
Contributions to the Theories o.f 

Dissertation by 

In partial fu.lfill.ment o.f the nq.uiremerr~a 

fo1· the degree of Doctor of Philosophy 

Cali:fom.ia lnsti tute of Technol.ogy 
Pas~dooa, California 

October 1944 



It is a pleasure to acknowledge my indebtedness 

to Professor A. D. Michal and to express my profound 

gratitude to him for his advice and encouragement. 



CX>NDJNSATION 

The brief abstracts of the p~ers contained in this thesis are copied from the 
Bulletin £! ~ American Mathematical .§g,s:iety. 

Abstract (48--l-96) 

An nth order differential is defined for a function F(x) with arguments and 
values in topological groups and increments in the central subgroup of the argument 
space with a relativized topology and a generation postulate. The fundamental theo" 
rems on unicity, contiDUity, linear combinations, and iterative functions are then 
proved. 

Abstract (48--5-158) 

After an abstract calculus of finite differences is defined, functional defini­
tions of a monomial and polynomial for elements of the group as increments are given. 
The theorem on the homogeneity of a polynomial is proved for central and a.rbi trary 
differences; for central differences the difference being a function of the increment 
alone implies the difference is a monomial; the independence of the central diffe .. 
rence of polynomials and the unique decomposition for the abelian valued case a.re 
made to depend on the product of a Vendermonde determinant end a finite product of 
binomial coefficients. The theory is essentially a genel'alization of the work of 
Van der l.ijn on abstract polynomials in abelian groups. 

Abstract (50..1-48) 

By analyzing an example £ormu.lated by A. Tychonoff, the spaces 189, O:S5'<00, 
are defined in a manner analogous to that £or classical Hilbert space; some basic 
properties such as linearity, necessary and sufficient conditions £or norm.ability, 
separability, and sufficient conditions for local convexness a.re proved. 
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Introduction 

The doctoral dissertation which is submitted here in partial 

fulfillment of' the requi1·ements for the degree of doctor of philosophy 

is a collection of the author• s published papers on the field of' 

abstract space theory. 

The first and second articlea, "Differentie.l Calculus in 

Topological Groups," have been reprinted from the Revieta 5!!. Cienci§!.§, 

vol. 44 (1942), p. 485 and vol. 46 (1945), p. 45. These papers repre­

sent an extension to topological groups of a topologically invariant 

theory of differentials. 

The third article, "Abstract Polynomials in Non-Abelian 

Groups," has been reprinted from the *Bulletin of the American Mathe• 

matical Society," vol. 49 (1945), p. 255. In this highly condensed 

note the modern abstraet app1-oach is used in analyzing the theory of 

polynomials in non-abelian groups. 

The fourth paper, nA Note on Generalized Hilbert. Space," is 

to be published or has been published in Revista Mathematicas z Fi$1ca 

Teorioa, vol. 5 (1944). This note is a unification by means of the 

concept of a generalized Hilbert spao-e of many well known, but diverse, 

results. 

Certain other results on powers of matrices, characterization 

of abstract exponential functions, and an abstraction of' the Weierstrass 



ii 

approximation theorem have not been included as they are not, as yet, 

in a term acceptable for publication. 



DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS 

by • KNOX MILLSAPS • 

Introduction: Many w1:iters, n~tably. Fr&.het'<1) 'arid ·. Mich~l (2), 

have studied various abstract qtlculi . . This note is . a general­
ization to topological groQp~:· df' ~ 'pq'~~" tcfpci'lb~ico-algebrait theo­

ry of differentiation. lri § 1, the ' fuhchu:nJhtal definitions of 
topological group differentials are stated. In § 2~ 'the fundame.ntal 
theorems on unici ty, continuity of differentiable functions, di f­
f erenti a hi Ii ty of iterative f ti~ c tioh ;; ·:a rlcl· t 1h e ~topbl'ogka I ' in v .. a~i an ce 
of 'the defi~itions are' proved·: '. hr · -§<3~) fH~ s·pec:i-aJ.iiations of the 
argument and value spaces ' ire dpl1dffy'.1di~dis;ed J . • 

The author gratefully acknowledges the assistance of Dr. A. 
D. Michal who gave his time in offering thoughtful suggestions 

cl 
. . . . . . ; . 

aJ1 • pert1•nen,t er1;t1tt,sinls( :.i. • 

1. Let J(x) denote a function on Ux
0

, where Ux0 is a neigh­

borhood <3) of Xo, , c:9n .t,a~:lJ.t;!/l. i.1~ 1~G, a_topologi_c~I~r,o~p?\ ) r~~h_. 
a central subgroup <5) C1 with a generation postulate of the type 

us~q. ~rJ'-1!:ch~l ~6 ) fl).d a _ relativi:z~d -topqlogy~ t~ T, .a tqpplP,g __ ical 
gro,U\P1\W,~th .a fflJJr.al sµbg_~Ol;l,P , C2 • All _n,~igh,borh00.d.s, .~x~-._nyi¥hr-~ 
borhoods of the unit element witlpespeq to th~ relativ.iz,edi t_o;po ... , 
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logy unless otherwise specified. The addition of an A to the 
notation for a topological group will imply that the group is 
abelian; the usual group notations will be used <7). 

