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ABSTRACT

In this thesis, we study several subjects in gravitational wave (GW) physics, in-
cluding gravitational wave lensing, detection with astrometry data and dark siren
measurement of cosmological parameters.

We investigate various lensing features and their detection prospects in third-
generation gravitational-wave networks. Firstly, we focus on type II lensed images
which are Hilbert transforms of regular images. We compute the waveform mis-
match and quantify the distinguishable fraction given Bayes factor thresholds over a
range of binary mass ratio and redshifted mass. We make forecast on the detectable
and distinguishable type II images in aLIGO Voyager, Cosmic Explorer and Ein-
stein Telescope. This work shows that a significant number of type II images can
be distinguished from waveforms alone, and this strategy can contribute to future
pipelines for more accurate GW event inference.

We further model relativistic lensing in a large-inclination hierarchical triple system
with a central Kerr supermassive black hole. We combine the elliptical integral
formalism and optical scalar formalism to study image location and magnification.
By analyzing the repeated lensing signature observed by the Decihertz Gravitational-
wave Observatory, we examine the importance of relativistic images in detecting the
presence of lensing or specifically the lens spin. We compute the detectable effective
volume and estimate the upper limit for expected number of such events. This work
demonstrates that lensing with relativistic images is a fruitful avenue where decihertz
observation contributes to studies on intermediate-mass binary black holes and their
galactic environment.

GW detection with astrometry was proposed as an alternative strategy that uses
stellar astrometry data for GW measurement with flexible frequency coverage. We
point out that surveys providing relative astrometry only can also be sensitive to
GWs. We apply this method to the Roman Space Telescope Galactic Bulge Time
Domain survey and make sensitivity forecast for both monochromatic GWs from
supermassive binary black holes and stochastic GW background. We clarify the
survey requirements and technical challenges for GW detection, and show that
Roman will enable microhertz GW measurement for local sources. We also present
on-going work to develop a data-processing pipeline to use Kepler archival data to
search for GWs.
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With increasing number of events in GW catalog, the GW source population offers
a unique perspective into cosmology and astrophysics. In the last chapter, we use
a Fisher information formalism to quantify the astrophysical model error tolerance
of GW dark siren measurement on cosmological parameters. We generate galaxy
catalog based on realistic survey and population parameters, and we apply expected
GW uncertainties in third-generation ground-based networks. Based on simula-
tion results, we study dominating error factors and make suggestions to dark siren
selection strategy given different total error requirements.
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C h a p t e r 1

INTRODUCTION

The successful detection of gravitational-waves (GW) from compact binary mergers
by the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [91]
and Virgo [10] Collaboration heralded a new window of astronomy observation.
Since the first detection of GW150914 [3], subsequent events have greatly enriched
our understanding of gravity and many aspects of astrophysics. To maximize the
science output from this avenue, immense research efforts have been dedicated
to understanding how to improve GW detection, interpret data and broaden its
application.

This thesis features exploration in these three aspects through a number of projects.
In Chapter 2 and 3, we focus on modeling waveform modifications from propagation
effects and their detectability. Chapter 4 and 5 explores GW detection using relative
astrometry and makes sensitivity forecast. In Chapter 6, we discuss the bias tolerance
of the Hubble constant statistical inference using GW events. In the following
section, we provide a brief overview of these topics and present summaries of each
main-text chapters.

1.1 GW Spectrum
From the perspective of the GW spectrum, the tremendous success of current ground-
based detectors only hints at the wealth of information we can get by unlocking access
to GWs of full range of frequencies. Since the GW frequency is tied to the source
mass scale, a wide sensitivity band allows us to explore from stellar-mass black
holes and neutron stars to supermassive black holes at the center of galaxies. For
similar groups of GW sources, observing them at different frequencies also gives
us “snapshots” of their evolution. In this section, we briefly review existing and
in-planning observing strategies over different GW frequency band.

Ground-based detectors cover the high frequency end between O(10 − 10k) Hz,
ideal for detecting solar-mass binary mergers. Existing detectors include aLIGO
[2], Virgo [10] and KAGRA [15]. Future upgrades include the aLIGO Voyager
[11] and the addition of IndiGO [78]. In the upcoming decades, a new network of
third-generation GW detectors are expected to bring orders-of-magnitude sensitivity
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Figure 1.1: Detector power spectral density at different frequencies in the GW
spectrum. Current detectors are shown in solid lines and planned ones are showed
in dashed lines. See text for detector noise references.

improvement by extending detector baseline (Cosmic Explorer (CE) [121], Einstein
Telescope (ET) [125]) [55].

The decihertz band is expected to be covered by space-based detectors. Several pro-
posed detectors are Fabry-Perot Michelson interferometers with the same working
principle as ground-based ones, and they reach lower frequency by avoiding Earth-
borne noises (e.g. seismic contributions [94]). Observatories in planning include
DeciGO [82] and TianGO [85], targeting intermediate-mass black hole binaries
between O(102) 𝑀⊙ and O(104) 𝑀⊙ [85].

The millihertz range will be covered by space-based detectors, including the Laser
Interferometer Space Antenna (LISA) [17] and TianQin [92]. Different from the
decihertz detectors, LISA and TianQin are both transponder-type interferometers,
where the mirrors will be in free fall according to their local gravitational potential
[17, 82]. These detectors can probe massive black hole mergers (MBHMs) at high
redshifts, which is instrumental for mapping black hole evolution history [134].

The lower frequency range is observed with a different set of strategies. Aside from
continuous waves from massive black hole binaries (MBHBs) and supermassive
black hole binaries (SMBHBs) (105 ∼ 109 𝑀⊙) [129], the stochastic GW background
is another important target. Such background can come from a superposition of
SMBHB radiation [42, 114], inflation or cosmic strings [35, 46, 73, 88, 131].
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The most recent GW measurement in the microhertz comes from precision Doppler
tracking of the Cassini Mission, and the isotropic GW background is constrained
below ℎ𝑐 < 2 × 10−15 at about 0.3 millihertz [21]. Another detection method
is by observing GW-induced apparent oscillation of stars [27, 68, 98, 99, 118,
119]. This method requires measuring astrometry of a large number of stars with
high cadence, which suggests that datasets intended for other objectives, such as
astrometry precision measurement and exoplanets microlensing, can be repurposed
into GW probes. In Ref. [84, 102], the authors consider Gaia [117] and present GW
sensitivity estimates, as the special instrument design and observing schedule of
Gaia provides exquisite astrometry quality and numerous targets. Other promising
candidates include the Roman Space Telescope (specifically the Galactic Bulge Time
Domain survey) [1, 66, 138] and the Kepler Mission [28, 100]. Other detection
variations have also been proposed; for example, GWs leave imprints on asteroid
acceleration [63] and the phase of continuous GWs from galactic sources [79]; by
monitoring these “carrier” waves, we can infer the presence of GWs. Interferometer-
type detectors similar to LISA have also been introduced [129].

In the nanohertz range, pulsar timing strategy has been extremely fruitful with more
than a decade of observing efforts. Pulsar Timing Arrays (PTA) measure the time of
arrival (TOA) of pulse signals and look for modification from GWs. Across multiple
pulsars, GWs manifest as a common red signal that demonstrates characteristic spa-
tial correlation [22, 54, 101]. In the recent North American Nanohertz Observatory
for Gravitational Waves (NANOGrav) [120] 15-year data release [12], it was found
that the timing residual correlation between pulsars is consistent with the Hellings-
Downs curve expected for stochastic GWs with a 3𝜎 confidence [13, 76]. The
background strain amplitude is measured to be 2.4+0.7

−0.6 × 10−15 at 𝑓 = 1/yr−1[13].
Although the nature of this signal was not established due to suspicious inferred
astrophysical model parameters [14], more collected data is expected to fully clarify.
Other PTA networks include the European Pulsar Timing Array (EPTA) [64], the
Parkes Pulsar Timing Array (PPTA) [83] and the International Pulsar Timing Array
(IPTA) [20].

In Figure 1.1, we show detector noise characteristic amplitude at different frequency
ranges. Existing detectors are plotted with solid lines, while proposed strategies
are shown in dashed lines. The amplitude of IPTA is calculated from analytical
expression in Ref. [135], and assumes observing 20 pulsars every 17 days for
12.5 years with a timing uncertainty of 250 nanoseconds. The astrometry method
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sensitivity forecast for Roman Space Telescope is described in Chapter 5. The
Cassini constraint is pulled from Ref. [21] via WebPlotDigitizer1. The noise
amplitude for LISA, DeciGO, ET, CE and aLIGO are given in Ref. [55, 124, 139].

In Chapter 4 and Chapter 5, we make sensitivity forecast on detecting continuous
waves and stochastic background with the Roman Space Telescope. In the appendix,
we discuss ongoing work using the Kepler archival data.

1.2 GW Lensing
As the GW travels through the universe, the waveform could pick up imprints from
its propagation environment. Identifying these waveform distortions is crucial for
properly extracting physical information from data. On one hand, GW waveform
distortion from propagation effects can be confused with a shift in the intrinsic source
parameters, and, if unaccounted for, can introduce bias in the source parameter
estimation and the following analysis. On the other hand, the specific form of the
distortion sheds light on properties of the objects the GWs interacted with, offering
excellent opportunities to probe the cosmos [7, 87, 97, 112, 113, 137].

Lensing is one such common and important propagation effects. Depending on the
impact parameter, GW wavelength and lens mass, lensing can be categorized into
strong lensing, weak lensing and microlensing. Within strongly lensed images, we
further differentiate relativistic images, when the lens is sufficiently strong (e.g. a
supermassive black hole (SMBH)) and the GW path wraps around the lens multiple
times before reach the observer.

When GW passes close to the lens and the wavelength is much shorter compared
to the mass scale of the lens, the GW is bent strongly enough by the gravitational
potential and splits into multiple images [126]. Galaxies are common lenses for
GWs in the ground-based detector band [25, 50, 89, 110, 140]. Since the rate of
lensed images directly depends on the foreground matter, GW lensing is informative
on galaxy number density models [89, 90, 109]. As another example, since the
lens solution is shared by both GWs and electromagnetic waves (EM) in general
relativity (GR), observing both lensed GWs and EM counterparts gives a constraint
on GW speed [41, 59].

For a strong lens such as a SMBH, the gravitational potential is sufficient for wrap-
ping the propagation path around the black hole multiple times, creating relativistic
images [31, 53]. Literature for relativistic images typically focuses on EM emis-

1https://apps.automeris.io/wpd/
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sion, and their image position and magnification have been thoroughly investigated
[18, 30, 31, 53]. In particular, analytical solutions for Schwarzschild strong lens
and special cases for Kerr strong lens with symmetry are provided in the geomet-
ric optics limit [29, 31]. These study finds great application in the recent Event
Horizon Telescope (EHT) observation [56, 57] on SMBHs at the center of galaxies.
Relativistic images form the light ring, which in turn reveals information such as
the SMBH spin magnitude, spin axis, accretion disk structure, and even strong-field
gravity [26, 69, 70, 74]. The application of relativistic images in GW was discussed
in earlier theoretical works [19, 95]. However, the low magnification of relativistic
images dictates that only lens system with special geometry can possibly produce
detectable signature by next generation GW detectors [77, 81, 86, 92]. In Ref.
[52, 141], the authors explore a hierarchical triple lens system where the GW source
is in orbit around the SMBH. Successful detection of such images can shed light on
SMBH characteristics and astrophysics on the accretion disk in the galactic nuclei
[23, 37, 38, 96, 111, 128].

Weak lensing occurs when the GW wavelength and lens mass scale becomes compa-
rable or when the impact parameter is large. Depending on the context, the empha-
sized effect is either a small amplitude magnification or diffraction [107, 108, 132].
In the former case, GW weak lensing is typically used statistically as a probe of
foreground cosmic matter. In combination with galaxy weak lensing and number
density information, it is possible to probe deviation from general relativity, such as
GW strain damping and massive graviton [103, 104]. In the latter case, diffraction
phase modulation from weak lensing is typically used for individual events to probe
small-scale foreground matter, e.g. dark matter subhalos [67]. GW microlensing
refers to even smaller lens such as stars, and adds finer resolution features to, e.g.,
galaxy strong lenses [40, 49, 97].

Differentiating lensed GWs from unlensed ones poses great challenge to data anal-
ysis. For weakly lensed GWs, diffraction patterns are typically not degenerate with
GW source parameters (e.g. [67]). This is not so for strongly lensed images, where,
to leading order, the magnification is fully degenerate with a shift in luminosity dis-
tance and intrinsic mass [44]. Existing strategies include looking for multiple GW
events with consistent intrinsic properties and sky location [33, 45, 75]. However,
the false alarm rate (FAR) for this matching (i.e., event pairs with coincidentally sim-
ilar parameters) increases with total event number, 𝑁 , as 𝑁2, while the true lensed
GWs increase with 𝑁; this highlight the potential issue of FAR overwhelming true
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lensed GWs [34], especially in light of the expected increase in event number from
next generation GW detectors, LIGO Voyager [11], Einstein Telescope [125] and
LIGO Cosmic Explorer [121]. Another identification strategy relies on the structure
of GW source intrinsic mass distribution and considers outliers as lensing candidates
[32, 109]. Nonetheless, not all strongly lensed GWs are degenerate; in Ref. [43, 93],
the authors discuss lifting the degeneracy by considering higher GW modes, orbital
eccentricity and spin procession.

In Chapter 2, we explore the detectability of type II strongly lensed images. In
Chapter 3, we study the waveform and detection prospect of relativistic images in
Kerr black hole hierarchical triple systems.

1.3 GW Dark Siren
GW events are tracers of matter structure in the universe. As the GW catalog
expands, we expect not only to learn more about the GW source property and
population, but also to shed light on cosmology and other astrophysical subjects.
One application that has drawn great attention is to use GWs to measure the Hubble
constant and clarify on the Hubble tension. The Hubble constant is an important
cosmological parameter that describes the expansion of the universe; however,
different measurement methods have yielded strongly contradicting conclusions
about its value [80, 136]. The Planck observation on the Cosmic Microwave
Background (CMB) yields 𝐻0 = 67.4±0.5 km/s/Mpc [116]; but “standard candles”
[47, 48, 122], e.g. Cepheids in Type Ia supernovae hosts, suggest a value of 73.2±1.3
km/s/Mpc [123]. In light of this contradiction, a third independent test is in great
need to shed light on the Hubble tension resolution.

Analogous to the standard candles, GWs contribute to this topic by offering an
independent measurement on the luminosity distance. For standard candles, the
intrinsic magnitude is known, and the luminosity distance is inferred from apparent
magnitude [51]. For GWs, the luminosity distance is directly obtained from the
waveform. If the source redshift is also known, the Hubble constant can be directly
computed given specific cosmology models [8, 36, 127].

The redshift can be known in two different ways. Firstly, the redshift can be measured
from a EM signal generated by the same GW source, which is called the “bright
siren” case. The only example to date is GW170817, where the gamma-ray burst
is detected by the Fermi Gamma-ray Burst Monitor [4, 5, 9]. Although individual
bright siren can produce a Hubble measurement alone, one of the compact bodies
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in the binary needs to be a neutron star to generate any EM signal. This population
is significantly less numerous than binary black holes (BBHs) [6, 24].

It is also possible to know redshift statistically. In this “dark siren” methodology,
each GW is not assigned a EM counterpart or a known host galaxy; rather, we require
that the distribution of GW population should be consistent with some theoretical
model. If the main focus is the intrinsic mass distribution, the dark siren can be
further named “spectral siren” [39, 58, 62]. Models on intrinsic mass distribution
can be motivated by astrophysical details on black hole formation, e.g., black hole
mass gap due to pair instability [61]. In practice, these models can be captured by
parameterized phenomenological models to allow efficiency and to accommodate
model uncertainty, e.g. TRUNCATED POWER LAW, BROKEN POWER LAW and POWER
LAW + PEAK [133]. The models can also be nonparametric to allow high degree of
flexibility against model uncertainties, e.g. using Gaussian Process [60].

If the main focus is the redshift distribution of GW sources, we assume that GWs
are tracers of their host galaxy, and we measure the Hubble constant by requir-
ing consistency between the GW catalog luminosity distance distribution and the
galaxy redshift profile [127]. This method has been applied with various modeling
techniques and GW detector networks. As GW detector sensitivity improves, it is
hoped that the dark siren method can constrain the Hubble constant to a percent
level [16, 36, 65, 71, 72, 130, 143].

Another flavor of the dark siren focus on the clustering of GWs. Fundamental to this
method, it is assumed that both GW sources and galaxies are dark-matter tracers,
and the GW source clustering scale should be consistent with that of galaxies at the
same redshift, e.g., Ref. [105, 106].

One challenge that the dark siren method, including the spectral sirens, ought to
address is astrophysical model uncertainty. In Ref. [115], the authors show that using
incorrect models with spectral sirens can give bias up to 3𝜎. For clustering analysis,
a phenomenological form of galaxy bias and GW bias (relative to dark matter
distribution) is typically assumed [105]. Similarly, redshift-direction-focused dark
siren can also suffer from incorrect galaxy mass function. Since magnitude-limited
galaxy catalogs are always incomplete to certain degrees, the full galaxy redshift
distribution is a mixture between observed catalog and theoretical rate model. Given
incorrect model assumption, the Hubble constant inference is biased. Understanding
the dark siren inference’s tolerance to these model error is critical, since the statistical
error and systematic bias make up the total error budget. Whether the final error is
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dominated by the statistics or the bias, clarifying the bottleneck factors is essential
for proper usage of the dark siren method. A number of works have explored how
changes in the theoretical model could affect the Hubble constant inference [8, 142].

In Chapter 6, we quantify the galaxy model error tolerance in third-generation
ground-based GW detector networks and discuss dark siren source selection strategy.

1.4 Chapters Summary
Chapter 2: Identifying type II strongly lensed Gravitational-Wave Images in
Third-Generation Gravitational-Wave Detectors
Identifying strongly lensed GW images is challenging as waveform amplitude magni-
fication is degenerate with a shift in the source intrinsic mass and redshift. However,
even in the geometric-optics limit, type II strongly lensed images cannot be fully
matched by type I (or unlensed) waveform templates, especially with large binary
mass ratios and orbital inclination angles. We propose to use this mismatch to dis-
tinguish individual type II images. Using planned noise spectra of Cosmic Explorer,
Einstein Telescope and LIGO Voyager, we show that a significant fraction of type
II images can be distinguished from unlensed sources, given sufficient SNR (∼ 30).
Incorporating models on GW source population and lens population, we predict
the yearly detection rate of lensed GW sources with detectable type II images. We
conclude that such distinguishable events are likely to appear in the third-generation
detector catalog. Our method will significantly supplement existing strong lensing
search strategies.

Chapter 3: Detection Prospects for Gravitational Wave Lensing in Hierarchical
Triple Systems with Kerr Black Hole
In many situations, the leading standard lensing images, where the source lies be-
hind the lens and the GW is only weakly deflected, are sufficient, as subsequent
relativistic images are negligibly faint. However, next-order images can acquire sig-
nificant magnification if the lens and source can be highly aligned. A hierarchical
triple system, where a stellar-mass binary is in orbit around a supermassive black
hole (SMBH), satisfies this condition if the observer inclination is large. Moreover,
suitable orbital conditions allow the lensing signatures to be observed multiple times
during the detector lifetime. In this work, we solve for lensed waveforms in hierar-
chical triples with a Kerr central SMBH up to the leading order relativistic images,
adopting both the elliptical integral formulation and the optical scalar formalism.
We consider the detection prospects of lensing features for the Decihertz Gravita-
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tional wave Observatory. We also compute the effective volume where spin-induced
lensing features can be distinguished from regular images. This work shows that
lensing with relativistic images is a fruitful avenue where decihertz GW observation
can contribute to studies on intermediate mass binary black holes and their galactic
environment.

Chapter 4: Gravitational Wave Detection with Photometric Surveys
We study a GW detection technique based on astrometric solutions from photometric
surveys and demonstrate that it offers a highly flexible frequency range that can
uniquely complement existing detection methods. We emphasize that this method
can be applied widely to any photometric surveys relying on relative astrometric
measurements, in addition to surveys designed to measure absolute astrometry, such
as Gaia. We illustrate how high-cadence observations of the galactic bulge, such as
offered by the Roman Space Telescope’s Galactic Bulge Time Domain survey, have
the potential to probe GWs with complementary frequency range to Gaia, pulsar
timing arrays (PTAs), and the Laser Interferometer Space Antenna (LISA). We
propose several improvement strategies, including recovering the mean astrometric
deflection and increasing astrometric accuracy, number of observed stars, field-
of-view size and observational cadence. We also discuss how other existing and
planned photometric surveys could contribute.

Chapter 5: Constraining the Stochastic Gravitational Wave Background with
Photometric Surveys
The detection of the Stochastic Gravitational Wave Background (SGWB) is essen-
tial for understanding black hole population. In this chapter, we investigate the
relative astrometric GW detection method in the microhertz range. We consider
the Roman Space Telescope and Gaia as candidates and quantitatively discuss the
survey sensitivity in both the frequency and spatial domains. We emphasize the
importance of survey specific constraints on performance estimates by considering
mean field-of-view (FoV) signal subtraction and angular power spectrum binning.
We conclude that if the SGWB is at a similar level as in PTA estimates, both Roman
and Gaia have the potential to detect this frequency-domain power excess. However,
both Roman and Gaia are subject to FoV limitations, and are unlikely to be sensitive
to the characteristic spatial pattern of the SGWB.
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Chapter 6: Tolerance to Astrophysical Model Uncertainty in Dark Siren Hub-
ble Measurement with Third-generation Gravitational-wave Detectors
In this work, we adopt a Fisher information formalism and study the maximum
model error tolerance given specific total error budget. We adopt a mixture model
with realistic galaxy survey and population parameters, as well as expected GW
measurement uncertainties. We find that, to achieve a total error budget of 1% in
the Hubble constant, the galaxy mass function should be known to O(1%). We
identify galaxy redshift uncertainty, magnitude limit and GW angular localization
error to be important error factors. In our simulation, we investigate the effective
bright siren scenario and highlight that the dark siren selection strategy should be
catered to measurement uncertainty and the target total error budget.
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C h a p t e r 2

IDENTIFYING TYPE II STRONGLY LENSED
GRAVITATIONAL-WAVE IMAGES IN THIRD-GENERATION

GRAVITATIONAL-WAVE DETECTORS

Wang, Y., Lo. R. K. L., Li. A. K. Y. and Chen, Y. (2021). “Identifying type
II strongly lensed gravitational-wave images in third-generation gravitational-
wave detectors”. In: Phys.Rev.D, 103(10):104055. doi:10.1103/PhysRevD.103.104055.

2.1 Introduction
Successful detection of gravitational wave (GW) signals from compact binary merg-
ers by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO)
and Virgo collaboration has greatly enriched our understanding of gravity and many
aspects of astrophysics [see, e.g. 5, 70]. To extract physical information from de-
tector data, proper signal interpretation is crucial. For this purpose, it is important
to study changes in the waveform as it propagates through the universe, since, if
unaccounted for, propagation effects can be confused with intrinsic GW features
and introduce bias in subsequent analysis. On the other hand, results of propagation
effects depend on properties both of the GW and the objects along its path that it
interacts with [see, e.g., 3, 41, 48, 58, 59, 75]. Therefore, identifying such signatures
also maximizes the scientific output of GW detection.

One GW propagation effect is strong gravitational lensing, in which the rays of a GW
are bent strongly enough by a gravitational potential and form multiple images with
different magnifications. Gravitational lensing of gravitational waves has attracted
enormous interest. It has been estimated that third-generation detectors can detect
up to hundreds of strongly lensed events [11, 43, 57, 77]; such events can then
be used to study cosmological structures [22, 27, 43, 44, 55] and fundamental
physics [19, 29, 51, 52].

However, identifying strongly lensed images is challenging since the predominant
effect of strong lensing, namely the amplitude magnification by √

𝜇, is degenerate
with scaling down the luminosity distance, 𝐷𝐿 , by √

𝜇 and keeping the redshifted
mass, 𝑀•(1 + 𝑧𝑠), constant [see, e.g., 23], where 𝑀• is the total mass of the binary
and 𝑧𝑠 is the redshift of this GW source. This degeneracy stems from the fact that
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General Relativity is a scale-free geometric theory, and that GW frequency evolution
is unaffected by strong lensing [23].

Current search strategies typically look for multiple events in a catalog that are
consistent in intrinsic properties and sky locations, and have orbital phase related in
characteristic ways [see, e.g., 24, 35]. For example, this has been used to study the
series of events GW170104, GW170814 and a sub-threshold trigger, GWC170620,
as potential candidates for lensed images [24]. In Ref. [14], the event GW170814
and GW170809 are analyzed as potential strongly lensed companion images using
a similar consistency test.

It is also proposed that a sharp transition in the inferred source intrinsic mass
distribution at high mass values could single out strongly lensed images [13, 55].
This mass distribution anomaly argument, however, must be made in reference to
an expected GW source distribution. Currently, such source population models are
subject to considerable uncertainties.

The above strategies share two other drawbacks: (1) without prior knowledge of the
lensed source parameters, all pairs of cataloged events must be searched over to find
strongly lensed candidates. As detector sensitivity improves and next-generation
detectors start observing, the computational cost of such analysis will surge with
the increased number of detected events; (2) it is also required that more than one
lensed images are detected. If all but one of the images are missed, the methods
described above cannot ascertain if a GW image is strongly lensed.

For the above reasons, an intrinsic waveform distortion in a lensed image can be both
a more definitive and efficient indicator of strong lensing. If such a lensed image is
found, its estimated parameters help narrowing down the search space in the more
general pair-wise search method mentioned above. An example is the frequency-
specific GW diffraction in weak lensing [54, 69]. Diffraction signature was searched
for in current detected events, but it has yet to be found [35]. It is also predicted that,
for GWs within the frequency range of LIGO, diffraction becomes important when
the lens mass ranges from 1 ∼ 100 𝑀⊙ [17, 26, 48]. Strong lensing by such small
lenses requires a small impact parameter, which places stringent requirement on the
alignment of the GW source, the lens and the observer [see, e.g., 64]. Consequently,
we expect such events to be rare.

Though diffraction is negligible for strong lensing (within a similar frequency range
as LIGO), waveform distortion does occur in the geometric-optics limit when an
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image originates from a saddle-point solution to the lens equation [see, e.g., 64].
Such images are called type II images, their waveforms are the Hilbert transforms
of the corresponding unlensed waveforms. By contrast, waveforms of type I and
type III images are identical to the unlensed waveform, up to a rescaling—and, for
type III images, a sign flip. In Ref. [22], it is pointed out that type II images are
degenerate with type I images with an azimuthal angle shift of 𝜋/4, if only the
dominant (2,±2) modes are considered. For highly eccentric orbits, this degeneracy
is partially lifted. For quasi-circular binaries, the degeneracy is also broken if higher
multipoles are considered. Recently, Ref. [46] has systematically examined the type
II images of a wide range of GW sources, including the effects of spin precession
and orbital eccentricity. It was found that the type I/II waveform difference is still
small upon tuning the azimuthal angle, the polarization angle and relative phases
between GW modes. In this paper, we build upon the work in Ref. [46] by exploring
whether such type II images can be distinguished from regular images despite the
small waveform mismatch.

For third-generation detectors, such as the LIGO Voyager [7], the Einstein Tele-
scope1 [63] (ET) and LIGO Cosmic Explorer2 [61] (CE) with current models, we
expect to be able to detect a non-trivial number of such distinguishable type II events
thanks to the expected high Signal-to-Noise Ratio (SNR).

This paper is organized as follows. In Section 2.2 we review the geometric optics
theory for GW lensing. In Section 2.3, we calculate the best-match overlap between
type II and type I waveforms over a range of detector-frame binary mass, mass ratio
and orbital inclinations. We briefly discuss the implication of waveform mismatch
for detection triggering in the current LIGO pipeline framework. In Section 2.4
we discuss the distinguishability of type II images in the high-SNR regime by
comparing the log likelihoods under type I and type II image hypothesis. Based on
this, we compute the fraction of distinguishable type II images. In Section 2.5, we
incorporate population models on GW sources and lensing galaxies, and predict the
expected number of events with distinguishable type II images for LIGO Voyager,
ET and CE. We then discuss the results and draw the conclusion.

Throughout this work, we assume a ΛCDM universe with (Ω𝑀 ,ΩΛ) = (0.3, 0.7)
and a Hubble Constant of 𝐻0 = 70 km 𝑠−1𝑀𝑝𝑐−1.

1http://www.et-gw.eu/
2https://cosmicexplorer.org/
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2.2 Lens Theory and Image Type
The geometric optics treatment of gravitational lensing is thoroughly investigated
and well established by many authors [see, e.g., 53, 54, 64]. In this section, we
summarize and discuss scenarios where type II images are distinctive from type
I counterparts. We closely follow the discussion in Ref. [53] and keep mostly
consistent notations.

Thin gravitational lens: geometric-optics limit
We adopt the thin lens model, in which the line-of-sight lens dimension is much
smaller than separations between the GW source, the lens and the observer. The
source plane and the lens plane are defined by the GW source and the lens center,
and both planes are perpendicular to the optical axis connecting the lens center and
the observer. All the lens mass is projected onto the lens plane. Lensing deflection
to GW paths occurs only on the lens plane.

On each plane, the origin is established as its intersection with the optical axis.
The source position has the dimensionless coordinate ®𝑦 = ®𝜂𝐷𝑑/(𝑟∗𝐷𝑠) and the GW
path intersects the lens plane at ®𝑥 = ®𝜉/𝑟∗. ®𝜂, ®𝜉 are coordinates with physical units
of length, 𝑟∗ is the lens’ Einstein radius, while 𝐷𝑑 , 𝐷𝑠 are the observer’s angular
diameter distance to the lens and the source.

The amplitude of the observed image is then expressed as a Kirchhoff integral over
the lens plane [see also, e.g., 64, 69],

𝐹 (𝜔, ®𝑦) = 𝜔

2𝜋𝑖

∫
𝑑2®𝑥𝑒𝑖𝜔𝑡 (®𝑥,®𝑦) , (2.1)

where 𝜔 is the source-frame GW frequency and 𝑡 (®𝑥, ®𝑦) is the GW travel time
difference between lensed paths and the unlensed path,

𝑡 (®𝑥, ®𝑦) ≈ 1
2
| ®𝑥 − ®𝑦 |2 + 𝑡Φ , (2.2)

where the first term accounts for the geometrical extra path length in the small
deflection limit and the second term, 𝑡Φ, is the Shapiro time delay inside the lens’
gravitational potential. In the geometric optics limit, only paths very close to the
stationary points of 𝑡 contribute to the integral, and we may Taylor-expand the time
delay around the 𝑗-th stationary point,

𝑡 (®𝑥, ®𝑦) = 𝑡
(
®𝑥 𝑗 , ®𝑦

)
+ 1

2
𝑑𝑥𝑎𝑑𝑥𝑏𝑇,𝑎𝑏

(
®𝑥 𝑗 , ®𝑦

)
+ O(|𝑑®𝑥 |3) , (2.3)

where 𝑑𝑥𝑎 is a component of the two-dimensional vector 𝑑®𝑥 ≡ ®𝑥 − ®𝑥 𝑗 on the lens
plane, and |, | denotes partial derivatives and repeated upper and lower indices imply
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summation. The integral in Eq. (2.1) then reduces to two Gaussian integrals after
diagonalizing the time delay Jacobian, 𝑇,𝑎𝑏.

When det(𝑇,𝑎𝑏) > 0, phase shifts from both the 𝜔/𝑖 prefactor and the two Gaussian
integrals depend on the sign of 𝜔. When Tr(𝑇,𝑎𝑏) > 0, the phase factor is 1, giving
type I images. When Tr(𝑇,𝑎𝑏) < 0, the phase shift is −sgn(𝜔)𝜋, where the function
sgn returns the sign of its argument. This phase shift gives type III images, which
differ from type I by an overall phase of 𝜋. (Note that ±𝜋 phases are equivalent.)

When det(𝑇,𝑎𝑏) < 0, the two Gaussian integrals give opposite phase shifts regardless
the sign of 𝜔, and no longer contribute to the overall phase of 𝐹 (𝜔, ®𝑦). The overall
phase shift is then −sgn(𝜔)𝜋/2, giving type II images which are equivalent to a
Hilbert transform of type I images.

Gravitational waves from circular, non-spinning binaries
For compact binaries, the complex GW strain at infinity can be written as

ℎ = ℎ+ − 𝑖ℎ× =
∑︁
𝑙,𝑚

−2𝑌𝑙𝑚 (𝜄, 𝜙)ℎ𝑙𝑚 , (2.4)

where the subscripts +,× denote plus and cross polarizations, and −2𝑌𝑙𝑚 (𝜄, 𝜙) is
the 𝑠 = −2 spin-weighted spherical harmonics. For non-spinning binaries with
quasi-circular orbits, we choose the coordinate system such that the orbital angular
momentum is along the 𝑧 axis. In this way, arguments 𝜄 and 𝜙 of the spin-weighted
spherical harmonic also corresponds to the orbital inclination angle and the az-
imuthal angle, respectively.

Let us start out by considering 𝑚 ≠ 0 modes. The contribution from modes with
𝑚 = ±𝑚0, where 𝑚0 is a positive integer, is

ℎ̃I,𝑚0 =
∑︁
𝑙

∑︁
𝑚=±𝑚0

−2𝑌𝑙𝑚 (𝜄, 𝜙) ℎ̃I,𝑙𝑚 , (2.5)

where the subscript I denotes the regular type I waveforms. The quantity ℎ̃I,𝑙𝑚 is the
Fourier transform of ℎ𝑙𝑚 in Eq. (2.4) via

ℎ̃I,𝑙𝑚 ( 𝑓 ) =
∫ ∞

−∞
ℎ𝑙𝑚 (𝑡)𝑒−2𝜋𝑖 𝑓 𝑡𝑑𝑡 . (2.6)

We note that 𝜙 appears only in the factor of exp(𝑖𝑚𝜙) in −2𝑌𝑙𝑚 (𝜄, 𝜙). Furthermore,
for non-spinning, circular binaries, with orbital angular momentum along the 𝑧 axis,
in frequency domain, 𝑚 > 0 modes only have negative frequency components and
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the inverse is true for 𝑚 < 0 modes. Therefore, the Hilbert transform of ℎ̃I,𝑚0 , ℎ̃II,𝑚0

is written as

ℎ̃II,𝑚0 (𝜄, 𝜙) = −𝑖 sgn( 𝑓 ) ℎ̃I,𝑚0 (𝜄, 𝜙)

= ℎ̃I,𝑚0

(
𝜄, 𝜙 + 𝜋

2𝑚0

)
.

(2.7)

Therefore, for each subset of GW modes with 𝑚 = ±𝑚0, the Hilbert transform is
degenerate with an additional orbital azimuthal angle Δ𝜙 = 𝜋/(2𝑚0). For exam-
ple, the required angle change is Δ𝜙 = 𝜋/4, provided that only the (𝑙,±2) GW
modes are considered. Modes with different |𝑚 | require different angle changes to
compensate for the Hilbert transform (e.g., the (𝑙,±3) modes require Δ𝜙 = 𝜋/6).
This difference in the compensation requirements breaks the degeneracy between
Hilbert-transformed signals and orbital azimuthal angle change.

Physically, |𝑚 | ≠ 2 modes can be significant when the orbit is significantly eccentric
[22]. For binaries with significant mass ratios and inclination angles, the (3,±3)
modes become significant, breaking degeneracy. Figure 2.1 is analogous to Figure
2 in Ref. [22] and plots example type I/II waveforms from a binary with a detector-
frame mass 𝑀̃ = 150 𝑀⊙, a mass ratio 𝑞 = 2.2 and an orbital inclination angle
𝜄 = 80 deg. The binary is non-spinning in a quasi-circular orbit, and all multipoles
with 𝑙 ≤ 4 are included. The top two panels show that the type II image is not
degenerate with the type I image with an additional time shift. The bottom panels
show that, when we include only the 𝑚 = ±𝑚0 modes, the Hilbert transform is
degenerate with the original waveform with Δ𝜙 = 𝜋/(2𝑚0).

For 𝑚 = 0 modes, ℎ is independent from 𝜙, and one cannot recover its Hilbert trans-
form via shifting 𝜙. This in principle further breaks the degeneracy, although 𝑚 = 0
modes are generally weak for non-spinning binaries in circular orbits. However,
note that these are where the GW memory effects take place [30, 31, 38].

In this paper, we systematically explore GW sources which are non-spinning binary
black holes in quasi-circular orbits. The distinguishable signature of type II images
will be due to higher order GW modes, which is related to binary mass ratio, 𝑞, and
orbital inclination, 𝜄.

2.3 Waveform Mismatch
In this section, we quantify the mismatch between type I/II waveforms for non-
spinning binaries, in preparation for discussion on their distinguishability in the
next section. We also discuss the implication of this mismatch for the GW signal
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Figure 2.1: type I/II NRSur7dq4 surrogate model waveforms from a binary with
𝑀̃ = 150 𝑀⊙, 𝑞 = 2.2, 𝜄 = 80 deg. The binary is non-spinning in a quasi-circular
orbit. The black dotted line shows the type I waveform with a 𝜋/4 shift in the orbital
azimuthal angle, and the shifted waveform is completely degenerate with the type
II image. The orange dotted line shows the type II waveform, such that its peak
overlaps with that of the type I waveform. We observe that the type I/II waveform
offset cannot be compensated by a time shift.

veto process, namely, whether the mismatch leads to type II signal rejection in the
current LIGO data analysis pipeline.

Best-match Overlap
In this section, we describe the procedure to compute the type I/II waveform dif-
ference over a large parameter space. We model only non-spinning binaries in
quasi-circular orbits. Highly spinning binaries or those with highly eccentric orbits
are expected to be fewer than the population we consider [see, e.g., 2, 78]. Since,
the optical depth for type II images is also small, on the order of 10−3 ∼ 10−4

[23, 43, 57], we exclude these less frequent sources from our analysis.

