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ABSTRACT

Lean turbulent premixed hydrogen/air flames have substantially increased flame
speeds, a behaviour which is attributed to differential diffusion effects. In this
thesis, the relationships between turbulence, chemistry, and modelling are studied
through direct numerical simulation (DNS) and large eddy simulation (LES).

The effect of turbulence on lean hydrogen combustion is studied through DNS
using detailed chemistry and detailed transport. Simulations are conducted at six
Karlovitz numbers and four integral length scales. A general expression for the
burning efficiency is proposed which depends on the conditional mean chemical
source term and gradient of a progress variable. At a fixed Karlovitz number, the
normalized turbulent flame speed and area both increase almost linearly with the
integral length scale ratio. The effect on the mean source term profile is minimal,
indicating that the increase in flame speed can solely be attributed to the increase
in flame area. At a fixed integral length scale, both the flame speed and area first
increase with Karlovitz number before decreasing. Neglecting Soret diffusion is
shown to reduce the flame speed, area, and burning efficiency. At higher Karlovitz
numbers, the diffusivity is enhanced due to penetration of turbulence into the reaction
zone, significantly dampening differential diffusion effects.

The structure of lean hydrogen flames, namely the species mass fraction dependence
on the local temperature, differs significantly from that of unity Lewis number fuels
due to thermodiffusive instabilities. When subjected to turbulence, the conditional
mean species mass fraction profiles are observed to transition from the laminar
mixture-averaged flamelet solution to the unity Lewis number flamelet solution. We
assess the impact of Soret diffusion and integral length scales on an effective Lewis
number model. The results show that the turbulent flame structure can be mapped
onto laminar flamelets via the use of effective Lewis numbers, which are expressed
by an a priori Karlovitz number model. Although the flame structure is altered by
Soret diffusion, there is still strong agreement with previously derived Karlovitz
number models for effective Lewis numbers. To map the turbulent flames onto
laminar flames with effective Lewis numbers, the relative impact of Soret diffusion
needs to be proportionally reduced.

To assess the LES modelling of lean hydrogen flames, we simulate a low-swirl
burner, an alternative means of clean energy generation. The LES modelling of
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these flows remains challenging because the transition of small-scale instabilities
into large-scale turbulent structures cannot be modelled by conventional strategies.
Traditional one-equation tabulated chemistry formulations require only a progress
variable, and cannot capture differential diffusion and curvature effects. In this work,
we study the effects of tabulating different conditional mean source terms. It is shown
that tabulating the appropriate conditional mean source term leads to improvements
in the flow field prediction, however, key features such as the main recirculation
region are not reproduced. Then, a two-equation tabulated chemistry model which
accounts for differential diffusion and curvature effects is tested. This model provides
the best agreement with experimental results. The work is a first effort in evaluating
the performance of the two-equation model in the LES framework.
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C h a p t e r 1

INTRODUCTION

1.1 Background and motivation
Despite the rapid adoption of renewable energy sources and higher efficiency equip-
ment, combustion is expected to retain a significant role in U.S. energy sources
through 2050 [1]. Current projections estimate that coal use will decrease drastically
while natural gas use remains steady, driven primarily by needs in the industrial and
electric power sectors. By 2030, carbon dioxide emissions in the U.S. are expected
to fall to 25%-38% below 2005 levels [1], which does not meet the Paris Agreement
target of 50%-52% below 2005 levels [2]. Furthermore, the global energy mix in
2050 is projected to consist of 70% fossil fuels with a continual increase of carbon
dioxide emissions [3]. Besides carbon dioxide emissions, fossil fuel combustion
produces pollutants such as sulfur dioxide, nitrogen oxides (NOx), soot, unburnt
fuels, fine particulate matter, and ozone, which have serious detrimental effects on
human health [4, 5]. To minimize climate change and public health hazards, it is
necessary to develop combustion devices which minimize these negative effects.

Hydrogen combustion has emerged as a promising technology with the potential to
address the above challenges since it does not produce carbon emissions or soot.
Another benefit is that, in principle, hydrogen can also be produced sustainably
through renewable energy powered electrolysis. Hydrogen is also promising for
its high specific energy density. For use in combustion devices, hydrogen can
either be added to existing systems such as internal combustion engines, premixed
combustors, and existing natural gas networks [6, 7, 8, 9, 10], or used as a standalone
fuel [11, 12]. When hydrogen is added to fuel blends in limited quantities, the
overall combustion dynamics are unchanged while hydrocarbon pollutant emissions
are significantly reduced. However, care must be taken as the fraction of hydrogen
is increased, as the combustion can become unstable. For example, Liu et al. [13]
have shown that hydrogen addition up to 50% by volume is acceptable for MILD
combustion.

Although hydrogen has benefits in reducing carbon and soot emissions, its high flame
temperature leads to NOx emissions which pose severe public health risks [14]. To
minimize NOx emissions, hydrogen is typically burnt lean (less fuel than oxidizer),
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thus reducing the flame temperature. However, lean hydrogen combustion presents
unique engineering and modelling challenges due to its propensity to develop com-
bustion instabilities. In the presence of turbulence, these instabilities result in highly
enhanced flame speeds, which can lead to safety concerns such as flame blowoff
and flashback [9]. Blowoff refers to the situation where the flame cannot be stabi-
lized due to a flow speed which is too high. In these cases, the flame propagates
downstream and eventually extinguishes. Flashback refers to the situation where the
flame cannot be stabilized due to a flow speed which is too low. In these cases, the
flame propagates upstream into the inlet pipes, which can cause mechanical failure.

This thesis is focused on lean turbulent premixed hydrogen flames with applications
in power generation. Accurate modelling of the unique burning properties of lean
hydrogen combustion requires a comprehensive understanding of the fundamental
combustion dynamics.

1.2 Premixed hydrogen flames
Premixed flames represent an asymptotic limit in which the fuel and oxidizer are
considered to be fully mixed before combusting. The one-step irreversible chemical
process is described by the conversion of fuel, 𝐹, and oxidizer, 𝑂, into products, 𝑃:

𝜈𝐹𝐹 + 𝜈𝑜𝑂 → 𝑃 (1.1)

For hydrogen flames, we have:

2H2 + O2 → 2H2O (1.2)

In the presence of pure oxidizer, the only combustion product is water. The equiva-
lence ratio, 𝜙, is typically used to characterize premixed flames:

𝜙 =
𝑋𝐹/𝑋𝑂

(𝑋𝐹/𝑋𝑂)𝑠𝑡
=

𝑌𝐹/𝑌𝑂
(𝑌𝐹/𝑌𝑂)𝑠𝑡

(1.3)

where 𝑋 is the mole fraction, 𝑌 is the mass fraction, and the subscript 𝑠𝑡 represents
stoichiometric condition. In cases where 𝜙 < 1, the mixture is lean, and there is
less fuel than oxidizer compared to stoichiometric conditions. The opposite is true
for rich mixtures where 𝜙 > 1.

The dependence of the adiabatic flame temperature, 𝑇𝑎𝑑 , on 𝜙 is shown in Fig. 1.1
for an unburnt temperature 𝑇𝑢 = 298 K and thermodynamic pressure of 𝑃0 = 1
atm. The adiabatic flame temperatures at 𝜙 = 1 and 𝜙 = 0.4 are 𝑇𝑎𝑑 = 2360
K and 1400 K, respectively. The formation of NOx emissions are dependent on
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the temperature [15], due to the thermal or Zeldovich mechanism. In general, the
thermal mechanism is suppressed for 𝑇 < 1800 K [16, 13]. As such, burning lean
hydrogen mixtures is preferred for reducing emissions.

Figure 1.1: Adiabatic flame temperature versus equivalence ratio for hydrogen-air
flames.

The temperatures in Fig. 1.1 are obtained from the simplest premixed flame con-
figuration, the laminar, unstretched, freely propagating one-dimensional flame.
These one-dimensional flames were calculated at varying equivalence ratios us-
ing FlameMaster [17], and the maximum flame temperature for each flame was
extracted. Values obtained from these one-dimensional flames are often used as ref-
erence values when characterizing higher dimensional flames. Common examples
include the laminar flame thickness, 𝑙𝐹 , and the laminar flame speed, 𝑆𝐿 , which is
shown in Fig. 1.2. The laminar flame speed increases with the equivalence ratio.

Figure 1.2: Laminar flame speed versus equivalence ratio for hydrogen-air flames.

1.3 Thermodiffusive instabilities
When extended to two- and three-dimensional configurations, lean hydrogen mix-
tures have a propensity to develop thermodiffusive instabilities (which will be de-
scribed in the following section). In the presence of turbulence, the instabilities can
cause the flame speed to increase significantly compared to 𝑆𝐿 . Thermodiffusive
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instabilities occur because of the relatively low Lewis number of hydrogen. The
Lewis number of species 𝑖 is defined as the ratio of mixture thermal diffusivity to
species mass diffusivity:

Lei =
𝛼

𝐷𝑖
(1.4)

For reference, the Lewis number of methane is close to unity, whereas the Lewis
number of hydrogen is approximately 0.3.

The special burning properties of lean hydrogen combustion are attributed to dif-
ferential diffusion effects [18]. It has been shown that an increase of turbulence
decreases differential diffusion effects in terms of flame structure [19, 20]. How-
ever, differential diffusion is a term that may be used to refer to different physical
phenomena. Thus, it is important here to clarify some definitions used in this thesis.

• Preferential diffusion refers to the notion that light species (e.g., H and H2)
have higher molecular diffusivities relative to other species in the mixture,
and thus exhibit larger diffusive fluxes.

• Non-unity Lewis number refers to a mismatch of thermal to mass diffusivity.
However, this does not require a difference in the relative magnitude of each
species diffusivity.

• Differential diffusion refers to a combination of the previous two points,
namely some species diffuse faster (or slower) than others and faster (or
slower) than heat.

In premixed hydrogen flames, the Lewis numbers of H2 and H are substantially
lower than other species in the mixture. The mismatch of heat and mass diffusive
fluxes give rise to the thermodiffusive instability. This is outlined in the schematic
diagram in Fig. 1.3. At the flame front, the diffusion of species is principally in
the normal direction. In regions of positive curvature, 𝜅 > 0, there is a focusing
effect of the diffusion. In the case where all species Lewis numbers are equal, the
species and heat are balanced and equally focused. This is not true for cases with
non-unity Lewis numbers. In practice, the strongly diffusing fuel, H2, arrives before
the other species and heat. As such, there is a buildup of excess fuel in these regions.
The opposite is true for regions of negative curvature, 𝜅 < 0. In these regions, the
fuel experiences the defocusing effect first, and as such, produces regions which are
fuel deficient. These effects result in fluctuations of the local equivalent ratio along
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the flame front. Locally richer regions burn faster, and locally leaner regions burn
slower (see Fig. 1.2), causing the growth of instability structures.

Figure 1.3: Schematic diagram of the cause of thermodiffusive instabilities.

In laminar flames, the instabilities manifest as characteristic cellular structures [21,
22], the onset of which are traditionally studied through linear stability analysis [23,
24, 25]. These cellular structures can be seen in Fig. 1.4, which shows the temper-
ature field for a two-dimensional laminar flame at an equivalence ratio of 𝜙 = 0.4
and nominal adiabatic flame temperature of 𝑇𝑎𝑑 = 1400K. The dynamics described
earlier are reflected in this figure. In regions of positive curvature, there is superadi-
abatic burning due to the locally rich mixtures, which results in 𝑇 > 𝑇𝑎𝑑 . In regions
of negative curvature, 𝑇 < 𝑇𝑎𝑑 . Overall, the thermodiffusive instabilities result in a
highly corrugated flame front and nonhomogeneous burnt mixture.

Figure 1.4: Temperature field of a two-dimensional laminar flame at 𝜙 = 0.4.

Species with small molecular weight are also subject to Soret diffusion (mass dif-
fusion driven by thermal gradients), which is known to enhance the instabilities for
laminar flames [26].

1.4 Turbulent lean hydrogen premixed flames
When subject to turbulence, lean hydrogen flames exhibit highly enhanced flame
speeds [27] which introduce safety concerns such as flashback and blowoff [9].
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The special burning properties of turbulent lean hydrogen combustion have been
investigated in a variety of direct numerical simulation (DNS) studies using detailed
chemistry. Ideally, simulations would be conducted in practical combustor con-
figurations, for example, the slot burner simulated by Berger et al. [28]. In these
configurations, the flame is exposed to turbulence generated in the shear layer at
the burner exit. Although physically realistic, these simulations are computation-
ally expensive. As such, Berger et al. have only simulated a single relatively low
Karlovitz number, defined as the ratio of flame to turbulence timescales. Pushing to
higher Karlovitz numbers is prohibitive.

To make the problem computationally tractable, the domain can be reduced to a dou-
bly periodic inflow-outflow configuration to focus specifically on flame-turbulence
interactions. In these simulations, a forcing term is added to mimic the produc-
tion of turbulence due to the missing large-scale mean shear [29]. Blanquart and
coworkers [30, 31, 32] used this configuration extensively to investigate the two-
way coupling between turbulence and combustion in neutrally stable hydrocarbon
flames with detailed chemistry and transport. Building on this work, Schlup and
Blanquart [33] performed one of the earliest DNS of turbulent unstable hydrogen
flames which incorporated detailed transport with Soret effects. However, they
studied only a single Karlovitz number.

The inflow-outflow configuration is a popular setup which has been used in a number
of studies of lean turbulent hydrogen flames. Lee and coworkers [34, 35] employed
forcing through the whole domain to study the impact of leading points on flame
speed enhancement in thermodiffusively unstable flames. However, they did not
account for Soret effects. Song et al. [36] and Yuvraj et al. [37] conducted DNS and
studied the statistics of global and local flame speeds. In particular, they showed a
strong relationship between the turbulent flame speed and the integral length scale.
Although their work included Soret diffusion, the simulations were conducted at an
equivalence ratio of 𝜙 = 0.7, rendering the flames neutrally stable. Thus, they were
not able to capture the effects of thermodiffusive instabilities.

All of the listed studies thus far were conducted at low to moderate Karlovitz num-
bers. Aspden et al. [38, 20] conducted simulations at extreme Karlovitz numbers to
study the transition to the distributed burning regime. Once again, their configura-
tion consisted of a flame which propagated in a doubly-periodic box with isotropic
turbulence maintained through long wavelength forcing. This work was furthered
by Howarth et al. [39], who conducted a detailed study on flame curvature and
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provided further support for leading point theory. These studies did not include
Soret diffusion.

The scaling of turbulent to laminar flame speed was first described by the phe-
nomenological or conceptual model of Damköhler [40], who posited that locally,
the flame front moves at the laminar flame speed. Thus, the following scaling was
obtained:

𝑆𝑇

𝑆𝐿
=
𝐴𝑇

𝐴
(1.5)

where 𝑆𝑇 is the turbulent flame speed, 𝑆𝐿 is the laminar flame speed, 𝐴𝑇 is the
turbulent flame area, and 𝐴 is the domain cross-sectional area. As the turbulence
wrinkles the flame, it necessarily increases the flame area, which can be considered
a global quantity. Notably, this model is not able to account for the local effects
of turbulence, such as curvature or strain on the chemistry. The model was thus
extended with the burning efficiency, 𝐼0, to account for these effects [41, 42]:

𝑆𝑇

𝑆𝐿
= 𝐼0

𝐴𝑇

𝐴
(1.6)

There is no consensus on a general expression for 𝐼0. Based on scaling arguments
from Savard and Blanquart [30], Lapointe and Blanquart [43] proposed the following
scaling for the ratio of turbulent to laminar flame speed for hydrocarbon flames:

𝑆𝑇

𝑆𝐿
≈

〈
¤𝜔𝐶/|∇𝐶 |

��𝐶𝑝𝑒𝑎𝑘〉
¤𝜔𝐶,𝑙𝑎𝑚/|∇𝐶𝑙𝑎𝑚 |

𝐴𝑇

𝐴
(1.7)

where𝐶 is a progress variable, and ¤𝜔𝐶 is the corresponding source term. This model
proposes a method of calculating the burning efficiency but relies on the assumption
that the source term profiles locally scale as they do at 𝐶𝑝𝑒𝑎𝑘 . The applicability of
this model has not yet been validated for hydrogen flames and is the subject of the
present study.

1.5 Effective Lewis number model
To aid in the predictive design of practical engineering devices, there is a need
for accurate and reliable large eddy simulation (LES) models which can accurately
capture the combustion dynamics of these highly non-unity Lewis number fuels.
One method that has been proposed in the past is the effective Lewis number
model [19].

Aspden et al. [38] performed DNS on turbulent lean hydrogen/air flames at four
Karlovitz numbers. They observed that the species mass fraction profiles as a
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function of temperature did not match those of the corresponding one-dimensional
laminar flame. Using their data, Savard and Blanquart [19] showed that the flame
structure could be mapped onto one-dimensional flamelet solutions obtained us-
ing effective Lewis numbers instead of the nominal Lewis numbers. Their results
showed that increased levels of turbulence led to the suppression of differential
diffusion effects and pushed the effective Lewis numbers closer to unity. To aid in
the development of reduced order chemistry models, they proposed a model which
related the effective Lewis numbers to the Karlovitz numbers. However, their work
did not consider the effects of Soret diffusion, which is known to change the flame
structure [44] and enhance turbulent flame speeds [45] and thermodiffusive insta-
bilities [26]. The impact of varying integral length scales was also not considered.

1.6 Tabulated chemistry
In order to reduce the cost of the numerical simulations and the modelling of the
detailed chemical processes, other strategies rely on the use of only a few scalar
equations. For instance, methods such as FPI (flame prolongation of ILDM) [46]
and FGM (flamelet generated manifolds) [47] tabulate the chemical response of
laminar flames with respect to a progress variable. For premixed flames, the simplest
method is to create a lookup table based on a single one-dimensional flat unstretched
flame [48]. The flame is parameterized by a progress variable, 𝐶, which defines
uniquely the thermochemical state along the combustion trajectory. It is typically a
linear combination of the mass fractions of intermediate species and products [49].
Its transport equation takes the form:

𝜕𝑡 (𝜌𝐶) + ∇ · (𝜌u𝐶) = ∇ · (𝜌𝐷𝐶∇𝐶) + ¤𝜔𝐶 (1.8)

Here, 𝜌 is the density, u is the velocity vector, 𝐷𝐶 is a diffusion coefficient, and ¤𝜔𝐶
is the source term for 𝐶. At each timestep, important thermophysical properties are
obtained via the lookup table.

Unfortunately, hydrogen exhibits strong differential diffusion effects due to its low
Lewis number. This differential diffusion creates pockets of lean or rich mixtures,
resulting in local fluctuations of the equivalence ratio and burning velocity. As such,
the flame burns unevenly, and curvature effects become important, especially in the
presence of turbulence. In these cases, the tabulation based on just 𝐶 is insufficient
to describe the physics [50, 48].

To account for differential diffusion, several strategies have been proposed. De
Swart et al. [51] first derived a generic form of the transport equation for any control
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variable (e.g., progress variable) which incorporates differential diffusion. The
model was used by Donini et al. [52] with the controlling variables selected as a
progress variable, enthalpy, and Bilger mixture fraction [53]. A source term which is
dependent on the gradient of the progress variable is added to the transport equations
of each of the control variables. However, this method is unable to reproduce flames
dominated by differential diffusion due to the neglect of certain cross-diffusion
terms. The model was updated by Mukundakumar et al. [54] to account for these
missing terms, and showed improvement over the old model.

Other proposed methods include effects of curvature directly [55, 56] through tab-
ulating flamelets generated using the compositional space method [57]. In these
works, three major species are transported, which are then transformed into compo-
sition space for table lookup.

These proposed methods offer ways to incorporate differential diffusion effects but
introduce additional complexities in the table generation and usage. A very simple
model for non-unity Lewis number fuels was proposed by Regele et al. [58], who
introduced a model which adds no additional source terms to the transport equation
for the progress variable, and only one additional source term to the transport
equation for the mixture fraction. However, the model relied on a single non-unity
Lewis number and did not account for Soret diffusion. Schlup and Blanquart [33]
recently generalized the model to accommodate non-constant Lewis numbers and
Soret diffusion. In this model, the evaluation of the diffusion coefficients in the
preprocessing step is minimal, since it depends only on diffusion coefficients which
are already calculated in the flamelet generation. The reduced set of equations and
lack of additional source terms in the progress variable equation also reduce the
complexity of LES modelling. The model of Schlup and Blanquart [33] will be
used for the calculations in this thesis.

1.7 Large eddy simulation
Several useful strategies for modelling turbulent premixed flames have been de-
veloped. For example, in the thickened flame model [59, 60], the flame front is
artificially thickened by enhancing the molecular diffusion. However, the enhanced
molecular diffusion can damp out critical small-scale flame instabilities that might
be important in hydrogen combustion. Transported PDF methods are another mod-
elling strategy [61, 62]. These methods may be used in conjunction with detailed
chemistry, but they remain sensitive to the micro-mixing model used. As a result, it
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is unclear whether these models can capture hydrogen instabilities properly.

The tabulated chemistry technique lends itself nicely to LES modelling due to
the minimal amount of subfilter scale closure required. Berger et al. [63] recently
conducted an a priori study to evaluate the validity of common subfilter scale models
in the context of two-equation tabulated chemistry models. The results suggest that
these strategies are valid for the two-equation models. However, their analysis has
not yet been validated a posteriori.

1.8 Outline and objectives
This thesis investigates the relationship between large- and small-scale turbulence
on the propagation and structure of turbulent lean hydrogen flames. The results
are then used to inform the modelling of these flames. The specific objectives are
outlined as:

1. Identify local (e.g., flame structure) and global (e.g., turbulent flame area)
effects and quantify their individual contributions to the turbulent flame speed
enhancement.

2. Quantify the effects of large- (integral length scale) and small- (dissipation)
scale turbulence effects on the flame structure and propagation.

3. Evaluate the validity of burning efficiency expressions for thermodiffusively
unstable flames.

4. Quantify the effect of Soret diffusion on turbulent lean premixed hydrogen
flames.

5. Assess the validity of the two-equation tabulated chemistry model proposed
by Schlup and Blanquart [33] across a wide range of Karlovitz numbers.

6. Quantify the effect of Soret diffusion and integral length scale on the effective
species Lewis number model proposed by Savard and Blanquart [19].

7. Perform an a posteriori evaluation of LES modelling using the two-equation
tabulated chemistry model in a complex geometry.

To support these goals, DNS are carried out using detailed chemistry and transport
across a range of turbulence intensities and integral length scales. This dataset is
central to this thesis, and is used extensively to fulfill the stated objectives. Then,
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LES are carried out for a low-swirl burner [11] to test the validity of standard LES
modelling.

The thesis is organized as follows. Chapter 2 presents the governing equations
and details for both DNS and LES. Information regarding the numerical solver and
implementation are also presented. A detailed analysis of the DNS results targeting
Objectives 2–6 is presented in Chapter 3, and an evaluation of the effective species
Lewis number model is presented in Chapter 4. Chapter 5 contains the LES of a
low-swirl combustion chamber using the two-equation tabulated chemistry model.
Finally, the major findings and future work are summarized in Chapter 6.
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C h a p t e r 2

GOVERNING EQUATIONS AND NUMERICAL METHOD

The simulations of turbulent premixed flames presented in this thesis are conducted
within both the DNS and LES frameworks. This chapter provides an overview
of the governing equations, namely, conservation of mass, momentum, species,
and energy. The extension to the LES framework is also discussed, in particular
with regards to the chemistry modelling. The equations are solved using the finite
difference code NGA [64].

2.1 Governing equations
In the present study, the variable density, low Mach, reacting flow equations are
solved. The low Mach formulation allows for the decoupling of the momentum and
energy equations by eliminating the need to solve for the acoustic pressure field. A
detailed derivation was conducted by Majda and Sethian [65]. After performing an
asymptotic expansion of the variables in terms of the Mach number, the pressure
field is decoupled into two components. The first, 𝑃0, is the background thermody-
namic pressure, which has no spatial variations and hence does not manifest in the
momentum equation. The second, 𝑝, is the hydrodynamic pressure and does have
spatial variations. However, the magnitude is small compared to the thermodynamic
pressure and is thus neglected in the equation of state. The conservation equations
for mass, momentum, temperature, and species are written:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 (2.1)

𝜕𝜌u
𝜕𝑡

+ ∇ · (𝜌u ⊗ u) = −∇𝑝 + ∇ · 𝝉 + f (2.2)

𝜕𝜌𝑇

𝜕𝑡
+ ∇ · (𝜌u𝑇) = ∇ · (𝜌𝛼∇𝑇) + ¤𝜔𝑇 −

1
𝑐𝑝

𝑛𝑠∑︁
𝑖

𝑐𝑝,𝑖j𝑖 · ∇𝑇 + 𝜌𝛼
𝑐𝑝

∇𝑐𝑝 · ∇𝑇 (2.3)

𝜕𝜌𝑌𝑖

𝜕𝑡
+ ∇ · (𝜌u𝑌𝑖) = −∇ · j𝑖 + ¤𝜔𝑖 𝑖 = 1 . . . 𝑛𝑠 (2.4)

The equations are closed with the ideal gas equation of state:

𝜌 =
𝑃0𝑊

𝑅𝑇
(2.5)
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where 𝑅 is the universal gas constant, and𝑊 is the mixture molecular weight.

In these equations, 𝑡 is the time, 𝜌 is the density, u = {𝑢, 𝑣, 𝑤} is the velocity
vector, 𝑇 is the temperature, 𝑐𝑝 is the mixture heat capacity, and 𝛼 = 𝜆/(𝜌𝑐𝑝) is
the mixture thermal diffusivity. The mixture-averaged thermal conductivity, 𝜆, is
calculated following Mathur et al. [66] using species thermal conductivities obtained
via Eucken’s formula [67]:

𝜆 =
1
2

©­«
𝑛𝑠∑︁
𝑖

𝑋𝑖𝜆𝑖 +
[
𝑛𝑠∑︁
𝑖

𝑋𝑖

𝜆𝑖

]−1ª®¬ (2.6)

where 𝑋𝑖 and 𝜆𝑖 are the mole fraction and thermal conductivity for species 𝑖. The
viscous stress tensor is given as:

𝝉 = 𝜇

(
∇u + ∇u𝑇

)
− 2

3
𝜇 (∇ · u) I (2.7)

where 𝜇 is the mixture dynamic viscosity and I is the identity tensor. The species
viscosities are calculated following the standard gas kinetic relations [68], and
the corresponding mixture-averaged viscosity follows a modified form of Wilke’s
formula [31, 69]:

𝜇 =
1
2

©­«
𝑛𝑠∑︁
𝑖

𝑋𝑖𝜇𝑖 +
[
𝑛𝑠∑︁
𝑖

𝑋𝑖

𝜇𝑖

]−1ª®¬ (2.8)

where 𝜇𝑖 is the species viscosity.

The momentum equation contains a forcing term f, which is necessary to maintain
the desired level of turbulence in the DNS results of this thesis due to the physical
configuration of the problem. The forcing is discussed in detail in Chapter 3.

In the case of detailed chemistry, for each species 𝑖, we have the mass fraction 𝑌𝑖,
the species heat capacity 𝑐𝑝,𝑖, the net species production rate ¤𝜔𝑖 (units of [kg/m3s]),
and the species mass diffusion flux j𝑖. The net species production rate is expressed
as:

¤𝜔𝑖 = 𝑊𝑖

𝑛𝑅∑︁
𝑗

𝜈 𝑗 ,𝑖 ¤𝑅 𝑗 (2.9)

where 𝑛𝑅 is the total number of reactions, 𝜈 𝑗 ,𝑖 is the stoichiometric coefficient of
species 𝑖 in reaction 𝑗 , and 𝑊𝑖 is the species molecular weight. The coefficient is
positive for products and negative for reactants. The reaction rate, ¤𝑅𝑖, is in modified
Arrhenius form:

¤𝑅 𝑗 = 𝐴 𝑗𝑇𝑛 𝑗 exp
(
−
𝐸𝑎, 𝑗

𝑅𝑇

) 𝑛𝑠∏
𝑖

(
𝜌𝑌𝑖

𝑊𝑖

)𝜈𝑟
𝑗,𝑖

(2.10)



14

where the pre-exponential term consists of the Arrhenius rate constant, 𝐴 𝑗 , and 𝑇𝑛 𝑗 ,
where 𝑛 𝑗 is a fitting constant. 𝐸𝑎, 𝑗 is the activation energy and 𝜈𝑟

𝑗 ,𝑖
= −min

(
𝜈 𝑗 ,𝑖, 0

)
.

