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CONDENSATION

The brief abstracts of the papers contained in this thesis are copied from the
Bulletin of the American Mathematical Societys

Abstract (48-1-96)

An nth order differential is defined for a function F(x) with arguments and
values in topological groups and increments in the central subgroup of the argument
space with a relativized topology and a generation postulate. The fundamental theow
rems on unicity, continmmity, linear combinations, and iterative functions are then
proved.

Abstract (48w5-158)

After an abstract calculus of finite differences is defined, functional defini-
tions of a monomial and polynomial for elements of the group as increments are given.
The theorem on the homogeneity of a polynomial is proved for central and arbitrary
differences; for central differences the difference being a function of the increment
alone implies the difference is a monomial; the independence of the central diffe~
rence of polynomials and the unique decomposition for the abelian valued case are
made to depend on the product of a Vandermonde determinant and a finite product of
binomial coefficients. The theory is essentially a generalization of the work of
Van der Lijn on abstract polynomials in sbelian groups.

Abstract (50-1-48)

By analyzing an example formulated by A. Tychonoff, the spaces ]gy’ 05 g<o,
are defined in a manner analogous to that for classical Hilbert space; some basic
properties such as linearity, necessary and sufficient conditions for normability,
separability, and sufficient conditions for local convexness are proved.



Introcuction

The doctoral dissertstion which is submitted here in partial
fulfillment of the requiremente for the degree of doctor of philosophy
is & collection of the suthor's published peapers on the field of
abstract space theory,

The first and second articles, "Differentiel Calculus in
Topologicel Groups,™ have been reprinted from the Reviste de Cienciss,
vol. 44 (1942), p. 485 snd vol. 45 (1948), p. 45. These papers repre-
sent an extension to topological groups of a topologicelly inveriant
theory of differentials,

The third article, "Abstract Polynomizls in Non-Abelian
Groups," has been reprinted from the "Bulletin of the American Mathe-
metical Society," vol. 49 (194%), p. 258. In this highly condensed
note the modern abstract approach is used in analyzing the theory of
polynomials in non-abelian groups.

The fourth paper, "A Note on Generalized Hilbert Space," is
to be published or has been published in Revista Mathematicas y Fisica
Teorice, vol. 5 (1944). This note is & unificstion by mesns of the
concept of a2 generalized Hilbert space of many well known, but diverse,
results.

Certein other results on powers of matrices, characterization

of abstrsct exponentisl functions, end an abstraction of the Weierstrass



ii

approximation theorem have not been included as they are not, as yet,

in & form acceptable for publication.



DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS

by Kwnox MirLsaps

Introduction: Many writers, notably Fréchet® and Michal @,
have studied various abstract calculi. This note is a general-
ization to topological groups of a pure topologico—algebraic theo-
ry of differentiation. In § 1, the fundaméntal definitions of
topological group differentials are stated. In § 2, ‘the fundamental
theorems on unicity, continuity of differentiable functions, dif-
ferentiability of iterative functions, and the'topological invariance
of ‘the definitions are proved.' In §3; the specializations of the
argument and value spaces are explicitly discussed. -

The author gratefully acknowledges the assistance of Dr. A.
D. Michal who gave his time in offering thoughtful suggestions
and pertinent eriticisms. : . ’

1. Let f(x) denote a function on U, , where Uy, is a neigh-
borhood ® of x,, contained in TG, a topological group™® with
a central subgroup® C; with a generation postulate of the type
used by Michal ® and a relativized topology, to T, a topological
group with a central subgroup C,. All neighborhoods are neigh-
borhoods of the unit element with respect to the relativized topo-



logy unless otherwise specified. The addition of an A to the
notation for a topological group will imply that the group is
abelian; the usual group notations will be used ™.

DEeriniTioN oF First OrDER K; DIFFERENTIAL

The function f(x) will be said to be first order K, differ—
entiable at x = %o, and fi(x,,; dx) will be.called a first order Ki
differential of f(x) at x =xo if

(a) filxq; 0%) 7135 ,li,,near ® for all §x¢eCyj

b) there emst fbmctwns € (%, %y y %2) with properiies which
.are obvious generalizations * of: the 6 (g, %3y, %32) of
Mzchal @ 5 Letpte s alst

(¢) there exists a meighborhvod >N such that (1) the values
of €(xg, 0x; 8x) are commutwtwefor Sxe N (2) filxo; 6x)
is a first order approximation to-the increment f(x46x)f (% o)
in the sense that