For this source population, frequency-domain GW strain is given by the Fourier
transform of Eq. (2.4),

ℎ̃I( 𝑓 ) =
∑︁
𝑙,𝑚

−2𝑌𝑙𝑚 (𝜄, 𝜙)
𝐻̃I,𝑙𝑚 (𝑀̃, 𝑞, 𝑓 )

𝐷𝐿

𝑒−2𝜋𝑖 𝑓 𝑡0−𝑖Φ , (2.8)

where 𝐻̃I,𝑙𝑚 (𝑀̃, 𝑞, 𝑓 )/𝐷𝐿 is equal to ℎ̃I,𝑙𝑚 ( 𝑓 ) in Eq. (2.6), with the dependence on
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𝐷𝐿 explicitly shown. The waveform is a function of the detector-frame mass (or
equivalently, the redshifted mass), 𝑀̃ = (1 + 𝑧)𝑀 (where 𝑀 is the intrinsic mass),
the mass ratio, 𝑞 ≡ 𝑀̃1/𝑀̃2 ≥ 1 (𝑀̃1 + 𝑀̃2 = 𝑀̃), and the luminosity distance, 𝐷𝐿 .
The polarization angle, Φ, and signal time-of-arrival, 𝑡0, add additional phase shifts
to the signal.

For any two waveforms, ℎ̃1, ℎ̃2, we define the overlap by

overlap =
ℜ𝔢(⟨ℎ̃1 | ℎ̃2⟩)√︁
⟨ℎ̃1 | ℎ̃1⟩⟨ℎ̃2 | ℎ̃2⟩

= 1 − 𝜖 , (2.9)

where 𝜖 is the mismatch and ⟨·⟩ denotes inner product given by

⟨𝑎 |𝑏⟩ =
∫ ∞

−∞

𝑎∗( 𝑓 )𝑏( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 , (2.10)

where 𝑆𝑛 ( 𝑓 ) is the two-sided noise power spectral density. By applying the optimal
matched filter, the SNR of ℎ̃, 𝜌, is given by

√︁
⟨ℎ̃ | ℎ̃⟩.

Throughout this paper, we use Roman numeral subscripts to denote the image types
and Arabic numeral subscripts to represent any individual waveform. We also
adopt the simplifying assumption that both GW polarizations can be independently
detected, i.e., the time-domain waveform is taken to be complex, as in Eq. 2.4. In
Section 2.6, we discuss in more detail the validity of this assumption.

To obtain highly accurate models for ℎ̃, we adopt the time-domain Numerical Rel-
ativity surrogate waveform model, NRSur7dq4, [74] extracted through the Python
package, gwsurrogate [32]. This surrogate model provides all 𝑙 ≤ 4 mode wave-
forms, ℎI,𝑙𝑚 (𝑡), through the inspiral, merger and ringdown phases.

To avoid spurious edge effects due to the finite-length of surrogate waveforms, we
apply a time-domain kaiser window function from numpy.kaiser [73] with 𝛽 = 4.
The window is centered at the waveform amplitude peak to maximally preserve
waveform features. The signal is zero-padded prior to the Fourier transform to
ensure sufficiently smooth transformed waveform.

To maximize the overlap, Ref. [46] separately tunes the azimuthal angle, polarization
angle, and the relative phases between each of the GW multipoles. We adopt a
different approach by tuning the intrinsic parameters of the GW sources. We adopt
a nested search method. We first generate a type II signal template, ℎ̃II,0, with
(𝑀̃0, 𝑞0, 𝜄0, 𝜙0). Since the waveform amplitude scaling does not contribute to the
overlap, we fix 𝐷𝐿 = 3 Gpc for all waveforms. We make a (𝑀̃, 𝑞) grid, with the
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mass range centered on 𝑀̃0 and mass ratio between 1 and 4 (the range of 𝑞 used
to train the surrogate model). At each grid point, we construct the type I template
and use the Python module scipy.optimize.dual_annealing [76] to find the
(𝜄, 𝜙) that maximize the overlap between the type I template and the type II target.
The spin-weighted spherical harmonics are computed using the Python package
spherical_functions3 and quaternion4. To implicitly maximize over 𝑡0 and
Φ, we take the Fourier transform of the integrand in Eq. (2.9) and pick the element
with the largest absolute value [see, e.g., 50]:

(1 − 𝜖)max = max𝑡0

�����1𝑎 ∫ ∞

−∞
𝑑𝑓
ℎ̃∗I ( 𝑓 ) ℎ̃I𝐼 ( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑒−2𝜋𝑖 𝑓 𝑡0

����� ,
𝑎 =

√︃
⟨ℎ̃I | ℎ̃I⟩⟨ℎ̃II | ℎ̃II⟩ .

(2.11)

Figure 2.2 shows an example maximization result contour plot for a type II signal
with 𝑀̃ = 150 𝑀⊙, 𝑞 = 1.7 and 𝜄 = 70 deg with CE noise curve. Due to the
waveform mismatch, the best-match template has different parameter values from
those of the true signal, with a maximal overlap of 99.06%.

We calculate the overlap for sample points on the grid 𝑋 (𝑀̃)
⊗

𝑌 (𝑞)
⊗

𝑍 (𝜄), with

𝑋 (𝑀̃) = {60, 80, 100, 150, 200, 230, 260,

300, 400, 500, 600, 700, 800}[𝑀⊙] ,

𝑌 (𝑞) = {1.2, 1.7, 2.2, 2.7, 3.2} ,

𝑍 (𝜄) = {15, 30, 40, 50, 60, 70, 80}[deg] .

We then interpolate between the samples using the scipy.interpolate module
[76] to construct a function 𝜖 (𝑀̃, 𝑞, 𝜄). For non-spinning binaries, the interpolated
function ensures that 90 deg < 𝜄 < 180 deg is symmetric to 0 deg < 𝜄 < 90 deg.
We perform the same analyses for CE, ET and LIGO Voyager with their respective
noise power spectral density (PSD) [7, 28, 61, 63].

Figure 2.3 shows the amplitude spectral density of CE, ET and LIGO Voyager
[7, 28, 61, 63], as well as the waveform of a binary with 𝑀̃ = 200 𝑀⊙, 𝑞 = 2.2, 𝜄 =
80 deg at 𝐷𝐿 = 1 Gpc as an example. The low-frequency amplitude loss of the
surrogate waveform is due to the finite length of the NRSur7dq4 waveforms. For

3https://github.com/moble/spherical_functions
4https://github.com/moble/quaternion
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Figure 2.2: Contour plot for maximized overlap for a type II waveform with 𝑀̃ =

150 𝑀⊙, 𝑞 = 1.7 and 𝜄 = 70 deg. Grid point with the maximum overlap is shown
with the red dot at 𝑀̃ = 148.39 𝑀⊙, 𝑞 = 1.50. 95% overlap contour is shown in
red.

Figure 2.3: Positive frequency band waveform for a binary with 𝑀̃ = 200 𝑀⊙,
𝑞 = 2.2, 𝜄 = 80 deg and 𝐷𝐿 = 1 Gpc, plotted in black. The amplitude spectral
densities (ASDs) for CE, ET and LIGO Voyager are plotted with colored traces.
Note that ASDs for CE and LIGO Voyager are available starting from 3 Hz.
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less massive binaries, this effect results in significant loss of 𝜌, especially in the case
of CE, where the low-frequency sensitivity degrades slower.

To estimate how this 𝜌 loss affects the overlap values, we compute the maximum
overlap for a (𝑀̃0 = 60 𝑀⊙, 𝑞 = 3, 𝜄 = 80 deg) binary with the CE PSD, filtering
all frequency components below 30 Hz, where the loss of 𝜌 becomes significant.
Compared with the unfiltered case ((1 − 𝜖)max = 0.981), the overlap decreases only
by 3.3 × 10−3. Since 𝑀̃ = 60 𝑀⊙, 𝑞 = 3 and 𝜄 = 80 deg are roughly the smallest
redshifted mass, largest mass ratio and inclination we consider, other binaries within
our parameter space should have a smaller loss of the overlap. Considering the small
size of the difference, we do not filter signals in subsequent analysis.

Figure 2.4 shows the best-match overlap for GW waveforms with a redshifted mass
of 150 𝑀⊙ for the three GW detectors at selected mass ratio values. Maximization
data points are shown with solid dots, and the interpolation functions are shown
as smooth curves. The right axis shows the required 𝜌 to distinguish type I/II
waveforms with a log Bayes factor of 10 at the corresponding overlap values on the
left axis. See discussion in Section 2.4. Consistent with intuition, the best-match
overlap is the lowest for high mass-ratio signals at large inclinations. Over our
parameter space, the mismatch value for such signals is typically on the order of
2%. We note that the same type II waveforms have the largest mismatch with type I
waveforms in LIGO Voyager, as the LIGO Voyager PSD emphasizes high-frequency
waveform components, where the Hilbert transform effect is more pronounced.
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Figure 2.4: Overlap between type I and type II waveforms for 𝑀̃ = 150 𝑀⊙ at
selected mass ratio values. The axis on the right shows the threshold 𝜌 to distinguish
such type II images from type I counterparts by a log Bayes factor of 10, for the
corresponding waveform overlap value. See Section 2.4 for details. Panels from
left to right are overlaps for CE, ET and LIGO Voyager respectively. In all panels,
data points are shown with dots, and the interpolated overlap functions are shown
in smooth curves.
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Signal Veto
An ensuing concern from the mismatch is whether the difference in waveforms
could lead to type II signals vetoed or assigned a lower significance value during
observing runs. For the current GW data analysis pipelines, once a threshold 𝜌 is
reached, the data typically go through a 𝜒2 veto test to screen out spurious signals.
In this section, we calculate the non-central parameter in the 𝜒2 statistic distribution
from using type I templates to match type II signals.

The 𝜒2 veto was described in detail in Ref. [8]. This test characterizes the dis-
tribution of 𝜌 over frequency bins and vetoes detector “glitches”, or loud bursts of
non-Gaussian noise that might have a high 𝜌, but have a frequency distribution very
different from that of a genuine GW signal.

Suppose the best-match template to the signal, 𝑛̃ + ℎ̃0 is ℎ̃𝑇 , where 𝑛̃ is noise and ℎ̃0

is the embedded waveform. We divide the detector sensitive frequency range into 𝑝
disjoint sub-bands, Δ 𝑓 𝑗 , such that the template 𝜌 in each bin is 1/𝑝 of its total 𝜌,

𝜌𝑇, 𝑗 =

∫
−Δ 𝑓 𝑗 ,Δ 𝑓 𝑗

| ℎ̃𝑇 |2
𝑆𝑛 ( 𝑓 )

𝑑𝑓 =
1
𝑝

∫ ∞

∞

| ℎ̃𝑇 |2
𝑆𝑛 ( 𝑓 )

𝑑𝑓 . (2.12)

We then calculate the signal 𝜌 in each frequency bin as

𝑠 𝑗 ≡
1√︁

⟨ℎ̃𝑇 | ℎ̃𝑇 ⟩

∫
−Δ 𝑓 𝑗 ,Δ 𝑓 𝑗

ℎ̃∗
𝑇
(𝑛̃ + ℎ̃0)
𝑆𝑛 ( 𝑓 )

𝑑𝑓 . (2.13)

We then define the 𝜒2statistic as

𝜒2 ≡ 𝑝

𝑝∑︁
𝑖=1

(𝑠𝑖 − 𝑠/𝑝)2, 𝑠 ≡
𝑝∑︁
𝑗=1

𝑠 𝑗 . (2.14)

In the case where the best-match template in the template bank does not exactly
match the embedded waveform, the distribution of 𝜒2 over many Gaussian noise
realizations is a classical 𝜒2 distribution with a non-central parameter,

⟨𝜒2⟩ = 𝑝 − 1 + 𝜅⟨𝑠⟩2 , (2.15)

where ⟨·⟩ denotes the average over noise realizations. The factor, 𝜅, in the non-
central parameter is bound by

0 < 𝜅 <
1

(1 − 𝜖)2 − 1 ≈ 2𝜖 , (2.16)
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where 𝜖 is the minimized mismatch between the template and the underlying wave-
form, as is defined in Eq. 2.11. The approximate equality is satisfied when 𝜖 ≪ 1.
This bound is agnostic of the specific waveform of the signal and templates. Con-
sequently, the non-central parameter introduced by using type I templates on type II
signals is smaller than 0.12⟨𝑠⟩2 in most cases, if we take the largest mismatch to be
6%. If such a non-central parameter lies within the 𝜒2 threshold during detection,
type II images are unlikely to be vetoed.

type II Signal Recovery
There have been ongoing efforts to look for possible weaker (sub-threshold) strongly
lensed counterparts of confirmed GW detections, assuming the latter being strongly
lensed signals themselves [42, 47]. One method is to simulate lensed injections
of a super-threshold GW event, then use a generic template bank to search for
these injections through an injection run, and produce a targeted template bank for
searching possible lensed counterparts of the target event by retaining only templates
that can find the injections.

However, only type I lensed images have been considered for current searches. The
question we would like to investigate is: Should type II lensed images be present
in the data, would a type I template bank be able to find them? The answer to this
question may be a crucial step for us to identify possible lensed GWs that we might
have already detected but still not being discovered.

As a preliminary test to this question, we apply the search method detailed in Ref.
[42] to the high-mass-ratio compact binary coalescence event GW190814 [6]. Using
the waveform approximant IMRPhenomXPHM [60], we generate a set of simulated
lensed injections for GW190814. They are then injected into real LIGO-Virgo data
in two ways: (1) by treating them as type I images, and (2) by treating them as type
II images, i.e. applying Hilbert transform to the waveform in the frequency domain
as discussed previously. Through the GW CBC search pipeline GstLAL [49], we
apply the previously generated type I image target bank to search for these injections
in both tests, and finally we compare the number of missed injections to roughly
estimate the effectiveness of a type I image bank to look for type II images.

As discussed in Ref. [42, 49], each GW candidate found in the GstLAL search
will be assigned a log likelihood ratio statistic lnL to measure its significance. The
False-Alarm-Rate (FAR) can be calculated accordingly, which corresponds to how
often noise will produce a trigger with ranking statistic lnL larger or equal to the
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ranking statistic lnL∗ of the trigger we are considering. In the search, an injection
is said to be found if its FAR passes the usual threshold 1 in 30 days, as usual for a
generic gravitational-wave search [4].

In both tests, we have injected a total of 8036 simulated lensed injections. We assume
that the injected events are registered by both detectors in the aLIGO network and
the Virgo detector. In test A, we apply a type I image bank to look for injected
type II images. For test B, we use the same image bank and look for the type I
counterpart of the injections in test A. In test A, 638 injections are missed, whereas
in test B the missed count is 536. We observe that the number of missed injections
increases when the injections were treated as type II images, indicating that the
current search method for sub-threshold lensed GWs may be missing possible type
II lensed signals.

However, it is important to remark that our current results are inconclusive since: (1)
we have only been testing on one particular GW event, and (2) the exact reason for
the extra number of injections to be missed are yet to be investigated. Nevertheless,
our results indicate there could be improvements to the current search method for
sub-threshold lensed GW signals, and further investigation will be done as future
work.

2.4 Distinguishing Type II Events
While we have systematically examined the type I/II waveform mismatch, whether it
enables us to distinguish type II images in actual GW experiments deserves further
discussion. In this section, we use the waveform overlap and quantify the fraction
of strongly lensed GW sources that have distinguishable type II images.

Bayes Factor
Using a Bayesian model (or equivalently hypothesis) selection framework, we quan-
tify the distinguishability between a type I image and a type II image by computing
the Bayes factor B, which is the ratio of the probability of observing the data ®𝑑
under the hypothesis that the signal is of type II over that under the hypothesis that
the signal is of type I, namely

B =
𝑝( ®𝑑 | type II image)
𝑝( ®𝑑 | type I image)

=

∫
𝑑 ®𝜃 L( ®𝜃 | type II image)𝜋( ®𝜃 | type II image)∫
𝑑 ®𝜃 L( ®𝜃 | type I image)𝜋( ®𝜃 | type I image)

,

(2.17)
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where L( ®𝜃) is the (Whittle) likelihood as a function of the waveform parameters ®𝜃,
and 𝜋( ®𝜃) is the prior distribution, which is different under the two hypotheses. The
log likelihood function, up to a normalization constant, is given by

lnL𝑖 ( ®𝜃) ∝ −1
2
⟨𝑑 − ℎ𝑖 ( ®𝜃) |𝑑 − ℎ𝑖 ( ®𝜃)⟩

∝ −1
2
⟨𝑑 |𝑑⟩ + ⟨𝑑 |ℎ𝑖⟩ −

1
2
⟨ℎ𝑖 |ℎ𝑖⟩,

(2.18)

where the subscript 𝑖 = I, II denotes the assumed image type. In an actual inference
analysis, we do not know a priori the ‘true’ waveform parameters. Therefore, we
usually evaluate the integrals in Eq. (2.17) using a sampling algorithm that explores
the parameter space spanned by ®𝜃 stochastically.

Still, we can give an analytical approximate of the Bayes factor for distinguishing
a type II image from a type I image using only the SNR 𝜌 and the mismatch 𝜖 we
calculated in Sec. 2.3. Following the treatment in Ref. [20, 25, 72], with the Laplace
approximation we can write the log Bayes factor as

lnB ≈ ln

[
LII( ®𝜃MLE)
LI( ®𝜃MLE)

]
+ ln

(
𝜎

posterior
II

𝜎
posterior
I

)
, (2.19)

where 𝜎posterior
𝑖

is the posterior (uncertainty) volume assuming that the lensed GW
is of type-𝑖. The log likelihood ratio in Eq. (2.19) can be shown [25], in the high
SNR limit, to scale as

ln

[
LII( ®𝜃MLE)
LI( ®𝜃MLE)

]
≈ 𝜖 𝜌2, (2.20)

when the (minimized) mismatch 𝜖 ≪ 1. If we ignore the correlation between the
parameters, we can estimate the posterior volume 𝜎posterior

𝑖
roughly as

𝜎
posterior
𝑖

≈
𝑁∏
𝑗=1

√
2𝜋Δ𝜃 𝑗 , posterior

𝑖
, (2.21)

with 𝑗 loops over the 𝑁-dimensional vector ®𝜃 and Δ𝜃
𝑗 , posterior
𝑖

is the uncertainty of
the 1D marginal posterior distribution for 𝜃 𝑗 assuming that the image is of type-𝑖.
Note that here we assumed that identical prior was used when calculating the Bayes
factor, except for the image type. The posterior volume ratio also scales with the
the mismatch, actually. Since ⟨ℎI |ℎI⟩ ≈ (1 − 𝜖)2 ⟨ℎII |ℎII⟩ and that Δ𝜃 𝑗 , posterior

𝑖
∝

1/
√︁
⟨ℎ𝑖 |ℎ𝑖⟩, therefore we have

ln

(
𝜎

posterior
II

𝜎
posterior
I

)
≈ −𝑁𝜖. (2.22)
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Figure 2.5: The log Bayes factor lnB as a function of the SNR 𝜌 of the injections
with different luminosity distances and fixed mismatch 𝜖 , computed using Eq. (2.17)
with nested sampling and Eq. (2.23). We see that the simulation results roughly
follow the expected quadratic scaling with the SNR.

Indeed, in the high SNR limit, the first term in Eq. (2.19) is much larger than the
second term as 𝑁 ∼ 10 and 𝜖 ≪ 1. Hence, we will ignore the contribution from the
log posterior volume ratio in this paper. Therefore, we can estimate the log Bayes
factor simply as 5

lnB ≈ 𝜖 𝜌2. (2.23)

Figure 2.5 shows the log Bayes factor as a function of the SNR 𝜌 using nested
sampling with the help of the library bilby [9] and dynesty [66] as in Eq. (2.17),
as well as its approximate using only the optimal SNR and the mismatch using
Eq. (2.23). Here we use the IMRPhenomXHM waveform model [34] for both the
simulated signals and the inference. All simulated signals have a redshifted total
mass of 𝑀̃ = 150𝑀⊙, 𝑞 = 3.2 viewing at an inclination angle of 𝜄 = 80 deg with
different luminosity distances to adjust the optimal SNR. We see that the simulation
results roughly follow the expected quadratic scaling with the optimal SNR. Indeed,
by performing a least-squares fit we found that the exponent is 2.02 ± 0.07.

Since lnB scales as SNR2, even a small type I/II mismatch could lead to significant
lnB in the high-SNR regime. For instance, for a mismatch of 3%, an SNR of
20 would yield a log Bayes factor larger than 10, favoring the type II waveform

5Note that posterior volume also depends on dependences of ℎI and ℎII on 𝜃 𝑗
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hypothesis, thereby identifying this event as a strongly lensed image regardless
whether other images are detected. The right axis in Figure 2.4 shows the required
SNR to produce lnB = 10 for the corresponding type I/II overlap values. While
such SNR is high for the current aLIGO, for third-generation detectors, it occurs
frequently. For example, an equal-mass binary with a detector frame total mass of
100 𝑀⊙ at 𝐷𝐿 = 8 Gpc has an 𝜌 = 30 for LIGO Voyager. The same source with
𝐷𝐿 = 17 Gpc has 𝜌 = 131 for CE.

Threshold Inclination
In this section, we find the range of parameters, (𝑀̃, 𝑞, 𝑧𝑠), where type II images
can be distinguished via the log Bayes factor test. We choose lnBthresh = 10 as the
criterion for distinguishability.

We begin by computing the distinguishable threshold inclination, 𝜄, for sources with
certain redshifted mass, mass ratio and redshift. Since both 𝜌 and 𝜖 in Eq. (2.23)
depend on 𝜄, it is more straightforward to first fix 𝑀̃, 𝑞 and 𝜄 to obtain 𝜖 , and then
scale 𝜌 via 𝐷𝐿 to achieve the lnBthresh condition. Inverting 𝐷𝐿,thresh(𝑀̃, 𝑞, 𝜄) yields
𝜄thresh(𝑀̃, 𝑞, 𝐷𝐿 (𝑧𝑠)), where 𝑧𝑠 is the GW source redshift.

To calculate 𝜌, we assume both GW polarizations can be detected, and the total
amplitude is

√︃
ℎ2
+ + ℎ2

×. In the Discussion Section, we further discuss the justifica-
tions for this assumption in the context of third-generation GW detectors. However,
the finite length of the surrogate model waveform can lead to significant loss in
𝜌, even though the effect on waveform overlap is negligible, as demonstrated in
Section 2.3. For a binary with 𝑀̃ = 60 𝑀⊙, 𝑞 = 3, approximately 15% of 𝜌 is lost
in the case of CE. For LIGO Voyager, the noise increase starts earlier and steeper
towards lower frequencies; consequently, the 𝜌 loss for the same binary is only
∼ 5%. To accurately estimate 𝜌, we supplement the surrogate model waveform
with analytical inspiral stage waveform, whose amplitude scales as 𝑓 −7/6 [21]. The
inspiral amplitude is matched to the surrogate waveform amplitude at 0.5 𝑓ISCO,
where 𝑓ISCO is the Innermost Stable Circular Orbit frequency, approximated as [see,
e.g., 65]

𝑓ISCO =
𝑐3

63/2𝜋𝐺𝑀̃
. (2.24)

We note that, by compensating for the lost 𝜌, our result is optimistic in estimating the
distinguishability; while the early inspiral phase contributes significantly to 𝜌, the
type I/II waveform mismatch is less pronounced. For the same 𝜌, the compensated
inspiral waveform does not offer as much information as the higher frequency GW
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phases for distinguishing type II images. Nonetheless, this overestimate is significant
only for systems towards the low mass limit, where the expected detectable number
of events is low due to the small 𝜌.

The mismatch 𝜖 is available from the interpolation function in Section 2.3. We do
not consider binaries with best-match overlap larger than 0.999, i.e., we consider
such mismatch a result of systematic errors and does not reflect actual waveform
difference. As discussed in Section 2.3, the truncated surrogate waveform leads
to errors in the best-match overlap, though for high mass systems, the error will
be much smaller than 3.3 × 10−3 for the 𝑀̃ = 60 𝑀⊙, 𝑞 = 3, 𝜄 = 80 deg example
binary. For computational cost concerns, we also limit the grid density in the
nested maximization process. If the actual best-match binary is not on the grid
points, the maximization result will deviate from the true value, and the size of
the deviation depends on the distance between the true best-match and its closest
grid point. Aside from systematic errors in the waveform and overlap optimization
process, interpolation for 𝜖 also introduces errors. In particular, the cubic spline fit
may introduce spurious trace curves to guarantee smoothness when connecting the
limited number of samples. Especially in the case of CE, 𝜌 can be very large, thus
exaggerating the physical significance of such a small mismatch. The exact value
of this threshold is tuned to exclude spurious interpolation function results. In the
next subsection, we discuss our choice of the upper limit value for the best-match
overlap and assess the impact of this mismatch resolution in the next subsection.

Figure 2.6 shows the threshold inclination as a function of source redshift assuming
CE sensitivity. The left panel shows threshold inclination with fixed redshifted mass
𝑀̃ = 150 𝑀⊙. We observe that the mass ratio becomes an increasingly important
factor at high inclinations. At low redshift, the threshold inclination is constrained
primarily by the mismatch 𝜖 ; at higher redshift (e.g., 𝑧𝑠 ∼ 4.2 for 𝑞 = 1.73), the
high inclination regions start to be excluded despite the large mismatch value, as
𝜌 becomes too small. Beyond a certain redshift (e.g., 𝑧𝑠 ∼ 5.2 for 𝑞 = 1.73), no
combination of 𝜌 and 𝜖 meets the lnBthreshold condition, and no more type II images
can be distinguishable. The right panel shows similar threshold cures fixing the
mass ratio to be 2.67. We observe a similar curve shape, although lighter binaries
have smaller 𝜌 and consequently a larger threshold inclination.
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Figure 2.6: Inclination threshold curves for distinguishable type II sources as a
function of redshift assuming CE sensitivity. Left: inclination threshold curves for
fixed mass ratio 𝑞 = 2.67 at selected redshifted mass values. Right: inclination
threshold curves for binaries with redshifted mass 𝑀̃ = 150 𝑀⊙ with selected mass
ratio values. The curve-crossing at low inclination values is due to systematic errors;
see text for discussion.

Distinguishable Image Fraction
From the threshold inclination, we can further calculate the fraction of GW sources
with distinguishable type II images, fr(𝑀̃, 𝑞, 𝑧𝑠). For simplicity, we assume that
GW sources and type II images are isotropically distributed, therefore the fraction
of distinguishable type II images scales as the area of the celestial sphere within the
𝜄 threshold limits. The differential fraction is then proportional to sin 𝜄. Figure 2.7
shows the distinguishable fraction of type II sources for the same binaries as in
Figure 2.6. The cusps mark the redshift when high inclination regions start to be
excluded due to smaller 𝜌. We observe that, for CE, large fractions of sources with
type II images can be distinguished via the log Bayes factor test out to high redshift.
Similar plots for ET and LIGO Voyager are shown in Figure 2.8 as dashed lines.

We have so far considered only the redshifted mass (detector-frame mass), 𝑀̃ , as it
is the direct input to the surrogate model, which assumes an asymptotically flat and
stationary universe. The “apparent” total mass of the binary, 𝑀 , is related to the
redshifted mass by 𝑀 = 𝑀̃/(1 + 𝑧𝑠). Due to lensing magnification, this inferred
“apparent” total mass could be larger or smaller than the actual GW source total
mass. We discuss magnification effects in Section 2.5. Therefore, the fraction of
distinguishable type II sources with apparent mass 𝑀 , mass ratio 𝑞 at redshift 𝑧𝑠 is
given by

frapp(𝑀, 𝑞, 𝑧𝑠) = fr(𝑀 (1 + 𝑧𝑠), 𝑞, 𝑧𝑠) . (2.25)

Figure 2.8 shows frapp(𝑀, 𝑞, 𝑧𝑠) for selected apparent mass values in solid traces.
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Figure 2.7: The fraction of distinguishable type II images as a function of redshift
for CE sensitivity. Right: distinguishable fraction, fr(𝑀̃, 𝑞, 𝑧𝑠), for constant 𝑀̃ =

150 𝑀⊙. Left: distinguishable fraction for constant 𝑞 = 2.67. The cusps in the
fraction correspond to the exclusion of high-inclination binaries with sub-threshold
𝜌. The fraction curves directly correspond to the threshold inclination curves in
Figure 2.6.

The top row shows the fractions with a fixed mass ratio of 1.73, and the bottom row
shows similar plots with mass ratio fixed at 2.67. The left, middle and right columns
show results for CE, ET and LIGO Voyager, respectively. The distinguishable
fractions for fixed redshifted mass, fr(𝑀̃, 𝑞, 𝑧𝑠), are plotted for reference in dashed
lines. The exact mass values are specified in the legend.

As expected, the resulting traces show similar trends and features as in Figure 2.7:
at lower redshifts, the distinguishable fraction decreases with 𝜌. It then undergoes
a cusp where the high inclination regions start to be excluded before continuing
to decrease. The trace is jagged due to the finite spacing of the interpolation data
points, rather than any physical jumps in the fraction.

In most cases, there is a significant fraction of GW sources with distinguishable
type II images via the log Bayes factor test. As Figure 2.4 suggests, the mismatch
value is not drastically different across the three detectors with different noise curve
shapes. The redshift reach is rather primarily determined by 𝜌, related to the overall
sensitivity level of different detectors. For example, for type II images with apparent
mass 𝑀̃ = 60 𝑀⊙ and mass ratio 𝑞 = 1.76, 60% can be distinguished in CE out to
𝑧𝑠 ∼ 12.5. For ET, 60% of the same population can be distinguished out to 𝑧𝑠 ∼ 2.
Due to the lower sensitivity of LIGO Voyager, a similar fraction of such type II
images can be identified only out to 𝑧𝑠 ∼ 0.5. However, for type II images with a
higher apparent mass of 100 𝑀⊙, 50% can still be registered out to 𝑧𝑠 ∼ 1.
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Figure 2.8: The fraction of distinguishable type II images as a function of redshift.
Top Row:

GW sources have constant mass ratio of 1.73. Bottom Row: GW sources have con-
stant mass ratio of 2.67. The Left, Middle, and Right columns show distinguishable
fractions assuming CE, ET and LIGO Voyager sensitivity, respectively. The frac-
tions for fixed redshifted mass, fr(𝑀̃, 𝑞, 𝑧𝑠), are shown in dashed lines, and those for
fixed apparent mass, frapp(𝑀, 𝑞, 𝑧𝑠), are shown in solid lines. The mass values are
shown in the legend. Note that the fraction curves are jagged due to interpolation
errors and limited data density.

Finally, we assess the impact of mismatch resolution. Throughout this paper, we
adopt a minimum mismatch value of 𝜖 = 0.001. Figure 2.9 shows the changes in
the distinguishable fraction of GW sources with type II images for CE. The mass
ratio is fixed to be 𝑞 = 1.73, and the solid lines from left to right represent 𝑀̃ =

100 𝑀⊙, 200 𝑀⊙, 260 𝑀⊙, 400 𝑀⊙, 600 𝑀⊙ and 800 𝑀⊙. The dashed horizontal
traces show the largest distinguishable fraction as a function of the redshifted mass.

As the waveform mismatch resolution becomes coarser, the distinguishable fraction
decreases significantly. For instance, 70% of all sources with type II images with
redshifted mass𝑚 = 100 𝑀⊙ and 𝑞 = 1.73 have distinguishable type II images out to
redshift 𝑧𝑠 ∼ 2.5 if a mismatch of 0.001 is resolvable, but the fraction drops to 30% if
the mismatch resolution is 0.007. With a mismatch resolution of 0.016, no such type
II images are distinguishable. This critical role of the minimum resolvable mismatch
suggests that the distinguishability of type II images does not solely depend on the
SNR. In the era of third-generation GW detectors, the possible scientific output from
GW detection events is not solely determined by the noise level. As is discussed, the
waveform template bank density in the matched filtering search limits the waveform
difference resolution. In addition, the detector calibration must also be sufficiently
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Figure 2.9: Distinguishable fractions of sources with type II images assuming a
minimum resolvable mismatch of 0.001, 0.003, 0.007 and 0.016 with CE sensitivity.
The solid lines show the distinguishable fractions for selected redshifted mass. The
mass ratio is fixed to be 1.73. From left to right, the traces correspond to a
redshifted mass of 100 𝑀⊙, 200 𝑀⊙, 260 𝑀⊙, 400 𝑀⊙, 600 𝑀⊙ and 800 𝑀⊙.
Dashed lines show the maximum fraction for this range of redshifted mass. For a
mismatch resolution of 0.016 (or 0.984 overlap), fraction traces for type II images
with redshifted mass 𝑀̃ = 100, 200 𝑀⊙ (the leftmost two traces) are absent, since
the resolution is larger than the maximum possible waveform mismatch for such
GW sources.

accurate such that we can be confident that the mismatch from the data reflects a real
signal difference, rather than an instrument systematic error. Otherwise, we cannot
take full advantage of the large SNR offered by exquisite detector sensitivity. Since
these factors during the third-generation GW detector era are still subject to much
uncertainty, to our knowledge, we have chosen 𝜖 = 0.001 as the fiducial value. The
analysis should be refined as such information becomes available.

2.5 Detectable Population
The distinguishable fraction calculations depend only on the waveform mismatch,
and do not assume astrophysical estimates on GW source and lens distributions. In
this section, we describe how results of image distinguishability can be combined
with astrophysical models to give a more detailed prediction of the detectable GW
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events with type II images and those with distinguishable type II images. In the
following subsections, we first offer an overview of the procedures for calculating
the lensed population, followed by more detailed discussions on each ingredient.

Overview
We define a GW event as a particular binary black hole (BBH) merger with possibly
multiple images due to strong lensing. For our calculation, a GW image is detectable
if its single-detector 𝜌 ≥ 8; we defer the detector network scenario to future studies.
A GW event has a distinguishable type II image if this image satisfy the log Bayes
factor threshold. The differential detectable and distinguishable merger rate is given
by

𝜕3 ¤𝑁II,det

𝜕𝑀•𝜕𝑞𝜕𝑧𝑠
= 𝜏II(𝑧𝑠)

𝜕3 ¤𝑁
𝜕𝑀•𝜕𝑞𝜕𝑧𝑠

∫
𝑑 log10 𝜇

[
𝜕𝑃II(𝜇, 𝑧𝑠)
𝜕 log10 𝜇

∫ 𝜋/2

0
𝑑𝜄 sin 𝜄 Θ

(√
𝜇 𝜌(𝑀•, 𝑞, 𝑧𝑠, 𝜄) − 8

) ]
,

(2.26)

𝜕3 ¤𝑁II,dis

𝜕𝑀•𝜕𝑞𝜕𝑧𝑠
= 𝜏II(𝑧𝑠)

𝜕3 ¤𝑁
𝜕𝑀•𝜕𝑞𝜕𝑧𝑠

∫
𝑑 log10 𝜇

𝜕𝑃II(𝜇, 𝑧𝑠)
𝜕 log10 𝜇

fr
(
𝑀̃, 𝑞, 𝑧𝑠

)
, (2.27)

where 𝜕3 ¤𝑁/𝜕𝑀•𝜕𝑞𝜕𝑧𝑠 is GW event rate per intrinsic binary mass, 𝑀•, mass ratio,
𝑞, and GW source redshift, 𝑧𝑠, measured in the observer frame. The weighting factor
sin 𝜄 comes from the assumption that BBH mergers are distributed evenly on the sky.
Θ is the Heaviside function. Multiplying with the optical depth 𝜏II(𝑧𝑠), we obtain
the rate of events with at least one type II images. The quantity 𝜕𝑃II(𝜇, 𝑧𝑠)/𝜕 log10 𝜇

describes the distribution of magnification 𝜇 for type II images for sources at 𝑧𝑠,
normalized such that ∫

𝑑 log10 𝜇
𝜕𝑃II(𝜇, 𝑧𝑠)
𝜕 log10 𝜇

= 1 . (2.28)

Due to magnification, the source appears to have the same redshifted mass, but the
inferred luminosity distance is different. Therefore,

𝑀̃ = 𝑀•(1 + 𝑧𝑠)
𝐷𝐿 (𝑧𝑠) = 𝐷𝐿 (𝑧𝑠)/

√
𝜇 .

(2.29)

The differential merger number per observer time is calculated as [see also 23]

𝜕3 ¤𝑁
𝜕𝑀•𝜕𝑞𝜕𝑧𝑠

= 𝑅mrg(𝑀•, 𝑞, 𝑧𝑠)
1

1 + 𝑧𝑠
𝑑𝑉𝑐

𝑑𝑧𝑠
, (2.30)

where 𝑑𝑉𝑐/𝑑𝑧𝑠 is the differential comoving volume. The 1/(1 + 𝑧𝑠) factor ac-
counts for the cosmological redshift and converts the source-frame merger rates into
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detector-frame merger rates. In Figure 2.12, we plot this “modified” differential
comoving volume and the total merger rates for reference. Since we have adopted
the same population models, Figure 2.12 replicates Figure 1 in Ref. [43].

For fast calculation of 𝜌(𝑀•, 𝑞, 𝑧𝑠, 𝜄), we use the phenomenological modelIMRPhenomHM
[40], called from the Python package pycbc.waveform [56].

We note that for a type I/II waveform mismatch of 6%, the required 𝜌 to be dis-
tinguishable is approximately 13, larger than the threshold SNR of 8, and none of
the GW sources we consider have a larger waveform mismatch. Therefore, we may
assume that the distinguishable images are all detectable, leading to the omission
of the Heaviside function in Eq. (2.27). In addition, only 0.2% of all sample lens
systems have a brighter type II image than the type I image. Considering errors
from the lens-equation solution algorithm and the small number of events with
distinguishable type II images, we may assume that the events with detectable or
distinguishable type II images will most certainly have a detectable type I companion
image.

In the following subsections, we compute the type II image optical depth and the
magnification distribution. We then summarize procedures to calculate the total
BBH merger rates. Detailed steps and adopted parameter values are presented in
Appendix 2.7. We then make concrete detection population for CE, ET and LIGO
Voyager and discuss results.

Optical Depth and Magnification
To obtain 𝜏II(𝑧𝑠) and 𝜕𝑃II(𝜇, 𝑧𝑠)/𝜕 log10 𝜇, we perform a Monte Carlo simulation.
We consider elliptical galaxies as lenses, as they are expected to be the predominant
lensing objects [57]. While the lens geometry and properties are expected to be
more complex and varied in nature, studies showed that a simple lens model, such as
the singular isothermal sphere model, is sufficient to capture most of the results from
more sophisticated hydrodynamic simulations of the Universe [62]. In this study, we
adopt the slightly more generalized singular isothermal ellipsoid model following
the examples of Refs. [43, 57]. Refs. [11, 27] adopt the singular isothermal sphere
lens model and predict the detectable strongly lensed events for ET. For one of the
BBH evolutionary scenarios they investigate, it is predicted that 57.2 strongly lensed
events can be detected out of the 2.08 × 105 total detectable BBH events per year,
roughly a factor of three smaller than our prediction (see Table 2.1). In the future,
we can adapt our analysis using different lens models and systematically study the
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uncertainty in the strong-lensing population predictions.

