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Abstract 

Damage Evolution in Uniaxial SiC Fiber Reinforced Ti 

Matrix Composites 

by Jay Clarke Hanan 

Fiber fractures initiate damage zones ultimately determining the strength and 

lifetime of metal matrix composites (MMCs).  The evolution of damage in a MMC 

comprising a row of unidirectional SiC fibers (32 vol.%) surrounded by a Ti matrix was 

examined using X-ray microdiffraction (µm beam size) and macrodiffraction (mm 

beam size).  A comparison of high-energy X-ray diffraction (XRD) techniques 

including a powerful two-dimensional XRD method capable of obtaining powder 

averaged strains from a small number of grains is presented (HEµXRD2). 

Using macrodiffraction, the bulk residual strain in the composite was determined 

against a true strain-free reference.  In addition, the bulk in situ response of both the 

fiber reinforcement and the matrix to tensile stress was observed and compared to a 

three-dimensional finite element model.  Using microdiffraction, multiple strain maps 

including both phases were collected in situ before, during, and after the application of 

tensile stress, providing an unprecedented detailed picture of the micromechanical 

behavior in the laminate metal matrix composite. 

Finally, the elastic axial strains were compared to predictions from a modified shear 

lag model, which unlike other shear lag models, considers the elastic response of both 

constituents.  The strains showed excellent correlation with the model.  The results 

confirmed, for the first time, both the need and validity of this new model specifically 
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developed for large scale multifracture and damage evolution simulations of metal 

matrix composites.  The results also provided unprecedented insight for the model, 

revealing the necessity of incorporating such factors as plasticity of the matrix, residual 

stress in the composite, and selection of the load sharing parameter. 

The irradiation of a small number of grains provided strain measurements 

comparable to a continuum mechanical state in the material.  Along the fiber axes, 

thermal residual stresses of 740 MPa (fibers) and +350 MPa (matrix) were found.  

Local yielding was observed by 500 MPa in the bulk matrix of the composite.  Plastic 

anisotropy was observed in the matrix.  The intergranular strains in the Ti matrix varied 

as much as 50%.  In spite of this variation, the HEµXRD2 technique powerfully 

provided reliable information from the matrix as well as the fibers. 
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1. Introduction 

1-1. Background and Motivation 

Metal matrix composites (MMCs) were introduced as structural materials in the early 

1970s.  Nearly a decade later, with improvements in processing, applications in 

aeronautics and the automotive industry began demanding materials with the specific 

strength and modulus, controlled toughness and thermal expansion coefficient, hardness, 

and an improved fatigue response only available from MMCs.  Better understanding of 

their mechanical behavior fueled improvement of the reinforcements which in turn 

improved the composite properties.  Consequently, MMCs have found a number of 

applications which now vary from sporting goods to thermal and wear-resistant parts [1, 

2]. 

Of the various types of MMCs (short fiber, particle, or continuous fiber reinforced), 

the continuous fiber reinforced variety provides the highest structural performance.  

These MMCs, usually reinforced with high modulus ceramic fibers, rely on the 

continuous fibers for their strength using the matrix primarily for protection and support 

of the fibers (see, for example, Figure 1-1).  The matrix is also the key player for local 

stress transfer between fibers.  The other types of MMCs typically depend on the weaker 

matrix to act also as a primary load bearing agent. 



22 

 

Figure 1-1  Some example views of continuous fiber metal matrix composites.   

(a) Photograph of a two-dimensional continuous fiber metal matrix laminate 
composite tensile test specimen (Ti matrix/SiC fibers).   

(b) Scanning electron micrograph (SEM) of the polished end of the same 
composite.   

(c) Side view of a polished face of the laminar composite similar to that found in 
(a) here also using SEM.   

(d) Photograph of a single fiber metal matrix composite (Al matrix/Al2O3 fiber).   

(e) Fracture surface of a similar composite to (d) exposing the fiber.   

(f) An SEM of the polished end of (d).   

 

The transfer of load from a broken fiber to the rest of a composite as it is deformed is 

one of the fundamental micromechanical processes determining composite strength, 

lifetime and fracture toughness.  It is a complex process that depends on fiber/matrix 

interface properties, the constitutive behavior of matrix and fibers, the geometric 

arrangement of fibers, fiber volume fraction, and fiber strength distribution.  The 
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prediction of this process is further complicated since the in situ mechanical properties of 

the constituents are significantly different than the properties in the monolithic form [3, 4, 

5].  These differences stem from (i) constraints imposed by neighboring phases; (ii) 

changes in microstructure due to altered processing conditions required for composite 

manufacturing; (iii) thermal residual stresses due to coefficient of thermal expansion 

(CTE) mismatch between different phases; and in some cases, (iv) high dislocation 

densities near the fiber/matrix interface [6].   

Conventional stress analysis of fiber composites employs the use of strain gage 

rosettes on the surface of the matrix.  Test methods such as the ASTM specification 

D3039-76 (1989) provide a detailed example of the traditional analysis which provides 

information on the longitudinal and transverse tensile strength, Young’s moduli, tensile 

strain, and major (longitudinal) and minor (transverse) Poisson’s ratios [7].  However, the 

macroscopic stress-strain curves obtained by these conventional means result from the 

co-deformation of the individual phases making it impossible to determine the phase-

specific in situ constitutive behavior.  Typical composite deformation includes collective 

nucleation and evolution of damage, fiber fractures, matrix fractures and plasticity, as 

well as interface separation and sliding. 

Several mechanical models have been proposed to describe the behavior of MMCs.  

The simpler models such as the concentric cylinder or the Eshelby model point to the 

fiber fraction as the more sensitive parameter determining a composites properties.  Bulk 

properties have also been predicted with relative success using finite element modeling 

(FEM).  Several efforts to improve computational speed over FEM have been proposed.  

One of these, which uses the “shear lag” concept, will be examined in more detail in 
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Section 3-2.  Reliable micromechanical models, particularly models that correctly predict 

ductility in MMCs, require further development [8]. 

Whatever model is employed to understand an MMC, there still remains an 

overwhelming need to validate or refute the predictions with relevant mechanical data.  

Such data are in short supply.  Modeling studies are often compared to predictions from 

Monte Carlo simulations [9, 10] or incomplete subsets of data [8 (p. 241)], limiting the 

ultimate relevance to the engineer who must deal with the real composite.  In the Ti-SiC 

composite system, micromechanical studies applying acoustic methods have been used to 

identify in situ fiber breaks.  But these studies do not provide the phase-specific strains in 

the matrix and fibers, and only hint to the mechanism of load transfer in the composite 

[11]. 

In order to predict the strength and lifetime of a fiber composite, the load transfer 

from broken fibers to the surrounding intact material must be understood.  This requires 

accurate determination of stress-strain evolution at the scale of microstructure—usually 

on the order of the fiber diameter.  In situ measurements of stress/strain can then be used 

to validate and refine predictive micromechanics models.  In special cases, this has been 

achieved using optical methods such as micro-Raman and piezospectroscopy [for 

example:  6, 12, 13, 14, 15].  These studies provided valuable insight about fiber strains 

in damaged composites at length scales approaching several µm.  However, in most of 

these studies either the matrix could not be characterized, or only shallow surface regions 

were investigated.   

More general probes that measure both the matrix strain and the reinforcement strain 

are necessary to truly understand composite deformation.  One such tool historically 
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useful in measuring stress is X-ray diffraction.  Low-energy X-ray diffraction, on the 

order of 8 keV,* has long been used to measure stress in single phase materials and, 

through several technological improvements, has become a standard method for 

measurements of residual stress in many materials [16, 17].  However, for most materials, 

low-energy X-ray diffraction provides information specific to the material surface.  This 

is particularly true for MMCs where, beyond aluminum, the penetration depth of low-

energy X-rays is on the order of micrometers (e.g., 30 µm for Ti at 9 keV) and rarely 

provides information on more than one layer of matrix grains.  Destructive methods such 

as layer removal employed low energy X-rays for depth-resolved residual strain 

measurements [18, 19], but with the exception of diffraction via neutrons, observation of 

continuous fiber strains under applied stress was relegated to the abovementioned 

specialized cases where the matrix was optically transparent.   

Neutron diffraction also remains a valuable tool in the investigation of MMC 

mechanical behavior.  In-depth studies of the bulk composite response to applied stress 

coupled with phase-specific fiber and matrix strains have provided significant insight to 

the peculiar behavior of these materials [20, 21, 22, 23, 24, 25, 26, 27, 28].  Though one 

of these studies [28] does provide single fiber specific strains coupled with the elastic 

portion of the matrix response, the inherent advantage of the neutron’s penetrating depth 

through week nuclear interactions also limits the probe’s spatial resolution.  In [28] the 

researchers compensate for this drawback by increasing the fiber diameter substantially 

beyond the realm of a typical MMC.  The result is a measurement which is applicable to 

continuum mechanics models, but entirely avoids the role of fiber matrix interactions on 

                                                 
*Such as X rays available from a typical Cu tube. 
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the order of the microscale [29, 30].  Other more recent investigations have shown that, 

for a more traditional MMC even of the same material system, the fiber matrix interface 

is characterized primarily by abrupt variations in stress never considered by continuum 

mechanical models [31, 32].  Thus a general lack of information concerning MMC 

deformation mechanisms at the scale of the microstructure persists. 

1-2. Approach 
It naturally follows that a study on a practical high-performance MMC would be of 

significant value to the modeling and eventually engineering community.  One such 

composite is the Ti-matrix/SiC-fiber laminate composite (Figure 1-1 (a)-(c)).  Both Ti 

and SiC are well known as high-temperature structural materials [33].  Naturally, the Ti-

SiC composite itself has received considerable attention from other researchers simply 

due to the performance characteristics of its constituents [8, 11, 19, 21, 23, 24, 25, 26].  

However the fundamental lack of phase-specific micromechanical data remains. 

The following describes the use of X-ray diffraction to determine the phase-specific 

in situ load transfer and damage evolution under applied tensile stress in a Ti-SiC 

composite.  Synchrotron X rays were required to obtain the necessary intensity to reduce 

the beam size below the fiber diameter while maintaining sufficient diffraction statistics 

and strain resolution over reasonable count times.  The technique described may be 

tailored to glean the specific mechanical information needed and is applicable to a variety 

of composites beyond the Ti-SiC system.  Multiple scales from the micro (several µm) to 

macro (several mm) are simultaneously available with this method.  No other technique, 

including neutron diffraction, could provide the spatially resolved strain resolution from 



27 
multiple phases so crucial to understanding mechanical behavior of metal matrix 

composites. 

In this thesis, the Ti matrix and SiC fiber strains were compared to predictions from a 

general micromechanics model [34].  This “matrix stiffness shear lag” (MSSL) model 

accounts for the linear elastic co-deformation of fiber and matrix in a wide variety of 

unidirectional fiber composites containing any configuration of multiple fractures.  This 

is the first damage evolution study tailored for application to a micromechanics model 

conducted on a continuous fiber MMC where both matrix and fibers were investigated 

simultaneously at the scale of the microstructure.   
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2. Diffraction Techniques to Study Composites 

The following briefly introduces the use of X-ray diffraction to measure strain.  Some 

issues concerning the application of stress to a diffracting body are also presented.  The 

final section outlines the two primary analysis methods used to measure the strains in the 

Ti-SiC composite.  The specifics of each experimental procedure are presented within the 

respective chapters regarding the experiments. 

2-1. Strain and X-Ray Diffraction 

Strain measurement with “traditional” X-ray diffraction (XRD) is a well-established 

technique [16, 17].  Measurements of strain using X rays were performed as early as 

1925 [35].  Recent advances include the use of high-energy X rays (with more 

penetrating power) and microdiffraction with sampling volumes of several µm3.  Both of 

these are best performed at synchrotron facilities, and a combination of which was used 

for this study.   

Microdiffraction experiments such as [36] by Noyan and co-workers at the National 

Synchrotron Light Source (NSLS) achieved a spatial resolution of a few µm.  Their 

systematic investigations of the instrument improved its accuracy and identified potential 

sources of error such as beam divergence and the sphere of confusion [37, 38].  They 

provided a portion of the substantial groundwork establishing microdiffraction as a viable 

XRD method. 

The use of high-energy X rays to sample regions deep in materials has been 

demonstrated by a number of pioneering studies [examples: 39, 40, 41, 42, 43].  High-

energy synchrotron XRD provides the ability to probe buried regions in materials.  The 
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high intensity of synchrotron X rays also provides excellent time and spatial resolution.  

The abovementioned synchrotron XRD studies employed both monochromatic [39, 41, 

42], and polychromatic [40] beams with the former yielding higher strain sensitivity (10-5 

vs. 10-3).  They also sampled volumes as small as several hundred µm3.  Although a few 

studies are noted on strain distributions around fibers in composites [39, 40, 41], none are 

known that investigated the in situ mechanical behavior of phases on multiple scales. 

In general, direct XRD strain measurements under kinematic diffraction conditions 

are limited to crystalline phases of materials which deform elastically.*  Polycrystalline 

bodies deform when subjected to external or internal stress.  As long as the stress is 

small, the deformation is reversible.  This reversible deformation is elastic strain.  The X-

ray strain method requires a measurement of the lattice parameters, using a least-squares 

refinement of several peaks, or lattice spacings, specific to a single peak position, in the 

material. 

According to Bragg’s Law, λ = 2 d sin θ, diffraction peaks arise at a particular Bragg 

angle, θ, determined by the lattice spacing, d, of the atoms of a lattice in a grain (or 

crystallite) which is oriented for the diffraction condition at a particular wavelength, λ.  

Peak shifts determined as a difference in initial and final angles ∆(2θ) are proportional to 

changes in the average distance between lattice planes, ∆d [16].  It is this change in lattice 

spacing which provides the diffraction elastic lattice strain in a diffracting material: 

ε
d d0−

d0
=

 
(2-1) 

 

                                                 
* It is possible to deduce plastic strain information using diffraction in a crystalline body 
or elastic strain information from an amorphous body (as a second phase), but here these 
are considered indirect strain measurements. 
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where d0 is the reference lattice spacing.  When d0 is from a stress-free material, the 

resulting strain measured includes residual strain.  Measuring residual strain using 

diffraction is well developed [17].  The choice of a strain-free reference and 

measurements of d0 will be presented in Section 5-2. 

Although the procedure is simple to describe and understand, its appropriate 

application requires extreme care, especially when considering the level of accuracy 

required to measure strains.*  Errors can be intrinsic to the technique (and the instrument 

used) or they can result from the inhomogeneous nature of materials studied.  In the 

general case when stress is applied to a polycrystalline material or composite, the total 

strain measured with diffraction at any point includes three terms [44]: 

εij
total = εij

o + εij
inter. + εij

res.     (2-2) 

where, εij
o is the homogeneous elastic strain due to applied stress σo (if the material were 

a homogeneous isotropic body), εij
inter. is the interaction (or coupling) strain due to elastic 

incompatibility or inhomogeneous plastic yielding, and εij
res. is residual strain.  Each of 

these terms is an average value over the sampling volume.  Since not all the grains within 

that volume contribute to the diffraction pattern, effects from heterogeneity can become 

critical when sampling small volumes. 

The measurement of a peak position to assign lattice spacing possesses an inherent 

error associated with fitting the peak.  Depending on the source of the radiation and the 

conditions of the optics and specimen sampled, the peak width and profile will change.  

While sensitive to lattice spacing, the peak position is also sensitive to the optical and 

sample geometric configuration.  Each component possesses its own contribution to the 
                                                 
*Many materials yield or fracture before the elastic strain reaches 1% (typically 0.2% to 
0.5%). 
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error in the final peak position.  A good review of errors in strain measurements is 

presented in [17].  In summary, the best practice to minimize error in a diffraction 

experiment is to maximize the exposure time, minimize inadvertent sample translation 

from the center of diffraction, and use an internal standard.  An internal standard may be 

composed of any suitable diffracting material not expected to change its lattice spacing 

over the course of the experiment.  If systematic errors from sample displacement or 

other minor misalignments occur, a strain-free standard will show a peak shift which may 

then be used to correct for erroneous shifts in the strained sample [45].  Internal standards 

also allow samples scanned between alignments to be compared, a necessary option for 

reliable residual strain measurements. 

Selection of an internal standard can be difficult.  Consideration must be made for 

overlap in the peaks from the standard with the peaks from the specimen.  There may also 

be problems with exposure times, as the peak intensity from a strain-free standard is 

usually much greater than a strained material due to texture, grain size effects, or strain 

broadening.  The best standards are available from the National Institute of Standards and 

Technology (NIST); however, a well-characterized powder which provides peaks that do 

not appreciably overlap will generally suffice.  Several common standard powders 

include: Al2O3, CeO2, LaB6, NaCl, and Si. 



32 

2-1.1. Strain Measurements with In Situ Mechanical Loading 

With X-ray diffraction’s ability to measure strain, it follows to apply the analysis to a 

body under applied stress.  Mechanical loading is not new to XRD.  However, in spite of 

the considerable number of mechanical loading experiments performed using diffraction 

to measure strain, advances in optics and peripheral equipment have maintained a realm 

of continuous flux and renewal on the cutting edge of modern science.  One significant 

new instrument planned for the Advanced Photon Source (APS) at Argonne National 

Lab, HEX-CAT (High Energy X-ray Collaborative Access Team) will dedicate much of 

its time to strain measurements using high energy X-ray diffraction.  New instruments are 

also planned at other advanced facilities relying on neutron and X-ray diffraction (JEEP 

at Diamond/ISIS, ENGIN X at ISIS, VULCAN at SNS, SMARTS at LANSCE, a parallel 

optics µbeam line upgrade at X-20 (NSLS), and a 3-D spatially resolved sub-µm 

polychromatic beam line replacing 7.3.3 at ALS, to name a few). 

The first mechanical loading experiments on unidirectional MMC composites 

performed by Caltech researchers using diffraction took advantage of the custom load 

frame based on an Instron hydraulic press at the Los Alamos Neutron Science Center.  

Further experiments using a small custom load frame designed by I. C. Noyan (IBM) 

were performed using synchrotron XRD at APS.  Modifications to the Noyan load frame 

and adaptation of an Scanning Electron Microscope (SEM) load frame designed by 

Fullam,* have continued to improve the capability to mechanically load composites at 

Caltech while performing XRD measurements (see Figure 2-1, see also Figure 4-3, 

Figure 4-5, and Figure 5-14). 

                                                 
*Ernest Fullam Inc., 900 Albany Shaker Rd., Latham, NY 12110-1491. 
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Figure 2-1  Photograph of adapted Fullam load frame on the goniometer at the 7.3.3 
microdiffraction beam line at the Advanced Light Source.  In this orientation, the open 
face of the load frame allows X rays to reflect from the surface of the sample. 

 
As with any mechanical loading experiment, many factors including accurate load 

cells, a stiff frame, and stable strain increments are important in providing a good 

experimental tool.  However, a load frame intended for use with diffraction also requires 

an open or transparent beam path exposing the sample to as wide a range of visibility as 

possible.  Shadowing the beam by the load frame or grips limits the length of potential 

specimens, and since the diffracted beam averages strain over the irradiated area of the 

sample, edge effects and non-uniformities in the grip region should also be avoided.  The 

weight of a load frame is often critical since, in general, it should be free to rotate when 

mounted on a traditional goniometer.  For some special cases, very large goniometers or 

other robotic platforms are available to translate a massive load frame in the beam [28].  

Finally, a constant stress mode as opposed to a constant strain or displacement 
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operational mode is preferred since diffraction measurements are associated with an 

exposure time sometimes approaching many hours.   

When a constant load cannot be maintained, it is necessary to track the load over time 

and assign the appropriate load to each scan.  Here “scan” refers to the measurement of 

one or more peak positions from a diffraction experiment as described below.  In order to 

track the load on a sample mounted in an X-ray goniometer, a program was designed in 

LabVIEW* 6i (see Appendix A).  The load cell used was an Entran† ELHS-T1M-1KL 

which requires a 10 to 15 V excitation to measure forces up to 6500 N.  The output 

voltage from the load cell is proportional to the applied load on the sample.   

Using digitization hardware, the output voltage can be read by a computer using the 

LabVIEW program.  The time corresponding to the load cell reading by the computer is 

correlated with the start and end time of the scan.  For a typical constant displacement 

experiment on metal matrix composites, the load does not change more than 0.1 MPa 

during short scans.  However over the course of several scans the change can become 

significant enough to effect the strain measurements.  Without appropriate accounting for 

this change in applied stress, strain results would be misinterpreted.  A secondary link, 

assuring the scan times and load cell logged times are synchronized is also recommended.  

When a scan starts, a digital pulse may be sent to the LabVIEW computer and logged on 

the data file with the applied stress values.  The pulse is particularly useful for tracking 

the load during manual scans which may not be recorded at regular time intervals. 

                                                 
*The LabVIEW software is commercially available from National Instruments, 11500 N 
Mopac Expwy, Austin, TX 78759-3504. 
†Entran Devices, Inc. 10 Washington Ave., Fairfield, NJ 07004-3877. 
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In summary, even over the last three years, significant improvements to mechanical 

loading methods coupled with diffraction strain measurements have occurred [29, 30, 31, 

32].  The driving force for such improvements is difficult to define.  One important factor 

is the investment in advanced diffraction facilities.  SMARTS is a good example of 

recent improvements which were particularly clear as it stood next to a previous 

generation workhorse for neutron diffraction strain measurements, NPD [28].*  Similar 

advances such as the high-energy beam line at APS, have reduced the constraints on the 

application of mechanical load frames.  Such synergistic combinations allow for high 

resolution X-ray strain measurements.  A methodology for these experiments is presented 

in the following section. 

 

                                                 
*The Neutron Powder Diffractometer (NPD) was, as its name implies, originally 
dedicated to structure determination through powder diffraction.  However it also, like 
many of its sisters, became a tool of the materials scientist. 
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2-2. High-Resolution X-Ray Strain Measurements. 

High-resolution X-ray strain measurements require precise knowledge of the relative 

diffracted beam position (Figure 2-2).  The relative as apposed to the absolute diffracted 

beam position is of interest since strain is calculated from a difference in lattice spacings, 

Eq. (2-1), which would be accurate even if the absolute lattice spacings are precise but 

inaccurate.  For X-ray strain measurements, the overall objective is to obtain a high 2θ 

spatial resolution over the range of interest.  Receiving slits are a very common tool used 

to improve the 2θ resolution of a diffraction measurement (Figure 2-2).  Very narrow slits 

potentially increase resolution but significantly reduce the signal intensity.   
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Figure 2-2  Schematic of the diffracted beam position and the position of receiving slits. 

 
 

For most X-ray diffraction systems, assuming total mechanical freedom to reduce the 

slit size, consideration for the available time to measure the intensity at a particular 2θ 

typically fixes the lower limit of the slit width.  For example, using a common Cu tube X-

ray source on a standard Siemens diffractometer, reducing the receiving slits to 0.3o from 
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3.0o will extend an hour long scan into an overnight scan with similar peak intensity.  

However, with the large number of photons (or flux) available from a synchrotron X-ray 

source, difficulties in manufacturing reliable narrow slits can also provide a lower 

physical limit.  Methods to reduce the receiving slit aperture have many forms.  Slits 

range from stacked plates, called Soller slits, to reduce divergence to pinhole slits with 

very small apertures or with large aspect ratios maximizing the 2θ resolution at the 

expense of divergence in the direction perpendicular to θ for a gain in throughput.  These 

slits may also be stacked to reduce divergence.  A maximum angle of divergence can be 

readily realized with simple geometry: for two slits a distance, S, apart, and aperture A; 

the angle of maximum divergence, β, from a point source is 2 A / S.  Since divergence 

broadens the peak in 2θ, the strain resolution will diminish with divergent beam optics. 

However, particularly with synchrotron X radiation, the source may produce a highly 

parallel beam.  For highly parallel optics, it is difficult and often unnecessary to 

mechanically construct slits which provide a significant reduction in divergence.  In 

addition, parallel beam optics reduces the sensitivity to systematic errors.  For parallel 

optics, the most effective “slit-like” tool to improve the 2θ spatial resolution is an 

analyzer crystal.  Analyzer crystals consist of a single crystal which has rectangular 

trough or channel cut parallel to a diffracting plane through the length of the crystal.  If 

properly aligned, the diffracted beam must diffract at least twice—once from each 

surface of the channel—to pass through the channel in the analyzer crystal before 

reaching the detector.  Since it is a single crystal, the diffracted intensity is high, but only 

a narrow band—a subset of an incoming divergent beam—approximately the Darwin-

Prins width [46], will diffract through the crystal for a given orientation.  A peak position 
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measurement requires stepping the analyzer crystal attached to a photon counter across a 

diffracted ring in 2θ at a small angular step size.*  Diffraction peaks measured in this way 

have a very low background and minimal detector broadening.   

Fitting these peaks is typically done using a least squares technique.  For synchrotron 

X rays collected through an analyzer crystal, the peak profile is primarily Lorentzian.  A 

small Gaussian component may also be present such that a Voigt peak profile provides 

the best fit.  However, in some cases the statistical improvement is negligible.  Several 

computer programs such as PeakFit† exist for fitting typical diffraction patterns.  The 

peak center is determined based on a least squares fit to the peak.  Errors are also 

automatically calculated as a part of the peak fitting process.  PeakFit reports errors as a 

95% confidence limit to the peak center position which is equivalent to a 2σ level of 

confidence, where σ is the standard deviation for the fit to the peak. 

When fitting peaks, the diffraction pattern is input to the software.  First, the 

background function is subtracted.  For a well-aligned synchrotron instrument, the 

background is typically, over small 2θ, a linear noise function close to zero intensity.  

