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ABSTRACT

An analysis of the one-dimensiocnal flow of vapor between parallel
" liquid suffaces of identical composition but different teﬁperatures is
préagntﬁd. The low-velocity staady-fldw analysis reported previously
by Plesset is exténded to steady flows in which the Mach number ap-
proaches unity, and to low-velocity flows in which the liquid surface
spacing and temperatures are allowed te vary slowly with time. More
important among the new results obtained are 1) an exact solution in
closed form of the (non-linear) steady-flow equations, subject only to
the condition $M2=$ 1, and 2) a relatively simple approximate form of
the nonsteady-flow perturbation solution which applies whenever the
product of liquid surface spacing and unperturbed current density is
not unusually small,

The perturbation technique developed for the one-dimensional prob-
lem is extended also to cylindrically symmetric two-dimensional and
spherically symmetric three-dimensional flows. In addition, an al-
rternative golution for the pressure perturbation is obtained by a
method which, while clearly non-exact, does not expliditly involve a

neglect of higher order terms.
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I, INTRODUCTION

The 1ow—velocity one—dimensional flow of vapor between stationary
lliquid.surfaces of identical composition but different constant tempera-—
turgs has been investigated by Plesset;(l) The purpose of the present
thesis is to éxtehd the anélysis to steady flows in which the Mach num-—
" ber approaéhes unity, and to low-velocity flows in which the wall spac-

ing and temperatures are allowed to vary slowly with time,

l.1l Statement of the Problem

The following problem is considered: A liquid surface at x = x,
is maintained at avtémperature Ta’ and a second surface of the same
liquid composition at x = Xy is maintained at the temperature Tb, with
X > X and Tb < Ta. The positions X.s Xy and the temperatures Ta’
Tb may be either constant or slowly varying with time, It is gupposed
that the space between the two liquid surfaces contains only the vapor
of the liguid céncerned and that the flow of vapor from x =X, tox =
X, is one-dimensional, i.e., that all quantities are functions of x and
possibly t only, It also is aésumed that the flow is[either strictly
steady (3/3t = 0) or steady-state in the sense that no starting tran-
sient is involved. Departures of the vapor from perfect gas behavior;
| dependence of the specific and laﬁent heats and thermal conductivity of
-the vapor on temperature and density, and viscous effects in the vapor

'~ flow are neglected.



1.2 Summéry of Results

| In Part II, the equatiéns for one-dimensional flow of a perfect
gas are developed in a form particularly suitable for application to
- steady and near-~steady flows. The boundary conditions pertinent to the
prégent problem are considered, and an appropriate nondimensionalization
of the flow eQuations and bbundary conditions is derived,

In Part III, the equations developed in Part II are applied to the
stationany'problem considered by Plesset and his results are reobtained
by neglecting terms of order u2/b2 with respect to unity. In addition,
however, an ¢xact solution of the steady-flow equations is obtained in
closed form, subject only to the condition that u2/c2 at the warmer
liquid surface remain less than Y_l = cv/cp. In general, this limit on
the square of the ldach number is of the order of 3/L. With the aid of
‘the exact solution, it is shown that the low-velocity approximation to
the current density may yield negligible errors even in the limit
YuZ/ce = 1, and that the approximate expression for the temperature
distribution remains valid except in the highest velocity flows.

The extension to low-velocity nonsteady flows is made in Part IV,
using‘a reintefpretation of the_steady-flow solution ;s the basis for a
perturbation analysis. Devélopment of the complete solution of the
first-order perturbation equations is followed by an investigation of
-the limiting form attained by this solution as the liquid surface tem-

peratures become equal. Ilost important of the nonsteady flow results,

' however, is a relatively simple approximate form of the perturbation

¥
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solution which is found to apply whenever the pro&uct of liquid surface
spacing and unperturbed current density 1s not unusually small.

Iﬁ Part V, the pertu:bbation technique developed in Part IV is ex-
tended to cylindrically symmetric two-dimensional and spherically sym-
metric three-dimensional flows, In addition, an alternative solution
for the pressure perturbation is obtained by a method which, while
clearly non-exact, does not explicitly involve a neglect of higher

order terms.
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II. BASIC OHE;DIMENSIONAL FLOW EQUATIONS AND BOUNDARY CONDITIONS

2.1 Basic Flow Equationsv

In this section, the equations for one-dimensional nonadiabatic
flow of a berfect gas are developed in a form particularly suitable
for application to steady and near-steady flows. The specific heats
and thermal conductivity of the gas are assumed independent of tempera-
ture and density, and viscosity is neglected. Partial differentiation
is indicated by subsecripts, while total differentiation ﬁith respect
to time (Yparticle derivative") is indicated by a dot above the quan-
tity differentiated.

The fundamental relations governing the flow under éonsideration

~are the conservation of mass,

(Pu), +py = 0, - (1)
the conservation of momentum,

pivp, =0, (2)
fhe conservation of energy,

p(e + ud) + (pu), - (KT), = O, 3)

and the equation of state,



p = pRT . « | | (L)

Here p is the density, u the velocity, p the pressure, T the tempera-
ture, k the thermal conductivity, e the intrinsic energy per unit mass,
and R the gas conétant per unit mass of the gas,

The inaccessibility of a general solution of tﬁis system of non-
linear equations is well known. 4n equivalent set of equations can be
derived, however, which is readily integrable for steady flows in the
limit of low velocity., Near-steady flows of moderate velocity can then
be analyzed by application’of an appropriate iterative or perturbation
procedure £o these derived equations.

It will be observed that Eq. (1) is already of the aesired form,
~since Py is arbitrarily small in a sufficiently near-steady flow,

Equation (2), which may be written as
plu, +uw ) +p = 0, (5)

1s readily brought into the desired form by adding to it Eq. (1)

multiplied by u, yielding
(p+pu?)_+ (pu), = O. 6)
X 4
on subtraction of Eq. (2) multiplied by u, Eq. (3) reduces to

pé + pux - kT}Q{ = 0 2 (7)



where account has been taken of the assumed constancy of k. With the
substitution of cvﬁ for é,lwhere °, is the specific heat at constant
volume, Eg. (7) becomes

pcht + puchX + pu, - kTXX = 0, (8)

With the aid of Egs. (4) and (1), the third term of Eq. (8) can be

written as

pu, (pu) - uy

(puRT), - up_

= PuRT, + RT(pu) - up,

1}

puRT, -~ RTp, - up, . (9)
Substitution of Eq. (9) into Eq. (8) yields

kax - cppuTx = cvat - RTpt - up,

= c Ty =Py ~up, (10)

vhere cp is the specific heat at constant pressure and use has been

made of the relationship(e)



Since pu is independent of x in steady flow [see Eq. (1)], and if the
gas is assumed to be calorically as well as thermally perfect, only the
term upxkeeps Eq. (10} from being evidently of the desired form. Equation
(6), however, can be written as

2
)

pX + (Pu)t = - [_(%_}x

- - 2upu) + v, (12)

which on substitution for (pu)x from Eq. (1) and expression of Py by means
of Eq. (4) yields

2 P, = pAT
p, + (pu)y = 2up, +u° = (13)

2
2 o
- u(pu)t + 2u Py %T puRix
up, = 5 ) (14)

(3)

The speed of sound, c, in a gas is given by
2
o = vk, (25)

which for a perfect gas becomes



¢ = BT, (16)

where ? is the ratio of specific heats, cp/ev. Substitution of Egs.

(lu) and (16) into Eq. (10) yields

-

2
(v-1) %
: : c
kax - cppu 1 %~———-~;§ fx

N ¢ -

' U(Pu)t - 2u p'b
R z ) an
1l - e 7
c

~which form clearly has the desired properties.

8ince u2/02 will be neglected with respect to unity in obtaining
a first-order solution of Eq. (17), it is worth noting that the final
term in this equation is of order u.2/c2 with respect to the other two

terms of the right-hand member. OSpecifically,
| 2 , 2
u(pu), - 2up, = %p(u )y = (smz)t
3 o8 - (2

2 2
PRI, =y 5 p, +ip &), , (18)
c c

#
Pof
.<
°nJ¢n>

8o that Eq. (17) finally can be written as
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" w?
1 -+ gﬁ)kax =1 - ;i)cppuTx

. (‘1-3—“-1*—’5) T - X <ﬁ) (19)
P Qz"p@'t"Pt*zP 2

© With J written for the current density, pu, and M for the Mach
number, u/c, the derived forms of the four basic flow relations are

summarized below:

JX = "’Pt (20)
[p(1 + YMZ)]X = - J (21)

a- ymg)kax -1 - MZ)CPJTX
(22)

p = pRT (23)

2.2 Boundary Conditions

Of concern in the present paper is the fléw of vapor between two
iiquid surfaces whose temperatures are specified functions of time.
- In this case,'the four boundary conditions required for a unique solu-~
tion of the flow equations arise from the kinetic-theory connection

between the temperature, vapor density, and current density at each of
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the two liquid surfaces, and the assumption that at each boundary the

témperature of'the_vapor is the same as that of the liquid.(h)
The positions of the two liquid surfaces are designated x, and

X regpectively. For definitenees, it is assumed that the surface
at x_ is the warmer of the two, and that > x_. For stationary
a , ; % a
liquid surfaces, the current densities across the boundaries are given

by Plesset(S) as™

RT, 1/2
I = ) (e - fe,) (2L)
RT, 1/2 .

where a is the evaporation coefficient for vaporization from the li-
‘quid surface, § is the accomodation coefficient for condensation on
the liquid surface, and pae, for example, is the equilibrium or sat-
uration vapor density at the temperature Ta.

8ince uniform translation of either surface cannot affect the
validity of the corresponding Eq. (2L4) or (25) in a reference frame
moving with the surface, it follows that the proper generalization
of these equations for uniformly moving surfaces is

RT, 1/2
Jo = (7)) (e~ - Pp.) +px

a a at

(26)

* The subscripts a and b in the present development correspond re-—

spectively to the subscripts o and 1 in Plesset!'s treatment of the
steady-flow solution,



RTb 1/2 .
dy = D (e, - ay%) ¢ ey - (27)
m
In the’preSent analysis it is assumed that accelerations of the liquid
surfaces are sufficiently small that departures from Eqs. (26) and
(27) (due to non-Maxwellian velocity distributions) are negligible.
The coefficients a and 3 are assumed independent of temperature.
Under the assumpliion that the vapor obeys the perfect-gas law,

[Eg. (23)1, the generalized expressions for Jé and Jb alternatively

can be written in the form

g = (2mr)™? (ap® - fp) + 0%, | (28)
g, = - (2m1)™? (@p,° - pn) + opx, - (29)

A good approximation to pe in many cases of practical interest is

given by the approximate Clausius-{lapeyron equation(é)
e
d log p - L ‘ )
i el R0 G0)

which on integration becomes

Pe = Ke BT > (31)

where L is the latent heat of vaporization per unit mass and X is an

integrafioh constant depending on the particular substance involved.



The equilibrium vapor pressure for water as given by Eq. (31) (with K
evaluated at 100° C) is eompared with the actually observed behavior

in Fig. 1. Substitution of Eq. (31) into Eqs. (28) and (29) yields

L

J, = (2nRTa)-l/2 (aKe KTy _ Bpa) ¥ 0. X (32)
-k

Jb = - (2ERTb).l/2 (aKe RTb - ppb) + pbxb't . (33)

2.3 Normalization of Flow Equations and Boundary Conditions

In order to simplify the notation for further manipulation and to
ascertain the minimum number of significant parameteré in the problem,
it is desirable to nondimensionalize the various variables in such a
way as to eliminate (formally) as many as possible of the constants
appearing in the basic equations and boundary conditions. The follow-
ing notation is introduced, the normalizing factors being denoted by

asterisks:

j = i; (3W)
r o= % (35)
vk (36)
o = % - -;-; (37)
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X
g = ;g (38)
‘ t
T = ¥ (39)

Equation (31) suggests that T be taken as

L
T = R | ()-lo)

(L1)
p = pRT . (L2)
On acceptance of these suggested relationships, Eq. (32) becomes

1/2 -
;ja - 5 { a *) (aKe a_ Bp%RT*era) * raia,r

3+ ‘ . - :
- G G20, (e ) e . 3)

The further specifications

. 3 i
o - 5o (/2 (k)

% aK

I (L5)
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reduce Egs. (31) and (43) to

e R (16)

~Pa

o= 0P (e Bay) v, )

a a (e

Equation (22) suggests that the normalizing length X be defined

by
T (18)
c_J
P

in which case Eq. (Ll) requires that

* ‘
*
oK .k @mie (19)
u c Jd B
P
With the introduction of the convenient parameter
%, 2 %, 2 2
g = (u) = {u’) - £ s . (50)
RT L 2n

the flow equations (20) to (23) assume the dimensionless form
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M? =

v + )], = - o

T

@ - wh)ey, - (1 -10)g8,

= @ -Fre -Thy + XLy of)

ré
of ol
Y rze 'S w2

-while the boundary conditions become

VN

- ﬁb) * Sy |-

(51)

(52)

(53)

(54)

(55)

(56)

(57)

