
Modeling and design of synthetic biochemical circuits for
biological phenotypes

Thesis by
Pranav Bhamidipati

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended 8 December 2023



ii

© 2024

Pranav Bhamidipati
ORCID: 0000-0002-6199-6505

All rights reserved except where otherwise noted



iii

ACKNOWLEDGEMENTS

I recently spoke with an undergraduate who is thinking of pursuing a PhD, and to
my horror I watched as the very advice I received at the beginning of my journey
spewed helplessly from my mouth, only mildly solicited. I know it must have
contained certain phrases – “Before all else, love your science. . . Resilience is
important. . . Have hobbies outside of research. . . ” – which I once dismissed as
probably irrelevant to me. After all, I had survived the pre-med curriculum, the
seemingly never-ending applications and interviews to MD-PhD programs, and a
rigorous pre-clinical curriculum in medical school. How much harder could a PhD
be?

I was wrong to be so self-assured. In reality, these few years have included many
failures and challenges. This thesis does not explicitly include the many failed
projects (today’s count is six) that together occupied half of my years in graduate
school, if not the majority of it. I say “explicitly” because, even though the desired
outcome was never realized, each failure taught me a skill that was used to produce
some part of this document. I also have come to believe in the importance of a
gentle, congenial relationship with failure. In the words of the Irish poet David
Whyte, “a vocation always includes the specific, heartrending way we will fail at
our attempt to live fully.” Looking back, I feel the vital pulse beating beneath the
words of his short essay titled “Ambition" (“Consolations” 2019).

Ambition is natural to the first steps of youth, who must experience its
essential falsity to know the larger reality that stands behind it. . . [But a
life’s work always includes] the passing on of a sense of sheer privilege,
of having found a road, a way to follow, and the having been allowed to
walk it, often with others, with all its difficulties and minor triumphs;
the underlying primary gift of having been both a witness to and a full
participant in the conversation.

I am struck by gratitude for having been given this opportunity and for the people
who have made this journey rich and joyful. First, I am grateful for my advisor
Matt, who has always and foremost encouraged my growth and independence as
a scientist. I arrived at Caltech with no engineering education, no experience in
synthetic biology, and a very basic foundation in mathematics, hoping to fashion



iv

myself into a computational biologist focused on synthetic cell engineering. I am
tremendously thankful for his patience in training me towards my goals and his
generosity with his time and resources. His willingness to pursue new research
directions and uncanny sense for good ideas are inspiring to me, and I can feel how
his example has, slowly but surely, shaped me into a scientist in the same mold.
His patience and encouraging words during some of the rough patches of failed
experiments, missed deadlines, and unexpected life events also taught me that the
process of science is always more important than its outcome.

I also could not have succeeded in my work without a network of mentors and
collaborators. I would like to thank my committee members. Justin Bois’s courses
played an important role in shaping my research interests, and they gave me the
quantitative skills to call myself an engineer despite coming from a non-quantitative
background. And there were a few pivotal moments during my PhD when Michael
Elowitz’s wise words guided my decisions, including the fortuitous decision to
rotate with Matt in the first place. Al Barr brought to my committee an enthusiasm
for my research direction that was nourishing and motivating. Apart from my
committee, I am also proud to count the post-doctorates Dominik Schildknecht and
Josquin Courte as both mentors and friends, a rare and precious combination. I also
greatly appreciate my collaborators in the Morsut Lab at USC for their consistent
collaborative spirit, open minds, and valuable feedback. Although it was brief, my
time working with Leonardo Morsut helped spark my passion for the important
role of computation in synthetic circuit design. My work was also improved from
interesting conversations with many members of the Elowitz Lab, including Gal
Manella, Joseph Parres-Gold, and Martin Tran.

I am also grateful for the rich and supportive community of friends and labmates I
had at Caltech. Thanks to my labmates, coming to work at Caltech was a pleasure.
I would like to thank Jerry, who always let me interrupt his day to talk about a
random project idea or workshop a new slide deck. Those conversations were so
spontaneous, and they always left me feeling more creative. I will miss talking
about science (and gossiping about scientists) over lunch with Arjuna, Shichen, and
Meera. Thanks to Arjuna and Shichen, I thoroughly enjoyed going to conferences
and will never hear the phrase “conference room” the same again. My musical
jam sessions with Aman, epic barbecue dinners with James, and many board game
nights with my labmates will not soon be forgotten. I also greatly enjoyed the few
months I got to spend sitting side-by-side with Dominik. To Laura, I am grateful to



v

have had a friend with which to share all the ups and downs, from venting over long
walks to celebrating with chicken sandwiches. I am also thankful for my MD-PhD
mentors and colleagues for their advice and camaraderie, and I am glad that I will
get to share my clinical years with them as well.

This journey would not have been possible without the support of my parents Dr.
B.V.R. Murthy and Dr. Sujatha Bhamidipati. Their constant encouragement has
been so precious to me, and their daily loving presence reminds me that the most
important things in life are love, health, and happiness. Amma and Nanna, you
were my original teachers, and I feel blessed that I am still learning so many lessons
from you. I would also like to thank my sister Harini Bhamidipati for being my
cheerleader all these years and for providing me with a never-ending stream of dog
memes. Speaking of which, I would like to acknowledge the important contributions
of Chikoo Bhamidipati, who is a very good boy.

Finally, I would like to acknowledge those who have been a part of my personal and
spiritual journey over these last few years. The incredible warmth and understanding
provided by Michelle Kim have been a guiding light throughout the last two years,
and I count her as a role model. I hope to spend much more time in the stillness and
beauty of the Caltech campus and the rolling greens of Monterey Hills, which have
grounded me in uncertain times. I also deeply appreciate the authors Thich Nhat
Hanh, Alan Watts, Sam Harris, Pete Walker, Forrest Hanson, Rick Hanson, and
David Goggins. Their written and recorded works have been an invaluable resource
for my growth over these past few years.



vi

ABSTRACT

Biological behaviors arise from the dynamical interactions of biochemical networks.
For example, the various immune responses to damage are manifestations of signal-
ing networks between immune cell types. A central goal in systems and synthetic
biology is to elucidate the design principles of these networks, or circuits, both in
the sense of dissecting how function arises from structure in the natural context
and in the sense of understanding the guidelines for optimal engineering of syn-
thetic biological systems. The study of design principles in both senses is aided
by mathematical modeling and simulation, which provide a self-consistent frame-
work for evaluating the theoretical implications of biological hypotheses as well as
a testbed for the development of novel circuits for desired biological phenotypes.
This thesis pertains to two related challenges in this field, namely the scaling of
computational design to larger circuits and the engineering of global phenotypes
that emerge nonlinearly from local interactions.

The first section of this thesis presents a novel design platform for biological circuits,
called CircuiTree, that uses a game-playing paradigm to overcome the combinatorial
complexity of de novo circuit design. This platform treats circuit design as a game of
circuit assembly and traverses the tree of possible assemblies using Monte Carlo tree
search (MCTS). Borrowed from artificial intelligence (AI) agents that have mastered
complex games, MCTS is a reinforcement learning (RL)-based search algorithm that
efficiently searches for the most effective design strategies and naturally discovers
design principles in the form of network motifs, which appear as clusters of solutions
in the search tree. Finally, when tasked with designing fault-tolerant oscillators
with five components, CircuiTree finds a novel design strategy, which we call
motif multiplexing, in which multiple sub-oscillators are interleaved so as to render
the circuit highly resistant to deletions and knockdowns. This design principle,
which may be responsible for the multiple oscillatory loops observed in eukaryotic
circadian clocks, opens the possibility of engineering synthetic circuits at a larger
scale and suggests that larger biological circuits contain yet-unknown design features
that are not simply extensions of smaller circuits.

The second section describes a novel mechanosensitive property of the SynNotch
synthetic chimeric receptor and uses a multicellular modeling framework to show
how it can be used to control spatiotemporal patterning in vitro. Modified from the
endogenous juxtacrine receptor Notch, SynNotch binds to an arbitrary extracellular
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ligand and, in response, releases an arbitrary transcription factor, thus acting as a
user-defined signal transducer. We show that, in mouse fibroblasts, a simple sender-
receiver SynNotch circuit ceases to transduce a membrane-bound GFP signal at
high cell densities in 2D culture. Because of this feature, a lawn of cells expressing
a signal-relay circuit, which we call the transceiver circuit, can undergo spatially
limited activation, where the signal propagates in a wave outward from a GFP-
expressing sender cell until, due to cell division, the cell density crosses a threshold
value and the signaling system shuts down. Using a multicellular lattice-based
model combined with experiments, we demonstrate that perturbations of growth
parameters can be used to control the size of activated spots. Finally, we achieve
spatiotemporal patterns of activation by seeding the growth dish nonuniformly,
creating a wave of activation at the millimeter scale that recapitulates the kinematic
wave patterning phenomenon observed during vertebrate somitogenesis.

Together, this body of work represents an advance in the use of computational
methods and mathematical modeling to guide the design and control of complex
biological phenotypes. Advances in these methods promise to catalyze the devel-
opment of more advanced cell-based therapies and engineered tissues.
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C h a p t e r 1

INTRODUCTION

1.1 Biological behaviors emerge from the activity of biochemical circuits
Since its coining in 1974, the "genotype-phenotype map" has become an authorita-
tive model for how an organism’s genetic material determines its behavior (Lewontin,
1974; Alberch, 1991). This model posits that differences in an organism’s inherited
genome, or genotype, manifest as differences in its behavior, including how it re-
sponds to stimuli as well as its static traits such as shape and appearance (Vienne,
2022). In the intervening decades, we have found that genetic and epigenetic factors
produce biological phenotypes by altering the expression levels, spatial distribu-
tions, and interrelations between biomolecules. In many cases where the underlying
network is not well understood, it is useful to study the genotype-to-phenotype (or
gene-and-environment-to-phenotype) mapping alone, while treating the intervening
dynamics as a black-box. However, a focus on primarily genetic causation risks
excluding aspects of the underlying system that play a determining role in generat-
ing complex behavior but are not genetically encoded such as transport phenomena,
cell mechanics, boundary conditions, and tissue-level material properties (Thomp-
son, 1917; Müller and Newman, 2003; Pfeifer, Shyer, and Rodrigues, 2024). The
study of these biochemical networks, or circuits, also provides a deeper insight into
pathological phenotypes and their possible therapeutic interventions (Alon, 2024).
To understand, engineer, and control biology, one must interface with biological
systems at the level of these circuits.
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1.2 Combinatorial complexity is a key barrier in the forward-design of bio-
logical phenotypes

Biochemical circuits can be represented mathematically as a time-evolving system
of interacting variables, or dynamical system. Consider the system of 𝑘 variables
x = [𝑥0, . . . , 𝑥𝑘 ], where the time-derivatives of the variables ¤x = 𝐹 (x; 𝑠, \ (𝑠)) are
determined by a system of (generally nonlinear) functions 𝐹 that depends both on
the circuit’s topology 𝑠 and its parameters \. By “topology” we mean the qualitative
nature of the interactions between the biomolecules 𝑥𝑖, such as “Protein A binds
to Protein B” or “Transcription Factor X inhibits Gene Y”. The set of topologies
S is the set of possible combinations of these interactions. Because each of these
interactions may involve reactions with different rate parameters, the size of the
parameter set depends on 𝑠 (\ ∈ R𝑛(𝑠)).

The distinction between “parameters” and “topologies” is, in a sense, arbitrary. For
example, the effect of a transcription factor on target gene expression can be modeled
discretely as either positive or negative regulation (with a magnitude determined
by the associated parameters) or continuously with a parameter that denotes either
activation or inhibition, depending on its sign. However, the latter choice can obscure
the importance of the qualitative difference between repression and activation, which
serves a central role in determining the phenotype of a circuit (Diego et al., 2018;
Dassow et al., 2000). Additionally, certain choices are inherently discrete. For
example, a regulatory region may have 3 or 4 binding sites, but not 31

2 .

To forward-design a biochemical circuit to exhibit a target phenotype, therefore, is to
optimize its topology and reaction rate parameters with respect to some real-valued
phenotype score 𝑓 (x(𝑡)). Although both topology and parameters are important for
phenotype, I will primarily discuss topology optimization in this chapter due to its
unique challenges as a problem of combinatorial optimization.

A key initial step in engineering a synthetic biological circuit is to decide its topol-
ogy. The first implementations of synthetic gene circuits in bacteria recapitulated
circuits that had been identified in nature and extensively studied in theory such
as oscillatory repressor systems (Elowitz and Leibler, 2000) and bistable switches
(Gardner, Cantor, and Collins, 2000). Alternatively, one could design a topology
by hand that theoretically achieves the desired goal, using human ingenuity and
mathematical analysis of the governing equations. However, in the absence of
natural examples and failing this creative endeavor, the problem of design can be
approached using computation.
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The canonical method that has emerged to discover circuit topologies de novo is a
method we call enumeration. The steps of enumeration are:

1. Define a set of possible circuit topologies S and list all the possible config-
urations. For instance, the space of all regulatory circuits consisting of four
transcriptional repressors has 242

= 65, 536 topologies before symmetries (42

pairwise interactions that can each be present or absent). Also implement
a phenotype function, where each evaluation 𝑓𝑖 : 𝑠 ↦→ 𝑞 ∈ 0, 1 returns a
Boolean result 𝑞 denoting whether or not the phenotype has been achieved.
Typically, each evaluation runs a simulation of the dynamics of x(𝑡) with a
different random parameter set \𝑖 and classifies the dynamics. The parame-
ter distribution 𝑃(\) should be predetermined based on physical limits and
domain knowledge and have a finite expectation. One could also define a de-
terministic phenotype that can be inferred directly from the circuit topology,
without requiring simulation.

2. Evaluate the phenotype of all topologies 𝑠 ∈ S. Typically, this involves
running an exhaustive number of simulations per topology (𝑁 = 104−107) and
computing the robustness (in the sense of robustness to parameter variation)
of each topology 𝑄(𝑠) = 1

𝑁

∑𝑁
𝑖 𝑓𝑖 (𝑠).

3. Identify the best individual topologies post hoc as the most robust topologies.

4. Apply a threshold to 𝑄 (determined before step 3) to classify topologies as
successful or unsuccessful, and run a statistical test to determine which of
the successful topologies are so-called network motifs (Alon, 2007), common
patterns that recur among circuits of the same phenotype. Because these sys-
tems are often poorly understood in theory (thus necessitating a computational
approach), this step is particularly helpful.

Network motifs found by enumeration provide a window into the design principles
of a phenotype. For instance, Schaerli and colleagues performed an enumeration
study to design three-node circuits (2,897 possible topologies) that respond non-
monotonically to a morphogen input and therefore can form stripes in the presence
of a morphogen gradient (Schaerli et al., 2014) thus recapitulating the "French flag"
mechanism of domain patterning hypothesized by Wolpert in 1969 (Wolpert, 1969).
The 109 successful stripe-forming circuits are visualized in Figure 1 of Schaerli
et al., 2014 as a complexity atlas (Cotterell and Sharpe, 2010), where each topology
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is a node in a graph (thus making a graph-of-graphs), nodes are organized in layers
based on the number of interactions present in the topology, and nodes in adjacent
layers are connected by edges if they differ by the addition/removal of a single
interaction. The solutions cluster into four groups of topologically similar circuits,
each based on a simple incoherent feedforward loop (IFFL) motif. Thus, they find
that incoherent regulation is a common and necessary principle for stripe-formation
in this search space and use this discovery to engineer stripe-forming bacterial
colonies. Enumeration has been used similarly to discover motifs for phenotypes of
biochemical adaptation (Ma et al., 2009), single-cell polarization (Chau et al., 2012),
morphogen patterning (Cotterell and Sharpe, 2010), temporal filtering (Gerardin,
Reddy, and Lim, 2019), and multi-functional patterning (Jiménez et al., 2017).

Despite these advances, the drawback of enumeration lies in its poor scaling. For
example, consider a network of 𝑚 transcriptional repressors, where each repressor
can repress (or not repress) each other one. The number of possible topologies for
this network, modulo symmetries, is 2𝑚2 (the number of possible colorings for each
pairwise edge to the power of the number of edges) which scales super-exponentially
in 𝑚. If regulation is bifunctional (activation is possible in addition to inhibition),
there are now three possible colorings for each edge, and the space scales as 3𝑚2 .
For dimerization networks in which each monomer component can dimerize with
another to regulate a third component, the scaling is 3𝑚3 .

Enumeration becomes computationally intractable on the order of |S| ≳ 106 topolo-
gies, a bound exceeded by 𝑚 ≥ 5 repressors or 𝑚 ≥ 4 bifunctional regulators.
Specifically, consider the quite generous case where we have access to 1,000 CPUs
for a month’s duration (roughly 4 × 107 CPU-mins). If each simulation and pheno-
type evaluation takes 100ms, we could run roughly 2.4 × 1010 simulations, or 104

simulations each for 2.4×106. Even with a 10x improvement in both computational
capacity and evaluation speed, this method does not scale to 𝑚 = 6.

This bound presents a severe limitation from a systems biology perspective because
it limits our ability to study natural systems at their natural level of complexity. For
instance, a simplified model of the Wnt-𝛽 catenin signaling pathway includes six
proteins, not counting phosphorylated species and protein complexes (Lee et al.,
2003; Goentoro and Kirschner, 2009). A similar conundrum is looming in the
field of synthetic biology, where a plethora of powerful tools for combinatorial
engineering have emerged (Morsut et al., 2016; Toda et al., 2018; I. Zhu et al., 2022;
R. Zhu et al., 2022; Stevens et al., 2023), begging the question of how these tools
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should be combined for practical applications.

Is there a scalable paradigm for designing circuits to achieve a desired goal? Cur-
rent alternatives to enumeration generally fall into two categories: single-circuit
optimization methods and systematic sampling methods. Single-circuit methods
such as evolution (François and Hakim, 2004; François, Hakim, and Eric D Siggia,
2007; François and Eric D. Siggia, 2008; François and Eric D. Siggia, 2010), mixed-
integer optimization (Otero-Muras and Banga, 2016), and recurrent neural networks
(RNNs) (Shen et al., 2021) search the combined fitness landscape (the product space
of 𝑆 × R𝑛(𝑠)) for optimal topology-parameter combinations. While these methods
(particularly RNNs and evolution) seem to scale quite well when designing single
circuits, the inference of general principles from their results is nontrivial. The
results of an evolutionary trial are strongly influenced by the nature of the fitness
landscape, and the hyperparameters of training seem to bias RNNs towards particu-
lar classes of solutions (Shen et al., 2021), complicating the recovery of ground truth
from these methods. Mixed-integer optimization (the term for joint optimization of
both discrete and continuous variables), on the other hand, uncovers pareto-optimal
tradeoffs in design space and has stronger convergence guarantees (Otero-Muras
and Banga, 2016). However, both the RNN method and mixed-integer optimization
require the solution to adopt a specific mathematical form, that of ODEs.

On the other hand, Bayesian methods, in particular approximate Bayesian computa-
tion (ABC) (Barnes et al., 2011; Woods et al., 2016), approach the scaling problem
by reducing the number of simulations required to evaluate each topology. Approx-
imate Bayesian methods use a type of sampling, based on particle filters, called
sequential Monte Carlo (Sisson, Fan, and Tanaka, 2007) to sample the posterior
distribution directly. The strengths of ABC are that it avoids sampling low-density
regions of the posterior while also quickly building an accurate picture of the quality
of each topology. ABC measures the latter as the Bayes factor, roughly equivalent to
the odds ratio between the posterior odds and prior odds of a successful phenotype.
In order to establish a prior over topologies, however, this method requires listing
all possible topologies up to symmetry, a daunting task for design spaces of scale
𝑚 ≥ 5 and a computational nightmare for 𝑚 ≥ 6.

Overall, methods for circuit topology design are generally either comprehensive in
their scope (and thus generalizable to the level of principles and motifs) or scalable
to large circuits. This stark trade-off is the motivation for the circuit design platform
presented in the next chapter of this thesis.
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C h a p t e r 2

DESIGNING BIOCHEMICAL CIRCUITS WITH TREE SEARCH

Abstract
Finding biochemical circuits that exhibit a desired behavior is an outstanding prob-
lem in biological engineering. The canonical approach of enumerating all possible
circuit topologies becomes intractable for circuits with more than four components
due to combinatorial scaling. Here, we use the game-playing algorithm Monte Carlo
Tree Search (MCTS) to optimize circuit topology for a target phenotype by fram-
ing circuit design as a game of stepwise assembly. When tasked with designing a
three-component oscillator, our MCTS-based design framework, which we call Cir-
cuiTree, efficiently and comprehensively identifies robust topologies by prioritizing
sparse architectures. CircuiTree also mines tree search results for overrepresented
assembly motifs, even identifying obscure, yet optimal solutions. Finally, we scale
the search up to five-component circuits and find that, using a strategy we call mul-
tiplexing, oscillators can tolerate the failure of components by interleaving multiple
oscillatory motifs in a manner reminiscent of natural circadian clocks. Overall,
CircuiTree provides a scalable, open-source platform for investigating the design
principles of biochemical circuits.

Introduction
Understanding how biochemical networks produce biological behavior is one of the
central goals in systems and synthetic biology. Studying the design principles of
these networks, or circuits, provides fundamental insights into their computational
capabilities and is a critical step for applying synthetic biology to realms such as
cell-based therapeutics (Lim, C. M. Lee, and Tang, 2013; Williams et al., 2020) and
microbial engineering (Jones, Marken, and P. A. Silver, 2024; Purnick and Weiss,
2009). Deciding the topology, or the qualitative network architecture, is a critical
first step for engineering synthetic gene circuits to achieve a functional goal such as
switching in response to an input (Gardner, Cantor, and Collins, 2000), spontaneous
oscillations (Elowitz and Leibler, 2000), or transcriptional multistability (Zhu et al.,
2022). Currently, this aspect of design is primarily guided by reverse engineer-
ing of natural circuits, careful hand-design, or (when all else fails) computational
enumeration. The canonical approach for discovering design principles de novo,
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enumeration involves listing all the topologies in a predefined space of possibilities
and simulating their behavior with an exhaustive set of random perturbations of the
modeling parameters (Ma et al., 2009; Cotterell and Sharpe, 2010; Chau et al., 2012;
Schaerli et al., 2014; Gerardin, Reddy, and Lim, 2019). The enumeration method
yields a comprehensive picture of the combined fitness landscape of topologies and
parameters and identifies both robust individual topologies (in the sense of parame-
ter robustness) and their shared network motifs that exemplify the design principles
of the phenotype (Alon, 2007; Alon, 2019).

Currently, the computational complexity of the enumeration method has limited
the role of automated circuit design. While suitable for smaller circuits, an ex-
haustive search becomes computationally difficult for circuits with 4 components
and intractable for 5 components. The number of distinct circuit topologies scales
(modulo symmetries) as 𝑂 (3𝑁2), where 𝑁 is the number of circuit components
and 3 represents the possible pairwise interactions (activation, inhibition, or no
interaction). Typically, each topology must be simulated with ≥ 104 parameter per-
turbations, so enumeration requires on the order of 1010-1011 simulations for 𝑁 = 4
and 1015-1016 simulations for 𝑁 = 5 components. This "curse of dimensionality"
constitutes the main barrier to understanding the structure-function relationship for
large circuits. The search space can be narrowed by modularly combining smaller
motifs (Qiao, Zhao, et al., 2019), much like building blocks, but this approach risks
excluding novel solutions to the design problem that appear at higher complexity
(Jiménez et al., 2017). For large circuits, a functional topology can still be found
with evolutionary optimization (François, Hakim, and Eric D Siggia, 2007; François
and Eric D. Siggia, 2010) or recurrent neural network-guided inference (Shen et al.,
2021), but the topologies discovered with these methods can depend on the opti-
mization parameters and the nature of the fitness landscape, a fact that complicates
the inference of more general principles. The ideal design framework for circuit
topologies would be: (i) Efficient: Using relatively few samples, it would return a set
of reasonably robust solutions. (ii) Generalizable: It would be able to infer motifs
for the design problem. (iii) Scalable: When searching a large space of topologies,
it does not require enumeration and appropriately maintains features (i) and (ii).

Our inspiration for a circuit design approach with these features comes from algo-
rithms developed in modern artificial intelligence to solve decision problems, which
share core computational similarities with genetic circuit design. In a decision
problem, or game, one starts from an initial position (the root state) and makes a
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sequence of decisions ending in success or failure. Algorithms for optimal game
playing must traverse the branching tree of possible decisions and find the best de-
cision paths. Large game trees are characteristic of long and/or complex games like
chess (∼ 1043 states) and Go (10170 states) and can overwhelm classical exhaustive
search methods (e.g., flat search, 𝐴∗, and minimax) and branch-and-bound methods
(e.g., 𝛼-𝛽 pruning) due to their computation and memory requirements (Shannon,
1950; Tromp and Farnebäck, 2007). In contrast to comprehensive search methods,
probabilistic search methods, such as Monte Carlo tree search (MCTS), sample
paths in the game tree based on an optimistic estimate of the success probability
for each decision branch (Kocsis and Szepesvári, 2006). MCTS has proven to be
instrumental in solving large games (D. Silver, Huang, et al., 2016; D. Silver, Hubert,
et al., 2018) due to its low memory footprint, balance of exploitation and exploration
(Auer, Cesa-Bianchi, and Fischer, 2002), and myriad variations (Świechowski et al.,
2022; Browne et al., 2012).