We restrict the GW source redshift to 0.05 ≤ 𝑧𝑠 ≤ 7. In the low-redshift limit, GW
sources in our local universe (𝑧𝑠 ≪ 0.05) is unlikely to be strongly lensed, since
lensing rates are expected to be low, and there are not sufficiently many massive
galaxies in between to compensate. We set the upper limit of the galaxy redshift
to 𝑧𝑠 = 7, since such galaxies are faint and robust observational data is relatively
scarce for developing a reliable phenomenological model of the mass function [33].

At each redshift, we generate samples of lenses, parameterized by surface velocity
dispersion, 𝜎𝑣, ellipticity, 𝑒, lens redshift, 𝑧𝑙 , and the lens-plane angular coordinates
of the lens, ®𝜃 = (𝑥, 𝑦). For the number of lenses per unit 𝜎𝑣 per comoving volume,
Ψ(𝜎𝑣, 𝑧𝑙), we first adopt the modified Schechter function [18], which is calibrated
to observation on galaxies in the solar neighborhood,

Ψ(𝜎𝑣, 0) = 𝜙∗
(
𝜎𝑣

𝜎∗

)𝛼
exp

[
−

(
𝜎𝑣

𝜎∗

) 𝛽]
𝛽

𝜎𝑣Γ (𝛼/𝛽) , (2.31)

where 𝜙∗ = 8.0 × 10−3ℎ3 Mpc−3, 𝜎∗ = 161 km/s, 𝛼 = 2.32 and 𝛽 = 2.67. ℎ is the
Hubble parameter.

To account for the redshift dependence, we follow the prescription in Ref. [57], in
which

Ψ(𝜎𝑣, 𝑧𝑙) = Ψ(𝜎𝑣, 0)
Ψhyd(𝜎𝑣, 𝑧𝑙)
Ψhyd(𝜎𝑣, 0)

, (2.32)

where Ψhyd(𝜎𝑣, 𝑧𝑙) is the velocity dispersion function derived from hydrodynamical
simulation in Ref. [71]. The redshift depedence of the galaxy comoving number
density is shown on the right axis of Figure 2.10. We truncate 𝜎𝑣 at 50 km/s and
400 km/s to include the major part of the distribution in Eqn. (2.31). In general, the
galaxy number density peaks around 𝑧 ∼ 1, 2 and decreases towards higher redshift
as they have less time to form.

For galaxy ellipticity, we adopt the same Gaussian distribution as in Ref. [43],
where the mean and standard deviation are 0.7 and 0.16, truncated at 𝑒 = 0.2 and
𝑒 = 1. The lens redshift is uniformly sampled from [0, 𝑧𝑠]. Since strong lensing
occurs only when the angular separation between the lens and the source is small,
we uniformly sample the lens positions within a square region centered at the source
with the side length equal to four times the Einstein radius of the lens, given by [see
43]
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𝜃𝐸 = 4𝜋
(𝜎𝑣
𝑐

)2 𝐷 𝑙𝑠

𝐷𝑠

, (2.33)

where 𝐷 𝑙𝑠 and 𝐷𝑠 are the lens-source and observer-source separations, respectively.

For each sampled lens parameter set (𝜎𝑣, 𝑒, 𝑧𝑙 , ®𝜃), we solve the lens equation with
the Python package lenstronomy6 [12] and obtain the number of images, image
types and magnifications. Since our interest in distinguishable type II images is to
identify strongly lensed GW sources, we compute the “source-based” optical depth,
the fraction of GW sources with type II images, rather than the fraction of all images
that are type II. Each sample with at least one type II image contributes to 𝜏II, while
depending on the solution for 𝜇, it contributes to 𝜕𝑃II/𝜕 log10 𝜇 accordingly. To
account for the lens population, each sample is weighted by the expected count of
such a galaxy within the defined lens position range.

Figure 2.10 shows the type II image optical depth at various source redshifts on
the left axis. Optical depths smaller than ∼ 10−5 are truncated, as they are too low
to produce a possible lensed source. We observe that the optical depth is on the
order of 10−3 ∼ 10−4, consistent with results from ray-tracing studies using N-body
simulations [see, e.g., 36, 37].

In the generated sample, the probability of a strongly lensed GW event (i.e., with
multiple images) to have no type II images is smaller than 0.01% and therefore
negligible. We conclude that the type II image optical depth is effectively identical
to the strong lensing optical depth. We calculate that roughly 91.5% of all sources
with multiple images have a type II image as the second “brightest” image, which
suggests that if multiple images were to be detected, it is likely that at least one of
the images may be a candidate for type II image distinction via the log Bayes factor
test.

For larger redshifts, we do not extrapolate optical depth due to the lack of information
on extremely high redshift galaxy velocity dispersion function from hydrodynamical
simulations. Instead, we take the conservative limit and assume the optical depth to
be constant beyond 𝑧𝑠 = 7.

For the magnification distribution, we extract the type II images from the Monte
Carlo simulation samples for each redshift. Figure 2.11 shows the rescaled image
magnification distribution per log10 𝜇 at selected redshifts 𝑧𝑠 = 0.5, 0.8, 2, 6. The
left panel includes all images with the peak dominated by the slightly magnified

6https://github.com/sibirrer/lenstronomy
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Figure 2.10: Left axis: optical depths, 𝜏II(𝑧𝑠), for GW sources with at least one
type II image as a function of source redshift. Optical depths lower than ∼ 10−5 are
omitted, as they are too low to predict an observable GW source at such redshifts
with type II images in future detectors. Right axis: comoving number density of all
galaxies modeled as lenses.

type I images. The right panel contains only type II images, which constitute the
demagnified image population. The rescaling normalizes the highest image count
in each case to 1. Since the magnification for all images peaks around 1, we ignore
it when calculating the detectable strongly lensed GW events; instead, the detection
rate of all strongly lensed events can be estimated by multiplying the detectable
BBH merger rate under the no-lensing hypothesis by the strong lensing optical
depth, which, as the Monte Carlo samples show, is effectively identical to the type
II image optical depth.

We note that 𝜕𝑃II(𝜇, 𝑧𝑠)/𝜕 log10 𝜇 is independent from source redshift 𝑧𝑠 by con-
struction, as Figure 2.11 confirms. To explain this feature, we first note that the
lens equation solution depends only on ®𝜃/𝜃𝐸 , where ®𝜃 = (𝑥, 𝑦) and 𝜃𝐸 is defined
in Eq. (2.33). Since the range of the possible lens angular positions, ®𝜃, is directly
determined by 𝜃𝐸 , the image solution (image count, magnification, etc.) and its dis-
tribution remain constant under the scaling. The only remaining redshift-dependent
quantity is the galaxy velocity dispersion function. However, Eq. (2.32) shows that
only the overall magnitude of Ψ(𝜎𝑣, 𝑧𝑙) changes with redshift. Consequently, we
expect a universal normalized magnification distribution for all redshifts.

Finally, we fit 𝑑𝑃II(𝜇)/𝑑 log10 𝜇 by a log normal distribution with a mean of −0.35
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and standard deviation of 0.57, truncated at log10 𝜇 = −2, 1.
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Figure 2.11: Rescaled magnification distribution at redshift 𝑧 = 0.5, 0.8, 2, 6. The
left panel shows 𝜕𝑃(𝜇, 𝑧𝑠)/𝜕 log10 𝜇, including all images from the Monte Carlo
samples. The right panel shows the rescaled distribution of only type II images,
𝜕𝑃II(𝜇, 𝑧𝑠)/𝜕 log10 𝜇 . The traces are rescaled such that the largest image count is
normalized to 1.

GW Source Population
We adopt GW source population models provided by Ref. [15, 43]. In summary,
we assume the merger rate of the primary black hole in a binary to be proportional
to the formation rate of black holes and their progenitor stars. The merger rate
is then calibrated to the observed BBH merger density in the local universe. We
follow the prescription and the chosen astrophysical models in Ref. [15, 43], and we
provide more details in Appendix 2.7 for reference. The BBH merger population is
calibrated to a local merger rate of 103 Gpc−3yr−1 based on LIGO detection data up
until GW170104 [1]. With the second LIGO-Virgo Gravitational-Wave Transient
Catalog (GWTC-2), the local BBH merger rate is more tightly constrained to be
23.9+14.3

−8.6 Gpc−3yr−1 [1]. The data slightly favor that the merger rate increases
with redshift, but remain statistically consistent with a non-evolving merger rate
hypothesis [1]. This updated value suggests that our merger rate model could be an
overestimate. However, the local rate difference is less than an order of magnitude,
and the high-redshift merger rates are not constrained by LIGO data. As the local
merger rate only acts as an overall scaling in the population model, our result can
be easily scaled to reflect any differences. Consequently, our predictions serve as an
adequate reference and can be easily adapted in light of new data and more accurate
BBH population models.

Figure 2.12 replicates Figure 1 in Ref. [43] and shows the predicted BBH merger
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Figure 2.12: BBH merger rate density; see text for adopted SFR models. The blue
over-arching trace plots the modified differential comoving volume and corresponds
to values on the right axis.

rate density under the two Star Formation Rate (SFR) models in Ref. [45] and [68],
respectively. Due to the intrinsic uncertainty in these analytical SFR models, we
choose one, the more optimistic SFR in Ref. [68], for the following population
estimates.

The total BBH merger rate per source redshift and the detectable merger rate are
plotted in Figure 2.13. Since the strong lensing optical depth is in general smaller
than 0.1% at the redshift with the most GW sources, we will neglect the magnification
effect when calculating the total detectable GW events. To keep the detectable
population estimate general, we assume the detectors to always be online. To
incorporate the detector duty cycle, the detectable and distinguishable populations
simply scale proportionally with the fraction of detector online time, since the type
II waveforms can be identified by their own waveforms, and the duty cycle does
not disproportionally affect particular GW image types. We estimate a total of
2.17×105 BBH mergers per year up to 𝑧𝑠 = 23. The detectable total merger number
is 2.17 × 105 for CE (99.96%), 1.96 × 105 for ET (90.3%) and 7.59 × 104 for LIGO
Voyager (35.0%). We note that the detection rate is not only affected by the detector
sensitivity, but also by the redshift distribution of BBH mergers and the comoving
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volume. Even though ET has lower sensitivity than CE overall, it already covers the
redshift range with peak GW source count (𝑧𝑠 ∼ 2). At large redshift with 𝑧𝑠 ≫ 7,
BBH mergers happen far less frequently due to a lack of black hole formation and
the decreasing comoving volume per redshift. Consequently, the detection rate of
ET is only slightly lower than CE. In the case of LIGO Voyager, the lower sensitivity
excludes many sources from 𝑧𝑠 ∼ 2, leading to a larger loss in the detectable source
fraction.

type II Image Rate
In this section, we combine lensing statistics and GW source population models to
study the rate of detectable and distinguishable type II images in third generation
GW detectors.

Figure 2.13 shows the differential event rate as a function of redshift for three
detectors. In each panel, four different populations are shown. The total rate of
BBH mergers are plotted as solid black curves. The dashed curves show the rate of
detectable GW events. The dotted curves show the rate of events with a detectable
type II image as in Eq. (2.26). The dot-dash curves show the rate of GW events
with at least one distinguishable type II image.

As expected, the rate of BBH mergers in all three categories decreases with the
detector sensitivity, especially at high redshifts. For LIGO Voyager, in particular,
the rate of expected GW sources with distinguishable type II images drops quickly
with redshift, consistent with the trend of the distinguishable fraction in Figure 2.8.
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Figure 2.13: Yearly detected population per unit reshift prediction as a function of
redshift. The panels from left to right show the detection population for CE, ET
and LIGO Voyager. In all panels, the solid black line denotes the total BBH merger
rate. The dashed curves show the rate of detectable GW sources (i.e., 𝜌 > 8) when
unlensed. The dotted curve shows the rate of GW sources with a detectable type II
image. The dot-dash curve shows the event population with a distinguishable type
II image. See text for total detection rates.
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Figure 2.14 plots the same population prediction binned by the total mass of the
BBH, with consistent line styles as in Figure 2.13. For all detectors, the detection
rate decreases with increasing total mass, consistent with the underlying initial mass
function. The detection rate of events with distinguishable type II images shows a
cutoff at small total mass, which is primarily due to two factors. When the waveform
mismatch for low-mass BBHs is smaller than the imposed mismatch resolution (i.e.,
𝜖 < 0.001), their type II images are considered indistinguishable from type I images.
When the mismatch has just exceeded the resolution threshold, distinguishability
requires very large SNRs, which may not be achievable depending on the detector
sensitivity. Consequently, we observe a mass cutoff in all three detectors, which
shifts to higher masses as the detector sensitivity decreases.
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Figure 2.14: Detection rate as a function of BBH intrinsic mass. The panels from
left to right shows the detection prediction for CE, ET and LIGO Voyager. The line
styles are consistent with those in Figure 2.13.

Overall, we predict that CE will detect roughly 184.7 strongly lensed GW events per
year, among which 172.2 have at least one detectable type II image. Among these
strongly lensed GW sources, 56.9 per year have a type II image distinguishable via
the log Bayes factor test. ET will be able to detect 157.1 strongly lensed events per
year, and 118.2 of these have detectable type II images. However, due to reduced
sensitivity, the number of sources with a distinguishable type II image drops to
8.6 per year. For LIGO Voyager, the yearly detection rate of GW events with
detectable type II images is 27.4 per year out of the 38.4 strongly lensed events. The
distinguishable type II image rate is 0.06 per year, which suggests that the possibility
of observing a GW source with distinguishable type II images with LIGO Voyager
is relatively slim. The detection rates are summarized in Table 2.1.
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Discussion
In this section, we discuss the implication of the predicted detection rates for GW
sources with distinguishable type II images. We re-examine assumptions in our
analysis and explore how relaxing these assumptions lead to more an optimistic
detection prediction.

As Figure 2.14 shows, the yearly detection rates of GW sources with distinguishable
type II images are 56.9, 8.6 and 0.06 for CE, ET and LIGO Voyager, respectively.
In particular, in the case of CE, more than 30% of all detectable strongly lensed
sources will have distinguishable type II images. For such sources, detection of the
type II image alone can confirm the existence of strongly lensed images, without
pair-wise GW event inference on the strong lensing hypothesis. Once such images
are identified, the inferred source parameter values can act as a prior during the
subsequent and more elaborate catalog search for the other images.

For ET and LIGO Voyager, the expected detection rate is smaller, thus the distin-
guishable type II images will not be as powerful for confirming the strong lensing
hypothesis as in the case of CE. However, we emphasize that if several of our conser-
vative constraints can be relaxed, distinguishable type II images can still contribute
to the identification of strong lensing.

The first condition we revisit is the waveform mismatch resolution. Throughout the
analysis, we consistently adopt 𝜖min = 0.001, which excludes the binaries at small
inclinations, and the distinguishable fraction is “saturated” at roughly 70% (see,
e.g., Figure 2.7 and Figure 2.9). As Figure 2.9 suggests, the waveform mismatch
resolution significantly affects the fraction of distinguishable type II images. If
we can expect a better waveform resolution from third-generation GW detectors,
the distinguishable fraction should increase considerably; as Figure 2.9 shows, the
distinguishable fraction roughly doubles as the mismatch resolution improves from
O(1%) to O(0.1%) assuming CE sensitivity. For CE and ET, this increase results
in many more detectable sources at small redshifts (𝑧𝑠 ∼ 1, 2), where the BBH
population also peaks. This requirement has two implications for third-generation
GW detector performance and data analysis process. As is discussed briefly in
Section 2.3, the error in detector calibration should be much smaller, such that the
waveform mismatch is not obscured by systematic uncertainties. In terms of the
data analysis process, the density of the matching template bank should be such
that the waveform difference is large compared with the template spacing. If such
conditions are not satisfied, the high SNR detection offered by the third-generation



57

2 4 6 8 10
ln thresh

100

101

N
[N

0(
ln

0
=

10
)]

CE
ET
Voyager

Figure 2.15: The number of GW sources with distinguishable type II images for
different log Bayes factor threshold values, expressed as a fraction of the distin-
guishable number with the threshold value lnBthresh = 10.

detectors cannot be taken full advantage of to maximize the scientific output.

We have also taken a conservative estimate by setting the threshold log Bayes factor
to be 10. Even for lnBthresh = 5, the type II image hypothesis is more than 100
times more likely than the type I image hypothesis, and an even smaller threshold
value may be sufficient for realistic data analysis. Figure 2.15 shows the increase
in the number of events with distinguishable type II images with a lower lnBthresh,
normalized to the number when lnBthresh = 10. We observe that the increase is the
most dramatic for LIGO Voyager, as a lower threshold extends the sensitive range
to higher redshift (𝑧𝑠 ∼ 2), where the GW source population peaks. For CE and
ET, the increase is more modest, as they already detect most sources at 𝑧𝑠 ∼ 2 with
high SNR. The extended range is then expected to add relatively fewer GW sources
in comparison. Figure 2.16 shows the redshift distribution of the GW sources
with distinguishable type II images with lnBthresh = 2, 5 and 10. As expected,
the distinguishable rate increase is more significant at high redshift, and the effect
is the strongest for LIGO Voyager; at lnBthresh = 2, 42.8% of all strongly lensed
GW sources in CE are accompanied by at least one distinguishable type II image
and 21.4% for ET. For LIGO Voyager, the distinguishable number is still small,
but at ∼ 1/yr, it is more promising that such an event will appear in the LIGO
Voyager catalog with a few years of observing run. The predicted detection rates
are summarized in Table 2.1.
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Figure 2.16: The expected number of GW sources with distinguishable type II
images with lnBthresh = 2, 5, and 10. The expected yearly detection count for each
threshold value is shown in the legend. The panels from left to right correspond
to CE, ET and LIGO Voyager. As expected, the detection number increase is most
significant at large redshift for all three detectors.

In addition, we have so far considered the single-detector scenario, and we estimate
the advantage of a detector network via the simplifying assumption that both GW
polarizations can be independently detected, i.e., the time-domain waveform for
calculating the overlap and 𝜌 is complex. If ET implements a triangular design,
the detector itself is sufficient to capture the polarization content [63]. For LIGO
Voyager and CE, the polarization content can be obtained if a concurrent detector
network exists. In the upcoming decades, more GW observatories across the globe
will start to observe, such as the expansion of the LIGO network to include IndiGO7

[39]. This global network offers increased detector-networks 𝜌 and an increased
detection spatial resolution. On the other hand, the uncertainty in the polarization
content from a realistic detector-network model may be partially degenerate with
the Hilbert transform signal, thus subtracting away from the type I/II waveform
difference and their distinguishability. A thorough investigation on realistic detector
network effect is deferred to future studies.

2.6 Conclusions
In this paper, we study an intrinsic waveform signature of type II images of strongly
lensed GW sources. For CE, ET and LIGO Voyager, we compute the best-match
overlap between type I/II waveforms. We then calculate the required threshold orbit
inclination to establish the type II waveform hypothesis by a favoring log Bayes
factor of 10. The fraction of GW sources with distinguishable type II images is
computed from the threshold inclination accordingly. For all three detectors, we

7http://www.gw-indigo.org/tiki-index.php
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CE ET Voyager
Det. 2.17 × 105 1.96 × 105 7.59 × 104

Det. SL 184.7 157.1 38.4
Det. type II 172.2 118.2 27.4

Dist. type II
lnB ≥ 10 56.9 (33.1%) 8.6 (7.3%) 0.06 (0.22%)
lnB ≥ 5 65.6 (38.1%) 14.9 (12.6%) 0.22 (0.81%)
lnB ≥ 2 73.7 (42.8%) 25.3 (21.4%) 0.80 (2.93%)

Table 2.1: Predicted yearly detection rates. The columns show the detectable
BBH merger rates, the rates for strongly lensed (SL) BBH mergers, the rates for
BBH mergers with detectable type II images and the rates for BBH mergers with
distinguishable type II images. The distinguishable event rates are given with
lnB ≥ 10, 5, 2. The fraction of events with detectable type II images that are also
distinguishable is shown in the parenthesis.

find that significant fractions of type II images (e.g., 50 − 70%) of sufficiently high
SNR GW events can be identified. In other words, if such a type II image is detected
with reasonable SNR, it can likely be distinguished from regular type I images and
used as the tell-tale evidence of strongly lensed events.

We also assess the effects of the type II signature in the context of the current LIGO
data analysis process. We apply the targeted sub-threshold search method described
in Ref. [42] on an example high-mass-ratio compact binary coalescence event
GW190814 [6]. We generate a reduced template bank based on injection run results
using simulated type I lensed injections of the target event. The resulting reduced
bank is used, then, to search for the same set of simulated lensed injections in two
different searches, in which they are injected as type I images (original waveforms)
and type II images (Hilbert transform of the same waveforms) respectively.

Our preliminary result shows that there is a slight increase in the number of injections
missed when they are treated as type II images. This hints at the possibility that
the current search scheme may suffer from sensitivity loss without considering
type II images. However, we remark that the current results in this study are only
preliminary and will require further studies.

We then incorporate GW source population model and lensing probabilities to
predict the expected number of GW sources with distinguishable type II images
in CE, ET and LIGO Voyager respectively. For these three detectors, we predict
the yearly detection rates are 56.9, 8.6 and 0.06 with a conservative threshold at
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lnBthresh = 10. A relaxed log Bayes factor threshold boosts the expected detection
rates, especially for LIGO Voyager; at lnBthresh = 2, the yearly detection rate for
LIGO Voyager approaches 1/yr.

Such distinguishable type II images are “short-cuts” for identifying strongly lensed
events, as they guarantee the existence of at least one other lensed image. They also
improve the computational efficiency of searching for the companion images, as the
estimated parameters, such as the redshifted mass, mass ratio and sky location, can
inform a more comprehensive catalog search. As illustrated, this method will be
most powerful with the unprecedented sensitivity offered by third-generation GW
detectors.

Our work can be extended and refined in several directions. We can relax the con-
straints on GW source range by including spin and orbit eccentricity, as is studied
in Ref. [46]. On one hand, the Hilbert transform of GWs from such sources may
have a larger mismatch from the original waveform, favoring type II image distin-
guishability. On the other hand, the Hilbert transform may be partially degenerate
with a parameter bias with the additional degrees of freedom. The effect of these
competing factors warrants careful treatment.

We may consider realistic detector networks instead of assuming complete knowl-
edge on both GW polarizations, which adds to the underlying waveform uncer-
tainties. Similar to the hypothesized effect of binary spin and orbital eccentricity,
uncertainty in the polarization may be partially degenerate with the Hilbert trans-
form signature. However, a detector network yields larger signal SNR, which should
promote the distinguishability of type II images.

It is also important to refine the lens modeling. While theoretical works on various
lens types and their respective image characteristics abound, to our knowledge, the
effect of the model choice on predictions for realistic detection has yet to be system-
atically investigated. Therefore, such a follow-up study is essential for understanding
the uncertainty and robustness of this strongly-lensing detection forecast.

In conclusion, this study shows that the intrinsic waveform characteristics of type
II images can be a powerful supplemental tool for hunting strongly lensed events
in the catalog of third-generation GW detectors, when tens of such events may be
identified.



61

2.7 Appendix: Binary Black Hole Merger Rate
In this appendix, we elaborate on the astrophysical models adopted to calculate the
merger rate of binary black holes. In summary, we compute the BBH merger rate
from population models on black hole progenitor stars and calibrate to the observed
rate in the local universe.

Adapted from Eq. (B1) and (B2) in Ref. [43], the birth rate of individual black
holes with mass 𝑚• at redshift 𝑧𝑠, 𝑅birth(𝑚•, 𝑧𝑠) is given by

𝑅mrg(𝑚•, 𝑧𝑠) =
∫

𝑑𝑚★ 𝑑𝑡𝑑 𝑑𝑍 𝜙(𝑚★) ¤𝜓 (𝑡 (𝑧𝑠) − 𝑡𝑑) 𝑃(𝑡𝑑)𝑃 (𝑍, 𝑡 (𝑧𝑠) − 𝑡𝑑) 𝛿
[
𝑚★ − 𝑔−1(𝑚•, 𝑍)

]
,

(2.34)
where 𝑚★ is the mass of the progenitor star, 𝑍 is stellar metallicity and 𝑡 (𝑧𝑠) is the
cosmic time as a function of redshift. 𝑔−1(𝑚•, 𝑍) gives the stellar mass 𝑚★ with
metallicity 𝑍 that leaves a black hole remnant with mass 𝑚•. The expression of
remnant black hole mass as a function of stellar mass and metallicity is given in
Ref. [67], with 20 𝑀⊙ < 𝑚★ < 105 𝑀⊙ and −5 < log10 𝑍 < −1.7. 𝑃(𝑍, 𝑡𝑧) is
the redshift-dependent distribution of metallicity. The mean log metallicity at any
redshift is given in Ref. [10]. At each redshift, the metallicity follows a log normal
distribution [10].

𝑡𝑑 is the time delay between black hole formation and its merger with another black
hole. 𝑃(𝑡𝑑) is the distribution of time delay, and we adopt the form 𝑃(𝑡𝑑) ∝ 𝑡−1

𝑑
,

truncated at 𝑡𝑑 = 50 Myr and the Hubble time [43]. Note that we ignore the time
delay between the formation of a star and the formation of its remnant. Since stellar
evolution is on the order of Myr, which is negligibly small compare to the evolution
time scale of galaxies and hence that of black holes, we can neglect it for model
simplicity without incurring large errors.

The quantity 𝜙(𝑚★) is the initial mass function that describes the stellar mass
distribution, which we assume to remain constant across redshift. Specifically, we
adopt the Chabrier initial mass function [16] for𝑚★ > 1 𝑀⊙, where 𝜙(𝑚★) ∝ 𝑚−2.3

★ .
The quantity ¤𝜓(𝑡) is the Star Formation Rate (SFR) including all 𝑚★ at cosmic time
𝑡. We adopt the analytic SFR expression in Ref. [68]. We calibrate the merger rate
at 𝑧 = 0 to be 103 Gpc−3yr−1, which is the expected local black hole merger rate
given LIGO detection data up until GW170104 [1, 15]. See text for the effects of
an updated local merger rate based on GWTC-2.

We note that 𝑅mrg(𝑚•, 𝑧𝑠) is the rates for black hole binary at 𝑧𝑠 whose primary
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black hole, i.e. the heavier one, is 𝑚•. We then assign a mass ratio value according
to the distribution 𝑃(𝑞) ∝ 𝑞, with 𝑞 truncated at 1.2 and 3.2. We can then directly
convert the rates into 𝑅mrg(𝑀•, 𝑞, 𝑧𝑠) where 𝑀• is the total binary mass.
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C h a p t e r 3

DETECTION PROSPECTS FOR GRAVITATIONAL-WAVE
LENSING IN HIERARCHICAL TRIPLE SYSTEM WITH KERR

BLACK HOLE

3.1 Introduction
The successful detection of Gravitational Wave (GW) events from compact bi-
nary mergers by the advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO) and Virgo collaboration heralds the era of gravitational wave astronomy
and proves to be an invaluable source for our understanding of both relativity and
astrophysics [1, 4, 5, 52]. Aside from being a target of interest itself, GWs carry
information on their propagation environment [3, 40, 43, 45]; lensing is one such
imprint that shed light on the GW source galaxy and other cosmological objects
along its path [24, 36, 41, 53].

Much literature on GW lensing focuses on the leading standard lensing scenario,
in which the lens, source and the observer are astronomical distances apart, and
the wave is slightly deflected by the lens before reaching the observer [36, 53, 55].
For a strong lens, such as a supermassive black hole (SMBH), the wave can wind
around the lens multiple times before reaching the observer, which produces higher
order images, or relativistic images [15, 21]. The lowest order relativistic image is
a “retrolensing” image [7, 38], which occurs when the source is in front of the lens,
and the wave travels further back towards the lens before being deflected “back”
towards the observer.

Relativistic images are thoroughly studied, typically in the context of electromag-
netic (EM) signals. In Ref. [6, 13, 15, 21], the relativistic image position and mag-
nification are comprehensively explored. Analytical solutions for Schwarzschild
strong lens and special cases for Kerr strong lens have been given in the geometric
optics limit [12, 15]. Interests for relativistic EM images were two-fold. First of
all, the light ring, formed by tightly packed “rings” of relativistic EM images, is the
primary target for the Event Horizon Telescope (EHT) [22, 23]. With successful
observation of the shadow border around M87 and Sagittarius A*, the EHT has
spurred yet greater interests in the shape of the shadow border and its science im-
plications [11, 27, 28]. It is also studied whether individual relativistic images can
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be discernible. In particular, Ref. [29] discusses the prospect of observing lensed
relativistic images of the Sun by stellar-mass black holes at the edge of the solar
system.

Relativistic lensing for GW images was discussed in earlier theoretical works in,
e.g., Ref. [7, 38]. These works generally consider the leading order of such images,
which is retrolensing. Specifically, their wave treatment puts retrolensing under
the general framework of black hole scattering, and the spin difference between
GWs and EM waves leads to qualitative differences beyond the geometric optics
description. However, there is much less literature on the realistic detection prospects
of higher order GW images. An important contributing factor is that higher order
image magnification is exponentially suppressed [25] and generally lies beyond the
sensitivity of the current GW detector network.

Nonetheless, detection of retrolensing GW images is not necessarily out of reach.
Indeed, there are astrophysically motivated scenarios where the relativistic GW
images have increased chances to be detectable, especially as the next generation
GW detectors with superior sensitivity are planned and developed [30, 32, 35, 37].
An interesting example is a high inclination hierarchical triple system, where a
stellar-mass binary black hole (BBH) emitting GWs is in orbit around a SMBH
[20, 58]. Several possible formation channels for such hierarchical triple systems
have been explored; for example, triples can form through gravitational capture in
nuclear star clusters [42], migration traps in the Active Galactic Nucleus (AGN)
disks [10, 39, 51] and tidal capture by the central SMBH to form binary extreme-
mass-ratio inspirals [16, 17]. Direct detection of lensed GW signals from triples
could, in turn, contribute to constraining and refining relevant theoretical models.

GW lensing in such triple system has been studied from several angles. In Ref. [20],
the authors map out the various regimes for lensing in triple systems and estimate the
probability and detectability of repeated lensing by the Laser Interferometer Space
Antenna (LISA), which occurs when the stellar-mass binary completes multiple
orbits around the SMBH during observation window. Repeated lensing is beneficial
for detection purpose since it creates a distinctive waveform with several magnified
peaks. In Ref. [58], the authors further include the leading relativistic image using
analytical formula and discuss the detection prospects given TianGO sensitivity. In
both works, it is assumed that the central black hole is a Schwarzschild black hole.

In this study, we explore the case where the central black hole is a Kerr black
hole with arbitrary spin and a wide range of observer inclination angles. This
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paper is organized as follows. In Section 3.2 and 3.3, we specify the geometry
of the triple system and outline procedures for solving GW relativistic images and
their magnification. In Section 3.4 and 3.5, we analyze the detection prospects
of retrolensing images in the context of next-generation decihertz GW detectors.
Finally, we make a forecast on the detection rate of lensed GWs and discuss paths
for future work. Details on the simulation pipeline are enumerated in the Appendix
Section 3.7 and 3.8.

3.2 Lensed Image Solution
In this section, we introduce the geometry of the hierarchical triple system and
specify procedures for solving the GW lensed image positions. We start with the
Boyer-Lindquist coordinate system, with the metric given by [14]

𝑑𝑠2 = (1−2𝑀𝑟
Σ

)𝑑𝑡2−Σ
Δ
𝑑𝑟2−Σ𝑑𝜃2−

[
Δ + 2𝑀𝑟 (𝑟2 + 𝑎2)

Σ

]
sin2 𝜃𝑑𝜙2+4𝑎𝑀𝑟 sin2 𝜃

Σ
𝑑𝑡𝑑𝜙 ,

(3.1)
with

Σ = 𝑟2 + 𝑎2 cos2 𝜃

Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2 .
(3.2)

Throughout this work, we denote the mass of the central lensing black hole as 𝑀
and the detector-frame mass of the stellar mass binary as 𝑚bbh. Taking advantage of
the axial symmetry of Kerr spacetime, the azimuthal angle is chosen such that the
projection of the line connecting the central black hole and the observer onto the
equatorial plane is at 𝜙 = 0. The GW source and the observer are denoted with the
subscripts “s” and “o”, and the polar angle is represented by 𝜇 ≡ cos 𝜃.

Since we are interested in the distant-observer case only, we treat the observer sky as
a plane perpendicular to the line connecting the central black hole and the observer.
The origin rests at the black hole, and the positive 𝑦 direction is aligned with the
projection of the black hole spin onto this plane1.

Throughout this work, we assume the geometric optics limit is valid, in which the
GW wavelength is much smaller compared to the length scale of the central black
hole [50, 58]. For example, for a binary emitting decihertz GWs around a 108 𝑀⊙

1Such direction is not well-defined for a face-on central black hole. However, the individual
relativistic images in this case are typically faint, which places this scenario outside the most
interesting parameter space of this work. It is well-defined for the near edge-on case that we are
interested in in this paper.
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SMBH, the parameter 𝜔 = 8𝜋𝑀 𝑓 is much larger than 1, placing us safely in the
geometric optics regime. In this case, finding the lensed GW images reduces to
finding null geodesics that pass through both the source and the observer location
[19].

In Kerr spacetime, null geodesics are determined with two constants of motion,
(𝐽, 𝑄); the geodesic equation can be written in the integrated form as [26]

𝐼𝑟 = 𝐺𝜃

𝜙𝑜 − 𝜙𝑠 = 𝐼𝜙 + 𝐽𝐺𝜙

𝑡𝑜 − 𝑡𝑠 = 𝐼𝑡 + 𝑎2𝐺 𝑡 ,

(3.3)

with

𝐼𝑟 =

∫
𝑑𝑟

±
√
𝑅

𝐼𝜙 = 𝑎

∫
𝑟2 + 𝑎2 − 𝑎𝐽

Δ
√
𝑅

𝑑𝑟 − 𝑎
∫

𝑑𝑟
√
𝑅

𝐼𝑡 =

∫
𝑟2Δ + 2𝑟 (𝑟2 + 𝑎2 − 𝑎𝐽)

±Δ
√
𝑅

𝑑𝑟

𝐺𝜃 =

∫
𝑑𝜃

±
√
Θ

𝐺𝜙 =

∫
csc2 𝜃
√
Θ
𝑑𝜃

𝐺 𝑡 =

∫
cos2 𝜃

±
√
Θ
𝑑𝜃

Θ = 𝑄 + 𝑎2 cos2 𝜃 − 𝐽2 cot2 𝜃

𝑅 = 𝑟4 + (𝑎2 − 𝐽2 −𝑄)𝑟2 + 2𝑟 (𝑄 + (𝐽 − 𝑎)2) − 𝑎2𝑄 .

(3.4)

In the context of lensing and relativistic images, it is convenient to re-parameterize
(𝐽, 𝑄) as (𝜂, 𝜓) where, roughly speaking, 𝜂 corresponds to the angular position of
GW image on the observer sky, and the “radial” coordinate is related to 𝜓, which
varies between 𝑚 − 1

2 and 𝑚 + 1
2 [14]. The parameter 𝑚 is the number of angular

inversion points of the geodesic, e.g., for unlensed, direct images, 𝑚 = 0; for the
leading lensed images, 𝑚 = 1 and 𝑚 = 2 for the first set of retrolensing images [14].

Since Kerr geodesics are completely integrable, the integrals have analytical an-
tiderivatives, which greatly enhances the computational efficiency. For each set of
(𝑟𝑜, 𝜇𝑜, 𝑟𝑠, 𝜇𝑠, 𝜙𝑠), we numerically find (𝜂, 𝜓) that satisfy Eqn. (3.3) in Mathematica
using the built-in FindRoot function. The analytical expressions are presented in
the Appendix Section 3.7.
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3.3 Image Magnification
After determining the constants of motion, we compute the magnification for each
of the lensed images using the optical scalar formalism [19, 31, 46, 47].

In this approach, one imagines an infinitesimal null geodesic bundle, 𝑥(𝜏, 𝑠), where
𝜏 is an affine parameter and 𝑠 specifies the deviation from the central geodesic [19].
The initial tangent vector is 𝑘𝛼. We can track the changes in the cross section of this
infinitesimal bundle via the vector

𝜁𝛼 ≡ 𝜕𝑥(𝜏, 𝑠)/𝜕𝑠 , (3.5)

which can be shown to satisfy the geodesic deviation equation [19]. To describe
this geodesic bundle, i.e., 𝜁𝛼, we construct an appropriate orthonormal tetrad,
(𝑘𝛼, 𝑝𝛼, 𝑡𝛼, 𝑡∗𝛼) adapted to the tangent vector 𝑘𝛼 (and hence (𝐽, 𝑄)) [46]. We also
apply transformations such that 𝑡𝛼, 𝑡∗𝛼 are purely spatial for observers at rest in the
locally non-rotating frame (LNRF) [9], which makes them suitable basis vectors for
quantities these observers can measure, such as the wave polarization and bundle
cross section. The detailed construction process is presented in the Appendix
Section 3.8.

The vector 𝜁𝛼 can be decomposed in this tetrad as [19]

𝜁𝛼 = 𝜁∗𝑡𝛼 + 𝜁𝑡∗𝛼 . (3.6)

Note that the 𝜁 without any indices is a complex number. The geodesic deviation
equation then gives

¥𝜁 = 𝜁∗𝑅𝑘𝑡𝑘𝑡 + 𝜁𝑅𝑘𝑡𝑘𝑡∗

= −Φ00𝜁 − Ψ0𝜁
∗,

(3.7)

where 𝑅𝑎𝑏𝑐𝑑 is the Riemann tensor, e.g., 𝑅𝑘𝑡𝑘𝑡 ≡ 𝑅𝑎𝑏𝑐𝑑𝑘
𝑎𝑡𝑏𝑘𝑐𝑡𝑑 , and Φ00 = 0 in

Kerr spacetime. This equation is essentially Sachs’ equations, and we make this
connection explicit in the Appendix Section 3.8.

