using lightkurve
(Lightkurve Collaboration et al., 2018). We removed all data points with a
non-zero Quality Flag, i.e. those suffering from cosmic rays or other known
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Figure 2.3: Top: The full 120 s cadence SPOC TESS light curve, binned to
30 min. Rotationally modulated variability is strong and evolves over time;
the three shaded regions highlight example 16 day windows in which different
numbers of maxima/minima are observed. Middle: The 30-min light curve
phased to the 16.1 day rotation period. The red points further bin the folded
data to ∼ 8 hour bins. The inset zooms in on these binned phased data and
highlights the tendency for every other set of maximum/minimum to repeat
in amplitude. Bottom: The ACF of the photometry, showing regular peaks
at all multiples of 8 days (dashed line) with the highest peak at 16 days
(dark line). The red dashed line shows the best-fit SHO model described in
Section 2.4.
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Table 2.1: Stellar Parameters of TOI-1347

Parameter Value Unit Source
TIC ID TIC 229747848 a

Right Ascension 18:41:18.4 hh:mm:ss a

Declination +70:17:24.19 dd:mm:ss a

V magnitude 11.168± 0.013 a

TESS magnitude 10.7157± 0.0066 a

J magnitude 10.011± 0.02 a

K magnitude 9.616± 0.015 a

Gaia magnitude 11.2076± 0.0005 b

Parallax 6.7803± 0.0112 mas b

RA proper motion −6.0883± 0.0150 mas yr−1 b

Dec proper motion 26.1020± 0.0150 mas yr−1 b

Galactic U −5.31± 0.09 km s−1 c

Galactic V −7.72± 0.46 km s−1 c

Galactic W 4.91± 0.23 km s−1 c

Luminosity 0.55± 0.02 L⊙
d

Radius 0.83± 0.03 R⊙
d

Mass 0.913± 0.033 M⊙
e

Teff 5464± 100 K e

log g 4.64± 0.10 e

[Fe/H] 0.04± 0.06 dex e

[α/Fe] −0.03± 0.06 dex f

v sin i⋆ < 3 km s−1 e

v sin i⋆ 2.9± 0.1 km s−1 g

veq 2.61± 0.11 km s−1 This work
logR′

HK −4.66± 0.05 This work
Prot 16.1± 0.3 days This workh

Prot 16.3± 0.6 days This worki

Prot 16.2± 0.3 days This workj

Age 1.7± 0.1 Gyr This workk

Age 1.33± 0.06 Gyr This workl

Age 1.6± 0.4 Gyr This workm

Age 0.8+1.1
−0.6 Gyr n

Age > 650 Myr This worko

Age 1.4± 0.4 Gyr Adopted value
aTIC v8.2 (Paegert et al., 2021). bGaia DR3 (Gaia Collaboration et al., 2023). cDerived
from Gaia DR3 astrometry, using the local standard of rest from Coşkunoǧlu et al. 2011 as
implemented in PyAstronomy.pyasl.gal_uvw (Czesla et al., 2019). dIsoclassify (Huber
et al., 2017a), using the SpecMatch-Synthetic results from a HIRES spectrum.
Uncertainties are random errors for the adopted model grid. To account for systematic
errors, see Tayar et al. (2022). eSpecMatch-Synthetic (Petigura, 2015), using a HIRES
spectrum taken at R ∼ 67000 with no iodine. fKeckSpec (Polanski in prep), using a
HIRES spectrum taken at R ∼ 67000 with no iodine. gFASMA (Tsantaki et al., 2018;
Tsantaki, Andreasen, and Teixeira, 2020), using the co-added HARPS-N spectra. hFrom
ACF of TESS photometry (Section 2.4). iFrom TESS-SIP with TESS photometry
(Section 2.4). jFrom GP fit to RVs (Section 2.5). kFrom Prot using empirical relations of
Bouma, Palumbo, and Hillenbrand (2023a). lFrom Prot using empirical relations of
Mamajek and Hillenbrand (2008). mFrom logR′

HK using empirical relations of Mamajek
and Hillenbrand (2008). nFrom isochronal fitting by MacDougall et al. (2023). oFrom Li
and comparison to Hyades (Berger, Howard, and Boesgaard, 2018).
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systematic issues. We then stitched and normalized the multi-sector data using
lightkurve and applied a 5-σ sigma-clipping. lightkurve also provides the
correction for scattered light (2% contamination reported by ExoFOP). The
resulting light curve, shown in Figure 2.3, exhibits significant but coherent
periodic variability corresponding to rotationally modulated surface inhomo-
geneities on the stellar disk.

Stellar Rotation Period

The effect of a starspot on photometry is to reduce the observed (integrated)
intensity when on the visible hemisphere. The net effect of many spots is
quasiperiodic variability that can be treated as time-correlated noise (Hay-
wood et al., 2014; Rajpaul et al., 2015; Aigrain and Foreman-Mackey, 2023).
The TESS photometry of TOI-1347 shows strong rotational variability with
maxima/minima occurring roughly every ∼ 8 days (see the top panel in Fig-
ure 2.3). A Lomb-Scargle periodogram of the photometry shows a strong peak
at 8 days (Fig 2.4). However, a closer examination of the light curve reveals
that the depths of adjacent maxima/minima are dissimilar. In fact, the depths
of alternating maxima/minima tend to have similar amplitudes. This can be
explained if the star has a 16 day rotation period and multiple spot groups
concentrated on opposite hemispheres of the star, an effect noted for a number
of other stars (Holcomb et al., 2022). In fact, a periodogram analysis of the
RV dataset shows a strong peak at 16 days (Fig 2.4). Spots affect RVs in much
the same way as photometry by breaking the flux balance across star’s rota-
tional velocity profile (Saar and Donahue, 1997), in addition to suppressing
the convective blueshift (Haywood et al., 2016).

While the periodogram is essentially a Fourier decomposition showing the
amplitude of the best-fitting sine wave at all possible periods, the autocorre-
lation function (ACF) measures the self-similarity of a time series as a func-
tion of time delay. Thus, if the variability in a time series is not sinusoidal
(asymmetric, more complex shape), then the ACF will give a better estimate
of the periodicity than the periodogram. The ACF of the TESS photom-
etry has its highest peak at ∼16 days (Fig 2.3) with adjacent ACF peaks
alternating between high and low amplitude. An analysis of the ACF using
spinspotter (Holcomb et al., 2022) successfully identified the half-period ef-
fect by checking that the odd peaks are less than 10% the height of the even
peaks. spinspotter returns a rotation period of Prot = 16.1± 0.3 days by av-
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eraging the locations of the even-numbered peaks only. We also measured the
stellar rotation period using the TESS Systematics Insensitive Periodogram
algorithm (TESS-SIP Hedges et al., 2020). TESS-SIP simultaneously corrects
for instrument systematics while performing the periodogram search on the
TESS Simple Aperture Photometry. Using TESS-SIP for sectors 14-26 for
TOI-1347, we measured a stellar rotation period of 16.34± 0.57 days.

With all of this considered, we adopt the ∼16 day solution as the rotation
period of TOI-1347 and explain the Lomb-Scargle periodogram peak at Prot/2

as arising from antipodal spot groups. The persistence of repeated peaks ev-
ery 8 days in the ACF, even out to beyond 100 days, can be explained if the
starspots on TOI-1347 live for many rotation periods. Following the prescrip-
tion of Giles, Collier Cameron, and Haywood (2017), we fit the observed ACF
with an underdamped simple harmonic oscillator (uSHO), including a second
component with power at P/2:

y = e−∆t/τ

[
A cos

(
2π∆t

P

)
+B cos

(
2π∆t

P/2

)
+ y0,

]
. (2.1)

In Eq. 2.1, y is the ACF strength and the coefficients A and B give the rela-
tive strengths of the antipodal spot groups. We used scipy.optimize (Vir-
tanen et al., 2020) to find the maximum a-posteriori (MAP) solution, then
used that as a seed for a Markov-chain Monte Carlo (MCMC) analysis using
emcee (Foreman-Mackey et al., 2013). The fit recovered P = 16.0 d, and the
best-fit exponential decay timescale was τ = 45 days, roughly three times the
rotation period. Both coefficients A = 0.05 and B = 0.18 were constrained to
nonzero values, again supporting the multiple spot group hypothesis.

Lastly, our SpecMatch-Synthetic analysis of the HIRES spectrum in Sec-
tion 2.2 yielded only an upper limit corresponding to the line spread function
of HIRES (roughly 2.2 km s−1). Masuda, Petigura, and Hall (2022) recently
showed that on the population level, such nondetections of v sin i⋆ are most
consistent with a < 3 km s−1 upper-limit. Combining Prot = 16.1 d with
the stellar radius from Section 2.2, we get an equatorial rotational velocity of
veq = 2.6 ± 0.1 km s−1. This is consistent with a < 3 km s−1 upper-bound
for HIRES, though it is slightly smaller than the measured HARPS-N value.
Were the rotation period 8 d, we would instead have veq ∼ 5 km s−1, which
(barring a misaligned stellar inclination of ≲ 30◦) would be detectable in the
HIRES spectrum and inconsistent with the HARPS-N measurement. If astro-
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Figure 2.4: Lomb-Scargle periodograms of, from top to bottom, the TESS
photometry, S-Indices, RVs, RVs with the GP model (Section 2.5) removed,
the GP-corrected RVs with the Keplerian model for the USP subtracted, the
GP-corrected RVs with both planets subtracted, and the window function
(Dawson and Fabrycky, 2010) of the RV time series. The periodograms are
computed using astropy.timeseries.LombScargle (Astropy Collaboration
et al., 2022). The blue dashed lines correspond to the orbital periods of TOI-
1347 b and c, and the two dark red lines are drawn at 8 days (thin) and 16 days
(thick). The horizontal yellow line is the 1% false alarm probability.

physical, the slightly larger v sin i⋆ could be explained by differential rotation
and long-lived starspots at higher latitudes.
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Additional Transiting Planets?

We searched the TESS light curve for planetary transits with a Box-Least-
Squares algorithm (BLS, Kovács, Zucker, and Mazeh, 2002) as described in Dai
et al. (2021). We recovered the two planet candidates reported by ExoFOP at
0.84 and 4.84 days. We did not find any other transit signals with SNR > 6.5.

Transit Modeling

Our transit analysis closely follows that described in (Dai et al., 2021). Briefly,
we generated transit signals using the Python package Batman (Kreidberg,
2015), parameterized with the stellar density (ρ∗) to break the degeneracy
between the scaled semimajor axes (a/R∗) and impact parameters (b) of the
transiting planets (Seager and Mallén-Ornelas, 2003). We imposed a prior
using the best-fit stellar density from our adopted M∗ and R∗ of ρ∗ = 2.25 ±
0.26 g cm−3. For the limb darkening coefficients, we used the prior and pa-
rameterization scheme of Kipping (2013) for a quadratic limb darkening law
(q1 and q2). The other transit parameters included the orbital period (Porb),
time of conjunction (Tc), planet-to-star radius ratios (Rp/R⋆), scaled orbital
distances (a/R⋆, computed from stellar density and orbital period), orbital
inclinations (cosi), orbital eccentricities (e), and the arguments of pericenter
(ω). We initially allowed non-zero eccentricities for both TOI-1347 b and c;
however, the posterior distributions are fully consistent with circular orbits.
Neither the existing transit nor RV data (Section 2.5) support the detection
of nonzero eccentricities. In our final fits, we chose to restrict both planets to
circular orbits to reduce model complexity.

Our transit fitting pipeline takes the following steps:

1. Fit a global model of all transit epochs, assuming no transit timing
variations (TTVs). This model is found by maximizing the likelihood
with the Levenberg-Marquardt method implemented in Python package
lmfit (Newville et al., 2014).

2. Search for TTVs: We held the transit shape parameters fixed and fit for
the mid-transit times of each transit epoch. We removed out-of-transit
variations with a quadratic model. We did not detect significant TTVs
for either planet, so we continued with fixed orbital periods.
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Figure 2.5: The 2 min TESS light curves phase-folded and binned using the
orbital periods of TOI-1347 b (top) and c (bottom). The best-fit transit models
are shown with red solid lines.

3. Full model. We sampled the posterior distributions of both planets
jointly using the MCMC framework implemented in emcee (Foreman-
Mackey et al., 2013) with 128 walkers initialized near the MAP solution.
We ran emcee for 50000 steps, ensuring that this was many times longer
than the autocorrelation of various parameters (typically 100s of steps).

Fig. 2.5 shows the phase-folded and binned transits of TOI-1347 b and c
with the MAP model. Using the stellar radius derived in Section 2.2, we
derived Rp,b = 1.8 ± 0.1 R⊕ and Rp,c = 1.6 ± 0.1 R⊕, in agreement with
the radii measured by MacDougall et al. (2023) (Rp,b = 1.81+0.09

−0.06 R⊕ and
Rp,c = 1.68+0.09

−0.07).

Phase Curve

We searched the TESS light curve for phase curve variations and secondary
eclipses of TOI-1347 b. First, we masked the in-transit data and removed long-
term variability (stellar and/or instrumental) using the method of Sanchis-
Ojeda et al. (2013b). This involves fitting a linear function of time to the
out-of-transit data points within a window of 2× the orbital period, then
dividing the best-fit function within that window, repeating for every data
point in the light curve. This detrended light curve is then phase-folded to the
orbital period of TOI-1347 b.

The resultant phase curve is shown in Figure 2.6. We were able to detect
a tentative phase curve variation (3σ) and a secondary eclipse (2σ) using a
joint model. To model the secondary eclipse, we simply modified the best-fit
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Table 2.2: Transit and RV Parameters of the TOI-1347 System

Parameter Symbol Posterior Distribution Unit
TOI-1347 b
Planet/Star Radius Ratio Rp/R⋆ 0.02039± 0.00072
Time of Conjunction Tc 1682.71214± 0.00060 (BJD-2457000)
Orbital Period Porb 0.84742346± 0.00000061 days
Orbital Inclination iorb deg
Orbital Eccentricity e 0 (fixed)
Impact Parameter b 0.82± 0.03
Scaled Semi-major Axis a/R⋆ 4.43± 0.21
RV Semi-amplitude K 7.74+0.80

−0.79 m s−1

Planetary Radius Rp 1.8± 0.1 R⊕
Planetary Mass Mp 11.1± 1.2 M⊕
Bulk Density ρ 9.9+2.1

−1.7 g cm−3

Equilibrium Temperature Teq 1400± 40 K
TOI-1347 c
Planet/Star Radius Ratio Rp/R⋆ 0.0179± 0.0010
Time of Conjunction Tc 1678.5059± 0.0021 (BJD-2457000)
Orbital Period Porb 4.841962± 0.000012 days
Orbital Inclination i 87.5± 0.4 deg
Orbital Eccentricity e 0 (fixed)
Impact Parameter b 0.73± 0.08
Scaled Semi-major Axis a/R⋆ 14.18± 0.49
RV Semi-amplitude K 1.08+0.91

−0.92 (< 2.59 at 95%) m s−1

Planetary Radius Rp 1.6± 0.1 R⊕
Planetary Mass Mp 2.8± 2.3 (< 6.4 at 95%) M⊕
Bulk Density ρ 3.6+3.3

−3.0 (< 4.1 at 95%) g cm−3

Equilibrium Temperature Teq 1000± 25 K
Stellar Parameters
Stellar Density ρ⋆ 2.30± 0.24 g cm−3

Limb Darkening q1 0.28± 0.20
Limb Darkening q2 0.35± 0.28
HIRES RV Jitter σHIRES 4.05+0.73

−0.67 m s−1

HARPS-N RV Jitter σHARPS 8.20+2.67
−1.98 m s−1

GP Amplitude AGP 9.70+1.16
−1.06 m s−1

Rotation Period PGP 16.16+0.35
−0.35 days

Oscillator Quality Factor Q0 1.49+0.74
−0.91

Quality Factor Difference ∆Q 1.71+1.32
−2.33

Fractional Amplitude f 0.73+0.19
−0.24

Instrumental RV Parameters
RV Offset (HIRES) γHIRES −2.12+0.90

−0.87 m s−1

RV Offset (HARPS-N) γHARPS 6.29+3.35
−3.41 m s−1

transit model by shifting the mid-transit times by half the orbital period (i.e.,
assuming e = 0) and turning off limb darkening (q1 = q2 = 0). The secondary
eclipse depth (δsec) is allowed to vary freely to account for a combined effect of
reflected stellar light and thermal emission from the planet’s night side. For the
phase curve, we used a Lambertian disk model (see e.g. Demory et al., 2016)
parameterized by an amplitude A and phase offset of the peak θ. We sampled
the posterior distribution with a MCMC analysis similar to that described in
Section 2.4. We found a secondary eclipse depth of δsec = 26 ± 12 ppm and
a phase curve amplitude of A = 28 ± 9 ppm. The peak of the phase curve
variation is shifted by 33± 14◦ to the west of the planet.
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The lower panel of Figure 2.6 compares the amount of thermal emission vs.
reflected light as a function of the planet’s Bond albedo (AB). At high albedo,
the planet is more reflective and the equilibrium temperature will be lower. In
this case, the phase curve will be dominated by reflected stellar light rather
than thermal emission. This is necessary to explain the large secondary eclipse
depth measured in the TESS band. Moreover, we marginally detected a phase
offset of 33±14◦ to the west of the planet. Both of these effects can be explained
if TOI-1347 b is retaining a high-mean-molecular-weight atmosphere. Silicate
clouds in this atmosphere could produce a high albedo, while partial cloud
coverage may produce the observed phase offset to the West (see e.g. Kepler-
7 b, Demory et al., 2013). However, the data in hand are insufficient to
definitively confirm the presence of an atmosphere on TOI-1347 b. Higher
SNR follow-up observations with JWST are required.

2.5 Radial Velocities

We collected 120 high-resolution optical spectra of TOI-1347 between UT
November 28, 2019 and UT July 26, 2022 with HIRES on the Keck-I telescope
as part of TKS (Chontos et al., 2022). We took exposures using the “C2”
decker (R = 45, 000) and integrated until the exposure meter reached 60,000
counts (signal-to-noise ratio (S/N) ∼ 100 per reduced pixel) which resulted in
a typical exposure time of 648 sec. We used the standard procedures of the
California Planet Search (CPS; Howard et al., 2010a) to reduce the HIRES
spectra and extract precise RVs using the iodine cell for wavelength calibra-
tion (Butler et al., 1996). The average Doppler precision per measurement
was 1.83 m s−1.

We also obtained 14 spectra with the High-Accuracy Radial-velocity Planet
Searcher in the North, installed at the Telescopio Nazionale Galileo (HARPS-
N; Cosentino et al., 2012). Observations were taken with 1800 s exposure times
(average S/N is 42.3 in order 50) with simultaneous wavelength calibration
provided by the Fabry-Perot etalon. Cross-correlation functions (CCFs) were
created using the ESPRESSO G2 mask, and RVs were extracted by fitting
for the CCF centroid (Dumusque et al., 2021). Before jointly fitting with the
HIRES RVs, we subtracted the median RV from the HARPS-N dataset.

See Table 2.3 for the full RV dataset, which includes Mount Wilson S-Index
values derived from the Ca II H& K lines (Duncan et al., 1991) for the HIRES
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Figure 2.6: Upper: The phase curve and secondary eclipse of TOI-1347 b as
observed by TESS . The best-fit model is shown by the red curve. The green
dotted line gives the model with no eclipse. The phase curve is detected at
the 2σ level. It is likely a combination of thermal emission and reflected light
in the TESS band (600–1000 nm). Lower: The thermal emission (red dotted
line) and reflected light (orange solid line) from TOI-1347 b as a function of
the Bond albedo. The blue dashed line and shaded area are the measured
secondary eclipse depth (Fp/F⋆) and its 1σ central interval.
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Figure 2.7: The adopted radial velocity model. Panel a) shows the HARPS-
N and HIRES RV datasets, with the MAP RV model (Keplerian + GP and
1σ uncertainty) overplotted in blue. Panel b) shows the residuals between the
data and the MAP RV model. Panels c) and d) show the data phase-folded to
the orbital period of planets b and c, respectively, with contributions from the
other planet and the GP removed. The red points are equal RV bins spanning
0.1 in phase. The median and central 68% CI of each Keplerian model is
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we do not include the MAP stellar jitter in the plotted errorbars; errorbars
are drawn only as the measurement uncertainties to highlight the degree of
unexplained scatter (i.e., jitter), given by the annotated residual RMS, to
which the stellar jitter fits.
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Table 2.3: TOI-1347 RVs and S-Indices

Time RVa RV Error SHK SHK Error Instrument
BJD-2457000 m s−1 m s−1

2458974.658616 -2.385 2.91 – – HARPS-N
2458976.56778 3.675 2.77 – – HARPS-N
2458977.647243 1.645 2.3 – – HARPS-N
2459011.871925 27.023 1.73 0.291 0.001 HIRES
2459011.945652 31.576 1.75 0.285 0.001 HIRES
2459011.999298 35.149 1.85 0.287 0.001 HIRES
2459028.000963 21.648 1.49 0.285 0.001 HIRES
2459034.871693 1.685 1.74 0.284 0.001 HIRES
...

...
...

...
...

...
aA median value of −13965.395 km s−1 has been subtracted from the HARPS-N RVs.
Full table of RVs can be found in the published article (Rubenzahl et al., 2024b).

data. The SHK index shows a weaker power excess around Prot in a Lomb-
Scargle periodogram than the RVs (Fig. 2.4) but are primarily dominated by a
1 day sampling alias. The SHK indices are correlated with the RVs at the 3.5σ
level with a Pearson correlation coefficient of 0.31 (p-value of 0.0005). This
weak correlation is likely why our models in Section 2.5 that were trained on
the S-Index time series did not improve the overall fit.

RV Model

We chose to adopt the same two-component SHO model for our RV model that
we used to model stellar variability in photometry. We used the exoplanet

(Foreman-Mackey et al., 2021) package to construct a Gaussian Process (GP)
stellar activity model with a kernel defined by the built-in RotationTerm pa-
rameterization. This kernel is a mixture of two SHOs analogous to the first
and second cosine terms in Eq. 2.1. We also tried a GP with the quasiperi-
odic kernel implemented in radvel (Fulton et al., 2018), both untrained and
trained on the S-Indices. We found that the quasiperiodic kernel struggled to
identify a single primary period, often jumping between 8 days and 16 days.
In order for the MCMC to converge, a reasonably strong prior (±0.5 d or less)
had to be placed on one of these period solutions. We found this undesirable
compared to the SHO kernel in exoplanet, which was able to lock onto the
16 day period even with wide priors of > 10 d. We also found the final fit to
be statistically indistinguishable whether the GP was trained on the S-Indices
or not, so for our final model we opted for an untrained SHO GP.
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For the full mathematical definition of the SHO GP kernel, the interested
reader is directed to Foreman-Mackey et al. (2017). In brief, the kernel is
parameterized by the GP amplitude (AGP), the primary period of variability
(PGP), the quality factor of the primary mode Q0, the difference in quality
factors between the period and half-period modes (∆Q0), and lastly the frac-
tional amplitude between the two modes (f). We followed the guidance of
the exoplanet tutorials to choose the appropriate priors on these parameters,
which are tabulated in Table 2.2.

In practice, the Keplerian models are only parameterized by the RV semi-
amplitude K, which we place a wide uninformative Gaussian prior on. We do
not restrict K to positive values only, as such a prior can bias mass estimates
to higher values, especially in the case of non-detections (Weiss and Marcy,
2014). We imposed Gaussian priors on the periods and times of conjunction
using the best-fit mean and standard deviation derived from our transit fits
(Table 2.2), effectively fixing them to the tight transit constraints. Like the
transit model, we fixed the eccentricity (e) and argument of periastron (ω) to
zero. We included separate jitter terms for HIRES (σHIRES) and HARPS-N
(σHARPS), and likewise separate RV offsets (γHIRES) and HARPS-N (γHARPS).

We initialized our model at the best-fit values from photometry, where appli-
cable, and determined initial guesses for the RV semiamplitudes using
exoplanet.estimate_semi_amplitude. We then solved for the MAP solu-
tion using scipy.optimize.minimize. The MAP parameters were then used
as a seed for a MCMC exploration of the posterior. We employed a Hamil-
tonian Monte Carlo HMC; Duane et al., 1987; Neal, 2012 implemented in
PyMC3 (Salvatier, Wiecki, and Fonnesbeck, 2016), specifically the No-U-Turn
Sampler (NUTS; Hoffman and Gelman, 2014). HMC and NUTS are generally
more efficient than the traditional Metropolis-Hatings algorithm (Metropolis
et al., 1953; Hastings, 1970), resulting in well-mixed MCMC chains in far
fewer samples. We sampled with NUTS in four parallel chains for 5000 “tun-
ing” steps, which are discarded. The number of tuning steps was chosen to
obtain an acceptance fraction near the target of 0.9 which balances number of
retained samples and efficient exploration of the posterior space. Each chain
then collects 5000 samples for a total of 20000 posterior samples. We ensured
adequate statistical independence amongst these samples by requiring that the
per-parameter R̂ statistic (Vehtari et al., 2021) be < 1.001.
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Our best-fitting RV model is shown in Figure 2.7. The GP robustly recovers a
primary period of 16.2± 0.3 days, even with a wide prior, independently veri-
fying our assessment of the stellar rotation period from photometry. The USP
TOI-1347 b is also robustly detected at consistent semiamplitudes, regardless
of the activity model used (trained/untrained, quasi-periodic/SHO). The re-
sulting mass of TOI-1347 b is 11.1± 1.2 M⊕. The second planet, TOI-1347 c,
is not detected in the RVs. We adopt an upper limit of < 6.4 M⊕ at 95% confi-
dence. The residual RMS to the combined Keplerian + GP model is 4.9 m s−1

for HIRES and 7.5 m s−1 for HARPS-N, which is (expectedly) similar to the
fitted stellar jitter values (4.0 ± 0.7 m s−1 and 8.2+2.7

−2.0 m s−1 respectively),
but larger than the per-measurement uncertainty of each instrument (2.5 and
1.9 m s−1).

Of note is the large jitter for the HARPS-N RVs. We suspect this is due
to the GP being primarily conditioned on the HIRES RVs, resulting in poor
predictive accuracy for activity during the timespan of the HARPS-N data,
which occur about 1–2 rotation cycles before the HIRES data. As a result, the
jitter term for HARPS-N is inflated to compensate. We tried separate GPs
for both datasets, sharing all hyperparameters except for the GP amplitude
(AGP). We found a nearly identical result (in fact, the best-fit HARPS-N
jitter was higher) with statistically indistinguishable planet parameters, likely
due to the relatively few HARPS-N data points. As a result, we adopt the
single GP model, but encourage further investigation into the nature of stellar
activity on TOI-1347. As it stands, there are too few HARPS-N data points to
condition independent GPs, but the single GP model is potentially overfitted
to the HIRES points, reducing its out-of-sample predictive accuracy (Blunt
et al., 2023).

2.6 Discussion

A Heavy Core Pushing the Limit of Photoevaporation

TOI-1347 b is the largest (in both mass and radius) of the super-Earth USPs
to date. It seems to be rocky in composition and similar in iron core mass
fraction to the Earth. Figure 2.8 shows the two planets in the context of
known exoplanets on the mass-radius diagram2. We modeled the core com-
position of TOI-1347 b assuming a simple two-layer model with an iron core

2Data from the NASA Exoplanet Archive, accessed on 2023-10-04 at 11:55, returning
35086 rows.
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Figure 2.8: Mass-radius diagram of known super-Earths (Rp < 2 R⊕, filled cir-
cles) and sub-Neptunes (4 R⊕ > Rp ≥ 2 R⊕, empty circles) with 5σ or better
mass measurements, obtained from the NASA Exoplanet Archive (NASA Ex-
oplanet Archive, 2019). Bold fill denotes USPs. Contours from Zeng, Sasselov,
and Jacobsen (2016) are drawn for pure-iron, Earth-like (30% iron, 70% rock),
pure-rock, and pure-water compositions. Contours from Chen and Rogers
(2016) are also drawn for 0.5%, 0.1%, and 0.01% H/He envelopes surround-
ing rocky-composition cores, at an age of 1.4-Gyr-old and at the maximum
insolation flux of 400 S⊕ for their model grids; it is worth noting that TOI
1347 b (1400 K, A = 0.7) receives an insolation flux of around 3000 S⊕. Our
mass-radius constraints for TOI-1347 b and c (95% upper limit in mass) are
plotted and labelled in red. The size of each point is proportional to M/σM .
TOI-1347 b is the most massive super-Earth USP to date, while TOI-1347 c
is smaller but likely also rocky.

and a silicate (“rock”) mantle (Zeng, Sasselov, and Jacobsen, 2016). Our mass
and radius measurements suggest an iron core mass fraction of 41± 27%,
not far from Earth’s 33% core mass fraction. TOI-1347 b joins a group of
well-characterized USP planets (Dai et al., 2019) that are consistent with an
Earth-like composition.
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With a core mass larger than 10 M⊕, TOI-1347 b, along with the USPs TOI-
1075 b (Essack et al., 2023), and HD 20329 b (Murgas et al., 2022), are close to
the theoretical limit for runaway accretion (see, e.g., Rafikov, 2006). How did
these planets evade runaway accretion and not become gas giants? Lee (2019)
and Chachan, Lee, and Knutson (2021) both noted that the local hydrody-
namic conditions, the envelope opacity, and the timescale of core assembly
relative to disk dissipation could all contribute to quenching runaway accre-
tion. As more of these systems are discovered, population-level analyses may
shed light on which planets are able to evade runaway and which grow into
gas giants.

TOI-1347 b also pushes the efficacy of photoevaporation to its limit. At
> 10 M⊕, the outflowing atmosphere has to overcome a deep gravitational
potential well. On the other hand, the temperature of atmospheric outflows
is likely capped below 104 K due to strong radiative cooling at higher tem-
peratures (see, e.g., Murray-Clay, Chiang, and Murray, 2009). An order of
magnitude comparison reveals that the thermal sound speed (∼10 km s−1 at
104 K) may not overcome the escape velocity of the planet (∼25 km s−1 at
10 M⊕ and 1.9 R⊕), preventing bulk hydrodynamic outflow (i.e. photoevapora-
tion). Previous models showed that photoevaporation is significantly quenched
on planets with heavier cores (≳ 6 M⊕, see e.g. Owen and Wu, 2017; Wang
and Dai, 2018). Planets like TOI-1347 b are therefore important test cases
to understand the limit of both photoevaporation and core-powered mass loss
(Ginzburg, Schlichting, and Sari, 2018; Gupta and Schlichting, 2019). Our
mass and radius measurements disfavor the presence of a thick H/He envelope
(Fig. 2.8). Did TOI-1347 b have, and then lose, a primordial H/He enve-
lope? Or, could TOI-1347 b have formed near to its present-day scorching
orbit without ever acquiring a substantial atmosphere? We encourage further
investigation on this question.

A Heavy-Mean-Molecular-Weight Atmosphere?

Even though TOI-1347 b has a mass and radius that suggest an Earth-like
bulk composition, we cannot rule out the presence of a heavy-mean-molecular-
weight atmosphere. Lopez (2017) showed that the largest of the non-giant
USPs (such as 55 Cnc e) can hold onto high-metallicity atmospheres even in the
presence of strong stellar radiation. Such an atmosphere would only marginally
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inflate the planet’s radius (the scale height of a CO2 based atmosphere is about
11 km, while planetary radii are ∼10,000 km).

In fact, our tentative phase curve (3σ) and secondary eclipse (2σ) detections
of TOI-1347 b point to a nonzero albedo and a possible phase offset to the
west. These features could indicate the presence of an atmosphere at least
partially covered by reflective silicate clouds. It may be the case that the deep
gravitational wells of the most massive super-Earth USPs are sufficient to cling
to such an atmosphere and resist atmospheric loss mechanisms. Hu et al. (in
prep.) show that their JWST NIRCam and MIRI observations of 55 Cnc e,
a similar massive USP (0.73-day orbit; 9M⊕), can only be explained if the
planet still has a CO or CO2 based atmosphere. Future observations with
JWST might uncover a similar story for TOI-1347 b (TSM= 19, ESM= 5.6,
using the equations of Kempton et al. 2018).