In this work, we present a circuit design platform, which we call CircuiTree, based
on tree search. CircuiTree approaches circuit design as a sequence of assembly
decisions and optimizes the circuit topology for a given phenotype by using MCTS
to search the tree of possible circuit assemblies. We first use CircuiTree to search
the space of 3,325 connected circuits with three transcription factors in search
of topologies that exhibit spontaneous, sustained oscillations. As it dynamically
explores the design space, CircuiTree discovers sparse oscillators before complex
ones and reliably identifies the most robust topologies. Next, we present a method
for identifying assembly motifs, which are successful circuit topologies that are
statistically overrepresented among successful assembly paths. We show that the
best assembly motifs for 3-component oscillators form a cluster in the decision
tree downstream of constructing the activator-inhibitor (AI) and repressilator (Rep)
motifs, consistent with the canonical design principles for 2- and 3-component
oscillators. Finally, we use CircuiTree to find five-component circuits that oscillate
when subjected to random deletion of a component. Fault-tolerant oscillators contain
multiple AI and Rep motifs that are synergistically interleaved to provide robustness
to deletions and single-gene knockdowns. Our results demonstrate that CircuiTree’s
assembly framework enables the efficient, generalizable, and scalable design of
biochemical circuits for arbitrary phenotypes, which could be used to engineer and
understand complex intracellular and multicellular biological systems.
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Results
Circuit design as an assembly game
We define a circuit as a system of 𝑘 dynamically interacting biochemical species
x = [𝑥0, ..., 𝑥𝑘 ] characterized by its topology 𝑠, a member of the set of possible
topologies S, and its parameters \ ∈ R𝑛, which describe the rates of biochemical
reactions. For convenience, we consider systems where all topologies share the same
set of reactions and parameters, but this is not a necessary assumption. We also
assume the existence of a phenotype function 𝑓 (x(𝑡)) = 𝑞 ∈ {0, 1} that delivers
a yes-or-no verdict as to whether the circuit exhibits a desired phenotype. We
conceptualize this function quite generally to include dynamical behaviors such as
adaptation or oscillation, as well as other properties such as multistability. Like many
prior computational studies of design principles (Ma et al., 2009; Chau et al., 2012;
Cotterell and Sharpe, 2010; Schaerli et al., 2014), each simulation of the system is
performed with a random parameter set, and we define the robustness of a topology as
the mean phenotype score from these samples𝑄(𝑠) = E\ [𝑞(𝑠)] = E\ [ 𝑓 (x(𝑡; 𝑠, \))].
Thus, we approach circuit design as a combinatorial optimization problem in search
of the most robust topology 𝑠∗ = argmax𝑠 𝑄(𝑠). Note that 𝑄 in this context should
not be confused with the value function of the same name used in reinforcement
learning.

We frame circuit topology design as a multi-step decision problem, or game (Figure
1A). Beginning with an "empty" circuit 𝑠0 with a given set of components and
without interactions, each step of the game can add an activating or inhibitory (auto-
)regulatory interaction. The game ends when the builder chooses to "terminate"
at some topology 𝑠𝑖, at which point the outcome is decided by a simulation with
win probability 𝑄(𝑠𝑖). In the language of Markov decision processes (MDPs),
each topology 𝑠 represents a state of the game, and the addition of an interaction
or the termination of assembly represents an action 𝑎 that can be taken. We can
conceptualize each trial of the game as tracing a path on a decision tree 𝑇 rooted
at 𝑠0, where each node in the tree 𝑠 ∈ S represents a topology and each directed
edge (𝑠𝑖, 𝑠 𝑗 ) ∈ E represents the assembly of 𝑠 𝑗 from 𝑠𝑖 by, for example, adding an
inhibitory interaction between two components. Because multiple decision paths
can converge on the same 𝑠 𝑗 , 𝑇 is technically a directed acyclic graph (DAG);
nonetheless, we will call it a tree for simplicity.

For large design spaces, it is infeasible to estimate 𝑄 for every 𝑠 in 𝑇 . For example,
a five-component regulatory circuit has 52 potential pairwise interactions, each of
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Figure 1: A stepwise assembly framework enables circuit topology optimization with
tree search. (A) Circuit topologies are built step-by-step by adding interactions until the
game is ended by taking the “terminate” action (the STOP sign). (B) Each MCTS iteration
undergoes four phases: (1) Selection: The UCT criterion is used to recursively select the
most promising action 𝑎∗

𝑖
from the current state 𝑠𝑖 . (2) Expansion: If the edge (𝑠𝑖 .𝑎∗𝑖 )

has not been sampled yet, it is added to the tree. (3) Simulation: If the circuit has not
been completed yet, take random assembly moves until “terminate” is chosen. Simulate
the resulting topology with random parameters and evaluate the reward 𝑞 based on a target
phenotype. (4) Backpropagation: update the history of rewards 𝑟𝑖 𝑗 over past visits 𝑣𝑖 𝑗 for
the visited edges (𝑠𝑖 , 𝑎∗𝑖 ). (C) The UCT policy for selecting 𝑎∗

𝑖
balances exploitation and

exploration based on past trials. The exploration term, tuned by a hyperparameter 𝑐, favors
actions that are under-sampled relative to the alternatives. (D) Once assembled, a motif
creates an enriched subgraph in the search graph.

which can be absent, activating, or inhibitory, leading to |S| = 352 ≈ 8.5 × 1011

topologies before accounting for symmetries. To address this gap, we use Monte
Carlo tree search (MCTS), a reinforcement learning (RL) strategy that is applied
heavily in MDPs and game-playing artificial intelligences (D. Silver, Huang, et al.,
2016; D. Silver, Schrittwieser, et al., 2017; D. Silver, Hubert, et al., 2018) to
bound the computational complexity of searching large decision trees. In these
applications, tree search is performed during game-play (and in some cases also
during training) to plan future moves by simulating a series of games forward in



15

time. Each iteration of MCTS starts at the root state and undergoes four phases,
shown in Figure 1B and outlined in Algorithm 1. The key innovation of MCTS is
how it allocates computational resources during the first phase (selection) to balance
the competing goals of (i) exploiting actions that have yielded high rewards in the past
and (ii) exploring new actions that may yield even higher rewards. At each decision
branch (Figure 1C, left), from the current state 𝑠𝑖, there are multiple possible actions
𝑎 𝑗 that have each yielded a cumulative reward 𝑟𝑖, 𝑗 over 𝑣𝑖, 𝑗 past visits. MCTS decides
the optimal action using the decision policy 𝑎∗

𝑖
= argmax 𝑗 UCT(𝑖, 𝑗) (Figure 1C,

right), originally developed to solve the classic multi-armed bandit problem Auer,
Cesa-Bianchi, and Fischer, 2002.

UCT(𝑖, 𝑗) =
𝑟𝑖, 𝑗

𝑣𝑖, 𝑗
+ 𝑐

√︄
ln
∑
𝑗 𝑣𝑖, 𝑗

𝑣 𝑗
(2.1)

The first term of the UCT criterion estimates the mean reward for (𝑖, 𝑗), while the
second term, derived from Hoeffding’s inequality (Kocsis and Szepesvári, 2006), is
an upper bound estimate of the sampling error. Thus UCT is an optimistic prediction
of the underlying mean reward (for unvisited edges, UCT(𝑖, 𝑗) = +∞). Note that
the first term encourages exploitation and the second exploration. Because the
second term is larger for an action that is chosen less frequently (

∑
𝑗 𝑣𝑖 𝑗 >> 𝑣 𝑗 ),

even seemingly sub-optimal actions will be chosen occasionally to account for
sampling error. Actions are selected recursively, breaking any ties randomly, until
an unsampled or terminal state is encountered, and for an unvisited state, that state
is added to 𝑇 . Then, the outcome 𝑞 of the trial is determined by taking random
assembly actions until the game ends (“terminate” is chosen) and simulating the
resulting topology with a random parameter set and initial conditions. Finally, the
record of rewards and visits is updated for each selected edge in𝑇 (backpropagation).

Tree search is also a natural paradigm for identifying motifs, or structural patterns
that recur among topologies that successfully generate the target phenotype. In
games, there typically exists a specific set of moves (a strategy) that lead to an entire
subtree of 𝑇 with largely favorable outcomes, and search algorithms like MCTS
seek to efficiently identify and exploit these winning regions. In the game of circuit
assembly, network motifs (Alon, 2007) play a similar role. Extensive literature has
demonstrated that, for a range of circuit behaviors including adaptation (Ma et al.,
2009), morphogen patterning (Cotterell and Sharpe, 2010; Schaerli et al., 2014), and
single-cell polarization (Chau et al., 2012), successful topologies tend to contain
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Algorithm 1 Circuit topology search using MCTS
procedure MonteCarloTreeSearch(𝑠0, 𝑁)

𝑇 ← EmptyTree()
AddNode(𝑇, 𝑠0) ⊲ Initialize 𝑇 with the root topology 𝑠0
repeat
[𝑠0 · · · 𝑠𝑛] ← Select(𝑇, 𝑠0) ⊲ Choose assembly moves and select the

last topology
if 𝑠𝑛 not in Nodes(𝑇) then ⊲ Expand the search graph if necessary

AddNode(𝑇, 𝑠𝑛)
end if
if (𝑠𝑛−1, 𝑠𝑛) not in Edges(𝑇) then

AddEdge(𝑇, (𝑠𝑛−1, 𝑠𝑛))
end if
𝑠sim ← 𝑠𝑛 ⊲ Make random moves until termination

occurs
while IsNonterminal(𝑠sim) do

𝑠sim ← DoRandomMove(𝑠sim)
end while
𝑞 ← Simulate(𝑠sim) ⊲ Simulate 𝑠sim and obtain a reward 𝑞
for 𝑖 := 0 to 𝑛 − 1 do ⊲ Backpropagate the results of each deci-

sion
𝑣 [𝑠𝑖, 𝑠𝑖+1] ← 𝑣 [𝑠𝑖, 𝑠𝑖+1] + 1
𝑟 [𝑠𝑖, 𝑠𝑖+1] ← 𝑟 [𝑠𝑖, 𝑠𝑖+1] + 𝑞

end for
until 𝑁 iterations or Timeout
return 𝑇, 𝑣, 𝑟

end procedure

procedure Select(𝑇, 𝑠0)
𝑖 ← 0
while Nonterminal(𝑠𝑖) do

𝑆′← PossibleMoves(𝑠𝑖)
𝑠𝑖+1 ← argmax

𝑠 𝑗∈𝑆′
UCB(𝑠𝑖, 𝑠 𝑗 ) ⊲ Choose the assembly move that maxi-

mizes the UCB score
if 𝑣 [𝑠𝑖, 𝑠𝑖+1] == 0 then ⊲ Until a new move is encountered

return [𝑠0 · · · 𝑠𝑖+1]
end if
𝑖 ← 𝑖 + 1

end while ⊲ Or termination occurs
return [𝑠0 · · · 𝑠𝑖+1]

end procedure
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at least one motif, creating clusters of topologically similar solutions. Thus, each
motif creates an enriched region in the search graph 𝑇 that may be discovered and
exploited during tree search (Figure 1D). To identify these motifs from the results of
a tree search, we developed a statistical test for overrepresentation that is described
in detail in the Methods section. CircuiTree is available online as an open-source
Python package (https://github.com/pranav-bhamidipati/circuitree).

Establishing a ground-truth for three-node stochastic oscillators with enumer-
ation
Oscillations appear in diverse cellular contexts such as metabolism (Chandra, Buzi,
and Doyle, 2011), DNA damage (Geva-Zatorsky, Rosenfeld, et al., 2006; Geva-
Zatorsky, Dekel, et al., 2010), the cell cycle (Ferrell, Tsai, and Q. Yang, 2011),
and circadian rhythms (Tyson et al., 1999), and consequently, many of their design
principles have been elucidated (Novák and Tyson, 2008). We first benchmark
CircuiTree on the well-studied problem of designing an oscillator circuit with three
nodes (Figure 2A, part i). Specifically, we consider a system of symmetric tran-
scription factors (TFs) modeled as a stochastic birth-and-death process of individual
mRNAs, TFs, and TF-response element (TF-RE) complexes, with elementary re-
actions of transcription, translation, degradation, binding, and unbinding (Figure
S1A; reactions and their rate parameters are summarized in Table 2.1). TFs regulate
transcription by binding to one of two REs in the regulatory region of each promoter,
and cooperativity is introduced by assuming that TF-RE binding is stronger when
both sites are occupied by the same TF. This assumption reduces the computational
cost associated with modeling every homo- and heterodimer and their dimer-RE
complexes. For each stochastic simulation, the system was randomly initialized and
stochastically simulated using the Gillespie method for 𝑡max = 4×104 sec = 11.1 hrs
(see Methods for details of initialization). Oscillations were quantified by computing
the normalized autocorrelation function (ACF) and identifying its lowest minimum
value across all TFs ACFmin, excluding the bounds, and a Boolean reward value was
assigned based on a cutoff value (Figure 2A, part ii).

𝑟 =


1 if ACFmin < −0.4

0 if ACFmin > −0.4
(2.2)

To compare with enumeration, all 3,325 unique, fully connected topologies were
simulated with 104 randomly sampled parameter sets and initial conditions. The
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10 rate parameters of the model were reduced to 8 dimensionless variables, which
were sampled uniformly from a range of values determined based on experimentally
measured rates (Ron Milo et al., 2010) and known requirements for oscillations
(Elowitz and Leibler, 2000; Novák and Tyson, 2008). (See Table 2.2 for variable
definitions and sampling ranges and Methods for details of parameter sampling). The
robustness to parameter perturbation 𝑄 was calculated as the fraction of parameter
sets that produced oscillation, and topologies with 𝑄 > 0.01 were considered
oscillators. This procedure uncovered 221 oscillator topologies (6.65% of the
search space) (see Figures S1B and S1C for a summary of the best topologies).
These results generally agree with prior studies of two- and three-node oscillators
(Qiao, Zhang, et al., 2022; Elowitz and Leibler, 2000; Novák and Tyson, 2008;
Woods et al., 2016; Stricker et al., 2008). For instance, almost all oscillators
contain a repressilator (Rep) loop, activator-inhibitor (A-I) loop, or a combination
thereof. Positive autoregulation (PAR), which has been shown to buffer extrinsic and
intrinsic noise (Qiao, Zhang, et al., 2022), is also ubiquitous among these oscillators
and is required for robust A-I loop oscillations (Novák and Tyson, 2008; Stricker
et al., 2008). Further discussion of these motifs can be found in the section below.
Interestingly, stochastic switching between stable states was occasionally mistaken
for low-frequency oscillations (Figure S2), causing some toggle switch circuits to
be classified as oscillators (highest 𝑄 = 0.024, ranked #139).

Reaction Rate parameter Value in Figs. 4D & 5

TF-RE binding 𝑘on 1.0 sec−1

TF-RE unbinding (uncooperative) 𝑘off,1 99.0 molec−1sec−1

TF-RE unbinding (cooperative) 𝑘off,2 9.9 molec−1sec−1

Transcription, basal 𝑘unbound 0.05 sec−1

Transcription, 1-2 activators 𝑘act 8.0 sec−1

Transcription, 1-2 inhibitors 𝑘 inh 5 × 10−4 sec−1

Transcription, 1 each 𝑘mixed 0.05 sec−1

Translation 𝑘 𝑝 0.167 molec−1sec−1

Degradation, mRNA 𝛾𝑚 0.025 molec−1sec−1

Degradation, protein 𝛾𝑝 0.025 molec−1sec−1

Table 2.1: Model rate parameters

Across all oscillators, oscillation was favored by tight TF-RE binding (𝐾𝐷,1 < 103),
low basal transcription (𝑘𝑚,unbound < 0.3 sec−1), strong repression (𝑘𝑚,rep/𝑘𝑚,unbound <

10−1), and a high activated transcription rate (𝑘𝑚,act, monotonic effect) (Figure
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Figure 2: CircuiTree efficiently identifies simple and robust 3-component oscillators.
(A) All three-component transcription factor (TF) circuits (3,325 up to symmetry) were
enumerated with 104 random parameter sets (i) and evaluated for oscillations (ii) using
an autocorrelation-based reward function. (B) A representative MCTS run. With more
iterations (𝑁), the search graph 𝑇 (represented by a spanning tree for simplicity) expands
to encounter more oscillators (orange circles) and improve its best predicted oscillator
topology (shown in black). (C) A heatmap showing the average rate of discovery, or recall,
for each oscillator (proportion of 𝑛 = 50 replicates. Rows (oscillators) are sorted in order
of complexity, or the number of interactions, and oscillators with the same complexity are
sorted by descending robustness𝑄. Sparse oscillators are found before more complex ones,
with a preference for the most robust candidates. (D) Precision (blue) and recall (orange) of
oscillator classification (mean ± 95% CI, 𝑛 = 50). CircuiTree’s recall is particularly high for
the 10% most robust oscillators (red), reaching 94.7% after 105 iterations. See also Figures
S1, S2, S3, and S4.

S3A). Protein and mRNA degradation rates had a non-monotonic effect with a peak
at 𝛾𝑚 ≈ 𝛾𝑝 ≈ 0.2 molec−1 sec−1 (Figure S3A), and oscillation period depended
strongly on these rates and their ratio (Figures S3B and S3C). However, the best
oscillators were exceptionally robust to the choice of parameters. For example,
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the most robust oscillator (the repressilator with PAR) has a 𝑄 of 0.767, meaning
that, with 8 sampled variables, a randomly sampled variable a 96.7% chance of
permitting oscillations on average (0.9678 ≈ 0.767).

Dimensionless variable Definition Sampling limits

^1 log10
[
𝐾𝐷,1 · 1 molec

]
[−2, 4]

^2 𝐾𝐷,2/𝐾𝐷,1 [0.00, 0.25]

𝑘′unbound 𝑘unbound · 1 sec [0, 1]

𝑘′act 𝑘act · 1 sec [1, 10]

𝑟inh log10 [𝑘 inh/𝑘act] [0, 5]

𝑘′𝑝 𝑘p · 1 molec · 1 sec [0.015, 0.250]

𝛾′𝑚 𝛾𝑚 · 1 molec · 1 sec [0.001, 0.1]

𝛾′𝑝 𝛾𝑝 · 1 molec · 1 sec [0.001, 0.1]

Table 2.2: Dimensionless variables and limits imposed on random parameter sampling

CircuiTree efficiently and systematically discovers three-node oscillators
MCTS masters a game with a limited number of trials by balancing deep sampling
of promising regions with broad sampling of under-explored regions. To under-
stand how this strategy performs for circuit topology design, we use CircuiTree to
search for 3-node oscillators given 𝑁 = 105 iterations of MCTS (𝑛 = 50 replicates;
see Methods for MCTS implementation specifics). In the average run, the first
putative result is discovered after just 0.69 samples/topology (2,280 iterations), and
by 19.6 samples/topology (65,360 iterations), a top-5 oscillator has been sampled
>100 times. A topology is discovered as a “successful” oscillator if its estimated
robustness �̂� 𝑗 = 𝑟 𝑗/𝑣 𝑗 exceeds the threshold value𝑄thresh = 0.01, which was chosen
heuristically prior to the search. Figure 2B shows a representative example of how,
over sampling time, CircuiTree incrementally builds the search tree from the root
state (top to bottom), encounters more oscillators (shown in orange), and improves
its prediction for the most robust design (shown as a black circuit diagram). By
the end of sampling time, the average run saturates the tree, sampling 99.97% of
topologies at least once.

CircuiTree balances efficiency and comprehensiveness by first finding sparse so-
lutions before exploring deeper areas of the tree. In Figure 2C, each row of the
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heatmap is one of the 221 oscillators, and the rows are sorted first by the circuit’s
complexity, or the number of interactions, then by decreasing robustness (𝑄). The
color scale indicates the likelihood of discovery, or recall, of each oscillator mea-
sured as the proportion of replicates that discovered it. Because sparse topologies
require fewer assembly steps, MCTS encounters the sparsest oscillators (such as the
repressilator) first, and it discovers increasingly complex solutions over time until
oscillators with 9 interactions (the maximum) are found at 𝑁 ≈ 5 × 104. As shown
by the line plot in Figure 2D, CircuiTree has a very high recall of 94.7% for the top
10% of oscillators (95% CI: 86.4% − 100.0%) and has a recall of 35.9% (95% CI:
30.8%−41.5%) for oscillators in general. This is fairly high, considering that it gets
an average of 3̃0 samples/topology, and a majority of oscillators have a𝑄 of less than
1/30. Additionally, CircuiTree has a precision of 81.5% (95% CI: 74.1%− 88.3%),
indicating a low rate of false positives.

The competing goals of breadth and depth manifest during tree search as distinct
temporal phases in which MCTS first explores a broad set of topologies before
focusing on a narrow, enriched subset. Among topologies containing a combination
of AI and Rep feedback loops, 27.2% (47/173) are oscillators, a very high proportion
compared to 6.7% (221/3,325) for the entire design space and 9.3% (146/1,575) and
8.0% (6/75) for the AI or Rep loops alone (Figure S4A). Figure S4B shows how
MCTS allocates samples to each of these categories over a total sampling time of
105 and 106 iterations (mean of 𝑛 = 50 and 𝑛 = 12 replicates, respectively). During
an initial exploratory phase, samples are taken broadly across categories; however,
at 𝑁 ≈ 6 × 104, the AI-Rep combination becomes heavily favored, followed by Rep
alone, for the rest of sampling time. This transition can be observed directly from
the search history by measuring regret. Defined as

𝑅𝑁 = 𝑁𝑄∗ −
𝑁∑︁
𝑛=1

𝑟𝑛, (2.3)

regret is the difference between the expected reward from sampling the best topology
(with robustness𝑄∗) and the actual reward over 𝑁 iterations. As MCTS moves from
exploration into exploitation, the reward rate becomes higher and regret accumulates
more slowly (Figures S4C and S4D). Thus, the discovery of an enriched region
during search triggers a shift to more focused sampling that can be identified in
real-time without a priori knowledge about design principles or motifs.
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Figure 3: Motifs identified from search results form a cluster of optimal 3-node oscilla-
tors. A complexity atlas of oscillators with ≤3 components. Circles are oscillator topologies
identified by enumeration, and edges link oscillators that differ by the addition/removal of
one interaction. 97.7% of oscillators (216/221) are topologically related to one of the four
motifs for 3-node oscillation, shown above the atlas in red boxes. Bold circle borders
indicate oscillators found to be motifs based on enumeration. Circle color indicates the
rate with which CircuiTree labels each oscillator as an assembly motif. Circle size indicates
𝑄motif , the average robustness for a circuit completed randomly starting from this state of the
assembly game. The correlation between discovery rate and𝑄𝑚𝑜𝑡𝑖 𝑓 (plotted in Figure S5B)
suggests that motifs found by CircuiTree correspond to beneficial game states. The bolded
edges, which connect oscillators with a discovery rate > 80%, form a contiguous cluster
representing optimal assembly strategies. The most robust oscillator, the repressilator with
PAR of all components, is shown on the bottom-left and indicated on the atlas by a green
arrow. See also Figures S4 and S5.

CircuiTree infers oscillator motifs from search results
In addition to finding individual circuit topologies, an important goal of circuit
design is to identify structural features that underlie successful designs, often in the
form of network motifs (R. Milo et al., 2002; Alon, 2007; Ma et al., 2009; Cotterell
and Sharpe, 2010; Shah and Sarkar, 2011; Chau et al., 2012; Lim, C. M. Lee,
and Tang, 2013; Schaerli et al., 2014). CircuiTree uses overrepresentation analysis
(described in Methods and shown schematically in Figure S5A) to mine the results
of a tree search for motifs. We define a motif, similarly to prior studies, as any
successful topology (that is, 𝑄 > 𝑄thresh) that is significantly overrepresented as a
pattern within other successful topologies.
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Looking for 3-node oscillator motifs with ≤ 3 interactions, CircuiTree identifies the
same four motifs as enumeration, shown at the top of Figure 3: the repressilator
motif (Rep) and the activator-inhibitor (AI) loop with either PAR of the activator
(AIPAR), constitutive inhibition of the inhibitor (AICI), or constitutive activation
of the activator (AICA). CircuiTree finds these minimal motifs in 100% (Rep),
86% (AIPAR), 94% (AICI), and 62% (AICA) of replicates. To see how these
motifs are situated in the overall design space, we plot all 221 oscillators in Figure
3 as a “complexity atlas” (Cotterell and Sharpe, 2010; Schaerli et al., 2014), a
graph-of-circuits where every oscillator is a node and nodes are organized in layers
according to their complexity. Edges connect nodes in adjacent layers if they differ
by the addition of a single circuit interaction, analogous to a move in the assembly
game. Notably, 216/221 oscillators constitute a large connected component of the
graph originating from the four minimal motifs, indicating that almost all 3-node
oscillators live in a subset of design space defined by Rep and/or AI motifs. The size
of each node in Figure 3 denotes its motif robustness 𝑄motif , the overall oscillation
probability for all circuits containing this motif (in other words, the mean reward
once reaching this state in the game). The color of each node reflects its motif
discovery rate, measured as the percentage of 𝑛 = 50 replicates that labeled it as a
motif.

