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ABSTRACT

Porous ceramics have been created and utilized in applications ranging from the
automotive industry to biomedical research, with the chemical and pore
characteristics of these ceramic structures crucial to their function and design. In this
work, these intertwined factors are explored for a variety of applications by
controlling the chemistry through precursor preparation and heat treatments, and the
porosity controlled through freeze casting, a tunable and facile pore-forming
technique yielding a range of pore sizes and morphologies. First, shape memory and
superelastic behaviors in ceria-doped zirconia are observed by creating porous
honeycomb structures that can accommodate the volume change of the martensitic
transformation enabling such performance. By controlling dopant concentration,
powder morphology, and freezing rate, the martensitic transformation is tracked over
multiple cycles and collection volumes in these bulk-scale, polycrystalline zirconia
ceramics. Next, transparent porous model sediments are created through heat
treatments of freeze-cast synthetic cryolite (NasAlFs) powder. Fluorescent beads the
same size as many bacterial cells are visualized in a range of pore morphologies over
both depth and time, and these porous ceramics are deployed in a sedimentary
environment and the imaging of the microbial communities contained within and are
found to colonize the porous cryolite structures. Alternate porous habitats for
bacterial colonization are further created using materials such as iron oxides and
carbon nanotubes to produce structures that can act both as electron acceptors and as
microbial habitats. Finally, thermally anisotropic Si-based porous ceramics are
developed with a potential use in optical devices. Using two contrasting preceramic
polymers and both traditional and UV-assisted freeze-casting techniques, porous
SiOC is produced from preceramic polymers with differing carbon contents.
Together, these examples explore how the chemistry and porosity of porous ceramics
can be manipulated to affect the chemical, optical, mechanical, and thermal

properties of ceramic structures to best suit the intended function.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1. Background

Ceramics, critical materials in modern industries ranging from homewares to
aerospace equipment, have been in use by humans from as early as 26000 BCE!.
However, the range of chemical compositions of ceramic materials and the role of
porosity in ceramic structures has varied greatly over that time. The chemical
composition of early ceramics was determined by the clays available, and thus varied
across regions*>. Likewise, the degree of chemical transformation and densification
a ceramic material experienced on firing was dependent on the available furnace
technology: as high-temperature heating systems evolved from early pit-firing
techniques to the electric kilns and furnaces of today and higher temperatures were
able to be reached, new ceramic materials requiring higher firing temperatures could
be produced®’. Similarly, improvements in purification technologies, development
of techniques to precisely control dopants, and modern nanofabrication capabilities
have all enabled more precise control of the chemistry of pure, doped, and composite

ceramic materials® 10,

In both early and modern ceramics, these factors—the materials available and the
firing temperatures used—also control the porosity of the final ceramic body. The
presence or absence of pore-forming materials such as trapped gasses, residual
organics, or additives influences the porosity of the final fired ceramics!!. Similarly,
increasing sintering temperatures has been shown to decrease porosity, and thus
firing temperature can also act as a lever to tune ceramic porosity!?. As processing
techniques including templating, additive manufacturing, and nanofabrication have
developed, utilization of these techniques allows for even more control over the

porosity of ceramics materials® 1>-17.



Although pores are viewed as a defect to be avoided in some modern ceramics, other
ceramic materials not only permit porosity, but in fact rely upon it to ensure
functionality of the final ceramic. Porous ceramics have been utilized in applications
including filters, membranes, scaffolds, and more'®2!. In all of these applications,
both the chemical composition of the ceramic and the pore size, fraction, and
morphology are crucial to the ceramic’s suitability for the intended application, and
it is necessary to control each of these aspects to produce the desired functional
materials. By tailoring these two qualities—chemical composition and porosity—
together, porous ceramics can be created for applications ranging from aerospace to

biological investigations.