Alternatively, the high-amplitude TESS phase curve of TOI-1347 b may be a
consequence of outgassed Na emission on the hot dayside of the planet. Zieba
et al. (2022) showed that this emission can explain the phase curve of the lava
world K2-141 b, which has been observed in both the Kepler passband and
Spitzer -4.5 µm passband (Malavolta et al., 2018). In their analysis, they found
that the two phase curves are inconsistent with a blackbody model, with the
visible-light phase curve having a higher amplitude than expected. Similarly
high visible-light phase curve amplitudes have been reported for the lava worlds
55 Cnc e (Kipping and Jansen, 2020) and Kepler-10 b (Batalha et al., 2011;
Rouan et al., 2011), although the latter has not yet been observed in the
infrared, which would test blackbody emission. If Na emission is responsible
for the observations of TOI-1347 b reported here, it may more easily explain
the tentative phase curve offset than reflective clouds, which would need to be
nonuniformly distributed across the planet.

2.7 Summary

We have characterized two transiting planets in the TOI-1347 system, TOI-
1347 b, a USP (0.85 d), and its outer small companion TOI-1347 c (4.84 d).
Using TESS photometry and an independent transit fitting pipeline, we mea-
sured a radius of 1.8±0.1 R⊕ for the USP, and 1.6±0.1 R⊕ for its companion.
We conducted a RV campaign of the TOI-1347 system with HIRES (as part
of TKS) and with HARPS-N. We measured a mass of 11.1 ± 1.2 M⊕ for the
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USP, consistent with a bulk Earth-like composition and inconsistent with a
H/He envelope (see Fig 2.8). This composition is perhaps unsurprising given
the system age of 1.4 ± 0.4 Gyr, the short timescale on which intensive pho-
toevaporation operates (few 100 Myr), and the high insolation flux at TOI
1347 b’s orbit; any primordial H/He envelope should have been destroyed by
now. We were unable to detect the companion TOI-1347 c with RVs. We
placed a 95% upper limit of < 6.4 M⊕. Of note is the minimum mutual incli-
nation between planets b and c implied by our measured orbital inclinations:
∼ 7◦. This is unusually large compared to typical Kepler multis (Fabrycky
et al., 2014), which may be another indicator of the migration dynamics that
produce USPs.

TOI-1347 b is the most massive of the < 2 R⊕ (i.e., primarily solid by volume)
USPs to date. Its mass sets an upper limit on runaway accretion processes
and places TOI-1347 b in a region of the mass-radius diagram in which the
pressures and temperatures reached inside the planet have not been well char-
acterized either by experiments or theoretical modeling.

Intriguingly, we measured a tentative (3σ) phase-curve variability, as well as a
secondary eclipse (2σ) for the USP TOI-1347 b. The phase curve asymmetry
strongly suggests an optically thick atmosphere. However, our mass and radius
measurements of TOI-1347 b are highly inconsistent with any significant H/He
envelope. As a result, any such atmosphere must have a high mean molecular
weight. It could be comprised of reflective silicate clouds, or may be the result
of the outgassing of Na from the molten surface. Future observations (e.g. with
JWST) would help confirm such an atmosphere and reveal its composition.
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2.8 Appendix A

Here we present the posterior distributions for the full RV model (Figure 2.9).
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C h a p t e r 3

THE KPF SOLAR CALIBRATOR

Rubenzahl, R. A. et al. (Dec. 2023). “Staring at the Sun with the Keck Planet
Finder: An Autonomous Solar Calibrator for High Signal-to-noise Sun-as-
a-star Spectra.” In: Publications of the Astronomical Society of the Pacific
135.1054, 125002, p. 125002. doi: 10.1088/1538- 3873/ad0b30. arXiv:
2311.05129 [astro-ph.IM].

3.1 Introduction

Since the first detection of an exoplanet with radial velocities (RVs), 51 Pe-
gasi b (50 m s−1 semiamplitude; Mayor and Queloz, 1995), RV instruments
can now detect RV signals as small as 50 cm s−1 (e.g. Zhao et al., 2023a). This
leap of two orders of magnitude in sensitivity has been enabled by cycles of
instrumentation development, rigorous testing, and a systematic understand-
ing of the myriad instrumental systematics in modern and next-generation
Extreme Precision Radial Velocity (EPRV) spectrographs (Halverson et al.,
2016). There are now a number of such instruments with sub-m s−1 capabil-
ity, including the Keck Planet Finder (KPF; Gibson et al., 2016; Gibson et al.,
2018; Gibson et al., 2020), the High-Accuracy Radial-velocity Planet Searcher
(HARPS; Pepe, F. et al., 2004) and its northern twin (HARPS-N; Cosentino
et al., 2012), the Echelle SPectrograph for Rocky Exoplanets and Stable Spec-
troscopic Observations (ESPRESSO; Pepe et al., 2013; Pepe, F. et al., 2021),
the EXtreme PREcision Spectrometer (EXPRES; Jurgenson et al., 2016), the
NN-explore Exoplanet Investigations with Doppler spectroscopy instrument
(NEID; Schwab et al., 2016), and the M dwarf Advanced Radial velocity Ob-
server Of Neighboring eXoplanets (MAROON-X; Seifahrt et al., 2018). The
task remains to reduce this internal noise floor to below 10 cm s−1; this is the
level needed to measure the masses of Earth-like planets in 1 AU orbits around
Sun-like stars (9 cm s−1 RV semiamplitude). In fact, the EPRV measurement
technique remains the only viable method to make such a measurement (Crass
et al., 2021), and is perhaps the most promising method for discovering exo-
Earths for follow-up characterization by the future Habitable Worlds Obser-
vatory (National Academies of Sciences, Engineering, and Medicine, 2021).

https://doi.org/10.1088/1538-3873/ad0b30
https://arxiv.org/abs/2311.05129
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To complicate the precision goal of the EPRV community, surface phenom-
ena on stars can induce apparent RV variability of up to many m s−1 (Hay-
wood, 2016). This external noise is present across all timescales. Acoustic
oscillations occur on timescales of minutes (Kjeldsen et al., 2005; Arentoft
et al., 2008; Dumusque, X. et al., 2011a; Chaplin et al., 2019; Gupta et al.,
2022), while convective granulation (Del Moro, 2004; Meunier, N. et al., 2015;
Dumusque, X. et al., 2011a; Cegla et al., 2018) and supergranulation (Rin-
con and Rieutord, 2018; Meunier, N. and Lagrange, A.-M., 2019) occur on
hours–days timescales. Surface inhomogeneities (e.g. starspots, faculae, plage)
which break the symmetry of the star’s rotational velocity profile (Saar and
Donahue, 1997; Meunier, Desort, and Lagrange, 2010; Boisse, I. et al., 2011;
Dumusque, X. et al., 2011b) as well as suppress the convective blueshift (domi-
nant source in the Sun; Meunier, N., Lagrange, A.-M., and Desort, M., 2010b;
Meunier, N. and Lagrange, A.-M., 2013; Haywood et al., 2016; Milbourne
et al., 2019) are modulated by the star’s rotation period on weeks–months
timescales. Long-term magnetic activity cycles can produce RV variations on
decades timescales (Meunier, N., Lagrange, A.-M., and Desort, M., 2010b;
Lovis et al., 2011; Luhn et al., 2022). This so-called “stellar activity” can com-
plicate the measurement of precise planetary properties (Blunt et al., 2023),
mimic the signal of an exoplanet (Lubin et al., 2021), or otherwise prevent real
planets from being detected, even with thousands of observations of a single
star over decades (Langellier et al., 2021; Luhn et al., 2023; Gupta and Bedell,
2023). While activity-induced RVs can be partially mitigated by intentional
observing strategies (Dumusque, X. et al., 2011a), algorithmic models (Hay-
wood et al., 2014; Rajpaul et al., 2015; Aigrain and Foreman-Mackey, 2023),
more robust RV extraction methods (Dumusque, X., 2018), or by detrending
with “activity indicators” (Queloz, D. et al., 2009; Isaacson and Fischer, 2010a;
Aigrain, Pont, and Zucker, 2012; Siegel et al., 2022), it remains an active area
of research to derive activity-invariant RVs.

While stars as are observed as unresolved point sources, the surface of the Sun
is under constant monitoring at multiple wavelengths in photometry, spec-
troscopy, polarimetry, and spectropolarimetry at high angular resolution from
the ground (e.g. The Daniel K. Inouye Solar Telescope Rimmele et al., 2020)
and space (e.g. NASA’s Solar Dynamics Observatory Schou et al., 2012).
There is no other star for which observed spectra and RVs can be studied
in connection to directly observed active processes (e.g. Haywood et al., 2016;
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Thompson et al., 2020; Milbourne et al., 2021; Ervin et al., 2022) with full con-
fidence that the observed RV variability is due to only stellar and instrumen-
tal noise (i.e., all Solar System planets are known and their signals removed).
This makes the Sun the ideal laboratory for studying how activity manifests
in spectra, especially in solar-type stars, the primary target for discovering
exo-Earths.

As such, solar feeds are becoming a crucial component of EPRV facilities. The
first solar feed was the Low Cost Solar Telescope (LCST; Phillips et al., 2016)
for HARPS-N at the Telescopio Nazionale Galileo (TNG), which has been
observing the Sun-as-a-star since 2015. The HARPS Experiment for Light
Integrated Over the Sun (HELIOS) was later added to HARPS in 2018, and
the NEID Solar Feed (Lin et al., 2022) and Lowell Observatory Solar Telescope
(LOST; Llama in prep) both began operations in 2020. Also at TNG, the LOw
Cost NIR Extended teleScope (LOCNES; Claudi et al., 2018b) was installed
to feed GIANO-B (Claudi et al., 2018a). The Potsdam Echelle Polarimetric
and Spectroscopic Instrument (PEPSI; Strassmeier et al., 2015) also has a
solar feed installed. Solar feeds are currently being installed for MAROON-
X and Near Infra Red Planet Searcher (NIRPS; Bouchy et al., 2017). The
Paranal solar Espresso Telescope (PoET; Leite et al., 2022) and A dual-Beam
pOlarimetric Robotic Aperture for the Sun (ABORAS; Jentink et al., 2022)
are planned for ESPRESSO and HARPS-3 respectively.

Solar feeds can also be used to independently monitor the instrumental “drift”
(Lin et al., 2022), diagnose instrumental problems, and perform commission-
ing tests without using (precious) telescope time at night. These tests are
often superior to tests with calibration sources because the stellar spectra
are processed by the instrument’s data reduction pipeline (DRP) in the same
way as stellar spectra. Cross-comparisons between the various solar datasets
are also uniquely advantageous. Zhao et al. (2023b) compared one month
of solar data between HARPS, HARPS-N, EXPRES, and NEID and found
an astounding agreement of 15–30 cm s−1 between instruments on intra-day
timescales. Longer timescales showed a larger 50–60 cm s−1 variability, but
are more affected by unshared observing conditions (e.g. different differential
extinction due to different airmasses and solar disk positions at each site at a
given time). Importantly, common variability in such multi-instrument con-
temporaneous datasets can be uniquely attributed to astrophysical processes
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on the Sun, while variability seen in only one instrument can be diagnosed as
intrinsic systematic noise. Of course, this requires multiple instruments to be
on-Sun at the same time, which is complicated by the geographic location of
each facility.

For all of these reasons, we designed and built the Solar Calibrator (SoCal) to
feed disk-integrated sunlight to the Keck Planet Finder, a newly commissioned
EPRV spectrograph at W. M. Keck Observatory. In Section 3.2 we describe
the design and hardware of SoCal. Section 3.3 details the daily operations
procedure and autonomous control loop. We discuss the data reduction and
quality control of the solar datastream in Section 3.4. Lastly in Section 3.5
we report on commissioning progress, present first results on the Sun, and
validate KPF’s performance as an EPRV facility.

3.2 Instrument Design

The Keck Planet Finder (KPF; Gibson et al., 2016; Gibson et al., 2018; Gib-
son et al., 2020) is a fiber-fed, ultra-stabilized EPRV system for the W. M.
Keck Observatory (WMKO) that was recently commissioned in 2022. KPF
is designed to achieve an instrumental measurement precision of ∼30 cm s−1

or better. The KPF main spectrometer spans 445–870 nm in two separate
channels with a median resolving power of 98,000, enabled by an image slicer
assembly that slices the science fiber image into three separate channels. KPF
is wavelength-calibrated by several sources including a commercial laser fre-
quency comb from Menlo Systems, a broadband Fabry-Pérot etalon, and hol-
low cathode lamps (ThAr and UNe). A simultaneous calibration fiber is used
to track instantaneous instrumental drift, and a dedicated sky fiber is used
to monitor background sky contamination. The core KPF spectrometer is
designed around a novel all-Zerodur optical bench, which has a near-zero co-
efficient of thermal expansion to suppress instrumental systematics related to
thermomechanical motions. KPF also includes a dedicated near-UV spectrom-
eter to monitor the chromospheric Ca H&K lines for stellar activity tracking.
The combination of CCD pixels with deep wells and optical slicing of the sci-
ence spectrum onto three traces spread out in cross-dispersion allows KPF
to achieve per-spectrum signal-to-noise ratios (SNR) more than twice that of
other EPRV facilities.
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SoCal utilizes the same principles as existing, proven solar feeds at other EPRV
facilities. Like these instruments, SoCal focuses sunlight through a small (75
mm) lens into an integrating sphere, a hollow sphere internally coated with
highly reflective material (Polytetrafluoroethylene, PTFE, aka Teflon). After
∼1000 reflections within the integrating sphere, a fraction of light rays will
eventually land on the tip of a 200 µm optical fiber that is connected to a port
on the side of the sphere. This process spatially scrambles the light from the
resolved solar disk and produces a highly homogenized “point-source-like” out-
put. The disk-integrated sunlight travels through ∼90 m of fiber from SoCal
on the WMKO roof to the KPF calibration bench in the WMKO basement,
where a shutter and beamsplitter allow solar light to be injected into the KPF
science (SCI), sky (SKY), and calibration (CAL) fibers, or combinations of
them. Figure 3.1 illustrates the full optical path for KPF-SoCal.

The main driving design principles for SoCal were 1. enable EPRV-quality
stellar activity studies, 2. provide long-term instrumental calibration/track-
ing, and 3. be robust to the extreme weather environment on the summit of
Maunakea. We selected a location on the observatory roof between the Keck
I and Keck II domes that would maximize the amount of time during the year
when the Sun is observable above airmass < 2 and is not shadowed by either
of the Keck domes. Because nearly all of the WMKO roof is tiled with solar
panels, SoCal is positioned near Keck II (see Figure 3.2). This location does
place SoCal just inside the 30 ft boundary from the Keck II dome where there
is a risk of ice sheets sliding off the Keck II dome and falling. Since there were
no other locations on the roof with year-round unobstructed access to the Sun,
we accepted this small risk.

Tracker and Optical System

The optical system of SoCal inherits many design aspects from proven, existing
solar feeds at other EPRV facilities, particularly the NEID Solar Feed at the
WIYN 3.5 m Telescope at Kitt Peak National Observatory, which largely made
use of commercial off-the-shelf (COTS) parts for most components (Lin et al.,
2022). This was especially desirable as we could quickly obtain a working
system to test with KPF during the Assembly, Integration, and Testing (AIT)
phase of the development of KPF at the Space Sciences Lab (SSL) at UC
Berkeley. See Table 2 in Lin et al., 2022 for a list of all of the major components
in the sun tracker, pyrheliometer, lens & lens tube housing, integrating sphere,
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Figure 3.1: Block diagram illustrating how SoCal interfaces with the rest of
the KPF system. SoCal is contained in the top dashed-line box labeled “Ob-
servatory Roof.” A pair of optical fibers carry sunlight to KPF’s Calibration
Unit in the observatory basement, where the “SoCal-Cal” fiber connects to the
calibration source selector assembly and the “SoCal-Sci” fiber feeds dedicated
calibration fibers that connect directly to the FIU. The latter path sends so-
lar light through the same path as starlight from the Keck I telescope. In
this mode, a calibration source (e.g., the etalon) can be used for simultaneous
calibration. The pyrheliometer irradiance is directly recorded by a computer
which polls every second. Also shown are the electronics in the SoCal electron-
ics box (“e-box” ’), and the power and network connections to the observatory.
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Figure 3.2: Top: SoCal’s location on the WMKO roof (green star in the
satellite image on the left), and the shadows of the Keck I and Keck II domes
projected on the sky from this location. The path of the Sun is shown for
the summer and winter solstices in red and equinoxes in orange. The parts of
the sky that the Sun traverses above airmass < 2 (black circle) during a full
year are highlighted in green. Bottom: Image showing the SoCal enclosure
adjacent to the solar panels, with Keck II in the background.

and shutter mechanism, which are identical for SoCal. The SoCal tracker and
optics are shown inside the enclosure in Figure 3.3. Here we summarize each
briefly.

We purchased the same commercial sun-tracking mount as the NEID Solar
Feed, the EKO STR-22G, which has been successfully operated in extreme
environments for decades-long experiments (a number of such trackers cur-
rently operate at Mauna Loa Observatory). The tracker is an alt-az mount
and comes with a built-in quad-pixel “sun sensor,” which has provided excep-
tional active guiding performance for the NEID Solar Feed (see Section 2.4.1 in
Lin et al. 2022) and also produces helpful telemetry for assessing guiding sta-
bility. The tracker is bolted to the upper level of an enclosure with the “North”
leg of the tripod aligned with geographic north (see Figure 3.3). Normally this
alignment does not need to be very precise as the sun sensor has a 15◦ field-
of-view and will find and guide on the Sun using an onboard control loop.
However, because SoCal is in the tropics, the Sun will often reach elevations
of 87◦–90◦ (see the top panel in Figure 3.2) where the active guiding capabil-
ity is not possible with this tracker. When the Sun passes near zenith, the
azimuth angle rotates a full 180◦. Because of this, the tracker operates using
a predictive calculation above 87◦ by which an onboard GPS sensor uses the
device’s latitude, longitude, elevation, and current time to adjust the azimuth
to the Sun’s expected azimuth, while the elevation angle is still adjusted using
the sun sensor. As such, precise horizontal leveling and true north alignment
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Figure 3.3: The SoCal tracker with mounted optics, inside its enclosure with
the lid open. The numbered components are 1. Lens and lens tube, 2. In-
tegrating sphere, 3. EKO Sun Tracker, 4. GPS sensor, 5. Pyrheliometer,
6. Sun-sensor, 7. Enclosure, and 8. E-box. The arrow indicates geographic
north; i.e., the tracker is pointed south in this image.

are critical for tracking through solar noon. We aligned the tracker to true
north by iteratively rotating the tripod by hand, enabling active-guide mode,
noting how far the tracker adjusts compared to the predicted position, and
then realigning the tripod to minimize the difference between the predicted
position and the active-guided position. While the tracker faces south to fol-
low the Sun through the sky during most of the year, for several weeks around
the summer solstice the tracker instead must face north. As such, a careful
treatment of the cable wrap behind the tracker was needed to accommodate
a near 360◦ rotation without snagging.

We also adopted the achromatic lens (3-inch Edmund Optics 88–596-INK),
custom aluminum housing, and Thorlabs integrating sphere used in the NEID
solar feed (Lin et al., 2022), as these have also been demonstrated to per-
form well in exposed outdoor environments. Lin et al. (2022) also performed
a trade study for several different lens choices and found that this model lens
best preserved the size of the Sun in the focal plane across the wide wavelength
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range of the NEID spectrometer while maintaining sufficient transmission and
aperture size. The integrating sphere used is a COTS Thorlabs 2P3 2-inch
integrating sphere. The entrance port of the sphere is placed in the approxi-
mate focal plane of the lens, centered on the position of the Sun. It is essential
to have the image of the Sun formed in free space to avoid overheating the
optical components and minimize the risk of vignetting the solar disk.

Like the NEID Solar Feed, SoCal uses the EKO MS-57 pyrheliometer mounted
to the secondary arm of the sun tracker to monitor cloud coverage directly in
front of the Sun. A pyrheliometer measures the direct normal irradiance (DNI)
from the Sun by focusing photons (200–4000 nm) within a narrow range of in-
cident angles (5◦ field-of-view) onto a blackbody which then radiates to a ther-
mopile. The thermopile converts heat to an output voltage that is proportional
to the incident flux, allowing for a simple conversion to W m−2 by multiplying
by the factory-calibrated sensitivity (7.717 µV/W m−2 in our case, as listed
on the pyrheliometer spec sheet and the device itself). The voltage is auto-
matically converted to irradiance by an EKO MC-20 signal converter, which
outputs the resulting data packet in Modbus format. A Lantronix UDS1100-
IAP provides a TCP/IP interface for a computer to regularly poll this data
once per second.

The shutter assembly on the KPF calibration bench is also a similar design to
the NEID Solar Feed shutter assembly. Light from the SoCal delivery fiber is
reimaged onto a downstream fiber using a pair of achromats. In the collimated
space between the lenses, a Uniblitz shutter provides source selection to the
KPF calibration fibers. As SoCal contains two separate optical fibers (one for
feeding the KPF science fiber, the other for feeding the dedicated calibration
fiber), an identical shutter assembly is used for the second fiber.

Optical Fibers & Path to KPF

The light path and interface between SoCal and the rest of KPF and WMKO
are shown in Figure 3.1. Four separate fiber runs connect SoCal on the roof to
the WMKO basement: “SoCal-SCI,” “SoCal-CAL,” and a spare fiber terminate
at the KPF calibration bench, while a separate fiber run for the upcoming
HISPEC instrument (Mawet et al., 2019) is terminated in the basement near
the future location of HISPEC. All four fiber runs exit the enclosure, enter a
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Figure 3.4: Transmission of the 90 meter SoCal fiber run from the Keck Ob-
servatory roof to the KPF Calibration Bench in the basement (blue), and the
additional fiber run (orange, 130 meters) which includes the KPF calibration
fiber (from the Calibration Bench to KPF’s Fiber Injection Unit mounted on
the Keck I telescope) and science fiber cable (back from the telescope to KPF
spectrometer in the observatory basement).

long conduit run along the roof, then enter the building and travel down into
the observatory basement for a total length of 90 m.

In the enclosure, a 1-meter COTS Thorlabs 2 × 1 fiber (2×200 µm) fan-out
cable plugs into the integrating sphere and splits the collected light into two
output fibers, each of which terminates at an FC/PC patch panel at the base
of the enclosure. Connected on the other side of the patch panel are the two
stainless steel jacketed 90 m fiber runs for SoCal-SCI and SoCal-CAL. The
HISPEC fiber is currently capped at both ends, with the output end coiled up
near the installation location for HISPEC (also in the WMKO basement). The
spare fiber is similarly capped at both ends and serves as a drop-in replacement
for any of the other three fibers.

After traveling 90 m from the roof to the basement, sunlight reaches the KPF
calibration bench. Here, the SoCal-SCI fiber injects sunlight into a shutter
system. A patch fiber then directs the sunlight into a beam-splitter, where a
pair of fibers transport the sunlight from the basement to the Fiber Injection
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Unit (FIU) on the Nasmyth platform of the Keck I telescope. Once at the FIU,
sunlight follows the same path as starlight collected by the Keck I telescope.
That is, solar photons are injected into the main SCI and SKY fibers in the
FIU and transported to KPF via the same optical path as is used for nighttime
observations. The non-common path between sunlight and starlight is thus
everything before the FIU; the Keck I telescope is used to bring starlight to
the FIU while the SoCal optics and roof–to–FIU fiber run does the same for
sunlight. In this mode, KPF sees the Sun as a point source just like it would
any other star, hence we call this “Sun-as-a-star” mode. Likewise it is possible
to observe the Sun and a simultaneous calibration source, such as the etalon.
The main spectrometer receives four copies of the solar spectrum (the Sky fiber
plus the three “slices” of the Science fiber) and the Ca H&K spectrometer can
be simultaneously illuminated.

The SoCal-CAL fiber connects directly to the SoCal port on the KPF calibra-
tion source selector, allowing sunlight to be injected into the Cal fiber just like
any other calibration source. Hence, this mode is called “Sun-as-a-calibrant”
mode.

The on-sky performance of SoCal matches predictions made during the plan-
ning phase based on estimates of the throughput of the KPF and SoCal systems
and the KPF Exposure Time Calculator1. The system throughput up to the
entrance to the fibers in the integrating sphere is 5.6 × 10−6; that is, the at-
mosphere, lens, and integrating sphere reduce the amount of sunlight injected
into the SoCal fibers by a factor of ∼ 1.8 × 105 (the integrating sphere has
a reflectivity of ∼0.99 and a photon has of order 1000 internal reflections be-
fore entering a fiber). The roof–basement–FIU fiber run and numerous optical
interfaces along the way introduce another factor of ∼40 in flux loss (see Fig-
ure 3.4 for the throughput contribution from the fibers themselves). Overall,
as seen by KPF, the flux of the Sun through SoCal is comparable to the flux
from a V = 1 magnitude star using the Keck I telescope.

Enclosure

To maximize the science productivity (e.g., tracking solar activity over the 11-
year solar cycle) and provide long-term instrumental characterization, SoCal
needs to operate on a nearly daily basis for many years. To do so, it must

1https://github.com/california-Planet-Search/KPF-ETC

https://github.com/california-Planet-Search/KPF-ETC
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survive the extreme weather conditions on Maunakea. Winds in excess of 100
mph (gusts exceeding 150 mph) and significant ice/snow storms are common
in the winter months. Weather is generally stable in the summer, although
the chance of a tropical storm or (more rarely) a hurricane is ever-present. In
November 2022, the eruption of Mauna Loa deposited volcanic ash particulates
and “Pele’s hair” at WMKO, which can damage sensitive optics and equipment.
With the additional (though unlikely) risk of ice falling off the Keck II dome
onto SoCal, it was necessary to design and build a protective enclosure for
SoCal to weather these natural phenomena.

Other EPRV solar feeds have approached this problem differently. The HARPS-
N/LCST and HARPS/HELIOS solar telescopes are each completely enclosed
beneath an acrylic dome (Phillips et al., 2016). This has the benefit of no
moving parts but requires heat management and introduces the potential for
aberrations, as scratches or imperfections on the dome could distort the solar
image and produce spurious (possibly chromatic) RV shifts. In fact, accumu-
lated dust on the HELIOS dome is likely responsible for observed oscillations
in some of the HARPS solar RVs (Zhao et al., 2023b). Meanwhile, the GIARP-
S/LOCNES solar telescope lives inside a small aluminum box with a motorized
lid (Claudi et al., 2018b). In contrast, the NEID solar feed does not use an
enclosure of any kind; Lin et al. (2022) instead opted for highly ruggedized
components for the entire system, which is mounted in the open on the roof
of the WIYN control room building.

As the sun tracker, pyrheliometer, lens, lens tube assembly, and associated ca-
bles are all similar to those in to the NEID solar feed, which itself has weath-
ered monsoons and survived being fully encased in ice, we have confidence
that SoCal can likewise withstand significant weather events. In fact, a num-
ber of EKO STR-22G Sun Trackers operate enclosure-less at nearby Mauna
Loa Observatory, which experiences similar weather. However, due to the high
frequency of hurricane-force winds, which could uplift cinder and impact So-
Cal, and the chance of ice fall, we opted for a rugged, highly-weatherproofed
motorized enclosure to protect the sun tracker and optics. Additionally, keep-
ing SoCal covered when not in use reduces UV degradation, extending the
lifespan of various components.

We opted for a proven solution to shield SoCal from the elements when nec-
essary; the clamshell-style design of our enclosure is the same as that for the
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Hungarian-made Automated Telescope Network (HATNet), also on Maunakea
(Bakos et al., 2002; Bakos et al., 2004), and was custom-built for our purposes
by the same manufacturer, Fornax Mounts2. The SoCal enclosure is visible
in Figures 3.2, 3.3, and 3.5. The enclosure control electronics, called “Dome
Guard,” are controlled by a Raspberry Pi single-board computer. A sensor
monitors the current sent to the dome motor and cuts off the power if the
measured current exceeds a user-specified threshold. This prevents the lid
from opening into an obstruction (e.g., a snowbank) and straining the worm
gear/cogwheel.

The SoCal enclosure is kept in place by burying attached steel plates under
the layer of 0.5 m thick volcanic cinder that covers the roof of the building
connecting Keck I and II. This approach was adopted so that it wouldn’t be
necessary to puncture the water-tight membrane on the roof. The enclosure
frame is welded to six legs which were bolted to the steel plates. The frame
and foundation were designed by M3 Engineering & Technology, who designed
an analogous ballasted mounting scheme for WMKO’s solar panel array3. The
weight and area of the steel plates were determined by considering the wind-
loading of the enclosure to ensure that the combined weight of the enclosure
(∼700 lbs), steel frame and foundation (∼700 lbs), and backfilled cinder would
be sufficient to withstand winds up to 200 mph (3 sec gust). Mechanical latches
were also installed to securely hold the lid in its closed position in anticipation
of strong winds.

The enclosure was installed on December 16, 2022, with a partially assembled
sun tracker inside. Two days later the summit experienced an extreme winter
storm with sustained winds in excess of 100 mph and severe snow/ice (see
Figure 3.5). The severe winter weather continued for roughly four months
before we were able to return and complete the installation. The enclosure
successfully protected the sun tracker inside; only a slight dusting of volcanic
cinder was found in the interior, which was wiped away with a cloth.

Electronics

The control electronics for SoCal are stored in a dedicated weatherproof box
(the “e-box”) stowed in the lower level of the enclosure (visible in the lower-
right corner of Figure 3.3). Most cabling is internal; the only external electrical

2https://fornaxmounts.com/
3https://m3eng.com/

https://fornaxmounts.com/
https://m3eng.com/portfolio/w-m-keck-observatory-solar-panel-supports/
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Figure 3.5: Webcam image of the SoCal enclosure frozen in a block of ice after
a winter storm in December 2022.

cables are a 120 V/15 A AC power cable and a pair of cat-6 ethernet cables
(main and spare). Power is grounded in the same manner as other rooftop
devices and the cat-6 cables have surge suppressors in series to protect against
lightning strikes. Two power supplies (24 V DC and 12 V DC) inside the
e-box supply power to all electronics devices. The 24 V devices (including
the tracker and enclosure) have backup power from an uninterruptible power
supply (UPS). In the event of a power failure, the enclosure control logic
detects the switch to the UPS and automatically commands the lid to close
using backup power.

Our primary selection criterion for the various electronics devices was the
ability to operate in a wide operating temperature range. While the ambient
temperature on the summit is generally stable (T ≈ 0±10◦ C), we set a conser-
vative requirement of −30◦ C to 60◦ C operating temperature as temperatures
can be more extreme inside the sealed e-box in shaded or direct sunlight con-
ditions. The temperature inside the e-box, inside the enclosure, and outside
the enclosure are each monitored using a dedicated temperature probe.

We also required TCP/IP interfaces for each device to integrate with the KPF
and WMKO facility networks. The sun tracker communicates using RS232,
so a Lantronix UDS2100 provides direct control over TCP/IP. The output
voltage from the pyrheliometer is converted into Modbus protocol using an
EKO MC-20 signal converter, and a Lantronix UDS1100-IAP provides the
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TCP/IP interface. The enclosure is fully operable over WebSocket so it is
directly controlled without an additional device server. Since the enclosure has
its own computer, it monitors connections to its IP address and automatically
triggers the lid to close should it lose connection to the KPF server.

Control Software

The SoCal system consists of three main devices: the sun tracker, the pyrhe-
liometer, and the enclosure. We communicate with each device using Python
functions. We use the socket module to send RS232 commands to the sun
tracker, pymodbus to poll data from the pyrheliometer, and websockets to
communicate with the Dome Guard Raspberry Pi single-board computer.