It will be observed that the parameter ¢ occurs only in the flow

-equations and not in the boundary conditions. The reverse might be

expected on physical grounds since B, which completely determines o,

is a property only of the liquid-vapor interface and not of the free

vapor. Actually the parameter o can be made to appear in either of

the two sets of equations simply by normalizing the temperature appro-

priately. The present normalization is generally the more convenient
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since it yields somewhat simpler algebraic forms and since in most
cases it leads to values of the normalized variables J, r, ¥, and ©

which are roughly of the same order of magnitude.
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ITI. - STEADY-FLOW SOLUTION
For the steady flow (9/37 = 0) resulting when the two liquid
surfaces are held stationary and at constant temperatures, Egs, (51)
and (52) yield the first integrals
j = constant (58)
Y(1 #YMQ) = constant, (59)
Eq. (53) reduces to the total differential equation
d%e 2,. de
Q-G -a-v¥)3% =0, (60)
3 daz
dg
Egs. (54) and (55) remain unchanged, and Egs. (56} and (57) reduce to

' / - / -9 ,
j = @al//z (e 3. ‘ya) = = ‘Pbl/2 (e b - \yb) . (61)

P

3.1 Low-Velocity Approximation

It Mz and yMz can be neglected with respect to unity, Eqs. (59)

and (60) give approximately

¢ = constant ‘ (62)

de _-J&

Ee = constant . (63)
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In this cgse, solution of Eq, (61) first for y = ¥, = %, and then for

J and designation of these solutions by the subscript o yields

12 "%a 1/2 %
y =2 ° T ° (6L)
o wal/2 . ¢b1/2
P %
Yo = I o - (65
G& + Qb 4

while integration of Eq. (63) and imposition of the boundary conditions

S Fay 2
on ¢ glves

-3, (& —5)]

o = esc[l-ua o™"b , | (66)
where
| @a-ebe‘A
B = 6({=~-o) = ———r -~ (67)
l~e
e 9 -8

pos1-2 . 27D (68)

[ &a - @be
A = ig -8) = (g -&) . (69)

It follows from Eq. (54) that the normalized vapor density, ry in

the present approximation is given by



g (e

H

i
o@ﬂéé

]

c
~jo (gb—g) ? . : (70)

where

r = y(£ ; =~ ) =
e ‘
(4]

. (71)

ﬁbh;é

For future confrenience, definitions of Gc s s A, and r, more
general than the specific expressions applicable in the low-velocity
approximation are indicated in Egs. (67) to (71). The specification
Mg = -~ co® related to the subscript ¢ refers to a purely formal sub~
stitution in the expressions for the variables concerned; These ex~-
pressions have no physical significance for & < Ea, of course.

The results summarized in Egs. (6L4) to (71) are essentially
identical with thdse reported previously by Plesset(l), eXeept‘that
approximate analytical representations have been introduced for the
equilibrium vapor densities ghe and pbe which remain as parameters
in his analysis. Boundary values of vapor density, current density,
and flow velocity for water vépor, calculated from Egs. (70), (65),
‘(35),‘and (34) with p* = 22.5 g/bm; and J° = 5.k x 10k g/cm? sec, are
éompared with Plesset's éorresponding results in Figs. 2 to L.

. Plésset has pointed out that under ordinary eircumstances
A = (cp/}c)Jo(xb - xa) is -a large number so that =8 ig extremely
small, For water in the neighborhood of lOOOC, for examp}e, a ‘tem-

peratufe difference of only 1°C between liquid surfaces Separated 1mm
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Figure 2, Boundary Values of Steady-Flow Vapor Density for Water
Vapor (g% = 22.5 g/cm?, L = 9720 cal/mol)
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still yields a A of about 6, for which e~ is of the order of 107 .

In such cases Egs. (66), (68), (70), and (71) become, to a good

approximation,

-3, (5,6
o, ~ ea[i -pe ] (72)
@ -0 8
o 22 .12 (73)
a a
ra -
Yo ¥ =CN Y (7)
0'"b
1 - e
\ ]
r = 52 . (78)
a .

When these approximate equations apply, the space-dependent terms in
Egs. (72) and (rL) are significant only in the immediate vieinity of

the cooler surface at & = Eb(x = xb).

3.2 ‘Applicability of Low-Velocity Approximation

Since v is necessarily-greater than unity, the cgndition for
applicability of Eqs. (64) to (71) is éimply*vmz<s< 1. Except in
border-line cases, this condition can be tested with sufficient
accuracy by calculating the approximate value of M2 corresponding to
V45 J, and @_ in accordance with Eq. (55).

Before making this ealculatian, it is convenient to introduce

the abbreviétions
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& -8 -qg -9 .
e = a - b - b a 0<e <
a %
o 172 0. /2
b a N 1/2
n=91/2 1/2~(1 ) 0<n <
a @y
(0, =0 ) -
s=a"ba-el°5a 0< s <
Z""j(ﬁb-ﬁ) ) ~A <z £
with the use of which Egs. (64) to (/1) assume the forms
)
n+s a
‘yo = 1l +n &
. 1-s8_ 1/2 %,
Jo 1l +n7a
Qo = & (1 -p.ez)
6 - g Lo-@-e)e™® o 1-c _ %
c a l-e-A ale-p l-p.e-A
- 3
1~ (1-e)e”®
xl = -—I—‘E—.
° 1 - pe®

n+s ~A ®a
Te = T (L -we Jo, e

(76)

(7)

- (78)

(79)

(80)

(81)

(82)

(83)

(8L)

(85)

(86)
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Substitution into Eq. (55) now yields

2 2 2
2 l1-8"1~-pue l-35
" = olz5) —= < 9G53
1l - qpe
~ 5. (87)
n»0 n

For water, o is of the order of lO'h (see Appendix A) so that in this
case YM°2 is still much smaller than unity even for n2 = ] - ¢ as small
as 0,01, implying that Tb = 0.01 Ta. In order to achieve this condi-
tion with Ta = lOOOG, the cooler "liquid" surface would have to have a
temperature of L degrees absolute! For the more sensible case of

Ta = 100°C and Tb = OOG, YM52 differs from ¢ by less than a factor of

. 2. It thus appears that for water, and undoubtedly for many other

liquids of practical interest as well, the low-velocity approximation

is thoroughly justified in all physically achievable situations.

3.3 Exact Solution for Current Density

In spite of the conclusion just stated, it is worfh observing that
an exact solution of the steady-flow problem, Egs. (58) to (61), can
be obtained. Such a solution is useful not only in evaluating the
low-velocity approximation and otherwise in the immediate problem,
but also as an indication of techniques which may be generally appli-

cable to the analysis of steady perfect-gas flows.
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The starting point is Eq. (59), which can be written as

| 24

Y+ 0 42 = A (constant) . (88)

¥

Multiplication through by ¥, solution of the resulting quadratic, and

choice of the solution which reduces to ¥ = A as j—0 yields

2, 1/2
w*%[lwl-ﬁigﬁ) } (89

Substitution of Eq. (89) into Eq. (6é1) then leads to the pair of

equations
i 2 1/27 -
v, - area-¥hT L ey (50)
! P A ] o,
i 2 1/27 .
A . Lo Py J
Y = FlL+ Q- ) = e =i . (91)
i ot %

On multiplying these equations through by 2/A, subtracting unity from

each slde, squaring and reducing, one obtains

- 2
. (@alla e =) +of (92)
wal/é (wal/2 e 'a - )
) (¢b1/2 o B, 42, o
= 1/2 1/2 o, . 3 - (93)
o (o e T+ )
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between which A could be eliminated to give a single cubic equation
in j.
It is convenient, however, to observe from Eq. (61) that

. -3 '
q’55.1/2 e : - wa;/z Yo * Jo (94)

1/2

V2™ L g2y Ly, | (95)

o

where *b and jo are the low-velocity solutions given in Section 3,1.

In terms of the quantities*'

R o= ;ojé (96)

- wbi:Q ' n?l+—ss) , i (97)
Eqs. (92) and (93) then can be written as

R )

% (h+%aiﬁ§fnz, (99)

} Though used here simply as a convenient abbreviation, the quantity h
can be recognized as (077)1/2 times the inverse of the low-velocity
approximation to the Mach number at the cooler liquid surface.
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which on elimination of A yields
A+ -mh) +e(h+ 1A+ -0l = 0 . (100)

On collection of like powers of A, Eq. (100) assumes the form

0 = X +0)

+

2L + 0)(1 - n)h + 20 ]
+ I 20(1 - n)h + o - nh2]

+ (1 - n)h , (101)

the solutions of which can be obtained in closed form by standard
methods. The physically meaningful solution of Eq, (101) is that
which reduces to A = 0 as n -1, Substitution of this solution into
Egs. (96) and (99) yields the values of j and A, respectively.

Although the exact solution of Eq. (101) could be written out in
full, it is more instructive first to examine the behavior of this
equation under high-velocity flow conditions, when the correction
coeificient X should be most important., It is seen from Eg. (87)
.that high Mach numbers correspond to small values of n, for which h
is very nearly unity. If this approximation is made and if both n

and ¢ are neglected with respect to unity, Eq. (101) becomes
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approximately
32
¥ +k +x30 -n)+0 = 0 , (102)

Equation (102) clearly has one solution in the neighborhood of
- 1 and may or may not have other real solutions depending on the
values of n and 0. If the left-hand member of Eq. (102) is denoted

by f(A), then

Qfaf%l=3x2+2x+3a-n, (103)

which has zeros at approximately - 2/3 and (n - 3¢)/2. Evaluation of

f(x) at these points yields

t-%H ~ % (0w
£E539) w o- @537 " (a0s)

Thus (n - 30)/2 becomes a zero of f£(\) as well as f£'{)\) when

n = 30 + 201/2 ~ 201/2

» the second form following from the assump-
tion that ¢ << 1, The behavior of Eq. (10l1) under the assumed condi-
_tions is therefore as shown qualitatively in Fig. 5. For sufficiently
large n, the physically interesting root of f(\) corresponds to the

smaller positive A intercept, which coalesces with the other positive
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1/2

intercept as n is reduced to approximately 2¢ and then ceases to

exist as n is reduced still further,

The failure of N\ to vary continuously with n as the latter de-
- ocreases through 201/ 2 is associated with the passing through unity of
2

YM" al Lhe warmer liguid surface (xa).* Thus from Egs. (55), (61),

(94), (96), and (97),

2 32+ w?
¥, - (-3 017

0

1 %X )2 , (106)

= oG5

which reduces to unity for h = 1, n =~ 2(71/2, and A = n/f2 << 1, In

the region YMaZ < 1, it is evident from Fig. 5 that n can be no

smaller than 201/ 2 and X no larger than crl/ 2. Thus for water, for which

¢ is approximately 3 x lO-h, the exact j differs ':t‘rom ,jo by less than
2

2 percent in all vapor flows for which «(Ma < 1 (essentially all sub-

sonic flows). The exact solution of Eq. (101) for water vapor is

plotted in Fig. 6.
In view of the upper limit on A just found and the fact that
h 2> 1, it follows that if 01/2 << 1 then Eq. (101) can be ap-

proximated for present purposes by simply dropping the 3',3 term,

The significance of the critical condition YM2 =] is discussed, for
example, in Reference 7.
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Continuing to neglect ¢ with respect to n and unity but making no
specializing assumptions as to the magnitudes of n and h, one then

obtains
3°[(1 ~n)h + 20] - knh® + o(L =n)h = O . (107)

If in addition 20 << llma, so that 20 << (1 - n)h for all values of n,

then Eq., (107} reduces to

+0 = 0 , (168)

the significant solution of which is

0.1/2 |
A o= m-n—}é—ﬁ) {l - [l - )-tc(ln;l n) } . (109)

2 21 limit at

Except in the immediate vicinity of the M,
nh/(1 - n) = 2vY0, the square roct in Eq. (109} can be expanded to

yield

1=n _ . (0-0@-5s)

oo
B n+gs

(110)
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3.4 Exact Solution for Temperature Distribution

Let it be assumed that the exact expressions for j and A have
been obtained,by substitution of the appropriate sclution of Eq., (101)
- into Eqs. (96) and (99), respectively. BEquation (89) then serves to
express ¥ in terms of the single remaiﬁing unknown 8, Thng guhgti-
tution of Eq. (89) into the second form of Eq. (55) and the latter
into Eq. (60) yields a differential equation for 6 involving no other
unknown quantities. Solution of this equation yields the values of ¢
and thence of ¥, completing the sclution of the steady-state flow
'problem. The procedure just outlined is carried out below, with j and
A retained as convenient abbreviations for their presumably known ex-—
pressions in terms of the liquid surface temperatures. In terms of

the characteristic dimensionless space variable z
z = - (g - &) (111)

introduced in Eq. (79), with differentiation with respect to z indi-
cated by a prime (') and YM2 assumed different from unity throughout

the flow,% Eg. (€0) becomes

The requirement that gﬁz be different from unity throughout the flow
actually implies that yM* must be less than unity throughout, since
this gquantity is always less than unity at the cooler surface. This
can be seen by writing,in analogy to Eq. (106),

.2 2
2 1+ X%
YM5 e} ‘*%“' = a(h - Xg < o<l .
Yo %%
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L2
6% = (1 + Y=l _ M 56

1 -+~

.2
- (l*Y;l 20362)6'
¥ - os%e

2
-{1+1’;1 oj @ }e'.(uzz)
2 2n 1/2 ’
5-{1 + (1 -85 ’ ] - 205%0
A

2
With the abbreviation

2
n(z) = “—zg—e@) ) (113)

Eq. (112} can be written as

y-1 ul
n"g{l+2 }nl
T oisa-ntlog

= 1+ Y- 1 n '
2y n
@ -1+ @ -nt?

