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ABSTRACT

In this thesis, we study two topics in using gravitational waves (GWs) to probe
fundamental physics. The first topic is using black hole (BH) perturbation theory to
model GW emissions by binary BH mergers in gravity theories beyond Einstein’s
general relativity (GR). The second topic is studying holographic quantum gravity
signatures around interferometers in flat spacetime.

For BH perturbation theory beyond GR, we first construct a novel formalism based
on Teukolsky’s seminal work in the 1970s. Our modified Teukolsky formalism
works for BHs with arbitrary spin in a broad class of beyond-GR theories that
admit an effective field theory description. We derive this formalism by following
Chandrasekhar’s prescription to make some convenient gauge choices, under which
different degrees of curvature perturbations naturally decouple. In the end, we get
two decoupled and potentially separable second-order partial differential equations
for the Weyl scalars Ψ0 and Ψ4, representing the ingoing and outgoing gravitational
radiations of a perturbed BH, respectively. Our formalism works for both linear
and nonlinear orders in the beyond-GR couplings. We then apply our formalism to
specific examples.

In the first example, we study the isospectrality breaking of quasinormal modes
(QNMs) in beyond-GR theories, where the even- and odd-parity QNMs have different
frequencies. We apply the modified Teukolsky formalism and the eigenvalue
perturbation method to construct a direct connection between the parity features
of a theory and its structure of isospectrality breaking. In the second example, we
focus on the QNMs of dynamical Chern-Simons gravity up to the first order in the
slow-rotation expansion. We first directly compute the scalar field equation and the
modified Teukolsky equations for Ψ0 and Ψ4 in the ingoing and outgoing radiation
gauges, respectively. We then reduce all the equations to radial ordinary differential
equations by projection to the spin-weighted spheroidal harmonics. We find that the
scalar field is only coupled to the odd-parity perturbations, which is consistent with
the previous studies. We then compute the QNM frequencies for the non-rotating
case via the eigenvalue perturbation method. The results from the two gauges are
self-consistent and agree well with previous results using metric perturbations. Since
this is ongoing work, we briefly discuss the strategy for the rotating case at the end. In
the third example, we apply a similar analysis to certain parametrized axisymmetric
deviations of non-rotating BHs using a Weyl multipole expansion. We compute the
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QNM frequencies directly and analyze their connections to the multipole structure
of a BH spacetime.

For holographic gravity in flat spacetime, we build an effective model for geometrical
spacetime fluctuations driven by entropic fluctuations, or “geontropic fluctuations”
for short, in the casual diamond defined by an interferometer. Our model involves
a bosonic scalar field with some nontrivial occupation number, called “pixellon.”
The pixellon field characterizes all the nonlinear holographic quantum gravity
fluctuations within a causal diamond in flat spacetime. We then build up a framework
for computing the gauge-invariant observables of geontropic fluctuations for an
interferometer with equal arms separated by arbitrary angles. We compute both
the power spectral density and angular correlation of length fluctuations in such
an interferometer for the pixellon model. We then use the existing or predicted
noise spectra of LVK, LISA, GEO-600, and Holometer to constrain the pixellon
model. In our follow-up study, we further extend the pixellon model to incorporate
configurations of multiple interferometers. We then apply this extended pixellon
model to calculate the power spectral density of geontropic fluctuations in Cosmic
Explorer, Einstein Telescope, NEMO, and optically-levitated sensors. For Cosmic
Explorer, Einstein Telescope, and NEMO, we find that the signal of the pixellon
model could exceed the detector’s predicted sensitivity by one or two orders of
magnitudes.
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C h a p t e r 1

INTRODUCTION

The detection of gravitational waves (GWs) emitted by over a hundred binary black
hole (BH) mergers [1–3] usher us into a new era of gravitational physics. With the
much-improved sensitivity in the fourth observing run of the LIGO-Virgo-KAGRA
collaboration, we are now able to detect these binary mergers at a single-detector
signal-to-noise ratio threshold of 8 with a distance as far as 1600 Mpc from the
Earth [4]. Anticipating next-generation ground-based detectors, such as Cosmic
Explorer [5–7] and Einstein Telescope [8, 9], and space-based detectors, such as LISA
[10], TianQin [11], and Taĳi [12], we will be able to observe mergers of compact
objects even in much larger parameter space, including mergers of primordial and
supermassive BHs, extreme mass-ratio inspirals (EMRIs), BH-neutron star (NS)
mergers, and possibly the first binary NS merger [6, 13]. This extensively expanded
scope of targets provides abundant opportunities to scrutinize strong gravity physics,
such as probing the near-horizon geometry of BHs, examining modifications to
general relativity (GR), discovering exotic compact objects, understanding asymptotic
symmetries of spacetime, and unveiling possible quantum gravity signatures [6,
13]. Furthermore, these GW detections also open avenues to investigate numerous
questions in astrophysics, cosmology, and particle physics, including but not limited
to the formation channels of supermassive BHs in the early universe, the physics of
dense matter at high temperatures, the properties of dark matter and dark energy,
and the evolution of our galaxy and universe [6, 13].

To reliably study different physics from GW detections, it is crucial to accurately and
efficiently model the GW emissions by different compact objects in various gravity
theories and diverse astrophysical environments. The first part of this thesis (Chapters
2–6) focuses on a specific direction in the waveform modeling by constructing a new
formalism based on Teukolsky’s seminal work in [14–16] to model the GWs emitted
by BHs in beyond-GR theories and astrophysical environments and applying this
formalism to selected examples. Besides generating reliable waveforms, it is also
important to understand the physics around interferometers. The second part of this
thesis (Chapters 7 and 8) focuses on studying certain quantum gravity effects around
the interferometers in flat spacetime, first proposed by Verlinde and Zurek in [17–22],
and computing the relevant observables for current and future GW detectors.
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1.1 BH perturbation theory beyond GR
Accurate and efficient waveform models of GW emissions are crucial for reliably
extracting information from GW detections and examining GR. For the past twenty
years, significant progress has been made in waveform modeling in GR, including
both numerical relativity (NR) [23–27], where the full nonlinear Einstein equations
are evolved on some numerical grid, and analytical or semi-analytical approaches,
where the Einstein equations are perturbatively solved by expansion about some
small parameters. There are several main analytical or semi-analytical approaches
[28]: post-Newtonian expansion [29–33], which expands about the ratio of a system’s
internal speed 𝑣 with the speed of light 𝑐; post-Minkowskian expansion [34–38],
which expands a curved spacetime about the Minkowski background using the
gravitational constant 𝐺; gravitational self-force theory [39–43], which expands
about the small mass ratio of two compact objects; and BH perturbation theory
[14–16, 44–50], which considers vacuum perturbations of an isolated BH. Although
NR usually produces the most accurate waveforms, where all the nonlinear features
of gravity are completely captured, NR is expensive. For example, simulations of
a binary BH merger with a highly spinning remnant can take up to several weeks
or months [51, 52], which is not suitable for certain jobs in GW data analysis, such
as parameter estimation. Many efforts have been taken to shorten the computation
time of NR, such as finding better gauges [51], interpolating waveforms across
large parameter space (e.g., surrogate models [53–55]), or hybridizing analytical
or semi-analytical approaches with NR [54, 56–59]. As NR folds information in
a highly nonlinear way, these analytical or semi-analytical approaches also aid in
understanding NR results by extracting key features of a binary merger in different
limits. Thus, it is crucial to further deepen our understanding of these analytical or
semi-analytical approaches while developing NR.

BH perturbation theory, as one of the most important analytical or semi-analytical
approaches, focuses on gravitational perturbations of an isolated stationary BH1,
given that the merger of binary BHs always settles down to a stationary geometry
in GR. BH perturbation theory provides very accurate descriptions of a binary BH
merger’s ringdown, where the spacetime can be modeled as vacuum perturbations
of a remnant BH, and EMRIs, where a stellar-mass compact object perturbs a
supermassive BH.

1We do not distinguish BH perturbation theory from gravitational self-force in this thesis since
their mathematical formulations are similar
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1.1.1 Regge-Wheeler and Zerilli-Moncrief formalism in GR
When the BH being perturbed is non-rotating such that the background metric is
static and spherically symmetric, one can follow the prescription by Regge, Wheeler,
Zerilli, and Moncrief [44–46] to derive two decoupled radial ordinary differential
equations. Specifically, consider the Schwarzschild metric

𝑑𝑠2 = − 𝑓 (𝑟)𝑑𝑡2 + 𝑓 −1(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙) , 𝑓 (𝑟) = 1 − 2𝑀/𝑟 , (1.1)

where we use the geometrized unit (𝐺 = 𝑐 = 1). One can decompose the linear-order
perturbation of the Schwarzschild metric into two categories based on their parity,
i.e.,

ℎ𝜇𝜈 = ℎ
E
𝜇𝜈 + ℎO

𝜇𝜈 , 𝑃̂ℎE
𝜇𝜈 = ℎ

E
𝜇𝜈 , 𝑃̂ℎO

𝜇𝜈 = −ℎO
𝜇𝜈 , (1.2)

where 𝑃̂ is the parity operator: 𝑃̂ 𝑓 (𝜃, 𝜙) → 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋), and ℎE
𝜇𝜈 and ℎO

𝜇𝜈

denote the even- and odd-parity modes, respectively. One can further decompose the
perturbation into multipoles,

ℎ𝜇𝜈 =
∑︁
ℓ,𝑚

(
ℎE,ℓ𝑚
𝜇𝜈 𝑒−𝑖𝜔

E
ℓ𝑚
𝑡 + ℎO,ℓ𝑚

𝜇𝜈 𝑒−𝑖𝜔
O
ℓ𝑚
𝑡
)
, (1.3)

which in the Regge-Wheeler (RW) gauge becomes [44–46, 60, 61]

ℎE,ℓ𝑚
𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 =

(
𝑓 (𝑟)𝐻ℓ𝑚0 (𝑟)𝑑𝑡2 + 2𝐻ℓ𝑚1 (𝑟)𝑑𝑡𝑑𝑟 + 𝐻ℓ𝑚2 (𝑟) 𝑓 −1(𝑟)𝑑𝑟2

+𝑟2𝐾ℓ𝑚 (𝑟)𝑑𝜃2 + 𝑟2 sin2 𝜃𝐾ℓ𝑚 (𝑟)𝑑𝜙2
)
𝑌ℓ𝑚 (𝜃, 𝜙) , (1.4a)

ℎO,ℓ𝑚
𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 = 2ℎℓ𝑚0 (𝑟)

[
sin 𝜃𝜕𝜃𝑌ℓ𝑚 (𝜃, 𝜙)𝑑𝑡𝑑𝜙 − csc 𝜃𝜕𝜙𝑌ℓ𝑚 (𝜃, 𝜙)𝑑𝑡𝑑𝜃

]
+ 2ℎℓ𝑚1 (𝑟)

[
sin 𝜃𝜕𝜃𝑌ℓ𝑚 (𝜃, 𝜙)𝑑𝑟𝑑𝜙 − csc 𝜃𝜕𝜙𝑌ℓ𝑚 (𝜃, 𝜙)𝑑𝑟𝑑𝜃

]
,

(1.4b)

where 𝑌ℓ𝑚 (𝜃, 𝜙) are spherical harmonics. Defining two master variables, the Zerilli-
Moncrief (ZM) function Ψℓ𝑚

ZM(𝑟) and RW function Ψℓ𝑚
RW(𝑟) [44–46],

Ψℓ𝑚
ZM(𝑟) ≡ 𝑟2

𝜆𝑟 + 3𝑀
𝐾ℓ𝑚 (𝑟) − 𝑟 − 2𝑀

𝜆𝑟 + 3𝑀

∫
𝑑𝑡 𝐻ℓ𝑚1 (𝑟) , (1.5)

Ψℓ𝑚
RW(𝑟) ≡ 𝑟 − 2𝑀

𝑟2 ℎℓ𝑚1 (𝑟) , (1.6)

where 𝜆 = 1
2 (ℓ − 1) (ℓ + 2), one gets from the vacuum Einstein equations that[
𝜕2
𝑟∗ +

(
𝜔

E,O
ℓ𝑚

)2
−𝑉ZM,RW

ℓ𝑚
(𝑟)

]
Ψℓ𝑚

ZM,RW(𝑟) = 0 ,
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𝑉ZM
ℓ𝑚 (𝑟) = 2 𝑓 (𝑟)

𝑟3
9𝑀3 + 3𝜆2𝑀𝑟2 + 𝜆2(1 + 𝜆)𝑟3 + 9𝑀2 (𝜆𝑟)

(3𝑀 + 𝜆𝑟)2 ,

𝑉RW
ℓ𝑚 (𝑟) =

(
1 − 2𝑀

𝑟

) (
ℓ(ℓ + 1)
𝑟2 − 6𝑀

𝑟3

)
, (1.7)

where 𝑟∗ = 𝑟 + 2𝑀 ln (𝑟/2𝑀 − 1) is the tortoise coordinate. In this case, the ZM
function Ψℓ𝑚

ZM(𝑟) and RW function Ψℓ𝑚
RW(𝑟) represent even- and odd-parity metric

perturbations, respectively. All the metric components could be computed from
Ψℓ𝑚

ZM(𝑟) and Ψℓ𝑚
RW(𝑟) [44–46]. Although Ψℓ𝑚

ZM(𝑟) and Ψℓ𝑚
RW(𝑟) satisfy different

equations, one can transform the equation of one to the other by the Chandrasekhar
transformation [49]. This indicates that the even- and odd-parity modes are redundant
for Schwarzschild BHs, so their frequency must be the same,𝜔E

ℓ𝑚
= 𝜔O

ℓ𝑚
, the so-called

isospectrality [49, 60].

1.1.2 BH ringdown and EMRIs in GR
In general, Eq. (1.7) has two linearly independent solutions, which are either purely
outgoing at infinity (𝑟∗ → ∞) or purely ingoing at the horizon (𝑟∗ → −∞), i.e.,

Ψℓ𝑚
ZM,RW(𝑟∗ → −∞) ∝ 𝑒−𝑖𝜔ℓ𝑚𝑟

∗
or Ψℓ𝑚

ZM,RW(𝑟∗ → ∞) ∝ 𝑒𝑖𝜔ℓ𝑚𝑟
∗
. (1.8)

Usually, the conditions in Eq. (1.8) cannot be simultaneously satisfied. One exception
is the quasinormal mode (QNM), which dominates the ringdown phase of GW
emissions and carries a quickly decaying and oscillating amplitude. At QNM
frequencies, the two solutions become redundant and simultaneously satisfy the
boundary conditions in Eq. (1.8). The QNM frequencies 𝜔ℓ𝑚 are also the poles of
the Green’s function for Eq. (1.7), so 𝜔ℓ𝑚 can carry an additional quantum number 𝑛,
labeling the 𝑛-th pole of the Green’s function [50]. The QNMs with 𝑛 = 0 are called
fundamental modes, while the QNMs with 𝑛 > 0 are called overtones. To compute
the QNM frequencies, one naive way is to evolve a solution ∝ 𝑒𝑖𝜔ℓ𝑚𝑟

∗ from infinity
to the horizon, evolve another solution ∝ 𝑒−𝑖𝜔ℓ𝑚𝑟

∗ from the horizon to infinity, and
iteratively find 𝜔ℓ𝑚 making these two evolved solutions match at a middle point.
However, since 𝜔ℓ𝑚 for a QNM always has a negative imaginary part, the solution
diverges at both the horizon and infinity, making this naive approach numerically
challenging. A more reliable and widely used approach is to turn calculating QNMs
into solving continuous fraction equations, first invented by Leaver in [62, 63].

Besides studying BH ringdown, BH perturbation theory has also been widely used
to compute the waveforms of EMRIs. One main approach for generating EMRI
waveforms is to use an adiabatic expansion and two-timescale analysis, given that
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the time scale of the inspiral is much longer than the time scale of any orbital motion
of the secondary [64–74]. In this case, one decomposes the whole inspiral into
sequences of orbits, where each orbit is parametrized by three constants of motion:
the orbital energy 𝐸 , the orbital angular momentum 𝐿𝑧, and the Carter constant 𝑄
[71]. One can evolve one orbit to another one by computing the shifts of the constants
of motion due to gravitational radiations, which occur at the much longer time scale
of inspiral. In leading order, the shifts of the orbital energy 𝐸 and orbital angular
momentum 𝐿𝑧 are given by the RW and ZM functions, e.g.,

¤𝐸ℓ𝑚 ∝ 𝜔2
ℓ𝑚 |Ψ

ℓ𝑚
ZM,RW |2 , ¤𝐿ℓ𝑚𝑧 ∝ ¤𝐸ℓ𝑚/𝜔ℓ𝑚 . (1.9)

Unlike computing QNMs, the metric perturbations are now driven by the stress
tensor 𝑇𝛼𝛽𝑝 of the secondary,

𝑇
𝛼𝛽
𝑝 = 𝜇

∫
𝑢𝛼𝑢𝛽

𝛿(4)
(
𝑥𝜎 − 𝑥𝜎𝑝 (𝜏)

)
√−𝑔 𝑑𝜏 , (1.10)

where 𝜇 is the secondary’s mass, 𝑥𝜎𝑝 (𝜏) is the secondary’s worldline parametrized
by 𝜏, and 𝑢𝛼 is the secondary’s four-velocity, so one needs to solve the sourced
Einstein equations. One can linearize metric perturbations about the small mass
ratio 𝑞 = 𝜇/𝑀 with 𝑀 being the central supermassive BH’s mass. The ratio of the
time scales for the orbital motions and the radiation reaction is also proportional
to 𝑞. From the sourced Einstein equations, one can follow the similar procedures
above to derive the sourced RW and ZM equations, with the left-hand side the
same as Eq. (1.7). The relation between a generic stress tensor and the source
terms in the RW and ZM equations can be found in [45, 61]. The sourced RW
and ZM equations can be solved by using Green’s function of Eq. (1.7). Using
Eq. (1.9), one can then sequentially evolve the orbits and piece them together into a
full inspiral. Many studies have followed this approach to generate EMRI waveforms
for equatorial circular (or quasi-circular) orbits of non-rotating [64–66, 68–70, 72,
73] and rotating BHs [67, 71], which later got extended to inclined eccentric orbits
of rotating BHs [28, 75–78]. Notice that for rotating BHs, instead of solving the RW
and ZM equations, one solves the Teukolsky equations instead [14–16], as discussed
below. The waveforms calculated by only incorporating the gravitational radiations
in Eq. (1.9), or the first-order dissipative self-force (linear in 𝑞), are regarded as
“adiabatic” or “zero post-adiabatic” [73, 74]. In recent years, significant efforts have
been put into computing higher-order contributions in the adiabatic expansion, such
as these “first post-adiabatic” EMRI waveforms in [79, 80].
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1.1.3 Teukolsky formalism in GR
The study of QNMs and EMRIs for rotating BHs in GR follows a framework similar
to the one above for non-rotating BHs. Nevertheless, due to the lack of spherical
symmetry, it is very challenging to decouple different metric components directly,
find two master equations governing them, and reduce these two equations into two
ordinary differential equations in the radial coordinate. An alternative approach is to
focus on curvature perturbations instead, which was first developed by Teukolsky
in [14–16] and became the foundation of BH perturbation theory. Built on the
Newman-Penrose formalism [81], the Teukolsky formalism focuses on perturbations
of two radiative Weyl scalars Ψ0 and Ψ4,

Ψ0 = 𝐶𝛼𝛽𝛾𝛿𝑙
𝛼𝑚𝛽𝑙𝛾𝑚𝛿 , Ψ4 = 𝐶𝛼𝛽𝛾𝛿𝑛

𝛼𝑚̄𝛽𝑛𝛾𝑚̄𝛿 , (1.11)

where 𝐶𝜇𝜈𝛼𝛽 is the Weyl tensor, and {𝑙𝜇, 𝑛𝜇, 𝑚𝜇, 𝑚̄𝜇} are the null tetrad basis vectors
in the Newman-Penrose formalism, as we will review in more detail in Chapter 2.
Teukolsky found two separable second-order partial differential equations governing
Ψ0,4, which are decoupled from all the other Newman-Penrose quantities. After
a decomposition into harmonics, the angular part of Ψ0,4 satisfies the equations
of spin-weighted spheroidal harmonics [14–16]. The radial equations of Ψ0,4 in
the 𝑟∗ coordinate are Schrödinger-like equations similar to Eq. (1.7) but with more
complicated potentials. Furthermore, the metric perturbations associated with the
perturbations of Ψ0,4 can be reconstructed. For vacuum perturbations, one can
follow the standard procedures developed by Chranznowski, Cohen, Kegeles, and Ori
[82–89] or alternative procedures in [49, 90]. For non-vacuum perturbations (such
as EMRIs), metric reconstruction is more challenging, but several frameworks have
been developed [42, 43, 91–93] and applied to the study of higher-order self-force
[79, 80]. To study QNMs, one can apply the Leaver’s method [62, 63] to compute
the frequencies 𝜔ℓ𝑚 as well as the angular and radial parts of Ψ0,4. For EMRIs,
the energy and angular momentum carried away by gravitational radiations can be
computed using relations similar to Eq. (1.9) [14–16].

For the past fifty years, BH perturbation theory at linear order in vacuum GR has
been extensively studied and is well understood. In recent years, there has been
a continuously growing interest in observing nonlinear features of gravity from
GW detections. For example, the nonlinearity in GR can cause a pair of inertial
GW detectors to be permanently displaced from each other after a GW passes by,
the so-called displacement memory effect [94–96], which can be related to the
asymptotic symmetries of spacetimes [97–100] and possibly detectable by future
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GW detectors [6, 13, 101, 102]. For BH perturbation theory, nonlinear effects have
also attracted much attention. The nonlinear extension of the Teukolsky formalism
in GR was first done by Campanelli and Lousto in [103]. One important application
of the nonlinear Teukolsky formalism is to compute the second-order or higher-order
self-force of EMRIs, where one calculates the shifts of 𝐸 and 𝐿𝑧 at nonlinear orders
in the small mass ratio 𝑞. The second-order self-force will contribute to the first
post-adiabatic EMRI waveforms, which are important for data analysis of EMRIs
since the phase errors due to adiabatic expansion can accumulate to a sizable amount
during EMRIs’ long inspiral time [28, 42, 79]. On the other hand, by including
higher-order self-force and calibrating to NR, the validity of the waveforms generated
by BH perturbation theory can be extended from EMRIs to intermediate mass-ratio
inspirals and even comparable-mass mergers [28, 52, 58, 79, 80, 104–106]. For
ringdown, nonlinear QNMs have been observed in NR simulations [107–110], where
their amplitudes have been both extracted from NR simulations [107–110] and
computed directly using BH perturbation theory [111].

1.1.4 Beyond-GR theories and astrophysical environments
Despite passing many tests in the solar system and other weak gravity regimes [112],
GR has its limitations and is undergoing tests in strong gravity. On the fundamental
side, GR’s incompatibility with quantum mechanics has motivated searches for a
unified description of quantum gravity, such as string theory [113–118] and loop
quantum gravity [119–128], the low-energy effective theories of which can generate
modifications to GR. On the observational side, GR on its own is not sufficient to
explain, for example, the origin of dark matter [129, 130] and dark energy [131–133],
the matter-antimatter asymmetry [134] and late-time acceleration [135, 136] of our
universe, and the anomalous galaxy rotation curves [130, 137]. For this reason,
modifications to GR are introduced as one resolution of these observational anomalies.
Some of widely studied beyond-GR theories include higher-derivative gravity [138–
140], 𝑓 (𝑅) gravity [141, 142], scalar-tensor theories [143], dynamical Chern-Simons
(dCS) gravity [144, 145], Einstein dilation Gauss-Bonnet (EdGB) [146–148] or
scalar Gauss-Bonnet gravity [149], Horndeski theory [150], Einstein-Aether theory
[151], Horava gravity [152], massive gravity [153], and higher dimensional gravity
theories [154]. Many of these theories originate from string theory or loop quantum
gravity while also explaining certain observational puzzles. For example, the dCS
correction, where a pseudoscalar field is coupled to a parity-violating quadratic
term in the Riemann tensor and the Riemann dual tensor (the so-called Pontryagin
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density), appears when one uses the Green-Schwarz mechanism [155] to cancel
gravitational anomaly in the heterotic string theory [156, 157]. The dCS terms are
also necessary for preserving gauge invariance in loop quantum gravity [158]. On the
observational side, the parity-violating terms in dCS gravity can be used to explain
matter-antimatter asymmetry [156, 159, 160], while the pseudoscalar field as an
axion can be a candidate for dark matter.

These beyond-GR theories can leave imprints on both the ringdown phase of a binary
BH merger and the EMRI waveform. For example, one notable feature of the BH
QNMs in GR is isospectrality, where the even- and odd-parity QNMs have the
same frequencies. However, this isospectrality was observed to be broken in many
beyond-GR theories, for example, dCS gravity [161–165], EdGB gravity [166–170],
and higher-derivative gravity [171–175]. Furthermore, due to the presence of extra
scalar or vector fields in certain theories, beyond-GR QNMs do not only contain
gravitational-led modes but also scalar-led [161–163, 166–170] or vector-led modes
[176–178], the frequencies of which usually distribute along different branches in the
complex plane. For EMRIs, these additional non-metric fields can radiate additional
energy and angular momentum, leading to additional phases in the waveforms [163,
167, 179–183], which can be as large as hundreds of GW cycles due to the long
inspiral time of EMRIs [13]. Despite many efforts that have been made for the past
twenty years to model the ringdown phase or the EMRIs in a variety of beyond-GR
theories, most of these studies only focused on non-rotating BHs [161–163, 166–168,
171, 172, 176, 177], and only a handful of calculations were done for slowly rotating
BHs [164, 165, 169, 170, 173]. The main challenge was that the widely used RW
and ZM equations work only for non-rotating BHs or slowly rotating BHs using the
extension in [184]. On the other hand, the remnants of binary BH mergers are usually
fast-rotating due to the large angular momentum associated with the inspiral [3, 185],
demanding a formalism valid for BHs with large spin. One potential resolution
is to extend the Teukolsky formalism from GR to beyond-GR theories. However,
this extension could be very challenging since background BH spacetimes are not
necessarily Petrov type D under the Petrov classification [186], as required by the
Teukolsky formalism, in many beyond-GR theories [145, 187].

Besides corrections to GR, astrophysical environments can also leave imprints on
BH QNMs and EMRIs [13, 188, 189]. It is very unlikely that binary BHs are in a
vacuum, but rather, they can be embedded in some gaseous accretion disks [190,
191] or plasma [192], surrounded by dark matter clouds or spikes [193–196], or
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interacting with other compact objects nearby [197, 198]. For example, when the
Compton wavelength of ultralight bosonic dark matter is comparable to the radius of
a rotating supermassive BH, the dark matter can efficiently drain energy from the
BH via superradiance and grow into a macroscopic cloud [199–202]. These clouds
can modulate EMRI waveforms by affecting the secondary’s motion and exerting
backreactions on the BH geometry [196]. Furthermore, the cloud itself can also
emit nearly continuous GWs [203], the spectrum of which can be computed in a
similar way as the QNM spectrum [204]. The QNM spectrum of a BH can also be
affected when there is matter present, which, similar to beyond-GR corrections, can
result in the isospectrality breaking [188]. Thus, to test GR, it is important not to
misidentify environmental effects as modifications of GR since they might result in
similar modifications to GW waveforms. Although many efforts have been made
to study BH QNMs and EMRIs in astrophysical environments [190–192, 196, 199,
205–207], most of these examples focus on non-rotating BHs or simple cases for
rotating BHs when the Teukolsky formalism in GR still applies.

To conclude, the much better sensitivity of next-generation GW detectors requires
more accurate and efficient waveform modeling not only in GR but also in the
presence of beyond-GR and astrophysical environmental effects. BH perturbation
theory, as one of the most important (semi-)analytical approaches to waveform
modeling, is well-developed in GR but still requires significant study in theories
beyond GR with environmental effects present, especially for more astrophysically
relevant, fast-spinning BHs. In the first part of this thesis (Chapters 2–6), we will
present a novel formalism based on Teukolsky’s seminal work in [14–16] for studying
BH perturbations in the more complicated settings above, applicable to general
rotating BHs. In Chapter 2, we construct this modified Teukolsky formalism for a
wide class of beyond-GR theories, though this formalism can also be potentially used
for studying environmental effects. We then apply the modified Teukolsly formalism
to analyze the isospectrality breaking of BH QNMs in Chapter 3, compute the BH
QNM frequency shifts in dCS gravity in Chapters 4 and 5, and conduct parametrized
ringdown modeling in Chapter 6.

1.2 Holographic gravity in flat spacetime
Since the twentieth century, understanding how gravity interacts with quantum
mechanics has been a central theme of fundamental physics. Einstein’s GR has been
very successful in describing the gravitational interactions of macroscopic objects.
Passing many tests under weak gravity [112], GR has been repeatedly examined in
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the strong gravity regime via detections of GWs generated by drastic coalescences
of extremely compact objects [208]. Yet no conclusive signature of that GR is
violated has been detected so far. Quantum mechanics, on the other hand, has been
very successful in describing the physics of the microscopic world. Integrating
quantum mechanics with special relativity, quantum field theory and the resulting
standard model of particle physics can accurately describe the electromagnetic
interactions among electrons and photons [209–212], the weak interactions among
leptons [213–216], and the strong interactions among quarks [217–219]. Many
attempts have been made to integrate these two crucial efforts by developing a
unified theory of quantum gravity. Perturbative quantization of gravity was found
to be nonrenormalizable [220, 221], so non-perturbative descriptions of quantum
gravity, such as string theory [113–118] and loop quantum gravity [119–128], have
been developed. Nonetheless, one can treat perturbative quantum gravity as an
effective field theory (EFT) [222], where the nonrenormalizable effects or ultraviolet
divergences are suppressed beyond the Planck scale and not directly accessible by
experiments. Nevertheless, new physics, such as string theory and loop quantum
gravity, could exist and allow an ultraviolet-complete description. In the low-energy
regime, one can still quantize gravity perturbatively without incurring any divergence
due to this separation of scales and make predictions. From this EFT viewpoint, it
seems that one could never detect quantum gravity in real experiments, at least in the
foreseeable future, since the size of Planck length 𝑙𝑝 ∼ 10−35 m is far lower than the
sensitivity of the most sensitive detectors measuring spacetime fluctuations, such as
the laser interferometers of the LIGO-Virgo-KAGRA collaboration [223–225] and
even future detectors (e.g., Cosmic Explorer [6, 7] and Einstein Telescope [9]) with
much better sensitivity.

1.2.1 Tests of quantum gravity
Despite the difficulty, numerous efforts have been devoted to searching for signatures
of quantum gravity. Many studies focus on probing the spacetime near mergers of
compact objects, such as BHs or NSs, where gravity is strong and highly nonlinear, so
quantum gravity effects might get amplified. For example, quantum gravity expects
Hawking radiations near a BH [226], where pairs of particles and antiparticles are
created by vacuum fluctuations. Some particles can escape from the horizon and
carry information about the BH to the observers at infinity, while others fall into the
BH. As these escaping particles can extract energy and angular momentum from
the BH, the BH may evaporate in the end [227–229]. However, the information
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carried away by particles falling into the BH might be lost during the evaporation of
the BH, resulting in the BH information paradox [230, 231]. One resolution is to
modify the spacetime near the BH horizon, such as introducing firewalls destroying
all the infalling observers [232, 233] or less violent non-local quantum effects around
the BH [234, 235]. Other proposals also consider horizonless compact objects, for
example, “fuzzballs” [236–238], that can mimic a BH by having the same mass,
charge, and angular momentum, but the horizon of a BH is replaced by a fuzzy “cap”
with micro-structure, which can encode information of the fuzzball. These fuzzballs
can also be the microstates of a BH, which provide a microscopic description of the
BH entropy [239]. These modifications, directly at or near the horizon, can result in
observable GW signatures. For example, an ordinary classical BH horizon absorbs
all the GW radiations, while these near-horizon structures or horizonless objects
can partially reflect GWs, generating GW echos [240–243]. The modifications of
the horizon can also result in a change in the multipolar moments of a BH, which
can be potentially detected during the inspiral stage of a binary merger [244–246].
Other tests of quantum gravity using GWs emitted by binary mergers include the
test of the no-hair theorem [247–252], the investigation of the gravitational memory
effects and the asymptotic symmetries [6, 13, 94–102], and the examination of
beyond-GR theories which are low-energy EFTs of certain quantum gravity theories
[13, 138–140, 144–148, 249]. Furthermore, some proposals also consider observing
the quantum-gravity decoherence of light emitted by astrophysical objects [253].
As if gravity is quantum, the noisy quantum-mechanical fluctuations of spacetime
can interact with light like other environmental effects such that photons lose their
information and get dissipated, though the effects might be tiny [253].

Besides testing quantum gravity with astrophysical events, many proposals consider
testing the quantum nature of gravity itself using table-top experiments [254]. For
example, two massive objects might get entangled by gravitational interactions if
gravity is quantum, which can be potentially tested by these matter-wave interfer-
ometers [255, 256]. It was argued in [257–259] that even for the entanglement
of massive objects mediated by a Newtonian interaction, quantum information is
present, so table-top experiments could be valid approaches for testing quantum
gravity despite their low energy. Specifically, one cannot distinguish entanglement by
a Newtonian field from entanglement by gravitons; the latter’s existence will directly
verify the quantum nature of gravity [259]. Within each matter-wave interferometer,
beams of massive particles are sent along paths separated by finite distance and
then recombined. By measuring the phase difference across two finitely separated
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matter-wave interferometers, one can test whether the particles across different
interferometers are entangled using Bell inequality [254]. Recent work [260–262]
also compute stochastic fluctuations of the length measured by laser interferometers
when gravitons are in different quantum states (e.g., vacuum, coherent, thermal, or
squeezed). It was found that although vacuum or coherent states of gravitons have
negligible effects, gravitons in thermal or squeezed states might have the possibility
to be detected [261].

1.2.2 The holographic principle
Most of the tabletop or ground-based experiments considered above rely on the EFT
description of perturbative quantum gravity. On the other hand, full quantum gravity
is possibly non-perturbative, as in loop quantum gravity and string theory, where the
infrared and ultraviolet scales can actually mix with each other [263]. Therefore, is
it possible to extract some of these non-perturbative ultraviolet features of quantum
gravity from low-energy laboratory experiments in the infrared? The development
of the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence or the
holographic principle in general shows some promise along this route. The study of
the holographic principle can be traced to the discovery of the Bekenstein-Hawking
entropy [226, 264], where the entropy of a BH 𝑆BH is given by the surface area 𝐴𝐻
of the BH’s event horizon, i.e.

𝑆BH =
𝐴𝐻

4𝐺
, (1.12)

where 𝐺 is the gravitational constant. In other words, the bulk information of
a BH is contained in its co-dimension one boundary, like the “hologram of a
three-dimensional image on a two-dimensional surface” [220]. In this case, both
the infrared (i.e., the BH horizon area 𝐴𝐻) and ultraviolet scales (i.e., the Planck
length 𝑙𝑝 within 𝐺 ∝ 𝑙2𝑝) are present in Eq. (1.12). This idea of holography was
further explored by ’t Hooft and Susskind [220, 265] and got concretely verified by
Maldacena and others [266–268], where they found that the supergravity living in
the 𝑑 + 1-dimensional AdS space is dual to certain CFT living on the 𝑑-dimensional
boundary. Specifically, they discovered that the four-dimensional super Yang-Mills
theory with four supersymmetries is dual to the Type IIB string theory on AdS5 × S5,
where S5 are five compact dimensions [266–268]. This discovery has spurred
numerous research in this direction, with more holographic correspondence being
proposed or found, such as the de Sitter (dS)/CFT correspondence [269] and Kerr/CFT
correspondence [270]. Another important finding was made by Ryu and Takayanagi
[271], where they discovered that for a co-dimension two surface 𝐵 at the boundary
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of AdS, the entanglement entropy of a CFT in the subsystem 𝐵 with its complement
𝐵̄, i.e.,

𝑆ent = −Tr𝐵 𝜌𝐵 log 𝜌𝐵 , (1.13)

where 𝜌𝐵 is the density matrix of 𝐵, is given by the area of the extremal surface Σ

anchored at the boundary of 𝐵, i.e.,

𝑆ent =
𝐴(Σ)
4𝐺

. (1.14)

This relation is very similar to the Bekenstein-Hawking entropy of a BH in Eq. (1.12).
In the bulk of AdS, the extremal surface Σ plays a similar role as a BH horizon,
which is the entangling surface between the subsystems holographically dual to 𝐵
and 𝐵̄ in the bulk. Similarly, the degrees of freedom inside and outside a BH horizon
are entangled with each other.

Since its proposal, the AdS/CFT correspondence (and the holographic principle in
general) has been an extremely useful theoretical tool to further our understanding of
quantum gravity. They also help the study of nuclear physics and condensed matter
systems. Despite their theoretical importance, until recently, there were almost
no systematic studies prescribing how to examine the AdS/CFT observationally
or experimentally. The Fermilab Holometer [272–275] was one of the first few
attempts to test the holographic principle using realistic experiments. The apparatus
is made up of two independent co-located laser interferometers, each of which has
perpendicular arms of length 40 m. The experiment was to test a particular model
in [272]. Motivated by the holographic principle, Ref. [272] proposed a particular
two-point function for the length fluctuations 𝛿𝐿 measured by the interferometer,
with a scale of

⟨𝛿𝐿2⟩ ∼ 𝑙𝑝𝐿 , (1.15)

where 𝐿 is the system size (i.e., 𝐿 = 40 m for the Holometer). In this particular
model, the holographic fluctuations accumulate like a random walk (i.e., their power
spectral density is constant in frequency) along the interferometer arms within the
light roundtrip time 2𝐿/𝑐, while the fluctuations with temporal separation larger
than 2𝐿/𝑐 do not correlate. Unlike the scale expected from a naive EFT treatment
of perturbative quantum gravity, where the leading-order fluctuations should be
at 𝛿𝐿 ∼ 𝑙𝑝, Eq. (1.15) gains a

√︁
𝐿/𝑙𝑝 enhancement in 𝛿𝐿. This enhancement can

be interpreted as the
√
𝑁 enhancement for a random walk, where 𝑁 is the number

of steps, so 𝐿/𝑙𝑝 roughly gives the holographic degrees of freedom probed by an
interferometer [22]. References [272, 273, 275] then constrained these fluctuations
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using the noise spectra of LIGO [276], GEO-600 [276, 277], and Holometer [275]
but found no signatures of this particular quantum gravity model.

1.2.3 Verlinde-Zurek effects
Another important proposal for experimentally examining holography was later made
by Verlinde, Zurek, and other collaborators [17–22]. In [17], Verlinde and Zurek
first considered a set of different two-point functions for the length fluctuations 𝛿𝐿
of interferometer arms. They found that by treating the transversal and longitudinal
directions differently, the two-point function of 𝛿𝐿 is roughly at the same scale
of Eq. (1.15) but suppressed by additional factors of 4𝜋. More specifically, the
fluctuations in [17] are correlated along the transversal directions with respect to
the interferometers while accumulating like a random walk along the longitudinal
directions. They further argued that the angular correlation should satisfy

⟨𝛿𝐿 (r̃1) 𝛿𝐿 (r̃2)⟩ ∼ 𝑙𝑝𝐿G (r̃1, r̃2) , G (r̃1, r̃2) =
∑︁
ℓ,𝑚

𝑌ℓ,𝑚 (r̃1)𝑌 ∗
ℓ,𝑚

(r̃2)
ℓ2 + ℓ + 1

, (1.16)

where r̃𝑖 are coordinates of points on a unit sphere. For an interferometer, r̃𝑖
are the angular coordinates of the end mirrors, and the sphere is the spherical
volume that can be probed by an interferometer up to rotations around its center.
If one removes the additional 1 in the denominator of G (r̃1, r̃2), it is the same
Green’s function associated with the Laplacian on a sphere, while this additional 1
comes from integrating out the longitudinal directions along the interferometer arms.
Additionally, Eq. (1.16) is the same Green’s function satisfied by the angular parts of
the spherical shockwave geometry studied by ’t Hooft in [278].

To derive these features from the first principle, Verlinde and Zurek considered a more
familiar setup in AdS, where a causal diamond is anchored to the AdS boundary [18].
The Rindler horizon Σ of this causal diamond coincides with the Ryu-Takayanagi
surface of a subsystem 𝐵 at the boundary of AdS. Thus, the surface Σ is also the
entangling surface for 𝐵 and its complement 𝐵̄. Experimentally, this causal diamond
can be formed by shooting light beams from the AdS boundary to a mirror at the
Rindler horizon Σ, which then reflects the light back to the boundary. Notably, they
found that the fluctuations of the light traveling time 𝛿𝑇 are at the same scale as
Eq. (1.15). Moreover, 𝛿𝑇 is driven by the fluctuations of the modular Hamiltonian
𝐾 associated with the Killing vector preserving the boost invariance of the Rindler
horizon Σ, and 𝐾 satisfies

⟨𝐾⟩ = ⟨Δ𝐾2⟩ = 𝐴(Σ)
4𝜋𝐺

. (1.17)
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The same quantities and similar relations have also been studied in [279, 280]. Later
in [20], Zurek and Bank showed that the relation in Eq. (1.17) is rather general by
looking at near-horizon dynamics, so Eq. (1.17) also works for causal diamonds
in flat spacetime up to an overall constant, and Eq. (1.15) is expected to be valid
for an interferometer. On the other hand, the angular correlations in Eq. (1.16)
can be derived from the shockwave geometry [21]. As found in [21], the relation
in Eq. (1.17) can be reproduced from the uncertainty relations between the light
ray operators associated with the ingoing and outgoing shockwaves, where the
shockwaves are generated by vacuum fluctuations.

Built upon the foundational work in [17, 18, 20, 21], additional efforts on the
theoretical side have been devoted to verifying Eqs. (1.15)–(1.17) in different
contexts, such as dimensional reduction of Einstein gravity to Jackiw-Teitelboim
gravity [281, 282] in AdS [283], relating shockwaves to gravitational memory effects
[284] or near-horizon fluid dynamics [285, 286], and more. On the observational
side, Zurek in [19] constructed an effective model, the “pixellon” model, to describe
these “geontropic” fluctuations (i.e., geometrical fluctuations induced by entropy
fluctuations) in terms of some metric perturbations, allowing a direct calculation
of an interferometer’s observable. These pixellon fields are bosonic scalars with a
nonzero occupation number, characterizing the spacetime fluctuations due to modular
energy fluctuations associated with the interferometer’s causal diamond. Although
the pixellon appears as the amplitude of a plane GW in [22], it contains information
about nonlinear vacuum fluctuations via its occupation number. Reference [22]
then computed the auto-correlation function of the length fluctuation of a single
interferometer arm and used the noise spectra of the Holometer in [275] to put a
constraint on the model.

One limitation of the model in [22] is that it is only valid for a single interferometer
arm. This is insufficient if one wants to seriously constrain the model with the noise
spectra of these GW detectors, which usually involve subtraction of length fluctuations
from two arms. For the same reason, this model does not capture the unique angular
dependence in Eq. (1.16). Another issue is that the method of calculating observables
in [22] is not completely valid when the pixellon’s characteristic wavelength is about
the same as the interferometer’s size, which is actually another unique feature of the
pixellon model [22]. In the second part of this thesis (Chapters 7 and 8), we will
solve these issues by extending the pixellon model in [22]. In Chapter 7, we extend
the pixellon model in [22] to describe an interferometer with two arms separated
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by arbitrary angles. We then develop a framework to compute the gauge-invariant
observables of an interferometer under these geontropic fluctuations, apply it to get
the power spectral density and angular correlation of a single interferometer, and
constrain the pixellon model with current GW detectors. In Chapter 8, we further
extend the pixellon model in Chapter 7 to incorporate configurations of multiple
interferometers and other interferometer-like experiments. We then investigate the
whole landscape of high-frequency GW detectors, discuss their potential for detecting
geontropic fluctuations, and show the potential influences of geontropic fluctuations
on future GW detectors, such as Cosmic Explorer and Einstein Telescope.

1.3 Organization of the thesis
In this section, we provide a brief summary of each chapter from Chapter 2 to 8.

1.3.1 Chapter 2: Perturbations of spinning black holes beyond General Rela-
tivity: Modified Teukolsky equation

We extend the Teukolsky formalism in GR to study gravitational perturbations of
BHs in a large class of beyond-GR theories. We first focus on non-Ricci-flat, Petrov
type D BH backgrounds in modified gravity and derive the modified Teukolsky
equation using two approaches: 1. direct decoupling following Teukolsky and
2. making convenient gauge choices following Chandrasekhar. By generalizing
Chandrasekhar’s approach, we then extend this analysis to non-Ricci-flat, Petrov
type I BH backgrounds in modified gravity, assuming they can be treated as a
linear perturbation of Petrov type D BH backgrounds in GR. We derive a modified
Teukolsky equation, i.e., a set of linear, decoupled differential equations that describe
dynamical perturbations of non-Kerr BHs for the radiative Newman-Penrose scalars
Ψ0 and Ψ4. We further show that our formalism can be extended beyond linear order
in both modified gravity corrections and GW perturbations.

1.3.2 Chapter 3: Isospectrality breaking in the Teukolsky formalism
Parity, as a fundamental symmetry of nature, has been observed to break in many
theories beyond GR. One example is that even- and odd-parity gravitational pertur-
bations of non-rotating and rotating BHs can have different QNM frequencies in
modified gravity, breaking the isospectrality of GR. For BHs with arbitrary spin
in modified gravity, there were no avenues to compute QNMs except NR, until
recent extensions of the Teukolsky formalism. We describe how to use the modified
Teukolsky formalism in Chapter 2 to study isospectrality breaking in modified gravity.
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We first introduce how definite-parity modes are defined through combinations of
Weyl scalars in GR, and then, we extend this definition to modified gravity. We then
use the eigenvalue perturbation method to show how the degeneracy in QNMs of
different parity is broken in modified gravity. We build a direct connection between
the parity symmetry of beyond-GR theories and the isospectrality-breaking structure
of QNMs. To demonstrate our analysis, we apply it to two specific modified gravity
theories, dCS and EdGB gravity, and find consistency with previous analyses using
other approaches.

1.3.3 Chapter 4: Perturbations of spinning black holes in dynamical Chern-
Simons gravity: Slow rotation equations

We study gravitational perturbations of slowly rotating BHs in dCS gravity by
implementing the modified Teukolsky formalism developed in Chapter 2. Specifically,
we derive the master equations for the Ψ0 and Ψ4 Weyl scalar perturbations that
characterize the radiative part of gravitational perturbations, as well as the master
equation for the scalar field perturbations. We employ metric reconstruction
techniques to obtain explicit expressions for all relevant quantities. Finally, by
leveraging the properties of spin-weighted spheroidal harmonics to eliminate the
angular dependence from the evolution equations, we derive two radial, second-order,
ordinary differential equations for Ψ0 and Ψ4, respectively. These two equations
are coupled to another radial, second-order, ordinary differential equation for the
scalar field perturbations. The master equations we obtain can then be numerically
integrated to obtain the QNM spectrum of slowly rotating BHs in dCS gravity,

1.3.4 Chapter 5: Perturbations of spinning black holes in dynamical Chern-
Simons gravity: Slow rotation quasinormal modes

We compute the QNM spectrum of slowly rotating BHs in dCS gravity using the
radial modified Teukolsky equations and the radial scalar field equations computed
in Chapter 4. We first simplify the radial master equations in Chapter 4 by using the
properties of the source terms under parity transformation and complex conjugation.
Using the analysis of isospectrality breaking in Chapter 3, we find that the solutions
to the modified Teukolsky equations in dCS gravity are still of definite parity, and the
scalar field only couples to the odd-parity modes, consistent with previous results
using other approaches. We then review the eigenvalue perturbation method and
discuss how to apply it when there is an extra scalar field coupled to the Weyl scalar
perturbation. We demonstrate our approach by computing the QNM frequency shifts
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for non-rotating BHs in dCS and find good agreement with previous results. The
procedures for computing the QNM spectrum of slowly rotating BHs in dCS gravity
are similar to those for the non-rotating case. This chapter is based on a work in
preparation.

1.3.5 Chapter 6: Spectroscopy of bumpy black holes: Non-rotating case
We study the QNM spectrum of parametrized deviations of a non-rotating BH’s geom-
etry in the vacuum. Following Vigeland and Hughes, we model these parametrized
deviations as axisymmetric multipole moments in the Weyl coordinates with ampli-
tudes much less than the amplitude of the Schwarzschild BH potential. These tiny
“bumps” in the BH geometry satisfy the linearized vacuum Einstein equations and
are asymptotically flat. We use the modified Teukolsky formalism in Chapter 2 to
derive two decoupled differential equations for the radiative Weyl scalars: Ψ0 and
Ψ4. We focus on the equation of Ψ0 and use the procedures developed in Chapter 3
to analyze the isospectrality breaking of QNMs for these bumpy BHs. We use
the eigenvalue perturbation method to compute the QNM shifts of both even- and
odd-parity modes with ℓ = 2, 3 and up to the overtone number 𝑛 = 2 for Weyl
multipoles with ℓ𝑊 = 2, 3. We discuss the connection between these multipolar BH
deformations and the structure of QNM spectrum shifts.

1.3.6 Chapter 7: Interferometer response to geontropic fluctuations
Motivated by Verlinde and Zurek’s prediction of observable quantum gravity effects
in flat spacetime, we model vacuum fluctuations in quantum gravity with a scalar
field called “pixellon.” This pixellon field is characterized by a high occupation
number and coupled to the metric. The occupation number of the pixellon field is
given by a thermal density matrix, whose form is motivated by fluctuations in the
vacuum energy, which have been shown to be conformal near a light-sheet horizon.
For the experimental measurement of interest in an interferometer, the size of the
energy fluctuations is fixed by the area of a surface bounding the volume of spacetime
being interrogated by an interferometer. We compute the interferometer response to
these “geontropic” scalar-metric fluctuations, including the power spectral density
and the angular correlation, and apply our results to current and future interferometer
measurements, such as LIGO and the proposed GQuEST experiment.
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1.3.7 Chapter 8: Quantum gravity background in next-generation gravita-
tional wave detectors

We study the effects of geontropic fluctuations in quantum gravity, proposed by
Verlinde and Zurek, on next-generation GW detectors. We first examine the
detectability of geontropic fluctuations by different types of high-frequency GW
detectors and discuss how our investigation fits into a broader interest in studying
high-frequency GWs. We find that standard interferometers are the most optimal for
detecting geontropic fluctuations. We then extend the pixellon model in Chapter 7
to describe geontropic fluctuations around more complicated configurations of
interferometers. In addition to the observables computed in Chapter 7, we compute
the power spectral density of the cross-correlation function for length fluctuations of
two interferometers. We apply the results to several next-generation GW detectors,
including Cosmic Explorer, Einstein Telescope, NEMO, and optically levitated
sensors. We show that if geontropic fluctuations appear in the upcoming GQuEST
experiment, they will be a large background for astrophysical GW searches in
observatories like Cosmic Explorer and Einstein Telescope.
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C h a p t e r 2

PERTURBATIONS OF SPINNING BLACK HOLES BEYOND
GENERAL RELATIVITY: MODIFIED TEUKOLSKY EQUATION

[1] Dongjun Li, Pratik Wagle, Yanbei Chen, and Nicolás Yunes. “Perturbations
of Spinning Black Holes beyond General Relativity: Modified Teukolsky
Equation”. In: Phys. Rev. X 13.2 (2023), p. 021029. doi: 10.1103/PhysRevX.
13.021029. arXiv: 2206.10652 [gr-qc].

2.1 Introduction
General relativity (GR) has passed a plethora of experimental tests in the Solar
system [1] and in binary pulsars systems [2, 3], making it the most successful
theory of gravity to date. With the detection of gravitational waves (GWs) by the
LIGO/Virgo/Kagra (LVK) collaboration [4], tests in the extreme gravity regime,
where gravity is simultaneously strong, dynamical and non-linear, have gained
prominence in the last decade [1, 5–8]. Such tests will become only stronger with the
next generation of ground-based [9, 10] and space-based detectors [11], allowing for
even more stringent constraints on modifications to GR (see e.g., Refs. [8, 12–17]).

Einstein’s theory, although very successful, can be interpreted as having difficulties
explaining certain theoretical and observational anomalies, which has motivated the
study of modified theories of gravity. For example, the incompatibility between GR
and quantum mechanics has motivated efforts in a variety of unified theories, such as
loop quantum gravity [18–20] and string theory [21, 22]. Observational anomalies
could include the late-time acceleration of the Universe [23, 24] (without the inclusion
of an “unnaturally” small cosmological constant [25, 26]), the anomalous galaxy
rotation curves [27, 28] (without the inclusion of dark matter [29]), and the matter-
antimatter asymmetry of the Universe [30] (without the inclusion of additional
sources of parity violation required by the Sakharov conditions [29, 31, 32]). All of
these perceived anomalies have resulted in a zoo of modifications to GR, which can
be both consistent with all current tests, while still yield deviations in the extreme
gravity regime. For this class of theories, GWs may be excellent probes to study and
possibly constrain deviations from Einstein’s theory.

An important source of GWs is the coalescence of compact objects: the inspiral,

https://doi.org/10.1103/PhysRevX.13.021029
https://doi.org/10.1103/PhysRevX.13.021029
https://arxiv.org/abs/2206.10652
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merger, and ringdown of a binary system composed of black holes (BHs) and/or
neutron stars (NSs). All of these coalescence phases can be used to test GR and
constrain deviations. For instance, the presence of extra (scalar or vector) radiative
degrees of freedom can be constrained with the inspiral phase of GWs emitted in
binary BH coalescence. These fields can increase the rate at which orbital energy is
radiated away from the system, thus affecting the orbital dynamics [7, 33–37], which
can be modeled with post-Newtonian methods. The GW observations made by the
LVK collaboration in the inspiral regime can then be used to determine whether
binary BHs spiral in at the expected GR rate or not, thus allowing for constraints on
the existence of these additional radiative fields [12–14].

On the other hand, modifications to the exterior BH geometry as well as the
dynamics of these modified gravity theories may be constrained with ringdown
GWs, emitted as the BH remnant settles to its final, stationary configuration. These
waves can be characterized as a sum of quasinormal modes (QNMs), whose complex
frequency contains information about the remnant BH background [38–46]. The
LVK observation of ringdown GWs and the measurement of the complex frequencies
of a set of QNMs can then be used to probe the exterior geometry of the remnant [47].
In particular, these observations can yield tests of the Kerr hypothesis (i.e., that
all astrophysical BHs can be described by the Kerr metric) [47–49]. The GWs
emitted during ringdown can be studied by considering gravitational perturbations
of a background BH spacetime, obtaining their evolution equations, and then solving
the latter to find the spectrum of perturbations. Additionally, depending on the
theory, there might be additional degrees of freedom present, leading to additional
or coupled evolution equations that can be solved to obtain the QNM frequency
spectra [50–57]. This forms the basis of BH perturbation theory, which has been
used to study QNMs of non-rotating BHs in GR [38, 39, 41–43] and modified
gravity [50–53, 58]. When the background spacetime is that of a non-rotating BH,
the background metric is static and spherically symmetric, so the time and angular
dependence of the evolution equations of the perturbations can be easily separated.
In GR, the resulting coupled radial equations can then be further reduced to two
decoupled equations, one for odd parity perturbations and another for even parity
perturbations [41, 42]. In modified gravity, however, one may not be able to decouple
all the radial equations, so there can be more than one equation in each parity besides
the equations of extra non-metric fields [50–57].

When considering background spacetimes that represent spinning BHs, however, the
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situation is much more complicated. This is because such BHs are mathematically
represented through a background metric that is stationary and axisymmetric. The lack
of spherical symmetry renders the evolution equations for the metric perturbations non-
separable. Fortunately, an alternate method, prescribed by Teukolsky in 1973 [44],
allows for the separation of the perturbation equations when one works with curvature
quantities (instead of metric quantities), characterized in the Newman-Penrose (NP)
formalism [59]. The latter arises naturally from the introduction of spinor calculus
into GR and is a special type of tetrad calculus. Using the NP formalism, the
perturbations of a Schwarzschild BH in GR were studied by Price [60] and extended
later in [61]. Combining these results with Teukolsky’s [44], a separable decoupled
equation for each of the two components of the perturbed Weyl tensor (Ψ0 and Ψ4)
can be obtained. These decoupled equations paved the way for QNM studies in GR,
allowing for the accurate computation of the QNM frequencies of Kerr BHs [62, 63].

The Teukolsky formalism [44], however, is not generally applicable in modified
theories of gravity. In particular, this formalism applies only when the Einstein
equations hold and when the background spacetime is of Petrov type D [40, 64],
i.e., when all Weyl scalars except Ψ2 vanish on the background spacetime. However,
modified theories of gravity do not necessarily satisfy the Einstein equations, and the
background BH solutions in these theories need not be of Petrov type D in general.
This is the case, for instance, in quadratic theories of gravity (such as dynamical
Chern-Simons (dCS) gravity [65, 66] or scalar-Gauss-Bonnet (sGB) gravity [67, 68]),
where a dynamical field is non-minimally coupled to a quadratic curvature invariant.
In these theories, the field equations are not Einstein’s, and isolated, rotating BHs are
of the algebraically general Petrov type I [69], i.e., only the Ψ0 and Ψ4 background
Weyl scalars vanish. Therefore, the Teukolsky formalism cannot be used directly
to prescribe master equations for the evolution of curvature perturbations in such
beyond GR BH backgrounds.

The study of BH perturbations and their QNMs in modified gravity has gained promi-
nence in the recent decade. However, for the most part, these calculations have been
limited to the non-rotating and the slowly rotating case. In the spherically-symmetric,
non-rotating case, QNMs have been calculated using metric perturbation theory, e.g.,
in dCS gravity [50, 51, 58], Einstein-dilaton-Gauss-Bonnet (EdGB) gravity [52, 53],
Einstein-Aether theory [70–74], higher-derivative gravity (quadratic [75], cubic [76],
and more generically [77, 78]), and Horndeski gravity [79]. In the axisymmetric,
rotating case, reducing all the metric perturbations into a single perturbation function
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Figure 2.1: Schematic flow chart of the different possible terms that may arise in the
modified Teukolsky equation for any Petrov type I spacetime in modified gravity,
where the background can be treated as a linear perturbation of a Petrov type D
spacetime in GR. The origin of these correction terms and the strategies to evaluate
them are outlined here and discussed in detail in Sec. 2.5.3. For comparison, the
corresponding procedures for any Petrov type D spacetime in modified gravity theory
is also shown.

(e.g., Regge Wheeler function or a Zerilli-Moncrief function) is difficult, so studies
have resorted to the slow-rotation approximation at leading order, e.g., in EdGB
gravity [56, 57], dCS gravity [54, 55], and higher-derivative gravity [80, 81]. Purely
numerical studies of perturbed spinning BHs, resulting from the merger of two
other BHs, have also been done in dCS gravity, but they typically suffer from
secularly-growing uncontrolled remainders [82, 83].

One can in principle extend the slow-rotation approximation to the QNM spectrum
of rotating BHs in modified gravity to higher order in rotation, but this can be a
daunting task. This is because the GWs emitted during ringdown are produced by
BH remnants that typically spin at about 65% of their maximum or higher [84]. The
accurate calculation of the QNM spectrum of such BHs then requires one to go to
at least fifth order in a slow-rotation expansion or higher [85]. Nonetheless, it has
been shown in [57] (see also [86, 87]) that one can improve the convergence of the
slow-rotation expansion using the Padé approximation. In EdGB, one may then only
consider up to second order in the slow-rotation expansion to deal with BHs spinning
at about 70% of their maximum. Additionally, going to higher order in spin leads to
mode coupling between the ℓ modes, the ℓ ± 1 modes and higher modes [54, 88, 89],
where ℓ is the orbital number of the spherical harmonic decomposition. Therefore,
instead of extending the slow-rotation approximation, we here focus on developing
a new formalism, motivated from the work of Teukolsky and Chandrasekhar, to
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understand the evolution of curvature perturbations and therefore the QNM spectrum
of rotating BHs of arbitrary spin in modified gravity.

Executive summary
We here develop and apply a method to find the evolution equations of gravitational
perturbations around non-Ricci-flat and Petrov type I BH backgrounds in modified
gravity, where the BH background can be treated as linear perturbations of a Petrov
type D background in GR. We begin by focusing on backgrounds that are still Petrov
type D, but are not described by the Kerr metric because they satisfy field equations
that are not Einstein’s, i.e., the background spacetime is not Ricci flat. In this context,
we extend the usual Teukolsky formalism, and also develop a new approach to find the
curvature perturbation equations in a particular gauge, following Chandrasekhar [40].
We show that these two approaches yield the same perturbation equations.

Let us describe both of these approaches in more detail, beginning first with a brief
refresher of how these approaches are applied in GR. In the traditional Teukolsky’s
approach, one begins by considering two Bianchi identities and one Ricci identity in
the NP formalism. Using these equations along with the GR vacuum field equations
and imposing the requirement that the background is Ricci-flat (i.e., the Ricci tensor
vanishes on the background) and Petrov type D, one can in principle generate a
commutator relation that eliminates the coupling between the perturbed Weyl scalars
Ψ

(1)
0 and Ψ

(1)
1 and between Ψ

(1)
4 and Ψ

(1)
3 . However, in the process of obtaining the

commutation relation, one has to make use of additional Bianchi identities. This
procedure is not tedious in GR because many NP scalars and spin coefficients vanish
identically, but it can be non-trivial in modified gravity.

In Chandrasekhar’s approach [40], one makes use of suitable gauge conditions to
simplify the perturbed equations without the need to use additional Bianchi identities.
In this special gauge, the background and perturbed Weyl scalar Ψ1 and Ψ3 vanish,
so the two Bianchi identities and the Ricci identity mentioned above simplify and
depend now only on three unknown quantities. Decoupling these equations, one then
obtains a master equation for the perturbed Weyl scalars Ψ(1)

𝑖
of the form,

𝐻GR
𝑖 Ψ

(1)
𝑖

= 0 , 𝑖 ∈ {0, 4} , (2.1)

where 𝐻GR
𝑖

are the Teukolsky differential operators [44].

As mentioned earlier, we begin our analysis by modifying both of these approaches
so that they are applicable in modified gravity for curvature perturbations of non-
Ricci-flat BHs that are still Petrov type D. In the traditional Teukolsky’s approach,
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we first develop a commutator relation by using additional Bianchi identities. Due
to the complicated nature of the field equations in modified gravity, there are more
non-vanishing NP quantities, thereby leading to more terms in the perturbation
equations. To leading order in the perturbation and in deformations from GR,
however, only the Bianchi identities and the commutator relations of GR are required
since all additional terms vanish. In the Chandrasekhar’s approach, we first show
that even in modified gravity, a gauge still exists in which the perturbed Ψ

(1)
1 and

Ψ
(1)
3 vanish. Using this gauge, the curvature perturbations can be easily decoupled.

To derive the master equation, we find a two-parameter expansion useful. We use 𝜖
to denote the size of the GW perturbations and 𝜁 the strength of the modified gravity
correction. With this at hand, we show that any NP quantities Ψ can be expanded as

Ψ = Ψ(0,0) + 𝜁Ψ(1,0) + 𝜖Ψ(0,1) + 𝜁𝜖Ψ(1,1) . (2.2)

We then show that both approaches lead to a modified evolution equation for the
curvature perturbations of the form

𝐻GR
0 Ψ

(1,1)
0 = S (1,1)

geo (Ψ(0,1)
0 ) + S (1,1) (𝜗(1,1) , ℎ(0,1)) ,

𝐻GR
4 Ψ

(1,1)
4 = T (1,1)

geo (Ψ(0,1)
4 ) + T (1,1) (𝜗(1,1) , ℎ(0,1)) , (2.3)

where the 𝐻GR
𝑖

differential operators are the same as the Teukolsky ones in GR [44].
Here, we have listed the dynamical quantities [i.e., O(𝜖) terms] inside the parentheses.
The source terms S (1,1) and T (1,1) arise from the perturbed and modified field
equations, and they are functionals of any additional dynamical scalar, vector or
tensor field in the theory (denoted as 𝜗(1,1) above) and the GW metric perturbation
(denoted as ℎ(0,1)). The source terms S (1,1)

geo and T (1,1)
geo arise from the homogeneous

part of the two Bianchi identities due to the correction to the background spacetime
in modified gravity, and they are functionals of the dynamical Ψ(0,1)

0,4 in GR.

The evaluation of the source terms, which is required to evaluate the curvature
perturbation evolution equations, requires knowledge of ℎ(0,1) and 𝜗(1,1) . The source
terms S (1,1) and T (1,1) depend on ℎ(0,1) , so the evaluation of the right-hand side of
Eq. (2.3) requires the reconstruction of the GW metric perturbation in GR ℎ(0,1) .
This can be accomplished with the well-developed methods of Chrzanowski [90]
and others [40, 91, 92]. Moreover, the source terms S (1,1) and T (1,1) also depend
on the evolution of the perturbed scalar, vector, or tensor degrees of freedom that
the theory may admit 𝜗. The evolution of these degrees of freedom has to be solved
simultaneously with the solution to the curvature perturbations.
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With this at hand, we then apply Chandrasekhar’s approach to modified gravity
theories for non-Ricci-flat and Petrov type I BH backgrounds. In such spacetimes,
the biggest challenge is that many background NP quantities are non-vanishing.
Working perturbatively (i.e., treating the BH background as a deformation of the
Petrov type D background in GR), one can eliminate the perturbed Ψ1 and Ψ3 from
the evolution equations and obtain a separated and decoupled equation for Ψ0 and Ψ4.
Schematically, these equations look a lot like the decoupled equations when dealing
with non-Ricci-flat and Petrov type D backgrounds, except that now the source terms
S (1,1)

geo and T (1,1)
geo can also be functionals of the GW metric perturbation, namely,

𝐻GR
0 Ψ

(1,1)
0 = S (1,1)

geo (Ψ(0,1)
0 , ℎ(0,1)) + S (1,1) (𝜗(1,1) , ℎ(0,1)) ,

𝐻GR
4 Ψ

(1,1)
4 = T (1,1)

geo (Ψ(0,1)
4 , ℎ(0,1)) + T (1,1) (𝜗(1,1) , ℎ(0,1)) , (2.4)

This time we see that both source terms to the curvature perturbation evolution
equations require the reconstruction of the GW metric perturbation in GR. As in
the Petrov type D case, we also see that the source terms S (1,1) and T (1,1) require
knowledge of the evolution of the perturbed scalar, vector, or tensor degrees of
freedom that the modified theory may admit 𝜗. Figure 2.1 shows schematically the
structure of the master equations for Ψ0 and Ψ4.

In the rest of the paper, we derive and present the results summarized above in detail.
In Sec. 2.2, we present a brief review of the NP formalism and relevant NP equations.
We also review the analysis presented by Teukolsky (i.e., the Teukolsky formalism)
and by Chandrasekhar (using a gauge choice) for Petrov type D spacetimes in GR. In
Sec. 2.3, we discuss a subset of modified gravity theories that our work can be applied
to and prescribe a perturbation scheme for them. We then extend both Teukolsky’s
and Chandrasekhar’s approaches to Petrov type D spacetimes in these modified
gravity theories in Sec. 2.4. In Sec. 2.5, we prescribe and discuss in detail the
formalism to study perturbations of an algebraically general: Petrov type I spacetime
in modified gravity theories which can be treated as a linear perturbation of a Petrov
type D spacetimes in GR. In Sec. 2.6, we discuss the connection of the formalism
developed in Sec. 2.5 to the second-order Teukolsky formalism in GR. We further
show that our formalism can be generalized to higher order in both 𝜁 and 𝜖 , which
is thus a bGR extension of the higher-order Teukolsky formalism in GR developed
in [93]. Finally, in Sec. 2.7, we summarize our work and discuss some avenues for
future work. Henceforth, we adopt the following conventions unless stated otherwise:
we work in 4-dimensions with metric signature (−, +, +, +) as in [94]. For all NP
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quantities except the metric signature, we use the notation adapted by Chandrasekhar
in [40].

2.2 NP formalism and perturbations of BHs in GR
With the study of GWs using tetrad and spinor calculus gaining prominence in the
1960s, Ezra Newman and Roger Penrose presented a formalism that combines these
two techniques to derive a very compact and useful set of equations that are equivalent
to the field equations [59]. This set of equations consists of a linear combination of
equations for the Riemann tensor in terms of the Ricci rotation coefficients or spinor
affine connections [59]. The different possible components of the Riemann tensor
or the Weyl tensor in a null tetrad or a null basis were then associated with certain
quantities, called the NP coefficients or NP scalars. This formalism provided a new
tool to understand GW properties, such as polarizations and ringdown modes in
more detail [44, 95–98]. Using the NP framework, Teukolsky presented a formalism
to study the ringdown phase of spinning BHs in GR [44, 98, 99] and to study the
dynamical perturbations of Kerr BHs, or more generally, Petrov type D spacetimes
in GR.

In this section, we provide a quick refresher of the NP formalism and discuss the
necessary equations for developing a formalism to obtain master equations for GW
perturbations in GR. Using these equations, we present in brief the approach
prescribed by Teukolsky [44] and by Chandrasekhar [40] to obtain separable
decoupled differential equations for perturbations of BHs in GR. For a reader
familiar with these topics, we recommend starting from Sec. 2.3, where we extend
the aforementioned formalism to BHs in modified gravity.

2.2.1 NP formalism: A quick review
In this subsection, we present a quick overview of the relevant equations under
the NP formalism required for our work. For an in-depth overview, we provide
further details of the NP formalism [40, 59] in Appendix 2.8. In the NP formalism,
a null tetrad (𝑙𝜇, 𝑛𝜇, 𝑚𝜇, 𝑚̄𝜇) is introduced at every point of a four-dimensional
pseudo-Riemannian manifold of signature +2 and metric 𝑔𝜇𝜈. The vectors 𝑙𝜇 and 𝑛𝜇

are real, whereas 𝑚𝜇 and 𝑚̄𝜇 are complex, with a overhead bar denoting complex
conjugation. The tetrad 4-vectors must also satisfy the following orthogonality
properties:

𝑙𝜇𝑙
𝜇 = 𝑛𝜇𝑛

𝜇 = 𝑚𝜇𝑚
𝜇 = 𝑚̄𝜇𝑚̄

𝜇 = 0 ,
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𝑙𝜇𝑛
𝜇 = −𝑚𝜇𝑚̄

𝜇 = −1 ,

𝑙𝜇𝑚
𝜇 = 𝑙𝜇𝑚̄

𝜇 = 𝑛𝜇𝑚
𝜇 = 𝑛𝜇𝑚̄

𝜇 = 0 . (2.5)

Given such a null tetrad, the metric can be expressed as

𝑔𝜇𝜈 = −𝑙𝜇𝑛𝜈 − 𝑛𝜇𝑙𝜈 + 𝑚𝜇𝑚̄𝜈 + 𝑚̄𝜇𝑚𝜈 . (2.6)

Intrinsic derivatives in the NP formalism are defined as

𝐷𝜙 ≡ 𝜙;𝜇𝑙
𝜇 , Δ𝜙 ≡ 𝜙;𝜇𝑛

𝜇 , 𝛿𝜙 ≡ 𝜙;𝜇𝑚
𝜇 , 𝛿∗𝜙 ≡ 𝜙;𝜇𝑚̄

𝜇 . (2.7)

For any tetrad, we can also perform Lorentz transformations on it, i.e., three rotations
and three boosts. These transformations can be mapped to three types of tetrad
rotations, which are characterized by six real variables on the tetrad basis vectors,
such that the orthogonality properties in Eq. (2.5) are preserved [40]. These three
types of tetrad rotations are discussed in detail in Appendix 2.8.

In the NP formalism, the fundamental variables are 5 Weyl scalars (Ψ1,Ψ2, ...),
12 spin coefficients (𝜅, 𝜋, 𝜀, ...), and 10 NP Ricci scalars (Φ00,Φ01, ..,Λ), which
are generally complex quantities. The mathematical form of all these quantities
is presented in Appendix 2.8. These quantities allow one to construct certain
fundamental relations of the NP formalism: 18 complex Ricci identities [Eq. (2.122)]
and 9 complex plus 2 real Bianchi identities [Eqs. (2.123)] [40]. The Ricci identities
are derived from appropriate linear combinations of Eq. (2.116) and (2.117), while
the Bianchi identities come from Eq. (2.118). Some Ricci identities relevant for this
work are

(𝐷 − 𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗) 𝜎 − (𝛿 − 𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽)𝜅 − Ψ0 = 0 , (2.8a)

(Δ + 𝜇 + 𝜇∗ + 3𝛾 − 𝛾∗) 𝜆 − (𝛿∗ + 3𝛼 + 𝛽∗ + 𝜋 − 𝜏∗)𝜈 + Ψ4 = 0 , (2.8b)

(𝐷 − 𝜀 + 𝜀∗ − 𝜌) 𝜏 − (Δ − 3𝛾 + 𝛾∗) 𝜅 − 𝜋∗𝜌 − (𝜏∗ + 𝜋) 𝜎 − Ψ1 −Φ01 = 0 , (2.8c)

(𝐷 − 𝜌∗ + 𝜀∗) 𝛽 − (𝛿 + 𝛼∗ − 𝜋∗) 𝜀 − (𝛼 + 𝜋) 𝜎 − (𝜇 + 𝛾) 𝜅 − Ψ1 = 0 , (2.8d)

(𝐷 − 𝜌∗ + 𝜀∗) 𝛽 − (𝛿 + 𝛼∗ − 𝜋∗) 𝜀 − (𝛼 + 𝜋) 𝜎 − (𝜇 + 𝛾) 𝜅 − Ψ1 = 0 , (2.8e)

while the Bianchi identities useful for this work are

(𝛿∗ − 4𝛼 + 𝜋) Ψ0 − (𝐷 − 2𝜀 − 4𝜌)Ψ1 − 3𝜅Ψ2 = 𝑆1 , (2.9a)

(Δ − 4𝛾 + 𝜇)Ψ0 − (𝛿 − 4𝜏 − 2𝛽)Ψ1 − 3𝜎Ψ2 = 𝑆2 , (2.9b)

(𝛿 + 4𝛽 − 𝜏)Ψ4 − (Δ + 2𝛾 + 4𝜇)Ψ3 + 3𝜈Ψ2 = 𝑆3 , (2.9c)

(𝐷 + 4𝜀 − 𝜌)Ψ4 − (𝛿∗ + 4𝜋 + 2𝛼) Ψ3 + 3𝜆Ψ2 = 𝑆4 , (2.9d)



53

where we have defined

𝑆1 ≡ (𝛿 + 𝜋∗ − 2𝛼∗ − 2𝛽)Φ00 − (𝐷 − 2𝜀 − 2𝜌∗)Φ01

+ 2𝜎Φ10 − 2𝜅Φ11 − 𝜅∗Φ02 ,
(2.10a)

𝑆2 ≡ (𝛿 + 2𝜋∗ − 2𝛽)Φ01 − (𝐷 − 2𝜀 + 2𝜀∗ − 𝜌∗)Φ02

− 𝜆∗Φ00 + 2𝜎Φ11 − 2𝜅Φ12 ,
(2.10b)

𝑆3 ≡ − (Δ + 2𝜇∗ + 2𝛾)Φ21 + (𝛿∗ − 𝜏∗ + 2𝛼 + 2𝛽∗)Φ22

+ 2𝜈Φ11 + 𝜈∗Φ20 − 2𝜆Φ12 ,
(2.10c)

𝑆4 ≡ − (Δ + 𝜇∗ + 2𝛾 − 2𝛾∗)Φ20 + (𝛿∗ + 2𝛼 − 2𝜏∗)Φ21

+ 2𝜈Φ10 − 2𝜆Φ11 + 𝜎∗Φ22 .
(2.10d)

The remaining equations are presented in Appendix 2.8.

The above equations can be recast in a simpler form if we define the following
operators:

𝐹1 ≡ 𝛿∗ − 4𝛼 + 𝜋 , 𝐹2 ≡ Δ − 4𝛾 + 𝜇 ,
𝐽1 ≡ 𝐷 − 2𝜀 − 4𝜌 , 𝐽2 ≡ 𝛿 − 4𝜏 − 2𝛽 ,

𝐸1 ≡ 𝛿 − 𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽 , 𝐸2 ≡ 𝐷 − 𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗ ,

(2.11)

𝐹3 ≡ 𝛿 + 4𝛽 − 𝜏 , 𝐹4 ≡ 𝐷 + 4𝜀 − 𝜌 ,
𝐽3 ≡ Δ + 2𝛾 + 4𝜇 , 𝐽4 ≡ 𝛿∗ + 4𝜋 + 2𝛼 ,

𝐸3 ≡ 𝛿∗ + 3𝛼 + 𝛽∗ + 𝜋 − 𝜏∗ , 𝐸4 ≡ Δ + 𝜇 + 𝜇∗ + 3𝛾 − 𝛾∗ ,

(2.12)

so we can rewrite Eqs. (2.9a)-(2.9b) and Eq. (2.8a) as

𝐹1Ψ0 − 𝐽1Ψ1 − 3𝜅Ψ2 = 𝑆1 , (2.13a)

𝐹2Ψ0 − 𝐽2Ψ1 − 3𝜎Ψ2 = 𝑆2 , (2.13b)

𝐸2𝜎 − 𝐸1𝜅 − Ψ0 = 0 , (2.13c)

while Eqs. (2.9c)-(2.9d) and Eq. (2.8b) can be written as

𝐹3Ψ4 − 𝐽3Ψ3 + 3𝜈Ψ2 = 𝑆3 , (2.14a)

𝐹4Ψ4 − 𝐽4Ψ3 + 3𝜆Ψ2 = 𝑆4 , (2.14b)

𝐸4𝜆 − 𝐸3𝜈 + Ψ4 = 0 . (2.14c)

For this work, we also need a commutator of the intrinsic derivatives introduced in
Eq. (2.7), namely,

[𝛿, 𝐷] = (𝛼∗ + 𝛽 − 𝜋∗) 𝐷 + 𝜅Δ − (𝜌∗ + 𝜀 − 𝜀∗) 𝛿 − 𝜎𝛿∗ . (2.15)
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The other commutators of intrinsic derivatives can be found in Appendix 2.8.

Let us conclude with a brief discussion of the Petrov classification [40, 64]. The
Petrov classification is an organizational scheme based on the examination of the
algebraic structure of the Weyl curvature tensor. Since the Weyl scalars in the
NP formalism depend on the Weyl tensor [see e.g., Eq. (2.120)], one can classify
solutions in a given theory based on the vanishing of the Weyl scalars for the given
solution. The classification is as follows:

1. Type I: Ψ0 = Ψ4 = 0.

2. Type II: Ψ0 = Ψ1 = Ψ4 = 0.

3. Type D: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0.

4. Type III: Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0.

5. Type N: Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0.

Isolated stationary BHs in GR are of Petrov type D, while these BHs in modified
gravity theories, such as in dCS gravity or EdGB gravity, are of Petrov type I [66, 69].
Since Petrov type I spacetimes are the most general type of spacetime in the Petrov
classification, they are also called algebraically general. The rest of the spacetimes
in the Petrov classification, including Petrov type D, are classified as algebraically
special.

2.2.2 Teukolsky formalism for Petrov type D spacetimes in GR
In this subsection, we present the formalism first prescribed by Teukolsky in 1972 [44],
where using the NP formalism, he obtained a set of separable, decoupled gravitational
perturbation equations for Kerr BHs in GR. More specifically, Teukolsky expanded
all curvature quantities into a background plus a perturbation; for example, the Weyl
scalars are expanded into

Ψ𝑖 = Ψ
(0)
𝑖

+ 𝜖 Ψ(1)
𝑖

(2.16)

for 𝑖 ∈ (0, 1, 2, 3, 4), where the superscript (0) means that these quantities are
computed from the background metric, while the superscript (1) stands for a
perturbation from this background with 𝜖 an order-counting parameter. With this in
hand, Teukolsky was then able to derive separable and decoupled equations for the
curvature perturbations Ψ(1)

0 and Ψ
(1)
4 of a Kerr BH.
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The following derivation, which follows closely that of [44], applies to any Petrov
type D vacuum background metric in GR, which includes the Schwarzschild and
Kerr metrics. Let us then choose the 𝑙𝜇 and 𝑛𝜇 vectors of the unperturbed tetrad
along the repeated principal null directions of the Weyl tensor. Thus, for a Petrov
type D vacuum GR spacetime, we have

Ψ
(0)
0 = Ψ

(0)
1 = Ψ

(0)
3 = Ψ

(0)
4 = 0 , 𝜅 (0) = 𝜎 (0) = 𝜈(0) = 𝜆(0) = 0 . (2.17)

The result on the second line of Eq. (2.17) can also be seen to come from the Bianchi
identities in Eq. (2.123).

The GR field equations in trace-reversed form can be expressed as

𝑅𝜇𝜈 = 8𝜋
(
𝑇 𝜇𝜈 − 1

2
𝑇𝑔𝜇𝜈

)
, (2.18)

where 𝑇 𝜇𝜈 is the stress-energy tensor and 𝑇 is its trace. Since we are working with
vacuum spacetimes, 𝑇 𝜇𝜈 = 0, and thus 𝑅𝜇𝜈 = 0. Using this in Eq. (2.121), we can
see that all background and perturbed values of Φ𝑖 𝑗 for 𝑖, 𝑗 ∈ {0, 1, 2} vanish. For
instance,

Φ00 ≡ −1
2
𝑅11 = −1

2
𝑅𝜇𝜈𝑙

𝜇𝑙𝜈 = 4𝜋𝑇𝑙𝑙 = 0 . (2.19)

Thus, using Eq. (2.10), we see that 𝑆1, 𝑆2, 𝑆3 and S4 vanish identically for vacuum
GR spacetimes.

To study the perturbations of BHs, we require differential equations for Ψ(1)
0 and Ψ

(1)
4

since these represent curvature perturbations associated with propagating metric
perturbations. We first present the formalism to obtain a differential equation for
Ψ

(1)
0 , and later, we apply the same to Ψ

(1)
4 . Consider then the vacuum Ricci identity

of Eq. (2.13c) and the Bianchi identities in Eqs. (2.13a) and (2.13b). As mentioned
previously, in vacuum GR spacetimes, the right-hand side of these equations vanish.
Furthermore, using Eq. (2.17), the corresponding perturbation equations to leading
order in the perturbation take the form

𝐹
(0)
1 Ψ

(1)
0 − 𝐽 (0)1 Ψ

(1)
1 − 3𝜅 (1)Ψ(0)

2 = 0 , (2.20a)

𝐹
(0)
2 Ψ

(1)
0 − 𝐽 (0)2 Ψ

(1)
1 − 3𝜎 (1)Ψ(0)

2 = 0 , (2.20b)

𝐸
(0)
2 𝜎 (1) − 𝐸 (0)

1 𝜅 (1) − Ψ
(1)
0 = 0 . (2.20c)

In order to simplify the notation, we will drop the superscript (0) for all background
quantities for the remainder of this section. Multiplying Eq. (2.20c) by the background
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Ψ2 Weyl scalar and plugging in for 𝐸1 and 𝐸2 using Eq. (2.11), one finds

(𝐷 − 4𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗)
(
Ψ2𝜎

(1)
)

− (𝛿 − 4𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽)
(
Ψ2𝜅

(1)
)
− Ψ2Ψ

(1)
0 = 0 ,

(2.21)

where we have used Eqs. (2.123h) and (2.123g), which for the background Ψ2 reduce
to

𝐷Ψ2 = 3𝜌Ψ2, 𝛿Ψ2 = 3𝜏Ψ2 . (2.22)

In order to be consistent with the simplified notation, we introduce

𝐸GR
1 = 𝛿 − 4𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽 , (2.23a)

𝐸GR
2 = 𝐷 − 4𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗ , (2.23b)

so Eq. (2.21) can be written more compactly as

𝐸GR
2

(
Ψ2𝜎

(1)
)
− 𝐸GR

1

(
Ψ2𝜅

(1)
)
= Ψ2Ψ

(1)
0 . (2.24)

To obtain a differential equation for Ψ(1)
0 , we need to eliminate Ψ(1)

1 from Eqs. (2.20a)
and (2.20b). This can be done by making use of the following commutation relation:

𝐸GR
2 𝐽2 − 𝐸GR

1 𝐽1 = 0 . (2.25)

This relation can be shown to hold for any Petrov type D spacetime in GR by
using Eqs. (2.8c)-(2.8e) and Eq. (2.15). On operating 𝐸GR

2 on Eq. (2.20b), 𝐸GR
1 on

Eq. (2.20a), and subtracting one equation from the other, Ψ(1)
1 vanishes identically.

Using Eq. (2.21), we finally have(
𝐸GR

2 𝐹2 − 𝐸GR
1 𝐹1 − 3Ψ2

)
Ψ

(1)
0 = 0 . (2.26)

This is the decoupled equation for Ψ(1)
0 for any Petrov type D vacuum spacetime in

GR. As shown by Geroch, Held, and Penrose (GHP) [100], the NP equations are
invariant under the exchange 𝑙𝜇 ↔ 𝑛𝜇 and 𝑚𝜇 ↔ 𝑚̄𝜇, where the choice of 𝑙𝜇 and 𝑛𝜇

has no effect on this symmetry. Applying this transformation to Eq. (2.26), one finds
the decoupled differential equation for Ψ(1)

4 for a Petrov type D vacuum spacetime in
GR, namely, (

𝐸GR
4 𝐹4 − 𝐸GR

3 𝐹3 − 3Ψ2
)
Ψ

(1)
4 = 0 , (2.27)

where we have introduced

𝐸GR
3 ≡ 𝛿∗ + 3𝛼 + 𝛽∗ + 4𝜋 − 𝜏∗ , (2.28a)
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𝐸GR
4 ≡ Δ + 4𝜇 + 𝜇∗ + 3𝛾 − 𝛾∗ . (2.28b)

An alternate derivation using the GHP formalism was provided by Stewart [101].
However, for the purpose of this section, we will stick with the formalism laid down
by Teukolsky.

2.2.3 Chandrasekhar’s approach for Petrov type D spacetimes in GR
Chandrasekhar introduced another way to derive the Teukolsky equation in [40]
by utilizing the gauge freedom of the tetrad. As briefly mentioned in Sec. 2.2.1
and discussed in detail in Appendix 2.8, one is free to rotate the tetrad following
Eq. (2.126) such that all the normalization and orthogonality conditions in Eq. (2.5)
are preserved.

Let us then consider a type II rotation, which is given by

𝑛→ 𝑛 , 𝑚 → 𝑚 + 𝑏𝑛 , 𝑚̄ → 𝑚̄ + 𝑏∗𝑛 , 𝑙 → 𝑙 + 𝑏∗𝑚 + 𝑏𝑚̄ + 𝑏𝑏∗𝑛 (2.29)

[see also Eq. (2.126b)], and set the rotation parameter 𝑏 to be of leading order in
the perturbation, i.e., 𝑏 = 𝑏 (1) . Ignoring all higher-order terms, the perturbed Weyl
scalars transform into [see e.g., Eq. (2.127b)]

Ψ
(1)
0 → Ψ

(1)
0 + 4𝑏 (1)Ψ(0)

1 , Ψ
(1)
1 → Ψ

(1)
1 + 3𝑏 (1)Ψ(0)

2 ,

Ψ
(1)
2 → Ψ

(1)
2 + 2𝑏 (1)Ψ(0)

3 , Ψ
(1)
3 → Ψ

(1)
3 + 𝑏 (1)Ψ(0)

4 , Ψ
(1)
4 → Ψ

(1)
4 .

(2.30)

Since for a Petrov type D spacetime, Ψ(0)
𝑖≠2 = 0, all the Ψ

(1)
𝑖≠1 remain invariant under

such a rotation. By choosing 𝑏 (1) = −Ψ(1)
1 /

(
3Ψ(0)

2

)
, the perturbed Weyl scalar Ψ(1)

1
can be removed directly without the use of any additional Bianchi identities and
commutation relations used in Sec. 2.2.2. Another way to understand this gauge
choice is that we have three equations for four unknowns in Eqs. (2.20), so there is
one arbitrary function to be determined.

Using this gauge freedom to set Ψ(1)
1 = 0 through a tetrad rotation, one can now

easily derive the Teukolsky equation. First, use this gauge freedom to set Ψ(1)
1 = 0 in

Eqs. (2.20a)-(2.20b), and then solve for 𝜅 (1) and 𝜎 (1) . Now insert these solutions
back into Eq. (2.20c) to find

(E2𝐹2 − E1𝐹1 − 3Ψ2) Ψ(1)
0 = 0 , (2.31)

where we have defined
E𝑖 ≡ Ψ2𝐸𝑖Ψ

−1
2 . (2.32)
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Here, we have dropped the superscript (0) for all unperturbed quantities. Applying
the GHP transformation explained below Eq. (2.26), one finds an equation for Ψ(1)

4 ,
namely,

(E4𝐹4 − E3𝐹3 − 3Ψ2) Ψ(1)
4 = 0 . (2.33)

The E𝑖 operators can be simplified using the product rule. Doing so, one finds

E1 = 𝛿 − 𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽 − 1
Ψ2
𝛿Ψ2 , (2.34a)

E2 = 𝐷 − 𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗ − 1
Ψ2
𝐷Ψ2 , (2.34b)

E3 = 𝛿∗ + 3𝛼 + 𝛽∗ + 𝜋 − 𝜏∗ − 1
Ψ2
𝛿∗Ψ2 , (2.34c)

E4 = Δ + 𝜇 + 𝜇∗ + 3𝛾 − 𝛾∗ − 1
Ψ2

ΔΨ2 , (2.34d)

In deriving Eqs. (2.31)-(2.33), we have also multiplied the whole equation by 3Ψ2.
We will see in Sec. 2.4.2 that this makes Eqs. (2.31)-(2.33) exactly the same as
Eqs. (2.26)-(2.27), so E𝑖 = 𝐸GR

𝑖
. Note that one can also derive the equation for Ψ4 in

the same way we derived an equation for Ψ0 (i.e., without the GHP transformation),
using the fact that a type I rotation at O(𝜖) can be used to set Ψ(1)

3 to zero.

It should not be surprising that one obtains the same equation following the traditional
Teukolsky’s approach and Chandrasekhar’s approach. From Eq. (2.30) and other
tetrad rotations discussed in Appendix 2.8 that one can perform in Eqs. (2.126), one
can see that Ψ(1)

0 and Ψ
(1)
4 are gauge-invariant quantities under linear perturbations.

In Chandrasekhar’s approach, since one does not need to use any additional Bianchi
identities and commutation relations to cancel off Ψ

(1)
1 , there are fewer equations

one needs to worry about, and this will be helpful when dealing with the more
complicated non-Petrov-type-D spacetime backgrounds of modified gravity theories.
However, to convince ourselves that the equivalence between these two approaches is
not broken when considering beyond GR theories, in Sec. 2.4 we will find a modified
master equation using both approaches and show that the two methods are equivalent
in modified gravity theories.

2.3 Framework of perturbation in modified gravity theories
In this section, we discuss a subset of modified gravity theories that the formalism
developed in this work can be applied to. We classify these theories into two classes
based on the presence of additional non-metric fields in the action that define these
theories. For both classes, we provide some examples by explicitly writing down
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the Lagrangian, the equations of motion for all the fields, and the properties of BH
spacetimes, which serve as the background to our perturbation analysis. We then
prescribe a perturbation scheme using a two-parameter expansion for both classes of
modified gravity theories.

2.3.1 Theories of gravity beyond GR
In this subsection, we provide a quick overview of certain modified theories of
gravity relevant for this work and discuss the BH spacetimes in these theories, which
serve as a background for our perturbation scheme. Consider then a class of theories
defined through the following beyond GR Lagrangian:

L = LGR + ℓ𝑝LbGR + Lmatter + Lfield , (2.35)

where LGR is the Einstein-Hilbert Lagrangian, Lmatter is the matter Lagrangian,
Lfield is the Lagrangian for all other (non-metric) dynamical fields (including all
kinetic and potential terms of these fields) that the theory may permit, and LbGR is a
Lagrangian that contains non-Einstein-Hilbert curvature terms and can, in principle,
include non-minimal couplings to the non-metric dynamical fields of the theory. The
quantity ℓ in Eq. (2.35) is a dimension-full scale that characterizes the strength of the
GR correction, and 𝑝 is a number to ensure that ℓ𝑝LbGR has the right dimensions.
We can classify the beyond GR theories described by the Lagrangian in Eq. (2.35)
based on the presence or absence of additional non-metric dynamical fields, i.e.,
based on whether Lfield vanishes. Note that we here do not consider theories with
non-dynamical, prior or “fixed” fields that couple to the metric tensor. In this work
then, we define this classification as

• Lfield ≠ 0 =⇒ Class A,

• Lfield = 0 =⇒ Class B.

An example of beyond GR theories of class A that we will consider is dCS gravity.
This theory is defined by the Lagrangian in Eq. (2.35) with the choices

LGR = (16𝜋)−1𝑅 ,

LdCS
bGR =

1
4
𝜗 ∗𝑅𝜇𝜈

𝜅𝛿𝑅𝜈𝜇𝜅𝛿 ,

LdCS
field = −1

2
𝑔𝜇𝜈 (∇𝜇𝜗) (∇𝜈𝜗) , (2.36)
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and ℓ = ℓdCS is the dCS coupling constant with 𝑝 = 2. 𝑅 is the Ricci scalar, 𝑔𝜇𝜈 is
the metric, and 𝜗 is a massless, pseudoscalar, axion-like field that non-minimally
couples to the Pontryagin curvature invariant ∗𝑅𝜇𝜈𝜅𝛿𝑅𝜈𝜇𝜅𝛿, where

∗𝑅𝜇𝜈
𝜅𝛿 =

1
2
𝜖 𝜇𝜈𝛼𝛽𝑅

𝛼𝛽𝜅𝛿 (2.37)

is the dual of the Riemann tensor. The field equations in dCS gravity are

𝑅𝜇𝜈 = 8𝜋
{
(𝑇M
𝜇𝜈 −

1
2
𝑔𝜇𝜈𝑇

M) + (∇𝜇𝜗) (∇𝜈𝜗)

− 2𝛼dCS
[
(∇𝜎𝜗)𝜖𝜎𝛿𝛼 (𝜇∇𝛼𝑅𝜈)𝛿 + (∇𝜎∇𝛿𝜗)∗𝑅𝛿 (𝜇𝜈)𝜎

] }
, (2.38)

□𝜗 = −𝛼dCS

4
∗𝑅𝜇𝜈

𝜅𝛿𝑅𝜈𝜇𝜅𝛿 , (2.39)

where Eq. (2.38) is the trace-reversed metric field equation, and Eq. (2.39) is the
scalar field equation. The dCS coupling constant 𝛼dCS ≡ ℓ2

dCS determines the strength
of the Chern-Simons (CS) modification and has dimensions of [Length]2. Stationary
and vacuum BH solutions in this theory are not Ricci-flat, so they are obviously not
represented by the Kerr metric [102–104]. Instead, spinning BHs in dCS gravity
have a corrected event horizon location, ergosphere, and different exterior multipole
moments [102] to name a few corrected quantities. Moreover, dCS BHs are of
non-Ricci-flat Petrov type I spacetimes in the Petrov classification given in Sec. 2.2.1.
To leading order in spin, however, the BHs in this theory remain non-Ricci-flat and
of Petrov type D [69, 102, 105].

Another example of a class A beyond GR theory is EdGB gravity [106], which is a
special case of sGB gravity [107]. Using Eq. (2.35) and the conventions in [56, 107],
EdGB theory is defined via

LGR = (16𝜋)−1𝑅 ,

LEdGB
bGR = (64𝜋)−1𝑒𝜃G ,

LEdGB
field = −(32𝜋)−1𝑔𝜇𝜈 (∇𝜇𝜃) (∇𝜈𝜃) , (2.40)

where
G = 𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅2 (2.41)

is the Gauss-Bonnet curvature invariant, and ℓ = ℓEdGB is the EdGB coupling constant
with 𝑝 = 2. The quantity 𝜃 is a massless dilaton-like scalar field that non-minimally
couples to the Gauss-Bonnet invariant G. The metric field equation for EdGB gravity
in trace-reversed form is then given by [56]

𝑅𝜇𝜈 = 8𝜋(𝑇M
𝜇𝜈 −

1
2
𝑔𝜇𝜈𝑇

M) + 1
2
(∇𝜇𝜃) (∇𝜈𝜃) − 𝛼EdGB

(
K𝜇𝜈 −

1
2
𝑔𝜇𝜈K

)
,
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K𝜇𝜈 =
1
8

(
𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌

)
𝜖𝛿𝜎𝛾𝛼∇𝛽

(
∗𝑅𝜌𝛽𝛾𝛼𝑒

𝜃∇𝛿𝜃
)
,

K = 𝑔𝜇𝜈K𝜇𝜈 , (2.42)

whereas the scalar field equation is

□𝜃 = −𝛼EdGB

4
𝑒𝜃G . (2.43)

The quantity 𝛼EdGB ≡ 𝑙2EdGB is the coupling constant of EdGB theory and has
dimensions of [Length]2. Stationary and vacuum BH solutions in this theory,
just like in dCS gravity, are non-Ricci-flat and are not represented by the Kerr
metric [108–112]. Rotating BHs in EdGB theory are described by non-Ricci-flat
Petrov type I spacetimes in general, but to leading order in spin, they are described
by non-Ricci-flat Petrov type D spacetimes [69].

An example of class B beyond GR theories is higher-derivative gravity [81] because
this theory contains no non-metric dynamical fields. Following Eq. (2.35), the
Lagrangian of this theory can be represented by

LGR = (16𝜋)−1𝑅 ,

LHD
bGR = (16𝜋)−1(𝜆even𝑅𝜇𝜈

𝜌𝜎𝑅𝜌𝜎
𝛿𝛾𝑅𝛿𝛾

𝜇𝜈 + 𝜆odd𝑅𝜇𝜈
𝜌𝜎𝑅𝜌𝜎

𝛿𝛾 ∗𝑅𝛿𝛾
𝜇𝜈) ,

LHD
field = 0 , (2.44)

where we have only kept terms with up to six derivatives of the metric (a more
general discussion can be found in [81]). ℓ = ℓHD is the higher-derivative gravity
coupling constant with 𝑝 = 4. The quantities 𝜆even and 𝜆odd are dimensionless
coupling constants that are introduced to distinguish terms that preserve or break
parity. The field equation in trace-reversed form is [81]

𝑅𝜇𝜈 = 8𝜋(𝑇M
𝜇𝜈 −

1
2
𝑔𝜇𝜈𝑇

M) − E (6)
𝜇𝜈 ,

E (𝑛)
𝜇𝜈 = 𝑃(𝑛)

(𝜇
𝜌𝜎𝛾𝑅𝜈)𝜌𝜎𝛾 −

1
2
𝑔𝜇𝜈L(𝑛) + 2∇𝜎∇𝜌𝑃(𝑛)

(𝜇 |𝜎 |𝜈)𝜌 ,

𝑃
(6)
𝜇𝜈𝜌𝜎 = 3𝛼even

HD 𝑅
𝛼𝛽
𝜇𝜌𝑅𝛼𝛽𝜌𝜎 +

3𝛼odd
HD

2

(
𝑅
𝛼𝛽
𝜇𝜌

∗𝑅𝛼𝛽𝜌𝜎 + 𝑅𝛼𝛽𝜇𝜌 ∗𝑅𝜌𝜎𝛼𝛽
)
, (2.45)

where 𝛼even
HD ≡ ℓ4

HD𝜆even and 𝛼odd
HD ≡ ℓ4

HD𝜆odd are coupling constants that determine the
strength of the parity-preserving and the parity-breaking higher-derivative gravity
corrections. The quantityL(𝑛) refers to the Lagrangian with 𝑛 derivatives of the metric
in higher-derivative gravity, so L(6) = LHD

bGR. Rotating BHs in higher-derivative
gravity are non-Ricci-flat [81], but their Petrov type has not yet been studied in detail.
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Theories described by the Lagrangian given in Eq. (2.35) only form a subset of all
possible theories. This subset does not just include dCS gravity [65, 66], EdGB
gravity [106, 110, 113–115], and higher-derivative theories of gravity [80, 81, 116–
119], but it also includes, for example, sGB gravity in general [120], quadratic gravity
theories without additionally coupled fields [121, 122], and higher dimensional
gravity theories [123, 124] to name a few. These theories can also be classified based
on whether their stationary and vacuum (i.e., no matter) BH solutions are Ricci-flat
or non-Ricci-flat. For a beyond GR theory that admits Ricci-flat, Petrov type D BH
spacetimes, perturbations can be studied within the standard Teukolsky formalism
presented in Sec. 2.2.2, so we do not focus on these theories here. In this work,
instead, we focus on the dynamical perturbations of BHs that are non-Ricci-flat and
either Petrov type D or Petrov type I. Therefore, our work applies to dCS gravity [65,
66, 69, 105], EdGB and sGB gravity [69], and higher-derivative gravity [80, 81,
116–119].

2.3.2 Perturbation scheme
In this subsection, we discuss the perturbation scheme that is applicable to the
modified gravity theories discussed in Sec. 2.3.1. To solve for the dynamical
gravitational perturbations of a BH background in any such modified gravity theory
perturbatively, we need a multi-variable expansion of all NP quantities. Generalizing
the discussion in [82] for dCS gravity to any modified gravity theory that can be
studied perturbatively (in an effective field theory approach), we need at least two
expansion parameters1:

(i) 𝜁 , a dimensionless parameter that characterizes the strength of the correction
to GR (which typically will depend on the ratio of the scale ℓ to the BH mass),
and

(ii) 𝜖 , a dimensionless parameter that describes the size of the GW perturbations,
which also appears in GR.

In this work, we additionally impose that 𝜁 is the leading order at which beyond GR
corrections to the metric field ℎbGR

𝜇𝜈 appear, while the leading-order correction to
other non-metric fields may enter with other (possibly lower) powers of 𝜁 .

1Note that in [82], 𝜖 is used for the strength of the correction to GR, and 𝜁 is used for the size of
GW perturbations, which is opposite to our choices here. We here choose to remain consistent with
previous literature in GR [40, 41] and in dCS gravity [66, 102].
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In order to understand the coupling constant 𝜁 better, let us first relate it to the
coupling constants of the different modified gravity theories we used as examples in
Sec. 2.3.1. For class A beyond GR theories with non-minimal coupling, the extra
non-metric fields 𝜗bGR, e.g., 𝜗 in dCS gravity and 𝜃 in EdGB gravity, are sourced by
the metric field and are proportional to terms of O(𝛼bGR), where 𝛼bGR is the coupling
constant associated with LbGR in Eq. (2.35), e.g., 𝛼dCS in dCS gravity and 𝛼EdGB

in EdGB gravity. The field 𝜗bGR then back-reacts onto the metric and sources the
metric perturbations ℎbGR

𝜇𝜈 , which are also multiplied by a factor of 𝛼bGR. Thus, to
leading order, 𝜗bGR ∼ 𝛼bGR and ℎbGR

𝜇𝜈 ∼ 𝛼bGR𝜗bGR, so 𝜁 ∼ 𝛼2
bGR. This is evident from

Eqs. (2.38) and (2.42), where 𝜁 ∼ 𝛼2
dCS for dCS gravity and 𝜁 ∼ 𝛼2

EdGB for EdGB
gravity. For class B beyond GR theories, the metric perturbations are driven by the
metric fields at lower order and are proportional to 𝛼bGR, so 𝜁 ∼ 𝛼bGR. For example,
from Eq. (2.45), one can see that 𝜁 ∼ 𝛼even,odd

HD .

By requiring that ℎbGR
𝜇𝜈 enters at O(𝜁), 𝑅𝜇𝜈 must also enter at O(𝜁) since we are

focusing on background spacetimes that are perturbed from the vacuum solutions in
GR. This can be seen in Eqs. (2.38), (2.42), and (2.45). In addition, for both classes
of beyond GR theories, since metric perturbations in modified gravity are sourced
by the metric field in GR either indirectly via extra non-metric fields (class A) or
directly (class B), the leading-order terms of the metric field in 𝑅𝜇𝜈 must be of O(𝜁0).
Thus, when computing 𝑅𝜇𝜈, we only need the metric at O(𝜁0, 𝜖0) or O(𝜁0, 𝜖1). The
perturbative order of 𝑅𝜇𝜈 and the metric field in it will be important when we discuss
the decoupling of the modified Teukolsky equation in Sec. 2.4.1 and Sec. 2.5.3.

Besides the metric field, we also have the NP quantities (i.e., tetrad basis vectors,
Weyl scalars, spin coefficients, and NP Ricci scalars) generated from it. Although the
beyond GR correction to the metric field enters at O(𝜁), the beyond GR correction
to the NP quantities does not necessarily enter at O(𝜁) if we make certain gauge
choices on some NP quantities, which will be discussed in detail in Sec. 2.5.1. For
simplicity, we want all the NP quantities to have the same expansion pattern as the
metric field, so here we construct a NP tetrad which is corrected by beyond GR
theories at O(𝜁) to leading order. Thus, all the other NP quantities are naturally
corrected by modified gravity at O(𝜁) to leading order.

In order to ensure that all the NP quantities will be corrected at O(𝜁), we must find a
tetrad that shared this same property, namely,

𝑒𝑎𝜇 = 𝑒
(0,0)
𝑎𝜇 + 𝜁𝛿𝑒(1,0)𝑎𝜇 , (2.46)
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where 𝛿𝑒(1,0)𝑎𝜇 is a perturbation of O(𝜁1, 𝜖0) of the Kinnersley tetrad 𝑒(0,0)𝑎𝜇 . Here, we
have used the superscript (𝑛, 𝑚) to denote terms at O(𝜁𝑛, 𝜖𝑚). The only constraint on
a NP tetrad is the orthogonality condition in Eq. (2.5). Let us expand the correction
to the Kinnersley tetrad 𝛿𝑒(1,0)𝑎𝜇 in terms of the original tetrad 𝑒(0,0)𝑎𝜇 in GR,

𝛿𝑒
(1,0)
𝑎𝜇 = 𝐴

(1,0)
𝑎𝑏

𝑒
𝑏(0,0)
𝜇 . (2.47)

To satisfy Eq. (2.5), we need to have that(
𝑒
(0,0)
𝑎𝜇 + 𝜁𝛿𝑒(1,0)𝑎𝜇

) (
𝑒
(0,0)
𝑏𝜈

+ 𝜁𝛿𝑒(1,0)
𝑏𝜈

) (
𝑔𝜇𝜈(0,0) + 𝜁ℎ𝜇𝜈(1,0)

)
= 𝜂𝑎𝑏 , (2.48)

where 𝜂𝑎𝑏 is the metric defined in Eq. (2.111), 𝑔𝜇𝜈(0,0) is the metric of the GR
background, and ℎ𝜇𝜈(1,0) represents the modification to the metric due to deviation
from GR. Up to O(𝜁), we can equivalently require that

𝛿𝑒
(1,0)
𝑎𝜇 𝑒

(0,0)
𝑏𝜈

𝑔𝜇𝜈(0,0) + 𝑒(0,0)𝑎𝜇 𝛿𝑒
(1,0)
𝑏𝜈

𝑔𝜇𝜈(0,0) − 𝑒(0,0)𝑎𝜇 𝑒
(0,0)
𝑏𝜈

ℎ𝜇𝜈(1,0) , (2.49)

where we have used the condition 𝑔𝜇𝜈(0,0)𝑒(0,0)𝑎𝜇 𝑒
(0,0)
𝑏𝜈

= 𝜂𝑎𝑏. Inserting the expansion
of Eq. (2.47) in the above condition and using the condition 𝑔𝜇𝜈(0,0)𝑒(0,0)𝑎𝜇 𝑒

(0,0)
𝑏𝜈

= 𝜂𝑎𝑏

again, one finds
𝐴
(1,0)
𝑎𝑏

+ 𝐴(1,0)
𝑏𝑎

= 2𝐴(1,0)
(𝑎𝑏) = −ℎ(1,0)

𝑎𝑏
, (2.50)

where ℎ(1,0)
𝑎𝑏

= 𝑒
(0,0)
𝑎𝜇 𝑒

(0,0)
𝑏𝜈

ℎ𝜇𝜈(1,0) , and thus 𝐴(1,0)
(𝑎𝑏) = −1

2ℎ
(1,0)
𝑎𝑏

. In general, 𝐴(1,0)
𝑎𝑏

can
have 16 independent components, which can be separated into a symmetric tensor
𝐴
(1,0)
(𝑎𝑏) with 10 independent components and an antisymmetric tensor 𝐴(1,0)

[𝑎𝑏] with 6

independent components. Since Eq. (2.50) does not impose any constraints on 𝐴(1,0)
[𝑎𝑏] ,

the components of 𝐴(1,0)
[𝑎𝑏] correspond to 6 degrees of gauge freedom to further rotate

the tetrad. We can choose 𝐴(1,0)
[𝑎𝑏] = 0, so the perturbed tetrad is

𝐴
(1,0)
𝑎𝑏

= −1
2
ℎ
(1,0)
𝑎𝑏

, 𝛿𝑒
(1,0)
𝑎𝜇 = −1

2
𝑒
(0,0)
𝑎𝜈 ℎ

𝜈(1,0)
𝜇 . (2.51)

Using the tetrad in Eqs. (2.46) and (2.51), we are able to expand the metric field
and all the NP quantities generated from it with the same perturbative scheme. In
this paper, we are interested in linear dynamical perturbations of any Petrov type
I stationary spacetime, which itself is a linear deformation of the Kerr metric, so
all terms beyond O(𝜁1, 𝜖1) will be ignored. Up to O(𝜁1, 𝜖1), if we use the tetrad in
Eqs. (2.46) and (2.51), the Weyl scalars can be expanded as

Ψ𝑖 = Ψ
(0)
𝑖

+ 𝜖Ψ(1)
𝑖
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= Ψ
(0,0)
𝑖

+ 𝜁Ψ(1,0)
𝑖

+ 𝜖Ψ(0,1)
𝑖

+ 𝜁𝜖Ψ(1,1)
𝑖

, (2.52)

and the same expansion applies to the metric field and all the other NP quantities.For
the beyond GR theories of class A mentioned in Sec. 2.3.1, additional fields may be
present. For the examples presented, the pseudoscalar field in dCS gravity can be
perturbatively expanded as

𝜗 = 𝜗(0) + 𝜖𝜗(1) = 𝜁𝜗(1,0) + 𝜁𝜖𝜗(1,1) . (2.53)

A scalar field 𝜃 in EdGB gravity can also be expanded perturbatively in a similar
manner. For both 𝜗 and 𝜃, the background and perturbed GR pieces vanish. Notice
that other work sometimes chooses to expand extra fields starting at 𝜁0 [82, 83,
125, 126] or 𝜁

1
2 [103], since these extra fields usually enter at lower order than the

metric field as explained above. In our case, we choose to absorb the coupling
constant into the expansion of the extra fields for convenience in the order counting,
so our expansion starts at 𝜁 . In latter sections, we may also rotate the tetrad in
Eqs. (2.46) and (2.51) using Eqs. (2.126) such that certain NP quantities vanish on
the background. If the expansion in Eq. (2.52) is not broken, we will use the rotated
tetrad for the convenience of calculations. In the case that Eq. (2.52) is violated due
to those rotations, we will use Eqs. (2.46) and (2.51) as our background tetrad.

Besides 𝜁 and 𝜖 , one may have to deal with additional expansion parameters, such
as the dimensionless spin 𝜒 in the slow-rotation expansion, but an expansion in
𝜁 and 𝜖 is necessary and sufficient to demonstrate how the Teukolsky equation in
modified gravity can be derived. Below, we may write some quantities with only one
superscript, e.g., Ψ(𝑛) , which represents the 𝑛-th order term in the expansion of Ψ in
𝜖 , as shown in the first line of Eq. (2.52), so all the other expansions are hidden for
simplicity.

2.4 Perturbations of Petrov type D spacetimes in theories beyond GR
In this section, we present a method to extend the formalism shown in Sec. 2.2 for
obtaining the perturbation equations for Petrov type D BHs in modified theories
of gravity discussed in Sec. 2.3.1. We particularly focus on spacetimes that are
stationary and vacuum solutions to modified gravity theories, and although they
may not be Ricci flat, they remain of Petrov type D. As discussed in Sec. 2.3.1, an
example of such a spacetime is BH solutions in dCS gravity, expanded to leading
order in the dimensionless spin parameter [66, 69] and obtained in an effective field
theory (EFT) approach. We will use the perturbation scheme introduced in Sec. 2.3.2.
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Extending the formalism developed for Petrov type D spacetimes in GR (either the
traditional Teukolsky’s approach or the Chandrasekhar’s approach) to include Petrov
type D spacetimes that are non-Ricci-flat in modified gravity is a stepping stone
in developing a formalism that is applicable to algebraically general Petrov type I
spacetimes in beyond GR theories.

2.4.1 Extending the Teukolsky formalism beyond GR: non-Ricci-flat and
Petrov type D backgrounds

In this subsection, we present an extension to the Teukolsky formalism presented
in Sec. 2.2.2 for non-GR non-Ricci-flat Petrov type D spacetimes. We follow a
procedure similar to that presented in Sec. 2.2.2 with the aim of developing a
formalism to obtain the decoupled differential equation describing the dynamical
pieces of Ψ0 and Ψ4. This subsection along with the next one form the backbone of
the development of a formalism for the algebraically general Petrov type I spacetimes
in beyond GR theories.

We begin by considering modified theories of gravity whose isolated (stationary
and vacuum) BH solutions are non-Ricci-flat, i.e., the Ricci tensor obtained from
trace-reversed vacuum field equations (i.e., no matter present) no longer vanish. For
instance, in theories such as dCS or EdGB, where a scalar field is non-minimally
coupled to a quadratic term in curvature [52, 54, 65, 66], cubic, or higher-order
theories of gravity [80, 81, 116–119, 127], the metric field equations lead to a
non-vanishing Ricci tensor and are therefore non-Ricci-flat. This can easily be seen
in the dCS gravity example with the trace-reversed field equation (2.38), where the
Ricci tensor clearly does not vanish even in vacuum due to the non-vanishing of the
Riemann tensor and a non-trivial pseudo-scalar field.

When the background is non-Ricci-flat, the unperturbed Bianchi identities acquire
sources. In the NP language, the non-vanishing of the Ricci tensor implies that
NP Ricci scalars Φ𝑖 𝑗 for 𝑖, 𝑗 ∈ (0, 1, 2) also do not vanish [see e.g., Eq. (2.19)].
Consequently, the source terms of Eqs. (2.13a)-(2.13b) are non-vanishing for non-
Ricci-flat, non-GR BH background. But if we require that the non-Ricci-flat
background be of Petrov type D, then the background Weyl scalars

Ψ
(0)
0 = Ψ

(0)
1 =Ψ

(0)
3 = Ψ

(0)
4 = 0 . (2.54)

Unlike in the GR case, however, the background spin coefficients no longer vanish
in general, as one can verify explicitly by inserting Eq. (2.54) in Eqs. (2.123).
Consequently, we still have additional terms that are non-vanishing in the equations
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presented in Sec. 2.2.2. More specifically, the full Bianchi identities recast in the
form of Eqs. (2.13) now take the form

𝐹1Ψ0 − 𝐽1Ψ1 − 3𝜅Ψ2 = 𝑆1 , (2.55a)

𝐹2Ψ0 − 𝐽2Ψ1 − 3𝜎Ψ2 = 𝑆2 , (2.55b)

𝐸2𝜎 − 𝐸1𝜅 − Ψ0 = 0 , (2.55c)

where 𝑆1 and 𝑆2 are given in Eq. (2.10), (𝐸1,2, 𝐹1,2, 𝐽1,2) are defined in Eq. (2.11),
and (𝜅, 𝜎) are spin coefficients presented in Appendix 2.8. Notice that we have
not yet performed a perturbative expansion to separate the background from the
perturbed Weyl scalars.

Adapting a method similar to that presented in Sec. 2.2.2 to obtain a differential
equation for Ψ0, we need to eliminate the Ψ1 dependence from the above equations by
developing an appropriate commutation relation for this type of beyond GR theories.
While eliminating the Ψ1 dependence, we will also naturally decouple Ψ0 from
the 𝜅 and 𝜎 dependence in the above equations, as shown below. To decouple the
equations, we prescribe the following steps:

1. Multiply Eq. (2.55c) by Ψ2.

2. Use the chain rule such that the intrinsic derivatives act on the product of Ψ2

with either 𝜎 or 𝜅. For instance,

Ψ2(𝐷𝜎) = 𝐷 (Ψ2𝜎) − 𝜎(𝐷Ψ2) . (2.56)

For modified theories of gravity, the second term above is different from
Eq. (2.22) because it is modified due to the non-vanishing of the NP Ricci
scalars. For instance, when looking at Eq. (2.123h),

𝐷Ψ2 = 3𝜌Ψ2 − 𝑃1 , (2.57)

where 𝑃1 are all the non-vanishing terms from the Bianchi identity in
Eq. (2.123h). However, when working with this approach, we have more
algebraic complications involved in decoupling all curvature perturbations.
Therefore, for the purpose of this subsection, we continue to work with
Eq. (2.56).

3. Using Eq. (2.56), we can rewrite the operators in Eq. (2.55c) as E1 and E2, as
defined in Eqs. (2.34).
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4. The commutator acting on Ψ1 is then given by

(E2𝐽2 − E1𝐽1) Ψ1 . (2.58)

5. Now expand Ψ1 as shown in Eq. (2.52), i.e.,

Ψ1 = Ψ
(0,0)
1 + 𝜁Ψ(1,0)

1 + 𝜖Ψ(0,1)
1 + 𝜁𝜖Ψ(1,1)

1 . (2.59)

Since the BH background is Petrov type D, the background Ψ
(0,0)
1 and Ψ

(1,0)
1

vanish. The quantity Ψ
(0,1)
1 is generated by the perturbed (GW) metric in GR,

which can be set to zero through a convenient choice of gauge, as we have
shown in Sec. 2.2.3. Therefore, to leading order in 𝜁 and 𝜖 , the terms inside
the parenthesis of Eq. (2.58) must be evaluated on the GR BH background as
in Eq. (2.25). Following these arguments, the commutator given by Eq. (2.58)
vanishes for non-Ricci-flat and Petrov type D BH backgrounds in the class of
modified gravity theories we considered.

Multiplying Eqs. (2.55a) and (2.55b) by E1 and E2, respectively, subtracting one
from the other, and expanding to leading order in 𝜖 , we find

𝐻
(0)
0 Ψ

(1)
0 = S (1) , (2.60)

where we have defined

𝐻0 = E2𝐹2 − E1𝐹1 − 3Ψ2 , (2.61a)

S = E2𝑆2 − E1𝑆1 . (2.61b)

Expanding Eq. (2.60) using the two parameter expansion in Eq. (2.52), at leading
orders in 𝜁 and 𝜖 , we have

𝐻
(0,0)
0 Ψ

(1,1)
0 + 𝐻 (1,0)

0 Ψ
(0,1)
0 = S (1,1) . (2.62)

Notice, similar to the case in GR, the expansion in 𝜖 is sufficient to derive Eq. (2.60),
and an expansion in 𝜁 is imposed at the end to get the equation at O(𝜁1, 𝜖1).

We can now use the GHP transformation to derive an analogous modified Teukolsky
equation for the perturbed Ψ4. Let us then apply the exchange transformation
𝑙𝜇 ↔ 𝑛𝜇, 𝑚𝜇 ↔ 𝑚̄𝜇 to Eq. (2.60) and use the definitions given in Eq. (2.11) to find

𝐻
(0)
4 Ψ

(1)
4 = T (1) , (2.63)
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which, expanded in 𝜁 , becomes

𝐻
(0,0)
4 Ψ

(1,1)
4 + 𝐻 (1,0)

4 Ψ
(0,1)
4 = T (1,1) , (2.64)

where we have defined

𝐻4 = E4𝐹4 − E3𝐹3 − 3Ψ2 , (2.65a)

T = E4𝑆4 − E3𝑆3 . (2.65b)

𝑆3 and 𝑆4 are defined in Eq. (2.10), while E3 and E4 are defined in Eq. (2.34).

Equations (2.60) and (2.63) therefore represent a modified Teukolsky equation. The
differential operators acting on Ψ

(1)
0,4 are similar in functional form to those of the

standard Teukolsky equation in GR. Notice, however, that these operators are not the
same as their GR counterparts [i.e., corrected by 𝐻 (1,0)

0,4 in Eqs. (2.62) and (2.64)]
because the Bianchi identities are modified. In the GR limit, one can of course
show that they are equivalent to each other because the Bianchi identities no longer
depend on NP Ricci scalars, so they reduce to Eq. (2.22). Note importantly that the
left-hand side of Eqs. (2.60) and (2.63) describe all GW perturbations since they are
not expanded in power of 𝜁 .

The modified Teukolsky equations (2.60) and (2.63) contain source terms that are of
O(𝜁) and thus absent in GR. After an expansion in 𝜁 in Eqs. (2.62) and (2.64), we
notice that the source terms S (1) and T (1) depend on dynamical NP quantities at
O(𝜁1, 𝜖1) [i.e., S (1,1) and T (1,1)]. These sources terms depend on the 𝑆𝑖 terms in
Eqs. (2.61b) and (2.65b), which are products of differential operators constructed
from the tetrad and the NP Ricci scalars Φ𝑖 𝑗 . As discussed in Sec. 2.3.2, since 𝑅𝜇𝜈 is
O(𝜁), Φ𝑖 𝑗 is always of O(𝜁1, 𝜖0) or O(𝜁1, 𝜖1), which then means the tetrad that is
needed to compute the differential operators must be of O(𝜁0, 𝜖0) and O(𝜁0, 𝜖1). In
addition, all the metric fields in 𝑅𝜇𝜈 must also be of O(𝜁0, 𝜖0) and O(𝜁0, 𝜖1). We
therefore conclude that curvature perturbations of a non-Ricci-flat, Petrov type D
BH background satisfy a decoupled equation.