For operations at WMKO, these Python functions are wrapped into the Keck
Task Library (KTL; Conrad and Lupton, 1993; Lupton and Conrad, 1993;
Deich, 2014) keyword framework using KTLPython. This allows users to inter-
face with SoCal using the same syntax as is used for other Keck instruments.
Telemetry is stored using a set of KTL keywords. The history of these key-
words (e.g. tracker altitude, sun sensor offset, enclosure open/close state,
temperatures) is stored in a database on WMKO servers which can be queried
to determine the current or past state of SoCal. One way to visualize this
information is through a Grafana web page (Figure 3.6).

3.3 Operations

Daily Schedule

The daily calibration schedule for KPF consists of a set of morning and
evening calibrations with the fiber illuminated by Thorium-Argon (ThAr)
and Uranium-Neon (UNe) hollow cathode lamps, a broadband laser frequency
comb (LFC), a stabilized Fabry-Perot etalon, and a quartz flat lamp, plus dark
and bias frames. These automated calibration sequences are scheduled at fixed
times, with morning calibrations ending around 08:42 HST (Sun at 30–40◦ ele-
vation, or airmass 2–1.6) and evening calibrations beginning at 3:00 HST (Sun
at 30–55◦, or airmass 2–1.2). This leaves roughly ∼6 hours of available day-
time for SoCal, year-round. Currently, the time from noon HST to 3:00 HST
is used to collect continuous stacks of flat-field frames, so thus far SoCal has
operated in the morning hours from 08:45 – noon HST. We preferred morning
over evening as the former overlaps with solar observations in Arizona by both
NEID and EXPRES. Long term, we are exploring scheduling flat-field calibra-
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Figure 3.6: Screenshot of the Grafana web page displaying the SoCal telemetry
for an example day. Grafana is a web-based interactive visualization software
for displaying and plotting values from a database. In this example near the
summer solstice, the tracker performed a large slew in azimuth through solar
noon at near 90◦ elevations. The sun sensor guiding offset is plotted in the
upper right-hand corner (box titled “EKO Sun-Sensor Guiding Offset”). Near
solar noon the sun tracker switches to predictive guiding mode, hence the gap
in recorded guider offsets. The elevation offset is stable at ∼ 0.5◦ ± 0.05◦

all day. While the azimuth offset increases near zenith, the actual angular
separation between the predicted Sun location and the sun tracker’s position
is never more than ∼ 0.5◦. Other panels display weather information and the
status of subsystems.
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Figure 3.7: State machine logic flowchart defining the automation loop for
SoCal operations. Nominal operations begin in the upper left and flow counter-
clockwise. First, the enclosure opens and the tracker acquires the Sun. As the
tracker guides on the Sun, the KPF spectrometer records solar spectra. At
the end of the day, the dome closes, and the tracker is stowed (see Section 3.3
for more details). Green boxes with solid borders represent the states of the
system, while grey boxes with dashed borders represent transitions between
states. The special states “Offline” and “ERROR” are visualized with red boxes,
while “Recovering” is colored black. The state to which a named transition
moves to may depend on a conditional, which is printed as an if statement.
While most states execute a function upon entering (on_enter), the Open and
Closed states generally immediately transition to the ensuing state due to the
after function of the transition used to enter those states.

tions during off-sky nighttime hours to free up the full daytime for SoCal. An
additional ∼2 hours of daytime in the summer months may be obtained by dy-
namically scheduling calibrations according to sunrise/sunset times. However,
this would result in the morning/evening calibration sequences occurring at
different relative times to the fixed liquid nitrogen fill schedule (∼11:00 HST)
throughout the year.

Following the morning calibration sequence, the SoCal observing script ini-
tiates operations. This script first checks that SoCal is in the OnSky state
(i.e., the sun tracker is guiding on the Sun above 30◦ elevation, see Section 3.3
for more details). If so, the script configures the FIU to select the SCI and
SKY calibration fibers, configures KPF to use the green and red CCDs as
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well as the Ca H&K spectrometer, configures and activates the exposure me-
ter, runs the agitator, configures the shutters, and finally turns and directs
etalon light into the simultaneous calibration fiber. Then, as long as SoCal
remains in the OnSky state, repeated exposures are taken. The autonomous
loop regularly monitors (every 5 seconds) weather keywords from the obser-
vatory’s meteorological system (sustained wind speed, wind gust speed, dew
point, and precipitation) and if any become “unsafe,” or if the Sun sets, So-
Cal exits OnSky and exposures terminate. The observing script is re-executed
if SoCal re-enters OnSky (e.g., if the weather becomes “safe” again) up until
the evening calibration sequence is scheduled to begin. We adopted the same
“safe/unsafe” conditions used for general operations at WMKO, which corre-
spond to a dewpoint temperature within 0.2 C of ambient temperature, wind
gusts over 45 mph, and/or sustained wind speeds over 30 mph. We have also
noticed that at wind speeds near 30 mph, the enclosure lid visibly bounces
up and down as its concave shape in the open position acts as a sail. Thus,
keeping the enclosure closed in strong winds reduces strain on the mechanical
components.

KPF exposures with SoCal are taken with a fixed exposure time of 5 sec
(see discussion in Section 3.5). KPF has two readout modes, “standard” and
“fast readout.” The fast readout mode is primarily used for high-cadence
asteroseismology during nighttime operations. Initial SoCal operations during
commissioning were primarily in standard mode, which originally had a 55 sec
readout time but has since been reduced to 49 sec. For comparison, the cadence
of the NEID solar feed is 83 sec (55 s exposures + 28 sec readout), which is
similar to SoCal’s cadence in standard read mode. During most mornings
with the current operating scheme, KPF records around 200 solar spectra in
standard readout mode. Long-term post-commissioning SoCal operations are
expected to utilize the fast readout mode (15 sec) to produce daily time series
of solar spectra with < 30 sec cadence. In this mode, SoCal will accumulate
∼1000 spectra per 6 hr day. KPF has been tested with SoCal in fast readout
mode on a few days, including a single full 6 hr day during which 1041 spectra
were acquired.

Autonomous Loop

SoCal is autonomously controlled using state-machine logic that transitions the
system between defined states. A state machine works by defining a number
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of known “states” which correspond to different configurations of the various
devices in the system. “Transitions” define how one state moves to another.
Pre-condition and post-condition functions can be attached to each state and
transition so that they are executed before or after a transition, or upon en-
tering or exiting a defined state.

The autonomous loop, which we implement using pytransitions (Neumann
et al., 2022), is shown graphically in Figure 3.7 and is as follows. Beginning
in the Stowed state, with the enclosure closed and the sun tracker pointed at
“home” (due south at zero elevation), the monitor_onsky transition is called.
This transition checks if the Sun is above the horizon and if all weather key-
words report “safe.” If false, the transition returns to the Stowed state, waits
five seconds, and attempts to transition again. If true, the state machine tran-
sitions to Opening, and the enclosure is commanded to open. After opening,
the sun tracker is set to active guiding mode. Upon acquiring the Sun (de-
fined by the sun sensor guiding offset falling below 1◦), SoCal enters the OnSky
state. Five seconds later the software checks if the weather keywords are all
“safe” and that the sun altitude is still > 30◦. If both are true, the state ma-
chine transitions to OnSky; in this case, there is no state change, and thus this
check every 5 seconds continues. If one of the two conditions fails, then the
state machine transitions to Closing, triggering the enclosure to close. Once
closed, the sun tracker is commanded to move to its home position. SoCal
then reenters the Stowed state, and the whole process starts over.

Three special states exist for gracefully catching errors and recovering without
human intervention. The Offline state, which the state machine can tran-
sition to from any other state, occurs automatically if a regular ping to any
of the SoCal devices fails. The state machine will hold in this state until all
devices become ping-able again, at which point the state machine transitions
to the Recovery state. The ERROR state is automatically transitioned to if
an exception is caught during any of the before/after/on_enter/on_exit
functions. Similarly, upon entering ERROR, the state machine will attempt a
transition to Recovery.

Upon entering Recovery, the code evaluates the status of each SoCal device
by requesting the relevant telemetry. If the telemetry is consistent with the
last known state, then the state machine transitions back without executing
any of the associated before/after/on_enter/on_exit functions. Otherwise,
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the code executes the relevant device commands to put the devices back in
the correct configurations to be consistent with the last known state and then
transitions to that state. If this too fails, then the state machine remains stuck
in the ERROR state. After a timeout the enclosure is commanded to close and
an email and Slack message are sent to relevant personnel. The enclosure also
has its own hard-wired fail-safes that automatically close the enclosure in the
event of a power outage (the UPS provides backup power) or if the enclosure
becomes unreachable (flagged by regular pings between the enclosure and KPF
computers).

3.4 Data Reduction

KPF Data Reduction Pipeline

SoCal spectra follow essentially the same data reduction steps as stellar spec-
tra gathered using the Keck I telescope. Each of the three primary KPF
science slices is independently extracted and reduced using the standard KPF
DRP4. RVs are computed using the cross-correlation (CCF) technique, using
a weighted numerical stellar mask based on spectral type (Pepe et al., 2002;
Baranne et al., 1996, e.g.), for each SCI slice and for each CCD (green and
red) independently. The KPF DRP currently uses the public release of the
ESPRESSO cross-correlation masks; the G2 mask is used for the solar spectra.
The KPF DRP produces three main data products in the form of .fits files:
“Level 0” (L0) files contain the raw 2D images from the green and red CCDs,
“Level 1” (L1) files contain the extracted 1D spectra for each fiber trace (three
slices for SCI, one for SKY, one for CAL), and “Level 2” (L2) files contain the
RVs in the green and red channels (averaging over the three slices). We further
combine the green and red RVs into a single RV using an unweighted mean.

The main step that requires special treatment for solar data is the barycentric
correction (Wright and Eastman, 2014). Using barycorrpy (Kanodia and
Wright, 2018), the doppler shift due to the barycentric motion of the Sun due
to the Solar System planets as well as the motion of the observatory along the
line of sight is removed (Wright and Kanodia, 2020). This is accomplished by
multiplying the wavelength solution of the CCF mask by 1/(1 + vb/c), where
vb is the output of barycorrpy.get_BC_vel using SolSystemTarget=‘Sun’

and predictive=True. We also compute and report heliocentric Julian dates
(HJDTDB) using barycorrpy.utc_tdb, as opposed to barycentric Julian dates

4https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/

https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/
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(BJDTDB) computed for stars. Consequently, the final KPF solar RVs are in
the rest frame of the Sun. Thus, any observed variability must be due to solar
activity, instrumental noise, or atmospheric/resolved-disk effects.

The current KPF DRP implementation does not correct for differential extinc-
tion (as described in Davies et al. 2014 and Collier Cameron et al. 2019). The
L2 files provide information about instrument drift by reporting the RV of the
simultaneous calibration (etalon) spectra; these RVs can be subtracted from
the solar RVs to correct for the drift. However, during the first few months
of SoCal operations, the etalon has not been consistently available with high
enough flux to enable such an RV drift correction due to the etalon illumination
source (an NKT supercontinuum laser) degrading over time. For observations
since July 31, 2023, the extracted green etalon RVs are too noisy to be useful
for a simultaneous drift correction. However, this limitation is expected to be
short-lived as a replacement supercontinuum source will be installed in the very
near future. With anticipated developments of the KPF DRP, a global drift
model for the instrument will be constructed each day based on standalone
and simultaneous calibrations taken throughout the day. This model could
then be subtracted from the measured RVs for higher-precision measurements.

The L0–L2 solar data are publicly available on the Keck Observatory Archive5

(KOA) by querying KPF data for TARGNAME == ‘Sun’, or by using the PyKOA
API6. SoCal data are categorized as calibration data and are therefore available
for public use within a day of being collected. We expect to add a queryable,
downloadable table of SoCal RVs with telemetry and quality control metrics
using the pyrheliometer (see Section 3.4), as well as the raw irradiance time
series for each day that SoCal was active. The irradiance measured during
each exposure is also saved as an extension in the L0 file.

Quality Control

The largest variability in the solar RVs is caused by uneven throughput across
the resolved stellar disk. While the integrating sphere spatially averages over
the stellar disk to sufficient homogeneity, external factors such as clouds or
objects on the horizon can obscure some or all of the solar disk, which breaks
the symmetry of the solar rotational velocity profile and creates large time-
variable RV shifts up to v sin i⊙ ∼ 3 km s−1. Rather than create a quality

5http://koa.ipac.caltech.edu/cgi-bin/KOA/nph-KOAlogin
6https://koa.ipac.caltech.edu/UserGuide/PyKOA/PyKOA.html

http://koa.ipac.caltech.edu/cgi-bin/KOA/nph-KOAlogin
https://koa.ipac.caltech.edu/UserGuide/PyKOA/PyKOA.html
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flag based on the observed solar spectrum or RV, we used the pyrheliometer
irradiance time series to identify observations that are contaminated by clouds
or other obscurations. If the Sun is partially or completely obscured, the
measured irradiance time series from the pyrheliometer shows a drop in flux.
As a cloud moves across the solar disk, the irradiance time series can also
show erratic variability. Conversely, clear-sky conditions produce a stable,
slowly varying irradiance curve that peaks at solar noon.

We devised an algorithm to assess cloud coverage using the irradiance time
series. For each day SoCal operates, the irradiance time series is divided
into 5 min duration windows. This window size is adjustable, but 5 min
was found to be both long enough to include enough data points for a reliable
calculation as well as short enough to capture the fast timescale nature of cloud
coverage. For each window, the algorithm fits a second-degree polynomial.
The “clearness index” is the square of the residuals, dividing by the polynomial
model, summed over the 5 min window. Essentially, this is a χ2 test. With
clear skies, the polynomial model is a good fit to the stable, slowly varying
irradiance, and so the clearness index is low. If clouds are present, the large
changes in irradiance produce a high clearness index. We found that setting
a threshold of < 2 for the clearness index in 5 min windows effectively selects
only the clearest portions of the day. Adding a secondary criterion that the
observed irradiance be > 100 W m−2 eliminates cases where an obstruction
causes a decrease in the measured irradiance to near 0 W m−2, which would
pass the χ2 test should the zero flux be maintained for the duration of the
window. For finer time resolution and increased robustness at the bin edges,
we repeat this calculation five times, each time shifting the windows by one
minute. The clearness index at a given timestamp is then the minimum of
the values computed from the shifted windows which include that timestamp.
Figure 3.8 shows example clear and cloudy days with times that pass this
clearness threshold highlighted in green. Conveniently, the clearness index
does not depend on a theoretical model for the irradiance, only the measured
time series, and is fast to compute. Figure 3.8 also shows the corresponding
RVs, which are masked (faded points) if the clearness threshold fails or if there
is not at least three minutes of clear-sky time. An additional buffer of one
minute is masked at any clear/not clear boundary.
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Figure 3.8: Example of a clear-sky day (top) and a day with sporadic clouds
(bottom). The upper subplot shows the irradiance time series (blue) relative
to the theoretical model (orange) computed using pvlib (Holmgren, Hansen,
and Mikofski, 2018), with clear times highlighted in green and non-clear times
in red as identified by the clearness index defined in Section 3.4. The lower
subplot plots the RVs during the same time frame. Note the vertical axis scale
for the RVs on the cloudy day; RVs observed through clouds show a wide range
of sporadic variations from a few to hundreds of m s−1. The ∼ 5.5 minute p-
mode oscillations are clearly seen in the clear-sky RVs; connecting lines are
drawn to help guide the eye. Faded points are RVs masked according to the
clearness criteria described in Section 3.4. The zoom-ins at A and B in the
cloudy example show the polynomial fit and resulting clearness index for a
reference clear and cloudy window.
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Applying this filter to the full set of SoCal observations discards ∼16% of all
RVs. We visually inspected the corresponding plot in Figure 3.8 for each day
to ensure that data affected by clouds were being correctly identified.

3.5 First Results

We completed the installation of SoCal at WMKO and achieved “first light”
on April 25, 2023. Initial data were collected on a few clear days in May under
manual control while the control software was being finalized and hardware is-
sues that disabled remote operation of the enclosure were resolved. Beginning
on June 5, 2023, SoCal and KPF have observed the Sun nearly every “safe
weather” day (which may or may not be cloudy) as described in Section 3.3,
with occasional shutdowns for testing of other KPF subsystems. SoCal was in-
tended to both assist with KPF commissioning tasks and collect useful data for
studying stellar activity. Here we discuss the first results from these activities.

Doppler Performance

During commissioning, SoCal data were used to validate the Doppler per-
formance of KPF, identify instrumental problems, and provide an additional
calibration source and benchmark for the DRP. To validate Doppler perfor-
mance we have accumulated over 19,000 solar spectra using the standard and
fast readout modes over a few to six hours per day during 111 calendar days
spanning 4.5 months. The solar spectra were reduced using the KPF DRP
as described in Section 3.4. Observations taken in cloudy conditions were re-
moved using the “clearness index” presented in Section 3.4. The KPF DRP is
being actively refined and currently works best over short time periods, hence
in this work we only scrutinize KPF’s performance on intra-day timescales.
Future work will probe KPF’s Doppler performance on timescales of weeks to
months.

In a 5 sec exposure, the extracted 1-D KPF spectra have a peak signal-to-noise
(SNR) of ∼450 in the green channel (∼550 nm) and ∼800 in the red channel
(∼750 nm), per SCI trace (the large differences come from the significantly
worse throughput at bluer wavelengths from the long fiber run, see Figure 3.4).
Combining the three SCI traces yields SNR ∼800 in green and ∼1400 in red.
For reference, nonlinearity in the response of the KPF CCDs is expected to set
in for SNR ≳1500 in a single trace, or ∼2600 combined (true saturation at 1900
and 3300 respectively). Combining the measured green and red RVs yields a



80

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Local Time [HST]

4

2

0

2

4

RV
 [m

/s
]

RMS: 0.98 m/s
RV: 0.28 m/s

RMS: 0.67 m/s
RV: 0.12 m/s

19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00
Time [UTC]

0.0 0.5 1.0 1.5 2.0
Daily RMS [m/s]

0

5

10

15

20

Nu
m

be
r o

f d
ay

s

0.64 ± 0.27 m/s
Binned

0.96 ± 0.21 m/s
Unbinned

Figure 3.9: All clear-sky SoCal RVs to date, phased to the time-of-day local
time. A daily median value has been subtracted. The raw measured RVs (no
drift correction) are shown as faded points, color-coded by day. The bolded
points show the same data binned over 5.5 min. The histogram below shows
the distribution of daily RMS for both the binned and unbinned RVs.

photon-limited precision of around 28 cm s−1for a given 5 sec exposure. Since
we also expose the SKY fiber to sunlight, in theory we can gain an additional
∼
√

4/3 increase in SNR by combining SKY with the three SCI traces; however,
this is currently untested.

The daily root-mean-squared (RMS) of the RVs after binning over the 5.5 min
solar oscillations, without correcting for instrumental drift, is typically around
0.64 ± 0.27 m s−1 (Figure 3.9). Instrument drift over a daily SoCal sequence
(3–6 hrs) is typically below the 1 m s−1 level, although some days show stronger
deviations.
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Charge Transfer Inefficiency Issue

Another KPF commissioning activity was to measure the impact of charge
transfer inefficiency (CTI) in the CCDs on stellar RVs. CTI can produce
a SNR-dependent RV shifts since spectral lines will become skewed by the
leftover charge smearing across the detector (Bouchy et al., 2009; Halverson
et al., 2016; Blake, Halverson, and Roy, 2017). To directly probe the effects
of CTI on the KPF RVs, we gathered sequences of 20 exposures at exposure
times of 10 sec, 8 sec, 5 sec, 3 sec, 2 sec, 1 sec, and 0.5 sec (see Figure 3.10). We
noticed significant systematic jumps in RV between each sequence. We isolated
this effect to one of the four amplifiers on the green CCD by observing that
this effect was only present in RVs computed using that quadrant of the 2D
spectrum. We measured that this amplifier has roughly 100 times worse CTI
than what was measured during laboratory CCD tests performed at Caltech
(prior to shipping KPF to Hawai‘i in the summer of 2022).

To work around the CTI problem affecting one amplifier on the Green CCD,
we developed a new read mode of KPF that utilizes two low-CTI amplifiers
operating at 200 kHz in place of the original 4-amplifier, 100 kHz mode. This
is the new “standard” readout mode of KPF as of June 24, 2023. Note that
the fast readout mode still requires all four amplifiers operating at 400 kHz.
As a result, all fast readout data as well as all standard readout data prior to
June 24, 2023 must have the affected quadrant of the green CCD masked when
computing RVs. This masking is now automatically applied to all previously-
collected data in the standard KPF DRP and does successfully resolve the
CTI issue (see bottom panel of Figure 3.10), at the cost of slightly degraded
RV precision since over a quarter7 of the spectrum is being ignored. We are
considering raising the exposure time to 10–12 s when using fast readout mode
to compensate for this. This would result in a 26 s cadence, slightly better
duty cycle (38%), and ∼800 spectra per 6 hr day, but would reach 25 cm s−1

photon-limited precision vs. 36 cm s−1 in a 5 sec exposure. For comparison,
in standard read mode we can reach ∼ 20 cm s−1 in 10 sec or 28 cm s−1 in
5 sec. Longer exposure times would also fully utilize KPF’s unique ability to
obtain high SNR spectra; SNR ∼1400 per trace is reached in the red channel
for a 12 sec exposure, and nonlinear CCD response only begins to set in above
SNR ∼1500 per trace.

7The CTI-affected quadrant is the bluest end of the green detector, where the inter-order
spacing is smallest.
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Figure 3.10: Top: SoCal RVs (green and red) during our CTI test stepping
across a range of exposure times. The large offsets between each sequence in
the green RVs are caused by CTI effects in one of the four amplifiers. Some gaps
exist due to intermittent clouds. Middle: The same data but recomputed by
masking the quadrant of the green CCD that is read by the affected amplifier.
The offsets disappear below the instrumental noise, at the expense of slightly
worse RV precision since over 1/4 of the spectrum in the green channel is not
used. Bottom: The same sequence of exposure times taken on a different day
using a 2-amplifier readout scheme. By not using the affected amplifier, the
CTI effects disappear and full RV precision is maintained.
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Comparison to Other EPRV Solar Feeds

While most active EPRV solar feeds have opted to publish their data in large
data releases (e.g., Collier Cameron et al., 2019; Dumusque et al., 2021), the
NEID Solar Feed makes its data available to the public immediately after it
is acquired and reduced8. We prioritized morning observations with SoCal
(08:45 – 12:00 HST) as this window fully overlaps with the early afternoon
NEID solar observations in Arizona. This way we could immediately compare
RVs between instruments.

Figure 3.11 shows the measured SoCal (orange) and NEID (blue) RVs for
ten days with fully clear skies at both sites. We observed the majority of
these days with KPF in the standard readout mode (5 sec exposure, 55 sec
cadence), with tests of the fast readout mode (5 sec exposure, 21 sec cadence)
on June 28, 2023 and July 6, 2023. Since the fast readout data are taken in
4-amplifier mode, the RVs are computed using an order mask on the green
CCD to avoid contamination by CTI effects (see Section 3.5), hence the larger
than usual per-measurement uncertainty. The NEID solar RVs have a longer
exposure time (55 sec) but an intermediate readout time (28 sec), resulting
in a similar cadence (83 sec cadence) as our standard read mode data. Both
instruments clearly resolve the 5.5 minute solar p-mode oscillations, which
dominate the common RV variability on these ∼hours intra-day timescales
(see Kjeldsen et al., 2008). The bottom panel of each daily plot shows the
residuals between the NEID RVs and a spline fit of the KPF RVs interpolated
to the NEID timestamps. The RMS of these residuals is typically around
30–40 cm s−1, which is slightly lower than the quadrature-sum of the KPF
and NEID single-measurement errorbars (40–46 cm s−1). As the KPF RVs are
corrected for instrumental drift using the simultaneous etalon RVs, this means
that there are no other sources of unaccounted instrumental noise in these
data. For any observations that show large disagreements (e.g. June 8 near
21:30 UTC), a deeper investigation is warranted to isolate which instrument
the source of disagreement is coming from. As the KPF DRP, wavelength
solutions, calibration source RVs, and drift models are still converging on a
long-term stable solution, we leave this investigation for future work when the
KPF RVs reach the same level of maturity as the NEID RVs.

8Available at https://neid.ipac.caltech.edu/search_solar.php

https://neid.ipac.caltech.edu/search_solar.php
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Figure 3.11: Solar RVs measured by KPF (corrected for drift) and NEID for
a selection of days where both sites had clear weather conditions and a drift
correction was possible for KPF using the simultaneous calibration. KPF
data (orange points) on two of the days, June 28 and July 6, were taken in
the fast readout mode (bolded frames), with the rest of the days taken in
standard readout mode. The NEID RVs are shown in blue. The 5.5 minute
solar p-mode oscillations are clearly observed by both instruments at the same
amplitude and phase. The lower panel of each plot shows the residuals between
a spline-interpolation of the KPF RVs, sampled at the NEID timestamps, and
the NEID RVs. The residual RMS is comparable to the combined instrumental
noise floor for most days; some days show a smaller RMS than the combined
noise floor. On some days, such as June 22, the RVs disagree near UT 21:30.
This is likely caused by additional instrumental drift in the KPF RVs due to
liquid nitrogen fills around HST 11:00 (UT 21:00) not being fully removed by
the simple drift model.
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The fact that the “out-of-the-box” KPF RVs line up so well with the NEID RVs
over daily timescales is extremely encouraging. Drift on these timescales for
KPF is < 0.5 m s−1 hr−1, so we expect similar levels of agreement on longer
timescales once the day-to-day offsets between KPF wavelength solutions be-
come sub-m s−1. Future work expanding on the investigation conducted by
Zhao et al. (2023b), who studied one month of overlap between solar RVs from
HARPS, HARPS-N, EXPRES, and NEID, will be especially fruitful. Addi-
tionally, SoCal will observe the Sun for an additional 2–3 hours after the Sun
has set in Arizona for EXPRES and NEID, meaning these five instruments will
collect nearly 20 hours of continuous solar RVs in the summer months and ∼17
hours in the winter months. By cross-calibrating instruments using the over-
lapping windows of solar observations, longer-term variability like granulation
will be better resolved. However, each instrument adopts a unique observing
strategy. HARPS-N takes ∼5 min exposures to average over p-modes, EX-
PRES uses an adaptive exposure time to reach a fixed SNR threshold (typical
exposures are around 3 min), and HARPS and NEID both use short fixed
exposure times of 30 sec and 55 sec respectively. To compare RVs on longer
timescales, these RVs must be binned to shared “exposure times” and times-
tamps, which introduces some uncertainty. The faster cadence of KPF (5 sec
exposure and 15 sec readout) directly traces the p-mode oscillations, thus the
KPF RVs can be binned to these shared exposure times and timestamps with
less inherent error (Zhao et al., 2023b). Long term, the publicly available SoCal
and NEID RVs will provide crucial benchmarks for understanding instrument
performance and for isolating solar activity signals.

3.6 Conclusions and Future Work

We have developed, built, and installed the Solar Calibrator for KPF at W.
M. Keck Observatory. SoCal makes use of proven, off-the-shelf components
and is protected from extreme weather by a rugged motorized enclosure. Daily
operations are performed autonomously with little-to-no human intervention
required. We achieved first light on April 25, 2023 and have been observing
the Sun almost daily since June 2023, accumulating over 19,000 solar spectra
at the time of submitting this manuscript (October 18, 2023). SoCal obtains
SNR ∼ 1200 solar spectra in a 5 sec exposure. When paired with KPF’s fast
readout mode we are able to record solar RV time series at 21 sec cadence
with < 30 cm s−1 photon-limited precision. Long-term operations can further
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utilize KPF’s high SNR capabilities to acquire spectra with SNR as high as
∼2400.

On short timescales, SoCal is demonstrating the EPRV capabilities of KPF
extremely well. With no drift correction, binning over the p-mode oscillations
reduces the RMS of observed solar RVs to just 20–30 cm s−1 on days with
minimal instrumental drift and 67 cm s−1 across all days. We compared solar
RVs from SoCal to those taken simultaneously with NEID and found excellent
agreement within individual days; the residual RV between KPF and NEID
was comparable to their combined photon-limited precision (∼40 cm s−1).

Long-term performance validation still requires improvements to the KPF
DRP, particularly the stability of daily wavelength solutions, but preliminary
results are encouraging. SoCal has also enabled independent monitoring of
instrumental drift and will become even more so once comparisons with NEID
on longer timescales become possible. This has been especially valuable dur-
ing times when the LFC was not working and the etalon lamp was degrading.
SoCal data was also instrumental in discovering and diagnosing the CTI issue
in the KPF detectors as well as exercising and improving the DRP throughout
commissioning.

Continued monitoring of the Sun by EPRV facilities across the globe will not
only allow for multi-instrument comparisons and calibrations (such as in Zhao
et al. 2023b), but will also provide near-continuous solar monitoring which may
help constrain granulation effects. Additionally, the Sun is currently increas-
ing in activity towards solar maximum (Upton and Hathaway 2023 estimate
the peak in fall 2024), making forthcoming cross-instrument studies especially
opportune for probing the effects of active features such as spots/faculae/-
plages on EPRV data. The fast cadence and high SNR of SoCal data allow
for more precise binning over short-term oscillations enabling more effective
comparisons to other instruments. Soon, the solar feed for MAROON-X will
come online. As Gemini-N and WMKO share the same observing conditions
(and the same Sun), comparisons between SoCal and MAROON-X solar data
will be uniquely advantageous as the only variable is the instrument. Lastly,
SoCal’s geographic location fills a large gap in reaching continuous 24-hour
coverage using the global network of solar feeds.

It will also be interesting to compare EPRV solar data with solar RVs ob-
tained by dedicated asteroseismology observatories. There are two ground-
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based global networks of solar observatories performing 24/7 helioseismology,
the Global Oscillation Network Group (GONG; Harvey et al., 1996) and the
Birmingham Solar Oscillations Network (BiSON; Davies et al., 2014; Hale
et al., 2016). These facilities use a single spectral line to measure solar RVs
and have set the standard for measuring the oscillation frequencies of the Sun
(Broomhall et al., 2009). The Stellar Oscillations Network Group (SONG;
Grundahl et al., 2006) is a global network of 1 m telescopes with iodine-cell
calibrated spectrographs designed to do asteroseismology with RVs on the near-
est and brightest stars. A sun tracker was installed at the Hertzsprung SONG
telescope at the Teide Observatory in 2017, which collected m s−1 quality RVs
of the Sun at a blazing 4 sec cadence (0.5 sec exposure, 3.5 sec readout) for
three months in 2018 (Fredslund Andersen, M. et al., 2019). Our interpre-
tations of our solar EPRV datasets would benefit greatly from collaborations
with the heliophysics community and detailed comparisons between our rich
datasets.

SoCal data is publicly available on the Keck Observatory Archive. Future
studies to develop new spectral activity indicators or activity-invariant RV
extraction algorithms will be most fruitful on the high SNR, high cadence,
and long-baseline solar time series that SoCal and other similar facilities are
producing. Solar EPRV datasets are becoming ever more important not just
for understanding, calibrating, and optimizing individual spectrograph per-
formance, but also for paving the way to the data analysis tools needed to
uncover exo-Earths in stellar EPRV time series.
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C h a p t e r 4

A RETROGRADE, POLAR ORBIT FOR THE
ULTRA-LOW-DENSITY, HOT SUPER-NEPTUNE

WASP-107 B

Rubenzahl, R. A. et al. (Mar. 2021). “The TESS-Keck Survey. IV. A Ret-
rograde, Polar Orbit for the Ultra-low-density, Hot Super-Neptune WASP-
107b.” In: The Astronomical Journal 161.3, 119, p. 119. doi: 10.3847/1538-
3881/abd177. arXiv: 2101.09371 [astro-ph.EP].