The source term for the temperature equation is expressed as:

¤𝜔𝑇 = − 1
𝑐𝑝

𝑛𝑠∑︁
𝑖

ℎ𝑖 (𝑇) ¤𝜔𝑖 (2.11)

where ℎ𝑖 is the enthalpy of species 𝑖 at a given temperature.

In this work, the mixture-averaged diffusion model is employed. The species diffu-
sion flux is then written:

j𝑖 = −𝜌 𝑌𝑖
𝑋𝑖
𝐷𝑖,𝑚∇𝑋𝑖 −

1
𝑇
𝐷𝑇𝑖 ∇𝑇 + 𝜌𝑌𝑖u𝑐 (2.12)

where for each species 𝑖, 𝐷𝑖,𝑚 is the mixture-averaged diffusion coefficient and 𝐷𝑇
𝑖

is
the thermal diffusion coefficient. To ensure mass conservation and zero net diffusion
flux, a correction velocity is introduced [70, 71]:

u𝑐 = u𝐷𝑐 + uT
c (2.13)

which has contributions from the Fickian diffusion:

u𝐷𝑐 =
∇𝑊
𝑊

𝑛𝑠∑︁
𝑖

𝐷𝑖,𝑚𝑌𝑖 +
𝑛𝑠∑︁
𝑖

𝐷𝑖,𝑚∇𝑌𝑖 (2.14)

and the thermal diffusion:

u𝑇𝑐 =
1
𝜌

∇𝑇
𝑇

𝑛𝑠∑︁
𝑖

𝐷𝑇𝑖 (2.15)

where𝑊 is the mixture molecular weight. The present simulations use the reduced
model recently proposed by Schlup and Blanquart for the calculation of the thermal
diffusion coefficients [72, 73]. Typically, the calculation of thermal diffusion co-
efficients requires information from all other species. However, the species which
are most sensitive to Soret diffusion are the light species, in this case, H2 and H.
By employing a number of simplifying assumptions regarding the relationships be-
tween transport properties and molecular weights, in particular, that the molecular
weights of H2 and H are significantly lower than that of the mixture, a simplified
model for the thermal diffusion coefficients is obtained:

𝐷𝑇𝑖 ≡ −𝛼𝑖
15
4
𝑋𝑖𝜇𝑖

Φ𝑖,𝑚

(
1.2𝐶∗

𝑖,𝑚 − 1
)
(1 − 𝑌𝑖) − 𝑌𝑖𝑆 (2.16)

This model does not require information regarding other species, hence greatly
reducing the computational cost. Here, 𝛼𝑖 is an empirical scaling factor to correct for
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systematic errors introduced through modelling assumptions. The values reported
by Schlup and Blanquart [72] are 𝛼H2 = 0.91 and 𝛼H = 0.895. The term 𝑆 is a
correction factor which is applied to ensure mass conservation. The parametersΦ𝑖,𝑚

and 𝐶𝑖,𝑚 depend only on the properties of H2 and H and empirical fits of collision
integrals.

2.2 Tabulated chemistry
In combustion simulations, a large part of the computational cost is attributed to the
additional governing equations for each species, along with the evaluation of trans-
port and thermodynamic properties. To reduce the computational cost, a popular
strategy is the use of tabulated chemistry. In the tabulated chemistry framework, the
thermochemical trajectory is calculated using a simplified representative model of
the combustion process, and tabulated with respect to a reduced set of control vari-
ables. Instead of transporting all species, only the control variables are transported,
which are used to look up necessary values in the precomputed table.

For fully premixed flames, the simplest method is to create a lookup table based on
a single one-dimensional flat unstretched flame [48]. The flame is parameterized by
a progress variable, 𝐶, which defines uniquely the thermochemical state along the
combustion trajectory. It is typically a linear combination of the mass fractions of
intermediate species and products [49]. Its transport equation is written:

𝜕𝜌𝐶

𝜕𝑡
+ ∇ · (𝜌u𝐶) = ∇ · (𝜌𝐷𝐶∇𝐶) + ¤𝜔𝐶 (2.17)

and takes the same form as a species transport equation. Eq. (2.17) is solved in
place of Eqs (2.3) and (2.4). Here, 𝐷𝐶 and ¤𝜔𝐶 are the molecular diffusivity and
source term for 𝐶. At each timestep, important thermophysical properties such as
𝜌, 𝜇, 𝐷𝐶 , and ¤𝜔𝐶 are obtained via the lookup table.

One-dimensional flat flames serve as an appropriate proxy for higher dimensional
flames in which the Lewis number for all species are approximately unity. This is
a reasonable assumption for many fuels, for example, methane. However, hydrogen
experiences differential diffusion due to its low Lewis number. In these cases, the
tabulation based on just 𝐶 is insufficient to describe the physical process [50, 48].

In this work, we employ the model of Schlup and Blanquart [33], which introduces
an additional control variable, 𝑍 , a mixture fraction-like variable which represents
fluctuations in the local equivalence ratio due to differential diffusion effects. The
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equation for 𝑍 reads:

𝜕𝜌𝑍

𝜕𝑡
+ ∇ · (𝜌u𝑍) = ∇ · (𝜌𝐷𝑍∇𝑍) − ∇ ·

(
𝜌𝐷∗

𝑍∇𝐶
)︸           ︷︷           ︸

source term 1

+∇ ·
(
𝜌𝐷𝑇𝑍∇𝑇

)
︸           ︷︷           ︸

source term 2

(2.18)

where
𝐷𝑍 =

𝜈𝑌𝐹,1𝐷𝐹 + 𝑌𝑂,2𝐷𝑂
𝜈𝑌𝐹,1 + 𝑌𝑂,2

(2.19)

𝐷∗
𝑍 =

(
1

𝜈 + 1

) (
𝜈𝐷𝐹 − 𝜈𝐷𝑂
𝜈𝑌𝐹,1 + 𝑌𝑂,2

)
(2.20)

and

𝐷𝑇𝑍 =
1
𝜌𝑇

(
𝜈𝐷𝑇

𝐹
− 𝐷𝑇

𝑂

𝜈𝑌𝐹,1 + 𝑌𝑂,2

)
(2.21)

where 𝐷𝑖 and 𝐷𝑇
𝑖

represent the molecular and thermodiffusion coefficients, respec-
tively. The variable 𝑌 indicates the mass fraction, the subscripts 𝑂 and 𝐹 indicate
oxidizer and fuel, and the subscripts 1 and 2 refer to the fuel and oxidizer streams,
respectively. The definition of the mass stoichiometric ratio, 𝜈, is given by:

𝜈 =
𝜈𝑂𝑊𝑂

𝜈𝐹𝑊𝐹

(2.22)

where𝑊𝑖 are the species molecular weights.

This model is a generalized form of the model by Regele et al. [58], which has
no assumptions regarding the species Lewis numbers and accounts for thermal
diffusion. To create the thermochemical table, a number of one-dimensional flat
flames at different equivalence ratios are computed with FlameMaster [17] using
detailed chemistry, mixture-averaged molecular diffusion [73], and Soret diffusion.
The reduced order model of Schlup and Blanquart [72] was used for the ther-
modiffusion coefficients. The necessary thermodynamic and transport properties,(
𝑇, 𝜌, 𝜇, 𝐷𝑍 , 𝐷

∗
𝑍
, 𝐷𝑇

𝑍
, 𝐷𝐶 , ¤𝜔𝐶

)
, are interpolated onto a two-dimensional chemistry

table as a function of 𝐶 and 𝑍 . The one-dimensional flamelets were calculated for
equivalence ratios between 𝜙 = 0.25 and 𝜙 = 1.3. For more details on the full
derivation of the new chemistry model, the reader is referred to [33].

The transport equation for 𝑍 has two source terms. The first bracketed term is a
cross-diffusion term which couples the response of 𝑍 to the local fluctuations of 𝐶.
In particular, the term can be decomposed into two parts [74, 75, 33]:

∇ ·
(
𝜌𝐷∗

𝑍∇𝐶
)
= −𝜌𝐷∗

𝑍 |∇𝐶 |𝜅 + n · ∇
(
𝜌𝐷∗

𝑍 |∇𝐶 |
)

(2.23)
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where
𝜅 = −∇ · n = −∇ ·

(
∇𝐶
|∇𝐶 |

)
(2.24)

represents the curvature of the flame front defined by an isosurface of 𝐶. This
feedback is particularly important since flame curvature is inseparably linked to
differential diffusion effects. The second bracketed term incorporates the contribu-
tion of Soret diffusion to the differential diffusion effects. This is important since
Soret diffusion is known to enhance the thermodiffusive instabilities in laminar
flames [26].

2.3 Large eddy simulation
In this section we review the governing equations and subfilter scale modelling of
the LES framework.

2.3.1 Governing equations
In the LES framework, the turbulence is separated into large-scale components which
are resolved on the grid and small-scale contributions which must be modelled. The
governing equations are recast in terms of spatially filtered variables, denoted by an
overline, ( ), which are resolved quantities. In the framework of LES, the filtered
Navier-Stokes equations are:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌ũ) = 0 (2.25)

𝜕𝜌ũ
𝜕𝑡

+ ∇ · (𝜌ũ ⊗ ũ) = −∇𝑝 + ∇ · 𝝉 + ∇ · 𝝉𝑆𝐺𝑆 (2.26)

The tilde denotes a Favre average quantity, 𝜙 = 𝜌𝜙/𝜙. The turbulent eddy viscosity
(𝜇𝑡) is evaluated using the Lagrangian dynamic subfilter scale model of Meneveau
et al. [76].

In many practical applications, the grid resolution required to resolve the turbulence
for DNS is comparable to the grid resolution required for the detailed chemistry.
In LES, the smallest scales of turbulence are not resolved and, consequently, the
chemistry length scales are also under-resolved. To use finite rate chemistry, signifi-
cant modelling efforts are required to close subfilter terms in the species and energy
transport equations [77, 78, 79]. To reduce the complexity of LES modelling while
retaining finite rate chemistry effects, reduced order models such as tabulated chem-
istry are preferred [80, 81, 82]. The filtered versions of the transport equations for
𝐶 and 𝑍 , Eqs. (2.17) and (2.18), are written as:
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𝜕𝜌𝐶

𝜕𝑡
+ ∇ ·

(
𝜌ũ𝐶

)
= ∇ ·

(
𝜌

(
𝐷𝐶 + 𝐷𝑡

𝐶

)
∇𝐶

)
+ ¤𝜔𝐶 (2.27)

𝜕𝜌𝑍

𝜕𝑡
+∇ ·

(
𝜌ũ𝑍

)
= ∇ ·

(
𝜌

(
𝐷𝑍 + 𝐷𝑡

𝑍

)
∇𝑍

)
−∇ ·

(
𝜌𝐷∗

𝑍∇𝐶
)
+∇ ·

(
𝜌𝐷𝑇𝑍∇𝑇

)
(2.28)

The eddy diffusivities, 𝐷𝑡
𝐶

and 𝐷𝑡
𝑍
, are evaluated using the Lagrangian dynamic

subfilter scale model of Meneveau et al. [76]. The eddy diffusivity model is consis-
tent with the formulation of Réveillon and Vervisch [83]. Alternative subfilter scale
models and the filtering of the chemical source term are discussed in further detail
in Chapter 5.

2.3.2 Subfilter scale modelling — fluid mechanics
The filtered equations produce unresolved stresses which need to be modelled. The
unresolved turbulent stresses are expressed as:

𝝉𝑆𝐺𝑆 = 𝜇𝑡
(
∇ũ + ∇ũ𝑡

)
(2.29)

where 𝜇𝑡 is the turbulent eddy viscosity which is computed following the Smagorin-
sky model:

𝜇𝑡 = (𝐶𝑠Δ)2 𝑆 (2.30)

Here, 𝑆 is the characteristic filtered rate-of-strain:

𝑆 =

(
2𝑆𝑖 𝑗𝑆𝑖 𝑗

)1/2
(2.31)

where
𝑆𝑖, 𝑗 =

1
2

(
𝜕𝑢̃𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
(2.32)

is the filtered rate-of-strain tensor. The filter width is denoted Δ, and 𝐶𝑠 is the
Smagorinsky coefficient. The earliest Smagorinsky models determined 𝐶𝑠 to be a
constant [84]. However, the value of the constant changes depending on the flow
configuration, and thus a global constant is not appropriate for complex flows found
in many applications. Instead, a local value of 𝐶𝑠 is preferred, and is evaluated via
a dynamic procedure [85, 86]:

𝐶2
𝑠 =

𝑀𝑖 𝑗L𝑖 𝑗

𝑀𝑘𝑙𝑀𝑘𝑙

(2.33)

where
L𝑖 𝑗 = ̂̃𝑢𝑖𝑢 𝑗 − ̂̃𝑢𝑖̂̃𝑢 𝑗 (2.34)
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is the resolved stress, and

𝑀𝑖 𝑗 = 2Δ2 ̂̃
𝑆𝑆𝑖 𝑗 − 2Δ̂2̂̃𝑆̂̃𝑆𝑖 𝑗 (2.35)

where the operator (̂ ) denotes a filtering procedure at a filter width Δ̂ > Δ. In this
work, we use the Lagrangian dynamic model of Meneveau et al. [76] in order to
prevent numerical instabilities:

𝐶2
𝑠 =

⟨𝑀𝑖 𝑗L𝑖 𝑗 ⟩
⟨𝑀𝑘𝑙𝑀𝑘𝑙⟩

(2.36)

For a variable 𝜙 (𝑡, x (𝑡)), the average is formed tracing fluid pathlines backward in
time:

⟨𝜙⟩ = 𝜉𝜙 (𝑡, x(𝑡)) + (1 − 𝜉) 𝜙 (𝑡 − Δ𝑡, x (𝑡 − Δ𝑡)) (2.37)

where 𝜉 is a weighting function:

𝜉 =

(
2Δ𝑡

[
⟨𝑀𝑖 𝑗L𝑖 𝑗 ⟩⟨𝑀𝑘𝑙𝑀𝑘𝑙⟩

]1/8

3Δ

) (
1 +

2Δ𝑡
[
⟨𝑀𝑖 𝑗L𝑖 𝑗 ⟩⟨𝑀𝑘𝑙𝑀𝑘𝑙⟩

]1/8

3Δ

)−1

(2.38)

The method is not restricted to homogeneous flows and is appropriate for use in
the complex flow fields simulated in this thesis. Initially these models were derived
for homogeneous isotropic turbulence. They have been used extensively in LES of
turbulent reacting flows. A detailed analysis of their validity for such configurations
should be performed, but is outside the scope of this work.

2.3.3 Subfilter scale modelling — chemistry
The eddy diffusivities of Eqs. (2.27) and (2.28) are calculated using the same
algebraic form as the eddy viscosity. The subfilter scalar flux is expressed as:

𝝉𝑆𝐺𝑆𝜙 = 𝜌𝐷𝑡
𝜙∇𝜙 (2.39)

where 𝐷𝑡
𝜙

is the turbulent eddy diffusivity:

𝐷𝑡
𝜙 =

(
𝐶
𝜙
𝑠 Δ

)2
𝑆 (2.40)

The evaluation of the dynamic coefficient, 𝐶𝜙𝑠 , is similar to that of Eq. (2.33):

𝐶
𝜙
𝑠

2
=

⟨𝑀𝑖L𝑖⟩
⟨𝑀𝑖𝑀𝑖⟩

(2.41)

where
L𝑖 =

̂̃
𝑢𝑖𝜙 − ̂̃𝑢𝑖̂̃𝜙 (2.42)



20

and
𝑀𝑖 = 2Δ2 ̂̃

𝑆∇𝜙 − 2Δ̂2̂̃𝑆∇̂𝜙 (2.43)

The Lagrangian averaging procedure [76, 83] is also applied to evaluate the Smagorin-
sky coefficient.

For LES modelling of the tabulated chemistry, an assumed PDF model is typically
employed (more details are provided in Chapter 5). In this model, information
regarding the subfilter variance, 𝐶𝑣, of the progress variable is necessary. The
subfilter variance is calculated using an algebraic model [87]:

𝐶𝑣 =
(
𝐶𝜙Δ

)2 |∇𝐶 |2 (2.44)

where the coefficient 𝐶𝜙 is also determined through a dynamic procedure similar to
the one outlined previously:

𝐶2
𝜙 =

⟨𝑀𝐿⟩
⟨𝑀𝑀⟩ (2.45)

where
𝑀 = Δ̂2∇̂̃

𝐶 · ∇̂̃
𝐶 (2.46)

and
𝐿 =

̂̃
𝐶𝐶 − ̂̃

𝐶
̂̃
𝐶 (2.47)

where the hat indicates a test filtering at a filter width Δ̃ > Δ. The averaging
procedure is also conducted using the Lagrangian method of Meneveau et al. [76].

2.4 Numerical method
To solve the governing equations, the finite difference code NGA [64] is used. A
brief description of the code is presented here.

2.4.1 Spatial discretization
The equations are solved using NGA [64], a structured finite difference code with
arbitrarily high order spatial accuracy. Relevant details regarding the numerical
methods are highlighted here.

To minimize dispersive errors, NGA employs a staggered grid, where scalars (e.g.,
density and pressure) are stored at the cell centers, and velocity and momentum
components are stored at the cell faces. In this work, we will consider both Cartesian,
u =

(
𝑢𝑥 , 𝑢𝑦, 𝑢𝑧

)
in x = (𝑥, 𝑦, 𝑧), and cylindrical, u = (𝑢𝑥 , 𝑢𝑟 , 𝑢𝜃) in x = (𝑥, 𝑟, 𝜃)

coordinates. The cell faces are numbered as 𝑖1, 𝑖2, 𝑖3, respectively, for the 𝑥1, 𝑥2, 𝑥3

directions. Because of the staggering, variables are offset by 1/2 in certain directions.
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For example, the 𝑢𝑥 velocity component is stored at 𝑖1, 𝑖2+1/2, 𝑖3+1/2. The variable
locations are shown on representative computational cells in Fig. 2.1. To perform the
spatial discretization, the physical coordinates (Cartesian or cylindrical) are mapped
to computational coordinates of unity spacing, 𝜁 = (𝜁1, 𝜁2, 𝜁3), with associated
scaling factors defined by differentiating physical space by computational space.
In the current work, second-order accurate operators are used to discretize the
convective and diffusive terms in the governing equations. Key operators are the
second-order interpolation and differentiation operators. For a stencil size Δ𝜁1 in
the 𝜁1 direction on a variable, 𝜙, these operators are given as:

𝜙
𝜁1
=
𝜙 (𝜁1 + Δ𝜁1/2, 𝜁2, 𝜁3) + 𝜙 (𝜁1 − Δ𝜁1/2, 𝜁2, 𝜁3)

2
(2.48)

and
𝛿𝜙

𝛿𝜁1
=
𝜙 (𝜁1 + Δ𝜁1/2, 𝜁2, 𝜁3) − 𝜙 (𝜁1 − Δ𝜁1/2, 𝜁2, 𝜁3)

Δ𝜁1
(2.49)

respectively. Because all operators are centered, the code does not exhibit dissi-
pative errors. For a complete description of the spatial discretization, including
higher order operators, variable density flows, conservation properties, centerline
treatments, and discrete equations, the reader is referred to [64].

(a) Cartesian coordinates (b) Cylindrical coordinates

Figure 2.1: Computational cells and variable locations in the staggered grid dis-
cretization.

2.4.2 Temporal discretization
The time integration scheme is summarized here. For the full details, the reader is
referred to Savard et al. [88]. The scalar and velocity fields are also staggered in
time, with the scalar fields being advanced from time 𝑡𝑛+1/2 to 𝑡𝑛+3/2 and the velocity
fields being advanced from time 𝑡𝑛 to 𝑡𝑛+1, where the superscript indicates the time
step. In the following description the timestep, Δ𝑡, is assumed to be uniform. The
time integration is iterative and proceeds as follows.
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The governing equations are advanced in time using an iterative procedure, where
the subscript 𝑘 denotes the sub-iteration. The total number of subiterations, 𝐾 , is set
a priori. The calculations in this thesis are performed with 𝐾 = 4. First, converged
values from the previous time step are used as the initial guesses for the iterative
procedure i.e. 𝑘 = 0):

𝑝
𝑛+3/2
0 = 𝑝𝑛+1/2, Y𝑛+3/2

0 = Y𝑛+1/2, (𝜌u)𝑛+1
0 = (𝜌u)𝑛 . (2.50)

An estimate for the density is obtained using the Adams-Bashforth prediction:

𝜌
𝑛+3/2
0 = 2𝜌𝑛+1/2 − 𝜌𝑛−1/2 (2.51)

ensuring discrete conservation of mass at the beginning of the iterative proce-
dure [89]. For the subiterations 𝑘 = 1, . . . , 𝐾 , the time integration proceeds in
the following order: advance the scalar field, calculate the density field, predict
the velocity field (with no consideration of continuity), correct the velocity field
after solving the pressure Poisson equation to ensure mass conservation, and finally,
updating the solution. The steps are detailed as:

1. Advance the scalar field:

Y∗
𝑘 =

Y𝑛+1/2 + Y𝑛+3/2
𝑘

2
(2.52)

𝜌
𝑛+3/2
𝑘

Y𝑛+3/2
𝑘+1 = 𝜌𝑛+1/2Y𝑛+1/2 + Δ𝑡

[
(C + D)𝑛+1

𝑘 · Y∗
𝑘 +𝛀∗

𝑘

]
+ Δ𝑡

2

(
𝜕C
𝜕Y + 𝜕D

𝜕Y

)𝑛+1

𝑘

·
(
Y𝑛+3/2
𝑘+1 − Y𝑛+3/2

𝑘

)
(2.53)

where C and D are abbreviated notation for the convective and diffusive terms
in the scalar equation (Eq. (2.4)), respectively. The corresponding Jacobian
matrices for the convective and diffusive terms are expressed as 𝜕C/𝜕Y and
𝜕D/𝜕Y.

2. Next, the density field is predicted from the ideal gas law:

𝜌
𝑛+3/2
𝑘+1 =

𝑝0

(∑𝑁
𝑖=1𝑌

𝑛+3/2
𝑖,𝑘+1 /𝑊𝑖

)−1

𝑅𝑇
𝑛+3/2
𝑘+1

(2.54)

Although conservation of species densities, 𝜌𝑌𝑖, is not ensured in this step,
upon convergence of the subiterations the conservation of species densities is
satisfied.
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3. The momentum field is advanced:

u∗
𝑘 =

u𝑛 + u𝑛+1
𝑘

2
(2.55)

𝜌𝑛+1/2 + 𝜌𝑛+3/2
𝑘+1

2
û𝑛+1
𝑘+1 =

𝜌𝑛−1/2 + 𝜌𝑛+1/2

2
u𝑛

+ Δ𝑡

[
(C𝑢 + D𝑢)𝑛+1/2

𝑘
· u∗

𝑘 + ∇𝑝𝑛+3/2
𝑘

]
+ Δ𝑡

2

(
𝜕C𝑢

𝜕u + 𝜕D𝑢

𝜕u

)𝑛+1/2

𝑘

·
(
û𝑛+1
𝑘+1 − u𝑛+1

𝑘

)
(2.56)

where û is a predicted velocity field which does not necessarily satisfy mass
conservation, and is used to compute the hydrodynamic pressure in the fol-
lowing step. The discrete convective and viscous terms are written as C𝑢 and
D𝑢.

4. The Poisson equation for the hydrodynamic pressure is solved to obtain a
correction to ensure mass conservation:

∇2 (𝛿𝑝)𝑛+3/2
𝑘+1 =

1
Δ𝑡

[
∇ ·

(
𝜌𝑛+1/2 + 𝜌𝑛+3/2

𝑘+1
2

û𝑛+1
𝑘+1

)
+
𝜌
𝑛+3/2
𝑘+1 − 𝜌𝑛+1/2

Δ𝑡

]
(2.57)

The correction is then applied to the velocity field through a projection step

u𝑛+1
𝑘+1 = û𝑛+1

𝑘+1 −
2Δ𝑡

𝜌𝑛+1/2 + 𝜌𝑛+3/2
𝑘+1

(
∇ (𝛿𝑝)𝑛+3/2

𝑘

)
(2.58)

𝑝
𝑛+3/2
𝑘+1 = 𝑝

𝑛+3/2
𝑘

+ (𝛿𝑝)𝑛+3/2
𝑘+1 (2.59)

5. Upon convergence of the subiterations, or when the maximum number of
subiterations is reached, the solution is updated:

𝜌𝑛+3/2 = 𝜌
𝑛+3/2
𝐾

, 𝑝𝑛+3/2 = 𝑝
𝑛+3/2
𝐾

u𝑛+1 = u𝑛+1
𝐾 , Y𝑛+3/2 = Y𝑛+3/2

𝐾
(2.60)

To avoid computing the full chemical Jacobian, (𝜕𝛀/𝜕Y)𝑛+1
𝑘 , in the species transport

equations, Savard et al. [88] proposed an approximation which requires only the
diagonal. This formulation is used in this thesis.

The steps outlined above describe the semi-implicit iterative time integration method.
If the Jacobian terms (e.g. 𝜕C/𝜕Y, 𝜕C𝑢/𝜕u, . . .) are set to 0, then the time inte-
gration scheme becomes an explicit iterative scheme. The overall time integration
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scheme is referred to as “semi-implicit” for three reasons. First, the implicit treat-
ment is applied to each equation individually and successively and not to the overall
system of equations all at once. Second, the implicit treatment for the momentum
equation is not exact because the equation is quadratic in the velocity. Finally, the
full chemical Jacobian is not evaluated.

Upon convergence of the subiterations, the previously described time integration
scheme takes the general form:

𝜙𝑛+1 − 𝜙𝑛
Δ𝑡

= 𝑓

[
1
2

(
𝜙𝑛 + 𝜙𝑛+1

)]
(2.61)

This time integration scheme resembles the Crank-Nicolson scheme, but is based on
the function evaluation at the midpoint value instead of the average of the function
evaluated at the 𝑛 and 𝑛 + 1 timesteps. This discretization eliminates the need for
storing the right hand side of the equation twice and allows for discrete energy
conservation in time. Specifically, if both sides of Eq. (2.61) are multiplied by
(1/2) (𝜙𝑛 + 𝜙𝑛+1), then we have:

1
Δ𝑡

[
1
2

(
𝜙𝑛+1

)2
− 1

2
(𝜙𝑛)2

]
= 𝑓

[
1
2

(
𝜙𝑛 + 𝜙𝑛+1

)] [
1
2

(
𝜙𝑛 + 𝜙𝑛+1

)]
(2.62)

The discrete spatial operators, Eqs. (2.48) and (2.49) ensure that the right hand
side of Eq.(2.62) can be expressed in divergence form without the introduction of
additional source terms [64, 89]. Thus, the change in the energy with time expressed
by the left hand side of the equation depends solely on conserved spatial terms.

2.4.3 Immersed boundary method
Chapter 5 involves the simulation of an injector with a complicated geometry to
obtain physically realistic inflow boundary conditions for the combustion chamber.
To facilitate the simulation of the injector in the structured grid of NGA, we use
the immersed boundary method. For a comprehensive overview of the different
immersed boundary strategies, the reader is referred to the review papers by Mittal
and Iaccarino [90] and Verzicco [91].

In NGA, we use a velocity reconstruction or interpolation method, similar to that
proposed by Kang et al. [92]. Figure 2.2 shows an example of a solid body overlaid
on a structured grid, with the edge of the solid body marked with the blue line.
Generally speaking, the process is as follows. First, the velocity field is computed
according to Eq. (A.3) without consideration of the immersed boundary. Then, cells
within the solid region of the immersed boundary are set to zero velocity. For the
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cells which are cut (neither fully solid nor fully fluid), the computed velocities on
the uncut edges (green and pink faces) are no longer reliable due to the presence
of the immersed boundary. The velocities on these edges are reconstructed via
interpolation using velocities from neighbouring cells. Figure 2.2 shows an example
of the interpolation stencil for the 𝑢 velocity component in two dimensions. In the
figure, the velocity at the pink face, 𝑢𝑐, is reconstructed using information from
the closest reliable neighbouring points, 𝑢𝑖, 𝑗+1, 𝑢𝑖−1, 𝑗 , and a point on the immersed
boundary surface, 𝑢𝐼𝐵, which has zero velocity due to the no-slip condition. Finally,
velocity components on edges which are cut are set to zero velocity.

