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ABSTRACT

Quantum computing has emerged as a promising technology, heralding a new era
of computational capabilities, with the simulation of quantum many-body systems
as one of its primary objectives. Although fault-tolerant quantum computers are
still years away, noisy intermediate-scale quantum (NISQ) devices have been fab-
ricated and leveraged to perform small-scale quantum simulations. In this thesis,
we demonstrate simulations of quantum many-body systems on these near-term
quantum computers. We specifically focus on physical quantities pertaining to
the linear-response framework, which include two-point correlation functions and
Green’s functions, of small-scale spin and molecular models. Additionally, as quan-
tum hardware increases in qubit count, simulation of these quantum algorithms on
classical computers that closely resemble those planned for execution on quantum
hardware becomes increasingly critical. The final part of this thesis examines such
a simulation using tensor network algorithms on classical computers.

We first present the study of finite-temperature physics of spin models on quantum
hardware. Employing the quantum imaginary time evolution (QITE) algorithm, we
demonstrate the computation of diverse finite-temperature observables, including
energy, static and dynamical correlation functions, and excitation spectra of the
Heisenberg model and the transverse-field Ising model of up to four sites on five-
qubit IBM Quantum devices. Accurate determination of these finite-temperature
properties on quantum computers is made possible by several algorithmic improve-
ments, including a method to exploit symmetries that reduces the quantum resources
required by QITE, circuit optimization procedures to reduce circuit depth, and
error-mitigation techniques to improve the quality of raw hardware data. This work
demonstrates that the ansatz-independent QITE algorithm is capable of computing
diverse finite-temperature observables on near-term quantum devices.

The second work implements an algorithm for frequency-domain response prop-
erties of diatomic molecules using a novel high-fidelity three-qubit iToffoli gate.
Although it is natural to compute response properties in the time domain due to the
natural ability of quantum computers to apply unitary time evolutions, obtaining the
frequency-domain properties from the time-domain properties typically requires a
time duration that results in quantum circuits exceeding the circuit depth limitations
of near-term quantum computers. In this work, we carry out computations of the
response properties directly in the frequency domain using the linear combination
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of unitaries (LCU) algorithm. Execution of the LCU-based protocol on quantum
hardware is enabled by the iToffoli gate, which enables a ∼ 50% reduction in circuit
depth and ∼ 40% reduction in circuit execution time in the LCU circuits compared
to the traditional gate set. We show that the molecular properties obtained with
the iToffoli gate exhibit comparable or better agreement with analytical results than
those obtained when CZ gates are the only multi-qubit gates. This work is among
the first demonstrations of the practical usage of a native multi-qubit gate in quantum
simulation, with diverse potential applications to near-term quantum computation.

Finally, this thesis conducts a tensor network simulation of measurement-induced
state preparation on classical computers. Specifically, we simulate the phase tran-
sition in random-bond Ising models (RBIM) by performing measurements on the
cluster states. The simulation is carried out on NVIDIA H100 graphical processing
units (GPUs) using the cuQuantum library. We present simulation of correlation
functions in one dimension (1D) and ferromagnetic susceptibilities in two dimen-
sions (2D), observing a phase transition from the ferromagnetic phase to spin-glass
phase in the 2D model. The tensor network simulation incorporates up to 176
qubits on the 2D lattice. This work paves the way for future explorations of tensor
network simulations of measurement-induced quantum computation protocols with
GPU-accelerated tensor network libraries.
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are used to extend the weights of the Pauli string as in Ref. [29].
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7.6 (a) Correlation function ⟨𝑍1𝑍2𝑛+1⟩ as a function of site separation 𝑛
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C h a p t e r 1

INTRODUCTION

Quantum computers have emerged as a promising technology, undergoing a sig-
nificant transformation over the past decade. Although quantum computers were
originally proposed in 1982 as a tool to simulate quantum systems [1], the landscape
of quantum computing has witnessed remarkable progress in hardware development
[2, 3], algorithmic advancements [4, 5], and practical applications [6] during this
timeframe. Quantum hardware based on various platforms has been developed,
including superconducting circuits [2], ion traps [3], and neutral atoms [7]. On
the application side, quantum computers have been employed to simulate complex
quantum systems [8], optimize combinatorial problems [9], and solve certain math-
ematical equations [10]. Another significant advancement is in the simulation of
quantum computers using classical computers, especially through the utilization
of tensor networks [11], enabling researchers to model and analyze quantum algo-
rithms more efficiently [12]. This multifaceted progress underscores the growing
potential and versatility of quantum computing across both theoretical and practical
domains.

One of the main applications of quantum computers is to simulate quantum many-
body systems, which are physical systems composed of a large number of interacting
particles [13]. These systems have been the subjects of study in various fields, such
as condensed matter physics, materials science and quantum chemistry. Quantum
computers provide a unique approach of investigating the complex physical phe-
nomena in these systems without the exponential resource requirement to represent
quantum many-body systems on classical computers. In particular, this thesis fo-
cuses on simulating the quantities encountered in the linear-response framework, in-
cluding two-point correlation functions and Green’s functions [14]. The foundation
of computing such physical quantities on quantum computers has been developed
in the early 2000s [15, 16], but not until recently have quantum computers reached
the ability of executing these circuits with adequate fidelities.

The first work in this thesis is the computation of finite-temperature static and dy-
namical properties of spin systems. We use the quantum imaginary time evolution
(QITE) algorithm [17] to simulate the effect of finite temperature, and obtain the
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energy, static and dynamic correlation functions, and excitation spectra of Heisen-
berg models and transverse-field Ising models on up to five qubits on IBM Quantum
devices. The excessive quantum resources required in the original QITE algorithm
are reduced by exploiting symmetry using the stabilizer formalism in quantum error
correction [18], so that the circuits are within the constraints of near-term quantum
devices. Various error mitigation techniques, including post-selection, readout error
mitigation and phase-and-scale correction are exploited to improve the quality of the
raw experimental data. This work demonstrates that computing finite-temperature
observables of few-qubit spin models is achievable on current quantum devices with
the efficient use of quantum resources and error mitigation.

The second work explores using a novel three-qubit iToffoli gate [19] to compute
molecular Green’s functions. The quantum simulation experiments, along with the
implementation of the iToffoli gate, are performed on a superconducting quantum
processor hosted at University of California, Berkeley. We use the iToffoli gate
to reduce the depths of the circuits in the linear combination of unitaries (LCU)
framework [20] used to calculate Green’s functions on quantum computers [21, 22].
The molecular models are diatomic molecules in minimal basis with only high-
est occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) so that the quantum circuits fit into the quantum resource constraints of
the quantum devices. The observables computed directly from the quantum circuits
are the transition amplitudes between the ground state and 𝑁- or (𝑁 ± 1)-electron
excited states, which are then combined with ground- and excited-state energies to
obtain frequency-domain Green’s functions and response functions. Two particu-
lar error mitigation techniques, randomized compiling and McWeeny purification,
are applied to the circuit construction and data postprocessing stages respectively
and exhibit significant improvements in the physical observables of the molecular
models.

The last contribution of this thesis is the simulation of properties of 1D and 2D
random-bond Ising models (RBIMs) using a measurement-based state preparation
protocol. The protocol, originally developed in ref. [23], prepares a cluster state
on a Lieb lattice and obtains the phase transition properties of RBIMs through
measurement and decoding. Specifically, the lattice is divided into two sublattices,
which are odd and even sublattices in 1D, and vertex and edge sublattices in 2D. In
1D, we study the correlation function ⟨𝑍1𝑍2𝑛+1⟩ on the odd sublattice, extract the
correlation length from the correlation functions and compare it to the exact result
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in the thermodynamic limit. In 2D, we compute the ferromagnetic susceptibility
and observe a divergence of its variance at the measurement angle that corresponds
to the phase transition temperature. This work uses the cuQuantum library [24]
to carry out the tensor network simulation on graphical processing units on up to
176 qubits, paving the way for larger-scale implementations of measurement-based
quantum computing protocols with tensor network methods.