4.1 Introduction

WASP-107 b is a close-in (P = 5.72 days) super-Neptune orbiting the cool
K-dwarf WASP-107. Originally discovered via the transit method by WASP-
South, WASP-107 b was later observed by K2 in Campaign 10 (Howell et
al., 2014). These transits revealed a radius close to that of Jupiter, Rb =

10.8± 0.34 R⊕ = 0.96± 0.03 RJup (Dai and Winn, 2017; Močnik et al., 2017;
Piaulet et al., 2021). However, follow-up radial velocity (RV) measurements
with the CORALIE spectrograph demonstrated a mass of just 38±3 M⊕ (An-
derson et al., 2017), meaning this Jupiter-sized planet has just one-tenth its
density. Higher-precision RVs from Keck/High Resolution Echelle Spectrom-
eter (HIRES) suggested an even lower mass of 30.5 ± 1.7 M⊕ (Piaulet et al.,
2021). This low density challenges the standard core-accretion model of planet
formation. If runaway accretion brought WASP-107 b to a gas-to-core mass
ratio of ∼ 3 but was stopped prematurely before growing to gas giant size,
orbital dynamics and/or migration may have played a significant role in this
system (Piaulet et al., 2021). Alternatively WASP-107 b’s radius may be in-
flated from tidal heating, which would allow a lower gas-to-core ratio consistent
with core accretion (Millholland, Petigura, and Batygin, 2020).

With a low density, large radius, and hot equilibrium temperature, WASP-
107 b’s large atmospheric scale height makes it a prime target for atmospheric
studies. Indeed analyses of transmission spectra obtained with the Hub-
ble Space Telescope (HST)/WFC3 have detected water amongst a methane-
depleted atmosphere (Kreidberg et al., 2018). WASP-107 b was the first
exoplanet to be observed transiting with excess absorption at 10830 Å, an

https://doi.org/10.3847/1538-3881/abd177
https://doi.org/10.3847/1538-3881/abd177
https://arxiv.org/abs/2101.09371
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absorption line of a metastable state of neutral helium indicative of an escap-
ing atmosphere (Oklopčić and Hirata, 2018). These observations suggest that
WASP-107 b’s atmosphere is photoevaporating at a rate of a few percent in
mass per billion years (Spake et al., 2018; Allart et al., 2019; Kirk et al., 2020).

The orbit of WASP-107 b is suspected to be misaligned with the rotation axis
of its host star. The angle between the star’s rotation axis and the normal to
the planet’s orbital plane, called the stellar obliquity ψ (or just obliquity), was
previously constrained by observations of WASP-107 b passing over starspots
as it transited (Dai and Winn, 2017). As starspots are regions of reduced
intensity on the stellar photosphere that rotate with the star, this is seen as
a bump of increased brightness in the transit light curve. By measuring the
time between spot-crossing events across successive transits, combined with
the absence of repeated spot crossings, Dai and Winn (2017) were able to
constrain the sky-projected obliquity, λ, of WASP-107 b to λ ∈[40–140] deg.
Intriguingly, long-baseline RV monitoring of the system with Keck/HIRES
has revealed a distant (Pc ∼ 1100 days) massive (M sin iorb,c = 115± 13 M⊕)
planetary companion, which may be responsible for this present day misaligned
orbit through its gravitational influence on WASP-107 b (Piaulet et al., 2021).

The sky-projected obliquity can also be measured spectroscopically. The
Rossiter–McLaughlin (RM) effect refers to the anomalous Doppler-shift caused
by a transiting planet blocking the projected rotational velocities across the
stellar disk (McLaughlin, 1924; Rossiter, 1924). If the planet’s orbit is aligned
with the rotation of the star (prograde), its transit will cause an anomalous
redshift followed by an anomalous blueshift. A anti-aligned (retrograde) orbit
will cause the opposite to occur.

Following the first obliquity measurement by Queloz et al. (2000), the field
saw measurements of 10 exoplanet obliquities over the next 8 years that
were all consistent with aligned, prograde orbits. After a few misaligned
systems had been discovered (e.g., Hébrard et al., 2008), a pattern emerged
with hot Jupiters on highly misaligned orbits around stars hotter than about
6250 K (Winn et al., 2010a). This pattern elicited several hypotheses such as
damping of inclination by the convective envelope of cooler stars (Winn et al.,
2010a) or magnetic realignment of orbits during the T Tauri phase (Spalding
and Batygin, 2015).
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More recently a number of exoplanets have been found on misaligned or-
bits around cooler stars, such as the hot Jupiter WASP-8b (Queloz et al.,
2010; Bourrier et al., 2017), as well as lower-mass hot Neptunes like HAT-P-
11b (Winn et al., 2010b), Kepler-63b (Sanchis-Ojeda et al., 2013a), HAT-P-
18b (Esposito, M. et al., 2014), GJ 436b (Bourrier et al., 2018), and HD 3167
c (Dalal et al., 2019). Strikingly, all of these exoplanets are on or near polar
orbits. Some of these systems have recently had distant, giant companions de-
tected (e.g. HAT-P-11c; Yee et al., 2018), hinting that these obliquities arise
from multibody planet-planet dynamics.

In this paper we present a determination of the obliquity of WASP-107 b from
observations of the RM effect (Section 4.2). These observations were acquired
under the TESS–Keck Survey (TKS), a collaboration between scientists at the
University of California, the California Institute of Technology, the University
of Hawai‘i, and NASA. TKS is organized through the California Planet Search
with the goal of acquiring substantial RV follow-up observations of planetary
systems discovered by TESS (Dalba et al., 2020). TESS observed four transits
of WASP-107 b (TOI 1905) in Sector 10. An additional science goal of TKS is
to measure the obliquities of interesting TESS systems. WASP-107 b, which
is already expected to have a significant obliquity (Dai and Winn, 2017), is an
excellent target for an RM measurement with HIRES.

In Section 4.3 we confirm a misaligned orientation; in fact, we found a po-
lar/retrograde orbit. This adds WASP-107 b to the growing population of hot
Neptunes in polar orbits around cool stars. We explored possible mechanisms
that could be responsible for this misalignment in Section 4.4. Lastly in Sec-
tion 4.5 we summarized our findings and discussed the future work needed
to better understand the obliquity distribution for small planets around cool
stars.

4.2 Observations

We observed the RM effect for WASP-107 b during a transit on 2020 February
26 (UTC) with HIRES (Vogt et al., 1994) on the Keck I Telescope on Mau-
nakea. Our HIRES observations covered the full transit duration (∼ 2.7 hr)
with a ∼ 1 hour baseline on either side. We used the “C2” decker (14′′×0.′′861,
R = 45, 000) and integrated until the exposure meter reached 60,000 counts
(signal-to-noise ratio (S/N) ∼ 100 per reduced pixel, ≲ 15 minutes) or readout
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Table 4.1: Radial Velocities of WASP-107

Time RV σRV Exposure time
BJDTDB m s−1 m s−1 sec
2458905.90111 5.05 1.50 900
2458905.91189 6.43 1.42 883
2458905.92247 0.14 1.49 862
2458905.93288 -1.35 1.65 844
2458905.94266 -0.25 1.45 783
...

...
...

...
A machine readable version of the full table is available on the online published version
(Rubenzahl et al., 2021).

Table 4.2: Adopted parameters of the WASP-107 System

Parameter Value Unit Source
Pb 5.7214742 days 1
tc 7584.329897± 0.000032 JDa 1
b 0.07± 0.07 1
iorb,b 89.887+0.074

−0.097 degrees 1
Rp/R⋆ 0.14434± 0.00018 1
a/R⋆ 18.164± 0.037 1
eb 0.06± 0.04 2
ωb 40+40

−60 degrees 2
Mb 30.5± 1.7 M⊕ 2
Pc 1088+15

−16 days 2
ec 0.28± 0.07 2
ωc −120+30

−20 degrees 2
Mc sin iorb,c 0.36± 0.04 MJ 2
Teff 4245± 70 K 2
M∗ 0.683+0.017

−0.016 M⊙ 2
R∗ 0.67± 0.02 R⊙ 2
u1 0.6666± 0.0062 1
u2 0.0150± 0.0110 1

aDays since JD 2,450,000. Sources: (1) Dai and Winn (2017); (2) Piaulet et al. (2021).

after 15 minutes. The spectra were reduced using the standard procedures of
the California Planet Search (Howard et al., 2010a), with the iodine cell serv-
ing as the wavelength reference (Butler et al., 1996). In total we obtained 22
RVs, 12 of which were in transit (Table 4.1).

Visually inspecting the observations (Fig. 4.1) shows an anomalous blueshift
following the transit ingress, followed by an anomalous redshift after the transit
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midpoint,1, indicating a retrograde orbit. The asymmetry and low-amplitude
of the signal constrain the orientation to a near-polar alignment, but whether
the orbit is polar or anti-aligned is somewhat degenerate with the value of
v sin i⋆. The expected RM amplitude is v sin i⋆(Rp/R⋆)

2 ∼ 40 m s−1, using
previous estimates of Rp/R⋆ = 0.144 (Dai and Winn, 2017) and v sin i⋆ ∼
2 km s−1 (e.g., Anderson et al., 2017). The signal we detected with HIRES is
only ∼ 5.5 m s−1 in amplitude. Dai and Winn (2017) found the transit impact
parameter to be nearly zero, therefore the small RM amplitude suggests either
a much lower v sin i⋆ than was spectroscopically inferred (see Section 4.3), a
near-polar orbit, or both.

4.3 Analysis

Rossiter–McLaughlin Model

We used a Gaussian likelihood for the RV time series (t, vr) given the model
parameters Θ, and included a RV jitter term (σj) to account for additional
astrophysical or instrumental noise,

p(vr, t|Θ) =
N∏
i=1

1√
2πσ2

exp

[
−(vr,i − f(ti, Θ))2

2σ2
i

]
, (4.1)

where σ2
i = σ2

RV,i + σ2
j . The model f(ti, Θ) is given by

f(ti, Θ) = RM(ti, θ) + γ + γ̇(ti − t0), (4.2)

where Θ = (θ, γ, γ̇) is the RM model parameters (θ) as well as an offset
(γ) and slope (γ̇) term which we added to approximate the reflex motion of
the star and model any other systematic shift in RV throughout the transit
(e.g., from noncrossed spots). The reference time t0 is the time of the first
observation (BJD).

RM(ti, θ) is the RM model described in Hirano et al. (2011). We assumed zero
stellar differential rotation and adopted the transit parameters determined by
Dai and Winn, 2017, which came from a detailed analysis of K2 short-cadence
photometry. We performed a simultaneous fit to the photometric and spec-
troscopic transit data using the same photometric data from K2 as in Dai and
Winn (2017) to check for consistency. We obtained identical results for the
transit parameters as they did, hence we opted to simply adopt their values,

1Propagating the uncertainty in tc in Table 4.2 the transit midpoint on the night of
observation is uncertain to about 9 s.
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including their quadratic limb-darkening model. These transit parameters are
all listed in Table 4.2. Our best-fit RV jitter is σj = 2.61+0.64

−0.51 m s−1, smaller
than the jitter from the Keplerian fit to the full RV sample of 3.9+0.5

−0.4 m s−1 (Pi-
aulet et al., 2021). This is expected as the RM sequence covers a much shorter
time baseline as compared to the full RV baseline, and as a result is only
contaminated by short-term stellar noise sources such as granulation and con-
vection.

The free parameters in the RM model are the sky-projected obliquity (λ), stel-
lar inclination angle (i⋆), and projected rotational velocity (v sin i⋆). To first or-
der, the impact parameter b and sky-projected obliquity λ determine the shape
of the RM signal, while v sin i⋆ and Rp/R⋆ set the amplitude. We adopted
the parameterization (

√
v sin i⋆ cosλ,

√
v sin i⋆ sinλ) to improve the sampling

efficiency and convergence of the Markov Chain Monte Carlo (MCMC). A
higher order effect that becomes important when the RM amplitude is small
is the convective blueshift, which we denote vcb (see Section 4.3 for more de-
tails). There are thus seven free parameters in our model:

√
v sin i⋆ cosλ,

√
v sin i⋆ sinλ, cos i⋆, log(|vcb|), γ, γ̇, and σj. We placed a uniform hard-

bounded prior on v sin i⋆ ∈ [0, 5] km s−1 and on cos i⋆ ∈ [0, 1], and used a
Jeffrey’s prior for σj. All other parameters were assigned uniform priors.

Micro/Macroturbulence Parameters

The shape of the RM curve is also affected by processes on the surface of the
star that broaden spectral lines, which affect the inferred RVs. In the Hirano
et al. (2011) model, these processes are parameterized by γlw, the intrinsic line
width, ζ, the line width due to macroturbulence, given by the Valenti and
Fischer (2005) scaling relation

ζ =

(
3.98 +

Teff − 5770 K
650 K

)
km s−1, (4.3)

and β, given by

β =

√
2kBTeff

µ
+ ξ2 + βIP, (4.4)

where ξ is the dispersion due to microturbulence and βIP is the Gaussian
dispersion due to the instrument profile, which we set to the HIRES line-spread
function (LSF) (2.2 km s−1). We tested having γlw, ξ, and ζ as free parameters
in the model (with uniform priors) but only recovered the prior distributions
for these parameters. Moreover we saw no change in the resulting posterior
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distribution for λ or v sin i⋆. Because of this, we opted to instead adopt fixed
nominal values of ξ = 0.7 km s−1, γlw = 1 km s−1, and ζ = 1.63 km s−1 (from
Eq. 4.3 using Teff from Table 4.2).

Convective blueshift

Convection in the stellar photosphere, caused by hotter bubbles of gas rising
to the stellar surface and cooler gas sinking, results in a net blueshift across
the stellar disk. This is because the rising (blueshifted) gas is hotter, and
therefore brighter, than the cooler sinking (redshifted) gas. Since this net-
blueshifted signal is directed at an angle normal to the stellar surface, the
radial component seen by the observer is different in amplitude near the limb
of the star compared to the center of the stellar disk, according to the stellar
limb-darkening profile. Thus the magnitude of the convective blueshift blocked
by the planet varies over the duration of the transit. The amplitude of this
effect is ∼ 2 m s−1, which is significant given the small amplitude of the RM
signal we observe for WASP-107 b (∼ 5.5 m s−1).

For this reason we included the prescription of Shporer and Brown, 2011 in
the RM model, which is parameterized by the magnitude of the convective
blueshift integrated over the stellar disk (vcb). This quantity is negative by
convention. Since the possible value of vcb could cover several orders of magni-
tude, we fit for log(|vcb|) and set a uniform prior between -1 and 3. While we
found that including vcb has no effect on the recovered λ and v sin i⋆ posteriors,
we are able to rule out |vcb| > 450 m s−1 at 99% confidence, and > 250 m s−1

at 95% confidence.

Evidence for a Retrograde/Polar Orbit

We first found the maximum a posteriori (MAP) solution by minimizing the
negative log-posterior using Powell’s method (Powell, 1964) as implemented
in scipy.optimize.minimize (Virtanen et al., 2020). The MAP solution was
then used to initialize an MCMC. We ran 8 parallel ensembles each consisting
of 32 walkers for 10,000 steps using the python package emcee (Foreman-
Mackey et al., 2013). We checked for convergence by requiring that both the
Gelman–Rubin statistic (G–R; Gelman et al., 2003) was < 1.001 across the
ensembles (Ford, 2006) and the autocorrelation time was < 50 times the length
of the chains (Foreman-Mackey et al., 2013).
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Figure 4.1: The RM effect for WASP-107 b. The dark shaded bands show the
16th–84th (black) and 5th–95th (gray) percentiles from the posterior distri-
bution of the modeled RV. The red best-fit line is the maximum a-posteriori
(MAP) model. The three vertical dashed lines denote, in chronological order,
the times of transit ingress, midpoint, and egress. The residuals show the data
minus the best-fit model. Data points are drawn with the measurement errors
and the best-fit jitter added in quadrature.
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Figure 4.2: Posterior distribution for λ and v sin i⋆. Although a more anti-
aligned configuration is consistent with the data if v sin i⋆ is small, the most
likely orientations are close to polar. A prograde orbit (|λ| < 90◦) is strongly
ruled out.
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Figure 4.3: Sky-projected orbital configuration of WASP-107 b’s orbit relative
to the stellar rotation axis. The black lines correspond to posterior draws while
the red line is the MAP orbit from Fig. 4.1. The direction of WASP-107 b’s
orbit is denoted by the red arrow. The stellar rotation axis (black arrow) and
lines of stellar latitude and longitude are drawn for an inclination of i⋆ = 25◦.
The posterior for i⋆ is illustrated by the shaded gray strip with a transparency
proportional to the probability.

The MAP values and central 68% confidence intervals (CI) computed from
the MCMC chains are tabulated in Table 4.3, and the full posteriors for λ and
v sin i⋆ are shown in Fig. 4.2. A prograde (|λ| < 90◦) orbit is ruled out at> 99%

confidence. An anti-aligned (135◦ < λ < 225◦) orbit is allowed if v sin i⋆ is
small (0.26±0.10 km s−1), although a more polar aligned (but still retrograde)
orbit with 90◦ < |λ| < 135◦ is more likely (if v sin i⋆ ∈ [0.22, 2.09] km s−1, 90%
CI). The true obliquity ψ will always be closer to a polar orientation than λ,
since λ represents the minimum obliquity in the case where the star is viewed
edge-on (i⋆ = 90◦). While an equatorial orbit that transits requires i⋆ ∼ 90◦,
a polar orbit may be seen to transit for any stellar inclination.

To confirm that the signal we detected was not driven by correlated noise
structures in the data, we performed a test using the cyclical residual permu-
tation technique. We first calculated the residuals from the MAP fit to the
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Table 4.3: WASP-107 b Rossiter–McLaughlin Parameters

Parameter MCMC CI MAP value Unit
Model Parameters√
v sin i⋆ cosλ −0.309+0.150

−0.154 -0.30 a
√
v sin i⋆ sinλ −0.126+0.808

−0.771 -0.72 a

cos is −0.003+0.682
−0.681 -0.56

γ 0.80+1.36
−1.38 0.97 m s−1

γ̇ −20.83+11.05
−10.94 -21.85 m s−2

σjit 2.61+0.64
−0.51 2.20 m s−1

log(|vcb|) 0.89+1.18
−1.27 2.17 a

Derived Parameters
|λ| 118.1+37.8

−19.1 112.63 degrees
v sin i⋆ 0.45+0.72

−0.23 0.61 km s−1

vcb −7.74+7.33
−109.71 -149.41 m s−1

i⋆ 28.17+40.38
−20.04 7.06 degrees

|ψ| 109.81+28.17
−13.64 92.60 degrees

av sin i⋆ is in km s−1 and vcb is in m s−1.

original RV time series. We then shifted these residuals forward in time by one
data point, wrapping at the boundaries, and added these new residuals back
to the MAP model. This new “fake” dataset was then fit again and the process
was repeated N times where N = 22 is the number of data points in our RV
time series. This technique preserves the red noise component, and permuting
multiple times generates datasets that have the same temporal correlation but
different realizations of the data. If we assume that the signal we detected
is caused by a correlated noise structure, then we would expect to see the
detected signal vanish or otherwise become significantly weaker across each
permutation as that noise structure becomes asynchronous with the transit
ephemeris. We found that the signal is robustly detected at all permutations,
with and without including the convective blueshift (fixed to the original MAP
value). The MAP estimate for λ tended to be closer to polar across the permu-
tations compared as to the original fit, which is consistent with the posterior
distribution estimated from the MCMC, but did not vary significantly. While
this method is not appropriate for estimating parameter uncertainties (Cubil-
los et al., 2017), we conclude that our results are not qualitatively affected by
correlated noise in our RV time series.

Spot-crossing events can also affect the RM curve since the planet would block
a different amount of red/blueshifted light. Out of the nine transits observed
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by Dai and Winn (2017), a single spot-crossing event was seen in only three of
the transits. Hence there is roughly a one in three chance that the transit we
observed contained a spot-crossing event. As we did not obtain simultaneous
high-cadence photometry, we do not know if or when such an event occurred.
Judging from the durations (∼ 30 min) of the spot crossings observed by Dai
and Winn (2017), this would only affect one or maybe two of our 15-minute
exposures. While we don’t see any significant outliers in our dataset, these
spots were only ∼ 10% changes on a ∼ 2% transit depth, amounting to an
overall spot depth of ∼ 0.2%. Given our estimate of v sin i⋆ ∼ 0.5 km s−1 this
suggests a spot-crossing event would produce a ∼ 1 m s−1 RV anomaly, small
compared to our measurement uncertainties (∼ 1.5 m s−1) and the estimated
stellar jitter (∼ 2.6 m s−1). In other words, there is a roughly 33% chance
that a spot-crossing event introduced an additional 0.5σ error on a single
data point. If there were multiple spot-crossing events this anomaly would
vary across the transit similar to other stellar-activity processes. In practice
this introduces a correlated noise structure in the RV time series which our
cyclical residual permutation test demonstrated is not significantly influencing
our measurement of the obliquity or other model parameters. From this semi-
analytic analysis we conclude that spot crossings are not a leading source of
uncertainty in our model.

Constraints on the Stellar Inclination

Given a constraint on v sin i⋆ and v, we can constrain the stellar inclination
i⋆. Previous studies have found a range of estimates for the v sin i⋆ of WASP-
107. Anderson et al., 2017 found a value of 2.5 ± 0.8 km s−1, whereas John
Brewer (private communication) obtained a value of 1.5±0.5 km s−1 using the
automated spectral synthesis modeling procedure described in Brewer et al.
(2016). We note that the Specmatch-Emp (Yee, Petigura, and von Braun,
2017) result for our HIRES spectrum only yields an upper bound for v sin i⋆
of < 2 km s−1, as this technique is limited by the HIRES PSF. All three
of these methods derive v sin i⋆ by modeling the amount of line broadening
present in the stellar spectrum, which in part comes from the stellar rotation.
However these estimates may be biased from other sources of broadening which
are not as well constrained in these models. Our RM analysis on the other
hand incorporates a direct measurement of v sin i⋆ by observing how much of
the projected stellar rotational velocity is blocked by the transiting planet’s
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Figure 4.4: Obliquity of WASP-107 b. The true obliquity ψ is calculated
using the constraints on the stellar inclination as inferred from the v sin i⋆
posterior (Section 4.3).

shadow. Our RM analysis found v sin i⋆ = 0.45+0.72
−0.23 km s−1, lower than the

spectroscopic estimates. We adopted this posterior for v sin i⋆ to keep internal
consistency.

The rotation period of WASP-107 has been estimated to be 17± 1 days from
photometric modulations due to starspots rotating in and out of view (An-
derson et al., 2017; Dai and Winn, 2017; Močnik et al., 2017). We combined
this rotation period with the stellar radius of 0.67 ± 0.02 R⊙ inferred from
the HIRES spectrum (Piaulet et al., 2021) using Specmatch-Emp (Yee, Pe-
tigura, and von Braun, 2017) to constrain the tangential rotational velocity
v = 2πR⋆/Prot. We then used the statistically correct procedure described by
Masuda and Winn, 2020 and performed an MCMC sampling of v and cos i⋆,
using uniform priors for each, and using the posterior distribution for v sin i⋆
obtained in the RM analysis as a constraint. Sampling both variables simul-
taneously correctly incorporates the nonindependence of v and cos i⋆, since
v ≤ v sin i⋆. We found that i⋆ = 25.8+22.5

−15.4 degrees (MAP value 7.1◦), implying
a viewing geometry of close to pole-on for the star. Thus any transiting con-
figuration will necessarily imply a near-polar orbit, even for orbital solutions
with λ near 180◦ (see Fig. 4.3). It is worth mentioning that one of the three
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spot-crossing events observed by Dai and Winn (2017) occurred near the tran-
sit midpoint. This small stellar inclination implies that this spot must be at
a relatively high latitude (90◦ − i⋆) compared to that of our Sun, which has
nearly all of its sunspots contained within ±30◦ latitude.

Knowledge of the stellar inclination i⋆, the orbital inclination iorb, and the
sky-projected obliquity λ allows one to compute the true obliquity ψ, as these
four angles are related by

cosψ = cos iorb cos i⋆ + sin iorb sin i⋆ cosλ. (4.5)

The resulting posterior distribution for the true obliquity ψ is shown in Fig. 4.4.
As expected, the true orbit is constrained to a more polar orientation than is
implied by the wide posteriors on λ, due to the nearly pole-on viewing geometry
of the star itself.

4.4 Dynamical History

How did WASP-107 b end up in a slightly retrograde, nearly polar orbit? To
explore this question, we examined the orbital dynamics of the WASP-107
system considering the new discovery of a distant, giant companion WASP-
107c (Piaulet et al., 2021). As in Mardling, 2010, Yee et al., 2018, and Xuan
and Wyatt, 2020, we can understand the evolution of the WASP-107 system by
examining the secular three-body Hamiltonian. Assuming the inner planet is a
test particle (i.e., Mb

√
ab ≪Mc

√
ac), and since ab/ac ≪ 1, we can approximate

the Hamiltonian by expanding to quadrupole order in semimajor axis ratio

H =
1

16
nb
Mc

M⋆

(
ab

ac
√

1− e2c

)3 [
(5− 3G2

b)(3H
2
b −G2

b)

G2
b

+
15(1−G2

b)(G
2
b −H2

b ) cos(2gb)

G2
b

]
+
GM⋆

abc2
3nb
Gb

, (4.6)

where the last term is the addition from general relativity (GR) and nb =

2π/Pb. The quantities G and H are the canonical Delaunay variables

Gb =
√

1− e2b ↔ gb = ωb, (4.7)

Hb = G cos ib ↔ hb = Ωb,

where the double-arrow (↔) symbolizes conjugate variables, ωb is the argument
of perihelion of the inner planet, Ωb is the longitude of ascending node of
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Figure 4.5: Evolution of WASP-107 b’s true obliquity (ψb, solid line) through-
out the the N -body simulation using the system parameters given in Table 4.2.
The outer planet has Mc =M sin iorb,c and was initialized with an obliquity of
ψc = 60◦ (dashed line). The obliquity of planet b oscillates between ψc ± ψc
every ∼ 2.5 Myr due to nodal precession. If sin iorb,c < 1 then the larger Mc

simply produces a shorter nodal precession timescale. The right panel shows
the evolution of the inclinations with the difference in the longitudes of as-
cending node.

the inner planet, and ib is the inclination of the inner planet with respect
to the invariant plane. The invariant plane is the plane normal to the total
angular momentum bmtor, which to good approximation is simply the orbital
plane of the outer planet (since angular momentum is ∝ Ma1/2). With this
approximation, ib is the relative inclination between the two planets.

Kozai–Lidov oscillations

Since the Hamiltonian H does not depend on hb, the quantityHb =
√

1− e2b cos ib

is conserved. This leads to a periodic exchange of eb and ib, so long as the
outer planet has an inclination greater than a critical value of ∼ 39.2◦ (Kozai,
1962; Lidov, 1962). These Kozai–Lidov cycles also require a slowly changing
argument of perihelion, which may precess due to GR as is famously seen in
the orbit of Mercury. This precession can suppress Kozai–Lidov cycles if fast
enough, as is the case for HAT-P-11 and π Men (Xuan and Wyatt, 2020; Yee
et al., 2018). The precession rate from GR is given by

ω̇GR =
GM⋆

abc2
3nb
G2
b

, (4.8)

which has an associated timescale of τGR = 2π/ω̇ ≈ 42, 500 years for WASP-
107 b. The Kozai timescale (Kiseleva, Eggleton, and Mikkola, 1998) is

τKozai =
2P 2

c

3πP 2
b

M⋆

Mc

(1− e2c)
3/2 ≈ 210, 000 yr, (4.9)

five times longer. The condition for Kozai–Lidov cycles to be suppressed by
relativistic precession is τKozaiω̇GR > 3 (Fabrycky and Tremaine, 2007), which
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the MAP minimum mass and orbital parameters WASP-107c satisfy. This is
nicely visualized in Figure 6 of Piaulet et al. (submitted), which shows the full
posterior distributions of τKozai and τGR. While the true mass of WASP-107c
is likely to be larger than the derived M sin iorb,c, it would need to be ∼ 10

times larger for Kozai–Lidov oscillations to occur. This would imply a near
face-on orbit of at most iorb,c < 5.5◦. Such a face-on orbit is unlikely but is still
plausible if it is aligned with the rotation axis of the star, given our constraints
on the stellar inclination angle in Section 4.3.

Nodal precession

An alternative explanation for the high obliquity of WASP-107 b is nodal pre-
cession, as was proposed for HAT-P-11b (Yee et al., 2018) and for π Men c (Xuan
and Wyatt, 2020). In this scenario the outer planet must have an obliquity
greater than half that of the inner planet, which in this case would require
ψc ∼ 55◦. Then the longitude of ascending node Ωb evolves in a secular man-
ner according to Yee et al. (2018),

dΩb

dt
=

∂H
∂Hb

=
nb
8

Mc

M⋆

(
ab

ac
√

1− e2c

)3(
15− 9G2

b

G2
b

)
Hb. (4.10)

The associated timescale τΩb
= 2π/Ω̇b is only about 2 Myr, much shorter than

the age of the system. Yee et al. (2018) pointed out that such a precession will
cause the relative inclination of the two planets to oscillate between ≈ ψc±ψc.
Thus at certain times the observer may see a highly misaligned orbit (ψb ∼ 2ψc)
for the inner planet, while at other times the observer may see an aligned orbit
(ψb = 0).

We examined this effect by running a 3D N -body simulation in REBOUND (Rein
and Liu, 2012). We initialized planet c with an obliquity of 60◦ (which sets
the maximum obliquity planet b can obtain, ∼2ψc = 120◦) and planet b with
an obliquity of 0◦ (aligned, prograde orbit). We included the effects of GR and
tides using the gr and modify_orbits_forces features of REBOUNDx (Kostov
et al., 2016; Tamayo et al., 2019) and used the the WHFast integrator (Rein
and Tamayo, 2015) to evolve the system forward in time for 10 Myr.

Fig. 4.5 shows that over these 10 Myr ψb oscillates in the range 0◦–120◦ due to
the precession of Ωb. Thus nodal precession can easily produce high relative
inclinations, despite Kozai–Lidov oscillations being suppressed by GR. A con-
figuration like what is observed today in which the inner planet is misaligned
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on a polar, yet slightly retrograde orbit is attainable at times during this cy-
cle where the mutual inclination is at or near its maximum. The obliquity is
≳ 80% the amplitude from nodal precession (∼2ψc) approximately one-third
of the time (bottom panel in Fig. 4.6). Therefore, even though the observed
obliquity depends on when during the nodal precession cycle the system is
observed, there is a decent chance of observing ψb near its maximum.

In the simulation we ran, WASP-107 b is only seen by an observer to be in
a transiting geometry about 2.8% of the time. Xuan and Wyatt (2020) did a
more detailed calculating accounting for the measured mutual inclination and
found that the dynamical transit probability for π Men c and HAT-P-11b is
of order 10-20%. However, as Xuan and Wyatt (2020) point out, this does
not affect the population-level transit likelihood since the overall orientations
of extrasolar systems can still be treated as isotropic. It merely suggests that
a system with a transiting distant giant planet may be harboring a nodally
precessing inner planet that just currently happens to be nontransiting.

Both Kozai–Lidov and nodal precession require a large mutual inclination in
order for the inner planet to reach polar orientations. The origin of this large
mutual inclination may be hidden in the planet’s formation history, or perhaps
was caused by a planet-planet scattering event with an additional companion
that was ejected from the system. This could also explain the moderately
eccentric orbit of WASP-107c (Piaulet et al., 2021). Indeed a significant mutual
inclination is observed for the inner and outer planets of the HAT-P-11 and
π Men systems (Xuan and Wyatt, 2020), although the inner planet in π Men
is only slightly misaligned with λ = 24 ± 4.1 degrees (Kunovac Hodžić et al.,
2021), while HAT-P-11b has λ = 103+26

−10 degrees (Winn et al., 2010b).