So
lid

i i+1i-1

j-1

j

j+1

ui-1,j

ui,j+1

uc

uIB

F
lu
id

Figure 2.2: Example of interpolation points used to obtain velocity near the im-
mersed boundary in two dimensions.

In a preprocessing step, a 3D STL file representing the geometry of the problem is
compared with the grid to determine which cells are cut by the immersed boundary,
and the location along each edge of the cell where the cut occurs. In NGA, the
immersed boundaries do not move in space or time. As such, the interpolation
coefficients are calculated in the initialization of the code, and do not change as the
simulation progresses. The linear interpolation formula is given as:

𝑢𝑐 =

𝑁∑︁
𝑛=1

𝛾𝑛𝑢𝑛 + 𝛾𝐼𝐵𝑢𝐼𝐵 (2.63)

where 𝑁 = 2, 3 for two- or three-dimensional problems, respectively, and 𝛾 are the
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pre-computed interpolation weights, where

𝑁∑︁
𝑛=1

𝛾𝑛 + 𝛾𝐼𝐵 = 1 (2.64)

The overall method is first-order accurate.

The velocity reconstruction described above does not satisfy continuity. To ensure
global mass conservation, a correction is added to each of the interpolated velocities
to ensure that the integral of the mass flux along the surface made from the uncut
faces is equal to zero. Then, the Poisson equation, Eq. (A.4), is solved with zero
gradient boundary conditions on the pink and green faces. Although this method
ensures global mass conservation, it is noted that local mass conservation is not
necessarily enforced.
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C h a p t e r 3

ISOLATING EFFECTS OF LARGE- AND SMALL-SCALE
TURBULENCE ON THERMODIFFUSIVELY UNSTABLE

PREMIXED HYDROGEN FLAMES

[1] M. X. Yao and G. Blanquart. “Isolating effects of large and small scale
turbulence on thermodiffusively unstable premixed hydrogen flames”. In:
Combustion and Flame (2024). (Under Review).

In this chapter, DNS are carried out using detailed chemistry and transport across a
range of Karlovitz numbers and integral length scales to isolate effects of small-scale
and large-scale turbulence. Sections 3.1 and 3.2 describe the problem setup and
numerical details. Section 3.3 provides an overview of the results. In Section 3.4,
the global effects and the local effects are decoupled to deconstruct the various
components of Eq. (1.6) and develop a general expression for 𝐼0. The local response
of the flame is investigated in more detail in Section 3.5. The conclusions are drawn
in Section 3.7.

3.1 Problem description
In this section, the physical problem and numerical methodology are presented.

3.1.1 Flow configuration
The inflow-outflow configuration [30, 32, 31, 43, 34, 35, 45] is commonly used to
study turbulent premixed flames since it allows for the development of a statistically
stationary, statistically planar, freely propagating flame without mean shear or strain.
The computational domain is rectangular, with domain size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 with
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 points in the 𝑥, 𝑦, and 𝑧 directions, respectively, where 𝑥 is the
streamwise direction. The mean inlet velocity at 𝑥 = 0 is set to match the turbulent
flame speed such that the flame is stationary within the domain. The boundary
condition at 𝑥 = 𝐿𝑥 is a convective outflow. In these simulations, 𝐿𝑦 = 𝐿𝑧 = 𝐿, and
the domain is periodic in both the 𝑦 and 𝑧 directions. The aspect ratio is 𝐿𝑥/𝐿 = 8.
The grid resolution is the same in all three directions, that is, Δ𝑥 = Δ𝑦 = Δ𝑧. A
schematic diagram of the flow configuration is shown in Fig. 3.1. The flame is
represented by an isosurface of the temperature, and is coloured by the progress
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variable source term. The effect of thermodiffusive instabilities are evident by the
variations in the source term along the flame front. A detailed discussion of the
turbulence generation is presented in the following sections.

Figure 3.1: Schematic diagram of the DNS flow configuration.

3.1.2 Numerical method
The governing equations are solved using NGA [64], which is a fully conservative,
finite-difference, code of arbitrarily high spatial order. In the present work, the spatial
and temporal discretization are both second-order accurate. The time integration
is conducted via the semi-implicit iterative Crank-Nicolson method [89]. The
WENO5 [93] scheme is used for scalar transport. To reduce the computational cost
associated with integrating the stiff chemistry in time, the preconditioning strategy
of Savard et al. [88] is used.

The grid resolution must be sufficient to fully resolve both the turbulence and
chemistry. As such, Δ𝑥 is set to meet the more restrictive criteria between 𝑘𝑚𝑎𝑥𝜂𝑢 >
1.5 [94] and roughly 16 points per laminar flame thickness [73]. Here, 𝑘𝑚𝑎𝑥 = 𝜋/Δ𝑥
is the maximum wavenumber which can be resolved on the grid. For hydrogen
chemistry, Savard et al. [88] showed that the maximum stable timestep size could
be increased from Δ𝑡𝑚𝑎𝑥 = 5.2 × 10−8 s using an explicit integration to 1.6 × 10−6 s
using the semi-implicit time integration. To ensure numerical stability, a slightly
lower value was selected as the upper bound in the present simulations. As such,
the timestep size is determined based on the more restrictive criteria between Δ𝑡 =

1 × 10−6 s and the convective CFL, Δ𝑡 ≤ 0.8Δ𝑥/max (u) s.
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3.1.3 Chemical model
The fuel mixture consists of hydrogen/air at an equivalence ratio of 𝜙 = 0.4. The
chemistry is described by the 9-species (see Table 4.1), 54-reaction mechanism pro-
posed by Hong et al. [95] with a few updated rate constants [96, 97]. The chemical
model is provided in supplemental material. In this work, the flames are burnt
lean to reduce the maximum flame temperature. Since the flame temperatures are
generally below 1800K (see Fig. 3.2), NOx is not expected for form [13]. Con-
sequently, to reduce the computational cost, we do not include the NOx pathways
in the chemical mechanism. Some important quantities from the one-dimensional,
laminar, unstretched, freely propagating flame are summarized in Table 3.1. Consis-
tent with typical studies of flamelets and flamelet modelling, the progress variable,
𝐶, is defined as the water mass fraction, 𝑌H2O.

The flame thickness is defined as:

𝑙𝐹 =
𝑇𝑏 − 𝑇𝑢

max ( |∇𝑇 |) (3.1)

and 𝑆𝐿 is the laminar flame speed. The subscripts 𝑢 and 𝑏 represent the unburnt
and burnt mixtures, respectively. With thermal diffusion, the flame speed and peak
source term are slightly increased, and the flame thickness is slightly decreased
compared to the full transport. The thermal diffusion acts to push the H2 and H
molecules into the preheat zone and away from the reaction zone, thereby slightly
reducing the peak source term. For the unity Lewis case, the flame speed is about
two times larger, and the peak source term is about 3.7 larger. The quantity 𝐶𝑝𝑒𝑎𝑘
denotes the value of 𝐶 in the one-dimensional flame where the peak source term,
¤𝜔1𝐷
𝐶,𝑚𝑎𝑥

, is located.

The nondimensional numbers in the following sections are defined based on values
taken from the one-dimensional laminar flame with mixture average transport and
thermal diffusion. Results from the three-dimensional flames are normalized by
their respective one-dimensional flamelets.

3.1.4 Simulation parameters
A summary of the simulation cases is presented in Tables 3.2 and 3.3. To conduct a
comprehensive study of the effect of turbulence on unstable lean premixed hydrogen
flames, simulations are carried out at six different Karlovitz numbers (A through
F) and four different integral length scales (C0.5, C1, C2, and C4). A fully lami-
nar three-dimensional case is also included for reference (LAM). Cases A through
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Table 3.1: Relevant parameters from one-dimensional laminar flames. “noSD”
refers to the mixture-averaged formulation without Soret diffusion.

Parameter Mix Avg SD Mix Avg noSD Unity Le
𝑇𝑢 [𝐾] 298 298 298
𝜙 0.4 0.4 0.4
𝑆𝐿 [𝑚/𝑠] 0.206 0.215 0.410
𝛿 [𝑚𝑚] 0.816 0.812 0.441
𝑙𝐹 [𝑚𝑚] 0.683 0.656 0.375
𝜈𝑢 [𝑚2/𝑠] 1.62 × 10−5 1.62 × 10−5 1.62 × 10−5

𝐶𝑝𝑒𝑎𝑘 0.0835 0.0832 0.0815
𝐶1𝐷
𝑚𝑎𝑥 0.1033 0.1033 0.1033
¤𝜔1𝐷
𝐶,𝑚𝑎𝑥

52.57 54.84 195.63

C represent realistic conditions for practical combustors. Cases D through F are
relevant for extreme cases such as those found in supernovae. As an additional
point of comparison, cases A, B, and C1 are also run without Soret diffusion, us-
ing both unity Lewis transport and mixture average formulations. These cases are
summarized in Table 3.3, and are calculated using the same forcing coefficient and
domain, thus maintaining the same turbulence properties (e.g., turbulent kinetic en-
ergy, dissipation, etc.). However, as noted in Table 3.1, the laminar flame speed and
thickness are different, and as such, the Karlovitz number and integral length scale
ratio are different. In Table 3.3, unity Lewis cases are denoted with a superscript 𝐿𝑒,
and mixture-averaged cases with no Soret diffusion are denoted with a superscript
𝑛𝑜𝑆𝐷.

The unburnt Karlovitz number is defined based on the ratio of flame and turbulence
timescales:

𝐾𝑎𝑢 =
𝜏𝐹

𝜏𝜂
=
𝑙𝐹

𝑆𝐿

(
𝜀

𝜈𝑢

)1/2
(3.2)

where 𝜀 is the dissipation, and 𝜈𝑢 is the kinematic viscosity. The flame timescale,
𝜏𝐹 , is defined as 𝑙𝐹/𝑆𝐿 , and the Kolmogorov timescale, 𝜏𝜂, is

√︁
𝜈𝑢/𝜀. The unburnt

turbulent Reynolds number is defined as:

𝑅𝑒𝑡 =
𝑢′ℓ

𝜈𝑢
(3.3)

where 𝑢′ is the turbulent intensity (rms velocity), and ℓ is the integral length scale.

The Karlovitz number, integral length scale, and turbulent intensity are often used
to characterize the burning regime and are related through the following expres-



31

sion [98]:
𝑢′

𝑆𝐿
= 𝐾𝑎

2/3
𝑢

(
ℓ

𝑙𝐹

)1/3
(3.4)

with the assumption that 𝑆𝐿𝑙𝐹 = 𝜈. In this study, the integral length scale effects
are tested at a fixed Karlovitz number, contrary to other studies which may instead
choose to hold 𝑢′/𝑠𝐿 constant [99]. In this way, the flame is subject to an identical
level of small-scale turbulence, and the effect of the integral length scale can be
decoupled from the turbulence intensity and studied in isolation.

Table 3.2: Parameters of the simulations with full mixture average transport and
Soret diffusion.

.

Case A B C0.5 C1 C2 C4 D E F LAM
𝐾𝑎𝑢 15 60 167 167 167 167 450 900 1900 -
𝑅𝑒𝑡 24.13 60.79 47.05 118.55 298.76 763.80 229.29 363.97 598.97 -
𝐿 [𝑚𝑚] 4.03 4.03 2.01 4.03 8.06 16.1 4.03 4.03 4.03 4.03
ℓ/𝑙𝐹 1 1 0.5 1 2 4 1 1 1 -
𝐵 [𝑠−1] 314 792 2452 1545 973 622 2987 4742 7803 0
𝑢′0/𝑆𝐿 2.95 7.43 11.50 14.50 18.27 23.35 28.04 44.51 73.24 0

Table 3.3: Parameters of the simulations with no Soret diffusion. Superscript 𝐿𝑒
refers to unity Lewis cases, and 𝑛𝑜𝑆𝐷 refers to mixture average cases.

Case ALe AnoSD BLe BnoSD CLe
1 CnosD

1
𝐾𝑎𝑢 4.4 14.14 17.5 56.58 47.6 154.07
𝑅𝑒𝑡 24.13 24.13 60.79 60.79 118.55 118.55
𝐿 [𝑚𝑚] 4.03 4.03 4.03 4.03 4.03 4.03
ℓ/𝑙𝐹 1.72 0.98 1.72 0.98 1.72 0.98
𝐵 [𝑠−1] 314 314 792 792 1545 1545
𝑢′0/𝑆𝐿 1.48 2.83 3.73 7.12 7.28 13.89

3.2 Turbulence forcing
The flow configuration does not have any large-scale mean shear to generate the
turbulence, such as in other studies [100]. Consequently, any injected turbulence
would decay as it travels downstream. To prevent this, the flow must be forced across
the domain in order to maintain a desired turbulence level. This forcing reproduces
the effects of any mean shear not present in the simulation domain [101, 29].

The forcing vector, f, in the momentum equation is the linear forcing of Lund-
gren [102, 103] with the modification of Carroll and Blanquart [104]. This is
written as:

f = 𝐵 𝑘0

𝑘 (𝑥, 𝑡) (𝜌u − 𝜌u (𝑥, 𝑡)) (3.5)
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where the bar represents the planar Reynolds average:

𝜙 =
1
𝐿2

∫ 𝐿

0

∫ 𝐿

0
𝜙dydz (3.6)

Here, 𝑘0 represents the target turbulence kinetic energy (TKE), and

𝑘 =
1
2

(
(̃𝑢′′) + �(𝑣′′)2 + �(𝑤′′)

2)
(3.7)

is planar Favre-averaged TKE. The Favre averaging is defined as:

𝜙 =
𝜌𝜙

𝜌
(3.8)

with the corresponding fluctuating component

𝜙′′ = 𝜙 − 𝜙 (3.9)

This forcing technique has been used by many authors and validated in detail by
Lapointe et al. [31] and Bobbitt et al. [32].

The forcing coefficient, 𝐵, directly controls the turbulence quantities of interest. For
a given domain size (in the periodic directions), 𝐿, the integral length scale is empir-
ically determined to be approximately ℓ ≈ 0.16𝐿 [32]. For a statistically stationary
flow, the nominal values for the rms perturbations, 𝑢′0, TKE, 𝑘0, dissipation, 𝜀0, and
eddy turnover time, 𝜏0, are analytically derived to be [104]:

𝑢′0 = 3𝐵ℓ (3.10)

𝑘0 =
27
2
𝐵2ℓ2 (3.11)

𝜀0 = 27𝐵3ℓ2 (3.12)

𝜏0 =
1

2𝐵
(3.13)

The reported 𝐾𝑎𝑢 numbers are the nominal values given in terms of 𝜀0, which
is directly controlled by 𝐵. Typically, the Karlovitz number is an output of the
turbulence intensity. However, to conduct a simulation at a target 𝐾𝑎𝑢, the forcing
coefficient is instead backed out:

𝐵 =

(
1

27
𝐾𝑎2

𝑢𝜈𝑢𝑆
2
𝐿

(0.16𝐿)2𝑙2
𝐹

)1/3

(3.14)

Turbulence is forced for the first 85% of the domain. Then, the forcing coefficient
is relaxed to 0 through a complementary error function in order to prevent negative
velocities at the outlet.
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To ensure realistic turbulence, an inflow file is generated from a simulation of ho-
mogenous isotropic turbulence (HIT). At each timestep, turbulent fluctuations from
the HIT are superimposed onto a bulk mean velocity at the inlet. The fluctuations are
initially smaller than the mean inlet velocity to prevent negative inflow conditions
and grow naturally to their nominal values with the forcing.

3.3 Overview of results
In this section, we provide an overview of the effect of turbulence intensity on the
turbulent flame brush. This discussion is meant to be qualitative in nature, and
not quantitative. Figures 3.2 and 3.3 show two-dimensional slices of the temper-
ature field for the tested cases. Due to the thermodiffusive instabilities, the three-
dimensional laminar flame (LAM) is not planar and exhibits cellular structures.
The post-flame temperature is seen to vary along the flame front. The curvature is
defined to be positive when the center of curvature is located in the burnt mixture.
The temperature is relatively higher in regions of positive curvature, and lower in
regions of negative curvature [105]. The preferential diffusion of H2 concentrates
the species into regions of positive curvature, creating a locally rich mixture which
enhances the burning. The opposite is true for regions of negative curvature. The
mismatch in local propagation speeds creates cellular structures which point toward
the burnt mixture.

Figure 3.2 shows the effect of increasing the Karlovitz number at a fixed integral
length scale ratio ℓ/𝑙𝐹 = 1. For the lowest Karlovitz number, the flame exhibits
a dominant structure with a continuous flame front. As the Karlovitz number in-
creases, up until 𝐾𝑎 = 450 (case D), the length scales of the structures at the
flame front decrease. The flame front is increasingly disrupted by the turbulence,
increasing the amount of small-scale features, leading to a significant increase in
the turbulent flame area. The flame front appears more broken as pockets of burnt
and unburnt gases are mixed by the turbulence. Due to the thermodiffusive insta-
bilities, the temperature field in the burnt mixture is highly inhomogeneous. At the
highest Karlovitz number, 𝐾𝑎 = 1900 (case F), the turbulent flame brush becomes
significantly shorter, and the mixing is smoother as there are fewer disconnected
pockets of fluid. Qualitatively, flame F appears similar to thermodiffusively stable
high Karlovitz number hydrocarbon flames [31].

Figure 3.3 shows the effect of changing the integral length scale at a fixed Karlovitz
number. As the integral length scale is increased, the flame presents significantly
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Figure 3.2: Two-dimensional slices of temperature field in the region of the flame.
From top to bottom: cases LAM, A, B, C1, D, E, and F.

more disconnected regions as pockets of unburnt gases are mixed into the burnt
mixture, increasing the turbulent flame area. Despite the smaller domain size
restricting the volume that the flame can grow in, the structures at the flame front
are qualitatively of the same size. It is important to note that for all four cases,
the Karlovitz number was kept constant by maintaining the same energy dissipation
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Figure 3.3: Two-dimensional slices of temperature field in the region of the flame.
From top to bottom: cases C0.5, C1, C2, and C4. The figures are scaled to represent
accurately the differences in physical length scales.

rate. Specifically, in the definition of the Karlovitz number, all values are constants
except for the dissipation, 𝜀0. As the integral length scale changes, the forcing
coefficient is chosen to keep 𝜀0 constant according to Eq. (3.12). Although the
large-scale turbulence that the flames are subject to is changing, the flames are still
subject to the same small-scale turbulence. Thus, it is reasonable that the flames
exhibit similar small-scale structures.

3.4 Global properties
The burning efficiency model of Eq. (1.6) aims to explain the relationship between
two global quantities: the turbulent flame speed and area. In this section, a detailed
study of the turbulent flame speed and area is conducted. Then, an expression for
the burning efficiency is proposed.
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3.4.1 Turbulent flame speed
From integrating the continuity and water mass fraction equations, the turbulent
flame speed is defined as the volume integral of the progress variable production
rate:

𝑆𝑇 =
1

𝜌𝑢𝐶𝑏𝐴

∫
𝑉

¤𝜔𝐶dV (3.15)

where 𝐴 = 𝐿 × 𝐿 is the cross-sectional area. An example of the temporal evolution
of the turbulent flame speed is shown in Fig. 3.4a for the different Karlovitz numbers.
The mean turbulent flame speeds are shown in Fig. 3.4b as a function of the Karlovitz
number. The turbulent flame speed increases with the Karlovitz number up to Case
D, after which the flame speed decreases. A similar trend was noted by Aspden
et al. [20]. Consistent with their results, we find that there is a 1/3 scaling on
the Karlovitz number up to case D. In our simulations, the ratio ℓ/𝑙𝐹 is fixed.
As such, the scaling between the Reynolds and Karlovitz numbers is given as
𝑅𝑒𝑡 ∝ 𝐾𝑎

2/3
𝑢 , and hence the turbulent flame speed scales as 𝑅𝑒1/2

𝑡 . A 1/2 power
on the Reynolds number was also measured experimentally by Liu et al. [106] for
spherically expanding flames with 𝐿𝑒 < 1 based on the theory of Chaudhuri et
al. [107]. It is interesting to contrast this to the 1/2 scaling on the Karlovitz number
reported by Howarth et al. [39] for the surface-mean local flame propagation speed.
The turbulent flame speeds are strongly dependent on the integral length scale ratio
varying by a factor of almost 6 from the smallest to largest integral length scales.
The inclusion of Soret diffusion results in a higher normalized mean flame speed by
about 35% for case A to 15% for case C, compared to the value of 8% reported by
Song et al. [45] for thermodiffusively stable flames.

One of the key attributes of the thermodiffusively unstable flames is the existence
of superadiabatic burning, that is, burning in regions where the progress variable is
higher than the nominal one-dimensional equilibrium value, 𝐶1𝐷

𝑚𝑎𝑥 . To quantify how
much the superadiabatic burning regions contribute to the flame speed, Eq. (3.15)
can be split to account for it explicitly:

𝑆𝑇 =
1

𝜌𝑢𝐶𝑏𝐴

[ ∫
𝑉

¤𝜔𝐶
(
𝐶 ≤ 𝐶1𝐷

𝑚𝑎𝑥

)
dV +

∫
𝑉

¤𝜔𝐶
(
𝐶 > 𝐶1𝐷

𝑚𝑎𝑥

)
dV

]
(3.16)

From this, the superadiabatic ratio is defined as:

𝛽 ≡
∫
𝑉
¤𝜔𝐶

(
𝐶 > 𝐶1𝐷

𝑚𝑎𝑥

)
dV∫

𝑉
¤𝜔𝐶dV

(3.17)

and represents the percentage of 𝑆𝑇 which is attributed to superadiabatic burning.
Figure 3.5 shows 𝛽 for the tested cases. For the laminar case, about 30% of the
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(a) Instantaneous

(b) Mean

Figure 3.4: Instantaneous (a) and mean (b) normalized turbulent flame speed. Black
symbols represent full transport cases, red symbols represent no Soret cases, and
open symbols represent unity Lewis cases.

flame speed can be attributed to superadiabatic burning. This value is approximately
constant at 40% for cases A through 𝐶1, before decaying rapidly to 13% for case
F. This decrease also quantifies the decrease of differential diffusion effects at
high Karlovitz numbers. The reduced contribution of the superadiabatic burning
at the highest Karlovitz numbers is consistent with the qualitative observations
from Fig. 3.2. This rapid reduction in the relative importance of superadiabatic
burning may also explain the decrease in turbulent flame speeds after case D in
Fig. 3.4b. Finally, the superadiabatic ratio does not appear to depend on the integral
length scale, as for cases C0.5-C4, there is a scatter of about ±0.023 without any
monotonic trend. In contrast, including Soret diffusion leads to systematically more
superadiabatic burning with an increase in the ratio by about 0.065.

To explain the evolution of the turbulent flame speed, it is insightful to rewrite any
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Figure 3.5: Ratio of turbulent flame speed which is attributed to superadiabatic
burning. The dashed line represents case LAM, black symbols represent full trans-
port cases, and red symbols represent cases with no Soret diffusion.

volumetric integral as a surface integral along an isocontour of 𝐶 and an integral in
the normal direction: ∫

𝑉

¤𝜔𝐶dV =

∫
𝑛

(∬
𝐴(𝐶)

¤𝜔𝐶dA
)

dn (3.18)

Taking dn = dC/|∇𝐶 |, Eq. (3.18) can be rewritten as:∫
𝑉

¤𝜔𝐶dV =

∫
𝐶

∬
𝐴(𝐶)

¤𝜔𝐶
|∇𝐶 |dAdC (3.19)

and the turbulent flame speed can be written as:

𝑆𝑇 =
1

1 − 𝛽
1

𝜌𝑢𝐶𝑏𝐴

∫ 𝐶1𝐷
𝑚𝑎𝑥

0

〈
¤𝜔𝐶

|∇𝐶 |

����𝐶〉
𝐴(𝐶)dC (3.20)

The turbulent flame speed can be interpreted as a convolution of the area of the
flame isosurface, 𝐴(𝐶), with the gradient-weighted conditional mean source term.

Turbulence can thus impact the flame speed through one of two main pathways.
The first pathway is through local effects induced by the turbulence on the mean
source term,

〈
¤𝜔𝐶

|∇𝐶 | |𝐶
〉
. As the small-scale turbulence penetrates the flame, it alters

the flame structure through enhanced mixing and diffusion. The second pathway is
through the area of flame isosurfaces, 𝐴(𝐶). As the larger-scale turbulence perturbs
the flame front, it wrinkles the flame, altering the curvature, 𝜅, and necessarily
increasing the flame area. These effects are detailed in the following subsections.
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3.4.2 Area of flame isosurfaces
Previous studies have identified the instantaneous flame front as the isosurface of
either 𝑇𝑝𝑒𝑎𝑘 or 𝐶𝑝𝑒𝑎𝑘 [43, 108]. The flame area is then subsequently calculated as
the area of that isosurface. However, the presence of thermodiffusive instabilities in
the current simulations necessitate some nuances on the definition of the flame area.

Fundamentally, the flame front is described as the location where the reactions
are occurring. Figure 3.6 shows the temperature and the normalized source term
with isocontours of 𝐶 from case A. From the upper plot, it can be seen that the
isocontours are irregularly spaced, indicating that the flame area varies depending
on the value of 𝐶 chosen as the isocontour value. From the lower plot, along the
isocontour of 𝐶𝑝𝑒𝑎𝑘 , the source term varies with the curvature of the isocontour. In
regions of positive curvature (center of curvature in burnt mixture), the source term
is about 7.5 times larger than the maximum source term from the one-dimensional
flame. The curvature concentrates the differential diffusion into these regions, and
as a result, the mixture becomes locally richer and the burning is significantly
enhanced. Hydrogen diffuses out of regions of negative curvature, creating locally
leaner mixtures, and the source term reduces. Interestingly, the source term plot
shows a pocket of non-burning low temperature mixture which has been engulfed
into the burnt mixture and is captured by the isosurface of 𝐶𝑝𝑒𝑎𝑘 . This artificially
increases the flame area, and the effects can become more pronounced as the flow
fields become more complex with higher levels of turbulence, as shown in Fig. 3.2.

To illustrate the effect of the isosurface value selection, Fig. 3.7 shows the nor-
malized area of isosurfaces as a function of C, 𝐴(𝐶)/𝐴, for the various Karlovitz
number flames. The isosurfaces are created using the classical marching cubes
method [109]. For each value of 𝐶, an isosurface is created using the marching
cubes algorithm, which is then used to calculate the area, 𝐴(𝐶). The 𝐴(𝐶) profiles
may be decomposed into two regions. At lower values of the progress variable
(for 𝐶 < 𝐶𝑝𝑒𝑎𝑘 ), 𝐴(𝐶) increases modestly with progress variable. At a fixed 𝐶,
it increases monotonically with the Karlovitz number from case LAM to case D.
Such an increase is expected: more intense turbulence means more flame wrinkling
and hence a larger isosurface area. At larger values of the progress variable (for
𝐶 > 𝐶𝑝𝑒𝑎𝑘 ), 𝐴(𝐶) increases sharply with progress variable before reaching a large
spike at 𝐶 = 𝐶1𝐷

𝑚𝑎𝑥 , with a subsequent drop-off to 0. The spike is indicative of
the strong post-flame inhomogeneities present due to differential diffusion effects.
In both regions, as the Karlovitz number is further increased (cases E and F), the
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Figure 3.6: Temperature, 𝑇 (top), and normalized source term, ¤𝜔𝐶/ ¤𝜔1𝐷
𝐶,𝑚𝑎𝑥

(bottom)
for case A. Black isolines on the temperature represent 0.4 to 1.6 times 𝐶𝑝𝑒𝑎𝑘 in
increments of 0.1. The black isoline on the source term is at 𝐶𝑝𝑒𝑎𝑘 .

differential diffusion effects are suppressed. This translates into overall flatter 𝐴(𝐶)
profiles, with smaller spikes and quicker decay to zero in superadiabatic regions
(𝐶 > 𝐶1𝐷

𝑚𝑎𝑥).