The tetrad at O(𝜁0, 𝜖0) is just the Kinnersley tetrad of Eq. (2.26), but the tetrad at
O(𝜁0, 𝜖1) must be reconstructed from the metric perturbation at O(𝜁0, 𝜖1). That
is, one needs to first solve the Teukolsky equation in GR for the GR Weyl scalars
Ψ

(0,1)
0,4 and then reconstruct the GR GW metric perturbation to build the perturbed

tetrad at O(𝜁0, 𝜖1). This is in stark contrast to the GR case since for a Ricci-flat
Petrov type D BH background in GR, metric reconstruction is not required to
study GW perturbations. Metric reconstruction in GR has already been worked
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out in the vacuum case by Chrzanowski [90] and Cohen and Kegeles [91] (see e.g.,
[128, 129] for a short review) using Hertz potential. There are also approaches
that avoid using Hertz potential by solving the remaining Bianchi identities, Ricci
identities, and commutation relations, for example in [40, 92]. Clearly then, such
metric reconstruction in GR is possible, and we leave a further analysis of their
implementation in our decoupled equations to future work.

2.4.2 Extending Chandrasekhar’s approach beyond GR: non-Ricci-Flat and
Petrov type D backgrounds

Similar to the Petrov type D vacuum GR case, we can also follow Chandrasekhar’s
approach to remove Ψ

(1)
1 directly. By doing the same type II rotation of Sec. 2.2.3

with the rotation parameter 𝑏 (1) = −Ψ(1)
1 /(3Ψ(0)

2 ), we can set Ψ(1)
1 = 0. Then, from

Eqs. (2.55a)-(2.55b), we again solve for 𝜅 and 𝜎 first. Notice that the 𝜅 and 𝜎 we
have solved for may also contain O(𝜖0) terms since they do not necessarily vanish
in a non-Ricci-flat Petrov type D background. We then insert the solutions for 𝜅
and 𝜎 in terms of Ψ(1)

0 and 𝑆(1)
𝑖

back into Eq. (2.55c) to obtain a single equation for
Ψ

(1)
0 . We have verified explicitly that this equation is exactly the same as Eq. (2.60).

Applying the GHP transformation, one again finds Eq. (2.63) for Ψ(1)
4 .

As shown above, the final modified Teukolsky equation obtained using the two
approaches (i.e., the Teukolsky’s approach and Chandrasekhar’s approach) are equiv-
alent for both Ricci-flat and non-Ricci-flat, Petrov type D BH backgrounds. A main
difference between the two methods is in how the equations for the curvature pertur-
bations Ψ0 and Ψ4 are decoupled from Ψ1 and Ψ3, respectively. Chandrasekhar’s
approach has a significant algebraic advantage over Teukolsky’s original formalism,
as the former utilizes available gauge freedom to make convenient gauge choices to
eliminate Ψ1 and Ψ3 dependence. For non-Ricci-flat, Petrov type D backgrounds
in modified gravity, Teukolsky’s approach is not significantly more complicated
than in GR, but this is no longer true when considering non-Ricci-flat, Petrov type I
backgrounds. In the latter case, Teukolsky’s approach is more involved because of
the non-vanishing of additional NP quantities leading to more non-vanishing terms in
these equations. In Chandrasekhar’s approach, however, one can continue to leverage
gauge freedom to eliminate certain NP quantities without the need for developing a
commutator relation like that of Eqs. (2.25) and (2.58) or using additional Bianchi
identities. Because of this, we will employ Chandrasekhar’s approach in what
follows to develop a formalism to study perturbations of non-Ricci-flat, Petrov type I
spacetimes in modified theories of gravity.
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2.5 Extension of the Teukolsky formalism beyond GR: non-Ricci-flat and
non-Petrov-type-D backgrounds

In this section, we extend Chandrasekhar’s approach to non-Ricci-flat backgrounds
that are algebraically general. As seen in Sec. 2.2.3 and 2.4.2, choosing a convenient
gauge for the background and for the perturbed NP quantities, certain NP quantities
can be eliminated from the NP equations when deriving the (modified) Teukolsky
equation to obtain a single decoupled equation for Ψ0 and Ψ4. In this section, we
first explore these gauge choices for background and perturbed NP quantities in more
detail while treating the Petrov type I spacetime as a linear perturbation of a Petrov
type D spacetime in GR. We then derive the master equations for dynamical Weyl
scalars Ψ0 and Ψ4, discuss the modifications introduced due to non-GR effects, and
provide a brief discussion on how to evaluate this equation for beyond GR theories.

Before proceeding with this section, it is important to distinguish between two
background concepts that we introduce in this work. In general, the line element of a
BH background spacetime for theories beyond GR discussed in Sec. 2.3.1 can be
expressed as

𝑑𝑠2 = 𝑑𝑠2
GR + 𝜁𝑑𝑠2

bGR . (2.66)

Here, we have introduced the following symbols:

(i) 𝑑𝑠2 is the line element of the background spacetime or the background for
short, which is the stationary part of the full spacetime.

(ii) 𝑑𝑠2
GR is the line element of the original background, which is the background

all the perturbations, including the stationary ones (e.g., 𝑑𝑠2
bGR), are built on

top of.

For instance, the line element of a slowly rotating BH in dCS gravity to leading order
in spin takes the form of Eq. (2.66) with [102]

𝑑𝑠
2
dCS =

5𝑀4

4
𝑎

𝑟4

(
1 + 12

7
𝑀

𝑟
+ 27

10
𝑀2

𝑟2

)
sin2 𝜃𝑑𝑡𝑑𝜙 , (2.67)

𝑑𝑠2
GR = − 𝑓 (𝑟)𝑑𝑡2 − 4𝑀𝑎 sin2 𝜃

𝑟
𝑑𝑡𝑑𝜙 + 𝑓 (𝑟)−1𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2 . (2.68)

Here, in our notation, the original background is given by Eq. (2.68) whereas the
background spacetime is given by the sum of Eqs. (2.67) and (2.68). This is of
course just a simple example of our notation, which holds true for theories that can
be described using the Lagrangian given in Eq. (2.35). In general, the background
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Figure 2.2: A diagram to illustrate the meaning of different terms in the expansion
of NP quantities in Eq. (2.52).

spacetime includes O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0) parts, while the original background is
just of O(𝜁0, 𝜖0) (i.e., it is the Kerr BH spacetime for arbitrarily spinning BHs).

Although the concepts of a background and an original background spacetime may
sometimes correspond to the same thing (e.g., to the Kerr BH spacetime in GR), these
concepts can sometimes be different in modified gravity theories. For example, in
the theories discussed in Sec. 2.3.1, the Kerr metric is not a solution for all stationary
and axisymmetric BHs. Rather these BHs are represented by spacetimes that are
non-Ricci-flat and non-Petrov-type-D when not expanded in spin. In such cases, the
background of the dynamical gravitational perturbation we study would be such a
non-Ricci-flat and non-Petrov-type-D spacetime, but the original background would
still be the Kerr spacetime. In Fig. 2.2, we present the relation between these two
different background concepts and the terms in the expansion of NP quantities in
Eq. (2.52).

2.5.1 Gauge choice for the background spacetime: O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0)
For a non-Petrov-type-D modified background spacetime, the gauge choice in
Eq. (2.54) is not possible. For example, as found in [103], the metric describing
a rotating BH in dCS gravity need not be of Petrov type D once one incorporates
second-order and higher in rotation effects; in that case, the metric is now of Petrov
type I, which is the most general type in the Petrov classification. However, we can
still set Ψ(0)

0 = Ψ
(0)
4 = 0 for a Petrov type I spacetime as discussed in [40] and shown

for dCS gravity in [69], so we could use a gauge such that

Ψ
(0,0)
0,1,3,4 = 0 , Ψ

(1,0)
0 = Ψ

(1,0)
4 = 0 , (2.69)

but we will not for the following reasons.

Although the gauge defined by requiring that Eq. (2.69) holds simplifies Eqs. (2.13)
and (2.14), it may spoil our assumption that the leading correction to the tetrad enters
at O(𝜁1). As shown in [69], for dCS gravity in the slow-rotation approximation, in
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order to impose that Ψ(1,0)
0 = Ψ

(1,0)
4 = 0 at O(𝜒2), we need to modify the tetrad at

O(𝜁 1
2 , 𝜒2), and this induces a nonzero Ψ

( 1
2 ,0)

1 and Ψ
( 1

2 ,0)
3 . These O(𝜁 1

2 ) terms are
not covered by our expansion strategy in Eq. (2.52), which only contains terms of
O(𝜁0, 𝜖0), O(𝜁1, 𝜖0), O(𝜁0, 𝜖1), and O(𝜁1, 𝜖1) for all quantities. For this reason, we
only impose

Ψ
(0,0)
0,1,3,4 = 0 (2.70)

and leave all O(𝜁1, 𝜖0) perturbations general. These properties are summarized on
the left two columns of Table 2.1. In this case, we will use the background tetrad in
Eqs. (2.46) and (2.51) such that Eq. (2.70) is satisfied, and the expansion in Eq. (2.52)
is not broken.

2.5.2 Gauge choice for the dynamical perturbations: O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1)
Different gauge choices can be made separately at different perturbative orders.
Sec. 2.5.1 fixed the gauge for the background spacetime at O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0),
but we still have gauge freedom at O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1). As in Secs. 2.2.3 and
2.4.2, we shall impose

Ψ
(0,1)
1 = Ψ

(0,1)
3 = Ψ

(1,1)
1 = Ψ

(1,1)
3 = 0 . (2.71)

In this gauge, Eqs. (2.13a)-(2.13b) for the dynamical part of Ψ0 and Ψ1 decouple
directly, and so do Eqs. (2.14a)-(2.14b) for the dynamical part of Ψ3 and Ψ4.

As discussed in [40], in a Petrov type D spacetime, we can always make a gauge
choice such that the linear perturbations to Ψ1 and Ψ3 vanish without affecting Ψ0

and Ψ4, so only Ψ0 and Ψ4 are gauge invariant quantities in a linear perturbation
theory. Since at O(𝜁0), the background spacetime is the Petrov type D spacetime
of GR, it then follows that we can always make the gauge choice in Eq. (2.71) at
O(𝜁0, 𝜖1).

Next, we need to show that Eq. (2.71) holds at O(𝜁1, 𝜖1). If we treat Ψ(1,1)
1,3 as the

O(𝜁0, 𝜖1) perturbation to Ψ
(1,0)
1,3 , it is not clear that we can make a gauge choice in

Eq. (2.71) since the background spacetime at O(𝜁1, 𝜖0) is not necessarily Petrov type
D. However, we can also treat Ψ(1,1)

1,3 as the O(𝜁1, 𝜖1) perturbation to Ψ
(0,0)
1,3 in the

original background. Since the original background is the Petrov type D spacetime
in GR, Eq. (2.71) should still hold.

Let us show that, atO(𝜁1, 𝜖1),Ψ(1,1)
1,3 can be eliminated by a tetrad rotation atO(𝜁1, 𝜖1).

Let us consider Ψ(1,1)
1 explicitly and apply a type II rotation [cf. Eq. (2.126b)], with
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a parameter 𝑏 (1,1) at O(𝜁1, 𝜖1). This leads to, at O(𝜁1, 𝜖1),

Ψ
(1,1)
0 → Ψ

(1,1)
0 + 4𝑏 (1,1)Ψ(0,0)

1 ,

Ψ
(1,1)
1 → Ψ

(1,1)
1 + 3𝑏 (1,1)Ψ(0,0)

2 ,

Ψ
(1,1)
2 → Ψ

(1,1)
2 + 2𝑏 (1,1)Ψ(0,0)

3 ,

Ψ
(1,1)
3 → Ψ

(1,1)
3 + 𝑏 (1,1)Ψ(0,0)

4 ,

Ψ
(1,1)
4 → Ψ

(1,1)
4 .

(2.72)

We are motivated to require that 𝑏 = O(𝜁1, 𝜖1) since we want to perturb about the
original background. By letting 𝑏 (1,1) = −Ψ(1,1)

1 /(3Ψ(0,0)
2 ), we can set Ψ(1,1)

1 = 0.
With the background gauge choice that ensures Eq. (2.70) holds, we can easily see
from Eq. (2.72) that all the other Weyl scalars at O(𝜁1, 𝜖1) are unaffected such that

Ψ
(1,1)
1 → 0 , Ψ

(1,1)
0,2,3,4 → Ψ

(1,1)
0,2,3,4 . (2.73)

Similarly, by applying a type I rotation [Cf. Eq. (2.126a)] and choosing the rotation
parameter 𝑎 (1,1) = [−Ψ(1,1)

3 /(3Ψ(0,0)
2 )]∗, we can set

Ψ
(1,1)
3 → 0 , Ψ

(1,1)
0,1,2,4 → Ψ

(1,1)
0,1,2,4 . (2.74)

Properties of the O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1) contributions to the Weyl scalars are
summarized on the right half of Table 2.1.

2.5.3 Modified Teukolsky equation in non-Ricci-flat and algebraically general
backgrounds

We can now derive the modified Teukolsky equation for non-Ricci-flat and Petrov
type I spacetimes. Here, we only show how to obtain the equation for the dynamical
perturbation to Ψ0, but the same procedure can be applied to Ψ4, or one can perform
the GHP transformation 𝑙𝜇 ↔ 𝑛𝜇, 𝑚𝜇 ↔ 𝑚̄𝜇 on the Ψ0 equation to find the equation
for Ψ4 [100].

2.5.3.1 Elimination of 𝜅 and 𝜎

From Eqs. (2.13a)-(2.13b), we can solve for 𝜅 and 𝜎 in terms of other NP quantities.
Inserting 𝜅 and 𝜎 from Eqs. (2.13a)-(2.13b) into Eq. (2.13c) and multiplying the
resulting equation by 3Ψ2 to match the form of the original Teukolsky equation [44]
when 𝜁 = 0, one finds

Ψ2𝐸2
[
Ψ−1

2 (𝐹2Ψ0 − 𝐽2Ψ1 − 𝑆2)
]
− Ψ2𝐸1

[
Ψ−1

2 (𝐹1Ψ0 − 𝐽1Ψ1 − 𝑆1)
]
− 3Ψ2Ψ0 = 0 .

(2.75)
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Types of Terms
Stationary Background Dynamical GWs

Original
Background

(GR)

Stationary
Modification to

Original
Background

GWs on
Original

Background

GW
Corrections

Weyl
Scalar

Orders O(𝜁0, 𝜖0) O(𝜁1, 𝜖0) O(𝜁0, 𝜖1) O(𝜁1, 𝜖1)

Ψ0 0 ≠ 0 ≠ 0(𝑎) ≠ 0(𝑎)

Ψ1 0 ≠ 0 0(𝑏) 0(𝑏)

Ψ2 ≠ 0 ≠ 0 ≠ 0(𝑐) ≠ 0(𝑑)

Ψ3 0 ≠ 0 0(𝑏) 0(𝑏)

Ψ4 0 ≠ 0 ≠ 0(𝑎) ≠ 0(𝑎)

Table 2.1: Properties of Weyl scalars in the Chandrasekhar gauge for non-Petrov-
type-D modified BH spacetimes with GWs. Quantities on the stationary background
columns are already known. For quantities on the dynamical GWs columns, items
labeled as (𝑎) are scalars that need to be solved for, labeled as (𝑏) are set to zero by
gauge, labeled as (𝑐) can be reconstructed from Ψ

(0,1)
0 or Ψ(0,1)

4 , while labeled by
(𝑑) do not appear in the modified Teukolsky equation.

Re-organizing this equation to extract the operators that act on Ψ0, Ψ1, 𝑆1, and 𝑆2,
we find

𝐻0Ψ0 − 𝐻1Ψ1 = S , (2.76)

where 𝐻0 and S are defined in Eq. (2.61), and we have defined

𝐻1 ≡ E2𝐽2 − E1𝐽1 , (2.77)

with E𝑖 defined in Eq. (2.34).

2.5.3.2 Gauge choice and general strategy

The derivation so far has combined the three equations in Eqs. (2.13a)-(2.13c)
into a single equation (2.76). Our next goal is to keep only Ψ

(1,1)
0 and no other

O(𝜁1, 𝜖1) contributions of Weyl scalars, spin connection coefficients, or intrinsic
derivatives. Note that O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0) are known background components,
while O(𝜁0, 𝜖1) can be reconstructed from linear perturbation of Kerr.

For terms on the left-hand side of Eq. (2.76), we will find the following pattern,
where an operator 𝑂 operates on a field 𝜓, and we are interested in the O(𝜁1, 𝜖1)
component, with

(𝑂𝜓) (1,1) = 𝑂 (1,1)𝜓 (0,0) +𝑂 (0,1)𝜓 (1,0) +𝑂 (1,0)𝜓 (0,1) +𝑂 (0,0)𝜓 (1,1) . (2.78)
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As we shall see in Sec. 2.5.3.3, because of our gauge choice in Table 2.1, the only
non-vanishing O(𝜁1, 𝜖1) quantity we will encounter will be Ψ

(1,1)
0 .

For terms on the right-hand side of Eq. (2.76), we will argue in Sec. 2.5.3.4 that
they can all be obtained from the background geometry and the O(𝜁0, 𝜖1) metric
perturbation ℎ(0,1) because GWs on the modified background ℎ(1,1) do not contribute
to the source term.

2.5.3.3 Analysis of the general modified Teukolsky equation: the 𝐻0Ψ0 and
𝐻1Ψ1 terms

For the first term on the left-hand side of Eq. (2.76), expanding 𝐻0Ψ0 to O(𝜁1, 𝜖1),
one finds the following three types of terms:

(𝐻0Ψ0) (1,1) = 𝐻 (0,0)
0 Ψ

(1,1)
0 + 𝐻 (1,0)

0 Ψ
(0,1)
0 + 𝐻 (0,1)

0 Ψ
(1,0)
0 . (2.79)

Since at O(𝜁0, 𝜖0), Eq. (2.76) becomes 𝐻 (0,0)
0 Ψ

(0,0)
0 = 0, 𝐻 (0,0)

0 is the Teukolsky
differential operator that acts on Ψ0 in GR, which was discussed in Sec. 2.4.1.
Therefore, the first term in Eq. (2.79) is just the Teukolsky equation in GR but for
Ψ

(1,1)
0 . The second term vanishes in GR but is generically nonzero in modified

gravity. This is because Ψ
(0,1)
0 is a solution to the Teukolsky equation presented

in Eq. (2.26). As discussed in Sec. 2.2, this is a gauge invariant quantity and thus
non-vanishing in general. On the other hand, the operator 𝐻 (1,0)

0 can be evaluated
using the background metric for the spacetime in the modified theory of gravity
under consideration.

The third term only shows up for non-Petrov-type-D spacetime since Ψ
(1,0)
0 = 0 if

the modified background spacetime is Petrov type D. The operator 𝐻 (0,1)
0 contains

Weyl scalars, spin coefficients, and intrinsic derivatives at O(𝜁0, 𝜖1), so as discussed
at the end of Sec. 2.4.1, we need to reconstruct the metric of GW perturbations in
GR. By applying one of these metric reconstruction procedures and rotating the
reconstructed tetrad to the gauge in Eq. (2.71), one is able to evaluate all the terms in
𝐻

(0,1)
0 .

The last two terms in Eq. (2.79) come from the homogeneous part of the Bianchi
and Ricci identities. These terms are purely geometrical, and we can interpret them
as source terms induced by stationary perturbations contained in the background
geometry. We can then rewrite Eq. (2.79) as

(𝐻0Ψ0) (1,1) = 𝐻GR
0 Ψ

(1,1)
0 − S (1,1)

0,D − S (1,1)
0,non-D , (2.80)
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where we have defined

𝐻GR
0 ≡ 𝐻 (0,0)

0 , (2.81)

S (1,1)
0,D ≡ −𝐻 (1,0)

0 Ψ
(0,1)
0 , (2.82)

S (1,1)
0,non-D ≡ −𝐻 (0,1)

0 Ψ
(1,0)
0 . (2.83)

Moving on to the second term on the left-hand side of Eq. (2.76) and using properties
in Table 2.1, we obtain

(𝐻1Ψ1) (1,1) = 𝐻 (0,1)
1 Ψ

(1,0)
1 . (2.84)

Similar to 𝐻 (0,1)
0 , 𝐻 (0,1)

1 is also made up of Weyl scalars, spin coefficients, and
intrinsic derivatives at O(𝜁0, 𝜖1), so we need metric reconstruction for this term
as well. This term vanishes in any Petrov type D spacetime since Ψ1 = 0 with an
appropriate choice of gauge at the background level. Similar to 𝐻 (0,1)

0 Ψ
(1,0)
0 , we can

effectively treat 𝐻 (0,1)
1 Ψ

(1,0)
1 as a source term involving Ψ

(1,0)
1 and induced by the

stationary perturbation of background geometry. Let us then define

S (1,1)
1,non-D ≡ 𝐻 (0,1)

1 Ψ
(1,0)
1 . (2.85)

The source term S (1,1)
1,non-D along with the source terms S (1,1)

0,D and S (1,1)
0,non-D given

in Eqs. (2.82)-(2.83) come from the homogeneous part of the Bianchi and Ricci
identities. Grouping these source terms together, we define

S (1,1)
geo ≡ S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D . (2.86)

2.5.3.4 Analysis of the general modified Teukolsky equation: the S term

Besides the source terms generated by the correction to the background metric,
we also have corrections to the Einstein-Hilbert action due to modified gravity
theory, including extra fields not present in GR (i.e., class A beyond GR theories)
or higher-order terms in curvature (i.e., class B beyond GR theories) as discussed
in detail in Sec. 2.3.1. In a perturbative treatment, all these corrections manifest as
some source terms on the right-hand side of the Einstein equations, so we have a
non-zero “effective” stress tensor, or in the trace reversed form, a non-zero Ricci
tensor, even in the case without ordinary matter (see e.g., the discussion of dCS
gravity, EdGB gravity, and higher-derivative gravity cases in Sec. 2.3.1).

Let us first look at class A beyond GR theories, where there are additional fields
introduced by modified gravity, such as the pseudo scalar field coupled to the
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Pontryagin density in dCS gravity. Let us focus on one of these extra fields, which we
represent generically as 𝜗. Since this field vanishes in GR, 𝜗(0,0) = 𝜗(0,1) = 0 also
in general. From Eqs. (2.10a)-(2.10b), we see that the terms in 𝑆𝑖 couple Φ𝑖 𝑗 with
either the directional derivatives or the spin coefficients. According to Eq. (2.121),
the Φ𝑖 𝑗 are linear functions of 𝑅𝜇𝜈 contracted with the tetrad basis,

Φ𝑖 𝑗 ∝ 𝑅𝜇𝜈𝑒𝑖 𝜇𝑒 𝑗 𝜈 , {𝑖, 𝑗} ∈ {0, 1, 2} . (2.87)

Since 𝜗(0,0) = 𝜗(0,1) = 0, Φ(1,1)
𝑖 𝑗

∼ 𝜗(1,0)ℎ(0,1) + 𝜗(1,1)𝑔(0,0) , where 𝑔(0,0) represents
the terms only involving background metric in GR. Then, 𝑆𝑖 in S can only enter at
O(𝜁1), so

S (1,1) = E (0,0)
2 𝑆

(1,1)
2 − E (0,0)

1 𝑆
(1,1)
1 + E (0,1)

2 𝑆
(1,0)
2 − E (0,1)

1 𝑆
(1,0)
1

∼ 𝜗(1,0)ℎ(0,1) + 𝜗(1,1)𝑔(0,0) .
(2.88)

The source S at O(𝜁1, 𝜖1), S (1,1) , couples the GWs in GR and the extra field 𝜗, so
we need to solve the equations of motions of these non-gravitational fields to find
their contributions to the stress tensor and S (1,1) in the modified Teukolsky equation.
In our notation, the modified Teukolsky equation describing the evolution of the GW
perturbations due to the modification to GR can then be expressed as

𝐻GR
0 Ψ

(1,1)
0 = S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D + S (1,1) , (2.89)

where all the quantities have been defined in Eqs. (2.82), (2.83), (2.85), and (2.61b).
Notice that the differential operator acting on Ψ

(1,1)
0 is the same as the differential

operator that appears in the Teukolsky equation for GR BH spacetimes discussed
previously in Sec. 2.2.2.

One can find the solution to these extra fields in different ways. One way is to solve
the equations of motions of these extra fields and the modified Teukolsky equation in
parallel. Another way is to use the order-reduction scheme introduced in [125], in
which one solves the equations of motions of these extra fields first and then insert
them into the modified Teukolsky equation. Notice here that we have absorbed the
coupling constant multiplying 𝜗 in 𝑅𝜇𝜈 into the perturbative order of 𝜗. For example,
as discussed in Sec. 2.3.2, 𝜗 itself is usually of O(𝛼bGR), where 𝛼bGR is the coupling
constant in front of LbGR in Eq. (2.35). The same coupling constant also shows up
in front of these beyond GR corrections in 𝑅𝜇𝜈, e.g., Eqs. (2.38) and (2.42), so the
contribution of 𝜗 to 𝑅𝜇𝜈 is of O(𝛼2

bGR) or O(𝜁). Thus, the equation of motion of
𝜗 is at lower order than the gravitational field equation, which allows us to follow
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the order-reduction scheme in [125], although this procedure is likely to introduce
secularly-growing uncontrolled remainders. All these calculations depend on the
details of the target modified gravity theory, so we will not discuss them in detail
here, and instead provide some examples in Sec. 2.5.3.5 and leave the case-by-case
study to future work.

Another way to generate these source terms is due to corrections to the Einstein-
Hilbert action that are only made up of gravitational fields, e.g., higher-derivative
gravity [116–119], which we classified as class B beyond GR theories in Sec. 2.3.1.
In this case, by pure order counting, the kind of terms that can appear are of the form
ℎ(1,0)ℎ(0,1) . These terms are similar in form to S (1,1)

geo , given in Eq. (2.86), and so have
that S (1,1)

geo = O(ℎ(1,0)ℎ(0,1)). Therefore, S (1,1)
geo takes the form of a coupling between

the GWs in GR and the stationary modification to the background metric. Though
ℎ(1,0) can be generated by 𝜗(1,0) , if we treat it as an arbitrary stationary correction
to the background metric, the way it couples to GWs in GR is independent of the
gravity theory, as we have discussed above. In contrast, the source terms coming
from the non-vanishing stress tensor and made up of only gravitational fields depend
on the details of the modified gravity theory, so they cannot be treated universally
when only knowing the correction to the background metric. On the other hand,
like these S (1,1)

geo terms, we do not need to solve the equations of motion of other
non-gravitational fields, so these terms can be evaluated directly with the background
metric and the reconstructed metric for GWs in GR when knowing the stress tensor
in the target modified gravity theory.

One of the major successes of Teukolsky’s formalism in GR, presented in Sec. 2.2.2,
was the separation of the master equation into a radial and an angular equation, when
written in a coordinate basis, such as in the Boyer-Lindquist coordinates of the Kerr
BH spacetime. Each of these equations need then to be solved independently as
an eigenvalue problem. Since the differential operator acting on the beyond GR,
leading-order correction to GW perturbations remains unchanged from GR, the
left-hand side of the beyond GR master equation in Eq. (2.89) is naturally separable
into a radial and an angular part. Furthermore, one can separate the right-hand side
of Eq. (2.89) by making use of the orthogonality properties of the spin-weighted
spheroidal harmonics (which are the solution to the angular master equation for GR
BH Petrov type D spacetimes) to project the source terms onto the original angular
basis. Following this trick, the separability of the master equations into a radial
and an angular equation must hold for beyond GR, Petrov type I, non-Ricci-flat
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spacetimes as well. When looking at the example theories presented in Sec. 2.3.1,
one may also encounter a mode coupling between different ℓ modes (e.g., between ℓ
and ℓ ± 1 modes at leading order in the slow rotation expansion [54–56]). This is
seen when coupling between different perturbation functions exist, both in GR [88]
and beyond GR theories [54–57].

2.5.3.5 Examples of equations of motion of extra (non-metric) fields

In the previous section, we showed that to evaluate S (1,1) , one needs to solve the
equations of motion of these non-metric extra fields. In this section, we provide the
equations of motion of the pseudoscalar field 𝜗 in dCS gravity and the scalar field 𝜃
in EdGB gravity as a demonstration.

In dCS gravity, expanding the equation of motion of 𝜗 in Eq. (2.39) using the
perturbation scheme in Eq. (2.52), we find, at O(𝜁1, 𝜖1),

□(0,0)𝜗(1,1) = − 1

16𝜋
1
2
𝑀2 [𝑅∗𝑅] (0,1) − □(0,1)𝜗(1,0) , (2.90)

where 𝑅∗𝑅 is a shorthand for ∗𝑅𝜇𝜈𝜅𝜎𝑅𝜈𝜇𝜅𝜎, and we follow [54] to use 𝜁dCS ≡
16𝜋𝛼2

dCS/𝑀4 as the dCS gravity expansion parameter. We have also absorbed a
factor of (𝜁dCS)1/2 into the expansion of 𝜗. To solve Eq. (2.90) in the Teukolsky
formalism, one first needs to project all quantities onto the NP tetrad. For example,
the Pontryagin density and the wave operator decompose into

𝑅 ∗𝑅 = −8𝑖E(3Ψ2
2 − 4Ψ1Ψ3 + Ψ0Ψ4 − 𝑐.𝑐.) , (2.91)

□𝜗 = [{𝛿, 𝛿∗} − {𝐷,Δ} + (𝛾 + 𝛾∗ − 𝜇 − 𝜇∗)𝐷
+(𝜌 + 𝜌∗ − 𝜀 − 𝜀∗)Δ + (𝜋 − 𝜏∗ − 𝛼 + 𝛽∗)𝛿
+(𝜋∗ − 𝜏 − 𝛼∗ + 𝛽)𝛿∗] 𝜗 ,

(2.92)

where 𝑖E = 𝜖𝜇𝜈𝜌𝜎𝑙
𝜇𝑛𝜈𝑚𝜌𝑚̄𝜎, and E is a real function. These NP projected quantities

now need to be expanded in the two-parameter scheme to properly evaluate Eq. (2.90)
and then to solve it.

Similarly, in EdGB gravity, using 𝜁EdGB ≡ 16𝜋𝛼2
EdGB/𝑀4 as the EdGB gravity

expansion parameter and expanding Eq. (2.43), we find

□(0,0)𝜃 (1,1) = − 1

16𝜋
1
2
𝑀2G (0,1) − □(0,1)𝜃 (1,0) . (2.93)

Now, the wave operator and the Gauss-Bonnet invariant must be projected onto the
NP tetrad to find, once more that □𝜃 is given by Eq. (2.92) after replacing 𝜗 with 𝜃,
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and the NP projected G is

G = 8(3Ψ2
2 − 4Ψ1Ψ3 + Ψ0Ψ4 + 𝑐.𝑐.) . (2.94)

Here, we also absorbed a factor of (𝜁EdGB)1/2 into the expansion of 𝜃. As before,
to solve Eq. (2.93), one must now expand these NP projected quantities in our
two-parameter scheme.

For both cases, we end up with a usual scalar field equation with source terms
that depend on NP quantities at O(𝜁0, 𝜖1). Thus, we can first reconstruct these NP
quantities and then use Eqs. (2.91), (2.92), and Eq. (2.94) to express the source
terms in terms of Ψ(0,1)

0 or Ψ(0,1)
4 . After this, one can either solve the scalar field

equation and the modified Teukolsky equation concurrently [54–57], or use the
order-reduction scheme to solve for the scalar field first and plug it into the modified
Teukolsky equation.

To summarize, we have found the modified Teukolsky equation of Ψ0 for any non-
Ricci-flat and algebraically general background spacetime that can be treated as a
linear perturbation of a Petrov type D spacetime, namely,

𝐻GR
0 Ψ

(1,1)
0 = S (1,1)

geo + S (1,1) , (2.95)

where we have defined

S (1,1)
geo = S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D ,

S (1,1)
0,D = −𝐻 (1,0)

0 Ψ
(0,1)
0 ,

S (1,1)
0,non-D = −𝐻 (0,1)

0 Ψ
(1,0)
0 ,

S (1,1)
1,non-D = 𝐻

(0,1)
1 Ψ

(1,0)
1 , (2.96)

where 𝐻0 and 𝐻1 are defined in Eqs. (2.77), and S is defined in Eq. (2.61b). The
equation for Ψ4 can be derived by performing a GHP transformation on Eq. (2.95),

𝐻GR
4 Ψ

(1,1)
4 = T (1,1)

geo + T (1,1) , (2.97)

where we have defined

T (1,1)
geo = T (1,1)

4,D + T (1,1)
4,non-D + T (1,1)

3,non-D ,

T (1,1)
4,D = −𝐻 (1,0)

4 Ψ
(0,1)
4 ,

T (1,1)
4,non-D = −𝐻 (0,1)

4 Ψ
(1,0)
4 ,

T (1,1)
3,non-D = 𝐻

(0,1)
3 Ψ

(1,0)
3 , (2.98)
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where 𝐻GR
4 is the Teukolsky operator for Ψ4 in GR [see Eq. (2.65a)], and

𝐻3 ≡ E4𝐽4 − E3𝐽3 . (2.99)

For the source terms S (1,1)
geo or T (1,1)

geo , they can be computed from the modified
background metric, the solutions to the Teukolsky equation in GR, and the recon-
structed metric for GWs in GR. For S (1,1) or T (1,1) , we may need to solve the
equations of motion of other non-gravitational fields and evaluate the stress tensor.
We have collected the full expressions of all the terms in the modified Teukolsky
equation above in Appendix 2.9. In addition, the equations above are presented in an
abstract form using NP symbols; they can be further simplified when considering
perturbations of specific background spacetimes in specific coordinates and tetrads,
e.g., Kerr in Boyer-Lindquist coordinates and in the Kinnersley tetrad.

2.6 Extension of Framework to higher order in the coupling
One important observation about Eqs. (2.95) and (2.97) is that they are in a very
similar format to the second-order Teukolsky equation in GR [93]. In this section,
we discuss the connection between the leading-order modified Teukolsky formalism
and the second-order Teukolsky formalism in GR, which demonstrates that many
techniques well-developed (in different contexts) in GR can be directly reused in
modified gravity. Moreover, we show that our formalism can be generalized to higher
orders [i.e., O(𝜁𝑚, 𝜖𝑛), 𝑚 ≥ 0, 𝑛 ≥ 1], which is then a beyond GR extension of the
higher-order Teukolsky formalism developed in [93] for GR. For a general discussion
of non-linear multiple-parameter perturbation theory in relativity, we refer the reader
to [130–133].

2.6.1 Connection to the second-order Teukolsky formalism in GR
Since Teukolsky presented the linear-order perturbation equation in [44], higher-order
Teukolsky equations have been of great interest to the community. On the one hand,
the inability of the linear-order Teukolsky equation to estimate the errors due to the
use of a perturbative expansion makes the study of higher-order Teukolsky equations
necessary [93]. On the other hand, higher-order perturbations enable the study of
certain physical systems that cannot be studied sufficiently accurately within the
linear-order scheme, such as head-on collisions in the close-limit approximation [93,
134, 135], self-force in EMRIs [92, 136–142], etc. On the observational side, recent
studies of non-linearities that show up in numerical relativity suggest that second-
and higher-order perturbations may be important for the analysis of gravitational
wave data [143–145].
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In [93], the Teukolsky equation was successfully extended to second- and higher-
order, so let us show now that these higher-order equations are very similar to what
we obtained in this paper. Comparing our Eq. (2.97) to the vacuum case (𝑇 𝜇𝜈matter = 0)
of Eqs. (7)-(10) in [93], these equations take a very similar format if we replace all
the terms proportional to ℎ(0,1)ℎ(1,0) with ℎ(0,1)ℎ(0,1) and set the source term due to
LbGR in Eq. (2.35) to zero, T (1,1) = 0. More precisely, if we follow the approach in
this work to derive the Teukolsky equation at O(𝜁0, 𝜖2), we find

𝐻GR
4 Ψ

(0,2)
4 = T (0,2)

geo , T (0,2)
geo = −𝐻 (0,1)

4 Ψ
(0,1)
4 . (2.100)

These are the equations that ought to be compared to the work in GR at second order
in perturbation theory.

Equation (2.100) and Eqs. (7)-(10) from [93] are similar in form, as expected in
perturbation theory, where the principal part of the equation remains unchanged at
each order and is driven by lower order perturbations. Nonetheless, our Eq. (2.100)
is simpler. First, there are no terms in Ψ

(0,1)
3 since they are removed by our gauge

choice in Eq. (2.71). Second, there are no terms that depend on 𝜆(0,1) and 𝜈(0,1) ,
since 𝜆 and 𝜈, just like 𝜅 and 𝜎, are eliminated from the equations from the beginning,
as shown in Sec. 2.5.3.1. To compare Eq. (2.100) with Eqs. (7)-(10) from [93], we
choose the same gauge given in Eq. (2.71). In this case, Ψ(0,1)

3 = 0, and one can
solve for 𝜆(0,1) and 𝜈(0,1) in terms of Ψ(0,1)

4 [40], so all the 𝜆(0,1) and 𝜈(0,1) related
terms become additional operators acting on Ψ

(0,1)
4 in Eq. (2.100). In Appendix 2.10,

we have shown this consistency explicitly following this prescription.

Further, we notice that Eq. (2.100) and Eqs. (2.97)-(2.98), are also similar. When
studying Petrov type I spacetimes in modified gravity, we did not make any as-
sumptions about what NP quantities vanish at O(𝜁1, 𝜖0) to avoid sabotaging our
perturbation scheme, as discussed in Sec. 2.5.1. For the second-order Teukolsky
formalism in GR, the stationary Petrov type I background at O(𝜁1, 𝜖0) is replaced by
the “dynamical background,” driven by GW perturbations at O(𝜁0, 𝜖1), where most
NP quantities also do not vanish. Due to this connection, many challenges shared by
these two situations have been solved in the second-order Teukolsky formalism in GR,
such as metric reconstruction at O(𝜁0, 𝜖1). The success of applying the second-order
Teukolsky formalism to the study of self-force in [92, 136–142] strongly suggests
that our modified Teukolsky formalism is feasible numerically.

Despite these similarities, there are also differences between these two efforts. One
major difference is the presence of extra non-metric fields in class A beyond GR
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theories. Unlike in GR, even without matter, one needs to evaluate the effective stress-
energy tensor driven by these intrinsic extra fields, and thus, solve their equations
of motion concurrently. Nonetheless, as discussed in Sec. 2.5.3.5, this issue was
already dealt with in the studies of slowly rotating BHs using metric perturbations in
dCS [54, 55] and EdGB [56, 57]. Besides the issue of extra fields, one also has to be
careful when constructing the background tetrad in these non-Ricci-flat backgrounds,
as shown in Sec. 2.3.2.

2.6.2 Modified Teukolsky formalism beyond O(𝜁1, 𝜖1)
As illustrated in the previous section, second- and higher-order BH perturbation
theory in GR has been of great interest due to its importance in constraining the
first-order perturbations and its need when dealing with certain physical systems. In
the case of modified gravity, one does not just have to deal with non-linear terms in 𝜖 ,
but also with non-linear terms in the dimensionless coupling constant 𝜁 . When the
beyond GR theory itself is known at higher order, these higher-order corrections due
to modified gravity might be interesting, since there might be non-linear phenomena
that is not described by the linear theory. For these reasons, we follow [93] to extend
our formalism beyond O(𝜁1, 𝜖1).

Let us consider some perturbations at O(𝜁𝑀 , 𝜖𝑁 ), 𝑀 ≥ 0, 𝑁 ≥ 1. First, we need
to find a tetrad with terms up to O(𝜁𝑀 , 𝜖𝑁 ), such that the orthogonality condition
in Eq. (2.5) is satisfied while our perturbation scheme is preserved, similar to what
we did in Sec. 2.3.2. For 1 ≤ 𝑚 ≤ 𝑀, expanding the correction to the tetrad at
O(𝜁𝑚, 𝜖0), we have

𝛿𝑒
(𝑚,0)
𝑎𝜇 = 𝐴

(𝑚,0)
𝑎𝑏

𝛿𝑒
(0,0)
𝑏𝜇

. (2.101)

Through induction, one can easily show that we can solve for all 𝐴(𝑚,0)
𝑎𝑏

iteratively,
where 1 ≤ 𝑚 ≤ 𝑀. Let us assume 𝛿𝑒(1,0)

𝑏𝜇
, · · · , 𝛿𝑒(𝑀−1,0)

𝑏𝜇
are known, and the base

case 𝛿𝑒(1,0)
𝑏𝜇

was shown in Sec. 2.3.2. We also assume that the corrections to the
background metric ℎ(1,0)𝜇𝜈 , · · · , ℎ(𝑀,0)𝜇𝜈 are known. Then, to satisfy Eq. (2.5), we need(
𝑒
(0,0)
𝑎𝜇 +

𝑀∑︁
𝑚=1

𝜁𝑚𝛿𝑒
(𝑚,0)
𝑎𝜇

) (
𝑒
(0,0)
𝑏𝜈

+
𝑀∑︁
𝑚=1

𝜁𝑚𝛿𝑒
(𝑚,0)
𝑏𝜈

) (
𝑔𝜇𝜈(0,0) +

𝑀∑︁
𝑚=1

𝜁𝑚ℎ𝜇𝜈(𝑚,0)
)
= 𝜂𝑎𝑏 .

(2.102)
For convenience, let us introduce

U (𝑀,0) ≡
∑︁

𝑖+ 𝑗+𝑘=𝑀,
𝑀>𝑖, 𝑗 ,𝑘>0

𝛿𝑒
(𝑖,0)
𝑎𝜇 𝛿𝑒

( 𝑗 ,0)
𝑏𝜈

ℎ𝜇𝜈(𝑘,0) , (2.103)
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where every term on the right-hand side is assumed to be known, and U (0,0) = 0
when 𝑀 = 1. Then, following the same procedure as in Sec. 2.3.2, at O(𝜁𝑀 , 𝜖0) we
have

2𝐴(𝑀,0)
(𝑎𝑏) = −ℎ(𝑀,0)

𝑎𝑏
−U (𝑀,0) , (2.104)

where U (𝑀,0) contains 𝐴(𝑚,0)
(𝑎𝑏) , with 1 ≤ 𝑚 < 𝑀 solved in the previous steps. If we

pick the same gauge as in Sec. 2.3.2 to set 𝐴(𝑀,0)
[𝑎𝑏] = 0, then we find

𝐴
(𝑀,0)
𝑎𝑏

= −1
2

(
ℎ
(𝑀,0)
𝑎𝑏

+ U (𝑀,0)
)
. (2.105)

Thus, this proves that one can iteratively find higher-order corrections to the back-
ground tetrad, such that the orthogonality condition in Eq. (2.5) is preserved.

Next, let us consider tetrad rotations. Inspecting the rotations we performed in
Eqs. (2.30) and (2.72), one can immediately notice that, under any type II rotation
[cf. Eq. (2.126b)] with rotation parameter 𝑏 (𝑚,𝑛) at O(𝜁𝑚, 𝜖𝑛) with 𝑚 ≥ 0, 𝑛 ≥ 1,
the Weyl scalars at O(𝜁𝑚, 𝜖𝑛) transform as

Ψ
(𝑚,𝑛)
0 → Ψ

(𝑚,𝑛)
0 + 4𝑏 (𝑚,𝑛)Ψ(0,0)

1 ,

Ψ
(𝑚,𝑛)
1 → Ψ

(𝑚,𝑛)
1 + 3𝑏 (𝑚,𝑛)Ψ(0,0)

2 ,

Ψ
(𝑚,𝑛)
2 → Ψ

(𝑚,𝑛)
2 + 2𝑏 (𝑚,𝑛)Ψ(0,0)

3 ,

Ψ
(𝑚,𝑛)
3 → Ψ

(𝑚,𝑛)
3 + 𝑏 (𝑚,𝑛)Ψ(0,0)

4 ,

Ψ
(𝑚,𝑛)
4 → Ψ

(𝑚,𝑛)
4 ,

(2.106)

where any terms beyond O(𝜁𝑚, 𝜖𝑛) are dropped. Since the background at O(𝜁0, 𝜖0)
is Petrov type D, where Ψ

(0,0)
0,1,3,4 = 0, if we pick 𝑏 (𝑚,𝑛) = −Ψ(𝑚,𝑛)

1 /(3Ψ(0,0)
2 ), then

Ψ
(𝑚,𝑛)
1 → 0 , Ψ

(𝑚,𝑛)
0,2,3,4 → Ψ

(𝑚,𝑛)
0,2,3,4 . (2.107)

Similarly, by performing a type I rotation with the rotation parameter 𝑎 (𝑚,𝑛) =

−
[
Ψ

(𝑚,𝑛)
3 /(3Ψ(0,0)

2 )
]∗

, one can remove Ψ
(𝑚,𝑛)
3 .

One may worry that a rotation at O(𝜁𝑚1 , 𝜖𝑛1) will affect the Weyl scalars at
O(𝜁𝑚2 , 𝜖𝑛2), where𝑚2 > 𝑚1 , 𝑛2 > 𝑛1, since many Weyl scalars at O(𝜁𝑚2−𝑚1 , 𝜖𝑛2−𝑛1)
might be nonzero. However, this problem can be avoided if one performs these
rotations systematically from lower order to higher order. For example, one may
consider the following procedures:

1. Perform tetrad rotations step by step from O(𝜁0, 𝜖1) to O(𝜁𝑀 , 𝜖1) to remove
(Ψ(0,1)

1,3 , · · · ,Ψ(𝑀,1)
1,3 ).
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2. Next, perform tetrad rotations step by step from O(𝜁0, 𝜖2) to O(𝜁𝑀 , 𝜖2) to
remove (Ψ(0,2)

1,3 , · · · ,Ψ(𝑀,2)
1,3 ).

3. · · ·

4. At the 𝑁-th step, perform tetrad rotations step by step from O(𝜁0, 𝜖𝑁 ) to
O(𝜁𝑀 , 𝜖𝑁 ) to remove (Ψ(0,𝑁)

1,3 , · · · ,Ψ(𝑀,𝑁)
1,3 ).

Following this sequence, any higher-order modifications to Ψ1,3 due to lower-order
rotations are removed at the corresponding step, and higher-order rotations do not
affect the lower-order Ψ1,3, which have been set to 0. Thus, for any perturbation at
O(𝜁𝑀 , 𝜖𝑁 ) with 𝑀 ≥ 0, 𝑁 ≥ 1, we can consistently set

Ψ
(𝑚,𝑛)
1,3 = 0 , 0 ≤ 𝑚 ≤ 𝑀 , 1 ≤ 𝑛 ≤ 𝑁 . (2.108)

Now, one can directly make an expansion of Eq. (2.76) similar to what we did at
O(𝜁1, 𝜖1) in Sec. 2.5.3. One direct consequence of the tetrad rotations above is that
we can drop all Ψ(𝑚,𝑛)

1 , with 𝑚 ≥ 0, 𝑛 ≥ 1 [e.g., Eq. (2.108)], so there is only the
stationary part of Ψ1 contributing to Eq. (2.76). Then, following the same procedures
as in Sec. 2.5.3, for perturbations at O(𝜁𝑀 , 𝜖𝑁 ), we find

𝐻GR
0 Ψ

(𝑀,𝑁)
0 = S (𝑀,𝑁)

geo + S (𝑀,𝑁) , (2.109)

where

S (𝑀,𝑁)
geo = S (𝑀,𝑁)

0,𝐼 + S (𝑀,𝑁)
0,𝐼 𝐼 + S (𝑀,𝑁)

1 ,

S (𝑀,𝑁)
0,𝐼 =

(𝑚,𝑛)<(𝑀,𝑁)∑︁
(𝑚,𝑛)=(0,1)

−𝐻 (𝑀−𝑚,𝑁−𝑛)
0 Ψ

(𝑚,𝑛)
0 ,

S (𝑀,𝑁)
0,𝐼 𝐼 =

𝑀∑︁
𝑚=1

−𝐻 (𝑀−𝑚,𝑁)
0 Ψ

(𝑚,0)
0 ,

S (𝑀,𝑁)
1 =

𝑀∑︁
𝑚=1

−𝐻 (𝑀−𝑚,𝑁)
1 Ψ

(𝑚,0)
1 ,

S (𝑀,𝑁) =
(𝑚,𝑛)≤(𝑀,𝑁)∑︁
𝑚=1,𝑛=0

[
E (𝑀−𝑚,𝑁−𝑛)

2 𝑆
(𝑚,𝑛)
2 − E (𝑀−𝑚,𝑁−𝑛)

1 𝑆
(𝑚,𝑛)
1

]
, (2.110)

and where (𝑚, 𝑛) < (𝑀, 𝑁) means 𝑚 ≤ 𝑀, 𝑛 < 𝑁 or 𝑚 < 𝑀, 𝑛 ≤ 𝑁 . The
equation for Ψ4 can be found from the GHP transformation of Eqs. (2.109)-(2.110).
For the case of higher-order perturbations in GR, 𝜁 = 0, so one can simply set
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𝑆
(𝑀,𝑁)
0,𝐼 𝐼 = 𝑆

(𝑀,𝑁)
1 = S (𝑀,𝑁) = 0, where the sum starts from O(𝜁1). As discussed

in Sec. 2.6.1 and shown in detail in Appendix 2.10, if one chooses the gauge in
which Ψ

(0,𝑛)
1,3 = 0, with 1 ≤ 𝑛 ≤ 𝑁 , then Eqs. (7)-(10) of [93] are the same as the

GHP transformation of Eqs. (2.109)-(2.110). Thus, one can treat this higher-order
extension of our formalism as a modified-gravity generalization of the higher-order
Teukolsky formalism in [93].

2.6.3 Potential challenges
In the previous subsection, we have successfully extended our formalism to higher
order in both 𝜖 and 𝜁 . In this case, all NP quantities are decoupled at each perturbative
order, and Weyl scalars Ψ0,4 can be solved, given their solutions at lower orders. This
shows that similar to any perturbation theory problem (e.g., solving the hydrogen
atom in quantum mechanics), by working out the leading-order perturbation theory,
one can iterate it to solve for higher-order perturbations. On the other hand, this
procedure also inherits the same challenges of any perturbation theory solution. For
example, the source terms made up of lower-order perturbations become complicated
at very high order. However, developing a non-perturbative approach is outside the
scope of this work, and one may have to rely on numerical relativity in the end.
In this subsection, we will discuss other challenges and potential solutions when
applying this higher-order modified Teukolsky formalism to the first few orders
beyond O(𝜁1, 𝜖1) [e.g., O(𝜁2, 𝜖1) or O(𝜁1, 𝜖2)], where perturbation theory is still
tractable.

The major challenge of this higher-order modified Teukolsky formalism is the need
of metric reconstruction in non-Ricci-flat backgrounds, since we need to evaluate
NP quantities at O(𝜁𝑚, 𝜖𝑛) with 𝑚 > 0, 𝑛 ≥ 1 in general. For example, at O(𝜁2, 𝜖1)
or O(𝜁1, 𝜖2), one needs to reconstruct the perturbed metric at O(𝜁1, 𝜖1). At this
order, we have taken advantage of the fact that the metric reconstruction procedure
for O(𝜁0, 𝜖1) GW perturbations in GR is well developed [40, 90–92, 128, 129].
However, for general perturbations at O(𝜁𝑚, 𝜖𝑛), the metric reconstruction procedure
is unknown. Moreover, when 𝑚 > 0, the correction to the Einstein-Hilbert action
generates some effective stress-energy tensor [see Sec. 2.3.1], so the traceless
condition 𝑔𝜇𝜈ℎ𝜇𝜈 = 0 in the radiation gauge used in these metric reconstruction
procedures with a Hertz potential [90, 91, 128, 129] is violated.

However, this issue is not just present in our modified Teukolsky formalism, but
also in the higher-order Teukolsky formalism in GR, since lower-order perturbations
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become effective sources in the higher-order version of the Teukolsky equation.
References [142, 146, 147] have shown that one can extend the Hertz potential
approach by adding certain correction fields to the metric perturbation constructed
from a usual Hertz potential. These correction fields can be obtained from certain
decoupled ordinary differential equations, sourced by the effective stress-energy
tensor. These references have proven that this procedure works for any smooth,
compactly-supported source, which is unfortunately not satisfied by sources driven
by non-linear couplings of gravitational fields. Thus, to apply their formalism to our
non-linear Teukolsky formalism, additional work would have to be done. Besides an
extension of the Hertz potential approach, there are also methods that do not rely
on the radiation gauge, such as the approach of solving the remaining NP equations
directly [40, 92, 148]. This approach has been implemented for vacuum Petrov
type D spacetimes [92, 148], and it is worth exploring whether one can extend it to
non-vacuum backgrounds.

Another challenge is the presence of extra fields. For the class A beyond GR theories
mentioned in Sec. 2.3.1, one has to solve the coupled equations of metric fields
and extra fields at each perturbed order. In terms of solving the coupled equation
itself, this will not be a huge challenge since similar problems have been solved in
these approaches using metric perturbations [54, 55]. There might be numerical
challenges when going to very high order since the source terms are complicated
non-linear couplings of reconstructed NP quantities with extra fields at lower orders,
which need to be solved together with the modified Teukolsky equation. Nonetheless,
this is merely an unavoidable consequence of perturbation theory.

To summarize, the connection of our work to the second-order Teukolsky formalism
in GR demonstrates the feasibility of the approach presented in this work. When
applying our formalism to specific modified gravity theories, one should not expect
more difficulties than when solving the second-order Teukolsky equation in GR,
which has been widely studied. On the other hand, the formalism developed in this
work aims to incorporate corrections from modified gravity, so it contains features
unique to modified gravity and cannot be directly obtained from the second-order
Teukolsky formalism in GR. The extension of our formalism to higher order naturally
generalizes the higher-order Teukolsky formalism in [93] from GR to modified gravity.
As a consistency check, we have studied the limiting case of 𝜁 → 0, compared
the results to those obtained in [93], and presented these concrete comparisons in
Appendix 2.10.
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2.7 Discussions
In this work, we extended the Teukolsky formalism to non-Ricci-flat, Petrov type D
BH backgrounds, as well as to non-Ricci-flat, Petrov type I BH backgrounds that
can be treated as a linear perturbation of a Petrov type D background. We began by
presenting a brief review of the derivation of the Teukolsky equation for a Ricci-flat
and Petrov type D background in GR via the original approach in Teukolsky’s
paper [44], as well as using an approach proposed by Chandrasekhar [40]. These two
approaches differ in the method adopted to eliminate the Ψ1 and Ψ3 dependence from
the two Bianchi identities and one Ricci identity [see e.g., Eq. (2.13)]. Teukolsky’s
approach makes use of additional Bianchi identities to obtain a commutation relation
to eliminate Ψ1 and Ψ3. Chandrasekhar’s approach uses the available gauge freedom
to make a convenient gauge choice that eliminates Ψ1 and Ψ3 directly. One can
then solve these equations to obtain a single decoupled differential equation for the
perturbed Weyl scalars Ψ0 and Ψ4.

We first extended both approaches to obtain the modified Teukolsky equation in a
generic modified gravity theory that allows BH backgrounds to be non-Ricci-flat and
Petrov type D backgrounds. Since the background is now non-Ricci-flat, we have
additional non-vanishing background NP quantities. We then used the two approaches
described above to obtain decoupled differential equations for the perturbed Weyl
scalars Ψ0 and Ψ4. We found that for non-Ricci-flat, Petrov type D BH backgrounds
in modified gravity, the master equations for curvature perturbations acquire a source
term [see e.g., Eqs. (2.60) and (2.63)]. In order to evaluate these source terms,
we found that one needs to perform metric reconstruction from the GR curvature
perturbations [40, 90–92, 128, 129] [i.e., to O(𝜁0, 𝜖1), where 𝜁 labels the order of
the GR deformation, and 𝜖 labels the order of the dynamic GW perturbation from
the stationary background]. We showed that both the Teukolsky’s approach and the
Chandrasekhar’s approach lead to the same modified Teukolsky equation, but the
latter is algebraically simpler and thus more convenient.

The algebraic simplicity of Chandrasekhar’s approach makes this method ideal for
the study of curvature perturbations of BH backgrounds that are non-Ricci-flat and
Petrov type I. We thus extended Chandrasekhar’s approach to such BH backgrounds.
The non-vanishing of the background NP Ricci scalars, the background NP spin
coefficients, and the background Weyl scalars Ψ1,Ψ2, and Ψ3 forces the NP equations
[see e.g., Eq. (2.13)] to have additional non-vanishing NP quantities. However, when
one requires the BH background to be a perturbation of a non-Ricci-flat, Petrov
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type D BH background at leading order in the GR deformation, the equations do
decouple. This is achieved by rotating the tetrad such that the perturbed Weyl scalars
Ψ

(1,1)
1 and Ψ

(1,1)
3 (at linear order in both the non-GR expansion parameter and the

GW expansion parameter) vanish. With this, we then derived a single decoupled
differential equation for Ψ(1,1)

0 and Ψ
(1,1)
4 .

The modified Teukolsky equation obtained in this way has the structure of the
traditional Teukolsky equation but with certain source terms. The differential
operator on the left-hand side of the modified Teukolsky equation acts on the
perturbed Weyl scalar Ψ0,4, and it has a functional form that is similar to the
Teukolsky operators in GR [44]. The source terms on the right-hand side of the
modified Teukolsky equation arise either because of either (i) modifications to the
stationary BH background spacetime, or (ii) additional stress-tensor terms due to
corrections to the Einstein-Hilbert action.

The first type of source terms comes from the homogeneous part of certain Bianchi
and Ricci identities [see e.g., Eqs. (2.13)]. Some of these source terms can be directly
evaluated using the modified background metric and the solution to the Teukolsky
equation in GR. The rest are couplings of O(𝜁1, 𝜖0) corrections to the Weyl scalars
with the O(𝜁0, 𝜖1) corrections to the metric due to GWs in GR. Thus, in order to
evaluate these source terms, we need to reconstruct the metric for the curvature
perturbations in GR [40, 90–92, 128, 129], just as in the case of non-Ricci-flat, Petrov
type D backgrounds.

The second type of source terms comes from the stress tensor due to corrections to
the Einstein-Hilbert action. We have classified the modified gravity theories into
two classes based on the presence or absence of extra non-gravitational dynamical
fields. Class A beyond GR theories can have couplings to other dynamical scalar,
vector or tensor fields (as is the case in dCS gravity [65, 66], EdGB gravity [106, 113,
114], Horndeski theory [149], scalar-tensor theories [150], 𝑓 (𝑅) gravity [121, 127],
Einstein-Aether theory [151], and bi-gravity [152]). Class B beyond GR theories
depend only on the gravitational field and there are no additional dynamical fields (as
is the case in certain effective field theory extensions of GR, such as higher-derivative
gravity [116–119]). For class B beyond GR theories, these source terms can be
directly evaluated with the background metric and the reconstructed metric. For
class A beyond GR theories, one must solve the equations of motion for these extra
fields to evaluate the stress tensor, and this can only be done on a theory-per-theory
basis. The case-by-case treatment of these extra field equations is left to future work.
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The major goal of this work was to simplify the perturbed gravitational equations
in general for modified gravity theories that admit non-Ricci-flat and Petrov type
I or Petrov type D BH backgrounds such that all the curvature perturbations are
packed into two fundamental variables Ψ0 and Ψ4. With this at hand, one can now in
principle evaluate all source terms and separate the modified Teukolsky equation
into radial and angular parts to solve for the QNM frequencies of perturbed BHs
in modified gravity. It is important to realize that this was not possible until this
work due to the inherently complicated nature of the perturbed field equations when
working with metric perturbations. Indeed, up until now, the QNM spectrum of
perturbed BHs in modified gravity had only been studied for non-rotating BHs [e.g.,
in dCS gravity [50, 51, 58], EdGB theory [52, 53], Einstein-Aether theory [70–74],
higher-derivative gravity (quadratic [75], cubic [76], and more generic [77, 78]), and
Horndeski gravity [79]] or for slowly rotating BHs (e.g., in EdGB theory [56], dCS
gravity [54, 55], and higher-derivative gravity [80, 81]). The only study of QNM
perturbations of rotating BHs was carried out in dCS gravity from numerical relativity
simulations of BH mergers, but these suffer from secularly-growing uncontrolled
remainders [82, 83].

Our work creates a new path to directly calculate the corrections to the QNM
frequencies of perturbed BHs with arbitrary spin in modified gravity and, more
generally, any background spacetime that can be treated as a linear perturbation of a
Petrov type D spacetime. One of our next major goals is to do a case-by-case study
of all these well-motivated modified theories, using the formalism developed here, to
then use GW observations to constrain these theories. For dCS gravity, we would
like to compare the QNM frequencies obtained for arbitrarily rotating BHs to those
found in the slow-rotation approximation to linear order in spin [54], as well as others
that use metric perturbations [50, 51, 54, 55, 58] and numerical relativity [82, 83,
125, 126].

By extending the Teukolsky formalism, we have also laid the foundation for studying
gravitational perturbations other than QNMs around BHs in modified gravity.
For example, the Teukolsky formalism has been applied to compute gravitational
waveforms and energy/angular momentum fluxes sourced by a point particle orbiting
around a BH in extreme mass-ratio binary inspirals (EMRI) [153–159]. The same
procedure has been applied to a few modified gravity theories, e.g., in scalar-tensor
theories [160] and for a spinning horizonless compact object [161], where the
Teukolsky formalism in GR can be directly applied. With this extended Teukolsky
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formalism, we are now able to study EMRIs in a much wider class of modified
gravity theories. These results can also be compared with those obtained using
post-Newtoninan studies of EMRIs in GR and modified gravity [58, 162–167].

Another example is the break of isospectrality (where even and odd parity modes
have the same QNM frequencies) in certain modified gravity theories, e.g., dCS
gravity [50, 51, 54, 55, 58], EdGB gravity [52, 53, 56], and higher-derivative gravity
[81]. The study of isospectrality is mostly done with metric perturbations since
the Zerilli-Moncrief and the Regge-Wheeler functions naturally divide the metric
perturbations into even and odd parity sectors [41, 42]. For BHs with arbitrary
spin, there are no known extensions of the Zerilli-Moncrief and the Regge-Wheeler
functions, so we may have to use NP quantities in this extended Teukolsky formalism
to study parity breaking. Since Teukolsky equation does not naturally classify its
solutions into different parities, we will first need to understand better what even
and odd parity modes mean in the Teukolsky formalism and their connections to the
Zerilli-Moncrief and Regge-Wheeler functions even in GR. This, and much more, is
now possible thanks to the derivation of a master evolution equation for curvature
perturbations in modified gravity.

In this work, we have focused on the formalism up to leading order in modified
gravity corrections, i.e., at O(𝜁). This is mainly because the theories we have
discussed in Sec. 2.3.1 are only presented to leading order in corrections since these
are treated in an effective field theory approach, considering small deformations
from GR. However, one can consider a modified theory of gravity different from
the examples shown in Sec. 2.3.1, where one can look at higher-order deformations
from GR. As discussed in Sec. 2.6, our leading-order formalism can be extended
to higher order [O(𝜁𝑚, 𝜖𝑛), 𝑚 ≥ 0, 𝑛 ≥ 1] by iterating the perturbation scheme in
Sec. 2.3.2 and the procedure of finding the master equation in Sec. 2.5. However,
utmost care needs to be taken when considering theories at higher than leading-order
corrections to GR, as such theory may admit ghost modes [103]. Additionally, this
formalism relies on the approximation that the theories mentioned in Sec. 2.3.1 are
an effective field theory of GR. Therefore, the spacetimes we can probe using this
formalism cannot deviate too much from their GR counterparts.

To present the feasibility of our formalism extending the Teukolsky equation to
non-Ricci-flat Petrov type D and Petrov type I spacetimes, our collaboration is
already working on a series of calculations. The first in this planned series of works
is the study of perturbations of a non-Ricci-flat vacuum Petrov type D BH spacetime
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representing a slowly rotating BH to leading order in spin in dCS gravity [168].
In [168], we will present the calculation of the perturbed field equations. These field
equations, as expected from the results of this paper, are sourced equations which
we will compute in the null basis. We will then implement the necessary metric
reconstruction procedures and tetrad rotations. In the last step, we will convert all
NP quantities to a coordinate basis to separate the master equation into radial and
angular ordinary differential equations with couplings between the gravitational and
scalar sectors. Then, in a follow-up work [169], we will make use of the EVP method
to calculate the QNM frequencies of these BH spacetimes and verify our results with
previously obtained frequencies computed in the slow-rotation limit [54, 55]. We
will then extend these calculations to arbitrarily spinning BHs in dCS gravity, which
are described by non-Ricci-flat, vacuum, Petrov type I BH metrics in [170]. This
problem is more challenging due to the presence of additional theory-independent
source terms (i.e., S (1,1)

geo ), which need metric reconstruction (e.g., S (1,1)
0,non-D). However,

it is much simpler to evaluate these additional terms than the theory-dependent
source terms (i.e., S (1,1)) coupled to the pseudoscalar field, which we would have
already computed in our previous work [168] on Petrov type D BHs in dCS gravity
mentioned above. We expect that through these extensions, we will acquire a deep
knowledge of QNMs in modified gravity.

Note added after completion: While writing up our analysis, we became aware
of an equivalent and independent analysis of decoupled equations for gravitational
perturbations around BHs in modified gravity [171]. Instead of using the NP
formalism, Ref. [171] focuses mostly on the Einstein equations and shows how
to partially decouple them, following the order-reduction scheme in [125]. To
make the equations of gravitational perturbations separable, Ref. [171] uses Wald’s
formalism to project the Einstein equations onto a (modified) Teukolsky equation
[172]. Although our work is independent of that of Ref. [171], there are similarities in
the general format of the final master equation. For example, both approaches require
metric reconstruction of GWs in GR. Reference [171] also presents a direct derivation
of the modified Teukolsky equation following Teukolsky’s original approach [44].
Our work greatly simplifies the NP approach through the use of gauge freedom,
following Chandrasekhar’s approach [40]. These two independent studies can be
used to validate results when computing the shift of QNM frequencies in certain
modified gravity theories.
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2.8 Appendix: NP formalism (continued)
In Sec. 2.2.1, we have presented the orthogonality relations for the tetrad basis vectors
in NP formalism. One can further compactly express the relation in Eq. (2.5) as
𝑔𝜇𝜈 = 𝑒

𝑎
𝜇𝑒
𝑏
𝜈𝜂𝑎𝑏, where

𝑒
𝜇
𝑚 = (𝑙𝜇, 𝑛𝜇, 𝑚𝜇, 𝑚̄𝜇) ,

𝜂𝑎𝑏 = 𝜂
𝑎𝑏 =

©­­­­­«
0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

ª®®®®®¬
, (2.111)

where we have used Latin indices to denote the null tetrad indices whereas the Greek
indices are the tensor indices. Further, using the metric and the null tetrad, we
can define the quantity known as Ricci rotation coefficients, which are similar to
Christoffel symbols. These are complex quantities in nature and defined as

𝛾𝑐𝑎𝑏 = 𝑒𝑎𝜇;𝜈𝑒
𝜇
𝑐 𝑒

𝜈
𝑏 (2.112)

with the symmetry,
𝛾𝑐𝑎𝑏 = −𝛾𝑎𝑐𝑏 . (2.113)

The commutation relations of the intrinsic derivatives are related to the Ricci rotation
coefficients by [

𝑒
𝜇
𝑎 , 𝑒

𝜇

𝑏

]
= (𝛾𝑐𝑏𝑎 − 𝛾𝑐𝑎𝑏) 𝑒𝑐𝜇 . (2.114)

The tetrad components of the Riemann tensor can then be defined by

𝑅𝑎𝑏𝑐𝑑 = 𝑅𝛼𝛽𝛾𝛿𝑒
𝛼
𝑎 𝑒

𝛽

𝑏
𝑒
𝛾
𝑐 𝑒
𝛿
𝑑 . (2.115)

Using a form of Eq. (2.112), the Riemann tensor can also be expressed in terms of
the Ricci rotation coefficients,

𝑅𝑎𝑏𝑐𝑑 = −𝛾𝑎𝑏𝑐,𝑑 + 𝛾𝑎𝑏𝑑,𝑐 + 𝛾𝑎𝑏 𝑓
(
𝛾 𝑓 𝑐𝑑 − 𝛾 𝑓 𝑑𝑐

)
+ 𝛾 𝑓 𝑎𝑐𝛾𝑏 𝑓 𝑑 − 𝛾 𝑓 𝑎𝑑𝛾𝑏 𝑓 𝑐 , (2.116)

where 𝛾𝑎𝑏𝑐,𝑑 ≡ 𝛾𝑎𝑏𝑐,𝜇𝑒𝜇𝑑 . The relationship among the Riemann tensor, Weyl tensor
𝐶𝛼𝛽𝛾𝛿, and Ricci tensor 𝑅𝛼𝛽 remains unchanged in tetrad notation.

𝑅𝑎𝑏𝑐𝑑 = 𝐶𝑎𝑏𝑐𝑑 −
1
2
(𝜂𝑎𝑐𝑅𝑏𝑑 − 𝜂𝑏𝑐𝑅𝑎𝑑 − 𝜂𝑎𝑑𝑅𝑏𝑐 + 𝜂𝑏𝑑𝑅𝑎𝑐)

+ 1
6
(𝜂𝑎𝑐𝜂𝑏𝑑 − 𝜂𝑎𝑑𝜂𝑏𝑐) 𝑅 . (2.117)
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In tetrad notation, Bianchi identities (𝑅𝛼𝛽[𝛾𝛿;𝜇] = 0) take the form,

𝑅𝑎𝑏[𝑐𝑑; 𝑓 ] =
1
6

∑︁
[𝑐𝑑𝑓 ]

[
𝑅𝑎𝑏𝑐𝑑, 𝑓 − 𝜂𝑛𝑚

(
𝛾𝑛𝑎 𝑓 𝑅𝑚𝑏𝑐𝑑

+𝛾𝑛𝑏 𝑓 𝑅𝑎𝑚𝑐𝑑 + 𝛾𝑛𝑐 𝑓 𝑅𝑎𝑏𝑚𝑑 + 𝛾𝑛𝑑𝑓 𝑅𝑎𝑏𝑐𝑚
) ]
. (2.118)

2.8.1 NP quantities
With the formalism developed above, Newman and Penrose defined twelve complex
functions known as the spin coefficients which can be defined in terms of the Ricci
rotation coefficients (and thus the tetrad). The spin coefficients are as follows:

𝜅 = 𝛾131 = 𝑙𝜇;𝜈𝑚
𝜇𝑙𝜈 ,

𝜋 = −𝛾241 = −𝑛𝜇;𝜈𝑚̄
𝜇𝑙𝜈 ,

𝜀 =
1
2
(𝛾121 − 𝛾341) =

1
2
(𝑙𝜇;𝜈𝑛

𝜇𝑙𝜈 − 𝑚𝜇;𝜈𝑚̄
𝜇𝑙𝜈) ,

𝜌 = 𝛾134 = 𝑙𝜇;𝜈𝑚
𝜇𝑚̄𝜈 ,

𝜆 = −𝛾244 = −𝑛𝜇;𝜈𝑚̄
𝜇𝑚̄𝜈 ,

𝛼 =
1
2
(𝛾124 − 𝛾344) =

1
2
(𝑙𝜇;𝜈𝑛

𝜇𝑚̄𝜈 − 𝑚𝜇;𝜈𝑚̄
𝜇𝑚̄𝜈) ,

𝜎 = 𝛾133 = 𝑙𝜇;𝜈𝑚
𝜇𝑚𝜈 ,

𝜇 = −𝛾243 = −𝑛𝜇;𝜈𝑚̄
𝜇𝑚𝜈 ,

𝛽 =
1
2
(𝛾123 − 𝛾343) =

1
2
(𝑙𝜇;𝜈𝑛

𝜇𝑚𝜈 − 𝑚𝜇;𝜈𝑚̄
𝜇𝑚𝜈) ,

𝜈 = −𝛾242 = −𝑛𝜇;𝜈𝑚̄
𝜇𝑛𝜈 ,

𝛾 =
1
2
(𝛾122 − 𝛾342) =

1
2
(𝑙𝜇;𝜈𝑛

𝜇𝑛𝜈 − 𝑚𝜇;𝜈𝑚̄
𝜇𝑛𝜈) ,

𝜏 = 𝛾132 = 𝑙𝜇;𝜈𝑚
𝜇𝑛𝜈 . (2.119)

Using Eq. (2.117), one can decompose the Riemann tensor into the Weyl tensor,
completely determined by 5 complex Weyl scalars,

Ψ0 = 𝐶1313 = 𝐶𝛼𝛽𝛾𝛿𝑙
𝛼𝑚𝛽𝑙𝛾𝑚𝛿 ,

Ψ1 = 𝐶1213 = 𝐶𝛼𝛽𝛾𝛿𝑙
𝛼𝑛𝛽𝑙𝛾𝑚𝛿 ,

Ψ2 = 𝐶1342 = 𝐶𝛼𝛽𝛾𝛿𝑙
𝛼𝑚𝛽𝑚̄𝛾𝑛𝛿 ,

Ψ3 = 𝐶1242 = 𝐶𝛼𝛽𝛾𝛿𝑙
𝛼𝑛𝛽𝑚̄𝛾𝑛𝛿 ,

Ψ4 = 𝐶2424 = 𝐶𝛼𝛽𝛾𝛿𝑛
𝛼𝑚̄𝛽𝑛𝛾𝑚̄𝛿 , (2.120)
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the Ricci tensor, and the Ricci scalar, characterized by 10 NP Ricci scalars,

Φ00 =
1
2
𝑅11 =

1
2
𝑅𝜇𝜈𝑙

𝜇𝑙𝜈 ,

Φ01 =
1
2
𝑅13 =

1
2
𝑅𝜇𝜈𝑙

𝜇𝑚𝜈 , Φ10 =
1
2
𝑅14 =

1
2
𝑅𝜇𝜈𝑙

𝜇𝑚̄𝜈 ,

Φ11 =
1
4
(𝑅12 + 𝑅34) =

1
2
𝑅𝜇𝜈 (𝑙𝜇𝑛𝜈 + 𝑚𝜇𝑚̄𝜈) ,

Φ02 =
1
2
𝑅33 =

1
2
𝑅𝜇𝜈𝑚

𝜇𝑚𝜈 , Φ12 =
1
2
𝑅23 =

1
2
𝑅𝜇𝜈𝑛

𝜇𝑚𝜈 ,

Φ20 =
1
2
𝑅44 =

1
2
𝑅𝜇𝜈𝑚̄

𝜇𝑚̄𝜈 , Φ21 =
1
2
𝑅24 =

1
2
𝑅𝜇𝜈𝑛

𝜇𝑚̄𝜈 ,

Φ22 =
1
2
𝑅22 =

1
2
𝑅𝜇𝜈𝑛

𝜇𝑛𝜈 , Λ = 𝑅/24 .

(2.121)

2.8.2 NP equations
Using the NP quantities defined above, one can consider appropriate linear combi-
nations of Eq. (2.116) and rewrite the equations in terms of the NP quantities. The
resulting equations are called Ricci identities in [40] and given by

𝐷𝜌 − 𝛿∗𝜅 =
(
𝜌2 + 𝜎𝜎∗

)
+ (𝜀 + 𝜀∗)𝜌 − 𝜅∗𝜏 − 𝜅(3𝛼 + 𝛽∗ − 𝜋) +Φ00 , (2.122a)

𝐷𝜎 − 𝛿𝜅 = (𝜌 + 𝜌∗)𝜎 + (3𝜀 − 𝜀∗)𝜎 − (𝜏 − 𝜋∗ + 𝛼∗ + 3𝛽)𝜅 + Ψ0 , (2.122b)

𝐷𝜏 − Δ𝜅 = (𝜏 + 𝜋∗)𝜌 + (𝜏∗ + 𝜋)𝜎 + (𝜀 − 𝜀∗)𝜏 − (3𝛾 + 𝛾∗)𝜅 + Ψ1 +Φ01 ,

(2.122c)

𝐷𝛼 − 𝛿∗𝜀 = (𝜌 + 𝜀∗ − 2𝜀)𝛼 + 𝛽𝜎∗ − 𝛽∗𝜀 − 𝜅𝜆 − 𝜅∗𝛾 + (𝜀 + 𝜌)𝜋 +Φ10 , (2.122d)

𝐷𝛽 − 𝛿𝜀 = (𝛼 + 𝜋)𝜎 + (𝜌∗ − 𝜀∗)𝛽 − (𝜇 + 𝛾)𝜅 − (𝛼∗ − 𝜋∗)𝜀 + Ψ1 , (2.122e)

𝐷𝛾 − Δ𝜀 = (𝜏 + 𝜋∗)𝛼 + (𝜏∗ + 𝜋)𝛽 − (𝜀 + 𝜀∗)𝛾 − (𝛾 + 𝛾∗)𝜀
+ 𝜏𝜋 − 𝜈𝜅 + Ψ2 − Λ +Φ11 , (2.122f)

𝐷𝜆 − 𝛿∗𝜋 = (𝜌𝜆 + 𝜎∗𝜇) + 𝜋2 + (𝛼 − 𝛽∗)𝜋 − 𝜈𝜅∗ − (3𝜀 − 𝜀∗)𝜆 +Φ20 , (2.122g)

𝐷𝜇 − 𝛿𝜋 = (𝜌∗𝜇 + 𝜎𝜆) + 𝜋𝜋∗ − (𝜀 + 𝜀∗)𝜇 − 𝜋(𝛼∗ − 𝛽) − 𝜈𝜅 + Ψ2 + 2Λ ,
(2.122h)

𝐷𝜈 − Δ𝜋 = (𝜋 + 𝜏∗)𝜇 + (𝜋∗ + 𝜏)𝜆 + (𝛾 − 𝛾∗)𝜋 − (3𝜀 + 𝜀∗)𝜈 + Ψ3 +Φ21 ,

(2.122i)

Δ𝜆 − 𝛿∗𝜈 = − (𝜇 + 𝜇∗)𝜆 − (3𝛾 − 𝛾∗)𝜆 + (3𝛼 + 𝛽∗ + 𝜋 − 𝜏∗)𝜈 − Ψ4 , (2.122j)

𝛿𝜌 − 𝛿∗𝜎 = 𝜌(𝛼∗ + 𝛽) − 𝜎(3𝛼 − 𝛽∗) + (𝜌 − 𝜌∗)𝜏 + (𝜇 − 𝜇∗)𝜅 − Ψ1 +Φ01 ,

(2.122k)

𝛿𝛼 − 𝛿∗𝛽 = (𝜇𝜌 − 𝜆𝜎) + 𝛼𝛼∗ + 𝛽𝛽∗ − 2𝛼𝛽 + 𝛾(𝜌 − 𝜌∗) + 𝜀(𝜇 − 𝜇∗)
− Ψ2 + Λ +Φ11 , (2.122l)
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𝛿𝜆 − 𝛿∗𝜇 = (𝜌 − 𝜌∗)𝜈 + (𝜇 − 𝜇∗)𝜋 + 𝜇(𝛼 + 𝛽∗) + 𝜆(𝛼∗ − 3𝛽) − Ψ3 +Φ21 ,

(2.122m)

𝛿𝜈 − Δ𝜇 =

(
𝜇2 + 𝜆𝜆∗

)
+ (𝛾 + 𝛾∗)𝜇 − 𝜈∗𝜋 + (𝜏 − 3𝛽 − 𝛼∗)𝜈 +Φ22 , (2.122n)

𝛿𝛾 − Δ𝛽 = (𝜏 − 𝛼∗ − 𝛽)𝛾 + 𝜇𝜏 − 𝜎𝜈 − 𝜀𝜈∗ − 𝛽(𝛾 − 𝛾∗ − 𝜇) + 𝛼𝜆∗ +Φ12 ,

(2.122o)

𝛿𝜏 − Δ𝜎 = (𝜇𝜎 + 𝜆∗𝜌) + (𝜏 + 𝛽 − 𝛼∗)𝜏 − (3𝛾 − 𝛾∗)𝜎 − 𝜅𝜈∗ +Φ02 , (2.122p)

Δ𝜌 − 𝛿∗𝜏 = − (𝜌𝜇∗ + 𝜎𝜆) + (𝛽∗ − 𝛼 − 𝜏∗)𝜏 + (𝛾 + 𝛾∗)𝜌 + 𝜈𝜅 − Ψ2 − 2Λ ,
(2.122q)

Δ𝛼 − 𝛿∗𝛾 = (𝜌 + 𝜀)𝜈 − (𝜏 + 𝛽)𝜆 + (𝛾∗ − 𝜇∗)𝛼 + (𝛽∗ − 𝜏∗)𝛾 − Ψ3 . (2.122r)

Similarly, rewriting Eq. (2.118) in terms of the NP quantities, one gets a set of
equations called Bianchi identities in [40]. These equations are given by

(𝛿∗ − 4𝛼 + 𝜋)Ψ0 − (𝐷 − 4𝜌 − 2𝜀)Ψ1 − 3𝜅Ψ2 = 𝑆1 , (2.123a)

(Δ − 4𝛾 + 𝜇)Ψ0 − (𝛿 − 4𝜏 − 2𝛽)Ψ1 − 3𝜎Ψ2 = 𝑆2 , (2.123b)

(𝛿 + 4𝛽 − 𝜏)Ψ4 − (Δ + 2𝛾 + 4𝜇)Ψ3 + 3𝜈Ψ2 = 𝑆3 , (2.123c)

(𝐷 + 4𝜀 − 𝜌)Ψ4 − (𝛿∗ + 4𝜋 + 2𝛼)Ψ3 + 3𝜆Ψ2 = 𝑆4 , (2.123d)

(𝛿∗ + 3𝜋)Ψ2 − (𝐷 + 2𝜀 − 2𝜌)Ψ3 − 2𝜆Ψ1 − 𝜅Ψ4 = 𝑆5 , (2.123e)

(Δ + 3𝜇)Ψ2 − (𝛿 + 2𝛽 − 2𝜏)Ψ3 − 2𝜈Ψ1 − 𝜎Ψ4 = 𝑆6 , (2.123f)

(𝛿 − 3𝜏)Ψ2 − (Δ − 2𝛾 + 2𝜇)Ψ1 + 𝜈Ψ0 + 2𝜎Ψ3 = 𝑆7 , (2.123g)

(𝐷 − 3𝜌)Ψ2 − (𝛿∗ + 2𝜋 − 2𝛼)Ψ1 + 𝜆Ψ0 + 2𝜅Ψ3 = 𝑆8 , (2.123h)

𝛿∗Φ01 + 𝛿Φ10 − 𝐷 (Φ11 + 3Λ) − ΔΦ00

= 𝜅∗Φ12 + 𝜅Φ21 + (2𝛼 + 2𝜏∗ − 𝜋)Φ01 + (2𝛼∗ + 2𝜏 − 𝜋∗)Φ10 − 2(𝜌 + 𝜌∗)Φ11

− 𝜎∗Φ02 − 𝜎Φ20 + [𝜇 + 𝜇∗ − 2(𝛾 + 𝛾∗)]Φ00 , (2.123i)

𝛿∗Φ12 + 𝛿Φ21 − Δ(Φ11 + 3Λ) − 𝐷Φ22

= −𝜈Φ01 − 𝑣∗Φ10 + (𝜏∗ − 2𝛽∗ − 2𝜋)Φ12 + (𝜏 − 2𝛽 − 2𝜋∗)Φ21 + 2(𝜇 + 𝜇∗)Φ11

− (𝜌 + 𝜌∗ − 2𝜀 − 2𝜀∗)Φ22 + 𝜆Φ02 + 𝜆∗Φ20 , (2.123j)

𝛿 (Φ11 − 3Λ) − 𝐷Φ12 − ΔΦ01 + 𝛿∗Φ02

= Φ22 − 𝜈∗Φ00 + (𝜏∗ − 𝜋 + 2𝛼 − 2𝛽∗)Φ02 − 𝜎Φ21 + 𝜆∗Φ10 + 2(𝜏 − 𝜋∗)Φ11

− (2𝜌 + 𝜌∗ − 2𝜀∗)Φ12 + (2𝜇∗ + 𝜇 − 2𝛾)Φ01 , (2.123k)

where 𝑆𝑖 are related to the Ricci tensor and defined to be

𝑆1 ≡ (𝛿 + 𝜋∗ − 2𝛼∗ − 2𝛽)Φ00 − (𝐷 − 2𝜀 − 2𝜌∗)Φ01
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+ 2𝜎Φ10 − 2𝜅Φ11 − 𝜅∗Φ02 , (2.124a)

𝑆2 ≡ (𝛿 + 2𝜋∗ − 2𝛽)Φ01 − (𝐷 − 2𝜀 + 2𝜀∗ − 𝜌∗)Φ02

− 𝜆∗Φ00 + 2𝜎Φ11 − 2𝜅Φ12 , (2.124b)

𝑆3 ≡ − (Δ + 2𝜇∗ + 2𝛾)Φ21 + (𝛿∗ − 𝜏∗ + 2𝛼 + 2𝛽∗)Φ22

+ 2𝜈Φ11 + 𝜈∗Φ20 − 2𝜆Φ12 , (2.124c)

𝑆4 ≡ − (Δ + 𝜇∗ + 2𝛾 − 2𝛾∗)Φ20 + (𝛿∗ + 2𝛼 − 2𝜏∗)Φ21

+ 2𝜈Φ10 − 2𝜆Φ11 + 𝜎∗Φ22 , (2.124d)

𝑆5 ≡ (𝛿 − 2𝛼∗ + 2𝛽 + 𝜋∗)Φ20 − (𝐷 − 2𝜌∗ + 2𝜀)Φ21

− 2𝜇Φ10 + 2𝜋Φ11 − 𝜅∗Φ22 − 2𝛿∗Λ , (2.124e)

𝑆6 ≡ (𝛿 + 2𝜋∗ + 2𝛽)Φ21 − (𝐷 − 𝜌∗ + 2𝜀 + 2𝜀∗)Φ22

− 2𝜇Φ11 − 𝜆∗Φ20 + 2𝜋Φ12 − 2ΔΛ , (2.124f)

𝑆7 ≡ − (Δ + 2𝜇∗ − 2𝛾)Φ01 + (𝛿∗ − 𝜏∗ + 2𝛽∗ − 2𝛼)Φ02

+ 2𝜌Φ12 + 𝜈∗Φ00 − 2𝜏Φ11 − 2𝛿Λ , (2.124g)

𝑆8 ≡ − (Δ + 𝜇∗ − 2𝛾 − 2𝛾∗)Φ00 + (𝛿∗ − 2𝛼 − 2𝜏∗)Φ01

+ 2𝜌Φ11 + 𝜎∗Φ02 − 2𝜏Φ10 − 2𝐷Λ . (2.124h)

For the Bianchi identities, we have re-organized the terms and shuffled the sequence
of equations in comparison to the one in [40], so our equations here are consistent
with the equations in Sec. 2.2.1.

Finally, the commutation relation in Eq. (2.114) can be written as

[Δ, 𝐷] = (𝛾 + 𝛾∗) 𝐷 + (𝜀 + 𝜀∗) Δ − (𝜏∗ + 𝜋) 𝛿 − (𝜏 + 𝜋∗) 𝛿∗ , (2.125a)

[𝛿, 𝐷] = (𝛼∗ + 𝛽 − 𝜋∗) 𝐷 + 𝜅Δ − (𝜌∗ + 𝜀 − 𝜀∗) 𝛿 − 𝜎𝛿∗ , (2.125b)

[𝛿,Δ] = − 𝜈∗𝐷 + (𝜏 − 𝛼∗ − 𝛽) Δ + (𝜇 − 𝛾 + 𝛾∗) 𝛿 + 𝜆∗𝛿∗ , (2.125c)

[𝛿∗, 𝛿] = (𝜇∗ − 𝜇) 𝐷 + (𝜌∗ − 𝜌) Δ + (𝛼 − 𝛽∗) 𝛿 + (𝛽 − 𝛼∗) 𝛿∗ . (2.125d)

2.8.3 Tetrad rotations
In Sec. 2.2.1, we have mentioned that the tetrad basis vectors can be rotated in
certain ways such that the orthogonality conditions in Eq. (2.5) are still preserved.
As discussed in [40], all these tetrad rotations can be classified into three types:

I : 𝑙 → 𝑙 , 𝑚 → 𝑚 + 𝑎𝑙 , 𝑚̄ → 𝑚̄ + 𝑎∗𝑙 , 𝑛→ 𝑛 + 𝑎∗𝑚 + 𝑎𝑚̄ + 𝑎𝑎∗𝑙 . (2.126a)

II : 𝑛→ 𝑛 , 𝑚 → 𝑚 + 𝑏𝑛 , 𝑚̄ → 𝑚̄ + 𝑏∗𝑛 , 𝑙 → 𝑙 + 𝑏∗𝑚 + 𝑏𝑚̄ + 𝑏𝑏∗𝑛 . (2.126b)

III : 𝑙 → 𝐴−1𝑙 , 𝑛→ 𝐴𝑛 , 𝑚 → 𝑒𝑖𝜃𝑚 , 𝑚̄ → 𝑒−𝑖𝜃𝑚̄ . (2.126c)



99

Here, 𝑎, 𝑏 are complex functions, and 𝐴, 𝜃 are real functions. Under these rotations,
the Weyl scalars transform in the following way:

I :
Ψ0 → Ψ0 , Ψ1 → Ψ1 + 𝑎∗Ψ0 , Ψ2 → Ψ2 + 2𝑎∗Ψ1 + (𝑎∗)2 Ψ0 ,

Ψ3 → Ψ3 + 3𝑎∗Ψ2 + 3 (𝑎∗)2 Ψ1 + (𝑎∗)3 Ψ0 ,

Ψ4 → Ψ4 + 4𝑎∗Ψ3 + 6 (𝑎∗)2 Ψ2 + 4 (𝑎∗)3 Ψ1 + (𝑎∗)4 Ψ4 .

(2.127a)

II :
Ψ0 → Ψ0 + 4𝑏Ψ1 + 6𝑏2Ψ2 + 4𝑏3Ψ3 + 𝑏4Ψ4 ,

Ψ1 → Ψ1 + 3𝑏Ψ2 + 3𝑏2Ψ3 + 𝑏3Ψ4 ,

Ψ2 → Ψ2 + 2𝑏Ψ3 + 𝑏2Ψ4 , Ψ3 → Ψ3 + 𝑏Ψ4 , Ψ4 → Ψ4 .

(2.127b)

III :
Ψ0 → 𝐴−2𝑒2𝑖𝜃Ψ0 , Ψ1 → 𝐴−1𝑒𝑖𝜃Ψ1 , Ψ2 → Ψ2 , Ψ3 → 𝐴𝑒−𝑖𝜃Ψ3 ,

Ψ4 → 𝐴2𝑒−2𝑖𝜃Ψ4 .

(2.127c)

For the transformations of the spin-coefficients under the tetrad rotations, since we
haven’t used them explicitly in our calculations, we refer the readers to [40] for all
the details.

2.9 Appendix: Modified Teukolsky equation in one place
For convenience of the reader, we organize the modified Teukolsky equation in one
place. For Ψ0, we have

𝐻
(0,0)
0 Ψ

(1,1)
0 + 𝐻 (1,0)

0 Ψ
(0,1)
0 + 𝐻 (0,1)

0 Ψ
(1,0)
0 − 𝐻 (0,1)

1 Ψ
(1,0)
1

= E (0,0)
2 𝑆

(1,1)
2 + E (0,1)

2 𝑆
(1,0)
2 − E (0,0)

1 𝑆
(1,1)
1 − E (0,1)

1 𝑆
(1,0)
1 . (2.128)

Here we have

𝐻0 = E2𝐹2 − E1𝐹1 − 3Ψ2 , 𝐻1 = E2𝐽2 − E1𝐽1 , (2.129)

and

E1 = 𝛿 − 𝜏 + 𝜋∗ − 𝛼∗ − 3𝛽 − Ψ−1
2 𝛿Ψ2 , 𝐹1 ≡ 𝛿∗ − 4𝛼 + 𝜋 , 𝐽1 ≡ 𝐷 − 2𝜀 − 4𝜌 ,

E2 = 𝐷 − 𝜌 − 𝜌∗ − 3𝜀 + 𝜀∗ − Ψ−1
2 𝐷Ψ2 , 𝐹2 ≡ Δ − 4𝛾 + 𝜇 , 𝐽2 ≡ 𝛿 − 4𝜏 − 2𝛽 ,

(2.130)

with

𝑆1 = (𝛿 + 𝜋∗ − 2𝛼∗ − 2𝛽)Φ00 − (𝐷 − 2𝜀 − 2𝜌∗)Φ01 + 2𝜎Φ10 − 2𝜅Φ11 − 𝜅∗Φ02 ,

𝑆2 = (𝛿 + 2𝜋∗ − 2𝛽)Φ01 − (𝐷 − 2𝜀 + 2𝜀∗ − 𝜌∗)Φ02 − 𝜆∗Φ00 + 2𝜎Φ11 − 2𝜅Φ12 .

(2.131)
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For Ψ4, we have

𝐻
(0,0)
4 Ψ

(1,1)
4 + 𝐻 (1,0)

4 Ψ
(0,1)
4 + 𝐻 (0,1)

4 Ψ
(1,0)
4 − 𝐻 (0,1)

3 Ψ
(1,0)
3 (2.132)

= E (0,0)
4 𝑆

(1,1)
4 + E (0,1)

4 𝑆
(1,0)
4 − E (0,0)

3 𝑆
(1,1)
3 − E (0,1)

3 𝑆
(1,0)
3 . (2.133)

Here we have

𝐻4 = E4𝐹4 − E3𝐹3 − 3Ψ2 , 𝐻3 = E4𝐽4 − E3𝐽3 , (2.134)

and

E3 = 𝛿∗ + 3𝛼 + 𝛽∗ + 𝜋 − 𝜏∗ − Ψ−1
2 𝛿∗Ψ2 , 𝐹3 ≡ 𝛿 + 4𝛽 − 𝜏 , 𝐽3 ≡ Δ + 2𝛾 + 4𝜇 ,

E4 = Δ + 𝜇 + 𝜇∗ + 3𝛾 − 𝛾∗ − Ψ−1
2 ΔΨ2 , 𝐹4 ≡ 𝐷 + 4𝜀 − 𝜌 , 𝐽4 ≡ 𝛿∗ + 4𝜋 + 2𝛼 ,

(2.135)

with

𝑆3 = − (Δ + 2𝜇∗ + 2𝛾)Φ21 + (𝛿∗ − 𝜏∗ + 2𝛼 + 2𝛽∗)Φ22 + 2𝜈Φ11 + 𝜈∗Φ20 − 2𝜆Φ12 ,

𝑆4 = − (Δ + 𝜇∗ + 2𝛾 − 2𝛾∗)Φ20 + (𝛿∗ + 2𝛼 − 2𝜏∗)Φ21 + 2𝜈Φ10 − 2𝜆Φ11 + 𝜎∗Φ22 .

(2.136)

2.10 Appendix: Consistency check with previous higher-order Teukolsky
formalism

In this appendix, we show that the GHP transformation of Eqs. (2.109)-(2.110) when
𝜁 = 0 are consistent with Eqs. (7)-(10) of [93] when we are in the same gauge as in
Eq. (2.108).

First, let us write down the GHP transformation of Eqs. (2.109)-(2.110) when 𝜁 = 0,

𝐻GR
4 Ψ

(𝑁)
4 = T (𝑁)

geo , T (𝑁)
geo =

𝑁−1∑︁
𝑛=1

−𝐻 (𝑁−𝑛)
4 Ψ

(𝑛)
4 , (2.137)

where we have used the single superscript notation since there is only one expansion
parameter, 𝜖 . In comparison, Ref. [93] found

𝐻GR
4 Ψ

(𝑁)
4 = T ′(𝑁)

geo ,

T ′(𝑁)
geo =

𝑁−1∑︁
𝑛=1

[(
E (0)

3 𝐹
(𝑁−𝑛)
3 − E (0)

4 𝐹
(𝑁−𝑛)
4

)
Ψ

(𝑛)
4

+ 3E (0)
3

(
Ψ

(𝑛)
2 𝜈(𝑁−𝑛)

)
− 3E (0)

4

(
Ψ

(𝑛)
2 𝜆(𝑁−𝑛)

)
−3Ψ(0)

2

(
𝐸
(𝑁−𝑛)
3 𝜈(𝑛) − 𝐸 (𝑁−𝑛)

4 𝜆(𝑛)
)]
,

(2.138)
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where we have set all the terms containing Ψ
(0,𝑛)
3 for 𝑛 > 0 to zero and replaced the

operators 𝑑3,4 in [93] with the operators 𝐸3,4 by observing that

𝑑3 = 𝐸3 + 3𝜋 , 𝑑4 = 𝐸4 + 3𝜇 , (2.139)

𝑑
(0)
3 = 𝐸GR

3 = E (0)
3 , 𝑑

(0)
4 = 𝐸GR

4 = E (0)
4 . (2.140)

As discussed in Sec. 2.6.1, to show that Eq. (2.138) is the same as Eq. (2.137), one
needs to use Bianchi identities to express 𝜆 and 𝜈 in terms of Ψ4 or vice versa. Since
Ψ

(0)
3 = 0 for Petrov type D spacetimes, and we have chosen a gauge in which Ψ

(𝑛)
3 = 0

for all 𝑛 ≥ 1, we can set Ψ3 = 0 in Eq. (2.14), such that

𝐹3Ψ4 = −3Ψ2𝜈 , 𝐹4Ψ4 = −3Ψ2𝜆 , (2.141)

where we have also set 𝑆3 = 𝑆4 = 0 since we focus on vacuum spacetimes. Notice
that Eq. (2.141) is true at all orders in 𝜖 .

Expressing Ψ4 in terms of 𝜆 and 𝜈 is easier when comparing Eq. (2.138) with
Eq. (2.137). Let us first perform this transformation on Eq. (2.137). From the
definition in Eqs. (2.12) and (2.34), we know that

E3 = 𝐸3 − Ψ−1
2 𝛿∗Ψ2 , E4 = 𝐸4 − Ψ−1

2 ΔΨ2 . (2.142)

Inserting Eqs. (2.141)-(2.142) into Eq. (2.137), we find

𝐻4Ψ4 = (E4𝐹4 − E3𝐹3 − 3Ψ2)Ψ4

= − 3 [𝐸4(Ψ2𝜆) − ΔΨ2 − 𝐸3(Ψ2𝜈) + 𝛿∗Ψ2 + Ψ2Ψ4]
= − 3Ψ2 (𝐸4𝜆 − 𝐸3𝜈 + Ψ4) ,

(2.143)

which is simply −3Ψ2 times the Ricci identity in Eq. (2.14c). Since Eq. (2.137) is
essentially the 𝑁-th order expansion of 𝐻4Ψ4, we find

[−3Ψ2 (𝐸4𝜆 − 𝐸3𝜈 + Ψ4)] (𝑁) = 0 . (2.144)

Equation (2.144) is consistent with our procedures to derive the master equation in
Secs. 2.5.3 and 2.6.2. The equation we used is indeed 3Ψ2 multiplying the Ricci
identity Eq. (2.14c) with 𝜆 and 𝜈 replaced by the Bianchi identities Eqs. (2.14a)-
(2.14b). Since the Teukolsky equations have to be consistent with all the Bianchi
identities and Ricci identities, one also expects that starting from a Teukolsky
equation and simplifying it using Bianchi identities, one will get back the original
Ricci identity.
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Now, let us transform Eq. (2.138). We first move the first line of T ′(𝑁)
geo in Eq. (2.138)

to the left-hand side of the equation, so it becomes

𝑁∑︁
𝑛=1

(
E (0)

4 𝐹
(𝑁−𝑛)
4 − E (0)

3 𝐹
(𝑁−𝑛)
3

)
Ψ

(𝑛)
4 − 3Ψ(0)

2 Ψ
(𝑁)
4

= E (0)
4 (𝐹4Ψ4) (𝑁) − E (0)

3 (𝐹3Ψ4) (𝑁) − 3Ψ(0)
2 Ψ

(𝑁)
4

= −3
[
E (0)

4 (Ψ2𝜆) (𝑁) − E (0)
3 (Ψ2𝜈) (𝑁)

]
− 3Ψ(0)

2 Ψ
(𝑁)
4 . (2.145)

Next, subtracting off the second line of T ′(𝑁)
geo in Eq. (2.138) from Eq. (2.145), we

find

− 3
[
E (0)

4

(
Ψ

(0)
2 𝜆(𝑁)

)
− E (0)

3

(
Ψ

(0)
2 𝜈(𝑁)

)]
− 3Ψ(0)

2 Ψ
(𝑁)
4

= −3Ψ(0)
2

(
𝐸
(0)
4 𝜆(𝑁) − 𝐸 (0)

3 𝜈(𝑁) + Ψ
(𝑁)
4

)
, (2.146)

which, with the last line of T ′(𝑁)
geo in Eq. (2.138), gives us

−3Ψ(0)
2 [(𝐸4𝜆 − 𝐸3𝜈 + Ψ4)] (𝑁) = 0 . (2.147)

As discussed above, Eq. (2.147) is expected since the Teukolsky equations are
consistent with the Ricci identities.

Comparing Eq. (2.147) to Eq. (2.144), one can notice that the only difference is the
overall normalization factor. In Eq. (2.147), this normalization factor is −3Ψ(0)

2 ,
while in Eq. (2.144), a normalization factor of −3Ψ2 appears before the expansion.
Then, when expanding Eq. (2.144), we also mix lower-order Ricci identities in
the equation. For example, we can get the term −3Ψ(1)

2 (𝐸4𝜆 − 𝐸3𝜈 + Ψ4) (𝑁−1) .
Nonetheless, after inserting in all the lower-order NP quantities into the equation,
these lower-order Ricci identities vanish, since they are automatically satisfied by
the lower-order Teukolsky solutions in the previous steps. On the other hand, before
inserting lower-order Teukolsky solutions, Eq. (2.144) might be more complicated
than Eq. (2.147) due to these lower-order equations.

One can easily remove this difference by replacing the normalization factor 3Ψ2

in Eq. (2.76) with 3Ψ(0,0)
2 . The reason we inserted 3Ψ2 in Eq. (2.76) is that the

O(𝜁0, 𝜖1) expansion of the equation reproduces the original Teukolsky equation in
GR [44], which is also true if we instead insert 3Ψ(0,0)

2 . Moreover, we can absorb the
factors of Ψ2 and Ψ−1

2 in Eq. (2.76) nicely into the operators E𝑖. If we instead use
3Ψ(0,0)

2 , we can alternatively define the operators E𝑖 as

E𝑖 = Ψ
(0,0)
2 𝐸𝑖Ψ

−1
2 (2.148)
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in comparison to the original definition in Eqs. (2.32) and (2.34). For the goals of
this paper, finding the O(𝜁1, 𝜖1) corrections to the Teukolsky equation, both ways of
normalizing the equation are fine and make little difference.
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C h a p t e r 3

ISOSPECTRALITY BREAKING IN THE TEUKOLSKY
FORMALISM

[1] Dongjun Li, Asad Hussain, Pratik Wagle, Yanbei Chen, Nicolás Yunes, and
Aaron Zimmerman. “Isospectrality breaking in the Teukolsky formalism”.
In: Phys. Rev. D 109.10 (2024), p. 104026. doi: 10.1103/PhysRevD.109.
104026. arXiv: 2310.06033 [gr-qc].

3.1 Introduction
The development of current and next-generation gravitational wave (GW) detectors
allows us for the first time to study the extreme gravitational events that emit
these waves and use them to test theories of gravity. General relativity (GR), as
one of the most successful gravity theories, has been widely tested [1], but its
incompatibility with quantum mechanics motivated the development of new theories
of quantum gravity, such as string theory [2–5] and loop quantum gravity [6–9].
Furthermore, to resolve observational anomalies, such as the asymmetry of matter
and antimatter abundance in our universe [10], one can also modify the theory of
gravity. One notable feature of many beyond GR (bGR) theories is the breaking
of parity symmetry, a fundamental symmetry preserved by GR but observed to be
broken in other fundamental interactions [11].

For some bGR theories, parity is already broken at the level of action. One subset of
these theories includes effective field theory (EFT) extensions of GR in Lorentzian
geometry, such as parity-violating ghost-free scalar-tensor gravity [12–14], certain
versions of Horava-Lifshitz gravity [15, 16], and parity-violating corrections in
higher-derivative gravity without extra fields [17–20]. Another subset is built instead
on non-Riemannian geometry [21], such as parity-violating symmetric teleparallel
gravity [22]. For these theories, stationary black hole (BH) solutions also violate
parity. This can result in the break of equatorial symmetry of Kerr in GR [19, 23–27],
where odd-parity multiple moments (odd mass multipole moments and even current
multipoles) of rotating BHs become nonzero. The breaking of equatorial symmetry
can be detected via, for example, the GWs emitted during extreme mass-ratio inspirals
[26].

https://doi.org/10.1103/PhysRevD.109.104026
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https://arxiv.org/abs/2310.06033


119

Besides these theories with explicit parity-violating terms in the action, some bGR
theories preserve parity at the level of action and at the level of axisymmetric BH
solutions, but they violate parity at the level of gravitational perturbations, such as
in dynamical Chern-Simons (dCS) gravity [28–32]. These theories can also break
parity cosmologically, for example, when additional degrees of freedom acquire a
non-zero vacuum expectation value [33–35]. In this case, it was observed years
ago that the amplitude of left-circular or right-circular polarized GWs decreases
or increases with propagation, resulting in amplitude birefringence [14, 21, 36–
38]. These left-circular and right-circular polarized modes can also propagate with
different velocities, causing velocity birefringence [13, 14, 37, 39]. Both amplitude
and velocity birefringences can be detected, in principle, with LIGO [36, 40, 41].
These birefringence effects might also leave imprints at a larger scale, for example,
generating chiral primordial GWs, which directly affect the cosmic wave background
radiation [42–47], or circularly-polarized stochastic GW background, which can be
detected by GW detectors [48–50].

Besides propagation effects, gravitational perturbations of BHs in modified gravity
can also have parity asymmetry during generation. One important feature of GWs
emitted during the ringdown phase of binary BH mergers in GR, or quasinormal
modes (QNMs), is that the modes with the same quantum number, but different parity,
have the same frequency [51, 52], a result known as isospectrality. However, in bGR
theories, isospectrality is generally broken, similar to the breaking of degeneracies
in quantum mechanical perturbation theory. For example, in dCS gravity, it has
been found that only odd-parity modes are modified for non-rotating BHs [30,
53, 54]. For spinning BHs, both parities are modified but in different ways [31,
55]. Similar isospectrality breaking of QNMs has been observed in parity-violating
corrections of higher-derivative gravity [23, 56–58] and, more interestingly, in certain
parity-preserving theories, such as parity-preserving corrections of higher-derivative
gravity [23, 56–59] and EdGB theory [60–64]. Such parity asymmetry in the
generation of GWs may cause observable effects, depending on whether there is
enough signal-to-noise ratio (SNR) to resolve the shifts to the ringdown frequencies
(both real and imaginary parts) of the resultant modes [65].

In this work, we focus on the isospectrality breaking of QNMs in these EFT extensions
of GR. The study of QNMs has been an important topic in GR and modified gravity
because their spectrum allows us to retrieve information on the exterior geometry
of BHs and the dynamics of modified gravity theories, which is the idea of BH
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spectroscopy [66–68]. For these bGR theories, extra non-metric fields (scalar, vector,
or tensor) leave imprints on the QNMs. To study QNMs, one major approach is BH
perturbation theory, where the gravitational perturbations of an isolated stationary
BH are computed, given that the merger of binary BHs always settles down to a
stationary geometry in GR. For non-rotating BHs, thanks to spherical symmetry,
QNMs can be directly computed from metric perturbations in both GR [69–73] and
modified gravity [23, 30, 53, 54, 59–62, 74]. In this case, metric perturbations are
separated into two pieces, one with even and one with odd parity. For each parity
piece, one can find a single gauge-invariant function that characterizes all degrees of
freedom, i.e., the Zerilli-Moncrief (ZM) function for even-parity perturbations and
the Regge-Wheeler (RW) function for odd-parity ones, the governing equations of
which are decoupled and separable. Since each of the metric perturbation functions
has a definite parity, one can easily study isospectrality breaking in this approach.

For rotating BHs, due to the lack of spherical symmetry, it is hard to decouple all the
metric fields and find only two functions to represent all the metric components. For
this reason, Teukolsky developed another approach for rotating BHs in GR [75–77]
within the framework of Newman and Penrose (NP) [78] and using spinor calculus.
In the Teukolsky formalism, instead of solving for metric perturbations directly,
curvature perturbations, characterized by the Weyl scalars Ψ0 and Ψ4, are solved for
first, from which the metric can then be reconstructed [51, 79–88]. Both non-rotating
and rotating BHs in GR can be mathematically classified as Petrov type D spacetimes
[51, 89], the leading-order gravitational perturbations of which are fully described by
decoupled and separable Teukolsky equations. However, in the Teukolsky formalism,
the modes are not naturally separated into definite parity. To study parity, one then
needs to first find combinations of solutions to the Teukolsky equations that generate
definite-parity metric perturbations. This work was first done in [80], using metric
reconstruction to map definite-parity metric perturbations to Teukolsky functions,
and expressed in a simpler form in [90].

In modified gravity, perturbations of spinning BHs were previously studied using
metric perturbations in the slow-rotation expansion [31, 55, 56, 63, 64, 91] and
using numerical relativity for an arbitrary spin but with secularly-growing errors [92,
93]. However, most of the remnant BHs of binary BH mergers are rapidly rotating
(at least 65% of their maximum), as predicted theoretically [94] and confirmed
observationally [95]. One can, in principle, extend the approach using metric
perturbations in the slow-rotating expansion to higher orders in spin, but to produce
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reliable results for these fast-spinning BHs, one usually needs to go beyond fifth order
in the slow-rotation expansion [96]. Extensions to such a high order will involve
complicated couplings between different 𝑙 modes, so this approach might not be
practically feasible. Although in EdGB, Ref. [64] recently found that by resuming
the O(𝜒2), slow-rotation expansion of QNMs using Padé approximants [97–99], one
might find accurate results for dimensionless spin up to 𝜒 = 𝑎/𝑀 ∼ 0.7, it is still
worth developing a formalism without explicit reliance on a small spin expansion. An
alternative approach, combining metric perturbations with spectral decomposition
techniques, was recently developed for Schwarzschild BHs [100] and Kerr BHs
(valid up to 𝜒 ∼ 0.95) [101]. However, it is worth noting that, although promising,
such spectral decomposition techniques have only been demonstrated for BHs in GR
as of yet.

Recently, Refs. [102, 103] showed that one can extend the Teukolsky formalism in
GR to modified gravity for any deformed BHs that do not significantly deviate from
their counterparts in GR so that they can be treated through an EFT approach. In
this modified Teukolsky formalism, the Weyl scalars Ψ0 and Ψ4 are decoupled from
other degrees of freedom of curvature perturbations, just like in GR. Their equations
are also separable because the homogeneous part of the modified Teukolsky equation
is of the same form as in GR, and the source terms can be separated by projection
to spin-weighted spheroidal harmonics [102, 103]. Later, Refs. [57, 58] applied
the approach of [102, 103] to higher-derivative gravity up to O(𝜒14). The authors
successfully separated the equations into radial and angular parts and computed the
QNM frequencies valid up to 𝜒 ∼ 0.7. Their results also match well with previous
calculations using metric perturbations in [56, 91].

Nonetheless, to study isospectrality breaking, one needs to first find out what the
definite-parity modes are in these modified Teukolsky equations and derive their
equations. In this work, we show that one can extend the definition in [90] to the
modified Teukolsky equations in [102, 103]. Furthermore, we derive the equations
that govern these definite-parity modes and prescribe how to evaluate the shifts of
QNMs using the eigenvalue perturbation (EVP) method of [103–105]. For simplicity,
in this work, we only focus on spacetimes that are Petrov type D even in modified
gravity, but our results can be easily extended to non-Petrov-type-D spacetimes,
where the modified Teukolsky formalism of [102, 103] still applies. We also assume
that background spacetimes are parity invariant, which is true for non-rotating and
slowly rotating BHs in dCS [106, 107] and EdGB gravity [60, 108, 109], so we can
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focus on the parity properties of dynamical perturbations. Our work can also be easily
extended to BH spacetimes that violate parity, such as those in higher-derivative
gravity with parity-violating corrections [23, 56–58], but we leave this for future
work.

In the remainder of this paper, we present in more detail our formalism for studying
isospectrality breaking of QNMs in modified gravity using the Teukolsky formalism.
In Sec. 3.2, we give a quick review of the modified Teukolsky formalism developed
by [102, 103]. In Sec. 3.3, we review the construction of definite-parity modes
of Teukolsky equations in GR found by [90]. In Sec. 3.4, we show that the same
definition of definite-parity modes in GR can be extended to Petrov type D spacetimes
in modified gravity. For non-Petrov-type-D spacetimes, we discuss how one might
extend our construction and leave details to future work. In Sec. 3.5, we follow the
discussion in [103] to derive the shifts of QNM frequencies using the EVP method of
[103–105] and show how the degeneracy in QNM frequencies of even- and odd-parity
modes is generally broken in modified gravity. We then derive the condition for the
modified Teukolsky equation to have definite-parity solutions and present the shifts
of their QNM frequencies. In Sec. 3.6, we apply our formalism to two specific bGR
theories: dCS and EdGB gravity, and we show that our definite-parity equations
agree qualitatively with the equations found by metric perturbations in [30, 31, 53–55,
60–64]. Finally, in Sec. 3.7, we discuss future avenues of this work and conclude.

3.2 Modified Teukolsky equations
In this section, we review the modified Teukolsky formalism in bGR theories
developed in [102, 103]. Here, we focus on the equation of Ψ0, and the equation of
Ψ4 can be found following the same procedure or via the GHP transformation [110].

3.2.1 bGR theories and expansion scheme
As shown in [102], for any modified gravity theory that admits an EFT description
and allows perturbation theory, the gravitational perturbations of any non-Ricci-flat,
Petrov type I BH can be studied via the curvature perturbation formalism. For this
large subset of modified gravity theories, its Lagrangian can be schematically written
as

L = LGR + ℓ𝑝LbGR + Lmatter + Lfield , (3.1)

where LGR is the Einstein-Hilbert Lagrangian, and Lmatter is the Lagrangian of
matter. In this work, we focus on vacuum backgrounds, so Lmatter = 0. Lfield

is the Lagrangian of extra non-metric fields, including both kinetic and potential
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terms. The Lagrangian LbGR describes additional corrections to the Einstein-Hilbert
Lagrangian, which may contain non-minimal couplings to the extra non-metric
fields. The quantity ℓ with dimensions of length characterizes the strength of the GR
correction, with 𝑝 introduced to ensure that the dimension of ℓ𝑝LbGR are correct.

Based on whether there are additional non-metric fields, we can divide the subset of
modified gravity theories that our modified Teukolsky formalism applies to into the
following two classes:

• Lfield ≠ 0 =⇒ Class A ,

• Lfield = 0 =⇒ Class B .

Some examples of class A bGR theories are dCS gravity [28, 29], EdGB gravity
[108, 111, 112], Horndeski theory [113], scalar-tensor theories [114], 𝑓 (𝑅) gravity
[115, 116], Einstein-Aether theory [117], and bi-gravity [118]. There are also certain
EFT extensions of GR that do not contain extra non-metric fields, so they can be
classified as class B bGR theories, such as higher-derivative gravity [17–20].

To study gravitational perturbations in modified gravity in the formalism of [102],
we need at least two expansion parameters. In this work, we follow the conventions
in [102] and use 𝜁 to denote the strength of bGR corrections and 𝜖 the size of
GW perturbations, a parameter that also appears in the GR case. Both 𝜁 and 𝜖 are
dimensionless, so 𝜁 is usually some power of the ratio of the scale ℓ to the BH
mass. We also assume that the leading correction to the metric field due to modified
gravity is at least of O(𝜁), so the correction to other non-metric fields enters at lower
and non-integer order of 𝜁 [102]. Reference [102] additionally showed that if the
background tetrad is carefully chosen, the bGR correction to all NP quantities also
enters at O(𝜁). Then, all the NP quantities can be expanded in the following way:

Ψ𝑖 = Ψ
(0)
𝑖

+ 𝜖Ψ(1)
𝑖

= Ψ
(0,0)
𝑖

+ 𝜁Ψ(1,0)
𝑖

+ 𝜖Ψ(0,1)
𝑖

+ 𝜁𝜖Ψ(1,1)
𝑖

, (3.2)

where we have taken Weyl scalars as an example. In this work, we will hide
the expansion in 𝜁 from certain equations to minimize notational clutter, so the
superscript will only stand for an expansion in 𝜖 , as shown in the first line of Eq. (3.2).

In this work, we do not make any assumptions about the relative size of 𝜖 and 𝜁 . The
bGR expansion parameter 𝜁 can be either larger or smaller than 𝜖 , depending on the
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details of the binary system and the bGR theory being considered. For example, in
dCS gravity, NICER and advanced LIGO observations constrain √

𝛼dCS ≤ 8.5km at
90% confidence [119], where 𝛼dCS is the coupling constant of dCS gravity. For an
intermediate or extreme mass-ratio inspiral around a BH of mass 𝑀 = 105𝑀⊙, this
bound on 𝛼dCS maps to a constraint on 𝜁dCS [i.e., Eq. (3.82)] of 𝜁dCS ≤ 3.5×10−5. For
such an extreme mass-ratio inspiral, however, 𝜖 is proportional to the mass ratio 𝑞 of
the binary, which can be either larger or smaller than 𝜁dCS because 𝑞 ∈ [10−3, 10−7].
However, corrections with powers of 𝜖𝑛 arise from higher-order GR effects, while
corrections with powers of 𝜁𝑛 arise from higher-order bGR effects that generally do
not generate GWs at infinity. Therefore, the term 𝜁𝜖 that we focus on is the leading
bGR contribution to GWs.

3.2.2 Modified Teukolsky equation
Using the expansion scheme in Eq. (3.2), one can then derive the modified Teukolsky
equation. For convenience, let us first define the following operators in terms of the
NP spin coefficients and tetrad derivatives (see e.g. [78, 120]):

𝐷 [𝑎,𝑏,𝑐,𝑑] = 𝐷 + 𝑎𝜀 + 𝑏𝜀 + 𝑐𝜌 + 𝑑𝜌̄ , (3.3a)

𝚫[𝑎,𝑏,𝑐,𝑑] = 𝚫 + 𝑎𝜇 + 𝑏𝜇̄ + 𝑐𝛾 + 𝑑𝛾̄ , (3.3b)

𝛿[𝑎,𝑏,𝑐,𝑑] = 𝛿 + 𝑎𝛼̄ + 𝑏𝛽 + 𝑐𝜋̄ + 𝑑𝜏 , (3.3c)

𝛿[𝑎,𝑏,𝑐,𝑑] = 𝛿 + 𝑎𝛼 + 𝑏𝛽 + 𝑐𝜋 + 𝑑𝜏 , (3.3d)

where the overhead bar denotes complex conjugation. The equations we start from
are two Ricci identities and one Bianchi identity, namely

𝐹1Ψ0 − 𝐽1Ψ1 − 3𝜅Ψ2 = 𝑆1 , (3.4a)

𝐹2Ψ0 − 𝐽2Ψ1 − 3𝜎Ψ2 = 𝑆2 , (3.4b)

𝐸2𝜎 − 𝐸1𝜅 − Ψ0 = 0 , (3.4c)

where the operators 𝐹1,2, 𝐽1,2, and 𝐸1,2 are defined via

𝐹1 ≡ 𝛿[−4,0,1,0] , 𝐹2 ≡ 𝚫[1,0,−4,0] ,

𝐽1 ≡ 𝐷 [−2,0,−4,0] , 𝐽2 ≡ 𝛿[0,−2,0,−4] ,

𝐸1 ≡ 𝛿[−1,−3,1,−1] , 𝐸2 ≡ 𝐷 [−3,1,−1,−1] ,

(3.5)

and the source terms 𝑆1,2 are

𝑆1 ≡ 𝛿[−2,−2,1,0]Φ00 − 𝐷 [−2,0,0,−2]Φ01 + 2𝜎Φ10 − 2𝜅Φ11 − 𝜅Φ02 , (3.6a)
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𝑆2 ≡ 𝛿[0,−2,2,0]Φ01 − 𝐷 [−2,2,0,−1]Φ02 − 𝜆̄Φ00 + 2𝜎Φ11 − 2𝜅Φ12 . (3.6b)

To derive the modified Teukolsky equation, Ref. [102] made some convenient gauge
choices for both the background spacetime and the dynamical perturbations, following
Chandrasekhar [51]. Since we care about BH spacetimes that are modifications of
Petrov type D spacetimes in GR, one can use the Kinnersley tetrad to set

Ψ
(0,0)
0,1,3,4 = 0 . (3.7)

For dynamical perturbations, Ref. [102] showed that one can rotate the O(𝜁1, 𝜖1)
part of the tetrad, such that

Ψ
(0,1)
1,3 = Ψ

(1,1)
1,3 = 0 . (3.8)

In this gauge, one can then easily decouple Ψ(1,1)
0 from other NP quantities and derive

a single decoupled equation for Ψ(1,1)
0 , namely [102]

𝐻GR
0 Ψ

(1,1)
0 = S (1,1)

geo + S (1,1) , (3.9)

where 𝐻GR
0 is the Teukolsky operator in GR, and the source terms S (1,1)

geo and S (1,1)

are given by

S (1,1)
geo = S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D ,

S (1,1)
0,D = −𝐻 (1,0)

0 Ψ
(0,1)
0 ,

S (1,1)
0,non-D = −𝐻 (0,1)

0 Ψ
(1,0)
0 ,

S (1,1)
1,non-D = 𝐻

(0,1)
1 Ψ

(1,0)
1 , (3.10)

and

S (1,1) = E (0,0)
2 𝑆

(1,1)
2 + E (0,1)

2 𝑆
(1,0)
2 − E (0,0)

1 𝑆
(1,1)
1 − E (0,1)

1 𝑆
(1,0)
1 . (3.11)

The operators 𝐻0,1 and E1,2 are defined via

𝐻0 = E2𝐹2 − E1𝐹1 − 3Ψ2 , 𝐻1 = E2𝐽2 − E1𝐽1 ,

E1 = 𝐸1 −
1
Ψ2
𝛿Ψ2 , E2 = 𝐸2 −

1
Ψ2
𝐷Ψ2 .