- {1 + L=4a - n)~L/2 -1]} oo (11h)
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This second-order nonlinear differential equation can be reduced

to an equation of first order with the aid of the gubstitutions

: ’ 2
(@) = 1-n) = 1-%3—9@)

(115)
fw) = wi(z) , (116)
which allow Eq. (11L) to be written successively as
w oo (rl . y=1 -1/2
w ( ¥ oy ™ Jw! (117)
af _ oy +l y -1 -1/2
fdw (2Y + T r . (118)
“Apart from the trivial solution f = w' = 0, Eq. (118) reduces to
df _ y+1l y -1 -1/2 '
éw 2y M 2y " . ) (119)
Integration of this linear equation for f and resubstitution of w!
for f in the result yields thebfirst—order equation ’
oy + 1l v ~1 _1/2
Wt = oy WL -B . (120)

The use of Eq. (115) is suggested by Kamke(a) s Eg. 6,5L, page 55k,
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In view of the choide of sign made in Eq. (89), the symbol wh/? must
be understood as representing the positive square root of w.

It now is convenient to make the change of variable

v - w 3 (121)

transforming Eq. (120) into

. Y+l 2 y-1_ B
vl o= T v o+ o2 v -3
+1 .2 v -1 2By
%——Y (v *2Y+1V—Y+l) . (122)

Separation of variables then gives

Evaluation of the first integral in Eq. (123) with the aid of Dwight,@)

Eqs. 160.11 and 160,01, yields

] z + 2C = log[(v—v_)(vs+v_+2b)] - b lo e (124)
2v c c vc+b g v+vc+2b 2

where
p = X=d - (125)
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© Multiplication of Eq. (124} by Vé*b and elimination of the logarithms

yields finally

ra1
v, v, +2b 5y (vc+b)z

(v - vc) (v + v, + 2b) = Gl d . . (127)

The constant 01 is readily evaluated in terms of A froﬁ.the condition
Vo=V at 2z = 0, and the quantity v, can then be determined from the
condition v = v, at z = -A,

Unfortunately Eg. (127) cannot in general be resolved to express
‘v, and thus m, explicitly as a funetion of z. A number of typieal
curves of 7 versus z have been plotted in Fig. 7, however, for vy = 4/3,
m, = 0 (v, = 1), and different values of n_ = 1 - v_°." It should be
pointed out that the common boundary wvalue N = O maintained in Fig. 7
~ for simplicity in computing is not strictly possible physically.

Actually n is given by Eq. (113) as

2
bol o (128)
—Z%— b

The solid curves in Figs, 7 and 8, which could have been calculated
by numerical substitution in Eq. (ld( ), actually were obta:l.ned by solv-
ing Eq. (120) on an analog computer.
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For o reasonably small, however, this departuré of 4 from zero has no
appreciable effect on the curves of ¥ig. 7+ It has been shown that J
is well approxﬂnmmed by j, vwhen o is small and it follows from Eg. (99)
- that A is equally well approximated by Wo. Thus substitution from

Eqs{ (80), (81), and (77) yields

- g 2 - 2 '
n ~ WETD 08 = kGFTED <o . (129)

For water, for example, Lo is afproximately 0.001, which differs from
zero by less than the probable plotting errors in the curves presented.

Special mention should be made of the curve for Me = l(vb = 0),
in which case Eq. (12?) reduces to

At

bz
Zb 827

(v +~2b)2b = (vh + 2b)

v = =2b + (vb + 2b) e'

oy, |
= -2b + (1 + 2b) e-h_“f— . (130)

According to Eq. (130), v reduces ta zero at

g = U 2b

0 ¥+ 1 log vy, * 2b

by 2b Ly
~ 1log 3 =='Y " log =T ° (131)




L2~

and should become negative at more negative values of z. It has been
pointed out following Eq. (120), however, that v = wl/z is necessarily
non-negative., This seeming paradox is resolved by the alternate solu-
tion v 2 0, which evidently satisfies Eq. (122) for B = O (correspond-
ing to v, = 0) but whieh has been 1ast‘in the unsophistioated reduction
of Eq. (127) to Eq. (130). Thus the solution corresponding to v, = 0
changes abruptly at z = z, from that given by Eq. (130) to the constant
solution v = O, In Fig. 7, where m rather than v is plotted; the
function n and first derivative n' remain continuous at z =2z, While
the second derivative m" experiences a jump of magnitude (y - 1)2/272
there. For f = /3, the approximate (VB =~ 1) value of z, given by

Eq. (131) and corrésﬁonding to Fig. 7 is = 3.4k,

In Fig. 8, representative curves from Fig, 7 are compared with the

corresponding curves caleculated from the low-velocity appréximation

N, = Ml -pe®), w=1 -% JCER)

obtained from Egs. (82) and (113) (note p = 1 in Figs, 7 and 8). For
not too large values of T? this comparison can be made analytically
from Eq. (127) by evaluating Cl then dividing through by it, raising

both sides to the power l/vb, substituting for v, vb;and Vo in the form

.
v = l"%"%‘"" s (133)

expanding in powers of m and N ? and neglecting terms of higher than

second ordér. The result is
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= ¥ (14 T2 na) (13k)

n = {1 -uell e Tt -y v 2]

= nc[(l - pe?) - Ifﬁri pe?(n - N, + 2?52)] . (135)

Consolidation of the two terms involving m yields

(2 - ne) - L wet (2ngz - )
1+ Ya;l ncp.e‘z

n %,

-1
~ L - we®) - L= npe® - pe® + 22)] (136)
Thus, to first order, the fractional error in using Eq. (132) to

represent m is

- Y-1 zw(l -—e") + 22
Mo 8y MpHe

pe? -1

< L2 . . (137)
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It follows that when vy = L/3, for example, Eq. (132) and the equivalent

Eq. (82) are in error by less than 2 percent when Ty is 0.6 or less.

3.5 Exact Solution for Pressure Distribution

In terms of the wvariables v, w, and v introduced in Section 3.k,

Eq. (89) can be written alternatively as
v = s a-n¥a

= %(l + wl/z)

= %(l + V) . (138)

The coefficient A can be evaluated by substituting the appropriate
solution of Eq. (101) into Eq. (99). The values of the normalized
pressure, ¥, then follow directly from solution of Eq. (127) for wv.-
It has been shown in Section 3.3 that if 01/2 is small compared
to unity, then A is also small (A € o*/2), Since h > 1, Bq. (99)

then becomes, neglecting second-order products of X and o,

A _h+2n+o
’4’0 h2+)ih

®lages . (139)
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Under the condition stated, the maximum value of X (for Yﬂéz < 1)
is much larger than o, and is attained when h is very nearly unity.

Thus the maximum fractional deviation of A from ¥, is essentially the

" same as the maximum fractional deviation of j from jo. In contrast

to j and 8, however, ¥ is approximated closely by Wb only if e is
relatively small - of the order of 0.04 for a maximum (y - Wo)/WO
of 2 percent, for example.

The dépendence of /A on n, as given by Eq. (138), is shown
graphically in Fig., 9., A series of typical pressure distributions,
corresponding to the temperature distributions of Fig. 7, are plotted

in Fig. 10.

3.6 Relationship Between Mach Number and Characteristic Temperature

Variables

Equations (55) and (113) can be combined in the form
B - m - 1o - QemE-v) (1L0)
while Eq. (89} can be written aé
Y

R R QR VL S R (1h1)

Substitution of Eq. (141) into Eq. (1LO) gives
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R Y V-
w o= 223 .10 “’1)1/2 , ' (142)
1+(1-m)
~ which is readily inverted to yield
Y
v = ==X (1L3)
1+ YM2
2 2 ‘
1 - yM
no= 1. G (1)
1+ vl
This relationship between 7 and M is shown graphically in Fig. 1l1.

A series of typical Mach number distributions, again corresponding to

the temperature distributions of Fig., 7, are plotted in Fig, 12.

3.7 Validity of Basic Approach

Fundamental to the analysis which has been carried out so far,
is the assumption that the vapor concerned can be treated as a con-
tinuum with properties derivable from classical kinetic theory., In
order for this to be a reasonable assumption, it is néﬁessary that the
separation of the liquid surfaces and any smaller distances in which
significant changes are predicted are considerably greater than the
meaﬁ free path. In the second catégory, it appears sufficient to con~
sider the characteristic length xﬁ/j of the essentially exponential
 variations in the neighborhood of the cooler liquid surface.

The mean free path £ is given by(m)
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2 - 3+ _ (1LS5)
V7

"~ where N is the number of molecules per unit volume and d is the effec-

tive diameter of each molecule (i.e., ndz/h is the cross-—section for

collision). When the perfect gas law is applicable, the numerical

density N can be written as

o%[”

gg ; (1L6)
where n, is Avogadro's number, v, is the molal volume at 0°C and one
atmosphere, and\po is the density under the same standard conditions.
The molecular diameter d can be inferred from the van der Waals con-
‘stant b, which presumably is four times the volume actually occupied

by the molecules in one mole of the vapor(ll)z

.
b = hnA 3%— (147)
1/3 ,,
a = (-2%-};;) . (118)

Equation (146) alternatively can be written in terms of the nor-
‘malized density, temperature,and pressure variables r, ¢, and ¥ as

nA; : ( |
‘ ‘ 149
vowo\yl ’ ,

=
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where ®, =VL./(2’(‘3.2‘ R) is the value of ¢ at 0°C and \1/1 is the value of
¥ cofresponding to a vapor pfesaure of one atmosphere. The laller
quantity is readily evaluated by substituting ®, = Py = 995 where *
‘corresponds to the boiling temperature at atmoépheric pressure, into

Eq. (6L). The result is

@ =2, (150)

On substitution of Egs. (1L48) to (150) and use of Eq. (L8), Eq. (145)

can be written as

g = $ <" (151)
= - s
*aihere
: -
t':pJ%21/6 V9.8 1 ( )
- . 152
k(91mAb2)l/ 3 |

The ratio of the characteristic length x*//‘j to the mean free path, £,

is then given by

r
T . (153)
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The Quantity r/3j will be reccgnized as the inverse of the nor-
malized flow velocity u/u*Q Using Egs, (96) and (138), this quantity

can be expressed as

AL
- %?. N 230E1++?k§ . (154)

Under the assumption that ¢ << 1, so that % <<l and A = »110 Isee Eq.

(WL, |

(139) and sentence following Eq. (106)], Bq. (153) then becomes

e D L deerakay L o

For water, the value of § is about 0.17 (see Appendix A) so that
Eq. (155) yields

3. ki
x X - n+s 1/2 “ 12
ST 2 I, R 3T= % vy > mt o, (159)

the final inequality following from the fact that the values of s and
v, lie between zero and unity. ‘Evan in the unrealistically extreme
case Tb = 0% and Ta = 25060,‘¢a and n are still great;r than 9 and
0.7, respectively, It follows from Eq. (156) that in practical cases
involving water the characteristic length x*/j is weil over five mean
free paths. Thus, at least in the case of water, the implied use of
ordinary kinetic theory in the analysis of the present thesis is jus-
- tified if only the spacing betwéen the two liquid surfaces is at least

a few mean. free paths,
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In the theory déveloped in preceding sections, the wall separation

(xb-xa) enters through the dimensionless paramster

_ g _
A =_j_(xb_xa) - J*ax'b Xq
b'e 'Qa

+
X

. (157)

If the minimum requirement on (x.b—xa) is arbitrarily taken as 5 £ 2’

the corresponding restriction on A becomes

J 2 1 ¢ ~L/2 |
a > 5""-}';; ~ 10 g’n : : la+v >5f¢a-1/2%§§’ (158)
X a

to which Eq. (156) applies] with T, assumed to be in the

(s)

neighborhood of 100°C (¢, = 13), Eq. (158) is satisfied if

0.25(1 - e)™2% g1

A > ﬁﬁz_f% = ~ (159)
l.6 ¢ e >0 .
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IV, FIRST-ORDER SOLUTION FOR LOW-VELOCITY NONSTEADY FLOW

A general solution»on.the nonlinear system of equations (51) to
(57) appears to be beyond reach, If the positions and temperatures of
the bounding liquid surfaces are suffiéiently slowly varying functions
of time, however, én approximate solution for the vapor flow should be
obtalnable as a perturbation from the steady-flow solution., In the
following sections an appropriate perturbation procedure is deyeloped

and the first-order solution for low-velocity flows carried through.

L.l Linearization of Flow Equations

| In applicatioﬁ of the usual perturbation technique to the present
problem one would write, assuming that the actual nonsteady flow dif-
fers only slightly from a steady flow and indicating all dapeﬁdamces

on £ and < explicitly,

0

G I RS T W () ~ (160)
n=1
0 _ v :

Y(E 1) = Yy, + Y v (&) (161)
n=1
. 00

e, T) = &(8) + > € (&) (162)

" n=1
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. ©o

r(E,7) = T (&) + 7 T (5T . (163)
n=l

Equations for the presumably successively smaller (with inereasing n)
pertprbation terms jn’ *h’ Qh and Ty would then be obtained by sub-
stituting Eqs.'(léb) to (163) into Egs. (51) to (54), expanding all
products, and finally equating terms of like order, the order of a
term being reckoned by the sum of the’subscripts involved in it. The
possible usefulness of this approach lies in the fact that the solution
of the (nonlinear) zero-order equations already is known (steady-flow
solution), while all of the higher order equations are linear. Unfor=-
tunately, in spite of ﬁheir linearity, the equations obtained in this
way are rather intractable since they form inseparable systems of three
partial differential equations, two of first order and one of second
order, each.