As more close-in Neptunes with distant giant companions are discovered, the
distribution of observed obliquities for the inner planet will help determine if
we are indeed simply seeing many systems undergoing nodal precession but
at different times during the precession cycle. If so, we might observe a sky-
projected obliquity distribution that resembles the bottom panel of Fig. 4.6.
However, we may instead be observing two classes of close-in Neptunes: ones
aligned with their host stars and ones in polar or near-polar orbits (see the top
panel of Fig. 4.6). This suggests an alternative mechanism that favors either
polar orbits or aligned orbits depending on the system architecture.
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Figure 4.6: Top: polar plot showing the absolute sky-projected obliquity as the
azimuthal coordinate and normalized orbital distance as the radial coordinate,
for <100 M⊕ planets around stars with Teff < 6250 K (similar mass planets
around hotter stars are shown as faded gray points). The red point is WASP-
107 b. Other noteworthy systems are shown with various colors and markers
(see Section 4.1 for references). Data compiled from TEPCat as of 2020 Octo-
ber (Southworth, 2011). Only WASP-107, HAT-P-11, and π Men have distant
giant companions detected. Kepler-56 (Huber et al., 2013) is another similar
system but is not included in this plot as it is an evolved massive star. Bottom:
the fraction of a nodal precession cycle spent in a given obliquity bin (left).
The true obliquity ψ is assumed to vary as cos[(π/2)ψ(t)/ψmax] = sin2(πt/τ),
where t ∈ [0, τ = 1]. This recreates the shape of the oscillating inclination in
Fig. 4.5. The amplitude ψmax is twice the outer planet’s inclination which is
plotted for three different distributions (shown on the right): uniform between
[0◦, 90◦] (gray), uniform between [40◦, 60◦] (red), and using the von-Mises
Fisher distribution from Masuda, Winn, and Kawahara (2020) calculated in
a hierarchical manner incorporating their posterior distribution for the shape
parameter σ for all. In all three cases the true obliquity is shown as a dashed
histogram. The sky-projected obliquity is computed given a transiting ge-
ometry (iorb,b = 90◦) and is marginalized over stellar inclination angle (solid
histogram). Mp < 100 M⊕ planets with observed sky-projected obliquities are
shown as a filled histogram for comparison. Note that while the gray and black
predictions are relatively similar, an excess of polar orbits can be observed if
the mutual inclination distribution is clustered around ∼ 40–60◦.



106

Disk dispersal-driven tilting

Recently, Petrovich et al. (2020) showed that, even for ψc ∼ 0◦, a resonance
encountered as the young protoplanetary disk dissipates can excite an inner
planet to high obliquities, even favoring a polar orbit given appropriate initial
conditions. To summarize the model, consider a system with a close-in planet
and a distant (few astronomical units) giant planet, like WASP-107, after the
disk interior to the outer planet has been cleared but the disk exterior remains.
The external gaseous disk induces a nodal precession of the outer planet at a
rate proportional to the disk mass (Eq. 4.10 with b 7→ c and c 7→ disk). The
outer planet still induces a nodal precession on the inner planet according to
Eq. 4.10. If at first the rate dΩc/dt > dΩb/dt, then as the disk dissipates (and
Mdisk decreases) the precession rate for planet c will decrease until it matches
the precession rate of the inner planet. At this point the system will pass
through a secular resonance, driving an instability which tilts the inner planet
to a high obliquity; a small initial obliquity of a few degrees can quickly reach
90◦. Additionally, depending on the relative strength of the stellar quadrupole
moment and GR effects, the inner planet may obtain a high eccentricity (if
GR is unimportant), a modest eccentricity (if GR is important), or a circular
orbit (if GR dominates). Tidal forces can circularize the orbit, although the
planet may retain a detectable eccentricity even after several gigayears. This
process well explains the polar, close-in, and eccentric orbits of small planets
like HAT-P-11b. Nodal precession alone is unable to explain the eccentricity
of such planets.

Given the planet and stellar properties of the WASP-107 system, we calculated
the instability criteria developed in Petrovich et al. (2020). The steady-state
evolution of the system can be inferred by comparing the relative strength of
GR (ηGR) with the stellar quadrupole moment (η⋆). We found that ηGR > η⋆+6

at 99.76% confidence, η⋆ + 6 > ηGR > 4 at 0.155% confidence, and ηGR < 4

at 0.084% confidence (i.e., ηGR ∼ 30 − 80 and η⋆ ∼ 1). Thus WASP-107 b is
stable against eccentricity instabilities and lives in the polar, circular region
of parameter space in Fig. 4 of Petrovich et al. (2020).

We calculated the final obliquity of WASP-107 b using the procedure outlined
in Petrovich et al. (2020), incorporating the uncertainties in M sin iorb,c and Pc
and integrating over all possible initial obliquities for the outer planet. Eval-
uating their Eq. (3), we found that the resonance that drives the inner planet
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to high obliquities is always crossed. We calculated the adiabatic parameter
xad ≡ τdisk/τadia from the disk dispersal timescale and the adiabatic time (their
Eq. 7), taking τdisk to be 1 Myr. In the orbital configurations where xad > 1

(adiabatic crossing) we computed the final obliquity from their Eq. (12) (Icrit).
Otherwise, the final obliquity was set to Inon-ad from their Eq. (15).

The resulting probability of the final obliquity of WASP-107 b is 7.6% for a
nonpolar (but oblique) orbit and 92.4% for a polar orbit. A polar orbit is
likely if the outer planet’s orbit is inclined at least ∼ 8◦, and is guaranteed
for ψinit,c ≳ 25◦. In an equivalent parameterization, Petrovich et al. (2020)
explicitly predict a polar orbit for WASP-107 b if the mass and semiminor
axis of WASP-107c satisfy (bc/2 AU)3 > (Mc/0.5 MJup). Since we only have a
constraint on M sin iorb,c, this condition is satisfied if iorb,c ∈ [60◦ − 90◦]. Such
a viewing geometry, in conjunction with an obliquity of ψc > 25◦, is plausible
given the likely stellar orientation (Section 4.3).

A key deviation from this model is that while the orbit of WASP-107 b is
indeed close to polar, it is quite definitively retrograde. In the disk dispersal-
driven tilting scenario, the inner planet approaches a ψ = 90◦ polar orbit from
below and stops at ψb = 90◦. In order to reach a super-polar/retrograde orbit,
WASP-107c must have a significant obliquity, either primordial from formation
or through a scattering event (Petrovich et al., 2020). As we alluded to in
Section 4.4, a scattering event could also explain the moderate eccentricities
of the outer giants WASP-107c and HAT-P-11c, and could easily give WASP-
107c a high enough obliquity to guarantee a polar/super-polar configuration
for WASP-107 b (Huang, Petrovich, and Deibert, 2017). In fact a scattering
event is more likley to produce the modest obliquity for planet c needed to
produce a super-polar orbit under the disk dispersal framework than it is to
produce the large (ψc ≳ 40−50◦) obliquity needed to excite either Kozai–Lidov
or nodal precession cycles.

4.5 Discussion and Conclusion

We observed the RM effect during a transit of WASP-107 b on 2020 February
26, from which we derived a near-polar and retrograde orbit as well as a low
stellar v sin i⋆. This low v sin i⋆ implies that we are viewing the star close to one
of its poles, reinforcing the near-polar orbital configuration of WASP-107 b.
However, we are unable to conclusively say how WASP-107 b acquired such
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an orbit. Nodal precession or disk dispersal-driven tilting are both plausible
mechanisms for producing a polar orbit, while Kozai–Lidov oscillations may
be possible but only for a very narrow range of face-on orbital geometries for
WASP-107c. RV observations (Piaulet et al., 2021) as well as constraints on
the velocity of the escaping atmosphere of WASP-107 b (e.g., Allart et al. 2019,
Kirk et al. 2020, Spake, J. J. et al. 2020, in preparation) are consistent with a
circular orbit. The eccentricity damping timescale due to tidal forces is only
∼ 60 Myr (Piaulet et al., 2021), so this is not unexpected. While a circular
orbit does not rule out any of these pathways, only disk dispersal-driven tilting
can explain both the eccentric and polar orbit of WASP-107 b’s doppelganger
HAT-P-11 b.

Since all three scenarios depend on the obliquity of the outer giant planet, mea-
suring the mutual inclination of planet b and c is essential to understand the
dynamics of this system. This has been done for similar system architectures
such as HAT-P-11 (Xuan and Wyatt, 2020) and π Men (Xuan and Wyatt,
2020; De Rosa, Dawson, and Nielsen, 2020) by observing perturbations in the
astrometric motion of the star due to the gravitational tugging of the distant
giant planet, using data from Hipparcos and Gaia. Unfortunately WASP-107
is significantly fainter (V = 11.5; Anderson et al., 2017) and barely made the
cutoff in the Tycho-2 catalog of Hipparcos (90% complete at V=11.5; Høg et
al., 2000). The poor Hipparcos astrometric precision, combined with the small
angular scale of the orbit of WASP-107 on the sky (10 - 30 µas), prevents a
detection of the outer planet using astrometry. Assuming future Gaia data re-
leases have the same astrometric precision as in DR2 (44 µas for WASP-107),
WASP-107c will be at the threshold of detectability using the full five-year
astrometric time series.

On the population level, the disk dispersal-driven model favors low-mass and
slowly rotating stars due to its dependence on the stellar quadrupole moment,
and also can explain eccentric polar orbits. Since nodal precession has no
stellar type preference nor a means of exciting eccentric orbits, measuring
the obliquities and eccentricities for a population of close-in Neptunes will be
essential for distinguishing which process is the dominant pathway to polar
orbits. Additionally a large population is needed to determine if the overall
distribution of planet obliquities is consistent with catching systems at differ-
ent stages of nodal precession, or if there are indeed two distinct populations
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of aligned or polar close-in Neptunes. As these models all depend on the
presence of an outer giant planet, long-baseline RV surveys will be instrumen-
tal for discovering the nature of any perturbing companions (e.g. Rosenthal
et al. submitted). Moreover RV monitoring of systems with small planets
that already have measured obliquities, but do not have mass constraints or
detected outer companions, will further expand this population. Recent ex-
amples of such systems include Kepler-408b (Kamiaka et al., 2019), AU Mic
b (Palle et al., 2020b), HD 63433 (b, Mann et al. 2020; and c, Dai et al. 2020),
K2-25b (Stefánsson et al., 2020), and DS Tuc b (Montet et al., 2020; Zhou
et al., 2020). Comparing the proportions of systems with and without com-
panions which have inner aligned or misaligned planets will further illuminate
the likelihood of these different dynamical scenarios.
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C h a p t e r 5

KPF CONFIRMS A POLAR ORBIT FOR KELT-18 B

Rubenzahl, R. A. et al. (2024). “KPF Confirms a Polar Orbit for KELT-18
b” Submitted to the Astronomical Journal

5.1 Introduction

KELT-18 b is an ultra-hot Jupiter discovered by the KELT transit survey (McLeod
et al., 2017). The 1.57 RJup planet orbits its F5 type (6670 K) host star every
2.87 days. Hot stars (≳ 6250 K) with hot Jupiters (HJs) have been observed
to have a broad range of obliquities, where the obliquity is defined as the angle
between the host star’s rotation axis and the planet’s orbital plane. Conversely,
HJs orbiting cooler stars (≲ 6250 K) tend to be aligned with their host star’s
rotation axis (Winn et al., 2010a; Schlaufman, 2010; Albrecht, Dawson, and
Winn, 2022). The transition temperature is near the Kraft Break (Kraft,
1967), suggesting realignment mechanisms that are effective for cooler stars–
which have convective envelopes and strong magnetic fields–but are ineffective
for hotter stars–which have radiative envelopes and weak magnetic fields (Al-
brecht et al., 2012; Dawson, 2014).

While it is still an unsolved problem, the origins of HJs are likely a combi-
nation of multiple formation channels (see Dawson and Johnson 2018 for a
review), namely in-situ formation, disk migration, and high eccentricity mi-
gration (HEM). HEM likely plays a significant role in shaping the overall HJ
population (Rice, Wang, and Laughlin, 2022) but must be triggered by an
additional body in the system. This could be another planet, in the case of
planet-planet scattering (Rasio and Ford, 1996) or von-Zeipel-Kozai-Lidov1

oscillations (ZKL; von Zeipel, 1910; Kozai, 1962; Lidov, 1962) induced by an
outer planetary (Naoz et al., 2011; Teyssandier et al., 2013) or stellar compan-
ion (Fabrycky and Tremaine, 2007). In the HEM scenario, the HJ originally
formed beyond the water ice-line (∼2 AU) where giant planet formation is
efficient (Pollack et al., 1996). The orbital eccentricity was increased through
interactions with a perturbing companion until the planet’s periastron distance
became small enough for tides to dissipate energy and transfer orbital angular

1See Ito and Ohtsuka (2019) for a historical monograph.
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momentum to the star, causing the orbit to shrink and circularize. Either this
HEM process, or perhaps a primordial misalignment of the protoplanetary disk
(Batygin, 2012), leaves the HJ on an orbit that may be tilted by a large angle
relative to the stellar equatorial plane. Only the HJs around stars cooler than
the Kraft Break were then able to realign their host star’s rotation axis.

The spin-orbit angle is usually measured as projected on the plane of the
sky (λ), but for systems in which the inclination of the host star’s rotation
axis (i⋆) can be inferred, the true 3D obliquity can be derived (ψ). Recently,
Albrecht et al. (2022) noted that hot Jupiters around hot stars do not span
the full range of ψ, but instead show a preference for near polar orbits (80◦–
120◦). However, there are still too few systems to be sure that the obliquity
distribution has a peak near 90◦ (Siegel, Winn, and Albrecht, 2023; Dong and
Foreman-Mackey, 2023). If there is a “polar peak” it would have important
theoretical implications on plausible HJ formation mechanisms, which predict
different obliquity distributions (see Albrecht, Dawson, and Winn, 2022). For
small planets with massive outer companions, secular resonance crossing in the
disk dispersal stage may produce polar orbits (Petrovich et al., 2020). For giant
planets, an initially inclined orbit inherited from a torqued protoplanetary disk
in the presence of a binary companion can give the necessary starting point
for subsequent ZKL-driven migration to create a polar HJ (Vick, Su, and Lai,
2023).

The most commonly employed method for measuring the projected obliquity of
a star with a transiting planet is to obtain high-resolution spectra throughout a
transit and model the Rossiter-McLaughlin effect (Rossiter, 1924; McLaughlin,
1924), which results from the planet’s obscuration of part of the rotating stel-
lar photosphere. This effect is often modeled as an anomalous radial velocity
(RV) signal, but measuring precise RVs for hot stars can often be challenging
due to their fast rotation rates. The projected equatorial rotation velocity,
v sin i⋆, broadens (and blends) spectral lines, diminishing the Doppler infor-
mation content (Bouchy, Pepe, and Queloz, 2001). As a result, stars with
v sin i⋆ ≳ 10 km s−1 are usually not amenable to anomalous-RV modeling.
However, these fast rotating stars lend themselves to more detailed and direct
methods of measuring the stellar obliquity. The Reloaded RM (RRM) method,
developed by Cegla et al. (2016b), directly models the distortion of the line
profile by the transiting planet. By subtracting an out-of-transit reference
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CCF (representing the star alone) from each in-transit CCF (corresponding
to the stellar line profile integrated over the full disk, minus the integrated
line profile from within the patch of the star beneath the planet’s shadow),
the resulting signal represents the “local” CCF, i.e., the spectrum originating
from the portion of the star obscured by the transiting exoplanet (CCFloc).
The RRM method is also sensitive to stellar differential rotation, should the
planet be highly misaligned so that it transits a wide range of stellar latitudes
(Roguet-Kern, Cegla, and Bourrier, 2022).

In this paper we report our derivation of the obliquity of the host star in the
KELT-18 system based on a time series of spectra taken during a transit of
KELT-18 b with the Keck Planet Finder (KPF). By modeling the spectra ac-
cording to the RRM method, we found the orbit of KELT-18 b to be nearly
perpendicular to the star’s equatorial plane. In Section 5.2 we derive stellar
properties, reexamine the rotation period with TESS photometry, and iden-
tify the nearby star KELT-18 B as a bound companion. We describe the Keck
Planet Finder and our observations in Section 5.3, the RRM modeling proce-
dure in Section 5.4, and dynamical implications for the KELT-18 system in
Section 5.5.

5.2 KELT-18 System

KELT-18 is a rapidly rotating F4 V star with one known transiting exoplanet,
discovered by McLeod et al. (2017) (hereafter M17), and a stellar neighbor.
M17 derived robust stellar properties using high resolution spectra, SED fit-
ting, photometry, and evolutionary modeling in a global fit with their transit
model. We adopted their best-fit stellar and transit parameters for our anal-
yses herein, with two distinctions noted below. Table 5.1 lists the full set of
adopted parameters.

For the transit midpoint and orbital period of KELT-18 b, we adopted the im-
proved ephemeris of Ivshina and Winn (2022) which implies an uncertainty of
only 20 sec in the predicted transit midpoint on the night of our spectroscopic
observations (Section 5.3).

For the projected stellar rotation velocity v sin i⋆, M17 noted that their value
of 12.3 ± 0.3 km s−1 obtained from a TRES (Szentgyorgyi and Furész, 2007)
spectrum is likely an overestimate as the method they used conflates macro-
turbulence and rotation. M17 also measured a value of 10 ± 1 km s−1 using
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Table 5.1: Parameters of the KELT-18 System

Parameter Value Unit Source
KELT-18
Teff 6670± 120 K M17
M∗ 1.524+0.069

−0.068 M⊙ M17
R∗ 1.908+0.042

−0.035 R⊙ M17
u1 0.337+0.011

−0.010 M17
u2 0.3229+0.0066

−0.0059 M17
RVsys −11.7± 0.1 km s−1 This work
KELT-18 b
Porb 2.87169867± 0.00000085 days I22
tc 2458714.17773± 0.00011 JD I22
b 0.10+0.10

−0.07 M17
iorb 88.86+0.79

−1.20 degrees M17
Rp/R⋆ 0.08462± 0.00091 M17
a/R⋆ 5.138+0.038

−0.078 M17
e 0 M17
Mp 1.18± 0.11 MJ M17
KELT-18 B
Teff 3900 K M17
M∗ 0.575+0.025

−0.026 M⊙ B22
sep 1082 AU B22
∆µRA 0.21± 0.05 mas yr−1 B22
∆µDecl. 0.41± 0.05 mas yr−1 B22
∆parallax 0.07± 0.04 mas B22
∆G −5.4 mag B22
ln(L1/L2) 4.83 — B22

(M17) McLeod et al. (2017); (I22) Ivshina and Winn (2022); (B22) Behmard,
Dai, and Howard (2022).

a HIRES (Vogt et al., 1994) spectrum and the SpecMatch-Synthetic (Pe-
tigura, 2015) framework, but did not adopt this value because the best-fit Teff

was outside the range 4800–6500 K over which the code had been calibrated.
Since then, the SpecMatch-Emperical (Yee, Petigura, and von Braun, 2017)
tool was developed to derive stellar properties for a wider range of effective
temperatures (3000–7000 K) by interpolating a grid of library spectra ob-
tained with Keck/HIRES. We ran the same HIRES spectrum obtained by
M17 through SpecMatch-Emperical to obtain new estimates of Teff, Fe/H,
and R⋆. The resulting Teff = 6330 ± 110 K is cooler than the 6670 ± 120 K
value of M17 and is within the SpecMatch-Synthetic regime. We therefore
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ran SpecMatch-Synthetic on the same HIRES spectrum and found Teff =

6530± 100 K and v sin i⋆ = 10.4± 1.0 km s−1. Thus, the true value of v sin i⋆
is likely in the 9–12 km s−1 range. All this together informs our adoption of
an informed prior on v sin i⋆ of 10.4 ± 1 km s−1 for our spectroscopic transit
analysis in Section 5.4.

Stellar rotation period

A significant peak at 0.707 days was observed in the Lomb-Scargle periodogram
of the KELT photometry, which M17 interpreted as the rotation period of
KELT-18. Given the measured stellar radius, this implied an equatorial rota-
tional velocity of veq = 134 km s−1. While large, it is not atypical for stars of
KELT-18’s Teff and log g to have rotation speeds on the order of 100 km s−1.
Combining this with their measured v sin i⋆ of 12.3 km s−1, McLeod et al. 2017
noted that the star must have an inclination of ∼5◦. In other words, we are
observing KELT-18 nearly pole-on. Since the planet’s orbit is viewed at high
inclination, the implication was that the planet’s orbit is nearly polar.

Since the rotation signal in the KELT photometry appeared small compared
to the measurement noise, we downloaded the available TESS photometry
for KELT-18 to search for variability. KELT-18 was observed by TESS as
TIC 293687315 (TOI-1300) in sectors 15, 16, 22, 23, 48, 50, and 75. We
downloaded the 1800 s cadence data for sectors 48 and 50, 120 s data for
sector 75, and the 600 s data for the other sectors. We selected data processed
by the TESS Science Processing Operations Center pipeline (Caldwell et al.,
2020), removed flagged values, stitched the six sectors together, and binned
to a common 1 hour cadence using lightkurve (Lightkurve Collaboration
et al., 2018). The resulting light curve is shown in Figure 5.1 along with its
Lomb-Scargle periodogram.

The TESS periodogram does not contain any significant peaks below ∼3 days.
There is a clustering of peaks around ∼5 days with a maximum power at 4.76 d,
and variability on this timescale is visible by eye in the TESS photometry. If
this is the true rotation period of KELT-18, the equatorial rotational velocity
would be veq ∼ 20 km s−1. This is still a factor of two larger than the measured
v sin i⋆, so it remains likely that KELT-18 is viewed at low inclination (i⋆ ≲

30◦). Stars with KELT-18’s Teff tend to have rotation rates < 8 d at > 3σ

(Bouma, Palumbo, and Hillenbrand, 2023b), so a ∼5 day rotation period is
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Figure 5.1: Analysis of the rotation period using TESS photometry. The
top three panels show the 1 hour binned TESS photometry described in Sec-
tion 5.2. The fourth panel displays a Lomb-Scargle periodogram. We marked
the 0.707 d period from M17 with a red dashed line, KELT-18’s orbital period
with a grey dashed line, and the maximum peak with a blue dashed line. The
bottom panel shows all TESS data points (grey) phase-folded to that period
with the maximum power. Red points show the data evenly binned in phase
with bin size 0.05.
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reasonable. Additional photometry will further constrain the true rotation
period. KELT-18 will be revisited by TESS in sector 77 (April 2024).

KELT-18 B: Neighbor or Companion?

M17 noted a stellar neighbor at 3”.43 separation from KELT-18 B. The neigh-
bor is fainter at K = 12.9±0.2. Under the assumption that the neighbor is at
the same distance as KELT-18, M17 obtained TeffB ∼ 3900 K. The available
astrometry were not precise enough to identify the neighbor as comoving based
on its proper motion, though the relatively small sky density of stars in the
field around KELT-18 (at high galactic latitude) makes a chance alignment at
such a small angular separation unlikely (>3σ).

KELT-18 and KELT-18 B appear in the catalog of stellar companions to
TESS Objects of Interest of Behmard, Dai, and Howard (2022) (B22). B22
applied the methodology of Oh et al. (2017) to the Gaia DR3 astrometry
(Gaia Collaboration et al., 2023) to determine the likelihood the two stars
are comoving. The method propagates the astrometric uncertainties from
Gaia into a likelihood ratio comparing the comoving hypothesis (L1) to the
null (not comoving) hypothesis (L2). B22 added a jitter term to account for
any unknown systematic effects to improve the reliability of this hypothe-
sis testing. B22 computed ln(L1/L2) = 4.83 for KELT-18 and KELT-18 B,
giving strong evidence for the comoving hypothesis. They computed a stel-
lar mass for KELT-18 B of 0.575+0.025

−0.026 M⊙ using isoclassify (Huber et al.,
2017b) and the Gaia magnitudes, in agreement with the TeffB estimate from
M17. Given the consistent parallaxes (3.16 ± 0.01 mas for the primary and
3.23 ± 0.04 mas for the secondary), B22 computed a binary separation from
the Gaia astrometry of 1082 AU. The relative velocity vector in the sky plane
is thus 0.695± 0.075 km s−1. For reference, if both stars were orbiting in the
sky-plane on circular orbits, their relative velocity would be 1.8 km s−1. So,
unless the two stars have a significant relative radial velocity (which Gaia did
not measure), they are likely bound.

5.3 Observations

We observed a transit of KELT-18 b on UT May 22, 2023 with the Keck
Planet Finder (KPF; Gibson et al., 2016; Gibson et al., 2018; Gibson et al.,
2020). KPF is a newly commissioned, optical (445–870 nm), high-resolution
(R ∼ 98, 000), fiber-fed, ultra-stabilized radial velocity system on the Keck I
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Figure 5.2: The timeseries of CCFloc measured with KPF. The top panel
shows each 1D CCFloc, with out-of-transit observations in grey and in-transit
observations colored according to the timestamp. The bottom panel displays
the same data as a 2D heatmap with time relative to mid-transit on the y-axis
and colored by flux. The shadow of KELT-18 b if it were aligned is traced
by the grey dashed lines. Black rows correspond to gaps in the time series;
the narrow hourly bands correspond to etalon calibration images and the large
band near +1.8 hrs is when the tip/tilt guiding system failed.
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telescope at W. M. Keck Observatory. Our observations began 25 min before
transit ingress and continued until 2 hours after transit egress, only being in-
terrupted by hourly calibration exposures (described below) and a ∼20 min
window near transit egress during which issues with the tip/tilt system pre-
vented precise fiber positioning on the stellar PSF.

We chose a fixed 600 sec exposure time to balance averaging over p-mode
oscillations (14 min from the scaling relations of Brown et al. 1991; Kjeld-
sen and Bedding 1995) with temporal resolution of the transit, while reach-
ing a spectral signal-to-noise ratio (S/N) of at least 100 (typical values were
130± 11 in the green channel and 140± 13 in the red). The KPF “SKY” fiber
collected background sky contamination from a position offset several arcsec
from KELT-18. We simultaneously acquired broadband Fabry-Pérot etalon
spectra in the “CAL” fiber to track instrumental drift, and periodically (once
per ∼hour) took a single internal frame with etalon light in the “SKY”, “CAL”,
and science fibers as an additional sanity check on drift. We observed a stable
linear drift as traced by the simultaneous etalon spectra of −0.92±0.01 m s−1

per hour in the green channel and −0.36±0.02 m s−1 per hour in the red chan-
nel. This was well-matched by the hourly all-etalon RVs across each fiber. As
a result, we drift-corrected our stellar spectra by Doppler-shifting the derived
CCFs by estimated drift using our linear fit to the simultaneous etalon RVs.

We independently extracted 1D stellar spectra from each of the three science
“slices” using the public KPF data reduction pipeline (DRP)2. Wavelength
calibration was performed for each spectral order using a state-of-the-art laser
frequency comb (for ≳ 490 nm) and a ThAr lamp (for ≲ 490 nm) using calibra-
tion frames taken during the standard KPF calibration sequences performed
that day. We used the F9 ESPRESSO mask (e.g. Pepe et al., 2002) to derive
cross-correlation functions (CCF; Baranne et al., 1996) for each spectral or-
der. This dataset was obtained before a significant charge transfer inefficiency
(CTI) in one of the green CCD amplifiers was diagnosed using solar data
(Rubenzahl et al., 2023). Because of this, the green CCD readout utilized the
original four-amplifier scheme and was thus affected by significant CTI. We
masked the flux corresponding to the quadrant of the raw 2D image read by
the affected amplifier when deriving CCFs. This affects half of the bluest 20
orders (roughly 445–530 nm). Fortunately, about 78% of the affected wave-

2https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/

https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/
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lengths also appear in the “good” amplifier of the subsequent order, so much of
the spectral information is still contained in the final 1D spectrum. The CCFs
from each slice were combined in a weighted sum, taking the weights to be
proportional to the total flux in each slice from a representative high S/N spec-
trum. We repeated the same process across all orders, and then again across
the green and red CCDs to obtain the final CCF for each observation. We also
calculated the unweighted summed CCF to derive photon-noise uncertainties,
which we scaled by the relative total flux in the weighted vs. unweighted CCF
to yield appropriate uncertainties in each CCF.

We independently verified the systemic velocity reported by M17. We mea-
sured this by fitting the CCF of each of the three science traces, for each
out-of-transit spectrum. The result was −11.7 ± 0.1 km s−1, in agreement
with −11.6 ± 0.1 km s−1 from M17. We found a slightly smaller value of
−11.3 ± 0.1 km s−1 by comparing the HIRES spectra used in Section 5.2 to
a telluric model (Kolbl et al., 2015). Gaia (Gaia Collaboration et al., 2023)
reports a smaller but less certain −10.83 ± 0.46 km s−1 for KELT-18. We
adopt the −11.7± 0.1 km s−1 value from our KPF spectra for our analysis.

5.4 Obliquity of KELT-18 b

Reloaded Rossiter-McLaughlin Modeling

To measure the obliquity of KELT-18 b, we applied the Reloaded Rossiter-
McLaughlin technique (Cegla et al., 2016b) to our KPF spectra. We breifly
summarize the process here.

First, we transformed into the stellar rest frame by Doppler shifting the CCFs
by our measured systemic velocity and by the expected Keplerian RV induced
by KELT-18 b’s orbital motion (using the planet’s mass Mp from M17). The
aligned CCFs were then normalized to a continuum value of 1. We then created
a stellar template, CCFout, by averaging the out-of-transit normalized CCFs.
CCFout describes the unperturbed average stellar line profile of KELT-18. To
isolate the shadow of KELT-18 b, we subtracted each in-transit observation
(CCFin) from the template to obtain the local line profile within the planet’s
shadow, CCFloc = CCFout − CCFin. Since we normalized the CCFs, we
multiplied each CCFloc by the calculated flux at that time according to a
white-light synthetic transit light curve model, integrated over the exposure
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time of each observation. This placed each CCFloc on the appropriate flux
scale.

The resulting CCFloc time series is shown in Figure 5.2. Each CCFloc is fit
with a Gaussian profile using curve_fit from scipy (Virtanen et al., 2020),
where the continuum, amplitude (i.e., depth), width, and centroid are free
parameters. The centroid corresponds to the flux-weighted integrated stellar
velocity profile within the shadow of the transiting planet; i.e., the local RV.
The local RV is modelled by Eq. 9 in (Cegla et al., 2016b),

RVloc =

∫
I(x, y)vstel(x, y)dA∫

I(x, y)dA
, (5.1)

where I is the limb-darkened intensity, the integral is over the patch of star
within the planet shadow, and vstel is the stellar velocity field

vstel = x⊥veq sin i⋆(1− αy′2⊥), (5.2)

where α is the relative differential rotation rate (the difference in rotation
rates at the poles compared to the equator, divided by the equatorial rotation
rate). For the Sun, α = 0.27. We used the same coordinate definitions for
(x⊥, y

′
⊥) as in Cegla et al. (2016b), but we adapted the implementation of the

integral for improved resolution. Instead of defining a Cartesian grid of points
(xk, yk) centered on the planet’s shadow spanning −Rp/R∗ to +Rp/R∗ and
only keeping the points in the grid which satisfied x2 + y2 < (Rp/R∗)

2, we
generated a “grid” of N points (xk, yk) according to the sunflower pattern,

rk =

√
k − 1/2

N − 1/2
, θk = k(2πϕ),

xk = rk cos θk, yk = rk sin θk,

(5.3)

where ϕ = (1+
√
5)/2 is the golden ratio. The result is a set of points (xk, yk)

uniformly spaced over a circle of radius unity. The points can then be scaled
to Rp/R∗ and centered at the position of the planet to quickly obtain a densely
packed grid of points for which each point represents the same projected area
dA of the stellar photosphere. The improved resolution of this grid at the
shadow and disk limbs helped to reduce artifacts during ingress/egress, and
greatly boosted performance when simulating full line profiles for stars with
surface inhomogeneities (Rubenzahl, R. et al., in prep).
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Figure 5.3: The extracted local RVs and the best-fit RRM models (SB=solid
body, DR=differential rotation, CLV=center-to-limb variations as a linear (lin)
or quadratic (quad) effect in ⟨µ⟩). The solid lines are the MAP model while
the shaded regions cover the 16th–84th percentile of posterior distribution of
models. Thee bottom panel compares the residuals between the data and the
MAP fit for each model.