To describe an elliptical bundle cross section, it is convenient to rewrite the complex
number as

𝜁 = 𝜉𝑒𝑖𝛽 + 𝜈𝑒−𝑖𝛽 , (3.8)

where 𝜉, 𝜈 are complex numbers, and 𝛽 is a dummy variable ranging from 0 to
2𝜋. It can be verified that the vector 𝜁𝛼 (𝛽) traces out an ellipse with semimajor
and semiminor axes as |𝜉 | + |𝜈 | and |𝜉 | − |𝜈 |, and the ellipse area is proportional to
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|𝜉 |2 − |𝜈 |2 [47]. Let 𝑥, 𝑦 and 𝑔, ℎ be the real and imaginary part of 𝜉, 𝜈, respectively.
Eqn. (3.7) then gives four coupled second-order ordinary differential equations (plus
an additional first order equation that comes from the construction process of the null
tetrad; see the Appendix for details). They can be written as nine first order ordinary
differential equations, which we numerically solve using a fourth-order Runge-Kutta
routine with step-doubling for error control [48]. For initial conditions, we consider
a circular beam and set, e.g., ¤𝑥 = 1 and others to zero [31].

The magnification (in power) is then given by the ratio of the bundle cross section
in the lensed case to that of the unlensed, flat-space cross section. Since we always
consider the distant observer limit, we are interested in the asymptotic behavior of
this magnification, where the growth rate of the cross section tends to a constant.
Since the GW signal strength is proportional to its amplitude, its amplification is
the square root of the geodesic bundle areal magnification [31],

𝐹 =
√︁
|𝜇 | = 1√︁

| | ¤𝜉 |2 − | ¤𝜈 |2 |
. (3.9)

3.4 Waveform Prediction
In this section, we show an example of the lensing profile in a hierarchical triple
system. The example triple has 𝑟𝑠 = 100 𝑀, 𝑟𝑜 = 108 𝑀 and 𝜇𝑜 = cos 87◦.
The corotating GW source is in the equatorial plane of the central black hole with
𝑎 = 0.6. We choose 𝑟𝑜 to be large enough that the magnification has approximately
reached its asymptotic value [31].

As described in Section 3.2 and 3.3, we track the images as the binary orbits around
the SMBH, keeping the leading order lensed images and the retrolensing images, i.e.,
𝑚 = 1, 2 2. This choice is motivated by the fact that image magnification decreases
exponentially with increasing image order and we expect them to go below detector
sensitivity [25].

The resulting amplitude magnification profile is shown in Figure 3.1. The color code
represents images with different 𝑚 values, or different numbers of angular inversion
points. The gray dashed line are interpolated between the simulation data; in these
regions, the corresponding image trajectory becomes almost equatorial. The top
blue trace connects to the unlensed direct image; we observe that its magnification
is roughly 1 already, and we assume its value is 1 beyond the simulated azimuthal

2The term “retrolensing image” is generally applicable to all images whose trajectory goes
further back towards the lens before reaching the observer. In this work, we use the term mostly to
denote the lowest order retrolensing image, i.e., 𝑚 = 2.
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Figure 3.1: Magnification profile for an equatorial source throughout its orbit. The
central black hole has a spin parameter of 0.6. The triple configuration is given
as 𝑟𝑠 = 100 𝑀, 𝑟𝑜 = 108 𝑀 and 𝜇𝑜 = cos 87◦. The legend shows images with
different 𝑚 values. The gray dashed line interpolates between the simulation data.
The top blue trace connects to the direct, unlensed image, which we do not show in
this figure. The set of three-inversion-point images (𝑚 = 3) includes an image that
connects to 𝑚 = 4 images, but we omit it since we do not include 𝑚 ≥ 3 images in
later calculations. For both 𝑚 = 2, 3 images, we observe similar structures where
two new images appear and disappear with diverging magnification as the source
goes through the caustic surfaces.

angle range. Similar to the𝑚 = 2 set of images, the𝑚 = 3 has an additional member
that connects to the 𝑚 = 4 set, which we do not show in this figure. As expected,
the 𝑚 = 3 images are roughly one order of magnitude fainter than 𝑚 = 2 images;
for this reason, we do not include it in the following batch simulations.

We observe that the leading lensing peaks (blue trace) is similar to when the lensing
black hole is non-spinning; for higher orders, however, the peak splits into “double-
peaks”, as the GW source crosses the caustic surface of the Kerr black hole [14,
34, 50]. Upon crossing the caustic surface, two images with formally diverging
magnification emerge or disappear. In optical scalar terms, the cross section of the
infinitesimal geodesic bundle vanishes at the caustics [19, 50], thus giving formally
infinitely bright images 3.

To further illustrate the retrolensing images, we show the image trajectory at rep-
resentative orbital locations in Figure 3.2. For visual clarity, we decrease the
orbital radius and the observer distance to 𝑟𝑠 = 20 𝑀, 𝑟𝑜 = 30 𝑀 , keeping
𝑎 = 0.6, 𝜇𝑠 = cos 87◦. The magnification profile remains qualitatively similar
to that shown in Figure 3.1. The panels share the same color code, representing

3In such cases, geometric optics is not sufficient, and diffraction curbs the magnification. Since
this diverging region is sharp and doesn’t accumulate large signal-to-noise, we do not further model
diffraction to improve accuracy.
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different images. Notably, the Top Right panel shows the image trajectories just
after the GW source enters the caustics surface; two images emerge (red and yellow
traces) with similar trajectories. The Bottow Left, on the other hand, shows the sce-
nario just before the source exits the caustic surface; a different pair of two images
(yellow and green traces) merge and disappear.

Figure 3.2: Retrolensing image geodesics for an equatorial (𝑟𝑠 = 20 𝑀) GW source
in a triple system with an 𝑎 = 0.6 central black hole. The observer is located at
𝜇𝑠 = cos 87◦, 𝑟𝑜 = 30 𝑀 . The source azimuthal angles from top to bottom and from
left to right are 𝜙𝑠 = 5, 5.48, 5.71 and 6. Different images are marked with the
same colors across the panels. From Upper Left to Upper Right, the source crosses
the caustics surface, and two new images (the red and orange traces) emerge. From
Lower Left to Lower Right, the source crosses the caustics again and two images
(the green and yellow traces) merge and vanish. We show only images with 𝑚 = 2.

In Figure 3.3, we show the retrolensing image magnification profile over a range
of spin values and observer inclination angles. From left to right, the spin pa-
rameter is 𝑎 = (0.01, 0.5, 0.9); from top to bottom, the observer inclination is
𝜃𝑜 = (75.0◦, 80.6◦, 87.6◦). For completeness, the edge of the standard lensing im-
age is shown in blue trace in all panels. As spin and observer inclination increase,
the orbit that intercepts with the caustic region grows, and we observe wider double-
peaks. Such unique features can then be used to distinguish between triple systems
with a spinning central black hole versus a non-spinning central black hole.

To compute the total lensing magnification to the GW waveform, we take the
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Figure 3.3: Magnification profile for retrolensing images for triple systems with
various central black hole spin parameter and observer inclination. For all panels,
𝑟𝑠 = 100 𝑀, 𝑟𝑜 = 108 𝑀 . The blue trace is the lensed 𝑚 = 1 image, as is shown
in Figure 3.1. From left to right, the spin values are 𝑎 = (0.01, 0.5, 0.9); from top
to bottom, the observer inclination angle is 𝜃𝑜 = (75.0◦, 80.6◦, 87.6◦). As the black
hole spin and the observer inclination increase, the source orbit intersects with the
caustic surface and the double-peak structure emerges. The green trace connects to
𝑚 = 3 images (see Figure 3.1), which we do not include in the following waveform
calculation and hence omit here.

conservative assumption that the lensing images add in power. Typically, the path
difference between the images is on the same scale as the physical length scale of
this geometric optical system, 𝑀 . Since we work in the geometric optics regime,
the GW wavelength should be much shorter than the lens mass scale, 1/ 𝑓 ≪ 𝑀 .
Moreover, the image path difference is also sensitive to the orbital location of the
GW source. Consequently, the images have large and evolving phase differences,
making them effectively incoherent. This description becomes inaccurate near the
caustic crossing region, as two images share almost the same propagation paths and
merge. However, as is seen in Figure 3.1 and 3.3, this region is very narrow and
does not accumulate large signal-to-noise ratio (SNR). For this reason, we do not
model it separately in the following forecast. See Section 3.6 for further discussion.
Therefore, the total magnification is given as

𝐹 (𝜙𝑠) =
√︄∑︁

𝑖

𝐹𝑖 (𝜙𝑠)2 , (3.10)

where 𝑖 includes all images up to 𝑚 = 2.
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To obtain the lensing magnification in the frequency domain, we follow Ref. [57,
58] and adopt the Stationary Phase Approximation (SPA) treatment. Given any
orbital angle at coalescence, we express the GW frequency as a function of time-to-
coalescence and hence the orbital location, 𝑓 (𝜙𝑠 − 𝜙𝑠,𝑐). The subscript “c” denotes
quantities at coalescence. Inverting the expression, we obtain the lensed waveform
as

| ℎ̃( 𝑓 ) | = 𝐹 (𝜙𝑠 ( 𝑓 , 𝜙𝑠,𝑐)) | ℎ̃𝑐 ( 𝑓 ) |

= 𝐹 (𝜙𝑠 ( 𝑓 , 𝜙𝑠,𝑐))
(

5
96

)1/2 M5/6

𝜋2/3𝐷𝐿

𝑓 −7/6 ,
(3.11)

where M, 𝐷𝐿 are the detector-frame chirp mass and luminosity distance, and ℎ̃𝑐 ( 𝑓 )
is the unmodified carrier waveform. In this work, we ignore other waveform modi-
fications, such as Doppler shifts and Kozai-Lidov oscillations [57, 58]. Due to large
uncertainty in future detector details, we make the optimistic assumption to detect
all polarization content and do not include antenna patterns.

3.5 Detectability Horizon
In this section, we consider the lensed waveform from a representative hierarchical
triple system and quantify its detectability prospect given realistic detector perfor-
mance. First of all, we distinguish between lensed and unlensed signals. Then, we
evaluate whether the spin of the central black hole gives a distinguishable lensing
feature in the waveform compared with the Schwarzschild case, given the same
orbital configuration.

The suitable GW frequency spectral range is subject to both the geometric optics
limit requirement and the repeated lensing requirement. Since we target SMBH
lenses, the GW frequency should be higher than the millihertz band. To accumulate
sufficient SNR and to observe lensing signature multiple times [20], the source
should stay in the detector sensitivity band for longer than the GW source orbital
period, which suggests we should search below the ground-based detector frequency
range, as these sources quickly coalesce. The two considerations indicate that the
decihertz range can be especially promising. Within this band, we focus on the
Decihertz Gravitational wave Observatory (DeciGO) [32], and the fitted noise power
spectrum is given as [56]

𝑆𝑛 ( 𝑓 ) = 7.05×10−48

[
1 +

(
𝑓

𝑓𝑝

)2
]
+4.8×10−51

(
𝑓

1 Hz

)−4
[
1 +

(
𝑓

𝑓𝑝

)2
]−1

+5.33×10−52
(
𝑓

1 Hz

)−4
Hz−1 ,

(3.12)
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where 𝑓𝑝 = 7.36 Hz.

Since the waveform difference is typically small compared to whole waveform, we
expect that the waveform difference is only distinguishable when the SNR is large.
In this regime, the log Bayes factor, defined as the ratio between the likelihood of
lensed images versus regular images, is given by [18, 55]

lnB ≡ ln
L𝐿

L ≈ 1
2
𝜖 𝜌2

𝜖 = min

(
1 − ℜ𝔢(⟨ℎ̃𝐿 | ℎ̃⟩)√︁

⟨ℎ̃𝐿 | ℎ̃𝐿⟩⟨ℎ̃ | ℎ̃⟩

)
𝜙𝑢,𝑐

,

(3.13)

where the mismatch is minimized over the orbital angle at coalescence of the
unlensed waveform (subscript “𝑢, 𝑐”). The inner product, ⟨·⟩, is given by

⟨𝑎 |𝑏⟩ =
∫ ∞

−∞

𝑎∗( 𝑓 )𝑏( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 , (3.14)

where 𝑆𝑛 ( 𝑓 ) is the two-sided detector noise power spectral density. In this work,
we set the distinguishable threshold to lnB = 1.

In this example, the GW source is an equatorial equal-mass binary with detector-
frame mass 𝑚bbh = 100 𝑀⊙. We assume a central black hole with 𝑀 = 108 𝑀⊙ and
the orbital radius is 𝑟𝑠 = 100𝑀 . Depending on the orbital angle at coalescence of the
lensed waveform, the waveform mismatch is different. In the case where the standard
lensing peak or the retrolensing peak occurs when the GW frequency is at the most
sensitive band of the detector, the waveform mismatch is especially emphasized.
We assume that the orbital angle at coalescence of the lensed waveform is evenly
distributed over 2𝜋 and average the maximum distance over which the waveform
difference is distinguishable.

In Figure 3.4, we show the maximal distance out to which repeatedly lensed GWs
can be distinguished from unlensed ones with lnB ≥ 1 for various observer
inclination and central black hole spin value. The simulated cases inclination
is evenly spaced between 75 deg and 89 deg, and the SMBH spin is given by
[0.01, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The search grid is marked out with gray
dashed lines. Consistent with intuition, lensing becomes more distinguishable as
the observer inclination increases and the standard lensing peak grows. While there
seems to be some variation with spin, it is subdominant; this is also in part due
to our conservative model that images add only in power, such that an image with
𝐹𝑖 ( 𝑓 ) ≪ 1 contributes only 𝐹𝑖 ( 𝑓 )2 to the final image. As Figure 3.4 shows, lensing
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can be distinguished out to 10 ∼ 60 Gpc in luminosity distance, or 𝑧 = 1.4 ∼ 6.2,
assuming a cosmology with ℎ = 0.7,Ω𝑚 = 0.3. This suggests that third-generation
GW detectors are able to gather abundant instances of triple system lensing out to
significant redshift in this high-inclination case.
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Figure 3.4: Maximal distance for distinguishing lensing signature in triple systems
for various spin parameter and observer inclination values. We assume the detector
sensitivity of DeciGO, and the GW source is an equal-mass binary with detector-
frame mass of 𝑚bbh = 100 𝑀⊙. The triple system orbital radius is the same as in
Figure 3.3. Simulated cases are marked with the dashed gray grid. The dominant
factor shows to be the orbital inclination, and lensing in high inclination triple
systems can be distinguished out to cosmological distances.

In Figure 3.5, we show the maximal distance where lensing from spinning central
black holes can be distinguished from non-spinning central black holes. Specifically,
we compute the waveform difference between non-spinning and spinning central
black hole with the same observer inclination angle. The non-spinning base case
is approximated by setting 𝑎 = 0.01 (the last row in the dashed gray grid in Figure
3.4). In this case, the difference is due to a shift in the standard lensing peak
and the distinctive retro-lensing double-peak. We observe an overall trend that the
waveforms become more distinctive as the spin and inclination increases, and lensing
from spinning central black hole is distinguishable from non-spinning central black
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hole within 1 ∼ 10 Gpc in luminosity distance. The irregularities on top of the
trend, e.g. the 𝑎 = 0.7, 𝜃𝑜 = 83.4 deg case has a slightly further horizon than
neighboring cells, can be attributed to the simulation accuracy margin; we note that
the waveform difference here can be quite small, O(10−8 ∼ 10−4).
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Figure 3.5: Maximal distance for distinguishing lensing with spinning central black
hole. The triple parameters and the searched space is the same as in Figure 3.4.
The non-spinning case is proxied by the 𝑎 = 0.01 case. Simulated cases are marked
with the dashed gray grid. As spin and observer inclination increases, spin features
can be distinguished up to several Gpc. The irregularities (e.g., 𝑎 = 0.7, 𝜃𝑜 = 83.4
deg) above the overall trend is due to simulation accuracy; the waveform mismatch
is typically quite small, O(10−8 ∼ 10−4).

We further address how the leading relativistic images contribute to the distinguisha-
bility of lensing signatures. The spin effects manifest through both the shapes and
locations of the standard lensing peak and the retrolensing peaks. After identifying
the best-fitting unlensed waveform or Schwarzschild-lensing waveform (with mini-
mized waveform mismatch as is defined in Eqn. (3.13)), we compute the waveform
mismatch in the two halves of the orbit, 𝜙𝑠 ∈ (−𝜋/2, 𝜋/2), (𝜋/2, 3𝜋/2). While
the transition between the standard lensing images (𝑚 = 1) and retrolensing images
(𝑚 = 2) does not strictly follow this partition, the two halves contain the most promi-
nent lensing peaks. As before, we convert the waveform mismatch of the two halves
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into the maximum distinguishable distance. In Figure 3.6, we show the maximum
distinguishable distance from the two halves as the orbital angle at coalescence
changes. In this example, the system parameters are given by 𝑎 = 0.6, 𝜃𝑜 = 87.6
deg. The colored traces show mismatches computed from the retrolensing half
(𝜙𝑠 ∈ (−𝜋/2, 𝜋/2)) and the standard lensing half (𝜙𝑠 ∈ (𝜋/2, 3𝜋/2)). The mis-
match from the total waveform is shown in the dashed black line.

As Figure 3.4 shows, the distinguishability of lensed waveform from unlensed ones
is relatively insensitive to spin, albeit the large change in retrolensing waveforms.
This suggests that the distinguishability is primarily driven by the standard lensing
peak. In the Upper panel in Figure 3.6, the retrolensing contribution (blue trace)
is diminishingly weak, consistent with previous observation. To distinguish lensing
with spinning lenses, on the other hand, the standard lensing peak is not always
dominant, since the its offset due to spin can be partially absorbed with a shift in
the matching template outer orbital angle at when the stellar-mass binary coalesce.
As the binary coalesces near 𝜙𝑠 = 0, the retrolensing features are placed in the
most sensitive range of DeciGO, and the waveform distinguishability is mainly
driven by the retrolensing features. By taking the orbital average, the maximum
distinguishable distance using standard lensing waveform only is about 2.23 times
smaller than the maximum distance using the full waveform. To make an accurate
prediction on the expected number of such lensed sources expected in decihertz GW
detectors, it is thus important to model the relativistic images.

3.6 Discussion & Conclusion
In this work, we accurately model lensed GW signals from hierarchical triple sys-
tems with a Kerr supermassive black hole. We adopt both the elliptical integral
formulation and the optical scalar formalism to numerically compute the lensing
image paths and their respective magnification. Working in the high SNR regime,
we make forecast on the distinguishability of lensing features for a range of central
black hole spin value and observer inclination.

Using the predicted noise level of DeciGO, we find that such repeated lensing in
high-inclination hierarchical triple systems can be distinguished from unlensed GW
signals out to cosmological distances; depending on the spin value and observer
inclination, the difference can be resolved for systems out to 𝑧 = 1.4 ∼ 6.2. Dif-
ferentiating spinning black hole lens from non-spinning ones is more challenging,
partly due to the small amplitude of the double-peak retrolensing pattern. Nonethe-
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Figure 3.6: Maximal distance for distinguishing lensing with spinning central black
hole with 𝑎 = 0.6, 𝜃𝑜 = 87.6 deg. The triple parameters and the searched space is
the same as in Figure 3.4. The non-spinning case is proxied by the 𝑎 = 0.01 case.
The Upper panel shows the detectability threshold of the total lensing pattern. The
Lower panel shows how distinguishable lensing from a spinning lens is compared
to Schwarzschild lenses. In both panels, the standard lensing half and retrolensing
half are shown in colored traces, and the total waveform scenario is shown as a black
dashed line.

less, it is plausible to extract this difference if the triple system is within a couple of
Gpc in luminosity distance. Furthermore, we show that the retrolensing peaks play
an important role in distinguishing the spin-induced lensing features.

Alternatively, the detectable and distinguishable lensing signature horizon can be
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converted into an effective comoving volume as

𝑉eff =

∫
Θ(𝐷𝑐 − 𝐷𝑐,max(𝑎, 𝜃)) sin 𝜃𝑑𝐷𝑐𝑑𝜃𝑑𝜙 , (3.15)

where Θ is the Heaviside function and 𝐷𝑐 is the comoving distance. The conversion
from luminosity distance to comoving distance follows the ΛCDM model as before.
The inclination is summed over our simulation range between 75 deg and 89 deg.
This treatment is an underestimate of the effective volume, since all other inclinations
are assumed to have maximum distinguishable distance of zero. Nonetheless, we
do not expect this approximation to deviate strongly from the true value; the larger
inclination angle does not represent significant volume, and the detectability is
fairly weak at smaller inclination values; see, e.g. Figure 3.5. Thus, we provide
a conservative estimate that the repeated lensing pattern should be distinguishable
from unlensed ones in an effective comoving volume of 2.96 Gpc3 (with a radius
of 𝐷𝑐 = 0.89 Gpc) at moderate central black hole spin of 𝑎 = 0.4 (the effective
volume has negligible variation with spin). In terms of the difference incurred by
the central black hole spin, the distinguishable effective comoving volume is 0.14
Gpc3 (𝑅 = 327 Mpc) at moderate spin (𝑎 = 0.4), and 0.24 Gpc3 (𝑅 = 387 Mpc) at
high spin (𝑎 = 0.9).

The concrete number of such GW candidates relies on astrophysical models on BBH
distribution around SMBHs and the population of SMBHs themselves, and both are
active research areas. As noted in Section 3.1, multiple hierarchical triple formation
processes have been proposed in theory [10, 16, 17, 39, 42, 51], yet more direct
GW data on these BBH mergers is needed to help constrain models. On the front
of the SMBH population and spin properties, observational evidence, primarily
coming from X-ray reflection spectroscopy, continues to shed light on SMBH spin
distribution in the local universe and possible dependence on mass [44, 49, 54].

Despite the large degree of uncertainty, we can estimate the upper bound of the
number of distinguishable events. The local BBH merger rate is constrained by
the second LIGO-Virgo Gravitational-Wave Transient Catalog (GWTC-2) to be
23.9+14.3

−8.6 Gpc−3yr−1 [2]. While decihertz detectors probe a different BBH popu-
lation, this reference number suggests that O(50) merger per year can have distin-
guishable lensing signature, and O(1) could carry distinguishable imprint from the
spinning central black hole.

Our work can be further developed in several directions. Firstly, we note that
the model triple system always contains an equatorial GW source in a corotating
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orbit around the central black hole. However, observational evidence suggests that
SMBHs are not necessarily spin-aligned with the accretion disks, or the alignment
process takes significant time [8, 33]. Given sufficiently large SNR, it may also be
possible to infer orbital configuration from the lensing profile. A careful study on
the resulting waveform modification and the effects on observation is deferred to
future study.

Secondly, we note that the lensing images are added in power when we compute the
total image magnification. In Section 3.4, we argue that this conservative choice
reflects the fact that the pathlength difference between the images is on the order of
𝑀 . Since this scale is longer than the GW wavelength by assumption, the images
become effectively incoherent sources. While pairs of images get close in phase at
caustic crossing, their phase coherence quickly decays away from the narrow caustic
peaks. Due to the short duration of this in-phase period and the limit of detector
sensitivity, we do not specifically model this. Nonetheless, the image pathlength
difference can be readily obtained from our simulation, and the more exact waveform
modifications can be computed.

We also exclude the polarization difference; relative to the stellar-mass binary or-
bital plane, the different images are emitted to different angles and contain different
polarization content. While it is an interesting qualitative feature, the small wave
amplitude implies that it has limited effect for realistic detection analysis. Nonethe-
less, since the image paths are already solved, it is straightforward to include this
effect via the appropriate coordinate transformation.

Finally, it would be more thorough to maximize the waveform overlap over physical
source parameters such as the observer inclination. In this work, we consider
maximization over the orbital angle at coalescence, motivated by the fact that the
spin effect on the standard lensing peak can be largely absorbed with a orbital
phase change. Searching over the observer inclination alters the shape of the
standard lensing peak, which can further reduce the waveform mismatch. However,
the observer inclination change cannot fully account for the retrolensing peaks,
especially as the double-peak develops. Since the retrolensing peaks contribute
significantly to setting Kerr lenses and Schwarzschild lenses apart, it is likely that
maximizing over an additional parameter does not qualitatively change the detection
prospect. A full account relies on more extensive lensing simulation cases, which
we defer to future studies.

Our study provides a platform for accurately modeling GW lensing in hierarchical
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triple systems. The example case also suggests that such features will be visible in
the data from next-generation decihertz detectors; with the extraordinary detector
sensitivity, lensing offers a valuable tool for studying the environment of decihertz
GW sources and can also be of interest for the broader astrophysics community.

3.7 Appendix: Lensed Image Geodesic Solution
In this appendix, we provide details on the geodesic solution process, combining
the treatment in Ref. [14, 26].

Firstly, we consider unstable photon orbits near the Kerr black hole given by 𝑅 =

0, 𝜕𝑅/𝜕𝑟 = 0, where 𝑅 is the radial potential (last line in Eqn. (3.4). For an orbit
with radial coordinate, 𝑟𝑚, a photon that escapes from this unstable orbit has an
observer’s sky position of

𝜃1,𝑚 =
𝑟2
𝑚 (𝑟𝑚 − 3) + 𝑎2(𝑟𝑚 + 1)
𝑟𝑜𝑎(𝑟𝑚 − 1)

√︁
1 − 𝜇2

𝑜

𝜃2,𝑚 = ±
√︁
Λ(𝑟𝑚)

𝑟𝑜𝑎(𝑟𝑚 − 1)
√︁

1 − 𝜇2
𝑜

Λ(𝑟𝑚) = 𝑟3
𝑚

[
4𝑎2 − 𝑟𝑚 (𝑟𝑚 − 3)2]

− 2𝑎2𝑟𝑚 (2𝑎2 − 3𝑟𝑚 + 𝑟3
𝑚)𝜇2

𝑜 − 𝑎4(𝑟𝑚 − 1)𝜇4
𝑜

(3.16)

under the distant observer limit. A solution exists if Λ(𝑟𝑚) ≥ 0, which gives two
extrema, 𝑟±, corresponding to equatorial prograde and retrograde photons. The
shadow border can be expressed with a dummy variable 𝜂 as

𝑟𝑚 =
1
2
[𝑟+(1 − cos 𝜂) + 𝑟−(1 + cos 𝜂)] , (3.17)

with 𝜂 ranging from −𝜋 to 𝜋.

The observer sky coordinate of the lensed image can then be parameterized as

𝜃1 = 𝜃1,𝑚 (𝜂) (1 + 𝜖)
𝜃2 = 𝜃2,𝑚 (𝜂) (1 + 𝜖)

(3.18)

with 𝜖 ∈ (0,∞). Note that unlensed images that come directly from the source to
the observe can be parameterized in a similar way, with 𝜖 ∈ [−1,∞).

In the distant observer limit, the image position relates to the geodesic constants of
motion (𝐽, 𝑄) via

𝐽 = −𝜃1𝑟𝑜

√︃
1 − 𝜇2

𝑜

𝑄 = 𝜃2
2𝑟

2
𝑜 + 𝜇2

𝑜 (𝜃2
1𝑟

2
𝑜 − 𝑎2) .

(3.19)
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The parameters 𝜂, 𝜖 then determine the geodesic. We can represent 𝜖 with another
parameter, 𝜓, defined as

2𝐾 (𝑘)𝜓 = 𝑎𝜇−𝐼1(𝜖, 𝜂) + sgn(𝜂)𝐹 (𝜆𝑜, 𝑘) , (3.20)

with

𝐼1 =

∫
𝑑𝑟

±
√
𝑅

𝜆𝑜 = arcsin
𝜇𝑜

𝜇+

𝑘 = − 𝜇
2
+
𝜇2
−

𝜇2
± =

√︃
𝑏2
𝐽𝑄

+ 4𝑎2𝑄 ± 𝑏𝐽𝑄
2𝑎2

𝑏𝐽𝑄 = 𝑎2 − 𝐽 −𝑄 ,

(3.21)

and 𝐹, 𝐾 are the incomplete and complete elliptical integral of the first kind. The
parameter 𝜓 enjoys the nice property of being confined to [𝑚− 1

2 , 𝑚+ 1
2 ] for the same

image order, which greatly simplifies the solution process when we are interested in
images of a particular order. Recall that 𝑚 is the number of angular inversion points
of the geodesic as it extends from the source to the observer.

We now quote closed form solution to several integrals in Eqn. (3.3) [26]. The
antiderivatives for the angular integrals are given by

G𝜃 = − 1
−𝑢−𝑎2𝐹

(
arcsin

(
cos 𝜃
√
𝑢+

)
| 𝑢+
𝑢−

)
G𝜙 = − 1

−𝑢−𝑎2Π

(
𝑢+, arcsin

(
cos 𝜃
√
𝑢+

)
| 𝑢+
𝑢−

)
G𝑡 =

2𝑢+
−𝑢−𝑎2𝐸

′
(
arcsin

(
cos 𝜃
√
𝑢+

)
| 𝑢+
𝑢−

)
𝐸′(𝜙 |𝑘) ≡ 𝐸 (𝜙 |𝑘) − 𝐹 (𝜙 |𝑘)

2𝑘

𝑢± = Δ𝜃 ±
√︂
Δ2
𝜃
+ 𝑄

𝑎2

Δ𝜃 =
1
2

(
1 − 𝑄 + 𝐽2

𝑎2

)
,

(3.22)

where 𝐸,Π are incomplete elliptical integrals of the second and third kind. The full
integral is determined with the number of angular inversion points, 𝑚 and the null
tangent vector at the observer, i.e., 𝜂. For 𝑥 ∈ (𝑡, 𝜃, 𝜙),

𝐺𝑥 = 𝑚𝐺̂𝑥 + sgn(𝜂)
[
(−1)𝑚G𝑥,𝑜 − G𝑥,𝑠

]
, (3.23)
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where 𝐺̂𝑥 is the integral over one half-liberation between two angular inversion
points. The subscripts “𝑜, 𝑠” indicate that the antiderivatives are evaluated at the
observer and the source, respectively.

The radial integrals can be written as

𝐼𝑟 = 𝐼0

𝐼𝜙 =
2𝑎

𝑟+ − 𝑟−

[(
𝑟+ −

𝑎𝐽

2

)
𝐼+ −

(
𝑟− − 𝑎𝐽

2

)
𝐼−

]
𝐼𝑡 =

4
𝑟+ − 𝑟−

[
𝑟+

(
𝑟+ −

𝑎𝐽

2

)
𝐼+ − 𝑟−

(
𝑟− − 𝑎𝐽

2

)
𝐼−

]
+ 4𝐼0 + 2𝐼1 + 𝐼2 .

(3.24)

We introduce the shorthand notation

𝑟𝑖 𝑗 = 𝑟𝑖 − 𝑟 𝑗 , 𝑖, 𝑗 ∈ (1, 2, 3, 4, +,−) , (3.25)

where 𝑟1 < 𝑟2 < 𝑟3 < 𝑟4 are real roots to the radial potential 𝑅.

In our simulation, we are interested in the lensed images only, and the antiderivatives
for the integrals are given as 4

I0 = 𝐹 (2) (𝑟)
I1 = 𝑟3𝐹

(2) (𝑟) + 𝑟43Π
(2)
1 (𝑟)

I2 =

√︁
𝑅(𝑟)
𝑟 − 𝑟3

− 𝑟1𝑟4 + 𝑟2𝑟3

2
𝐹 (2) (𝑟) − 𝐸 (2) (𝑟)

I± = −Π (2)
± (𝑟) − 𝐹 (2) (𝑟)

𝑟±3
,

(3.26)

where

𝐹 (2) (𝑟) = 2
√
𝑟31𝑟42

𝐹 (arcsin 𝑥2(𝑟) |𝜅)

𝐸 (2) (𝑟) = √
𝑟31𝑟42𝐸 (arcsin 𝑥2(𝑟) |𝜅)

Π
(2)
1 (𝑟) = 2

√
𝑟31𝑟42

Π

(
𝑟41

𝑟31
, arcsin 𝑥2(𝑟) |𝜅

)
Π

(2)
± (𝑟) = 2

√
𝑟31𝑟42

𝑟43

𝑟±3𝑟±4
Π

(
𝑟±3𝑟41

𝑟±4𝑟31
, arcsin 𝑥2(𝑟) |𝜅

)
.

(3.27)

4The (2) superscript is inherited from Ref. [26], which discusses all null geodesics in Kerr
spacetime. The lensed GW geodesic belongs to category 2.



91

The convenience functions are given by

𝐼𝑥 = I𝑥,𝑜 + I𝑥,𝑠
𝜅 =

𝑟32𝑟41

𝑟31𝑟42

𝑥2(𝑟) ≡

√︄
𝑟31(𝑟 − 𝑟4)
𝑟41(𝑟 − 𝑟3)

,

(3.28)

with 𝑥 ∈ (0, 1, 2, +,−).

3.8 Appendix: Geodesic Bundle
In this appendix, we supplement details on the optical scalar formalism to compute
lensed image amplification. Firstly, we discuss the construction of the null tetrad,
(𝑘𝛼, 𝑝𝛼, 𝑡𝛼, 𝑡∗𝛼) that satisfies the requirements in the main text. It turns out that the
relevant quantities are easier to evaluate in the locally non-rotating frame (LNRF)
[9, 46, 47], which relates to the Boyer-Lindquist coordinate via the one-forms

𝜔(0) =

√︂
ΣΔ

𝐴
𝑑𝑡, 𝜔(1) =

√︂
Σ

Δ
𝑑𝑟,

𝜔(2) =
√
Σ𝑑𝜃, 𝜔(3) = 𝑑𝜙 − 2𝑎𝑟

𝐴
𝑑𝑡 ,

(3.29)

where 𝐴 = (𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 𝜃. In this text we use indices with parenthesis to
indicate quantities evaluated in this LNRF.

We first start with an arbitrary orthonormal null tetrad

𝑙 (𝑎) =
1
√

2
(1,−1, 0, 0)

𝑛(𝑏) =
1
√

2
(1, 1, 0, 0)

𝑚 (𝑎) =
1
√

2
(0, 0, 1, 𝑖)

𝑚∗(𝑎) =
1
√

2
(0, 0, 1,−𝑖) .

(3.30)

We adapt this tetrad to the geodesic tangent vector, such that 𝑙 (𝑎) → 𝑘 (𝑎) , and

𝑚 (𝑎) → 𝑡
(𝑎)
∗ =

1
√

2
(−Γ, Γ, 1, 𝑖) , (3.31)

where Γ = 𝑘 (𝑎)𝑚 (𝑏)/𝑘 (𝑐)𝑙(𝑐) .
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We apply a null rotation such that 𝑡∗ becomes purely spatial for an observer

𝑡
(𝑎)
∗ → 𝑡

(𝑎)
+ = 𝑡

(𝑎)
∗ −

(
𝑡
(𝑏)
∗ 𝑢𝑜,(𝑏)

𝑘 (𝑐)𝑢𝑜,(𝑐)

)
, (3.32)

where 𝑢𝑜 is the observer’s four-velocity. In this work, we choose the set of observers
at rest in the LNRF.

Finally, we apply a rotation such that the Sachs’ equations are simplified, i.e., the
Newman-Penrose scalar 𝜖 ≡ −1

2 𝑡𝛼;𝛽𝑡
∗𝛼𝑘 𝛽 = 0 [46] (semicolon indicates covariant

differentiation),
𝑡
(𝑎)
+ → 𝑡 (𝑎) = 𝑡 (𝑎)+ 𝑒−𝑖𝜒 , (3.33)

where
¤𝜒 = −2𝑖𝜖+, 𝜖+ = −1

2
𝑡+(𝑎);(𝑏)𝑡

∗(𝑎)
+ 𝑘 (𝑏) . (3.34)

Note that, as in the main text, the overhead dot indicates derivative with respect to
the affine parameter.

We now comment briefly on the connection between the formalism and the Sachs’
equations with the optical scalars 𝜌, 𝜎. Since partial derivatives commute, the
vector 𝜁𝛼 satisfies

𝑘𝛼∇𝛼𝜁 𝛽 − 𝜁𝛼∇𝛼𝑘 𝛽 = 0 . (3.35)

Plugging in the decomposition of 𝜁𝛼, we find

¤𝜁 = 𝑡𝑎𝑘𝑎;𝑏𝑡
∗𝑏𝜁 + 𝑡𝑎𝑘𝑎;𝑏𝑡

𝑏𝜁∗

≡ −𝜌(𝜏)𝜁 − 𝜎(𝜏)𝜁∗ .
(3.36)

Taking another derivative, we obtain the geodesic deviation equation Eqn. (3.7)
with the form

¤𝜌 = 𝜌2 + 𝜎𝜎∗, ¤𝜎 = 𝜎(𝜌∗ + 𝜌) + Ψ0 . (3.37)
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C h a p t e r 4

GRAVITATIONAL-WAVE DETECTION WITH PHOTOMETRIC
SURVEYS

Wang, Y., Pardo, K., Doré, O., and Chang, T.-C. (2021). “Gravitational-wave Detec-
tion with Photometric Surveys”. In: Phys.Rev.D, 103(8):084007. doi:10.1103
/PhysRevD.103.084007.

4.1 Introduction
The successful detection of gravitational wave (GW) signals from binary mergers
with the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced
LIGO) and Virgo collaboration (see e.g. [5, 54]) has spurred great interest in
improving detection sensitivity and developing independent detection methods. For
GW astronomy, it is crucial that we have access to GWs across as wide a frequency
spectrum as possible, since different frequency bands are sensitive to their respective
groups of GW sources. A continuous frequency band also allows for observation of
the same GW source as it evolves to higher frequencies towards merger, allowing us
to extract as much information as possible.

The Advanced LIGO is sensitive to GWs between 10 Hz and 7 kHz [4], ideal for
detecting solar-mass binary mergers. The deci-hertz band will be covered by space-
based detectors such as TianGo [33] and DECIGO [29], targeting intermediate-mass
black hole binaries (∼ 102 − 104 𝑀⊙ [33]). The milli-hertz band will be covered by
the space-based Laser Interferometer Space Antenna (LISA) [7] and TianQin [36].
These interferometer-type detectors directly measure the GW-induced change in
separation between either suspended or free falling mirrors. In this case, the detector
frequency range is limited by noise factors, such as mirror position alignment error,
quantum noise and thermal noise [see, e.g., 48]. The space-based detectors are
sensitive to massive black hole mergers (MBHMs) at high redshifts (e.g. LISA can
detect 105 𝑀⊙ mergers at 𝑧 ∼ 15 with an SNR of ∼ 100 in the ringdown stage [7]).
Observing MBHMs will be instrumental for modeling black hole evolution history
and understanding strong-field gravity features [55].