1o ‘{ v} '1 15 8
(A) flradn) F108,) £ (030) =TI 1 60, 0%,0%) ' TS el(xo,0%,8%)€ C
for dxeN . A

“y - =

DEFINITION OF FIRST ORDEI{ Kz DIFFERENTIAL

Denote the fwst order K dszerentza» of f(%) b;v ﬁ(xo, 3”) The
only difference between K, and K, differentials is the suésn‘tutwn,
of the following equation for (A).- e

— 486 —



DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS

(B) f1(x,) f(xo8x) folxo;0x) =IIE | ei(%o,0%,0%) and i (%, ,0%,02)eCy
for SxeNUO o

2

Tueorem I:  If a first order Ky (or K,) differential of f(x) exists
at x=x,, thensit gs unigue for all 6xeCy .11

Proor: Assume two distinct differentials; vM(xo; 2) # N(xo;2) for
2eCy. From (A) or (B).it follows that

N(xo;0%) M (x0;0x) = =Tt el (x,0%,0%) -1 €a(%,,0%,0%) for dxeS .

It is not hard to show that N(xo,z)M Yxo32) = IIntgen' (%0,0%,2) Hn~

-€a(%0,0%,2) where 6xeQ, z=0x", ‘and zeCy. From the uniformity
of the epsilon functions N(xo;z) M-¥(x0i8) =1 for 2eP. Applying
the generation postulate again, the above equation becomes M (%,;2)=

N(x,o32) for zecl. Contradiction.
b

Taeorem II: If flx) is K; (or Ky): dszeremzable at Xy=%o, then
flx) s continuous(t? at x=x, .

Let g(y) be defined on f(Ux )CTGg to T Iet \I/(x)- 'r(f(x))

y ba

Tueorem 111: If f(x) and g(y) are K; (or' Kz) dszeieniiable
at x=x%, and y=y,=f(x0) respectwely, then ¥(x) “is Ky (or Ky)
dszerentzable at X=%o .

PR‘OOF' Tt can be '?shovvn that for 6% W,g[f(xo 0%)] ¢ f(xs)]
[f(xo) fitro; 0] = Hibsen [f(e), Thes e Gro, B, 09) (e 89,
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T, e (Ko, 8%, %) fi(xo; %)) g1 [ Fxe) s TE_, e, %, %)) . If the

following definitions are made
21 [f(xo)’ H%=1 ek(xnixlaxZ) = Hi=1 ef( (xo) X1, xZ)

H?=1€l[f(xo), Hﬁ_lfk'(xo;xl,xi)fi(xo;%),' o _, fk(xc,x1;xé)fi‘1‘o?x2)]:—:'

'Hi‘{*"f’gﬁv'e (o, 21, 24); Tthen ¥ (x5 9x) Wt (xo) ¥, (xo, ox) = TIEEEH

¢ (%0, 0%, 8x) for sxeM. One'can sce that the ‘¢ (x‘o,xl,xz') are
epsilon functxons, and condition ()~ (2) is satisfied. The proof

is similar for K, dlffexentnls

Turorem IV: The K “(of . K,)' differentiability of ‘a function f(x)
“on TGy to TGy is a K, ‘dnd Kz dszerentzal topological proper-
1y 1),

3. Consider functions defined on a TAG to a T. The special-
‘jzatiofs necessary in'the definiticiis of 'Ky and K, differentiabili-
ties follow immediately. The kinds of differentials will be exhaust-
‘ively determined by -the oFder of 'the faétors in equations analog-
ous to (A) and (B). Denote the differentiabilities of f(x) on
TAG to T by Gy and G;, Where the values of ‘the -Subscripts
imply the samé orderas in equations (A) ' and ~(B) “respectively. (¥

If the assumption is made that the elements of the value
‘spdce’ dre Commutative ‘and 'the elénieits ‘of ‘the “argdmert space
not nccessamly 0, then the changes in "K; and K, dlfferenm-abx-
lities are evident. Denote the one kind of differentiability by L. “5’
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DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS .

When the argument and value space are commutative, K,
and K; differentiabilities reduce to M, differentiability. 1)

Tusorem'V: If f(x) and g(y) are dszerentzable as- mdicated at
the left of the table at x=xo and at the top of the tablé ab ?.? g \ - f(x‘,)
respectively, then ¥(x) ds differentiable as wndicaled ip, the table ai
X = Xo o .