(3.12)

The equation for Ψ(1,1)
4 can be found in [102]. In Eq. (3.10), the source term Sgeo

comes from the homogeneous part of the Bianchi identities and Ricci identities in
Eq. (3.4), so it is generated by modifications to the background spacetime and does
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not involve terms from the effective stress tensor. Within Sgeo, the terms S𝑖,non-D

only appear in non-Petrov-type-D spacetimes, while S𝑖,D also appears in Petrov
type D spacetimes. On the other hand, the source term S comes from the effective
stress-energy tensor, so it depends on the details of the modified gravity theory and
may contain extra non-metric fields.

Inspecting Eqs. (3.9)–(3.11), one notices that every NP quantity in S (1,1)
geo has lower

order than O(𝜁1, 𝜖1), and the only terms at O(𝜁1, 𝜖1) are Ψ
(1,1)
0 and S (1,1) . In [102],

it was additionally shown that for class B bGR theories, S (1,1) ∼ ℎ(1,0)ℎ(0,1) , while
for class A bGR theories, S (1,1) ∼ 𝜗(1,0)ℎ(0,1) + 𝜗(1,1)𝑔(0,0) , where 𝜗 represents extra
(scalar, vector or tensor fields) non-metric fields. For both cases, there are no factors
of ℎ(1,1)𝜇𝜈 , so we have fully decoupled Ψ

(1,1)
0 from all metric fields. For class A bGR

theories, we also have 𝜗(1,1) , but as shown in [102, 103], these extra non-metric fields
can be solved for first by following the order-reduction scheme in [121]. The key idea
is that for these non-minimal coupling class A bGR theories, the bGR corrections
always drive non-metric fields first before driving GW perturbations [102, 103].
Thus, when writing down 𝜗(1,1) , we actually have absorbed the coupling constant
into 𝜗, while it enters at a lower order. For details of decoupling non-metric fields
from Ψ0, one can refer to [103].

Besides using the gauge freedom of both the background spacetime and the dynamical
perturbations, one can also derive the modified Teukolsky equation without making
any explicit gauge choices, as done in the original derivation of the Teukolsky
equation in GR [75] and in modified gravity in [103]. Reference [103] showed
that instead of using the NP language from the beginning, one could follow the
idea in [122] and work with the Einstein equations directly to then project to a
modified Teukolsky equation at the end. In spite of the many differen approaches
to derive the modified Teukolsky equation, the final master equation shares many
similarities. One major feature is that the master equation always contains terms at
O(𝜁0, 𝜖1), which requires metric reconstruction of GW perturbations in GR, as one
can observe in Eqs. (3.10) and (3.11). In the next section, we will introduce one of
these metric reconstruction procedures. For the terms at O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0),
one can directly compute them using the background metric. To transform the
modified Teukolsky equation in Eq. (3.9) to the one for definite-parity modes, the
next step is to understand what definite-parity modes of the Teukolsky equation are
in both GR and modified gravity.



127

3.3 Modes with Definite Parity in GR
In this section, we review definite-parity solutions to the Teukolsky equation in GR,
following [90]. Our focus is on bGR, beyond-Kerr BH spacetimes, whereas we
show below that isospectrality can be broken by dynamical effects. Since this is
our primary goal, we further assume that, like in the Kerr solution, the stationary
spacetime is invariant under the parity transformation. This assumption holds for
known BH solutions in modified gravity theories, such as in dCS gravity [106, 123]
and EdGB gravity[60, 108, 109], and seems physically reasonable for a stationary BH.
To make this more concrete, we first define what we mean by a parity transformation.

Let the spacetime be a manifold M, with an open set𝑈 ⊂ M inside it that contains
Boyer-Lindquist-like coordinates, i.e., the metric 𝑔 on M has the functional form of
a modified Kerr metric on𝑈 in these coordinates. Define the parity operator 𝑃̂ as an
operator that acts on functions in these Boyer-Lindquist coordinates. The action of
the operator is the following:

𝑃̂[ 𝑓 (𝑡, 𝑟, 𝜃, 𝜙)] = 𝑓 (𝑡, 𝑟, 𝜋 − 𝜃, 𝜙 + 𝜋) . (3.13)

Then for metric perturbations [69, 70, 90], the modes with even and odd parity are
defined to be

𝑃̂ℎE,O
𝜇𝜈 = ±(−1)𝑙ℎE,O

𝜇𝜈 , (3.14)

where 𝑙 is the angular momentum number after decomposing metric perturbations
into spheroidal harmonics.1 To define parity for solutions to the Teukolsky equation,
we then need to know the relation between metric perturbations and curvature
perturbations.

3.3.1 Metric reconstruction in GR
To find curvature perturbations from metric perturbations, we can directly compute
Weyl scalars from the perturbed metric. In contrast, reconstructing metric perturba-
tions from Weyl scalars is a more complicated process. Fortunately, this procedure
was developed for Kerr BHs or, more generally, Petrov type D spacetimes in GR
either via an intermediate Hertz potential [79–87] or by solving the Bianchi identities,
Ricci identities, and commutation relations [51, 88]. In this work, we follow the
approach using the Hertz potential, the so-called Chrzanowski-Cohen-Kegeles (CCK)
procedure [86], and the conventions in [86, 87] due to more explicit algebraic relations
between Weyl scalars and metric perturbations. In this section, we only provide a

1We have followed the definition of definite-parity modes in Sec. IC2 of [90].
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brief introduction, and more details can be found in Appendix 3.9. Furthermore,
since in this section we review metric reconstruction in GR, our expressions hold
only to O(𝜁0, 𝜖1).

As discussed in [86, 87], the Hertz potential Ψ(0,1)
H generates metric perturbations

ℎ
(0,1)
𝜇𝜈 that solve the linearized Einstein equations in GR. For simplicity, we will

drop the superscripts of ℎ(0,1)𝜇𝜈 and Ψ
(0,1)
H for the rest of this section. In the outgoing

radiation gauge (ORG) [87], where 𝑛𝜇ℎ𝜇𝜈 = 0 and ℎ ≡ 𝑔𝜇𝜈ℎ𝜇𝜈 = 0. The perturbed
metric ℎ𝜇𝜈 is related to ΨH via

ℎ𝜇𝜈 = − 𝜌−4 [
𝑛𝜇𝑛𝜈𝛿[−3,−1,5,0]𝛿[−4,0,1,0] + 𝑚̄𝜇𝑚̄𝜈𝚫[5,0,−3,1]𝚫[1,0,−4,0]

−𝑛(𝜇𝑚̄𝜈)
(
𝛿[−3,1,5,1]𝚫[1,0,−4,0] +𝚫[5,−1,−3,−1]𝛿[−4,0,1,0]

) ]
ΨH + c.c .

(3.15)

In the ingoing radiation gauge (IRG) [86], where 𝑙𝜇ℎ𝜇𝜈 = 0 and ℎ = 0, we have
instead that

ℎ𝜇𝜈 =
[
𝑙𝜇𝑙𝜈𝛿[1,3,0,−1]𝛿[0,4,0,3] + 𝑚̄𝜇𝑚̄𝜈𝐷 [−1,3,0,−1]𝐷 [0,4,0,3]

−𝑙(𝜇𝑚̄𝜈)
(
𝐷 [1,3,1,−1]𝛿[0,4,0,3] + 𝛿[−1,3,−1,−1]𝐷 [0,4,0,3]

) ]
Ψ̄H + c.c .

(3.16)

Notice that, since we have chosen the opposite signature from [86, 87], our ℎ𝜇𝜈 has a
different sign.

Using Eqs. (3.15) and (3.16), one can derive the relation between Weyl scalars and
ΨH. For example, for perturbations of Kerr in ORG [87],

Ψ4 =
1
32
𝜌4Δ2𝐷†4Δ2Ψ̄H , (3.17a)

Ψ0 =
1
8

[
L4Ψ̄H + 12𝑀𝜕𝑡ΨH

]
, (3.17b)

while in IRG

Ψ0 = −1
2
𝐷4Ψ̄H , (3.18a)

Ψ4 = −1
8
𝜌4 [

L†4Ψ̄H − 12𝑀𝜕𝑡ΨH
]
, (3.18b)

where
Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2 , 𝜌 = − 1

1 − 𝑖𝑎 cos 𝜃
,

𝐷 = 𝑙𝜇𝜕𝜇 =
𝑟2 + 𝑎2

Δ
𝜕𝑡 + 𝜕𝑟 +

𝑎

Δ
𝜕𝜙 ,

𝐷† = −𝑟
2 + 𝑎2

Δ
𝜕𝑡 + 𝜕𝑟 −

𝑎

Δ
𝜕𝜙 ,

L𝑠 = −𝑖𝑎 sin 𝜃𝜕𝑡 −
[
𝜕𝜃 + 𝑖 csc 𝜃𝜕𝜙 − 𝑠 cot 𝜃

]
,

L†
𝑠 = 𝑖𝑎 sin 𝜃𝜕𝑡 −

[
𝜕𝜃 − 𝑖 csc 𝜃𝜕𝜙 − 𝑠 cot 𝜃

]
,

(3.19)
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and L4 = L1L0L−1L−2, L†4 = L†
−1L

†
0L

†
1L

†
2. Here, we have also dropped the

superscript (0, 1) of Ψ0,4 for simplicity. All the Weyl scalars in this subsection are
assumed to be at O(𝜁0, 𝜖1).

In this work, we focus on the modified Teukolsky equation for Ψ0, so it is convenient
to work with IRG, where ΨH can be reconstructed from Ψ0 by inverting Eq. (3.18a)
using the Teukolsky-Starobinsky identities [77, 124, 125], e.g.,

Ψ̄H = −2ℭ−1Δ2
(
𝐷†

)4 [
Δ2Ψ0

]
. (3.20)

Here, ℭ is the mode-dependent Teukolsky-Starobinsky constant [51, 83],2

ℭ = 𝜆2(𝜆 + 2)2 − 8𝜔2𝜆
[
𝛼2(5𝜆 + 6) − 12𝑎2] + 144𝜔4𝛼4 + 144𝜔2𝑀2 , (3.21)

where 𝜔 is the QNM frequency associated with a specific (𝑙, 𝑚, 𝜔) mode of Ψ0, 𝜆
is the separation constant used by Chandrasekhar [51], and 𝛼2 ≡ 𝑎2 − 𝑎𝑚/𝜔. The
relation between ΨH and other Weyl scalars in IRG can be found in Appendix 3.9.
For the Schwarzschild background, these relations greatly simplify. Since we use the
relation between Ψ2 and ΨH in the Schwarzschild limit frequently in Sec. 3.6, we
present it here for convenience,

Ψ2 = −1
2
𝐷2(𝛿 + 2𝛽) (𝛿 + 4𝛽)Ψ̄H . (3.22)

3.3.2 Definition of even- and odd-parity modes
With the relation in Eq. (3.16), we can now define the modes with definite parity
in GR. For convenience, let us define an operator P̂ ≡ Ĉ𝑃̂, where 𝑃̂ is the parity
transformation, and Ĉ is the complex conjugation,

P̂ 𝑓 = Ĉ𝑃̂ 𝑓 = Ĉ 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋) = 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋) . (3.23)

In [126], the same P̂ operator was also constructed and used for studying scalar and
vector QNMs and their isospectrality in EFT extensions of GR. With the definition
above and 𝑃̂2 = Ĉ2 = Î, where Î is the identity operator, one can easily show that

P̂2 = Î , ĈP̂ = 𝑃̂ , 𝑃̂P̂ = Ĉ , (3.24)

because 𝑃̂, Ĉ, and P̂ commute with each other. Using Eq. (3.24), we will replace 𝑃̂
with Ĉ and P̂ in most places. When P̂ acts on another operator 𝑋̂ , we have

P̂ [𝑋̂] = P̂ 𝑋̂P̂, (3.25)
2ℭ is the constant 𝑝 in [83].
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and similarly for Ĉ. Other useful properties of 𝑃̂, Ĉ, and P̂ are listed in Appendix 3.8.

As discussed in [90], at O(𝜁0, 𝜖0) in the Kinnersley tetrad of Kerr,

P̂ {𝐷,𝚫} = {𝐷,𝚫} , P̂
{
𝛿, 𝛿

}
= −

{
𝛿, 𝛿

}
,

P̂ {𝜌, 𝜇, 𝛾} = {𝜌, 𝜇, 𝛾} , P̂ {𝛼, 𝛽, 𝜋, 𝜏} = − {𝛼, 𝛽, 𝜋, 𝜏} ,
(3.26)

and other spin coefficients are zero. For convenience, let us rewrite Eqs. (3.15) and
(3.16) as

ℎ𝜇𝜈 = O𝜇𝜈Ψ̄H + Ō𝜇𝜈ΨH , (3.27)

where O𝜇𝜈 denotes the operator converting Ψ̄H to ℎ𝜇𝜈. Using Eq. (3.26), one can
show that

P̂O𝜇𝜈 = O𝜇𝜈 . (3.28)

Thus,
P̂ℎ𝜇𝜈 = O𝜇𝜈P̂Ψ̄H + Ō𝜇𝜈P̂ΨH . (3.29)

For even- and odd-parity metric perturbations, P̂ℎE,O
𝜇𝜈 = ±(−1)𝑙ℎE,O

𝜇𝜈 . Comparing
Eq. (3.29) to Eq. (3.27), we find that the Hertz potentials ΨE,O

H generated from ℎ
E,O
𝜇𝜈

must transform as
P̂Ψ

E,O
H = ±(−1)𝑙ΨE,O

H . (3.30)

Since the operators converting Ψ̄H to Ψ0,4 in Eqs. (3.17a) and (3.18a) are invariant
under P̂, the even- and odd-parity modes of Ψ0,4 must transform in the same way as
Eq. (3.30).

We can then define the definite-parity modes ΨE,O
𝑙𝑚𝜔

of Ψ0,4 to be

Ψ
E,O
𝑙𝑚𝜔
B Ψ𝑙𝑚𝜔 ± (−1)𝑙 P̂Ψ𝑙𝑚𝜔 (3.31)

because then we have that

P̂Ψ
E,O
𝑙𝑚𝜔

= P̂Ψ𝑙𝑚𝜔 ± (−1)𝑙Ψ𝑙𝑚𝜔
= ± (−1)𝑙

[
Ψ𝑙𝑚𝜔 ± (−1)𝑙 P̂Ψ𝑙𝑚𝜔

]
= ± (−1)𝑙ΨE,O

𝑙𝑚𝜔
,

(3.32)

where Ψ𝑙𝑚𝜔 is a single (𝑙, 𝑚, 𝜔) mode solving the Teukolsky equation of either Ψ0

or Ψ4. For simplicity, we shall also write

ΨE,O B Ψ ± (−1)𝑙 P̂Ψ , Ψ B Ψ𝑙𝑚𝜔 , (3.33)
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where we have dropped the mode label 𝑙𝑚𝜔 for all the fields in Eq. (3.31). Henceforth,
we always assume that Ψ is a single (𝑙, 𝑚, 𝜔) mode. Using Eq. (3.33), we can also
express Ψ and P̂Ψ in terms of ΨE,O,

Ψ =
1
2
(ΨE + ΨO) , P̂Ψ =

(−1)𝑙
2

(ΨE − ΨO) , (3.34)

which provides the inverse map from definite-parity modes back to the full solutions
to the Teukolsky equation.

3.3.3 Relation between definite-parity modes and solutions to the Teukolsky
equation

To generate metric perturbations with definite parity, besides the transformation
property in Eq. (3.30), we also need ΨE,O to solve the Teukolsky equation; otherwise,
the metric perturbations generated will not solve the Einstein equations. The modes
in Eq. (3.31) are not necessarily solutions to the modified Teukolsky equation since
P̂Ψ is not guaranteed to be a solution except in some special cases.

For Kerr, one can show that Eq. (3.31) are solutions to the Teukolsky equation by
using the transformation properties of Teukolsky functions under 𝑃̂ and Ĉ. According
to [90], the radial Teukolsky functions 𝑠𝑅𝑙𝑚𝜔 (𝑟) and the angular Teukolsky functions

𝑠𝑆𝑙𝑚𝜔 (𝜃) for Kerr in GR satisfy

𝑠 𝑅̄𝑙𝑚𝜔 = (−1)𝑚𝑠𝑅𝑙−𝑚−𝜔̄ ,

𝑠𝑆𝑙𝑚𝜔 (𝜋 − 𝜃) = (−1)𝑚+𝑙−𝑠𝑆𝑙𝑚𝜔 (𝜃) ,

𝑠𝑆𝑙𝑚𝜔 (𝜃) = (−1)𝑚+𝑠−𝑠𝑆𝑙−𝑚−𝜔̄ (𝜃) .

(3.35)

Thus, by applying the above relations for 𝑠 = ±2, we can rewrite P̂Ψ as

P̂Ψ = Ψ̄𝑙𝑚𝜔 (𝜋 − 𝜃, 𝜙 + 𝜋)
= ±2𝑅̄𝑙𝑚𝜔𝑒

−𝑖(𝑚(𝜙+𝜋)−𝜔̄𝑡)
±2𝑆𝑙𝑚𝜔 (𝜋 − 𝜃)

= (−1)𝑙±2𝑅𝑙−𝑚−𝜔̄𝑒
−𝑖(𝑚𝜙−𝜔̄𝑡)

±2𝑆𝑙−𝑚−𝜔̄ ,

(3.36)

where in the third line we have used the relations in Eq. (3.35). Thus, for Kerr, we
also have

Ψ
E,O
𝑙𝑚𝜔

= Ψ𝑙𝑚𝜔 ± Ψ𝑙−𝑚−𝜔̄ , (3.37)

which is the definition used in [90].

In general, the modes in Eq. (3.37) do not necessarily satisfy the transformation rule
in Eq. (3.30) as one can explicitly check. For Kerr, due to the relations in Eq. (3.35),
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we can transform Ψ𝑙−𝑚−𝜔̄ to P̂Ψ𝑙𝑚𝜔, so Eq. (3.37) becomes modes of definite parity.
Generally, we need to define the even and odd modes for Ψ𝑙𝑚𝜔 and Ψ𝑙−𝑚𝜔̄ separately
using Eq. (3.33). For Kerr, since P̂Ψ𝑙𝑚𝜔 = (−1)𝑙Ψ𝑙−𝑚𝜔̄, the even and odd modes for
Ψ𝑙𝑚𝜔 and Ψ𝑙−𝑚𝜔̄ are degenerate, ΨE,O

𝑙𝑚𝜔
= ±ΨE,O

𝑙−𝑚𝜔̄.

Another feature of the definition in Eq. (3.33) is that the modes with definite parity
are linear combinations of modes with frequency𝜔 and the (negative of its) conjugate
−𝜔̄. One may wonder whether we can define modes with definite parity without
mixing modes with different frequencies. The answer is no. For a generic Hertz
potential, we can always decompose it into modes with different frequencies, e.g.,
Ψ =

∑
𝜔 𝐴𝜔 (𝑟, 𝜃, 𝜙)𝑒−𝑖𝜔𝑡 . Since modes with definite parity need to transform as in

Eq. (3.30), we must have∑︁
𝜔

𝐴𝜔 (𝑟, 𝜃, 𝜙)𝑒−𝑖𝜔𝑡 = ±(−1)𝑙
∑︁
𝜔

𝐴̄𝜔 (𝑟, 𝜋 − 𝜃, 𝜙 + 𝜋)𝑒𝑖𝜔̄𝑡 , (3.38)

so 𝐴−𝜔̄ (𝑟, 𝜃, 𝜙) = ±(−1)𝑙 𝐴̄𝜔 (𝑟, 𝜋 − 𝜃, 𝜙 + 𝜋). Thus, any mode with frequency 𝜔
must be accompanied by a mode with frequency −𝜔̄. This additionally shows that
any solution of the Teukolsky equation in GR has the decomposition in Eq. (3.33) if
it is a definite-parity mode.

To summarize, the definition in Eq. (3.31) is a more fundamental definition than the
one in Eq. (3.37) since it does not rely on the specific properties of the solutions to
the Teukolsky equation in Kerr. As such, we use Eqs. (3.31) and (3.33) for the rest of
the work. The major goal of this work is to study the correction to the definite-parity
Teukolsky solutions in GR defined in Eq. (3.33). In many cases, we do not expect
that the modified Teukolsky equation admits solutions with definite parity for generic
systems that generate GWs. We also do not expect the modes defined in Eq. (3.33) to
generate metric perturbations with definite parity in modified gravity. Nonetheless,
in the next section, we show that the definition in Eqs. (3.31) and (3.33) still work
for Petrov type D spacetimes that are perturbations of Kerr in modified gravity.

3.4 Modes with Definite Parity in Modified Gravity
In the previous section, we have shown that the Teukolsky functions defined in
Eq. (3.33) generate metric perturbations with definite parity in GR using metric
reconstruction. However, for general modified gravity theories, the procedure to
reconstruct metric perturbations from the modified Teukolsky functions is not known.
On the other hand, one may also wonder whether the definition in Eq. (3.33) still
works for modified gravity. Although one can find bGR corrections to the GR,
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definite-parity QNMs without knowing whether the corrected modes have definite
parity, it is still important to understand what definite-parity QNMs are in modified
gravity. Along with the results of Sec. 3.5, one can then directly check whether a
modified gravity theory admits modes with definite parity as solutions to the modified
Teukolsky equations. In this section, we show that the definition in Eq. (3.33) also
works for Petrov type D spacetimes in modified gravity.

Since metric reconstruction in modified gravity is generally unknown, we first
start from metric perturbations with definite parity and then compute the parity
transformation of the Weyl scalars generated from these metric perturbations. In our
derivation, we make certain gauge choices such that all the NP quantities have simple
transformation properties under P̂. In Sec. 3.4.3, we further show that although our
derivation is not manifestly gauge-invariant, the parity properties of Weyl scalars Ψ0,4

are gauge-invariant. In this work, we only aim to define definite-parity modes for
Petrov type D spacetimes in modified gravity. More specifically, we consider Petrov
type D BHs that are modifications of Kerr. For non-Petrov-type-D spacetimes in
modified gravity, there are additional complexities, so we discuss a potential strategy
and leave further investigations for future work.

3.4.1 P̂-transformation of stationary NP quantities
In this section, we compute the parity transformation of NP quantities at O(𝜖0). For
Kerr BHs in GR, we can use the Kinnersley tetrad such that at O(𝜁0, 𝜖0),

P̂𝐷 (0,0) = 𝐷 (0,0) , P̂𝚫(0,0) = 𝚫(0,0) ,

P̂𝛿(0,0) = −𝛿(0,0) , P̂𝛿(0,0) = −𝛿(0,0) .
(3.39)

For tetrads corrected at O(𝜁1, 𝜖0), we can follow [102] to choose

𝛿𝑒
(1,0)
𝑎𝜇 = −1

2
𝑒
(0,0)
𝑎𝜈 ℎ

𝜈(1,0)
𝜇 , (3.40)

such that all the orthogonality conditions of NP tetrads are satisfied. Recall that
we assume the BH spacetime invariant under parity, so P̂ℎ(1,0)𝜇𝜈 = 𝑃̂ℎ

(1,0)
𝜇𝜈 = ℎ

(1,0)
𝜇𝜈 ,

where we have used that ℎ(1,0)𝜇𝜈 is real. Then, using Eq. (3.39), we find

P̂𝐷 (1,0) = 𝐷 (1,0) , P̂𝚫(1,0) = 𝚫(1,0) ,

P̂𝛿(1,0) = −𝛿(1,0) , P̂𝛿(1,0) = −𝛿(1,0) .
(3.41)

Since the background tetrad in GR and modified gravity have the same transformation
properties under P̂, we do not distinguish them below by suppressing the index
orders in 𝜁 so that the superscripts give the order in the expansion of 𝜖 only.
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With Eqs. (3.39) and (3.41), one can then compute the P̂-transformation of any spin
coefficient or Ricci rotation coefficient using the definition,

𝛾𝑐𝑎𝑏 = 𝑒𝑎𝜇;𝜈𝑒
𝜇
𝑐 𝑒

𝜈
𝑏 . (3.42)

From Eqs. (3.39), (3.41), and (3.42), we know that the spin coefficients with even
number of𝑚𝜇, 𝑚̄𝜇, and their corresponding directional derivatives are invariant under
P̂, while the ones with odd numbers of 𝑚𝜇, 𝑚̄𝜇, and their corresponding directional
derivatives pick up a minus sign under P̂. For example, 𝜅 = 𝛾131 only contains one
𝑚𝜇, so P̂𝜅 (0) = −𝜅 (0) . Although 𝜅 (0) vanishes in Petrov type D spacetimes, we still
list its parity transformation property since it only depends on the transformation
rules in Eqs. (3.39) and (3.41). Similarly, we find

P̂
{
𝜎 (0) , 𝜆(0) , 𝜀(0) , 𝜌(0) , 𝜇(0) , 𝛾 (0)

}
=

{
𝜎 (0) , 𝜆(0) , 𝜀(0) , 𝜌(0) , 𝜇(0) , 𝛾 (0)

}
,

P̂
{
𝜅 (0) , 𝜈(0) , 𝛼(0) , 𝛽(0) , 𝜏(0) , 𝜋(0)

}
= −

{
𝜅 (0) , 𝜈(0) , 𝛼(0) , 𝛽(0) , 𝜏(0) , 𝜋(0)

}
,

(3.43)

which are consistent with the results in [90] for GR.

3.4.2 P̂-transformation of dynamical NP quantities
At O(𝜖1), the tetrad can be expressed in terms of the tetrad at O(𝜖0). As found in
[88, 127], one can use the tetrad freedom to choose

𝐷 (1) = − 1
2
ℎ
(1)
𝑙𝑙
𝚫(0) ,

𝚫(1) = − 1
2
ℎ
(1)
𝑛𝑛 𝐷

(0) − ℎ(1)
𝑙𝑛
𝚫(0) ,

𝛿(1) = − ℎ(1)𝑛𝑚𝐷 (0) − ℎ(1)
𝑙𝑚
𝚫(0) + 1

2
ℎ
(1)
𝑚𝑚̄
𝛿(0) + 1

2
ℎ
(1)
𝑚𝑚𝛿

(0) .

(3.44)

Since this tetrad choice is possible at both O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1), we also suppress
the expansion in 𝜁 here for simplicity. Taking ℎ(1)𝜇𝜈 to be the metric perturbations with
definite parity of Eq. (3.14), we find that the dynamical tetrad transforms under P̂ as

P̂𝐷 (1) = ±(−1)𝑙𝐷 (1) , P̂𝚫(1) = ±(−1)𝑙𝚫(1) ,

P̂𝛿(1) = ∓(−1)𝑙𝛿(1) , P̂𝛿(1) = ∓(−1)𝑙𝛿(1) ,
(3.45)

where the factor± of𝐷 (1) and𝚫(1) depends on the parity of ℎ(1)𝜇𝜈 generating these tetrad
perturbations, e.g., + for even parity and − for odd parity, and similarly for the factor ∓
of 𝛿(1) and 𝛿(1) . The eigenvalues of P̂ in Eq. (3.45) have contributions from both the
background tetrad [Eqs. (3.39) and (3.41)] and the perturbed metric ℎ(1)𝜇𝜈 [±(−1)𝑙 for
even and odd parity, respectively]. For example, since P̂ℎ(1)

𝑙𝑙
= ±(−1)𝑙ℎ(1)

𝑙𝑙
for even-
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or odd-parity ℎ(1)𝜇𝜈 , respectively, and P̂𝚫(0) = 𝚫(0) , we find P̂𝐷 (1) = ±(−1)𝑙𝐷 (1) . In
total, 𝐷 (1) and 𝚫(1) preserve the parity of ℎ(1)𝜇𝜈 , while 𝛿(1) and 𝛿(1) flip its parity.

To find the P̂-transformation of the spin coefficients at O(𝜖1), one can first express the
spin coefficients in terms of metric perturbations. This can be done by linearizing the
commutation relation, e.g. following [51]. We have listed the results in Appendix 3.9,
which are consistent with the results in [88]. Then, using Eqs. (3.39), (3.41), (3.43),
and (3.45), one can find that

P̂
{
𝜎 (1) , 𝜆(1) , 𝜀(1) , 𝜌(1) , 𝜇(1) , 𝛾 (1)

}
= ±(−1)𝑙

{
𝜎 (1) , 𝜆(1) , 𝜀(1) , 𝜌(1) , 𝜇(1) , 𝛾 (1)

}
,

P̂
{
𝜅 (1) , 𝜈(1) , 𝛼(1) , 𝛽(1) , 𝜏(1) , 𝜋(1)

}
= ∓(−1)𝑙

{
𝜅 (1) , 𝜈(1) , 𝛼(1) , 𝛽(1) , 𝜏(1) , 𝜋(1)

}
,

(3.46)
which have very similar transformation properties as the spin coefficients at O(𝜖0) in
Eq. (3.43) up to the overall factor ±(−1)𝑙 of ℎ(1)𝜇𝜈 under P̂.

With this in hand, let us now study the transformation properties of the Weyl scalars.
Using the Ricci identity, one has that

Ψ0 = 𝐷 [−3,1,−1,−1]𝜎 − 𝛿[−1,−3,1,−1]𝜅 . (3.47)

Using Eqs. (3.39), (3.41), (3.43), (3.45), and (3.46), we then find that

P̂Ψ
(1)
0 = ±(−1)𝑙Ψ(1)

0 , (3.48)

which includes both O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1) contributions and is consistent with
Eq. (3.30). The same, of course, is also true for Ψ(1)

4 . In Sec. 3.3.3, we have shown
that for any mode to have the transformation properties of Eq. (3.48), the mode has
to have the decomposition of Eq. (3.33). This confirms that the modes defined in
Eq. (3.33) are definite-parity Teukolsky solutions for Petrov type D spacetimes in
modified gravity. Reference [57] has found the same definite-parity modes of Ψ0,4 via
metric reconstruction, but they only intended to construct these definite-parity modes
in GR for evaluating QNM shifts. Nonetheless, our work extends the definition in
GR to Petrov type D spacetimes in modified gravity.

3.4.3 Gauge invariance
In the analysis above, we have chosen a specific tetrad in Eqs. (3.39), (3.41), and
(3.45), so one may wonder whether our definition in Eq. (3.33) still works if we
choose a different tetrad. Moreover, besides the freedom of rotating the tetrad,
one can also perform local coordinate transformations, which one may worry
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also affect our analysis. In this section, we show that, although the proof above
selected a specific tetrad, its argument about definite-parity modes is both tetrad- and
coordinate-invariant.

Generally, for perturbations at O(𝜁1, 𝜖1), one should consider both coordinate and
tetrad transformations at O(𝜁1, 𝜖0), O(𝜁0, 𝜖1), and O(𝜁1, 𝜖1). For simplicity, let
us focus on Ψ0, and an analogous argument can be made for Ψ4. For a general
combination of type I, II, and type III rotations with rotation parameters 𝑎, 𝑏, 𝐴, and
𝜗, where 𝑎 and 𝑏 are complex functions, and 𝐴 and 𝜗 are real functions, the Weyl
scalar Ψ0 transforms as [51],

Ψ0 → 𝐴−2𝑒2𝑖𝜗Ψ0 + 4𝑏Ψ1 + 6𝑏2Ψ2 + 4𝑏3Ψ3 + 𝑏4Ψ4 , (3.49)

where we have kept all orders of the rotation parameters. For tetrad rotations at
O(𝜁1, 𝜖1), Eq. (3.49) reduces to

Ψ
(1,1)
0 → Ψ

(1,1)
0 − 2[𝛿𝐴(1,1) − 𝑖𝜗(1,1)]Ψ(0,0)

0 + 4𝑏 (1,1)Ψ(0,0)
1 , (3.50)

where we have define 𝛿𝐴 = 𝐴 − 1. Since we are interested in background spacetimes
that are modifications of Petrov type D spacetimes in GR, Ψ(0,0)

0 = Ψ
(0,0)
1 = 0, so

Ψ
(1,1)
0 is invariant under tetrad rotations at O(𝜁1, 𝜖1), which is consistent with the

result in [102]. Similarly, for tetrad rotations at O(𝜁0, 𝜖1),

Ψ
(1,1)
0 → Ψ

(1,1)
0 − 2[𝛿𝐴(0,1) − 𝑖𝜗(0,1)]Ψ(1,0)

0 + 4𝑏 (0,1)Ψ(1,0)
1 . (3.51)

For Petrov type D spacetimes in modified gravity, Ψ(1,0)
0 = Ψ

(1,0)
1 = 0, so Ψ

(1,1)
0 is

also invariant under tetrad rotations at O(𝜁0, 𝜖1).

However, for Petrov type I spacetimes, since Ψ(1,0)
0,1 are nonzero, Ψ(1,1)

0 is not invariant
under tetrad rotations at O(𝜁0, 𝜖1). Then to justify our arguments in Secs. 3.4.1 and
3.4.2, we need to first construct a tetrad- and coordinate-invariant dynamical curvature
perturbation from Ψ

(1,1)
0 . Although such a quantity has not been found in modified

gravity yet, there have been similar efforts for second-order GW perturbations in
GR. Reference [127] found that Ψ(0,2)

0,4 are also not invariant under tetrad rotations
and coordinate transformations at O(𝜁0, 𝜖1). Solutions to this issue include adding
correction terms to Ψ

(0,2)
0,4 to construct a tetrad- and coordinate-invariant quantity

[127] or studying GW perturbations in an asymptotically flat representation of Kerr
[128]. As shown in [102], our modified Teukolsky formalism can be directly mapped
to the second-order Teukolsky formalism in GR in [127], so this issue in modified
gravity can probably be solved using similar techniques. We leave the construction of
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a tetrad- and coordinate-invariant dynamical curvature perturbation and the definition
of definite-parity modes in Petrov type I spacetimes in modified gravity to our future
work.

Besides tetrad rotations at O(𝜁1, 𝜖1) and O(𝜁0, 𝜖1), we can also rotate the tetrad at
O(𝜁1, 𝜖0). In this case,

Ψ
(1,1)
0 → Ψ

(1,1)
0 − 2[𝛿𝐴(1,0) − 𝑖𝜗(1,0)]Ψ(0,1)

0 + 4𝑏 (1,0)Ψ(0,1)
1 . (3.52)

Since Ψ
(0,1)
0,1 are GW perturbations in GR, which are nonzero in general, Ψ(1,1)

0 is
not invariant under tetrad rotations at O(𝜁1, 𝜖0). However, this behavior is very
similar to tetrad rotations at O(𝜁0, 𝜖0) in GR, which also shift Ψ(0,1)

0,4 and correspond
to large Lorentz transformations of the background spacetime. In contrast, gauge
transformations enter at the same order as GW perturbations, or O(𝜖1) in our notation.
For Kerr BHs in GR, the Teukolsky equation is decoupled and separable in Boyer-
Lindquist coordinates and in the Kinnersley tetrad, where definite-parity modes
can also be easily defined. However, we do not expect the same situation in other
coordinates and tetrads in general. Similarly, there are convenient coordinates and
tetrads in modified gravity, where parity transformation on Ψ

(1,1)
0,4 is still described by

the same operator P̂, with definite-parity modes having eigenvalues ±1 under P̂. For
bGR BHs invariant under parity, one can always use Eq. (3.40) to construct a bGR
tetrad which transforms the same way as the Kinnersley tetrad under parity. In this
case, the transformation of Ψ(1,1)

0,4 is still described by P̂, with definite-parity modes
having eigenvalues of ±1. If one further rotates this tetrad at the O(𝜁1, 𝜖0) order, then
generically the parity transformation for Ψ(1,1)

0,4 will have to be replaced by an operator
different from P̂. Nevertheless, under that operator, definite-parity modes still exist,
and will still have eigenvalue ±1. For this reason, we can constrain the allowed
tetrad rotations at O(𝜁1, 𝜖0) to the ones preserving Eq. (3.41) (i.e., P̂{𝛿𝐴(1,0) , 𝜗(1,0) ,
𝑏 (1,0)} = {𝛿𝐴(1,0) ,−𝜗(1,0) ,−𝑏 (1,0)}), similar to the choice in [126], so Ψ

(1,1)
0,4 has

simple transformation under parity [i.e., Eq. (3.48)].

Finally, we can also perform coordinate transformations at O(𝜁1, 𝜖1) and O(𝜁0, 𝜖1).
For the same reasons as discussed above, we do not care about coordinate trans-
formations at O(𝜁0, 𝜖0) and O(𝜁1, 𝜖0). Under coordinate transformations 𝑥𝜇 →
𝑥𝜇 + 𝜖𝜉𝜇(0,1) + 𝜁𝜖𝜉𝜇(1,1) , Ψ(1,1)

0 transforms as [127],

Ψ
(1,1)
0 → Ψ

(1,1)
0 + 𝜉𝜇(0,1)𝜕𝜇Ψ(1,0)

0 + 𝜉𝜇(1,1)𝜕𝜇Ψ(0,0)
0 . (3.53)

For Petrov type D spacetimes in modified gravity, Ψ(0,0)
0 = Ψ

(1,0)
0 = 0 , so Ψ

(1,1)
0

is also coordinate-invariant. Thus, our arguments in Secs. 3.4.1 and 3.4.2 to find
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the transformation rule in Eq. (3.48) are both tetrad- and coordinate-invariant. For
Petrov type I spacetimes, although one can set Ψ(1,0)

0 ≠ 0 by rotating the background
tetrad [51], we may have to work with the tetrad where Ψ

(1,0)
0 = 0 to preserve our

perturbation scheme in Sec. 3.2.1, as argued in [102]. Thus, we leave the construction
of a tetrad- and coordinate-invariant dynamical curvature perturbation to our future
work.

3.5 Isospectrality breaking in modified gravity
In Secs. 3.3 and 3.4, we have found the QNMs of Weyl scalars that generate definite-
parity metric perturbations of Petrov type D spacetimes in GR and modified gravity.
In this section, we compute the shift of QNM frequencies of these definite-parity
modes using the modified Teukolsky equation found in [102, 103]. We first need
to extract the source terms having overlaps with the QNMs in GR, which shift the
QNM frequencies.

As shown in Sec. 3.3.1, metric reconstruction mixes the modes with frequency 𝜔
and −𝜔̄, so we need to disentangle the source terms with frequency 𝜔 from the
terms with frequency −𝜔̄ within the modified Teukolsky equation. After finding the
equations with definite-frequency source terms, we then apply the EVP approach of
[103–105] to compute the shifts in QNMs. In the rest of this section, we show that
the solutions form a two-dimensional subspace, the eigenvectors of which are two
linear combinations of (𝑙, 𝑚) and (𝑙,−𝑚) modes determined by the source terms.
The frequencies of these two linear combinations are generally different, so the
degeneracy of each (𝑙, 𝑚, 𝜔) mode in GR is broken, like in quantum mechanics, as
observed, for example, in dCS gravity [30, 31, 53–55], EdGB gravity [60–64], and
higher-derivative gravity [56–58]. Nonetheless, in the special case that the source
terms are invariant under the P̂-transformation, these eigenvectors become even-
and odd-parity modes. One can thus see this section as a non-trivial extension of
Sec. IVC in [103].

3.5.1 Identification of the source terms that shift QNM frequencies
In this subsection, we extract the source terms within the modified Teukolsky
equations having overlaps with the QNMs in GR. In other words, we are interested
in the terms of Eqs. (3.10) and (3.11) that are driven by ℎ(0,1)𝜇𝜈 or Ψ(0,1)

0,4 .

In Sec. 3.2, we have discussed that there are two types of source terms. First, the
source term S (1,1)

geo [Eq. (3.10)] comes from the correction to the homogeneous part
of the Bianchi and Ricci identities, so it is purely geometrical and only depends on
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corrections to the background geometry. The terms in S (1,1)
geo take the form of either

𝐻
(0,1)
𝑖

Ψ
(1,0)
𝑖

or 𝐻 (1,0)
𝑖

Ψ
(0,1)
𝑖

, where 𝐻𝑖 are operators that involve only the metric.
Both 𝐻 (0,1)

𝑖
and Ψ

(0,1)
𝑖

are driven by ℎ(0,1)𝜇𝜈 and can be reconstructed from the Hertz
potential Ψ(0,1)

H .

The next set of source terms is encoded in S (1,1) [Eq. (3.11)], which comes from
the effective stress-energy tensor and depends on the details of the modified gravity
theory. As discussed in Sec. 3.2, this type of source term contains two classes. For
bGR theories of class B, there are no extra non-metric fields, so S (1,1) is driven
by ℎ(0,1)𝜇𝜈 directly as shown in detail in [102]. For bGR theories of class A, there
are extra non-metric fields, so we need to be more careful. As discussed in detail
in [102], for class A bGR theories with non-minimal coupling, extra non-metric
fields are first driven by ℎ(0,1)𝜇𝜈 , so they can also shift the QNM frequencies. Similar
to the order-reduction scheme in [121], one can first solve the master equations of
extra non-metric fields, which are also sourced Teukolsky equations when extra
fields are of spin 0 or 1. Since the sources are GR metric fields, the equations of
extra fields effectively decouple from the modified Teukolsky equation of metric
fields, which occur at the next order in the bGR coupling. One can then apply
standard techniques, such as Green functions, to solve for these extra fields first and
then insert the solutions into the source terms of the modified Teukolsky equation.
Nonetheless, the homogeneous part of these extra non-metric fields can oscillate
at other frequencies, for example, as observed with the scalar perturbations in dCS
gravity [31, 92, 93].

Incorporating only the source terms driven by ℎ(0,1)𝜇𝜈 , we can then write the modified
Teukolsky equation in Eqs. (3.9)–(3.11) as

𝐻Ψ(1,1) = S𝜇𝜈ℎ
(0,1)
𝜇𝜈 , (3.54)

where 𝐻 = 𝐻GR
0 and Ψ(1,1) = Ψ

(1,1)
0 for Ψ0. The equation that Ψ(1,1)

4 satisfies is of
the same form, but with the replacements 𝐻GR

0 → 𝐻GR
4 and Ψ

(1,1)
0 → Ψ

(1,1)
4 . In

Sec. 3.3.1, we have shown how to reconstruct ℎ(0,1)𝜇𝜈 from the Hertz potential Ψ(0,1)
H ,

i.e.,
ℎ
(0,1)
𝜇𝜈 =

(
O𝜇𝜈 + Ō𝜇𝜈Ĉ

)
Ψ̄

(0,1)
H . (3.55)

Here, we have pulled out the complex conjugation operator Ĉ acting on Ψ̄
(0,1)
H in

Eq. (3.27) since it transforms any mode with frequency 𝜔 to −𝜔̄. Furthermore, if
one reconstructs Ψ̄(0,1)

H from Ψ
(0,1)
0 in IRG or Ψ(0,1)

4 in ORG, the operators acting
on Ψ̄

(0,1)
H do not mix modes with different frequencies [i.e., Eq. (3.20)], as shown in
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[83]. Thus, we can absorb these operators into O𝜇𝜈 and Ō𝜇𝜈, so Eq. (3.54) can be
further written as

𝐻Ψ(1,1) = S𝜇𝜈
(
O𝜇𝜈 + Ō𝜇𝜈Ĉ

)
Ψ(0,1) . (3.56)

In principle, one can also have additional operators Ĉ within S𝜇𝜈, but since ℎ(0,1)𝜇𝜈 is
real, we do not need to pull them out. In the rest of this section, we take Eq. (3.56)
as our modified Teukolsky equation.

3.5.2 Degeneracy breaking
In Eq. (3.56), we notice that the modes with frequency 𝜔 and −𝜔̄ are mixed due to
the operator Ĉ acting on Ψ(0,1) . Thus, to solve Eq. (3.56), one generally needs to
consider the linear combinations

Ψ
(0,1)
𝜂 = Ψ(0,1) + 𝜂Ψ(0,1)

P̂
,

Ψ
(1,1)
𝜂 = Ψ(1,1) + 𝜂Ψ(1,1)

P̂
.

(3.57)

Here, Ψ(0,1)
P̂

and Ψ
(1,1)
P̂

are the modes with GR QNM frequency that is the negative
complex conjugate of the frequency ofΨ(0,1) andΨ(1,1) so that we can solve Eq. (3.56)
consistently. The constant 𝜂 is some complex number, though it is not completely
defined at this moment since one can in principle absorb it into the definition of
Ψ

(0,1)
P̂

and Ψ
(1,1)
P̂

. In Eq. (3.62), we will fix the relative normalization between Ψ(0,1)

and Ψ
(0,1)
P̂

, so 𝜂 will become well defined.

In Eq. (3.57), the modes Ψ(0,1) and Ψ(1,1) refer to a specific (𝑙, 𝑚, 𝜔) mode of
O(𝜁0, 𝜖1) and O(𝜁1, 𝜖1) perturbations of Ψ0,4, respectively, i.e.,

Ψ(0,1) = 𝜓 (0,1)
𝑙𝑚

(𝑟, 𝜃) exp
[
−𝑖

(
𝜔

(0)
𝑙𝑚

+ 𝜁𝜔(1)
𝑙𝑚

)
𝑡 + 𝑖𝑚𝜙

]
,

Ψ(1,1) = 𝜓 (1,1)
𝑙𝑚

(𝑟, 𝜃) exp
[
−𝑖

(
𝜔

(0)
𝑙𝑚

+ 𝜁𝜔(1)
𝑙𝑚

)
𝑡 + 𝑖𝑚𝜙

]
,

(3.58)

where we have suppressed indices corresponding to the spin weight 𝑠 and the overtone
number 𝑛 in these modes for simplicity. Notice that, in Eq. (3.58), we have perturbed
the frequencies of both the GR QNM Ψ(0,1) and the bGR QNM Ψ(1,1) , following
the EVP method in [103–105]. Moreover, the QNM frequency shifts of Ψ(0,1) and
Ψ(1,1) are the same; otherwise, the two sides of Eq. (3.56) cannot balance. This
approach is the same, in essence, as the Poincaré-Lindstedt method of solving
secular perturbation problems, introducing shifts of the QNM frequency to cancel
off secularly growing terms due to the GR QNMs resonantly driving the modified
Teukolsky equation. The shift in the QNM frequency plays a similar role to the slow
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timescale of multiple-scale analysis [129], which has been applied to spin-precessing
systems and post-Newtonian dynamics in GR [130–132].

Similarly, the modes Ψ
(0,1)
P̂

and Ψ
(1,1)
P̂

correspond to the (𝑙,−𝑚,−𝜔̄(0)
𝑙𝑚
) mode of

Ψ(0,1) and its perturbations, respectively, i.e.,

Ψ
(0,1)
P̂

= 𝜓
(0,1)
P̂ 𝑙−𝑚

(𝑟, 𝜃) exp
[
−𝑖

(
−𝜔̄(0)

𝑙𝑚
+ 𝜁𝜔(1)

𝑙−𝑚

)
𝑡 − 𝑖𝑚𝜙

]
,

Ψ
(1,1)
P̂

= 𝜓
(1,1)
P̂ 𝑙−𝑚

(𝑟, 𝜃) exp
[
−𝑖

(
−𝜔̄(0)

𝑙𝑚
+ 𝜁𝜔(1)

𝑙−𝑚

)
𝑡 − 𝑖𝑚𝜙

]
,

(3.59)

where we have used that in GR, for any 𝜔(0)
𝑙𝑚

, there exists a 𝜔(0)
𝑙−𝑚 such that 𝜔(0)

𝑙−𝑚 =

−𝜔̄(0)
𝑙𝑚

. The modes Ψ(1,1) and Ψ
(1,1)
P̂

can be directly mapped to the modes 𝜓±(2)
𝑠 in

[103]. In Eq. (3.57), we have distinguished the mode Ψ
(0,1)
P̂

and Ψ
(1,1)
P̂

from P̂Ψ(0,1)

and P̂Ψ(1,1) , the P̂-transformation of Ψ(0,1) and Ψ(1,1) , since we do not know the
relation between 𝜔(1)

𝑙−𝑚 and −𝜔̄(1)
𝑙𝑚

at this stage of the calculation in modified gravity.
In the case that Ψ(0,1)

P = P̂Ψ(0,1) and Ψ
(1,1)
P = P̂Ψ(1,1) , the modes Ψ(0,1)

𝜂 + 𝜁Ψ(1,1)
𝜂

with 𝜂 = ±1 have definite parity in Petrov type D spacetimes in modified gravity, as
we have shown in Sec. 3.4.

Inserting the ansatz in Eq. (3.57) into Eq. (3.56), we find

𝐻

(
Ψ(1,1) + 𝜂Ψ(1,1)

P̂

)
= S𝜇𝜈

[(
O𝜇𝜈Ψ(0,1) + 𝜂Ō𝜇𝜈ĈΨ(0,1)

P̂

)
𝐴
+

(
Ō𝜇𝜈ĈΨ(0,1) + 𝜂O𝜇𝜈Ψ(0,1)

P̂

)
𝐵

]
,

(3.60)

where the first and last term on the right-hand side of Eq. (3.60) come from acting
O𝜇𝜈 in Eq. (3.56) on Ψ(0,1) and Ψ

(0,1)
P̂

, respectively. The second and third term come

from acting Ō𝜇𝜈Ĉ in Eq. (3.56) on Ψ
(0,1)
P̂

and Ψ(0,1) , respectively. We have grouped
the first two terms on the right-hand side together (i.e., group 𝐴) since they have the
same GR QNM frequency 𝜔(0)

ℓ𝑚
. Similarly, the last two terms in group 𝐵 have the

same GR QNM frequency −𝜔̄(0)
ℓ𝑚

. In addition, we also need to match the bGR phase
within group 𝐴 or group 𝐵. Since the bGR QNM frequency of the first and second
term in the group 𝐴 is 𝜔(1)

ℓ𝑚
and −𝜔̄(1)

𝑙−𝑚, respectively, we have to impose

𝜔
(1)
𝑙−𝑚 = −𝜔̄(1)

𝑙𝑚
. (3.61)

The same constraint can also be obtained by requiring the terms in group 𝐵 to have
the same bGR phase. After imposing Eq. (3.61), the phase of 𝐻Ψ(1,1) and 𝐻Ψ

(1,1,)
P̂

also match the phase of group 𝐴 and 𝐵, respectively, so Eq. (3.60) is completely
balanced and solvable. The frequency of Ψ(0,1)

P̂
is now the complex conjugate of the

frequency of Ψ(0,1) . Since Ψ
(0,1)
P̂

is a (𝑙,−𝑚) mode of the solution to the Teukolsky
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equation in GR, and P̂Ψ
(0,1)
𝑙𝑚𝜔

= (−1)𝑙Ψ𝑙−𝑚−𝜔̄ [i.e., Eq. (3.36)], we can conveniently
choose

Ψ
(0,1)
P̂

= P̂Ψ(0,1) (3.62)

such that Eq. (3.60) becomes

𝐻

(
Ψ(1,1) + 𝜂Ψ(1,1)

P̂

)
= S𝜇𝜈

[(
O𝜇𝜈 + 𝜂Ō𝜇𝜈ĈP̂

)
Ψ(0,1) +

(
Ō𝜇𝜈ĈP̂ + 𝜂O𝜇𝜈

)
P̂Ψ(0,1)

]
,

(3.63)

where we have pulled out a factor of P̂ in the second and third term using P̂2 = 1.
Notice, the operator ĈP̂ = 𝑃̂ does not change the frequency of the mode it acts on.

Separating the equation into two parts for Ψ(1,1) and Ψ
(1,1)
P̂

, we find

𝐻Ψ(1,1) = S𝜇𝜈
(
O𝜇𝜈 + 𝜂Ō𝜇𝜈ĈP̂

)
Ψ(0,1) , (3.64a)

𝜂𝐻Ψ
(1,1)
P̂

= S𝜇𝜈
(
𝜂O𝜇𝜈 + Ō𝜇𝜈ĈP̂

)
P̂Ψ(0,1) . (3.64b)

Acting P̂ on Eq. (3.64), we also find

𝐻

(
P̂Ψ(1,1)

)
= (P̂S𝜇𝜈)

(
O𝜇𝜈 + 𝜂Ō𝜇𝜈ĈP̂

)
P̂Ψ(0,1) , (3.65a)

𝜂𝐻

(
P̂Ψ

(1,1)
P̂

)
= (P̂S𝜇𝜈)

(
𝜂O𝜇𝜈 + Ō𝜇𝜈ĈP̂

)
Ψ(0,1) , (3.65b)

where we have used that

P̂𝐻 = 𝐻 , P̂O𝜇𝜈 = O𝜇𝜈 . (3.66)

One can notice that Eq. (3.64) is redundant with respect to Eq. (3.65), since the
latter is just a P̂-transformation of the former, both of which have to be satisfied
simultaneously. Therefore, one can either solve the pair of Eqs. (3.64a) and (3.65b) or
the pair of Eqs. (3.64b) and (3.65a). Let us focus on the first pair and apply the EVP
method in [103–105] to remove the wave functions at O(𝜁1, 𝜖1). References [103–
105] have defined an inner product

⟨𝐻̃𝜓(𝑟, 𝜃) |𝜑(𝑟, 𝜃)⟩ = ⟨𝜓(𝑟, 𝜃) |𝐻̃𝜑(𝑟, 𝜃)⟩ , (3.67)

that makes the Teukolsky operator 𝐻 in GR self-adjoint, where 𝐻̃ is the harmonic
decomposition of 𝐻 into modes 𝑒−𝑖𝜔𝑡+𝑖𝑚𝜙. The functions 𝜓(𝑟, 𝜃) and 𝜑(𝑟, 𝜃) are
the (𝑟, 𝜃) parts of any modes satisfying the QNM boundary conditions, such as
𝜓
(0,1)
𝑙𝑚

(𝑟, 𝜃) and 𝜓 (1,1)
𝑙𝑚

(𝑟, 𝜃) in Eq. (3.58). Expanding 𝜔ℓ𝑚 about 𝜁 on the left-hand
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side of Eqs. (3.64a) and (3.65b) and taking the inner product [i.e., Eq. (3.67)] of
these two equations with Ψ(0,1) , we find

1
⟨𝜕𝜔𝐻̃⟩𝑙𝑚

(
⟨S𝜇𝜈O𝜇𝜈⟩𝑙𝑚 ⟨S𝜇𝜈Ō𝜇𝜈ĈP̂⟩𝑙𝑚

⟨(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂⟩𝑙𝑚 ⟨(P̂S𝜇𝜈)O𝜇𝜈⟩𝑙𝑚

) (
1
𝜂

)
= 𝜔

(1)
𝑙𝑚

(
1
𝜂

)
, (3.68)

where we have defined the shorthand notation

⟨O⟩𝑙𝑚 = ⟨𝜓 (0,1)
𝑙𝑚

|Õ𝜓 (0,1)
𝑙𝑚

⟩ , (3.69)

where Õ is the harmonic decomposition of the operator O into modes 𝑒−𝑖𝜔𝑡+𝑖𝑚𝜙. In
Eq. (3.68), to remove 𝜓 (1,1)

𝑙𝑚
, we have used that 𝜓 (0,1)

𝑙𝑚
solves the Teukolsky equation

in GR, i.e., 𝐻̃𝜓 (0,1)
𝑙𝑚

= 0, such that ⟨𝜓 (0,1)
𝑙𝑚

|𝐻̃𝜓 (1,1)
𝑙𝑚

⟩ = 0.

Equation (3.68) is a standard eigenvalue problem in degenerate perturbation theory.
One can either calculate the eigenvalues of Eq. (3.68) directly or follow [103] to
solve for 𝜂 first. Multiplying the first equation in Eq. (3.68) by 𝜂 and equating the
left-hand side of it to the left-hand side of the second equation, we find a quadratic
equation in 𝜂,

𝜂2 〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

+ 𝜂
〈[
S𝜇𝜈 − (P̂S𝜇𝜈)

]
O𝜇𝜈

〉
𝑙𝑚

−
〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

= 0 .
(3.70)

Since Eq. (3.70) is quadratic, 𝜂 has two solutions 𝜂±,

𝜂± =
1

2
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

{ 〈[
(P̂S𝜇𝜈) − S𝜇𝜈

]
O𝜇𝜈

〉
𝑙𝑚

±
√︃〈[

S𝜇𝜈 − (P̂S𝜇𝜈)
]
O𝜇𝜈

〉2
𝑙𝑚

+ 4
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

}
.

(3.71)
For each solution, we find a correction 𝜔(1)

𝑙𝑚
to the frequency of the mode (𝑙, 𝑚, 𝜔(0)

𝑙𝑚
)

in GR by solving 𝜔(1)
𝑙𝑚

from the first equation of Eq. (3.68) in terms of 𝜂 and plugging
in the solutions of 𝜂 in Eq. (3.71),

𝜔
±(1)
𝑙𝑚

=

〈
S𝜇𝜈

(
O𝜇𝜈 + 𝜂±Ō𝜇𝜈ĈP̂

)〉
𝑙𝑚

⟨𝜕𝜔𝐻̃⟩𝑙𝑚

=
1

2⟨𝜕𝜔𝐻̃⟩𝑙𝑚

{ 〈[
S𝜇𝜈 + (P̂S𝜇𝜈)

]
O𝜇𝜈

〉
𝑙𝑚

±
√︃〈[

S𝜇𝜈 − (P̂S𝜇𝜈)
]
O𝜇𝜈

〉2
𝑙𝑚

+ 4
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

}
.

(3.72)
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The QNM frequency shifts 𝜔±(1)
𝑙𝑚

in Eq. (3.72) can be also found by solving the
characteristic equation of the matrix in Eq. (3.68) directly. One can take the difference
of 𝜔±(1)

𝑙𝑚
to characterize the degree of isospectrality breaking, i.e.,

𝛿𝜔
(1)
𝑙𝑚

= 𝜔
+(1)
𝑙𝑚

− 𝜔−(1)
𝑙𝑚

=

√︃〈[
S𝜇𝜈 − (P̂S𝜇𝜈)

]
O𝜇𝜈

〉2
𝑙𝑚

+ 4
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

⟨𝜕𝜔𝐻̃⟩𝑙𝑚
.

(3.73)

Thus, for isospectrality to be preserved beyond GR, we need〈[
S𝜇𝜈 − (P̂S𝜇𝜈)

]
O𝜇𝜈

〉2
𝑙𝑚

+ 4
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

= 0 . (3.74)

One possibility is that the first and the second term in Eq. (3.74) vanishes inde-
pendently. Notice that

〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

and
〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

have to vanish
simultaneously for the following reason. First, we must simultaneously have〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙±𝑚 = 0 since we are solving the (𝑙, 𝑚) and (𝑙,−𝑚) modes jointly.

More specifically, one can set Ψ(0,1) and Ψ(1,1) to be the (𝑙,−𝑚) mode in Eq. (3.57),
repeat the same argument above, and replace ⟨· · · ⟩𝑙𝑚 in Eq. (3.74) with ⟨· · · ⟩𝑙−𝑚
in the end. Due to P̂Ψ

(0,1)
𝑙𝑚

= (−1)𝑙Ψ(0,1)
𝑙−𝑚 [Eq. (3.36)] and Eq. (3.62), the (𝑙,−𝑚)

mode of Ψ(0,1)
𝜂 in Eq. (3.57) only differs from the (𝑙, 𝑚) mode by an overall constant,

so 𝜔(1)
𝑙𝑚

= 𝜔
(1)
𝑙−𝑚, and any constraint on isospectrality must be redundant for (𝑙,±𝑚).

Next, since P̂Ψ
(0,1)
𝑙𝑚

= (−1)𝑙Ψ(0,1)
𝑙−𝑚 and P̂Ō𝜇𝜈 = Ō𝜇𝜈,

〈
(P̂S𝜇𝜈)Ō𝜇𝜈ĈP̂

〉
𝑙∓𝑚 is a P̂-

transformation of
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙±𝑚, and these terms have to vanish simultaneously.

The same arguments also work for
〈
S𝜇𝜈O𝜇𝜈

〉
𝑙𝑚

and
〈
(P̂S𝜇𝜈)O𝜇𝜈

〉
𝑙𝑚

. In this case,
the matrix in Eq. (3.68) becomes diagonal, so its eigenvectors are (1, 0) and (0, 1).
The first eigenvector can be directly found from Eq. (3.70). The second eigenvector
is not directly captured by Eq. (3.70) since we have fixed the normalization of Ψ(0,1)

and Ψ(1,1) to be unity in Eq. (3.57). Nonetheless, Eqs. (3.68) and (3.70) need to be
satisfied for (𝑙,−𝑚), the solution to which corresponds to the second eigenvector.
This indicates that the (𝑙, 𝑚) and (𝑙,−𝑚) modes decouple in Eq. (3.63).

For the two terms in Eq. (3.74) to vanish, there are several sub-cases. First, let
us consider the case when the operators inside the inner products vanish, i.e.,
P̂S𝜇𝜈 = S𝜇𝜈 and S𝜇𝜈Ō𝜇𝜈 = 0, the latter of which indicates that the source terms
do not contain any complex conjugation Ĉ acting on the GR QNMs according
to Eq. (3.56). This condition usually cannot happen since most operators in the
source terms S (1,1) and S (1,1)

geo [i.e., Eqs. (3.4), (3.5), and (3.12)] contain both the NP
quantities and their complex conjugates. Furthermore, as we will see in Sec. 3.6 and
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Appendix 3.11, the Ricci tensor in the NP basis in many bGR theories also contains
both types of terms. At O(𝜁0, 𝜖1), this mixing of NP quantities and their complex
conjugates results in a mixing of terms proportional to Ψ

(0,1)
0 and Ψ̄

(0,1)
0 , where S𝜇𝜈

cannot annihilate Ō𝜇𝜈, as one can observe in the reconstructed quantities in Sec. 3.3.1
and Appendix 3.9.

One exception is when the source terms in Eq. (3.56) only containS (1,1)
geo , and the bGR

background spacetime is Petrov type D, soS (1,1)
geo takes the formS (1,1)

geo = −𝐻 (1,0)
0 Ψ

(0,1)
0

[Eq. (3.10)]. In this case, one can easily verify that P̂𝐻 (1,0)
0 = 𝐻

(1,0)
0 using the

transformation properties in Sec. 3.4.1 (we have assumed that the background metric
is invariant under P̂), and no complex conjugation Ĉ acts on Ψ0, so isospectrality is
preserved for this correction, as we will discuss in more detail in Sec. 3.6. Notice, in
the case that P̂S𝜇𝜈 = S𝜇𝜈 (the source term is preserved under parity) but the second
term in Eq. (3.74) does not vanish, isospectrality can still break, as we will discuss
in more detail in Sec. 3.5.3.

Second, let us consider the case in which the operators in Eq. (3.74) annihilate the
mode 𝜓 (0,1)

𝑙𝑚
. This can happen, for example, when the operator is proportional to

the Teukolsky operator (or with additional operators acting on it). Third, let us
consider the case in which the mode 𝜓 (0,1)

𝑙𝑚
and the one after applying the operators

in Eq. (3.74) are orthogonal, so their inner product vanishes. For example, if the
operator shifts the 𝑙 of 𝜓 (0,1)

𝑙𝑚
, the two modes are orthogonal to each other due to the

orthogonality of the spin-weighted spheroidal harmonics. However, we do not know
any beyond-GR theory where the second or the third case naturally happens unless
we design the corrections deliberately.

Another possibility to have Eq. (3.74) satisfied is that the two terms cancel each
other, instead of vanishing independently. Since O𝜇𝜈 and Ō𝜇𝜈 are fixed by the
metric reconstruction procedures, we can only play with S𝜇𝜈. However, it is almost
impossible to construct such a S𝜇𝜈 consistently for all (𝑙, 𝑚) modes, since S𝜇𝜈 is
symmetric, and thus, it only contains 10 independent components. Moreover, the
eigenvectors corresponding to Eq. (3.71) are now degenerate, e.g.,

𝜂+ = 𝜂− =

〈[
(P̂S𝜇𝜈 − S𝜇𝜈)

]
O𝜇𝜈

〉
𝑙𝑚

2
〈
S𝜇𝜈Ō𝜇𝜈ĈP̂

〉
𝑙𝑚

≠ 0 . (3.75)

Unlike the 𝜂± = 0 case, this degeneracy is not due to our assumption that the modes
Ψ(0,1) and Ψ(1,1) have a nonzero amplitude [i.e., Eq. (3.57)]. Thus, the matrix in
Eq. (3.68) truly has an incomplete basis of eigenvectors, which indicates that the
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full solution to Eq. (3.64) may also contain modes that are not harmonic in time,
i.e., Ψ(1,1) ∝ 𝑡𝑒−𝑖(𝜔

(0)
𝑙𝑚

+𝜁𝜔 (1)
𝑙𝑚

)𝑡 , similar to the critically damping case of a simple
harmonic oscillator. Since this linear dependence in 𝑡 enters at O(𝜁0), this mode
is different from expanding the exponential in Eq. (3.58) about 𝜁 , where one gets
Ψ(1,1) ∝

[
1 − 𝑖𝜁𝜔(1)

𝑙𝑚
𝑡 + O(𝜁2)

]
𝑒−𝑖𝜔

(0)
𝑙𝑚
𝑡 . Therefore, this term cannot be re-absorbed

by perturbing the QNM frequency. Physically, this means that the BH potential
generating this mode responds to GW perturbations strongly. Nonetheless, this mode
may not be truly problematic since the imaginary part of 𝜔 is always negative, so the
mode still exponentially decays in time.

Except for these special cases, the isospectrality of even- and odd-parity modes in
the QNM frequencies at each (𝑙, 𝑚) is broken by modified gravity corrections. In
Sec. 3.6, we will see that 𝜔+(1)

𝑙𝑚
≠ 𝜔

−(1)
𝑙𝑚

(after summing up the contribution from
both S (1,1) and S (1,1)

geo ) in all the examples we have considered.

A similar analysis specifically for higher-derivative gravity was done by [56] using
metric perturbations, and by [57, 58] using the modified Teukolsky equation. Here,
by following [103], we provide a more general equation of QNM frequency shifts
[e.g., Eq. (3.72)], valid for a broad class of modified gravity theories. Our results are
consistent with [103], but simplified using the parity properties of 𝐻 and O𝜇𝜈. This
allows for a systematic study of the relation between modified gravity corrections
and the structure of isospectrality breaking.

3.5.3 Solutions with definite parity
One may also want to know when the modified Teukolsky equation still admits definite-
parity solutions, i.e., solutions for which P̂ΨE,O = ±(−1)𝑙ΨE,O [i.e., Eq. (3.30)]. For
this reason, let us consider the special case that 𝜂 = ±(−1)𝑙 and Ψ

(1,1)
P̂

= P̂Ψ(1,1) ,
which corresponds to even- and odd-parity modes for Petrov type D spacetimes in
modified gravity, as shown in Sec. 3.4. Inserting 𝜂 = ±(−1)𝑙 into Eq. (3.64a), we
find the definite-parity modified Teukolsky equations to be

𝐻Ψ
(1,1)
E,O = S𝜇𝜈

(
O𝜇𝜈 ± (−1)𝑙 Ō𝜇𝜈ĈP̂

)
Ψ(0,1) . (3.76)

The solutions to Eq. (3.76) can then be obtained from Eq. (3.72), i.e.,

𝜔
E,O(1)
𝑙𝑚

=

〈
S𝜇𝜈

(
O𝜇𝜈 ± (−1)𝑙 Ō𝜇𝜈ĈP̂

)〉
𝑙𝑚

⟨𝜕𝜔𝐻̃⟩𝑙𝑚
. (3.77)
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On the other hand, Eqs. (3.64a) and (3.65b) need to be satisfied simultaneously, and
we have only used Eq. (3.64a) to get Eq. (3.77). From Eq. (3.65b), we similarly find

𝜔
E,O(1)
𝑙𝑚

=

〈
P̂S𝜇𝜈

(
O𝜇𝜈 ± (−1)𝑙 Ō𝜇𝜈ĈP̂

)〉
𝑙𝑚

⟨𝜕𝜔𝐻̃⟩𝑙𝑚
. (3.78)

Comparing Eqs. (3.78) to (3.77), we find a constraint on S𝜇𝜈, i.e.,

P̂S𝜇𝜈 = S𝜇𝜈 , (3.79)

which implies that the source term S𝜇𝜈 needs to transform in the same way as
the Teukolsky operator 𝐻 in GR under P̂. On the other hand, if one assumes
P̂S𝜇𝜈 = S𝜇𝜈, one finds that 𝜂 = ±1 using Eq. (3.70) and Ψ

(1,1)
P̂

= P̂Ψ(1,1) using
Eqs. (3.64a) and (3.65b). Thus, for Petrov type D spacetimes in modified gravity, the
solutions to the modified Teukolsky equation generate definite-parity perturbations
if and only if P̂S𝜇𝜈 = S𝜇𝜈.

The constraint in Eq. (3.79) is closely related to how one diagonalizes the correction
to the Hamiltonian for degenerate systems in quantum mechanics. For degenerate
perturbation theory in quantum mechanics, the modes that naturally diagonalize
the perturbed Hamiltonian are the eigenvectors of a certain Hermitian operator that
commutes with both the original Hamiltonian and the perturbation to the Hamiltonian.
In our case, the operator P̂ commutes with both the Teukolsky equation in GR and
the modified Teukolsky equation, since according to Eqs. (3.66) and (3.79),

[P̂, 𝐻] 𝑓 = (P̂𝐻) (P̂ 𝑓 ) − 𝐻 (P̂ 𝑓 ) = 0 , (3.80a)

[P̂,S𝜇𝜈] 𝑓 = (P̂S𝜇𝜈) (P̂ 𝑓 ) − S𝜇𝜈 (P̂ 𝑓 ) = 0 . (3.80b)

Thus, the even- and odd-parity modes naturally “diagonalize” the modified Teukolsky
equation when P̂S𝜇𝜈 = S𝜇𝜈. In more general cases, when P̂ does not commute
with the source terms, one must diagonalize manually as in Sec. 3.5.2. In the next
section, we apply the analysis developed in this section to two specific modified
gravity theories: dCS and EdGB gravity.

3.6 Application
In this section, we apply the formalism above to specific corrections to the Teukolsky
equation for two relatively simple examples. In particular, we consider two widely
studied modified gravity theories: dCS and EdGB gravity. We will not present
the details of these two theories here, since one can find them in [28–31, 53–55,
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106, 107] for dCS and in [60–64, 108, 133, 134] for EdGB gravity. We choose to
follow the convention of the action in [106] for dCS and [63] for EdGB theory. The
formalism developed in this work also directly applies to other bGR theories with
parity-invariant BH solutions that are Petrov type D. For example, all spherically
symmetric BH spacetimes in bGR theories are both Petrov type D and parity-
invariant [135]. Furthermore, although the definition of definite-parity modes in
Sec. 3.3.2 only applies to parity-invariant Petrov type D spacetimes, the analysis of
isospectrality breaking in Sec. 3.5 generally applies to any bGR theories admitting
an EFT description.

As discussed in Secs. 3.2 and 3.5, modifications to the Teukolsky equation generally
originate from two different places:

1. The modification to the background geometry, e.g., S (1,1)
geo .

2. The effective stress-energy tensor specific to each modified gravity theory, e.g.,
S (1,1) .

For all these examples of modified gravity theories, we discuss the leading contribution
to both types of source terms. In this work, we also choose to focus on the Petrov
type D backgrounds and leave the generalization to the non-Petrov-type D case for
future work. It was found in [136] that rotating BHs in both dCS and EdGB gravity
are Petrov type D below or at O(𝜒), where 𝜒 = 𝑎/𝑀 is the dimensionless spin, and
become Petrov type I beyond O(𝜒). This implies we must focus only on slowly
rotating BHs in dCS and EdGB gravity to linear order in rotation. Thus, we must
carry out an additional expansion in 𝜒 such that all the quantities are expanded as

Ψ = Ψ(0,0,0) + 𝜁Ψ(1,0,0) + 𝜒Ψ(0,1,0) + 𝜖Ψ(0,0,1) + · · · . (3.81)

For simplicity, we also focus on the equation that governs the evolution of Ψ0, while
the equation for Ψ4 can be easily obtained by a GHP transformation [102].

3.6.1 dCS gravity
In this theory, there is no correction to the background geometry for non-rotating
BHs, since the Pontryagin density vanishes for spherically-symmetric spacetimes
[106]. In this case, the leading order correction to the background geometry enters
at O(𝜁1, 𝜒1, 𝜖0) with

𝜁 = 𝜁dCS ≡
𝛼2

dCS

𝜅𝑔𝑀
4 , 𝜅𝑔 ≡

1
16𝜋𝐺

, (3.82)



149

where 𝛼dCS is the coupling constant of dCS gravity, and we have chosen the coupling
constant of the pseudoscalar field action 𝛽 = 1. For simplicity, we will drop the
subscript labeling the modified gravity theory. Then, the leading-order contribution
to S (1,1)

geo enters at O(𝜁1, 𝜒1, 𝜖1). Since slowly rotating BHs at O(𝜁1, 𝜒1, 𝜖0) in
dCS gravity are of Petrov type D [106], S (1,1,1)

geo only depends on the correction to
the Teukolsky operator 𝐻 (1,1,0)

0 . On the other hand, since the pseudoscalar field
𝜗 is driven by the GW perturbations, there is a nonzero effective stress tensor at
O(𝜁1, 𝜒0, 𝜖1) [30, 53, 54]. Thus, the leading contribution to S (1,1) is S (1,0,1) .

3.6.1.1 Correction due to S (1,1)
geo in dCS

Expanding the Teukolsky equation in GR to O(𝜒1), we first find

𝐻
(0,0)
0 = 𝐻

(0,0,0)
0 + 𝜒𝐻 (0,1,0)

0 + · · · ,

𝐻
(0,0,0)
0 =

1
𝑟 − 𝑟𝑠

[
−6(𝑟 − 𝑟𝑠) + 4𝑟 (𝑟 − 3𝑀)𝜕𝑡 + 𝑟3𝜕2

𝑡

]
− 6(𝑟 − 𝑀)𝜕𝑟 − 𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟

− cot 𝜃𝜕𝜃 − 𝜕2
𝜃 + csc 𝜃2

(
4 − 4𝑖 cos 𝜃𝜕𝜙 − 𝜕2

𝜙

)
,

𝐻
(0,1,0)
0 = − 4𝑀

{
1

𝑟 (𝑟 − 𝑟𝑠)
[
(𝑟 − 𝑀)𝜕𝜙 + 𝑀𝑟𝜕𝑡𝜕𝜙

]
− 𝑖 cos 𝜃𝜕𝑡

}
, (3.83)

where 𝑟𝑠 = 2𝑀 is the Schwarzschild radius, 𝐻 (0,0,0)
0 is the Teukolsky operator on the

Schwarzschild background in GR, and 𝐻 (0,1,0)
0 is the leading slow-rotation correction

to 𝐻 (0,0,0)
0 . We have also restored the full coordinate dependence of these operators

here. Under the P̂ transformation, we find that P̂𝐻 (0,0,0)
0 = 𝐻

(0,0,0)
0 , so the Teukolsky

equation on the Schwarzschild background in GR admits definite-parity solutions. In
addition, P̂𝐻 (0,1,0)

0 = 𝐻
(0,1,0)
0 , which is expected since the Kerr background admits

GW perturbations of definite parity. There is also no isospectrality breaking due to
S (0,1,1)

geo = 𝐻
(0,1,0)
0 Ψ

(0,0,1)
0 , since there is no mixing of modes with frequency 𝜔 and

−𝜔̄.

Next, let us compute 𝐻 (1,1,0)
0 . In this work, we only sketch the key steps, and more

details can be found in [137], where the complete modified Teukolsky equation
(before separation into definite-parity parts) is found up to O(𝜁1, 𝜒1, 𝜖1). To compute
𝐻

(1,1,0)
0 , one needs to first find a corrected tetrad that satisfies all the orthogonality

conditions at O(𝜁1, 𝜒1, 𝜖0). The background spacetime at O(𝜁1, 𝜒1, 𝜖0) was found
in [106], where all the components of ℎ(1,1,0)𝜇𝜈 vanish except

ℎ
(1,1,0)
𝑡𝜙

=
5𝑀5

8𝑟4

(
1 + 12𝑀

7𝑟
+ 27𝑀2

10𝑟2

)
sin2 𝜃 . (3.84)
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One can explicitly check that P̂ℎ(1,1,0)𝜇𝜈 = ℎ
(1,1,0)
𝜇𝜈 in dCS gravity, consistent with our

assumption. Since the background is still Petrov type D [106], by tetrad rotations,
one can find a frame where Ψ

(1,1,0)
𝑖

= 0 for 𝑖 = {0, 1, 3, 4}. Notice that in this frame,
one does not necessarily have 𝜅 (1,1,0) = 𝜎 (1,1,0) = 𝜆(1,1,0) = 𝜈(1,1,0) = 0, as implied by
the Goldberg-Sachs theorem [51], since we are in a non-Ricci-flat spacetime [137].
One can now use this modified tetrad and Eq. (3.12) to compute 𝐻 (1,1,0)

0 ,

𝐻
(1,1,0)
0,dCS =

𝑀4

224𝑟7(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟)𝜕𝜙 − 4𝑟2𝐶2(𝑟)𝜕𝜙𝜕𝑡

)
− 𝑖𝑀

4

8𝑟7 cos 𝜃
(
𝐶3(𝑟) +

𝑟2𝐷4(𝑟)
2

𝜕𝑡

)
+ 𝑖𝑀4

16𝑟6

[
(𝑟 − 𝑟𝑠)𝐶4(𝑟) cos 𝜃𝜕𝑟 −

𝐶5(𝑟)
2𝑟

sin 𝜃𝜕𝜃
]
,

(3.85)

where 𝐶𝑖 (𝑟) are functions of 𝑟 found in [137] and listed in Appendix 3.10 for
convenience. We can check that P̂𝐻 (1,1,0)

0,dCS = 𝐻
(1,1,0)
0,dCS , so the modified Teukolsky

equation up to O(𝜁1, 𝜒1, 𝜖1) admits definite-parity solutions if we ignore the source
term S (1,1,1) associated with 𝜗. Similar to the O(𝜁0, 𝜒1, 𝜖1) correction, since there
is no mixing of modes with different frequencies, S (1,1,1)

geo preserves isospectrality.

3.6.1.2 Correction due to S (1,1) in dCS

In this subsection, we compute the correction due to S (1,1) . As discussed above, the
leading contribution to S (1,1) is S (1,0,1) in dCS gravity. In these previous works [30,
53, 54], they found that only the odd-parity modes are modified for non-rotating
BHs in dCS gravity. We now verify this result using our formalism based on the
Teukolsky framework.

As found in [106], the trace-reverse Einstein equations takes the form

𝑅𝜇𝜈 = −
(

1
𝜅𝑔

)1/2
𝑀2

[
(∇𝜎𝜗) 𝜖𝜎𝛿𝛼(𝜇∇𝛼𝑅𝜈)𝛿 +

(
∇𝜎∇𝛿𝜗

)
∗𝑅𝛿(𝜇𝜈)𝜎

]
+ 1

2𝜅𝑔𝜁
(
∇𝜇𝜗

)
(∇𝜈𝜗) .

(3.86)

To be consistent with [102, 137], we have absorbed an additional factor of 𝜁1/2 into
the expansion of 𝜗, so its expansion also follows Eq. (3.2). In other words, we have
multiplied the first and second terms in Eq. (3.86) by 𝜁−1/2 while the third term by
𝜁−1. The equation of motion of 𝜗 at O(𝜁1, 𝜖1) is then [102]

□(0,0)𝜗(1,1) = − 1
16𝜋1/2𝑀

2 [𝑅 ∗𝑅] (0,1) − □(0,1)𝜗(1,0) . (3.87)
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In this work, we are interested in modified BH spacetimes that are vacuum in GR, so
𝑅𝜇𝜈 = 0 at O(𝜁0). As argued in [102], all the metric fields in 𝑅𝜇𝜈 have to enter at
O(𝜁0) in Eq. (3.86), so the first term in this equation vanishes. In addition, since there
is no correction to the background metric at O(𝜁1, 𝜒0, 𝜖0), 𝜗(1,0,0) = 0 [106]. At
O(𝜁1, 𝜒0, 𝜖1), the last term in Eq. (3.86) is proportional to

(
∇𝜇𝜗(1,0,1)

) (
∇𝜈𝜗(1,0,0)

)
,

but 𝜗(1,0,0) = 0, so this term vanishes. In the end, only the second term in Eq. (3.86)
contributes at O(𝜁1, 𝜒0, 𝜖1). Since only 𝜗(1,0,1) is nonzero, the term ∗𝑅𝛿(𝜇𝜈)𝜎 coupled
to it has to be stationary, so we do not need metric reconstruction here. Now the only
term that can mix modes with different frequencies, and thus break isospectrality, is
𝜗(1,0,1) , so we need to focus on Eq. (3.87).

Since 𝜗(1,0,0) = 0, the last term in Eq. (3.87) vanishes, and only the first term in
Eq. (3.87) is important. Projecting this term into the NP basis, one can find that

𝑅 ∗𝑅 = −8𝑖(3Ψ2
2 − 4Ψ1Ψ3 + Ψ0Ψ4 − 𝑐.𝑐.) , (3.88)

which is made up of quadratic terms in Weyl scalars. Since we are interested in
O(𝜖1) corrections, one of the Weyl scalars in each pair has to be stationary. For
Petrov type D spacetimes, all the Weyl scalars vanish except Ψ2, so

[𝑅 ∗𝑅] (0,1) = −48𝑖
(
Ψ

(0,0)
2 Ψ

(0,1)
2 − Ψ̄

(0,0)
2 Ψ̄

(0,1)
2

)
. (3.89)

In Schwarzschild, Ψ(0,0,0)
2 = −𝑀/𝑟3 is real, so

[𝑅 ∗𝑅] (0,0,1) = 48𝑖𝑀
𝑟3

(
Ψ

(0,0,1)
2 − Ψ̄

(0,0,1)
2

)
= −96𝑀

𝑟3 I
[
Ψ

(0,0,1)
2

]
, (3.90)

where I[ 𝑓 ] refers to the imaginary part of 𝑓 .

One can now naturally ask whether we can remove [𝑅 ∗𝑅] (0,0,1) via a tetrad rotation or a
coordinate transformation at O(𝜁0, 𝜒0, 𝜖1). The answer is no. First, one can explicitly
check that all the tetrad rotations at O(𝜁0, 𝜒0, 𝜖1) leave Ψ

(0,0,1)
2 unchanged since

Ψ
(0,0,0)
1 = Ψ

(0,0,0)
3 = 0. Second, under the coordinate transformation 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇,

where 𝜉 is at O(𝜁0, 𝜒0, 𝜖1), Ψ(0,0,1)
2 transforms as [127]

Ψ
(0,0,1)
2 → Ψ

(0,0,1)
2 + 𝜉𝜇(0,0,1)𝜕𝜇Ψ(0,0,0)

2 , (3.91)

which implies that

I
[
Ψ

(0,0,1)
2

]
→ I

[
Ψ

(0,0,1)
2

]
+ 𝜉𝜇(0,0,1)𝜕𝜇I

[
Ψ

(0,0,0)
2

]
. (3.92)

Since Ψ
(0,0,0)
2 is real, I

[
Ψ

(0,0,0)
2

]
= 0, so [𝑅 ∗𝑅] (0,0,1) is invariant under both tetrad

and coordinate transformations at O(𝜁0, 𝜒0, 𝜖1).
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More generally, for an arbitrary 𝜒, the source term in Eq. (3.87) is still tetrad- and
coordinate-invariant. The tetrad invariance is easy to confirm since Ψ(0,1)

2 is invariant
under tetrad rotations at O(𝜁0, 𝜖1) if the background spacetime is Petrov type D
at O(𝜁0, 𝜖0). Furthermore, □(0,1) is tetrad-invariant. On the other hand, unlike at
O(𝜒0), Ψ(0,0)

2 is complex, so the coordinate invariance needs to be shown in another
way. For convenience, let us denote the source term in Eq. (3.87) as S (1,1)

𝜗
. Then

under the coordinate transformation 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇 at O(𝜁0, 𝜖1), we find

S (1,1)
𝜗

→ S (1,1)
𝜗

+ 𝜉𝜇(0,1)𝜕𝜇S (0,0)
𝜗

, (3.93)

but notice that

S (0,0)
𝜗

= − 1
16𝜋1/2𝑀

2 [𝑅 ∗𝑅] (0,0) − □(0,0)𝜗(1,0) = 0 (3.94)

due to the same equation of Eq. (3.87) at O(𝜁1, 𝜖0), i.e.,

□(0,0)𝜗(1,0) = − 1
16𝜋1/2𝑀

2 [𝑅 ∗𝑅] (0,0) . (3.95)

Thus, S (1,1)
𝜗

is both tetrad- and coordinate-invariant.

By pure order counting, one can write the source term S in Eq. (3.11) as

S (1,0,1)
dCS = F dCS

(
Ψ

(0,0,1)
2 − Ψ̄

(0,0,1)
2

)
, (3.96)

where F dCS is some complicated operator converting the source term driving 𝜗 in
Eq. (3.87) to the source term in Eq. (3.11). The operator F dCS contains three parts:

1. The inversion of □ in Eq. (3.87) to solve for 𝜗.

2. The NP quantities and derivatives acting on 𝜗 in Eq. (3.86).

3. The tetrad acting on 𝑅𝜇𝜈 to convert it to NP Ricci scalars and the operators in
Sec. 3.2 to convert NP Ricci scalars to SdCS.

Despite being a complicated operator, F dCS only contains stationary terms, so it will
not mix modes with different frequencies. Thus, to study isospectrality-breaking
properties without computing QNM shifts, we do not need to know the exact form of
F dCS.

To show that only the odd-parity modes are modified, we essentially need to show
that Eq. (3.72) vanishes for 𝜂 = (−1)𝑙 but not for 𝜂 = (−1) (𝑙+1) . Then, we need to
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use metric reconstruction to rewrite Ψ(0,0,1)
2 in terms of Ψ(0,0,1)

0 or the Hertz potential,
e.g., Eq. (3.22). For simplicity, we can absorb the operator −𝐷2/2 into F dCS since
𝐷 is a real operator. We then rewrite Eq. (3.96) as

SdCS = F dCS
(
O − ŌĈ

)
Ψ̄

(0,0,1)
H , O = (𝛿 + 2𝛽) (𝛿 + 4𝛽) . (3.97)

Comparing Eq. (3.97) to Eq. (3.56), one can extract that

S𝜇𝜈O𝜇𝜈 = F dCSO , S𝜇𝜈Ō𝜇𝜈 = −F dCSŌ , (3.98)

so Eq. (3.72) becomes

𝜔
dCS(1)
𝑙𝑚

=

〈
F dCS

(
O ∓ (−1)𝑙 ŌĈP̂

)
𝒟

〉
𝑙𝑚

⟨𝜕𝜔𝐻̃0⟩𝑙𝑚
, (3.99)

where 𝒟 denotes the operator converting Ψ
(0,0,1)
0 to Ψ̄

(0,0,1)
H in Eq. (3.20).

With this expression at hand, we can now show thatO𝒟Ψ̄
(0,0,1)
0 = (−1)𝑙 ŌĈP̂𝒟Ψ̄

(0,0,1)
0

or OΨ̄
(0,0,1)
H = (−1)𝑙 Ō𝑃̂Ψ̄(0,0,1)

H , and thus, only the odd modes are modified. Using
Eqs. (3.26) and (3.97), one can find that

P̂O = O , (3.100)

so Ō = 𝑃̂O. Then, it is equivalent to show that 𝑃̂
(
OΨ̄

(0,0,1)
H

)
= (−1)𝑙OΨ̄

(0,0,1)
H . In

other words, OΨ̄
(0,0,1)
H transforms in the same way as 𝑌𝑙𝑚 (𝜃, 𝜙) under the standard

parity transformation 𝑃̂. The easiest way to show this is to recognize that(
𝛿 + 2𝑠𝛽

)
𝑓 = − 1

√
2𝑟
ð̄ 𝑓 , ð̄ 𝑓 = −

(
𝜕𝜃 − 𝑖 csc 𝜃𝜕𝜙 + 𝑠 cot 𝜃

)
𝑓 , (3.101)

where 𝑓 has spin weight 𝑠, and ð̄ is the operator lowering spin weight by 1 [138],
e.g.,

ð̄ 𝑠𝑌𝑙𝑚 = −[(𝑙 + 𝑠) (𝑙 − 𝑠 + 1)]1/2
𝑠−1𝑌𝑙𝑚 . (3.102)

From Eq. (3.20), one can notice that Ψ̄H has the same spin weight as Ψ0 in IRG, e.g.,
Ψ̄

(0,0,1)
H ∝ 2𝑌𝑙𝑚 (𝜃, 𝜙). Then,

OΨ̄
(0,0,1)
H =

1
2𝑟2 ð̄

2Ψ̄
(0,0,1)
H ∝ 𝑌𝑙𝑚 (𝜃, 𝜙) , (3.103)

so OΨ̄
(0,0,1)
H transforms like 𝑌𝑙𝑚 (𝜃, 𝜙) under parity transformations, i.e.,

𝑃̂

(
OΨ̄

(0,0,1)
H

)
= (−1)𝑙OΨ̄

(0,0,1)
H .
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To check whether the modified Teukolsky equation has definite-parity solutions, we
need to check whether P̂S𝜇𝜈(1,0,1) = S𝜇𝜈(1,0,1) . Since P̂O𝜇𝜈 = O𝜇𝜈 and P̂O = O,
using Eq. (3.98), one can alternatively check whether P̂F dCS = F dCS. In this
case, one has to know the exact expression of SdCS. Generally, this is a non-trivial
calculation, but for non-rotating BHs in dCS gravity, since only 𝜗 is dynamical in
SdCS, one can easily evaluate SdCS in terms of 𝜗 and the background metric without
doing metric reconstruction. In Appendix 3.11.1, we show how to evaluate S (1,0,1)

dCS in
dCS gravity in detail and provide the result of FdCS in Eq. (3.145). One can now easily
verify that P̂F dCS = F dCS, so the modified Teukolsky equation at O(𝜁1, 𝜒0, 𝜖1) in
dCS gravity still admits definite-parity solutions.

In this subsection, we have so far shown successfully that only the odd modes are
modified for non-rotating BHs in dCS gravity using the NP language developed in
this work, which is consistent with [30, 53, 54]. One can also carry out the same
calculation at O(𝜁1, 𝜒1, 𝜖0) and compare to the results using metric perturbations in
[31, 55]. In Sec. 3.6.1.1, we have found the correction due to S (1,1,1)

geo . The correction
due to S (1,1,1)

dCS is much more complicated, and can be found in [137]. In [139], we
will apply the formalism developed in this work and the expression found in [137]
to compute the correction to QNMs directly and compare to [31, 55]. Another
interesting avenue for future work is to find a direct mapping between the modified
RW (ZM) equations in [30, 31, 53–55] and the odd (even) modified Teukolsky
equations in this work, as we discuss in Sec. 3.7.

3.6.2 EdGB gravity
The structure of the metric shifts to the EdGB BH solution is qualitatively different
from that of the dCS case. In EdGB, we follow [140] to define the expansion
parameter 𝜁 to be

𝜁 = 𝜁EdGB ≡
𝛼2

EdGB

𝜅𝑔𝑀
4 , (3.104)

where 𝛼EdGB is the coupling constant of EdGB gravity in [63], and we have chosen
the coupling constant of the scalar field action 𝛽 = 1.3 One finds that the shifts in the
background metric at O(𝜁) actually contain a component that is independent of spin.
In other words, EdGB gravity perturbs the non-rotating BH solution. Since non-
rotating BHs in EdGB gravity are Petrov type D [140], the leading correction to S (1,1)

geo

3Note that we choose to follow the convention of the EdGB action in [63], whereas the expressions
in Eq. (3.105) are taken from [140]. In this case, the coupling constant 𝛼EdGB in [140] is 1

64𝜋 of
the one in [63]. We adjust the expressions in Eqs. (3.105) and (3.138) to account for the change in
convention.
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is S (1,0,1)
geo , completely determined by 𝐻 (1,0,0)

0 . Similarly, the leading contribution to
S (1,1) is S (1,0,1) .

3.6.2.1 Correction due to S (1,1)
geo in EdGB

The corrections due toS (1,1)
geo are made of several parts as noted in Eq. (3.10). However,

note that at the leading order (𝜁1, 𝜒0, 𝜖0) in EdGB, we know that Ψ(1,0)
0,1,3,4 = 0. Hence,

the only contribution to S (1,1)
geo comes from S (1,1)

0,𝐷 = 𝐻
(1,0)
0 Ψ

(0,1)
0 . By following

similar procedures to what we presented in Sec. 3.6.1.1 for dCS, and using the metric
from [140],

ℎ
(1,0,0)
𝑡𝑡 = − 1

(64𝜋)2
𝑀3

3𝑟3

[
1 + 26𝑀

𝑟
+ 66𝑀2

5𝑟2 + 96𝑀3

5𝑟3 − 80𝑀4

𝑟4

]
,

ℎ
(1,0,0)
𝑟𝑟 = − 1

(64𝜋)2
𝑀2

(𝑟 − 2𝑀)2

[
1 + 𝑀

𝑟
+ 52𝑀2

3𝑟2 + 2𝑀3

𝑟3 + 16𝑀4

5𝑟4 − 368𝑀5

3𝑟5

]
,

(3.105)
where the other components of ℎ(1,0,0)𝜇𝜈 vanish, we find

𝐻
(1,0,0)
0,EdGB = 𝐷1(𝑟) + 𝐷2(𝑟)𝜕𝑡 + 𝐷3(𝑟)𝜕𝑟 + 𝐷4(𝑟)𝜕2

𝑡 + 𝐷5(𝑟)𝜕2
𝑟 . (3.106)

Note that the factor of 1/(64𝜋)2 comes from the use of the conventions of 𝛼EdGB in
[63]. The full form of the radial functions 𝐷𝑖 (𝑟) can be found in Appendix 3.10.
One can also easily check that P̂ℎ(1,0,0)𝜇𝜈 = ℎ

(1,0,0)
𝜇𝜈 for EdGB, consistent with our

assumption. Since 𝐻 (1,0,0)
0,EdGB does not depend on the 𝜃 or 𝜙 coordinates, we can use

Eq. (3.125) to easily show that

P̂𝐻 (1,0,0)
0,EdGB = 𝐻

(1,0,0)
0,EdGB . (3.107)

In this case, the modified Teukolsky equation still admits definite-parity solutions up
to O(𝜁1, 𝜒0, 𝜖1) if we ignore the source terms driven by the nonminimally coupled
scalar field 𝜑. Furthermore, in EdGB, S (1,0,1)

geo does not break isospectrality because
it does not mix the modes with frequencies 𝜔 and −𝜔̄.

3.6.2.2 Correction due to S (1,1) in EdGB

In this subsection, we compute S (1,0,1) in EdGB gravity, where the calculation is
similar to the dCS case. First, the trace-reversed Einstein equations in EdGB gravity
take the form [63, 134],

𝑅𝜇𝜈 = −𝜅1/2
𝑔 𝑀2

(
K𝜇𝜈 −

1
2
𝑔𝜇𝜈K

)
+ 1

2𝜁
(∇𝜇𝜑) (∇𝜈𝜑) ,
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K𝜇𝜈 =
1
8

(
𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌

)
𝜖𝛿𝜎𝛾𝛼∇𝛽

(
∗𝑅𝜌𝛽𝛾𝛼𝑒

𝜑∇𝛿𝜑
)
,

K = 𝑔𝜇𝜈K𝜇𝜈 , (3.108)

with the equation of the scalar field 𝜑 at O(𝜁1, 𝜖1) being [102]

□(0,0)𝜑(1,1) = − 1
16𝜋1/2𝑀

2G (0,1) − □(0,1)𝜑(1,0) , (3.109)

where the Gauss-Bonnet invariant G is defined to be

G = 𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅2 . (3.110)

Similar to the dCS case, we have absorbed a factor of 𝜁 into the expansion of 𝜑 by
multiplying the first term of 𝑅𝜇𝜈 in Eq. (3.108) by 𝜁−1/2 and the second term by 𝜁−1.

Unlike in dCS gravity, since 𝜑(1,0,0) ≠ 0 for non-rotating BHs in EdGB, we need metric
reconstruction to evaluate ℎ(0,0,1)𝜇𝜈 coupled to 𝜑(1,0,0) for O(𝜁1, 𝜒0, 𝜖1) corrections.
For simplicity, in this work, we only consider the terms in Eq. (3.108) driven by
𝜑(1,0,1) or its derivatives. The evaluation of the terms proportional to ℎ(0,0,1)𝜇𝜈 or its
derivatives in Eq. (3.108) is more complicated, while a similar calculation in dCS
gravity has been done in [137]. Under this simplification, all the metric fields in
Eq. (3.108) can be evaluated at the Schwarzschild background, and we can focus on
Eq. (3.109). To evaluate the source terms in Eq. (3.109), we need to compute □ and
G in the NP basis. At O(𝜁1, 𝜒0, 𝜖1), since 𝜑(1,0,0) ≠ 0, unlike the pseudoscalar field
in dCS, both terms in Eq. (3.109) will contribute.

For the term G (0,1) , we find in the NP basis,

G = 8(3Ψ2
2 − 4Ψ1Ψ3 + Ψ0Ψ4 + 𝑐.𝑐.) . (3.111)

We can notice that, in the dCS case, 𝑅 ∗𝑅 is proportional to the imaginary part of
3Ψ2

2 − 4Ψ1Ψ3 + Ψ0Ψ4, while G is proportional to the real part of the same quantity.
Expanding Eq. (3.111) to O(𝜁0, 𝜖1), we find

G (0,1) = 48
(
Ψ

(0,0)
2 Ψ

(0,1)
2 + Ψ̄

(0,0)
2 Ψ̄

(0,1)
2

)
, (3.112)

which in Schwarzschild becomes

G (0,0,1) = −48𝑀
𝑟3

(
Ψ

(0,0,1)
2 + Ψ̄

(0,0,1)
2

)
= −96𝑀

𝑟3 R
[
Ψ

(0,0,1)
2

]
, (3.113)

where R[ 𝑓 ] refers to the real part of 𝑓 . Following the same reasoning as in
Sec. 3.6.1.2, one can argue that the part of S (1,0,1) generated by G (0,0,1) takes the
form

F EdGB
(
Ψ

(0,0,1)
2 + Ψ̄

(0,0,1)
2

)
, (3.114)
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where F EdGB contains pieces similar to F dCS but with the effective Ricci tensor given
by Eq. (3.108). If one only considers the shift of QNM frequencies due to this term,
then 𝜔(1)

𝑙𝑚
is given by Eq. (3.99), with FdCS replaced by FEdGB and the sign ∓ between

the terms proportional to O and OĈP̂ replaced by ±, so the QNMs of odd-parity
modes are not modified by these terms.

For the contribution from □(0,0,1)𝜑(1,0,0) , we have shown in detail how to reconstruct
□(0,0,1) in [137], so here we just present the results we found,

□(0,0,1)𝜑(1,0,0) = − 1
2𝑟3 (𝑟𝜕

2
𝑟 + 2𝜕𝑟)Φ(𝑟)ð̄2

(
Ψ

(0,0,1)
H + Ψ̄

(0,0,1)
H

)
, (3.115)

where we have used that 𝜑(0,0,1) = Φ(𝑟) is a pure radial function in EdGB gravity.
Similar to the case of dCS gravity, the source term in Eq. (3.109) is tetrad- and
coordinate-invariant, following the same argument in Sec. 3.6.1.2.

In total, following the same procedures in Sec. 3.6.1.2, we find

𝜔
EdGB(1)
𝑙𝑚

=

〈
F EdGB

(
O′ ± (−1)𝑙 Ō′ĈP̂

)
𝒟

〉
𝑙𝑚

⟨𝜕𝜔𝐻̃0⟩𝑙𝑚
, (3.116)

where

O′Ψ̄(0,0,1)
H =

[
1
2𝑟

(
𝑟𝜕2
𝑟 + 2𝜕𝑟

)
Φ(𝑟) − 3

4𝜋1/2

(
𝑀

𝑟

)3
𝐷2

]
1
𝑟2 ð̄

2Ψ̄
(0,0,1)
H ∝ 𝑌𝑙𝑚 (𝜃, 𝜙) ,

(3.117)

and the last term of Eq. (3.117) comes from the O operator defined in Eq. (3.97).
Unlike in Sec. 3.6.1.2, we have not absorbed the factor of −𝐷2/2 in O into the
definition of F EdGB. Following the same argument in Sec. 3.6.1.2, one can easily
see that for this type of contribution, only the QNM frequencies of even parity are
shifted. This result is consistent with [60–62] since what we have essentially shown
is that the scalar field 𝜑 is only driven by even-parity gravitational perturbations at
O(𝜁1, 𝜒0, 𝜖1). In Appendix 3.11.2, we further show that the modified Teukolsky
equation driven by this contribution still admits solutions of definite parity by showing
that P̂F EdGB = F EdGB.

3.7 Discussion
In this work, we developed a framework to study the isospectrality breaking of
QNMs in modified gravity using the modified Teukolsky formalism developed in
[102, 103]. To analyze isospectrality breaking using the Teukolsky formalism, one
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has to first know how definite-parity modes are defined in terms of Weyl scalars
Ψ0,4. In GR, we followed [90] to construct definite-parity modes of Ψ(0,1)

0,4 by using
the relation between metric perturbations and the Hertz potential. We found that
at each (𝑙, 𝑚), the Weyl scalars generating definite-parity metric perturbations are
linear combinations of the mode (𝑙, 𝑚, 𝜔) and its P̂-transformation, where P̂ is
the parity transformation, but with an additional complex conjugation. Due to the
transformation properties of Teukolsky functions under P̂, these modes are equal to
the sum (difference) of the modes (𝑙, 𝑚, 𝜔) and (𝑙,−𝑚,−𝜔̄) for even (odd) parity,
consistent with the definition in [90].

In modified gravity, we showed that the same definition in GR still applies for
Petrov type D spacetimes. Since the relation between metric perturbations and
the Hertz potential is not known in modified gravity in general, we instead started
from definite-parity metric perturbations and derived the parity properties of Ψ(1,1)

0,4
directly. The entire procedure is closely related to reconstructing NP quantities
from metric perturbations. Using tetrad rotations, we first found some convenient
gauges where the transformation property of both the background and the dynamical
tetrad is simple under P̂. The transformation property of spin coefficients was then
determined from commutation relations. Using Ricci identities, we finally obtained
the P̂-transformation of Ψ(1,1)

0,4 generated by definite-parity metric perturbations,
which is the same as in GR.

After defining definite-parity modes of Ψ(0,1)
0,4 and Ψ

(1,1)
0,4 , we then proceeded to derive

the equations that govern them from the modified Teukolsky equation. Since the
source terms that shift QNM frequencies are those having overlaps with QNMs
in GR, we first extracted these source terms. To evaluate the latter, one needs to
perform metric reconstruction, which mixes the modes with frequency 𝜔 and −𝜔̄.
Thus, the solutions to the modified Teukolsky equation are also linear combinations
of these two modes in general. Using the EVP method developed in [103–105], we
then found that the solutions form a two-dimensional subspace, so the degeneracy in
QNM frequencies of even- and odd-parity modes is broken in modified gravity in
general, consistent with the finding in [103].

In the special case that the solutions become even- and odd-parity modes, the source
terms of the modified Teukolsky equation are constrained to transform in the same
way as the Teukolsky operator in GR under P̂. This constraint is closely related to
how one solves the degenerate perturbation problem in quantum mechanics. We
showed that the invariance of the source operator S𝜇𝜈 and the Teukolsky operator 𝐻
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under P̂ implies that they commute with P̂. Similarly, in quantum mechanics, one
can diagonalize the perturbed Hamiltonian by using the eigenstates of a Hermitian
operator commuting with both the original and the perturbed Hamiltonian.

To demonstrate our framework, we then applied this analysis of isospectrality breaking
to two specific cases: dCS and EdGB gravity. For simplicity, we only considered
the leading correction to the homogeneous part of the equation and the leading
contribution from the effective stress-energy tensor. In dCS gravity, we found that the
correction to the homogeneous part does not break isospectrality. For the correction
from the effective stress-energy tensor, we showed that only the odd modes are
shifted for non-rotating BHs using our modified Teukolsky formalism, consistent
with the results found using metric perturbations in [30, 53, 54]. For EdGB gravity,
we similarly found no isospectrality breaking in the homogeneous part. For the
correction due to the stress-energy tensor, we only focused on the terms driven by
the dynamical scalar field. In this case, only the even modes are affected, consistent
with the result in [60–62].

There are several future avenues of research that our work enables. First, one
can study potential observational signatures of isospectrality breaking in QNM
frequencies, the most direct of which would be the branching of the QNM spectrum.
One can investigate the extraction of these branching QNMs from real observational
data using well tested ringdown analysis frameworks like ringdown [141] and
PyRing [142]. Additionally, an analysis of how the SNR affects this extraction
(similar to resolvability arguments in [65]) can aid an understanding of when this
effect may be significant. Furthermore, these definite-parity modes of Ψ0,4 are also
related to other decompositions of gravitational perturbations, such as mass or current
quadrupoles, left- or right-circularly polarized modes, and plus or cross polarizations.
By studying these relations, one can translate the isospectrality breaking of QNM
frequencies to observational effects in other modes or polarizations. For example,
different QNM frequencies of even- and odd-parity modes might lead to different
frequencies of plus and cross polarizations. In fact, some parity violating theories
even feature different propagation speeds for different polarizations — parameterized
theory-agnostic tests for such theories were laid out, for example, in [36] and more
recently in [41], and connected to specific parity violating theories in [41].

Second, when determining the P̂-transformation of Ψ
(1,1)
0,4 , we have made some

convenient gauge choices. The choice of certain gauges is fine for Petrov type D
spacetimes since Ψ

(1,1)
0,4 are both tetrad- and coordinate-invariant up to O(𝜁1, 𝜖1),
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which is not the case for Petrov type I spacetimes. The same issue was also encountered
in the study of the second-order Teukolsky equation in GR [88, 127], where various
authors found that Ψ

(0,2)
0,4 is also not invariant under gauge transformations at

O(𝜖1). By either adding quantities at O(𝜖1) to Ψ
(0,2)
0,4 [127], or by choosing some

asymptotically flat coordinate system [88], one is able to construct gauge-invariant
curvature perturbations at O(𝜖2). Due to the connection of our modified Teukolsky
formalism to the second-order Teukolsky formalism in GR [102], we can then apply
a similar procedure to construct gauge-invariant quantities at O(𝜁1, 𝜖1) and extend
our definition of definite-parity modes to Petrov type I spacetimes in future work.

Third, in our examples in dCS and EdGB gravity, we have found the shifts of the
QNM frequencies in terms of abstract NP quantities. One can then take the equations
here to compute the numerical values of the QNM frequencies directly and compare
them to previous results using metric perturbations in [30, 31, 53–55, 60–64]. A
subset of the authors has already derived the coordinate-based modified Teukolsky
equation for slowly rotating BHs in dCS gravity [137] and is currently computing
the QNM shifts from it [139]. Furthermore, in our examples above, we assumed that
the (pseudo)scalar field equation could be inverted, and the EVP method could be
applied to these terms. In previous literature, the EVP method has only been shown
to be valid for source terms that are directly driven by Ψ

(0,1)
0,4 [103–105]. It will be

worth studying whether the inner product in the EVP method is still well-behaved
when integrating the Green’s function of the (pseudo)scalar field along with Ψ

(0,1)
0,4

over the contour defined in [103–105]. In the case without extra non-metric fields,
such as higher-derivative gravity, Refs. [57, 58] have used this modified Teukolsky
formalism to compute QNM shifts and found good agreement with their previous
results using metric perturbations in [56].

Besides comparing QNM frequencies, another way of comparing our results to the
approach using metric perturbations is to directly map our definite-parity modified
Teukolsky equations [i.e., Eq. (3.76)] to the modified ZM and RW equations directly.
For non-rotating BHs in GR, this map was found by Chandrasekhar [51, 143].
Due to isospectrality, one can also find a map between RW and ZM equations
[51], which was recently extended to slowly rotating BHs at O(𝜒1) by [56]. For
Kerr, there has not been a map found between the Teukolsky equation and the
RW/ZM equations, since the latter is not known for BHs with arbitrary spin. Some
Chandrasekhar-like transformations have been developed, for example, to convert
the long-range potential of the Teukolsky equation to a short-range potential [144].
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All these transformations are special cases of generalized Darboux transformations
[145], which have been widely used in the study of supersymmetry [146]. One
future avenue is then extending the Chandrasekhar transformation to our modified
Teukolsky equation in the slow-rotation expansion and comparing it to the modified
ZM and RW equations found in [30, 31, 53–56, 60–64, 91].

Our framework provides a novel approach to studying isospectrality breaking in
modified gravity. This work is an intermediate but imperative step in using the
modified Teukolsky equations to compute the shifts of QNM frequencies. For BHs
with arbitrary spin, our framework is also the only viable analytical approach to
study isospectrality breaking since QNMs can only be computed from the (modified)
Teukolsky equation, and no (modified) ZM/RW equations are known in this case.
Recent works have used spectral methods to investigate quasinormal modes (QNMs)
within the context of Schwarzschild [100] and Kerr [101] BHs in GR. It is conceivable
that these methodologies may be extensible to explore the QNMs of rotating BHs
within modified theories of gravity. With this work, we look forward to developing a
deeper understanding of these isospectrality-breaking theories of gravity using BH
spectroscopy.

3.8 Appendix: Properties of operators 𝑃̂, Ĉ, P̂
In this appendix, we provide some useful relations for the operators 𝑃̂, Ĉ, and P̂
defined in Sec. 3.3. Let 𝛼, 𝛽 ∈ C, 𝑓 , 𝑔 ∈ Λ0(U), and Î be the identity operator.
Then 𝑃̂ defined in Eq. (3.13) satisfies

𝑃̂2 = Î , (3.118a)

𝑃̂[𝛼 𝑓 + 𝛽𝑔] = 𝛼𝑃̂[ 𝑓 ] + 𝛽𝑃̂[𝑔] , (3.118b)

𝑃̂[ 𝑓 · 𝑔 · ℎ · · · ] = 𝑃̂[ 𝑓 ] · 𝑃̂[𝑔] · 𝑃̂[ℎ] · · · . (3.118c)

The parity operator 𝑃̂ commutes with all the derivatives:

[𝑃̂, 𝜕𝑡] = [𝑃̂, 𝜕𝑟] = [𝑃̂, 𝜕𝜙] = 0 (3.119)

except the 𝜃 derivative, with which it anti-commutes:

{𝑃̂, 𝜕𝜃} = 0 . (3.120)

For the complex conjugate operator Ĉ, we have

Ĉ2 = Î , (3.121a)
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Ĉ [𝛼 𝑓 + 𝛽𝑔] = 𝛼̄Ĉ [ 𝑓 ] + 𝛽Ĉ [𝑔] , (3.121b)

Ĉ [ 𝑓 · 𝑔 · ℎ · · · ] = Ĉ [ 𝑓 ] · Ĉ [𝑔] · Ĉ [ℎ] · · · . (3.121c)

Since the coordinates are all real, the complex conjugate operator Ĉ commutes with
all the derivatives:

[Ĉ, 𝜕𝑡] = [Ĉ, 𝜕𝑟] = [Ĉ, 𝜕𝜙] = [Ĉ, 𝜕𝜃] = 0 . (3.122)

In addition, 𝑃̂ and Ĉ commute with each other.

In Eq. (3.23), we have combined 𝑃̂ and Ĉ to define another operator P̂, where

P̂ = Ĉ𝑃̂ . (3.123)

Using Eqs. (3.118)–(3.122), we find

P̂2 = Î , (3.124a)

P̂ [𝛼 𝑓 + 𝛽𝑔] = 𝛼̄P̂ [ 𝑓 ] + 𝛽P̂ [𝑔] , (3.124b)

P̂ [ 𝑓 · 𝑔 · ℎ · · · ] = P̂ [ 𝑓 ] · P̂ [𝑔] · P̂ [ℎ] · · · (3.124c)

and

[P̂, 𝜕𝑡] = [P̂, 𝜕𝑟] = [P̂, 𝜕𝜙] = 0 , {P̂, 𝜕𝜃} = 0 . (3.125)

3.9 Appendix: Reconstruction of NP quantities
In this appendix, we provide some additional equations of reconstructed NP quantities
following [88, 127]. Let us first assume a general reconstructed metric ℎ𝜇𝜈 without
going to the specific IRG or ORG. In [137], we have only considered the case that the
background spacetime is Petrov type D, so the results here are more general. Then
to reconstruct NP quantities, the first step is to reconstruct the tetrad. We can first
express the reconstructed tetrad in terms of the background tetrad

𝑒
𝜇(1)
𝑎 = 𝐴𝑎

𝑏(1)𝑒𝜇(0)
𝑏

. (3.126)

As shown in [88, 127], one can always use the six degrees of freedom of tetrad
rotations to set some of the 𝐴𝑏(1)𝑎 coefficients to 0. Then expanding ℎ𝜇𝜈 in terms of
𝑒
𝑎(1)
𝜇 and 𝑒𝑎(0)𝜇 using the completeness relation

𝑔𝜇𝜈 = −2𝑙(𝜇𝑛𝜈) + 2𝑚 (𝜇𝑚̄𝜈) (3.127)

and its expansion

ℎ𝜇𝜈 = −2
[
𝑙
(1)
(𝜇 𝑛

(0)
𝜈) − 𝑙 (0)(𝜇 𝑛

(1)
𝜈) + 𝑚 (1)

(𝜇 𝑚̄
(0)
𝜈) + 𝑚 (0)

(𝜇 𝑚̄
(1)
𝜈)

]
, (3.128)
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one can find that [88, 127],

𝑙𝜇(1) =
1
2
ℎ𝑙𝑙𝑛

𝜇 , (3.129a)

𝑛𝜇(1) =
1
2
ℎ𝑛𝑛𝑙

𝜇 + ℎ𝑙𝑛𝑛𝜇 , (3.129b)

𝑚𝜇(1) = ℎ𝑛𝑚𝑙
𝜇 + ℎ𝑙𝑚𝑛𝜇 −

1
2
ℎ𝑚𝑚̄𝑚

𝜇 − 1
2
ℎ𝑚𝑚𝑚̄

𝜇 , (3.129c)

where we have dropped the superscripts of 𝑒𝜇(0)𝑎 and ℎ(1)
𝑎𝑏

for simplicity. Notice that
the perturbed tetrad in Eq. (3.129) has an opposite sign from the one in [88, 127]
since we used an opposite signature, as one can see in Eqs. (3.127) and (3.128).

To find the spin coefficients, we follow the idea in [51] to expand the commutation
relation defining Ricci rotation coefficients[

𝑒
𝜇
𝑎 , 𝑒

𝜇

𝑏

]
= (𝛾𝑐𝑏𝑎 − 𝛾𝑐𝑎𝑏) 𝑒𝜇𝑐 = 𝐶𝑎𝑏

𝑐𝑒
𝜇
𝑐 , (3.130)

and spin coefficients are just linear combinations of Ricci rotation coefficients [51],

𝜅 = 𝛾131 , 𝜋 = −𝛾241 , 𝜀 =
1
2
(𝛾121 − 𝛾341) ,

𝜌 = 𝛾134 , 𝜆 = −𝛾244 , 𝛼 =
1
2
(𝛾124 − 𝛾344) ,

𝜎 = 𝛾133 , 𝜇 = −𝛾243 , 𝛽 =
1
2
(𝛾123 − 𝛾343) ,

𝜏 = 𝛾132 , 𝜈 = −𝛾242 , 𝛾 =
1
2
(𝛾122 − 𝛾342) . (3.131)

Expanding Eq. (3.130) using Eq. (3.126), one then finds

𝐶𝑎𝑏
𝑐(1) = 𝜕𝑎𝐴𝑏

𝑐 − 𝜕𝑏𝐴𝑎𝑐 −
(
𝐴𝑎

𝑑𝐶𝑏𝑑
𝑐 − 𝐴𝑏𝑑𝐶𝑎𝑑𝑐 + 𝐴𝑑𝑐𝐶𝑎𝑏𝑑

)
, (3.132)

where we have dropped the superscript of 𝐶𝑎𝑏𝑐(0) at the right-hand side. Inserting
Eqs. (3.129) and (3.131) into Eq. (3.132) and using the definition in Eq. (3.131), we
find the perturbed spin coefficients to be

𝜅 (1) =
1
2
𝛿[−2,−2,1,1]ℎ𝑙𝑙 − 𝐷 [−2,0,0,−1]ℎ𝑙𝑚

− 𝜅ℎ𝑙𝑛 + 𝜎ℎ𝑙𝑚̄ − 1
2
𝜅ℎ𝑚𝑚 − 1

2
𝜅ℎ𝑚𝑚̄ ,

(3.133a)

𝜎 (1) = −1
2
𝐷 [−2,2,1,−1]ℎ𝑚𝑚 + (𝜋̄ + 𝜏)ℎ𝑙𝑚 − 1

2
𝜆̄ℎ𝑙𝑙 , (3.133b)

𝜆(1) = (𝜋 + 𝜏)ℎ𝑛𝑚̄ + 1
2
𝚫[−1,1,2,−2]ℎ𝑚̄𝑚̄ + 𝜆ℎ𝑙𝑛 −

1
2
𝜎̄ℎ𝑛𝑛 , (3.133c)
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𝜈(1) = − 1
2
𝛿[2,2,−1,−1]ℎ𝑛𝑛 + 𝚫[0,1,2,0]ℎ𝑛𝑚̄

+ 𝜈ℎ𝑙𝑛 + 𝜆ℎ𝑛𝑚 − 1
2
𝜈ℎ𝑚𝑚̄ − 1

2
𝜈̄ℎ𝑚̄𝑚̄ ,

(3.133d)

𝜖 (1) =
1
4

[
𝚫[−1,1,0,−2]ℎ𝑙𝑙 − 𝛿[−2,0,−3,−2]ℎ𝑙𝑚 + 𝛿[−2,0,1,2]ℎ𝑙𝑚̄

− 2𝐷 [0,0, 12 ,−
1
2 ]
ℎ𝑙𝑛 − (𝜌 − 𝜌̄)ℎ𝑚𝑚̄ − 𝜅ℎ𝑛𝑚 + 𝜅ℎ𝑛𝑚̄ − 𝜎̄ℎ𝑚𝑚 + 𝜎ℎ𝑚̄𝑚̄

]
,

(3.133e)

𝜌(1) =
1
2

[
− 𝜇ℎ𝑙𝑙 − 𝛿[−2,0,−1,0]ℎ𝑙𝑚 + 𝛿[−2,0,1,2]ℎ𝑙𝑚̄

− (𝜌 − 𝜌̄)ℎ𝑙𝑛 − 𝐷 [0,0,1,−1]ℎ𝑚𝑚̄ − 𝜅ℎ𝑛𝑚 + 𝜅ℎ𝑛𝑚̄
]
,

(3.133f)

𝜇(1) =
1
2

[
− 𝜌ℎ𝑛𝑛 − 𝛿[0,2,−2,−1]ℎ𝑛𝑚 + 𝛿[0,2,0,1]ℎ𝑛𝑚̄

+ (𝜇 + 𝜇̄)ℎ𝑙𝑛 + 𝚫[−1,1,0,0]ℎ𝑚𝑚̄ + 𝜈ℎ𝑙𝑚 − 𝜈̄ℎ𝑙𝑚̄
]
,

(3.133g)

𝛾 (1) =
1
4

[
− 𝐷 [0,2,1,−1]ℎ𝑛𝑛 − 𝛿[0,2,−2,−1]ℎ𝑛𝑚 + 𝛿[0,2,2,3]ℎ𝑛𝑚̄

− (𝜇 − 𝜇̄ − 4𝛾)ℎ𝑙𝑛 − (𝜇 − 𝜇̄)ℎ𝑚𝑚̄ + 𝜈ℎ𝑙𝑚 − 𝜈̄ℎ𝑙𝑚̄ + 𝜆ℎ𝑚𝑚 − 𝜆̄ℎ𝑚̄𝑚̄
]
,

(3.133h)

𝛼(1) =
1
4

[
− 𝐷 [−2,0,−1,−2]ℎ𝑛𝑚̄ + 𝛿[−2,0,1,1]ℎ𝑚̄𝑚̄ + 𝚫[−2,1,4,−2]ℎ𝑙𝑚̄

− 𝛿[0,0,−1,−1]ℎ𝑙𝑛 − 𝛿[2,0,−1,−1]ℎ𝑚𝑚̄ − 𝜈ℎ𝑙𝑙 + 3𝜆ℎ𝑙𝑚 − 𝜅ℎ𝑛𝑛 − 𝜎̄ℎ𝑛𝑚
]
,

(3.133i)

𝛽(1) =
1
4

[
− 𝐷 [−4,2,2,−1]ℎ𝑛𝑚 − 𝛿[0,2,−1,−1]ℎ𝑚𝑚 + 𝚫[1,2,2,0]ℎ𝑙𝑚

− 𝛿[0,0,−1,−1]ℎ𝑙𝑛 + 𝛿[0,−2,1,1]ℎ𝑚𝑚̄ − 𝜈̄ℎ𝑙𝑙 − 𝜆̄ℎ𝑙𝑚̄ − 𝜅ℎ𝑛𝑛 + 3𝜎ℎ𝑛𝑚̄
]
,

(3.133j)

𝜋(1) =
1
2

[
𝐷 [2,0,−1,0]ℎ𝑛𝑚̄ + 𝜏ℎ𝑚̄𝑚̄ + 𝚫[0,1,0,−2]ℎ𝑙𝑚̄

− 𝛿[0,0,−1,−1]ℎ𝑙𝑛 + 𝜏ℎ𝑚𝑚̄ + 𝜆ℎ𝑙𝑚 − 𝜎̄ℎ𝑛𝑚
]
,

(3.133k)

𝜏(1) =
1
2

[
− 𝐷 [0,2,0,−1]ℎ𝑛𝑚 + 𝜋ℎ𝑚𝑚 − 𝚫[1,0,−2,0]ℎ𝑙𝑚

+ 𝛿[0,0,1,1]ℎ𝑙𝑛 + 𝜋̄ℎ𝑚𝑚̄ − 𝜆̄ℎ𝑙𝑚̄ + 𝜎ℎ𝑛𝑚̄
]
.