This organization of this thesis unfolds as follows. The initial segment, spanning
Chapters 2 to 4, delves into foundational knowledge of the research contents. Chap-
ter 2 elucidates the fundamentals of quantum computation, encompassing definitions
of quantum gates, measurements, and essential techniques used in practical imple-
mentations of quantum circuits on quantum hardware; Chapter 3 navigates through
the components of quantum information that are relevant to this thesis, including
stabilizer formalism in quantum error correction, noise in quantum hardware, and
metrics for entanglement in quantum states; Chapter 4 focuses on the target of quan-
tum simulation: quantum many-body systems, including spin systems and molecular
systems. The latter portion of this thesis embarks on an exploration of my original
research contributions. Chapter 5 explores the computation of finite-temperature
static and dynamical properties of spin models using the QITE algorithm; Chapter 6
elaborates on the computation of frequency-domain Green’s function of molecular
models using the LCU algorithm; Chapter 7 focuses on large-scale classical simula-
tions of the properties of RBIMs by measurements on the cluster states. At the end,
Chapter 8 concludes this thesis by presenting outlook for future exploration in the
dynamic field of quantum computing especially pertaining to quantum simulation.
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C h a p t e r 2

QUANTUM COMPUTATION

This chapter introduces concepts from quantum computation that are relevant to the
contents of this thesis. We start by reviewing quantum gates, followed by quantum
measurements, and lastly special quantum circuits used in quantum simulation
experiments. In Sec. 2.1, we review in the order of single-qubit gates, two-qubit
gates, and multi-qubit gates. Special gates like parameterized gates and Clifford
gates will be introduced in the specific subsections corresponding to the number
of qubits they act on. Section 2.2 is on quantum measurements, where we first
introduce the positive operator-valued measure (POVM) measurement formalism
and then move on to reduced density matrices. Section 2.3 is on special quantum
circuits for quantum simulation, including circuits relevant to quantum simulation
and to quantum measurements. Throughout this chapter, we also introduce certain
platform-dependent gates, specifically gates on the devices at IBM Quantum and
Google Quantum AI.

2.1 Quantum Gates
Single-Qubit Gates
Pauli Gates

The single-qubit Pauli gates are

𝑋 =

[
0 1

1 0

]
, 𝑌 =

[
0 −𝑖
𝑖 0

]
, 𝑍 =

[
1 0

0 −1

]
. (2.1)

Pauli Rotation Gates

Let n̂ be a unit vector. We have the identity

𝑒𝑖𝜃 (n̂·𝝈) = 𝐼 cos 𝜃 + 𝑖(n̂ · 𝝈) sin 𝜃. (2.2)

Rotation gates are defined by 𝑅n̂(𝜃) = exp(−𝑖𝑆n̂𝜃/ℏ) = exp(−𝑖n̂ · 𝝈𝜃/2), so rota-
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tions around 𝑥, 𝑦 and 𝑧 axes by angle 𝜃 are

𝑅𝑥 (𝜃) = 𝑒−𝑖𝜃𝑋/2 =

[
cos(𝜃/2) −𝑖 sin(𝜃/2)
−𝑖 sin(𝜃/2) cos(𝜃/2)

]
, (2.3)

𝑅𝑦 (𝜃) = 𝑒−𝑖𝜃𝑌/2 =

[
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

]
, (2.4)

𝑅𝑧 (𝜃) = 𝑒−𝑖𝜃𝑍/2 =

[
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]
. (2.5)

Pauli rotation gates can also be thought of as powers of the Pauli gates. For example,

𝑍𝑟 = 𝑒𝑖𝑟 log 𝑍 = 𝑒𝑖𝑟 log 𝑍 ∼ 𝑒−𝑖𝑟𝜋𝑍/2 = 𝑅𝑧 (𝑟𝜋) (2.6)

(where ∼ denotes equal up to a phase factor) since

log 𝑍 =

[
0 0

0 𝑖𝜋

]
∼ −𝑖 𝜋

2
𝑍 (2.7)

up to a constant. Note that here we need to make the choice that log(−1) = 𝑖𝜋.
Since 𝑋 and 𝑌 have the same eigenspectra as 𝑍 , similarly we have

𝑋𝑟 = 𝑅𝑥 (𝑟𝜋), (2.8)

𝑌 𝑟 = 𝑅𝑦 (𝑟𝜋). (2.9)

Clifford Gates

Other single-qubit gates that are Clifford gates, which convert Pauli gates to Pauli
gates under conjugation, but are not included above are the Hadamard gate 𝐻 and
the phase gate 𝑆

𝐻 =
1
√

2

[
1 1

1 −1

]
, (2.10)

𝑆 =

[
1 0

0 𝑖

]
(2.11)

Note that 𝑆 ∼ 𝑅𝑧 (𝜋/2). These gates can be verified to satisfy the Clifford property
because they satisfy the relations [18]

𝐻𝑋𝐻† = 𝑍, 𝐻𝑌𝐻† = −𝑌, 𝐻𝑍𝐻† = 𝑋,

𝑆𝑋𝑆† = 𝑌, 𝑆𝑌𝑆† = −𝑋, 𝑆𝑍𝑆† = 𝑍.
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Parameterized Single-Qubit Gates

An arbitrary single-qubit gate can be parameterized by three parameters. The exact
form of the parameterization is platform-dependent.

In the architecture of IBM Quantum devices, the𝑈3 gate is the arbitrary parameter-
ized single-qubit gate [25], which is defined as

𝑈3(𝜃, 𝜙, 𝜆) = 𝑅𝑧 (𝜙)𝑅𝑦 (𝜃)𝑅𝑧 (𝜆). (2.12)

In matrix notation,

𝑈3(𝜃, 𝜙, 𝜆) =
[

cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)
𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜙+𝜆) cos(𝜃/2)

]
(2.13)

By Ref. [26], the 𝑈3 gate can be implemented with two 𝑋𝜋/2 pulses and virtual 𝑍
gates by

𝑈3(𝜃, 𝜙, 𝜆) = 𝑍𝜆−𝜋 𝑋𝜋/2 𝑍𝜋−𝜃 𝑋𝜋/2 𝑍𝜙

The two sides are equal up to a phase. (Note that the decomposition is different
from Eq. (19) in Ref. [26] because the definition of the 𝑈3 gate in Ref. [26] has ±𝑖
on the off-diagonal elements.)

Common single-qubit gates can be written in terms of𝑈3 gates in the form

𝑅𝑥 (𝜃) = 𝑈3(𝜃,−𝜋/2, 𝜋/2),
𝑅𝑦 (𝜃) = 𝑈3(𝜃, 0, 0),
𝑅𝑧 (𝜃) = 𝑈3(0, 0, 𝜃),

𝐻 = 𝑈3(𝜋/2, 0, 𝜋),
𝑆 = 𝑈3(0, 0, 𝜋/2).

On Google’s devices, the PhasedXZ gate is the parameterized arbitrary single-qubit
gate [27], which is defined as

PhasedXZ(𝑎, 𝑥, 𝑧) = 𝑍 𝑧+𝑎𝑋𝑥𝑍−𝑎 . (2.14)

In rotation-gate notation, PhasedXZ(𝑎, 𝑥, 𝑧) ∼ 𝑅𝑧 ((𝑧 + 𝑎)𝜋)𝑅𝑥 (𝑥𝜋)𝑅𝑧 (−𝑎𝜋).
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Two-Qubit Gates
Standard Gates

A CNOT gate with the first qubit as the control qubit and the second qubit as the
target qubit can be expressed as CNOT = |0⟩ ⟨0| ⊗ 𝐼+ |1⟩ ⟨1| ⊗𝑋 . In matrix notation,

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.15)

A CZ gate with the first qubit as the control qubit and the second qubit as the target
qubit can be expressed as CZ = |0⟩ ⟨0| ⊗ 𝐼 + |1⟩ ⟨1| ⊗ 𝑍 . In matrix notation,

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (2.16)

A SWAP gate swaps two qubits. In matrix notation,

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (2.17)

An iSWAP gate swaps two qubits and adds a phase factor 𝑖. In matrix notation,

iSWAP =


1 0 0 0

0 0 𝑖 0

0 𝑖 0 0

0 0 0 1


. (2.18)

Fermionic Simulation Gate

Two-qubit gates native to Google’s devices include the Sycamore gate,
√

iSWAP
and CZ. Both the Sycamore gate and

√
iSWAP are derived from the two-parameter
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fermionic simulation gate [28]

FSim(𝜃, 𝜙) = 𝑒−𝑖𝜃 (𝑋⊗𝑋+𝑌⊗𝑌 )/2𝑒−𝑖𝜙(𝐼−𝑍)⊗(𝐼−𝑍)/4 =


1 0 0 0

0 cos 𝜃 −𝑖 sin 𝜃 0

0 −𝑖 sin 𝜃 cos 𝜃 0

0 0 0 𝑒−𝑖𝜙


.

(2.19)

where 𝜃 is the iSWAP angle and 𝜙 is the controlled-phase angle.