Some detectors, such as the image plates described below, have exponential background 

patterns.  Samples with amorphous phases may also contribute to a particular X-ray 

background.  Second, the peaks are automatically or manually identified and indexed.  If 

more than one phase is present, multiple peak profile functions may be necessary as each 

phase has its own peculiarities such as grain size that contribute to the peak shape.  For 

                                                 
*0.005o steps were required to define some of the narrow peaks in the experiments 
performed at APS (Section 4-2).  Compare this to a typical setting of 0.02o steps for 
standard measurements on a traditional Siemens D500 diffractometer. 

†PeakFit© is commercially available through Jandel Scientific Software, SPSS Science, 
233 S. Wacker Drive, 11th floor, Chicago, IL 60606-6307 
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example the (220) peak in the β-SiC SCS-6 fibers* is broad due to its small grain size.  

Including a Gaussian component in the fit to peaks from this phase improves the certainty 

in the peak center.  Finally, for a strain analysis, the center of each peak is determined by 

minimizing the difference between the estimated peak profile function and the diffraction 

intensities.  Centers reported from such a series of steps may then be immediately 

converted to lattice spacings.  Corrections for inadvertent translation of an internal 

standard from the center of diffraction may also be performed and the resulting d is input 

into Eq. 2-1. 

Another option for improving the 2θ resolution requires increasing the distance 

between the detector and the sample.  As can be seen from Figure 2-3, when the 

diffracted beam path length increases, the radius of the diffracted ring increases.  Thus, 

for the same ∆d, ∆(2θ) covers a longer portion of the detector.  In practice, the diffracted 

beam path is limited by the physical space available to the detector.  For low energy 

diffraction, the 2θ of interest may be large (such as 90o) and increasing the diffracted 

beam path requires placing a detector in a space typically unavailable.  However, at 

higher energies 2θ becomes small even for high-order reflections (such as 10o) and 

increasing the diffracted beam path simply requires moving the detector away from the 

sample along the path of the incoming beam, z direction (Figure 2-3). 

                                                 
*The fibers from the composite which will be discussed in detail later (Sections 4 and 5). 
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Figure 2-3 (a) Scattering geometry of a synchrotron experimental setup. x, y, z define the 
laboratory coordinate system, z being parallel to the incident beam, x is in the horizontal 
plane pointing outwards from the storage ring, and y is perpendicular to both z and x. The 
scattering vector q and the diffracted beam for a diffracting grain are indicated by solid 
arrows. Note that all scattering vectors coinciding on a cone with large opening angle 
(indicated by the dashed scattering vectors) are detected simultaneously on an area 
detector.  

(b) Sample coordinate system si. The orientation of the sample coordinate system with 
respect to the laboratory system is shown for ω = ψ = φ = 0.  (Figure adapted from [47].) 

 

Detectors such as the digital image plate are ideal for higher-energy work.  Their 

maximum 2θ is limited by their diameter to a range suitable for high-energy diffraction.  

They also have a small pixel size necessary for a high 2θ resolution which may be 

maximized at large camera lengths (1-3 meters).  The imaging plate is based on the 

delayed luminescence of the alkali-earth halide BaFBr:Eu2+as a result of excitation from 

X-ray irradiation.  The X-ray intensity information stored in the image plate can be 

recovered by optical stimulation.  The mechanism of this system is described in [48].   
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Once exposed, using a Mar Digital Image Plate* 3450, a read step takes 108  seconds 

to complete.  It contains 1725 pixels across the radius of an image with each pixel 

covering 100 x 100 µm2.  From an image plate readout, scans simulating the typical 2θ 

scan may be constructed by plotting the intensity given by pixels at constant η.  An 

example of a scan constructed in this way compared to a scan using an analyzer crystal is 

shown in Figure 2-4.  The scans appear comparable, but for a given energy and 

alignment, the step size in 2θ may be reduced when using an analyzer crystal.  In 

comparison, the step size across any given peak in the digital image plate is limited by 

the number of pixels on the image plate. 
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Figure 2-4  Diffraction patterns constructed from a θ/2θ scan with an analyzer crystal at 
25 keV (left) and using a strip of pixels along η = 0 from an image plate exposure at 
65 keV (right).  Notice the peaks are much narrower with fewer data points, marked by 
an “o,” in a peak using the analyzer crystal, but the image plate scan takes less than 1/8th 
the time and includes information from all η.  (See Section 4-2 for a fully indexed 
pattern.) 

 

Similar but more sensitive for digitizing X rays than film [49], the advantage of the 

image plate is the additional information obtained for all η (Figure 2-3).   With the image 

                                                 
*Commercially available from marUSA Inc., 1840 Oak Ave., Evanston, IL 60201, USA 
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plate, entire Debye-Scherrer rings are captured at multiple 2θ simultaneously.  Using slits 

and a point detector, the equivalent amount of information could be obtained at the 

expense of a factor of 104 in data collection time [50].   

The new technology requires a new method of analysis.  Recently, He and Smith 

published the fundamental strain equation for two-dimensional X-ray diffraction (XRD2) 

[51].  They define ln(sin θ0 / sin θ) as the diffraction cone distortion at a particular (2θ, 

η).  Their general XRD2 equation: 

f11 ε 11⋅ f12 ε 12⋅+ f22 ε 22⋅+ f13 ε 13⋅+ f23 ε 23⋅+ f33 ε 33⋅+ ln
sin θ0( )
sin θ( )









=

with: 

f11 A2= f12 2 A⋅ B⋅= f22 B2= f13 2 A⋅ C⋅= f23 2 B⋅ C⋅= f33 C2=

a sin θ( ) cos ω( )⋅ sin η( ) cos θ( )⋅ sin ω( )⋅+=

b cos γ( )− cos θ( )=

c sin θ( ) sin ω( )⋅ sin η( ) cos θ( )⋅ cos ω( )⋅−=

A a cos φ( )⋅ b cos ψ( )⋅ sin φ( )⋅− c sin ψ( )⋅ sin φ( )⋅+=

B a sin φ( )⋅ b cos ψ( )⋅ cos φ( )⋅+ c sin ψ( )⋅ cos φ( )⋅−=

C b sin ψ( )⋅ c cos ψ( )⋅+=  

provides the strain tensor for an arbitrary position of the sample and detector.  For 

transmission with ψ = φ = ω = 0, their strain equation reduces to 

a2 ε11⋅ 2 a⋅ b⋅ ε12⋅+ b2 ε22⋅+ 2 a⋅ c⋅ ε13⋅+ 2 b⋅ c⋅ ε 23⋅+ c2 ε33⋅+ ln
sin θ0( )
sin θ( )









=
 

(2-3)  

with a simplification of the coefficients to  

a = sin θ 
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b = -cos η cos θ 

c = -sin η cos θ 

A computer program was written which is capable of performing a least squares fit of the 

strain equation to the diffraction data (see Step 3 below).  The software solves for the full 

tensor given in (2-3).  In the case of the composite studied, a two-dimensional strain state 

was measured; so the calculated ε33 was averaged with the calculated ε11 giving the true 

ε11 (see Appendix C for calculation details).  In general, this does not have to be the case.  

The advantage of the two-dimensional method used here is the reduction of error by 

including the redundant information.  For a biaxial strain state, the strain measured at η = 

0o should also be measured at η = 180o.  Furthermore the strain measured at η = 0o +/- ∆η 

provides the same information as that measured at η = 180o +/- ∆η.  Thus, half the 

information in each exposure is not unique (assuming a continuum mechanical state*) and 

serves to reduce the error in the analysis.  

The analysis was developed for determining the hkl specific two-dimensional strain 

tensor of multiple diffracting phases.  Automation of the analysis enabled practical 

implementation of spatially resolved measurements.  The digital image plate can scan, 

readout, and prepare for a new scan in 2 minutes.  Without automation, analysis of the 

same scan could take hours.  Automation reduced the analysis time per scan to about 5 

minutes depending on the computer power and number of phases present. 

                                                 
*A state in which local strain gradients must be continuous.  A state that may not exist if, 
for example, too few grains are sampled by the beam.  
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The automated analysis, adapted from [47], consists of three main steps:   

1) Convert the image plate data into a calibrated file useful for further analysis. 

2) Fit the peak in 2θ at each η for all rings of interest. 

3) Solve the strain tensor for each ring of interest using all peak positions from 

Step 2. 

The analysis program was written in MatLab* using separate MatLab code specific files 

as modules for each substantial step in the analysis.  Initial calibration and conversion of 

the image plate files was performed using macros running on a software package called, 

Fit2D†, developed by Andy Hammersley at the European Synchrotron Radiation Facility 

(ESRF) [52] (see Appendix B for the necessary Fit2D macro).   

Calibration of images for accurate displacement measurements is common practice 

for industrial machine vision applications.  Proper calibration requires imaging an object 

of known dimensions using identical optics as will be used for the test measurements.  An 

array of objects filling the aperture at known spacing allows for nonlinear corrections or 

unwarping of the entire face of the imager.  In the case of strain measurements using 

XRD2, a strain-free reference powder may be used to calibrate the image plate [52].  

Using the same optics as will be used for the strain measurements, the diffraction rings of 

the reference powder are fit to an ellipse (or series of ellipses if more than one ring is 

available).  Tilt misalignment may then be compensated for by digitally correcting for the 

eccentricity of the standard ellipse.  This eccentricity would be interpreted as deviatoric 

                                                 
*MatLab© is commercially available from The MathWorks, Inc., 3 Apple Hill Drive, 
Natick, MA 01760-2098. 

†Fit2D is freely distributed software available from:   
http://www.esrf.fr/computing/scientific/FIT2D/index.html. 
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strain if the image is not calibrated.  Fit2D provides a function for this calibration step 

including built-in tools for common standard powders such as Si or CeO2.   

Step 1: 

Once the image plate is calibrated, the automated procedure may begin.  First, the 

images are converted from radial coordinates to rectangular coordinates.  Performed 

using Fit2D, this conversion is based on the results of the initial calibration.  For 

conversion, the image is cut into radially symmetric 2θ bins of constant arc length along 

η.  This arc length may vary from sub-degree values to a maximum integration around 

the full 360o available.  Smaller values improve the potential to observe deviatoric strain, 

but they also increase the time required for the analysis.  A larger value of arc length 

serves to improve the number of grains contributing to each arc length similar to the 

effect rocking along ψ would have in a more traditional experiment.   The resulting 

rectangular image has 2θ as its x-axis and η as its y-axis (Figure 2-5).  This step provides 

an opportunity to check the calibration, for if properly calibrated, in this rectangular form 

rings from a phase with no deviatoric strain give a constant 2θ for all η and appear 

straight in the converted image (vertical lines in Figure 2-5).  All rings from the strain-

free powder should become strait in the converted image.  If the strain-free powder does 

not result in straight lines in the converted image, the powder is not strain-free or the 

calibration of the image plate is incorrect.  Once the calibration is verified, the image is 

saved in Tagged Image File Format (tiff) and is ready for strain analysis. 
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Figure 2-5  The image plate, initially exposed with rings in a radial format (left), is 
converted to a Cartesian format (right) for analysis.  

 

Step 2: 

MatLab reads the 16 bit tiff files as a matrix with the intensity of each pixel in the tiff 

file assigned a column and row position based on its pixel position in the image.  After 

reading the image into MatLab, a peak fitting routine is used to determine the peak center 

position as a function of pixels along the x-axis (originally the 2θ direction).*  This peak 

fitting routine is repeated for each row of pixels.  The rows are associated with a range in 

η determined by the image conversion in Fit2D described above (in this analysis η was 

broken up into 120 3o segments by the macro in Appendix B).  The peak center, full 

width at half maximum intensity (FWHM) and total integrated intensity are recorded for 

                                                 
*See above to Figure 2-4 for a comparison between pixels and 2θ. 
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each peak.  Error in the peak position which improves as the inverse root of the relative 

peak intensity is calculated assuming a Gaussian error distribution as standard in least 

squares fitting—a built-in function of the MatLab least squares fitting routine.  This 

second step of the analysis is the most processor intensive and is typically repeated for all 

images processed by Fit2D in the first step. 

Step 3: 

Lastly, the peak centers obtained in Step 2 are fit to the strain equation, Eq. (2-3) [47, 

50, 51].  In Step 2 above, the fit was directly to the diffraction peak (at each η bin).  Here, 

in Step 3, the least square fit is to the peak centers already solved in Step 2 at all η.  The 

errors from the peak fits in Step 2 are propagated through to Step 3 where a total χ2 and 

error in strain is calculated.  The χ2 represents the sum of the difference in the fit of strain 

equation to the weighted peak centers determined in Step 2.  The weight of the peak 

position for each azimuthal row is determined by the error for the peak at that η 

diminishing the influence of low intensity regions of the ring, which becomes important 

for grainy or highly textured rings.  As in Step 2, the error estimation—a built in function 

of MatLab—assumes a Gaussian error distribution as standard in least squares fitting.  

For example, a high-intensity portion of the ring at η1 would have less error in the peak 

center along 2θ for the least squares fit to that peak than a low intensity portion of the 

same ring at η2 where the peak center determined by the same least squares fitting 

procedure is less certain.  By keeping track of these errors, the 2θ value (peak center) 

from η1 has more influence than the 2θ value given by the lower intensity region at η2 

making the strongest reflections have the greatest weight in the strain calculation.  The 

least squares fit to the strain equation, Eq. (2-3), is repeated for each ring of interest and 
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the resulting strain is tabulated in a text file for graphing and analysis of the mechanical 

properties of the diffracting phases.  The MatLab scripts used for this analysis are found 

in Appendix C. 

One drawback to this analysis is its sensitivity to outliers.  A short range in 2θ is 

selected for each peak of interest.  This predetermined ∆(2θ) is used as a window for 

fitting the peak.  If the peak resides outside the window, or a second peak enters the 

window, false peak positions may be recorded.  This possibility limits which rings may 

be considered for analysis as they must be clear of neighboring rings and have sufficient 

intensity to provide a solution to the peak fitting routine.  As the beam size is reduced, 

variations in intensity around the ring increase.  This is due to a decrease in the number of 

grains diffracting for the reduced beam size.  In the case of highly textured minority 

phases, the intensity may be restricted to a small region in η.  While a narrow acceptance 

window or ∆(2θ) may eliminate the majority of outliers, a ∆(2θ) which is not a function 

of η is restricted by Poison’s ratio to a value larger than otherwise necessary.  In addition, 

using the current method, ∆(2θ) must be large enough to accommodate the change in 

radius associated with the change in strain for the phase of interest.  Both of these 

restrictions open up the analysis to accept potential outliers and restrict some rings from 

the analysis. 

Resolving these restrictions requires an iterative approach to fitting the diffraction 

ring as a whole.  Varying ∆(2θ) appropriately as a function of η and ε improves the 

analysis method allowing the incorporation of more rings.  Including more rings in the 

analysis is the first step to adopting a Rietveld approach to fitting the two-dimensional 

diffraction pattern.  While software exists for analyzing image plate information with 
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Rietveld, these methods work best when a hydrostatic stress state is assumed for the 

phases—an oversimplification for a general XRD2 strain analysis [53]. 
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Figure 2-6  A zoomed-in view from two exposures of the image plate on the Ti-SiC 
laminar composite (see Figure 2-5 for coordinates).  The first (top) is at 0 MPa applied 
stress, the second at 850 MPa.  Axial strains appear as shifts between the two frames 
directly at η = 0o, 180o and 360o.  Transverse strains are visible at η = 90o and 270o.  For 
all other η the strain is a combination. 

 

The above one- and two-dimensional analyses were used to measure the residual and 

applied strains in several Ti-SiC composites.  Automation of the procedure and analysis 

enabled a detailed study of the micromechanics of the composite.  As can be seen from 

Figure 2-6, a wealth of information specific to the composite is available from the two-

dimensional analysis.  Within certain limitations, the analysis may be extended to other 

composites with diffracting phases.  Critical issues include the three-dimensional strain 
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state, suitable grain size, X-ray penetration, a mechanism for applying stress, available 

standards, and alignment of the sample plus goniometer.  The expected strain state of the 

Ti-SiC composite will be discussed in the next section.  The grain size limitation depends 

also on the beam size and will be dealt with in Section 5.  Here the laminar composite 

was ideal since X-ray penetration becomes less of an issue as the X-ray energy increases, 

but for some other samples it is still an issue.  Application of stress was dealt with above 

(2-1.1), but some detriments of weak grips will be seen in Section 4-5.  Available 

standards and proper alignment of the sample cannot be over stated.  For instance, the 

residual strains reported in Section 4-4 would have been subject to an average translation 

error of 60 x 10-6 strain without the use of an internal standard (Figure 2-7). 
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Figure 2-7  The translation error vs. applied load corrected for in the Ti-SiC composite.  
An internal Si standard powder on the composite surface provided this information. 
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3. Two-Dimensional Fiber Composite Models 

This section describes two models which were used to interpret the strains measured 

in the Ti-SiC composite.  As will be seen in Section 4-1, the Ti-SiC laminar composite 

possesses geometric, mechanical, and X-ray optical properties well suited to a 

mechanical study.   It is both a practical composite and a model composite allowing the 

development of an analysis method which will be applicable to the study of MMCs in 

general while at the same time able to reveal specific behavior of academic and industrial 

value.  The first model described here uses the commercially available finite element 

code ABAQUS* to predict the bulk properties of the composite.  The second model, 

while also built on the finite element method, is based on the shear lag concept 

simplifying the calculations necessary to handle the strain fields resulting from damage in 

the composite. 

3-1. A Finite Element Model for Ti-SiC 

To better understand the bulk evolution of internal stresses/strains in the undamaged 

composite, a finite element model (FEM) was developed.  This model assumes plane 

strain conditions because of the continuous fiber geometry.  However, due to the 

mechanical loading along the fiber direction, it was necessary to use a full three-

dimensional model.  The plane strain assumption is then invoked by keeping the planes 

perpendicular to the fiber direction (z = constant) as planes (Figure 3-1 (a)).  The plane 

parallel to the fiber where x is equal to half the fiber spacing is also kept planar to 

produce a continuous boundary condition for an infinite number of fibers.  The surface of 
                                                 
*ABAQUS is available for an annual fee from Hibbitt, Karlsson & Sorensen, Inc., 1080 
Main Street, Pawtucket, Rhode Island 02860-4847. 



52 
the composite (where y = t/2) is free to deform.  The planes x = 0, y = 0, and z = 0 are 

general symmetry planes.  The relative dimensions of the fiber and matrix regions in the 

model were adjusted to obtain a fiber area (and volume) fraction of 0.32 to correspond to 

the measured value. 

The measured thermal residual strains (see ahead to Section 4-4, Table 4-1) were 

included in the calculation as they would be present in the initial state of the composite 

before tensile loading.  The material parameters for the matrix and the fibers were taken 

from refs. [54, 55].  Specifically, the room temperature values of the elastic constants for 

the matrix were Em = 125 GPa and νm = 0.31, whereas those for the fibers were 

Ef = 393 GPa and νf = 0.25 (both were assumed elastically isotropic as a first order 

approximation) [54].  The variation of these elastic constants with temperature was also 

included in the calculation in addition to the temperature-dependent values of CTEs given 

in [54].  The fibers were assumed linear elastic and intact throughout the loading.  Note 

that the tensile strength of the SCS-6 fibers is known to exceed 3 GPa [56].  The Ti-6Al-

4V matrix was modeled as an elastic-plastic material with a yield strength of 725 MPa 

(where first deviation from linear elasticity occurs), an engineering yield strength (σ0.2) of 

920 MPa and a linear strain-hardening coefficient of 1.63 GPa.  These parameters were 

deduced from ref. [55] where the tensile behavior of a monolithic Ti-6Al-4V alloy was 

determined.  A necessary starting point, since specific changes in the alloy’s material 

properties as a part of the composite are unknown and hence a topic of this study.  

Finally, the fiber/matrix interface was assumed intact at all times. 
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Figure 3-1  Finite element model (FEM) geometry and predictions of elastic strains at 
650 MPa applied composite stress (along fiber axis, i.e., the z direction).  (a) Mesh used 
in the FEM calculations.  (b), (c) and (d) Normal strain distributions along the x, y and z 
directions, respectively.  In (b) and (c), significant transverse strain gradients are 
observed across the specimen thickness.  There is no variation in the longitudinal elastic 
strain in the fiber (d), but there is some variation in the matrix due to predicted plastic 
deformation around the fiber.  Average longitudinal strains in the fibers due to the 
applied stress alone are around 3040 µε while they are about 3110 µε in the matrix.  
These numbers exclude the thermal residual strains and show that no significant plasticity 
occurs in the matrix at this applied stress.   
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Figure 3-1 shows the FEM geometry and the predicted elastic strains due to an 

applied tensile composite stress of 650 MPa.  In Figure 3-1 (b) and (c), significant 

transverse strain gradients are observed across specimen thickness.  As demonstrated in 

ref. [57], this heterogeneity in the transverse strains makes diffraction measurements in 

these directions highly dependent on positioning and prone to large errors (for example 

see Section 4-5).  Fortunately, there is no appreciable variation predicted in the 

longitudinal elastic strain in either phase across the specimen thickness (Figure 3-1 (d)).  

This minimal variation of longitudinal strain aids in the interpretation of the diffraction 

strains, which represent the bulk average across the specimen thickness (Section 4).   

Only a thin layer in the matrix around the fiber shows a decrease in elastic strain due 

to initiation of plastic deformation.  The FEM predicts the plastic deformation in the 

matrix to start around 150 MPa applied composite stress.  This occurs due to the three-

dimensional stress state at the interface, i.e., the matrix has longitudinal and tangential 

tension and radial compression resulting in a large von Mises stress at the interface that 

exceeds the uniaxial yield strength (725 MPa).  Note that the contour plots in Figure 3-1 

are shown in the deformed geometry.  The deformations have been multiplied by a factor 

of 20 for clarity.  It is observed that there is a periodic variation in the thickness of the 

composite as the transverse contraction in the fiber under tension is much less than that in 

the matrix, rendering the estimated thickness at the positions of the fibers slightly larger 

than that in between the fibers.  The three-dimensinal FEM provided a context to explore 

and understand the bulk properties of the composite as well as verifying the homogeneity 

of axial strains required for application of through thickness averages to the predicted 
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axial strains of both models.  The predictions from this FEM are compared to the 

measured bulk composite strains in Section 4. 
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3-2. A Micromechanics Model for Damaged Ti-SiC 

Several theoretical models have been developed to predict stress distributions in 

fibers and matrix near clusters of fiber breaks in unidirectional composites.  Earlier work 

employed load sharing rules, such as local load sharing and global load sharing (GLS) to 

approximate such stress distributions generated by fiber breaks.  Simple rules allowed 

analytical probability analyses of sequential fiber breaks and the prediction of strength for 

small composites, see for example [58, 59, 60, 61].  In general GLS, with no stress 

concentration and constant interfacial sliding, has been successfully applied to ceramic 

matrix composites, see for example [62, 63].  Another class of more physically based 

load-sharing models is composed of models utilizing shear lag assumptions; these 

essentially model the fibers as one-dimensional structures and the matrix in-between as 

deforming only in shear.  Such a shear lag analysis was first applied to fiber composites 

by Hedgepeth [64].  In his original work, Hedgepeth obtained analytical solutions for the 

stress (or strain) concentration factors (SCFs) in intact fibers due to broken fibers in 

multifiber, two-dimensional, linear elastic composites.  Since then, there have been 

numerous extensions of his model to consider other cases [65, 66, 67]. Considerable 

simplification usually accompanies such shear lag load transfer models.  Characteristic 

assumptions are the tensile load is carried solely by the fibers and the load carried by a 

fiber prior to fracture is transferred to the neighboring fibers by simple shear deformation 

of the surrounding matrix.  The Hedgepeth shear lag model is most accurate when the 

fiber volume fraction, f, and the fiber/matrix modulus ratio, Ef / Em, are high, i.e., 

Ef f >> Em(1-f).  This condition applies to most polymer matrix composites (PMCs), and 

to some MMCs with high f values, where Ef / Em typically ranges from 4 to 6.  However, 
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many composites of current interest, such as most MMCs and some PMCs with low f 

values, do not fall into this category.  Several recent studies using micro-Raman and 

piezospectroscopic techniques have shown that as the interfiber spacing increases, the 

stress concentrations in the immediate neighboring fiber decreases [6, 12, 13, 14].  Shear 

lag models that do not consider longitudinal matrix stiffness have been unsuccessful in 

interpreting this trend.   

In Hedgepeth’s original analysis, the fibers and matrix were assumed intact and 

elastic.  In addition, only the longitudinal stress in the fibers and shear stress in the matrix 

were predicted.  Clearly, other stress components influence stress transfer, so their 

incorporation would make the model more realistic and potentially capable of 

interpreting experimental strain measurements.  Therefore, several authors have extended 

the shear lag model of Hedgepeth for matrices that sustain a portion of the applied tensile 

stress [65, 66, 67].  In particular, an elastic model proposed by Fukuda and Kawata [65] 

included, for the first time, effects of f on the peak stress concentration factors, 

considering both the longitudinal and shear stiffness of the matrix carrying shear and 

tensile stresses.  Their numerical results showed that the SCF on adjacent fibers increases 

with decreasing inter-fiber distance as well as with increasing elastic mismatch between 

the fibers and matrix.  Others have also allowed the matrix to sustain tension, usually 

involving detailed three-dimensional finite element [68] or other numerical [66] 

calculations on a several fiber lamina containing a small cluster of fiber breaks.  

Comparing these with the original elastic shear lag model demonstrated that the 

differences diminish as the number of breaks in the cluster and f increase.  In virtually all 

these model variations, relaxing the shear lag assumptions has led to formidable 
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analytical difficulties and a need for extensive numerical computation even for a 

composite with relatively few fibers.  Moreover, the dependence of the numerical 

solutions on a majority of the fiber and matrix properties is not conveniently removed 

through normalizations; therefore, their calculations only apply for a given set of 

composite parameters. 