Figure 3.7: Normalized area of flame isosurfaces as a function of normalized
progress variable for flames at ℓ/𝑙𝐹 = 1. The vertical line denotes the location of
𝐶𝑝𝑒𝑎𝑘 .

The influence of the integral length scale on the flame area is shown in Fig. 3.8.
Figure 3.8a shows the effect of the integral length scale ratio on the flame isosurface
area for cases 𝐶𝑥 . As ℓ/𝑙𝐹 is increased, the ratio 𝐴(𝐶)/𝐴 increases systematically.
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The larger integral length scales introduce more large-scale wrinkling. A linear
dependence was observed for turbulent hydrocarbon flames by Lapointe [110]. To
investigate this dependence further, Fig. 3.8b shows 𝐴(𝐶)/𝐴 scaled by ℓ/𝑙𝐹 . The
profiles are almost collapsed, indicating that 𝐴(𝐶)/𝐴 scales almost linearly with the
integral length scale ratio. In the present simulations, the domain size and integral
length scale are inseparably linked since ℓ ≈ 0.16𝐿 [32].

As pointed out by Aspden [20], it is unclear if the domain size or the integral
length scale are the cause of the linear trend of the ratio 𝐴(𝐶)/𝐴. To elucidate
their individual contributions, a single snapshot of case 𝐶2 is decomposed into
four quadrants. Each quadrant is characterized by the same integral length scale
as the original full domain, but has a reduced domain width by a factor of 2.
The normalized flame isosurface areas for all four quadrants and the full domain
are shown in Fig. 3.8c. The overlapping profiles indicate that the ratio 𝐴(𝐶)/𝐴
is independent of the domain width. The domain width does impact the flame
isosurface area 𝐴(𝐶) through the cross-sectional area 𝐴 = 𝐿2, but not their ratio.

3.4.3 Turbulent flame area
Given the large variations in 𝐴(𝐶), defining a single 𝐴𝑇 value for a given flame
presents some arbitrariness, and hence different definitions may be proposed.

Inspired by Eq. (3.20), a natural definition is to use a source term-weighted average
flame area:

𝐴𝑇 ≡

∫
𝐶1𝐷
𝑚𝑎𝑥

0

〈
¤𝜔𝐶

|∇𝐶 |
��𝐶〉

𝐴(𝐶)dC∫
𝐶1𝐷
𝑚𝑎𝑥

0

〈
¤𝜔𝐶

|∇𝐶 |
��𝐶〉

dC
(3.21)

The weighting gives more importance to areas with enhanced burning at the flame
front, and significantly reduces the contribution of non-burning regions, such as
those shown in Fig. 3.6. Figure 3.9 shows the area of flame isosurfaces for case A.
For the stable unity Lewis number case, the flame area is approximately constant
regardless of the chosen isosurface value. This constant value is well reproduced by
the source term-weighted average flame area. For the full transport case, the turbu-
lent flame area calculated using Eq. (3.21) intersects the plot of 𝐴(𝐶) approximately
at 𝐶𝑝𝑒𝑎𝑘 .

The influences of the Karlovitz number and integral length on the mean turbulent
flame areas are shown in Fig. 3.10. The area exhibits some dependence on the
Karlovitz number, increasing from about 2.3 for the LAM case to about 10.3 for case
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(a) Effect of integral length scale (b) Scaled by integral length scale ratio

(c) A snapshot of case C2 (line), compared to the
flame isosurface area for each quarter of the do-
main (markers).

Figure 3.8: Effect of integral length scale and domain area on the flame isosurface
area.

D. The dependence on the integral length scale is stronger. The flame area increase
follows a linear trend for the first three integral length scale ratios, before deviating
from the trend at ℓ/𝑙𝐹 = 4. Fig. 3.10b also shows an empirical ∝ (ℓ/𝑙𝐹)0.75 trend for
comparison, which fits the data better at higher integral length scale ratios. Based
on the current results, it is not possible to say whether the trend is generalizable
to larger integral length scale ratios. These observations are consistent with the
results shown in Fig. 3.8. In hydrocarbon flames, Lapointe [110] found a linear
dependence of 𝐴𝑇/𝐴 on ℓ/𝑙𝐹 , up to an integral length scale ratio of 4, and Song et
al. [36] found similar trends for thermodiffusively stable premixed hydrogen flames
up to an integral length scale ratio of 6. In all cases, the turbulent flame areas
calculated by Eq. (3.21) are very close to the values obtained from the isosurface
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Figure 3.9: Area of flame isosurfaces as a function of progress variable for flame
A with full transport and unity Lewis transport (open symbols). The dashed lines
correspond to the mean turbulent flame areas calculated using Eq. (3.21). The
vertical line denotes the location of 𝐶𝑝𝑒𝑎𝑘 .

area of 𝐶𝑝𝑒𝑎𝑘 .

The decrease of 𝐴𝑇/𝐴 at the highest Karlovitz numbers is hypothesized to be
attributed to two main sources. The first is that the flame becomes too broad, and
the domain is too small to accommodate the associated large-scale wrinkling (see
section 3.3). The second is that the thermodiffusive instabilities are suppressed as
the effective Lewis number approaches unity, thereby reducing the flame area which
was being enhanced. The reduction of the effective Lewis number was quantified
by Savard and Blanquart [19] for simulations without Soret diffusion.

3.4.4 Burning efficiency
The turbulent flame speed and area are related to each other through the burning
efficiency parameter from Eq. (1.6). As such, the definition of the turbulent flame
area is intrinsically linked to that of the burning efficiency.

Taking the expressions for 𝑆𝑇 and 𝐴𝑇 from Eqs. (3.20) and (3.21), 𝑆𝑇/𝑆𝐿 can be
written as:

𝑆𝑇

𝑆𝐿
=

1
1 − 𝛽

∫
𝐶1𝐷
𝑚𝑎𝑥

0

〈
¤𝜔𝐶

|∇𝐶 |
��𝐶〉

dC∫
𝐶1𝐷
𝑚𝑎𝑥

0

¤𝜔𝑙𝑎𝑚
𝐶

|∇𝐶 |𝑙𝑎𝑚 dC

𝐴𝑇

𝐴
(3.22)
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(a) Effects of Karlovitz number at a fixed ℓ/𝑙𝐹 = 1.

(b) Effects of integral length scale ratio for case C conditions.
The solid line is a linear trend fit to the first three data points.

Figure 3.10: Impact of the Karlovitz number (a) and integral length scale ratio (b) on
the mean normalized turbulent flame area. Black symbols represent full transport
cases, open symbols represent unity Lewis number cases, and red symbols represent
no Soret cases. The dashed line in (a) represents case LAM.

This equation is mathematically equivalent to Eq. (1.6) with

𝐼0 ≡ 1
1 − 𝛽

∫
𝐶1𝐷
𝑚𝑎𝑥

0

〈
¤𝜔𝐶

|∇𝐶 |
��𝐶〉

dC∫
𝐶1𝐷
𝑚𝑎𝑥

0

¤𝜔𝑙𝑎𝑚
𝐶

|∇𝐶 |𝑙𝑎𝑚 dC
(3.23)

The burning efficiency provides a way to relate two global quantities, 𝑆𝑇 and 𝐴𝑇 .
To study local flame behaviour, Howarth et al. [39] proposed a predictive empirical
model for the surface-mean local flame propagation speed. The expression for 𝐼0 is
a generalization of the one proposed by Lapointe and Blanquart [43], as it does not
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rely on the key assumption that the source term scales with its value at 𝐶𝑝𝑒𝑎𝑘 . The
calculated values of 𝐼0 are plotted in Fig. 3.11. There are three key observations.

Figure 3.11: Burning efficiency as calculated by Eq. (3.23) versus Karlovitz number.
The dashed line is obtained from case LAM. Black symbols represent full transport
cases, open symbols represent unity Lewis solutions, and red symbols represent
cases with no Soret diffusion.

First, at a fixed Karlovitz number, the burning efficiency appears to be almost
independent of the integral length scale. For cases C0.5 through C4, 𝐼0 falls within
the range of 2.26 to 2.45.

Second, the burning efficiency increases with the Karlovitz number up until case D,
and then decreases at case F. At low turbulence intensities, the burning efficiency
asymptotes to the value from case LAM. Notably, due to the thermodiffusive in-
stabilities, the burning efficiency of the laminar case is 1.35, indicating that the
instabilities play a role in the burning efficiency enhancement. At the high Karlovitz
numbers, the decrease in the burning efficiency is consistent with the decrease
observed in the superadiabatic ratio. Following Fig. 3.5, at the highest Karlovitz
numbers, differential diffusion effects are virtually suppressed. Consequently, the
relevant laminar flame speed would be that of a unity Lewis number flame, which
is larger than that with full transport (see Table 3.1). Since the current results are
calculated based on the nominal 𝑆𝐿 for full transport, the values of 𝐼0 are inflated at
higher 𝐾𝑎𝑢.

Finally, the cases without Soret diffusion are systematically lower than those with,
ranging from a 8.3% to 10.4% decrease in the burning efficiency. The decreases
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observed in the flame speed and flame area are further characterized by a lower
burning efficiency.

3.4.5 Comparison of burning efficiency expressions
In this work, an expression for the burning efficiency was proposed in Eq. (3.23).
This can be compared to the expression proposed by Lapointe and Blanquart [43]
in Eq. (1.7). Their expression relies on the fundamental assumption that the source
terms and gradients scale locally with their value at 𝐶𝑝𝑒𝑎𝑘 . Stated differently, the
conditional mean turbulent profiles have the same shape as the laminar profiles.
The new expression does not make such an assumption, and depends on the full
profiles. The addition of the superadiabatic ratio, 𝛽, further incorporates the effects
of superadiabatic burning, which do not exist in the stable hydrocarbon flames
investigated by Lapointe and Blanquart [43].

A comparison of the expressions is shown in Fig. 3.12. For the thermodiffusively
stable flames of Lapointe and Blanquart [43], the two expressions show strong
agreement. The same can be said for the unity Lewis number cases of the present
work. However, for the thermodiffusively unstable flames, the two expressions
produce drastically different results, with Eq. (1.7) systematically underestimating
𝐼0. The incorporation of the superadiabatic ratio and the full source term profiles
are necessary to obtain correct values of 𝐼0 for thermodiffusively unstable flames.
Note that, to eliminate the effect of different ambient temperatures when comparing
results with previous simulations [31], we used the reaction zone Karlovitz number:

𝐾𝑎𝛿 =
𝛿2

𝜂2
𝛿

(3.24)

where 𝜂𝛿 is the Kolmogorov length scale calculated using 𝜈 at 𝐶𝑝𝑒𝑎𝑘 . The local
flame response, including the source term, is discussed in the following section.

3.5 Local flame response
As described in Eq. (3.23), the burning efficiency is dictated by the local response
of the flame to the imposed turbulence. In this section, we explore the interplay
between chemical source term, turbulence, and flame curvature.

3.5.1 Chemical source term
The conditional mean progress variable source term profiles are plotted in Fig. 3.13.
Consistent with the previous observation related to the burning efficiency, at a
given Karlovitz number, the source term profiles in Fig. 3.13a show only a weak
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Figure 3.12: Comparison of 𝐼0 calculated using Eq. (3.23) (circles) and Eq. (1.7)
(stars) for the n-heptane flames of Lapointe and Blanquart [43] (blue symbols),
the present lean hydrogen flames with full transport (black symbols), and the lean
hydrogen flames with unity Lewis number (open symbols).

dependence on the integral length scale. The profiles show strong agreement until
the peak, where the peak value shows a slight increase with increasing integral
length scale. However, the differences are minor in comparison to the increase in
flame area with increasing integral length scale. Non-zero source terms beyond the
nominal maximum 𝐶1𝐷

𝑚𝑎𝑥 value correspond to superadiabatic mixtures.

(a) Effect of integral length scale (b) Effect of Karlovitz number

Figure 3.13: Effect of the integral length scale (a) and Karlovitz number (b) on
the conditional mean source term profiles. The dotted lines indicate profiles from
limiting one-dimensional flames.

Regardless of the Karlovitz number, the shape of the profiles (Fig. 3.13b) is changed
significantly, even for the laminar case. Before the peak source terms, the three-
dimensional mean profiles exhibit a bump (around𝐶 ≈ 0.35) which is not present for
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the one-dimensional profiles. For all cases, the area under the curve is significantly
larger than for the one-dimensional profiles. The thermodiffusive instabilities spread
the burning across a wider range of𝐶 values. Although the magnitude of the source
terms is different, they share roughly the same shape until case D. After case D, the
profiles start to resemble the unity Lewis profile more closely. This change in the
shape of the source term is consistent with the decrease in the burning efficiency of
Fig. 3.11. The change of the mean flame structure conditioned on different progress
variables has also been noted by other researchers [34, 20].

To quantify this evolution, Fig. 3.14 shows the evolution of the peak source term and
its location versus Karlovitz number. The magnitude is found to increase until case
D, where it reaches a steady value, slightly above that of the unity Lewis number
flamelet. Similarly, the location of the peak source term shifts to reach the value of
the one-dimensional unity Lewis number flame. This asymptoting to the unity Lewis
number values at high Karlovitz numbers is the result of the gradual disappearance
of differential diffusion effects and was also observed in hydrocarbon flames [31].

(a) Maximum value

(b) Location of maximum

Figure 3.14: Peak normalized conditional mean progress variable source term (a)
and its location in progress variable space (b).
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3.5.2 Flame curvature
The curvature is calculated as the divergence of the normal vector:

𝜅 = −∇ · n = ∇ · ∇𝐶
|∇𝐶 | (3.25)

where the curvature is positive when the center of curvature is located in the burnt
mixture. Similar to Day et al. [108], the curvature is calculated everywhere in the
domain, and then sampled at an isosurface of interest, in this case, 𝐶𝑝𝑒𝑎𝑘 .

(a) Effect of Karlovitz number (b) Effect of integral length scale ratio

Figure 3.15: Probability density function of the normalized curvature, sampled at
𝐶𝑝𝑒𝑎𝑘 .

The probability density function of the curvature, normalized by 𝑙𝐹 , and sampled at
𝐶𝑝𝑒𝑎𝑘 is shown in Fig. 3.15. Overall, the profiles are skewed slightly towards negative
curvature, which is consistent with Lapointe and Blanquart [43]. As the Karlovitz
number is increased, the peak drops by more than a factor of 2, and the variance is
increased. The turbulence introduces fluctuations at smaller scales, which in turn
increases the curvature. In contrast, the effect of the integral length scale (shown
in Fig. 3.15b) is much less severe. The distribution narrows slightly with a higher
peak value as the integral length scale is increased. This observation reflects the
negligible impact of the integral length scale/domain size on the geometry of the
flame front (at a fixed Karlovitz number).

The spread of the curvature probability density function is measured by the standard
deviation, 𝜎𝜅, which is shown in Fig. 3.16. The laminar reaction zone thickness,
𝛿, is defined as the distance over which the fuel consumption rate exceeds 5%
of its maximum value. The trends are similar to those observed by Lapointe
and Blanquart [43], although the magnitudes are systematically higher, indicating
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relatively smaller radii of curvature compared to hydrocarbon flames at the same
reaction zone Karlovitz numbers. The standard deviation appears to scale with a
quantity which lies between the reaction zone thickness and the Kolmogorov length
scale.

(a) Normalized by reaction zone thickness

(b) Normalized by Kolmogorov length scale

Figure 3.16: Standard deviation of the curvature probability density function at
𝐶𝑝𝑒𝑎𝑘 , normalized by the reaction zone thickness (a) and Kolmogorov length scale
(b). Black symbols represent full transport cases, red symbols represent no Soret
cases, and open symbols represent unity Lewis cases.

3.5.3 Propagating surface vs. material surface
To provide insight into the evolution of the flame front, we follow the analysis of
Yeung et al. [111] which considers a flame front as an infinitely thin propagating
surface with an intrinsic propagation speed. As turbulence is introduced, a compe-
tition arises between self-propagation and flow-induced motion. Initially, the flame
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front behaves as a propagating surface and can respond to the turbulence-induced
curvature. However, once turbulence is increased beyond a certain point, the flame
acts as a material surface, convected by the flow and unable to control its shape. At
this point, the geometry of the flame front is independent of flame quantities and
scales purely with turbulence quantities. For stable flames, the transition between
propagating and material surfaces is characterized by the ratio of the propagating
velocity, 𝑆0

𝐿
, and the Kolmogorov velocity scale, 𝑢𝜂. This was discussed in detail by

Savard and Blanquart [30], who found that reaction zones under intense turbulence
fields behave as material surfaces for 𝑛-heptane/air flames.

Figure 3.17: Ratio of 𝑢𝑝𝑒𝑎𝑘/𝑢𝜂,𝛿 for the flames in this paper, illustrating the transition
between propagating versus material surface behaviour.

The extension to highly turbulent, unstable, lean hydrogen/air flames requires more
discussion. First, there is no unique propagation speed as the thermodiffusive
instabilities cause any laminar flames to have a local propagation speed varying
from close to zero (local extinction) up to several times 𝑆𝐿 (for LAM case) [112].
Second, as the Karlovitz number increases, the flame may not be assumed to be
infinitely thin. For these reasons and since we are interested in the propagation of a
surface located at the reaction zone, we choose 𝑢𝑝𝑒𝑎𝑘 , the gas velocity at the peak
source term from the one-dimensional laminar flame. The Kolmogorov velocity,
𝑢𝜂,𝛿 =

(
𝜈𝑝𝑒𝑎𝑘𝜀0

)1/4, is calculated using the viscosity at the peak source term from
the one-dimensional laminar flame.

The ratio is shown in Fig. 3.17. The ratio for case A is higher than one, indicating
that the flame is expected to behave as a propagating surface. In this case, the
intrinsic instability of the flame is expected to have a large contribution to the flame
geometry. As the Karlovitz number is pushed higher, the ratio drops to be much less
than one, indicating that turbulence is expected to have the dominant effect on the
flame geometry.
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The effect of laminar instabilities on the propagation of turbulent flame fronts
was presented in the analytical study of Chaudhuri et al. [107] and confirmed
experimentally for thermodiffusively unstable flames by Liu et al. [106]. One of
the key metrics of interest is the ratio 𝑢′/𝑆𝐿 . When this ratio is greater than one, it
indicates that turbulence fluctuations are larger than the natural propagation speed,
and turbulence effects are expected to have a stronger effect compared to laminar
effects. In the wrinkled flamelet regime, the propagation is dictated by cellular
instabilities, and in the thickened flamelet regime, the propagation is dictated by
turbulence. The flames in this paper (see Tables 3.2 and 3.3) are within the region
where turbulence effects are expected to dominate over laminar effects, and this
agrees with the results of Fig. 3.17.

3.5.4 Chemical source term
The two-dimensional mean source terms conditioned on 𝐶 and 𝜅 are shown in
Fig. 3.18. As the Karlovitz number is increased, the mean source term is spread
over a larger range of 𝜅 values. The effect of curvature on the source term appears
to be diminishing with increasing 𝐾𝑎𝑢. To quantify this effect, Fig. 3.19 shows the
mean source term conditioned on 𝜅 at 𝐶𝑝𝑒𝑎𝑘 . As the Karlovitz number is increased,
the source term profile becomes flatter. Critically, the profiles asymptote towards
the dashed line, which represents the peak source term from a one-dimensional
unity Lewis flame normalized by that of the full transport flame. These figures show
clearly that the effect of curvature is becoming less pronounced, which is consistent
with the observation that differential diffusion effects are being dampened by the
turbulence. In the limit of infinite Karlovitz number, it is expected that the effective
Lewis number is unity [19], and the source term would become fully independent
of curvature [75].

3.6 A priori assessment of 𝑍-𝐶 tabulation
In Section 2.2, one of the proposed methods for chemistry tabulation was a two-
equation model based on the progress variable, 𝐶, and a mixture fraction-like
variable, 𝑍 . In this section, we study the conditional statistics of local flame
geometry and chemistry effects. The validity of the two-equation parameterization
of the flame is discussed for the wide range of Karlovitz numbers in the present
simulation database. The analysis is important in addressing the LES modelling in
Chapter 5.
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Figure 3.18: Normalized two-dimensional mean source term ⟨ ¤𝜔𝐶 |𝐶, 𝜅⟩/ ¤𝜔1𝐷
𝐶,𝑚𝑎𝑥

.

3.6.1 Local equivalence ratio fluctuations
Differential diffusion causes local focusing and defocusing of the species diffusion
flux, resulting in fluctuations of the local equivalence ratio. These fluctuations can
be characterized by the mixture fraction, which is defined for a one-step irreversible
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Figure 3.19: Mean source term conditioned on 𝐶𝑝𝑒𝑎𝑘 and 𝜅. The dotted line
represents ¤𝜔1𝐷,𝐿𝑒

𝐶,𝑝𝑒𝑎𝑘
/ ¤𝜔1𝐷

𝐶,𝑝𝑒𝑎𝑘
.

chemical reaction as [58]:

𝑍𝑚𝑖𝑥 =
𝜈𝑌𝐹 − 𝑌𝑂 + 𝑌𝑂,2
𝜈𝑌𝐹,1 + 𝑌𝑂,2

(3.26)

where 𝜈 is the mass stoichiometric ratio, 𝑌𝑂,2 is the oxidizer mass fraction in air,
and 𝑌𝐹,1 is the fuel mass fraction of the fuel stream. In this work, 𝑌𝑂,2 = 0.232,
𝑌𝐹,1 = 1, and 𝜈 = 8. 𝑌𝑂 and 𝑌𝐹 represent the local oxidizer and fuel mass fractions.

The joint probability density functions of 𝑍𝑚𝑖𝑥 and 𝐶 for the different Karlovitz
number cases at ℓ/𝑙𝐹 = 1 are shown in Fig. 3.20. The black solid lines repre-
sent one-dimensional conditional means, ⟨𝑍𝑚𝑖𝑥 |𝐶⟩. For reference, the blue dotted
lines represent the nominal one-dimensional flamelet (𝜙 = 0.4), and the minimum
flamelet representing the lean flammability limit (𝜙 = 0.25). The black dashed line
represents the physical limit of 𝑍𝑚𝑖𝑥 versus 𝐶 for fully burnt conditions from the
conservation of mass. Based on the assumption of one-step chemistry, the following
relations can be derived [98, 33]:

𝑌𝐹 = 𝑌𝐹,1𝑍𝑚𝑖𝑥 −
𝐶

𝜈 + 1
(3.27)

𝑌𝑂 = 𝑌𝑂,2 (1 − 𝑍𝑚𝑖𝑥) − 𝐶
( 𝜈

𝜈 + 1

)
(3.28)

For lean flames, 𝑌𝐹 = 0 at the maximum value of 𝐶. The physical bound is thus
determined by 𝑍𝑚𝑖𝑥 = 𝐶/(𝜈 + 1). In Fig. 3.20, it can be seen that the distribution of
𝑍𝑚𝑖𝑥 and𝐶 show some violation of both the minimum flamelet and fully burnt limits.
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Figure 3.20: Joint probability density function, log10 (pdf (𝑍𝑚𝑖𝑥 , 𝐶)), of 𝑍𝑚𝑖𝑥 and 𝐶
for the different Karlovitz number cases. The black solid lines are mean profiles of
𝑍𝑚𝑖𝑥 conditioned on the progress variable, ⟨𝑍𝑚𝑖𝑥 |𝐶⟩, the blue dotted lines represent
the nominal and minimum laminar one-dimensional flamelet solutions, and the black
dashed line represents the physical bound for equilibrium chemistry.

It is important to note that these limits are theoretical for one-step chemistry. For
detailed chemistry, the limits are also verified under thermodynamic equilibrium, for
example, one-dimensional laminar flames. However, for thermodiffusively unstable
flames, the values can go temporarily beyond the nominal limits. Values of𝐶 > 𝐶1𝐷

𝑚𝑎𝑥
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represent superadiabatic burning. The only way for superadiabatic burning to occur
is if there is a higher than nominal concentration of fuel. This is reflected in the
increase of 𝑍𝑚𝑖𝑥 past 𝐶1𝐷

𝑚𝑎𝑥 .

As the Karlovitz number is increased, the jPDF becomes less spread across 𝑍𝑚𝑖𝑥 ,
and becomes more uniform across the values of 𝐶. The conditional mean profiles,
⟨𝑍𝑚𝑖𝑥 |𝐶⟩, are also shown in black solid lines, and exhibit similar trends. For case
A, the profile of 𝑍𝑚𝑖𝑥 first decreases to a minimum before increasing to the nominal
value at 𝐶 = 𝐶1𝐷

𝑚𝑎𝑥 . The magnitude of the dip is gradually reduced as the Karlovitz
number is increased. For case F, the conditional mean is almost constant with respect
to 𝐶. These trends clearly outline the diminishing impact of differential diffusion at
high Karlovitz numbers.

Figure 3.21: Mean of 𝑍𝑚𝑖𝑥 conditioned on the flame curvature, 𝜅. The dashed line
represents the nominal value of 𝑍𝑚𝑖𝑥 for a 𝜙 = 0.4 hydrogen flame.

Because the local differential diffusion effects are strongly related to the flame
geometry, it is also of interest to quantify the effect of flame curvature. Figure 3.21
shows the mean of 𝑍𝑚𝑖𝑥 conditioned on 𝜅. In regions of negative curvature, the
burning is inhibited; this is characterized by values of 𝑍𝑚𝑖𝑥 which are lower than
nominal, indicating leaner fuel mixtures. In regions of positive curvature, the
burning is enhanced due to the diffusion focusing effect; in these cases, the value
of 𝑍𝑚𝑖𝑥 is higher than nominal, indicating richer fuel mixtures. The effect is more
pronounced at lower Karlovitz numbers, with case A exhibiting the largest deviation
from nominal. The discrepancy is larger for negative curvatures than for positive
curvatures. This could be related to the fact that high negative curvatures have more
prominent consequences, as the flame can be extinguished in these regions. As the
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Karlovitz number is increased, the differences decrease in magnitude. The results
clearly show that differential diffusion effects become increasing less impactful as
the Karlovitz number is increased.

3.6.2 Chemical source term
As discussed previously, the local equivalence ratio fluctuations, represented by
𝑍𝑚𝑖𝑥 , are closely related to the flame curvature (see Fig. 3.21). To investigate the
effect of 𝑍𝑚𝑖𝑥 on the source term, the two-dimensional conditional mean source term,
⟨ ¤𝜔𝐶 |𝐶, 𝑍𝑚𝑖𝑥⟩, is plotted in Fig. 3.22. The source term has a strong dependence on
𝑍𝑚𝑖𝑥 , which is the basis for the development of two-equation tabulated chemistry
models [58, 33]. This dependence has also been outlined by Berger et al. [28] for a
slot burner. Although the dependence of the source term on 𝑍𝑚𝑖𝑥 is clear, its shape
and magnitude qualitatively appear consistent as function of Karlovitz number. The
exception is in unrealized conditions. For example, because case A has smaller
curvatures (see Figs. 3.15 and 3.18), it does not reach the same magnitude of 𝑍𝑚𝑖𝑥
compared to the higher Karlovitz numbers, and as such, the source term is zero in
these regions. This observation is in contrast to the dependence of the source term
on the flame curvature (see Fig. 3.18), which exhibits a change in magnitude and
shape as the Karlovitz number is increased.

For further comparison, Figs. 3.23 and 3.24 show one-dimensional cuts of the
two-dimension mean at given values of 𝐶 and 𝑍𝑚𝑖𝑥 , respectively. At intermediate
and large values of the progress variable, the conditional means collapse as a
function of 𝑍𝑚𝑖𝑥 regardless of the Karlovitz number (Fig. 3.23c and d). Similarly, for
intermediate and large values of 𝑍𝑚𝑖𝑥 , the conditional means collapse as a function
of 𝐶 for all Karlovitz numbers (Fig. 3.24c and d). These two observations confirm
the validity of a two-equation 𝑍-𝐶 tabulation. Difference are observed in the preheat
zone (i.e., at small values of 𝐶, Fig. 3.23a) and close to the lean flammability limit
(i.e., at small values of 𝑍𝑚𝑖𝑥 , Fig. 3.24a). In these regions, the source term is almost
an order of magnitude smaller. At the peaks, the spread of the profiles are of the
same absolute magnitude as for other regions. However, because the magnitude of
the source term is small, the spread is relatively larger. Their impact on the flame
dynamics is expected to be minimal.

