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ABSTRACT

With the integration of autonomous systems into our everyday lives edging closer
to reality, ensuring the safety of these systems is paramount. Part of the safety
verification process is a rigorous testing procedure, which currently does not exist
for autonomous vehicles. In this thesis, we aim to provide approaches using for-
mal methods to increase the efficiency of testing campaigns. First, we provide a
framework based on assume-guarantee contracts to specify tests in the form of a
test structure. Using these test structures, we then show how to combine, split, and
compare tests. Additionally, we characterize when tests can be combined and when
the resulting test requires temporal constraints. Next, we demonstrate the approach
on examples and find a strategy for a test agent using winning sets and Monte Carlo
tree search.

Second, we present a framework to automatically synthesize a test environment,
consisting of static and reactive obstacles, and dynamic test agents. We characterize
the desired test behavior in a system and a test objective in the form of a linear
temporal logic specification, consisting of sub-tasks commonly used for robotic
missions. This test environment must ensure that the test is not impossible (i.e. a
correct system can pass the test), but also that every test execution that satisfies the
system objective also satisfies the test objective. We use tools from automata theory
to construct the virtual product graph that represents all possible test executions,
and the virtual system graph, which corresponds to the system’s perspective. We
formulate this routing problem as a network flow optimization on the virtual product
graph in the form of a mixed integer linear program for different test environments.
We show that this routing problem is NP-hard. We propose a counterexample-guided
search using GR(1) synthesis to find a strategy for a test agent. This framework is
demonstrated in several examples in simulation and hardware.

Lastly, we present a framework to diagnose a system-level fault by identifying
the component responsible for the failure. We make use of assume-guarantee
contracts and Pacti, a tool for compositional system analysis and design, to construct
a diagnostics map, which allows us to trace a system-level guarantee to possible
causes. We show that this framework can reduce the number of statements that need
to be checked in the diagnostics process. We illustrate this framework on several
abstract examples and two examples inspired by a real-world autonomous system.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Autonomous systems play an increasingly important role in today’s society, and their
impact is only expected to be even more substantial in the future. The development
of autonomous systems has attracted significant attention in recent years, as the
deployment of autonomy in real-world settings has increased. Self-driving cars
are operating in traffic alongside human-operated cars, while robots and drones
are used for package delivery and warehouse management. In the future, self-
driving cars offer great potential to provide safe and efficient transportation, but
the applications of autonomous systems are not solely for transportation needs. For
example, autonomous systems could provide life-saving services in the medical field,
or be used for the exploration of dangerous and hostile environments such as nuclear
reactors or planetary surface exploration with new areas of operation emerging as
the technological possibilities evolve. Key benefits of deploying autonomy in the
transportation sector are expected to be a reduction in traffic congestion, increased
safety on the roads, and providing mobility options for individuals who are unable
to drive. With this great potential, designers of autonomous systems have a great
responsibility to ensure that the autonomous systems that humans need to trust in
critical situations are reliable and safe. More than 90% of traffic accidents are caused
by human error [88, 140]. Eliminating the human factor has the potential to mitigate
this problem, as humans routinely make errors that autonomy can prevent [8, 52].
However, in recent years, several traffic deaths have occurred due to autonomously
driving vehicles [54]. These fatalities were caused by failures in perception or
prediction of human behavior [102]. Currently, autonomous systems are not at the
point where we can reap the benefits yet, as the risks are still significant. The safety
of self-driving cars is a main concern, as these systems face unique challenges from
the interaction of the system component, cybersecurity threats, perception issues,
and sensor failures among others. Irrespective of the specific purpose and area of
deployment, autonomous systems abide by the same core principles. In particular,
the systems must be self-aware, i.e. be aware of their state and be able to make
high-level decisions. Furthermore, the systems must be able to adapt to changes
in their operating environment and by learning from past behavior, and acuate
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their plans without human intervention [70, 142]. These key characteristics require
a significant paradigm shift during the development, verification, and validation
process of a product. Among other challenges, the increase in complexity requires
novel testing approaches, as the testing effort increases disproportionately with the
complexity of a system [145].

Automotive Autonomy
A key industry that will benefit from the deployment of autonomy in their products
is the automotive industry. Different levels of driving autonomy have been specified
in the Society of Automotive Engineers (SAE) Levels of Driving Automation [133]
and range from Level 0 (no driving automation) to Level 5 (full autonomy). A Level
0 vehicle can be equipped with driver assistance warning systems, such as blind
spot warning or emergency braking. In Level 1, a vehicle can be equipped with lane
centering or adaptive cruise control, while a vehicle in Level 2 has both features.
Vehicles up to and including Level 2 are characterized as driver support features and
need constant supervision, the human is the driver and is responsible for operating
the vehicle. Vehicles in Level 3 and Level 4 are in the conditional autonomy class,
where the cars can operate autonomously, but only under certain conditions. The
autonomy of these vehicles is limited by geographic region or weather conditions,
examples of these systems can include traffic jam chauffeurs or local driver-less
taxis. A vehicle in Level 3 can still request the human to take over control, while in
Level 4 the vehicle does not need to be equipped with a steering wheel or pedals at
all. Level 5 is classified as fully autonomous, the vehicle can drive independently
everywhere in all conditions. A high-level overview of the different levels is given
in Figure 1.1.

Car manufacturers are reaching for autonomy in SAE Levels 4 and 5, but there is
still a significant gap to bridge. Recently, Mercedes-Benz became the first car man-
ufacturer that received state approval to sell a SAE Level 3 conditionally automated
vehicle, as a standard-production vehicle to U.S. customers. California and Nevada
are the first two states that certified the use of this system on major freeways up to a
speed of 40 miles per hour during daytime. Apart from Mercedes-Benz, Nuro Inc.
and Waymo are also authorized by the Department of Motor Vehicles (DMV) for
the deployment of autonomous vehicles in certain regions of California. Currently,
six companies hold autonomous vehicle driverless testing permits from the DMV
in California. Most of these autonomous driving companies focus on developing
their vehicles to provide autonomous ridesharing services as an eco-friendly and
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Figure 1.1: SAE Levels of driving automation.

cost-effective alternative.

Safety Standards
The international standard for functional safety for road vehicles (ISO26262) [84],
mandates a functional safety development process and corresponding documen-
tation that any car manufacturer and supplier must comply with to certify their
product for deployment in a commercial passenger vehicle. It outlines a risk clas-
sification system and aims to reduce the hazards caused by malfunctioning electric
or electronic systems. A crucial part of the development framework outlined in the
functional safety standard is the verification and validation (V&V) processes. Ver-
ification pertains to answering the question: ‘Did we build the system correctly?’,
while validation answers the question of: ‘Did we build the correct system?’. The
process of verification ensures that the product meets the specified requirements and
fulfills the intended purpose. Techniques for verification involve reviewing require-
ments and analyzing the system via simulation, modeling, or formal methods. In
addition, verification tests include unit testing, integration testing, and model-based
testing. During the validation process, the system is evaluated for its intended pur-
pose in real-world conditions. This can include track testing where scenarios are
constructed and executed to test the system in a controlled version environment, or
on-the-road testing where the driving performance of the system is monitored in
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Figure 1.2: V-model according to ISO 26262, functional safety standard in road
vehicles.

its actual operating environment. This comprehensive testing process, in addition
to the stringent development process, aims to provide confidence in the system’s
adherence to the safety requirements. In its current form, the functional safety
standard only applies to cars that are controlled by a driver, therefore it does not
apply to fully autonomous cars yet. However, as the landscape of autonomous cars
evolves the standard is expected to evolve to pertain to fully autonomous cars as
well. As autonomous vehicles rely on external data provided by non-deterministic
algorithms, even without the presence of faults, the system’s behavior might be
hazardous due to performance limitations [90]. To mitigate this, the safety of the
intended functionality (SOTIF), which is defined as the absence of unreasonable risk
due to a hazard caused by functional insufficiencies, was introduced in standard ISO
PAS 21448 [85]. This must be checked for the entire Operational Design Domain
(ODD) of the system. While there are other ongoing efforts on standardization [100,
157], there is no standard development process for autonomous vehicles yet [3, 70,
94, 97, 119]. Thus, verification and validation are especially critical to ensure safety
of the system.

1.2 Test and Evaluation
Challenges for Testing Autonomy
The development process of an autonomous system is a very time- and cost-intensive
task, which requires a rigorous testing procedure which is designed to verify the
claims of the system designer. The conventional testing methods of fault avoidance,
fault removal, and fault tolerance are not applicable for an autonomous system, as
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the system’s behavior and the operating environment can change over time [70,
109]. In [97], the authors identified five key challenges for testing autonomous ve-
hicles: driver out of the loop, complex requirements, non-deterministic algorithms,
inductive learning algorithms, and fail-operational systems. For a fully autonomous
vehicle, the driver cannot be counted on to handle exceptional situations, such as
mechanical failures and unforeseen operating conditions. Including this fault and ex-
ception handling as a task handled by the computer is likely to dramatically increase
the system complexity compared to a system that simply assists a driver but can still
fall back on the driver to take over [76, 97]. Furthermore, the system requirements
are complex and partially unknown. Along with failure handling, the operational
environment in a traffic situation can exhibit hazards including but not limited to
inclement weather conditions, animal hazards, and other drivers committing traffic
rule violations. These adverse events are numerous, can occur in any combination,
and are impossible to capture in a classical written requirement [70, 97]. As an
autonomous system’s behavior changes, the system’s behavior is non-deterministic
and likely cannot be reproduced, which poses another significant challenge. This
leads to difficulty in testing specific edge cases and presenting exactly the right
conditions to reliably prompt the system to exhibit the desired behavior. Due to
the same reason, evaluating tests is difficult, as the correct system behavior is not
unique and thus requires multiple tests to increase the confidence in the system’s
performance [70, 97, 142]. Using learning techniques poses other significant chal-
lenges for the testing process [28, 102, 130]. Learning relies on data to derive the
model, making the quality and diversity of training data critical to the performance
of the system [142]. Another significant limitation of machine learning is that the
resulting behavior is not understandable to humans, presenting a significant chal-
lenge in validating the system’s safety [97, 161]. Moreover, an autonomous system
is required to be fail-operational, which requires redundancy in the system’s design.
The structure of the redundancy depends on the fault model and the design approach
and can consist of three or more components whose failures need to be independent
and fault-free at the start of each mission [68]. One can argue that an autonomous
vehicle does not require the same level of redundancy as an aircraft, as the failover
mission time is significantly shorter (i.e. come to a stop or pull over instead of flying
to the nearest airport, possibly hours away). [76, 97]

From the non-technical viewpoint, several other challenges need to be overcome,
such as legal and ethical questions [52, 139, 154], and user concerns [127]. De-
pending on the proposed solutions to these questions, technical considerations may
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change or new technical questions might arise that come with additional testing
concerns [97].

Current Testing Approaches
Currently, there are several different approaches focused on to testing and evaluation
of autonomous systems, each aiming to address different challenges, albeit with their
limitations and difficulties. As autonomous systems are inherently hybrid, many
testing approaches rely on techniques used for software testing.

One approach is statistical analysis, where autonomous vehicles are deployed on
the road and data is collected. A key element of this testing procedure is the ‘time
between interventions’, which refers to the interval during which the autonomous
car operates without intervention from a safety driver or other external assistance.
Human intervention can be required due to safety concerns, technical issues, or other
unexpected events where the autonomous car cannot handle the situation indepen-
dently. Autonomous car companies try to increase the time between interventions,
as this is a measure of how well the car can operate independently in real-world
conditions. According to a study by the RAND corporation, an autonomous vehicle
fleet needs to drive for 275 million miles without any safety concerns or incidents
to demonstrate that its maximum failure rate is that of a human driver with 95%
confidence, where the human driver benchmark corresponds to a failure rate of 1.09
fatalities per 100 million miles driven [88]. Depending on the degree of confidence
and the rate of improvement over the human driver benchmark, these estimates
range from hundreds of millions of miles to billions of miles. Thus, reaching this
threshold as the only source of confidence in the safety of the vehicle is impractical.
In 2023, Waymo’s level 4 rider-only operations reached the milestone of one million
miles driven and published a report analyzing the failure rate [153]. So far, these
on-the-road operations show promise to increase the safety of driving, but more time
is required for the sample size to grow to increase confidence in their operations.
To alleviate the time and cost issues arising in this approach, virtual testing of the
system in simulation can be applied. Another real-world testing approach is track
testing, where specific test cases are pre-planned and executed on the hardware on
a private test track, where the operational environment consists of agents controlled
by the test engineers that execute the test plans [156, 162]. Another example of
track-testing were the qualification tests for the DARPA Urban Challenge [32].

Any virtual testing requires the use of simulation techniques, which are a key
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component of any test and evaluation process. Simulation allows us to visualize
and evaluate a virtual test, and recreate specific test cases, while also reducing the
hardware cost and improving testing efficiency. Nevertheless, a simulation does
not necessarily align with the real-world operational environment, which makes the
accuracy of a simulation vary. Popular tools for the simulation of dynamic systems
are MATLAB [77] and Simulink [46], and ROS [128] and Gazebo [96] for the
simulation of robotic systems, among others. For autonomous driving applications,
simulation tools include Carla [48], SUMO [21], SYNCHRO [75], CarMaker [35],
Prescan [141], CarSim [12], and Autoware [89].

Another testing approach is scenario-based testing, where a test scenario is speci-
fied. A scenario is a pre-defined temporal sequence of events and actions in the ODD
of a system that can be executed on the system in simulation or hardware [151]. The
level of detail of the description of the scenario can vary, and languages and tools
for describing and rendering scenarios in simulation have been developed, including
Scenic [60] and OpenSCENARIO [116]. Scenario-based testing has been widely
applied to testing automated vehicles, including large research projects [86, 157].
Currently, test scenarios are designed by test engineers, who rely on their product
know-how and experience, or by analyzing crash data and recreating traffic scenar-
ios [143]. Finding scenarios is an active area of research and many other testing
techniques are used to identify interesting and challenging test scenarios [132]. One
approach to try and reduce the number of test scenarios makes use of combinatorial
testing, where input parameters are combined and adjusted [98]. Combinatorial
testing for autonomous vehicles has been studied in [101]. Scenario parameters can
also be modified using a fuzz testing approach, in use at Waymo [155]. Another
related technique is fault injection, where faulty parameter values (e.g. inaccurate
sensor information) are provided to the system.

A Model-Based Systems Engineering approach can be beneficial during the devel-
opment process, as it can reduce the number of errors introduced in a product [51,
70]. This leads to model-based testing as a valuable tool for quality assurance,
where the system’s capabilities and limitations are modeled, and this model can
be used to generate test cases [91]. The employed models vary and can include
modeling languages such as the Unified Modeling Language (UML) [73, 126] and
the System Modeling Language (SysML), Petri nets [9, 134], belief-desire-intention
(BDI) models [11, 113] models, behavioral models [67], among others. Fault-tree
analysis for test generation has been studied in [93]. Coupling model-based testing
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with search-based techniques has been studied in [22, 25, 87]. Other search-based
testing techniques include using genetic algorithms [2, 62, 108, 137], or surrogate
models such as Gaussian process regression [5, 92, 111], neural networks [49], and
Markov Decision Processes and reinforcement learning [40, 55].

Formal methods are mathematically rigorous techniques for the specification and
verification of a system. The formal specifications are precise and unambiguous and
can be used to prove properties of the system, often with the use of powerful tools
such as model checkers and automated theorem provers. After several incidents of
system failures, including the Ariane 5 launch vehicle, and Mars Pathfinder, later
investigations have revealed that formal verification procedures would have revealed
the fault ahead of time [15]. As autonomous systems always include a software
component, formal methods hold promise to tackle the aforementioned verification
and testing challenges. Formal methods have been used specifically to support
software testing [72]. Using a model-checker for test generation was proposed for
software testing [7, 34, 50] and has become a widely used technique for testing
of autonomous systems [59]. Test cases are constructed from counterexamples
generated by model-checkers but can be inconclusive if the system behavior deviates
from the expected behavior. Linear temporal logic (LTL) model checkers have been
used to find test cases in [57, 58, 123, 146]. Approaches using model checkers are
commonly white box, as they rely on a model of the system being known to the tester.
Nevertheless, black box approaches combine model checking with other techniques
to allow reasoning over a (partially) unknown implementation of a system [120].
To allow test case generation for a system under test that reacts to its environment,
adaptive specification-based testing strategies have been employed in [4, 27, 71,
121, 148]. In [27], the authors combine the use of a model checker and reactive
synthesis [125] to find an adaptive test strategy from an LTL specification of the
system under test and a fault model. Runtime verification [18] is another formal
verification technique, where the system’s behavior is constantly monitored during
operation or simulation [17, 106]. Another approach to finding test scenarios uses
falsification, where the scenario parameters are found such that a metric of mission
success is violated [20, 61]. This metric can be in the form of formal temporal logic
specifications [1, 10, 47, 53, 61, 149, 83].

Viewing testing as a game between the system under test and the tester, where the
system tries to hide faults, and the tester tries to find them, has been explored in [6,
26, 160] and in cooperative game settings in [16, 41].
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Rigorous test campaigns have to be designed, implemented, and executed to aid in
the certification of safety-critical autonomous systems [138]. The above-mentioned
techniques show promising initial results to improve the testing of autonomous sys-
tems. Nevertheless, testing complex autonomous systems remains a key challenge
that needs to be solved to achieve human confidence in the system’s behavior in a
real-world setting.

In this thesis, the proposed frameworks and approaches are complementary to
scenario generation and techniques such as falsification. We aim to provide a
formal description of a test, to allow reasoning over tests, and to automatically
synthesize test environments from test descriptions. We want to find these test
environments and strategies that ensure that the desired test behavior is observed,
while also making sure that the test is not impossible (i.e. a correct system can pass
the test), and minimally interfering with the system.

System Diagnostics
Any safety-critical system requires efficient detection of system abnormalities and
faults to avoid dangerous situations and identify safety hazards. For this reason sys-
tem diagnostics have been an active area of research, only becoming more important
since autonomous systems have become more prevalent [36]. Faults are defined as
a deviation from the correct, expected system behavior, observable in at least one
system property or parameter [136]. Therefore, fault diagnosis differs from other
system verification techniques described previously, as it considers systems whose
behavior deviates from the system model. Fault diagnosis consists of three areas:
fault detection, fault isolation, and fault identification [63]. Fault detection refers to
identifying when and where a fault occurs, from the observable system output. Fault
isolation considers the location of the fault, and fault identification refers to finding
the type, shape, and size of the fault. There are four main fault diagnosis methods:
model-based, signal-based, knowledge-based, hybrid, and active. In 1971, Beard
introduced Model-based fault diagnosis with the intent to replace hardware redun-
dancy by analytical redundancy [19]. Model-based fault diagnosis uses different
techniques to monitor the actual system outputs and compare them to the predicted
values. Signal-based fault diagnosis uses measured signals instead of input-output
models, and extracts features (or patterns) from a signal to make a diagnostic de-
cision [63]. Knowledge-based fault diagnosis consists of a knowledge base and an
inference engine [37]. Hybrid approaches are a combination of the above mentioned
methods [63]. Active fault detection is concerned with designing auxiliary input
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Figure 1.3: Overview of the framework presented in Chapter 3.

vectors to reveal faults [114]. Diagnostics has been studied extensively in the area of
computer science and engineering. Some early and and heavily influential works in-
clude [44] and [131]. In [44], a model-based approach to diagnose faults in complex
systems by observing symptoms and using reasoning techniques was introduced in
1987 by De Kleer and Williams. In [131], formal logical framework to diagnose
faults consisting of three main components: a knowledge base, an observation base,
and a set of inference rules was developed by Reiter in 1987. In formal methods, the
problem of explaining why for certain robot specifications no implementing control
strategy exists has been studied in [129], while ‘repairing’ specifications has been
studied in [29]. Recently, assume-guarantee contract operators have been used for
specification repair in [103].

In this thesis we present an approach to system diagnostics using assume-guarantee
contract theory and available tools that perform contract operations. The proposed
approach aims to increase the efficiency of the diagnostics process by identifying
which information is relevant to identify the cause of the fault.

1.3 Summary of Contributions
This thesis aims to provide a framework to systematically construct tests and the
corresponding test environments. The contributions of this thesis are presented in
the following paragraphs.

In Chapter 3, a framework that allows for reasoning over tests is established. This
is done by characterizing a test structure in the form of assume-guarantee contracts.
Test structures contain a formal description of the test objective and the system under
test, and can be used to combine, or split tests accordingly. In addition, test structures
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Figure 1.4: Overview of the framework presented in Chapter 4.

and test campaigns can be compared to allow for the selection of the most desirable
test. These concepts are illustrated in examples. In practice, executing a test for
a combined objective does not necessarily provide the information required to be
confident in the system’s performance concerning each task individually. To mitigate
this, temporal constraints are introduced that ensure that each test objective will be
observed individually. An approach to finding a controller for test agents using
receding horizon winning set synthesis and Monte Carlo tree search is presented
and demonstrated in two examples.

In Chapter 4, a more general approach to test generation is presented. This approach
allows for testing objectives characterized by specification sub-tasks in reachability,
reaction, and avoidance form. The test environment is characterized as consisting of
static obstacles, reactive obstacles, and dynamic test agents. We leverage automata
theory to represent the satisfaction of the test objectives in graph form and utilize
network flow optimization to find restrictions on system actions for different test
environments. The problem of finding these restrictions is shown to be NP-hard.
These restrictions can be placed on the system using the test environment. For
this, we present an algorithm that couples the optimization with controller synthesis
using a counter-example guided search to find the controller for the dynamic test
agent from the result of the optimization. Lastly, this approach is demonstrated in
several examples including hardware examples.

In Chapter 5, a framework to diagnose faulty components from a system-level vi-
olation based on assume-guarantee contracts is proposed. This framework utilized
Pacti, a tool for compositional analysis and design, that allows computing contract
operations and augmenting it to trace the system-level guarantee to the respon-
sible component. We show how to compose the components to create a system



12

Figure 1.5: Overview of the framework presented in Chapter 5.

and the corresponding system-level contract. During the composition of the sys-
tem, we identify the information required to map the system-level guarantees to
component-level terms. We present an algorithm to systematically trace the system-
level violation back to the cause and show that with this procedure the number of
statements to be evaluated during the diagnostics process can be reduced. Lastly,
we demonstrate this process in several abstract examples and two examples inspired
by real-world test cases for an autonomous vehicle.
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C h a p t e r 2

MATHEMATICAL BACKGROUND

In this section we will introduce the mathematical background and concepts that the
approaches developed in this work build on.

2.1 Assume-Guarantee Contracts
To reason about the specifications, we will make use of the contract-based-design
framework first introduced as a design methodology for modular software sys-
tems [45, 99, 107] and later extended to complex cyber-physical systems [115, 135].
We will adopt the mathematical framework presented by Benveniste et al. [24] and
Passerone et al. [118].

Definition 2.1 (Assume-Guarantee Contract). LetB be a universe of behaviors, then
a component 𝑀 is a set of behaviors 𝑀 ⊆ B. A contract is the pair C = (𝐴, 𝐺),
where 𝐴 are the assumptions and 𝐺 are the guarantees. A component E is an
environment of the contract C if 𝐸 |= 𝐴. A component 𝑀 is an implementation
of the contract, 𝑀 |= C if 𝑀 ⊆ 𝐺 ∪ ¬𝐴, meaning the component provides the
specified guarantees if it operates in an environment that satisfies its assumptions.
There exists a partial order of contracts: we say C1 is a refinement of C2, denoted
C1 ≤ C2, if (𝐴2 ≤ 𝐴1) and (𝐺1 ∪¬𝐴1 ≤ 𝐺2 ∪¬𝐴2). We say a contract C = (𝐴, 𝐺)
is in canonical, or saturated, form if ¬𝐴 ⊆ 𝐺.

Multiple operations are known for assume guarantee contracts — see [78]. Assume
the following contracts are in canonical form. The meet or conjunction of two
contracts exists [23] and is given by C1 ∧ C2 = (𝐴1 ∪ 𝐴2, 𝐺1 ∩ 𝐺2) . Composition
[24] yields the specification of a system given the specifications of the components:

C

C′ ∥ C1

iff
C/C′

C1

(a) Composition and quotient.

C1 • C2

C1 C1 ∥ C2 C2

C1 ∧ C2

(b) Order of operations.

Figure 2.1: Contract operators and the partial order of their resulting objects.
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C1 ∥ C2 = ((𝐴1 ∩ 𝐴2) ∪ ¬(𝐺1 ∩ 𝐺2), 𝐺1 ∩ 𝐺2) . Given specifications C and C1,
the quotient is the largest specification C2 such that C1 ∥ C2 ≤ C. It is given by
[82]: C/C1 = (𝐴 ∪ 𝐺1, (𝐺 ∩ 𝐴1) ∪ ¬(𝐴 ∪ 𝐺1)) . Strong merging [118] yields a
specification obeyed by a system that obeys two given specifications C1 and C2:
C1 • C2 = (𝐴1 ∩ 𝐴2, (𝐺1 ∩ 𝐺2) ∪ ¬(𝐴1 ∩ 𝐴2)) . The reciprocal (or mirror) [112,
118] is a unary operation which inverts assumptions and guarantees: C−1 = (𝐺, 𝐴).

2.2 Linear Temporal Logic and Automata Theory
To state requirements of the system and the test in the form of a specification, we will
make use of linear temporal logic (LTL). LTL is a temporal logic describing linear-
time properties, allowing reasoning over the timing of events, where each point in
time has a single successor. The use of LTL for formally verifying properties of
computer programs was first introduced by Pnueli in 1977 [124].

Definition 2.2 (Linear Temporal Logic (LTL) [15]). The syntax of linear temporal
logic (LTL) is given as:

𝜑 ::= True | 𝑎 | 𝜑1 ∧ 𝜑2 |¬𝜑 | ⃝ 𝜑 | 𝜑1U𝜑2,

with 𝑎 ∈ 𝐴𝑃, where 𝐴𝑃 is the set of atomic propositions, the Boolean connectors
conjunction ∧ and negation ¬, and the temporal operators ‘next’ ⃝ and ‘until’
U. From conjunction and negation, we can derive the entirety of propositional
logic including disjunction ∨, implication →, and equivalence ↔. The temporal
operators ‘always’ □ and ‘eventually’ □ can be derived fromU as

□ 𝜑 = TrueU 𝜑, □𝜑 = ¬ □¬𝜑.

From these temporal operators, we can derive ‘always eventually’ □ □ and ‘even-
tually always’ □ □, which specify that a proposition will be true infinitely often
(progress) or eventually forever (stability) respectively. Let 𝜑 be an LTL formula
over 𝐴𝑃. The semantics of LTL formula 𝜑 are defined over an infinite word
𝜎 = 𝑠0𝑠1 · · · as follows:

𝜎 |= True,

For 𝑎 ∈ 𝐴𝑃, 𝜎 |= 𝑎 iff 𝜎0 |= 𝑎,

𝜎 |= 𝜑1 ∧ 𝜑2 iff 𝜎 |= 𝜑1 and 𝜎 |= 𝜑2,

𝜎 |= ¬𝜑 iff 𝜎 ̸ |= 𝜑,



15

𝜎 |= ⃝𝜑 iff 𝜎[1, · · · ] = 𝑠1𝑠2 · · · |= 𝜑,

𝜎 |= 𝜑1U𝜑1 iff ∃ 𝑗 ≥ 0, 𝜎[ 𝑗 , · · · ] |= 𝜑2 and 𝜎[𝑖, · · · ] |= 𝜑1, for all 0 ≤ 𝑖 < 𝑗 ,

where 𝜎[ 𝑗 , · · · ] denotes the word fragment 𝑠 𝑗 𝑠 𝑗+1 · · · .

The class of generalized reactivity of rank 1 (GR(1)) [122] is a fragment of LTL
specifications and can capture safety (□), liveness ( □), and recurrence (□ □) re-
quirements. A GR(1) formula 𝜑 for a robotic system 𝑠 is given as follows:

𝜑 = (𝜑init
𝑒 ∧ □𝜑𝑠𝑒 ∧ □ □ 𝜑

𝑓
𝑒 ) → (𝜑init

𝑠 ∧ □𝜑𝑠𝑠 ∧ □ □ 𝜑
𝑓
𝑠 ) , (2.1)

where 𝜑init
𝑠 , □𝜑𝑠𝑠, and □ □ 𝜑 𝑓𝑠 , define the initial, safety and recurrence requirements

on the system 𝑠 respectively. Similarly, 𝜑init
𝑒 , □𝜑𝑠𝑒, and □ □ 𝜑 𝑓𝑒 , define requirements

on the environment 𝑒 of the system 𝑠. The time complexity of GR(1) synthesis is
𝑂 ( |𝑉 |3), where |𝑉 | is the size of the state space [122].

Definition 2.3 (Finite Transition System). A finite transition system (FTS) is the
tuple

𝑇 B (𝑆, 𝐴, 𝛿, 𝑆0, 𝐴𝑃, 𝐿),

where 𝑆 denotes a finite set of states, 𝐴 is a finite set of actions, 𝛿 : 𝑆 × 𝐴→ 𝑆 the
transition relation, 𝑆0 the set of initial states, 𝐴𝑃 the set of atomic propositions, and
𝐿 : 𝑆 → 2𝐴𝑃 denotes the labeling function.

Definition 2.4 (Deterministic Büchi Automaton). A non-deterministic Büchi au-
tomaton (NBA) [31] is a tuple B B (𝑄,Ω, 𝛿, 𝑄0, 𝐹), where 𝑄 denotes the states,
Ω B 2𝐴𝑃 is the set of alphabet for the set of atomic propositions 𝐴𝑃, 𝛿 : 𝑄×Ω→ 𝑄

denotes the transition function, 𝑄0 ⊆ 𝑄 represents the initial states, and 𝐹 ⊆ 𝑄
is the set of acceptance states. The automaton is a deterministic Büchi automaton
(DBA) iff |𝑄0 | ≤ 1 and |𝛿(𝑞, 𝐴) | ≤ 1 for all 𝑞 ∈ 𝑄 and 𝐴 ∈ Ω.

For every LTL formula 𝜑, there exists an equivalent non-deterministic Büchi au-
tomaton that can be converted into a deterministic Büchi automaton [15].

Definition 2.5 (Product). A product of two Büchi automata, B1 and B2 over the
alphabetΩ, is defined asB1⊗B2 B (𝑄,Ω, 𝛿, 𝑄0, 𝐹), with states𝑄 B B1.𝑄×B2.𝑄,
initial state 𝑄0 B B1.𝑄0 × B2.𝑄0, acceptance states 𝐹 B B1.𝐹 × B2.𝐹. The
transition relation 𝛿 is defined as follows, for all (𝑞1, 𝑞2) ∈ 𝑄, for all 𝐴 ∈ Ω,
𝛿((𝑞1, 𝑞2), 𝐴) = (𝑞′1, 𝑞

′
2) where B1.𝛿(𝑞1, 𝐴) = 𝑞′1 and B2.𝛿(𝑞2, 𝐴) = 𝑞′2.
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Definition 2.6 (Product of Büchi Automaton and Finite Transition System). The
product of a deterministic Büchi automaton B and a finite transition system 𝑇 ,
where the alphabet of B is the labels of 𝑇 , is the transition system 𝑇 ⊗ B =

(𝑆, 𝐴, 𝛿, 𝑆0, 𝐴𝑃, 𝐿), with the set of states 𝑆 B 𝑇.𝑆 × B.𝑄, the initial states 𝑆0 B

{(𝑠0, 𝑞) | 𝑠0 ∈ 𝑇.𝑆0, ∃𝑞0 ∈ B.𝑄0 s.t. B.𝛿(𝑞0, 𝑇 .𝐿(𝑠0)) = 𝑞}, the set of actions
𝐴 B 𝑇.𝐴, the set of atomic propositions 𝐴𝑃 B B.𝑄, the labeling function L, where
for all (𝑠, 𝑞) ∈ 𝑆 we have 𝐿 ((𝑠, 𝑞)) B {𝑞}. The transition relation 𝛿, where for all
𝑠, 𝑠′ ∈ 𝑇.𝑆, for all 𝑞, 𝑞′ ∈ 𝐵.𝑄 we say that 𝛿((𝑠, 𝑞), 𝑎) B (𝑠′, 𝑞′) iff there exists
𝑎 ∈ 𝑇.𝐴 such that 𝑇.𝛿(𝑠, 𝑎) = 𝑠′ and B.𝛿(𝑞, 𝑇 .𝐿(𝑠′)) = 𝑞′.

2.3 Flow Networks
In this work we will leverage flow networks, a concept from graph theory, to
represent different possible test executions. In particular, flow networks are directed
graphs consisting of vertices and edges, each edge with a corresponding capacity
and a flow, and a set of source vertices and sink vertices [56]. They can be used
to model any kind of material transport, such as traffic on a road network, resource
allocation, or electricity in a network of circuits. Flow networks also allow for
reasoning over multiple different flows in a multi-commodity flow network, where
different commodities compete for edge capacity [74]. For the purpose of this work
we will assume unit edge capacity for all networks and a single flow.

Definition 2.7 (Flow Network [39]). A flow network is a tupleN = (𝑉, 𝐸, (𝑉𝑆, 𝑉𝑇 )),
where 𝑉 denotes the set of vertices, 𝐸 ⊆ 𝑉 × 𝑉 the set of edges, 𝑉𝑆 ⊆ 𝑉 the source
vertices, and 𝑉𝑇 ⊆ 𝑉 the sink vertices. On the flow network N , we can define
the flow vector f ∈ R|𝐸 |≥0 that has to satisfy the standard flow constraints. These are
defined as follows: First, the capacity constraint ensures that the flow on an edge
will not exceed the capacity,

0 ≤ 𝑓 𝑒 ≤ 1,∀𝑒 ∈ 𝐸. (2.2)

Second, flow conservation is defined for each vertex as∑︁
𝑢∈𝑉

𝑓 (𝑢,𝑣) =
∑︁
𝑢∈𝑉

𝑓 (𝑣,𝑢) ,∀𝑣 ∈ 𝑉 \ {𝑉𝑠, 𝑉𝑡}. (2.3)

Third, no flow into the source or out of the sink is permitted:

𝑓 (𝑢,𝑣) = 0 if 𝑢 ∈ 𝑉𝑇 or 𝑣 ∈ 𝑉𝑆 . (2.4)
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The flow value on the network N , also denoted as the total flow, is defined as

𝐹 B
∑︁
(𝑢,𝑣)∈𝐸,
𝑢∈𝑉𝑠

𝑓 (𝑢,𝑣) . (2.5)
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C h a p t e r 3

REASONING OVER TEST SPECIFICATIONS

3.1 Introduction
In this chapter, we focus on developing a formal approach to assist test engineers
in reasoning over test campaigns. We propose an approach rooted in assume-
guarantee contract algebra to reason over tests as pairs of contracts, a test structure
describing the test objective in the form of a specification, and the corresponding
system specification. These specifications are given at a high level of abstraction
characterizing the desired test behavior. Assuming this high-level test description is
provided by a test engineer, we aim to bridge the gap between manual test generation
and falsification (starting from an already specified scene) by operating on this high-
level test description. From this test structure, we can generate the tester specification
which can be used to synthesize the required test environment. Additionally, we
can reason over test structures by applying assume-guarantee contract operators to
combine, split, and compare tests.