 

3-2.1. Matrix Stiffness Shear-Lag (MSSL) Model  

Beyerlein and Landis [34] developed the “matrix stiffness shear-lag” (MSSL) model 

to quickly compute the stresses and displacements of unidirectional fiber composites in 

response to multiple fiber and matrix breaks.  It is intended to predict macroscopic 

material properties such as toughness and lifetime.  Until this work, the model had not 

been applied to this composite system or tested against spatially resolved matrix strains 

from a metal matrix composite. 

The MSSL model assumes a planar, two-dimensional composite with a single row of 

aligned, parallel and continuous fibers.  The model analysis requires a finite element 

model of the composite system.  Figure 3-2 shows a segment of the mesh, representing a 

repeating cell in the composite system which is infinite in both the transverse and axial 

directions.  The fibers are represented by one-dimensional axial springs and the matrix 

region between any two consecutive fiber elements is represented by a pair of rectangular 

finite elements.  Since the transverse displacements are neglected, each element has four 

degrees of freedom.   
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Figure 3-2  A representative finite element mesh from the MSSL model for a laminar 
fiber composite (adapted from [34]). 

 

The index for the fiber and matrix regions is “n.”  The index n for a matrix region is 

adjacent to the fiber region n in the positive direction.  The fiber longitudinal coordinate 

is x, and the crack lies along the x = 0 plane, centered at x = 0 and n = 0.  The analysis 

assumes the thickness, t, in the out-of-plane direction is the same for the fibers and 

matrix.  The width of each matrix column is W, and the width of the fibers is D.  The 

transverse displacements of the system and the shear deformation of the fibers are 

neglected.  Both the fiber and matrix are assumed linear elastic and well bonded.  

Therefore, the relevant material properties are the longitudinal Young's moduli of the 

fibers and matrix, Ef and Em, respectively, and the longitudinal shear modulus of the 

matrix, Gm.  As indicated in Figure 3-3, both the fiber and matrix are subjected to a 

uniform applied stress σ, and thus the same far-field strain ε.  This model provides the 
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average longitudinal strain over the nth fiber cross section, εf

n(x), and average matrix 

longitudinal strain εm
n(x) across the nth matrix region Wt.   

 

Figure 3-3  Schematic of crack geometries under consideration (adapted from ref. [34]).  
(a) Case (i):  two fibers are broken but the crack-tip matrix regions are intact.  (b) Case 
(ii):  in addition to two broken fibers, the crack-tip matrix regions are also broken.  
Components are numbered with index “n”. 

 

As in all shear lag analyses, this model provides the average axial stress over the fiber 

cross section and average shear stress between adjacent fiber and matrix nodes.  For a full 

description of the governing equations in this model the reader is referred to [34].  The 

governing equations were derived from a treatment of the FEM in Figure 3-2.  Solutions 

for intact and broken fiber and matrix regions were also found.  For particular damage 

morphology (as in Figure 3-2), the influence superposition technique is used to solve the 

governing equations.  Once the influence functions are determined for a given set of 

broken fiber and matrix sites, a solution is obtained for the proper weighting factors 

corresponding to the fiber breaks and matrix breaks such that there exists zero stress at all 
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broken sites.  Practically the model requires a numerical code for its execution.  The main 

advantage of this technique is the computation time involves solving for the weighting 

factors which only depend on the number of damaged elements in the lamina and 

calculating the fiber and matrix displacements.   

In dimensionless form the strain field solutions depend only on the longitudinal 

stiffness ratio,  

ff

mm

AE
AE

=ρ      (3-1) 

In Eq. (3-1), Af is the cross sectional area of the fiber, and Am is the cross sectional area of 

the matrix between two consecutive fibers.  The ratio ρ can range from 0 to infinity, but it 

is usually between 0 and 1 for most MMCs.  For ρ = 0, the model yields the original 

Hedgepeth solution [64].   

The Ti-SiC composite (described in Section 4) was chosen as a model composite for 

comparison of the strains in each phase predicted by this MSSL model at applied stress.  

Based on the geometry of the Ti-SiC model composite, the stiffness ratio, ρ, was 

interpreted and calculated several different ways.  For all cases, the elastic constants 

employed were Em = 125 GPa, and Ef = 393 GPa [54].  The matrix shear modulus, Gm, 

was calculated, assuming elastic isotropy in the matrix, using Gm = Em / 2(1 + νm), with 

the matrix Poisson’s ratio of νm = 0.31 [54]. 

Several conditions for ρ and the number of breaks were characterized in [34].  While 

the model is intended for use with composites of the laminar variety, the definition of W 

allows some freedom within a given geometry.  In addition, the critical length in the out 
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of plane direction may be assumed equal to the matrix thickness but is not clearly defined 

as such.  Thus, for the etched Ti-SiC composite described in Section 5-1, ρ was 

interpreted and calculated in three different ways:   

1. ρ1:  Using the full sample thickness (t = 200 µm), the minimum spacing 

between fiber surfaces (W = 100 µm) and a fiber radius of 70 µm;   

2. ρ2:  Letting the thickness match the fiber diameter (t = 140 µm) and with the 

same W and Af as in (1);   

3. ρ3:  Letting the fiber volume fraction equal its area fraction (f = 0.32, the 

nominal value).  

The resulting values for the stiffness ratio were ρ1 = 0.413, ρ2 = 0.289, and ρ3 = 0.591 

(see Table 3-1).  In the following analysis it is convenient to normalize the x coordinate 

along the fiber axis as 

ξ =
x
δ

,  where δ =
Ef AfW

Gmt
   (3-2)  

Here, δ is the elastic characteristic shear lag decay length of the fiber stress (or strain) 

from the maximum to the far-field fiber value as defined in the original Hedgepeth model 

for ρ = 0 and one fiber break.  When the matrix sustains axial load (ρ > 0), this 

characteristic decay length becomes greater than the value predicted by Eq. (3-2).  In 

general, stress (or strain) decay lengths from fractures will increase beyond δ under 

matrix and interface plasticity or creep or when there is more than one fiber break.   

Two initial cases of crack configuration were considered (Figure 3-3).  Since the 

matrix is assumed to sustain longitudinal tensile forces, the MSSL model will 



63 
differentiate between a transverse matrix crack extending from the fiber break to the next 

fiber, case (ii), versus no crack extension from the fiber break into the matrix, case (i).  

For case (i) only the matrix regions between broken fibers are broken.  For case (ii), in 

addition to those broken in case (i), the two ‘crack-tip’ matrix regions between the last 

broken fiber and first intact fiber are broken.  The model assumes the matrix and fiber 

fractures are infinitely sharp. 

At the crack plane, ξ = 0, the maximum strain divided by the far-field strain, or Strain 

Concentration Factor (SCF), of the first intact fiber provides an efficient test of the 

model’s assumptions.  For a given number of fiber breaks, the shape of the strain profile 

and the SCF significantly differ between the two cases, (i) and (ii).  For an intact matrix 

at the crack tips, case (i), the SCF is 1.3 in the first intact fiber.  This increases to 1.7 

when the matrix is broken, case (ii).  With an intact matrix, less load transfers to the fiber, 

but with a broken matrix, the load formerly carried by both the broken fiber and the 

broken matrix is shed to the surrounding intact fibers.  The MSSL model predicts an 

intact matrix at the crack tips leads to a strain profile where the maximum SCF in the first 

intact fiber is slightly displaced from the crack plane (Figure 3-4 (c)).  The fiber strain 

profile is governed by the difference between the decay of the shear strain and the axial 

displacement of the matrix.  The axial displacement dominates near the crack plane 

giving a slight rise in fiber stress from the crack plane (see ref. [34] for more discussion).  

When more fibers are broken, the MSSL model also predicts an increase in the SCFs and 

a broadening of the strain profiles.  This enlarges the area affected by the damage zone. 
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Table 3-1  MSSL model predictions of the axial strain concentration factors (SCFs) in 
the first intact fiber at the crack plane (x = 0) for the Ti-SiC composite.  

1 Broken Fiber 2 Broken Fibers Shear Lag 

Decay 

Length 

δ  [µm] 

 

Stiffness 

Ratio 

ρ 

Case (i)*: 

Intact 

Matrix 

Case (ii): 

Broken 

Matrix 

Case (i)*: 

Intact 

Matrix 

Case (ii): 

Broken 

Matrix 

252 0.289 1.14 (1.15) 1.42 1.32 (1.33) 1.70 

301 0.413 1.12 (1.14) 1.45 1.29 (1.31) 1.74 

329 0.591 1.10 (1.12) 1.39 1.26 (1.28) 1.79 

 

For either case (i) which considers intact matrix at the crack tip or (ii) which 

considers broken matrix at the crack tip, the SCF shows minimal sensitivity to changes in 

ρ from 0.289 to 0.591 (see Table 3-1).  The more discriminating variable is δ, the shear 

lag characteristic decay length.  This results from the dependence of δ on parameters 

affecting ρ:  Af, W and t (compare Eqs. (3-1) and (3-2)).  Thus, the three available 

stiffness ratios expand or contract the strain profiles in ξ.   

Figure 3-4 compares model predictions of normalized* longitudinal strains εf/ε as a 

function of ξ.  Figure 3-4(a) illustrates typical differences in the MSSL model predictions 

                                                 
*The numbers in parentheses for case (i) indicate the maximum values of strain 
concentrations for this case which occur at x > 0 slightly away from the crack plane. 
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of these strain concentration profiles for case (i) and (ii) for ρ2 = 0.289.  MSSL model 

predictions corresponding to the three choices of ρ are plotted in Figure 3-4(b) for case 

(ii) and two broken fibers.  As can be seen from the graph, the choice of ρ affects the 

gradient of the fiber strain with respect to ξ as well as the magnitude of relative strain for 

a given ξ.  The predicted maximum fiber strain concentrations adjacent to the break are 

1.287, 1.316, and 1.258 for case (i); and 1.740, 1.703, and 1.786 for case (ii), for ρ1-3 

respectively. 

                                                                                                                                                 
*A subtlety within the definition of normalized longitudinal strain lies with the practical 
definition of the far-field strain which is the denominator in εf/ε or εm/ε (normalized 
fiber or matrix longitudinal strain respectively).  Ideally the far-field strain is defined as 
the strain of the composite an infinite axial distance from the region or (gage section) of 
interest.  Naturally this far-field strain would be equivalent for the matrix and the fibers.  
However, practically the far-field strain may not be reached within a particular gage 
section and more likely, even if the far-field strain is asymptotically approached within 
the gage section, it may not be conveniently measured.   

For a particular data set, it may be easily verified that the fiber and matrix strains 
begin approaching a similar value, but to correctly normalize the strains to the (possibly 
fictitious) far-field strain, the strains must actually be “normalized” with the strains 
measured at large ξ.  This strain is not necessarily constant from matrix to fiber (or 
broken matrix to broken fiber) region but should be similar, if ξ is sufficiently large.  To 
correctly account for this practical “normalization” in the comparisons between the data 
and model, the resulting “normalized” strain at large ξ is not set equal to one, but equal 
to the strain predicted for that region at the equivalent ξ for which it was “normalized” 
(for example 0.98 or 1.02).  This results in the same value as measuring the ideal far-
field strain and normalizing conventionally. 
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Figure 3-4  a) Case (i), and case (ii) with ρ = 0.289 for both one and two broken fibers.  
b) Comparison of each predicted relative strain value for each ρ value assuming two fiber 
breaks and case (ii).  Under case (ii) for the first intact fiber next to the break εf/ε is 
greatest for ρ = 0.591, while it is least for ρ = 0.289.  c) Under case (i) for the first intact 
fiber next to the break εf/ε is greatest for ρ = 0.289, while it is least for ρ = 0.591.  Case 
(ii) and (i) refer to strain profiles for fibers with and without failure in the matrix adjacent 
to the fiber break respectively. 

 

Clearly, the fiber most sensitive to initial assumptions in the model is the first intact 

fiber next to the break.  Even for this fiber, the predicted difference for each value of ρ is 

small compared to the differences seen in the strains for case (i) or case (ii).  In the MSSL 

model, unlike in typical shear lag analyses, the shear stresses and strains are not constant 

from fiber surface to fiber surface since the matrix sustains longitudinal load.  For 

simplicity, the model divides each matrix region in half and calculates the shear strain, 

ηn,n, and stress, τn,n, in the left half and right half of any matrix region n (Figure 3-2).  At 

a fixed x, the gradients in shear stress between fiber surfaces increase with ρ.  For case 
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(i), the shear stress near the break increases significantly with ρ.  For case (ii), the shear 

stress along the nearest neighboring fiber increases with ρ.  However, since primarily 

longitudinal rather than shear strains were measured,* the predicted longitudinal strains 

were used to verify the MSSL model.  

Because of the MSSL model’s earlier successes for polymer matrix composite 

systems with large ρ, its intended applicability to composites such as Ti-SiC with smaller 

ρ values, and its ability to track damage evolution, an investigation to its validity was 

warranted [34].  In addition, the advantages of the HEµXRD2 method are particularly 

suited to comparisons with the MSSL model.  Namely, the access to thickness-averaged, 

spatially resolved, phase-specific elastic strains provided the opportunity to check the 

MSSL model using a Ti-SiC composite. 

                                                 
*Shear strain was measured only with the image plate which was used for the second 
damaged composite (Section 4-2). 
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4. Bulk Deformation of Ti-SiC Composites 

The following describes the experimental procedure and results obtained from a study 

of the phase-specific bulk deformation properties of the Ti-SiC composite.  The bulk 

properties are defined as properties common to the composite as a whole.  Rather than 

specific to a particular region (such as a particular fiber), they are averaged over many 

fibers and surrounding matrix.  The phase-specific bulk properties provide insight on the 

general behavior of the fiber and matrix as they co-deform.  For example, such 

understanding is necessary to identify to what load the matrix remains elastic or the 

presence and evolution of residual strains.  Each phase’s individual mechanical response 

typically contrasts with its monolithic behavior revealing material characteristics peculiar 

to the interactions between each phase in the composite.  This sometimes complicated 

behavior is best understood in the context of a suitable model such as the FEM described 

in Section 3-1.  The following includes such a comparison ultimately providing the 

background for the micromechanical study presented in Section 5. 

4-1. The Ti-SiC Composite 

In general, Ti-SiC composites are intended for moderately high-temperature structural 

applications and various versions of the composite have received interest in the literature 

due to its thermal residual strains [54, 69, 70, 71, 72].  The selected composite system 

consisted of a single row of unidirectional SiC fibers (Textron SCS-6, 140 µm in 

diameter) in a Ti-6Al-4V matrix, prepared by a proprietary technique at 3M Corp. (St. 

Paul, MN 55144).  For the composite examined here, the fibers were uniformly spaced 
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with an average center-to-center distance of 240 µm.  The fiber area fraction was 32%, in 

agreement with the value provided by the manufacturer [73]. 

The SCS-6 fibers consist of a carbon core upon which SiC is grown through a two 

stage technique similar to vapor deposition involving the chemical decomposition of a 

silane-hydrogen gas mixture on a resistively heated graphite coated carbon 

monofilament.  The resulting grain size in the fibers is on the order of 200-300 nm in the 

radial direction and 50-100 nm in the axial direction [74].  The fibers contain the cubic 

phase of SiC (β-SiC) and show crystallographic texture with the (110) plane 

preferentially aligned perpendicular to the axis of the fiber.  The space group for β-SiC is 

F -4 3 m [75].  A cross sectional view of the composite is shown in Figure 4-1.  The 

carbon core of the SCS-6 SiC fiber is clearly visible in this image.   
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Figure 4-1  Scanning electron microscope (SEM) image of a typical specimen cross 
section.  The fibers are 140 µm in diameter and are almost uniformly spaced with an 
average center-to-center distance of 240 µm.  The carbon core of the SCS-6 fibers is 
visible as the dark circle in the center of the fibers.  Two shades of SiC are also visible in 
the fiber corresponding to the two stages of SiC growth in manufacturing.  The final dark 
ring around the fiber results from a protective carbon coat applied to the finished fiber.  
The cracks observed in some fibers occurred during specimen preparation.  The total 
specimen thickness is about 200 µm.  The shallow grooves seen in the Ti matrix are a 
result of the composite processing.   

 

The samples were sliced to a 10 mm width from a 16 mm wide strip.  In order to 

increase the stress at the gage section, the samples were electric discharge machined 

(EDM) to a 7 mm gage width.  To prevent oxidation at the surface of the sample, Al 

plates were used to hold the strip.  Aluminum oxidizes more easily than titanium.  If not 

used, a TiO2 film would form on the composite which would add noise to the diffraction 

patterns and alter the residual strains at the surface of the matrix.  The remaining 

specimen dimensions were thickness, t = 0.20 mm, gage length, L = 26.00 mm (Figure 

4-2).  A 120 ohm strain gage was attached to measure the applied macroscopic strain at 

the surface in the longitudinal direction, parallel to the fibers (Figure 4-2). 

Ti 

SiC 
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Figure 4-2  Schematic showing the composite geometry used in bulk XRD experiments.  
The composite thickness was 0.2 mm.  Fiber positions are represented by white lines 
within a gray matrix (for illustration only – not to scale).   
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4-2. X-Ray Diffraction Method 

The samples were examined using 25 keV X rays (wavelength, λ = 0.496 Å) at the 1-

ID-C beam line (SRI-CAT, Sector 1), Advanced Photon Source (APS), Argonne National 

Laboratory.  This energy was selected to assure sufficient penetration depth.  For this 

composite, 25 keV X rays transmit 58% of the incident beam intensity.  Assuming an 

exponential decay in the transmitted beam intensity from the sample surface inward, the 

midpoint of the sampling volume is 91 µm from the surface facing the incoming X-ray 

beam.  Therefore, these measurements were not confined to a thin surface layer but were 

representative of the entire thickness of the composite (200 µm). 

To obtain the desired diffraction geometry (see Section 2-2, Figure 2-3), a four-circle 

goniometer was used in transmission mode (Figure 4-3).  The diffraction vector was 

along the fiber axis, thus the diffraction patterns provided the longitudinal (or axial) strain 

in the plane of the composite.  The diffraction intensity was collected with a NaI 

scintillator detector equipped with a Si (111) analyzer crystal.  As described in Section 2-

2, the analyzer crystal improves the ultimate strain resolution.  The X-ray beam size was 

defined by slits on the incident beam side.  An internal standard Si powder (NIST, 

Standard Reference Material 640a) was attached to the specimen surface. 
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Figure 4-3  Photograph of the experimental setup used for the 25 keV measurements.  
The dashed line represents the transmitted and diffracted beam paths.  The labels are as 
follows: (1) receiving slit, (2) Si diode beam stop, (3) translation stage, and (4) φ stage.  θ 
and 2θ rotate about the y axis as shown by the curved arrow.  See also Figure 2-3 b. 

 
A nominally damage-free composite was scanned with a 2 x 2 mm2 beam to obtain 

the average bulk residual strains and response of the composite to applied stress.  The 

θ/2θ scans were conducted over a range of 2θ = 10° to 24° (for indexed peaks, see Figure 

4-4).  The diffraction patterns exhibited reflections from β-SiC, α-Ti, Si powder, and to a 

lesser extent β-Ti, which comprises a small fraction of the matrix.  In order to allow 

Rietveld refinements [76], 0.007° steps in 2θ were used.  The Rietveld analysis was 

performed using the GSAS package [77].  In addition, individual peaks were also fit 

using a Lorentzian peak shape (peak fit method described in Section 2-2).  Limited by 

goniometer motor speed, the long scans required 24 minutes to complete.   
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Figure 4-4  Indexed diffraction pattern for a θ/2θ scan of the Ti/SiC composite using a 
2 x 2 mm2 X-ray beam at 25 keV and a point detector. 

 

A second undamaged composite was also illuminated with an X-ray beam of 

0.5 x 0.5 mm2, but at a much higher energy, 63.5 keV (λ = 0.190 Å).  A photograph of 

the experimental setup is shown in Figure 4-5.  The higher energy decreases the 2θ angle 

of the diffraction rings allowing use of a digital image plate for recording the entire 

diffraction ring as apposed to the narrow slice of the ring collected with the analyzer 

crystal and scintillator detector (see Section 2-2 for the analysis procedure).  The primary 

advantage of the image plate for this composite is the additional diffracting grains 

included for strain analysis.  By including more grains, the measured average stress state 

better represents the stress state of the material examined.  Therefore, with the area 

detector, the X-ray beam spot size can be reduced without the same loss in grain 
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representation normally seen with the point detectors [50] (an example using a 

microbeam will be shown in Section 5).   

 

Figure 4-5  Photograph of the high-energy experimental setup.  The incoming and 
transmitted beam path is represented by the dashed line.  The image plate (1) is 1111 mm 
from the sample.  A Si diode (2) acts as a beam stop also capturing the transmitted 
intensity.  The translation stage (3) supports the load frame in a horizontal position as 
opposed to the vertical position shown in Figure 4-3.  An ion chamber connected to the 
incoming beam pipe (4) measures the intensity of the incoming beam, I0. 

 
In accordance with the procedure described in Section 2-2, calibration of the image 

plate was performed with the Fit2D software using diffracted rings from the same 

standard Si powder (NIST, Standard Reference Material 640a) used also as an internal 

standard (see Appendix B and [52]).  The calibration simplifies the analysis by correcting 

for tilt misalignment (here -0.4o) of the image plate with respect to the plane 

perpendicular to the beam.  The calibration can also be used to externally calibrate the 

image plate, but it was not used for that purpose here.*  The results of the calibration 

placed the beam center at 1720.6 pixels from the left of the image and 1713.5 pixels from 

                                                 
* An external calibration is unimportant since the Si was also used as an internal standard 
and the strains derived from a difference in lattice spacings rather than absolute lattice 
spacings are reported (for details see discussion Section 2-2). 

(1) 

(4) (3) 

(2) 
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the top of the image.  The images were converted as “radial” scan types using 120 

azimuthal (η) bins and 1700 radial (2θ) bins.  The following conversion parameters were 

taken from the Si calibration:  a sample to detector distance of 1111 mm, a wavelength of 

0.1897 Å, a rotation angle of -48.68o, detector tilt angle of -0.41o, starting azimuth (η) 

angle of 0.0o, end azimuth (η) angle of 360.0o, inner radial limit of 0.0 pixels, outer radial 

limit of 1700.0 pixels, and no intensity conservation was selected since the geometrical 

correction and the polarization correction were used [52]. 
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4-3. Mechanical Loading 

Uniaxial tension was applied to each composite sample using a custom-built 

aluminum load frame.  A high-strength epoxy fixed brass tabs to the grip region of the 

composite.  Turning a ½ inch threaded nut applied load to the composite.  The nut was 

threaded onto a shaft connected to the sample grip with a pin.  Since the grip was free to 

rotate at the pin, it provided a simple method to reduce off-axis loading on the composite.  

Off-axis loading promotes bending in the sample and complicates the intended stress 

state of the composite. 

Load was applied in constant displacement steps; therefore, the stress was not 

constant with time.  Upon termination of displacement, the stress decayed from a 

maximum initial value.  When the applied stress settled, the X-ray measurements were 

performed.  The settling time depends on the rigidity of the system.  The observed 

settling was primarily due to deformation in the grip assembly.  An example constant 

displacement step is shown in Figure 4-6.  The composite exhibits macroscopic elastic 

behavior over the strain range shown.  Thus the strain drop observed by the gage is 

associated with a load drop observed in the load cell. 

Two loading cycles were performed on each sample analyzed for bulk strains.  The 

first cycle went to a lesser applied load than the second.  For the first composite, the 

maximum applied stress of the first cycle was 790 MPa, but the sample settled to 660 

MPa for the strain measurements.  The maximum applied stress of the second cycle did 

not exceed 780 MPa due to failure in the grips.  The grips were reinforced for the second 

composite sample both to reduce the settling time between loads and increase the 

maximum achievable load.  The maximum applied stresses for the second composite 
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were 400 MPa and 900 MPa for the first and second cycles, respectively.  XRD strain 

measurements were taken in small stress intervals ranging from 10 to 30 MPa per step.  

As depicted in Figure 4-6, the load intervals were not kept constant in load since the 

frame was designed to maintain displacement (not load) over time.  As discussed in 

Section 2-1, this required constant monitoring of the load and applied strain using the 

software described in Appendix A. 
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Figure 4-6  The strain gage (small circles with a connecting line) reveals drift of strain 
with time associated with the relaxation of load from a typical constant displacement load 
step.  The strain in the matrix with its associated error given by the least squares 
refinement is shown by the flat line.  Information from the entire 2θ scan (marked by 
arrows) is included in the refinement.  The strains given by the Ti (11.0) and Ti (10.2) is 
given by the “x” and the “*,” respectively.  These along with the strain from the SiC 
(220) peak, a “o,” are shown at the position the peaks occur in time.  
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4-4. Bulk Residual Strains in the Composite 

The initial bulk longitudinal* residual strains in the laminate composite are shown in 

Table 4-1.   Before loading, the fibers exhibit an average longitudinal compression of  

–1500 µε due to thermal residual strains.  The matrix balances this with an average 

tensile residual strain of +2200 µε (obtained from the Rietveld analysis of the α-Ti 

phase).  The reference d spacings for these residual strain measurements were taken from 

strain-free specimens of each phase.  The systematic errors were compensated for by 

subtracting the “false” strain given by the internal standard.  The preparation of the 

references is described along with other residual strains measurements for this composite 

in Section 5-2.  Based on these strains, the FEM (Section 3-1) predicts average 

longitudinal stresses of –740 MPa and +350 MPa in the fibers and the matrix, 

respectively.   

Table 4-1  Bulk residual axial strains in the Ti-SiC composite (from Figure 4-7). 