Note that these features correlate visually (large circles tend to be red and vice
versa) and quantitatively, as shown by the scatterplot in Figure S5B, indicating that
higher quality motifs are more likely to be found. Additionally, the motifs that are
discovered most reliably (discovery rate <80%, indicated by bold edges) form an
optimal subset corresponding to the best motifs (the largest nodes). Surprisingly,
the most robust oscillator, the repressilator with PAR on all three TFs (Rep+3xPAR,
𝑄 = 0.767), is discovered at a rate of 98%. Because Rep+2xPAR is a poor oscil-
lator (ranked #187) and Rep+1xPAR does not oscillate at all, Rep+3xPAR cannot
be assembled from Rep (or any other intermediate) without breaking oscillations.
Nonetheless, its high motif discovery rate suggests that CircuiTree is capable of
identifying special design strategies that require a specific combination of moves.
Overall, we find that CircuiTree reliably infers the most robust motifs for a given
phenotype, even finding obscure but optimal solutions, and the resulting motifs for
3-node oscillation form a single cluster of optimal designs. Note that, in contrast
to classic network motifs which compare the frequency of a pattern in successful
topologies against the entire set of topologies (or a comparable null model), we com-
pare frequencies between circuit assemblies that were successful during search and
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random circuit assemblies. Therefore our method returns motifs that are overrepre-
sented among search results and thereby accounts for the bias inherent to sampling
the space of topologies by assembly rather than by flat enumeration.
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Figure 4: Parallelized CircuiTree scales to large design spaces. (A) A parallelized version
of CircuiTree was used to search for five-node oscillators with ≤ 15 interactions (left) that
oscillate despite a 50% chance of a single random deletion (right). (B) Search results after
5 · 106 iterations. Circles are putative oscillators (�̂� > 0.01, 𝑣𝑖 > 100), plotted on axes
of robustness based on samples with (�̂�deletion) or without a deletion (�̂�deletion). Error bars
indicate standard error of the mean. Circle size and color indicate the number of samples
𝑣𝑖 and the overall robustness �̂�, respectively. Dashed lines show different theoretical values
of fault-tolerance (FT), or the average number of deletions a circuit can sustain. Examples
of circuits with different FT (labeled i-iii) are shown in (C). (D) Box plots of �̂�deletion,
grouped by the number of motifs in each putative oscillator. Multiple motifs, particularly
Rep, increase robustness to deletions. (E) Simulated trajectories for the topologies in (C) for
all single deletions. The 3AI+3Rep oscillator (FT ≈ 4/5) contains 6 interleaved oscillator
motifs. See also Figures S6 and S7.
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Motif multiplexing allows five-node oscillators to compensate for deletions and
single-gene knockdowns
While synthetic circuits generally rely on a single, minimal circuit module, naturally
occurring circuits often use many functional modules. For instance, circadian
oscillators across divergent taxa contain two or more oscillatory feedback loops
(K. Lee, Loros, and Dunlap, 2000; Cheng, Y. Yang, and Liu, 2001; Bell-Pedersen
et al., 2005; Pokhilko et al., 2012). Could these additional modules make circadian
oscillators more resistant to deletions during evolution (Wagner, 2005)? To explore
this possibility, we implemented a parallelized version of CircuiTree with pruning
(described in details in the Methods and illustrated in Figure S6) and used it to
design 5-node circuit topologies that oscillate despite a 50% chance of deletion
of a random TF (Figure 4A). Please see Methods for a description of the parallel
implementation and Figure S6 for a schematic of the pruning.

After 5 million search iterations (less than four days of real time using 1,000 parallel
search threads and 300 CPUs), CircuiTree finds 1,386 putative oscillators with
�̂�𝑖 > 0.01 and > 100 samples, the first result arriving in just 1.3 hours. Due to the
computational cost of exact simulations of large stochastic systems, only topologies
with up to 15 interactions were included. As shown by the heatmap in Figure S7A,
when clustered based on their structural similarity (measured as the pairwise graph
edit distance between topologies), these topologies separate into sparse and dense
clusters (Figure S7B). In Figure 4B, each of these topologies is plotted as a circle
based on their observed robustness with or without a random deletion (�̂�del and
�̂�nodel, respectively). The overall robustness �̂� is indicated by the color gradient,
and the circle size represents the number of samples. The circuit’s fault-tolerance
(FT), the proportion of components that can be deleted without losing oscillation, is
estimated as �̂�deletion/�̂�nodeletion, and contour lines for FT = 2

5 , 3
5 , and 4

5 are shown
as dashed lines. The putative oscillators included 42 topologies with 2 or 3 nodes,
all of which had low robustness to deletions (�̂�deletion < 0.32). For instance, the
second-best oscillator in the 3-node search, the AI+Rep circuit (labeled (i) in Figure
4B and Figure 4C), was found to have a fault tolerance of 0.404 ± 0.009 ≈ 2

5 ,
consistent with oscillations that persist after deletion of the two unused TFs (D and
E) but attenuating with deletion of any of the active components (A, B, or C).

In contrast, fault-tolerant oscillators (�̂�deletion ≳ 0.4) contain many interleaved
oscillatory motifs that activate under different deletion scenarios, a design feature
we call motif multiplexing. As shown in Figure 4D, the number of repressilator
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Figure 5: Motif multiplexing makes oscillators resistant to the failure of components.
The 3AI+3Rep circuit (A, top) oscillates with different limit cycles after partial knockdowns
of different genes. (A, bottom) An exemplary trajectory of 3AI+3Rep is shown on axes of
the first two principal components (PCs) of phase space. Transparent circles indicate the
dominant species at each time-point. (B) Trajectories under scenarios where transcription
rate is reduced by a factor KD. The ordering of species in the limit cycle at KD =

100% is shown by the inset diagram. (C) Oscillation quality and frequency in single-gene
knockdowns. Oscillations persist (ACFmin < ACFthresh) for most knockdowns of genes
B, C, D, and E (middle). Oscillation frequency (bottom) is pulled from its WT value in
knockdowns of A, B, C, and D. (E) Robustness to parameter variation between TFs. The
power spectral density of the trajectory of TF A (bottom, mean) and the overall oscillation
rate (top, mean ± SEM) are shown for simulations in which parameters were perturbed by
a Gaussian kernel of width 𝜎param (𝑛 = 50 replicates). A dissipation of fundamental and
harmonic frequencies and corresponding loss of oscillations occurs for 𝜎param > 5 · 10−2.

(Rep) and activator-inhibitor (AI) motifs is a strong predictor of robustness in the
presence of deletion, measured as �̂�deletion, and higher complexity in general is
associated with higher �̂� (Figure S7C). To see this design principle, consider the
AI+3Rep circuit (labeled (ii) in Figures 4B and 4C), which is an extension of the
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AI+Rep topology with two additional backup repressilator loops (A-C-D and A-C-E,
highlighted in yellow). This circuit has a higher fault tolerance of 0.617±0.011 ≈ 3

5
because, while deletion of gene B is fatal for oscillations in the AI+Rep circuit, the
A-C-D motif takes over to rescue oscillations in the AI+3Rep circuit (representative
simulated trajectories shown in Figure 4E, upper and middle row; see Table 2.1
for parameter values). The pattern extends to the 3AI+3PAR circuit (labeled (iii)
in Figures 4B and 4C, right diagram) which is similar to the AI+3Rep except for
the addition of two activator-inhibitor motifs (B-D and D-C, highlighted in yellow).
This circuit similarly activates a repressilator motif (A-C-E) upon deletion of gene
B. Now, however, oscillations are rescued after deletion of gene C by activating
the B-D motif. Consequently, the 3AI+3PAR circuit has a high fault tolerance of
0.715 ± 0.074 ≈ 4

5 (Figure 4E, bottom row).

During evolution, genomic mutation may lead to a partial reduction in transcription
rate rather than a complete knockout. Do multiplexed oscillators maintain their
mutational robustness in these conditions? To explore this question, we simulated
the 3AI+3Rep circuit under conditions where a single gene is partially knocked
down by multiplying its transcription rate by a factor (100 − KD)/100, KD being
the percent of knockdown. In Figure 5A, we visualize a representative stochastic
simulation of the wild-type (WT) 3AI+3Rep circuit by reducing the system of five
TFs (a five-dimensional phase space) to two composite dimensions using principal
components analysis and plotting a simulated trajectory on the first and second
principal component axes. At each time point, the dominantly expressed TF is
indicated by a transparent marker of the same color, and the inset diagram shows
the order of TFs activated in the limit cycle (A-B-D-C). As gene A is knocked down
from KD=0% to KD=100% (Figure 5B, upper middle panel), the limit cycle gradual
drifts in phase space until the trajectory eventually flattens, consistent with the lack
of oscillations after deletion of gene A (Figure 4E). During knockdown of gene B
(Figure 5B, top right panel), in contrast, the limit cycle drifts before discontinuously
jumping to a new limit cycle (the A-E-C repressilator motif) between 75% and
100% KD, as shown in the inset diagram. Similarly, knockdown of gene C induces
a gradual drift followed by a jump between 75% and 100% KD to a limit cycle
driven by the B-D activator-inhibitor motif. Unlike genes B and C, knockdown of
gene D produces no obvious discontinuities as the limit cycle gradually adapts from
A-B-D-C to the A-B-C repressilator. Knockdown of gene E produces no appreciable
changes in the limit cycle. Overall, the multiplexed oscillator 3AI+3Rep maintains
oscillatory behavior during partial knockdown of genes B, C, D, or E and transitions
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between disparate limit cycles in qualitatively unique ways.

To quantitatively understand how the system responds to knockdowns, single-gene
knockdowns were simulated with a range of values of KD with 𝑛 = 50 replicates
with different random seeds. The quality and frequency of oscillations were then
assessed by computing the ACFmin and, if oscillations were detected, the frequency
of oscillation. In Figure 5C (upper panel), the ACFmin (mean ± 95% confidence
interval) is plotted as a function of KD, and the dashed line indicates the value
ACFmin = −0.4 used as a threshold between oscillatory and non-oscillatory dynam-
ics (below and above the line, respectively. Knockdown of gene A leads to a rise in
ACFmin and bomes lethal for oscillations above KD = 60%. For gene B, ACFmin

increases before suddenly crossing the threshold to indicate loss of oscillations be-
tween 𝐾𝐷 = 85% and 95%, and for gene C, oscillations disappear in the range
KD = 65%𝑡𝑜90%. For genes D and E, no detrimental effects are observed during
knockdown. Thus, oscillations persist in almost all cases (91.9% of samples) when
partially knocking down genes B, C, D, or E (Figure 5C, middle panel). Partial
knockdowns of A, B, C, and D each have distinct effects on oscillation frequency,
a phenomenon called frequency pulling (Heltberg et al., 2021). The bottom panel
of Figure 5C shows how, for KD < 60%, the WT resonant frequency of 6.0hr−1 is
pulled higher when knocking down A or B and lower when knocking down C or D
(no change for E). At higher values of KD, knockdowns of B and C discontinuously
jump from the drifted frequency to a new resonant frequency (2.6hr−1 and 6.6hr−1,
respectively), while the D knockdown transitions smoothly to its new frequency of
3.8hr−1. Thus, the 3AI+3Rep oscillator accommodates most partial knockdowns of
genes B, C, D, or E by modulating, yet retaining, oscillatory dynamics.

Up to this point, our modeling has assumed that the rates of reactions such as binding,
transcription, translation, and degradation are identical between circuit components.
To investigate whether the oscillators we discover are fine-tuned for this symmetry,
we perturbed the rate parameters for each TF individually. A Gaussian perturbation
kernel with standard deviation 𝜎param was applied to each parameter, scaled to
the pre-defined ranges of those parameters (see Table 2.2 for parameter ranges
and Methods for details of the perturbation kernel). Stochastic simulations were
performed for a range of values of 𝜎param between 1 ·10−3 and 3 ·10−2. To assess the
effects of parameter perturbation on oscillation, the power spectral density (PSD)
of the dynamics of TF A (mean of 𝑛 = 50 replicates with different random seeds)
was calculated for each value of 𝜎param and plotted as a heatmap (Figure 5D). For
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𝜎param < 10−2, the PSD shows peaks at the oscillator’s fundamental frequency of
6hr−1 and first and second harmonics (12hr−1 and 18hr−1, respectively). As 𝜎param

increases further to 5 ·10−2, the fundamental frequency peak gradually diffuses, and
the oscillation rate drops from 1.0 to ∼ 0.5, as shown in the line plot in Figure 5D
(envelope indicates 95% confidence interval). above𝜎param = 5·10−2, the oscillation
rate drops to near-zero, and the mean PSD shows no visible peaks. Therefore, this
oscillator can tolerate a minimal amount of heterogeneity between TFs, above which
it appears somewhat sensitive to asymmetry in at least one parameter of the model.

Discussion
Natural biological networks contain a number of biochemical components that ex-
ceeds our current capabilities of engineering by orders of magnitude, underscoring
the importance of scalable computational methods for synthetic circuit design and
analysis of biological design principles. Inspired by state-of-the-art artificial intel-
ligence, we approach circuit design as a game of step-by-step topology assembly
where success is determined by the achievement of a target phenotype in simulation.
Similar to game-playing platforms that have achieved superhuman mastery of com-
plex games (D. Silver, Schrittwieser, et al., 2017), CircuiTree searches the space of
possible circuit topologies using Monte Carlo tree search (MCTS), which balances
exploitation of promising circuit assembly moves with exploration of other possi-
bilities (Figure 1). This search strategy is comprehensive enough to infer motifs for
a given phenotype (Figure 3) and efficient enough to search large spaces of designs
fruitfully with limited samples (Figures 4A and 4B). Finally, we demonstrate Cir-
cuiTree’s scalability by characterizing a novel class of five-gene oscillators that use
a strategy we call motif multiplexing to resist deletion and single-gene knockdown
mutations by densely interleaving multiple sub-oscillators (Figures 4C-4E and 5A-
5C). This design principle may grant evolutionary robustness to eukaryotic circadian
clocks, which have been observed across many phyla to contain multiple oscillatory
loops (Cheng, Y. Yang, and Liu, 2001; Bell-Pedersen et al., 2005; Pokhilko et al.,
2012), and it leaves open the question of how multiple sub-oscillators can be coupled
without triggering chaos (Heltberg et al., 2021).

CircuiTree is distinguished by its general framework. Developed for general game-
playing and planning problems, MCTS can query very large spaces in search of
robust topologies and assembly motifs for any measurable phenotype, without re-
strictions on the modeling or simulation framework, and without needing to enu-
merate all possible topologies. This property bridges a gap in computational circuit
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design where generally, methods for finding single topologies (such as evolution
(François and Hakim, 2004; François and Eric D. Siggia, 2008), mixed-integer
optimization (Otero-Muras and Banga, 2016), and recurrent neural networks (Shen
et al., 2021)) do not generalize easily to design principles and/or require a spe-
cific mathematical form, while more comprehensive methods (such as enumeration
(Chau et al., 2012; Schaerli et al., 2014) and Bayesian sampling (Woods et al.,
2016)) require an explicit list of topologies. Notably, while CircuiTree currently
implements a “vanilla” version of the algorithm, MCTS can be modified in many
ways to suit different problems (Browne et al., 2012; Świechowski et al., 2022).

This work also highlights the possibilities of using reinforcement learning to address
difficult combinatorial design and inference problems in biology. In future work,
CircuiTree could be applied to combinatorial design of therapeutics, both in the
sense of optimizing chimeric receptor design (Daniels et al., 2022) or combinatorial
antigen recognition (Dannenfelser et al., 2020; Williams et al., 2020), and in the
sense of generating novel multicellular therapies consisting of multiple engineered
cell types that collaborate in situ, analogous to a natural immune system. Our
work could also be used to generate synthetic morphogenesis circuits, which are
difficult to design due to the many possible combinations of chemical and physi-
cal components (Davies, 2017; Toda et al., 2018; Fleischer and Barr, 1997) and
a high computational cost per simulation. Given a reward function that measures
goodness-of-fit, CircuiTree could also be extended as an inference tool — for in-
stance, for inferring transcriptional regulatory networks from data. More generally,
this computational platform extends the study of design principles (Lim, C. M. Lee,
and Tang, 2013), which has been limited to small motifs of 2 or 3 components,
to a larger space of biological networks, presenting an opportunity to dissect the
algorithms and strategies used by biology to assemble complex networks at scale.

Methods
Modeling and simulation
Transcription factor (TF) cooperativity was modeled as a slower unbinding rate
when both response elements (REs) for the a promoter are bound by the same TF.
For 𝐾 genes (each with mRNA and protein species) with cumulative 𝐴 activation
reactions and 𝑅 repression reactions, the elimination of explicit dimerization reduces
the number of species from 2𝐾 + 𝐾2 + 𝐾3 (mRNAs, TFs, TF-TF complexes, and
TF-TF-RE complexes) to 2𝐾 + 𝐴+ 𝑅 (mRNAs, TFs, and TF-RE complexes) and the
number of reactions accordingly from 4𝐾 + 2𝐾2 + 3𝐾3 to 4𝐾 + 3𝐴 + 3𝑅.
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Stochastic trajectories were simulated using Gillespie’s exact method (Gillespie,
1977) and saved at 𝑛𝑡 = 2000 time points at intervals of d𝑡 = 20 sec. The separation
of time-scales between fast binding-unbinding kinetics and the other reactions cre-
ates a long simulation time (>2 mins) that cannot be alleviated with, for example,
traditional 𝜏-leaping (Cao, Gillespie, and Petzold, 2004). Thus, instead of using
realistic but impractical binding and unbinding rates, these rates were set to vir-
tual values determined from the equilibrium constant for first-binding 𝐾𝐷,1 by the
solving the equations

𝐾𝐷,1 = 𝑘off,1/𝑘on

(𝑘off,1 · 1 molec + 𝑘on) (1 sec) = 𝑍,

where the value 𝑍 = 100 was chosen heuristically to be large enough to maintain a
separation of time-scales at low quantities. For each protein species, high-frequency
noise was filtered from the stochastic signal using a 9-point binomial filter (Aubury
and Luk, 1996), and the quality of oscillations overall was determined by computing
the normalized autocorrelation function for each TF and finding the lowest minimum
among TFs (ACFmin), excluding the bounds. Oscillations are considered present if
this quantity, related to the dissipation constant for oscillations (Otero-Muras and
Banga, 2016), is below a cutoff ACFthresh = −0.4.

For simulations with partial knockdown of a gene, all transcriptional rate parameters
for that gene were multiplied by a coefficient on [0, 1] (for example, KD=80% was
achieved using a coefficient of 0.2.), and all species were initialized with zero
quantity. For all other simulations, the initial quantity of each TF was selected
from a Poisson distribution with a mean of 10 proteins, and all other species were
initialized with zero quantity.

For perturbation studies, the eight sampled dimensionless variables were converted
to values on [0, 1] by normalization to the upper and lower values in Table 2.2.
These values were stored in a 𝐾 × 8 matrix, where each row represented one of the
𝐾 = 5 TFs, and each value was perturbed independently with a Gaussian kernel of
standard deviation 𝜎param, truncated to the range [0, 1] to prevent values outside the
reasonable range. The perturbed values were then converted to rate parameters for
each TF as outlined above.

Random sampling
Random sets of the 10 rate parameters listed in Table 2.1 were generated by drawing
samples of the 8 dimensionless variables described in Table 2.2. Latin Hypercube
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sampling was used to draw 104 samples from a multivariate uniform distribution,
with bounds shown in Table 2.2. For the 3-node and 5-node cases, every possible
initialization (with a unique set of random generator seed, initial protein quantity,
and parameters) was stored in a table of 104 rows, and each simulation was initialized
with a random row of this table.

Monte Carlo tree search
For all MCTS runs, the hyperparameter in Equation 2.1 was set to 𝑐 = 2.00 to
encourage exploration (the default value is 𝑐 =

√
2). Replicate runs for an experiment

were performed using different random seeds, which are used to break ties during
the selection phase and draw a random parameter set during the simulation step. For
the 3-node search, each reward value 𝑞 was drawn as a Bernoulli trial with a success
probability equal to the 𝑄 value found using enumeration rather than running fresh
simulations.

MCTS was parallelized using the lock-free method Enzenberger and Müller, 2010
and implemented with the Python utility ‘celery‘ (https://docs.celeryq.dev/
en/stable/index.html). Tree search was parallelized over 1,000 green threads
which dispatched simulation jobs to run in parallel on multiple cloud computing
instances totaling 300 CPUs. Reward values for each topology-parameter set pair
were stored in an in-memory cache to speed up subsequent training runs (epochs).
Backpropagation was executed asynchronously with virtual loss, assuming a reward
of 0 until the actual reward is returned. To prevent excessive sampling of local
optima during the 5-node search, we introduced a form of decision tree pruning
we term "node exhaustion." Once a terminal node (a completed topology) is visited
> 104 times, it is considered exhaustively sampled and pruned from the search
graph, and a non-terminal node is pruned once all its successors have been pruned.
As illustrated in Figure S5, the visits and reward for each in-edge to an exhausted
node are subtracted from the parent node. Thus, once a node is marked exhausted,
its history is "forgotten" by its predecessors.

Please see the documentation at https://pranav-bhamidipati.github.io/
circuitree/index.html for all additional details of implementation, as well as
code tutorials and descriptions of the API.

Motif identification
Before testing for motifs based on a tree search, we first determine whether each
terminated topology 𝑠 𝑗 discovered during the search is a successful oscillator by
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comparing its empirical robustness �̂�(𝑠 𝑗 ) = 𝑟 𝑗/𝑣 𝑗 to the predefined threshold
𝑄thresh = 0.01. This segregates all topologies into disjoint successful and unsuc-
cessful sets (𝑋 and𝑌 , respectively). We then take samples from the null distribution,
drawing 𝑛sample = 105 samples from the tree of topologies using random assembly,
each time starting at the root of the design tree and choosing random actions until
a terminal topology is reached (Figure S5A). The procedure is then repeated, this
time rejecting the result unless it is a member of the successful set 𝑋 (note that
this can be computationally expensive if solutions are sparse). Next, a contingency
table is constructed for each successful oscillator 𝑥𝑖 ∈ 𝑋 to compare the frequency
of observing 𝑥𝑖 within samples of the successful subspace against the frequency of
observation in the overall space. (see Figure S5A for an illustration of this pro-
cess). Finally, statistically significant overrepresentation is determined by the 𝜒2

independence test with a significance threshold of 𝑝 < 𝛼 = 0.05 after Bonferroni
correction. To identify motifs based on the results of enumeration, we conduct the
same hypothesis test on each oscillator, except using ground-truth frequencies found
by enumeration.

