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ABSTRACT

In single-cell genomics, we can simultaneously assay hundreds of thousands of cells,
their molecular contents, and how they respond to perturbation, from genetic knock-
outs to environmental changes. This thesis focuses on how to merge experimental
and computational techniques to generate and analyze large-scale perturbation data
for high-resolution systems biology. Beginning at the bench, we demonstrate how
combining large-scale cell atlas surveys with multi-condition experimentation can
illuminate the diversity of cell types across whole organisms and cellular strategies
in response to environmental changes and perturbations. We then investigate the
limitations of current practice in exploratory analysis, and strategies for determin-
ing preservation or distortion of biological insight by these data transformation and
dimensionality reduction techniques. To address these limitations, we demonstrate
how stochastic biophysical models can rewrite the way we interpret complex per-
turbation data, taking greater advantage of the diverse molecular measurements to
develop biological hypotheses about DNA and RNA regulation in cellular function,
development, and disease.
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C h a p t e r 1

INTRODUCTION AND OUTLINE

The Journey of a PhD

This thesis summarizes work to develop experimental and computational methods
for high-throughput perturbation biology. We demonstrate a novel protocol for
whole-animal, multiplexed perturbation in marine organisms, to facilitate large-
scale systems biology in non-standard model systems. To analyze and extract
biological insight from these data, we develop mathematical and statistical tools to
determine distortion of data by common dimensionality reduction and transforma-
tion techniques, and present alternative reduction and visualization approaches. To
further aid hypothesis-driven biological investigation, we present methods which
utilize biophysical and chemical kinetic relationships of the measurements in these
genomics datasets to define the standard tasks of cell type categorization and per-
turbation response analysis through physically-interpretable parameters and cellular
processes.

In the quest to understand the genome, to interpret the “language of life" [55], and the
processes by which this language is translated into function and biological diversity,
we have brought the ‘big data’ approach of the Information Age to genomics. In
this thesis, we tackle both the experimental and computational challenges in ‘big
data genomics’, particularly, how to investigate complex biological systems through
perturbation.

With the development of single-cell RNA sequencing (scRNA-seq) technologies,
we can generate measurements of gene production and regulation, e.g., messenger
RNA (mRNA) expression, across tens of thousands to millions of cells, our ‘units of
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life’. In combination with perturbation of these cells, from assaying various disease
conditions to genetic or drug-based interventions [69, 92], we can not only study
heterogeneous biological systems at high-resolution, but also probe changing states
and their underlying mechanisms. This explosion in data production has also spurred
an ever-increasing development of new methods and analyses to extract insight from
these data types [273]. The parallel, rapid development of machine learning (ML)
methods for large-scale, high-dimensional data [133], has also led to incorporation
of these approaches in biological analysis pipelines. Given this large space of
experimental data types and possible computational method pairings, we will not
address all aspects of experiment and analysis in this thesis, but rather focus on how
question-guided approaches to experimental design and method development can
aid biological interpretation of perturbation data.

We begin this thesis on the experimental side of perturbation biology, Chapter 2,
and how the combination of scRNA-seq surveys of heterogeneous cell populations
with multiplexed experimentation, allows for a tractable, question-first approach to
high-resolution, systems biology. In particular we demonstrate this on a developing
model organism in Chapter 3, to simultaneously reveal the diversity of cell types
across an organism and their cellular responses to environmental perturbation.

From this work, we then identify open challenges and questions that remain in
common practice approaches, defined in Chapter 4, for exploratory analysis of
multifaceted scRNA-seq data. To this end, we investigate how popular methods
for embedding or representing such data in low dimensions (for data summary,
analysis, and hypothesis-generation) are quantitatively limited in their preservation
and representation of biological trends in Chapter 5.

Given these limitations in extracting biological insight from common representa-
tion learning methods, we present an alternative avenue to representation of high-
throughput perturbation data in Chapter 6, with an eye towards scalability not only
in dataset size but also in interpretability, i.e., how new biological measurements are
incorporated into these representations. We use stochastic biophysical models of
transcription for interpretation of perturbation data, rewriting the standard analysis
tasks in scRNA-seq through this medium, and discussing both the limitations as
well as promising extensions of this work, see Chapter 7 and 8, as the reach of
high-throughput genomics continues to expand.

Overall, this thesis aims to demonstrate how to quantitatively realize otherwise
potentially qualitative investigations of high-throughput perturbation biology, and
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to fashion experimentalists with tools, as well as approaches to tool development,
which illuminate the biology underlying their questions and hypotheses.
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C h a p t e r 2

PERTURBATION FOR DECIPHERING THE CELLULAR CODE

Technologies for experimental observation have given us some of the most funda-
mental discoveries in biology, such as the microscopes of Robert Hooke which in
turn illuminated the world of ‘cells’ [117]. In a similar vein, the use of perturbation
to create unique and interrogative experimental settings, has given us fundamental
hypotheses about biological and genetic mechanisms, where the pea plant hybrids
of Gregor Mendel [183], for example, informed an understanding of the inheritance
of traits. A hundred or more years later we now have the ability to both observe
and perturb complex biological systems at unprecedented scale, bringing together
discovery of biological phenomena with mechanistic understanding. To this end,
we begin this thesis by investigating how current technologies can simultaneously
observe and perturb novel biological systems at-scale, allowing us to dive into the
variety of genetic strategies and behaviors cells throughout an organism are employ-
ing. In Ch. 4, 5, and 6, we will then expand upon how current analytical techniques
can better extract the plethora of information stored in these experimental assays, to
produce new observations and new hypotheses.

To better understand the origins and capabilities of the genomics technologies avail-
able today, we begin in the 1950s, where the observations of Hooke and Mendel
have paved the way for the illumination of how our cellular DNA and its ‘genes’ form
the mechanisms of heredity [1]. The development of molecular cloning and DNA
sequencing in the 1970s and 80s, empowered the movement towards understanding
the genome, culminating in the Human Genome Project (HGP) in 1990, with the
goal of sequencing and mapping the complete set of human genes [116]. The onset
of the HGP brought with it developments in high-throughput DNA sequencing, that
enabled large-scale studies of human genetic variations and cataloguing regulatory
and non-regulatory elements of the genome. This inspired efforts like the ENCODE
[78] and GTEx [165] consortiums, to not only map gene annotation to function, but
to ascertain gene behavior or expression in various tissue contexts.

The development of microarrays in 1995 [217], unlocked the ability to assess thou-
sands of genes on a single slide, but still required predefined probes and their
gene targets. Following advances addressed these limitations, in the development of



5

Cell

poly(A) mRNA Capture

Bead

High-throughput Cell Encapsulation and mRNA Capture

Bead

Figure 2.1: Overview of 10x Single-Cell Profiling. Diagram of how 10x beads
and cells are encapsulated in droplets, where cells are lysed and mRNA captured by
their poly(A) tails. mRNA is then reverse-transcribed (RT) to cDNA. Adapted from
10x Genomics.

next-generation sequencing (NGS) and ‘RNA-seq’ [186]. In particular, the approach
of RNA-seq to capture any polyadenylated (poly(A)-containing) mRNAs from the
pooled contents of cells, allowed for a more ‘unbiased’ sampling of these intermedi-
ate gene products. Such protocols are also denoted as ‘bulk RNA-seq’, as the mRNA
molecules sampled come from the bulk (or aggregated) genomic contents of all the
cells pooled. This ability to sample the spectrum of mRNA transcribed from the
genome, the ‘transcriptome’, was then coupled to single cell isolation techniques,
with technologies such as Smart-Seq [201]. This opened up the ability to perform
transcriptome-wide exploratory investigation of individual cells’ gene expression
profiles.

In just the past 10 years, massive developments have scaled up such approaches,
resulting in commercial platforms such as 10x Genomics (Fig. 2.1), which can eas-
ily isolate the mRNA contents of tens of thousands of cells at once for scRNA-seq.
These high-throughput methods often utilize microfluidics to isolate the single cells
[163], and can utilize Unique Molecular Identifiers (UMIs) to label the individual
molecules captured from each cell (Fig. 2.1 ‘UMI’ in subpanel). This allows for
discrete quantification of molecule counts after subsequent sequencing and amplifi-
cation steps. It should also be noted that most commercially available technologies
convert captured mRNA to cDNA prior to sequencing, i.e., cDNA is a proxy for
the mRNA molecules detected (Fig. 2.1). Improved cell capture and transcrip-
tome coverage, have also enabled the production of scRNA-seq ‘atlases’ , where
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an ‘atlas’ denotes detailed delineations of the cell populations which comprise a
heterogeneous system, such as a tissue sample, using the measured transcriptome-
and genome-wide characteristics. In the spirit of the HGP mission, this has given
rise to the Human Cell Atlas mission of building a reference map and resource of
cellular diversity, to both catalogue this diversity and aid mechanistic insight [210].

However, to really tease apart and uncover the components driving regulation,
production and processing of genes across cells, we need to combine study and
observation of these systems with perturbation, be it disease conditions, drug com-
binations, or genetic interference. Perturbation enables inference of causality and
directionality of interactions to, for example, construct models of gene signaling
cascades which in turn control cellular development [9]. To this end, scRNA-seq
techniques can now be combined with multi-condition experimentation, whereby
cells from multiple samples, conditions, perturbations, etc. can be pooled together
for sequencing but retain unique tags from which their original conditions can be
decoded, referred to as ‘multiplexing’ of cells. In addition to multiplexed cells, there
has also been a push towards simultaneous capture of multiple biological entities
per cell, from mRNA and chromatin state information [205] to spatial distribution
of cells and other imaging-based phenotypes [83]. In the 2020s, we thus enter an
era of high-throughput, multimodal perturbation biology.

Looking back on the observations of Hooke and Mendel, this opens up a whole new
world of exploration into the inner workings of cells, to ask questions about how
their genes lead to the diversity of behaviors we observe, at the scale of the individual
cell all the way up to their composite behaviors across an organism [163, 210].
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C h a p t e r 3

QUESTION-FIRST, WHOLE ORGANISM PERTURBATION

For the things we have to learn before we can
do them, we learn by doing them.

Aristotle

This chapter summarizes the contents of [49] by T.C.*, B.W.*, J.G*, A.F.*, L.L,
M.H., F.G., S.C., R.C., E.H., D.J.A., L.P. * denotes co-first authorship. T.C., B.W.,
J.G., R.R.C., E.H., D.J.A., and L.P. conceived of experiments, T.C., B.W., and
J.G. performed the single-cell experiments, T.C. performed whole-organism qPCR,
T.C. and J.G. wrote scripts for processing the data and code for the analysis, T.C.
developed the Google Colab notebooks, T.C., B.W., J.G., A.F., L.L., R.R.C., E.H.,
D.J.A analyzed and interpreted the data, and T.C., B.W., J.G., A.F., L.L., R.R.C.,
E.H., D.J.A., and L.P. contributed to writing and editing the manuscript.

In light of the advancements in high-throughput sequencing described in Chapter 2,
we sought to merge the concepts of cell atlas surveys with multiplexed single-cell
experimentation to take a ‘question-first’ approach to exploring the systems biology
of whole organisms at single-cell resolution. In this way, we use the question of
how this system reacts under some perturbation of interest, to guide which genes
will be extracted for follow-up study and annotation, based on relevance of their
activity (or expression) under the perturbation setting. This outlines an ‘activity-
based’ approach, with less focus on prior annotation or functional understanding of
gene, as compared to the efforts of the ENCODE and GTEx consortiums described
previously.

Combining samples from multiple conditions and individual organisms can be
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costly, and may be confounded by batch effects resulting from multiple distinct
library preparations and sequencing runs [36, 248]. Thus the recent developments
in scRNA-seq multiplexing technology expand the number of samples, individuals,
or perturbations that can be incorporated within runs, facilitating well-controlled
scRNA-seq experiments [92, 102, 178, 179, 233, 235]. Here we merge these
techniques with high-throughput sequencing to demonstrate a powerful experimen-
tal paradigm on a planktonic model organism. We examine the medusa (free-
swimming jellyfish) stage of the hydrozoan Clytia hemisphaerica, with dual mo-
tivations. Firstly, Clytia is a powerful, emerging model system spanning multiple
fields, from evolutionary and developmental biology to regeneration and neuro-
science [27, 131, 152, 153, 227, 234]. While previous work has characterized a
number of cell types in the Clytia medusa [153], a whole-organism atlas of tran-
scriptomic cell types has been lacking. Such an atlas is a critical resource for the
Clytia community, and an important addition to the study of cell types across animal
phylogeny.

Secondly, these emerging multiplexing techniques present new opportunities for
systems-level studies of cell types and their changing states at unprecedented res-
olution in whole organisms. The Clytia medusa offers an appealing platform for
pioneering such studies. It is small, transparent, and has simple tissues and organs,
stem cell populations actively replenishing many cell types in mature animals, and
remarkable regenerative capacity [13, 90, 131, 150, 152, 227]. Furthermore, the
1cm-diameter adult medusae used in this study contain on the order of 105 cells,
making it possible to sample cells comprehensively across a whole animal in a
cost-effective manner using current scRNA-seq technology (see Table S1, S2, Fig.
S1 in [49]). In this work, we generate a cell atlas for the Clytia medusa while
simultaneously performing a whole organism perturbation study, providing the first
medusa single-cell dataset and an examination of changing cell states across the or-
ganism. Our approach also provides a proof-of-principle for perturbation studies in
non-traditional model organisms, using multiplexing technology and a reproducible
workflow with lessened reliance on functional annotation, from the experimental
implementation to the data processing and analysis.

3.1 Experimental Paradigms for Clytia Perturbation
In this study, we compared control versus starved animals, as this strong, naturalistic
stimulus was likely to cause significant, interpretable changes in transcription across
multiple cell types. Laboratory-raised, young adult, female medusae were split into
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two groups of five animals, one deprived of food for four days, and the second fed
daily. We observed numerous phenotypic changes in starved animals, including a
dramatic size reduction reflecting two- to threefold fewer cells [89] (see Fig. S2 in
[49]), and a striking reduction in gonad size. Correspondingly, the number of eggs
released per day decreased [12].

For scRNA-seq , single-cell suspensions were prepared from each whole medusa
and individually labeled with unique ClickTag barcodes [92] using a sea-water com-
patible workflow. Briefly, animals were washed into hypertonic PBS-solution, in
which single-cell suspensions of the organisms were made. Suspension were then
spun down and re-suspended in methanol (with all suspensions steps performed on-
ice). Methanol-fixed samples were labeled with two ClickTag barcodes, denoting
each individual and each condition following the protocol in [92]. Labeled suspen-
sions were then pooled and processed with the 10x Genomics v2.0 workflow and
Illumina sequencing, allowing construction of a combined dataset across organisms
and treatments, without requiring batch correction.

A second perturbation experiment was performed in the same manner, for validation
and assessment of cell type diversity (and technical variation) observed in the first
dataset, as well as extension of the multiplexed approach to investigate the existence
of ‘immediate early gene (IEG)’-like behaviors in Clytia [223], i.e., gene responses
sensitive to more rapid (or subtle) gene perturbations than extreme starvation. We
additionally demonstrated this experimental workflow with the newer 10x Genomics
v3.0 platform. For this study, we exposed Clytia medusae to multiple transient, ionic
stimuli and dissociated 1h later.

For selection of cells for downstream analysis, a separate cDNA library for the
sequenced ClickTags was processed to determine the count of each ClickTag in the
cells captured, selecting for cells with clear expression of two ClickTags (denoting
individual and condition), without significant expression (or bleed-through) of other
tags. For processing of the cells’ cDNA library (obtained from the captured mRNA
), all data was initially processed with the 10x Cell Ranger pipeline, however all
samples were re-analyzed in a streamlined workflow using kallisto|bustools [29,
181]. The count matrices extracted from this workflow represented spliced mRNA
(exon-containing or mature mRNA), though we will discuss the use of other mRNA
types in Chapter 6. A total of 13,673 single-cell profiles derived from the ten
individuals of the first perturbation study five control, five starved) passed quality
control, with high concordance in cell type abundance and gene expression among
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animals in the same treatment condition (see Fig. S5 in [49]). From this gene
expression matrix, we 1) derived a Clytia medusa cell atlas, and 2) generated a high-
resolution resource of the transcriptional impact of starvation across all observed
cell types.

Though the majority of the results in the published work focus on the starvation
perturbation dataset, with the short-term stimulation data, we likewise captured
18,921 single-cell profiles across twelve animals, with three animals each in KCl-
treated, DI water-treated and SW (control seawater) conditions. We could thus not
only compare the recovered cell types between datasets, but also identify candidate
genes with IEG-like properties across many cell types, including neurons [223] (see
Fig. S6, S8, Table S4 in [49]), by looking for genes with significantly different
expression patterns in each condition. IEGs are valuable tools in neuroscience,
to identify neurons that are active following a specific stimulus or behavior [223].
This methodology is thus able to detect transcriptional responses across diverse
stimulus-response paradigms.

3.2 A Clytia Cell Atlas
To generate the cell atlas, we clustered the cells using the gene expression ma-
trix across all starved and control individuals, extracting 36 cell types and their
corresponding marker genes. Following standard practice, cells were selected that
displayed higher total UMI counts (across genes detected) than the inflection point
on the plot of total UMIs per cell vs. ranked cell barcodes (in descending order)
(the ‘knee-plot’) [134, 262]. Cells were then scaled to have total cell counts of 104

(across genes) and log1p normalized [171]. For clustering, the Louvain algorithm
for community detection [61] was used, after applying highly variable gene (HVG)
selection and principal component analysis (PCA) to the reduce the data to 60 di-
mensions [134, 171]. These 36 clusters thus represented the extracted cell types,
where marker genes for these cell types were selected as genes displaying significant
differences in expression patterns between types, e.g., through the non-parametric
Wilcoxon rank-sum test.
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a b

c d

Figure 3.1: The Clytia Medusa Cell Atlas. a) 2D UMAP embedding of cells
labeled by seven cell type classes. Class colors are retained in panels b, c, and
d. b) Heatmap of top marker genes from the sequencing data with 36 Louvain
clusters comprising the seven cell type classes. c) In situ hybridization patterns
for a selection of cluster marker genes providing spatial location on the animal
(comprehensive set in Fig. S14 in [49]). The label GD denotes general markers for
GastroDigestive cell types. Scale bars: 100 µm. d) Schematics of Clytia medusa,
manubrium, gonad, and tentacle bulb showing the main cell types. Abbreviations
of cell class names GD: GastroDigestive, BC: bioluminescent cells, EM: epidermal
/muscle, GC: gland cells, SC: stem cell/germ cell, NY: nematocytes, NE: neural
cells. Adapted from [49].
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We then generated a low-dimensional representation [180, 255] of these cell types
(Fig. 3.1a) following standard procedure [134, 171], though we will discuss the
quantitative properties of such visuals in Chapter 5. We grouped the cell types
into seven broad classes (Fig. 3.1a) which correspond to the outer epidermis, the
inner gastrodermis, and to likely derivatives of the multipotent interstitial stem cell
population (i-cells). I-cells are a specific feature of hydrozoans, and are particularly
well characterized in Hydra, where they generate neural cells, gland cells, and
stinging cells (nematocytes), as well as germ cells [27, 110, 225]. Our dataset was
derived from female medusae so it lacks male germ cells, and late stage oocytes are
expected to be too large for capture by the dissociation procedure. The 36 cell types
were concordant between the two separate multiplexed experiments (‘Starvation’
and ‘Stimulation’). For some of them, cell type identity could be assigned on the
basis of published information on gene expression in Clytia and/or of homologous
genes in other animals, while for the others we performed in situ hybridization for
selected marker genes. Previously known cell types apparent in our data included
i-cells [151] and nematocytes at successive stages of differentiation [56, 65, 239], as
well as oocytes [246], gonad epidermis, manubrium epidermis, and bioluminescent
cells in the tentacles that each express specific endogenous green fluorescent proteins
(GFPs) [86].

In situ hybridization for a selection of diagnostic muscle cell type genes allowed
us to describe cell types making up the smooth and striated muscles, for instance,
distinguishing the striated muscle cells lining the bell (subumbrella) and velum
(Fig. 3.1c,d; see Fig. S14 in [49]) [150, 234]. Within known cell types, clustering
revealed an unappreciated degree of cell heterogeneity, yielding novel subtypes.
For example, eight cell types could be distinguished within the gastrodermis, six of
which were designated gastro-digestive (GD A-F) on the basis of a largely shared
set of marker genes (Fig. 3.1b), including enzymes associated with intracellular
digestion, such as CathepsinL [234].

Digestive gland cells fell into five types expressing different mixtures of enzymes
for extracellular digestion. These showed overlapping distributions in the mouth
and stomach regions of the manubrium. Two subtypes of gland cells (type C and
E) were also present within the gonad gastroderm. Four broad clusters correspond-
ing to neural cells each appeared to represent mixed populations, and could be
subdivided by further analyses to define 14 likely subpopulations of neurons (see
below). Seven major clusters could be assigned identities as nematocytes (the sting-
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ing cells of the jellyfish) at different developmental stages, where surprisingly the
more mature nematocytes, later distinguished by in situ hybridizations, showed lit-
tle enrichment of known nematocyte markers but highly conserved proteins of the
actin-rich ‘stereovilli’ of vertebrate hair cells.

A remarkable feature of the Clytia medusa is that it constantly generates many
cell types, notably neural cells and nematocytes from prominent i-cell pools in the
tentacle bulb epidermis [65], as well as at other sites [151]. Within our dataset, we
thus expected to be able to capture dynamic information relating to the development
of i-cell derived cell types, similar to that extracted from Hydra polyp single-
cell transcriptome data [225]. Unlike Hydra, we found no clear developmental
connection between i-cells and gland cells, and little to no expression of markers
of the common neuronal-gland cell precursors identified in Hydra [225], though
potential connections appeared in the 2D embedding, leading to the investigations
in Chapter 5.

To identify how far along the development pathway(s) the nematocyte and neural
cells were, we used pseudotime analysis [105] to assign values to each cell along
the trajectory from i-cell to ‘mature’ nematocyte or neuron (using the PCA-reduced
data as input) . The purpose of this analysis was to uncover known as well as novel
genes related to these development progressions. This revealed expression of genes
not previously associated with nematocyte development (such as Znf845 and Mos3),
and the downregulation of known nematocyte-markers into the development of the
mature cells, with this downregulation linked to expression of rare markers such as
the M14 peptidase. We identified genes changing over the course of pseudotime
through a random forest regression model, determining which genes were good
predictors of a cell’s pseudotime (grouping these pseudotime values, between 0 to
1, into quantiles).

The neurons in contrast, appeared to have a more clustered structure, of distinct,
mature subpopulations, though in future more quantitative measures of model fit
between discrete or continuous data representations such as presented in [81] could
be used. We thus re-clustered the neural supergroup in Fig. 3.1b, selecting HVGs
just over these cells (and performing the same PCA-reduction prior to clustering).
Interestingly, we found clusters marked by distinct and specific expression of putative
neuropeptide precursors, further validated with in situ hybridization. Several of these
neuropeptides were previously regarded as unlikely candidate sequences, based on
sequence homology. However in combination with specific expression or activity in
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these neurons, we were able to re-identify these sequences as neuropeptide markers.
Other forms of neurotransmission (e.g., chemical neurotransmission) were harder
to identify in Clytia, based on expression patterns alone (also due to low sequence
homology), but deeper sequencing and unbiased transcript capture (as well as protein
readouts) may provide greater insight.

3.3 Cell State Shifts in Response to Starvation Across the Cell Atlas
To assess the transcriptional impact of starvation, we mapped individual cells to their
corresponding control or starved labels. As there are around 60% fewer cells in a
starved animal (see Fig. S2 in [49]), we first asked whether there were significantly
different numbers of cells per cluster between control and starved conditions. We
found that only one cluster had a significant difference (cluster 11, early nemato-
blasts in Fig. S5B in [49]), suggesting a nearly uniform reduction across cell types
in the starved condition. Given the cell type resolution of the atlas, as determined
operationally by clustering, we then asked how drastic the transcriptional changes
incurred by perturbation were in comparison to the transcriptional differences defin-
ing the cell types, i.e., are the perturbation-induced changes encompassed within
these cell type designations or are they larger in magnitude. We thus compared
distances between control and starved cells within clusters to the distances between
clusters (across all their cells). As a metric we used the 𝐿1 distance, the sum of
the absolute differences between centroid coordinates in PCA-reduced space . We
found that the 𝐿1 distances between control and starved cells within a cell type,
versus between cell types (regardless of condition), formed nearly non-overlapping
distributions (Fig. 3.2a). This suggests that, overall, in Clytia the transcriptional
responses to starvation are defined by cell state shifts, and their cell type repertoire
is well represented by the original clusters. We chose to use the 𝐿1 distance metric
as it tends to better retain relative distances in high dimensions, particularly in com-
parison to the commonly used Euclidean distance or other higher 𝐿-norms [2, 192],
also discussed in Chapter 5.
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internal distances, and clusters with smallest distances are denoted. Inset illustrates
inter- and intra- 𝐿1 calculations. b) Workflow for extracting ‘perturbed’ genes per
cell type and clustering on genes to extract ‘modules’. Visualization of perturbed
genes (among the embedded modules) of early oocytes (cluster 35). Violin plots
showing expression profiles for several perturbed genes in functional categories of
interest. * p-value < 0.05 from non-parametric Wilcoxon test. Horizontal lines
show quartiles and width of violins denote density of points. c) Confocal sections
through gonads from control and starved medusae with cell morphology revealed
by phalloidin staining of cell boundaries (magenta/grey). The first panel of each
row shows co-staining of nuclei with Hoechst (blue) and endogenous GFP4 (green)
in the outer epidermis (epi). Vitellogenic oocytes (vo) are largely absent during
starvation, leaving a majority of pre-vitellogenic oocytes (po). The gastroderm
(g) is heavily reorganized, with evidence of active phagocytosis (vesicles arrowed)
and disintegrating oocytes (asterisks). The third panel in each row is a higher
magnification of the boxed area in the second panel, and the fourth panel shows a
second example gonad for each condition. Scale bars all represent 50µm. Adapted
from [49].
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However, the impact of starvation was variable across cell types, as reflected by the
range of internal (state) distances (Fig. 3.2a). Starvation produced the largest per-
turbations in cells of the gastrovascular system, causing control-vs-starved distances
large enough to overlap with the smallest inter-type distance, i.e., that between the
stem cells and nematocyte precursors (Fig. 3.2a). This distinction between state
shifts and type was also clearly visible in the lack of overlap between the distribu-
tions of inter- and intra-cluster distances within the second, stimulation experiment
(see Fig. S6E in [49]). Though classification and distinction of cell state and type
is a complex task [249], this analysis, based on relative distance in transcriptional
space, provides a quantitative basis for delineation of type/state effects that may be
useful in other contexts. We additionally validated the ability of this method to
recapitulate the magnitude of state shifts in response to graded stimuli as well as
state versus type distinctions, on two other published, multi-perturbation datasets
(see Fig. S19 in [49]).