Phase β-SiC (220) 
α-Ti 

(Rietveld) 
α-Ti (10·2) α-Ti (11·0) 

Initial Residual 
Strain (x10-6) 

−1530 (±70) +2200 (±150) +1670 (±20) +2890 (±20) 

 

Employing the data for CTEs given in ref. [54], these thermal residual stress/strain 

results suggest an effective stress-free temperature of 550°C.  This means, during cooling 

from the processing temperature, the thermal residual stresses/strains were effectively 

generated starting around 550°C.  One must be cautious about the accuracy of this 
                                                 
*Here longitudinal and axial are considered synonymous since the axis of the fibers is in 
the longitudinal direction of the composite.  This direction is also synonymous with the 
ε11, εxx, 1, ξ, and x directions. 
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temperature as its value depends to a large extent on the accuracy of CTE data and the 

assumption of only elastic and plastic deformation in the matrix (i.e., any creep during 

cooling is ignored). 

The fiber strains were based on measurements from the (220) reflection of β-SiC, 

which is a cubic phase.  The choice to use only one reflection resulted from the high 

texture and small grain size (50-100 nm [78]) found in the fibers.  Few SiC reflections 

were observed in the diffraction patterns, and among those, only (220) yielded good 

statistics.  The literature values for this system confirm the observed thermal residual 

strains in the fibers.  Withers and Clarke [55] and Choo et al. [69] used neutron 

diffraction and quote the same residual strain value for the SiC fibers in the longitudinal 

direction as was observed in this composite.  The former used the (220) reflection as 

well, but the latter performed Rietveld analysis on β-SiC.  In addition, Rangaswamy et al. 

[54] obtained a similar value (about –1300 µε) using the same reflection.  In sum, the 

(220) reflection of β-SiC yields representative values for the bulk strain state of the 

fibers.  This can also be seen in Figure 4-7 where the strains along (220) follow closely 

the FEM predictions for the fibers. 

The Ti-6Al-4V matrix exhibits significant elastic and plastic anisotropy.  The initial 

thermal residual strains are seen to vary appreciably when plane-specific strains from α-

Ti and the Rietveld “average” are compared (Table 4-1).  (Note that the effect of the 

minority phase in the matrix (β-Ti) in the preceding and following analyses has been 

neglected due to its small percentage (less than 10 vol.%) [69].)  Similar results were also 

observed by other researchers.  For instance, Choo et al. [69] obtained +2600 µε for the 

average axial strain in α-Ti from Rietveld analysis.  In addition, their plane-specific 
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residual strains are similar to those shown in Table 4-1.  The residual thermal strain 

anisotropy in α-Ti is due to anisotropy in its CTE (e.g., the CTE of the basal plane is 

higher than that of the prism planes) as well as its plastic anisotropy [69].  The latter 

would manifest itself in terms of variations in susceptibility to plastic deformation during 

cooling to relieve thermal stresses.  As a result, plane-specific residual strains would be 

relaxed to varying degrees along prism planes in comparison with the basal planes.   
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4-5. Bulk Applied Strains 

Application of tensile stress provided additional information about the plasticity in 

the matrix.  Figure 4-7 shows the evolution of elastic lattice strains in the matrix and 

fibers, obtained from XRD data, during a loading/unloading cycle as well as the overall 

composite behavior, obtained through the strain gage.  Residual strains from Table 4-1 

are also included in Figure 4-7.  From the strain gage, the surface of the composite shows 

linear elastic behavior up to 750 MPa applied stress (see also Figure 4-8).  This is in 

agreement with the material data collected at 3M Corp. [73].  The composite’s Young’s 

modulus was 216 GPa, a value that compares well with the rule-of-mixtures prediction of 

211 GPa and the nominal value provided by the manufacturer, 207 GPa [73].   



84 

0

100

200

300

400

500

600

700

800

-2000 -1000 0 1000 2000 3000 4000 5000 6000

Strain (x10-6)

A
pp

lie
d 

C
om

po
si

te
 S

tr
es

s 
(M

Pa
)

Ti (Rietveld)
Ti (10·2)
Ti (11·0)
Ti (FEM)
SiC (220)
SiC (FEM)
 Strain Gage

SiC Ti
Composite

 

Figure 4-7  Comparison of experimental strains from bulk with FEM predictions of 
applied composite stress vs. average elastic axial strains in the first undamaged Ti-SiC 
composite during a loading/unloading cycle.  Strain gage values are shown together with 
lattice strains in the Ti (10·2), Ti (11·0) and SiC (220) reflections obtained from 
diffraction.  Thermal residual strains are included (see Table 4-1).  Note that due to load 
drifts not every stress level could yield suitable data for Rietveld refinement.   

 

When phase-specific lattice strains were studied, additional information about the 

mechanical behavior of the constituents was obtained.  Single peak fits to the XRD 

patterns showed that, as the composite was loaded up to 500 MPa, the fibers and matrix 

co-deformed linearly (Figure 4-7).  At higher stresses, the fibers began to strain more 

than the matrix at the same applied stress.  This is a clear signal of load transfer to the 

fibers and implies yielding in the matrix.  Unfortunately, time constraints during the 

initial XRD runs prevented the application of many stress levels to more precisely 

determine the in situ yield point of the matrix.  A further complication was the load drift 
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due to deformation at the grips.  This drift resulted in relaxation of applied stresses and 

led to lower stress levels during diffraction measurements than those initially applied 

(Figure 4-6).  For example, although the composite was loaded to 780 MPa, the average 

stress during diffraction data collection was 660 MPa (Figure 4-7).  This means the 

deviation from the linear curve in the lattice strains shown in Figure 4-7 resulted from 

yielding in the matrix between 650 and 780 MPa applied composite stress.   

The in situ matrix yielding is expected to commence as a thin layer around the fibers 

(Figure 3-1 (d)).  Since X rays sampled the entire cross section, matrix yielding is not 

realized until a significant plastic layer forms.  The measured strains then confirm the 

FEM prediction that “global” yielding is not apparent until at least 600 MPa applied 

stress (Section 3-1 and Figure 4-7).  The resulting change in residual strain will be 

presented with the next section in Table 4-2. 

Similar behavior was seen in the second composite specimen examined with the 

image plate.  Since reinforced grips were used, greater stresses were achieved and the 

load drift was diminished.  The first cycle to 400 MPa showed primarily elastic strain.  

The strains in the second cycle to higher applied stress revealed yielding in the matrix.  

The attached strain gage shows slight global plasticity occurred in the composite after 

750 MPa applied stress (Figure 4-8).  The change in residual strain upon unloading also 

confirms that local plastic deformation occurred in the matrix (Figure 4-9 and Figure 

4-10).   
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Figure 4-8  The macroscopic stress vs. strain in the first loading cycle of the second 
undamaged composite along the fiber direction according to strain gage data (symbols).  
Deformation in the composite was elastic up to at least 700 MPa with very little plastic 
deformation even after 800 MPa.  A line from a linear regression fit to the elastic portion 
of the curve is plotted over the data points to help illuminate the slight deviation from 
linearity in the strains caused by plastic deformation. 

 

An acceptable strain-free reference was not available for the image plate 

measurements directly, so the measurements made using the Rietveld refinements on the 

Ti strain-free reference were used for the matrix, and the Powder Diffraction File 

(ICDD,* PDF# 74-2307) database values for SiC were used for the fibers.  Though the 

absolute residual strains will not be exact, this has no adverse effect on the accuracy of 

observed changes in residual or applied strain (i.e., the residual strains are limited by the 

accuracy of d0, but the relative strains (total strain minus the residual strain) will remain 

                                                 
*International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 
19073-3273 
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accurate [79]).  Since the true residual strains were not available, for comparison with the 

FEM predictions, the residual strains in the second composite were assumed to equal the 

predicted residual strains from the model fit to the first composite.  In addition, assuming 

the composites have the same residual strains is valid since the samples come from the 

same stock. 

From the nature of the analysis on the second composite, strain information in the 

transverse direction is available simultaneously with the longitudinal direction.  The 

strains in the transverse direction are predicted to locally vary more than in the 

longitudinal direction.  This is due to the three-dimensional evolution of strains in the 

composite (Section 3-1).  This local strain variation produces an associated variation of 

the peak center in 2θ at constant η for a range of η near 90o, the transverse direction.   

In spite of this strain broadening in the transverse direction, which increases error in 

the measured strains,* the bulk averaged transverse strain adds significant insight to the 

behavior of the composite.  As the stress increases in the composite, the strains are seen 

to linearly increase in the fiber and matrix up to 500 MPa.  Beyond this applied stress, the 

transverse strains increase and decrease nonlinearly signaling anisotropic plastic 

deformation (Figure 4-9 and Figure 4-10 (b)).   

This nonlinear behavior should not be confused with the true bulk behavior of the 

composite.  It is an artifact of the analysis procedure.  When a grain begins to deform 
                                                 
*The analytical errors are smallest for the fiber axial strains (εf

11) and largest for the 
matrix shear strains (εm

12).  In the fiber, the <111> texture for (220) weakened the 
reflection near η = 90o and 270o.  The lower intensity increased the error for εf

22 and εf
12.  

In the matrix, graininess increases the error in average strain compared to the fiber.  In 
addition strain broadening in the transverse direction associated with the range of strains 
in that direction increases the error of εm

22 and εm
12 compared to εm

11 (see Figure 2-6 and 
error bars in Figure 4-9 and Figure 4-10). 
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plastically, its effective modulus decreases forcing neighboring grains to carry the 

remaining load.  Since many grains are included in the X-ray average elastic strain, some 

of these neighboring “over stressed” grains contribute to the diffracted intensity 

increasing the measured elastic strain.  The larger grain size in the matrix limits the 

number of grains contributing to each diffraction ring.  Therefore, with the increased 

potential for variation in strain among the matrix grains with increasing load, it is likely 

that a few grains will be in a more optimal orientation for diffraction than the majority of 

the remaining grains.  If some of these optimally oriented grains are in a local 

neighborhood that does not represent the bulk behavior of the composite, it may 

significantly perturb the results of the analysis with abnormally large (or small) changes 

in strain.  This nonlinear effect is most pronounced in the transverse direction where the 

strains naturally vary over the irritated area to a much greater degree than in the axial 

direction.  While this effect may encumber a modulus estimate from the transverse strains 

at high stress, it does provide evidence of early yielding in the matrix not observed with 

more conventional methods such as the strain gage analysis. 
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Figure 4-9  Elastic bulk strains in the fiber (a) and matrix (b) for increasing applied 
tensile stress in the second cycle (symbols) on the second undamaged composite.  As 
before, the stress is applied along the fiber axial direction (axis 1).  The FEM prediction 
for the loading cycle in the composite is also shown (lines).  As in Figure 4-7 there is 
good agreement with the model up to the higher stresses.  The deviation near 800 MPa 
signals the onset of global plastic strain in the matrix.  An early onset of plasticity is 
observed in the transverse (ε22) direction where individual grains naturally show larger 
variations in strain (see text). (Strains are taken from the matrix (10.2) diffraction ring 
and the fiber (220) diffraction ring.) 
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As the applied stress is increased on the composite, the matrix strains begin to change 

nonlinearly in the axial direction.  This deceleration in strain is associated with plastic 

strain in the matrix.  Since plastic strain is attributed to flow by dislocation motion and 

not expansion of the lattice, the diffraction elastic strain can not continue to increase with 

increasing stress.   This yielding behavior is realized near 700 MPa in the axial direction, 

the same stress predicted by the FEM, at least 50 MPa earlier than it is realized with the 

composite strains from the gage (Figure 4-8). 

One advantage of the image plate over the point detector includes improved detection 

of matrix yielding.  The nonlinear behavior observed in the transverse direction is more 

pronounced than the axial direction.  Thus matrix nonlinear behavior, which before 700 

MPa was within the statistical error of the axial strains, is more significant in the 

transverse strains.  The nonlinear strain behavior in the transverse direction is observed as 

early as 500 MPa with a significant deviation by 600 MPa.  This observation is consistent 

with a composite which initially yields to a small degree in the matrix along the 

transverse direction near 500 MPa, yielding continues to increase spreading to an 

increasing number of grains until it is initially observed in the axial direction near 700 

MPa.  Finally the matrix yielding becomes significant enough to affect the strain gage 

reading, 250 MPa after it was first observed, near 750 MPa. 
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Figure 4-10  Strains during the release of applied tensile stress in the second undamaged 
composite.  The arrows show the direction of unloading.  The fibers (a) show an overall 
linear behavior with very little average shear strain over the range of applied stress.  
However, the matrix (b) appears to deviate from linear behavior particularly in the 
transverse (ε22) and the shear (ε12) directions. 
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Consideration for the intrinsic range of strains in the transverse direction must be 

included with these observations as the strain equation (2-3) and the analysis method was 

not optimized for quantification of these variations.  A broader range of strains 

contributes to a more scattered position of the diffraction ring in the transverse direction 

(strain broadening, for example see Figure 2-6).  Since there is a greater range of strains 

in this direction some grains will be closer to a yield point than others.  Whereas in the 

axial direction the strains are more uniform and the grains approach their yield stress 

together.  This becomes increasingly significant with load as XRD analysis intrinsically 

weights grains unevenly which will tend to highlight grain-specific behavior particularly 

in the transverse direction since only a portion of the available grains are included for 

calculating the mean of the broad range.  The jogs in the transverse strains of Figure 4-9 

and Figure 4-10 are likely due to a small number of grains or sub-grains rotating (or 

translating) slightly in and out of favorable orientation to diffraction which drastically 

changes the intensity around the transverse portions of the diffracted ring for small η.  

The solution to Eq. (2-3) changes for the transverse direction when these intensities 

change.  Again, since a broad range of strains is present in this direction, loosing intensity 

for one outlier could noticeably change the result.  A change which is consistent with the 

onset of yielding in the matrix though the magnitude observed may not fairly represent 

the mean strain in the composite. 
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4-6. Bulk Residual Strain Evolution 

The outcome of matrix yielding visible in Figure 4-7, Figure 4-9, and Figure 4-10, is 

quantified in Table 4-2 as the change of the residual strains following unloading.  

Specifically, in the first composite—loaded to 790 MPa—new tensile strains (+300 µε) 

were generated in the fibers and new compressive strains (about –200 µε using the 

Rietveld analysis) were added to the matrix after unloading.  The character of the 

yielding-induced residual strains is typical for a MMC in which the matrix yields and 

transfers load to the stiffer fibers [80, 55].  Assuming a simple one-dimensional stress 

model, the change in residual strains when fully unloaded for the first composite 

correspond to a 120 MPa increase in the fiber residual stress and a 25 MPa decrease in 

the matrix residual stress.  Compared to other loading experiments in this MMC system, 

these values indicate small scale yielding in the matrix.  For instance, Withers and Clarke 

[55] measured residual strain changes of +1000 µε and –1800 µε in fibers and matrix, 

respectively. 
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Table 4-2  Residual axial strain (10-6) evolution in damage free Ti-SiC composites 
averaged over all fiber and matrix regions in the beam.  The first three rows correspond 
to measurements from the first composite examined with the point detector.  The last two 
rows row corresponds to values taken from the second composite using the image plate.  
The second composite was also taken to a greater applied tensile stress. 

 Phase β-SiC 
(220) 

α-Ti 
(Rietveld) 

α-Ti 
(10·2) 

α-Ti 
(11·0) 

Initial Residual 
Strain  

−1530 
(±70) 

+2200 
(±150) 

+1670 
(±20) 

+2890 
(±20) 

Final Residual 
Strain   

−1230 
(±70) 

+2000 
(±130) 

+1400 
(±20) 

+2200 
(±10) 

1st 

Composite 

Change in Residual 
Strain After 790 

MPa Applied Stress 
300 (±70) -200 

(±140) 
-270 
(±20) 

-690 
(±15) 

2nd  

Composite 

Change in Residual 
Strain After 850 

MPa Applied Stress 
400 (±28) NA -420 

(±172) NA 

 Change in Residual 
Strain After 400 

MPa Applied Stress 
5 (±33) NA 

-26 

(±182) 
NA 

 

 

Though a small change in the “average” matrix axial residual strains of the first 

composite sample (provided by Rietveld) was observed after the plastic deformation, 

significant plastic anisotropy was seen in the matrix (Figure 4-7 and Table 4-2).  This is 

expected given the hexagonal crystal structure of α-Ti.  Of the two crystal planes 

exhibited in Figure 4-7, (10·2) approaches the Rietveld average in terms of its 

susceptibility to plastic deformation.  Its effective elastic constant was similar to that 

given by Rietveld as well—the unloading gradient of (10.2) strains was measured as 217 

GPa versus 221 GPa from Rietveld.  In comparison, (11.0) had an unloading gradient of 

203 GPa.  In addition, (10.2) is near both the (220) reflection of β-SiC and the (220) 
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reflection of Si (used as internal standard) in d spacing, reducing the data collection 

times.  Thus the (10.2) was also examined using the image plate analysis method.  The 

change in residual strain for the second composite loaded to 850 MPa is also given in 

Table 4-2.  The change in residual strain was in accordance with those seen in the first 

composite.  Furthermore, since a change in residual strain upon unloading signals 

yielding in the matrix, the lack of change in residual strain for the cycle to 400 MPa 

confirms the absence of matrix yielding below this stress as was concluded in the 

previous section. 
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4-7. Conclusions on the Bulk Laminate Properties 
Using two X-ray diffraction methods, the phase-specific in situ residual and applied 

strains in a metal matrix composite were investigated.  Of the two methods, the use of an 

image plate proved most valuable for the identification of global yielding in the matrix.  

Plastic yielding is revealed in nonlinear lattice strains usually dependent on the 

crystallographic direction analyzed.  As was shown here, since the two-dimensional 

strain tensor could be observed at each load, the characteristic nonlinear behavior of 

yielding could be observed where it first occurred, the transverse direction.  However, 

both the point detector and the image plate methods provide elastic strains comparable to 

a three-dimensional FEM (Section 3-1).   

Due to the CTE mismatch, thermal residual stresses of −740 MPa in the fibers and 

+350 MPa in the matrix exist along the fiber axes.  Although, using conventional 

mechanical testing, the global yielding of the Ti-SiC composite was not detected until 

750 MPa applied stress; XRD strains revealed that measurable local yielding occurs as 

early as 500 MPa.  These strains were due to growth of the yield zone around the fiber as 

predicted by FEM (Section 3-1).  In the residual stresses and under the applied tensile 

load, plastic anisotropy was observed in the matrix.  It provides a source for the grain-to-

grain strain variation in the composite (Section 5).   

From the applied strain results obtained here, the α-Ti (10.2) reflection shows 

behavior representative of the matrix average obtained from Rietveld.  The α-Ti (10.2) 

also showed similar sensitivity to plasticity-induced residual strains as the matrix 

average.  Thus, the same reflection was used in the microdiffraction study described 

below. 
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5. Microscale Deformation of Ti-SiC Composites 

The bulk deformation information from the analysis above provided valuable insight 

concerning the mechanical behavior of the composite.  However, damage such as a fiber 

break will not necessarily occur uniformly throughout the composite, making the bulk 

analysis less useful in discerning the micromechanical behavior of the composite.  What 

is needed to fully understand the micromechanics of the composite, particularly near fiber 

breaks, is spatially resolved strain information.  Since damage in the composite typically 

results in fiber fracture, the micromechanical dimension of interest according to the 

MSSL model (Section 3-2.1) is the fiber diameter.  In order to obtain strains at this scale, 

XRD was used to build maps of the elastic strains near fiber breaks in the composite.  

While the fibers are well suited to the micro-analysis technique, the matrix grain size is 

on the order of one fifth of the fiber diameter.  This presented a challenge, as only a few 

grains would contribute to the measured stain at the dimensions of interest.  As will be 

shown, this challenge was overcome through the use of high-energy two-dimensional 

micro X-ray diffraction (HEµXRD2).  The observed strains are presented in this section 

with a comparison to the predicted strain profiles in Section 5-7.  The section begins with 

the introduction of damage into the composite. 

5-1. Controlled Damage in Ti-SiC Composites 

In order to examine a region of interest ideal for application of the MSSL mechanics 

model [34], the presence of at least one damaged fiber was required.  Finding naturally 

damaged fibers in situ during loading is a strong capability of X-ray imaging such as 

microtopography or tomography; however, in order to isolate the effects of the damaged 
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fiber, it is also desirable to find a broken fiber that is surrounded by a uniform region of 

damage free matrix and fibers.  Lastly the damage must be located far from the grips and 

sample edge in order to eliminate spurious effects from these regions of non-uniform 

stress.  Others have attempted the examination of SiC fiber strains using X-rays in a 

composite processed with free fiber ends in a Ti matrix [81].  Though an interesting study 

particularly for its use of radiography to identify fiber breaks, the local stress state in such 

a composite does not directly relate to the problems of interest for the engineering and 

modeling community since load transfer from broken to intact fibers could not be 

investigated.  In addition, the matrix strains between fibers were overlooked in that study. 

For this analysis, two methods were used to produce controlled damage in the 

continuous fiber Ti-SiC composite.  In the first method, matrix at the center of the gage 

length was etched (using 50% hydrofluoric acid), exposing a section of SiC fibers.  In the 

center of the exposed region, one fiber was damaged by compressing a sharp bit into the 

fiber perpendicular to the fiber axis.  The matrix was left intact around and behind the 

roughly 0.6 x 0.2 mm2 exposed region or “damage area” (Figure 5-1).  The fibers 

examined were labeled -2 through 2 with 0 being the initially broken fiber.  The specimen 

dimensions were:  thickness, t = 0.20 mm, gage length, L = 26.00 mm, and gage width, 

W = 10.25 mm (Figure 5-2).  As with the bulk composite analysis, a 120 ohm strain gage 

was attached to measure the applied macroscopic strain at the surface in the longitudinal 

direction, parallel to the fibers (Figure 5-2). 
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Figure 5-1  Optical micrograph illustrating the exposed fibers around the damage zone.  
The red numbered line is parallel to the fibers with the red numbers displaying the 
approximate scale for some axial positions where strains were measured.  
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Figure 5-2  Schematic showing the damaged sample geometry used in the XRD 
experiments.  The composite thickness was 0.2 mm.  Fibers positions are represented by 
white lines within a gray matrix.  The region etched is marked by an oval below the strain 
gage (for illustration only – not to scale).   

 

While the first sample afforded a good comparison with the model, uncertainty 

associated with the geometry of the damage zone was alleviated by a second sample.  In 

the latter, a small hole was cut by plunging an EDM wire into the center of the 

composite.  Similar to the EDM technique first attempted on the macroscopically 

analyzed sample, oxidation of the Ti surface was avoided by sandwiching the composite 

between two Al strips.   
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The dimensions of the hole affect the stress concentration on the surrounding fibers.  

Accurate measurement of the hole size and initially broken components is critical for 

unambiguous application of micromechanical models.  Using images from an SEM, the 

hole measured 290 µm across cutting one fiber, labeled D, and the matrix between two 

fibers, fibers D and E.  The neighboring fiber, labeled E, and adjoining matrix region 

were also partially cut by the EDM wire (see Figure 5-3).  The length of the hole along 

the fiber was measured to 240 µm.  The opening of the hole in the fiber axial direction 

tapers towards zero as it approaches fiber E.  The average length along the cut matrix 

region was measured to 226 µm.   
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Figure 5-3   An SEM image at a 45o tilt angle of the hole cut by EDM in the second 
composite.  The hole cut completely through one fiber which was later assigned the label 
D.  Beside it is fiber E which was partially cut.  The matrix between these fibers is 
obviously cut as well as some of the matrix adjacent to D, the completely cut fiber. 
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5-2. Additional Residual Strain Measurements in Ti-SiC 

Composites 

The following describes some additional experiments focused on the residual strain in 

the composite.  A comparison of the results from the different techniques is presented 

along with some of the difficulties in obtaining accurate residual strains from this 

composite system.   

For an ideal measurement of residual stress particularly in a fiber composite, a strain-

free reference is necessary.  Though the chemical composition of a powder may be 

identical to the consolidated phase of interest, any one of a number of processing 

parameters may disturb the lattice parameter of the consolidated material making the 

powder a deceptive strain-free reference.   In practice, simply obtaining a strain-free 

powder identical in composition to the phase of interested may also be difficult.   

For the Ti-SiC composite system, a strain-free reference was obtained by etching a 

portion of the matrix away from the fibers.  SiC is stable in the presence of aqueous HF 

and did not react with the etchant used to remove the matrix.  Thus strain-free fibers, or 

more precisely, fibers whose residual strain state no longer depended on the matrix were 

easily attainable.  Such a reference is preferred over the raw fibers since processing them 

into the composite potentially changes the structure of the fibers on a scale which would 

be measured by X rays (10 ppm).  

A more tedious procedure of layer removal by etching was used to obtain the matrix 

strain-free reference.  The matrix was slowly rinsed from one surface of the composite 

down to a depth exposing the radius of the fibers.  As the matrix was removed, the 
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remaining composite curved away from the exposed fibers providing visual proof of the 

compressive residual strain state in the fibers and tensile residual strain state in the 

matrix.  Finally, to completely remove the fibers from the matrix, one end of the 

remaining composite was immersed in etchant.  With a portion of the interface etched 

away, the thermal residual stress provided enough force to separate the matrix from the 

fibers resulting in the matrix strain-free reference. 

Side View

Back View

Etched Side

Portion Not Etched

 

Figure 5-4  Two photographs of the etched composite during the process of making the 
strain-free reference (before the fibers were etched away from the matrix).  The thermal 
residual strains are strikingly apparent from this image.  Once the fibers were freed from 
the matrix both phases returned to their originally flat configuration.  A razor blade is 
also shown to provide scale. 