This framework aims to reduce the complexity of test campaigns by providing a
systematic approach to reason over test objectives and the corresponding system
specifications. The work in this chapter was published in [13, 65], and was done in
collaboration with Apurva Badithela and Inigo Incer.

3.2 Characterizing a Test
To define a test, we need information about i) the system under test and its specifi-
cation to be tested and ii) specifications for the test environment that characterize
the desired behavior that should be observed during the test. We assume that the
desired test behavior is provided in the form of a specification by the test engineer,
while the system specification is provided by the system designer. One key concept
of this framework is that the test objective is unknown to the system since doing
so would reveal the test strategy to the system and consequently would impair the
significance of the test. The system specification states assumptions about the test
environment in which the system is expected to operate. From the test objective,
together with the system specification, we can generate a specification for the test
environment from which we can synthesize the corresponding strategies of the tester
agents under certain conditions.
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We define the test objective as an assume-guarantee contract describing the desired
test behavior as defined below.

Definition 3.1 (Test Objective). A test objective Cobj = (True, 𝐺obj) is an assume-
guarantee contract, where 𝐺obj characterizes the set of desired test behaviors, and it
contains a formal description of the specific behaviors that the test engineer would
like to observe during the test.

An example of a test objective could be waiting for a car to pass during an unprotected
left turn, navigating a busy T-intersection, or performing an emergency braking
maneuver. While the system is aware of its task (e.g. reach a goal location) it might
not be aware of where or when specific events will take place during the test.

Definition 3.2 (System Specification). The system specification is an assume-guar-
antee contract denoted by Csys = (𝐴sys, 𝐺sys), where 𝐴sys are the assumptions that
the system makes on its operating environment, and 𝐺sys denotes the guarantees
that it is expected to provide in an environment where 𝐴sys is satisfied. In particular,
𝐴sys are the assumptions requiring a safe test environment, and ¬𝐴sys

𝑖
∪𝐺sys

𝑖
are the

guarantees on the specific subsystem that will be tested:

Csys = (𝐴sys,¬𝐴sys ∪
⋂
𝑖

(¬𝐴sys
𝑖
∪ 𝐺sys

𝑖
)).

Considering an example of a self-driving car, 𝐴sys would contain the general re-
quirements on the operating environment, ensuring that other agents have to follow
the laws of physics and do not have the intention to make a collision unavoidable.
More specifically, for a perception subsystem under test, 𝐴sys

𝑖
and𝐺sys

𝑖
could defined

such that if a person is unobstructed in the line of sight (assumption), the perception
system will detect and classify them correctly (guarantee). From the test objective
and the system specification, we can define a test strucuture which comprises of
these two contracts as follows.

Definition 3.3 (Test Structure). A test structure is a tuple denoted by 𝔱 = (Cobj, Csys),
which includes the test objective and the corresponding system specification for the
test.

This test structure contains information about the system under test and the specific
test objective and allows us to generate the specification for the test environment
that is needed to ensure a satisfactory test execution.
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Definition 3.4 (Test Satisfaction). A test execution is defined to be satisfactory if i)
the desired test behavior was observed successfully, or ii) the system has failed to
meet its requirements.

For a satisfactory test, we require the cause of failure to be due to the system under
test and not due to the test environment, meaning the test either demonstrated that
the system can successfully pass this test or revealed a system fault. We want to find
a test environment that together with the system will result in a test that satisfies the
test objective. Therefore we can derive the specification for the test environment
from the test structure by computing the mirror of the system contract, merged with
the test objective. This is equivalent to computing the quotient of Cobj and Csys [78].

Definition 3.5 (Test Environment Contract). Given a test structure 𝔱 = (Cobj, Csys)
the test environment contract Ctester is defined as

Ctester = (Csys)−1 • Cobj = Cobj/Csys.

The tester contract can therefore directly be computed as

Ctester = (𝐺sys, 𝐺obj ∩ 𝐴sys ∪ ¬𝐺sys). (3.1)

Intuitively this specification can be seen as the test environment assuming a system
that will satisfy its specification, and in turn guaranteeing a safe operating environ-
ment for the system, while also ensuring that the test objective is satisfied, or the
system does not satisfy its guarantees. Due to the system and the tester being inter-
connected, we need to break this feedback loop to be able to use this specification
to synthesize a test environment. As it is the responsibility of the tester to provide
a safe operating environment to the system, a test environment has to satisfy the
specification ⋂

𝑖

(¬𝐴sys
𝑖
∪ 𝐺sys

𝑖
) → 𝐴sys ∩ 𝐺obj. (3.2)

That is, assuming that each of the system’s subsystems performs its task as specified,
the test environment provides a safe environment for the system and will ensure the
satisfaction of the test objective.

3.3 Comparing Tests
In this section, we will focus on comparing test structures and test campaigns. We
define a test campaign, TC = {𝔱𝑖}𝑛𝑖=1, as a finite list of test structures that are specified



21

by the test engineer. Being able to compare test structures is key to selecting which
test campaign to actually execute on the system when multiple options are given.
A test campaign that is more refined will ensure that the system is tested for a
more refined set of test objectives, possibly under a more stringent set of system
specifications. To define an ordering of test campaigns, we first show how to generate
a single test structure from a test campaign.

Definition 3.6. Given a test campaign TC = {𝔱𝑖}𝑛𝑖=1, the test structure generated by
this campaign, denoted 𝜏(TC), is

𝜏(TC) = 𝔱1 ∥ . . . ∥ 𝔱𝑛.

To be able to define an order of test campaigns, first, we need to define a notion of
order for test structures by making use of contract refinement.

Definition 3.7. We say that the test structure (Cobj
1 , Csys

1 ) refines the test struc-
ture (Cobj

2 , Csys
2 ), written (Cobj

1 , Csys
1 ) ≤ (C

obj
2 , Csys

2 ), if contract refinement occurs
element-wise, i.e., if Csys

1 ≤ Csys
2 and Cobj

1 ≤ Cobj
2 .

Now that we can define refinement for test structures generated from test campaigns
by comparing the test structures element-wise, we can define an ordering on the
respective test campaigns.

Definition 3.8. Given two test campaigns TC and TC′, we say that TC ≤ TC′ if
𝜏(TC) ≤ 𝜏(TC′).

This notion of order for test campaigns is extremely useful because it allows us to
replace any test campaign with a more refined test campaign, as the more refined test
campaign will test the system for more stringent specifications in a more stringent
setting. Additionally, we will make use of test campaign refinement for splitting tests.
The following sections will describe how assume-guarantee contract operations can
be used to perform operations on test structures.

3.4 Combining Tests
We now provide a framework to combine unit test campaigns into a single system-
level test structure. Suppose we have test structures (Cobj

𝑖
, Csys

𝑖
) for 𝑖 ∈ {1, 2} with

test environment (tester) contracts Ctester
𝑖

. We interpret the specifications Ctester
𝑖

as
viewpoints of the tester that apply to different specifications of the system. When
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we merge the tester specifications, we obtain a single test structure given as follows:

Proposition 3.1. Ctester
1 • Ctester

2 = (Cobj
1 ∥ Cobj

2 )/
(
Csys

1 ∥ Csys
2

)
.

Proof. Merging tester contracts yields

Ctester
1 • Ctester

2 =(Cobj
1 /C

sys
1 ) • (C

obj
2 /C

sys
2 )

=(Cobj
1 • (C

sys
1 )
−1) • (Cobj

2 • (C
sys
2 )
−1) ([81], Section 3.1)

=(Cobj
1 • C

obj
2 ) •

(
(Csys

1 )
−1) • ((Csys

2 )
−1)

)
=(Cobj

1 • C
obj
2 ) •

(
Csys

1 ∥ Csys
2

)−1
([78], Table 6.1)

=(Cobj
1 • C

obj
2 )/

(
Csys

1 ∥ Csys
2

)
=(Cobj

1 ∥ Cobj
2 )/

(
Csys

1 ∥ Csys
2

)
, (𝐴obj

1 = 𝐴
obj
2 = True))

which is the list (Cobj
1 ∥ Cobj

2 , Csys
1 ∥ Csys

2 ). □

The resulting contract is the tester contract for the test structure given by the parallel
compositions of the objective contracts and system contracts, separately. As we are
defining the system specification as requirements on the subsystem to be tested, the
composition of the system specifications represents a system consisting of the indi-
vidual subsystems. We use Proposition 3.1 to define an operation on test structures
directly:

Definition 3.9. Given test structures 𝔱𝑖 = (Cobj
𝑖
, Csys

𝑖
) for 𝑖 ∈ {1, 2}, we define their

composition 𝔱1 ∥ 𝔱2 as

(Cobj
1 , Csys

1 ) ∥ (C
obj
2 , Csys

2 ) = (C
obj
1 ∥ Cobj

2 , Csys
1 ∥ Csys

2 ).

For the composition of the test structures to correspond to a valid test, we require
the composed test objective and the resulting tester contract to be satisfiable.

Example 3.1 (Stopping Maneuver). Consider a test setup with a single-lane road and
a pedestrian on a crosswalk. The agent under test is an autonomous car, which has
to detect the pedestrian and come to a stop in front of the crosswalk under different
visibility conditions. These requirements are encoded in the system specification
and the test objective. The setup for this test is shown in Figure 3.1. Three unit test
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objective contracts are specified by the test engineer. The first test objective is as
follows:

Cobj
1 =

(
True, 𝜑car

init ∧ □𝜑
vis
low ∧ □ 𝜑

ped
cw ∧ 𝜑

ped
cw → □ 𝜑

stop
cw

)
,

where 𝜑vis
low := 𝜑vis |= low, denotes low visibility conditions, 𝜑car

init the initial condi-
tions of the car (position 𝑥car and velocity 𝑣car), 𝜑ped

cw denotes the pedestrian on the
crosswalk, and 𝜑stop

cw := 𝑥car ≤ 𝐶cw−1 ∧ 𝑣car = 0 the stopping maneuver at least one
cell in front of the crosswalk cell 𝐶cw. The second test objective is given as

Cobj
2 =

(
True, 𝜑car

init ∧ □𝜑
vis
high ∧ □ 𝜑

ped
cw ∧ 𝜑

ped
cw → □ 𝜑

stop
cw

)
,

where 𝜑vis
high := 𝜑vis |= high denotes high visibility conditions; and lastly the third

test objective is given as

Cobj
3 =

(
True, ∃𝑘 : (𝑣car = 𝑉max ∧ 𝑥car = 𝐶𝑘 ) → □ 𝜑

stop
𝑘+𝑑braking

)
,

where the car has to drive at a specified speed of 𝑉max in an arbitrary cell 𝐶𝑘 and
stop within the allowed braking distance 𝑑braking. This test represents the mechanical
requirement of stopping without specifying any interaction with a pedestrian. Note
that neither of the test objective contracts holds information about the system’s
capabilities to detect a pedestrian, only that the system needs to stop in front of a
pedestrian.

The system capabilities are encoded in the system specifications, which are provided
by the system designer. For each test objective, we are given the corresponding
system specification, which describes the required capabilities of the system for
that test objective (e.g. perception, mechanical requirements, etc.). Each system
specification relies on the system being in a safe environment, where the transitions
of the environment agents are ensured to be safe. This is denoted as 𝐴sys = □𝜑

ped
dyn ∧

□𝜑vis
dyn, where 𝜑ped

dyn, and 𝜑vis
dyn denote the dynamics of the pedestrian, and the visibility

conditions, respectively. We use the same notation for the set and formula 𝐴sys,
which can be inferred from context. The system contract Csys

1 corresponding to the
first test objective is given as

Csys
1 =

(
𝐴sys, □𝜑car

dyn ∧ □ (𝜑
vis
low → 𝑣 ≤ 𝑉low)

∧ □
(
detectable

ped
low → □ 𝜑

stop
ped

)
∨ ¬𝐴sys

)
,

where 𝜑car
dyn, describes the dynamics of the car. The maximum speed that the car is

allowed to drive at in low visibility conditions is𝑉low, and detectableped
low is defined
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as
detectable

ped
low := 𝑥car + 𝑑𝑖𝑠𝑡low

min ≤ 𝑥ped ≤ 𝑥car + 𝑑𝑖𝑠𝑡low
max,

which describes the pedestrian being in the ‘buffer’ zone in front of the car, where
𝑑𝑖𝑠𝑡low

min denotes the minimum distance such that the car can come to a full stop, and
𝑑𝑖𝑠𝑡low

max denotes the maximum distance at which the car can detect a pedestrian in
low visibility conditions. The system specification for the second test objective, the
system contract Csys

2 , is given as

Csys
2 =

(
𝐴sys, □𝜑car

dyn ∧ □ (𝜑
vis
high → 𝑣 ≤ 𝑉max)

∧ □ (detectableped
high → □ 𝜑

stop
ped ) ∨ ¬𝐴

sys
)
,

describing driving in high visibility conditions with a maximum speed of 𝑉max and
detectable

ped
high denoting the pedestrian being detectable in the ‘buffer’ zone for

high visibility conditions. The third system specification Csys
3 is given as

Csys
3 =

(
𝐴sys, □𝜑car

dyn ∨ ¬𝐴
sys
)
,

with the braking distance as a function of speed being part of the car’s dynamics
denoted by 𝜑car

dyn. For each pair of system specifications and test objectives, we
can synthesize the test environment according to equation (3.2). Now we will find
combinations of these tester structures 𝔱𝑖 = (Cobj

𝑖
, Csys

𝑖
) that we can use instead

of executing all tests individually. We will start by computing the combined test
structure 𝔱 = 𝔱2 ∥ 𝔱3. The combined test objective contract Cobj is computed as

Cobj = Cobj
2 ∥ Cobj

3 =
(
True, 𝜑car

init ∧ □𝜑
vis
low ∧ □ 𝜑

ped
cw ∧ 𝜑

ped
cw → □ 𝜑

stop
cw ∧

∃𝑘 : (𝑣car = 𝑉max ∧ 𝑥car = 𝐶𝑘 ) → □ 𝜑
stop
𝑘+𝑑braking

)
.

(3.3)

The combined system contract is computed as

Csys = Csys
2 ∥ Csys

3 =
(
𝐴sys ∪ ¬(𝐺sys

2 ∩ 𝐺
sys
3 ), 𝐺

sys
2 ∩ 𝐺

sys
3
)
.

We will relax this system contract by removing ¬(𝐺sys
2 ∩𝐺

sys
3 ) from the assumptions

to ensure that the assumptions are in the same form as we require for the system
contract in Definition 3.2. Consequently, the tester contract resulting from this
system contract is more refined. So the system contract becomes

Csys =
(
𝐴sys, □𝜑car

dyn ∧ □ (𝜑
vis
high → 𝑣 ≤ 𝑉max)

∧ □(detectableped
high → □ 𝜑

stop
ped ) ∨ ¬𝐴

sys) . (3.4)
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(a) Low visibility with a sta-
tionary pedestrian.

(b) High visibility with a
stationary pedestrian.

(c) High visibility with a
reactive pedestrian.

Figure 3.1: Test execution snapshots of the car stopping for a pedestrian. Figure 3.1a
shows a test execution satisfying Ctester

1 , Figure 3.1b satisfies Ctester
2 and Figure 3.1c

satisfies Ctester
2 and Ctester

3 .

From equations (3.3) and (3.4), we construct the test structure 𝔱 = (Cobj, Csys),
where every implementation that satisfies to equation (3.2) describes a valid test
environment for this combined test. This merged tester specification describes a
test environment where we will see the car decelerate from 𝑉max and stop in front
of the crosswalk in high visibility conditions. To ensure that test structures can be
combined, we need to check whether the resulting test objective and the correspond-
ing tester contract are satisfiable. We will now explain which combinations of the
given test structures cannot be implemented for either of these reasons. Computing
the composition 𝔱1 ∥ 𝔱2 is not possible, as the composition of the test objectives
Cobj

1 ∥ Cobj
2 results in a contract with empty guarantees. This is the case, because

□𝜑vis
low and □𝜑vis

high are disjoint, as the visibility conditions cannot be high and low at
the same time. Thus these two test structures are not composable with each other.
The composition 𝔱1 ∥ 𝔱3 does not result in a feasible test — the test objective requires
a maximum speed of 𝑉max, but the system is constrained to a maximum speed of
𝑉low < 𝑉max in low visibility conditions, resulting in 𝐺sys ∩ 𝐺obj = ∅.

Figure 3.1 shows snapshots of manually constructed test executions satisfying the
tester contracts corresponding to 𝔱1, 𝔱2, and 𝔱2 ∥ 𝔱3. The simulation is in a grid
world setting, where the car will move one cell forward if it has a positive speed 𝑣,
and can accelerate or decelerate by one unit during every time step, meaning if the
car is driving at a higher speed, it will take more cells to come to a stop. In the low
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visibility setting, the car can drive at a maximum speed of 𝑣 = 2 and it can detect a
pedestrian up to two cells away. So in Figure 3.1a it is able to detect the pedestrian
and come to a full stop in front of the crosswalk. In a high visibility setting, the
car can drive at a maximum speed of 𝑣max = 4, and it can detect the pedestrian
up to 5 cells ahead. In Figure 3.1b we can see that the pedestrian is detected and
the car slows down gradually until it reaches the cell in front of the crosswalk.
Figure 3.1c shows a test for the tester contract corresponding to 𝔱2 ∥ 𝔱3, where we
see the pedestrian entering the crosswalk in high visibility conditions when the car
is driving at its maximum speed of 𝑣 = 4 and is exactly 𝑑braking = 4 cells away
from the pedestrian. This test execution now checks the test objective of detecting
a pedestrian in high visibility conditions and executing the braking maneuver with
the desired constant deceleration from its maximum speed down to zero.

Remark: Sometimes in addition to the combined test contract, the test executions
must satisfy further constraints, informed by domain knowledge, to provide useful
information to the test engineer. In the case of combining tests, a metric can be
useful in determining whether we get the desired information from the execution
of the combined test. Later in this chapter, we will show how temporal constraints
are added to refine the combined test objective and provide an example. Instead of
refining the test structure, such additional constraints can also be handled during
test environment synthesis. This can be helpful in determining if and how tests can
be combined for a given available environment and the desired test information.

3.5 Splitting Tests
Now that we have a formal framework for how to combine tests, a natural next
question to ask is whether it is possible to split a test into multiple tests, to allow
executing them individually. Such a situation might be more beneficial in some
cases, for example, if a test was already run previously, or if a test resulted in a
system failure requiring executing the test in smaller increments for diagnostics
purposes. In this section, we will focus on how to split a test structure from another
given test structure.

Proposition 3.2. Let 𝔱 = (Cobj, Csys) and 𝔱1 = (Cobj
1 , Csys

1 ) be two test structures
and let 𝔱𝑞 = (Cobj/Cobj

1 , Csys/Csys
1 ). For any test structure 𝔱2 = (Cobj

2 , Csys
2 ), we have

𝔱2 ∥ 𝔱1 ≤ 𝔱 if and only if 𝔱2 ≤ 𝔱𝑞 .

We say that 𝔱𝑞 is the quotient of 𝔱 by 𝔱1, and we denote it as 𝔱/𝔱1.
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(a) Left: Original test. Center: Given unit test. Right: Split test.

Figure 3.2: Front view of tests satisfying the original test structure (left), the unit
test structure (center) and the split test structure (right) for Example 3.2 Case I.

Proof. 𝔱2 ≤ 𝔱𝑞 ⇔ Csys
2 ≤ Csys/Csys

1 and Cobj
2 ≤ Cobj/Cobj

1 ⇔ (Cobj
2 ∥

Cobj
1 , Csys

2 ∥ Csys
1 ) ≤ (C

obj, Csys) ⇔ 𝔱2 ∥ 𝔱1 ≤ 𝔱. □

In Proposition 3.2 we define the contract that is split from 𝔱 as 𝔱1 = (Cobj
1 , Csys

1 ), which
corresponds to splitting out the subsystem Csys

1 and its corresponding test objective
Cobj

1 from the original test structure 𝔱. This might not always be the intended action,
as for some applications, removing a task from the test objective or removing a
subsystem without modifying the respectively other part of the test structure is
beneficial. We can define additional quotients as i) 𝔱𝑞 = (Cobj, Csys/Csys

1 ), which
still requires satisfaction of the test objective; or ii) 𝔱𝑞 = (Cobj/Cobj

1 , Csys), which
splits out a test objective, while keeping the system intact. Using a quotient of type
(i) could be helpful if parts of the system can be simulated and replaced by a test
harness while testing for the same test objective. This might facilitate the placement
of additional sensors at the test harness-system interfaces to monitor the subsystem’s
behavior during the test execution. On the other hand, a quotient of type (ii) could
be useful for testing the full system for smaller test objectives independently, for
example, to allow parallelization of tests in simulation.

Example 3.2 (Aircraft Formation Maneuvers). Imagine a scenario where two air-
craft, 𝑎1 and 𝑎2 are expected to execute a formation flying maneuver during a test.
The maneuver involves flying along a straight path while swapping positions in a
spiral motion, either clockwise or counterclockwise. For this test, our attention
will be on the longitudinal swapping motion, assuming that the two aircraft will
hold a constant speed allows us to disregard the forward component in this sim-
plified example. In this example, the tester has the capacity to send directives
to the two aircraft, these directives contain the swapping command and the di-
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rection that it should be executed. A clockwise swap directive sent to aircraft 𝑎𝑖
is denoted by directivecw

swap(𝑎𝑖), and a counterclockwise directive is denoted by
directiveccw

swap(𝑎𝑖), where the two positions are denoted 𝑥𝐿 and 𝑥𝑅 for the left and
right position in the formation, respectively. To ensure the safety of the aircraft in
the formation, we need to enforce that the directives are i) not conflicting (i.e. both
aircraft receive either clockwise or counterclockwise directives), and ii) not issued
until the current directive was successfully executed. These constraints on the direc-
tives are captured in 𝐺dirsafe and 𝐺dirlimit. Let the dynamics for aircraft 𝑎𝑖 be described
in 𝐺dyn

𝑖
, and the no-collision requirement be captured in 𝐺safe. The direction of the

swapping motion is encoded as 𝐺cw and 𝐺ccw, for clockwise and counterclockwise
motions. In the event that a swap directive is issued to aircraft 𝑎𝑖, it is required to
execute this directive. This is captured in 𝐺swap

𝑖
as follows:

𝐺
swap
𝑖

=□
(
directivecw

swap(𝑎𝑖) → executecw
swap(𝑎𝑖)

)
∧

□
(
directiveccw

swap(𝑎𝑖) → executeccw
swap(𝑎𝑖)

)
,

(3.5)

where the executeccw
swap(𝑎𝑖) command is defined in Table 3.1. Now we can define

the requirements of the system under test as the following system contract:

Csys = (𝐴sys, 𝐺sys) = (𝐺dirlimit ∧ 𝐺
dir
safe, 𝐺

safe ∧ 𝐺swap ∧ 𝐺dyn), (3.6)

where 𝐺swap := 𝐺
swap
1 ∧ 𝐺swap

2 , and 𝐺dyn := 𝐺
dyn
1 ∧ 𝐺dyn

2 , are the dynamics and
swapping guarantees of both aircraft.

Table 3.1: Subformulae used in the construction of 𝐺sys and 𝐺obj.

Formulae

reach_goalswap(𝑎𝑖) := (𝑥𝑖 = 𝑥𝑅) →
(
□(𝑥𝑖 = 𝑥𝐿) ∧ □(𝑥𝑖 = 𝑥𝐿 → ⃝(𝑥𝑖 = 𝑥𝐿))

)
∧(𝑥𝑖 = 𝑥𝐿) →

(
□(𝑥𝑖 = 𝑥𝑅) ∧ □(𝑥𝑖 = 𝑥𝑅 → ⃝(𝑥𝑖 = 𝑥𝑅))

)
executecw

swap(𝑎𝑖) := reach_goalswap(𝑎𝑖) ∧ □𝐺cw
𝑖

executeswap(𝑎𝑖)ccw(𝑎𝑖) := reach_goalswap ∧ □𝐺ccw
𝑖

𝜑cw := □ directivecw
swap(𝑎1) ∧ □ directivecw

swap(𝑎2)
𝜑ccw := □ directiveccw

swap(𝑎1) ∧ □ directiveccw
swap(𝑎2)

With the contract for the system under test constructed, we can now focus on the
test objective.
Case I: Splitting off a subsystem and the objective. Given the test objective as a
clockwise swapping maneuver defined as Cobj = (True, 𝐺obj), where 𝐺obj := 𝜑cw,
assume that aircraft 𝑎1 was already certified for this maneuver. The test structure
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corresponding to aircraft 𝑎1 and the corresponding swapping test objective is given
as 𝔱1 = (Cobj

1 , Csys
1 ), with Cobj = (True, □ directivecw

swap(𝑎1)) and Csys
1 := (𝐺dirlimit∧

𝐺dirsafe, 𝐺
swap
1 ∧ 𝐺dyn1),. We can now compute the test structure resulting from the

split of the overall test structure and the unit test structure for aircraft 𝑎1. First, we
can compute the resulting test objective by applying the quotient and substituting
True for the assumptions. In the last step, we refine the resulting contract by setting
the assumptions to True.

Cobj/Cobj
1 = (𝐴obj ∩ 𝐺obj

1 , 𝐺obj ∩ 𝐴obj
1 ∪ ¬(𝐴

obj ∩ 𝐺obj
1 ))

= (𝐺obj
1 , 𝐺obj ∪ ¬𝐺obj

1 ) ≥ (True, 𝐺obj ∪ ¬𝐺obj
1 ).

This contract can now be further refined in the context of the test objectives. To
refine the guarantees, we can shrink the guarantee set as follows.

Cobj/Cobj
1 = directivecw

swap(𝑎1) ∧ directivecw
swap(𝑎2) ∨ ¬directivecw

swap(𝑎1)
= directivecw

swap(𝑎2) ∨ ¬directivecw
swap(𝑎1)

≥ directivecw
swap(𝑎2)

In this example it is clear to see that domain knowledge can be very helpful as
designer input is required to ensure that the refinement results in a useful contract.

The quotient of the system contracts can be computed by

Csys/Csys
1 =

(
𝐴sys ∩ 𝐺sys

1 , 𝐺sys ∩ 𝐴sys
1 ∪ ¬(𝐴

sys ∩ 𝐺sys
1 )

)
=
(
𝐺dir

limit ∧ 𝐺
dir
safe ∧ 𝐺

swap
1 ∧ 𝐺dyn

1 , (𝐺safe ∧ 𝐺swap
2 ∧ 𝐺dyn

2 )
∨ ¬(𝐺swap

1 ∧ 𝐺dyn
1 ∧ 𝐺dir

limit ∧ 𝐺
dir
safe)

)
=(𝐺dir

limit ∧ 𝐺
dir
safe ∧ 𝐺

swap
1 ∧ 𝐺dyn

1 , (𝐺safe ∧ 𝐺swap
2 ∧ 𝐺dyn

2 )).

(3.7)

The last step in the simplification is due to the saturation of the contract. In this
resulting system specification, we can see that the requirements on aircraft 𝑎1 are
in the assumptions. Aircraft 𝑎1 is now no longer a part of the system, but it is
controlled by the tester. This now gives the test engineers the choice, of whether to
replace aircraft 𝑎1 with a ‘virtual’ aircraft and feed its simulated position to aircraft
𝑎2’s sensors during the test or if it is necessary to deploy the aircraft.

Case II: Splitting off a part of the objective. Consider the same test setup
consisting of the two aircraft. Assume the test objective is given as

𝐺obj = 𝜑cw ∧ 𝜑ccw,

where the test engineers want to see a clockwise swap and a counterclockwise
swap. Assuming we know that both aircraft have already successfully demonstrated
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the clockwise swap, we can split this requirement from the overall test objective.
After computing the quotient and refining the resulting contract, we end up with
𝐺

obj
𝑞 = 𝜑ccw for the desired test objective. In this case, we are splitting the test

objectives into different instances, while the system contract is kept intact. That is
this test requires an execution where both aircraft are deployed for a counterclockwise
swapping maneuver.

Case III: Splitting off a part of the system. In this case, the test engineers might
deem it beneficial to split off one aircraft from the other, for example in the case
of two identical aircraft it might not be necessary to test both. For the case of
splitting off aircraft 𝑎1, only the system contract quotient is computed according
to equation (3.7). The resulting test structure now contains 𝑎1 in the test harness,
controlled by the tester and such it can be replaced by artificial sensor inputs to 𝑎1.

Remark 3.1. In Example 3.2 it becomes apparent how domain knowledge is crucial
to refine the contracts in a meaningful way. Additionally, it is important to note
that this approach can only reason over what is specified. That is, in the case of
this example, we can only reason over the directives that are sent. If there are any
interactions between the components that are not captured in the specifications, such
as possible wake turbulence for this example, they need to be explicitly contained in
the specification to be taken into account with this approach.

3.6 Finding a Test Strategy
In this section, we will illustrate on two examples how to find a test strategy for a
combined test that maximizes a difficulty metric. We will focus on autonomous car
examples, where we can find the strategy for the test agents using the test objec-
tive generated from combining the unit test objectives in the form of reachability
requirements.

Table 3.2: Subformulae describing the system requirements for Example 3.3.

Formulae

𝜑init
sys := 𝑥sys = 0 ∧ 𝑦sys = 1
𝜑

dyn
sys := □

(
(𝑥sys =𝑥𝑖 ∧ 𝑦sys = 𝑦 𝑗 ) → ⃝

(
(𝑥sys = 𝑥𝑖 ∧ 𝑦sys = 𝑦 𝑗 )

∨ (𝑥sys = 𝑥𝑖 + 1 ∧ 𝑦sys = 𝑦 𝑗 ) ∨ (𝑥sys = 𝑥𝑖 + 1 ∧ 𝑦sys = 𝑦 𝑗 + 1)
) )

for 1 ≤ 𝑖 ≤ 10, 1 ≤ 𝑗 ≤ 2
𝜑safe

sys := □¬(𝑦sys = 2 ∧ 𝑥sys = 𝑥test,𝑘 ), for 1 ≤ 𝑘 ≤ 2
𝜑

prog
sys := □(𝑥sys = 2)
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Figure 3.3: Initial system and test agent configurations (red and blue, respectively)
shown on the left, with final configurations on the right for unit tests (top and center)
and combined test (bottom) for Example 3.3.

Table 3.3: Subformulae describing the tester requirements for Example 3.3.

Formulae

𝜑init
test := 𝑥test,1 = 0 ∧ 𝑥test,2 = 1
𝜑

dyn
test := □

(
(𝑥test,𝑘 =𝑥𝑖) → ⃝

(
(𝑥test,𝑘 = 𝑥𝑖 ∨ 𝑥test,𝑘 = 𝑥𝑖 + 1

) )
for 1 ≤ 𝑖 ≤ 10, 1 ≤ 𝑘 ≤ 2

𝜑safe
test := □¬(𝑦sys = 2 ∧ 𝑥sys = 𝑥test,𝑘 ), for 1 ≤ 𝑘 ≤ 2
𝜑

prog
test,1 := □(𝑦sys = 2 ∧ 𝑥sys = 𝑥test,1 + 1)
𝜑

prog
test,2 := □(𝑦sys = 2 ∧ 𝑥sys = 𝑥test,2 − 1)

Example 3.3 (Lane Change). Consider the following two unit tests for an au-
tonomous car, the system under test. The road layout consists of two lanes with a
length of 10 grid cells each. The 𝑥-coordinate increases along the road from left to
right, ranging from 1 to 10, and the 𝑦-coordinate corresponds to the top and bottom
lanes, designated as 1 and 2 respectively. In each of the tests, the car starts in the
top lane (𝑦sys = 1) and wants to merge into the lower lane (𝑦sys = 2). The dynamics
of the car are such that it is allowed to move forward one grid cell, stay in the same
grid cell, or merge diagonally, designated by 𝜑dyn

sys . Furthermore, its safety condition
is that it is not allowed to collide with a tester agent. The system specification is
therefore given as

Csys = (𝜑dyn
test ∧ 𝜑safe

test , 𝜑
dyn
sys ∧ 𝜑safe

sys ∧ 𝜑
prog
sys ), (3.8)

where the individual subformulas are given in Table 3.2 and Table 3.3.

The test specifications are given as merge behind another car, and merge in front
of another car, respectively. Formally the test objectives are given as Cobj

1 =

(True, 𝐺obj
1 ) and Cobj

2 = (True, 𝐺obj
2 ), where 𝐺obj

1 := 𝜑test,1 and 𝐺
obj
2 := 𝜑test,2
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are the progress requirements described in Table 3.3.

We can now compute the combined test objective by taking the composition of the
test objectives. Note that due to the fact that the assumptions in the test objective
contracts are simply True, and the resulting contract will be refined by setting the
assumptions to True, the result is equivalent to the merge of the two contracts. The
refined combined test objective is as follows:

Cobj
1 ∥ Cobj

2 ≥ (True, 𝐺obj
1 ∧ 𝐺

obj
2 ) = (True, 𝜑prog

test,1 ∧ 𝜑
prog
test,2). (3.9)

As both unit tests are designed to test the same system, the corresponding combined
test structure is the following:

𝔱 = (Cobj, Csys), (3.10)

for the combined test objective contract Cobj := (True, 𝜑prog
test,1 ∧ 𝜑

prog
test,2).