1.2. Controlling Ceramic Chemistry

Controlling the chemical composition of a ceramic structure begins with selection of
the material. Ceramics encompass a wide range of materials, including oxides,
nitrides, fluorides, silicates, and carbides'* 2>2°, The mechanical, optical, thermal,
and chemical properties of the desired final product must be considered when
choosing a chemical composition—for example, an oxide such as ZrO; is capable of
operating at much higher temperatures than CaF, but has a lower thermal
conductivity (Figure 1.1) 26-2°. The specific properties of the chosen ceramic dictate
the conditions in which it is able to be used, and so careful selection of the ceramic

ensures a match between chemical content and application.

Ceramics can be produced either from precursors that chemically transform into the
final ceramic or simply from the same material as that of the final product. The
particle size, particle shape, and functionality of ceramic precursors and materials can
also be tuned in order to ensuring the correct ceramic properties. Nanofabrication
techniques have also been used to produce ceramics including microarchitectured
SiOC and electrospun ceramic nanofibers, among others, or else to produce ceramic

nanoparticles in a range of shapes!® 7> 3% Ceramics can also be synthesized as
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colloids or as single crystals®"> 32, Finally, functionalizing the surface of ceramic

particles provides another way to more finely tune the ceramic chemistry3.
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Figure 1.1. Selected ceramics’ (ZrO., Al:0s, Fe;Os, AIN, SisNy, B4C, SiC, CaF,, NazAlFs,

and 3A41,05:25i0;) (a) melting points, (b) thermal conductivities, and (c) refractive

indices™ ™.

Precursors to the desired final ceramic can also be used in ceramic synthesis

techniques, and this work will explore two such examples of utilizing precursors to
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control ceramic chemistry: sol-gel preparation of oxide powders, and use of

preceramic polymers. Techniques such as these provide an advantage over simply
mixing constituent species together, which often leads to inhomogeneous distribution
of component species®!. Sol-gel synthesis techniques allow for atomistic mixing of
multiple different species by trapping homogeneously distributed compounds in a
gel®>%, In these processes, atomistically mixed precursors in a liquid solution are
transformed first through hydrolysis and condensation reactions into first sols
(colloidal suspensions) and then through polycondensation processes into gels, where

a solid network permeates through a fluid (Figure 1.2) 333

. Finally, continued
heating of the gel ensures complete expulsion of the solvent from the gel network,
and calcination is used to transform the atomistically mixed precursors into

homogeneous ceramics or inorganic polymers™.

Aqueous solution of | REINIRTFERTIN I L 8 Calcination

metal oxide ZrO, & CeO, powder

metal oxide
precursors and

Figure 1.2. Schematic of sol-gel synthesis method to produce atomistically mixed ZrO: -
CeO:powders.

A variety of precursors and polymerization mechanisms can be used to produce gels,
resulting in gels connected by bonds ranging in strength from Van der Waals

33-58 Factors such as solution pH

interactions to covalent bonds of polymer networks
and concentrations of complexing agents further impact the chemical structure of the
gel and the shape of the resulting particles>®-5!. For example, increasing the pH of the

solution or the concentration of a complexing agent to polymer precursor in a
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Pechini-style synthesis will shift the mechanism of gel growth from a spinodal

decomposition mechanism to a nucleation mechanism (Figure 1.3) ¢°. Through these
compositional and morphological controls, sol-gel syntheses act not only as
techniques to produce homogeneous mixtures, but also control the size and shape of

the ceramic powders produced.

Py
Q
~

\ /ﬁ ?“‘Lhﬁ‘ ::o....
§ )\{/< l#“x tr ....-. '..
8 FAA L

4
2 ;%9&-‘1 '&ﬁi - .'ﬁ
z "~
o]
3
-,
k) ARk (L

(b)

[Citric Acid)

o ° °
1 21 311

Nucleation

[Exhylene Glycol)

/--‘;: S v
= B - 30y — Bl — BN

Development of Self-simdar F:agmcnlanon Spheroidization &
bicontinuous structure  coarsening sedimentation