At lower frequencies, interferometer-type detectors are no longer available and there
is a frequency gap until the Pulsar Timing Array (PTA) detection method becomes
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applicable. PTAs measure the Time of Arrival (TOA) of pulses from stable milli-
hertz pulsars. Passing GWs modify the pulse frequency, which translates into a
timing residual signal. By cross-correlating timing residuals from pairs of pulsars,
GW parameters can be extracted [12, 21, 42]. The PTA frequency band is limited by
mission lifetime as well as the observational cadence. For example, a 5-year survey
with an observational frequency of 17 year−1 (∼ 1/3 week−1) [53, 59] is sensitive to
GWs from 6.3 × 10−9 Hz to 5.4 × 10−7 Hz. With longer signal integration time and
more pulsar pairs, PTAs can detect the supermassive black hole merger background
(SMBHMB) as well as individual supermassive black hole binaries (SMBHBs) with
chirp mass between 104 𝑀⊙ and 1010 𝑀⊙ [49]. Recently, significant evidence for
a signal with common amplitude and spectral slope across monitored pulsars was
recovered from the 12.5-yr data by the North American Nanohertz Observatory
for Gravitational Wave (NANOGrav). However, there was no statistically strong
evidence for the quadrupolar spatial correlation expected from a GW background in
the General Relativity framework, and it remains to be determined if the observed
signal is indeed astrophysical [10].

We can also detect GWs via astrometry [17, 46]. Analogous to the theoretical basis
for PTAs, passing GWs perturb photon trajectories as they travel from the observed
stars to the detector. This perturbation leaves a GW-specific change to the apparent
star positions. It is, in principle, possible to extract this change in position from
high-precision astrometric data. Similar to the PTA method, the sensitive frequency
range depends on both survey lifetime and observational cadence. Accordingly,
using astrometric measurements as GW probes is a highly flexible technique since
observational frequency is tunable, depending on mission design. Furthermore, we
demonstrate in the paper that these GW measurements can be made with relative
astrometry and do not require dedicated absolute astrometric missions.

A suitable photometric survey with cadence higher than PTAs can unlock the inter-
mediate frequency band between PTAs and LISA. A survey with such sensitivity
range would be able to detect massive black hole binaries from 105 𝑀⊙ to 109 𝑀⊙

during inspiral and close to merger. Examples of such sources include the highly
eccentric binaries that go near coalescence in the sensitivity range of LISA [14, 15].
Detecting these GW sources will add invaluable data for constraining black hole
evolution models.

Accessing this frequency range also opens up opportunities for joint analysis of a GW
source population using various GW detectors targeting their respective frequency
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range. Although studies of a variety of massive binary black hole assembly scenarios
suggest that most GW sources in the nanohertz band show little frequency drift on
the scale of 10 years [50, 51], some sources detectable by LISA start emitting GWs
with a potentially detectable signal strength at frequencies lower than the LISA
sensitivity limit, such as highly eccentric binaries ejected from stellar clusters due
to natal kicks or dynamical processes [14, 15]. It is unlikely to observe one GW
source migrate across the frequency spectrum, since the inspiral time for sources at
the low frequency limit of LISA can be on the order of gigayears [15]. However,
observing the same population at these different frequencies allows us to piece
together ensemble source properties and their evolution.

This astrometric GW detection method in the context of Gaia has been studied
in detail [31, 43]. Gaia as a GW probe is sensitive from 10−8.5 Hz to 10−6 Hz; at
𝑓 > 10−7.5 Hz, Gaia will outperform PTA efforts [43]. In this paper, we discuss how
this analysis can in principle be done with astrometric data from any photometric
surveys even though they may not provide absolute astrometric measurements as
Gaia does. As a specific example, we forecast the GW detection sensitivity of the
Nancy Grace Roman Space Telescope1, NASA’s next flagship observatory after the
James Webb Space Telescope.

The Roman Space Telescope will observe billions of galaxies and thousands of
supernovae to probe the time evolution of dark energy and large-scale structure [see,
e.g., 6]. It will perform a micro-lensing survey on the inner Milky Way, as well as
high contrast imaging and spectroscopic studies of individual close-by exoplanets
[3]. For GW detection, its notional Exoplanet MicroLensing (EML) survey is
particularly relevant. It is expected to observe 108 stars in 7 fields [23]. It operates
in the near-IR with a ∼ 0.281 deg2 field of view (FoV), with an estimated single-
exposure astrometric precision of 1.1 mas [62]. During its nominal lifetime of 5
years, it will survey a total area of 1.97 deg2 between Galactic longitudes of−0.5 deg
and 1.5 deg, and Galactic latitudes between−0.5 deg and−2 deg. Observational time
consists of six 72-day seasons. During each season, the Roman Space Telescope
visits the seven fields sequentially and repeats this cycle every 15 minutes. This
gives a maximum of ∼ 41, 000 exposures per source, making it “one of the deepest
exposures of the sky ever taken” [23].

In this paper, we begin by reviewing the theory for GW-induced astrometric de-
flections and outlining the general strategy for using photometric surveys as GW

1https://roman.gsfc.nasa.gov/
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probes. We then assess the potential of the Roman EML survey to detect individual
binary signals. In Section 4.4, we discuss directions for performance improvement
for photometric surveys similar to the Roman EML survey as GW probes. We then
expand to other telescopes and surveys and discuss their potential for astrometrically
detecting GWs.

All of the code used to produce the figures and analysis in this paper is available at:
https://github.com/kpardo/estoiles-public.

4.2 Photometric Surveys as GW Probes
In this section, we first summarize how GW signatures manifest as observable
variation in the astrometric solution. We then present estimates of the sensitivity of
photometric surveys to GWs as well as their frequency resolution.

GW Signature in Astrometry
In short, a passing GW perturbs the spacetime along the photon trajectory as it
travels from the observed star to the detector. This perturbation causes a shift in
the stellar apparent position from its true position. Theoretical details are derived
in [46] in the distant source limit and later generalized in [17]. Here we present a
brief summary, closely following steps in [17].

We start with the model where the GW source and observer are stationary in
Minkowski spacetime and the GW is a linear perturbation to flat spacetime. Through-
out this paper, we use Greek alphabet to denote components of 4-vectors and Latin
alphabet to denote the spatial dimensions. Indices that appear both as upper and
lower indices imply summation over all dimensions. We also adopt the transverse-
traceless gauge. Under this gauge condition, components of the perturbation tensor,
ℎ𝜇𝜈, can be non-zero only when both indices are spatial, and the tensor trace is 0,
i.e.,

ℎ0𝜇 = 0, ℎ𝜇𝜇 = 0 .

The metric can then be written as,

𝑑𝑠2 = −𝑑𝑡2 + (𝛿𝑖 𝑗 + ℎ𝑖 𝑗 )𝑑𝑥𝑖𝑑𝑥 𝑗 . (4.1)

We can write the photon trajectory as,

𝑥𝛼 (𝜆) = 𝑥𝛼(0) (𝜆) + 𝑥
𝛼
(1) (𝜆) , (4.2)

where subscript (0) indicates quantities in unperturbed spacetime, and subscript (1)
indicates first order corrections. 𝜆 is the associated affine parameter. We calculate
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the Christoffel symbols in this metric and write the geodesic equation as,

𝑑2𝑥0
(1)

𝑑𝜆2 = −
𝜔2

0
2
𝑛𝑖𝑛 𝑗ℎ𝑖 𝑗 ,0 (4.3)

𝑑2𝑥𝑘(1)

𝑑𝜆2 = −
𝜔2

0
2

[
− 2𝑛𝑖ℎ𝑘𝑖,0

+𝑛𝑖𝑛 𝑗
(
ℎ𝑘𝑖, 𝑗 + ℎ𝑘 𝑗 ,𝑖 − ℎ𝑖 𝑗 ,𝑘

) ]
, (4.4)

where𝜔0 is the photon frequency without GW perturbation. Integrating the geodesic
equation with respect to 𝜆 gives the photon trajectory and 4-momentum.

We then compute the GW perturbation in the observer frame. We first construct an
orthonormal tetrad, 𝑒𝛼̂ where 𝑒0̂ = ®𝑢 and ®𝑢 is the observer’s 4-velocity. We also
require this tetrad to be parallel-transported along the observer worldline. Imposing
the parallel-transport equation and the metric, we can express the observer tetrad
in terms of the GW and the unperturbed basis vectors. The observed photon 4-
momentum, 𝑘 𝛼̂, can be found via a coordinate transformation, and its spatial part
gives 𝑛𝑖. Assuming small deflections, 𝑑𝑛𝑖 = 𝑛𝑖 − 𝑛𝑖(0) .

It is oftentimes useful to assume monochromatic plane-wave GWs and a distant
source, in which case the observed star is many GW wavelengths away from the
observer. In the plane-wave model, the integral along geodesics can be done an-
alytically, resulting in some geometrical constant factors and a phase in the form
of 𝑒−𝑖2𝜋 𝑓 𝜔0 (1+p·n)𝜆𝑠 , where 2𝜋 𝑓 and 𝜔0 are frequencies of the GW and the photon,
respectively. p is the GW propagation direction and n points towards the observed
star. In the distant source limit (i.e., 𝜔0𝜆𝑠 ≫ 𝑐/2𝜋 𝑓 ), prefactors to the integral
become negligibly small and we may ignore this term. Consequently, the leading
order of the signal depends only on the GW amplitude at the observer. 𝑑𝑛𝑖 is thus
much simplified and becomes [17, 46]:

𝑑𝑛𝑖 (𝑡, n) = 𝑛𝑖 + 𝑝𝑖
2 (1 + p · n) ℎ 𝑗 𝑘 (𝑡, 0)𝑛

𝑗𝑛𝑘

− 1
2
ℎ𝑖 𝑗 (𝑡, 0)𝑛 𝑗 ,

(4.5)

ℎ𝑖 𝑗 (𝑡, x) = Re
[
H𝑖 𝑗𝑒

−𝑖2𝜋 𝑓 (𝑡−p·x)
]
, (4.6)

where H𝑖 𝑗 denotes the plane wave amplitude tensor. The distant source approxi-
mation is also adopted in PTA analyses, where the integral from the pulsar to the
observer is reduced to consideration about the two end points only (see, e.g.,[8]).
For PTA analyses, an additional reason to drop the GW term at the pulsar is that
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such a signal would be uncorrelated between different pulsars, whereas the GW
perturbation at the detector is shared. When we consider the correlation between
timing residuals, these pulsar perturbation terms can thus be treated as random noise
[42]. In Section 4.3 we discuss the validity of this assumption in our work.

For small astrometric deflections, it suffices to consider the leading order of H𝑖 𝑗

[see e.g. 16],
H𝑖 𝑗 = 𝐴𝐻𝑖 𝑗 (p) (4.7)

𝐴(0) =
2𝐺5/3

𝑐4 (𝜋 𝑓 )2/3M
5/3
𝑐

𝐷𝐿

∼ 𝑓 2/3𝑀
5/3
𝑠 . (4.8)

𝐻𝑖 𝑗 (p) is the polarization tensor for GWs propagating along p. 𝐴(0) is the lead-
ing term of the GW amplitude, 𝐴, which depends on the source frame GW fre-
quency, 𝑓 , the chirp mass, M𝑐, and the luminosity distance, 𝐷𝐿 . M𝑐 is defined as
𝑚

(
𝑞/(1 + 𝑞)2)3/5, where 𝑚 is the total mass of the binary and 𝑞 is the mass ratio,

𝑚1/𝑚2, assuming 𝑚1 is the smaller mass. For GW sources not at cosmological
distances (i.e., redshift 𝑧 ≪ 1), we may ignore the cosmological redshift to the wave
frequency. Throughout this paper, we always assume such close-by sources and
we do not differentiate between source frame and observer frame GW frequency.
Our threshold GW source estimates validate this assumption. To this order, we
note that scaling M𝑐 by an arbitrary factor 𝜅 is completely degenerate with scaling
𝐷𝐿 by 𝜅5/3. Therefore, it is convenient to define a scaled mass 𝑀𝑠 ≡ M𝑐/𝐷3/5

𝐿
,

which represents all sources that give the same leading order GW signal, at a fixed
frequency.

In Figure 4.1 we reproduce Figure 1 in Ref. [43] and illustrate the astrometric deflec-
tion pattern for a field of stars in the northern hemisphere in Galactic coordinates,
due to a face-on GW source at zenith. It is clear that the deflection magnitude is
largest on the Galactic plane. Deflections induced by the plus and cross polariza-
tions are orthogonal, and the quadrupolar pattern is clear. The right panels show the
astrometric deflection in a square Field of View (FoV), assuming the telescope is in
the Galactic plane and points directly to the Galactic center. This FoV model has
roughly the same area as the true FoV of the Roman Space Telescope but differs in
shape. We adopt it nonetheless in our analysis for simplicity.

The bottom panel shows the total deflection pattern while the upper panel shows
the deflection pattern after subtracting the mean deflection. This is expected to
be the actual observed signal, as the pointing reconstruction strategy of the Roman
Space Telescope will likely absorb deflections uniform across the FoV. A measure of
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Figure 4.1: Illustration of the expected stellar astrometric deflections. Left: Or-
thographically projected 𝑑𝑛 for a subset of stars observed by Gaia in the northern
hemisphere onto the galactic plane (inspired by a very similar plot in Ref. [43]).
The North Galactic pole is at the center which is also the position of the GW
source. Black arrows correspond to the real part of the waveform at GW phase
𝜙 = 0 (plus polarization), and the red arrows correspond to that at 𝜙 = 𝜋/4 (cross
polarization). The source is a 109 𝑀⊙ equal-mass binary black hole at 1 Mpc at
(𝑙 = 90 deg, 𝑏 = 90 deg) in galactic coordinates, emitting GWs at 10−6 Hz. This
inclination angle is set to 𝑖 = 0 (i.e. face-on) and the polarization angle is 𝜓 = 0.
Right: Deflections within the Roman Space Telescope’s FOV during the EML sur-
vey. The lower panel shows the total deflection, and the upper panel shows the
deflection after subtracting the mean, since the mean is expected to be absorbed in
the pointing reconstruction; for further discussion see Section 4.4. Star coordinates
are selected from the Gaia Data Release 2 catalog, with brightness 0 < 𝐺 < 9
[18, 45]. Density of stars reflects only a subset of the true stellar density in the
catalog.

the magnitude of the mean-subtracted deflections is the divergence of 𝑑𝑛 integrated
across the FoV, since the mean deflection field has zero divergence. For the particular
GW source position and telescope pointing in Figure 4.1, we compute the integrated
divergence of the astrometric deflection in Eqn. (4.5) to be 𝐴𝑙2FoV assuming small
FoV side length 𝑙FoV, where 𝐴 is the GW amplitude. From the top right panel in
Figure 4.1 and the divergence theorem, the integrated divergence is proportional
to 𝑙FoV⟨|𝑑𝑛ms |⟩, where ⟨|𝑑𝑛ms |⟩ is the average magnitude of the mean-subtracted
deflections. This scaling relation is confirmed numerically using various 𝑙FoV.
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Figure 4.2: Mean maximal deflection due to GW sources at different Galactic
coordinates. The FoV is fixed to point towards the Galactic center, i.e. 𝑙 = 0 deg, 𝑏 =

0 deg. The magnitude is calculated as that of the orthographic projection of 𝑑𝑛 in
the FoV, averaged over all observed stars. The maximum occurs when the source
position vector is perpendicular to the star position vectors, which is consistent with
Eqn. (4.5). Aside from its coordinates, the GW source at each position has the
same properties as that in Figure 4.1. In combination with Figure 4.1, we observe
that the quadrupolar deflection pattern does not show up when we consider signal
magnitude only.

For any small-FoV, relative-astrometry telescope, we may estimate the observable
deflection signal by

⟨|𝑑𝑛ms |⟩ ≈
𝑙FoV

𝑙FoV,RST
⟨|𝑑𝑛ms,RST |⟩ , (4.9)

where the RST subscript denotes parameter values in the case of the Roman Space
Telescope. For example, in a FoV similar to the Hubble Space Telescope (𝑙FoV ≈
2.4 arcmin [13]), the mean magnitude of the mean-subtracted deflections is only
7.4% of that in a FoV similar to the Roman Space Telescope, which has a 𝑙FoV ≈
32 arcmin. For further discussions see Section 4.4.

The magnitude of the astrometric deflection as a function of the GW source position
on the sky is shown in Figure 4.2. We assume the telescope FoV points to the
Galactic center. Properties of this GW source are the same as in Figure 4.1. For
illustration purpose, we fix the polarization angle to be 0. The mean deflection is
averaged over 1000 randomly distributed stars within the FoV (the number of stars
is not representative of the actual stellar density; it is picked for clear visualization).
The deflection is maximal when the GW source position is orthogonal to observed
star positions, which is consistent with Eqn. (4.5) and Figure 4.1.
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Sensitivity Curve Estimate
For single exposures, the astrometric accuracy, Δ𝜃, is determined by pixel size and
pixel placement error [62]. Typically, astrometric deflections due to GWs are small
compared to any realistic single-exposure resolution values, therefore they cannot
be resolved from isolated measurements of individual stars. This limit, however, can
be statistically improved by considering repeated observation of a vast collection of
stars.

Firstly, within each exposure, we consider the correlated astrometric deflection
between 𝑁𝑠 stars, which improves the astrometric resolution by

√
𝑁𝑠. Secondly, if

the same stars are measured for 𝑁𝑚 times throughout the survey, the measurement
error is reduced by

√
𝑁𝑚, which transforms the single-measurement resolution to

the end-of-survey resolution. Assuming the same observational cadence throughout
the survey, 𝑁𝑚 = 𝑇obs/Δ𝑡, where 𝑇obs is the total observation time and 1/Δ𝑡 is the
observational cadence. The minimum detectable GW amplitude is then

ℎ =
Δ𝜃

√
𝑁𝑠𝑁𝑚

. (4.10)

These two statistical improvements are subject to survey-specific constraints. In
Section 4.3, we provide further discussion on this limit in the context of the Roman
EML survey. Throughout our analysis, we assume that, within certain limits, high
frequency oscillations are sampled equally well as low frequency ones, i.e. without
including discrete sampling effects. In reality, the discrete telescope schedule to
visit a sky patch and mission duty cycle impose an upper limit on the maximum
number of observable cycles, i.e., the GW frequency, before the deflections become
poorly sampled.

We emphasize that this estimated sensitivity is valid only when entire deflection
signals are observable. For telescopes taking relative astrometric measurements,
such as the Roman Space Telescope, the observable is, in fact, a small fraction of this
total signal, which lowers the sensitivity. See Section 4.3 for detailed discussions.

Frequency Resolution
In this subsection, we outline how to calculate the GW frequency resolution of a
photometric survey. From the instrument perspective, the frequency resolution is
determined by the exposure timing accuracy, 𝜎𝑡 . To calculate how 𝜎𝑡 translates into
end-of-mission frequency resolution, Δ 𝑓 , we model the GW phase, or equivalently,
the phase of the astrometric deflection signal, as a quadratic function of the time of
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exposures,

𝜙 = 𝜙0 +
𝑑𝜙

𝑑𝑡
𝑡 + 1

2
𝑑2𝜙

𝑑𝑡2
𝑡2

= 𝜙0 + 2𝜋 𝑓 𝑡 + 𝜋 ¤𝑓 𝑡2 .
(4.11)

Using Fisher information theory, the uncertainty of the coefficients are

𝜎( 𝑓 ) ≈
√

12
𝑇obs

𝑓 𝜎𝑡√
𝑁𝑚

𝜎( ¤𝑓 ) ≈ 𝜎( 𝑓 )
𝑇obs

∼ 𝑓 𝜎𝑡

𝑇2
obs

√
𝑁𝑚

,

(4.12)

where, again, 𝑇obs and 𝑁𝑚 is the total number of exposures.

The campaign frequency sensitivity is then estimated by

Δ 𝑓 = 𝜎 ¤𝑓𝑇obs . (4.13)

To determine whether this resolution is sufficient to capture frequency change of
GWs within the detector frequency band, we compare Δ 𝑓 with the frequency evolu-
tion of observable sources. The intrinsic inspiral binary frequency is given by (see,
e.g., [30])

𝑓 ∼ 1
𝑚𝜋

(
1

4𝜂1/4

(
1 + 𝜂1Θ

−1/4
))3/2

, (4.14)

where 𝜂 ≡ 𝑞/(1 + 𝑞)2 and 𝑚 and 𝑞 are the total mass of the binary (in natu-
ral units where 𝐺 = 𝑐 = 1) and the mass ratio, as defined before. 𝜂1 is de-
fined as 743/4032 + 11/48𝜂 and Θ as 𝜂 (𝑡𝑐 − 𝑡) /5𝑚. Time to coalesce 𝑡𝑐 is
5𝑚/

[
𝜂 (8𝜋𝑚 𝑓 )8/3

]
. For systems that remain in inspiral stage throughout survey

time, we consider the difference of GW frequencies evaluated at the beginning and
the end of the survey. For systems that merger within observational time, we take the
final frequency to be the Innermost Stable Circular Orbit frequency, 𝑓ISCO, beyond
which the systems quickly coalesce and Eqn. (4.14) no longer captures the actual
frequency.

This characteristic frequency progression could help distinguishing the GW signal
from other noise factors and provide additional information for GW source parameter
estimation.
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4.3 Detecting GWs with the Roman Space Telescope
In this section, we explore the potential of the Roman EML survey as a GW probe.
We first discuss its sensitivity frequency range following the method outlined in
Section 4.2. Since the procedure is general, we apply a parallel analysis on Gaia for
comparison. We then describe a method to extract GW signals from photometric
data via Bayesian inference. We apply this technique to the Roman Space Telescope
and calculate its sensitivity curve.

Roman EML Survey Sensitivity Curve
Similarly to PTAs, the GW frequency band of photometric surveys is constrained by
the observation time span and cadence. At the low frequency limit, the GW period
should not be longer than the observation time. Signals with longer period are close
to being linear over the observational window and thus are likely to be absorbed as
telescope motion or proper motion in the astrometric solution. At the high frequency
limit, the GW period should not be shorter than twice the observational cadence to
satisfy the Nyquist-Shannon sampling condition.

In addition, the low frequency limit is subject to more detailed and survey-specific
modifications. Firstly, the low frequency limit where 𝑓min ≈ 1/𝑇obs can be techni-
cally relaxed to 𝑓min ≈ 1/2𝑇obs, since the former limit still produces an oscillatory
signal that cannot be fully absorbed by any linear proper motion model [31]. How-
ever, we note that this only leads to a factor of two difference, and we ignore this
factor when estimating the frequency range. Furthermore, the general guideline
works best for uniform sampling, whereas actual surveys may have significant pe-
riods of downtime between observational windows. In this case, detecting low
frequency GWs requires precisely piecing together high-cadence observation sea-
sons that may be quite separated in time. Deflection change within each season
is only a fraction of the total amplitude, and may well be approximated by linear
proper motion. Considering the magnitude of the signal and uncertainties from
long season-separation, this wave reconstruction process will likely introduce large
errors that render further data analysis unfeasible. For a conservative limit, 𝑓min is
1/2𝑇𝑠 where 𝑇𝑠 is the length of one observational season.

Specifically for the Roman EML survey, we assume a 15-minute cadence with six
72-day observational seasons spread out over the nominal 5-year mission time. The
previous constraints then give a conservative frequency range as,

7.7 × 10−8 Hz < ΩRoman < 5.6 × 10−4 Hz .
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We also assume a single-exposure astrometric accuracy of Δ𝜃 ∼ 1.1 mas, estimated
for 𝐻𝐴𝐵 = 21.6 stars, [62] and a total of 𝑁𝑠 ∼ 108 stars with 𝑊145𝐴𝐵 < 23 [23].
We note that all GW signals within the Roman EML survey frequency range have
wavelengths smaller than ∼ 0.1 pc, which is much smaller than the distance to any
stars Roman Space Telescope observes. Therefore we may safely use the distant
source limit described in Section 4.2.

We now calculate the frequency resolution, following the procedure in Section 4.2.
Taking a conservative timing accuracy of 1 s and 𝑇obs = 6 × 72 days (i.e., assuming
all seasons happen consecutively), we estimate Δ 𝑓 to be ∼ 10−14 Hz and ∼ 10−12

Hz for signals at the lower and upper frequency band limit, respectively. For light
systems (log10 M𝑐 [𝑀⊙] = 5.7), intrinsic frequency change of GWs during the
inspiral ranges from 10−11 Hz to 10−2 Hz, depending on its frequency at the start of
the observation. If such a system is initially observed to emit GW at ∼ 6 × 10−5 Hz
or higher, it coalesces within 𝑇obs. For heavy systems (log10 M𝑐 [𝑀⊙] = 9.7), GW
frequency change ranges from 10−8 Hz to 10−6 Hz. Such heavy systems coalesce
within the observational time window if they emit GW at ∼ 2 × 10−7 Hz at the
start of the mission. In all cases, the Roman EML survey will be sensitive to the
frequency evolution of detected GWs. We note that it should increase the sensitivity
of the Roman EML survey to GWs; however, a full analysis of this effect is outside
the scope of this work.

For Gaia, assuming 70 evenly-spaced visits of the same stars, uniformly spread out
over the nominal 5-year mission time [45], the frequency range is,

6.3 × 10−9 Hz < ΩGaia < 4.5 × 10−7 Hz .

This range differs from [31] at the upper limit, since they used the Gaia rotational
period of ∼ 6h as the cadence. Since we are interested in the average sensitivity
applicable to the majority of the observed stars, we adopt the more conservative
cadence of 70/5-year. We adopt Δ𝜃 ∼ 0.7 mas, which is the parallax uncertainty
for 𝐺 ∼ 20 stars in Gaia Data Release 2 2[37]. This magnitude threshold value is
picked for convenient comparison with the Roman EML survey, where relatively
fainter stars could also be observed in the near IR. We assume 𝑁𝑠 ∼ 109 [18].

Applying Eqn. (4.10) to the Roman EML survey and Gaia, we show their strain
sensitivity in Figure 4.3. For the Roman EML survey, the result of Eqn. (4.10) is

2In the recent Gaia Early Data Release 3, the standard uncertainty in declination at epoch J2016.0
for magnitude 𝐺 = 20 stars is 0.382 mas [35]. The performance estimate we give here will not be
drastically different.
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shown as the dashed line; it is the sensitivity if the Roman EML survey can capture
the mean astrometric deflection signal. The sensitivity with the mean-subtracted
signals is shown as the black solid line, assuming an average sensitivity decrease
of 100. We reiterate that the Roman Space Telescope takes relative astrometric
measurements, recording only the relative positions of objects with each other and
across the exposures with its nominal astrometric resolution. The absolute positions
will be determined by the guiding stars and the telescope pointing with a larger
uncertainty. Consequently, it is this mean-subtracted/relative measurements that
constitute the data for extracting GW signals. See Figure 4.5 for an illustration of
this scaling. Sensitivity curves for the International Pulsar Timing Array (IPTA) [see
53, 56, 59] and LISA [47] are shown for comparison. It is important to note that, due
to the targeted signal type, the sensitivity is represented by different quantities for
each detector. For IPTA and LISA, the sensitivity is represented by the characteristic
noise strain amplitude, ℎ̃𝑛 ( 𝑓 ) ≡

√︁
𝑓 𝑆𝑛 ( 𝑓 ), which is a unitless quantity derived from

the detector noise power spectral density (|˜ | denotes frequency-domain quantities).
For the Roman EML survey and Gaia, the sensitivity is plotted as the minimum
instantaneous (i.e., time-domain) GW strain amplitude, ℎ, which is estimated based
on scaling arguments in Eqn. (4.10). This choice of representation is motivated by
the fact that within the frequency sensitivity range of the Roman EML survey and
Gaia, we expect to see mostly monochromatic GWs. Finally, we reiterate that this
estimate method ignores the telescope duty cycle and does not model the effect of
having six separated observing seasons on signals at various frequencies.

In Figure 4.3, the colored blocks denote example sources within each detector
frequency range. In the IPTA frequency range, the yellow block shows the char-
acteristic strain of the expected supermassive black hole binary background [49],
ℎ̃𝑐(SMBHBB). In the frequency range of LISA, we plot the characteristic strain
amplitude of an illustrative GW source with M𝑐 = 106 𝑀⊙, 𝑞 = 1 at 𝐷𝐿 = 25 Gpc.
At the low-frequency end, this signal is truncated arbitrarily at 3×10−4 Hz for visual
clarity. At the high-frequency end, it is stopped at the corresponding 𝑓ISCO. The
slope of the signal is −1/6, characteristic of the inspiral-stage of a black hole binary
GW [20, 42]. In the frequency band of the Roman EML survey, we show in red and
violet blocks the instantaneous GW strain amplitude with chirp masses 109.7 𝑀⊙

and 107 𝑀⊙ at 50 Mpc, respectively. The starting frequency is set arbitrarily to the
low frequency limit of the Roman EML survey, and the signal is cut off at 𝑓ISCO.
The instantaneous amplitude scales as 𝑓 3/2 [16, 41]. It should be noted that these
individual binary source signals are merely illustrative; they do not represent the
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expected GW source population from binary black hole formation theory.

We observe that were the Roman EML survey able to observe the mean deflection
signal, it would outperformed Gaia at overlapping frequency ranges. This is mainly
due to the high cadence observations. However, the mean-subtraction procedure
considerably curbs its expected performance. Nonetheless, its high-cadence obser-
vations allow for the detection of 10−6 Hz−10−5 Hz GWs, which are inaccessible by
other dedicated GW observatories, such as PTAs and LISA. In this range, possible
GW sources include SMBHBs with M𝑐 ∼ 108 𝑀⊙ − 109 𝑀⊙ at later stages of the
inspiral. Due to the larger GW amplitude, such sources will be more detectable than
the same GW population earlier in their inspirals, which are targets of PTAs. At
the high frequency range, 105 𝑀⊙ massive black hole binaries and highly eccentric
binaries are at the inspiral stage. LISA, on the other hand, will observe these sys-
tems much closer to their coalescence [14, 15]. Observing the different stages of
this population offers invaluable data for piecing together their evolution process,
emphasizing the potential of the astrometry GW detection method.

MCMC Sensitivity Threshold Analysis
GW signals in astrometric measurements can be extracted via Bayesian inference.
This analysis framework is demonstrated in Ref. [43], where the authors implement
a signal injection-retrieval study tailored for Gaia. Specifically, they consider a set
of mock Gaia exposures and obtain posterior distributions for seven GW source
parameters, plus and cross polarization amplitudes, ℎ+,×, their respective initial
phases, 𝜙+,×, GW frequency, 𝑓 and two angles describing direction to the GW
source, ®𝑞 (equivalent to −p in Section 4.2). In this paper, we focus on characterizing
the intrinsic binary parameters that are detectable from the Roman EML survey data.
For this purpose, we fix the extrinsic parameters (i.e., GW phase, polarization angle
and source position) and derive limits on the binary chirp mass, M𝑐, and luminosity
distance, 𝐷𝐿 , across the Roman EML survey frequency spectrum. Specifically,
we set the wave phase, inclination angle, and polarization angle to 0. We also
fix the GW source at the zenith position in the Galactic frame, as illustrated in
Figure 4.1. The FoV is modeled as a 0.53 deg×0.53 deg square centered on the
galactic center. Fixing the contribution from phase and positional parameters,
either by assigning specific representative values, as we do, or by numerically and
analytically marginalizing over them, is also commonly adopted in PTA studies to
reduce search space dimensions [see, e.g., 12, 21, 42].
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Figure 4.3: Strain sensitivity of various GW detectors and corresponding example
signals. Note that the sensitivity for different detectors is not represented by the
same quantity, in anticipation of the signal source types. The sensitivity for LISA
and IPTA is represented by the dimensionless characteristic noise strain from the
detector noise power spectral density, given by ℎ̃𝑛 ( 𝑓 ) =

√︁
𝑓 𝑆𝑛 ( 𝑓 ). In the frequency

range of IPTA, the yellow block shows the expected ℎ̃𝑐 of the supermassive black
hole binary background (SMBHBB). In the frequency range of LISA, the blue block
shows the characteristic strain, ℎ̃𝑐 ( 𝑓 ) ≡ 2 𝑓 ℎ̃( 𝑓 ), of a fast-evolving 106 𝑀⊙ binary
at 𝐷𝐿 = 25 Gpc. The sensitivity of Gaia and Roman EML Survey is represented
by the detectable instantaneous (time-domain) strain, ℎ, of monochromatic GWs,
assuming end-of-survey performance. For Roman EML Survey, the solid line
shows the sensitivity under signal mean subtraction, and the dashed line shows the
sensitivity if full astrometric deflections are detectable. The red and violet block
show the time-domain wave amplitude of monochromatic GWs with chirp masses
109.7 𝑀⊙ and 107 𝑀⊙. The shown frequency range of these GWs are limited by
the mission lifetime of Roman EML survey and 𝑓ISCO at this chirp mass. Note that
the example signals of Roman EML and LISA are illustrative; they do not reflect
the GW source population expected from binary black hole formation theory. As
is shown, the frequency band from roughly 5 × 10−7 Hz to 1 × 10−5 Hz is uniquely
accessed by Roman EML survey.



114

Under our assumption, we consider the optimal case for detection. As the relative
angle between the star position, n, and the GW source position, ®𝑞, decreases,
signal magnitude decreases accordingly and the detection threshold becomes more
stringent. By fixing the GW phase to be 0, we simulate the a posteriori analysis,
where, after observing at least one deflection cycle, we can determine the deflection
amplitude from the entire data set.

Rather than calculating the full posterior distribution from mock data as in Ref. [43],
we estimate the detection threshold by computing the likelihood of the signal-present
hypothesis for various GW sources assuming we have observed the maximal astro-
metric deflection from the baseline. The astrometry measurement error is assumed
to follow a Gaussian distribution with zero mean and no correlation across time.
The standard deviation is the single-exposure, single-source astrometric accuracy.
The signal is the mean-subtracted 𝑑𝑛 in Eqn. (4.5).

For simplicity and computational efficiency, we include only a subset of the expected
number of observed stars and consider a single exposure at the maximal deflection.
We then scale the results to approximate analysis outcomes with a full mock data
set. Specifically, we randomly populate the FoV with 1000 stars. To account for the
effect of the expected 108 observed stars, we scale down the astrometric resolution,
𝜎, by

√
105. We make tests using several start counts ranging from 103 to 106,

and observe no systematic bias. As Eqn. (4.10) suggests, we simulate the many
exposures by scaling down 𝜎 by

√
𝑁𝑚. See Appendix 4.6 for further justification.

We calculate the likelihood with Markov chain Monte Carlo (MCMC) simula-
tions using the Python package emcee with no injection signal. We determine the
68%, 95% and 99.7% upper limits on 𝑀𝑠. We adopt a flat prior between

4.54 < log10 𝑀𝑠 [𝑀⊙/Mpc3/5] < 11.54 ,

which is equivalent to flat priors between:

5.74 < log10 M𝑐 [𝑀⊙] < 9.74

and
−3 < log10 𝐷𝐿 [Mpc] < 2 .

The upper bound of chirp mass is chosen such that the GW sources are realistic
and have significant lifetime within the frequency band of the Roman EML survey.
Parameter limits on the luminosity distance and the chirp mass are chosen to produce
sufficiently strong signals in light of the theoretically calculated sensitivity curve.
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The detectable log10 M𝑐 − log10 𝐷𝐿 parameter space at selected GW frequencies is
show in Figure 4.4. The top row shows the detectable binaries when the mean signal
is subtracted, and the bottom row shows those when the full signal can be registered.
The columns represent the sensitivity at different GW frequencies. Systems that
already reach the ISCO are excluded from the accessible parameter space, since they
quickly coalesce afterwards, and our analytical waveform expression in Eqn. (4.8)
for the inspiral stage no longer captures the actual GW waveform. Specifically, (see,
e.g., [52])

𝑓ISCO =
𝑐3

63/2𝜋𝐺

(𝑞2(1 + 𝑞))3/10

M𝑐

, (4.15)

and

M𝑐 ( 𝑓 )max =
𝑐3

63/2𝜋𝐺

23/10

𝑓
, (4.16)

where, since M𝑐 ( 𝑓 )max is an increasing function of 𝑞, we set 𝑞 = 1.

Figure. 4.4 shows that, at all frequencies, the detectable parameter space is reduced
significantly by subtracting the mean signal, and for GW with frequencies larger
than 1 × 10−6 Hz, the parameter space is increasingly affected by the ISCO limit.

We summarize in Figure 4.5 the detection threshold across the Roman EML survey
frequency band by plotting the 95% upper limit on M𝑐 at 1 Mpc and 10 Mpc. De-
tection thresholds assuming an astrometric accuracy of 0.11 mas or full astrometric
deflection signal are also plotted. As expected, the range of the detectable GW
sources is limited by the signal strength and intrinsic frequency limits (i.e., 𝑓ISCO).
Between these two competing factors, the “sweet spot” frequency with the largest
accessible parameter space in the log10 M𝑐 − log10 𝐷𝐿 plane is roughly located at
10−6 Hz. With its current expected performance, the Roman EML survey is sensi-
tive to GWs from massive black hole binaries with M𝑐 > 107.4 𝑀⊙ up to 𝐷𝐿 ∼ 1
Mpc; up to 𝐷𝐿 ∼ 10 Mpc, binaries with M𝑐 > 108.3 𝑀⊙. Although this threshold
excludes many of the interesting GW sources we hope to detect, Figure 4.5 shows
that such sources out to 100 Mpc could be observable if the Roman Space Telescope
can achieve a 0.11 mas astrometric accuracy, which is a possible improvement over
the currently estimated 1.1 mas.

4.4 Discussion
In this section, we elaborate on the Roman Space Telescope pointing reconstruction
strategy and evaluate its impact on GW detection. We then propose recommenda-
tions for maximizing the seredipitous GW scientific output from photometric survey
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Figure 4.4: Detection sensitivity of the Roman EML Survey in log10 M𝑐 − log10 𝐷𝐿

space at multiple fixed frequency. Colors indicate detection thresholds at different
confidence levels. Top Row: sensitivity when signals are mean-subtracted. Bottom
Row: Sensitivity when the full signal is observable. For the three columns, the
GW frequencies are fixed to be 7.7 × 10−8 Hz, 6.6 × 10−6 Hz and 5.6 × 10−4 Hz,
respectively. In all panels, GW sources that reach the ISCO at the specified frequency
or lower are blocked out in gray.

instruments. Finally, we review some ongoing and planned surveys and discuss their
merits and drawbacks as potential GW probes.