To characterize gene-level responses underlying these starvation-induced shifts, we
then asked if responses are shared or unique across the cell types and compared
the extent of the responses, in terms of gene quantity and expression level, across
the atlas. For each cell type, we collected genes that were differentially expressed
under starvation (‘perturbed genes’ Fig. 3.2b), and clustered perturbed genes into
apparent ‘gene modules’ [250] by their patterns of co-expression across cells. This
effectively uses the same clustering procedure as above, but on a transposed cell x
gene matrix. We assigned putative functions to these gene modules through GO term
enrichment, giving a global view of affected processes (see Fig. S20 in [49]). We
found that certain gene modules were broadly shared across cell types, while others
were almost entirely cell type-specific (see Fig. S20 in [49]). Striking examples
include gene module 5, which is enriched in proteolytic genes (see Fig. S20 in
[49]) and has shared expression across multiple GD cell types. In comparison,
gene module 3 is largely composed of early oocyte gene expression ( 70%), and is
enriched in cell cycle and developmental genes, which are commonly enriched in
growing oocytes (Fig. 3.2b). Changes in expression of these genes likely reflect the
processes of oocyte phagocytosis activated in the gonads of starving animals (see
below).

To examine how individual perturbed genes are distributed across cell types, we
visualized, for each cell type, how many perturbed genes it had, and how many of
these genes are unique versus shared with other cell types (see Fig. 6E in [49]). We
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found a large number of perturbed genes ( 72%) were cell type specific. For the most
perturbed cell types, we examined whether the state shifts that we had observed were
due to changes in a large or small number of genes, and how highly these genes were
expressed. Consistent with the marked shrinkage of the gonads during starvation
treatment, early oocytes contained the highest number of perturbed genes, which
were spread across many gene modules (Fig. 3.2b).

In accordance with these distinct responses in GD cells and oocytes, comparison
of the cellular organization of gonads from control and starved medusae revealed
major reorganization of both the gastrodermis and the oocyte populations (Fig. 3.2c).
Most strikingly, the population of mid-sized, growing oocytes, which progress daily
through vitellogenesis in conditions of normal feeding [12], was largely depleted
following starvation, leaving a majority of pre-vitellogenic oocytes (Fig. 3.2c). A
sparse population of large oocytes in starved gonads likely results from growth of a
minor subpopulation of oocytes fueled by recycling of somatic tissue and oocytes
(disintegration and phagocytosis of smaller oocytes visible in Fig. 3.2c, asterisks).
Consistently, GD cells in many parts of the gonad lost their regular epithelial
organization and, despite the absence of any external food supply, showed evidence
of active phagocytosis involving variably sized vesicles (arrows in Fig. 3.2c).
Changes in organization and activity of the gonad gastrodermis were also evident
from in situ hybridization images for the GD cell marker CathepsinL, while reduced
expression was confirmed for a protease (ShKT-TrypA) expressed in gland cell types
A and B positioned within the manubrium gastroderm, which is down-regulated
during the starvation treatment. Shifts between gonad gastrodermis organization
and transcriptional profiles induced by starvation thus accompany activation of
tissue autodigestion programs, and likely also the mobilization of GD cells (termed
MGD for Mobilizing Gastro Digestive cells [227]) from the gonad through the
gastrovascular canal system, which has been observed both under conditions of
starvation and during regeneration of the feeding organ.

3.3.1 Perturbation Responses to Short-Term Stimulation Across the Cell Atlas
In addition to the starvation data results, for this thesis we additionally highlight the
results of the short-term stimulation for potential IEG discovery. As shown in Fig.
3.3a, each animal was given repeated bouts of stimulation over 30 minutes, with
each stimulus administered every 2 minutes. 100 uL of each stimulant (150 mM
KCl, DI water, or seawater (SW) as a control) was gently added just below (or just
above for KCl) each medusa by pipette. Stimuli were chosen based on their ability



18

to reliably induce crumpling behavior, a protective response in which the bell is
drawn in towards the mouth using the radial muscle [121].
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Figure 3.3: Clytia Response to Ionic Stimuli a) Diagram of the ‘Stimulation’
experiment. Four biological replicates (animals) used for each condition. SW
denotes seawater (control), DI denotes deionized water, and KCl denotes potassium
chloride. 30 minutes following the last stimulation, animals were dissociated and
fixed in methanol. b) Summary table of numbers of up- and down-regulated genes
in each cluster. *Denotes highest number of DE genes in 5, terminal differentiating
nematocytes. c) Volcano plot of p-value and fold change for DE gene candidates.
Dashed line denotes 0.05 alpha cutoff. Colors indicate the number of cell types a
gene is found to be DE in. d) Fold change per condition across all cells for global
(DE in many cell types), ‘IEG’ candidates. e) qPCR for DE gene candidates in d in
both conditions. f) Volcano plot of upregulated DE genes in Neural Cells-9 (cluster
9), the majority of neural cells, colored by perturbation condition. Gene names
denote selected candidates. g) Expression for cells in each condition of upregulated
DE genes found in Neural Cells-9 (cluster 9) using the non-parametric, Wilcoxon
test. P-values adjusted for multiple testing with Benjamini-Hochberg correction. *
denotes p-value < 0.01, ** denotes p-value < 0.001. Adapted from [49].

We, similarly to the starvation analysis above, extracted differentially expressed or
‘perturbed’ genes in each cell type, with fold changes from the sequencing data (for
perturbed genes represented in multiple cell types), and their subsequent qPCR fold
changes shown in Fig. 3.3c-e. We then delved into the perturbed genes in the neural
cell supergroup, pulling out candidate IEGs (i.e., genes with increased expression
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within an hour time window) that demonstrated increased expression in both DI
and KCl conditions, or only in the KCl condition (Fig. 3.3f,g). Further work to
both characterize and implement such genes as cell activity markers could then be
performed, given the genetically tractable features of the Clytia model [260].

3.4 Implications and Extensions of Whole-Animal Multiplexed scRNA-seq
The Clytia medusa single-cell atlas presented here is an important addition to the
growing number of single-cell atlases across the animal tree of life. This provides
the first cell-level transcriptomic characterization of a pelagic medusa stage, the
most complex of the life cycle forms within the large and diverse phylum Cnidaria.
Reflecting this complexity, we found greater cell type diversity in the Clytia medusa
than in its polyp-only hydrozoan cousin Hydra [225]. The outer, epidermal body
layer could be sub-divided into seven clusters encompassing all of the described
Clytia muscle types, including two types of fast-contracting striated swimming
muscle [150, 234]. Rich diversity was also uncovered in the inner gastroderm layer,
which is elaborated in the medusa into distinct digestive compartments (mouth,
stomach, gonad, and tentacle bulb) and also generates the thick mesoglea (jelly)
characteristic of the medusa form. Our starvation experiment analyses revealed
that these clusters were maintained operationally as distinct ‘cell types’ rather than
‘cell states’ between the two extreme conditions tested, but we cannot rule out that
responses to other environmental or physiological perturbations may reveal plasticity
between these clusters, for instance transdifferentiation between muscle and nerve
cell types is well documented in hydrozoan medusae (overview in [150]).

In addition to the epithelial cell types of the epidermis and gastroderm, our single-
cell atlas confirms the presence of an interstitial stem cell (i-cell) population in
Clytia providing a similar set of somatic cell types to that described in Hydra,
as well as the germ cells [151, 225]. In this medusa data we do not find strong
evidence for direct progression from i-cells to gland cells, or for the shared neural-
gland cell progenitors described in [225]. In contrast, our pseudotime analyses
provide transcriptional signatures of the progressive stages of nematogenesis and
neurogenesis from i-cells that will guide future studies of their developmental regu-
lation. The large representation of nematogenic stages in this Clytia medusa scRNA
dataset allowed us to link two distinct phases of nematocyte formation with ex-
tremely different transcriptional profiles. The initial phase covering nematocyst
formation has been the focus of many studies [56, 64, 65, 239], but the terminal
phase has been largely overlooked in previous transcriptomics studies, likely due to
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the relatively low mRNA content [56, 225] and the extremely abrupt degradation
of nematocyst-related mRNAs before the terminal phase [239]. We uncovered 14
mature neuronal subtypes in Clytia, which is similar to the number reported in
Hydra and Nematostella [220, 225]. It is likely that further heterogeneity exists
within these 14 subpopulations. Spatial expression analysis of neuropeptides that
contributed to the signatures of one or more subpopulations revealed a wide variety
of neuronal populations either associated with specific anatomical structures, such
as the tentacles, nerve rings, and manubrium, or distributed across the medusa. How
molecular cell type maps to function both within and across body parts, the roles of
these peptides as primary transmitters and/or neuromodulators, and the uses, if any,
of classical, small-molecule neurotransmission, remain unknown. Moving forward,
with this cell atlas as the foundation, the ability to perform whole-organism, multi-
plexed scRNA-seq, in combination with emerging genetic tools and advantageous
life history traits, makes Clytia a powerful, tractable platform for high-resolution
systems biology.

This work further serves as a case study in using multiplexed single-cell transcrip-
tomics to assess cellular responses to whole organism perturbations, and provides
a guide for deployment in other organisms. The techniques for multiplexed exper-
imentation that underlie this study are also well suited to large-scale perturbation
studies (such as temperature, pH, or other environmental disturbances) in other
marine organisms given the sea-water compatible workflow. Though the inclusion
of multiple animals and conditions may currently limit the detection of very rare
cell populations, as sequencing costs drop and cell throughput in scRNA-seq grows,
this approach should become tractable for larger, more complex systems. The lack
of library-induced batch effects demonstrates how large-scale experiments can be
conducted without introduction (or minimizing introduction) of confounding factors
from multiple experiments, which can be highly non-linear and difficult to account
for [248]. The second perturbation dataset also demonstrates both how batch ef-
fect variability is reduced within multiplexed experiments (see Fig. S11 in [49]),
by comparing the greater 𝐿1 distances between control cells in PC-space of the
two experiments, versus the smaller 𝐿1 distances between control cells within each
experiment.

By relying on expression, our strategy reduces the reliance on prior gene functional
annotation, using specificity of expression to identify genes of interest, allowing for
targeted annotation. This includes determination of strong diagnostic markers for
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cell type definition, cell type specific and shared transcriptional responses to starva-
tion, and ‘modules’ of co-expressed genes underlying these responses. The extent
of these expression-based changes additionally highlights areas of the organism’s
biology that are strongly or uniquely affected by a perturbation. By applying simple
and interpretable quantitative analyses to the various cell-type specific perturba-
tion responses, we revealed the large-scale downregulation of gene expression in
two GastroDigestive cell types and severe disruption of oocyte development under
starvation. Together, this approach dramatically lowers the barriers for working
with non-traditional models, and affords opportunities to match uniquely suited
organisms to specific questions. Moving forward, the combination of scRNA-seq
and other sequencing-based genomics techniques with multiplexing and annotation-
agnostic analyses, could foster comprehensive high-resolution molecular studies of
diverse organisms and their responses to numerous environmental perturbations.
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C h a p t e r 4

COMPUTATION FOR DECIPHERING PERTURBATION

In Chapter 3, we begin with a cell x gene matrix of molecule counts, and by
the end, define an atlas over the populations of cells in this matrix, and extract
perturbation responses or changes in expression, across those populations. As
demonstrated in Chapter 3.2, there are several steps to processing this matrix just to
obtain clusters (cell types) or compare expression between clusters. In this section
we will review the standard data processing steps in scRNA-seq analysis, largely
focused on methods implemented in the Python package scanpy [262] as much of
the whole organism data processing utilized this workflow. We will not focus on the
upstream processing of sequencing reads (e.g., FASTQ files) into count matrices,
though the use of reference annotations and alignment algorithms in these steps are
important in the interpretation of the produced counts [237]. We will begin with
processing and transformation techniques applied to the count matrix, then touch on
common approaches used to perform exploratory analysis of such datasets. Given
these common techniques, we will then summarize analysis methods specifically
for perturbation datasets and multimodal data, and their relation to the standard
processing pipeline. In the proceeding Chapters, we will then address limitations of
and alternatives to current practice.

4.1 Standard Count Processing
The count matrix, for mRNA expression, begins as a discrete count matrix of
mRNA molecules per annotated gene or transcript. Current count matrices are
actually comprised of multiple types of counts, e.g., nascent (intron-containing or
unspliced) and mature (exon-containing or spliced) mRNA, thus there are in fact
multiple biological measurements to consider (multiple matrices) within already
published datasets [46, 237]. Though we focus only on spliced mRNA in Chapter
3, we will address the utilization of both mRNA modalities in Chapter 6.

First steps in scRNA-seq processing often include filtering out ‘cells’ that seem like
empty droplets (for example in 10x Genomics) with spurious mRNA capture, and
filtering for genes that have non-zero expression in the samples as well as for HVGs
, i.e., genes that are likely variable as a function of the biological heterogeneity or
cell types in the data [17]. This additionally reduces the number of genes from tens
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Figure 4.1: Count Pre-processing. Matrices are subset for cells and genes that
meet expression criteria, and then transformed.

of thousands to a few thousand or hundreds of genes. Gene selection in common
analysis packages [207], can require transformation of counts (into a continuous
regime) prior to selection (see below).

Certain transformations are commonly applied to the count matrix, with the goal of
removing noise and extracting biological signal. Counts are first ‘depth-normalized’,
where for each cell their total counts are scaled to some common total value, then the
counts are log-normalized (often with log1p) [5]. The depth-normalization assumes
that sampling biases between cells are the same across all genes for the cell and
result from only technical sources of variation (though it may be the case that such
differences are due to ‘true’ biological heterogeneity).

Log-normalization represents a variance-stabilization transformation, that removes
the relationships between mean and variance of genes (i.e., that higher mean genes
have higher variance). ScRNA-seq counts often appear negative-binomial (dis-
playing overdispersion) [5, 241], and the variance stabilizing transformation for a
negative-binomial, as derived by Francis Anscombe, can be formulated as a similar
log-transformation of the data [5]. The motivation for using such transforms is often
for use with techniques such as PCA (see Chapter 4.2 below) and linear regression,
i.e., approaches assuming homoscedasticity and/or where it is not desirable to have
variance in data driven solely by high-expression genes [134]. There are other ap-
proaches to normalizing and transforming count data, however recent benchmarks
have shown that many techniques create unintended effects on the counts (and re-
sulting trends), thus there is a lack of consensus on the transformations to apply
beyond those described here [5].

4.2 Computational Methods for Exploratory Analysis
Often the goal of generating scRNA-seq datasets is to come up with new questions
and investigations of a biological system, which may or may not concord with some
previous set of hypotheses or assumptions. This follows in the spirit of the ideas of
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Figure 4.2: Reduction of Data for Exploratory Analysis. Diagram of how subset
count matrices are then transformed through dimension reduction for analysis and
visualization. Colors denote ‘cell types’.

John W. Tukey, who coined the term ‘exploratory analysis’, where, as he put it, “[it]
is not enough to look for what we anticipate. The greatest gains from data come
from surprises" [251]. How well common practice actually follows the principles
of exploratory analysis outlined by Tukey, is discussed in further detail in Chapter
5.

One of the most common techniques used to explore scRNA-seq data is principal
component analysis (PCA) . PCA is used to reduce the dimensionality of the input
data matrix (by selecting only the top principal components that capture more of
the variance in the data), and ideally to remove noise [134, 139]. Count matrices
are reduced to tens of dimensions (by PCA), then used as input into downstream
analyses like unsupervised clustering, to extract populations of cells which display
similar gene expression patterns (and potentially biological functions) [262]. Visu-
alization of the transformed cells in 2 or 3D PCA-space, are also used to assess what
biological properties the components are extracting [208]. Other techniques, such
as nonnegative matrix factorization are also used methods to similarly represent the
count data prior to downstream analysis [52].

As described in further detail in Chapter 5, several exploratory analyses often follow
PCA reduction, to generate directions of investigation. These include low-dimension
embeddings of the data, clustering, and pseudotime or trajectory inference, all often
done in an unsupervised manner. To briefly summarize these areas, low-dimension
embedding methods are used to find 2 or 3D representations of the data that display
the relationships between the cells in the dataset [134, 139, 180]. Unsupervised
clustering, usually through methods like K-Means or graph-based clustering meth-
ods like Louvain [61] or Leiden [247], is performed on the data to learn which
cells cluster together based on expression similarities. And pseudotime or trajectory
inference methods [214] are used to infer continuous relationships between cells,
assuming cells are captured at different stages along some developmental timeline
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or cellular process.

Each of these methods may or may not take in the count matrices in the same
form. Most low-dimension embedding methods (particularly for visualization) use
the normalized and PCA-reduced data, and similarly so for common clustering and
trajectory inference approaches. More recent deep learning methods, based on
variational autoencoders [137], which learn reduced, latent representations of the
data for use with clustering methods (or other downstream analysis), can model
the raw counts explicitly (as discrete count distributions) without normalization and
PCA-reduction [166].

4.3 Methods for Analyzing Perturbation Data
With the advent of high-throughput perturbation data, there has also been devel-
opment of analysis methods to extract insight from these data types in particular.
Methods generally touch on two applications, modeling and prediction (though both
can overlap within the same method) [125]

Figure 4.3: Single-cell Perturbations. Diagram of how perturbations are applied
to single cells, where analysis addresses the interpretation of their effects (the ‘?’).

More modeling-focused approaches, seek to understand how a perturbation affected
a system through population-specific responses and interactions between features of
the system (gene-gene interactions, for example). Causal inference approaches have
begun to tackle the gene network inference problem using these high-throughput
intervention (perturbation) data [31, 54]. Simpler linear regression models, such
as in MIMOSCA [69], model the changes in gene expression as functions of the
perturbations, specifically genetic interventions, to determine the contribution of
each intervention to the final, observed expression patterns. Discerning populations
of cells with differing perturbation responses is also of interest, following from the
clustering task described above, with methods ranging from mixture model-based
approaches to graph-based clustering techniques [34, 52].
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The more prediction-focused approaches, aim to draw from the large datasets span-
ning several perturbation conditions, cell types, and potentially species, to predict
responses to perturbation (e.g., change in gene expression) often using deep learning
approaches [125, 170]. Data may also include protein information and phenotypic
readouts of the cells, and thus the prediction may also involve predicting drug
targets, perturbation interactions, and changes to chemical properties induced by
perturbation [122, 125].

Each method likewise comes with its own requirements for normalization of the
data prior to application, and potentially dimension reduction as well. The standard
exploratory analysis techniques described above, are also often employed along-
side these perturbation-specific methodologies, to visualize and assess the learned
representations [127, 170].

4.4 Analysis Extensions to Multimodal Data
Though we will not delve into the details of all current techniques for data type
(modality) or batch integration in this thesis, scRNA-seq count matrices may ad-
ditionally come from different experiments or sequencing runs (not multiplexed
together, for example), containing technical biases as a result, that potentially drown
out the biological similarities between the samples [108, 253]. In addition, measure-
ment of multiple biological entities, from nascent and mature mRNA to chromatin
openness and protein counts, result in multiple data matrices to be used together in
analyses.

Figure 4.4: Processing of Multimodal Data. Diagram of modality-specific count
matrices, transformed through some function or method, to produce a final, inte-
grated representation.

There are thus numerous approaches to ‘integrate’ matrices prior to exploratory
analysis [19, 108, 253]. Methods range from simply downsampling count matrices
[253] across batches to merging nearest neighbor graphs across the modalities or
batches [108] to deep learning approaches which learn shared latent representations
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incorporating the modalities and batches present in a dataset [42, 91]. How well
the integrated representations are suited to the possible downstream analysis tasks
(such as clustering, differential expression, trajectory inference, etc.) has yet to be
completely benchmarked, and current analyses demonstrate a tendency to remove
biological variation (rather than or in addition to technical variation) during the
integration process [19, 253]. We will discuss alternative approaches to this question
of modality integration in Chapter 6, through biophysical modeling of technical and
biological variation in molecule counts.
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C h a p t e r 5

DIMENSION REDUCTION FOR EXPLORATORY ANALYSIS

Biological Distortion
in Practice

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John von Nuemann

The opening stages of an scRNA-seq perturbation dataset analysis often contain
the preprocessing and exploratory analysis tasks of Chapter 4.1 and 4.2, as demon-
strated in the whole organism analysis of Chapter 3.2. In particular, it has become
increasingly common to utilize low-dimensional embedding methods to both open
up exploratory analysis of such datasets (generate lines of inquiry) and to ‘validate’
results of other analysis tasks (such as clustering) [134, 145]. However, the proper-
ties of such methods, most commonly the UMAP [180] and t-SNE [255] methods for
embedding and reduction of data, are not well defined, with previous works noting
preservation, or lack thereof, of local and global relationships between embedded
points [57, 139]. When examining a dataset such as the Clytia atlas through this lens,
this raises questions of what observed patterns we can trust, how to quantitatively
assess these patterns, and what the visualization overall is attempting to highlight
from the data?

This initially prompted an investigation of how such embedding methods could
be adapted to more explicitly preserve quantitative properties, such as distances
between cell types in gene-space, in 2 or 3 dimensions. However, coupling more
quantitative objectives with the objectives/algorithms of t-SNE or UMAP resulted in
distortion of whatever quantitative preservation was obtained by the first objective.
This then inspired an investigation into the properties of common practice, low-
dimensional embedding for exploratory analysis and the extent to which biological
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insight is preserved (or distorted).

5.1 The Specious Art of Single-Cell Genomics
This section summarizes the contents of [48] by T.C and L.P. T.C. and L.P. conceived
of the study, T.C. performed analysis and developed code, T.C. and L.P. wrote and
edited the manuscript.

Ostensibly, the goal of dimensionality reduction of high-dimensional genomics
data is to filter noise, enable tractable computation, and facilitate exploratory data
analysis (EDA) . The objectives of common techniques thus focus on preserving
and extracting local and/or global structures from the data for biological inference
[134, 139, 267]. Trial and error application of common techniques has resulted
in a currently popular workflow combining initial dimensionality reduction to a
few dozen dimensions, often using PCA , with further non-linear reduction to two
dimensions using t-SNE [255] or UMAP [109, 134, 139, 180]. For single-cell
genomics in particular, these embeddings are used extensively in qualitative and
quantitative EDA tasks which fall into four main categories of applications (Fig.
5.1, ‘Application’):

Local Global Distance

Cluster Validation 
& Relationships 

Trajectory Inference &
Continuous

Relationships

Modality-Mixing,
Integration &

Reference Mapping

Density-Based
Visuals &

Marker Analysis

Necessary Properties

A
pp

lic
at

io
n

- Yes - Optional

Figure 5.1: Necessary Properties for Embedding Applications. Application rows
denote biological tasks, and columns denote which properties are necessary, i.e.,
key geometric properties whose preservation or representation is assumed in the
task. Adapted from [48].
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• Modality-Mixing, Integration, and Reference Mapping:
Embeddings are used to visually assess the extent of integration, mixing, or
similarities between cells from different batches [4, 73, 108] and to compare
methods of integration/batch-correction [112]. For query dataset(s) mapped
onto reference datasets/embeddings, visuals likewise provide an assessment
of merged data similarities or differences [24, 132].

• Cluster Validation and Relationships:
Visual applications range from assessing the existence of and relationships
between predefined clusters, to inferring properties of the clusters (e.g., spread
or heterogeneity) [3, 134, 139], and to generating the clusters themselves
from the two-dimensional space (e.g., to define cell types or detect doublets)
[66, 197, 267].

• Density-Based Visuals and Marker Analysis:
Embeddings are used to justify or measure changes in cell populations between
different conditions, by comparing contour locations and sizes in the density
diagrams, as well as changes in intensity or spread of gene expression [16,
130, 230, 244, 271].

• Trajectory Inference and Continuous Relationships:
Embedding applications range from implying or inferring local, continuous
relationships between cells and assigning pseudotime coordinates [40, 146,
214, 250], to using the two-dimensional coordinates for explicit calculations
of magnitude and direction of developmental progression [118, 146, 172].

Inherent in these applications are assumptions of preservation of local and global
cell properties, as well as distances, delineated in Fig. 5.1. For each application, we
demarcate which of these are the ‘necessary’ or key geometric properties that each
task inherently assumes to be represented (and preserved). Based on previous works
[3, 109, 140, 194] and the objective functions of UMAP and t-SNE [180, 255], ‘local’
is defined as nearest neighbor relationships, ‘global’ as neighbor relationships and
properties of groups of cells (e.g., cell types), and ‘distance’ as Euclidean distance
(𝐿2 norm) or Manhattan distance (𝐿1 norm) between points. Note that preservation
of distance implies preservation of local and global properties. We utilize the 𝐿2

norm as it is the default metric of UMAP/t-SNE. We also present results with the
𝐿1 norm (see S1 Text in [48]), as 𝐿1 is more suitable for measuring distance in high
dimensions, particularly in comparison to other 𝐿𝑘 norms [2, 23], and is commonly



31

applied to transcriptomic data [228, 254, 259], with comparable performance to the
probabilistic Jensen-Shannon divergence in single-cell distance calculations [192].

Yet, despite the goals of these methods [109, 134, 267] to preserve local and/or
global structure, there is little theory or empirical analysis to support these claims.
For example, while the popular t-SNE and UMAP methods claim faithful represen-
tation of local and/or global structure in low dimensions [134, 139, 180], there is
evidence they fail in this regard [57, 139], and theorems providing guarantees on the
embeddings rely on numerous assumptions unlikely to hold in practice, and ignore
the preprocessing by PCA prior to non-linear reduction [162].

Here we assess dimensionality reduction for single-cell gene expression, first in-
vestigating the preservation of the necessary properties comprising the columns of
Fig. 5.1, then assessing the impact of these embeddings across the applications
comprising the rows of Fig. 5.1.

5.1.1 Preservation of Local and Global Structure in 2D Embeddings
We begin with the columns of Fig. 5.1, and assess the preservation of these
properties by two-dimensional embedding, as compared to the ambient space or
higher-dimensional PCA space to which the ambient space is initially reduced prior
to reduction to 2D.

‘Ambient’ space refers to the gene count matrix after HVG selection and log-
normalization of the counts with scanpy [262]. We denote ‘PCA-preprocessing’ as
the higher dimensional reduction of the ambient space by PCA, followed by a (non-
linear) reduction to 2D (e.g., ‘PCA-50D→UMAP’) which mimics standard practice.
Additionally, cell annotations or labels (such as cell type or condition) used in the
following analyses were taken from the original studies. All count matrices used in
this analysis contain the spliced mRNA counts only.

All PCA reduction was performed to 50 dimensions by default, unless otherwise
noted. The t-SNE and UMAP algorithms were applied to the higher dimensional
PCA embeddings with default settings. This sequence of dimension reduction
by PCA first, prior to reduction to 2D by UMAP/t-SNE, is denoted as ‘PCA-
preprocessing’. The effect of a single parameter (n_neighbors) change is shown
for UMAP embeddings in Fig. 5,6 and Fig. P,R-V in [48], but we did not adjust
parameters beyond this. As per the discussion in [57], though slight changes in
these aesthetic parameters can drastically impact low-dimensional embeddings, the
choice of parameters for tuning is often informed by empirical observations/prior
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knowledge leaving open the question of which metric(s) to use for determining
‘optimal’ parameters. Notably this tuning is also contradictory to the common use
or desire of such techniques to produce ‘unsupervised’ representations of the data.

Local Preservation

Given the focus on preserving local nearest neighbors in the objectives of the UMAP
and t-SNE methods, we first measured the recapitulation of nearest neighbors in
2D embeddings, as compared to the neighbors defined in ambient space. We
used Euclidean (𝐿2) distance, the default for these non-linear reduction methods, to
define each cell’s 30 nearest neighbors and measured Jaccard distance (dissimilarity)

between the neighbors in embedding and ambient space, defined as 1− |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | where

𝐴, 𝐵 represent the sets of each cell’s 30 nearest neighbors in the ambient and latent
spaces, respectively. A Jaccard distance of 0 denotes completely overlapping sets,
and 1 denotes completely non-overlapping sets of neighbors.