Figure 1.3. Growth mechanisms in sol-gel syntheses. (a) Growth mechanisms shift from
spinodal decomposition to nucleation as pH increases, reprinted from Cushing et al.
with permission, © 2004, The American Chemical Society™. Original figure from
Gallagher and Ring, © 1996, the Swiss Chemical Society®™*. (b) Different growth
mechanisms and resulting particle morphologies from sol-gel syntheses with differing
ratios of chelating agent (citric acid) to polymer precursor (ethylene glycol), reprinted
from Rudisill et al. with permission, © 2013, The American Chemical Society™.
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Use of preceramic polymers in ceramic processing methods presents another

method through which ceramic chemistries can be controlled. These polymers, which
have been studied since the 1970s, transform on pyrolysis into robust ceramics and
allow for easier shaping of the preceramic materials using well-defined polymer
manipulation strategies such as injection molding, extrusion, and spray-coating®-5°.
Once formed, the material can be transformed through pyrolysis into a ceramic,
producing ceramic structures at temperatures that are typically much lower than the

sintering temperature of the final product®

. Organosilicon preceramic polymers, a
commonly used class of preceramic polymer, have been utilized in applications
ranging from biomedical scaffolds to membranes and catalyst supports®’ . The
variety of organosilicon preceramic polymers available gives rise to a range of
silicon-based ceramic chemistries (Figure 1.4), many of which require high-
temperature processing to produce the desired ceramic simply from the raw
materials. Instead, preceramic polymers can be fired at lower temperatures, and
enable fabrication of ceramic structures through techniques such as tape casting,

additive manufacturing, injection molding, and more%3- 7% 71,

Whether or not precursor compounds are used during processing, the temperature
and atmosphere in which the ceramics are fired also affect ceramic chemistries, by
way of the reactions that take place during heating. One such possible mechanism
that can occur during heating is sintering, in which particles fuse and densify into a
stronger structure’?. Either heat or a combination of heat and pressure can be used to
sinter unfired green bodies into dense, strengthened ceramics, but it is crucial to keep
the material from reaching its melting point’?>. Multiple atomistic mechanisms
including surface diffusion, lattice diffusion, and grain boundary diffusion can
contribute to solid-state sintering processes, and sintering can occur in air or in inert
atmospheres!? 7374, In contrast, pyrolysis processes, which consist of thermolysis
reactions in which a precursor decomposes into a new compound, can sometimes be
used to produce robust ceramic materials’>. Generally, pyrolysis reactions occur in

inert atmospheres. Calcination, in which a material is decomposed in air atmosphere



-
serves as a reactive-atmosphere counterpoint to pyrolysis’s. In calcination reactions,

volatile substances are removed, and/or some amount of mass is oxidized to form the

final product’®

. Lastly, ceramic chemistry can also be altered by heat treating
ceramics in oxidizing or reducing environments to produce alternative chemical
structures from the unfired ceramic precursors’’. In this work, these techniques will
be utilized separately or in sequence to produce specific ceramic compositions, with

the specific process used depending on the desired final ceramic.
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Figure 1.4. Organosilicon preceramic polymers with oxygen-, carbon-, nitrogen-, and
boron-containing backbones, adapted from Colombo et al. with permission, ©2010, The

American Ceramic Society*®.
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Finally, the composition of ceramic materials can be altered both before and after

firing through the incorporation of additional materials such as polymeric coatings or
creation of ceramic nanocomposites’®#°. These methods can adjust the surface
charge of the ceramic, alter the optical, thermal, or electrical properties, and/or
provide catalytic surfaces within ceramic supports. Whether the ceramic is left
unaltered before, during, or after firing, however, the chemistry can be better
understood through a variety of spectroscopic techniques, some of which will be
further explored in this work. Through understanding and controlling the specific
chemistries at play, ceramics that are well-suited to the desired application can be
produced. It is not enough to simply control the chemistry of the ceramic structures
produced, however: porosity, too, must be understood and coordinated to the desired

use.
1.3. Controlling Ceramic Porosity

Through much of the history of ceramics, porosity was deemed a source of failure
and was avoided at all costs. Some modern advanced ceramics require as few pores
as possible, such as artificial joints—in which pores can act as a mechanical defect—
and ceramics used in lasers—in which pores reduce optical transmission and thus
efficiency®! 2. However, many advanced ceramics today not only incorporate, but
require pores for functionality. Porous ceramics are widely utilized and studied as

biomedical implants, membranes, filters, catalyst supports, and more!®: ¢7- 68, 83-86,