Roman Space Telescope Pointing Reconstruction and GS Selection
Here we expand on the mean subtraction technique discussed in Section 4.3 and
assess its impact on the reach of the Roman EML survey as a GW probe.

Prior to launch, 4 to 18 guiding stars (GSs) will be selected in each observed field
[62]. Of the 18 detectors of the Roman Space Telescope, each contains at most
one guiding star. These stars are likely to be bright, and their precise absolute
positions and proper motion will be available in external catalogs, e.g., in the Gaia
catalog [62]. Their astrometric solution in the Roman Space Telescope operational
epoch is extrapolated from the external catalog measurement (a similar procedure
to study proper motions of galactic bulge stars is described in Ref.[19]). The
absolute astrometry of all stars in the FoV is then obtained in post-processing by
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Figure 4.5: Sensitivity of the Roman EML Survey to log10 M𝑐. The upper right
corner (shaded gray) excludes massive systems that reach the ISCO at each frequency
or lower. Detection sensitivity threshold is represented by the detectable chirp mass
at a 2𝜎 confidence level at various luminosity distances. Yellow and red blocks
show detectable mass ranges at 1 Mpc and 10 Mpc respectively, assuming the mean
astrometric deflection is subtracted from the signal. The dashed line shows the
detection threshold at 100 Mpc if the astrometric accuracy were to improve to 0.11
mas, equivalent to a factor of 10 improvement in the sensitivity. The solid line shows
the sensitivity at 1 Gpc if the mean signal were observable, roughly comparable to
a factor of 100 sensitivity improvement. See Section 4.4 for further discussions.

simultaneously fitting the GSs to their extrapolated positions.

As argued in Section 4.3, this tracking process will likely absorb a mean displacement
signal within the FoV. Specifically for the Roman Space Telescope, this will be the
mean deflections of the GSs. Though the choice of GSs is not yet available, we
can gauge the effect of GS selection by repeating the MCMC study but subtracting
only the mean of the GSs. For simplicity, we study two cases with 4 and 16 GSs.
In each case, we model the detectors as square blocks that completely fill the FoV
(i.e. no gaps, etc.) and place one GS in each of the square blocks. The position
of the GS within each detector is then randomly chosen. We find that different GS
choices only lead to < 1% variation in the upper limit confidence value, and having
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fewer GSs gives larger variations. Thus, our strategy to subtract the mean of all stars
serves as a good reference regardless of the mission specifics.

This mean-subtraction process significantly reduces the effective signal, and the
sensitivity level is generally two orders of magnitude lower than the full-signal
scenario. Figure 4.5 shows that the Roman EML survey is most sensitive to very
massive binaries

(
∼ 108 𝑀⊙

)
at close distances (∼ 1 Mpc). Since this is physically

unlikely, the Roman EML survey with its current design will be limited as a GW
probe. In fact, Figure 4.3 shows that the Roman EML survey would have better
sensitivity than Gaia if the mean signal were to be detectable, in which case the
accessible parameter space would be greatly expanded.

This prediction is different from that for Gaia in Ref. [43], since a full-signal
analysis is assumed. In the case of Gaia, this treatment is warranted since Gaia
simultaneously observes through two widely separated FoVs and does not need to
perform mean subtraction [45]. The sampled GW deflection patterns are conse-
quently distinct and cannot be absorbed by the same pointing calibration process.
For essentially the same reason, 𝐺𝑎𝑖𝑎 can measure absolute parallax rather than
relative parallax [34].

While this outlined strategy is specific to the Roman EML survey, we note that the
loss of the mean astrometric deflection signal is a typical feature of photometric
surveys. Even though this loss presents a challenge for resolving individual GWs,
the sensitivity might be better for joint signals of several GWs. We expect the
combined GWs to produce a deflection pattern richer in features, and thus easier
to detect. Such signals would come from SMBHBs at the centers of galaxies in
the local universe, and the astrometric measurements can be used to study their
population statistics. This is analogous to using PTA measurements to constrain
the energy density of the stochastic GW background produced by massive black
hole mergers across all redshifts [see, e.g., 9, 46, 58]. It is estimated that ∼ 100
continuous GW sources in the PTA band exist within 225 Mpc [40]. We may then
speculate that a significant number of SMBHBs within our frequency range exist in
the local universe, and their joint signal may be above detection threshold for the
astrometry method.

Optimizing Photometric Surveys for GW
In this section, we give specific recommendations to maximize the GW detection
potential of photometric surveys within the GW frequency gap of existing detection
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methods. We use the expected performance of the Roman EML survey as a reference
point and quantitatively describe a model survey capable of detecting a fiducial
target, a 107 𝑀⊙ binary at 50 Mpc.

To estimate the required sensitivity, we proceed directly from Figure 4.5; the detec-
tion threshold is lowered by the same order of magnitude as the increase in effective
signal strength. Therefore, to claim a 2𝜎 detection on GWs from this new fiducial
target, the model survey is 100 times more sensitive than the Roman EML survey.
In the following sections we discuss ways to achieve this sensitivity.

Mean-signal Recovery Fraction

As suggested by the previous subsection, pointing reconstruction strategies deter-
mine whether the mean astrometric deflection could be observable, which translates
into approximately two orders of magnitude sensitivity difference. Though the
mean-subtracted deflection pattern and the full signal pattern differ in both the de-
flection magnitude averaged over all stars within the FoV and the pattern shape,
we only use the average deflection magnitude as an approximate metric to compare
sensitivity.

For our model FoV configuration, the average deflection magnitude after subtracting
the mean is roughly 100 times smaller than the average full signal (see, for example,
Figure 4.1), thus the sensitivity is roughly 100 times worse. We may then define a
mean-signal recovery fraction to roughly quantify the observable deflection relative
to the full signal. For example, a mean-signal recovery fraction of 50% implies that
the average magnitude of the observable deflections after the astrometry solution is
half of the full signal magnitude. Consequently, the sensitivity would be roughly
50 times higher than what we obtained from the MCMC study assuming mean-
subtracted signals. Ideally, the photometric survey retains nearly all of the mean
signal, relaxing the detection threshold by roughly a factor of 100. Such a model
survey, with all other parameters similar to the Roman EML survey, can already
detect the fiducial GW source. In general, higher recovery fraction allows detection
of intrinsically weaker GW sources, such as farther and lighter systems, or the same
system but much earlier in its evolution track.

Astrometric Accuracy

As shown by Eqn. (4.10), the strain amplitude threshold is linearly proportional to
the astrometric accuracy. All else equivalent, the model survey improves upon the
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Roman Space Telescope accuracy by at least a factor of 100, giving a single-exposure
single-source astrometric resolution better than 11 𝜇as. In this work, we assume an
astrometric accuracy of 1.1 mas, which is 1/100th of the detector pixel size [62].
We expect this accuracy to be routinely performed, but it is possible that 0.11 mas
can be achieved [32]. In this case, the Roman EML survey will be ten times more
sensitive and will already be able to detect binaries with M𝑐 > 108.3𝑀⊙ within 100
Mpc (see Figure 4.5).

For comparison, the astrometric accuracy of Gaia is 0.1 ∼ 2 mas (for 𝐺 = 17 and
𝐺 = 21 stars, respectively) [18]. The expected imaging resolution of the Square
Kilometer Array (SKA)3 [61] at 12.5 GHz is 0.04 arcsec [2]; assuming a fractional
position error requirement smaller than 1% [1], the SKA can achieve an astrometric
accuracy better than 0.4 mas.

Number of Stars

The statistical advantage of observing more stars (∝
√
𝑁𝑠) is stated in Eqn. (4.10).

This number can be expressed as

𝑁𝑠 =

∫
𝛼 (®𝑟) 𝜌 (𝐿, ®𝑟) 𝑑𝐿 𝑑3®𝑟obs

≈ 𝐴

∫
𝛼(𝜃0, 𝜙0, 𝑟)𝜌(𝐿, 𝜃0, 𝜙0, 𝑟)𝑟2𝑑𝐿 𝑑𝑟 ,

(4.17)

where 𝛼 (®𝑟) is the effective detectable fraction after photon loss during propagation
(e.g., dust absorption, crowding effect, etc.), and 𝜌 (𝐿, ®𝑟) is the population density of
luminosity-𝐿 stars. 𝐴 is the covered angular area. In the second equality, we assume
small variation of the integrand in the angular directions. Since GW detection
requires frequent visit to the same field, we assume a “deep survey” mode where the
total surveyed angular area is small and this equality is satisfied.

Evidently, the observational efficiency of telescopes is greatly increased if they can
penetrate to further distances per area (i.e., large 𝛼). Therefore, a telescope with
near-infrared filters outperforms one operating in the visible band, as near-infrared
photons suffer less absorption by galactic dust along propagation. The optimal
choice for the filter wavelength should, however, be balanced between this low-
absorption advantage and the large-diffraction effect for long wavelengths, which
degrades the point spread function and thus the astrometric accuracy.

3https://www.skatelescope.org/the-ska-project/
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The 𝜃0, 𝜙0 dependence suggests the importance of pointing directions. Specifically,
surveys pointing toward the galactic center have larger 𝜌 for fixed distance and
luminosity. For magnitude limited surveys, this implies a larger number of observed
stars. Conversely, surveys in high latitude regions are less advantageous since they
observe fewer stars above certain magnitude limits. For comparison, the stellar
density down to 𝐻 (𝐴𝐵) = 20 mag at Galactic Latitude of 60 deg is approximately
3000 stars/deg2 [39].

It is also intuitive that a larger FoV leads to more observed stars, all else equivalent.
Therefore, the model survey will have comparable bands and pointing directions
to the Roman Space Telescope during its EML survey, but with a 100 times larger
(∼ 200 deg2) survey area.

FoV Size

The effect of increasing the FoV size is partially degenerate with increasing the
survey area, but it also allows for a larger deflection residual after mean subtrac-
tion. Specifically, the subtracted mean decreases as the variation across the FoV
at each exposure becomes more significant. The scaling relation between the FoV
sidelength, average deflection vector field divergence and the average deflection
magnitude is described in Section 4.2.

The combination of changes both in signal magnitude and pattern will likely be a
complex effect that, in general, enhance the sensitivity. In principle, FoV patches
can be stitched together to provide a larger effective FoV to include more pattern
variation. However, the field-switching process must be exquisitely controlled such
that the absorbed mean for each field is approximately the global mean solution in
the larger effective FoV. However, due to the very large scale over which the GW-
induced deflection pattern varies (on the order of tens of degrees), it is unlikely that
future surveys can outperform the Roman EML survey by a factor of 100 through
this means alone.

Observational Cadence & Mission Length

The impact of observational cadence is two-fold: it determines the sensitive fre-
quency range and contributes to the statistical improvement of sensitivity. To com-
plement LISA, therefore, the upper limit frequency should be at least ∼ 10−5 Hz. It
follows that an the model survey observes the same patch of sky at least once a day.
For sensitivity improvement, the model survey has a longer effective observational
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time than the six 72-day epochs of the Roman EML survey. For example, a 10-year
survey with full duty cycle improves the sensitivity by a factor of 3.

Other Potential Photometric GW Probes
In this section, we further develop the guidelines for assessing photometric surveys
as GW probes. We discuss ground-based and space-based telescopes in turn by
pointing out their respective merits and drawbacks as potential GW probes. To the
best of our knowledge, all the observatories discussed below would suffer from the
limiting mean signal subtraction we discussed above.

A challenge with ground-based telescopes as GW probes lies in their relatively
coarse astrometric resolution compared with space telescopes, due to atmospheric
perturbation to the signal. For example, the Rubin Observatory4 has a single-
exposure astrometric accuracy of ∼ 11 mas [27], an order of magnitude larger than
that of the Roman Space Telescope.

This resolution drawback can be partially compensated by a large number of ob-
served stars, large FoV, and great observational flexibility. For instance, the Rubin
Observatory is expected to observe a total of ∼ 4 × 109 stars with a FoV size of
∼ 10 deg2. Each sky patch is visited ∼ 100 times during its 10-year lifetime. By
increasing its observational cadence by a factor of 5 (∼ 1 week−1 on average), the
Rubin Observatory would become sensitive to GWs with 𝑓 < 1.5 × 10−6 Hz.

This astrometric method can also be applied to high-resolution radio telescopes,
such as the SKA and the Next Generation Very Large Array (ngVLA)5 [38]. As
discussed, SKA can achieve an astrometric accuracy better than 0.4 mas. The
ngVLA features a maximum baseline resolution as small as 0.17 mas at 41 GHz.
It is also estimated that a large number of quasars can be observed in the radio
band [see, e.g., ∼ 106 in 28], which can serve as GW detectors instead of stars.
Taking the SKA as an example, the relatively smaller number of observed quasars
compared with stars observed by Gaia can potentially be compensated by a more
frequent observation schedule to give similar performance at a higher frequency.
Increasing the exposure time would also directly increase the number of detected
quasars. Specifically, an SKA survey taking measurements every 40 minutes has a
GW frequency band similar to that of the Roman EML survey ( 𝑓 < 2 × 10−4 Hz).
To the authors’ knowledge, there is currently no high-cadence survey planned.

4https://www.lsst.org/lsst/
5https://ngvla.nrao.edu/
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Free from atmospheric effects, space-based telescopes can potentially observe a
great number of stars to excellent precision. As an example, the ESA mission
Euclid6 is equipped with a near-infrared photometer with a ∼ 1 mas single-exposure
astrometric accuracy [44], similar to the expected performance of the Roman Space
Telescope. The HabEx Workhorse Camera (HWC) onboard the Habitable Exoplanet
Observatory (HabEx)7 is expected to have similar, if not better, angular resolution
to the Roman Space Telescope, albeit with a much smaller FoV [24].

The deciding factors then become the observed fields and observational cadence.
Unlike the Roman Space Telescope, HabEx is not designed as a survey instrument;
instead, it focuses on characterizing a handful of targets in great detail, and thus
will not be suitable for our purpose. While Euclid does feature a deep survey, with
40 deg2 of sky observed every 15 days [44], these fields are close to the ecliptic pole
with low stellar density. However, a high-cadence survey in its extended mission
lifetime, following the recommendations we outline, could contribute meaningfully
to GW detection.

4.5 Concluding Remarks
In this paper, we show how to use a photometric survey as a GW probe that uniquely
bridges the GW frequency spectrum gap between existing detection methods. It is
also not required that such photometric surveys are designed specifically to provide
absolute astrometric solutions. We demonstrate that relative astrometric deflections
of observed stars within the FoV already allow for GW detection, albeit at a lower
sensitivity level. We discuss key factors that determine sensitivity. We then assess
the potential of the Roman EML survey in its current definition as a GW probe. In
Section 4.4, we make recommendations for maximizing the GW scientific output
of photometric surveys and quantify the desirable performance via a model survey.
Finally, we review existing and planned photometric surveys, and discuss their
relative strengths and drawbacks as potential GW probes.

We note that our analysis can be refined in several ways. For instance, we have yet
to explicitly include stellar proper motion in our simulation, which can in theory
be subtracted via quadratic fitting. Such proper motions may even be correlated
across the FoV, if, for example, open clusters are present. However, we expect these
motions to have limited impact on the GW sensitivity once we consider the signal

6https://sci.esa.int/web/euclid/home
7https://www.jpl.nasa.gov/habex/
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variation over time. Especially for high-frequency GWs, their oscillatory nature
leaves a distinct signature from physical proper motion over long timescales.

We could also model the seven fields of the Roman EML survey jointly. A combined
analysis of the data from all fields might amount to having a larger effective FoV,
should the temporal and pointing accuracy during the field-switching process allow.
Incorporating the GW frequency evolution could also enhance sensitivity.

The recommendations in Section 4.3 should serve as a reference for maximizing
GW science from future photometric surveys. The current expected performance
of the Roman Space Telescope could make detecting individual GWs a challenge.
However, with some luck and a novel pointing reconstruction strategy, we may yet
detect individual GWs with the Roman Space Telescope.

Software: astropy [11], astroquery [25], emcee [22], matplotlib [26], numpy [57],
scipy [60]

4.6 Appendix: Scaling Argument
In Section 4.3, we employ scaling arguments to show how the full survey sensitivity
can be approximated by the MCMC results on a subset of stars in a single exposure.
In this appendix we derive these scaling relations explicitly.

The log likelihood for a full dataset should be written as

lnL =

𝑁𝑚∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

∑︁
𝑘=0,1

(𝑑𝑠𝑖, 𝑗 ,𝑘 − 𝑑𝑛𝑖, 𝑗 ,𝑘 (Ψ))2

2𝜎2 , (4.18)

where the indices 𝑖, 𝑗 , 𝑘 represents the exposures, the number of stars and the two
components of the deflection vector. 𝑑𝑠 is the data vector; in the null signal case,
each data vector component follows a Gaussian distribution with zero mean and a
standard deviation of 𝜎. 𝑑𝑛(Ψ) is the predicted astrometric deflection given the GW
source parameter Ψ. 𝜎 is the telescope single-exposure single-source astrometric
resolution. On average,

lnL ≈ 𝑁𝑚𝑁𝑠
∑︁
𝑘=0,1

⟨(𝑑𝑠𝑘 − 𝑑𝑛𝑘 (Ψ))2⟩
2𝜎2

=
∑︁
𝑘=0,1

⟨(𝑑𝑠𝑘 − 𝑑𝑛𝑘 (Ψ))2⟩
2(𝜎/

√
𝑁𝑚𝑁𝑠)2

,

(4.19)

where ⟨·⟩ an average over the observed stars and the exposures. This is the same
scaling relation in Section 4.2 and Section 4.3, up to a constant scaling factor on the
order of 1.
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We note that the sensitivity is independent from the frequency of the GWs. By
modeling the signal as purely sinusoidal, we numerically calculate the variance of
the signal parameters using the Fisher information matrix. Once we have observed
a significant number of signal cycles, the standard deviation of the wave amplitude
approaches a constant,

√︁
2𝜋/𝑇 , where 𝑇 is the total observation time.
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C h a p t e r 5

CONSTRAINING THE STOCHASTIC GRAVITATION-WAVE
BACKGROUND WITH PHOTOMETRIC SURVEYS

Wang, Y., Pardo, K., Doré, O., and Chang, T.-C. (2022). “Constraining the Stochas-
tic Gravitation-wave Background with Photometric Surveys”. In: Phys.Rev.D,
106(8):084006. doi:10.1103/PhysRevD.106.084006.

5.1 Introduction
The successful detections of compact binary coalescence (CBC) events by the
LIGO and Virgo collaborations have opened the possibility of gravitational wave
(GW) astronomy [see, e.g., 5–7, 63]. Sensitive to GWs in the 10 ∼ 1000 Hz
range, the aLIGO network and other proposed ground-based next-generation GW
detectors are at the prime frequency range to detect individual mergers between
stellar-mass compact objects [see e.g., 8, 56, 59]. To observe GW signals from
higher-mass systems requires detector coverage in lower frequency ranges. In
the decihertz to millihertz range, a series of space-based interferometer-type GW
detectors, such as LISA [12], DeciGO [37] and TianQin [43], will target signals
from binaries with masses between 100 ∼ 107 𝑀⊙ [see, e.g., 12, 45, 70]. The
nanohertz range is covered by the Pulsar Timing Array (PTA) method, championed
by several collaborations including the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) [55], the European Pulsar Timing Array (EPTA)
[26], and the Parkes Pulsar Timing Array (PPTA) [38].

In addition to individual CBCs, an important detection candidate is the stochastic
gravitational wave background (SGWB). A prominent SGWB source is the superpo-
sition of GWs from supermassive black hole binaries (SMBHBs) throughout cosmic
history. While individual GWs can be too weak to be detectable, the combination
can be sufficiently loud; indeed, it is predicted that PTAs will detect the SGWB
prior to individual GW detections (see, e.g., [58]). Other contributing sources to the
SGWB have also been proposed, such as from cosmic strings and phase transitions
in the early universe [20, 61].

Recently, the NANOGrav 12.5-yr data analysis detected a common red noise among
the observed pulsars with an amplitude of 1.92 × 10−15 at the reference frequency
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1 y𝑟−1 (3.2×10−8 Hz) with high confidence [14]. Shortly afterwards, analysis of the
24-yr EPTA dataset revealed a common red noise with an amplitude of 2.95×10−15

at the same reference frequency, in rough agreement with the NANOGrav result [21].
Similar detection results have since been published by PPTA [30] and IPTA [13].
While these studies show insufficient evidence of the signal angular correlation,
famously known as the Hellings-Downs curve [32], to positively identify the signal
as the SGWB, they suggest the prospect of an imminent detection with further data
collection.

While PTAs are exceptionally suited for detection in the nanohertz range, there are
currently no ongoing or planned observatories to cover the SGWB in the microhertz
band. In this range, we expect that the SGWB will be produced by lighter binaries
(105 ∼ 109 𝑀⊙) than those seen by PTAs [see, e.g., 60]. Observing the SGWB in
this regime would complement and cross-check the PTA observations, as the SGWB
at different frequencies should eventually be consistent with the same population
model. Recently, several potential detection methods have been proposed that
target this uncovered frequency band gap. For example, GW could be detected
via its modifications to asteroid accelerations [25]. It also modulates the phase of
continuous GWs from galactic sources [36], from which the SGWB can be inferred.
Spaced-based interferometer-type detectors are also proposed [60].

In this paper, we focus on the detection method using relative astrometric measure-
ments [39, 48, 68]. Analogous to the periodic pulse arrival time delay in PTA, the
sky position of measured objects oscillates with a passing GW, from which we infer
the source properties [16, 53]. In particular, the astrometry method has the advantage
of being flexible in its sensitive frequency range with no additional instrument cost
to the photometric surveys [68]. By specifically referring to photometric surveys,
we wish to emphasize that not only surveys dedicated to astrometry can achieve this
purpose; indeed, a promising candidate, the Galactic Bulge Time Domain (GBTD)
survey of the Nancy Grace Roman Space Telescope, has the primary objective to
observe microlensing signatures in the galactic bulge [1].

Several authors have investigated the potential of this method, both from a theoretical
perspective [16, 29, 46, 47, 54] and in close connection with specific surveys [39, 48,
68]. In Ref. [68], we investigate the detection prospect of individual monochromatic
GWs in the case of the Nancy Grace Roman Space Telescope (Roman) [4] and Gaia
[52], both offering high-precision and high-cadence astrometric measurements.

In this work, we elaborate on the effect of survey features on the sensitivity to
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SGWB. Explicitly, we compare surveys depending on whether they are sensitive
to a largely uniform displacement of all stars within their field of view (FoV). We
clarify that, although the detection method itself requires relative astrometry only,
the design for absolute astrometry telescopes contributes to higher sensitivity. We
also discuss detection implications due to the size of the FoV; we apply an angular
power spectrum binning and compute the recoverable signal power for given FoV
size.

This paper is organized as follows. In Section 5.2, we review the fundamentals of
GW-induced astrometric deflections. We then develop the expected power spectra
in both the frequency domain and the spatial domain. In Section 5.3, we examine
the respective survey sensitivities under various survey features. We conclude in
Section 5.4.

The code used for this analysis and the figures is available athttps://github.com/kpardo/estoiles-public.

5.2 Theory
In this section, we review the basics of GW-induced astrometric deflections. We
then discuss two different ways to analyze the deflections produced by the SGWB:
the frequency power spectrum and the angular power spectrum. We then show
the corresponding instrument noise power spectrum. We emphasize, however, that
these signal and noise prescriptions alone are insufficient to gauge the GW detection
power of a photometric survey; as we will show in Section 5.3, a more accurate
description is contingent on additional survey features.

GW Detection with Astrometry
Upon the passing of a GW, the propagation path of photons are perturbed such that
the measured star positions are deflected from their “true” positions. The deflection
vector 𝑑®𝑛 of the position of a star located at ®𝑛 on the celestial sphere is given as
[16, 53]

𝑑𝑛𝑖 =
𝑛𝑖 + 𝑝𝑖

2(1 + 𝑝 𝑗𝑛 𝑗 )
ℎ 𝑗 𝑘𝑛

𝑗𝑛𝑘 − 1
2
ℎ𝑖 𝑗𝑛 𝑗 , (5.1)

where ®𝑝 is the propagation direction of the GW, ℎ𝑖 𝑗 is the GW strain tensor evalu-
ated at the observer, and the Latin index ranges over the three spatial dimensions.
We adopt the Einstein notation, in which repeated upper and lower indices imply
summation. In Eqn. (5.1), we adopt the distant source limit, where the distance to
the GW source and to the observed stars are much larger than the GW wavelength.
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Consequently, the GW perturbations at different star locations are uncorrelated, and
can be treated as a source of random noise [16, 53]. In this work, we are interested
in GWs with frequencies ranging from 10−8 ∼ 10−5 Hz where this distant source
limit is almost always valid. Given the observable 𝑑®𝑛, it is then possible to infer the
source property, i.e., ℎ𝑖 𝑗 .

The astrometry GW detection method has several merits. Firstly, it is highly versatile
in its sensitive frequency range, given as

𝑓min ∼ 1
𝑇obs

, 𝑓max ∼ 1
Δ𝑡

, (5.2)

where 𝑇obs is the survey lifetime, and Δ𝑡 is the observational cadence. Therefore,
surveys with the right cadence can potentially bridge the microhertz GW frequency
spectrum.

In addition, the detection sensitivity is boosted by the number of observed stars
and the number of exposures for each star. Given suitable surveys, these factors
are typically quite large; for example, in the Galactic Bulge Time Domain Survey
(GBTD) of Roman, each of the ∼ 108 observed targets has up to 4.1×104 exposures
[69].

Furthermore, this detection method requires astrometric measurements only, without
additional equipment and observing time; in this way, the GW scientific output is
serendipitous given existing surveys. Finally, we note that Eqn. (5.1) suggests
that only relative astrometric measurements (i.e., away from some fixed reference
location) are needed; it is not necessary that we know the absolute astrometric
coordinates. We discuss this point in detail in Section 5.3. In the following sections,
unless explicitly stated, the astrometric measurements are to be interpreted as relative
ones.

Frequency Power Spectrum
One way to analyze the astrometric data is to compute the signal magnitude correla-
tion across time, which can be represented by its Fourier transform, i.e., the SGWB
frequency-domain power spectrum [see, e.g., 10, 51].

The SGWB follows the assumption that the time-domain strain amplitude follows
a stationary zero-mean Gaussian distribution, and its Fourier transform is a sum of
Gaussian modes with frequency-dependent variance, i.e.,

⟨ℎ(𝑡)ℎ(𝑡′)⟩ = 𝛿𝐷 (𝑡 − 𝑡′)𝜎2
𝑡

⟨ℎ̃( 𝑓 ) ℎ̃∗( 𝑓 ′)⟩ = 𝛿𝐷 ( 𝑓 − 𝑓 ′)𝑆ℎ ( 𝑓 ) ,
(5.3)
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where 𝛿𝐷 is the Dirac delta and 𝜎𝑡 is the constant standard deviation of the strain.
The double-sided signal power spectrum, 𝑆ℎ ( 𝑓 ), can be expressed as the GW
energy density per logarithmic frequency interval, Ωgw( 𝑓 ), or the characteristic
strain amplitude, ℎ𝑐 ( 𝑓 ), with the relationship given as [51]:

𝜌𝑐𝑐
2Ωgw( 𝑓 ) =

𝜋𝑐2

4𝐺
𝑓 2ℎ2

𝑐 ( 𝑓 ) = 2
𝜋𝑐2

4𝐺
𝑓 3𝑆ℎ ( 𝑓 ) , (5.4)

and the critical density today is given by

𝜌𝑐 =
3𝐻2

0
8𝜋𝐺

, (5.5)

where 𝐻0 is the Hubble constant today.

The above formulae are independent from the specific form of the characteristic
strain amplitude (or equivalent quantities). A generic phenomenological model for
a source-agnostic SGWB is a power law,

ℎ𝑐 ( 𝑓 ) ∼ 𝐴

(
𝑓

𝑓ref

)𝛼
, (5.6)

completely specified by the spectral slope 𝛼 and the spectrum amplitude, 𝐴, at a
reference frequency 𝑓ref . The slope, in particular, is determined by the nature of the
SGWB source. For example, the SGWB from inspiralling black hole binaries has
a spectral slope of −2/3 [22, 51]; for primordial background (e.g. inflation) and
cosmic strings, the spectral slopes are −1 and −7/6, respectively [23, 31, 41].

For a survey taking𝑁𝑚 exposures of𝑁𝑠 stars, the effective single-exposure single-star
noise variance is given by an ensemble average as

⟨𝑛𝐼𝐽𝑛𝐼′𝐽′⟩ =
𝜎2
𝑠𝑠𝛿

𝐾
𝐼𝐼′,𝐽𝐽′

𝑁𝑠𝑁𝑚
, (5.7)

where 𝐼, 𝐽 are indices for the exposure and the star and 𝜎𝑠𝑠 is the single-star single
exposure astrometric noise standard deviation. The symbol 𝛿𝐾 is the Kronecker
delta. We assume the measurement noise is both spatially and temporally uncorre-
lated. In analogy to the GW power spectrum, we define the noise power spectrum
as

⟨𝑛𝐼𝐽𝑛𝐼′𝐽′⟩ ≡ 𝛿𝐷 (𝑡𝐼 − 𝑡𝐼′)𝑃𝑛𝛿𝐾𝐽𝐽′ . (5.8)

For a finite observation time, the discrete version of the Dirac delta is given by

𝛿𝐷 (𝑡𝐼 − 𝑡𝐼′) →
1
Δ𝑡
𝛿𝐾𝐼𝐼′ , (5.9)
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where Δ𝑡 is the (constant) time interval between exposures. It follows that

𝑃𝑛 = Δ𝑡
𝜎2
𝑠𝑠

𝑁𝑠𝑁𝑚
. (5.10)

Since the deflection signal |𝑑®𝑛| and the GW amplitude |ℎ(𝑡) | differ only by an O(1)
geometric factor, we make the approximation that |𝑑®𝑛| ∼ |ℎ(𝑡) |, and Eqn. (5.10) is
approximately the strain noise power spectrum. The corresponding characteristic
amplitude is given by

ℎ𝑛 ( 𝑓 ) =
√︁

2 𝑓 𝑃𝑛 = 𝜎𝑠𝑠

√︂
2 𝑓Δ𝑡
𝑁𝑠𝑁𝑚

, (5.11)

where we insert a factor of 2 to convert from a double-sided power spectrum to
single-sided. For a survey with fixed cadence, ℎ𝑛 ( 𝑓 ) scales as 1/

√
𝑇obs, consistent

with Ref. [64].

Angular Power Spectrum
Aside from looking at time stream data, we may take any exposure and concentrate
on the angular correlations between deflection signals at different sky locations at
a given time. This method has been very broadly applied; for example, in the PTA
search for SGWB, this spatial correlation is expressed in the form of the Hellings
and Downs curve [32]. A similar strategy has been applied to studies of the Cosmic
Microwave Background (CMB), galaxy distributions and dark matter distributions
[see, e.g., 34, 40, 49, 50, 72]. We note that the most commonly analyzed signals are
spin-0 scalar signals, (e.g., CMB temperature map, galaxy counts) and spin-2 tensor
signals, (e.g., CMB polarization, weak lensing distortion map). The GW-induced
astrometric deflection is a spin-1 vector signal, and will be decomposed with vector
spherical harmonics as [29, 34, 46, 50, 54]

(𝑑𝑛)𝑎 =
∑︁
ℓ𝑚

[
𝐸ℓ𝑚𝑌

𝐸
(ℓ𝑚),𝑎 (®𝑛) + 𝐵ℓ𝑚𝑌

𝐵
(ℓ𝑚),𝑎 (®𝑛)

]
, (5.12)

where 𝑎 indicates two orthogonal unit vectors tangential to the celestial sphere.
The E,B basis is chosen such that the coefficients 𝐸ℓ𝑚 (𝐵ℓ𝑚) transform as scalars
(pseudo-scalars) under a local rotation [71].

We assume that the complex coefficients 𝐸ℓ𝑚, 𝐵ℓ𝑚 are drawn from zero-mean normal
distributions, with the variance given by

⟨𝐸ℓ𝑚𝐸∗
ℓ′𝑚′⟩ = 𝐶𝐸ℓ 𝛿ℓℓ′,𝑚𝑚′

⟨𝐵ℓ𝑚𝐵∗
ℓ′𝑚′⟩ = 𝐶𝐵ℓ 𝛿ℓℓ′,𝑚𝑚′ .

(5.13)
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Just as the characteristic strain amplitude, ℎ𝑐 ( 𝑓 ), indicates the SGWB source, 𝐶𝐸,𝐵
ℓ

depends on the nature of GW radiation itself, such as its propagation speed and
polarization content [46, 47, 54]. In this work, we assume the GW travels at the
speed of light and contains only tensor modes. The angular power spectrum is then
given as [54]

𝐶𝐸ℓ = 𝐶𝐵ℓ =
12𝐻2

0𝑁
−2
ℓ

𝜋ℓ(ℓ + 1)

∫
𝑑𝑓

Ωgw( 𝑓 )
𝑓 3 |𝑊 ( 𝑓 ) |2

=
8𝜋𝑁−2

ℓ

ℓ(ℓ + 1)

∫
𝑑 ln 𝑓 ℎ2

𝑐 ( 𝑓 )

𝑁ℓ ≡

√︄
(ℓ + 2)!

2(ℓ − 2)! .

(5.14)

The window function 𝑊 ( 𝑓 ) accounts for the phase difference between two expo-
sures. This factor arises, as the model in Ref. [54] assumes two exposures only, and
the “deflection” must be calculated using one of the two exposures as the baseline.
In our model, we assume that a true baseline is established by averaging the mea-
surements over the entire observational period. In this way,𝑊 ( 𝑓 ) is not necessary.
We observe that the angular power spectrum is sharply peaked at small ℓ and rapidly
drops off as ℓ−6 at large ℓ.

From an observational perspective, the angular power spectra 𝐶𝐸,𝐵
ℓ

(𝑡𝐼) at each time
slice 𝑡𝐼 can be extracted via the inverse of Eqn. (5.12). Since this angular power
spectrum is stationary, the final estimated angular power spectrum can be averaged
over the exposures,

𝐶
𝐸,𝐵

ℓ
=

1
𝑁𝑚

∑︁
𝐼

𝐶
𝐸,𝐵

ℓ
(𝑡𝐼) . (5.15)

This formula can also be understood from the definition of 𝐶𝐸,𝐵
ℓ

as the ensemble
average of 𝐸, 𝐵ℓ𝑚; for a single exposure the average runs over the 𝑚 modes, and
for multiple exposures it also runs over the (independent) realizations of the angular
power spectrum.

The spatial measurement noise is modeled as vectors on the two-sphere with random
orientations, with magnitude drawn from a normal distribution as in Eqn. (5.7).
Applying a harmonic transform, we obtain the noise power spectrum as

𝐶𝐸,𝐵𝑛 =
2𝜋𝜎2

𝑠𝑠

𝑁𝑚𝑁𝑠
, (5.16)
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where the factor of 2𝜋 reflects the angular normalization and that the power is split
evenly between the 𝐸, 𝐵 modes [54].

5.3 Analysis
While Section 5.2 provides the theoretical signal power spectra, they are not nec-
essarily representative of what can be recovered from observational data. In this
section, we clarify necessary modifications to the power spectra such that they are
applicable for specific types of photometric surveys. Firstly, we describe our refer-
ence surveys, the Roman GBTD survey and the Gaia astrometric survey. We then
discuss the role of absolute and relative astrometry in GW detection. We discuss in
depth the effect of subtracting the FoV mean signal and the resulting survey perfor-
mance. Lastly we introduce angular power binning and explain the implication of
limited FoV on GW detection.

Survey Summary
The Nancy Grace Roman Space Telescope1 is NASA’s next flagship observatory
after the James Webb Space Telescope. Among other science goals, it aims to
probe the evolution of dark energy and large-scale structure by observing billions
of galaxies and thousands of supernovae [9]. In terms of probing GWs, the GBTD
survey is particularly relevant, where it visits a ∼ 1.97 deg2 patch of sky towards
the galactic center. This pointing direction implies large stellar density, and the near
infrared sensitive wavelength also leads to less extinction; thanks to these factors,
Roman is expected to observe 108 stars (𝑊145𝐴𝐵 < 23) [28] with the GBTD survey,
with a single-exposure single-star astrometric uncertainty of 1.1 mas (estimated for
𝐻AB = 21.6 stars) [69]. The survey comprises of 6 observing seasons, each 72 days
long. During each season, each star is visited every 15 minutes, giving a total of
41,000 exposures per star.

Another promising mission as a potential GW probe is the all-sky astrometric survey
with Gaia2 [52]. Gaia observes on the order of 109 stars [17], with a single-exposure
single-star astrometric uncertainty of 0.7 mas for𝐺 ∼ 20 stars in Gaia Data Release
2 [44]. In the recent Gaia Early Data Release 3, the typical uncertainty for six-
parameter astrometry (position) is 0.4 mas at 𝐺 = 20 [27]. Gaia Data Release 4,
which will be based on data during the entire nominal mission lifetime and part
of the extended mission, expects a parallax uncertainty of 0.46 mas at 𝐺 = 20

1https://roman.gsfc.nasa.gov/
2https://sci.esa.int/web/gaia



140

[3]. Gaia also expects to achieve a ten-year total lifetime in the extended mission
[18]; the ultimate Data Release 5 expects to have a parallax uncertainty of 0.33
mas for objects of the same magnitude [3] (the astrometric position uncertainty
generally has a small difference in value with parallax uncertainty [see, e.g., 27]).
Since the difference is within an order of magnitude, we do not update the estimates
accordingly, and the general conclusion remains the same. On average, each star
is visited 70 times throughout the 5-year observing time [52]. For simplicity, we
assume these exposures to be evenly spaced.

Absolute/Relative Astrometry and Mean Subtraction
As is evident from Eqn. (5.3), the SGWB inference relies solely on the deflection
vectors and not on the true position vector; indeed, if we observe cycles of a single
continuous wave, or a significant period of the stochastic process, the true position
can be immediately computed. Therefore, it is not required to have absolute astro-
metric measurements (as Gaia provides), consisting of the absolute star coordinates
in, e.g., the extragalactic International Celestial Reference System [42].