DEFINITION OF FIRST ORDER K1 DIFFERENTIAL 

The junction f (x) will be said to be first order K1 differ­
entiable at x = x0 , ancf'fHx;, ;; <>x) will be .called a first order Ki 

differential of J(x) at x = Xa if 

· (h) · there exist fitn,etion&" rdx 1· 1x .1 ;:xa), 'with properties which 
,are obvious gene.i:aliza:tio11s ;'. of:: the ' .6 (Xq) X 1 ' X 2) or 
Michal <9) ; ., :, t :.:-u: '.1 1 ;: ·_:1 :; , 

( c) • there exists ·cl, · nez'.ghborhrJoiJJ J N1-i such that (1 ) the values, 
of Ei(xo, ox; ax) auh oiimutartivef,or -axeN (2) !1-(xa; ox) 
is a first order approiimatio'tn ttr-the'i'ncrerneni f(x 0 ox)f'"1

\XCJ) 

in the sense that 

(A) f(xoox) 1-1(xo) !~ 1 
(Xo ;ox)== Ilf=l €j(Xo,ox,ox )2clni:ittJ:1 €.t(ioJX ,&x,)6!C:i 

for .ox EN . 

• • • _ • ' ; ; ' • : • , 0 , ; I • ' ~ • •• ) ( 0 ~; : 
0

\ i.J • 

DEF1NITION OF; F,rRST QRDEI{ K2 DJFF~R:1rnTIA ~· ~J() T~t !, :,, ; ,.· 

• . • f ,-~- ~ ; ; 1. 'r · ~ • , ~ : • · • • • . ~ . . •: d) I i • d ") i } ,·; ~ 1 , ! ; , · • 

Denote the first ,,or4er J(~- differe11tia{.of J(x) by .fihx?~ ;1~ ). /he 
only . di// ere_nce between · K1 and . • K2 d1jjerentials is the subsfitittto1f , 

- , . • - . . . . . : . ! . ... _ • • . . • . . • '.·1 1 1 o c; .. : _;{ · ~; -. :( 
of the following equation for · (A). · • 

.;.;_ 486 -
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(B) 1-1 (xu} J(xo h) 1;1ix-0; ox)= rri!, l e1(X-0,ox,ox) and nf=i Ei{Xo,ox,~x)eC2 
for ox e .N(IO) . • 

2. 

THEOREM I: If a first order Ki (or K2) differential of J(x) exists 
at X =Xo, then ,it . ir, 1,1,nique for all ox E C1 . (tl) 

PROOF: Assume two distinct differentials; M(io; z}.f N(xo; z) for 

z e C1 . From (A) :or · :(fl) it follows that 

k 
It is not hard to show that N(x0 ;i):lyf-1(x0 ;z)=Il~:~e~1(x0 ,ox,z) Iln=i· 

i . , ) · ·,.' • 

•En(Xo,ox,z) where ox eQ, Z oi 0
, ·and 'z~,C1. From the uniformity 

of the epsilon functions N(xo;'.z)' M-l°(xo;i ) = 1 for 2 E P. Applying 
the generation postulate again, the above equation becomes M(xo;z)= 
N(x 0 ;z) for zECi. Contradiction . 

. b .~: r1 : : ·• :. "· • , • 

THEOREM II: If J(x) is K; (or K2): 1}J,ifjerentiable ,at X2=Xo, then 
j(x) is continuous<i 2) at x=_Xo. • . ·.~:.:, ,_ 

. . • . • . .r ➔ , c: · . .. ' . : ·, 
Let g(y) be defined on J(Ux

0
) CTG2 to T;

1 

let 'iJ!(xf-g(J(x)). 
• •• • U) i-c .. 

. '. ' ,,~ ~ . ' . 

THEOREM III: If j(;) , and • g(y) are Ki • (or"° K2) difjerentiable 
at x=xo and y -::d y} =j(xo) -' respecti·vely, then i(x) ·,1i ' K 1 (or K2) 
differentiable at x =Xo . . . 

PROM: ·h cfa ;,be •1sho-v/n that for ox E W,g [f(xo ox)] l t1{f{xo)] 

gi~[j{~:\{jiro~; Bxy f ~. Htie1 [f(xo), Il[=1 Ek (xo, ox, ox{ l(~~'i 8; ), 
' .- ) -'. . '- ( \ ; • ' . . -_ : ' • ' . • • - ;. :.: :._ .. : /. 

- 487 -
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~ ___,. ' : . · . ·, '. i • .. . • . . •. . 
1 

n~:=,1 Ek(Xo, ox, ox) f1(xo;ax)] g'1[J(xo); nt=1 Ek(Xo, ox, ch)]. If .the 

following definitions are made 

nt1 El [J(xo)' rr:=1 E~'(xo; X1, X1) /1·(xo; X1) ,- n~= 1Ek(x o, ~ft~ i~) filXo 1Xz)J 

• rt~:\1·J~-~rJ(~~, ~11 X2); 1then • '.[, (x t~x) ·\Jr1'(ia) '¥:;
1
(:xo; ox) = Ht!;bt1 

E~(xo, OX; ox) for oxeM. ' 06id:an :'see .·that' 'th~ )et(x~,x1,Xi) afe 

epsilon functions, a11d_ C<D_ndition (c) - (2) is saJisfied. The proof 

• is similar for ;K2 -~:ffff~r~;n~ials. 