Supplementary information
Code availability
CircuiTree, written in Python 3.10, is available on GitHub (https://doi.org/
10.5281/zenodo.11285522). The code used to run computational experiments,
perform analyses, and plot results is available separately at https://doi.org/10.
5281/zenodo.11285550.
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Figure S1: Modeling and enumeration of 3-component oscillators. (A) Stochastic
modeling of a network of 3 transcription factors. See Table 1 for explanations and default
values for reaction rate parameters. (B) The top-32 most robust oscillators (highest 𝑄)
based on enumeration and exhaustive simulation (104 parameter sets). “AI” and “III” refer
to the presence of at least one activator-inhibitor or repressilator motif, respectively. (C)
Robustness of the top-40 most robust oscillators. Bars are colored based on the presence or
absence of an AI and/or repressilator (Rep) motif. See also Figure 2 and Table 1.
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Figure S2: (A-B) Circuit topology, representative stochastic trajectory, and autocorrelation
for two toggle switch topologies that were classified as oscillators, the basic toggle switch
(A), ranked #148, and an amplified toggle switch (B), ranked #139. Occasional switching
between stable states on a timescale comparable with the total simulation time is indistin-
guishable from low-frequency oscillation. (C) For oscillators containing a toggle switch and
lacking either the Rep or AI oscillatory motifs, parameter sets resulting in oscillation gener-
ally showed strong TF-RE binding (low ^1) and moderately strong repression (𝑟rep ≈ 2.5).
The latter may be a “sweet spot” that enables a persistence time on the order of the total
simulation time. (D) Left: Violin plots of oscillation period for oscillators with different
combinations of AI, Rep, and toggle switch (Tog) motifs. Oscillators with a toggle switch
appear to have much longer periods, on the order of many hours. Right: Bar plot of the total
number of oscillating samples shown in the violin plots. Samples used to generate (C) are
denoted with a blue star. See also Figure 2 and Tables 1 and 2.
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Figure S3: (A) A corner plot of all samples taken during 3-node enumeration that resulted
in oscillation, across all topologies. The histograms on the diagonal show the marginal
distribution for each sampled variable, and heatmaps in the lower triangular of the grid show
every pairwise dependency of these parameters. Weak binding (high ^1) and weak repression
(low 𝑟rep) are the only visibly prohibitive parameter regimes for oscillation. Oscillations
are favored by parameter sets with low basal expression (low 𝑘 ′

𝑚,unbound), strong activation
(high 𝑘 ′𝑚,act), and comparable mRNA and protein degradation rates (𝛾′𝑚 ≈ 𝛾′𝑝 ≈ 0.02). (B)
No dependence on initial protein quantities was noted. (C) 2D density plots showing the
dependence of oscillation period on the variables. Only 𝛾′𝑚 and 𝛾′𝑝 appear anticorrelated
with period, otherwise no dependence is observed. (D) The oscillation period, unlike the
oscillation likelihood, does not seem to depend on 𝛾′𝑝/𝛾′𝑚. See also Figure 2 and Tables 1
and 2.
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Figure S4: After a period of exploration, CircuiTree reduces sampling regret by ex-
ploiting motif combinations. (A) Venn diagram of 3-node oscillators discovered by enu-
meration, grouped by presence or absence of AI or Rep motifs. For each category, the
number of oscillators (number of total topologies) is shown. The intensity of background
color denotes the percentage of topologies in that category that are oscillators. Notably,
27.2% (47/173) of topologies with the AI-Rep combination are oscillators.
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Figure S4: (B) The proportion of samples allocated to each motif combination for MCTS
runs lasting 105 iterations (top; mean of 𝑛 = 50 replicates; linear x-axis) and 106 iterations
(bottom; mean of 𝑛 = 12 replicates; logarithmic x-axis). There is a gradual shift towards
sampling AI and AI-rep combinations before, at around 6× 104 iterations, the AI-Rep motif
combinations (red) and, to a lesser extent, the Rep-only category (green) are suddenly and
dramatically exploited. The effect on the accumulation of reward can be seen by calculating
regret. Defined in (C), regret is the opportunity cost accrued by sampling sub-optimal
topologies (𝑄 < 𝑄∗). (D) At the transition between the initial phase and the exploitation
phase (shown on linear axes on the left and log-log axes on the right), regret flattens because
exploitation of AI-Rep combinations has increased the rate of reward. See also Figures 2
and 3.
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Figure S5: Overrepresentation analysis infers assembly motifs by random sampling of
the search graph. (A) A flowchart of overrepresentation analysis, described in detail in
the main Methods section. The goal is to find patterns that are overrepresented relative
to the overall design space without needing to explicitly enumerate that space. This is
achieved using a random sampling scheme. Unlike traditional design motifs, which are
found by comparing to a flat, enumerated null distribution, these assembly motifs are
(virtually by definition) good assembly strategies. This is demonstrated by the scatterplot
in (B) showing the relationship between 𝑄motif and motif discovery by CircuiTree. 𝑄motif
can be conceptualized as the average win probability from a given assembly state if taking
random actions. Motifs with a high discovery rate by CircuiTree are likely to have high
𝑄motif and vice versa. Meanwhile, motifs found by traditional enumeration (orange circles),
while overrepresented among solutions, are not necessarily beneficial moves in the assembly
game. See also Figure 3.
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Figure S6: States are pruned based on sampling depth to avoid over-sampling local
optima. A schematic of state pruning implemented in the parallel version of CircuiTree
during the 5-node search. While asymptotically comprehensive, MCTS may perseverate for
many iterations in a local optimum of design space. To gently discourage this over-focusing,
we implement a pruning step during selection in which a selected state that has been visited
more than 𝑣exhausted = 104 times (the boxed circuit on the left) is marked as “exhausted”
(in the sense of exhaustively sampled), denoted by the skull and crossbones. An exhausted
state 𝑠 𝑗 can no longer be selected in subsequent iterations, and each of its parent states 𝑠𝑖
(each predecessor of 𝑠 𝑗 in 𝑇) is made to “forget” the sampling history of 𝑠 𝑗 by subtracting
the visits and rewards of 𝑠𝑖 𝑗 from the totals of the parent 𝑠𝑖 .
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Figure S7: Five-node fault-tolerant oscillators cluster based on topological complexity.
(A) A clustered heatmap of the 1,386 putative oscillators discovered during the search for
5-node fault-tolerant oscillators. Pairwise distance is computed as the graph edit distance
between topologies (the number of edges that must be added/deleted to make two topologies
equivalent). Putative FT oscillators fall into two structurally similar clusters, cluster 1
(outlined in orange) and cluster 2 (outlined in blue). (B) Box plots of topological complexity,
grouped by cluster. Cluster 1 contains relatively sparse topologies, while the majority of
topologies in cluster 2 have 15 interactions, the maximum allowed during search. ***𝑝 <
0.001 by Mann-Whitney U-test. (C) Boxplots of overall robustness �̂� grouped by complexity.
Regardless of cluster, higher complexity is associated with higher �̂�. Specifically, there is
a visible jump in robustness at 7 interactions and perhaps again at 14 interactions.
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C h a p t e r 3

CONTROL OF SPATIO-TEMPORAL PATTERNING VIA CELL
DENSITY IN A MULTICELLULAR SYNTHETIC GENE

CIRCUIT

Pre-print uploaded to biorxiv as:

Santorelli, M. et al. (Oct. 5, 2022). Control of spatio-temporal patterning via cell
density in a multicellular synthetic gene circuit. doi: 10.1101/2022.10.04.
510900.

Abstract
A major goal in synthetic development is to design and construct gene regulatory
circuits that control the patterning and morphogenesis of synthetic multicellular
structures. In natural development, an interplay between growth and chemical com-
munication shapes the dynamics of gene regulatory circuits that underlie patterning
and morphogenesis. However, for synthetic gene circuits, how the non-genetic
properties of the growth environment impact circuit behavior remains poorly under-
stood. Here, we describe an occurrence of mechano-chemical coupling in synthetic
contact-dependent synNotch patterning circuits. We show that the density of cells in
culture modulates synNotch-ligand signal transduction. We construct a synNotch-
based multicellular signal propagation circuit that is regulated by cell density. We
thus then exploit this property to control the velocity of the propagating wave and
the size of the activated region using small-molecule modulators of cell prolifera-
tion. Finally, we achieve millimeter-scale spatiotemporal patterning by establishing
spatial gradients of cell density. Our work demonstrates that synthetic gene cir-
cuits can be critically impacted by their context, providing an alternate means for
programming multicellular circuit patterning outcomes.

Introduction
Morphogenesis emerges through the interplay between chemical and mechanical
processes that occur simultaneously in development to generate the architecture of
the embryo (Thompson, 1917). At least in part, this is due to the tremendous growth
and cell proliferation that occurs to bring a single cell to generate a multicellular
organism; this cell proliferation needs to be patterned in space and time to give
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rise to the diversity of forms seen in body plans. In general, during development,
different kinds of chemical and mechanical processes can proceed in sequence with
patterning providing a template for mechanical regulation. For example, in develop-
ing embryos, gene regulatory networks interact with intracellular signaling events
to pattern domains of gene expression (e.g. Drosophila early development (Fukaya,
2021)). These domains can be characterized by the induction of motor proteins
or differential adhesivity that deform cell shape and change embryonic geometry,
driving morphogenetic events like gastrulation (Ko and Martin, 2020) or germ-
band extension (Feroze et al., 2015; Zallen and Goldstein, 2017). However, recent
work demonstrates that mechanical and chemical events can also be coupled in the
other direction. Signaling pathways like the Yap/Taz axis can sense mechanical
cues and convert these directly into changes in gene expression (Cai, Wang, and
Meng, 2021). Similarly mechanical changes in the fluidity of a tissue can yield
changes in gene expression dynamics (Chanet and Martin, 2014; Tschumperlin,
2011; Heisenberg and Bellaïche, 2013). Finally, the two aspects (mechanics and
chemical) can be intertwined in so-called mechano-chemical systems, that seem to
abound in developmental transitions (Veerman, Mercker, and Marciniak-Czochra,
2021; Urdy, 2012; Hannezo and Heisenberg, 2019; Chan, Heisenberg, and Hi-
iragi, 2017; Schiffhauer and Robinson, 2017; Scott, Weinberg, and Lemmon, 2019;
Goehring and Grill, 2013; Mo R Ebrahimkhani and Ebisuya, 2019; Le Roux et al.,
2019; Mao and Lecuit, 2016; Howard, Grill, and Bois, 2011). Despite emerging ex-
amples, many principles remain obscure regarding how information flows between
mechanical processes and chemical circuits in general, and how this contributes to
expand, constrain or regulate patterning and morphogenetic outcomes.

The complexity of the embryo presents inherent challenges to studying and ex-
tracting general principles both of developmental transitions in general, and of
interactions between mechanical properties and gene circuit signaling dynamics in
particular. A major emerging theme in the field of synthetic development is the
construction of gene circuits that enable controlled morphogenesis of synthetic em-
bryos and organoids. Highly simplified engineered systems have been generated in
this fashion that provide controlled and defined experimental systems in which to
analyze gene circuits within the context of a multicellular structure (Santorelli, Lam,
and Morsut, 2019; Toda, Frankel, and Lim, 2019; Mo R Ebrahimkhani and Ebisuya,
2019; Velazquez et al., 2018; Ho and Morsut, 2021; Zarkesh et al., 2022; Mo R.
Ebrahimkhani and Levin, 2021; Schlissel and Li, 2020; Davies, 2017; Teague,
Guye, and Weiss, 2016). Engineered systems provide an ideal setting to study
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mechano-chemical coupling where signaling and mechanical phenomena can be
isolated, measured and modulated.

Synthetic circuits based on Notch signaling, or so-called synNotch circuits, have
emerged as a modular and flexible strategy for engineering multicellular mammalian
systems (Morsut et al., 2016; Toda, Blauch, et al., 2018; Toda, McKeithan, et al.,
2020). The synNotch system uses engineered receptors modeled after the endoge-
nous developmental signaling pathway Notch/Delta. This endogenous pathway is
contact-dependent and is used extensively during development to generate cell-scale
patterns. In the synthetic version, synNotch, both the input and output of the pathway
have been rendered user-definable and, as such, are orthogonal to the endogenous
Notch pathway. Using this system, developmental circuits have been developed in
2D culture as well as in 3D fibroblast aggregates where a synthetic signal affects
multicellular signaling and mechanics, for example by driving expression of key
adhesion proteins in the cadherin family (Morsut et al., 2016; Toda, Frankel, and
Lim, 2019; Toda, McKeithan, et al., 2020). By changing the nature of the adhe-
sion proteins or the architecture of cell-cell communication, circuits for a variety of
different developmental trajectories have been implemented.

In the synNotch adhesion example, information flows from engineered signaling
proteins to downstream effects on mechanical properties of the cell through changes
in cell-cell adhesion. To achieve a complete synthetic mechano-chemical system
with reciprocal information flow between both modalities, mechanical inputs to
signaling must also be characterized. Insights that synNotch could be a good
candidate to develop such a system are emerging. First, the various proposed
mechanisms of activation for Notch and synNotch signaling involve a mechanical
"pulling force" that exposes the protease cleavage site for further signal transduction
(Kopan and Ilagan, 2009; Gordon, Arnett, and Blacklow, 2008; Sprinzak and
Blacklow, 2021; Lovendahl, Blacklow, and Gordon, 2018; Stassen, Ristori, and
Sahlgren, 2020), although the specific mechanisms may differ based on the cellular
context and the endogenous or synthetic nature of the receptors (Khamaisi et al.,
2022). Second, cellular mechanical tension, shear stress, and ECM stiffness have
been shown to play a role in Notch signaling in certain contexts on the sender
(ligand-expressing) cell side or the receiver (receptor-expressing) cell side (Mack
et al., 2017; Hunter et al., 2019; Matsuo et al., 2021; Weĳts et al., 2018; Meloty-
Kapella et al., 2012; Theodoris et al., 2015). Third, synNotch has been engineered
to respond to different degrees of pulling force, highlighting the mechanosensory
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potential of this signaling modality (Sloas and Ngo, 2022). Whether these inputs
can be used to create a system where mechanics or cell proliferation affects not only
signaling, but also patterning outcomes has not been explored.

Mathematical models have been an important tool for understanding morphogenesis
in natural systems (Turing, 1952; Gierer and Meinhardt, 1972; Murray, 2002) and
thus provide a potential strategy for the design and analysis of synthetic systems that
incorporate mechanical-chemical coupling. Cell-based models of Notch-mediated
signaling (Binshtok and Sprinzak, 2018) have uncovered key insights into the self-
organization of regular spatial patterns (Collier et al., 1996), the regulation of
cell fate bifurcation by receptor-ligand interactions and cell geometry (Sprinzak,
Lakhanpal, Lebon, et al., 2010; Sprinzak, Lakhanpal, LeBon, et al., 2011; Shaya
et al., 2017), and the important roles of ligand expression levels and competition
in robust patterning (Sprinzak, Lakhanpal, LeBon, et al., 2011; Formosa-Jordan,
Ibañes, et al., 2012; Petrovic et al., 2014). In addition to endogenous signaling,
mathematical modeling of synthetic signaling networks has been a key tool for
engineering defined, controllable biological circuitry. Recently, cell-based modeling
has been used similarly to catalyze the discovery and design of novel circuits for
morphogenesis (Lam et al., 2022; Mulberry and Edelstein-Keshet, 2020). Such
models have been used to study natural cases of mechano-chemical coupling (Shaya
et al., 2017; Cohen and Sprinzak, 2021; Hufnagel et al., 2007; Pan et al., 2016) but
have not yet been applied to synthetic cell systems.

A deeper analysis of mechanical-chemical coupling, especially the ones connected
with cell proliferation, in synthetic gene circuits could provide new insights into
the logic of these circuits and uncover novel strategies for engineering multicellular
system patterning and morphogenesis. Here, we first identify cell density as a non-
genetic parameter of cell culture that affects synNotch signaling through a screening
of mechanical inputs. We then apply the synNotch system to study the impact of
cell proliferation and cell density on a paradigmatic example of signaling-mediated
patterning, i.e. lateral propagation via contact-dependent signaling. We construct
multicellular tissues containing a local relay circuit consisting of a sender (signal-
originating) cell type and a novel transceiver (signal-propagating) cell type that
both receives and sends fluorescent signal. Using this simplified genetic circuit, we
investigate the impact of non-genetic inputs on patterning and signal propagation at
the multicellular level. With a combination of in silico and in vitro experiments,
we show that density modulates patterning in a parameter space that is biologically
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relevant and can be exploited to construct distinct macroscopic spatial and temporal
patterns.

Results
Cell density impacts SynNotch signal transduction

The impact of non-genetic factors including tissue mechanics and cell density on
synNotch signal propagation has not been explored. To quantify the impact of
individual perturbations to the physical environment on synNotch signaling, we
used a previously reported in vitro assay for synNotch activation based on a sender-
receiver cell signaling paradigm. Briefly, two L929 mouse fibroblast cell lines, a
sender cell line and a receiver cell line, are engineered such that contact between
a sender cell and receiver cell can be assessed by the presence of a red fluorescent
reporter in receiver cells. Sender cells constitutively express membrane-bound
green fluorescent protein (GFP), which acts as the ligand for an anti-GFP synNotch
receptor on receiver cells (anti-GFP synNotch, Figure 1A). The intracellular portion
of the anti-GFP synNotch receptor contains a tetracycline-controlled transactivator
(tTA) which is freed from the membrane upon contact-dependent activation and
translocates to the nucleus where it activates expression of cytosolic mCherry. To
assay synNotch activity, sender and receiver fibroblasts are co-cultured in a 1:1 ratio
for 24 hours, by which time activated receiver cells produce mCherry (Figure 1B).
Expression of mCherry is then quantified by fluorescence-activated cell sorting
(FACS) at 24 hrs. This assay is performed in two control conditions as well as
conditions of individually varied extracellular matrix (ECM) composition, substrate
stiffness, cytoskeletal tension, and cell density. The control activation is performed
on tissue-culture treated plastic dishes, at a 100% confluent cell density, in the
absence of drug treatment. In the positive and negative controls (labeled "ON" and
"OFF") sender cells are present and absent, respectively. We report and refer to the
density of the cell culture as a multiple of the density at 100% confluence (cells
cover 100% of the surface). We estimated by visual inspection that the confluent
density is 1250 cells/mm2 and refer to it as 1× confluence or simply "1x".

We found that increased cell density, but not perturbations to other aspects of
the physical cell environment, led to attenuation (downregulation) of synNotch
signalling (Figures 1C-F). Cells grown on different substrates (mimicking different
ECM compositions) or at varying stiffnesses exhibited similar mCherry activation to
the sender-activated "ON" reference condition (Figure 1C; for details see Methods).
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Figure 1: SynNotch activity depends on cell density, not ECM or cytoskeletal tension.
(A) Conceptual scheme of Sender-Receiver synNotch signaling. Membrane-bound GFP
(green triangle) in Sender cells binds synNotch in Receiver cells on the right. Cleavage of
synNotch frees the intracellular domain (tTA, blue ellipsoid) to translocate to the nucleus
and activate mCherry reporter expression. (B) Schematic depiction of synNotch signaling
response assay. Senders and Receivers are co-cultured at 1:1 ratio, and synNotch signal-
ing occurs at Sender-Receiver contacts (activated Receivers in red). Receiver activation
(mCherry fluorescence) is measured at 24 hours by FACS under different culture conditions
(C-E). Each violin in (C-E) depicts a distribution of mCherry fluorescence in Receivers.
Gray violins are the reference samples for OFF and ON Receiver states (without and with
Senders, respectively). Black dots indicate median. Dotted line indicates the cell-wise
threshold between OFF and ON states. ∗∗ indicates the sample is more likely OFF than
ON, as determined by the log-likelihood (LR) statistical comparison. Distributions are
shown across (C) various growth substrate materials and stiffnesses, (D) various chemical
modulators of cytoskeletal tension†, and (E) various initial cell densities. Gray dashed line
is the fluorescence cutoff between OFF and ON. (F) Scatter plot of the LLR calculated for
each sample. Points above zero indicate the sample resembles the ON state more than the
OFF state. Error bars represent 95% confidence intervals (calculated by bootstrapping). For
details please refer to Methods. †RI: 100`M ROCK-inhibitor (Y-27632); BL: 25`g/mL
blebbistatin; LA: 200`M latrunculin-A.
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Cytoskeletal tension was modulated by the addition of three drugs known to af-
fect cytoskeletal contractility and actin polymerization - Y-27632 (ROCK-inhibitor)
(Amano, Nakayama, and Kaibuchi, 2010), blebbistatin Straight et al., 2003, and
latrunculin-A (Spector et al., 1983; Yarmola et al., 2000). These treatments did not
suppress signaling activity. Notably, they may slightly increase synNotch activation
in the presence (Figure 1D and absence (Figure S1D) of senders. In contrast, when
cells were grown across a range of cell densities from 0.25x - 4x confluent density
(312.5−5000 cells/mm2), densities of ≥ 3x exhibited significantly inhibited signal-
ing responses in receivers (Figure 1E, ** indicates statistical significance). A sample
was considered activated overall based on its ON:OFF log-likelihood ratio (LLR),
plotted in Figure 1F. See Methods for details on statistical calculations. Though not
statistically significant, signaling activity also appears slightly inhibited at densities
of 0.25x and 2x. These results suggested that synNotch signal transduction is op-
timally efficient at cell densities of 0.5x - 1.0x (625 − 1250 cells/mm2), whereas
much lower or higher densities result in blunted signal transduction.

The observed decrease of synNotch signaling at cell densities above 1x could be due
to a number of molecular mechanisms. To start addressing this question, Figure S3
summarizes several relevant experiments comparing relevant variables between 1x
and 4x confluent densities. As density increases past 1x we find: (i) Cells change
shape, becoming smaller surface-wise (Fig. S3A) and volume-wise (Fig. S3B), and
becoming more rounded/circular (Fig. S3C). (ii) Membrane-targeted GFP ligand
expression decreases in a way that corresponds with density-dependent attenuation
of signaling (Fig. S3D-F). (iii) Cell size and the quantity of GFP ligand are positively
correlated (Fig. S3G-H). (iv) Cell motility may decrease (Fig. S3I). However, other
parameters are not affected by density: (i) YAP localization does not change (Fig.
S3J), (ii) conditioned media does not affect signaling (Fig. S3K), and (iii) nuclear
reporter protein accumulation levels do not change (Fig. S3L). For further details,
see Methods.

Our measurements were most consistent with the hypothesis that density modu-
lates membrane trafficking and thus membrane protein levels. Given that YAP
localization does not change, and cytoskeletal drugs do not affect signaling (Fig-
ure 1D), it seems unlikely that the decrease in signaling at high densities is due
to classic cytoskeletal-tension-mediated mechanotransduction. Given that growth
media conditioned from high-density (4x) cultures does not alter signaling at 1x,
soluble chemical factors also seem unlikely culprits. We instead hypothesize lo-
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cal, curvature-based changes in membrane trafficking resulting in faster membrane
protein turnover correlating with higher membrane curvature, as observed for other
signaling molecules (Alfonzo-Méndez et al., 2022; De Belly et al., 2021; Chiasson-
MacKenzie et al., 2018). This etiology is supported by the fact that the membrane
reporter but not the nuclear reporter is affected. Thus we consider the nature of the
mechanism seems to be local and mechanical in nature rather than long-range/soluble
and chemical.

Signal propagation circuit exhibits density-dependency patterning outcome

We next sought to investigate the impact of density-dependent signal attenuation on
the behavior of a multicellular synNotch patterning circuit. We focus on the "lateral
propagation" circuit, a paradigmatic example of emergent patterning wherein a sig-
nal is relayed from cell to cell via contact-dependent signaling between neighboring
cells (Sjöqvist and Andersson, 2019). This system has not been used for synthetic
patterning, though it has been engineered before in a semi-synthetic manner (Mat-
suda et al., 2012). The circuit is shown schematically in Figure 2A and relies on cells
that can both receive and send a cell-surface signal, or "Transceiver" cells. When
activated by contact with the ligand (for instance, presented by an initiating sender
cell) transceiver cells become activated and can relay the signal to neighboring
Transceivers, triggering a propagating wave of signaling by relay.

We implemented this circuit in vitro in a mouse L929 fibroblast cell line. Transceiver
cells were generated that express an anti-GFP receptor activating transcription of
the GFP ligand. To do so, three transgenes were stably integrated (Figure 2B): one
constitutively expresses a synNotch receptor with an anti-GFP nanobody (𝛼GFP) as
the extracellular domain and the transcription factor tetracycline transactivator (tTA)
as the intracellular domain. A second expresses membrane bound GFP (synNotch
cognate ligand) under control of the tetracycline responsive element (TRE) promoter.
A third expresses cytosolic mCherry driven by TRE as a reporter of synNotch
activation and constitutively expresses the blue fluorescent protein tagBFP to mark
transceivers. We generated several clones of L929 cells where these transgenes
were all integrated into the genome. Transceiver clone function was evaluated by
co-culturing with sparse sender cells and performing high-magnification time-lapse
imaging centered on individual sender cell foci.

The area of GFP fluorescence was calculated using a semi-automated image analysis
workflow (see Methods). At a cell density of 1250 cells/mm2 (100% confluent, or
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Figure 2: Cell density tunes the velocity of signal propagation. (A) Schematic of signaling
wave propagation (green) in a monolayer of transceiver cells (gray) initiated by a sender
cell (purple nucleus).(B) Schematic of the in vitro Transceiver circuit. The Sender cell
(green) contains a transgene for constitutive expression of membrane-bound GFP ligand
(green triangle) and a nuclear infrared fluorescent marker (not shown) under control of
spleen focus-forming virus (SFFV) promoter. The Transceiver cell (gray) has a transgene
for constitutive expression of GFP-sensing synNotch receptor with a tetracycline-controlled
transactivator (tTA) intracellular domain and two transgenes with tTA-responsive elements
(TRE) activating GFP ligand and mCherry (see Methods). (C) Micrographs demonstrating
in vitro signal propagation over time at the indicated cell densities. Bright field (grayscale)
is overlaid with GFP signal (green) and nuclear infrared fluorescent marker expressed in
sender cells (purple). A single propagation focus is shown, isolated from a culture well
with multiple foci. Scale bar 100 `m. See Supplemental Movies 1-3 for time-lapse movies.
(D) Propagation radius (𝑟prop) over time for three cell densities (𝑛 = 5, mean ± s.d.). (E)
Cell-level mathematical model of Transceiver signaling. A sender cell (left) presents GFP
ligand 𝑠 (green ellipsoid and triangles) to a Transceiver cell (center, "𝑖"). Ligand from cell
𝑖’s neighbors (" 𝑗") activates SynNotch receptors (blue). Activated SynNotch stimulates
production of ligand and a reporter 𝑟 (red ellipsoid) after a time delay 𝜏. Production
is regulated by cell density. The ligand 𝑠 also inhibits its production ("cis-inhibition").
Ø indicates degradation. (F) In silico simulation of transceiver signaling demonstrating
GFP ligand (green) propagation from a sender cell (purple) at cell densities of 1x, 2x, and
4x. Scale bar 125 `m. See Supplemental Movie 4 for time-lapse. (G) Propagation velocity
(𝑟prop) in vitro for densities of 1x, 2x, and 4x. (H) Strip plot of propagation velocity in vitro
(black dots; horizontal line indicates mean) and in silico (blue diamonds) at indicated cell
densities. **𝑝 < 0.01, two-sided Mann-Whitney-Wilcoxon test.
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"1x"), transceiver fibroblasts in contact with a sender cell express the GFP ligand,
triggering a propagating wave of transceiver signaling that travels outward through
the cell monolayer (images in Figure 2C; see Supplementary Videos 1-3). The sizes
of 𝑛 = 5 signaling discs were quantified by calculating the radius of propagation
𝑟prop (Figure 2D), resulting in a mean velocity ofΔ𝑟prop/Δ𝑡 = 0.131±0.009 mm/day
at 1x confluent density. When initial cell density is increased, wave velocity slows
to 0.085 ± 0.014 mm/day at an initial density of 2x (2500 cells/mm2) and 0.026 ±
0.011 mm/day at an initial density of 4x (5000 cells/mm2). Similar trends were
observed for all clones generated (data not shown). Thus, this synthetic lateral
propagation circuit can generate signaling waves whose velocity is responsive to
cell density.