These pores can be created through a range of techniques, including additive
manufacturing, direct foaming, replica methods, and sacrificial templating (Figure
1.5), each suited best to different applications and desired pore characteristics®’.
Additive manufacturing, for example, produces complex and precise microstructures
(Figure 1.5a) but can be time-consuming and produce poor surface finishes!> %,
Direct foaming methods (Figure 1.5b) produce porous materials quickly and cheaply
by bubbling gases into a ceramic or precursor suspension, with the resultant porosity

a function of the amount of gas incorporated®’. However, the suspensions must be
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stabilized in order to preserve porosity, and this technique only produces spherical

pores®® 2,
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Figure 1.5. Schematics of (a) direct ink writing, (b) direct foaming, (c) replica, and (d)
sacrificial templating methods of producing porous ceramics, adapted from Studart et al.

with permission, © 2006, The American Ceramic SocielyS7.

To produce more complex pore networks, replica methods, in which a cellular
structure is infiltrated with a ceramic or precursor slurry, may be used (Figure 1.5¢)%".
These methods can produce more intricate pore morphologies but tend to be limited
to production of materials with pores greater than or equal to 200 um®*. Conversely,
sacrificial templating techniques, in which the pore size depends on the size of the
templating material used, allow for fabrication of porous materials with pores ranging
from 1-700 pm. In these techniques, an evenly dispersed sacrificial phase is

incorporated into the ceramic or precursor material to form a biphasic composite
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(Figure 1.5d)*". The sacrificial phase is then removed through thermal processes
such as pyrolysis or sublimation or through chemical routes such as washing or acidic

leaching®7. Not only is a range of pore sizes possible through sacrificial templating

techniques, but a range of pore morphologies is also accessible.
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Figure 1.6. Schematics of (a) single-sided, and (b) double-sided freeze casting setups,
adapted from Arai et al. with permission, © 2021 Acta Materialia Inc. Published by
Elsevier Ltd. All rights reserved®®. (c) Schematic of freeze casting workflow, adapted
with permission firom Naviroj et al, © 2017, The Materials Research Society”.
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This work will focus on freeze casting as a fabrication method for porous ceramics,

a subcategory of sacrificial templating in which directionally frozen solid solvent
crystals comprise as the sacrificial phase and are removed through sublimation'®,
While this technique is popular in the production of porous ceramic materials, it can
also be used to create porous metallic or polymeric structures® !> 191 When
considering the preparation of porous ceramics, there are two main classes of freeze
casting that this work will focus on: suspension-based freeze casting of ceramic or

ceramic precursor slurries, and solution-based freeze casting of preceramic polymers.

In both suspension- and solution-based freeze casting, a liquid suspension or solution
is directionally frozen to form solvent crystals. These crystals separate from the
suspended or dissolved material through either the rejection of particles from
suspension or through phase segregation of the solute from the solvent’®. The growth
rate and morphology of the solvent crystals depend on a number of factors both
intrinsic and extrinsic to the suspension or solution used in freezing. Crystal
morphology, for example, depends on the relative stability of the interface between
the solid and liquid states, and can be predicted through parameters such as the
Jackson-a factor™- 12, The amount and size of crystals, however, depends upon the
ratio of solvent to solute in the freezing liquid®® 2. Additionally, the freezing rate
and thermal gradients experienced by the solution or suspension during freeze casting
also impact the morphology and size of solvent crystals and thus the resulting
pores!®-105, These factors can be controlled through one-sided or two-sided freeze

ca