From a test structure, we can generate the tester contract to enable us to generate
the strategy for the two tester agents according to equation (3.2). We want the
tester agent strategy to ensure that every test execution will satisfy the test objec-
tive. Using this specification to find a tester strategy comes with a caveat that is
important to highlight. This framework allows for the synthesis of the tester from
the corresponding specification only if the tester has the authority to ensure that all
test executions can reach a state where the accepting sets of the system and the test
specifications coincide. Furthermore, the tester should not be allowed to violate
the system’s assumptions to trivially satisfy the formula. In this section, we will
illustrate how we can find such a strategy for Example 3.3 using the Temporal Logic
and Planning Toolbox (TuLiP) [159] and Monte Carlo tree search (MCTS). Assume
that we have access to a model of the system in the form of the system’s transition
system and its system contract.

Definition 3.10 (Transition System). A transition system is a tuple T := (𝑆,→),
where 𝑆 is a set of states and → ⊆ 𝑆 × 𝑆 is a transition relation. If ∃ a transition
from 𝑠 ∈ 𝑆to 𝑠′ ∈ 𝑆, we write 𝑠→ 𝑠′.

Definition 3.11 (System Transition System). Let VarSys be the set of system vari-
ables, and let 𝑆sys be all possible valuations of VarSys. The transition system
corresponding to the system under test is the tuple Tsys = (𝑆sys,→sys), where the
transition relation→sys corresponds to the dynamics of the system.
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For implementation purposes, we assume that the system controller is synthesized
from a GR(1) specification, that can be found from a system contract if the subfor-
mulae of the system contract are in GR(1) form.

Definition 3.12 (System Specification). A system specification Φsys is the 𝐺𝑅(1)
formula,

Φsys = (𝜑init
test ∧ □𝜑safe

test ) → (𝜑init
sys ∧ □𝜑safe

sys ∧ □ □ 𝜑
prog
sys ) , (3.11)

where 𝜑init
sys is the initial condition, 𝜑safe

sys encode system dynamics and safety require-
ments, and 𝜑prog

test specifies recurrence goals contained in the guarantees of the system
contract Csys. Likewise, 𝜑init

test and 𝜑safe
test represent assumptions of the system contract

on its environment.

Additionally, the test agents are modeled as a transition system that captures their
dynamics.

Definition 3.13 (Test Agent Transition System). Let VarTest be the set of test agent
variables, and let 𝑆test be all possible valuations of VarTest. The test agent transition
system is the tuple Ttest = (𝑆test,→test), where the transition relation corresponds to
the dynamics of the tester agents.

We will construct a turn-based product transition system of the system and test agent
transition systems as follows.

Definition 3.14 (Game Graph). The product of Tsys and Ttest is the transition system
Tprod = (𝑆prod,→prod), where 𝑆prod := 𝑆sys × 𝑆test, and →prod⊆ 𝑆prod × 𝑆prod. The
transition relation →prod captures the turn-based dynamics where the two players
take turns executing their move and remain stationary while the other agent moves.
That is, for 𝑠, 𝑠′ ∈ 𝑆sys and 𝑡, 𝑡′ ∈ 𝑆test, we have ((𝑠, 𝑡), (𝑠′, 𝑡′)) ∈→prod if (𝑡, 𝑡′) ∈→test

and 𝑠 = 𝑠′ or if (𝑠, 𝑠′) ∈→sys and 𝑡 = 𝑡′.

Next, we will define a game graph that allows us to keep track of from which state
the system will choose the next action, and from which state the tester will choose
the next action.

Definition 3.15 (Game Graph). Let 𝑉sys and 𝑉test be copies of 𝑆prod and let 𝐸sys :=
{(𝑠, 𝑡), (𝑠′, 𝑡) ∈→prod | (𝑠, 𝑡) ∈ 𝑉sys, (𝑠′, 𝑡) ∈ 𝑉test} and 𝐸test := {(𝑠, 𝑡), (𝑠, 𝑡′) ∈→prod

| (𝑠, 𝑡) ∈ 𝑉test, (𝑠, 𝑡′) ∈ 𝑉sys}. The game graph 𝐺 = (𝑉, 𝐸), is a directed graph with
vertices 𝑉 := 𝑉sys ∪𝑉test and edges 𝐸 := 𝐸sys ∪ 𝐸test.
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Definition 3.16 (Strategy). On the game graph 𝐺, a strategy for the system is a
function 𝜋sys : 𝑉∗𝑉sys → 𝑉test such that (𝑠, 𝜋sys(𝑤 · 𝑠)) ∈ 𝐸sys, where 𝑠 ∈ 𝑉sys and
𝑤 ∈ 𝑉∗. The tester strategy 𝜋test : 𝑉∗𝑉test → 𝑉sys is similarly defined.

Definition 3.17 (Test Execution). A test execution 𝜎 = 𝑣0𝑣1𝑣2 . . . starting from
vertex 𝑣0 ∈ 𝑉 is an infinite sequence of states on the turn-based game graph 𝐺.
The next state is found by applying the system or tester strategy as follows. For
𝑣𝑖 ∈ 𝑉sys, then 𝑣𝑖+1 = 𝜋sys(𝑣0 . . . 𝑣𝑖) ∈ 𝑉test and 𝑣𝑖+2 = 𝜋test(𝑣0 . . . 𝑣𝑖𝑣𝑖+1) ∈ 𝑉sys,
continuing this alternating pattern. We will denote the test execution starting from
state 𝑠0 ∈ 𝑉sys for strategies 𝜋sys and 𝜋test as 𝜎𝜋sys×𝜋test (𝑠0).

In addition to a correct tester strategy, we also want to ensure that the resulting test
execution is difficult for the system. To capture the notion of difficulty we introduce
the following difficulty metric.

Definition 3.18 (Difficulty Metric). Let Σ denote the set of all possible test execu-
tions on 𝐺. A difficulty metric 𝜌 : Σ → R is a function assigning a scalar value to
a test execution 𝜎 ∈ Σ.

Enforcing Temporal Constraints in a Combined Test. When combining unit
tests, a situation might arise such that when test objectives are combined it could
become unclear whether the information from the resulting test is sufficient to make
a claim whether the unit tests would have been successfully passed individually.
In this section, we will outline under which conditions the combined test objective
requires a more constrained temporal structure. To ensure that the test execution will
provide the desired information, we need to make certain that each test specification
is sufficiently checked.

Definition 3.19 (Temporally constrained tests). For a test trace 𝜎, let 𝜎𝑡 be the
suffix of the trace, starting at time 𝑡. Let 𝑡𝑆1, 𝑡𝑆2 be times such that 𝜎𝑡𝑆1 |= 𝜑

prog
test,1

and 𝜎𝑡𝑆2 |= 𝜑
prog
test,2, and assume there exists a time 𝑡𝐹1 such that 𝑡𝐹1 = min(𝑡) for all

𝑡, 𝑡 > 𝑡𝑆1 such that 𝜎𝑡𝐹1 ̸ |= 𝜑
prog
test,1 and assume that there exists a time 𝑡𝐹2 such that

𝑡𝐹2 = min(𝑡) for all 𝑡, 𝑡 > 𝑡𝑆2 such that 𝜎𝑡𝐹2 ̸ |= 𝜑
prog
test,2. Then if 𝑡𝑆1 = 𝑡𝑆2 = 𝑡1 and

𝑡𝐹1 = 𝑡𝐹2 = 𝑡2 the tests are parallel in the interval 𝑡 ∈ [𝑡1, 𝑡2]. If 𝑡𝑆1 < 𝑡𝑆2 and
𝑡𝐹1 < 𝑡𝐹2, or 𝑡𝑆1 > 𝑡𝑆2 and 𝑡𝐹1 > 𝑡𝐹2, the tests are temporally constrained.

For example, consider the lane change example. There exist many executions in
which one of the unit tests is satisfied (i.e. the car merges in front of a vehicle), but
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it is not guaranteed that the other specification is satisfied as well. Therefore these
two tests can be parallel. In contrast to this there exist test specifications where
satisfying one will trivially satisfy the other. Then we are not able to distinguish
which specification was checked; thus these unit tests should not be parallel to ensure
that during the test there is a point in time where each test specification is satisfied
individually.

Proposition 3.3. Let the test objective contract be Cobj = (True, □ 𝑝1 ∧ □ 𝑝2), and
the set of all test executions be Σ. If for a parallel test, we have that 𝜎 |= □ 𝑝1 ⇐⇒
𝜎 |= □ 𝑝2 ∀ 𝜎 ∈ Σ, then the temporal constraint must be enforced by refining the
test objective contract as follows:

Cobj = (True, □ 𝑝1 ∧ □ 𝑝2) ≥ (True, □(𝑝1 ∧ ¬𝑝2) ∧ □(¬𝑝1 ∧ 𝑝2)). (3.12)

Example 3.4 (Unprotected Left Turn). Consider the unprotected left turn example
illustrated in Figure 3.4. The system under test (red car) is tasked with taking
a left turn at the intersection. The test agents are a car approaching from the
opposite direction (depicted in blue) and a pedestrian on the crosswalk. The two
test objectives are seeing the system stop at the intersection to wait for a car and
wait for a pedestrian. If these two test executions were parallel, seeing the car
successfully stop does not provide enough information to ensure that the car would
also successfully stop if just one of the test agents is present. For this example, we
need to enforce the temporal constraint on the combined test objective to check that
the unit test objectives will also be satisfied individually.

Constructing the Partial Order. To be able to find a test strategy, we need to
reason over the progress toward satisfying the test objective while assuming the
system will satisfy its contract. In this section, we will outline how we can use
the game graph 𝐺 to find a test policy filter that ensures that every available action
satisfies these requirements. As the dynamics of the system and the test agents
are already contained in the initial state and the transitions on the game graph,
we can focus on the progress requirements of the system and the combined test
objective contract. First, assume that we are given a game graph 𝐺 and a combined
test objective guarantee 𝜑test = □ 𝜑test,1 ∧ □ 𝜑test,2, that coincides with the system
progress requirement 𝜑prog

sys (e.g. a state that satisfies the test objective is also a goal
position for the system). Furthermore, we assume that the test is terminated at that
position, making these states sink states on the game graph, where the only outgoing
transitions are a self-loop between the corresponding state in 𝑉sys and in 𝑉test. Then
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Figure 3.4: Snapshots during the test execution for Example 3.4 generated by our
framework. We observe that the system under test (red car) has to wait for the blue
car first, and then for the pedestrian on the crosswalk. Passing this test showed that
it correctly detected both agents.

we can identify the set of states I = {𝑖0, . . . , 𝑖𝑛} ⊆ 𝑉 , that satisfy the propositional
formula 𝜑test, we will also refer to I as the goal states. For each state 𝑖 ∈ I, we
can find the backward reachable set of states V𝑖 ⊆ 𝑉 , that we can partition into
{V𝑖

0 , . . .V
𝑖
𝑚}, whereV𝑖

𝑘
is the set of states in 𝑉 from which goal 𝑖 can be reached in

𝑘 steps. From this, the partial order, P𝑖 = ({V𝑖
0 , . . . ,V

𝑖
𝑚}, ≤), is derived such that

V𝑖
𝑙
≤ V𝑖

𝑙−1 for all steps 0 ≤ 𝑙 ≤ 𝑚, for all goals 𝑖 in I.

Example 3.3 (Lane Change - continued). In the lane change example, the states in
I correspond to the different ways in which the system can merge in between the two
test agents. For the given track length of 10 cells, there are eight different possible
positions that the cars can be in after a successful merge in between maneuvers.

Now consider a system progress requirement and test objectives that do not coincide
at a single state. To be able to construct a partial order towards a desired goal
state while ensuring that any temporal constraints are satisfied, we need a way to
remember the history during the test execution. We will outline the construction
of an auxiliary game graph 𝐺aux = (𝑉aux, 𝐸aux), on which we can then construct
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a partial order towards a desired set of states I ⊆ 𝑉aux. We will outline this
procedure for two progress requirements in the test objective, but this procedure can
be extended to multiple progress requirements without loss of generality. Assume
we are given a combined test objective guarantee 𝜑test = □ 𝑝1 ∧ □ 𝑝2, with 𝑝1,
and 𝑝2 propositional formulas, and the corresponding game graph 𝐺. The system
progress specification corresponds to reaching the goal labeled 𝑔, given as 𝜑prog

sys = ♢𝑔

with 𝑔 propositional formulas. We start by making four copies of the game graph
𝐺 = (𝑉, 𝐸) — 𝐺0 = (𝑉0, 𝐸0), 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2), and 𝐺3 = (𝑉3, 𝐸3).
Each set of states 𝑉0, 𝑉1, 𝑉2, and 𝑉3, along with sets of edges 𝐸0, 𝐸1, 𝐸2, and 𝐸3 is a
copy of𝑉 and 𝐸 , respectively. LetI0,1 be the states in𝑉0 that satisfy the propositional
formula 𝑝1, and let I0,2 be the states in 𝑉0 that satisfy the propositional formula 𝑝2.
In addition, let I1,2 be the states in 𝑉1 that satisfy the propositional formula 𝑝2, and
let I2,1 be the states in 𝑉2 that satisfy the propositional formula 𝑝1. Next, we will
connect the subgraphs as follows. Let (𝑣0, 𝑢) ∈ 𝑉0 be an outgoing edge from a
vertex 𝑣0 ∈ I0,1, and let 𝑢1 be the vertex in subgraph 𝐺1 that corresponds to vertex
𝑢 in 𝐺0. Remove edge (𝑣0, 𝑢) from 𝐸0 and add the edge (𝑣0, 𝑢1) to the set 𝐸connect.
Similarly let (𝑣0, 𝑢) ∈ 𝑉0 be an outgoing edge from a vertex 𝑣0 ∈ I0,2, and let 𝑢2

be the vertex in subgraph 𝐺2 that corresponds to vertex 𝑢 in 𝐺0 and remove (𝑣0, 𝑢)
from 𝐸0 and add (𝑣0, 𝑢2) to 𝐸connect. Let (𝑣1, 𝑢) ∈ 𝑉1 be an outgoing edge from a
vertex 𝑣1 ∈ I1,2, and let 𝑢3 be the vertex in subgraph𝐺3 that corresponds to vertex 𝑢
in 𝐺3 and remove (𝑣1, 𝑢) from 𝐸1 and add (𝑣1, 𝑢3) to 𝐸connect. In the same way we
connect the nodes in 𝑢2 ∈ I2,1 to their corresponding node in 𝑣3 ∈ 𝑉3 by removing
the edges (𝑢2, 𝑣) ∈ 𝐸3 and adding an edge (𝑢2, 𝑣3) to 𝐸connect. We can then create
the auxiliary game graph 𝐺aux B (𝑉aux, 𝐸aux), where 𝑉aux B 𝑉0 ∪ 𝑉1 ∪ 𝑉2 ∪ 𝑉3,
and 𝐸aux B 𝐸0 ∪ 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸connect. The goal vertices 𝑣 ∈ 𝑉aux are such
that 𝑣 ∈ 𝑉3, and the states 𝑣 satisfy the propositional formula 𝑔, and are denoted as
I𝑔 ⊆ 𝑉aux. The resulting graph is illustrated in Figure 3.5. The states in which 𝑝1

is satisfied are highlighted in blue, the states where 𝑝2 is satisfied are highlighted in
yellow, and the goal state 𝑠 ∈ I𝑔 is highlighted in orange. The different paths via
the layered graphs correspond to the different orderings in which states that satisfy
𝑝1 and 𝑝2 can be visited during the test. For each goal 𝑖 ∈ I𝑔, we can construct the
partial order P𝑖 = ({V𝑖

0 , . . . ,V
𝑖
𝑛}, ≤) from the backward reachable setV𝑖 ∈ 𝑉aux.

Lemma 3.4. Given an auxiliary game graph 𝐺aux, an initial state 𝑣0 ∈ 𝐺aux, and
goal states I𝑔 ⊆ 𝐺aux, if 𝑣0 ∉

⋃
𝑖∈I P𝑖, then there does not exist a successful strategy

for the test agents.
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Figure 3.5: Auxiliary game graph 𝐺aux illustration encoding temporal constraints
for a single goal state (orange).

Example 3.4 (Unprotected Left Turn - continued). In the case of the unprotected
left turn example, we require enforcing the temporal constraints. We construct𝐺aux,
where the goal states I𝑔 correspond to the different orders in which the system car
could have waited for the approaching car and the pedestrian individually. We find
the winning set using the partial orders P𝑖 for all 𝑖 ∈ I𝑔 on 𝐺aux.

Since the winning set is a disjunction of winning sets for multiple system goals,
a strategy that always makes progress towards any goal in I𝑔 does not necessarily
have to reach the goal set I. For two goals 𝑖, 𝑗 ∈ I𝑔, a policy could result in a live
lock by alternating between making progress towards 𝑖, while increasing the steps
required to reach 𝑗 , and vice-versa. To mitigate this, we assume that partial orders
do not contain such cycles.

Receding Horizon Synthesis as Test Policy Filter. We leverage receding horizon
synthesis presented in [158] to scalably compute the set of statesW from which the
test environment can realize the test specification on the system in a test execution.
Note that we are not synthesizing a test strategy using the receding horizon approach,
but are instead using W as a filter on a search algorithm (MCTS) that finds an
optimal (in this case, most difficult) test policy. Further details on applying receding
horizon strategies for temporal logic planning can be found in [158]. A distinction
in our work is that there can be multiple states in a graph 𝐺 that satisfy a progress
requirement on the test specification. Let I𝑔 be the set of goal states on 𝐺 (or 𝐺aux).
Specifically, for some goal 𝑖 ∈ I𝑔, if the product state starts at 𝑗 steps from 𝑖 (i.e.
𝑣 ∈ V𝑖

𝑗+1), the test agent strategy is required to guide the product state toV𝑖
𝑗−1. The
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corresponding GR(1) specification for the test agents is

𝜓𝑖𝑗 = (𝑣 ∈ V𝑖
𝑗+1∧Φ∧□𝜑

safe
sys ∧□ □ 𝜑

prog
sys ) → (□ □(𝑣 ∈ V𝑖

𝑗−1)∧□𝜑
safe
test ∧□Φ), (3.13)

where Φ is the invariant condition that ensures that 𝜓𝑖
𝑗

is realizable. See [158] for
further details on how this invariant can be constructed. Since there are |I𝑔 | different
ways to satisfy the goal requirement 𝑝, and the test specification requires that we
satisfy 𝑝 for at least one 𝑖 ∈ I𝑔. To capture this in the receding horizon framework,
the test execution must progress toward at least one 𝑖 ∈ I𝑔. For 𝑗 steps away from
the goal set I𝑔, this is formally stated as,

ΨI𝑗 = ∨𝑖∈I 𝜓𝑖𝑗 . (3.14)

The set of states from which the test environment has a strategy that satisfies the
specification in equation (3.14) is the short horizon filter, denoted byWI

𝑗
. Let 𝑗max

denote the supremum of all shortest paths from a vertex 𝑣 ∈ 𝑉 to some 𝑖 ∈ I𝑔. Then,
the overall test policy filter is the union of short-horizon test policy filters,

WI =

𝑗max⋃
𝑗=1
WI

𝑗 . (3.15)

Finding the Test Agent Policy. Ensuring that any test agent strategy remains in
the winning set WI enforces that the resulting test execution 𝜎 will satisfy the
corresponding test objective guarantee 𝜑test. However, in addition, we require the
resulting test execution to also be a difficult test, characterized by a high difficulty
score 𝜌(𝜎). We will apply the winning set WI as a filter to guide the rollouts
in Monte Carlo tree search (MCTS) to ensure that every available action remains
in the winning setWI . MCTS is a heuristic search algorithm that combines the
benefits of random sampling with tree search procedures. MCTS had a significant
impact on the artificial intelligence community and has achieved great success in
decision-making for complex problems that can be represented as a tree [30]. Using
MCTS with an upper confidence bound (UCB) was introduced in [95] as upper
confidence bound for trees (UCT) which guarantees that given enough time and
memory, the result converges to the optimal solution. We use MCTS to find the test
agent strategy 𝜋∗test, such that the resulting test execution 𝜎𝜋sys×𝜋test maximizes the
difficulty metric 𝜌. The complexity of this approach is driven by the complexity of
the construction of the winning set for the GR(1) specification, which is 𝑂 ( |𝑉 |3),
where 𝑉 is the size of the state space. In this case, the state space is all valuations
of the system and tester variables used in the GR(1) specification. In particular, to
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improve the scalability of this framework, we are using a receding horizon approach
to find the winning sets, for details on the time complexity please refer to [158]. The
complexity for MCTS is exponential in the depth of the tree [144]. The number of
rollouts and iterations are design variables, that can be chosen to ensure convergence
for the particular application and chosen search policy.

Algorithm 3.1 Merge Unit Tests (𝔱test,1, 𝔱test,2, 𝜑sys,Tsys,Ttest,1,Ttest,2, 𝜌)
1: procedure CombinedTestStrategy(𝔱test,1, 𝔱test,2,Tsys,Ttest,1,Ttest,2, 𝜌)

Input: Unit test structures 𝔱test,1 = (Csys,1, Cobj,1) and 𝔱test,2 = (Csys,2, Cobj,2), System
Tsys, unit test environments Ttest,1 and Ttest,2, and difficulty metric 𝜌,

Output: Merged test strategy 𝜋test,𝑚
2: Ttest ← Ttest,1 × Ttest,2 ⊲ Combine unit test environments
3: Tprod ← Tsys × Ttest ⊲ Product transition system
4: 𝐺 ← Game graph from product transition system Tprod
5: 𝔱← 𝔱1 ∥ 𝔱2 ⊲ Combine test structure
6: 𝜑obj ← 𝐺obj,1 ∧ 𝐺obj,2 ⊲ Refined combined test objective
7: 𝐺aux ← Construct auxiliary game graph
8: I = {𝑠 ∈ Vaux | 𝑠 |= 𝜓 𝑓

test,𝑚} ⊲ Define goal states
9: for 𝑖 ∈ I do

10: P𝑖 ← {(V𝑖
𝑝, . . . ,V𝑖

0)} ⊲ Partial order on 𝐺aux for goal 𝑖
11: 𝜓𝑖

𝑗
← Equation 3.13 ⊲ Specification for goal 𝑖 at distance 𝑗

12: for 𝑗 ∈ [0, . . . , 𝑗max] do ⊲ Maximum number of steps to the goal 𝑗max
13: ΨI

𝑗
← Equation 3.14 ⊲ Receding horizon specification for distance 𝑗

14: WI ← Equation 3.15 ⊲ Test policy filter for goal set I
15: 𝜋test ← Search for test policy that maximizes 𝜌 guided byWI

16: return 𝜋test

Example 3.3 (Lane Change - continued). Returning to the lane change example,
we define the difficult metric as the 𝑥-coordinate of the cell in which the finishes
the lane change maneuver. The system model is such that it will change lanes if
the diagonal grid cell is not occupied by a test agent, otherwise, it will randomly
decide to move forward or stay in the same cell. We search for the strategy for the
test agents using the filtered MCTS procedure outlined above, where we simulate
the system and the test agents during each rollout. Figure 3.6 shows the resulting
test execution, where the system merges in between the two tester agents in cell 9,
which corresponds to the most difficult test.

Example 3.4 (Unprotected Left Turn - continued). The test execution found using
this framework is depicted in Figure 3.4. The system under test (red) takes an
unprotected left turn and waits for the pedestrian and the car (blue) individually. In
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Figure 3.6: Snapshots during the execution of the test generated by this framework
for different timesteps 𝑇 . The system under test (red car) merges into the lower lane
between the two test agents (blue cars) at 𝑇 = 43.

the snapshots at time steps 8 and 12, the system waits just for the approaching car,
and in time step 21, it waits just for the pedestrian.

3.7 Conclusion
In this chapter, we presented a formal framework to characterize tests and allow
reasoning over the test structures. We defined how to compare test campaigns,
combine and split tests, and illustrated the procedure on examples. Furthermore,
we showed how to find a difficult test policy from a specification in the case of a
combined system and tester goal by receding horizon winning set synthesis and a
search procedure. Additionally, we showed how to find the test agent policy for a
combined test under the addition of temporal constraints by manually constructing an
auxiliary game graph. In the following chapter, we will investigate how to generalize
and automate the test environment generation and test agent policy synthesis.
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C h a p t e r 4

SYNTHESIZING REACTIVE TEST ENVIRONMENTS

4.1 Introduction
One major challenge to automating testing lies in creating the environment for a
test, which, in the case of autonomous vehicles, involves placing any obstacles or
finding the strategy for agents controlled by the test engineer. Every test must strike
a delicate balance between ensuring that the system is challenged sufficiently, while
also allowing that a correctly functioning system can successfully pass the test. In
the previous chapter, we presented an approach to find the strategy for a combined
test utilizing winning sets and Monte-Carlo Tree Search (MCTS). The limitations
of the winning-set and MCTS-based approach become evident due to the required
assumptions as outlined in Section 3.6. Specifically, the test agent accepting states
were required to be a subset of the system’s accepting states. Consequently, the
test execution could only be routed towards the system’s acceptance states that
aligned with the test objective acceptance states. This limits the possible test cases
significantly.

Instead, we desire to automatically construct a test strategy for independent system
and test objectives. Specifically, the system must be unaware of the specific test
objective, because disclosing the entire test to the system—and in turn the system
designer—would defeat the purpose of testing. Moreover, states in which the test
agents can violate the system’s assumptions are part of the winning set for the test
objective. However, entering these states needs to be avoided as it would create an
impossible test. Hence, we need to reason about the system’s perspective as well
as the progress toward satisfying the test objective separately. However, we do not
want to constrain the system more than necessary. Preventing an incorrect system
from making wrong decisions would be detrimental as the entire premise of testing
is about observing whether a system makes the correct choice given alternative
options.

We desire to systematically find a test strategy that strikes a balance between al-
lowing the system the freedom to make decisions, even if they are erroneous, while
minimally interfering with the system. In this chapter, we show that this routing
problem is NP-hard, and we present a framework that reasons over flows in a net-
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Figure 4.1: Overview of the flow-based synthesis framework.

work instead of paths, which allows for tractable implementations of this inherently
combinatorial problem.

We present a framework that characterizes the test behavior in the form of a system
objective and a test objective consisting of reachability, reaction, and safety tasks;
and finds a reactive test strategy for a given system model that is guaranteed to restrict
the system as minimally as possible, while ensuring that a correctly designed system
will be able to satisfy the system and test objective.

In this chapter, we present a flow-based test synthesis approach that allows us to
find static and reactive environments, as well as strategies for dynamic test agents.
Specifically, we:

1. Present an approach to construct graphs that allows us to reason over the test
executions from both the test and the system’s perspectives.

2. Frame the routing problem as a network flow optimization for different avail-
able test environments.

3. Present a procedure for synthesizing the test agent strategy corresponding to
the result of the optimization from a GR(1) specification.

4. Employ a counter-example guided search to find a realizable test agent strategy.

5. Establish that the complexity of the routing problem is NP-hard.

6. Demonstrate the framework on several examples in simulation and hardware
experiments.

The work in this chapter appeared in [64] and a preliminary version appeared in
in [14]. This work was done jointly with Apurva Badithela.
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4.2 System Under Test and Test Environment
In this section, we will focus on the models used for the system under test and the
test environment, which consists of agents and other obstacles that the test engineer
can control. The system under test, also referred to as the system, is defined as
follows.

Definition 4.1 (System). The system under test is modeled as a finite transition
system 𝑇 (according to Definition 2.3) with a single initial state, that is, |𝑇.𝑆0 | = 1.
For every state of the system, there exists a self-loop transition, which corresponds
to a stay-in-place action. We require that there exists at least one terminal state for
the system, such that once the system arrives in that state its only available action is
to remain there.

For ease of notation, we denote the set of transitions in 𝑇 as 𝑇.𝐸 , where for all
𝑠 ∈ 𝑇.𝑆 and for all 𝑠′ ∈ 𝑇.𝑆, the transition (𝑠, 𝑠′) ∈ 𝑇.𝑆 if there exists 𝑎 ∈ 𝑇.𝐴 such
that 𝑇.𝛿(𝑠, 𝑎) = 𝑠′.

For a simpler presentation, we assume that all system transitions (except for sink
states) are bidirectional. That is, for all (𝑠, 𝑠′) ∈ 𝑇.𝐸 , if 𝑠′ is not a terminal state, we
also have (𝑠′, 𝑠) ∈ 𝑇.𝐸 . This assumption can be relaxed as explained in Remark 4.3.

An execution 𝜎 is an infinite sequence 𝜎 = 𝑠0𝑠1 . . . , where 𝑠0 ∈ 𝑆0 and 𝑠𝑘 ∈ 𝑇.𝑆 is
the state at time 𝑘 . We denote the finite prefix of the trace 𝜎 up to the current time
𝑘 as 𝜎𝑘 . A strategy is a function 𝜋 : (𝑇.𝑆)∗𝑇.𝑆 → 𝑇.𝐴.

We define a test harness that defines which state-action (𝑠, 𝑎) pairs of the system can
be restricted during the test, such that the system is prevented from taking action 𝑎
from state 𝑠 ∈ 𝑇.𝑆.

Definition 4.2 (Test Harness). Let the set of actions 𝐴𝐻 ⊆ 𝑇.𝐴 denote the subset
of system actions that can be restricted by the test harness. The test harness
𝐻 : 𝑇.𝑆 → 2𝐴𝐻 maps states of the transition system to actions that can be restricted
from that state.

The test harness corresponds to the authority of the test designer over the system
under test. In our examples, we assume that we can only externally influence the
system, and not force it to take certain actions. Therefore, 𝐴𝐻 does not contain any
self-loop actions. The actions in the test harness can be restricted during the test
by any agent that is controllable by the test engineer, including any obstacles that
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Table 4.1: Sub-task specification patterns.

Name Formula

Visit
𝑚∧
𝑖=1
□ 𝑝

𝑖 (4.1)

Sequenced Visit □(𝑝0 ∧ ( □(𝑝1 ∧ . . . □ 𝑝𝑚))) (4.2)
Safety □¬𝑝 (4.3)
Instantaneous Reaction □(𝑝 → 𝑞) (4.4)
Delayed Reaction □(𝑝 → □ 𝑞) (4.5)

are placed by the test engineer. The test environment therefore corresponds to the
realization of the transition restrictions in the test harness in the following ways.

Definition 4.3 (Test Environment). The test environment consists of one or more of
the following: static obstacles, reactive obstacles, and dynamic test agents. A static
obstacle on (𝑠, 𝑠′) ∈ 𝑇.𝐸 is a restriction on the system transition (𝑠, 𝑠′) that is placed
at the beginning of a test and remains in place for the entire duration of the test.
A reactive obstacle on (𝑠, 𝑠′) ∈ 𝑇.𝐸 is a restriction on the system transition (𝑠, 𝑠′)
that can be enabled and disabled over the course of the test, making it a temporary
restriction for the system. A dynamic test agent is modeled by the transition system
𝑇tester, and can occupy states in 𝑇.𝑆, thus restricting the system from entering the
state that the test agent occupies.

Similarly to Chapter 3, we will characterize the desired test behavior using a specifi-
cation. To this end, we will introduce the system objective and the test objective that
will contain specification sub-tasks as described in Table 4.1. These sub-tasks are
defined over atomic propositions 𝐴𝑃 and can be evaluated over system states 𝑇.𝑆.
When both the system and the test objective are satisfied together, they describe the
desired test behavior. In particular, it is reasonable to assume that for a realistic
test, some aspects of the test will not be revealed to the system beforehand. These
aspects that the system is not aware of are captured in the test objective.

Definition 4.4 (Test Objective). The test objective 𝜑test contains at least one visit or
sequenced visit sub-task or a conjunction of these sub-tasks.

In contrast to the test objective, some aspects of the test need to be known to the
system. For example, for a test that ensures that a system does not enter unsafe
regions, the system needs to be aware of which regions are considered unsafe, and
that it needs to avoid unsafe areas. To ensure that a test execution satisfies a reaction
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task, the system is required to be aware of the correct reaction it is expected to
perform.

Definition 4.5 (System Objective). The system objective 𝜑sys contains at least one
visit or sequenced visit sub-task. In addition, it can also contain a conjunction
of safety, instantaneous and/or delayed reaction, and visit and/or sequenced visit
sub-tasks.

To ensure that we can route a test execution through a desired behavior to a final
goal position, we require the test objective and system objective to at least consist
of a single reachability task, respectively. From this requirement, it follows that one
of the reachability tasks in the system objective needs to correspond to a sink state
on the transition system 𝑇 . Furthermore, encoding a reaction task requires includ-
ing the expected reaction in the system objective, and ensuring that the reaction is
triggered by including the trigger as a reachability specification in the test objec-
tive. These definitions allow us to construct two Büchi automata that encode these
specifications. The Büchi automaton Btest corresponds to the test objective 𝜑test.
The Büchi automaton Bsys corresponds to the system objective 𝜑sys. We say that
the system reaches its goal if the system trace is accepted by Bsys, and thus satisfies
the system objective. To keep track of the event-based history of the test execution
concerning the system objective and the test objective we define the specification
product making use of Definition 2.5.

Definition 4.6 (Specification Product). The specification product is the product of
two deterministic Büchi automataB𝜋 := Bsys⊗Btest. The states (𝑞sys, 𝑞test) ∈ B𝜋 .𝑄,
where 𝑞sys ∈ Bsys.𝑄 and 𝑞test ∈ Btest.𝑄, capture the event-based progression of the
test and are referred to as the history variables.

Each state of the specification product 𝑞 ∈ B𝜋 .𝑄 is a tuple of the corresponding
states in Bsys.𝑄 and Btest.𝑄, thus remembering the progress of the test concerning
the system and test objective, respectively.

In addition to satisfying the system objective, a system under test also needs to be
able to operate safely in its environment, which includes not colliding with any test
agent or obstacles, and ensuring that any low-level controller implementation can
be modeled by 𝑇 .
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Definition 4.7 (System Guarantees). The system guarantees are a conjunction of
the system objective, its initial condition, safe interaction with the test environment,
and the system’s dynamics given by 𝑇 .

To enable the system to satisfy its guarantees, it is necessary to define its operating
environment, captured by the system assumptions.