TIItt6~~M ·IV: ' '.The Ki ,. (or :Ii2)" differe¢.iability. ·of 'a f tmct"ion f(x) 
• ·on 'T G1 to ~T G2 :, is a ,. K1 'dnd 'K:2 <,)fifferential to'pological proper• 
· ty(13), : ;(' •' 

3. Consider tunctions defined on a TAG to a T. The special• 
• • izat1oni{ne:c~ssa'i;y:1n; the: cf~fi~1itid'irs df'11\'.J ~nd ·K2 ·dfffei·entiabili­

ties follow immediately. The ki'nlis of di\ffe;;e-~tials' wiilhe\::xhatist~ 

, ively de'tebnirred ~·y -.th~·-xwd·er of'the . .factors rn .equ'ations a"nalog­

ous to (A) and (B). Denote the differentiabilities of j(x) on 

1' AG fo • -T J:>y ·G1 qn'd G2 , Where the valu~s_ of! 'the -subscri'pts 

• i:inply the sa1ni ;'draet~'a's" in equations (A) -. and. 00{B) h 1espectively.<14> 

If the assumption is made that the elements of the value 
• 'sp~ Ce 1 ~r~:: :cbni"rtiiJ ta ti'h ·1ah d r ,f-i~ e' -ele nieii.ts ; of ' the ;,a rgJ me1JitP 1S pie e 
, ·not ~ecess~~ly :-so, then. the changes. in • K1 and · K2 , differ,ep4ira9i• 

I • '\ ' ' , I - • • · / \. J l ( , 

lities are evident, Denote the one kind of differentiability by L.<1~> 

- 488.:..... 
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DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS . 

When the argument and value space are commutative, K1 

and K2 differentiabilities reduce to M 1 differentiability. (li>) 

THKOREM '. V :: If f(x) dnd g(y) are differentiable d \ indft iizetfal 
the left of the table at X =xo and at the top of {hi table aF ,";J)o~J j{fo.,) 

respectively, then 'll(x) is differentiable as indicated, itt~ the_ tq._ble al 
' . . : ~ \ ' '. 

X = Xo, 

M1 L G1 G2 K1 K2· 

(17) ·G~T: f ' () ! 1··c 
•.i'. ' t , . 

G~ 
.. 

'N N M1 M1 N - 2 

L L N K1 : ., i:;J:j{:; c' , l N N 

G1 N' M1 N•:.: JN i" : GJ. G2 
' -, 

, . , 

G2 N M1 N N G1 G2 

K1 N L ,, N . , ; N - Ki · K; 
' . 

K2 N L ~ N .: Kr 1 i K2 
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. Footnotes 

( I) M. Frechet, "La Notion de Differentielfe clans L' Analyse 
GenJr~J<\ Ann<1les Scientifiques. de L' Ecole Nor,1nal,e/ $itp¢rieure, 

vol. .4=2,. ,P9}SJ,,)?~;, 293-323. 

(2) • A. D. .Micl~aI ,'° "General Diffe1~ential Ge~~efri'es arid Related 
Topics", Bull. Amer. Math. Soc., vol. 45 (1939), pp. 529-563. 

(3) Definition 13, L. Pontrjagin, Topological Groups, Princeton 
( 1939). 

(4) Definition.~2, Pon-trjagin, Zoe. ci,C 

(5) Definitio~ 23, Pontrjagjn, -l~p. cit. 
. . ( . •· · ' 

(6) A. D. Michal, "First Ordev: Differentials of Functions with 
Argume.n ts and Values in T~pol~gica) Gron ps", Revi~ta de Ciencfos, 
(in press)·, 

(7) Hans Zassenhaus, Lehr~uch der Gruppentheorie, Teubner (1937). 

(8) 5,; Banac.h, T/1eoril des, Operations lineaires, W~t'.SaW (1932), 
pp. 23. In this definition the substitution of ~ultiplicative distribu­
tivity for additivity is the obvious abstraction. 

(9) A. D. Michal, Zoe. cit. (6), Section l. 

( 10) Let A be the totality of all n-rowed square matrices of the 

form a= II a~ II who~e elements are real numbers and whose de­

terminants are different from zero. Define cx/3='Y where a;bt=.=ci. 

490 
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Define Ufn ,h· m = I ,2,,, ....... .... to be th-e set ot aH matrices of Jl1tt, 

foi·m :~+-,i. •. u,~~+oFl where I is the un-ii: matrix, and a i-s ir1:-::t-h~, 

set of alLm~tri<;es whose elemeuts do not exceed ;i . in a:li>°st)l:ot-e 

value. A:un-i.que topologi:zation exists :for which Otn form a~febm\.:' 

plete system: i.:of neighborhoods of the identity ·of · th~ a-lm:r~ct 
group A. 