M, | .L Gy G, K, K,
N'[:’ M, T an | ‘Gi , (‘;"2““’! AT N
L L N Ky PRy N
G, N My | N} N© LG G,
G Il N | M | N | N | 6 | 6
K | v~ | L |8 |~ | & |k
K, N L. N N | K |i Ko

Carirornia INsTITUTE of TECHNOLOGY.

o i) =



. Footnotes

(1) M. Frechet, ‘“l.a Notion de Différentielle dans L’Analyse
Générale”’, Annales Scientifiques de L’ Ecole Normale; Supérieure,
vol. 42 (1925), pp. 293-323.

(2) A D. lMi"ch.aI,l “General Differential Geometries and Related
Topics”, Bull. Amer. Math. Soc., vol. 45 (1939), pp. 529-563.

(3) Definition 13, L. Pontrjagin, Topological Groups, Princeton
(1939). ; ‘ '

(4) Definition 22, Pontrjagin, loc. cif.

(5) Definition 23, Pontrjagin, loc. cit.

(6) A.D. Michal, “First Otdcl Differentials of Functions with

Arguments and Values in T.c}poloéicafl Groups”, Revista de Ciencias,
(in press). S ‘

(7) Hans Zassenhaus, Lehrbuch der Gruppentheorie, Teubner (1937).
(8 S. Bahach, Tl;zeori'e’f de.{ Operations Lineaires; Warsaw (1932),
pp- 23. In this definition the substitution of multiplicative distribu-

tivity for additivity is the obvious abstraction.

9) A.D. Michal, loc. cit. (6), Section 1.

(10) Let A be the totality of all #n-rowed square matrices of the
form a=lla}ll whose elements are real numbers and whose de-
terminants are different from zero. Define « 8=~ where alb{==cl.
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DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS

Define Dm ,fo_r TR o o be the set of all matrices of e,
form cz+I:|la3+6‘li where I is the unit matrix, and « isinthe
set of all matrices whose elements do not exceed . .in absolote
value. A unique topologization exists for which Up form &tcoms
plete system ;of neighborhoods of the identity of -the aB§tidce
group A.

Let f(x)=4«" where x =xl; the reader caun easily verify
that fi(%e3 0x) =fa(%s'5 0x) ——.(1535)’ . Many other differentiable func.:
tions of matrices could be given—see J.H. M. Wedderburn, Lectures-
on Matrices, Volume XVEH, Colloquium Publications of "Amer,,
Math. Soe.

(11) The generation postulate is tqeeded'for tli_;rpméf of this and
only this theorem. The postulate is redundant for linear topolo=
gical spaces.

(12) A function f{x) on Ty to Tz will be called continuous at
x=%; if given V of f(x), there exists U of %o such that
SU)yc V. As an alternative duﬁmtlon consmler the following: if
given V of 1, there exists U of 1 such that .f(xoy) Flx) eV
for yeU. Consider also the definitions that follow by changing
the order of the value and argument factors. The equivalences
of all of definitions are immediate consequences of a paper by
F. Leja, “Sur la Notion du Groupe Abstrait Topologique”, Fus-
damenta Mathematicae, vol. 29 (1927), pp. 37-45.

(13) A.D. Michal, loc. cit. (6), Section 2.
(14) Let TAG be the ad ditive group of real numbers; let T

be the group of 2X2 non-singular matrices with real elements
under row by column multiplication. Introduce the natural to
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pologies; define f(t) =1l ai (1)Il, where aj (2) are real functions
of ‘4 tealovariable. Consider ‘the set of T for which ay = ap,
Ay = Ghgy @ii(tFt) =an(h) ain(ts) —azlty) aa(ty) and an(titi)=
= a3 (1) an(ts) ~axn(t) a12(tz2). A solution of the above equationsis.
the matrice representation of the one real parameter Euclidean ro-
tations: It follows that fg, (fo; 8) = fg,(to382) = I ai; (3t} ]| . for all
to,ﬁtéTAG, where fe, (o5 0t) and fy, (to;vét) denote the G,
and G; differentials of f(2). '

(15) As an exariple, considet TG ..to be the space of non—zero
quaternions — a==d;t!; whefe aje R.and (e})2=Hei=—1 for
i=1,2;,3,4 — with gtiatérnion multiplication as the group operation;
take TA to be the space of positive numbers with the group
operation as ordinary multiplication. Introduce the natural to-
pologies =—‘cf: Exafiples 6,726, and 37 in Pontrjagin, loc. cit. If
fd) =Zta)?, ther fulds;ddy=Z(8d;)?, where f.(do;8d) denotes
the L differential of f(d).