Definition 4.8 (System Assumptions). The assumptions that the system makes on
its environment are:
A1. The test environment can consist of static obstacles, reactive obstacles, and test
agents whose dynamics are known to the system.
A2. The test environment will not take any action that will inevitably lead to unsafe
behavior (e.g. the test agent will not collide into the system).
A3. At any time during the test execution, there will always be a path for the system
to reach its goal.
A4. The system can choose to break any livelock and make progress toward its goal.

A correct system strategy is a strategy that satisfies the system’s guarantees given
that the system’s assumptions are satisfied. The system’s assumptions require a path
to exist at any time during the test execution. However, this path is allowed to change
over time. This corresponds to the system assuming that the test agent will not block
it forever without specifically stating any restrictions on the test agent’s behavior.
This specification cannot be expressed as an LTL formula as the test agents would
be assumed to behave in the worst-case manner. Thus the test agents are neither
adversarial nor fully cooperative and in many cases, this cannot be captured by an
LTL specification.

In real-world applications, it is likely that tests have a defined start and a defined
endpoint. In our framework, we will rely on LTL specifications, which are evaluated
over infinite traces. Thus, we need to bridge the gap between the finiteness of a
real-world test and the infinite traces required to evaluate an LTL formula. To
achieve this, upon termination of the test execution in state 𝑠𝑛, we supplement the
trace by an infinite suffix 𝑠𝜔𝑛 , effectively extending the finite trace 𝜎𝑛 to the infinite
trace 𝜎 = 𝜎𝑛𝑠

𝜔
𝑛 . Constructing this infinite trace allows us to benefit from the

tools available for LTL. Interpreting LTL over finite traces has been an active area
of research in [42, 43, 69, 110]. This approach of supplementing the trace with
the infinite suffix raises the question of when a test should be terminated. The
decision of when to terminate the test will dictate whether this test trace will hold
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Figure 4.2: Grid world layouts for examples.

the information required to evaluate the success of the test. Tests that are terminated
prematurely might result in inconclusive results [18]. As previously described, we
require the system transition system to contain a terminal state that corresponds to a
reachability task in the system objective; this corresponds to the system goal state,
which would ensure that the test was successfully completed. We assume that the
test engineer will allow the system enough time to reach this goal state. This means
that for a system that enters an unsafe state, or for any reason stops making progress
towards the goal for an unreasonably long time, the test engineer can decide to
terminate the test. In that case, the system did not pass the test and this unexpected
behavior needs to be analyzed in detail.

In this chapter, we will describe the flow-based synthesis framework and illustrate
the key concepts on two running examples.

Example 4.1 (Static Grid World). The system under test is an agent on the grid
world shown in Figure 4.2a. It can transition from one cell to any adjacent cell,
in either direction (N-E-S-W); we will refer to this as a standard grid world. The
test environment consists of only static obstacles. The system’s initial position is
designated by 𝑆, and the goal state is designated 𝑇 , where the system objective is
given as 𝜑sys = □𝑇 . The system Büchi automaton Bsys is shown in Figure 4.3a
with the acceptance states highlighted in yellow. The test objective is to route the
test execution through one of the states labeled 𝐼, encoded in the test objective,
𝜑test = □ 𝐼. The corresponding test objective Btest automaton is illustrated in
Figure 4.3b, with the acceptance states highlighted in blue. The specification product
Bprod with the acceptance states corresponding to the system and test objective is
shown in Figure 4.3c.
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Figure 4.3: Automata for Example 4.1.
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Figure 4.4: Automata for Example 4.2.

Example 4.2 (Reactive Grid World). In this example, the system can transition on
a standard grid world with cells denoted as 𝐼1, 𝐼2, and 𝑇 , illustrated in Figure 4.2b.
The test environment for this example consists of reactive obstacles. The system’s
initial position is labeled 𝑆, and its goal is reaching the cell labeled 𝑇 . Thus, the
system objective is 𝜑sys = □𝑇 . The test objective requires the system to visit both
the cell labeled 𝐼1 and the cell labeled 𝐼2 in any order, making the test objective
𝜑test = □ 𝐼1 ∧ □ 𝐼2. The corresponding automata for this example are illustrated
in Figure 4.4, where the states shaded in yellow represent the system objective
acceptance states, and the states highlighted in blue represent the test objective
acceptance states.

4.3 Reactive Test Strategy Problem
In this section, we will state the test environment synthesis problem. We assume that
the test engineer provides a system objective and a test objective, which describes
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the desired test behavior. Then, we find a reactive test strategy for which every
successful test execution will satisfy the test objective and the system objective.

Definition 4.9 (Reactive Test Strategy). A reactive test strategy 𝜋test : (𝑇.𝑆)∗𝑇.𝑆 →
2𝐴𝐻 defines the set of restricted system actions at each state during its execution 𝜎.
For some finite prefix 𝑠0 . . . 𝑠𝑖 of execution 𝜎, 𝜋test(𝑠0 . . . 𝑠𝑖) ⊆ 𝐻 (𝑠𝑖) is the set of
actions that the system cannot take from state 𝑠𝑖. A test environment can realize a
reactive test strategy 𝜋test if it can restrict system actions according to 𝜋test.

Let Σfin := (𝑇.𝑆)∗𝑇.𝑆 be the set of all finite prefixes of system traces. At each
time step 𝑘 ≥ 0, a correct system strategy 𝜋sys : Σfin → 𝑇.𝐴 \ 𝜋test(Σfin) must pick
from available actions at state 𝑠𝑘 . The resulting system execution is denoted as
𝜎(𝜋sys × 𝜋test).

Remark 4.1. Note that the test environment externally blocks system transitions
and, as a consequence, restricts corresponding actions that the system can safely
take. When actions are restricted by the test environment, the system strategy 𝜋sys

should select from the available actions at each state. Since these restrictions can
be placed during the test execution, the system might have to re-plan and choose a
different action than originally planned.

Definition 4.10. Given a test environment, system 𝑇 , system and test objectives,
𝜑sys and 𝜑test, a reactive test strategy 𝜋test is said to be feasible if and only if: i) the
test environment can realize 𝜋test, ii) there exists a correct system strategy 𝜋sys, and
iii) any system execution corresponding to a correct 𝜋sys satisfies the system and test
objectives: 𝜎(𝜋sys × 𝜋test) |= 𝜑test ∧ 𝜑sys.

Note that the test strategy is not aiding the system in achieving the system objective;
it only restricts system actions such that the test objective is realized. That is, the
system is free to choose an incorrect strategy, in which case there are no guarantees.

Furthermore, the test strategy should allow the system to make multiple decisions at
each step of the execution, if possible, as opposed to leaving a single allowed action.
For any system execution 𝜎 = 𝑠0𝑠1 . . . , every finite prefix of 𝜎 maps to a history
variable 𝑞 ∈ B𝜋 .𝑄. For each 𝜎, we can define a corresponding state-history trace
𝜗 = (𝑠, 𝑞)0, (𝑠, 𝑞)1, . . ., where history variable 𝑞 at time step 𝑖 corresponds to the
prefix of 𝑠0 . . . 𝑠𝑖 of 𝜎.
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Definition 4.11 (Restrictiveness of a Test Strategy). State-history traces 𝜗1 and 𝜗2

are unique if they do not share consecutive state-history pairs. For a feasible 𝜋test,
let Σ be the set of all executions corresponding to correct system strategies, and let
Θ be the set of all state-history traces corresponding to Σ. Let Θ𝑢 ⊆ Θ be a set of
unique state-history traces. A test strategy 𝜋test is least restrictive if the cardinality
of Θ𝑢 is maximized.

While the set of all state-history traces Θ can be infinite, the set of unique traces Θ𝑢
is finite. This is because the system and the specification product each have a finite
number of states and history variables, respectively. As every trace in the set Θ𝑢 is
unique, this results in a finite set Θ𝑢.

Problem 4.1 (Finding a Test Strategy). Given a high-level abstraction of the system
model 𝑇 , test harness 𝐻, system objective 𝜑sys, test objective 𝜑test, find a feasible,
reactive test strategy 𝜋test that is least restrictive.

The restrictions on system actions placed by the test strategy can be realized in
several ways in the test environment. For example, a dynamic test agent, together
with any static obstacles, can be used to enforce the test strategy. This leads to the
second problem of synthesizing a reactive strategy for a test agent to realize the
test strategy. That is, at each time step of the test execution, the test environment
consisting of an agent and static obstacles restricts the system actions according to
𝜋test.

Problem 4.2 (Reactive Test Agent Strategy Synthesis). Given a high-level abstrac-
tion of the system model 𝑇 , test harness 𝐻, system objective 𝜑sys, test objective
𝜑test, and a test agent modeled by transition system 𝑇tester, find the test agent strategy
𝜋tester and the set of static obstacles Obs that: i) satisfy the system’s assumptions on
its environment, and ii) realize a reactive test strategy 𝜋test that is least-restrictive
and feasible.

4.4 Graph Construction
This section focuses on the construction of the graphs required to reason over
different possible test executions and the corresponding progress concerning the
system and test objectives. We will make use of the synchronous product of a
Büchi automaton and a finite transition system from Definition 2.6 to construct the
following graphs.
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Definition 4.12 (Virtual Product Graph). A virtual product graph is the product
𝐺 := 𝑇 ⊗ B𝜋.

The virtual product graph captures the system trace on the transition system and
the progress of the test execution concerning the system and the test objective. To
capture the system’s perspective, we define the system product graph as follows.

Definition 4.13 (System Product Graph). A system product graph is defined as
𝐺sys := 𝑇 ⊗ Bsys.

The system product graph only contains information concerning the system objective
and is agnostic to the test objective. This corresponds to the system model that we
were provided and the aspects of the tests that were revealed to the system in the
system objective. This graph is crucial to ensure that any test that is generated is
not impossible from the system’s perspective.

Lemma 4.1. For every path 𝜗sys
𝑛 = (𝑠, 𝑞sys)0 . . . (𝑠, 𝑞sys)𝑛 on 𝐺sys, there exists a

corresponding path on 𝐺.

Proof. For a given path 𝜗sys
𝑛 = (𝑠, 𝑞sys)0 . . . (𝑠, 𝑞sys)𝑛 on𝐺sys, there exists a sequence

𝑞test 0, . . . , 𝑞test 𝑛 ∈ Btest.𝑄 corresponding to the trace𝜎 = 𝑠0, . . . 𝑠𝑛. By construction
of 𝐺, the sequence (𝑠, (𝑞sys, 𝑞test))0, . . . , (𝑠, (𝑞sys, 𝑞test))𝑛 is a path on 𝐺. □

On the virtual product graph 𝐺 we will identify nodes that correspond to the
acceptance conditions of the system objective and the test objective and denote
them especially.

Definition 4.14 (Source, Intermediate, and Target Nodes). We define the source
nodes S, the intermediate nodes I, and the target nodes T as follows:

S B {(𝑠0, 𝑞0) ∈ 𝐺.𝑆 | 𝑠0 ∈ 𝑇.𝑆0, 𝑞0 ∈ B𝜋 .𝑄0},
I B {(𝑠, (𝑞sys, 𝑞test)) ∈ 𝐺.𝑆 | 𝑞test ∈ Btest.𝐹, 𝑞sys ∉ Bsys.𝐹},
T B {(𝑠, (𝑞sys, 𝑞test)) ∈ 𝐺.𝑆 | 𝑞sys ∈ Bsys.𝐹}.

The source node set S corresponds to the initial condition of the system and is a
singleton. The intermediate nodes I correspond to system states in which the test
objective is satisfied. The target nodes T represent the system states for which the
acceptance condition for the system objective is met. Again, to capture the system’s
perspective we define the system target nodes on 𝐺sys.
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Definition 4.15 (System Target Nodes). We define the system target nodes Ssys on
𝐺sys as

Tsys := {(𝑠, 𝑞) ∈ 𝐺sys.𝑆 | 𝑞 ∈ Bsys.𝐹}. (4.6)

Lemma 4.2. For a path 𝜗𝑛 = (𝑠, 𝑞)0, . . . , (𝑠, 𝑞)𝑛 on 𝐺, where (𝑠, 𝑞)0 ∈ S, the
corresponding system trace 𝜎𝑛 = 𝑠0 . . . 𝑠𝑛 satisfies the system objective, 𝜎 |= 𝜑sys

iff (𝑠, 𝑞)𝑛 ∈ T. Furthermore, if 𝜎 |= 𝜑test, then for some 0 ≤ 𝑖 ≤ 𝑛, the path 𝜗𝑛
contains a state-history pair (𝑠, 𝑞)𝑖 ∈ I.

Proof. Every path on 𝐺 corresponds to a possible trace 𝜎 = 𝑠0 . . . 𝑠𝑛 on 𝑇.𝑆. By
construction of 𝐺, the target nodes T are defined such that if (𝑠, 𝑞)𝑛 ∈ T, then the
corresponding infinite trace 𝜎 |= 𝜑sys. Similarly for the set of intermediate nodes I,
if 𝜗𝑛 contains a state-history pair (𝑠, 𝑞)𝑖 ∈ I at some time step 0 ≤ 𝑖 ≤ 𝑛, then the
corresponding infinite trace 𝜎 |= 𝜑test. □

To be able to determine how system action restrictions found on the virtual product
graph𝐺map to restrictions on the system product graph𝐺sys, we define the following
projection P𝐺→𝐺sys : 𝐺.𝑆 → 𝐺sys.𝑆 as

P𝐺→𝐺sys (𝑠, (𝑞sys, 𝑞test)) = (𝑠, 𝑞sys). (4.7)

To denote the state 𝑠 ∈ 𝑇.𝑆 that corresponds to the state 𝑢 = (𝑠, (𝑞sys, 𝑞test)) ∈ 𝐺.𝑆
we write 𝑢.𝑠. Analogously, we refer to the state 𝑠 ∈ 𝑇.𝑆 that corresponds to
𝑣 = (𝑠, 𝑞sys) ∈ 𝐺sys.𝑆 by 𝑣.𝑠.

4.5 Network Flow Optimization
In this section, we will describe how we set up the optimization for the different test
environments, explain the purpose of each constraint, and characterize properties of
the solution.

Optimization Setup
We define the flow network G B (𝑉, 𝐸, (S, T)), where 𝑉 B 𝐺.𝑆, 𝐸 B 𝐺.𝐸 , source
and target nodes correspond to S and T, with the corresponding flow f ∈ R|𝐸 |. For
simplicity, we use the same notation to refer to nodes and edges on the graph and
the corresponding flow network. The Boolean edge cut vector d ∈ B|𝐸 | represents
whether edges are cut or not. That is, 𝑑𝑒 = 1 refers to edge 𝑒 ∈ 𝐸 being cut, and
𝑑𝑒 = 0 implies that edge 𝑒 is not cut. This is defined as follows:

𝑑𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸, and 𝑑𝑒 = 0, ∀𝑒 ∉ 𝐸𝐻 , (c1)
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where 𝐸𝐻 corresponds to the edges that cannot be cut by the test harness, defined as

𝐸𝐻 ={((𝑠, 𝑞) (𝑠′, 𝑞′)) ∈ 𝐺.𝐸 | ∀𝑠 ∈ 𝑇.𝑆,
∀𝑎 ∈ 𝐻 (𝑠) s.t. 𝑠′ = 𝑇.𝛿(𝑠, 𝑎)}.

(4.8)

The edges into and out of the intermediate I nodes are denoted as 𝐸 (I) := {(𝑢, 𝑣) ∈
𝐸 | 𝑢 ∈ I or 𝑣 ∈ I}. To solve Problem 4.1, we formulate a mixed-integer linear
program (MILP).

Objective. To find the least restrictive test, we want to maximize the system’s
freedom in satisfying the test objective. To capture this, we optimize for edge cuts
that maximize the flow value on G. However, a realization of maximum flow on a
network is not unique. To ensure that we do not cut any edges unnecessarily, we
subtract the sum of the edge cuts from the flow value:∑︁

(𝑢,𝑣)∈𝐸,
𝑢∈S

𝑓 (𝑢,𝑣) − 1
|𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒 . (4.9)

The regularizer 1
|𝐸 | on the sum of edge cuts is chosen such that it will not compete

with the maximum flow value on the network. The weighted sum 1
|𝐸 |

∑
𝑒∈𝐸 𝑑

𝑒 is
always between 0 and 1, and binary edge cuts always result in integer flow values.
Thus, the optimization will always favor increasing the maximum flow value rather
than reducing edge cuts.

Network flow constraints. First, the network flow optimization is subject to the
following standard constraints on flow f:

Flow constraints (2.2), (2.3), and (2.4) on flow network G. (c2)

An edge that is cut restricts flow completely, while an edge that is not cut may or
may not have flow,

∀𝑒 ∈ 𝐸, 𝑑𝑒 + 𝑓 𝑒 ≤ 1. (c3)

Partition constraints. The following constraints ensure that all flow across the
network will be routed through I by partitioning the network. To accomplish this, we
adapt the partitioning conditions given in [152] as follows. Except for the I nodes,
we divide the remaining nodes into two groups defined by the partition variable
µ ∈ R|𝑉\I|, and ensure that the nodes S belong to one group, and T belong to the
other:

0 ≤ 𝜇𝑣 ≤ 1, 𝜇S − 𝜇T ≥ 1,∀𝑣 ∈ 𝑉 \ I. (c4)



55

Figure 4.5: Virtual product graph 𝐺 for Example 4.2 with cuts found from MILP-
reactive highlighted as red dashed edges.

The two groups are partitioned by the edge cut vector d, where this constraint is
only defined over the edges that do not go into or out of nodes in I,

𝑑 (𝑢,𝑣) − 𝜇𝑢 + 𝜇𝑣 ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸 \ 𝐸 (𝐼). (c5)

Feasibility constraints. To ensure that the test is not impossible from the system’s
perspective, we map restrictions found on 𝐺 to 𝐺sys via the following feasibility
constraints. For each history variable 𝑞 ∈ B𝜋 .𝑄, we define the set of state-history
pairs that captures the possible first observations of the history variable in a test
execution via the function S𝐺 : B𝜋 .𝑄 → 𝐺.𝑆 defined as follows:

S𝐺 (𝑞) :={(𝑠, 𝑞) ∈ 𝐺.𝑆 |
∀((𝑠, 𝑞), (𝑠, 𝑞)) ∈ 𝐺.𝐸, 𝑞 ≠ 𝑞}.

(4.10)

These sets of states are mapped to 𝐺sys as follows:

S𝐺sys (𝑞) :={𝑢 ∈ 𝐺sys.𝑆 | 𝑢 = P𝐺→𝐺sys (𝑣),
𝑣 ∈ S𝐺 (𝑞), and ∃ path(𝑢, Tsys)},

(4.11)

where this set is empty if no path from the node 𝑢 to Tsys exists on 𝐺sys. For
each 𝑞 ∈ B𝜋 .𝑄 and for each source in s ∈ S𝐺sys (𝑞), we define a flow network
G (𝑞,s)sys B (𝑉sys, 𝐸sys, (s, Tsys)), where 𝑉sys B 𝐺sys.𝑆, and 𝐸sys B 𝐺sys.𝐸 , with the
corresponding flow variable f (𝑞,s)sys . For each of these flow networks, we define a
flow subject to the standard flow constraints:

∀𝑞 ∈ B𝜋 .𝑄,∀s ∈ S𝐺sys (𝑞),
Flow constraints (2.2), (2.3), and (2.4) on network G (𝑞,s)sys .

(c6)
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For each G (𝑞,s)sys , we map the edge cuts d and check that there is still a path from
s to some node in Tsys. This ensures that reactively placing restrictions on system
actions does not make it impossible for a correct system strategy to make progress
toward its goal. Intuitively, the edge cuts are grouped by the history variable 𝑞 and
checked to ensure that the system has a feasible path when these restrictions are
placed on system actions. The edges are grouped by their history variable using the
mapping Gr : B𝜋 .𝑄 → 2𝐺.𝐸 , defined as follows:

Gr(𝑞) B {((𝑠, 𝑞), (𝑠′, 𝑞′)) ∈ 𝐺.𝐸}. (4.12)

The edge cuts are mapped onto the corresponding G (𝑞,s)sys to cut the corresponding
flow f (𝑞,s)sys as follows:

∀𝑞 ∈ B𝜋 .𝑄,∀s ∈ S𝐺sys (𝑞),∀(𝑢, 𝑣) ∈ Gr(𝑞),∀(𝑢′, 𝑣′) ∈ 𝐸sys,

𝑑 (𝑢,𝑣) + 𝑓 (𝑞,s)sys
(𝑢′,𝑣′)

≤ 1, if 𝑢′.𝑠 = 𝑢.𝑠 and 𝑣′.𝑠 = 𝑣.𝑠.
(c7)

Since we are agnostic to the system controller, we need to ensure that a path to the
system’s goal exists at all times during the test execution. To enforce this, we require
a flow of at least 1 on each system flow network G (𝑞,s)sys ,∑︁

(s,𝑣)∈𝐸sys

𝑓
(𝑞,s)
sys

(s,𝑣)
≥ 1, ∀𝑞 ∈ B𝜋 .𝑄, ∀s ∈ S𝐺sys (𝑞). (c8)

Example 4.2 (Static Grid World - continued). Fig. 4.5 shows the virtual product
graph𝐺, with the source S (magenta), the intermediate nodes I (blue), and the target
nodes (yellow). Edge cut values for each edge in 𝐺 are grouped by their history
variable 𝑞 and projected to the corresponding copy of 𝐺sys. Figs. 4.6a-4.6c show
the copies of 𝐺sys with their source (orange) and target node (yellow). The graphs
in Figs. 4.6a-4.6c correspond to the copies of 𝐺sys for the history variables 𝑞0, 𝑞6,
and 𝑞7 from B𝜋 shown in Fig. 4.4c. The constraints (c6)-(c8) ensure that the edge
cuts are such that a path from each source to the target node exists for each history
variable.

These feasibility cuts correspond to the reactive constraint setting since edge cuts
are placed on G and depend on the history variable 𝑞. Finally, the optimization
to identify edge cuts for the reactive test strategy is characterized by the following
mixed-integer linear program (MILP) with the cuts d as the integer variables, and
the flow and partition variables taking continuous values.
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(a) 𝐺 (𝑞0,𝑠3 )
sys (b) 𝐺 (𝑞6,𝑠1 )

sys (c) 𝐺 (𝑞7,𝑠11 )
sys

Figure 4.6: System product graphs for Example 4.2 with the cuts found from MILP-
reactive projected for each history variable highlighted as red dashed edges.

MILP-reactive:

max
f,d,µ,

f (𝑞,s)sys ∀𝑞∈B𝜋 .𝑄 ∀s∈SGsys (𝑞)

𝐹 − 1
|𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8).

(4.13)

Static Constraints. We can simplify the feasibility constraints in the case of
static obstacles. This corresponds to the requirement that any transition that is
restricted will remain restricted for the entire duration of the test. From the system’s
perspective, the restrictions will not change depending on the history variable 𝑞.
That is, edges in 𝐺 corresponding to the same transition in 𝑇.𝐸 are grouped and
share the same cut value:

𝑑 (𝑢,𝑣) = 𝑑 (𝑢
′,𝑣′) , ∀(𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸,

if 𝑢.𝑠 = 𝑢′.𝑠 and 𝑣.𝑠 = 𝑣′.𝑠.
(c9)

Similarly, the optimization to find edge cuts in a static setting is as follows.

MILP-static:
max
f,d,µ

𝐹 − 1
|𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒

s.t. (c1)-(c3), (c4)-(c5), (c9).
(4.14)
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Figure 4.7: Virtual product graph 𝐺 for Example 4.1 with cuts found using the
MILP-static highlighted as red dashed edges.

Lemma 4.3. For the case of static constraints, due to (c9), ensuring feasibility from
the system’s perspective is guaranteed by checking 𝐹 > 0 on 𝐺. That is, 𝐹 > 0 on
𝐺 is equivalent to checking (c6)-(c8).

Proof. Under (c9), the edge groupings Gr(𝑞) become the same for all 𝑞 ∈ B𝜋 .𝑄.
Thus, the constraints (c6)-(c8) can be reduced onto a single flow network Gsys =

(𝑉sys, 𝐸sys, 𝑐, (Ssys, Tsys)), where Ssys := 𝐺sys.𝐼. Equation (c8) being satisfied on
Gsys implies that there is a path on 𝐺 from S to T via Lemma 4.1. Additionally, if
there is a path on 𝐺 from S to T with the static constraints (c9), then it must be that
there exists a path from Ssys to Tsys on 𝐺sys. □

Remark 4.2. For the reactive constraint setting, we can replace the feasibility
constraints (c6)-(c8) by several static constraints. That is, we introduce a copy
of G for each history variable 𝑞 ∈ B𝜋 .𝑄 and each source s ∈ S𝐺 (𝑞), denoted
G (𝑞,s) = (𝑉, 𝐸, 𝑐, s, T), and require a path from s to 𝑇 to exist under a static
mapping of the edges in the group Gr(𝑞) by constraint (c9). We choose the former
since it reduces the number of variables and constraints in the optimization.

Mixed Constraints. In some cases, it might be desirable to define specific
transitions 𝑇.𝐸static ⊆ 𝑇.𝐸 which require static constraints. The mixed setting
of reactive and static transition restrictions can be implemented by enforcing the
feasibility constraints (c6)-(c8), and the static constraints (c9) on edges (𝑢, 𝑣) ∈ 𝐸 ,
where the corresponding transition (𝑢.𝑠, 𝑣.𝑠) ∈ 𝑇.𝐸static. Finally, the optimization
for the mixed constraint setting is as follows.
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MILP-mixed:
max
f,d,µ,

f (𝑞,s)sys ∀𝑞∈B𝜋 .𝑄 ∀s∈SGsys (𝑞)

𝐹 − 1
|𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒

s.t. (c1)-(c3), (c4)-(c5), (c6)-(c8), (c9).

(4.15)

Auxiliary Constraints. Additional constraints can be added to the optimization
depending on the test harness or the desired test setup. For example, it might be
required to enforce that if an edge is cut, the transition will be blocked in both
directions. This can be enforced as follows:

𝑑 (𝑢,𝑣) = 𝑑 (𝑢
′,𝑣′) , ∀(𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸,

if 𝑢.𝑠 = 𝑣′.𝑠 and 𝑣.𝑠 = 𝑢′.𝑠.
(c14)

Characterizing the Optimization
The optimization described in Section 4.5 returns an edge cut vector d∗ that maxi-
mizes the objective in equation (4.9). In this section, we will characterize important
properties of the solution. The solution we desire ensures that there is no path from
S to T that does not pass through I, and that there exists at least one path from S
to T that visits a node in I. As the edge cut vector consists of binary variables, the
flow value will be integer-valued. Thus for a strictly positive flow, we are looking
for a solution with flow value 𝐹 ≥ 1. First, we characterize under which conditions
a solution cannot be found. We say that the problem data are inconsistent in two
scenarios:
i) Given a virtual product graph 𝐺 there does not exist a path from S to T before
placing any edge cuts. Thus the maximum flow value on this network is 0.
ii) Given a virtual product graph 𝐺 on which there exists a path from S to T, but no
path from S to I or from I to T. In this case, the optimization will try to maximize
the flow value from S to T, but by the partition constraints, it will be required to
place edge cuts to cut all flow that does not pass through the intermediate. On the
other hand, the feasibility constraints require there to exist a path to T at any time
during the test execution. This is a contradiction that results in the optimization
being infeasible.

To facilitate characterizing the optimization solution, we will introduce two net-
works. These networks will allow us to analyze how the edge cuts will influence
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any flow on 𝐺, the set of cut edges 𝐶 is defined as

𝐶 B {(𝑢, 𝑣) ∈ 𝐸 \ 𝐸 (I) | 𝑑∗(𝑢,𝑣) = 1}. (4.16)

First we define the network with cuts 𝐺cut B (𝑉, 𝐸 \ 𝐶, S, T). Then we define the
bypass network 𝐺by B (𝑉 \ I, 𝐸 \ (I ∪ 𝐶), S, T). As the I nodes are removed, this
network can capture if there exists any flow from S to T on 𝐺 that does not pass
through I after placing the edge cuts, corresponding to a strictly positive flow value
on 𝐺by, denoted as the bypass flow value.

Theorem 4.4. Given consistent problem data, for each MILP ((4.13),(4.14),(4.15)),
the optimal cuts 𝐶 result in a bypass flow value of 0.

Proof. By constraint c4 each node 𝑣 ∈ 𝑉 \I has an associated potential 𝜇𝑣, with the
potential difference between nodes in S and nodes in T being 1. This corresponds
to every node in 𝑠 ∈ S having potential 𝜇𝑠 = 1, and every node 𝑡 ∈ T having
potential 𝜇𝑡 = 0. On any path 𝑣0 . . . 𝑣𝑘 on Gby, where 𝑣0 ∈ S and 𝑣𝑘 ∈ T, then
we can express the difference in potential values on the path as a telescoping sum:
𝜇S−𝜇T = ∑𝑘−1

𝑖=0 (𝜇𝑖−𝜇𝑖+1). By constraint (c5), we know that for any edge (𝑢, 𝑣) ∈ 𝐸 ,
we have that 𝑑 (𝑢,𝑣) ≥ 𝜇𝑢 − 𝜇𝑣. Then, by partition constraints (c4) and (c5),

𝑘−1∑︁
𝑖=0

𝑑 (𝑣𝑖 ,𝑣𝑖+1) ≥
𝑘−1∑︁
𝑖=0
(𝜇𝑖 − 𝜇𝑖+1) = 𝜇S − 𝜇T ≥ 1.

Therefore, due to the edge cut values being binary, we know that for at least one
edge (𝑣𝑖, 𝑣𝑖+1) on the path, where 0 ≤ 𝑖 ≤ 𝑘 − 1, the corresponding edge cut value
is 𝑑 (𝑣𝑖 ,𝑣𝑖+1) = 1. By equation (4.16), edges with an edge cut value of 1 belong to the
set of cut edges 𝐶. Thus, the flow value on Gby, the bypass flow value, is zero. □

Theorem 4.5. Given consistent problem data, for each MILP ((4.13),(4.14),(4.15)),
the optimal cuts 𝐶 are such that for all 𝑞 ∈ B𝜋 .𝑄, for all s ∈ Ssys(𝑞), there exists a
path from s to Tsys for the system.

Proof. First, consider the MILP in the reactive setting (4.13). The optimal cuts 𝐶
correspond to an edge cut vector d that satisfies the feasibility constraints (c6), (c7),
and (c8). The edge cut vales are grouped by their history variable 𝑞 (see equa-
tion (4.12)) and constraint (c7) maps the edge cuts in each group to the correspond-
ing G (𝑞,s)sys networks for all s ∈ Ssys(𝑞). This means that all cuts in Gr(𝑞) are applied
to the networks at once, corresponding to the maximum number of obstacles that
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could be present for that history variable 𝑞. By constraint (c8) we require a flow of
at least 1 from s to Tsys on each network G (𝑞,s)sys . As the set of edge cuts 𝐶 is found
from the edge cut vector d that satisfies these constraints, we will have a flow of at
least 1, and thus a path to 𝑇sys will exist for all 𝑞 ∈ B𝜋 .𝑄 after placing the edge cuts.
In the static setting (4.14), constraint (c9) ensures that if an edge is cut, it will be
cut for all 𝑞 ∈ B𝜋 .𝑄. This corresponds to a permanently restricted edge in Gsys. As
the optimal edge cuts for consistent problem data ensure that the flow is at least 1
on G, there will be a path to Tsys on Gsys. The mixed setting (4.15), is subject to
the reactive feasibility constraints (c6), (c7), and (c8), with the addition of the static
cut constraint (c9). These constraints require a path to exist from s to Tsys for every
𝑞 ∈ B𝜋 .𝑄, for every s ∈ S(𝑞). □

Theorem 4.5 shows that at any time during the test execution, there exists a path for
the system from all sources of that history variable to the system goal Tsys. Under
the assumption of bidirectional system transitions, we can show that any node that is
reachable during a test execution, (i.e. has a path from the current source s), and had
a path to Tsys before placing any cuts, will still have a path to Tsys after placing the
cuts. This corresponds to the requirement that we do not introduce any dead-ends
to the network that did not exist previously.

Remark 4.3. The assumption on bidirectional edges in𝑇 can be relaxed by ensuring
that the set of edge cuts 𝐶 does not introduce any deadlocks (i.e. states that are
reachable for the system, but no longer have a path to the goal). For this, we can
check for every cut in 𝐶 that the state that the system can reach (the outgoing node
of the cut), whether a path to T still exists. If that is not the case for all cuts in𝐶, then
we exclude this solution and resolve the MILP (by adding a constraint analogous to
constraint c15 as described in Section 4.7).

Corollary 4.6. By Theorem 4.5 and the assumption of bidirectional system transi-
tions, the set of edge cuts is such that for each 𝑞 ∈ B𝜋 .𝑄, for each s ∈ S(𝑞), there
will be no nodes in each of the networks G (𝑞,s)sys that are reachable from the source s,
do not have a path to Tsys, but originally had a path to Tsys before finding any edge
cuts.

Proof. Bidirectional system transitions allow bidirectional transitions within the
nodes (𝑠, 𝑞sys) ∈ 𝐺sys that share the same history variable 𝑞sys ∈ Bsys.𝑄 on 𝐺sys.
Introducing a new dead-end corresponds to creating a set of nodes from which the
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goal cannot be reached anymore but allowing the system to enter this set. This
corresponds to allowing a transition into this set but restricting any transition out of
this set. As the system can be inside or outside of this set, this cut configuration
cannot be the minimum. However, optimal edge cuts𝐶 are the minimum set of edge
cuts for that flow value, no unnecessary edges will be cut and the optimization will
not return such a cut configuration. □

Lemma 4.7. For each MILP ((4.13),(4.14),(4.15)), the optimal cuts 𝐶 correspond
to maximizing the cardinality of the set of unique state-history traces Θ𝑢.