Let j(x) ·=· x7 whete :t:; ......,. x't ; the reader can easily verify 

that f1(Xo) OXj =h(Xo'i oxJ=(ox)1. Many other differentiab-le fu:nc-\ 
tions of matrices coul;d h~-given'"'"see J-. H~ M. Wedde.rhurn,,Lectures 
on Matrices, Volume :XVII-; Colloquium Publica:'tions of ·Amer, , 
Math.. Soc.. 

( 11) The generation postLtla1;-e 1$ n,;e;ded foi- th~ ,pr.{:)~f of this and. 
only this theorem. The postl,11~-~~ j :s,--r~dund_~:l~~ '.f~r linear topolo ... 
gical spaces. ' • - • I • 

( l 2) A function j(x) on T 1 to T2' Will be, c~ll~d continuous at 
x = X-o; if given V of f (x0) , th~-;~ e'~ist~' 'U ' of Xo such tl~a-t 

J(U)cV. As an alternative defini_ti_o~ :c9n.sic;k ri 1 the following: if 
. ' . J . . .J .; I . \ I _. .I ; _. •' : ' • 

given V of 1, there exists U of I such that j(xoy} J'- 1 (x0 ) € V 
for y EU. Consider also the definitions that follow by changing 
the order of the value and argument factors. The equivalences 
of all of definitions are immediate consequenrns of a paper by 
F. Leja, ''Sur la Notion du Groupe Abstrait Topologique", Fun· 

damenta M athemahcae, vol-. 29 (1927), pp. 37-'-45. 

(13) A. D. Michal, Zoe. cit. (6), Section 2. 

(14) Let TAG be the ad ditive group of real numbers; let T 
be the group of 2 X 2 non-singular matrices with real elements 
under row by column multiplication. Introduce the natural to .. 
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pologies; define j(t) = II aii (1)11, where aii (t) are real functions 
of 'a f-ea,)::lvadabl~. ·consider ' the set of T foi" which d11 == d12 ' , 
a2i<=r:-i- aizf a'1i(t1+t:t)=a11(t1) aj~(ti) - 'a,1-J.tr) fl21(t~) an'd a:itftj+t1) =;· 
= aii1(ti) .a22(t2J,-a22<t1) adtz) .'. A ~olution of the abo.ve equati'ons is . 
th~ !llap·iR~. repi:esent!ltiqn of th~ one real :i:iara111eter E1,1qliqea.n ro­
tati9rs , ,. It/o,llpws _tha_t fg 1(to; .~t) ,'7_/gito;o,t) = l!C?ii(onJt.for all 
to,oteTAG, v:rhei·e /gl(to;o/) and fgt(toiot) denote ,th<:; Gi 
and G1 differentials of j(t). 

(15) As an example, tonsidt:t TG , .to be the. space of non:-zero 
quaternions-' .a -a1 .E1.1.· wnefe a1eR. :and . (J_i.).2.=::ff·~;=;=__.:_l for 
i = 1;2,3,1 - with .quaternion· multi.plic:;ttion: ·as the group operation; 
take TA to be the space of positive numbers with the· group· 
operation as ordinary multiplication . Introduce the natural to­
pologi~§:......! 'cf: E·xamples 6,:12i,; · a11d 37. in Pontrjagln; foe. cit. If 
j(d)-:-':J;{a,) 2 , theri ' fr;{d~;lld)';=~('odi)2, whei·e J,,(d~;od) detH)tes 
the L differential of J(d). 

(17) N i'mplies that the iterati~e Ifuncdou is not defined. . . 



DIFFERENTIAL.CALCULUS IN TOPOLOGICAL GROUPS II. 

by KNOX MILLSAPS 

Introduction: In a. previous pa per first order differentials of 
functions wi

1

th arguments and values in topological groups were 
defined and studied~<1> • An extension to n-th order differentials 
is the purpose of this paper. In § 4, definitions for ~:.th order 
Ki and K2 differentials are stated; in § 5, the theorems on the 
unicity of n-th order K1 and K2 • differentials and the differentia­
bility of iterative functions with an explicit formulation of the 
differentials of the composite function in terms of the differentials 
of the composing functions are proved. It should be noted that 
the results are applicable to n-th order Frechet and Michal dif­
ferentials. <2> The notions of K1 and K2 differentiabilities are 
purely topologico-algebraic. 

It is a pleasure to acknowledge the help of Dr. A. D. 
Michal. 