To gain additional insight, we devised a computational model of synNotch signaling
with density-dependent attenuation, and used it to study the impact of density-
dependent signal transduction on signal propagation in a multicellular sheet. To
model the multicellular sheet, we use a fixed lattice of cells, a framework used
extensively to study Notch-mediated patterning (Collier et al., 1996; Sprinzak,
Lakhanpal, Lebon, et al., 2010; Sprinzak, Lakhanpal, LeBon, et al., 2011; Shaya
et al., 2017; Formosa-Jordan, Ibañes, et al., 2012; Formosa-Jordan and Ibañes,
2014; Binshtok and Sprinzak, 2018). In our model, each cell occupies a region
on a hexagonal lattice. For a given density, the area of each hexagon on the
lattice is set equal to the average area of cells in a confluent monolayer in vitro.
As depicted in Figure 2E, each cell contains a system of chemical reactions that
model synNotch signal transduction (see Methods, Equation 3.4). A given cell (𝑖)
in direct contact with its neighbors ( 𝑗) can express both the signaling ligand (𝑠)
and the reporter protein (𝑟). Cells either express the ligand constitutively if they are
senders or upon synNotch stimulation if they are transceivers. To model cytoplasmic
projections, which are known to affect Notch-mediated patterning systems (Binshtok
and Sprinzak, 2018; Vasilopoulos and Painter, 2016; Hadjivasiliou, Hunter, and
Baum, 2016), contact strength is weighted by cell-cell distance on the lattice (weights
visualized in Figure S5A).

Following ligand-induced receptor activation, the recipient cell responds after a time
delay (𝜏) corresponding to transcription, translation, and membrane trafficking of
the ligand. Finally, ligand expression in cis decreases a transceiver cell’s capability
to sense ligand expressed by neighbors in trans, a phenomenon termed cis-inhibition
that is observed to regulate endogenous and synthetic Notch signaling (Sprinzak,
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Lakhanpal, Lebon, et al., 2010). Please see Figure S5B for an example of sender,
receiver, and transceiver activation dynamics in silico. Changes in cell density are
modeled by changing the size of all cells equally. At a higher density, for example,
cell size is reduced to occupy less area while preserving the hexagonal lattice (Figure
S5C, inset images). The density-dependence of signaling is modeled by multiplying
the amount of ligand involved in signaling by a coefficient that encodes the efficiency
of signaling. This coefficient decays exponentially as cell density increases above
1x density (Figure S5C, blue curve) or decreases below 1x and was parameterized
by comparison with the propagation data in Figure 2.

With this in silico model of density-dependent, signal-propagation circuit, we sought
to simulate propagation on a monolayer lattice at different densities. To do so, we
initialized a 50 × 50 hexagonal lattice of transceiver cells with a single sender cell.
At time 𝑡 = 0, the sender cell begins expressing the signal and Equation 3.4 are
integrated forward in time (see Methods and Supplementary Text for details of
mathematical modeling). We perform the simulation at cell densities of 1X, 2X,
and 4X confluence (1250, 2500, and 5000 cells/mm2). In the simulations, a wave
of activation begins propagating outwards from the Sender at a speed that depends
on density (selected time-points rendered in Figure 2F; see Supplementary Video
4). The area of propagation was quantified as the amount of lattice area occupied
by Transceivers expressing ligand at a level greater than the promoter threshold
𝑘 (see 3.1 for values of all parameters used in simulation). Wave velocity was
calculated similarly to the in vitro case. As shown in Figure 2G, in the 1x condition
propagation area begins to increase after a time delay 𝜏 = 0.3 for signal production
and then continually rises. We show simulation time in units of 𝜏 as a characteristic
time-scale. At 1x density, in silico wave velocity (calculated similarly to in vitro)
is 0.103 mm/𝜏 and drops to 0.055 mm/𝜏 and 0.009 mm/𝜏 at 2x and 4x densities,
demonstrating that the attenuation of signaling at higher cell densities is sufficient
to explain the slower speed of Transceiver propagation. Figure 2H compares the
mean velocities of the experimental system and computational model. In both cases,
increasing cell density above 100% confluence has a substantial suppressive effect
on the velocity of the wavefront. See Supplemental Movie 4 for time-lapse lattice
simulations at 1x, 2x, and 4x densities.

Collectively, these results show that the signaling dynamics of a synthetic circuit can
be modulated via cell density. They further suggest that cell density could be used
as a mechano-chemical control mechanism to dynamically pattern synthetic tissues
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without requiring the engineering of additional biochemical circuit components.

Signal propagation reaches self-limiting regimes due to cell population growth

Cells in culture grow and divide, thereby increasing cell density over time. How
does cell growth impact signaling behavior over longer time courses? Figure 3A
shows an example of a seven-day time course in which transceivers were co-cultured
with senders at a plating density of 1250 cells/mm2 (1x). As shown in the GFP
channel images, transceivers begin propagating signal by Day 1 of growth, and the
signaling wave propagates outwards over the first three days. By Day 4-5, however,
propagation speed and overall signal intensity start to decline, and by Day 7 GFP
expression is almost fully suppressed. This resulted in self-limiting propagation
with a characteristic diameter of 0.5 mm. (see also Supplemental Movies 5 and
6 for time-lapse movies). Interestingly, transceivers that express and then down-
regulate GFP signal continue to express the mCherry reporter at Day 7 (mCherry
channel), suggesting slower degradation kinetics. Importantly, cells re-plated at 1x
density after a seven-day time course are still capable of propagation after re-plating,
suggesting that GFP down regulation is not a result of decreased cell health or death
during long-term culture (Figure S6).

Given the negative correlation between cell density and signaling, we hypothesized
that the decrease in GFP signaling at later times is due to an increase in cell density
secondary to cell proliferation. To test this hypothesis, we counted cell numbers
over the time course in culture. Transceivers were plated at initial densities of 1250,
2500, and 5000 cells/mm2 (1x, 2x, and 4x), and 𝑛 = 3 cell counts were performed
daily for seven days using an automated cell counter. Results for the 1x condition
shown in Figure 3B demonstrate how cell density (black, mean ± s.d.) increases
over time in a sigmoid fashion and begins to plateau by 4-5 days of culture. By day
3 — around the same time signaling begins to shut off in Figure 3A — the culture
achieves a density of ≥ 3750 cells/mm2 (3x) which was found to be inhibitory
to transceiver signaling (Figure 1E, 3x and 4x density). These results supported
the hypothesis that in long-term culture, cell proliferation can shut off signaling in
previously activated transceivers if the culture achieves cell densities that are not
conducive to cell-cell signaling.

We then used our computational model to determine if density-induced repression is
sufficient to replicate signaling attenuation in long-term cultures. We model popula-
tion growth as a logistic growth process. The logistic growth equation is a common
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Figure 3: Cell population growth over time leads to self-limiting activation. (A) Prop-
agation and attenuation of signal over a seven-day time-course. Fluorescence micrographs
were taken of an isolated propagation focus from a sender:transceiver co-culture plated at
a density of 1250 cells/mm2 (1x). GFP produced by senders and activated transceivers is
shown in green, and mCherry (reporter for synNotch activation in transceivers) is shown in
red. Signal begins propagating in a disc until around day 4. From then, GFP levels decrease
and are mostly decayed by day 7. The reporter remains as a record of past activation, possi-
bly due to slower degradation kinetics. Scale bar 100 `m. See Supplemental Movies 5 and
6 for time-lapse movies. (B) Graph of cell density over time. Black dots are the mean and
standard deviation (𝑛 = 3) of cell density from sender-transceiver co-cultures, measured by
automated cell counting. The dashed line shows the logistic growth equation with estimated
parameters (90% confidence interval in gray). (C) Quantification of the signaling disc
area over time. In vitro, 1:100 co-culture of senders:transceivers was plated at 1x density,
and the areas of 𝑛 = 5 individual foci were imaged daily. In silico, an 80 × 80 lattice of
transceivers with one sender was simulated from an initial density of 1x. Activated area was
measured as in Figure 2 for in vitro (black dots, mean ± s.d.) and in silico (connected blue
dots). Cell density is increased over time by reducing cell size to account for population
growth as estimated in (B). Simulation time-scale was parameterized using the estimated
generation time (see Results and Methods). Population growth thus appears sufficient to
explain the experimentally observed dynamics of ligand activation followed by attenuation.
(D) Rendering of model simulation. The model consists of a hexagonal lattice with one
sender cell (purple) surrounded by transceivers at 1x density. GFP ligand (first row, green)
and mCherry reporter (second row, red) concentrations in transceivers are rendered at daily
time-points. See Supplemental Movie 7 for time-lapse.
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sigmoidal growth model in which a species will proliferate exponentially until it
approaches the maximum population density its environment can support (termed
the "carrying capacity" 𝜌max), at which point density asymptotically approaches
𝜌max. Like exponential growth, logistic growth starts at an initial population density
𝜌0 and has an intrinsic growth rate 𝑔. We applied a maximum-likelihood estimation
(MLE) procedure to our cell count data and estimate that 𝑔 = 0.616 days−1 (90% CI:
0.539−0.711 days−1) and 𝜌max = 7337 cells/mm2 (90% CI: 6954−7771 cells/mm2).
In Figure 3B, we plot the fitted logistic growth equation (black dashed curve, 90% CI
in gray), which shows good correspondence with the observed growth data. Please
refer to Methods and Figure S7 for detailed MLE procedure and results. Given this
parameterization, the generation time of cells is 𝑔−1 ln 2 = 1.125 days (27.0 hrs).
Under the simplifying assumption of a constant protein removal rate, we approx-
imate the ligand half-life as equal to the generation time, allowing us to convert
between simulation time and real units (see Methods for a detailed discussion).

Transceiver signal propagation was then simulated with logistic growth of the pop-
ulation density over time. We generated an 80 × 80 lattice of transceivers with
one sender at the center at an initial density of 1x and ran the simulation for 8
days. Changing population density in our system is modeled by reducing the area
of cells on the lattice rather than by explicit cell division, mitigating computational
complexity (see Methods for details). The propagation area was then measured as
in Figure 2 and plotted over time in Figure 3C (blue) alongside the radii of 𝑛 = 5 in
vitro propagation foci (black, mean ± s.d.) under the same experimental conditions
as Figure 3A. The simulated dynamics of signaling are similar to that of the in
vitro results. In particular, the in silico model also exhibits an early period of 3
days of activation characterized by GFP and mCherry production and expansion
of the propagation disc, followed by a period of signal attenuation during which
GFP expression falls and eventually reaches levels similar to day 0. Renderings of
the simulation at daily time-points are shown in Figure 3D. To model the lingering
nature of the mCherry reporter, mCherry was modeled under the same activation
kinetics as GFP but with 10 times slower degradation kinetics (see Methods). See
Supplemental Movie 7 for a time-lapse rendering of the simulation showing GFP
and mCherry levels.

These results demonstrate that cell density changes are sufficient to explain the
observed attenuation of transceiver activation and signal propagation. Overall, we
show using experimentation and mathematical modeling that signal propagation
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through a proliferating transceiver population can have a transient, self-limiting
nature consistent with a density-induced attenuation of synNotch activity.

In silico exploration of growth parameters reveals distinct phases of activation
explained by a critical density

Using the computational model, we then investigated the generative possibilities of
this mechano-chemically coupled circuit in the confluent to super-confluent regime
(densities greater than 1280 cells/mm2). So far, in the system, we have observed that
the speed of propagation can be controlled via initial cell density (Fig. 2), and also
over time due to cell proliferation (Fig. 3). This observation lead to identify initial
cell density, and cell proliferation as two variables affecting patterning outcomes.
In order to define the space of achievable qualitative and quantitative phenotypes for
the density-modulated Transceiver signaling circuit, we simulated circuit behavior
for different values of the initial density 𝜌0 and proliferation rate 𝑔 and generated a
phase diagram of signaling phenotypes. For each parameter combination, a 50× 50
lattice of transceiver cells and one Sender were simulated for 8.0 days. We observe
signaling behavior that falls into three categories. Either signal begins to propagate
or not, and if propagation begins, Transceivers either all become deactivated by the
end of the simulation or remain active to some extent. Parameter sets thus fall into
three categories, or "phases": attenuated, self-limited, or unlimited propagation. For
classification, signaling dynamics at early and late time points are used. Parameter
sets are labeled "attenuated" if the initial signal production rate vinit = max𝑖 ¤𝑠𝑖 (𝑡 = 𝜏)
is below a chosen threshold vthresh = 0.25 (Figure S8B). If the initial production
rate is above this value, they were labeled "self-limited" if all Transceivers become
inactivated by the end of the time-course and "unlimited" otherwise. As above,
a transceiver 𝑖 was considered activated based on the amount of expressed ligand
(𝑠𝑖 > 𝑘; see Table 3.1).

Each of the three behavioral phases corresponds to a discrete region of the phase
diagram. In the dark blue region of Figure 4A, Transceiver activation persists
throughout the time-course and propagation is unlimited. In the blue region of
limited propagation, the wave of activation initiates but becomes fully attenuated at
some point during the time-course. In this regime, Transceiver activation is limited
in time and space, and the maximum area achieved during the time-course depends
on both 𝜌0 and 𝑔 (Figure 4B). Finally, in the gray region, no activation occurs
and signaling has been fully turned off above a critical density 𝜌

high
c = 3.3 that
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Figure 4: Population growth determines the signaling behavior of transceivers. (A)
Phase diagram showing the transceiver propagation phase as a function of initial cell density
and proliferation rate. For each simulation, a 50 × 50 lattice of Transceiver cells and
one Sender were simulated with different values of the growth parameters 𝑔 (intrinsic
proliferation rate) and 𝜌0 (initial density) for 9.5 days. Parameter sets were then classified into
distinct phases based on signal propagation behavior at early and late time-points: unlimited
(dark blue), self-limited (light blue), or attenuated (gray) propagation. In the unlimited
phase, the ligand production rate is too low at early time-points to trigger activation. In
the self-limited phase, activation occurs but all activated Transceivers become deactivated
by the end of the simulation, and in the unlimited phase, some activated cells remain.
Black squares are example parameters for which dynamics are shown in (C). (B) Phase
diagram annotated with circles showing the maximum area of the propagation disc over
the whole time-course. The disc reaches negligible sizes in the attenuated phase and
persists at the end of simulation time in the unlimited phase. However, in the self-limited
phase, propagation reaches a finite area. Due to the reporter’s slow degradation kinetics,
transceivers "remember" prior activation. Thus, the maximum area of propagation could
be tuned by modifying the parameters of growth and subsequently maintained in molecular
memory. (C) Example time-courses and simulation renderings for each phase. Parameters
correspond to outlined squares in (A). The activation radius is shown over time, and above
each graph is shown a simulation rendering at the time of maximum disc area. Time-course
was sub-sampled for clarity. See Supplemental Movie 8 for time-lapse. (D) An example
of logistic growth. Population density begins at an initial density 𝜌0 at 𝑡 = 0 and increases
sigmoidally at an intrinsic rate 𝑔, approaching the asymptotic carrying capacity 𝜌max. (E)
Cell density over time for the three behavioral phases. The three phases can be understood in
relation to a threshold density 𝜌high

c (dotted line) above which signaling becomes attenuated.
Attenuated tissues are more dense than 𝜌high

c , unlimited tissues are less dense than 𝜌high
c , and

self-limited tissues cross the threshold during the time-course.
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does not depend on other growth parameters (Figure S5; see Methods for details
of calculation). Therefore, these phases represent different collective signaling
dynamics (Figure 4C and Supplemental Movie 8). Furthermore, the monotonic
nature of the logistic equation (plotted in Figure 4D) helps explain the three observed
phases as outcomes of three types of growth curves: density stays below 𝜌

high
c ,

density crosses 𝜌high
c during the time-course, or density stays above 𝜌high

c (Figure
4E). In particular, the attenuated propagation phenotype can be accessed above a
specific initial cell density, regardless of proliferation; for the other 2 phenotypes
where propagation is observed, whether the systems displays a self-limiting behavior
or propagates in an unlimited fashion can be controlled via controlling proliferation
even for cells plated at the same initial density. Note that a similar critical density
𝜌low

c = 0.30 determines the density at which signaling turns on. In sum, we identified
three dynamical behaviors in silico that can emerge in cells harboring the same
genetic circuit, and these behaviors can be accessed by manipulating parameters of
cell proliferation such as intrinsic proliferation rate 𝑔 and initial cell density 𝜌0.

Growth rate-modulating drugs push Transceivers into different phase regimes

According to the computational model, decreasing the intrinsic rate of prolifera-
tion (𝑔) should greatly extend the amount of time spent at densities permissive to
signaling and therefore shift our system from a regime of self-limited propagation
into a regime where propagation is virtually unlimited (from the light blue region
to the dark blue region in the Figure 4A phase diagram). Conversely, increasing the
proliferation rate within the self-limited region should decrease the radii of prop-
agation foci (light blue region in Figure 4B). Finally, increasing the initial plating
density (𝜌0) of the culture greater than 1250 cells/mm2 (1x) should reduce the size
of propagation foci.

To test these predictions in vitro, we performed propagation experiments in condi-
tions that perturb cell proliferation. Cells were cultured in the presence of Y-27632
(Uehata et al., 1997), a small molecule ROCK inhibitor (RI) that limits proliferation
(Kosako et al., 2000; Pitha et al., 2018; Santos et al., 2019), or fibroblast growth
factor 2 (FGF2), a growth factor that stimulates proliferation (Detillieux et al., 2003;
Raballo et al., 2000; Dupree et al., 2006). Sender:transceiver co-cultures were plated
at 1x, 2x, and 4x densities, cell density was counted daily (𝑛 = 3) for seven days,
and the effect on the intrinsic proliferation rate 𝑔 was estimated similarly to Figure
3. Figure 5A shows growth curve data from the 1x plating density, color-coded by



68

Figure 5: In vitro control of Transceiver activation area by manipulating either pop-
ulation growth rate or initial population density. (A) Time-series of cell density under
growth-modulating drug conditions: Untreated (yellow), FGF2 (violet), or ROCK-inhibitor
(RI; green). Cell count data (circles, mean ± s.d.) were used to parameterize the logistic
growth equation (solid lines). FGF2 induces faster population growth, while RI dramatically
slows growth. "Untreated" sample reproduced from Fig. 3B. (B) Experimental perturba-
tions alter the predicted behavior of transceivers. Phase diagram of transceiver propagation
behavior as a function of proliferation rate (𝑔) and initial cell density (𝜌0) (see Figure 4A).
Circles indicate 𝑔 (estimated mean and 90%CI) and 𝜌0 for real in vitro perturbations. An
increase in 𝜌0 from 1x (yellow) should cause smaller foci (2x, orange) and eventually full
attenuation of signaling (4x, red). Alternatively, slowing down growth should cause fast,
uncontrolled propagation (low 𝑔, green) while speeding up growth should cause faster atten-
uation (high 𝑔, purple). (C) Schematic of the whole-well propagation assay. A co-culture
of senders (purple) and transceivers (brown) is plated in a culture well at time 𝑡 = 0. Each
sender acts as a propagation focus (inset diagram), and the amount of ligand produced in the
well (green) over time is measured by fluorescence imaging. This assay allows quantification
of propagation without isolation of single propagation foci. (D) Time-series micrographs
of 1:100 sender:transceiver co-cultures plated at 1x density (1250 cells/mm2) under various
drug treatments. Senders and activated transceivers produce GFP (green). Compared to un-
treated, RI-treated wells propagate strongly throughout the time-course, while FGF2-treated
wells propagate much weaker (days 1-4) and shut off earlier (day 5-6 instead of 7). Scale
bar 1 mm. Note the well border produces a circular artifact. (E) In vitro and (F) simulated
results for the assay in (D), shown as the percentage of the well covered by GFP fluorescence
over time. (G) In vitro and (H) simulated propagation radii (𝑟prop) of single foci over time
for different initial densities. Error bars in (G) indicate mean ± s.d. (I) Peak propagation
distance in vitro for different initial densities (𝑛 = 5, blue indicates mean).
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drug treatment (colored circles, mean ± s.d.; see Figure S9 for 2x and 4x initial
densities). Treatment with 250 ng/mL FGF2 (purple) accelerated proliferation by
a factor of 1.49 to 1.09 days−1 (90% CI: 0.847 to 1.45 days−1) compared to the
untreated condition (yellow), while 50 `M RI (green) slowed proliferation by a fac-
tor of 0.19 to 0.141 days−1 (90% CI: 0.111 to 0.169 days−1). The resulting best-fit
growth curves are shown as solid curves in Figure 5A. These measured prolifera-
tion rates are shown in Figure 5B (circles, mean ± 90% CI) superimposed on the
phase diagram of behavior predicted by the computational model. In this model, RI
treatment (green) should push the system into the dark blue region of "unlimited"
propagation that does not shut down by day 8, while FGF2 treatment (purple) should
remain in the light blue region of "self-limited" propagation (respectively, left and
right in the X-direction in the phase diagram). Of note, neither drug was found to
modulate synNotch activity per se (see Figure 1D and Figure S8G). See Figure S9
for full results of MLE.

To test these predictions, we devised a "whole well" assay of signal propagation.
Figure 5C shows a schematic of this assay in which senders (purple) and transceivers
(brown) are initially plated in a 1:100 ratio (top left diagram). Each sender (inset
diagram, bottom) locally triggers a wave of GFP signaling (green), and in permissive
conditions, these foci expand and fuse over time to occupy a significant percentage
of the surface area of the culture well (top right diagram). This assay allows us to
quantify transceiver propagation in cases where isolation of individual propagation
foci is challenging, such as when propagation is so efficient that adjacent foci in the
well rapidly fuse.

Using this assay, we tracked GFP fluorescence in whole culture wells over a seven-
day time-course under different drug treatment conditions. Figure 5D shows that in
the absence of drug treatment, transceivers initially produce GFP ligand and subse-
quently shut off expression by day 6-7 (first row, "untreated"), as in the single-foci
experiments. In the presence of RI, however, GFP ligand propagation proceeds vir-
tually indefinitely and fills the entire culture well (second row, "ROCK inhibitor").
Conversely, FGF2 treatment causes a more subtle activation of GFP ligand, followed
rapidly by GFP depletion (third row, "FGF2"). The percentage of the well covered
by GFP fluorescence is shown in Figure 5E (untreated: yellow, RI: green, FGF2:
purple). We populated the morphospace also with the other combinations of pro-
liferation rate/initial density combinations, the results follow similar trends and are
shown in Fig. S10C,D.



70

Figure 5F shows computational simulations of these scenarios. For each experi-
mental condition, a 150 × 150 hexagonal lattice was randomly seeded with senders
and transceivers in a 1:100 ratio (𝑛 = 10 replicates) and numerically integrated over
seven days using the population growth parameters fitted via MLE and a shorter
cell-cell contact distance (see Methods). In the absence of treatment (yellow), a ma-
jority of the lattice quickly activates, followed by a gradual decline. In the presence
of RI (green), propagation instead persists throughout the time-course, eventually
saturating the lattice. In contrast, FGF2 treatment (purple) speeds up the progression
from propagation to attenuation, causing lower levels of activation. Thus, our model
corroborates the experimental evidence and demonstrates that the effects of RI and
FGF2 treatment on cell proliferation (inhibition and activation, respectively) are
sufficient to explain the starkly divergent outcomes of signaling activation between
these conditions. We also note that the experimental propagation area was found to
be smaller than predicted by modeling (contrast the peak activation in the Untreated
and FGF2 conditions in Figure 5E and Figure 5F), even with a shorter contact dis-
tance. Such a deviation could be a result of the lower signal-to-noise ratio when
imaging at low magnification, where low levels of fluorescence are more difficult
to discern and isolate from background. Additionally, drug treatments appear to
induce changes in signaling behavior within the first two days of growth, earlier
than predicted by modeling (contrast the separation between curves in Figure 5E
and Figure 5F). In addition to altering population growth, is therefore these drugs
may affect other factors, such as the production rate of ligand and/or the process of
fusion between adjacent signaling foci.