3.7 Conclusions
A series of DNS of lean premixed hydrogen/air flames was conducted across a range
of Karlovitz numbers and integral length scale ratios. The results have been used
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Figure 3.22: Normalized two-dimensional mean source term ⟨ ¤𝜔𝐶 |𝑍𝑚𝑖𝑥 , 𝐶⟩/ ¤𝜔1𝐷
𝐶,𝑚𝑎𝑥

.

to isolate the controlling parameters in the turbulent flame speed enhancement via
Eq. (1.6). A new general expression for the burning efficiency is proposed, which is
based on the conditional mean source term, gradient of the progress variable, and
the percentage of superadiabatic burning.

At a given Karlovitz number, the ratio of flame isosurface areas to the cross section
area, 𝐴(𝐶)/𝐴, increases linearly with the integral length scale ratio until ℓ/𝑙𝐹 = 2,
and slightly deviates from the trend at ℓ/𝑙𝐹 = 4. However, the chemical source term
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(a) 𝐶/𝐶1𝐷
𝑚𝑎𝑥 = 0.2 (b) 𝐶/𝐶1𝐷

𝑚𝑎𝑥 = 0.5

(c) 𝐶/𝐶1𝐷
𝑚𝑎𝑥 = 𝐶𝑝𝑒𝑎𝑘/𝐶1𝐷

𝑚𝑎𝑥 (d) 𝐶/𝐶1𝐷
𝑚𝑎𝑥 = 1

Figure 3.23: Profiles of the two-dimensional condition mean, ⟨ ¤𝜔𝐶 |𝑍𝑚𝑖𝑥 , 𝐶⟩ at given
values of 𝐶.

conditioned on the progress variable does not show significant differences. As such,
the flame speed enhancement can be fully attributed to an increase in the flame area.

At a given integral length scale ratio, ℓ/𝑙𝐹 , the turbulent flame speed, flame area, and
burning efficiency all increase with the Karlovitz number before decreasing. These
can be explained by the gradual disappearance of differential diffusion effects. As
the Karlovitz number is increased, the shape of the mean chemical source term
approaches that of the one-dimensional unity Lewis number flame, indicating that
the relative importance of differential diffusion effects is lower. Consequently,
the thermodiffusive instabilities are also dampened, causing a reduction in the
flame area. The flames are shown to behave as a material surface, indicating
that turbulence controls the flame front propagation, and not large-scale laminar
instability structures. At the small scales, the curvature of the flame front scales
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(a) 𝑍𝑚𝑖𝑥 = 0.008 (b) 𝑍𝑚𝑖𝑥 = 𝑍1𝐷
𝑚𝑖𝑥

(c) 𝑍𝑚𝑖𝑥 = 0.015 (d) 𝑍𝑚𝑖𝑥 = 0.02

Figure 3.24: Profiles of the two-dimensional condition mean, ⟨ ¤𝜔𝐶 |𝑍𝑚𝑖𝑥 , 𝐶⟩ at given
values of 𝑍𝑚𝑖𝑥 .

with a quantity that lies between the reaction zone thickness and the Kolmogorov
length scale.

Although the qualitative observations do not change when Soret effects are ne-
glected, the inclusion of Soret diffusion results in an increase of the mean flame
speed by about 35% for case A to 15% for case C. The associated increase in the
burning efficiency is approximately 10%.
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C h a p t e r 4

IMPACT OF SORET DIFFUSION ON THE EFFECTIVE SPECIES
LEWIS NUMBER MODEL IN PREMIXED TURBULENT

FLAMES

Savard and Blanquart [19] extracted the effective Lewis numbers from turbulent
hydrogen/air flames to predict the flame structure from a DNS dataset. However, the
dataset had no Soret diffusion, and was conducted at a small integral length scale.
The objective of this chapter is to extend their analysis to include Soret diffusion
and integral length scale effects using the DNS data obtained in Chapter 3.

The chapter is organized as follows. Section 4.1 discusses the mean flame struc-
ture and associated modelling framework. Section 4.2 extracts the effective Lewis
numbers and compares the results to those of Savard and Blanquart [19]. A short
discussion of the results is provided in Section 4.3, followed by conclusions in
Section 4.4.

4.1 Average flame structure
In this work, we are interested in the flame structure, defined as the average species
profiles versus temperature. Results from the DNS will be presented, and their
relationship to mean equations will be discussed.

4.1.1 Conditional fuel mass fraction profiles
The spatio-temporal mean of the fuel mass fraction conditioned on temperature,
⟨𝑌H2 |𝑇⟩, for each turbulent flame is shown in Fig. 4.1. Two limiting one-dimensional
flamelet solutions are shown which bound the current results, one with full mixture-
averaged transport including thermodiffusion, and one with unity Lewis numbers
and no thermodiffusion. In this work, laminar flamelet solutions are obtained using
FlameMaster [17].

Figure 4.1a shows the effect of Karlovitz number on the fuel mass fraction profile.
It is important to note that the three-dimensional laminar case (LAM) is offset from
the one-dimensional solution, indicating that the three-dimensional thermodiffusive
instabilities affect the overall flame structure. As the Karlovitz number is increased
(from A to F), the profiles move closer towards the unity Lewis number profile and
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(a) Effect of Karlovitz number

(b) Effect of integral length scale

Figure 4.1: Conditional mean profiles of hydrogen mass fraction against tempera-
ture.

become more linear. Turbulent mixing enhances diffusion, leading to a decreased
relative importance of molecular diffusion. This transition was quantified for tur-
bulent hydrogen/air flames without Soret effects by Savard and Blanquart [19], and
the phenomenon has been reported subsequently by other authors [20].

Figure 4.1b shows the effect of integral length scale on the fuel mass fraction
profile for a given Karlovitz number. Cases C1 and C2 are overlapping and almost
indistinguishable. Case C0.5 lies slightly closer to the unity Lewis number solution,
although the difference is minor. These results indicate that turbulent fluctuations
smaller than the flame thickness have a more significant impact in disrupting the
flame structure than turbulent eddies larger than the flame thickness.

4.1.2 Mean equations
The flame structure is controlled by the temperature and species equations, Eqs. (2.3)
and (2.4). To facilitate the analysis, it is desirable to reduce these equations to their
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main controlling parameters.

The species diffusive flux, originally expressed in terms of the mole fraction, 𝑋𝑖,
may be rewritten as:

j𝑖 = −𝜌𝐷𝑖∇𝑌𝑖 − 𝜌𝐷𝑖𝑌𝑖
∇𝑊
𝑊

− 𝐷𝑇𝑖
∇𝑇
𝑇

+ 𝜌𝑌𝑖u𝑐 (4.1)

Savard and Blanquart [19] conducted a budget analysis of the species transport
equation using a one-dimensional laminar flame. The terms corresponding to the
gradient of the molecular weight and correction velocity were found to be negligible
in comparison to the other terms, and will thus be dropped in the present analysis.
Although they did not account for Soret diffusion, other researchers have shown that
the diffusive flux due to temperature gradients is significant, particularly for light
species such as H and H2 [44]. Savard and Blanquart [19] also conducted a budget
analysis of the temperature equation. They showed that the dominating terms were
the advection, diffusion, and source term of temperature.

To analyze and quantify the effect of turbulence on the mean flame structure, we
consider the Reynolds-averaged Navier-Stokes (RANS) equations. Following the
simplifications introduced above, the Reynolds-averaged temperature and species
transport equations are written as:

𝜕𝜌𝑇

𝜕𝑡
+ ∇ ·

(
𝜌ũ𝑇

)
= ∇ ·

[
𝜌 (𝛼 + 𝛼𝑡) ∇𝑇

]
+ ¤𝜔𝑇 (4.2)

𝜕𝜌𝑌𝑖

𝜕𝑡
+ ∇ ·

(
𝜌ũ𝑌𝑖

)
= ∇ ·

[
𝜌 (𝐷𝑖 + 𝛼𝑡) ∇𝑌𝑖 + 𝜌𝐷𝑇𝑖 ∇𝑇

]
+ ¤𝜔𝑖 (4.3)

where the overline and tilde denote Reynolds and Favre averages respectively, and
𝛼𝑡 is the turbulent diffusivity. The contributions of the unresolved turbulent fluc-
tuations are modelled through the use of turbulent mass and thermal diffusivities.
Consistent with the observation from Fig. 4.2, the turbulent diffusivity for species
and temperature are assumed to be equal, implying a unity turbulent Lewis number.

From Eqs. (4.2) and (4.3), effective Lewis numbers can be identified for each species
as:

Le𝑖,eff =
𝛼 + 𝛼𝑡
𝐷𝑖 + 𝛼𝑡

=
1 + 𝜓

1/Le𝑖 + 𝜓
(4.4)

where 𝜓 = 𝛼𝑡/𝛼. Note that the turbulent diffusivity is assumed to enhance the
thermal and mass diffusivity equally, implying a unity turbulent Schmidt number.
In the limit of infinite 𝛼𝑡 , the effective Lewis numbers tend to unity, such that
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there are no more differential diffusion effects. This model was proposed first by
Peters [98] and validated later by Savard and Blanquart [19]. However, in their
work, neither considered the impact of Soret diffusion.

4.2 Effective Lewis numbers
In this section, we present a detailed discussion on the derivation and extraction of
the effective Lewis numbers.

4.2.1 Preliminary observations
Savard et al. [113] pointed out that the structure of a one-dimensional laminar
premixed flame of n-heptane/air does not change when all species and thermal
diffusivities are changed by the same factor. To show this remains true even in
the case of hydrogen/air flames where there is significant preferential diffusion,
Fig. 4.2a shows the H2 mass fraction profile as a function of temperature from one-
dimensional flamelet solutions. The magnitudes of all 𝐷𝑖 and 𝛼 were multiplied
by a factor of 0.1 and 10, effectively maintaining the same species Lewis numbers.
The thermodiffusion coefficients, 𝐷𝑇

𝑖
, were also adjusted accordingly to maintain

the same relative effect.

The corresponding laminar flame speeds, 𝑆𝐿 = 6.46, 19.8, 64.6 cm/s, are altered
by a factor of

(
𝐷𝑖/𝐷𝑖,0

)0.5, consistent with theoretical scalings [113]. However,
there is no distinguishable change in the flame structure. This indicates that the
magnitude of the diffusivities does not control the flame structure. Changes to the
flame structure must be attributed to varying Lewis numbers.

Finally, it should be noted that both species and thermodiffusion coefficients vary
through the flame, and as such, their ratios (i.e., the Lewis numbers) may not be
constant. Figure 4.2b shows the flame structures obtained with mixture-averaged
transport and Soret, constant Lewis number and Soret, and mixture-averaged without
Soret. The results highlight the importance of including Soret diffusion as it lowers
the fuel mass fraction profile in the preheat zone. In contrast, the results show that
using constant Lewis numbers for each species is sufficient to reproduce the flame
structure [114].

4.2.2 Effective Soret diffusion
Quantifying the reduction of thermodiffusion as turbulent mixing increases requires
more attention. The temperature equation, Eq. (4.2), recovers the same functional
form as the one-dimensional laminar flame when the spatial coordinate and velocity
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(a) Effect of diffusivity magnitude

(b) Effect of Soret diffusion

Figure 4.2: H2 mass fraction profiles from one-dimensional flat flames.

are both rescaled by
√︁

1 + 𝜓. In other words, the thermal diffusivity in Eq. (4.2)
becomes 𝛼. Performing the same rescaling in the species equations, Eq. (4.3), the
molecular diffusion coefficient becomes𝛼/Le𝑖,eff and the thermodiffusion coefficient
becomes 𝐷𝑇

𝑖
/(1 + 𝜓). Practically, the original Lewis numbers are replaced by their

effective values, and the thermodiffusion coefficients are reduced by (1 + 𝜓).

4.2.3 Extraction of the effective Lewis numbers
The identification of the effective Lewis numbers follows the procedure outlined
by Savard and Blanquart [19] with one important difference: the effective Lewis
numbers of all species are modified according to Eq. (4.4). The Soret diffusion
coefficients are proportionally scaled down by a factor of 1/(1 + 𝜓). The mass
fraction profiles from the DNS and flamelet solutions are both interpolated onto
the same uniform grid in temperature space for comparison. The 𝐿2-norm of the
error between the conditional mean of H2 from the DNS and the laminar flamelet
is minimized. The vector Leeff containing all species effective Lewis numbers is
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identified according to:

Leeff = argmin
Le∗

1
𝑁

𝑁∑︁
𝑛=1

(
𝑌H2 (Le∗, 𝑇𝑛) − 𝑌𝐷𝑁𝑆H2

(𝑇𝑛)
)2

(4.5)

where Le∗ is obtained from Eq. (4.4), and 𝑁 is the number of points.

In their work, Savard and Blanquart [19] indicated that in the limit of no turbulence,
the effective Lewis numbers should asymptote to the one-dimensional laminar Lewis
numbers. However, case LAM is the true limiting case of no turbulence. As
such, the Lewis numbers used in Eq. (4.4) should be those of case LAM. As
mentioned previously, the fuel mass fraction profile for case LAM in Fig. 4.1a
deviates strongly from the full transport one-dimensional laminar profile due to
the presence of thermodiffusive instabilities. In other words, the Lewis numbers
necessary to reproduce the average flame structure of case LAM are not those of the
one-dimensional flat flame. The effective Lewis numbers for this case are identified
first and are provided in Table 4.1, along with the one-dimensional laminar values
for reference.

Table 4.1: Species Lewis numbers.

Species Le1D
𝑖 LeLAM

𝑖

N2 1.391 1.231
H 0.190 0.260
O2 1.449 1.260
O 0.734 0.805
OH 0.744 0.813
H2 0.312 0.405
H2O 0.833 0.882
HO2 1.201 1.126
H2O2 1.229 1.142

4.2.4 Results
Figure 4.3 shows the effective H2 mass fraction profiles of flames A and F obtained
following the method outlined in Section 4.2 with and without Soret diffusion.
Including Soret diffusion is necessary to obtain the correct shape of

〈
𝑌H2 |𝑇

〉
. Since

Soret diffusion is driven by a temperature gradient, the amount of H2 diffusing
into the preheat zone is decreased compared to the case with no Soret diffusion
calculated at the same effective Lewis number. Consequently, the profile with no
Soret diffusion overestimates the fuel mass fraction in that region. This effect is
more pronounced for the lower Karlovitz numbers. As the turbulence is increased,
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the relative impact of Soret diffusion is reduced. For case A, LeH2,eff = 0.47 and
1/(1 + 𝜓) = 0.769. For case F, the Lewis number is increased to LeH2,eff = 0.922
and 1/(1 + 𝜓) = 0.043, significantly reducing the effect of Soret diffusion.

Figure 4.3: Structure of the H2 mass fraction profiles for cases A and F. Correspond-
ing flamelet solutions with (dashed) and without (dash dot) Soret diffusion are also
shown at the same effective Lewis numbers.

The extracted values of 𝜓 = 𝛼𝑇/𝛼 are shown in Fig. 4.4. As expected, the magnitude
of the turbulent diffusion coefficient increases as the Karlovitz number increases.
Savard and Blanquart [19] proposed a Karlovitz number model which takes the
form:

LeKa
𝑖,eff =

1 + 𝑎Ka
1/Le𝑖 + 𝑎Ka

(4.6)

where 𝑎 is a proportionality coefficient which was adjusted to fit the data. They
proposed two alternative exponents on Ka in Eq. (4.6) based on length scale (Ka2/3)
or timescale (Ka2) arguments. From Fig. 4.4 it can be seen that the best agreement
is with the exponent of one. However, the 2/3 exponent also shows good agreement,
especially at the lower Karlovitz numbers.

The corresponding effective Lewis numbers of H2 as a function of Karlovitz number
are shown in Fig. 4.5. The effective Lewis number increases with Karlovitz number,
starting from the LAM value and ultimately plateauing at unity. The integral length
scale has virtually no impact on the extracted effective Lewis numbers, lending
support for the argument that the turbulent diffusivity is largely controlled by eddies
on the order of the flame thickness. Stated differently, only turbulent fluctuations on
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Figure 4.4: Value of 𝜓 versus Karlovitz number obtained from fitting flamelets.
Cases C0.5 (diamond) and C2 (square) are also shown.

a length scale smaller than the flame thickness may contribute to altering the overall
flame structure.

The data also shows strong agreement with the results of Savard and Blanquart [19],
obtained using DNS results of turbulent flames without Soret diffusion. Soret
diffusion has been shown to enhance the development of cellular structures due
to thermodiffusive effects [26], and result in markedly different mean profiles.
However, when properly accounted for, Soret diffusion does not have an impact
on the effective Lewis number model.

4.3 Discussion
The effective Lewis numbers have an impact on the effective one-dimensional lami-
nar flame speed and thickness, ranging from 𝑆𝐿 = 0.206 to 0.410 m/s and 𝑙𝐹 = 0.683
to 0.375 mm for full transport and unity Lewis number, respectively. Naturally,
calculating the Karlovitz number using the nominal values of 𝑆𝐿 and 𝑙𝐹 leads to
overpredicted values compared to using the effective values, as shown in Fig. 4.6. As
the Karlovitz number increases, the laminar flame thickness decreases and the lam-
inar flame speed increases, leading to an overall decrease of the effective Karlovitz
number experienced by the flame. At the highest tested Karlovitz numbers, the
effective Karlovitz number is smaller by a factor of more than three.

Based on a matched asymptotic analysis using one-step chemistry, the fuel Lewis
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Figure 4.5: Effective Lewis number as a function of Karlovitz number. The model
in Eq. (4.6) is shown with dashed (𝑎 = 0.01) and dotted (𝑎 = 0.015) lines asymptot-
ing to the laminar one-dimensional or three-dimensional effective Lewis numbers,
respectively. Cases C0.5 (diamond) and C2 (square) are also shown.

Figure 4.6: Effective Karlovitz number as a function of nominal Karlovitz number.

number dependence is explained as [115]:

𝑆𝐿,1

𝑆𝐿,2
=

(
LeH2,2

LeH2,1

)0.5
(4.7)

𝑙𝐹,2

𝑙𝐹,1
=

(
LeH2,1

LeH2,2

)0.5
(4.8)

where the subscripts 1 and 2 represent two different sets of diffusion models. Al-
though the relations were derived for one-step chemistry, it has been shown that,
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using detailed chemistry, the flame thickness scaling works very well, whereas an
exponent of 0.6 is suitable for the flame speed scaling [19]. Using this proposed
exponent, the effective Karlovitz number can be approximated as:

Kaeff =

(
Le1D

H2

LeH2,eff

)1.1

Ka (4.9)

The effective Karlovitz number using Eq. (4.9) with Eq. (4.4) is compared to the
calculated effective Karlovitz numbers in Fig. 4.6. The agreement is very good,
indicating good applicability of the model.

It was suggested by Aspden et al. [112] to use the three-dimensional freely prop-
agating flame to determine the Karlovitz number. The current analysis relates the
effective Lewis numbers to the freely propagating flame, providing an alternative
method of characterizing turbulent hydrogen flames. The Karlovitz number model
can easily be used to identify the effective Lewis number, and important parameters
such as 𝑆𝐿 and 𝑙𝐹 can easily be obtained from a laminar flame solver.

4.4 Conclusions
We leveraged a recent database of direct numerical simulations of turbulent lean hy-
drogen/air premixed flames [116] and performed a detailed analysis of their effective
Lewis numbers. This analysis extends previous work by Savard and Blanquart [19]
to consider both Soret diffusion and integral length scale effects.

The average flame structure, defined as the mean species mass fraction profiles
conditioned on temperature, was shown to be that of a one-dimensional flame with
effective Lewis numbers and effective thermodiffusion coefficients. The effective
Lewis numbers follow a model first introduced by Peters [115]. Inspired by the
species and temperature Reynolds-averaged transport equations, the effective ther-
modiffusion coefficient was proposed to be the corresponding one-dimensional value
scaled down by a factor of 1/(1 + 𝜓). This scaling factor ranges from 0.769 for the
lowest Karlovitz number to 0.043 for the highest Karlovitz number. As turbulence
enhances the mixing through the added turbulent diffusivity, the relative impact of
both molecular and Soret diffusion are reduced.

The extracted effective Lewis numbers of H2 were compared to those of Savard and
Blanquart [19], and showed excellent agreement. However, it was shown that the
correct reference species Lewis numbers used in deriving effective Lewis numbers
should be those of the three-dimensional laminar case, and not those of the one-
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dimensional laminar case. Although Soret diffusion changes the flame structure, it
has a negligible impact on the extracted effective Lewis numbers.

Finally, the extracted effective Lewis numbers were found to be independent of the
integral length scale. This observation confirms that the turbulent fluctuations most
susceptible to alter the flame structure are those of the size of the flame thickness.
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C h a p t e r 5

CAPTURING DIFFERENTIAL DIFFUSION EFFECTS IN LARGE
EDDY SIMULATION OF TURBULENT PREMIXED FLAMES

[1] M. X. Yao and G. Blanquart. “Capturing differential diffusion effects in
large eddy simulation of turbulent premixed flames”. In: Proceedings of the
Combustion Institute (2024). (Under Review).

The objectives of this chapter are twofold: 1) to apply the two-equation model of
Schlup and Blanquart [33] in the framework of LES and 2) to assess its ability to
capture burning behaviour that is not captured through traditional methods in the
simulation of a low-swirl burner.

The chapter is structured as follows. Section 5.1 outlines the details of the geom-
etry and boundary conditions. The chemical models being used are reviewed in
Section 5.2, and the LES filtering of tabulated chemistry is reviewed in Section 5.3.
The results of the LES are presented in Section 5.4. The conclusions are drawn in
Section 5.5.

5.1 Burner geometry and boundary conditions
We consider the series of experimental measurements performed by Cheng et al. [11]
in a low-swirl burner (LSB). A brief overview of the geometry is presented here.
For a more detailed description, the reader is referred to [11].

A three-dimensional rendering of the low-swirl injector (LSI) is shown in Fig. 5.1.
As can be seen, the LSI is composed of two parts: 1) a central pipe (𝑅𝑐 = 1.89 cm)
that holds a perforated screen, consisting of 54 holes with a blockage ratio of about
46%, and 2) a co-annular channel (𝑅𝑖 = 2.86 cm) composed of 16 vanes with 40◦

exit blade angles. In the simulations, 42% of the flow passes through the central
pipe. After a recess region, the premixed gas mixture of fuel and air is injected into
an enclosed axisymmetric combustion chamber with inner radius 𝑅𝑒 = 9 cm. The
combustion chamber has a length of 𝐿 = 31 cm, after which there is a contraction
and an exit section.

To simplify the numerical simulations, the computational domain was decomposed
into two parts: the swirler and the combustion chamber. The flow through the
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Figure 5.1: Three-dimensional rendering of the low-swirl injector.

swirler was investigated first with non-reacting LES, and the outflow conditions
downstream of the injector but upstream of the combustion chamber were recorded
as a function of time. Then, these outflow conditions were used as inflow conditions
for the reacting LES of the combustion chamber. As a result, the flow through the
swirler needs to be computed only once, and simulations of the turbulent flame with
different fuels can be performed on a coarser mesh. This first calculation is meant
to produce realistic turbulence fluctuations with the correct mean velocities. As
the kinematic viscosities between the two unburnt mixtures differs by only 11%, a
single inflow profile may be generated without significant impact.

Given the complexity of the LSI, the fine details of the geometry of the injector
were represented with the immersed boundaries technique [90]. In particular, we
use a velocity reconstruction (or interpolation) approach similar to that proposed by
Kang et al. [92]. This approach provides an efficient description of the flow around
complex geometries on structured meshes. For an accurate description of the flow
field, the geometry of the swirler assembly was represented on a cylindrical mesh
of 𝑁𝑥 × 𝑁𝑟 × 𝑁𝜃 = 256 × 120 × 256 grid points. Figure 5.2 shows the contour
of velocity magnitude through the swirler. The flow through the central perforated
screen resembles grid turbulence and decays slowly with downstream distance. The
flow through the swirled vanes transitions rapidly from laminar to turbulent as it is
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accelerated. The bulk axial velocity through the entire geometry (central pipe and
swirled vanes) at the exit plane is 𝑈0 = 18 m/s, and the mean azimuthal velocity is
10.2 m/s.

Figure 5.2: Two-dimensional contour of velocity magnitude through the swirler.
The empty white regions correspond to cuts through the walls and swirler vanes.
The vertical dashed line represents the location where the inflow conditions for the
combustion chamber were extracted.

To further characterize the flow field in the LSI, Fig. 5.3 shows the axial, 𝑢𝑥 , and
azimuthal, 𝑢𝜃 , velocity fields. Behind the perforated screen, the 𝑢𝑥 velocity field
exhibits small recirculation regions near the annulus pipe and at the centerline. In
the figure, the solid vertical lines represent locations at which the velocity magnitude
fields, |u|, are plotted in Fig. 5.4. In the center pipe, the flow is seen to develop from
the perforated screen into isotropic turbulence. At the outlet plane, the two regions
exhibit mixing at the shear layer.

5.2 Chemical model
Two separate fuel/air mixtures are considered. For hydrogen combustion, the 9-
species, 54-reaction (forward and backward counted separately) chemical mecha-
nism by Hong et al. [95] was used with updated rate constants [96, 97]. For methane,
the GRI 3.0 mechanism [117] was used. The equivalence ratios under consideration
are 𝜙 = 0.4 for the hydrogen/air flame (laminar flame speed 𝑆𝐿 = 0.206 m/s and
laminar flame thickness 𝑙𝐹 = 6.8×10−4 m) and 𝜙 = 0.59 for methane/air (𝑆𝐿 = 0.102
m/s and 𝑙𝐹 = 1.0 × 10−3 m).
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Figure 5.3: Two-dimensional contour of axial velocity (top), 𝑢𝑥 , and azimuthal
velocity (bottom), 𝑢𝜃 . The black lines represent locations for which the velocity
fields are plotted in Fig. 5.4.

5.3 Filtered tabulated chemistry approaches
Two separate tabulation strategies are used in the simulations of the turbulent reacting
flow in the combustion chamber. The presentation starts with a discussion of
the different subfilter scale models and follows with a discussion of the specific
modelling approaches. In this work, the progress variable is defined as the mass
fraction of water, 𝐶 = 𝑌H2O.

5.3.1 Common modelling strategies
In Eq. (2.27), a model must be provided for the filtered source term, ¤𝜔𝐶 . In LES,
the filtering over a given volume 𝑉 can be expressed as

¤𝜔𝐶 =
1
𝑉

∭
¤𝜔𝐶𝑑𝑉

=
1
𝑉

∫
𝑛

(∬
𝐴(𝐶)

¤𝜔𝐶𝑑𝐴
)
𝑑𝑛

=
1
𝑉

∫
𝐶

⟨ ¤𝜔𝐶 |𝐶⟩
𝐴(𝐶)
|∇𝐶 | 𝑑𝐶

=

∫
𝐶

⟨ ¤𝜔𝐶 |𝐶⟩𝑃(𝐶)𝑑𝐶 (5.1)

by splitting the volume integral into an integral over an isosurface of 𝐶, 𝐴(𝐶), and
an integral in the normal direction, 𝑛. There are two terms that require closure: the
conditional mean source term, ⟨ ¤𝜔𝐶 |𝐶⟩, and the subfilter density function, 𝑃(𝐶). The
first term was first discussed in Chapter 3, and will be revisited in Subsections 5.3.2-
5.3.4 in the context of LES modelling.
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Figure 5.4: Two-dimensional contour plots of Velocity magnitude, |u|, in the 𝑟 − 𝜃
plane at locations marked in Fig. 5.3.

To close to the second term, one approach is to solve a governing equation for
the filtered density function (FDF) [118]. However, the computational expense is
greatly increased due to the need for instantaneous statistical convergence [81]. Fur-
thermore, although the chemical source term appears explicitly in this formulation
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and thus requires no closure, the FDF equations require closure for the molecular
mixing, the modelling of which still remains a challenge [119].