(16) A.D. Michal, loc. cit. (6), Section 1;

(17) N implies that the iterative ffunc’tiop is not defined.
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DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS I1.

by Knox MiLLsars

Introduction: In a previous paper first order differentials of
functions with arguments and values in topological groups were
defined and studied.® An extension to n—th order differentials
Is the purpose of this paper. In § 4, definitions for n-th order
K; and K, differentials are stated; in § 5, the theorems on the
unicity of n-th order K; and K, differentials and the differentia-
bility of iterative functions with an explicit formulation of the
differentials of the composite function in terms of the differentials
of the composing functions are proved. It should be noted that
the results are applicable to n-th order Fréchet and Michal dif-
ferentials.® The notions of K; and K, differentiabilities are
purely topologico-algebraic.

It is a pleasure to acknowledge the help of Dr. A. D.
Michal.

4. The notations introduced in the preceding part of the deve-
lopment are preserved; in addition, the value groups are restric-
ted to contain no elements of finite order. It is found convenient
to introduce the following notations:

e B



(a) wl!l=n! (n-1)!.... 24 Lr,

(b) [#] E(n)==x",

n!
() Pm =
CgeesOn ay! ... ag! (1) (n/)% 3)
d zo=x for i=12.... .

and (e) [CErCZEm] E(p) denotes the product of p (p is
obviously bounded) distinct factors in which the Kj(or K;) dif-
ferentials of order # and wm occur o, and am times respecti-
vely as the arguments in the K; (or Kj) differential of order

oy + o .

DzrinitioNn or N-th Orper K; DIFFERENTIAL.
A function fi(Xo;81%; . eene. ;0a%) with arguments SxeCy and

values in Ty will be called an n-th order XKy differential of f(x)
at % = xo with tncrements 81 %, .cuee s 0n% of '

(1) f1®o; 81 %seewens 8qx) for g=12 0.y n—1 existal x=%,;

(2)  fi(to;:81%5men38a%) 35 a completely symmetric i~ uniform
multilinear funciion in &x; 4

(3)  elxo, %; %1\erenns ,%a) on Ty to C, such that

(A) €(®o, 1, %1,00mnen , %) =1 for xeTy,



DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS II,

(D) €(or £, Y prorerns 2% = [elor %, %11 B} E (W B for

kieP ®, xeKcCy, and %e¢T;,
(c) €(o, %, %1yees ¥n) EA for x€B(A) and % eNj;

(49)  fi(xo; 8y % ;u; 60 %) is an n—th order approximation to
f(%o 0%) f1(xo) 1n the sense that

nl!
(A7) [f(xo8%) f1(xo)] E(nll) T, [ £ (5; Sct) %5005 dy#] E (—I-I-)”

1
= €(To, 8(1) %, +ery S(asn) X) for 6x2eQ.

DeriniTion oF N-tH OrRDER K; DIFFERENTIAL.
Denote the n—th order K, differential of f(%) by fa(%o;81%;...; 82%).

Let condition (3) and the analogues: of (1) and (2) continue to
hold; substitute the following condition for (4).

(4)  fa (®o; 84%;000ses s 8a%) is an m-=th order a;bprommatzon to
F(xo) f(%00%) 1in the sense that

2!l

nll
(B)  [f*(x0) f(x08%)] E (/NI [f3(%05 S (135 5(:)‘”)]E( )

€ (%o, 0(1) Xyeesy O(n1) %) for 6xeS .

5.

TreorEM VI: If an n-th order Ky (or K;) dtfferenhal of f(x)
exists at x=x,, then it is unique for &xeCy .

— 47 —



Proof: For m=1 the theorem has been proved.® It is assumed
that the differentials of order 1,......, #~1 are unique; in ad-
dition, it is assumed that two differentials of the n-th order
M(x,; 61%;...; 0n%) # N(%o; 61%;...; 3a%) for 8zeCy. From (A)
or (B/). it can'be. deduced by algebraic manipulation that

M (%05 82) %;ove5 8tn) %) N1 (%o; 8(1)%; .5 Sn)%) = &6 (X0,0(1) X5eevy D) %)+

. ex(®o, 0(1) %yeevs O(ns1) X) for 6xeN .