Several in vivo datasets were reduced to 2D, with PCA-preprocessing, including
10x Genomics and SMART-Seq assayed mouse ventromedial hypothalamus (VMH)
neuron datasets [135], an ex-utero cultured mouse embryo dataset (at the E8.5 stage)
and an ex- and in-utero mouse embryo dataset (at the E10.5 stage) from [4], and
a mouse primary motor cortex (MOp) dataset [275]. We additionally reduced cell
culture-derived datasets, with and without external perturbations, including mouse
Embryonic Stem Cells (mESCs) treated in DMSO from [67] and multiplexed mouse
Neural Stem Cells (NSCs) in 96 drug combination conditions (labeled ‘96-plex’)
[92] (see Table A in S1 Text of [48]).
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Figure 5.2: Distortion of Necessary Properties in Embeddings. a) i. Distribution
of Jaccard distance of cell neighbors in PCA-preprocessed 2D embeddings and the
relevant PCA space, as compared to ambient space. ii. Distribution of Jaccard
distance of cell neighbors in PCA-preprocessed 2D embeddings, as compared to
the higher dimensional PCA space. b) i. Boxplot of correlations of cell type
neighbor rankings to ambient space for the PCA-preprocessed 2D embeddings
and the relevant PCA space. ii. Boxplot of correlations of cell type neighbor
rankings to the relevant higher dimensional PCA space for the PCA-preprocessed
2D embeddings. Embeddings generated n=3 times. c) Selection of equidistant
groups with ‘near’ or ‘far’ distances in ambient space. UMAP embedding of the
data in grey circles, with orange circles denoting all cells within the previously
determined equidistant groups. Adapted from [48].
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The 2D t-SNE/UMAP embeddings (e.g., ‘PCA-50D→UMAP’ in Fig. 5.2a) dis-
played large Jaccard distances with respect to the neighbors in ambient dimension,
with an average consistently above 0.7 (70%). Interestingly, the embeddings of the
more homogeneous mESCs dataset displayed relatively higher dissimilarity despite
the small number of cells (see Fig. Bb and Bc in S1 Text in [48]). Poor neighborhood
overlap was additionally retained, and often worsened, without PCA-preprocessing
(i.e., direct reduction to 2D from ambient space). In some cases, the dissimilarity of
neighbors was worse for two-dimensional PCA (‘PCA-2D’) as compared to t-SNE
or UMAP reduction without PCA-preprocessing, consistent with other findings on
the poor preservation of local neighborhoods by both PCA and the non-linear re-
duction methods [57, 139] (see Figs A and Bc in S1 Text in [48]). Similarly poor
neighbor retention from the ambient space was observed in the higher dimensional
PCA spaces as well (‘PCA-50D’ Fig. 5.2a i) [57], particularly for larger datasets.
Even between the PCA-preprocessed 2D embeddings and their corresponding PCA
space, Jaccard distances were consistently above 0.8 on average, regardless of the
dimension of the initial PCA reduction (Fig. 5.2a ii).

Global Preservation

Turning to global relationships, we measured the preservation of the rankings of
neighbors of cell ‘types’ rather than individual cells. Cell ‘types’ denote either
author-provided cell type (Fig. 5.2b ii) or cell condition annotations. Rankings
were constructed from average pairwise distances between the cells of the different
types. For the same datasets as above, and a multiplexed dataset of human monocytes
treated with 40 drugs [52], correlation of cell type neighbor rankings to that of the
ambient space were low (≤ 0.4) in PCA-preprocessed 2D embeddings , and at
least 33% lower than those of the higher dimensional PCA spaces, with warped or
even reversed correlations in comparison to the ambient (Fig. 5.2b i) or relevant
PCA space (Fig. 5.2b ii, see Fig. Ca in S1 Text in [48]). These distortions were
not specific to the distance measure used; we observed similar results when using
the 𝐿1 norm to determine cell type neighbors (see Fig. Cb in S1 Text in [48]).
This is consistent with observations made in other studies [109, 140]. In general,
correlation decreased over each step in the reduction process though there was not a
clear trend related to other dataset properties (see Fig. Da and Ea in S1 Text in [48]).
For analyses of recapitulation of cluster properties such as inferred heterogeneity or
spread, see ‘Clustering Validation and Relationships’ and ‘Embedding Properties
are Arbitrary’ below.
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Distance Preservation

To examine distance preservation, we extracted groups of cells with quantitatively
distinct relationships in the ambient space of the Seurat-integrated [108] ex- and in-
utero mouse embryo dataset (at the E10.5 stage) [4], specifically equidistant groups
of cells, where the distances between cells were all either equally small (‘near’) or
large (‘far’) (Fig. 5.2c). This revealed upwards of 2.5 million such groups, with 3 to
8 cells in each (see Fig. Fa and Fe in S1 Text in [48]). However, once embedded into
two dimensions, these quantitatively distinct groups of cells (orange dots on UMAPs,
Fig. 5.2c) displayed the same dispersion patterns, violating distance preservation,
and rendering these distinct, transcriptomic relationships indistinguishable.

This is not surprising, given previous theoretical work on the limits of distance
preservation in low dimensions, particularly for equidistant points [20, 21, 174].
The Johnson-Lindenstrauss Lemma on the optimality of linear embedding [129,
147, 148] shows that preservation of pairwise distances with a margin of error of at
most 20% for a modestly sized dataset of 10,000 cells would require at least 1,842
dimensions [60]. Distortion is inevitable: as shown in Theorem 1 below, given 𝑛
points embedded in two dimensions, the distortion of the ratio of their maximum
distance, 𝐷, to minimum distance, 𝑑 (‘max/min ratio’), grows as 𝑂 (

√
𝑛) [164].

Induced distortion has been investigated in the literature for various conformations
and embedding of points, e.g., the minimum distortion bound for embedding an 𝑛-
point spherical metric onto a line [20] (akin to pseudotime inference), and the number
of dimensions required to embed a metric space into a low-dimension normed space
(defined by some 𝑙-norm) [174]. However, investigation of the implication of these
bounds in real datasets across the sciences has been limited. In this case, we focus
on equidistant points, which can represent equally similar or dissimilar cells, and
their distortion in two-dimensions to provide a more concrete realization of such
bounds in the context of single-cell gene expression.

A trivial case is the result that no more than three points can be equidistant points
in R2 (no more than 𝑛 + 1 points in R𝑛). This raises the question of how close to
equidistant more than three points in R2 can be as even near-equality is impossible;
specifically, a lower bound on the ratio between the maximum and minimum pair-
wise distances shows that distortion, which increases with the number of points, is
inevitable.

A straightforward way to see this is via the two-dimensional isodiametric inequality
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which states that among all shapes of a given diameter, the circle has the greatest
area (for a simple proof see [164]). Formally, for any body in R2, the area 𝐴 is
bounded above by 𝜋

4 times the square of the diameter 𝐷 (the supremum of distances
between any pair of points), i.e.

𝐴 ≤ 𝜋

4
𝐷2. (5.1)

Theorem 1 Given 𝑛 ≥ 3 points in R2, let 𝑑 be the minimum distance among all
pairs of points, and 𝐷 the maximum distance (i.e., the diameter). The ratio of 𝐷 to
𝑑 satisfies

𝐷

𝑑
≥

√︂
𝑛 − 2

2
. (5.2)

Proof: Let 𝐵 be the set of points consisting of the convex hull of 𝑛 points in R2, and
let 𝐼 denote the remaining points, with |𝐵| = 𝑘 and |𝐼 | = 𝑛 − 𝑘 . Note that for each
point in 𝐼, there exists a semi-circle of radius 𝑑

2 centered at the point that does not
touch any other point, or extend beyond the convex hull of the points (Fig. 5.3). If
we denote the sum of the areas of these semi-circles by 𝐴𝐼 , we obtain

𝐴𝐼 =
1
2

(
𝜋

(
𝑑

2

)2
)
(𝑛 − 𝑘)

=
𝜋𝑑2

8
(𝑛 − 𝑘) .

Boundary - B

Interior - I

Enclosed Area

Figure 5.3: Bounding the Area Enclosed by Points in Two-Dimensions. Example
of a set of 10 points showing the enclosed area for points in the 𝐼 and 𝐵 sets in the
proof of Theorem 1. Adapted from [48].
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Furthermore, for each of the 𝑘 points in 𝐵, there is a circle sector of radius 𝑑
2

spanning the interior angle of the convex hull at that point that does not touch any
other point, or extend beyond the convex hull. Since the sum of the interior angles
of a 𝑘-gon is (𝑘 − 2)𝜋, we find that the sum of the areas of the circle sectors, which
we denote by 𝐴𝐵, is given by

𝐴𝐵 = 𝜋

(
𝑑

2

)2 (
(𝑘 − 2)𝜋

2𝜋

)
=

𝜋𝑑2

8
(𝑘 − 2) .

Summing 𝐴𝐼 and 𝐴𝐵, we obtain a bound for the area enclosed by the 𝑛 points:

𝐴 ≥ 𝐴𝐼 + 𝐴𝐵

=
𝜋𝑑2

8
(𝑘 − 2) + 𝜋𝑑

2

8
(𝑛 − 𝑘)

=
𝜋𝑑2

8
(𝑛 − 2) . (5.3)

Combining the upper (5.1) and lower (5.3) bounds for the area 𝐴, we find that

𝜋
𝐷2

4
≥ 𝜋𝑑2

8
(𝑛 − 2)

⇒ 𝐷

𝑑
≥

√︂
𝑛 − 2

2
. (5.4)

In practice, measuring these ‘max/min ratios’ in 2D embeddings, for the ex- and in-
utero data (E10.5) as well as the 10x VMH neurons, revealed 4- to 200-fold increases
in these ratios whether compared to the relevant PCA space or ambient space (with
or without PCA-preprocessing). This was the case in groups of equidistant cells
as well as groups of nearest neighbors (see Fig. F and G in S1 Text in [48]), and
can result in trends such as displayed in Fig. 5.2c, with cells shot out across the
embedding. For both datasets, we empirically verified the growth of this distortion
with the number of cells considered in each equidistant group, i.e., as more cells
are considered in 2D, the distortion grows (see Fig. H in S1 Text in [48]). Higher
dimensional PCA spaces largely maintained similar max/min ratios to the ambient
space (see Fig. G and H in S1 Text in [48]). However, we note that in low dimensions
PCA embedding of equidistant points is tantamount to applying a random projection,
similarly resulting in projected points displaying numerous mirages of structure or
outliers (see Fig. I in S1 Text in [48]).
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5.1.2 Distortion of Trends in Applications
Given the distortions of the necessary properties in Fig. 5.1, we then investigated
their impact on each row or application, i.e., how in practice such embeddings affect
the inferences and implications made in each application. Though each application
is covered in depth in [48], we will focus here on the use of low-D embeddings for
assessing dataset ‘mixing’ and cluster validation.

Modality-Mixing, Integration, and Reference Mapping

Malleability of ‘structure’ under low dimensional embedding is particularly apparent
in the mixing properties of integrated, mapped, or batch-corrected datasets, where
an integration procedure is accompanied by an embedding of the melded datasets
(Fig. 5.4, see Fig. J in S1 Text in [48]) [4, 108]. This relies on preserving both local
relationships (which cells are mixed) and global patterns (overall trends of mixing or
non-mixing between datasets). For the integrated ex- and in-utero dataset (E10.5),
we calculated the fraction of each cell’s nearest neighbors with the same label as the
cell, to compare whether embeddings accurately reflect the extent of mixing of ex-
and in-utero cells by integration (Fig. 5.4a).



39

Figure 5.4: Distortion of Mixing Patterns. a) Left plot shows ‘Log-normalized’
ambient (blue) and 2D embedding (orange) distributions of mixing (fraction of cell
neighbors in the same condition), where 1.0 is no mixing. Corresponding UMAP
shown next to it. Right plot shows ‘Variance-Stabilized and Scaled’ ambient (blue)
and 2D embedding (orange) distributions of mixing (fraction of cell neighbors in the
same condition). Corresponding UMAP shown next to it. b) Left plot shows ‘MNN
Integrated’ ambient (blue) and 2D embedding (orange) distributions of mixing
(fraction of cell neighbors in the same condition) for CEL-Seq cells. Corresponding
UMAP shown next to it. Right plot shows ‘Scanorama Integrated’ ambient (blue)
and 2D embedding (orange) distributions of mixing (fraction of cell neighbors in
the same condition) for CEL-Seq cells. Corresponding UMAP shown next to it.
Adapted from [48].
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The ‘Log-Normalized’ integrated, ambient data displayed a largely unimodal, well-
mixed distribution of cells between conditions, while the distribution generated from
embedding into two dimensions was shifted towards unmixed (left side, Fig. 5.4a).
The ‘Variance-Stabilized and Scaled’ integrated, ambient data (a separate scaling
procedure in the Seurat [108] package, performed after integration) displayed the
opposite trend. The ambient data presented a bimodal distribution with completely
unmixed cell populations, while the final embedding displayed a unimodal distribu-
tion of well-mixed cells from both conditions (right side, Fig. 5.4a).

Such mixing patterns are not only used to argue that different datasets are similar,
but also to argue for the superiority of one integration method over another. To
assess whether such inferences are legitimate, we merged the SMART-Seq2 and
CEL-Seq pancreatic islet datasets utilized in [112] with one of two methods, MNN
[106] or Scanorama [112]. Looking at the fraction of mixing of CEL-Seq cells in
the merged ambient space reveals similar mixing by both methods (CEL-Seq cells
‘mapped’ to SMART-Seq2 cells) (ambient distributions, Fig. 5.4b). However the
UMAP embeddings provide opposite pictures, with MNN appearing to result in a
well-mixed distribution of CEL-Seq cells (left side, Fig. 5.4b) and Scanorama an
unmixed distribution of cells (right side, Fig. 5.4b). In cases where batch correction
largely fails (see Fig. Kb in S1 Text in [48]), the ‘integrated’ ambient spaces (by
either method) are similar to the pre-integrated ambient space. However, reduction
to 2D can enhance mixing for the ‘integrated’ spaces, but decrease mixing in the
pre-integrated space. We found similar distortions when the 𝐿1 norm was used, and
with t-SNE as used in [112] (see Fig. Jb, Jc and Ka in S1 Text in [48]). Notably, the
initial PCA reduction can drive the reversal or distortion of mixing trends, though
removal of PCA-preprocessing does not alleviate this issue (see Fig. Jc and Ka in
S1 Text in [48]). Thus, for a user, it is unclear what patterns of mixing are a result
of the efficacy of the integration method, or arbitrary variation introduced by the
dimensionality reduction procedure.

Cluster Validation and Relationships
Beyond the use of dimensionality reduction to ‘validate’ dataset merging, it is
common to use two or three dimensional visuals to assess appearances of clus-
ters. This can be to justify or directly generate cluster or cell type assignments
[66, 134, 139, 197, 267], and to infer properties of clusters (their heterogeneity,
separation, or similarity) [3, 109]. Such uses rely on retention of global relation-
ships (Fig. 5.1), where local neighbors are less important compared to maintaining
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group assignment or patterns of separation between groups. Distance preservation
may also be necessary if conclusions are to be drawn on the extent of separation or
locations of clusters (Fig. 5.1). However, across datasets of various sizes [135, 145]
the prediction of a cell’s label (cell type or condition) based on its neighbors is
consistently worse in the 2D embedding space than in higher dimensional represen-
tations, even when labels are given as with supervised UMAP (UMAP Sup.) (Fig.
5.5a). Each dataset where cell type was predicted (the VMH neurons , the ex- and
in-utero E10.5 embryos, and the developing mouse brain) additionally represented
different methods of cell type assignment. The 96-plex NSCs provided an example
of externally labeled cells, in this case by the cell’s condition.

Figure 5.5: Distortion in Cluster Validation and Relationships. a) Prediction of
cell label on 30% of the data, based on the labels of the 50 nearest neighbors. b)
Distributions of cell type inter- and intra-type distances for the ambient or reduced
space (bottom). K-S distance (the Kolmogorov–Smirnov statistic) shown as measure
of separation, where higher values denote greater separation. Adapted from [48].

Additionally, by comparing the distribution of pairwise distances between cells
of different cell ‘types’ (‘inter-type’) to the distribution of distances between cells
within the same types (‘intra-type’), we can measure how separated those distribu-
tions are, i.e., how separated or distinct cell types are from each other (Fig. 5.5b).
‘Type’ refers to either cell type or cell condition (see Fig Db in S1 Text in [48])
annotations. Though it may be desirable for the low dimensional visualizations to
increase separability or clarify cell types as compared to the ambient space, such
reduction can have the opposite effect (Fig. 5.5b), reducing the gap between inter-,
intra-type distributions for some datasets and increasing the gap for others, whether
using the 𝐿2 or 𝐿1 norm (see Fig. Db, Eb, N and O in S1 Text in [48]).
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We found that cluster structures were additionally highly sensitive to the number
of neighbors (perplexity for t-SNE ) used in constructing non-linear embeddings, a
commonly tuned parameter which can range from 1-10% or less of the data [109,
139], in line with other results on the effects of tuning [109, 140]. For the in-utero
E10.5 dataset, common choices for this parameter result in different placements and
overlaps of cell types, pushing progenitor populations away from their downstream
cell states/types or incorrectly merging distinct, early stage populations (see Fig.
P in S1 Text in [48]). Such inconsistencies have led to publication of incorrectly
surmised differentiation trajectories from apparent relationships between cell types
[10]. Even in a non-biological, machine learning (ML) , benchmark dataset [63], we
found a muddling of cluster structures, with points belonging to different digits mixed
within ‘digit-specific’ clusters (possibly hidden by order of points plotted), though
high accuracy classification is possible in higher dimensions [37] (see Fig. Q in S1
Text in [48]). This reveals an assumption of distortion cancellation in interpreting
such visuals, i.e., that relevant trends will pop out despite spurious distortion/noise,
and a reliance on prior knowledge of ground truth labels (or expected trends) to
determine how to interpret the 2D embedding and when tuning of the aesthetic
parameters is sufficient.

Density-based Visuals and Marker Analysis

Density assessments of points in 2D embeddings are frequently used to quantitatively
assess cell-cell relationships by directly relying on distances between the cells in two
dimensions (Fig. 5.1). Common applications compare densities of cells in different
conditions or batches, within a shared embedding space, to make statements on
changes in population density or expression between groups [16, 130, 230, 267].
However, as demonstrated above, parameter tuning easily disrupts the placement of
cells and clusters in such visuals, inherently affecting the generation of contours.
Furthermore, using different numbers of neighbors for embedding generation can
result in dramatic appearances of cell populations present in one condition but not the
other (see circled numbers 1,4 in Fig. 5a and 5b in [48]), which can disappear when
more or fewer neighbors are used, with those populations absorbed into overlapping
contours. Likewise, densities of cell populations can appear of the same or different
scale between conditions depending on the number of neighbors used in construction
(see circled numbers 2,3,5,6 in Figs 5a and 5b in [48]), confounding the use of these
visuals to make comparative statements.
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Trajectory Inference and Continuous Relationships

Trajectory inference and pseudotime tasks, such as in RNA velocity [146] or Mon-
ocle [40, 250] workflows, focus on local, continuous relationships for inference and
calculating pseudotime coordinates. Such tasks may also use distances between em-
bedded points to construct the directions and magnitudes of arrows denoting inferred,
developmental trajectories [146, 172] (Fig. 5.1).As shown with the standard velo-
cyto workflow [146], using the neighbors of cells after reduction to two-dimensions
to construct velocity arrows can result in erroneous trajectories, due to the arbitrary
placement of cells under different parameter choices. Distortions can include loss of
continuous relationships, trajectories in incorrect directions, or the addition of new
pathways for development (see Fig. 6 in [48]). Distortions additionally occur due
to upstream averaging over nearest neighbors in the inference procedure prior to the
embedding procedure [96, 278]. Thus the resulting visual compounds distortions
from embedding with these prior distortive effects.

In [48], we also demonstrate similar distortions of an underlying, continuous mani-
fold by 2D reduction, using the Swiss-roll as a non-biological benchmark dataset for
which we know the structure in three-dimensions, and moreover is a two-dimensional
manifold. We demonstrate how the 3D Swiss-roll (constructed by rolling up the
two-dimensional plane) loses its coherence when embedded in 2D with UMAP (see
Fig. U in S1 Text in [48]). No embedding recapitulates the original plane [156] and
depending on the number of neighbors used, distinct clusters or islands may appear,
with a scrambling of local neighbors (made worse by increasing the tightness of the
embedded roll). Thus knowledge of the true manifold is required to understand the
disruption of continuity in these embeddings. Together, the use of such embeddings
to imply or infer continuous relationships then becomes an arbitrary endeavor, with
a user unable to trust seemingly dramatic connections or isolated populations, and
likely to choose what seems most appealing or expected.

5.1.3 Embedding Properties are Arbitrary
To illustrate the indeterminate nature of two-dimensional UMAP and t-SNE embed-
dings, we developed an autoencoder framework to fit cells from any dataset to an
arbitrary 2D shape, while preserving ambient cell-to-cell distances to an extent not
much different than UMAP or t-SNE [37, 136, 242]. This essentially asks the ques-
tion, what value or meaning do embeddings add, in comparison to a naive, arbitrary
representation of the data? We found that it is possible to embed data in the shape
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of a ‘von Neumann elephant’ [77, 175], in the spirit of this question of arbitrary
representation, or a flower. Though it is unlikely scientists would present data in
such forms, as shown below, they are quantitatively similar in terms of recapitulation
of desired data properties in the ambient dimension, compared to UMAP or t-SNE
embeddings. We call this method to produce customized embeddings ‘Picasso’, in
homage to the eponymous artist’s skill in imitating other artistic works.

Figure 5.6: Comparison of Embedding Properties. Elephant shaped embeddings
[77, 175] shown on the left, with corresponding correlations of data embeddings to
ambient space shown in right-hand plots, for inter- and intra-type distance metrics.
Metrics calculated over n=5 embeddings. Colors denote cell types, delineated in
Fig W in S1 Text in [48]. Adapted from [48].

The autoencoder network used in Picasso is described in greater detail in [48], but
the algorithm takes as input a centered/scaled count matrix X ∈ RN×G, N cells
by G genes. The input is passed through two fully-connected layers of 128 nodes
and D nodes, respectively, with D = 2 by default. We defined two loss functions:
𝐿𝑆ℎ𝑎𝑝𝑒𝐴𝑤𝑎𝑟𝑒 and 𝐿𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, which balance the fit of the input points to the desired
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shape coordinates and reconstruction error in the decoder output as compared to the
input. C ∈ RP×D represents the coordinates comprising the desired shape, where
D = 2 and P≥ N. The latent space Z is also limited to D = 2 dimensions. The
pairwise distance matrix D ∈ RN×P represents Euclidean distances between the cell
coordinates in Z and shape coordinates C such that

𝑑𝑖 𝑗 = ∥𝑧𝑖 − 𝑐 𝑗 ∥2.

Using D, we define a Boolean, N × P adjacency matrix A, where
∑
𝐴𝑖 = 1. This

matrix uniquely specifies an adjacent coordinate point for every cell, in a bipartite
graph mapping the N cells to the P coordinates. A is determined by the lin-
ear_sum_assignment SciPy package, which assigns a shape coordinate to each cell
by solving the minimization problem:

𝑚𝑖𝑛
∑︁
𝑖

∑︁
𝑗

𝑑𝑖 𝑗𝑎𝑖 𝑗

where 𝑎𝑖 𝑗 = 1 iff row 𝑖 is assigned to column 𝑗 . Thus,

𝐿𝑆ℎ𝑎𝑝𝑒𝐴𝑤𝑎𝑟𝑒 =
∑︁

𝐴 ⊙ 𝐷.

Picasso performs this minimization to attempt to map cells to their closest, unique
shape coordinates. The reconstruction loss is the 𝐿2 norm of the difference between
the reconstructed and input data:

𝐿𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = ∥X̂ − X∥2.

The total loss then incorporates both loss functions, balancing their contributions
with 𝑓 , a user-defined fraction weighting the effect of each term on the resulting
embedding:

𝐿 = 𝑓 ∗ 𝐿𝑆ℎ𝑎𝑝𝑒𝐴𝑤𝑎𝑟𝑒 + (1 − 𝑓 ) ∗ 𝐿𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛. (5.5)

We compared correlations of inter- and intra-type distances between Picasso embed-
dings with those of t-SNE, UMAP and PCA, for the ex-utero (E8.5), MERFISH MOp
, and SMART-Seq VMH neuron datasets [135]. These distances were constructed
to represent trends often inferred from such visuals, where inter-type distances rep-
resent inter-cell-type relationships (or global relationships between clusters), and
intra-type distances represent the variance or spread within the cell types. Each Pi-
casso embedding demonstrated comparable performance to t-SNE and UMAP (Fig.
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5.6), with cells of the same types distinctly grouped together in the arbitrary shapes.
Picasso embeddings also improved upon t-SNE/UMAP intra-type correlations for
all datasets (Fig. 5.6). Results were recapitulated for inter- and intra-distances
calculated with the 𝐿1 norm, and for trends between cells of different sexes (inter-
and intra-sex distances) for the VMH neuron dataset (see Fig. W and X in S1 Text
in [48]).

Thus, Picasso can quantitatively represent these visually inferred characteristics sim-
ilarly to, or better than, the respective t-SNE/UMAP embeddings, while producing
arbitrary shapes.

5.1.4 Limitations for Exploratory Data Analysis (EDA)
Although popular two-dimensional embeddings can reflect the broader strokes of
the data such as cell type inter-distances, or highlight correlations between features
[72], our findings highlight fundamental obstacles in reduction of high-dimensional
data to 2D, the generation of multiple, possibly contradictory interpretations of the
same data across applications, and the limited utility of these embeddings as EDA
tools.

Though at the heart of EDA, as defined by statistician John W. Tukey [114, 251, 252],
is the exploration of data through visualizations prior to confirmatory analysis,
such visuals are intended to encompass robust or “resistant" analyses which extract
(expected or unexpected) features of the data [251]. Thus the use of these 2D
embeddings to reveal expected or unexpected properties is fraught by the fact that
it is unclear which properties will be preserved or displayed, i.e., the purpose of
the visual itself, where seemingly strong characteristics or patterns can be arbitrary
distortions. Methods to show error or significance of cell placement on these visuals
do not tackle the inherent limitations of such low dimension embedding: the lack
of definition regarding which features are displayed and what is distortion to ignore
[71, 194]. Prior analysis is required to determine ‘sufficient’ tuning of aesthetically
oriented parameters and to define the purpose of the visual, undermining the use
of such procedures as EDA tools. Together, this results in a user conducting two
confounded exploratory analyses, that of the method properties and that of the data
properties.

Another of the ‘guiding principles’ of EDA can be formulated as “analyses...before
summaries" [251], where analyses are conducted to present particular features of
the data, then collated as a summary. However, the use of such all-in-one visuals
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begins from a place of summary rather than analysis, showing ‘all points and all
relationships’ at once and attempting to approximate many properties. In general,
the open-ended nature of these visuals and ability of parameter tuning to manipulate
and create biological patterns demonstrate the ease with which such tools become
confirmatory bias aids, and that such 2D spaces should be treated more as cartoon
diagrams to be displayed post-analysis. However, in these cases conceptual graphics
can be used instead which do not attempt to represent ‘all points and all relationships’
(to avoid over-interpretation), and higher-level diagrams which do not operate at the
cell- or point-wise level [160, 263].