A much simpler and computationally cheaper method is to presuppose a probability
density function, which is characterized by a local value of the resolved progress
variable (the mean), 𝐶, and its second moment (the variance), 𝐶𝑣. The filtered
source term is then expressed as:

¤𝜔𝐶
(
𝐶,𝐶𝑣

)
=

∫ 𝐶𝑚𝑎𝑥

0
⟨ ¤𝜔𝐶 |𝐶⟩ 𝑃

(
𝐶 |𝐶,𝐶𝑣

)
𝑑𝐶 (5.2)

The table is filtered a priori according to Eq. (5.2) with a presumed pdf, and
𝐶𝑣 is added as a table dimension. Although different presumed pdfs have been
proposed [80], the standard method is the 𝛽-pdf [82, 120, 121], which is written:

𝑃(𝐶 |𝐶,𝐶𝑣) =
𝑐𝑎−1 (1 − 𝑐)𝑏−1∫ 1

0 𝑐𝑎−1 (1 − 𝑐)𝑏−1 d𝐶
(5.3)

where
𝑎 = 𝑐̃

(
𝑐̃ (1 − 𝑐̃)
𝐶𝑣

− 1
)

(5.4)

and
𝑏 = 𝑎

(
1
𝑐̃
− 1

)
(5.5)

where 𝑐 is the normalized progress variable. The 𝛽-pdf is preferred because the
distribution is flexible enough to represent the range of unmixed conditions (delta
distributions) to well-mixed conditions (Gaussian distribution). The use of a 𝛽-
pdf has been assessed a priori and a posteriori in low Karlovitz number flames
by Mukhopadhyay et al. [122] and high Karlovitz number flames by Lapointe et
al. [123, 124]. In the LES, 𝐶𝑣 is calculated according to the algebraic model of
Eq. (2.44) and used along with 𝐶 to look up tabulated values.

5.3.2 Model 1: One equation with laminar source term
Based on the volume averaging concept of LES, Eq. (5.1) shows that the filtered
source term should depend on the conditional mean source term ⟨ ¤𝜔𝐶 |𝐶⟩. Classically,
this source term is assumed to be the same as the source term profile from the one-
dimensional unstretched laminar flame. This model is expected to perform well for
unity Lewis number fuels (e.g., methane), as the flame propagation is not dependent
on curvature and differential diffusion effects. This model is the simplest, and will
be used as a base case for comparison.
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5.3.3 Model 2: One equation with turbulent source term
Equation (5.2) is valid when 𝐶 < 𝐶1𝐷

𝑚𝑎𝑥 . However, for thermodiffusively unstable
flames, as shown in Chapter 3, we have superadiabatic burning, and the progress
variable can exceed the one-dimensional maximum. The filtered source term should
be revisited. Following the derivation in Section 3.4, we decompose the volume
integral into regions where 𝐶 ≤ 𝐶1𝐷

𝑚𝑎𝑥 and where 𝐶 > 𝐶1𝐷
𝑚𝑎𝑥:

¤𝜔𝐶 =
1
𝑉

∭
𝐶≤𝐶1𝐷

𝑚𝑎𝑥

¤𝜔𝐶𝑑𝑉 + 1
𝑉

∭
𝐶>𝐶1𝐷

𝑚𝑎𝑥

¤𝜔𝐶𝑑𝑉 (5.6)

To first approximation and consistent with the discussion of the turbulent flame
speed in Section 3.4, we express the second term as a fraction of the total integral
using the superadiabatic ratio 𝛽. This results in:

¤𝜔𝐶 ≈ 1
1 − 𝛽

∫
𝐶<𝐶1𝐷

𝑚𝑎𝑥

⟨ ¤𝜔𝐶 |𝐶⟩𝑃(𝐶)𝑑𝐶 (5.7)

In Chapter 3, it was shown that for hydrogen flames, the shape of ⟨ ¤𝜔𝐶 |𝐶⟩ is strongly
dependent on the turbulence intensity, which is characterized by the Karlovitz num-
ber. To determine the analogous source term for tabulation, an estimate of the
Karlovitz number is thus required.

Figure 5.5: Two-dimensional contour of velocity magnitude through the swirler. The
boxed area represents the region over which the estimated dissipation is calculated.
The vertical dashed line represents the location where the inflow conditions for the
combustion chamber were extracted.

Recall that the definition of the Karlovitz number, Eq. (3.2), depends on the turbulent
dissipation, 𝜀. To obtain an estimate of the turbulence intensity which would hit the
flame, the dissipation is calculated within the center pipe region, characterized by
grid decaying turbulence. The region of interest is shown in Fig. 5.5. The plane of
extraction for the inlet boundary conditions of the combustion chamber is centered
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within the region of interest. The dissipation is estimated as (see Chapter 5 of
reference [125]):

𝜀 = 2
(
𝜈 + 𝜈𝑡

) 〈
𝑠𝑖 𝑗 𝑠𝑖 𝑗

〉
(5.8)

where 𝜈𝑡 is the kinematic eddy viscosity and 𝑠𝑖 𝑗 is the fluctuating rate-of-strain tensor
of the resolved filtered velocity. Averaging across the selected region provides an
estimate of the dissipation of 𝜀 ≈ 700 m2/s3. Using this estimate of 𝜀, an estimate
of the Karlovitz number can be obtained as 𝐾𝑎𝑢 ≈ 20. This is close to case A, which
has a dissipation of 𝜀0 = 347. For reference, case B has a dissipation of 𝜀0 = 5571,
which is much higher than our estimate of 𝜀. The results suggest that the conditional
mean source term which should be tabulated is that of case A.

In summary, this model is the same as Model 1, except that the conditional mean
source term is taken to be that of case A multiplied by 1/(1 − 𝛽) for 𝐶 ≤ 𝐶1𝐷

𝑚𝑎𝑥 .
We use a constant value of 𝛽, with the assumption that the flame is characterized
by one Karlovitz number, which is estimated at the centerline. The addition of 𝛽
incorporates the effects of superadiabatic burning (𝐶 > 𝐶1𝐷

𝑚𝑎𝑥).

5.3.4 Model 3: Two equations
To account for the effects of differential diffusion, Regele et al. [58] proposed a two-
equation model. A mixture fraction-like variable, 𝑍 , was included to complement
the progress variable and to capture fluctuations in the local equivalence ratio. Its
transport equation included source terms resulting from differential diffusion. More
recently, Schlup and Blanquart [33] re-derived the 𝑍 transport equation by lifting
previous limiting assumptions made in [58] and by including Soret diffusion. For
details on the derivation of the (𝐶, 𝑍) model, the reader is referred to [33]. The
model has been validated across a wide range of configurations at DNS resolutions,
including 1D, 2D, and 3D laminar freely propagating flames, 2D tubular flames,
and 3D turbulent flames [126].

The filtered progress transport equation takes the same form as Eq. (2.27) with one
difference. Now, ¤𝜔𝐶 is a function of both 𝐶 and 𝑍 . Following the a priori analysis
of Berger et al. [63], the filtered source term can be expressed as:

¤𝜔𝐶
(
𝐶,𝐶𝑣, 𝑍

)
=

∬
¤𝜔𝐶 (𝐶, 𝜙) 𝑃

(
𝐶 |𝐶,𝐶𝑣

)
𝛿
(
𝜙 − 𝜙

)
𝑑𝐶𝑑𝜙 (5.9)

where 𝛿 is the delta distribution. To generate the table, one-dimensional flat flames
at varying nominal equivalence ratios are filtered using a 𝛽-pdf in 𝐶. The results
are tabulated in terms of 𝐶, 𝐶𝑣, and 𝑍 . Berger et al. [63] showed that using a
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𝛽-pdf for the progress variable significantly reduced the source term error, and
including higher order moments did not significantly increase the accuracy of the
LES modelling.

It is important to note that the two-equation model is meant to capture the combustion
dynamics both across the flame, parameterized by 𝐶, and along the flame front,
parameterized by 𝑍 . Differential diffusion effects are strongly coupled to the local
flame curvature, with regions of positive curvature having locally rich mixtures,
and regions of negative curvature having locally lean mixtures (center of curvature
located in the burnt mixture). Thus, for the model to be most effective, the grid
resolution should be sufficient to resolve smaller-scale structures on the order of the
flame thickness.

5.3.5 Alternative modelling approaches
One of the criticisms of the presumed 𝛽-pdf method is that in one-dimensional
laminar simulations of the filtered equations with such a source term, the laminar
flame speed is not reproduced. A method which has been proposed to reproduce
correctly this behaviour is to spatially filter the one-dimensional flamelets a priori,
and construct a table based on the filtered flamelet profiles [127].

In this model, any quantity 𝜙 from the laminar one-dimensional unstretched flamelet
is filtered analytically:

𝜙 (𝑥) =
∫

𝐺 (𝑥 − 𝑥′) 𝜙 (𝑥′) d𝑥′ (5.10)

where

𝐺 (𝑥) =
(

6
𝜋Δ2

)1/2
exp

(
−6𝑥2

Δ2

)
(5.11)

is a one-dimensional Gaussian filtering kernel. The subfilter closure is then calcu-
lated analytically and necessary values are tabulated with respect to the filter width,
Δ, and the progress variable, 𝐶. Although the model performs well in cases of
uniform grids, in the presence of grid stretching or nonuniform grids the definition
of the filter width can be ambiguous.

In their proposed model, the governing equation for 𝐶 reads:

𝜕𝜌𝐶

𝜕𝑡
+ ∇ ·

(
𝜌𝑢̃𝐶

)
= ∇ ·

(
𝛼𝐶𝜌𝐷𝐶∇𝐶

)
+ ¤𝜔𝐶 +Ω𝐶 (5.12)

where

𝛼𝐶

(
𝐶,Δ

)
=
𝜌𝐷𝐶 |∇𝐶1𝐷 |
𝜌𝐷𝐶 |∇𝐶1𝐷 |

(5.13)
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and
Ω𝐶

(
𝐶,Δ

)
= −∇ ·

(
𝜌�𝑢𝐶1𝐷 − 𝜌𝑢̃𝐶1𝐷

)
(5.14)

are analytical subfilter scale closures for the diffusive and convective fluxes based on
the filtered one-dimensional laminar profiles. The subfilter closure for the diffusive
flux is shown in Fig. 5.6. Figure 5.6a shows 𝐶 at varying filter widths. In all cases,
the progress variable is monotonically increasing with 𝑥. As a result, the diffusive
fluxes in Fig. 5.6b share the same sign, and the closure for 𝛼𝐶 is well behaved
(always positive).

(a) 𝐶 (b) Diffusive flux

Figure 5.6: Profiles of 𝐶 (a) and diffusive fluxes (b) at varying filter widths. For (b),
the solid lines represent 𝜌𝐷𝐶 |∇𝐶1𝐷 |, and the dashed lines represent 𝜌𝐷𝐶 |𝐶1𝐷 |.

To implement the spatially filtered LES framework in the two-equation model,
similar closure terms would need to be derived for the 𝑍 equation. Figure 5.7 shows
the same terms for the 𝑍 transport equation. Unlike the 𝐶 profiles, the 𝑍 profiles
in Fig. 5.7a are not monotonically increasing with 𝑥. This leads to two main issues.
The first is that there are regions where the diffusive fluxes have opposite signs. This
leads to negative values of 𝛼𝑍 , resulting in negative effective diffusion coefficients
and introducing numerical instabilities. The second issue is that the profiles do not
cross 0 at the same point, leading to singularities in the evaluation of 𝛼𝑍 .

5.4 LES results of the combustion chamber
The simulations of all combustion chambers are conducted on a cylindrical mesh of
𝑁𝑥 × 𝑁𝑟 × 𝑁𝜃 = 256 × 120 × 256 grid points. Along the inlet pipe and combustion
chamber walls, the grid is refined in the radial direction. The grid is uniform in the
axial direction until 𝑥 = 0.08 m before grid stretching is applied. This grid resolution
is on the order of the laminar flame thickness at the flame front. The experimental
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(a) 𝐶 (b) Diffusive flux

Figure 5.7: Profiles of 𝑍 (a) and diffusive fluxes (b) at varying filter widths. For (b),
the solid lines represent 𝜌𝐷𝑍 |∇𝑍1𝐷 |, and the dashed lines represent 𝜌𝐷𝑍 |𝑍1𝐷 |.

data used for comparison are taken from Cheng et al. [11], who measured the
velocity fields using particle image velocimetry (PIV).

5.4.1 Methane flame
The first experiment under consideration is a lean premixed methane/air flame
(𝜙 = 0.59). Because methane is a unity Lewis number fuel, this simulation is
conducted with Model 1 (see Section 5.3.2). It serves to validate the boundary
conditions, grid resolution, and treatment of the tabulated chemistry within the LES
framework. The progress variable is defined as the sum of the mass fractions of
CO2, CO, H2O, and H2.

Figure 5.8 shows the instantaneous contour plots of the velocity magnitude and the
progress variable. The flame location is marked with a black contour at 𝐶𝑝𝑒𝑎𝑘 , the
location of the peak source term in progress variable space from the one-dimensional
laminar flame. Because of the high axial velocity and high swirl, the flow at the edge
of the inner pipe opens up (at an angle close to 45◦) and creates a recirculation region
slightly downstream of the inlet. This recirculation region is the key flow feature
responsible for the stabilization of the flame front. The flame exhibits an “M” shape
and is anchored at the edges of the inlet pipe. Because the combustion chamber
is enclosed, hot gases are entrained in the recirculation regions in the corners and
heat the outer shear layers that are associated with the inflow profile. Note that the
present simulation framework does not include heat losses that are likely to occur at
the burner exit, which may influence the visible luminosity of the flame.
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Figure 5.8: Instantaneous profiles of velocity magnitude (top) and progress variable
(bottom) for the simulation of the turbulent flame of methane/air. An isocontour at
𝐶𝑝𝑒𝑎𝑘 = 0.149 indicates the location of the flame front (black line).

The mean centerline velocity is shown in Fig. 5.9. Close to 𝑥 = 0 m, the experimental
data exhibits some outliers, with some velocity measurements which are smaller than
the neighbouring points. For completeness, we show the full range of experimental
data. The decay of the mean axial velocity is well reproduced by the simulations.
More importantly, the location of the recirculation zone (represented by a negative
mean axial velocity) is captured reasonably well. The start of the recirculation
region is at 4.7 cm from the simulation and 6.6 cm from the experiments.

Figure 5.9: Mean axial velocity along the centerline of the methane flame. The
vertical dashed lines represent stations at three axial locations where radial statistics
are collected.
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Three axial locations are chosen to investigate key regions of interest in the flow
field. The station at 𝑥 = 0.015 m is close to the inlet and serves to verify the inflow
boundary conditions. The station at 𝑥 = 0.03 m is chosen after the flow field starts
to open, and as such, shows high sensitivity to the accuracy of the model. Finally,
the station at 𝑥 = 0.08 m is further into the chamber, and represents a region where
the flow is fully opened and has had time to develop. The first two stations occur
before the recirculation region, and the last one is further downstream.

The axial and radial velocity profiles at these three axial locations are compared
in Fig. 5.10. In all cases the agreement is good. Some discrepancies in the mean
quantities and fluctuations do exist, however. When considering these discrepan-
cies, it is important to note that the experimental measurements suffer from some
uncertainties. For instance, they are not perfectly symmetric and optical access to
part of the domain was difficult (for 𝑟 < −30 mm at 𝑥 = 80 mm). The authors report
contamination of the PIV data by laser reflection and particle deposition on the inner
wall of the quartz enclosure [11]. Given these uncertainties, the agreement with
experimental data is good, verifying the simulation framework.

5.4.2 Hydrogen flames
Cheng et al. [11] reported significant differences in the flow field between the
methane and the hydrogen flames. In particular, they noted that the decay of the
centerline velocity was lower, and there was larger acceleration in the post flame.
This has the effect of pushing the inner recirculation region farther downstream, to
𝑥 ≈ 0.13 m.

The turbulent hydrogen flames are simulated using three different models, which
are

• Model 1: (𝐶,𝐶𝑣) tabulation based on the one-dimensional laminar flamelet
source term (see Section 5.3.2),

• Model 2: (𝐶,𝐶𝑣) tabulation based on the one-dimensional turbulent mean
source term (see Section 5.3.3),

• Model 3: (𝐶,𝐶𝑣, 𝑍) tabulation based on the work of Schlup and Blanquart [33]
(see Section 5.3.4).

The progress variable fields for the two cases are shown in Fig 5.11. Differential
diffusion has visible impacts on the flow field. There are two main observations.
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Figure 5.10: Mean radial profiles of the axial (top) and radial (bottom) velocity
components of the methane/air flame.

First, in case 1, the flame looks qualitatively similar to the methane flame. This result
is expected since the only two parameters which differ between the two simulations
are the density ratio between burnt and unburnt gases and the laminar flame speeds.
The turbulent flames appear slightly shorter, a result of the higher laminar flame
speed (𝑆𝐿 = 0.206 m/s for H2 versus 𝑆𝐿 = 0.102 m/s for CH4). In contrast, case 2
exhibits a much shorter flame and is anchored closer to the burner entrance. This
observation is also true of case 3. However, there are significant progress variable
fluctuations in the burnt gases of case 3, whereas the burnt gases of cases 1 and
2 are uniform. These fluctuations are attributed to 𝑍 capturing the curvature and
differential diffusion effects.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 5.11: Progress variable fields for the two different hydrogen tabulated chem-
istry models.

The effect of the chemistry modelling on the flow field is illustrated in the mean
velocity profiles shown in Figs. 5.12 and 5.13. In Fig. 5.12, the experimental data
shows an increase in the mean axial velocity at the centerline after the flame, in clear
contrast with the methane flame which shows a constant decay. This results in the
recirculation region being pushed to 𝑥 ≈ 0.13 m. The (𝐶,𝐶𝑣) tabulation of case 1
completely fails to reproduce this unique flow feature, and the mean axial velocity
decays just like that of the methane flame. Case 2 shows an increase in the post-flame
axial velocity, as a result of the increased source term. Although the performance
is superior to case 1, the peak is lower than the experimental measurements and the
decay of the velocity profile is underpredicted. The velocity profile does not show the
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Figure 5.12: Mean axial velocity along the centerline of the hydrogen flame com-
paring the two LES models.

presence of a recirculation region. Case 3 is able to reproduce the increase in axial
velocity, its subsequent decay, and the ultimate location of the recirculation region.
Although there are improvements in the flow field prediction, the measured velocity
profile is smoother in the post flame region, and does not exhibit the dip which is
present in the simulation results. This could be due to underpredicted fluctuations
in the 𝑥-direction. Additionally, Cheng et al. [11] reported significant broad-band
noise generation from the hydrogen flame, which may play a role. However, acoustic
effects are not captured by the present low Mach solver. Overall, the two-equation
model, derived to capture the effects of curvature and differential diffusion, is able
to reproduce the unique flow features compared to the one-equation model, even
when tabulating the turbulent mean source term.

The failure of the one-equation model is further illustrated in Fig. 5.13. At the first
station, the profiles show that case 1 does not have the correct spreading rate, as the
radial velocity is underestimated compared to cases 2 and 3. At the second station,
the radial velocity is still underpredicted for case 1, agrees well with case 2, and is
slightly overpredicted for case 3. At the centerline, all cases underpredict the axial
velocity. At the final station, cases 2 and 3 show the increase in axial velocity at
and around the centerline, correctly reproducing the push of the recirculation region
downstream. Overall, the modelling approaches in case 3 are able to overcome the
deficiencies of the (𝐶,𝐶𝑣) tabulation of cases 1 and 2. For regions close to the inlet
and flame, shown in Fig. 5.13, case 2 performs well. However, further downstream,
case 2 fails to reproduce the flow field.

The velocity flow field is further examined in Fig. 5.14, which shows the mean
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Figure 5.13: Mean radial profiles of the axial (top) and radial (bottom) velocity
components of the hydrogen/air flame for cases 1 (solid), 2 (dashed), and 3 (dotted).

streamwise velocity, ⟨𝑢̃⟩, with streamlines superimposed. For case 1, the central
recirculation zone dominates the central region of the chamber. For case 2, the
post-flame acceleration is larger than expected. This causes the recirculation region
to be destroyed, and the streamlines pass along the centerline directly to the outlet.
Finally, for case 3, there still remains a central recirculation region. Compared to
case 1, it is pushed further downstream and is much smaller in size.

To quantify the filtering of the LES, Fig. 5.15 shows the mean progress variable
variance conditioned on 𝐶 obtained from the simulations using model 2 compared
to the variance obtained from filtering one-dimensional laminar flames. The one-
dimensional flames are filtered with a Gaussian kernel at varying filter widths,
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 5.14: Mean 𝑢̃ field with streamlines superimposed.

expressed as a multiple of the laminar flame thickness, and the variance is computed
as:

𝐶𝑣 = 𝐶𝐶 − 𝐶𝐶 (5.15)

For values of 𝐶 close to 0 and 𝐶1𝐷
𝑚𝑎𝑥 the variance predicted from the LES follows the

profile of Δ = 2𝑙𝐹 . At intermediate values of𝐶, the variance lies between Δ = 0.5𝑙𝐹
and Δ = 𝑙𝐹 . On average, the effective filter width that the flame experiences is on the
order of the laminar flame thickness. Once again, values at 𝐶 > 𝐶1𝐷

𝑚𝑎𝑥 correspond to
superadiabatic burning, not present in one-dimensional flat flames. To measure the
effect of the subfilter pdf modelling, the ratio of the source term sampled both with
variance (𝛽-pdf) and without variance (𝛿-pdf) is computed. For most of the values,
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the values sampled using the 𝛽-pdf are below those of the 𝛿-pdf. Overall, the ratio
is within the range of 0.5 to 1.1. The pdf of the ratio is shown in Fig. 5.16.

Figure 5.15: Conditional mean variance from the simulation (model 2) compared
to variance obtained from filtering one-dimensional flames at varying filter widths
Δ.

Figure 5.16: Probability density function of the ratio of source terms sampled using
𝛽-pdf and 𝛿-pdf for 0.03 < 𝐶 < 0.1.

Figure 5.17 shows a close-up view of the mixture fraction and normalized source
term for model 2. The nominal value of the mixture fraction for the given equivalence
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ratio is 0.0116. The 𝑍 field in Fig. 5.17 shows significant fluctuations along and
behind the flame front. These fluctuations indicate significant differential diffusion
effects since 𝑍 is meant to capture the effects of local fluctuations in the equivalence
ratio. The effect on the flame can be seen in the plot of the normalized source
term. There is a clear dependence on the flame geometry, where in regions of
positive curvature (center of curvature located in the burnt mixture), the source term
is seen to be greater than the one-dimensional laminar maximum. Conversely, in
regions of negative curvature, the source term is reduced, and the flame is even
extinguished in some areas. The addition of the 𝑍 equation is necessary to capture
these geometry-dependent effects.

Figure 5.17: Close-up view of the mixture fraction (top) and normalized source
term (bottom) for model 2. The black line is an isocontour at 𝐶𝑝𝑒𝑎𝑘 = 0.0853 to
indicate the flame location.

5.4.3 A posteriori analysis of two-equation model
The conditional mean source terms of cases 2 and 3,

〈
¤̃𝜔𝐶 |𝐶

〉
, are shown in Fig. 5.18.

The conditional source term of the DNS flame A, ⟨ ¤𝜔𝐶 |𝐶⟩, divided by 1 − 𝛽 is also
shown for comparison. As discussed in Section 5.3.3, this rescaled source term was
used in the tabulation for case 2. The differences in the curves is a result of the LES
filtering.

The results from the LES are similar in both shape and magnitude. As such, case 2
is able to reproduce many of the flow features that case 3 has, including an increased
post-flame acceleration and better prediction of spreading rates. However, while
case 2 may reproduce the mean source term of case 3, it does not capture any local
variations in it. This may be the source of discrepancies between the two flow fields,
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most importantly, that case 2 eliminates the recirculation region which is present in
case 3.

Figure 5.18: Conditional mean of the source term,
〈
¤𝜔𝐶 |𝐶

〉
compared to DNS results

from Chapter 3.

5.5 Conclusions
Lean hydrogen premixed flames are subject to thermodiffusive instabilities that
strongly influence local and global combustion properties. In this work, LES were
conducted on a low-swirl burner using the tabulated chemistry framework. The sim-
ulations were conducted in two parts. First, a simulation of the LSI was performed
using the immersed boundary method. This simulation was used to generate inflow
boundary conditions for a second calculation of the combustion chamber.

The tabulated chemistry method was first validated on a methane/air flame at an
equivalence ratio of 𝜙 = 0.59, since it exhibits unity Lewis number behaviour. The
flame opens up at about a 45 degree angle and is stabilized by the presence of a
recirculation region. Then, LES were conducted on a premixed hydrogen/air flame
at an equivalence ratio of 𝜙 = 0.4. Due to differential diffusion effects, the hydrogen
flame exhibits a unique flow field in the experiments. In particular, the recirculation
region is pushed further downstream due to larger acceleration of the flow behind
the flame.

Two filtered tabulation models were tested in the LES. The first is the classical
one-equation tabulation, similar to the case of the methane flame. This method was
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unable to reproduce correct mean statistics in terms of axial or radial velocity profiles.
The second method was based on a two-equation tabulation, recently proposed by
Schlup and Blanquart [33]. This model was able to capture the differential diffusion
effects and reproduced successfully the unique flow field of the turbulent hydrogen
flame. This work is the first successful application of the two-equation model in the
LES framework.
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C h a p t e r 6

SUMMARY AND FUTURE DIRECTIONS

In this thesis, a comprehensive study of lean turbulent premixed hydrogen flames
was conducted, ranging from DNS to LES. Besides fundamental studies, the results
of the DNS were used to evaluate the validity of the effective Lewis number model
and the two-equation tabulated chemistry model. Derived from the DNS results, the
proposed LES framework has been validated against experimental results and could
be used to investigate novel combustor designs.

6.1 Large- and small-scale turbulence effects
To perform a comprehensive study of the effects of turbulence on thermodiffusively
unstable lean premixed hydrogen flames, a series of DNS was conducted across
a wide range of Karlovitz numbers and integral length scale ratios. A general-
ized expression for the burning efficiency was proposed, which depends on the
conditional mean source term, its gradient, and the percentage of superadiabatic
burning. The burning efficiency increases before decreasing at the highest Karlovitz
numbers. The assumptions of the previously proposed expression by Lapointe and
Blanquart [43] do not hold in the case of thermodiffusively unstable flames. As such,
their expression fails to reproduce the results of the newly proposed expression.

At a fixed Karlovitz number, the turbulent flame area, 𝐴𝑇 , increases almost linearly
with the integral length scale ratio, ℓ/𝑙𝐹 . The chemical source term shape does
not show any significant differences. Thus, for a given Karlovitz number, the flame
speed variation is directly controlled by the flame area, which is a global quantity.
It is unclear whether the observed effects are a result of the integral length scale, or
the domain size.

At a fixed integral length scale ratio, the flame speed and area both increase before
decreasing at the highest Karlovitz number. This trend is attributed to the dampening
of differential diffusion effects, due to the increased turbulent diffusivity. This is
outlined by the observation that the shape of the chemical source term approaches
that of the one-dimensional unity Lewis number flamelet. The propagation of the
flames behaves as a material surface, and is thus attributed to the turbulence, and is
not controlled by laminar instability structures.



95

A detailed discussion of the curvature effects on chemistry was also presented. The
curvature of the flame scales with an intermediate quantity between the reaction
zone thickness and the Kolmogorov length scale. To study the effects of chemistry,
conditional sampling was conducted using the mixture fraction. In regions of
positive curvature, the mixture fraction is higher than the nominal value, and in
regions of negative curvature, the mixture fraction is lower. The conditional mean
profile of 𝑍𝑚𝑖𝑥 becomes almost constant with respect to𝐶 as the Karlovitz number is
increased, further indicating that differential diffusion effects are being suppressed.
The two-dimensional conditional mean source term, ⟨ ¤𝜔𝐶 |𝜅, 𝐶⟩, shows significant
differences in its shape and magnitude as the Karlovitz number increases. However,
when conditioned in mixture fraction space, ⟨ ¤𝜔𝐶 |𝑍𝑚𝑖𝑥 , 𝐶⟩, the profiles show a good
collapse. This provides strong evidence for the validity of the two-equation tabulated
chemistry model across the wide range of Karlovitz numbers present in this study.

Overall, the qualitative trends are not affected by Soret diffusion. However, the
inclusion of Soret diffusion does have an impact on quantitative results. The mean
flame speed is increased by 35% for case A and 15% for case C. This is reflected in
an increase of the burning efficiency of approximately 10%.