From (2), (3)—(a) (b) (c), and the repeated use of the genera-
tion postulate for Cy, one may-prove that N(x,; dq) %,...;0@%) =
M (%o; 8) %505 %) for 6xe€Cy. From (2) and the assump-
tion that the value group contains no elements of finite order,. it
has been shown that N (x,; 8;%;...;0,%) = M (%o; 8y %;...; 62 %) for
dx€.Cy. .M The induction: is: complete.

Tueorem VII: If f(x) and g(y) possess Ky (or Ky) differen-
trals of order m at x ==x, and y=7y,= f(x,) respectively, then
¥ (x) = g(f(x)) possesses an n—th order Ky (or K;) differen-
tial at x = %,, ond

W (o5 81%;.; 8a%) = M [C ... Co’] B{P oo »

where the product is taken over all mom — megative solutions of
I tea=mn, and C) denotes the absence of the q—th order K

(or Kj) differential of f(x) .

Proof: From (A’) and Theorem II the following equation may
be derived. : ‘ -

- A s



DIFFERENTIAL CALCULUS IN TOPOLOGICAL GROUPS

[e(fer,0m) g7 (fewad)] EGall) TELy [ (Fetod (fk0 05 7 o)) 1) 5oesns

nll .
v (Fl 8%) £ (%)) 0] E( ) = [fl%e), (F(%ed%) F*(%e))et) 5mne

ar
vy (f(2to 8%) f1(%o))meny] for dxeZ.

It is convenient to consider a representative factor whea @« >3
and to introduce the notation f(x,8%) f (%) = 1

nll
[ (Ferod; Taoes Lwa)] E( ) =
(n=3)!

nl!
-1
g o); |1 411; Teysees Taeg)) 1 E =
Ta: (fro); [Tw] E@1); 1 Tw)] (4‘1‘/(%_3)‘/!)

nl!

-1 . 17y - N, Lgysoes Linegy) JB —e | =
[gl (f(xo)7[1(l)]E(3 ):II(Z)]E(Z )7 1(3)1 ¢ 3))] (3!! 2!!(%._3)!!)

g (fx)s [Ta] E @) [lw] EQY); [H@] E@); T seein

nll
(S I(n-3))] E( M)
(2118 (s-3)J!

Performing this process for the K differentials of order 1,.,#®),
it is intuitively seen that

e 49



pi nll
[¥(xodx) Ut (xo)] E(n!/) T, [C...CH]E <i_°‘_._) -
il

= &y (%o, 6¢1)%yrvvy B(ast) X )

for sxeH, where eg (¥o,%,%1,...,%4) is the epsilon function de-
fined as the product of €g(%0,%,%1,...,%,) and the difference of

the factors in the first and last equations of the proof.

The proof for K, differentials is entirely equivalent. (&

Footnotes

(I) K. Millsaps, “Differential Calculus in Topological Groups”,
Revista de Ciencias, Afio XLIV (Diciembre, 1942) N.° 442.

(2) A.D. Michal, “Higher Order Differentials of Functions with
Arguments and Values in Topological Abelian Groups”, Re-
wsta de Ciencias, vol. 42 (1942), pp. 170-176.

(3) For a discussion of this function see H.S. Wall, “On the
N-th Derivative of F(x)” Bull. Amer. Math. Soc., vol. 44
(1938), pp. 395-398.

(4) A.D. Michal, loc. cit., pp. 158-159.

(5) P denotes the set of positive integers.
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(6) K. Millsaps, loc. cit., Theorem L.
(7) A.D. Michal, loc. cit., Lemma 1.1.

(8) If u,7¢eP and #>j, then
-1 ) i1
(a) Hieg (=)t > iy (41—
it is readily seen that
i-1 > 0n-§
(b) IIi=g G+ 1= >k kayll, where n> ], S li=mn,

and 0< kiéj-(-l for by reductio ad absurdum one gets

-
(¢) max [Ty &/] = G+
Changing the notation, one has

i1 nll
(d) Mg (n-4)™ = .
(wm=gl

Combining (a), (b), (c), and (d), the desired result that A

o 5] =



9)

nlf

n-j a-)
Py > =1 k!, where n>j, Zieyki=n, and
n-NI =

(€)

06<k<j+ 1, follows.