The procedure just outlined, however, fails to take advantége of
the particular form in which the flow equations have been written. An
alternative approach is to absorb the gross time variation of j, ¥,
© and r in the zero~order terms of Egs. (160) to (lé})xby evaluating
these zero-order terms not for some actually steady flow but rather
~ for the family of steady flows corresponding to the instantaneous
valﬁes of Ga(T), eb(t), ia(¢) and ib(w), with time considered as a
parameter, For example, when the 1cwfvelocity approximation (Sections

3.1 and 3.2) applies, j_, *b; 96 and r_ in Eqs. (160) to (163) are

to be taken as



1-s(t) 172, (™

3o = TR %

(t)e

~¢_(T)
V(0 = A LEE e

8 (57) = 8 (91 -u(we?&™]

r,(7)

i p.('c)ez (‘E.’T)

ro (&%) =

where

2(&7) = - j (Dlg (v) - €]

(164)

(165)

(166)

(167)

(168)

and n(t), s8(t), 8,(v), u(v), and r_(7) are given by Egs. (77), (78),

(83), (84), and (86) with similar substitutions. Thus modified, the

zero-order terms of Egs, (160) to (163) represent the instantaneous

equilibrium solution of the time-dependent problem,

This quasi-steady-flow solution (not necessarily involving the

low-velocity approximation) no longer satisfies the zsro-order equa-

tions obtained as described previously, since the partial space deri-

vatives (left-hand members) still vanish identically while the time

derivatives (right-hand members) no longer do., If the positions and
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temperatufes of the bounding liquid surfaces are sufficiently slowly
varying, however, the operaﬁor 3 /3 7 can be considered to raise by at
least unity the order of any quantity upon which it operates. From
 this point of view, the right-hand members of Egs. (51) to (53) are
alfeagz of the first order of smallnesé because of the partial time

derivative involved in each term. Thus the zero-order equations

actually should be

Jog = © (169)
[y, + vt 31, = o (170)
(@ - v,e,, - 3,0 -u2e, =0 , (171)

which are satisfied by the quasi-steady-state forms.

When the low-velocity approximation is applicable, the first-

order equations obtained in this manner are

he = " Tor | (172)

Yig = "%y | (173)

Ber = oty = 180 T - I“;“'l‘ Vor (17h)

1T %" {9_921_ : (175)
0
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the second-order equations are

jz‘g; ® - rl’t' : (176)
, s 8 o= .( ) 3 ‘ I e
@2€€ - 30&25 ‘ 32@@5 * 'jlela MESL T8t ¥ ¥z (178)

2
17 V.6 + § 8 V)
et S (179)
o 60 eo

T2 )

and the higher order equations follow similarly, When solved in the

order presented, these form a sequence of essentially independent

linear total differential equations in & for the perturbation quan-

tities 'jn’ Yo Q.n and The

'The modified interpretation of 90 implies that, for n = 1,
e = &»n b = o . (180)

It follows from Eqs, (56) and (57) that, again for n > 1,

\ 1/2
J = T 9y ‘i’na *Thel,a

4 (181)

at

i = % Yy * Tnap Sr o * (182)



The four boundary conditions for each order n stated in Egs. (180) to
(182) are just sufficient to evaluate the four erbitrary functions of
time which arise in the solution of the corresponding set of perturba-

tion equations [e.g. for n = 1, Egs. (172) to (175)1.

L.2 Solution of First-Order Equations

Integrating Egs. (172) and (173) directly and treating Eq. (17L)
initialiy as a first-order equation in elg, one finds the general

solutions of these equations to be

‘jl T Irc!d&' * fl(’r)
= - .5.3; jrod;; * £ (7) (183)
¥ = = 05E 1 (1) (a8l

JE&r ~=-J K
61 = fe © [ _fe ‘]o R(E,T)d{ + fB(T)]dE + fhh) 3 (185)

where the f's are arbitrary functions of T and
= 3. 8 i - -1 .
R(E,7) 318 * Tolyy I—————Y Vor * (186)

As found previously in connection with the steady-flow solution,

it is convenient for calculational purposes to express all space
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dependences in terms of the variable z, Eq. (168). Deoing so in Eqgs.

(183) to. (186), one obtains the equivalent forms (assuming Jo # 0)

r ,
Jh o= - "gatfj\j—z- dz + £,'(7) (187)
Jop »
¥y = -0 Tt £, (%) (188)
o |
& = ~}§- fez Jae-@ Rdz® M-fB‘(T)ez +vfh‘(t) (189)
Jo <
| | -1
Bo= 3dsfer ¥ Tolor - : v Yor * (150)

Explicit expressions for the zero-order quantities T jc, Qb and wo
are given in Egs. (16L) to (167).

The integrations indicated in Eqs, (187) to (189) are performed,
and the arbitrary functions eyaluated with the aid of ‘Eqs. (180) to
(182), in Appendix B. In carrying out this caleculation, it is found
convenient to express most of the time derivatives in the form of
logarithmic derivatives, indicated by a tilde (™),

2(5) = =+ = (logf)_ . o (191)

The following abbreviztions are introduced:
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. . A |
6 = E-b - Ea jo ‘ (192)
s na+s ~A, 1/2
R A =(1 -pe e, (193)
~ 1-e”
G(z) = o log(l +p l-u) + (& &b)-—_—_—u-a-g
~ Z
- i, pze (19L)

l—-p,ez

H(z) = pe® ﬂz(&e——)—j . (195)

k(K 1) k(k—l)

The final solutions for jl, \Vl, and &l as funcetions of z are given in
Egs. (B-37) to (B-39).

Visualization and interpretation of these solutions is facili-
tated by introduction of a new space variable y,

& - & -&
y”g:-éaygbﬁ ,_%, 0yl (1952)

which expresses the distance from the cooler liquid surface as a frac-
tion of the total inter-surface spacing. With this substitution,

Egs. (B~37) to (B-39) become
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PRL:
o‘a -
- + G(-A)]

1., o~ 5
25 =T Ay + G(-Ay) - [A(r + -
0l ¢ I T-e A
1 Gjo! _gl/2

Z;wl e a T+ [A( -;.Le +

i-e

J __A‘." C=A
5%;&1= (Aye™ ™7 - Ae -l-'—-e—_-z—){w[l-log(l—u)]

~ 1/2

- " e ~ 4]
*e}c-e’b-m[‘l(rc * _p'“A.P

+ 3= ay) - B(-A) :-t—:-f-a-
-

F’Zﬁ ) + G(-A)]}

(196)

(197)

(198)

. The basic spaée-depandent functions involved in Eqs. (194) and (198)

are plotted for several values of the parameters u and A in Figs.

13 to 180
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Since the givén data in the present problem are the temperatures
and positions of the two liquid surfaces as functions of time, it is

desirable to express all of the logarithmic derivatives involved in

o~

Eqs. (194) to (198) in terms of 5;, €, and 5. Such expressions are

derived in Appendix B (Section B-5) and are conveniently summarized by

introducing the notation

t
t
t

i, = 45%*53% | (199
¥, = Awea*B\ye;D (200)
rY % +B8 .07 |
8, = A8 +B@ + Dyb (201)
r, = A8 +B6 +D5 (202)
@ = A0 + B8 + Do (203)
and the abbreviation
AG-A ' )
g = —== (204)
1 -e A

It is shown in Appendix B that



72

N . 9a _ 1

J 1-s 2(I+n)
B o~ - n

J 1-s ~ 2(L + n)
B = S _n(1l - s} n(l -s) ,
¥ n+s 2(1+n)(n+s) j
B = S(pb " n(l - S)

' n+s 2(1+n)(n+s)

~ 1

Ay = u(z - gAJ)
DQ = -ug
A.r = AW - Aa
Br = B\'J{’- Ra
A& = AW - Aj - A®
Bm = BW - Bj - B&
23‘ = - D9 = ug

(205)
(206)
(207)
(208)
(209)
(210)
(211)

(212)
(213)

(21h)

(215)

(216)

(217)
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In view of the form of Egs. (199) to (203), it will be observed
that ¥ and 61 depend on ? = (abT - Eat)/ﬁ but not on & . or &
individually., This result is toc be expected on physical grounds, of
course, since uniform transiation of the entire systiem camnot affect
the pressure or temperature distributions. On the other hand aueh
traﬁslatian does affect the current densities which would be measured
by a stationary observer, as evidenced by the term involving Ebw.in
Eq. (196). Of more fundamental interest than the j; measured in an
arbitrarily stationary reference frame, however, is the intrinsic

incremental j given by

T AL IS (218)

the term involving r, being of purely kinematical origin, Substitu-

tion of Eg. (218) into Eq. (196) yields

~/

1 ~ )
=4y = (rg ¥+ ————xz) Ay + G(-Ay)
w “1i c 4. ue Ay

- ~ g (< )
- i—é—g [A(rc + 5 -+ o(:' ) + G(—A)] . (219)
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4.3 Limiting Form of Solution as J,=>0 (B:'a—>eb)

The solution of the linearized nonsteady-flow problem summarized
in Egs. (197), (198), and (219) assumes an indeterminate form as ¢, and
thus Jo» tends to zero (&*a»eb), since in this limit @, @, and :j\;
tend to infinity while A tends to zero. The limiting indeterminate

form is evaluated in Appendix C. The result is

by e_¢a
=~ , 2 .
hy — & —jp—le, (v -1 -0) - 25" + 1]
e=>0
' -
~ o8 °

w8 —p—To &y ~1+0) + &% - ly + 1]

—q)a
N ,
* 8 — {2y - 1) | (220)

/ =@
80 1/2 o 8

W - o1 - oy - 11 -1}

—p
6(91/28 a

- & 27— {o,l1 + oy - 1)] - 1]}

172 g
(Pa e

-8 2

(221)




~75=

~ - @
o — @a52e a(Y-l~2_§_1+y)y(12-y)
£ >0 Y 3
~2 % +-1% 2-y y@d-y)
+ 8. 6"e ( T "3 ) 5 . (222)

In connection with Eqs. (220) to (222), it may be useful to ob-

-p
. ﬁra is of the order of magnitude of

serve that the quantity Emae
the wall spacing measured in mean free path-lengths. This follows

from Egs. (151) and (192), which give

-X -x 4gr : -X
or, = 2pfr .- 2_Talda g8 ()
b d a x a

For water, for example, € is approximately 0.17. If (x, - xa)/ L.
is denoted by N, and it is assumed that ¢ << 1, Egs. (220) to (222)

can be written approximately as

&l oy - 1) + 7% -y +1]

+ 25(2y - 1) (22L)
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h@éllz
TY, W= -8 (p, -1)
-8 (o, - 1)
- 25 (225)
ﬁ%; o ~ - 'é,‘a(i_;_}_ -2 13(-;:) vy - 1)
- &bszgwi -2 ZB;ay) Zﬁ¥2' L, (226)

L.4 Approximate Form of Solution for Large A

As pointed out by Plesset(!) and mentioned in Section 3.1, the

parameter A is in many cases of practical interest a large number,

The simplification of the steady-flow solution in such cases has been

seen in Egs. (72) to (75), and an even more striking simplification

occurs in the nonsteady-flow solution developed in Section 4.2,

Considering first the function G(z) which appears in all three of

the Eqgs. (197), (198), and (219), one sees from Figs. 13 to 15 that

- 4
1 =-e

< 1
1l - uez

1. - 1l -
{;log(l #‘L-i——:-——'

o7
=)

< 72 m

(227)

(228)



—'{ ? -

!—-""—9——2— <1 . (229)
1l «pe

Furthermore it is shown in Appendix D that, at least for ¢y greater

than about 5,* each of the quantities u:'jvo, }.u:, é:, and 3{3 is of the

same order as or less than ;;. It therefore follows that G(z) is of
the same order as or less than ?;/(l - 1) and thus that IG(z)I'<K‘AI§;|
if A>>(1 -p)™. With the additional assumption that o << 1, Eqe.
(197) and (219) reduce approximately to

1/2 Te
i+

o

-+

¥, = - mZKEb

=]

P~

1/2 ¥o =% * 0

~ o &
~ rcﬁeb l T n (230)
~ ~ j ?‘; + g
J: = wAFTy +56 - - )
1i ¢ 1 -ue Ay 1l+n
= 16 =86 +0)F -——)  (231)
c ‘o a 1 +n °

An order-of-magnitude estimate of the minimum ®, to be expected for
a given substance is ¢y, the value of ¢ corresponding to the normal
(1 atmosphere) boiling temperature. Epstein lists values of the ratio
L/1y LB/TB in his notation) for a number of the elements, including
the rare gases, the primary atmospheric gases, the nalogens, and metals
ranging from sodium to iead.(12) Division by R yieids the correspond-
ing values of ¢;. Except for helium (wl = 2.9) and hydrogen (wl = 5.0)
the values of ¢ for all the substances listed are greater than™7, and
in most cases are greater than 10, The value of o for water is 13.1.,
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The second forms of these equations follow from the facts that

~ ~ .