(3.133l)

In Eq. (3.133), we do not assume anything about the background spacetime, so the
background may be Petrov type I, and all the spin coefficients at the background
can be nonzero. Thus, we can use the above equations for our analysis in Sec. 3.4.
For Petrov type D spacetimes in GR, where 𝜅 (0,0) = 𝜎 (0,0) = 𝜆(0,0) = 𝜈(0,0) = 0, our
result is the same as the one in [88] up to a minus sign due to the opposite signature
we used. However, the result in [127] has some discrepancies with the result here
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and in [88], which might be due to errors. If we additionally use the IRG, we can
then further set ℎ𝑙𝑙 = ℎ𝑙𝑛 = ℎ𝑙𝑚 = ℎ𝑙𝑚̄ = ℎ𝑚𝑚̄ = 0 in Eq. (3.133).

To find the perturbed Weyl scalars, one can use Ricci identities to compute Weyl
scalars from spin coefficients,

Ψ0 = 𝐷 [−3,1,−1,−1]𝜎 − 𝛿[−1,−3,1,−1]𝜅 , (3.134a)

Ψ1 = 𝐷 [0,1,0,−1]𝛽 − 𝛿[−1,0,1,0]𝜀 − (𝛼 + 𝜋)𝜎 + (𝛾 + 𝜇)𝜅 , (3.134b)

Ψ2 =
1
3

[
𝛿[−2,1,−1,−1]𝛽 − 𝛿[−1,0,1,1]𝛼 + 𝐷 [1,1,1,−1]𝛾 − 𝚫[−1,1,−1,−1]𝜀

+ 𝛿[−1,1,−1,−1]𝜏 − 𝚫[−1,1,−1,−1]𝜌 + 2(𝜈𝜅 − 𝜆𝜎)
]
,

(3.134c)

Ψ3 = 𝛿[0,1,0,−1]𝛾 − 𝚫[0,1,0,−1]𝛼 + (𝜀 + 𝜌)𝜈 − (𝛽 + 𝜏)𝜆 , (3.134d)

Ψ4 = 𝛿[3,1,1,−1]𝜈 − 𝚫[1,1,3,−1]𝜆 . (3.134e)

Equation (3.134) works at all order for any spacetime, so we can use them for our
analysis in Sec. 3.4. Here, we have also followed [88, 127] to linearly combine
certain Ricci identities such that there are no NP Ricci scalars Φ𝑎𝑏 in the equations,
and the equations work for non-vacuum spacetime. Using the NP quantities on
the background with the perturbed tetrad in Eq. (3.129) and the perturbed spin
coefficients in Eq. (3.133), one can then write down the perturbed Weyl scalars in
terms of metric perturbations directly.

For Petrov type D spacetimes in GR, using Eqs. (3.15) and (3.16), one can further
write down the perturbed NP quantities in terms of the Hertz potential. In [81, 86],
they computed the perturbed Weyl scalars directly from the Riemann tensor, and they
found in the IRG in Eq. (3.16),

Ψ
(0,1)
0 = −1

2
𝐷 [−3,1,0,−1]𝐷 [−2,2,0,−1]ℎ𝑚𝑚 , (3.135a)

Ψ
(0,1)
1 = − 1

8

[
2𝐷 [−1,1,1,−1]𝐷 [0,2,1,−1]ℎ𝑛𝑚 + 𝐷 [−1,1,1,−1]𝛿[−2,2,−2,−1]ℎ𝑚𝑚

+ 𝛿[−3,1,−3,−1]𝐷 [−2,2,0,−1]ℎ𝑚𝑚
]
,

(3.135b)

Ψ
(0,1)
2 = − 1

12

[
𝐷 [1,1,2,−1]𝐷 [2,2,2,−1]ℎ

1
𝑛𝑛 + 2

(
𝐷 [1,1,2,−1]𝛿[0,2,−1,−1]

+𝛿[−1,1,−2,−1]𝐷 [0,2,1,−1]
)
ℎ𝑛𝑚 + 𝛿[−1,1,−2,−1]𝛿[−2,2,−2,−1]ℎ𝑚𝑚

]
,

(3.135c)

Ψ
(0,1)
3 = − 1

8

[ (
𝐷 [3,1,3,−1]𝛿[2,2,0,−1] + 𝛿[1,1,−1,−1]𝐷 [2,2,,2,−1]

)
ℎ1
𝑛𝑛

+ 𝛿[1,1,−1,−1]𝛿[0,2,−1,−1]ℎ𝑛𝑚
]
,

(3.135d)
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Ψ
(0,1)
4 = − 1

2

[
𝛿[3,1,0,−1]𝛿[2,2,0,−1]ℎ

1
𝑛𝑛 + 3Ψ2

(
𝜏𝛿[4,0,0,0] − 𝜌𝚫[0,0,4,0]

−𝜇𝐷 [4,0,0,0] + 𝜋𝛿[0,4,0,0] + 2Ψ2
)
Ψ̄H

]
,

(3.135e)

where Ψ
(0,1)
0,4 reduce to Eq. (3.18) in the Boyer-Lindquist coordinates of Kerr. We

have also defined ℎ1
𝑛𝑛 to be the piece of ℎ𝑛𝑛 proportional to Ψ̄H in Eq. (3.16), i.e.,

ℎ1
𝑛𝑛 = 𝛿[1,3,0,−1]𝛿[0,4,0,3]Ψ̄H.

To compare our results with Eq. (3.135), we compute the perturbed Weyl scalars
using the Ricci identities in Eq. (3.134) in Kerr such that 𝜀(0,0) = 0. We also perform
a direct calculation by linearizing the Riemann tensor first and then projecting it into
the NP basis. For both calculations, we use the tetrad in Eq. (3.129) with the IRG,
and we find an agreement for Ψ(0,1)

0,1,2,4. While for Ψ(0,1)
3 , we find a disagreement. This

is not very surprising since Ψ
(0,1)
3 is not invariant under both tetrad rotations and

infinitesimal coordinate changes at O(𝜖). Since both our calculation and Refs. [81,
86] use the IRG, we have used the same coordinate freedom. This is also manifested
by that our Ψ(0,1)

2 matches Eq. (3.135), which is invariant under tetrad rotations at
O(𝜖) but not invariant under coordinate transformations at O(𝜖). Thus, the difference
between our result and Eq. (3.135) is due to different tetrad choices, while Refs. [81,
86] did not clearly specify their tetrad at O(𝜖).

In the case of Schwarzschild, with the tetrad in Eq. (3.129) and the perturbed metric
in the IRG in Eq. (3.16), we find

Ψ
(0,1)
0 = −1

2
𝐷4Ψ̄H , (3.136a)

Ψ
(0,1)
1 = −1

2
𝐷3(𝛿 + 4𝛽)Ψ̄H , (3.136b)

Ψ
(0,1)
2 = −1

2
𝐷2(𝛿 + 2𝛽) (𝛿 + 4𝛽)Ψ̄H , (3.136c)

Ψ
(0,1)
3 = −1

2
𝐷𝛿(𝛿 + 2𝛽) (𝛿 + 4𝛽)Ψ̄H + 3

2
Ψ2ℎ𝑛𝑚̄ , (3.136d)

Ψ
(0,1)
4 = −1

2
(𝛿 − 2𝛽)𝛿(𝛿 + 2𝛽) (𝛿 + 4𝛽)Ψ̄H + 3

2
Ψ2 [𝜇𝐷 + 𝜌(𝚫 + 4𝛾) − 2Ψ2] ΨH ,

(3.136e)

which is the same as Eq. (3.135) in the Schwarzschild limit, except there is an
additional 3

2Ψ2ℎ𝑛𝑚̄ correction to Ψ
(0,1)
3 due to different tetrad choices.
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3.10 Appendix: Radial Functions in S (1,1)
geo

In this appendix, we provide the radial functions 𝐶𝑖 (𝑟) in Eq. (3.85) and 𝐷𝑖 (𝑟) in
Eq. (3.106). The radial functions 𝐶𝑖 (𝑟) are found in [137], where

𝐶1(𝑟) = 17640𝑀4 − 17196𝑀3𝑟 + 6𝑀2𝑟2 + 210𝑀𝑟3 + 1295𝑟4 , (3.137a)

𝐶2(𝑟) = 189𝑀3 + 120𝑀2𝑟 + 70𝑀𝑟2 , (3.137b)

𝐶3(𝑟) = 342𝑀3 − 816𝑀2𝑟 − 385𝑀𝑟2 − 165𝑟3 , (3.137c)

𝐶4(𝑟) = 774𝑀2 + 360𝑀𝑟 + 145𝑟2 , (3.137d)

𝐶5(𝑟) = 1800𝑀3 − 378𝑀2𝑟 − 240𝑀𝑟2 − 185𝑟3 . (3.137e)

The radial functions 𝐷𝑖 (𝑟) are given by

1
(64𝜋)2𝑀

15
2
𝑟7(𝑟 − 2𝑀)3𝐷1(𝑟)

= 168960𝑀9 + 6720𝑀8𝑟 − 232448𝑀7𝑟2 + 129928𝑀6𝑟3 − 24108𝑀5𝑟4

+ 13900𝑀4𝑟5 − 8090𝑀3𝑟6 + 1530𝑀2𝑟7 − 150𝑀𝑟8 + 15𝑟9 ,

(3.138a)

1
(64𝜋)2𝑀

15
2
𝑟5(𝑟 − 2𝑀)3𝐷2(𝑟)

= 253440𝑀8 − 344992𝑀7𝑟 + 146720𝑀6𝑟2 − 28584𝑀5𝑟3 + 16872𝑀4𝑟4

− 8240𝑀3𝑟5 + 1210𝑀2𝑟6 − 75𝑀𝑟7 + 15𝑟8 ,

(3.138b)
1

(64𝜋)2𝑀

15
2
𝑟6(𝑟 − 2𝑀)2𝐷3(𝑟)

= 212160𝑀8 − 310624𝑀7𝑟 + 139352𝑀6𝑟2 − 25728𝑀5𝑟3 + 14630𝑀4𝑟4

− 7720𝑀3𝑟5 + 1275𝑀2𝑟6 − 120𝑀𝑟7 + 15𝑟8 ,

(3.138c)
1

(64𝜋)2𝑀3
15
2
𝑟3(𝑟 − 2𝑀)2𝐷4(𝑟)

= 400𝑀4 − 96𝑀3𝑟 − 66𝑀2𝑟2 − 130𝑀𝑟3 − 5𝑟4 ,

(3.138d)

1
(64𝜋)2𝑀2

15
2
𝑟5𝐷5(𝑟)

= 1840𝑀5 + 48𝑀4𝑟 − 30𝑀3𝑟2 − 260𝑀2𝑟3 − 15𝑀𝑟4 − 15𝑟5 .

(3.138e)

3.11 Appendix: S in the modified Teukolsky equations
In this appendix, we present the source term S of the modified Teukolsky equations
due to the effective stress tensor for non-rotating BHs in dCS and EdGB gravity.
Here, we only briefly summarize the procedure in [137] and apply it to these two
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simple non-rotating examples. In addition, for EdGB gravity, we only focus on the
source terms with dynamical scalar field 𝜑(1,0,1) for simplicity. For a more complete
prescription of how to evaluate these source terms, one can refer to [137] for slowly
rotating BHs in dCS gravity. The procedure in [137] can be extended to BHs with
arbitrary spin in dCS and other modified gravity.

3.11.1 dCS
As discussed in Sec. 3.6.1.2, for non-rotating BHs in dCS, the only nonzero
contribution of Eq. (3.86) is the term

(
∇𝜎∇𝛿𝜗

)
. In addition, since 𝜗(1,0,0) vanishes,

𝜗 only has dynamical contribution 𝜗(1,0,1) . For the same reason, all the metric
fields in S (1,0,1)

dCS are evaluated on the stationary Schwarzschild background, so no
metric reconstruction is needed. At O(𝜁1, 𝜒0, 𝜖1), the only place requiring metric
reconstruction is to solve the equation of motion of 𝜗(1,0,1) since it is driven by Ψ

(0,0,1)
2

[i.e., Eq. (3.90)]. Given 𝜗(1,0,1) is solved, one can then project the term
(
∇𝜎∇𝛿𝜗

)
onto the NP tetrad and evaluate all the metric fields using their Schwarzschild values.

Let us present this calculation in more detail. First, inspecting the source terms
𝑆1,2 in Eq. (3.6) of the Bianchi identities in Eqs. (3.4a) and (3.4b), the only nonzero
contributions of Φ𝑖 𝑗 are from Φ00, Φ01, and Φ02 since 𝜅 (1,0,1) = 𝜎 (1,0,1) = 𝜆(1,0,1) = 0.
Then from the definition

Φ00 =
1
2
𝑅11 , Φ01 =

1
2
𝑅13 , Φ02 =

1
2
𝑅33 , (3.139)

we notice the only relevant components of 𝑅𝜇𝜈 are 𝑅11, 𝑅13, and 𝑅33. Projecting the
equation of 𝑅𝜇𝜈 in Eq. (3.86) onto the NP tetrad, we find

𝑅dCS
11 = 𝑖RdCS

1

{
(𝐷𝜗)

[
𝜆Ψ0 − 𝜆̄Ψ̄0 − (𝛼 + 𝛽 + 𝜋)Ψ1 + (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄1

+ (𝜀 + 𝜀) (Ψ2 − Ψ̄2)
]

− (𝚫𝜗)
[
𝜎̄Ψ0 − 𝜎Ψ̄0 − 𝜅Ψ1 + 𝜅Ψ̄1

]
+ (𝛿𝜗)

[
(𝛼̄ − 𝛽)Ψ̄0 + 𝜎̄Ψ1 + (𝜀 − 𝜀 − 𝜌̄)Ψ̄1 − 𝜅(Ψ2 − Ψ̄2)

]
− (𝛿𝜗)

[
(𝛼 − 𝛽)Ψ0 − (𝜀 − 𝜀 + 𝜌)Ψ1 + 𝜎Ψ̄1 + 𝜅(Ψ2 − Ψ̄2)

]
− 1

2
Ψ0{𝛿, 𝛿}𝜗 + 1

2
Ψ̄0{𝛿, 𝛿}𝜗 + Ψ1{𝐷, 𝛿}𝜗 − Ψ̄1{𝐷, 𝛿}𝜗

− 1
2
(Ψ2 − Ψ̄2){𝐷, 𝐷}𝜗

}
+ RdCS

2 (𝐷𝜗) (𝐷𝜗) ,

(3.140a)



169

𝑅dCS
13 =

𝑖

2
RdCS

1

{
(𝐷𝜗)

[
𝜈Ψ0 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄)Ψ1 − 2𝜆̄Ψ̄1

+ (𝛼̄ + 𝛽 + 𝜋̄) (Ψ2 + 2Ψ̄2) − 2(𝜀 + 𝜀)Ψ̄3

]
− (𝚫𝜗)

[
(𝛼 + 𝛽 + 𝜏)Ψ0 − (𝜀 + 𝜀 + 𝜌 + 𝜌̄)Ψ1 − 2𝜎Ψ̄1 + 𝜅(Ψ2 + 2Ψ̄2)

]
+ (𝛿𝜗)

[
𝜆Ψ0 − (𝛼 − 𝛽 + 𝜋 − 𝜏)Ψ1 + 2(𝛼̄ − 𝛽)Ψ̄1

+ (𝜀 − 𝜀 − 𝜌̄) (Ψ2 + 2Ψ̄2) + 2𝜅Ψ̄3

]
− (𝛿𝜗)

[
(𝛾 − 𝛾̄ − 𝜇̄)Ψ0 + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏)Ψ1 + 𝜎(Ψ2 + 2Ψ̄2) − 2𝜅Ψ̄3

]
− Ψ0{𝚫, 𝛿}𝜗 + Ψ1

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜗 + Ψ̄1{𝛿, 𝛿}𝜗

− (Ψ2 + 2Ψ̄2){𝐷, 𝛿}𝜗 + Ψ̄3{𝐷, 𝐷}𝜗
}
+ RdCS

2 (𝐷𝜗) (𝛿𝜗) ,

(3.140b)

𝑅dCS
33 = 𝑖RdCS

1

{
− (𝐷𝜗)

[
𝜈̄Ψ1 − 𝜆̄(Ψ2 − Ψ̄2) − (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄3 + (𝜀 + 𝜀)Ψ̄4

]
− (𝚫𝜗)

[
(𝛾 + 𝛾̄)Ψ0 − (𝛼̄ + 𝛽 + 𝜏)Ψ1 + 𝜎(Ψ2 − Ψ̄2) + 𝜅Ψ̄3

]
+ (𝛿𝜗)

[
𝜈Ψ0 − (𝛾 − 𝛾̄ + 𝜇)Ψ1 − (𝛼̄ − 𝛽) (Ψ2 − Ψ̄2) + (𝜀 − 𝜀 − 𝜌̄) + 𝜅Ψ̄4

]
+ (𝛿𝜗)

[
𝜈̄Ψ0 − 𝜆̄Ψ1 − 𝜎Ψ̄3 + 𝜅Ψ̄4

]
− 1

2
Ψ0{𝚫,𝚫}𝜗 + Ψ1{𝚫, 𝛿}𝜗 − 1

2
(Ψ2 − Ψ̄2){𝛿, 𝛿}𝜗

− Ψ̄3{𝐷, 𝛿}𝜗 + 1
2
Ψ̄4{𝐷, 𝐷}𝜗

}
+ RdCS

2 (𝛿𝜗) (𝛿𝜗) ,

RdCS
1 ≡ −

(
1
𝜅𝑔

) 1
2

𝑀2 , RdCS
2 ≡ 1

2𝜅𝑔𝜁dCS
.

(3.140c)

The complete procedure of this projection and the projection of other components of
𝑅𝜇𝜈 in dCS gravity can be found in [137]. Notice, following [137], we have absorbed
the coupling constant into the expansion of 𝜗 such that its expansion also follows
Eq. (3.2), so we need to insert an 𝜁−1 into RdCS

2 to compensate for this. Although
Eq. (3.140) is complicated, its value at O(𝜁1, 𝜒0, 𝜖1) is simple since many Weyl
scalars and spin coefficients vanish on the Schwarzschild background. Using

Ψ
(0,0,0)
0,1,3,4 = 0 , Ψ̄

(0,0,0)
2 = Ψ

(0,0,0)
2 ,

𝛼̄(0,0,0) = 𝛼(0,0,0) = −𝛽(0,0,0) , 𝜌̄(0,0,0) = 𝜌(0,0,0) ,

𝜇̄(0,0,0) = 𝜇(0,0,0) , 𝛾̄ (0,0,0) = 𝛾 (0,0,0) , (3.141)
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and other spin coefficients in Schwarzschild vanish, we find

Φ
(1,0,1)
00,dCS = Φ

(1,0,1)
02,dCS = 0 ,

Φ
(1,0,1)
01,dCS = −3𝑖

4
RdCS

1 Ψ2({𝐷, 𝛿} + 𝜌𝛿)𝜗(1,0,1) , (3.142)

where we have dropped the superscripts of terms at O(𝜁0, 𝜒0, 𝜖0).

Evaluating 𝑆1,2 using Eqs. (3.6) and (3.142), we find

𝑆
(1,0,1)
1,dCS =

3𝑖
2
RdCS

1 Ψ2
[
𝛿𝐷2 + 3𝜌(𝛿𝐷 + 𝜌𝛿)

]
𝜗(1,0,1) ,

𝑆
(1,0,1)
2,dCS = −3𝑖

2
RdCS

1 Ψ2
[
𝛿2𝐷 + 2𝛼𝛿𝐷 + 𝜌𝛿2 + 2𝛼𝜌𝛿

]
𝜗(1,0,1) , (3.143)

where we have used NP equations to make simplifications. Then, inserting 𝑆(1,0,1)1,2
into the definition of S (1,1) in Eq. (3.11), we find

S (1,0,1)
dCS = − 3𝑖RdCS

1 Ψ2
[
𝛿2𝐷2 + 2𝛼𝛿𝐷2 + 2𝜌𝛿2𝐷

+4𝛼𝜌𝛿𝐷 + 2𝜌2𝛿2 + 4𝛼𝜌2𝛿
]
𝜗(1,0,1)

≡ 𝑖QdCS𝜗(1,0,1) .

(3.144)

Using the transformation properties in Eq. (3.43), one can easily show that P̂QdCS =

QdCS. Following the definition in Eq. (3.97), we can write

F dCS =
3

2𝜋1/2Q
dCS□−1

[(
𝑀

𝑟

)3
𝐷2

]
, (3.145)

where 𝐷2 comes from converting Hertz potential Ψ̄(0,0,1)
H to Ψ

(0,0,1)
2 , and □−1 comes

from inverting the equation of motion of 𝜗(1,0,1) in Eq. (3.87). One can easily
check that P̂F dCS = F dCS, so non-rotating dCS BHs admit definite-parity modes as
expected.

3.11.2 EdGB
For EdGB, as discussed in Sec. 3.6.2.2, we choose to focus on the terms in S (1,0,1)

proportional to 𝜑(1,0,1) or its derivatives, so all the metric fields are stationary. To
compute the terms in S (1,0,1) driven by GW perturbations in GR, one can follow
similar procedures in [137]. Following the same argument in Appendix 3.11.1, one
only needs to evaluate Φ00, Φ01, and Φ02, or alternatively 𝑅11, 𝑅13, and 𝑅33 for this
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contribution. Projecting Eq. (3.108) onto the NP tetrad, we find

𝑅EdGB
11 =

1
2
REdGB

1

{
− (𝐷𝜑)

[
𝜆Ψ0 + 𝜆̄Ψ̄0 − (𝛼 + 𝛽 + 𝜋)Ψ1 − (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄1

+ (𝜀 + 𝜀) (Ψ2 + Ψ̄2)
]

+ (𝚫𝜑)
[
𝜎̄Ψ0 + 𝜎Ψ̄0 − 𝜅Ψ1 − 𝜅Ψ̄1

]
+ (𝛿𝜑)

[
(𝛼̄ − 𝛽)Ψ̄0 + (𝜀 − 𝜀 − 𝜌̄)Ψ̄1 − 𝜎̄Ψ1 + 𝜅(Ψ2 + Ψ̄2)

]
+ (𝛿𝜑)

[
(𝛼 − 𝛽)Ψ0 − 𝜎Ψ̄1 − (𝜀 − 𝜀 + 𝜌)Ψ1 + 𝜅(Ψ2 + Ψ̄2)

]
+ 1

2
Ψ0{𝛿, 𝛿}𝜑 + 1

2
Ψ̄0{𝛿, 𝛿}𝜑 − Ψ1{𝐷, 𝛿}𝜑 − Ψ̄1{𝐷, 𝛿}𝜑

+ 1
2
(Ψ2 + Ψ̄2){𝐷, 𝐷}𝜑

}
+ REdGB

2 (𝐷𝜑) (𝐷𝜑) ,

(3.146a)

𝑅EdGB
13 =

1
4
REdGB

1

{
− (𝐷𝜑)

[
𝜈Ψ0 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄)Ψ1 + 2𝜆̄Ψ̄1

+ (𝛼̄ + 𝛽 + 𝜋̄) (Ψ2 − 2Ψ̄2) + 2(𝜀 + 𝜀)Ψ̄3

]
+ (𝚫𝜑)

[
(𝛼 + 𝛽 + 𝜏)Ψ0 − (𝜀 + 𝜀 + 𝜌 + 𝜌̄)Ψ1 + 2𝜎Ψ̄1 + 𝜅(Ψ2 − 2Ψ̄2)

]
− (𝛿𝜑)

[
𝜆Ψ0 − (𝛼 − 𝛽 + 𝜋 − 𝜏)Ψ1 − 2(𝛼̄ − 𝛽)Ψ̄1

+ (𝜀 − 𝜀 − 𝜌̄) (Ψ2 − 2Ψ̄2) − 2𝜅Ψ̄3

]
+ (𝛿𝜑)

[
(𝛾 − 𝛾̄ − 𝜇̄)Ψ0 + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏)Ψ1 + 𝜎(Ψ2 − 2Ψ̄2) + 2𝜅Ψ̄3

]
+ Ψ0{𝚫, 𝛿}𝜑 − Ψ1

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜑 + Ψ̄1{𝛿, 𝛿}𝜑

+ (Ψ2 − 2Ψ̄2){𝐷, 𝛿}𝜑 + Ψ̄3{𝐷, 𝐷}𝜑
}
+ REdGB

2 (𝐷𝜑) (𝛿𝜑) ,

(3.146b)
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𝑅EdGB
33 =

1
2
REdGB

1

{
(𝐷𝜑)

[
𝜈̄Ψ1 − 𝜆̄(Ψ2 + Ψ̄2) + (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄3 − (𝜀 + 𝜀)Ψ̄4

]
+ (𝚫𝜑)

[
(𝛾 + 𝛾̄)Ψ0 − (𝛼̄ + 𝛽 + 𝜏)Ψ1 + 𝜎(Ψ2 + Ψ̄2) − 𝜅Ψ̄3

]
− (𝛿𝜑)

[
𝜈Ψ0 − (𝛾 − 𝛾̄ + 𝜇)Ψ1 − (𝛼̄ − 𝛽) (Ψ2 + Ψ̄2)

− (𝜀 − 𝜀 − 𝜌̄)Ψ̄3 − 𝜅Ψ̄4

]
− (𝛿𝜑)

[
𝜈̄Ψ0 − 𝜆̄Ψ1 + 𝜎Ψ̄3 − 𝜅Ψ̄4

]
+ 1

2
Ψ0{𝚫,𝚫}𝜑 − Ψ1{𝚫, 𝛿}𝜑 + 1

2
(Ψ2 + Ψ̄2){𝛿, 𝛿}𝜑

− Ψ̄3{𝐷, 𝛿}𝜑 + 1
2
Ψ̄4{𝐷, 𝐷}𝜑

}
+ REdGB

2 (𝛿𝜑) (𝛿𝜑) ,

(3.146c)

REdGB
1 = −𝜅

1
2
𝑔𝑀

2 , REdGB
2 =

1
2𝜁EdGB

, (3.146d)

where one can refer to [137] for more details of this projection in dCS gravity.
Similarly, we have absorbed one coupling constant into the expansion of 𝜑 to be
consistent with Eq. (3.2), so REdGB

2 contains an extra factor of 𝜁−1. Using Eq. (3.141),
one can find that the O(𝜁1, 𝜒0, 𝜖1) contributions to Φ𝑖 𝑗 with dynamical 𝜑 are

Φ
(1,0,1)
00,EdGB =

1
2
REdGB

1 Ψ2𝐷
2𝜑(1,0,1) + REdGB

2 𝐷𝜑(1,0,0)𝐷𝜑(1,0,1) ,

Φ
(1,0,1)
01,EdGB = −1

8
REdGB

1 Ψ2 ({𝐷, 𝛿} + 𝜌𝛿) 𝜑(1,0,1) + 1
2
REdGB

2 𝐷𝜑(1,0,0)𝛿𝜑(1,0,1) ,

Φ
(1,0,1)
01,EdGB =

1
2
REdGB

1 Ψ2

(
𝛿2 + 2𝛼𝛿

)
𝜑(1,0,1) , (3.147)

where we have also used that 𝛿(0,0,0)𝜑(1,0,0) = 𝛿(0,0,0)𝜑(1,0,0) = 0 since 𝜑(1,0,0) is a
pure radial function [147]. For simplicity, we have also dropped the superscripts of
terms at O(𝜁0, 𝜒0, 𝜖0). Using Eqs. (3.6) and (3.147), we find

𝑆
(1,0,1)
1,EdGB =

3
4
REdGB

1 Ψ2
[
𝛿𝐷2 + 𝜌 (𝛿𝐷 + 𝜌𝛿)

]
𝜑(1,0,1)

+ 1
2
REdGB

2

[
𝐷𝜑(1,0,0)𝛿𝐷 − (𝐷2 − 𝜌𝐷)𝜑(1,0,0)𝛿

]
𝜑(1,0,1) , (3.148)

𝑆
(1,0,1)
2,EdGB = − 3

4
REdGB

1 Ψ2

(
𝛿2𝐷 + 2𝛼𝛿𝐷 + 3𝜌𝛿2 + 6𝛼𝜌𝛿

)
𝜑(1,0,1)

+ 1
2
REdGB

2 𝐷𝜑(1,0,0) (𝛿2 + 2𝛼𝛿)𝜑(1,0,1) , (3.149)

and using Eq. (3.11), we find

S (1,0,1)
EdGB
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= − 3
2
REdGB

1 Ψ2

(
𝛿2𝐷2 + 2𝛼𝛿𝐷2 + 2𝜌𝛿2𝐷 + 4𝛼𝜌𝛿𝐷 + 2𝜌2𝛿2 + 4𝛼𝜌2𝛿

)
𝜑(1,0,1)

+ REdGB
2

{(
𝐷2 − 2𝜌𝐷

)
𝜑(1,0,0)𝛿2 +

[
2𝛼

(
𝐷2 − 2𝜌𝐷

)
+ 1

2
𝛿𝐷2

]
𝜑(1,0,0)𝛿

}
𝜑(1,0,1)

= QEdGB𝜑(1,0,1) . (3.150)

Using the transformation properties in Eq. (3.43) and that 𝜑(1,0,0 is purely radial, we
find that P̂QEdGB = QEdGB. Follow the definition in Eq. (3.114), we can write

F EdGB = QEdGB□−1 , (3.151)

where □−1 comes from inverting the equation of motion of 𝜑(1,0,1) in Eq. (3.109).
One can check that P̂F EdGB = F EdGB, so non-rotating EdGB BHs also admit
definite-parity modes.
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C h a p t e r 4

PERTURBATIONS OF SPINNING BLACK HOLES IN
DYNAMICAL CHERN-SIMONS GRAVITY: SLOW ROTATION

EQUATIONS

[1] Pratik Wagle, Dongjun Li, Yanbei Chen, and Nicolás Yunes. “Perturbations
of spinning black holes in dynamical Chern-Simons gravity: Slow rotation
equations”. In: Phys. Rev. D 109.10 (2024), p. 104029. doi: 10.1103/
PhysRevD.109.104029. arXiv: 2311.07706 [gr-qc].

4.1 Introduction
The discovery of gravitational waves (GWs) has provided a new avenue for scrutinizing
the predictions and phenomenology of Einstein’s theory of general relativity (GR)
in regimes characterized by non-linear and dynamic gravitational effects [1, 2].
GWs offer the opportunity to investigate the properties of astrophysical objects
where gravity is notably intense, such as black holes (BHs) and neutron stars (NSs).
In particular, GWs are often generated by the coalescence of binary BH systems,
wherein two BHs orbit each other, gradually inspiraling due to the emission of
GWs, and ultimately merging to produce a final BH that emits GW radiation as
it settles down. GWs during this part of the coalescence, known as the ringdown
phase, comprise a superposition of numerous quasinormal modes (QNMs), each
with a complex eigenfrequency. By analyzing GW observations, it may thus become
possible to efficiently explore the distinctive spectrum of QNMs exhibited by BHs as
they ring down [3, 4].

QNMs are the characteristic vibrational modes of BHs that are excited when the
BH is perturbed. The study of QNMs can provide important information about the
fundamental properties of BHs and their surrounding spacetime. In particular, the
QNM spectrum of astrophysical (i.e., uncharged) BHs in GR is fully determined
by just two parameters: the mass and spin of the remnant BH. One promising
application of QNMs is to test modified gravity theories and alternative models
of compact objects [5]. The predictions of modified gravity theories may deviate
from GR’s and can manifest as modifications of the QNM spectrum of BHs [6–12].
By observing the QNM spectrum of merging BHs with GW detectors, it may be

https://doi.org/10.1103/PhysRevD.109.104029
https://doi.org/10.1103/PhysRevD.109.104029
https://arxiv.org/abs/2311.07706
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possible to place constraints on these modifications to GR and its models given two
or more detections of QNM frequencies with a strong signal-to-noise ratio. Recent
GW detections of binary BH mergers have provided some of the most precise tests of
GR in the strong-field regime [13]. With improvements in detector technology and
advancements in computational techniques, using ringdown to test modified gravity
theories seems possible in the near future [14].

To study QNMs in GR, there are two well-established approaches within BH
perturbation theory. One approach, proposed by Regge and Wheeler [15], perturbs
the metric directly and it has been successfully applied to non-rotating and slowly
rotating BHs in GR [15–18], as well as in modified theories of gravity [6–12].
However, this approach has not been successfully applied to BHs with a general
spin. An alternative approach uses curvature perturbations, and it was presented by
Teukolsky [19] to study rotating Kerr BHs in GR, including their QNM spectrum
and dynamical stability [20]. This framework uses the Newman:1961qr (NP)
formalism [21] and considers curvature perturbations characterized by quantities
known as Weyl scalars. The success of the Teukolsky formalism lies in its ability to
provide a decoupled evolution equation for each of the Ψ0 and Ψ4 Weyl scalars, which
describe transverse gravitational perturbations, and physically represent ingoing and
outgoing GWs, respectively. Not only are these quantities decoupled from other
gravitational degrees of freedom, their evolution equations are also separable into a
radial and an angular equation [4, 20, 22].

The Teukolsky formalism in GR requires the background geometry to be algebraically
of type D under the Petrov classification [23], as is the case for Schwarzschild and
Kerr spacetimes in GR. This Petrov type D property implies that four of the five Weyl
scalars vanish on the background. However, when considering beyond-GR (bGR)
theories, the deviations introduced may lead to BHs described by non-Petrov-type-D
spacetimes. For instance, rotating BHs in dynamical Chern-Simons (dCS) gravity
and Einstein-dilaton Gauss-Bonnet gravity are algebraically general and classified
as Petrov type I. As a consequence, the Teukolsky formalism cannot be directly
applied to bGR BH spacetimes. Therefore, calculating the QNM spectra of spinning
BHs in bGR theories has been an open problem for a long time and warrants new
approaches. One potential resolution to this problem became available recently with
the development of the modified Teukolsky formalism [24–27]. This formalism,
in theory, enables studying perturbations of spinning BHs in bGR theories and
calculating the QNM spectra of such non-Ricci-flat, matter vacuum Petrov type I
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BH spacetimes. Yet for tests with GW data, a key theoretical challenge remains to
calculate the QNM spectra of BHs in modified theories, and then compare them with
observations. This work aims at computing the QNM spectrum of one type of BH
spacetimes.

In this work, we restrict our attention to modifications to GR where a scalar field
is non-minimally coupled to topological invariant quadratic terms in curvature. A
subset of this class of theories, known as dCS gravity [28, 29], was proposed to
explain the matter-antimatter asymmetry of the universe. This is achieved by the
introduction of additional parity-violating gravitational interactions, challenging
a fundamental pillar of GR. Due to the quadratic nature of this theory, it is not
strongly constrained using weak field tests and evades binary pulsar tests [30] and GW
polarization tests [31]. However, early work using the metric perturbation approach
shows promise that ringdown tests can be useful in constraining this modified theory
of gravity [9].

We focus on slowly rotating BHs in dCS gravity to leading order in spin in this work.
This calculation serves as a validation of the newly developed formalism [24], as
the results herein can then be confirmed with the results obtained using the metric
perturbation approach [9, 32]. We first use the formalism prescribed in [24] to
obtain the modified Teukolsky equation for a slowly rotating BH in dCS gravity.
To leading order in spin, these BH backgrounds are described by a non-Ricci-flat,
matter vacuum Petrov type D spacetime [24, 33]. Solving the Bianchi identities, we
obtain the modified Teukolsky equation first in the null NP basis. We then rewrite
this equation in the coordinate basis by defining a tetrad (similar to the Kinnersly
tetrad in GR). Finally, we make use of the properties of spin-weighted spheroidal
harmonics to eliminate the angular dependence and obtain a radial second-order
differential equation. Due to the non-minimal coupling between the scalar field
and the curvature, the perturbed master equations of the scalar field and the Weyl
scalars (Ψ0 or Ψ4) are coupled in dCS gravity. Moreover, some of these quantities
also require metric reconstruction within GR [34–38], making the problem more
challenging, yet still solvable, as we demonstrate here. Having obtained the master
equations in this work, we will use the eigenvalue perturbation method [25, 39, 40]
in future work to calculate the QNM spectrum and compare it with the results using
metric perturbations in dCS gravity [9, 32].

The remainder of this paper is organized as follows. We first present in brief the
action and the field equations of dCS gravity in Sec. 4.2 along with the slowly
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rotating BH solutions in this theory. In Sec. 4.3, we present an overview of the
modified Teukolsky formalism in [24], define a three-parameter expansion under
the slow-rotation approximation, and calculate the NP quantities on the dCS BH
background. In Sec. 4.4, we provide a concise review of the metric reconstruction
procedures in GR. In Secs. 4.5, 4.6, and 4.7, we calculate the source terms of the
scalar field equation and the modified Teukolsky equation of Ψ0 and Ψ4 in the null
NP basis, the results of which are summarized in Sec. 4.8. In Sec. 4.9, we project the
equations into the coordinate basis and extract their radial parts using the properties
of spin-weighted spheroidal harmonics. Finally, in Sec. 4.10, we summarize our work
and discuss some future avenues. Henceforth, we adopt the following conventions
unless stated otherwise: we work in 4-dimensions with metric signature (−, +, +, +)
as in [41]. For all NP quantities except the metric signature, we use the notation
adapted by Chandrasekhar in [42].

4.2 BHs in dCS Gravity
In this section, we will present the details of the theory and the background BH
spacetime used in this work.

4.2.1 dCS gravity
In this subsection, we briefly review the dCS gravity following the discussion and
the convention in [43]. A more detailed review of dCS gravity can be found in [28,
29]. The action of dCS gravity is

𝑆 =

∫
𝑑4𝑥

√−𝑔
{
𝜅𝑔𝑅 + 𝛼

4
𝜗𝑅𝜈𝜇𝜌𝜎

∗𝑅𝜇𝜈𝜌𝜎 − 1
2

[
∇𝜇𝜗∇𝜇𝜗 + 2𝑉 (𝜗)

]
+ Lmatter

}
,

(4.1)
where 𝜅𝑔 = 1

16𝜋 , ∗𝑅𝜇𝜈𝜌𝜎 is the dual of the Riemann tensor,

∗𝑅𝜇𝜈𝜌𝜎 =
1
2
𝜖 𝜌𝜎𝛼𝛽𝑅𝜇𝜈𝛼𝛽 , (4.2)

and 𝜗 is the pseudoscalar field coupled to the Pontryagin density 𝑃 := 𝑅𝜈𝜇𝜌𝜎∗𝑅𝜇𝜈𝜌𝜎

via the dCS coupling constant 𝛼. The quantity 𝑉 (𝜗) is a potential for 𝜗, which we
set to zero for the reasons explained in [44–46], along with any matter contribution
Lmatter (since we will work with matter vacuum BH spacetimes) for the remainder
of this work. From Eq. (4.1), we find that [𝜗] = 1 and [𝛼] = 𝐿2 in geometric
units. Using these coupling constants, we can define a dimensionless parameter 𝜁
characterizing the strength of the dCS correction to GR, where 𝜁 is defined in [43] to
be

𝜁 ≡ 𝛼2

𝜅𝑔𝑀
4 , (4.3)
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with 𝑀 the typical mass of the system. When the system under consideration contains
a single black hole, then 𝑀 is its mass. When considering a binary system, then
different corrections to the solutions of the field equations will scale with different
(dimension-4) combinations of the two masses.

Varying the action in Eq. (4.1) with respect to the metric and the scalar fields,
respectively, we obtain

𝑅𝜇𝜈 = − 𝛼

𝜅𝑔
𝐶𝜇𝜈 +

1
2𝜅𝑔

𝑇𝜗𝜇𝜈 , (4.4)

□𝜗 = − 𝛼

4
𝑅𝜈𝜇𝜌𝜎

∗𝑅𝜇𝜈𝜌𝜎 , (4.5)

where □ = ∇𝜇∇𝜇 is the D’Alembertian operator, and

𝐶𝜇𝜈 ≡ (∇𝜎𝜗) 𝜖𝜎𝛿𝛼(𝜇∇𝛼𝑅𝜈)𝛿 + (∇𝜎∇𝛿𝜗)∗𝑅𝛿(𝜇𝜈)𝜎 , (4.6)

𝑇𝜗𝜇𝜈 ≡
(
∇𝜇𝜗

)
(∇𝜈𝜗) . (4.7)

We have here adopted the trace-reversed form of the field equations, using the fact
that the C-tensor is traceless, as it will render future calculations simpler.

The dCS action presented above is an effective theory that includes only linear in 𝛼
and quadratic in curvature corrections to the Einstein-Hilbert action, thus ignoring
higher order terms in 𝛼 and in curvature. Therefore, the resulting field equations are
also similarly effective, and their solutions ought to be truncated at leading order in
𝛼 and considered only for systems (and regimes of spacetime) with small curvatures.
Various previous work [43, 47] have studied the regime of validity of this effective
action and its curvature cutoff. In essence, the effective theory remains valid provided
(𝛼2/𝜅𝑔)𝑃2 ≪ 1, where recall that 𝑃 has been defined as the Pontryagin density.
When this is the case, the higher order in 𝛼 and in curvature terms neglected in the
action above can continue to be ignored. The systems studied in this paper involve
the exterior spacetime of remnant BHs with masses in the range 3𝑀⊙ < 𝑀 < 107𝑀⊙.
For such systems, the theory remains effective, and 𝜁 ≪ 1 provided

√
𝛼 ≪ 107km,

which will be assumed henceforth; the best current constraints on 𝛼 come from
NICER and advanced LIGO observations, and they require that

√
𝛼 ≤ 8.5km at

90% confidence [48]. In this range of 𝛼 and for these BH masses, the quadratic
curvature corrections to the Einstein Hilbert action will remain perturbative, and the
higher-order in 𝛼 and curvature terms will remain controlled relative to the quadratic
term included in the dCS action.
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4.2.2 Slowly rotating BHs in dCS gravity
Solutions to BHs in dCS gravity have been found both numerically [49] and
analytically [43, 50–52]. For this work, we consider the analytical solution found
in [50, 51], which were obtained by perturbatively solving the field equations (4.4)
and (4.5) to linear order in both the dimensionless spin parameter 𝜒, where 𝜒 ≡ 𝑎/𝑀
(with the dimensional spin parameter 𝑎 = 𝑆/𝑀 , where 𝑆 is the spin angular moment,
and 𝑀 is the BH mass), and the dCS expansion parameter 𝜁 , defined in Eq. (4.3).
This analytical solution casts the line element of a slowly rotating BH in dCS gravity
as

𝑑𝑠2 = 𝑑𝑠2
slow + 𝑑𝑠2

dCS , (4.8)

where, following the convention in [42], the line element for the slowly rotating Kerr
metric in Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙) is given by

𝑑𝑠2
slow = 𝑔slow

𝛼𝛽 𝑑𝑥
𝛼𝑑𝑥𝛽 − 𝑓 (𝑟)𝑑𝑡2 − 4𝑀𝑎 sin2 𝜃

𝑟
𝑑𝑡𝑑𝜙 + 𝑓 (𝑟)−1𝑑𝑟2

+ 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2 ,

(4.9)

where 𝑓 (𝑟) = 1 − 2𝑀/𝑟 is the Schwarzschild factor. The line element in Eq. (4.9)
is obtained by keeping only the leading-order terms in 𝑎 of the Kerr metric in
Boyer-Lindquist coordinates, i.e.,

𝑑𝑠2
Kerr = 𝑔

Kerr
𝛼𝛽 𝑑𝑥

𝛼𝑑𝑥𝛽

= −
(
1 − 2𝑀𝑟

𝜌̃2

)
𝑑𝑡2 − 4𝑀𝑎𝑟 sin2 𝜃

𝜌̃2 𝑑𝑡𝑑𝜙 + 𝜌̃
2

Δ
𝑑𝑟2

+ 𝜌̃2𝑑𝜃2 +
(
𝑟2 + 𝑎2 + 2𝑀𝑎2𝑟 sin2 𝜃

𝜌̃2

)
sin2 𝜃𝑑𝜙2 ,

(4.10)

with 𝜌̃2 ≡ 𝑟2 + 𝑎2 cos2 𝜃 and Δ ≡ 𝑟2 − 2𝑀𝑟 + 𝑎2. To leading order in 𝜒 and 𝜁 , the
dCS modification to the Kerr line element is given by

𝑑𝑠2
dCS = −𝜁 𝜒 𝐺̃ (𝑟)

2
sin2 𝜃𝑑𝑡𝑑𝜙 , (4.11)

where

𝐺̃ (𝑟) = −5𝑀5

4𝑟4

(
1 + 12𝑀

7𝑟
+ 27𝑀2

10𝑟2

)
. (4.12)

The above dCS correction to the line element is of O(𝜁1, 𝜒1, 𝜖0), and thus, we can
use the tri-variate notation that we will introduce in Sec. 4.3.3 to write

ℎ
(1,1,0)
𝑡𝜙

= −𝐺̃ (𝑟)
2

sin2 𝜃 . (4.13)
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The dCS metric of a slowly rotating BH is then identical to the Kerr metric, except
for the (𝑡, 𝜙) component, which acquires the correction presented above. Similarly,
the background scalar field at leading order in spin is given by [50]

𝜗(0) =
5
8
𝑎𝛼

𝑀

cos 𝜃
𝑟2

(
1 + 2𝑀

𝑟
+ 18𝑀2

5𝑟2

)
, (4.14)

where the superscript denotes the scalar field is evaluated on the background.
Although the scalar field 𝜗 enters at O(𝜁1/2), as shown in Eqs. (4.5) and (4.14), we
follow [24] to multiply 𝜗 by an additional factor of 𝜁1/2 for the simplicity of order
counting. In this case, the expansion of 𝜗 starts at O(𝜁), so at O(𝜁1, 𝜒1, 𝜖0), we have

𝜁1/2𝜗(0) = 𝜁 𝜒𝜗(1,1,0)

= 𝜁 𝜒
5𝑀2

32
√
𝜋𝑟2

(
1 + 2𝑀

𝑟
+ 18𝑀2

5𝑟2

)
cos 𝜃 , (4.15)

where we have used Eq. (4.3). The three-parameter expansion in {𝜁, 𝜒, 𝜖} is discussed
in more detail later in Sec. 4.3.3.

4.3 BH Perturbations in Teukolsky formalism
In this section, we review the modified Teukolsky formalism developed in [24]. In this
paper, we extend the two-parameter expansion scheme in [24] to a three-parameter
expansion discussed in Sec. 4.3.3 to incorporate the slow-rotation approximation,
following [9, 32].

4.3.1 Modified Teukolsky Equation
As discussed previously in Sec. 4.1, for studying perturbations of non-rotating BHs,
we obtain the perturbed field equations and decompose these into master equations by
making use of the metric perturbations [15–17, 53]. These metric perturbations are
separated into two sectors, depending on their behavior under a parity transformation.
For each parity, all the metric degrees of freedom are then packed into one master
function: the Regge-Wheeler function for odd parity [15] and the Zerilli-Moncrief
function for even parity [16, 17]. The master equations governing these master
functions are decoupled from other dynamical degrees of freedom of the metric
fields and are separable into radial and angular equations.

However, for rotating BHs in GR, due to the lack of spherical symmetry, to obtain
the decoupled and separable perturbed field equations, one has to use the Teukolsky
equations [19, 20, 54], where the fundamental variables to solve for are the Weyl
scalars Ψ0,4 characterizing curvature perturbations. In this case, the master equations
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of Ψ0,4 are decoupled from other NP quantities and are separable into purely radial
and purely angular equations. For a quick review of the NP formalism and the
Teukolsky formalism in GR, one can refer to the original papers [19–21, 54], the
book [42], or more recent papers that work in the Teukolsky formalism [24, 38].

In modified gravity, most calculations for rotating BHs have so far been done
using metric perturbations and the slow-rotation expansion, e.g., [9, 32] in dCS
gravity, [10, 11] in EdGB theory, and [12, 55] in higher-derivative gravity. However,
these approaches cannot deal with BHs with arbitrary spin, which motivated the
development of the modified Teukolsky formalism in [24, 25]. Following the
formalism in [24, 25], one can find separable and decoupled equations for Ψ0,4 of
BHs with arbitrary spin in a wide class of modified gravity theories, such as in dCS
gravity, which can be treated as an EFT extension of GR. In this paper, we will
use the modified Teukolsky equations of Ψ0,4 in [24]. For an alternative approach
following [56] by projecting the Einstein equations to the Teukolsky equations, one
can refer to [25].

In [24], the authors introduced a two-parameter expansion, in terms of 𝜁 and 𝜖 where

1. 𝜁 is the parameter characterizing the strength of modifications to GR. In the
case of dCS gravity, 𝜁 is given by Eq. (4.3).

2. 𝜖 is the parameter characterizing the strength of gravitational perturbations,
which also appears in GR.

We do not assume any hierarchy between 𝜁 and 𝜖 . The dimensionless coupling
constant 𝜁 can be smaller or larger than the perturbative expansion parameter 𝜖
depending on the BH system under consideration. In this way, one can expand all
the NP quantities as

Ψ𝑖 = Ψ
(0)
𝑖

+ 𝜖Ψ(1)
𝑖

= Ψ
(0,0)
𝑖

+ 𝜁Ψ(1,0)
𝑖

+ 𝜖Ψ(0,1)
𝑖

+ 𝜁𝜖Ψ(1,1)
𝑖

(4.16)

and the extra non-metric fields, such as the pseudoscalar field 𝜗 in dCS gravity, as

𝜗 = 𝜗(0) + 𝜖𝜗(1) = 𝜁𝜗(1,0) + 𝜁𝜖𝜗(1,1) , (4.17)

where we have reserved the single superscript notation for only an expansion in 𝜖 .
When using the double-superscript notation, however, the first superscript will also
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refer to contributions proportional to 𝜁 to a given power. In contrast, the second
superscript will refer to terms proportional to 𝜖 to a given power.

Using the expansion in Eqs. (4.16) and (4.17), the authors in [24] found that for a
rotating BH described by a matter vacuum, non-Ricci-flat, Petrov type I spacetime
that perturbatively deviates from a Petrov type D spacetime in GR, the gravitational
wave perturbation Ψ0 satisfies

𝐻
(0,0)
0 Ψ

(1,1)
0 = S (1,1)

geo + S (1,1) , (4.18)

where 𝐻 (0,0)
0 is the Teukolsky operator for Ψ0 in GR [19], and the source terms are

divided into a “geometric piece”,

S (1,1)
geo = S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D , (4.19)

with

S (1,1)
0,D = −𝐻 (1,0)

0 Ψ
(0,1)
0 , (4.20a)

S (1,1)
0,non-D = −𝐻 (0,1)

0 Ψ
(1,0)
0 , (4.20b)

S (1,1)
1,non-D = 𝐻

(0,1)
1 Ψ

(1,0)
1 , (4.20c)

and a “Ricci piece”,

S (1,1) = E (0,0)
2 𝑆

(1,1)
2 + E (0,1)

2 𝑆
(1,0)
2 − E (0,0)

1 𝑆
(1,1)
1 − E (0,1)

1 𝑆
(1,0)
1 , (4.21)

with 𝑆1,2 given by

𝑆1 ≡ 𝛿[−2,−2,1,0]Φ00 − 𝐷 [−2,0,0,−2]Φ01 + 2𝜎Φ10 − 2𝜅Φ11 − 𝜅Φ02 , (4.22a)

𝑆2 ≡ 𝛿[0,−2,2,0]Φ01 − 𝐷 [−2,2,0,−1]Φ02 − 𝜆̄Φ00 + 2𝜎Φ11 − 2𝜅Φ12 . (4.22b)

The operators 𝐻0,1, E0,1 are defined as

𝐻0 = E2𝐹2 − E1𝐹1 − 3Ψ2 , 𝐻1 = E2𝐽2 − E1𝐽1 ,

E1 = 𝐸1 −
1
Ψ2
𝛿Ψ2 , E2 = 𝐸2 −

1
Ψ2
𝐷Ψ2 ,

(4.23)

where Ψ2 is a NP scalar, and we have also defined

𝐹1 ≡ 𝛿[−4,0,1,0] , 𝐹2 ≡ 𝚫[1,0,−4,0] ,

𝐽1 ≡ 𝐷 [−2,0,−4,0] , 𝐽2 ≡ 𝛿[0,−2,0,−4] ,

𝐸1 ≡ 𝛿[−1,−3,1,−1] , 𝐸2 ≡ 𝐷 [−3,1,−1,−1] .

(4.24)
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The operators that appear in the above definitions are defined for convenience to be

𝐷 [𝑎,𝑏,𝑐,𝑑] = 𝐷 + 𝑎𝜀 + 𝑏𝜀 + 𝑐𝜌 + 𝑑𝜌̄ , (4.25a)

𝚫[𝑎,𝑏,𝑐,𝑑] = 𝚫 + 𝑎𝜇 + 𝑏𝜇̄ + 𝑐𝛾 + 𝑑𝛾̄ , (4.25b)

𝛿[𝑎,𝑏,𝑐,𝑑] = 𝛿 + 𝑎𝛼̄ + 𝑏𝛽 + 𝑐𝜋̄ + 𝑑𝜏 , (4.25c)

𝛿[𝑎,𝑏,𝑐,𝑑] = 𝛿 + 𝑎𝛼 + 𝑏𝛽 + 𝑐𝜋 + 𝑑𝜏 , (4.25d)

where (𝐷,𝚫, 𝛿, 𝛿) are the usual NP differential operators (constructed by contracting
the tetrad with partial derivatives), while (𝜀, 𝜌, 𝜇, 𝛾, 𝛼, 𝛽, 𝜋, 𝜏) are spin coefficients,
with the overhead bar denoting complex conjugation, and (𝑎, 𝑏, 𝑐, 𝑑) are certain
constants. For a complete derivation of the equations above and the definition of
Weyl scalars, spin coefficients, directional derivatives, and Ricci NP scalars, one can
refer to [21, 24].

For this work, we are only interested in studying slowly rotating BHs in dCS
gravity up to O(𝜒). Such BHs are described by vacuum non-Ricci-flat Petrov
type D spacetimes [33]. The modified Teukolsky equations for these BHs hold
the same form as given in Eq. (4.18) with the source terms S (1,1)

0,non-D and S (1,1)
1,non-D in

Eqs. (4.20b)–(4.20c) vanishing.

The equation of Ψ(0,1)
4 can be obtained from Eq. (4.18) by the Geroch-Held-Penrose

(GHP) transformation [57] and is given in [24]:

𝐻
(0,0)
4 Ψ

(1,1)
4 = T (1,1)

geo + T (1,1) , (4.26)

where 𝐻 (0,0)
4 is the Teukolsky operator in GR for Ψ4, and the “geometric piece” of

the source terms is defined as

T (1,1)
geo = T (1,1)

4,D + T (1,1)
4,non-D + T (1,1)

3,non-D , (4.27)

with

T (1,1)
4,D = −𝐻 (1,0)

4 Ψ
(0,1)
4 , (4.28a)

T (1,1)
4,non-D = −𝐻 (0,1)

4 Ψ
(1,0)
4 , (4.28b)

T (1,1)
3,non-D = 𝐻

(0,1)
3 Ψ

(1,0)
3 , (4.28c)

whereas the “Ricci piece” is defined as

T (1,1) = E (0,0)
4 𝑆

(1,1)
4 + E (0,1)

4 𝑆
(1,0)
4 − E (0,0)

3 𝑆
(1,1)
3 − E (0,1)

3 𝑆
(1,0)
3 , (4.29)
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with

𝑆3 ≡ −𝚫[0,2,2,0]Φ21 + 𝛿[2,2,0,−1]Φ22 + 2𝜈Φ11 + 𝜈̄Φ20 − 2𝜆Φ12 , (4.30a)

𝑆4 ≡ −𝚫[0,1,2,−2]Φ20 + 𝛿[2,0,0,−2]Φ21 + 2𝜈Φ10 − 2𝜆Φ11 + 𝜎̄Φ22 . (4.30b)

The operators 𝐻3,4 and E3,4 are defined as

𝐻4 = E4𝐹4 − E3𝐹3 − 3Ψ2 , 𝐻3 = E4𝐽4 − E3𝐽3 ,

E3 = 𝐸3 −
1
Ψ2
𝛿Ψ2 , E4 = 𝐸4 −

1
Ψ2

𝚫Ψ2 ,
(4.31)

with
𝐹3 ≡ 𝛿[0,4,0,−1] , 𝐹4 ≡ 𝐷 [4,0,−1,0] ,

𝐽3 ≡ 𝚫[4,0,2,0] , 𝐽4 ≡ 𝛿[2,0,4,0] ,
𝐸3 ≡ 𝛿[3,1,1,−1] , 𝐸4 ≡ 𝚫[1,1,3,−1] .

(4.32)

Although the formalism above works for BHs with arbitrary spin in dCS gravity,
we choose to use the slow-rotation expansion in this paper, so we can check the
consistency of our results with prior work using metric perturbations [9, 32] in our
next paper [58]. We implement a slow-rotation expansion of the above equations in
Sec. 4.3.3.

4.3.2 Structure of the source terms
Here, we further discuss the structure of the source terms in Eq. (4.18) presented
in [24]. In particular, we will focus on the source terms that are non-vanishing for a
non-Ricci-flat, Petrov type D BH in dCS gravity, given in Eqs. (4.20a) and (4.21).
The source term in Eq. (4.20a) only depends on the perturbed Weyl scalar Ψ(0,1)

0 in
GR and the dCS corrections to the stationary NP quantities at O(𝜁1, 𝜖0). One can
solve the Teukolsky equation in GR [19, 20] to calculate Ψ

(0,1)
0 directly. The NP

quantities at O(𝜁1, 𝜖0) can be computed from the dCS metric in Eq. (4.11), as shown
in more detail in Sec. 4.3.4.

Due to the non-minimal coupling between the scalar field and the metric, the source
term S (1,1) in Eq. (4.21) depends on both the scalar field perturbations and the metric
perturbations. To compute S (1,1) , we first need to calculate the NP Ricci scalars Φ𝑖 𝑗

using the stress tensor or the Ricci tensor, i.e.,

Φ00 = −1
2
𝑅11 = −1

2
𝑅𝜇𝜈𝑙

𝜇𝑙𝜈 , (4.33)

where 𝑙𝜇 is one of the NP tetrad basis vectors. Since the background and perturbed
scalar field in GR vanish, we have that 𝜗(0,0) = 𝜗(0,1) = 0. Therefore, the NP Ricci
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scalars Φ(1,1)
𝑖 𝑗

can be expressed as a function of the scalar field perturbation 𝜗(1,1)

and the metric perturbation ℎ(0,1) as

Φ
(1,1)
𝑖 𝑗

= O(𝜗(1,0)ℎ(0,1)) + O(𝜗(1,1)𝑔(0,0)) , (4.34)

where 𝑔(0,0) and ℎ(0,1) are shorthand for terms that depend on the metric tensor of
the GR background and of the metric perturbation due to GWs reconstructed in GR,
respectively. From Eqs. (4.21), (4.22), and (4.34), we notice that S (1,1) couples the
GWs in GR and the scalar field 𝜗, so we need to solve the equations of motions
of these non-gravitational fields to find their contributions to the stress tensor and
S (1,1) . Morevover, from Eqs. (4.23)–(4.25), we see that S (1,1) in Eq. (4.21) depends
on Ψ

(0,1)
2 , the directional derivatives at O(𝜁0, 𝜖1), and the perturbed spin coefficients

at O(𝜁0, 𝜖1), which need to be retrieved from the reconstructed metric perturbation
ℎ
(0,1)
𝜇𝜈 for GR GWs. One can either follow the metric reconstruction approach in

[34–37, 59–63], the so-called Chrzanowski-Cohen-Kegeles (CCK) procedures, which
involves defining an intermediate quantity called the Hertz potential, or the approach
in [38, 42], which solves the remaining NP equation directly. In this paper, we choose
to follow the more widely used CCK procedures and apply them to compute the
source term S (1,1) .

4.3.3 Slow-rotation expansion
When considering a slow-rotation expansion, in addition to the quantities given
in Eqs. (4.16) and (4.17), one needs to consider an additional expansion in the
dimensionless spin parameter 𝜒 = 𝑎/𝑀 . As an extension of Eqs. (4.16) and (4.17),
all the NP quantities now admit a three-parameter expansion in 𝜁 , 𝜖 , and 𝜒, where

Ψ =
∑︁
𝑙,𝑚,𝑛

𝜁 𝑙𝜒𝑚𝜖𝑛Ψ(𝑙,𝑚,𝑛) , (4.35)

as well as the pseudoscalar field,

𝜗 =
∑︁
𝑙,𝑚,𝑛

𝜁 𝑙𝜒𝑚𝜖𝑛𝜗(𝑙,𝑚,𝑛) . (4.36)

In what follows, it will sometimes be convenient to hide the 𝜒 expansion in more
compact notation, such as 𝜓 (1,1) = 𝜓 (1,0,1) + 𝜒𝜓 (1,1,1) . When only a two-parameter
expansion is denoted, the 𝜒 expansion will be assumed.

In this paper, we will focus only on linear perturbations in 𝜖 , along with the small-
coupling approximation and the slow-rotation approximation, i.e., up to linear order
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terms in 𝜁 and 𝜒, respectively. Therefore, our Eqs. (4.35) and (4.36) can be expanded
as

Ψ = Ψ(0,0,0) + 𝜒
(
Ψ(0,1,0) + 𝜁Ψ(1,1,0)

)
+ 𝜖

(
Ψ(0,0,1) + 𝜒Ψ(0,1,1)

)
+ 𝜁𝜖

(
Ψ(1,0,1) + 𝜒Ψ(1,1,1)

)
,

(4.37a)

𝜗 = 𝜁

(
𝜒𝜗(1,1,0) + 𝜖𝜗(1,0,1) + 𝜒𝜖𝜗(1,1,1)

)
. (4.37b)

Equation (4.37a) groups the corrections to Ψ(0,0,0) into three sets organized by
parenthesis. The first set of terms are stationary corrections to the Schwarzschild
metric due to the slow-rotation approximation in GR, Ψ(0,1,0) , and in dCS gravity,
Ψ(1,1,0) . The term Ψ(0,1,0) can be retrieved from the slow-rotation expansion of
the Kerr metric in Eq. (4.9), and Ψ(1,1,0) can be evaluated with the O(𝜁1, 𝜒1, 𝜖0)
correction to the metric in Eq. (4.11) found by [50]. Since the Pontryagin density
vanishes for any spherically symmetric spacetime, and the Schwarzschild metric is
the unique stationary spherically symmetric solution to the Einstein equations, there
is no correction to the metric at O(𝜁1, 𝜒0, 𝜖0) [43]. Thus, we have dropped the term
Ψ(1,0,0) in Eq. (4.37a). For the same reason, 𝜗(1,0,0) = 0.

The second set of terms are the GW perturbations to the Kerr metric in GR up to
O(𝜁0, 𝜒1, 𝜖1). These terms include perturbed Weyl scalars, NP spin coefficients,
and directional derivatives, all of which need to be evaluated in GR but include
spin perturbations. To evaluate this type of terms, we need metric reconstruction of
GW perturbations at O(𝜁0, 𝜖1), the procedures of which are discussed in detail in
Sec. 4.4.

The third set of terms are the one we want to solve for, which are corrections to
GW perturbations in dCS gravity. The term Ψ(1,0,1) corresponds to gravitational
perturbations sourced by non-rotating BHs in dCS gravity. Since 𝜗(1,0,0) = 0, Ψ(1,0,1)

is purely sourced by the leading contribution to the dynamical pseudoscalar field
𝜗(1,0,1) , so only S (1,0,1) contributes to Eq. (4.18), and no metric reconstruction is
needed. The term Ψ(1,1,1) corresponds to leading-order corrections to gravitational
perturbations of slowly rotating BHs in dCS gravity. Unlike the non-rotating case,
since both the metric and 𝜗 are corrected at O(𝜁1, 𝜒1, 𝜖0), Ψ(1,1,1)

0,4 can either be
driven by dynamical GW perturbations in GR or dynamical 𝜗.

For the first type of correction, the driving terms can come from S (1,1)
geo in the form of

terms proportional to the product ℎ(1,0)ℎ(0,1) . As discussed in Sec. 4.3.1 and [24],
this kind of terms is due to the correction to the background geometry, so they are
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independent of bGR theories. Up to O(𝜁1, 𝜒1, 𝜖1), the background spacetime is still
Petrov type D [43], so S (1,1,1)

0,non-D = S (1,1,1)
1,non-D = 0 in Eq. (4.19), and one does not need

metric construction to evaluate these terms [24]. In Sec. 4.6.1, we will compute
S (1,1)

geo in detail. Besides S (1,1)
geo , there is also contribution from S (1,1) in the form of

terms proportional to the product 𝜗(1,0)ℎ(0,1) due to the effective stress tensor. In
this case, metric reconstruction is needed, and we will compute S (1,1) in Sec. 4.6.2.

For the second type of correction, the driving terms only come from S (1,1) . Since
both 𝜗(1,0,1) and 𝜗(1,1,1) are nonzero, the metric field in these terms needs to be
evaluated on the Kerr background, expanded to O(𝜒). To find 𝜗(1,1) , one needs to
solve Eq. (4.5) at O(𝜁1, 𝜖1), i.e.,

□(0,0)𝜗(1,1) = − 𝑀2

16𝜋
1
2
[𝑅∗𝑅] (0,1) − □(0,1)𝜗(1,0) , (4.38)

where we have used Eq. (4.3) to rewrite 𝛼 in terms of 𝜁 , which then cancels. Notice
that the first term on the right-hand side has an implicit factor of 𝜁 . However,
this factor cancels out throughout Eq. (4.38) using the perturbative expansion in
Eq. (4.37b). In Sec. 4.5, we will compute the source terms of Eq. (4.38). In Sec. 4.6.2,
we will compute the source terms driven by 𝜗(1,1) but leave 𝜗(1,1) unevaluated. In
our follow-up work [58], we will solve both the modified Teukolsky equation and the
scalar field equation jointly to find the QNM shifts. Since metric reconstruction at
O(𝜁0, 𝜖1) is required for both the modified Teukolsky equation and the scalar field
equation, we present a review of the procedures in Sec. 4.4.

4.3.4 NP quantities on background
In this subsection, we will present the background tetrad for a non-Ricci-flat, Petrov
type D, slowly rotating, dCS gravity BH spacetime. To obtain the null tetrad for the
metric given by the line element in Eq. (4.8), one can follow the general procedures
prescribed in [24] or the standard procedures for finding the Kinnersley tetrad in GR
given in [42]. In [64], such a tetrad was found by following the second approach.
Nonetheless, for completeness, let us re-derive the tetrad following the prescription
in [42, 64]. Our result is consistent with the one in [64], but with additional tetrad
rotations to set Ψ(1,0)

0,1,3,4 = 0.
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To begin, we first find the null geodesics in the equatorial plane for a dCS BH to be

𝑑𝑡

𝑑𝜏
=

[
𝑟2 + 𝑎2 − 𝑎𝐺 (𝑟)

2

]
𝐸

Δ̃(𝑟)
,

𝑑𝑟

𝑑𝜏
= ±

√︄
Δ(𝑟)Δ̃(𝑟)

(
1 − 𝑎𝐺 (𝑟)

𝑟2

)
𝐸

Δ̃(𝑟)
,

𝑑𝜃

𝑑𝜏
= 0 ,

𝑑𝜙

𝑑𝜏
=

(
𝑎 + 𝐺 (𝑟)

2

)
𝐸

Δ̃(𝑟)
,

(4.39)
where 𝐸 = −𝜕ℒ/𝜕𝑡 is a constant of motion, ℒ is the Lagrangian for Kerr in
[42], Δ̃(𝑟) = Δ(𝑟) + 2𝑎𝑀𝐺 (𝑟)/𝑟 + 𝐺 (𝑟)2/4, and 𝐺 (𝑟) = 𝜁 𝜒𝐺̃ (𝑟). Following the
procedures outlined in [42], we align the tetrad basis vectors 𝑙𝜇 and 𝑛𝜇 along the
outgoing and ingoing null geodesics respectively at the equilateral plane with 𝐸 = 1
such that

𝑙𝜇 =
1

Δ̃(𝑟)
©­«𝑟2 + 𝑎2 − 𝑎𝐺 (𝑟)

2
,

√︄
Δ(𝑟)Δ̃(𝑟)

(
1 − 𝑎𝐺 (𝑟)

𝑟2

)
, 0 , 𝑎 + 𝐺 (𝑟)

2
ª®¬ , (4.40)

𝑛𝜇 = 𝑁
©­«𝑟2 + 𝑎2 − 𝑎𝐺 (𝑟)

2
, −

√︄
Δ(𝑟)Δ̃(𝑟)

(
1 − 𝑎𝐺 (𝑟)

𝑟2

)
, 0 , 𝑎 + 𝐺 (𝑟)

2
ª®¬ , (4.41)

where 𝑁 is the normalization factor introduced to impose 𝑙𝜇𝑛𝜇 = −1. Since 𝑙𝜇 and
𝑛𝜇 are along null geodesics, 𝑙𝜇𝑙𝜇 = 𝑛𝜇𝑛𝜇 = 0 is satisfied automatically. Expanding
Eqs. (4.40) and (4.41) up to O(𝜁1, 𝜒1, 𝜖0), we find

𝑙𝜇 =

(
𝑟

𝑟 − 𝑟𝑠
, 1 , 0 ,

𝜒𝑀

𝑟 (𝑟 − 𝑟𝑠)
+ 𝜁 𝜒𝐺̃ (𝑟)

2𝑟 (𝑟 − 𝑟𝑠)

)
, (4.42)

𝑛𝜇 = 𝑁̃ (𝑟)
(

𝑟

𝑟 − 𝑟𝑠
, −1 , 0 ,

𝜒𝑀

𝑟 (𝑟 − 𝑟𝑠)
+ 𝜁 𝜒𝐺̃ (𝑟)

2𝑟 (𝑟 − 𝑟𝑠)

)
, (4.43)

where 𝑟𝑠 is the Schwarzschild radius given by 𝑟𝑠 = 2𝑀, and 𝑁̃ (𝑟) = (𝑟 − 𝑟𝑠)/2𝑟.
When 𝜁 = 0, 𝑙𝜇 and 𝑛𝜇 reduce to the Kinnersley tetrad of Kerr BHs expanded to
O(𝜒1). The tetrad basis vectors 𝑙𝜇 and 𝑛𝜇 in Eqs. (4.42) and (4.43) are the same as
the principal null directions in Eq. (31) of [64].

To obtain the remaining components of the null tetrad, notice that the correction to
the Kerr metric due to dCS gravity enters at O(𝜁1, 𝜒1, 𝜖0) only in the 𝑡𝜙-component.
Therefore, it can be expected that the corrections to the Kinnersley tetrad are only
along the 𝜕𝑡 and 𝜕𝜙 directions, which is seen to be true for 𝑙𝜇 and 𝑛𝜇. Thus, at
O(𝜁1, 𝜒1, 𝜖0), the corrections to the remaining null tetrad components, 𝑚𝜇 and 𝑚̄𝜇,
take the form

𝑚𝜇(1,1,0) =
(
𝑚𝑡 (𝑟, 𝜃), 0, 0, 𝑚𝜙 (𝑟, 𝜃)

)
, (4.44)
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where 𝑚̄𝜇 can be obtained by taking the complex conjugation of Eq. (4.44). Im-
posing the remaining orthogonality conditions to O(𝜁1, 𝜒1, 𝜖0), we find 𝑚𝑡 (𝑟, 𝜃) =
𝑚𝜙 (𝑟, 𝜃) = 0. Therefore,

𝑚𝜇 =
1

√
2𝑟

(
𝑖𝜒𝑀 sin 𝜃 , 0 , 1 − 𝑖𝜒𝑀 cos 𝜃

𝑟
, 𝑖

(
1 − 𝑖𝜒𝑀 cos 𝜃

𝑟

)
csc 𝜃

)
. (4.45)

Notice that 𝑚𝜇 (and therefore 𝑚̄𝜇) holds the same form as the Kinnersley tetrad of
Kerr BH expanded to O(𝜒). Using Eqs. (4.42), (4.43), and (4.45), to O(𝜁1, 𝜒1, 𝜖0),
we obtain

Ψ0 = Ψ4 = 0 , Ψ1 = −3
√

2𝑖𝜁 𝜒𝐴1(𝑟)
32𝑟9 sin 𝜃 ,

Ψ2 = −𝑀
𝑟3 − 3𝑖𝜒

𝑟4

(
𝑀2 − 𝜁 𝐴2(𝑟)

8𝑟5

)
cos 𝜃 , Ψ3 = −3

√
2𝑖𝜁 𝜒𝐴3(𝑟)
64𝑟10 sin 𝜃 ,

(4.46)

where 𝐴𝑖 (𝑟) are listed in Appendix 4.11.

Such a calculation contradicts the claim that BHs in dCS gravity are Petrov type
D spacetimes to O(𝜒). We see that the seeming contradiction arises due to the
non-vanishing Ψ1 and Ψ3 on the background. However, we can perform tetrad
rotations to eliminate Ψ

(1,1,0)
1 and Ψ

(1,1,0)
3 , as described in detail in Appendix 4.11.

This can be achieved by a type II rotation [i.e., Eq. (4.155b)] with 𝑏 (1,1,0) =

−
√

2𝑖𝐴1(𝑟) sin 𝜃/(32𝑀𝑟6) and a type I rotation [i.e., Eq. (4.155a)] with 𝑎 (1,1,0) =√
2𝑖𝐴3(𝑟) sin 𝜃/(64𝑀𝑟7), respectively. Following this, we finally obtain

Ψ𝑖 = 0 ∀ 𝑖 ∈ {0, 1, 3, 4} ,

Ψ2 = −𝑀
𝑟3 − 3𝑖𝜒

𝑟4

(
𝑀2 − 𝜁 𝐴2(𝑟)

8𝑟5

)
cos 𝜃 . (4.47)

The explicit expression for the rotated tetrad is listed in Eq. (4.158). Different from
[64], we will call the tetrad in Eq. (4.158) the “principal tetrad.” Notice that, in [33],
a Kinnersley-like tetrad for the dCS metric expanded up to O(𝜁1, 𝜒2, 𝜖0) was also
found. To impose that Ψ(1,0)

0,4 vanish at O(𝜒2), when the background spacetime is
Petrov type I, Ref. [33] added terms at O(𝜁1/2, 𝜒1, 𝜖0) to the tetrad. In this paper,
however, we only want to impose Ψ

(1,0,0)
0,1,3,4 = Ψ

(1,1,0)
0,1,3,4 = 0, and prefer to keep the

expansion scheme in Eq. (4.16), so the tetrad in Eq. (4.158) is more suitable for our
purposes.

We have also listed all the spin coefficients up to O(𝜁1, 𝜒1, 𝜖0) in the principal
tetrad in Appendix 4.11. For any vacuum Petrov type D spacetimes in GR, the
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Goldberg-Sachs theorem requires that in the tetrad where 𝜅 = 𝜎 = 𝜆 = 𝜈 = 0, the
Weyl scalars Ψ0,1,3,4 = 0 and vice versa. However, in dCS gravity, since the effective
stress tensor is nonzero, the background spacetime is non-Ricci-flat. Thus, Ψ(1,0)

0,1,3,4
do not necessarily vanish in the tetrad where 𝜅 (1,0) = 𝜎 (1,0) = 𝜆(1,0) = 𝜈(1,0) = 0
and vice versa. For the tetrad in Eqs. (4.42), (4.43), and (4.45), we found that
𝜅 (1,0) = 𝜎 (1,0) = 𝜆(1,0) = 𝜈(1,0) = 0 while Ψ

(1,0)
1,3 ≠ 0 up to O(𝜁1, 𝜒1, 𝜖0). This tetrad

is along the principal null directions found in [64]. Nonetheless, the master equation
Eq. (4.18) is more simplified when Ψ

(1,0)
0,1,3,4 = 0, so we will use the principal tetrad in

Eq. (4.158) for the remaining calculations even if the spin coefficients mentioned
above do not vanish along the principal tetrad.

4.4 Metric reconstruction
This section reviews how to reconstruct the perturbed metric and the corresponding
NP quantities from solutions to the Teukolsky equation for Kerr BHs in GR. There
are two approaches to metric reconstruction in general: the first approach involves
systematically solving the Bianchi identities, Ricci identities, and commutation
relations [38, 42], whereas the second approach, or the CCK procedures, utilizes an
intermediate Hertz potential to reconstruct the metric [34–37, 59–63]. In this work,
the second approach is employed to perform metric reconstruction.

4.4.1 Metric perturbations
In this subsection, we present the reconstructed metric perturbation ℎ(0,1)𝜇𝜈 for GR
GWs. For convenience, in this section, we will drop the superscript (0, 1) of ℎ(0,1)𝜇𝜈

and always assume that ℎ𝜇𝜈 is at O(𝜁0, 𝜖1). The CCK procedures can be carried out
in two different gauge choices:

Ingoing radiation gauge (IRG): ℎ𝛼𝛽𝑙
𝛽 = 0 , ℎ = 0 , (4.48)

Outgoing radiation gauge (ORG): ℎ𝛼𝛽𝑛
𝛽 = 0 , ℎ = 0 , (4.49)

where ℎ is the trace of ℎ𝛼𝛽 with respect to the background metric. The reconstructed
metric ℎ𝛼𝛽 in the IRG and ORG are given in Eqs. (4.50) and (4.51), respectively [36,
37],

(ℎ𝛼𝛽)IRG =
[
𝑙𝛼𝑙𝛽

(
𝛿[1,3,0,−1]𝛿[0,4,0,3] − 𝜆𝐷 [0,4,0,3]

)
+ 𝑚̄𝛼𝑚̄𝛽

(
𝐷 [−1,3,0,−1]𝐷 [0,4,0,3]

)
−𝑙(𝛼𝑚̄𝛽)

(
𝐷 [1,3,1,−1]𝛿[0,4,0,3]

)
+ 𝛿[−1,3,−1,−1]𝐷 [0,4,0,3]

]
Ψ̄H + c.c. ,

(4.50)

(ℎ𝛼𝛽)ORG = − 𝜌−4 [
𝑛𝛼𝑛𝛽

(
𝛿[−3,−1,5,0]𝛿[−4,0,1,0]

)
+ 𝑚𝛼𝑚𝛽

(
Δ[0,5,1,−3]Δ[0,1,0,−4]

)
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−𝑛(𝛼𝑚𝛽)
(
𝛿[−3,1,5,1]Δ[0,1,0,−4]

)
+ Δ[−1,5,−1,−3]𝛿[−4,0,1,0]

]
Ψ̄H + c.c. ,

(4.51)

where the notation for the derivatives is given by Eq. (4.25), and Ψ̄H is the complex
conjugate of the Hertz potential. We have also dropped the superscript (0, 1) of the
Hertz potential for simplicity. Notice, since we use an opposite signature from [36,
37], our Eqs. (4.50) and (4.51) have an opposite sign from the results in [36, 37].

Although the metric and the NP quantities at O(𝜁0, 𝜖1) are reconstructed in certain
gauges (i.e., IRG or ORG), the Weyl scalars Ψ(1,1)

0,4 are gauge invariant for any Petrov
type D BH spacetimes, as shown in detail in [65]. Since slowly rotating dCS BHs up
to O(𝜒) are Petrov type D, the equations of Ψ(1,1)

0,4 we will derive are gauge invariant.
However, for Petrov type I BH spacetimes, Ψ(1,1)

0,4 are not invariant under gauge
transformations at O(𝜁0, 𝜖1) [65], so the master equations of Ψ(1,1)

0,4 will depend on
the gauge where we reconstruct the metric. Nonetheless, the QNM frequencies
should still be gauge invariant.

4.4.2 Hertz potential
The Hertz potential ΨH that appears in Eq. (4.50) in the IRG and Eq. (4.51) in the
ORG satisfies the Teukolsky equation for 𝜌−4Ψ

(0,1)
4 and Ψ

(0,1)
0 , respectively [34, 35,

59, 62, 66]. For convenience, let us drop the superscript (0, 1) of Ψ(1,1)
0,4 and always

assume that Ψ0,4 are at O(𝜁0, 𝜖1) in this subsection. Using the perturbed metric in
Eq. (4.50), the relation between the Hertz potential ΨH and Ψ0,4 can be found by
directly evaluating the Riemann tensor or by using the Ricci identities. In the IRG,
the perturbed Weyl scalars can then be expressed in terms of the Hertz potential
using

Ψ0 = −1
2
𝐷4Ψ̄H , (4.52a)

Ψ4 = −1
8
𝜌4 [

L†4Ψ̄H − 12𝑀𝜕𝑡ΨH
]
, (4.52b)

and in the ORG,

Ψ4 =
1
32
𝜌4Δ2𝐷†4Δ2Ψ̄H , (4.53a)

Ψ0 =
1
8

[
L4Ψ̄H + 12𝑀𝜕𝑡ΨH

]
, (4.53b)
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where 𝜌 = −1/(1 − 𝑖𝑎 cos 𝜃) and

𝐷 = 𝑙𝜇𝜕𝜇 =
𝑟2 + 𝑎2

Δ
𝜕𝑡 + 𝜕𝑟 +

𝑎

Δ
𝜕𝜙 , 𝐷† = −𝑟

2 + 𝑎2

Δ
𝜕𝑡 + 𝜕𝑟 −

𝑎

Δ
𝜕𝜙 ,

L𝑠 = −𝑖𝑎 sin 𝜃𝜕𝑡 −
[
𝜕𝜃 + 𝑖 csc 𝜃𝜕𝜙 − 𝑠 cot 𝜃

]
, L4 = L1L0L−1L−2 ,

L†
𝑠 = 𝑖𝑎 sin 𝜃𝜕𝑡 −

[
𝜕𝜃 − 𝑖 csc 𝜃𝜕𝜙 − 𝑠 cot 𝜃

]
, L†4 = L†

−1L
†
0L

†
1L

†
2 ,

(4.54)

where we only keep terms up to O(𝜒) when applying these operators. Note that the
𝐷 operator was introduced before in Eq. (4.25), but here we provide its expression
using the Kinnersely tetrad. We point out that these are the same operators that
appear in the Teukolsky-Starobinsky identity [20, 42]. Notice, Eqs. (4.52) and (4.53)
follow [36, 37], which corrected a factor of one-half in earlier papers [34, 35, 59].1

Similar to the perturbations of Ψ0 and Ψ4, the Hertz potential can be defined in the
coordinate basis (𝑡, 𝑟, 𝜃, 𝜙) as

IRG : Ψ̄H = 2𝑅̂ℓ𝑚 (𝑟) 2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (4.55a)

ORG : Ψ̄H = −2𝑅̂ℓ𝑚 (𝑟) −2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (4.55b)

where ±2Yℓ𝑚 (𝜃, 𝜙) = ±2𝑆ℓ𝑚 (𝜃)𝑒𝑖𝑚𝜙 are spin-weighted spheroidal harmonics of
spin weight ±2 solving the angular Teukolsky equation in GR. ±2𝑅̂ℓ𝑚 (𝑟) are radial
functions that can be expressed in terms of the radial Teukolsky functions 2𝑅

(0,1)
ℓ𝑚

(𝑟)
and −2𝑅

(0,1)
ℓ𝑚

(𝑟) of Ψ(0,1)
0 and 𝜌−4Ψ

(0,1)
0 , respectively, by inverting Eqs. (4.52a) and

(4.53a) using the Teukolsky-Starobinsky identity [61],

2𝑅̂ℓ𝑚 (𝑟) = − 2
ℭ
Δ2(𝐷†

𝑚𝜔)4
[
Δ2

2𝑅
(0,1)
ℓ𝑚

(𝑟)
]
, (4.56a)

−2𝑅̂ℓ𝑚 (𝑟) =
32
ℭ
(𝐷𝑚𝜔)4

−2𝑅
(0,1)
ℓ𝑚

(𝑟) . (4.56b)

Here, the operators 𝐷𝑚𝜔 and 𝐷†
𝑚𝜔 are mode decomposition of 𝐷 and 𝐷†, respectively

[61],

𝐷𝑚𝜔 = 𝜕𝑟 + 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔

Δ
, 𝐷†

𝑚𝜔 = 𝜕𝑟 − 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔

Δ
. (4.57)

ℭ is the mode-dependent Teukolsky-Starobinsky constant [20, 61, 67, 68]

ℭ = 𝜆2 (𝜆 + 2)2 − 8𝜔2𝜆
[
𝛼̃2 (5𝜆 + 6) − 12𝑎2] + 144𝜔4𝛼̃4 + 144𝜔2𝑀2 , (4.58)

where 𝛼̃2 = 𝑎2 − 𝑎𝑚/𝜔 and 𝜆 = 𝑠𝐴ℓ𝑚 + 𝑠 + |𝑠 | with 𝑠𝐴ℓ𝑚 being the Teukolsky’s
angular separation constant [19]. For a Schwarzschild BH, 𝑠𝐴ℓ𝑚 = (ℓ − 𝑠) (ℓ + 𝑠 + 1).

1Recall that we follow the notation in [42]; the signs of Eq. (4.52) are opposite to the ones in [36,
37].
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Furthermore, one can notice from Eq. (4.52) that any (ℓ, 𝑚, 𝜔) mode of Ψ(0,1)
0 in the

IRG generates a mixture of (ℓ, 𝑚, 𝜔) and (ℓ,−𝑚,−𝜔̄) modes of Ψ(0,1)
4 . Thus, it is

more convenient to use the ORG when solving the modified Teukolsky equation of
Ψ

(1,1)
4 . For a similar reason, when solving the modified Teukolsky equation of Ψ(1,1)

0 ,
we will use the IRG.

Substituting the differential operators 𝐷†
𝑚𝜔 and 𝐷𝑚𝜔 in Eq. (4.57) into the expression

for the radial part of the Hertz potential in Eq. (4.56), we have

𝑠 𝑅̂ℓ𝑚 (𝑟) = 𝑠 𝑓
ℓ𝑚
1 (𝑟, 𝜔, 𝑀)𝑠𝑅(0,1)

ℓ𝑚
(𝑟) + 𝑠 𝑓

ℓ𝑚
2 (𝑟, 𝜔, 𝑀)𝑠𝑅′(0,1)

ℓ𝑚
(𝑟) , (4.59a)

𝑠 𝑅̂
′
ℓ𝑚 (𝑟) = 𝑠 𝑓

ℓ𝑚
3 (𝑟, 𝜔, 𝑀)𝑠𝑅(0,1)

ℓ𝑚
(𝑟) + 𝑠 𝑓

ℓ𝑚
4 (𝑟, 𝜔, 𝑀)𝑠𝑅′(0,1)

ℓ𝑚
(𝑟) , (4.59b)

where we have made use of the radial Teukolsky equation to reduce all second-
and higher-order derivatives of 𝑠𝑅(0,1)

ℓ𝑚
(𝑟). In Eq. (4.59), the prime denotes the first

derivative with respect to the radial coordinate 𝑟. The functions 𝑓𝑖 are spin weight
𝑠 and mode dependent. These functions are lengthy and non-illuminating, so they
have been presented in a separate Mathematica notebook [69].

4.4.3 Spin-weighted spheroidal harmonics
Spin-weighted spheroidal harmonics that appear in Eq. (4.55) are solutions to the
angular Teukolsky equation in GR [19, 20]. In general, these are eigenfunctions of
an equation of the form [70]

1
sin 𝜃

𝑑

𝑑𝜃

(
sin 𝜃

𝑑𝑧

𝑑𝜃

)
−

(
𝑚2 + 𝑠2 + 2𝑚𝑠 cos 𝜃

sin2 𝜃
− 𝛾2 cos2 𝜃 + 2𝑠𝛾 cos 𝜃 − 𝑠𝐸

𝛾

ℓ𝑚

)
𝑧 = 0 ,

(4.60)

where 𝑠 represents the spin weight, 𝑠𝐸
𝛾

ℓ𝑚
is the eigenvalue of the equation, which has

been numerically calculated in the literature [20]. Comparing Eq. (4.60) with the
angular Teukolsky equation in GR [19], we see that 𝛾 = 𝜒𝑀𝜔. In the slow-rotation
expansion, spin-weighted spheroidal harmonics 𝑠Y𝛾

ℓ𝑚
can be expanded as [20, 70]

𝑠Y𝛾

ℓ𝑚
= 𝑠𝑌ℓ𝑚 + 𝛾

(
𝑠𝑏
𝑚
ℓ,ℓ+1 𝑠𝑌ℓ+1𝑚 + 𝑠𝑏

𝑚
ℓ,ℓ−1 𝑠𝑌ℓ−1𝑚

)
+ O(𝛾2) , (4.61)

where 𝑠𝑌ℓ𝑚 are spin-weighted spherical harmonics with spin weight 𝑠. The factors

𝑠𝑏
𝑚
ℓ,ℓ±1 in Eq. (4.61) hold the form [70]

𝑠𝑏
𝑚
ℓ,ℓ+1 = −

𝑠

√︃[
(ℓ + 1)2 − 𝑚2

] [
(ℓ + 1)2 − 𝑠2

]
(ℓ + 1)2

√︁
(2ℓ + 1) (2ℓ + 3)

, (4.62a)
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𝑠𝑏
𝑚
ℓ,ℓ−1 =

𝑠

√︃(
ℓ2 − 𝑚2) (

ℓ2 − 𝑠2)
ℓ2

√︁
(2ℓ − 1) (2ℓ + 1)

. (4.62b)

To evaluate spin-weighted spherical harmonics, one can use

𝑠𝑌ℓ𝑚 (𝜃, 𝜙) = (−1)ℓ+𝑚−𝑠
√︄

(ℓ + 𝑚)!(ℓ − 𝑚)!(2ℓ + 1)
4𝜋(ℓ + 𝑠)!(ℓ − 𝑠)! sin2ℓ

(
𝜃

2

)
𝑒𝑖𝑚𝜙

×
ℓ−𝑠∑︁
𝑞=0

(−1)𝑞
(
ℓ − 𝑠
𝑞

) (
ℓ + 𝑠

𝑞 + 𝑠 − 𝑚

)
cot2𝑞+𝑠−𝑚

(
𝜃

2

)
. (4.63)

In the special case that 𝑠 = 0, the spin-weighted spherical harmonics become the
standard spherical harmonics, i.e.,

0𝑌ℓ𝑚 = 𝑌ℓ𝑚 . (4.64)

Spin-weighted spherical harmonics and spin-weighted spheroidal harmonics also
obey the following orthogonality relations,∫

𝑆2
𝑑𝑆 𝑠Y𝛾

ℓ𝑚 𝑠Ȳ𝛾

ℓ′𝑚′ = 𝛿ℓℓ′𝛿𝑚𝑚′ , (4.65)∫
𝑆2
𝑑𝑆 𝑠𝑌ℓ𝑚 𝑠𝑌ℓ′𝑚′ = 𝛿ℓℓ′𝛿𝑚𝑚′ , (4.66)

where 𝑑𝑆 is the solid angle element, and the integration is over the entire 2-sphere.
At certain places, we might drop the superscript 𝛾 of 𝑠Y𝛾

ℓ𝑚
denoting its eigenvalue

for simplicity.

A spin-weighted spherical harmonic 𝑠𝑌ℓ𝑚 with spin weight 𝑠 can also be raised to

𝑠+1𝑌ℓ𝑚 of spin weight 𝑠 + 1 via the raising operator ð or lowered to 𝑠−1𝑌ℓ𝑚 of spin
weight 𝑠 via the lowering operator ð̄. The operators ð and ð̄ are defined to be [71]

ð 𝑠F = −
(
𝜕𝜃 + 𝑖 csc 𝜃𝜕𝜙 − 𝑠 cot 𝜃

)
𝑠F , (4.67a)

ð̄ 𝑠F = −
(
𝜕𝜃 − 𝑖 csc 𝜃𝜕𝜙 + 𝑠 cot 𝜃

)
𝑠F , (4.67b)

where 𝑠F is some angular function in (𝜃, 𝜙) of spin weight 𝑠, such that

ð 𝑠𝑌ℓ𝑚 = [(𝑙 − 𝑠) (𝑙 + 𝑠 + 1)]1/2
𝑠+1𝑌ℓ𝑚 , (4.68a)

ð̄ 𝑠𝑌ℓ𝑚 = −[(𝑙 + 𝑠) (𝑙 − 𝑠 + 1)]1/2
𝑠−1𝑌ℓ𝑚 . (4.68b)

One can further rewrite the directional derivatives 𝛿(0,0,0) and 𝛿(0,0,0) on the
Schwarzschild background in terms of ð and ð̄, respectively, i.e.,

𝛿(0,0,0) 𝑠F = − 1
√

2𝑟

(
ð̄ − 𝑠 cot 𝜃

)
𝑠F , (4.69a)
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𝛿(0,0,0) 𝑠F = − 1
√

2𝑟

(
ð̄ + 𝑠 cot 𝜃

)
𝑠F . (4.69b)

By expanding 𝛿(0,0) and 𝛿(0,0) in terms of 𝛿(0,0,0) and 𝛿(0,0,0) in the slow-rotation
limit, one can also replace 𝛿(0,0) and 𝛿(0,0) with ð and ð̄. In Secs. 4.5–4.7, we will
use Eq. (4.69) to simplify the terms with 𝛿(0,0) and 𝛿(0,0) acting on spin-weighted
spherical harmonics.

4.4.4 Perturbed NP quantities
As we are working within the NP basis, in addition to the perturbed metric given by
Eq. (4.50), we also require the reconstruction of the perturbed NP quantities, such as
the perturbed tetrad, Weyl scalars, and spin coefficients. We adopt the methodology
outlined in [38, 66] to perform this reconstruction. The first step involves expressing
the perturbed tetrad in terms of the background tetrad. This is accomplished by
expanding the perturbed tetrad in terms of the background tetrad, and then utilizing
the transformation properties of the tetrad to obtain the perturbed tetrad components
in terms of the background tetrad components such that

𝑒
𝜇(0,1)
𝑎 = 𝐴𝑎

𝑏(0,1)𝑒𝜇(0,0)
𝑏

, (4.70)

where 𝑒𝜇𝑎 represents a null tetrad such that

𝑒
𝜇
𝑎 = {𝑙𝜇 , 𝑛𝜇 , 𝑚𝜇 , 𝑚̄𝜇} , (4.71)

and 𝐴𝑎𝑏 are coefficients that map the background tetrad to the perturbed tetrad.

As shown in [38, 66], one can always perform tetrad rotations to set six real parameters
of the 𝐴𝑎𝑏(0,1) coefficients to zero. Then, expanding ℎ𝜇𝜈 in terms of 𝑒𝑎(0,1)𝜇 and
𝑒
𝑎(0,0)
𝜇 and using the linearized completeness relation, we find

ℎ
(0,1)
𝜇𝜈 = −2

[
𝑙
(0,1)
(𝜇 𝑛

(0,0)
𝜈) + 𝑙 (0,0)(𝜇 𝑛

(0,1)
𝜈) − 𝑚 (0,1)

(𝜇 𝑚̄
(0,0)
𝜈) − 𝑚 (0,0)

(𝜇 𝑚̄
(0,1)
𝜈)

]
. (4.72)

Comparing Eq. (4.72) to Eq. (4.70), we find [38, 66],

𝑙𝜇(0,1) =
1
2
ℎ
(0,1)
𝑙𝑙

𝑛𝜇 ,

𝑛𝜇(0,1) =
1
2
ℎ
(0,1)
𝑛𝑛 𝑙𝜇 + ℎ(0,1)

𝑙𝑛
𝑛𝜇 ,

𝑚𝜇(0,1) = ℎ(0,1)𝑛𝑚 𝑙𝜇 + ℎ(0,1)
𝑙𝑚

𝑛𝜇 − 1
2
ℎ
(0,1)
𝑚𝑚̄

𝑚𝜇 − 1
2
ℎ
(0,1)
𝑚𝑚 𝑚̄𝜇 ,

(4.73)

where we have dropped the superscripts of 𝑒𝜇(0,0)𝑎 for simplicity. Since we have
adopted the sign convention in [42], our signature is opposite to that used in [38, 66].
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Therefore, the perturbed tetrad in Eq. (4.73) has an opposite sign from the results
of [38, 66], as seen in Eq. (4.72). Equation (4.73) works for both the IRG and ORG.
In the IRG or ORG, we can further set ℎ(0,1)

𝑙𝑎
= ℎ

(0,1)
𝑚𝑚̄

= 0 or ℎ(0,1)𝑛𝑎 = ℎ
(0,1)
𝑚𝑚̄

= 0 in
Eq. (4.167), respectively, where 𝑎 is any index in the NP basis.

For the spin coefficients, one can linearize the commutation relation following [42],[
𝑒
𝜇
𝑎 , 𝑒

𝜇

𝑏

]
= (𝛾𝑐𝑏𝑎 − 𝛾𝑐𝑎𝑏) 𝑒𝜇𝑐 = 𝐶𝑎𝑏

𝑐𝑒
𝜇
𝑐 , (4.74)

where 𝛾𝑎𝑏𝑐 is the Ricci rotation coefficients. Using the relation between spin
coefficients and Ricci rotation coefficients in Eq. (4.164), one can write 𝐶𝑎𝑏𝑐 in
terms of spin coefficients, as listed in Eq. (4.165) [21, 42]. From Eq. (4.165), one
can also solve for spin coefficients in terms of 𝐶𝑎𝑏𝑐, and the results are in Eq. (4.166).
Expanding Eq. (4.74) using Eq. (4.70), one finds

𝐶𝑎𝑏
𝑐(0,1) = 𝜕𝑎𝐴𝑏

𝑐(0,1) − 𝜕𝑏𝐴𝑎𝑐(0,1) −
(
𝐴𝑎

𝑑 (0,1)𝐶𝑏𝑑
𝑐 − 𝐴𝑏𝑑 (0,1)𝐶𝑎𝑑𝑐 + 𝐴𝑑𝑐(0,1)𝐶𝑎𝑏𝑑

)
,

(4.75)
where the superscripts of 𝐶𝑎𝑏𝑐(0,0) are dropped for convenience. The coefficients
𝐴𝑎

𝑏(0,1) can be retrieved from Eq. (4.73). The GR structure constants 𝐶𝑎𝑏𝑐(0,0) are
directly given by Eq. (4.165) and the spin coefficients in GR. With all the quantities
in Eq. (4.75), one can then use Eq. (4.75) and (4.166) to evaluate the spin coefficients
at O(𝜁0, 𝜖1). We have listed our result in Eq. (4.167), which works for both the
ORG and IRG. Our result is consistent with [38] up to the overall minus sign due to
different signatures, which corrects some errors in [66].

To reconstruct Weyl scalars, one can either directly linearize the Riemann tensor
and project it onto the NP basis to find Weyl scalars or use the Ricci identities in
Eq. (4.168). For both approaches, we use the perturbed tetrad in Eq. (4.73), and
we check that the results are consistent. We also compare our results in the IRG
to the equations in [36], which corrected a factor of 1/2 missed in [59] and are
listed in Eq. (4.169). After expressing everything in terms of the Hertz potential, our
results of Ψ(0,1)

0,1,2,4 in the IRG agree perfectly with Eq. (4.169) but not for Ψ(0,1)
3 . Since

Ψ
(0,1)
3 is not invariant either under tetrad rotations or coordinate transformations at

O(𝜁0, 𝜖1), this difference indicates that we might have a O(𝜁0, 𝜖1) difference in the
choices of coordinate or tetrad.

For coordinate- and tetrad-invariant quantities Ψ
(0,1)
0,4 , our results are consistent

with [36, 59]. In addition, since Ψ
(0,1)
2 is invariant under tetrad rotations but not

coordinate transformations at O(𝜁0, 𝜖1) [i.e., Eqs. (4.172) and (4.174)], we are in
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the same coordinate as [36, 59], consistent with that we all use the IRG. Thus, the
difference in Ψ

(0,1)
3 is only due to tetrad choices at O(𝜁0, 𝜖1), where we explicitly

follow the convention in [38, 66], but Refs. [36, 59] were not explicit about their
tetrad choices at O(𝜁0, 𝜖1). More specifically, we find that the tetrad in Eq. (4.73)
after setting ℎ(0,1)

𝑙𝑎
= ℎ

(0,1)
𝑚𝑚̄

= 0 differs from the tetrad in [36, 59] by a type I rotation.
In Schwarzschild, this difference in Ψ

(0,1)
3 can be compactly written as

Ψ
(0,1)
3 = Ψ

(0,1)
3,CCK + 3

2
Ψ2ℎ

(0,1)
𝑛𝑚̄

, (4.76)

where Ψ
(0,1)
3,CCK is the result in [36, 59]. The results of other Weyl scalars at O(𝜁0, 𝜖1)

in Schwarzschild are listed in Eq. (4.170). For Kerr, we do not have such a simple
correction to Ψ

(0,1)
3 , so we will just use the Ricci identity in Eq. (4.168d). Similarly,

in the ORG, no previous literature provided results of all the Weyl scalars in terms of
Ψ

(0,1)
H directly, so we also use the Ricci identity to evaluate them.

When deriving the modified Teukolsky equations, we made the gauge choice that
Ψ

(0,1)
1,3 = 0, but this is not the case for the tetrad in Eq. (4.73), as one can see in

Eqs. (4.168)–(4.170). Thus, to be consistent with the gauge we chose for the modified
Teukolsky equations, we need to perform additional type I and type II rotations to
remove Ψ

(0,1)
1,3 . From Eq. (4.172), we find the rotation parameters to be

𝑎 (0,1) = −
Ψ̄

(0,1)
3

3Ψ2
, 𝑏 (0,1) = −

Ψ
(0,1)
1

3Ψ2
. (4.77)

Since Ψ
(0,1)
0,2,4 = 0 are invariant under tetrad rotations at O(𝜁0, 𝜖1), one can continue

using Eqs. (4.168)–(4.170) by just setting Ψ
(0,1)
1,3 = 0. For spin coefficients, their

values after the rotation are listed in Eq. (4.173) following [42]. With these
reconstructed quantities, we are now ready to evaluate the source terms in the
equation of 𝜗(1,1) in Eq. (4.38).

4.5 The evolution equation for 𝜗(1,1) in the IRG
In this section, we project the equation governing 𝜗(1,1) [Eq. (4.38)] onto the NP
basis using the IRG. For convenience, we define the right-hand side of Eq. (4.38) as

S (1,1)
𝜗

≡ − 𝑀2

16𝜋
1
2
[𝑅∗𝑅] (0,1) − □(0,1)𝜗(1,0) (4.78)

so that the evolution equation for 𝜗(1,1) becomes

□(0,0)𝜗(1,1) = S (1,1)
𝜗

. (4.79)
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This equation is first expressed in terms of the NP quantities, following which we
evaluate its left-hand side using the background NP quantities in Sec. 4.3.4 and
Appendix 4.11 and its right-hand side using the reconstructed NP quantities at
O(𝜁0, 𝜖1) in Sec. 4.4 and Appendix 4.12. The same methodology demonstrated in
this section is applied to computing the modified Teukolsky equation in Sec. 4.6.
Figure 4.1 presents a schematic illustration of the steps involved in calculating a
completely separated radial evolution equation for the scalar field perturbation in the
IRG.

4.5.1 Projection onto the NP basis
In this subsection, we project Eq. (4.38) onto the NP basis. This projection involves
the projection of two fundamental quantities: the D’Alembertian operator □ and the
Pontryagin density 𝑅∗𝑅 onto the NP basis. In particular, our goal is to express these
quantities in terms of NP quantities, particularly the below-mentioned quantities in
the NP basis, namely

∗𝑅𝑎𝑏𝑐𝑑 =
1
2
𝜖𝑐𝑑

𝑒 𝑓 𝑅𝑎𝑏𝑒 𝑓

∇𝑏∇𝑎𝜗 = ∇𝑏
(
𝜗,𝑎

)
= 𝜗,𝑎𝑏 − 𝛾𝑑𝑎𝑏𝜗,𝑑 .

(4.80)

Here, 𝜂𝑎𝑏 is the metric in the NP basis. The notation 𝑓,𝑎 denotes the directional
derivative of 𝑓 defined by the tetrad basis 𝑒𝜇𝑎 . The quantities 𝛾𝑎𝑏𝑐 are Ricci
rotation coefficients, which can be expressed in terms of spin coefficients using
Eq. (4.175) [21]. The tensor 𝑅𝑎𝑏𝑐𝑑 can be expressed in terms of Weyl scalars using
Eq. (4.177) [21]. Therefore, the Pontryagin density and the □ operator can be
expressed in the NP basis as

𝑅∗𝑅 = −8𝑖(3Ψ2
2 − 4Ψ1Ψ3 + Ψ0Ψ4 − 𝑐.𝑐.) , (4.81a)

□ = −
[
{𝐷,𝚫} − {𝛿, 𝛿} + (𝜇 + 𝜇̄ − 𝛾 − 𝛾̄)𝐷 + (𝜖 + 𝜖 − 𝜌 − 𝜌̄)𝚫

+(𝛼 − 𝛽 − 𝜋 + 𝜏)𝛿 + (𝛼̄ − 𝛽 − 𝜋̄ + 𝜏)𝛿
]
.

(4.81b)

The factor of 𝑖 in Eq. (4.81a) arises from the normalization of the Levi-Civita tensor
𝜖𝑎𝑏𝑐𝑑 in the NP basis. In the literature, such as in [72], the covariant Levi-Civita tensor
is typically defined as 𝜖𝜇𝜈···𝛾 =

√︁
|𝑔 |𝜖𝜇𝜈···𝛾, where 𝜖𝜇𝜈···𝛾 denotes the Levi-Civita

symbol. However, this definition encounters issues when attempting to convert a
Levi-Civita tensor from Boyer-Lindquist coordinates to the NP basis, due to the
determinant of the Jacobian relating these two bases often being complex. Thus, to
convert the tensor density 𝜖𝜇𝜈···𝛾 to a tensor, we instead need to define

𝜖𝜇𝜈···𝛾 =
√−𝑔 𝜖𝜇𝜈···𝛾 , (4.82)
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Scalar field equation for 𝜗(1,1) in the IRG

Left-hand side of Eq. (4.38) Right-hand side of Eq. (4.38)

In coordinate basis

Equation (4.85)

Separated radial
equation

Equation (4.88)

Source term S (1,1)
𝜗

rewritten as Eq. (4.93)

In coordinate basis
using the Hertz

potential Eq. (4.94)

Expression for (𝑅∗𝑅) (0,1)
and □(0,0,1)𝜗(1,1,0) in
{𝑡, 𝑟, 𝜃, 𝜙} coordinates

in Eqs. (4.95) and (4.98)

Using the recipe
in Sec. 4.9.1

Source terms as
functions of the radial
coordinate in the IRG,

𝑉𝑅
ℓ𝑚
(𝑟) and 𝑉□

ℓ𝑚
(𝑟), are given

by Eqs. (4.136) and (4.137)

The radial evolution equation of the scalar field
perturbation 𝜗(1,1)for slowly rotating BHs in dCS gravity

in the IRG is given by Eq. (4.142)

Figure 4.1: A schematic flowchart prescribing the steps involved in obtaining a
separated radial evolution equation for the scalar field perturbation 𝜗(1,1) for slowly
rotating BHs in dCS gravity. This flowchart summarizes the details of the calculations
described in Sec. 4.5 and Sec. 4.9.2. Initial and final outcomes are represented
by rectangular boxes, while intermediate results are symbolized by encapsulating
bubbles. The directional arrows are meant to seamlessly guide the reader through
the logical flow of the calculations.
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which has the same normalization factor as the Einstein-Hilbert action. The absolute
value in the usual definition is to impose that the Levi-Civita tensor is a real tensor in
the Lorentzian signature, but the minus sign of √−𝑔 will do the same trick. Since
𝜂 = 1, we find the normalization factor to be 𝑖 rather than 1 from Eq. (4.82). This is
also consistent with that

𝜖𝑙𝑛𝑚𝑚̄ =
1
2
(𝜖𝑙𝑛𝑚𝑚̄ − 𝜖𝑙𝑛𝑚𝑚̄) , (4.83)

which shows that 𝜖𝑙𝑛𝑚𝑚̄ is an imaginary number. We have now expressed all the
terms in Eq. (4.38) in the NP basis.

4.5.2 Left-hand side of Eq. (4.38)
In this subsection, we compute the operator □(0,0) acting on 𝜗(1,1) to obtain the
homogeneous component of Eq. (4.38). The operator □(0,0) can be evaluated directly
using the slowly rotating Kerr metric presented in Eq. (4.9). Alternatively, one can
use Eq. (4.81b) and the NP quantities of Kerr, expanded up to O(𝜒), as given by
Eqs. (4.158)–(4.160), and then setting 𝜁 to zero. We therefore find

□(0,0) = − 1
𝑟2𝐻

(0,0)
𝜗

, (4.84)

where 𝐻 (0,0)
𝜗

is the Teukolsky operator for particles with spin weight 𝑠 = 0 in [19],

𝐻
(0,0)
𝜗

= − 𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 − 2(𝑟 − 𝑀)𝜕𝑟 −

𝜔2𝑟3 − 4𝑚𝜒𝜔𝑀2

𝑟 − 𝑟𝑠
− 𝜕2

𝜃 − cot 𝜃𝜕𝜃 + 𝑚2 csc2 𝜃 ,

(4.85)

where we have only kept the terms up to O(𝜒) and separated 𝜗(1,1) as

𝜗(1,1) = Θℓ𝑚 (𝑟)0Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (4.86)

or in the slow-rotation expansion

𝜗(1,1) = Θℓ𝑚 (𝑟)
[
0𝑌ℓ𝑚 (𝜃, 𝜙) + 𝜒𝑀𝜔

(
0𝑏
𝑚
ℓ,ℓ+1 0𝑌ℓ+1𝑚

+ 0𝑏
𝑚
ℓ,ℓ−1 0𝑌ℓ−1𝑚

)
+ O(𝜒2)

]
𝑒−𝑖𝜔𝑡 .

(4.87)

Thus, in the absence of sources, Θℓ𝑚 (𝑟) satisfies[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 +2(𝑟 − 𝑀)𝜕𝑟 +
𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟) = 0 , (4.88)

where 0𝐴ℓ𝑚 is the Teukolsky’s separation constant for 𝑠 = 0 [19]. We therefore see
that the left-hand side of Eq. (4.38) is separable in the radial and angular coordinates.
Further, in Sec. 4.9, we show that the complete expression in Eq. (4.38) can be
separated into radial and angular parts using spin-weighted spheroidal harmonics of
spin weight zero.
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4.5.3 S (1,1)
𝜗

in terms of ℎ(1,1) and 𝜗(1,1)

To systematically calculate S (1,1)
𝜗

in Eq. (4.78), we can partition it into three parts
based on the terms that necessitate metric reconstruction, namely those at O(𝜁0, 𝜖1):

1. Weyl scalars at O(𝜁0, 𝜖1): These terms are solely determined by the Pontryagin
density (𝑅∗𝑅) (0,1) . For slowly rotating BHs in dCS gravity, these Weyl scalars
in Eq. (4.78) receive contributions from both ℎ(0,0,1)𝜇𝜈 and ℎ(0,1,1)𝜇𝜈 . We expand
Eq. (4.81a) up to O(𝜁0, 𝜖1). Since in Petrov type D spacetimes Ψ(0,0)

0,1,3,4 = 0,
the only terms that survive are proportional to Ψ2, such that

(𝑅∗𝑅) (0,1) = −48𝑖
(
Ψ

(0,0)
2 Ψ

(0,1)
2 − Ψ̄

(0,0)
2 Ψ̄

(0,1)
2

)
, (4.89)

where Ψ
(0,0)
2 is given by Eq. (4.47) by setting 𝜁 = 0, and Ψ

(0,1)
2 is given by

Eq. (4.169c) using the metric reconstruction procedures.

2. Spin coefficients at O(𝜁0, 𝜖1): This dependence arises from −□(0,1)𝜗(1,0) .
Since we are only interested in the terms up to O(𝜁1, 𝜒1, 𝜖1) in this work, and
𝜗(1,0,0) = 0 as explained in Sec. 4.3.3, the metric fields in −□(0,1)𝜗(1,0) only
have the contribution from ℎ

(0,0,1)
𝜇𝜈 . Thus, we only need metric reconstruction

at O(𝜁0, 𝜒0, 𝜖1) for these terms. The first two terms in Eq. (4.81b) will not
contribute directly, although one can find additional spin coefficients by using
the commutation relations to combine the anti-commutators. For the rest of
the terms, we find at O(𝜁0, 𝜖1),[(

𝜇(0,1) + 𝜇̄(0,1) − 𝛾 (0,1) − 𝛾̄ (0,1)
)
𝐷

+
(
𝜖 (0,1) + 𝜖 (0,1) − 𝜌(0,1) − 𝜌̄(0,1)

)
𝚫

+
(
𝛼(0,1) − 𝛽(0,1) − 𝜋(0,1) + 𝜏(0,1)

)
𝛿

+
(
𝛼̄(0,1) − 𝛽(0,1) − 𝜋̄(0,1) + 𝜏(0,1)

)
𝛿

]
𝜗(1,0) ,

(4.90)

where the spin coefficients at O(𝜁0, 𝜖1) are given by Eqs. (4.167) and (4.173)
using metric reconstruction procedures.

3. Tetrad/directional derivatives are at O(𝜁0, 𝜖1). Similar to the second situation,
these types of terms also arise from −□(0,1)𝜗(1,0) and vanish at O(𝜁1, 𝜒0, 𝜖1).
Thus, we must only reconstruct the NP quantities at O(𝜁0, 𝜒0, 𝜖1). Using the
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Schwarzschild properties of all the spin coefficients in Eq. (4.184), we find[
𝐷 (0,1)𝚫 + 𝐷𝚫(0,1) + 𝚫(0,1)𝐷 + 𝚫𝐷 (0,1)

−𝛿(0,1)𝛿 − 𝛿𝛿(0,1) − 𝛿(0,1)𝛿 − 𝛿𝛿(0,1)

−2(𝛾 − 𝜇)𝐷 (0,1) − 2𝜌𝚫(0,1) + 2𝛼
(
𝛿(0,1) + 𝛿(0,1)

)]
𝜗(1,0) ,

(4.91)

where the tetrad at O(𝜁0, 𝜖1) is given by Eqs. (4.73) and (4.171). Notice, the
terms at O(𝜁0, 𝜖1) in Eqs. (4.90) and (4.91) are all at O(𝜁0, 𝜒0, 𝜖1) as 𝜗(1,0) is
non-vanishing only at O(𝜁1, 𝜒1, 𝜖0), but we choose to hide the expansion in 𝜒
for simplicity.

A similar classification will be used when we compute the source terms in the
modified Teukolsky equation for Ψ(1,1)

0 and Ψ
(1,1)
4 .

One can further combine the second and the third type of source terms and express
them as functionals of the metric components in the NP basis (e.g., ℎ(0,1)𝑛𝑛 , ℎ(0,1)𝑛𝑚 ,
ℎ
(0,1)
𝑚𝑚 in the IRG) and the rotation coefficients (e.g., 𝑎 (0,1) and 𝑏 (0,1)) such that the

separation of variables can be more easily carried out in Sec. 4.9. In this case, we
find

□(0,0,1)𝜗(1,0,0) = □(0,1,1)𝜗(1,0,0) = 0 ,

□(0,0,1)𝜗(1,1,0) = −
{
ℎ
(0,0,1)
𝑛𝑛 𝐷2 − ℎ(0,0,1)𝑛𝑚 {𝐷, 𝛿} + ℎ(0,0,1)𝑚𝑚 𝛿2

+
[
(𝐷 − 2𝜌)ℎ(0,0,1)𝑛𝑛 − (𝛿 − 2𝛼)ℎ(0,0,1)𝑛𝑚

]
𝐷

−
[
(𝐷 − 2𝜌)ℎ(0,0,1)𝑛𝑚 − (𝛿 − 2𝛼)ℎ(0,0,1)𝑚𝑚

]
𝛿 + 𝑐.𝑐.

}
𝜗(1,1,0) .

(4.92)

Finally, we have

S (1,0,1)
𝜗

= − 𝑀2

16𝜋
1
2
(𝑅∗𝑅) (0,0,1) ,

S (1,1,1)
𝜗

= − 𝑀2

16𝜋
1
2
(𝑅∗𝑅) (0,1,1) − □(0,0,1)𝜗(1,1,0) ,

(4.93)

where (𝑅∗𝑅) (0,0,1) and (𝑅∗𝑅) (0,1,1) are given by Eq. (4.89), and □(0,0,1)𝜗(1,1,0) is given
by Eq. (4.92).

4.5.4 S (1,1)
𝜗

in the coordinate basis
We now rewriteS (1,1)

𝜗
[Eqs. (4.78) and (4.93)] in the coordinate basis (𝑡, 𝑟, 𝜃, 𝜙) using

the perturbed NP quantities found in Sec. 4.4 and Appendix 4.11. From Eqs. (4.78)
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and (4.93), we notice that S (1,1)
𝜗

contains two pieces: the term proportional to
(𝑅∗𝑅) (0,1) and the term proportional to □(0,1)𝜗(1,0) .

For the first piece, according to Eq. (4.89), we essentially need to evaluate Ψ
(0,1)
2

up to O(𝜒). The value of Ψ
(0,1)
2 in terms of the Hertz potential Ψ(0,1)

H is given
by Eq. (4.169c), and Ψ

(0,1)
H has the expansion in Eq. (4.55). Since we use the

slow-rotation approximation in this work, we can further decompose spin-weighted
spheroidal harmonics in terms of spin-weighted spherical harmonics using Eqs. (4.61)
and (4.62) such that Eq. (4.55) becomes

Ψ̄H = 2𝑅̂ℓ𝑚 (𝑟)
[
2𝑌ℓ𝑚 (𝜃, 𝜙) + 𝜒𝑀𝜔

(
2𝑏
𝑚
ℓ,ℓ+1 2𝑌ℓ+1𝑚

+ 2𝑏
𝑚
ℓ,ℓ−1 2𝑌ℓ−1𝑚

)
+ O(𝜒2)

]
𝑒−𝑖𝜔𝑡 .

(4.94)

Now, one can insert into Eqs. (4.169c) and (4.89) the decomposition in Eq. (4.94)
and the background NP quantities at O(𝜁0, 𝜖0) in Eqs. (4.158)–(4.160) after setting
𝜁 = 0. After using Eqs. (4.69a) and (4.69b) to simplify the terms with 𝛿(0,0) and
𝛿(0,0) acting on 𝑠𝑌ℓ𝑚 (𝜃, 𝜙), we find

(𝑅∗𝑅) (0,1) (4.95)

= 𝑒−𝑖𝜔𝑡
[(
𝑔ℓ𝑚1 (𝑟, 𝜔, 𝑀)2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
𝑔ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
𝑔ℓ𝑚5 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚6 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒 2𝑏
𝑚
ℓ,ℓ+1

(
𝑔ℓ𝑚7 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚8 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ+1𝑚 (𝜃, 𝜙)

+𝜒 2𝑏
𝑚
ℓ,ℓ−1

(
𝑔ℓ𝑚9 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚10 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
+ c.c. ,

(4.96)

where 𝑓 ′(𝑟) denotes the derivative of 𝑓 with respect to the 𝑟 coordinate for any
function 𝑓 (𝑟). Here, 2𝑅̂ℓ𝑚 (𝑟) is the radial function of the Hertz potential for slowly
rotating Kerr BHs in GR, which can be computed from the radial function of Ψ(0,1)

0
using Eq. (4.56a). One can, in principle, expand 2𝑅̂ℓ𝑚 (𝑟) further in 𝜒 and drop
additional terms above O(𝜒) in Eq. (4.95). For simplicity, we choose not to do this
additional expansion here but implement it when computing QNMs in [58], where
we need to explicitly evaluate the radial functions of Ψ(0,1)

0,4 . We have also used the
radial Teukolsky equation to reduce any 𝑛-th radial derivative of 2𝑅̂ℓ𝑚 (𝑟) with 𝑛 ≥ 1
to 2𝑅̂ℓ𝑚 and 2𝑅̂

′
ℓ𝑚
(𝑟). The explicit forms of 𝑔ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀) are long and therefore

presented through a separate Mathematica notebook as Supplementary Material [69].
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For the second piece, according to Eq. (4.93), there is only a contribution from
□(0,0,1)𝜗(1,1,0) since the scalar field at O(𝜁1, 𝜒0, 𝜖0) vanishes in dCS gravity. Thus,
we only need the reconstructed metric at (𝜁0, 𝜒0, 𝜖1). Using Eqs. (4.94), (4.160),
and (4.50), we find

ℎ
(0,0,1)
𝑛𝑛 =

1
2𝑟2

(√︄
(ℓ + 2)!
(ℓ − 1)! 2𝑅̂ℓ𝑚 (𝑟) 0𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 + c.c.