As an example of a second order K; and K, differentiable
funetion whose second orden K; and K, differentials differ
from unity, one may consider the matric function logx. For
the definition of logx see J. H. M. Wedderburn, Lectures
on Matrices, Volume XVII, Collogquium Publications Amer.
Math. Soc., pp. 122-123.

o 3 e



ABSTRACT POLYNOMIALS IN NON-ABELIAN GROUPS
KNOX MILLSAPS

Introduction. The aim of this note is to give some generalizations
for .groups of the theories of abstract polynomials as developed by
Fréchet, Gateaux, Martin, Mazur, Michal, Orlicz and more recently,
Van der Lijn.! Although the theories are equivalent for functions with
arguments and values in abelian groups,? this equivalence is not the
case when the argument and value groups are.non-abelian.?

In §1, a calculus of finite differences for functions with arguments
and values in non-abelian groups which contain no elements of finite
order is defined, and the fundamental definitions of polynomials and
monomials are stated. In §2, the homogeneity in the increment of the
n-difference of a polynomial of degree # is proved, and the theorem on
unique pseudo-decomposition is proved after giving some preliminary
theorems on the structure of differences of arbitrary functions and
polynomials. In §3, a brief discussion of the extensions to non-
abelian groups as value spaces is given.

I should like to thank Professor A. D. Michal for his helpful sug-
gestions and constructive criticisms during the preparation of this
note.

1. Definitions. For the purposes of polynomial theory the value
groups are restricted to contain no elements of finite order.

To construct the calculus of finite differences for functions with
arguments and values in non-abelian groups, we define

flxo)fHx) f ay=1 and B; =1,

_ _ Va7 (#) if ar=1 and fi=2,
Al Bilf(2) = fU2)f(xw) i o1 =2 and By =1,
fUx)f(wx) if or=2 and By =2,

Presented to the Society, April 11, 1942; received by the editors April 21, 1942.

1 References to these theories will be found in the bibliography. This list will be
referred to by numbers in brackets.

2 The equivalence of some of these definitions was proved by Martin in his Cali-
fornia Institute of Technology thesis, 1932, and of the remaining definitions by Van
der Lijn. A summary has been given by Van der Lijn [1, pp. 78-80].

3 If the abstraction of additivity is multiplicative distributivity, then the general-
izations of the definitions of Mazur and Orlicz [1, p. 63] and Van der Lijn, [1, pp. 60~
61] are not equivalent; this is easily seen by considering f(x) =x*.

253



254 KNOX MILLSAPS [April

and inductively

n

wA[aly R o TR ﬁn]f(x)
EmA[an;.Bn] n-wIA [051, ey g Py e ’6ﬂ—1]f(x)'

DEFINITION OF A MONOMIAL. 4 [al, s, By ot ,Bn] monomialt
s a funciton f(x) which satisfies for all x and w the following functional
equation

n

wA[aly 2 B g By 9 R 8 7Ban(x) = fn!(w>'

The obviously unique value of # is termed the degree of the mono-
mial.

DEFINITION OF A POLYNOMIAL. 4 Sfunction f(x) which satisfies the
Sfollowing functional equation for all x and w

n+¢:A[alv trty Opgly Blr v ’B”'i'l]f(x) =
will be called a oy, + - +, ny1; By, * * + , Bus1] polynomials

The least value of # for which the above equation holds will be
termed the degree of the polynomial.

The binomial coefficients are denoted in the usual manner; I’k,, is
defined by

) !
TSy, L o MO
arlas! - - - appr!
where D o, =n, > ¥i(g—1)a,=1, i#nk, and i#0. An arbitrary
element of the central subgroup will be denoted by &. To simplify
notation, the dropping of unnecessary indices implies that the value
of a product of factors is independent of the order of the particular
factors controlled by the dropped indices.

The next equation is a- generalization of an 1dent1ty due to Mar-

chaud®
nk

HALS - - Ba]f) = 20 Al - -+ Balf [Pl

=0

¢ The inner automorphisms of a group are interesting examples of a [1; 2] mono-
mial; similarly, the canonical transformations of quantum mechanics.

5 If the elements of a group are taken to be the # X# matrices whose elements are
in a commutative field and whose determinants do not vanish, and if the group opera-
tion is defined as row by column multiplication, then f[”x;” ] El]akxmxnb ” is a
[1, 1; 2, 1] polynomial.

¢ Marchaud [1, p. 368].



1943 ABSTRACT POLYNOMIALS 255

where j=1, - - -, I';, and P;; denotes a particular permutation of
w,w, -+ ,w (4 times) and x.

2. Fundamental theorems. Let A(x) denote a function with argu-
ments in a non-abelian group and values in an abelian group. The
theorems of Van der Lijn for functions with arguments and values
in abelian groups can be extended with a few immediate changes to
hold for differences of the type 3AA (x). This section is devoted to
abstractions for differences of the kind ?A[By, - - -, B )4 (x), where w
is an arbitrary element.