6.2 Effective Lewis numbers
The effect of Soret diffusion and integral length scale ratio on the effective Lewis
number model of Savard and Blanquart [19] was studied. It was shown that both
the effective Lewis numbers and effective Soret diffusion needed to be used in
conjunction. The effective Soret diffusion coefficients are shown to scale down by a
factor of 1/(1 + 𝜓), where 𝜓 is the ratio of turbulent to mixture thermal diffusivity.

When the Soret diffusion is properly accounted for, the results show excellent agree-
ment with those of Savard and Blanquart [19]. A correction of their model is
proposed. In their work, the asymptotic value at zero Karlovitz number was that
of the one-dimensional laminar flame. However, we have shown that the correct
asymptotic limit is that of the three-dimensional laminar flame. Although Soret dif-
fusion changes the flame structures, it does not change the effective Lewis numbers.

It was hypothesized by Savard and Blanquart [19] that the small integral length scale
ratio used in their study may have affected their scalings. We have shown that the
integral length scale does not affect the flame structure, and as such, does not affect
the identified effective Lewis numbers. The current results agree well with their
proposed empirical model.



96

6.3 Large eddy simulations
In this work, LES were conducted on a low-swirl burning using the tabulated chem-
istry framework. Two main subfilter modelling strategies were explored. The filtered
laminar flamelet method was shown to produce negative diffusion coefficients for the
𝑍 equation, thus leading to numerical instabilities. As such, we used the presumed
𝛽-pdf model, which was shown by Berger et al. [63] to perform well a priori.

The classical one-equation tabulation using the one-dimensional laminar flamelet
source term failed to reproduce the unique flow field of hydrogen combustion.
To obtain a more appropriate estimation of the mean flame speed, a conditional
mean source term from the DNS results was also tested in the one-equation model.
Although this model showed significant improvements over the laminar source
term model, it exhibited excessive post-flame acceleration, and eliminated the main
recirculation region. Finally, the two-equation model was shown to reproduce the
mean velocity profiles and also the location of the recirculation region. The results
also serve as an a posteriori evaluation of the presumed 𝛽-pdf subfilter scale model.

6.4 Future work
A few avenues of research which should be pursued further are identified here.

• The extraction of the effective Lewis numbers produces an estimate of the
turbulent diffusivity, 𝛼𝑡 . An evaluation of the turbulent diffusivity should be
conducted via explicit filtering of the extensive DNS database for comparison
and to further assess the validity of the model. The results could be used to
inform flamelet based models for RANS.

• Further research should be conducted on identifying the effects of integral
length scale on the flame dynamics. The present forcing method does not
allow for the decoupling of the integral length scale and the domain size. This
would clarify the cause of observed trends such as the almost linear increase
of the flame area with the integral length scale ratio.

• The consideration of more complex physics should be added to the two-
equation tabulated chemistry model. For example, wall heat loss effects may
be important in the simulation of many industrial systems. The validity of
incorporating enthalpy in the tabulation should be explored to make the model
more widely applicable.



97

• Further investigation of the one-dimensional tabulation using turbulent quan-
tities should be conducted. In this thesis, only the turbulent mean source term
was tabulated. Other quantities, such as the diffusivity, may also need to be
obtained either from the turbulent profiles or from the effective Lewis number
model.

• The subfilter scale modelling of the two-equation tabulation should be further
pursued to identify whether a different spatially filtered approach is appli-
cable. Furthermore, besides local flame speed variations due to equivalence
ratio fluctuations, there are local flame thickness variations, changing the char-
acteristic length scale. Further research on LES modelling should investigate
these effects.

• The two-equation tabulated chemistry model should be tested for other ther-
modiffusively unstable fuels, such as ammonia or blends of ammonia and
hydrogen. The ability of the model to accurately predict emissions should
also be investigated.
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A p p e n d i x A

CONVERGENCE AND STABILITY OF THE MIDPOINT
ITERATIVE TIME INTEGRATION OF THE LOW MACH

NAVIER–STOKES EQUATIONS

The numerical stability of an explicit time integration scheme is often characterized
by a CFL number, 𝜎. Many practical applications, such as the injector and burner
geometries used in Chapter 5, are naturally represented by cylindrical coordinates.
In these cases, the limiting 𝜎 is in the azimuthal direction due to necessarily small
arc lengths near the centerline. The CFL numbers in the radial and azimuthal
directions are written as:

𝜎𝑟 =
𝑢𝑟Δ𝑡

Δ𝑟
(A.1)

𝜎𝜃 =
𝑢𝜃Δ𝑡

𝑟Δ𝜃
(A.2)

For the first point away from the centerline, 𝜎𝑟 is evaluated at 𝑟 = Δ𝑟, and 𝜎𝜃 is
evaluated at 𝑟 = Δ𝑟/2 due to the staggering. Assuming that the magnitudes of 𝑢𝑟
and 𝑢𝜃 are similar, then 𝜎𝜃 is larger than 𝜎𝑟 by a factor of 2/Δ𝜃. For reference, the
simulations in Chapter 5 have 2/Δ𝜃 = 𝑛𝜃/𝜋 = 256/𝜋.

In this Appendix, we study the numerical stability and convergence of the midpoint
iterative time integration scheme which is used in NGA [64].

A.1 Sub-iterative fractional-step approach
For a constant density case, non-reacting flow, the equations presented in Chapter 2
may be written in a more compact way. First, the momentum equations are ad-
vanced. Then, continuity is enforced through the pressure Poisson equation. For a
subiteration, 𝑘 , and estimate for the velocity field, u∗, the sub-iterative procedure is
then split into three main steps:

1. Predictor
u∗ − u𝑛

Δ𝑡
= −𝛿x (𝑝𝑘 ) + 𝑓

(
1
2

(
u𝑛 + u𝑛+1

𝑘

))
(A.3)

2. Poisson equation for corrector

𝛿x (𝛿x (𝛿𝑝)) =
1
Δ𝑡

(𝛿x (u∗)) (A.4)
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3. Application of the correction

u𝑘+1 = u∗ − Δ𝑡𝛿x (𝛿𝑝) (A.5)

𝑝𝑘+1 = 𝑝𝑘 + 𝛿𝑝 (A.6)

where 𝛿x is the finite difference gradient operator (see Eq. (2.49)), Δ𝑡 is the timestep
size, and 𝛿𝑝 is the necessary pressure change to enforce continuity. Steps 1–3 are
repeated until convergence is satisfied, or until the maximum number of subiterations
is reached. It is also important to note that the method is second-order in time for
𝑘 ≥ 2.

A.2 Semi-implicit iterative method
To increase numerical stability, Eq. (A.3) can be treated implicitly. Performing a
Taylor series expansion, Eq. (2.61) is replaced by:[

1 − 1
2
Δ𝑡
𝜕 𝑓

𝜕𝑢

] (
𝑢∗𝑘+1 − 𝑢

𝑛+1
𝑘

)
= 𝑢𝑛 − 𝑢𝑛+1

𝑘 + Δ𝑡 𝑓

[
1
2

(
𝑢𝑛 + 𝑢𝑛+1

𝑘

)]
(A.7)

where 𝜕 𝑓

𝜕𝑢
is the Jacobian matrix. The Jacobian matrix can be populated for an

implicit treatment of individual terms of the governing equations (e.g., convective
or diffusive terms). If the Jacobian matrix is set to zero, then the time integration
scheme becomes an explicit iterative scheme. For more details, the reader is referred
to [89, 88].

The Jacobian matrix is simplified through an approximate factorization [128]. If
A = 1

2Δ𝑡
𝜕 𝑓

𝜕𝑢
, then the approximate factorization is taken as:(

I − A𝑥 − A𝑦 − A𝑧

)
≈ (I − A𝑥)

(
1 − A𝑦

)
(1 − A𝑧) (A.8)

The problem is thus reduced to the inversion of three poly-diagonal matrices for each
momentum equation. The solution is obtained sequentially, treating each variable in
each dimension separately. Despite the errors from the approximate factorization,
it is important to note that the implicit correction aims to minimize the residual
𝑢𝑛+1
𝑘+1 − 𝑢

𝑛+1
𝑘

, which is calculated for the full equation with no approximations.

A.3 Cartesian — Explicit formulation
In this section, the numerical stability of the explicit time integration scheme is
discussed in the absence of viscosity. We consider first the case of the Cartesian
coordinate system.
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A.3.1 One-dimension — Longitudinal instabilities
The simplest test case is a strictly one-dimensional flow. In this case, the only
instabilities which could appear would be in the direction of the mean flow. We
refer to these instabilities as longitudinal instabilities. Consider a single velocity
component, 𝑢𝑥 , in the direction 𝑥. If we decompose the flow into mean and fluctu-
ating components, 𝑢𝑥 (𝑥) = 𝑢𝑥 (𝑥) + 𝑢′𝑥 (𝑥), then the growth of 𝑢′𝑥 (𝑥) can be predicted
through a stability analysis of the predictor-corrector scheme.

Consider a case where there are instabilities present in the 𝑢∗ field after the momen-
tum predictor step, Eq. (A.3). The response of the pressure corrector step is explained
as follows. The discretized one-dimensional Laplacian equation, Eq. (A.4), is:

𝑢∗
𝑥,𝑖1+1 − 𝑢

∗
𝑥,𝑖1

Δ𝑥

1
Δ𝑡

=
𝛿𝑝𝑖1+1 + 𝛿𝑝𝑖1−1 − 2𝛿𝑝𝑖1

Δ𝑥2 (A.9)

Now, we consider the normal mode ansatz for both variables, namely 𝑢∗
𝑥,𝑖1

=

𝑢∗𝑥𝑒
𝑗 (𝜅(𝑖1− 1

2 )Δ𝑥) and 𝛿𝑝𝑖1 = 𝛿𝑝𝑒 𝑗 (𝜅𝑖1Δ𝑥) , where 𝑗2 = −1. The shift by 1/2 accounts for
the staggering of the variable and ultimately simplifies the expressions. Substituting
these expressions into the discretized Laplacian equation, we obtain the following
expression:

𝑒 𝑗 𝜅Δ𝑥/2 − 𝑒− 𝑗 𝜅Δ𝑥/2

Δ𝑥
𝑢̂∗𝑥

1
Δ𝑡

=
𝑒 𝑗 𝜅Δ𝑥 + 𝑒− 𝑗 𝜅Δ𝑥 − 2

Δ𝑥2 𝛿𝑝 (A.10)

or

𝛿𝑝 = − 𝑗

Δ𝑡𝜅′′
𝑢̂∗𝑥 (A.11)

where 𝜅′′ = 2 sin(𝜅Δ𝑥/2)/Δ𝑥 is the effective wavenumber. Similarly, the pressure
correction step, Eq. (A.5), in one dimension takes the form:

𝑢𝑛+1
𝑥,𝑖1

= 𝑢∗𝑥,𝑖1 − Δ𝑡
𝛿𝑝𝑖1 − 𝛿𝑝𝑖1−1

Δ𝑥
(A.12)

With the normal mode ansatz, it becomes:

𝑢̂𝑛+1
𝑥 = 𝑢̂∗𝑥 −

Δ𝑡

Δ𝑥

(
𝑒 𝑗 𝜅Δ𝑥/2 − 𝑒− 𝑗 𝜅Δ𝑥/2

)
𝛿𝑝 = 𝑢̂∗𝑥 − Δ𝑡 𝑗 𝜅′′𝛿𝑝 (A.13)

Substitution of Eq. A.11 into Eq. A.13 yields:

𝑢̂𝑛+1
𝑥 = 𝑢̂∗𝑥 − 𝑢̂∗𝑥 = 0 (A.14)

This result shows that the pressure predictor-corrector procedure acts to remove any
longitudinal instabilities exactly within one timestep.
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A.3.2 One-dimension — Transverse instabilities
The next step is to consider velocity fluctuations which are not in the direction of
their respective velocity components. We refer to these as transverse instabilities.
Because the pressure term in each momentum equation acts only in one direction,
it only serves to remove the longitudinal instabilities. As such, pressure does not
appear in the following von Neumann stability analysis.

We consider a uniform mean flow in the 𝑥 direction, 𝑢𝑥 > 0, with fluctuation
of a different velocity component along the 𝑥 direction, 𝑢′𝑦 (𝑥). In the limit of
small perturbations, the linearized momentum equation is exactly the same as the
traditional advection equation:

𝜕𝜙

𝜕𝑡
+ 𝑐 𝜕𝜙

𝜕𝑥
= 0 (A.15)

where 𝜙 = 𝑢′𝑦 is the transported quantity and 𝑐 = 𝑢̄𝑥 is the convective velocity.
Similarly, the discretized momentum equation, Eq. (A.3), is equivalent to:

𝜕𝜙𝑖1

𝜕𝑡
+ 𝑐

𝜙𝑖1+1 − 𝜙𝑖1−1

2Δ𝑥
= 0 (A.16)

Introducing the normal mode ansatz, 𝜙𝑖1 = 𝜙𝑒 𝑗 (𝑖1𝜅Δ𝑥) , the equation becomes:

𝜕𝜙

𝜕𝑡
= − 𝑐

2Δ𝑥

(
𝑒 𝑗 𝜅Δ𝑥 − 𝑒− 𝑗 𝜅Δ𝑥

)
𝜙 = − 𝑗𝑐𝜅′𝜙 (A.17)

with the effective wavenumber 𝜅′ = sin(𝜅Δ𝑥)/Δ𝑥. The wavenumber for the worst-
case scenario corresponds to 𝜅Δ𝑥 = 𝜋/2 and 𝜅′ = 1/Δ𝑥. Hence, the equation can be
simplified to:

𝜕𝜙

𝜕𝑡
= − 𝑗 𝑐

Δ𝑥
𝜙 (A.18)

For one subiteration, the discrete equation becomes:

𝜙𝑛+1 − 𝜙𝑛
Δ𝑡

= − 𝑗 𝑐
Δ𝑥
𝜙𝑛 (A.19)

Introducing the CFL number as 𝜎 = 𝑐Δ𝑡/Δ𝑥, we have:

𝜙𝑛+1 = 𝜙𝑛 (1 − 𝑗𝜎) (A.20)

and expressing the growth rate as 𝐺 = |𝜙𝑛+1/𝜙𝑛 |, the stability of one subiteration is
characterized by:

|𝐺1 |2 = 1 + 𝜎2 (A.21)
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The process can be repeated iteratively to determine the dependence of the stability
on the number of subiterations. For a total number of subiterations 𝐾 , this can be
expressed as:

𝜙𝑛+1
𝐾

− 𝜙𝑛

Δ𝑡
= − 𝑗 𝑐

Δ𝑥

1
2
(𝜙𝑛 + 𝜙𝑛+1

𝐾−1) (A.22)

The stability for two, three, and four subiterations is given as:

|𝐺2 |2 = 1 + 𝜎
4

4
(A.23)

|𝐺3 |2 = 1 − 𝜎4

4
+ 𝜎

6

16
(A.24)

|𝐺4 |2 = 1 − 𝜎6

16
+ 𝜎

8

64
(A.25)

For one or two subiterations, the numerical method is unconditionally unstable. For
three or four subiterations, the timesteps are stable if 𝜎 ≤ 2 since the condition for
stability is |𝐺 | ≤ 1.

A.3.3 General multi-dimensional instabilities
The stability analysis presented in the previous section is now generalized for a three-
dimensional flow with uniform mean velocities 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧. After linearization,
the inviscid momentum equations become:

𝜕𝑢′𝑥
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢′𝑥
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢′𝑥
𝜕𝑧

= −𝜕 𝑝
′

𝜕𝑥
(A.26)

𝜕𝑢′𝑦
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑦
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢′𝑦
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢′𝑦
𝜕𝑧

= −𝜕 𝑝
′

𝜕𝑦
(A.27)

𝜕𝑢′𝑧
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑧
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢′𝑧
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢′𝑧
𝜕𝑧

= −𝜕 𝑝
′

𝜕𝑧
(A.28)

with 𝑢′𝑥 , 𝑢′𝑦, 𝑢′𝑧 ≪ 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧. For the fluctuating components, the normal mode
ansatz is given as:

𝜙′𝑖1𝑖2𝑖3 = 𝜙 exp
[
𝑗
(
𝜅𝑥𝑖1Δ𝑥 + 𝜅𝑦𝑖2Δ𝑦 + 𝜅𝑧𝑖3Δ𝑧

) ]
(A.29)

To account for the staggering, 𝑖1, 𝑖2, and 𝑖3 may be offset by 1/2, depending on
the location of the variable of interest. After substitution, the spatially discretized
momentum equations, Eqs. (A.26)-(A.28), are given as:

𝜕𝑢̂𝑥

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑦𝜅′𝑦 + 𝑢𝑧𝜅′𝑧

)
𝑢̂𝑥 = − 𝑗 𝜅′′𝑥 𝑝 (A.30)

𝜕𝑢̂𝑦

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑦𝜅′𝑦 + 𝑢𝑧𝜅′𝑧

)
𝑢̂𝑦 = − 𝑗 𝜅′′𝑦 𝑝 (A.31)

𝜕𝑢̂𝑧

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑦𝜅′𝑦 + 𝑢𝑧𝜅′𝑧

)
𝑢̂𝑧 = − 𝑗 𝜅′′𝑧 𝑝 (A.32)
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with the effective wavenumbers 𝜅′𝑥 = sin (𝜅𝑥Δ𝑥) /Δ𝑥 and 𝜅′′𝑥 = 2 sin(𝜅𝑥Δ𝑥/2)/Δ𝑥.
Similarly, the discretized continuity equation becomes:

𝜅′′𝑥 𝑢̂𝑥 + 𝜅′′𝑦 𝑢̂𝑦 + 𝜅′′𝑧 𝑢̂𝑧 = 0 (A.33)

To study the time integration, we first consider the case of one subiteration. Since
the pressure term is consistent between the predictor and corrector steps, it can
be added fully in the corrector step. As such, the velocity components after the
predictor step are:

𝑢̂∗𝑥 = (1 − 𝑗Σ) 𝑢̂𝑛𝑥 (A.34)

𝑢̂∗𝑦 = (1 − 𝑗Σ) 𝑢̂𝑛𝑦 (A.35)

𝑢̂∗𝑧 = (1 − 𝑗Σ) 𝑢̂𝑛𝑧 (A.36)

where Σ = Δ𝑡

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑦𝜅′𝑦 + 𝑢𝑧𝜅′𝑧

)
. The corrector step follows as:

𝑢̂𝑛+1
𝑥 = 𝑢̂∗𝑥 − Δ𝑡 𝑗 𝜅′′𝑥 𝑝 (A.37)

𝑢̂𝑛+1
𝑦 = 𝑢̂∗𝑦 − Δ𝑡 𝑗 𝜅′′𝑦 𝑝 (A.38)

𝑢̂𝑛+1
𝑧 = 𝑢̂∗𝑧 − Δ𝑡 𝑗 𝜅′′𝑧 𝑝 (A.39)

An expression for 𝑝 can be obtained by substituting 𝑢̂𝑛+1
𝑥 , 𝑢̂𝑛+1

𝑦 , and 𝑢̂𝑛+1
𝑧 into

continuity, Eq. (A.33). After manipulation, the final equations can be expressed in
matrix form: 

𝑢̂𝑥

𝑢𝑦

𝑢𝑧


𝑛+1

= (1 − 𝑗Σ) A


𝑢̂𝑥

𝑢̂𝑦

𝑢𝑧


𝑛

(A.40)

with

A =
1

𝜅′′2𝑥 + 𝜅′′2𝑦 + 𝜅′′2𝑧


𝜅′′2𝑦 + 𝜅′′2𝑧 −𝜅′′𝑥 𝜅′′𝑦 −𝜅′′𝑥 𝜅′′𝑧
−𝜅′′𝑦 𝜅′′𝑥 𝜅′′2𝑥 + 𝜅′′2𝑧 −𝜅′′𝑦 𝜅′′𝑧
−𝜅′′𝑧 𝜅′′𝑥 −𝜅′′𝑧 𝜅′′𝑦 𝜅′′2𝑥 + 𝜅′′2𝑦

 (A.41)

The A matrix has two distinct eigenvalues, namely 𝜆1 = 0 and 𝜆2 = 1 (twice). The
growth of either eigenvector associated with the larger eigenvalue, 𝜓̂2, is given by:

𝜓̂𝑛+1
2 = (1 − 𝑗Σ)𝜓̂𝑛2 (A.42)

This expression is similar to Eq. (A.20). The stability analysis for any number of
subiterations can be derived in a manner similar to Section A.3.2.
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In summary, the worst-case scenario for the 3D stability analysis (i.e., largest Σ)
happens when the wavevector of the instability (𝜅′𝑥 , 𝜅′𝑦, 𝜅′𝑧) is aligned with the mean
flow velocity vector (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧). An upper limit is then |Σ | ≤ 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧, with
𝜎𝑥 = |𝑢𝑥 |Δ𝑡/Δ𝑥, 𝜎𝑦 = |𝑢𝑦 |Δ𝑡/Δ𝑦, and 𝜎𝑧 = |𝑢𝑧 |Δ𝑡/Δ𝑧. The dependence on the CFL
number and number of subiterations follows that of the 1D transverse instability
case. Specifically, the stability of the system is controlled by the sum of the CFL
numbers in the 𝑥, 𝑦, and 𝑧 directions, namely 𝜎 = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 < 2 (for three or
more subiterations). Note that this is a sufficient condition as |Σ | ≤ 𝜎).

A.3.4 Numerical verification
The stability is tested numerically in NGA in a series of two-dimensional and
three-dimensional inviscid simulations on Cartesian grids. In each case, the flow is
periodic in all three directions (𝑥, 𝑦, and 𝑧); the domain size is 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1;
and the number of grid points is 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧 = 64.

To test the one-dimensional transverse instabilities, the initial velocity profile corre-
sponds to a mean flow in only one direction and perturbations in the other direction.
Specifically:

𝑢0
𝑥 (𝑥, 𝑦) = 𝑢𝑥 = 1 (A.43)

𝑢0
𝑦 (𝑥) = 1 × 10−9 sin

(
2𝜋𝑥
4Δ𝑥

)
(A.44)

which corresponds to the most unstable mode identified in the previous sections. We
also consider one-dimensional mean flows, 𝑢𝑥 = 1, two-dimensional mean flows,
𝑢𝑥 = 𝑢𝑦 = 1, and three-dimensional mean flows, 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 1, with initial
random perturbations of 1 × 10−9 amplitude.

For the one-dimensional transverse case, since there is no mean flow for 𝑢𝑦, the
growth of the perturbations can be tracked directly by the maximum of its absolute
value, |𝑢𝑦 |∞. The magnitude of the instability is expected to take the form:

|𝑢𝑛𝑦 |∞ = 𝐺𝑛 |𝑢0
𝑦 |∞ (A.45)

where 𝑛 is the number of timesteps and 𝐺 is the growth rate, which can be readily
obtained from the results by calculating the slope of |𝑢𝑛𝑦 |∞ on a semi-logarithmic
plot. An example of the growth of |𝑢𝑛𝑦 |∞ is shown in Fig. A.1 for four subiterations
(see Eq. (A.25)). Results for three different CFL numbers are shown: 𝜎 = 1.00,
which has a growth rate of 𝐺 = 0.9761 compared to a predicted growth rate of
𝐺 𝑝 = 0.9763; 𝜎 = 1.80, which has a growth rate of 𝐺 = 0.7718 compared to



105

Figure A.1: Maximum of |𝑢𝑦 | for a Cartesian flow consisting of a one-dimensional
mean flow with transverse perturbations, integrated in time using 4 explicit subiter-
ations.

𝐺 𝑝 = 0.7721; and 𝜎 = 2.24, which has a growth rate of 𝐺 = 1.7335 compared to
𝐺 𝑝 = 1.7345.

The measured and theoretical growth rates are compared further in Fig. A.2 as a
function of 𝜎. The data show excellent agreement. With three or four subiterations
and 𝜎 ≤ 2, the explicit midpoint iterative method is resistant to transverse instabili-
ties in the absence of viscosity. The figure also shows results obtained with the two-
and three-dimensional uniform velocity profiles. The results collapse perfectly when
plotted versus the total CFL number, namely 𝜎 = |𝜎𝑥 | + |𝜎𝑦 | in two dimensions and
𝜎 = |𝜎𝑥 | + |𝜎𝑦 | + |𝜎𝑧 | in three dimensions. It is noted that for the cases with random
perturbations, the magnitude of the initial disturbances does not decrease as it does
for the case with the most unstable mode when 𝜎 < 2. The initial perturbations are
broad band with low wavenumbers that do not decay in time.

It should be noted there is a region between 𝜎 ≈ 1 and 𝜎 = 2 where the growth
rate dips significantly below 1. The perturbations at these 𝜎 are damped, which is
beneficial for stability, but detrimental for preserving the total kinetic energy.

A.3.5 Convergence of explicit subiterations
In addition to studying the stability of the overall time integration, it is also important
to consider the convergence of the subiterations within one timestep. Consistent
with the results presented in the previous sections, we limit our analysis to one-
dimensional transverse waves and the advection equation.
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(a) 1 subiteration (b) 2 subiterations

(c) 3 subiterations (d) 4 subiterations

Figure A.2: Magnitude of the amplification factor of the explicit midpoint iterative
method in Cartesian coordinates. The dashed line is at 𝑟 = 1. For all the cases, the red
line indicates the theory and the blue circles represent a one-dimensional simulation
initialized with the most unstable mode. For four subiterations, the one-dimensional
(green diamond), two-dimensional (purple square), and three-dimensional (brown
triangle) cases shown are initialized using random perturbations.

Discretization of the advection equation via the midpoint iterative method yields:

𝜙𝑛+1
𝑖1,𝑘+1 − 𝜙

𝑛
𝑖1

Δ𝑡
+ 𝑐 1

2Δ𝑥

[
1
2

(
𝜙𝑛𝑖1+1 + 𝜙

𝑛+1
𝑖1+1,𝑘

)
− 1

2

(
𝜙𝑛𝑖1−1 + 𝜙

𝑛+1
𝑖1−1,𝑘

)]
= 0 (A.46)

To investigate the convergence of the subiterations, it is convenient to consider
first the changes in the variable between two consecutive subiterations, namely
𝛿𝜙𝑖1,𝑘+1 = 𝜙𝑛+1

𝑖1,𝑘+1 − 𝜙
𝑛+1
𝑖1,𝑘

. Substitution of the normal mode ansatz for 𝛿𝜙 results in:

𝛿𝜙𝑘+1 = −1
2
𝑐Δ𝑡 𝑗 𝜅′𝛿𝜙𝑘 (A.47)
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For the worst-case scenario, 𝜅Δ𝑥 = 𝜋/2, and

𝛿𝜙𝑘+1 = − 𝑗 𝜎
2
𝛿𝜙𝑘 (A.48)

The convergence of the geometric sequence is assured if the geometric ratio 𝑟 =

𝜎/2 < 1 or 𝜎 < 2. By realizing that 𝜙𝑛+1
𝑖1,𝑘

= 𝜙𝑛+1
𝑖1,0 + ∑𝑘

1 𝛿𝜙𝑖1,𝑚 is a geometric series
with the same geometry ratio, the condition 𝜎 < 2 is also the necessary condition
to ensure the convergence of the subiterations.

To test the stability of the subiterations, the same one-dimensional mean flow with
transverse perturbations was simulated using 100 subiterations. For one timestep,
the residual of 𝑢𝑦, 𝑢𝑦,𝑘+1−𝑢𝑦,𝑘 , is plotted against the subiteration in Fig. A.3 for three
different 𝜎. For 𝜎 ≤ 2, the residual is decaying, indicating that the subiterations
are converging. When 𝜎 is increased slightly above the stability limit to 2.048, the
subiterations do not converge. Consequently, the overall timestep is also unstable
and the solution diverges. The growth rates are also compared to the theoretical
result of Eq. (A.48) and show good agreement.

(a) Residual of 𝑢𝑦 (b) Growth rate

Figure A.3: The residual of 𝑢𝑦 versus the subiteration for the explicit iterative time
integration in Cartesian coordinates (a) and associated growth rate compared to the
theory (b).