Two main pre-calibrated gates derived out of the FSim gate are the sycamore gate
Syc and the square root iSWAP gate

√︁
iswap. The Sycamore gate Syc has the

expression

Syc = FSim(𝜋/2, 𝜋/6) =


1 0 0 0

0 0 −𝑖 0

0 −𝑖 0 0

0 0 0 𝑒−𝑖𝜋/6


. (2.20)

The square root iSWAP gate
√

iSWAP has the expression

√
iSWAP = FSim(−𝜋/4, 0) =


1 0 0 0

0 1/
√

2 𝑖/
√

2 0

0 𝑖/
√

2 1/
√

2 0

0 0 0 1


. (2.21)

2.2 Quantum Measurements
Measurement
Quantum measurements are described by a set of measurement operators {𝑀𝑚} that
satisfy the completeness relation:∑︁

𝑚

𝑀†
𝑚𝑀𝑚 = 𝐼 . (2.22)

Suppose the state is described by a state vector |𝜓⟩ or a density matrix 𝜌. The
probability of obtaining the measurement outcome 𝑚 is

state vector: 𝑝𝑚 = ⟨𝜓 |𝑀†
𝑚𝑀𝑚 |𝜓⟩ , (2.23)

density matrix: 𝑝𝑚 = tr
(
𝑀†
𝑚𝑀𝑚𝜌

)
. (2.24)
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The state after obtaining the measurement outcome 𝑚 is

state vector:
𝑀𝑚 |𝜓⟩√︃

⟨𝜓 |𝑀†
𝑚𝑀𝑚 |𝜓⟩

, (2.25)

density matrix:
𝑀𝑚𝜌𝑀

†
𝑚

tr
(
𝑀

†
𝑚𝑀𝑚𝜌

) . (2.26)

A special and perhaps the most common type of measurement is the projective
(or von Neumann) measurement, where the measurement operators are orthogonal
projectors so that they satisfy 𝑀𝑚𝑀𝑚′ = 𝑀𝑚𝛿𝑚,𝑚′ . These orthogonal projectors
usually arise from the eigenspaces of an observable, since an observable in quantum
mechanics is a Hermitian operator and has orthogonal eigenspaces.

Reduced Density Matrix
A density matrix provides a description of the quantum system whose state is not
completely known. Suppose a quantum system is in |𝜓𝑖⟩ with probability 𝑝𝑖.

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | . (2.27)

Alternatively, the density matrix can be interpreted as an ensemble of pure states,
where the proportion of |𝜓⟩ in the ensemble is 𝑝𝑖. In statistics terms, the first
interpretation corresponds to the Bayesian approach and the second interpretation
corresponds to the frequentist approach.

Mathematically, a density matrix is defined as the following.

Definition. An operator 𝜌 is associated with some ensemble {𝑝𝑖, |𝜓𝑖⟩} if and only
if it satisfies

1. Tr(𝜌) = 1.

2. 𝜌 is positive.

To analyze composite quantum systems, we need the concept of reduced density
operator, which is

𝜌𝐴 = Tr𝐵 (𝜌𝐴𝐵). (2.28)

The reduced density matrix has the operational meaning that when an observable
only acts on a subsystem, its expectation value is given by the trace of the observable
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times the reduced density matrix. Specifically, for an observable 𝑂𝐴 that only acts
on 𝐴, its expectation value on the system is

⟨𝑂𝐴⟩ = Tr𝐴𝐵 (𝑂𝐴𝜌𝐴𝐵) = Tr𝐴 (𝑂𝐴𝜌𝐴). (2.29)

Another situation where the reduced density matrix arises is when we measure a
subsystem and discard the measurement result. In this case, the density matrix of
the composite system is

𝜌̃𝐴𝐵 =
∑︁
𝑚

𝑀𝐵
𝑚𝜌

𝐴𝐵𝑀𝐵†
𝑚 (2.30)

and the density matrix of the subsystem is

𝜌̃𝐴 = Tr𝐵 ( 𝜌̃𝐴𝐵) = Tr𝐵

(∑︁
𝑚

𝑀𝐵
𝑚𝜌

𝐴𝐵𝑀𝐵†
𝑚

)
= 𝜌𝐴. (2.31)

2.3 Quantum Circuits
Multi-Qubit Rotation Circuits
To apply a rotation operator of weight more than 1, we usually apply 𝑅𝑧 on one of
the qubits and use CNOT to extend the weight of the Pauli string. To transform 𝑍

to 𝑋 and 𝑌 , one way is to use the Clifford gates 𝐻 and 𝑆 so that

𝑋 = 𝐻𝑍𝐻,
𝐻 𝑍 𝐻

,

𝑌 = 𝑆𝐻𝑍 (𝑆𝐻)† = 𝑆𝐻𝑍𝐻𝑆†, 𝑆† 𝐻 𝑍 𝐻 𝑆

(2.32)

Another way is to use the rotation gates

𝑋 = 𝑅𝑦 (𝜋/2)𝑍𝑅𝑦 (−𝜋/2), 𝑅𝑦 (𝜋/2) 𝑍 𝑅𝑦 (−𝜋/2)
, (2.33)

𝑌 = 𝑅𝑥 (−𝜋/2)𝑍𝑅𝑥 (𝜋/2), 𝑅𝑥 (−𝜋/2) 𝑍 𝑅𝑥 (𝜋/2)
. (2.34)

For example, if we want to apply the rotation gate 𝑒−𝑖𝜃𝑋𝑌𝑍 , we can apply the circuit
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𝐻 𝐻

𝑅𝑥 (𝜋/2) 𝑅𝑥 (−𝜋/2)

𝑅𝑧 (2𝜃)

or

𝐻 𝐻

𝑅𝑥 (𝜋/2) 𝑅𝑥 (−𝜋/2)

𝑅𝑧 (2𝜃)

In practice the second circuit is better since we don’t need SWAP gates to apply
long-range CNOTs [29].

Measurement Circuits
Most quantum hardware can only measure in 𝑍-basis. To measure in 𝑋-basis, we
need to apply the Hadamard gate before the measurement gate,

𝐻

To measure in 𝑌 -basis, we need to apply 𝑅𝑥 (𝜋/2) before the measurement gate,

𝑅𝑥 (𝜋/2)

Alternatively, we can apply 𝑆† followed by an 𝐻 gate, which gives

𝑆† 𝐻

The latter method is used in the construction of tomography circuits in Qiskit.

We can understand measuring in a different basis as changing the stabilizer from
𝑋 or 𝑌 to 𝑍 . For example, transforming |+⟩ to |0⟩ is the same as transforming the
stabilizer from 𝑋 to 𝑍 , which is achieved by 𝐻 since 𝐻𝑋𝐻 = 𝑍 . Transforming the
state |+y⟩ to |0⟩ is the same as transforming the stabilizer from 𝑌 to 𝑍 , which is
achieved by 𝑅𝑥 (𝜋/2) since 𝑅𝑥 (𝜋/2)𝑌𝑅†

𝑥 (𝜋/2) = 𝑍 or by 𝐻𝑆† since 𝐻𝑆†𝑌𝑆𝐻 = 𝑍 .
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Hadamard Test

Suppose we want to calculate time correlation functions of the form

𝐶𝑈𝑉 (𝑡) = ⟨𝑈 (𝑡)𝑉⟩ = ⟨𝑒𝑖𝐻̂𝑡𝑈𝑒−𝑖𝐻̂𝑡𝑉⟩, (2.35)

where𝑈 and 𝑉 are unitary operators.

Consider the circuit [30, 31]

𝑎 𝐻

𝑠 𝑉 𝑒−𝑖𝐻̂𝑡 𝑈

Here 𝑎 denotes the ancilla qubit and 𝑠 denotes the system qubits.

Claim 1. Measuring 𝑋 on the ancilla yields the real part of 𝐶𝑈𝑉 (𝑡) and measuring
𝑌 on the ancilla yields the imaginary part of 𝐶𝑈𝑉 (𝑡) , so that 𝐶𝑈𝑉 (𝑡) = ⟨𝑋⟩ + 𝑖 ⟨𝑌⟩.