To fit the local RVs, we modified the radvel package (Fulton et al., 2018) to
accept a new function that computes Eq. 5.1 for each observation. The radvel
framework automatically enabled us to perform maximum a-posteriori (MAP)
fitting, MCMC sampling using emcee (Foreman-Mackey et al., 2013), and
model comparison with the BIC and AIC. We tested several different models:
solid body (SB) rotation vs. differential rotation (DR), and with/without
center-to-limb variations (CLVs); see Doyle et al. (2023) for more details. The
former is a matter of fixing α to zero (SB) or letting it float (DR), while the
latter requires adding an additional term to Eq. 5.1 of the form

vconv =
n∑
i=0

ci⟨µ⟩i. (5.4)

This polynomial in the intensity-weighted center-to-limb position ⟨µ⟩ is a good
model for the velocity field introduced by granulation, which is azimuthally
symmetric around the disk and varies with center-to-limb position as the line-
of-sight intersects the tops of granules at disk-center and the sides of granules
at the limb (Cegla et al., 2016b). Since CCFloc has the out-of-transit template
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subtracted, the net convective blueshift integrated across the full stellar disk
has also been removed from the data. Consequently, c0 must be constrained
according to Eq. 13 in Cegla et al. (2016b). The additional model parameters
are thus c1 for a linear (n = 1) CLV and (c1, c2) for a quadratic (n = 2) CLV.

MCMC Sampling

We tested a suite of models within the RRM framework corresponding to each
combination of SB or DR, and no CLV, linear CLV (CLVlin), and quadratic
CLV (CLVquad). The free parameters in all models were the sky-projected
obliquity λ, the projected rotational velocity v sin i⋆, the sine of the stellar
inclination sin i⋆, and the impact parameter b. Models with DR include the
degree of differential rotation α, and models with CLVs include either c1 (lin-
ear) or c1 and c2 (quadratic). We allowed for anti-solar differential rotation by
permitting α to be negative, with a uniform prior over (−1, 1).

To improve the sampling efficiency, we make the change of coordinates for
our fitting basis into a polar coordinate system with λ as the azimuthal angle
and

√
v sin i⋆ as the radial dimension. The parameters for the fit are thus

√
v sin i⋆ cosλ,

√
v sin i⋆ sinλ, sin i⋆, b, α, and the CLV coefficients.

Because of the suspected polar orientation of the transit chord, we placed an
informed Gaussian prior on v sin i⋆ of 10.4 ± 1 km s−1 based on our analysis
of the spectroscopic v sin i⋆ (Section 5.2). We also found that this prior, in
conjunction with a prior on iorb based on previous transit fits (Table 5.1), was
necessary to discourage the sampler from wandering to solutions of extremely
low v sin i⋆ (∼1 km s−1) with (unrealistic) grazing transits. The final distri-
butions for λ were unaffected by the exact boundaries chosen for these priors.
We note that Maciejewski (2020) found values of iorb (82.90+0.62

−0.54
◦) and a/R∗

(4.36+0.11
−0.09) that were significantly discrepant with those measured by M17. We

tried setting a prior on iorb to this value and found the MCMC to both not
converge and produce a bimodal v sin i⋆ posterior around 2 km s−1, which is
highly inconsistent with the observed width of lines in the KPF spectra and
the HIRES, TRES, and APF spectra of M17.

We first found the MAP solution for each model using scipy.optimize.minimize
(Virtanen et al., 2020). This best-fit solution was used as the initial location
(plus a small Gaussian perturbation) for a MCMC exploration of the poste-
rior. We ran emcee (Foreman-Mackey et al., 2013) as implemented in radvel
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Figure 5.4: The contrast (top) and FWHM (bottom) of CCFloc as a function of
the flux-weighted center-to-limb position ⟨µ⟩. The color scale is the same used
in Figure 5.2 based on the observation timestamps (purple=ingress, green=mid
transit, yellow=egress).

(Fulton et al., 2018) with 8 ensembles of 32 walkers each for a maximum of
10,000 steps, or until the Gelman–Rubin statistic (G–R; Gelman et al., 2003)
was < 1.001 across the ensembles (Ford, 2006). In all cases, the G-R condition
for convergence was satisfied and the sampler was terminated with a typical
total number of posterior samples around 100,000. A second and final MAP
fit was then performed using the median parameter values from the MCMC
samples. The MAP fit for each model is plotted over the RVloc time series in
Figure 5.3, and Table 5.2 lists our derived best-estimates for each parameter.

Center-to-Limb Variations

Fig. 5.4 plots the depth and full-width-at-half-maximum (FWHM) of the
CCFloc as a function of ⟨µ⟩. A strong trend in both can be seen from center to
limb, with the local line profiles deepest and narrowest at disk center and be-
coming shallower and wider towards disk limb. The RVloc time series likewise
has significant curvature with a maximum (minimum blueshift) at disk center
(mid-transit) and minimum (maximum blueshift) at disk limb (ingress/egress).

Only CLVs can explain all of these observed effects. While differential rota-
tion alone can reproduce the observed curvature in the local RV time series,
it cannot explain the large (factor of two) increase in FWHM from disk center
to limb. Beeck et al. (2013b) showed using spectral line synthesis in 3D radia-
tive magnetohydrodynamical (MHD) simulations that surface-layer granula-
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Figure 5.5: The best-fit convective velocity profiles within the patches of star
occulted by KELT-18 b as a function of center-to-limb position (left) and time
(right). The vconv for models with DR are consistent with zero, i.e. the DR
models are primarily fit by extreme DR. The velocity contribution from DR
alone is shown by the dashed red line, which plots the difference between the
DR-only and SB-only models. Residuals (data minus model) to the SB-only
model are plotted in black; these points represent the amount of local RV that
must be coming from either DR or CLVs.

tion causes the width of spectral lines to increase towards disk limb, an effect
that is relatively muted for GKM stars but is significant for F-type stars. The
F3 V star in their simulation showed increases to the FWHM of iron lines by
a factor of 1.5–2 from disk center to µ = 0.2. This effect is caused by the
horizontal flows, which dominate the line-of-sight velocity at disk limb, having
roughly three times as high a velocity dispersion compared to the vertical ve-
locity (Beeck et al., 2013a). They also found line cores to have a net convective
blueshift about 500 m s−1 less (i.e., larger RV) at disk limb than at disk center.
We see the opposite in the modelled CLV vs. µ (Fig. 5.5) for the SB scenario,
whereas in the DR scenario we find negligible convective velocities.

Model Comparison

We computed the Bayesian information criterion (BIC) and Akaike informa-
tion criterion (AIC) for each model. Their relative values to the minimum are
listed in Table 5.2. The only model that is confidently ruled out is SB rotation
with no CLV, at ∆BIC=74 and ∆AIC=73. The slightly preferred model is SB
rotation with CLVs quadratic in ⟨µ⟩. The models with DR all have ∆BIC and
∆AIC < 5, and thus are statistically similar descriptions of the model.
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Figure 5.6: The posterior distributions for all RRM parameters. The models
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generally agree on the value of λ, while models with DR tend towards extreme
values of α at near-polar i⋆. This degeneracy arises because of the tight prior
on v sin i⋆ (2nd column), which all models are confined to.
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Table 5.2: Best-fit Parameters and Model Comparison

Parameter SB SB+CLVlin SB+CLVquad DR DR+CLVlin DR+CLVquad

Best-Fit
λ (◦) −93.4+0.6

−0.6 −94.6+0.6
−0.7 −94.8+0.7

−0.7 −95.2+1.2
−1.2 −95.0+1.0

−1.2 −94.9+1.0
−1.3

v sin i⋆ (km s−1) 10.2+1.0
−1.0 10.2+1.0

−1.0 10.2+1.0
−1.0 10.3+1.0

−1.0 10.2+1.0
−1.0 10.2+1.0

−1.0

sin i⋆ 0.03+0.6
−0.63 0.06+0.59

−0.64 0.0+0.6
−0.61 0.2+0.06

−0.05 0.29+0.15
−0.12 0.22+0.38

−0.81

b 0.035+0.006
−0.005 0.069+0.01

−0.008 0.07+0.009
−0.009 0.127+0.018

−0.016 0.104+0.023
−0.021 0.075+0.023

−0.015

α — — — 0.98+0.01
−0.03 0.8+0.14

−0.27 0.15+0.42
−0.45

c0 (km s−1) — 2.1+0.2
−0.3 −3.7+1.7

−1.6 — 0.9+0.6
−0.4 −3.7+1.8

−1.8

c1 (km s−1) — — 4.0+1.1
−1.1 — — 3.9+1.4

−1.4

∆BIC 74.0 9.2 0.0 1.5 3.4 3.0
∆AIC 73.0 8.5 0.0 0.7 3.4 4.3
Derived
ψ (◦) 89.7+2.1

−2.0 89.5+2.8
−2.7 89.2+3.0

−2.8 89.6+0.4
−0.3 90.2+0.9

−0.6 90.1+2.1
−3.5

Values and their uncertainties represent 68% credible intervals as defined by
the 16th, 50th, and 84th percentiles of the sampled posterior. Models with
SB rotation do not constrain sin i⋆, whereas models with DR prefer large α
and small sin i⋆ (Fig. 5.6). Posteriors in ψ are derived self-consistently using
only the posterior samples in sin i⋆. That is, they do not incorporate any
information about the rotation period.

The model with DR alone requires an extremely high values of α, in the 0.9–1
range. While it is not impossible for the stellar poles to rotate at just 10% the
rate of the equator, it seems extremely unlikely for a star to have a rotational
shear of this magnitude. Slowly rotating (v sin i⋆ ≲ 50 km s−1) F-type stars do
commonly show signs of differential rotation (α ≥ 0.1), whereas rapid rotators
do not (Reiners and Schmitt, 2003). Our analysis of the TESS photometry in
Section 5.2 more likely places KELT-18 in the former category of slow rotators.
Interestingly, the DR model with linear CLVs finds a smaller α = 0.8+0.14

−0.27, and
the flexibility of the quadratic CLV model results in an unconstrained α, as
the two effects are degenerate. In contrast, the SB models rely on strong CLVs
to generate the measured curvature (Fig. 5.5). It is therefore ambiguous from
the RVloc time series alone whether the curvature is coming from a significant
differential rotation, CLVs, or a mixture of the two. The difference between
these two cases is greatest at low ⟨µ⟩, i.e. near the disk limb. This is where
CLV effects are strongest whereas DR is only affected by the subplanet stellar
latitude. However, the data near disk limb (i.e. near ingress/egress) are the
lowest S/N observations, weakening their utility as a discriminatory lever-arm.

If the star is differentially rotating, the varying line-of-sight rotational veloc-
ities as a function of stellar latitude break the sin i⋆ degeneracy, allowing an
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independent constraint on the stellar inclination. In the DR-only model, the
resulting stellar inclination is i⋆ = 11.8+3.3

−3.2. This value is in agreement with
the 5–30◦ range expected from the estimated rotation period and known R∗

(Section 5.2). Consequently, the true 3D obliquity can be determined via the
equation

cosψ = cos i⋆ cos iorb + sin i⋆ sin iorb cosλ. (5.5)

The corresponding values of ψ for each of fitted models are listed in Table 5.2.
For the SB models, the posterior in sin i⋆ is unconstrained (uniform in 0 to
1) so this represents the maximally uncertain value of ψ. For instance, if
we adopt λ = −94.8 ± 0.7◦ from the best-fitting SB+CLVquad model, and
take i⋆ to be isotropic (uniform in cos i⋆), then ψ = 93.8+1.6

−1.8
◦. If instead we

take i⋆ to be isotropic within 5–30◦ as suggested from photometric analyses,
we get ψ = 91.0+0.6

−0.7
◦. Our estimated obliquity measurements are consistent

within 1σ across all models, thus we adopt the SB+CLVquad model as our
preferred fit as it is both the best-fitting model by the ∆BIC and ∆AIC tests,
is more physically justified than the α ∼ 0.9 models, and utilizes photometric
constraints on the stellar inclination rather than the values from the RRM
posteriors.

5.5 Orbital Dynamics

KELT-18 b joins the population of close-in planets orbiting hot stars in po-
lar orbits (Albrecht, Dawson, and Winn, 2022). There are no other known
transiting planets in the system (Maciejewski, 2020), though there is a stellar
companion, KELT-18 B (Section 5.2). It is likely that KELT-18 B influenced
the orbital evolution of KELT-18 b. In this section we examine possible mech-
anisms.

Hierarchical triple systems such as KELT-18, KELT-18 b, and KELT-18 B will
experience von-Zeipel-Kozai-Lidov (ZKL) oscillations if the mutual inclination
between the two orbiting bodies is larger than 39.2◦ (Naoz, 2016). ZKL os-
cillations are usually suppressed for planets on HJ-like orbits because of the
general relativistic precession of the argument of periapsis. However ZKL os-
cillations may have taken place early in the system’s history if KELT-18 b
formed at a further orbital distance. Fabrycky and Tremaine (2007) showed
that such a scenario can lead to HEM, producing the HJ we see today in a
close-in, highly misaligned orbit.
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Figure 5.7: On-sky geometry of the KELT-18 system. KELT-18 and KELT-
18 b (and its orbit) are drawn to scale in size and relative orientation. The
black arrow denotes the normal to KELT-18 b’s orbital plane and the grey
arrow denotes the rotation axis of KELT-18; the angle between these in 3D
space is the stellar obliquity, ψ, while λ is the sky-projection of this angle and
is independent of the stellar inclination. The separation between KELT-18
and KELT-18 B is not to scale and is drawn at an arbitrary orientation on-
sky. KELT-18 is colored according to its rotational velocity profile (with no
differential rotation) and lines of latitude/longitude are drawn to illustrate the
orientation of the pole (i⋆ = 30◦). The angle between the binary star position
vector (r⃗, blue arrow) and relative proper motion (v⃗, red arrow), γ, is labelled.

The Gaia astrometry enables a constraint on the inclination of KELT-18 B’s
orbit. The angle between the vector connecting the astrometric positions of the
two stars (r⃗) and the difference in velocity vectors (v⃗), called γ (e.g., Tokovinin
and Kiyaeva, 2015; Hwang, Ting, and Zakamska, 2022, see Fig. 5.7), encodes
information about the companion’s orbital inclination (though is degenerate
with eccentricity). If γ ∼ 0◦ or 180◦, then the companion’s orbit is viewed
edge-on. Otherwise, the companion’s orbit may be viewed face-on or at some
intermediate inclination. Since KELT-18 b transits, we know it has iorb ∼ 90◦,
so γ can test for mutual (mis)alignment. We calculated γ = 95.2±6.4◦, which
is most consistent with a low orbital inclination for a circular KELT-18 B and
thus a large mutual inclination (Fig. 5.7).

For ZKL to excite KELT-18 b’s orbit, it must have formed far away from its
host star. By equating the timescales for GR precession and ZKL oscillations,
one can solve for the minimum orbital separation at which ZKL oscillations are
not quenched by GR (Eq. 4 of Dong, Katz, and Socrates, 2014). We computed
this value for the KELT-18 system and obtained ≳ 6.6 ± 0.25 AU. In other
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words, if KELT-18 b was born beyond 6.6±0.25 AU, for instance via traditional
core accretion beyond the ice-line, then it could have plausibly migrated to its
current orbit via ZKL-induced HEM. B22 calculated typical minimum forma-
tion distances of 0.5–10 AU across the broader population of HJs for binary
star induced ZKL HEM migration, which conspicuously aligns with the peak
in cold Jupiter occurrence around 1–10 AU (Fulton et al., 2021). Future stud-
ies of KELT-18 b’s atmosphere via transmission spectroscopy (Householder,
A., Dai, F., et al. in prep) will seek additional evidence for KELT-18 b’s birth
conditions by measuring its inventory of refractory and volatile elements, the
fingerprints of the original planetary building blocks (Lothringer et al., 2021).

It may also be the case that KELT-18 b formed in a protoplanetary that
was primordially misaligned, as can be the case when an outer stellar com-
panion is involved (Batygin, 2012). Alternatively, the stellar companion may
have torqued the outer regions of the protoplanetary disk into a misalignment,
producing a broken protoplanetary disk which itself can play the role of an
outer perturber in exciting large stellar obliquities (Epstein-Martin, Becker,
and Batygin, 2022). Vick, Su, and Lai (2023) showed that such an initial con-
figuration, in which the star has a disk-induced nonzero obliquity relative to
the proto-HJ before ZKL oscillations induced by the stellar companion initiate
HEM, the final obliquity distribution of the HJ is broadly retrograde with a
peak near polar orbits. This is in contrast with the classical picture of ZKL
starting with initially aligned planetary orbits, which produce HJs with a bi-
modal obliquity distribution near 40◦ and 140◦ (Anderson, Storch, and Lai,
2016). Thus it may be that the orbit of KELT-18 b was already misaligned
with the star’s rotation before undergoing HEM into its present day HJ orbit,
the result of which is an orbit with ψ ∼ 90◦ rather than 40◦ or 140◦.

5.6 Conclusion

We have presented the first science results from KPF on the Keck-I telescope:
a transit of the inflated ultra-hot Jupiter KELT-18 b. We found the orbit to be
nearly perpendicular to the stellar equatorial plane: ψ = 91.0+0.6

−0.7
◦. This result

is robust to model choice and is largely constrained by the tight posterior on
λ = −94.8±0.7◦ and the relatively low value of v sin i⋆. Taken in context with
the binary stellar companion, which we find to be on a likely bound orbit that
could be orthogonal to KELT-18 b’s orbit, a history of ZKL-induced HEM is
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plausible if KELT-18 b formed beyond about 6 AU from its host star. Our
main observational takeaways are as follows:

• We searched the available TESS photometry for clues as to the rota-
tion period of the host star and found evidence for modulation around
∼5 days. We did not see variability at 0.707 days as previously reported
by M17 using KELT photometry. Both values are consistent with the
tendency for F-type stars to have < 8 day rotation periods, and when
combined with the measured v sin i⋆ imply a near pole-on viewing geom-
etry (i⋆ ≲ 30◦).

• The stellar neighbor KELT-18 B is highly likely to be a bound compan-
ion, based on Gaia DR3 astrometry. Its orbit is also likely orthogonal
to KELT-18 b’s orbit, based on the angle between the on-sky position
vector and proper motion vectors.

• We observed evidence of CLVs, as traced by the FWHM of the local line
profile beneath the planet’s shadow. The FWHM increased towards the
disk limb by nearly a factor of two, in agreement with previous 3D MHD
simulations of velocity flows in the near-surface layers of F-type stellar
atmospheres.

• We modelled the centroid of the local line profile using the RRM tech-
nique and found that either strong differential rotation (α = 0.9) or CLVs
are needed to explain the curvature in the local RV time series. However,
all of the models produce consistent, well-constrained posteriors for the
sky-projected obliquity. Ambiguity between DR and CLVs is a common
challenge of the RRM technique (see e.g. Roguet-Kern, Cegla, and Bour-
rier, 2022; Doyle et al., 2023) and is complicated by the uncertainty in
the stellar inclination (and thus the stellar latitudes occulted). A firm
detection of a stellar rotation period from additional photometry would
enable a better constraint of the degree of DR needed to explain the data.
As it stands, the polar transiting geometry requires a low (near pole-on)
stellar inclination in order to generate the observed curvature in the local
RV timeseries, with maximum blueshift occulted at ingress/egress and
near-zero velocity occulted at mid-transit. An edge on stellar inclination
would produce the opposite effect, since the lowest velocity latitudes at
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the poles would instead be occulted at ingress/egress, while the maxi-
mum velocity latitude (the equator) would be occulted at mid-transit.
If KELT-18 does have an edge-on stellar inclination, then DR would be
inconsistent with the data and CLVs would be strongly favored.

• The 3D orbital geometry of the KELT-18 system is explainable by a
history of ZKL-induced migration, providing support for the HEM for-
mation pathway for HJs. Future work will further test this by inventory-
ing the elemental abundances in KELT-18’s atmosphere, connecting the
planet to the disk in which it formed.
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C h a p t e r 6

KPF CONSTRAINS THE OBLIQUITY OF THE EXTREMELY
ECCENTRIC SUB-SATURN KEPLER-1656 B

Rubenzahl, R. A. et al. (2024). “KPF Constrains the Obliquity of the
Extremely Eccentric Sub-Saturn Kepler-1656 b” Submitted to The

Astrophysical Journal Letters

6.1 Introduction

High-eccentricity migration (HEM) is a leading explanation for the formation
of close-in giant exoplanets, such as hot Jupiters (HJs), with orbital periods
less than 10 days (Dawson and Johnson, 2018; Rice, Wang, and Laughlin,
2022). In the HEM scenario, the giant planet forms beyond a few AU and is
excited to extremely high eccentricity (e > 0.9) either through planet-planet
scattering (Rasio and Ford, 1996, e.g., ) or secular interactions with an outer
planetary or stellar companion (Fabrycky and Tremaine, 2007; Naoz et al.,
2011; Teyssandier et al., 2013). To excite large enough eccentricities, the
companion must either possess a large mutual inclination to the inner planet,
in which case von-Zeipel Kozai-Lidov (ZKL; Kozai, 1962; Lidov, 1962; Ito
and Ohtsuka, 2019) oscillations can occur, or the companion must have an
eccentric orbit, in which case higher-order eccentric Kozai-Lidov (EKL; Naoz
et al., 2013b; Naoz et al., 2013a; Naoz, 2016) oscillations can yield the same
result. Subsequently, tidal interactions with the star at periastron passage
(e.g., Rasio and Ford, 1996; Wu, 2018) circularize the orbit, causing the planet
to migrate. The HEM process can also increase the stellar obliquity, the
angle between the host star’s rotation axis and the normal to the exoplanet’s
orbital plane. Obliquity damping mechanisms may then come into play, as we
observe HJs to be aligned around cool stars (below the Kraft Break, ≲ 6250 K;
Kraft, 1967) and misaligned around hot stars (Winn et al., 2010a; Schlaufman,
2010; Albrecht, Dawson, and Winn, 2022). Cool stars are able to damp HJ
obliquities faster than the age of the system either through tidal effects in
their convective envelopes (Albrecht et al., 2012; Lai, 2012; Dawson, 2014)
or resonance locking in their radiative cores (Zanazzi, Dewberry, and Chiang,
2024).
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There is no reason, however, that HEM should be limited to giant planets.
Many small (< 100 M⊕) close-in exoplanets likely migrated from further out in
their protoplanetary disks, as evidenced by their large envelope mass fraction
(e.g., WASP-107 b, Piaulet et al. 2021) and/or highly inclined orbit (Albrecht,
Dawson, and Winn, 2022; Attia et al., 2023). Misaligned orbits could arise
from the HEM process or be excited post-formation through interactions such
as resonance crossing during the disk-dispersal stage (Petrovich et al., 2020)
or nodal precession cycles (Yee et al., 2018; Rubenzahl et al., 2021), in either
case with the same outer companion that triggered HEM. Though, the cen-
sus of outer companions to close-in small planets with measured obliquities
is relatively incomplete. Only HAT-P-11 (Yee et al., 2018) and WASP-107
(Piaulet et al., 2021) have fully-resolved outer companions. While these mech-
anisms require a large mutual inclination between the inner and outer planet,
only HAT-P-11 has a mutual inclination measurement (near polar; Xuan and
Wyatt, 2020).

If exoplanets do experience HEM, then we should expect to observe of order
a few systems in the act of migration (Socrates et al., 2012). Approximately
half a dozen known exoplanets have an eccentricity and semimajor axis such
that the tidal circularization timescale is less than the age of the system (so
the planet’s orbit should still be circularizing), and such that the planet is not
expected to be engulfed by its host star; see Figure 6.1. Several of these have
obliquity measurements. Most recently, the proto-HJ TOI-3362 b (Dong et al.,
2021) was found to be aligned to within 3◦ (Espinoza-Retamal et al., 2023).
This striking result indicates that perhaps some planets are able to migrate
without obtaining a large obliquity. Petrovich (2015a) found that coplanar
HEM (CHEM) can occur as a result of EKL oscillations between an outer
planetary perturber (“c”) and the inner proto-HJ (“b”), provided the outer
planet be relatively eccentric (ec > 0.67 if eb = 0 or both eb, ec > 0.5) and
the planets maintain a low mutual inclination (< 20◦). However, any outer
planetary companions in the TOI-3362 system remain undetected.

Kepler-1656 b is another such highly eccentric exoplanet (eb = 0.84 ± 0.01,
48 M⊕, 31 day; Brady et al., 2018), and is the only known member of this
class less massive than 100 M⊕. Kepler-1656 b is also the only highly eccentric
exoplanet with a known outer planetary companion. Angelo et al. (2022)
discovered Kepler-1656 c (Mc sin iorb,c = 0.4 ± 0.1 MJup), a giant planet in a
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Figure 6.1: Eccentricity-semimajor axis diagram for transiting exoplanets. Gi-
ant planets, defined as >100 M⊕ or >8 R⊕ if there is no mass measurement,
are plotted as faded points. Following Dong et al. (2021), the y-axis is scaled
uniformly in e2, and the high-eccentricity migration track is shaded in light
grey. The dashed grey line traces a = 0.05/(1 − e2), corresponding to the
minimum semimajor axis to excite f-mode oscillations and produce rapid or-
bital decay (Wu, 2018). Planets above this line would therefore be extremely
rare. The black dashed upper boundary (0.034/(1− e2)) represents the line of
constant angular momentum where a 1 MJ , 1.3 RJ exoplanet would become
tidally disrupted at its closest approach to a solar mass star (Dong et al.,
2021); no giant planets can persist above this boundary. The lower boundary
(0.1/(1 − e2) corresponds to a final semimajor axis of 0.1 AU, beyond which
circularization timescales become much longer than typical system ages. The
boundaries are not exact as they depend on the strength and efficiency of tides
in the system. Exoplanets with e > 0.6 are labelled; Kepler-1656 b is the only
sub-Saturn firmly in the HEM track. Data are from the NASA Exoplanet
Archive, accessed on 2024-04-01 (NASA Exoplanet Archive, 2019).

wide (∼2000 day) and eccentric (ec = 0.53 ± 0.05) orbit. These authors ran
a suite of dynamical integrations using the EKL formalism (Naoz, 2016) and
found that those which matched the observed system properties either rapidly
(≲ 1 Gyr) circularized into a HJ-like orbit (or in a few cases crashed into
the star), or achieved high eccentricity through EKL oscillations which could
persist much longer than the age of the system (6.3 Gyr) without inducing
tidal migration. These solutions tended to occur at high (60◦–130◦) mutual
inclinations and would often (≳ 75%) excite planet b to large stellar obliquities
(> 40◦).

In this letter, we report our measurement of the stellar obliquity of Kepler-
1656 b. We present our observations of a single transit of Kepler-1656 b
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with the Keck Planet Finder in Section 6.2. In Section 6.2 we modeled the
Rossiter-McLaughlin (RM; Rossiter, 1924; McLaughlin, 1924) effect in our
transit radial velocity time series and derived a projected stellar obliquity of
|λ| = 35.0+14.9

−21.6
◦, though the data are fully consistent with an aligned orbit. We

discuss the implications of this result on the dynamical history of the system
and place Kepler-1656 b in the context of the broader exoplanet population in
Section 6.3, and conclude in Section 6.4.

6.2 Obliquity Measurement

Observations

We observed a single transit of Kepler-1656 b on UT June 30, 2023 with the
Keck Planet Finder (KPF; Gibson et al., 2016; Gibson et al., 2018; Gibson et
al., 2020). We used a fixed exposure time of 480 sec to average over solar-type
oscillations (Brown et al., 1991; Chaplin et al., 2019) and reach a typical signal-
to-noise ratio (S/N) of 100. We used the public KPF data reduction pipeline
(DRP)1 to derive cross-correlation functions (CCFs; Baranne et al., 1996)
using the G2 ESPRESSO mask (Pepe et al., 2002) and obtained the radial
velocity (RV) as the centroid of a fitted Gaussian. We separately extracted
an RV from the green and red channels of KPF and combined the two in a
weighted average, taking the weight to be proportional to the relative flux in
each channel and constant in time. The resulting RV time series (shown in
Figure 6.2) spans a baseline from 1 hr before to 1 hr after the transit.

Rossiter-McLaughlin Modeling

We fit the RV time series using rmfit (Stefànsson et al., 2022), a Python-
based model for the anomalous RV produced by the RM effect based on the
equations of Hirano et al. (2011). We adopted the ephemeris from Brady et al.
(2018) based on their fits to the Kepler transit light curves and adopted their
fitted values as Gaussian priors for the time of conjunction (tc), orbital period
(Porb), transit depth (Rp/R∗), scaled semimajor axis (a/R∗), orbital inclination
(iorb), orbital eccentricity (e), and argument of periastron (ω). Limb darkening
coefficients for the KPF bandpass (V ) were computed with EXOFAST (Eastman,
Gaudi, and Agol, 2013), incorporating the spectroscopic Teff (5731 ± 60 K),
[Fe/H] (0.19± 0.04), and log(g) (4.37± 0.10) from Brady et al. (2018).

1https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/

https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/


136

5.0

2.5

0.0

2.5

5.0

7.5

RV
 [m

/s
]

Aligned ( = 0 )
Full model ( = 35.0+22.0

15.0 )

2 1 0 1 2
Time since mid-transit [hours]

5

0

5

Re
sid

ua
l [

m
/s

] RMS = 1.08 m s 1

35.0+21.6
14.9

40 0 40

[ ]

1.5
3.0
4.5
6.0

vs
in

i [
km

 s
1 ]

1.5 3.0 4.5 6.0

vsini [km s 1]

3.2+0.5
0.4

Figure 6.2: Left: The KPF RV time series, in black, during the transit of
Kepler-1656 b. The blue curve shows the median RV from the posterior dis-
tribution of the full model, with the shaded band denoting the 16th–84th
percentiles. The red curve shows the same for the aligned model where λ is
fixed to 0◦. The bottom panel shows the residuals to the median full model.
Right: The posterior distribution for λ and v sin i⋆ for the full model. Mis-
aligned λ requires v sin i⋆ > 3 km s−1.

There are two existing literature measurements of v sin i⋆ for Kepler-1656.
The California-Kepler Survey (Petigura et al., 2017) reported a value of 2.8±
1.0 km s−1 from a SpecMatch-Synthetic (Petigura, 2015) analysis of a Keck-
HIRES spectrum. We reanalyzed the same HIRES spectrum with SpecMatch-

Synthetic and instead obtained an upper bound of < 2 km s−1, which
SpecMatch-Synthetic reports if the spectrum is dominated by instrument
broadening. However, Masuda, Petigura, and Hall (2022) found while analyz-
ing > 100 Keck/HIRES FG-type spectra that the population-level distribu-
tions obtained by applying SpecMatch-Synthetic to their sample were more
consistent if upper-limits were instead interpreted as < 3 km s−1. Kepler-
1656 also appeared in the catalog of Brewer et al. (2016), who found a smaller
v sin i⋆ of 1.1 km s−1 with 3.2 km s−1 macroturbulence, though this is also
likely limited by instrumental broadening. As a result, we opted to place a
Gaussian prior on v sin i⋆ of 2.8 ± 1.0 km s−1 from the CKS result and not
restrict v sin i⋆ to any upper-bound.