Alternatively, the Y axis of the phase diagram can be traversed by changing the
initial cell density. Single-foci propagation assays were performed as described
above, in vitro (𝑛 = 5) and in silico, starting from initial densities of 1x, 2x, or
4x confluent cell density. Figures 5G-I show that the behavior of the propagation
follows the predictions of the model. In Figure 5G (in vitro; mean ± s.d.) and
Figure 5H (in silico), the propagation disc is smaller and deactivates faster at an
initial density of 2x. At an initial density of 4x, there is no activation in silico and
very little activation above baseline in vitro. Thus, as initial density increases, the
critical attenuation density is reached more quickly and there is less time for signal
to spread. Due to the persistence of mCherry after transceiver deactivation (see
Figure 3A), an important property of transceiver patterning is the maximum size of
the activation disc before deactivation. As shown in Figure 5I, the initial density
strongly determines the maximum area of the propagation disc (𝑛 = 5 replicates in
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black; blue lines indicate means). These perturbation experiments support the idea
that population density dynamics are predictive of transceiver patterning. They also
demonstrate the feasibility of treating two parameters of growth — initial cell density
and the intrinsic rate of cell proliferation — as control parameters of patterning.

Tissue-scale cell density gradients generate spatial signaling activation
gradients and kinematic waves

In order to define distinct regions of differentiation, embryonic tissues regulate the
spatial distribution of chemical morphogens (Turing, 1952; Wolpert, 1969; Ashe and
Briscoe, 2006). Recently, chemical gradients have been engineered to direct spatial
differentiation using exogenous morphogens (Stapornwongkul et al., 2020; Toda,
McKeithan, et al., 2020). Here, we instead set out to engineer spatial information
in a non-genetic fashion in the form of cell density gradients, which can be decoded
by transceivers into distinct spatial domains.

We hypothesized that a spatial gradient of cell density can elicit a gradient of
GFP ligand. In Figure 6A, a phase diagram at an early time-point (left, computed
as above at 𝑡 = 2.7 days) shows that the initial cell density primarily determines
whether a region of tissue is signaling or not signaling. Thus, we reason that a
culture well inoculated with senders and transceivers in a gradient of cell density
(top right) should become activated in areas where density is within the optimal
range (𝜌low

c < 𝜌 < 𝜌
high
c ) and stay inactive in areas where density is above the

optimal range (𝜌 > 𝜌high
c ). Figure 6A, bottom right, shows a computational example

where an initial density gradient causes a gradient in the predicted amount of GFP
([GFP]SS, shown in green; see Methods for details of calculation).

To test this prediction, we established an in vitro system where a a 1:100 mixture of
senders and transceivers was seeded in a tissue culture well. Based on the number
of cells seeded, the density was 2x confluence (2500 cells/mm2) on average, but the
initial seeding was biased towards one end of the well, forming a gradient of cell
density. We then imaged the constitutive blue reporter (tagBFP) and the GFP ligand
as a proxy of cell density and signaling activation, respectively. As shown in Figure
6B, at 2.7 days of culture the GFP output of the transceivers is patterned along the
well in a way that recapitulate the cell density gradient. The yellow boxes indicate
the region used to quantify the BFP and GFP gradients shown in 6C. Thus, spatial
patterns of gene expression can be established with this circuit given the cell-density
dependency, via establishing cell density gradients.
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Figure 6: Spatial gradients of cell density produce long-range activation gradients and
kinematic waves. (A) Modeling suggests that at early time-points, transceiver activation
is determined primarily by the initial density 𝜌0 (left, 𝑡 = 2.7 days). Spatial variation in
signaling, therefore, could be achieved by biasing the initial seeding of the cell culture well
to create a spatial gradient of density (top right). If the the top half of the well is too dense
for signaling while the bottom half is optimal, distinct regions of GFP signaling/no signaling
should develop (bottom right). Green represents [𝐺𝐹𝑃] at steady-state ( [GFP]SS). (B-C) In
vitro density and signaling gradients. (B) Stitched epifluorescence micrographs of a culture
well inoculated with a sender:transceiver co-culture (1:100 ratio) in a spatial gradient of
initial density (average of 2x) and imaged at 64 hrs (2.7 days) of culture. Scale bar 2 mm.
TagBFP is constitutively expressed by Transceivers and acts as a cell density readout. Boxed
region quantified in (C). (C) Fluorescence profiles showing the anti-correlated BFP and GFP
gradients. (D-E) In silico modeling predicts long-range kinematic waves over time. (D)
Phase diagrams at three time-points with logarithmic y-axes. The density range between
𝜌low

c and 𝜌
high
c (white dotted and dashed lines) is optimal for signaling. (E) Given an

initial density gradient, different areas of the well could enter/exit the optimal range at
different times, creating a virtual (kinematic) wave of activation. Green is [GFP]SS. (F-G)
A synthetic kinematic wave generated by a density gradient in vitro. (F) Epifluorescence
micrographs of a culture well seeded with 1:100 senders:transceivers in a spatial gradient
of density (average of 1x) and imaged daily. From days 1-4, a wave spreads downwards as
different regions become activated. Scale bar 2 mm. The boxed region is quantified in (G).
See Supplemental Movies 9-12 for time-lapse movie of this dataset, and other examples of
similar results. (G) Spatial profile of GFP fluorescence in (F) over time. White dots show
the mean wavefront position, which has a mean velocity of 0.67 mm/day.
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As with uniform cell density, we reason that gradients of cell density can produce
rich signaling behavior over time due to the dynamics of cell population growth. In
particular, because signaling activation occurs in our system within an optimal range
of density (see 1E), we hypothesized that at lower densities, a spatial gradient of cell
density could cause a virtual wave of activation across the well. Due to population
growth, a region of the culture well that begins the time-course too sparse for
activation (𝜌 < 𝜌low

c ) over time will enter the optimal range (𝜌low
c < 𝜌 < 𝜌

high
c )

and eventually exit this range (𝜌 > 𝜌
high
c ). In Figure 6D phase diagrams at three

consecutive time-points of simulation are annotated with the critical densities 𝜌low
c

and 𝜌high
c , plotted respectively as white dotted and dashed lines. Over time, regions

of the well with different initial densities (shown on a logarithmic Y-axis) should
enter the optimal range between the two lines at different times. As shown using an
example gradient in Figure 6E, this staggered activation creates the appearance of a
large wave spreading through the well. However, this wave is in fact only virtual, or
"kinematic," meaning each region is turning on and off independently based on its
local cell density.

Our results in Figures 6F and 6G demonstrate a kinematic wave generated by an in
vitro density gradient of sender and transceiver cells (1:100 ratio). The upper region
of the well in Figure 6F starts at an efficient density for signaling but eventually
becomes too dense. In contrast, the bottom region of the well is initially too
sparse for signaling but enters the optimal range of density after 3-4 days in culture.
Although these regions are many millimeters apart (scale bar 2mm), their entry
and exit into the optimal range are staggered, creating the appearance of a wave
moving downwards (see also Supplemental Movies 9-12 for time-lapse movie of
this dataset, and other examples of similar results). The data in the yellow box were
used to calculate the mean wavefront position as shown in Figure 6G, and the mean
wave velocity was found to be 0.67 mm/day. This speed is 5.1 times faster than
the speed of direct cell-to-cell propagation measured at 1x confluent density (see
Figure 2H) and roughly twice the speed of directed fibroblast motility (Cornwell
and Pins, 2010), making signal transduction and bulk transport unlikely causes of
this phenomenon. Collectively, these results show that we can create spatial and
spatio-temporal gradients of signal activation by generating gradients of cell density
and exploiting the dynamics of population growth.
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Discussion
The astonishing diversity of tissue patterning and morphology in our own bodies,
compared to the relative uniformity of the starting material (fertilized oocyte), un-
derscore a challenge of how the genetic circuits for patterning achieve precision in
an ever-changing mechanical environment. In particular, patterning of cell growth
(proliferation) generates complex inhomogeneities in cell density over space and
time in all growing tissues. This observation provokes the fundamental question of
whether and how mechano-chemical circuits expand achievable patterning behav-
iors, compared to chemical only circuits, to achieve some of the organization that
we see in mammalian multicellular tissue shapes and patterns.

Here, we discovered a new effect of cell density on synNotch, which was previously
unknown (Figure 1), and use it to build and study a signal-propagation genetic
patterning circuit that can be influenced via cell density. The coupling between
density and signal propagation means, in practice, that the physical state of a growing
multicellular structure switches the synNotch circuit between propagating and non-
propagating phases. This simple circuit displays many of the hallmarks of natural
patterning systems that operate during development in mechanically non-uniform
contexts. We observed behaviors such as self-limiting propagation (Figures 2 and
3), controlled propagation area and speed (Figures 4 and 5), which we could control
by modulating growth of cells harboring the same identical simple genetic circuit.
Even spatial phenomena like gradients and propagating waves could be obtained by
generating spatially non-homogeneous cell densities, all with this only one simple
genetic circuit (Figure 6). Similar control principles (signaling controlled by density)
may have played a role in the evolution of natural patterning systems, allowing
the control of minimal genetic patterning circuits via non-genetic mechanisms to
generate increased variety of tissue patterning. And this type of control could be at
play in present-day natural systems as well.

A remarkable feature of this circuit and its density-dependency is its close agreement
with predictions from a simple computational systems model. Despite a lack of pre-
cise quantitative parameter values for many molecular interactions, the qualitative
behaviors possible with this density-dependent multicellular circuit can be enumer-
ated and explained from simple properties of the components and their interactions.
More precise measurements could help to explain, eliminate, or exploit subtle dif-
ferences between in silico and in vitro results. Improved model accuracy, together
with finer control over cell proliferation and spatial distribution in vitro, would in
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turn enable rapid prototyping of complex spatiotemporal patterning circuits.

Future work can explore the impact of physical variables on other synthetic sig-
naling pathways and circuit, and also produce multicellular designs that explicitly
exploit physical-chemical coupling to control synthetic morphogenesis using syn-
thetic gene circuit dynamics that can sense and respond to changes in the physical
state of a multicellular structure potentially responding to features including shape,
size, and mechanical stress in addition to density. Finally, closing the loop with the
output of patterning circuits being a change in mechanical features of the multicel-
lular structure would enable closed-loop control of patterning and morphogenesis.
Mechano-chemical coupling phenomena provide a route towards constructing syn-
thetic circuits that can modulate progression through morphogenesis in a stepwise
fashion, for example, executing new gene expression programs sequentially fol-
lowing the completion of a morphogenetic program, towards the construction and
control of circuits of complexity similar to the ones observed in vivo.
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Methods
Constructs
Constructs Design

The pHR_SFFV_LaG17_synNotch_TetRVP64 (#79128). The pHR_SFFV_GFPligand
(#79129) were provided by AddGene, whereas the pHR_TRE3G_mCherry_PGK_BFP
was obtained as described in the original syn-Notch paper (Morsut et al., 2016).
The rest of the constructs were cloned via In-Fusion cloning (Clontech #ST0345).
Specifically, the plasmids used for engineering fibroblasts were cloned in the pHR
plasmid for lentivirus production.

Lentivirus Production

Lentivirus was produced by co-transfecting the transfer plasmids (pHR) and vec-
tors encoding packaging proteins (pMD2.G and pCMV-dR8.91). Plasmids were
transfected by lipofectamine LTX transfection reagent (ThermoFisher Scientific) in
HEK293-T cells plated the day before in 6-well plates at approximately 70% con-
fluence (800000 cells/well). Supernatant containing viral particles was collected 2
days after transfection and filtered to eliminate death cells and cellular debris (cut-off
0.45 `m).

Cell Lines

L929 mouse fibroblast cells (ATCC# CCL-1) and HEK293 cells were cultured in
DMEM (Invitrogen) containing 10% fetal bovine serum (Laguna Scientific) and
tetracycline (100 ng/ml) when requested. We generated engineered cell lines that
we call "Senders" in the manuscript. The L929 Senders were obtained by trans-
duced to stably express surface GFP (GFP fused to the PDGFR transmembrane
domain, Addgene construct #79129) and a nuclear infrared fluorescent marker
(H2B-miRFP703, Addgene plasmid #112853). We generated engineered cell lines
that we call "Transceivers" in the manuscript. L929 transceivers were obtained via
transduction with three different virions. The first virion constitutively expresses
an anti-GFP antibody (Lag17) fused to a syn-Notch receptor with the transcription
factor tetracycline Trans-Activator (tTA) as its intracellular domain. This receptor
harbors a myc-tag on its extracellular domain that can be visualized by immunostain-
ing (Addgene #79128). A second virion expresses both the mCherry reporter and
BFP, respectively under control of the Tetracycline responsive element (TRE-3G)
promoter (cloned with the Infusion kit from the Addgene plasmid #133805) and the
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constitutive PGK promoter (cloned with Infusion from Addgene plasmid #79120).
The third virion expresses surface GFP ligand under transcriptional control of the
TRE-3G promoter. "Receiver" cells were obtained from the Lim Lab, and were
produced as described in Morsut et al., Cell 2016. Briefly, they contain the LaG17
synNotch TetRVP64 (#79128) anti-GFP synNotch receptor, and a TRE–>mCherry
reporter for synNotch induction visualization.

All cell cultures were maintained in an incubator at 37% humidity with 5% CO2.
For viral transduction, cells were plated in 6-well dishes to achieve approximately
10% confluence at the time of infection. For lentiviral transduction, 10–100 ml of
each virus supernatant was added directly to cells, with 1 `l of polybrene (Millipore
Sigma) also added to increase infection efficiency. Viral media was replaced with
normal growth media 48 hours post-infection. Cells were sorted for co-expression of
each component of the pathways via fluorescence-activated cell sorting (FACS) on
a FacsAria2 (Beckton-Dickinson) and by staining for the appropriate myc-tag with
fluorescence-tagged antibody where needed. A bulk-sorted population consisting of
fluorescence-positive cells was established for “sender” cells. For single-cell clonal
population establishment of transceivers, single cells were sorted by FACS into
96-well plates starting from populations of cells infected with lentiviral particles
for the relevant expression constructs. After sorting, monoclonal population were
expanded and screened for the activation of the GFP ligand after stimulation with
anti-myc antibodies (Cell Signaling Technology) bound to an A/G plate (Thermo
Scientific).

Experiments
Signaling modulation assay

Senders and receivers L929 cells were co-cultured in a 1:1 ratio in DMEM +
10% for 24h. Then, cells were detached and analyzed by FACSAria2 (Beckton-
Dickinson). We modulated one parameter only in each experiment. The experiments
where ECM composition is modulated (fibronectin, matrigel, gelatin), the procedure
used Fibronectin (Corning via VWR, VWR catalog #47743-728) was used without
dilution and incubated for 1 hour at 37°C; matrigel (Corning via VWR, VWR
catalog #47743-720) 10 ul of Matrigel were diluted in 1ml of DMEM in ice and then
incubated at 37°C for 45 minutes for the coating; gelatin (Sigma-Aldrich, catalog
#G1890) at is provided ready to use and incubated for 1h at room temperature to
prepare the plate before cell seeding at 1X density. For the stiffness modulation,
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were performed at 1x density on a commercial plate with FN coating on the silicone
bottom (CytoSoft 6-well Plates, Advanced Biomatrix). The set of experiment done
in the presence of cytoskeletal modulators, the drugs Y-27632 to inhibit Rock (Stem
Cell Technologies, #72304), used at 100 uM; latrunculin (Sigma-Aldrich, Catalog
#L5163) at 200 uM; blebbistatin (Sigma-Aldrich Catalog #B0560) at 25 ug/ml.
All the drug treatments were done on tissue treated plastic dishes at 1X plating
density. The set of experiments with modulated cell density at plating were done
on standard tissue culture plastic, at the indicated densities, where 1X=121250
cells/cm2, 2X=242500 c/cm2, 4X= 485000 c/cm2.

Mechanism experiments

For indications of volume (S3B), we measure the parameter "FSC" given as output
from the FACS machine (BD), which is proportional to the volume of the cells.
To obtain that value per cells, sender + receiver cells were cultured for 24h at the
indicated densities on tissue culture plastic, detached by tripsinization, and run as
single cells in a FACS machine FACSAria2 (Beckton-Dickinson). Similarly, to
measure GFP ligand via FACS (S3D), we cultivated Sender + receiver cells for 24h
at the indicated densities, detached the cells via trispinization, and recorded the GFP
channel output per cell from a FACS machine FACSAria2 (Beckton-Dickinson). To
measure the GFP aggregates via microscopy (S3E and F), we did as follow: we plated
sender + transceiver cells at 1:100 density at the indicated densities of 1X, 2X, or 4X.
We then fixed the cells with 4% PFA for 10 minutes, and performed immunostaining
for anti-GFP synNotch receptor with an anti-myc antibody Alexa 647-conjugated
(Cell Signaling Technology, Catalog #2233S). Fluorescent microscopy images were
captured with a Keyence digital microscope machine. To measure the aggregates
surface area, the green fluorescent channel was isolated and analyzed by itself; a
mask was obtained and the surface individual GFP aggregates was calculated in
ImageJ with the function “Analyze Particles”. For analysis of YAP localization
(S3J), L929 parental cells were plated at the indicated densities of 1X or 4X for 24h,
fixed in 4%PFA and stained with an anti-YAP/TAZ mouse antibody (Santa Cruz
Biotechnology, Catalog #sc-376830 AF647), and imaged after DAPI counterstaining
with a Keyence digital microscope. For the conditioned media experiment (S3K),
sender and transceiver cells were plated at 1X or 4X density for one day, after 24
hours the media was harvested; in another plate, sender + transceiver cells at 1:1 ratio
were plated at either 1X or 4X densities; plating media was conditioned media from
either 1X or 4X densities. For the nuclear marker fluorescent protein accumulation,
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sender + transceiver cells were plated at different confluences and far red channel
was measured via FACS after trypsinizaiton.

Propagation experiments

The L929 Sender and Transceiver cells, previously cultured in presence of tetra-
cycline (100 ng/ml), were co-plated at ratio of 1:1000 in absence of tetracycline.
Cells were imaged by automated inverted epifluorescence microscope (Keyence
BZ-X710) at a magnification of 2X for the image acquisition of the whole well and
at 20X for the image acquisition of the single spots. Gradients were generated by
non-uniformly plating the cell suspension on one side of the well.

Growth curves

At day 0 cells were plated in 96 well plate at different densities, with and without
drug treatments. Multiple replicates were plated to have one well for each day,
until day 7. After imaging that was done to evaluate the extent of the propagation,
cells were detached and resuspended in 100 `l of PBS and counted three times by
automatic cell counter (Countess II FL – life technologies).

Image analysis
Processing of fluorescence images

To quantify the profiles of fluorescence intensity in microscope images, analysis
was performed by Fĳi-ImageJ. Background was subtracted and binary masks for
fluorescent signals were generated to automatically segment propagation spots and
quantify the area of fluorescence.

Cell shape analysis

We sought to quantify the change in projected cell shape. In the absence of a
membrane marker, zoomed-in fields of view were selected at random from bright
field images taken before FACS analysis (1:1 Sender:Receiver ratio, imaged at 24h
of co-culture; see Figure S1C). Using Python, outlines of a subset of cells in the
field of view were drawn manually and their area and perimeter were calculated.
Both Senders and Receivers were counted and not distinguished. The circularity
index (Cerchiari et al., 2015) was calculated as 𝑐 = 4𝜋 Area

Perimeter2 . The index ranges
from 0 to 1, where 𝑐 = 1 is a perfect circle.
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Inference of cell motility

Cell motility speed in Figure S3I was inferred by particle image velocimetry (PIV)
applied to brightfield images. In each density condition, bright field images of
three regions of interest (ROIs) were taken hourly for 160 hours using an automated
inverted epifluorescence microscope (Keyence BZ-X710) at 20X magnification.
Every ten frames, the flow field was measured by comparing the locations of "parti-
cles" (cell fragments) in adjacent frames (i.e. 0hr to 1hr, 10hr to 11hr, etc.). Particle
velocities were then grouped within a 64 x 64 pixel window to generate a vector
field of velocities. Outlier velocities were replaced with the local mean in a 3 x 3
window kernel, and the mean velocity in the ROI was measured.

Statistical analysis
Comparison of fluorescence measurements by FACS

Due to the hundreds to thousands of measurements per sample generated by flow
cytometry, significance testing between sample distributions can be highly sensitive
to minor technical variations. For this reason, we instead calculate the statistical
likelihood that a sample originates from one of two signaling states, represented
by a positive control in the presence of sender cells and a negative control in the
absence of senders, both plated at 1x density. These control samples were binned
and their histograms treated as reference distributions 𝑃(𝑥 | "ON") and 𝑃(𝑥 | "OFF")
that estimate the true distributions in the "signaling ON" and "signaling OFF" states,
respectively. Each non-control distribution x was first binned into a histogram and
regularized (add 1 to each bin to avoid division by zero). Then each mCherry fluores-
cence value 𝑥𝑖 ∈ x was compared to the reference distributions to calculate the like-
lihood that 𝑥𝑖 originated from either the ON distribution (𝐿ON(𝑥𝑖) = 𝑃(𝑥𝑖 | "ON"))
or the OFF distribution (𝐿OFF(𝑥𝑖) = 𝑃(𝑥𝑖 | "OFF")). These were used to compute a
likelihood ratio LR

LR(x) =
∏
𝑥𝑖∈x

𝑃(𝑥𝑖 | "ON")
𝑃(𝑥𝑖) | "OFF") (3.1)

=
∏
𝑥𝑖∈x

𝐿ON(𝑥𝑖)
𝐿OFF(𝑥𝑖)

(3.2)

that is a ratio of the odds that the sample originates from the ON condition rather
than the OFF condition (i.e. LR(x) = 5 indicates the sample x is 5 times more
likely to be ON than OFF). Because these values can be quite large for deep samples
such as those in flow cytometry, the log-likelihood ratio LLR(x) = log10 LR was
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calculated. A perturbed sample 𝑘 was considered inhibitory (labeled ** in Figure 1)
if LR(x𝑘 ) < 1 (LLR(x𝑘 ) < 0) - in other words, if it was more likely OFF than ON.
This procedure was found to be robust to the number of bins used for the histograms
(Figure S2A).

Estimation of population growth parameters

To model the dynamics of cell density in culture, we use the logistic equation, a
differential equation that describes how population density 𝜌(𝑡) evolves over time.

¤𝜌 = 𝑔

(
1 − 𝜌

𝜌max

)
; 𝜌(𝑡 = 0) = 𝜌0 (3.3)

At low densities (0 < 𝜌 ≪ 𝜌max), there is exponential growth at the intrinsic growth
rate 𝑔. As density increases further, however, population density saturates as it
asymptotically approaches the carrying capacity 𝜌max. We then applied maximum
likelihood estimation (MLE) to infer parameters of the logistic equation from the
cell density measurements from growth curve experiments (see Methods). All den-
sity counts were assumed to be normally distributed about the curve with constant
standard deviation 𝜎 (homoscedastic). First, the parameters 𝑔, 𝜌max, and 𝜎 were
estimated using data from untreated co-cultures starting from three different starting
densities. We then studied the effects of pharmacologic treatments by estimating 𝑔
and 𝜎 in the presence of ROCK-i and FGF2. The carrying capacity 𝜌max was held
constant in order to alleviate degeneracies during fitting. Specifically, the logis-
tic equation becomes underdetermined when the data has near-constant population
dynamics. Due to measurement noise and low time-resolution, such data can corre-
spond equally well to either very slow growth or very low carrying capacity, which
obscure the true values of 𝜌max and 𝑔, respectively. To resolve this degeneracy,
carrying capacity (𝜌max) was assumed to be constant under pharmacologic pertur-
bation. Although these two possibilities suggest different regulatory influences on
cell behavior, our model of signaling only takes into account the density itself and
is agnostic to any underlying processes regulating it. Thus, either case will produce
the same predicted signaling behavior.

Mathematical modeling
Dynamical equations for Receiver and Transceiver signaling

Following a procedure of dynamical modeling and dimensional analysis (see Sup-
plementary Text), we model the dynamical response of a Transceiver cell using a
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system of delay differential equations.