G;c L Ga and u = ¢ when A1,

Turning to Bg. (198), one observes from Figs. 16 to 18 that for

large A the function

oAy ~ ' -
1—5__ —yzl-y-eAy (232)
1l -e
is of the 6rder of or larger than the functions
- Ay
Aye Ay  peA 1-e 7 e-A ~ AyenAy (233)
l~e
and
-Ay
Un-ay) -mcart=e 71 (231)
”’ 1~

Again it is shown in Appendix D that, at least for ¢, greater than
about 5, the '@; and 'G\;J components of the quantities uwm, é;, and Eb
are all of f.he same order as or less than the corresponding components
of \Tr; s mwhile the gcomponents oi‘ these quantities ar;a no larger than

that of g;. Thus if A >>(1 - p.)-l and 0 << 1, as assumed in deriv-

ing Eqgs. (230) and (231), Eq. (198) reduces approximately to

; v
-] ~ o~ -4 “Ay p A~ ¥
;%;- 8, ~ A(%" V,=0,) (1-y-e Yy - Aye y%—;;(rc*é)

= A= §,5,) (Ly-e™) - (F,8,+8) (1-n) Aye ™ ] . (235)



Tt will be observed that the dependences of \yl, ‘jli’ and Gl on
the wall temperature variations are easily separated from the depen-
dences on the wall motions in Egs. (230), (231), and (235), since '\Tr‘o
and 'éla. are independent of the wall motions while 3 is independent of
the temperature variations. With this separation indicated explicitly,
the ratios of the three approximate perturbation solutions to the

corresponding zero-order solutions can be written as

|y

~ 1/2 _,~ =~ . n 1/2 . n .
7. %% S )nE - e e (236)
313 ~ o 1 ‘ 1 .
3‘;" = wG(WO"ea)(‘y- 171-1) + mb,c(y - m) (237)

]
1 sl 5 AT T S ) (1em) Avem AT
5. wab (= ¥,-8) Q=™ "Y) - (4,8,) @n) Aye™ V]

w6 (1 - n) Aye"Ay . (238)

From Egs. (193), (207} and (208), the quantities w and ?0 are given
by

r .
- G n+s8 1/2
7 - jo e -—---—-l _— (pa (239)



-80-

~ ~ |9 _n(1-s) ~[S“’b n(l-s) -' '
Yo = ea[;+: - 2(;+n)?£+s) * eb n+s T 2(l+n)?n+s)j . (2ho)

Although general expressions for *1’ jli’ and 91 as functions of
y have been found, 1t frequently is the boundary values (x = X5 %)
which are of greatest practical interest. Substitution of zero or

unity as appropriate for y in Egs. (236) and (237) yields

¥ia ¥ 1 ¥ -8 +78 |

Jla v . _ . L/2 n -

Yo ¥, % °T% n[wo %) * 6] (8ka)

| 1/2
s L e %W (2s2)
jo qJal/2 1]10 jo |
1/2

A e h &.ﬁ (2L3)
3, o 72 ¥, 3,

a

The last two equations will be recognized as simply restatements of
the basic boundary conditions, Egs. (181) and (182)., The boundary
values of 61 are zero, of course.

The results of sample calculations for water based on Egs., (241)

to (243) are presented in Figs. 19 to 22.” These results are expressed

In Figs. 19 to 22, the subscripts a and b refer to the two liguid
surfaces at x = x_ and x = > X, , respectively, without regard to
which surface is at the higher temperature. In plotting the various

~curves, however, account has been taken of the fact that in Egs. (24l1)
to (243) [more directly, in Egs. (2i4h) to (246)1, as in most of the
equations throughout this thesis, it is specifically assumed that
T, > Tb. Thus the lower curve in Fig. 19, for example, is actually a
pfot of p (a)[(xb - xa)Tat versus T, (in the notation of the equations)
with the designations a and b reversed for plotting purposes,
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-85-

directly in terms of appropriate physical (dimensional) quantities,
and the contributions to p, and J;; due to T_,, T,,, and (xb_- xa)t
are indicated separately by means of the superscripts (a), (b), and
(8), respectively. From Eqs. (241) to (243), with the aid of Egs.
(239) and ((1) and the fact that Bc ~ aa under the condition con-

sidered (A >> 1), it follows that

(a) (@ 7 12 (a)
911a = T Ry = - E b Py *
'2%'
- T (- %) B = (0¥ T3 7% (A v (2hy)
(b) (b) 7 1/2 _ (b)
Jig T "By 7 - o L )
= T (5 -x, ) (cp \ifo )98 » (245)
(8) (8) & 12 (8)
Jia % "Wy T - F ¢ P

= (x‘o - xa.)’c.p%(q’a"‘(co 1—%5) ’ (2L6)
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where‘AW and BW are the coefficients of ﬁ; and 5;, respectively, in
Eq. (2k0). |
The discontinuities in the curves of Figs. 20 and 21 at Ta = Tb
- are to0 be expected, since equality of the two surface temperatures is
incompatible with the assumed conditioh A>>1, These two tempera-
tures can be arbitrarily near equality without invalidating the large
A assumption, however, if the spacing X, = X, is sufficiently great.
The condition which must be met in this case is seen from Eq. (C-20)
to be |
X = *a >> 2

. (2L7)
vx‘l’\ | @33/2 e"q’a &

5 =

For water in the neighberheod of 10000, for example, the condition

becomes approximately

0.017 ‘
X, =%, > 'T-;—:-T-?;Gm s | (248)

indicating that in this case a spacing of 1 em is sufficient to yield

A >>1 for temperature differences as small as 0,1 dééree.

4.5 Range of Validity of First~Order Solution

The perturbation equations solved in Section L.,2 were obtained
formally in Bection L.l as the first step in an infinite sequence of
successive approximations. Thus one way to establish the range of

validity of the first-order solution would be to calculate the
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second-order perturbation quantities and require that they be small

ceﬁpared to the corresponding first-order quantities. A considerably
simpler procedure, however, is to estimate the magnitude of neglected
terms on the assumption that the first-order perturbation is in fact
the,EEEEEE perturbation, |

To carry outbthis second procedure, Egs. (160) to (163) with all

terms for n 2 2 dropped, that is

S SR N | (249)

R (250)

6 = 6+ @ (251)

r o= r +r , ' - (252)
2

are substituted in Eqs. (51) to (54) with the terms involving M

neglected, The result of this substitution is
Jog * g = = (g Ty (253)

Vo * ¥ = - 9(d * ) (251)
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Oorr = Jo%z * G~ (U * 3p)8,

- jleo§>+ (ro+r1)(QbT * 911) -t ; - (wbw * le) (255)

Yor¥ = (e, wr)(e +0) . | (256)

In view of the zero-order Egs. (169) to (171), Egs. (253) to (256)

reduce to
jli = - (rOT + rl’f) (257)
'q’lg = - a(jOT + jl’t) (258)

elgg - (jO + jl)elE = 31@65 + (ro + rl) (9‘01_ + BlT)

...I...:_i(\i,

¥ ot ¥ wir) (259)
MR V8 - woel‘ k(260)
r = = - N g
1 90 * el 90(60 * §§T
Equations (257) to (260) are the exact equations for Jps ¥ys @,

and ry when these quantities are interpreted in the sense of Egs,
(249) to (252). The significance of the first-order solution
developed in Section 4.2 can therefore be estimated By comparing Eqs,

(172) to (175), from which it was obtained, with the corresponding
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Egs. (257) to (260). It is seen that Eq. (172) approximates Eq. (257),

and thus yields a useful expression for J;» when
'rlrl << |ro¢l . (261)

Similarly Eq. (173) approximates Eq. (258), and thus yields a useful

expression for wi, when

3 | < 13 .l - (262)

There are two alternative situations under which Eq. (17k4) approx-—
imates Eq. (259) and thus yields a useful expression for'el. The

first, described by the inequalities

13,1 < 15,1 v - (263)

\ ' A S , - Xl
Irlgbw *lrg v rp)e ¥ *Lr‘<g‘roﬁ37 Y Woxl

» (26l4)

is of significance when jo is large. The second, in %hich Eq. (263)

is replaced by

‘jlelgl = \rO&OT “1‘;‘71.‘?0';\ = O(Wo,c) ’ (265)

is found useful as jo tends to zero. The condition (26i;) which is

common to both cases generally is assured if



lr | < [x | | (266)
le | < fe | (267)
R AR £ 70 (268)

The condition (266), in turn, is assured if

¥, | < 1y, (269)
la | < |e | . (270)
1 ‘Yo

Due to the smoothness of the functions involved, the conditions
(261), (262), (267), and (268) ean he expected to hold when the cor-
responding relationships between the undifferentiated quantities
apply. It is important to observe, however, that the condition (262)
also holds in many cases for whieh (263) does not apply, since small
values of jo usually arise from a critical balance between large com-
ponent currents flowing in the two directions, no corfesponding can-~
cellation necessarily appearing in the derivative jor. Thus, apart
from isclated singular situations, the condition (262) can be expected
to hold when the intrinsic first-order current density is small com~
pared to either component of the unperturbed current density. It is

seen from Egs. (181), (182), and (218) that the ratios of 15 to the
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unperturbed condensation current density at the two liquid surfaces

are given by

Jig ¥a J14b ¥1p

~ ¢a1/2 v, Y, 1/2 v v,

(271)

It thus appears that the condition (262) can be expected to hold when
(269) applies.
In summary of the arguments presented so far, it appears that the

first-order solution for Wi developed in Section 4.2 is useful when

<1, ' (272)

e
wo
that the solution for jl is useful when in addition

}.g;l« L, | | (273)

o

and that the solution for 6, is useful when either

F &1 o -~ (27h)
o
or
el <yl (275)

holds as well,
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It having been established that the first-order solution for er

can be expected to be significant wheneverhtl/wol << l,' the next step

is to 'iﬁvestigate the conditions under which (273) and one or the other
of (2"’()4) and (275} hold. Comparison of Eqs.‘(237) and (238), which

‘ api)ly when Jo (and thus A ) is large, reveals that in this case the
maximum value of &l/@‘:a inthe interval 0 < y £ 1 is of the same order
as or less than the maximum value of jli//jo in the interval., Also it
is seen from Egs. (243) and (239) that if s differs appreciably from
unity (as it does when ‘jo is large), the maximum value of jli/jo is

of the same order as V. /¥ . Thus when J is large, the entire first-
1 %" 4]

order solution can be expected toc be significant when wl/wol <« 1.

The situation when :jo is small presumably is typified by the
| limiting case jo = 0, considered in Section L.3. In this case the
condition (274) can never hold, and attention must be given to (275)
instead. c;nsidering for simplieity only the dependences on ‘éla and
?eYb (a similar argument holds with respect to the & - dependences) and

assuming ¢, > 1, it follows from Eqs. (220) and (222) that™

)
g~ g
o~ =I5, + 5 (276)
-
bo e °

~ S—2g -8l . em

l@ﬁglm - %—l&iyl o

* The symbol ~ as used here means "is of the order of".
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Equation (222) also yields, since o, = 6, when i, =0,

2 279,

& 80y © a*r-l]'é‘ & | (278)
ﬁ; ~ L Y a T Y ’ 7
while Egqs. (C-17) aﬁd (C-19) give
-@
L 06 Tl o
ool = 14§ = 25—I5 + 5] . (219)

It follows immediately from Egs. (276) to (279) that when Jo = 05

&

L

8
Q

, 1
ljleiglm ~ 37

lWorl ) (280)

so that in this case the condition (275) is satisfied if (273) is.

It appears, therefore, that the first-order solutions for jl and ai

are useful whenever |y;/¥ | << 1 and IGl/eo\ << 1, regardless of the

magnitudes of jo and jl/JQ. It is seen from the different powefs of

& appearing in Egs. (221) and (222) that the conditions on wi/wg and

Gl/eovjust stated are independent when Jo is small.

L.6 Qualitative Behavior of First-Order Solution

The general features of the first-order solution for low-velocity

nonsteady flow developed above are easily seen from the simplified
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forms obtained for the conditions jo = 0 (Section 4.3) and jo >> 6-1

(Bection L.l4). These forms can be simplified still fui'ther for quali-

tative purposes by assuming ¢, > 1, whereupon the solution for Jo =0

beconmes

¥ o=

3y =

& %

and the solution

‘l’l ~
Jyy =
o =

(pl/? e-epa 0

~e 2[R (E +8)+7] (281)
—Qa

P e T @ o~ ~ ~

62— |2 (@ +8)+F] 2y -1) (282)
S1 % o -

N B RO ) RAC S-S 2 (283)

for i, 37 6-1 (A >> 1) becomes

‘ -(P ~ ~r B
-8 o ¢a1/2 e a[xyo » 3] / (28L)
-0, |
g 9. ~
8 ?Li :g a2 h’o * 6](2y It i 7 (285)

1-e~4Y
VolT g -9 + 0laye™). (286)
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An expression for @; is given in Eq. (240). It is easily verified
ﬁhat Egs. (2084) io (286) reduce to the corresponding Egs. (281) to
(283) as J, tends to gero,

It is seen ffom Egs. (2681) and (284) that when the equilibrium
_Vapor pressure (p*wn) is changing slowly, the actual pressure
[P (¥, + ¥,) to first order] lags behind by an amount which to first
order is uniformvthroughout the vapor-occupied region and proportional
to the liquid surf#ce spacing. The actual vapor pressure also is af-
fected approximately uniformly by slow relative motion of the liquid
surfaces, the pressure increasing when the surfaces are approaching
each other and decreasing when they are receding, as would be expected.