What is required, on the other hand, is that the entire deflection vectors should be
recovered from the time stream data. This is particularly challenging; since the GW
deflection pattern is a large scale signal (see Eqn. (5.14)), deflections within a small
FoV appear almost uniform. We shall refer to this almost uniform motion as the
FoV mean signal.

For telescopes with a single viewing direction, the mean signal is recoverable under
two possibilities. Evidently, a telescope that is in free fall during data collection
qualifies, since an inertial frame cannot “absorb” periodic motion. For a “point-
and-stare” type telescope like Roman, its reaction wheels are constantly engaged
through the fine guidance system for pointing self-calibration [69]. As the mean
signal mimics instrument noises such as pointing error and jitter, it may then be
corrected in situ or get fitted out during the astrometric solution process. In this
case, it is in principle possible to reconstruct the mean signal (or part of it) if the
pointing system actions are recorded.

In the worst case scenario, we ignore the mean signal and use only the differential
deflections across each exposures, which we refer to as the mean-subtracted case.
In Ref. [68], we considered this case for individual continuous wave detection and
showed that the differential deflections are roughly two orders of magnitude smaller
than the mean signal. The sensitivity loss can be approximated by scaling down the
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signal characteristic strain amplitude proportionally.

For telescopes with two almost orthogonal viewing directions, such as Gaia, the
GW signature is typically towards two distinctive directions in the two viewing
directions. In this case, the signal is less likely to be absorbed as pointing error.
Although the Gaia viewing directions were not specifically designed for this purpose,
it incidentally satisfies the favoring conditions.

In the following, we consider the signal-to-noise ratio (SNR) defined as (see, e.g.,
[48])

𝜌2 =

∫
𝑑 ln 𝑓

[
𝜆ℎ𝑐 ( 𝑓 )
ℎ𝑛 ( 𝑓 )

]2
, (5.17)

where ℎ𝑐 is the SGWB characteristic strain amplitude and ℎ𝑛 is the characteristic
noise amplitude in Eqn. (5.11), and the sensitivity threshold is fixed to have 𝜌 = 1.
The scaling factor 𝜆 accounts for the signal loss due to mean subtraction. For Gaia,
we assume 𝜆 = 1, i.e. lossless. As the Roman telescope and system design is still in
planning, we do not quote a specific value; instead, we show the range 𝜆 = 0.01 ∼ 1,
which corresponds to the mean-subtracted case and the full signal case, respectively
[68].

We show the sensitivity threshold in Figure 5.1, where we do not restrict to the
SMBHB SGWB, but rather assume a source-agnostic search [64]. For reference,
we also plot the sensitivity curves of IPTA [62, 66] and LISA [57] in gray using
phenomenological models. The solid red line shows the best estimate of the common
process measured from IPTA DR2 (over 10−9 − 4× 10−8 Hz, consistent with Figure
1 of Ref. [13]),

ℎ𝑐,IPTA ∼ 2.8 × 10−15
(
𝑓

1 yr

−1)−2/3

. (5.18)

We note that the population details of potential SMBHBs emitting GWs from 10−7

Hz to 10−4 Hz are highly uncertain and poorly constrained by observation, if at all.
As a heuristic example, we simply extrapolate the SGWB from the nanohertz range
(red dashed line). While this treatment is valid until some of the more massive
GW sources go near coalescence, it suffices in this work as an example to possible
SGWB signals across the wide frequency ranges.

We reiterate that the frequency band difference between Roman and Gaia results
from the observational cadence (see Eqn. (5.2)). The sensitivity, in addition to the
cadence, is affected by the astrometric accuracy and the number of observed stars.
Specifically, we observe that within shared frequency ranges, Roman offers better
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Figure 5.1: Survey sensitivity for a source-agnostic SGWB search. The survey
sensitivity of IPTA and LISA are shown in gray curves. The solid black line shows
sensitivity of Gaia. The range of sensitivity of Roman GBTD survey is shown with
the blue solid block, with 𝜆 = 0.01 ∼ 1. The solid red line shows the best amplitude
estimate from IPTA DR2 with similar frequency range. The dashed red line shows
the extrapolated SGWB level in the Roman frequency range.

sensitivity than Gaia, even in the mean-subtracted scenario. This is primarily due
to its high cadence and larger span in its sensitive frequency. We note that if the
SMBHB SGWB is indeed at a similar level as the current best estimate from IPTA,
both Gaia and Roman can detect its power excess.

Given a fixed redshift distribution, the SGWB amplitude directly implies the local
SMBHB remnant density, ΦBHB,0, defined as the number of SMBHB remnant per
comoving volume in the local universe. Assuming the same SMBHB population
model as in Ref. [13, 19], we can also express the Roman and Gaia sensitivity
in terms of an upper limit on the local SMBHB number density (in the case of
null detection), since 𝐴 ∼

√︁
ΦBHB,0 in Eqn. (5.6). For Roman, the upper limit is

1.0 × 10−5 ∼ 1.0 × 10−9 Mpc−3 for 𝜆 = 0.01 ∼ 1. For Gaia, the upper limit is
2.3 × 10−6 Mpc−3.
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Angular Power Binning
In this section, we discuss the effect of telescope FoV size on the angular power
spectrum sensitivity. Firstly, we note that the currently planned telescopes with
sufficient astrometric precision for GW measurement are all space-based telescopes
with FoV less than 1 deg2; e.g., Roman (0.26 deg2) [69], Gaia (0.5 deg2) [2],
James Webb Space Telescope (∼ 8 arcmin2)3,4, Hubble Space Telescope (WFC3
NIR, ∼ 4 arcmin2)5. Therefore, it is not likely that we can capture GW deflections
with significant spatial variation within one exposure. We further discuss in turn
the “point-and-stare” type surveys (e.g., Roman) and all-sky scanning surveys (e.g.,
Gaia).

In the case of Roman GBTD survey, which only visits fields close to the galactic
center, the measurements are insensitive to angular powers with a scale larger
than the FoV size6. Moreover, different (ℓ, 𝑚) modes of the spherical harmonic
decomposition coefficients can be highly coupled. While the exact coupling depends
on the FoV geometry, modes with larger difference in value than 𝜋/𝜃fov have much
smaller coupling, where 𝜃fov is the (angular) sidelength of the FoV.

Although Gaia offers complete sky coverage after each full-sky scan, it is unclear if
it will not suffer the same angular power loss. In the case of the SGWB, the spatial
deflection patterns at different times are, by assumption, independent realizations of
𝐶
𝐸,𝐵

ℓ
. The image of the FoV are also independent, as a consequence. In this way,

measurements from different exposures cannot be consistently combined to produce
a full-sky map, and Gaia suffers the same large-scale power mean-signal loss as
Roman.

In the case of individual continuous GW signals, the signal coherence allows, in
principle, the construction of a temporal-spatial template, which depends on the
GW source property and the attitude history of the telescope [42]. A thorough
investigation of such a possibility is beyond the scope of this work. In the following
analysis, we shall assume that the large-scale powers cannot be recovered from Gaia
measurements.

3https://www.jwst.nasa.gov/
4https://svs.gsfc.nasa.gov/13583
5https://hubblesite.org/
6In principle, measurements from the several fields Roman visits may be combined on particular

time scales (e.g., much shorter than the typical SGWB period of interest). Such reconstruction would
require careful modeling of the telescope motion during field-switching; for simplicity, we restrict
to scales smaller than the FoV.
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To account for the large-scale power loss and mode mixing, we bin the theoreti-
cal angular power spectrum and impose a minimum ℓ. The maximum ℓ roughly
corresponds to pixel scale, which is much larger than any ℓ-modes contributing sig-
nificantly to the SGWB, i.e., ℓ ∼ 2. The binned, predicted angular power spectrum
can be obtained via the exact mode-coupling matrix of the FoV (i.e., the window)
[11, 33, 67]; however, to simplify the calculation and to keep the estimate applicable
to generic FoV shapes, we approximate the binning process by directly averaging
the theoretical 𝐶𝐸,𝐵

ℓ
within each bin [see, e.g., 33]. Given sufficiently wide bins,

different bins have negligible coupling.

We consider a square FoV, where the bins are defined as

𝐶𝐸,𝐵𝑞 =
1
Δ𝑞

∑︁
ℓ𝑖∈{ℓ𝑞}

𝐶
𝐸,𝐵

ℓ𝑖
, Δ𝑞 =

[
𝜋

𝜃fov

]
,

{ℓ𝑞} = {ℓ𝑖,
[
𝑞 − 1

2

]
Δ𝑞 ≤ 𝑖 <

[
𝑞 + 1

2

]
Δ𝑞} ,

(5.19)

where [·] denotes taking the nearest integer and 𝜃fov is the angular sidelength of the
square FoV.

Since the survey is not sensitive to modes larger than the FoV, we discard the first
bin when calculating the SNR. With these two steps, the log likelihood is summed
over the binned modes as (see, e.g., [34])

𝜌2
𝐸,𝐵 =

∑︁
𝑞

(
𝐶
𝐸,𝐵
𝑞

Δ𝐶
𝐸,𝐵
𝑞

)2

𝜌2 = 𝜌2
𝐸 + 𝜌2

𝐵 .

(5.20)

In the weak signal limit, the diagonal elements of the covariance matrix, 1/Δ𝐶𝐸,𝐵𝑞 ,
are dominated by the noise, instead of cosmic variance. The inverse of the covariance
for each bin is given by [24]

Δ𝐶𝐸,𝐵𝑞 =
1
Δ𝑞

√︄
2

(2ℓ𝑞 + 1) 𝑓sky
𝐶𝐸,𝐵𝑛 , (5.21)

where ℓ𝑞 is the mode in the center of each bin. The factor 𝑓sky if the fraction of sky
covered by the FoV, and it accounts for the loss of mode power due to partial sky
coverage.

It is clear that the SNR loss due to limited FoV is also sensitive to the signal spectral
slope; signal concentrated at large scales suffers a higher loss of SNR compared with
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Figure 5.2: The fractional SNR for various FoV size compared with the full sky case.
The bar plot corresponds to the left axis and shows the SNR contribution from each
bin, normalized by 𝑓sky. The black solid line shows the full-sky scenario. Using the
right axis, the same line shows the total SNR with various threshold ℓ = 𝜋/𝜃fov as a
fraction of the full sky scenario.

signals that have a flatter spectral profile. As Eqn. (5.14) shows, the angular power
spectrum of SGWB decays roughly as ℓ−6, which strongly penalizes the detecting
power of limited-FoV surveys.

Figure 5.2 shows the SNR, normalized to the full-sky case, given various FoV sizes.
The bar plot corresponds to the left axis, showing the SNR contribution from each
bin (see Eqn. (5.19); for ease of presentation, we have normalized all three cases by
dividing out the 𝑓sky factor). The black solid line shows the full-sky scenario. The
right axis and the same black solid line gives the accumulated SNR given various
threshold ℓ. We observe that the SNR drops sharply with limited FoV; in the case
of Roman with 𝜃fov = 0.53 deg, the fractional SNR is smaller than 10−14 compared
to the SNR of the full-sky case.

Therefore, only full-sky or nearly full-sky surveys are likely to be sensitive to the
angular power spectrum of SGWB. If the SNR is sufficiently large, this method can in
principle become a probe for modified gravity theories, as is discussed in Refs. [29,
46, 47, 54]. Just as this method complements PTAs in the frequency domain, it
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would also cross-check the non-GR effect with the timing residual measurements.
To accomplish this goal, it requires a survey with a nearly all-sky FoV, in additional
to sufficient cadence and astrometric accuracy.

Lastly, we comment on the detection prospect difference in frequency domain and
angular domain. Since ℎ̃( 𝑓 ) and 𝐶𝐸,𝐵

ℓ
are decomposition of the same signal, the

total signal power, i.e.,
∫
𝑑 ln 𝑓 ℎ2

𝑐 ( 𝑓 ),
∑
ℓ 𝐶

𝐸
ℓ
+ 𝐶𝐵

ℓ
, matches (see Eqn. (5.14)).

However, the achievable SNRs are limited differently for these two domains; the
frequency domain is limited by observational cadence and the angular sensitivity is
limited by sky coverage. In particular, the poor angular domain SNR is attributed
to the mismatch between the large-scale nature of GW signal and the limited FoV
scale.

5.4 Conclusion
In this work, we examine the SGWB detection prospects using astrometric mea-
surements, with discussion of the effects of telescope features on the sensitivity. We
consider two especially promising and representative surveys, the Roman GBTD sur-
vey and the Gaia all-sky astrometric survey, for in-depth discussions and concrete
performance forecasts.

We highlight that whether a uniform deflection signal can be extracted from observa-
tional data has a high impact on detector sensitivity. Although absolute astrometry
is not required for GW detection, the dedicated telescope design (i.e., two viewing
directions) is beneficial for keeping the mean GW signal. For single viewing angle
telescopes, it is more likely that we can only use differential deflection data. Thanks
to its high-cadence of observations, we found that Roman GBTD survey is sensitive
to the SGWB with an SNR of 1.2 − 120 for frequency power spectrum analysis,
depending on whether the mean signal can be captured, if the background is indeed
at the level estimated by current PTA efforts. We found that Gaia is able to detect
the same signal with an SNR of 2.5.

We explain the signal loss due to FoV size by binning the power spectrum and
disregarding inaccessible bin powers. As the GW signal is intrinsically a large-
scale (quadrupole, in particular) signal, and telescopes with the required astrometric
accuracy typically have small FoVs, it is unlikely that this detection method is
sensitive to the GW angular patterns. To probe the angular power spectrum and
potentially observe non-GR signatures, the future candidates should have significant
sky coverage.
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As the next generation of photometric telescopes start to go online or go into detailed
planning, the possibility of using astrometric measurements to complement existing
GW detection strategies is ever more promising. As is shown, Roman and Gaia
can offer supporting evidence for PTA measurements of the SGWB and probe a
complementary SMBHB population in a previously inaccessible frequency range.

Software: astropy [15], matplotlib [35], numpy [65]
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C h a p t e r 6

TOLERANCE TO ASTROPHYSICAL MODEL UNCERTAINTY
IN GRAVITATIONAL-WAVE DARK SIREN HUBBLE

MEASUREMENT

6.1 Introduction
A fundamental topic in modern cosmology is the understanding of the growth history
of the universe. In particular, the Λ Cold Dark Matter (ΛCDM) model has proven
to be very successful with current cosmological and astrophysical observations
[23]. The values of the cosmological parameters in this model are constrained with
modern observations to increasing level of precision, such as that of the Hubble
constant. However, inconsistency of the Hubble constant values estimated with
different methods appears, which is famously known as the Hubble tension.

On one hand, the Hubble constant can be constrained from early-universe measure-
ment on the cosmic microwave background (CMB) power spectrum. The Planck
survey on CMB yields a Hubble constant of 𝐻0 = 67.4 ± 0.5 km/s/Mpc [44]. An
independent late-universe measurement relies on “standard candles” [21, 22, 47]
with known luminosity such as Cepheids in Type Ia supernovae hosts. For example,
Milky Way Cepheids in the early data release 3 (EDR3) of Gaia measure a Hubble
constant of 73.2 ± 1.3 km/s/Mpc [48]. Evidently, the two methods yield estimates
that are 4.2𝜎 apart, posing a strong challenge if we require consistency within the
same model [35, 55].

As gravitational-wave (GW) astronomy advances with successful event detections [1,
2, 8, 52], the possibility to use GW events as standard sirens for studying the Hubble
constant draws attention [7, 16, 50]. Specifically, the GW source luminosity distance
can be inferred from the waveform; if its redshift information becomes available,
the Hubble constant and other cosmological parameters can be constrained.

In the simplest case, the GW event is accompanied by an electromagnetic counter-
part, and its redshift is determined with an EM telescope. In this case, the GW stan-
dard siren is also called a “bright” siren. The sole example to date is GW170817 [8], a
binary neutron star merger. Its gamma-ray burst signal was registered independently
by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield at the In-
ternational Gamma-Ray Astrophysics Laboratory (INTEGRAL) spectrometer[3].
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This event alone constrained the Hubble constant to 70+12
−8 km/s/Mpc [4]. The bright

sirens do not represent the full potential of standard sirens, as they make up only a
small fraction of the total GW events. To start with, GW source population synthesis
studies show that binary neutron star (BNS) events are fewer than binary black hole
(BBH) events by a factor of O(10) [5, 12]. Among the detectable BNS events, only
0.1% is estimated to have observable EM counterpart [14].

While individual GW events without EM counterpart cannot constrain cosmological
parameters due to missing redshift, the total detected population could be informative
in statistical inference of cosmological parameters [50]. This method is also called
the GW dark siren. In short, the detected catalog can be compared to an “expected”
distribution as a function of the cosmology and the astrophysics [57]. Depending
on the main focus parameter space, we can further define a sub-category called the
“spectral siren”, where the focus is primarily on comparing source mass distribution
[17, 24–26]. In this work, we focus on the redshift distribution, which is derived
from galaxy distribution with the assumption that GW events are biased tracers of
galaxies [27, 30, 31].

Such method has been applied to GW catalogs; in the latest Third LIGO-Virgo-
KAGRA Gravitational-Wave Transient Catalog (GWTC-3), 47 events are analyzed
against the galaxy catalog GLADE+ [20], and together with GW170817 yield 𝐻0 =

68+8
−6 km/s/Mpc [53]. While the current detector sensitivity limits the application

of this method (see, e.g., Fig 7 in Ref. [30]), it is predicted that current detector
upgrades and third-generation detectors can produce GW catalog that constrains the
Hubble constant towards the percent level [11, 16, 51, 59].

In the dark siren method, the expected distribution is typically a mixture model
between a galaxy catalog and theoretical population models [27, 30, 31, 57]. This
treatment is necessary, since galaxy catalogs can be incomplete due to telescope
magnitude limits. Since the relation between GW events and host galaxy charac-
teristics is still an active area of research [28], the detected events can well come
from galaxies that are missing from catalog. In this case, the redshift information is
known only to the degree of the smooth overall galaxy mass function. It is evident
that, with an incorrect theoretical model, the inferred cosmology is susceptible to
bias. In Ref. [7], the effect of varying the event rate redshift evolution is explored;
however, for this catalog, the Hubble constant inference is dominated by the bright
siren GW170817, which is not affected by astrophysical model assumption (see
Figure 7 in Ref. [7]). In Ref. [57], bias incurred by elemental astrophysical model
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substructures (modeled as gaussian peaks) is illustrated.

In this work, we seek to quantify the susceptible bias using a Fisher information
framework. Compared with Monte Carlo simulations (e.g., [30, 31]), this method is
more cost-efficient and produces quick estimates of the bias. Compared with Ref.
[57], this paper considers realistic mixture models with simulated galaxy catalogs,
thus emphasizing the interplay between galaxy survey precision and GW catalog
selection.

This chapter is organized as follows; in Section 6.2, we show the Fisher information
framework. In Section 6.3, we highlight how galaxy catalog and GW measurement
uncertainties are factored into our simulation and introduce model variations. In
Section 6.4 and 6.5, we examine the simulation cases and explain results on galaxy
model error tolerance. In Section 6.6, we summarize our findings and outline
directions for further studies.

6.2 Fisher for Dark Siren
In this section, we specify the Fisher formalism for calculating statistical and system-
atic error on the Hubble constant. As discussed in Section 6.1, the statistical dark
siren method amounts to comparing the detected GW population to an expected
rates model, 𝑟 (𝐷̂, Θ̂), where Θ̂ is a vector of parameters including, e.g., the sky
location, Ω̂, and redshifted mass parameter of the binary, (𝑚̂1, 𝑚̂2). Throughout
this work, we use ·̂ for detector-frame GW quantities, ·̃ for galaxy catalog quantities,
and no additional superscripts for the underlying true distribution. We also focus on
estimating the Hubble constant alone and assume a standard ΛCDM cosmology.

We discuss the mass contribution by the end of this section, and we focus on the
luminosity distance and angular sky location, 𝐷̂, Ω̂, for now. The expected rate of
GW events is given by

𝑟det(𝐷̂, Ω̂) = 𝑓gw(𝐷̂, Ω̂)𝑟 (𝐷̂, Ω̂) , (6.1)

where 𝑓gw is the completeness fraction of GW detection, i.e., for sources at 𝐷̂, Ω̂,
what fraction of sources exist in the catalog.

The full rate, 𝑟 (𝐷̂, Ω̂), is a convolution of the underlying GW event population,
𝑟 (𝐷,Ω), with the detector sensitivity kernel. We model the luminosity distance
direction and angular direction sensitivity kernel as a gaussian distribution with
(𝐷̂, 𝜎̂𝐷) and a three dimensional von Mises-Fisher distribution with parameter 𝜅.
They are assumed to be independent, and their joint distribution is their product.
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The underlying full rate can be written as a mixture model between an empirical part
from galaxy catalog and a supplementary theoretical component. The proportion
depends on the completeness fraction of the catalog, 𝑓g. For magnitude-limited
surveys, the completeness fraction is computed from distribution of galaxy absolute
magnitude and the luminosity distance.

We assume that the galaxy catalog is in the form of (𝑧𝑖, 𝜎𝑖,Ω𝑖) representing the
measured redshift, redshift uncertainty and angular position of galaxy 𝑖. The un-
certainty kernel shares a similar form as the GW kernel, except that the gaussian
distribution is given in redshift, and the parameter 𝜅𝑖 is much larger than 𝜅. The rate
of GW events in galaxy 𝑖 is given by 𝑟𝑔

𝑖
. The true galaxy mass function is written as

𝑟true(𝑧). Performing analytical integrals, we obtain

𝑟 (𝐷̂, Ω̂) =
∫
𝑟 (𝐷,Ω)𝐾 (𝐷, 𝐷̂,Ω, Ω̂)𝑑𝐷𝑑Ω

=

∫
[𝑟cat(𝐷,Ω) + (1 − 𝑓𝑔 (𝐷))𝑟true(𝐷,Ω)]𝐾 (𝐷, 𝐷̂,Ω, Ω̂)𝑑𝐷𝑑Ω

≡ 𝑟cat(𝐷̂, Ω̂) + 𝑟theo(𝐷̂) ,

(6.2)

𝑟cat(𝐷̂, Ω̂) =
∑︁
𝑖

𝑟
𝑔

𝑖

𝜎𝑖𝜎̂𝐷

𝜅

(2𝜋)2 𝑒
𝜅(Ω𝑖 ·Ω̂−1)

∫
exp

[
− (𝑧 − 𝑧𝑖)2

2𝜎2
𝑖

]
exp

[
− (𝐷 (𝑧) − 𝐷̂)2

2𝜎̂2
𝐷

]
𝑑𝑧 ,

(6.3)

𝑟theo(𝐷̂) =
1

√
2𝜋𝜎̂𝐷

∫
[1 − 𝑓𝑔 (𝐷 (𝑧))]𝑟true(𝑧) exp

[
− (𝐷 (𝑧) − 𝐷̂)2

2𝜎̂2
𝐷

]
𝑑𝑧 , (6.4)

where we separate into the catalog-piece and theoretical piece of the rate in the last
line of Eqn. (6.2).

Treating the detected GW events as Poisson samples from this rates model, the
Fisher information can be written as [57]

I𝐻0 =

∫
𝑟det(𝐷̂, Ω̂)

(
𝑑 log 𝑟det

𝑑𝐻0

)2
𝑑𝐷̂𝑑Ω̂ , (6.5)

and the statistical uncertainty is given by

𝛿𝐻0,s = 1/
√︁
I𝐻0 . (6.6)
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Consider any rate model 𝑞(𝐷) derived from a fixed redshift rate 𝑞(𝑧) with 𝑑𝑧/𝑑𝐷.
The Hubble constant derivative is given as

𝑑 log 𝑞(𝐷)
𝑑𝐻0

|𝐷 = − 1
𝐻0

(
𝑑 log 𝑞(𝐷)
𝑑 log𝐷

+ 1
)
, (6.7)

which can be shown by applying the chain rule. This result can be directly applied to
𝑟cat(𝐷,Ω) and the integrand of 𝑟theo. Since the completeness fractions are functions
of luminosity distance in the detector frame, they do not change under variation of
𝐻0. Accordingly,

𝑑 log 𝑟det(𝐷̂, Ω̂)
𝑑𝐻0

=
𝑑 log 𝑟 (𝐷̂, Ω̂)

𝑑𝐻0
. (6.8)

The Hubble constant derivative of the detected GW rate is then given by

𝑑 log 𝑟det(𝐷̂, Ω̂)
𝑑𝐻0

=
1

𝑟 (𝐷̂, Ω̂)
(𝐼1 + 𝐼2) (6.9)

𝐼1 = − 1
𝐻0
𝑟cat(𝐷̂, Ω̂) −

1
𝐻0
𝐽1

𝐼2 = − 1
𝐻0
𝑟theo(𝐷̂) −

1
𝐻0
𝐽2

(6.10)

𝐽1 =
∑︁
𝑖

𝑟
𝑔

𝑖

𝜎𝑖𝜎̂𝐷

𝜅

(2𝜋)2 𝑒
𝜅(Ω𝑖 ·Ω̂−1)

∫
exp

[
− (𝑧 − 𝑧𝑖)2

2𝜎2
𝑖

]
𝑧𝑖 − 𝑧
𝜎2
𝑖

exp

[
− (𝐷 (𝑧) − 𝐷̂)2

2𝜎̂2
𝐷

]
𝐷 (𝑧) 𝑑𝑧

𝑑𝐷
𝑑𝑧

(6.11)

𝐽2 =
1

√
2𝜋𝜎̂𝐷

∫
[1 − 𝑓𝑔 (𝐷 (𝑧))] 𝑑𝑟true(𝑧)

𝑑𝑧
exp

[
− (𝐷 (𝑧) − 𝐷̂)2

2𝜎̂2
𝐷

]
𝐷 (𝑧) 𝑑𝑧

𝑑𝐷
𝑑𝑧 .

(6.12)
The derivative of 𝑟true can be analytical if the redshift evolution is given by some
parametric function of redshift; in this work we use finite differencing to approximate
its value.

This Fisher formalism can also be adapted to estimate bias from the true Hubble
constant value, if the assumed models deviate from the true model, 𝑟. For instance,
both the theoretical galaxy mass function, 𝑟true(𝑧), and the GW event bias, 𝑟𝑔

𝑖
, are

active areas of research. Semi-analytic models and hydrodynamic simulations on
galaxy redshift evolution attempt to include various physical processes such as gas
cooling, star formation, feedback, etc., but the model details vary [54]. GW event
bias1 can also be redshift dependent to reflect increase in merger efficiency in low

1In this work, the most common usage of “bias” refers to systematic errors in contrast to statistical
ones. In a few places, such as the present location, it is inherited from cosmology studies and denotes
that GW sources are tracers of galaxies.
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metallicity galaxy environment [28]. In the most general form, the deviation can be
written as

𝑟 (𝐷̂, Ω̂) = 𝑟 (𝐷̂, Ω̂) + 𝛿𝑟 (𝐷̂, Ω̂) . (6.13)

The resulting bias on the Hubble constant can be shown to be [57]

𝛿𝐻0,b =
1
I𝐻0

∫
𝑑 log 𝑟 (𝐷̂, Ω̂)

𝑑𝐻0
𝛿𝑟𝑑𝐷̂𝑑Ω̂ . (6.14)

While the statistical uncertainty scales as 1/
√
𝑇 , where 𝑇 is the total observation

time, the error term 𝛿𝑟 is also proportional to 𝑇 and the bias stays constant. Espe-
cially in the context of third-generation detectors where we expect large numbers
of high precision GW events, the role of the bias will be increasingly important in
determining the level of total error budget.

Since GW measurement probes redshifted mass rather than the intrinsic mass, the
event rate dependence on redshifted mass is also subject to changes in the Hubble
constant. Specifically, the full rate model with explicit mass dependence is given by

𝜕𝑁

𝜕𝑀̂𝜕𝐷̂
=

∫
𝜕𝑁

𝜕𝑀𝜕𝐷
𝑃(𝑀 |𝑀̂)𝑃(𝐷 |𝐷̂)𝑑𝐷𝑑𝑀

=

∫
𝜕𝑁

𝜕𝑚𝜕𝐷

1
1 + 𝑧(𝐷)𝑃(𝑀 |𝑀̂)𝑃(𝐷 |𝐷̂)𝑑𝐷 (1 + 𝑧(𝐷))𝑑𝑚

=

∫
𝑑𝑁

𝑑𝐷
𝑝(𝑚)𝑃(𝑀 |𝑀̂)𝑃(𝐷 |𝐷̂)𝑑𝐷𝑑𝑚

=

∫ (∫
𝑑𝑁

𝑑𝐷
(𝑚(1 + 𝑧(𝐷)), 𝐷)𝑃(𝑀 = 𝑚(1 + 𝑧(𝐷)) |𝑀̂)𝑃(𝐷 |𝐷̂)𝑑𝐷

)
𝑝(𝑚)𝑑𝑚 .

(6.15)

The Hubble constant derivative of this piece with mass information is given as

𝑑

𝑑𝐻0

(
𝜕𝑁

𝜕𝐷𝜕𝑀

)
=

𝑑

𝑑𝐻0

(
𝜕𝑁

𝜕𝐷𝜕𝑚

1
1 + 𝑧(𝐷)

)
=

𝑑

𝑑𝐻0

(
𝑑𝑁

𝑑𝐷
𝑝(𝑚) 1

1 + 𝑧(𝐷)

)
=

(
𝑑

𝑑𝐻0

𝑑𝑁

𝑑𝐷

)
𝑝(𝑚) 1

1 + 𝑧(𝐷) +
𝑑𝑁

𝑑𝐷
𝑝(𝑚) 1

(1 + 𝑧(𝐷))2
𝐷

𝐻0

𝑑𝑧

𝑑𝐷
,

(6.16)

where the rate and luminosity distance direction derivatives are given in Eqn. (6.2)
and Eqn. (6.9).
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6.3 Simulation
In this section, we explain various components in our simulation and enumerate
parameters of the model cases. Firstly, we describe the simulation volume. With the
desirable GW angular uncertainty in mind, we simulate a cone with radius 𝜃max = 4
deg using the Healpy package in Python [29, 60]. We set the resolution parameter
NSIDE = 29, which gives 3784 equal-areal pixels within the simulated region. The
redshift ranges from 0.01 to 2. The lower bound (∼ 43 Mpc) is sufficiently small
to include the bulk expected GW population. The upper bound 𝑧 = 2 is picked in
light of realistic galaxy catalog depth; even though third-generation GW detectors
may detect significant events at even higher redshift, the host galaxy information can
be so incomplete that the dark siren becomes subject to above-tolerance bias. We
assume that all-sky data is available for both galaxy catalog and GW catalog, and
we further assume that all sky patches are statistically similar, including galaxy and
GW event rates, distribution and measurement quality. Since the Fisher information
scales linearly with angular coverage, we add a multiplicative factor equal to the
fraction of simulated area compared to the whole sky. We note that the potential
bias, 𝛿𝐻0,𝑏, is independent from sky coverage. This suggests that the all-sky case is
the most optimistic in terms of reducing statistical error and consequently the total
error budget.

We create two broad groups of models that treat GW measurement differently. In the
first group, which we refer to as the fiducial models, GW uncertainties are modeled
using simple scaling functions with redshift. In the second group, GW uncertainties
are computed from Fisher matrix with realistic third-generation detector network
sensitivity. We refer to the latter as realistic models. In the following sections, we
go into details about the setup for each.

Galaxy Simulation
We now discuss simulation parameters related to the galaxy catalog. There are three
relevant aspects of galaxy catalog, the measurement quality, depth and overall rates,
and we discuss each in turn.

Galaxy Redshift Measurement Precision

In our simulation, we consider two levels of redshift measurement precision with the
form 𝜎𝑖 (𝑧) = 𝜎𝑖,0(1 + 𝑧) (recall that the index 𝑖 refer to galaxy index in the catalog).
In most fiducial cases and all cases with Fisher uncertainty, we set 𝜎𝑖,0 = 0.003,
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corresponding to typical value for spectroscopic surveys. For photometric survey
redshift measurement, the target redshift error is 𝜎𝑖,0 = 0.01. We explore the effect
of larger redshift uncertainty with the model labeled photo.

0.0 0.5 1.0 1.5 2.0
redshift

10 5

10 3

10 1
dz

/(1
+

z)

mean
90%
photo

spec
pec. vel.

Figure 6.1: Redshift error budget comparison between galaxy measurement, GW
measurement and peculiar velocity. The luminosity distance error is computed from
a binary with intrinsic mass (𝑚1, 𝑚2) = (8.28 𝑀⊙, 7.42 𝑀⊙), and the light red band
marks the 90% percentile across sky locations.

Aside from galaxy survey measurement error, the galaxy peculiar velocity also
introduce error on the inferred redshift. In Ref. [33, 40–42], the authors studied the
effect of considering galaxy-mass-dependent peculiar velocity in GW bright sirens,
which are attainable at small redshift. In Ref. [59], the peculiar velocity is included
as a constant in galaxy redshift uncertainty. In Figure 6.1, we compare the error
from galaxy measurement, GW measurement and peculiar velocity. We show both
spectroscopic and photometric redshift uncertainty value. For peculiar velocity,
we adopt a typical value of 500 km/s [59]. We use the reference GW source
with intrinsic mass (𝑚1, 𝑚2) = (8.28 𝑀⊙, 7.42 𝑀⊙) and compute the volume-
weighted luminosity distance uncertainty (see below for details). The light red
block represents the 90 percentile over sky locations. We make a few observations.
Firstly, at all redshifts, the peculiar velocity gives smaller error than the nominal
spectroscopic and photometric uncertainties, especially with increasing redshift.
This suggests that, given our galaxy survey assumptions, it is reasonable to ignore
peculiar velocity and focus on the main source of error. This assumption, however,
is expected to break down for very small redshift galaxies, since their magnitude
allows for better quality measurement than the typical values quoted here. If a more
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realistic or a real galaxy catalog is used, it is necessary to re-evaluate and incorporate
peculiar velocity. We also observe that, the redshift budget from GW contribution is
in general smaller than galaxy contribution up until 𝑧 ∼ 1. For the assumed galaxy
magnitude limit, the completeness fraction is typically already quite small at these
redshifts (e.g. Figure 6.5 and Figure 6.4). This comparison suggests that in the
radial direction, the dominating source of uncertainty comes from galaxy catalogs
rather than from GWs with third-generation sensitivity. In the remainder of this
work, we will neglect the contribution from peculiar velocity.

Galaxy Survey Completeness Fraction

The depth of a galaxy survey is related to many factors, such as the target galaxy
magnitude or presence of special emission lines. For example, one of the targets of
the Dark Energy Spectroscopic Instrument (DESI) [38] is Luminous Red Galaxies
(LRG). Such galaxies exhibit prominent 4000Å spectral break, and they will be
the primary observation targets for DESI in redshift range 0.4 < 𝑧 < 1.0 [58]. In
the redshift range of 0.6 < 𝑧 < 1.6, another group of important targets are the
Emission Line Galaxies (ELG), and the spectral signature is the [O II] doublet [45].
Since GW event distribution among different galaxy types is still an ongoing area of
research [15], we make the simplifying assumption that the GW bias, i.e., its relative
density per galaxy, is uniform. Under this premise, although galaxy surveys that
target specific emission lines can reach large redshift, the catalog sample excludes
galaxies without these signatures, and is consequently quite incomplete for our
purpose.

Instead, we consider a magnitude-limited galaxy catalog such as the Bright Galaxy
Survey (BGS) [32] of DESI. The DESI BGS is especially promising due to its large
sky coverage and its spectroscopic redshift precision. We note that DESI BGS is
expected to have a ∼14,000 deg2 footprint [32], which is not fully consistent with
our all-sky catalog assumption. We expect that other surveys focusing on different
sky patches can fill each other’s gaps and provide a joint catalog (e.g. see GLADE
[20]). For example, the Wide Survey of Euclid [37] is expected to cover ∼15,000
deg2 that complements the footprint of DESI. This survey is also expected to offer
photometric redshift error with 𝜎𝑖/(1 + 𝑧) < 0.05 and spectroscopic measurement
with 𝜎𝑖/(1 + 𝑧) < 0.01 [37]. Consequently, we neglect sky coverage details and
focus only on the instrumentation magnitude limit.

The magnitude-limited completeness fraction depends on the absolute magnitude
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distribution, which can be given as empirical fits from local surveys in the Schechter
form, [6, 30, 31]

𝑝(𝑀) ∝ 10−0.4(𝛼𝑀+1) (𝑀−𝑀∗) exp
[
−10−0.4(𝑀−𝑀∗)

]
. (6.17)

For the shape parameters, we adopt the empirical fits in Ref. [13] derived from
local galaxy catalog from SDSS near 𝑧 = 0.1. For 𝑟-band magnitude, the best-fit
parameters are given by 𝑀∗ = −20.44 + 5 log10 ℎ, 𝛼𝑀 = −1.05, where ℎ is the
Hubble parameter. The absolute magnitude limits are given by (−24.26,−16.11).
The absolute magnitude is converted to the apparent magnitude 𝑚 with 𝑚 = 𝑀 +
5 log10(𝐷/10 pc). Integrating up to the magnitude limit of the galaxy survey, we
obtain the corresponding completeness fraction.

In realistic surveys, the observation completeness can be further dependent on more
instrumentation and scheduling details. During DESI BGS, the Bright objects
(𝑟-band magnitude 𝑟 < 19.5) are top-priority objects and are observed with high
completeness; after four telescope passes, > 80% of BGS Bright targets are as-
signed a fiber for spectroscopic measurement. The majority of the Faint objects
(𝑟-band magnitude 𝑟 < 20.175) has a lower priority, and they only achieve a fiber
assignment efficiency of 60% [32] with four passes. The fiber assignment efficiency
counts towards the galaxy completeness fraction in addition to the magnitude limit.
However, this scaling is dependent on specific observation priorities and scheduling
strategy, and we neglect it in this present study for the sake of generality.

In our models, we mostly adopt an apparent magnitude limit of 𝑚𝑔 = 20.175 as an
optimistic baseline, corresponding to the Faint targets in DESI BGS [32]. In the
fiducial model named bright, we set 𝑚𝑔 = 19.5 to simulate a shallower catalog
(mimicking the DESI Brights target). We also set 𝑚𝑔 = 22 for the fiducial model
deepz to assess the performance gain with a deeper survey.