Proof. To derive this result, let the control gates be

𝑈̃ = |0⟩ ⟨0| ⊗ 𝐼𝑝 + |1⟩ ⟨1| ⊗ 𝑈, (2.36)

𝑉̃ = |0⟩ ⟨0| ⊗ 𝐼𝑝 + |1⟩ ⟨1| ⊗ 𝑉. (2.37)

The density matrix after the circuit is

𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑠)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†, (2.38)

where 𝜌𝑎 is the ancilla density matrix after the Hadamard gate

𝜌𝑎 =
1
2

[
1 1

1 1

]
. (2.39)

The expectation value of 𝑋 is

⟨𝑋⟩ = Tr
(
( |0⟩ ⟨1| ⊗ 𝐼𝑝)𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑝)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†

)
+ Tr

(
( |1⟩ ⟨0| ⊗ 𝐼𝑝)𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑝)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†

)
=

1
2

(
⟨𝑈 (𝑡)𝑉⟩ + ⟨𝑉†𝑈†(𝑡)⟩

)
= Re(⟨𝑈 (𝑡)𝑉⟩) (2.40)
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The expectation value of 𝑌 is

⟨𝑌⟩ = −𝑖 Tr
(
( |0⟩ ⟨1| ⊗ 𝐼𝑝)𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑝)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†

)
+ 𝑖 Tr

(
( |1⟩ ⟨0| ⊗ 𝐼𝑝)𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑝)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†

)
=

1
2

(
−𝑖⟨𝑈 (𝑡)𝑉⟩ + 𝑖⟨𝑉†𝑈†(𝑡)⟩

)
= Im(⟨𝑈 (𝑡)𝑉⟩) (2.41)

Hence

𝐶𝑈𝑉 (𝑡) = ⟨𝑈 (𝑡)𝑉⟩ = ⟨𝑋⟩ + 𝑖⟨𝑌⟩. (2.42)

□

The original circuit proposed in Ref. [15, 16] is

𝑎 𝐻

𝑠 𝑉 𝑒−𝑖𝐻̂𝑡 𝑈

with control on |0⟩ on the controlled-𝑈 gate. Equation 2.40 is then changed to

⟨𝑋⟩ = 1
2
(
〈
𝑈†(𝑡)𝑉

〉
+

〈
𝑉†𝑈 (𝑡)

〉
) = Re(

〈
𝑈†(𝑡)𝑉

〉
), (2.43)

and Eq. 2.41 becomes

⟨𝑌⟩ = 1
2
(−𝑖

〈
𝑈†(𝑡)𝑉

〉
+ 𝑖

〈
𝑉†𝑈 (𝑡)

〉
) = Im(

〈
𝑈†(𝑡)𝑉

〉
). (2.44)

The result is measuring the quantity
〈
𝑈†(𝑡)𝑉

〉
instead of ⟨𝑈 (𝑡)𝑉⟩.

We can also put a different state on the ancilla. For example, the following circuit

/

𝑎 𝐻 𝑆

𝑠 𝑉 𝑒−𝑖𝐻̂𝑡 𝑈

puts the ancilla density matrix in the form

𝜌𝑎 =
1
2

[
1 −𝑖
𝑖 1

]
(2.45)
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The expectation value of 𝑋 becomes

⟨𝑋⟩ = 1
2

(
𝑖⟨𝑈 (𝑡)𝑉⟩ − 𝑖⟨𝑉†𝑈†(𝑡)⟩

)
= − Im(⟨𝑈 (𝑡)𝑉⟩), (2.46)

and the expectation value of 𝑌 becomes

⟨𝑌⟩ = 1
2

(
⟨𝑈 (𝑡)𝑉⟩ + ⟨𝑉†𝑈†(𝑡)⟩

)
= Re(⟨𝑈 (𝑡)𝑉⟩), (2.47)

so that the correlation function is calculated as

𝐶𝑈𝑉 (𝑡) = ⟨𝑈 (𝑡)𝑉⟩ = ⟨𝑌⟩ − 𝑖 ⟨𝑋⟩ . (2.48)
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C h a p t e r 3

QUANTUM INFORMATION

This chapter reviews concepts from quantum information that are relevant to this the-
sis. Section 3.1 reviews the stabilizer formalism, which was originally introduced in
quantum error correction but has been applied to other areas of quantum computing.
Section 3.2 reviews noisy quantum channels, which are important in formulating
noise on near-term quantum hardware. Section 3.3 defines special quantum states
that are relevant to Chapter 7 of this thesis.

3.1 Stabilizer Formalism
Single-qubit Pauli operators consist of 𝐼, 𝑋,𝑌 , 𝑍 . To turn these operators into a
group, we need to attach multiplicative factors ±1,±𝑖 and let

P1 = {±𝐼,±𝑖𝐼,±𝑋,±𝑖𝑋,±𝑌,±𝑖𝑌 ,±𝑍,±𝑖𝑍} (3.1)

which is the Pauli group on a single qubit. Similarly, we can define the Pauli
group on 𝑁 qubits by P𝑁 = P⊗𝑁

1 , which consists of Pauli strings on 𝑁 qubits with
coefficients ±1,±𝑖. By P1 we mean the set of single-qubit Pauli operators with
coefficient 1, and similarly by P𝑁 = P⊗𝑁

1 we mean the set of Pauli strings on 𝑁
qubits with coefficient 1.

Consider a subgroup S of P𝑛. Define the stabilizer subspace 𝑉S to be

𝑉S = {|𝜓⟩ : 𝝈 |𝜓⟩ = |𝜓⟩ for all 𝝈 ∈ S}. (3.2)

We can check 𝑉S is indeed a subspace since for any |𝜓⟩ , |𝜓′⟩ in 𝑉S , 𝝈 ∈ S and a
scalar 𝛼,

𝝈( |𝜓⟩ + |𝜓′⟩) = 𝝈 |𝜓⟩ + 𝝈 |𝜓′⟩ = |𝜓⟩ + |𝜓′⟩ , (3.3)

𝝈(𝛼 |𝜓⟩) = 𝛼𝝈 |𝜓⟩ = 𝛼 |𝜓⟩ . (3.4)

A natural question to ask is that for what S is 𝑉S nontrivial, i.e. 𝑉S ≠ {0}. The
answer is given in the following proposition.

Proposition 1. If 𝑉S is nontrivial, −𝐼 ∉ S.
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Proof. Take |𝜓⟩ ∈ 𝑉S . Since −𝐼 is a stabilizer,

−𝐼 |𝜓⟩ = |𝜓⟩ =⇒ − |𝜓⟩ = |𝜓⟩ =⇒ |𝜓⟩ = 0. (3.5)

□

From the proposition, we can derive a few corollaries that give necessary conditions
for 𝑉S to be nontrivial. An important property we will use on Pauli strings is that
two Pauli strings either commute or anticommute. Moreover, for 𝝈,𝝈′ ∈ P𝑁 , 𝝈
and 𝝈′ commute if 𝝈𝝈′ has coefficient ±1, and anticommute if 𝝈𝝈′ has coefficient
±𝑖.

Corollary 2. Let 𝝈 ∈ P𝑁 . If 𝑉S is nontrivial, ±𝑖𝝈 ∉ S.

Proof. If ±𝑖𝝈 ∈ S, then (±𝑖𝝈)2 = −𝐼 ∈ S, a contradiction. □

Corollary 3. If 𝑉S is nontrivial, −𝝈 ∉ S for any 𝝈 ∈ S.

Proof. For 𝝈 ∈ S, if −𝝈 ∈ S, 𝝈(−𝝈) = −𝐼 ∈ S, a contradiction. □

Corollary 4. If 𝑉S is nontrivial, all elements in S commute with each other.

Proof. If 𝝈,𝝈′ ∈ S don’t commute with each other, they anticommute. Now
𝝈𝝈′ ∈ S implies 𝝈𝝈′𝝈𝝈′ = −𝝈𝝈′𝝈′𝝈 = −𝝈𝝈 = −𝐼 ∈ S, a contradiction. □

We will call a subgroup S stabilizer subgroup if its stabilizer subspace 𝑉S is non-
trivial.

By Corollary 4, S is an abelian subgroup. Let 𝑠1, ..., 𝑠𝐿 be the generators of S, then
it follows that any 𝝈 ∈ S can be written as 𝝈 = 𝑠

𝑎1
1 ...𝑠

𝑎𝐿
𝐿

, where 𝑎1, ..., 𝑎𝐿 ∈ {0, 1}.
Given S = ⟨𝑠1, ..., 𝑠𝐿⟩, we want to know the dimension of𝑉S . This is can be derived
from the following theorem.

Theorem 5. Let

𝑃S =
1
|S|

∑︁
𝝈∈S

𝝈. (3.6)
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Then 𝑃S is the projector onto the subspace 𝑉S .

Proof. Observe that if 𝝈 ∈ S,

𝝈𝑃S =
1
|S|

∑︁
𝝈∈S

𝝈𝝉 =
1
|S|

∑︁
𝝉∈𝝈−1S

𝝉 = 𝑃S . (3.7)

Hence

𝑃2
S =

1
|S|

∑︁
𝝈∈S

𝝈𝑃S =
1
|S|

∑︁
𝝈∈S

𝑃S = 𝑃S , (3.8)

which implies that 𝑃S is a projector.
To show that 𝑃S is the projector onto the subspace 𝑉S , for any |𝜓⟩ and any 𝝈 ∈ S,
𝝈𝑃S |𝜓⟩ = 𝑃S |𝜓⟩, so im(𝑃S) ⊆ 𝑉S . Moreover, for any |𝜓⟩ ∈ 𝑉S , |𝜓⟩ = 𝑃S |𝜓⟩ ∈
im(𝑃S), which implies 𝑉S ⊆ im(𝑃S). Therefore im(𝑃S) = 𝑉S and the statement is
proved. □

The projector 𝑃S can be written in another form:

𝑃S =
1
|S|

∑︁
𝝈∈S

𝝈 =
1
2𝑙

∑︁
𝑎1,...,𝑎𝑙∈{0,1}

𝑠
𝑎1
1 ...𝑠

𝑎𝑙
𝑙
=

𝑙∏
𝑖=1

(𝐼 + 𝑠𝑖)
2

=

𝑙∏
𝑖=1

𝑃⟨𝑠𝑖⟩=1. (3.9)

That is, the projector onto the stabilizer subspace 𝑉S is a product of projectors onto
the +1 eigenspace of 𝑠𝑖. Intuitively, each projector reduces the subspace by half, so
we would expect the dimension of the stabilizer subspace to be reduced from 2𝑁 to
2𝑁−𝐿 . A rigorous justification is given in the following corollary.