 

In some circumstances, a strain-free reference cannot be obtained.  An option for 

measurement of the residual strain in these cases is the “d vs. sin2ψ” technique [17].  The 

technique requires measurements of the lattice spacing at one location over several 

sample angular orientations (defined as ψ whether the rotation is along θ or χ).  For 

example, to obtain the values of sin2ψ  used here (0.051, 0.10, and 0.20), the sample was 

rotated in θ through the angles 13.05o, 18.43o, and 26.57o away from the θ = “2θ” / 2 
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position (or standard α = 0o position).  The resulting lattice spacings are then used to 

solve the relevant form of the strain equation (for example, Eq. (5-1) below) and provide 

the residual strain (for more discussion see [17]).   

This technique was used to measure the transverse residual strain in the matrix of the 

Ti-SiC composite.  Three distinct sin2ψ residual strain measurements were performed on 

sections of the Ti-matrix/SiC-fiber composite consisting of a single row of unidirectional 

fibers.  First, a microdiffraction experiment that involved scanning the Ti matrix to 

identify individual grains reflecting at a given Bragg angle for several ψ tilts is presented.  

Then, two macrodiffraction experiments including a Cu radiation experiment conducted 

at Caltech and a through-thickness high-energy experiment performed at the Advanced 

Photon Source are compared to the microdiffraction measurements.  The sampling 

volume involved the same grains in both macrodiffraction cases.  The analysis 

illuminates the non-uniformity of residual strains in the composite, specifically in the 

transverse direction, and highlights the significance in averaging data from individual 

grain measurements. 
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5-2.1. “sin2ψ” Experimental Procedure 

“sin2ψ” Specimen 

 

Figure 5-5  Diagram of the low-energy microdiffraction technique.  2θ is in the same 
direction as θ. 

 

For the following measurements, a separate section of unidirectional laminate from 

the same Ti-SiC composite described earlier was examined.  After cutting and 

mechanically polishing the sample in order to expose the fibers at each surface, the 

dimensions were 16 mm wide in the x* direction and 38 mm long in the y direction (see 

directions in Figure 5-5).  A triangular copper marker was placed near the region of 

                                                 
*As noted in the figure, the orientation of the x and y directions for the sin2ψ analysis are 
perpendicular to the directions used in the other analyses. 
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interest, which was used as the reference position for the observed grains.  For this study, 

the region analyzed by X rays did not have exposed fibers.  Its total thickness was 0.17 

mm in the z direction. 

Using the linear intercept technique, the average grain size of Ti was 

29 µm ± 3.5 µm [82, 83].  Measurements were made at 40x and 20x magnification on an 

optical microscope.  In the plane parallel to the axis of the fibers, 110 grains were 

averaged (the x, y plane in Figure 5-5).  For the plane perpendicular to the fibers, too few 

grains were available to use the linear intercept technique.  

 

“sin2ψ” Microdiffraction Procedure 

The microdiffraction analysis was performed on the X-20 beamline of the National 

Synchrotron Light Source of the Brookhaven National Laboratory using an Ω 

goniometer.  For this analysis, the energy of the X-rays was fixed at 9 keV providing 

good statistics for count times of approximately 1 second when using a 0.2o receiving slit 

width and a microbeam capillary with a 0.3o divergence in place [37].  The experiments 

were conducted at room temperature. 

In a reflection orientation with the fibers running perpendicular to the beam, the 

sample was scanned in the plane parallel to the surface of the sample (Figure 5-5).  

Individual α-Ti grains with the (20.3) plane in a similar orientation were identified by 

their diffracted intensity around 2θ = 88.6o.  With an X-ray spot size on the surface of the 

sample approaching 10 µm in diameter, the grains were resolved as shown in Figure 5-6.  

Grains were selected for further analysis based on their relative diffracted intensities. 
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Figure 5-6  Contour plot of Ti (20.3) reflection from microdiffraction.  The Cu (311) 
reflection, which is close in d to the Ti reflection, exposes the Cu marker as the rough 
triangle between grains 13 and 14.  The rectangle in the center of the figure borders the 
region scanned at higher ψ's. 

 

The coordinates of the numbered grains shown on Figure 5-6 were optimized first in 

x, then in y based on the maximum intensity of the diffracted peak while varying x and y 

independently.  At least two iterations of a similar optimization procedure were 

performed for the θ and χ angles.  Finally, 2θ was varied while holding the sample fixed.  

A maximum in 2θ was then calculated based on the full width at half maximum (FWHM) 

of a Gaussian curve fit to the peak.  The receiving slit width for this measurement was 

0.02 mm.  The procedure was then repeated for sin2ψ = 0.051, 0.10, and 0.20, 

respectively, on a total of 38 separate grains.   

At 9 keV, the penetration depth (G0.99, defined as the thickness that contributes 99% 

of the intensity diffracted in reflection at θ = 44.3o) was calculated to be 28 µm.  For a 
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grain 29 µm across and a 36 mm2 area, assuming square grains, the Lorentz factor 

predicts approximately 80 grains should reflect at 2θ = 88.6o  [17].  As can be seen in 

Figure 5-6, approximately half that number of significant grains were observed for the 

36 mm2 area sampled at ψ = 0o.  Thus, half of the predicted number of grains contributed 

to the majority of the diffracted intensity. 

“sin2ψ” Macrodiffraction Using Low Energy X Rays 

The same α-Ti reflection, (20.3), was again examined at Caltech on a Siemens D500 

diffractometer using Cu radiation (8.04 keV, G0.99 = 20 µm).  The ψ tilts were performed 

at the same angles as in the microdiffraction procedure: 0.00o, 13.00o, 18.46o, and 26.57o.  

The area probed by the X-ray beam was approximately 2 mm in the x direction by 4 mm 

in the y direction at 0o ψ with 0.3o slits (Figure 5-5).  To correct for potential alignment 

errors, a standard LaB6 powder (NIST Reference Material 660) was simultaneously 

scanned in 2θ at the (411) reflection (d = 0.9798 Å).  The Ti reflection was fit using a 

Gaussian profile function, and the LaB6 (Kα and Kβ) reflections were fit using Lorentzian 

profile functions.  The d203 results are plotted on Figure 5-7. 

sin2ψ Macrodiffraction Using High Energy X Rays 

The same sample was again analyzed in transmission using 25 keV X-ray radiation 

provided by the Advanced Photon Source (APS) at the SRI-CAT (Sector 1) beam line.   

For 25 keV X-rays, G0.99 is 170 µm; therefore, the strain data obtained is a through-

thickness exponentially weighted average.  An area of 2 mm along the fiber direction for 

χ = 0o by 1 mm perpendicular to the fiber direction was sampled.  The area investigated 

intersects the area sampled by the low-energy microdiffraction sin2ψ analysis.  For this 



110 
procedure, ψ was taken to be in the χ direction instead of the θ direction (Figure 5-5).  As 

in the other procedures, φ was not varied for this sample.  The values of sin2ψ examined 

were 0, 0.1, 0.5, and 0.702.  The α-Ti (20.3) reflection position was determined using a 

Lorentzian profile function. 

 

5-2.2. “sin2ψ” Results and Discussion 
 

The results of the microdiffraction analysis were averaged for each ψ and are shown 

on Table 5-1.  In the case of ψ = 0o, two values are given.  The first value is the average d 

spacing of all 13 grains analyzed at ψ = 0o.  The second value is the average of the five 

grains, 3 through 6 and 18, within the dashed line box on Figure 5-6.  Also in Table 5-1 

are the respective standard deviations in the d-spacing at each ψ.  Some are almost half 

the proof strain limit (~0.2%) for ductile materials, with the largest measured variation 

between grains at 0.00318 Å for sin2ψ = 0.10. 

Table 5-1  Averaged results of the microdiffraction analysis. 

 

Number of 

Grains 

Sampled 

area (mm2) 

sin2ψ d203 

(Å) 

standard 

deviation 

13 36 0.000 0.98573 0.0844% 

5 4.0 0.000 0.98602 0.0656% 

9 3.6 0.051 0.98597 0.0736% 

9 4.0 0.100 0.98570 0.0934% 

7 3.6 0.200 0.98536 0.0567% 
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For the strain analyses calculated herein, the reference d spacing, do, value is taken as the 

value measured at ψ = 0o.  For φ = 0o we have [17] 

d
φψ

do−

do
εx sin2

⋅ ψ εz cos 2
ψ⋅+ εxz sin 2 ψ⋅( )⋅+

  
(5-1)

 

Using values predicted from a linear fit to the averaged values for the roughly 4 mm2 

area in Table 5-1 and solving Eqn. 5-1, the relative strain in the direction perpendicular to 

the fibers (εx) is −3500 µε.  In the case of the microdiffraction analysis performed at ψ = 

0o, the number of grains measured was significant enough to show strong variations in 

the measured d spacing throughout the 36 mm2 area.  These variations suggest large 

strain gradients.  In order to localize averaging over significant transverse strain 

gradients, the sin2ψ scans were performed on an approximately 4 mm2 area of diffracting 

grains (the region bordered by the dashed line box in Figure 5-6).  If the d spacing given 

by the entire 36 mm2 region at 0o ψ is instead used in the analysis, the result is -2400 µε.  

This dependence on area exemplifies transverse strain gradients on the surface of the 

polished composite sample. 

The d spacing values given in Table 5-1 are plotted in Figure 5-7 along with the 

values measured by the 8.04 keV macrodiffraction analysis as a function of sin2ψ. The 

error bars for the microbeam analysis represent the standard deviation for the grains 

averaged at that ψ.  The error bars for the macrobeam analysis represent two times the 

standard deviation of the (411) LaB6 reflection position measured simultaneously with 

the Ti (20.3) reflection. 

As can be seen from the graph, the slope of the macrodiffraction measurement agrees 

with the microdiffraction measurements within the error of each measurement.  Using 
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values predicted from a linear fit to the average for the macrodiffraction data and Eq. (5-

1), the predicted relative strain in the matrix is −3100 µε in the x direction (here 

perpendicular to the fibers).   Since, nominally, the same small number of grains was 

sampled in both analyses, a similar deviation in d spacing among grains is expected.  For 

the macrodiffraction analysis, this deviation contributes to the broad peaks observed.  

Since the low-energy experiments were performed using the θ direction for ψ, at high ψ 

the spot size of the beam decreased.  In addition, absorption of the diffracted radiation 

becomes increasingly significant with an increase in ψ.  These changes account for some 

of the observed variation in intensity of the reflections with ψ.  
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Figure 5-7  Comparison of the macrobeam, , and microbeam, x, low-energy 
measurements. 
 

The 25 keV data shows the matrix in transverse compression with εxx = -860 µε. The 

high-energy transmission data also gives a negative slope (Table 5-2).  In all three cases, 

similar areas of the sample were analyzed.  However, as the 25 keV results originate from 
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transmission measurements, the entire depth of the sample was probed; thus, these results 

represent a larger set of grains than the previous analysis in reflection geometry.   

 

 

Independent Cu Kα diffraction measurements of thick electrochemically polished Ti-

6Al-4V-matrix/SiC (SCS-6)-fiber composites gave 174 µε for the matrix residual strains 

in the transverse direction [54].  The difference in these results may be due to mechanical 

polishing or differences in the initial processing history, but the residual strain 

measurements using the strain-free standard also gave -560 µε for the same composite 

system with a strong variation depending on position from the fiber (Section 5-4).   

Table 5-2 Comparison of slopes and residual strain values for each 
technique used. 

Technique Slope of the 

“d vs. sin2ψ” curve 

 (Å) 

Residual strain in the 

transverse direction 

(10-6) 

Microdiffraction -0.00346 -3500 

Macrodiffraction -0.00307 -3100 

Transmission -0.00085 -860 

Transmission (using a 

strain-free standard) 

NA Average -560 

Min. -3320 

Max.  1760 
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5-2.3. “sin2ψ” Conclusions 

A model Ti-SiC composite was examined using three distinct X-ray techniques:  low-

energy microdiffraction (9 keV synchrotron radiation), low-energy macrodiffraction (Cu 

radiation), and high-energy macrodiffraction (25 keV synchrotron radiation). When 

considering similar sampling areas, the microdiffraction analysis verifies the same 

compressive strain state observed using the traditional macrodiffraction technique.  This 

is not surprising since the same grains were observed in both cases.  However, though the 

“d vs. sin2ψ” plot appears linear with similar slopes for the two low-energy reflection 

measurements, the strain measured in high-energy transmission is considerably different.  

This is also compounded with the large variation in strain between grains. 

The difference in low-energy to high-energy data suggests a large strain gradient 

through the depth of the sample and likely a three-dimensional strain state making 

questionable the use of “d vs. sin2ψ” data for residual strain measurements in this system.  

These measurements were conducted observing lattice planes in the direction parallel to 

the fiber axis (transverse direction).  Measurements using transmission and a true strain-

free reference later confirmed the non-uniform strain state in this direction and a 

dependence on the proximity of the measurement to the fibers in the out-of-plane 

direction as is predicted by an FEM model (Sections 3-1, 4-4, and 5-4). 
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5-3. Microbeam Diffraction Method 
The high intensity of synchrotron X-rays makes practical the generation of small 

beams that allow a detailed study of the co-deformation of phases in composites.  While 

the microbeam method is similar to the macrobeam method described in Section 4-2, the 

addition of spatial resolution requires some procedures not covered there.  A description 

of these additional procedures and the resulting data follows.  These microdiffraction 

experiments were primarily done at the Advanced Photon Source (APS), but some 

surface measurements were also performed at the National Synchrotron Light Source 

(NSLS). 

The composite damaged by etching (first composite) was examined with a micro X-

ray beam at 25 keV (wavelength, λ = 0.496 Å) at the 1-ID-C beam line (SRI-CAT, 

Sector 1), APS.  The beam size was adjusted with incoming beam slits from 30 x 30 µm2 

to 90 x 90 µm2.  Similar to the composite first examined with the 2 x 2 mm2 beam, the 

energy was chosen to provide a through-thickness average of the strains from each phase 

(see Section 4-2). 

To obtain the desired diffraction geometry, a four-circle goniometer was used in 

transmission mode.  The diffraction vector was maintained along the fiber axis, thus the 

diffraction patterns provided the longitudinal (or axial) strain in the plane of the 

composite.  The diffraction intensity was collected with a NaI scintillator detector 

equipped with a Si (111) analyzer crystal.  The X-ray beam size was defined by slits on 

the incident beam side.  An internal standard Si powder, (NIST, Standard Reference 

Material 640a) attached to the specimen surface, verified beam and sample stability 

(Figure 4-3). 
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Figure 5-8  Absorption contrast image of the damaged region in the first composite as 
captured by the Si diode.  Intensity is proportional to absorption, i.e., the darker a region 
the higher the absorption.  The contrast is primarily due to Ti thickness.  The low density 
SiC fibers do not reveal features such as cracks.  The absence of matrix from the surface 
of the sample near the damage region is evidenced by the bright region near the center of 
the image.  The periodic change in intensity along y corresponds to the position of SiC 
fibers in the matrix.  The fibers examined are labeled by number.  Matrix regions 
examined lay between the labeled fibers. 

 

The first task was to determine the location of the buried fibers around the damage 

region.  A Si diode, which monitored the transmitted beam intensity during each 

experiment, provided contrast from X-ray absorption due to the large difference in the 

absorption coefficients of the matrix and fibers:  36 cm-1 for Ti and 4.6 cm-1 for SiC (at 

25 keV, from [84]).  Absorption contrast maps using a 30 x 30 µm2 beam size provided 

the sample coordinate system in relation to the laboratory system (Figure 5-8).  At the 

same time, the 2θ detector was set at fixed angles to monitor the intensity of the β-SiC 
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(220) reflection (Figure 5-9) after loading and the α-Ti (11.2) reflection (Figure 5-10) 

before loading.   

 

Figure 5-9  Map of β-SiC (220) reflection indicating the location of the buried fibers.  
The oval outlines the damaged region.  Fibers are numbered to indicate their location 
with respect to the damage zone (at the beginning, “Fiber 0” was broken).  It is 
interesting to note that the 30 x 30 µm2 beam size used in this experiment yielded a 
continuous map for SiC confirming its small grain size. 
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Figure 5-10  Map of α-Ti (11.2) reflection indicating the location of diffracting Ti grains.  
The marked damage zone and fiber locations are visible from the dashed lines available 
from the transmission data collected simultaneously during the scan.  With an average Ti 
grain measuring 29 µm across, few grains are oriented for diffraction at a given θ angle.  
The damage zone marked by the arrow was etched to expose fibers.   

 

At the X-20A beam line of the NSLS, similar grain maps were obtained from the α-

Ti (10.2) peak using a 10x10 µm2 beam focused by a capillary with a lower (9.1 keV) 

energy.  Since this reflection was used for the majority of the matrix strain measurements, 

a representation of the grain distribution exposes the number and density of grains 

included in the analysis.  This low energy samples a depth equal to one average grain in 

the matrix.  For this second set of grain maps two layers of Ti grains were investigated, 

first at the surface and another at the fiber midplane.  These layers were available from 

Damage 
Zone Ti Grains 

Fibers 
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the surface of the matrix reference sample processed as described in Section 5-2.  These 

grain maps clearly show the distance between grains with respect to the scale and 

position of the fibers (Figure 5-11).   In keeping with the better statistics for this lattice 

plane, there are more diffracting grains per area in this grain map than seen in Figure 

5-10 (the difference, while apparent as shown, is even more substantial when considering 

that in Figure 5-10 the entire thickness is sampled and in Figure 5-11 only the surfaces 

are investigated).  The grains typically have at least one to two dimensions greater than 

the fiber diameter.  As seen in the grain map, some elongation of the matrix grains in the 

plane of the fibers was observed (likely due to processing).   
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Figure 5-11  The position of diffracting α-Ti grains that contribute to the intensity of the 
(10.2) reflection using a 10 x 10 µm2 X-ray beam.  Since 9.1 keV X-rays are used, the 
examined grains are restricted to the surface of the sample.  Both sides of the Ti matrix 
reference specimen were examined so that a layer of grains is exposed at the surface and 
the midplane of the sample (see Section 5-2 for description of the matrix reference).  A 
photograph of the midplane surface is shown to the left of the contour plot.  The layer at 
the midplane is also marked with what were fiber centers (between the black dashed lines 
marking the position the fibers were removed from) and matrix centers (between the grey 
dotted lines).  The white horizontal lines are an artifact common to synchrotron analysis. 

 

Taken together, the maps of diffracted intensity for the fibers and matrix clearly show 

the contrast between the two regions.  Strains measured in the fibers at a scale of the fiber 

diameter will represent an average over many grains.  This averaging makes the resulting 

strains more representative of a continuum than would be observed if only a few grains 

were available for diffraction.  The total number of matrix grains irradiated by a 

90 x 90 µm2 beam through the thickness of the composite is approximately 60 (assuming 

the grains were 30 x 30 x 30 µm3 cubes).  Strains taken from the matrix at a scale of the 
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fiber diameter will potentially represent only a fraction of these 60 grains.*  Thus XRD 

strains in the matrix at a scale of the fiber diameter will clearly be subject to perturbations 

from intergranular stress. 

The effect of broken fibers on the neighboring fiber and matrix regions was studied 

with a 90 x 90 µm2 beam at APS (Figure 5-2).  This spot size was selected to optimize 

the diffraction intensity, while still maintaining a smaller size than either an individual 

fiber or an interfiber matrix region.  For the first damaged composite, the four nearest 

fibers adjacent to the initially broken fiber (nos. = +1, +2, -1, -2), the broken fiber itself 

(no. = 0), and the intervening matrix regions (i.e., five fibers and four matrix regions—

see Figure 5-1, Figure 5-2, Figure 3-3) were scanned along the fiber axes for a distance of 

10 fiber diameters in each direction away from the break in 280 µm steps.  Additionally, 

at a significant distance from the break (1.89 mm from the center of the nearest scanned 

fiber around the damage region), one control fiber and its adjacent matrix region were 

scanned at each applied stress to obtain a measure of the in situ applied far-field strain in 

the composite.  The elastic lattice strains in the matrix and fibers were obtained by 

monitoring one reflection from the dominant phases in each:  (10·2) from α-Ti and (220) 

from β-SiC.  Results from the 2 x 2 mm2 beam analysis show the α-Ti (10·2) direction is 

representative of the average in terms of its susceptibility to plastic deformation as well 

as its effective elastic constant [85] (see also Section 4-7).  The diffraction peaks were fit, 

using the method of least squares, assuming a Lorentzian peak profile for each phase. 

                                                 
*6 to 10 of the 60 grains in the (10.2) direction would be sampled randomly using a point 
detector with a 90 x 90 µm2, 25 keV, 0.3o divergent incoming beam (based on the grain 
maps in Figure 5-11). 



122 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

6.5 7.0 7.5 8.0 8.5

Transeverse Direction (mm)

Fi
be

r A
xi

al
 D

ire
ct

io
n 

(m
m

)

 Analyzed Positions

Line Centered On Axis of Fiber A

B      C      D     E      F      G      H      I       J 

Hole In Composite

a      b      c       d      e       f       g      h      i

 

Figure 5-12  A map of the positions sampled for fiber and matrix strains using the image 
plate method on the second damaged Ti-SiC composite.  Each of the 10 fibers was given 
a label “A” through “J”.  Matrix positions are labeled “a” through “i.”  A hole was cut in 
fiber D and its neighborhood using EDM and is marked with an oval.  The axial positions 
at +/-1.43 mm provide information for the far-field strains.  Time constraints prevented 
collecting data from each position on this map.  Relevant subsets were examined at each 
applied stress and are shown separately. 

 

The second damaged composite was also studied using a 90 x 90 µm2 beam at APS.  

However, in this case the energy was increased to 65.3 keV, the axial step size was 

reduced to 75 µm near the break, and additional fibers with neighboring matrix regions 

were examined.  The far-field strains were monitored at each matrix column or fiber at a 

point 10 fiber diameters from the crack plane (Figure 5-12).  In addition, to provide better 

grain averaging for the matrix regions, the image plate was used in this second 
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examination.  Over the course of the study 10 fibers were examined, fibers A through J.  

The EDM hole cut in fiber D is visible from the radiograph in Figure 5-13. 
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Figure 5-13  The intensity of the transmitted 90 x 90 µm2 beam at 65.3 keV reveals the 
position of the fibers, grey columns, and the hole cut in the second damaged composite, a 
bright spot.  Each of the 10 fibers is labeled on the x axis.  The y axis provides the “Fiber 
Axial Position” which corresponds to the sampling position shown in Figure 5-12 
numbered from the center of the hole outward in 75 µm steps.  The first fiber, A, and 
neighboring matrix region were examined with a smaller 30 x 30 µm2 beam giving rise to 
the lower transmitted intensity before fiber B. 

 

Again, the elastic lattice strains in the matrix and fibers were obtained by monitoring 

the (10·2) from α-Ti and (220) from β-SiC.  Calibration was also performed on both 

samples using the Si (220) peak from the internal standard Si powder, (NIST, Standard 

Reference Material 640a) attached to the specimen surface. 
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Figure 5-14  Photograph of the load frame mounted on the goniometer in hutch C 
downstream from 1-BM (bending magnet 1) at APS.  The sample with a hole is shown in 
the grips.  See inset (marked by blue rectangle) for a close-up of the composite.  
Placement of the strain gages is also visible in the image.  The Si standard powder is 
mounted on the upstream side (back side in this image) of the sample. 

 

The composites were stressed in tension using a custom-built load frame.  The 

attached strain gages (see Figure 5-2, and Figure 5-14) allowed the applied macroscopic 

strain to be measured in a conventional fashion, thus providing a secondary means to 

obtain the global behavior of the composite.  While simultaneously recording the strain 

from the gages, the applied load was logged by computer via a load cell.  As with most 

constant displacement experiments, the load would temporarily decay after it was 

increased to a new value; hence, more time was required for the load to stabilize as 

displacement was increased.  The scan times logged with the applied stress and 
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macroscopic strain were matched to the diffraction scan times, and the stresses averaged 

over the scan time.   

The first damaged composite was stressed to three loads.  The average stresses during 

the fiber strain measurements were 90 MPa, 420 MPa, and 530 MPa.  The second 

damaged composite was stressed to 850 MPa.  In order to identify the effects from 

damage, both composites were first examined for spatially resolved residual strains.  In 

addition, the second damaged composite (with the EDM hole) was examined in an 

unloaded condition (after the application of 850 MPa) in order to observe the change in 

residual strains due to permanent deformation under load. 
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5-4. Microscale Residual Strains 

The lattice spacing measured before applying stress to a composite serves two 

purposes.  The first is to provide a reference lattice spacing grid.  This is subtracted from 

the lattice spacing grid at applied load so that the change in lattice strain may be 

observed.  Using the unloaded composite strains as a reference for loaded strains is 

particularly important for composites with a damage zone as the residual strains around 

the damage zone are non-uniform.  The second purpose is to measure the initial residual 

strain in the composite.  As with the bulk measurements (Section 4-4), this requires use 

of a strain-free standard for the reference lattice spacing. 

For the composite with an etched damage zone (the first damaged composite), the 

examination of strains before loading the composite revealed the removal of the matrix 

relaxed the longitudinal residual (thermal) strains in the fibers near the crack plane (see 

Figure 5-15 and Figure 5-17).  Figure 5-15 also depicts the array of positions examined 

using the technique.  The release of thermal residual strains was due to etching (compare 

Figure 5-15 with the micrograph in Figure 5-1).   
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Figure 5-15  The elastic residual strains in the fibers and intervening matrix regions as a 
function of axial position and fiber number for the damage zone of the first composite.  
The shade of each square depends on the value of strain measured using the 90 x 90 µm2 
beam at that position.  Squares containing an “X” denote matrix positions where grains 
were not favorably oriented for diffraction.  The position of the damage zone can be read 
from the relaxed (near 0) residual strains. 