It is seen from Egs. (282) and (285) that the normalized pertur-
_bation current density is of the same order of magnitude as the nor-
malized perturbation pressure but, unlike the latter, varies approxi-
mately linearly over the distance between the two liquid surfaces.
This linear variation is easily understood as a response to the uniform
pressure perturbation, a negative Wl’ for example, causing perturba-
tion currents to flow into the vapor region from both liquid surfaces.
The rapidity with which preséure differences are equalized (as evi-
denced by the uniformity of wi) accounts for the linear attenuation
6f these perturbation currents. The point where the resultant pertur-
bation currenﬁ is zero moves from the midpoint between the surfaces
toward the warmer surface as the fractional temperature difference be-

tween the surfaces is increased from gero,
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ponential variation of
90 in the immediate neighborhood of the cooler liguid surface when A

is large is matched by similar exponential behavior of 6&, while the

WA O e P e

nere under the same condition is accompanied
by an essentially linear variation of 61. In general, Qi attains its
maximum magnitude at a point closer to the cooler than to the warmer
iiquid surface. Iﬁ the limit jo = 0 the space variation of 61 becomes
symmetrie with respect to the two surfaces, of course, assuming a
parabolic form. It also will be observed that as Jp tends to zero,
the perturbation temperatures become proportional to the square of
the distance between the liguid surfaces.

From Egs. (283) and (286), the actual temperatures away from the
liquid boundaries [T*(Qb + @) to first order] are seen to lead the

corresponding equilibrium temperatures (T*Bb) as the latter are caused

to change by slowly changing one or both of the surface temperatures.

The reasonableness of this result can be seen by considering the

relationship

!-Bl ’__.*-9

s | (287)

o
-
"Ol'b
i

[+]
o
1<]

~ which holds to first order by virtue of the assumed perfect-gas

behavior of the vapor.* Sinoe'Tl = 0 at either liquid surface, pl/po

* Equation (287) is equivalent to Eq. (175) divided by T,
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and pl/po must be equal there. In other words, the fractional amounts
by which p =~ Po + Py lags behind Po and by which p ~ Py + Py lags
behindvpo'are approximately equal at the liquid surfaces. Whereas the
pressure lag has been seen to be essentially uniform throughout the
vapor, however, the density lag would be expected to increase toﬁvard
the interior of the vapor-occupied region due to the inertia inherent
ih mass transporﬁ. Eduation (287), representing the perfect gas law,
then indicates that.Tl also should increase in magnitude, but in the
opposite algebraig sense from Py (and thus from pl), toward the
interior of the vapor.

An additional observation from Eqs. (283) and (286)‘15 that the
vapor temperature distribution, when expressed in terms of the relative
- 8pace variable y, is essentlally unaffected by slow motions of the

liquid surfaces.

| A significant effect common to all of the perturbation quantities
is a considerably greater dependence on variationsvof the higher sur-
face temperature (T*Ga) than on variations of the lower (T*Gb) when
the fractional difference, &, between these two temperatures is
appreciable. This effect, which enters mathematically through the
coefficients of ‘é; and ’é’b in Eq. (240) for '\Fo, follows from the fact

| that s/n tends rapidly (essentially exponentially) to zero as o,
ipcreases beyond unity. For £, of the order of 3 or greater, the
ratio of the 5‘3 sengitivity fco the 8. sensitivity is between 2q>a

b
and h¢a, which quantities generally are of the order of 20 or greater.
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V. EXTENSION TO TWO- AND THREE-DIMENSIONAL FLOWS

In pfinciple, a perturbation technique similar %o tﬁat developed
in Section L.1 can be applied to any near-steady flow for which the
corfesponding-steady flow problem can.be solved explicilly, II the
flow distribution depends significantly on two or more space coordi-
nates, however, ﬁhe_perturbation equations corresponding to Egs. (172)
to (174) will be partial instead of total differential equatiéns in
the space variables and in general will not be so readily solvable.
Thus the principal two- and three-dimensional flows to which the appli-
cation of the present technique is fairly direet are those having

eylindrical and sphericai symmetry, respectively.

5.1 Flow Equations and First-Order Solution

For cylindrically symmetric two-dimensional flow, with x now
designating the radial coordinate, the basic flow relations correspond-

ing to Egs. (20) to (22} are

J.X-F;L—CJ = -p (288)
[p@+y)], + R = -y (289)

(@ - l)Kr la - w)E. - Ma)cpJ]Tx

- (1 - 251 Mz)cpth - Pyt %-p(Hz)t - YMZ %?'. (2%0)
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In the spherically symmetric three-dimensional case, the correspond-

ing equations are

e ¥ ;2'2 Jdo= -py \ (291)
[p(1 + )], + ep E- -y - (92)

(1 -yt + [2 - f) £ - @ - Mz)cpJ]Tx
= @ -3 pr, - b, + Fo0d), - 2 B2 L (293)

It will be observed that the two cases can be considered simultaneously
by writing the flow equations in the form

' 2— = - | ’

¥ xd T TPy - (29h)

@ +w)], + vl 2 = -y (295)
| 1 - *rMZ)kTm + t_-v!(l - TMZ) %-— 1 - Mz)cpJ]Tx
= (1= Q%I-Me)cpth -p

ot 3 pd), - vyt B, (206)
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where v = 1 in the cylindrically symmetric case and v = 2 in the
épherically symmetric case.% ;

_Tﬁe application of Egs. (294) to (296) corresponding to the one-
dimensional problem treated in previous sections is to a vapor-filled
cavity in liquid, As‘before, the radius and surface temperature of the
cavity are considered given data, implying in effect that the mechani-
cal and thermal,dynamics of the liguid surrounding the cavity are al-~
ready known (see, for example, Heferences 13 and 1h).

If the cavity radius is designated by Xo» the zero~order solution
of Eqs, (294} to (296) (instantaneous equilibrium solution of the time-

dependent problem) is clearly

J, = 0 (297)

To= T - (298)
e

P, = P (T,) . (299)

p, = P°(T) . (300)

The general form of Eqs. (294) to (296) also includes the one-
. dimensional case considered at length in previous sections (by taking
v = 0). The subsequent treatment in that case is somewhat different,
however, since two boundary temperatures can be specified arbitrarily
there while only a single such arbitrary boundary specification can be
made in the two- and three-dimensional cases under consideration.,

)
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The first—order low-velocity (7%@-4( 1) equations are then

v RN - _ '
Tkt x L 7 T ey | (301}
'plx = »O . (302)
Vv 1 e e

which have the general solutions

3 £ (¢)
I = -y Et =7 (304)
p, = p,(t) (305)
£,(t)
: 1 e e 2
Tx = K D Tar mRIX T - (o8)

" In order for Jl and T, to remain finite at the origin with v > 0,

ix

fl(t) and fa(ﬁ) must be identically zero., Thus, since Tla = 0,
e
Py
v+ 1 .
P = py(t) (308)

— 1 e, €, ,.2
1, = m(cpﬂ Tap —R)(x" -x %) - (309)
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Finally, the first-order boundary condition

Bp ,
1 @ ‘
Ja = (zmr )37 e X (310)
a
yields
(zmwa)l/ 2 oS .
P, = - 7 [ ST X t P xat] . (311)

On introduction of the approximate Clausius~Clapeyron relation-
ship, Eq. (31), and the nondimensional notation of Section 2.3, Egs.

(307), (309), and (311) become

)
J, = —=E(oe %) = -2 3y _1)s (312)
1 v+l'Ta T v+l Ta a at
2 2
E - & -
a ‘a Yy -1 a
8 = Iz 15[‘%a 8ot - ¥ (e )¢]
l 2 )
~ AT %S (e, -1, - G1)
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The intrinsic incremental Js neglecting the component of purely kine-

matical origin [cf. Eq. (218)], is given by

at
-ma[wa(wa - 1) E.o
= - gq;ae YR e’é.’t' + 2-;-— . (315)

The resuits of sample calculations .for water based on Egs. (312) to
(315) and using the notation introduced in Eqs. (24l) to (246) are
presented in Figs. 23 to 25.

Although derived with eylindricaliy and spherieaily symmetrie
flows specifically in mind, Eqs. (312) to (315) hold also for one-
dimensional flow in the particular case Ta = Tb’ if v be taken equal
to zero and distance be measured positively either way from the ﬁid-
point between the two liquid surfaces. This is easily verified by
making the substitutions E; = é;; 6 =26, 2y ~1=- &g, and
vyl -y) = - (52 - Eaz)/hiaz in Egs. (220) to (222)., The factor of L
by which the ordinates of Figs., 23 and 2l exceed those of Figs. 20 and
19 arises from the facts that (l) x, in Part V corresﬁonds to
(xb - xa)/2 in Part IV, and (2) T . in Part V corresponds to equal Ta

1

and Tb in Part IV,

t

5,2 Alternative Solution for Pressure Perturbation

An expression for the pressure perturbation due to motion of the

cavity wall (wall temperature assumed constant) can be obtained by
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Figure 23, Perturbation Current Density in Vapor-Filled
Symmetric Cavity due to Surface Temperature
Variation. Substance Water (p* = 22,6 g/cms,
L = 9720 cal/mol)
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Cavity due to Surface Temperature Variation.
Substance Water (p* = 22.6 g/cm3, L = 9720 cal/mol,
B = 0.04)



~106-

(sec/c mz)

v

=lE
=& 4 ;
3 % Py
2 Ng /
=
2 e
//
0
50 60 70 80 920 100 o] . 120
Tq (°C)

Figure 25, Perturbation Temperature in Vapor-Filled Symmetric
Cavity due to Surface Temperature Variation.
Substance Water (k = 2380 erg/cm sec deg,
e, = 2,02 x 107 erg/g deg, p* = 22.6 g/cmB,
T = le32L)
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somewhat more direct physical reasoning tﬁan that employed above,
Thié alternative solution is also of interest because it does not
explicitly‘invvlve a neglect of higher order terms, although the
- assumptions on which it is based clearly make it non-exact.

» It is assumed that the temperature throughout the éavity remains
uniform and constant and that the pressure also remains uniform, though
of course not necessarily equal to the instantaneous equilibrium
pressure.*' The perfect-gas law which the vapor is assumed to.obey

can then be written in the form
pV = mRT , (316)
where V is the volume of a typical section of the cavity and m is the

total mass of vapor in that voluma.*% Differentiation with respeect

to time gives

. The assumption that p is uniform throughout the cavity implies that
x_ is essentially constant except possibly over time intervals much
greater than the relaxation time in the wapor., This is roughly equiv-
alent to the assumption stated in Section 2.2 following Bq. (27).

** In the spherical case, V can be taken as the volume of the entire

cavity, In the cylindrical and ovne-dimensional cases, V refers to an
‘arbitrary longitudinal section and an arbitrary cylindrical section,
respectively.
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RTm = ﬁV + p%

pxX_ ) .
S(5o7 * %) | (311)

whére 8 is the liquid surface area bouﬁding fhe volume V,

From symmetry, the current density is the same at all points on
the liquid surface. Thus m, the total flow of mass into the cavity,
is simply

B = -8(J, - %) = S(2m1) -f) . (318

Elimination of m between Egs. (317) and (318) and assumption that a = B

yields

pX . 1/2
S2oem, = PED 6% -p) - oMMG%p) L (319)
which can be written in the form
¢ p-p° "a*“al/z s *
& *v+ ) =5 - = - (v1) 2. (320)

p a P a

If x_(t) is approximated locally by iat, in aceordance with the uniform-
pressure assumption (see footnote on page 107) and an arbitrary choice

of time origin, the corresponding solution of Eq. (320) is
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e X
E=-P = - N — + transient term
e . 172 *

P X +8 u

a a
J'ca :
- - — gt transient term (321) -

x, + g(Zny) e

where ¢ ig the velocity of sound in the vapor. The steady-state term
in Eq, (321} is plotted as a function of ia/c for water in Fig. 26.
It is of interest to compare the steady-state term in Eq. (321)
with the corresponding first-order pressure solution obtained pre-
viously, For 8, equal to zero, Eq. (31k4) divided by ¥, = eﬁmav

becomes

‘ a
a an = - 631/2 * ° (322)

As should be expected, this result is simply the first term in an ex-
pansion of the steady-state component of Eq. (321) in powers of

. 1/2 %
xa/ &a u

*
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Figure 26, Steady-State Pressure Perturbation in Vapore
Filled Symmetric Cavity due to Radial Motion
of Cavity Wall. Substance Water (g = 0.0L,
v = 1l.324, ¢ = veloéity of sound in wvapor)
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APPENDIX A

Properties of Water Vapor in the Neighborhood of 100

For water wvapor at 100°C and 1 aﬂmosphere pressure, Lhe followlng
values are given‘By the sources indicated
¢, = 0.4820 cal/g deg (Ref. 15, p. 1821)
= 8.683 ecal/mol deg
= 2;017 x 107 erg/g deg
k = 2380 erg/cm sec deg (Ref. 16)
L = 9720 cal/mol (Ref. 2, p. 118)
= 2,258 x 10lO erg/g

R = 1,986 cal/deg mol (Ref. 2, p. 398)

@ = 0,04 | (Ref. 17)

vy = 1.324 (Ref, 15, p. 1821)
p°® = 5.98 x 10-'1‘i g/cm3 (Ref. 15, p. 1906)

On the basis of the data listed above and the assumption that
a = B, the values of the normalizing factors and the dimensionless
parameter ¢ introduced in 8Section 2.3 are calculated below for water

vapor in the neighborhood of 100%.