Proof. A realization of the flow f on the virtual product graph G corresponds to a
set of unique state-history traces Θ𝑢, where the flow value 𝐹 = |Θ𝑢 |. The MILP
objective maximizes the flow value 𝐹, and therefore maximizes |Θ𝑢 |. □

4.6 Realizing a Test Strategy
For each setting (static, reactive, and mixed), the optimal cuts from solving the
corresponding MILP are used to realize a test strategy with static and/or reactive
obstacles. The optimal cuts 𝐶 for each MILP are parsed into a reactive map
C : B𝜋 .𝑄 → 𝑇.𝐸 , where

C(𝑞) B {(𝑠, 𝑠′) ∈ 𝑇.𝐸 | ( (𝑠, 𝑞), (𝑠′, 𝑞′)) ∈ 𝐶∗}. (4.17)

The set C(𝑞) captures cuts that will be used to restrict the system when the state of
the test execution is at the history variable 𝑞. When the test execution 𝜗 reaches a
state-history pair (𝑠, 𝑞) at time step 𝑘 ≥ 0, and C(𝑞) contains a system transition
(𝑠, 𝑠′) ∈ 𝑇.𝐸 , then the reactive test strategy 𝜋test will restrict the system action
corresponding to this transition. That is, the set of restrictions on the system is
given by

𝜋test(𝜎𝑘 ) B {𝑎 ∈ 𝑇.𝐴 |
𝑠′ ∈ 𝑇.𝛿(𝑠, 𝑎) and (𝑠, 𝑠′) ∈ C(𝑞)}.

(4.18)

In practice, the reactive test strategy can be realized by the test environment by
placing obstacles during the test execution. The set of active obstacles Obs(𝜎𝑘 ) at
time step 𝑘 ≥ 0 is defined as the set of all state-action restrictions at time 𝑘 . The test
environment uses the test strategy 𝜋test to determine Obs in the following settings.
Instantaneous: In this setting, the test environment instantaneously places obsta-
cles for the current history variable 𝑞. For any 𝑘 ≥ 0, let (𝑠, 𝑞) be the state-history
pair at time step 𝑘 of the test execution. Therefore, the set of active obstacles at 𝜎𝑘
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Figure 4.8: Test environment implementation of a reactive test strategy for Exam-
ple 4.2.

is given as, Obs(𝜎𝑘 ) = {(𝑠′, 𝑎) | ∀𝑠′′ ∈ 𝑇.𝛿(𝑠′, 𝑎) and (𝑠′, 𝑠′′) ∈ C(𝑞)}.
Accumulative: In this setting, the test environment accumulates obstacles accord-
ing to the system state during the test execution. For any 𝑘 ≥ 0, let (𝑠, 𝑞) and (𝑠, 𝑞)
be the state-history pairs at time steps 𝑘 − 1 and 𝑘 of the test execution, respec-
tively. If 𝑞 ≠ 𝑞, we set active obstacles to be Obs(𝜎𝑘 ) = {(𝑠, 𝑎) | ∀𝑎 ∈ 𝜋test(𝜎𝑘 )}.
As the test execution progresses to state-history pair (𝑠′, 𝑞) at time step 𝑙 > 𝑘 ,
any transition restricted by the test strategy is added to the set of active obstacles
Obs(𝜎𝑙) =

⋃𝑙
𝑖=𝑘 Obs(𝜎𝑖) and is restricted by the test environment. These obstacles

remain in place until the test execution reaches a state history pair (𝑠′′, 𝑞′) at time
step 𝑚 > 𝑘 , where 𝑞 ≠ 𝑞′, at which point the test environment resets the set of
active obstacles to be Obs(𝜎𝑚) = {(𝑠′′, 𝑎) | ∀𝑎 ∈ 𝜋test(𝜎𝑚)} and restrictions are
accumulated until a different history variable is reached.

Lemma 4.8. Regardless of the realization of the active obstacles, as long as no new
restrictions that are not in C(𝑞) are introduced, the flow value 𝐹 remains the same.

Example 4.2 (Small Reactive (continued)). Fig. 4.8 illustrates the test environment
implementing a reactive test strategy. The reactive test strategy is constructed
from the optimal cuts (as depicted in Fig. 4.5) on G found by solving MILP
(reactive). The test starts in history variable 𝑞0 and the system transitions are
restricted according to Fig. 4.8a. If the system decides to visit I1 first, the test
execution moves to history variable 𝑞6 shown in Fig. 4.8b, whereas if the system
decides to visit I2 first, the test execution moves to 𝑞7, as depicted in Fig. 4.8c. This
test environment can be implemented in either the instantaneous or the accumulative
setting.
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Figure 4.9: Static test environment implementation of the reactive test strategy for
Example 4.1.

Static and Mixed Test Environments

The cuts found from MILP-static result in a reactive map C in which C(𝑞) = C(𝑞′)
for all 𝑞, 𝑞′ ∈ B𝜋 .𝑄. That is, restrictions on system actions remain in place for the
entire duration of the test, and do not change depending on the history variable 𝑞.
In this fully static setting, every edge is in the static area, that is 𝑇.𝐸static = 𝑇.𝐸 .
Therefore, the test environment realizes the test strategy by restricting all system
actions corresponding to any cut in C(𝑞) for all 𝑞 ∈ B𝜋 .𝑄 with static obstacles
simultaneously,

Obs B {(𝑢.𝑠, 𝑣.𝑠) ∈ 𝑇.𝐸static | (𝑢, 𝑣) ∈ 𝐶}. (4.19)

In the mixed setting of static and reactive obstacles, the test strategy resulting from
MILP-mixed is implemented similarly to the reactive setting, except for system
transitions in 𝑇.𝐸static that are blocked by static obstacles.

Example 4.1 (continued). For the grid world example, Fig. 4.9 illustrates the static
test on the grid world, and Fig. 4.7 shows the corresponding cuts 𝐶 on the virtual
product network G. Here, the 14 cuts on G map to 4 static obstacles since multiple
edges on G correspond to the same transition in 𝑇 . The optimal flow value is 𝐹∗ = 3
and there is no bypass flow. Thus, as the system navigates from source S to target T,
it must visit at least one of the intermediate nodes I.

Remark 4.4. The instantaneous and accumulative implementations of the test envi-
ronment guide when the obstacles are placed by the test environment. However, this
does not have to be the same as when the system senses or observes these restrictions
on its actions. We assume that the system can observe all restricted actions from its
current state before it commits to an action.
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The graph construction, network flow optimization, and finding the reactive test
strategy are summarized in Algorithm 4.1.

Algorithm 4.1 Finding the test strategy 𝜋test

1: procedure FindTestStrategy(𝑇, 𝐻, 𝜑sys, 𝜑test)
Input: transition system 𝑇 , test harness 𝐻, system objective 𝜑sys, test objec-

tive 𝜑test
Output: test strategy 𝜋test

2: Bsys ← BA(𝜑sys) ⊲ System Büchi automaton
3: Btest ← BA(𝜑test) ⊲ Tester Büchi automaton
4: B𝜋 ← Bsys ⊗ Btest ⊲ Specification product
5: 𝐺sys ← 𝑇 ⊗ Bsys ⊲ System product
6: 𝐺 ← 𝑇 ⊗ B𝜋 ⊲ Virtual Product Graph
7: S, I, T← IdentifyNodes(𝐺,Bsys,Btest)
8: G ← DefineNetwork (𝐺, S, T)
9: 𝔊← set() ⊲ System Perspective Graphs

10: for 𝑞 ∈ B𝜋 .𝑄 do
11: for s ∈ S𝐺sys (𝑞) do
12: G (s,𝑞)sys ← DefineNetwork(𝐺sys, s, Tsys)
13: 𝔊← 𝔊 ∪ G (s,𝑞)sys

14: d∗ ←MILP(G, 𝑇,𝔊, I, 𝐻) ⊲ Reactive, static, or mixed.
15: 𝐶 ← {(𝑢, 𝑣) ∈ 𝐺.𝐸 | d∗(𝑢,𝑣) = 1} ⊲ Cuts on 𝐺
16: 𝜋test ← Define test strategy according to equation (4.18)
17: return 𝜋test

Theorem 4.9. If the problem data are not inconsistent, the reactive test strategy
𝜋test found by Algorithm 4.1 solves Problem 4.1.

Proof. The test environment informs the choice of the MILP (static, reactive, or
mixed). Therefore, the resulting 𝜋test will be realizable by the test environment. By
construction of 𝐺sys, any correct system strategy corresponds to a Path(Ssys, Tsys).
By Theorem 4.5 and Corollary 4.6, at any point during the test execution, if the
system has not violated its guarantees, there exists a path on 𝐺sys to Tsys. Therefore,
there exists a correct system strategy 𝜋sys, and resulting trace 𝜎(𝜋sys × 𝜋test), which
corresponds to the path 𝜗sys,𝑛 = (𝑠, 𝑞)0 . . . (𝑠, 𝑞)𝑛 on 𝐺sys, where (𝑠, 𝑞)0 ∈ Ssys to
(𝑠, 𝑞)𝑛 ∈ Tsys. By Lemma 4.1 any Path(Ssys, Tsys) on 𝐺sys has a corresponding
Path(S, T) on 𝐺 and by Theorem 4.4, the cuts ensure that all such paths on 𝐺 are
routed through the intermediate I. Therefore, for a correct system strategy 𝜋sys, the
trace 𝜎(𝜋sys × 𝜋test) |= 𝜑sys ∧ 𝜑test. Thus, 𝜋test is feasible and by Lemma 4.7, 𝜋test is
least-restrictive. Thus, Problem 4.1 is solved. □
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This framework results in a test that is not impossible (with respect to the system
objective) for a correctly implemented system. On the other hand, a poorly designed
system can still fail. That is, the system is not aided in satisfying the system
guarantees.

4.7 Synthesizing a Dynamic Test Agent Strategy
In addition to reactive and dynamic obstacles, the test environment can also contain
dynamic test agents, which can restrict system actions by blocking a state that the
system now cannot transition into. In this section, we will describe the procedure
to set up the MILP for a dynamic test agent and how to map the reactive cuts C
to a strategy for the test agent that satisfies the system’s assumptions on its envi-
ronment and preserves the least-restrictiveness of the test. The procedure consists
of adapting the MILP-mixed to include the information about the test agent’s dy-
namics and synthesizing a strategy using the Temporal Logic and Planning Toolbox
(TuLiP) [159] from the optimal solution of the MILP. In the case that the test agent
cannot realize the cuts found by the optimization, we exclude this solution from
the MILP and repeat the process until a realizable solution is found, or the MILP
becomes infeasible.

Let the test agent be given as a transition system 𝑇tester. We require that there exists
a state 𝑠 ∈ 𝑇.𝑆 ∩ 𝑇tester.𝑆 and a state 𝑠′ ∈ 𝑇tester.𝑆, where 𝑠′ ∉ 𝑇.𝑆. This corresponds
to the requirement that the test agent can block at least one state that is in the system
𝑇.𝑆, but also has at least one state that the system cannot occupy, we will refer to
this state as the park state. For the test environment consisting of the test agent and
static obstacles, we can define the edges in 𝑇.𝐸 that the test agent cannot occupy as
the static area,

𝑇.𝐸static B {(𝑢, 𝑣) ∈ 𝑇.𝐸 | 𝑣 ∉ 𝑇tester.𝑆}, (4.20)

which corresponds to the tester not being able to occupy the node corresponding to
the incoming edge.

Setting up the MILP for a dynamic agent
In this section, we adapt the MILP-mixed using information about the test agent.
First, we augment the objective to incentivize solutions that cut edges into the
same state, instead of edges into separate states, if possible. Intuitively this can be
helpful to find the test agent strategy as multiple edge cuts can be realized by the
agent occupying the same state. For this we introduce the variable dstate ∈ R|𝑉 |+
that represents whether any of the incoming edges into a node are cut or not,
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corresponding to a 𝑑𝑣state ≥ 1 or a 𝑑𝑣state = 0, respectively. To capture this, we add
the following constraint to the optimization:

∀(𝑢, 𝑣) ∈ 𝐸, 𝑑 (𝑢,𝑣) ≤ 𝑑𝑣state. (c10)

Next, we modify the objective to incentivize solutions that require fewer nodes to be
blocked. With this change, we can add an additional penalty on the number nodes
with incoming edge cuts, subject to the minimum number of edge cuts. This ensures
that the order of priority remains minimizing the number of edge cuts, and subject
to that, choosing the solution that minimizes the number of states required to be
blocked to realize these cuts. This is captured in the following objective,

𝐹 − 1
1 + |𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒 − 1
(1 + |𝐸 |) |𝑉 |

∑︁
𝑣∈𝑉

𝑑𝑣state. (4.21)

The choice of regularization parameters for the second and third term of the objective
results in them together remaining between 0 and 1. This ensures that they do not
compete with the flow value 𝐹 as previously discussed for the original objective.
Additionally, the second and third term no not compete with each other, maintaining
the desired order of priority. This change in the objective does not remove any
valid solutions from the set of possible edge cuts but only determines their ordering.
This change is optional, but depending on the desired application it can result in a
significant reduction of the required counterexamples.

Lemma 4.10. The objective in equation (4.21) results in a solution that maximizes
the flow value 𝐹, then minimizes the number of edge cuts, and then minimizes the
number of nodes with incoming edge cuts, in this order or priority.

Proof. The sum of the second and third terms together is upper bounded by 1. This
maximum value is reached when all edges are cut such that 1

1+|𝐸 | |𝐸 |+
1

(1+|𝐸 |) |𝑉 | |𝑉 | = 1.
The lower bound of 0 is achieved when no cut edges are cut. These bounds ensure
that the second and third terms do not compete with the flow value 𝐹. Additionally,
the second and third terms do not compete with each other, as the third term is upper
bounded by 1

1+|𝐸 | . This maximum value corresponds to all states having at least
one incoming cut and it has the same penalty as cutting one additional edge in the
second term. Therefore, the order of priority is maintained. □

The solution of this MILP returns the optimal set of edge cuts 𝐶∗, from which we
find the set of static obstacles according to equation (4.19). Any edge cuts in𝐶∗ that
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are not in the static area 𝑇.𝐸static need to be realized by the test agent, the reactive
cut map R : B𝜋 → 𝑇.𝐸 is then defined as

R(𝑞) B {(𝑠, 𝑠′) ∈ 𝑇.𝐸 | (𝑠, 𝑠′) ∉ 𝑇.𝐸static and

((𝑠, 𝑞), (𝑠′, 𝑞′)) ∈ 𝐶∗}.
(4.22)

In the next section, we will describe how to set up the GR(1) specification to
synthesize a strategy for the test agent that maps the cuts in the reactive cut map to
states that the test agent must occupy during the test execution. If such a strategy
cannot be found, we use a counterexample-guided approach to exclude the solution
𝐶∗, resolve the MILP, and repeat the process.

Strategy Synthesis
To find a strategy for the test agent that realizes the cuts in R, we set up a GR(1)
specification for the test agent and synthesize a strategy using TuLiP. The system’s
state is captured by the variablesxsys ∈ 𝑇.𝑆 andqhist ∈ B𝜋 .𝑄, whereqhist corresponds
to the history variable during the test execution. The test agent’s state is captured
by the variable xtester ∈ 𝑇tester.𝑆. First, we characterize the assumptions of the test
agent on the system under test. We start by defining the initial conditions as

(xsys = 𝑠0 ∧ qhist = 𝑞0), 𝑠0 ∈ 𝑇.𝑆0, 𝑞0 ∈ B𝜋 .𝑄0. (a1)

For each state 𝑢 ∈ 𝐺.𝑆, we denote the successors as succ(𝑢), where 𝑣 ∈ succ(𝑢)
if there exist (𝑢, 𝑣) ∈ 𝐺.𝐸 . The system’s dynamics and the evolution of the history
variable are defined for each (𝑠, 𝑞) ∈ 𝐺.𝑆 as

□
(
(xsys = 𝑠 ∧ qhist = 𝑞) →

∨
(𝑠′,𝑞′)∈
succ(𝑠,𝑞)

⃝
(
xsys = 𝑠

′ ∧ qhist = 𝑞
′)
)
. (a2)

In this framework, we choose a turn-based setting for the system and test agent. We
define the variable turn ∈ B, where turn = 1 corresponds to the test agent’s turn,
and turn = 0 corresponds to the system’s turn. We encode this assumption on the
system under test in the following formula∧

𝑠∈𝑇.𝑆
□
(
(xsys = 𝑠 ∧ turn = 1) → ⃝(xsys = 𝑠)

)
, (a3)

where the system has to remain in place if turn = 1. The turn-based setting
is chosen for ease of implementation, a simultaneous setting would result in hav-
ing to characterize the system and test agent as a Mealy and a Moore machine,
respectively [27]. Next, we characterize the system objective as follows:

□ □(xsys = 𝑥goal) ∧ 𝜑aux, (a4)
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where 𝑥goal is the goal state of the system, corresponding to a terminal state in 𝑇.𝑆,
and a reachability objective specified in 𝜑sys. The remainder of the system objective
is encoded in 𝜑aux, where 𝜑aux contains the reachability and safety tasks from 𝜑sys

and the reaction tasks in their equivalent GR(1) form [104]. Additionally, the system
is expected to operate safely with regard to the test agent. That is, it will not take an
action that will result in an immediate collision with the test agent. We denote the
states that both agents can occupy—the states in which a collision can happen—as
𝑆∩ := 𝑇.𝑆 ∩ 𝑇tester.𝑆. Then the following assumption on the system captures this
requirement: ∧

𝑠∈𝑆∩
□
(
xtester = 𝑠→ ⃝¬(xsys = 𝑠)

)
. (a5)

The test agent’s assumptions on the system model are given in formulae (a1)–(a5).
The test agent on the other hand is required to satisfy the following guarantees. First,
we define the initial conditions for the test agent as∨

𝑠∈𝑇tester.𝑆0

xtester = 𝑠. (g1)

Next, the test agent dynamics are defined from 𝑇tester, where for every state 𝑠 ∈
𝑇tester.𝑆, we have

□
(
(xtester = 𝑠) →

∨
(𝑠,𝑠′)∈𝑇tester.𝐸

⃝
(
xtester = 𝑠

′)
)
. (g2)

The test agent’s dynamics are also constrained by the turn-based setting, enforced
by the following guarantee∧

𝑠∈𝑇tester.𝑆

□
(
(xtester = 𝑠 ∧ turn = 0) → ⃝(xtester = 𝑠)

)
. (g3)

In our implementation, turn is a variable whose value is chosen by the test agent.
Note that turn can be thought of as the environment that both agents operate in as
its value is fully specified by the following formula:

(turn = 1) → ⃝(turn = 0) ∧ (turn = 0) → ⃝(turn = 1). (g4)

The test agent is required to safely operate in the system’s presence, i.e. not take
any action that leads to an immediate collision, as assumed by the system in (A2 in
Def. 4.8), enforced by ∧

𝑠∈𝑆∩
□
(
xsys = 𝑠→ ⃝¬(xtester = 𝑠)

)
. (g5)
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Next, we will map the cuts in the reactive cut map R to states that the test agent must
occupy during the test execution. For this, we parse the cuts in R as follows:∧

𝑞∈B𝜋 .𝑄

∧
(𝑠,𝑠′)∈R(𝑞)

□
(
(xsys = 𝑠 ∧ qhist = 𝑞 ∧ turn = 0) → (xtester = 𝑠

′)
)
. (g6)

This formula ensures that when the test execution is in history variable 𝑞 and the
system is in state 𝑠, the test agent must occupy state 𝑠′ when it is the system’s turn
(i.e. turn = 0) if the cut (𝑠, 𝑞), (𝑠′, 𝑞′) is in R(𝑞). To ensure that the test agent
strategy does not block any system actions that are not found by the optimization,
we require the test agent strategy to be such that the test agent will occupy a state
that is adjacent to the system if this does not correspond to a cut in the reactive cut
map R,∧

𝑞∈B𝜋 .𝑄

∧
(𝑠,𝑠′)∈𝑇.𝐸
(𝑠,𝑠′)∉R(𝑞)

□
(
(xsys = 𝑠 ∧ q𝜋 = 𝑞 ∧ turn = 0) → ¬(xtester = 𝑠

′)
)
. (g7)

This requirement ensures that the test agent will not introduce any additional re-
strictions on system actions not in R. Nonetheless, the test agent moves on the same
states as the system and thus might transiently block all paths for the system during
the test execution. This might lead to the system not making progress toward its goal
while the tester occupies these states, resulting in a livelock. To solve this problem,
we introduce a tie-breaking condition, which can depend on the specific example.
In this analysis, we will describe a specific requirement for the test agent to only
remain in a blocking state for a single time step, thus only transiently blocking the
system. This requires that from each blocking state, the test agent can transition
into a non-blocking state. We identify the set of blocking states and denote them as
𝑇.𝑆block. This tie-breaker condition is captured in∧

𝑠∈𝑇.𝑆block

□
(
xtester = 𝑠→ ⃝¬

( ∨
𝑠′∈𝑇.𝑆block

xtester = 𝑠
′
))
. (g8)

This condition can be modified for the specific application, where for example it
might be necessary to allow the system to spend multiple concurrent time steps in a
set of blocking states. From the assumptions (a1)–(a5) and the guarantees (g1)–(g8)
we can now synthesize a test agent strategy 𝜋tester using TuLiP.

Counterexample-Guided Search
The solution that is returned by the MILP might not result in a GR(1) specification
that is realizable for the available test agent. We aim to find the optimal test strategy
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that can be realized by the test environment. Therefore we exclude the unrealizable
solutions by adding the following constraint to the MILP:∑︁

𝑒∈𝐸
𝑑𝑒 −

∑︁
𝑒∈𝐶

𝑑𝑒 ≥ 1, ∀𝐶 ∈ Cex, (c15)

where Cex is the set of unrealizable solutions. This constraint ensures that the
updated solution will not allow all edges in an excluded solution to be cut at the
same time and for these edges to be the only edges that are cut, effectively excluding
only that solution. However, we allow these edge cuts to be part of a larger set of
cut edges. The MILP for a test environment containing a dynamic test agent is thus
given as

MILP-agent:

max
f,d,dstate,µ,

f (𝑞,s)sys ∀𝑞∈B𝜋 .𝑄,

∀s∈SGsys (𝑞).

𝐹 − 1
1 + |𝐸 |

∑︁
𝑒∈𝐸

𝑑𝑒 − 1
(1 + |𝐸 |) |𝑉 |

∑︁
𝑣∈𝑉

𝑑𝑣state

s.t. (c1)-(c9), (c10), (c15).

(4.23)

To find a strategy for the dynamic test agent, we solve the MILP-agent with an
empty set of excluded solutions Cex. From the optimal solution d∗ we formulate the
GR(1) formula and synthesize the strategy for the test agent. If the specification
is unrealizable, we add the edge cuts in the solution to Cex and resolve the MILP-
agent. This is repeated until either a strategy is found, or the MILP-agent becomes
infeasible. In the latter case, an infeasible MILP, this framework cannot find a cut
configuration such that the test agent under consideration cannot realize the test
restrictions required for the test. In this case the test designers should consider a
different test environment, consisting of a different test agent or static and reactive
obstacles (e.g. physically using walls or gates, or virtually by adding a software
harness that restricts system actions).

The procedure to synthesize a strategy for a dynamic test agent from a given system
and test objective, and system model is outlined in Algorithm 4.2.

Lemma 4.11. Let d∗ be the optimal solution to MILP-agent, and let 𝐶 be the
corresponding set of cuts. From d∗, find Obs, the set of static obstacles, and 𝜋tester,
the test agent strategy, synthesized from the GR(1) formula with assumptions (a1)–
(a5) and guarantees (g1)–(g8). From d∗ also find 𝜋test, the reactive test strategy
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Algorithm 4.2 Finding the strategy for the test agent and static obstacles
1: procedure TestAgentStrategy(𝑇,𝑇tester, 𝐻, 𝜑sys, 𝜑test)

Input: system 𝑇 , test agent 𝑇tester, test harness 𝐻, system objective 𝜑sys, test
objective 𝜑test

Output: test agent strategy 𝜋tester
2: 𝑇.𝐸static ← Define from 𝑇 , 𝑇tester ⊲ Static area (Eq. (4.20)
3: G,𝔊, I, 𝐺 ← Setup arguments ⊲ Lines 2-13 in Alg. 4.1
4: Cex ← ∅ ⊲ Initialize empty set of excluded solutions
5: while True do
6: d∗ ←Solve MILP-agent(G,𝔊, I, 𝑇, 𝐻, Cex)
7: if Status(MILP) = infeasible then
8: return infeasible
9: 𝐶 ← {(𝑢, 𝑣) ∈ 𝐺.𝐸 | d∗(𝑢,𝑣) = 1} ⊲ Cuts on 𝐺

10: Obs← Define from 𝐶 ⊲ Static Obstacles (Eq. (4.19))
11: R ←Define from 𝐶 ⊲ Reactive map (Eq. (4.22))
12: A← Assumptions (a1)–(a5) from 𝑇 , 𝑇tester, 𝐺, 𝜑sys
13: G← Guarantees (g1)–(g7) from 𝑇 , 𝑇tester, R
14: 𝜑← (A→ G) ⊲ Construct GR(1) formula
15: if Realizable(𝜑) then
16: 𝜋tester ← Synthesize for 𝜑 with TuLiP
17: return 𝜋tester, Obs
18: Cex ← Cex ∪ 𝐶

corresponding to the optimal cuts 𝐶 according to Algorithm 4.2. Then 𝜋tester and
Obs realize 𝜋test.

Proof. From d∗ we can find the reactive cut map C(𝑞), which is realized by
the reactive test strategy 𝜋test. We know that C(𝑞) = R(𝑞) ∪ Obs by equa-
tions (4.17), (4.19), (4.22) for all 𝑞 ∈ B𝜋 .𝑄. The test agent is required to realize
the cuts in R(𝑞) by guarantee (g6), but it is prohibited from restricting any system
transitions not in R(𝑞) by guarantee (g7). Thus the test agent realizes R(𝑞) and
the test agent strategy 𝜋tester together with the set of static obstacles Obs realize the
reactive test strategy 𝜋test. □

Theorem 4.12. If Algorithm 4.2 returns a feasible test agent strategy 𝜋tester and a
set of static obstacles Obs, then this solves Problem 4.2.

Proof. The test agent strategy 𝜋tester and the set of static obstacles Obs satisfy
the system’s assumptions. The dynamics of the tester are specified in (g1)-(g4)
and satisfyA1. The safety assumption is guaranteed by (g5). By Lemma 4.11,
the guarantees (g6) and (g7) realize the optimal cuts from MILP-agent. These
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(b) Graph resulting from a reduction of the 3SAT formula
𝐹 (𝑥1, . . . , 𝑥5), where the resulting edge cuts correspond to the
truth assignment of the variables 𝑥1, . . . , 𝑥5.

Figure 4.10: Graphs constructed from a 3-SAT formula, where a truth assignment
for the variables can be found using the network flow approach for static obstacles.

cuts are found such that there always exists a path on 𝐺sys by constraint (c8). By
adding guarantee (g8), the test agent strategy is guaranteed to satisfy the system’s
assumptions A3 and A4.

By Lemma 4.11, 𝜋tester is a realization of a least-restrictive feasible 𝜋test. □

4.8 Complexity
The framework comprises three parts: i) graph construction, ii) optimization, and
iii) reactive synthesis. For graph construction, we first need to construct Büchi
automata from specifications. This has doubly-exponential complexity, 22 |𝜙 | , in the
length of the formula 𝜙 in the worst-case [15]. Then, the construction of products
is a Cartesian product of two graphs 𝑇 and B𝜋, and has a time complexity of
𝑂 ( |𝑇.𝑆 |2 · |B𝜋 .𝑄 |2). GR(1) synthesis is known to have a complexity of 𝑂 ( |𝑁 |)3,
where 𝑁 is the number of states required to define the formula. In this section, we
will establish the computational complexity of the optimization.

To prove the computational complexity of finding the cuts on the graph, we first prove
the computational complexity in the special case of static obstacles. As defined in
Sections 4.4 and 4.5, the problem data is a graph 𝐺 = (𝑉, 𝐸) with node groups S, I,
T, and the corresponding flow network G. For some edge 𝑒 ∈ 𝐸 \ 𝐸 (I), the binary
variable 𝑑𝑒 indicates whether the edge is cut: 𝑑𝑒 = 1. The set𝐶 represents the set of
edges with 𝑑𝑒 = 1. For static obstacles, the edges are grouped by the corresponding
transition in 𝑇 . The grouping Grstatic : 𝑇.𝐸 → 𝐺.𝐸 , and defined as

Grstatic((𝑠, 𝑠′)) B {(𝑢, 𝑣) ∈ 𝐺.𝐸 | 𝑢.𝑠 = 𝑠, 𝑣.𝑠 = 𝑠′}. (4.24)

For some (𝑠, 𝑠′) ∈ 𝑇.𝐸 , all edges 𝑒 ∈ Grstatic((𝑠, 𝑠′)) have the same 𝑑𝑒 value, i.e., if
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𝑑𝑒 = 1 for some edge 𝑒 in the group, then all edges in this group will have 𝑑𝑒 set
to 1. A bypass path on 𝐺 is some 𝑃𝑎𝑡ℎ(S, T) which does not visit the intermediate
I. The flow value 𝐹 on G is defined from the source S to target T, with each edge
having unit capacity. A valid set of edge cuts 𝐶 is such that i) there does not exist
a bypass path, ii) there exists a path from S to T, and iii) edges respect the grouping
Grstatic.

Problem 4.3 (Static Obstacles Optimization Problem). Given a graph 𝐺, find a
valid set of edge cuts 𝐶 such that the resulting maximum flow 𝐹 is maximized over
the set of all possible cuts, and such that |𝐶 | is minimized for the flow 𝐹.

This corresponds to finding the valid set of edge cuts 𝐶 that as first priority, maxi-
mizes the flow 𝐹, and subsequently chooses the set of edge cuts 𝐶 with the smallest
cardinality |𝐶 | (i.e. breaking ties between all valid edge cuts that realize 𝐹). For
static obstacles, Problem 4.3 corresponds to the following decision problem.

Problem 4.4 (Static Obstacles Decision Problem). Given a graph 𝐺 and an integer
𝑀 ≥ 0, does there exist a valid set of cuts 𝐶 such that |𝐶 | ≤ 𝑀?

Lemma 4.13. Any solution to Problem 4.3 can be used to construct a solution for
Problem 4.4 in polynomial time.

Lemma 4.13 implies that if there exists a polynomial-time algorithm to compute a
solution to Problem 4.3, then there also exists a polynomial-time algorithm to solve
Problem 4.4. Thus, if we can show that Problem 4.4 belongs to the class of NP-hard
problems (i.e., there exists a polynomial-time reduction from a problem in NP to
Problem 4.4), that would imply that there exists a polynomial-time algorithm to solve
Problem 4.4 only if 𝑃 = 𝑁𝑃. This in turn would support the MILP approach we
provide to solve Problem 4.3. To show that Problem 4.4 is NP-hard, we construct
a polynomial-time reduction from 3-SAT to Problem 4.4. This polynomial-time
reduction maps any instance of 3-SAT to an instance of Problem 4.4 such that the
solution of the constructed instance of Problem 4.4 corresponds to a solution of the
instance of the 3-SAT problem.

Definition 4.16 (3-SAT [38]). Let 𝑓 (𝑥1, . . . , 𝑥𝑛) B
∧𝑚
𝑗=1 𝑐 𝑗 be a propositional logic

formula over Boolean propositions 𝑥1, . . . , 𝑥𝑛 in conjunctive normal form (CNF) in
which each clause 𝑐 𝑗 is a disjunction of three Boolean propositions or their negations.
The 3-SAT problem returns True if there exists a satisfying Boolean assignment to
𝑓 (𝑥1, . . . , 𝑥𝑛) and False otherwise.
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Construction 4.1 (Clause to Sub-graph). Given a 3-SAT clause 𝑐 𝑗 , we can construct
a sub-graph representing this clause as follows. For each clause 𝑐 𝑗 , we introduce
nodes 𝑠 𝑗−1 and 𝑠 𝑗 . Then, we add the nodes 𝑥1, 𝑗 , . . . 𝑥𝑛, 𝑗 corresponding to variables
𝑥1, . . . , 𝑥𝑛 in the 3-SAT formula. We add the following directed edges for each 𝑥𝑖, 𝑗
node—an incoming edge from node 𝑠 𝑗−1 to 𝑥𝑖, 𝑗 , and an outgoing edge from 𝑥𝑖, 𝑗 node
to node 𝑠 𝑗 . Then we add two nodes, denoted by IT, 𝑗 and IF, 𝑗 , to this sub-graph. If
𝑥𝑖 appears in the clause 𝑐 𝑗 , then we connect the IT, 𝑗 node by bypassing the edge
from 𝑥𝑖, 𝑗 to 𝑥 𝑗 , and if 𝑥𝑖 appears in 𝑐 𝑗 , then we connect IF, 𝑗 to bypass the edge from
𝑠 𝑗−1 to 𝑥𝑖, 𝑗 (as shown in Fig. 4.10a).

Constructing a sub-graph for a clause 𝑐 𝑗 via Construction 4.1 allows us to relate the
edge cuts to the Boolean assignment for the variables 𝑥0, . . . , 𝑥𝑛. If the incoming
edge into 𝑥𝑖, 𝑗 is cut, then the corresponding Boolean assignment to 𝑥𝑖 is False, and if
the outgoing edge from 𝑥𝑖, 𝑗 is cut, then the corresponding Boolean assignment to 𝑥𝑖
is True. This ensures that a satisfying assignment for the clause corresponds to edge
cuts such that all 𝑃𝑎𝑡ℎ𝑠(𝑠 𝑗−1, 𝑠 𝑗 ) are routed through intermediate nodes {IT, 𝑗 , IF, 𝑗 }.
An assignment that evaluates the clause 𝑐 𝑗 to False corresponds to edge cuts in the
sub-graph such that there is no path from 𝑠 𝑗−1 to 𝑠 𝑗 .

Construction 4.2 (Reduction of 3-SAT to Problem 4.4). Suppose we have an in-
stance of the 3-SAT problem with 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and 𝑚 clauses 𝑐1, . . . 𝑐𝑚.
First, we construct the sub-graphs for each clause according to Construction 4.1. Let
𝑀 B 𝑚×𝑛. We denote the node 𝑠0 as the source S, and 𝑠𝑚 as the sink T. The result-
ing graph is a series of sub-graphs representing each clause 𝑐 𝑗 of the 3-SAT formula.
For every variable 𝑥𝑖 in the formula, we maintain two groups of edges: i) incoming
edges {(𝑠 𝑗−1, 𝑥𝑖, 𝑗 ) | 1 ≤ 𝑗 ≤ 𝑚}, and ii) outgoing edges {(𝑥𝑖, 𝑗 , 𝑠 𝑗 ) | 1 ≤ 𝑗 ≤ 𝑚}. All
edges in a group share the same cut value, corresponding to Grstatic. This ensures
that every variable has the same Boolean assignment across clauses.