 

Since the point detector only observed grains which were oriented for diffraction 

along constant η, the matrix residual strains could not be obtained in a continuous 

manner along each matrix column (Figure 5-18); however, for some regions, near a grain 

with the desired orientation, the diffracted intensity was high.  This fluctuation in 

intensity (see for example Figure 5-16) is the source for the variation in error bars in 

Figure 5-18.  (For more discussion on errors see Section 2-2.) 
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Figure 5-16  Example of diffracted peaks obtained from the matrix using the microbeam 
and a point detector.  The weak reflection shown here contributed to an “X” for the 
cluster of 3 in the upper right corner of Figure 5-15.  Its signal to noise is too low for 
adequate fitting.  The background intensity is the same for both peaks. 
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Figure 5-17  Residual fiber axial strain as a function of fiber axial position for the 5 
fibers near the etched damage zone in the etched composite.  Fiber 0 was broken before 
applying load.  The change in strain for the fibers as a function of axial position is a result 
of matrix etched from above the fibers.  The dashed line shows the strain given by the 
control fiber far from the damage region. 

 

For the first damaged composite, the residual strains given by the control fiber 

approach the values at each extreme axial position (far-field region) found in the fibers of 

the damage region.  These strains, -1500 µε in the fibers and +1400 µε in the matrix, also 
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agree with the bulk residual strains found in the undamaged composite (see Section 4-4).  

In the far-field region, the residual strains observed with the microbeam are due to the 

disparate CTE of the fiber and matrix along with the elastic and plastic anisotropy of the 

matrix grains.  In this region, local variations of 900 µε were observed in the matrix 

across neighboring fibers with a maximum of 1700 µε and a minimum of 430 µε.  

Influenced by variations in matrix strains, variation was also observed in the far-field 

fiber strains (-2066 to -1366 µε).  Though not available from the bulk measurements, 

these variations would also be expected in the composite analyzed for bulk properties 

(Section 4-4).  As a comparison, the average value obtained with the 2 x 2 mm2 beam 

lies within one standard deviation of the far-field microbeam measurements.  Thus, the 

composite’s residual stress state far from the damaged region is similar to the undamaged 

composite. 
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Figure 5-18  Residual matrix axial strain as a function of fiber axial position for the 4 
matrix regions between the 5 fibers examined in the first composite.  Both the action of 
etching away matrix from the surface and breaking the fiber acted to create the observed 
residual strains.  The change in error bar length is associated with the presence or absence 
of diffracting grains. The strains given by the control matrix region are marked by the 
dashed lines. 

 

The effect of etching the matrix and breaking a fiber was clearly observed in the 

microscale residual strains.  Etching is primarily the source of the decrease in matrix 

axial residual strains observed near the crack plane between fibers 0 and 1 and between 

fibers -2 and -1 (Figure 5-18).  Particularly between fibers -1 and 0, in addition to the 

decrease observed from etching, a large degree of residual axial compression was 

measured in the matrix strains due to the action of breaking fiber 0 (Figure 5-18).  Even 

far from the damage zone, the matrix residual strain was seen to vary by as much as 50%.  

This variation was also reflected in the fiber strains creating locations where the residual 
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compressive stress partially relaxed.  The difficulty in obtaining information from the 

matrix is clear from the absence of strains or large error associated with the diffracted 

intensity available from portions of the matrix. 

In the second damaged composite with an EDM hole, the image plate technique was 

applied in order to increase the number of matrix grains sampled at each position.  Here, 

10 fibers and the intervening matrix regions were examined.  External calibration of the 

absolute strains using the strain-free references was not available with this method.  

Therefore, translation error between the references and the composite was not 

compensated making the absolute residual strains potentially less accurate than the 

residual strains measured in the previous composite.  In order to observe the significance 

of potential translation errors, a separate analysis of translation error was made on the 

second composite using the unstrained internal standard Si powder.  From the Si (220) 

ring position, the standard deviation due to translation was 70 µε with random 

fluctuations up to 114 µε.  These errors are small compared to the measured strains, ~5% 

of the total measured strain.  Complications from overlap of the standard peaks with other 

Ti reflections, make further study of the potential translation errors beyond the scope of 

the analysis technique.  However, a clear residual compressive or tensile state can be 

deduced from the data obtained from the second composite.  Since this composite was 

processed along with the previous composite, the far-field residual strains were expected 

to be similar.  To distinguish strain results of the two composites, the 10 fibers were 

given letter names for the composite with an EDM hole studied with the image plate 

versus the numerical labels used in the first composite with an etched damage region. 
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The EDM hole visible in the transmission contour plot (Figure 5-19) was also clearly 

visible in plots of the residual strain field around the hole in both the fiber and matrix (see 

Figure 5-20, Figure 5-21, and Figure 5-22).  The fiber axial strains were in residual 

compression with a tendency towards less residual strain closer to the hole.  Similar 

results were obtained from the transverse fiber strains, except to a lesser degree of 

tension. 
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Figure 5-19  For each fiber examined (D through J), the transmitted intensity measured 
by a silicon diode divided by the incident intensity measured by an ion chamber is plotted 
for each axial position sampled along the fiber.  The fiber positions are identified by the 
lighter shade, more transmission, and the thicker matrix regions by the darker shade 
associated with less transmission.  The hole appears the brightest.  The axial position 
spacing is 0.075 mm except for the two extreme “far-field” positions, +/-12, which were 
an additional 0.6 mm from the previous point (Figure 5-12). 
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Figure 5-20  The axial residual fiber strain as a function of fiber axial position for fibers 
D through H.  The “far-field region” marked by an oval will later be used to normalize 
the fiber strains to compare with a micromechanical model.  Two more fibers, I and J, 
(not shown) were similar to H.  The error bars are smaller than the data points for all but 
two points near the hole on fiber D.  The poorer statistics available from these positions is 
due to less diffracting material in the beam.   
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Figure 5-21  A contour plot of the matrix axial elastic residual strain for the regions 
associated with the fibers, marked by the fiber label, and between the fibers.  The 
presence of the hole around axial position 0 diminishes the residual strains in the matrix 
around fibers D and E.  Even at regions distant from the hole, variation is present in the 
matrix residual strains.  Compare spatial resolution with Figure 5-15. 
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Table 5-3  The average axial strain in matrix regions between the fibers 
(lower case) and matrix regions located at the fiber (above and below, 
upper case).  Total averages for each region are in bold. 

 
 

Since matrix material exists not only between the fibers (Figure 4-1), but also above 

and below the fibers, Ti matrix strains were available from both regions.  The residual 

axial strain from the latter matrix regions is on average 380 µε less than the strains 

measured between the fibers (Table 5-3).  The FEM does not predict a significant 

variation in axial strains between these two matrix regions (see Section 3-1).  However, 

the transverse and out-of-plane strains are predicted to change significantly between these 

two positions.  The transverse strains change opposite to the direction observed axially 

and would only influence the measured axial strains if the sample was significantly 

misaligned in ψ (see Figure 2-3).  The out-of-plane strains are in the direction of the 

Position 

Mean 

Strain  

(10-6) 

Standard 

Deviation 

(10-6) 

g 1239 259 

H 968 371 

h 1414 361 

I 1051 286 

i 1387 213 

J 883 195 

Between 1347 278 

At Fibers 967 284 
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beam.  Over the fiber, the FEM predicts compressive strains in the out-of-plane direction 

(εyy in Figure 3-1), but between the fibers it predicts a gradual change from compressive 

to tensile with an average close to zero.  Some minor influence from these strains is 

expected, since the scattering vector (q)* is a few degrees out of the plane of the 

composite (θ = 0o with 2θ < 10o), but the 28% change observed between each position is 

greater than would be caused by a few degrees in the q vector alignment.  Furthermore, 

since the out-of-plane strains are expected to average close to zero between the fibers, 

they should have even less effect on the axial strain measurements between the fibers 

even for a significant 2θ.  Thus, there exists a measurable axial strain difference in the 

two matrix neighborhoods not seen in the FEM. 

As a comparison to the axial matrix strain measured in the acid-etched (first) 

composite, the axial matrix strains measured in the EDM-cut (second) composite using 

the image plate show no missing regions since grains diffracting in all η orientations are 

included in the analysis (compare Figure 5-21 with Figure 5-15).  Increasing the number 

of sampled grains in this way causes a reduction in the measured local fluctuation of 

strains suggesting the measured strains are close to an average value for the region 

investigated.  The additional grains also lead to a significant improvement in the average 

specific error (see error bars Figure 5-22 compared to Figure 5-18).  Thus, with the 

analyzer crystal, grain-specific strains were revealed compared to the image plate where a 

representative average strain over many grains even for the 90 x 90 µm2 region was 

obtained.  What does appear as scatter in the matrix residual strains should not be 

                                                 
*Direction along which the strain is measured (see Figure 2-3). 
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considered experimental error, but real variation in the matrix strains, a result of 

intergranular stresses (Figure 5-21 and Figure 5-22). 
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Figure 5-22  The axial residual matrix strain as a function of fiber axial position for the 
regions between fibers D through J.  The effect of cutting the matrix is primarily visible 
in the matrix between fibers D and E.  The other matrix regions show fluctuations in 
strain, but since they are also observed far from the hole, they were due to possible spatial 
variations in processing and/or intergranular stress.  The image plate clearly improves the 
ability to observe matrix strain (compare with Figure 5-17). 

 

Far from the hole, a more striking contrast between the two versions of matrix regions 

was available from the matrix transverse strains.  The matrix material between the fibers 

was on average in a transverse residual compressive state, primarily due to thermal 

residual stress.  Whereas the matrix above and below the fibers is on average in a 

transverse residual tensile state (Figure 5-24), also primarily due to thermal residual 
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stress.  The difference between the strain states in these regions can be understood from a 

three-dimensional perspective of the composite.   
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Figure 5-24  Matrix transverse residual strain from the α-Ti (10.2) peak.  Residual 
compressive strain (dark shade) was observed between the fibers and residual tensile 
strain (light shade) was observed in the matrix above and below the fibers (marked by the 
“Fiber Label” positions). 

 

The main contribution to the residual strain component measured by diffraction for 

the matrix regions above and below the fibers stems from the thermal mismatch between 

the fiber and matrix along the circumference of the fiber.  This mismatch contributes to a 

residual tensile hoop strain in the matrix upon cooling.  Between the fibers the 

compressive residual strain is again a result of coefficient of thermal expansion 

mismatch.  However, in this region the contribution from the compressive radial 

component of the matrix strain to diffraction is greater than the tensile hoop component.  
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Two line plots from the FEM predictions of the transverse thermal residual strain 

illustrate the difference between the two positions in the matrix (Figure 5-23).  Both lines 

are perpendicular to the plane of the composite, but the first is centered in the fiber and 

the second centered between the fibers.  The FEM also reveals a variation in matrix strain 

with depth (the out-of-plane direction).  This variation contributes to the strain 

broadening also observed in the transverse matrix strains. 
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Figure 5-24  a)  The FEM prediction from Figure 3-1 with a solid and dashed arrow 
along the border of the plot exposing from where the solid and dashed lines for part “b)” 
were taken.  b) Transverse thermal residual strain predicted in the composite by FEM.  A 
center line along the fiber from the midplane of the composite to the surface shows 
tensile strain in the matrix (solid line).  The transverse strains in the matrix centered 
between the fibers is compressive (dashed line). 

 

In summary, the measured residual strains revealed the effect the CTE mismatch had 

on each phase (axially compressive in the fibers, axially tensile in the matrix with a 

periodic variation in the transverse matrix strain associated with the position of the 
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Surface 
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fibers).  Relaxation of the thermal residual strains in both phases was seen near the region 

of damage in both composites.  With the analyzer crystal, grain-specific strains were 

revealed in the matrix compared to the image plate where a representative average strain 

over many grains even for the 90 x 90 µm2 region was obtained.  Even in the far-field 

region, the grain-specific matrix residual strain was seen to vary by as much as 50%.   

 



143 

5-5.  Microscale Load Sharing 

In this section, the micromechanical behavior of the composite under tensile load is 

explored.  Again, both phases in each damaged composite are considered.  The damage is 

shown to evolve first through fiber failure then through matrix plasticity.  The fiber and 

matrix strains were measured at three applied loads in the first composite for the same 

positions given in the residual strain section (Section 5-4).  The second damaged 

composite was examined at higher applied load.  These results describe damage evolution 

in the composite and will be compared with the MSSL model in Section 5-7. 

For the individual fibers, the residual strains were subtracted from the total measured 

strains when stress was applied.  This is defined as the applied strain and will be 

presented in the following figures.  For the second composite, the applied load was 

significant enough to induce global matrix yielding, so in addition to the applied strains 

the total strain (residual + applied) will also be presented. 

In the first damaged composite, fiber +1 broke between the first and second applied 

stresses (90 MPa and 430 MPa).  This evidence of damage evolution during loading is 

depicted on Figure 5-25.  This figure plots applied stress vs. axial fiber lattice strain at the 

crack plane in each of the five fibers examined around the etched damage zone.  From 

Figure 5-25 the stress/strain behavior of fiber +1 is seen to resemble that of the initially 

broken fiber, n = 0, above 100 MPa deviating from that of the intact fibers.  This 

deviation reveals that fiber +1 broke while applying stress to the composite.  Figure 5-25 

also shows that, for a given applied stress, the intact fibers closest to the broken fibers 

carry the majority of the load given up by the broken fibers (i.e., at the same applied load 
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the strain is greatest for the intact fiber closest to the break).  The behavior of fiber -2 (a 

second nearest neighbor to the break) shows strains similar to the control fiber far from 

the break.   
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Figure 5-25  Damage evolution under tensile load at the crack plane (x = 0 in Figure 
5-1).  Applied stress is plotted against applied axial lattice strain in the five fibers around 
the damage zone.  At the beginning of loading, only fiber 0 was broken.  When the 
stress/strain profiles of the intact and initially broken fiber are compared, it is obvious 
that fiber +1 broke between 90 MPa and 430 MPa. 

 

Understanding the load transfer requires an examination of the strain along the fiber 

and matrix as a function of axial position.  For example, only the crack plane is shown in 

Figure 5-25, but the strain transfer to the neighboring fibers is expected to occur along a 

direction which results in an axial strain profile that is not necessarily maximum at the 

crack plane [34, 81] (see Section 3-2.1 case (i)).  In addition, the characteristic decay 

length (δ, Section 3-2.1, Eq. (3-2)) for the broken fibers requires measurements of strain 

at regular intervals along the fiber axial direction.  The strains for the first nearest 
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neighbor to the naturally broken fiber as a function of axial position from the crack plane 

were observed in fiber +2 (Figure 5-26).  In addition, further confirming the break, strains 

consistent with a broken fiber were identified in fiber +1 (Figure 5-27), the strain along 

the axial direction in fiber +1, under the larger applied stresses, also resembles the strain 

for the initially broken fiber, fiber 0 (Figure 5-28).  The strains in the other first 

neighboring fiber to the break (fiber -1) are seen in Figure 5-29.  As seen from Figure 

5-30, the second nearest neighbor also shows sensitivity to the broken fibers.  
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Figure 5-26  Applied strain in the first nearest neighbor fiber to the natural break (fiber 
+2, first damaged composite) for each load as a function of the axial position in the fiber.  
Load transfer (increase in strain compared to the far-field) from the broken fibers is 
realized even at the smaller load and continues to increase its magnitude and breath as the 
load increases.   
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Figure 5-27  Applied strain in fiber +1 which naturally broke while loading the first 
damaged composite. The fiber  shows a clear decrease in strain at the break plane. 
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Figure 5-28  Applied strain in the initially broken fiber as a function of axial position 
from the break.  The wider profile observed in this fiber’s strains compared to the 
naturally broken fiber are due to the extent of initial damage in the fiber.  (Data also from 
the first damaged composite.) 
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Figure 5-29  Similar to fiber +2, the strains in the fiber which was a first nearest neighbor 
to the initially broken fiber as a function of axial position from the break are shown.  The 
load transfer is first apparent at the smaller applied stress and increases with increasing 
stress.  The profile looses symmetry with the break plane due to the damage profile in its 
neighbor (Figure 5-28).  (Data also from the first damaged composite.) 
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Figure 5-30  Applied strain in the second nearest neighbor fiber to the break (fiber -2) for 
each applied load as a function of the axial position in the fiber.  An effect from the 
broken fibers is realized even at the smaller load and continues to increase its magnitude 
and breath as the load increases.  (Data also from the first damaged composite.) 

 
Since the composite was examined at multiple loads, multiple strain maps for the 

fibers and matrix are available.   By selecting one load from the strains in the first 

damaged composite shown in the above figures,  a contour plot may be constructed 

(Figure 5-31).  Such a figure constitutes a strain map and shows spatially where load is 

transferred in the composite.  Ideally a higher resolution is desired giving a clearer 

picture of the spatial gradients.  The higher resolution was achieved with the image plate 

experiment results shown below.  However, the results from the first damaged composite 

do show stress transfer (strain increases compared to the far-field) in the matrix and were 

beneficial in comparison with the model (Section 5-7).   
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As was the case with the residual strains (Figure 5-18), the applied strains in the 

matrix were not always available.  However, it is clear from the observed increase in 

matrix strains that load transferred to the matrix from the broken fibers.  The results from 

the matrix strain measurements are reported in Section 5-7 where they are compared to 

the model. 
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Figure 5-31  Contour plot of the strains at the maximum applied stress (530 MPa) for all 
the fibers examined in the first damaged composite.  The relative position of stress 
transfer from the break to the intact fibers is clear.   The data here is taken from the last 
applied stress shown in Figure 5-26, Figure 5-27, Figure 5-28, Figure 5-29, and Figure 
5-30.   

 
For the second damaged composite, damaged with a hole by EDM (Section 5-1), the 

10 fibers examined also show evidence of a fiber fracture during loading.  A subset of the 

positions sampled at the initially unstressed condition (Figure 5-12) were sampled at 

850 MPa applied stress (Figure 5-32).  The positions at each fiber label were analyzed for 
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fiber and matrix strains.  The positions between the fiber labels were analyzed for matrix 

strains.  The strains for analyzed fibers are shown in Figure 5-33 and Figure 5-34.  The 

axial strains in the matrix are shown in Figure 5-35.  The shear and transverse strains in 

the matrix were also recorded (Figure 5-36 and Figure 5-37).   
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Figure 5-32  Each box represents a position analyzed with the 90 x 90 µm2 beam.  The 
fibers A-J and neighboring matrix regions were analyzed in the configuration shown.  
These positions are a subset of the positions analyzed before stressing the composite 
(Figure 5-12).  The numeric label for the positions used in the strain contour maps is 
shown on the right of the figure.  For reference, the position of the hole cut in the 
composite is also shown in the figure. 
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Figure 5-33  A strain map of the total elastic axial strains (residual + applied) in the 
fibers for the composite with a hole at 850 MPa applied stress.  The hole is marked as a 
square since no matrix regions are shown.  The strains reveal a decrease in strain near the 
hole for the broken fibers D and E with the first nearest neighbor fibers C and F 
compensating with larger strains.  The rest of the fibers show strains around 0.11%.  
Compare with Figure 5-31 prepared from the point detector data. 

 

The total elastic axial strains in the fibers for the composite with a hole at 850 MPa 

applied stress are shown in Figure 5-33.  Approximate absolute strains in the composite 

may be observed as well as the significant gradient in strains resulting from the combined 

effects of the damage and the applied stress.  Also, since a larger subset of positions was 

examined at applied load than no load, the total strain map provides the opportunity to 

see the load transfer to neighboring fibers to the left of the break (fibers A through C).  As 
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expected, some of the load given up by fiber D is transferred to its neighbor C.  On the 

other hand, as can bee seen from these strains, fiber E did not accept load from D but 

shows strains consistent with a broken fiber.  In contrast, for the applied strains (Figure 

5-34), only fibers to the right of the break (D through J) were available for analysis.  

Applied strain is total minus residual, and only these fibers residual strains are known 

(Figure 5-20).  Viewing only the applied strains subtracts out any variations due 

particularly to the damage and highlights the stress transferred among fibers as a result of 

the broken fibers. 
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Figure 5-34  The applied axial strains (total strain (Figure 5-33) minus the residual strain 
(Figure 5-20)) for the fibers D through I are shown for the 850 MPa applied stress.  The 
width of the hole is marked on the graph for fiber D.  The spatial resolution and strain 
resolution have both improved compared to the etched composite previously examined 
with the point detector.  The data point on fiber D taken inside the hole showed less 
intensity, and therefore a greater error than the other positions.  
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Since these strains were obtained using the HEµXRD2 method which includes many 

grain orientations for each reflection, similar figures may be constructed from the matrix 

strains.  Also, since matrix was observed between and at the fiber locations, twice as 

many matrix strain measurements are available for inclusion in the strain maps as there 

were for the fiber strain maps.  As was observed in the residual strains, the matrix also 

presents strong transverse strain gradients.  These were not observed in the fibers, so the 

fiber transverse and shear strains are not shown. 
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Figure 5-35  A contour map of the total elastic axial strains in the Ti matrix for the 
composite with a hole at 850 MPa.  The fiber positions are labeled and separated from the 
“matrix only” columns by dashed grid lines.  The broken fibers appreciably affect axial 
matrix strains two fiber diameters from the break.  Such a figure with continuous strain 
information from the matrix cannot be constructed from the point detector results. 
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Figure 5-36  A map of the total elastic shear strains in the Ti matrix of the composite 
with a hole at 850 MPa.  The effect of load on the hole is observed in the stress 
concentrations around the hole.  Arrows follow the path of maximum shear away from 
the hole. 
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Figure 5-37  A strain map of the total elastic transverse strains in the matrix of the 
composite with a hole at 850 MPa.  The strain at each fiber location is tensile but the 
strain between each fiber is on average compressive.  

 

The spatially resolved applied strains clearly revealed load sharing, fiber breaks, and 

stress concentrations.  Load sharing, or strain transfer, over multiple fibers was observed 

in both composites.  The majority of the strain given up by the broken fibers was carried 

by the first two neighboring intact fibers.  In the broken and intact fibers, the strains were 

measured along the fibers revealing a recovery to the far-field strains along the length.  

Also in both composites the matrix was observed to carry load, but a clear picture of the 

matrix strains was only available from the second XRD2 experiment.  Significant load 

transfer to the matrix was observed in the second composite.  For the first composite an 
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exposed fiber was observed before and after failure in the composite.  Also, in the second 

damaged composite, a fiber was observed after natural failure.  Both X-ray methods 

provided useful information as a function of position and applied stress.  However, the 

area detector clearly allowed a more detailed and continuous characterization of the 

composite, particularly in the matrix. 



158 

5-6. Residual Strain Evolution in the Microscale 

Upon unloading, a final examination of the residual strains in the composite 

damaged with a hole was performed.  Changes in the residual strain identify permanent 

deformation in the composite such as that due to plastic deformation in the matrix.  The 

same fiber and matrix regions were again examined.  The position of the composite 

relative to the beam was measured with a 30 x 30 µm2 X-ray beam.  As with the loaded 

case, the hole was used as the origin of the measurements shifting the positions to be 

measured in the original laboratory coordinate system.  The monitor normalized 

transmitted intensity at the sampled positions along the broken fiber are shown in Figure 

5-38.  Though alignment would be less critical for observing the total strain, subtraction 

of the initial residual strain requires accurate positioning of the sample with respect to the 

beam so that the measurement grid for each load is built from the same locations on the 

sample. 



159 

0.83

0.84

0.85

0.86

0.87

0.88

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fiber Axial Direction (mm)

Tr
an

s/
M

on
ito

r

Final
Initial

 

Figure 5-38  A typical shift (90 µm) in the axial position of the hole referenced to the 
laboratory coordinate system due to changing the load on the composite.  The transmitted 
intensity along fiber D normalized by an incoming beam monitor allows alignment in the 
fiber axial direction.  Alignment in the transverse direction may be performed through 
monitoring the intensity change along the fiber radius (not shown). 

 

The final residual strain state (absolute strain) of the matrix for axial, transverse, 

and shear strains is shown in Figure 5-39, Figure 5-40, and Figure 5-41.  Away from the 

hole the matrix regions between and at the fibers remained in residual axial tension.  

Close to the hole the matrix went into residual axial compression.  However the matrix 

regions between the fibers were in residual transverse compression as opposed to the 

matrix regions at the fibers which were in residual transverse tension.  The regions of 

shear strain gradients observed at applied load were also apparent in the unloaded state 

(compare Figure 5-36 and Figure 5-41). 
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Figure 5-39  Total matrix axial residual strain around the hole after loading and 
unloading the composite from 850 MPa.  The position of the hole in the composite is 
marked with an oval.  The region marked by the “X” was not sampled due to time 
constraints.   
 

As is evident in the SEM micrograph (Figure 5-3), the hole was not symmetric with 

respect to the broken fiber, D.  This asymmetry manifests itself in the asymmetric change 

in residual strains (see for example Figure 5-39).  Since these strains are absolute, the 

peculiarities of each grain’s local neighborhood perturbed by the local strains are 

preserved leading to the observed gradients in even the far-field strains.  Subtracting out 

the residual strains would hide these peculiarities.  For example, the axial strain around 

fibers I and J exceeds its immediate neighbors (Figure 5-39), but since this was also 
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observed in the residual strains (Figure 5-21), the change in strain would not reveal the 

same uniqueness of this region. 
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Figure 5-40  Matrix transverse residual strain around the hole after loading and 
unloading the composite from 850 MPa.  The position of the hole in the composite is 
marked with an oval.  The position labeled “X” was not sampled due to time constraints.   
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Figure 5-41  Matrix residual shear strain after loading and unloading the composite from 
850 MPa.  The position of the hole in the composite is marked with an oval.  The arrows 
connect the points of maximum shear strain traveling away from the hole.  As with the 
plots above, the position labeled “X” was not sampled due to time constraints.   