The main free parameter in our model is the sky-projected obliquity, λ. The
parameter quantifying the non-rotational line broadening, vβ, was uncon-
strained by the RM data, so we fixed this value to 3 km s−1 based on a
2.6 km s−1 (FWHM) instrumental broadening from KPF and the intrinsic line
dispersion for Teff = 5731 K from Eq. (20) in (Hirano et al., 2011). Our model



137

is a combination of a Keplerian RV signal and the RM effect, with an arbi-
trary offset term (γ). For the Keplerian term, we adopted the best-fit Kb from
Angelo et al. (2022) as a prior. Because of the low amplitude of the RM signal
(∼4.5 m s−1), we also included the convective blueshift effect parameterized by
vCB using the prescription of Shporer and Brown (2011), which can contribute
at the m s−1 level. We set a wide prior of ±10 km s−1 on vCB. Lastly, we
include a RV jitter term (σjit) to account for any underestimated white noise.

We first found the maximum a-posteriori (MAP) solution using the PyDE dif-
ferential evolution optimizer (Parviainen, 2016). This solution was used as a
starting point for a Markov-Chain Monte Carlo (MCMC) exploration of the
posterior. We ran an EnsembleSampler with 100 walkers using the package
emcee (Foreman-Mackey et al., 2013), each of which obtained 30,000 sam-
ples. We discarded the first 10% as “burn-in” and checked for convergence
by requiring the Gelman–Rubin statistic (Gelman et al., 2003) be ≪ 1%

of unity for all parameters and ensuring that the autocorrelation time was
< 2% the length of the independent chains per walker (Hogg and Foreman-
Mackey, 2018). The posteriors in λ and v sin i⋆ were unaffected by the inclu-
sion of vCB, which itself is orthogonal to the RM effect and was not detected
(vCB = −560± 930 km s−1). As a result, we fixed vCB = 0 km s−1 in our final
fit.

Our best-fitting RM model, shown in Figure 6.2, has |λ| = 35.0+14.9
−21.6

◦. The
negative λ solutions, which the MCMC exploration finds, correspond to iorb <

90◦. However, a symmetric positive solution for λ exists for iorb > 90◦. There
is also a degeneracy between λ and v sin i⋆ due to the central (low impact
parameter) transit. The RM fit found v sin i⋆ = 3.2+0.5

−0.4 km s−1, which is
consistent with the results from spectral broadening but is also degenerate with
varying λ (see Figure 6.2, right panel). The spectral fitting results downweight
RM solutions with v sin i⋆ significantly greater than 3 km s−1, i.e., larger values
of λ. The full set of fitted parameters is tabulated in Table 6.1.

For comparison, we also fit a model with λ fixed to 0◦. This aligned model,
also shown in Figure 6.2, produces a fit with statistically indistinguishable
goodness-of-fit metrics (χ2, BIC), though with a slightly larger σjit term (see
Table 6.1). The aligned model yielded a lower v sin i⋆ = 2.7±0.3 km s−1, which
is slightly more consistent with the spectroscopic constraints. To summarize,
neither an aligned model nor one with modest misalignment is ruled out by
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Table 6.1: Best-fit RM Parameters

Parameter Full model Aligned model Unit
|λ| 35.0+14.9

−21.6 0 ◦

v sin i⋆ 3.2+0.5
−0.4 2.7+0.3

−0.3 m s−1

iorb 88.9+0.5
−0.5 89.2+0.6

−0.6
◦

e 0.824+0.013
−0.014 0.824+0.013

−0.014

ω 54.5+4.7
−4.7 54.7+4.8

−4.7
◦

K 13.3+1.6
−1.5 13.4+1.7

−1.6 m s−1

γ −5.8+1.1
−1.1 −5.5+1.1

−1.2 m s−1

σjit 0.51+0.37
−0.33 0.7+0.34

−0.36 m s−1

∆BIC 0.0 5.0
χ2 0.92 0.95

Posterior values display the 50th percentile with the upper and lower errorbars giving the
difference relative to the 84th and 16th percentiles, respectively. The reduced χ2 includes
the median σjit added in quadrature to the measurement uncertainties.

the data. Without any further information on v sin i⋆, our RM measurement
can only constrain |λ| < 57◦ at 95% confidence.

6.3 Discussion

Dynamics in the Kepler-1656 system

As a consequence of Kepler-1656 b’s central transit and the uncertainty in
v sin i⋆, our RM dataset is consistent with an aligned orbit but cannot rule
out a misaligned λ as high as 57◦ at 2σ confidence. Of the other known
exoplanets in the HEM track, only TOI-3362 b and HD 80606 b have obliquity
measurements. The former is aligned, with λ = 1.2± 2.8◦ (Espinoza-Retamal
et al., 2023). Like Kepler-1656 b, TOI-3362 b orbits a single star, though it
is not known if an outer giant planet exists in that system. HD 80606 b, on
the other hand, is in a binary-star system and is misaligned, with λ = 42± 8◦

(Pont et al., 2009; Hébrard, G. et al., 2010). Here we revisit plausible dynamics
between Kepler-1656 b and c and their implications on b’s obliquity.

The simulations conducted by Angelo et al. (2022) that were most consistent
with Kepler-1656 b and c’s orbital eccentricities and semimajor axes tended
towards large mutual inclinations (60◦–130◦). The highly inclined companion
excited eb either to the point of tidal migration or maintained long-lasting
(> the age of the system) eccentricity oscillations. In either case, the inner
planet’s obliquity tended towards misalignment; only ∼10% of simulations
yielded ψb < 20◦. In the long-lasting eccentricity oscillation scenario, ∼75%



139

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

180
150
120

90
60
30

0
30
60
90

120
150
180

 [
]

Kepler-1656 b

K2-25 b

TOI-3362 b

TOI-1859 b

TOI-677 bHAT-P-34 b HD 17156 b

HAT-P-2 b

Single -star systems
Giant planets
Non-giant planets

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

180
150
120

90
60
30

0
30
60
90

120
150
180

TIC 241249530 b

KOI-1257 b

WASP-8 b

TOI-942 b

HD 80606 b

Multi-star systems

Figure 6.3: Projected obliquity λ for measured systems as a function of ec-
centricity, for single-star systems (left) and multi-star systems. The shaded
bar on the left plot covers ±20◦, the range of obliquities for which CHEM
could operate given an appropriate companion with zero stellar obliquity. The
shaded bands on the multi-star plot highlight ±10◦ around the angles ±40◦

and ±130◦ corresponding to the bimodal peaks of the expected true obliq-
uity distribution from star-planet Kozai (Anderson, Storch, and Lai, 2016).
Note that these angles refer to the true orbital inclinations, while the data
points are for λ, the sky projection. The true obliquity ψ is between λ and
sign(λ)90◦. The data are the same from Figure 6.1, supplemented with up-
dates for HD 80606 b (42± 8◦; Hébrard, G. et al., 2010) and 55 Cnc e (11+17

−20
◦

Zhao et al., 2023a), and the addition of TIC 241249530 b (163.5+9.4
−7.7

◦; Gupta,
A. et al. in review), TOI-3362 b (1.2 ± 2.8◦; Espinoza-Retamal et al., 2023),
TOI 677 b (0.3 ± 1.3◦; Sedaghati et al., 2023; Hu et al., 2024), and of course
Kepler-1656 b, where we have drawn the 1σ upper-limit of 50◦ (this work).

of simulations produced ψb > 60◦. Simulations that migrated planet b into a
tidally locked orbit were more consistent with alignment, though only ∼1/3rd
had ψb < 60◦.

In the low-mutual-inclination regime, an eccentric (ec > 0.2–0.5) outer com-
panion can still excite the inner planet’s eccentricity to large values (≳ 0.9),
in some cases causing the inner planet’s orbit to flip 180◦ from prograde to
retrograde (Naoz et al., 2013b; Li et al., 2014). If the eccentricity grows suffi-
ciently large such that the periastron distance is small enough for strong tidal
dissipation, the planet’s orbit will shrink and circularize. Petrovich (2015a)
showed that throughout this coplanar HEM (CHEM), the migrating inner
planet maintains a low stellar obliquity (ψ < 30◦) so long as the mutual incli-
nation between the two planets is low (≲ 20◦).

Petrovich (2015a) derived the initial criteria for CHEM to operate: either (i)
the inner planet begins in a circular orbit, in which case the outer planet must
have ec ≳ 0.67 and Mb/Mc(ab/ac)

1/2 ≲ 0.3, or (ii) both planets begin eccentric
(e ≳ 0.5) and Mb/Mc(ab/ac)

1/2 ≲ 0.16. Given the posterior distributions in
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Figure 6.4: Three-body simulations of the orbits of Kepler-1656 b (black) and
c (grey), for variable initial mutual inclinations ibc, (5◦, 10◦, 15◦, and 120◦

from left to right). The top row shows the evolution of the mutual inclination
(grey) and the inner planet’s obliquity (black), as a function of semimajor
axis. The lower panel shows the eccentricity evolution of planet b (black) and
c (grey). The first three (ibc ≤ 15◦) are initialized as described in Section 6.3.
The fourth (ibc = 120◦) is an example of a simulation from Angelo et al. (2022)
initalized in-situ with a circular planet b. All four scenarios can reproduce the
observed Kepler-1656 system (red and yellow data points). Though, ibc ≤ 15◦

requires starting planet b at a more distant orbit that subsequently migrates
through its present-day location, before circularizing in ∼100Myr; larger mu-
tual inclinations excite large eccentricities without triggering migration, with
brief excursions to low obliquity over many ∼Gyr. The measured projected
obliquity is plotted for the positive-λ scenario (to match ψb > 0) in the top
panel at 35◦ with errorbars covering 0◦–50◦.

mass and semimajor axis for both planets (Angelo et al., 2022), this ratio for
Kepler-1656 is Mb/Mc(ab/ac)

1/2 = 0.11± 0.02, and is less than 0.16 at 99.2%
confidence. This calculation assumed Mc sin iorb,c in place of Mc, i.e., the
planets are coplanar. The true mass of Kepler-1656 c may be larger, in which
case this ratio would be smaller, still satisfying the CHEM criterion. Thus,
given Kepler-1656 c’s presently measured eccentricity (0.53 ± 0.05; Angelo et
al., 2022), CHEM is a plausible explanation if either Kepler-1656 b formed
with–or was able to gain–an eccentricity > 0.5, or if Kepler-1656 c used to be
moderately more eccentric (≳ 0.67). Such eccentricities are naturally produced
by planet-planet scattering events (e.g., Chatterjee et al. 2008).

We integrated the three-body equations of motion expanded to octupole order
(Ford, Kozinsky, and Rasio, 2000) as described in the appendix of Petrovich
(2015b), given the measured planet masses of Angelo et al. (2022). We initial-
ized planet b with an eccentricity of 0.2 at semimajor axis 0.5 AU and planet
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c with an eccentricity of 0.67 at its present-day semimajor axis of 3 AU. We
included tidal dissipation in planet b parameterized with a 0.01 yr viscous
timescale2 and Love number 0.25. We ran three simulations with the inner
planet aligned at 0◦ obliquity but with the outer planet at 5◦, 10◦, and 15◦

mutual inclination. We found in all three cases the inner planet’s eccentric-
ity became excited up to 0.94 and underwent oscillations for ∼100 Myr before
tidal effects quenched oscillations and triggered planet b’s migration into a HJ-
like orbit. We stress that while the migration phase of the simulation agrees
with the data, it is relatively short-lived (< 100 Myr) and thus has a low
probability of being observed. We conclude that CHEM could be operating in
the Kepler-1656 system, but the data remain consistent with a non-migrating
in-situ formed planet b being observed at a snapshot of high-eccentricity os-
cillations, as suggested by Angelo et al. (2022). The key to distinguishing
these scenarios is the planet-perturber mutual inclination. Unfortunately, at
186 ± 0.5 pc (Gaia Collaboration et al., 2023) Kepler-1656 (V=11.6) is too
far for such a measurement with Gaia astrometry. The expected astrometric
signal from Kepler-1656 c is just 5.2 µas, but at G = 11 we can expect a
single-epoch precision of 34.2 µas with Gaia (Perryman et al., 2014).

Kepler-1656 in context

Espinoza-Retamal et al. (2023) noted a dichotomy in eccentric (e ≳ 0.3) planet
obliquities; those in single-star3 systems tend to be aligned, while those in
multi-star systems tend to be misaligned. We plot the updated λ–e diagram
in Figure 6.3. For single-star systems, the next most eccentric sub-Saturn (<
100 M⊕) with a measured obliquity is K2-25 b (e = 0.43±0.05, λ = 3.0±16.0◦;
Stefansson et al., 2020). Kepler-1656 b and HAT-P-2 b (Beurs et al., 2023),
a HJ, are the only highly eccentric (e > 0.3) exoplanets with fully measured
outer planetary companions.

If close-in exoplanets, large and small alike, form primarily from HEM, Fig-
ure 6.3 suggests that the identity of the perturber plays the key role in deter-
mining the obliquity. In multi-star systems, exoplanets with large obliquities

2For simplicity, we have adopted a much lower viscous timescale than Angelo et al.
(2022) of 1.5 yr, allowing significant migration within ∼ 108 yr. For reference, a viscous
timescale of 0.01 yr (1.5 yr) is equivalent to setting a tidal quality factor of Qb ∼ 104

(Qb ∼ 106) at the planet’s current location.
3∗The presence of stellar companions is not homogenously constrained. For simplicity,

here we define “single star” to be those in the Exoplanet Archive with sy_snum==1.
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span a wide range of mutual inclinations with their outer stellar companions
(Behmard, Dai, and Howard, 2022; Rice, Gerbig, and Vanderburg, 2024).
Though, there is an overabundance of edge-on binary orbits for systems host-
ing transiting exoplanets compared to field binaries, suggestive of a tendency
towards mutual alignment (Dupuy et al., 2022; Rice, Gerbig, and Vander-
burg, 2024). It is still a small sample size, but the four oblique and eccentric
exoplanets in multi-star systems (see Figure 6.3) have obliquities near those
expected from star-planet Kozai (e.g. Anderson, Storch, and Lai, 2016), which
requires mutual inclinations > 39.2◦ (Kozai, 1962; Lidov, 1962; Naoz, 2016).
Rice, Gerbig, and Vanderburg (2024) calculated the “linear motion parame-
ter” (γ; Tokovinin and Kiyaeva, 2015), for WASP-8 B (4.0 ± 0.5◦) and HD
80606 B (174.3 ± 0.3◦). Both are consistent with edge-on orbits and perhaps
mutual alignment, which in addition to the wide separation for HD 80606 B
would make Kozai less likely. KOI-1257 is unresolved by Gaia, preventing an
astrometric detection. However, computing γ for TIC 241249530 from its Gaia
DR3 astrometry (Gaia Collaboration et al., 2023) yields 85.9 ± 36.0◦, which
could indicate a near face-on orbit and thus a significant mutual misalignment.
Interpreting inclinations from the γ parameter alone is still poorly constrained
and degenerate with eccentricity. Longer baseline multi-epoch astrometry is
needed to constrain individual systems.

Exoplanets in single-star systems, by definition, must instead be perturbed by
outer planetary companions. Cold Jupiter companions in systems with inner
small exoplanets show a tendency towards coplanarity (Masuda, Winn, and
Kawahara, 2020). This would preclude classical Kozai oscillations, though ec-
centric coplanar outer companions could still excite large eccentricities via the
EKL mechanism (Naoz, 2016). In such systems, CHEM could produce close-in
but aligned planets. On the other hand, large mutual inclinations have been
observed in the π Men and HAT-P-11 systems. Both have large (polar) mutual
inclinations between inner and outer planet (as evidenced by Gaia astrometry;
Xuan and Wyatt, 2020). In such systems, ongoing nodal precession will make
it more likely than not to observe the planet in a misaligned orbit (Becker
et al., 2017). Accordingly, π Men is slightly misaligned (λ = 24 ± 4.1; Kuno-
vac Hodžić et al., 2021) and HAT-P-11 b is near-polar (λ = 106+15

−12
◦; Winn

et al., 2010c; Sanchis-Ojeda and Winn, 2011). So while there may not be
a mutual inclination requirement for exciting eccentricities, and consequently
triggering migration, the obliquity of the inner planet is likely still dependent.
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For the closest systems (< 60–100 pc), the full astrometric timeseries in the
upcoming Gaia DR4 will enable constraints on the outer planet’s inclination
(Espinoza-Retamal, Zhu, and Petrovich, 2023).

6.4 Conclusions

We measured the stellar obliquity of Kepler-1656 b from the Rossiter-McLaughlin
anomaly observed with the Keck Planet Finder. We found the orbit to be con-
sistent with alignment, but could not rule out misalignments up to 57◦ at 2σ
confidence. Kepler-1656 b is one of four exoplanets to have an obliquity mea-
surement that lives in the HEM track of the e− a diagram. Two of these are
in multi-star systems and are misaligned, while TOI-3362 b orbits a single star
and is aligned. The mutual inclination of the perturber likely plays a leading
role in determining the migration process and subsequently the obliquity of
the migrating/migrated planet.

Since obliquity damping is less efficient for small planets (τψ ∝ (Mp/M∗)
−2;

Hut, 1981), the obliquity distribution of small planets offers a more pristine
view of post-migration obliquities, analogous to HJs around hot stars. There is
a growing population within the < 100 M⊕ regime of polar orbits (Attia et al.,
2023) which has been noted for the HJs (Albrecht et al., 2022) but is not yet
statistically robust in that sample (Dong and Foreman-Mackey, 2023; Siegel,
Winn, and Albrecht, 2023). Kepler-1656 b represents a rare example of such a
proto-hot-Neptune/Saturn that could be in the act of migrating, kick-started
by its outer planetary companion. If obliquities are not excited in conjunction
with HEM, then post-migration dynamics must be important for exciting the
broad obliquity distribution we observe today.
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C h a p t e r 7

STARSPOT MAPPING AND OBLIQUITY CONSTRAINTS
FOR THE SUBGIANT KEPLER-1658

This chapter presents work still in progress that spurred from an unexpected
surprise in one of our KPF datasets–a gigantic starspot. The spot obscures
the Doppler shadow of the planet, leading me, in collaboration with Adolfo
Carvalho, to develop a custom modeling framework that could forward model
a stellar CCF in the presence of spots so that we might remove the effect and
reveal the planet signal.

7.1 Introduction

The obliquity distribution of hot Jupiters (HJs) is likely shaped by tidal dissi-
pation. As discussed in Chapter 1.2, this is an observation-driven hypothesis
based on the discovery of a transition from alignment to misalignment at the
Kraft Break (Winn et al., 2010a). Dissipation of tidally excited inertial waves
in the convective envelopes of cool stars can act as a sufficient angular momen-
tum sink to damp obliquities into spin-orbit alignment (Lai, 2012). Additional
effects such as resonance locking with g-modes in the radiative cores of cool
stars (Zanazzi, Dewberry, and Chiang, 2024) as well as magnetic breaking (Li
and Winn, 2016) can also boost the efficiency of obliquity damping. Overall,
the star-planet tidal potential is complex1, nonlinear, and inherently coupled
to the evolution of the stellar spin, fluid dynamics in the differentially rotating
stellar interior, the elasticity of the planet, and the orbit of the planet (see
Ogilvie 2014 for a review). Dissipation in the planet or in the star can act as
the energy sink, and the efficiencies at which tides operate can vary in both by
orders of magnitude. It is therefore of particular utility to measure the tidal
efficiencies by observing tide-driven evolution directly.

A change to one of the orbital elements (e.g., a, e, ψ) adds a small perturba-
tion to the tidal potential, and vice-versa. The corresponding response on the
system is different for each orbital element and depends on the corresponding
Love number, which itself is a (dimensionless) function of frequency, associated
with a particular component of the tidal potential, and depends on the tidal

1In both the literal and the mathematical sense.
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amplitude as well as the size and elastic modulus of the body. This is generally
not known a priori, and so tends to get summarized single dimensionless pa-
rameter called the tidal quality factor, Q (Goldreich and Soter, 1966), which
can span many orders of magnitude. There are very few systems for which
orbital evolution has been observed, owing to the incredibly slow timescale
(≳Myr) relative to typical observation baselines (∼10 yr).

To-date, orbital decay has only been observed in two systems: WASP-12 b,
a 1.4 MJup HJ in a 1.1 day orbit around a 1.35 M⊙ star (Hebb et al., 2009)
whose orbit is decaying at a rate of Ṗ /P ∼ 3 Myr (Yee et al., 2020), and
Kepler-1658 b, a 6 MJup HJ in a 3.8 day orbit around a 1.4 M⊙ star (Chontos
et al., 2019) whose orbit is decaying at a rate of Ṗ /P ∼ 2.5 Myr (Vissapragada
et al., 2022). While both stars are more massive than the Kraft Break, Kepler-
1658 is a subgiant that has evolved across the Kraft Break (was ∼7200 K, now
6200 K) and now possesses and convective envelope, confirmed by the detec-
tion of asteroseismic oscillations (Chontos et al., 2019). Kepler-1658 may have
therefore just recently (< 1 Gyr) acquired the ability to tidally damp any pri-
mordial obliquity. As a unique system with a tidal constraint from observed
orbital decay and an upper limit on realignment timescales set by stellar evo-
lution, an obliquity measurement for Kepler-1658 b would help constrain the
efficiency of obliquity damping mechanisms.

One other stellar property of note is the rotation period and observed veq sin i⋆.
The Kepler lightcurve of Kepler-1658 exhibits strongly coherent variability at
the 1 ppt level at a periodicity of 5.66±0.31 days (Chontos et al., 2019). If this
is due to photometric modulation by starspots, then the rotational velocity at
the spot latitude is 25.82 ± 1.77 km s−1 based on their asteroseismic stellar
radius. This is significantly smaller than the observed rotational broadening
in the Keck/HIRES spectra of 33.95 ± 0.97 km s−1. Chontos et al. (2019)
calculated that this difference can be reconciled by a latitudinal differential
rotation of 20-40% with the spot placed at a high latitude.

7.2 KPF Observations of Kepler-1658

We observed a transit of Kepler-1658 on UT July 15, 2023 with the Keck
Planet Finder (Gibson et al., 2016; Gibson et al., 2018; Gibson et al., 2020).
We exposed for 5 minutes to achieve a typical signal-to-noise (S/N) 90–110
in the green channel and ∼120 in the red channel. We collected 51 exposures
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Figure 7.1: Left: KPF CCFs for Kepler-1658, shifted to the stellar rest frame.
The colorbar denotes the time of the observation. The inset zooms-in on the
region which contains the perturbation from the starspot. Right: Bisectors
computed from the observed CCFs. The C-shape above 0.4 in depth is from a
general asymmetry, which only translates as the spot progresses. The distor-
tion below 0.4 is from the spot’s effect on the rotational broadening profile.

starting about 3 hours before the predicted ingress time using the ephemeris
of Vissapragada et al. (2022) until 2 hours after the predicted egress time,
resulting in 16 in-transit exposures. Two exposures were affected by a known
issue in the CCD controller failing to terminate the exposure, causing photons
to expose the detector while reading out and smearing the image.

The remaining 49 images were processed using the public KPF data reduc-
tion pipeline (DRP)2 which performs dark, bias, and flat-fielding corrections,
and extracts 1D spectra using the optimal extraction algorithm (Horne, 1986;
Piskunov and Valenti, 2002). The wavelength solution is derived from the
evening calibration sets taken with a thorium argon (ThAr) lamp and a Menlo
Systems laser frequency comb (LFC). Orders bluer than ≲ 490 nm adopt the
ThAr solution while the rest adopts the LFC solution. We derived cross-
correlation functions (CCF) using the F9 ESPRESSO mask for each of the
three traces per spectral order. The final CCF per observation was obtained
by performing a weighted sum first across the three “SCI” traces and then
across all orders, taking the weights to be proportional to the total flux at
each step. Photon-noise uncertainties were computed using the unweighted

2https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/

https://github.com/Keck-DataReductionPipelines/KPF-Pipeline/
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summed CCF. Lastly, we measured the systemic velocity by fitting a Gaus-
sian to each out-of-transit CCF, masking the portion of the CCF < −50 km s−1

and > −10 km s−1 (see next paragraph). The result was −23.95±0.06 km s−1,
which we shifted the CCFs by to bring into the stellar rest frame.

The resulting time series of CCFs are shown in Figure 7.1. A significant
deformation in the blue side of the CCF can be seen to traverse redwards
as the time series progresses. Critically, the distortion exists out-of-transit
and proceeds at constant velocity in time. This is the signature of a large
starspot, which is expected to exist on Kepler-1658 based on the significant
photometric variability seen with Kepler. We performed the same Reloaded
Rossiter-McLaughlin (RRM) analysis as described in Chapter 5 to search for
the Doppler shadow of the planet. These steps involved constructing an out-
of-transit template CCFout, which by construction will include the averaged
distortion from the starspot. We then subtracted the in-transit observations,
CCFin, to obtain the local average line profile CCFloc.

The CCFloc time series is plotted in Figure 7.2. The residuals from the spot
dominate the structured variability, with photon noise at around the 500 ppm
level. The expected amplitude of the Doppler shadow from Eq. 1.6 is ∼1 ppt.
This spurred us to model a synthetic CCFout which includes the perturbations
to the CCF in order to remove the structured noise.

7.3 Synthetic CCFs for planets transiting spotted stars

The effects of starspots are commonly observed in both photometry and spec-
troscopy across all spectral types (e.g., Giles, Collier Cameron, and Haywood,
2017), and present a challenge to extracting the Doppler shadow of a tran-
siting planet (e.g., Zhou et al., 2020; Sicilia et al., 2024). As spots are both
physically interesting probes of the stellar magnetic field and nuisances for
planet searches, significant effort has been invested in modeling their impact
to photometric and spectroscopic data. Some recent examples include starry

(Luger et al., 2021), which uses spherical harmonics as a basis set for for-
ward modeling surface brightness fluctuations to fit to observed photometric
or spectroscopic variability. The Spot Oscillation And Planet (Boisse, Bonfils,
and Santos, 2012; Dumusque, Boisse, and Santos, 2014; Zhao and Dumusque,
2023, SOAP, ) tool simulates observations of CCFs, and even spectra, for stars
with user-defined spot locations and temperatures. SOAP generates synthetic
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Figure 7.2: Top: CCFloc for the out-of-transit observations. Since the average
CCF is removed, these show a symmetric residual Doppler shift from pre to
post-transit. Middle: CCFloc for the in-transit observations. The bumps and
wiggles are consistent with the self-subtraction of the average starspot; the
planet shadow is not visible by eye. The colorscale in this and the top panel
is the same as in Figure 7.1. Bottom: 2D heatmap of the above, with time
on the vertical axis. The planet shadow is not visible.
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observations by assigning each patch of the stellar surface its own CCF (or
spectrum), and integrating across the rotating disk including the effects of
convective blueshift suppression to produce synthetic observations. Solar in-
tensity images from NASA SDO/HMI can even be used as input to define the
pixel-level intensity map. More recently, Di Maio et al. 2024 developed the
SpotCCF tool for the use-case of rapidly rotating stars by focusing just on the
impact of a spot to the rotational broadening function.

To model the spot in the Kepler-1658 dataset, we will need to include differen-
tial rotation to match the discrepancy between the spot rotation period from
photometry and the projected rotational velocity veq sin i⋆. We also want to
include the effects of a transiting planet to enable injection-recovery testing so
that we may place limits on the projected obliquity in Section 7.5. As we will
also see, we likely need to include convective blueshift suppression and center-
to-limb effects to reproduce the observed asymmetries in the CCFs. For these
reasons, we developed our own synthetic CCF modeling toolkit. Our model
is designed in a user-friendly, object-oriented set of Python modules for ease
of use and flexible experimentation. The following sections describe the three
components of the model: a star, a set of starspots, and a transiting planet.

The Star

We start with an intrinsic stellar line profile in velocity space, f(v). A non-
rotating star will have Gaussian broadening from microturbulence and thermal
broadening, as well as pressure broadening which produces a Lorentzian dis-
tribution (Gray, 2005). Thus, we take f(v) to be a Voigt profile (convolution
of a Gaussian and a Lorentzian) as implemented in astropy by the Voigt1D

function,
f(v) = −Voigt1D(AL,FWHMG,FWHML), (7.1)

where AL is the amplitude of the Lorentizian, FWHML is its full-width-at-
half-maximum (FWHM), and FWHMG is the FWHM of the Gaussian. f(v)
is defined to be centered at zero and to be negative (absorption line). Values
for the amplitude and FWHMs can be estimated from a PHEONIX spectrum3

(Husser et al., 2013) at the given stellar Teff, log g, and [Fe/H]. Alternatively,
a PHOENIX spectrum could be used as f(v) itself for full-spectrum modeling.

3https://phoenix.astro.physik.uni-goettingen.de/

https://phoenix.astro.physik.uni-goettingen.de/
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We used the methodology of Carvalho and Johns-Krull (2023) to efficiently nu-
merically integrate the rotational broadening, with a few modifications. First,
we adopted the approach of Hirano et al. (2011) to simultaneously account for
rotation and macroturbulence, as the two effects are coupled. The broadened
CCF is obtained by convolving f(v) with a broadening kernel,

F∗(v) = f(v) ∗M(v), (7.2)

where M(v) is

M(v) =

∫∫
disk

I(x, y, u⃗)Θ(v − v∗(x, y))dxdy, (7.3)

and Θ(v) is the radial-tangential model for macroturbulence (Gray, 2005),

Θ(v) =
1

2
√
π

[
1

ζ cos θ
e−(

v
ζ cos θ )

2

+
1

ζ sin θ
e−(

v
ζ sin θ )

2
]
. (7.4)

The integral for M(v) (Eq. 7.3) is numerically computed by assigning a grid
of points (x, y) in the 2D sky-plane across the stellar disk, each with area
element dA = dxdy. Our coordinate system is a cartisian coordinate system
in units of R∗ with the x-y plane defining the sky-plane, the y-axis defining
the stellar rotation axis, and the z-axis towards the observer (so z > 0 is the
visible hemisphere). At each point, the macroturbulence kernel Θ (Eq. 7.4) is
evaluated at the Doppler-shifted velocity at that position, v − v∗(x, y), given
the macroturbulent velocity ζ and the center-to-limb angle sin θ = x2+ y2. To
compute the rotational velocity on the stellar surface at point (x, y), we use
Eq. 8 from Cegla et al. (2016b) to include a solar differential rotation law,

v∗(x, y) = xveq sin i⋆(1− αy′2), (7.5)

with α = (Ωeq − Ωpole)/Ωeq. The rotations to project the position (x, y) onto
stellar surface (x′, y′, z′) are Eq. 6 and 7 in Cegla et al. (2016b), which simply
involve rotating by β = 90◦ − i⋆ about the x-axis,

z =
√

1− x2 − y2

z′ = z cos β − y sin β

y′ = z sin β + y cos β

x′ = x.

(7.6)

The last piece is the intensity across the stellar disk I(x, y). We adopted a
quadratic limb darkening law with coefficients u⃗ = (u1, u2),

I(x, y, u⃗) =


(1−u1(1−µ)−u2(1−µ)2

π(1−u1/3−u2/6) , if µ ∈ [0, 1]

0, otherwise
(7.7)
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Figure 7.3: Example grid in the x-y sky-plane. The white points are an
example N = 10000 grid across the stellar disk generated using the sunflower
pattern (Eq. 7.8). The opacity of each point is given by I(x, y)/I(0) for
u1 = u2 = 0.3. The blue points are an identically generated grid of 2000 points
scaled to Rp/R∗ and centered at the position of a mock transiting planet at a
random time. The red grid covers the boundary contained within a 10◦ radius
starspot at 45◦ latitude and 30◦ longitude.

where µ ≡ cos θ is the center-to-limb position.

To compute the integral over the disk, we efficiently generate a set of N points
in the (x, y) sky-plane according to the sunflower pattern

rk =

√
k − 1/2

N − 1/2
, θk = k(2πϕ),

xk = rk cos θk, yk = rk sin θk,

(7.8)
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Figure 7.4: Left: Example starspots generated at lat = ±30◦ at a series of
longitudes. Right: The projected area of the spot on the visible hemisphere
as it rotates in and out of view. The solid line is the spot at +30◦. The dashed
line is the spot at −30◦ and is slightly less area as the star is slightly inclined
(i⋆ = 70◦).

where ϕ = (1+
√
5)/2 is the golden ratio. The result is a set of points (xk, yk)

uniformly spaced across the unit circle. This gives the convenient property of
constant dA = dxdy = π/N in Eq. 7.3. An example grid is shown in Figure 7.3.