Corollary 6. LetS be a stabilizer subgroup with 𝐿 generators on an 𝑁-qubit system.
Then dim(𝑉S) = 2𝑁−𝐿 , that is,𝑉S is equivalent to a Hilbert space with 𝑁 − 𝐿 qubits.

Proof.

dim(𝑉S) = tr(𝑃S) =
1
|S|

∑︁
𝝈∈S

tr(𝝈) = 1
2𝐿

∑︁
𝝈∈S

2𝑁𝛿𝝈,𝐼⊗𝑁 = 2𝑁−𝐿 . (3.10)

□
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F2-linear algebra perspective
There is a useful representation of the Pauli strings in a stabilizer subgroup as a row
vector of length 2𝑁 . For any 𝝈 = ±𝜎1 ⊗ ... ⊗ 𝜎𝑁 in a stabilizer subgroup S, let
𝑟 (𝝈) be its corresponding vector in F2𝑛

2 , where the elements are assigned such that

𝑟 (𝝈)𝑖 = 0, 𝑟 (𝝈)𝑖+𝑛 = 0 if 𝝈𝑖 = 𝐼; (3.11)

𝑟 (𝝈)𝑖 = 1, 𝑟 (𝝈)𝑖+𝑛 = 0 if 𝝈𝑖 = 𝑋; (3.12)

𝑟 (𝝈)𝑖 = 0, 𝑟 (𝝈)𝑖+𝑛 = 1 if 𝝈𝑖 = 𝑍; (3.13)

𝑟 (𝝈)𝑖 = 1, 𝑟 (𝝈)𝑖+𝑛 = 1 if 𝝈𝑖 = 𝑌 . (3.14)

That is, the left 𝑁 entries of 𝑟 (𝝈) indicate the positions of 𝑋 or 𝑌 in 𝝈, the right 𝑁
entries of 𝑟 (𝝈) indicate the positions of 𝑌 or 𝑍 in 𝝈. For example, the Pauli string
𝑋𝑌𝑍 corresponds to the vector

𝑟 (𝑋𝑌𝑍) = ( 1 1 0 0 1 1 ) (3.15)

By Corollaries 2 and 3, if 𝝈 ∈ S, then −𝝈 and ±𝑖𝝈 are not in S, so each vector
corresponds to a unique element in S.

The F2-vector representation reveals the products and commutation relations be-
tween any Pauli strings as operations on the vectors. For any two Pauli strings 𝝈

and 𝝈′ in S, 𝑟 (𝝈𝝈′) = 𝑟 (𝝈) + 𝑟 (𝝈′). We can use this relation to find the indepen-
dent generators of the stabilizer subgroup, since removing any generator makes the
subgroup smaller. From the relation, finding the independent generators is the same
as finding the independent vectors in the F2 representation.

To relate to the commutation relations between Pauli strings, we need some more
tools. Let the inner product between two vectors 𝑟 (𝝈) and 𝑟 (𝝈)′ be defined as

⟨𝑟 (𝝈), 𝑟 (𝝈′)⟩Λ = 𝑟 (𝝈)Λ𝑟 (𝝈)𝑇 , Λ =

[
0 𝐼𝑛

𝐼𝑛 0

]
, (3.16)

where 𝐼𝑛 is the identity matrix of size 𝑁 × 𝑁 . Write 𝑟 (𝝈) = (𝑟𝑥 (𝝈) 𝑟𝑧 (𝝈)). The
inner product is explicitly
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⟨𝑟 (𝝈), 𝑟 (𝝈′)⟩Λ =

[
𝑟𝑥 (𝝈) 𝑟𝑧 (𝝈)

] [
0 𝐼𝑛

𝐼𝑛 0

] [
𝑟𝑥 (𝝈′)𝑇

𝑟𝑧 (𝝈′)𝑇

]
= ⟨𝑟𝑥 (𝝈), 𝑟𝑧 (𝝈′)⟩ + ⟨𝑟𝑧 (𝝈), 𝑟𝑥 (𝝈′)⟩ .

(3.17)

Intuitively, the inner product ⟨·, ·⟩Λ appears as a “twisted” inner product. In mathe-
matical terms the inner product is called a symplectic inner product because of the
symplecticity of the metric Λ.

With this inner product, we can characterize commutation relation between 𝝈 and
𝝈′, as given in the following proposition.

Proposition 7. [𝝈,𝝈′] = 0 if and only if ⟨𝑟 (𝝈), 𝑟 (𝝈′)⟩Λ = 0.

Proof. For any single-qubit Pauli operator 𝜎, let 𝜎 (𝑎1,...,𝑎𝑁 ) with (𝑎1, ..., 𝑎𝑁 ) ∈ F𝑛2
denote the Pauli string 𝜎𝑎1 ⊗ ... ⊗ 𝜎𝑎𝑁 . By definitions of the 𝑟 vectors,

𝝈 = (−1)𝜂𝑋𝑟𝑥 (𝝈)𝑍𝑟𝑧 (𝝈) , (3.18)

𝝈′ = (−1)𝜂′𝑋𝑟𝑥 (𝝈′)𝑍𝑟𝑧 (𝝈
′) , (3.19)

(3.20)

where 𝜂, 𝜂′ ∈ {0, 1}. Note that

𝝈𝝈′ = (−1)𝜂+𝜂′𝑋𝑟𝑥 (𝝈)𝑍𝑟𝑧 (𝝈)𝑋𝑟𝑥 (𝝈′)𝑍𝑟𝑧 (𝝈
′) (3.21)

= (−1)𝜂+𝜂′+⟨𝑟𝑥 (𝝈′),𝑟𝑧 (𝝈)⟩𝑋𝑟𝑥 (𝝈)𝑋𝑟𝑥 (𝝈
′)𝑍𝑟𝑧 (𝝈)𝑍𝑟𝑧 (𝝈

′) (3.22)

= (−1)𝜂+𝜂′+⟨𝑟𝑥 (𝝈′),𝑟𝑧 (𝝈)⟩+⟨𝑟𝑥 (𝝈),𝑟𝑧 (𝝈′)⟩𝑋𝑟𝑥 (𝝈
′)𝑍𝑟𝑧 (𝝈

′)𝑋𝑟𝑥 (𝝈)𝑍𝑟𝑧 (𝝈) (3.23)

= (−1)⟨𝑟 (𝝈),𝑟 (𝝈′)⟩Λ𝝈′𝝈. (3.24)

The conclusion follows naturally. □

With the vector space F2𝑛
2 , a base field F2 and an inner product defined, we can

do linear algebra on the F2 representation. The rank-nullity theorem still holds, as
given in the following theorem.

Theorem 8. Let𝑊 be a 𝑘-dimensional subspace of F𝑛2. Then dim(𝑊⊥) = 𝑛 − 𝑘 .
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However, because of self-orthogonality of vectors in vector spaces over F2, even if
we have a set of linearly independent vectors, we can’t necessarily orthogonalize
them to an orthogonal set of vectors. In fact, in F2𝑛

2 , we can at most have 𝑛 mutually
orthogonal vectors, a fact captured in the theorem below.

Theorem 9. Let {v1, ..., v𝑘 } be an orthogonal set of vectors in F2𝑛
2 with respect to

the symplectic inner product ⟨·, ·⟩Λ and each v𝑖 ≠ 0. Then 𝑘 ≤ 𝑛.

Proof. Let 𝑊 = span({v1, ..., v𝑘 }). Since each vector is orthogonal to itself, v𝑖 ∈
𝑊⊥ for 𝑖 = 1, ..., 𝑘 . Hence 𝑊 is a subspace of 𝑊⊥ and dim(𝑊⊥) ≥ dim(𝑊) = 𝑘 .
Then

2𝑘 = 𝑘 + 𝑘 ≤ dim(𝑊) + dim(𝑊⊥) = 2𝑛, (3.25)

which implies 𝑘 ≤ 𝑛. □

Theorem 9 expresses the idea that we can find at most 𝑛 mutually commuting
nontrivial Pauli strings (that is, excluding the identity operator). One set of Pauli
strings is

𝑍1, 𝑍2, ..., 𝑍𝑛. (3.26)

In the next section, using the theory of Clifford groups, we will show that any set of
𝑘 mutually commuting Pauli strings for some 𝑘 ≤ 𝑛 is equivalent to 𝑍1, 𝑍2, ..., 𝑍𝑘 .