4. The notations introduced in the preceding part of the deve­
lopment are preserved; in addition, the value groups are restric­
ted to contain no elements of finite order. It is found convenient 
to introduce the following notations: 

- 45 -
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(a) nil= n! (n-1)! ...... 21 11 , 

(b) [x] E (n) - xn, 

n! 
(c) 

(d) X(i) = X for i= 1,2 ...... , 

and ( e) [ c~u c~m] E (p) denotes the product of p ( p is 
obviously bounded) distinct factors in which the K1 (or K2) dif­
ferentials of order n and m occur an and am times respecti­
vely as the arguments in the K1 (or K2) differential of order 

an+ am • 

DEFINITION OF N-th ORDER. K1 DIFFERENTIAL, 

A function fi(x 0 ;81x; ...... ;8nx) wi·tharguments 0jXEC1 and 
values in T2 will be called 'an n-th order K 1 differential of f(x) 
at x = Xo with increments 81 x, ...... , On x if 

(1) fi(x 0 ;81 x; ...... ;oqx) for q=l,2, ...... , n-1 exist at x=xo; 

(2) Ji (x0 ; o1 x; ...... ; 00 x) is a completely symmetric i - unif arm 
multilinear function in Oi x ; <') 

(3) e(x~, X; Xi, .. , ... , x0) on Ti to C2 such that 

- 46 -
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• (b) E(X 0 , x, x:1 
, . . . ... , x~n) = [ e(Xo, x, X1 , .• _. , x.)l E (U k1) for 

' 

(c) e(Xo, x, x., ... , Xn) EA for XE B (A) and ·x1 tNi ; 

(4) ft (xo,· 01 x ; ... ; on x) is an n-th order approximation to 

f (xo ox) J-1 (xo) in the sense that 

(A') [J(xo ox) j"1(xo)] E(n!!) II~= 1[J:j1 (x0 ; O(t) x;" ... ; O(l)·X] E (n") ... 
l . ill • 

= e(Xo,O(t)X, .. ,,o(n+l)X) for oXEQ. 

DEFINITION OF N-TH ORDER K2 DIFFERENTIAL. 

Denote then-th order K2 differential of J(x) by fi(xo;o,x; ... ;onx). 
Let condition (3) and the analogues, of (1) and (Z) continue to 
hold; substitute the following condit"ion for (4). 

( 4') Ji (xo; 01 x; ...... ; on x) is an n--th order approximation to · 

J- 1 (x0 ) f(xo ox) in the sense that 

5. 

THEOREM VI: _If an n-th order Ki (or K2) differential oj-j(x) 

exists at x = Xo , then it is unique for Oi x t C1 • 

47 -
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Proof: For n= 1 the theorem has been proved. <6) It is assumed 
that the'.idifferentials of order 1 , ...... , n - 1 are unique; · in ad-
dition, it is assumed that two differentials of the n-th order 
M(xo; oix; ... ;onX);/N(xo;o1x; ... ;onX) for -OiXEC1. From (A') 

or (Bl) , it:·qan ·be deduced by algebraic manipulation that 

eN(Xo,0(1)X, ... ,o(n+1)X) for oxEN. 

From (2), (3)- (a) (b) (c), and the repeated use of the genera­
tion postulate for C1, one may-prove that N(x 0; oc1) x; ... ;ocn)X) = 
M (x0 ; 0(1) x; ... ; O(n)X) for ox E C1 • From (2) and the assump­
tion that the value group -contains no.elements. of finite order, . it 
has been shown that N (x 0 ; o1 x; ... ; onx) = M (x0 ; o, x; ... ; On x) for 
01 x:E.C1 . (7) The induction, is; comple.te. 

THEOREM VII: If f(x) and g(y) possess- K1 (or K2) differen­
tials of order n at x = x 0 and y = y0 = f (x0 ) respectively, then 
'l'-(x) , - g(/(x)) posses.ses an n-th order K1 (or, K2 ) differen­
tial at x = x0 , and 

where the product is taken over all non - negative solutions of 
1:l!,, 1 i a; = n , and C~ denotes the absence of the q- th order K1 

(or K2) differential of f(x) . 

Proof: From (N) and Theorem II the following equation m_ay 
be derived. 

- 48 -
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A L C A L C U L U S IN T O P O L O G I C AL G R O U P §: 

It is convenient to consider a representative factor when n > 3 

and to introduce the notation J(x,, ox) J-1 (x0) = I 

-t ( n!! ) [g1 (/<x"); [l(l}] E(4!J); Ic2J; ... ; Icn-sl)] E --- = 
4,JJ(n-3)11 

Performing this process for the Ki differentiQls of order 1) ... , ff (S), 

it is intuitively seen that 

49 ~ 
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for ox EH, where ew (xo,x,x 1 , •.. ,xn) is the epsilon function de­
fined as the product of eg(x0 ,x,x1 , ... ,xn) and the difference of 

the factors in the first and !~st equations of the proof. 

The proof for K2 differentials is entirely equivalent. · (9) 

Footnotes 

(1) K. Millsaps, "Differential Calculus in Topological Groups", 
Revis ta de Ciencias, Ano XLIV (Diciem bre, 1942) N. 0 442. 

(1) A. D. Michal, "Higher Order Differentials of Functions with 
Arguments and Values in Topological Abelian Groups'', Re­
vista de Ciencias, vol. 42 (1942), pp. 170-176. 

(3) For a discussion of this function see H. S. Wall, "On the 
N-th Derivative of F(x)" Bull. Amer. Math. Soc., vol. 44 
( 1938), pp. 395-398. 