™ . % - 4.89 x 10° %

L)I/Z

uo= ﬁ(ﬁﬁ‘ 2.4 x 10° em/sec
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o= o e® et M o 22,6 gred

* T e TYT
BT *

3 - p%u* = 5.bx th g//cm2 sec

¥ = p*L = 5.1 x 10™ dyne/on®

= L.5 x 105 atm

2 - —353 = 2.2 %107 en
. ¢ d
P
3
t* = 5; = 9,1lx 10—13 sec
' u
2
[=3 = E‘ - 2.6 p-4 lv—h -
2n

It also is desired to evaluate for water vapor the parameter € ,
defined in Bq. (152). For this purpose the following additional

physical constants are required:
b = 30.52 em’/mol (Ref. 2, p. 1lt)
n, = 6.064 x 1023 molecules/mol (Ref. 2, p. 398)

v, = 2.24l x 10“ cma/mcl (Ref. 2, p. 398)

In Eq. (152), ¢, and o, represent the values of T*/T corresponding
10 0°C and the boiling temperature at atmospheric pressure, respec-

tively. In the case of water these quantities assume the values
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V (po = 1(09

¢ = 13,1

‘Bubstitution in Eq. (152) yields

1/6 1
2 vcapoe

x*(9nnAP2)l/3

: E- = 0.17 »
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APPENDIX B

Solution of Linearized Equations for Low-Velocity

Nonsteady One-Dimensional Flow

The general solution of the first-order linearized flow equa-

tions (172) to (175) is given in Eqs. (187) to (189) as

. __ I ' (- |
O

‘jo't:

‘o
@-i = j‘ f Rdz +f 1(t)e? + f () (B-3)

where
, -1 ‘

R 31308, * T8y - L—Y Vor o (B~L)

The quantities T ja, Q‘:~o ,and ‘*{fo involved in the right-hand members

“are given by Egs. (164) to (167).
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B-l., Eqguation for ji

¥With the substitution

w FoIooe (B"'S)

£

Eg. (B-1l) can be written as

: P dz
1 1 31:[ 1 - ueZ}
= - -—6‘2-% {(0[2 - log(l - !J-ez)]} . (B-é)

In evaluating and expressing the derivative of a product such as
that involved in Eq. (B-6), it is convenient to make use of logarith-
mic differentiation. A tilde (™) will be used to denote the logarith-

mic derivative with respect to 7, defined for any function f(t) by

£

f = -i:.t- = (log f)-r_ . (B~7)

With the cbservation from Eq. (168) that
Zp = do% T dofpy 2 (B~8)

Eq. (B~6) then yields



-116-

3 - fl' = - w[&z * 2, - @ log(l - ue®)

]
*-ﬂ—g @+2)]
L - pe

= - m[i’;z - ® log(l - pe¥)

z J &
+J&7@*%ﬂ‘45%]~ (5-9)
1~ ue 1l - pe

In order to facilitate the introduction of boundary conditions
later on, it is convenient to collect those terms of Eq. (B-9) which
tend to zero as z becomes negatively large into a function G(z) which

is designed to vanish at z = 0:

~ 2
G(z) = & log(1 -pe®) - logl -u) - (@ + Ja) —RE—

l---p.ez
*5‘1""};
R _ %
= Blogl+pi=g) .y pld-e)
tow (L - )@ - pe¥)
2
d Z
- _pae®

. (B-lO)
[#] 1 - uez o



~117-

With this substitution, Eq. (B~9) becomes

i = m[rféz + G(z)] *TE +“Lﬁl' - aG(~ )] . (B-11)

In view of the relationship

. b , (B~-12)

which follows from Eq. (68), the function G(z) alternatively can be

written as

’ z z
G(z) = @ log(l +p T— : ) + (QE - Gb) S -
‘ 1 - pe

~  uze

“J, . (B-13)

B-2, Equation for ¥

On introduction of the logarithmic derivative notation, Eq. (B-2)

becomgs

¥, o= =0ojz+ £y . (B-1k)

B=3. Equation for el

On evaluation of @ _, from Eq. (166), Eq. (B-L) becomes
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z N -1 ~
Ro= = 3 8pe + 88, - :f'Tr*‘~ Yo¥o
h o o~ ~ |
-1 & -x=1 , -
Vo= we v o - =19)) . (B-15)

From Eq. (B-6), jl can be expressed in the form

J

1 ~ ) z ~ ~
- - mz—log(l-p.e )] +z - (GD—GC) -

i

s (B-16)

d

which on substitution into Eq. (B-15) yields

~ ~ - t
e ’R = -\]rc{p.?é[z - log(l - pe?)] + Bz, + (&0 - aé)l——z-ﬁ‘—’—
e

+

o -TLy
8y -~ Y We_p'fl'}

2 @
~ ' z a; '%%
- ‘?O{Wﬂ[z - log(1 - ue 7+ ——;—;—-—

f. !
-u@ =2} (B-17)
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-3 ~ z2 z gc B L;_l' ’;;
Ie Rdz = ¥, m[—Q- - flog(l-—p.e )dz] - -————;;——-——-
~ £
-pe + —?'t-)z} . (B-18)

On introduction of the convenient abbreviation

z Z
2
H(z) = %—p.ez - J‘p.ez j log(l - p.ez)dz2 s (B=19)
0O -0

Eg. (B-18) can be written as

N : =y -8
fe “Hdz = ﬁr_\‘?ée.zﬁ_ - u(oHi+ -%—-)z + L2 S0 (B~20)
hd UL z 4 eZ -l

It follows that

2 NV
fez fe-szz = 'xyo WH - (@ + 3 + —;—)(z - 1)e*

+ O3 - 5)a] (B-21)
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= 2 n =¥ _g Hoe oy (e 2

Ql : ; Z{fh + ‘(“Y ¥, Bc)z + [f3 (ot = )z]e
)

+~§ﬂ(z)} ' . (B-22)

The function H(z) can be evaluated by expanding the integrand of

Eq. (B-19) in powers of we®, which is always less than unity. Thus

pez p.ez o

' 2 k-1 2
H(z) = -z:?-p.e5 + J‘ I -gu—e;i——[d(uez)]
‘ 1

L O ke
2 o z.¥ 2 K
= .z..z.-. p,ez + Z ..(E'_Q._...._ - A . (3.23)

B-li, Evaluation of Arbitrary Functions from Boundary Conditions

The arbitrary functions Ii% £, f3", and fh“ in Egs. (B-11),
(B-1kh), and (B-22) ecan be evaluated by substituting these equations
into Egs. (180) to (182). Thus BEgs. (B-22) and (180) yield

" "o
fh + f3 | 0

(B-24)

£
'f"h” - (I:r_. v, - e,c) * fBﬁ + e + W ¥ - )Ale

+@H(-A) = 0 , (B=25)
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from which it follews that

: - £
Al EETE) e@ T e e8] s @m(-a)
£ = Y @ (B=26)
3 1-e"4
2 e H -
o f3 . (B-27)
Substitution of Eqs. (B-26) and (B-2¢) into Eq. (B-22) gives
52
e o= (Y -8+ AT
¥, 1 ¥y Yo~ % 1 - A
£ z
—u(&'+§+-—lf)(ze” + Ae™® l“”_ )
, @ l~e
~ 1 - e”
+w[H(Z)—H(-A)———:K-] . (B-28)
l-e

Solution of Egs. (181) and (182) for ¥, and ¥, , respectively,

and application of Eq. (B-lh) yields

1 ~
8,72 (31, = Tolkar) = - (GT.A w£,0) (8-29)

%

1 .
o0 Ui = Topor) T 5 | (B-30)



while Eq; (B~11) gives
Gy, = o[f,A +6(-4) - 6(-)] * Tl * 4 (B-31)
'jlb = - @i (~c0) + robgb'c + fl’ . (B~-32)

Eliminaticn of f2' between Egs. (B-29) and (B-30) and substitution for

r " g - - 1 1
Jla and»jlb from Egs. (B~31) and (B-32) leaves an equation ini'l

alones

)

w&al//a[%A +6(-4) - 6(-w)] + &faliarea(gb‘f - <

av

172 ~ 142 172
+ aa fl' + GJOA -meb G(=00) + @b

fi' =0, (B"'BB)

With introduction of the notation
6 Eb Ea jo ‘ (B-34)

and use of Egs. (77), (B=5), and (167), Eq. (B-33) ean be solved for
fli in the form

f1 = w(_m) - __&D__ [A(I"\' * g‘ . cjgtpa //2)
1 i+n L™V¢ 1-p,e"A )

+ G(?-A)] . (B-35)
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The final arbitrary function i‘g' can now be evaluated with the aid of

the ielationship
| 1/2r,
£, = 6% - oi(-m)] E (B-36)
which follows from .Eqs. (B-BO) and (B-32).

Substitution of Egs. (B-35) and (B-36) into Eqs. (B-11), (B-1ll),

and (B-28) and use of Bq. (B-13) yields

1 o 1 ~ & 05; a1/2
= .jl = -TZ+ Q(z) - = [A(rc + 1-p.e"A +

»+l G(-A)] + f%—f—-bi (B~37)
aVl " - ff';: - 0. I [ac 1"75}7

- cizal/z;) + G(-A)] (B-38)
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2.5 = - (ze° 4+ Aé-A L-e ){?éu[l - log(l - w)]
wh 1 ~-A
c l-~e
~ o~ 3
T eb - % -5 LA(r M -A
1l - pe
~ 1/2
Ojo‘pa /
+ + G(= A)]}
-] ~ 1 -6
+ (I=v, - 6 )z + A )
Y 1-e4
~ 1 - e
+ m[H(z) - H(- A) ——-———:—Z—] » (3“39)
lL-e
B~5. BEvaluation of Logarithmic Derivatives in Terms of é;, eb, and 3

Since the given data in the present problem are the temperatures
and positions of the twe liquid surfaces as functionsnof time, it is
desireble to express all of the logarithmic derivatives involved in the
above equations in terms of 5;, é; and 8, As a first step, expressions
involving only 6;, @%, 5; W; and 3; are obtained, The latter itwo of
from Egs. (164) and

these are then evaluated in terms of @; and §'

b
(165).
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It follows directly from the defining equations (71) and (B-5)
that

;; = Q; = 8 (B-Lo)
RN RN "

From Eq. (83}, with &, 6, and & considered functions of time as dis-

cussed in 8Section 4.1, it can be shown that

= % ea +- (l —%)Bb - 1L ITF-A-A - (B")-‘Q)

On introduction of the abbreviation

~-A
g = ——-———-KlAe_ (B"hB)

and observation from Eq. (B-34) that

-2

€.
+
4

“

A = (B~Lb)

o



Eq. (B-42) becomes

i
't
L 3k

5; + (1 - %)Qb - p.g(g; +38) . (B=45)

It remains only to evaluate ;j:) and \?; . From Eq., (16L), the former

is given by

4
»
2

& o~ n 5;-6: 1\~
= Tl - 0.8 mmm (e - D)9,
¢ 8
a 1 ~ % n ~
= [l—s - 2(l+n)]aa -[1..3 + 2(1-0-1‘1)] 9b . (B-L6)

Similarly Eq. (165) gives

7+
Pa°a

]

-
il

~ ~ n
o n«-s(m*ss)—l«i-n

1l rn ~ n ~ -4
) ﬁ“i" S0pl0, = (7 + 89,00, |- 7 —5=+0

eb . (B"'hT )

=[n¢a n(l-s) 1"' [sq’b n(i-s) -‘

n+s  2(itn)(n+s)| % Yo * 2(1+n) (n+s)]
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The final expressions for the various logarithmic derivatives in

terms of §;, 6; and E'are conveniently summarized by introducing the

notation

{

e ] z od) z o-e—z (%

g1

Equations (B-40) to (B-47) then yield

A Pa - 1

3 1 =8 2(1+n)
B - B¢y, - n

J 1 -8 2(1 +n)

n(l - 8)
AW n+3s Aj
l -3 ,

% T "aes B

(B-L8)

(B-L9)

(B-50)

(B-51)

(B-52)

(B~53)

(B-5L)

(8-55)

(B-56)
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1

1- u(%— - gB.J.)

- Ug

AW - Ae

BW - Be
—Bespg
A - A=A
¥ J e
B ~-B, ~B
S 8

(B-57)

(B-58)

(B~59)

(B~60)

(B-61)

(B-62)

(B-63)

(B-6l1)

(B-65)
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APPENDIX C

Form of Linearized Nonsteady-Flow Solution When

Equilibrium Flow Velocity is Zero (@a

= 8,)

The solution of the linearized nonsteady-flow problem derived in

Appendix B and summarized in Egs. (197), (198) and (219) assumes an

indeterminate form as €, and thus jo’ tends to zero (ea-wb)-, since

in this limit @, @, and 3"0 tend to infinity while A tends to zero.