A.4 Cylindrical — Explicit formulation
The cylindrical coordinate system introduces additional terms in the governing
equations which may have implications on the stability of the time integration. In
this section, we review the stability with regards to these specific aspects.
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A.4.1 Expansion at centerline
Lele and Constantinescu [129] generalized series expansions for multivalued quan-
tities on the centerline, namely 𝑢𝜃 and 𝑢𝑟 . These expansions take the form:

𝑀 (𝑟, 𝜃) = 1
𝑟

∞∑︁
𝑛=1

𝐴0𝑛𝑟
2𝑛 +

∞∑︁
𝑚=1

𝑟𝑚−1

( ∞∑︁
𝑛=0

𝐴𝑚𝑛𝑟
2𝑛

)
cos (𝑚𝜃)

+
∞∑︁
𝑚=1

𝑟𝑚−1

( ∞∑︁
𝑛=0

𝐵𝑚𝑛𝑟
2𝑛

)
sin (𝑚𝜃) (A.49)

For incompressible flows, the continuity equation in cylindrical coordinates with no
axial flow is written:

1
𝑟

𝜕𝑟𝑢𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝑢𝜃

𝜕𝜃
= 0 (A.50)

From here, the expressions for 𝑢𝑟 and 𝑢𝜃 close to 𝑟 = 0 can be written:

𝑢𝑟 = 𝐴 cos (𝜃) + 𝐵 sin (𝜃) (A.51)

𝑢𝜃 = 𝐵 cos (𝜃) − 𝐴 sin (𝜃) + 𝐶𝑟 (A.52)

Although the governing equations have a singularity due to the 1/𝑟 term, the singu-
larity is not physical as it does not appear in the solution for the velocity components.
There are two key observations. The first is that the expression for 𝑢𝑟 does not have
an 𝑟 dependence, whereas the expression for 𝑢𝜃 does. Secondly, the solution at the
centerline accommodates two basic flows, namely, a uniform flow (corresponding
the cos and sin terms) and a solid body rotation (corresponding to the 𝑟 term). The
stability of these two canonical flows is the subject of the following subsections.

A.4.2 General cylindrical stability
We repeat the stability analysis of section A.3.3 in cylindrical coordinates with a
mean flow in the axial, 𝑢𝑥 , radial, 𝑢𝑟 , and azimuthal, 𝑢𝜃 , directions. No assump-
tions are made concerning the mean flow, besides verification of continuity. After
linearization, the inviscid momentum equations become:

𝜕𝑢′𝑥
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑥
𝜕𝑥

+ 𝑢𝑟
𝜕𝑢′𝑥
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢′𝑥
𝜕𝜃

= −𝜕 𝑝
′

𝜕𝑥
(A.53)

𝜕𝑢′𝑟
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑟
𝜕𝑥

+ 𝑢𝑟
𝜕𝑢′𝑟
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢′𝑟
𝜕𝜃

− 2
𝑢𝜃

𝑟
𝑢′𝜃 = −𝜕 𝑝

′

𝜕𝑟
(A.54)

𝜕𝑢′
𝜃

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢′
𝜃

𝜕𝑥
+ 𝑢𝑟

𝜕𝑢′
𝜃

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢′
𝜃

𝜕𝜃
+ 𝑢𝜃
𝑟
𝑢′𝑟 = −1

𝑟

𝜕 𝑝′

𝜕𝜃
(A.55)

with 𝑢′𝑥 , 𝑢′𝑟 , 𝑢′𝜃 ≪ 𝑢𝑥 , 𝑢𝑟 , 𝑢𝜃 . The normal mode ansatz for the fluctuating components
is given as:

𝜙′𝑖1𝑖2𝑖3 = 𝜙 exp [ 𝑗 (𝜅𝑥𝑖1Δ𝑥 + 𝜅𝑟𝑖2Δ𝑟 + 𝜅𝜃𝑖3Δ𝜃)] (A.56)
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The discretized momentum equations become:

𝜕𝑢̂𝑥

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑟𝜅′𝑟 + 𝑢𝜃𝜅′𝜃

)
𝑢̂𝑥 = − 𝑗 𝜅′′𝑥 𝑝 (A.57)

𝜕𝑢̂𝑟

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑟𝜅′𝑟 + 𝑢𝜃𝜅′𝜃

)
𝑢̂𝑟 − 2

𝑢𝜃

𝑟
𝑢̂𝜃 = − 𝑗 𝜅′′𝑟 𝑝 (A.58)

𝜕𝑢̂𝜃

𝜕𝑡
+ 𝑗

(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑟𝜅′𝑟 + 𝑢𝜃𝜅′𝜃

)
𝑢̂𝜃 +

𝑢𝜃

𝑟
𝑢̂𝑟 = − 𝑗 𝜅′′𝜃 𝑝 (A.59)

with the effective wavenumbers 𝜅′
𝜃
= sin(𝜅𝜃Δ𝜃)/𝑟Δ𝜃 and 𝜅′′

𝜃
= 2 sin(𝜅𝜃Δ𝜃/2)/𝑟Δ𝜃.

Finally, the continuity equation takes the form:

𝜅′′𝑥 𝑢̂𝑥 +
(
1
𝑟
+ 𝜅′′𝑟

)
𝑢̂𝑟 + 𝜅′′𝜃 𝑢̂𝜃 = 0 (A.60)

Now, we consider the time integration with one subiteration. Assuming once again
that the pressure term is added fully in the corrector step, the velocity components
after the predictor step are:

𝑢̂∗𝑥 = (1 − 𝑗𝜎) 𝑢̂𝑛𝑥 (A.61)

𝑢̂∗𝑟 = (1 − 𝑗𝜎) 𝑢̂𝑛𝑟 + 2𝛽 𝑢̂𝑛𝜃 (A.62)

𝑢̂∗𝜃 = (1 − 𝑗𝜎) 𝑢̂𝑛𝜃 − 𝛽 𝑢̂
𝑛
𝑟 (A.63)

with 𝜎 = Δ𝑡
(
𝑢𝑥𝜅

′
𝑥 + 𝑢𝑟𝜅′𝑟 + 𝑢𝜃𝜅′𝜃

)
and 𝛽 = Δ𝑡𝑢𝜃/𝑟. The corrector step follows as:

𝑢̂𝑛+1
𝑥 = 𝑢̂∗𝑥 − Δ𝑡 𝑗 𝜅′′𝑥 𝑝 (A.64)

𝑢̂𝑛+1
𝑟 = 𝑢̂∗𝑟 − Δ𝑡 𝑗 𝜅′′𝑟 𝑝 (A.65)

𝑢̂𝑛+1
𝜃 = 𝑢̂∗𝜃 − Δ𝑡 𝑗 𝜅′′𝜃 𝑝 (A.66)

An expression for 𝑝 can be obtained by substituting 𝑢̂𝑛+1
𝑥 , 𝑢̂𝑛+1

𝑟 , and 𝑢̂𝑛+1
𝜃

into
continuity, Eq. (A.60). After manipulation, the final equations can be expressed in
matrix form: 

𝑢̂𝑥

𝑢𝑟

𝑢𝜃


𝑛+1

= [(1 − 𝑗𝜎) A + 𝛽B]

𝑢̂𝑥

𝑢̂𝑟

𝑢𝜃


𝑛

(A.67)

with

A =
1

𝜅′′2𝑥 + 𝜅′′2𝑟 + 𝜅′′𝑟
𝑟
+ 𝜅′′2

𝜃


𝜅′′2𝑟 + 𝜅′′𝑟

𝑟
+ 𝜅′′2

𝜃
−𝜅′′𝑥

(
𝜅′′𝑟 + 1

𝑟

)
−𝜅′′𝑥 𝜅′′𝜃

−𝜅′′𝑟 𝜅′′𝑥 𝜅′′2𝑥 + 𝜅′′2
𝜃

−𝜅′′𝑟 𝜅′′𝜃
−𝜅′′

𝜃
𝜅′′𝑥 −𝜅′′

𝜃

(
𝜅′′𝑟 + 1

𝑟

)
𝜅′′2𝑥 + 𝜅′′2𝑟 + 𝜅′′𝑟

𝑟


(A.68)
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and

B =
1

𝜅′′2𝑥 + 𝜅′′2𝑟 + 𝜅′′𝑟
𝑟
+ 𝜅′′2

𝜃


0 𝜅′′𝑥 𝜅

′′
𝜃

−2𝜅′′𝑥
(
𝜅′′𝑟 + 1

𝑟

)
0 𝜅′′𝑟 𝜅

′′
𝜃

2
(
𝜅′′2𝑥 + 𝜅′′2

𝜃

)
0 −

(
𝜅′′2𝑥 + 𝜅′′2𝑟 + 𝜅′′𝑟

𝑟

)
−2𝜅′′

𝜃

(
𝜅′′𝑟 + 1

𝑟

)
 (A.69)

The A matrix has two distinct eigenvalues, namely 𝜆1 = 0 and 𝜆2 = 1 (twice). In
the absence of the B matrix, the dynamics of Eq. (A.67) reflect that of Eq. (A.40).
In other words, the stability of the cylindrical swirling flows would follow the same
criteria as the previous Cartesian cases.

While the B matrix arises from 1/𝑟 terms in the radial and azimuthal momentum
equations, its magnitude is the smallest at the centerline. At the first cell away from
the centerline, the azimuthal wavenumber, 𝜅′′

𝜃
, is larger than the radial wavenumber,

𝜅′′𝑟 by 𝑛𝜃/𝜋 ≫ 1. In the limit of high azimuthal grid refinement, close to the
centerline, the linear system (Eq. A.67) can be approximated by:

𝑢̂𝑥

𝑢𝑟

𝑢𝜃


𝑛+1

≈

1 − 𝑗𝜎 0 0

0 1 − 𝑗𝜎 2𝛽
0 0 0



𝑢̂𝑥

𝑢̂𝑟

𝑢𝜃


𝑛

(A.70)

From this, we can conclude that the B does not impact the stability of the numerical
system at small radii as the eigenvalues remain 1 − 𝑗𝜎 (twice). The B matrix does
impact the stability at large radii. Unfortunately, no general analytical solutions
exist.

Consider a swirling flow with a mean axial velocity. Recognizing that𝜎 is the largest
when the effective wavevector is aligned with the mean flow vector, i.e., (𝜅′𝑥 , 𝜅′𝑟 , 𝜅′𝜃) ∝
(𝑢𝑥 , 𝑢𝑟 , 𝑢𝜃), it is safe to neglect 𝜅′′𝑟 in the absence of mean radial velocity. Similarly,
away from the centerline, we may neglect the 1/𝑟 terms. The remaining B matrix
depends only on 𝜅′′𝑥 and 𝜅′′

𝜃
, and its eigenvalues are ± 𝑗

√
2𝜅′′𝑥 /

√︃
𝜅′′2𝑥 + 𝜅′′2

𝜃
. In the

worst-case scenario, the eigenvectors of A and B are aligned. When three or more
subiterations are used, the stability criterion becomes:

|𝜎𝑥 | + |𝜎𝜃 | + |𝛽 |

√︄
2𝑢2

𝑥

𝑢2
𝑥 + 𝑢2

𝜃

< 2 (A.71)

At worst, the factor multiplying 𝛽 is
√

2.

A.4.3 Numerical verification
The stability is tested numerically in a series of two-dimensional and three-dimensional
inviscid simulations on cylindrical grids. In each case, the flow is periodic in two
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directions (𝑥 and 𝜃); the domain size is 𝐿𝑥 = 𝐿𝑟 = 1 and 𝐿𝜃 = 2𝜋; and the number
of grid points is 𝑛𝑥 = 𝑛𝑟 = 𝑛𝜃 = 64.

Consistent with the expansion at 𝑟 = 0 presented in section A.4.1, two different
mean flows are considered. The first initial profile is taken to be that of a uniform
flow in Cartesian coordinates. In cylindrical coordinates, the corresponding discrete
velocity profile is given by:

𝑢𝜃 (𝑥, 𝑟, 𝜃) = sin 𝜃 (A.72)

𝑢𝑟 (𝑥, 𝑟, 𝜃) = −sin(𝜃 + Δ𝜃/2) − sin(𝜃 − Δ𝜃/2)
Δ𝜃

≈ − cos 𝜃 (A.73)

Using the above expression for the radial velocity is important to ensure the mean
flow verifies the continuity equation discretely. This mean flow is superimposed
with random fluctuations in the axial velocity (of 1 × 10−9 amplitude). The mean
flow is also used as Dirichlet boundary conditions at the outer edge in the 𝑟 direction.

The second initial profile corresponds to that of a solid body rotation with mean axial
velocity and random perturbations in the radial velocity (of 1 × 10−9 amplitude).
Specifically:

𝑢𝑥 (𝑥, 𝑟, 𝜃) = 𝑐𝑜𝑛𝑠𝑡 (A.74)

𝑢0
𝜃 (𝑥, 𝑟, 𝜃) = 𝑟 (A.75)

In the absence of perturbations, the initial profile satisfies discretely continuity.
Neumann boundary conditions are used at the outer edge in the 𝑟 direction.

(a) Uniform flow (b) Swirl

Figure A.4: Magnitude of the amplification factor of instabilities in cylindrical
coordinates with four subiterations.



112

The numerical stability for these two test cases is shown in Fig. A.4 using 4 subiter-
ations. Figure A.4a shows the growth rate of a case with uniform flow. For 𝑛𝜃 = 64,
there is a slight discrepancy between the theory and the measured values. Because
𝑢𝜃 is not constant, the instabilities ‘feel’ an effective 𝑢𝜃 corresponding to an average
over a few wavelengths (which is lower than the maximum). As such, there is a
grid dependence on the measured values. As the grid resolution is increased, this
discrepancy is expected to decrease. This is reflected in the solutions for 𝑛𝜃 = 128
and 𝑛𝜃 = 256, which lie closer to the theoretically predicted values.

Figure A.4b shows the case of pure swirl. For both one-dimensional and two-
dimensional simulations, the growth rates closely follow the theory when plotted
against 𝜎 +

√
2𝛽.

A.5 Implicit iterative method
To improve the numerical stability, the iterative method can be made semi-implicit
(see Section A.2). This section provides a discussion of the formulation of the
method and an evaluation of the numerical stability.

A.5.1 Implicit matrix formulation
Two implicit formulations of the momentum equation may be proposed.

Formally, as mentioned previously (Chapter 2), the governing equations are solved in
the conservative form. The 𝑢𝑥-momentum equation in a three-dimensional inviscid
Cartesian flow is given as:

𝜕𝑢𝑥

𝜕𝑡
+ 𝜕𝑢𝑥𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑥𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑥𝑢𝑧

𝜕𝑧
+ 1
𝜌

𝜕 𝑝

𝜕𝑥
= 0 (A.76)

Once again, we decompose the velocity into its mean and fluctuating components:
𝑢𝑥 = 𝑢𝑥 + 𝑢′𝑥 , with 𝑢′𝑥 ≪ 𝑢𝑥 . Recognizing that the mean flow is divergence free, the
linearized equation in advection form is written:

𝜕𝑢′𝑥
𝜕𝑡

+ 2𝑢𝑥
𝜕𝑢′𝑥
𝜕𝑥

+ 𝑢𝑥
𝜕𝑢′𝑦
𝜕𝑦

+ 𝑢𝑦
𝜕𝑢′𝑥
𝜕𝑦

+ 𝑢𝑥
𝜕𝑢′𝑧
𝜕𝑧

+ 𝑢𝑧
𝜕𝑢′𝑥
𝜕𝑧

+ 1
𝜌

𝜕 𝑝

𝜕𝑥
= 0 (A.77)

Along with the corresponding 𝑢′𝑦 and 𝑢′𝑧 equations, we obtain a set of three coupled
equations for (𝑢′𝑥 , 𝑢′𝑦, 𝑢′𝑧) in three dimensions (𝑥, 𝑦, 𝑧).

Alternatively, instead of developing an implicit formulation based on Eq. A.77,
we take into account that the fluctuations are also divergence free, arriving at the
equation:

𝜕𝑢′𝑥
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢′𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢′𝑥
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢′𝑥
𝜕𝑧

+ 1
𝜌

𝜕 𝑝

𝜕𝑥
= 0 (A.78)
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In this final formulation, the 𝑢′𝑥 , 𝑢′𝑦, and 𝑢′𝑧 equations are now decoupled. The
approximate factorization requires that the equation be solved in each direction
sequentially for each velocity component. The decoupling of the equations justifies
the sequential nature of the semi-implicit scheme.

A.5.2 Implicit in single direction — Cartesian
We revisit the stability of the time integration in Cartesian coordinates done in
Section A.3.3. This time, the semi-implicit algorithm described in Section A.2
is used in one direction, namely 𝑥. While similar to its explicit time integration
counterpart, the semi-implicit time integration presents a couple of key subtleties.

Let’s start with the case of one subiteration. After the predictor step, the velocity
fluctuations are given by:

𝑢̂∗𝑥 =
1 − 𝑗Σ′ − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

𝑢̂𝑛𝑥 (A.79)

𝑢̂∗𝑦 =
1 − 𝑗Σ′ − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

𝑢̂𝑛𝑦 (A.80)

𝑢̂∗𝑧 =
1 − 𝑗Σ′ − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

𝑢̂𝑛𝑧 (A.81)

where Σ′ = Δ𝑡

(
𝑢𝑦𝜅

′
𝑦 + 𝑢𝑧𝜅′𝑧

)
and Σ𝑥 = Δ𝑡𝑢𝑥𝜅

′
𝑥 . The corrector step remains the

same, namely:

𝑢̂𝑛+1
𝑥 = 𝑢̂∗𝑥 − Δ𝑡 𝑗 𝜅′′𝑥 𝑝 (A.82)

𝑢̂𝑛+1
𝑦 = 𝑢̂∗𝑦 − Δ𝑡 𝑗 𝜅′′𝑦 𝑝 (A.83)

𝑢̂𝑛+1
𝑧 = 𝑢̂∗𝑧 − Δ𝑡 𝑗 𝜅′′𝑧 𝑝 (A.84)

Once again, an expression for 𝑝 can be obtained by substituting 𝑢̂𝑛+1
𝑥 , 𝑢̂𝑛+1

𝑦 , and 𝑢̂𝑛+1
𝑧

into continuity. After manipulation, the final equations can be expressed in matrix
form: 

𝑢̂𝑥

𝑢𝑦

𝑢𝑧


𝑛+1

=
1 − 𝑗Σ′ − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

A


𝑢̂𝑥

𝑢̂𝑦

𝑢𝑧


𝑛

(A.85)

The A matrix remains the same as before (its largest eigenvalue is 𝜆2 = 1). As
a result, the stability of the semi-implicit system is controlled by the complex
amplification factor:

𝐺1 =
1 − 𝑗Σ′ − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

(A.86)
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Unlike for the explicit time integration, the amplification factor is now a function
of two parameters, namely Σ𝑥 and Σ′. These two parameters take values between
0 ≤ |Σ𝑥 | ≤ 𝜎𝑥 and 0 ≤ |Σ′| ≤ 𝜎𝑦 + 𝜎𝑧 ≡ 𝜎′. The magnitude of 𝐺1 happens to be
the largest when Σ′ is the largest (namely Σ′ = 𝜎′) and Σ𝑥 =

√
Σ′2 + 4 − Σ′. Hence,

for Σ𝑥 > 2 >
√
Σ′2 + 4 − Σ′, the amplification factor is independent of the CFL in

the implicit direction (namely 𝜎𝑥) and takes the form:

|𝐺1 |2 = 1 + 2𝜎′
√
𝜎′2 + 4 − 𝜎′

(A.87)

The recursive relationship for any number of subiterations is:

𝐺𝑘+1 =
1 − 1

2 𝑗Σ
′(1 + 𝐺𝑘 ) − 1

2 𝑗Σ𝑥

1 + 1
2 𝑗Σ𝑥

(A.88)

For two subiterations, the maximum amplification factor is given by:

|𝐺2 |2 = 1 + 𝜎
′4

4
(A.89)

which occurs when Σ𝑥 = 0 regardless of 𝜎𝑥 . For three subiterations, the maximum
amplification factor occurs around Σ𝑥 ≈ 3.3–3.45 and is well approximated by:

|𝐺3 |2 ≈ 1 + 0.028𝜎′3 (A.90)

for 𝜎𝑥 > 3.45. For four subiterations, the maximum amplification factor is approxi-
mated by:

|𝐺4 |2 ≈ 1 + 44
625

𝜎′4 + 32
625

𝜎′5 − 16
625

𝜎′6 + 4
625

𝜎′8 (A.91)

which occurs when Σ𝑥 ≈ 1.

Four key observations can be made. First, for large CFL numbers in the implicit
direction (i.e., large 𝜎𝑥), the amplification factor is only a function of the total CFL
numbers in the explicit directions (i.e., 𝜎′ = 𝜎𝑦 + 𝜎𝑧). Second, the amplification
factor is always greater than 1. Third, the limit of the amplification factor at small
explicit CFL (i.e., 𝜎′ → 0) is exactly 1. Finally, these amplification factors should
be understood as upper limits. The Σ𝑥 values that correspond to these maxima (e.g.,
Σ𝑥 ≈ 1 for four subiterations) may not be realizable on a given computational grid.

A.5.3 Numerical verification
The numerical stability of the implicit iterative method is tested numerically in
three dimensions using a two-dimensional mean flow, with constant 𝑢𝑥 and 𝑢𝑦 = 1,
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and initial random perturbations of 1 × 10−9 amplitude in 𝑢𝑧. Two different mean
flows in 𝑥 are used, namely 𝑢𝑥 = 1 and 10. Once again, the domain is of size
𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1 with 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧 = 64 with triply periodic boundary conditions.
The implicit treatment is in the 𝑥-direction.

(a) 1 subiteration (b) 2 subiterations

(c) 3 subiterations (d) 4 subiterations

Figure A.5: Magnitude of the amplification factor of the semi-implicit time integra-
tion with varying numbers of subiterations as a function of the CFL number in the
explicit direction.

The results are shown in Fig. A.5. For most cases, the amplification factors for 𝑢𝑥 = 1
and 𝑢𝑥 = 10 are indistinguishable and agree well with the theoretical predictions.
The results confirm that the controlling CFL number is in the direction which is not
treated implicitly. For one and four subiterations, when 𝑢𝑥 is increased by a factor
of ten, the magnitude of the amplification factor is reduced below the theoretical
predictions. Recall that these predictions are upper limits, and the most unstable
analytical prediction may not be realized on the computational grid.
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A.5.4 Implication for cylindrical flows
From a theoretical point of view, the semi-implicit treatment brings little to no
benefits to the stability of the Cartesian cases. Specifically, the configurations
which were stable in the explicit formulation (i.e., total CFL 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 < 2)
are unstable in the semi-implicit formulation. It does, however, provide “practical”
stability to cylindrical cases.

As discussed previously, swirling flows do not lead to large azimuthal CFL numbers
because the azimuthal velocity scales with 𝑟. The most stringent condition for sim-
ulations in cylindrical coordinates is encountered with a uniform flow (in Cartesian
coordinates). In such flows, the azimuthal CFL number is about 𝑛𝜃/𝜋 larger than
the radial CFL around the centerline.

Strictly speaking, an amplification factor of magnitude 1.01 corresponds to an
unstable solution, but the solution is practically stable (it would take about 230
timesteps for the oscillations to grow by one order of magnitude). With three (or four)
subiterations, with only one direction treated implicitly, here 𝜃, this amplification
factor is reached with an explicit CFL number of 𝜎′ = 𝜎𝑥 + 𝜎𝑟 ≈ 0.71 (0.68). With
only 64 points in the azimuthal direction, this leads to 𝜎𝜃 ≈ 14 (12). Clearly a fully
explicit treatment of such case would be unstable.

In simulations of turbulent flows, it is common to use grids with close to identical
spacing in 𝑥 and 𝑟 at the centerline, that is, Δ𝑥 = Δ𝑟. However, not counting cross
flows which are short-lived, the mean flow in 𝑥 is usually an order of magnitude
larger than in 𝑟 . Hence, at the centerline, 𝜎′ ≈ 𝜎𝑥 . Therefore, practical stability
may be ensured if 𝜎𝑥 < 0.7 at the centerline with at least three subiterations.

Away from centerline, the azimuthal CFL number decreases rapidly (𝜎𝜃 ∝ 1/𝑟) and
the implicit stability limits approach the explicit stability theory. Thus, the CFL
restriction becomes that discussed in Section A.4.2.

A.5.5 Inconsistency with pressure correction step
Recall that for the explicit iterative method, the predictor is written as:

𝑢∗ − 𝑢𝑛
Δ𝑡

+ 𝑓

[
1
2

(
𝑢𝑛+1
𝑘 + 𝑢𝑛

)]
= −𝛿x𝑝

𝑛+1
𝑘 (A.92)

where 𝑓 represents the convective (and diffusive) terms. The velocity and pressure
updates take the form:

𝑢𝑛+1
𝑘+1 = 𝑢∗ − Δ𝑡𝛿x

(
𝛿𝑝𝑛+1

𝑘+1

)
(A.93)
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𝑝𝑛+1
𝑘+1 = 𝑝𝑛+1

𝑘 + 𝛿𝑝𝑛+1
𝑘+1 (A.94)

Eqs. A.92 and A.93 can be combined to yield:

𝑢𝑛+1
𝑘+1 = 𝑢𝑛 − Δ𝑡 𝑓

[
1
2

(
𝑢𝑛+1
𝑘 + 𝑢𝑛

)]
− Δ𝑡𝛿x

(
𝑝𝑛+1
𝑘 + 𝛿𝑝𝑛+1

𝑘+1

)
(A.95)

The pressure correction in Eq. A.94 appears exactly in Eq. A.95, ensuring that the
predicted velocity for the next subiteration is calculated with the correct and most
updated pressure.

For the implicit scheme, the predictor is now written as:

𝑢∗ − 𝑢𝑛
Δ𝑡

+ 𝑓

[
1
2

(
𝑢𝑛+1
𝑘 + 𝑢𝑛

)]
+ 1

2
𝜕 𝑓

𝜕𝑢

(
𝑢∗ − 𝑢𝑛+1

𝑘

)
= −𝛿𝑥 𝑝𝑛+1

𝑘 (A.96)

Combining this equation with the velocity correction of Eq. A.93 yields:

𝑢𝑛+1
𝑘+1 =

(
1 − Δ𝑡

2
𝜕 𝑓

𝜕𝑢

)−1 {
𝑢𝑛 − Δ𝑡 𝑓

[
1
2

(
𝑢𝑛+1
𝑘 + 𝑢𝑛

)]
− Δ𝑡

2
𝜕 𝑓

𝜕𝑢
𝑢𝑛+1
𝑘 − Δ𝑡𝛿x

[
𝑝𝑛+1
𝑘 +

(
1 − Δ𝑡

2
𝜕 𝑓

𝜕𝑢

)
𝛿𝑝𝑛+1

𝑘+1

]}
(A.97)

since 𝜕 𝑓

𝜕𝑢
is a linear operator and commutes with the gradient 𝛿𝑥 . However, the

pressure term which appears in Eq. A.97 is now inconsistent with the pressure update
step of Eq. A.94. To obtain the most accurate prediction for the next subiteration,
the pressure update should instead be calculated as:

𝑝𝑛+1
𝑘+1 = 𝑝𝑛+1

𝑘 +
(
1 − Δ𝑡

2
𝜕 𝑓

𝜕𝑢

)
𝛿𝑝𝑛+1

𝑘+1 (A.98)

This formulation is expected to lead to quicker convergence of the pressure with
subiterations. However, it presents several challenges. First, the discrete operator
(1 − Δ𝑡𝜕 𝑓 /𝜕𝑢) acts on the face-centered values, whereas 𝛿𝑝 is a cell-centered value.
Second, the operator for the different velocity components may not be the same. For
these reasons, it was not implemented.

A.6 Conclusions
In summary, the numerical stability of the midpoint iterative time integration scheme
was studied in detail. The key conclusions are as follows:

• For three dimensions in Cartesian coordinates treated explicitly, the stability
limit is determined by the sum of the three CFL numbers,𝜎 = 𝜎𝑥+𝜎𝑦+𝜎𝑧 < 2.
A minimum of three subiterations are required.
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• For three dimensions in Cylindrical coordinates treated explicitly, the stability
is also determined by the sum of the three CFL conditions with an additional
term. The total sum must also be less than 2.

• The implicit treatment is always unstable, but may provide practical benefits
for cylindrical flows. Keeping the sum of the radial and axial CFL numbers
at around 0.7 is sufficient to ensure stability for practical purposes regardless
of the azimuthal CFL, which can be on the order of 10–20.
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