 

Another perspective of the final state of the composite requires subtracting the 

initial residual strain from the final residual strain.  The resulting strain change observed 

is due to deformation and damage evolution in the composite.  Changes in residual strain 

measured by diffraction have been used to identify matrix yielding in other MMCs [28].  

The observation can be understood as follows.  The matrix is initially in residual axial 

tension.  When tensile stress is applied, the matrix responds with an elastic strain until 

yielding begins.  Then the measured elastic strain diminishes while yielding continues 
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and load is transferred to the fibers.  In the loaded state, after yielding, the residual strains 

have already changed.  The yielding tends to relax the initially compressive residual 

strain in the fibers.  As the composite is unloaded, the elastic strain given up by the 

matrix along with some of the elastic strain given up by the fibers is recovered.  But, in 

the matrix, the elastic strain from tensile loading is not enough to bring the composite 

back to zero applied stress, so the strains in the matrix continue to progress elastically 

past their initial residual strain state (which was tensile) and the fibers never get a chance 

to recover all the way back to their initial residual strain state.  For example, far from the 

hole, deformation in the composite created a compressive change in the residual axial 

tensile strains—a sign of global plastic strain in the matrix (the light contours in Figure 

5-42).  Close to the hole between fibers D and F, the change in residual strain increases 

further, suggesting a region where additional axial plastic strain occurred in the matrix.  

And, as expected, no change in residual strain was observed at free surfaces immediately 

above and below the hole.  Systematic errors such as displacement during the application 

of stress would have appeared as false strain.  This lack of change in axial residual strain 

immediately above and below the hole provides internal evidence that the measured 

strains are reasonable and not subject to significant systematic errors (Figure 5-43). 
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Figure 5-42  Strain map of the change in matrix axial residual strain due to loading (to 
850 MPa) and unloading the second composite.  The matrix over the broken fiber, D, is 
the first column on the left of the map.  The darker regions identify locations of greater 
plastic deformation while loading the composite. 
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Figure 5-43  The change in axial residual strain for the first two matrix columns 
illustrates the contrast between the two regions.  Near the plane of the broken fiber 
significant deformation from the 850 MPa applied stress occurred in the intact matrix 
column e.  Since matrix column d was broken it could not carry load and consequently 
did not significantly deform near the break. 

 

Since the composite is unloaded, the fibers must compensate for the new matrix 

strain state.  The fibers do not deform plastically at room temperature and, given a well 

bonded interface, would return to their initial unloaded strains unless their environment 

was changed.  The plastic strain in the matrix deforms the fibers’ environment and 

mechanical equilibrium requires that the fibers respond to the matrix, balancing the 

strain.  As shown in Figure 5-44 for fiber E that broke in situ, the change in residual 

strain for the fibers is in general opposite to the matrix surrounding the fiber. 
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Figure 5-44  The significant change in fiber residual axial strain for fiber E, which broke 
under the application of load.  Permanent deformation in the matrix above and below the 
fiber which deformed as a result of the strain associated with the break is also revealed by 
the analysis. 

 
As with the cut matrix column, e (Figure 5-43), the change in residual strains in the 

cut fiber, D, approach zero near the free surfaces (Figure 5-45).  Figure 5-45 also 

contrasts the strains seen in the cut fiber with the first intact fiber, F.  As was seen above 

in fiber E, the matrix around F permanently deformed due to the transfer of load.  With 

the exception of a point on fiber G, the fibers far from the break show a change in 

residual strain consistent with bulk yielding in the matrix and transfer of load to the fibers 

(Figure 5-46) [28, 29]. 
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Figure 5-45  Change in axial strain for fibers D and F.  The axial strain does not change 
near the free surface for the cut fiber D.  In contrast, the intact fiber F shows a significant 
change in residual strain upon unloading due to permanent deformation in the matrix. 
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Figure 5-46  Change in axial strain for the two fibers furthest from the break.  Change in 
the axial matrix strains at these fiber locations is shown as well. 

 

Fiber G is a second nearest neighbor to the naturally broken fiber E.  Some permanent 

deformation related specifically to the transfer of load is expected in this fiber.  Though 

this is observed, a position near the crack plane shows no change in residual axial strain 

(-20 µε, less than the error bars, Figure 5-47).  Since the fiber is elastic, the lack of 

change in strain requires the immediate neighborhood around this region of the fiber did 

not permanently deform.  However, the matrix in this neighborhood showed the opposite 

behavior with an abrupt increased change in residual stain associated with an exaggerated 

permanent deformation.  One way to reconcile this observation is to relax the assumption 

of an intact interface at this specific region, then—since its neighborhood cannot 

change—the fiber residual strain cannot change and the stress which would have been 
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carried by the fiber was transferred to the matrix adding to the observed local increase in 

deformation.   
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Figure 5-47  Change in axial elastic residual strain for fiber G.  Though similar to the 
above fibers far from the break, the position sampled to the immediate negative side of 
the crack plane showed no change in strain—the sign of a poorly bonded interface.  
Adding support to the observation, a local increase in plastic deformation was observed at 
the same location through the change in matrix strain. 

 

The change in residual strain revealed permanent deformation in the second damaged 

composite.  The damage evolution was revealed in two dimensions providing a window 

into the damage evolution of the composite as a whole.  The most significant changes 

were due directly to the presence of the hole and the resulting break in fiber E which 

naturally occurred during the application of load.  Some fluctuations in the change of 

fiber and matrix strains as a function of the fiber axial direction were observed and may 

be attributed to plastic anisotropy in the matrix (Section 4-3).  Notably, fiber G, the 
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second nearest neighbor to the break, showed a region that did not appreciably change 

residual strain.  Since the matrix at this region deformed, the lack of change points to a 

weakening in the interface at this point along the fiber.   
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5-7. Comparison with Matrix Stiffness Shear Lag Model 

The Ti-SiC composite described in Section 4 was chosen as a model composite for 

comparison of the strains in each phase predicted by the MSSL model (Section 3-2) with 

strains predicted at applied stress.  Based on the geometry of the Ti-SiC composite the 

stiffness ratio, ρ, was interpreted and calculated several different ways.  For all cases, the 

elastic constants employed were Em = 125 GPa, and Ef = 393 GPa [54].  The matrix shear 

modulus, Gm, was calculated, assuming elastic isotropy in the matrix, using Gm = Em / 2(1 

+ νm), with the matrix Poisson’s ratio of νm = 0.31 [54]. 

Two initial cases of crack configuration were considered (Figure 3-3).  Since the 

matrix is assumed to sustain longitudinal tensile forces, the MSSL model will 

differentiate between a transverse matrix crack extending from the fiber break to the next 

fiber, case (ii), versus no crack extension from the fiber break into the matrix, case (i).  

For case (i), only the matrix regions between broken fibers are broken.  For case (ii), in 

addition to those broken in case (i), the two “crack-tip” matrix regions between the last 

broken fiber and first intact fiber are broken.  The model assumes the matrix and fiber 

fractures are infinitely sharp.  Since, particularly in the etched composite, the damage 

region in the matrix is neither wholly intact nor completely broken, both cases were 

compared to the data.  

Figure 5-48 displays MSSL model predictions and normalized experimental strains 

from fibers obtained at two of the initial applied stresses for the first damaged composite.  

The fiber strains are normalized with respect to the far-field strain.  As ξ approaches +/-3, 

the far-field strain dominates (see Figure 5-48).  Though any fiber or matrix index 
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location with |ξ | > 3 could have been designated the far-field strain, to reduce statistical 

error, the far-field strain was determined by averaging the strain measured for |ξ | > 4 at 

each fiber and matrix index.  Some variations between these far-field strains are expected 

from the local strain variations due to grain-to-grain interactions (Section 5-5 and 5-2 and 

[57, 85]).  However, the localized strain variations did not prevent validation of the 

model since the shape of the model was captured in the experimental results. 

At the crack plane, ξ = 0, the maximum strain divided by the far-field strain, or Strain 

Concentration Factor (SCF), of the first intact fiber provides an efficient test of the 

model’s assumptions.  For a given number of fiber breaks, the shape of the strain profile 

and the SCF significantly differ between the two cases, (i) and (ii).  With an intact matrix, 

less load transfers to the fiber, but with a broken matrix, the load formerly carried by both 

the broken fiber and the broken matrix is shed to the surrounding intact fibers.  The 

MSSL model predicts an intact matrix at the crack tips leads to a strain profile where the 

maximum SCF in the first intact fiber is slightly displaced from the crack plane (Figure 

5-48 (c)).  The fiber strain profile is governed by the difference between the decay of the 

shear strain and the axial displacement of the matrix.  The axial displacement dominates 

near the crack plane giving a slight rise in fiber stress from the crack plane (see ref. [34] 

for more discussion).  When more fibers are broken, the MSSL model also predicts an 

increase in the SCFs and a broadening of the strain profiles.  This enlarges the area 

affected by the damage zone. 

Figure 5-49 depicts the axial matrix strains and MSSL model predictions for the 

matrix.  The matrix strain profiles show the matrix carries some load.  In addition to the 

matrix regions at the crack tips, the region between the two broken fibers supported some 
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load.  The break in fiber 0 was artificial.  Its finite width appears in the experimental 

strains delaying its recovery to the far-field strain.  However, since fiber +1 broke in situ, 

its natural decay length is preserved (Figure 5-48).  The error bars plotted on the graphs 

were determined by a 95% confidence limit to the center of peak position.    

The interpretation of the matrix strains is less certain due to insufficient sampling 

statistics.  While experimental errors of less than 200 µε were found in the fibers and 

some regions of the matrix, strain uncertainties varied in the matrix, some greater than 

700 µε.  The relatively large matrix grain size compared to the sampling volume meant 

not every location had diffracting matrix grains (the “graininess” problem).  At a given 

location, only a few grains are likely to contribute to the intensity of the (10·2) reflection 

(Section 5-3).  As a result, the (10·2) intensity varies tremendously directly affecting error 

in its peak position (Figure 5-16, and Figure 5-49).  This condition led to the later use of 

the image plate to resolve the matrix strains.   
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Figure 5-48  Comparison of strains from the MSSL model predictions (case (i) the black 
line and case (ii) the grey line) and XRD data from fibers (symbols) in the first damaged 
composite:  (a) The two broken fibers; (b) the second intact fiber; (c) first intact fibers.  
The applied tensile stress decayed from 430 to 410 MPa for one applied stress and 530 to 
540 MPa for the other applied stress shown.  The model calculations were performed for 
ρ = 0.591.  Strains were normalized with respect to the averaged applied far-field value 
(the average strain for all |ξ | > 4).  Particularly for (c) the first intact fiber, case (i) with 
two broken fibers (0 and +1) gives the best agreement with model predictions.  The 
expansion of the profile for fiber 0 is due to the width of initial damage in the fiber.   
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Figure 5-49  Comparison of normalized strains from MSSL model predictions and XRD 
data from the matrix in the first damaged composite for case (i)—intact matrix at crack 
tips.  (a) Depicts the matrix region between the two broken fibers (0 and 1), (b) the matrix 
region between an intact and broken fiber (−1 and 0), (c) the matrix region between two 
intact fibers (−2 and –1), and (d) also a region between an intact and broken fiber (2 and 
1).  The applied tensile stress under constant displacement drifted from 450 to 430 MPa.  
The model calculations were performed for ρ = 0.591.  Strains were normalized with 
respect to the applied far-field value, εm = 2340 to 2240 µε.  Elastic strains for each 
region of the matrix examined are plotted against the best-fit model predictions for that 
region.  Grain-to-grain strain variations are significant here as few grains represent each 
position.   

 

Comparison of the MSSL model predictions to the strains in this first composite, 

damaged by etching the matrix, showed potential for further application of the MSSL 

model for other damage configurations.  One strength of the model is its ability to predict 

strains due to a large number of fiber breaks.  A reasonable damage configuration to 

compare to the model could include 10 to 50 broken fibers across a wide laminar 
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composite.  However, the method used to record these strains requires significant blocks 

of beam time limiting the area of the composite which may be analyzed. 

The composite damaged with the hole allowed a second test of the MSSL model for a 

new damage configuration.  The most significant improvement for the second test was 

the introduction of the image plate as an area detector.  The image plate reduces the time 

required to measure the strains and, as will be shown, by including more grains in the 

diffraction pattern, the image plate allowed the matrix strains to be resolved.  Other 

improvements included a stiffening of the grips to reduce load drift during the analysis 

along with allowing greater applied loads to the composite.  The maximum applied stress 

was further increased through more stringent control of the composite cross section using 

EDM to machine the composite and tabs as described in the previous chapter, Section 4-

1.  Finally, by using the hole instead of the etched matrix, the geometry of the damage 

could be more easily incorporated into the model.   

To account for the missing matrix and adjacent fiber sections which were cut with 

EDM in the MSSL model, breaks were stacked along the fiber axial direction (ξ) for the 

measured length of the hole.  Nine equally spaced breaks were placed between the outer 

dimensions of the hole in fiber D and matrix d (between D and E).  The natural break in 

fiber E was modeled as a single break.  

Section 3-2 compares three significantly different methods of interpreting the 

composite geometry.  As shown above when compared to the model, the first experiment 

on the etched composite was able to discriminate between these interpretations but left 

unanswered what range of values was best suited for the resulting interpretation.  As was 

shown in Section 5, the second experiment on the composite with a hole provided more 
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strain and spatial resolution than the first.  This increased resolution facilitated a more 

detailed analysis within the preferred geometric interpretation described above.  Thus, the 

sensitivity of ρ and δ to the following variables for conversion to several possible two-

dimensional projections of the composite geometry were also considered.   

tmDf Wmin

Wmax

tf tmDf Wmin

Wmax

tf

 

Figure 5-50  Illustration of the interpretations of composite geometry relevant to the 
MSSL model.  Since the model only considers matrix between the fibers and the real 
composite has matrix all around the fibers, the definition of the width of matrix between 
the fibers W has multiple interpretations.  One simplification of the geometry assumes the 
fiber cross section is square (dashed line).  This simplification conveniently results in 
constant width between the fibers throughout the thickness. 

 

For the possible values of δ and ρ, Af was left at the measured value (32% area 

fraction), first simulating a circular cross section for the fiber, and second simulating a 

square cross section for the fiber (as in Figure 5-50).  However, Am is a function of 

thickness, t, which was allowed to vary in order to determine the relevant thickness which 

should be input to the model for the composite.  Two scenarios from a range of possible 

predictions are described below and provide reasonable extremes for possible projections 

of the geometry.    

1) First, a range of thicknesses was explored according to the limits described in 

Figure 5-50.  The area of the matrix, Am, depends on the prescribed matrix 

thickness.  The area of the fiber, Af, depends only on the diameter of the fiber, 
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Df.  Therefore, through Eq. (3-1) and Eq. (3-2),  both ρ and δ depend on the 

ultimate thickness chosen to represent the composite thickness in the model, 

t.  Let t = tm.  Then, making the appropriate substitution for the fiber and 

matrix area in Eq. (2): 

Af π
Df
2







2

⋅= Am tm( ) tm W Df+( )⋅ Af−=
 

and keeping all other variables constant, ρ will decrease with tm according to: 

ρ tm( ) Em−
4− tm⋅ W⋅ 4 tm⋅ Df⋅− π Df

2⋅+





Ef π Df
2⋅⋅

⋅=

   

(5-2)

 

which is a linear function with respect to matrix thickness.  An upper limit for 

this possible interpretation with tm = 200 µm results in a load sharing 

parameter, ρ, of 0.667 and characteristic decay length, δ, of 252 µm (from Eq. 

(3)).  A reasonable lower limit with tm = A f  mm gave ρ = 0.290 but slightly 

increased δ. 

Interpretation 1) gave reasonable intensities for the SCF, but, as will be shown, the 

resulting decay length was too short.  While this may be due to other factors, such as 

deformation in the matrix, an increase in W will also extend the decay length.  Additional 

reasonable interpretations of the geometry which extended the decay length were also 

considered.   
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2) The second reasonable interpretation of the geometry involved increasing the 

average width between fibers, W.  Here the area fraction was again left at the 

measured value, but since the X-ray gage volume is rectangular and 

integrates through the depth of the composite, an average fiber width was 

approximated by assuming a square cross section of length A f  on each side 

(see dashed box in Figure 5-50).  The thickness was again varied, but since 

the fiber centers were kept a constant distance apart, W increased 32% 

compared to the minimum value for W used in 1).  In this second 

interpretation, the results for ρ are the same as the values obtained in 1).  

However, δ increases compared to 1) with its maximum value obtained as 

thickness, t, decreases.  Thus, a lower limit of the model thickness, t = tf = 

A f , was also a reasonable choice for comparison to the strains.  The 

corresponding characteristic decay length, δ (367 µm), was included in the 

second set of model comparisons.  

The effect of adjusting the other parameters, for example:  fiber diameter, distance 

between fibers, etc., was also considered, but improvements in the load sharing parameter 

and the decay length were not realized within reasonable interpretations of the real 

laminar geometry.  As shown below, the two extreme, yet reasonable, interpretations 

described above result in similar predictions. 

Figure 5-51 displays the MSSL model predictions from 2) above and normalized 

applied experimental strains from fibers obtained at the applied stress.  While the 

assumptions in 2) prove better than 1), in Figure 5-51, the MSSL model predictions 
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corresponding to 2) underestimate many of the experimental strains for the intact fibers.  

The strain in each fiber is normalized with respect to the far-field strain, which is 

approximated by the strain measured at the point in the same fiber 10 fiber diameters 

from the break.  The larger strains in the intact fibers than predicted show stress was 

transferred from deformation in the matrix.  As observed from the change in residual 

strains (Section 5-6), here fiber G also shows signs of possible debonding near the crack 

plane. 
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Figure 5-51  Normalized relative strains in the fibers around the hole from the 850 MPa 
maximum applied stress to the composite (symbols) compared to the MSSL model 
predictions for the second geometrical version of the model above (lines).  More stress is 
transferred to fibers F and G than predicted by the MSSL model which is due to plastic 
deformation in the matrix (see next figure). 
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Observations of the matrix strains confirm the matrix permanently deformed under 

stress (Figure 5-52).  Along with the FEM predictions (Section 3-1), the macroscopic 

analysis of the composite (Section 4-5) shows axial plastic strain is expected in the matrix 

for applied stresses greater than 700 MPa.  While other factors such as interface 

debonding cause stress transfer from matrix to fibers, global yielding is small at this 

applied stress, so plastic strain in the matrix may be the sole mechanism of the stress 

transfer.  Accounting for this plastic strain would require a new micromechanical model.   
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Figure 5-52  Normalized relative axial strains in the matrix from 850 MPa maximum 
applied stress to the composite around the hole.  The MSSL model predictions for the 
second interpretation (ρ = 0.290) are shown (lines) compared to the measured strains 
(symbols).  At this applied stress the matrix has begun to yield, particularly near stress 
concentrations as would be found by the hole in “e”.  The normalized matrix strain never 
exceeds 1.3.  Yielding begins at the interface and transfers load to the fibers (Figure 
5-49).  
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Results from a single fiber composite analysis have shown that the residual strains 

evolve due to plastic strain upon loading in a manner similar to the evolution seen here 

[29].  The same analysis showed that, even over multiple cycles, if the applied stress is 

not increased over an initial maximum applied stress, the residual strains and maximum 

strains in each phase do not change appreciably for each cycle.  Thus, when the 

composite was unloaded, the observed change in strain may be assumed entirely due to 

decreasing elastic strains.  For the Ti-SiC composite, much less plastic strain was applied 

than to the before mentioned MMC, so considering the results from single fiber MMCs, 

the unload step may be assumed entirely elastic.  With this assumption, the unloaded 

strains in the Ti-SiC composite may be appropriately simulated using the elastic MSSL 

model. 

Subtracting the final residual strains from the strains at applied load provides the 

change in strain observed in the unload step of the composite.  These strains show many 

features in common with the strains predicted using the MSSL model allowing a test of 

the possible geometrical assumptions put forth above.  Figure 5-53 and Figure 5-54 show 

the normalized change in fiber strains from the unloading step in the composite compared 

to the model.  Figure 5-55, Figure 5-56, and Figure 5-57 show the normalized change in 

matrix strains from the unloading step also compared to the model.  The fit improves with 

the choice of geometric parameters which assumes the fiber cross section is the same as 

the model (choice 2 above), rather than the cylindrical cross section.  The improvement is 

due both to the increased stress transfer due to the smaller, ρ, and the longer decay 

length, δ.  Since the larger W and smaller t favorably affect ρ and δ, the true distance 
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between fibers is an overestimate of W for cylindrical fibers approximated by the model, 

and the thickness of the composite is less important than the fiber diameter in 

determining the micromechanical response to damage.  As can be seen from the figures, 

the differences between the two predictions are slight.  Even with the reduced errors from 

the HEµXRD2 analysis such a selection between initial assumptions is somewhat 

subjective. 
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Figure 5-53  A comparison of the MSSL model predictions (lines) for the unloading fiber 
strains in the second damaged Ti-SiC composite (with a hole) for fibers B-D (symbols).  
The hole in fiber D was approximated by a series of breaks.  The overall fit improves by 
averaging the distance between the fibers for W and reducing the thickness in the model 
to the average thickness of the fiber (solid line).  The dashed lines depict the model 
predictions if the minimum distance between the fibers is used for W and the matrix 
thickness is used for t. 
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The strains in fiber C are slightly larger than the predicted values.  This is due to two 

factors.  One, the fiber next to C (unlike the fiber next to F) is cut (Figure 5-3) such that 

more strain will be transferred to fiber C than F (Figure 5-54).  Two, the matrix next to C 

is also damaged, but is carrying load as can be seen in Figure 5-55.  However, due to the 

damage, the matrix in column c narrows approaching the crack plane, a geometric detail 

not accounted for in the model, so more load should be transferred to C than is predicted.  

Comparison to case (ii) where the matrix is broken in column c (not shown, for example, 

see Figure 5-48), clearly shows the effect the lack of matrix has by dramatically 

increasing the load in an intact fiber next to a broken matrix column.  Since the matrix is 

not broken, but is damaged, such a dramatic increase is not seen here, thus, case (i) is a 

better choice for the particular damage configuration in this composite.  
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Figure 5-54  A comparison of the MSSL model predictions (lines) for the unloading fiber 
strains in the second damaged Ti-SiC composite, with a hole, for fibers E-F (symbols).  
Fiber E broke naturally but its strains show evidence of the neighboring hole.  Two 
extremes of the geometry provide the two model prediction shown (ρ = 0.290 (solid line), 
ρ = 0.667 (dashed line)). 
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Figure 5-55  A comparison of the MSSL model predictions (lines) for the unloading 
matrix strains (symbols) in the Ti-SiC composite with a hole.  The dashed lines depict the 
model predictions if the minimum distance between the fibers is used for W and the 
matrix thickness is used for t (ρ = 0.667).  Overall the fit improves by averaging the 
distance between the fibers for W and reducing the thickness in the model to the average 
thickness of the fiber (solid line, ρ = 0.290).  Matrix c is damaged near the hole 
contributing to the strain falling short of the model prediction. 
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Figure 5-56  A comparison of the MSSL model predictions (lines) for the normalized 
unloading matrix axial strains (symbols) in the Ti-SiC composite with a hole.  As above, 
the dashed lines depict the model predictions if the minimum distance between the fibers 
is used for W and the matrix thickness is used for t.  Again, the overall the fit improves by 
averaging the distance between the fibers for W and reducing the thickness in the model 
to the average thickness of the fiber (solid line).  Though possibly influenced by the 
debond in fiber G (Figure 5-54), matrix e strains fall short of the model prediction. 
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Figure 5-57  For completeness a final comparison of the MSSL model predictions (lines) 
for the unloading matrix strains (symbols) in the Ti-SiC composite with a hole.  As 
above, the dashed line depicts the model predictions if the minimum distance between the 
fibers is used for W and the matrix thickness is used for t and the solid line depicts the fit 
for averaging the distance between the fibers W and reducing the thickness in the model 
to the average thickness of the fiber.  The general trend depicted by the model is 
observed. 

 

As discussed in Section 2-2, the error estimation assumes Gaussian error distribution 

as standard in least square fitting.  The resulting error bars are shown in each graph.  For 

the fibers, the symbols are generally larger than the numerical error given by the strain 

analysis.  However, non-numerical errors are not shown and would increase the 

uncertainty to some degree.  The difference in error between the phases is primarily due 

to the number of grains averaged by the beam.  For the fiber, with its small grain size, 

hundreds of millions of grains are irradiated by the beam.  For the matrix, with its larger 
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grain size, far fewer grains are irradiated by the beam.  Thus the fluctuation due to 

discontinuous strains contributed by individual grains becomes much stronger making the 

average matrix strain at each point less certain. 

In summary, considerable agreement is observed between the MSSL model and the 

measured elastic strains in the broken and neighboring intact fibers generated by two 

fiber breaks.  Comparisons between the model and the data demonstrate the importance 

of accounting for the matrix stiffness and shear in load transfer and show that the matrix 

within and around the damage zone sustained axial load.  For two different damage 

configurations and a large range of applied strains, case (i) (which models intact matrix at 

the crack tips) is clearly the best choice for the composite.  The diameter of the fibers was 

shown a more significant parameter than the matrix thickness for a matrix which was 

thicker than the fiber diameter.  This result affects the calculation of the load sharing 

parameter ρ, Eq. (2-1) and characteristic decay length δ, Eq. (2-3).  The best value for ρ 

found for this composite was 0.290, which required an averaging of the distance between 

fibers in the out-of-plane direction and consideration for the fiber diameter in the matrix 

thickness. 
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6. Conclusion 

High-energy two-dimensional X-ray microdiffraction (HEµXRD2) and low-energy X-

ray microdiffraction were used to observe strains from both constituents of a Ti-

matrix/SiC-fiber composite.  The strains from HEµXRD2 provided a revealing picture of 

damage evolution at the scale of microstructure and enabled in situ studies under applied 

stress.  The technique provides spatially resolved in situ mechanical information in a 

MMC not available through any other method and an opportunity to study an entire body 

of composites for comparison to relevant micromechanical models.  These models, when 

validated, provide a predictive capability for composite performance and lifetime. 