¤𝑠𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝑠𝑖 (3.4)

¤𝑟𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝛾𝑟𝑖 (3.5)

Here, for a given cell 𝑖, 𝑠𝑖 and 𝑟𝑖 denote the amounts of ligand ("signal") and reporter,
respectively. The maximum protein production rate 𝛼 is equal for both species after
non-dimensionalization. Protein degradation time-scales for ligand and reporter
are 𝛾𝑠 and 𝛾𝑟 , and the time-scale of reporter kinetics relative to ligand kinetics is
represented by , and a time delay 𝜏 represents the time for protein manufacture and
trafficking. Activation is taken to be a non-linear Hill-like function

𝑓 =
(𝛽 𝐼𝑖) 𝑝

𝑘 𝑝 + (𝛽 𝐼𝑖) 𝑝 + (Y 𝑠𝑖) 𝑝
(3.6)

Here, 𝑘 and 𝑝 are the threshold and Hill coefficient (ultrasensitivity) of activation. A
Hill-like activation function was chosen because this form can be derived from the
application of mass-action kinetics to a cooperative transcription factor assembly,
such as the dimerization of tTA-VP16. Given a cell 𝑖 and its neighbors 𝑗 ∈]𝑖[,
the total amount of input ligand is 𝐼𝑖 =

∑
𝑗 𝑤𝑖 𝑗 𝑠 𝑗 , where 𝑊 =

(
𝑤𝑖 𝑗

)
is the cell-cell

contact matrix described below. The parameter Y is the strength of cis-inhibitory
interactions by which the ligand inhibits synNotch activation in the same cell,
indirectly inhibiting its own production. The effective amount of transcription
factor depends on the cell density, with the most efficient activation occurring at
100% confluence (1250 cells/mm2, or 𝜌 = 1) and less efficient activation at greater
or lesser densities. We model this effect with a density sensitivity factor

𝛽 =


𝑒−𝑚

(
𝜌−1

)
, if 𝜌 ≥ 1

𝑒
−𝑚

(
1
𝜌
−1
)
, if 0 < 𝜌 < 1.

(3.7)

When 𝜌 = 1, 𝛽 = 1, and at lower or higher densities, 𝛽 decays to zero in a log-
symmetric fashion (i.e. doubling the density has the same effect as halving it). Table
3.1 shows the parameter values used for all simulations.

The cell-cell contact matrix

The matrix𝑊 =
(
𝑤𝑖 𝑗

)
represents the extent of cell-cell contact between the signal-

sending cell 𝑗 and signal-receiving cell 𝑖. This matrix is used to map the amount
of signal presented to each cell as a function of the amount expressed by each other
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Parameter Meaning Value used
𝛼 Ligand production rate when induced 3.0
𝑘 Inducible promoter threshold 0.02
𝑝 Cooperativity (ultrasensitivity) of promoter 2.0
Y Strength of ligand-receptor inhibition in cis 1.0

𝜏 Time delay for ligand production 0.30†

𝛾 Decay rate of reporter relative to ligand 0.1
𝑚 Sensitivity of synNotch signaling to density 1.0
𝑟int Maximum distance for cell-cell contacts 3 cell diameters∗

vthresh Ligand production rate threshold for phase calculation 0.5

Table 3.1: Modeling parameters.
†Expressed in dimensionless time-units; corresponds to 0.43 times the generation time of
the cell line.
∗ 𝑟int = 1 was used for whole-well simulations.

cell. Accordingly, 𝑊 encodes the signal-sending "flux" between each cell and thus
conserves mass. Because of this property,𝑊 is a Markov matrix (

∑
𝑗 𝑤𝑖 𝑗 = 1), and

thus the signaling input to a cell 𝐼𝑖 =
∑
𝑗 𝑤𝑖 𝑗 𝑠 𝑗 is a weighted mean of the ligand

expressed by its neighbors. Weights were calculated by evaluating a Gaussian kernel
centered on cell 𝑖 at each neighbor 𝑗 , truncating the kernel at a maximum contact
radius 𝑟int, and normalizing to satisfy the Markov constraint. Figure S5A shows an
example of these calculated weights.

Integration of delay differential equations

Equations 3.4 were integrated over time using a forward-Euler integration scheme
with fixed time-step of d𝑡 = 0.002 (≈ 4.7 min). Time delays were represented
as an integer number of time-steps and resolved using the method of steps for
delay differential equations, with all chemical species set to zero expression at time
𝑡 < 0. Starting at time 𝑡 = 0, sender cell expression of signaling ligand is set to
𝑆sender(s) (𝑡 ≥ 0) = 1.0. Simulations, as well as data analysis and plotting, were
performed using a custom Python library (see Code Availability).

Cell density and length-scale in the model

In our model, we define the area of each hexagonal cell to be equal to the average
area at the given density. For instance, at a density of 1250 cells/mm2 the cell area
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is 1250−1 mm2 = 800`m2. The side length of a hexagon is then calculated from
the area and used to infer linear distances on the plane of the lattice (propagation
distances, scale bars, etc.). To circumvent computational complexity associated
with re-meshing after each cell division, density changes are modeled by re-scaling
cell sizes using the area relationship above, preserving the structure of the lattice.
This choice may under-estimate propagation velocity due to the contribution of cell
division to signal diffusion.

Alignment of in vitro and in silico time-scales

In our chemical reaction system, the time-scale of reaction kinetics is set by the
degradation rate constant of the ligand species 𝛾𝑠. In practice, this rate is difficult to
measure directly. Instead, we relate this time-scale to the observed in vitro system
by assuming that ligand degradation and dilution occurs at a constant rate across
all conditions and that this rate is comparable to the intrinsic growth rate of the
wild-type cell line (𝑔 ≈ 𝛾𝑆). For example, we assume that during the exponential
phase of growth ligand decay is primarily due to dilution by growth and division
rather than by active proteasomal degradation. Thus, we were able to relate the time
units of the computational and in vitro systems.

Simulation of GFP at steady-state

Steady-state concentrations of GFP ([GFP]SS) in transceivers were measured by
simulation of senders and transceivers randomly seeded on a 40 x 40 hexagonal
lattice in a 1:100 ratio (𝑛 = 5 replicates). Cell lattices were simulated for eight days
at 1000 different densities ranging from 𝜌 = 10−3 to 𝜌 = 10, with no population
growth (constant density). At the final time-point, the mean concentration of GFP
in transceiver cells was used as an estimate for the steady-state. [GFP]SS was
calculated as a nearest neighbor interpolation of these data.

Identification of critical densities
The critical densities 𝜌low

c and 𝜌high
c were calculated from the steady-state GFP con-

centration in transceivers simulated at constant densities (see above section "Simu-
lation of GFP at steady-state"). The critical densities were taken to be the densities
at which [GFP]SS crosses the promoter threshold 𝑘 . That is, [GFP]SS(𝜌crit) = 𝑘

was calculated by linear interpolation of the simulated data.



85

Data Availability
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Code Availability
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Supplementary Videos
Supplementary Video 1. Propagation of GFP signal by transceiver cells around
a single sender cell (purple) plated at 1X confluency (1250 cells/mm2). Shown
are microscope images of overlaid far red channel (purple), bright field (gray), and
green channel (green) of a focus of propagation around a single sender cell through
the transceiver cells (gray). Images taken every 1 hour, over a total of 1-72h. Scale
bar 50um.

Supplementary Video 2. Propagation of GFP signal by transceiver cells around
a single sender cell (purple) plated at 2X confluency (2500 cells/mm2). Shown
are microscope images of overlaid far red channel (purple), bright field (gray), and
green channel (green) of a focus of propagation around a single sender cell through
the transceiver cells (gray). Images taken every 1 hour, over a total of 1-72h. Scale
bar 50um.

Supplementary Video 3. Propagation of GFP signal by transceiver cells around a
single sender cell (purple) plated at 4X confluency (5000 cells/mm2). Shown are
microscope images of overlaid far red channel (purple), bright field (gray) and green
channel (green) of a focus of propagation around a single sender cell through the
transceiver cells (gray). Images taken every 1 hour, over a total of 1-72h. Scale bar
50um.

Supplementary Video 4. Renderings of model-simulated GFP expression in an
80×80 lattice of transceivers and a single sender cell (purple) at constant densities
of 𝜌 = 1, 2, and 4 (1250, 2500, and 5000 cells/mm2). For details of modeling,
simulation, and calculation of length scale, see Methods: Mathematical modeling.

Supplementary Video 5. Attenuation of propagation of GFP signal by transceiver
cells around sender cells (purple) plated at the beginning at 1X confluency (1250 cells/mm2);
shown here is a timelapse video from pictures taken every 30min, starting from 3
days after beginning of culture, for a total of 5 days. Shown are microscope images
of overlaid far red channel (purple), bright field (gray), and green channel (green)
of a focus of propagation around a single sender cell through the transceiver cells
(gray). Scale bar 100um.

Supplementary Video 6. Attenuation of propagation of GFP signal by transceiver
cells around sender cells (purple) plated at the beginning at 2X confluency (2500 cells/mm2);
shown here are timelapse with pictures taken every 30min, starting from 3 days after
beginning of culture, for a total of 5 days. Shown are microscope images of overlaid
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far red channel (purple), bright field (gray), and green channel (green) of a focus of
propagation around a single sender cell through the transceiver cells (gray). Scale
bar 100um.

Supplementary Video 7. Renderings of model simulations with population growth.
Increasing cell density over time was modeled by re-scaling cell size (see Methods:
Mathematical modeling). Population growth dynamics were modeled by fitting a
logistic growth equation to experimental cell count data (see Methods: Experiments
and Methods: Statistical analysis).

Supplementary Video 8. Renderings of model simulations demonstrating three
distinct modes, or phases, of transceiver signaling that emerge in a time-span of
𝑡 = 8 days depending on growth parameters of initial density (𝜌0) and intrinsic
growth rate (𝑔); see Figure 4A. In the attenuated phase, initial density is greater
than the critical density 𝜌high

c and little or no propagation occurs. In the self-limited
phase, density begins below 𝜌

high
c but crosses it during the time-course, leading

to collapse of the signaling disc. In the unlimited phase, initial density is below
𝜌

high
c and the growth rate is too slow to reach 𝜌high

c by the end of the time-course.
Attenuated: 𝜌0 = 4.25, 𝑔 = 1.2. Self-limited: 𝜌0 = 1.0, 𝑔 = 1.2. Unlimited:
𝜌0 = 1.0, 𝑔 = 0.4.

Supplementary Video 9. Time course stitching of images taken every 24h for 5
days of the dataset shown in Main Fig. 6F. Shown is a field of view of the entire
culture well; blue is a constitutive marker that tracks cell density; green is the
signaling ligand produced upon activation. On the bottom, line profile graphs taken
in the center of the well parallel to the direction of green signal propagation and cell
density gradient of: left, blue signal; right, green signal.

Supplementary Video 10. Another example of traveling front wave due to a
gradient in cell density. Shown is only the green channel in the entire well for 4 days
with images taken every 24h.

Supplementary Video 11. Another example of traveling front wave due to a
gradient in cell density. Shown is only the green channel in the entire well for 4 days
with images taken every 24h.

Supplementary Video 12. Another example of traveling front wave due to a
gradient in cell density. Shown is only the green channel in the entire well for 4 days
with images taken every 24h.
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Mathematical modeling of multicellular contact-dependent signaling with syn-
Notch
A dynamical model of synNotch-based transceiver signaling
To analyze the dynamics of synNotch signal transduction within a multicellular
tissue, we seek a minimal mathematical description of the phenomenology of this
system. Notch-ligand signaling has been extensively studied and modeled (Collier
et al., 1996; Murray, 2002; Sprinzak et al., 2010; Formosa-Jordan et al., 2012;
Shaya et al., 2017; Binshtok and Sprinzak, 2018). Building on these models, we
begin with a description of the system in terms of chemical rate kinetics and a time
delay for protein production. We then simplify the resulting dynamical equations
under a set of stated assumptions and apply a dimensional analysis procedure to
arrive at a minimal description of the system. Finally, the model is augmented with
additional regulatory terms for density and regulation in cis.

We first consider the elementary chemical reactions involved when a cell 𝑗 express-
ing a cell-surface Notch ligand comes in contact with another cell 𝑖 expressing a
(syn)Notch receptor. Subsequent to ligand-receptor binding, the receptor is endo-
cytosed and cleaved by ADAM and 𝛾-secretase proteases, freeing the Notch intra-
cellular domain (NICD) then into the cytosol, where it translocates to the nucleus
and acts as a transcription factor.

For our transceiver cells, which contain synNotch, the signaling ligand is GFP and
the NICD contains the dimerizing transcription factor VP16-tTA, which stimulates
the production of cell-surface GFP ligand and the cytosolic fluorescent reporter
mCherry. This reaction system is summarized:

aij N𝑖 + bij S 𝑗
k+−−−⇀↽−−−
k−
[NS]ij

kcat−−−→ F𝑖 + bij S 𝑗 ∀ 𝑗 ∈ ]i[ Reaction 1

F𝑖
f (F𝑖)−−−−→
delay

F𝑖 + S𝑖 Reaction 2

F𝑖
f (F𝑖)−−−−→
delay

F𝑖 + R𝑖 Reaction 3

Here, the notation 𝑁𝑖 represents the concentration of chemical 𝑁 in cell 𝑖. Reaction
1 represents activation of Notch in cell 𝑖 in trans by ligands on all the other cells 𝑗
that are adjacent to 𝑖 (denoted ]𝑖[). A fraction of receptors and ligands 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗
participate in the reaction. Upon ligand-receptor binding with rate 𝑘+, complexes
of [𝑁𝑆]𝑖 𝑗 form and can dissociate with rate 𝑘− or trigger cleavage of 𝑁𝑖, producing
𝐹𝑖 at a rate 𝑘cat. We assume 𝑆 𝑗 is not degraded during trans-activation, although
relaxing this assumption has not been shown to lead to significant differences in
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Notch-ligand signaling models to date (Sprinzak et al., 2010; Khait et al., 2016).
In reactions 2 and 3 the NICD 𝐹𝑖 activates production of 𝑆𝑖 and 𝑅𝑖. We model
promoter activation using a Hill function 𝑓 (𝐹𝑖) = 𝐹

𝑝

𝑖
/
(
^𝑝 + 𝐹 𝑝

𝑖

)
, where ^ is the

threshold concentration for activation and 𝑝 is the Hill coefficient describing the
cooperativity (ultrasensitivity) of the response, or the sharpness of the transition
between on and off states.

Protein production requires many intermediate reactions such as transcription, trans-
lation, and post-translational processing that may delay the effect of transcriptional
regulation on protein concentrations. We represent the delay for protein production
as a single delay time 𝑇 ′ for the signaling ligand 𝑆 and reporter 𝑅. (Note that 𝑆’s
dynamics do not depend on 𝑅, so the two can be given separate delays without much
consequence). Using mass action kinetics, we express these reactions as a system
of differential equations with time delays (DDEs)1 in each cell 𝑖.

With the introduction of time delay terms, the time evolution equations for the
elementary reactions are

¤𝑁𝑖 = 𝛽𝑁 +
∑︁
𝑗∈]𝑖[

(
𝑘− [𝑁𝑆]𝑖 𝑗 − 𝑘+𝑤𝑖 𝑗𝑁𝑖𝑆 𝑗

)
− 𝛾𝑁𝑁𝑖 (3.8)

¤[𝑁𝑆]𝑖 𝑗 = 𝑘+𝑤𝑖 𝑗𝑁𝑖𝑆 𝑗 − (𝑘− + 𝑘cat) [𝑁𝑆]𝑖 𝑗 ∀ 𝑗 ∈]𝑖[ (3.9)

¤𝐹𝑖 = 𝑘cat
∑︁
𝑗∈]𝑖[
[𝑁𝑆]𝑖 𝑗 − 𝛾𝐹𝐹𝑖 (3.10)

¤𝑆𝑖 = 𝛼𝑆 𝑓 (𝐹𝑖 (𝑇 − 𝑇 ′)) − 𝛾𝑆𝑆𝑖 (3.11)

¤𝑅𝑖 = 𝛼𝑅 𝑓 (𝐹𝑖 (𝑇 − 𝑇 ′)) − 𝛾𝑅𝑅𝑖 . (3.12)

Here, 𝑇 is time, and 𝐹𝑖 (𝑇 − 𝑇 ′) indicates that the effects of gene induction are
subject to a time delay 𝑇 ′. 𝛽𝑁 is the basal receptor production rate, 𝛼𝑆 and 𝛼𝑅 are
the inducible production rates of synNotch-induced ligand and reporter, and 𝛾𝐹 , 𝛾𝑆,
and 𝛾𝑅 are protein decay rates due to degradation and dilution. Note that we take
the basal production rates of 𝑆 and 𝑅 (without induction) to be negligible based on
the clones we selected, but basal production can easily be added to the model.

1DDEs have been used similarly to study cellular processes with multi-step regulation including
cell cycle regulation (Busenberg and Tang, 1994; Srividhya and Gopinathan, 2006), circadian
oscillations (Smolen, Baxter, and Byrne, 2002), and p53 regulatory dynamics (Batchelor et al.,
2008) and are well-suited for modeling nonlinear phenomena in a succinct framework (Glass, Jin,
and Riedel-Kruse, 2021).
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We have also defined a cell-cell contact weight 𝑤𝑖 𝑗 = 𝑎𝑖 𝑗𝑏𝑖 𝑗 that summarizes the
amount of contact at the 𝑖 𝑗 junction. The matrix 𝑊 =

(
𝑤𝑖 𝑗

)
= 𝑊𝑇 determines the

signaling "flux" between cells in the lattice. In the tissue interior, conservation of
mass constraints require that the total amount of ligand received in signaling should
equal the total ligand presented (

∑
𝑖𝑊𝑖 𝑗 𝑠 𝑗 =

∑
𝑗 𝑠 𝑗 ), and thus𝑊 satisfies the Markov

property
∑
𝑗 𝑤𝑖 𝑗 = 1. Intuitively, then,

∑
𝑗∈]𝑖[ 𝑤𝑖 𝑗 [𝑁𝑆]𝑖 𝑗 is a weighted sum over all

neighbors ]𝑖[.2 Weights were assigned based on cell-cell distance such that closer
cells are engaged in stronger cell-cell contacts (see Figure S5A and refer to Methods:
Mathematical Modeling).

We then assume that Notch-ligand complex association and dissociation occur on
a much shorter time-scale than protein cleavage, production, or degradation and
thus apply a steady-state approximation [𝑁𝑆]𝑖 𝑗 (𝑇) ≈ [𝑁𝑆]𝑖 𝑗 , 𝑠𝑠. Solving for the
steady-state, [𝑁𝑆]𝑖 𝑗 , 𝑠𝑠 =

𝑘+
𝑘−+𝑘cat

𝑤𝑖 𝑗𝑁𝑖𝑆 𝑗 . Next we apply an assumption that the
cleavage turnover rate is slower than dissociation (𝑘cat ≪ 𝑘−) such that [𝑁𝑆]𝑖 𝑗 , 𝑠𝑠 ≈
𝐾−1
𝐷
𝑤𝑖 𝑗𝑁𝑖𝑆 𝑗 , where 𝐾𝐷 =

𝑘−
𝑘+

is the dissociation constant for Reaction 1. To simplify
notation, we also define the total amount of input ligand 𝐼𝑖 ≡

∑
𝑗∈]𝑖[ 𝑤𝑖 𝑗𝑆 𝑗 .

With these substitutions:

¤𝑁𝑖 = 𝛽𝑁 −
𝑘cat
𝐾𝐷

𝑁𝑖 𝐼𝑖 − 𝛾𝑁𝑁𝑖 (3.13)

¤𝐹𝑖 =
𝑘cat
𝐾𝐷

𝑁𝑖 𝐼𝑖 − 𝛾𝐹𝐹𝑖 (3.14)

¤𝑆𝑖 = 𝛼𝑆 𝑓 (𝐹𝑖 (𝑇 − 𝑇 ′)) − 𝛾𝑆𝑆𝑖 (3.15)

¤𝑅𝑖 = 𝛼𝑅 𝑓 (𝐹𝑖 (𝑇 − 𝑇 ′)) − 𝛾𝑅𝑅𝑖 (3.16)

Next, we assume that ligand-receptor binding has a minimal effect on receptor levels
relative to turnover due to degradation/dilution ( 𝑘cat

𝐾𝐷
𝐼𝑖 ≪ 𝛾𝑁 )3. This results in the

steady-state approximation 𝑁𝑖 (𝑇) ≈ 𝑁𝑖,𝑠𝑠 = 𝛽𝑁
𝛾𝑁

. Furthermore, we assume that NICD
is degraded quickly in the cytosol4 and thus we apply a separation of time scales
approximation 𝐹𝑖 (𝑇) ≈ 𝑘cat𝛽𝑁

𝐾𝐷𝛾𝑁 𝛾𝐹
𝐼𝑖. In the regime consistent with these assumptions,

2At lattice boundaries, some ligand is presented to the environment. However, we can recover
the Markov property of𝑊 by including the environment as a component of the system with 𝑠env = 0.
Note that there is no material flux across cell boundaries, so no ligand is lost across this free boundary.

3Fluorescent staining of synNotch receptor during transceiver signaling suggests that receptor
levels are not heavily depleted (see Figure S3E). While it is not yet clear whether synNotch levels
are quite this stable during induction, we nevertheless apply this approximation for its powerful
simplifying effect on the model.

4Degradation of synthetic derivatives of Notch has not yet been studied. However in natural



101

we arrive at the following modeling equations.

¤𝑆𝑖 = 𝛼𝑆 𝑓 (𝐹𝑖, 𝑇 − 𝑇 ′) − 𝛾𝑆𝑆𝑖 (3.17)

¤𝑅𝑖 = 𝛼𝑅 𝑓 (𝐹𝑖, 𝑇 − 𝑇 ′) − 𝛾𝑅𝑅𝑖 (3.18)

Promoter activation by a transcription factor (TF) is commonly modeled as a non-
linear response that is weak under a certain threshold concentration of TF and strong
above it, up to a saturating maximum rate.

We then apply a standard dimensional analysis procedure to represent the system
in terms of simplified dimensionless quantities. Time is made dimensionless by
substituting 𝑡 ≡ 𝛾𝑆 𝑇 and 𝜏 ≡ 𝛾𝑆𝑇 ′. Similarly, concentrations are substituted as
𝑠 ≡ 𝛾𝑆

𝛽𝑁
𝑆 and 𝑟 ≡ 𝛼𝑆𝛾𝑆

𝛼𝑅𝛽𝑁
𝑅. We define 𝛼 ≡ 𝛼𝑆

𝛽𝑁
as the production rate of the inducible

promoter and 𝑘 ≡ 𝐾𝐷𝛾𝑁 𝛾𝐹𝛾𝑆

𝑘cat𝛽
2
𝑁

^. We also define 𝛾 ≡ 𝛾𝑅
𝛾𝑆

as the relative time-scale of
reporter protein degradation kinetics.

¤𝑠𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝑠𝑖 (3.19)

¤𝑟𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝛾𝑟𝑖 (3.20)

𝑓 (𝑡) =
𝐼
𝑝

𝑖

𝑘 𝑝 + 𝐼 𝑝
𝑖

(3.21)

All parameter values used in simulation are supplied in Table 1 in the main text.

Density-dependent signal transduction

We model the observed dependence of synNotch signaling on cell density by con-
sidering that the input signal 𝐼 is less effective at densities above or below 100%
confluence (1250 cells/mm2, or 𝜌 = 1). We multiply 𝐼 by a density sensitivity factor
𝛽 that depends on density as follows.

𝛽 =


𝑒−𝑚

(
𝜌−1

)
, if 𝜌 ≥ 1

𝑒
−𝑚

(
1
𝜌
−1
)
, if 0 < 𝜌 < 1

(3.22)

Therefore, the input signal is most effective (𝛽 = 1) when 𝜌 = 1. As density
increases above this value, 𝛽 decays exponentially to zero at a rate 𝑚 as 𝜌 →∞, and

contexts, the NICD has been shown to be actively degraded by endosomal machinery (Carrieri and
Dale, 2017), and transcription factors found in the cytosol generally require accessory molecules to
protect them from rapid degradation (Cartwright and Helin*, 2000; Oeckinghaus and Ghosh, 2009).
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similarly for decreasing density, lim𝜌→0 𝛽 = 0. Note that this function is symmetric
about 𝜌 = 1 on a logarithmic scale; for example, doubling the density has the same
effect as halving it. Thus, the sensitivity to density in both sub- and super-confluent
regimes is tuned by the same parameter 𝑚. With this density sensitivity factor, our
system can be described as follows.

¤𝑠𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝑠𝑖 (3.23)

¤𝑟𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝛾𝑟𝑖 (3.24)

𝑓 (𝑡) = (𝛽𝐼𝑖)𝑝

𝑘 𝑝 + (𝛽𝐼𝑖)𝑝
(3.25)

Cis-inhibitory regulation

Classically, Notch receptors that are activated by a ligand in trans have been shown to
be nevertheless inhibited by the same ligand in cis (Celis and Bray, 1997; Micchelli,
Rulifson, and Blair, 1997; Klein, Brennan, and Arias, 1997; Jacobsen et al., 1998).
It is thought that this occurs when Notch and its ligand(s) on the same cell bind and
mutually inactivate each other (Sakamoto et al., 2002; Cordle et al., 2008; Sprinzak
et al., 2010). We model this process by adding an inhibitory term to the denominator
of the regulatory function 𝑓 , tuned by a free parameter Y representing the strength
of this effect. In the presence of signal ligand in cis, further ligand production is
thus dampened. This coarse-grained approach is intended to generalize over Notch
dynamics and minimize model complexity while retaining the salient features of
cis-inhibition.