This allows us to construct a graph corresponding to a 3-SAT formula in polynomial
time via the procedure outlined in Construction 4.2, also illustrated in Fig. 4.10.

Theorem 4.14. Problem 4.4 is NP-complete.

Proof. We will show that Problem 4.4 is NP-hard by showing that Construction
4.2 is a correct polynomial-time reduction of the 3-SAT problem to Problem 4.4
i.e., any polynomial-time algorithm to solve Problem 4.4 can be used to solve 3-
SAT in polynomial-time. Consider the graph constructed by Construction 4.2 for
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any propositional logic formula. The valid set of edge cuts 𝐶 on this graph with
cardinality |𝐶 | ≤ 𝑀 is a witness for Problem 4.4. A witness for the 3-SAT formula
is an assignment of the variables 𝑥1, . . . , 𝑥𝑛. A witness to a problem is satisfying if
the problem evaluates to True under that witness. Next, we show that a valid set of
edge cuts 𝐶 is a satisfying witness for Problem 4.4 if and only if the corresponding
assignment to variables 𝑥1, . . . , 𝑥𝑛 is a satisfying witness for the 3-SAT formula.

First, consider a satisfying witness for Problem 4.4. By Construction 4.2, the
cardinality of the witness, |𝐶 | = 𝑚 × 𝑛 will be exactly 𝑀 , which is the minimum
number of edge cuts required to ensure no bypass paths on the constructed graph.
This implies that each variable 𝑥𝑖 has a Boolean assignment. By Construction 4.1,
a strictly positive flow on the sub-graph of clause 𝑐 𝑗 implies that 𝑐 𝑗 is satisfied. By
Construction 4.2, a strictly positive flow through the entire graph implies that all
clauses in the 3-SAT formula are satisfied. Therefore, a satisfying witness to the
3-SAT formula can be constructed in polynomial-time from a satisfying witness for
an instance of Problem 4.4.

Next, we consider a satisfying witness for the 3-SAT formula. The Boolean assign-
ment for each variable 𝑥𝑖 corresponds to edge cuts on the graph (see Fig. 4.10b).
Any Boolean assignment ensures that there is no bypass path on the graph since
either all incoming edges or all outgoing edges for each variable 𝑥𝑖 are cut. This
also corresponds to the minimum number of edge cuts required to cut all bypass
paths, corresponding to |𝐶 | = 𝑚 × 𝑛. By Construction 4.1, a satisfying witness
corresponds to a Path(𝑠 𝑗−1, 𝑠 𝑗 ) on the sub-graph for each clause 𝑐 𝑗 . By Construc-
tion 4.2, observe that there exists a strictly positive flow on the graph. Thus, we can
construct a satisfying witness to an instance of Problem 4.4 in polynomial time from
a satisfying witness to the 3-SAT formula. Therefore, any 3-SAT problem reduces
to an instance of Problem 4.4, and thus, Problem 4.4 is NP-hard. Additionally,
Problem 4.4 is NP-complete since we can check the cardinality of 𝐶, and whether
𝐶 is a valid set of edge cuts in polynomial time. □

Corollary 4.15. Problem 4.3 is NP-hard [117].

Proof. By Theorem 4.14, Problem 4.4 is NP-complete, and therefore by Lemma 4.13,
Problem 4.3 is NP-hard. □

Finally, we can make use of the insight gained in this chapter to show the overall
complexity of this problem. Additionally, we can identify the computational com-
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plexity for the reactive setting. For the reactive setting, the optimization problem (in
the sense of computational complexity) can be stated similarly to the static setting
in Problem 4.3. For the reactive setting, a valid set of edge cuts is similar to the
static setting, except in how edges are grouped, which is discussed in Remark 4.2.
The optimization problem and its corresponding decision problem can be stated as
follows.

Problem 4.5 (Reactive Obstacles Optimization Problem). Given a graph𝐺, identify
a set of cuts 𝐶 such that the flow 𝐹 is maximized under the following conditions:
i) there does not exist a bypass path, ii) 𝐶 is the minimum set of edge-cuts for the
flow value 𝐹, and iii) edges of the same history variable 𝑞 are grouped in Gr(𝑞)
(Eq. (4.12)), and are then statically mapped to a copy of the product graph 𝐺. For
each source s ∈ S𝐺 (𝑞) we require a flow of at least one on the corresponding copy
G𝑞, s).

Problem 4.6 (Reactive Obstacles Decision Problem). Given a graph 𝐺, identify a
valid set of edge cuts 𝐶 such that the resulting flow 𝐹 is maximized over the set of
all possible edge cuts, and such that |𝐶 | is minimized for the flow F.

Note that a valid set of edge cuts for the reactive problem is different from a valid
set of edge cuts for the static problem.

Once again, we prove a reduction from 3-SAT, but to an instance of Problem 4.6
with a single history variable 𝑞. Given a 3-SAT formula, the construction of the
graph follows from the static setting, but with a few key differences.

Construction 4.3 (Reduction from 3-SAT to Problem 4.6 with single history variable
𝑞). Suppose we have an instance of the 3-SAT problem with 𝑛 variables 𝑥1, . . . , 𝑥𝑛

and 𝑚 clauses 𝑐1, . . . 𝑐𝑚. Let 𝑀 B 𝑛. Using Construction 4.2, setup two graphs: 𝐺
and 𝐺𝑞. The key difference is that 𝐺𝑞 follows Construction 4.2 exactly, while in 𝐺,
edges in a group need not have the same cut value. Furthermore, for each group in
𝐺𝑞, the cut value is set to the maximum edge-cut value in the corresponding group
in 𝐺.

Theorem 4.16. Problem 4.5 is NP-complete and Problem 4.6 is NP-hard.

Proof. The proof follows similarly from Theorem 4.14. In this setting, a witness
for Problem 4.6 comprises the maximum edge cut value of each group in 𝐺. Con-
struction 4.3 relates edge cuts on 𝐺 and 𝐺 (𝑞,S) . This implies that edge cuts on 𝐺 are
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(b) Copy of 𝐺 for history variable 𝑞, denoted 𝐺𝑞.

Figure 4.11: Graphs constructed as reduction of 3-SAT to Problem 4.6. Note that
edges in 𝐺 are not grouped, but edges in 𝐺𝑞 are grouped and cut according to the
maximum cut value in 𝐺.

found under the condition that there is a strictly positive flow on 𝐺𝑞 under a static
mapping of edges in𝐺 (𝑞,S) . The minimum set of edge cuts which ensures no bypass
paths on 𝐺 has cardinality 𝑛, corresponding to only one of the sub-graphs having
edge cuts. Furthermore, for each 𝑥𝑖, there will be one edge-cut in one of the two
groups (incoming or outgoing edges). Therefore, for each 𝑥𝑖, only the incoming or
the outgoing edge group will have a maximum edge cut value of 1, corresponding to
the Boolean assignment for 𝑥𝑖. A minimum cut on 𝐺 found under the conditions of
no bypass paths on 𝐺 and a positive flow on 𝐺 (𝑞,S) results in a Boolean assignment
that is a satisfying witness to the 3-SAT formula. Thus, we have polynomial-time
construction of a satisfying witness to the 3-SAT formula from a satisfying witness
to Problem 4.6. This follows similarly to Theorem 4.14.

Likewise, a satisfying witness to the 3-SAT formula can be mapped to edge cuts
on one of the sub-graphs of 𝐺. These edge cuts will be such that there is no
bypass path on 𝐺, and will be the minimum set of edge cuts to accomplish this task,
corresponding to |𝐶 | = 𝑛. Additionally, by construction of the graphs, this will
correspond to a strictly positive flow on 𝐺 (𝑞,S) . Thus, we can construct a satisfying
witness to Problem 4.6 in polynomial time from a satisfying witness of the 3-SAT
formula. Therefore, any 3-SAT problem reduces to an instance of Problem 4.6. As
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Figure 4.12: Static test environment for the simulated sequencing Experiment 4.1.

a result, Problem 4.6 is NP-complete and following similarly to Corollary (4.15),
Problem 4.5 is NP-hard. □

4.9 Experimental Results
The proposed framework was applied to several examples for different test envi-
ronments and different specification tasks in simulation and actual hardware imple-
mentations. In the hardware experiments, we are testing a quadrupedal robot, the
Unitree A1. The low level is controlled using a motion primitive layer with behaviors
for lying down, standing, walking, and jumping. Individual motion primitives are
implemented within a C++ motion primitive framework, and control laws, sensing,
and estimation are executed at 1kHz on an Intel NUC with an i7-10710U CPU and
16GB of RAM. Communication to the A1’s actuators and sensors is done via UDP.
Detailed information on the low-level controller can be found in [150]. The high-
level controller was synthesized using TuLiP from a high-level abstraction of the
quadruped’s transition system consisting of states corresponding to the grid world
locations and the available motion primitives. In the simulated examples, the system
under test is either a TuLiP-generated grid world controller that can move between
grid cells or the simulated Unitree A1 quadruped. Detailed information on the sizes
of the graphs and run times for the experiments can be found in Appendix A.1.

Static Test Environments
In this section, we will illustrate different experiments for static test environments.
The test strategy was found using Algorithm 4.1 and MILP-static.
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Figure 4.13: Trace for Experiment 4.2. Figure 4.14: Trace for Experi-
ment 4.3.

Experiment 4.1 (Sequencing). In this experiment, the system is tested for a se-
quenced visit task on a standard grid world, where it is required to visit six in-
termediate locations in a given sequence. The test environment consists of static
obstacles. The system objective is given as 𝜑sys = □𝑇 and the tester objective is
the sequenced visit task

𝜑test = □(𝐼1 ∧ □(𝐼2 ∧ □(𝐼3 ∧ □(𝐼4 ∧ □(𝐼5 ∧ □ 𝐼6))))).

The resulting test environment is shown in Fig. 4.12. We observe that any system
that navigates on this grid world would have to visit the intermediate locations in
the given order, before arriving at the goal state 𝑇 . For this experiment, the MILP
finds a feasible solution with a flow of 1 and then terminates after the objective does
not improve for 5 minutes (explained in Appendix A.1). Thus, this solution might
be sub-optimal, making it feasible but not necessarily least-restrictive.

Hardware Experiments

Experiment 4.2 (Example 4.1). This experiment is the hardware implementation of
Example 4.1. Figure 4.13 shows the trace of the hardware test execution according
to the static obstacle map shown in Figure 4.9. The yellow boxes in Figure 4.13
correspond to the static obstacles found by the flow-based synthesis framework. We
observe the system navigate through one of the cells labeled 𝐼 and then successfully
reach the goal state 𝑇 . For this example, the maximum flow on the virtual game
graph is 3 and in this case, this translates to three unique ways for the system to
reach one of the goal positions.
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(a) Grid world layout. (b) Hardware trace.

Figure 4.15: Grid world layout and test execution trace for Experiment 4.4.

Experiment 4.3 (Triggered Reaction). In this experiment, we show how to imple-
ment a triggered reaction for the grid world shown in Figure 4.14. The system
objective is given as follows 𝜑sys = □𝑇 ∧ □(𝑝 → □ 𝑞), and the test objective con-
sists of the trigger, 𝜑test = □ 𝑝, where the propositions 𝑇 , 𝑝, and 𝑞 correspond to the
labeled cells on the grid. The flow-based synthesis framework finds static obstacles
that are shown as the yellow boxes in Figure 4.14, which are placed such that on the
way to 𝑇 , the system is routed through 𝑝. After passing through 𝑝 a correct system
is required to also visit 𝑞 (as shown in the trace in Figure 4.14). However, the test
environment does not force the system to visit 𝑞 as reaching 𝑇 without reaching 𝑞
would result in a failed test.

Experiment 4.4 (Multiple Visits). In this experiment, we find the static test envi-
ronment for a test objective that contains multiple visit tasks in an arbitrary order,
given as 𝜑sys = □ 𝐼1∧ □ 𝐼2∧ □ 𝐼3, where 𝐼1, 𝐼2, and 𝐼3 refers to the locations labeled
on the grid shown in Figure 4.15a. The system objective is given as 𝜑sys = □𝑇 ,
which corresponds to reaching the goal location in the bottom left corner of the
grid. The flow-based synthesis frameworks finds 148 cuts on 𝐺 that correspond to
10 static obstacles placed on the grid as shown by the yellow boxes in Figure 4.15b.
Due to this obstacle configuration the quadruped is forced to visit 𝐼1, 𝐼2, and 𝐼3 on
its way from 𝑆 to 𝑇 .

Experiment 4.5 (Refueling). In this example the quadruped state is x = (𝑥, 𝑦, 𝑓 ),
where 𝑥 and 𝑦 correspond to the coordinates, and 𝑓 represents the current fuel
level. The grid world layout is shown in Figure 4.16a. The quadruped is tasked
with reaching its goal location in the top right corner of the grid, labeled 𝑇 , and not
running out of fuel. The fuel capacity is set at 10 units, and each transition between
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(a) Grid world layout. (b) Experiment trace.

Figure 4.16: Grid world layout and experiment trace for Experiment 4.5.

two adjacent grid cells results in the fuel level decreasing by one unit. The refueling
location is located in the bottom right corner of the grid, and visiting this cell resets
the quadruped’s fuel level to its maximum capacity. The system objective is given
as

𝜑sys = □(𝑥 = 5 ∧ 𝑦 = 5) ∧ □¬( 𝑓 = 0).

The desired test behavior is observing that the quadruped’s fuel level drops such that
it needs to decide to visit the refueling station to successfully make it to its goal. In
particular, in this example, we want to see the quadruped be in the lower three rows
of the grid with a fuel level lower than 2. The test specification is thus given as

𝜑test = □(𝑦 < 4 ∧ 𝑓 < 2).

In this example, the intermediate locations do not correspond directly to states on the
grid, but the transition system contains the information about the fuel level, allowing
us to use the flow-based synthesis approach to find the static test environment.
Another important aspect of this example is that some of the intermediate states
correspond to a fuel level of 0, making them unsafe states for the system. The
framework still allows synthesis for this test objective as some states that satisfy
𝜑test are not in conflict with 𝜑sys and these are the states that the test execution is
routed through. Figure 4.16b shows the resulting static test environment and the
trace of the quadruped. The trace is colored according to the current fuel level of
the quadruped. We can see that the quadruped is required to visit the refuel location
(pictured in the bottom right of the grid) to not run out of fuel. In addition, observe
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Figure 4.17: Snapshot of the hardware test execution for the refueling Experi-
ment 4.5.

Figure 4.18: Trace for the Mars exploration Experiment 4.6.

that the quadruped could have decided to bypass the refuel station, but this would
have resulted in an empty fuel tank and, in turn, it would have failed the test. A
snapshot of the hardware test execution is shown in Figure 4.17.

Experiment 4.6 (Mars Exploration). This hardware example is inspired by a plane-
tary exploration mission. The quadruped we are testing represents a rover that has to
navigate on the Martian surface and in the case that it finds an interesting sample, it
has to take it to a specified drop-off location. Additionally, it has to keep track of its
fuel level which should never run out. Its state is thus again given as x = (𝑥, 𝑦, 𝑓 ),
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and the fuel level is reset to maximum capacity if it visits a refueling location.
The ‘drop-off’ locations are annotated with a ‘D’ and the refueling locations with
a ‘R’ on the grid in Figure 4.18. The quadruped wants to reach its goal location,
xgoal = (1, 6), marked by a ‘T’. The locations of interesting samples are labeled as
‘rock’ and ‘ice’ and can also be seen in Figure 4.18. The system objective is given
as

𝜑sys = □𝑇 ∧ □( 𝑓 > 0) ∧ □(ice ∨ rock→ □ drop-off),

where ice, rock, and drop-off are the labels of the corresponding grid cells. The
test objective corresponds to forcing the quadruped to make the choice to refuel and
collect an ice and a rock sample. This is encoded as follows:

𝜑test = □(𝑑 > 𝑓 ) ∧ □ ice ∧ □ rock,

where 𝑑 = |xgoal − (𝑥, 𝑦) | is the distance to the goal position. The static test
environment is shown in Figure 4.18, where the yellow boxes correspond to the
static obstacles that were found using the flow-based synthesis framework. The
quadruped trace is shaded in a color gradient according to the current fuel level.
First, the quadruped is routed through the rocks, bypasses the first drop-off location,
and then visits the ice location on its way to the refueling station. It is important to
note that for a successful test execution, it could not have bypassed the ice location
as it did not have enough fuel to do so. It is then required to refuel again before it
can drop off the samples. We observe that the quadruped is forced to refuel twice
to successfully complete its mission. Note that in this experiment, the implemented
solution has a flow of 𝐹 = 1. This is a feasible solution to the MILP, but it is
sub-optimal. This illustrates the anytime characteristic of our approach, where any
solution to the MILP with a flow greater or equal to 1 is a valid test environment.
Nonetheless, a least-restrictive test environment corresponds to the optimal solution.
In Table A.2 the run time to find the optimal solution is shown.

Reactive Test Environments
In this section, we will illustrate the framework for reactive test environments. The
reactive test strategy was generated using Algorithm 4.1 and MILP-reactive. The
following two reactive examples are inspired by search and rescue missions, where
the reactive obstacles correspond to locked or unlocked doors. These examples were
simulated and also executed in hardware.
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Figure 4.19: Snapshots from the hardware test execution for the Mars exploration
Experiment 4.6.

Experiment 4.7 (Beaver Rescue). In this example, the system under test is the
quadruped, and its task is to reach the beaver located in the hallway and bring it back
into the lab. The quadruped position is denoted as x, its goal location is denoted as
‘goal’ and the beaver location is denoted as ‘beaver’. Then, the system objective is
given as the sequence

𝜑sys = □(beaver ∧ □ goal),

which corresponds to the quadruped reaching the beaver’s position and thereafter
making its way back into the lab. The test objective is to observe that the system
uses both lab doors at least once, ideally one on the way to the beaver, and the other
one on the way back. Which door the quadruped decides to use first is arbitrary and
the test objective is the following the multiple visit specification:

𝜑test = □ door1 ∧ □ door2,

where door1 and door2 correspond to the positions on either side of the correspond-
ing door. The reactive test strategy found by the flow-based synthesis framework
corresponds to locking and unlocking the doors of the lab according to the state of
the test execution. In the simulated test execution shown in Figure 4.20a, we can
see that the quadruped uses door1 on its way to pick up the beaver, then tries to pass
through the same door again, but the reactive test strategy is such that this door is now
locked. Then the quadruped is forced to door2 to successfully bring the beaver back
to its goal location in the lab. Snapshots and the trace from the hardware execution
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(a) Simulation trace for Ex-
periment 4.7.

(b) Simulation trace for Ex-
periment 4.8.

(c) Motion primitive graph.

Figure 4.20: Unitree A1 motion primitive graph and simulation traces for reactive
experiments.

Figure 4.21: Beaver rescue hardware demonstration.

of this experiment are shown in Figure 4.21. Note that this hardware experiment was
executed using a bi-level flow optimization, but the flow-based synthesis framework
using the MILP resulted in the same reactive test strategy where the time required
to solve the optimization was reduced by three orders of magnitude.

Experiment 4.8 (Reactive Motion Primitive Test). In this experiment, the quadruped
is required to reach its goal location in the hallway, denoted as ‘goal’. The system
objective is 𝜑sys = □ goal. The quadruped’s motion primitive graph is shown in
Figure 4.20c, and the test objective is to observe all motion primitives. We will
disregard ‘walk’ and ‘land’ as these motion primitives are automatically required to
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Figure 4.22: Snapshots of the hardware test execution on the Unitree A1 quadruped
for Experiment 4.8

transition from one grid cell to another and to execute the ‘jump’ motion primitive,
respectively. Thus, the test objective is given as

𝜑test = □ jump ∧ □ lie ∧ □ stand, (4.25)

where ‘jump’, ‘lie’, and ‘stand’, correspond to the state of the respective motion
primitive in the transition system. Initially, the quadruped is located in the lab, and
it has to pass through one of three doors to exit the lab. Each of the three doors can be
unlocked by executing specific motion primitives. Locking and unlocking the doors
corresponds to the reactive test strategy. In the simulation shown in Figure 4.20b,
we observe that the quadruped unsuccessfully tries to unlock the center door first
by executing the ‘stand’ motion primitive (annotated by a 1). Then it executes the
‘jump’ and ‘stand’ motion primitives (2 and 3, respectively) at the left door, but the
reactive test strategy locks this door as well. Finally, it executes the ‘lie’ motion
primitive at the right door (shown by 4) and subsequently this door is unlocked by the
reactive test strategy allowing the quadruped to enter the hallway and successfully
complete the test (5). Figure 4.22 shows the trace and snapshots of the hardware
execution for this experiment. Note that the reactive test strategy for the hardware
experiment was found using the bi-level optimization, but the MILP resulted in the
same reactive test strategy with a run time reduction by three orders of magnitude.

Reactive Test Environments with Dynamic Test Agents
In the following examples, the test environment consists of a dynamic test agent and
if required static obstacles. The strategy for the dynamic test agent and the set of
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Figure 4.23: Grid world layout for Experiment 4.9.

static obstacles are found using the flow-based synthesis procedure as outlined in
Algorithm 4.2 and MILP-agent.

Simulated Experiments

Experiment 4.9 (Grid World 1). In this experiment, the system under test is the
quadruped. The grid world layout is shown in Figure 4.23. The quadruped starts in
the bottom right corner of the grid world, denoted 𝑆, and its task is reaching the goal
location 𝑇 in the bottom left corner. The environment already contains obstacles,
marked as the dark gray cells in Figure 4.23. The test agent is another quadruped,
which can transition from right to left along the middle row of the grid. It is also
able to leave the grid on either side, these states are the designated park states that
the system quadruped cannot enter. The system quadruped is shown as the gray
quadruped in Figure 4.25 and the test agent is shown as the yellow quadruped. The
system objective is given as 𝜑sys = □𝑇 . The test objective consists of multiple
visit tasks in arbitrary order, given as 𝜑test = □ 𝐼1 ∧ □ 𝐼2 ∧ □ 𝐼3, where 𝐼1, 𝐼2, and
𝐼3 correspond to the designated locations on the grid. In this example, the static
area is designated as any transition into a cell that is not in the center row that the
reactive agent can occupy. Note that for this example, the test agent could block
the system transiently from making any progress towards the goal by occupying the
grid cells in the center column that are outside of the vertical obstacle configuration.
To prevent any livelocks, the tester quadruped is allowed to only occupy these states
for a single time step, corresponding to guarantee (g8). We find the graphs and
solve the MILP-agent to find the reactive cuts and the test agent strategy using
the counterexample-guided search. The resulting cuts are shown in Figure 4.24
grouped by their history variables. Note that for simplicity we show the cut as a
black line, but the transition is only restricted from right to left. The resulting test
execution is shown in Figure 4.25. We observe that the test agent quadruped is
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(a) Cuts found in 𝑞0.
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(b) Cuts found in 𝑞15.
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(c) Cuts found in 𝑞12.

Figure 4.24: Reactive cuts found from MILP-agent for Experiment 4.9.

Figure 4.25: Simulated test execution for Experiment 4.9.

blocking the system quadruped from directly navigating to the goal state through
the center row of the grid by realizing the cuts shown in Figure 4.24. Instead, the
system quadruped is forced to navigate through the intermediate states by alternating
between the upper and lower edges of the grid. We see that the test agent waits for
the system to enter the corresponding intermediate state, and then moves up into the
state corresponding to the restricted transition for the next history variable. After
the test objective is satisfied, it leaves the grid by entering into a park state to allow
the system to navigate to its goal.

Hardware Experiments

The following two experiments were executed on hardware using two Unitree A1
quadrupeds.

Experiment 4.10 (Patrolling). In this example, the grid world is shown in Fig-
ure 4.26a, the system starts in the lower right corner labeled 𝑆 and wants to reach the
target 𝑇 in the lower left corner. The fuel capacity is 10 units and every transition
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(a) Grid world layout.
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(b) Specification product B𝜋 .

Figure 4.26: Grid world layout and specification product for Experiment 4.10.

on the grid decreases the fuel level by 1 unit. The refuel station is labeled 𝑅, which
resets the fuel level to the maximum. The system state is x = (𝑥, 𝑦, 𝑓 ), where 𝑥
and 𝑦 are the coordinates and 𝑓 corresponds to the current fuel level. Originally,
the grid does not contain any obstacles. The test agent can traverse up and down
the grid in the third column, denoted by the yellow arrow in Figure 4.26a. It is also
allowed to leave the grid from the top or bottom cell of the third column, this is
denoted as the park states. Transitions into states that are not in the test agent’s area
can be restricted by placing static obstacles. The system objective is given as

𝜑sys = □𝑇 ∧ □¬( 𝑓 = 0).

The test objective wants to observe the system having to refuel on the way to 𝑇 and
is thus given as

𝜑test = □(𝑑 < 𝑓 ),

where 𝑑 = | (𝑥, 𝑦)−xgoal |, is the distance to the goal state𝑇 . The specification product
B𝜋 corresponding to the system and test objective is shown in Figure 4.26b. Note
that from B𝜋 we can already observe that to route all test executions from the initial
state 𝑞0 through the test objective acceptance state (blue) before reaching the system
acceptance states (yellow) it is sufficient to restrict system actions for the history
variable 𝑞0. The restrictions found by MILP-agent and the counterexample-
guided search are shown in Figure 4.27a. Due to its location outside of the test
agent’s moving area, the restriction in the lower right corner is a static cut, meaning
that it will be present for all history variables in the form of a static obstacle. The
cuts in the center can be realized by the reactive agent. The trace of the hardware
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execution is shaded in a color gradient according to the current fuel level and shown
in Figure 4.27b and snapshots of the hardware during the test execution are shown
in Figure 4.27c. We can see that the test agent blocks the system quadruped at the
locations corresponding to the cuts (see panel 2, 3, and 4 in Figure 4.27c. Then
the system quadruped decides to refuel (see panel 5) and the test agent retreats
back down the grid to give way to the system quadruped (see panel 6). If the
system quadruped would have chosen a different strategy, such as deciding to refuel
earlier or even immediately, the test agent would not have blocked the system at
all. However, the static obstacle was placed such that even if the system decided to
refuel immediately, its fuel level would have been depleted enough to ensure that a
refueling is necessary to successfully reach the goal state.

Experiment 4.11 (Grid World 2). In this experiment, the quadruped starts in the
lower left corner of the grid, labeled 𝑆, and wants to reach the top right corner, labeled
𝑇 . The grid world layout is shown in Figure 4.28a and contains permanent obstacles,
the cells shaded in dark gray that neither the system nor the test agent can occupy. The
test agent quadruped can move along the center row and the center column of the grid,
according to the yellow arrows. The system objective is given as 𝜑sys = □𝑇 . The
test objective is the multiple visit task 𝜑test = □ 𝐼2∧ □ 𝐼2, where 𝐼1 and 𝐼2 correspond
to the especially denoted cells on the grid, where the order of the visits is arbitrary.
The specification product B𝜋 is shown in Figure 4.28b. The initial history variable
is 𝑞0 and to route the test execution through the test objective accepting states (blue)
before reaching the system objective acceptance states (yellow), the framework will
restrict actions in 𝑞0, 𝑞6, and 𝑞7. The counterexample-guided search using MILP-
agent finds the reactive cuts shown in Figure 4.29. In this case, the optimization
was able to find a solution that can be realized by the dynamic test agent alone,
without the need for static obstacles. The trace of the hardware test execution is
shown in Figure 4.30, and the corresponding snapshots are shown in Figure 4.31.
The system quadruped is shown in gray and starts in the lower left corner of the
grid. The test agent is the yellow quadruped which starts in the center of the grid.
The initial history variable is 𝑞0 and the test agent realizes the cuts in Figure 4.29a
for this state of the test execution (see panel 1 in Figure 4.31). Initially, the system
quadruped is free to choose one of the two paths toward the goal state, and it chooses
the top path via 𝐼2 (see panel 2). Once the system quadruped passes 𝐼2, the test
execution moves to the history variable 𝑞7 and the test agent moves upwards to
block the system (see panel 3). The system now realizes that the path is blocked,
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Figure 4.27: Reactive cuts and hardware test execution trace and snapshots for
Experiment 4.10.
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Figure 4.28: Grid world layout and specification product for Experiment 4.11.
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(c) Reactive cuts in 𝑞7.

Figure 4.29: Reactive cuts corresponding to the history variables for Experi-
ment 4.11.

navigates back, and tries to pass through the center, but this is also blocked by the
test agent (corresponding to the cuts in Figure 4.29c and panel 4 in Figure 4.31).
The system quadruped now tries to navigate to 𝑇 via the lower path, and as this
path leads it through 𝐼2 the test agent does not block the system anymore (see panel
5). The test execution does not go through the history variable 𝑞6, as this history
variable corresponds to seeing 𝐼1 first. If the system quadruped had decided to try
the lower path first, the system would have transitioned from 𝑞0 to 𝑞6 upon reaching
𝐼1. The high-level system controller in this example does not correspond to a GR(1)
controller, as the system could assume that the test agent blocks it forever in the worst
case. We implement this as multiple high-level GR(1) controllers, where once the
system is blocked, the controller is automatically re-synthesized with knowledge of
the currently blocked states. In this example, the system controller is re-synthesized
twice during the course of the test execution (shown in panel 3 and 4 in Figure 4.31).



94

Figure 4.30: Hardware trace for Experiment 4.11.

Figure 4.31: Snapshots for Experiment 4.11.
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Table 4.2: Graph construction run times (with mean and standard deviation) for
random experiments

Experiment 5 × 5 10 × 10 15 × 15 20 × 20
|𝐴𝑃 | |B𝜋 | Graph Construction [s]
Reachability:
2 (4, 9) 0.046± 0.001 0.224± 0.0056 0.554± 0.009 1.078± 0.011
3 (8, 27) 0.344± 0.007 1.661± 0.022 4.004± 0.048 7.376± 0.061
Reachability & Reaction:
3 (6, 21) 0.090± 0.001 0.424± 0.016 1.037± 0.004 2.044± 0.013
5 (20, 155) 1.628± 0.087 7.560± 0.023 18.019± 0.129 33.539± 0.144
Reachability & Safety:
3 (6, 18) 0.102± 0.002 0.508± 0.010 1.278± 0.022 2.557± 0.023
4 (6, 18) 0.116± 0.002 0.590± 0.009 1.485± 0.024 2.918± 0.046

4.10 Run Times
In this section, we analyze the scalability of this framework for different randomized
grids for increasing sizes and different specification patterns. Detailed run times
for the simulated and hardware experiments can be found in Appendix A.1. For
the randomized runtime experiments, we characterize the system and test objective
by the number of propositions used to construct the formulae. For the reachability
objectives, the system objective is 𝜑sys = □ 𝑝0 and test objectives are 𝜑test =∧𝑛
𝑖=1 □ 𝑝𝑖 for 𝑖 visit tasks. The number of propositions is then found as |𝐴𝑃 | =
|𝑝0, . . . , 𝑝𝑛 |. In the case of reachability and reaction objectives, the system objective
is given as 𝜑sys = □ 𝑝1

∧𝑛
𝑖=2 □(𝑝𝑖 → □ 𝑞𝑖), containing 𝑖 reaction tasks and the task

to visit the goal. The test objective corresponds to the triggers for each reaction task,
𝜑test = □ 𝑝0

∧
𝑖=2 □ 𝑝𝑖. In this case, we find the number of propositions as |𝐴𝑃 | =

|𝑝0, . . . , 𝑝𝑛, 𝑞2, . . . , 𝑞𝑛 |. For example, testing a single reaction task corresponds to
|𝐴𝑃 | = 3, while testing two reaction tasks corresponds to |𝐴𝑃 | = 5. Lastly, we also
consider reachability and safety tasks. In this case the test objective is simply given
as 𝜑test = □ 𝑝0, and the system objective is 𝜑sys = □ 𝑝1

∧𝑛
𝑖=2 □¬𝑝𝑖, containing the

goal visit task and 𝑖 avoidance tasks. In this case, we have |𝐴𝑃 | = |𝑝0, . . . , 𝑝𝑛 |.
Table 4.2 shows the run times for constructing the virtual product graph for these
objective for different grid sizes. Increasing grid sizes correspond to an increase in
the size of the transition system 𝑇 . The grid worlds were generated with random
grid cells being assigned to each atomic proposition in the formula. If the generated
grid layout is infeasible, we remove it from the analysis and replace it by another
randomly generated grid world. In total we run 25 instances for each grid size.
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Table 4.3: Optimization run times (with mean and standard deviation) for random
experiments using MILP-reactive

Experiment 5 × 5 10 × 10 15 × 15 20 × 20
|𝐴𝑃 | |B𝜋 | Optimization [s]
Reachability:
2 (4, 9) 5.63± 13.43 64.62± 38.75 67.38± 25.47 68.63± 31.12
3 (8, 27) 23.36± 38.15 61.68± 35.12 91.54± 31.41 117.82± 34.89
Reachability & Reaction:
3 (6, 21) 5.97± 13.21 61.06± 34.67 71.64± 41.03 85.20± 19.49
5 (20, 155) 17.19± 25.51 78.44± 34.71 159.91± 76.63 280.16± 148.88
Reachability & Safety:
3 (6, 18) 0.76± 1.52 70.82± 89.70 63.68± 27.54 80.58± 20.79
4 (6, 18) 0.150± 0.29 71.47± 80.61 59.59± 38.92 76.02± 27.11

Table 4.4: Optimization run time for random experiments using MILP-static

Experiment 5 × 5 10 × 10 15 × 15 20 × 20
|𝐴𝑃 | |B𝜋 | Optimization [s]
Reachability:
2 (4, 9) 8.17± 13.14 54.07± 17.98 60.168± 0.12 60.17± 0.10
3 (8, 27) 27.78± 21.71 60.17 ± 0.10 60.484± 0.86 74.02± 38.71
Reachability & Reaction:
3 (6, 21) 10.62± 14.86 60.09± 0.06 60.23± 0.24 60.34± 0.46
5 (20, 155) 20.41± 19.21 67.77± 31.90 95.35± 116.82 268.68± 222.41
Reachability & Safety:
3 (6, 18) 1.27± 1.47 60.08± 0.06 57.27± 12.61 60.32± 0.24
4 (6, 18) 0.17± 0.23 60.06± 0.05 60.14± 0.10 60.30± 0.19

The run times for solving the MILP in the reactive and static setting using Gurobi [66]
are shown in Tables 4.3 and 4.4, respectively. We added a callback function to the
optimization, such that if the optimal solution is not found, the optimization times
out after 10 minutes. Once a feasible solution is found, the optimization terminates
after 60 𝑠 and returns the current optimal solution. For the grid sizes in Tables 4.3
and 4.4 the optimization found a feasible solution for every instance within the
allowed time frame.