5.1.5 Assumptions and Incoherencies in the Dimensionality Reduction Pro-
cess

The generation of the 2D embedding is additionally a multi-step process, demon-
strated here as a preprocessing of the ambient data with a higher dimensional (linear)
reduction by PCA , then a non-linear reduction to 2D by t-SNE/UMAP. Each step
incurs some distortion of the data, where preservation of certain properties by one
reduction can be lost by the next, as well as exaggeration of distorted patterns over
the steps. However, this procedure is taken as a baseline [109, 140], and there is
little discussion of the logic behind this coupling.

For example, though Euclidean (𝐿2) distance is the default metric for constructing
neighborhood graphs in methods such as t-SNE and UMAP, this is not a requirement,
and one might surmise that the non-linear methods instead learn other manifold-
specific ‘metrics’ from cell neighborhoods by identifying ‘biological geometries’
(though this is not justified by the original authors [180, 255]). However, meth-
ods such as UMAP and t-SNE at their core rely on measuring distances locally,
in concordance with common Euclidean analysis methods. This is the case for
neighborhood graph construction as used for clustering [61], pseudotime and tra-
jectory inference [105, 214], as well as non-linear embedding (e.g., UMAP/t-SNE)
[180, 255]. Notably, the assumptions underlying the preprocessing of data by PCA
may clash with the assumptions in extracting these other ‘biological geometries’
by non-linear dimensionality reduction, as PCA implicitly assumes Gaussian noise
for data that lies in a Euclidean space. Embedding by PCA additionally reduces
variance in the projected data, while methods such as UMAP add noise to embedded
data (while removing biological signal) [94].

Utilizing these 2D visuals to infer structure of the underlying manifold then requires
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knowledge of that manifold itself to interpret these outputs and distortions, a task
confounded by noise present in biological data and the fact that common methods
poorly recapitulate simple non-Euclidean manifolds (see Fig. U in S1 Text in
[48]) [156]. And while PCA does impose assumptions of Euclidean geometry and
Gaussian noise, the assumptions of heuristic, non-linear methods are more opaque
and their results not easily falsifiable.

5.1.6 Alternative Methods and Analysis Approaches for Representation
From the findings in this study, we ultimately come to the conclusion that one should
limit reliance on and blind application of such heuristic procedures, particularly
across the range of applications in Fig. 5.1. Instead greater focus should be given
to utilizing and developing an array of investigative and self-consistent analysis
tools, which provide clearer interpretation of their goals and the biological features
being assessed, present targeted low-dimensional embeddings and visuals displaying
these features, and can easily be combined with statistical procedures to generate
and falsify hypotheses.

With respect to the general task of preserving neighbor relationships (local or global)
in an embedded space, it is possible to construct embedding spaces which more
explicitly control and improve nearest-neighbor structure and retention (see Fig. Y
and Z in S1 Text in [48]) [93, 265], as well as retention of desired metrics such as the
intra-label metrics described above (see Fig. ZA in S1 Text in [48]). For example, if
the goal of the visual representation is to display the data clusters, or other cell-wise
annotations, we can replace the 𝐿𝑆ℎ𝑎𝑝𝑒𝐴𝑤𝑎𝑟𝑒 loss in Picasso with 𝐿𝐿𝑎𝑏𝑒𝑙𝐴𝑤𝑎𝑟𝑒, where
𝐿𝐿𝑎𝑏𝑒𝑙𝐴𝑤𝑎𝑟𝑒 uses the Neighborhood Component Analysis (NCA) algorithm from
[93]. This attempts to ensure that cells of the same label are represented together in
the final embedding. For all cells a pairwise probability matrix P ∈ RN×N is created
where

𝑝𝑖 𝑗 =
𝑒𝑥𝑝(−∥𝑧𝑖 − 𝑧 𝑗 ∥2)∑
𝑙 𝑒𝑥𝑝(−∥𝑧𝑖 − 𝑧𝑙 ∥2)

,
∑︁
𝑗

𝑝𝑖 𝑗 = 1.

For discrete labeled data (e.g., cell type names) we defined 𝐿𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 for all pairs of
cells 𝑖, 𝑗 where

𝐿𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
∑︁
𝑘

∑
𝑖 𝑗 𝑝𝑖 𝑗1𝑖 𝑗∑
𝑖 𝑗 1𝑖 𝑗

where 1𝑖 𝑗 (c𝑘 ) :=


1 if 𝑐𝑘,𝑖 = 𝑐𝑘, 𝑗 ,

0 otherwise .
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Here 𝐶 is the set containing label vectors for each class 𝑘 , 𝐶 : {c1, ..., c𝑘 }. Classes
can be discrete or continuous, and multi-dimensional in the case of continuous
classes (e.g., cell type, sex, condition, location).

Only the probabilities of cell pairs which are of the same label, for each class 𝑘 ,
were summed and normalized to the total number of these cell pairs. For continuous
classes of labels, such as spatial coordinates or pseudotime values, we used a separate
loss function, 𝐿𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. A probability weight matrix W ∈ RN×N was generated
for every pair of cells such that

𝑤𝑖 𝑗 =
𝑒𝑥𝑝(−∥𝑐𝑘,𝑖 − 𝑐𝑘, 𝑗 ∥2)∑
𝑙 𝑒𝑥𝑝(−∥𝑐𝑘,𝑖 − 𝑐𝑘,𝑙 ∥2)

,
∑︁
𝑗

𝑤𝑖 𝑗 = 1.

In place of the indicator function, the weights biased the masking of the original
probability matrix P towards closer pairs of cells. Probabilities were also normalized
to the maximum of the numerator (treating the weights W as constants):

𝐿𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 =
∑︁
𝑘

∑
𝑖 𝑗 𝑤𝑖 𝑗 𝑝𝑖 𝑗∑
𝑖 𝑚𝑎𝑥(w𝑖)

.

The 𝐿𝐿𝑎𝑏𝑒𝑙𝐴𝑤𝑎𝑟𝑒 is then defined as

𝐿𝐿𝑎𝑏𝑒𝑙𝐴𝑤𝑎𝑟𝑒 = 𝐿𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝐿𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 . (5.6)

However, such optimizations require making an assumption regarding the appropri-
ate distance/similarity metric, as is generally the case with the neighborhood-based
analysis methods ubiquitous across the tasks in Fig. 5.1. Our analyses have focused
on measuring distortions with respect to the 𝐿1 metric, given its more desirable
properties in higher dimensions than Euclidean (𝐿2) distance (see above), but other
choices of distance or similarity metrics are possible and, whether in ambient or re-
duced space, can provide different interpretations of a dataset’s properties [259]. To
assess the suitability of different metrics across datasets, we used the ‘relative con-
trast’ ratio from [2] to measure the ability of an 𝐿𝑘 norm to meaningfully delineate
proximity between cells in high dimensions. We found that 𝐿1 has higher contrast
values than the 𝐿2 norm across datasets (see Fig. 8 in [48]), suggesting preferential
behavior in distinguishing cell relationships. How the various biological and tech-
nical features of each dataset drive or influence these contrast values is, however,
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unexplored. There are other avenues for determining the relevance of a proximity
metric, by assessing data properties such as ‘hubness’ (the presence of points with
high proximity to many points in high dimensions) [85] and sparsity, discreteness,
or continuity of the data structure [259], as well as the metric’s biological inter-
pretability in light of a given task or question. Thus, if such a metric is desired to
represent relationships between cells, selection of the metric(s) should be carefully
considered prior to downstream transformations and dimension reductions.

Across the applications in Fig. 5.1, there are existing methods and metrics, as well as
opportunities for method development, which can provide more targeted alternatives
in keeping with principles of EDA . For example, the assessment of multi-modal
data integration and mixing can be directly calculated between cells, as shown by
the metrics in this study, as well as by other metrics on mixing proportions and
separation [73] or on the retention of true ‘batch’ differences (biological variation)
[94, 253]. Such analyses can additionally be conducted in the ambient space,
which minimizes the distortion/transformation of gene-related properties, useful for
downstream experimentation.

For applications regarding clustering, clusters can be generated from higher dimen-
sional embeddings if not from the ambient space itself [192], and given the central
importance of marker gene expression in validating cluster assignment, existing
tools such as heatmaps can directly display cluster results with the features (genes)
which determined these groupings. Dimensionality reduction on the gene space can
additionally be used to filter for genes or sets of genes best suited to separating the
clusters [75, 182]. By targeting the objective of an embedding in such a manner,
one can take advantage of prior knowledge/annotations and more directly determine
the necessary dimensionality for a given question.

To assess heterogeneity within clusters or relationships between clusters, similarity
metrics or distances can be calculated between the cells [259] and displayed with
qualitative or quantitative visuals which preserve these metrics as a part of their
objectives, including hierarchical relationship diagrams such as dendrograms and
trees [120, 206], or graph-based network diagrams [79, 104]. Higher-level diagrams
that do not seek to display all point-wise information can also be used to represent
the results of other inter-cluster analyses [263, 276], better matching the resolution
of the visual to the resolution of the analysis represented.

Such cluster-level visuals and metrics, as well as metrics on integration and higher
dimensional distribution comparisons as presented here, can be used in lieu of anal-
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yses based on contour plots generated from 2D coordinates. Regarding trajectories
and continuous relationships, higher dimensions should be used to perform infer-
ence of differentiation trajectories [214, 263], and incorporation of probabilistic
and biophysically-informed inference methods [74, 97, 160] offers falsifiable and
interpretable approaches with targeted visualization alternatives. Such models ad-
ditionally offer more interpretable handling of biological, as well as technical, noise
[94], avoiding a smoothing over or removal of noise which could otherwise provide
valuable biological signal.

Though it may seem appealing to produce visuals of ‘all data and all relationships’,
common embedding practice distorts data in obscure ways, attempts to pack the
capabilities of many different analyses into one space, and is easily manipulated.
Given these limitations, and the distortions induced by earlier processing steps [5],
it seems preferable to limit dimensionality reductions and ad hoc transformations,
particularly when the space of interest can be treated directly, to utilize and develop
targeted analyses for common questions that enable focused visuals, and collate
these analyses to drive downstream, hypothesis-driven biological discovery.

5.2 Biological Visualizations for Quantitative Representation
The question of how to perform exploratory analysis through interpretable yet quan-
titative visual representations, extends beyond the realm of biology, into fields like
the social sciences [3, 193]. As described above, there may already exist methods
that better address a question from a quantitative perspective, especially in com-
parison to an all-in-one approach. Thus in the spirit of interpretable representation
learning, and in contrast to the common induction of ML methods into the biology
pipeline, we demonstrate an application of biological methods for low dimension vi-
sualization, specifically phylogenetic representation, and how its extension to other
fields, such as political science, provide a quantitative representation of social struc-
tures that is easy to interpret and admits simple statistical tools for analysis.

This section summarizes the contents of [47] by T.C and L.P. L.P. conceived of the
application of NNet to political structures. T.C. developed the analysis and code.
T.C. and L.P. wrote and edited the manuscript.
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5.2.1 Phylogenetic Methods for Hierarchical Representations
The field of phylogenetics seeks to understand, classify and quantify the evolutionary
and connective relationships between biological entities such as groups of organisms.
The ‘phylogenetic tree’, introduced in a drawing by Charles Darwin [59], is a
convenient mathematical abstraction for representing such hierarchical evolutionary
relationships. The observed traits of a species were used to construct groupings of
organisms and outline possible developmental relationships and common ancestry.
Thus from the trait-based features of the biological entities of interest, a structured
model and visualization of the underlying relationships can be generated.

Over time, many methods have been developed to measure similarities and dif-
ferences between phylogenetically-informative ‘traits’, such as DNA (or RNA) se-
quence information/characters, to characterize and quantify similarities between
species or taxa [261]. Such approaches then enabled the use of phylogenetic tree
methods based on the properties of distance matrices constructed between the taxa
[209], in which pairwise distances are used to infer the topologies of phyloge-
netic trees. The most popular technique for distance matrix-based tree construction
is neighbor-joining (NJ) , which was developed in 1987 by Naruya Saitou and
Masatoshi Nei [215], and inspired the development of the Neighbor-Net (NNet)
algorithm [32] that forms the basis for this work (see below). The algorithm uses
a greedy, agglomerative clustering strategy to iteratively join pairs of nodes or taxa
based on their pairwise distances. Essentially, nodes are joined which minimize the
total length of the resulting tree. In terms of statistical consistency, NJ will yield the
correct tree given sufficient amount of data from which to estimate accurate pairwise
distances, and it has been shown that NJ will often be successful in recapitulating
the underlying tree [184].

Given a pertinent set of informative features, a pairwise distance matrix can easily
be constructed to fit user needs. Thus, methods for inferring phylogenetic trees,
including NJ, have been adapted and extended over the years to a variety of fields.
For example, in linguistics, NJ has been applied to distance matrices inferred from
phonetic similarities, and it has been used to visualize and explore relationships
between languages [62]. NJ has also been applied to cosmology, where distances
constructed based on chemical composition delineate possible pathways for the
origins of stellar populations [128].
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5.2.2 The Neighbor-Net (NNet) Method
As previously described, phylogenetic trees can be represented using branching di-
agrams where taxa represent nodes in the tree connected by branches, and these
can elucidate the hierarchical, evolutionary relationships between taxa. In some
cases, however, relationships between taxa do not conform to tree structures, e.g.,
as a result of horizontal gene transfer or non-sexual movement of genetic infor-
mation. Phylogenetic networks that generalize trees can be used to represent such
non-conforming relationships, and are generally useful for highlighting conflicting
signals in data.

1.0

𝑚"

𝑚#

𝑚$𝑚%

𝑚#,𝑚$ |	{𝑚*, 𝑚%, 𝑚+, 𝑚"}

𝑚+,𝑚" |	{𝑚#, 𝑚$, 𝑚*, 𝑚%}

𝑚% |	{𝑚+,… 	𝑚*}

𝑀 = Set of senators 𝑚0 for 𝑖 = 1…6

Distance Matrix 𝛿

Circular
Split System

∑

𝑚#

𝑚$

𝑚"

𝑚*

𝑚+

𝑚%

𝑚*

𝑚+

Planar Splits Graph

a b

c

Roll-call Vote (𝑣) Matrix 𝑅

d
1

1
1

1

1
1

1

1

2

0.5
0.5

5

4
5

4

! "# "$ "% "& "' "(
"# 0 21.5 15 5 22 11

"$ 21.5 0 15.5 23.5 4.5 12.5

"% 15 15.5 0 12 13 16

"& 5 23.5 12 0 23 14

"' 22 4.5 13 23 0 15

"( 11 12.5 16 14 15 0

! "# "$ … "&
'# Nay Yea Yea

'$ Abstain Nay Yea

'( Yea Nay … Nay

') Nay Yea Yea

'* Nay Nay Abstain

'+ Abstain Abstain Nay

Figure 5.7: Constructing Split Networks from Votes. a) Matrix 𝑅 of feature (vote)
values for six elements (senators) 𝑚. b) 𝐿1 pairwise distance matrix between all six
elements. c) Circular split system with elements 𝑚 shown in circular ordering, and
splits defined as bi-sections of the circle. d) Splits graph representation of circular
system in c with split weights denoted along splits. Parallel splits (representing the
same split) denoted by the same colors. Figure adapted from [32, 155] and [47].

Here we focus on a specific type of phylogenetic network called a ‘split-network’,
and on methods which use pairwise distance (dissimilarity) matrices between the
informative features of the taxa to construct such networks. Split-networks in
particular, seek to visualize these structures based on the splits in datasets, i.e.,
partitions of taxa into two distinct parts. From a collection of splits, also known
as a ‘split-systems’, a graph is constructed that ‘simultaneously represent[s] both



54

groupings in the data and evolutionary distances between taxa’ [32].

NNet is a dissimilarity or distance-matrix based split network construction algo-
rithm which determines a collection of weighted splits that can be realized as a
split-network. In the linguistic setting it has been used with distances between
languages estimated from phonemes [33, 76], and has been found to be useful be-
cause conflicting signals may otherwise be difficult to discern, e.g., where distinct
characters may have been shared at different times, sometimes between spatially
and temporally distant languages. Recently, NNet has also been used to analyze
structure in single-cell gene expression data [276]. Though NNet has not previously
been used for analysis of data from the political sciences, it is similar to com-
monly used MDS techniques in that its inputs are dissimilarity based measurements
[30, 32, 212, 224]. However, in contrast to MDS-based embedding methods which
focus on recovering ideal points for individuals in a low dimensional space [198],
NNet additionally defines groupings (‘coalitions’) between individuals and repre-
sents the relative strengths of these relationships within its network construction.

We denote 𝑀 to be a set of 𝑛 elements {𝑚1, ....𝑚𝑛} representing members of the
senate, and R to be an element × feature matrix (features represented as votes here)
(Fig. 5.7a). A pairwise dissimilarity (distance) matrix 𝛿 is constructed (Fig. 5.7b)
such that its entries form a function mapping 𝑀 × 𝑀 → R that satisfies

𝛿𝑖, 𝑗 = 𝛿 𝑗 ,𝑖 and 𝛿𝑖,𝑖 = 0.

We use the 𝐿1 distance between the vote types of each member (0 Nay, 1 Yea, 0.5
Abstain)

A split 𝐴|𝐵 is a bi-partition of the set of elements in 𝑀 , where

𝐴 ∪ 𝐵 = 𝑀, 𝐴, 𝐵 ≠ ∅, and 𝐴 ∩ 𝐵 = ∅,

and a split-system is a collection of splits. In the example of a phylogenetic tree,
each “branch divides the set of taxa up into a split, with the taxa on one side of
the branch separated from the taxa on the other side" [32]. ‘Compatible’ splits
denote splits which can be contained within a phylogenetic tree, however NNet can
produce both compatible and incompatible splits, satisfying a weaker condition than
compatibility [32, 155].

Given the defined distance matrix 𝛿, NNet will generate a circular ordering of the
elements 𝜋 = {𝑚1, ....𝑚𝑛}, where 𝑚𝑖 and 𝑚𝑖+1 are adjacent vertices on an 𝑛-cycle
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𝐶𝑛 comprised of the elements of 𝑀 , a split-system Σ (Fig. 5.7c), and the weights of
the splits, 𝜆, (represented by branch lengths in the planar graph) (Fig. 5.7d). Σ is a
circular collection of splits, a generalization of compatible splits, where there is an
ordering of the elements {𝑚1, ....𝑚𝑛} such that every split is of the form

{𝑚𝑖, 𝑚𝑖+1, ..., 𝑚 𝑗 }|𝑀 − {𝑚𝑖, 𝑚𝑖+1, ..., 𝑚 𝑗 }

for some 𝑖 and 𝑗 satisfying 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 [32]. Such splits always have a planar
splits graph representation [119] (Fig. 5.7d). Further details of the algorithm can
be found in [47]. Here we provide 𝛿 as the distance matrix input to the NNet
implementation in SplitsTree4 [120], to calculate the ordering 𝜋 and splits Σ for a
graphical, non-hierarchical visualization, and to extract the split weights 𝜆 for the
system.

The collection of weighted splits produced by NNet can be realized in 2D as a splits
graph [32, 119]. A compatible collection of splits will be exactly represented as
a tree, while incompatible splits are denoted as cycles/boxes in the diagram (Fig.
5.7c). These incompatible splits are thus represented as a collection of parallel
edges, each with the same weight. Distance between members (taxa, etc.) is defined
as the sum of the lengths of the paths/branches connecting them. Given that parallel
edges have the same weight, the distance between two members thus becomes the
sum of the split weights for the splits separating those members.

5.2.3 Circular Split Systems of the US Senate
For the current 116th Senate, the split network output of NNet , using the distance
matrix 𝛿 generated from senate votes, is shown in Fig. 5.8a. In [47], we additionally
generated the split network from Democrat (including Independent) and Republican
senators separately. Note that the split network produced by running NNet run on a
subset of a matrix will be the same as the restriction of the split network produced
by running NNet on the full matrix.

Coalition Structures from NNet

We first verified that the generated split weights 𝜆 represented the same magnitudes
of dissimilarity between pairs of senators as encapsulated in the input matrix 𝛿. By
Pearson correlation analysis of the pairwise distances calculated from 𝜆, we found
a correlation of 0.994. Having inferred the circular split-system representation and
split weights for the 116th Senate, we next examined individual relationships and
neighbors across all members (Fig. 5.8a). As expected, there is a split dividing
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members of the two major parties. The split network also reveals member’s nearest
neighbors based on their voting behaviors, and noted ‘mavericks’ or ‘centrists’, such
as Sen. Collins (Rep.) and Sen. Manchin (Dem.), stand out in their distant, centered
placement relative to the rest of the senate [218] (Fig. 5.8a).

Beyond pairs of individuals, the senate-wide diagram highlights apparent coalitions
within the greater senate structure, visible by clustering of individuals in the circular
order, and in larger relative magnitudes of split weights (lengths) separating groups
of individuals from the rest of the system (Fig. 5.8a, denoted 1 and 2). An interesting
and notable example is the split of Democratic Primary candidates from the rest of
the senate (Fig. 5.8a, denoted 1). Of the seven main incumbent senators to run in the
2020 Democratic Party presidential primary [35], five consistently cluster together
in the senate-wide circular split-systems (Fig. 5.8a).

To verify whether this sequential ordering of these candidates was significant we used
the Wald-Wolfowitz runs test [256] to determine the likelihood that this particular
ordering was random (the null hypothesis). For this test, the circular ordering of
senators can be represented as a linear ordering with senators that were Democratic
Primary candidates represented as 0s and the other senators as 1s. To test for
significant difference from the null hypothesis of a random ordering we found the
probability of observing fewer than seven runs (at least five candidates clustered
together) occurring in any ordering of the binarized senator representations. A run
denotes a contiguous stretc.h of the ordering with senators from the same category
(0 or 1). In both the Senate-wide and Democrat-only circular orderings, p-values
were <0.001, revealing a statistically significant departure from randomness in the
non-random ordering of these senate members.

The formulation of the split-network also facilitates mapping of the splits of interest
back to the features (votes) that underlie that split. In this way, we can extract
votes which contribute to particular splits of interest, i.e., we can apply the split
to the original voting input 𝑅, and selected for features (votes) which characterize
that split (where the votes of that individual or group of individuals differ from
the other members). Thus, given the split of five Democratic Primary candidates,
we traced back the split to the votes contributing to their unique voting pattern
by first extracting votes where all candidates voted the same. Of these votes, we
found a particular set in which a majority of the rest of the party did not vote in
accordance with these senators (Fig. 5.8b), temporally clustered in the latter half of
2019 (Fig. 5.8b). These votes with the largest discrepancy were all abstentions by
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Figure 5.8: 116th Senate Split Network. a) Splits graph representation of Senate-
wide split network, for the 116th Congress. Republican, Democrat, and Independent
members shown with colors. Nearest-neighbors and apparent ‘coalitions’ of mem-
bers shown in circles. b) For roll-call votes where these five Primary candidates
voted the same, percent disagreement within the party is shown (fraction of remain-
ing members of the party who voted differently). Votes colored by the vote cast by
the candidates. c) All roll-call votes ranked by p-value for the given split of the five
Primary candidates. Abstentions with low agreement from a colored in ranking.
Raw p-values reported here. LOESS (Local Regression) fit for p-value rankings
over time (roll-call votes) shown by dashed line d) Splits graph for splits network
of only Democrat (inclusive of Independent) votes after two iterative removals of
low-agreement abstentions for clustered Primary candidates. Adapted from [47].
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these senators, behavior which aligns with the previously noted trend of presidential
candidates abstaining during campaign periods [28] (Fig. 5.8b).

For these (or any) splits of interest we can assign a statistical interpretation to how
the votes contribute to the splits of interest by ranking them by p-value. To do
this, we ranked votes by their likelihood of being associated with any given split of
interest, defining p-values for a vote using the Fisher’s exact test [84] for a 2 × 3
contingency tables between a split {𝐴|𝐵} and counts of the vote types {0, 1/2, 1}.
The table, shown below, denotes the counts for the intersections between members
in {𝐴, 𝐵} and {𝐶, 𝐷, 𝐸}, where 𝐶, 𝐷, and 𝐸 are the sets of members whose votes
were 0, 1/2, and 1, respectively.

C (0) D (1/2) E (1)
A |𝐴 ∩ 𝐶 | |𝐴 ∩ 𝐷 | |𝐴 ∩ 𝐸 |
B |𝐵 ∩ 𝐶 | |𝐵 ∩ 𝐷 | |𝐵 ∩ 𝐸 |

We used a two-sided Fisher’s exact test to determine p-values for assessing how
likely a more ‘extreme’ contingency table for (how far from random) a particular
vote’s table would be. We were thereby ranking, for a given split of senate members,
the likelihood of the voting behaviors in each vote being associated with that split.
For ranking purposes, we report the raw p-values of each vote.

For this particular split of the five Primary candidates we see that the ranking
results (Fig. 5.8c) are concordant with the votes of low intra-party agreement (Fig.
5.8b). The clustered abstentions have the highest likelihoods of contributing to splits,
among other Yea or Nay votes also contributing to this split. The p-value assignments
also allow for investigation of distinct behaviors in the votes contributing to a split
of interest. With the ranked votes we fit a LOESS (Local Regression) curve to
the p-values (Fig. 5.8c, dashed line). This demonstrates the apparent temporal
progression the contributing votes follow, with an upward trend in p-values leading
to the abstention period, and a decrease in rankings following that time period (Fig.
5.8c). We then removed these clustered abstentions to discern who these five senate
members vote similarly to outside of this abstention time period. After a second
removal of low agreement abstentions, for the split of Senators Booker, Sanders,
Warren and Harris, who remained clustered despite the initial removal, we see that
this group remains split from the rest of the party by voting behavior, with Sen.
Gillibrand (Fig. 5.8d).
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Temporal Variation in Party-Specific Voting Agreement

From the split network in Fig. 5.8, we note a variety of structures within the
enate and the individual parties, with particularly dense areas and sparse regions of
individuals denoting areas of high or low voting agreement. To assess and visualize
this agreement across senate members we denoted the ‘center’ (Fig. 5.8a) split to
make relative quantifications of the spread of member’s voting behaviors. This also
provides a comparative metric for how ‘left’ or ‘right’ of center members are [124].
This assignment of distances from the center is not limited to the 116th Congress,
and thus we explored the dynamics of this metric over time for all senates over the
last 30 years (Fig. 5.9a).

By aggregating distances for each of the main parties, we visualized if or how the
spread and magnitude of voting agreement within and between parties has changed
over time as a product of their constituents. What we observed fits with previously
reported trends of increasing partisanship in the Senate [18, 154, 185], at least
within the last six years. This is demonstrated by upward shifts in the median party
distances, i.e., increasing distances of each party’s members from the center. The
larger spread of center distances observed in the Democratic party in recent senates
versus a tightening of the Republican distances also suggests differing levels of
voting unification within each party [176]. This is also in contrast to earlier senates,
where greater ‘unification’ (tighter distance distributions) in the Democratic party
is demonstrated (Fig. 5.9a 101st, 102nd). Shifts in party-specific voting unification
were further investigated by examining the distribution of center distances ranges
(the difference between the highest and lowest distance) for each senate session with
respect to the party in the senate majority (Fig. 5.9b). This revealed a significant
difference in the range or spread of voting behaviors within each of the two main
parties (Independents included with Democrat senators) when the opposing party
was in the majority versus minority (Fig. 5.9b). Though there are many factors
which can contribute to greater or lesser party unity [229], this suggests a relationship
between voting behavior and the party’s standing in the senate, possibly related to
recent observations on the ability of the majority party to influence the legislative
agenda of the chamber floor particularly when the party is ideologically cohesive
[45].