The limiting indeterminate form is evaluated in the present appendix,

~ Of the various quantities involved in Bgs. (194) to (219), all

but j_, o, :]':, a, z, and A tend to finite non-gero limits as & -0,

The dependence on &€ of these remaining six quantities arises primarily

from their dependence on j‘3 and is conveniently expressed in terms of

the parameter A = 3‘06:

= A
‘jo 6
o - o T
3, A
J
~ oT e]
3Q=3—-—= ot
0 A
83
~ ~ [ond ~~ oT
® = To=Jd, = c A

(c-1)

(c-2)

(c-3)

(C-k)

(C-5)
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The next step is to expand the various basic space-dependent
functions invelved in powers of A . If ko, and b ! are written for the
limiting values as &€ -0 of u and ap./aAl 6 s respectively, and use

is made of Eq. (0—5), the required expansions are found to be

—oZ B B 2 p !
le)= oyA- 0 (L-O 2

log(l +p YA
1-u 1"“0 (1-;10)2 ¢ L
# .. (c-6)
1+ 2 B!
1 - e® 1 o ¥ 0 2
= - yA - (— - y)A + eee (0"7)
l - uez 1 P-o (l"p, )2 2 1‘“1},0
z ") B B!
2 2
pae . = - 1‘3 yA + o 2(y - ° y)A * ene (0-8)
1-pe o (1-u)) Ho
“Ay A 1-e"AY Y - 1) ,2
Aye - Ae _——x = - —lg'——'A'
l-e
- Hy-liéii*l) A3 * cen (0-9)
-Ay

iK"Y = -z%:-l—)—A+ (y"lig‘)y"l)f-r..{ (c-10)
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Z .
H(-Ay) - H(-AA2C =, [1 - log(1 - u )] EE2LA2
L -g

| "
- {#o[t - Tog(t - My + 1 - 6 %)

(o)

u —
*2 1_;0@ +1- BMO')} 1%'7;—)-1&3 + s (C-11)

Substitution of Egs. (C-3), (C-4), and (C-6) to (C-8) into Eq.
(19L) and neglect of higher order terms in A yields

~ A

Z 9 -0 z
log (1 +p,i::') + & Db l-e

6(-Ay) _
A

F>|a”e

A 1-pe®

2‘ Y . (0*12)
) 2(1-pb)

Sinee n = 1 in the limit under consideration, Eqs. (219) and (197)
then yield similarly
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In evaluating the limiting form of Eq. (198), it is convenient to
consider first the combined coefficient of &. With the aid of Egs.
(C~9) and (C-11) (and a reminder to expand the function of p in powers
of A ), this coefficient is found to have the form

—AY

H(-Ay) - H(-A)i—:‘j:z‘"
~e

-.Ay

-4 -

+ufl - log(l - W] (Aye @Y - pe™8 i""‘e"'z\"“)
' - @

T4 2
ey L=t 235 ocaly. (oas)

It follows from Egs. (198}, (C-3), (0-9), (C-10), and (G~15) that

~

91 . rc-jo[ By y(y -1) A3 *O(Ah)]

2 2 l-p. 6
6°r 0, A
E-—BN-HO(A)
b -1) .2 3
4_0__5_2.___.[-2’_(%_)_A +0(A )]
-1z
* Z° [- T8 a4 0(a%)]

=[5 -ty . Jot ] B L (o)
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The limiting forms of T, = \yo/ Bc s rcec = qfo, and rc+6c = Wo
involved in Egs. (C-13), (C-1k), and (C-16) are readily evaluated by
substituting P, = Py A=0,n=1, and 5 = 1 in Eqs. (80), (83),
(200), (207), and (208)., The results are

Pa

¥, — e (C-17)
e~»0
s
rc;aa e 1-u) (C-18)
~ O ~ ~
\YO —a—-:'PO‘ 3 (a’a - gb) . (0—19)

The value of o is found by expanding A in powers of e,

l-‘(l-sq)a*' ..-) 1/2 e"@a

®
l‘*(l"";“"‘.on) a

A= i = 5

-9
a e 8 s +O(e2) s (G=20)
and substituting in Eq., (84) to yield

1lim lim €

T bo=
e-»0 >0 1_(1_6)[1_ %. q)a3720"(pa 65"0(32)]

0

= l . ‘.’ (0-21)
1 +-%-‘q: 312 e"@a 5]
a
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Finally the limiting form of jo?r’ found by substituting Eqs. (205)

and (206) in Eq. (199), multiplying by Eq. (164), then passing to

the limit, is

o 1/2 e"‘”a
lim }|7s
01:5_'050 1+n a'a " %p
2 _.Q ~ ~ s
- %%3/ e % (8 -8) . (C-22)

From Eqs. (C-18), (0~21), and (C-22) it follows that

6jm:“to Y e~
— - 8 - 5
1l - By e->0 a’a, e’b (© 23)

1/2
Jor?a (L =1 Py m
e Tt &) (0-2)

On substitution for Tos rcec =Yg T, * 90 = \jro, Hos and Jo'r in

accordance with Egs. (C-L17) to (C-2L), Egs. (C-13), (G-14), and (C-16)

become



-] 3 ‘

s

i ——
lle_’o

op_e
6, —2—le ey -1 -0) - &% + 1]

a
~ G(Pae 2
+ 8 — [o, (2y-140) + 2v° - iy + 1]
w
o8 °
+ ﬁ,: 2 (2Y - 1)
0 /2 P2
Vo — = g' —-E—r----[m fl - G(E‘v—lﬂ -11
~ =0 “
-,
~ 5‘9 1/2
- b _"‘T'— {@a[l *0(2}7-1)] -l}
-
tpaMze
-8, 2
_ 2 g2 Pa y-1 95 iw, y(y-1)
Ql a—:a(p) eaﬁ e (T 5 - 3 ) X..%_.._
- Bbﬁze a(L;:.L. %a i‘.‘Z) X_(%ﬂ-)_

-

(C-25)

(C-26)

(C-27)
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APPENDIX D

Estimates of Magnitudes of Logarithmic Derivative

Coefficients When A P> 1

It is the purpose of this appendix to show, at least when o,

is not too small, 1) that u.:)yo, ud, 9.

o? and @; are of the order of or

less than :F;, 2) that the 3; and e"'b components of p.&?, é:;, and ’(3’13 are
also of the order of or less than the corresponding components of %,
and 3) that the 1 components of ua, @;, and @:D are no larger than that

of ect

For A >>1, it follows from Eqs., (84) and (204) that
B o= & (D-1)

g « 1 . ~(D-2)

Since &, u, n, and & are all restricted to the interval zero to unity,

the following estimates can then be made from Egs. (207) to (217):

,*_‘”‘i‘l L) S S 2 8
A n(i - 8 1l -8 L -8
¥
-1 %9 -1 -1
< 29, = <2, “(l+ep,) <2(p, = + 1) (D-3)

1-g
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HB. - -
E;L = Rt E <o B oca(p, 4 1) (D-L)
“(AQ + Ae) s(1 +n) m -1

A‘fl’ ~| = B TSF<27T3 <2, " +1) (D-5)
w(B + BB) l+n T8 -1
‘___.._..__W% : ’ = piTo<2r <2@, " +1) (D-6)

1 l

By = 7= 5(‘7 2) 2(1 TR OO Fw L (0-7)
AG ~ 1 (D=8)
|Bg| < 1 (D-9)
|Dgl = D[ = D (<<1 . (D-10)

It is seen immediately from Eq. (D-10) that the 5 éomponent_s of
D, 3;, and 5:0 (p.Dw, De, and 0, respectively) are equal to or less than
'De, which is the gcomponent of © c*

From Eq. (207), A\y can be written as

. n l-3
& = el - A (D-11)
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Ir ?, is considerably greater than unity, then n remains essentially
equal to unity for values of & such that s differs appreciably from

zero, so that in this region AW is approximated by

@

] a l -8

Aw A T35 " [T (D-12)
1

dA, dA sp (o, -~ %)

= e 222 50 .  (p-13)

1+ 8@ -¢)

On the other hand, when s becomes negligible Eq., (D-11) reduces to

by = 0T (-
di dA.

¥ . _¥dn  _ 1 <0 . - (D~15)
de dn de L].n(l + n)2

It follows from Egqs., (D-13) and (D-15) that, at least when o, > 1,
Awnhas a single maximum and thus its minimum in the interval 0 < e < 1

is at one or the other of the end points, In other words,

®

a
v - ¢
A, > min 2 - 2 (D-16)
| -1
wa‘ 2
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In most cases of practical interest ¢, is of the order of ten

or greater. Under the arbitrary assumption that ®, is at least 5,%

Eq. (D-16) indicates that A > 2.5 and Egs. (D-5) to (D-9) yield

v

. the numerical limits

2y

A

BAg

Ay

+ < 2.8

’u(Am + Ag)

A

HBs
B
y

\(B_+B,)|
~ l‘i_aﬁf__.@_( < 2.4

¥

Ok

sl
N

< 1

t:dlw
= e

1
-_1 < 4 .
B
¥

(D-17)

(D-18)

(D-19)

(D-20)

(D-21)

Equations (D-17) to (D-21) demonstrate that, at least when 0, > 5, the

a
than the corresponding components‘of @;.

E; and 5; components of w@, 5;, and @; are of the order of or less

See footnote on page (7.
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In view of Egs. (D-7) and (1~9), Eq. (213) becomes
B. ~ B, > i (D=2

Pa

5 - 1. (D-23)

For o, > 5, Eq. (D-23) implies that

Az 3 (D-2L)
A
ﬁ < g. (D-25)

and Eqs. (D-3), (D-i), (D-8), (D-9), and (D~22) yield

V9.1 A lua
-—.—1 = -I --—1 < h -
T wiy | | (D-26)
uB uB
B 5, L (D=21)
1y HA

b o
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. wB. | |
_B_m £ B+ -';41 < 3eb : (D-29)
T T

A : ‘

B 1 2

| ® 5= £ 3 (D-30)
A, & =3

B&

gl <1 ' (D-31)
B, | .

i

Br <L . : (D-32)

Equations (D~10) and (D-26) to (D-32) demonstrate that, at least when

~r

¢, Z 5, the guantities p.:]:, Dy '0:, and Gb are all of the order of or

less than T,



W
(2)
(3)
(1)

(8)
(6)
(1)
(8)
(9)
(10)

(11)
(12)

(13)
(k)

(15)

(16)

)
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LIST OF SIMBOLS

Common subscripts which may be appended as appropriate te the
"~ basic symbols listed below are:

Xy Vs B E, Ly T Partial derivative with respect to sub~
' script variable

&, b, ¢ Value at x = Xgs X = X, and x = =00,
‘ respectively
0, 1, 2, « . & Order of term in perturbation expansion

A superseript asterisk (*) indicates a normalizing value (dependent
on particular substance considered), A tilde (™) over a symbol

indicates the logarithmic derivative with respect to .

Homan Letiers

A Consgtant value of (p + pu2)/p% in steady flow; Coefficient

of & ' '
a

b van der Waals constant

B Integration constant in solution for temperature distribu-
tion; Coefficient of eb

c Velocity of sound

cp Specific heat of vapor at constant pressure

Cy 8pecific heat of vapor at constant volume

d Effective diameter of vapor molecules

D Coefficient of &

e Intrinsic energy of vapor per unit mass; Base of Naperian
logarithms

f  Arbitrary function of <



-1l

'Ae-A/O;-eHA)

Function invelved in solutions for jl, 'ajil, and &l
o Vo,

Function involved in solution for 91
Normalized current density (‘J/J*)

Intrinsic first-order normalized current density
Current density

Thermal conduetivity of vapor

Integration constant in expression for pe

Mean free path in vapor

Latent heat of vapor per unit mass

Mass of vapor in cavity

Mach number (u/c)

Square root of temperature ratio [(Tb/Ta)l/E = (1 - 5)1/2]

Avogadro's number (6,064 x 1023 molecules/mol)

Numerical density of vapor molecules

Spacing between liquid surfaces in mean free path lengths

[g, = x,)/01]
Pressure of vapor
Equilibrium vapor pressure

Normalized density of vapor (p/p*)

Gas constant per unit mass; Right-hand member in differential

equation for 6

~e¢,/ (1~¢)
e
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8 .Liquid sufface area of cavity
t | Time |
T - Temperature
‘u Velocity of vapor
. /e
v,  Molal voiume at 0°C and 1 atm (2.2i1l x lOu cmS/mnl)
v Volume of cavity
w 1 -7
b4 | Distance
y Fractional distance from cooler liquid surface
Llx, -x)/(x, ~x) = (& -&)/6]
% Characteristic space variable [- itg, - £)]

Greek Letters

a Bvaporation coefficient

f Acoommoflation coefficient

v Ratio of specific heats (cp/cv)

] Normalized spacing between liquid surfaces (Eb - Ea)
A Characteristic surfacé—spacing parameter (j&)

Fractional temperature difference [(3a - eb)/@;]

2 )

Coefficient in expression for mean free path
- 1 -1/3
1276 v o 0 2 M7 (smnp?) ™3]
o0 A
M Characteristic temperature variable (0326/A2)
o Normaligzed temperature (T/T*)

X Fractional current-density difference[(j - 30)/36]
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O

Q

-1 U6

Dimensionless temperature~difference parameter (1 - eb/ec)

Parameter depending on dimensionality of flow
Normalized distance (x/x%)

Density of vapor

Equilibrium vapor density

Vapor dehsity at 0°C and 1 atm

WH2mT* = g%en

Normalized time (t/t”)

. Reciprocal of normalized temperature (9°1 = T°/7)

Value of ¢ corresponding to 0%

Value of ¢ corresponding to boiling temperature at
atmospheric pressure

Normalized pressure (p/P*)

Reciprocal of asymptotic normalized flow velocity (rc/jQ =

u%/uc)