(4) A. D. Michal, Zoe. cit., pp. 158-159. 

(5) P denotes the set of positive integers. 

- 50 -



DI FF E lt ENT I AL 'CALCULUS IN' TOP O LOG! CA V Cl RO UPS 

(6) K. Millsaps, lac. cit., Theorem L 

(7) A. D. Michal, lac. cit., Lemma l. L . 

(8) If H, j E P and n > i, the11 

It is readily seen that 

and O < k1 < i + l for by redlictio ad ahsurdtun ~e gets 
= 

Changing the notation, one has 

j~l nil 
(d) IIi=o (n - i)i+l = ---

(n-j)I! 

Combining (a), (b), (c), and (d), the desit'ed l'esult that 

-. Sl -
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(e) 
n!! n-i n-i 

--- > Ili= 1 kJ!, where n > j, k i= i k; = n, 
(n-i)!! = 

0 < ki < j + 1, follows. 

and 

(9) As an example of a second order K1 and K, differentiabfe 
function whose second orden Ki and K2 diff ere·ntials differ 
from unity, one may consider the matric function logx. For 
the definition of log x see J. H. M. Wedderburn, Lectures 
on Matrices, Volume XVII, Colloquium Publications Amer. 
Math. Soc., pp. 122-123. 



ABSTRACT POLYNOMIALS IN NON-ABELIAN GROUPS 

KNOX MILLSAPS 

_Introduction. The aim of this note is to give some generalizations 
for ,groups of the theories'. of abstract po!ynomials as developed by 
Frechet, Gateaux, Martin, Mazur, Michal, Orlicz and more recently, 
Van der Lijn. 1 Although the theories are equivalent for functions with 
a~guments and values in abelian groups, 2 this equivalence is not the 
:c~se when the argument and value groups are.non-abelian. 3 

In §1, a calculus of finite differences for functions with arguments 
and values in non-abelian groups which contain no elements of finite 
order is defined, and the fundamental definitions of polynomials and 
monomials are stated. In §2, the homogeneity in the increment of the 
n-difference of a polynomial of degree n is proved, and the theorem on 
unique pseudo-decomposition is proved after giving some preliminary 
theorems on the structure of differences of arbitrary functions and 
polynomials. In §3, a brief discussion of the extensions to non­
abelian groups as value spaces is given. 

I should like to thank Professor A. D. Michal for his helpful sugs 
gestions and constructive criticisms during the preparation of this 
note. 

1. Definitions. For the purposes of polynomial theory the value 
groups are restricted to contain no elements of finite order. 

To construct the calculus of finite differences for functions with 
arguments and values in non-abelian groups, we define 

! 
J(xw)J-1(x) if a1 = 1 and /31 = i, 
J(wx)J-1(x) if a1= 1 and /31 = 2, 

.,A[a1; (3i]j(x) = J-l(x)J(xw) . if a1 = 2 and /31 = 1, 

J- 1(x)j(wx) if a1 = 2 and /31 = 2, 

Presented to the Society, April 11, 1942; received by the editors April 21, 1942. 
1 References to these theories will be found in the bibliography. This list :will be 

referred to by numbers in brackets. 
2 The equivalence of some of these definitions was proved by Martin in his Cali­

fornia Institute of Technology thesis, 1932, and of the remaining definitions by Van 
der Lijn. A summary has been given by Van der Lijn [1, pp. 78-80]. 

3 If the abstraction of additivity is multiplicative distributivity, then the general­
izations of the definitions of Mazur and Orlicz [ 1, p. 63] and Van der Lijn, [1, pp. 60-
61 ]are not equivalent; this is easily seen by consideringf(x) =xk. 
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and inductively 

:6.. [a1, • • • , an; /31, • • • , f3n]J(x) 

=wD..[an;f3n]n-:6..[a1, • • ·, a,._1;{3i, • • ·, f3n-1]J(x). 

DEFINITION OF A MONOMIAL. A [a1, • • •, a,..;{31, • • • ,{3n] monomial4 

is a function f(x) which satisfies for all x and w the fallowing functional 
equation 

The obviously unique value of n is termed the degree of the mono­
mial. 

DEFINITION OF A POLYNOMIAL. A function f(x) which satisfies the 
following functional equation for all x and w 

will be called a [a1, • • • , <Xn+1; {31, • • • , {3,..+d polynomial. 5 

The least value of n for which the above equation holds will be 
termed the degree of the polynomial. 

The binomial coefficients are denoted in the usual manner; fi,n is 
defined by 

where ,I:~.:;fai=n, I:!~J(q-1)aq=i, i~nk, and i~O. An arbitrary 
element of the central subgroup will be denoted by 'l'J. To simplify 
notation, the dropping of unnecessary indices implies that the value 
of a product of factors is independent of the order of the particular 
factors controlled by the dropped indices. . 

The next equation is a-generalization of an identity due to Mar­
chaud6 

n.k 

wk+~t,_ [/31, • • • , /3,..]J(x) = LL :t.. [/31, • • • , /3,..]j[Pii-], 
i~o i 

4 The inner automorphisms of a group are interesting examples of a [1; 2] mono­
mial; similarly, the canonical transformations of quantum mechanics. 