We additionally investigated these agreement distributions at the level of their con-
stituent members, as visualized for the 116th Senate (Fig. 5.9c). At the level of
individual senators we can note the differences in magnitude of the center distances
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Figure 5.9: Quantification of Voter Spread or Agreement. a) Distribution of
members distances from center shown for the 101st to 116th US Senates, within
each of the main parties. b) Distribution of center distance ranges, calculated for
each party per Senate session. Mann-Whitney U-test used to determine if party-
specific ranges differ in sessions with either party in the majority. n = 16. * denotes
p-value <0.05. g denotes Hedges’ g measure of effect size. c) Center distances
for the 116th Senate shown for each senator. d) Spearman correlation between
DW-NOMINATE coordinates (first dimension) and center distances, by party, for
senators in the 116th Senate. Center distances on opposing sides of the center split
are negated. Adapted from [47].
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among non-Republican senators versus Republican senators and place each senator
within this greater distribution. These individual distances were then compared to
the coordinates of the ideal points assigned to each senator by DW-NOMINATE,
demonstrating a high correlation of ∼ 0.8 to this benchmark methodology within
each party (Fig. 5.9d) [44]. Here we utilized the first dimension of the DW-
NOMINATE coordinates, as it tends to be the most interpretable and commonly
utilized part of the embedding space [80]. This highlights the ability of NNet to
not only replicate the spectrum of ‘left’ and ‘right’ within the senate, as the DW-
NOMINATE coordinates reveal [44, 80], but also provide the structure of coalitions
within which these preferences reside.

Our findings highlight the utility of the NNet-SplitsTree algorithms in creating
representations and visualizations of voting data that facilitate exploratory analysis
and facilitate identification of voting patterns that may not be readily apparent. This
non-model-based approach minimizes assumptions on the structure of the input
data, though the circular nature of the split-system can limit which relationships
are accurately recapitulated in the visualization. However, as mentioned previously,
these discrepancies can be utilized to detect members of the network who display
more discordant or ‘maverick’ behavior. The analysis framework we have proposed
is additionally limited to political relationships and structures visible at the level of
voting behavior, and it is important to keep in mind that there may be other factors
and behaviors which may influence the relationships between political members.

With the NNet-based approach, we determined relationships between pairs of sen-
ators within and across their respective parties, highlighting the impact of inter-
versus intra-party voting behaviors on the stability of those relationships. The rela-
tive lengths of the generated splits additionally provided a quantitative visualization
of both the strengths of these relationships and the level of divergence those shared
behaviors represented. This gave rise to visible coalitions of senators within the
greater split system, notably five of the 2020 Democratic Party presidential candi-
dates and a separate group of Democrat ‘centrists’. Utilizing the direct relationship
of the defined splits to the input voting data, we recovered the contributing votes
to each coalition and verified the existence of shared voting behaviors unique to
the primary candidate coalition beyond the abstentions common during presidential
bids. The split-system also provided an interpretable framework for the development
of a statistical procedure to rank contributions of each vote to any given split of in-
terest, thus connecting shared behaviors to their comprising features in a statistically
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rigorous manner.
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C h a p t e r 6

BIOPHYSICAL REPRESENTATION OF PERTURBATION DATA

You cannot answer a question that you
cannot ask, and you cannot ask a question

that you have no words for.
Judea Pearl

The work in Chapter 5, highlights an important question in the analysis of high-
throughput genomics data (or any high-dimensional data for that matter). What
should our representations represent?

Rather than creating an all-in-one representation attempting to illuminate many
relationships, it may be more promising, and interpretable, to create specific repre-
sentations for specific questions, along the lines of the EDA discussion in Chapter
5.1.4. In particular, the questions resulting from perturbation data are often con-
cerned with understanding how processes of DNA and RNA regulation lead to
observed responses in the cell, whether that be changes in mRNA or protein expres-
sion, or morphological changes and the spatial distribution of cells. As described in
Chapter 4.4, such data are becoming increasing multimodal, where within cells we
can measure multiple biological entities simultaneously, from nascent and mature
mRNA to chromatin ‘openness’ and protein expression. The idea of such simul-
taneous measurements, coupled to perturbation, is to illuminate not only different
components of gene regulation, but how they work together to produce behaviors
of interest, be it cell fate determination or development of tumorigenesis. However,
treatment of multimodal data, with or without perturbations, is often limited to ob-
servational analysis only, i.e., at the level of expression and statistics on the counts.
Thus we use changes in ‘expression’ as a proxy for effects on the transcriptional
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process, though several different mechanistic explanations could give rise to such
changes. Thus, if the goal of these increasingly high-resolution views into the cell is
to probe intertwined processes of gene regulation, we may require tools with more
specific grammar with which to describe these processes, and in turn, ask deeper
questions.

6.1 Biophysical Inference of Multimodal Cell Types
We begin with the question of clustering, or determining which populations of cells
exhibit similar transcriptional states, in a heterogeneous biological system. The
clustering described and assessed in Chapter 3 and 5 only utilized one count matrix,
but given multiple measurement matrices, what does it mean to cluster cells and
how does one determine the appropriate balance of measurements in the clustering
task? Below, we re-interpret the task of clustering in scRNA-seq analysis through
the lens of stochastic, biophysical models of transcription, to provide instead, a
kinetic representation of the data.

This section summarizes the contents of [50] by T.C, G.G., and L.P. The method
was conceptualized by T.C. and G.G., T.C. developed the code and analysis. T.C.,
G.G., and L.P. wrote and edited the manuscript.

Determination of cell types is a central task in single-cell genomics analysis [111,
138], though the definition of ‘type’ and whether designations should be of a discrete
or continuous nature is a matter of debate [70, 274], and is often dependent on the
investigation or data properties [81, 159]. Here we focus on discrete categoriza-
tions, or clusters, of cells where common clustering methods include the Louvain
[61] or Leiden [247] community detection algorithms (neighborhood graph-based
algorithms), hierarchical clustering techniques [268], (finite-dimensional) mixture
model approaches [38, 52], and marker gene-based analyses [7]. While these
techniques are widely used, they are subject to heuristic tuning of hyperparame-
ters [138], and/or assume Gaussian-distributed data in contrast with the sparse and
discrete nature of single-cell data. Clustering results are also often derived after
initial dimension reduction(s), and assessed after further dimension reduction and
embedding to 2D [24, 180].

As we move towards more simultaneous measurements and modality types, delin-
eating clusters with these methods becomes convoluted, particularly regarding the
treatment of modality-specific features and variability. And though these multi-
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modal experimental approaches provide opportunities for large-scale, mechanistic
studies of the central dogma, i.e., to model the kinetics of these processes [101]
and the roles of biological stochasticity in driving cellular heterogeneity [51, 68],
such mechanistic studies are often limited to exploring cellular processes for only a
handful of genes and/or for homogeneous systems [188, 200, 240]. Thus there is an
opportunity and need for using multimodal, single-cell data to gain biophysical and
mechanistic insight into heterogeneous cell types [51, 149, 266].

Specifically for scRNAseq data, standard clustering for both benchmarking and
exploratory datasets [107, 238, 245, 270] is performed on a gene count matrix
which is often constructed from spliced gene expression, or non-intron aligning
reads that represent mature mRNA [113]. However, two modalities, Unspliced
(U, intron-aligning) and Spliced (S) molecule counts, can be obtained from most
scRNAseq datasets and allow us to tease apart the production and processing steps
in the generation of mRNA [46]. For example, these counts are obtained by re-
alignment of datasets to an intron-containing reference [237]. Uniquely, U and S
are summed together by default to generate the count matrix in the 10x Genomics
Cell Ranger 7.0.0 pipeline [113, 237], however this conflates the two measurements
as the same biological entity, reduces interpretability, and is not the default in most
other count generation pipelines [237].

Given these matrices of different measurement types, this immediately raises the
question of which matrices, and what balance of matrices, are relevant for clustering?
The choice of matrix has many implications for clustering methods, starting with
the set of genes to be used. Perhaps unsurprisingly, different matrix choices result
in distinct cluster assignments for the cells (see Fig. 1 ‘Assess Clusters’ in [50]),
necessitating either the arbitrary selection of a matrix or determination of consensus
clusters across modalities, defined through some metric or heuristic.

Existing methods for determining such consensus or shared clusters largely ignore U
counts, focusing on integrated clustering across S mRNA counts, protein, and chro-
matin accessibility modalities [91, 108, 161]. Methods that do integrate U counts
build on standard RNA velocity pipelines [103], also described in Chapter 5.1.2,
which rely on large numbers of arbitrary hyperparameters and ad hoc processing
steps [96], and are often incompatible with known biophysics [96]. Outside of these
approaches, multimodal clustering methods often utilize heuristics to balance the
influence of modality-specific neighborhood-graphs or similarity matrices [108],
which do not necessarily provide a consistent foundation for extension to new mea-
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surements. Alternatively, deep learning and/or embedding approaches seek to find a
common space which produces the partitions of the data into clusters [161], or which
can then be clustered by any clustering method the user chooses (i.e., an arbitrary
selection) [91]. Though here it is common for such methods to model the count data
using discrete distributions, these methods model the modalities through indepen-
dent observational distributions which obscures understanding of their innate causal
relationships induced by underlying, transcriptional processes. Furthermore, it re-
mains unclear how to justify or interpret the balance of modality-specific properties
in such latent spaces [94, 253].

In light of these limitations, we propose meK-Means (mechanistic K-Means) as a
method to cluster cells from multimodal single-cell data under a self-consistent,
biophysical model. We demonstrate meK-Means on two modalities which describe
mRNA production and processing: U and S gene count data, for which we utilize
the Chemical Master Equation (CME) to formalize causal transcriptional processes
in the cell and their governing rates [26, 226], as well as the technical sequencing
process [95]. The CME is a natural framework to model the joint distribution
of U and S counts at steady-state [26]. meK-Means presents a mixture model
representation of this joint distribution, to learn clusters Z underlying the observed
gene count data. A cluster is then inherently defined by the governing parameters
of the cellular processes of interest, and represents shared transcriptional programs
between genes, allowing for greater representation of gene-gene correlations as
opposed to the standard, independent treatment of genes under the CME approach
[100].

Thus meK-Means provides interpretable integration of modalities to learn cell clus-
ters, and a basis for consistent extension to new measurements, as it inherently
balances and unifies the modalities of interest through their underlying, biophysical
relationships.

6.1.1 meK-Means Implementation and Interpretation
From simply aligning scRNAseq data to a reference transcriptome with intron
and exon annotations, we can obtain two molecular measurements or ‘modalities’,
Unspliced (U) and Spliced (S) count matrices which represent ‘nascent’ and ‘mature’
mRNA molecules, respectively [113, 237]. Each matrix is a cell x gene count matrix,
and both are taken as input for clustering with meK-Means (Fig. 6.1a). meK-Means
then models the joint distribution of these modalities using a biophysical model of
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their transcriptional relationships, and infers which cells cluster together based on
similar transcriptional kinetics (Fig. 6.1a). The output of meK-Means is effectively
a cluster x gene x parameters matrix, where we learn a set of cluster-specific,
biophysical parameters for each gene which describe the processes of transcription,
splicing, and degradation (Fig. 6.1a). This model additionally includes the sampling
of the molecules by the technical, sequencing process (resulting in the final observed
count matrix). Thus this approach explicitly models biological and technical sources
of variation in the data.

Figure 6.1: meK-Means Clustering. a) High-level diagram of Input and Output of
meK-Means (from multimodal data to a matrix of cluster x gene x parameters). meK-
Means fits data to a Length-Bias Model of transcription. b) Detailed description
of the Length-Bias CME Model. Rates per gene 𝑔 denoted. Model includes
length-dependent technical sampling of the molecules produced by the transcription
processes, which occurs during the sequencing process. This produces the final
observed counts (i.e.,𝑈 and 𝑆). Adapted from [50]. Created with BioRender.com.

The CME Model of Sequencing Data

The model of transcription underlying meK-Means uses the CME formalism de-
scribed in detail here. The CME describes the probability of molecule counts 𝑋
over time (𝑝(𝑋, 𝑡)), given some rates of transitions between states. States here are
the possible molecular counts observed. It is particularly useful for modeling low-
count (discrete) systems [26, 226] such as the sparse, low-count regime of scRNAseq
data, and has been used extensively in the fluorescence transcriptomics literature
over the past couple of decades to model the processes of transcription and protein
synthesis in various cell systems [26, 187, 188, 226].
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In our case, we define a CME that describes the probability of unspliced, 𝑈𝑔, and
spliced, 𝑆𝑔, counts per gene 𝑔 over time (𝑝(𝑈𝑔, 𝑆𝑔, 𝑡)). Here our rates of transition
are the (gene-specific) kinetic rates describing the processes of transcription 𝑘𝑔

(which produces unspliced molecules in bursts of size 𝑏𝑔 [39]), splicing of unspliced
molecules, 𝛽𝐺 , and degradation of spliced molecules, 𝛾𝑔 (Fig. 6.1a,b). This model
also includes the sampling of these unspliced and spliced molecules that happens
external to the cellular transcription, during the sequencing process. Here we use the
length-bias CME model (developed for 10x Genomics or poly(A)-capture scRNAseq
methods) described in [95] where nascent pre-mRNA or unspliced molecules are
captured in a length-dependent manner (as longer transcripts can contain more
internal poly(A)s for internal priming/capture) (Fig. 6.1b). We will use parameters
𝐶𝑢, 𝜆𝑠 to denote the rate of capture of unspliced and spliced molecules (see below
for more details).

Given that we are working with snapshot scRNAseq data here, we then study the
behavior of 𝑝(𝑈𝑔, 𝑆𝑔, 𝑡), in the long-time limit (steady state), 𝑝(𝑈𝑔, 𝑆𝑔) as 𝑡 → ∞.
At steady-state, certain gene parameters are not independently identifiable, thus
we define relative splicing and degradation parameters, 𝛽𝑔/𝑘𝑔 and 𝛾𝑔/𝑘𝑔, where
splicing and degradation rates, respectively, are relative to the transcription rate 𝑘𝑔
[95]. 𝑏𝑔 represents the mean of geometrically-distributed bursts of transcription
[88]. The technical parameters, which are shared across genes, are shown in the
𝑃𝑜𝑖𝑠𝑠 and 𝐵𝑖𝑛 capture and sequencing sampling parameters in Fig. 6.1b, and
are also not independently identifiable, thus we define net sampling rates 𝜆𝑢, 𝜆𝑠

(where 𝜆𝑢 = 𝐶𝑢𝐿𝑔, 𝐿𝑔 represents length of the gene) which contain 𝑝𝑢, 𝑝𝑠. For
simulation and meK-Means inference, these global technical parameters are set prior
to inference of the physical parameters (i.e., we do not perform a grid search over
these parameters during meK-Means inference).

We note that the bursty model of transcription is a limiting case of the two-state
telegraph model in Fig. 6.2. Here the gene switches between an ON and OFF
state, and while in the ON state produces transcripts at some rate. As we take
𝑘𝑖𝑛𝑖, 𝑘𝑜 𝑓 𝑓 → ∞, the burst size 𝑏 is defined as 𝑘𝑖𝑛𝑖/𝑘𝑜 𝑓 𝑓 , and 𝑘𝑜𝑛 → 𝑘 as in Fig. 6.1.

Solving the CME Model

With this CME formulation we can define the steady-state probability generating
function (PGF) form, 𝐻, of 𝑝(𝑈𝑔, 𝑆𝑔), and solve for 𝑝(𝑈𝑔, 𝑆𝑔; 𝜽𝑔) where 𝜽𝑔 =[
𝑏𝑔, 𝛽𝑔/𝑘𝑔, 𝛾𝑔/𝑘𝑔, 𝜆𝑢, 𝜆𝑠

]
(the kinetic parameters of the model) as described in
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Figure 6.2: Two-State Telegraph Model. Definition of the two-state telegraph
model of transcription, used to derive the bursty model of transcription.

[26, 95]:

𝑝(𝑈𝑔 = u, 𝑆𝑔 = s; 𝜽𝑔) ≈ iFFT 𝐻
©«𝑒

−2𝜋𝑖u
𝑊𝑔 , 𝑒

−2𝜋𝑖s
𝑉𝑔

ª®®¬ (6.1)

where u = 0, ..,𝑊𝑔 − 1, s = 0, .., 𝑉𝑔 − 1 and 𝑊𝑔, 𝑉𝑔 are sufficiently large, positive
integers. This amounts to evaluating the PGF 𝐻 around the complex unit circle
and performing an inverse Fourier transform (denoted iFFT) to obtain the molecule
count probabilities [26]. For a dataset X, which comprises matrices U and S ∈ RN×G

(for N cells and G genes),𝑊𝑔 and 𝑉𝑔 are defined as𝑊𝑔 = max(U𝑔), 𝑉𝑔 = max(S𝑔).

To obtain MLE (maximum likelihood) parameter estimates, 𝜽𝑔, given X, the
Kullback-Leibler Divergence (KLD) between the observed molecule count distribu-
tion and the distribution generated under the CME model is minimized :

𝜽𝑔 = argmin
𝜽𝑔

𝐾𝐿𝐷 (𝑝(U𝑔, S𝑔), 𝑝(U𝑔, S𝑔; 𝜽𝑔))) (6.2)

where 𝑝 describes the observed histogram of counts. To optimize the global pa-
rameters 𝜆𝑢, 𝜆𝑠 a grid search can be performed where Equation (6.2) is optimized
for possible pairs of (𝜆𝑢, 𝜆𝑠), and an optimal pair of (𝜆𝑢, 𝜆𝑠) are chosen with the
minimum KLD. This grid search is performed on the datasets prior to meK-Means
inference, to obtain and set reasonable 𝜆𝑢, 𝜆𝑠 values.

The moments of the CME model (Fig. 6.1b) are derived in [95]. For this study, we
utilize the moment derivations for the unspliced and spliced mRNA count means:

𝜇𝑢 =
𝜆𝑢𝑘𝑏

𝛽
, 𝜇𝑠 =

𝜆𝑠𝑘𝑏

𝛾
. (6.3)

A general framework and tools for performing the numerical integration and param-
eter optimization for CME model inference with single-cell data are implemented
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in the Monod package [94]. MeK-Means is integrated within the Monod package,
utilizing these established workflows for solving such CME-based systems.

The meK-Means Algorithm

The meK-Means model introduces the latent variable 𝑍 to the CME model of
transcription above, expanding the likelihood model of the data from 𝑝(𝑈, 𝑆 |𝜽) to
𝑝(𝑈, 𝑆, 𝑍 |𝜽) . Here 𝑍 can take any (integer) value from 1 to the user-defined K.
Given that both the posterior, 𝑝(𝑍 |𝑈, 𝑆, 𝜽), and parameters, 𝜽 , are unknown, we
take an Expectation Maximization (EM)-based approach to optimize the Q function:

𝑄(𝜽 |𝜽 t) = E𝑝(𝑍 |𝑈,𝑆,𝜽 t)log 𝑝(𝑈, 𝑆, 𝑍 |𝜽) (6.4)

iterating between updating the posterior given parameter estimates 𝜽 t (E-step), and
determining the MLE parameter estimates which then maximize 𝑄(𝜽 |𝜽 t) (M-step).
See Algorithm 2 below.

To initialize the posterior, 𝑝(Z|U, S, 𝜽), given count matrices U, S, K-Means clus-
tering was performed on the U + S matrix (for the user-defined K) and for each cell
n, 𝑝(𝑧n = k𝐾𝑀𝑒𝑎𝑛𝑠n |un, sn) = 0.9 where k𝐾𝑀𝑒𝑎𝑛𝑠n is the cluster k assigned to cell n by
K-Means. For all other k, 𝑝(𝑧n = k𝐾𝑀𝑒𝑎𝑛𝑠n |un, sn) ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 [0, 1).

Since the numerical procedure for obtaining parameter estimates for the defined
CME model requires a histogram over observed counts (see Equation (6.2)), we use
hard assignment of cells to a single latent state or cluster k during the M-step, where
the cell is assigned k such that

k = argmax
k

𝑝(𝑧n = k|un, sn; 𝜽 t
k).

This is akin to the hard assignment of each observation (cell) to a cluster centroid
(based on distance from the observation to that centroid) in K-Means clustering,
hence the ‘K-Means’ in ‘meK-Means’.

Note that in Equation (6.7), given that the hard assignment of k is determined by
the maximum posterior value for a given cell, meK-Means can converge to a final
number of assigned clusters less than the upper bound K set by a user.

6.1.2 meK-Means Benchmarking
Detailed benchmarking of the performance of meK-Means on simulated and real
datasets, versus other common clustering approaches can be found in [50], but to
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Algorithm 1: meK-Means
Data: X ∈ RN×G×D with N cells, G genes, and D modalities. Here D = 2,

where X = [U, S] and U, S ∈ RN×G . User-defined K, for number of
clusters.

Result: 𝜽k and �̂�k for k = 1, ...,K where 𝜽k =

[
�̂�,

�̂�

𝒌
,
�̂�

𝒌

]
k
, e.g.,

�̂�k =
[
�̂�1, ..., �̂�𝑔

]
k, and cluster assignments per cell Ẑ = [ẑ1, ..., ẑN]

where ẑn ∈ {1, ...,K}.
Initialize:
Mixing proportions 𝝅 and 𝑝(Z|X; 𝜽). Set global parameters 𝐶𝑢, 𝜆𝑠.
Optimize: 𝑄(𝜃 |𝜃t) =∑

k
∑

n
[
𝑝(𝑧n = k|xn; 𝜽 t

k)log 𝑝(xn; 𝜽k)
]
+ ∑

k
∑

n
[
𝑝(𝑧n = k|xn; 𝜽 t

k)log(𝜋k)
]
.

for t epochs do
if t = 0 then

Do an M-step Update as in Equation (6.6) and Equation (6.7) to obtain
𝝅0 and 𝜽0 from initialized 𝑝(Z|X; 𝜽).

end
1. E-step Update

𝑝(𝑧n = k|xn; 𝜽 t
k) = softmax(log 𝑝(xn; 𝜽 t) + log(𝝅t))k (6.5)

with 𝑝(xn; 𝜽 t) as in Equation (6.1).
2. M-step Update

�̂�k =

∑
n 𝑝(𝑧n = k|xn; 𝜽 t

k)
n

where
∑︁

k
𝜋k = 1. (6.6)

�̂�k = argmax
𝜽k

∑︁
n
𝑝(𝑧n = k|xn; 𝜽 t

k)log 𝑝(xn; 𝜽k)

where 𝑝(𝑧n = k|xn; 𝜽 t
k) =


1 if k = argmax

k
𝑝(𝑧n = k|xn; 𝜽 t

k),

0 otherwise.

(6.7)

end
3. Final cluster assignment where Ẑ = [ẑ1, ..., ẑN] and
ẑn = argmax

k
𝑝(𝑧n = k|xn).
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summarize, we first validated the performance of meK-Means to recapitulate cluster
annotations, and ground truth parameters in the case of simulated data. We compared
meK-Means results to several other clustering approaches beginning with standard
methods such as Leiden [247, 262] and K-Means [173] clustering, as well as a
combination of latent space (scVI [91]) or integrated nearest neighbor graph (WNN
[108]) learning techniques with Leiden or K-Means as per suggested guidelines to
combine reduced representations of the data with downstream clustering approaches
[111]. We also compare results to scMDC [161] which dually learns a latent space
representation and cluster partitions of the data, though this method was not able to
run on all datasets. We also note that this is one of the few methods which explicitly
combines integration of modalities and clustering. Most approaches currently tackle
one or the other, without particular rationale for why or how to combine an integrated
space with a clustering technique. For Leiden and K-Means we additionally run
the algorithms with all possible input matrix options: U, S,U + S,U ⊕ S. U + S
represents the summation of the individual U and S matrices. U ⊕ S represents
the concatenation of the U and S matrices, or a more independent treatment of the
modalities (as used for scVI). (U, S) denotes the treatment of each modality as its
own matrix, by meK-Means and scMDC.
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Figure 6.3: meK-Means Benchmark Performance. a) i. Table of all clustering
methods tested with possible data input options. ii. ARI and AMI scores for each
method versus true clusters, across possible inputs for the three simulations (with
1, 5, or 10 simulated clusters). For methods with a K hyperparameter, the same
K as the data was used, and the default Leiden res parameter otherwise. b) Table
of datasets used for benchmarking with relevant properties listed. ARI and AMI
scores for all clustering methods across all possible inputs (see Supplementary Fig.
3 in [50] for scMDC results), as compared to the annotated cell types. For methods
with a K hyperparameter, the same K as the data was used, and the default Leiden
res parameter otherwise. c) i. Correspondence of meK-Means inferred clusters to
the MOp_sn annotations. Values denote cell counts in the cluster overlaps. ii. ‘DE’
or ‘Differentially Expressed’ genes at the parameter-level (𝜃) shown between the
clusters corresponding to L6 CT (Glutamatergic) and Pvalb (GABAergic) neurons.
Genes in dashed box denote genes where DE is detected at the parameter-level but
not at the observed, mean S-level. (Left) Splicing rate vs. burst size shown for genes.
(Right) Degradation rate versus burst size shown. Adapted from [50]. Created with
BioRender.com.
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To generate simulation data we used the CME model of transcription described above
to simulate KSim clusters, where a set of genes for each of the KSim clusters were
perturbed, either increasing burst size or decreasing (relative) splicing rate for each
gene chosen. By modulating burst size and splicing rate we induce changes in both
unspliced counts and spliced counts, and by decreasing splicing (thus potentially
spliced counts) we can test the detection limits of the clustering methods. These rate
parameters for each gene, per cluster, define a probability distribution over unspliced
(𝑈) and spliced (𝑆) molecule counts from which a dataset X can be sampled (see
Equation (6.1)), containing U and S cell-by-gene count matrices. We tested three
simulation datasets with KSim = 1, 5, 10, with 5000 cells each over a range of
cluster sizes, where KSim = 1 represents a negative control dataset without cluster
partitions. All the clustering methods were run on these datasets, with the Adjusted
Rand Index (ARI) and Adjusted Mutual Index (AMI) scores used to assess each
method’s cluster assignments versus the ground truth assignments. For ARI, 1.0
denotes overlapping assignments and 0.0 represents poor or random assignments.
For AMI, 1.0 denotes identical assignments and 0.0 represents when the mutual
information between assignments is the same as the value expected due to chance.
Overall, meK-Means performed as well on both metrics as the other best performing
method in each simulation case, while no method besides meK-Means was able to
determine that there was only one cluster for KSim = 1 (Fig. 6.3a ii), (resulting
in varying, non-overlapping numbers of clusters from these methods). In addition
to clustering assignment performance, meK-Means was also able to recover the
biophysical parameters for the genes across the clusters, with high correlation (see
[50]). Spearman and Pearson correlation are denoted by 𝜌 and 𝑟, respectively.

Moving beyond simulation, we then tested the performance of meK-Means and
all other clustering methods on benchmark biological datasets which had ‘ground
truth’ clusters assignments [270] or cluster assignments that were obtained from
several experimental paradigms (e.g., RNAseq and spatial transcriptomics [268]).
We tested the methods on two scMixology datasets [270] which were a mix of 3 or 5
human lung adenocarcinoma lines (‘3cl’ and ‘5cl’), and two Allen Institute Mouse
Primary Motor Cortex (MOp) datasets, an scRNAseq dataset (‘MOp_sc’) and an
snRNAseq dataset (single-nucleus RNAseq,‘MOp_sn’) ([268] see Methods) (Fig.
6.3b). Datasets were filtered for HVGs as per standard scanpy procedure [262],
and these genes were filtered for genes that were overdispersed and had sufficient
U and S counts. This left 466, 357, 682, 359 genes for the cl3, cl5, MOp_sc,
MOp_sn datasets, respectively. In future, sequencing technologies that provide
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more unbiased capture of both nascent and mature mRNA will improve the number
of genes capable of being used for such biophysical modeling [11, 264]. Again,
meK-Means performed at least as well as the other best-performing method for
each dataset, while the methods that performed worse on the real datasets did not
necessarily correspond to the worse performers on the simulated dataset (i.e., there
was no clear rationale as to which of the other methods would consistently perform
better or worse).