6-1. General Conclusions 

Using the two X-ray microdiffraction methods, first using a point detector and second 

an area detector, the phase-specific in situ residual and applied tensile strains in the MMC 

were investigated.  Of the two methods, HEµXRD2 proved the most valuable for the 

identification of global yielding in the matrix since the two-dimensional strain tensor 

could be observed at each load.  Particularly the deviatoric strain measured directly by a 

fit to the diffraction ring, provided the necessary information to identify deviation from 

linearity in the ε11 (axial) and the ε22 (transverse) strains.  Both X-ray methods produced 

results consistent with a continuum three-dimensional finite element model (FEM).   

At the microstructural scale, a shear lag model [34], modified to account for the 

elastic stiffness of the matrix, was fit to the measured elastic strains in the broken and 

neighboring intact fibers generated by two fiber breaks.  Comparisons between the model 
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and the data demonstrate the importance of accounting for the matrix stiffness and shear 

in load transfer and show that the matrix within and around the damage zone sustained 

axial load.  The diameter of the fibers was shown a more significant parameter than the 

matrix thickness for a matrix which was thicker than the fiber diameter.  This result 

affects the calculation of the load sharing parameter ρ, Eq. (2-1) and characteristic decay 

length δ, Eq. (2-3), critical parameters determining the normalized predictions of the 

model. 

The best value for ρ found for this composite was 0.290, which required an averaging 

of the distance between fibers and consideration for the fiber diameter in the matrix 

thickness.  The damage induced in the composite, which relaxed thermal residual strains 

in the fibers, promoted failure of the neighboring fibers.  The matrix adjacent to a fiber 

break was clearly shown to carry load discriminating the choice of case (i)—intact matrix 

at the crack tip—for the model assumptions.  The measured strains also revealed 

deficiencies in the shear lag model.  Specifically, the model lacks a proper treatment of 

thermal residual stress as well as plastic deformation in the matrix.  

The results further show the irradiation of a small number of grains (roughly 60 

grains in a matrix region for a 90 x 90 µm2 beam) provides strain measurements 

comparable to a continuum mechanical state in the material.  A result which is surprising 

since the number of grains diffracting is a subset of the grains irradiated [86].  It is the 

collection of the entire Debye-Scherrer ring, with correct accounting for the deviatoric 

strain, which allows strain measurements from such a small number of grains.  As was 

shown, an analysis using a point detector that does not take advantage of the two-
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dimensional nature of the diffracted strain information is limited in its application as the 

beam sizes approaches the grain size. 

Due to the CTE mismatch, average thermal residual stresses of −740 MPa in the 

fibers and +350 MPa in the matrix were found along the fiber axes.  Although, using 

conventional mechanical testing, the global yielding of the Ti-SiC composite is not 

detected until at least 700 MPa applied stress; XRD strains reveal that local yielding 

occurs as early as 500 MPa.   

In the residual stresses and under the applied tensile load, plastic anisotropy was 

observed in the matrix.  It provides a source for the observed grain-to-grain strain 

variation.  The intergranular strains in the Ti matrix were observed to vary as much as 

50% even far from the damage region.  In spite of this dramatic variation, the two-

dimensional XRD technique provided reliable information from the matrix.  In sum, this 

investigation establishes HEµXRD2 as a powerful method to collect multidimensional 

strain information from all phases of a composite at the scale of the microstructure, and it 

opens the window for validation of advanced micromechanics models which simulate 

damage evolution and predict lifetime of composites.   
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6-2. Future Work 

As part of an initial investigation to establish methodology and demonstrate 

feasibility, this work naturally leads to several directions of further study.  From a 

mechanics perspective, a next step involves the prediction of plastic deformation in the 

composite under load.  Extension of the MSSL model to include plasticity is already 

underway.  The data collected by the methods described above is a first step toward 

validating results obtained from future models.   

Using the bulk composite raw diffraction data (60 images vs. 1500 images for the 

microscale data) from the image plate, several mechanical treatments could be pursued.  

Not the least of these is an application of the Self Consistent Model (SCM) used for 

modeling plastic strain in a crystalline aggregate [87, 88].  The advantage here is two-

fold.  Information is potentially available from the matrix in all η from several 

reflections.  And the grain size of the matrix is not so disparate from the fiber diameter to 

exclude use of the model.  Though feasible, an SCM has not been developed to correctly 

treat the information available from an image plate; but, when it is available, the already 

collected images would allow a more precise determination of in situ matrix yield 

behavior, and account for the hkl-dependent elastic and plastic anisotropy. 

The software to analyze two-dimensional strains is still in its infancy.  Deficiencies in 

the current analysis method were given in Section 2-2.  Because so much information is 

available from the diffraction ring, it will take time to implement and test improved 

software to analyze the strains.  The data collected here can be used as a resource for this 

effort.  In addition, an effort is underway to allow the calculation of strains in real time as 

the data is collected.  This is a valuable exercise as it will allow decisions to be made at 
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the instrument based on, for example, the extent of load transfer, plastic yielding, and 

even error.  (Percent error decreases with stress, but many studies want to first observe 

elastic strains before considering plastic deformation.  A real-time knowledge of the 

strains would provide an obvious improvement for such studies.)  Even with an advanced 

strain analysis, there is no replacement for archiving the raw image files.  The texture 

information alone can require several different procedures to unearth a wealth of 

structural information.  This is particularly true for microbeam work as the grain-specific 

strains are revealed with, for example, a blob analysis [32] versus the average strains 

which become more apparent with a pseudo-rocking method [50].  Again the data 

collected here will be useful in simulations to develop a real-time analysis method. 

Additional logical extensions of this work include application of this technique for the 

examination of the Ti-SiC composite and similar composites under even greater applied 

stress (1-1.2 GPa).  This would be particularly useful if combined with an imaging 

method which identified natural breaks.  X-ray microtomography has been shown to 

reveal natural breaks in SiC [81], so a possible next step would be to adapt an instrument 

which combines both imaging and strain measurement capabilities at the energies 

necessary for analysis of this composite system. 

The Ti-SiC composite is ultimately intended for applications which require strength 

at elevated temperatures.  High-energy X rays and thermal neutrons are well suited for 

high temperature work.  Since they have good penetration ability and do not require large 

angular detection windows compared to low-energy X rays, the addition of a furnace to 

the sample environment is tractable.  As this composite is so well suited to analysis at 

high energy, incorporating a furnace to measure creep, nonlinear CTE behavior, etc. with 
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the load frame is a further extension of the work presented here.  Furthermore, ceramic 

matrix composites show promise for these applications as well as improved (and cheaper) 

versions of the monolithic Ti alloy [33].  The methodology for exploration of the 

mechanical properties could be developed on experiments with Ti-SiC and extended to 

these materials.   

With the continuing advances in the field, the microbeam used here is becoming more 

common.  Beam sizes less than a µm across were recently used to explore an MMC under 

load [89, 32].  Such dimensions allow never before seen examination of the interface 

properties as well as intergranular stresses [31, 32, 36].  The amount of information* and 

time required to make the three-dimensional analysis have slowed the progress in this 

direction but improvements on many fronts will soon make a three-dimensional full 

tensor stress analysis at the scale of a µm reasonably achievable.  Combined with high-

speed X-ray imaging, the tools becoming available are set to conquer the difficulties of 

measurements on the order of grain size, a worthy task to which this work has partially 

contributed. 

                                                 
*The study referred to here amassed 70 Gigabytes of data on a region less than 1/10th the 
size in roughly 5 days as apposed to the 38 Gigabytes of information collected in 7 days 
of beam time with the Ti-SiC image plate study. 
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7. Appendices 

7-1. Appendix A.  Load Frame and Strain Gage 
Interface Code   

 

LabView version 6.0.2 was used to program an automated computer interface which 

logged strain from up to 4 strain gages, the load from a load cell, and temperature.  The 

hardware used was the NI USB-DAQ Pad connected to a SC-2345 signal conditioning 

block.  Strain gage modules are available for the SC-2345 in Quarter, Half, and Full 

bridge formats.  Each may be easily configured in with NI’s Measurement and 

Automation Explorer package (MAX) sold with LabVIEW.  The following describes the 

important subsets of the interface code such that future users could continue use of the 

program in other experiments.  The LabView help documentation is extensive and the 

reader should refer it for programming assistance.  

The front panel (user interface for the program) is as shown: 
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All incoming variables are displayed on the screen as a function of time.  A right click on 

any graph button or dial will display help text for that item. 

An overview of the block diagram is shown.  The functions generally move from left 

to right.  Initialization of the hardware and zero calibration of the strain gages occur 

outside of the while loop (large grey rectangle). 
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To acquire data from the hardware the following organization was used: 

 

The variables input to “AI Acquire Waveforms.vi” were configured in MAX.  Once 

configured and sensing the acquired data such as strain or temperature is assembled in an 
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array (brown wire shown).  The array is indexed and each value is processed individually.  

Strains are best sent through an averaging routine such as Mean.vi, shown.  Depending 

on the electrical setup averaging 1000 samples gives accuracy on the order of 10-6 strain. 

 

Once the resistance of the gage is collected by the quarter bridge module, it may be 

converted to strain using a routing as shown above. 
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Finally the input variables must be logged to a text file.  A standard text file logging 

routine is shown.  The file is created before the while loop is started and kept open until 

the program is closed.  Along with the averaged data, a time stamp is recored with each 

cycle of the while loop.  Typical cycle times may be set on the front panel to 1 sec, 10 

sec, etc.  Also shown above is the method used to record the load cell voltage.  Along 

with recording the raw voltage value, the load is scaled according to its calibration factor. 
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7-2. Appendix B.  Image Plate Calibration and 
Conversion Macro   

 

As referred to in the text (Section 2-2), the following macro was used to automate the 

conversion of digital image plate data for use with the MatLab analysis code given in 

Appendix C.  The text of the macro includes the results of the calibration performed on 

the internal Si standard ensuring a consistent and meaningful conversion from radial to 

Cartesian coordinates.  To conserve space the macro is presented in two-column format. 

 
%!*\ BEGINNING OF MACRO FILE 

%!*\ 

%!*\ This is a comment line 

%!*\ 

EXIT 

POWDER DIFFRACTION (2-D) 

INPUT 

#IN 

O.K. 

CAKE 

INTEGRATE 

TILT ROTATION 

-30.33354 

X-PIXEL SIZE 

100.0000 

Y-PIXEL SIZE 

100.0000 

DISTANCE 

1110.956 

WAVELENGTH 

0.189725 

X-BEAM CENTRE 

1720.988 

Y-BEAM CENTRE 

1713.437 

ANGLE OF TILT 

-0.304665 

O.K. 

START AZIMUTH 

0.0 
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END AZIMUTH 

360.0000 

INNER RADIUS 

0.0 

OUTER RADIUS 

1700 

SCAN TYPE 

RADIAL 

AZIMUTH BINS 

120 

RADIAL BINS 

1700 

CONSERVE INT. 

NO 

POLARISATION 

YES 

FACTOR 

0.990000 

MAX. D-SPACING 

2.000000 

GEOMETRY COR. 

YES 

O.K. 

EXIT 

OUTPUT 

TIFF 16 BIT 

NO 

#OUT 

0.0 

65535.00 

EXIT 

MACROS / LOG FILE 

%!*\ END OF EXPG_IO MACRO FILE
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7-3. Appendix C.  Image Plate Analysis Code 
 

The following MatLab code was initially developed at APS.  It was modified at 

Caltech and improved for use with the Ti-SiC data.  The analysis requires a series of 

steps as outlined in the text (Section 2).  The details of the MatLab data analysis step is 

shown below.  It assumes the data files are prepared by Fit2D (Appendix B). 

Each diffraction pattern provided the longitudinal (or axial), transverse, and shear 

strain in the plane of the composite according to Equation (2-3) which may be written: 

For ω = 0o 

a2 ε11⋅ 2 a⋅ b⋅ ε12⋅+ b2 ε22⋅+ 2 a⋅ c⋅ ε13⋅+ 2 b⋅ c⋅ ε23⋅+ c2 ε33⋅+ ln
sin θ0( )
sin θ( )









=
 

For ω = 90o (1)
 

c2 ε11⋅ 2 b⋅ c⋅ ε12⋅− b2 ε22⋅+ 2 a⋅ c⋅ ε13⋅− 2 b⋅ a⋅ ε23⋅+ a2 ε33⋅+ ln
sin θ0( )
sin θ( )









=
 

where  a = sin θ, b = -cos η cos θ, c = -sin η cos θ, and ln(sin θ0 / sin θ) represents the 

diffraction cone distortion for a particular (2θ, η) position.  Normally, at least two 

orientations of the sample, such as ω = 0o and ω = 90o (Figure 2-3), must be exposed to 

solve for the three-dimensional strain tensor in a specimen.  Here entire rings were 

collected in one exposure providing sufficient information for examining two dimensions 

of the strain state in the composite, specifically the strain within the plane of the fibers.  

Strain out of the composite plane is integrated by the X rays which were aligned 

perpendicular to that plane.  To solve Eqn. (1), a fictitious rotation in ω was used for the 

second orientation.  The solution for ε33 under this fictitious 90o rotation is by definition 
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identical to the strain for ε11 with ω = 0o.  Since both directions are identical, the solution 

for both strains was averaged and reported as the axial strain.   The following MatLab 

code was written which is capable of performing a least square fit of this strain equation 

to the diffraction rings.  Half of the ring was assigned ω = 0o, the other half was assigned 

ω = 90o.  The diffraction rings were fit using a pseudo-voigt peak profile in 2θ over 120 

azimuthal divisions of η.  MatLab also facilitated automation of the strain analysis for 

examination of a large array of positions around the damage zone in the composite. 

 

Step 1, Call File 1 (an “azmacro.m” file):  

This file automates the fitting process for the tiff files.  Data files can be loaded with a 

root name followed by a number with up to three leading zeros.  Once loaded, the files 

are sent to the fitting routine.  Initial peak positions are determined based on the crystal 

structure and the lattice parameters for the phase(s) of interest.  Fits to the peaks are 

performed with a pseudo-voigt peak profile. 

 

%  load a series of tiff files, fit with PV, and output as structures (*.mat files) 

%  Modified from original version by J. Almer, APS, January 2002 

ff=0; global FILENAME,ff; 

for kk=7362:1:7383 

  FILENAME=['filename_',num2str(kk),'.tif']; 

  ff=ff+1; azfit_Si_Ti_SiC;  

end 

clear kk ff; 
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File called by above file in Step 1 (an “azfit.m” file): 

% Fits selected peaks as a function of azimuth.  Input is the tiff file FILENAME (must be 

in memory). 

% Notes: 

% 1. cen0 values are starting guesses for radial peak positions. 

% 2. Fits to pseudo-voight functions. 

% 3. Fits up to 4 Si, 4 Ti and 4 SiC peaks. 

 

if ~exist('im') 

    im = 2^16 - double(imread(FILENAME)); end 

 

distance=1115.5; energy=65.35; pixsize=0.1; a1=5.4308; a2=2.93025; c2=4.67857; 

a3=4.365;% respective units of mm,keV,mm,Angstrom,A,A,A 

h=[1 1 1 1 2 2 1 3 2 1 4 3]; 

k=[1 0 1 0 0 2 0 1 2 1 0 1]; 

l=[1 0 1 1 0 0 2 1 0 0 0 1];  

for i=[1 6 8 11]; 

cen0(i)=round(cen0calc('cubic',h(i),k(i),l(i),a1,a1,a1,distance,energy,pixsize)); end; %Si 

peaks 

for i=[2 4 7 10]; 

cen0(i)=round(cen0calc('hexag',h(i),k(i),l(i),a2,a2,c2,distance,energy,pixsize)); end; %a-

Ti peaks 
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for i=[3 5 9 12]; 

cen0(i)=round(cen0calc('cubic',h(i),k(i),l(i),a3,a3,a3,distance,energy,pixsize)); end; 

%SiC peaks 

nPeak = length(cen0); 

nAzi = size(im); nAzi = nAzi(1); 

 

disp([sprintf('FILENAME is %s',FILENAME)]) 

% fit selected single peaks to PV, and output to fit structure for each azimuth 

opt = optimset('disp','off','lev','on','large','on','jacobi','on','tolx',1e-3,'tolf',1e-

3,'maxi',400); 

dx = 20; fn = {'backg1' 'psv1'}; npar = [2 4];% dx = width of peak search 

low = [-inf 0 0 0 0 0];  up = [inf inf inf inf inf 1]; 

for azi = nAzi:-1:1   

    if rem(azi, 20) == 0; fprintf('%5i',azi); end 

      for peak = [1 4 6 7 8 9 10 11]; % Single peaks to fit 

        x = cen0(peak) - dx: cen0(peak) + dx; 

        y = im(azi, x); 

        ymax = max(max(y)); xmax = x(find(y==ymax)); xmax = xmax(1); ymin = 

min(min(y)); 

        fwhmguess = 4; slguess=(y(find(x==cen0(peak)+dx))-y(find(x==cen0(peak)-

dx)))/dx/2; 

        p0 = [slguess, ymin, 5*(ymax-ymin), cen0(peak), fwhmguess, .5]; 

        y0 = sumfun1(p0,[],npar,fn,x); 
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        [pfit,rn,rs,ex,out,lam,jac] = 

lsqnonlin('sumfun1',p0,low,up,opt,[],npar,fn,x,y,ones(size(y)));     

        [dum var] = confint(pfit,rs,jac); % variance of fitted params 

        yfit = sumfun1(pfit,[],npar,fn,x);  

       %   figure(1); plot(x,y,'+',x,yfit,'-b',x,y0,'-r'); xlabel('Radial position'); 

%uncomment/alter to plot fit and data 

      %    ylabel('Intensity'); text(0.2,0.95,sprintf('Peak  %i and azimuth %i',peak,azi),'sc'); 

pause;  %uncomment/alter to plot fit and data 

        fit(1,peak).peak(azi,1) = pfit(3);fit(1,peak).cen(azi,1) = pfit(4); 

fit(1,peak).fwhm(azi,1) = pfit(5); 

        fit(1,peak).shape(azi,1) = pfit(6);fit(1,peak).dpeak(azi,1) = sqrt(var(3)); 

        fit(1,peak).dcen(azi,1) = sqrt(var(4));fit(1,peak).dfwhm(azi,1) = sqrt(var(5)); 

      end 

end 

 

save (FILENAME(1:findstr(FILENAME,'.')-1), 'fit'); 

clear im; 

 

Step 2, Call File 2 (a “strain_macro.m” file):   

This file performs the strain analysis step in the procedure.  Since it is only dealing 

with the array of points defined by the previous step, this step completes quickly.  The 

analysis is based on the equations from [50]. 
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%  load a series of mat files, which calls strain_Si_Ti_SiC 

ff=0; global FILENAME,ff; 

for kk=1:1:7383 

  FILENAME=['filename_',num2str(kk, '%03.4g'),'.mat']; 

  ff=ff+1; strain_Si_Ti_SiC;  

end 

clear kk ff; 

File called by above file in Step 2 (a “strain.m” file): 

% Converts measured radial positions to strain and stress.  Equations from He and 

Smith. 

distance=1115.5; energy=65.35; pixsize=0.1; a1=5.4308; a2=2.93025; 

c2=4.67857; a3=4.362;% respective units of mm,keV,mm,Angstrom,A,A,A 

h=[1 1 1 1 2 2 1 3 2 1 4 3]; 

k=[1 0 1 0 0 2 0 1 2 1 0 1]; 

l=[1 0 1 1 0 0 2 1 0 0 0 1];  

for i=[1 6 8 11]; 

cen0(i)=round(cen0calc('cubic',h(i),k(i),l(i),a1,a1,a1,distance,energy,pixsize)); end; %Si 

peaks 

for i=[2 4 7 10]; 

cen0(i)=round(cen0calc('hexag',h(i),k(i),l(i),a2,a2,c2,distance,energy,pixsize)); end; %a-

Ti peaks 
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for i=[3 5 9 12]; 

cen0(i)=round(cen0calc('cubic',h(i),k(i),l(i),a3,a3,a3,distance,energy,pixsize)); end; 

%SiC peaks 

nPeaks=length(cen0);% number of peaks measured 

PeakInfo={'Si111' 'Ti100' 'SiC111' 'Ti101' 'SiC200' 'Si220' 'Ti102' 'Si311' 'SiC220' 

'Ti110' 'Si400' 'SiC311'}; % identity of the peaks fit 

%symbol={array(nPeaks)};  % symbols used to identify the peaks  

 

% convert from peak position to strain; 

load(FILENAME); %uncomment if this is done externally (FILENAME must then be 

global)  

   N=length(fit(1).cen);azi=(0:360/N:360-360/N)'; 

   disp([sprintf('FILENAME is %s',FILENAME)]) 

   for peak=[1 4 6 7 8 9 10 11]; 

    chi = (90+(0:360/N:360-360/N))*pi/180; chi = chi'; 

    ome = [90*ones(N/2,1);0*ones(N/2,1)]*pi/180; % here we partition data so that 

half is from omega0; half from omega90;  

    %  if a single omega used (no rotation), a biaxial strain state is assumed and 

component11=ave(11,33). 

    th = atan(mean(fit(1,peak).cen)*pixsize/distance)/2; th = th*ones(N,1); 

    phi = 0*pi/180*ones(N,1); 

    psi = 0*pi/180*ones(N,1); 

    dR = (fit(1,peak).cen - cen0(1,peak))/cen0(1,peak); 
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    sigdR = 5*(fit(1,peak).dcen)/cen0(1,peak); 

    [a,siga, chisq, gof, cov, A] = hesvd(dR,sigdR,chi,th,phi,psi,ome); 

    [temp,dR1] = he(a',chi,th,phi,psi,ome); 

          figure(2); plot(azi,-dR,'+',azi,dR1,'-r'); xlabel('Azimuth'); %uncomment/alter to 

plot fit and data 

          ylabel('Strain'); text(0.1,0.95,sprintf('Biaxial strains (x10^-^3) fit to peak #%i 

which is %s',peak,PeakInfo{peak}),'sc');  %uncomment/alter to plot fit and data 

          text(0.1,0.9,sprintf('e11= %5f, e22= %5f, e33= 

%5f',1000*a(1),1000*a(3),1000*a(6)),'sc');  %uncomment/alter to plot fit and data 

          text(0.12,0.85,sprintf('e12= %5f, ave(11,33)= %5f, diff(11,33)= 

%5f',1000*a(2),1000*(a(1)+a(6))/2,1000*(a(1)-a(6))),'sc');%uncomment/alter to plot fit 

and data 

          pause; 

    

fit(1,peak).strain(1,1)=a(1);fit(1,peak).strain(1,2)=a(2);fit(1,peak).strain(1,3)=a(3); 

    

fit(1,peak).strain(1,4)=a(4);fit(1,peak).strain(1,5)=a(5);fit(1,peak).strain(1,6)=a(6); 

    

fit(1,peak).dstrain(1,1)=siga(1);fit(1,peak).dstrain(1,2)=siga(2);fit(1,peak).dstrain(1,3)=

siga(3); 

    

fit(1,peak).dstrain(1,4)=siga(4);fit(1,peak).dstrain(1,5)=siga(5);fit(1,peak).dstrain(1,6)=

siga(6);  
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    fit(1,peak).gof(1,1)=gof; fit(1,peak).chisq(1,1)=chisq; 

   end 

 

save (FILENAME(1:findstr(FILENAME,'.')-1), 'fit'); %this updates the fit structure, to 

include strain/stress information 

 

Step 3, Call file 3 (“ascii_macro.m” file): 

To prepare the resulting strains for plotting and further analysis this last step extracts 

the values of interest from the *.mat file into an ascii file.  Specifically, it opens a series 

of mat files (incremented by value kk) and prints out selected data in ascii format, to the 

outputfilename.txt file. 

 

ff=0; global FILENAME,ff; 

  fileout=fopen('outputfilename.txt','w'); 

    fprintf(fileout,'File Peak e11 sig(e11) e12 sig(e12) e22 sig(e22) chisq \n'); %labels are 

fixed here. e11 is average of e11 and e33 from .mat file. 

for kk=1:1:7383  

 %if kk==5%|5045|5150|5183  %Uncomment for useful method to skip bad files 

   %  disp([sprintf('bad FILENAME')]); 

     % elseif kk==3    

    % disp([sprintf('bad FILENAME')]); 

 %elseif kk==5150 

%     disp([sprintf('bad FILENAME')]); 
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%elseif kk==5183 

%     disp([sprintf('bad FILENAME')]); 

%    elseif kk==5197 

%     disp([sprintf('bad FILENAME')]); 

%else 

    FILENAME=['filename_',num2str(kk, '%03.4g'),'.mat']; 

    ff=ff+1; 

    for peak=[9]; 

         

     fprintf(fileout,'%i %i %f %f %f %f %f %f %f 

\n',kk,peak,(fit(1,peak).strain(1,1)+fit(1,peak).strain(1,6))/2,... 

       

(fit(1,peak).dstrain(1,1)+fit(1,peak).dstrain(1,6))/2,fit(1,peak).strain(1,2),fit(1,peak).dstra

in(1,2),... 

       fit(1,peak).strain(1,3),fit(1,peak).dstrain(1,3),fit(1,peak).chisq);   

    end 

    disp([sprintf('FILENAME is %s',FILENAME)]) 

    load(FILENAME); 

    

end 

fclose(fileout); 

clear kk ff; 
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