6 If the elements of a group are taken to be the nXn matrices whose elements are 
in a commutative field and whose determinants do not vanish, and if the group opera­
tion is defined as row by column multiplication, then J[llx;![] =[la~x;,x;b;j[ is a 
[1, 1; 2; 1] polynomial. 

6 Marchaud [1, p. 368]. 
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where j = 1, • • • , rtn and P;; denotes a particular permutation of 
w, w, • • • , w (i times) and x. 

2. Fundamental theorems. Let A(x) denote a function with argu­
ments in a non-abelian group and values in an abelian group. The 
theorems of Van der Lijn for functions with arguments and values 
in abelian groups can be extended with a few immediate changes to 
hold for differences of the type JLiA(x). This section is devoted to 
abstractions for differences of the kind :Ll [/31, • • • , f3n]A (x), where w 
is an arbitrary element. 

THEOREM I. If A (x) is a [/31, · • • , /3n+d polynomial of degree n, and 
if k is an integer, then 

PROOF. For k = 0 or 1, the theorem is trivial. For k > 1, we hypo­
thetically have 

By a few manipulations and Marchaud's identity we get 

n(k-1) . 

)6[/31, • • ·, f3n]A(x) = L r~-1,n :.6.[/31, • • ·, f3n]A(x) 

Fork< 0, we evidently have 

)j,[/31, • • ·, /3n]A(x) = (w-1i-~.6.[/31, • • • ,/3n]A(x) 

= ( - k(3t.. [Bi, • • • , f3n]A (x) 

= (-)n(-k)n:6[/31, · · • ,/3n]A(x) 

= kn :6[/31, • • ·, /3n]A(x). 

THEOREM II. If:Li[/31, • • ·, f3n]A(x) =g(w), where g(w) is independ­
ent of x, then g(w) is a [/31, • • • , /3n) monomial of degree n in w. 

THEOREM III. If A (x) is a [/31, • • • , /3n+i) polynomial of degree n, 
then :Ll [/31, • • • , f3n]A (x) is independent of x. 

PROOF. If n+2 elements of the argument group are denoted by x,, 
where 

i = 0, • • • , n + 1, 
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then by steps roughly analogous to the usual proof of similar theo­
rems we can derive 

n n+I . 
L LCn+l,iCn,p(-) '(-p kp :D. [J3r, • • • , f1n]A (x;) = 0. 
p=O i=O 

In the last equation we see that L;=oCn,vkP is a simple polynomial. 
From this observation we deduce 7 

n+l . 

L (-)'C,,+1,J-P :b.[/11, · · ·, f1n]A(x;) = 0, ·P = o · • ·, n. 
i=O 

If we consider one difference as given and the rem.aining n + 1 differ­
ences as unknown, then the unique solutions are . 

i = 1, • • • , n + 1, 

for the determinant of the system of equations is given by 

n+l 

(-)•(n) IICn+l ,iv ~ 0 
i-=l 

where Vis a Vandermonde determinant and o(n) = 1, if n = 1, 2 mod 4; 
o(n) =2, if n=O, 3 mod 4. 

THEOREM IV. If A (x) is a [,61, • • • , /1n+d polynomial of degree n, 
and if Pn = II~:i(-,;-i) !, then we have the unique pseudo-decomposition 

n 

PnA(x) = L M;(x), 
i=-0 

where M;(x) are [,61, • • • , ,B;] monomials of degree i. 

3. Further discussion. With the generalized definition of a poly­
nomial an extension of Theorem I for functions with arguments and 
values in non-abelian groups can be made. The triviaJ converse of 
Theorem III can be proved in an obvious manner. The non-abelian 
analogue of Theorem IV does not hold, for counterexamples can be 
exhibited. 8 

In conclusion, it is remarked that the difficulty with the non­
abelian valued case is an inability to solve explicitly a system of group 
equations. 

7 It can be sho~n that if a simple polynomial Z:::;_0a;x• of degree n vanishes for 
n+l distinct values of x, then the coefficients vanish. 

8 With the group defined in (5), a trivial, but sufficient, example is !Ix;!!= l! x:11 II o;IJ 
=!1°;1! llx;IJ. 
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A Note on Generalized Hilbert Space 

by 

Knox Millsaps 

l 

Although most, if not all, of the results of this note are 

kno~n, this presentation seems to be~ omnibus for a few realiza~ 

tions of many different abstract spaces. 

Classical Hilbert space 7/t ~ was introduced by David Hilbert 

[( s)] who used the concept as an aid in formulating a remarkable 

g~n~ral theory of linear integral equB;tioz_is. . The next important 

basic result was the elegant treatmeAt. .by po~tulational methods due 

to von Neumann [(9), pp. 14-17; (10), pp. 64-66]. 

lµ this note by analyzing an example formulated by Tcyhonoff 
'· <. . ~ ' 

[{1s)], thl9 . spaces tJ,{ are defined, ~d some basic properties are 

proved. 