In addition to cluster assignment, we analyzed the recapitulation of the MOp_sn
data by meK-Means . For example, for the inferred cluster 8, the inferred mean
unspliced and spliced counts across genes was highly correlated with the observed
means in the cluster (see [5]). With meK-Means clustering results we can also look
for ‘DE-𝜃’ genes, or genes where there is differential expression, a log2FC (fold
change) > 2, in at least one parameter 𝑏, 𝛽/𝑘, 𝛾/𝑘 between two clusters. Since the
parameters describe the full, joint distribution of counts, parameter-level FCs may
not be discernible FCs (log2FC > 1) at the level of mean spliced expression, which
mimics the standard approach for differential expression [15]. Thus, DE-𝜃 genes
may not be DE-𝜇𝑠, ‘differentially expressed in mean, spliced counts 𝜇𝑠’. Expanding
DE to the parameter level, also expands the definition of a gene being a ‘marker’ of
one cluster versus another. For example, if we are interested in increased splicing
between cell populations, a gene with a higher splicing rate (𝛽/𝑘) in cluster 1 versus
cluster 2 would be a cluster 1 marker. Likewise, a gene with a lower degradation
rate (𝛾/𝑘) in cluster 1 versus cluster 2 could be denoted as a cluster 2 marker, if we
are interested in increased mRNA stability. The definition of a marker gene is then
broader, and does not necessarily agree with the more standard definition of marker
gene as increased, spliced gene expression.

For these biological datasets, we thus denote a DE-𝜃 gene as a cluster’s marker
when burst size is increased or both splicing and degradation are decreased (i.e.,
there is increased burst frequency or transcription rate 𝑘), as both suggest increased
mRNA production. If neither is the case, an increase in splicing or decrease in
degradation (increased mRNA stability) denote a marker. However, these parameter-
level definitions of marker genes are flexible and likely to be task- or investigation-
dependent.

We then extracted DE-𝜃 genes between a glutamatergic (Glut.) and GABAergic
(GABA.) cluster (Fig. 6.3c ii). Between the L6 CT (Glut.) and Pvalb (GABA.)
neuron clusters we recovered known markers such as Pvalb, Slc32a1, and Foxp2
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[268] (Fig. 6.3c ii). Additionally, we found DE-𝜃 genes that did not have detectable
FC if only considering spliced expression counts (they were not DE-𝜇𝑠), such as
for the cadherin gene Cdh6, whose differential expression patterns across brain
regions help specify developmental compartments and neuronal circuitries [123,
211] (Fig. 6.3c ii). Thus meK-Means is able to consistently cluster the benchmark
data comparably to the other best performing clustering methods as well uncover
kinetic differences between clusters which underlie known cell type markers and
define novel markers for further investigation.

6.1.3 Biological Discovery with meK-Means
In addition to investigating the ability of meK-Means to define cluster markers
through kinetic differences, we also sought to demonstrate the use of meK-Means
for exploratory analysis and to develop hypotheses for how transcriptional dynamics
define novel cell populations. For example, in [177] the authors were interested
in understanding how transcription and splicing affect the maturation of germ cells
in mice. However most inferences about transcription and splicing dynamics were
made at the level of the observed, expression counts, e.g., where higher spliced
expression implies greater transcription and a higher unspliced to spliced ratio
implies less splicing. With meK-Means, we clustered testicular germ cells from
early and later stages of development (E11.5 and E13.5 cells) to more explicitly
model the changing dynamics between the populations and simultaneously identify
heterogeneity within these stages, i.e., cluster of cells in different states of maturation
and thus kinetic regulation [177].
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Figure 6.4: meK-Means for Biological Discovery. a) meK-Means results for
mouse germ cells dataset. i. meK-Means clustering results for cells from both
E11.5 and E13.5 stages. Barplot shows distribution of stages among the inferred
clusters. ii. ‘DE’ or ‘Differentially Expressed’ genes at the parameter-level (𝜃)
shown between inferred clusters 4 and 1. Genes in dashed box denote genes where
DE is detected at the parameter-level but not at the observed, mean S-level. (Left)
Splicing rate vs. burst size shown for genes. (Right) Degradation rate versus burst
size shown. iii. Expression of germ cell maturation markers over the clusters,
ordered by increasing ‘maturity’. Splicing rate for genes shown across ordered
clusters. Asterisk denotes gene trends not discussed in the original study. Error
bars denote the 99% C.I. b) meK-Means results for mouse breast cancer dataset. i.
meK-Means clustering result of Brca1-null tumor cells, shown on right in a heatmap,
with expression of published markers for breast cancer populations (Epithelial Epi.,
Alveolar Progenitor-like AvP, Mesenchymal Mes.). ii. ‘DE’ genes at the parameter-
level (𝜃) shown between inferred clusters 0 and 8. Genes in dashed box denote genes
where DE is detected at the parameter-level but not at the observed, mean S-level.
(Left) Splicing rate vs. burst size shown for genes. (Right) Degradation rate versus
burst size shown. iii. (Left) Splicing rate of Rbfox2 vs. mean Malat1 expression
(both inferred from biophysical parameters) in each cluster. Error bars denote the
99% C.I. (Right) Histograms of splicing rates in each cluster. Adapted from [50].
Created with BioRender.com.
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We found that four clusters of cells emerged from our analysis, containing differing
proportions of early and later stage cells (Fig. 6.4a i). Note that given the likelihood-
based approach of meK-Means , we can use the Akaike Information Criterion (AIC)
as a measure of model quality and appropriateness, to choose between meK-Means
results at several values of K. In comparing the cluster with the largest number of
E13.5 cells to the cluster of solely E11.5 cells (inferred clusters 4 vs. 1), our DE-𝜃
analysis accordingly extracted the known pluripotency marker Nanog and cell cycle
control-related Ccnd3 gene as early stage markers, which are both downregulated
in maturing testicular germ cells [177] (Fig. 6.4a ii). Lefty1, a gene associated with
axis specification, displayed lowered burst-size but increased splicing and lowered
degradation in the E13.5-dominated cluster, while Hormad2, a gene implicated in
several processes regulating mammalian meiosis [142], displayed both decreased
splicing and degradation (i.e, likely increased transcription rate 𝑘) in this same
cluster, where fold change was not discernible through spliced expression analysis
only (Fig. 6.4a iii).

Delving deeper into the assigned clusters, we noted that the clusters demonstrated
graded expression of germ cell maturation markers, specifically displaying decreas-
ing expression of the pluripotency marker Nanog and increasing expression of male-
specific markers in gametogenesis, Nanos2 and Piwil4, in more mature populations
(Fig. 6.4a iii left). In accordance with these expression patterns, spermatogenesis-
related genes such as Bnc2 and cell-cycle-related Ccnd3 both showed decreasing
splicing rates over these cluster stages (Fig. 6.4a iii right), matching previous
literature on increased intronic counts, and intro-retention, of these genes during
spermatogenesis [177]. We also searched for genes whose splicing dynamics showed
other interesting dynamics over the cluster stages, as with the phosphatase Ptpre,
with roles in signal transduction and cell differentiation [157], which displayed in-
creased splicing across the clusters (Fig. 6.4a iii right). We note that standard error
bars can be calculated for the parameter estimates, as displayed in Fig. 6.4a iii,
calculated from the square root of the diagonals of the inverse Fisher Information
Matrix (FIM) . The FIM is calculated as the Hessian matrix of the KLDs between
the observed count histograms and the distributions induced by the final inferred
parameters. Thus meK-Means was able to quantitatively resolve the initial analysis
in [177], to both identify relevant dynamics and novel states in the maturation of
these germ cells, and move beyond spliced gene expression analysis.

In addition to revealing how transcriptional dynamics regulate normal development,
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such kinetics are particularly relevant to understanding the progression and resistance
of cancer cell populations, and for identifying therapeutic targets to, for example,
mitigate aberrant splicing behaviors in tumor cells [14, 141]. Recent work by [269]
used scRNAseq to profile tumor cell populations in several mouse cancer models.
Using the mammary tumor sequencing data from Brca1F/F Trp53F/F Krt14-Cre, or
‘Brca1-null’ mice), we applied meK-Means to interrogate the cell populations in
these tumor samples that mimic basal-like breast cancers.

meK-Means clustering settled on three clusters within the Brca1-null tumor sample,
an epithelial cluster, 0 (Epi.), an alveolar progenitor-like population, 8 (AvP-like),
and a mesenchymal cluster, 1 (Mes.), corresponding to observations in [269] (Fig.
6.4b i, Supplementary Fig. 7). Through DE-𝜃 analysis we found several splicing
factors whose dynamics differed between the clusters. For example, splicing of
Rbfox2, which can delineate mesenchymal cell states in the epithelial-mesenchymal
transition (EMT) and increase “metastatic potential" [141] marked both the AvP-
like and mesenchymal clusters in comparison to the epithelial cluster 0 (Fig. 6.4b
ii). Srsf4, which in combination with drug therapies like cisplatin has been used
to induce cancer cell apoptosis [141], and Sf3b1, whose knockdown can diminish
tumorigenesis in MYC hyperactivated breast cancers [141] both demonstrated de-
creased degradation in the epithelial cluster versus the AvP-like cluster (Fig. 6.4b
ii).

Interestingly, we found that splicing rates for Rbfox2 increase in accordance with
increasing Malat1 expression across the clusters (Fig. 6.4b iii left). Additionally,
histograms of all gene splicing rates in each cluster demonstrated a similar trend,
with histograms shifted towards higher splicing rates in the clusters with greater
Malat1 expression (Fig. 6.4b iii right). These findings allowed us to not only parse
the transcriptional dynamics underlying cancer cell populations in different stages of
EMT, but also to develop hypotheses about how potential therapeutic targets, such as
Malat1, may be affecting downstream genes and regulators, e.g., by altering Rbfox2
splicing, and to design experiments to investigate or target those relationships.
Together, by coupling our definition of clusters to the cellular processes underlying
molecular measurements we can more explicitly investigate what components of
DNA and RNA regulation are driving these clusters or states of interest.
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6.1.4 Extending the meK-Means Framework
Through meK-Means we develop a scalable and interpretable methodology for defin-
ing clusters in single-cell, multimodal datasets, coupling the definition of ‘cluster’
to the governing parameters of the underlying, cellular processes which produce
the joint distribution of the molecular measurements we observe. In the current
workflow, preprocessing of data once the raw counts are obtained is limited to the
selection of genes for inference. For most datasets we filter the standard HVGs
selected by scanpy to ensure a minimum threshold of counts in both modalities
and overdispersed behavior (in accordance with a bursty model of transcription).
However, with multimodal data, common practice of selecting HVGs from spliced
gene expression may not be the most informative approach, particularly if there is
variability in another modality. In future one could learn which genes to retain for
discerning clusters during inference, akin to determining which genes contribute
most to a particular task or objective function such as separation of cell types
[53, 75].

In future, integration of the meK-Means model with other machine learning (ML)
techniques could enable simultaneous selection or filtering of relevant gene features
as well as tuning the hyperparameter K. For example, recent work utilizing ML
approaches to perform inference with CME-based models [43, 236], highlights how
integration with meK-Means could enable simultaneous fitting of an ‘optimal’ K (as
in [161]), cell size (read-depth) effects, and technical sampling parameters. Building
off these approaches, one could in principle, also retain single-cell and single-gene
resolution [43]. This would generalize the finite-dimensional representation of
the cells in meK-Means to continuous representations of cells, where each cell is
a nondeterministic function of a latent representation [43]. ML techniques and
frameworks can also be implemented to improve runtime and scalability of meK-
Means [43]. MeK-Means’ runtime remains between 5-10 minutes per dataset for
data spanning three orders of magnitude (100 cells to 100k cells) (see [50]), though
solving the analytical solution to the CME model requires storing an array of size Ω
(where Ω is a finite subdomain determined by maximum molecular counts observed
for a gene) and a time complexity of O(ΩlogΩ) [99]. Thus extension of this work with
ML integration would further improve runtime capabilities and GPU compatibility
[43, 99].

The model underlying meK-Means additionally assumes steady-state behavior of
the cells. However, we note that setting K very large (i.e., as K → ∞) can be seen
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as approximating a continuous model (infinite mixture model) of the data. This is
conceptually similar to the model in Chronocell [81], which models cells as being
distributed along cellular time (trajectory inference), through a biophysical model
of transcription. Thus, extensions of the biophysical model underlying meK-Means
along these lines, would allow users to explore more continuous properties of the
data while incorporating bursty transcription and technical sequencing effects.

As it stands, meK-Means results can also inherently be combined with a host of
statistical tools to analyze the inferred parameters and model power. For example,
the FIM calculated from the inferred models can be used to assess uncertainty
in parameter estimates, as well as information content of parameters, to optimize
downstream experiment design [87, 143]. Additionally, Chi-squared goodness-of-fit
testing is used to reject genes with poor parameter inference, and was used prior to
any DE analysis here.

6.2 Stochastic Modeling of Biophysical Responses to Perturbation
This section summarizes unpublished work by T.C, G.G., and L.P. The study was
conceptualized by T.C., T.C. developed the code and analysis, and T.C., G.G., and
L.P. wrote and edited the manuscript.

How do the principles of meK-Means, the reworking of classical scRNA-seq analyses
through stochastic models of biology, then extend to multi-condition, multi-sample
experimentation which can cover hundreds of genome-wide perturbations?

Though such datasets are promising for unraveling how the processes of DNA/RNA
regulation produce the observed cellular responses, most tools for analysis of large-
scale perturbation datasets focus on observational effects only, e.g., changes in
expression, using only mature mRNA information, rather than the generative, tran-
scriptional processes themselves [52, 69, 127, 169]. Statements about changes in
transcription dynamics, for example, are then implied through changes in the counts.
Deep learning approaches also focus on prediction of expression patterns [125, 169],
even when considering multiple modalities [122], where physical interpretation of
the learned parameters and relationships between the measurements can be hard
to extract. These tools and approaches also often require several transformations
of the data, to remove noise or enhance biological signal, which can themselves
incur distortion and opaque interpretation [6, 48, 253]. Mechanistic approaches and
investigations of transcription are often limited to smaller or more homogeneous
systems [22, 87, 272], or assess modalities, and their corresponding dynamics,
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independently [216].

Thus we demonstrate here, how extension of stochastic models of transcription to
these noisy, high-throughput perturbation datasets alternatively defines common
perturbation analyses through the underlying, biophysical processes of DNA/RNA
regulation. Using just the unspliced and spliced count modalities, we can uncover
condition-specific kinetics, predict regulation of transcription kinetics in combined
perturbation settings, and define novel cell states induced by perturbation. With this
approach, we can generate hypotheses about how perturbations affect the transcrip-
tion and processing of RNA, for downstream investigation and experimentation.

6.2.1 Kinetic Effects of Perturbation on Transcription
For our analysis, we take as input scRNA-seq perturbation datasets with unspliced
and spliced gene count matrices as described above, which represent nascent and
mature mRNA molecule counts [113, 237]. The datasets in this analysis encompass
both drug-based perturbations, A549 lung cancer cells under Dexamethasone (DEX)
treatment [41] and mouse NSCs under 96 different drug combinations [92], as well
as genetic intervention assays, specifically (single and dual) CRISPRa [191] and
CRISPRi [204] perturbations in K562 cells (leukemia cell line).
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Figure 6.5: Perturbation Condition-Specific Kinetics. a) Diagram of DEX-treated
A549 cells, at 0 and 2 hours. Parameter inference for data done using Monod. b)
Inferred parameters, for burst size, splicing, and degradation compared between
cells at 0 and 2 hours of treatment. Spearman and Pearson correlation are denoted
by 𝜌 and 𝑟, respectively. c) ‘DE’ or ‘Differentially Expressed’ genes at the parameter
level (𝜃) shown between the clusters corresponding to 0 and 2 hour cells. Genes
in dashed box denote genes where DE is detected at the parameter level but not at
the observed, mean S-level. (Left) Splicing rate vs. burst size shown for genes.
(Right) Degradation rate versus burst size shown. Grey genes denote ambiguous
markers, or non-significant FCs. d) Diagram of CRISPRa perturbation used for
Monod parameter inference. e) (Left) fold change (FC) of inferred parameters for
the target (activated) genes. FCs shown as compared to all controls in the study.
(Right) FCs for degradation versus splicing parameters for the target genes. Error
bars denote standard deviation of FC across all controls. Genes shaded by burst size
FC. Created with BioRender.com.
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With the Monod package [94], described above, for parameter inference of CME
models from single-cell data, we can then fit the biological (and technical) parame-
ters which define the biophysical model of the sequencing data in Chapter 6.1.1, for
the individual conditions in these datasets. This does not use the meK-Means model,
as we are simply fitting parameters across all cells in a condition. This produces
gene-specific parameters for each perturbation condition of interest, �̂�, 𝛽/𝑘, �̂�/𝑘
where the inferred estimate of a parameter 𝜃 is 𝜃.

To better understand the how behind a perturbation’s effect on gene expression, e.g.,
mRNA production, we used Monod to fit the biophysical parameters of the model
in Fig. 6.1b on 3,000 genes (which contained a minimum number of unspliced
and spliced counts) for the DEX-treated A549 cells at 0 hours of treatment and
2 hours of treatment. The single-cell indexing and labeling technique sci-fate
was used to generate these data [41]. We thus extracted the burst size, splicing,
and degradation parameters across genes (Fig. 6.5b) at each treatment time. All
unspliced and spliced mRNA counts, which combine the 4sU labeled and unlabeled
counts captured in this experiment, were used for parameter inference. As described
in the original study [41], we found that the degradation rates between the two
conditions displayed high correlations (Fig. 6.5b). However, we could additionally
assess these correlations relative to the correlations between burst sizes and splicing
rates of the two conditions, highlighting greater differences in these parameters as
opposed to degradation rates (Fig. 6.5b). All three parameters were also fit under
the same model of transcription, as opposed to fitting separate kinetic models for
the parameter(s) of interest [41].

The original study noted a potential difficulty in using whole transcriptome infor-
mation (labeled and unlabeled transcripts) to assess differences in the cells between
the 0 hour and 2 hour condition [41]. It appeared that standard HVG selection and
dimensionality reduction of the data resulted in an inability to separate the 0 hour
and 2 hour responses, without solely focusing on the newly transcribed (labeled)
mRNA or combining the individual principal components (PCs) of the labeled and
unlabeled data. However, by fully describing the joint distribution of the unspliced
and spliced counts through biophysical parameters, we have the ability to not only
differentiate the perturbation responses of the 0 hour and 2 hour conditions through
DE-𝜃 genes, but also detect these differences for genes that do not necessarily show
discernible FCs when comparing mean expression between conditions, i.e., that are
not DE-𝜇𝑠, as is done in classical DE analyses (Fig. 6.5c). For example, we can
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detect changes in the burst size of the cortisol response marker FGD4 [41, 203] as
well as the changes in burst size and splicing or degradation, for the gene ZFAND4
(a prognostic and metastasis marker) [144], the glycogen phosphorylase gene PYGB
[199] induced in other stress conditions, and the RIN2 GTPase gene involved in
endocytosis and membrane trafficking [243], which did not display FCs at the mean
spliced expression-level (Fig. 6.5c).

To further validate and explore our kinetic realizations in various perturbation set-
tings, we fit biophysical parameters for each genetic intervention condition (with
greater than 50 cells) in the CRISPRa (activation) Perturb-seq study [191], which
encompassed single and dual gRNA conditions (Fig. 6.5d). For this dataset, sam-
ples were generated with the 10x Genomics v2 protocol. The CRISPRa mechanism
increases transcriptional output by potentially recruiting and stabilizing components
of the transcription preinitiation complex [196].

In each activation condition, we found that burst sizes of the corresponding target
genes were increased (with, on average, log2FCs greater than 2) (Fig. 6.5e left),
mirroring burst size observations discussed in the Narta activation protocol, which
recruited artificial transcription factors to the transcription site [158]. In comparison,
average splicing and degradation rate FCs were near zero (Fig. 6.5e left). However,
in cases where both the splicing and degradation rate FCs are in the same direction
(sign), we can infer potential changes to the denominator of these relative rates,
i.e., in the transcription rate 𝑘 (Fig. 6.5e right) [94]. This reveals genes where
transcription rate or burst frequency is altered, suggesting different strategies for the
gene’s transcriptional regulation (Fig. 6.5e right) [58, 190, 258].

By taking advantage of the full joint distribution between the modalities in these
datasets, we can not only quantitatively realize the kinetic effects of a perturba-
tion, incorporating transcriptional bursting and splicing dynamics, but also detect
changes in these kinetic parameters not discernible in more standard, expression-
based analysis.

6.2.2 Predictive Models of Combinatorial Perturbations
Many methods for analysis of perturbation data additionally focus on predicting the
effects of perturbations in novel settings [125, 169, 170]. This can aid in simulation
of responses, and minimizing experimental efforts for downstream investigations.
Often these predicted changes or effects are defined as changes in spliced expression,
a proxy for changes in transcription. However, different underlying mechanisms may
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contribute to these observed changes. Previous work has described potential models
of how perturbations or regulatory inputs in combination can impact transcription
kinetics [219], and in turn downstream expression [216, 219], but application of
such models is not generally extended to single-cell genomics perturbation data.

Additionally, it is non-trivial to use predicted spliced and unspliced counts to predict
underlying, mechanistic effects. If tools predict changes in mean expression [69],
this does not provide enough distributional information to infer dynamics. When
counts are modeled more explicitly, the distributions parametrizing the observed
counts from multiple modalities are independent, ignoring causal relationships and
making physical interpretation of the learned parameters difficult [122, 169].

However, by using the inferred parameters from Monod in single-perturbation condi-
tions, we can define models at the level of the kinetic parameters to predict the param-
eters in dual conditions (i.e., where both perturbations are present). The parameters
of the single-perturbations then inherently describe their full joint distributions of
unspliced and spliced count, and extend this description to the dual-perturbation
setting. This also extends previous investigations, which assess the additive and
multiplicative properties of mean spliced expression under perturbation [216], to
the behavior of the governing rates which produce those observed behaviors. Given
the inferred parameters in the single-guide conditions in the CRISPRa Perturb-seq
study, and the inferred parameters in the control conditions, we can test the ability
of simple models of additive and multiplicative behavior to recapitulate the kinetic
parameters in dual-guide conditions. Specifically, we assessed how well multiplica-
tive and additive models of the changes in burst size and transcription rate describe
the observed changes in parameters in the combined conditions (Fig. 6.6a). We
define the prediction models below:

Definition of Predictive Models

For the predictive models of kinetics in combined perturbation conditions, we
focused on additive and multiplicative models of transcript production, i.e., to
describe the changes in 𝑏 or 𝑘 . As described in [216, 219], multiplicative changes
at both the level of mean expression FC and transcription/forward rate can result
from the ‘one-step recruitment’ model [219] of transcription regulation, where the
combined interventions behave in an additive manner to alter the free energy of
the system, resulting in multiplicative effects at the level of the rates and observed
expression FCs (Fig. 6.6a,c).
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For this study, the multiplicative models of the parameters in the combined condi-
tions (relative to control) are then:

𝑏1,2/𝑏𝑐𝑡𝑟𝑙 = (𝑏1/𝑏𝑐𝑡𝑟𝑙) × (𝑏2/𝑏𝑐𝑡𝑟𝑙) (6.8)

and
𝑘1,2/𝑘𝑐𝑡𝑟𝑙 = (𝑘1/𝑘𝑐𝑡𝑟𝑙) × (𝑘2/𝑘𝑐𝑡𝑟𝑙) (6.9)

where 1 and 2 denote the single-perturbation conditions, and ‘1,2’ denotes the
combined condition. Parameters denoted with ‘ctrl’ represent the control condition’s
parameters. These models also assume that changes in 𝛽/𝑘 represent changes in 𝑘 ,
i.e., 𝛽/𝑘 and 𝛾/𝑘 change together. Given that our biophysical model does not have
a separate 𝑘 parameter, we model these changes through 𝛽/𝑘 (denoted below as 𝛽′

for convenience). Thus we rewrite Equation 6.9 as:

𝛽′1,2/𝛽
′
𝑐𝑡𝑟𝑙 = (𝛽′1/𝛽

′
𝑐𝑡𝑟𝑙) × (𝛽′2/𝛽

′
𝑐𝑡𝑟𝑙). (6.10)

As also described in [216, 219], additive effects are also observed at the level of
expression and can be derived from independent effects of the perturbations to, in
parallel, catalyze or reduce the forward rate [219] (Fig. 6.6a,c).

For this study, the additive models are then:

𝑏1,2/𝑏𝑐𝑡𝑟𝑙 = (𝑏𝑐𝑡𝑟𝑙 + Δ1 + Δ2)/𝑏𝑐𝑡𝑟𝑙

where 𝑏1 = 𝑏𝑐𝑡𝑟𝑙 + Δ1 and 𝑏2 = 𝑏𝑐𝑡𝑟𝑙 + Δ2. This can be rewritten as:

𝑏1,2/𝑏𝑐𝑡𝑟𝑙 = (𝑏1/𝑏𝑐𝑡𝑟𝑙) + (𝑏2/𝑏𝑐𝑡𝑟𝑙) − 1. (6.11)

Likewise for 𝑘:
𝑘1,2/𝑘𝑐𝑡𝑟𝑙 = (𝑘1/𝑘𝑐𝑡𝑟𝑙) + (𝑘2/𝑘𝑐𝑡𝑟𝑙) − 1. (6.12)

To obtain a formulation in terms of 𝛽′:

𝑘1,2/𝛽 = (𝑘1 + 𝑘2 − 𝑘𝑐𝑡𝑟𝑙)/𝛽

𝛽′1,2 =
1

(1/𝛽′1) + (1/𝛽′2) − (1/𝛽′
𝑐𝑡𝑟𝑙

)

𝛽′1,2/𝛽
′
𝑐𝑡𝑟𝑙 =

1
𝛽′
𝑐𝑡𝑟𝑙

/𝛽′1 + 𝛽
′
𝑐𝑡𝑟𝑙

/𝛽′2 − 1
. (6.13)
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Currently, these predictive models do not incorporate multiple steps in transcription
production [22] as this uses a simplified version of the two-state telegraph model,
where in the bursty-limit there is one forward rate 𝑘 or 𝑘𝑜𝑛 (inactive to active state
transition) and the burst size 𝑏 represents a ratio between the 𝑘𝑖𝑛𝑖 rate (rate of
production) and 𝑘𝑜 𝑓 𝑓 rate (active to inactive transition), as 𝑘𝑖𝑛𝑖, 𝑘𝑜 𝑓 𝑓 → ∞ [95].