)
, (4.97a)

ℎ
(0,0,1)
𝑛𝑚 =

√︂
ℓ2 + ℓ − 2

2
1

𝑟2(𝑟 − 𝑟𝑠)
{
[4𝑀 − 𝑟 (2 + 𝑖𝜔𝑟)] 2𝑅̂ℓ𝑚 (𝑟)

+𝑟 (𝑟 − 𝑟𝑠) 2𝑅̂
′
ℓ𝑚 (𝑟)

}
1𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (4.97b)

ℎ
(0,0,1)
𝑚𝑚 =

1
𝑟 (𝑟 − 𝑟𝑠)2

{[
(𝑟 − 𝑟𝑠) (ℓ2 + ℓ − 2 + 7𝑖𝜔𝑟) − 𝜔𝑟 (𝑖𝑟 + 2𝜔𝑟2)

]
2𝑅̂ℓ𝑚 (𝑟)

+2(𝑟 − 𝑟𝑠)
(
𝑀 − 𝑖𝜔𝑟2

)
2𝑅̂

′
ℓ𝑚 (𝑟)

}
2𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 . (4.97c)

Now, we can evaluate all the directional derivatives and spin coefficients at
O(𝜁0, 𝜒0, 𝜖1) using Eqs. (4.167), (4.171), and (4.173). In the end, using Eq. (4.92),
we find

□(0,0,1)𝜗(1,1,0)

= 𝑒−𝑖𝜔𝑡
[(
ℎℓ𝑚1 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + ℎℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+ℎℓ𝑚3 (𝑟, 𝜔, 𝑀)
(
2𝜗′𝑅 (𝑟) + 𝑟𝜗′′𝑅 (𝑟)

)
2𝑅̂ℓ𝑚 (𝑟) cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙)

]
+ c.c. , (4.98)

where 𝜗𝑅 (𝑟) is the radial part of the background scalar field in Eq. (4.15). In
Eq. (4.98), the reconstructed metric only has contribution at O(𝜒0), so the radial
function 2𝑅̂ℓ𝑚 (𝑟) is evaluated on the Schwarzschild background. Since we choose
not to expand 𝑅̂(𝑟) in 𝜒 here, we do not distinguish 2𝑅̂ℓ𝑚 (𝑟) evaluated on the
Schwarzschild or slowly rotating Kerr background. Combining Eqs. (4.95) and
(4.98), we have the source terms in the equation of 𝜗(1,1) up to O(𝜒). The master
equation of 𝜗(1,1) in the IRG in the coordinate {𝑡, 𝑟, 𝜃, 𝜙} is presented in Eq. (4.128)
of Sec. 4.8.

In Sec. 4.9, we will show that Eq. (4.78) up to O(𝜒) can be separated into a radial
and an angular equation. In the following section, we apply the same procedures to
evaluate the source terms in the modified Teukolsky equation of Ψ(1,1)

0 in terms of
the reconstructed NP quantities and project the equation into the coordinate basis.

4.6 The modified Teukolsky equation of Ψ(1,1)
0 in the IRG

In this section, we evaluate the modified Teukolsky equation of Ψ(1,1)
0 in Eq. (4.18)

following the similar procedures in Sec. 4.5. We first evaluate the left-hand side of
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Eq. (4.18) and the source termS (1,1)
geo due to the correction to the background geometry

using the background NP quantities in Sec. 4.3.4 and Appendix 4.11. We then project
the source term S (1,1) onto the NP basis and compute its coordinate-based value
using the reconstructed NP quantities in the IRG given in Sec. 4.4 and Appendix 4.12.
Figure 4.2 presents a schematic illustration of the steps involved in calculating a
completely separated radial evolution equation for the Ψ(1,1)

0 Weyl scalar perturbation
in the IRG.

4.6.1 Right-hand side of Eq. (4.18) and S (1,1)
geo

Since slowly rotating BHs in dCS gravity are Petrov type D up to O(𝜁1, 𝜒1, 𝜖0),
we only need to compute the Teukolsky operator 𝐻 (0,0)

0 in GR and its stationary
correction 𝐻 (1,0)

0 in Eq. (4.20a). Thus, we do not need metric reconstruction in this
subsection.

Using the Weyl scalars and spin coefficients found in Sec. 4.3.4 and Eq. (4.23), we
find that

𝐻
(0,0,0)
0 =

1
2𝑟2𝐻

(0,0,0)
0,TK , (4.99a)

𝐻
(0,1,0)
0 =

1
2𝑟2𝐻

(0,1,0)
0,TK , (4.99b)

where 𝐻 (0,0,0)
0,TK and 𝐻 (0,1,0)

0,TK are O(𝜒0) and O(𝜒1) terms of the Teukolsky operator
𝐻0,TK for Ψ0 [Eq. (4.7) in [19]],

𝐻
(0,0,0)
0,TK = −𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 − 6(𝑟 − 𝑀)𝜕𝑟 −
𝐶 (𝑟)
𝑟 − 𝑟𝑠

− 𝜕2
𝜃 − cot 𝜃𝜕𝜃 +

(
4 + 𝑚2 + 4𝑚 cos 𝜃

)
csc2 𝜃 − 6 ,

(4.100a)

𝐻
(0,1,0)
0,TK = −4𝑀

[
𝑚(𝑖(𝑟 − 𝑀) − 𝑀𝜔𝑟)

𝑟 (𝑟 − 𝑟𝑠)
− 𝜔 cos 𝜃

]
, (4.100b)

𝐶 (𝑟) = 4𝑖𝜔𝑟 (𝑟 − 3𝑀) + 𝜔2𝑟3 , (4.100c)

where we have decomposed the Weyl scalar Ψ(1)
0 at O(𝜖) as

Ψ
(1)
0 =

[
2𝑅

(0,1)
ℓ𝑚

(𝑟) + 𝜁 2𝑅
(1,1)
ℓ𝑚

(𝑟) + O(𝜁2)
]

2𝑆ℓ𝑚 (𝜃)𝑒−𝑖𝜔𝑡+𝑖𝑚𝜙 . (4.101)

The Teukolsky equation corresponding to Eqs. (4.100a) and (4.100b) is separable
with 2𝑅

(0,1)
ℓ𝑚

(𝑟) satisfying[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 + 6(𝑟 − 𝑀)𝜕𝑟 +
𝐶 (𝑟)
𝑟 − 𝑟𝑠

+4𝑚𝜒𝑀 (𝑖(𝑟 − 𝑀) − 𝑀𝜔𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− 2𝐴ℓ𝑚

]
2𝑅

(0,1)
ℓ𝑚

(𝑟) = 0 .
(4.102)
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Perturbed gravitational field equation for Ψ(1,1)
0 in the IRG

Left-hand side of Eq. (4.18)

In coordinate basis

Eq. (4.99)

Separated radial
equation

Left-hand side of
Eq. (4.150)

Right-hand side of Eq. (4.18)

Source term S (1,1)
geo

Terms given
in Eq. (4.144)

Source term S (1,1)

In coordinate
basis using the
Hertz potential
Eq. (4.94)

Terms
proportional
to Θℓ𝑚 (𝑟)

S (1,1)
𝐴

& S̃ (1,1)
𝐴

Terms
given in

Eq. (4.146)

Terms
proportional
to 2𝑅̂ℓ𝑚 (𝑟)

S (1,1)
𝐵

& S̃ (1,1)
𝐵

Terms
given in

Eq. (4.148)

Using the
recipe in
Sec. 4.9.1

The radial evolution equation of the Weyl scalar perturbation Ψ
(1,1)
0

for slowly rotating BHs in dCS gravity in the IRG is given by Eq. (4.150)

Figure 4.2: A schematic flowchart prescribing the steps involved in obtaining a
separated radial evolution equation for the gravitational field perturbation described
by the Ψ

(1,1)
0 Weyl scalar in the IRG for slowly rotating BHs in dCS gravity. This

flowchart summarizes the details of the calculations described in detail in Sec. 4.6
and Sec. 4.9.3. Initial and final outcomes are represented by rectangular boxes, while
intermediate results are symbolized by encapsulating bubbles. The directional arrows
are meant to seamlessly guide the reader through the logical flow of the calculations.
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Since there is no correction to the background geometry at O(𝜁1, 𝜒0, 𝜖0), 𝐻 (1,0,0)
0 = 0.

For 𝐻 (1,1,0)
0 , we find

𝐻
(1,1,0)
0 =

𝑖𝑚𝑀4

448𝑟9(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟) + 4𝑖𝜔𝑟2𝐶2(𝑟)

)
− 𝑖𝑀4

16𝑟9 cos 𝜃
(
𝐶3(𝑟) −

𝑖𝜔𝑟2𝐶4(𝑟)
2

)
+ 𝑖𝑀4

32𝑟8

[
(𝑟 − 𝑟𝑠)𝐶4(𝑟) cos 𝜃𝜕𝑟 −

𝐶5(𝑟)
2𝑟

sin 𝜃𝜕𝜃
]
,

(4.103)

where all 𝐶𝑖 (𝑟) are listed in Appendix 4.11. The source term S (1,1)
geo is then given by

S (1,0,1)
geo = 0 , S (1,1,1)

geo = −𝐻 (1,1,0)
0 Ψ

(0,0,1)
0 . (4.104)

S (1,1,1)
geo can be evaluated in terms of the coordinates using Eqs. (4.101) and (4.103).

4.6.2 Source term S (1,1)

In this subsection, we evaluate the source term S (1,1) from the effective stress tensor
or the source term of the trace-reversed Einstein equation in Eq. (4.4). The first step
is to project the Ricci tensor 𝑅𝜇𝜈 onto the NP basis such that we can express the NP
Ricci scalars Φ𝑖 𝑗 , where

Φ𝑖 𝑗 ∼ 𝑅𝑎𝑏 ∼ 𝑅𝜇𝜈𝑒𝑎𝜇𝑒𝑏𝜈 , (4.105)

in terms of NP quantities (Weyl scalars, spin coefficients, and tetrad) and the scalar
field 𝜗. The precise relation between Φ𝑖 𝑗 and 𝑅𝑎𝑏 is given in Eq. (4.180). Using
Eq. (4.4), we find

𝑅𝜇𝜈 = −
(

1
𝜅𝑔

) 1
2

𝑀2

[
(∇𝜎𝜗) 𝜖𝜎𝛿𝛼(𝜇∇𝛼𝑅𝜈)𝛿 +

(
∇𝜎∇𝛿𝜗

)∗
𝑅𝛿(𝜇𝜈)𝜎

]
+ 1

2𝜅𝑔𝜁
(
∇𝜇𝜗

)
(∇𝜈𝜗) ,

(4.106)

where we have inserted an additional 𝜁−
1
2 to the term linear in 𝜗 and an additional

𝜁−1 to the term quadratic in 𝜗 to compensate the factor of 𝜁
1
2 we have absorbed into

the expansion of 𝜗 in Eq. (4.17). Since 𝜗 enters at least at O(𝜁), all the metric fields
at the right-hand side of Eq. (4.106) are at O(𝜁0), which can be expressed in terms
of NP quantities in GR.

𝑅𝑎𝑏 = 𝜂
𝑐𝑑𝑅𝑐𝑎𝑑𝑏 ,

∇𝑐𝑅𝑎𝑏 = 𝑅𝑎𝑏,𝑐 − 𝛾𝑑𝑎𝑐𝑅𝑑𝑏 − 𝛾𝑑𝑏𝑐𝑅𝑎𝑑 .
(4.107)
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Since we are interested in gravitational perturbations of vacuum spacetime, 𝑅(0,0)
𝜇𝜈 =

𝑅
(0,1)
𝜇𝜈 = 0, and all the metric fields in Eq. (4.106) enter at O(𝜁0), the first term in

Eq. (4.106) vanishes. Evaluating the rest of the terms, we find the seven independent
components of 𝑅𝑎𝑏 in terms of Weyl scalars, spin coefficients, directional derivatives,
and the scalar field 𝜗 in Eq. (4.178).

We can now evaluate the source terms in the modified Teukolsky equations. Inspecting
the source term S (1,1) in Eq. (4.21), we can divide it into two parts based on whether
𝑆1,2 are dynamical,

S (1,1) = S (1,1)
𝐼

+ S (1,1)
𝐼 𝐼

,

S (1,1)
𝐼

= E (0,1)
2 𝑆

(1,0)
2 − E (0,1)

1 𝑆
(1,0)
1 ,

S (1,1)
𝐼 𝐼

= E (0,0)
2 𝑆

(1,1)
2 − E (0,0)

1 𝑆
(1,1)
1 .

(4.108)

For S (1,1)
𝐼

, one can directly evaluate 𝑆(1,0)1,2 in terms of the stationary scalar field 𝜗(1,0)

and the metric in GR using Eqs. (4.22), (4.178), and (4.180). Then we only need to
reconstruct the operators E (0,1)

1,2 using our results in Sec. 4.4 and Appendix 4.12. The
results of 𝑆(1,0)1,2 are provided in Appendix 4.13.

For S (1,1)
𝐼 𝐼

, the only pieces involving metric reconstruction are 𝑆(1,1)1,2 . For 𝑆(1,1)1,2 , we
can further divide them into two parts based on whether Φ𝑖 𝑗 are dynamical,

𝑆
(1,1)
1,𝐴 = 𝛿

(0,1)
[−2,−2,1,0]Φ

(1,0)
00 − 𝐷 (0,1)

[−2,0,0,−2]Φ
(1,0)
01

+ 2𝜎 (0,1)Φ(1,0)
10 − 2𝜅 (0,1)Φ(1,0)

11 − 𝜅 (0,1)Φ(1,0)
02 ,

𝑆
(1,1)
2,𝐴 = 𝛿

(0,1)
[0,−2,2,0]Φ

(1,0)
01 − 𝐷 (0,1)

[−2,2,0,−1]Φ
(1,0)
02

− 𝜆̄(0,1)Φ(1,0)
00 + 2𝜎 (0,1)Φ(1,0)

11 − 2𝜅 (0,1)Φ(1,0)
12 ,

𝑆
(1,1)
1,𝐵 = 𝛿

(0,0)
[−2,−2,1,0]Φ

(1,1)
00 − 𝐷 (0,0)

[−2,0,0,−2]Φ
(1,1)
01 ,

𝑆
(1,1)
2,𝐵 = 𝛿

(0,0)
[0,−2,2,0]Φ

(1,1)
01 − 𝐷 (0,0)

[−2,2,0,−1]Φ
(1,1)
02 ,

(4.109)

where we used that 𝜅 (0,0) = 𝜎 (0,0) = 𝜆(0,0) = 0. Based on this classification, we can
then additionally separate S (1,1)

𝐼 𝐼
into two parts

S (1,1)
𝐼 𝐼

= S (1,1)
𝐼 𝐼 𝐴

+ S (1,1)
𝐼 𝐼𝐵

,

S (1,1)
𝐼 𝐼 𝐴

= E (0,0)
2 𝑆

(1,1)
2,𝐴 − E (0,0)

1 𝑆
(1,1)
1,𝐴 ,

S (1,1)
𝐼 𝐼𝐵

= E (0,0)
2 𝑆

(1,1)
2,𝐵 − E (0,0)

1 𝑆
(1,1)
1,𝐵 .

(4.110)

For S (1,1)
𝐼 𝐼 𝐴

, similar to S (1,1)
𝐼

, we only need to evaluate Φ
(1,0)
𝑖 𝑗

using the background
metric and the stationary scalar field 𝜗(1,0) . The only quantities need metric
reconstruction are these additional O(𝜁0, 𝜖1) operators acting on Φ

(1,0)
𝑖 𝑗

, where Φ(1,0)
𝑖 𝑗

are listed in Appendix 4.13.
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The most complicated piece of S (1,1) is S (1,1)
𝐼 𝐼 𝐴

, which needs metric reconstruction
for Φ(1,1)

𝑖 𝑗
. Fortunately, from Eq. (4.109), we notice that we only need to evaluate

Φ
(1,1)
00 , Φ(1,1)

01 , and Φ
(1,1)
02 . To organize our calculations, we can divide Φ

(1,1)
𝑖 𝑗

into
four parts based on which kind of terms need metric reconstruction, similar to what
we have done in Sec. 4.5. Inspecting Eq. (4.178), we notice that all the terms are
some coupling of a Weyl scalar, a scalar field, a spin coefficient, and directional
derivatives, which is due to the structure of 𝑅𝜇𝜈 in Eq. (4.106). In this case, we make
the following classification:

1. Weyl scalars are at O(𝜁0, 𝜖1). In this case, the scalar field 𝜗 is at O(𝜁1, 𝜖0).
As discussed in Sec. 4.3.3, the leading contribution to 𝜗(1,0) is at O(𝜁1, 𝜒1, 𝜖0)
since non-rotating BHs in dCS gravity are still Schwarzschild. Then since
we are interested in O(𝜁1, 𝜒1, 𝜖1) corrections, all the spin coefficients and
directional derivatives are at O(𝜁0, 𝜒0, 𝜖0), the order of the Schwarzschild
background.

2. Spin coefficients are at O(𝜁0, 𝜖1). Similar to the first situation, the scalar field
𝜗 is at O(𝜁1, 𝜒1, 𝜖0), so all the Weyl scalars and directional derivatives are at
O(𝜁0, 𝜒0, 𝜖0), which are evaluated on the Schwarzschild background in GR.

3. Tetrad/directional derivatives are at O(𝜁0, 𝜖1). Similar to the first two cases,
since 𝜗 is at O(𝜁1, 𝜒1, 𝜖0), so all the Weyl scalars and spin coefficients can be
evaluated on the Schwarzschild background.

4. The scalar field𝜗 is atO(𝜁1, 𝜖1), which has contributions from bothO(𝜁1, 𝜒0, 𝜖1)
and O(𝜁1, 𝜒1, 𝜖1) terms. Then, all the NP quantities generally need to be
evaluated on the Kerr background expanded in the slow-rotation expansion
to O(𝜒1). Since 𝜗(1,1) also requires us to solve the scalar field equation in
Eqs. (4.38), we choose not to compute 𝜗(1,1) in this work but only list the
source terms in terms of it. We will solve the scalar field equation together
with the modified Teukolsky equation in our follow-up work [58].

At O(𝜁1, 𝜒1, 𝜖1), using the classification above, we can set many terms to 0 since they
are evaluated on the Schwarzschild background (i.e., when 𝜗 is stationary). Similar
to Sec. 4.5, the results of Φ(1,1)

00 , Φ(1,1)
01 , and Φ

(1,1)
02 up to O(𝜁1, 𝜒1, 𝜖1) are expressed

in terms of the perturbed Weyl scalars, metric perturbations, and dynamical 𝜗 in
Appendix 4.13. Due to the complication of S (1,1) , we will not present the results
here but provide its coordinate-based values directly in the next subsection.
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4.6.3 S (1,1) in the coordinate basis
In this subsection, we evaluate the coordinate-based values of S (1,1) using the
decomposition of 𝜗(1,1) in Eq. (4.87) and the Hertz potential Ψ(1,1)

H in Eq. (4.94).
Following Sec. 4.3.1, we separate S (1,1) into two parts: the terms coupled to the
dynamical scalar field 𝜗(1,1) and the terms coupled to the background scalar field
𝜗(1,0) .

For the first part, we find its coordinate-based value to be

S (1,1)
𝐴

= 𝑒−𝑖𝜔𝑡
[(
𝑝ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚3 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
𝑝ℓ𝑚4 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
𝑝ℓ𝑚7 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚9 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒 0𝑏
𝑚
ℓ,ℓ+1

(
𝑝ℓ𝑚10 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚11 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚12 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ+1𝑚 (𝜃, 𝜙)

+𝜒 0𝑏
𝑚
ℓ,ℓ−1

(
𝑝ℓ𝑚13 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚14 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚15 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
, (4.111a)

S̃ (1,1)
𝐴

= 𝑒𝑖𝜔𝑡
[
−

(
𝑝ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚3 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ𝑚 (𝜃, 𝜙)

−𝜒
(
𝑝ℓ𝑚4 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
𝑝ℓ𝑚7 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚9 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

−𝜒 0𝑏
𝑚
ℓ,ℓ+1

(
𝑝ℓ𝑚10 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚11 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚12 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ+1𝑚 (𝜃, 𝜙)

−𝜒 0𝑏
𝑚
ℓ,ℓ+1

(
𝑝ℓ𝑚13 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚14 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑝ℓ𝑚15 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
. (4.111b)
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In Sec. 4.9.3, after getting the radial part of the equation of 𝜗(1,1) , we will further
express Θ′′

𝑅
(𝑟) in terms of Θℓ𝑚 (𝑟), Θ′

ℓ𝑚
(𝑟), 2𝑅̂ℓ𝑚 (𝑟), and 2𝑅̂

′
ℓ𝑚
(𝑟).

Similarly, we find the second part to take the form

S (1,1)
𝐵

= 𝜒𝑒−𝑖𝜔𝑡
[(
𝑞ℓ𝑚1 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+
(
𝑞ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

+
(
𝑞ℓ𝑚5 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚6 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 3𝑌ℓ𝑚 (𝜃, 𝜙)

]
,

(4.112a)

S̃ (1,1)
𝐵

= 𝜒𝑒𝑖𝜔𝑡
[(
𝑞ℓ𝑚1 (𝑟, 𝜔, 𝑀) 2

¯̂𝑅ℓ𝑚 (𝑟) + 𝑞ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝑞ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅ℓ𝑚 (𝑟) cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

]
, (4.112b)

where 2𝑅̂ℓ𝑚 (𝑟) is the radial function of the Hertz potential given by Eq. (4.56a), and

2
¯̂𝑅ℓ𝑚 (𝑟) is the complex conjugate of 2𝑅̂ℓ𝑚 (𝑟). The radial functions 𝑞ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀)

and 𝑞ℓ𝑚
𝑖
(𝑟, 𝜔, 𝑀) are presented in a Mathematica notebook as Supplementary

Material [69]. Note that we have used the radial Teukolsky equation to eliminate any
beyond-first-order derivatives of the Hertz potential to obtain a simplified expression
in Eqs. (4.112a) and (4.112b). The master equation of Ψ

(1,1)
0 in the IRG in the

coordinate {𝑡, 𝑟, 𝜃, 𝜙} is presented in Eq. (4.128) of Sec. 4.8.

4.7 The evolution equation for 𝜗(1,1) and the modified Teukolsky equation for
Ψ

(1,1)
4 in the ORG

In this section, we evaluate the equations governing the evolution of the perturbed
scalar field 𝜗(1,1) and the perturbed Weyl scalar Ψ(1,1)

4 . Although one can in principle
evaluate the evolution equation of Ψ(1,1)

4 in the IRG, as briefly discussed in Sec. 4.4.2,
the evaluation is more convenient in the ORG. We follow a set of steps similar to
those in the IRG for 𝜗(1,1) in Sec. 4.5 and for Ψ(1,1)

0 in Sec. 4.6. Below, we present
the master equations of 𝜗(1,1) and Ψ

(1,1)
4 in the ORG.

4.7.1 The equation of 𝜗(1,1)

The scalar field perturbations are governed by Eq. (4.38). We now represent the
right-hand side of Eq. (4.38) as

T (1,1)
𝜗

≡ − 𝑀2

16𝜋
1
2
[𝑅∗𝑅] (0,1) − □(0,1)𝜗(1,0) . (4.113)

Projecting the Pontryagin density onto the NP basis leads to the same set of equations
as described in Sec. 4.5.1 since our choice of gauge does not affect the quantities
shown in Eqs. (4.81).
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The master equation for the scalar field perturbations in the ORG are same as that
shown in the IRG

𝐻
(0,0)
𝜗

𝜗(1,1) = T (1,1)
𝜗

, (4.114)

with 𝐻 (0,0)
𝜗

and 𝜗(1,1) both given in Eqs. (4.85) and (4.86) respectively, whereas
T (1,1)
𝜗

is given in Eq.(4.113). The left-hand side of Eq. (4.114) in the ORG remains
unchanged from the IRG since the operator acting on the scalar field perturbations is
evaluated on the background. On the other hand, since the source term in Eq. (4.114)
depends on perturbed quantities, the value of these quantities is gauge dependent. In
the ORG, the Pontryagin density given in Eq. (4.89) holds the following form in the
coordinate basis:

(𝑅∗𝑅) (0,1)

= 𝑒−𝑖𝜔𝑡
[(
gℓ𝑚1 (𝑟, 𝜔, 𝑀)−2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
gℓ𝑚3 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚4 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
gℓ𝑚5 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚6 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒 −2𝑏
𝑚
ℓ,ℓ+1

(
gℓ𝑚7 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚8 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ+1𝑚 (𝜃, 𝜙)

+𝜒 −2𝑏
𝑚
ℓ,ℓ−1

(
gℓ𝑚9 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚10 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
0𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
+ c.c. , (4.115)

where functions g𝑖 (𝑟, 𝜔, 𝑀) are presented in a separate Mathematica notebook as
Supplementary Material [69], and −2𝑅̂

′
ℓ𝑚
(𝑟) is the radial function of the Hertz

potential for a slowly rotating Kerr BHs in GR computed from the radial function of
the Ψ

(0,1)
4 using Eq. (4.56b).

To evaluate the remaining part of the source term T (1,1)
𝜗

, we use the perturbed spin
coefficients given in Eq. (4.166) and metric perturbations given in Eq. (4.51). We
obtain

□(0,0,1)𝜗(1,1,0)

= 𝑒−𝑖𝜔𝑡
[(
hℓ𝑚1 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + hℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+hℓ𝑚3 (𝑟, 𝜔, 𝑀)
(
2𝜗′𝑅 (𝑟) + 𝑟𝜗′′𝑅 (𝑟)

)
−2𝑅̂ℓ𝑚 (𝑟) cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙)

]
+ c.c. , (4.116)

where the functions h𝑖 (𝑟) are presented in a separate Mathematica notebook as
Supplementary Material [69], and 𝜗𝑅 (𝑟) is the radial part of the background scalar
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field given in Eq. (4.15). Similar to the case evaluated in the IRG in Sec. 4.5, the
radial function −2𝑅̂ℓ𝑚 (𝑟) is evaluated on the Schwarzschild background. Combining
Eqs. (4.116) and (4.115) gives us the complete source term T (1,1)

𝜗
. The master

equation of 𝜗(1,1) in the ORG in the coordinate {𝑡, 𝑟, 𝜃, 𝜙} is presented in Eq. (4.128)
of Sec. 4.8.

4.7.2 The equation of Ψ(1,1)
4

In this subsection, we present the modified Teukolsky equation for the Weyl scalar
perturbation Ψ

(1,1)
4 given in Eq. (4.26) in the coordinate basis. Following steps

similar to Sec. 4.6, we separate the source terms into two categories: T (1,1)
geo and

T (1,1) whose forms in the NP basis have been given in Eqs. (4.27)–(4.29).

4.7.2.1 Homogeneous part and T (1,1)
geo

Similar to Sec. 4.6.1, by using the Weyl scalars and spin coefficients in Sec. 4.3.4
and Appendix 4.11 along with Eq. (4.31), we find

H (0,0,0)
4 =

1
2𝑟6𝐻

(0,0,0)
4,TK , (4.117a)

H (0,1,0)
4 =

1
2𝑟6𝐻

(0,1,0)
4,TK , (4.117b)

where we define(
𝐻

(0,0,0)
4 + 𝜒𝐻 (0,1,0)

4

)
Ψ

(1)
4 ≡

(
H (0,0,0)

4 + 𝜒H (0,1,0)
4

)
𝜓
(1)
4 (4.118)

by extracting a factor of 𝜌4 from the Weyl scalar Ψ(1)
4 following [19], i.e.,

Ψ
(1)
4 ≡ 𝜌4𝜓

(1)
4 = 𝜌4

[
−2𝑅

(0,1)
ℓ𝑚

(𝑟) + 𝜁 −2𝑅
(1,1)
ℓ𝑚

(𝑟) + O(𝜁2)
]
−2𝑆ℓ𝑚 (𝜃)𝑒−𝑖𝜔𝑡+𝑖𝑚𝜙 .

(4.119)
The operators 𝐻 (0,0,0)

4,TK and 𝐻 (0,1,0)
4,TK are O(𝜒0) and O(𝜒1) terms of the Teukolsky

operator 𝐻4,TK for 𝜓4 [Eq. (4.7) in [19]], respectively,

𝐻
(0,0,0)
4,TK = −𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 + 2(𝑟 − 𝑀)𝜕𝑟 −
𝐷 (𝑟)
𝑟 − 𝑟𝑠

− 𝜕2
𝜃 − cot 𝜃𝜕𝜃 + (−2 cot 𝜃 + 𝑚 csc 𝜃)2 − 2 ,

(4.120a)

𝐻
(0,1,0)
4,TK = 4𝑀

[
𝑚(𝑖(𝑟 − 𝑀) + 𝑀𝜔𝑟)

𝑟 (𝑟 − 𝑟𝑠)
− 𝜔 cos 𝜃

]
, (4.120b)

𝐷 (𝑟) = −4𝑖𝜔𝑟 (𝑟 − 3𝑀) + 𝜔2𝑟3 .
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The Teukolsky equation corresponding to Eqs. (4.120a) and (4.120b) is separable
with −2𝑅

(0,1)
ℓ𝑚

(𝑟) satisfying[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 − 2(𝑟 − 𝑀)𝜕𝑟 +
𝐷 (𝑟)
𝑟 − 𝑟𝑠

−4𝑚𝜒𝑀 (𝑖(𝑟 − 𝑀) + 𝑀𝜔𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− −2𝐴ℓ𝑚

]
−2𝑅

(0,1)
ℓ𝑚

(𝑟) = 0 .
(4.121)

For the same reason in Sec. 4.6.1, we do not need metric reconstruction to compute
T (1,1)

geo since the background spacetime is still Petrov type D. The source terms T (1,1)
geo

hold the form

T (1,0,1)
geo = 0 , T (1,1,1)

geo = −𝐻 (1,1,0)
4 Ψ

(0,0,1)
4 = −H (1,1,0)

4 𝜓
(0,0,1)
4 (4.122)

with

H (1,1,0)
4 =

−𝑖𝑚𝑀4

448𝑟13(𝑟 − 𝑟𝑠)

(
𝐷1(𝑟) − 4𝑖𝜔𝑟2𝐷2(𝑟)

)
+ 𝑖𝑀4

16𝑟13 cos 𝜃
(
𝐷3(𝑟) −

𝑖𝜔𝑟2𝐷4(𝑟)
2

)
+ 𝑖𝑀4

32𝑟12

[
(𝑟 − 𝑟𝑠)𝐷4(𝑟) cos 𝜃𝜕𝑟 −

𝐷5(𝑟)
2𝑟

sin 𝜃𝜕𝜃
]
,

(4.123)

where we have absorbed the factor of 𝜌4 into H (1,1,0)
4 , and the functions 𝐷𝑖 (𝑟) are

presented in Appendix 4.11.

4.7.2.2 T (1,1)

Using the expression for the metric perturbation in the ORG given in Eq. (4.51), one
can evaluate the perturbed spin coefficients and perturbed Weyl scalars at O(𝜁0, 𝜖1).
These can then be used to evaluate the following source terms, which can be divided
into two parts based on whether 𝑆3,4 are dynamical.

T (1,1) = T (1,1)
𝐼

+ T (1,1)
𝐼 𝐼

,

T (1,1)
𝐼

= E (0,1)
4 𝑆

(1,0)
4 − E (0,1)

3 𝑆
(1,0)
3 ,

T (1,1)
𝐼 𝐼

= E (0,0)
4 𝑆

(1,1)
4 − E (0,0)

3 𝑆
(1,1)
3 . (4.124)

Analogous to Sec. 4.6, T (1,1)
𝐼

consists of terms dependent on the stationary scalar
field, the background, and the perturbed metric in GR.
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Similarly, we can further divide T (1,1)
𝐼 𝐼

into two categories based on whether terms are
proportional to Φ

(1,0)
𝑖 𝑗

or Φ(1,1)
𝑖 𝑗

, which we denote as T (1,1)
𝐼 𝐼 𝐴

and T (1,1)
𝐼 𝐼𝐵

respectively.

T (1,1)
𝐼 𝐼

= T (1,1)
𝐼 𝐼 𝐴

+ T (1,1)
𝐼 𝐼𝐵

,

T (1,1)
𝐼 𝐼 𝐴

= E (0,0)
4 𝑆

(1,1)
4,𝐴 − E (0,0)

3 𝑆
(1,1)
3,𝐴 ,

T (1,1)
𝐼 𝐼𝐵

= E (0,0)
4 𝑆

(1,1)
4,𝐵 − E (0,0)

3 𝑆
(1,1)
3,𝐵 .

(4.125)

Here 𝑆(1,1)3,𝐵 and 𝑆(1,1)4,𝐵 have terms proportional to Φ
(1,1)
𝑖 𝑗

, whereas 𝑆(1,1)3,𝐴 and 𝑆(1,1)4,𝐴

have terms proportional to Φ
(1,0)
𝑖 𝑗

.

Expressing these source terms in the coordinate basis, the terms proportional to the
scalar field perturbation are given by

T (1,1)
𝐴

= 𝑒−𝑖𝜔𝑡
[(
pℓ𝑚1 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + pℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+pℓ𝑚3 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
pℓ𝑚4 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + pℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+pℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
pℓ𝑚7 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + pℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+pℓ𝑚9 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒 0𝑏
𝑚
ℓ,ℓ+1

(
pℓ𝑚10 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + pℓ𝑚11 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+pℓ𝑚12 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ+1𝑚 (𝜃, 𝜙)

+𝜒 0𝑏
𝑚
ℓ,ℓ−1

(
pℓ𝑚13 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + pℓ𝑚14 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+pℓ𝑚15 (𝑟, 𝜔, 𝑀)Θ′′
ℓ𝑚 (𝑟)

)
−2𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
, (4.126a)

T̃ (1,1)
𝐴

= 𝑒𝑖𝜔𝑡
[
−

(
p̄ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + p̄ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+p̄ℓ𝑚3 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ𝑚 (𝜃, 𝜙)

−𝜒
(
p̄ℓ𝑚4 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + p̄ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+p̄ℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝜒
(
p̄ℓ𝑚7 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + p̄ℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+p̄ℓ𝑚9 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

−𝜒 0𝑏
𝑚
ℓ,ℓ+1

(
p̄ℓ𝑚10 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + p̄ℓ𝑚11 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+p̄ℓ𝑚12 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ+1𝑚 (𝜃, 𝜙)
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−𝜒 0𝑏
𝑚
ℓ,ℓ−1

(
p̄ℓ𝑚13 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + p̄ℓ𝑚14 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+p̄ℓ𝑚15 (𝑟, 𝜔, 𝑀)Θ̄′′
ℓ𝑚 (𝑟)

)
2𝑌ℓ−1𝑚 (𝜃, 𝜙)

]
. (4.126b)

The source terms proportional to the background scalar field can be expressed in the
coordinate basis as

T (1,1)
𝐵

= 𝜒𝑒−𝑖𝜔𝑡
[(
qℓ𝑚1 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

+
(
qℓ𝑚3 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚4 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

+
(
qℓ𝑚5 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚6 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
sin 𝜃 −3𝑌ℓ𝑚 (𝜃, 𝜙)

]
,

(4.127a)

T̃ (1,1)
𝐵

= 𝜒𝑒𝑖𝜔𝑡
[(
q̃ℓ𝑚1 (𝑟, 𝜔, 𝑀) −2

¯̂𝑅ℓ𝑚 (𝑟) + q̃ℓ𝑚2 (𝑟, 𝜔, 𝑀) −2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+q̃ℓ𝑚3 (𝑟, 𝜔, 𝑀) −2
¯̂𝑅ℓ𝑚 (𝑟) cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

]
, (4.127b)

where −2𝑅̂ℓ𝑚 (𝑟) is the radial function of the Hertz potential given by Eq. (4.56b).
The functions qℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀) and q̃ℓ𝑚𝑖 (𝑟, 𝜔, 𝑀) (not to be confused with q̄ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀))

are functions presented in a Mathematica notebook as Supplementary Material [69].
The master equation of Ψ(1,1)

4 in the ORG in the coordinate {𝑡, 𝑟, 𝜃, 𝜙} is presented
in Eq. (4.128) of Sec. 4.8.

4.8 Executive Summary of all Master Equations
This section presents an executive summary of the main results of this paper, whose
derivation was presented in Secs. 4.5, 4.6, and 4.7. Through Secs. 4.5, 4.6, and 4.7,
we used the tetrad defined in Sec. 4.3.4 to rewrite Eqs. (4.18) and (4.38) using the
IRG and Eqs. (4.26) and (4.38) using the ORG. In this section, we summarize these
results and condense them into a single master equation for convenience. In later
sections, we will present and apply a procedure to decouple the master equations for
the scalar field perturbation 𝜗(1,1) and the Weyl scalar perturbations Ψ(1,1)

0,4 (or Ψ(1,1)
4 )

into a set of coupled radial ordinary differential equations in the IRG (or ORG).

With this in mind, the master equations for 𝜗(1,1) [Eq. (4.38)], Ψ(1,1)
0 [Eq. (4.18)],
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𝜓 𝜉 (𝑟)
Ingoing radiation gauge Outgoing radiation gauge

s S

(equations)
s S

(equations)

𝜗(1,1) −𝑟2 0
−𝜋− 1

2𝑀2(𝑅∗𝑅) (0,1) −
𝜒□(0,0,1)𝜗(1,1,0) 0

−𝜋− 1
2𝑀2(𝑅∗𝑅) (0,1) −

𝜒□(0,0,1)𝜗(1,1,0)

Eqs. (4.95) & (4.98) Eqs. (4.115) & (4.116)

Ψ
(1,1)
0 2𝑟2 +2

S (1,1)
geo +S (1,1)

𝐴
+S̃ (1,1)

𝐴
+

S (1,1)
𝐵

+ S̃ (1,1)
𝐵

− −
Eqs. (4.104), (4.111),

&(4.112)

𝜌−4Ψ
(1,1)
4 2𝑟6 − − −2

T (1,1)
geo +T (1,1)

𝐴
+T̃ (1,1)

𝐴
+

T (1,1)
𝐵

+ T̃ (1,1)
𝐵

Eqs. (4.122), (4.126),
&(4.127)

Table 4.1: In this table, we present the quantities Ψ, the spin weight 𝑠 and the source
terms S that appear in Eq. (4.128).

and Ψ
(1,1)
4 [Eq. (4.26)] can all be expressed as

𝐻𝜓 =
𝑟3

𝑟 − 𝑟𝑠
𝜕2𝜓

𝜕𝑡2
+ 4𝜒𝑀2

𝑟 − 𝑟𝑠
𝜕2𝜓

𝜕𝑡𝜕𝜙
− csc2 𝜃

𝜕2𝜓

𝜕𝜙2 − 𝑟 (𝑟 − 𝑟𝑠)
𝜕2𝜓

𝜕𝑟2 − 2(𝑠 + 1) (𝑟 − 𝑀) 𝜕𝜓
𝜕𝑟

− 1
sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕𝜓

𝜕𝜃

)
+ 𝑠

[
𝜒𝑀

(
1
𝑟
− 1
𝑟 − 𝑟𝑠

)
− 2𝑖 cot 𝜃 csc 𝜃

]
𝜕𝜓

𝜕𝜙

+ 2𝑠
[
𝑟 (𝑟 − 3𝑀)
𝑟 − 𝑟𝑠

+ 𝑖𝜒𝑀 cos 𝜃
]
𝜕𝜓

𝜕𝑡
+

(
𝑠2 cot2 𝜃 − 𝑠

)
𝜓 = 𝜉 (𝑟)S ,

(4.128)
where 𝐻 represents the Teukolsky operator for a spin 𝑠 field in GR given in [19].
Recall that 𝜒 is the dimensionless spin parameter, 𝑟𝑠 = 2𝑀 is the Schwarzschild
radius, and 𝑀 is the BH mass. In Table 4.1, we present the field quantities 𝜓
which satisfy this equation and the source terms, 𝜉 (𝑟) and S on the right-hand
side of Eq. (4.128), dependent on the gauge and the spin weight 𝑠 of these fields.
Observe that, clearly, the differential operator 𝐻 in Eq. (4.128) acting on the field
quantity 𝜓 is exactly the same as the one derived by Teukolsky in [19] in GR for
Kerr BH perturbations [c.f. Eq. (4.7) therein], expanded to leading order in spin.
In addition, from Table 4.1 and the source terms in Eqs. (4.104), (4.111), (4.112),
(4.122), (4.126), and (4.127), we notice that the (𝑙, 𝑚) and (𝑙, 𝑚) modes of Ψ(1,1)

0,4
need to be solved jointly, as we will discuss in more detail in Sec. 4.9.
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4.9 Separation of variables and extraction of the radial master equation
In this section, we extract the radial parts of the master equations for 𝜗(1,1) [Eq. (4.38)]
(both in the IRG and ORG), for Ψ(1,1)

0 [Eq. (4.18)], and for Ψ(1,1)
4 [Eq. (4.26)]. Let us

first present our procedures for eliminating the angular dependence in these equations
and then apply them to specific cases.

4.9.1 Eiminating the angular dependence
To eliminate the angular dependence of these master equations, we utilize the
properties of spin-weighted spheroidal harmonics in Sec. 4.4.3 and go through the
following procedures:

1. From Secs. 4.5–4.7, we first observe that the master equations of 𝜗(1,1) and
Ψ

(1,1)
0,4 after decomposition into spin-weighted spheroidal harmonics [i.e.,

Eqs. (4.86), (4.101), and (4.119)] all take the form

𝑠𝐻ℓ𝑚 [𝑠𝜓ℓ𝑚 (𝑟)𝑠𝑆ℓ𝑚 (𝜃)] 𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙

=
∑︁
𝑘

𝑠𝑃
𝑘
ℓ𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ𝑚 (𝜃)𝑒

−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 + 𝑠𝑄
𝑘
ℓ𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ𝑚 (𝜃)𝑒

𝑖𝜔̄ℓ𝑚𝑡−𝑖𝑚𝜙 , (4.129a)

𝑠𝐻ℓ −𝑚 [𝑠𝜓ℓ −𝑚 (𝑟)𝑠𝑆ℓ −𝑚 (𝜃)] 𝑒−𝑖𝜔ℓ −𝑚𝑡−𝑖𝑚𝜙

=
∑︁
𝑘

𝑠𝑃
𝑘
ℓ −𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ −𝑚 (𝜃)𝑒

−𝑖𝜔ℓ −𝑚𝑡−𝑖𝑚𝜙 + 𝑠𝑄
𝑘
ℓ −𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ −𝑚 (𝜃)𝑒

𝑖𝜔̄ℓ −𝑚𝑡+𝑖𝑚𝜙 ,

(4.129b)

where 𝑠𝐻ℓ𝑚 is the (ℓ, 𝑚) mode of the Teukolsky operator in GR for particles of
spin 0 [i.e., 𝐻 (0,0)

𝜗
in Eq. (4.85)], spin 2 [i.e., 𝐻 (0,0)

0 in Eqs. (4.99) and (4.100)],
and spin −2 [i.e., H (0,0)

4 in Eqs. (4.117) and (4.120)]. The radial function

𝑠𝜓ℓ𝑚 (𝑟) is the radial part of 𝜗(1,1) [i.e., Θℓ𝑚 (𝑟)], Ψ(1,1)
0 [i.e., 2𝑅

(1,1)
ℓ𝑚

(𝑟)], or
𝜌−4Ψ

(1,1)
4 [i.e., −2𝑅

(1,1)
ℓ𝑚

(𝑟)] to be solved for. The angular function 𝑠𝑆ℓ𝑚 (𝜃) is the
𝜃-dependent part of spin-weighted spheroidal harmonics 𝑠Y(𝜃, 𝜙). The radial
functions 𝑠𝑃

𝑘
ℓ𝑚
(𝑟), 𝑠𝑄𝑘

ℓ𝑚
(𝑟) and angular functions 𝑠 𝑓

𝑘
ℓ𝑚
(𝜃) can be extracted

from the source terms found in Secs. 4.5–4.7. In the equation for 𝜗(1,1) , we can
observe from Eqs. (4.95), (4.98), (4.115), and (4.116) that 0𝑃

𝑘
ℓ𝑚
(𝑟) = 0𝑄̄

𝑘
ℓ𝑚
(𝑟)

since the scalar field is real, while there is no such a constraint for Ψ(1,1)
0,4 since

they are complex in general.

2. Equation (4.129) assumes that a single (ℓ, 𝑚) mode [Eq. (4.129a)] or a single
(ℓ,−𝑚) mode [Eq. (4.129b)] can solve the modified Teukolsky equation.
However, this is in general not true since the source term in Eq. (4.129a)
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is a mixture of modes proportional to 𝑒−𝑖𝜔ℓ𝑚𝑡 and 𝑒𝑖𝜔̄ℓ𝑚𝑡 , and similarly for
Eq. (4.129b). On the other hand, in GR, one has the well-known symmetry
[22]

𝜔
(0)
ℓ𝑚

= −𝜔̄(0)
ℓ−𝑚 , (4.130)

so both Eqs. (4.129a) and (4.129b) contain source terms proportional to 𝑒−𝑖𝜔ℓ𝑚𝑡

and 𝑒−𝑖𝜔ℓ−𝑚𝑡 . Thus, one has to consider Eqs. (4.129a) and (4.129b) jointly or
solve the linear combination , i.e.,

Ψ
(0,1)
ℓ𝑚

= 𝑠𝑅
(0,1)
ℓ𝑚

(𝑟)𝑠𝑆ℓ𝑚 (𝜃)𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 + 𝜂ℓ𝑚 𝑠𝑅
(0,1)
ℓ−𝑚 (𝑟)𝑠𝑆ℓ −𝑚 (𝜃)𝑒𝑖𝜔ℓ𝑚𝑡−𝑖𝑚𝜙 ,

(4.131a)

Ψ
(1,1)
ℓ𝑚

= 𝑠𝜓ℓ𝑚 (𝑟)𝑠𝑆ℓ𝑚 (𝜃)𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 + 𝜂ℓ𝑚 𝑠𝜓ℓ−𝑚 (𝑟)𝑠𝑆ℓ −𝑚 (𝜃)𝑒𝑖𝜔ℓ𝑚𝑡−𝑖𝑚𝜙 ,

(4.131b)

where we have absorbed an overall factor into the normalization of 𝑠𝑅(0,1)
ℓ𝑚

(𝑟)
and 𝑠𝜓ℓ𝑚 (𝑟). Furthermore, we have also taken 𝜔(0)

ℓ𝑚
= −𝜔̄(0)

ℓ−𝑚 not just in GR
but also in dCS gravity due to the structure of Eq (4.129). As discussed and
shown in more detail in [65], one can solve for both the complex constant 𝜂ℓ𝑚
and the QNM frequencies 𝜔ℓ𝑚 using the eigenvalue perturbation method in
[25, 39, 40]. The combination (𝜂ℓ𝑚, 𝜔ℓ𝑚) have two independent solutions [25,
26, 65], resulting in the breaking of isospectrality. In this case, by plugging the
ansatz in Eq. (4.131) into the scalar field equation or the modified Teukolsky
equations, using Eq. (4.129), and matching the phase of the terms, we find

𝑠𝐻ℓ𝑚 [𝑠𝜓ℓ𝑚 (𝑟)𝑠𝑆ℓ𝑚 (𝜃)] =
∑︁
𝑘

𝑠𝑃
𝑘
ℓ𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ𝑚 (𝜃) + 𝜂ℓ𝑚 𝑠𝑄

𝑘
ℓ −𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ −𝑚 (𝜃) ,

(4.132a)

𝑠𝐻ℓ −𝑚 [𝑠𝜓ℓ −𝑚 (𝑟)𝑠𝑆ℓ −𝑚 (𝜃)] =
∑︁
𝑘

𝑠𝑃
𝑘
ℓ −𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ −𝑚 (𝜃) +

1
𝜂ℓ𝑚

𝑠𝑄
𝑘
ℓ 𝑚 (𝑟)𝑠 𝑓

𝑘
ℓ 𝑚 (𝜃) ,

(4.132b)

where we have divided a factor of 𝜂ℓ𝑚 in Eq. (4.132b), and 𝑠𝜓ℓ±𝑚 (𝑟) are radial
solutions tied to (𝜂ℓ𝑚, 𝜔ℓ𝑚). Similar procedures for generic modified gravity
theories can be found in [65].

3. For the evolution equation for 𝜗(1,1) , we observe that 0 𝑓
𝑘
ℓ𝑚
(𝜃) consists of the

following terms:

• 0𝑌ℓ𝑚 (𝜃, 𝜙) and 0𝑌ℓ±1𝑚 (𝜃, 𝜙),

• cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙), and
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• sin 𝜃 ±1𝑌ℓ𝑚 (𝜃, 𝜙).

For the master equation for Ψ(1,1)
0,4 , ±2 𝑓

𝑘
ℓ𝑚
(𝜃) contains

• ±2𝑌ℓ𝑚 (𝜃, 𝜙) and ±2𝑌ℓ±1𝑚 (𝜃, 𝜙),

• cos 𝜃 ±2𝑌ℓ𝑚 (𝜃, 𝜙),

• sin 𝜃 ±1𝑌ℓ𝑚 (𝜃, 𝜙) and sin 𝜃±3𝑌ℓ𝑚 (𝜃, 𝜙).

Notice that 𝑠 𝑓 𝑘ℓ𝑚 (𝜃) are angular functions in the modified Teukolsky equation
for the particle of spin weight 𝑠 and mode (ℓ, 𝑚). The subscript 𝑠 and subscripts
(ℓ, 𝑚) do not indicate the mode number of the angular function itself. For
example, 0 𝑓

𝑘
ℓ𝑚
(𝜃) contains terms proportional to sin 𝜃 ±1𝑌ℓ𝑚 (𝜃, 𝜙).

4. As shown in Sec. 4.5.2, the homogeneous part of Eq. (4.38) for 𝜗(1,1) is
separable in 𝑟 and 𝜃 if one decomposes 𝜗(1,1) into 0Yℓ𝑚 (𝜃, 𝜙). Thus, to extract
the radial part of Eq. (4.38), we multiply Eq. (4.78) by 0Ȳℓ𝑚 (𝜃, 𝜙) and integrate
it over the 2-sphere, utilizing the orthogonality properties of spin-weighted
spheroidal harmonics in Eq. (4.65).

5. Similarly, as shown in Sec. 4.6.1, the homogeneous part of the modified
Teukolsky equation for Ψ

(1,1)
0 and 𝜌−4Ψ

(1,1)
4 (i.e., 𝐻 (0,0)

0 and H (0,0)
4 ) are

separable in 𝑟 and 𝜃 if one decomposes Ψ(1,1)
0 and 𝜌−4Ψ

(1,1)
4 into 2Yℓ𝑚 (𝜃, 𝜙)

and −2Yℓ𝑚 (𝜃, 𝜙), respectively. Thus, to extract the radial part of Eq. (4.18)
and its GHP transformation, we multiply S (1,1) and T (1,1) by 2Ȳℓ𝑚 (𝜃, 𝜙) and

−2Ȳℓ𝑚 (𝜃, 𝜙), respectively, and integrate them over the 2-sphere.

6. Since we use the slow-rotation approximation in this work, when computing
the integrals involving 𝑠Yℓ𝑚 (𝜃, 𝜙), one can further expand 𝑠Yℓ𝑚 (𝜃, 𝜙) in terms
of 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) using Eq. (4.61). Thus, there are only spin-weighted spherical
harmonics in these integrals.

7. After the angular integration, the angular functions 𝑠 𝑓ℓ𝑚 (𝜃)𝑒𝑖𝑚𝜙 in Step 3
become coefficients of the form

Λℓ1ℓ2𝑚𝑠1𝑠2
≡

∫
𝑆2
𝑑𝑆 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (4.133a)

Λℓ1ℓ2𝑚𝑠1𝑠2𝑐
≡

∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (4.133b)

Λℓ1ℓ2𝑚𝑠1𝑠2𝑠
≡

∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (4.133c)
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and the 𝑠 𝑓ℓ −𝑚 (𝜃)𝑒𝑖𝑚𝜙 angular functions become coefficients of the form

Λ†ℓ1ℓ2−𝑚
𝑠1𝑠2

≡
∫
𝑆2
𝑑𝑆 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2−𝑚 , (4.134a)

Λ†ℓ1ℓ2−𝑚
𝑠1𝑠2𝑐

≡
∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2−𝑚 , (4.134b)

Λ†ℓ1ℓ2−𝑚
𝑠1𝑠2𝑠

≡
∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2−𝑚 . (4.134c)

Since spin-weighted spherical harmonics are not orthogonal across different
spins over the 2-sphere, one has to calculate these coefficients in general
directly. Besides evaluating the integrals in Eqs. (4.133) and (4.134) for
different (𝑠1, ℓ1, 𝑚) and (𝑠2, ℓ2, 𝑚) every time, there are also other approaches.
One approach is to use the series-sum representation of 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) in Eq. (4.63),
as discussed in Appendix 4.14 with the results stored in a Mathematica notebook
in [69]. Now, the master equations of 𝜗(1,1) and Ψ

(1,1)
0,4 become completely

radial, i.e.,

𝑠𝐻̃ℓ𝑚 [𝑠𝜓ℓ𝑚 (𝑟)] =
∑︁
𝑘

𝑠f
𝑘
ℓ𝑚 𝑠𝑃

𝑘
ℓ𝑚 (𝑟) + 𝜂ℓ𝑚 𝑠 f̄

𝑘
ℓ−𝑚 𝑠𝑄

𝑘
ℓ −𝑚 (𝑟) , (4.135a)

𝑠𝐻̃ℓ −𝑚 [𝑠𝜓ℓ −𝑚 (𝑟)] =
∑︁
𝑘

𝑠f
𝑘
ℓ−𝑚 𝑃

𝑘
ℓ −𝑚 (𝑟) +

1
𝜂ℓ𝑚

𝑠 f̄
𝑘
ℓ𝑚 𝑠𝑄

𝑘
ℓ 𝑚 (𝑟) , (4.135b)

where 𝑠𝐻̃ℓ𝑚 is the radial Teukolsky operator for a spin 𝑠 field in GR and given
in [19]. The coefficient 𝑠f𝑘ℓ𝑚 comes from the integral of 𝑠𝑆ℓ𝑚 (𝜃) and 𝑠 𝑓

𝑘
ℓ𝑚
(𝜃)

over the 2-sphere, and similarly for its complex conjugate 𝑠 f̄
𝑘
ℓ𝑚. 𝑠f𝑘ℓ𝑚 and 𝑠 f̄

𝑘
ℓ𝑚

will be given by Eqs. (4.133) and (4.134), respectively.

4.9.2 Radial part of the equation of 𝜗(1,1)

In this subsection, we present the radial part of Eq. (4.38) in both the IRG and ORG
found by following the procedures in Sec. 4.9.1. In the IRG, we find the radial parts
of terms proportional to 𝑒−𝑖𝜔𝑡 in Eqs. (4.95) and (4.98), respectively, to be

𝑉𝑅ℓ𝑚 (𝑟) =
(
𝑔ℓ𝑚1 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
+ 𝜒

(
𝑔ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚10𝑠 , (4.136)

𝑉□ℓ𝑚 (𝑟) = 𝜒
(
ℎℓ𝑚1 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + ℎℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚10𝑠 , (4.137)

where the terms proportional to 𝑏𝑚
ℓ,ℓ±1 or cos 𝜃 0𝑌ℓ𝑚 (𝜃, 𝜙) in Eq. (4.95) are at O(𝜒2)

after the angular integration. In the ORG, we find

𝑈𝑅
ℓ𝑚 (𝑟) =

(
gℓ𝑚1 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
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+ 𝜒
(
gℓ𝑚3 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚4 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−10𝑠 , (4.138)

𝑈□ℓ𝑚 (𝑟) = 𝜒
(
hℓ𝑚1 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + hℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−10𝑠 , (4.139)

where 𝑠 𝑅̂ℓ𝑚 (𝑟) is the radial part of the Hertz potential given in Eq. (4.55), Λℓℓ𝑚10𝑠 and
Λℓℓ𝑚−10𝑠 are given by Eq. (4.133), and the prime denotes a derivative with respect to
the radial coordinate 𝑟. The functions{

𝑔ℓ𝑚𝑖 (𝑟, 𝜔, 𝑀) , ℎℓ𝑚𝑗 (𝑟, 𝜔, 𝑀) , gℓ𝑚𝑖 (𝑟, 𝜔, 𝑀) , hℓ𝑚𝑗 (𝑟, 𝜔, 𝑀)
}
, (4.140)

where 𝑖 ∈ [1, 4] and 𝑗 ∈ [1, 2], are the same functions in Eqs. (4.95), (4.98), (4.115)
and (4.116) and presented in a separate Mathematica notebook [69].

Using Eq. (4.59), we can replace the radial Hertz potential 𝑠 𝑅̂ℓ𝑚 (𝑟) and its derivative
in Eqs. (4.136)–(4.139) with 𝑠𝑅

(0,1)
ℓ𝑚

(𝑟) and 𝑠𝑅
′(0,1)
ℓ𝑚

(𝑟). Notice that the form of the
equations remains similar with 𝑠 𝑅̂ℓ𝑚 (𝑟) now replaced by 𝑠𝑅

(0,1)
ℓ𝑚

(𝑟) and the prefactors
now new functions of {𝑟, 𝜔, 𝑀}. For instance, in the first parenthesis of Eq. (4.136),
one finds that the prefactor of 2𝑅

(0,1)
ℓ𝑚

(𝑟) is

𝑔ℓ𝑚1 (𝑟, 𝜔, 𝑀)2 𝑓
ℓ𝑚
1 (𝑟, 𝜔, 𝑀) + 𝑔ℓ𝑚2 (𝑟, 𝜔, 𝑀)2 𝑓

ℓ𝑚
3 (𝑟, 𝜔, 𝑀) . (4.141)

Each of the functions that would appear in 𝑉𝑅
ℓ𝑚
(𝑟), 𝑉□

ℓ𝑚
(𝑟),𝑈𝑅

ℓ𝑚
(𝑟), and𝑈□

ℓ𝑚
(𝑟) are

separately presented in the supplementary Mathematica notebook due to their lengthy
nature [69].

Combining Eq. (4.88) with Eqs. (4.136) and (4.137) [or Eqs. (4.138) and (4.139)],
we now have a completely radial equation that describes the evolution of the scalar
field perturbations,

IRG:
[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 +2(𝑟 − 𝑀)𝜕𝑟 +
𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= − 𝑀2

16𝜋
1
2
𝑟2

(
𝑉𝑅ℓ𝑚 (𝑟) + 𝜂ℓ𝑚𝑉

†𝑅
ℓ −𝑚 (𝑟)

)
− 𝑟2

(
𝑉□ℓ𝑚 (𝑟) + 𝜂ℓ𝑚𝑉

†□
ℓ −𝑚 (𝑟)

)
,

(4.142)

ORG:
[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 +2(𝑟 − 𝑀)𝜕𝑟 +
𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= − 𝑀2

16𝜋
1
2
𝑟2

(
𝑈𝑅
ℓ𝑚 (𝑟) + 𝜂ℓ𝑚𝑈

†𝑅
ℓ −𝑚 (𝑟)

)
− 𝑟2

(
𝑈□ℓ𝑚 (𝑟) + 𝜂ℓ𝑚𝑈

†□
ℓ −𝑚 (𝑟)

)
.

(4.143)

Recall that 𝑟𝑠 is the Schwarzschild radius, 𝑀 is the mass of the BH, 𝜒 is the
dimensionless spin parameter such that 𝜒 = 𝑎/𝑀 with 𝑎 being the spin, 0𝐴ℓ𝑚 is
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the separation constant for a spin-0 field [19], and
{
𝑉𝑅
ℓ𝑚
(𝑟), 𝑉□

ℓ𝑚
(𝑟),𝑈𝑅

ℓ𝑚
(𝑟),𝑈□

ℓ𝑚
(𝑟)

}
are radial functions given in Eqs. (4.136)–(4.139). The constant 𝜂ℓ𝑚 is the relative
coefficient between the (ℓ, 𝑚) and (ℓ,−𝑚) modes of Ψ(1,1)

0,4 in Eq. (4.131), of which
only certain values can solve Eqs. (4.132) and (4.135) consistently. To obtain this
coefficient, one has to solve Eq. (4.150) for the (ℓ, 𝑚) and (ℓ,−𝑚) modes of Ψ(1,1)

0
[or Eq. (4.154) for Ψ(1,1)

4 in the ORG] jointly. In [65], it was shown that one can turn
Eq. (4.150) [or Eq. (4.154)] into an eigenvalue problem, following [25, 39, 40], such
that the solutions of 𝜂ℓ𝑚 correspond to the eigenvectors of the system, and the QNM
frequencies 𝜔ℓ𝑚 are eigenvalues.

In the above equation,𝑉†𝑅
ℓ −𝑚 refers to taking the complex conjugate of all the radial func-

tions in 𝑉𝑅
ℓ −𝑚 but replacing {Λℓ1ℓ2𝑚𝑠1𝑠2 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 } with {Λ†ℓ1ℓ2𝑚

𝑠1𝑠2 ,Λ
†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 },

and similarly for 𝑉†□
ℓ −𝑚,𝑈†𝑅

ℓ −𝑚, and𝑈†□
ℓ −𝑚. Equations (4.142) and (4.143) can now be

solved for to obtain the scalar-led QNM frequencies. Notice that there is a coupling
between the scalar field perturbations and the gravitational perturbations in GR,
which appear in the form of the Hertz potential radial function ±2𝑅̂ℓ𝑚 (𝑟) in the IRG
or ORG, respectively.

4.9.3 Radial part of the equation of Ψ(1,1)
0

In this subsection, we present the radial part of the modified Teukolsky equation for
Ψ

(1,1)
0 . Just like in the case of the 𝜗 field, the left-hand side of the modified Teukolsky

equation Eq. (4.18) is the same as the Teukolsky equation in GR and is separable
under the decomposition in Eq. (4.101), with its radial part given by Eqs. (4.99)
and (4.100). To extract the radial part of the right-hand side, we follow the recipe
provided in Sec. 4.9.1 to eliminate all angular dependence.

First, integrating 𝐻 (1,0)
0 Ψ

(0,1)
0 , where 𝐻 (1,0)

0 is given by Eq. (4.103), with 2Ȳℓ𝑚 (𝜃, 𝜙),
we find the radial part Sgeo

ℓ𝑚
(𝑟) of S (1,1)

geo to be

Sgeo
ℓ𝑚

(𝑟) =
𝑖𝜒𝑚𝑀4

448𝑟9(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟) + 4𝑖𝜔𝑟2𝐶2(𝑟)

)
2𝑅

(0,1)
ℓ𝑚

(𝑟)

− 𝑖𝜒𝑀
4

16𝑟9

[
𝐶3(𝑟) − 𝐶4(𝑟)

(
𝑖𝜔𝑟2

2
+ 𝑟 (𝑟 − 𝑟𝑠)

2
𝜕𝑟

)]
2𝑅

(0,1)
ℓ𝑚

(𝑟)Λℓℓ𝑚22𝑐

− 𝑖𝜒𝑀
4

128𝑟9𝐶5(𝑟) 2𝑅
(0,1)
ℓ𝑚

(𝑟)
(√︁

(ℓ + 2) (ℓ − 1)Λℓℓ𝑚12𝑠 −
√︁
(ℓ + 3) (ℓ − 2)Λℓℓ𝑚32𝑠

)
,

(4.144)
where we have used Eqs. (4.67) and (4.68) to replace 𝜕𝜃 (2𝑌ℓ𝑚 (𝜃, 𝜙)) with 1𝑌ℓ𝑚 (𝜃, 𝜙)
and 3𝑌ℓ𝑚 (𝜃, 𝜙). In Eq. (4.144), recall once more that 𝑟𝑠 is the Schwarzschild radius,
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𝑀 is the mass of the BH, 𝜒 is the dimensionless spin parameter, Λℓℓ𝑚22𝑐 and Λℓℓ𝑚32𝑠
are given by Eqs. (4.133), and the functions 𝐶𝑖 with 𝑖 ∈ [1, 5] are presented in
Eqs. (4.162).

Next, due to the structure of Eq. (4.132), multiplying Eq. (4.111a) by 2Ȳℓ𝑚 (𝜃, 𝜙) and
Eq. (4.111b) by 2Ȳℓ−𝑚 (𝜃, 𝜙) and integrating over the 2-sphere, we find

S𝐴
ℓ𝑚 (𝑟) =(
𝑝ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
3 (𝑟, 𝜔, 𝑀)Θ′′

ℓ𝑚 (𝑟)
)

+ 𝜒
(
𝑝ℓ𝑚4 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
6 (𝑟, 𝜔, 𝑀)Θ′′

ℓ𝑚 (𝑟)
)
Λℓℓ𝑚12𝑠

+ 𝜒
(
𝑝ℓ𝑚7 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑝ℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
9 (𝑟, 𝜔, 𝑀)Θ′′

ℓ𝑚 (𝑟)
)
Λℓℓ𝑚22𝑐 ,

(4.145a)

S̃𝐴
ℓ𝑚 (𝑟) =

−
(
𝑝ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
3 (𝑟, 𝜔, 𝑀)Θ̄′′

ℓ𝑚 (𝑟)
)
(−1)𝑚

− 𝜒
(
𝑝ℓ𝑚4 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
6 (𝑟, 𝜔, 𝑀)Θ̄′′

ℓ𝑚 (𝑟)
)
Λ
†ℓℓ−𝑚
−12𝑠

+ 𝜒
(
𝑝ℓ𝑚7 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑝ℓ𝑚8 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟) + 𝑝
ℓ𝑚
9 (𝑟, 𝜔, 𝑀)Θ̄′′

ℓ𝑚 (𝑟)
)
Λ
†ℓℓ−𝑚
−22𝑐 .

(4.145b)

Here, S𝐴
ℓ𝑚
(𝑟) and S̃𝐴

ℓ𝑚
(𝑟) denote the radial part of the (ℓ, 𝑚) mode of S (1,1)

𝐴
(𝑟) and

S̃ (1,1)
𝐴

(𝑟), respectively. Notice that both S𝐴
ℓ𝑚
(𝑟) and S̃𝐴

ℓ −𝑚 (𝑟) contribute to the (ℓ, 𝑚)
mode of the radial modified Teukolsky equation in Eq. (4.132a). The coefficient
(−1)𝑚 in Eq. (4.145b) comes from that Λ†ℓℓ𝑚

−𝑠 𝑠 = (−1)𝑚+𝑠 since −𝑠𝑌ℓ −𝑚 (𝜃, 𝜙) =

(−1)𝑚+𝑠𝑠𝑌ℓ𝑚 (𝜃, 𝜙). The terms proportional to 0𝑏
𝑚
ℓ,ℓ±1 in Eqs. (4.111a) and (4.111b)

are at O(𝜒2) after the angular integration. We can further use Eq. (4.142) to rewrite
Θ′′
ℓ𝑚
(𝑟) in term of Θℓ𝑚 (𝑟), Θ′

ℓ𝑚
(𝑟), 2𝑅̂ℓ𝑚 (𝑟), and 2𝑅̂

′
ℓ𝑚
(𝑟) such that

S𝐴
ℓ𝑚 (𝑟) =

(
𝑘ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑘ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑘ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑘ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2𝑅̂
′
ℓ𝑚 (𝑟)

)
+ 𝜒

(
𝑘ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑘ℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑘ℓ𝑚7 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑘ℓ𝑚8 (𝑟, 𝜔, 𝑀) 2𝑅̂
′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚12𝑠

+ 𝜒
(
𝑘ℓ𝑚9 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + 𝑘ℓ𝑚10 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+𝑘ℓ𝑚11 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑘ℓ𝑚12 (𝑟, 𝜔, 𝑀) 2𝑅̂
′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚22𝑐 , (4.146a)

S̃𝐴
ℓ𝑚 (𝑟) = −

(
𝑘̄ℓ𝑚1 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)
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+𝑘̄ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2

¯̂𝑅′
ℓ𝑚 (𝑟)

)
(−1)𝑚

− 𝜒
(
𝑘̄ℓ𝑚5 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑘̄ℓ𝑚7 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚8 (𝑟, 𝜔, 𝑀) 2

¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
−12𝑠

+ 𝜒
(
𝑘̄ℓ𝑚9 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚10 (𝑟, 𝜔, 𝑀)Θ̄′

ℓ𝑚 (𝑟)

+𝑘̄ℓ𝑚11 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅ℓ𝑚 (𝑟) + 𝑘̄ℓ𝑚12 (𝑟, 𝜔, 𝑀) 2

¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
−22𝑐 , (4.146b)

where some of the radial functions 𝑘ℓ𝑚
𝑖

(𝑟, 𝜔, 𝑀) are

𝑘ℓ𝑚1 (𝑟, 𝜔, 𝑀) = − 1
𝑟7(𝑟 − 𝑟𝑠)2 6𝑖

√︁
𝜋(ℓ + 2)!/(ℓ − 1)!𝑀3 [

𝑀2(8 + 2𝑚𝜒(3𝑖 + 2𝜔𝑟))

− 2𝑀𝑟 (4 + 0𝐴ℓ𝑚 + 𝑖𝜔𝑟 + 𝑚𝜒(2𝑖 − 𝜔𝑟)) + 𝑟2
(
2 + 0𝐴ℓ𝑚 + 2𝑖𝑟𝜔 − 2𝑟2𝜔2

)]
,

(4.147a)

𝑘ℓ𝑚2 (𝑟, 𝜔, 𝑀) =
12

√︁
𝜋(ℓ + 2)!/(ℓ − 1)!𝑀3 [𝑀 (𝑚𝜒 − 3𝑖) + 𝑟 (2𝑖 − 𝜔𝑟)]

𝑟6(𝑟 − 𝑟𝑠)
, (4.147b)

while the remaining functions 𝑘ℓ𝑚
𝑖

(𝑟, 𝜔, 𝑀) for 𝑖 ∈ [3, 12] are provided in [69].
Recall that 𝑘̄ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀) are the complex conjugates of 𝑘ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀).

Similarly, projecting Eqs. (4.112a) and (4.112b) into the radial direction, we find

S𝐵
ℓ𝑚 (𝑟) = 𝜒

[(
𝑞ℓ𝑚1 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚12𝑠

+
(
𝑞ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚4 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚22𝑐

+
(
𝑞ℓ𝑚5 (𝑟, 𝜔, 𝑀) 2𝑅̂ℓ𝑚 (𝑟) + 𝑞ℓ𝑚6 (𝑟, 𝜔, 𝑀) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚32𝑠

]
, (4.148a)

S̃𝐵
ℓ𝑚 (𝑟) = 𝜒

[(
𝑞ℓ𝑚1 (𝑟, 𝜔, 𝑀) ¯̂𝑅ℓ𝑚 (𝑟) + 𝑞ℓ𝑚2 (𝑟, 𝜔, 𝑀) 2

¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
−12𝑠

+𝑞ℓ𝑚3 (𝑟, 𝜔, 𝑀) 2
¯̂𝑅ℓ𝑚 (𝑟)Λ†ℓℓ−𝑚

−22𝑐

]
. (4.148b)

The functions 𝑠 𝑅̂ℓ𝑚 (𝑟) and 𝑠
¯̂𝑅ℓ𝑚 (𝑟) are the radial parts of the Hertz potential [i.e.,

Eqs. (4.55)] and its complex conjugate, respectively. Prime denotes a derivative
with respect to the radial coordinate 𝑟. The coefficients

{
Λℓℓ𝑚12𝑠 ,Λ

ℓℓ𝑚
22𝑐 ,Λ

ℓℓ𝑚
32𝑠

}
and{

Λ
†ℓℓ−𝑚
−12𝑠 ,Λ

†ℓℓ−𝑚
−22𝑐

}
are given by Eqs. (4.133) and (4.134), respectively. Due to the

complicated functional form of 𝑞ℓ𝑚
𝑖
(𝑟, 𝜔, 𝑀) with 𝑖 ∈ [1, 6], we have presented

them in a separate Mathematica notebook [69]. The radial functions 𝑞ℓ𝑚
𝑖
(𝑟, 𝜔, 𝑀)

are given by

𝑞ℓ𝑚1 (𝑟, 𝜔, 𝑀) =
15𝑖ℓ(ℓ + 1)

√
ℓ2 + ℓ − 2𝑀4 (

18𝑀2 + 5𝑀𝑟 + 𝑟2) (6𝑀 + 𝑟 (−3 + 𝑖𝑟𝜔))
4𝑟12(𝑟 − 𝑟𝑠)

,

(4.149a)
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𝑞ℓ𝑚2 (𝑟, 𝜔, 𝑀) =
15𝑖ℓ(ℓ + 1)

√
ℓ2 + ℓ − 2𝑀4 (

18𝑀2 + 5𝑀𝑟 + 𝑟2)
4𝑟11 , (4.149b)

𝑞ℓ𝑚3 (𝑟, 𝜔, 𝑀) = −
15𝑖(ℓ − 1)ℓ(ℓ + 1) (ℓ + 2)𝑀4 (

54𝑀2 + 10𝑀𝑟 + 𝑟2)
16𝑟12 . (4.149c)

Combining Eqs. (4.18), (4.99), (4.100), (4.144), (4.146), and (4.148), the modified
master equation for the radial part of the Ψ

(1,1)
0 Weyl scalar is[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 6(𝑟 − 𝑀)𝜕𝑟 +

𝐶 (𝑟)
𝑟 − 𝑟𝑠

+ 4𝑚𝜒𝑀 (𝑖(𝑟 − 𝑀) − 𝑀𝜔𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− 2𝐴ℓ𝑚

]
2𝑅

(1,1)
ℓ𝑚

(𝑟)

= −2𝑟2
[
Sgeo
ℓ𝑚

(𝑟) +
(
S𝐴
ℓ𝑚 (𝑟) + S̃𝐴

ℓ −𝑚 (𝑟)
)
+

(
S𝐵
ℓ𝑚 (𝑟) + 𝜂ℓ𝑚S̃

𝐵
ℓ −𝑚 (𝑟)

)]
,

(4.150)
where 𝐶 (𝑟) is given by Eq. (4.100c), Sgeo

ℓ𝑚
(𝑟) is given in Eq. (4.144), S𝐴

ℓ𝑚
(𝑟) and

S̃𝐴
ℓ −𝑚 (𝑟) are given by Eqs. (4.146), whereas S𝐵

ℓ𝑚
(𝑟) and S̃𝐵

ℓ −𝑚 (𝑟) are given by
Eqs. (4.148). Notice that there is no 𝜂ℓ𝑚 in front of S̃𝐴

ℓ −𝑚 (𝑟) since S𝐴
ℓ𝑚
(𝑟) and

S̃𝐴
ℓ −𝑚 (𝑟) implicitly depend on 𝜂ℓ𝑚 via 𝜗 [i.e., Eq. (4.142)]. Furthermore, one needs

to solve the (ℓ, 𝑚) and (ℓ,−𝑚) modes of Eq. (4.150) jointly, from which one can
then obtain the coefficient 𝜂ℓ𝑚 between these two modes defined in Eq. (4.131) and
the QNM frequnecy 𝜔ℓ𝑚 2, as we will work out in [58] following the procedures in
[65].

Using Eq. (4.59), the radial part 2𝑅̂ℓ𝑚 (𝑟) of the Hertz potential ΨH in Eqs. (4.146)
and (4.148) can be further expressed as functions of the radial Teukolsky function

2𝑅
(0,1)
ℓ𝑚

(𝑟) for the perturbed Ψ0 in GR [19], as discussed in Sec. 4.9.2. All necessary
functions have been provided in a supplementary Mathematica notebook due to
their lengthy nature [69]. One can readily use existing wavefunction ansatz in the
literature to evaluate the radial Teukolsky function [22, 73].

Notice that the modified Teukolsky equation for the Weyl scalar perturbation Ψ
(1,1)
0

exhibits coupling to the scalar field perturbation at O(𝜁1, 𝜖1), but no such coupling
is seen for the scalar field perturbation at the same order, unlike the case involving
metric perturbations [9].

4.9.4 Radial part of the equations of Ψ(1,1)
4

In this subsection, we present the radial part of the modified Teukolsky equation for
the Weyl scalar perturbation Ψ

(1,1)
4 for a slowly rotating BH in dCS gravity. Similar

2The coefficient 𝜂ℓ−𝑚 and the QNM frequency𝜔ℓ−𝑚 are redundant with 𝜂ℓ𝑚 and𝜔ℓ𝑚, respectively,
since we solve the (ℓ, 𝑚) and (ℓ,−𝑚) modes jointly. More specifically, from Eq. (4.132) and a more
detailed discussion in [65], one can find that 𝜂ℓ−𝑚 = 1/(𝜂ℓ𝑚) when 𝜂ℓ𝑚 ≠ 0 and 𝜔ℓ−𝑚 = −𝜔̄ℓ𝑚.
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to the case studied in above Sec. 4.9.3, the left-hand side of the modified Teukolsky
equation for Ψ(1,1)

4 in Eq. (4.26) holds the same form as the left-hand side of the
Teukolsky equation for Ψ(0,1)

4 [19]. First, multiply 𝐻 (1,0)
4 Ψ

(0,1)
4 = H (1,0)

4 𝜓
(0,1)
4 by

−2Ȳℓ𝑚 (𝜃, 𝜙), with H (1,0)
4 given in Eq. (4.123), and integrate over the 2-sphere

T geo
ℓ𝑚

(𝑟) =
−𝑖𝜒𝑚𝑀4

448𝑟13(𝑟 − 𝑟𝑠)

(
𝐷1(𝑟) − 4𝑖𝜔𝑟2𝐷2(𝑟)

)
−2𝑅

(0,1)
ℓ𝑚

(𝑟)

+ 𝑖𝜒𝑀
4

16𝑟13

[
𝐷3(𝑟) − 𝐷4(𝑟)

(
𝑖𝜔𝑟2

2
− 𝑟 (𝑟 − 𝑟𝑠)

2
𝜕𝑟

)]
−2𝑅

(0,1)
ℓ𝑚

(𝑟)Λℓℓ𝑚−2−2𝑐

+ 𝑖𝜒𝑀4

128𝑟13𝐷5(𝑟) −2𝑅
(0,1)
ℓ𝑚

(𝑟)
(√︁

(ℓ + 2) (ℓ − 1)Λℓℓ𝑚−1−2𝑠 −
√︁
(ℓ + 3) (ℓ − 2)Λℓℓ𝑚−3−2𝑠

)
,

(4.151)

where −2𝑅
(0,1)
ℓ𝑚

(𝑟) is the radial function of 𝜌−4Ψ
(0,1)
4 presented in Eq. (4.119),{

Λℓℓ𝑚−1−2𝑠,Λ
ℓℓ𝑚
−3−2𝑠,Λ

ℓℓ𝑚
−2−2𝑐

}
are given in Eqs. (4.133), and 𝐷𝑖 (𝑟) for 𝑖 ∈ [1, 5] are

presented in Eqs. (4.163).

Next, we multiply Eq. (4.126a) by −2Ȳℓ𝑚 (𝜃, 𝜙) and Eq. (4.126b) by −2Ȳℓ−𝑚 (𝜃, 𝜙)
and integrate over the 2-sphere. We also make use of Eq. (4.143) to decompose the
Θ′′
ℓ𝑚
(𝑟) dependence in terms of Θℓ𝑚 (𝑟), Θ′

ℓ𝑚
(𝑟), −2𝑅̂ℓ𝑚 (𝑟), and −2𝑅̂

′
ℓ𝑚
(𝑟) such that

T 𝐴
ℓ𝑚 =

(
kℓ𝑚1 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + kℓ𝑚2 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+kℓ𝑚3 (𝑟, 𝜔, 𝑀)−2𝑅̂ℓ𝑚 (𝑟) + kℓ𝑚4 (𝑟, 𝜔, 𝑀)−2𝑅̂
′
ℓ𝑚 (𝑟)

)
+ 𝜒

(
kℓ𝑚5 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + kℓ𝑚6 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+kℓ𝑚7 (𝑟, 𝜔, 𝑀)−2𝑅̂ℓ𝑚 (𝑟) + kℓ𝑚8 (𝑟, 𝜔, 𝑀)−2𝑅̂
′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−1−2𝑠

+ 𝜒
(
kℓ𝑚9 (𝑟, 𝜔, 𝑀)Θℓ𝑚 (𝑟) + kℓ𝑚10 (𝑟, 𝜔, 𝑀)Θ′

ℓ𝑚 (𝑟)

+kℓ𝑚11 (𝑟, 𝜔, 𝑀)−2𝑅̂ℓ𝑚 (𝑟) + kℓ𝑚12 (𝑟, 𝜔, 𝑀)−2𝑅̂
′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−2−2𝑐 , (4.152a)

T̃ 𝐴
ℓ𝑚 = −

(
k̄
ℓ𝑚

1 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + k̄
ℓ𝑚

2 (𝑟, 𝜔, 𝑀)Θ̄′
ℓ𝑚 (𝑟)

+k̄ℓ𝑚3 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅ℓ𝑚 (𝑟) + k̄

ℓ𝑚

4 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
(−1)𝑚

− 𝜒
(
k̄
ℓ𝑚

5 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + k̄
ℓ𝑚

6 (𝑟, 𝜔, 𝑀)Θ̄′
ℓ𝑚 (𝑟)

+k̄ℓ𝑚7 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅ℓ𝑚 (𝑟) + k̄

ℓ𝑚

8 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
1−2𝑠

+ 𝜒
(
k̄
ℓ𝑚

9 (𝑟, 𝜔, 𝑀)Θ̄ℓ𝑚 (𝑟) + k̄
ℓ𝑚

10 (𝑟, 𝜔, 𝑀)Θ̄′
ℓ𝑚 (𝑟)

+k̄ℓ𝑚11 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅ℓ𝑚 (𝑟) + k̄

ℓ𝑚

12 (𝑟, 𝜔, 𝑀)−2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
2−2𝑐 , (4.152b)
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where we recall thatΘℓ𝑚 (𝑟) is the radial part of the scalar field perturbation, −2𝑅̂ℓ𝑚 (𝑟)
is the radial part of the Hertz potential in the ORG, prime denotes a derivative with
respect to the radial coordinate 𝑟 , and an overhead bar denotes complex conjugation.
The constants Λ and Λ† are given by Eqs. (4.133) and Eqs. (4.134), respectively, with
the relevant subscripts and superscripts. The functions kℓ𝑚𝑖 (𝑟, 𝜔, 𝑀) and k̄ℓ𝑚𝑖 (𝑟, 𝜔, 𝑀)
are given in a Mathematica notebook as supplementary material [69]. Similarly, the
source terms in Eq. (4.127) can be decomposed into a radial equation as

T 𝐵
ℓ𝑚 = 𝜒

[(
qℓ𝑚1 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚2 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−1−2𝑠

+
(
qℓ𝑚3 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚4 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−2−2𝑐

+
(
qℓ𝑚5 (𝑟, 𝜔, 𝑀) −2𝑅̂ℓ𝑚 (𝑟) + qℓ𝑚6 (𝑟, 𝜔, 𝑀) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚−3−2𝑠

]
, (4.153a)

T̃ 𝐵
ℓ𝑚 = 𝜒

[(
q̃ℓ𝑚1 (𝑟, 𝜔, 𝑀) −2

¯̂𝑅ℓ𝑚 (𝑟) + q̃ℓ𝑚2 (𝑟, 𝜔, 𝑀) −2
¯̂𝑅′
ℓ𝑚 (𝑟)

)
Λ
†ℓℓ−𝑚
1−2𝑠

+q̃ℓ𝑚3 (𝑟, 𝜔, 𝑀) −2
¯̂𝑅ℓ𝑚 (𝑟)Λ†ℓℓ−𝑚

2−2𝑐

]
. (4.153b)

Using Eq. (4.59), the radial function −2𝑅̂ℓ𝑚 (𝑟) of the Hertz potentialΨH in Eqs. (4.152)
and (4.153) can be expressed in terms of the radial Teukolsky function −2𝑅

(0,1)
ℓ𝑚

of 𝜌−4Ψ
(0,1)
4 in GR, as described in Sec. 4.9.2. All necessary functions have been

provided in a supplementary Mathematica notebook [69]. Combining Eqs. (4.26),
(4.117), (4.120), and (4.151)–(4.153), we find[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 − 2(𝑟 − 𝑀)𝜕𝑟 +
𝐷 (𝑟)
𝑟 − 𝑟𝑠

− 4𝑚𝜒𝑀 (𝑖(𝑟 − 𝑀) + 𝑀𝜔𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− −2𝐴ℓ𝑚

]
−2𝑅

(1,1)
ℓ𝑚

(𝑟)

= −2𝑟6
[
T geo
ℓ𝑚

(𝑟) +
(
T 𝐴
ℓ𝑚 (𝑟) + T̃ 𝐴

ℓ −𝑚 (𝑟)
)
+

(
T 𝐵
ℓ𝑚 (𝑟) + 𝜂ℓ𝑚T̃

𝐵
ℓ −𝑚 (𝑟)

)]
.

(4.154)
As before, one has to solve the (ℓ, 𝑚) and (ℓ,−𝑚) modes of Eq. (4.154) jointly to
obtain the coefficient 𝜂ℓ𝑚 in Eq. (4.131) and the QNM frequency 𝜔ℓ𝑚. This analysis
shows that the modified Teukolsky equations for the Weyl scalar perturbations Ψ(1,1)

0,4
and the scalar field perturbation 𝜗(1,1) can be separated into a radial and angular piece.
The radial piece can then be integrated numerically to obtain the QNM frequencies.

4.10 Discussion
In this paper, we have employed the modified Teukolsky formalism in [24] and
laid down the foundations to investigate the perturbations of slowly rotating BHs
in dCS gravity at leading order in spin, where the BH spacetime is non-Ricci-flat,
but remains of Petrov type D. In this work, we have calculated the master equations
that describe the perturbations of gravitational and scalar fields. To incorporate the
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slow-rotation approximation, we first extended the two-parameter expansion in [24]
to a three-parameter expansion. Following [42, 64], we then re-derived the null
geodesics on the equatorial plane, from which we found the NP tetrad for slowly
rotating BHs in dCS gravity up to O(𝜒). The resulting tetrad is the Kinnersly tetrad
expanded to O(𝜒), with an additional adjustment accounting for the dCS correction.
This tetrad is the same as the one in [64]. Since BHs in dCS gravity are non-Ricci-flat,
this direct extension of the Kinnersly tetrad leads to some nonzero background Weyl
scalars Ψ1 and Ψ3, so we performed additional tetrad rotations to remove them and
computed all the background NP quantities in this rotated tetrad.

The source terms of the modified Teukolsky equation for Ψ0,4 arise from two
distinct contributions. Some originate from the homogeneous component of certain
Bianchi and Ricci identities, so they only rely on the corrections to the background
geometry. For Petrov type D spacetimes, these stationary corrections only couple to
the perturbations of Ψ0,4, so we evaluated them using the NP quantities in the dCS
background and the solutions to the Teukolsky equation in GR. The other source
terms stem from the stress tensor associated with corrections to the Einstein-Hilbert
action. In dCS gravity, these source terms couple the scalar field with the metric in
GR. Thus, to completely evaluate them, we need to solve for the dynamical scalar
field. In this case, we first evaluated the scalar field equation and used the same
methodology to guide our calculations for Ψ0,4.

Since the scalar field is driven by dynamical metric perturbations in GR, one needs
to first reconstruct the metric associated with curvature perturbations in GR. In this
work, we chose to follow the CCK procedures developed in [34–37, 59–63], where
the perturbed metric is obtained from the Hertz potential, though other procedures
in [38, 42] may also apply. Using the reconstructed metric in [34–37, 59–63], we
then computed all the perturbed NP quantities in GR following the approach in [38,
66]. Since we also chose the gauge that the perturbations of Ψ1,3 vanish in both
GR and dCS gravity [24], we performed additional tetrad rotations to transform all
the perturbed NP quantities into this gauge. In the end, projecting the scalar field
equation onto the NP basis, we used the reconstructed NP quantities to express all
the source terms as differential operators acting on the Hertz potential.

The Hertz potential can be obtained from the perturbations of Ψ0,4 in GR, which are
solutions to the Teukolsky equations in GR. Decomposing the Hertz potential into
spin-weighted spheroidal harmonics, we presented the source terms of the scalar
field equation in Boyer-Lindquist coordinates explicitly. The radial function of the
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Hertz potential was then determined from the radial function of the perturbed Ψ0,4

in GR following [61].

In the IRG, the above steps led to three coupled, partial differential equations for the
(ℓ, 𝑚) and (ℓ,−𝑚) modes of the Weyl scalar perturbation in dCS Ψ

(1,1)
0 and the (ℓ, 𝑚)

mode of the scalar field perturbation 𝜗(1,1) [the (ℓ, 𝑚) and (ℓ,−𝑚) modes of 𝜗(1,1)

are redundant since 𝜗(1,1) is real], that we refer to as master equations. Similarly, in
the ORG, we obtained three coupled, partial differential equations for the (ℓ, 𝑚) and
(ℓ,−𝑚) modes of the Weyl scalar perturbation in dCS Ψ

(1,1)
4 and the (ℓ, 𝑚) mode of

𝜗(1,1) . More explicitly, the master equation of Ψ(1,1)
0 (or Ψ(1,1)

4 ) consists of the GR
Teukolsky operator for a spin 2 (or spin −2) field acting on Ψ

(1,1)
0 (or Ψ(1,1)

4 ), as well
as a source term that depends on 𝜗(1,1) and the Weyl scalar perturbation in GR Ψ

(0,1)
0

(or Ψ(0,1)
4 ). Similarly, the master equation of 𝜗(1,1) consists of the GR Teukolsky

operator for a scalar field acting on 𝜗(1,1) and a source term that depends on Ψ
(0,1)
0

(or Ψ(0,1)
4 ).

To separate these master equations into radial and angular ordinary differential
equations, we exploited the orthogonality properties of spin-weighted spheroidal har-
monics and performed a harmonic decomposition to eliminate all angular dependence
of the source terms. The homogeneous part of the scalar field equation naturally
separates, so we obtain a purely radial differential equation [i.e., Eq. (4.142) in the
IRG and Eq. (4.143) in the ORG]. Similar procedures were then implemented for the
modified Teukolsky equations of Ψ0,4. The source terms of the modified Teukolsky
equations were expressed in terms of the Hertz potential and the dynamical scalar
field. We then projected the source terms into the radial direction by integrating them
over spin-weighted spheroidal harmonics. The homogeneous part of these equations
separates in the same way as the Teukolsky equations in GR, so we also obtained
two radial differential equations for Ψ0 [i.e., Eq. (4.150)] and Ψ4 [i.e., Eq. (4.154)],
respectively.

Through these procedures, we obtained three coupled, ordinary (radial) differential
equations for

{
2𝑅

(1,1)
ℓ𝑚

(𝑟), 2𝑅
(1,1)
ℓ−𝑚 (𝑟), Θ(1,1)

ℓ𝑚
(𝑟)

}
(or

{
−2𝑅

(1,1)
ℓ𝑚

(𝑟), −2𝑅
(1,1)
ℓ−𝑚 (𝑟), Θ(1,1)

ℓ𝑚
(𝑟)

}
in the ORG), where the first two are radials functions of Ψ(1,1)

0 (or 𝜌−4Ψ
(1,1)
4 ), and

the last one is the radial function of 𝜗(1,1) . All of these equations have the same
structure. The left-hand side is the radial Teukolsky operator for particles of spin
2 (Ψ(1,1)

0 ), spin −2 (Ψ(1,1)
4 ), or spin 0 (𝜗(1,1)). For the radial master equation

of Ψ
(1,1)
0 (or Ψ

(1,1)
4 ), the right-hand side contains source terms that depend on{

Θ
(1,1)
ℓ𝑚

(𝑟), 2𝑅
(0,1)
ℓ𝑚

(𝑟), 2𝑅
(0,1)
ℓ−𝑚 (𝑟)

}
(or

{
Θ

(1,1)
ℓ𝑚

(𝑟), −2𝑅
(0,1)
ℓ𝑚

(𝑟), −2𝑅
(0,1)
ℓ−𝑚 (𝑟)

}
), where
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the last two are radial functions of Ψ
(0,1)
0 (or 𝜌−4Ψ

(0,1)
4 ). For the radial mas-

ter equation of 𝜗(1,1) , the right-hand side contains source terms that depend on{
2𝑅

(0,1)
ℓ𝑚

(𝑟), 2𝑅
(0,1)
ℓ−𝑚 (𝑟)

}
(or

{
−2𝑅

(0,1)
ℓ𝑚

(𝑟), −2𝑅
(0,1)
ℓ−𝑚 (𝑟)

}
). The coupled system there-

fore forms a (Sturm-Liouville) eigenvalue problem that should be amenable to
standard procedures to find the eigenvectors and eigenvalues, i.e., the QNM and
scalar frequencies.

The primary objective of this study was to apply the modified Teukolsky formalism
in [24] to investigate perturbations of BHs in some specific modified theories of
gravity. To illustrate this, we considered the case of slowly rotating BHs to leading
order in spin within the framework of dCS gravity. Although the slow rotation
approximation may not provide highly accurate results for more realistic BHs (with
spins 𝜒 ∼ 0.6), it is a simplified problem for testing the newly developed formalism.
Incorporating additional degrees of freedom associated with dCS gravity, coupled
with the intricacies introduced by the metric reconstruction procedures, renders
this calculation complex. Yet in this work, we successfully demonstrated that the
modified Teukolsky equation in [24] does not only decouple Weyl scalars Ψ0,4 from
other NP quantities but also admits a separation into radial and angular parts, a
key advantage of the Teukolsky equation in GR, especially for rapidly rotating BHs.
Although this paper focused on the first order in the slow rotation expansion, the
separation of the modified Teukolsky equation should hold for any spin since the
orthogonality properties of spin-weighted spheroidal harmonics we have used to
separate the equation apply for a general spin. Thus, this calculation is an ideal initial
step toward determining the QNM spectra for BHs with general spin in modified
gravity.

This work creates a new path to directly calculate the corrections to the QNM
frequencies for slowly rotating perturbed BHs in dCS gravity. Having obtained the
master equations for the perturbed Weyl scalars Ψ0,4 and the perturbed scalar field, we
can now integrate these equations using numerical integration schemes, such as the
eigenvalue perturbation method in [25, 39, 40] to find the QNM spectra. Moreover,
the QNM spectra obtained using the modified Teukolsky formalism can then be
compared to the results from the metric perturbation approach [6, 7, 9, 32, 74] and
numerical relativity [75–78]. Notice that, in higher-derivative gravity, Refs. [26, 27]
have followed our formalism to compute the QNMs in the slow-rotation expansion
of BHs in that theory, and they obtained results valid for 𝜒 ≲ 0.7. Nonetheless,
the dCS case we have focused on is more complicated due to the coupling to the
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scalar field equation. As discussed above, we have also presented in detail the
angular dependence of the master equations of the perturbed Ψ0,4 and 𝜗 and showed
explicitly that they are separable, while Refs. [26, 27] only briefly discussed using the
orthogonality of spin-weighted spheroidal harmonics to extract the radial equations.

An additional aspect worth exploring is the phenomenon of isospectrality breaking
in the QNM spectra. In GR, odd and even parity modes oscillate and decay at the
same rate. However, certain modified theories of gravity have been shown to exhibit
a breaking of isospectrality, e.g., dCS gravity [6, 7, 9, 32, 74], EdGB gravity [8, 10,
79], and higher-derivative gravity [55]. The investigation of isospectrality breaking
has, so far, primarily focused on metric perturbations, as the Zerilli-Moncrief and
Regge-Wheeler equations naturally separate metric perturbations into even- and
odd-parity sectors [15, 16]. However, for BHs with arbitrary spin, there are no
known extensions of the Zerilli-Moncrief and the Regge-Wheeler equations, so we
need to use the modified Teukolsky equation to study isospectrality breaking. In
another study [65] involving all the authors, the definite-parity modes of curvature
perturbations in modified gravity were found, and the features in these bGR theories
that result in isospectrality breaking were revealed and demonstrated in several simple
cases. Nonetheless, a direct mapping from the Zerilli-Moncrief and Regge-Wheeler
functions to the modified Teukolsy equations of these definite-parity modes still
remains unknown. The implementation of the modified Teukolsky equation in a
concrete bGR theory has opened up possibilities for addressing these questions and
more.

Building upon the insights gained from the present study, further investigations can
be pursued involving more complex systems within various gravitational theories. As
part of our collaborative effort, we are currently engaged in extending this calculation
to derive the master equations and QNM spectra for BHs with arbitrary spin in dCS
gravity, where the BH spacetime is Petrov type I. In addition, we are also actively
involved in computing the master equations for rotating Petrov type I BHs within the
framework of EdGB gravity. For the first time, we can explore the QNM spectra
for BHs with general spin in a wide range of gravitational theories and spacetime
geometries, which can then be compared with real observation data to scrutinize
these possible deviations from GR.
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4.11 Appendix: Principal tetrad, spin coefficients, and some auxiliary functions
In Sec. 4.3.4, we performed tetrad rotations to set Ψ(1,0)

1,3 = 0. As discussed in [42],
these tetrad rotations preserving the orthogonality conditions of the NP tetrad can be
divided into three types:

I : 𝑙 → 𝑙 , 𝑚 → 𝑚 + 𝑎𝑙 , 𝑚̄ → 𝑚̄ + 𝑎̄𝑙 , 𝑛→ 𝑛 + 𝑎̄𝑚 + 𝑎𝑚̄ + 𝑎𝑎̄𝑙 . (4.155a)

II : 𝑛→ 𝑛 , 𝑚 → 𝑚 + 𝑏𝑛 , 𝑚̄ → 𝑚̄ + 𝑏̄𝑛 , 𝑙 → 𝑙 + 𝑏̄𝑚 + 𝑏𝑚̄ + 𝑏𝑏̄𝑛 . (4.155b)

III : 𝑙 → 𝐴−1𝑙 , 𝑛→ 𝐴𝑛 , 𝑚 → 𝑒𝑖𝜑𝑚 , 𝑚̄ → 𝑒−𝑖𝜑𝑚̄ , (4.155c)

where 𝑎 and 𝑏 are complex functions while 𝐴 and 𝜑 are real functions. The
transformations of Weyl scalars and spin coefficients under the tetrad rotations in
Eq. (4.155) can be found in [42]. The tetrad rotations above are precise, but when
these rotation parameters are small, for example at O(𝜁1, 𝜖0), the rotations of the
tetrad at O(𝜁1, 𝜖0) simplify into

𝑙 (1,0) → 𝑙 (1,0) + 𝑏̄ (1,0)𝑚 + 𝑏 (1,0)𝑚̄ − 𝛿𝐴(1,0)𝑙 ,

𝑛(1,0) → 𝑛(1,0) + 𝑎̄ (1,0)𝑚 + 𝑎 (1,0)𝑚̄ + 𝛿𝐴(1,0)𝑛 ,

𝑚 (1,0) → 𝑚 (1,0) + 𝑎 (1,0)𝑙 + 𝑏 (1,0)𝑛 + 𝑖𝜑(1,0)𝑚 ,

(4.156)

where we defined 𝛿𝐴 = 𝐴− 1 and combined the three types of tetrad rotations. Then,
the Weyl scalars at O(𝜁1, 𝜖0) transform as

Ψ
(1,0)
0,2,4 → 0 ,

Ψ
(1,0)
1 → Ψ

(1,0)
1 + 3𝑏 (1,0)Ψ2 ,

Ψ
(1,0)
3 → Ψ

(1,0)
3 + 3𝑎̄ (1,0)Ψ2 ,

(4.157)

where we used that the background at O(𝜁0, 𝜖0) is Petrov type D, so Ψ
(0,0)
0,1,3,4 = 0.

Since the spin coefficients at O(𝜁1, 𝜖0) after the rotations can be easily computed
from the rotated tetrad, e.g., Eq. (4.158) in this work, we do not provide their general
transformations under the tetrad rotations here.

Using the tetrad rotations in Eq. (4.155) and the results in Eq. (4.157), we set
Ψ

(1,0)
1,3 = 0 and found the principal tetrad to be

𝑙𝜇 =

(
𝑟

𝑟 − 𝑟𝑠
, 1, 0,

𝜒𝑀

𝑟 (𝑟 − 𝑟𝑠)
+ 𝜁 𝜒𝐺̃ (𝑟)

2𝑟 (𝑟 − 𝑟𝑠)
− 𝜁 𝜒𝐴1(𝑟)

16𝑀𝑟7

)
, (4.158a)

𝑛𝜇 = 𝑁̃ (𝑟)
(

𝑟

𝑟 − 𝑟𝑠
, −1, 0,

𝜒𝑀

𝑟 (𝑟 − 𝑟𝑠)
+ 𝜁 𝜒𝐺̃ (𝑟)

2𝑟 (𝑟 − 𝑟𝑠)
+ 𝜁 𝜒𝐴3(𝑟)

16𝑀𝑟7(𝑟 − 𝑟𝑠)

)
, (4.158b)



247

𝑚𝜇 =
1

√
2𝑟

(
𝑖𝜒𝑀

(
1 + 𝜁 𝐴3(𝑟) − 𝐴1(𝑟) (𝑟 − 𝑟𝑠)

32𝑀2𝑟5(𝑟 − 𝑟𝑠)

)
sin 𝜃 ,

𝑖𝜁 𝜒

(
𝐴3(𝑟) + 𝐴1(𝑟) (𝑟 − 𝑟𝑠)

32𝑀𝑟6

)
sin 𝜃 , 1 − 𝑖𝜒𝑀 cos 𝜃

𝑟
, 𝑖

(
1 − 𝑖𝜒𝑀 cos 𝜃

𝑟

)
csc 𝜃

)
,

(4.158c)

where

𝐴1(𝑟) = 126𝑀7 + 60𝑀6𝑟 + 25𝑀5𝑟2 , (4.159a)

𝐴2(𝑟) = 18𝑀7 + 10𝑀6𝑟 + 5𝑀5𝑟2 , (4.159b)

𝐴3(𝑟) = 252𝑀8 − 6𝑀7𝑟 − 10𝑀6𝑟2 − 25𝑀5𝑟3 . (4.159c)

In the principal tetrad Eq. (4.158), the spin coefficients at background are

𝜎 = 𝜆 = 0 ,

𝜅 = − 4𝑟2

(𝑟 − 𝑟𝑠)2 𝜈 = −15𝑖𝜁 𝜒𝐵1(𝑟)
16
√

2𝑟7
sin 𝜃 ,

𝜌 =
2𝑟

𝑟 − 𝑟𝑠
𝜇 = −1

𝑟
− 𝑖𝑀𝜒

𝑟2

(
1 − 𝜁𝐵2(𝑟)

16𝑟5

)
cos 𝜃 ,

𝜏 = − 𝜋 = − 𝑖𝑀𝜒√
2𝑟2

(
1 + 𝜁𝐵3(𝑟)

32𝑟6

)
sin 𝜃 ,

𝜀 =
𝑖𝑀𝜁 𝜒𝐵2(𝑟)

32𝑟7 cos 𝜃 ,

𝛾 =
𝜇

2
+ 1

4𝑟

(
1 − 𝑖𝑀𝜒𝑟 − 𝑟𝑠

𝑟2 cos 𝜃
)
,

𝛼 = 𝛽 − (𝑟 cos 𝜃 + 𝑖𝑀𝜒 cos 2𝜃) csc 𝜃
√

2𝑟2

= − 1
2
√

2𝑟

[
cot 𝜃 − 𝑖𝑀𝜒

𝑟

( (
3 + 𝜁𝐵4(𝑟)

16𝑟6

)
sin 𝜃 − csc 𝜃

)]
, (4.160)

with

𝐵1(𝑟) = 42𝑀6 + 16𝑀5𝑟 + 5𝑀4𝑟2 , (4.161a)

𝐵2(𝑟) = 126𝑀5 + 60𝑀4𝑟 + 25𝑀3𝑟2 , (4.161b)

𝐵3(𝑟) = 1800𝑀6 − 162𝑀5𝑟 − 120𝑀4𝑟2 − 125𝑀3𝑟3 , (4.161c)

𝐵4(𝑟) = 270𝑀6 − 6𝑀5𝑟 − 15𝑀4𝑟2 − 25𝑀3𝑟3 . (4.161d)

Using the above NP quantities at O(𝜁1, 𝜖0), we computed the correction to the
Teukolsky operators in Sec. 4.6.1. In Eq. (4.103), these radial functions are defined
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to be

𝐶1(𝑟) = 17640𝑀4 − 17196𝑀3𝑟 + 6𝑀2𝑟2 + 210𝑀𝑟3 + 1295𝑟4 , (4.162a)

𝐶2(𝑟) = 189𝑀3 + 120𝑀2𝑟 + 70𝑀𝑟2 , (4.162b)

𝐶3(𝑟) = 342𝑀3 − 816𝑀2𝑟 − 385𝑀𝑟2 − 165𝑟3 , (4.162c)

𝐶4(𝑟) = 774𝑀2 + 360𝑀𝑟 + 145𝑟2 , (4.162d)

𝐶5(𝑟) = 1800𝑀3 − 378𝑀2𝑟 − 240𝑀𝑟2 − 185𝑟3 . (4.162e)

The radial functions in Eq. (4.123) are given by

𝐷𝑖 (𝑟) = 𝐶𝑖 (𝑟) 𝑖 ≠ 3 , (4.163a)

𝐷3(𝑟) = 1206𝑀3 − 12𝑀2𝑟 − 45𝑀𝑟2 − 125𝑟3 . (4.163b)

4.12 Appendix: Reconstructed NP quantities
In this appendix, we provide the explicit expressions of these reconstructed NP
quantities in Sec. 4.4. As discussed in Sec. 4.4, one can write these structure
constants 𝐶𝑎𝑏𝑐 in terms of spin coefficients using Eq. (4.74) and the definition of
spin coefficients in terms of Ricci rotation coefficients

𝜅 = 𝛾131 , 𝜆 = −𝛾244 , 𝜎 = 𝛾133 , 𝜇 = −𝛾243 ,

𝜋 = −𝛾241 , 𝜏 = 𝛾132 , 𝜀 =
1
2
(𝛾121 − 𝛾341) , 𝜌 = 𝛾134 ,

𝛼 =
1
2
(𝛾124 − 𝛾344) , 𝛽 =

1
2
(𝛾123 − 𝛾343) , 𝜈 = −𝛾242 , 𝛾 =

1
2
(𝛾122 − 𝛾342) .

(4.164)

It was found in [42] that

𝐶12
1 = −(𝛾 + 𝛾̄) , 𝐶12

2 = −(𝜀 + 𝜀) , 𝐶12
3 = 𝜏 + 𝜋 ,

𝐶13
1 = −𝛼̄ − 𝛽 + 𝜋̄ , 𝐶13

2 = −𝜅 , 𝐶13
3 = 𝜌̄ + 𝜀 − 𝜀 , 𝐶13

4 = 𝜎 ,

𝐶23
1 = 𝜈̄ , 𝐶23

2 = −𝜏 + 𝛼̄ + 𝛽 , 𝐶23
3 = −𝜇 + 𝛾 − 𝛾̄ , 𝐶23

4 = −𝜆̄ ,
𝐶34

1 = 𝜇 − 𝜇̄ , 𝐶34
2 = 𝜌 − 𝜌̄ , 𝐶34

3 = 𝛽 − 𝛼 ,

(4.165)

and the other components can be found by using complex conjugation and that 𝐶𝑎𝑏𝑐

is antisymmetric in its first two indices. Solving the above equation, one can also
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express spin coefficients in terms of 𝐶𝑎𝑏𝑐,

𝜅 = 𝐶31
2 , 𝜎 = −𝐶31

4 , 𝜆 = 𝐶42
3 , 𝜈 = −𝐶42

1 ,

𝜌 = −1
2

(
𝐶31

3 + 𝐶41
4 + 𝐶43

2
)
, 𝜇 =

1
2

(
𝐶32

3 + 𝐶42
4 − 𝐶43

1
)
,

𝜋 = −1
2

(
𝐶41

1 + 𝐶42
2 + 𝐶21

3
)
, 𝜏 =

1
2

(
𝐶31

1 + 𝐶32
2 − 𝐶21

4
)
,

𝜀 =
1
4

(
𝐶41

4 − 𝐶31
3 + 2𝐶21

2 + 𝜌 − 𝜌̄
)
, 𝛾 =

1
4

(
𝐶42

4 − 𝐶32
3 + 2𝐶21

1 + 𝜇 − 𝜇̄
)
,

𝛼 =
1
4

(
𝐶41

1 − 𝐶42
2 + 2𝐶43

3 + 𝜏 − 𝜋
)
, 𝛽 =

1
4

(
𝐶31

1 − 𝐶32
2 + 2𝐶43

4 + 𝜏 − 𝜋̄
)
.

(4.166)
Then following the procedures in Sec. 4.4, one finds the spin coefficients at O(𝜁0, 𝜖1)
to be

𝜅 (0,1) =
1
2
𝛿[−2,−2,1,1]ℎ

(0,1)
𝑙𝑙

− 𝐷 [−2,0,0,−1]ℎ
(0,1)
𝑙𝑚

, (4.167a)

𝜎 (0,1) = − 1
2
𝐷 [−2,2,1,−1]ℎ

(0,1)
𝑚𝑚 + (𝜋̄ + 𝜏)ℎ(0,1)

𝑙𝑚
, (4.167b)

𝜆(0,1) = (𝜋 + 𝜏)ℎ(0,1)
𝑛𝑚̄

+ 1
2
Δ[−1,1,2,−2]ℎ

(0,1)
𝑚̄𝑚̄

, (4.167c)

𝜈(0,1) = − 1
2
𝛿[2,2,−1,−1]ℎ

(0,1)
𝑛𝑛 + 𝚫[0,1,2,0]ℎ

(0,1)
𝑛𝑚̄

, (4.167d)

𝜖 (0,1) =
1
4

[
𝚫[−1,1,0,−2]ℎ

(0,1)
𝑙𝑙

− 2𝐷 [0,0, 12 ,−
1
2 ]
ℎ
(0,1)
𝑙𝑛

− 𝛿[−2,0,−3,−2]ℎ
(0,1)
𝑙𝑚

+ 𝛿[−2,0,1,2]ℎ
(0,1)
𝑙𝑚̄

− (𝜌 − 𝜌̄)ℎ(0,1)
𝑚𝑚̄

]
,

(4.167e)

𝜌(0,1) =
1
2

[
− 𝜇ℎ(0,1)

𝑙𝑙
− (𝜌 − 𝜌̄)ℎ(0,1)

𝑙𝑛
− 𝛿[−2,0,−1,0]ℎ

(0,1)
𝑙𝑚

+ 𝛿[−2,0,1,2]ℎ
(0,1)
𝑙𝑚̄

− 𝐷 [0,0,1,−1]ℎ
(0,1)
𝑚𝑚̄

]
,

(4.167f)

𝜇(0,1) =
1
2

[
− 𝜌ℎ(0,1)𝑛𝑛 − 𝛿[0,2,−2,−1]ℎ

(0,1)
𝑛𝑚 + 𝛿[0,2,0,1]ℎ(0,1)𝑛𝑚̄

+ (𝜇 + 𝜇̄)ℎ(0,1)
𝑙𝑛

+ 𝚫[−1,1,0,0]ℎ
(0,1)
𝑚𝑚̄

]
,

(4.167g)

𝛾 (0,1) =
1
4

[
− 𝐷 [0,2,1,−1]ℎ

(0,1)
𝑛𝑛 − 𝛿[0,2,−2,−1]ℎ

(0,1)
𝑛𝑚 + 𝛿[0,2,2,3]ℎ(0,1)𝑛𝑚̄

− (𝜇 − 𝜇̄ − 4𝛾)ℎ(0,1)
𝑙𝑛

− (𝜇 − 𝜇̄)ℎ(0,1)
𝑚𝑚̄

]
,

(4.167h)

𝛼(0,1) =
1
4

[
− 𝐷 [−2,0,−1,−2]ℎ

(0,1)
𝑛𝑚̄

+ 𝛿[−2,0,1,1]ℎ
(0,1)
𝑚̄𝑚̄

− 𝛿[0,0,−1,−1]ℎ
(0,1)
𝑙𝑛

+ 𝚫[−2,1,4,−2]ℎ
(0,1)
𝑙𝑚̄

− 𝛿[2,0,−1,−1]ℎ
(0,1)
𝑚𝑚̄

]
,

(4.167i)

𝛽(0,1) =
1
4

[
− 𝐷 [−4,2,2,−1]ℎ

(0,1)
𝑛𝑚 − 𝛿[0,2,−1,−1]ℎ

(0,1)
𝑚𝑚 − 𝛿[0,0,−1,−1]ℎ

(0,1)
𝑙𝑛

+ 𝚫[1,2,2,0]ℎ
(0,1)
𝑙𝑚

+ 𝛿[0,−2,1,1]ℎ
(0,1)
𝑚𝑚̄

]
,

(4.167j)
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𝜋(0,1) =
1
2

[
𝐷 [2,0,−1,0]ℎ

(0,1)
𝑛𝑚̄

+ 𝜏ℎ(0,1)
𝑚̄𝑚̄

− 𝛿[0,0,−1,−1]ℎ
(0,1)
𝑙𝑛

+ 𝚫[0,1,0,−2]ℎ
(0,1)
𝑙𝑚̄

+ 𝜏ℎ(0,1)
𝑚𝑚̄

]
,

(4.167k)

𝜏(0,1) =
1
2

[
− 𝐷 [0,2,0,−1]ℎ

(0,1)
𝑛𝑚 + 𝜋ℎ(0,1)𝑚𝑚 + 𝛿[0,0,1,1]ℎ(0,1)𝑙𝑛

− 𝚫[1,0,−2,0]ℎ
(0,1)
𝑙𝑚

+ 𝜋̄ℎ(0,1)
𝑚𝑚̄

]
.

(4.167l)

For Weyl scalars at O(𝜁0, 𝜖1), one can use Ricci identities to retrieve them from spin
coefficients. The equations below work for both vacuum and non-vacuum spacetimes
since we have linearly combined Ricci identities to remove NP Ricci scalars Φ𝑎𝑏

following [38, 66].

Ψ0 = 𝐷 [−3,1,−1,−1]𝜎 − 𝛿[−1,−3,1,−1]𝜅 , (4.168a)

Ψ1 = 𝐷 [0,1,0,−1]𝛽 − 𝛿[−1,0,1,0]𝜀 − (𝛼 + 𝜋)𝜎 + (𝛾 + 𝜇)𝜅 , (4.168b)

Ψ2 =
1
3

[
𝛿[−2,1,−1,−1]𝛽 − 𝛿[−1,0,1,1]𝛼 + 𝐷 [1,1,1,−1]𝛾 − 𝚫[−1,1,−1,−1]𝜀

+ 𝛿[−1,1,−1,−1]𝜏 − 𝚫[−1,1,−1,−1]𝜌 + 2(𝜈𝜅 − 𝜆𝜎)
]
,

(4.168c)

Ψ3 = 𝛿[0,1,0,−1]𝛾 − 𝚫[0,1,0,−1]𝛼 + (𝜀 + 𝜌)𝜈 − (𝛽 + 𝜏)𝜆 , (4.168d)

Ψ4 = 𝛿[3,1,1,−1]𝜈 − 𝚫[1,1,3,−1]𝜆 . (4.168e)

The equations above are precise, so one needs to linearize them when extracting
the Weyl scalars at O(𝜁0, 𝜖1) using the perturbed tetrad and spin coefficients at
O(𝜁0, 𝜖1).

In Refs. [36, 59], they also computed the perturbed Weyl scalars in the IRG and
expressed them in terms of the Hertz potential,

Ψ
(0,1)
0 = −1

2
𝐷 [−3,1,0,−1]𝐷 [−2,2,0,−1]ℎ

(0,1)
𝑚𝑚 , (4.169a)

Ψ
(0,1)
1 = − 1

8

[
2𝐷 [−1,1,1,−1]𝐷 [0,2,1,−1]ℎ

(0,1)
𝑛𝑚 + 𝐷 [−1,1,1,−1]𝛿[−2,2,−2,−1]ℎ

(0,1)
𝑚𝑚

+ 𝛿[−3,1,−3,−1]𝐷 [−2,2,0,−1]ℎ
(0,1)
𝑚𝑚

]
,

(4.169b)

Ψ
(0,1)
2 = − 1

12

[
𝐷 [1,1,2,−1]𝐷 [2,2,2,−1]ℎ

(0,1)
𝑛𝑛,1 + 2

(
𝐷 [1,1,2,−1]𝛿[0,2,−1,−1]

+𝛿[−1,1,−2,−1]𝐷 [0,2,1,−1]
)
ℎ
(0,1)
𝑛𝑚 + 𝛿[−1,1,−2,−1]𝛿[−2,2,−2,−1]ℎ

(0,1)
𝑚𝑚

]
,

(4.169c)

Ψ
(0,1)
3 = − 1

8

[ (
𝐷 [3,1,3,−1]𝛿[2,2,0,−1] + 𝛿[1,1,−1,−1]𝐷 [2,2,,2,−1]

)
ℎ
(0,1)
𝑛𝑛,1

+ 𝛿[1,1,−1,−1]𝛿[0,2,−1,−1]ℎ
(0,1)
𝑛𝑚

]
,

(4.169d)
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Ψ
(0,1)
4 = − 1

2

[
𝛿[3,1,0,−1]𝛿[2,2,0,−1]ℎ

(0,1)
𝑛𝑛,1 + 3Ψ2

(
𝜏𝛿[4,0,0,0] − 𝜌𝚫[0,0,4,0]

−𝜇𝐷 [4,0,0,0] + 𝜋𝛿[0,4,0,0] + 2Ψ2
)
Ψ̄H

]
,

(4.169e)

where ℎ(0,1)
𝑛𝑛,1 is the piece of ℎ(0,1)𝑛𝑛 proportional to Ψ̄H in Eq. (4.50), i.e., ℎ (0,1)

𝑛𝑛,1 =

𝛿[1,3,0,−1]𝛿[0,4,0,3]Ψ̄H. As we discussed in Sec. 4.4, our results using either the Ricci
identities or direct computation from the linearized Riemann tensor agree for Ψ(0,1)

0,1,2,4
but not for Ψ(0,1)

3 due to different choices of the perturbed tetrad. Thus, we can use
Eq. (4.169) for Ψ(0,1)

0,1,2,4 and Eq. (4.168d) for Ψ(0,1)
3 .

For Schwarzschild, the equations above simplify into

Ψ
(0,1)
0 = −1

2
𝐷4Ψ̄H , (4.170a)

Ψ
(0,1)
1 = −1

2
𝐷3(𝛿 − 4𝛼)Ψ̄H , (4.170b)

Ψ
(0,1)
2 = −1

2
𝐷2(𝛿 − 2𝛼) (𝛿 − 4𝛼)Ψ̄H , (4.170c)

Ψ
(0,1)
3 = −1

2
𝐷𝛿(𝛿 − 2𝛼) (𝛿 − 4𝛼)Ψ̄H + 3

2
Ψ2ℎ𝑛𝑚̄ , (4.170d)

Ψ
(0,1)
4 = −1

2
(𝛿 + 2𝛼)𝛿(𝛿 − 2𝛼) (𝛿 − 4𝛼)Ψ̄H + 3

2
Ψ2 [𝜇𝐷 + 𝜌(𝚫 + 4𝛾) − 2Ψ2] ΨH ,

(4.170e)

where we have added the correction term 3
2Ψ2ℎ

(0,1)
𝑛𝑚̄

to Ψ
(0,1)
3 .

To use a consistent gauge with the one in Sec. 4.3.1, we need to rotate the tetrad to
remove Ψ

(0,1)
1,3 . Under type I and II tetrad rotations at O(𝜁0, 𝜖1), the tetrad becomes

𝑙 (0,1) → 𝑙 (0,1) + 𝑏̄ (0,1)𝑚 + 𝑏 (0,1)𝑚̄ − 𝛿𝐴(0,1)𝑙 ,

𝑛(0,1) → 𝑛(0,1) + 𝑎̄ (0,1)𝑚 + 𝑎 (0,1)𝑚̄ + 𝛿𝐴(0,1)𝑛 ,

𝑚 (0,1) → 𝑚 (0,1) + 𝑎 (0,1)𝑙 + 𝑏 (0,1)𝑛 + 𝑖𝜑(0,1)𝑚 ,

(4.171)

and the Weyl scalars transform as

Ψ
(0,1)
0,2,4 → 0 , Ψ

(0,1)
1 → Ψ

(0,1)
1 + 3𝑏 (0,1)Ψ2 , Ψ

(0,1)
3 → Ψ

(0,1)
3 + 3𝑎̄ (0,1)Ψ2 .