TuEOREM L. If A(x) isa [By, - * + , Bus1] polynomial of degree n, and
if k is an integer, then ’
sz[ﬁl, s 167»]-‘4("5) = kn :A[Blr R Bn]A(x)

ProoF. For =0 or 1, the theorem is trivial. For 2>1, we hypo-
thetically have

:A[ﬁly L ’.Bn]A(xy wi) - :A[ﬁly LA an]A(xs wi—l) = 0.

By a few manipulations and Marchaud’s identity we get

n(k—1)

FA[By, - BalA(®) = X TirmoAlBy, -, Ba]4(%)
s =0
= kﬂ ::A[Bh £ 16"]A(x)'
For k<0, we evidently have
w:A[ Ty & % ,B,JA(OC) = (w_l)_?‘A[ Iy ® =2, Bn]A(x)
= (—k)" By, - -, A

= () (=R"aalsy, - -+, Ba]A()
=& oABy, - -, Ba)A(w).
THEOREM I1. If 2A[By, + + -, Ba]A (%) = g(w), where g(w) is independ-
ent of x, then g(w) is a [By, - - -, Br] monomial of degree n in w.

TuEOREM II1. If A(x) is a [By, * + *, Bay1] polynomial of degree n,
then 2A[By, « -+, Bn]A (x) is independent of x.

Proor. If #-42 elements of the argument group are denoted by «,
where

xi+1=H(xiy£)1 i=0,'--,n+1,
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then by steps roughly analogous to the usual proof of similar theo-
rems we can derive

n nt+l o

Z ch+1,icn,p(_) i pkp wA[ Iy " ° ° BH]A(xt) = 0.

p=0 i=0
In the last equation we see that ) »_,C, ,k? is a simple polynomial.
From this observation we deduce’

n+1
n—p7n

Z (_)icn+1.ﬂ wA[ﬁl’ ERE vﬂn]A(xt) = 0, p=0---,mn
=0

If we consider one difference as given and the remaining z+1 differ-
ences as unknown, then the unique solutions are .

:A[Bly tt yﬂn]A(xJ = :A[ Ly 4 0 ,.Bn]A(xO); 1= 1: M (2 + 1!

for the determinant of the system of equations is given by

n+l
(=) T Cair,sV # 0
=1
where Vis a Vandermonde determinant and 8(n) =1,if n=1, 2 mod 4;
6(n)=2,if n=0, 3 mod 4.

THEOREM IV. If A(x) is a [By, -+, Bas1] polynomial of degree n,
and if po=[[}Z4(n—1)!, then we have the unique pseudo-decomposition

ped(2) = 3 Mi(a),

=0
where M(x) are [By, - - -, B:] monomials of degree i.

3. Further discussion. With the generalized definition of a poly-
nomial an extension of Theorem I for functions with arguments and
values in non-abelian groups can be made. The trivial converse of
Theorem III can be proved in an obvious manner. The non-abelian
analogue of Theorem IV does not hold, for counterexamples can be
exhibited.?

In conclusion, it is remarked that the difficulty with the non-
abelian valued case is an inability to solve explicitly a system of group
equations.

71t can be shown that if a simple polynomial Z:.'Koa,-xi of degree n vanishes for
n-+1 distinct values of x, then the coefficients vanish.

8 With the group defined in (5), a trivial, but sufficient, example is Hx;” = ”x;” ”61‘“

=llail 1l
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A Note on Generalized Hilbert Space

by

Knox Millsaps

Although most, if not all, of the results of this note are
known, this presentation seems to be an omnibus for a few realiza-
tions of many different abstract spaces.

Classical Hilbert space gale was introduced by David Hilbert
{Ksi] who used the concept as an aid in formulating a remarkable
general theory of linear integrel equations. The next important
basic result was the elegant treatment by postulational methods due
to von Neumann [(9), pp. 14-17; (10), pp. 64—6é].

In this note by analyzing an exemple formulated by Tcyhonoff
{(18)] , the spaces % * are defined, and some basic properties are
proved.

The author would like to acknowledge the generous aid of

Professor A, D, Michsal.