4.11 Conclusion
In this chapter, we presented the flow-based synthesis framework to synthesize
least-restrictive test strategies corresponding to a desired test behavior encoded in
the system and test objectives. To analyze the different temporal events during a
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test execution we construct the virtual product graph from the system model and the
system and test objectives. In addition, we construct the system product graph to
keep track of the system’s perspective. We formulate the routing optimization using
flow networks as a MILP corresponding to the available test environment (MILP-
static, MILP-reactive, or MILP-agent). In the static and reactive setting the
reactive test strategy can be realized directly in the form of static obstacles or reactive
obstacles such as doors or gates. For test environments consisting of a dynamic test
agent we employ a counterexample-guided search and GR(1) synthesis to find a
solution to MILP-agent that is realizable by the available test agent. We show
that the routing problem is NP-hard, but in practice, this framework using the MILP
can handle problems of medium size. The resulting test strategies ensure that a
correctly implemented system can satisfy its objective, corresponding to a test that
is not impossible from the system’s perspective. Additionally, if the system fails
to meet its system objective, it is due to a faulty system and not the fault of the
test environment. The framework was illustrated on several simulated and hardware
experiments for test environments with static and reactive obstacles, as well as test
environments with dynamic test agents and static obstacles.
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C h a p t e r 5

SYSTEM DIAGNOSTICS USING ASSUME-GUARANTEE
CONTRACTS

5.1 Introduction
Testing is an important step in the development of any system because it helps to
identify errors, defects, or issues in a system or product before it is released to users
or taken into operation. Through testing, system designers can establish a high level
of confidence in the system’s operation, which is crucial for ensuring its safety and
overall performance. Diagnostics refers to the process of identifying, analyzing,
and resolving problems that become apparent during the operation of a system,
product, or process. It involves using various techniques and tools, depending on
the nature of the problem, to pinpoint the root cause and find a solution to resolve
the issue. Diagnostics consists of analyzing data, and symptoms and evaluating
possible causes of the violation to determine the underlying cause.

Our diagnostics approach differs from existing work, as we are focusing on a system-
level failure and seek to identify the root cause of this failure on the component
level. Consider an autonomous vehicle consisting of multiple components, where
the system designers are confident in the operation of the system. During a test, the
system unexpectedly exhibits unsafe behavior, a violation of the system-level safety
guarantees. As the system can consist of many components that are responsible
for different tasks, but still interact with each other, finding the cause for a system-
level failure is a very involved process. Our approach utilizes assume-guarantee
reasoning and leverages the syntax of specifications to facilitate tracing the causes of
violated system-level guarantees to potential subsystems. One major benefit of using
assume-guarantee contracts (defined in Chapter 2) is the notion of blame. When the
assumptions and guarantees are specified in this manner, it is possible to determine
whether a component malfunctioned by monitoring whether the assumptions and
guarantees were satisfied. For example, suppose we have a trace for a component.
If this trace violates the assumption of the component, the component cannot be
blamed for any undesired behavior. On the other hand, under satisfied assumptions,
the behavior has to satisfy the promised guarantees. If the component does not
deliver its guarantees in this case, then it did not satisfy its specification. One can
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𝑀
𝑖 𝑜

Figure 5.1: Component 𝑀 block diagram with 𝑖 and 𝑜, input and output variables.

now analyze the component further and determine whether the implementation was
faulty or if anything was missed when defining the specification.

To be able to analyze the assumptions and guarantees of every component in a system,
we would need access to all parameters in a system, including all internal variables,
capturing relevant component inputs, outputs, and internal parameters. In some
cases, it might be possible to trace a system-level output to a set of components by
only focusing the analysis on components that directly interact with the component
whose output was violated, and expanding the search from there, but this can still
result in a large dataset that needs to be analyzed. Depending on the technology that
is tested, ease of access to internal data may vary. For autonomous vehicles, test logs
can be readily available, albeit enormous in size, while for other industries, such
as synthetic biology, only certain limited data can be gathered. The framework we
present in this chapter aims to pinpoint possible failure causes by identifying which
component’s guarantees to assess. This systematic approach allows for a targeted
search of relevant data in the test logs or can provide insights on how to instrument
the system for further insights.

The ultimate objective of this approach is to assist system designers in the failure
diagnosis process by automatically analyzing violations and identifying potential
culprits. This information can be valuable in guiding further testing, including
sensor placement. To achieve this we use Pacti [79], a tool for system analysis and
design using assume guarantee contracts, and build our framework by augmenting
Pacti’s contract composition function.

Pacti - A Tool for Compositional System Analysis and Design
Pacti [79] is an open-source Python package for compositional system analysis and
design. Components can be defined using assume-guarantee contracts and contract
operations can be performed, such as composition, merging, and quotient. Contracts
in Pacti are defined over a universe of behaviors B =

∏
𝑉∈VarSet B𝑉 , where VarSet

is the set of variables in the system. In the standard definitions, contracts are defined
over sets of behaviors, which are not conducive to implementation. To alleviate this,
a Boolean algebra 𝑇 , called a term algebra, was introduced in [79]. Given this term
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algebra 𝑇 , contracts can be written as C = (𝑎, 𝑔), where 𝑎 ∈ 𝑇 and 𝑔 ∈ 𝑇 are terms.
An IO contract for each component can be defined as follows.

Definition 5.1 (IO Contract [79]). Let 𝑉 be a set of variables. An IOContract is
the tuple (𝐼, 𝑂, 𝔞, 𝔤), where 𝐼, 𝑂 ∈ 𝑉 are disjoint sets of input and output variables
respectively, 𝔞 ∈ 𝑇 a set of assumptions, and 𝔤 ∈ 𝑇 a set of guarantees.

Defining contracts over the term algebra allows us to compute contract operations,
for example the composition of contract C = (𝑎, 𝑔) and contract C′ = (𝑎′, 𝑔′) can be
directly computed as C𝑐 = C ∥ C′ = ((𝑎∧𝑎′)∨ (𝑎∧¬𝑔′)∨ (𝑎′∧¬𝑔), (𝑔∨¬𝑎)∧ (𝑔′∨
¬𝑎′)). This composition is the most refined contract that a system composed of two
components 𝑀 and 𝑀′ will satisfy, provided that 𝑀 and 𝑀′ were implemented such
that they satisfy their corresponding contracts C, and C′, respectively. In practice,
this composition might not prove to be very useful for multiple reasons. It may
contain many terms in the assumptions and the guarantees, thus making it difficult
for humans to understand. In addition, it might contain variables that we do not
want to consider at this level of the composition (i.e. internal variables that we do
not have access to).

To make the composed contract more user-friendly, it can be relaxed by either
refining the assumptions, relaxing the guarantees, or both. Intuitively, refining
the assumptions corresponds to ‘shrinking’ the size of the valid assumption set.
Relaxing the guarantees corresponds to increasing the size of the guarantee set. For
two assumptions 𝑎 and 𝑎′, we denote that 𝑎′ refines 𝑎, 𝑎 ≥ 𝑎′, if the set corresponding
to 𝑎′ is a subset of the set corresponding to 𝑎. Similarly, for guarantees 𝑔 and 𝑔′, we
say that 𝑔′ is a relaxation of 𝑔, 𝑔 ≤ 𝑔′, if the set corresponding to 𝑔 is a subset of the
set corresponding to 𝑔′. When thinking about assumptions and guarantees each as
conjunctions of terms (or constraints), refining a contract informally corresponds to
either assuming more, guaranteeing less, or both. Pacti makes use of this contract
relaxation to eliminate internal variables and make the contract more readable.
Any relaxed contract that is computed in this way will be satisfied by a correct
implementation of the system. Nevertheless, for a contract to be useful, we need
to compute the relaxation systematically, as in the extreme case a contract that
guarantees True, i.e. every possible behavior, is a valid refinement, yet pointless in
the context of capturing the system’s behavior.

When computing a composition of contracts C and C′, the assumptions of the
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𝑀1 𝑀2
𝑖 𝑜 𝑜′

Figure 5.2: Block diagram for composition in Example 5.2.

composed contract are given as follows:

𝑎𝑐 =

stem︷   ︸︸   ︷
(𝑎 ∧ 𝑎′) ∨

error terms︷                      ︸︸                      ︷
(𝑎 ∧ ¬𝑔′) ∨ (𝑎′ ∧ ¬𝑔) ≥ (𝑎 ∧ 𝑎′). (5.1)

We refer to the first term as the stem, as this is where the composed system should
operate—where the assumptions of both components are satisfied. The second
and third terms are referred to as error terms, where each term refers to one of
the components not delivering their guarantees. As we want the composition to
live in the stem, we can use the error terms to modify the stem into the desired
form (eliminate unwanted variables). Once the error terms are no longer useful
to transform the stem, we can define the assumption of the relaxed contract as the
transformed stem by contract abstraction. The transformation of the guarantees
follows a similar argument, but ensures that the variables are eliminated by relaxing
the guarantees. The guarantees of a composition are given as follows:

𝑔𝑐 = (𝑔 ∨ ¬𝑎) ∧ (𝑔′ ∨ ¬𝑎′)
= (𝑔 ∧ 𝑔′)︸   ︷︷   ︸

stem

∨(¬𝑎 ∧ 𝑔′) ∨ (¬𝑎′ ∧ 𝑔) ∨ (¬𝑎 ∧ ¬𝑎′)

≤ (𝑔 ∧ 𝑔′) ∨ ¬(𝑎 ∧ 𝑎′),

where the stem again refers to the desired area of operation, when both components
satisfy their guarantees. The stem may contain variables that should be eliminated.
We can use the remaining terms to transform the stem to eliminate these variables,
we will refer to these terms as the context terms.

Example 5.1. Given two components 𝑀1 and 𝑀2 and their inputs and outputs as
illustrated in Figure 5.2 and their IO contracts as C1 = ({𝑖}, {𝑜}, 𝔞1, 𝔤1), where
𝔞1 = {𝑖 ≤ 2}, and 𝔤1 = {𝑜 = 𝑖} and C2 = ({𝑜}, {𝑜′}, 𝔞2, 𝔤2), where 𝔞2 = {𝑜 ≤
1}, and 𝔤2 = {𝑜 = 𝑜′}. The stem term of the composed assumptions contains the
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internal variable 𝑜, to eliminate it, we make use of the error terms as follows.

𝑎𝑐 = (

stem︷             ︸︸             ︷
(𝑖 ≤ 2 ∧ 𝑜 ≤ 1) ∨

error terms︷                                                 ︸︸                                                 ︷
(𝑖 ≤ 2 ∧ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))

= (𝑖 ≤ 2) ∧ (𝑜 ≤ 1 ∨ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))
= (𝑖 ≤ 2) ∧ (𝑜 ≤ 1 ∧ 𝑜 = 𝑖 ∨ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))
= (𝑖 ≤ 2) ∧ (𝑖 ≤ 1 ∧ 𝑜 = 𝑖 ∨ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))
= (𝑖 ≤ 2 ∧ 𝑖 ≤ 1) ∨ (𝑖 ≤ 2 ∧ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))
= (𝑖 ≤ 1)︸  ︷︷  ︸

transformed stem

∨(𝑖 ≤ 2 ∧ ¬(𝑜 = 𝑖)) ∨ (𝑜 ≤ 1 ∧ ¬(𝑜 = 𝑜′))

This allows us to define the assumptions of the relaxed composed contract as 𝔞 =

{𝑖 ≤ 1}, which now only contains the top-level input variable 𝑖. When computing
the guarantees, we can make use of the transformed assumptions when relaxing the
guarantees to eliminate the internal variable 𝑜 from the stem.

𝑔𝑐 =

stem︷              ︸︸              ︷
(𝑜 = 𝑖 ∧ 𝑜 = 𝑜′) ∨(¬(𝑖 ≤ 2) ∧ (𝑜 = 𝑜′)) ∨ (¬(𝑜 ≤ 1) ∧ (𝑜 = 𝑖))

= (𝑖 = 𝑜′) ∨ (¬(𝑖 ≤ 2) ∧ (𝑜 = 𝑜′)) ∨ (¬(𝑜 ≤ 1) ∧ (𝑜 = 𝑖))
≤ (𝑖 = 𝑜′) ∨ ¬(𝑖 ≤ 1)

In this example, the stem contained all necessary terms to eliminate the internal
variable without using any of the additional terms. Lastly, we could relax the
guarantees by substituting the error terms for the negation of the transformed stem
of the assumptions. This is now the saturated form of the guarantees. The resulting
contract is C = ({𝑖}, {𝑜′}, {𝑖 = 𝑜′}, {𝑖 ≤ 1}). In the above example, each contract
only had a single term in their respective assumption and guarantee set. In the case of
multiple terms, the assumptions and guarantees are the conjunction of these terms.
During the relaxation of the contract, Pacti includes additional steps during the
transformation of each term that we will call eliminating redundancies and filtering.
To eliminate redundancies, Pacti uses standard methods to eliminate redundant
terms [105, 147] to check whether a term is redundant and remove it from the
context. Filtering identifies which other terms are useful during the transformation;
we will refer to these useful terms as the relevant context. More details on the theory
and implementation can be found in [79] and more details on the filtering procedure
can be found in [80].
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Pacti currently supports linear inequalities with real coefficients as the theory to
define the terms. When performing a composition, Pacti computes the top-level
assumptions and guarantees by relaxing the guarantees and refining the assumptions
to eliminate internal variables. During this process for each term in the assumptions
and guarantees of the composed component, only specific terms are used in their
generation, which are identified during the filtering procedure. The framework
presented in this thesis makes use of instrumenting this filtering step to store the
history for each computed assumption and guarantee which then allows us to provide
a systematic diagnostics procedure for the identification of responsible components.

All operations in Pacti are computed under the assumption that the components
operate correctly as specified by their contracts. The entire premise of testing lies in
the difference between a ‘perfectly’ specified system and its real-world implementa-
tion. In a real-world system, specifications might be incomplete, or implementations
might be faulty. A single component failure might present itself in multiple ways, it
might result in a system-level guarantee violation, or it might not. If a component
failure is latent, meaning it does not show itself in the system-level guarantee viola-
tion, this framework cannot detect it. If the fault does show itself in a system-level
guarantee violation, we can trace it to the responsible component(s) by tracking
which relevant component’s guarantees were violated under satisfied assumptions.

5.2 Tracing System Guarantees
In this section, we will focus on how we can trace top-level system guarantees down
to the responsible components. This is beneficial in the diagnostics process, because
if a system-level guarantee is violated, we will be able to identify what components
could have contributed to this failure. We will present a methodological approach
to how the system (and its subsystems) shall be modeled such that we can make use
of Pacti, a tool for compositional system-level analysis and design, and augment this
tool to provide a systematic diagnosis procedure.

Defining the components
Each component of the system can be modeled as an assume-guarantee contract,
where the environment in which the component is expected to operate is constrained
by the assumptions, and the guarantees describe the component’s expected behav-
ior. We express the assumptions and guarantees using sets of linear inequalities.
Additionally, we are required to define the input and output variables to create an IO
contract according to Definition 5.1 to enable the composition of the components
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𝑖 ≤ 2
𝑖 ≤ 𝑜
𝑜 ≤ 𝑖
𝑖 ≤ 1
𝑜 ≤ 𝑜′

𝑜′ ≤ 𝑜

𝑖 ≤ 1
𝑖 ≤ 𝑜′

𝑜′ ≤ 𝑖

Figure 5.3: Composition graph for Example 5.1, where each vertex corresponds to
a term in the assumptions (yellow) or guarantees (blue) of the contracts.

in Pacti. For example, for component 𝑀 illustrated in Figure 5.1 we can define the
corresponding IO contract C = (𝐼, 𝑂, 𝔞, 𝔤) where the set 𝔞 contains the term 𝑖 <= 2
and the guarantee set 𝔤 contains the term 𝑜 <= 2𝑖 + 1, where 𝐼 = {𝑖}, and 𝑂 = {𝑜}
are the singleton sets of the input and output variables.

Definition 5.2 (Faulty component). Given a component 𝑀 and the corresponding
contract C = (𝐼, 𝑂, 𝔞, 𝔤), 𝑀 is faulty if it does not satisfy the guarantees 𝔤, but the
assumptions 𝔞 are satisfied. That is, for a faulty component the implementation
does not satisfy the contract, 𝑀 ̸ |= C.

Composing two components
As explained in the background section of this chapter, Pacti uses a filtering proce-
dure to determine the relevant context terms when computing the assumptions and
guarantees of the composed component. During this procedure, for every term the
subroutine transform is called, which identifies the relevant context terms. We
implemented an ID system, that allows us to store which term was used to generate
another term. For each composition operation, we can define a composition graph,
that allows us to map the composed assumption and guarantee terms to the terms
that were used in their transformation. Simply stated, a composition graph (see for
example in Figure 5.3) consists of a set of vertices, where each vertex corresponds
to a term in the assumptions or guarantees of the individual contracts (shown on the
left), and the composed contract (shown on the right). The edges in the composition
graph connect the vertices if the corresponding individual contract term was used to
generate the composed contract term, shown as the edges from left to right in Fig-
ure 5.3. Therefore, by analyzing the vertices and edges in a composition graph, we
can identify which terms from the individual contracts were used in the generation
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𝑖 ≥ 0
𝑖 ≤ 2

𝑜 + 𝑖 ≤ 3
𝑜 ≤ 5

𝑜 + 2𝑜′ ≥ 6

𝑖 ≥ 0
𝑖 ≤ 2
𝑖 − 2𝑜′ ≤ −3

Figure 5.4: Composition graph for Example 5.2, where each vertex corresponds to
a term in the assumptions or guarantees of the contracts.

of each term in the composed contract.

Definition 5.3 (Composition Graph). Let there be two components 𝑀1 and 𝑀2 and
their corresponding IO contracts C1 = (𝐼1, 𝑂1, 𝔞1, 𝔤1), and C2 = (𝐼2, 𝑂2, 𝔞2, 𝔤2) and
their composed IO contract C = (𝐼, 𝑂, 𝔞, 𝔤). A composition graph is defined as a
directed graph𝐺 = (𝑉, 𝐸), with a set of vertices𝑉 and a set of edges 𝐸 . Each vertex
corresponds to a term of the individual component contracts and their composition,
meaning the sets of vertices 𝑉𝑖,𝑎 and 𝑉𝑖,𝑔 ⊆ 𝑉 correspond to the assumptions 𝔞𝑖

and guarantees 𝔤𝑖 of component 𝑖, and 𝑉𝑎, 𝑉𝑔 ⊆ 𝑉 correspond to the composed
assumptions and guarantees 𝔞, and 𝔤, respectively. For simplicity, for each term
𝑠 ∈ 𝔞 ∪ 𝔤

⋃2
𝑖=1(𝔞𝑖 ∪ 𝔤𝑖) we will use the same notation to denote the term and the

corresponding vertex 𝑠 ∈ 𝑉 . Vertices 𝑢, 𝑣 ∈ 𝑉 are connected by an edge (𝑢, 𝑣) ∈ 𝐸
iff the term corresponding to 𝑢 was used to generate the term 𝑣. We define a path
on 𝐺 between two vertices 𝑠, 𝑡 ∈ 𝑉 if there exists a sequence of edges 𝑒 ⊆ 𝐸 that
connect vertex 𝑠 with vertex 𝑡, and denote it as path(𝐺, 𝑠, 𝑡).

Example 5.1 (continued). Figure 5.3 shows the composition graph for the compo-
sition shown in Figure 5.2. Equalities are represented as two inequalities in Pacti,
thus 𝑖 ≤ 𝑜′ and 𝑜′ ≤ 𝑖 capture the composed guarantee that 𝑖 = 𝑜′ (and similarly for
the component guarantees).

Example 5.2. Given two components 𝑀1 and 𝑀2 and their inputs and outputs as
illustrated in Figure 5.2 and their IO contracts as C1 = ({𝑖}, {𝑜}, 𝔞1, 𝔤1), where
𝔞1 = {𝑖 ≥ 0, 𝑖 ≤ 2}, and 𝔤1 = {𝑜 + 𝑖 ≤ 3} and C2 = ({𝑜}, {𝑜′}, 𝔞2, 𝔤2), where
𝔞1 = {𝑜 ≤ 5}, and 𝔤1 = {𝑜 + 2𝑜′ ≥ 6}. The composition results in the contract
C = ({𝑖}, {𝑜′}, 𝔞, 𝔤), where 𝔞 = {𝑖 ≥ 0, 𝑖 ≤ 2}, and 𝔤 = {𝑖 − 2𝑜′ ≤ −3}. The
composition graph corresponding to the composition C1 ∥ C2 is shown in Figure 5.4.
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𝑀1

𝑀2

𝑖 𝑜

𝑗

𝑝

Figure 5.5: Block diagram for composition in Example 5.3.

Components do not necessarily have to be connected in series to form a system.
Their inputs and outputs can be interconnected in different ways, except for feedback
if both components make assumptions on their respective input feedback variable.
From the examples presented in this section, we can observe that for a composition,
the resulting diagnostics graph is very sparse. This allows us to trace a composition-
level guarantee back to a small set of terms on the component level. This observation
allows us to extend the analysis to compositions of multiple components and to limit
the blame from a violated system-level guarantee to specific components.

Example 5.3. Given two components 𝑀1 and 𝑀2 and their inputs and outputs
as illustrated in Figure 5.5 and their IO contracts as C1 = ({𝑖, 𝑝}, {𝑜}, 𝔞1, 𝔤1),
where 𝔞1 = {𝑖 ≤ 2, 𝑖 ≥ 0, 𝑝 ≥ 0}, and 𝔤1 = {𝑜 + 𝑝 ≤ 3, 𝑜 − 𝑖 ≥ 0} and C2 =

({𝑖, 𝑗}, {𝑝}, 𝔞2, 𝔤2), where 𝔞2 = {𝑖 ≤ 5, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 10}, and 𝔤2 = {𝑝 + 𝑗 ≥
6, 𝑝 − 𝑖 ≥ 0}. The resulting composition contract is C = ({𝑖, 𝑗}, {𝑜}, 𝔞, 𝔤), where
𝔞 = {𝑖 ≥ 0, 𝑖 ≤ 2, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 10}, and 𝔤 = {𝑜− 𝑗 ≤ −3, 𝑖− 𝑜 ≤ 0, 𝑖 + 𝑜 ≤ 3}. The
composition graph corresponding to the composition C1 ∥ C2 is shown in Figure 5.6.

Composing the system
We can now create a diagnostics graph for the composition of two components and
their corresponding IO contracts. To build the overall system, we need to compose
multiple components. Contract composition is a binary operation. Therefore, to
compose the entire system, we need to compose two components at a time, and
then compose their composition with the next component. There are many different
ways of composing the same system, and the resulting contract for the composition
is dependent on the order of composition. As Pacti tries to hide internal variables,
the composition has to be chosen carefully such that the variables necessary for
future compositions are kept. This can be done either by deciding on a specific
composition order or by setting a flag in Pacti that ensures that the desired variable
is kept as the output variable.
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𝑖 ≥ 0
𝑖 ≤ 2
𝑝 ≥ 0

𝑜 + 𝑝 ≤ 3
𝑜 − 𝑖 ≥ 0

𝑖 ≤ 5
𝑗 ≥ 0

𝑖 + 𝑗 ≤ 10
𝑝 + 𝑗 ≥ 6
𝑝 − 𝑖 ≥ 0

𝑖 ≥ 0
𝑖 ≤ 2
𝑗 ≥ 0
𝑖 + 𝑗 ≤ 10
𝑜 − 𝑗 ≤ −3
𝑖 − 𝑜 ≤ 0
𝑖 + 𝑜 ≤ 3

Figure 5.6: Compostition graph for Example 5.3, where each vertex corresponds to
a term in the assumptions or guarantees of the contracts.

Another important aspect that can guide the composition order is the availability of
component data. When there is a lack of available information from inside a block
of components it might be beneficial to compose these components first and treat
them as a meta-component—a grouping of multiple components. If the analysis
ends up pointing to this meta-component as the possible cause, a more detailed
analysis can still be set up focusing on these components.

While every computed contract is a correct relaxation of the composed system,
in practice, different composition orders can provide more or less useful results.
As guarantees can be relaxed, for some composition order, the guarantee that we
might be looking for could have been removed from the set of guarantees during the
relaxation. We are therefore required to choose a composition order that ensures
that the violated guarantee is part of the resulting guarantee set. For this framework,
we assume that when a composition order is chosen, this order will be maintained
for the remainder of the diagnostics process.

Definition 5.4 (Composition Order). The component contracts are provided in the
form of a composition order CompOrd = [C1, . . . , C𝑁 ], where 𝑁 is the number of
components in the system. CompOrd contains the component contracts in the order
of composition when computing the system specification. The composition up to
component contract 𝑘 is defined as Ccomp,𝑘 B C1 ∥ . . . ∥ C𝑘 .

This composition order requires composing the system starting from a single com-
ponent and building the system up from there. If it is desired to start by composing
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certain regions of the system first, this framework can easily be extended to in-
clude this approach. Otherwise, the component contracts in the composition order
need to be provided at the level of granularity such that they can be composed
according to a composition order defined in Definition 5.4. We will now define the
diagnostics graph that corresponds to the composition of multiple components and
outline how it is constructed. The union of two graphs 𝐺1 and 𝐺2 is defined as
𝐺 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2), and we will denote it by 𝐺 = 𝐺1 ∪ 𝐺2. Simply stated,
the diagnostics graph consists of multiple composition graphs. The system is com-
posed step-by-step according to the composition order, and for every composition
the diagnostics graph is extended by the composition graph for this composition. An
example is shown in Figure 5.8, where we can see the union of three composition
graphs. Each ‘column’ of vertices corresponds to the individual contract terms in a
composition, where the top nodes correspond to the already composed system (or
the first component for the first composition), and the bottom vertices correspond to
the next contract in the composition order.

Definition 5.5 (Diagnostics Graph). Given component contracts in a composition
order CompOrd = [C1, . . . , C𝑁 ], the diagnostics graph 𝐺 = (𝑉, 𝐸) is constructed as
follows. For each 𝑖, 2 ≤ 𝑖 ≤ 𝑁 , we compute the composition Ccomp,i-1 ∥ C𝑖 with the
corresponding graph 𝐺𝑖. Then the diagnostics graph 𝐺 is defined as 𝐺 =

⋃𝑁
𝑖=2𝐺𝑖.

Definition 5.6 (Diagnostics Map). Let CompOrd be the composition order for 𝑁
components and their contracts. Let C =∥𝑁

𝑖=1 C𝑖 = (𝔞, 𝔤) be the system-level com-
position according to the composition order, and let the corresponding diagnostics
graph be 𝐺. Then, we can define the diagnostics map CM : 𝔤→ 2(

⋃𝑁
𝑖=1 (𝔞𝑖∪𝔤𝑖))×{C}𝑁𝑖=1 ,

that maps each composed assumption and guarantee term to a set of component
level assumption or guarantee terms through the diagnostics graph. That is, for
system-level term 𝑠 and the corresponding vertex 𝑠 ∈ 𝑉 , we have

CM(𝑠) ={(𝑡, C𝑖) |∀C𝑖 ∈ CompOrd, 𝑡 ∈ 𝔤𝑖 ∪ 𝔞𝑖, if

∃path(𝐺, 𝑡, 𝑠) and ∀𝑢 ∈ 𝑉, 𝑢 ≠ 𝑡 =⇒ �(𝑢, 𝑡) ∈ 𝐸},
(5.2)

where 𝑡 ∈ 𝑉 corresponds a component-level term used to generate 𝑠, and 𝑖 is the
index of the component the term belongs to.

The diagnostics map finds the leaf nodes in the diagnostics graph, that have a path
to the vertex corresponding to the violated guarantee. For each leaf node, it returns
the term corresponding to the leaf node and the contract that this term belongs to
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Figure 5.7: Block diagram for composition in Example 5.4.

in the form of a tuple. With this information we can now focus our attention on
these terms first and start the diagnostics process by evaluating these terms using
the available test data.

Example 5.4. Given a list of component contracts in the composition order
CompOrd = [C1, C2, C3, C4] corresponding to the block diagram shown in Fig-
ure 5.7. The contracts are given as: C1 = ({𝑖, 𝑘}, {𝑛}, 𝔞1, 𝔤1), where 𝔞1 = {𝑖 ≤
2, 𝑖 ≥ 0, 𝑘 ≤ 5} and 𝔤1 = {𝑛 + 𝑖 ≤ 3, 𝑛 ≥ 0}; C2 = ({ 𝑗}, {𝑘, 𝑙}, 𝔞2, 𝔤2), where
𝔞2 = { 𝑗 ≤ 5, 𝑗 ≥ 0}, and 𝔤2 = { 𝑗 + 𝑘 + 𝑙 ≥ 6, 𝑘 ≤ 5, 𝑙 ≤ 5}; C3 = ({𝑙}, {𝑚}, 𝔞3, 𝔤3),
where 𝔞3 = {𝑙 ≤ 5, 𝑙 ≥ 0} and 𝔤3 = {𝑙+𝑚 ≥ 6, 𝑚 ≤ 10}; C4 = ({𝑛, 𝑚}, {𝑜}, 𝔞4, 𝔤4),
where 𝔞4 = {𝑚 ≤ 10, 𝑚 ≥ 0, 𝑛 ≤ 5, 𝑛 ≤ 0} and 𝔤4 = {𝑚 + 𝑜 ≥ 6, 𝑛 + 𝑜 ≥ 0, 𝑜 ≤ 5}.
The system-level contract is C = ({𝑖, 𝑗}, {𝑜}, 𝔞, 𝔤), where 𝔞 = { 𝑗 ≤ 1, 𝑖 ≤ 2, 𝑖 ≥
0, 𝑗 ≥ 0}, and 𝔤 = {𝑖 − 𝑜 ≤ 3, 𝑜 ≤ 5}. The diagnostics graph for this system
composition is shown in Figure 5.8.

The violating trace is given as the following variable assignment: 𝑖 = 2, 𝑗 = 1, 𝑘 = 4,
𝑙 = 2, 𝑚 = 2, 𝑛 = 1, and 𝑜 = −2. We observe that the system-level assumptions
𝔞 are satisfied but the system-level guarantee 𝑔𝑣 B 𝑖 − 𝑜 ≤ 3 is not satisfied, as
𝑖 − 𝑜 = 2 + 2 = 4 ≰ 3.

The diagnostics map for this guarantee is CM(𝑔𝑣) = {(𝑛+𝑖 ≤ 3, C1), (𝑛+𝑜 ≥ 0, C4)},
derived from the diagnostics graph, illustrated by the red edges in Figure 5.8.
Therefore we will start the diagnostics process by evaluating these guarantees of
components 𝑀1 and 𝑀4 first. Checking that the guarantee 𝑖 + 𝑛 = 2 + 1 ≤ 3 from
contract C1 is satisfied, we move on to component 𝑀4. Subsequently, we observe
that 𝑛 + 𝑜 ≥ 0 is not satisfied, as 𝑛 + 𝑜 = 1 − 2 = −1 ≱ 0, narrowing our focus on
component𝑀4. The assumptions of C4 are satisfied, i.e. 0 ≤ 𝑚 ≤ 10 and 0 ≤ 𝑛 ≤ 5,
thus, allowing us to identify component 𝑀4 the culprit of the violation. To come to
this conclusion, we only needed to evaluate these two component guarantees, and
the assumptions of C4, allowing us to check only 6 statements instead of having to
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Figure 5.8: Diagnostics graph for Example 5.4. Vertices corresponding to assump-
tions are shown in yellow, and vertices corresponding to guarantees are shown in
blue.

evaluate all 21 component assumptions and guarantees.

5.3 Identifying Relevant Information
Given a system, its block diagram, and the diagnostics graph corresponding to the
composition, we can identify which information is relevant to determine which com-
ponents are the cause of the observed top-level guarantee failure. For autonomous
systems, it is reasonable to assume that a log exists that contains all the information
gathered from the system and its components during the test. With this framework,
we can identify which relevant information to look for in the log to reduce the time
required to analyze the entire log. When we do not have access to the full system
information but instrumentation can be added to rerun the test, we can identify
required sensor locations to access the relevant information. In the case of sparse
sensing, i.e., for a biological experiment, this framework allows for tracing back the
failure to an area limited by the available system information.

Using the diagnostics graph and the system block diagram we can identify the
component assumptions and guarantees that were relevant to the generation of the
top-level system guarantee that was violated. We can then focus on the relevant
components of the system block diagram and analyze whether the guarantee was
satisfied or violated. Once we find a component where the guarantee was violated
we can shift our focus to the assumptions of this term. From then on two different
scenarios can occur: i) the assumptions are satisfied, or ii) the assumptions are
violated.



111

Case i). If the assumptions are satisfied, this component is the cause of the failure.
In this case, we either have a component failure or the system designer forgot to
specify an assumption. At this point, the analysis at this level terminates and the
component designer needs to analyze the behavior of this component.
Case ii). In the case of violated assumptions, the component is likely not the
cause of the failure, as another component’s behavior resulted in the violation
of the assumptions. To identify this component, we need to trace the violated
assumption back to a component guarantee (or multiple). To achieve this we find in
the composition order when this component was composed with another component
and make use of the Pacti function ElimVarsbyRefinement to find out which terms
were used when transforming this assumption. Then we refer to the diagnostics
graph again which allows us to trace these newly identified guarantees back.

It is important to note that this process of tracking assumptions only applies to
components whose assumptions are not solely dependent on the overall system
input variables. A system-level failure is defined as having satisfied the system-level
assumptions, but failing to satisfy the guarantees of the system. Thus, the system-
level assumptions are satisfied—this will ensure that component-level assumptions
that are only dependent on the system-level input variables are also satisfied.