(4.172)
The rotation coefficients 𝑎 (0,1) and 𝑏 (0,1) are given by Eq. (4.77). For spin coefficients,
due to the complication of the reconstructed tetrad, instead of computing the spin
coefficients from the rotated tetrad directly, we chose to use the transformation of
spin coefficients under tetrad rotations in [42]. In this case, the spin coefficients
transform as

𝜅 (0,1) → 𝜅 (0,1) + 𝑏 (0,1)𝜌 − 𝐷𝑏 (0,1) ,
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𝜎 (0,1) → 𝜎 (0,1) + 𝑏 (0,1) (2𝛽 + 𝜏) − 𝛿𝑏 (0,1) ,
𝜆(0,1) → 𝜆(0,1) + 𝑎̄ (0,1) (2𝛼 + 𝜋) + 𝛿𝑎̄ ,
𝜈(0,1) → 𝜈(0,1) + 𝑎̄ (0,1) (𝜇 + 2𝛾) + 𝚫𝑎̄ (0,1) ,

𝜀(0,1) → 𝜀(0,1) + 𝑏̄ (0,1)𝛽 + 𝑏 (0,1) (𝛼 + 𝜋) ,
𝜌(0,1) → 𝜌(0,1) + 𝑏̄ (0,1)𝜏 + 2𝑏 (0,1)𝛼 − 𝛿𝑏 (0,1) ,
𝜇(0,1) → 𝜇(0,1) + 𝑎 (0,1)𝜋 + 2𝑎̄ (0,1)𝛽 + 𝛿𝑎̄ (0,1) ,
𝛾 (0,1) → 𝛾 (0,1) + 𝑎 (0,1)𝛼 + 𝑎̄ (0,1) (𝛽 + 𝜏) ,
𝛼(0,1) → 𝛼(0,1) + 𝑎̄ (0,1)𝜌 + 𝑏̄ (0,1)𝛾 ,
𝛽(0,1) → 𝛽(0,1) + 𝑏 (0,1) (𝜇 + 𝛾) ,
𝜋(0,1) → 𝜋(0,1) + 𝑏̄ (0,1)𝜇 + 𝐷𝑎̄ (0,1) ,
𝜏(0,1) → 𝜏(0,1) + 𝑎 (0,1)𝜌 + 2𝑏 (0,1)𝛾 − 𝚫𝑏 (0,1) . (4.173)

Furthermore, besides the tetrad rotations, when one performs coordinate transforma-
tions 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇 at O(𝜁0, 𝜖1), one finds

Ψ(0,1) → Ψ(0,1) + 𝜉𝜇(0,1)𝜕𝜇Ψ(0,0) + 𝜉𝜇(0,1)𝜕𝜇Ψ(0,0) . (4.174)

for the scalar-type NP quantities such as Weyl scalars and spin coefficients [66].

4.13 Appendix: Expression of Φ𝑖 𝑗

In Sec. 4.6.2, we want to rewrite the Ricci tensor in Eqs. (4.106) and (4.107) in
terms of Weyl scalars, spin coefficients, and directional derivatives. Since 𝛾𝑎𝑏𝑐 is
antisymmetric in the first two indices, it has 24 independent components. These 24
components can be further reduced to 14 components using complex conjugation,
which can then be expressed in terms of spin coefficients using the definition in
Eq. (4.164),

𝛾121 = 𝜀 + 𝜀 , 𝛾122 = 𝛾 + 𝛾̄ , 𝛾123 = 𝛼̄ + 𝛽 , 𝛾131 = 𝜅 , 𝛾132 = 𝜏 ,

𝛾133 = 𝜎 , 𝛾134 = 𝜌 , 𝛾231 = −𝜋̄ , 𝛾232 = −𝜈̄ , 𝛾233 = −𝜆̄ ,
𝛾234 = −𝜇̄ , 𝛾341 = 𝜀 − 𝜀 , 𝛾342 = 𝛾̄ − 𝛾 , 𝛾343 = 𝛼̄ − 𝛽 .

(4.175)

For Riemann tensor or Weyl tensor, it is antisymmetric within its first pair and second
pair of indices and symmetric under the exchange of the first and the second pair of
indices, so the total number of independent components reduce to 21 using these
symmetries. Besides these symmetries, 𝐶𝑎[𝑏𝑐𝑑] = 0 and 𝐶𝑎𝑏𝑐𝑑 is traceless in the
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vacuum, which further give us the following relations in [42]:

𝐶1314 = 𝐶1323 = 𝐶1424 = 𝐶2324 = 0 ,

𝐶1334 = −𝐶1213 , 𝐶2334 = 𝐶1223 , 𝐶3434 = 𝐶1212 , 𝐶1342 =
1
2
(𝐶1212 − 𝐶1234) ,

(4.176)
which reduce the number of independent components of 𝐶𝑎𝑏𝑐𝑑 to 10. These 10
independent components can be represented by 5 Weyl scalars and their conjugates.
With complex conjugation, we can find all the components of the Weyl tensor using
the symmetries above and the components below,

𝐶1212 = Ψ2 + Ψ̄2 , 𝐶1213 = Ψ1 , 𝐶1223 = −Ψ̄3 ,

𝐶1234 = Ψ̄2 − Ψ2 , 𝐶1313 = Ψ0 , 𝐶2323 = Ψ̄4 .
(4.177)

With Eqs. (4.106) and (4.107) and (4.175)–(4.177), we find Eq. (4.106) in the NP
basis to be

𝑅11 = 𝑖R1

{
(𝐷𝜗)

[
𝜆Ψ0 − 𝜆̄Ψ̄0 − (𝛼 + 𝛽 + 𝜋)Ψ1 + (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄1

+ (𝜀 + 𝜀) (Ψ2 − Ψ̄2)
]

− (𝚫𝜗)
[
𝜎̄Ψ0 − 𝜎Ψ̄0 − 𝜅Ψ1 + 𝜅Ψ̄1

]
+ (𝛿𝜗)

[
(𝛼̄ − 𝛽)Ψ̄0 + 𝜎̄Ψ1 + (𝜀 − 𝜀 − 𝜌̄)Ψ̄1 − 𝜅(Ψ2 − Ψ̄2)

]
− (𝛿𝜗)

[
(𝛼 − 𝛽)Ψ0 − (𝜀 − 𝜀 + 𝜌)Ψ1 + 𝜎Ψ̄1 + 𝜅(Ψ2 − Ψ̄2)

]
− 1

2
Ψ0{𝛿, 𝛿}𝜗 + 1

2
Ψ̄0{𝛿, 𝛿}𝜗 + Ψ1{𝐷, 𝛿}𝜗 − Ψ̄1{𝐷, 𝛿}𝜗

− (Ψ2 − Ψ̄2)
1
2
{𝐷, 𝐷}𝜗

}
+ R2(𝐷𝜗) (𝐷𝜗) , (4.178a)

𝑅12 =
𝑖

2
R1

{
(𝐷𝜗)

[
𝜈Ψ1 − 𝜈̄Ψ̄1 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄) (Ψ2 − Ψ̄2)

+ (𝛼̄ + 𝛽 + 𝜋̄) Ψ3 −
(
𝛼 + 𝛽 + 𝜋

)
Ψ̄3

]
− (𝚫𝜗)

[
(𝛼 + 𝛽 + 𝜏)Ψ1 − (𝛼̄ + 𝛽 + 𝜏)Ψ̄1

− (𝜀 + 𝜀 + 𝜌 + 𝜌̄) (Ψ2 − Ψ̄2) + 𝜅Ψ3 − 𝜅Ψ̄3

]
+ (𝛿𝜗)

[
𝜆Ψ1 − (𝛾 − 𝛾̄ + 𝜇)Ψ̄1 − (𝛼 − 𝛽 + 𝜋 − 𝜏) (Ψ2 − Ψ̄2)

+ (𝜀 − 𝜀 − 𝜌̄)Ψ3 + 𝜎̄Ψ̄3

]
− (𝛿𝜗)

[
(𝛾 − 𝛾̄ − 𝜇̄)Ψ1 + 𝜆̄Ψ̄1 + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏) (Ψ2 − Ψ̄2)
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+ 𝜎Ψ3 − (𝜀 − 𝜀 + 𝜌)Ψ̄3

]
− Ψ1{𝚫, 𝛿}𝜗 + Ψ̄1{𝚫, 𝛿}𝜗 + (Ψ2 − Ψ̄2)

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜗

− Ψ3{𝐷, 𝛿}𝜗 + Ψ̄3{𝐷, 𝛿}𝜗
}
+ R2(𝐷𝜗) (𝚫𝜗) , (4.178b)

𝑅13 =
𝑖

2
R1

{
(𝐷𝜗)

[
𝜈Ψ0 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄)Ψ1

− 2𝜆̄Ψ̄1 + (𝛼̄ + 𝛽 + 𝜋̄) (Ψ2 + 2Ψ̄2) − 2(𝜀 + 𝜀)Ψ̄3

]
− (𝚫𝜗)

[
(𝛼 + 𝛽 + 𝜏)Ψ0 − (𝜀 + 𝜀 + 𝜌 + 𝜌̄)Ψ1 − 2𝜎Ψ̄1 + 𝜅(Ψ2 + 2Ψ̄2)

]
+ (𝛿𝜗)

[
𝜆Ψ0 − (𝛼 − 𝛽 + 𝜋 − 𝜏)Ψ1 + 2(𝛼̄ − 𝛽)Ψ̄1

+ (𝜀 − 𝜀 − 𝜌̄) (Ψ2 + 2Ψ̄2) + 2𝜅Ψ̄3

]
− (𝛿𝜗)

[
(𝛾 − 𝛾̄ − 𝜇̄)Ψ0 + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏)Ψ1 + 𝜎(Ψ2 + 2Ψ̄2) − 2𝜅Ψ̄3

]
− Ψ0{𝚫, 𝛿}𝜗 + Ψ1

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜗 + Ψ̄1{𝛿, 𝛿}𝜗

− (Ψ2 + 2Ψ̄2){𝐷, 𝛿}𝜗 + Ψ̄3{𝐷, 𝐷}𝜗
}
+ R2(𝐷𝜗) (𝛿𝜗) , (4.178c)

𝑅22 = 𝑖R1

{
− (𝐷𝜗)

[
𝜈̄Ψ3 − 𝜈Ψ̄3 − 𝜆̄Ψ4 + 𝜆Ψ̄4

]
− (𝚫𝜗)

[
(𝛾 + 𝛾̄) (Ψ2 − Ψ̄2) − (𝛼̄ + 𝛽 + 𝜏)Ψ3 + (𝛼 + 𝛽 + 𝜏)Ψ̄3 + 𝜎Ψ4 − 𝜎̄Ψ̄4

]
+ (𝛿𝜗)

[
𝜈(Ψ2 − Ψ̄2) − (𝛾 − 𝛾̄ + 𝜇)Ψ3 + 𝜆Ψ̄3 + (𝛼̄ − 𝛽)Ψ4

]
+ (𝛿𝜗)

[
𝜈̄(Ψ2 − Ψ̄2) − 𝜆̄Ψ3 − (𝛾 − 𝛾̄ − 𝜇̄)Ψ̄3 + (𝛼 − 𝛽)Ψ̄4

]
− 1

2
(Ψ2 − Ψ̄2){𝚫,𝚫}𝜗 + Ψ3{𝚫, 𝛿}𝜗 − Ψ̄3{𝚫, 𝛿}𝜗

− 1
2
Ψ4{𝛿, 𝛿}𝜗 + 1

2
Ψ̄4{𝛿, 𝛿}𝜗

}
+ R2(𝚫𝜗) (𝚫𝜗) , (4.178d)

𝑅23 =
𝑖

2
R1

{
− (𝐷𝜗)

[
𝜈̄(2Ψ2 + Ψ̄2) − 2𝜆̄Ψ3 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄)Ψ̄3 + (𝛼 + 𝛽 + 𝜋)Ψ̄4

]
− (𝚫𝜗)

[
2(𝛾 + 𝛾̄)Ψ1 − (𝛼̄ + 𝛽 + 𝜏) (2Ψ2 + Ψ̄2) + 2𝜎Ψ3

+ (𝜀 + 𝜀 + 𝜌 + 𝜌̄)Ψ̄3 − 𝜅Ψ̄4

]
+ (𝛿𝜗)

[
2𝜈Ψ1 − (𝛾 − 𝛾̄ + 𝜇) (2Ψ2 + Ψ̄2) − 2(𝛼̄ − 𝛽)Ψ3

+ (𝛼 − 𝛽 + 𝜋 − 𝜏)Ψ̄3 + 𝜎̄Ψ̄4

]
+ (𝛿𝜗)

[
2𝜈̄Ψ1 − 𝜆̄(2Ψ2 + Ψ̄2) + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏)Ψ̄3 + (𝜀 − 𝜀 + 𝜌)Ψ̄4

]
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− Ψ1{𝚫,𝚫}𝜗 + (2Ψ2 + Ψ̄2){𝚫, 𝛿}𝜗 − Ψ3{𝛿, 𝛿}𝜗

− Ψ̄3

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜗 + Ψ̄4{𝐷, 𝛿}𝜗

}
+ R2(𝚫𝜗) (𝛿𝜗) , (4.178e)

𝑅33 = 𝑖R1

{
− (𝐷𝜗)

[
𝜈̄Ψ1 − 𝜆̄(Ψ2 − Ψ̄2) − (𝛼̄ + 𝛽 + 𝜋̄)Ψ̄3 + (𝜀 + 𝜀)Ψ̄4

]
− (𝚫𝜗)

[
(𝛾 + 𝛾̄)Ψ0 − (𝛼̄ + 𝛽 + 𝜏)Ψ1 + 𝜎(Ψ2 − Ψ̄2) + 𝜅Ψ̄3

]
+ (𝛿𝜗)

[
𝜈Ψ0 − (𝛾 − 𝛾̄ + 𝜇)Ψ1 − (𝛼̄ − 𝛽) (Ψ2 − Ψ̄2) + (𝜀 − 𝜀 − 𝜌̄) + 𝜅Ψ̄4

]
+ (𝛿𝜗)

[
𝜈̄Ψ0 − 𝜆̄Ψ1 − 𝜎Ψ̄3 + 𝜅Ψ̄4

]
− 1

2
Ψ0{𝚫,𝚫}𝜗 + Ψ1{𝚫, 𝛿}𝜗 − 1

2
(Ψ2 − Ψ̄2){𝛿, 𝛿}𝜗 − Ψ̄3{𝐷, 𝛿}𝜗

+ 1
2
Ψ̄4{𝐷, 𝐷}𝜗

}
+ R2(𝛿𝜗) (𝛿𝜗) , (4.178f)

𝑅34 =
𝑖

2
R1

{
(𝐷𝜗)

[
𝜈Ψ1 − 𝜈̄Ψ̄1 − (𝛾 + 𝛾̄ + 𝜇 + 𝜇̄) (Ψ2 − Ψ̄2)

+ (𝛼̄ + 𝛽 + 𝜋̄)Ψ3 − (𝛼 + 𝛽 + 𝜋)Ψ̄3

]
− (𝚫𝜗)

[
(𝛼 + 𝛽 + 𝜏)Ψ1 − (𝛼̄ + 𝛽 + 𝜏)Ψ̄1

− (𝜀 + 𝜀 + 𝜌 + 𝜌̄) (Ψ2 − Ψ̄2) + 𝜅Ψ3 − 𝜅Ψ̄3

]
+ (𝛿𝜗)

[
𝜆Ψ1 − (𝛾 − 𝛾̄ + 𝜇)Ψ̄1 − (𝛼 − 𝛽 + 𝜋 − 𝜏) (Ψ2 − Ψ̄2)

+ (𝜀 − 𝜀 − 𝜌̄)Ψ3 + 𝜎̄Ψ̄3

]
− (𝛿𝜗)

[
(𝛾 − 𝛾̄ − 𝜇̄)Ψ1 + 𝜆̄Ψ̄1 + (𝛼̄ − 𝛽 + 𝜋̄ − 𝜏) (Ψ2 − Ψ̄2)

+ 𝜎Ψ3 − (𝜀 − 𝜀 + 𝜌)Ψ̄3

]
− Ψ1{𝚫, 𝛿}𝜗 + Ψ̄1{𝚫, 𝛿}𝜗 + (Ψ2 − Ψ̄2)

[
{𝐷,𝚫} + {𝛿, 𝛿}

]
𝜗

− Ψ3{𝐷, 𝛿}𝜗 + Ψ̄3{𝐷, 𝛿}𝜗
}
+ R2(𝛿𝜗) (𝛿𝜗) , (4.178g)

where

R1 ≡ −
(

1
𝜅𝑔

) 1
2

𝑀2 , R2 ≡ 1
2𝜅𝑔𝜁

, (4.179)

and the remaining components of 𝑅𝑎𝑏 can be found by exchanging the indices or
complex conjugation.
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The Ricci NP scalars Φ𝑖 𝑗 are related to the Ricci tensor via

Φ00 =
1
2
𝑅11 , Φ01 =

1
2
𝑅13 , Φ02 =

1
2
𝑅33 , Φ10 =

1
2
𝑅14 , Φ11 =

1
4
(𝑅12 + 𝑅34) ,

Φ12 =
1
2
𝑅23 , Φ20 =

1
2
𝑅44 , Φ21 =

1
2
𝑅24 , Φ22 =

1
2
𝑅22 , Λ = 𝑅/24 .

(4.180)
Using the projection of the Ricci tensor onto the NP basis in Eq. (4.178), the stationary
scalar field in Eq. (4.15), and the NP quantities in Schwarzschild [setting 𝜁 = 𝜒 = 0
in Eqs. (4.158) and (4.160)], we find the O(𝜁1, 𝜒1, 𝜖0) contributions to Φ𝑖 𝑗

Φ
(1,1,0)
00 = Φ

(1,1,0)
02 = Φ

(1,1,0)
11 = Φ

(1,1,0)
20 = Φ

(1,1,0)
22 = 0 , (4.181a)

Φ
(1,1,0)
01 = Φ̄

(1,1,0)
10 = −

15𝑖𝑀5 (
18𝑀2 + 8𝑀𝑟 + 3𝑟2) sin 𝜃

16
√

2𝑟9
, (4.181b)

Φ
(1,1,0)
12 = Φ̄

(1,1,0)
21 = −

15𝑖𝑀5 (𝑟 − 𝑟𝑠)
(
18𝑀2 + 8𝑀𝑟 + 3𝑟2) sin 𝜃

32
√

2𝑟10
, (4.181c)

which are used in Sec. 4.6 to evaluate 𝑆(1,1,1)
𝐼 𝐴

and 𝑆(1,1,1)
𝐼 𝐼 𝐴

. From Eq. (4.181), one can
also find 𝑆(1,0)1,2 to be

𝑆
(1,1,0)
1 = −45𝑖𝑀5(42𝑀2 + 16𝑀𝑟 + 5𝑟2) sin 𝜃

16
√

2𝑟10
, 𝑆

(1,1,0)
2 = 0 . (4.182)

As discussed in Sec. 4.6, to compute S𝐼 𝐼𝐵, one needs to evaluate Φ
(1,1)
00 , Φ(1,1)

01 ,
and Φ

(1,1)
00 . When 𝜗 is stationary, since 𝜗(1,0,0) = 0, Φ(1,0,1)

𝑖 𝑗
= 0, and we have

only contributions from Φ
(1,1,1)
𝑖 𝑗

at O(𝜁1, 𝜒1, 𝜖1). Based on our classifications in in
Sec. 4.6, we find the first type of contributions to be

Φ
(1,1,1)
00,𝐴 = − 𝑖R1

2

[
Ψ

(0,0,1)
0

(
𝛿2 + 2𝛼𝛿

)
𝜗(1,1,0) − Ψ̄

(0,0,1)
0

(
𝛿2 + 2𝛼𝛿

)
𝜗(1,1,0)

+(Ψ(0,0,1)
2 − Ψ̄

(0,0,1)
2 )𝐷2𝜗(1,1,0)

]
, (4.183a)

Φ
(1,1,1)
01,𝐴 = − 𝑖R1

4

[
Ψ

(0,0,1)
0

(
{𝚫, 𝛿} − 𝜇𝛿

)
𝜗(1,1,0)

+(Ψ(0,0,1)
2 + 2Ψ̄(0,0,1)

2 ) ({𝐷, 𝛿} + 𝜌𝛿) 𝜗(1,1,0)
]
, (4.183b)

Φ
(1,1,1)
02,𝐴 = − 𝑖R1

2

[
Ψ

(0,0,1)
0 (𝚫2 + 2𝛾𝚫)𝜗(1,1,0) − Ψ̄

(0,0,1)
4 𝐷2𝜗(1,1,0)

+(Ψ(0,0,1)
2 − Ψ̄

(0,0,1)
2 ) (𝛿2 + 2𝛼𝛿)𝜗(1,1,0)

]
, (4.183c)

where we used that in Schwarzschild,

𝛼̄(0,0,0) = 𝛼(0,0,0) = −𝛽(0,0,0) , 𝜌̄(0,0,0) = 𝜌(0,0,0) ,

𝜇̄(0,0,0) = 𝜇(0,0,0) , 𝛾̄ (0,0,0) = 𝛾 (0,0,0) ,
(4.184)
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and other spin coefficients at O(𝜁0, 𝜒0, 𝜖0) vanish with the gauge choice Ψ
(0,1)
1 =

Ψ
(0,1)
3 = 0. For simplicity, we have also dropped the superscripts of all the terms at

O(𝜁0, 𝜖0). For the second type of contributions, we have

Φ
(1,1,1)
00,𝐵 = 0 , (4.185a)

Φ
(1,1,1)
01,𝐵 =

3𝑖R1

8

{
2
[
(𝐷 + 𝜌)𝑎 (0,0,1) + 2(𝛾 + 𝜇)𝑏 (0,0,1)

]
𝐷𝜗(1,1,0)

+2(𝐷 − 𝜌)𝑏 (0,0,1)𝚫𝜗(1,1,0) + 2
[
2𝛼𝑏 (0,0,1) + (𝛿 − 4𝛼)𝑏̄ (0,0,1)

]
𝛿𝜗(1,1,0)

+
[
2(𝛿 + 2𝛼)𝑏 (0,0,1) + 𝐷ℎ(0,0,1)𝑚𝑚

]
𝛿𝜗(1,1,0)

}
,

(4.185b)

Φ
(1,1,1)
02,𝐵 = 0 , (4.185c)

where we used that in Schwarzschild,

Ψ
(0,0,0)
0,1,3,4 = 0 , Ψ̄

(0,0,0)
2 = Ψ

(0,0,0)
2 . (4.186)

The parameters 𝑎 (0,0,1) and 𝑏 (0,0,1) are rotation parameters given by Eq. (4.77). For
the third type of contributions, we find

Φ
(1,1,1)
00,𝐶 = 0 , (4.187a)

Φ
(1,1,1)
01,𝐶 = − 3𝑖R1Ψ2

8

{
2
[
(𝐷 + 𝜌)ℎ(0,0,1)𝑛𝑚 + (𝐷 + 𝜌)𝑎 (0,0,1)

]
𝐷𝜗(1,1,0)

+2(𝐷 + 𝜌)𝑏 (0,0,1)𝚫𝜗(1,1,0)

+2𝛿𝑏̄ (0,0,1)𝛿𝜗(1,1,0) −
[
(𝐷 + 𝜌)ℎ(0,0,1)𝑚𝑚 − 2𝛿𝑏 (0,0,1)

]
𝛿𝜗(1,1,0)

+4
(
ℎ
(0,0,1)
𝑛𝑚 + 𝑎 (0,0,1)

)
𝐷2𝜗(1,1,0) + 4𝑏̄ (0,0,1)𝛿2𝜗(1,1,0)

+2𝑏 (0,0,1)
(
{𝐷,𝚫} + {𝛿, 𝛿}

)
𝜗(1,1,0) − ℎ(0,0,1)𝑚𝑚 {𝐷, 𝛿}𝜗(1,1,0)

}
,

(4.187b)

Φ
(1,1,1)
02,𝐶 = 0 , (4.187c)

where we used Eqs. (4.184) and (4.186).

For the last type of contributions, since 𝜗(1,1) can have both contributions from
𝜗(1,0,1) and 𝜗(1,1,1) , the background metric we need is generally up to O(𝜁0, 𝜒1, 𝜖0).
This is also true for the operators converting Φ𝑖 𝑗 to S. For this reason, we will not
expand the expression below explicitly in 𝜒 but do the expansion at the end when
plugging in the coordinate-based values of the NP quantities. Then, at O(𝜁1, 𝜖1), we
find

Φ
(1,1)
00,𝐷 = R2𝐷𝜗

(1,0)𝐷𝜗(1,1) − 𝑖R1

2
(Ψ2 − Ψ̄2)𝐷2𝜗(1,1) , (4.188a)
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Φ
(1,1)
01,𝐷 =

1
4

[
2R2(𝛿𝜗(1,0)𝐷 + 𝐷𝜗(1,0)𝛿)𝜗(1,1) + 𝑖R1(𝛼̄ + 𝛽 + 𝜋̄) (Ψ2 + 2Ψ̄2)𝐷𝜗(1,1)

−𝑖R1(Ψ2 + 2Ψ̄2) ({𝐷, 𝛿} + 𝜌̄𝛿)𝜗(1,1)
]
,

(4.188b)

Φ
(1,1)
02,𝐷 =

1
2

[
2R2𝛿𝜗

(1,0) + 𝑖R1(𝛽 − 𝛼̄) (Ψ2 − Ψ̄2)
]
𝛿𝜗(1,1) − R1(Ψ2 − Ψ̄2)𝛿2𝜗(1,1) .

(4.188c)

Notice, since we do not do an expansion in 𝜒 above, Eq. (4.188) works for fully
rotating BHs in dCS gravity. In addition, due to the expansion convention we used,
where we have absorbed an additional 𝜁

1
2 into the expansion of 𝜗, there are terms

taking the form ∼ R2𝜗
(1,0)𝜗(1,1) at O(𝜁1, 𝜖1). These terms come from the usual

pseudoscalar action with minimal coupling. In our expansion convention, we have
inserted 𝜁−1 before these terms [i.e., Eqs. (4.106) and (4.179)], so their contribution
is still at O(𝜁1, 𝜖1). In the equations above, we have also dropped the superscript for
terms at O(𝜁0, 𝜖0) for simplicity.

4.14 Appendix: An approach to compute projection coefficients in Eqs. (4.133)
and (4.134)

In this section, we present an approach to compute the projection coefficients in
Eqs. (4.133) and (4.134) using the series representation of spin-weighted spherical
harmonics 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) in Eq. (4.63). From Eq. (4.63), we can see that the integrals in
Eqs. (4.133) and (4.134) become a series sum over 𝑞1 and 𝑞2 of

Q(𝑎, 𝑏, 𝑐, 𝑑) ≡
∫

𝑑𝜃 sin𝑎
(
𝜃

2

)
cot𝑏

(
𝜃

2

)
sin1+𝑐 𝜃 cos𝑑 𝜃 , (4.189)

𝑎 = 2(ℓ1 + ℓ2) ,
𝑏 = 2(𝑞1 + 𝑞2) + 𝑠1 + 𝑠2 − 𝑚1 − 𝑚2 ,

𝑐, 𝑑 ∈ {0, 1} ,

multiplied by the remaining constants dependent on (𝑠1, ℓ1, 𝑚1) and (𝑠2, ℓ2, 𝑚2) in
Eq. (4.63). The integral in Eq. (4.189) can be evaluated analytically in terms of
Gamma functions, i.e.,

Q(𝑎, 𝑏, 0, 0) =
2Γ

(
1 + 𝑎−𝑏

2

)
Γ

(
1 + 𝑏

2

)
Γ

(
2 + 𝑎

2
) , (4.190a)

Q(𝑎, 𝑏, 0, 1) =
(2𝑏 − 𝑎)Γ

(
1 + 𝑎−𝑏

2

)
Γ

(
1 + 𝑏

2

)
Γ

(
3 + 𝑎

2
) , (4.190b)



259

Q(𝑎, 𝑏, 1, 0) =
4Γ

(
3+𝑎−𝑏

2

)
Γ

(
3+𝑏

2

)
Γ

(
3 + 𝑎

2
) , (4.190c)

so we can express the coefficients in Eqs. (4.133) and (4.134) as a series sum of
Gamma functions, which are much faster to evaluate than direct integration for large
ℓ1,2. More specifically, we get

𝚲ℓ1ℓ2𝑚𝑠1𝑠2
(𝛼, 𝛽)

=
1
2

√︄
(ℓ1 + 𝑚)!(ℓ1 − 𝑚)!(2ℓ1 + 1)

(ℓ1 + 𝑠1)!(ℓ1 − 𝑠1)!

√︄
(ℓ2 + 𝑚)!(ℓ2 − 𝑚)!(2ℓ2 + 1)

(ℓ2 + 𝑠2)!(ℓ2 − 𝑠2)!

×
ℓ−𝑠∑︁
𝑞=0

[ (
ℓ1 − 𝑠1

𝑞1

) (
ℓ1 + 𝑠1

𝑞1 + 𝑠1 − 𝑚

) (
ℓ2 − 𝑠2

𝑞2

) (
ℓ2 + 𝑠2

𝑞2 + 𝑠2 − 𝑚

)
(−1) (ℓ1+ℓ2−𝑠1−𝑠2+𝑞1+𝑞2)Q(2ℓ1 + 2ℓ2, 2𝑞1 + 2𝑞2 + 𝑠1 + 𝑠2 − 2𝑚, 𝛼, 𝛽)

]
,

(4.191a)

𝚲†ℓ1ℓ2−𝑚
𝑠1𝑠2

(𝛼, 𝛽)

=
1
2

√︄
(ℓ1 + 𝑚)!(ℓ1 − 𝑚)!(2ℓ1 + 1)

(ℓ1 + 𝑠1)!(ℓ1 − 𝑠1)!

√︄
(ℓ2 − 𝑚)!(ℓ2 + 𝑚)!(2ℓ2 + 1)

(ℓ2 + 𝑠2)!(ℓ2 − 𝑠2)!

×
ℓ−𝑠∑︁
𝑞=0

[ (
ℓ1 − 𝑠1

𝑞1

) (
ℓ1 + 𝑠1

𝑞1 + 𝑠1 − 𝑚

) (
ℓ2 − 𝑠2

𝑞2

) (
ℓ2 + 𝑠2

𝑞2 + 𝑠2 + 𝑚

)
(−1) (ℓ1+ℓ2−𝑠1−𝑠2+𝑞1+𝑞2)Q(2ℓ1 + 2ℓ2, 2𝑞1 + 2𝑞2 + 𝑠1 + 𝑠2, 𝛼, 𝛽)

]
,

(4.191b)

where

𝚲ℓ1ℓ2𝑚𝑠1𝑠2
(0, 0) = Λℓ1ℓ2𝑚𝑠1𝑠2

, 𝚲ℓ1ℓ2𝑚𝑠1𝑠2
(0, 1) = Λℓ1ℓ2𝑚𝑠1𝑠2𝑐

, 𝚲ℓ1ℓ2𝑚𝑠1𝑠2
(1, 0) = Λℓ1ℓ2𝑚𝑠1𝑠2𝑠

,

(4.192a)

𝚲†ℓ1ℓ2𝑚
𝑠1𝑠2

(0, 0) = Λ†ℓ1ℓ2𝑚
𝑠1𝑠2

, 𝚲†ℓ1ℓ2𝑚
𝑠1𝑠2

(0, 1) = Λ†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐

, 𝚲†ℓ1ℓ2𝑚
𝑠1𝑠2

(1, 0) = Λ†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠

.

(4.192b)

We have provided this series-sum representation of the coefficients in Eqs. (4.133)
and (4.134) in a Mathematica notebook as Supplementary Material [69].
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C h a p t e r 5

PERTURBATIONS OF SPINNING BLACK HOLES IN
DYNAMICAL CHERN-SIMONS GRAVITY: SLOW ROTATION

QUASINORMAL MODES

[1] Dongjun Li, Pratik Wagle, Nicolás Yunes, and Yanbei Chen. Perturbations
of spinning black holes in dynamical Chern-Simons gravity: Slow rotation
quasinormal modes. in preparation. 2024.

5.1 Introduction
The detection of gravitational waves (GWs) emitted by over a hundred binary black
hole (BH) mergers [1] opens an avenue to studying gravity in the strong regime.
Einstein’s general relativity (GR), although has passed numerous tests in our solar
system [2], is still undergoing tests in strong gravity. One important test one could
make with GW detections is to look at the ringdown part of the signal, where the
GWs are dominated by these quickly decaying and oscillating quasinormal modes
(QNMs) when the remnant BH settles down [3]. In GR, QNMs encode the mass,
spin, and charge of the remnant BH, which completely determine a BH spacetime as
required by the “no-hair” theorem [4, 5], which has been tested with the observational
data from the LIGO-Virgo-KAGRA collaboration [6–10].

Nonetheless, GR is unlikely to be the ultimate theory of gravity, as it is incompatible
with quantum mechanics and unable to explain certain observational puzzles, such
as the asymmetry of matter and antimatter in our universe [11]. For these reasons,
modifications to GR are introduced either by constructing a unified theory for
quantum gravity, such as string theory [12–17] and loop quantum gravity [18–23], or
by explaining certain observational puzzles. In beyond-GR theories, BH spacetimes
can carry additional hair due to the presence of other scalar or vector fields [24–30].
The spectrum of QNMs, in principle, allows us to extract these additional hairs as
well as the length scale or the coupling constant associated with these beyond-GR
interactions, which is the core idea of BH spectroscopy [31–33].

To compute the QNM spectrum for non-rotating BHs in GR, the standard approach
was developed by Regge, Wheeler, Zerilli, and Moncrief in [34–36], where one
separates the metric perturbations into even and odd parity. For each parity, one
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can construct a master function, i.e., the Regge-Wheeler (RW) and Zerilli-Moncrief
(ZM) functions for the even- and odd-parity metric perturbations, respectively, such
that its equation of motion can be reduced to a second-order ordinary differential
equation in the radial coordinate. The QNM spectrum of a Schwarzschild BH was
initially computed in [37] by numerical integration and can be more systematically
calculated using the continuous fraction method developed by Leaver in [38].

For rotating BHs in GR, directly solving metric perturbations is much more chal-
lenging due to the lack of spherical symmetry. In this case, one cannot easily
decouple the even- and odd-parity modes, find two master functions characterizing
all the metric components, and reduce their equations of motion into purely radial
ordinary differential equations. Built upon the Newman-Penrose (NP) formalism,
Teukolsky found a solution to this problem in [39–41] by instead solving for curvature
perturbations represented by two radiative Weyl scalars Ψ0 and Ψ4. In this case,
Teukolsky was able to reduce the NP equations describing Ψ0,4 into two decoupled
and separable partial differential equations. The solutions to the angular equations are
called spin-weighted spheroidal harmonics, and the radial equations are generalized
spheroidal wave equations [38]. Both the angular and radial parts of Ψ0,4, as well
as the QNM frequencies, can be calculated using the Leaver’s method in [38] and
extensions of it, such as the Mano-Suzuki-Takasugi method [42–45].

Many efforts have been made over the past ten years to study QNMs in beyond-GR
theories. For non-rotating BHs, one can still apply the standard metric perturbation
approach developed by [34–36]. Beyond-GR QNMs in the non-rotating case were
computed in, for example, dynamical Chern-Simons (dCS) gravity [46–48], Einstein
dilaton Gauss-Bonnet theory [49–51], higher-derivative gravity without extra fields
[52–54], and Einstein-Aether theory [55, 56]. For rotating BHs, the calculations of
QNMs are much more challenging. There are only a few examples available, which
all rely on the slow-rotation expansion, such as in dCS gravity [57, 58], EdGB gravity
[59, 60], and higher-derivative gravity [61, 62]. Although QNMs for a general
rotating BH could be extracted from full numerical simulations, for example, in
dCS gravity [63, 64], this approach has the issue of secularly growing terms. Until
recently, Refs. [65–67] made an important extension of the Teukolsky formalism
from GR to a wide class of beyond-GR theories admitting an effective-field-theory
description. This modified Teukolsky formalism, for the first time, allows a systematic
semi-analytical calculation of QNMs for BHs with a general spin, including these
fast rotating ones, in beyond-GR theories. As most of the remnant BHs of binary
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mergers are fast rotating [68, 69], applying the modified Teukolsky formalism to
specific beyond-GR theories is crucial for conducting BH spectroscopy.

The first attempt was made by [67, 70] on computing the QNM frequency shifts
in higher-derivative gravity without extra fields. They considered both the parity-
preserving and parity-violating corrections to the Einstein-Hilbert action up to the
sixth derivative of the metric. Although the modified Teukolsky formalism works
for BHs with a general spin, Refs. [67, 70] performed a slow-rotation expansion up
to O(𝜒14), where 𝜒 = 𝑎/𝑀 is the dimensionless spin, since the background BH
metric is known analytically only under the slow-rotation expansion. Their results
are valid for the spin up to 𝜒 ∼ 0.7. Another attempt was recently made by [71] on a
more complicated case, dCS gravity, where a pseudoscalar field 𝜗 is coupled to a
quadratic term in the Riemann tensor and its dual, the so-called Pontryagin density. In
[71], we successfully implemented the Chrzanowski-Cohen-Kegeles (CCK) [72–74]
procedure for metric reconstruction to compute all the source terms in the modified
Teukolsky equation derived in [65]. After a projection to the spin-weighted spheroidal
harmonics, we obtained two sets of radial ordinary differential equations in two
different gauges, the ingoing radiation gauge (IRG) and the outgoing radiation gauge
(ORG). For each set, we got an equation for the curvature perturbation (Ψ0 in the IRG
and Ψ4 in the ORG) and another equation for the (pseudo)scalar field perturbation.
In [71], we performed a slow-rotation expansion up to O(𝜒) since we would like to
compare our results with the one in [46–48, 57, 58].

In this work, we directly compute the QNM frequency shifts for a slowly rotating BH
up to O(𝜒) in dCS gravity using the radial equations found in [71]. We apply the
analysis of isospectrality breaking in [75] to simplify the radial master equations first
and then use the eigenvalue perturbation (EVP) method in [66, 76, 77] to compute
the QNM frequency shifts. Specifically, in Sec. 5.2, we briefly review the procedures
for computing the modified Teukolsky equations in dCS gravity in [71]. In Secs. 5.3
and 5.4, we apply the procedures in [75] to simplify the master equations for the
scalar field 𝜗 and for the Weyl scalars Ψ0,4, respectively. We also discuss the parity
features of these equations and their implications on the structure of isospectrality
breaking. In Sec. 5.5, we review the EVP method in [66, 76, 77], show how to apply
it to the specific case of dCS gravity when an extra scalar field presents, and then
compute the QNM frequency shifts. We present our results in Sec. 5.5 and compare
them to the previous calculations in [46–48, 57, 58]. In the end, we discuss future
avenues in this direction.
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5.2 Review of the master equations
In our previous work [71], we applied the modified Teukolsky formalism developed
in [65] to compute the master equations governing the perturbations of the Weyl
scalars Ψ0,4 and the (pseudo)scalar field 𝜗 for slowly rotating BHs in dCS gravity.
We successfully found four radial ordinary differential equations governing the
perturbations of Ψ0 and 𝜗 in the IRG and the perturbations of Ψ4 and 𝜗 in the ORG.
In this section, we will briefly review the derivation of these equations.

In dCS, the equations of motion for both the metric field and the scalar field were
found to be [28, 30, 78, 79]

□𝜗 = − 𝛼

4
𝑅𝜈𝜇𝜌𝜎

∗𝑅𝜇𝜈𝜌𝜎 , (5.1)

𝑅𝜇𝜈 = − 𝛼

𝜅𝑔
𝐶𝜇𝜈 +

1
2𝜅𝑔

𝑇𝜗𝜇𝜈 , (5.2)

where 𝜅𝑔 = 1
16𝜋 , 𝛼 is the dCS coupling constant, □ = ∇𝜇∇𝜇 is the D’Alembertian

operator, ∗𝑅𝜇𝜈𝜌𝜎 is the dual of the Riemann tensor,

∗𝑅𝜇𝜈𝜌𝜎 =
1
2
𝜖 𝜌𝜎𝛼𝛽𝑅𝜇𝜈𝛼𝛽 , (5.3)

and

𝐶𝜇𝜈 ≡ (∇𝜎𝜗) 𝜖𝜎𝛿𝛼(𝜇∇𝛼𝑅𝜈)𝛿 + (∇𝜎∇𝛿𝜗)∗𝑅𝛿(𝜇𝜈)𝜎 , (5.4)

𝑇𝜗𝜇𝜈 ≡
(
∇𝜇𝜗

)
(∇𝜈𝜗) . (5.5)

For a detailed review of dCS gravity and how Eqs. (5.1) and (5.2) are derived, one
can refer to [28, 30, 78, 79]. To solve these two equations, Ref. [71] took an effective
field theory approach by performing a two-parameter expansion, i.e.,

𝜗 = 𝜁𝜗(1,0) + 𝜁𝜖𝜗(1,1) , (5.6)

Ψ𝑖 = Ψ
(0,0)
𝑖

+ 𝜁Ψ(1,0)
𝑖

+ 𝜖Ψ(0,1)
𝑖

+ 𝜁𝜖Ψ(1,1)
𝑖

, (5.7)

where we take the Weyl scalars Ψ𝑖 as an example, and the other NP quantities follow
the same expansion scheme. The dimensionless constant 𝜁 is related to the dCS
coupling constant by

𝜁 ≡ 𝛼2

𝜅𝑔𝑀
4 (5.8)

with 𝑀 being the typical mass of the system. The other expansion parameter 𝜖
represents the strength of the GW perturbations of a binary merger’s remnant BH. For
example, for an EMRI, 𝜖 is proportional to the mass ratio between the stellar-mass
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object and the supermassive BH. As discussed in more detail in [71, 75], we do not
assume any hierarchy between 𝜁 and 𝜖 since their relative size depends on the details
of the bGR theory and the binary system. In this case, the terms at O(𝜁0, 𝜖0) and
O(𝜁1, 𝜖0) are computed using the slowly rotating Kerr metric and the dCS correction
to it. The terms at O(𝜁0, 𝜖1) correspond to GWs in GR, while the terms at O(𝜁1, 𝜖1)
are additional GWs driven by the dCS corrections, which we are interested in.

Using the expansion in Eq. (5.6), the scalar field equation Eq. (5.1) becomes

□(0,0)𝜗(1,1) = − 𝑀2

16𝜋
1
2
[𝑅∗𝑅] (0,1) − □(0,1)𝜗(1,0) . (5.9)

For the metric fields, instead of solving the trace-reversed Einstein equations in
Eq. (5.2), we will solve the modified Teukolsy equations found by [65, 71], i.e.,

𝐻
(0,0)
0 Ψ

(1,1)
0 = S (1,1)

geo + S (1,1) , (5.10)

𝐻
(0,0)
4 Ψ

(1,1)
4 = T (1,1)

geo + T (1,1) . (5.11)

Here, 𝐻 (0,0)
0,4 are the Teukolsky operators in GR for Ψ0,4, respectively. The source

terms S (1,1)
geo and T (1,1)

geo only depend on the dCS correction to the background
spacetime ℎ(1,0)𝜇𝜈 as well as the gravitational perturbation ℎ(0,1)𝜇𝜈 in GR, so they are
regarded as purely “geometrical.” In contrast, S (1,1) and T (1,1) directly depend on
the effective stress tensor [i.e., Eq. (5.2)], so they are driven by both the GR GW
ℎ
(0,1)
𝜇𝜈 and the scalar field perturbation 𝜗(1,1) . Notice that we absorbed a factor of
𝜁1/2 into 𝜗 in [71], so 𝜗(1,1) actually enters at O(𝜁1/2, 𝜖1). Thus, one can solve for
𝜗(1,1) first using Eq. (5.9) and then plug it into Eqs. (5.10) and (5.11) to solve for
Ψ

(1,1)
0,4 . For complete expressions of Eqs. (5.9)–(5.11) in terms of NP quantities, one

can refer to [65, 71].

To evaluate the source terms in Eqs. (5.9)–(5.11), one needs to know the metric
perturbation ℎ(0,1)𝜇𝜈 in GR. This was achieved by implementing the CCK procedures
[72–74, 80–85] to reconstruct the perturbed metric ℎ(0,1)𝜇𝜈 from the perturbed Weyl
scalars Ψ(0,1)

0,4 . This procedure relies on the IRG or the ORG, i.e.,

IRG: ℎ𝜇𝜈𝑙
𝜈 = 0 , ℎ = 0 , (5.12a)

ORG: ℎ𝜇𝜈𝑛
𝜈 = 0 , ℎ = 0 , (5.12b)

where 𝑙𝜇 and 𝑛𝜈 are two tetrad basis vectors in the NP formalism. Under these gauges,
ℎ
(0,1)
𝜇𝜈 can be expressed in terms of the so-called Hertz potential ΨH,

ℎ
(0,1)
𝜇𝜈 = O𝜇𝜈Ψ̄H + Ō𝜇𝜈ΨH , (5.13)
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where we use 𝑓 to denote the complex conjugate of 𝑓 . The operator O𝜇𝜈 in the
IRG and ORG can be found in [71, 84, 85]. Expanding Ψ

(0,1)
0,4 using spin-weighted

spheroidal harmonics 𝑠Yℓ𝑚 (𝜃, 𝜙) = 𝑠𝑆ℓ𝑚 (𝜃)𝑒𝑖𝑚𝜙,

Ψ
(0,1)
0 =

∑︁
ℓ,𝑚

2𝑅
(0,1)
ℓ𝑚

(𝑟)2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (5.14a)

Ψ
(0,1)
4 =

∑︁
ℓ,𝑚

−2𝑅
(0,1)
ℓ𝑚

(𝑟)−2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (5.14b)

and similarly for Ψ̄H,

IRG : Ψ̄H =
∑︁
ℓ,𝑚

2𝑅̂ℓ𝑚 (𝑟) 2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (5.15a)

ORG : Ψ̄H =
∑︁
ℓ,𝑚

−2𝑅̂ℓ𝑚 (𝑟) −2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (5.15b)

one can compute the radial parts 𝑠 𝑅̂ℓ𝑚 (𝑟) of ΨH from 𝑠𝑅
(0,1)
ℓ𝑚

(𝑟) following [81],

2𝑅̂ℓ𝑚 (𝑟) = − 2
ℭ
Δ2(𝑟) (𝐷†

ℓ𝑚
)4

[
Δ2(𝑟) 2𝑅

(0,1)
ℓ𝑚

(𝑟)
]
, (5.16a)

−2𝑅̂ℓ𝑚 (𝑟) =
32
ℭ

(𝐷ℓ𝑚)4
−2𝑅

(0,1)
ℓ𝑚

(𝑟) . (5.16b)

The operators 𝐷ℓ𝑚 and 𝐷†
ℓ𝑚

are defined to be

𝐷ℓ𝑚 = 𝜕𝑟 + 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔ℓ𝑚

Δ(𝑟) , 𝐷
†
ℓ𝑚

= 𝜕𝑟 − 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔ℓ𝑚

Δ(𝑟) , (5.17)

where 𝑎 is the spin of the BH, and Δ(𝑟) = 𝑟2 − 2𝑀𝑟 + 𝑎2. The coefficient ℭ is the
mode-dependent Teukolsky-Starobinsky constant [41, 67, 70, 81, 86, 87],

ℭ = 144𝑀2𝜔2
ℓ𝑚 +

(
8 + 6𝑠𝐵ℓ𝑚 + 𝑠𝐵

2
ℓ𝑚

)2
− 8

[
−8 + 𝑠𝐵

2
ℓ𝑚 (4 + 𝑠𝐵ℓ𝑚)

]
𝑚𝛾ℓ𝑚

+ 4
[
8 − 2𝑠𝐵ℓ𝑚 − 𝑠𝐵

2
ℓ𝑚 + 𝑠𝐵

3
ℓ𝑚 + 2 (−2 + 𝑠𝐵ℓ𝑚) (4 + 3𝑠𝐵ℓ𝑚) 𝑚2] 𝛾2

ℓ𝑚

− 8𝑚
(
8 − 12𝑠𝐵ℓ𝑚 + 3𝑠𝐵2

ℓ𝑚 + 4 (−2 + 𝑠𝐵ℓ𝑚) 𝑚2
)
𝛾3
ℓ𝑚

+ 2
(
42 − 22𝑠𝐵ℓ𝑚 + 3𝑠𝐵2

ℓ𝑚 + 8 (−11 + 3𝑠𝐵ℓ𝑚) 𝑚2 + 8𝑚4
)
𝛾4
ℓ𝑚

− 8𝑚
[
3𝑠𝐵ℓ𝑚 + 4

(
−4 + 𝑚2

)]
𝛾5
ℓ𝑚 + 4

(
−7 + 𝑠𝐵ℓ𝑚 + 6𝑚2

)
𝛾6
ℓ𝑚 − 8𝑚𝛾7

ℓ𝑚 + 𝛾8
ℓ𝑚 ,

(5.18)

where 𝛼̃2 = 𝑎2 − 𝑎𝑚/𝜔ℓ𝑚, 𝛾ℓ𝑚 = 𝜒𝑀𝜔ℓ𝑚, 𝑠𝐵ℓ𝑚 = 𝑠𝐴ℓ𝑚 + 𝑠, 𝑠 is the spin weight,
and 𝑠𝐴ℓ𝑚 is the angular separation constant in the Teukolsky equations [39]. Here,
we have used the Teukolsky-Starobinsky coefficient found in [67, 70] instead of the
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original one in [41, 81, 86, 87], the latter of which was derived for real frequencies.
For convenience, let us also define

D†
ℓ𝑚

≡ − 2
ℭ
Δ2(𝑟) (𝐷†

ℓ𝑚
)4Δ2(𝑟) , Dℓ𝑚 ≡ 32

ℭ
(𝐷ℓ𝑚)4 . (5.19)

In [71], we used the CCK procedures to evaluate all the source terms in Eqs. (5.9)–
(5.11). We found that the (ℓ, 𝑚) and (ℓ,−𝑚) modes of 2𝑅̂ℓ𝑚 (𝑟) (or −2𝑅̂ℓ𝑚 (𝑟)) in
the IRG (or ORG) are coupled to each other in the source terms. Thus, to solve
Eqs. (5.9)–(5.11) consistently, we need to solve the (ℓ, 𝑚) and (ℓ,−𝑚) modes of Ψ0

(or Ψ4) jointly by using the following ansatz:

𝑠Ψ
(0,1)
ℓ𝑚

=
∑︁
ℓ𝑚

𝑠𝑅
(0,1)
ℓ𝑚

(𝑟)𝑠Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 + 𝜂ℓ𝑚 𝑠𝑅
(0,1)
ℓ−𝑚 (𝑟)𝑠Yℓ −𝑚 (𝜃, 𝜙)𝑒𝑖𝜔̄ℓ𝑚𝑡 ,

(5.20a)

𝑠Ψ
(1,1)
ℓ𝑚

=
∑︁
ℓ𝑚

𝑠𝑅
(1,1)
ℓ𝑚

(𝑟)𝑠Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 + 𝜂ℓ𝑚 𝑠𝑅
(1,1)
ℓ−𝑚 (𝑟)𝑠Yℓ −𝑚 (𝜃, 𝜙)𝑒𝑖𝜔̄ℓ𝑚𝑡 ,

(5.20b)

where 2Ψℓ𝑚 ≡ Ψ0,ℓ𝑚 and −2Ψℓ𝑚 ≡ Ψ4,ℓ𝑚. Following [71, 75], to solve the (ℓ, 𝑚) and
(ℓ,−𝑚) modes consistently, we have imposed in Eq. (5.20) that

𝜔ℓ−𝑚 = −𝜔̄ℓ𝑚 , (5.21)

which is the same symmetry satisfied by the QNM frequencies in GR. Notice that
the coefficient 𝜂ℓ𝑚 is well-defined once we fix the normalization of 𝑠𝑅(0,1)

ℓ𝑚
(𝑟) to be

𝑠𝑅
(0,1)
ℓ−𝑚 (𝑟) = (−1)𝑚𝑠 𝑅̄(0,1)

ℓ𝑚
(𝑟) , (5.22)

and the same symmetry can be imposed on 𝑠 𝑅̂ℓ𝑚 (𝑟). Similarly, we expand the scalar
field perturbation 𝜗(1,1) as

𝜗(1,1) =
∑︁
ℓ,𝑚

Θℓ𝑚 (𝑟)
𝑟

0Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 . (5.23)

Notice that we include an extra factor of 1/𝑟 in Eq. (5.23) following [46, 47, 57], so
we will multiply a factor of 𝑟 to the scalar field equation found in [71], as discussed in
Sec. 5.3. Since 𝜗 is a real scalar field and 0Yℓ−𝑚 (𝜃, 𝜙) = (−1)𝑚0Ȳℓ𝑚 (𝜃, 𝜙), we need

Θ̄ℓ−𝑚 (𝑟) = (−1)𝑚Θℓ𝑚 (𝑟) . (5.24)

Using the ansatz in Eqs. (5.20) and (5.23) and projecting Eqs. (5.9), (5.10), and (5.11)
to 0Yℓ𝑚 (𝜃, 𝜙), 2Yℓ𝑚 (𝜃, 𝜙), and −2Yℓ𝑚 (𝜃, 𝜙), respectively, we got these purely radial
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ordinary differential equations governing
{
𝜗(1,1) ,Ψ(1,1)

0 ,Ψ
(1,1)
4

}
in [71]. In Secs. 5.3

and 5.4, we will closely look at and simplify these equations for the convenience
of calculating QNM frequencies in this work. We will focus on the equations of
𝜗(1,1) and Ψ

(1,1)
0 in the IRG as a demonstration, and the results in the ORG will be

presented at the end of each section.

5.3 Scalar field equation
In this section, we review and simplify the master equation governing the scalar field
perturbation 𝜗(1,1) in [71]. In [71], we found that up to O(𝜁1, 𝜒1, 𝜖1), the radial part
Θℓ𝑚 (𝑟) of 𝜗(1,1) in the IRG satisfies[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= 𝑉𝑅ℓ𝑚 (𝑟) +𝑉
□
ℓ𝑚 (𝑟) + 𝜂ℓ𝑚

(
𝑉
†𝑅
ℓ−𝑚 (𝑟) +𝑉

†□
ℓ−𝑚 (𝑟)

)
, (5.25a)[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2𝑟3 + 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ−𝑚

]
Θℓ−𝑚 (𝑟)

= 𝜂ℓ𝑚

(
𝑉𝑅ℓ−𝑚 (𝑟) +𝑉

□
ℓ−𝑚 (𝑟)

)
+𝑉†𝑅

ℓ𝑚
(𝑟) +𝑉†□

ℓ𝑚
(𝑟) , (5.25b)

where 𝑟𝑠 = 2𝑀 is the Schwarzschild radius, and

𝑉𝑅ℓ𝑚 (𝑟) = 𝑖
(
𝑔ℓ𝑚1 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚2 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚00

+ 𝜒
(
𝑔ℓ𝑚3 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚4 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚10𝑠 , (5.26a)

𝑉□ℓ𝑚 (𝑟) = 𝜒
(
ℎℓ𝑚1 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + ℎℓ𝑚2 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ𝑚10𝑠 . (5.26b)

The functions 𝑉†𝑅
ℓ−𝑚 and 𝑉†□

ℓ−𝑚 refer to taking the complex conjugate of all the radial
functions in 𝑉𝑅

ℓ𝑚
and 𝑉□

ℓ𝑚
but replacing {Λℓ1ℓ2𝑚𝑠1𝑠2 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 } with

{Λ†ℓ1ℓ2𝑚
𝑠1𝑠2 ,Λ

†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 }. Here, 𝑓 ′(𝑟) denotes the partial derivative of 𝑓 (𝑟) in 𝑟.

Notice that Eq. (5.25b) comes from the terms generated by the (ℓ,−𝑚) mode of
the ansatz in Eq. (5.20). It is different from taking 𝑚 to −𝑚 in Eq. (5.25a) directly,
which corresponds to another solution that is a factor 1/𝜂ℓ𝑚 of Eq. (5.20). We also
redefine all the radial functions 𝑔ℓ𝑚

𝑖
(𝑟) = 𝑔ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀) and ℎℓ𝑚

𝑖
(𝑟) = ℎℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀)

in [71] as following:

𝑔ℓ𝑚1 (𝑟) → 𝑖
𝑀2𝑟3

16𝜋
1
2
𝑔ℓ𝑚1 (𝑟) , 𝑔ℓ𝑚2 (𝑟) → 𝑖

𝑀2𝑟3

16𝜋
1
2
𝑔ℓ𝑚2 (𝑟) ,

𝑔ℓ𝑚3 (𝑟) → −𝑀
2𝑟3

16𝜋
1
2
𝑔ℓ𝑚3 (𝑟) , 𝑔ℓ𝑚4 (𝑟) → −𝑀

2𝑟3

16𝜋
1
2
𝑔ℓ𝑚4 (𝑟) ,

ℎℓ𝑚1 (𝑟) → −𝑟3ℎℓ𝑚1 (𝑟) , ℎℓ𝑚2 (𝑟) → −𝑟3ℎℓ𝑚2 (𝑟) . (5.27)
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In this case, 𝑔ℓ𝑚
𝑖

(𝑟) and ℎℓ𝑚
𝑖
(𝑟) become real functions in (𝑟,−𝑖𝜔, 𝑖𝑚), where the

imaginary unit 𝑖 only comes from the combination −𝑖𝜔 or 𝑖𝑚. Using 𝜔ℓ𝑚 = −𝜔̄ℓ−𝑚
in Eq. (5.21), we get

𝑔̄ℓ−𝑚𝑖 (𝑟) = 𝑔ℓ𝑚𝑖 (𝑟) , ℎ̄ℓ−𝑚𝑖 (𝑟) = ℎℓ𝑚𝑖 (𝑟) , (5.28)

where the expression of 𝑔ℓ𝑚
𝑖

(𝑟) and ℎℓ𝑚
𝑖
(𝑟) before the redefinition can be found in

[71] and the supplementary Mathematica notebook [88]. In addition, 𝑔ℓ𝑚1 (𝑟) and
𝑔ℓ𝑚2 (𝑟) contain terms up to O(𝜒1), and 𝜒 only shows up in the combination 𝜒𝑚.
The other radial functions 𝑔ℓ𝑚

𝑖
(𝑟) and ℎℓ𝑚

𝑖
(𝑟) in Eq. (5.26) do not contain any factor

of 𝜒 or 𝑚. The coefficients {Λℓ1ℓ2𝑚𝑠1𝑠2 ,Λ
ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 } and {Λ†ℓ1ℓ2𝑚

𝑠1𝑠2 ,Λ
†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 }

come from projecting the angular functions in the source terms to 0Yℓ𝑚 (𝜃, 𝜙), where
their definition can be found in [71]. Using Eqs. (5.96), (5.105), and (5.108) in
Appendix 5.6, we can show that

Λℓℓ𝑚10𝑠 = 𝑚Λℓℓ110𝑠 , Λ
†ℓℓ𝑚
10𝑠 = (−1)𝑚+1𝑚Λℓℓ110𝑠 . (5.29)

Since both the radial Teukolsky function 𝑠𝑅
(0,1)
ℓ𝑚

(𝑟) and the radial part 𝑠 𝑅̂ℓ𝑚 (𝑟) of
the Hertz potential satisfy Eq. (5.22), Eq. (5.26) reduces to

𝑉𝑅ℓ𝑚 (𝑟) = 𝑖
(
𝑔ℓ𝑚1 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚2 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
+ 𝜒𝑚

(
𝑔ℓ𝑚3 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + 𝑔ℓ𝑚4 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ110𝑠 , (5.30a)

𝑉□ℓ𝑚 (𝑟) = 𝜒𝑚
(
ℎℓ𝑚1 (𝑟) 2𝑅̂ℓ𝑚 (𝑟) + ℎℓ𝑚2 (𝑟) 2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ110𝑠 , (5.30b)

𝑉
†𝑅
ℓ−𝑚 (𝑟) = −𝑉𝑅ℓ𝑚 (𝑟) , 𝑉

†□
ℓ−𝑚 (𝑟) = −𝑉□ℓ𝑚 (𝑟) . (5.30c)

Therefore, Eq. (5.25) becomes[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 + 𝑟𝑠𝜕𝑟 +
𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= (1 − 𝜂ℓ𝑚)
(
𝑉𝑅ℓ𝑚 (𝑟) +𝑉

□
ℓ𝑚 (𝑟)

)
, (5.31a)[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2𝑟3 + 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ−𝑚

]
Θℓ−𝑚 (𝑟)

= (𝜂ℓ𝑚 − 1)
(
𝑉𝑅ℓ−𝑚 (𝑟) +𝑉

□
ℓ−𝑚 (𝑟)

)
. (5.31b)

As shown in [75], the metric generated by the modes with 𝜂ℓ𝑚 = 1 is of even parity,
so the even-parity metric perturbations are not coupled to the scalar field up to
O(𝜁1, 𝜒1, 𝜖1) in dCS gravity, consistent with the result in [57]. Furthermore, using
Eqs. (5.22), (5.28), and (5.31), one can show that[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θ̄ℓ−𝑚 (𝑟)
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= (−1)𝑚 (1 − 𝜂ℓ𝑚)
(
𝑉𝑅ℓ𝑚 (𝑟) +𝑉

□
ℓ𝑚 (𝑟)

)
, (5.32)

consistent with our assumption in Eq. (5.24).

Similarly, in the ORG, we get[
𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 + 𝑟𝑠𝜕𝑟 +
𝜔2𝑟3 − 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= (1 − 𝜂ℓ𝑚)
(
𝑈𝑅
ℓ𝑚 (𝑟) +𝑈

□
ℓ𝑚 (𝑟)

)
, (5.33a)[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2𝑟3 + 4𝜒𝑚𝑀2𝜔

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ−𝑚

]
Θℓ−𝑚 (𝑟)

= (𝜂ℓ𝑚 − 1)
(
𝑈𝑅
ℓ−𝑚 (𝑟) +𝑈

□
ℓ−𝑚 (𝑟)

)
, (5.33b)

where

𝑈𝑅
ℓ𝑚 (𝑟) = 𝑖

(
gℓ𝑚1 (𝑟) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚2 (𝑟) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
+ 𝜒𝑚

(
gℓ𝑚3 (𝑟) −2𝑅̂ℓ𝑚 (𝑟) + gℓ𝑚4 (𝑟) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ110𝑠 , (5.34a)

𝑈□ℓ𝑚 (𝑟) = 𝜒𝑚
(
hℓ𝑚1 (𝑟) −2𝑅̂ℓ𝑚 (𝑟) + hℓ𝑚2 (𝑟) −2𝑅̂

′
ℓ𝑚 (𝑟)

)
Λℓℓ110𝑠 , (5.34b)

𝑈
†𝑅
ℓ−𝑚 (𝑟) = −𝑈𝑅

ℓ𝑚 (𝑟) , 𝑈
†□
ℓ−𝑚 (𝑟) = −𝑈□ℓ𝑚 (𝑟) , (5.34c)

and we have used Eq. (5.105) to replace Λℓℓ1−10𝑠 by Λℓℓ110𝑠. Similar to the IRG case, we
have redefined gℓ𝑚

𝑖
(𝑟) and hℓ𝑚𝑖 (𝑟) in [71] such that

ḡℓ−𝑚𝑖 (𝑟) = gℓ𝑚𝑖 (𝑟) , h̄
ℓ−𝑚
𝑖 (𝑟) = hℓ𝑚𝑖 (𝑟) . (5.35)

The redefinition of gℓ𝑚
𝑖
(𝑟) and hℓ𝑚𝑖 (𝑟) can be obtained by replacing 𝑔 and ℎ with g

and h in Eq. (5.27), respectively. In addition, gℓ𝑚1 (𝑟) and gℓ𝑚2 (𝑟) contain terms up
to O(𝜒1), and 𝜒 only shows up in the combination 𝜒𝑚. The other radial functions
gℓ𝑚
𝑖
(𝑟) and hℓ𝑚𝑖 (𝑟) in Eq. (5.34) do not contain any factor of 𝜒 or 𝑚. The original

gℓ𝑚
𝑖
(𝑟) and hℓ𝑚𝑖 (𝑟) of [71] are listed in the Mathematica notebook [88].

5.4 Modified Teukolsky equations
In this section, we review and simplify the modified Teukolsky equation of Ψ0 in dCS
gravity up to O(𝜁1, 𝜒1, 𝜖1) found by [71]. It was shown in [71] that Ψ(1,1)

0 satisfies

𝐻
(0,0)
0 Ψ

(1,1)
0 = 2𝑟2

(
S (1,1)

geo + S (1,1)
𝐴

+ S̃ (1,1)
𝐴

+ S (1,1)
𝐵

+ S̃ (1,1)
𝐵

)
, (5.36)

where 𝐻 (0,0)
0 is the Teukolsky operator for Ψ0 in GR and expanded to O(𝜒),

𝐻
(0,0)
0 = 𝐻

(0,0,0)
0 + 𝜒𝐻 (0,1,0)

0 , (5.37a)
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𝐻
(0,0,0)
0 = −𝑟 (𝑟 − 𝑟𝑠)𝜕2

𝑟 − 6(𝑟 − 𝑀)𝜕𝑟 −
𝐶 (𝑟)
𝑟 − 𝑟𝑠

− 𝜕2
𝜃 − cot 𝜃𝜕𝜃 +

(
4 + 𝑚2 + 4𝑚 cos 𝜃

)
csc2 𝜃 − 6 ,

(5.37b)

𝐻
(0,1,0)
0 = −4𝑀

[
𝑚(𝑖(𝑟 − 𝑀) − 𝑀𝜔𝑟)

𝑟 (𝑟 − 𝑟𝑠)
− 𝜔 cos 𝜃

]
, (5.37c)

𝐶 (𝑟) = 4𝑖𝜔𝑟 (𝑟 − 3𝑀) + 𝜔2𝑟3 .

In Eq. (5.36), S (1,1)
geo is the source term due to the dCS correction to the geometry of

rotating BHs. The terms S (1,1)
𝐴

and S̃ (1,1)
𝐴

are sources associated with the effective
stress tensor and driven by the scalar field perturbation 𝜗(1,1) . The source terms
S (1,1)
𝐵

and S̃ (1,1)
𝐵

are also associated with the effective stress tensor but driven by the
Weyl scalar perturbation Ψ

(0,1)
0 in GR.

As discussed earlier in Sec. 5.2, we need to solve the (ℓ, 𝑚) and (ℓ,−𝑚) modes of
Ψ0 jointly since they are coupled in the source terms. In [75], it was found that the
Teukolsky operator in GR satisfies the symmetry:

P̂𝐻 (0,0)
0 = 𝐻

(0,0)
0 , (5.38)

where P̂ is an operator combining complex conjugate with parity transformation,
i.e.,

P̂ 𝑓 = Ĉ𝑃̂ 𝑓 = Ĉ 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋) = 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋) . (5.39)

For this reason, Ref. [75] showed that one could solve Eq. (5.36) jointly with its P̂
transformation such that the latter will generate a consistency relation for the (ℓ, 𝑚)
mode from the equation of the (ℓ,−𝑚) mode. We can then reduce the modified
Teukolsky equation of Ψ(1,1)

0 to a two-dimensional eigenvalue problem and compute
the QNM frequencies [75], as shown in more detail at the end of this subsection and
in Sec. 5.5.1. In the following subsections, we will sequentially simplify these three
groups of source terms S (1,1)

geo ,
{
S (1,1)
𝐴

, S̃ (1,1)
𝐴

}
, and

{
S (1,1)
𝐵

, S̃ (1,1)
𝐵

}
. We will derive

their transformation under P̂ and show that the solutions to the modified Teukolsky
equation are of definite parity with 𝜂ℓ𝑚 = ±1.

5.4.1 S (1,1)
geo

First, we found in [71] that the “geometrical” source term S (1,1)
geo in dCS is

S (1,1)
geo = −

∑︁
ℓ,𝑚≥0

𝑒−𝑖𝜔ℓ𝑚𝑡𝐻
ℓ𝑚(1,0)
0

[
2𝑅

(0,1)
ℓ𝑚

(𝑟)2𝑌ℓ𝑚 (𝜃, 𝜙)
]
+ 𝜂ℓ𝑚 × (𝑚 → −𝑚) ,

(5.40)
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where 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) are spin-weighted spherical harmonics due to the expansion of

𝑠Yℓ𝑚 (𝜃, 𝜙) over 𝜒, and

𝐻
ℓ𝑚(1,0)
0 =

𝑖𝜒𝑚𝑀4

448𝑟9(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟) + 4𝑖𝜔ℓ𝑚𝑟2𝐶2(𝑟)

)
− 𝑖𝜒𝑀

4

16𝑟9 cos 𝜃
(
𝐶3(𝑟) −

𝑖𝜔ℓ𝑚𝑟
2𝐶4(𝑟)
2

)
+ 𝑖𝜒𝑀

4

32𝑟8

[
(𝑟 − 𝑟𝑠)𝐶4(𝑟) cos 𝜃𝜕𝑟 −

𝐶5(𝑟)
2𝑟

sin 𝜃𝜕𝜃
]
. (5.41)

Notice that when taking 𝑚 → −𝑚 in Eq. (5.40) for 𝑚 = 0, we get the mode with
frequency −𝜔̄ℓ0. The radial functions 𝐶𝑖 (𝑟) are real in 𝑟 and listed in [71]. Using
that [71]

𝜕𝜃 (2𝑌ℓ𝑚 (𝜃, 𝜙)) =
1
2

(√︁
(ℓ + 2) (ℓ − 1)1𝑌ℓ𝑚 (𝜃, 𝜙) −

√︁
(ℓ + 3) (ℓ − 2)3𝑌ℓ𝑚 (𝜃, 𝜙)

)
,

(5.42)
we can rewrite S (1,1)

geo as

S (1,1)
geo =

∑︁
ℓ,𝑚≥0

𝑒−𝑖𝜔ℓ𝑚𝑡Oℓ𝑚
geo 2𝑅

(0,1)
ℓ𝑚

+ 𝜂ℓ𝑚 × (𝑚 → −𝑚) , (5.43)

with the operator Oℓ𝑚
geo defined to be

Oℓ𝑚
geo = − 𝑖𝜒𝑚𝑀4

448𝑟9(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟) + 4𝑖𝜔ℓ𝑚𝑟2𝐶2(𝑟)

)
+ 𝑖𝜒𝑀

4

16𝑟9 cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)
[
𝐶3(𝑟) − 𝐶4(𝑟)

(
𝑖𝜔ℓ𝑚𝑟

2

2
+ 𝑟 (𝑟 − 𝑟𝑠)

2
𝜕𝑟

)]
+ 𝑖𝜒𝑀

4

128𝑟9𝐶5(𝑟)
(√︁

(ℓ + 2) (ℓ − 1) sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

−
√︁
(ℓ + 3) (ℓ − 2) sin 𝜃 3𝑌ℓ𝑚 (𝜃, 𝜙)

)
. (5.44)

To perform the P̂ transformation [i.e., Eq. (5.39)] on S (1,1)
geo , we also need the

following properties of spin-weighted spherical harmonics 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) [89]:

𝑠𝑌ℓ𝑚 (𝜋 − 𝜃, 𝜙 + 𝜋) = (−1)ℓ−𝑠𝑌ℓ𝑚 (𝜃, 𝜙) ,

𝑠𝑌ℓ𝑚 (𝜃, 𝜙) = (−1)𝑚+𝑠−𝑠𝑌ℓ−𝑚 (𝜃, 𝜙) ,
(5.45)

so we get

P̂ [±2𝑌ℓ𝑚 (𝜃, 𝜙)] = (−1)ℓ+𝑚±2𝑌ℓ−𝑚 (𝜃, 𝜙) ,
P̂ [sin 𝜃±1𝑌ℓ𝑚 (𝜃, 𝜙)] = (−1)ℓ+𝑚+1 sin 𝜃±1𝑌ℓ−𝑚 (𝜃, 𝜙) ,
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P̂ [cos 𝜃±2𝑌ℓ𝑚 (𝜃, 𝜙)] = (−1)ℓ+𝑚+1 cos 𝜃±2𝑌ℓ−𝑚 (𝜃, 𝜙) ,
P̂ [sin 𝜃±3𝑌ℓ𝑚 (𝜃, 𝜙)] = (−1)ℓ+𝑚+1 sin 𝜃±3𝑌ℓ−𝑚 (𝜃, 𝜙) . (5.46)

Using Eq. (5.46) and that 𝐶𝑖 (𝑟) are real functions in 𝑟, we get

P̂
[
Oℓ𝑚

geo 2𝑅
(0,1)
ℓ𝑚

(𝑟)
]
= (−1)ℓOℓ−𝑚

geo 2𝑅
(0,1)
ℓ−𝑚 (𝑟) . (5.47)

5.4.2 S (1,1)
𝐴

and S̃ (1,1)
𝐴

Next, we know from [71] that the source terms S (1,1)
𝐴

and S̃ (1,1)
𝐴

take the form

S (1,1)
𝐴

=
∑︁
ℓ,𝑚

𝑒−𝑖𝜔ℓ𝑚𝑡
[
Aℓ𝑚

1 (𝑟)2𝑌ℓ𝑚 (𝜃, 𝜙) + 𝑖𝜒Aℓ𝑚
2 (𝑟) sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙)

+𝑖𝜒Aℓ𝑚
3 (𝑟) cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

]
, (5.48a)

S̃ (1,1)
𝐴

=
∑︁
ℓ,𝑚

𝑒+𝑖𝜔̄ℓ𝑚𝑡
[
−Āℓ𝑚

1 (𝑟)−2𝑌ℓ𝑚 (𝜃, 𝜙) + 𝑖𝜒Āℓ𝑚
2 (𝑟) sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙)

−𝑖𝜒Āℓ𝑚
3 (𝑟) cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

]
, (5.48b)

where 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) comes from expanding 𝑠Yℓ𝑚 (𝜃, 𝜙) over 𝜒. We have also dropped
the terms proportional to 0𝑏

𝑚
ℓ,ℓ±1 in [71] since they contribute at O(𝜒2) after the

angular projection, as discussed in [71]. The radial functions Aℓ𝑚
𝑖

(𝑟) and Āℓ𝑚
𝑖

(𝑟)
take the form

Aℓ𝑚
𝑖 (𝑟) = 𝑖Oℓ𝑚

𝑖 Θℓ𝑚 (𝑟) + 𝛼ℓ𝑚Qℓ𝑚
𝑖 2𝑅̂ℓ𝑚 (𝑟) , (5.49)

where Oℓ𝑚
𝑖

and Qℓ𝑚
𝑖

are differential operators in 𝑟 and containing up to first derivative
in 𝑟 . The coefficient 𝛼ℓ𝑚 = 1 − 𝜂ℓ𝑚 for 𝑚 > 0 and 𝛼ℓ𝑚 = 𝜂ℓ−𝑚 − 1 for 𝑚 < 0. When
𝑚 = 0, 𝛼ℓ𝑚 is 1 − 𝜂ℓ0 and 𝜂ℓ0 − 1 for the modes with the frequency 𝜔ℓ0 and −𝜔̄ℓ0,
respectively. Furthermore, Oℓ𝑚

𝑖
and Qℓ𝑚

𝑖
satisfy

Ōℓ−𝑚
𝑖 = Oℓ𝑚

𝑖 , Q̄ℓ−𝑚
𝑖 = Qℓ𝑚

𝑖 . (5.50)

Notice that the term Qℓ𝑚
𝑖 2𝑅̂ℓ𝑚 (𝑟) comes from replacing Θ′′

ℓ𝑚
(𝑟) with Θ′

ℓ𝑚
(𝑟) and

Θℓ𝑚 (𝑟) using Eq. (5.31), though S (1,1)
𝐴

and S̃ (1,1)
𝐴

are driven by the scalar field
perturbation 𝜗(1,1) . Similarly, using Eqs. (5.24) and (5.50), one can get

Āℓ−𝑚
𝑖 (𝑟) = (−1)𝑚+1 [

𝑖Oℓ𝑚
𝑖 Θℓ𝑚 (𝑟) + 𝛼ℓ𝑚Qℓ𝑚

𝑖 2𝑅̂ℓ𝑚 (𝑟)
]
. (5.51)

Notice that Aℓ−𝑚
𝑖

(𝑟) comes from the terms generated by the (ℓ,−𝑚) mode of the
solution ansatz in Eq. (5.20) but not taking 𝑚 to −𝑚 in Eq. (5.49) directly.

To analyze the structure of isospectrality breaking, we need to rewrite all the terms in
Eq. (5.49) in terms of 2𝑅̂ℓ𝑚 (𝑟) such that we can focus on the vector space of 2𝑅̂ℓ𝑚 (𝑟)
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following [75]. Denoting the operator acting on Θℓ𝑚 (𝑟) on the left-hand side of
Eq. (5.31) as H𝜗, so

Θℓ𝑚 (𝑟) = 𝛼ℓ𝑚H−1
𝜗

[
𝑉𝑅ℓ𝑚 (𝑟) +𝑉

□
ℓ𝑚 (𝑟)

]
≡ 𝑖𝛼ℓ𝑚H−1

𝜗 Vℓ𝑚
2𝑅̂ℓ𝑚 (𝑟) , (5.52)

where we have defined an operator Vℓ𝑚 according to that 𝑉𝑅
ℓ𝑚
(𝑟) and V□

ℓ𝑚
(𝑟) are

driven by 2𝑅̂ℓ𝑚 (𝑟) in Eq. (5.30). From Eq. (5.30), we observe that Vℓ𝑚 contains up
to the first derivative in 𝑟. We have also extracted a factor of 𝑖 such that

V̄ℓ−𝑚 = Vℓ𝑚 . (5.53)

The operator H𝜗 also satisfies the same symmetry in Eq. (5.53). Thus, we can
rewrite Eqs. (5.49) and (5.51) as

Aℓ𝑚
𝑖 (𝑟) = 𝛼ℓ𝑚 𝐴̂ℓ𝑚𝑖 2𝑅̂ℓ𝑚 (𝑟) , (5.54a)

Āℓ−𝑚
𝑖 (𝑟) = (−1)𝑚+1𝛼ℓ𝑚 𝐴̂

ℓ𝑚
𝑖 2𝑅̂ℓ𝑚 (𝑟) , (5.54b)

with
𝐴̂ℓ𝑚𝑖 ≡ Qℓ𝑚

𝑖 − Oℓ𝑚
𝑖 H−1

𝜗 Vℓ𝑚 . (5.55)

Using Eqs. (5.50), (5.53), and (5.55), we get

P̂ 𝐴̂ℓ𝑚𝑖 =
¯̂
𝐴ℓ𝑚𝑖 = 𝐴̂ℓ−𝑚𝑖 . (5.56)

Leveraging Eqs. (5.45) and (5.54), we can rewrite S (1,1)
𝐴

and S̃ (1,1)
𝐴

in Eq. (5.48) as

S (1,1)
𝐴

= S̃ (1,1)
𝐴

=
∑︁
ℓ,𝑚≥0

(1 − 𝜂ℓ𝑚)𝑒−𝑖𝜔ℓ𝑚𝑡Oℓ𝑚
𝐴 2𝑅

(0,1)
ℓ𝑚

(𝑟)

+ (𝜂ℓ𝑚 − 1)𝑒𝑖𝜔̄ℓ𝑚𝑡Oℓ−𝑚
𝐴 2𝑅

(0,1)
ℓ−𝑚 (𝑟) , (5.57)

such that

Oℓ𝑚
𝐴 =

[
2𝑌ℓ𝑚 (𝜃, 𝜙) 𝐴̂ℓ𝑚1 + 𝑖𝜒 sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙) 𝐴̂ℓ𝑚2 + 𝑖𝜒 cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙) 𝐴̂ℓ𝑚3

]
D†
ℓ𝑚
,

(5.58)

where we have used Eq. (5.45) to replace −𝑠𝑌ℓ−𝑚 (𝜃, 𝜙) with 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) in Eq. (5.48b).
We have also used that 𝜔ℓ𝑚 = −𝜔̄ℓ−𝑚 to reduce S̃ (1,1)

𝐴
to S (1,1)

𝐴
. It is not surprising

that S (1,1)
𝐴

= S̃ (1,1)
𝐴

since 𝜗 is real, Θ̄ℓ𝑚 (𝑟) is related to Θℓ𝑚 via Eq. (5.24), and we
sum all the (ℓ, 𝑚) modes. For this reason, we will combine S (1,1)

𝐴
with S̃ (1,1)

𝐴
and

solve the radial Teukolsky equation jointly with Θℓ𝑚 (𝑟) only. Using Eqs. (5.22),
(5.46), and (5.56), we can show that

P̂
[
Oℓ𝑚
𝐴 2𝑅

(0,1)
ℓ𝑚

(𝑟)
]
= (−1)ℓOℓ−𝑚

𝐴 2𝑅
(0,1)
ℓ−𝑚 (𝑟) . (5.59)
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5.4.3 S (1,1)
𝐵

and S̃ (1,1)
𝐵

Lastly, in [71], we got the source terms S (1,1)
𝐵

and S̃ (1,1)
𝐵

to be in the form of

S (1,1)
𝐵

= 𝑖𝜒
∑︁
ℓ,𝑚≥0

𝑒−𝑖𝜔ℓ𝑚𝑡
[
Bℓ𝑚

1 (𝑟) sin 𝜃 1𝑌ℓ𝑚 (𝜃, 𝜙) + Bℓ𝑚
2 (𝑟) cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)

+Bℓ𝑚
3 (𝑟) sin 𝜃 3𝑌ℓ𝑚 (𝜃, 𝜙)

]
+ 𝜂ℓ𝑚 × (𝑚 → −𝑚) , (5.60a)

S̃ (1,1)
𝐵

= 𝑖𝜒
∑︁
ℓ,𝑚≥0

𝑒+𝑖𝜔̄ℓ𝑚𝑡
[
B̃ℓ𝑚

1 (𝑟) sin 𝜃 −1𝑌ℓ𝑚 (𝜃, 𝜙) + B̃ℓ𝑚
2 (𝑟) cos 𝜃 −2𝑌ℓ𝑚 (𝜃, 𝜙)

]
+ 𝜂ℓ𝑚 × (𝑚 → −𝑚) , (5.60b)

where we have extracted an overall factor of 𝑖 from all the radial functions Bℓ𝑚
𝑖

(𝑟)
and B̃ℓ𝑚

𝑖
(𝑟) such that

B̄ℓ−𝑚
𝑖 (𝑟) = Bℓ𝑚

𝑖 (𝑟) , ¯̃Bℓ−𝑚
𝑖 (𝑟) = B̃ℓ𝑚

𝑖 (𝑟) . (5.61)

The functions Bℓ𝑚
𝑖

(𝑟) and B̃ℓ𝑚
𝑖

(𝑟) contain up to the first derivative in 𝑟 of 2𝑅̂ℓ𝑚 (𝑟)
and 2

¯̂𝑅ℓ𝑚 (𝑟), respectively. Following Sec. 5.4.2, let us define

Bℓ𝑚
𝑖 (𝑟) ≡ 𝐵̂ℓ𝑚𝑖 2𝑅̂ℓ𝑚 (𝑟) , B̃ℓ𝑚

𝑖 ≡ ˆ̃𝐵ℓ𝑚𝑖 2
¯̂𝑅ℓ𝑚 (𝑟) , (5.62)

where 𝐵̂ℓ𝑚
𝑖

and ˆ̃𝐵ℓ𝑚
𝑖

contain up to the first derivative in 𝑟 and satisfy the same
symmetry as Eq. (5.61), so

P̂ 𝐵̂ℓ𝑚𝑖 = 𝐵̂ℓ−𝑚𝑖 , P̂ ˆ̃𝐵ℓ𝑚𝑖 = ˆ̃𝐵ℓ−𝑚𝑖 . (5.63)

Thus, we can rewrite Bℓ𝑚
𝑖

(𝑟) and B̃ℓ𝑚
𝑖

(𝑟) in Eq. (5.60) as

S (1,1)
𝐵

=
∑︁
ℓ,𝑚≥0

𝑒−𝑖𝜔ℓ𝑚𝑡Oℓ𝑚
𝐵 2𝑅̂ℓ𝑚 (𝑟) + 𝜂ℓ𝑚 × (𝑚 → −𝑚) , (5.64a)

S̃ (1,1)
𝐵

=
∑︁
ℓ,𝑚≥0

𝜂ℓ𝑚𝑒
−𝑖𝜔ℓ𝑚𝑡 Õℓ𝑚

𝐵 2𝑅
(0,1)
ℓ𝑚

(𝑟) + (𝑚 → −𝑚) , (5.64b)

with

Oℓ𝑚
𝐵 = 𝑖𝜒

[
sin 𝜃1𝑌ℓ𝑚 (𝜃, 𝜙)𝐵̂ℓ𝑚1 + cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙)𝐵̂ℓ𝑚2 + sin 𝜃 3𝑌ℓ𝑚 (𝜃, 𝜙)𝐵̂ℓ𝑚3

]
D†
ℓ𝑚
,

(5.65a)

Õℓ𝑚
𝐵 = 𝑖𝜒

[
sin 𝜃1𝑌ℓ𝑚 (𝜃, 𝜙) ˆ̃𝐵ℓ−𝑚1 + cos 𝜃 2𝑌ℓ𝑚 (𝜃, 𝜙) ˆ̃𝐵ℓ−𝑚2

]
D†
ℓ𝑚
, (5.65b)

where we have used Eqs. (5.22) and (5.45) to replace
{
𝑠

¯̂𝑅ℓ−𝑚 (𝑟), −𝑠𝑌ℓ−𝑚 (𝜃, 𝜙)
}

with{
𝑠 𝑅̂ℓ𝑚 (𝑟), 𝑠𝑌ℓ𝑚 (𝜃, 𝜙)

}
in Eq. (5.64) and that 𝜔ℓ𝑚 = −𝜔̄ℓ−𝑚. With Eqs. (5.46) and

(5.63), we can show that

P̂
[
Oℓ𝑚
𝐵 2𝑅

(0,1)
ℓ𝑚

(𝑟)
]
= (−1)ℓOℓ−𝑚

𝐵 2𝑅
(0,1)
ℓ−𝑚 (𝑟) , (5.66a)

P̂
[
Õℓ𝑚
𝐵 2𝑅

(0,1)
ℓ𝑚

(𝑟)
]
= (−1)ℓÕℓ−𝑚

𝐵 2𝑅
(0,1)
ℓ−𝑚 (𝑟) . (5.66b)
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5.4.4 Simplification of the radial master equations
In this subsection, we will use the results in Secs. 5.4.1–5.4.3 to simplify the modified
Teukolsky equation of Ψ(1,1)

0 in Eq. (5.36) and extract its radial part. Combining
Eqs. (5.43), (5.57), and (5.64), we can reduce Eq. (5.36) to

𝐻
ℓ𝑚(0,0)
0

[
2𝑅

(1,1)
ℓ𝑚

(𝑟)2𝑌ℓ𝑚 (𝜃, 𝜙)
]

= 2𝑟2
[(
Oℓ𝑚

geo + Oℓ𝑚
𝐴 + Oℓ𝑚

𝐵

)
− 𝜂ℓ𝑚

(
Oℓ𝑚
𝐴 − Õℓ𝑚

𝐵

)]
2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.67a)

𝜂ℓ𝑚𝐻
ℓ−𝑚(0,0)
0

[
2𝑅

(1,1)
ℓ−𝑚 (𝑟)2𝑌ℓ−𝑚 (𝜃, 𝜙)

]
= 2𝑟2

[
𝜂ℓ𝑚

(
Oℓ−𝑚

geo + Oℓ−𝑚
𝐴 + Oℓ−𝑚

𝐵

)
−

(
Oℓ−𝑚
𝐴 − Õℓ−𝑚

𝐵

)]
2𝑅

(0,1)
ℓ−𝑚 (𝑟) . (5.67b)

One can perform a further P̂ transformation on Eq. (5.67b) and use Eqs. (5.47),
(5.59), and (5.66), so Eq. (5.67b) becomes

𝜂ℓ𝑚𝐻
ℓ𝑚(0,0)
0

[
2𝑅

(1,1)
ℓ𝑚

(𝑟)2𝑌ℓ𝑚 (𝜃, 𝜙)
]

= 2𝑟2
[
𝜂ℓ𝑚

(
Oℓ𝑚

geo + Oℓ𝑚
𝐴 + Oℓ𝑚

𝐵

)
−

(
Oℓ𝑚
𝐴 − Õℓ𝑚

𝐵

)]
2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.68)

where we have chosen the normalization that 2𝑅̄
(1,1)
ℓ−𝑚 (𝑟) = (−1)𝑚2𝑅

(1,1)
ℓ𝑚

(𝑟). Com-
paring Eqs. (5.67a) and (5.68), we notice that only 𝜂ℓ𝑚 = ±1 can make these two
equations consistent. As found in [75], 𝜂ℓ𝑚 = ±1 correspond to even- and odd-parity
metric perturbations, respectively. Furthermore, for even-parity modes (𝜂ℓ𝑚 = 1),
the terms driven by the scalar field perturbation 𝜗(1,1) (i.e., terms with Oℓ𝑚

𝐴
), cancel

out with each other. This is due to that the scalar field equation is not driven by
the even-parity metric perturbations, as shown in Sec. 5.3. In total, our modified
Teukolsky equation has the same structure of isospectrality breaking as the modified
RW and ZM equations in [57], where the even- and odd-parity modes decouple, and
the scalar field couples to the odd-parity modes only. For this reason, the (ℓ, 𝑚) and
(ℓ,−𝑚) modes of the modified Teukolsky equation contain redundant information,
as shown in Eqs. (5.67a) and (5.68) for dCS gravity and in [75] more generally.
Thus, we only need to solve the (ℓ, 𝑚) mode of the modified Teukolsky equation
[Eq. (5.67a)] with the scalar field equation [Eq. (5.31a)].

Now, let us follow the same procedures in [71] to reduce the simplified modified
Teukolsky equation in Eq. (5.67a) into a purely radial equation and express it in
terms of the radial functions defined in [71]. Integrating Eq. (5.67a) over 2Yℓ𝑚 (𝜃, 𝜙),
we get that [

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 6(𝑟 − 𝑀)𝜕𝑟 +

4𝑖𝜔ℓ𝑚𝑟 (𝑟 − 3𝑀) + 𝜔2
ℓ𝑚
𝑟3

𝑟 − 𝑟𝑠
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+4𝑖𝜒𝑚𝑀 ((𝑟 − 𝑀) + 𝑖𝑀𝜔ℓ𝑚𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− 2𝐴ℓ𝑚

]
2𝑅

(1,1)
ℓ𝑚

(𝑟)

= − 2𝑟2
[(
𝒪
ℓ𝑚
geo +𝒪

ℓ𝑚
𝐴 +𝒪

ℓ𝑚
𝐵

)
∓

(
𝒪
ℓ𝑚
𝐴 − 𝒪̃

ℓ𝑚
𝐵

)]
2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.69)

where the ± sign correspond to the solutions with 𝜂ℓ𝑚 = ±1, respectively, and

𝒪
ℓ𝑚
geo = − 𝑖𝜒𝑚𝑀4

448𝑟9(𝑟 − 𝑟𝑠)

(
𝐶1(𝑟) + 4𝑖𝜔ℓ𝑚𝑟2𝐶2(𝑟)

)
+ 𝑖𝜒𝑚𝑀

4

16𝑟9

[
𝐶3(𝑟) − 𝐶4(𝑟)

(
𝑖𝜔ℓ𝑚𝑟

2

2
+ 𝑟 (𝑟 − 𝑟𝑠)

2
𝜕𝑟

)]
Λℓℓ122𝑐

+ 𝑖𝜒𝑚𝑀
4

128𝑟9 𝐶5(𝑟)
(√︁

(ℓ + 2) (ℓ − 1)Λℓℓ112𝑠 −
√︁
(ℓ + 3) (ℓ − 2)Λℓℓ132𝑠

)
, (5.70a)

𝒪
ℓ𝑚
𝐴 =

[
𝐴̂ℓ𝑚1 + 𝑖𝜒𝑚Λℓℓ112𝑠 𝐴̂

ℓ𝑚
2 + 𝑖𝜒𝑚Λℓℓ122𝑐 𝐴̂

ℓ𝑚
3

]
D†
ℓ𝑚
, (5.70b)

𝒪
ℓ𝑚
𝐵 = 𝑖𝜒𝑚

[
Λℓℓ112𝑠 𝐵̂

ℓ𝑚
1 + Λℓℓ122𝑐 𝐵̂

ℓ𝑚
2 + Λℓℓ132𝑠 𝐵̂

ℓ𝑚
3

]
D†
ℓ𝑚
, (5.70c)

𝒪̃
ℓ𝑚
𝐵 = − 𝑖𝜒𝑚

[
Λℓℓ112𝑠

ˆ̃𝐵ℓ−𝑚1 − Λℓℓ122𝑐
ˆ̃𝐵ℓ−𝑚2

]
D†
ℓ𝑚
. (5.70d)

We have used that

Λℓℓ𝑚12𝑠 = 𝑚Λℓℓ112𝑠 , Λ
†ℓℓ𝑚
−12𝑠 = (−1)𝑚+1𝑚Λℓℓ112𝑠 ,

Λℓℓ𝑚22𝑐 = 𝑚Λℓℓ122𝑐 , Λ
†ℓℓℓ𝑚
−22𝑐 = (−1)𝑚𝑚Λℓℓ122𝑐 ,

Λℓℓ𝑚32𝑠 = 𝑚Λℓℓ132𝑠 , Λ
†ℓℓℓ𝑚
−32𝑠 = (−1)𝑚+1𝑚Λℓℓ132𝑠 , (5.71)

which can be derived from Eqs. (5.96) and (5.108) in Appendix 5.6. The radial
functions 𝐶𝑖 (𝑟) are given in [71], and the radial operators { 𝐴̂ℓ𝑚

𝑖
, 𝐵̂ℓ𝑚

𝑖
, ˆ̃𝐵ℓ𝑚

𝑖
} are given

explicitly in Appendix 5.7.

One can notice that all the source terms in Eq. (5.70) are proportional to 𝜒𝑚 except
𝐴̂ℓ𝑚1 , so they are evaluated on a Schwarzschild background. The operator 𝐴̂ℓ𝑚1
contains terms at both O(𝜒0) and O(𝜒1), the latter of which only depends on the
combination 𝜒𝑚. Thus, the dCS correction 𝜔(1,0)

ℓ𝑚
to the QNM frequency of a slowly

rotating BH should be expanded as

𝜔
(1,0)
ℓ𝑚

= 𝜔
(1,0,0)
ℓ𝑚

+ 𝑚𝜒𝜔(1,1,0)
ℓ𝑚

+ O(𝜒2) , (5.72)

consistent with the result in [57]. Although the master equations in [57] contain
terms proportional to 𝜒 only, these terms do not contribute to the QNM frequencies
since the equations are invariant under the simultaneous transformation of 𝜒 → −𝜒
and 𝑚 → −𝑚, as shown in more detail in [57]. Furthermore, only after removing
these terms did the even- and odd-parity decouple in [57]. In contrast, all the source
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terms at O(𝜒1) here are proportional to 𝜒𝑚, so we do not need to manually drop out
any term. The even- and odd-parity modes also naturally decouple in our case.

Similarly, in the ORG, we get the following equation for Ψ(1,1)
4 :[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 − 2(𝑟 − 𝑀)𝜕𝑟 −

4𝑖𝜔ℓ𝑚𝑟 (𝑟 − 3𝑀) − 𝜔2
ℓ𝑚
𝑟3

𝑟 − 𝑟𝑠

−4𝑖𝜒𝑚𝑀 ((𝑟 − 𝑀) − 𝑖𝑀𝜔ℓ𝑚𝑟)
𝑟 (𝑟 − 𝑟𝑠)

− −2𝐴ℓ𝑚

]
−2𝑅

(1,1)
ℓ𝑚

(𝑟)

= − 2𝑟6
[(
𝒬
ℓ𝑚
geo +𝒬

ℓ𝑚
𝐴 +𝒬

ℓ𝑚
𝐵

)
∓

(
𝒬
ℓ𝑚
𝐴 − 𝒬̃

ℓ𝑚
𝐵

)]
−2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.73)

where

𝒬
ℓ𝑚
geo =

𝑖𝜒𝑚𝑀4

448𝑟13(𝑟 − 𝑟𝑠)

(
𝐷1(𝑟) − 4𝑖𝜔ℓ𝑚𝑟2𝐷2(𝑟)

)
+ 𝑖𝜒𝑚𝑀

4

16𝑟13

[
𝐷3(𝑟) − 𝐷4(𝑟)

(
𝑖𝜔ℓ𝑚𝑟

2

2
− 𝑟 (𝑟 − 𝑟𝑠)

2
𝜕𝑟

)]
Λℓℓ122𝑐

− 𝑖𝜒𝑚𝑀
4

128𝑟13 𝐷5(𝑟)
(√︁

(ℓ + 2) (ℓ − 1)Λℓℓ112𝑠 −
√︁
(ℓ + 3) (ℓ − 2)Λℓℓ132𝑠

)
, (5.74a)

𝒬
ℓ𝑚
𝐴 =

[
𝒜
ℓ𝑚
1 + 𝑖𝜒𝑚Λℓℓ112𝑠𝒜

ℓ𝑚
2 − 𝑖𝜒𝑚Λℓℓ122𝑐𝒜

ℓ𝑚
3

]
Dℓ𝑚 , (5.74b)

𝒬
ℓ𝑚
𝐵 = 𝑖𝜒𝑚

[
Λℓℓ112𝑠ℬ̂

ℓ𝑚
1 − Λℓℓ122𝑐ℬ̂

ℓ𝑚
2 + Λℓℓ132𝑠ℬ̂

ℓ𝑚
3

]
Dℓ𝑚 , (5.74c)

𝒬̃
ℓ𝑚
𝐵 = − 𝑖𝜒𝑚

[
Λℓℓ112𝑠

ˆ̃
ℬ
ℓ−𝑚
1 + Λℓℓ122𝑐

ˆ̃
ℬ
ℓ−𝑚
2

]
Dℓ𝑚 . (5.74d)

We have used that

Λℓℓ𝑚−1−2𝑠 = 𝑚Λ
ℓℓ1
12𝑠 , Λ

†ℓℓ𝑚
1−2𝑠 = (−1)𝑚+1𝑚Λℓℓ112𝑠 ,

Λℓℓ𝑚−2−2𝑐 = −𝑚Λℓℓ122𝑐 , Λ
†ℓℓℓ𝑚
2−2𝑐 = (−1)𝑚+1𝑚Λℓℓ122𝑐 ,

Λℓℓ𝑚−3−2𝑠 = 𝑚Λ
ℓℓ1
32𝑠 , Λ

†ℓℓℓ𝑚
3−2𝑠 = (−1)𝑚+1𝑚Λℓℓ132𝑠 , (5.75)

which can be derived from Eqs. (5.96), (5.105), and (5.108) in Appendix 5.6. The
radial functions 𝐷𝑖 (𝑟) are given in [71], and the radial operators {𝒜ℓ𝑚

𝑖
, ℬ̂ℓ𝑚

𝑖
, ˆ̃
ℬ
ℓ𝑚
𝑖

}
are given explicitly in Appendix 5.7. Since Eqs. (5.33a) and (5.73) are derived in a
different gauge from the one used by Eqs. (5.31a) and (5.69), we will compute the
QNM frequency shifts from both pairs and use the results from Eqs. (5.33a) and
(5.73) as a consistency check of the results from Eqs. (5.31a) and (5.69) in the next
section.

5.5 Calculation of the QNM frequency shifts
In this section, we will evaluate the QNM frequencies for a slowly rotating BH in
dCS gravity up to O(𝜁1, 𝜒1, 𝜖1) using Eqs. (5.31a), (5.33a), (5.69), and (5.73). We
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Figure 5.1: The contour 𝒞 in Eq. (5.81) with 𝜉max = 10𝑀. The blue line is the
contour 𝒞, while the orange line is the imaginary axis at 𝑟 = 2𝑀 .

will first review the EVP method in [66, 75–77] and discuss how to apply it to the
dCS gravity case. We will then present the results for non-rotating BHs in dCS
gravity and discuss the strategy for rotating BHs.

5.5.1 The EVP method
To compute the QNM frequency shifts 𝜔(1,0)

ℓ𝑚
, we choose to follow the EVP approach

developed in [66, 75–77]. As one can notice in Eqs. (5.69) and (5.73), the solutions
to the homogeneous part of the equation (i.e., ±2𝑅

(0,1)
ℓ𝑚

(𝑟)), or the Teukolsky equation
in GR, also drive the source terms, potentially leading to secularly growing solutions.
To avoid this issue, Refs. [76, 77] developed the EVP method, following the Poincaré-
Lindstedt method of solving the secular perturbation problem, by introducing an
additional expansion in the QNM frequency to cancel off secularly growing terms.
More specifically, consider a system in the form of

𝑠H (0,0)
ℓ𝑚 𝑠𝑅

(0,1)
ℓ𝑚

= 0 , (5.76a)

𝑠H (0,0)
ℓ𝑚 𝑠𝑅

(1,1)
ℓ𝑚

= 𝑠𝒱
(1,0)
ℓ𝑚 𝑠𝑅

(0,1)
ℓ𝑚

, (5.76b)
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where 𝑠H (0,0)
ℓ𝑚

is the radial Teukolsky operator for a spin-𝑠 field in GR, and 𝑠𝒱
(1,0)
ℓ𝑚

is some differential operator containing up to first derivative in 𝑟. One can expand
the QNM frequency 𝜔ℓ𝑚 associated with 𝑠𝑅

(0,1)
ℓ𝑚

and 𝑠𝑅
(1,1)
ℓ𝑚

as

𝜔ℓ𝑚 = 𝜔
(0,0)
ℓ𝑚

+ 𝜁𝜔(1,0)
ℓ𝑚

+ O(𝜁2)

=

(
𝜔

(0,0,0)
ℓ𝑚

+ 𝑚𝜒𝜔(0,1,0)
ℓ𝑚

)
+ 𝜁

(
𝜔

(1,0,0)
ℓ𝑚

+ 𝑚𝜒𝜔(1,1,0)
ℓ𝑚

)
+ O(𝜁2, 𝜒2) , (5.77)

where we include an additional expansion in 𝜒 in the second line, considering the
slow-rotation approximation used in [71] and this work. Since 𝑠H (0,0)

ℓ𝑚
depends on

𝜔ℓ𝑚, Eq. (5.76) expands to

𝑠H (0,0)
ℓ𝑚 𝑠𝑅

(1,1)
ℓ𝑚

+ 𝜔(1,0)
ℓ𝑚

𝜕𝜔

(
𝑠H (0,0)

ℓ𝑚

)
𝑠𝑅

(0,1)
ℓ𝑚

= 𝑠𝒱
(1,0)
ℓ𝑚 𝑠𝑅

(0,1)
ℓ𝑚

, (5.78)

where all the operators are evaluated at the GR QNM frequency 𝜔(0,0)
ℓ𝑚

. The second
term on the left-hand side of Eq. (5.78) comes from the expansion of 𝜔ℓ𝑚 in
Eq. (5.76a).

The key step in the EVP method is to construct an inner product such that the
Teukolsky operator in GR is self-adjoint, i.e.,〈

𝜑1(𝑟)
���𝑠H (0,0)

ℓ𝑚
𝜑2(𝑟)

〉
=

〈
𝑠H (0,0)

ℓ𝑚
𝜑1(𝑟)

���𝜑2(𝑟)
〉
, (5.79)

where 𝜑1,2(𝑟) are radial functions with the same asymptotic behavior as the radial
Teukolsky function of spin weight 𝑠 in GR. This inner product can be defined as a
contour integral over complex 𝑟 [76, 77],

⟨𝜑1(𝑟) |𝜑2(𝑟)⟩ =
∫
𝒞

Δ𝑠 (𝑟)𝜑1(𝑟)𝜑2(𝑟)𝑑𝑟 , (5.80)

where the contour 𝒞 is around the positive imaginary axis at the outer horizon 𝑟+. In
our case, since 𝑟+ = 2𝑀 up to O(𝜒), we parametrize the contour as

𝑟𝒞 (𝜉) = 2𝑀 + 4𝑀2𝜉

4𝑀2 + 𝜉2 + 𝑖
(
𝜉2

2𝑀
− 4𝑀

)
, 𝜉 ∈ [−𝜉max, 𝜉max] (5.81)

such that 𝑟 (±𝜉max) are the right and left ends of the contour, respectively. In Fig. 5.1,
we plot the contour for 𝜉max = 10𝑀. Now conducting an inner product of 𝑠𝑅(0,1)

ℓ𝑚

with Eq. (5.78) and using Eqs. (5.76a) and (5.79), we get the first term in Eq. (5.78)
to vanish, i.e.,〈

𝑠𝑅
(0,1)
ℓ𝑚

���𝑠H (0,0)
ℓ𝑚 𝑠𝑅

(1,1)
ℓ𝑚

〉
=

〈
𝑠H (0,0)

ℓ𝑚 𝑠𝑅
(0,1)
ℓ𝑚

���𝑠𝑅(1,1)
ℓ𝑚

〉
= 0 . (5.82)
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Thus, the QNM frequency shift 𝜔(1,0)
ℓ𝑚

satisfies

𝜔
(1,0)
ℓ𝑚

=

〈
𝑠𝒱

(1,0)
ℓ𝑚

〉 / 〈
𝜕𝜔

(
𝑠H (0,0)

ℓ𝑚

)〉
, (5.83)

where we use a simplified notation〈
Ô

〉
=

〈
𝑠𝑅

(0,1)
ℓ𝑚

���Ô 𝑠𝑅
(0,1)
ℓ𝑚

〉
. (5.84)

Notice, all the terms within the inner product are evaluated at 𝜔(0,0)
ℓ𝑚

.

For beyond-GR theories, although one generally has a coupled system of (ℓ,±𝑚)
modes or even- and odd-parity modes, Refs. [62, 66, 67, 75] showed how to reduce
the system to a two-dimensional eigenvalue problem, so one can still apply the EVP
method in [76, 77]. Nonetheless, up to O(𝜁1, 𝜒1, 𝜖1) in dCS, the modified Teukolsky
equation is invariant under P̂ transformation, as shown in Sec. 5.4, so the equations
for the (ℓ, 𝑚) and (ℓ,−𝑚) modes contain the same information. Thus, we can simply
apply the one-dimensional EVP method to Eqs. (5.69) and (5.73) and get

𝜔
±(1,0)
0,ℓ𝑚 =

〈
−2𝑟2

[(
𝒪
ℓ𝑚
geo +𝒪

ℓ𝑚
𝐴

+𝒪
ℓ𝑚
𝐵

)
∓

(
𝒪
ℓ𝑚
𝐴

− 𝒪̃
ℓ𝑚
𝐵

) ]〉〈
𝜕𝜔H ℓ𝑚

0
〉 , (5.85a)

𝜔
±(1,0)
4,ℓ𝑚 =

〈
−2𝑟6

[(
𝒬
ℓ𝑚
geo +𝒬

ℓ𝑚
𝐴

+𝒬
ℓ𝑚
𝐵

)
∓

(
𝒬
ℓ𝑚
𝐴

− 𝒬̃
ℓ𝑚
𝐵

) ]〉〈
𝜕𝜔H ℓ𝑚

4
〉 , (5.85b)

where 𝜔±(1,0)
0,ℓ𝑚 and 𝜔±(1,0)

4,ℓ𝑚 refer to the QNM frequency shifts computed from the
equation of Ψ(1,1)

0 in the IRG [i.e., Eq. (5.69)] and Ψ
(1,1)
4 in the ORG [i.e., Eq. (5.73)],

respectively. H ℓ𝑚
0 and H ℓ𝑚

4 are the radial Teukolsky operators acting on 2𝑅
(1,1)
ℓ𝑚

and

−2𝑅
(1,1)
ℓ𝑚

in Eqs. (5.69) and (5.73), respectively. Their derivatives in 𝜔 are

𝜕𝜔H ℓ𝑚
0 =

4𝑖𝑟 (𝑟 − 3𝑀) + 2𝜔ℓ𝑚𝑟3 − 4𝜒𝑚𝑀2

𝑟 − 𝑟𝑠
+ 2𝜒𝑚𝑀

(
4

ℓ(ℓ + 1) + 1
)
, (5.86a)

𝜕𝜔H ℓ𝑚
4 =

−4𝑖𝑟 (𝑟 − 3𝑀) + 2𝜔ℓ𝑚𝑟3 − 4𝜒𝑚𝑀2

𝑟 − 𝑟𝑠
+ 2𝜒𝑚𝑀

(
4

ℓ(ℓ + 1) + 1
)
. (5.86b)

For non-rotating BHs in dCS gravity (i.e., 𝜒 = 0), Eq. (5.85) reduces to

𝜔
±(1,0)
0,ℓ𝑚 =

〈
−2𝑟2

(
𝐴̂ℓ𝑚1 ∓ 𝐴̂ℓ𝑚1

)
D†
ℓ𝑚

〉〈[
4𝑖𝑟 (𝑟 − 3𝑀) + 2𝜔(0,0)

ℓ𝑚
𝑟3

]
/(𝑟 − 𝑟𝑠)

〉 , (5.87a)

𝜔
±(1,0)
4,ℓ𝑚 =

〈
−2𝑟6

(
𝒜
ℓ𝑚
1 ∓𝒜

ℓ𝑚
1

)
Dℓ𝑚

〉〈[
−4𝑖𝑟 (𝑟 − 3𝑀) + 2𝜔(0,0)

ℓ𝑚
𝑟3

]
/(𝑟 − 𝑟𝑠)

〉 . (5.87b)

In the next subsection, we will evaluate Eq. (5.87) for non-rotating BHs in dCS
gravity.
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5.5.2 The QNMs of non-rotating BHs in dCS gravity
In this subsection, we evaluate the QNM frequency shifts for a non-rotating BH
in dCS gravity using the EVP approach discussed in Sec. 5.5.1. As discussed in
Sec. 5.4.2, to evaluate the source terms associated with 𝐴̂ℓ𝑚1 or 𝒜ℓ𝑚

1 in Eq. (5.87),
one needs to first invert or solve the scalar field equation in Eq. (5.31a) or (5.33a)
first. For non-rotating BHs in the IRG, Eq. (5.31a) becomes[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2
ℓ𝑚
𝑟3

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟)

= − 2𝑖
C2

(1 − 𝜂ℓ𝑚)
(
𝑔ℓ𝑚1 (𝑟) + 𝑔ℓ𝑚2 (𝑟)𝜕𝑟

)
−2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.88)

where the radial functions 𝑔ℓ𝑚1 (𝑟) and 𝑔ℓ𝑚2 (𝑟) are

𝑔ℓ𝑚1 (𝑟) = − 3
√︁
Λℓ𝑀

3 1
4
√
𝜋𝑟4(𝑟 − 𝑟𝑠)2

[(
2𝜔2

ℓ𝑚𝑟
2 − 8𝑖𝜔ℓ𝑚𝑟 − ℓ2 − ℓ − 4

)
𝑟2

+2𝑀
(
9𝑖𝜔ℓ𝑚𝑟 + ℓ2 + ℓ + 10

)
𝑟 − 24𝑀2

]
,

𝑔ℓ𝑚2 (𝑟) = − 3
√︁
Λℓ𝑀

3 𝑖𝜔ℓ𝑚𝑟
2 + 𝑟 − 3𝑀

2
√
𝜋𝑟3(𝑟 − 𝑟𝑠)

,

Λℓ = (ℓ + 2) (ℓ + 1)ℓ(ℓ − 1) , (5.89)

and C2 is a complex constant in the Teukolsky-Starobinsky identity [41, 86, 87],

(𝐷𝑚𝜔)4
−2𝑅

(0,1)
ℓ𝑚

(𝑟) = C2 2𝑅̂ℓ𝑚 (𝑟) , (5.90a)

Δ2(𝐷†
𝑚𝜔)4

[
Δ2

2𝑅
(0,1)
ℓ𝑚

(𝑟)
]
= C−2 −2𝑅̂ℓ𝑚 (𝑟) . (5.90b)

The complex constants C2 and C−2 satisfy C2C−2 = ℭ, with ℭ being the Teukolsky-
Starobinsky constant in Eq. (5.18). Here, we have used Eq. (5.90) to reduce Eq. (5.16)
to

2𝑅̂ℓ𝑚 (𝑟) = − 2
C2

−2𝑅
(0,1)
ℓ𝑚

(𝑟) , (5.91a)

−2𝑅̂ℓ𝑚 (𝑟) =
32
C−2

2𝑅
(0,1)
ℓ𝑚

(𝑟) , (5.91b)

so we can replace the radial functions ±2𝑅̂ℓ𝑚 (𝑟) of the Hertz potential with the
radial functions ∓2𝑅

(0,1)
ℓ𝑚

(𝑟) of Ψ4 or Ψ0, respectively. Fixing the normalization
of ±2𝑅

(0,1)
ℓ𝑚

(𝑟), one can also set C−2 = C̄2. In contrast, the Teukolsky-Starobinsky
constant ℭ is normalization independent.

In this work, we compute the radial Teukolsly functions ±2𝑅
(0,1)
ℓ𝑚

(𝑟) using the
Leaver’s method in [38] and evaluate the coefficients C±2 directly. Specifically, we
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use the radial Teukolsky equations to reduce the maximum number of derivatives
in Eq. (5.90) to one, apply the simplified operators on ±2𝑅

(0,1)
ℓ𝑚

(𝑟), and evaluate
the ratio between the resulting wave functions and ∓2𝑅

(0,1)
ℓ𝑚

along the contour 𝒞 in
Eq. (5.81) (or Fig. 5.1). We find that this ratio is rather stable until very large |𝜉 |,
corresponding to 𝑟 with a large imaginary part. In this case, we simply use the ratio
at 𝑟 (𝜉 = 0) = 2(1 − 2𝑖)𝑀 as the value of C±2.

Using the Chandrasekhar transformation in [90], we can also transform the radial
Teukolsky functions ±2𝑅

(0,1)
ℓ𝑚

(𝑟) to the RW function 𝑍 (0,1)
ℓ𝑚

(𝑟), i.e.,

±2𝑅
(0,1)
ℓ𝑚

= 𝑓±2(𝑟)
[
𝑉𝑍 (𝑟) +

(
2
𝑟2 (𝑟 − 3𝑀) ∓ 2𝑖𝜔ℓ𝑚

)
Λ±

]
𝑍
(0,1)
ℓ𝑚

(𝑟) ,

𝑉𝑍 (𝑟) =
(
1 − 𝑟𝑠

𝑟

) (
ℓ(ℓ + 1)
𝑟2 − 6𝑀

𝑟3

)
,

𝑓2(𝑟) = 𝑟3Δ−2(𝑟) , 𝑓−2(𝑟) = 𝑟3 , Λ± =
𝑑

𝑑𝑟∗
∓ 𝑖𝜔ℓ𝑚 , (5.92)

where 𝑟∗ is the tortoise coordinate, i.e., 𝑑𝑟∗/𝑑𝑟 = (𝑟2 + 𝑎2)/Δ(𝑟), and 𝑉𝑍 (𝑟) is
determined by the potential in the RW equation. We can then directly compare
Eq. (5.88) to the results in [46, 47, 57]. Under the transformation in Eq. (5.92),
Eq. (5.88) becomes[

𝑟 (𝑟 − 𝑟𝑠)𝜕2
𝑟 + 𝑟𝑠𝜕𝑟 +

𝜔2
ℓ𝑚
𝑟3

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

]
Θℓ𝑚 (𝑟) = −3𝑖

√
Λℓ𝑀

3
√
𝜋𝑟3

𝑍
(0,1)
ℓ𝑚

(𝑟) ,

(5.93)

where we assume C−2 = C̄2. Equation (5.93) is consistent with the result in
[91] up to an overall constant, which can be compensated when evaluating the
modified Teukolsky equation. We have also tried applying the same Chandrasekhar
transformation in Eq. (5.92) to the modified Teukolsky equations, but the results do
not match the one in [46, 47, 57]. This is not surprising since ±2𝑅

(1,1)
ℓ𝑚

(𝑟) satisfy the
modified Teukolsky equations in dCS gravity but not the Teukolsky equations in
GR. We first need to extend the Chandrasekhar transformation in Eq. (5.92) to the
dCS case by including more terms, which we will work out in the future. On the
other hand, the source terms in Eq. (5.88) are driven by the GR Teukolsky functions

±2𝑅
(0,1)
ℓ𝑚

(𝑟), so we can still apply the Chandrasekhar transformation in GR.

To solve the scalar field from Eq. (5.88), we can use Green’s function. Rewriting the
left-hand side of Eq. (5.88) in the tortoise coordinate 𝑟∗, we get[

𝜕2
𝑟∗ +

𝑟 − 𝑟𝑠
𝑟3

(
𝜔2
ℓ𝑚
𝑟3

𝑟 − 𝑟𝑠
− 𝑟𝑠
𝑟
− 0𝐴ℓ𝑚

)]
Θℓ𝑚 (𝑟)
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= − 4𝑖
C2

𝑟 − 𝑟𝑠
𝑟3

(
𝑔ℓ𝑚1 (𝑟) + 𝑔ℓ𝑚2 (𝑟)𝜕𝑟

)
−2𝑅

(0,1)
ℓ𝑚

(𝑟) , (5.94)

where we have set 𝜂ℓ𝑚 = −1 since the even-parity modes with 𝜂ℓ𝑚 = 1 do not couple
to the scalar field. In this case, the solution to Eq. (5.94) along the contour 𝒞 is

Θℓ𝑚 (𝜉)

=
Θ𝑅
ℓ𝑚
(𝜉)

∫ 𝜉

−∞Θ𝐿
ℓ𝑚
(𝜉′)Sℓ𝑚

𝜗
(𝜉′)𝜕𝜉′𝑟∗ 𝑑𝜉′ + Θ𝐿

ℓ𝑚
(𝜉)

∫ ∞
𝜉

Θ𝑅
ℓ𝑚
(𝜉′)Sℓ𝑚

𝜗
(𝜉′)𝜕𝜉′𝑟∗ 𝑑𝜉′(

Θ𝑅
ℓ𝑚
(𝜉)𝜕𝜉Θ𝐿

ℓ𝑚
(𝜉) − Θ𝐿

ℓ𝑚
(𝜉)𝜕𝜉Θ𝑅

ℓ𝑚
(𝜉)

)
𝜕𝑟∗𝜉

,

(5.95)

where 𝑓 (𝜉) and 𝑓 (𝜉′) mean evaluating 𝑓 (𝑟) at 𝑟 = 𝑟𝒞 (𝜉) and 𝑟 = 𝑟𝒞 (𝜉′), respectively.
Numerically, we evaluate 𝜉 = ±∞ at 𝜉 = ±𝜉max, respectively. The function Sℓ𝑚

𝜗
(𝜉)

is the source term at the right-hand side of Eq. (5.94). The functions Θ𝑅
ℓ𝑚
(𝜉) and

Θ𝐿
ℓ𝑚
(𝜉) are solutions to the left-hand side of Eq. (5.94) with asymptotic behaviors

Θ𝑅
ℓ𝑚
(𝜉 → ∞) ∝ 𝑒𝑖𝜔ℓ𝑚𝑟

∗ (𝜉) and Θ𝐿
ℓ𝑚
(𝜉 → −∞) ∝ 𝑒−𝑖𝜔ℓ𝑚𝑟

∗ (𝜉) , respectively. We
compute Θ𝑅

ℓ𝑚
(𝜉) and Θ𝐿

ℓ𝑚
(𝜉) by numerically integrating their asymptotic expansion

from 𝜉 = 𝜉max and 𝜉 = −𝜉max along the contour to 𝜉 = −𝜉max and 𝜉 = 𝜉max,
respectively. After getting Θℓ𝑚 (𝑟) along the contour 𝒞, we then plug it back
into Eq. (5.87a). Notice, by solving Θℓ𝑚 (𝑟), we effectively compute the piece
H−1
𝜗
Vℓ𝑚

2D†
ℓ𝑚 2𝑅

(0,1)
ℓ𝑚

of 𝐴̂ℓ𝑚1 D†
ℓ𝑚 2𝑅

(0,1)
ℓ𝑚

[see Eq. (5.55)]. We can then compute the
inner product in Eq. (5.87a) using the solution of Θℓ𝑚 (𝑟) and 2𝑅

(0,1)
ℓ𝑚

(𝑟). A similar
calculation can be also done in the ORG for Ψ(1,1)

4 using Eq. (5.87b).

In Table 5.1, we present the results of 𝜔(1,0)
ℓ𝑚

for ℓ = 2, 3 and the overtones 𝑛 = 0, 1, 2
in this work using either the IRG or the ORG, in [92], and in [71], respectively.
Both this work and [92] use the EVP method to compute 𝜔(1,0)

ℓ𝑚
, while Ref. [92]

uses the RW and ZM equations of dCS gravity in [46–48, 57, 58] instead of the
modified Teukolsky equations here. Ref. [57] also uses the RW and ZM equations
but computes 𝜔(1,0)

ℓ𝑚
via the shooting method. They evolve two independent solutions

from the horizon and infinity to a middle point and find the frequency to get these
two evolved solutions to match. We notice that all the results using the EVP method
are consistent with each other, where the relative differences in both the real and
imaginary part of 𝜔(1,0)

ℓ𝑚
among these results are ≲ 10−5 for the fundamental mode

𝑛 = 0. The relative differences between the IRG results here and the results in [92]
are ≲ 10−4 for all the modes computed. Since [92] uses the RW and ZM equations,
this indicates that the modified Teukolsky equations found in [71] and this work
are consistent with the RW and ZM equations in [46–48, 57, 58] for a non-rotating
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ℓ Overtones MTF+EVP (IRG) MTF+EVP (ORG) RW/ZM+EVP RW/ZM+shooting
𝑛 = 0 0.030768 + 0.015700𝑖 0.030768 + 0.015700𝑖 0.030768 + 0.015700𝑖 0.031831 + 0.015916𝑖

ℓ = 2 𝑛 = 1 0.063740 + 0.051148𝑖 0.063744 + 0.051148𝑖 0.063740 + 0.051148𝑖 –
𝑛 = 2 0.146449 + 0.101397𝑖 0.146528 + 0.101362𝑖 0.146449 + 0.101398𝑖 –
𝑛 = 0 0.114273 + 0.020649𝑖 0.114265 + 0.020648𝑖 0.114273 + 0.020649𝑖 0.133690 + 0.025464𝑖

ℓ = 3 𝑛 = 1 0.144647 + 0.063923𝑖 0.145134 + 0.064434𝑖 0.144647 + 0.063923𝑖 –
𝑛 = 2 0.207858 + 0.114091𝑖 0.207176 + 0.109616𝑖 0.207877 + 0.114103𝑖 –

Table 5.1: The QNM frequency shifts 𝜔(1,0)
ℓ𝑚

of a non-rotating BH in dCS gravity
for ℓ = 2, 3 and the overtones 𝑛 = 0, 1, 2. Due to spherical symmetry, 𝜔(1,0)

ℓ𝑚
with

the same ℓ but different 𝑚 are the same. The word “MTF” is an acronym for the
modified Teukolsky formalism. The columns “MTF+EVP (IRG)” and “MTF+EVP
(ORG)” contain the results in this work. The results in the column “RW/ZM+EVP”
use the EVP method to solve for 𝜔(1,0)

ℓ𝑚
from the RW and ZM equations of dCS

gravity in [46–48, 57, 58], as discussed in detail in [92]. The results in the column
“RW/ZM+shooting” are retrieved from [57] directly, which uses the shooting method
to solve for 𝜔(1,0)

ℓ𝑚
from the RW and ZM equations. Since Ref. [57] does not calculate

𝜔
(1,0)
ℓ𝑚

for overtones, we leave these cells blank.