Operations on the stabilizer subspace
Given a stabilizer subspace, an important class of operators is the ones that preserve
this subspace. In other words, for |𝜓⟩ ∈ 𝑉S , we want to find operators 𝝉 such that
𝝉 |𝜓⟩ ∈ 𝑉S . If we restrict our states to the subspace 𝑉S , these are the only viable
operations on 𝑉S .
This gives rise to the idea of normalizers. Specifically, an element 𝝉 ∈ P𝑛 normalizes
S if for any 𝝈 ∈ S, 𝝉𝝈𝝉−1 ∈ S. Since two Pauli strings either commute or
anticommute, 𝝉𝝈𝝉−1 = 𝝈 if 𝝈 and 𝝉 commute and 𝝉𝝈𝝉−1 = −𝝈 if 𝝈 and 𝝉

anticommute. But we know that if 𝝈 ∈ S, −𝝈 ∉ S, so 𝝉𝝈𝝉−1 = 𝝈 for any 𝝈 ∈ S.
We shall call this group the normalizer of S and write it as N(S).
We can move on to analyze the number of elements in this normalizer subgroup.
Let 𝑟 (S) be span({𝑟 (𝝈) : 𝝈 ∈ S}) and similarly for 𝑟 (N (S)). Clearly 𝑟 (N (S)) =
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𝑟 (S)⊥. Then

dim 𝑟 (N (S)) = dim 𝑟 (S)⊥ = 2𝑛 − 𝑙. (3.27)

Therefore, N(S) is a subgroup with 2𝑛 − 𝑙 generators and hence 22𝑛−𝑙 elements
ignoring multiplicative factors ±1,±𝑖.
Since S is a normal subgroup of N(S), we can form the quotient group N(S)/S,
where each coset in N(S)/S represents an equivalent class of operations on the
stabilizer subspace𝑉S . The generators of the quotient group N(S)/S is 𝑛− 𝑙, and it
contains 2𝑛−𝑙 coset ignoring multiplicative factors±1,±𝑖. In practice, we can choose
the multiplicative factors arbitrarily to fit our purpose. Note that the multiplicative
factor of each coset representative fully determines the members of the coset if we
revert to N(S). But if we are only considering equivalent operations on 𝑉S , the
multiplicative factor does not matter.
There are more general operations we can perform on the stabilizer subspace that
don’t preverse the subspace but permute it to another subspace within the Hilbert
space. Suppose we evolve the state |𝜓⟩ to𝑈 |𝜓⟩. Since

𝑈𝑂 |𝜓⟩ = 𝑈𝑂𝑈†𝑈 |𝜓⟩ ,

|𝜓⟩ is an eigenvector of𝑂 with eigenvalue 𝜆 if and only if𝑈 |𝜓⟩ is an eigenvector of
𝑈𝑂𝑈† with eigenvalue 𝜆. Therefore, after evolution by 𝑈, the stabilizer group for
the new state 𝑈 |𝜓⟩ is 𝑈S𝑈†. In general 𝑈S𝑈† might not be in P𝑛, but we want to
restrict our attention to the unitary operators that conjugates any stabilizer into P𝑛.
To consider all stabilizer subgroups S in P𝑛, we need to consider unitary operators
that satisfy 𝑈P𝑛𝑈† ⊆ P𝑛, or the normalizer 𝑁𝑈 (2𝑛) (P𝑛) ≡ 𝑁 (P𝑛). Since the
centralizer of P𝑛 in 𝑈 (2𝑛) is 𝑈 (1), by a result in group theory 𝑁 (P𝑛)/𝑈 (1) is
isomorphic to a subgroup of Aut(P𝑛). Define the quotient group 𝑁 (P𝑛)/𝑈 (1) to
be the Clifford group C𝑛.

Lemma 10. The Clifford group on one qubit is generated by the Hadamard gate 𝐻
and the phase gate 𝑆, that is C1 = ⟨𝐻, 𝑆⟩.

Proof. Let Φ be any automorphism of P1 by conjugation with a unitary operator.
To find out the action of Φ, we only need to find the images of the generators
𝑋,𝑌, 𝑍 . Since 𝑋 and Φ(𝑋) have the same order, 𝑋 can only be mapped to one
of {±𝑋,±𝑌,±𝑍}. After 𝑋 is determined, 𝑍 can be mapped to {±𝑋,±𝑌,±𝑍} \
{±Φ(𝑋)}. Φ(𝑌 ) is determined by Φ(𝑋) and Φ(𝑍) since

Φ(𝑌 ) = Φ(𝑖𝐼𝑋𝑍) = Φ(𝑖𝐼)Φ(𝑋)Φ(𝑍) = 𝑖Φ(𝑋)Φ(𝑍).
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The automorphisms of P1 by conjugation with a unitary operator is equivalent to all
orientation-preserving permutations of the three coordinate axes. Therefore C1 � 𝑂

where 𝑂 is the rotational subgroup of the octahedral group. Let this isomorphism
be Γ. Note that

𝐻𝑋𝐻† = 𝑍, 𝐻𝑌𝐻† = −𝑌, 𝐻𝑍𝐻† = 𝑋,

so Γ(𝐻) is rotation by 𝜋 along the unit vector 1√
2
(x̂ + ẑ). Similarly,

𝑆𝑋𝑆† = 𝑌, 𝑆𝑌𝑆† = −𝑋, 𝑆𝑍𝑆† = 𝑍,

so Γ(𝑆) is rotation counterclockwise by 𝜋/2 along ẑ.
The group𝑂 is isomorphic to 𝑆4 when regarded as permuting the four body diagonals
of the cube. Define an isomorphism from C1 to 𝑆4 such that the image of 𝑅 is what
Γ(𝑅) does to the four body diagonals. Under this isomorphism,

𝐻 ↦→ (12),
𝑆 ↦→ (1234).

Since (12) and (1234) generates 𝑆4, 𝐻 and 𝑆 generates C1. Therefore, C1 =

⟨𝐻, 𝑆⟩. □

Clifford group element Transformation Effect
𝐻 𝑋 → 𝑍,𝑌 → −𝑌, 𝑍 → 𝑋 𝑋 ↔ 𝑍

𝑆 𝑋 → 𝑌,𝑌 → −𝑋, 𝑍 → 𝑍 𝑋 ↔ 𝑌

𝐻𝑆 𝑋 → −𝑌,𝑌 → −𝑍, 𝑍 → 𝑋 𝑋 → 𝑌 → 𝑍 → 𝑋

𝑆𝐻 𝑋 → 𝑍,𝑌 → 𝑋, 𝑍 → −𝑌 𝑋 → 𝑍 → 𝑌 → 𝑋

𝐻𝑆𝐻 𝑋 → 𝑋,𝑌 → 𝑍, 𝑍 → −𝑌 𝑌 ↔ 𝑍

Table 3.1: Clifford transformation between single-qubit Pauli strings.

3.2 Noisy Quantum Channels
Definition
A quantum operation describes how a quantum system evolves. Despite the gener-
ality of quantum operations, they have a precise mathematical definition.

Definition. A quantum operation is a linear map

E : L(𝐻1) → L(𝐻2)
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such that
(1) (Completely positive) If we introduce an extra system 𝐵 and let I be the identity
operator on 𝐵, (I ⊗ E)(𝐴) is positive for any positive operator 𝐴 ∈ L(𝐵 ⊗ 𝐻1).
(2) (Non-trace-increasing) For all 𝑂 ∈ L(𝐻1), tr(E(𝑂)) ≤ tr(𝑂).
In property (2), if tr(E(𝑂)) = tr(𝑂) for all 𝑂 ∈ L(𝐻1) then E is trace-preserving.
A trace-preserving quantum operation is called a quantum channel.

Quantum operations are defined on the space of general linear operators on a Hilbert
space, we will primarily encounter it as operators on the density matrices.
If the system is a closed system, the only permissible quantum operations are unitary
evolution, that is 𝜌 ↦→ 𝑈𝜌𝑈† where 𝑈 is a unitary operator on the Hilbert space.
When we do a measurement, the operation of a single measurement operator 𝑀𝑚

defined as 𝜌 ↦→ 𝑀𝑚𝜌𝑀
†
𝑚 is also a valid quantum operation.