With this addition, our system is modeled as follows.

¤𝑠𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝑠𝑖 (3.26)

¤𝑟𝑖 = 𝛼 𝑓 (𝑡 − 𝜏) − 𝛾𝑟𝑖 (3.27)

𝑓 (𝑡) = (𝛽𝐼𝑖)𝑝

𝑘 𝑝 + (𝛽𝐼𝑖)𝑝 + (Y𝑠𝑖)𝑝
(3.28)

In effect, cis-inhibition acts as a negative-feedback on signal production. Because
there is a time delay 𝜏 for protein production, feedback is delayed, resulting in
oscillatory behavior. In our regime, we observe dampened oscillations towards
steady-state (Figure S5B).
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Figure S1: Bright field imaging and additional controls for synNotch signaling assay
(A-C) Bright field images of L929 cells captured before the FACS assays reported in Figure
1. At this time point, cells were grown for 24h (A) on substrates with different compositions
and stiffnesses, (B) in the presence of chemical modulators of cytoskeletal tension, and
(C) starting from different cell densities at the time of plating. 1x denotes 1250 cells/cm2.
Scale bar 100 `m. (D) Violin plots showing distributions of mCherry fluorescence intensity
in Receivers, measured by FACS at 24h after co-culture with sender cells. Dotted line is
the threshold separating high/low mCherry fluorescence. Black dot indicates median. ∗∗
indicates the sample is more likely OFF than ON, as determined by the log-likelihood ratio
(LLR) statistical test. RI: ROCK-inhibitor, BLE: Blebbistatin, LAT: Latrunculin-A. FGF2:
Fibroblast growth factor 2.
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Figure S2: Robustness of LLR statistical comparison. After assaying the perturbed
samples using the FACS-based assay for synNotch signaling, a likelihood ratio was computed
to categorize the activation state of each sample as either ON or OFF. These states were
exemplified by reference samples (OFF: Senders absent; ON: Senders present; both: 1x
density, no ECM or additional chemicals). Reference samples were binned and regularized
(1 observation added to each bin) to yield continuous empirical probability distributions
corresponding to each state. Then, for each perturbed sample, the log-likelihood ratio (LLR)
assigns each sample to its closest reference distribution. (A) LLR is robust to the binning
procedure used for reference distributions. Curves show how the LLR of each FACS sample
varies as the number of bins increases from 1 to 1, 000. A point above the 𝑥-axis (horizontal
dotted line) is more likely to be ON, while a point below is more likely to be OFF. With
more than 4 bins, the number of bins does not affect the ON/OFF categorization by LLR.
1000 bins were used for all other figures. (B) To determine the ON/OFF threshold ("decision
boundary") for a single cell, the LR was calculated for a hypothetical cell observed in each
bin, and the threshold (370) was found where this curve crosses from OFF to ON.
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Figure S3: Mechanism of density-dependency synNotch signaling. (A) Violin plots show-
ing the distributions of the 2D projected cell area at different cell densities. Sender:receiver
co-cultures were imaged 24h after plating (images shown in Figure SS1C), and the 2D pro-
jected area of individual cells was measured from bright field images (black circles are cells;
gray line indicates mean) as described in Methods: Image analysis. As density increases
above 1x (1250 cells/mm2) the surface area occupied per cell decreases. **** 𝑝 < 10−4 by
Mann-Whitney U test. (B) FACS plots rendered as violin plots of Forward Scatter (FSC,
proxy for cell volume) of sender cells at 24h coming from co-cultures of sender/receivers at
the indicated densities. Black dot indicates median. This shows that cell volume decreases
at higher plating densities. (C) Violin plots showing distributions of circularity of single
cells, using the same image data in (A) (black circles are cells; gray line indicates mean).
Circularity scales from 0 (irregularly shaped) to 1 (perfectly circular), as described in Meth-
ods: Image analysis. This shows that cells from higher confluency cultures are more circular
than the ones coming from lower densities. **** 𝑝 < 10−4, ** 𝑝 < 10−2 by Mann-Whitney
U test. (Continued on next page.)
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Figure S3: (Continued from previous page) (D) FACS fluorescence distributions of green
channel intensity in GFP-ligand producing sender cells at 24h coming from co-cultures of
sender/receivers at the indicated densities. Black dot indicates median. This shows that cells
from higher confluency cultures have less GFP intensity. (E) Sample micrograph pictures
of sender:receivers 1:50 co-cultures at the indicated densities at 24h; magenta marks both
nuclei in sender cells, and synNotch receptor in receiver cells. Overlaid green channel marks
GFP ligand. Scale bar 50 `m. (F) Swarm plot of the size of GFP aggregates on sender
membranes in sender-transceiver co-cultures plated at the indicated densities and imaged
at 24hr. Ligand aggregates are significantly smaller at 2x and 4x density than at 1x. Each
dot is an aggregate. 62 aggregates were counted from 5 sender cells in each condition.
*** 𝑝 < 10−3, ** 𝑝 < 10−2, and ns 𝑝 > 0.1 by Mann-Whitney U test. (G) contour
plot of FACS data depicting green channel intensity and FSC (size) of cell distributions of
sender cells from sender/receiver co-cultures at 24h after seeding at the different densities
indicated via the color (blue 1x, orange 4x); this shows a trend whereby both cell size and
GFP intensity decreases at higher confluence. (H) Scatter plot of sender cell FSC (cell
size) and GFP (green channel) fluorescence, color-coded by density condition. Mean ±
standard error of the mean. Linear correlation analysis shows FSC is positively correlated
with GFP (Pearson’s 𝑟 = 0.24). (I) Box-and-whisker plots of average cell motility speed
(units are arbitrary) at different plating densities of L929 sender/receiver co-cultures over
160 hours of co-culture, capturing 1 frame/hour. Every 10 frames, the velocity field in
a high-magnification field of view was estimated using particle image velocimetry (PIV,
described in Methods: Image analysis). Each dot is the average velocity of the field, and
time-lapses for three fields of view in the same culture well were used (shown in different
colors). Central line is median. Box encapsulates 1st quartiles. Whiskers denote minimum
and maximum range after removal of outliers by the IQR method. This shows that cell
motility trends towards decreasing at higher cell densities. (J) Sample micrograph pictures
of parental L929 cells at the indicated densities at 24h stained with blue nuclear marker
(DAPI) and anti-YAP antibody (magenta), shown alongside a merge of the 2 channels.
Scale Bar is 50um. This shows that YAP localization does not dramatically changes in
these cells at 1X confluency vs 4X confluency. (K) FACS plots rendered as violin plots of
red channel intensity in receiver cells at 24h coming from co-cultures of sender/receivers at
the indicated densities, and treated with the indicated conditioned media. The conditioned
media was obtained from cultures grown at the indicated densities for 24h, as detailed in the
methods. Black dots are the median of the distribution. (L) FACS plots rendered as violin
plots of nuclear marker intensity in sender cells (FRFP, far red channel) at 24h coming from
co-cultures of sender/receivers at the indicated densities. Black dots indicate medians.
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Figure S4: Examination of single propagation foci. (A) Schematic of experimental setup
and image analysis pipeline for quantifying the size of individual propagation focus. In
each culture well, Sender cells (purple) are sparsely seeded among Transceivers, which are
initially inactive (brown) and become activated over time by signal propagation (green).
Sufficiently isolated foci are identified, and these foci are imaged at multiple sequential
time-points. The area of the propagation focus is obtained via thresholding of the green
fluorescence channel (described in the Methods). (B) Micrograph pictures of single isolated
foci of propagation at the indicated densities, captured at the indicated timepoints (day
1-3). These pictures represent replicates of Figure 2C. These and other similar propagation
foci were used for calculation of propagation distance and velocity (Figures 2D and 2H).
Grayscale: bright field. Green: GFP (signaling ligand and activation area). Purple: FRFP
(nuclear marker in Senders). Scale bar 100 `m.
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Figure S5: Mathematical modeling of cell-cell contact, signaling dynamics, and density-
dependent signaling. (A) Weights of all cell-cell contacts between a given cell 𝑖 (centered)
and its neighbors. For each neighbor 𝑗 , the weight 𝑤𝑖 𝑗 (inset number) is multiplied by its
ligand expression to yield the amount of ligand involved in signaling from 𝑗 to 𝑖. For each
cell 𝑖, its adjacency weights𝑤𝑖 𝑗 sum to 1. Weights were calculated from all pairwise cell-cell
distances by applying a Gaussian kernel (depicted in color), enforcing a maximum distance,
and normalizing (see Methods and Materials). For all simulations shown, the Gaussian
kernel has covariance matrix 𝚺 = 𝑑𝑐 ·

( 1.5
1.5

)
, and cell-cell adjacency was truncated above

3 𝑑𝑐, where 𝑑𝑐 is the cell-cell distance on the lattice. (B) A time-course illustrating gene
expression dynamics between cell types in the model. Senders begin expressing a constant
amount of ligand at time 0. While Receiver activation is monotonic, the Transceiver response
is non-monotonic. Due to the time delay and negative feedback in their dynamical response,
Transceivers produce an initial pulse of ligand that quickly overshoots the equilibrium
concentration and then gradually approaches equilibrium. Simulation time is presented in
terms of the time delay parameter 𝜏. All quantities are normalized to highlight the difference
in relative dynamics. (C) Effect of cell density on signaling efficiency in the computational
model. To represent the phenomenology of impaired signal transduction at super-confluent
cell density, we multiply the amount of ligand presented by the cell by a coefficient 𝛽 (y-axis)
that exponentially decays as a function of cell density 𝜌 (x-axis). 𝜌 = 1 corresponds to the
density at confluence (1250 cells/mm2). The parameter 𝑚 tunes the sensitivity of signaling
to density, and 𝑚 = 1.0 was chosen for all shown simulations. The inset images show
renderings of the cell lattice at the indicated density. Scale bar 25`m. As density increases,
cell area is reduced while shape and cell-cell adjacency are preserved.
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Figure S6: Density-based attenuation of signal propagation. (A) Bright field images
of the culture shown in Figure 3A, at the indicated time points; shows differences in cell
density at 1 day vs 7 days of culture. Scale bar 100 `m. (B) Quantification of GFP and
mCherry area over time for the images in Figure 3A. GFP intensity peaks at day 4 and
falls substantially by day 7. (C) Diagram description of the assay to investigate whether
reducing the cell density reverses the attenuation of signaling. First, a 1:50 co-culture of
Senders:Transceivers ("Plating 1") is grown at 1x density for 7 days; the propagation is
allowed to occur ("Propagation" phase) and to turn off ("switch off" phase) to ensure both
activation and attenuation. Then, cells are detached ("Detaching") and re-cultured at lower
densities ("Replating") to assess whether they are still able to propagate the signal ("Propa-
gation?" test). (D) First row: Daily time-course showing micrographs of green fluorescence
for the Plating 1-propagation-switchOff phases. Second and third row: micrographs pictures
from the Replating phase grown at 1X (second row) and at 4X (third row). After detachment,
a replating at 1x retained competency for signal propagation, while a replating at 4x showed
rapid attenuation after an initial activation. Scale bars 1 mm. (E) Quantifications of the
area of GFP activation during Plating 1 (error bars indicate standard deviation, 𝑛 = 2) and
Replating at 1x and 4x densities. (F) Micrographs used for the quantifications of signal
propagation shown in Figure 3C. Green epifluorescence was captured from a whole culture
well, and propagation foci were selected and analyzed using the image analysis pipeline
described in the Methods. Scale bars 1 mm.
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Figure S7: Maximum likelihood estimation of population growth parameters. A
maximum-likelihood estimation (MLE) procedure was used to identify the intrinsic cell
proliferation rate 𝑔, the population carrying capacity 𝜌max, and the standard deviation 𝜎.
(A) Sender-Transceiver co-culture density was measured daily (scattered points, 𝑛=3) for
initial densities of 1x, 2x, and 4x. The solid lines are simulated growth curves using MLE
parameters (shaded regions are 80% probability). (B) 1- and 2-D distributions of parame-
ters (𝑛=106 bootstrap replicates). Identified regions are well-bounded with little correlation,
indicating successful fitting. Occasional high values of 𝑔 (fast growth) suggest that higher
time-resolution may be desired at early time-points. (C) Summary table of fitted parameters
with confidence intervals from bootstrap.
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Figure S8: Categorization of transceiver responses into phases. (A-C) Simulated
transceiver monolayers were categorized into three distinct phases based on the number
of activated transceiver cells (𝑛act) at time 𝑡 = 8 days and the initial rate of GFP production
(vinit). See Figure 4 and Methods for simulation details and mathematical definitions. (A)
Histogram of 𝑛act at 𝑡 = 8 days. The pie chart shows that at this time-point, 24.8% of sim-
ulated monolayers (red) have no activated transceivers (𝑛act = 0), and 75.2% (blue) have at
least one. (B) Histogram of vinit shows a bimodal distribution, with the two modes separated
by a chosen threshold value vthresh = 0.25. The pie chart shows that 54.2% of simulations do
not show activation (vinit < vthresh, red), and 45.8% of simulations (blue) do. (C) Decision
tree for assigning phase based on vinit and vthresh. (D-F) Signaling phase also depends on
the carrying capacity. Logistic growth of cell density depends on the intrinsic proliferation
rate 𝑔, initial density 𝜌0, and carrying capacity 𝜌max. Therefore, the signaling phase should
depend on 𝜌max in addition to 𝑔 and 𝜌0. (D) Phase boundaries in 3D. For 𝜌max less than a
critical density, cell density does not increase enough to trigger signaling attenuation. Thus,
the limited phase does not exist. (E-F) Phase diagrams generated by selecting slices of (D)
at the indicated parameter values.
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Figure S9: Estimation of growth parameters under drug-induced perturbations. The
maximum-likelihood estimation (MLE) procedure employed in Figure SS7 was used to iden-
tify the intrinsic cell proliferation rate 𝑔 and carrying capacity 𝜌max (parameters of logistic
population growth) and the standard deviation 𝜎. (A) Summary of results of the MLE pro-
cedure with 90% confidence intervals (𝑛=106 bootstrap replicates). "Untreated" condition
reproduced from Figure SS7. (B) In the indicated treatment conditions, sender-Transceiver
co-culture density was measured daily for initial densities of 1x, 2x, and 4x (colored circles,
𝑛=3). Solid lines are simulated growth curves using MLE parameters (shaded regions are
80% probability). (C) 1- and 2-D distributions of parameters estimated by bootstrapping
of MLE. Identified regions are well-bounded with little correlation, indicating successful
fitting. Occasional high values of 𝑔 (fast growth) suggest that higher time-resolution may
be desired at early time-points. See Figure SS7 for complete results from the "Untreated"
condition.
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Figure S10: Confluence and drugs (A) Whole-well micrographs of 1:100
sender:transceiver cultures imaged every day for 7 days at the indicated initial cell den-
sities (1X, 2X, 4X). First row (1x) reproduced from Figure 3. (B) Micrographs of single
foci from sender-transceiver cultures at the indicated densities. Green is GFP, and purple is
the nuclear marker present in sender cells. (C-D) Micrographs of green fluorescent channel
for 1:100 sender-transceiver cultures over a 7-day time-course under the indicated drug
treatments at initial densities of (C) 2x and (D) 4x confluence. Compared to 1X (shown in
Figure 5D), the drug treatments show similar trends: FGF2 decreases signal propagation,
while Rock-inhibitor increases it. In all conditions propagation is a little slower in the 4x
condition than in 2x. All scale bars in the figure are 1 mm.
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Figure S11: Kinematic wave experiment: replicates and quantification. (A-B) Micro-
graphs of BFP and GFP fluorescence (top and bottom rows, respectively) from whole wells
of sender-transceiver cultures plated at a mean initial density of 1x confluence. The het-
erogeneous distribution of cell density is demonstrated by BFP fluorescence (constitutively
expressed in transceivers; blue channel), and the resulting kinematic wave of transceiver
activation is shown by GFP fluorescence (green channel). Scale bars 1 mm. (C-D) Quantifi-
cation of the fluorescence profile in the boxed area in Figure 6F over time. The BFP gradient
(first row) is maintained throughout the time-course, while the peak in GFP fluorescence
(second row) migrates over time.
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C h a p t e r 4

CONCLUDING REMARKS

4.1 Overcoming barriers to engineering complex behavior with in silico circuit
design and synthetic mechano-chemical coupling

Cellular behavior is determined by the dynamic activity of networks, or circuits,
of biomolecules interacting with one another and the cellular microenvironment
(Lim, Lee, and Tang, 2013). Many studies have used mathematical modeling to re-
veal the quantitative principles of how certain circuits generate specific phenotypes
and thus have produced molecular blueprints for engineering diverse phenotypes
including transcriptional oscillations (Elowitz and Leibler, 2000), single-cell po-
larization (Chau et al., 2012), and multicellular differentiation (Zhu et al., 2022).
Despite the large variety of circuits in nature, most of these synthetic engineering
efforts have focused on small signaling circuits (with 4 or fewer molecular com-
ponents) that respond only to chemical stimuli such as the presence of ligands or
small molecules (Manhas et al., 2022), due to two methodological barriers: the
computational difficulty of studying larger circuits and the lack of molecular tools
that respond to physical stimuli. This thesis addresses these barriers by develop-
ing a novel computational platform for designing large circuits and demonstrating
a multicellular signaling paradigm that uses physical information, particularly cell
density, to produce novel patterning phenotypes.

A crucial initial step in biological circuit design is to identify which circuit archi-
tectures, or topologies, will most reliably produce a given phenotype. When natural
examples and human ingenuity are insufficient, circuit topologies can be discovered
de novo using computational methods, the most common being exhaustive enumera-
tion and simulation of all topologies in a given search space. As outlined in Chapter
1, for systems with 𝑛 > 4 biomolecular components, this space of topologies be-
comes too large for enumeration. Chapter 2 of this thesis presents the software
platform CircuiTree, which searches for circuit topologies with a given phenotype
more efficiently using Monte Carlo tree search (MCTS). Commonly used for auto-
mated path planning and game-playing artificial intelligence (AI), MCTS efficiently
traverses the search space by using the UCB selection policy from reinforcement
learning (RL) to balance rapid discovery and exploitation of promising high-reward
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areas with the exploration of potentially better alternatives. We show that Cir-
cuiTree designs 3-component stochastic transcriptional oscillators (a well-studied
problem) approximately 100 times more efficiently than exhaustive enumeration by
discovering and exploiting known network motifs. We use a parallelized version of
CircuiTree to search for 5-component oscillators that oscillate even after the deletion
of a random circuit component. After 5 million iterations searching a space of 1̃0
million topologies with 300 CPUs in just 2.5 days of real time, CircuiTree finds
1,368 candidate oscillators, the most fault-tolerant of which contain many inter-
leaved oscillatory motifs, a design feature we call “motif multiplexing”. Multiple
sub-oscillators are common among circadian clock circuits across divergent taxa,
suggesting that this design feature may have evolved to make these large circuits
robust to mutations during evolution (Wagner, 2005). Overall, this new open-source
design platform facilitates the scalable study and design of larger biomolecular
circuits.

Despite the development of a large variety of engineered proteins (and particularly
synthetic receptors) in recent years, there is a shortage of synthetic tools that translate
changes in the mechanical environment of the cell into a molecular signal such
as a change in gene expression (so-called mechano-chemical coupling). Chapter
3 reports the discovery of cell density-controlled activation of a synthetic Notch
(SynNotch) signaling system and demonstrates how mechano-chemical coupling can
be used in tandem with mathematical modeling to program cell state over space and
time. In this chapter, we describe a SynNotch signaling system that is suppressed at
very high and very low densities of cell culture. When placed in a signal-propagation
circuit, density-sensitive SynNotch can be used to control the spatial extent of
signaling waves. Guided by a mathematical model of multicellular signaling, we
show that signaling disc size can be controlled by manipulating parameters of
cell proliferation such as growth rate and seeding density. Finally, we use spatial
gradients of seeding density to achieve spatiotemporal patterning phenomena such
as spatially distinct activation regions and kinematic waves, the latter of which have
not been reported in any previous synthetic patterning circuit. Altogether, these
results provide a novel modality for studying and engineering mechanico-chemical
feedback and showcase its potential for expanding the repertoire of engineerable
phenotypes to include spatiotemporal patterning.
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4.2 Future perspectives
The mathematical methods developed in this thesis can be applied to design and
study molecular circuits for a wide range of applications and, in general, to address
many combinatorial problems in biology. The software package CircuiTree can
be used to optimize circuit topologies for existing synthetic systems amenable to
mathematical modeling, such as MultiFate (Zhu et al., 2022) and SynNotch (Morsut
et al., 2016; Toda et al., 2020). Given the large set of synthetic molecular tools that
have been developed in recent years, CircuiTree may be particularly suited to address
the difficult problem of how to combine multiple tools synergistically. Notably, the
greater efficiency of CircuiTree over traditional approaches opens the door to phe-
notypes that may have relatively expensive simulations, such as reaction-diffusion
based patterning systems, “multicellular” circuits (having two or more distinct cell
types), mechano-chemical feedback circuits, and large deterministic or stochastic
systems. More generally, CircuiTree could be adapted to address other problems of
combinatorial optimization in biology by casting them as decision-making problems.
For instance, given a set of observations (say, single-cell sequencing measurements
in multiple conditions), it could search a large space of possibilities for the network
architectures that best explain the data by using a reward function that computes a
maximum-likelihood estimation or Bayesian information criterion. It could also per-
haps be applied to protein sequence design problems by exploring peptide sequence
space using an RL framework.

As CircuiTree is the first application of RL to biological circuit design, there re-
main many fundamental questions and methodological improvements that could be
addressed.

• What are good criteria for convergence and early stopping of the search?

• Anecdotally, search efficiency increases with the number and size of solution
clusters or “motifs” in the search space. Can we quantitatively describe this
clustering, and how specifically does search time scale with the degree of
clustering?

• What is the best way to extract patterns (motifs) from the results of a tree
search? Anecdotally, the random sampling method described in Chapter 2
can require a large number of samples if the search space is large and solutions
are sparse.
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• Can parameter sampling be done more efficiently than the random uniform
sampling used in Chapter 2, perhaps by incorporating Bayesian sampling
methods like approximate Bayesian computation (Woods et al., 2016)?

• In game-playing studies, the performance per iteration is known to decrease
as the number of parallel threads increases (Segal, 2011). For circuit design,
this degradation in performance may differ between decision trees. Can
the number of parallel threads be adapted on-the-fly to minimize the overall
expected sampling regret?

• Some design problems may require search spaces (referred to as Grammars
in the codebase) that are not built-in to the package. These Grammars could
be developed and added in an open-source manner.

• For simulations with long execution times (roughly a minute or longer), could
heuristic methods be used to quickly approximate the reward/value function?
In game-playing, deep learning has been used to speed up reward evaluations,
with great success.

• In what cases would other RL approaches like policy-gradient and Q-learning
methods be preferable to MCTS?

Future work with density-dependent SynNotch (ddsNotch) should further investigate
the causal mechanism of density-dependence, which has remained elusive. Other
future work could improve the resolution with which cells are patterned on the growth
substrate, for instance by using lithography to deposit fibronectin with high spatial
resolution. This could enable a high degree of control over spatiotemporal activation,
as opposed to the “plate tilting” method described in Chapter 3. Additionally, the
transcriptional output of ddsNotch could be engineered to regulate cell proliferation,
thus forming a tunable feedback control loop to control proliferation in a manner
complementary to the auxin-based control circuit devised by Ma and colleagues
[[ref Ma et al]]. The transceiver circuit (with or without density-dependence)
could also be adapted to study other spatiotemporal patterning phenomena such as
reaction-diffusion patterning.

Natural tissues are composed of multiple cell types, each expressing distinct reg-
ulatory networks. Combining the methodologies from both projects in this thesis,
CircuiTree could be used with multicellular modeling simulations to study the prin-
ciples of how tissues self-organize and maintain their integrity.
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• How do mature tissues resist mechanical disruptions, such as the metastatic
cascade during carcinogenesis? Why are some individuals and some tissues
more susceptible to metastatic invasion than others?

• What regulatory circuits do growing and regenerating tissues use to balance
structural plasticity and integrity?

• How does the intricate microstructure of tissues such as the liver and kidney
self-organize from cell-level signaling and differentiation circuits?

Finally, future projects should explore how the work described in this thesis can
catalyze the development of synthetic circuits for therapeutic and biomedical appli-
cations. For instance, could CircuiTree be combined with mechanical cell models
to design a cell therapy that structurally stabilizes a tissue suffering from carcinoma
in situ, thus preventing imminent metastatic invasion? One contemporary barrier
in cell therapy is the poor penetration of therapeutic chimeric antigen receptor T
cells (CAR-T cells) into the so-called “cold” interior of some solid tumors. Can we
improve the penetration of solid tumors by, for example, designing a second thera-
peutic cell type that remodels the extracellular matrix to slow growth and encourage
penetration? In general, the author believes that multicellular therapies (that is, cell
therapies consisting of multiple engineered cell types) are a promising avenue for
future translational work in synthetic biology.
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