Figure 6.6: Prediction of Combinatorial Regulation Strategies. a) Diagram
of potential effects of perturbants on transcription. Multiplicative and additive
prediction models predict parameters in combined perturbation conditions from
single perturbation conditions. b) Predicted parameters for the dual CRISPRa
condition, for genes CBL and CNN1. Predictions from both models shown for burst
size and splicing, correlated against the ‘Fit’ FC, from the inferred parameters in
the combined condition. Spearman and Pearson correlation are denoted by 𝜌 and 𝑟,
respectively. c) Diagram of potential models of perturbant effects on transcription
rate 𝑘 , in a single-step transcription model. d) FCs of the inferred degradation
rate versus splicing rate, in the combined CBL/CNN1 condition. Error bars denote
standard deviation of FC across all controls. Genes colored by the best-fitting
predictive model. e) FCs of the inferred degradation rate versus splicing rate, in
the combined ETS2/MAPK1 condition. Error bars denote standard deviation of FC
across all controls. Genes colored by the best-fitting predictive model. Created with
BioRender.com.
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Assessment of Combined Perturbation Predictions

The genes tested in these predictive models were selected in a similar fashion to
the genes selected in the CRISPRa data study, where a random forest regression
model was used to select genes that separated well the single-guides and dual-guide
conditions from the control condition [191]. However, we did not include the
dual condition in regression-based selection of genes, as we treat this condition as
unseen. For these genes, we see positive correlations, > 0.5, for at least one models’
predictions as compared to the observed FCs for the inferred (‘Fit’) parameters,
across the dual conditions described in the [191], where Fig. 6.6b displays the
correlation across all genes tested, of the predicted burst size and relative splicing
rates in the dual condition where genes CBL and CNN1 were activated. Genes in
red denote ‘Published Markers’ or genes described in the original text as markers
of the combined condition [191]. We then tested these predictive models on other
data types, including dual CRISPRi conditions [204] and dual drug conditions
(where low/mid/high ranges of concentrations of EGF, BMP4, or retinoic acid, RA,
were added to NSCs ) [92]. We found similarly positive correlations between the
predicted parameter changes and observed changes, and could distinguish when,
for example, the additive model better described changes in burst size than the
multiplicative model, and vice versa. The positive correlations of the predicted
parameters were also higher than the correlations produced by a negative control
model, where parameters from single, control guide conditions replaced the single-
guide conditions in the predictive models (representing how well random noise
could predict the fit parameter changes).

Interpreting what these additive or multiplicative changes in kinetic parameters
mean in terms of transcriptional regulation strategies being employed by the cell
can be difficult, particularly if changes induced by the individual conditions are
in different directions. Thus we focused interpretation on scenarios where the
transcription rate 𝑘 was likely affected (splicing and degradation rate FCs were in
the same direction/of the same sign in both single-conditions). Given our bursty
transcription model’s assumption of the single forward rate 𝑘 , additive effects on the
transcription rate in the combined condition can be framed as deriving from parallel
and independent effects of individual interventions to catalyze the reaction rate, 𝑘
(see Eqn. 6.12) [219]. In the multiplicative case, additive effects of the interventions
that affect recruitment and binding energy (e.g., of RNA pol II) combine to produce
multiplicative effects at the level of the rate 𝑘 [219] (see Eqn. 6.9) (Fig. 6.6c).
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We then delved into two dual-guide conditions from the CRISPRa Perturb-seq study,
where the individual guides demonstrated transcriptional effects in the same direc-
tion, likely inducing differentiation towards erythrocyte (Fig. 6.6d) or megakary-
ocyte (Fig. 6.6e) lineages [191], and selected for repressed genes, i.e., where there
was a negative FC in unspliced counts. We assigned the most representative pre-
dictive model to the observed changes in the parameters of the dual-conditions,
where a model was assigned to an observed parameter FC if the predicted FC fell
within the 95% C.I. of the observed FC in the combined condition (constructed from
the standard deviation of the FCs calculated in comparison to the individual con-
trol conditions) [216]. If both predicted FCs (from the multiplicative and additive
models) fell into this range, the FC was denoted as ‘Ambiguous’. Observed FCs
larger, or smaller, than both predictions were denoted as ‘Super-Multiplicative’ or
‘Sub-Additive’, respectively.

Though for many genes it was ambiguous whether the additive or multiplicative
model fit better [216], among the genes where we could discern more model-specific
behavior, we found a dominance of the multiplicative and super-multiplicative pre-
dictions when the transcription rate was lowered (Fig. 6.6d,e). This suggests use
of a more recruitment-based strategy as described above, potentially with non-
independent effects of the interventions [219], to affect repression of genes in these
conditions. Thus, even with simpler models of how perturbations act in combina-
tion, by approaching the prediction task from the level of the kinetic parameters,
we can expand previous works assaying multiplicative and additive behaviors at the
expression-level, and provide hypotheses of regulation strategies employed by the
cell.

6.2.3 Uncovering Perturbed Populations with Distinct Kinetics
In addition to prediction of kinetic parameters across modalities, such as unspliced
and spliced counts, it is a non-trivial problem to discover and define populations
of cells demonstrating distinct perturbation responses given multiple molecular
measurements. As discussed in Chapter 6.1, standard approaches to clustering
scRNA-seq data do not use multiple modalities at once [52, 247], use heuristics
to map between clusters or neighborhoods if given individual modalities [108], or
use non-physically-interpretable deep-learning methods to integrate the modalities
for clustering [161]. This then results in multiple, potentially arbitrary choices for
a user to make when deciding how to combine the modality-specific matrices for
clustering or determining which method’s clustering results to proceed with [50].
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To this end, we applied the meK-Means clustering algorithm of Chapter 6.1.1 to
simultaneously learn populations or clusters of cells in heterogeneous perturbation
conditions [50].
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Figure 6.7: Inference of Subpopulation Kinetics within Conditions. a) Diagram
of the meK-Means algorithm for clustering b) Diagram of combined 0 and 2 hour
DEX-treated cells, then passed to meK-Means or Leiden for clustering. i. Barplot of
cluster assignments from meK-Means shown, where K=5, and distribution of 0 and
2 hours cells between them. ii. Pairwise ARI scores between the Leiden clustering
results given various input matrix options. c) Plot of inferred splicing versus burst
size parameters for the inferred clusters 3 and 4. Density plots of the respective
parameter distributions shown per cluster (top and side of plot). d) Diagram of drug
resistant NSCLCs after 3 days of erlotinib treatment. Day 3 cells passed to meK-
Means for clustering. i. Barplot of cluster assignments from meK-Means, where
K=10, and the distribution of the two populations of cells from the meK-Means K=2
clustering between them. ii. Hierarchical dendrogram plot of meK-Means inferred
clusters based on mean expression (scaled across columns) of marker genes from
the literature. e) ‘DE’ or ‘Differentially Expressed’ genes at the parameter level (𝜃)
shown between the inferred clusters 4 and 5 . Genes in dashed box denote genes
where DE is detected at the parameter level but not at the observed, mean S-level.
Degradation rate versus burst size shown. Grey genes denote ambiguous markers,
or non-significant FCs. f) Histograms of splicing rates shown for all genes across
the inferred clusters. Created with BioRender.com.
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We first demonstrated the use of meK-Means on the DEX-treated A549 cells, com-
bining cells from 0 and 2 hours of treatment (Fig. 6.7b). As described in the original
study [41], it was difficult to separate these two populations using whole transcrip-
tome information and standard scRNA-seq processing pipelines. However, given
a previously published list of genes potentially implicated in the cortisol response
[203], also filtered for sufficient unspliced and spliced counts as well as overdisper-
sion [50], meK-Means was clearly able to separate the treated cells (including 2 hour
treated cells with lesser responses, i.e, more 0 hour-like properties) (Fig. 6.7b i).
Given that only 45 genes remained after filtering, this demonstrates the importance
of quality over quantity in gene selection, and potential pitfalls of standard HVG
selection in cases like this, or other more ad hoc procedures.

Effectively, meK-Means clusters cells in biophysical parameter-space, as shown in
Fig. 6.7c, where parameters of genes with validated transcriptional changes in the
cortisol response genes (e.g., FGD4 and ERRFI1) [41, 203] stand out from each
other between the two populations. The meK-Means-inferred parameters for these
genes also corresponded near-identically to the parameters previously inferred from
the conditions separately.

We then applied meK-Means to cells without clear treatment partitions, where PC9
cells, an EGFR-mutant non-small cell lung cancer (NSCLC) cell line, were treated
with erlotinib, a common first-line treatment for NSCLC, and sequenced after three
days (following the 10x Genomics v3 protocol) [8]. At Day 3, multiple drug-
resistant populations of cells had developed [8]. In the development and persistence
of drug-resistant cancer cells, the kinetics of splicing as well as transcription are
particularly relevant to how these cells acquire resistance and proliferate [257]. The
Day 3 cells were thus clustered with meK-Means, using genes from both ‘classical’
HVG selection [262] and genes from the literature potentially marking resistance
development, again filtered for overdispersed behavior and minimum unspliced and
spliced counts (Fig. 6.7d). From this, we found four clusters of cells (Fig. 6.7d i),
belonging to two larger populations of cells as also described in the original study
[8]. These four populations spanned drug-tolerant persister (DTP) and drug-tolerant
expanded persister (DTEP) states described in the study [8], which can persist and
proliferate in the presence of drug treatment. For example, populations representing
more DTP-like states demonstrated greater expression of the resistance marker
TACSTD2, while DTEP-like states expressed the marker CYP1B1 at higher-levels
(Fig. 6.7d ii, Fig. 1g in [8]).
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We then extracted DE-𝜃 genes between the inferred populations, specifically more
DTP or more DTEP clusters, e.g., 4 and 5. Markers included the microfibril-
associated gene MFAP5, which did not display high FCs at the mean spliced-level,
but did display differing burst size, splicing, and degradation rates between the
populations (Fig. 6.7e). DE-𝜃 genes also included genes with differential behavior
between the DTP and DTEP states in the original study, such as downregulation of
KRT6A (associated with epithelial development) [8] and HMGCS1 (associated with
cholesterol metabolism) [8] in the DTEP cluster (4) (Fig. 6.7e). We additionally
found reduced degradation of the HMMR gene between the populations, a prognostic
marker gene in several other human cancers [222] (Fig. 6.7e). Since splicing
dynamics in resistant populations are also of interest, we examined the distribution
of splicing rates in each population. This revealed increased splicing rates overall
in the DTP-like populations as compared to the DTEP population (Fig. 6.7f),
suggesting potentially more aberrant splicing behavior in these populations [257].

This biophysical approach to clustering perturbation data, brings together the count
modalities under a self-consistent model of the biology, and highlights not only
which cells demonstrate similar perturbation responses, but also which components
in the transcription processing pipeline define those shared responses.

6.2.4 Limits and Extension of Stochastic Models
Overall, this application of stochastic biophysical models to high-throughput ge-
nomics data, demonstrates an alternative avenue for how we analyze, interpret,
and develop hypotheses from large-scale perturbation. The Monod CME inference
package and the meK-Means clustering algorithm, enable this analysis for noisy and
discrete single-cell data, and extract physically-interpretable parameters from the
data as well as demonstrate methods that can be consistently extended to new mea-
surements. This approach to analysis, additionally removes several transformation
and preprocessing steps in standard practice (beyond cell and gene selection), which
even across the most popular packages for scRNA-seq analysis, are not standardized
in their implementations, can result in opaque distortions, and arbitrary choices for
the user to make [207].

As discussed above in Chapter 6.1.4, the biophysical models utilized in Monod and
meK-Means focus on a relatively simple model of bursty transcription, and assume
the effects of cell size (read depth) are negligible. These methods additionally utilize
CME models of biological systems where analytical solutions are available, solved
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through the Monod framework. However, recent developments in combining ML
with biophysical models of transcription, for parameter inference [43, 236], suggest
promising extensions of this work to simultaneously incorporate cell size effects
on transcription and extend inference to more complex biophysical models, without
analytical solutions, that can be simulated. Recent work to incorporate the effects
of cell cycle in CME-based models of transcription, for high-throughput data, could
also be used to both model such dynamics explicitly and determine if the data falls
within regimes that require such considerations [126].

Along these lines, though meK-Means does represent shared relationships between
genes in order to cluster the cells, it does not learn more direct interactions between
genes and how they may effect the biophysical parameters of the system. How-
ever, integration of such approaches with statistical and learning-based approaches
for causal inference from perturbation data [54, 168, 231], described further in
Chapter 7, would merge the learned interactions with their effects on transcriptional
dynamics.

Yet, as described in Chapter 6.1.4, this biophysical approach to perturbation anal-
ysis naturally inherits the use of several statistical tools, from rejection testing to
model selection criteria, to enable a user to reject hypotheses in an interpretable
manner. These underlying physical models additionally mirror the physics of
other inter-modality relationships, such as between mRNA and protein expression
[26], and chromatin state and mRNA transcription [82]. Thus, as perturbation ge-
nomics data become increasingly complex and multimodal, this work demonstrates
a paradigm that aims for scalability not just in dataset size but also in interpretation,
with methods that can extend to new measurements and modalities and provide
physically-interpretable insights into the cellular processes governing our molecular
measurements.

6.3 Moments for Time-Dependent Biophysical Modeling
In the previous sections, we focus on steady-state models of transcription in our
analysis, particularly as many publicly available perturbation datasets are generated
many hours up to days after the perturbation(s) have been applied i.e., enough
time for the system to reach a ‘steady-state’. However with technologies like sci-
fate, we can gain temporal resolution of these transcriptional processes (sampling
cells within a smaller time window). In these cases, we can directly fit the time-
dependent version of the CME model [226] described in Chapter 6.1.1, with a ‘true’
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time defined by the experimental start time.

Below we solve for the moments of the length-biased CME model, which allow for
future extensions of the above work to time-dependent investigation of perturbation
within the current CME inference frameworks, such as Monod. This should enable
fitting of all four biophysical parameters (including transcription rate 𝑘).

As defined in Fig. 6.1b, 𝑁𝑢, 𝑁 𝑠 are random variables that represent the ‘biological’
unspliced, spliced counts, and𝑈, 𝑆 the final sequenced unspliced and spliced counts.
𝐵 is a random variable representing burst size, as denoted in [226]. Note that
E[𝐵] = 𝑏,E[𝐵2] = 𝑏(2𝑏 + 1) assuming mean geometric burst sizes 𝑏 [39]. We
assume initial conditions of E[𝑁𝑢] (0),E[𝑁 𝑠] (0) = 0. This is the case if, for
example, we are modeling labeled mRNA with labeling starting at timepoint 0 (i.e.,
prior to the start time, no mRNA was being sampled or labeled for capture). All
notation follows the model definitions in Chapter 6.1.1.

We first derive and provide the first and second moments for the nascent counts 𝑁𝑢,
and the first moment for 𝑁 𝑠, integrating over 𝑁 given the initial conditions above.
For more details on the differential equations defined here see ‘Export Processes
Enhance mRNA Autocorrelation Times’ in [226].

dE[𝑁𝑢]
d𝑡

= 𝑘𝑏 − 𝛽E[𝑁𝑢]

E[𝑁𝑢] (𝑡) = 𝑘𝑏

𝛽
(1 − 𝑒−𝛽𝑡)

(6.14)

dE[𝑁 𝑠]
d𝑡

= 𝛽E[𝑁𝑢] − 𝛾E[𝑁 𝑠]

E[𝑁 𝑠] (𝑡) =


𝑘𝑏

𝛾
+ (− 𝑘𝑏

𝛾
− 𝑘𝑏𝑡)𝑒−𝛾𝑡 𝛽 = 𝛾

𝑘𝑏

𝛾
(1 − 𝑒−𝛾𝑡) + 𝑘𝑏

𝛽 − 𝛾 (𝑒
−𝛽𝑡 − 𝑒−𝛾𝑡) 𝛽 ≠ 𝛾

(6.15)

dE[(𝑁𝑢)2]
d𝑡

= 𝑘E[𝐵2] + 𝛽E[𝑁𝑢] + 2𝑘𝑏E[𝑁𝑢] − 2𝛽E[(𝑁𝑢)2]

E[(𝑁𝑢)2] (𝑡) = −2
𝑘2𝑏2

𝛽2 𝑒−𝛽𝑡 + 𝑘
2𝑏2

𝛽2 + 𝑘𝑏
2

𝛽
− 𝑘𝑏

𝛽
𝑒−𝛽𝑡 + 𝑘𝑏

𝛽
+ 𝑘𝑏

2

𝛽
( 𝑘
𝛽
− 1)𝑒−2𝛽𝑡

(6.16)
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V[𝑁𝑢] (𝑡) = E[(𝑁𝑢)2] − (E[𝑁𝑢])2

=
𝑘𝑏2

𝛽
− 𝑘𝑏

𝛽
𝑒−𝛽𝑡 + 𝑘𝑏

𝛽
− 𝑘𝑏2

𝛽
𝑒−2𝛽𝑡

(6.17)

The first and second moments for the sequenced counts 𝑈, 𝑆, after technical sam-
pling, at some time 𝑡, can be derived from the relations in [95]:

E[𝑈] (𝑡) = 𝜆𝑢E[𝑁𝑢] (𝑡)
E[𝑆] (𝑡) = 𝜆𝑠E[𝑁 𝑠] (𝑡)
V[𝑈] (𝑡) = (𝜆𝑢)2V[𝑁𝑢] (𝑡) + 𝜆𝑢E[𝑁𝑢] (𝑡)
V[𝑆] (𝑡) = (𝜆𝑠)2V[𝑁 𝑠] (𝑡) + 𝜆𝑠E[𝑁 𝑠] (𝑡)

At this point we have the moments E[𝑁𝑢] (𝑡),E[𝑁 𝑠] (𝑡),V[𝑁𝑢] (𝑡), but notV[𝑁 𝑠] (𝑡)
(i.e., four equations for the four unknowns 𝜃 = 𝑘, 𝑏, 𝛽, 𝛾). Given some value of 𝑡,
we could then solve for the parameters in terms of the moments to initialize esti-
mates for inference, in Monod, for example. However the forms of E[(𝑁 𝑠)2] (𝑡)
and E[𝑁𝑢, 𝑁 𝑠] (𝑡) are difficult to solve analytically, thus it may be more prudent to
initialize one parameter with a biologically reasonable estimate given the experi-
mental paradigm, then recover the remaining moment-based estimates of the other
parameters. For example, given timecourse data, a simple exponential decay model
can be fit to approximate 𝛽 (decrease in unspliced mRNA over time), then used to
calculate the moments-based estimates for 𝑏, 𝑘, 𝛾.



98

C h a p t e r 7

CAUSAL INFERENCE FOR NOISY PERTURBATION DATA

As noted in the Chapter 6.1, meK-Means clustering does extend the standard,
independent treatment of genes in CME model inference to incorporate greater rep-
resentation of gene-gene correlations. However, there is not an explicit construction
or representation of interactions between genes (for example, how one gene influ-
ences the transcription of another) or joint regulation of genes. But, perturbation
(or ‘intervention’) data can help illuminate the causality and directionality of such
interactions [231]. However, current models for causal inference of gene networks
generally ignore noise in our measurements or assume a single source of noise. How
can existing structures for causal inference, under perturbation, be extended to noisy,
transcriptional systems with intrinsic and extrinsic sources of noise as described in
Chapter 6.1.1? To understand the capacity of causal inference in such systems, we
begin with a simpler, non-kinetic model of transcription and sequencing, and investi-
gate the performance of popular causal inference methods extended to noisy regimes.

This chapter summarizes unpublished work by T.C under the supervision of R.L.,
J.C.H, A.R, and K.L. at Genentech. The study was conceptualized by T.C., R.L.,
and J.C.H, T.C. developed the code and analysis, with feedback from R.L, J.C.H.,
A.R., and K.L, and T.C. wrote and edited the report below.

7.1 Causal Inference for Intervention Data
Determining causal relationships between variables, whether to predict or simulate
outcomes, or to understand how interventions perturb particular relationships is
an essential task for biological investigation. This can range from probing protein-
protein interaction networks to predicting disease outcomes from patient risk factors
[232, 279]. Often, this investigation amounts to learning the graphical, conditional
relationships between variables e.g., directed acyclic graphs (DAGs) . Until recently,
algorithms for causal inference and DAG learning were dominated by combinatorial
search algorithms, dependent on pairwise conditional independence testing/statistics
and score-based, greedy graph search methods [31, 213, 232, 277]. However,
with the recent increase in high throughput genomics, perturbation datasets, these
combinatorial methods become less tractable, and/or do not utilize the interventions
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in these datasets [31, 277].

The development of the NO-TEARS [277] algorithm, bypassed the necessity for a
combinatorial search, utilizing a continuous optimization approach. Differentiable
Causal Discovery from Interventional Data (DCDI) [31] in turn, builds upon this
work, expanding the probabilistic representation of the data for generative modeling
purposes, and learning nonlinear relationships between parental and child nodes in
the DAG. From this, Differentiable Causal Discovery of Factor Graphs (DCD-FG)
[167] improves the scalability and utility of intervention-based DAG discovery by
representing the nodes (genes) as low rank factors (e.g., ‘gene modules’).

Beyond the work to improve continuous optimization DAG inference techniques for
large-scale genomics datasets, other causal inference techniques focus on developing
the biological interpretability of DAG inference by incorporating the discrete nature
of the molecular counts [195]. Additionally, the previously described algorithms are
observational models (treating the observed data as causal, Fig. 7.1 leftmost model).
Given that biological processes themselves are intrinsically noisy, measured data is
often a proxy for the underlying, causal factors, and that sequencing/measurement
noise is prevalent in many biological disciplines [213], measurement noise models
and latent causal models provide an avenue for treating these various sources of noise
and separating observational versus latent (‘intrinsic’) dependencies [213, 232] (Fig.
7.1 middle and right models). Again, however, these algorithms are largely relegated
to combinatorial search methods and/or do not incorporate intervention data.

Here we aim to develop scalable, biologically relevant noise models for causal
inference from intervention data, by building upon the aforementioned continuous
optimization, DAG-learning approaches to incorporate more complex and relevant
noise models of the data. Using black-box stochastic variational inference (SVI)
[115], we hope to develop latent causal inference models which can incorporate
measurement noise, as well as latent/shared confounders or intrinsic states, and
can easily expand the observational model class to various continuous and discrete
distributions. The goal would be to use such models to improve prediction of
unseen perturbations, determination of gene targets for follow-up experimentation,
and incorporation of other data modalities, as well as imperfect intervention states.

In this study, we begin by implementing discrete observational causal inference
models and develop latent causal models with measurement noise utilizing SVI,
extending the existing NO-TEARS, DCDI, and DCD-FG approaches. We then
investigate the ensuing challenges in fitting these complex noise models. To this
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end, we assess the potential limitations of the variational lower bound provided by
the ELBO loss (in the implementation below) towards resolving DAG structures for
latent, measurement noise models by designing and testing a diverse set of simulated
datasets under various inference model assumptions. We then provide suggestions
for followup investigation and model design to minimize performance variability
and identify data properties to which each model is better or worse-suited.

7.1.1 Background for NO-Tears, DCDI, and DCD-FG Inference Algorithms
Briefly, the models developed here build off of the NO-TEARS, DCDI and DCD-
FG algorithms. However, we can define all these models through the DCD-FG
framework in [167]. In [167] data is represented as a factor-directed acyclic graph ( 𝑓 -
DAG) , given an input data matrix 𝑋 ∈ R𝑑×𝑛 for 𝑑 features (genes) and 𝑛 observations
(cells). The 𝑓 -DAG is represented as 𝐺 𝑓 = (𝑉, 𝐹, 𝐸) with 𝑉 = {𝑣1...𝑣𝑑} feature
vertices, 𝐹 = { 𝑓1... 𝑓𝑚} factor vertices, and the edge set 𝐸 that links vertices (of
different factor types). The number of factors 𝑚 is set by the user.

Factors can be thought of as gene ‘modules’, or groups of similarly acting genes.
𝐺 𝑓 induces two half-square graphs 𝐺2

𝑓
[𝑉] and 𝐺2

𝑓
[𝐹], representing the graphs of

distance two between pairs of vertices or factors, respectively. The adjacency matrix
for the graph 𝐺 𝑓 can be represented by the adjacency matrix of just the half-square
graph 𝐺 = 𝐺2

𝑓
[𝑉] , where A(𝐺) = U ⋄ V and ⋄ is the Boolean matrix product.

U ∈ {0, 1}𝑑×𝑚, representing edges from features to factors, and V ∈ {0, 1}𝑚×𝑑

representing edges from factors to features. UV additionally represents the weighted
adjacency matrix for 𝐺.

Utilizing these lower rank representations of 𝐺 𝑓 , acyclicity need only be enforced
on either UV or VU. This is currently enforced either by penalizing the trace (Tr)
of exp{E[UV]} or the spectral radius of E[UV]. Together, the algorithm presented
in [167], optimizes the objective below, comprised of the likelihood model and the
acyclicity constraints:

max
Φ,Θ

S(Φ,Θ) − 𝛾𝑡C(E[M(Φ)]) − 𝜇𝑡

2
(C(E[M(Φ)])2, (7.1)

where C refers to the acyclicity penalty, and

S(Φ,Θ) = EM′∼M(𝚽)


𝐾∑︁
𝑘=1
E
𝑋∼𝑃 (𝑘 )

data

∑︁
𝑗∉I𝑘

log 𝑝 𝑗
Θ
(𝑋 𝑗 ; M′

j, 𝑋− 𝑗 )
 − 𝜆 | |E[M(Φ)] | |1.

(7.2)
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M(Φ) = [U(Φ),V(Φ)] represents the distribution over 𝑓 -DAGs parametrized by
Φ. Θ represents the conditional distribution parameters, and 𝑃(𝑘)

data is the distribution
of data points under the intervention regime 𝑘 . I𝑘 denotes the nodes intervened on
in regime 𝑘 .

The density model 𝑝 𝑗
Θ
(𝑋 𝑗 |𝑋− 𝑗 ) is specified through the factor and variable nodes,

specifically through a deterministic, non-linear function of the genes within a factor
(Eqn. 7.3) and a probabilistic representation of the final observed counts (Eqn. 7.4).

ℎ 𝑓 = MLP(U:,f ◦ 𝑋;Θ 𝑓 ) for 𝑓 ∈ 𝐹 (7.3)

and

𝑋 𝑗 ∼ Normal (𝛼⊤𝑗 (V:,j ◦ ℎ) + 𝛽 𝑗 , 𝜎2
𝑗 ). (7.4)

MLP represents a multilayer perceptron which can approximate an arbitrary, non-
linear relationship.

The NO-TEARS and DCDI algorithms discussed in Ch. 7.1, can be represented by
simplified versions of the objective in Eqn. 7.1 by removing the factor-dependence
of the density model in Eqn. 7.4 such that the distribution 𝑝 𝑗

Θ
(𝑋 𝑗 |𝑋− 𝑗 ) is defined

where 𝑋 𝑗 ∼ Normal (𝛼⊤
𝑗
( 𝑓 (M𝑇𝑋))+𝛽 𝑗 , 𝜎2

𝑗
). For NO-TEARS 𝑓 = 𝐼 and for DCDI

𝑓 = MLP , i.e., the data is a linear or non-linear function of the learned DAG.