BH in dCS gravity. In our future work, we will prove this consistency analytically
by developing a modified Chandrasekhar transformation to relate the RW and ZM
equations to the modified Teukolsky equations of definite parity.

Furthermore, the results in the IRG and ORG of this work are also consistent, where
the relative differences between the results in these two gauges are < 1% for all the
modes except ℓ = 3, 𝑛 = 2, which has a relative difference ∼ 4% in Im

[
𝜔

(1,0)
ℓ𝑚

]
. We

also observe that the relative differences among different methods increase with the
overtone number 𝑛. This is probably because Im

[
𝜔

(0,0)
ℓ𝑚

]
decreases with 𝑛, which is

always negative, so the source terms, which are driven by the GR QNMs, decay much
faster along the contour 𝒞 for a larger 𝑛, resulting in larger numerical inaccuracy.

Finally, comparing our results here to the ones in [57], which only contain the
fundamental mode 𝑛 = 0, we notice that the relative difference in 𝜔(1,0)

ℓ𝑚
for ℓ = 2,

𝑛 = 0 is < 4%. However, for ℓ = 3, 𝑛 = 0, the relative difference is as large as
∼ 20%. Since we previously confirmed that our modified Teukolsky equations are
consistent with the RW and ZM equations in [57] for a non-rotating BH in dCS
gravity, this large difference is likely due to numerical inaccuracy in using either
the EVP method or the shooting method to compute the QNM frequencies. As the
amplitude of QNMs diverges at the horizon and infinity but converges to 0 at the
ends of the contour 𝒞, it is more possible that the shooting method used by [57] has
a larger numerical inaccuracy.
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5.5.3 Outlook for computing the QNMs of rotating BHs in dCS gravity
In the previous subsection, we computed the QNM frequency shifts for a non-rotating
BH in dCS gravity. The next natural step is to apply the same procedures to Eqs. (5.69)
and (5.73), which are valid up to O(𝜁1, 𝜒1, 𝜖1). In this case, since the source terms in
Eqs. (5.69) and (5.73) are not only coupled to the scalar field but also the GR QNMs
directly, the QNM spectrum of both parity will get shifted, as discussed in Sec. 5.5.1
and confirmed in [57, 58]. The calculation for the odd-parity modes follows the same
structure as the non-rotating case, where one needs to solve for the scalar field first.
The calculation for the even-parity modes is even simpler since there is no coupling
to the scalar field, and one can apply the standard EVP method for a single field in
[66, 76, 77]. In addition, besides the gravitational-led QNMs, there are additional
scalar-led modes in dCS gravity due to the coupling to the scalar field [57]. In this
case, one can reverse the procedures for the odd-parity gravitational-led modes by
first solving the modified Teukolsky equations in Eqs. (5.69) and (5.73) at the scalar
QNM frequencies. Then, one feeds the solutions as the driving terms to the scalar
field equations in Eqs. (5.31a) and (5.33a) and computes the QNM frequency shifts
of the scalar-led modes using the EVP method. Since this is still ongoing work, we
will present the results at O(𝜁1, 𝜒1, 𝜖1), including the scalar-led QNMs, in the full
paper.

In [71] and this follow-up work, we only considered the case for a slowly rotating
BH in dCS gravity up to O(𝜒1). We did this to demonstrate this new approach in
computing beyond-GR QNMs with the modified Teukolsky formalism so we can
directly compare our results to the ones in [46–48, 57, 58]. Nevertheless, this new
approach, in principle, works for BHs with a general spin in dCS gravity, including
these fast rotating ones, as demonstrated in [67, 70]. Since the source terms of the
modified Teukolsky equations in terms of the NP quantities computed in [71] work
for a general spin, and the background metric of a fast rotating BH in dCS gravity can
be computed with the method in [93], the only challenge is to implement the metric
reconstruction procedures for the full Kerr case. However, the CCK procedures
for metric reconstruction have been widely implemented for the full Kerr case in
different situations [81, 83–85, 94–96]. Thus, we do not expect metric reconstruction
to be an obstacle preventing us from obtaining the QNMs of fast rotating BHs in
dCS gravity, as we will demonstrate in our follow-up work.
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5.6 Appendix: Properties of the angular projection coefficients
In this appendix, we show some relations for the angular projection coefficients
{Λℓ1ℓ2𝑚𝑠1𝑠2 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 } and {Λ†ℓ1ℓ2𝑚

𝑠1𝑠2 ,Λ
†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐 ,Λ

†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠 } that will be used to simplify

the equations in Secs. 5.3 and 5.4.

Following [97], let us first show that

Λℓℓ𝑚𝑠1𝑠1𝑐
= 𝑚Λℓℓ1𝑠1𝑠1𝑐

, (5.96a)

Λℓℓ𝑚𝑠1𝑠1±1𝑠 = 𝑚Λ
ℓℓ1
𝑠1𝑠1±1𝑠 . (5.96b)

In [71], we have defined that

Λℓ1ℓ2𝑚𝑠1𝑠2𝑐
≡

∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (5.97a)

Λℓ1ℓ2𝑚𝑠1𝑠2𝑠
≡

∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (5.97b)

where 𝑑𝑆 is the solid angle element, and the integration is over the entire 2-sphere.
Using that

0𝑌10(𝜃, 𝜙) =
√︂

3
4𝜋

cos 𝜃 , ±1𝑌10(𝜃, 𝜙) = ±
√︂

3
8𝜋

sin 𝜃 , (5.98)

we can write Λℓℓ𝑚𝑠1𝑠1𝑐
and Λℓℓ𝑚

𝑠1𝑠1±1𝑠 as

Λℓℓ𝑚𝑠1𝑠1𝑐
=

√︂
4𝜋
3

∫
𝑆2
𝑑𝑆 𝑠1𝑌ℓ𝑚 𝑠1𝑌ℓ𝑚 0𝑌10 , (5.99a)

Λℓℓ𝑚𝑠1𝑠1±1𝑠 = ±
√︂

8𝜋
3

∫
𝑆2
𝑑𝑆 𝑠1±1𝑌ℓ𝑚 𝑠1𝑌ℓ𝑚 ±1𝑌10 . (5.99b)

Using the relation between the spin-weighted spherical harmonics 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) and
the Wigner rotation matrices 𝐷ℓ

𝑠𝑚 (𝜙, 𝜃, 𝛾) in [98],

𝑠𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝑠𝛾 =
√︂

2ℓ + 1
4𝜋

𝐷ℓ
−𝑠𝑚 (𝜙, 𝜃, 𝛾) , (5.100)

we can reduce Eq. (5.99) to

Λℓℓ𝑚𝑠1𝑠1𝑐
=

2ℓ + 1
8𝜋2

∫ 2𝜋

0
𝑑𝛾

∫
𝑆2
𝑑𝑆 𝐷̄ℓ

−𝑠1𝑚
𝐷ℓ

−𝑠1𝑚
𝐷1

00 , (5.101a)

Λℓℓ𝑚𝑠1𝑠1±1𝑠 = ± 2ℓ + 1
4
√

2𝜋2

∫ 2𝜋

0
𝑑𝛾

∫
𝑆2
𝑑𝑆 𝐷̄ℓ

−𝑠1∓ 1𝑚 𝐷
ℓ
−𝑠1𝑚

𝐷1
∓10 , (5.101b)
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where we have added an additional integral in 𝛾 and a factor of 1/(2𝜋). This trick
uses that the integrands in Eq. (5.101) do not really depend on 𝛾 since all the factors
of 𝑒−𝑖𝑠𝛾 cancel out after using Eq. (5.100). Now, using that [97]∫ 2𝜋

0
𝑑𝛾

∫
𝑆2
𝑑𝑆 𝐷̄

ℓ3
𝑠3𝑚3𝐷

ℓ2
𝑠2𝑚2

𝐷ℓ1
𝑠1𝑚1

=
8𝜋2

2ℓ3 + 1
𝛿𝑠1+𝑠2,𝑠3𝛿𝑚1+𝑚2,𝑚3𝐶

ℓ3𝑚3
ℓ1𝑚1ℓ2𝑚2

𝐶
ℓ3𝑠3
ℓ1𝑠1ℓ2𝑠2

,

(5.102)
where 𝐶ℓ3𝑚3

ℓ1𝑚1ℓ2𝑚2
is the Clebsch-Gordan coefficient, we get that

Λℓℓ𝑚𝑠1𝑠1𝑐
= 𝐶ℓ𝑚10ℓ𝑚𝐶

ℓ(−𝑠1)
10ℓ(−𝑠1) , (5.103a)

Λℓℓ𝑚𝑠1𝑠1±1𝑠 = ±
√

2𝐶ℓ𝑚10ℓ𝑚𝐶
ℓ(−𝑠1∓1)
1(∓1)ℓ(−𝑠1) , (5.103b)

Using the relation in [99] that

𝐶ℓ𝑚10ℓ𝑚 = 𝑚𝐶ℓ110ℓ1 , (5.104)

we get Eq. (5.96).

Next, let us show that

Λℓℓ𝑚−𝑠1−𝑠1𝑐
= −Λℓℓ𝑚𝑠1𝑠1𝑐

, (5.105a)

Λℓℓ𝑚−𝑠1−𝑠1∓1𝑠 = Λℓℓ𝑚𝑠1𝑠1±1𝑠 . (5.105b)

First, using Eqs. (5.45) and (5.97), we get

Λℓ1ℓ2𝑚−𝑠1−𝑠2𝑐
= (−1)𝑠1+𝑠2

∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1−𝑚 𝑠2𝑌ℓ2−𝑚 , (5.106a)

Λℓ1ℓ2𝑚−𝑠1−𝑠2𝑠
= (−1)𝑠1+𝑠2

∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1−𝑚 𝑠2𝑌ℓ2−𝑚 . (5.106b)

Since the integrands in Eq. (5.106) are real, we can move the complex conjugate of

𝑠1𝑌ℓ1−𝑚 to 𝑠2𝑌ℓ2−𝑚. Thus, we get

Λℓ1ℓ2𝑚−𝑠1−𝑠2𝑐
= (−1)𝑠1+𝑠2Λℓ1ℓ2−𝑚𝑠1𝑠2𝑐

, (5.107a)

Λℓ1ℓ2𝑚−𝑠1−𝑠2𝑠
= (−1)𝑠1+𝑠2Λℓ1ℓ2−𝑚𝑠1𝑠2𝑠

. (5.107b)

Using Eq. (5.96) with Eq. (5.107), we get Eq. (5.105).

Finally, let us show that

Λ†ℓℓ𝑚
−𝑠1𝑠2𝑐

= (−1)𝑚+𝑠1Λℓℓ𝑚𝑠1𝑠2𝑐
, (5.108a)

Λ†ℓℓ𝑚
−𝑠1𝑠2𝑠

= (−1)𝑚+𝑠1Λℓℓ𝑚𝑠1𝑠2𝑠
. (5.108b)
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In [71], we have defined that

Λ†ℓ1ℓ2𝑚
𝑠1𝑠2𝑐

≡
∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1−𝑚 𝑠2𝑌ℓ2𝑚 , (5.109a)

Λ†ℓ1ℓ2𝑚
𝑠1𝑠2𝑠

≡
∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1−𝑚 𝑠2𝑌ℓ2𝑚 . (5.109b)

Using Eq. (5.45), we get

Λ†ℓ1ℓ2𝑚
−𝑠1𝑠2𝑐

= (−1)𝑚+𝑠1

∫
𝑆2
𝑑𝑆 cos 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (5.110a)

Λ†ℓ1ℓ2𝑚
−𝑠1𝑠2𝑠

= (−1)𝑚+𝑠1

∫
𝑆2
𝑑𝑆 sin 𝜃 𝑠1𝑌ℓ1𝑚 𝑠2𝑌ℓ2𝑚 , (5.110b)

which gives us Eq. (5.108) when comparing Eq. (5.110) to Eq. (5.97).

5.7 Appendix: List of radial operators
In this appendix, we provide the explicit expressions of the radial operators
{ 𝐴̂ℓ𝑚

𝑖
, 𝐵̂ℓ𝑚

𝑖
, ˆ̃𝐵ℓ𝑚

𝑖
} and {𝒜ℓ𝑚

𝑖
, ℬ̂ℓ𝑚

𝑖
, ˆ̃
ℬ
ℓ𝑚
𝑖

} in terms of the auxiliary radial functions in
[71].

First, the radial operators { 𝐴̂ℓ𝑚
𝑖
, 𝐵̂ℓ𝑚

𝑖
, ˆ̃𝐵ℓ𝑚

𝑖
} used in the equation of Ψ(1,1)

0 in the IRG
[Eqs. (5.69) and (5.70)] are defined as

𝐴̂ℓ𝑚1 = 𝑖

(
𝑘ℓ𝑚1 (𝑟) + 𝑘ℓ𝑚2 (𝑟)𝜕𝑟

)
H−1
𝜗 Vℓ𝑚 + 1

1 − 𝜂ℓ𝑚

(
𝑘ℓ𝑚3 (𝑟) + 𝑘ℓ𝑚4 (𝑟)𝜕𝑟

)
, (5.111a)

𝐴̂ℓ𝑚2 =

(
𝑘ℓ𝑚5 (𝑟) + 𝑘ℓ𝑚6 (𝑟)𝜕𝑟

)
H−1
𝜗 Vℓ𝑚 − 𝑖

1 − 𝜂ℓ𝑚

(
𝑘ℓ𝑚7 (𝑟) + 𝑘ℓ𝑚8 (𝑟)𝜕𝑟

)
, (5.111b)

𝐴̂ℓ𝑚3 =

(
𝑘ℓ𝑚9 (𝑟) + 𝑘ℓ𝑚10 (𝑟)𝜕𝑟

)
H−1
𝜗 Vℓ𝑚 − 𝑖

1 − 𝜂ℓ𝑚

(
𝑘ℓ𝑚11 (𝑟) + 𝑘

ℓ𝑚
12 (𝑟)𝜕𝑟

)
, (5.111c)

𝐵̂ℓ𝑚1 = − 𝑖
(
𝑞ℓ𝑚1 (𝑟) + 𝑞ℓ𝑚2 (𝑟)𝜕𝑟

)
, (5.111d)

𝐵̂ℓ𝑚2 = − 𝑖
(
𝑞ℓ𝑚3 (𝑟) + 𝑞ℓ𝑚4 (𝑟)𝜕𝑟

)
, (5.111e)

𝐵̂ℓ𝑚3 = − 𝑖
(
𝑞ℓ𝑚5 (𝑟) + 𝑞ℓ𝑚6 (𝑟)𝜕𝑟

)
, (5.111f)

ˆ̃𝐵ℓ𝑚1 = − 𝑖
(
𝑞ℓ𝑚1 (𝑟) + 𝑞ℓ𝑚2 (𝑟)𝜕𝑟

)
, (5.111g)

ˆ̃𝐵ℓ𝑚2 = − 𝑖𝑞ℓ𝑚3 (𝑟) , (5.111h)

where H−1
𝜗

is the Green’s function corresponding to the left-hand side of Eq. (5.31a),
which can be retrieved from Eq. (5.95), and the operator Vℓ𝑚 is

Vℓ𝑚 = 𝑔ℓ𝑚1 (𝑟) + 𝑔ℓ𝑚2 (𝑟)𝜕𝑟 − 𝑖𝜒𝑚Λℓℓ110𝑠

[
𝑔ℓ𝑚3 (𝑟) + ℎℓ𝑚1 (𝑟) +

(
𝑔ℓ𝑚4 (𝑟) + ℎℓ𝑚2 (𝑟)

)
𝜕𝑟

]
.

(5.112)
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Notice that there is an extra factor of 1/(1 − 𝜂ℓ𝑚) in several terms of Eq. (5.111)
since we have extracted a factor of 1 − 𝜂ℓ𝑚 in Eq. (5.54) when defining 𝐴̂ℓ𝑚

𝑖
. The

definition of all the radial functions 𝑘ℓ𝑚
𝑖

(𝑟) = 𝑘ℓ𝑚
𝑖

(𝑟, 𝜔, 𝑀), 𝑞ℓ𝑚
𝑖
(𝑟) = 𝑞ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀),

and 𝑞ℓ𝑚
𝑖
(𝑟) = 𝑞ℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀) can be found in [71] and the supplementary Mathematica

notebook [88]. The radial functions 𝑔ℓ𝑚
𝑖

(𝑟) and ℎℓ𝑚
𝑖
(𝑟) follow the redefinition in

Eq. (5.27).

Next, the radial operators {𝒜ℓ𝑚
𝑖
, ℬ̂ℓ𝑚

𝑖
, ˆ̃
ℬ
ℓ𝑚
𝑖

} used in the equation of Ψ(1,1)
4 in the

ORG [Eqs. (5.73) and (5.74)] are defined as

𝒜
ℓ𝑚
1 = 𝑖

(
kℓ𝑚1 (𝑟) + kℓ𝑚2 (𝑟)𝜕𝑟

)
H−1
𝜗 Uℓ𝑚 + 1

1 − 𝜂ℓ𝑚

(
kℓ𝑚3 (𝑟) + kℓ𝑚4 (𝑟)𝜕𝑟

)
, (5.113a)

𝒜
ℓ𝑚
2 =

(
kℓ𝑚5 (𝑟) + kℓ𝑚6 (𝑟)𝜕𝑟

)
H−1
𝜗 Uℓ𝑚 − 𝑖

1 − 𝜂ℓ𝑚

(
kℓ𝑚7 (𝑟) + kℓ𝑚8 (𝑟)𝜕𝑟

)
, (5.113b)

𝒜
ℓ𝑚
3 =

(
kℓ𝑚9 (𝑟) + kℓ𝑚10 (𝑟)𝜕𝑟

)
H−1
𝜗 Uℓ𝑚 − 𝑖

1 − 𝜂ℓ𝑚

(
kℓ𝑚11 (𝑟) + k

ℓ𝑚
12 (𝑟)𝜕𝑟

)
, (5.113c)

ℬ̂
ℓ𝑚
1 = − 𝑖

(
qℓ𝑚1 (𝑟) + qℓ𝑚2 (𝑟)𝜕𝑟

)
, (5.113d)

ℬ̂
ℓ𝑚
2 = − 𝑖

(
qℓ𝑚3 (𝑟) + qℓ𝑚4 (𝑟)𝜕𝑟

)
, (5.113e)

ℬ̂
ℓ𝑚
3 = − 𝑖

(
qℓ𝑚5 (𝑟) + qℓ𝑚6 (𝑟)𝜕𝑟

)
, (5.113f)

ˆ̃
ℬ
ℓ𝑚
1 = − 𝑖

(
q̃ℓ𝑚1 (𝑟) + q̃ℓ𝑚2 (𝑟)𝜕𝑟

)
, (5.113g)

ˆ̃
ℬ
ℓ𝑚
2 = − 𝑖q̃ℓ𝑚3 (𝑟) , (5.113h)

where

Uℓ𝑚 = gℓ𝑚1 (𝑟) + gℓ𝑚2 (𝑟)𝜕𝑟 − 𝑖𝜒𝑚Λℓℓ110𝑠

[
gℓ𝑚3 (𝑟) + hℓ𝑚1 (𝑟) +

(
gℓ𝑚4 (𝑟) + hℓ𝑚2 (𝑟)

)
𝜕𝑟

]
.

(5.114)

The definition of all the radial functions kℓ𝑚𝑖 (𝑟) = kℓ𝑚𝑖 (𝑟, 𝜔, 𝑀), qℓ𝑚
𝑖
(𝑟) = qℓ𝑚

𝑖
(𝑟, 𝜔, 𝑀),

and q̃ℓ𝑚𝑖 (𝑟) = q̃ℓ𝑚𝑖 (𝑟, 𝜔, 𝑀) can be found in [71] and the supplementary Mathematica
notebook [88]. The radial functions gℓ𝑚

𝑖
(𝑟) and hℓ𝑚𝑖 (𝑟) follow the redefinition in

Eq. (5.27).
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C h a p t e r 6

SPECTROSCOPY OF BUMPY BLACK HOLES: NON-ROTATING
CASE

[1] Colin Weller, Dongjun Li, and Yanbei Chen. “Spectroscopy of bumpy BHs:
non-rotating case”. In: (May 2024). arXiv: 2405.20934 [gr-qc].

6.1 Introduction
Recent observations from ground-based laser interferometers [1, 2], pulsar timing
arrays [3], and very-long-baseline interferometry [4] have spawned a new era of
testing general relativity (GR) [5, 6]. While GR has agreed with numerous tests,
modifications may emerge beyond some scale [7–10]. In particular, both GR and the
standard model of particle physics fail to explain the existence of dark matter [11],
the accelerating expansion of the universe [12–14], the present matter-antimatter
asymmetry [15], motivating bottom-up modifications to GR to provide explanation.
At a more fundamental level, GR and quantum mechanics do not reconcile beyond the
Planck scale, which has prompted many to search for a unified theory from the top-
down, such as loop quantum gravity [16, 17], string theory [18], and other quantum
structure programs [19]. Both the bottom-up and top-down efforts have resulted
in a plethora of beyond-GR (bGR) theories, such as scalar-tensor theories [20],
Einstein dilaton Gauss-Bonnet gravity [21–23], Horndeski theory [24], dynamical
Chern-Simons gravity [25, 26], 𝑓 (𝑅) gravity [27, 28], and higher-derivative gravity
without extra fields [29–31]. Given the breadth of bGR theories, it remains critical
to test their predictions, especially when gravity is strong and highly dynamic.

One avenue that may constrain bGR theories is examining the gravitational wave
(GW) signal of a perturbed, remnant black hole (BH) produced by a binary BH
merger. The GWs emitted in the ringdown phase are characterized by the so-called
quasinormal modes (QNMs) with complex frequencies. The real part of the QNM
frequencies is related to the orbital and precessional frequencies of null geodesics
near the light ring, while the imaginary part encodes the Lyapunov exponent of the
orbit [32–34]. Each QNM can be labeled by three integers, (ℓ, 𝑚, 𝑛), where ℓ and 𝑚
are angular momentum quantum numbers and 𝑛 denotes the overtone [35, 36]. In
GR, by detecting these QNMs, one can infer the mass and spin of the remnant BH. In

https://arxiv.org/abs/2405.20934
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bGR theories, these QNMs can carry even more information, such as the length scale
of bGR physics and the possible existence of other non-metric fields. Examining
the correspondence between QNM spectra and fundamental physics around BHs is
generally known as BH spectroscopy [37–40].

Using the linear perturbation theory of a single BH, one can precisely calculate its
QNMs in GR. For Schwarzschild BHs obeying spherical symmetry, one can directly
separate metric perturbations into even- and odd-parity components, which are well
described by the Regge-Wheeler and Zerilli-Moncreif equations [41–43]. These
two equations are one-dimensional Schrodinger-type wave equations in the radial
coordinate and are decoupled from each other. The resulting QNMs can be found by
imposing the gravitational perturbations to be purely outgoing at infinity and purely
ingoing at the horizon [44]. For spinning BHs with only axisymmetry, one cannot
easily decouple perturbations of different metric components, even in linear order,
which makes reducing the Einstein equations into purely radial equations much more
challenging. One alternative approach built on the Newman-Penrose (NP) formalism
[45] was developed by Teukolsky and Press [46–48], which instead focuses on
curvature perturbations represented by perturbations of the Weyl scalars Ψ0 and Ψ4.
In this case, one can also find two decoupled ordinary differential equations of Ψ0

and Ψ4 in the radial coordinate. Since then, QNMs in GR have been studied widely
in the literature (see Refs. [39, 49, 50] for reviews). Many semi-analytic [32, 35,
51, 52] and numerical methods [53, 54] have been developed to compute QNMs
accurately within GR.

Importantly, QNMs in GR are governed by the “no-hair” theorem, which requires
that a BH is completely determined by its mass, angular momentum, and electric
charge [55–58]. While it was shown a real scalar field cannot source scalar hair [59],
it is possible to have “hairy” solutions when GR is coupled to other fields and in
modified gravity (e.g., see [60, 61]), which has been tested using GW detections and
QNMs [62].

An equivalent statement of the no-hair theorem can be given in terms of field
multipole moments. Typically, multipole moments describe the expansion of a field
that satisfies a linear differential equation, such as Laplace’s equation. Nonetheless,
Thorne found how to use multipole moments to describe solutions of the Einstein
equations by making a post-Newtonian expansion [63]. Later, Geroch and Hansen
(GH) extended this description to the strong gravity regime [64–66], which is
equivalent to Thorne’s description when the correct approximation is taken [67].
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Similar to the multipoles discovered by Thorne, GH multipoles have two types: mass
moments 𝑀𝑙 and current moments 𝑆𝑙 . In particular, for the Kerr geometry, they
satisfy (in geometrized units),

𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀 (𝑖𝑎)𝑙 , 𝑎 = 𝐽/𝑀 , (6.1)

where 𝐽 and 𝑀 are the angular momentum and mass of a BH, respectively. These
moments were only well-defined for vacuum spacetimes originally, but some recent
work has extended the original definition to include sources [68] and bGR theories
[69, 70]. Additionally, it has been shown that given all the GH multipoles for a
spacetime, the full metric can be reconstructed [71–73].

The intricate connection between a BH’s geometry and its multipole moments led
Thorne to advocate GW signals as a way to examine it [74]. Later, Ryan calculated
the GWs emitted by an extreme mass-ratio inspiral (EMRI) around an axisymmetric
central BH with arbitrary GH multipole moments [75]. Following these previous
endeavors, Refs. [76–78] further developed the program of bumpy BHs, which
deviate from the Kerr geometry by multipole moments (i.e., the “bumps”), and
computed the modifications to EMRI waveforms. However, none of these analyses
calculated the shifts in QNM frequencies due to these additional multipole moments.

On the other hand, there has been a rising interest in performing parametrized
ringdown tests [79]. Most of the previous studies either focus on non-rotating
BHs [80, 81] or make the eikonal approximation for rotating BHs [40, 82–84].
However, recent GW detections indicate that most remnant BHs are fast rotating
[85], while the eikonal approximation only works properly for QNMs with large ℓ,
which are subdominant in the ringdown signal and may not even work for certain
bGR theories [40]. Some other efforts consider modifying the potential in the radial
Teukolsky equations directly [86], while the map from the QNM frequency shifts to
the geometric deformations of a BH becomes not transparent.

All these challenges in studying the multipole moments of a BH spacetime and
performing parametrized ringdown tests motivate this work. In this work, we will
apply the modified Teukolsky formalism developed in [87–89] to directly compute
the QNM frequency shifts generated by the multipole moments of the bumpy BHs
considered in [77]. This new approach of doing parametrized ringdown tests works in
general for Kerr BHs with perturbative axisymmetric deviations. It also does not rely
on any eikonal approximation. Furthermore, it allows one to map the deformations
of the BH geometry, described by multipole moments, to the QNM frequency shifts
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directly. Previous works [89–91] have applied the modified Teukolsky formalism to
compute the QNMs in specific bGR theories, while we apply it to this theory-agnostic
ringdown study. To demonstrate our approach, we will focus on the simplest case
of non-rotating bumpy BHs in this work. Although our BHs are non-rotating, the
bumps added to them are axisymmetric [77], so the procedures we implement here
work for the rotating case in principle.

The manuscript is organized as follows. In Sec. 6.2, we introduce the specific model
of bumpy BHs developed in [77], explain their motivation for testing GR, and detail
their derivation. In Sec. 6.3, we review the modified Teukolsky formalism and
implement the Chrzanowski-Cohen-Kegeles (CCK) metric reconstruction procedure
[92–96] to compute all the necessary source terms in the equation. In Sec. 6.4, we
review the eigenvalue perturbation (EVP) method in [88, 97–99] and apply it to
compute the QNM frequency shifts from the modified Teukolsky equation. We then
present the results in Sec. 6.5 and discuss future avenues in Sec. 6.6. For convenience,
we provide a flow chart in Fig. 6.1 to summarize our procedures for computing the
QNM frequency shifts of the bumpy BHs.

6.2 Bumpy BHs
Bumpy BHs were first introduced in [76] as a way to conveniently parametrize
multipole deviations away from the Kerr vacuum. In GR, the no-hair theorem
requires a Kerr solution to satisfy

𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀 (𝑖𝑎)𝑙 , (6.2)

where (𝑀𝑙 , 𝑆𝑙) are the mass and current multipoles of the BH, respectively. Thus,
one can form a null experiment of GR by considering deviations of the form

𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀 (𝑖𝑎)𝑙 + 𝛿𝑀𝑙 + 𝛿𝑆𝑙 . (6.3)

In [77], Vingeland and Hughes further extended the results in [76] to rectify the
nonsmooth nature of the bumps and include spinning bumpy BHs. More specifically,
they considerred the Weyl metric [100]

𝑑𝑠2 = −𝑒2𝜓𝑑𝑡2 + 𝑒2𝛾−2𝜓
(
𝑑𝜌2 + 𝑑𝑧2

)
+ 𝑒−2𝜓𝜌2𝑑𝜙2 , (6.4)

where (𝜌, 𝑧) are related to the Boyer-Lindquist coordinates (𝑟, 𝜃) by

𝜌 = 𝑟 sin 𝜃
√︂

1 − 2𝑀
𝑟
, 𝑧 = (𝑟 − 𝑀) cos 𝜃 . (6.5)
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𝑆
(1,1)
geo in Eq. (6.19)

𝑆
(1,1)
0,D [Eq. (6.20a)], 𝑆(1,1)0,non-D [Eq. (6.20b)], and 𝑆(1,1)1,non-D [Eq. (6.20c)]

Quantities at O(𝜁1, 𝜖0) Quantities at O(𝜁0, 𝜖1)

Ψ
(1,0)
0,1 [Eq. (6.73)],

𝐻
(1,0)
0 [Eq. (6.23)]

Requires

NP quantities at O(𝜁1, 𝜖0):
Eqs. (6.76) and (6.78)

Ψ
(0,1)
0 [Eqs. (6.32) and (6.38)],

𝐻
(0,1)
0,1 [Eq. (6.23)]

Requires

ℎ
(0,1)
𝜇𝜈 [Eqs. (6.29),

(6.34), and (6.35)]

NP quantities at O(𝜁0, 𝜖1):
Ref. [91]

Master equation in Eq. (6.48)

EVP

𝜔
±(1)
ℓ𝑚

[Eqs. (6.60) and (6.63)]

Figure 6.1: A flow chart describing the procedures and the main equations used for
computing the QNM frequency shifts 𝜔±(1)

ℓ𝑚
for bumpy BHs.

The terms 𝜓 and 𝛾 are functions of 𝜌 and 𝑧, i.e., 𝜓 = 𝜓(𝜌, 𝑧) and 𝛾 = 𝛾(𝜌, 𝑧).
Imposing the spacetime to be Ricci flat, one gets three equations for 𝛾 and 𝜓:

0 =
𝜕2𝜓

𝜕𝜌2 + 1
𝜌

𝜕𝜓

𝜕𝜌
+ 𝜕

2𝜓

𝜕𝑧2 , (6.6a)

𝜕𝛾

𝜕𝜌
= 𝜌

[(
𝜕𝜓

𝜕𝜌

)2
−

(
𝜕𝜓

𝜕𝑧

)2
]
, (6.6b)

𝜕𝛾

𝜕𝑧
= 2𝜌

𝜕𝜓

𝜕𝜌

𝜕𝜓

𝜕𝑧
. (6.6c)

Since Eq. (6.6a) is simply Laplace’s equation, 𝜓 can be conveniently chosen as
harmonic functions [77]. Reference [77] further perturbatively solved Eq. (6.6) by
expanding the bumpy BH spacetime around the BHs in GR, e.g.,

𝜓 = 𝜓0 + 𝜓1 , 𝜓1/𝜓0 ≪ 1 ,
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𝛾 = 𝛾0 + 𝛾1 , 𝛾1/𝛾0 ≪ 1 . (6.7)

For non-rotating BHs, 𝜓0 and 𝛾0 correspond to the Schwarzschild metric in the Weyl
coordinates with

𝜓0 = ln tanh(𝑢/2) , 𝛾0 = −1
2

ln
(
1 + sin2 𝑣

sinh2 𝑢

)
, (6.8)

where (𝑢, 𝑣) are prolate spheroidal coordinates (𝑢, 𝑣) and are related to the Weyl
coordinates (𝜌, 𝑧) by

𝜌 = 𝑀 sinh 𝑢 sin 𝑣 , (6.9a)

𝑧 = 𝑀 cosh 𝑢 cos 𝑣 . (6.9b)

Since𝜓1 is a harmonic function when the spacetime is Ricci flat, it can be decomposed
into multipoles in Weyl coordinates, i.e.,

𝜓1(𝜌, 𝑧) =
∑︁
ℓ𝑊

𝐵ℓ𝑊𝑀
ℓ𝑊+1 𝑌ℓ𝑊0(𝜃Weyl)

(𝜌2 + 𝑧2)
ℓ𝑊+1

2

, (6.10)

where cos(𝜃Weyl) = 𝑧/
√︁
𝜌2 + 𝑧2, and 𝐵ℓ𝑊 is a dimensionless coupling constant that

parametrizes the magnitude of the bump with multipole ℓ𝑊 . We can assume that
𝐵ℓ𝑊 ≪ 1 for our purposes. Using the coordinate transformation in Eq. (6.5), one
can transform Eq. (6.4) in the Weyl coordinates to the Boyer-Lindquist coordinates
such that

𝑑𝑠2 = − 𝑒2𝜓1

(
1 − 2𝑀

𝑟

)
𝑑𝑡2 + 𝑒2𝛾1−2𝜓1

(
1 − 2𝑀

𝑟

)−1
𝑑𝑟2

+ 𝑟2𝑒2𝛾1−2𝜓1𝑑𝜃2 + 𝑟2 sin2 𝜃𝑒−2𝜓1𝑑𝜙2. (6.11)

To solve for the function 𝛾1, we need to use the remaining equations of motion in
Eq. (6.6). Let us focus on ℓ𝑊 = 2 as an example, and the procedures for higher ℓ𝑊
are similar. At ℓ𝑊 = 2, Eq. (6.10) gives

𝜓
ℓ𝑊=2
1 (𝜌, 𝑧) = 𝐵2𝑀

3

4

√︂
5
𝜋

3 cos2 𝜃Weyl − 1(
𝜌2 + 𝑧2)3/2 , (6.12)

which in the Boyer-Lindquist coordinates becomes

𝜓
ℓ𝑊=2
1 (𝑟, 𝜃) = 𝐵2𝑀

3

4

√︂
5
𝜋

1
𝑑 (𝑟, 𝜃)3

[
3(𝑟 − 𝑀)2 cos2 𝜃

𝑑 (𝑟, 𝜃)2 − 1
]
, (6.13)
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where

𝑑 (𝑟, 𝜃) ≡
(
𝑟2 − 2𝑀𝑟 + 𝑀2 cos2 𝜃

)1/2
. (6.14)

By using Eq. (6.6) and imposing that 𝛾1 → 0 as 𝑟 → ∞, one obtains

𝛾
ℓ𝑊=2
1 (𝑟, 𝜃) = 𝐵2

√︂
5
𝜋

[
𝑟 − 𝑀

2
𝑐20(𝑟) + 𝑐22(𝑟) cos2 𝜃

𝑑 (𝑟, 𝜃)5 − 1
]
,

𝑐20(𝑟) = 2(𝑟 − 𝑀)4 − 5𝑀2(𝑟 − 𝑀)2 + 3𝑀4 ,

𝑐22(𝑟) = 5𝑀2(𝑟 − 𝑀)2 − 3𝑀4 . (6.15)

Similarly, at ℓ𝑊 = 3, one can find [77]

𝜓
ℓ𝑊=3
1 (𝑟, 𝜃) = 𝐵3𝑀

4

4

√︂
7
𝜋

1
𝑑 (𝑟, 𝜃)4

[
5(𝑟 − 𝑀)3 cos3 𝜃

𝑑 (𝑟, 𝜃)3 − 3(𝑟 − 𝑀) cos 𝜃
𝑑 (𝑟, 𝜃)

]
,

(6.16a)

𝛾
ℓ𝑊=3
1 (𝑟, 𝜃)

=
𝐵3𝑀

5

2

√︂
7
𝜋

cos 𝜃
[
𝑐30(𝑟) + 𝑐32(𝑟) cos2 𝜃 + 𝑐34(𝑟) cos4 𝜃 + 𝑐36(𝑟) cos6 𝜃

𝑑 (𝑟, 𝜃)7

]
,

(6.16b)

𝑐30(𝑟) = −3𝑟 (𝑟 − 2𝑀) , 𝑐32(𝑟) = 10𝑟 (𝑟 − 2𝑀) + 2𝑀2 ,

𝑐34(𝑟) = −7𝑟 (𝑟 − 2𝑀) , 𝑐36(𝑟) = −2𝑀2 .

In this work, we will only focus on the bumps with ℓ𝑊 = 2, 3 and compute the
corresponding QNM frequency shifts. As one can directly check using Eqs. (6.12),
(6.15), and (6.16), the bumps at ℓ𝑊 = 2 and ℓ𝑊 = 3 are of even- and odd-parity,
respectively. As we will see later, bumps with different parity will generate QNM
spectra with different characteristic structures. Thus, studying the bumps at ℓ𝑊 = 2, 3
already allows us to investigate those characteristic features of QNM spectra in the
bumpy BH spacetime, while the procedures for computing the QNM spectra of
bumps with higher ℓ𝑊 are similar.

6.3 BH Perturbations in the Modified Teukolsky Formalism
In this section, we briefly review the modified Teukolsky formalism in [87] and detail
how to implement it for the bumpy BHs considered in this work. At the end of this
section, we provide the form of the master equations governing the QNMs of these
bumpy BHs with the complete expressions provided in the supplementary notebook
[101].
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6.3.1 The modified Teukolsky equation
To compute the QNM frequency shifts driven by the bumps in [77], we choose to
apply the modified Teukolsky formalism in [87, 91, 99]. Built upon the seminal
work by Teukolsky [46], Ref. [87] has taken an effective field theory extension of the
Teukolsky formalism by using a two-parameter expansion, e.g.,

Ψ𝑖 = Ψ
(0,0)
𝑖

+ 𝜁Ψ(1,0)
𝑖

+ 𝜖Ψ(0,1)
𝑖

+ 𝜁𝜖Ψ(1,1)
𝑖

, (6.17)

where we have taken the Weyl scalars Ψ𝑖 as an example. The coefficient 𝜁 is a
dimensionless parameter that parametrizes the strength of the deviation from GR. In
our case, 𝜁 = 𝐵ℓ𝑊 , where 𝐵ℓ𝑊 are the amplitudes of the bumps in Eq. (6.10). The
coefficient 𝜖 characterizes the magnitude of GW perturbations of certain background
spacetime. In this case, the quantities at O(𝜁0, 𝜖0) are evaluated in some GR BH
spacetimes of Petrov-type-D. For non-rotating BHs considered in this study, the
terms Ψ(0,0)

𝑖
are evaluated in the Schwarzschild spacetime. The terms at O(𝜁1, 𝜖0)

are driven by bGR modifications to the background spacetime. In this work, these
bGR modifications are bumps described by the Weyl multipole potentials (𝜓ℓ𝑊1 , 𝛾

ℓ𝑊
1 )

in Sec. 6.2. The terms at O(𝜁0, 𝜖1) correspond to GWs in GR, while the terms at
O(𝜁1, 𝜖1) are bGR GWs we are interested in.

Utilizing this expansion, Ref. [87] found a set of decoupled differential equations for
Ψ

(1,1)
0 and Ψ

(1,1)
4 , where

𝐻
(0,0)
0 Ψ

(1,1)
0 = S (1,1)

geo + S (1,1) . (6.18)

In this work, we choose to focus on Ψ
(1,1)
0 , and the equations for Ψ(1,1)

4 can be found
in [87]. Here, 𝐻 (0,0)

0 is the Teukolsky operator for Ψ0 in GR [46]. Reference [87]
has divided up the source terms into two categories. The terms in S (1,1)

geo only depend
on the corrections to the background geometry and the GWs in GR, so they are
considered purely “geometrical,” i.e.,

S (1,1)
geo = S (1,1)

0,D + S (1,1)
0,non-D + S (1,1)

1,non-D , (6.19)

with

S (1,1)
0,D = −𝐻 (1,0)

0 Ψ
(0,1)
0 , (6.20a)

S (1,1)
0,non-D = −𝐻 (0,1)

0 Ψ
(1,0)
0 , (6.20b)

S (1,1)
1,non-D = 𝐻

(0,1)
1 Ψ

(1,0)
1 . (6.20c)
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The other set of source terms is directly driven by the effective stress tensor due to
corrections to the Einstein-Hilbert action, i.e.,

S (1,1) = E (0,0)
2 𝑆

(1,1)
2 + E (0,1)

2 𝑆
(1,0)
2 − E (0,0)

1 𝑆
(1,1)
1 − E (0,1)

1 𝑆
(1,0)
1 , (6.21)

where 𝑆1,2 are given by

𝑆1 ≡ (𝛿 − 2𝛼̄ − 2𝛽 + 𝜋̄)Φ00 − (𝐷 − 2𝜀 − 2𝜌̄)Φ01 + 2𝜎Φ10 − 2𝜅Φ11 − 𝜅Φ02 ,

(6.22a)

𝑆2 ≡ (𝛿 − 2𝛽 + 2𝜋̄)Φ01 − (𝐷 − 2𝜀 + 2𝜀 − 𝜌̄)Φ02 − 𝜆̄Φ00 + 2𝜎Φ11 − 2𝜅Φ12 .

(6.22b)

The terms Φ𝑎𝑏 are the NP Ricci scalars, which are projections of the Ricci tensor.
The operators 𝐻0,1, E0,1 are defined as

𝐻0 = E2𝐹2 − E1𝐹1 − 3Ψ2 , 𝐻1 = E2𝐽2 − E1𝐽1 ,

E1 = 𝐸1 −
1
Ψ2
𝛿Ψ2 , E2 = 𝐸2 −

1
Ψ2
𝐷Ψ2 ,

(6.23)

where Ψ2 is an NP scalar, and we have also defined

𝐹1 ≡ 𝛿 − 4𝛼 + 𝜋 , 𝐹2 ≡ 𝚫 + 𝜇 − 4𝛾 ,

𝐽1 ≡ 𝐷 − 2𝜀 − 4𝜌 , 𝐽2 ≡ 𝛿 − 2𝛽 − 4𝜏 ,

𝐸1 ≡ 𝛿 − 𝛼̄ − 3𝛽 + 𝜋̄ − 𝜏 , 𝐸2 ≡ 𝐷 − 3𝜀 + 𝜀 − 𝜌 − 𝜌̄ . (6.24)

Since the non-rotating bumpy BHs considered in this work are Ricci flat [77], and
we do not consider any modifications to the Einstein-Hilbert action, we drop the
source term S (1,1) such that Eq. (6.18) reduces to

𝐻
(0,0)
0 Ψ

(1,1)
0 = S (1,1)

geo . (6.25)

To derive Eq. (6.18), Ref. [87] has chosen a gauge following Chandrasekhar [102] by
setting

Ψ
(0,1)
1 = Ψ

(0,1)
3 = Ψ

(1,1)
1 = Ψ

(1,1)
3 = 0 . (6.26)

Similar extensions of the Teukolsky equation have also been developed by [88, 89]
without choosing the gauge in Eq. (6.26) and by [88] via projecting the Einstein
equations following the prescription by Wald in [95]. For a review of all the NP
equations and quantities used in this work as well as the Teukolsky formalism, one
can refer to [45–48, 87, 102, 103]. Before computing the QNMs as solutions of
Eq. (6.25), we must first evaluate the operators 𝐻 (0,1)

0 and 𝐻 (0,1)
1 , which are driven

by the metric of GR GWs.
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6.3.2 Metric reconstruction
To solve for the operators 𝐻 (0,1)

0 and 𝐻 (0,1)
1 at O(𝜁0, 𝜖1), we must compute all the spin

coefficients and directional derivatives at this order. All these NP quantities depend on
the perturbed metric ℎ(0,1)𝜇𝜈 in GR, so we need to reconstruct ℎ(0,1)𝜇𝜈 from the perturbed
Weyl scalar Ψ

(0,1)
0 , which satisfies the GR Teukolsky equation 𝐻 (0,0)

0 Ψ
(0,1)
0 = 0.

There are multiple approaches for metric reconstruction. For example, one can solve
the remaining NP equations systematically after deriving the Teukolsky equation
[102–104]. Another more widely used approach is the CCK or CCK-Ori procedure
[92–96]. The CCK procedure relies on the radiation gauges. Since Ψ0 characterizes
ingoing gravitational radiations of a perturbed BH, it is more convenient to work
with the ingoing radiation gauge (IRG), where

ℎ
(0,1)
𝑙𝑙

= ℎ
(0,1)
𝑙𝑚

= ℎ
(0,1)
𝑙𝑛

= ℎ
(0,1)
𝑙𝑚̄

= ℎ
(0,1)
𝑚𝑚̄

= 0 . (6.27)

It was shown in [105] that this gauge can always be imposed on vacuum Petrov-type-D
spacetimes. In this case, Refs. [92–95] found that the metric perturbation solving the
linearized Einstein equation in vacuum can be expressed as a smooth second-order
differential operator acting on the so-called Hertz potential, ΨH,

ℎ
(0,1)
𝜇𝜈 = − 𝑙𝜇𝑙𝜈 (𝛿 + 𝛼 + 3𝛽 − 𝜏) (𝛿 + 4𝛽 + 3𝜏) − 𝑚̄𝜇𝑚̄𝜈 (𝐷 − 𝜌̄) (𝐷 + 3𝜌̄)

+ 𝑙(𝜇𝑚̄𝜈)
[
(𝐷 − 𝜌̄ + 𝜌) (𝛿 + 4𝛽 + 3𝜏) + (𝛿 − 𝛼 + 3𝛽 − 𝜋 − 𝜏) (𝐷 + 3𝜌̄)

]
Ψ̄H

+ c.c. , (6.28)

where we have dropped the order-counting superscripts of terms at O(𝜁0, 𝜖0). In
the IRG, ΨH satisfies the vacuum Teukolsky equation of 𝜌−4Ψ

(0,1)
4 [92–96]. On a

Schwarzschild background, Eq. (6.28) simplifies to

ℎ
(0,1)
𝜇𝜈 = − 𝑙𝜇𝑙𝜈 (𝛿 + 2𝛽) (𝛿 + 4𝛽) − 𝑚̄𝜇𝑚̄𝜈 (𝐷 − 𝜌) (𝐷 + 3𝜌)

+ 𝑙(𝜇𝑚̄𝜈)
[
𝐷 (𝛿 + 4𝛽) + (𝛿 + 4𝛽) (𝐷 + 3𝜌)

]
Ψ̄H + c.c. . (6.29)

For convenience, let us define

ℎ
(0,1)
𝜇𝜈 = Ô𝜇𝜈Ψ̄H + ˆ̄O𝜇𝜈ΨH . (6.30)

To reconstruct NP quantities at O(𝜁0, 𝜖1), we start from the perturbed tetrad at
O(𝜁0, 𝜖1). It was found in [103, 106] that in the IRG, one can pick the tetrad at
O(𝜁0, 𝜖1) to be

𝑙𝜇(0,1) = 0 , 𝑛𝜇(0,1) =
1
2
ℎ
(0,1)
𝑛𝑛 𝑙𝜇 , 𝑚𝜇(0,1) = ℎ(0,1)𝑛𝑚 𝑙𝜇 − 1

2
ℎ
(0,1)
𝑚𝑚 𝑚̄𝜇 . (6.31)
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To compute spin coefficients from Eq. (6.31), we can use the linearized commutation
relations. For Weyl scalars, one can directly evaluate the Riemann tensor and project
it onto the NP basis. A better approach is to use the Ricci identities [103, 106], which
express Weyl scalars in terms of derivatives of spin coefficients, so we can reuse the
reconstructed spin coefficients. More detailed procedures and the corresponding
results of the reconstructed NP quantities in GR can be found in [91, 103, 106].
We will directly use these results in [91, 103, 106] and not present them here for
simplicity.

After expressing all the NP quantities in terms of the Hertz potential ΨH, the next step
is to calculate ΨH from the perturbed Weyl scalar Ψ(0,1)

0 . One approach, developed
by Ori in [96], is using the Teukolsky-Starobinsky identity [48, 107, 108] to invert
the equation expressing Ψ

(0,1)
0 in terms of Ψ̄H. Decomposing the (ℓ, 𝑚) mode of

Ψ
(0,1)
0 and Ψ̄

(0,1)
H as

Ψ
(0,1)
0,ℓ𝑚 = 2𝑅

(0,1)
ℓ𝑚

(𝑟)2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (6.32)

Ψ̄H,ℓ𝑚 = 2𝑅̂ℓ𝑚 (𝑟)2Yℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (6.33)

Ref. [96] found that

2𝑅̂ℓ𝑚 (𝑟) = − 2
ℭ
Δ2(𝑟) (𝐷†

ℓ𝑚
)4

[
Δ2(𝑟) 2𝑅

(0,1)
ℓ𝑚

(𝑟)
]
, (6.34)

where Δ(𝑟) ≡ 𝑟2 − 2𝑀𝑟 + 𝜒2𝑀2 and

𝐷ℓ𝑚 = 𝜕𝑟 + 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔ℓ𝑚

Δ(𝑟) , 𝐷
†
ℓ𝑚

= 𝜕𝑟 − 𝑖
𝑎𝑚 − (𝑟2 + 𝑎2)𝜔ℓ𝑚

Δ(𝑟) . (6.35)

Here, 𝑠Yℓ𝑚 (𝜃, 𝜙) ≡ 𝑠𝑆ℓ𝑚 (𝜃)𝑒𝑖𝑚𝜙 and 𝑠𝑅
(0,1)
ℓ𝑚

(𝑟) are solutions to the angular and radial
Teukolsky equations, respectively,[

1
sin 𝜃

𝑑

𝑑𝜃

(
sin 𝜃

𝑑

𝑑𝜃

)
− 𝛾2

ℓ𝑚 sin2 𝜃 − (𝑚 + 𝑠 cos 𝜃)2

sin2 𝜃
− 2𝛾ℓ𝑚𝑠 cos 𝜃 + 𝑠 + 2𝑚𝛾ℓ𝑚

+ 𝑠𝜆ℓ𝑚

]
𝑠𝑆ℓ𝑚 (𝜃) = 0 , (6.36a)[

Δ(𝑟)−𝑠 𝑑
𝑑𝑟

(
Δ(𝑟)𝑠+1 𝑑

𝑑𝑟

)
+ 𝐾

2(𝑟) − 2𝑖𝑠(𝑟 − 𝑀)𝐾 (𝑟)
Δ(𝑟) + 4𝑖𝑠𝜔ℓ𝑚𝑟

− 𝑠𝜆ℓ𝑚

]
𝑠𝑅

(0,1)
ℓ𝑚

(𝑟) = 0 , (6.36b)

where

𝛾ℓ𝑚 ≡ 𝜒𝑀𝜔ℓ𝑚 , 𝑠𝜆ℓ𝑚 ≡ 𝑠𝐴ℓ𝑚 + 𝑠 + |𝑠 | , 𝐾 (𝑟) ≡
(
𝑟2 + 𝜒2𝑀2

)
𝜔ℓ𝑚 − 𝜒𝑀𝑚 ,

(6.37)
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with 𝑠𝐴ℓ𝑚 being the Teukolsky’s angular separation constant [46]. For non-rotating
BHs we are considering in this paper, Eq. (6.36) reduces to[

1
sin 𝜃

𝑑

𝑑𝜃

(
sin 𝜃

𝑑

𝑑𝜃

)
− (𝑚 + 𝑠 cos 𝜃)2

sin2 𝜃
+ 𝑠 + (ℓ − 1) (ℓ + 𝑠 + 1)

]
𝑠𝑆ℓ𝑚 (𝜃) = 0 ,

(6.38a)[
Δ(𝑟)−𝑠 𝑑

𝑑𝑟

(
Δ(𝑟)𝑠+1 𝑑

𝑑𝑟

)
+ 𝜔ℓ𝑚𝑟 (𝜔ℓ𝑚𝑟

2 − 2𝑖𝑠(𝑟 − 𝑀))
𝑟 − 2𝑀

+ 4𝑖𝑠𝜔ℓ𝑚𝑟

− (ℓ − 1) (ℓ + 𝑠 + 1)
]
𝑠𝑅

(0,1)
ℓ𝑚

(𝑟) = 0 . (6.38b)

The constant ℭ is the Teukolsky-Starobinsky coefficient [48, 89, 90, 96, 107, 108],

ℭ = 144𝑀2𝜔2
ℓ𝑚 +

(
8 + 6𝑠𝐵ℓ𝑚 + 𝑠𝐵

2
ℓ𝑚

)2
− 8

[
−8 + 𝑠𝐵

2
ℓ𝑚 (4 + 𝑠𝐵ℓ𝑚)

]
𝑚𝛾ℓ𝑚

+ 4
[
8 − 2𝑠𝐵ℓ𝑚 − 𝑠𝐵

2
ℓ𝑚 + 𝑠𝐵

3
ℓ𝑚 + 2 (−2 + 𝑠𝐵ℓ𝑚) (4 + 3𝑠𝐵ℓ𝑚) 𝑚2] 𝛾2

ℓ𝑚

− 8𝑚
(
8 − 12𝑠𝐵ℓ𝑚 + 3𝑠𝐵2

ℓ𝑚 + 4 (−2 + 𝑠𝐵ℓ𝑚) 𝑚2
)
𝛾3
ℓ𝑚

+ 2
(
42 − 22𝑠𝐵ℓ𝑚 + 3𝑠𝐵2

ℓ𝑚 + 8 (−11 + 3𝑠𝐵ℓ𝑚) 𝑚2 + 8𝑚4
)
𝛾4
ℓ𝑚

− 8𝑚
[
3𝑠𝐵ℓ𝑚 + 4

(
−4 + 𝑚2

)]
𝛾5
ℓ𝑚 + 4

(
−7 + 𝑠𝐵ℓ𝑚 + 6𝑚2

)
𝛾6
ℓ𝑚 − 8𝑚𝛾7

ℓ𝑚 + 𝛾8
ℓ𝑚 ,

(6.39)

where 𝛼̃ = 𝑎2 − 𝑎𝑚/𝜔ℓ𝑚 and 𝑠𝐵ℓ𝑚 = 𝑠𝐴ℓ𝑚 + 𝑠. Notice that we have used the
Teukolsky-Starobinsky coefficient found in [89, 90] instead of the original one in
[48, 96, 107, 108], the latter of which was derived for real frequencies.

Finally, since we have chosen the gauge in Eq. (6.26), where Ψ
(0,1)
1 = Ψ

(0,1)
3 = 0, we

need to perform additional tetrad rotations to remove Ψ
(0,1)
1,3 . The required tetrad

rotations and the transformation of NP quantities under tetrad rotations are provided
in [91]. Using the procedures above, we compute the NP quantities at O(𝜁0, 𝜖1) for
Schwarzschild BHs and evaluate the operators 𝐻 (0,1)

0 and 𝐻 (0,1)
1 in the “geometrical”

source term S (1,1)
geo . The results can be found in the supplemental material [101], and

we present the perturbed metric ℎ(0,1)
𝑎𝑏

in the NP basis here as an example,

ℎ
(0,1)
𝑛𝑛 =

√︁
ℓ(ℓ + 1) (ℓ2 + ℓ − 2)

2𝑟2 2𝑅̂ℓ𝑚 (𝑟)0𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 + c.c. , (6.40a)

ℎ
(0,1)
𝑛𝑚 =

√
ℓ2 + ℓ − 2

√
2𝑟2(𝑟 − 2𝑀)

[𝑟 (𝑟 − 2𝑀)𝜕𝑟 − 𝑟 (2 + 𝑖𝜔ℓ𝑚𝑟) + 4𝑀]

2𝑅̂ℓ𝑚 (𝑟)1𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 , (6.40b)

ℎ
(0,1)
𝑚𝑚 =

1
𝑟 (𝑟 − 2𝑀)2

[
2(𝑟 − 2𝑀) (𝑀 − 𝑖𝜔ℓ𝑚𝑟2)𝜕𝑟
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+(𝑟 − 2𝑀) (ℓ2 + ℓ − 2 + 6𝑖𝜔ℓ𝑚𝑟) − 2𝑖𝜔ℓ𝑚𝑟 (𝑀 − 𝑖𝜔ℓ𝑚𝑟2)
]

2𝑅̂ℓ𝑚 (𝑟)2𝑌ℓ𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔ℓ𝑚𝑡 . (6.40c)

In the next subsection, we will compute the NP quantities at O(𝜁1, 𝜖0) so we can
evaluate the modified Teukolsky equation of Ψ(1,1)

0 in Eq. (6.25).

6.3.3 The modified Teukolsky equation for non-rotating bumpy BHs
To evaluate Eq. (6.25), we also need to compute the NP quantities at O(𝜁0, 𝜖0) and
O(𝜁1, 𝜖0). For NP quantities at O(𝜁0, 𝜖0), we evaluate them on the Schwarzschild
background and use the Kinnersely tetrad,

𝑙𝜇(0,0) =

(
𝑟2

𝑟 (𝑟 − 2𝑀) , 1, 0, 0
)
, (6.41a)

𝑛𝜇(0,0) =

(
1
2
,−𝑟 (𝑟 − 2𝑀)

2𝑟2 , 0, 0
)
, (6.41b)

𝑚𝜇(0,0) =
1

√
2𝑟

(0, 0, 1, 𝑖 csc 𝜃) , (6.41c)

where all the NP quantities at O(𝜁0, 𝜖0) can be found in [46, 102]. At O(𝜁1, 𝜖0), let
us first linearize Eq. (6.11) since we assume the dimensionless amplitude 𝐵ℓ𝑊 of
each bump satisfies 𝐵ℓ𝑊 ≪ 1. In this case, Eq. (6.11) becomes

ℎ
(1,0)
𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 = − 2𝜓1

(
1 − 2𝑀

𝑟

)
𝑑𝑡2 + (2𝛾1 − 2𝜓1)

(
1 − 2𝑀

𝑟

)−1
𝑑𝑟2

+ 𝑟2(2𝛾1 − 2𝜓1)𝑑𝜃2 − 2𝜓1𝑟
2 sin2 𝜃𝑑𝜙2 . (6.42)

Using Eq. (51) of [87], we find the following tetrad satisfies all the orthogonality
conditions,

𝑙𝜇(1,0) =

(
− 𝑟𝜓1

𝑟 − 2𝑀
, 𝜓1 − 𝛾1, 0, 0

)
, (6.43a)

𝑛𝜇(1,0) =

(
−1

2
𝜓1,

(𝑟 − 2𝑀) (𝛾1 − 𝜓1)
2𝑟

, 0, 0
)
, (6.43b)

𝑚𝜇(1,0) =

(
0, 0,

𝜓1 − 𝛾1√
2𝑟

,
𝑖 csc 𝜃𝜓1√

2𝑟

)
. (6.43c)

Using this tetrad, we can compute Weyl scalars and spin coefficients at O(𝜁1, 𝜖0).
These quantities are summarized in Appendix 6.7. The differential operator 𝐻 (1,0)

0 is
provided in the supplemental material [101].

Now, we have all the ingredients to evaluate the modified Teukolsky equation in
Eq. (6.25). Due to the complication of the full equation, we choose to provide it
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in the supplemental material [101], and we present here the schematic form of the
equation for the convenience of computing the QNM frequencies. First, since all the
terms in S (1,1)

geo depend on the perturbed metric ℎ(0,1)𝜇𝜈 linearly via Ψ
(0,1)
0 , 𝐻 (0,1)

0 , or
𝐻

(0,1)
1 , we can write S (1,1)

geo as

S (1,1)
geo = Σ̂𝜇𝜈(1,0)ℎ(0,1)𝜇𝜈 , (6.44)

where Σ̂𝜇𝜈(1,0) is determined by the reconstructed NP quantities found in Sec. 6.3.2
and the modifications of NP quantities due to the bumps. For convenience, we will
drop the superscript for order counting of Σ̂𝜇𝜈(1,0) . Using Eqs. (6.28) and (6.34), we
can write (6.44) as

𝐻
(0,0)
0 Ψ

(1,1)
0 = Σ̂𝜇𝜈

(
Ô𝜇𝜈 + ˆ̄O𝜇𝜈Ĉ

)
D̂Ψ

(0,1)
0 , (6.45)

where Ĉ is the complex conjugate operator, and D̂ is an operator that satisfies
D̂Ψ

(0,1)
0 = Ψ̄H, which can be determined from Eq. (6.34). Expanding Ψ

(0,1)
0 and

Ψ
(1,1)
0 as

Ψ
(0,1)
0 =

∑︁
ℓ,𝑚

2𝜓
(0,1)
ℓ𝑚

(𝑟, 𝜃)𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 , (6.46)

Ψ
(1,1)
0 =

∑︁
ℓ,𝑚

2𝜓
(1,1)
ℓ𝑚

(𝑟, 𝜃)𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 , (6.47)

we get the mode decomposition of Eq. (6.45) to be∑︁
ℓ,𝑚

𝐻0,ℓ𝑚

[
2𝜓

(1,1)
ℓ𝑚

(𝑟, 𝜃)
]
𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙

=
∑︁
ℓ,𝑚

𝑃ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
𝑒−𝑖𝜔ℓ𝑚𝑡+𝑖𝑚𝜙 +𝑄ℓ𝑚

[
2𝜓̄

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
𝑒𝑖𝜔̄ℓ𝑚𝑡−𝑖𝑚𝜙 , (6.48)

where 𝐻0,ℓ𝑚 is the (ℓ, 𝑚) mode of the Teukolsky operator 𝐻0 for Ψ0 in GR. 𝑃ℓ𝑚 and
𝑄ℓ𝑚 are operators depending on the coordinates (𝑟, 𝜃) and acting on the Weyl scalar
perturbation Ψ

(0,1)
0 in GR. In particular,

𝑃ℓ𝑚 =

(
Σ̂𝜇𝜈Ô𝜇𝜈D̂

)
ℓ𝑚
, 𝑄ℓ𝑚 =

(
Σ̂𝜇𝜈 ˆ̄O𝜇𝜈D̂

)
ℓ𝑚
. (6.49)

One may further decompose 2𝜓
(0,1)
ℓ𝑚

(𝑟, 𝜃) and 2𝜓
(1,1)
ℓ𝑚

(𝑟, 𝜃) into spin-weighted
spheroidal harmonics

2𝜓
(0,1)
ℓ𝑚

(𝑟, 𝜃) = 2𝑅
(0,1)
ℓ𝑚

(𝑟)2𝑆ℓ𝑚 (𝜃) , (6.50a)

2𝜓
(1,1)
ℓ𝑚

(𝑟, 𝜃) = 2𝑅
(1,1)
ℓ𝑚

(𝑟)2𝑆ℓ𝑚 (𝜃) . (6.50b)
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where 𝑠𝑅
(0,1)
ℓ𝑚

(𝑟) and 𝑠𝑆ℓ𝑚 (𝜃) are radial and angular Teukolsky functions for a spin
𝑠 particle in GR, respectively, and they satisfy Eq. (6.36). One thing we notice in
Eq. (6.48) is that the (ℓ, 𝑚) and (ℓ,−𝑚) modes are coupled to each other in the
source terms on the right-hand side, which means we actually need to solve these
two modes jointly. In the next section, we will show how to solve these two modes
jointly and compute the QNM frequency shifts following the prescription in [99].

6.4 EVP
In this section, we prescribe the procedures to calculate the QNM frequency shifts
due to those bumps using Eq. (6.48). From Eq. (6.48), we notice that the GR QNMs
are resonantly driving the modified Teukolsky equation since the homogeneous
part of Eq. (6.48) is the same as the one in GR, potentially leading to secularly
growing terms. One solution is to perform a multiple-scale analysis [109], which
was employed to study spin-precessing systems and post-Newtonian dynamics in
GR [110–112]. Another solution is the Poincaré-Lindstedt method, which leverages
shifts of the eigenfrequency to cancel off secularly growing terms. In this case,
the shift in the eigenfrequency plays a similar role as the slow timescale in the
multiple-scale analysis. Following a similar idea, Refs. [97, 98] developed the EVP
method by perturbing the QNM frequency in GR, i.e.,

𝜔ℓ𝑚 = 𝜔
(0)
ℓ𝑚

+ 𝜁𝜔(1)
ℓ𝑚
. (6.51)

In GR, the QNM frequencies 𝜔(0)
𝑙𝑚

satisfy the following symmetry [35]

𝜔
(0)
ℓ𝑚

= −𝜔̄(0)
ℓ−𝑚 . (6.52)

As shown in detail in [99], to solve Eq. (6.48) consistently, one has to assume that
the same symmetry still holds at the bGR level, i.e.,

𝜔
(1)
ℓ𝑚

= −𝜔̄(1)
ℓ−𝑚 . (6.53)

In this case, all the source terms in Eq. (6.48) are either proportional to 𝑒−𝑖𝜔ℓ𝑚𝑡 or
𝑒−𝑖𝜔ℓ−𝑚𝑡 . Since the (ℓ, 𝑚) and (ℓ,−𝑚) modes are coupled to each other, we need to
solve these two modes jointly by focusing on the linear combination [88, 91, 99],

Ψ
𝜂(0,1)
0,ℓ𝑚 = Ψ

(0,1)
0,ℓ𝑚 + 𝜂ℓ𝑚Ψ(0,1)

0,ℓ−𝑚 ,

Ψ
𝜂(1,1)
0,ℓ𝑚 = Ψ

(1,1)
0,ℓ𝑚 + 𝜂ℓ𝑚Ψ(1,1)

0,ℓ−𝑚 . (6.54)

The constant 𝜂ℓ𝑚 is the relative coefficient between the (ℓ, 𝑚) and (ℓ,−𝑚) modes,
which is well-defined if we fix the normalization of 2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃) to satisfy

𝑠 𝑅̄
(0,1)
ℓ𝑚𝜔

(𝑟) = (−1)𝑚𝑠𝑅(0,1)
ℓ−𝑚−𝜔̄ (𝑟) ,
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𝑠𝑆ℓ𝑚𝜔 (𝜋 − 𝜃) = (−1)𝑚+ℓ−𝑠𝑆ℓ𝑚𝜔 (𝜃) ,

𝑠𝑆ℓ𝑚𝜔 (𝜃) = (−1)𝑚+𝑠−𝑠𝑆ℓ−𝑚−𝜔̄ (𝜃) . (6.55)

After plugging the ansatz in Eq. (6.54) into the Teukolsky equation of Ψ0 in GR
[Eq. (6.38)] and the modified Teukolsky equation [Eq. (6.48)], matching the phase
of the terms, and expanding the equations over 𝜁 , we get

𝐻0,ℓ𝑚

[
2𝜓

(1,1)
ℓ𝑚

(𝑟, 𝜃)
]
+ 𝜔(1)

ℓ𝑚
𝜕𝜔𝐻0,ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]

= 𝑃ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
+ 𝜂ℓ𝑚𝑄ℓ−𝑚

[
2𝜓̄

(0,1)
ℓ−𝑚 (𝑟, 𝜃)

]
, (6.56a)

𝜂ℓ𝑚𝐻0,ℓ−𝑚
[
2𝜓

(1,1)
ℓ−𝑚 (𝑟, 𝜃)

]
+ 𝜂ℓ𝑚𝜔(1)

ℓ−𝑚𝜕𝜔𝐻0,ℓ−𝑚
[
2𝜓

(0,1)
ℓ−𝑚 (𝑟, 𝜃)

]
= 𝜂ℓ𝑚𝑃ℓ−𝑚

[
2𝜓

(0,1)
ℓ−𝑚 (𝑟, 𝜃)

]
+𝑄ℓ𝑚

[
2𝜓̄

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
, (6.56b)

where the second term on the left-hand side of Eqs. (6.56a) and (6.56b) comes
from expanding 𝜔ℓ𝑚 about 𝜁 [i.e., Eq. (6.51)] in the GR Teukolsky equation
𝐻0,ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
= 0. All the 𝜔ℓ𝑚 and 𝜔ℓ−𝑚 terms in Eq. (6.56) are evaluated

on the GR QNM frequencies 𝜔(0)
ℓ𝑚

and 𝜔(0)
ℓ−𝑚, respectively. Furthermore, following

[99], one can apply a parity-complex conjugate transformation P̂,

P̂ 𝑓 (𝜃, 𝜙) ≡ 𝑓 (𝜋 − 𝜃, 𝜙 + 𝜋) , (6.57)

on Eq. (6.56b) such that it becomes

(−1)𝑚𝜂ℓ𝑚𝐻0,ℓ𝑚

[
2𝜓̄

(1,1)
ℓ−𝑚 (𝑟, 𝜃)

]
+ 𝜂ℓ𝑚𝜔(1)

ℓ𝑚
𝜕𝜔𝐻0,ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]

= 𝜂ℓ𝑚 𝑃̄ℓ−𝑚 (𝜋 − 𝜃)
[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
+ 𝑄̄ℓ𝑚 (𝜋 − 𝜃)

[
2𝜓̄

(0,1)
ℓ−𝑚 (𝑟, 𝜃)

]
,

(6.58)

where we have used Eqs. (6.53), (6.55), and that P̂𝐻0,ℓ−𝑚 = 𝐻0,ℓ𝑚 [99]. Notice
that an additional factor of (−1)𝑚 is added to Eq. (6.58) due to P̂𝑒𝑖𝑚𝜙 = (−1)𝑚𝑒𝑖𝑚𝜙.
Although 𝑒𝑖𝑚𝜙 does not show up in Eq. (6.56b), it is necessary to keep track of this
factor for self-consistency in the angular part of all the terms.

To solve for 𝜔(1)
ℓ𝑚

, one can construct an inner product, following [88, 97, 98], that
makes the Teukolsky operator in GR self-adjoint, i.e.,

⟨𝐻0,ℓ𝑚𝜍 (𝑟, 𝜃) |𝜑(𝑟, 𝜃)⟩ = ⟨𝜍 (𝑟, 𝜃) |𝐻0,ℓ𝑚𝜑(𝑟, 𝜃)⟩ , (6.59)

where 𝜍 (𝑟, 𝜃) and 𝜑(𝑟, 𝜃) are some general functions in (𝑟, 𝜃) with the same
asymptotic behaviors as the GR QNMs. As shown in [97, 98], the inner product in
Eq. (6.59) can be defined as an integral along certain contour 𝒞, where

⟨𝜍 (𝑟, 𝜃) |𝜑(𝑟, 𝜃)⟩ =
∫
𝒞

Δ2(𝑟)𝑑𝑟
∫

sin 𝜃𝜍 (𝑟, 𝜃)𝜑(𝑟, 𝜃)𝑑𝜃 , (6.60)
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and we will show below how to construct a contour 𝒞 for a bumpy BH. Since
𝐻0,ℓ𝑚

[
2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃)
]
= 0, if we take the inner product of 2𝜓

(0,1)
ℓ𝑚

(𝑟, 𝜃) with Eqs. (6.56a)
and (6.58) and use the property in Eq. (6.59), we can remove the first term on the
left-hand side of Eqs. (6.56a) and (6.58) such that this system of equations becomes
a standard eigenvalue problem

1
⟨𝜕𝜔𝐻0,ℓ𝑚⟩

(
⟨𝑃ℓ𝑚⟩ (−1)ℓ⟨𝑄ℓ−𝑚 ĈP̂⟩

(−1)ℓ⟨𝑄̄ℓ𝑚 (𝜋 − 𝜃)ĈP̂⟩ ⟨𝑃̄ℓ−𝑚 (𝜋 − 𝜃)⟩

) (
1
𝜂ℓ𝑚

)
= 𝜔

(1)
𝑙𝑚

(
1
𝜂ℓ𝑚

)
,

(6.61)
where we have defined the shorthand notation

⟨O⟩ = ⟨𝜓 (0,1)
ℓ𝑚

|O𝜓 (0,1)
ℓ𝑚

⟩ . (6.62)

The matrix in Eq. (6.61) is the same as the one in Eq. (68) of [99], where one can
directly map 𝑃ℓ𝑚 and 𝑄ℓ𝑚 to the (ℓ, 𝑚) mode of S𝜇𝜈O𝜇𝜈 and S𝜇𝜈Ō𝜇𝜈, respectively.
The additional factor of (−1)ℓ in the off-diagonal terms comes from that we choose
to solve the pair of Ψ0,ℓ𝑚 and Ψ0,ℓ−𝑚 instead of Ψ0,ℓ𝑚 and P̂Ψ0,ℓ𝑚 in [99], where
P̂Ψ

(0,1)
0,ℓ𝑚 = (−1)ℓΨ0,ℓ−𝑚. Nonetheless, this choice and the resulting factor of (−1)ℓ

will not affect 𝜔(1)
ℓ𝑚

, as shown below. The solutions to Eq. (6.61) can be found in [99],
where the QNM frequencies are

𝜔
±(1)
ℓ𝑚

=
1

2⟨𝜕𝜔𝐻0,ℓ𝑚⟩

(〈
𝑃ℓ𝑚 + 𝑃̄ℓ−𝑚 (𝜋 − 𝜃)

〉
±

√︂〈
𝑃ℓ𝑚 − 𝑃̄ℓ−𝑚 (𝜋 − 𝜃)

〉2
+ 4

〈
𝑄ℓ−𝑚 ĈP̂

〉〈
𝑄̄ℓ𝑚 (𝜋 − 𝜃)ĈP̂

〉)
, (6.63)

and the coefficients 𝜂ℓ𝑚 are

𝜂±ℓ𝑚 =
(−1)ℓ

2
〈
𝑄ℓ−𝑚 ĈP̂

〉 (〈
𝑃̄ℓ−𝑚 (𝜋 − 𝜃) − 𝑃ℓ𝑚

〉
±

√︂〈
𝑃ℓ𝑚 − 𝑃̄ℓ−𝑚 (𝜋 − 𝜃)

〉2
+ 4

〈
𝑄ℓ−𝑚 ĈP̂

〉〈
𝑄̄ℓ𝑚 (𝜋 − 𝜃)ĈP̂

〉)
. (6.64)

Notice, the factor of (−1)ℓ in Eq. (6.64) disappears if one solve the pair of Ψ0,ℓ𝑚 and
P̂Ψ0,ℓ𝑚 instead. As shown in [99], in the special case that 𝜂±

ℓ𝑚
= ±1, the modified

QNMs Ψ𝜂(1,1)
0,ℓ𝑚 are even- and odd-parity modes, respectively.

The contour for the bumpy BH
To evaluate the inner product in Eq. (6.60), we must choose a contour 𝒞 and impose
correct boundary conditions so that the Teukolsky operator is self-adjoint. The



323

Figure 6.2: The contour 𝒞1 that wraps around the QNM wavefunction branch cut
parallel to the imaginary axis at the horizon 𝑟+ = 2𝑀. The modified contour 𝒞2 is
also shown, which extends from 𝑟 = 2𝑀 + 𝜖 to 𝑟 = 2𝑀 + 𝜖 + 𝑖∞.

boundary conditions of the QNMs require

2𝑅
(0,1)
ℓ𝑚

(𝑟) ∼ 𝑟−5𝑒𝑖𝜔ℓ𝑚𝑟
∗
, 𝑟∗ → ∞ ,

2𝑅
(0,1)
ℓ𝑚

(𝑟) ∼ Δ−2(𝑟)𝑒−𝑖[𝜔ℓ𝑚−𝑎𝑚/(2𝑀𝑟+)]𝑟∗ , 𝑟∗ → −∞ , (6.65)

Here, 𝑟∗ is the tortoise coordinate, where 𝑟∗ = ∞ and 𝑟∗ = −∞ correspond to 𝑟 = ∞
and 𝑟 = 𝑟+, respectively, with 𝑟+ being the outer horizon of the Kerr spacetime. For
Schwarzschild BHs, 𝑟+ = 2𝑀. Since Im(𝜔ℓ𝑚) < 0, 2𝑅

(0,1)
ℓ𝑚

(𝑟) diverges at both the
horizon and the real infinity. However, a finite inner product can still be constructed
by considering a contour 𝒞 in the complex plane and analytically continuing the
radial Teukolsky functions. Consider a contour with endpoints at 𝑟 = 𝑎 and 𝑟 = 𝑏 in
the complex plane. We need to ensure that the Teukolsky operator is self-adjoint.
Evaluating Eq. (6.59) with Eq. (6.60), one can first carry out the angular integral by
projecting both 𝜍 (𝑟, 𝜃) and 𝜍 (𝑟, 𝜃) to spin-weighted spheroidal harmonics, i.e.,

𝜍 (𝑟, 𝜃) =
∑︁
ℓ𝑚

𝜍ℓ𝑚 (𝑟)2𝑆ℓ𝑚 (𝜃) , (6.66)
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Figure 6.3: The absolute value of ⟨𝑃ℓ𝑚⟩ after the angular integral in Eq. (6.60) is
shown for the (ℓ, 𝑚, 𝑛) = (2, 1, 0) mode and the ℓ𝑊 = 2 Weyl multipole. We use the
convention that 𝑀 = 1/2 in [35] in this plot.

and similarly for 𝜑(𝑟, 𝜃). Then one can use the radial Teukolsky operator given by
Eq. (6.36b) and perform the radial integral in Eq. (6.60). After integrating by parts,
one is left with

Δ3(𝑟) [𝜕𝑟𝜍ℓ𝑚 (𝑟)𝜑ℓ𝑚 (𝑟) − 𝜕𝑟𝜑ℓ𝑚 (𝑟)𝜍ℓ𝑚 (𝑟)]
����𝑏
𝑎

. (6.67)

If one follows [88, 97, 98] to choose the contour 𝒞1 in Fig. 6.2, which surrounds
the imaginary axis at 𝑟+, the boundary terms in Eq. (6.67) vanish, so Eq. (6.59) is
satisfied. It is because we have imposed that 𝜍ℓ𝑚 (𝑟) and 𝜑ℓ𝑚 (𝑟) satisfy the same
boundary conditions as 2𝑅

(0,1)
ℓ𝑚

(𝑟), while 2𝑅
(0,1)
ℓ𝑚

(𝑟) → 0 as 𝑟 → 𝑟+ ± 𝜖 + 𝑖∞, where
𝜖 ≪ 𝑀 and 𝜖 is real.

Although the contour 𝒞1 works for many cases, it does not really apply to the
modified Teukolsky equations for the bumpy BHs here. The main reason is that
certain NP quantities at O(𝜁1, 𝜖0) diverge when Re(𝑟) ≤ 2𝑀 due to the distance
function 𝑑 (𝑟, 𝜃) defined in Eq. (6.14). In this case, the radial integral along the half
of the contour 𝒞1 inside the horizon diverges. To avoid this issue, we consider an
alternative contour 𝒞2, which starts from 𝑟 = 2𝑀 + 𝜖 , where 𝜖 < 𝑀 and 𝜖 is real,
and ends at 𝑟 = 2𝑀 + 𝜖 + 𝑖∞, as depicted in Fig. 6.2. To ensure that all the terms in
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Eq. (6.61) are well-behaved along 𝒞2, we perform the angular integral in Eq. (6.60)
of the source terms and inspect their absolute value for complex-valued 𝑟 around 𝒞2.
As an example, we show in Fig. 6.3 that ⟨𝑃ℓ𝑚⟩ is non-singular along 𝒞2.

According to Eq. (6.67), to ensure that the Teukolsky operator is still self-adjoint, or
at least that we can remove the first term on the left-hand side of Eqs. (6.56a) and
(6.58), we need to impose

2𝑅
(1,1)
ℓ𝑚

(𝑟)

𝜕𝑟

(
2𝑅

(1,1)
ℓ𝑚

(𝑟)
) =

2𝑅
(0,1)
ℓ𝑚

(𝑟)

𝜕𝑟

(
2𝑅

(0,1)
ℓ𝑚

(𝑟)
) (6.68)

at both 𝑟 = 2𝑀 + 𝜖 and 𝑟 = 2𝑀 + 𝜖 + 𝑖∞. The condition at 𝑟 = 2𝑀 + 𝜖 + 𝑖∞ is easily
satisfied since the source terms in Eqs. (6.56a) and (6.58) vanish as 𝑟 → 2𝑀 + 𝜖 + 𝑖∞.
However, the condition at 𝑟 = 2𝑀 + 𝜖 is not naturally satisfied since the source terms
do not vanish near the horizon, resulting in nonzero 2𝑅

(0,1)
ℓ𝑚

(𝑟) and 2𝑅
(1,1)
ℓ𝑚

(𝑟).

One resolution is to consider the “membrane paradigm” in [113–116]. This formalism
elucidates the physical nature of the BH horizon by modeling it as a fictitious fluid
membrane. The dynamics of the membrane are parametrized by a dissipative
stress-energy tensor that sets the fluid’s velocity, density, pressure, shear viscosity,
and bulk viscosity. For example, it was found for a Schwarzschild BH that it
has bulk viscosity 𝜁 = −1/16𝜋 and shear viscosity 𝜂 = 1/16𝜋. Altering these
transport coefficients would alter the near horizon geometry and, therefore, modify
the boundary conditions of the resulting QNMs [117, 118]. For example, one can
have some nonzero reflectivity at the membrane, generating GW echos [119]. One
may then deliberately pick some fluid stress tensor such that the spacetime is a
bumpy BH for 𝑟 > 2𝑀 + 𝜖 , while the spacetime is still a Schwarzschild spacetime
for 2𝑀 ≤ 𝑟 ≤ 2𝑀 + 𝜖 . In this case, we can impose the condition in Eq. (6.68)
at 𝑟 = 2𝑀 + 𝜖 since 2𝑅

(1,1)
ℓ𝑚

satisfies the same boundary condition of a GR QNM
[i.e., Eq. (6.65)]. In this work, we do not explicitly provide a stress tensor giving
rise to Eq. (6.68) but assume its possible existence. We will strictly derive the
relation between the fluid stress tensor and the boundary condition of the QNMs at
the membrane in our future work. In general, different fluids can result in different
boundary conditions other than Eq. (6.65), for example, a nonzero reflectivity at the
membrane. This nonzero reflectivity can make additional modifications to the QNM
spectrum [119]. Since the boundary condition in Eq. (6.68) is the most natural to
use, we will stick to it for the rest of this work.
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Figure 6.4: The real (left column) and imaginary (right column) parts of the QNM
frequency shifts 𝜔±(1)

ℓ𝑚
generated by the ℓ𝑊 = 2 bump (top row) and ℓ𝑊 = 3 bump

(bottom row) are presented. For each frequency, the fundamental mode 𝑛 = 0 is
shown. For simplicity, we use the same marker for 𝜔+(1)

ℓ𝑚
and 𝜔−(1)

ℓ𝑚
for each (ℓ, 𝑚)

mode.

6.5 Results
Using the contour 𝒞2 in Sec. 6.4 and Fig. 6.2, we can now compute the QNM
frequency shifts generated by a bumpy BH. The contour 𝒞2 was chosen by setting
𝜖 = 0.2𝑀. All the O(𝜁0, 𝜖1) quantities were computed using the Leaver’s method
[35]. The results of the QNM frequency shifts are shown in Fig. 6.4, where both the
real and imaginary parts of the QNM frequency shifts 𝜔±(1)

ℓ𝑚
are plotted. Specifically,

for both the Weyl bumps ℓ𝑊 = 2 and ℓ𝑊 = 3, we plot all the modes (ℓ, 𝑚, 𝑛) with
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Figure 6.5: The real and imaginary parts of the QNM frequency shifts 𝜔±(1)
ℓ𝑚

for
𝑛 = 0, ℓ = 𝑚 up to ℓ = 5 for both the ℓ𝑊 = 2 (left panel) and ℓ𝑊 = 3 (right panel)
Weyl multipole corrections.

ℓ = 2, 3, 𝑚 ≥ 0, and 𝑛 = 0. The frequencies of the modes with 𝑚 < 0 can be found
using the relation in Eq. (6.53). The QNM frequency shifts 𝜔±(1)

ℓ𝑚
of any additional

overtones we have calculated are listed in the tables in Appendix 6.8.

In Fig. 6.4, one important feature is that for each (ℓ, 𝑚) mode, the frequency shift is
degenerate for the Weyl bump ℓ𝑊 = 3, i.e., 𝜔+(1)

ℓ𝑚
= −𝜔−(1)

ℓ𝑚
. In contrast, there are

two independent shifts for the Weyl bump ℓ𝑊 = 2. This is a natural consequence
of bumps’ parity. Notice that the metric correction ℎ(1,0)𝜇𝜈 in (6.42) for each set of
potentials (𝜓ℓ𝑊1 , 𝛾

ℓ𝑊
1 ) obeys

P̂ℎ(1,0)𝜇𝜈 = (−1)ℓ𝑊 ℎ(1,0)𝜇𝜈 , (6.69)

as one can explicitly check using Eqs. (6.12), (6.15), and (6.16) for ℓ𝑊 = 2, 3. We
can then derive the P̂ transformation of all the NP quantities at O(𝜁1, 𝜖0) following
[99]. In the end, we get that P̂𝐻 (1,0)

0 = (−1)ℓ𝑊𝐻 (1,0)
0 , which implies

⟨𝑃ℓ𝑚⟩ = (−1)ℓ𝑊 ⟨𝑃̄ℓ−𝑚 (𝜋 − 𝜃)⟩ ,
⟨𝑄ℓ−𝑚 ĈP̂⟩ = (−1)ℓ𝑊 ⟨𝑄̄ℓ𝑚 (𝜋 − 𝜃)ĈP̂⟩ . (6.70)

Using Eq. (6.63), we can derive two salient relations governing the QNM frequency
shifts𝜔±(1)

ℓ𝑚
. First, for the odd-parity Weyl multipoles, there is an additional symmetry

of isospectrality breaking, where 𝜔−(1)
ℓ𝑚

= −𝜔+(1)
ℓ𝑚

. Even though we use the notation +
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and − to label the frequency shifts, the resulting wavefunctions do not have definite
parity since 𝜂±

ℓ𝑚
≠ ±1 [99]. Second, for the even-parity Weyl multipoles, Eq. (6.64)

implies that the resulting wavefunction has definite parity, i.e., 𝜂±
ℓ𝑚

= ±1 [99]. These
features were also observed in [89, 90, 120] when studying the QNM frequency
shifts of higher-derivative gravity for both the parity-preserving and parity-violating
corrections to the Einstein-Hilbert action. In [99] and this work, we more directly
show the origin of these features. Nonetheless, isospectrality is broken for all the
modes we have calculated regardless of the parity of the bumps.

Furthermore, it was first shown in [32] that for a Schwarzschild BH, the real part
of the QNM frequencies is related to the orbital frequencies of null geodesics near
the light ring, while the imaginary part encodes the Lyapunov exponent of the orbit.
Specifically, when 𝑚 = ℓ, the QNM frequencies 𝜔ℓ𝑚𝑛 have the following eikonal
approximation,

𝜔ℓ𝑚𝑛 ≈ (ℓ + 1/2)Ω − 𝑖𝛾𝐿 (𝑛 + 1/2) , (6.71)

whereΩ is the Keplerian frequency of a circular null geodesic, and 𝛾𝐿 is the Lyapunov
exponent. For an axisymmetric spacetime without spherical symmetry, one would
naively expect that the real part of 𝜔ℓ𝑚𝑛 for fixed low values of 𝑛 will depend linearly
on ℓ for modes with the same values of 𝑚/ℓ, which corresponds to the inclination
angle of the orbit the mode is associated with. The imaginary part of 𝜔ℓ𝑚𝑛 for
low values of 𝑛 are expected to stay roughly constant as ℓ increases while fixing
𝑚/ℓ and 𝑛, since these values are related to the Lyapunov exponents of the orbits.
However, as shown in Fig. 6.5, the real part Re(𝜔(1)

ℓ𝑚
) does not depend on ℓ linearly,

which is inconsistent with the prediction in Eq. (6.71). Moreover, the imaginary part
Im(𝜔(1)

ℓ𝑚
) is not constant for the mode 𝑛 = 0. These inconsistencies suggest that the

relationship predicted by the eikonal approximation in Eq. (6.71) may need further
exploration for these bumpy BHs and BHs in bGR theories in general.

In general, one may not be able to use observational data to examine the QNM
frequency shifts for each Weyl bump independently. In this case, we need to sum
the contributions to 𝜔(1)

ℓ𝑚
from bumps with different ℓ𝑊 . As we previously discussed,

the bumps with odd ℓ𝑊 and even ℓ𝑊 have different parity, so one needs to use the
recombination rule found in [120] in general, i.e.,

𝜔
±(1)
total,ℓ𝑚 =

𝜔
+,(1)
even,ℓ𝑚 + 𝜔−(1)

even,ℓ𝑚

2
±

√√√√√©­«
𝜔
+(1)
even,ℓ𝑚 − 𝜔−(1)

even,ℓ𝑚

2
ª®¬

2

+
(
𝜔
+(1)
odd,ℓ𝑚

)2
, (6.72)
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where𝜔±(1)
even,ℓ𝑚 and𝜔±(1)

odd,ℓ𝑚 are the QNM frequency shifts generated by the even-parity
(i.e., even ℓ𝑊 ) and odd-parity (i.e., odd ℓ𝑊 ) Weyl multipoles, respectively.

6.6 Conclusion and Outlook
In this work, we used the modified Teukolsky formalism in [87, 99] to compute
the QNM frequency shifts for a non-rotating BH with axisymmetric deviations
parametrized by Weyl multipoles. Since these bumpy BHs are Ricci flat in the
non-rotating case, and we did not consider any corrections to the Einstein-Hilbert
action, the only term in the modified Teukolsky equation that contributes is S (1,1)

geo ,
which only depends on the modifications to the background geometry [i.e., terms at
O(𝜁1, 𝜖0)] and the QNMs in GR [i.e., terms at O(𝜁0, 𝜖1)]. The terms at O(𝜁1, 𝜖0)
were directly evaluated using the bumpy BH metric found in [77]. To calculate the
O(𝜁0, 𝜖1) quantities, we implemented the CCK-Ori metric reconstruction procedure
in the IRG. After obtaining the modified Teukolsky equations, we noticed that
the source terms mix the (ℓ, 𝑚) and (ℓ,−𝑚) modes, which is one main cause for
isospectrality breaking [99]. Following [88, 99], we solved the (ℓ, 𝑚) and (ℓ,−𝑚)
modes jointly and used the EVP method in [88, 97, 98] to compute the QNM
frequencies.

We obtained the QNM frequency shifts for the modes ℓ = 2, 3 up to the second
overtone for both the bumps with multipole ℓ𝑊 = 2 and ℓ𝑊 = 3. Some qualitative
features were found. Our results showed that isospectrality is broken for both the
ℓ𝑊 = 2 and ℓ𝑊 = 3 bumps. Specifically, we noticed that the isospectrality breaking
structure is related to the parity of the bumps. For odd-parity bumps, we found
that the two frequency shifts, due to isospectrality breaking, are opposite to each
other. These features are consistent with the ones discovered by [89, 90, 120] in
higher-derivative gravity. Furthermore, we notice that the eikonal approximation in
GR [32–34] is no longer valid here, so further investigation is needed in these bumpy
BH spacetimes. We suspect this breakdown can be related to the chaotic nature of
photon orbits near bumpy BHs, as found by Refs. [121, 122].

Since we expect to observe the GW ringdown with a much higher signal-to-noise
ratio during the fourth LVK observing run and in the future with third-generation
detectors, such as Einstein Telescope [123] and Cosmic Explorer [124], it is critical
to accurately model the GWs emitted during the ringdown phase not only in GR
but also bGR theories. Our work has made a crucial attempt in this direction by
developing a framework to study the ringdown of a BH spacetime with parametrized
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deviations, which is valid for rotating BHs in general. Through our work, one can
directly connect the multipole structure of a BH spacetime to its QNM spectra.

Our efforts can be extended in several directions. In [77], Hughes and Vigeland also
derived a spinning bumpy BH spacetime. Since the bumps in the non-rotating case
are already axisymmetric, the procedures in this work should naturally extend to
spinning bumpy BHs. One subtlety is that the bumpy spinning BH in [77] is not
Ricci flat, unlike the non-spinning case. This introduces extra source terms driven by
the Ricci tensor and not present in our current implementation. Even though these
source terms decay as 𝑟−(ℓ𝑊+1) for the Weyl multipole ℓ𝑊 , we still need to investigate
whether they significantly contribute to the QNM frequency shifts. Fortunately,
the modified Teukolsky formalism can still deal with these extra source terms, as
demonstrated in [89–91]. Another theory-agnostic approach could instead use the
GH multipole moments, which can parametrize Ricci-flat solutions to the Einstein
equations even for rotating BHs. A potential drawback to this strategy is that one
cannot uniquely describe a non-vacuum spacetime with multipoles [125], limiting
the ability to model more general BH environments [126]. Nonetheless, multipoles
can still be a valuable probe of possible bGR corrections and a clean way to formulate
no-hair tests of GR.

Since isospectrality breaking is likely a common feature in bGR theories [99],
understanding its physical origins and signatures on GW observables is another
important direction. In this work, we have made a direct connection from the
parity of the bumps to the isospectrality breaking structure of the QNMs. Since
the same relations also appeared in higher-derivative gravity [89, 90, 120] and
other parametrized ringdown studies of non-rotating BHs [127], it will be worth to
derive these relations from the parity properties of the action directly following [99].
Furthermore, we should also investigate how these generic isospectrality-breaking
features of QNMs impact GW waveforms. We should study whether we can extract
any characteristic features associated with isospectrality breaking from the waveforms.
These features are potentially useful for testing the class of parity-preserving or
parity-violating theories in a generic way.
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6.7 Appendix: O(𝜁1, 𝜖0) quantities
In this section, we list the Weyl scalars and spin coefficients at O(𝜁1, 𝜖0). The Weyl
scalars at O(𝜁1, 𝜖0) are given by

Ψ
(1,0)
0 = −

𝜕2
𝜃
𝛾1 + (𝑟 − 2𝑀)

(
2𝜕𝑟 + 𝑟𝜕2

𝑟

)
𝛾1 − cot 𝜃𝜕𝜃𝛾1 − 2𝜕2

𝜃
𝜓1 + 2 cot 𝜃𝜕𝜃𝜓1

2𝑟 (𝑟 − 2𝑀) ,

(6.73)

Ψ
(1,0)
1 =

2𝑟 (𝑟 − 2𝑀) (cot 𝜃𝜕𝑟𝛾1 − 2𝜕𝑟𝜕𝜃𝜓1) + 2(𝑟 + 𝑀)𝜕𝜃𝛾1 + 4(𝑟 − 5𝑀)𝜕𝜃𝜓1

4
√

2𝑟2(𝑟 − 2𝑀)
,

(6.74)

Ψ
(1,0)
2 =

𝑟 (𝑟 − 2𝑀)𝜕2
𝑟 (8𝜓1 − 5𝛾1) − 2(2𝑀 + 𝑟)𝜕𝑟𝛾1 + 4(𝑀 + 𝑟)𝜕𝑟𝜓1

12𝑟2 (6.75)

+
𝑟
[
cot 𝜃 (2𝜕𝜃𝜓1 − 3𝜕𝜃𝛾1) − 5𝜕2

𝜃
𝛾1 + 2𝜕2

𝜃
𝜓1

]
+ 24𝑀𝛾1 − 24𝑀𝜓1

12𝑟3 ,

Ψ
(1,0)
3 =

−2𝑟 (𝑟 − 2𝑀)𝜕𝑟 (cot 𝜃𝛾1 − 2𝜕𝜃𝜓1) − 2(𝑟 + 𝑀)𝜕𝜃𝛾1 + 4(5𝑀 − 𝑟)𝜕𝜃𝜓1

8
√

2𝑟3
,

(6.76)

Ψ
(1,0)
4 =

(𝑟 − 2𝑀)
[
cot 𝜃𝜕𝜃 (𝛾1 − 2𝜓1) − 𝜕2

𝜃
𝛾1 − (𝑟 − 2𝑀)

(
2𝜕𝑟𝛾1 + 𝑟𝜕2

𝑟 𝛾1
)
+ 2𝜕2

𝜃
𝜓1

]
8𝑟3 .

(6.77)

The spin coefficients at O(𝜁1, 𝜖0) are given by

𝜅 (1,0) =
𝜕𝜃𝛾1 − 2𝜕𝜃𝜓1√

2(𝑟 − 2𝑀)
, (6.78a)

𝜋(1,0) =
𝜕𝜃𝛾1

2
√

2𝑟
, (6.78b)

𝜖 (1,0) =
1
2
𝜕𝑟𝜓1 , (6.78c)

𝜌(1,0) =
−𝑟𝜕𝑟𝛾1 + 2𝛾1 + 2𝑟𝜕𝑟𝜓1 − 2𝜓1

2𝑟
, (6.78d)

𝜆(1,0) = − (𝑟 − 2𝑀)𝜕𝑟𝛾1

4𝑟
, (6.78e)

𝛼(1,0) =
cot 𝜃 (𝛾1 − 𝜓1) + 𝜓1

2
√

2𝑟
, (6.78f)

𝜎 (1,0) = −1
2
𝜕𝑟𝛾1 , (6.78g)

𝜇(1,0) = − (𝑟 − 2𝑀) [𝑟 (𝜕𝑟𝛾1 − 2𝜕𝑟𝜓1) − 2𝛾1 + 2𝜓1]
4𝑟2 , (6.78h)

𝛽(1,0) = −cot 𝜃 (𝛾1 − 𝜓1) + 𝜕𝜃𝜓1

2
√

2𝑟
, (6.78i)
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𝜈(1,0) = − (𝑟 − 2𝑀) (𝜕𝜃𝛾1 − 2𝜕𝜃𝜓1)
4
√

2𝑟2
, (6.78j)

𝛾 (1,0) =
−2𝑀𝛾 + 𝑟 (𝑟 − 2𝑀)𝜕𝑟𝜓1 + 2𝑀𝜓1

4𝑟2 , (6.78k)

𝜏(1,0) = − 𝜕𝜃𝛾1

2
√

2𝑟
. (6.78l)

6.8 Appendix: QNM Frequency Shifts
In this appendix, we explicitly tabulate the QNM frequency shifts 𝜔±(1)

ℓ𝑚
generated by

the Weyl multipoles ℓ𝑊 = 2, 3. All the results in this appendix were calculated using
the modified contour 𝒞2 in Fig. 6.2. For the even-parity bump ℓ𝑊 = 2, the top row of
each cell refers to 𝜔+(1)

ℓ𝑚
with 𝜂ℓ𝑚 = (−1)ℓ, while the bottom row of each cell refers

to 𝜔−(1)
ℓ𝑚

with 𝜂ℓ𝑚 = (−1)ℓ+1. For the odd-parity bump ℓ𝑊 = 3, since 𝜔−(1)
ℓ𝑚

= −𝜔+(1)
ℓ𝑚

as discussed in Sec. 6.5, we only list 𝜔+(1)
ℓ𝑚

.

Table 6.1: ℓ = 2 , ℓ𝑊 = 2

𝑚 = 2 𝑚 = 1 𝑚 = 0

𝑛 = 0 0.5356 + 1.334𝑖 −0.9934 − 0.7472𝑖 −0.8402 − 1.552𝑖
0.4624 + 0.5751𝑖 −1.013 − 0.8530𝑖 −0.4508 − 1.709𝑖

𝑛 = 1 −0.2501 + 1.209𝑖 −0.6474 − 1.133𝑖 −0.08632 − 1.464𝑖
0.5693 + 1.013𝑖 −0.5678 − 1.158𝑖 −0.04923 − 1.735𝑖

𝑛 = 2 −0.1020 + 1.114𝑖 −0.3401 − 1.208𝑖 0.03257 − 1.560𝑖
0.1645 + 1.208𝑖 −0.3330 − 1.162𝑖 0.08164 − 1.433𝑖

Table 6.2: ℓ = 2 , ℓ𝑊 = 3

𝑚 = 2 𝑚 = 1 𝑚 = 0
𝑛 = 0 −1.048 − 0.1024𝑖 0.9566 + 1.485𝑖 1.176 + 1.030𝑖
𝑛 = 1 0.05390 + 0.6246𝑖 −0.3629 − 1.547𝑖 −0.6855 − 1.265𝑖
𝑛 = 2 0.08806 − 0.3659𝑖 −0.1525 − 1.440𝑖 −0.3984 − 1.171𝑖

Table 6.3: ℓ = 3 , ℓ𝑊 = 2

𝑚 = 3 𝑚 = 2 𝑚 = 1 𝑚 = 0

𝑛 = 0 0.8419 + 1.011𝑖 −2.832 − 2.520𝑖 1.108 − 0.1184𝑖 2.358 + 2.124𝑖
0.7574 + 1.047𝑖 −2.518 − 1.663𝑖 1.034 − 0.06974𝑖 2.268 + 2.170𝑖

𝑛 = 1 0.4823 + 1.185𝑖 −1.862 − 3.176𝑖 1.124 + 0.5143𝑖 1.638 + 2.907𝑖
0.4446 + 1.118𝑖 −2.244 − 2.753𝑖 1.093 + 0.4545𝑖 1.602 + 2.840𝑖

𝑛 = 2 0.3154 + 1.023𝑖 −1.323 − 2.965𝑖 0.8396 + 0.6965𝑖 1.099 + 2.720𝑖
0.2872 + 1.043𝑖 −1.562 − 2.898𝑖 0.8119 + 0.6996𝑖 1.072 + 2.724𝑖
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Table 6.4: ℓ = 3 , ℓ𝑊 = 3

𝑛 = 0 0.8113 + 0.2449𝑖 −0.5446 − 1.675𝑖 −4.754 − 4.637𝑖 3.775 + 2.201𝑖
𝑛 = 1 0.7898 + 0.8195𝑖 −0.0214 − 1.425𝑖 3.442 + 6.196𝑖 3.341 + 3.550𝑖
𝑛 = 2 0.5539 + 1.071𝑖 −0.05605 + 0.9151𝑖 2.324 + 6.015𝑖 2.443 + 3.666𝑖
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C h a p t e r 7

INTERFEROMETER RESPONSE TO GEONTROPIC
FLUCTUATIONS

[1] Dongjun Li, Vincent S. H. Lee, Yanbei Chen, and Kathryn M. Zurek.
“Interferometer response to geontropic fluctuations”. In: Phys. Rev. D 107.2
(2023), p. 024002. doi: 10.1103/PhysRevD.107.024002. arXiv: 2209.
07543 [gr-qc].

7.1 Introduction
Traditional wisdom in effective field theory (EFT) suggests that quantum fluctuations
in the fabric of spacetime should be of the order of ∼ 𝑙𝑝 =

√︁
8𝜋𝐺ℏ/𝑐3 ∼ 10−34 m,

where 𝐺, ℏ, 𝑐, and 𝑙𝑝 are the gravitational constant, reduced Planck constant, speed
of light, and Planck length respectively. Fluctuations on such small time and length
scales are experimentally undetectable.

It has, however, been recently argued in multiple different contexts that the length
scale 𝐿 of the physical system itself may enter into the observable [1–6] (see Ref. [7]
for a summary) 〈(

Δ𝐿

𝐿

)2
〉
∼
𝑙𝑝

𝐿
, (7.1)

where Δ𝐿 is the quantum fluctuation of 𝐿. For example, in Refs. [1, 4], 𝐿 is the length
of interferometer arm in flat spacetime. More generally, 𝐿 can be the size of a causal
diamond in dS, AdS, and flat spacetime [2, 3], where the causal diamond associated
with a volume 𝑉 consists of points which have the property that all causal curves
going through the point must intersect 𝑉 [8, 9]. These works argued that the naive
EFT reasoning is corrected by long-range correlations in the metric fluctuations-such
as are known to occur in holography-which allow the UV fluctuations to accumulate
into the infrared. A physical analogue is Brownian motion (discussed in Ref. [7])
where the interactions occur at very short distances but become observable on long
timescales as the UV effects accumulate.

While the calculations presented in Refs. [1–5] are firmly grounded in standard
theoretical techniques, such as AdS/CFT, they have not yet provided important,
detailed experimental information, such as the power spectral density. This was the

https://doi.org/10.1103/PhysRevD.107.024002
https://arxiv.org/abs/2209.07543
https://arxiv.org/abs/2209.07543
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motivation behind the model of Ref. [4]: to provide a framework that reproduces
important behaviors of the UV-complete theory while also allowing to calculate
detailed signatures in the infrared. In the language of the Brownian motion model,
while the fluctuations arise from local interactions, the observable is only defined
globally. In the language of an interferometer experiment, one cannot measure
spacetime fluctuation within a portion of an interferometer arm length, but must wait
for a photon to complete a round trip before making a measurement of the global
length fluctuation across the entire arm.

In this work, we continue to develop the model proposed in Ref. [4], utilizing a
scalar field coupled to the metric to model the behavior of the spacetime fluctuations
proposed in Refs. [1–5]. We call spacetime fluctuations modeled by the scalar field
“geontropic fluctuations” since they are geometric fluctuations induced by entropic
fluctuations within a finite spatial volume, as we discuss in the next section. In
particular, we propose a model in four dimensions, where the metric appears as a
breathing mode of a sphere controlled by a scalar field 𝜙:

𝑑𝑠2 = −𝑑𝑡2 + (1 − 𝜙) (𝑑𝑟2 + 𝑟2𝑑Ω2) . (7.2)

Since 𝜙 effectively controls the area of a spherical surface, it is thus proportional to
the entropy of a causal diamond, and may be identified with the dilaton mode studied
in Refs. [3, 5], which induces fluctuations in the spherical entangling surface shown
in Fig. 7.1 and is modeled by the metric in Eq. (7.2). In the model we consider, 𝜙
is a scalar field whose quantum fluctuations will be characterized by its occupation
number, which we label as 𝜎pix. The subscript denotes “pixellon” following the
proposal of Ref. [4], referring to the pixels of spacetime whose fluctuations the
scalar field is modeling. While we do not derive the form of the metric in Eq. (7.2),
we reproduce the angular correlation proposed in Ref. [1], a non-trivial result (not
typical of most metrics) which we take as further evidence that this Ansatz is a
good starting point. In addition, the power spectral density has no pathologies in the
ultraviolet or infrared, another non-trivial result.

In particular, the quantum fluctuations of the scalar, since they couple to the metric,
will give rise to fluctuations in the round-trip time for a photon to traverse from
mirror to mirror in an interferometer, as depicted in Fig. 7.1. Similar to Ref. [4],
our main goal is to compute the gauge invariant interferometer observable arising
from the metric Eq. (7.2), with 𝜙 being a scalar field having a high occupation
number. In contrast to Ref. [4], which calculated length fluctuations utilizing the
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Feynman-Vernon influence functional in a single interferometer arm, we will use only
linearized gravity and the QFT of a scalar field with a given occupation number. We
will thus be able to extend the previous work in Ref. [4], calculating both the power
spectral density and angular correlations in the interferometer arms in a manifestly
gauge invariant way, checking previous claims made in Ref. [1], as well as making
new predictions. Note that while the model is not yet uniquely derived from first
principles in the ultraviolet (utilizing for example shockwave geometry [6], i.e., the
gravitational field of fast-moving particles with negligible rest mass [10]), we will
argue below that it is nevertheless well-motivated from first principles.

More specifically, we consider an interferometer with two arms of equal length 𝐿,
i.e., with spherical symmetry, and separated by angle 𝜃, as depicted in Fig. 7.1. We
assume that the first arm as the reference beam points in the direction n1, and the
second arm as the signal beam points in the direction n2. We will find that the
observable takes the form:〈
𝛿𝑇 (𝑡1, n1)𝛿𝑇 (𝑡2, n2)

4𝐿2

〉
=

𝑙2𝑝

4𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

𝜎pix(p)
2𝜔(p) F (𝑟1, 𝑟2, 𝑝,Δ𝑥) ,

(7.3)

where 𝛿𝑇 (𝑡, n) denotes the fluctuation of time delay of light beam sent at time 𝑡 − 𝐿
along the direction n, and 𝑝 = (𝜔, p), Δ𝑥 = (Δ𝑡,Δx) are four-vectors. The main
object of interest in this paper is F (𝑟1, 𝑟2, 𝑝,Δ𝑥), which encapsulates the response
of the interferometer gravitationally coupled to the scalar field 𝜙.

The rest of the paper is organized around deriving Eq. (7.3). In Sec. 7.2, we review the
pixellon scalar field model, with an occupation number 𝜎pix motivated in particular
by [4], but also by work demonstrating that the effect of interest is a breathing mode
of the horizon [3, 5]. We then couple this scalar field to the Einstein-Hilbert action
and derive its equation of motion. In Sec. 7.3, we perform a linearized gravity
calculation and derive the observable. In particular, we compute the interferometer
response function F (𝑟1, 𝑟2, 𝑝,Δ𝑥) from our specific model. In Sec. 7.4, we compute
the relevant power spectral density and angular correlation from Eq. (7.3). We then
discuss various existing experimental constraints. Finally, in Sec. 7.5, we conclude.
Throughout the paper we will work in units ℏ = 𝑐 = 𝑘𝐵 = 1 while keeping the
gravitational constant 𝐺 = 𝑙2𝑝/(8𝜋) explicit.
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Figure 7.1: Setup of the interferometer.

7.2 Scalar Field Quantum Fluctuations in a Causal Diamond
The main goal of this section is to motivate the form of the scalar occupation number,
𝜎pix, that will be coupled to the metric. Our discussion here is mostly based on
Ref. [4], though, as mentioned previously, it is also broadly consistent with the
dilaton model presented in Ref. [3, 5]. We first review the pixellon model developed
in Refs. [1–6] but use the notation in this work, and the rest of this section directly
applies the pixellon model to the specific metric in Eq. (7.2).

The effect of interest, as presented in Refs. [1, 2] is based on fluctuations in the
modular Hamiltonian 𝐾

𝐾 =

∫
𝐵

𝑇𝜇𝜈𝜁
𝜇

𝐾
𝑑𝐵𝜈 , (7.4)

where 𝐵 is some spatial region with a stress tensor 𝑇𝜇𝜈, 𝑑𝐵𝜈 is the volume element of
𝐵 (with 𝑑𝐵𝜈 pointing in the time direction), and 𝜁 𝜇

𝐾
is the conformal Killing vector of

the boost symmetry of Σ, the entangling surface between 𝐵 and its complement 𝐵̄ [2,
8]. One can map 𝐵 to Rindler space, so Σ is also a Rindler horizon. In the context
of AdS/CFT, where 𝑇𝜇𝜈 is the stress tensor of the boundary CFT, both the vacuum
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expectation value and the fluctuations of the modular Hamiltonian are known to obey
an area law in vacuum [2, 11, 12]

⟨𝐾⟩ = ⟨Δ𝐾2⟩ = 𝐴(Σ)
4𝐺

, (7.5)

where 𝐴(Σ) is the area of Σ. One tempting interpretation of this relation is that
⟨𝐾⟩ ≡ N counts the number of gravitational bits, or pixels, in the system, which is
further motivated by the fact that the entanglement entropy 𝑆ent = ⟨𝐾⟩ is known to
hold in a CFT. The fluctuations of those N bits then satisfy “root-N” statistics:

|Δ𝐾 |
⟨𝐾⟩ =

1
√
N
, (7.6)

where |Δ𝐾 | =
√︁
⟨Δ𝐾2⟩ represents the amplitude of the modular fluctuation.

While the precise relation ⟨𝐾⟩ = ⟨Δ𝐾2⟩ is demonstrated only in the context of
AdS/CFT, one can place a Randall-Sundrum brane in the (5-d) bulk of AdS, inducing
gravity on the (flat 4-d) RS brane, and show that Eq. (7.5) holds on the 4-d brane
[3]. The measuring apparatus can then be placed on the flat 4-d brane. Further,
as shown in [3, 13, 14], gravity is approximately conformal near the horizon. For
an interferometer, the light beams are probing the near-horizon geometry of the
spherical entangling surface Σ bounding it (shown in Fig. 7.1), so Ref. [3] argued
that the correlator of stress tensor takes the same form as any CFT. Thus, ⟨Δ𝐾2⟩
follows Eq. (7.5), i.e.,

⟨Δ𝐾2⟩ ∼
∫

𝑑2y𝑑2y′
𝑑𝑟 𝑑𝑟′𝑟 𝑟′

((𝑟 − 𝑟′)2 + (y − y′)2)4

∼ 𝐴

∫
𝑑𝑟 𝑑𝑟′𝑟 𝑟′

(𝑟 − 𝑟′)6 ∼ 𝐴

𝛿2 ∼ 𝐴

𝑙2𝑝
, (7.7)

where y denotes the transverse directions (corresponding to the coordinates on Σ),
and 𝐺 ∼ 𝛿2 corresponds to a UV cut-off in the theory at a distance scale 𝛿 ∼ 𝑙𝑝.
In our case, 𝑟 − 𝑟′ ∼ 𝛿 corresponds to the distance to the (unperturbed) spherical
entangling surface Σ in our setup shown in Fig. 7.1. A similar relation holds for ⟨𝐾⟩.
More generally, as found in [15], an area law for entanglement entropy does not hold
only for a CFT but also any massless scalar QFT, which also motivates the scalar
model of geontropic fluctuations in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational effects of modular fluctuations
with a massless scalar field, dubbed a “pixellon.” Since pixellons are bosonic scalars,
their creation and annihilation operators (𝑎, 𝑎†) satisfy the usual commutation
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relation [
𝑎p1 , 𝑎

†
p2

]
= (2𝜋)3𝛿(3) (p1 − p2) . (7.8)

We are interested in modeling the impact of the (fluctuating) effective stress tensor in
Eq. (7.13). We will do this by allowing for a non-zero occupation number 𝜎pix(p),

Tr
(
𝜌pix𝑎

†
p1𝑎p2

)
= (2𝜋)3𝜎pix(p1)𝛿(3) (p1 − p2) (7.9)

such that

Tr
(
𝜌pix{𝑎p1 , 𝑎

†
p2}

)
= (2𝜋)3 [

1 + 2𝜎pix(p1)
]
𝛿(3) (p1 − p2) . (7.10)

The occupation number should be consistent with the modular energy fluctuation,
Eq. (7.6), as we will check explicitly at the end of this section.

The pixellon couples to the metric and sources the stress tensor at second order in
perturbations. In general, we can consider a metric of the form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜖ℎ𝜇𝜈 + 𝜖2𝐻𝜇𝜈 + ... , (7.11)

where 𝜖 is a dimensionless parameter that denotes the order in perturbation theory.
The vacuum Einstein Equation (EE) is, parametrically1,

𝐺𝜇𝜈 = 𝜖
[
∇2ℎ

]
𝜇𝜈

+ 𝜖2
( [
∇2𝐻

]
𝜇𝜈

− 𝑙2𝑝𝑇𝜇𝜈
)
+ ... = 0 , (7.12)

where the precise form of the equations of motion (e.g., numerical prefactors in the
time and spatial derivatives) will depend on the precise form of the metric that we
consider below, and where the effective stress tensor is given by

𝑇𝜇𝜈 ∼
1
𝑙2𝑝

[
(∇ℎ)2]

𝜇𝜈
. (7.13)

At leading order in perturbation theory, the metric perturbation ℎ𝜇𝜈 satisfies the
vacuum EE having a form [

∇2ℎ
]
𝜇𝜈

= 0 . (7.14)

However, at second order, the effective stress tensor of ℎ𝜇𝜈 will source a non-zero
metric perturbation 𝐻𝜇𝜈, i.e., [

∇2𝐻
]
𝜇𝜈

= 𝑙2𝑝𝑇𝜇𝜈 . (7.15)
1This argument was formulated in private communication with E. Verlinde in the work leading to

Ref. [2].
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One can compute ⟨𝐾⟩ from ⟨𝑇𝜇𝜈⟩, but as shown in [2], ⟨𝐾⟩ does not gravitate
and should be subtracted in the metric equation of motion (similar to a tadpole
diagram in QFT). Thus, the vacuum expectation value of this stress tensor vanishes,
⟨𝑇𝜇𝜈⟩ = 0, consistent with Eqs. (7.13)-(7.14). In contrast, it is expected to have
nonzero fluctuations ⟨Δ𝐾2⟩ ∼ ⟨𝑇𝛼𝛽𝑇𝜇𝜈⟩ ≠ 0, which gravitate and lead to physical
observables.

Although ⟨Δ𝐾2⟩ is directly related to the vacuum two-point function of 𝐻𝜇𝜈 or
four-point function of ℎ𝜇𝜈, the physical observable can be directly computed from
the two-point function of ℎ𝜇𝜈 with a nontrivial density-of-states 𝜎pix. That is, we are
using the language of linearized gravity in this work, while our result captures the
nonlinearity in Eq. (7.15) and higher orders via 𝜎pix. To compute the fluctuations,
we quantize the metric perturbations via the scalar field 𝜙, which, to second order in
perturbation theory, leads to a nonzero ⟨Δ𝐾2⟩, as shown at the end of this section.
The major goal of this work is to compute the effects of such quantized metric
perturbations on the interferometer depicted in Fig. 7.1.

More specifically, following Ref. [4], we model these energy fluctuations, in the
volume of spacetime interrogated with an interferometer, with a thermal density
matrix 𝜌pix, as shown in Eqs. (7.9)-(7.10). The motivation for this choice is based
on formal work [8] showing that the reduced density matrix 𝜌𝑉 of the system 𝑉

bounded by a sphere 𝑆𝑑−1 or its causal diamond D can be mapped to the thermal
density matrix 𝜌𝛽 of the hyperbolic spacetime 𝑅 × 𝐻𝑑−1, which foliates AdS𝑑+1, in
the asymptotic limit. A similar argument relating the vacuum state of any QFT in a
causal diamond to a thermal density matrix can be found in [16].

Thus, following [4], we are motivated to define a thermal density matrix 𝜌pix of
pixellons using the definition in [17],

𝜌pix =
1
Z exp

[
−𝛽

∫
𝑑3p
(2𝜋)3 (𝜖p − 𝜇)𝑎

†
p𝑎p

]
, (7.16)

Z =
∏

p

1
1 − 𝑒−𝛽(𝜖p−𝜇)

, (7.17)

where 𝜖p is the energy of pixellons with momentum p, and 𝜇 is the chemical potential
counting background degrees of freedom associated with ⟨𝐾⟩ [4].

Furthermore, as in Ref. [4], we identify the energy per degree-of-freedom as

𝛽(𝜖p − 𝜇) ≡ 𝛽𝜔(p) ∼ |Δ𝐾 |
⟨𝐾⟩ . (7.18)
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In four dimensions, according to Eq. (7.5),

|Δ𝐾 |
⟨𝐾⟩ =

1
√
N

∼
𝑙𝑝

𝐿
, (7.19)

suggesting that the energy fluctuation per degree-of-freedom is set by a ratio of UV
and IR length scales. Since 𝑙𝑝

𝐿
≪ 1, we approximate the occupation number 𝜎(p) by

𝜎pix(p) =
1

𝑒𝛽𝜔(p) − 1
≈ 1
𝛽𝜔(p) . (7.20)

More specifically, we identify the IR length scale 1/𝐿 ∼ 𝜔(p), so we take

𝜎pix(p) =
𝑎

𝑙𝑝𝜔(p)
, (7.21)

where 𝑎 is the dimensionless number to be measured in an experiment, or fixed
in a UV-complete theory. Here 𝑎 = 1/(2𝜋) corresponds to an inverse temperature
𝛽 = 2𝜋𝑙𝑝, giving a result most closely mirroring Refs. [1, 2, 4] in amplitude.

Note that 𝜎pix(p) is not Lorentz invariant, but this is to be expected because the
measurement of interest via a causal diamond picks out a frame. This is also not
contradictory to our statement that we have computed a gauge invariant observable.
It is because Lorentz transformations of 𝜎pix(p) are global transformations of
background Minkowski spacetime. After the interferometer picks a frame, the
interferometer response is independent of how we describe metric perturbations,
i.e., independent of local coordinate transformations at scale of metric perturbations,
which is what gauge invariance usually means in linearized gravity.