Th.e ,author ·would like to acknowledge the generous aid of 

Professor A. D. Michal. 

I. Defi~t,J.,q~,., CB:f -,a .Generalized Hilbert Space 

, , lh~r :f}P..,;~!t.:1£ « is defined as the class of . all points whose 

coordinates are given .by members of the set of ~l denumerably infinite 
.. . If c,t, £~ _: . • • : •• ·' ti 

sequences of real numbers such that the series formed by the ~ = power 
T J-1tS ~DaCf•. ~:-: 

of the absolute values of the elements of a sequence converges; 

addition of e,l,~ e, S1n?l-t~e class is defin~d by ad(ii,tion of respective 
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components and multiplication of elements by real numbers as the 

product of components and real numbers. This may be formulated sym­

bolically in terms of postulates as is given below. 

3 

At this point it is advisable to introduce three convenient definitions 

which will be used throughout this note. These definitions are 

(oc) 0 = {oJoJ-- ------~o, ----- } ; 

<f > X + y = [x, + 1:], (r:,,vJ c: 7[~ 

( r ) rllr == [ a, Xi } J ( a,J xi) e K 

II. Fundamental Properties 

Although many of them may appear to be trivial, all of the 

important theorems are explicitly stated for the sake of completeness. 

THEOREM I: 

THEOREM II: 

Jt"'- C 11,f 
If ot 6- f .; then 

The spaces d"( Cl are closed under the addition of elements. 

PROOF: The well knovm principles concerning the binomial series, 



rearrangement of the terms of an absolutely convergent series, and 

the results of Bromwich [(5), pp. 29-32] are sufficient to construct 

an elementary proof. 

The quasi-norm 

ing equation 

I/ r llp is defined in 1C A by the follow-

. 007 p 
I/XII? [ r; IX,1~ ( 5 ) 

THEOREM III: 

THEOREM IV: 

to llXH f 
I 

for 

The spaces Ji~ are linear spaces. 

The spaces 'JC\ 0 ~ oc ( oo) are complete with respect 

for O ~ ~ < 00 • 
! 

PROOF: The proof is identical with the verification of Postulate E 

in Theorem 1.15 of Stone [(7), pp. 15]. The inclusion of Theorem 

II is necessary to demonstrate the last step. 

THEOP.l!M V: A quasi-norm I\ XI\ f of 'J! rt is a Banach norm if 

and only if cX ~ i and f = :1/o<.. ·• 

PROOF: After Minkowski ~6), pp. 115-117] • it follows that if then 

for all Lex and L f 
[ [ ( (X'. + f 1 l\ ~ o:: IX'. ~r -f- [ [) ~ r- if and only if 

1l == 1. for o < S' .c::: 1 and ;z =- i/5' for S );. .1 . For the definition 

of a Banach norm the reader should see Banach {112), pp. 55]. The 
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verification of the first condition is obvious; the second follows 

from the above; the third condition holds if and only if o(,.:::: 3// 
The requirements for the second and third conditions to hold produce 

the theorem. 

COROLLARY: A Generalized Hilbert Space 1£°' is a Banach space if 

and only if 1 ~ex<'. 00 and f X f = //Xf 11/a.. 
THEORElA VI: The spaces 'JC« are separable with reppect to J{X //p, 

PROOF: The theorem follows from the fact that the class of all finite 

sequences of rational real numbers is denumerably infinite and every­

where dense in 'JC IX . If one · i_s given Y and C <X/3 > 0 there 
,- ---_ , 

where W f Ai, A,. --:,¾ 1 o, o, -- J, and A,- are members of the class 

of all rational numbers. 

COROLLARY: A space ltr1 ~ C( < (P) with I/XII = IJX 111/~ is 

homeomorphic with a compact set in 'Jt.~ 

THEROEM VII: For everyi\, 11.::1,i, -- ·- -·- , there exists a set of linear-

ly independent elements. 

PROOF: Xl\.2 { s: }-t. < i.,,J,, • • 1 are just such elements. 
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THEOREM VIII: Sufficient conditions for JC~ being locally non-

convex ~~th respect to 

f < ex 18 {: .1, • 

IIX.[[ f are (1) / >.1, O <'<f ~iand (2) 

PBDOF: By considering an example due to Tcyhonoff [(a), pp. 768-719], 

one arrives at the expression 

The theorem follows upon observing the intervals of convergence of 

the p-series of Bromwich [(3), p. 34]. 

III. Realizations of Generalized Hilbert Space 

The classical space of Hilbert is the space JC~; the abstract 

realizations of Hilbert space quoted by Stone [(7), pp. 23-32] are 

further examples; the spaces l f for f ~ 1 given by Banach [ ( 2) , 

p. 12] are identical with the spaces u f for r ~ j_ ; the space 
i. C categorized by Frechet [(4), p. 86] is the space J{, • It 

is to be noted that the spaces A"'f' for f ~ .1. of Ascoli [(1), 

pp. 63-66] are equivalent to the spaces J{ /° for f ~ .J. if 

IIX/1 = UYllyr. 

California Institute of Technology 
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