7.2 SVI Extensions for Causal Inference on Noisy Systems
In the following sections and results we tested a range of 3 types of inference models
building off the NO-TEARS, DCDI , and DCD-FG models, with details of each
model in the sections below. Overall, we constructed (1) observational models
(without latent variables) shown on the left in Fig. 7.1, as baseline models for
comparison. These observational models represent the NO-TEARS or DCDI model
objectives, with the addition that 𝑃 can be Poisson, to test discrete observation
distributions. (2) We extended the NO-TEARS and DCDI observational models
to incorporate latent variables 𝑍 which represent noisy biological counts, that are
sampled and measured as the observed counts 𝑋 (Fig. 7.1 middle). (3) We extended
the DCD-FG model to incorporate latent variables 𝑍 into the factor representations,
such that the factors (or gene modules) produce noisy gene counts 𝑍 which are then
sampled and measured as the observed counts 𝑋 (Fig. 7.1 right).
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For the purposes of this thesis we will focus on the results from the observational
and latent noise models without factors, as the challenges observed in these models
extended to the factor-level models, and are easier to parse through these simpler
model descriptions.

𝑋!

𝑋! ∼ 𝑃	(𝑓(𝑀"𝑋))

𝑋!

𝑍! ℎ#

𝑋!

ℎ# ∼ 𝑁(𝑓 𝑀"ℎ ,𝜎!$)
𝑋! ∼ 𝑃(𝑔	(𝑉ℎ))
𝑄(ℎ) ∼ 𝑁(𝜇, 𝜎)

NO-TEARS/DCDI NO-TEARS/DCDI SVI

DCD-FG SVI

𝑍!

𝑍! ∼ 𝑁 𝑓(𝑀"𝑍 , 𝜎!$)
𝑋! ∼ 𝑃(𝑔(𝑍!))
𝑄(𝑧) ∼ 𝑁(𝜇, 𝜎)

Figure 7.1: Causal Model Descriptions. Diagrams of the observational and latent
noise models implemented (without and with factors).

7.2.1 Observational Model Description
We modified the objectives of the NO-TEARS/DCDI models to incorporate discrete
models of the counts data, where 𝑋 𝑗 ∼ Poisson (𝑒(𝛼

⊤
𝑗
( 𝑓 (M𝑇𝑋))+𝛽 𝑗 )) . Thus the output

of 𝑓 (M𝑇𝑋) provides the 𝜆 for the Poisson.

7.2.2 NO-TEARS/DCDI SVI Model Description and Implementation
We implement SVI as a black box inference method to fit the measurement noise
model below. The model below is shown for a Gaussian measurement noise model,
however the sampled observations do not need to be Gaussian, as described above.

The model is defined as

𝑍 𝑗 ∼ Normal( 𝑓 (M⊤𝑍), 𝜎𝑖𝑛), (7.5)

𝑋 𝑗 ∼ Normal(𝑍 𝑗 , 𝜎𝑒𝑥𝑡), (7.6)

and
𝑞(𝑍 |𝑋) ∼ Normal(𝜇, 𝜎), (7.7)

We denote the NO-TEARS or DCDI SVI models as those where 𝑓 = 𝐼 or MLP ,
respectively. We assume a diagonal covariance structure for the Normal models,
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where the diagonals are the denoted 𝜎 values. For Poisson SVI models, 𝑋 𝑗 ∼
Poisson(𝑒𝑥𝑝(𝑍 𝑗 + 𝑙)).

The objective for optimization then becomes:

S(Φ,Θ, 𝜙) = EM′∼M(𝚽)

[
𝐾∑︁
𝑘=1
E𝑞 (𝑘 ) (𝑍 |𝑋)

∑︁
𝑗

[log 𝑝 𝑗
Θ
(𝑋 𝑗 , 𝑍 𝑗 ; M′

j, 𝑍− 𝑗 ) − log 𝑞 𝑗
𝜙
(𝑍 𝑗 |𝑋 𝑗 )]

]
− 𝜆 | |E[M(Φ)] | |1.

(7.8)

The ELBO loss within (7.8) (bracketed difference between the log-likelihood and
log-posterior) is expanded as∑︁
𝑗∉I𝑘

[log 𝑝 𝑗
Θ
(𝑋 𝑗 , 𝑍 𝑗 ; M′

j, 𝑍− 𝑗 ) − log 𝑞 𝑗
𝜙
(𝑍 𝑗 |𝑋 𝑗 )] +

∑︁
𝑗∈I𝑘

[log 𝑝 𝑗
Θ
(𝑋 𝑗 , 𝑍 𝑗 ) − log 𝑞 𝑗

𝜙
(𝑍 𝑗 |𝑋 𝑗 )]

where 𝑞 represents our approximation to the true posterior. We assume perfect
interventions, where intervened nodes ( 𝑗 ∈ I𝑘 ) have no conditional dependencies.
All models were fit with 𝜎𝑖𝑛 and 𝜎𝑒𝑥𝑡 held fixed.

The inference algorithm for fitting the SVI latent noise models is shown in Algorithm
Box 2. The full loss, including the augmented Lagrangian terms following from
[31, 167] are additionally included. Within each minibatch, prior to Step 3, we
additionally tested including extra training loops in which only the minibatch’s
variational parameters are updated via gradient descent with respect to the other
parameters (i.e., the DAG parameters and bias terms are held fixed) (denoted as
‘Train’ models in results below), prior to the full parameter update following Step 3.
We also note that the mean parameters for 𝑞(𝑍 |𝑋) are initialized at the data 𝑋 . The
same algorithm is used to fit the observational models, without any latent variables.

‘Full’ Gaussian NO-TEARS SVI Implementations as Baseline

As a comparison to the SVI model above, we also implemented a Gaussian noise
model with full covariance matrices (denoted as ‘Full’) to be fit, where 𝑍 is sampled
as 𝑍 = 𝜇+𝐿𝜖 where 𝜇 from 𝑞(𝑍 |𝑋) is learned and 𝐿 is the Cholesky decomposition
of the (learned) covariance matrix. This was to test if including a full covariance
matrix improved DAG inference/performance.

We additionally tested model performance using the exact posterior form for the
Gaussian measurement noise model (denoted as ‘Post.’) in Eqn. 7.5, Eqn. 7.7
where 𝑞(𝑍 |𝑋) = 𝑝(𝑍 |𝑋). Thus

𝜇 = Σ𝑖𝑛 (Σ𝑖𝑛 + 𝐼)−1𝑋𝑇 , Σ = Σ𝑖𝑛 − Σ𝑖𝑛 (Σ𝑖𝑛 + 𝐼)−1Σ𝑇𝑖𝑛
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Algorithm 2: Latent Augmented Lagrangian with SVI
Data: 𝑋 ∈ R𝑛×𝑑
Result: Variational distribution 𝑞𝜙 (𝑍 |𝑋) =

∏𝑑
𝑗=1 𝑞𝜙 (𝑍 𝑗 |𝑋 𝑗 ), Weighted DAG

M(Φ), Distributional parameters 𝜃, 𝜙,Φ
Initialization:
𝑞𝜙 (𝑍 |𝑋) = 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑞, 𝜎𝑞) where 𝜇𝑞 ∈ R𝑛×𝑑 , 𝜎𝑞 ∈ R𝑑
Create 𝑚 minibatches from 𝑋 of size 𝑏 × 𝑑
while C(E[M(Φ∗

𝑡 )]) > 10−8 or 𝜇𝑡 < 1032 do
for 𝑖 in 1...𝑚 do

1. Sample 𝑍 𝑖 where 𝑍 𝑖 = 𝜇𝑖𝑞 + 𝜎𝑖𝑞 ∗ 𝜖 and 𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐼)
2. Calculate loss

𝐿 = EM′∼M(𝚽)
[ 𝐾∑︁
𝑘=1
E𝑞 (𝑘 ) (𝑍 |𝑋)

∑︁
𝑗∉I𝑘

[log 𝑝 𝑗
Θ
(𝑋 𝑖𝑗 |𝑍 𝑖𝑗 )𝑝

𝑗

Θ
(𝑍 𝑖𝑗 |M′

j, 𝑍
𝑖
− 𝑗 ) − log 𝑞 𝑗

𝜙𝑖
(𝑍 𝑖𝑗 |𝑋 𝑖𝑗 )]

+
∑︁
𝑗∈I𝑘

[log 𝑝 𝑗
Θ
(𝑋 𝑖𝑗 |𝑍 𝑖𝑗 ) − log 𝑞 𝑗

𝜙𝑖
(𝑍 𝑖𝑗 |𝑋 𝑖𝑗 )]

]
− 𝜆 | |E[M′] | |1 − 𝛾𝑡C(E[M′]) − 𝜇𝑡

2
(C(E[M′])2

3. Calculate gradients and update 𝜃, 𝜙𝑖,Φ
end
if (𝜃∗𝑡 , 𝜙∗𝑡 ,Φ∗

𝑡 ) converged (stationary point found) then
Update Lagrangian parameters → 𝛾𝑡+1, 𝜇𝑡+1

end
end

for 𝑝(𝑍 |𝑋), where Σ𝑖𝑛 = (𝐼 − M𝑇 )−1(𝐼 − M𝑇 )−𝑇 . M is the only learned parameter
in this model. 𝑓 = 𝐼 for the ‘Full’ and ‘Post.’ models.

7.2.3 DCD-FG (Factor) SVI Model Definition
For completeness we include the model definition for the extension of the DCD-FG
factor-based model to a latent noise model. The intrinsic/extrinsic noise model for
factor-graphs, which utilizes non-deterministic, low-rank factor nodes, is defined as:

ℎ 𝑓 ∼ Normal( 𝑓 (M𝑇ℎ), 𝜎𝑖𝑛), (7.9)

𝑋 𝑗 ∼ Normal(V𝑇ℎ, 𝜎𝑒𝑥𝑡), (7.10)

and
𝑞(ℎ |𝑋) ∼ Normal(𝜇, 𝜎), (7.11)

The ELBO loss is thus defined with respect to 𝑝 𝑗
Θ
(𝑋 𝑗 , ℎ; M′

j, ℎ𝑃𝑎( 𝑗)), where 𝑋 𝑗 ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(V𝑇ℎ) for the Poisson Factor SVI model.
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7.3 Causal Inference Performance on Noisy Simulations
For all simulations, models, and results in this section we limit analysis to systems
where 𝑓 = 𝐼, i.e., where observations are a linear function of the DAG/their parent
nodes. Thus all models shown below are NO-TEARS observational or latent noise
SVI models.

7.3.1 Noisy Simulations
Utilizing the DCDI simulation code base, we generated noisy, gene count datasets
akin to the measurement noise model formulation of [213]. (1) Nodes without
parents and intervened nodes were initialized from a Normal(0, 1). (2) Coeffi-
cients/weights for the DAG 𝑀 are sampled from𝑈 [−2,−0.5]∪𝑈 [0.5, 2] to increase
the signal-to-noise ratio. (3) The intrinsic latent variables (𝑍) are sampled from a
Normal( 𝑓 (M𝑇𝑍), 𝜎𝑖𝑛), given M. (4) To simulate Gaussian sampling, observations
𝑋 𝑗 are sampled from a Normal(𝑔(𝑍 𝑗 ), 𝜎𝑒𝑥𝑡). Here 𝑓 , 𝑔 = 𝐼. For Poisson sampling,
observations 𝑋 𝑗 are sampled from Poisson(𝑒𝑥𝑝(𝑍 𝑗 + 𝑙)) where 𝑙 is ∈ 𝑈 [1, 3].

All model results shown include results for each inference model over 10 sampled
DAGs, and over a hyperparameter grid for sparsity penalty 𝜆 (see Algorithm 2) at
values {.001, .01, .1, 1, 10}. For each DAG the ‘best’ result is selected by lowest Val
(validation data) NLL or ELBO loss. SVI models were also run with learning_rates
at {.00001, .0001, .001}, as stochastic gradient descent (SGD) with higher learning
rates often ran into nans in the gradient updates. Non-SVI models were run with a
learning_rate of .001.

To determine the accuracy of DAG recovery from any model we measured several
metrics relative to the ground truth DAG. Between the predicted and true binary
DAG matrix we assessed the FDR (false discovery rate, where 0.0 is ideal), F1
score (combining precision and recall capabilities for edges predicted, where 1.0
is ideal), and SHD (structural hamming distance) i.e., every edge that would need
to be removed/added/flipped to obtain the true DAG. For some noise models we
additionally calculated the Frobenius norm (‘fro’) of the difference of the weighted
true and predicted DAGs as well as the MAE (mean absolute error) of the predicted
means for the validation data and the true data values (‘Val MAE’).

Low variance Poisson Simulation Results:

Poisson gene count simulations were generated as described above in (3) and (4),
with 𝜎𝑖𝑛 = .01 for 10 nodes with expected outdegree of 1. A dataset of 50k
observations with 100 single and double interventions were used.
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The baseline models were NO-TEARS and NO-TEARS Pois (NO-TEARS obser-
vational model with Poisson counts 𝑋), for comparison with the NO-TEARS Pois
SVI model. We found that vanilla SGD optimization seemed to improve model
performance (not shown), thus the results below utilize SGD only. However, even
with increased inner-training rounds (‘Train’, as described above), the SVI model is
unable to reach the level of performance of either baseline model (Fig. 7.2a).

Low variance Gaussian Simulation Results:

To remove any model fitting limitations introduced by the Poisson distribution, we
fit the NO-TEARS and NO-TEARS SVI models to data simulated from a Gaussian
model, as described above in (3) and (4). These simulations were generated with
𝜎𝑖𝑛 = 𝜎𝑒𝑥𝑡 = .01 for 10 nodes with expected outdegree of 1. A dataset of 50k
observations with 100 single and double interventions was generated. As shown in
Fig. 7.2b, we again observed a decreased accuracy with respect to DAG recovery
for the SVI model, even if training rounds within each parameter update step were
increased (i.e., where the variational parameters where updated for several rounds
while holding the DAG fixed).

High Noise Gaussian Simulation Results:

To clarify whether facets of the simulation were leading to the better performance of
baseline methods, or the inconsistencies in the SVI models, we simulated a Gaussian
measurement noise model with greater variance among the sampled observations
and utilized the known latent values 𝑍 (from simulation) to perform sanity checks
on the implemented SVI model.

We simulated Gaussian data as described above in (3) and (4), with 𝜎𝑖𝑛 = .01 and
𝜎𝑒𝑥𝑡 = 1 for 10 nodes with expected outdegree of 1. 5k observations with 100 single
and double interventions were used.

In addition to the baseline NO-TEARS model and our NO-TEARS SVI (latent)
model, we tested providing the true latent values 𝑍 from simulation as 𝜇 for 𝑞(𝑍 |𝑋),
to determine if in a more ideal case the underlying DAG could at least be recovered
(denoted as ‘Give Z’ models in Fig. 7.2c).

We also tested increased inner training rounds for the SVI model (as described
before as ‘Train’), or implementing a warmstart procedure (‘Warm’ models) where
for 50 initial epochs only the parameter M (the DAG) is updated.
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NO-TEARS

NO-TEARS Pois

NO-TEARS Pois SVI

NO-TEARS Pois SVI Train

NO-TEARS

NO-TEARS SVI

NO-TEARS SVI Train

NO-TEARS

NO-TEARS Give Z

NO-TEARS SVI

NO-TEARS SVI Give Z

NO-TEARS SVI Warm.

NO-TEARS SVI Train

NO-TEARS

NO-TEARS SVI Full

NO-TEARS SVI Full Train

NO-TEARS SVI Post. Give Q

NO-TEARS SVI Post.

NO-TEARS SVI Full Give Z

a

b

c

d
High Variance Gaussian Simulation Results (with Full Posterior Model)

High Variance Gaussian Simulation Results

Low Variance Gaussian Simulation Results

Low Variance Poisson Simulation Results

Figure 7.2: Performance of SVI Models on Simulated Data. a) Results of the
NO-TEARS Poisson SVI model versus baseline models. Val/nll refers to full ELBO
loss for SVI b) Results of the NO-TEARS SVI model, with Gaussian observations,
versus baseline models. c) Results of the NO-TEARS SVI model, with higher
variance Gaussian observations, versus baseline models. ‘Give Z’ models refer to
models trained with 𝜇 = 𝑍 for 𝑞(𝑍 |𝑋). d) Results of NO-TEARS SVI models with
full Gaussian variational posteriors (‘NO-TEARS SVI Full’) and the true form of the
posterior, 𝑞(𝑍 |𝑋) = 𝑝(𝑍 |𝑋) (‘NO-TEARS SVI Post.’). ‘Give Q’ refers to models
trained with the true 𝑞(𝑍 |𝑋) = 𝑝(𝑍 |𝑋) where 𝑝(𝑍 |𝑋) is also determined from the
true DAG.
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The greater observational noise demonstrated the limitations of the baseline, obser-
vational NO-TEARS model which displays worse DAG recovery due to the increased
noise in the input data. Additionally, given 𝑍 the SVI models can recover the true
DAG (Fig. 7.2c).

However, we also observed the same trend from the previous results in these high
noise simulations, where the other SVI models performed worse than the baseline
NO-TEARS observational model (Fig. 7.2c). We additionally observed that the
ELBO loss (denoted ‘Val NLL’) can be effectively reduced/minimized with increased
inner-training rounds (‘Train’ model), but the DAG recovery is then poorer than SVI
models without this extra training (Fig. 7.2c). A similar trend was additionally
observed if KL annealing was implemented, where a lower weight is placed on the
KL term in the loss function. This resulted in better DAG recovery but minimal
movement away from the variational parameter initializations, i.e., when means of
𝑞(𝑍 |𝑋) remained fixed around the data 𝑋 we better learn the DAG (not shown).
This was also noted with the warmstart procedure (‘Warm’ models). Thus though a
low ELBO loss is possible with the optimization procedure, the resulting variational
parameters and corresponding DAG may not be good fits to the observed data/data
likelihood. And improved DAG recovery for the SVI models came at the expense
of learning the variational parameters.

High Noise Gaussian Simulations with Full Gaussian and Posterior Inference:

In an attempt to combat this ‘ELBO bias’ we allowed the model to fit a full Gaussian
covariance matrix for 𝑞(𝑍 |𝑋), and implemented the true posterior form for 𝑝(𝑍 |𝑋)
as defined in Chapter 7.1.1, to determine if this level of structure is then necessary
to effectively recover the true DAG with the latent SVI models (i.e., is there a
fundamental limitation with the variational ELBO approach)?

We utilized the exact same simulated data as above, fitting NO-TEARS SVI models
with full, learned covariance matrices (‘Full’ models), or given the exact posterior
form for 𝑞(𝑍 |𝑋), i.e., 𝑝(𝑍 |𝑋) (‘Post.’ models). The ‘Give Q’ model represents a
similar control for the posterior model, where 𝑞(𝑍 |𝑋) = 𝑝(𝑍 |𝑋) for the true DAG
M. It does appear that the ‘ELBO bias’ observed previously, does not occur with
the exact posterior models i.e., higher ELBO losses accordingly denote worse DAG
recovery (Fig. 7.2d). Yet, the DAG recovery itself is poorer than the DAG recovery
with the NO-TEARS SVI Full or standard NO-TEARS SVI models (Fig. 7.2d). This
is a surprising result, as the NO-TEARS SVI Post. model should have an “easier"
optimization task, where given the posterior form for 𝑞(𝑍 |𝑋) and thus deterministic
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formulas for the mean and covariance, M is the only parameter to optimize.

Given that the exact posterior form includes multiple matrix inversions and subtrac-
tions, the numerical instabilities that seem to result during gradient updates/calculations
may be affecting the ability of this model to effectively optimize for M. To cur-
rently address these numerical issues, posterior mean and covariance calculations
are calculated without saved gradients and 𝐼 is added to the diagonal of the posterior
covariance.

7.4 Limitations and Future Directions for Noisy, Causal Inference
Overall, the investigations here reveal a hidden complexity in fitting both unknown
variational parameters and causal relationships in tandem, with this naive SVI ap-
proach. The gap between the ELBO loss described here and optimizing directly the
full likelihood of the data may allow for too much variability in this stochastic learn-
ing procedure, and thus result in worse recovery of the gene-gene interaction DAGs.
This raises two questions and potential avenues of future investigation/optimization:
(1) how fundamental to the model is this ‘gap’ in optimization (at which steps is this
variability incurred/most detrimental), and (2) what properties of data (simulated or
real) potentially affect the performance of these causal inference algorithms?

To parse and diagnose the difficulties encapsulated in (1), it is likely that fur-
ther dissection of the components of the optimization procedure and model is
required. In particular, it is important to investigate further the behavior of the
posterior model/inference procedure, beginning with the initialization of the pos-
terior. Though we currently set the posterior means to the observed data, it may
be more fruitful to use random initializations, or to initialize all means to observa-
tional data without interventions. It will also likely be informative to take a fully
deterministic approach (utilizing the MLE for the intrinsic/extrinsic noise models
described here) to assess if in this setting it is possible to recover the DAG well.
Another potential source of variability is in our handling of interventions. Currently,
though intervened nodes are simulated from a Normal(0, 𝐼) distribution, the objec-
tive function in Eqn. 7.1 does not model this distribution, but incorporating this
information, through the prior distributions of the intervened nodes, may improve
model fit. Likewise, removing this variability, and setting interventions to constant
terms, may also improve learning abilities.

Beyond the internal limitations of the algorithms tested, there is also the more general
question of (2): for all these algorithms (from NO-TEARS to the SVI models), in
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what situations is each algorithm more or less appropriate, and actually beneficial in
terms of the information gained about the system? Are there particular properties of
these simulated datasets that were better suited to the simpler NO-TEARS model?
In this study, we focus on equal intrinsic and extrinsic noise settings, or settings with
greater extrinsic noise, and DAGs with sparse outdegrees and linear relationships
between parent and child nodes. But it is possible these SVI/latent noise models
may confer greater advantage in settings with greater intrinsic noise, for example.
Thus an interesting avenue of investigation lies in determining the DAG properties
that better suite more simplistic causal models versus more complex, latent variable
models of the data. In this vein, it may also be more worthwhile to utilize simplistic
approaches to learn gene-gene interactions which could more easily be integrated
with the biophysical models of these counts, as described in Ch. 6, potentially
updating this graph based on the fit of the (joint) count distributions generated from
the biophysical parameters to the observed count distributions.

Together, using the results of this study we can attempt to form a deeper understand-
ing of the limiting complexities of stochastic, latent noise models of high-throughput
genomics perturbation data, which can in turn help illuminate other ways of devel-
oping scalable approaches for learning gene-gene interactions while incorporating
multiple sources of noise present in our datasets.
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C h a p t e r 8

DISCUSSION AND CONCLUSION

I am made and remade continually. Different
people draw different words from me.

Virginia Woolf

Through this thesis, we have grappled with the intricacies of multiplexed and multi-
faceted perturbation biology, the pitfalls and limitations of dimensionality reduction
for exploratory analysis, and the potential for stochastic biophysical models to rewrite
how we extract insight from these complex data types. The work presented sug-
gests that in exploratory analysis of high-throughput, perturbation data, there is not
necessarily one solution or representation to our biological questions, rather there
are different representations to be constructed from the data which are better (and
worse) suited to particular lines of inquiry. This means, that though we present
biophysical paradigms for reinterpretation of classical analysis tasks for more inter-
pretable data representation, several directions of development remain for improving
both experimental and computational methods, and particularly in interlinking the
two throughout the scientific process. Thus as we look to the future of multimodal
perturbation biology, what challenges can be addressed which improve experimental
design and data collection alongside physically-interpretable data representation?

In Chapter 3, multiplexed and multi-condition experimentation enabled the discov-
ery of novel cell types as well as their potential strategies in response to perturbation.
However, only exon-containing (spliced) mRNA was used for analysis. Many com-
mon scRNA-seq platforms alongside 10x Genomics, utilize poly(A) capture of
mRNA (unless more targeted sequencing is desired), meaning that the capture of
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mRNA in intermediate or earlier states of processing is largely accidental. As de-
scribed in Chapter 6.1, this means that many genes do not have enough counts of
nascent and mature mRNA, for example, to allow for modeling of their transcrip-
tional kinetics.

To enable improved resolution of the transcriptional process, RNA-seq technologies
that offer more ‘unbiased’ capture of transcripts provide a promising alternative,
such as the long-read and single-molecule resolution techniques provided by Pacific
Biosciences and Oxford Nanopore [11], which do not require the shearing of mRNA
into short sequences or extra amplifications of the molecules. Likewise the use of
random-primed sequencing data (as opposed to the standard oligo-dT priming) as
in technologies like LR-Split-seq [202], lessens the 3’ bias of transcripts assessed
(as the poly(A) tail is found at the 3’ end of processed mRNA).

scRNA-seq data additionally loses the spatial context of the cells and their transcripts,
though promising developments in high-resolution spatial perturbation assays [83],
in situ sequencing [221], and measurements of 3D genome organization and cel-
lular compartmentalization [25] expand the experimental toolkit and, in turn, the
underlying biophysics and regulatory interactions to be explored. These orthogonal
experimental assays also promise high-throughput methods for better understanding
the overlap (and differences) between molecular count interpretations from scRNA-
seq and imaging/fluorescence-based readouts.

In Chapters 5 and 6 we highlight the lack of biological interpretability of com-
mon dimension reduction techniques for data representation, and instead present
biophysically-grounded approaches to common perturbation analysis tasks, such
as clustering, differential expression, and mechanistic interpretation of perturba-
tion interactions. However, we also note the limitations with the current biophysical
approaches, particularly in light of potential extensions to the alternative experimen-
tal readouts described above. The biophysical models described here are limited
to those with analytical solutions and sequential, memory-less behaviors. But in
combination with ML approaches to extend parameter inference to more complex
biophysical scenarios [43, 236], and with temporal resolution (see Chapter 6.3)
[22, 87, 266], models representing alternative mechanistic hypotheses could be fit
at-scale and with greater parameter resolution. The biophysical paradigm addition-
ally offers a self-consistent starting point for modeling the technical biases inherent
in non-poly(A)-based sequencing techniques, as well as for simulating and exploring
the regimes in which particular data types may or may not distinguish mechanistic



113

hypotheses [95, 98].

With meK-Means we were able to expand representation of gene-gene correlations,
as compared to the independent treatment of genes in the standard CME-fitting
procedure. Yet, there remains no explicit form of the regulatory interactions between
genes and their products in this framework. As highlighted in Chapter 7, we
can take inspiration from continuous optimization [167] and statistical inference
[231] techniques for causal inference, to unpack regulation and feedback between
genes through their effects on the kinetics of DNA/RNA regulation. This could be
represented through learning the underlying graphs of interactions between genes
in connection to their resulting kinetic rates, i.e., we learn the governing rates as a
function of these regulatory graphs. To limit the combinatorial search space, prior
knowledge of gene-gene interactions can be used, following common strategies in
the knowledge graph literature [189].

Given the exploratory capabilities of scRNA-seq, across the technologies described
above, it is also important to integrate biophysical analyses (and the accompanying
statistical tools) into the experimental design loop to improve hypothesis selection
and efficient use of experimental resources to gain new insight and develop new mod-
els. Previous work in fluorescence transcriptomics, has demonstrated use of Fisher
information criteria to optimize experimental design and detection of environmental
fluctuations [87, 143] given timecourse data. By combining such information-based
analysis with our biophysical models, we can then optimize parameters, such as time-
points collected and sequencing coverage required, to recover dynamic information
and disease hallmarks including dysregulation of mRNA splicing and decay. The
biological insight extracted from these follow-up experiments, can then feed back
into the development and update of the biophysical mechanisms and representations.

Overall, this thesis aims to highlight how experimental and computational methods
can take advantage of the richness of high-throughput perturbation data, particularly
through the construction of methods from first-principles, i.e., rooted in knowledge
of the biological questions at hand. Though many challenges remain, to scale such
approaches and integrate new measurements and biological entities, we demon-
strate how question-guided investigation can bring together the domains of biology,
physics, and mathematics, to take fuller advantage of the many facets of the cell we
continue to uncover.
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