We now apply this pixellon model to the metric in Eq. (7.2) and derive the dispersion
relation of 𝜙. We start from the linearized Einstein Hilbert action or Fierz-Pauli
action [18]

𝑆FP =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 ℎ𝜇𝜈
(
𝐺𝜇𝜈 [ℎ𝜇𝜈] − 𝜅𝑇 𝜇𝜈

)
=

1
4𝜅

∫
𝑑4𝑥

√−𝑔 ℎ𝜇𝜈 (𝜂𝜇𝜈□ℎ − □ℎ𝜇𝜈

− 2∇𝜇∇𝜈ℎ + 2∇𝜌∇𝜇ℎ𝜈𝜌 − 2𝜅𝑇 𝜇𝜈) + O(ℎ3) ,

(7.22)

where 𝜅 = 8𝜋𝐺. The Fierz-Pauli action can be derived by expanding the full metric
𝑔𝜇𝜈 about the Minkowski metric 𝜂𝜇𝜈, 𝑔𝜇𝜈 = 𝜂𝜇𝜈+ℎ𝜇𝜈, and keeping the terms quadratic
in ℎ𝜇𝜈 in the Einstein Hilbert action [18, 19]. Here, ℎ𝜇𝜈 is the metric perturbation
associated with the pixellon 𝜙. The terms linear in ℎ𝜇𝜈 are discarded because they
can be written as a total derivative [19].
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Instead of a functional of a general ℎ𝜇𝜈, 𝑆FP in our model is a functional of the metric
in Eq. (7.2) and thus a functional of 𝜙, so the pixellon’s action 𝑆pix [𝜙] is

𝑆pix [𝜙] ≡ 𝑆FP [ℎpix
𝜇𝜈 [𝜙]] , ℎ

pix
𝜇𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 = 𝑑𝑠2
pix , (7.23)

which after plugging in Eq. (7.2) becomes

𝑆pix [𝜙] =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝜙
[
∇2 − 3𝜕2

𝑡

]
𝜙 + 𝜅Lint [𝜙] ,

Lint [𝜙] ≡ −ℎpix
𝜇𝜈 [𝜙]𝑇 𝜇𝜈 . (7.24)

Then the equation of motion (EOM) of 𝜙 is derived by varying Lpix with respect to
𝜙. (

𝜕2
𝑡 − 𝑐2

𝑠∇2
)
𝜙 =

𝜅

𝑐2
𝑠

𝛿Lint [𝜙]
𝛿𝜙

, 𝑐𝑠 ≡
√︂

1
3
. (7.25)

Following the logic of Eqs. (7.12)-(7.13), to leading order in 𝜙, the right-hand side
of Eq. (7.25) vanishes. Although Eq. (7.25) is source-free, one may find that the
effective stress tensor contains linear term in 𝜙, which is a tadpole due to imposing
the form of metric in Eq. (7.2) and can be subtracted off. Eq. (7.25) also implies that
for the metric in Eq. (7.2), 𝜙 needs to have the dispersion relation

𝜔 = 𝑐𝑠 |p| , 𝑐𝑠 =

√︂
1
3

(7.26)

using the expansion 𝜙 =
∫

𝑑3p
(2𝜋)3 𝜙(p)𝑒−𝑖𝜔𝑡+𝑖p·x. It is clear that 𝜙 is a sound mode with

the sound speed 𝑐𝑠 =
√︃

1
3 . This sound mode can be related to the hydrodynamical

sound mode in fluid gravity and the butterfly velocity of out-of-time-correlators,
(e.g., see Refs. [20, 21]), which we will explore in our future work. From Eq. (7.24),
we also notice that to canonically normalize 𝜙, we can define 𝜙 such that

𝜙 =
√
𝜅𝜙 = 𝑙𝑝𝜙 . (7.27)

As a consistency check, one can use the metric in Eq. (7.2) and the occupation number
in Eq. (7.21) to confirm that ⟨Δ𝐾2⟩ has the same scaling in Eq. (7.5). Although
the physical observable is driven by the two-point function of 𝜙 as we will discuss
in Sec. 7.3, ⟨Δ𝐾2⟩ is driven by the four-point function of 𝜙. One can see this by
noting that 𝐾2 ∼ (𝑇𝜇𝜈)2 according to Eq. (7.4), while 𝑇𝜇𝜈 ∼ 1

𝑙2𝑝

[
(∇𝜙)2]

𝜇𝜈
according

to Eq. (7.13). In Sec. 7.3, we find, utilizing the Ansatz Eq. (7.21) for the density of
states, ⟨𝜙2⟩ ∼ 𝑙𝑝

𝐿
[see Eq. (7.39)]. Thus, if we identify spatial gradients with the IR

length scale 1/𝐿, we obtain ⟨Δ𝐾2⟩ ∼ 𝐿2

𝑙2𝑝
∼ 𝐴

4𝐺 , as expected.



354

7.3 Time Delay in Pixellon Model
The major goal of this work is to compute an interferometer response to fluctuations
in the pixellon model. Instead of using the Feynman-Vernon influence functional
approach to compute the mirror’s motion, e.g., in [4, 19, 22], we compute the time
delay of a light beam traveling a round trip directly.

In general, for a metric in the form

𝑑𝑠2 = −(1 −H0)𝑑𝑡2 + (1 + H2)𝑑𝑟2 + 2H1𝑑𝑡𝑑𝑟 + · · · , (7.28)

we need to consider three effects: the shift in the clock rate, mirror motion, and light
propagation. As discussed in detail in Appendix 7.6, the shift in the clock’s rate only
depends on H0, the mirror motion in the radial direction is affected by H0,1, and the
light propagation is determined by all three components H0,1,2.

In Appendix 7.7, we further show that if we take all of these three effects into
consideration and sum up the resulting time delay for both outbound and inbound
light, the total time delay 𝑇 of a round trip is gauge invariant, so 𝑇 is a physical
quantity to measure. In this section, we compute the shift of 𝑇 due to geontropic
fluctuations and its correlation function using the metric of the pixellon model in
Eq. (7.2). To calculate time delay in a generic metric like Eq. (7.28), one can refer to
Appendix 7.6.

For the metric in Eq. (7.2), the only nonzero component in the 𝑡 − 𝑟 sector of the
metric is H2, so we only need to consider light propagation. Then for a light beam
sent at time 𝑡 − 𝐿 along the direction n, its total time delay 𝑇 (𝑡, n) of a round trip is
completely determined by the pixellon field 𝜙, e.g.,

𝑇 (𝑡, n) = 2𝐿 − 1
2

∫ 𝐿

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] ,

𝑥 ≡ (𝑡 − 𝐿 + 𝑟, 𝑟n) , 𝑥′ ≡ (𝑡 + 𝐿 − 𝑟, 𝑟n) . (7.29)

We have chosen the start time to be at 𝑡 − 𝐿 such that the time coordinate of 𝑥 and 𝑥′

are symmetric about 𝑡.

Since 𝜙 satisfies the massless free scalar wave equation with the sound speed 𝑐𝑠 = 1√
3

[i.e., Eqs. (7.25) and (7.26)], the quantization for 𝜙(𝑥) should be

𝜙(𝑥) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

(
𝑎p𝑒

𝑖𝑝·𝑥 + 𝑎†p𝑒−𝑖𝑝·𝑥
)
, (7.30)
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where 𝑙𝑝 is to make 𝜙(𝑥) canonically normalized, as discussed in Eq. (7.27). Creation
and annihilation operators 𝑎p, 𝑎†p satisfy the commutation relation in Eq. (7.8) with
a thermal density matrix 𝜌pix defined in Eqs. (7.16) and (7.21).

Let us define 𝛿𝑇 (𝑡, n) to be the correction to the total time delay 𝑇 (𝑡, n). We write
the auto-correlation of 𝛿𝑇 (𝑡, n) as

𝐶 (Δ𝑡, 𝜃) ≡
〈
𝛿𝑇 (𝑡1, n1)𝛿𝑇 (𝑡2, n2)

4𝐿2

〉
,

Δ𝑡 ≡ 𝑡1 − 𝑡2 , 𝜃 = cos−1 (n1 · n2) , (7.31)

and using Eq. (7.29), we obtain

𝐶 (Δ𝑡, 𝜃) = 1
16𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2⟨

(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩ , (7.32)

where ⟨O⟩ is a shorthand notation for

⟨O⟩ = Tr(𝜌pixO) . (7.33)

We have assumed that 𝐶 (Δ𝑡, 𝜃) only depends on Δ𝑡, the difference of the time when
the two beams are sent, and 𝜃, the angular separation of two arms. We will see that
this assumption is true.

Besides the correlation function in Eq. (7.31), a more physical correlation function
is to first subtract the time delay of the first arm 𝑇 (𝑡, n1) from the time delay of the
second arm 𝑇 (𝑡, n2), where two beams are sent at the same time 𝑡, and then correlate
this difference of time delay at different beam-sent time:

𝐶T (Δ𝑡, 𝜃) ≡
〈
T (𝑡1, 𝜃)T (𝑡2, 𝜃)

4𝐿2

〉
,

T (𝑡, 𝜃) ≡ 𝑇 (𝑡, n2) − 𝑇 (𝑡, n1) = 𝛿𝑇 (𝑡, n2) − 𝛿𝑇 (𝑡, n1) , (7.34)

such that
𝐶T (Δ𝑡, 𝜃) = 2 [𝐶 (Δ𝑡, 0) − 𝐶 (Δ𝑡, 𝜃)] . (7.35)

Here, we treat the first arm as the reference beam and the second arm as the signal
beam. Since the relation between 𝐶 (Δ𝑡, 𝜃) and 𝐶T (Δ𝑡, 𝜃) is directly given by
Eq. (7.35), we will focus on𝐶 (Δ𝑡, 𝜃) in our calculations below. To compute𝐶 (Δ𝑡, 𝜃)
in Eq. (7.32), we need to first compute the correlation function of 𝜙. Using Eq. (7.30),
we obtain

𝜙(𝑥) + 𝜙(𝑥′) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

2 cos [𝜔(𝐿 − 𝑟)]
(
𝑎p𝑒

−𝑖𝜔𝑡+𝑖p·x + 𝑎†p𝑒𝑖𝜔𝑡−𝑖p·x
)
.

(7.36)
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Then we have

⟨
(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩

= 4𝑙2𝑝
∫

𝑑3p1

(2𝜋)3

∫
𝑑3p2

(2𝜋)3
1√︁

4𝜔1(p1)𝜔2(p2)

cos [𝜔1(𝐿 − 𝑟1)] cos [𝜔2(𝐿 − 𝑟2)]
[
⟨𝑎p1𝑎

†
p2⟩𝑒

−𝑖(𝜔1𝑡1−𝜔2𝑡2−p1·x1+p2·x2) + 𝑐.𝑐.
]
,

(7.37)
where we have only kept the term proportional to 𝑎†p1𝑎p2 and 𝑎p1𝑎

†
p2 since the other

terms are zero.

To evaluate Eq. (7.37), we need to calculate ⟨𝑎†p1𝑎p2⟩ and ⟨𝑎p1𝑎
†
p2⟩. The former is

given directly by Eq. (7.9), ⟨𝑎†p1𝑎p2⟩ = Tr (𝜌pix𝑎
†
p1𝑎p2) = (2𝜋)3𝜎pix(p1)𝛿(3) (p1−p2).

Using both Eq. (7.9) and the commutation relation in Eq. (7.8), we find the latter to
be

⟨𝑎p1𝑎
†
p2⟩ = (2𝜋)3 [1 + 𝜎pix(p1)]𝛿(3) (p1 − p2)

≈ (2𝜋)3𝜎pix(p1)𝛿(3) (p1 − p2) , (7.38)

where we have used 𝜎pix(p) ≫ 1 at the last line. Then,

⟨
(
𝜙(𝑥1) + 𝜙(𝑥′1)

) (
𝜙(𝑥2) + 𝜙(𝑥′2)

)
⟩

= 4𝑙2𝑝
∫

𝑑3p
(2𝜋)3

𝜎pix(p)
2𝜔(p) cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]

[
𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx + 𝑐.𝑐.

]
,

(7.39)
where we have defined Δx ≡ x1 − x2. Notice that Eq. (7.37) is a complex function in
general, so we usually need to symmetrize it over x1,2. Due to our approximation in
Eq. (7.38), Eq. (7.39) is a real function, so the one after symmetrization over x1,2 is
the same as Eq. (7.39). For simplicity, we will drop the term 𝑐.𝑐. and always assume
that a complex conjugate is taken.

Finally, plugging Eq. (7.39) into Eq. (7.32), we obtain

𝐶 (Δ𝑡, 𝜃) =
𝑙2𝑝

4𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

𝜎pix(p)
2𝜔(p)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(7.40)

This is our main result, and we will work on applying it to existing interferometer
configurations next.
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7.4 Observational Signatures and Constraints
After plugging 𝜎pix(p) in Eq. (7.21), Eq. (7.40) is reduced to

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

8𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(7.41)

In the next two subsections, we will study the power spectral density and angular
correlation of Eq. (7.41) in more detail.

7.4.1 Power spectral density
We first study the power spectral density implied by Eq. (7.41). Carrying out the
angular part of the momentum integral in Eq. (7.41), we have

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

32𝜋2𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑 |p|

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡
∫ 𝜋

0
𝑑𝜗 sin 𝜗𝑒𝑖 |p| |Δx| cos 𝜗

=
𝑎𝑙𝑝

16𝜋2𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]
sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]

𝜔D(𝑟1, 𝑟2, 𝜃)
𝑒−𝑖𝜔Δ𝑡 ,

(7.42)
where we have defined

D(𝑟1, 𝑟2, 𝜃) ≡ |Δx| =
√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos 𝜃 . (7.43)

The additional factor of 1
𝑐2
𝑠

in Eq. (7.42) comes from using the dispersion relation
in Eq. (7.26). 𝐶T (Δ𝑡, 𝜃) is directly given by plugging Eq. (7.42) into Eq. (7.35).
One thing to notice here is that 𝐶 (0, 0) has a log divergence when integrating 𝜔 to
infinity. A similar log divergence also shows up in 𝐶 (0, 0) of [1] [see Eq. (7.57)] if
we sum all the (ℓ, 𝑚) modes without a cutoff in ℓ. Nonetheless, the log divergence
in both cases can be regulated by noticing that there is a natural UV cutoff ℓmax in
the number of observable ℓ modes of 𝐶T (0, 𝜃), beyond which light is diffracted
significantly and thus cannot probe these ℓ > ℓmax fluctuations. The UV cutoff ℓmax

can also be translated to a UV cutoff 𝜔max of frequency, which is usually much
higher than the experimental cutoff 𝜔max ≲ 10 rad GHz of the photodetector 2. Thus,
when showing 𝐶T (Δ𝑡, 𝜃) for Δ𝑡 = 0 in Fig. 7.2, we have imposed a UV cutoff
𝜔max = 10 rad GHz. Since 𝜔max enters into Eq. (7.42) via the combination 𝜔max𝐿,

2This experimental cutoff is gotten from private communication with Lee McCuller.
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Figure 7.2: Equal-time correlation function 𝐶T (0, 𝜃) [i.e., Eq. (7.34)] of the pixellon
model without IR cutoff in Eq. (7.41) (blue) and with an IR cutoff in Eq. (7.60) (red),
where both curves are normalized by 8𝜋2𝑐2

𝑠𝐿

𝑎𝑙𝑝
. An UV cutoff 𝜔max = 10 rad GHz and

arm length 𝐿 = 5 m is used as demonstration.

we have used an arm length 𝐿 = 5 m as demonstration. Notice the signal is maximal
when the interferometer arms are back-to-back.

Performing a Fourier transform of𝐶 (Δ𝑡, 𝜃) with respect toΔ𝑡, we obtain the two-sided
power spectral density 𝐶̃ (𝜔, 𝜃) to be

𝐶̃ (𝜔, 𝜃) =
∫ ∞

−∞
𝑑𝑡 𝑒−𝑖𝜔𝑡𝐶 (𝑡, 𝜃)

=
𝑎𝑙𝑝

8𝜋𝑐2
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]
𝜔D(𝑟1, 𝑟2, 𝜃)

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)] .

(7.44)

To evaluate the power spectral density of 𝐶T (Δ𝑡, 𝜃), we can put Eq. (7.44) into
Eq. (7.35) such that its power spectral density 𝐶̃T (𝜔, 𝜃) is

𝐶̃T (𝜔, 𝜃) = 2[𝐶̃ (𝜔, 0) − 𝐶̃ (𝜔, 𝜃)] . (7.45)

In Fig. 7.3, we have plotted Eq. (7.45) over 𝜔𝐿 for several different separation angles
𝜃 of the interferometer.
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In the limit 𝜔 → 0, Eqs. (7.44) and (7.45) reduce to

𝐶̃ (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠

+ O(𝜔2𝐿2) , (7.46)

𝐶̃T (𝜔, 𝜃) =
𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔2𝐿2(1 − cos 𝜃) + O(𝜔4𝐿4) . (7.47)

A major feature of 𝐶̃ (𝜔, 𝜃) at low frequencies is that it is flat in frequency, corre-
sponding to the spectrum of white noise. This feature is consistent with the “random
walk intuition” of holographic effects in [7], as well as the random walk models in
[23, 24]. On the other hand, although 𝐶̃ (𝜔, 𝜃) is independent of 𝜔 at low frequency,
𝐶̃T (𝜔, 𝜃) is quadratic in 𝜔. It is because, as one can directly observe from Eq. (7.46),
the leading order term of 𝐶̃ (𝜔, 𝜃) at low frequency is angle-independent. Thus,
when subtracting the time delay of the first arm from the second arm, this leading
order term cancels out, and the next order term, which is quadratic in 𝜔 and has a
nontrivial angular dependence, contributes to 𝐶̃T (𝜔, 𝜃).

In Eqs. (7.46)-(7.47), there are also additional factors of 1
𝑐𝑠

from the expansion of
sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] in Eq. (7.44). Since the leading order term in the expansion
of sin [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] is linear in its argument, it contributes an additional factor
of 1

𝑐𝑠
to 𝐶̃ (𝜔, 𝜃) in Eq. (7.46). On the other hand, as we explained above, this

leading order term is angle-independent, so the next order term, which is cubic in its
argument, contributes an additional factor of 1

𝑐3
𝑠

to 𝐶̃T (𝜔, 𝜃) in Eq. (7.47).

One last observation from Eqs. (7.46)-(7.47) is that both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) are
regular in low frequency. In [1], an IR regulator at the scale of ∼ 1

𝐿2 was added to
the 2D Laplacian on the sphere to regulate the angular correlation function as we
will discuss in Sec. 7.4.2. To perform an analogous calculation and take into account
other IR effects, such as information loss due to soft graviton loss, we will apply the
procedures in this section to the pixellon model with an IR cutoff at the same scale
as in [1] in Sec. 7.4.3.

7.4.2 Angular correlation
We now study the angular correlation implied by Eq. (7.41). It will be convenient to
first decompose Eq. (7.41) into spherical harmonics and spherical Bessel functions.
Using

𝑒𝑖p·r =
∞∑︁
ℓ=0

𝑖𝑙 (2ℓ + 1) 𝑗ℓ ( |p|𝑟)𝑃ℓ (cos 𝜃) , 𝜃 = p̂ · r̂ , (7.48)
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Figure 7.3: Power spectral density 𝐶̃T (𝜔, 𝜃) [i.e., Eq. (7.45)] of the pixellon model
without IR cutoff in Eq. (7.44) (left) and with an IR cutoff in Eq. (7.61) (right), where
all the curves are normalized by 8𝜋𝑐2

𝑠

𝑎𝑙𝑝
.

and the addition theorem

𝑃ℓ (p̂ · n) = 4𝜋
2ℓ + 1

∑︁
𝑚

𝑌 ℓ𝑚∗(p̂)𝑌 ℓ𝑚 (n) , (7.49)

we obtain

𝑒𝑖p·(x1−x2) =
∑︁

ℓ1,𝑚1,ℓ2,𝑚2

16𝜋2𝑖ℓ1 (−𝑖)ℓ2 𝑗ℓ1 ( |p|𝑟1) 𝑗ℓ2 ( |p|𝑟2)

𝑌 ℓ1𝑚1∗(p̂)𝑌 ℓ2𝑚2 (p̂)𝑌 ℓ1𝑚1 (n1)𝑌 ℓ2𝑚2∗(n2) .
(7.50)

Using
∫
𝑑Ω 𝑌 ℓ1𝑚1∗(p̂)𝑌 ℓ2𝑚2 (p̂) = 𝛿ℓ1ℓ2𝛿𝑚1𝑚2 , we can integrate out all the angular

dependence of p, so

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∑︁
ℓ,𝑚

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔 cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]

𝑗ℓ (𝜔𝑟1/𝑐𝑠) 𝑗ℓ (𝜔𝑟2/𝑐𝑠)𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2)𝑒−𝑖𝜔Δ𝑡 ,
(7.51)

where we have an additional factor of 1
𝑐3
𝑠

from replacing p with 𝜔 using Eq. (7.26).
If we define the amplitude of each (ℓ, 𝑚) mode of the integrand to be

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) ≡ cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)] 𝑗ℓ (𝜔𝑟1/𝑐𝑠) 𝑗ℓ (𝜔𝑟2/𝑐𝑠)𝑒−𝑖𝜔Δ𝑡 ,
(7.52)
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Eq. (7.51) can be more compactly written as

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∑︁
ℓ,𝑚

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2)𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2) .
(7.53)

Let us first look at the equal-time correlator by setting Δ𝑡 = 0. The amplitude 𝑐ℓ𝑚
of each (ℓ, 𝑚) mode of 𝐶 (0, 𝜃) is then given by integrating 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) over 𝜔
and 𝑟1,2 as indicated by Eq. (7.53), i.e.,

𝑐ℓ𝑚 =
𝑎𝑙𝑝

4𝜋𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) . (7.54)

Since these integrals are hard to evaluate analytically, we have plotted the numerical
result in Fig. 7.4. In Fig. 7.4, we have only plotted the modes starting from ℓ = 1
since the ℓ = 0 mode, which is angle-independent, is cancelled out in 𝐶T (Δ𝑡, 𝜃) as
explained in the previous section.

In Fig. 7.4, we have also shown the amplitude of each (ℓ, 𝑚) mode found in Ref. [1].
They argued that the angular part of 𝐶 (0, 𝜃) should be described by the Green’s
function G(r̃1, r̃2) of the 2D Laplacian on the sphere with an additional IR regulator
at the scale of 1

𝐿2 , i.e.,

(−∇2
r̃1
+ 1/𝐿2)G(r̃1, r̃2) = 𝛿(2) (r̃1, r̃2) ,

𝛿(2) (r̃1, r̃2) =
1
𝐿2 𝛿(cos 𝜃1 − cos 𝜃2)𝛿(𝜙1 − 𝜙2) , (7.55)

where r̃𝑖 are coordinates on the sphere of radius 𝐿. G(r̃1, r̃2) is scale invariant if we
extract the overall factor of 1

𝐿2 by defining r̂𝑖 = r̃𝑖
𝐿

, so

(−∇2
r̂1
+ 1)G(r̂1, r̂2) = 𝛿(2) (r̂1, r̂2) . (7.56)

After decomposing G(r̂1, r̂2) into spherical harmonics, one obtains

𝐶 (0, 𝜃) ∝
∑︁
ℓ,𝑚

𝑌 ℓ𝑚 (𝜗1, 𝜑1)𝑌 ℓ𝑚∗(𝜗2, 𝜑2)
ℓ(ℓ + 1) + 1

. (7.57)

Excellent agreement between the pixellon model and the expectation of Ref. [1] is
observed.

As mentioned in Sec. 7.4.1, both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) in this work are regular
when 𝜔 → 0, even without an IR regulator, e.g., Eqs. (7.46)-(7.47). However, it will
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still be interesting to study the pixellon model with an IR cutoff due to IR effects
from the physical size of the interferometer. We will consider the case with an IR
cutoff in Sec. 7.4.3, but in this section, we first consider only the model without an
IR cutoff. Thus, when comparing Eq. (7.54) to Ref. [1], we drop the additional 1 in
the denominator of Eq. (7.57), which appears due to the insertion of an IR regulator.
In this case, the amplitude of each (ℓ, 𝑚) mode becomes 1

ℓ(ℓ+1) . In Fig. 7.4, one
can observe that the angular correlation in this work is very close to the one in [1]
without the IR regulator. Note that one also observes the same angular dependence
in the shockwave geometry (e.g., see Refs. [6, 10, 25, 26]), a connection we would
like to study further in our future work.

One might also be interested in the amplitude 𝑐ℓ𝑚 (𝜔) of each (ℓ, 𝑚) mode of the
power spectral density 𝐶̃ (𝜔, 𝜃). Performing a Fourier transform of 𝐶 (Δ𝑡, 𝜃) in
Eq. (7.53) and thus a Fourier transform of 𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) in Eq. (7.52), we obtain

𝑐ℓ𝑚 (𝜔) =
𝑎𝑙𝑝

2𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) . (7.58)

We have plotted 𝑐ℓ𝑚 (𝜔) starting from ℓ = 1 in Fig. 7.5. A normalization factor of
ℓ(ℓ + 1) is multiplied to each curve such that each curve represents the relative power
spectra density with respect to the total amplitude 𝑐ℓ𝑚.

To determine an analytical representation of the amplitude of each (ℓ, 𝑚) mode,
one can also look at 𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) at the end points 𝑟1 = 𝑟2 = 𝐿. If we integrate
𝐴ℓ𝑚 (0, 𝜔, 𝐿, 𝐿) over 𝜔, we find the amplitude of each (ℓ, 𝑚) mode at end points to
be

𝐿

∫ ∞

0
𝑑𝜔 𝐴ℓ𝑚 (0, 𝜔, 𝐿, 𝐿) =

𝜋𝑐𝑠

2(2ℓ + 1) , (7.59)

which is the major contribution to 𝑐ℓ𝑚 plotted in Fig. 7.4. Although Eq. (7.59)
decreases more slowly than Eq. (7.57) over ℓ, we have additional suppression due
to, for example, the factors of cos

[
𝜔(𝐿 − 𝑟1,2)

]
in Eq. (7.52) when integrating

𝐴ℓ𝑚 (0, 𝜔, 𝑟1, 𝑟2) over 𝜔 and 𝑟1,2, so the total amplitude in Eq. (7.54) is very close to
Eq. (7.57) without the IR regulator.

7.4.3 IR cutoff
In this section, we apply the calculations in the previous two sections to the pixellon
model with an IR cutoff. As discussed above, although both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃)
are regular in the IR, we still expect an explicit IR cut-off to enter the calculation
because of the finite size of the interferometer. We will also find that adding an IR
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Figure 7.4: The amplitude of each (ℓ, 𝑚) mode of the equal-time correlation function
𝐶 (0, 𝜃) decomposed into spherical harmonics. The blue and green lines correspond
to the amplitude in [1] [i.e., Eq. (7.57)] without and with an IR regulator, respectively.
The red and orange lines correspond to 𝑐ℓ𝑚 [i.e., Eq. (7.54)] of the pixellon model
without IR cutoff in Eq. (7.52) and with an IR cutoff in Eq. (7.64), respectively. We
have normalized the amplitude of each mode by the amplitude of the mode ℓ = 1.

cut-off gives a better agreement with the angular correlation of Eq. (7.57). For this
reason, we place an IR cutoff at a scale ∼ 1

𝐿2 , similar to [1], into Eq. (7.41), e.g.,

𝐶 (Δ𝑡, 𝜃) =
𝑎𝑙𝑝

8𝐿2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p) + 1

𝐿2

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·Δx .

(7.60)

Following the same procedure in Sec. 7.4.1, we find that the power spectral density
𝐶̃ (𝜔, 𝜃) in Eq. (7.44) is modulated by an additional factor in 𝜔 and 𝐿, i.e.,

𝐶̃ (𝜔, 𝜃) →
(

𝜔2

𝜔2 + 1
𝐿2

)
𝐶̃ (𝜔, 𝜃) , (7.61)

while 𝐶̃T (𝜔, 𝜃) is still given by Eq. (7.45). 𝐶T (0, 𝜃) and 𝐶̃T (𝜔, 𝜃) with this IR
cutoff are shown in Figs. 7.2 and 7.3, respectively.
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Figure 7.5: The amplitude 𝑐ℓ𝑚 (𝜔) [i.e., Eq. (7.58)] of each (ℓ, 𝑚) mode of the power
spectral density 𝐶̃ (𝜔, 𝜃) decomposed into spherical harmonics. The left and right
panels are for the pixellon model without IR cutoff in Eq. (7.52) and with an IR
cutoff in Eq. (7.64), respectively. We have dropped the overall factor 𝑎𝑙𝑝

2𝑐3
𝑠

in both
plots and normalized each curve by ℓ(ℓ + 1).

One major effect of the IR cutoff is that the amplitude of 𝐶̃ (𝜔, 𝜃) is suppressed at
low frequency due to the modulation factor in Eq. (7.61), as one can directly observe
in Fig. 7.3. For the same reason, the overall amplitude of 𝐶T (Δ𝑡, 𝜃) in the case with
an IR cutoff is smaller than the one without IR cutoff as depicted in Fig. 7.2. As
frequency increases, the modulation factor goes to 1, so the amplitude of 𝐶̃ (𝜔, 𝜃)
in these two cases becomes nearly identical. In addition, as the separation angle
𝜃 decreases, the difference between these two cases also becomes smaller since
interferometers with smaller 𝜃 are more sensitive to higher ℓ modes, which have
higher characteristic frequency, and thus are less sensitive to the IR cutoff.

One can also determine the suppression factor due to the IR cutoff as 𝜔 → 0 by
expanding Eq. (7.61), e.g.,

𝐶̃ (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠

𝜔2𝐿2 + O(𝜔4𝐿4) , (7.62)

𝐶̃T (𝜔, 𝜃) =
𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔4𝐿4(1 − cos 𝜃) + O(𝜔6𝐿6) . (7.63)

The IR behaviors of both 𝐶̃ (𝜔, 𝜃) and 𝐶̃T (𝜔, 𝜃) above are very different from the
case without an IR cutoff in Eq. (7.46)-(7.47) due to the additional factor of 𝜔2𝐿2
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contributed by the modulation factor in Eq. (7.61). For this reason, one has to be
cautious when constraining our model using detectors with peak sensitivity at low
frequency, such as LIGO, as discussed in Sec. 7.4.4.

For the angular correlation, after decomposing Eq. (7.60) into spherical harmonics,
we find that the amplitudes 𝑐ℓ𝑚 and 𝑐ℓ𝑚 (𝜔) of each (ℓ, 𝑚) mode of 𝐶 (0, 𝜃) and
𝐶̃ (𝜔, 𝜃) are given by Eqs. (7.54) and (7.58), respectively, but 𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) is
modulated by the same factor in Eq. (7.61), i.e.,

𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) →
(

𝜔2

𝜔2 + 1
𝐿2

)
𝐴ℓ𝑚 (Δ𝑡, 𝜔, 𝑟1, 𝑟2) . (7.64)

We show both 𝑐ℓ𝑚 and 𝑐ℓ𝑚 (𝜔) with the IR cutoff in Figs. 7.4 and 7.5, respectively.

Since the overall amplitude of 𝐶̃ (𝜔, 𝜃) is suppressed at low frequency, the amplitude
𝑐ℓ𝑚 (𝜔) of different (ℓ, 𝑚) modes is also suppressed as shown in Fig. 7.5. In Fig. 7.4,
one can also observe that the amplitude 𝑐ℓ𝑚 falls off more slowly with ℓ in the case
with an IR cutoff since low ℓ modes are more sensitive to this IR cutoff and hence are
more suppressed. As noted previously, our model with the IR cutoff better agrees
with the results in [1], though one should remain cautious until our model has been
fully mapped to a UV-complete theory.

7.4.4 Existing constraints and future projections
In an effort to detect high frequency gravitational waves and quantum gravity signa-
tures, several laboratory-sized interferometer experiments have been implemented to
accurately detect tiny spacetime perturbations. The constraints from these experi-
ments are often reported as upper limits on the one-sided noise strain

√︁
𝑆ℎ ( 𝑓 ) of the

photon round-trip time, obtained by analysing interference patterns. For stationary
signals, the strain is defined as [27, 28]√︃

𝑆
(𝑛)
ℎ

( 𝑓 ) =

√︄
2
∫ ∞

−∞

〈
Δ𝐿 (𝜏)
𝐿

Δ𝐿 (0)
𝐿

〉
𝑒−2𝜋𝑖 𝑓 𝜏𝑑𝜏 , (7.65)

which has units of Hz−1/2. This is related to Eq. (7.44) by Eq. (7.45), i.e.,√︁
𝑆ℎ ( 𝑓 ) =

√︃
2𝐶̃T (𝜔, 𝜃) , (7.66)

where 𝜔 = 2𝜋 𝑓 and 𝜃 is the angle between the two interferometer arms, which is
taken to be 𝜋/2 for Holometer, GEO-600 and LIGO, and 𝜋/3 for LISA to account
for its triangular configuration. Here we only focus on two of the three arms of LISA
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as a demonstration. Our power spectrum in Eq. (7.44) can be parameterized more
conventionally by defining

𝛼 ≡ 2𝜋
𝑐2
𝑠

𝑎 , (7.67)

leading to the peak strain
√︁
𝑆ℎ ( 𝑓peak) ≈

√︁
2𝛼𝑙𝑝/(4𝜋) =

√
𝛼(2.62 × 10−23) Hz−1/2

3.
Here 𝛼 ∼ 1 gives the amplitude of the effect computed in [1, 2], and should be
considered the natural benchmark 4.

We now compare our predicted strain to the experimental constraints from Holome-
ter [27], GEO-600 [29], LIGO [30], and the projected sensitivity from LISA [31].
Since the four interferometers have different arm lengths, the predicted strain from
our models will also differ between these experiments. The result assuming 𝛼 = 1
with or without the IR cutoff using Eqs. (7.44), (7.45), (7.61), (7.66), and (7.67) is
plotted in Fig. 7.6. Due to the better peak sensitivity of our predicted strain (i.e., at
𝜔𝐿 ∼ 1 as shown in Fig. 7.3), the tightest experimental limit comes from LIGO and
Holometer measurements, which at 3𝜎 significance, are roughly 𝛼 ≲ 3 and 𝛼 ≲ 0.7
(with IR cutoff), and 𝛼 ≲ 0.1 and 𝛼 ≲ 0.6 (w/o IR cutoff), respectively. On the other
hand, our model is out of reach for GEO-600 and LISA.

Caltech and Fermilab are commissioning a joint theoretical and experimental initiative
called Gravity from Quantum Entanglement of Space-Time (GQuEST) [32, 33],
dedicated to probing the VZ effect proposed in Ref. [1]. This includes the construction
of a tabletop optical Michelson interferometer with arm-length 𝐿 = 5 m, with a novel
read-out scheme with single photons rather than the usual interference effect. The
advantage of this scheme is that sensitivity beats the standard quantum limit, with
signal-to-noise ratio increasing linearly with integration time, rather than the usual
square-root dependence. The experiment is projected to be able to constrain 𝛼 ≲ 1
after 1000 s of background-free integration time, corresponding to a dark count rate
of 10−3 Hz. We expect the constraint on 𝛼 to tighten linearly with lower dark count
rate and longer integration time.

Some previous works on quantifying spacetime fluctuations (motivated by theories
other than the VZ effect) argued that the predicted strain should not be directly
compared against experimental constraints such as GEO-600 and LIGO [34], since
transitional interferometer experiments often utilize Fabry-Perot cavities (e.g., LIGO

3This is related to the one-sided displacement spectrum by 𝑆𝐿 ( 𝑓 ) = 2𝐿2𝐶̃ ( 𝑓 ), which is peaked
at 𝑆𝐿 ( 𝑓peak) = 𝛼𝑙𝑝𝐿2/(8𝜋2).

4Since 𝛼 = 1 corresponds to 𝑎 = 𝑐2
𝑠/(2𝜋), the finite propagation speed 𝑐𝑠 has led us to make a

corrected prescription of 𝛽 = 𝑙𝑝/𝑎 = 2𝜋𝑙𝑝/𝑐2
𝑠 in Eqs. (7.20) and (7.21).
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Figure 7.6: Strain comparison between model predictions (blue and green) and
experimental / projection constraints (red). The model curves are computed using
Eqs. (7.44), (7.45), (7.61), (7.66) and (7.67) assuming 𝛼 = 1, while the experimental
curves are extracted from Refs. [27, 29–31]. The LIGO data shown here are obtained
by the Livingston detector, but we note that the Hanford detector yields similar
constraints.

uses Fabry-Perot cavities within each arm, where the average light storage equals
to 35.6 light round trips [35]) to boost the signal-to-noise ratio from astrophysical
gravitational waves, while it is unclear whether quantum gravity signals, which
are fundamental to spacetime itself, will benefit from additional light-crossings.
In Appendix 7.8, we show that spacetime fluctuations based on Eq. (7.2) do
accumulate over a Fabry-Perot cavity, thus justifying our direct strain comparison
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with gravitational experiments.

7.5 Conclusions
In this paper we have investigated fluctuations in the time-of-arrival of a photon
in an interferometer, due a scalar field coupled to the metric as in Eq. (7.2) with
an occupation number given by Eq. (7.21). This simple scalar field is designed to
model the behavior of vacuum fluctuations of the modular energy (e.g., Ref. [2])
from shockwave geometries [6].

We showed that the interferometer observable had a power spectral density quadrati-
cally suppressed ∝ 𝜔2 or ∝ 𝜔4, depending on the IR regulator, at low frequency, and
an angular correlation between the interferometer arms consistent with that proposed
in Ref. [1], as expected from shockwave geometries.

In future work, we plan to more explicitly demonstrate the connection between
shockwave geometries and interferometer observables, completing the bridge between
the model presented here and the UV-complete theory.

7.6 Appendix: Time Delay in General Metric
In this appendix, we derive the time delay of a generic metric in Eq. (7.28). There
are three effects, from the clock rate, the mirror motion, and the light propagation.
Only when summing all three do we obtain the gauge invariant observable.

We start by computing the clock’s rate. Since 𝑔𝑡𝑡 = −(1 −H0), to the leading order,
the proper time differs from the coordinate time by

𝑑𝜏

𝑑𝑡
≈ 1 − 1

2
H0 . (7.68)

Thus, for a clock with radial position 𝑟 when there is no metric fluctuation, the
difference 𝛿𝜏 between the proper time and the coordinate time from 𝑡 = 𝑡1 to 𝑡 = 𝑡2 is

𝛿𝜏(𝑡1, 𝑡2, 𝑟) = −1
2

∫ 𝑡2

𝑡1

𝑑𝑡′ H0(𝑡′, 𝑟) . (7.69)

To account for the mirror’s motion, we consider the geodesic equation of the mirror

0 =
𝑑2𝑥𝜇

𝑑𝜏2 + Γ
𝜇

𝛼𝛽

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
≈ 𝑑2𝑥𝜇

𝑑𝜏2 + Γ
𝜇
𝑡𝑡 + Γ

𝜇

𝑡𝑖
𝑣𝑖 + · · · . (7.70)

Since the velocity of the mirror 𝑣𝑖 ≪ 1, to the leading order, 𝑑2𝑟
𝑑𝑡2

≈ −Γ𝑟𝑡𝑡 . Using
Γ
𝜇

𝛼𝛽
= 1

2𝜂
𝜇𝜈 (𝜕𝛼ℎ𝛽𝜈 + 𝜕𝛽ℎ𝛼𝜈 − 𝜕𝜈ℎ𝛼𝛽), we get

Γ𝑟𝑡𝑡 = 𝜕𝑡ℎ𝑡𝑟 −
1
2
𝜕𝑟ℎ𝑡𝑡 = 𝜕𝑡H1 −

1
2
𝜕𝑟H0 , (7.71)
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so for a mirror at radius 𝑟 when there is no metric fluctuation, its radial position 𝑟M

at coordinate time 𝑡 is

𝑟M(𝑡, 𝑟) ≈
∫ 𝑡

𝑑𝑡′
∫ 𝑡′

𝑑𝑡′′
[
1
2
𝜕𝑟H0(𝑡′′, 𝑟) − 𝜕𝑡′′H1(𝑡′′, 𝑟)

]
. (7.72)

For the light propagation, the geodesic equation of outgoing light is

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(H0 + H2 + 2H1) ≡ 1 + 1

2
H out , (7.73)

and for ingoing light,

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(H0 + H2 − 2H1) ≡ −1 − 1

2
H in . (7.74)

In total, the proper time 𝑇out the light beam takes to reach the mirror is

𝑇out ≈
∫ 𝐿+𝑟M (𝐿,𝐿)

0+𝑟M (0,0)
𝑑𝑟

[
1 + 1

2
H out(𝑟, 𝑟)

]
+ 𝛿𝜏(0, 𝐿, 0)

≈ 𝐿 + 𝑟M(𝐿, 𝐿) − 𝑟M(0, 0) + 𝛿𝜏(0, 𝐿, 0) + 1
2

∫ 𝐿

0
𝑑𝑟 H out(𝑟, 𝑟) .

(7.75)

Similarly, for the ingoing light beam,

𝑇 in ≈
∫ 0+𝑟M (2𝐿,0)

𝐿+𝑟M (𝐿,𝐿)
𝑑𝑟

[
−1 − 1

2
H in(2𝐿 − 𝑟, 𝑟)

]
+ 𝛿𝜏(𝐿, 2𝐿, 0)

≈ 𝐿 + 𝑟M(𝐿, 𝐿) − 𝑟M(2𝐿, 0) + 𝛿𝜏(𝐿, 2𝐿, 0) + 1
2

∫ 𝐿

0
𝑑𝑟 H in(2𝐿 − 𝑟, 𝑟) .

(7.76)
Then the total time delay 𝑇 is given by summing up Eqs. (7.75) and (7.76), 𝑇 =

𝑇out + 𝑇 in.

7.7 Appendix: Gauge Invariance of Time Delay
In this appendix, we show that the total time delay 𝑇 = 𝑇out + 𝑇 in, where 𝑇out and
𝑇 in are defined in Eqs. (7.75) and (7.76), of the light beam traveling a round trip is a
gauge invariant quantity. Since the 𝑡 − 𝑟 sector of any metric, e.g., Eq. (7.28), will
only be affected by the gauge transformations of coordinate 𝑡 or 𝑟 , we will show that
𝑇 is invariant under these two types of gauge transformations.

7.7.1 Gauge transformations of coordinate t
First, let’s consider gauge transformations 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇, where only 𝜉𝑡 ≠ 0, so the
metric becomes

𝑑𝑠2 = −(1 −H0 + 2𝜕𝑡𝜉𝑡)𝑑𝑡2 + (1 + H2)𝑑𝑟2 + 2(H1 − 𝜕𝑟𝜉𝑡)𝑑𝑡𝑑𝑟 + · · · . (7.77)
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Since ℎ𝑡𝑡 is modified, 𝑑𝜏
𝑑𝑡

→ 𝑑𝜏
𝑑𝑡

+ 1
2𝜕𝑡𝜉𝑡 , the difference between the proper time and

the coordinate time becomes

𝛿𝜏(𝑡1, 𝑡2, 𝑟) → 𝛿𝜏(𝑡1, 𝑡2, 𝑟) + 𝜉𝑡 (𝑡2, 𝑟) − 𝜉𝑡 (𝑡1, 𝑟) . (7.78)

The geodesics equations of light beam are modified into

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(
H out − 2𝜕𝑡𝜉𝑡 − 2𝜕𝑟𝜉𝑡

)
, (7.79)

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(
H in − 2𝜕𝑡𝜉𝑡 + 2𝜕𝑟𝜉𝑡

)
. (7.80)

For mirror’s motion, let’s define

𝛿𝑟out ≡ 𝑟M(𝐿, 𝐿) − 𝑟M(0, 0) , (7.81)

𝛿𝑟 in ≡ 𝑟M(𝐿, 𝐿) − 𝑟M(2𝐿, 0) . (7.82)

Since Γ𝑟𝑡𝑡 → Γ𝑟𝑡𝑡 − 𝜕𝑡𝜕𝑟𝜉𝑡 + 𝜕𝑟𝜕𝑡𝜉𝑡 = Γ𝑟𝑡𝑡 remains unchanged, 𝛿𝑟out
M → 𝛿𝑟out

M and
𝛿𝑟 in

M → 𝛿𝑟 in
M. In total,

𝑇out → 𝑇out + 𝜉𝑡 (𝐿, 0) − 𝜉𝑡 (0, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑡𝜉𝑡 + 𝜕𝑟𝜉𝑡) |𝑡=𝑟

= 𝑇out + 𝜉𝑡 (𝐿, 0) − 𝜉𝑡 (𝐿, 𝐿) ,
(7.83)

𝑇 in → 𝑇 in + 𝜉𝑡 (2𝐿, 0) − 𝜉𝑡 (𝐿, 0) +
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑡 − 𝜕𝑡𝜉𝑡) |𝑡=2𝐿−𝑟

= 𝑇 in − 𝜉𝑡 (𝐿, 0) + 𝜉𝑡 (𝐿, 𝐿) ,
(7.84)

so the total time delay of a round trip 𝑇 → 𝑇 under the gauge transformation of
coordinate 𝑡.

7.7.2 Gauge transformations of coordinate r
Next, let’s consider gauge transformations 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇 with 𝜉𝑟 ≠ 0 only. The
metric then becomes

𝑑𝑠2 = −(1 −H0)𝑑𝑡2 + (1 + H2 − 2𝜕𝑟𝜉𝑟)𝑑𝑟2 + 2(H1 − 𝜕𝑡𝜉𝑟)𝑑𝑡𝑑𝑟 + · · · . (7.85)

The relation between the proper time and the coordinate time remains unchanged.
The ingoing and outgoing light’s geodesics are modified to be

𝑑𝑡out

𝑑𝑟
≈ 1 + 1

2
(
H out − 2𝜕𝑟𝜉𝑟 − 2𝜕𝑡𝜉𝑟

)
, (7.86)

𝑑𝑡 in

𝑑𝑟
≈ −1 − 1

2
(
H in − 2𝜕𝑟𝜉𝑟 + 2𝜕𝑡𝜉𝑟

)
. (7.87)



371

Γ𝑟𝑡𝑡 now becomes Γ𝑟𝑡𝑡 → Γ𝑟𝑡𝑡 − 𝜕2
𝑡 𝜉𝑟 , so

𝛿𝑟out
M → 𝛿𝑟out

M + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (0, 0) , (7.88)

𝛿𝑟 in
M → 𝛿𝑟 in

M + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (2𝐿, 0) . (7.89)

Then, in total,

𝑇out → 𝑇out + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (0, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑟 + 𝜕𝑡𝜉𝑟) |𝑡=𝑟 = 𝑇out , (7.90)

𝑇 in → 𝑇 in + 𝜉𝑟 (𝐿, 𝐿) − 𝜉𝑟 (2𝐿, 0) −
∫ 𝐿

0
𝑑𝑟 (𝜕𝑟𝜉𝑟 − 𝜕𝑡𝜉𝑟) |𝑡=2𝐿−𝑟 = 𝑇

in , (7.91)

so 𝑇 also remains invariant under the gauge transformation of coordinate 𝑟. Thus,
we have shown that 𝑇 is a gauge invariant quantity.

7.8 Appendix: Phase Accumulation in Fabry-Perot Cavity
In this appendix, we show that the spacetime fluctuations in Eq. (7.2) accumulate
in a Fabry-Perot cavity, so it is reasonable to compare our predicted strain to the
experiments utilizing Fabry-Perot cavities, such as GEO-600 and LIGO, in Sec. 7.5.

A Fabry-Perot Michelson interferometer can be viewed as a linear device that measures
the differential single-round-trip phase, ΔΦ = Φ1 − Φ2 between the two arms —
regardless of whether this phase arises from gravitational waves, displacement of
mirrors, or space-time fluctuations. This ΔΦ is linearly transferred to the output field
𝑧, with noise 𝑁 added:

𝑧( 𝑓 ) = M( 𝑓 )ΔΦ( 𝑓 ) + 𝑁 ( 𝑓 ) . (7.92)

In particular, M( 𝑓 ) contains the build-up (or suppression) of signal due to the
Fabry-Perot cavity.

We now convert the strain-referred noise spectrum 𝑆ℎ published by LIGO to a
spectrum for T . In obtaining 𝑆ℎ (below 5 kHz, as shown in Fig. 7.6), LIGO used a
long-wave-length approximation, and assumed that the wave has a + polarization
(stretching along the 𝑥 and squeezing along the 𝑦 direction), and propagating along 𝑧
— perpendicular to the detector plane (e.g., adopted by Chapter 27.6 of [36]). In this
case, in the Local Lorentz frame of the beam splitter, the first and second mirrors are
going to be displaced by ±𝐿ℎ/2, leading to phase shifts of

Φ1,2 = ±𝜔0𝐿ℎ/𝑐 (7.93)

and
ΔΦ = 2𝜔0𝐿ℎ/𝑐 . (7.94)
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In this way, the ΔΦ-referred spectrum is related to 𝑆ℎ published by LIGO via√︁
𝑆ΔΦ =

2𝜔0𝐿

𝑐

√︁
𝑆ℎ . (7.95)

We note that at higher frequencies, and/or for interferometers with longer arms, the
conversion from ℎ to Φ becomes less trivial. In our case, we have

ΔΦ(𝑡) = 𝜔0 [𝛿𝑇 (𝑡, n1) − 𝛿𝑇 (𝑡, n2)] = 𝜔0T (𝑡, 𝜃) . (7.96)

We therefore have
√
𝑆ΔΦ = 𝜔0

√
𝑆T and thus√︁
𝑆T =

2𝐿
𝑐

√︁
𝑆ℎ . (7.97)

This allows us to straightforwardly relate our observable defined in Eqs. (7.34) and
(7.45) to the quantity 𝑆ℎ constrained by LIGO. In LIGO, 𝑆ℎ is usually reported as a
one-sided spectrum, so we need another factor of 2 when converting the two-sided
spectrum 𝐶̃T in Eq. (7.45) to the one-sided spectrum 𝑆ℎ, i.e.,√︁

𝑆ℎ =
√︁
𝑆T

/ (
2𝐿
𝑐

)
=

√︂
2𝐶̃T

(
𝜔, 𝜃 =

𝜋

2

)
, (7.98)

which is consistent with the conversion in Eq. (7.66).
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C h a p t e r 8

QUANTUM GRAVITY BACKGROUND IN NEXT-GENERATION
GRAVITATIONAL WAVE DETECTORS

[1] Mathew W. Bub, Yanbei Chen, Yufeng Du, Dongjun Li, Yiwen Zhang,
and Kathryn M. Zurek. “Quantum gravity background in next-generation
gravitational wave detectors”. In: Phys. Rev. D 108.6 (2023), p. 064038. doi:
10.1103/PhysRevD.108.064038. arXiv: 2305.11224 [gr-qc].

8.1 Introduction
Bridging the gap between theory and experiment in the study of quantum gravity
is at the forefront of research in physics. Although the effects of quantum gravity
are ordinarily expected to appear on unobservably small scales of order the Planck
length, 𝑙𝑝 =

√︁
8𝜋𝐺ℏ/𝑐3 ∼ 10−34 m, recent works [1–7] have shown that this naive

effective field theory (EFT) reasoning may not capture the complete physical picture.
Instead, Refs. [1, 2] showed, using standard holographic techniques, that spacetime
fluctuations accumulate from the UV into the IR to produce an effect that scales with
the size 𝐿 of the physical system. In particular, in flat spacetime, the trajectories of
photons in an interferometer of length 𝐿 enclose a finite spacetime region known as a
causal diamond.1 The interferometer only probes the finite degrees of freedom inside
the causal diamond, which are entangled with degrees of freedom outside the causal
diamond bounding the interferometer, leading to nonzero entropic fluctuations. The
region of spacetime that can be probed by the interferometer arms, emanating radially
from an origin located at the beamsplitter, is separated by a spherical entangling
surface, i.e., the surface Σ in Fig. 8.1. The geometric fluctuations induced by entropic
fluctuations within the causal diamond, or “geontropic fluctuations,” manifest as
uncertainty in the arm length of the interferometer, as measured by the photon travel
time, with a variance that scales as

⟨Δ𝐿2⟩ ∼ 𝑙𝑝𝐿. (8.1)

Additionally, these fluctuations exhibit long-range transverse correlations which
enable observation. This result has proven to be theoretically robust, having been

1The causal diamond D of a spatial ball 𝐵 is defined such that for all points 𝑝 ∈ D, every timelike
curve passing through 𝑝 must intersect 𝐵 [8, 9].

https://doi.org/10.1103/PhysRevD.108.064038
https://arxiv.org/abs/2305.11224
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Figure 8.1: The spherical entangling surface of an interferometer with arms of equal
length 𝐿 and separated by angle 𝜃. The faint mirrors and light beams indicate that
one can rotate the interferometer about its origin, so the boundary of the spatial
volume that can be probed by such rotations defines the spherical entangling surface
Σ.

confirmed with several distinct theoretical approaches in Refs. [3–7], such that the
geontropic fluctuations are observed in flat Minkowski, dS, and AdS spacetimes. For
a summary of all of these works, see Ref. [10].

More recently, Ref. [11], building upon the work of Ref. [3], developed a model
of these geontropic fluctuations in terms of bosonic degrees of freedom coupled
to the metric. The model is designed to capture the most prominent features of
the theory developed in Refs. [1, 2, 4–7], while being local and allowing for the
explicit computation of the gauge-invariant interferometer observable. It features
a scalar field 𝜙, the “pixellon”, a breathing mode corresponding to spacetime
fluctuations of the (spherically symmetric) volume of spacetime under observation.
This model allows for the calculation of the power spectral density (PSD) of geontropic
fluctuations in spherically-symmetric configurations, in particular for traditional
L-shaped interferometers such as LIGO [12] and LISA [13].

Ref. [11] also compared the PSD of the pixellon model to the strain sensitivities of sev-
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eral current and future gravitational wave (GW) detectors, namely LIGO/Virgo [12],
Holometer [14], GEO600 [15], and LISA [13]. These experiments either produced
modest constraints on the pixellon model (in the cases of LIGO and Holometer) or
were not sensitive to the model (in the cases of GEO600 and LISA). There are several
general reasons for this. For large instruments such as LISA, we expect a reduced

signal as the geontropic strain scales parametrically as ℎ = Δ𝐿
𝐿

∼
√︃
𝑙𝑝
𝐿

. On the other
hand, existing terrestrial experiments typically have poorer strain sensitivities near
the relatively high frequency 𝜔peak ∼ 1

𝐿
at which the pixellon signal achieves its

peak. In this paper, we build upon this previous work and survey the landscape of
next-generation GW detectors, characterizing their sensitivity to geontropic fluctua-
tions as modeled by the pixellon. We also consider these experiments in the context
of the upcoming GQuEST experiment [16], which explicitly seeks to measure the
geontropic signal. Note that in this paper we assume the pixellon is a good physically
equivalent description of the geontropic fluctuations predicted by the VZ effect [1,
2, 4–7, 10]. As discussed above, while it has been shown that the pixellon model
reproduces important features of the VZ effect (such as the angular correlations),
the physical equivalence in all aspects of the interferometer observable has not been
shown, and is the subject of ongoing, first-principles calculations. We plan to update
observational signatures as the theoretical modeling captures more aspects of the
first-principles calculations.

With this caveat in mind, the paper is organized as follows. In Sec. 8.2, we briefly
summarize the pixellon model of Refs. [3, 11]. In Sec. 8.3, we review a variety of
proposed GW detectors following Ref. [17], and discuss their potential sensitivity to
the geontropic signal. In Sec. 8.4, we extend the calculation of the pixellon PSD in
Ref. [11] to more general interferometer-like experiments, particularly for those with
geometries other than the traditional L-shape, and for optically-levitated sensors. In
Sec. 8.5, we then apply the results to specific experiments and compare the geontropic
signal to the expected strain sensitivities of these experiments. Finally, in Sec. 8.6,
we collect our results and discuss their implications for the future of GW observation.

In anticipation of our main result, in Fig. 8.2, we plot the predicted pixellon signal
alongside the strain sensitivities of two prominent next-generation GW detectors:
Cosmic Explorer (CE) [18, 19] and the Einstein Telescope (ET) [20]. From these
plots, we find a typical geontropic signal exceeds the strain sensitivities of these
detectors by two orders of magnitude over a wide range of frequencies. As such,
the signal represents a large stochastic background which, if present, would imply
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a reevaluation of the future of GW astronomy. Moreover, we will show that of the
experiments considered in this paper, only CE and ET will have better sensitivity to
the geontropic signal than GQuEST, which is a nearer-term apparatus than CE and
ET.
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Figure 8.2: Pixellon strain (dashed and dotted lines) overlaid with the strain sensitivi-
ties for CE [19] and ET [20] (solid lines). For CE, we have included both designs
with arm lengths 𝐿 = 20 km (orange lines) and 𝐿 = 40 km (blue lines). The dotted
lines give the pixellon strain from Eq. (8.35) computed without an IR cutoff, and the
dashed lines give the same quantity including the IR cutoff from Eq. (8.28). The
pixellon strain is computed with the benchmark value 𝛼 = 1.
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8.2 Pixellon Model
In this section, we review the pixellon model proposed in Refs. [3, 11] to model the
geontropic fluctuations of the spherical entangling surface bounding an interferometer,
which is also a specialization of the dilaton model studied in Refs. [4, 5] to causal
diamonds in 4-d flat spacetime. Before proceeding, we emphasize that while we
expect the pixellon model to reproduce a number of the salient features of the effect
proposed in Refs. [1, 2, 4, 6], the physical equivalence between the model and the
complete theory remains to be shown. Demonstrating this physical equivalence will
be crucial for claiming a decisive test of the VZ effect. More specifically, Ref. [11]
considered a breathing mode of the metric associated with the spacetime volume
probed by the interferometer,

𝑑𝑠2 = −𝑑𝑡2 + (1 − 𝜙) (𝑑𝑟2 + 𝑟2𝑑Ω2) , (8.2)

where 𝜙 is a bosonic scalar field,

𝜙(𝑥) = 𝑙𝑝
∫

𝑑3p
(2𝜋)3

1√︁
2𝜔(p)

(
𝑎p𝑒

𝑖𝑝·𝑥 + 𝑎†p𝑒−𝑖𝑝·𝑥
)
, (8.3)

and satisfies the dispersion relation of a sound mode,

𝜔 = 𝑐𝑠 |p| , 𝑐𝑠 =

√︂
1
3
. (8.4)

The dispersion relation in Eq. (8.4) and the normalization factor 𝑙𝑝 in Eq. (8.3) were
derived from plugging the metric in Eq. (8.2) into the linearized Einstein-Hilbert
action and varying the action with respect to 𝜙 [11]. The resulting equation, which
gives rise to Eq. (8.4), is not a vacuum linearized Einstein equation but rather
includes an additional constraint due to the form of the metric in Eq. (8.2) and the
corresponding nonlinear field interactions. Although we have used the language of
linearized gravity, the nonlinear interactions are captured by the nonzero occupation
number 𝜎pix in Eq. (8.12) [11]. The creation and annihilation operators (𝑎†p, 𝑎p)
satisfy the standard commutation relation,[

𝑎p1 , 𝑎
†
p2

]
= (2𝜋)3𝛿(3) (p1 − p2) . (8.5)

Instead of being a vacuum state, 𝜙 is thermal with a nontrivial thermal density matrix
𝜌pix [3, 11]:

𝜌pix =
1
Z exp

[
−𝛽

∫
𝑑3p
(2𝜋)3 (𝜖p − 𝜇)𝑎

†
p𝑎p

]
, (8.6)
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Z =
∏

p

1
1 − 𝑒−𝛽(𝜖p−𝜇)

, (8.7)

where 𝜖p is the energy of the pixellon mode of momentum p, and 𝜇 is the chemical
potential counting the background degrees of freedom. In this case, the pixellon
modes 𝜙 have an occupation number given by the standard bosonic statistics, i.e.,

Tr
(
𝜌pix𝑎

†
p1𝑎p2

)
= (2𝜋)3𝜎pix(p1)𝛿(3) (p1 − p2) ,

𝜎pix(p) =
1

𝑒𝛽(𝜖p−𝜇) − 1
. (8.8)

To further simplify the occupation number 𝜎pix(p), Refs. [3, 11] used that in flat
spacetime, the modular Hamiltonian 𝐾 inside a causal diamond satisfies [1, 4]

⟨𝐾⟩ ∼ ⟨Δ𝐾2⟩ ∼ 𝐴(Σ)
𝑙2𝑝

, (8.9)

and similar results in AdS were found in Refs. [2, 21, 22]. Since the number of
gravitational degrees of freedom N inside the causal diamond is given by

N ≡ ⟨𝐾⟩ , (8.10)

the energy fluctuation per degree of freedom is given by [3, 11]

𝛽(𝜖p − 𝜇) ≡ 𝛽𝜔(p) ∼
√︁
⟨Δ𝐾2⟩
⟨𝐾⟩ ∼

𝑙𝑝

𝐿
. (8.11)

If one uses Eq. (8.11), identifies 𝜔(p) ∼ 1
𝐿
, and expands 𝜎pix(p) in Eq. (8.8) to

leading order in 𝑙𝑝
𝐿

, one finds

𝜎pix(p) =
𝑎

𝑙𝑝𝜔(p)
, (8.12)

where 𝑎 is a dimensionless number, to be fixed by experiment. In Eq. (8.11), 𝛽 ∼ 𝑙𝑝
corresponds to the local temperature of the near-horizon region probed by the light
beams. Comparing the pixellon model here to Refs. [1–3] and incorporating 𝜙 as
a sound mode [i.e., Eq. (8.4)], Ref. [11] fixed 𝑎 = 𝑐2

𝑠/(2𝜋), which corresponds to
𝛽 = 2𝜋𝑙𝑝/𝑐2

𝑠 . Defining

𝛼 ≡ 2𝜋
𝑐2
𝑠

𝑎 , (8.13)

we obtain the theory-motivated benchmark for detection 𝛼 ∼ 1.

In Ref. [11], the pixellon model was used to compute the auto-correlation function of
length fluctuations of a single Michelson interferometer with length 𝐿 and separation
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angle 𝜃. It was found that the peak of the signal is at 𝜔𝐿 ∼ 1 with an overall
amplitude

√︁
⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝𝐿. Moreover, the angular correlations from the pixellon

model match well with the predictions of Refs. [1, 6] from shockwave geometry.
The peak frequency 𝜔peak ∼ 1

𝐿
is consistent with both the identification 𝜔(p) ∼ 1

𝐿

made by Eq. (8.12) and the pixellon mode being a breathing mode controlling
the size of the spherical entangling surface bounding the interferometer. From
this typical frequency and the strain’s amplitude, one can directly see that for a
general detector probing a causal diamond of size 𝐿, we need a strain sensitivity√︁
𝑆ℎ ( 𝑓 ) ≲

√︃
𝜔peak⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝 ∼ 10−23 Hz−1/2 near the frequency 𝜔peak ∼ 1

𝐿
,

where 𝑆ℎ ( 𝑓 ) is the one-sided noise strain defined in Eq. (8.34). Most current
interferometers, especially those aiming for GW detection, do not have such good
strain sensitivity near the free spectral range, which is a higher frequency than is
probed by many interferometers. Thus, we would first like to investigate whether other
types of high-frequency GW detectors, besides the next-generation interferometers,
can potentially detect geontropic signals.

8.3 High-Frequency GW Detectors
This section follows the review in Ref. [17] to investigate a broad class of high-
frequency GW detectors with various operating principles. To understand how the
detection of geontropic fluctuations fits in this landscape, we first discuss the proposed
scientific goals of these high-frequency GW detectors. Most current proposals intend
to probe astrophysical objects in unexplored limits, or test quantum gravity near
highly curved spacetime. In contrast, the effect considered in Refs. [1–7, 10, 11] and
this work fills the gap of examining quantum gravity in flat spacetime. Moreover,
the necessary sensitivity and frequency range are within the same regime as other
science cases, so utilizing these detectors for geontropic signals is natural. In the
second half of this section, we examine these detectors’ suitabilities for measuring
geontropic fluctuations and argue that interferometer-like experiments are the most
optimal.

8.3.1 Sources of high-frequency GWs
Since the successful detection of GWs by the LIGO-Virgo collaboration [23], there
have been continuous efforts to improve the sensitivity of GW detectors at higher
frequencies. One direct motivation for this is to study extreme astrophysical objects
in limits or environments which cannot be reached by current GW detectors. For
example, the merger of sub-solar mass primordial BHs of 10−9–10−1 𝑀⊙ can emit
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GWs with frequencies of 10–109 kHz [17]. For neutron stars (NSs), the remnant hot,
high-density matter after their merger can generate GWs at either ∼ 1–4 kHz [24] for
a BH remnant or ≳ 6 kHz [25, 26] for an NS remnant [27]. These high-frequency
GWs provide opportunities to study different phases of matter predicted by quantum
chromodynamics in a high-density finite-temperature environment [28]. At larger
scales, high-frequency GW detectors will assist in learning about GWs emitted
by the thermal plasma of the early universe [29] (1–100 GHz), the stochastic GW
background generated by primordial BHs [30] (10–1010 THz), cosmic strings [31]
(1–106 kHz), and other events at cosmological scales [17].

One vital application of these high-frequency GW detectors is to explore quantum
gravity, the central focus of this work. Standard tests of quantum gravity using
GWs focus on examining the properties of quantum BHs against their classical
counterparts. For example, GW detections have been used to test the no-hair theorem
[32], stating that any classical stationary BH (a solution to the Einstein-Maxwell
equation) is characterized only by its mass, charge, and angular momentum [33].
Still, quantum gravity might dress BHs with hair [34, 35]. The spectrum of GWs
can also serve as a test of the horizon’s existence [36, 37], where quantum gravity
can modify the structure of the near-horizon geometry [38], either drastically via
a “firewall” hiding all quantum effects [39], or smoothly with the quantum effects
extending over some distance around the BH [40].

Unlike these standard tests, the series of works in Refs. [1–7, 10, 11] instead focus
on perturbations of the near-horizon geometry of causal diamonds in flat spacetime
due to quantum gravity, which the pixellon models as an effective description.
As introduced in Secs. 8.1 and 8.2 and shown in detail in Sec. 8.5.1, the length
fluctuations induced by the pixellon in an L-shaped interferometer of length 𝐿 have
a size of

√︁
⟨Δ𝐿2⟩ ∼

√︁
𝑙𝑝𝐿 and a peak frequency at 𝜔𝐿 ∼ 1, corresponding to a PSD

with an amplitude of ∼
√︁
𝑐𝑙𝑝. For an interferometer, or, more generally, a causal

diamond with characteristic size 𝐿 ∼ 10 m–10 km, we need a strain sensitivity of
∼ 10−23 Hz−1/2 at the peak frequencies of 1

𝐿
∼ kHz–MHz, which is within the target

sensitivity of many high-frequency GW detectors. Thus, these high-frequency GW
detectors planned for various purposes can also be used to test quantum gravity in
flat spacetime, which motivates our following investigation.
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8.3.2 Detectors for high-frequency GWs
8.3.2.1 Interferometers

The most natural GW detectors to consider are the next-generation interferometers,
such as CE [18, 19], ET [41], and NEMO [27], for which the pixellon model was
designed to describe the geontropic fluctuations. Although CE and ET are not
usually considered high-frequency detectors but instead broadband detectors, they
can access frequencies of a few kHz, which are near their free spectral range. For
a single interferometer, the causal diamond is naturally defined by the light beams
traveling between the mirrors, with its size equal to the interferometer’s arm length.
Perturbations to the spherical entangling surface bounding the interferometer are
then controlled by the pixellon mode. Although the metric in Eq. (8.2) is not
spherically symmetric due to the nontrivial angular dependence of 𝜙(𝑥), its spatial
part is conformal to the metric of a 3-ball, adapting to the spherical symmetry of an
interferometer.

The pixellon model and the procedure to compute length fluctuations can be extended
to alternative configurations of Michelson interferometers, such as the triangular
configuration of ET. In Ref. [11], the PSD and the angular correlations of a single
L-shaped interferometer with an arbitrary separation angle were computed. In
Sec. 8.4, we further show that the previous results can be extended to multiple
interferometers if we consistently correlate pixellons in different causal diamonds.
The cross-correlations of different interferometers can then be studied, becoming
a smoking gun signature of geontropic signals. Another advantage of studying
cross-correlations between detectors is that the cross spectrum of a correlated noise
background between different detectors can be detected at a level much lower than
their individual independent noise spectra [42].

One fundamental barrier for an interferometer to reach the high-frequency regime
is the quantum shot noise of lasers (or the high uncertainty of the laser’s phase
quadrature). The most direct solution to this limitation is to increase the laser power
𝑃arm, since the PSD of the quantum noise at high frequencies is proportional to
𝑃
−1/2
arm [43], which is the approach adopted by NEMO [27]. However, increasing laser

power is technically challenging, with issues such as the parametric instability of
the mirrors’ motion due to energy transfer from the light beams [44] or the thermal
deformation of the mirrors [18, 45].

Besides increasing laser power, one can also inject squeezed vacuum into the dark
port of the interferometer, leading to a reduced phase uncertainty at the cost of
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sacrificing the sensitivity at low frequencies [18]. Nonetheless, the degradation in
the low-frequency sensitivity due to quantum radiation pressure noise can be avoided
by frequency-dependent squeezing [46–48]. In addition, Refs. [49, 50] recently
proposed that one can connect a quantum parametric amplifier to the interferometer
to stabilize the “white-light cavity” design in Ref. [51], such that the sensitivity at
kHz frequencies can be increased without sacrificing the bandwidth.

In addition, for detecting a stochastic background like the geontropic signal, which is
spatially correlated for two physically overlapping interferometers, a cross-correlation
method can be established for each individual detector to dig under shot noise [52].
This allows us to achieve a better sensitivity than each detector’s noise budget for
detecting gravitational waves.

Another way to circumvent quantum shot noise is using photon counting instead of the
standard homodyne readout [53]. Such a readout will be implemented in a proposed
5 m tabletop interferometer being commissioned by Caltech and Fermilab under the
Gravity from the Quantum Entanglement of Space-Time (GQuEST) collaboration
[16], which will explicitly target geontropic fluctuations. By employing photon
counting and thereby beating the standard quantum limit, GQuEST will be able to
place constraints on 𝛼 substantially more efficiently in terms of integration time than
it would with only a homodyne readout. For a detailed examination of the advantages
of photon counting, see Ref. [53]. As GQuEST is a tabletop-sized experiment, it will
also be capable of probing the angular correlations of the geontropic fluctuations by
adjusting its arm angle. Moreover, it is conceived to be a nearer-term instrument than
third generation GW detectors such as CE and ET. As such, should the geontropic
signal be detected with GQuEST, this information can be incorporated into the design
and planning of future GW detectors, whose strain sensitivities to astrophysical
signals might be limited by a geontropic background.

8.3.2.2 Optically-levitated sensors

Besides interferometers, there are other high-frequency GW detectors that operate
like an interferometer, such as the optically-levitated sensor described in Refs. [54,
55]. The optically-levitated sensor functions by trapping a dielectric sphere or
microdisk in an anti-node of an optical cavity (see Fig. 8.7) [54]. One can also
build a Michelson interferometer from optically-levitated sensors by inserting the
sensors in each arm’s cavity (see Fig. 8.8) [55]. As illustrated in Sec. 8.5.3, one
optically-levitated sensor can be effectively treated as two aligned interferometer
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arms, where the longer arm has the same length ℓ𝑚 as the cavity. The shorter
arm has length 𝑥𝑠, the distance to a chosen anti-node of the trapping field. The
optically-levitated sensor measures the differential distance change 𝛿ℓ𝑚 − 𝛿𝑥𝑠, the
correlations of which are similar to an interferometer of length 𝐿 = ℓ𝑚 − 𝑥𝑠, but not
identical since the two arms have to be treated separately. Moreover, as depicted
in Fig. 8.8, there are two causal diamonds enclosing the shorter and longer arms,
respectively. In Sec. 8.4, we show how to consistently correlate these multiple causal
diamonds.

Levitated sensors achieve their gain in sensitivity by making the test masses respond
resonantly to gravitational waves whose frequencies match the test masses’ natural
oscillation frequency in the trapping potential. In the devices considered by Refs. [54,
55], sensitivities are mainly constrained by the thermal noise due to heating of the
sensor by the scattering light [55]. The development of techniques to reduce the
thermal noise of an optically-trapped object in many other contexts thus allows a
better strain sensitivity for the optically-levitated sensor at high frequencies compared
to an interferometer [54]. It was further found in Ref. [55] that by using stacked disks
as the sensor, the thermal noise due to photon recoiling can be further reduced. In
addition, the high-frequency performance of the levitated sensor is further enhanced
by its tunability. Indeed, the experiment achieves its peak strain sensitivity when the
trapped object is resonantly excited at the trapping frequency, which is widely tunable
via laser intensity [55]. In Sec. 8.5.3, we will compare the PSD of length fluctuations
measured by the optically-levitated sensor to its predicted strain sensitivity from
Ref. [55].

8.3.2.3 Inverse-Gertsenshtein effect and other experiments

Apart from interferometer-like experiments, there are other high-frequency GW
detectors with different working principles. One major class of such experiments uses
the inverse-Gertsenshtein effect, which converts gravitons to electromagnetic (EM)
waves [56]. For most of these experiments, strong static magnetic fields of several
Tesla are used to convert gravitons into photons [17]. Many of these experiments
have been designed to detect ultralight axion dark matter, which can also couple to the
EM fields, such as the ones using microwave cavities (e.g., ADMX [57], HAYSTAC
[58], and SQMS [59]) or pickup circuits (e.g., ABRACADABRA [60] and SHAFT
[61]) to receive the signal. Refs. [62–64] found that some of these experiments might
be sensitive to high-frequency GWs, especially when the geometry of the detector
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reflects the spin-2 nature of gravitons. For example, Ref. [64] found that a figure-8
pickup circuit has a much larger sensitivity than a circular loop. For microwave
cavities, if the resonant cavity modes have the same spatial profile as the effective
current generated by the inverse-Gertsenshtein effect, there is also a boost of the
signal [63].

The pixellon model considered in Refs. [3, 11] and this work can be, in principle,
used to compute the inverse-Gertsenshtein effect since geontropic fluctuations
manifest themselves as metric fluctuations, i.e., Eq. (8.2). As recently shown in
Ref. [63], for usual gravitational waves, if one incorporates all physical effects (such
as circuits’ motion due to coordinate transformation), one can find gauge invariant
observables such as current density. However, one fundamental question is whether
the pixellon model is appropriate for describing this type of experiment, especially
those using microwave cavities. The pixellon model was designed to effectively
describe gravitational perturbations of the spherical entangling surface bounding
the interferometer, the bifurcate horizon of the causal diamond defined by the light
beams. Within the cavity, there is no freely propagating photon, so the detector
doesn’t probe the near-horizon geometry of any causal diamond. In this case, the
pixellon model might not be a good effective description, and geontropic fluctuations
might be negligible since they are driven by near-horizon dynamics [4]. Note that the
photon counting technique in Ref. [53] also detects the excess photons generated by
gravitational perturbations. However, this readout is still embedded in a Michelson
interferometer, so there is a well-defined causal diamond.

Besides the experiments above, other types of high-frequency GW detectors are
discussed in Ref. [17], such as the bulk acoustic wave devices [65], which operate
like a resonant mass bar [66] and measure the vibration of piezoelectric materials due
to passing GWs. Similarly, GWs can also deform microwave cavities, which couple
different resonant cavity modes and can be detected [67]. There are also experiments
utilizing the coupling between GWs and electron spin, where the collective electron
spin excitations or magnons of ferromagnetic crystals due to GWs are measured [68,
69]. Since no causal diamond is being probed in all of these experiments, geontropic
signals might be minimal. For this reason, for the rest of this work, we focus on these
interferometer-like experiments and calculate their sensitivity to the pixellon model.
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(a) A single light beam. The beam of length 𝐿 is
sent from x1 at 𝑡 = −𝐿 to x2 and then reflected
by the end mirror.

(b) Two light beams. The beam of length 𝐿1 is
sent from x1 at 𝑡1 − 𝐿1 along the direction n1
and reflected by the end mirror. Similarly, the
beam of length 𝐿2 is sent from x2 at 𝑡2 − 𝐿2
along the direction n2 and then gets reflected.

(c) A web of light beams tiling the entire space-
time.

Figure 8.3: Plots of spherical entangling surfaces or spatial slices of the causal
diamonds bounding different configurations of light beams. The dashed circles
represent entangling surfaces, each of which is associated with a pixellon model.
The spatial region inside the entangling surface is shaded. For all the figures above,
we have projected the spherical entangling surface to the plane of the light beams.

8.4 Extension of the pixellon model to multiple interferometers
In this section, we extend the calculation in Ref. [11] of the auto-correlation of a single
interferometer’s length fluctuations to the cross-correlation of two interferometer-like
detectors, which may have different arm lengths and origins.

As shown in Ref. [11], for the metric in Eq. (8.2), the only nonzero component in the
𝑡 − 𝑟 sector of the metric is ℎ𝑟𝑟 , so we only need to consider light propagation when
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computing length fluctuations. For a light beam sent at time 𝑡 − 𝐿 from the origin x
along the direction n, the total time delay 𝑇 (𝑡, n) of a round trip is given by2

𝑇 (𝑡, x, n) = 2𝐿 − 1
2

∫ 𝐿

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] ,

𝑥 ≡ (𝑡 − 𝐿 + 𝑟, x + 𝑟n) , 𝑥′ ≡ (𝑡 + 𝐿 − 𝑟, x + 𝑟n) . (8.14)

Notice that although Eq. (8.14) has an explicit dependence on the origin x, the
auto-correlation function of 𝑇 or its fluctuations doesn’t depend on x, as shown in
Ref. [11] and Eq. (8.32). This indicates that geontropic fluctuations are physical,
since they don’t depend on the choice of coordinates.

Next, let us consider two light beams sent at times 𝑡1 − 𝐿1 and 𝑡2 − 𝐿2 from positions
x1 and x2 along directions n1 and n2, respectively, as depicted in Fig. 8.3b. We also
assume the lengths of the two beams without any geontropic fluctuations to be 𝐿1

and 𝐿2, respectively. Then the correlation function of the length fluctuations 𝛿𝑇 of
these two beams is

𝐶 (Δ𝑡,Δx, n1,2) ≡
〈
𝛿𝑇 (𝑡1, x1, n1)𝛿𝑇 (𝑡2, x2, n2)

4𝐿1𝐿2

〉
, Δ𝑡 ≡ 𝑡1 − 𝑡2 , Δx ≡ x1 − x2 ,

(8.15)

where we have defined 𝛿𝑇 (𝑡, x, n) = 𝑇 (𝑡, x, n)−2𝐿 with𝑇 (𝑡, x, n) given in Eq. (8.14).
Here, we have assumed that the origins of the light beams enter the cross-correlation
function only via their difference Δx, so it is independent of the choice of coordinates.
We will see this assumption is true in Eq. (8.27).

Since these two light beams are enclosed by two different causal diamonds as shown
in Fig. 8.3b, their length fluctuations are separately described by two pixellon models
with the metric in Eq. (8.2) centered at x1 and x2, respectively. To distinguish these
two pixellon models, we assign 𝜙1(𝑥) and 𝜙2(𝑥) to the first and the second beams,
respectively. Within each pixellon model, the length fluctuations are still described
by Eq. (8.14), so

𝐶 (Δ𝑡,Δx, n1,2) =
1

16𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

⟨
(
𝜙1(𝑥1) + 𝜙1(𝑥′1)

) (
𝜙2(𝑥2) + 𝜙2(𝑥′2)

)
⟩ ,

(8.16)

which is in a similar form as Eq. (32) of Ref. [11]. For convenience, let us define

C(𝑥1, 𝑥2) = ⟨(𝜙1(𝑥1) + 𝜙1(𝑥′1)) (𝜙2(𝑥2) + 𝜙2(𝑥′2))⟩ . (8.17)
2We have corrected a typo in Ref. [11], where the sign before the integral should be minus.
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To evaluate C(𝑥1, 𝑥2), we first need to compute ⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩, where 𝑥1 and 𝑥2 are in
two different causal diamonds. From Eqs. (8.3) and (8.4), we notice that both 𝜙1 and
𝜙2 satisfy the wave equation, as constrained by the linearized Einstein-Hilbert action
[11]. Thus, 𝜙1 has translational symmetry, i.e., 𝜙1(𝑦) = 𝑒−𝑖𝑝·(𝑥−𝑦)𝜙1(𝑥) classically,
and similarly for 𝜙2. This implies that although the metric in Eq. (8.2) effectively
describes the length fluctuations of a finite-size interferometer, nothing prevents us
from propagating the pixellon field 𝜙(𝑥) to places outside the interferometer. This is
also consistent with the fact that 𝜙 has modes with long wavelengths, as imposed by
Eq. (8.12). Thus, 𝜙1 is well-defined in the causal diamond of 𝜙2, and vice versa.

To derive a precise relation between 𝜙1 and 𝜙2, let us consider a single light beam
sent from x1 at 𝑡 = −𝐿 to x2, as depicted in Fig. 8.3a. To compute the round-trip
time delay, one can either use the pixellon model centered at x1 with the pixellon 𝜙1,
or the one centered at x2 with the pixellon 𝜙2. For the former case, we set the origin
of the coordinates at x1 and align the 𝑥-axis with the outgoing light beam, so the
shift of the round-trip time delay 𝛿𝑇1 is given by Eq. (8.14),

𝛿𝑇1 = −1
2

∫ 𝐿

0
𝑑𝑟 [𝜙1(𝑥) + 𝜙1(𝑥′)] , 𝑥1 = (−𝐿 + 𝑟, 𝑟x̂) , 𝑥′1 = (𝐿 − 𝑟, 𝑟x̂) , (8.18)

where the first and second terms correspond to the time delay of the outgoing and
ingoing light beams, respectively.

For the latter case, we set the origin at x2 and align the 𝑥-axis with the ingoing light
beam. Notice the ingoing beam here is the outgoing beam for the pixellon model at
x1, and vice versa. Then, 𝛿𝑇2 is given by

𝛿𝑇2 = −1
2

∫ 0

−𝐿
𝑑𝑟 [𝜙2(𝑥) + 𝜙2(𝑥′)] , 𝑥2 = (𝑟, 𝑟x̂) , 𝑥′2 = (−𝑟, 𝑟x̂) , (8.19)

where the first and second terms correspond to the time delay of the ingoing and
outgoing light beams, respectively. One can further make a change of variables
𝑟 = 𝑟 + 𝐿 and shift the coordinates, x → x + 𝐿x̂, such that

𝛿𝑇2 = −1
2

∫ 𝐿

0
𝑑𝑟 [𝜙2(𝑥) + 𝜙2(𝑥)] , 𝑥2 = (−𝐿 + 𝑟, 𝑟x̂) , 𝑥′2 = (𝐿 − 𝑟, 𝑟x̂) , (8.20)

where we have replaced the symbol 𝑟 with 𝑟 at the end. Since 𝛿𝑇1 = 𝛿𝑇2, Eqs. (8.18)
and (8.20) indicate that 𝜙1 = 𝜙2.

This relation between 𝜙1,2 does not hold only for these two causal diamonds, but
rather the entire spacetime. One can easily see this by tiling the entire spacetime
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with light beams of the same length 𝐿 as depicted in Fig. 8.3c. One can repeat the
same argument above for every segment of this web of null rays to relate the pixellon
models centered at any two adjacent endpoints. Since all of these null rays are
connected, one can easily show a universal 𝜙 across the entire spacetime within the
pixellon model. Thus, there is no need to distinguish 𝜙 in different causal diamonds.

On the other hand, this does not indicate that we can avoid using separate pixellon
models for different light beams. The metric in Eq. (8.2) is designed to effectively
describe the geontropic fluctuations of any causal diamond located at the origin of
the local coordinates picked out by the metric. Thus, the light beams not propagating
in the radial direction in these local coordinates cannot be described by the associated
pixellon model. Furthermore, the argument of gauge invariance of the calculations in
Ref. [11] does not hold for these non-radial light beams, since the angular directions
of the metric were ignored in the proof. Nonetheless, one can always find another
causal diamond in which the originally non-radial light beam becomes radial, e.g.,
the causal diamond located at the endpoints of this beam. For example, in Fig. 8.3c,
the beams 𝐿1 and 𝐿2 can be described by the pixellon model centered at x1, but not
the beam 𝐿3, although it is in the same causal diamond of the beams 𝐿1,2. Instead,
one should compute the length fluctuations of the beam 𝐿3 using the pixellon models
at x2 or x3.

One might also worry, in this case, whether the length fluctuations at x1 have multiple
inconsistent descriptions dependent on the causal diamond we choose, particularly
with respect to their angular correlations. For example, since the dominant modes of
pixellons are low-𝑙 modes [11], the pixellon model at x2 constrains the fluctuations
at x1 to be mostly along n. However, if one uses the pixellon model at x3, the
fluctuations at x1 are mainly along n′. This is not a contradiction in the pixellon
model since light beams in different directions are probing different “polarizations”
of pixellons, which control different local entangling surfaces. If one goes to the
causal diamond at x1, the pixellon model consistently predicts that most fluctuations
are along the radial direction, so fluctuations along both n and n′ can potentially be
excited. When the light beam is sent along one of these directions, the spherical
symmetry is broken by exciting fluctuations mainly in this specific direction.

In this case, to compute the correlation of any two beams as depicted in Fig. 8.3b,
we use the metric in Eq. (8.2) centered at x1 for beam 𝐿1 and the one at x2 for beam
𝐿2, but do not distinguish 𝜙 in these two metrics. Thus, Eq. (8.17) becomes

C(𝑥1, 𝑥2) = ⟨(𝜙(𝑥1) + 𝜙(𝑥′1)) (𝜙(𝑥2) + 𝜙(𝑥′2))⟩ . (8.21)
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Using Eq. (8.3), we get

C(𝑥1, 𝑥2)

= 4𝑙2𝑝
∫

𝑑3p1

(2𝜋)3

∫
𝑑3p2

(2𝜋)3
1√︁

4𝜔1(p1)𝜔2(p2)
cos[𝜔1(𝐿1 − 𝑟1)] cos[𝜔2(𝐿2 − 𝑟2)][

⟨𝑎p1𝑎
†
p2
⟩𝑒−𝑖[𝜔1𝑡1−𝜔2𝑡2−p1·(x1+𝑟1n1)+p2·(x2+𝑟2n2)] + 𝑐.𝑐.

]
,

= 4𝑙2𝑝
∫

𝑑3p
(2𝜋)3

𝜎pix(p)
2𝜔(p) cos[𝜔(𝐿1 − 𝑟1)] cos[𝜔(𝐿2 − 𝑟2)]

[
𝑒−𝑖𝜔Δ𝑡+𝑖p·𝛿x + 𝑐.𝑐.

]
,

(8.22)

where we have defined
𝛿x ≡ Δx + 𝑟1n1 − 𝑟2n2 . (8.23)

Plugging the occupation number in Eq. (8.12), the correlation function of the length
fluctuations is given by

𝐶 (Δ𝑡,Δx, n1,2) =
𝑎𝑙𝑝

8𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

∫
𝑑3p
(2𝜋)3

1
𝜔2(p)

cos [𝜔(𝐿1 − 𝑟1)] cos [𝜔(𝐿2 − 𝑟2)]𝑒−𝑖𝜔Δ𝑡+𝑖p·𝛿x ,
(8.24)

where we have dropped the 𝑐.𝑐. term and hereafter assume for simplicity that the
complex conjugate is included implicitly.

Eq. (8.24) is very similar to Eq. (41) of Ref. [11], except that 𝛿x also contains the
difference between the origins of the two light beams. Evaluating the angular part of
the momentum integral, we have

𝐶 (Δ𝑡,Δx, n1,2) =
𝑎𝑙𝑝

16𝜋2𝑐3
𝑠𝐿1𝐿2

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2

∫ ∞

0
𝑑𝜔 cos [𝜔(𝐿1 − 𝑟1)]

cos [𝜔(𝐿2 − 𝑟2)] sinc
[
𝜔D(𝑟1,2,Δx, n1,2)/𝑐𝑠

]
𝑒−𝑖𝜔Δ𝑡 ,

(8.25)
with

D(𝑟1,2,Δx, n1,2) = |𝛿x| . (8.26)

The PSD 𝐶̃ (𝜔,Δx, n1,2) is then given by

𝐶̃ (𝜔,Δx, n1,2) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝑁

∫ 𝐿1

0
𝑑𝑟1

∫ 𝐿2

0
𝑑𝑟2 cos [𝜔(𝐿1 − 𝑟1)]

cos [𝜔(𝐿2 − 𝑟2)] sinc
[
𝜔D(𝑟1,2,Δx, n1,2)/𝑐𝑠

]
,

(8.27)

where we have absorbed the normalization 𝐿1𝐿2 into 𝑁 . We make this redefinition for
convenience since in certain experiments discussed later, PSDs similar to Eq. (8.27)
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appear but with 𝑁 ≠ 𝐿1𝐿2. Ref. [11] also considered inserting an IR cutoff
𝜔2(p) → 𝜔2(p) + 𝜔2

IR in Eq. (8.24), similar to Ref. [1], due to the interferometer’s
finite size and a better agreement of the resulting angular correlation with the
prediction in Ref. [1]. In this case, the PSD becomes

𝐶̃ (𝜔,Δx, n1,2) →
𝜔2

𝜔2 + 𝜔2
IR

𝐶̃ (𝜔,Δx, n1,2) . (8.28)

In the case that the two arms have the same length 𝐿, Ref. [11] fixed 𝜔IR = 1
𝐿
, which

gave a better agreement with the angular correlations predicted in Refs. [1, 6].

One direct application of the results above is to compute the cross-correlation of
length fluctuations across two different interferometers. Let the origins of two
interferometers be at x𝐼,𝐼 𝐼 , respectively. For the interferometer at x𝐼 , let its two
arms be along the directions n1,2 with length 𝐿 𝐼 . Similarly, let the two arms of the
interferometer at x𝐼 𝐼 be along the directions n3,4 with length 𝐿 𝐼 𝐼 . Define T (x, 𝑡) to
be the difference of length fluctuations of two arms within a single interferometer at
position x, the light beams of which are sent at time 𝑡. Then the cross-correlation of
the time difference across two arms is

𝐶T (Δ𝑡,Δx, n𝐼,𝐼 𝐼) ≡
〈
T𝐼 (x𝐼 , 𝑡1)T𝐼 𝐼 (x2, 𝑡2)

4𝐿 𝐼𝐿 𝐼 𝐼

〉
,

T𝐼 (x𝐼 , 𝑡1) = 𝛿𝑇 (𝑡𝐼 , x𝐼 , n2) − 𝛿𝑇 (𝑡𝐼 , x𝐼 , n1) ,
T𝐼 𝐼 (x𝐼 𝐼 , 𝑡2) = 𝛿𝑇 (𝑡𝐼 𝐼 , x𝐼 𝐼 , n4) − 𝛿𝑇 (𝑡𝐼 𝐼 , x𝐼 𝐼 , n3) , (8.29)

where n𝐼 = (n1, n2), n𝐼 𝐼 = (n3, n4), and Δx = x𝐼 − x𝐼 𝐼 such that

𝐶̃T (𝜔,Δx, n𝐼,𝐼 𝐼) = 𝐶̃ (𝜔,Δx, n1,3)+𝐶̃ (𝜔,Δx, n2,4)−𝐶̃ (𝜔,Δx, n1,4)−𝐶̃ (𝜔,Δx, n2,3) .
(8.30)

The equation above generally contains complicated geometric factors, and the integral
within Eq. (8.25) cannot be easily evaluated for a generic geometry. Thus, we consider
several specific configurations in the next section.

8.5 Interferometer-like experiments
In this section, we apply the results of Sec. 8.4 to several types of interferometer-like
experiments: a single L-shaped interferometer (e.g., LIGO [12], CE [18, 19], NEMO
[27]), the equilateral triangle configuration of multiple interferometers (e.g., LISA
[13], ET [20]), and optically-levitated sensors [54, 55].
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Figure 8.4: Pixellon strain (dashed and dotted lines) overlaid with the strain sensitivi-
ties for LIGO [12] and NEMO [70] (solid lines). The LIGO data was obtained from
the Livingston detector, and the NEMO data omits suspension thermal noise. The
dotted lines give the pixellon strain from Eq. (8.35) computed without an IR cutoff,
and the dashed lines give the same quantity including the IR cutoff from Eq. (8.28).
We again compute the pixellon strain with 𝛼 = 1.

8.5.1 Single L-shaped interferometer
Ref. [11] calculated the auto-correlation of length fluctuations in an L-shaped
interferometer due to geontropic fluctuations. In this case, we have x𝐼 = x𝐼 𝐼 and
n𝐼 = n𝐼 𝐼 , so we can set the origin of the coordinates to coincide with the beam splitter



395

of the interferometer. Furthermore, we can align the 𝑥–𝑦 plane with the plane of the
interferometer and choose the 𝑥-axis to be along the first arm of the interferometer.
Then the whole configuration is determined by the separation angle 𝜃 between two
arms. In this case, the first two terms are the same in Eq. (8.30) and similarly for the
last two terms, so Eq. (8.30) reduces to

𝐶̃T (𝜔, 𝜃) = 2𝐶̃ (𝜔, 0) − 2𝐶̃ (𝜔, 𝜃) , (8.31)

which is consistent with Eq. (45) of Ref. [11]. The spectrum 𝐶̃ (𝜔, 𝜃) is given by
Eq. (8.27) after setting 𝐿1 = 𝐿2 = 𝐿, where 𝐿 is the length of the interferometer, i.e.,

𝐶̃ (𝜔, 𝜃) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝐿

2

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2 sinc [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠]

cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)] ,
(8.32)

where the distance factor D is now completely determined by 𝑟1, 𝑟2, and 𝜃,

D(𝑟1, 𝑟2, 𝜃) =
√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos 𝜃 , (8.33)

To compare against the strain sensitivity of real experiments, one needs to first
convert Eq. (8.32) to the one-sided noise strain 𝑆ℎ defined by Refs. [14, 71]

√︁
𝑆ℎ ( 𝑓 ) =

√︄
2
∫ ∞

−∞

〈
Δ𝐿 (𝜏)
𝐿

Δ𝐿 (0)
𝐿

〉
𝑒−2𝜋𝑖 𝑓 𝜏𝑑𝜏 , (8.34)

which has units of Hz−1/2. In many of these interferometers, Fabry-Pérot cavities
are used to increase the sensitivity, in which light travels multiple round trips. By
converting the strain sensitivity to the phase sensitivity, Ref. [11] showed that the
geontropic signal does accumulate in Fabry-Pérot cavities since the output is linear
in the phase shift of the light. Thus, it is legitimate to compare our PSD to the strain
sensitivity of these experiments. From Eqs. (8.29) and (8.34), Ref. [11] found that√︁

𝑆ℎ ( 𝑓 ) =
√︃

2𝐶̃T (𝜔, 𝜃) . (8.35)

Nonetheless, the signal’s shape is determined by the geometry of one light-crossing.
For example, we expect that the signal peak is at 𝜔𝐿 ∼ 1, where 𝐿 is the length of the
interferometer instead of the total distance traveled across multiple light-crossings.

Using Eqs. (8.31)–(8.32), Ref. [11] computed the PSD of the pixellon model in
several L-shaped interferometers (Holometer [14], GEO-600 [15], and LIGO [12])
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and one set of interferometers in LISA [13], and compared the signal to their strain
sensitivities. It was found that GEO-600 and LISA are unlikely to detect geontropic
fluctuations due to their relatively low peak sensitivity (at 𝜔𝐿 ∼ 1), while LIGO and
Holometer respectively constrain the 𝛼-parameter to be 𝛼 ≲ 3 and 𝛼 ≲ 0.7 (with
an IR cutoff), and 𝛼 ≲ 0.1 and 𝛼 ≲ 0.6 (without an IR cutoff) at 3𝜎 significance.
Note that the LIGO sensitivity data that we have used here and in Ref. [11] is that
from Ref. [12] with the quantum shot noise removed (i.e., the gray curve in Fig. 2
of Ref. [12]) by the quantum-correlation technique in Ref. [52]. Nonetheless, this
technique only removes the expectation value of the shot noise but not its variance
[72], limiting the extent to which we can dig under the shot noise. More specifically,
with a frequency band of Γ and an integration time of 𝑇 , we expect the noise
suppression factor to be ∼ (Γ𝑇)1/4 in amplitude — or until the next underlying noise
is revealed. In the particular case of LIGO, that underlying noise includes coating
and suspension thermal noise at low frequencies, and laser noise at high frequencies.
Further studying these underlying noise sources in LIGO can in principle put more
stringent upper limits on the geontropic noise.

Besides the GW detectors above, there are other future L-shaped interferometers
to be considered but not included in Ref. [11]. The most important ones are the
third-generation GW detectors: CE [18, 19] and ET [20]. CE is a ground-based
broadband GW detector using dual-recycled Fabry-Pérot Michelson interferometers
with perpendicular arms. CE will have two sites with several potential designs: a
20 km interferometer paired with a 40 km interferometer, or a pair of 20 km or 40 km
interferometers. As largely a scale-up of Advanced LIGO [18], CE will operate at
room temperature with a fused-silica coating of mirrors to reduce thermal noise, and
degenerate optical parametric amplifiers injecting squeezed light with low phase
uncertainty to reduce quantum noise (shot noise) at high frequency [73].

ET is an equilateral triangle configuration of three independent nested detectors, each
of which contains two dual-recycled Fabry-Pérot Michelson interferometers with
arms of length 10 km (plotted in Fig. 8.5) for low- and high-frequency detections,
respectively. ET will be built underground to reduce seismic noise. Cryogenic
systems are used to reduce thermal noise by cooling the optical systems to 10–20 K
at low frequency, while squeezed light (frequency-dependent) is also inserted to
reduce quantum noise at high frequency [41].

As briefly discussed in Sec. 8.1 and shown in Fig. 8.2, for the benchmark value
𝛼 = 1, the PSD of the geontropic signal overwhelms the strain sensitivity of CE and
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ET by about two orders of magnitude for 𝑓 ∼ 1 kHz. For CE, we have considered
both the interferometers of length 20 km and 40 km. For ET, we have computed the
auto-correlation of a single interferometer within the entire configuration. A study
of the cross-correlation of different interferometers is carried out in Sec. 8.5.2.

Besides ET and CE, another next-generation GW detector is NEMO [27], a Michelson
interferometer with perpendicular Fabry-Pérot arms of length 4 km. Although
with less sensitivity than the full third-generation detectors in general, NEMO is
important for testing technological developments to be used in the third-generation
detectors while making interesting scientific discoveries, such as understanding the
compositions of NSs. Due to its interest in binary NS mergers, NEMO specializes
in high-frequency events with its optimal sensitivity at 𝑓 ∼ 1–4 kHz [27]. As
plotted in Fig. 8.4, within the optimal sensitivity of NEMO, the geontropic signal
exceeds the strain sensitivity by about one order of magnitude. Thus, the geontropic
signal must be constrained before these next-generation GW detectors can detect
other high-frequency events. For future detectors, we have compared the geontropic
signal with their design sensitivities, without considering removal of shot noise via
the quantum-correlation approach — even though at high frequencies, where the
constraints for geontropic noise are the best, these detectors are limited by shot noise.
It can be anticipated that at these frequencies, these detectors’ shot noise dominates
over other types of noise by a significant factor. In this way, these detectors are
capable of putting much more stringent bounds on the geontropic 𝛼 parameter.

8.5.2 Equilateral triangle configurations
In this subsection, we consider configurations of multiple interferometers with certain
geometries. For GW detections, these different geometries are helpful in retrieving
the polarization of GWs. One important configuration is the equilateral triangle
configuration of three interferometer arms, such as LISA [13], or three partially
overlapping independent detectors, such as ET [20], as shown in Fig. 8.5. For LISA,
the signals of different arms can be time shifted and linearly combined to form virtual
Michelson interferometers [74, 75]. Nonetheless, as found in Ref. [11] and discussed
in Sec. 8.5.1, LISA is not promising for detecting geontropic signals, so we will
focus on the specific configuration of ET.

In Sec. 8.5.1, we computed the auto-correlation of a single interferometer within ET.
Although the single-detector quantum-correlation technique discussed in Sec. 8.5.1
allows us to dig under the shot noise, we are still limited by non-quantum noises. On
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Figure 8.5: Setup of ET. The red, blue, and purple rays correspond to the three
detectors in ET, where we have only shown one of the two interferometers within
each detector. We choose not to plot the mirrors at the endpoints of the light beams
for simplicity.

the other hand, geontropic fluctuations modeled by the pixellon are correlated across
different ET detectors. For those uncorrelated non-quantum noises, cross-correlating
multiple ET detectors allows us to dig under them with a suppression factor of
∼ (Γ𝑇)1/4. This motivates the calculation of the cross-correlation of different
detectors within interferometer configurations such as ET.

Let us consider one set of two interferometers across different detectors within ET,
e.g., the red and blue detectors in Fig. 8.5, and pick the origin of coordinates at the
origin of the red detector x1. Let us also pick the 𝑥–𝑦 plane to be the plane of the
interferometers, with the 𝑥-axis along n1. In this case,

x𝐼 = 0 , x𝐼 𝐼 = 𝐿x̂ , n1 = x̂ , n2 =
1
2

x̂ +
√

3
2

ŷ ,

n3 = −x̂ , n4 = −1
2

x̂ +
√

3
2

ŷ . (8.36)

Here, we have assumed that the arms along the same line completely overlap with
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Figure 8.6: The PSD 𝐶̃T (𝜔) of the cross-correlation function of two sets of interfer-
ometers within a triangular configuration like ET [Eq. (8.38), solid lines], together
with the corresponding auto-correlation 𝐶̃T (𝜔, 𝜃 = 𝜋

3 ) of a single interferometer
within this configuration [Eq. (8.31), dashed lines].

each other (i.e., the arms along n1 and n3). In reality, there is a finite separation
between these arms, which can be dealt with via the general procedure in Sec. 8.4.
Then one can compute D(𝑟𝑖, 𝑗 ,Δx, n𝑖, 𝑗 ) for all the combinations in Eq. (8.30), i.e.,

D13(𝑟1, 𝑟2) = |𝑟1 + 𝑟2 − 𝐿 | ,

D24(𝑟1, 𝑟2) =
1
2

√︁
(2𝐿 − 𝑟1 − 𝑟2)2 + 3(𝑟1 − 𝑟2)2 ,

D14(𝑟1, 𝑟2) =
1
2

√︃
(2𝐿 − 2𝑟1 − 𝑟2)2 + 3𝑟2

2 ,

D32(𝑟1, 𝑟2) = D14(𝑟1, 𝑟2) . (8.37)

Here, we have defined D𝑖 𝑗 (𝑟1, 𝑟2) such that 𝑟1 is the integration variable along the
arm with direction n𝑖, and 𝑟2 is the integration variable along the arm with direction
n 𝑗 . Plugging Eq. (8.37) into Eq. (8.30), we get

𝐶̃T (𝜔) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠𝐿

∫ 𝐿

0
𝑑𝑟1

∫ 𝐿

0
𝑑𝑟2 cos [𝜔(𝐿 − 𝑟1)] cos [𝜔(𝐿 − 𝑟2)]

{sinc [𝜔D13(𝑟1, 𝑟2)/𝑐𝑠] + sinc [𝜔D24(𝑟1, 𝑟2)/𝑐𝑠]
−2 sinc [𝜔D14(𝑟1, 𝑟2)/𝑐𝑠]} ,

(8.38)

the result of which is plotted in Fig. 8.6.

Besides the equilateral triangle configuration of ET, one can compute the response
of other geometries of interferometers to the pixellon model following the procedure
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in Sec. 8.4. For example, one can consider two or multiple interferometers with
the same length located at the same origin but rotated from each other by certain
angles as depicted in Ref. [74]. There are even more complicated geometries, such
as the twin 3-d interferometers that will be built at Cardiff University [76]. The
authors in Ref. [76] claimed that the angular correlations of geontropic fluctuations,
as discussed in detail in Refs. [1, 3, 6, 11], especially the transverse correlations
due to the low-ℓ modes, can be probed by this geometry. While, in principle, the
geontropic signal can be computed for such a complicated interferometer geometry,
the pixellon model may not adequately encapsulate the underlying physics of the
VZ effect. Further, first-principles calculations of geontropic fluctuations assume a
simple causal diamond radiating outward from a beam splitter. One major feature
of the twin 3-d interferometers in Ref. [76] is that the interferometer arms are
bent at mirrors MMA and MMB (see Fig. 1 of Ref. [76]), so the causal diamond
of the whole apparatus is distorted. The bent-arm configuration explicitly breaks
spherical symmetry, which the previous calculations [3, 11] relied on. Specifically,
the pixellon metric in Eq. (8.2) captures metric fluctuations only along interferometer
arms that extend radially outward from a beam splitter. One can decompose the
bent interferometer arms into segments of straight arms, and, assuming the pixellon
model pertains to such a causal diamond, attempt to apply the pixellon model to
each segment by choosing local coordinates centered at the beam splitter, MMA,
and MMB, respectively. However, the major obstacle for this procedure is that
at MMA (or MMB) there does not exist a closed causal diamond, because light
continues to traverse past MMA (or MMB) until it reaches EMA (or EMB) or the
beam splitter. Since the calculations in Refs. [3, 11] require a closed causal diamond
such that the observable computed is manifestly gauge invariant, one first needs
to ascertain whether the procedures in Ref. [11] for computing gauge-invariant
quantities are still valid when piecing together these non-closed causal diamonds.
Due to these complications, we do not attempt to apply the pixellon model to the
Cardiff experiment, as we believe that an accurate prediction for such bent-arm
configurations will require a more direct, first-principles calculation requiring better
theoretical control than current technology allows. In the next subsection, we focus
on another interferometer-like experiment, the optically-levitated sensor.

8.5.3 Optically-levitated sensor
In this subsection, we study the response of the optically-levitated sensor in Refs. [54,
55] to geontropic fluctuations described by the pixellon model. To understand the
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Figure 8.7: Schematic diagram of the optically-levitated sensor as described in
Refs. [54, 55]. A dielectric sphere or microdisk is trapped in an anti-node of an
optical cavity (solid orange). A second laser (dashed blue) is used to cool the sensor
and read out its position. Transverse motion is cooled by additional lasers (not
shown).

working principle of the optically-levitated sensor, let us first consider its response
to GWs following Ref. [54], working in the local Lorentz frame with origin at the
input mirror. Let the unperturbed distance between the optical cavity mirrors be ℓ𝑚,
and the unperturbed distance from the input mirror to the sensor in its trap minimum
be 𝑥𝑠. Under a passing GW perpendicular to the cavity with strain ℎ, the proper
distances to the mirror and sensor are both shifted,

𝛿𝑥𝑠 =
1
2
ℎ𝑥𝑠 , 𝛿ℓ𝑚 =

1
2
ℎℓ𝑚 . (8.39)

The new position of the trap minimum can be found from the condition

𝑘𝑡 (ℓ′𝑚 − 𝑥′min) = 𝑘𝑡 (ℓ𝑚 − 𝑥min) =
(
𝑛 + 1

2

)
𝜋 , (8.40)

where 𝑛 is an integer, and 𝑘𝑡 is the wavenumber of the trapping laser. The shift of
the trap minimum is then given by 𝛿𝑥min = ℓ′𝑚 − ℓ𝑚 = 𝛿ℓ𝑚. Here, we have assumed
that the trapping laser has a constant frequency inside the cavity. Thus, the sensor is
displaced from its trap minimum by an amount given in Ref. [54] as

Δ𝑋 ≡ 𝛿𝑥𝑠 − 𝛿𝑥min =
1
2
ℎ(𝑥𝑠 − ℓ𝑚) + O(ℎ2) . (8.41)

This displacement will result in an oscillatory driving force on the sensor. If the GW
frequency matches the trapping frequency 𝜔0 of the sensor, the driving force will
resonantly excite the sensor. The corresponding oscillations can then be measured.
When 𝑥𝑠 ≪ ℓ𝑚, the effect of the GW is maximized.
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Laser

Photodetector

Figure 8.8: Two levitated sensors inserted into the Fabry-Pérot cavities of a Michelson
interferometer, as described in Ref. [55]. The entangling surfaces corresponding to
the two arms of length 𝑥𝑠 and ℓ𝑚 are marked by the blue and green shaded circles,
respectively. Note that this diagram ignores the distances between the beam splitter
and the input mirrors of the two cavities.

For the pixellon model, the response of the optically-levitated sensor can be calculated
similarly. In our case, 𝛿𝑥𝑠 and 𝛿ℓ𝑚 are given by

𝛿𝑥𝑠 = −1
4

∫ 𝑥𝑠

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] , (8.42)

𝛿ℓ𝑚 = −1
4

∫ ℓ𝑚

0
𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] , (8.43)

where
𝑥 = (𝑡𝑥 − 𝑥𝑠 + 𝑟, 𝑟n) , 𝑥′ = (𝑡𝑥 + 𝑥𝑠 − 𝑟, 𝑟n) ,
𝑦 = (𝑡ℓ − ℓ𝑚 + 𝑟, 𝑟n) , 𝑦′ = (𝑡ℓ + ℓ𝑚 − 𝑟, 𝑟n) ,

(8.44)

and the start times of each beam are chosen to be 𝑡𝑥 − 𝑥𝑠 and 𝑡ℓ − ℓ𝑚. Note the
additional factor of 1

2 as compared to Eq. (8.14), since the lengths ℓ𝑚 and 𝑥𝑠 are
one-half of the corresponding round-trip time delays when there are no geontropic
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fluctuations. Within a single arm, since there is only a single beam measuring the
position of the sensor, we can choose

𝑡𝑥 = 𝑡 + 𝑥𝑠 , 𝑡ℓ = 𝑡 + ℓ𝑚 (8.45)

such that the start times of the beam probing the sensor and the end mirror are the
same. Notice that, in general, two independent pixellon models should be used for
the shorter and longer arms. Nevertheless, since both spherical entangling surfaces
are located at the same origin, as depicted in Fig. 8.8, and the pixellon fields 𝜙 are
universal across these two causal diamonds as discussed in Sec. 8.4, the forms of
Eqs. (8.42) and (8.43) are very similar. This is consistent with the fact that the metric
in Eq. (8.2) is spatially conformal.

The displacement of the levitated sensor from its trap minimum is then given by

Δ𝑋 = − 1
4

∫ 𝑥𝑠

0
𝑑𝑟 [𝜙(𝑥) + 𝜙(𝑥′)] + 1

4

∫ ℓ𝑚

0
𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] . (8.46)

Note that Eq. (8.46) is similar, but not identical to, the round-trip time of a photon
traveling from position 𝑥𝑠 to ℓ𝑚, i.e.,

Δ𝑋 |𝑥𝑠↔ℓ𝑚 =
1
4

∫ ℓ𝑚

𝑥𝑠

𝑑𝑟 [𝜙(𝑦) + 𝜙(𝑦′)] ,

𝑦 = (𝑡 − ℓ𝑚 + 𝑟, 𝑟n) , 𝑦′ = (𝑡 + ℓ𝑚 − 𝑟, 𝑟n).
(8.47)

Using Eq. (8.47) instead of Eq. (8.46) would give a PSD identical to Eq. (8.32) with
length 𝐿 = ℓ𝑚 − 𝑥𝑠.

We can then define the correlation function of Δ𝑋 as

𝐶Δ𝑋 (Δ𝑡, 𝜃) ≡
〈
Δ𝑋 (𝑡1, n1)Δ𝑋 (𝑡2, n2)

(ℓ𝑚 − 𝑥𝑠)2

〉
, (8.48)

where the unit vectors n𝑖 parameterize the orientations of the two levitated sensor
arms, and the angle 𝜃 between them is given by cos(𝜃) = n1 · n2. The difference
between the beam start times is Δ𝑡 ≡ 𝑡1 − 𝑡2. Note that the normalization of 𝐶Δ𝑋

assumes that the characteristic length of the system is ℓ𝑚 − 𝑥𝑠, as per the above
discussion. Using Eq. (8.46), we find that

𝐶Δ𝑋 (Δ𝑡, 𝜃)

=
1

16(ℓ𝑚 − 𝑥𝑠)2

[ ∫ 𝑥𝑠

0
𝑑𝑟1

∫ 𝑥𝑠

0
𝑑𝑟2 C(𝑥1, 𝑥2) −

∫ 𝑥𝑠

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 C(𝑥1, 𝑦2)

−
∫ ℓ𝑚

0
𝑑𝑟1

∫ 𝑥𝑠

0
𝑑𝑟2 C(𝑦1, 𝑥2) +

∫ ℓ𝑚

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 C(𝑦1, 𝑦2)

]
, (8.49)
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where C(𝑥, 𝑦) is defined in Eq. (8.21). The first and last terms above are correlations
between the arms with the same length (either 𝐿 = 𝑥𝑠 or 𝐿 = ℓ𝑚). In contrast, the
second and third terms correlate arms with different lengths, i.e., the arm of 𝐿 = 𝑥𝑠

with the arm of 𝐿 = ℓ𝑚.

Following a similar calculation as the one to obtain Eq. (8.27), we find the two-sided
PSD 𝐶̃Δ𝑋 (𝜔, 𝜃) as

𝐶̃Δ𝑋 (𝜔, 𝜃) =
[
𝐶̃Δ𝑋 (𝜔, 𝑥1, 𝑥2) + 𝐶̃Δ𝑋 (𝜔, 𝑦1, 𝑦2) − 2𝐶̃Δ𝑋 (𝜔, 𝑥1, 𝑦2)

]
, (8.50)

where the first two terms are given by Eq. (8.27) with𝑁 = (ℓ𝑚−𝑥𝑠)2 andD(𝑟1, 𝑟2, 𝜃) =√︃
𝑟2

1 + 𝑟
2
2 − 2𝑟1𝑟2 cos(𝜃). The last term, which corresponds to the correlation between

the arms of length 𝐿 = 𝑥𝑠 and 𝐿 = ℓ𝑚, carries an additional geometrical factor of
cos [𝜔(ℓ𝑚 − 𝑥𝑠)] due to the difference in the sizes of the causal diamonds, i.e.,

𝐶̃Δ𝑋 (𝜔, 𝑥1, 𝑦2) =
𝑎𝑙𝑝

8𝜋𝑐3
𝑠 (ℓ𝑚 − 𝑥𝑠)2

∫ 𝑥𝑠

0
𝑑𝑟1

∫ ℓ𝑚

0
𝑑𝑟2 cos [𝜔(𝑥𝑠 − 𝑟1)]

cos [𝜔(ℓ𝑚 − 𝑟2)] cos [𝜔(ℓ𝑚 − 𝑥𝑠)] sinc [𝜔D(𝑟1, 𝑟2, 𝜃)/𝑐𝑠] .
(8.51)

We can also define 𝐶̃Δ𝑋
T (𝜔, 𝜃) as in Eq. (8.31) via

𝐶̃Δ𝑋
T (𝜔, 𝜃) = 2

[
𝐶̃Δ𝑋 (𝜔, 0) − 𝐶̃Δ𝑋 (𝜔, 𝜃)

]
. (8.52)

In the limit 𝑥𝑠 → 0, only the second term in Eq. (8.50) is nonzero, corresponding
to the length fluctuations of an interferometer of size 𝐿 = ℓ𝑚. Thus, the levitated
sensor can be treated as an ordinary interferometer when 𝑥𝑠 is sufficiently small.
This is confirmed by Fig. 8.9a, where we plot the interferometer PSD from Eq. (8.32)
against the levitated sensor PSD from Eq. (8.50), setting 𝑥𝑠 = ℓ𝑚/50 and neglecting
the IR cutoff for the purpose of demonstration. The interferometer PSD is given by
the dashed lines, whereas the levitated sensor PSD is given by the solid lines. We
can see that, as expected, the PSDs of these two different types of experiments are
very similar in the limit of small 𝑥𝑠. In Fig. 8.9b, we show a similar comparison
but instead pessimistically set 𝑥𝑠 = ℓ𝑚/10. For this larger value of 𝑥𝑠, the PSD for
the levitated sensor becomes somewhat larger in magnitude compared to that of the
ordinary interferometer, but retains a similar shape. In the limit of 𝜔 −→ 0, we have

𝐶̃Δ𝑋
T (𝜔, 𝜃) =

𝑎𝑙𝑝

48𝜋𝑐5
𝑠

𝜔2(ℓ𝑚 + 𝑥𝑠)2(1 − cos 𝜃) + O(𝜔4). (8.53)

From the scaling 𝐶̃Δ𝑋
T (𝜔, 𝜃) ∝ (ℓ𝑚 + 𝑥𝑠)2, one can see that the signal increases as 𝑥𝑠

increases, which is a result of treating the system as two sets of causal diamonds.
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However, we expect the above treatment to break down beyond the limit of 𝑥𝑠 ≪ ℓ𝑚.
We emphasize that this calculation is not intended to be fully rigorous, but rather
seeks to provide a heuristic description of the pixellon model in a levitated sensor
experiment. Nevertheless, we continue to expect that the levitated sensor will behave
similarly to an L-shaped interferometer in the limit of small 𝑥𝑠.

Next, let us compare the PSD found above to the predicted strain sensitivity
of optically-levitated sensor experiments. The thermal-noise-limited minimum
detectable strain of the optically-levitated sensor at temperature 𝑇CM is given by
Refs. [54, 55] as

ℎlimit =
4

𝜔2
0ℓ𝑚

√︄
𝑘𝐵𝑇CM𝛾𝑔𝑏

𝑀

[
1 + 𝛾sc + 𝑅+

𝑁𝑖𝛾𝑔

]
𝐻 (𝜔0) , (8.54)

where 𝜔0 is the trapping frequency, 𝛾𝑔 is the gas-damping coefficient, 𝛾sc is the
scattered photon-recoil heating rate, 𝑏 is the bandwidth, 𝑀 is the mass of the sensor,
and 𝑁𝑖 = 𝑘𝐵𝑇CM/ℏ𝜔0 is the mean initial phonon occupation number. The cavity

response function is 𝐻 (𝜔) =
√︃

1 + (2F/𝜋)2 sin2(𝜔ℓ𝑚/𝑐), where F is the finesse of
the cavity. Detailed expressions for all of these quantities can be found in Refs. [54,
55].

The peak frequency response of the experiment occurs at the trapping frequency 𝜔0,
at which oscillations of the levitated sensor are resonantly enhanced. The trapping
frequency can be widely tuned via the laser intensity [55]. Thus, the sensitivity curve
for the levitated sensor can be obtained by continuously varying the locus of the
sensitivity curve for each fixed value of 𝜔0, as given by Eq. (8.54).

In Fig. 8.10, we plot the strain sensitivity of the levitated sensor experiment from
Ref. [55] (with a sensor consisting of a stack of dielectric disks) against the PSD of
the pixellon model from Eqs. (8.50)–(8.52). In Fig. 8.10b, we additionally include
an IR cutoff 𝜔IR = 1/𝐿 as in Eq. (8.28), where we take the characteristic length
of the system to be 𝐿 = ℓ𝑚 − 𝑥𝑠. This choice comes from the comparison of the
displacement Δ𝑋 with the length fluctuations of an interferometer of size ℓ𝑚 − 𝑥𝑠,
as discussed with relation to Eq. (8.47). Note that Ref. [55] uses a 300 kHz upper
bound for their sensitivity curves, citing limitations of power absorption by the
suspended sensor. From these plots, we observe that the levitated sensor would only
be competitive for detecting the geontropic signal at ℓ𝑚 ≳ 100 m. At the time of
writing, a 1 m prototype of this experiment is under construction, and a 100 m device
is at the concept stage [17, 55]. That these proposed levitated sensor experiments



406

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Pixellon PSD with 𝑥𝑠 = ℓ𝑚/50.
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(b) Pixellon PSD with 𝑥𝑠 = ℓ𝑚/10.

Figure 8.9: Pixellon PSD 𝐶̃Δ𝑋
T (𝜔, 𝜃) as it would appear in an optically-levitated

sensor [Eq. (8.52), solid lines] shown alongside the PSD of an ordinary L-shaped
interferometer 𝐶̃T (𝜔, 𝜃) [Eq. (8.31), dashed lines]. We take the length of the L-
shaped interferometer to be 𝐿 = ℓ𝑚 − 𝑥𝑠. All PSDs are computed without an IR
cutoff.

are not competitive for constraining the pixellon model is expected: their reach in
frequency is such that 𝜔ℓ𝑚 ≪ 1, whereas the pixellon signal is expected to peak
at 𝜔ℓ𝑚 ∼ 1. Finally, let us note that, although the levitated sensors do not move
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(a) Strain without an IR cutoff.
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(b) Strain with an IR cutoff 𝜔IR = 1/(ℓ𝑚 − 𝑥𝑠).

Figure 8.10: The pixellon strain (dashed lines) overlaid with the predicted strain
sensitivity for a stacked-disk levitated sensor (solid lines), as given by Fig. 3 of
Ref. [55]. The color coding corresponds to the size ℓ𝑚 of the levitated sensor. The
pixellon strain is computed from Eq. (8.52), and we set 𝑥𝑠 = ℓ𝑚/10 throughout.

along geodesics, but instead have amplified non-geodesic movements, the same
amplification factors are applied to motion induced by the noisy thermal force. In
this way, because the device is limited by thermal noise [17, 55], comparing the
displacement (8.46) and the thermal strain (8.54), as if there were no trapping, still
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leads to the correct thermal-noise-limited sensitivity.

8.6 Conclusions
We have considered the effect of the geontropic signal, from the VZ effect proposed
in Refs. [1, 2, 4–6], specifically as modeled in Refs. [3, 11], on next-generation
terrestrial GW detectors. We have found that if GQuEST observes spacetime
fluctuations from the pixellon, Cosmic Explorer and the Einstein Telescope will have
a large background to astrophysical sources from vacuum fluctuations in quantum
gravity with which to contend. On the other hand, LISA and other lower-frequency
devices are insensitive to this signal. Note that in making these predictions we
have assumed the physical equivalence of the pixellon model with the VZ effect
for interferometer observables, the proof of which is still the subject of ongoing
first-principles calculations. Even so, given how large the geontropic signal is
expected to be in future GW observatories, our results may inform optimal designs
for GW observatories, whether searching for quantum or classical sources of GWs.
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