Galaxy Number Density

We compute the galaxy number density using galaxy mass function fitted from
observation. For the galaxy number distribution, Ψ(𝜎𝑣, 𝑧), where 𝜎𝑣 is the surface
velocity dispersion of the galaxy, we first adopt a modified Schechter function fitted
from the Sloan Digital Sky Survey (SDSS) catalog [18],

Ψ(𝜎𝑣, 0) = 𝜙∗
(
𝜎𝑣

𝜎∗

)𝛼
exp

[
−

(
𝜎𝑣

𝜎∗

) 𝛽]
𝛽

𝜎𝑣Γ (𝛼/𝛽) , (6.18)



165

where 𝜙∗ = 8.0 × 10−3ℎ3 Mpc−3, 𝜎∗ = 161 km/s, 𝛼 = 2.32 and 𝛽 = 2.67. To
account for the redshift dependence, we apply a multiplicative scaling factor,

Ψ(𝜎𝑣, 𝑧) = Ψ(𝜎𝑣, 0)
Ψhyd(𝜎𝑣, 𝑧)
Ψhyd(𝜎𝑣, 0)

, (6.19)

where Ψhyd(𝜎𝑣, 𝑧) is the fitted function from hydrodynamical simulations in Ref.
[54]. The integrated surface velocity dispersion ranges from 𝜎𝑣 = 100 to 300 km/s
to include the peak of this distribution. We note that this Schechter function form
is fitted from a selection of early-type galaxy samples. Since the details of GWs
as galaxy tracers are still topics of active research (see, e.g., Ref. [15]) and may
not be limited to massive early-type galaxies, this rate might be an underestimate.
Moreover, with improved galaxy survey sensitivity, the small 𝜎𝑣 end could improve
from more measurement on faint galaxies. As a sanity check, the resulting galaxy
number density at the smallest redshift in our simulation is 0.002 Mpc−3 (i.e. average
comoving distance separation is roughly 7.9 Mpc.). To gauge the effect of changes in
galaxy number density, we set a fiducial model with reduced galaxy density, labeled
sparse.

Catalog generation

Combining the intrinsic galaxy mass function and the observational completeness,
we obtain the expected rates of galaxies in catalog. We then generate Poisson
samples and distribute them evenly in the angular direction over our simulated sky
patch. We note that we do not further distinguish the generated galaxy samples,
e.g., their stellar mass etc. It is possible to assign galaxies different hosting rates,
𝑟
𝑔

𝑖
, which alters the distribution shape. Since this variation is a straightforward

adaptation to the current model, we keep our model general and exclude highly-
model-dependent modifications. We also note that the Fisher information from the
catalog piece can vary based on the exact catalog realization. However, due to the
large number of expected galaxies, the total Fisher information is very stable; for the
optimistic model parameters (see Table 6.1), we generate 50 catalog realizations
and find that the Fisher information standard deviation is 0.053% of the average.
For computational efficiency concerns, in the final catalogs reported here, we use
only a single galaxy realization for each set of galaxy magnitude limit and overall
galaxy density scaling, (𝑚𝑔, 𝑓g,red). We list the number of simulated galaxies for
each case in Table. 6.3.
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Gravitational-wave Simulation
Similar to galaxy simulation, inputs from GWs include measurement quality, com-
pleteness fraction and overall event rate. As mentioned, our test models are divided
into two broad categories; for realistic models, the test GW event is drawn from an
observationally constrained BBH mass function, and the measurement uncertainties
are computed from Fisher information with a third-generation detector network. In
the following sections, we go through each factor.

GW measurement quality

In the following sections, we discuss measurement error in luminosity distance and
angular error. In all cases, the GW redshift kernel is modeled as a gaussian with
(𝐷̂, 𝜎̂𝐷). The angular kernel is modeled with the von Mises-Fisher distribution with
𝑝 = 3,

𝑝(Ω, Ω̂) = 𝐶 (𝜅)𝑒𝜅 cosΩ·Ω̂, 𝐶 (𝜅) = 𝜅

4𝜋 sinh 𝜅
, (6.20)

where 𝜅 controls the spread of the distribution. The value of 𝜅 is set such that 𝑝(1𝜎)2

of the probability is contained within a circular cap with area equal to sin 𝜃Δ𝜃Δ𝜙,
where Δ𝜃,Δ𝜙 are the polar angle and azimuthal angle uncertainty of the GW event.

In the fiducial models, we consider a simple scaling function for the fractional
luminosity distance error, 𝑑 log𝐷 = 𝑑 log𝐷0(1 + 𝑧). In most cases, we adopt
𝑑 log𝐷0 = 0.001, and we discuss the effect from using smaller SNR events
𝑑 log𝐷0 = 0.01 with the catalog named lum. We also adopt a scaling function
for the angular uncertainty parameter, 𝜅(𝑧) = 𝜅0/(1 + 𝑧). In the base case, we
set 𝜅0 = 104, which corresponds to a typical scale of 𝑑𝜃0 = 0.64 deg. From our
Fisher information error data hindsight, this is a reasonable value given the detector
network we consider. To gauge the effect of worse localization error, in the fiducial
model named ang, we set 𝜅0 = 103, giving 𝑑𝜃0 = 2.03 deg. The choice of these
target localization quality is motivated by Ref. [39] (Figure 8) and Ref. [36] (Figure
3), where localization error can be below 1 deg in radius or less with next generation
GW detector added to the network. For ang only, we increase the simulated region
to a radius of 10 deg, to ensure we do not suffer from edge effects.

For realistic models, we compute measurement error using Fisher information for-
malism. Firstly, we draw GW source intrinsic parameter samples. We consider
the POWER LAW + PEAK model with a smoothing function at the low mass end.



167

Distribution of the primary mass, 𝑚1, is given as [9]

𝜋(𝑚1) = [(1 − 𝜆𝑔)B(𝑚1) + 𝜆𝑔𝐺 (𝑚1)]𝑆(𝑚1) , (6.21)

where B is the normalized power-law distribution with a slope of −𝛼 and a high-
mass cutoff at𝑚max, and𝐺 (𝑚1) is a normalized gaussian distribution with (𝜇𝑔, 𝜎𝑔).
The sigmoid smoothing function, 𝑆(𝑚1), tapers the distribution at the low mass end
with parameter 𝛿𝑚. The distribution of the secondary mass, 𝑚2, follows a power
law with a slope of −𝛽. In this work, we adopt the parameters 𝛼 = 3.78, 𝛽 =

0.81, 𝜇𝑔 = 32.27 𝑀⊙, 𝜎𝑚 = 3.88 𝑀⊙, 𝜆𝑔 = 0.03, 𝛿𝑚 = 2.5 𝑀⊙, following Ref. [57],
which are mostly identical to the inferred parameters in Ref. [53]. We assume the
primary black hole mass is between 𝑚min = 6.5 𝑀⊙, 𝑚max = 112.5 𝑀⊙. Using this
distribution, we sequentially generate (𝑚1, 𝑚2) pairs.

To compute GW signal-to-noise ratio (SNR) and parameter uncertainties, we assume
a detector network of CE+LL+ET, a Cosmic Explorer [46] at current LIGO Hanford
location, aLIGO Livingston and Einstein Telescope [49]. The noise power spectral
density (PSD) is imported from the psdmodule from PyCBC [43]2. The detector an-
tenna patterns, 𝑓𝑝, 𝑓𝑐, are obtained throughPyCBC.Detector.antenna_pattern3.
The plus, cross waveforms, ℎ𝑝, ℎ𝑐, are obtained via PyCBC.get_fd_waveform us-
ing approximant IMRPhenomHM [34].

We compute uncertainties from Fisher matrix for each mass pair on a grid of
parameter space, (𝑧, Ω̂, 𝜄). The redshift grid is evenly spaced from 𝑧 = 0.01 to 2.
The 𝜄 grid (source orbital inclination) is evenly spaced from 𝜄 = 0.01 to 𝜋/2 − 0.01.
The angular position Ω̂ is the healpy[60] grid pixel with NSIDE=4 (in total 192
equal-areal pixels).

In principle, these samples can be fed into Monte Carlo integration for Hubble error
calculation; we note that in practice such a simulation is time-consuming, since
both the catalog piece and the theoretical piece in the Fisher information must be
recomputed from convolution between the galaxy catalog and the new uncertainties.
In the current scope of this study, we use the data from only one mass pair sample
(𝑚1, 𝑚2) = (8.28 𝑀⊙, 7.42 𝑀⊙). We have checked that this mass pair is close to
the peak probability in the mass distribution, thus may be used as a proxy to the
expected population majority.

2Specifically, the adopted PSD versions are CosmicExplorerP1600143,
aLIGODesignSensitivityP1200087 and EinsteinTelescopeP1600143 respectively.

3Specifically, with detectors H1,L1 and E1.
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The corresponding parameter uncertainty is a weighted average over sky location
and binary inclination angles, (Ω̂, 𝜄). For sky coverage, we take a flat average. The
threshold 𝜄 depends on selection criterion. In our realistic simulations, we examine
using either the SNR or the angular error. We find that at each redshift, the relative
change in the criterion compared to when 𝜄 = 0 demonstrates a universal pattern,
and we define this averaged scaling function as (here we use SNR, 𝜌, as the example)

𝑔(𝜄) = interp1d

(
𝜄,

1
𝑁𝑧

𝑁𝑧∑︁
𝑖=0

𝜌(𝜄, 𝑧𝑖)
𝜌(0, 𝑧𝑖)

)
. (6.22)

Specifically, we used linear interpolation from scipy.interp1d [56]. At each
redshift, the threshold 𝜄 can be computed from the inverse function, and we take the
volume-weighted average as the nominal uncertainty, e.g.,

𝜄thresh(𝑧) = 𝑔−1
(

𝜌thresh

𝜌(𝜄 = 0, 𝑧)

)
𝛿𝜃 =

1
𝑁Ω

NPIX∑︁
𝑖=1

∫ 𝜋/2
𝜄thresh

𝛿𝜃 sin 𝜄𝑑𝜄∫ 𝜋/2
𝜄thresh

sin 𝜄𝑑𝜄
.

(6.23)

To visualize the resulting rates model, we produce four model cases with 𝜌thresh =

100, 200 (rho_sm, rho_lg) and 𝜃thresh = 0.4 deg, 1 deg (theta_sm, theta_lg).

GW completeness fraction

As is seen in Eqn. (6.1), GW completeness fraction provides the overall scaling for
how many events we can expect to have for the Hubble measurement. In the fiducial
models, we adopt a phenomenological approach and use a sigmoid function,

𝑓gw =
1

1 + exp((𝑧 − 𝜇cf)/𝜎cf)
, (6.24)

and we hold 𝜎cf = 0.15, which controls the decay rate of the completeness fraction.

In models with simulated measurement uncertainty, the GW completeness fraction
can be directly obtained by enforcing selection criterion. Assuming that the orbital
axis of the binary is uniformly distributed over the sphere, the completeness fraction
is given by 𝑓gw = 1 − cos 𝜄thresh (see Eqn. (6.23)). This setup brings an important
difference from the fiducial models. In the fiducial cases, the rates model is only
affected by an overall scaling upon completeness fraction changes, since we assume
source selection is independent from measurement quality. In the realistic case,
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the completeness fraction is closely related to averaged measurement quality; as
the selected GW sources decrease in number, the selection is more stringent, and
individual event quality improves.
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Figure 6.2: Example completeness fraction and GW measurement uncertainties.
From Top to Bottom panels, the selection criteria are for an SNR of 50, 200, and a
maximum angular uncertainty (radius) of 1, 0.2 deg. In each panel, the light gray
traces show results for randomly selected 30 sky pixels. The red trace shows the
pixel-average that is adopted in the final Fisher calculation. The blue bracket shows
the 80 percentile. In the uncertainty panels, the traces end when no sky pixels
contain above-threshold sources.

In Figure 6.2, we show the weighted completeness fraction, angular uncertainty and
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Figure 6.3: Volume-averaged completeness fraction and GW measurement uncer-
tainties. The Top panel shows the SNR criterion and the Bottom panel shows the
angular resolution cap. The galaxy completeness fraction with magnitude limit of
20.175 and 22 are shown with dashed black and gray traces, respectively.

luminosity distance uncertainty given several selection criteria. We show results for
a random selection of 30 sky pixels (gray trace), and show the adopted mean value
(red trace) and the 80 percentile (blue trace). In Figure 6.3, we show the adopted
mean value for a range of thresholds that we scan over in the final simulation.
In panels for uncertainties, the traces end when no sky pixels contain qualifying
sources. We observe peculiar behavior in, e.g. the angular uncertainty when using
SNR as the threshold, shown as a bump in intermediate redshift values. This is due
to the difference in uncertainty growth rate for localization and SNR. By excluding
the inclination values with sub-threshold SNR, the remaining selected GW sources
with better measurement quality may have a smaller weighted angular uncertainty.
We also show the galaxy completeness fraction with a magnitude limit of 19.5 and
20.175 in dashed black and gray lines for comparison.

GW event number density

The GW number density is constrained from observation; based on events up to
GW170104, the local BBH merger rate is constrainted to be 103+110

−63 Gpc−3yr−1 [2].
With GWTC2, the local merger rate for BBH is updated to 23.9+14.3

−8.6 Gpc−3yr−1

[10]. We assume that this rate is a constant in redshift and across galaxies, due
to the lack of relevant observational constraints. In our fiducial models, we found
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that the GW uncertainties can be more conservative compared to actual Fisher
matrix results, resulting in a more pessimistic assessment on susceptibility to bias.
To better showcase different effects, we artificially raise the GW event rates to
239 Gpc−3yr−1 for most fiducial models. The realistic case is shown with model
named realistic_bbh_rate. In the realistic models, we found that using realistic
rates already produces simulation results with sufficient clarify.

Based on variations of the above model parameters, we present eight fiducial models
and four models with realistic GW uncertainties, summarized in Table. 6.1 and 6.2.
All models except ang share the same simulated volume. Realistic models have
identical galaxy parameters and GW occupation rate as realistic_bbh_rate.

6.4 Simulation Result Analysis
In this section, we analyze our simulation results and discuss implication to the GW
dark siren Hubble measurement. In Figure 6.6 and Figure 6.7, we show angular
cross section of the catalog-piece rates model, 𝑟cat(𝐷̂), at different redshifts. In
Figure 6.4 and Figure 6.5, we unwrap 𝑟cat(𝐷̂) at 𝜃 = 3.3 deg to show one slice along
the redshift direction. All panels in these four figures have independent color scale.

In Figure 6.4, we analyze the catalog-piece rate model by comparing to the base
case, optimistic. The models lum, ang and photo show rate changes with poorer
measurement sensitivity. In the redshift direction, while GW fractional errors in lum
increase an order of magnitude and the redshift error in photo increases only by a
factor of 3, the redshift-direction blurring effect is much more apparent in photo.
In the angular direction, the GW angular uncertainty in ang increases only by 24%,
yet the angular direction rates becomes significantly flatter. This contrast suggests
that the redshift uncertainty is dominated by galaxy catalog errors, and the angular
direction is dominated by GW localization.

Comparing sparse to optimistic, we observe that the rates model becomes more
sharply peaked. In deepz, the catalog redshift reach is much deeper, although the
higher redshift section rates model becomes less spiky due to larger redshift error
and more galaxies blending together.

In Figure 6.8, we plot the differential Fisher information for various fiducial models
prior to scaling with GW completeness fraction. For clarify, all traces except the
leftmost one have been shifted to the right. As expected, the overall scale of the
Fisher information is similar for models with the same galaxy and GW number
density, since galaxy completeness and measurement quality only contribute to the
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Figure 6.4: Slice of the expected GW event rate due to galaxy catalog in the simulated
volume at 𝜃 = 3.3 deg. Each panel represents a fiducial catalog with the catalog
name shown on the upper right corner. See text and Table 6.1 for model parameters.
Note that each panel has an independent color scale.
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Figure 6.5: Slice of the expected GW event rate due to galaxy catalog in the simulated
volume at 𝜃 = 3.3 deg. Each panel represents a catalog with the catalog name shown
on the upper right corner. See text and Table 6.1 for model parameters. Note that
each panel has an independent color scale.

ratio between the catalog piece and the theoretical piece, as well as the smoothness.
The smoothing degree and spiky region location are consistent with the event rate
angular and redshift direction cross section (e.g. comparing photo and deepz).

In Figure 6.9, we show the differential Fisher information for realistic models using
either SNR or localization as the selection criterion. Since in these models the
GW completeness fraction is fixed given a selection criterion, the differential Fisher
information shown has already been scaled with 𝑓gw. In both panels, we observe
that more stringent selection criterion produces taller peaks at small redshift, but
the redshift depth also drastically reduces. The final Fisher information depends on
the competition between these two factors.

In both groups, we observe that the Fisher information peak is misaligned with the
galaxy distribution, which peaks around 𝑧 = 2. While at higher redshift the expected
events are more numerous, their contribution to constraining the Hubble constant
decreases due to their flatter profile. This phenomenon becomes more dramatic in
realistic models, where the Fisher information shows an additional peak at very low
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Figure 6.6: Angular cross section of the expected GW event rate due to galaxy
catalogs. The galaxy catalog is convolved with fiducial values of GW measurement
uncertainty. From Top to Bottom, catalog names are labeled on the left. From
Left to Right, the redshift is (0.08, 0.34, 0.68, 1.01). Note that each panel has an
independent color scale. See text and Table 6.1 for simulation parameters.
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Figure 6.7: Angular cross section for simulated catalogs with realistic GW uncer-
tainties at different redshifts. The GW event selection criterion is noted on the left.
From Left to Right, the redshift is (0.08, 0.34, 0.68, 1.01). See text and Table 6.2
for simulation parameters. Note that each panel has an independent color scale.
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Figure 6.8: Full differential Fisher information for various fiducial models. The
GW completeness fraction has not been applied. For presentation clarity, all but the
leftmost trace in each panel have been shifted to larger redshift values.

redshift. In combination with Figure 6.5, this demonstrates that low-measurement-
error events at small redshift contribute significantly to constraining the Hubble
constant albeit the disadvantage in number.

6.5 Galaxy Model Error Tolerance
As is shown in Eqn. (6.14), bias from incorrect galaxy model assumption is sensitive
to the form of rates difference. In Ref. [57], the considered galaxy model correction
are local overdensities of galaxies, and they are modeled as individual gaussian
bumps in the rates model. In Ref. [19], the authors consider galaxy clustering
and generate test catalogs given real space correlation function, rather than having
uniformly distributed Poisson samples; in this case the model error would be the
deviation from these large scale structures. In this work, we consider the case where
the assumed galaxy mass function has a different redshift dependence from the true
distribution,

𝑟 = 𝑟true(1 + 𝑧)𝛽 . (6.25)

In this case, the catalog piece 𝑟cat remains unchanged while the supplemented
theoretical rate is multiplied with (1 + 𝑧)𝛽. The corresponding error rate term is
then given by 𝛿𝑟 =

[
1 − (1 + 𝑧)𝛽

]
𝑟true. The statistical uncertainty and the bias is

computed according to Eqn. (6.6) and Eqn. (6.14).
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Figure 6.9: Differential fisher information for realistic models given different selec-
tion criteria. The GW completeness fraction is applied. In all except the leftmost
traces, the redshift coordinate has been artificially shifted to the right for visual
clarify.

Intuitively, mitigating potential bias and reducing statistical uncertainties of Hubble
measurement place different demands on the GW events used for inference. On one
hand, the potential bias does not benefit from more events; it requires that the in-
correct rate piece plays less role in the Fisher information. Therefore, reducing bias
requires placing emphasis on close-by events where galaxy catalog is highly com-
plete. On the other hand, the statistical uncertainty depends only on the total Fisher
information, which benefits greatly from including high-redshift events occupying
greater volume. Therefore, considering both pieces is essential for balancing the
dark siren precision and accuracy. In the following test, we investigate that, given a
fixed total error budget, what the maximum tolerated redshift evolution parameter
𝛽 is under various GW event selection.

In Figure 6.10, we study fiducial models and vary the GW selection completeness
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Figure 6.10: Maximum galaxy model error tolerance given various total error budget
using the fiducial models realistic_bbh_rate. The target total error budget is
geometrically distributed between 0.7% and 2%. The horizontal axis has a unit of
km/s/Mpc.

fraction, i.e., 𝜇cf in Eqn. (6.24), and search for the maximum galaxy mass function
redshift bias 𝛽 for a fixed total error budget. This figure shows the result for the model
realistic_bbh_rate. The searched total error budget values are geometrically
distributed from 0.7% to 2%, and we mark them with vertical dashed lines. The right
end of the traces marks either when the statistical error saturates the total budget, or
when 𝜇cf = 0.01 at the edge of our simulation volume. The left end marks either
when the statistical error is 10% of the total budget, or when 𝜇cf = 1.8 close to
the maximum simulated redshift. As the total error budget changes, we observe the
development of a sweet spot; prior to the sweet spot, (right-hand-side of the figure),
the improvement in statistical error is faster than the increasing contribution from
𝑟theo, which leaves greater room for theoretical model induced bias. However, as we
keep adding deeper sources, the growth of Fisher information is suppressed due to
the smoothing of the rates model, and is soon outpaced by the bias brought by the
large theoretical population. This observation suggests that, given the same error
budget, if we would like to prioritize robustness against variations in astrophysical
models, it can be desirable to apply additional filtering and disregard distant events.

In Figure 6.11, we show the galaxy model error tolerance given different fiducial
model parameter assumptions for a 1% total error in the Top panel. In the Bot-
tom panel, we show the corresponding GW completeness fraction parameter 𝜇cf .
The overlay of the traces demonstrates that given a similar galaxy catalog, small
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Figure 6.11: Maximum galaxy model error tolerance with 1% total error budget for
fiducial simulation models. The Left panel shows the maximum 𝛽, and the Right
panel shows the corresponding 𝜇cf in GW completeness fraction. See text for ending
point definition. The horizontal axis has a unit of km/s/Mpc.

variations of measurement uncertainty does not significantly vary the overall Fisher
information, and the same statistical uncertainty is achieved with similar GW obser-
vational depth. By comparing the error tolerance, however, we observe that sparse
shows significant improvement over realistic_bbh_rate, even though they both
represent a density reduction of a factor of 10. This is due to the fact that the Fisher
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information is highly sensitive to the derivative of the rates model; changing the
GW density only applies an overall scaling, but increasing galaxy density leads to
more blending between neighboring galaxy probability region and “flattens out” the
derivative. In the completeness figure, we also see that sparse achieves the same
level of 𝛿𝐻0,stat at smaller redshift, further supporting the derivative argument.

In Figure 6.12, we show tolerance to 𝛽 using realistic GW uncertainties as we apply
different source selection criteria. In the Top panel, the minimum SNR 𝜌min is
geometrically distributed from 50 to 400, and in the Bottom panel, the maximum
angular localization radius 𝜃max ranges from 0.2 deg to 5 deg following a geometric
distribution. The black dashed line corresponds to the right vertical axis and shows
the number of expected GW sources under each threshold condition. For the SNR
selection, none of our searched value gives a statistical uncertainty below 0.7%, and
the corresponding trace is absent.

For stringent total error budget, e.g. 0.7% and 0.8%, the behavior is generally
similar to that for fiducial models, where the reduction in statistical error brings
advantage to model error tolerance. With larger error budget, however, we observe
a qualitative difference; rather than developing selection sweet spots, the error
tolerance increases exponentially with increasing statistical uncertainty. In this
case, it becomes more advantageous to apply stringent GW source selection and
pick out close-by and well-localized sources. Since the galaxy catalog is highly
complete at these distances (see e.g., Figure 6.3), the inference is very robust
to galaxy mass function assumptions. As an order-of-magnitude estimate, the
GW uncertainty comoving volume for a target angular resolution of 0.2 deg and a
redshift uncertainty of 0.003 (i.e. spectroscopic) at 𝑧 = 0.2, is ∼ 300 Mpc3. Using
the reference galaxy density of 0.002 Mpc−3, this gives < 1 galaxy in this volume,
on average. Therefore, the dark sirens have effectively become bright sirens in this
case.

We now discuss the expected GW event number. From the two panels in Figure
6.12, roughly 50 GW events can constrain the Hubble constant value to below 2%.
The Hubble constant inference using these effective bright sirens can be robust
to astrophysical model error up to ∼ 60% change in galaxy mass function. We
further observe that the number of included sources increase exponentially to achieve
smaller statistical error. This again reflects the fact that deep redshift events offer
poor constraining power due to the lack of supporting galaxy catalog information.
In the actual analysis, the Bayesian inference framework considers the posterior of
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Figure 6.12: Maximum galaxy model error tolerance given various total error bud-
get. The Top panel shows SNR selection and the Bottom shows the angular resolution
criterion. The target total error budget is geometrically distributed between 0.7%
and 2%. The right vertical axis shows the expected number of GW sources for each
threshold. In the Top panel, no selection criterion gives statistical uncertainty at
0.7% 𝐻0, and the corresponding trace is absent. The horizontal axis has a unit of
km/s/Mpc.
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each GW event instead of using Gaussian error approximation, and the analysis on
this exponentially growing GW catalog would pose heavy computational strain with
moderate payoff.

Finally, we comment on the overall magnitude of galaxy theoretical model error
tolerance. The fiducial models explore effects from different error sources, and
the realistic models highlight the transition between dark siren and effective bright
siren. We discuss each aspect in turn.

The fiducial models show that, in general, tolerance to 𝛽 is on the order of O(0.01)
if the dark siren method were to achieve a Hubble measurement with a percent-
level total error budget. This is expected to be applicable for realistic models as
well, if localization errors are larger than our assumed scenario, i.e., CE+LL+ET.
Comparing sparse and realistic_bbh_rate, we see that increasing galaxy
spacing or reducing density improves the rate model sharpness, which translates into
more robustness against model bias by ∼ 20%. While galaxy density is in reality
fixed, more complex host galaxy model may achieve similar effect. We discuss this
scenario in the next section. Although in the deepz simulation we also use high GW
event occupation rate, the max 𝛽 tolerance is higher than the baseline optimistic
by 23%. This suggests that increasing high-precision galaxy catalog depth is very
important for managing potential bias. This result thus highlights the challenge in
controlling the bias in the GW dark siren Hubble measurement. Even for low-redshift
universe (𝑧 < 0.1), the Schechter function on the distribution of galaxy luminosity
function or surface velocity dispersion function is only constrained with a parameter
uncertainty on the order of 5% with the SDSS dataset [18]. Redshift evolution
model uncertainties are also limited by the lack of deep redshift observations, and a
percent-level knowledge can be challenging.

We now discuss the implication from realistic model tests. Most notably, the error
tolerance increases exponentially in the regime when the close-by effective bright
sirens already provide sufficient statistical power to constrain the Hubble constant.
For our particular condition, this shift occurs when the total error budget is between
1.4%−2.0%. This result shows that, if GW localization produces sufficient effective
bright sirens, the gain for including higher redshift faint sources is limited; while the
statistical error is suppressed, susceptibility to bias quickly grows, and the total error
budget does not improve. We note that this behavior is not present in fiducial model
simulations. This is mostly because the fiducial model localization assumption is
more conservative and we have yet to reach the effectively bright siren scenario.
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6.6 Conclusion and Future Work
In this work, we use the Fisher information formalism to quantify potential bias
in the GW dark siren measurement of the Hubble constant in the context of third-
generation GW detector network. We use a mixture model between galaxy catalog
and theoretical galaxy number density and simulate the full-sky Fisher information.
For both galaxy survey and GW measurement parameters, we create variation models
to explore the range of behavior. We assume a power law error in the galaxy mass
function and find the maximum error tolerance given a range of total error budgets.

We found that the galaxy redshift error, galaxy completeness fraction (i.e. magnitude
limit) and the GW angular localization error are significant factors that contribute to
model error tolerance. In the case where GW dark sirens are not effectively localized
and close-by sources do not provide the desirable Hubble measurement precision,
the error tolerance trend can demonstrate sweet spots, beyond which including
further and fainter GW events in the inference starts to impose harsher requirement
on our knowledge of the galaxy mass function. Over the range of considered
parameters, we notice that to achieve a total Hubble measurement budget of 1%, the
maximum 𝛽 is on the order of O(0.01). In contrast, when well-localized sources
(i.e. small measurement uncertainty) can already satisfy the target error budget,
it is preferred to only use these effective bright sirens; this dramatically improves
tolerance to astrophysical model uncertainties 𝛽max ∼ O(1). Our study thus shows
the importance of jointly considering galaxy survey and GW measurement, and the
simulation results can contribute to the decision for GW source selection strategy
for dark siren inference of cosmological parameters.

We now discuss several directions for further investigation on this project. Firstly,
we can improve on the galaxy catalog model with galaxy clustering. On one
hand, galaxies within the same group are closer together, and stronger overlaying
of rate volume from each galaxy could lead to a more featureless rates model.
On the other hand, the large scale structure “troughs” can be wider than the flat
galaxy distribution separation, thus adding more large scale features. Which factor
becomes dominate should be clarified with an improved model. We can also add
non-uniform galaxy hosting rates for GW depending on galaxy type (e.g. Ref.
[15]). Different from an overall redshift evolution in GW occupation rate, this
creates more local rates difference, and the smoothing from overlaying rate volume
may be mitigated. Both improvement directions focus on modifying the “spikiness”
of the Fisher information, and can produce similar results shown with the model
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sparse.

Secondly, integration over different GW mass pairs and source location can be done
explicitly. In this current approach, we select a random mass pair and treat it as an
average case. Overall, the expected effect is a slight addition to the Fisher informa-
tion, since the detector-frame mass distribution also changes with Hubble constant.
However, if we assume that GW sources of all masses (within the detectable range
of ground-based detectors) are evenly distributed in galaxies, the rates profile for
each GW species can be quite similar. In our simulation, we have shown that sharp
features provides the most information, and it may not be expected that smooth mass
profile variation adds a lot to our estimate.

Moreover, the simulation results can be refined by considering larger simulation
volume with high resolution. We note that the completeness fraction for more
relaxed selection thresholds extends well beyond 𝑧 = 2. This creates artifacts
in, e.g. the right edge of Fisher information in Figure 6.8 and Figure 6.9 and
potentially brings inaccuracies in the 𝛽 tolerance results. In our searched parameter
space, we attempted to avoid thresholds that are too relaxed and include major
contribution from higher redshift. In addition, the Fisher information typically
drops well before this limit due to the smoothing of the rates model (see, e.g., Figure
6.8), indicating that our current calculation still captures the major effect. These
regions are relatively far away from the most interesting parameter space of this
work, and should not alter the overall trend and the main conclusions.
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catalog name threshold type threshold value

theta_sm angular uncertainty 0.4 deg
theta_lg angular uncertainty 1. deg
rho_sm SNR 100
rho_lg SNR 200

Table 6.2: Table of model catalog parameters using realistic GW measurement un-
certainty from Fisher information calculations. From left to right, the columns rep-
resent catalog name, source selection threshold type and the corresponding threshold
value. The galaxy catalog parameters and number density scaling is the same as the
fiducial model realistic_bbh_rate.

catalog optimistic bright sparse deepz

𝑁gal 7047 3392 684 45251

Table 6.3: Number of simulated galaxies in each model. Note that models with
the same galaxy completeness fraction and number density share the same galaxy
catalog.



194

A p p e n d i x A

KEPLER AS ASTROMETRY PROBE OF
GRAVITATIONAL-WAVE

Due to the small expected signal, the astrometry detection method benefits greatly
from a large number of observed targets and high cadence. For this reason, the
Roman Space Telescope and Gaia are considered especially promising candidates.
In this appendix, we discuss our ongoing work using archival data from the Kepler
mission for GW constraints.

Launched in 2009, the Kepler Mission is a space-borne observatory designed to
monitor ∼170,000 stars to look for exoplanets in the Milky Way [3, 4]. Although
measuring GWs astrometrically was not among the original goals for Kepler, its
survey design has characteristics that are suitable for probing GWs. Throughout its
mission, the spacecraft points towards the same patch of sky. Given the 30-minute
cadence and a total observation time of 3.5 years, the number of exposures are
around 61,000 [8]. The single-star single-exposure astrometric error is magnitude
dependent, but in general a level of 1 mas is achievable (Figure 1 in Ref. [8]). These
factors suggest that the strain sensitivity of Kepler is roughly 4.8 × 10−14 rad (see
Eqn. (4.10)). For a supermassive binary black hole with a chirp mass of 109 𝑀⊙ at
a frequency of 5× 10−7 Hz, the detectable range is within 40 Mpc. Although such a
source is optimistic, this demonstrates that Kepler could potentially be sensitive to
GWs from neighboring physical sources.

Another advantage of Kepler is its 105 sq degrees field-of-view (FoV) [3], which is
about 400 times larger than that of Roman. In Chapter 4, we highlight the loss of the
mean signal due to the large-scale nature of GWs. For Roman FoV. the mean-free
signal magnitude is about 100 times smaller than the full signal. With a larger FoV,
the mean-free signal takes up a larger fraction of the full signal; even in the case
where we can only rely on relative astrometry, the resulting signal is more optimistic
in Kepler than in Roman.

Our work is mostly focused on understanding the systematics and building a pipeline
to clean the Kepler data. Firstly, we apply quality filtering to stars in the Kepler cata-
log. We first remove stars with measurable rotations flagged in Ref. [7, 9, 10], since
the centroid measurements can change superficially due to stellar surface brightness
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changes during rotation. We then download the long cadence lightcurve data from
the Mikulski Archive for Space Telescopes (MAST)1. The centroid measurement
quality can be affected by noise of known physical origin, such as coronal mass
ejection and cosmic ray activity [11]. Telescope motion, such as when the space-
craft gradually settles back to the target FoV after downlinking data to Earth every
30 days, can also contaminate the data [11]. We offer the option to filter exposures
with known issues.
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Figure A.1: Raw centroid data with differential velocity aberration fits for a selection
of Kepler targets in Quarter 12. The horizontal and vertical axes represent the row
and column in each output. The centroid scatter color scale shows the number of
days since the quarter beginning.

We find that the largest motion in the centroids is due to differential velocity aber-
ration (DVA) as the telescope is moving with respect to stars. We use the Python
wrapper package RaDec2Pix2 to compute the expected DVA for each star at each
exposure. The DVA can then be removed from raw centroids, reducing the single-
quarter centroid movements from several hundreds of mas to O(10 − 100) mas.
However, accounting for the DVA fully requires knowing the telescope pointing
and velocity and the true sky location of the stars. In the RaDec2Pix package, the
telescope pointing is loaded from a fixed input array, and the velocity is taken from
the spiceypy package [1] that provides nominal spacecraft velocity. We also use
the nominal ra and dec which ultimately come from legacy surveys in the Kepler
input catalog. These steps can introduce errors, and in practice, we found only
part of the DVA is removed, and the residual is mostly still dominated by DVA-like

1https://archive.stsci.edu/missions-and-data/kepler
2https://github.com/stevepur/Kepler-RaDex2Pix
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motion. In Figure A.1, we show the raw centroid data (MOM_CENTR) for a random
selection of ten stars out of a curated sample. For this sample, we discard stars
with noticeable rotation and have measured magnitude beyond the saturation limit
(kic_kepmag>11.4, [5]). We then select the brightest 100, and 89 have valid data
in Quarter 12. The breaks in data represent a duration of roughly three days after
each data downlink, when the centroids show spurious movement due to telescope
motion. The Kepler Input Catalog ID for each star is shown in the lower left corner
in each panel. The DVA is shown as red scatters.
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Figure A.2: Centroid residual after DVA correction. The best-fit model using the
leading three PCA eigenvectors is shown in red. The horizontal and vertical axis
represent the Cartesian coordinate tangential to the celestial sphere along the ra and
declination direction, respectively.

We also build the functionality to perform principal component analysis (PCA) on
the DVA residual. This is motivated for removing FoV-scale aberrations due to,
e.g. thermal effects. Although ancillary data on primary mirror temperatures are
available [11], we do not attempt to forward-model the resulting motion due to
instrument complexity and the temperature data resolution (four sensors exist on
the primary mirror). Removing leading eigenvectors, the residual is reduced to
O(1−10) mas, which is consistent with the quoted astrometric error. In Figure A.2,
we show the residual after accounting for DVA using the same set of stars. We also
show the 3-eigenvector fit with red scatters. In this example, the PCA is performed
on the 89 stars. The detector module and output number for each star is noted in
the bottom left in each panel. Different from Figure A.1 that shows the row-column
coordinate, this figure shows the projected astrometry location of stars on the sky,
and the horizontal and vertical axes represent unit vector directions along ra and
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dec. In Figure A.3, we show the centroid residual after removing the leading three
eigenvectors in PCA decomposition.
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Figure A.3: Centroid residual after removing three leading PCA eigenvectors. The
horizontal and vertical axis represent the Cartesian coordinate tangential to the
celestial sphere along the ra and declination direction, respectively.

We now discuss several challenges and future directions to this project. The Kepler
dataset is extremely rich, and it is important to understand which data to query for
our purpose. For example, the stellar centroids can be computed from flux data in
several ways. In the simpler case, it is possible to define an integration area and
compute the first moment of flux (see, e.g., Ref. [2]). In the Kepler lightcurve
file, this quantity is labeled MOM_CENTR and we have mostly used this in the testing
process. It is also possible to use the point spread function in each detector output
to fit for the most likely incident chip location. Only the Photometric Performance
Assessment (PPA) stars offer this measurement (labeled as PSF_CENTR) [6], and
the total number is about 10 times smaller than the whole catalog. Understanding
how these quantities are constructed and their recommended usage is extremely
important for removing systematics as much as possible and retaining a faithful
representation of the stellar centroids. Instead of computing DVA, it is also possible
to use another data column named POS_CORR. This column is fitted from motion
polynomials, and supposedly captures effects such as DVA, telescope pointing and
thermal effects [2]. In our current tests using the PPA stars among the brightest
non-saturated 100 stars in quarter 12, we do not observe a substantial qualitative
difference between using these different data products.

It is also important to investigate how to combine quarters. Kepler FoV rotates
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90 degrees every three months, which means the same stars will fall to a different
part of chip [4]. Consequently, the systematics can be quite different. In fact, in
Ref. [2], only quarters with the same telescope rotation orientation are analyzed
together for more stable results. Currently, our analysis has been limited to a single
quarter. Understanding how to best combine different quarters will be paramount
for exploiting the full statistical power of the survey measurement and revealing the
potential of Kepler as a GW probe.

In conclusion, we have set the base for using archival Kepler data to probe GWs. We
built the pipeline to clean data and to remove several systematic noise factors. In the
current test, the cleaned centroids are consistent with the expected error budget. We
also outline modeling and technical future challenges for improving this pipeline
and finally applying to the Kepler dataset.
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