I. Definition of a Generalized Hilbert Space

The space Qﬂ?“ is defined as the class of all points whose
coordinates are given by members of the set of all denumersbly infinite
sequences of fééifnﬁmbérs such that the series formed by thetxgépower
of the abéolufeﬁv;ldé; of the elements of a sequence converges;

addition of elements of the class is defined by addition of respective



components and multiplication of elements by real numbers as the
product of components and real numbers. This mey be formulsted sym-

bolically in terms of postulates as is given below.

H=l X >
(1) XE { %1.75:.,"”“"; Xn»"”"'};: {%"}) (’Kt')d 7Lj7

i o0
% .
() £ , [X;] im , 0Se< @,
(=1

At this point it is advisable to introduce three convenient definitions

which will be used throughout this note. These definitions are

(oC) O {0 R e };
(> X+Y = {x Yy £, Gy & U
(&) a,IE{a,m?,m,mcﬁ

II. Fundamentel Properties
Although many of them may appear to be triviel, all of the

importent theorems are explicitly stated for the sake of completeness.

=4
THEOREM I: If oééP ; then =

«
THEOREM II: The spaces gﬂf are closed under the addition of elements.

PROOF: The well known principles concerning the binomial series,



rearrangement of the terms of an absolutely convergent series, and
the results of Bromwich [( 3), pPp. 29-52] are sufficient to construct
an elementary proof.

The quasi-norm ”X“ /3 is defined in }gd by the follow-

ing equation

| o, B
(8) I(Xl\ﬁf[élxii“] for o <o,

x
THEOREM III: The spaces % are linear spaces.

«
THEOREM IV: The spaces % (0 <o ¢ ) are complete with respect

to ”Xii(a for 05}(?:<cx>.

!
PROOF: The proof is identical with the verificstion of Postulate E
in Theorem 1.15 of Stone [ (7), pp- ‘15]. The inclusion of Theorem

II is necessary to demonstrate the last step.

e
THEOREM V: A quasi-norm ‘\K“ ’g of is a Banach norm if

4/ !
and only if « > 1 and (5-7 /e -

PROOF: After Minkowski Es), Pp- 115-117] it follows that if then

for a1l Lo @dZ:P |
[Z(OC 1 ?)?P < [ZOC?]N + [ZP?]Q if and only if

N =1 for o<g<Land f=%pfor § > 4 . For the definition

of a Banach norm the resder should see Banach [_—(12), PP. 55]. The



verification of the first condition is obvious; the second follows
from the above; the third condition holds if and only if & = 1//
The requirements for the second and third conditions to hold prbduce

the theorenm.

o
COROLLARY: A Generslized Hilbert Space % is a Bansgch space if
end only if 1 o £ 9° and 'X' = “X”i .
< /aL

THEOREM VI: The spaces % are separable with respect to /[ x ” ﬂ.

PROOF: The theorem follows from the fact that the class of all finite

sequences of rational resl numbers is denumerably infinite and every-

x
where dense in % . If oneis glven z and € /3> O there

“X @ | £1X ~ 1] +Z;il)<¢i% Sl

where &D {/lt, Ay 9, 0,0, } , end _42,; are members of the class

of all rational numbers.

COROLLARY: A space %a(_zq(«xo) with ”X'f = HX“% is

homeomorphic with a compact set in JZ .

THEROEM VII: For every?, n=1,2,--—-— , there exists a set of linear-

ly independent elements.

PROQF': X }LE { Sh } -ﬂ =1_,,'1,J-~-~- -~ -, are just such elements.
J
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THEOREM VIII: OSufficient conditions for }g being locally non-
convex with respect to IIX“P are (1) ﬂ>1, o <Wﬁ$ land (2)
P<dﬁéi. |

PROOF: By considering en example due to Tcyhonoff [-(8) s DPDs 768-719:[,
one arrives at the expression

a

' P o® —afl.zQ
e [Ezi“/’ [jzi“'jl':ﬁ'] |

(=1
The theorem follows upon observing the intervals of convergence of

the p-series of Bromwich [(3), p. 54].

III. Realizations of Generalized Hilbert Space

The classical space of Hilbert is the space J{ Xl; the abstract
realizations of Hilbert space quoted by Stone [(7), PP 25—52] are
further examples; the spaces Z 1 for lsa 1 given by Banach [(2),
P. 12] are identical with the spaces % F for r > 1. ; the space
D categorized by Frechet [(4:), p. 86] is the space %j: It
is to be noted that the spaces /V/o for P> 1 of Ascoli [(l),

pp. 65-66 ] are equivalent to the spaces ]/ P for Ioa 1 if

IX1 =Xl

California Institute of Technology
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