Identifying Causes for Violated Assumptions. Assume we are given the com-
ponent 𝑀 , its corresponding contract as C = (𝐼, 𝑂, 𝔞, 𝔤), component 𝑀other, the
component in the composition order that is composed with component 𝑀 , and
its corresponding contract Cother = (𝐼other, 𝑂other, 𝔞other, 𝔤other). The component as-
sumption that was violated is denoted 𝑎𝑣 ⊆ 𝔞. We will use Pacti to find the
relevant context used to refine this assumption by calling the augmented version of
ElimVarsbyRefinement, denoted by

FindCauseForAssumption(𝑎𝑣, 𝔞other ∪ 𝔤other).

This function call in Pacti transforms the assumption 𝑎𝑣 with the use of 𝔞other∪𝔤other

as the context to eliminate any unwanted variables. We can make use of the same
function augmentation that we created to compute the diagnostics graph to analyze
the transformation at this level. The instrumentation of the filtering step will return
to us the relevant context terms 𝔠𝑟 ⊆ 𝔞other∪𝔤other in the assumptions and guarantees
of Cother. Once we have determined 𝔠𝑟 can refer to the diagnostics map and trace
back the terms in CM(𝑐) for each 𝑐 ∈ 𝔠𝑟 to the responsible component level terms.
The entire diagnostics procedure is outlined in Algorithm 5.2.
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Algorithm 5.1 Trace Term 𝑔𝑣

1: procedure Trace(𝑔𝑣, CompOrd, CM, Log)
Input: guarantee to trace 𝑔𝑣, composition order CompOrd = [C1, . . . , C𝑁 ],

causality map CM, log data Log, components 𝑀1, . . . , 𝑀𝑁

Output: set of failed components 𝐶 𝑓

2: 𝐶 𝑓 ← ∅ ⊲ Initialize empty set of failed components
3: for (𝑡, C𝑖) ∈ CM(𝑔𝑣) do ⊲ Component-level term 𝑡, component index 𝑖
4: if 𝑡 ∈ 𝔤𝑖 then ⊲ 𝔤𝑖 are the guarantees of C𝑖
5: if NotSatisfied(𝑡, Log) then ⊲ Check if 𝑡 is satisfied in log data
6: AssumptionsSatisfied← True ⊲ Initialize flag as True
7: for 𝑎𝑖 ∈ 𝔞𝑖 do
8: if NotSatisfied(𝑎𝑖, Log) then ⊲ Check 𝑎𝑖 in log data
9: AssumptionsSatisfied← False

10: Cother ← C1 ∥ . . . ∥ C𝑖−1
11: 𝔠 ←FindCauseForAssumption(𝑎𝑖, 𝔞other ∪ 𝔤other)
12: for 𝑐𝑘 ∈ 𝔠 do
13: 𝐶 𝑓 ← 𝐶 𝑓 ∪ Trace(𝑐𝑘 , CompOrd, CM)
14: if AssumptionsSatisfied then
15: 𝐶 𝑓 ← 𝐶 𝑓 ∪ 𝑀𝑖 ⊲ Add component 𝑖 to the list
16: return 𝐶 𝑓

Algorithm 5.2 Diagnosing Violated Guarantee 𝑔𝑣
1: procedure Diagnose(𝑔𝑣, CompOrd, Log)

Input: failed guarantee 𝑔𝑣, composition order CompOrd = [C1, . . . , C𝑁 ], log
data Log

Output: set of failed components 𝐶 𝑓

2: G← (∅, ∅) ⊲ Initialize empty diagnostics graph
3: for C𝑖 ∈ CompOrd do
4: Ccomp,𝑖−1 ← C1 ∥ . . . ∥ C𝑖−1
5: 𝐺𝑖 ← CompositionGraph(Ccomp,𝑖−1, C𝑖))
6: 𝐺 ← 𝐺 ∪ 𝐺𝑖 ⊲ Add composition graph to diagnostics graph
7: CM← define causality map according to equation (5.2)
8: 𝐶 𝑓 ← Trace(𝑔𝑣, CompOrd, CM) ⊲ Find set of failed components
9: return 𝐶 𝑓
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Figure 5.9: Block diagram for composition in Example 5.5.

Figure 5.10: Diagnostics graph for Example 5.5.

Note that this approach can identify multiple component faults under certain condi-
tions. As stated previously, we can only find the faulty component, if a system-level
guarantee is violated. If two component faults end up cancelling each other out,
(i.e. are not observable at the system level), then this approach cannot identify them
as no system-level guarantee was violated. If a faulty component results in violated
assumptions for another component, we cannot determine whether the component
with the violated assumption also failed. This is due to the fact that per definition, for
a contract with violated assumptions, any behavior is allowed. Under the condition
that all faulty components are independent (i.e. a faulty component does not lead to
violated assumptions of another faulty component), this procedure is able to identify
all faulty components.

Example 5.5. Let there be a system consisting of three component contracts in
the composition order CompOrd = [C1, C2, C3] with their inputs and outputs as
illustrated in Figure 5.9. The IO contracts are given as C1 = ({𝑖}, {𝑎}, 𝔞1, 𝔤1),
where 𝔞1 = {𝑖 ≤ 2, 𝑖 ≥ 0}, and 𝔤1 = {𝑎 ≤ 2} and C2 = ({ 𝑗}, {𝑏}, 𝔞2, 𝔤2), where
𝔞2 = { 𝑗 ≤ 2, 𝑗 ≥ 0}, and 𝔤2 = {𝑏 ≤ 3} and C3 = ({𝑎, 𝑏}, {𝑜}, 𝔞3, 𝔤3), where
𝔞3 = {𝑎 ≤ 5, 𝑏 ≤ 5}, and 𝔤3 = {𝑜 ≤ 𝑎, 𝑜 ≤ 𝑏}.

The system-level contract is computed as C = ({𝑖, 𝑗}, {𝑜}, 𝔞, 𝔤, where 𝔞 = {𝑖 ≤
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2, 𝑖 ≥ 0, 𝑗 ≤ 2, 𝑗 ≥ 0}, and 𝔤 = {𝑜 ≤ 2}. Given the violating trace in the form
of the variable assignment 𝑖 = 1, 𝑗 = 1, 𝑎 = 2, 𝑏 = 7, 𝑜 = 3, the system-level
guarantee 𝑔𝑣 B 𝑜 ≤ 2 is violated, and the diagnostics map is CM(𝑔𝑣) = {(𝑎 ≤
2, C1), (𝑜 ≤ 𝑎, C3)}. Thus we check the guarantee of component 𝑀1 first and
see that 𝑎 ≤ 2 is satisfied. Next, we check 𝑜 ≤ 𝑎, which is not satisfied, as
3 ≰ 2. This narrows our analysis on component 𝑀3. Evaluating the assumptions
of contract C3, we find that 𝑎 ≤ 5 is satisfied, but 𝑏 ≤ 5 is not. Therefore, 𝑀3

is not responsible for the violation. We can now trace which terms were used to
transform 𝑏 ≤ 5 to find which terms to evaluate next in our search for the failed
component. For this, we compute Cother = C1 ∥ C2 from the composition order
and evaluate FindCauseForAssumption(𝑏 ≤ 5, 𝔞other ∪ 𝔤other), which returns the
relevant context term as the following guarantee from component contract C2, 𝑏 ≤ 3.
This guarantee is not satisfied as 7 ≰ 3. Subsequently, we check the assumptions
for C2, 0 ≤ 𝑗 ≤ 2, which are satisfied, leading to the identification of 𝑀2 as the
component responsible for the violation. This example required checking 6 terms,
instead of all 10 terms, which shows that even though we needed to trace the cause for
a violated assumption this process resulted in checking fewer terms than evaluating
all component-level terms using the log data.

Proposition 5.1. Given a complete log of test data for a violating trace Log and 𝐾
component-level terms, where each term corresponds to a component assumption or
guarantee, diagnosing a failed system-level guarantee 𝑔𝑣 according to Algorithm 5.2
requires evaluating 𝐿 ≤ 𝐾 terms from the test log data.

Proof. Given a diagnostics map CM, according to Algorithm 5.2 only component
guarantees that are in CM(𝑔𝑣) and their assumptions need to be evaluated. If an
assumption is violated additional terms need to be checked. The equality holds when
in the worst case the violated guarantee requires checking every single component
guarantee and the corresponding assumptions, resulting in evaluating 𝐾 terms using
the log data. □

Theorem 5.2. Suppose we have a list of components 𝑀1, . . . , 𝑀𝑁 , their contracts
in a composition order CompOrd = [C1, . . . C𝑁 ], a violated system-level guarantee
𝑔𝑣, and the complete log data of a failing trace Log. If 𝑔𝑣 is a guarantee of the
composed system, we can identify the faulty component(s) using Algorithm 5.2.

Proof. Let us denote the composed contract as C = (𝐼, 𝑂, 𝔞, 𝔤). For a given com-
position and the corresponding contract C, under satisfied system-level assumptions
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Figure 5.11: Layout of the intersection and Alice’s component block diagram.

Figure 5.12: Diagnostics graph for Alice at 4-Way Intersection Example.

𝔞 and a violated system-level guarantee 𝑔𝑣 ∈ 𝔤, by construction of the composi-
tion, there exists at least one faulty component. From CompOrd, we can construct
a diagnostics map CM. If 𝑔𝑣 ⊆ 𝔤, CM(𝑔𝑣) is guaranteed to contain at least one
component-level guarantee 𝑔𝑘 ∈ 𝔤𝑘 , a guarantee of contract C𝑘 , where 1 ≤ 𝑘 ≤ 𝑁 .
For each 𝑔 ∈ CM(𝑔𝑣), we evaluate from the trace Log whether it is satisfied or
violated. If 𝑔𝑘 is violated, we have two different cases: i) if the assumptions 𝔞𝑘 of
contract C𝑘 , are satisfied, then 𝑀𝑘 is added to the list of responsible components;
in case ii), if the assumptions of C𝑘 are violated, from the composition operation in
Pacti, we can identify which component-level terms were used to refine this assump-
tion and identify which terms to evaluate next. In the worst case, this procedure
requires checking all component assumptions and guarantees to find the component
that did not deliver its guarantees under satisfied assumptions. By definition of
assume-guarantee contracts, an implementation of a contract where the assump-
tions are satisfied and whose guarantees are violated is faulty. Any component in
the analysis that violated its guarantees under satisfied assumptions is faulty. □

5.4 Example: Autonomous Vehicle at Intersection
The following examples were inspired by Alice, Caltech’s entry in the 2007 DARPA
Urban Challenge [33]. While conducting the pre-challenge testing campaign, Alice
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faced scenarios where it failed to accomplish its objective because of an unfore-
seen behavior arising from the interaction of various subsystems in that particular
situation. In this section, we will illustrate scenarios that are loosely based on the
real-world scenarios that Alice faced in the DARPA Urban Challenge, which are
described in detail in [33]. We will characterize simplified specifications for several
of Alice’s subsystems and demonstrate how to diagnose the cause of the failure from
the violation when a system trace is given.

Case 1: Alice at a 4-Way Intersection
In this example, the test was set up such that Alice was approaching an intersection
with multiple cars already waiting at the intersection as shown in Figure 5.11a.
While Alice was approaching, its sensors detected the other cars in the intersection
and commanded Alice to stop and give way to the other cars. The unforeseen
circumstance was that the deceleration tilted the LADARs forward and towards
the ground such that Alice lost sight of the other cars momentarily. Once Alice
came to a full stop, the line of sight of the LADARs tilted back up and detected
the cars again, but now Alice was under the impression that the cars just arrived,
leading to the control system commanding Alice to drive into the intersection and
leading to unsafe behavior. We model the components in Alice’s control architecture
as shown in Figure 5.11b. As a real-world observation, we define the variable
𝑛𝑇 , which captures whether there are other cars in the intersection, that Alice
would have to give way to. For 𝑛𝑇 = 1 other cars are present, for 𝑛𝑇 = 0, the
intersection is clear. We model the contract for the perception subsystem as follows:
Cperception = ({𝑛𝑇 }, {𝑛𝑃}, {𝑛𝑇 ≤ 1, 𝑛𝑇 ≥ 0}, {𝑛𝑃 ≥ 𝑛𝑇 , 𝑛𝑃 ≤ 𝑛𝑇 }), where 𝑛𝑃 is
the perceived state of the intersection. In particular, this contract ensures that the
perceived state of the intersection is the same as the actual state of the intersection,
𝑛𝑇 = 𝑛𝑃. The planner subsystem contract is given as Cplanner = ({𝑛𝑃}, {turn}, {𝑛𝑃 ≤
1, 𝑛𝑃 ≥ 0}, {turn + 𝑛𝑃 <= 1}). The variable turn encodes whether it is Alice’s turn
in the intersection. This contract ensures that Alice will only take its turn, when the
perceived state of the intersection is clear. The tracker component controls Alice’s
speed 𝑣, it is given as Ctracker = ({turn}, {𝑣}, {}, {𝑣 ≤ turn, 𝑣 ≥ turn}), and ensures
that the speed is 1 when it’s Alice’s turn, and it is 0 otherwise. Next we describe
the safety component, this component maps Alice’s behavior to a variable denoted
by ‘safe’, which captures whether the system is safe. The safety component is
captured in the following contract, Csafety = ({𝑛𝑇 , 𝑣}, {safe}, {𝑛𝑇 ≥ 0}, {1−𝑛𝑇 −𝑣 ≤
safe, 1−𝑛𝑇−𝑣 ≥ safe}). Depending on the assignment of the variables, safe can take
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on three values, safe = −1 corresponds to the case of Alice having a nonzero speed
and the intersection being occupied—an unsafe situation; safe = 0 corresponds to
Alice stopping at the intersection which is occupied—correct safe behavior; and
safe = 1, which corresponds to Alice waiting at an empty intersection—safe but
incorrect behavior. In this example, we are only interested in preventing unsafe
behavior, thus we only want to exclude behavior where safe = −1.

The composition order is given as CompOrd = [Cperception, Cplanner, Ctracker, Csafety].
The composed system-level contract isC = ({𝑛𝑇 }, {safe}, {𝑛𝑇 ≥ 0, 𝑛𝑇 ≤ 1}, {safe ≥
0}), and the diagnostics graph is shown in Figure 5.12. As we can see, if Alice
behaves correctly, we see that ‘safe’ is guaranteed to be zero or positive, ensuring
that Alice will not drive into an occupied intersection and possibly create an unsafe
scenario.

We are now given a violating trace, where 𝑛𝑇 = 1 and safe = −1. The system level
guarantee safe ≥ 0 is violated. The diagnostics map returns the following tuples:

CM(safe ≥ 0) ={(1 − 𝑛𝑇 − 𝑣 ≤ safe, Csafety),
(𝑣 ≤ turn, Ctracker)
(𝑛𝑃 + turn ≤ 1, Cplanner)
(𝑛𝑇 ≤ 𝑛𝑃, Cperception)},

which is illustrated by the red edges in Figure 5.12.

Given the remaining log data containing the internal variables, we can now follow
the diagnostics procedure outlined in Algorithm 5.2. First, we check the guarantee
of the safety component. From the log data we get that 𝑣 = 1, therefore we see that
1 − 𝑛𝑇 − 𝑣 ≤ safe is satisfied. Next, we evaluate the tracker component. From the
log data we see that turn = 1, and the guarantee 𝑣 ≤ turn is satisfied, as 1 ≤ 1. We
move on to the planner component, whose guarantee 𝑛𝑃 + turn ≤ 1 is satisfied, as
𝑛𝑃 = 0. Finally, we evaluate the guarantee 𝑛𝑇 ≤ 𝑛𝑃 from the perception component,
which turns out to be violated, as 1 ≰ 0. Checking the assumptions of the perception
component shows that they are satisfied, 0 ≤ 𝑛𝑇 ≤ 1, for 𝑛𝑇 = 1. This results in the
perception component being responsible for the failure, as the perceived state of the
intersection was clear, but the real state of the intersection was occupied.

Case 2: Alice at T-Intersection
In this example, Alice approaches a T-intersection and is supposed to make a left
turn into oncoming traffic. This situation requires Alice to decide on whether the
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(a) Intersection layout and planned path. (b) Alice’s final position.

Figure 5.13: Layout and failure of Alice’s T-intersection crossing test.
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Figure 5.14: Block diagram for Case 2, Alice’s components are enclosed by the red
dashed outline.

gap in the oncoming traffic is sufficient to finish the left turn while staying clear
of the approaching vehicles. Alice successfully identified a gap, but then during
the execution of the turn, Alice’s emergency braking system detected the concrete
barrier ahead and initiated an emergency stop. This left Alice stranded in the middle
of the intersection leading to an unsafe traffic scenario. The layout of the intersection
and Alice’s final position are illustrated in Figure 5.13. We will now abstract the
components that made up Alice’s path planning and tracking modules and use the
known vehicle trace to identify the cause of the sudden stopping maneuver. In this
analysis we will add an additional component that controls the lights, which was not
part of Alice but is added to show how to different functionalities can be included.
A block diagram of Alice’s components and the safety component is shown in
Figure 5.14. Alice’s components are shown in the red dashed box, and comprise the
planner, tracker, emergency stop, engine, tires, and lights. The composition order
is CompOrd = [Cplanner, Cemergency, Ctracker, Cengine, Ctires, Clights, Csafety]. The planner
component adheres to the following contract,

Cplanner = ({}, {𝑣max}, {}, {𝑣max ≤ 1, 𝑣max ≥ 1}),
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where 𝑣max is the maximum speed allowed, which is set by the planning component
to be 1. The emergency stop component is given as

Cemergency = ({dist}, {𝑣safe}, {dist ≥ 0, dist ≤ 1}, {dist ≤ 𝑣safe, dist ≥ 𝑣safe}),

where dist is the distance to an obstacle, ranging from 0 (too close) to 1 (far enough
away) and 𝑣safe is the allowed safe speed. This contract ensures that if an obstacle
is too close, dist = 0, the allowed speed is 𝑣safe = 0, otherwise 𝑣safe is set to 1. The
tracker component contract is

Ctracker = ({𝑣safe, 𝑣max}, {𝑣},
{𝑣max ≥ 0, 𝑣max ≤ 1, 𝑣safe ≥ 0, 𝑣safe ≤ 1},
{𝑣 ≤ 𝑣max, 𝑣 ≤ 𝑣safe, 𝑣 ≥ 𝑣safe}),

where 𝑣 is Alice’s speed that is commanded by the tracker. The tracker component
guarantees that the speed 𝑣 is less than the maximum speed, and is also set to the
safe speed. The contract for the engine,

Cengine = ({𝑣}, {𝑡}, {𝑣 ≤ 1}, {𝑡 ≤ 3𝑣, 𝑡 ≥ 3𝑣}),

states that the torque 𝑡 is proportional to the commanded speed. The contract
describing the tire component behavior is

Ctires = ({𝑡}, {𝜔}, {}, {𝜔 ≤ 100, 𝜔 ≥ 2𝑡}),

where 𝜔 is the rate of tire revolutions, which is proportional to the engine torque 𝑡
and upper bounded by 100. The following component contract,

Clights = ({dark}, {lights},
{dark ≥ 0, dark ≤ 1}, {dark ≤ lights, dark ≥ lights}),

describes the requirements on Alice’s light system. the illumination conditions are
captured in the variable dark, which ranges from daytime (dark = 0) to nighttime
(dark = 1). Alice is expected to operate in any illumination conditions. Furthermore,
the contract guarantees that the Alice’s lights have to be on when it is dark (i.e.
dark = 1 requires lights = 1), and need to be turned off during daytime (i.e.
dark = 0 requires lights = 0). The safety layer is captured in the following contract:

Csafety = ({dark, dist, lights, 𝑣, 𝜔}, {safe𝑣, safelights, safe𝜔}, {𝑣 ≤ 10},
{safe𝑣 ≥ 𝑣 − dist + 1, safelights ≥ dark − lights + 1,

safe𝜔 ≥ 100 − 𝜔 + 1}).
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Figure 5.15: Diagnostics graph for Alice at T-Intersection Example.

The safety contract inputs are the variables dark, dist, lights, 𝑣, and 𝜔, and the
outputs are the safety flags: safelights, safe𝑣, and safe𝜔. Each safety flag captures the
desired safe behavior, such that the composition using Pacti will result in a bound
on the safety variables that can be used for analysis.

Composing Alice’s subsystems together with the safety layer results in the following
system-level contract C = ({dist, dark}, {safe𝑣, safelights, safe𝜔}, {dist ≥ 0, dist ≤
1, dark ≥ 0, dark ≤ 1}, {safe𝑣 ≥ 1, safelights ≥ 1, safe𝜔 ≥ 1}). As expected, Pacti
was able to reduce Alice’s behavior to the desired safety flags: safe𝑣, safelights, and
safe𝜔. For this example, a safety variable of 1 or greater implies that the system
is safe with respect to that variable, while a safety variable of 0 corresponds a
violation. The guarantees on the safety variables were derived from Alice’s correct
behavior, i.e. when driving in the ‘dark’, Alice is expected to turn on its ‘lights’,
this behavior is captured by safelights ≥ 1. In this example, we specifically observed
that Alice came to a full stop in the intersection. This can be observed as safe𝑣 = 0
— a violated system-level guarantee. The system-level assumptions were satisfied,
as the test was executed during daytime, dark = 0, and the path was clear, dist = 1.
From the diagnostics map, we trace back the violated system-level guarantee and
find

CM(safe𝑣 = 0) ={(safe𝑣 ≥ 𝑣 − dist + 1, Csafety),
(dist ≤ 𝑣safe, Cemergency),
(𝑣safe ≤ 𝑣, Ctracker)}.

We can now focus our attention on the safety and emergency stop, and tracker
components and evaluate their behavior. First we evaluate the safety component.
The relevant variable assignments from the violating trace are safe𝑣 = 0, 𝑣 = 0, and
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dist = 1. We check that the safety component correctly evaluated the safety flag,
safe𝑣 ≥ 𝑣−dist+1 = 0−1+1 = 0, which is satisfied. Next we evaluate the emergency
stop component. From the violating trace we learn that 𝑣safe = 0. Therefore the
guarantee dist ≤ 𝑣safe is violated, as 1 ≰ 0. On the other hand, the assumptions of
the emergency stop component are satisfied, as 0 ≤ dist ≤ 1, making the emergency
stop component a cause of the failure. Lastly, for completeness, we evaluate the
tracker component, the guarantee to check is 𝑣safe ≤ 𝑣, which is satisfied as 0 ≤ 0.
Therefore we could isolate the failure to the emergency stop component. In Alice’s
case the distance sensor measured straight ahead and not along the driving path,
leading to the stop in the intersection, even though the path is clear. It is important
to note that analysis cannot explain why the failure happened, but it can help isolate
the faulty component such that it can be further analyzed by experts.

5.5 Conclusion
In this chapter, we proposed a methodological approach to diagnose which compo-
nent is responsible for a system-level failure using Pacti, a tool for compositional
system analysis and design. We have characterized when a system-level guarantee
failure can be traced to a component, defined how the components need to be com-
posed, and which information needs to be stored to facilitate the diagnostics process.
The framework presented in this chapter includes composing the system, creating
a diagnostics map, and systematically checking component-level guarantees and
assumptions using the log data to identify failed components. Applying this frame-
work can reduce the number of statements that need to be evaluated, as the most
likely culprits are identified and checked first. In the worst case, all component-level
assumptions and guarantees need to be evaluated, ensuring that if a component did
not satisfy its guarantees, it will be found. We illustrated the approach on abstract
examples and two examples inspired by real-world test outcomes representing a
simplified abstraction of a dynamical system.
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C h a p t e r 6

CONCLUSION AND FUTURE WORK

Test and evaluation of autonomous systems are critical to ensure their safe operation.
To allow widespread deployment of these systems in the future, testing, as well as
design of these systems need to be standardized. In this thesis we present novel
approaches to reason over tests in the form of formal specifications, automatically
synthesize test strategies, and diagnose system-level failures.

6.1 Reasoning over Tests
In Chapter 3, a framework building on assume-guarantee contracts was developed,
that allows to characterize tests in the form of a test structure to allow reasoning
over these test structures. We showed how to compare, combine, and split tests
and illustrated this approach with examples. We identified under which conditions
combined tests require temporal constraints to ensure that the combined test captures
the information required to infer satisfaction of the individual unit tests. Additionally,
we proposed how to find a strategy for test agents that ensures that the desired
test behavior is observed and a pre-defined difficulty metric is maximized using a
winning-set-based approach together with Monte Carlo Tree Search.

6.2 Flow-Based Test Synthesis
In Chapter 4, we propose a framework for automated test environment construction,
including placement of static and reactive obstacles, as well as finding the strategies
for dynamics test agents. We characterize the desired test behavior in the form
of a system objective and a test objective, where the test objective is unknown
to the system. From the system model and the system and test objectives, we
construct the virtual product graph and the system product graph. These graphs
allow reasoning over the test executions from the perspective of the entire test and
the system perspective. Next, we formulated a network flow optimization as a MILP
that captures the requirements that every test execution where the system behaves
according to its system objective, will also satisfy the test objective. It is important
to note that this framework does not help the system achieve its goals but ensures
that at any point during the test execution, a correct system will be able to make
progress towards its goal. We then propose a counterexample-guided approach that
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makes use of the MILP and GR(1) synthesis to find the strategy for a dynamic
test agent. Finally, the proposed approach was demonstrated in simulations and
hardware experiments.

6.3 System Diagnostics using Assume-guarantee Contracts
In Chapter 5, we propose a methodology to identify component-level failures from
a violated system-level behavior and the failing trace of the system. We augment the
functionality of Pacti, a tool for compositional system design, to find the diagnostics
graph for a composed system. We develop an algorithm that makes use of this graph
to trace the failure back to candidate component assumptions and guarantees. This
allows us to pinpoint the important information required to identify the component
culpable for the failed system-level trace. We show that if the violating trace contains
the valuations of the entire system state, this framework will identify the failed
component. In the worst case, this corresponds to checking the assumptions and
guarantees of all components. However, by identifying the relevant information this
framework focuses on the most likely components first and can result in evaluating
fewer component-level statements. We illustrate the framework on abstract examples
and two examples inspired by a real-world autonomous system test.

6.4 Future Work
The approaches proposed in this thesis all aim to improve the efficiency of the testing
process. They are designed to be applied in conjunction with other testing techniques
and each other. Given a given list of interesting tests created by test engineers or
other scenario generation frameworks, the approaches in this thesis could provide
an efficient way to find and execute a testing campaign. We imagine a testing
framework that combines the approaches in this thesis to find a test campaign with
the corresponding test environment and required instrumentation to diagnose any
violations. In the following paragraphs, we will outline the proposed improvements
and envisioned synergies for each framework.

Reasoning over Tests
The current approach to reason over tests allows for a systematic combining and
splitting of test structures but still requires domain knowledge to refine the test
structures according to the desired test behavior. One interesting application for
these operations would be test compression and testing for coverage. To enable this,
we would require an automated approach including accessing domain knowledge,
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possibly in the form of a formal set of rules, to determine which tests to combine.
Test compression could then return a test campaign that is optimal according to user-
defined metrics, such as test effort, test time, or cost. Testing for coverage requires
defining the type of coverage that we want to observe, be it in the form of different
test structures, or different ways to execute tests for the same test structure. With
this approach, one could reactively choose the next tests, depending on what was
observed during the test campaign so far. Additionally, applying techniques such as
symbolic reasoning could allow scaling up this framework to handle test structures
with larger contracts and test campaigns consisting of a larger set of test structures.
Finally, combining this framework with test synthesis, or scenario generation could
close the loop from unit tests in the form of test specifications to finding a test
campaign with corresponding test strategies for the system under test.

Flow-Based Test Synthesis
In this thesis, we presented how to find the strategy for a given dynamic test agent.
One approach to generalize this framework would be defining a tester library, from
which the synthesis procedure can then select which test agents to deploy. The
selection could account for test effort, and return a test agent configuration that is
optimal according to a test effort metric, which could be the cost of each agent, test
time, or number of agents. As the test agents are controlled by the test engineers,
it is reasonable to assume that they can communicate with each other. Thus,
their centralized controller can be found using coordinated synthesis, reducing the
complexity of coordination between multiple agents. In the current framework,
the information about the test agent in the MILP is limited to the areas that the
agent can occupy. We could investigate, whether we can capture the dynamics of
the agent in the optimization constraints to reduce the number of counterexamples
required to find a realizable solution. Additionally, we would like to apply this
framework to applications other than ground-operating robots, from robots flying
in 3D space to systems that do not physically move such as power grids. To apply
this framework, we need to have a system model in the form of a transition system
and the ability to block system transitions statically or reactively. Depending on
the application this might require different auxiliary constraints that represent how
restricting a system transition might affect other transitions as well. The MILP
performs well for medium-sized problems, but for larger problems, the runtime
increases significantly. For future work, we would like to investigate whether there
is a tight convex relaxation for this MILP that results improves the run times and
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results in the desired solutions. The time required for the construction of the virtual
product graph also depends on the size of the problem and can become significant.
Techniques such as symbolic reasoning could improve the run times of the proposed
framework.

System Diagnostics
The proposed framework allows the tracing of a violated system-level guarantee to
the responsible component. Inherently, there is a connection to explainability of
robot behaviors, which is an active area of research. This framework uses the contract
composition operator for diagnostics. A similar approach could be employed using
the contract quotient, which finds missing components in a system. Adapting the
implemented functions to trace the terms resulting from a quotient could allow
finding missing components and provide insight into the origin of certain terms,
aiding in explainability.

The procedure used to trace the violated system-level guarantee could prove benefi-
cial to testing and not just diagnostics. One could imagine an approach for testing for
diagnostics, where the test is set up in such a way as to facilitate any required system
diagnostics. Specifically, from a system-level composition, we can find the relevant
terms for each system-level guarantee, and the corresponding sensor location for
testing a specific guarantee. In the case of a violation, the resulting test could then
efficiently lead to a diagnosis.

In particular, we would like to investigate how to automate the framework proposed
in Chapter 3. Instead of tracing a system-level guarantee back to the components,
we could use this approach to check whether a test combination is allowed. For
a combined test, we can find the combined test guarantees and determine whether
we need to enforce temporal constraints by checking what terms each guarantee
depends on. In its current form, Pacti only supports linear inequalities. Therefore,
tests would need to be specified in linear inequalities, or a temporal logic would
need to be implemented in Pacti. Another benefit of implementing propositional
logic or temporal logic in Pacti is that it would facilitate specifying the component
contracts for digital systems in the proposed diagnostics framework.
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A p p e n d i x A

TEST ENVIRONMENT SYNTHESIS

A.1 Experiment Run Times and Implementation Details
In this section, we show the implementation details and run times of for the experi-
ments in Section 4.9. The MILP callback function used in the experiments was such
that the MILP terminates if the best objective has not improved for 5 minutes.

Reactive and Static Test Environments
Table A.1 shows the sizes of the specification product, the transition system, and
the virtual product graph for the experiments illustrated in Section 4.9. The run
times for the construction of the virtual product graph, and the time to solve the
optimization can be found in Table A.2. The experiments were conducted on a M2
Mac Pro with 16GB of RAM. Table A.2 also shows the resulting flows and number
of the cuts. Details on the number of binary and continuous variables are found in
Table A.3.

Table A.1: Implementation details for simulated and hardware experiments

Experiment |B𝜋 | |𝑇 | |𝐺 |
Exp. 4.2 (4, 9) (15, 53) (27, 96)
Exp. 4.5 (6, 18) (265, 1047) (332, 1346)
Exp. 4.6 (36, 354) (376, 1146) (4073, 17251)
Example 4.2 (8, 27) (6, 17) (20, 56)
Exp. 4.7 (12, 54) (7, 19) (15, 39)
Exp. 4.8 (16, 81) (15, 42) (72, 207)

Table A.2: Run times and results simulated and hardware experiments

Experiment 𝐺[s] Opt[s] Flow |cuts|
Exp. 4.2 0.0273 0.0152 3.0 14
Exp. 4.5 0.6205 0.0018 2.0 199
Exp. 4.6 77.6323 0.1716 2.0 1641
Example 4.2 0.0430 0.0001 2.0 4
Exp. 4.7 0.0532 0.0012 2.0 2
Exp. 4.8 0.4597 0.0005 3.0 15
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Table A.3: Number of optimization variables for simulated and hardware experi-
ments

Experiment |BinVars| |ContVars| |Constraints|
Exp. 4.2 73 100 566
Exp. 4.5 1014 1346 19989
Exp. 4.6 13178 17251 1647774
Example 4.2 25 120 419
Exp. 4.7 8 159 451
Exp. 4.8 106 774 2632

Test Environments with Dynamic Test Agent
Table A.4 shows the sizes of the specification product, the transition system, and the
virtual product graph for the experiments illustrated in Section 4.9. The run times
for the construction of the virtual product graph, the time to solve the optimization,
and the time required for the synthesis of the test agent controller the can be found in
Table A.5. The experiments were conducted on a M2 Mac Pro with 16GB of RAM.
Table A.5 also shows the resulting flows, the number of the cuts, and the number of
the excluded solutions until a realizable solution was found. Details on the number
of binary and continuous variables are found in Table A.6.

Table A.4: Implementation details for simulated and hardware experiments with
dynamic agents

Experiment |Bsys | |Btest | |B𝜋 | |𝑇 | |𝐺 | |𝐺sys |
Exp. 4.9 (2,3) (8,27) (16, 81) (26, 80) (196, 604) (26,80)
Exp. 4.10 (3,6) (2,3) (6, 18) (386, 1153) (210, 831) (142,552)
Exp. 4.11 (2,3) (4,9) (8, 27) (21, 66) (80, 252) (21,66)

Table A.5: Run times for simulated and hardware experiments with dynamic Agents

Experiment 𝐺[s] Opt[s] Controller[s] |Cex | Flow |cuts|
Exp. 4.9 1.6226 0.0010 100.0 4 1.0 3
Exp. 4.10 0.4573 6.0535 16.1191 0 1.0 13
Exp. 4.11 0.2195 0.0292 7.151 8 2.0 8
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Table A.6: Number of optimization variables for simulated and hardware experi-
ments with dynamic agents

Experiment BinVars ContVars Constraints
Exp. 4.9 355 1327 5130
Exp. 4.10 621 6658 47885
Exp. 4.11 176 546 2438
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