For the case of no macroturbulence (ζ = 0 km s−1), we simply integrate

F∗(v) =

∫∫
disk

f(v − v∗(x, y))I(x, y)dxdy. (7.9)

The Spots

To produce the perturbation to the synthetic CCF due to the presence of a
spot, we compute a separate line profile using the same formulation as for the
full stellar disk

Fspot(v) = f(v) ∗M spot(v), (7.10)

where now M spot(v) is the rotational + macroturbulence broadening kernel
given by Eq. 7.3 but integrated only over the portion of the stellar disk inside
the boundary of the spot.

To generate a grid inside the spot to perform the integral, we first define the
boundary of a spherical cap of arcradius s in spherical coordinates at polar
angle θ = s, and azimuthal angles ϕ ∈ [0, 2π]. These are converted into
cartesian coordinates to generate a ring of points circling the z-axis. This
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ring is rotated into the sky plane by successively multiplying by the rotation
matrices Rx(90− lat), Ry(lon+∆lon), and Rx(90− i⋆) to place the spot at a
given central latitude and longitude and inclined with the star. We can self-
consistently account for the rotation of the star by comping the rotation period
at the spot latitude (or at 90◦−cos−1(z) to include the effects of spot-shearing),
which is

Prot(lat) =
2πR∗ cos(lat)

veq
√
1− sin2(lat)(1− α sin2(lat))

, (7.11)

and computing ∆lon = 2π(t− t0)/Prot(lat) for a given time t relative to some
reference time t0.

The border of the spot is then examined for any z <= 0, i.e., portions of the
spot which are rotated out of view. If a subset of the border satisfies this cri-
teria, those values are replaced with the limb of the star, i.e., sign(x)

√
1− y2

given the corresponding x and y (see Figure 7.4. To generate the grid, a sun-
flower grid of radius 2s is initialized at the spot center, and only points falling
inside the spot boundary are kept . The boundary check is performed using
matplotlib (Hunter, 2007) functions by defining a matplotlib.path.Path

object and calling Path.contains_points(). The area of the spot can also
be efficiently estimated by applying the Shoelace formula to the spot bound-
ary. Then, each of the remaining N grid points has a uniform projected area
dAspot = Aspot/N , and Eq. 7.10 is readily computed to obtain Fspot(v). The
only modification is

M spot(v) =

∫∫
spot

(1− C)I(x, y, u⃗)Θ(v − v∗(x, y))dxdy, (7.12)

where C is the spot contrast in intensity. C can also be converted to a temper-
ature contrast by the ratio of two blackbody functions given the temperature
of the photosphere (Boisse, Bonfils, and Santos, 2012).

We also include the effect of the suppression of the convective blueshift with
center-to-limb variability by adding to Eq. 7.5 a term of the form

vconv =
n∑
i=0

ci⟨µ⟩i (7.13)

within the spot, where ⟨µ⟩ is the intensity-weighted center-to-limb position
within the spot (Cegla et al., 2016b).



155

0

2

4

6

8

10

Re
sid

ua
l F

lu
x

20 10 0 10 20
Velocity [km/s]

2

0

2

4

Ho
ur

s s
in

ce
 m

id
-tr

an
sit

Figure 7.5: RRM analysis applied to our synthetic CCF model computed for
KELT-18 b (with α = 0.9), which reproduces a noiseless version of Figure 5.2.

The Planet

The line profile on the patch of star behind the planet is much more simple
to work out, as the planet is simply a circle in the sky-plane. We can thus
generate a grid from the sunflower pattern centered on the planet at time t
and with radius Rp/R∗. Any points that fall off the star will automatically
contribute zero flux by definition of I(x, y). Since the planet occults all flux
in its shadow, it is equivalent to integrate Eq. 7.3 just for the planet grid.

As a sanity check, we simulated a transit using the system parameters of
KELT-18 (McLeod et al., 2017; Rubenzahl et al., 2024a). Figure 7.5 shows
the result of performing the same Reloaded Rossiter-McLaughlin (RRM; Cegla
et al., 2016b) analysis on this simulated data as was carried out in Chapter 5.
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Figure 7.6: Simulated RRM residual maps for just the planet case (left), just
the spot case (center), and the combined planet+spot case. The planet has
an amplitude at the 1 ppt level, whereas the spot amplitude is ∼10 ppt.

Synthetic CCF

The synthetic CCF is finally obtained by convolving the overall line profile

F (v) = 1 + F∗(v)−
∑

Fspot(v)− Fpl(v) (7.14)

with an instrument broadening kernel,

CCFstar = F (v) ∗ T (v). (7.15)

For KPF, we take T (v) to be a Gaussian with a FWHM of 3 km s−1. For
further accuracy, this could be replaced with a direct measurement of the CCF
from a LFC spectrum, which shows the KPF line-spread-function is slightly
non-Gaussian.

Figure 7.6 plots an example RRM residual map for the Kepler-1658 system
parameters showing the planet shadow, a starspot bump matched by-eye to
the data, and the combined effect. The planet signal is ten times smaller than
the spot amplitude and only about twice the amplitude of the noise in the
wings of the observed residuals (see Figure 7.2).

7.4 Directly measuring the spot

The latitude of the spot is already constrained from photometry to > 30◦

based on the photometric rotation period being 76% slower than the projected
equatorial rotational velocity veq sin i⋆. Likewise its filling factor (% of flux
removed) must be around 1–2 ppt, corresponding to a spot with size 5◦ at
100% contrast.
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Figure 7.7: The same as Figure 7.1 but for synthetic KPF CCFs generated for
a spot geometry tuned by-eye. The inset in the lower left shows the geometry
of the spot, which has a radius of 10◦ (contrast 0.8) with an outer annulus
at 15◦ (contrast 0.4). The lines of longitude on the star have been rotated
according to the velocity at that latitude given the differential rotation law.

The observed CCFs (Figure 7.1) do not have the shape of a rotation pro-
file, but are slightly V-shaped. We found that differential rotation with α =

0.55 matched the steepness of the wings, while an intrinsic line profile with
FWHML = 5 km s−1, FWHMG = 1 km s−1, and AL = 0.165 provided a
good match to the wings with marginal additional macroturbulent broadening
(ζ < 5 km s−1). We required veq sin i⋆ in the 38–40 km s−1 range to match
the width of the CCF, which is slightly larger than the value measured from
HIRES spectra by Chontos et al. (2019) but is still somewhat degenerate with
turbulent broadening. Finally, the star is inclined at i⋆ = 70◦.

We placed a pair of concentric starspots each with contrast 0.4 at a latitude
of 45◦ (corresponding to Prot = 5.66 days given veq) and longitude at the final
observation timestamp of −2◦ (0◦ being along the y-axis). The central spot had
a radius of 10◦ and represents the umbra. the outer spot has a radius of 15◦;
its outermost 5◦ annulus represents a penumbra. The choice to parameterize
the spot in this manner as opposed to a single spot with contrast 0.8 was to
obtain a larger width at the wings of the spot and a narrower width at the
core, as is seen in the data. The starspot model and the resulting synthetic
CCFs and their bisectors are shown in Figure 7.7. The distortion to the CCF
qualitatively follows the pattern seen in the data purely by rotating the star
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Figure 7.8: a) Observed CCFs (blue) and a model CCF (orange) of just the
star with no spots. b) On-sky geometry of the spot+planet model. The
spot is created by two concentric spots of different radii, which act as an
umbra/penumbra to create a deep core with broader wings. c) The residual
from panel (a) obtained by subtracting the model CCF from the data. Both
the spot and planet signal are remaining. d) Simulated spot+planet residual,
which qualitatively agrees with panel (c) but cannot reproduce the asymmetry
or time-varying depth observed in the data.

at each timestamp of the observations. Though, fine-tuning the parameters to
acquire a match at the 100 ppm level necessary to remove the spot effect and
preserve the planet shadow has proven challenging.

As a result, we attempted to directly model the spot by taking the spotless
version of the model as just described as our CCFout and following the RRM
procedure to isolate4 CCFspot. Figure 7.8 shows this process. Modulo some
residual bumps in the wings from not perfectly matching the symmetry of the
CCF, the now-isolated CCF within the starspot shows significant asymme-
try. This may be (at least in part) responsible for the observed C-shape in
the data bisectors (Figure 7.1) which is not seen in our synthetic model (Fig-

4The planet shadow is also still in this residual CCF, but is a small perturbation.
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ure 7.7). Visually, the observed CCFspot (panel c) can be seen to have a steeper
blueshifted wing and more slanted redshifted wing. This could be due to the
starspot suppressing the local convective blueshift, reducing the intensity of
the blueshifted portion of CCFspot (Kunovac, V., Cegla, H., Chakraborty, H.
et al. in prep). To complicate interpretations, the planet shadow is somewhere
in the in-transit portion of the data (assuming an accurate ephemeris, which
we propagated using the measured period decay of Vissapragada et al. 2022).
However, the planet shadow will act as a perturbation to the now-isolated
CCFspot. Thus, by measuring the local RV of CCFspot, we could potentially
observe an anomaly analogous to the RM effect measured from the full CCF.

To obtain a local RV unbiased by the asymmetry of CCFspot itself, we fit each
CCFspot with a Bi-Gaussian (Nardetto et al., 2006)

y(v) =

y0 +D exp
(

−(v−vloc)
2

2σ2(1−A)2)

)
, v <= vloc

y0 +D exp
(

−(v−vloc)
2

2σ2(1+A)2)

)
, v > vloc

(7.16)

where vloc is the local RV of the spot, D is the line depth, y0 is an arbitrary
continuum level (should be zero if the CCFstar model was perfect) A is the
asymmetry, σ is the line width. We plot in Figure 7.9 the result of this fit
to the observed time series of CCFspot. We also computed equivalent widths
by integrating the fitted Bi-Gaussian and computed the bisector inverse slope
(BIS) of the CCFspot.

Several curious features can be observed in the time series of the fitted spot
properties, but interpretation is difficult. The local RV increases monotoni-
cally until around the expected transit egress, where it appears to flatten out.
The line profile narrows (decreasing FWHM) and deepens (increasing depth)
starting at the expected transit ingress time, but continues post-transit. The
CCFspot also become more symmetric until the transit midpoint (seen in both
BIS and A), at which point the CCFspot start becoming asymmetric again.
There is likely some confluence of both the spot changing in morphology
and viewing angle as well as the appearance and disappearance of the planet,
though extracting anything more quantitative will require either expunging all
remaining possible noise sources (e.g., there is a known fixed-pattern modal
noise that produces correlated structure in the CCFs at about half the level of
the variability in this dataset) or observing another transit of Kepler-1658 to
get a fresh dataset at higher S/N with the star at a different activity state.
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Figure 7.9: Properties derived from a Bi-Gaussian fit to the observed CCFspot

time series. From top to bottom, the local RV, FWHM, depth, equivalent
width, bisector inverse slope, and asymmetry. The vertical dashed lines denote
the predicted transit ingress, midpoint, and egress times.
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Figure 7.10: The residuals of CCFspot after subtracting their fitted Bi-
Gaussian, for the out-of-transit (top) and in-transit (middle) observations.
The colorscale is the same as Figure 7.10. Bottom: 2D heatmap of the
above, with time on the vertical axis. The planet shadow is not visible.
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Even so, we can subtract the Bi-Gaussian fit from the CCFspot to search the
“residuals of the residuals” for the planet shadow. This is shown in Figure 7.10
in the same style as Figure 7.2. There are still structured residuals that per-
sist out-of-transit at amplitudes comparable to and larger than the expected
planet signal. Identifying any one residual “bump” as the planet shadow is
indeterminate.

7.5 A Likely Aligned Orbit

Despite the non-detection of the planet shadow and unsuccessful removal of
the spot effect, we can still place an upper-limit on Kepler-1658 b’s obliquity.
Since the planet transits at such a high impact parameter (b = 0.95; Chontos
et al., 2019), the transit chord intersects only the stellar limb. Thus, as the
projected obliquity increases, the transits chord sweeps along the limb of the
star and crosses large projected rotational velocities (see panel b of Figure 7.8).

A full injection recovery analysis with accurate correlated noise is underway,
but for visualization purposes, we plot in Figure 7.11 the range of velocities
spanned by the planet shadow at each possible λ throughout the transit. The
corresponding range of velocities spanned by the spot is over-plotted, with the
wider band corresponding to ±20 km s−1 as the average fitted FWHM of the
CCFspot. The only regions of this parameter space where the planet and spot
do not overlap is λ ∈ ±[30◦, 150◦]. Under the (to-be-verified) assumption that
the simulated amplitude of the planet shadow (∼1 ppt, Figure 7.6) being twice
the noise level in the CCFs themselves (500 ppm) would lead to a detection,
then we can rule these orbits out due to the absence of detecting the planet
shadow in the CCF wings. The allowed solutions would be those which have
the planet shadow overlap with the spot bump, λ = ±30◦ (aligned solutions)
or λ = 180◦ ± 30◦ (anti-aligned solutions).

The degree of alignment would constrain tidal realignment theory. Using the
obliquity damping timescale from Ogilvie (2014), their Eq. 9, in conjunction
with the constraint on k2,2,2 from the measurement of Ṗ /P by Vissapragada et
al. (2022), we find that (k2,1,0−k2,1,2) ≳ 3×10−5 (or the associatedQ′ ≲ 5×104)
to damp any primordial obliquity within 0.1–1 Gyr. Vissapragada et al. (2022)
computed the tidal efficiency of period decay to be 2.5×104, thus if period and
obliquity decay operate at similar efficiencies in Kepler-1658, then its evolution
off the main sequence should have erased any primordial obliquity. Though,
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Figure 7.11: Local RV on the stellar surface spanned by the planet shadow
(blue) and the spot (red) as a function of projected orbital misalignment λ.
The central red band plots the span of local RVs at the spot center as it
rotates across the stellar surface. The wider band expands this region by
±20 km s−1, the FWHM of the fitted CCFspot. The boxed regions outline the
part of parameter space where the planet shadow would be decoupled from
that of the spot.

more detailed calculations (e.g., Spalding and Winn, 2022) will be needed to
analyze the evolution of an oblique orbit across the Kraft Break in the highly
coupled star–planet system.

Even if Kepler-1658 b were definitively aligned, its singular nature would not be
an unambiguous signature of misaligned HJs around hot stars realigning over
the course of stellar evolution; Kepler-1658 b could have formed aligned. More
examples are needed to build a statistical sample to compare main-sequence
hosts to evolved hosts at the population level. Saunders, N. et al. (in prep)
observed the RM effect for three HJ systems around evolved stars more massive
than the Kraft Break. All were aligned. This hints at the relative efficiency of
obliquity damping to operate on short (< 1 Gyr) timescales. More examples
of HJs experiencing orbital decay will allow direct comparisons between the
tidal efficiencies governing both processes.
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C h a p t e r 8

CONCLUSION

This thesis has explored the cutting edge of extreme precision radial velocity
(EPRV) astronomy and the mysterious origins of the shortest period planets.
Can the most massive of rocky ultra-short-period planets retain gaseous en-
velopes (Chapter 2)? Can we learn more about stellar activity—perhaps the
fundamental limit to the EPRV method itself—by building new instruments
to study our Sun in unprecedented detail (Chapter 3)? Does the polar hot
Neptune population share a common history of migration and orbit-tilting
(Chapter 4)? Are extremely eccentric worlds with distant giant planetary
companions their progenitors (Chapter 6)? How can we leverage the cutting-
edge of EPRV to refine our understanding of hot-Jupiter formation, and at
the same time study the surfaces of their host stars (Chapters 5 and 7)?

In this final chapter, I will summarize the key results of this thesis (8.1) and
discuss the next steps in the field of EPRV and stellar obliquities (8.2).

8.1 Summary

The key findings of this thesis are as follows:

1. TOI-1347 b is the most massive rocky USP discovered to date. Like
other super-Earth USPs, it has a nearby outer companion, TOI-1347 c.

• We were able to measure the mass of the USP with two years of
Keck/HIRES RVs as part of the TESS-Keck Survey. At 11.1 ±
1.2 M⊕ and 1.8 ± 0.1 R⊕, TOI-1347 b has a bulk density com-
parable to Earth while being an order of magnitude more mas-
sive. The outer planet’s mass remained obscured by stellar activity
(< 6.4 M⊕), but its size is similar at 1.6 ± 0.1 R⊕ as determined
from transit photometry.

• Of intrigue is the tentative (3σ) detection of phase-curve variabil-
ity, as well as a secondary eclipse (2σ) for the USP. If confirmed
(e.g., by JWST), the depth of the secondary eclipse requires a high-
albedo atmosphere, which cannot be made of H/He due to the in-
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tense irradiation at TOI-1347 b’s 20 hr orbital period. Such a high
mean-molecular weight atmosphere could be comprised of reflective
silicate clouds, or may be the result of the outgassing of Na from
the molten surface.

2. Sun-as-a-star EPRV spectroscopy is both an exquisite means of study-
ing the impact of stellar activity, as well as a means of stress-testing,
calibrating, and diagnosing issues throughout the instrument.

• The Solar Calibrator (SoCal) is an autonomous solar tracker with
a weatherized enclosure that feeds stable disc-integrated sunlight
into the Keck Planet Finder (KPF).

• With SoCal, KPF acquires R∼98,000 optical (445–870 nm) solar
spectra up to signal-to-noise (S/N) ∼ 2400 in 12 sec exposures.
SoCal can leverage KPF’s fast readout mode (< 16 sec between
exposures) to do helioseismology at < 30 sec cadence.

• SoCal RVs agree with the NEID Solar Feed at the photon-limit (30–
40 cm s−1) on intra-day timescales. SoCal data was significantly
helpful in identifying and diagnosing a charge-transfer-inefficiency
issue in the KPF green CCD.

• SoCal data products are publicly available and will facilitate future
studies of stellar activity at high S/N on our nearest solar-type star.

3. WASP-107 b, a hot super-Neptune with a distant outer companion, has
a polar, slightly retrograde orbit.

• The high obliquity of WASP-107 b is likely a remnant of its history
of migration, which has been invoked to explain its ultra-low density
and anomalously large envelope mass fraction (> 85%).

• We determined WASP-107 b’s obliquity by observing the Rossiter-
McLaughlin effect with Keck/HIRES.

• If WASP-107 c’s orbit is mutually inclined to WASP-107 b, ongo-
ing nodal precession cycles would affect WASP-107 b’s obliquity. A
planet spends more time near its maximum obliquity during a nodal
precession cycle than any other value, so if this mechanism is to ex-
plain the abundance of polar hot Neptunes, the mutual inclination
distribution must be strongly peaked around 40–60◦.
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4. The ultra-hot Jupiter KELT-18 b has a polar orbit.

• We observed a transit of KELT-18 b with KPF and modelled the
distortion to the stellar line profile by the transiting planet using
the Reloaded Rossiter-McLaughlin technique.

• The star exhibits either significant differential rotation or center-to-
limb variations. We found the latter is more likely based on spectral
line shape changes that varied with center-to-limb position.

• A binary stellar companion KELT-18 B exists in the system. Gaia
astrometry revealed its orbit is face-on to our line-of-sight. As such,
Kozai-Lidov oscillations and high-eccentricity migration are a plau-
sible explanation for KELT-18 b’s formation, provided it formed
beyond about 6 AU in order for general relativistic precession ef-
fects to not quench eccentricity excitation.

5. The extremely eccentric (e = 0.84) sub-Saturn Kepler-1656 b has a low
stellar obliquity.

• The planet’s extreme eccentricity places its periastron passage at
just 0.03 AU, a distance close enough that tidal forces may be ac-
tively circularizing and shrinking the orbit.

• The canonical framework of high-eccentricity migration should also
tilt the planet’s orbit, yet we observed Kepler-1656 b to be consis-
tent with an aligned orbit.

• Kepler-1656 b is the most eccentric exoplanet in a single star system
to have its obliquity measured. Other eccentric exoplanets in single-
star systems are also aligned, while eccentric exoplanets in multi-
star systems are misaligned.

• Kepler-1656 is the only eccentric exoplanet with a detected outer
planetary companion. The system is consistent with either an on-
going coplanar high eccentricity migration, or could be a rare snap-
shot of a system actively undergoing large eccentricity and obliquity
oscillations.

• The mutual inclination of the outer companion would provide the
key dynamical insight into the system, but is likely unmeasurable
with future Gaia data releases.



167

6. Kepler-1658 b is a rare HJ experiencing tidal orbital decay that happens
to orbit a host star which evolved across the Kraft Break.

• Since Kepler-1658 was a hot star with a radiative envelope when
on the main-sequence, it would have only just gained the ability to
realign Kepler-1658 b since leaving the main sequence. A convective
envelope was previously detected using asteroseismology.

• The star is also heavily spotted and likely strongly differentially
rotating (60% slower rotation at the poles relative to the equator).

• We attempted to measure the obliquity of Kepler-1658 b using the
Reloaded RM technique with KPF, but a significant starspot dis-
torts the observed CCF. Extracting the planet shadow is difficult.

• Even so, we tentatively place an upper limit of 30◦ on the projected
obliquity thanks to the high impact parameter of the transit.

• If Kepler-1658 b is aligned, it would be part of a growing trend
towards post-main-sequence HJ realignment around massive stars.

8.2 Future Directions

Are the polar hot Netunes related to hot Jupiters?

While the vast majority of exoplanets to have their obliquities measured are
HJs, EPRV instruments have opened a new frontier for measuring the orbits of
smaller planets. Hot Neptunes (Stefànsson et al., 2022) and even rocky planets
(e.g., Zhao et al., 2023a) are well within our capabilities. There are now more
new planet candidates from the TESS mission as there are confirmed exoplan-
ets from all previous missions (NASA Exoplanet Archive, 2019). Conveniently,
the planets TESS is most sensitive to are precisely these close-in orbiting
worlds like HJs and hot Neptunes. One recent example is TOI-1173 A b, an
inflated super-Neptune (similar to WASP-107 b) which is the first of its type
to be discovered in a wide binary star system (Galarza et al., 2024). An obliq-
uity measurement for this world would help bridge the gap between HJs and
the smaller worlds which also likely migrated in their past.

So far there has been one statistical survey of the hot Neptune population. The
DREAM survey (Bourrier et al., 2023) included all known obliquities (domi-
nated by HJs) but had a special focus on a sample of ∼30 sub-Saturns/hot-
Neptunes (∼20 from literature, 12 from DREAM). Their sample yielded a
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larger fraction of polar orbits (2/3rds of the misaligned systems) than is ob-
served in the HJ sample (Albrecht et al., 2022). Secular resonance crossings
during the disk-dispersal stage (Petrovich et al., 2020) have been proposed to
explain polar obliquities, but still require outer giant planets in appropriately
distant orbits. Tidal sculpting of the hot Neptune obliquity distribution is
likely important, as these small worlds are more feeble than their HJ relatives
in dissipating tidal energy into their stars (Attia et al., 2023). Expanding
this population may thus be a window into the same formation mechanisms
that HJs experience, but without primordial misalignment erased by dissi-
pative mechanisms. The outer architectures of extrasolar systems also need
to be better understood. As this thesis demonstrated, the mass and orbital
characteristics of outer bodies have significant implications on the evolution
of the inner system. Targeted surveys like the Distant Giants Survey (Van
Zandt et al., 2023) that are dedicated to mapping out the outer architec-
tures of hot Neptune host stars will greatly narrow the range of plausible
formation mechanisms. Complementing RV surveys will be the full Gaia as-
trometric timeseries in DR4 (2025), which will be more sensitive to massive
(> 2 MJup) but more distant (> 2 AU) planets around the nearest < 100 pc
stars (Espinoza-Retamal, Zhu, and Petrovich, 2023).

One final piece of evidence for a common history of migration is the trend
for misaligned hot Neptunes to also be losing their atmospheres. WASP-
107 b (Oklopčić and Hirata, 2018; Spake et al., 2018; Allart et al., 2019;
Kirk et al., 2020) is well studied, but also HAT-P-11 b (Allart et al., 2018),
GJ-436 b (Ehrenreich et al., 2015), GJ-3470 b (Palle et al., 2020a), and HAT-
P-18 b (Paragas et al., 2021; Fu et al., 2022) all have polar orbits and escaping
atmospheres. This trend has weakened with the helium survey of DREAM
(Guilluy et al., 2023), though many of their targets had low atmospheric scale
heights. A plethora of new targets from TESS have helium detections and
await obliquity measurements, including TOI-1420 b (Yoshida et al., 2023;
Vissapragada et al., 2024), TOI-1430 b (HD 235088; Orell-Miquel et al., 2023;
Zhang et al., 2023), and TOI-560 b (Zhang et al., 2022). The last two, at
500–700 Myr, would also provide a closer look at post-formation architecture.

Remaining challenges for detecting terrestrial exoplanets with RVs

The search for exo-Earths has already begun. The HARPS-N Rocky Planet
Search (Motalebi et al., 2015) and ESPRESSO RV blind search for Earth-class
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planets (Hojjatpanah et al., 2019) are ongoing, while the EXPRES 100 Earths
(Brewer et al., 2020) and NEID Earth Twin Survey (Gupta et al., 2021) have
recently begun their search. Upcoming instruments like HARPS-3 (Thompson
et al., 2016) will conduct the Terra Hunting Experiment (Hall et al., 2018).
These surveys will be spending hundreds to thousands of telesocpe hours over
the next decades to monitor the nearest stars for Earth-like worlds. To ensure
their success, the stellar activity barrier must be broken.

It is expected, but not yet directly measured, that specific forms of activity in
the near infrared (NIR) should be weaker than in the optical, as the contrast
between spots and the photosphere should be smaller (Marchwinski et al.,
2015). Zeeman effects (Zeeman, 1897) in magnetically sensitive lines are also
greater at redder wavelengths, as the Zeeman splitting factor goes as ∆λ ∝
geffBλ

2
0 (Terrien et al., 2022). PARVI is a unique EPRV instrument in that it

not only operates in the NIR, but its single mode fiber yields a static line spread
function. This is ideal for resolving subtle line shape changes and Zeeman
splitting, which may enable Zeeman Doppler-Imaging (ZDI; Donati, Semel,
and Praderie, 1989; Kochukhov, 2016) techniques to be developed for EPRV
use. A solar feed for PARVI is in active development. The combination of
KPF+PARVI would be a powerful measure of magnetically driven modulations
on the rotation period, and could assess the utility of moving to the NIR as a
“silver bullet” for mitigating stellar activity.

Current solar feeds measure integrated intensity. Unsigned (unpolarized) mag-
netic flux, which can be derived from intensity spectra by measuring Zeeman
broadening with multi-profile least-squares deconvolution (Kochukhov, Maka-
ganiuk, and Piskunov, 2010; Mortier, 2016; Kochukhov et al., 2020; Lienhard
et al., 2023), correlates strongly with activity (Haywood et al., 2022). Signed
magnetic flux should in theory be more sensitive to active regions and is more
readily measured with spectropolarimetry. HARPS-3 will be the first EPRV
spectrograph built with polarimetric capabilities. Its solar feed, ABORAS
(Jentink et al., 2022), will test the utility of this approach on the Sun.

Comparisons between solar EPRV feeds, such as that studied by Zhao et al.
(2023b) over one month, should be extended to longer timescales to study ac-
tivity over many solar rotation periods. With the longitudinal coverage now
extended from HARPS-N in La Palma to KPF in Hawai‘i, up to 20 hours of
continuous solar RVs in the summer months (∼17 hr in the winter months)
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is collectively achieved. By cross-calibrating instruments using the overlap-
ping windows, intermediate-timescale variability like granulation—which may
be more limiting than spots (Lakeland et al., 2024)—can be better resolved.
These data also create an opportunity to assess the utility of the various de-
sign choices made by each EPRV instrument team. Optical (e.g., KPF, NEID,
ESPRESSO, EXPRES) instruments use identically spec’d R4 echelle gratings,
derive RVs by the CCF technique using the same line masks (G2 ESPRESSO),
and wavelength calibrate using the same model of Laser Frequency Comb
(LFC) developed by Menlo Systems. A common data reduction pipeline that
derives RVs in a self-consistent way using a common wavelength range (or set
of spectral lines) could further isolate instrumental systematics. Such a study
was recommended by Crass et al. (2021), but has yet to be performed. Assess-
ing the optimal spectrograph architectures and best performing subsystems
would inform designs for the next generation of EPRV instruments.

For measuring masses, the standard approach of detrending against an activity
indicator or applying Gaussian Process regression acts to remove activity after
it has already been injected into the measured RV. To reach the cm s−1 level,
we probably want to remove activity before deriving the RV. The approach of
Collier Cameron et al. (2021) to separate line shape changes from translations
using principle component analysis (PCA) on the CCF (Davis et al., 2017) gets
us much closer to what we actually want–the uncontaminated bulk achromatic
Doppler shift caused by an orbiting planet. Cretignier et al. (2023) applied
PCA to line-by-line HARPS RVs to chromatically correct for instrumental
effects and stellar activity and were able to detect a candidate super-Earth in
a 600 day orbit around the G-dwarf HD 20794, with KRV = 60 ± 6 cm s−1.
We may also reconsider what quantity we are calling the RV: the position
of the minimum of a fitted Gaussian? The center-of-flux of an absorption
line? The Cepheid-variable astronomical community has made long use of
the bi-Gaussian to handle asymmetric line profiles for deriving accurate RVs
(Nardetto et al., 2006). Separately calculating RVs from segments of a line
could further resolve activity, either as a function of depth (e.g., top/bottom
RVs to separate rotation from convective effects, Siegel, J. et al. in prep) which
traces formation temperature (Al Moulla, Dumusque, and Cretignier, 2024), or
“part-by-part” in wavelength as another way to resolve line asymmetry effects.
To make full use of the information contained in every pixel of an EPRV
spectrum, machine learning methods (e.g., de Beurs et al., 2022; Liang, Winn,
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and Melchior, 2024) show promise for data-driven distinguishing of line shape
changes from Doppler shifts.

As the Sun is now in solar maximum, the strength of active signals will be most
detectable. Days in which the visible hemisphere of the Sun only has a single
large isolated spot (or dense spot group), can be compared to past observations
taken during solar minimum when the Sun had no active features. Better yet,
an ultra-high S/N master spectrum could be constructed from all of the spectra
taken with no sunspots and minimal granulation noise. If these spectra are
selected from a single multi-hour sequence during a particularly quiet day, a
GP model of the p-mode oscillations (e.g., Luhn et al., 2023) could be used
to Doppler-shift each spectrum to a common rest frame before averaging into
the master template, removing the “blurring” effect of averaging over p-modes.
Then, an analysis analogous to the RRM technique (as in Chapter 7) can be
employed to extract the contribution of the sunspot to the disc-integrated
spectrum by subtracting the spotted spectrum (“in-transit”) from the quiet
template spectrum (“out-of-transit”). Comparing such a “sunspot spectrum”
to disc-resolved solar spectroscopy would aid identification of active features.
The Paranal solar Espresso Telescope (PoET; Leite et al., 2022), which will be
connected to ESPRESSO (Pepe et al., 2013) in the coming years, is planned
to have disc-resolved capability. Perhaps a library of sunspot spectra could be
added to quiet-Sun spectra using perturbation theory to fit for any observed
stellar spectrum.

Ultimately, the goal of the EPRV community is to detect and characterize
Earth-like exoplanets. Investigations of these ultra-high S/N solar spectra will
either yield the enabling technologies and methodologies needed to realize this
goal, or they will reveal just how hard this problem truly is. Science is a
process of iteration, reward, failure, learning, and overcoming. The discovery
of an Earth-like exoplanet would fundamentally alter our collective perspective
on life and our place in the universe. Such planets are almost surely out there;
we just need to see beyond the stars which they orbit.
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