When the system is open, we can regard the quantum operation as evolving the
whole system and tracing out the environment, that is

E(𝜌) = trenv(𝑈 (𝜌 ⊗ 𝜌env)𝑈†). (3.28)

Suppose the environment has basis {|𝑒𝑘⟩}. Without loss of generality, we can
assume the environment to be in a pure state |𝑒0⟩, since if it is not in a pure state we
can introduce an extra system to purify it. Then Eq. 3.28 corresponds to

E(𝜌) =
∑︁
𝑘

〈
𝑒𝑘 |𝑈 (𝜌 ⊗ |𝑒0⟩ ⟨𝑒0 |)𝑈† |𝑒𝑘

〉
env =

∑︁
𝑘

𝐸𝑘𝜌𝐸
†
𝑘

where 𝐸𝑘 = ⟨𝑒𝑘 |𝑈 |𝑒0⟩env is an operator on the state space of the system. This is the
operator-sum representation of quantum operations.
The operation is trace-preserving if tr(E(𝜌)) = 1, which is equivalent to

∑
𝑘 𝐸

†
𝑘
𝐸𝑘 =

𝐼. The state after the operation is just E(𝜌). The operation is non-trace preserving
if tr(E(𝜌)) ≤ 1, which is equivalent to

∑
𝑘 𝐸

†
𝑘
𝐸𝑘 ≤ 𝐼. The state after the operation

is E(𝜌)/tr(E(𝜌))

Theorem 11. The map E is a quantum operation if and only if

E(𝑂) =
∑︁
𝑘

𝐸𝑘𝑂𝐸
†
𝑘

for some set of operators {𝐸𝑘 } such that each 𝐸𝑘 maps the input Hilbert space to
the output Hilbert space and

∑
𝑘 𝐸

†
𝑘
𝐸𝑘 ≤ 𝐼.

Below we look at some examples of noisy quantum channels.



24

Examples of Quantum Channels
The action of a dephasing channel is

E(𝜌) =
(
1 − 𝑝

2

)
𝜌 + 𝑝

2
𝑍𝜌𝑍,

which has the Kraus operator representation

E(𝜌) = 𝐾0𝜌𝐾
†
0 + 𝐾1𝜌𝐾

†
1 ,

𝐾0 =
√︁

1 − 𝑝/2𝐼, 𝐾1 =
√︁
𝑝/2𝑍.

A generic density matrix transforms as[
𝜌00 𝜌01

𝜌10 𝜌11

]
E↦−→

[
𝜌00 (1 − 𝑝)𝜌01

(1 − 𝑝)𝜌10 𝜌11

]
.

Here 0 ≤ 𝑝 ≤ 1, and when 𝑝 = 1 the coherence (off-diagonal elements) between
the two states is lost.

The amplitude damping channel is a result of energy dissipation and transfers
population of a qubit in the state |1⟩ to the state |0⟩. Kraus operator representation
of the amplitude damping channel is

Eamp-damp(𝜌) = 𝐾0𝜌𝐾
†
0 + 𝐾1𝜌𝐾

†
1 ,

𝐾0 =

[
1 0

0
√︁

1 − 𝛾

]
, 𝐾1 =

[
0 √

𝛾

0 0

]
,

where 0 ≤ 𝛾 ≤ 1. 𝛾 can be thought of as the probability of losing a photon, but
note that the amplitude damping channel is applied deterministically on the density
matrix.
A generic density matrix transforms as

Eamp-damp(𝜌) =
[
𝜌00 + 𝛾𝜌11

√︁
1 − 𝛾𝜌01√︁

1 − 𝛾𝜌10 (1 − 𝛾)𝜌11

]
,

from which we can see that when 𝛾 = 1 all population is transferred to the ground
state |0⟩.

The depolarizing channel replaces the state with a completely mixed state 𝐼/2 with
probability 𝑝 and leaves the state unchanged with probability 1 − 𝑝, that is [32]

Edepolarizing(𝜌) = (1 − 𝑝)𝜌 + 𝑝 𝐼
2

(3.29)
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Using the identity

𝐼

2
=
𝜌 + 𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍

4

for any single-qubit density matrix 𝜌, we can rewrite Eq. 3.29 in Kraus operator
representation

Edepolarizing(𝜌) =
(
1 − 3

4
𝑝

)
𝜌 + 𝑝

4
(𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍),

where 0 ≤ 𝑝 ≤ 1 as in Eq. 3.29.

Alternatively, we can write the depolarizing channel as

Edepolarizing(𝜌) = (1 − 𝑝) 𝜌 + 𝑝

3
(𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍),

where now 0 ≤ 𝑝 ≤ 3/4. This is the representation used in Ref. [33]. In particular,
Cirq [34] applies the depolarizing channel by leaving the state unchanged with
probability 1 − 𝑝 and applying an 𝑋,𝑌 or 𝑍 gate with probability 𝑝/3.

Master Equation Representations
The master equation has the general form

¤𝜌 = − 𝑖
ℏ
[𝐻̂, 𝜌] + D[𝑂̂] (𝜌)

where the dissipator D is the operation

D[𝑂̂] (·) = 𝑂̂ · 𝑂̂† − 1
2
𝑂̂†𝑂̂ · −1

2
· 𝑂̂†𝑂̂.

Below we will derive amplitude damping and dephasing from the master equation
formalism.

Amplitude damping channel

Consider the following master equation

¤𝜌 =
1
𝑇1

D[𝜎−] (𝜌) =
1
𝑇1

(
𝜎−𝜌𝜎+ −

1
2
𝜎+𝜎−𝜌 −

1
2
𝜌𝜎+𝜎−

)
.

The raising and lowering operators have the expressions

𝜎+ =

[
0 0

1 0

]
, 𝜎− =

[
0 1

0 0

]
, 𝜎+𝜎− =

[
0 0

0 1

]
.
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From these expressions, we obtain the differential equation

¤𝜌 =
1
𝑇1

[
𝜌11 −𝜌01/2,

−𝜌∗01/2 −𝜌11

]
,

or in element-wise form

¤𝜌00 =
1
𝑇1
𝜌11,

¤𝜌01 = − 1
2𝑇1

𝜌01.

¤𝜌11 = − 1
𝑇1
𝜌11.

The latter two differential equations have the solutions

𝜌01(𝑡) = 𝜌01𝑒
−𝑡/2𝑇1 ,

𝜌11(𝑡) = 𝜌11𝑒
−𝑡/𝑇1 ,

from which we can write down the density matrix at time 𝑡 as

𝜌(𝑡) =
[
1 − 𝜌11𝑒

−𝑡/𝑇1 𝜌01𝑒
−𝑡/2𝑇1

𝜌∗01𝑒
−𝑡/2𝑇1 𝜌11𝑒

−𝑡/𝑇1

]
.

This is the same as an amplitude-damping channel with damping rate 𝛾 = 1/𝑇𝜙.

Dephasing channel

The dephasing channel can be derived from a master equation of the form

¤𝜌 =
1

2𝑇𝜙
D[𝜎𝑧] (𝜌) =

1
2𝑇𝜙

(𝜎𝑧𝜌𝜎𝑧 − 𝜌).

Explicitly

¤𝜌 = − 1
𝑇𝜙

[
0 𝜌01

𝜌∗01 0

]
.

and in element-wise form

𝜌01 = − 1
𝑇𝜙
𝜌01.

The solution is

𝜌01(𝑡) = 𝜌01𝑒
−𝑡/𝑇𝜙 .

So under this master equation

𝜌(𝑡) =
[

𝜌00 𝜌01𝑒
−𝑡/𝑇𝜙

𝜌∗01𝑒
−𝑡/𝑇𝜙 𝜌11

]
which corresponds to a dephasing channel with dephasing probability 𝑝 = 1−𝑒−𝑡/𝑇𝜙 .
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Amplitude phase damping channel and 𝑇2

Under both the amplitude and phase damping, the density matrix is transformed to
the form

𝜌(𝑡) =
[

1 − 𝜌11𝑒
−𝑡/𝑇1 𝜌01𝑒

−𝑡 (1/2𝑇1+1/𝑇𝜙)

𝜌∗01𝑒
−𝑡 (1/2𝑇1+1/𝑇𝜙) 𝜌11𝑒

−𝑡/𝑇1

]
.

The off-diagonal elements have the compound effect from both 𝑇1 and 𝑇𝜙. We can
define a new relaxation time 𝑇2 such that [35]

1
𝑇2

=
1

2𝑇1
+ 1
𝑇𝜙

so that 𝑇2 is the effective relaxation time observed on the off-diagonal elements in
experiments.

3.3 Entanglement and Special Quantum States
The entanglement is defined as the entropy of the reduced density matrix.

On three qubits, there are two different kinds of maximum entanglement [36], which
are given by the GHZ state

|GHZ⟩ = 1
√

2
( |000⟩ + |111⟩) (3.30)

and the𝑊 state

|𝑊⟩ = 1
√

3
( |001⟩ + |010⟩ + |100⟩). (3.31)

The GHZ state is maximally entangled with entanglement entropy 1 after tracing
over any qubit. However, if any one of the qubits is traced out, the state is completely
unentangled:

Tr0( |GHZ⟩⟨GHZ|) = 1
2
( |00⟩⟨00| + |11⟩⟨11|) → 1

2


1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 1


(3.32)

On the other hand, the𝑊 state is not maximally entangled, since it has entanglement
entropy

𝑆 = −1
3

log
1
3
− 2

3
log

2
3
= 0.918296. (3.33)
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However, after tracing out any qubit, the resulting state is

Tr0( |GHZ⟩⟨GHZ|) = 1
3
( |00⟩⟨00| + |01⟩⟨01| + |01⟩⟨10| + |10⟩⟨01| + |10⟩⟨10|)

(3.34)

→ 1
3


1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0


(3.35)

Contrary to the GHZ state, the entanglement of |𝑊⟩ is maximally robust under
disposal of any qubit.

Note that both the GHZ state and the 𝑊 state can be generalized to 𝑁 qubits. The
𝑁-qubit GHZ state is

|GHZ⟩ = 1
√

2
( |00...0⟩ + |11...1⟩), (3.36)

and the 𝑁-qubit𝑊 state is

|𝑊⟩ = 1
√
𝑁
( |100...0⟩ + |010...0⟩ + ... + |000...1⟩). (3.37)

Cluster States
Cluster states can be defined on a graph with 𝑁 sites. For a site 𝑖, let Γ(𝑖) denote all
the neighbors of 𝑖 on the graph. The cluster states are stabilized by the 𝑁 stabilizers
of the form

𝑋𝑖

⊗
𝑗∈Γ(𝑖)

𝑍 𝑗 . (3.38)

An 𝑁-qubit state stabilized by 𝑁 stabilizers is thus a one-dimensional space.

To create this state, we start with |00...0⟩ and apply the Hadamard gate𝐻 to each site
to create the state |+ + ...+⟩, then apply CZ to every edge on the graph to obtain the
cluster state. In the stabilizer formalism, the stabilizers are transformed respectively
as

𝑍𝑖
𝐻𝑖−−→ 𝑋𝑖

∏
𝑗∈Γ (𝑖) CZ𝑖 𝑗

−−−−−−−−−→ 𝑋𝑖

⊗
𝑗∈Γ(𝑖)

𝑍 𝑗 . (3.39)
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We can better see the structure of the cluster state by consider the following two
relations

CZ |±0⟩ = |±0⟩ , (3.40)

CZ |±1⟩ = |∓1⟩ . (3.41)

To use these two relatoins, we write states on all odd sites in 𝑍 basis, and states on
all even sites in 𝑋 basis. On three sites, for example

|+ + +⟩ = 1
2
( |0 + 0⟩ + |1 + 1⟩ + |0 + 1⟩ + |1 + 0⟩) (3.42)

CZs−−−→ 1
2
( |0 + 0⟩ + |1 + 1⟩ + |0 − 1⟩ + |1 − 0⟩) (3.43)

=
1
√

2

[
1
√

2
( |00⟩odd + |11⟩odd) |+⟩even +

1
√

2
( |01⟩odd + |10⟩odd) |−⟩even

]
(3.44)

In the last line, we regrouped the odd sites together and the even sites together.
Hence, we see that the cluster states is characterized by odd sites in 𝑋 basis which
define the domain walls, and a cat-like GHZ state on the odd sites that obey the
domain wall property.

The number of terms in the above expansion is 2. In general, for 2𝑁 or 2𝑁 − 1 sites,
the number of terms is 𝑁 − 1 (with or without periodic boundary condition), since
the last domain wall can be completely determined if the first 𝑁 domain walls are
specified. For example, in a four-site model, the original all + state is transformed
as

|+ + ++⟩ −→ 1
2
( |0 + 0+⟩ + |1 + 1+⟩ + |0 − 1+⟩ + |1 − 0+⟩) (3.45)

−→ 1
2
( |0 + 0+⟩ + |1 + 1−⟩ + |0 − 1−⟩ + |1 − 0+⟩) . (3.46)

In general, given two sublattices 𝐴 and 𝐵 of a bipartite graph, let 𝑠𝑖 and 𝜎𝑖 denote the
state on the 𝑖th qubit in the 𝑋 and 𝑍 basis, respectively. We will use the shorthand
{𝜎} = {𝜎𝑖}𝑖∈𝐴 and {𝑠} = {𝑠 𝑗 } 𝑗∈𝐵. The general cluster state is written down as

|𝜓⟩ = 1
√

2𝑁−1

∑︁
{𝑠}

|GHZ({𝜎})⟩𝐴 |{𝑠}⟩𝐵 (3.47)

where

|GHZ({𝜎})⟩𝐴 =
1
√

2
( |{𝜎𝑖}⟩𝐴 + |{1 − 𝜎𝑖}⟩𝐴) . (3.48)

such that both |{𝜎𝑖}⟩𝐴 and |{1 − 𝜎𝑖}⟩𝐴 satisfy the domain wall relation specified by
the 𝐵 sublattice.
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C h a p t e r 4

QUANTUM MANY-BODY SYSTEMS

This chapter reviews quantum many-body systems, which are the target of quantum
simulation that forms the main topic of this thesis. We start with reviewing spin
models in Sec. 4.1, then move on to molecular models in Sec. 4.2, and finally to
qubit encoding schemes in Sec. 4.3.

4.1 Spin Models
Ising Model
An Ising model with an external field ℎ has the Hamiltonian [37]

𝐻 = −𝐽
∑︁
⟨𝑖 𝑗⟩

𝜎𝑖𝜎𝑗 − ℎ
∑︁
𝑖

𝜎𝑖 (4.1)

The Ising model is ferromagnetic when 𝐽 > 0 since the spins tend to align at ground
state; the model is anti-ferromagnetic when 𝐽 < 0 since the spins tend to anti-align
at ground state.

We use the shorthand {𝜎} to denote all configurations {𝜎𝑖 = ±1}𝑁
𝑖=1. The partition

function is written as

Z =
∑︁
{𝜎}

𝑒𝛽𝐽
∑

⟨𝑖 𝑗 ⟩ 𝜎𝑖𝜎𝑗+𝛽ℎ
∑

𝑖 𝜎𝑖 (4.2)

Assume the model is 1D with periodic boundary condition so that 𝜎𝑁+1 ≡ 𝜎1. We
can write the partition function in symmetric form as

Z =
∑︁
{𝜎}

𝑒𝛽
∑𝑁

𝑖=1(𝐽𝜎𝑖𝜎𝑖+1+ 1
2 ℎ(𝜎𝑖+𝜎𝑖+1)) =

∑︁
{𝜎}

𝑇𝜎1𝜎2𝑇𝜎2𝜎3 ...𝑇𝜎𝑁𝜎1 = Tr
(
𝑇𝑁

)
. (4.3)

where 𝑇 is the 2 × 2 matrix

𝑇 =

[
𝑇+1,+1 𝑇+1,−1

𝑇−1,+1 𝑇−1,−1

]
=

[
𝑒𝛽(𝐽+ℎ) 𝑒−𝛽𝐽

𝑒−𝛽𝐽 𝑒𝛽(𝐽−ℎ)

]
. (4.4)

The eigenvalues of 𝑇 can be found to be

𝜆± = 𝑒𝛽𝐽
(
cosh(𝛽ℎ) ±

√︃
sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽

)
. (4.5)
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so that the partition function is

Z = Tr
(
𝑇𝑁

)
= 𝜆𝑁+ + 𝜆𝑁− , (4.6)

which reduces to 𝜆𝑁+ as 𝑁 → ∞. From the partition function, we can obtain the free
energy in the thermodynamic limit as

𝐹/𝑁 = − 1
𝛽𝑁

lnZ = −1
𝛽

ln𝜆+ = −𝐽 − 1
𝛽

ln
(
cosh(𝛽ℎ) +

√︃
sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽

)
.

(4.7)

We can also calculate the expectation of a single spin and the correlation between
two spins. For a single spin, one approach is to take the derivative of the free energy,

⟨𝜎𝑖⟩ = −𝜕 (𝐹/𝑁)
𝜕ℎ

=
1
𝛽

sinh2(𝛽ℎ)𝛽 + 2 sinh(𝛽ℎ) cosh(𝛽ℎ)𝛽
2
√

sinh2 (𝛽ℎ)+𝑒−4𝛽𝐽

cosh(𝛽ℎ) +
√︃

sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽
=

sinh(𝛽ℎ)√︃
sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽

.

(4.8)

Another approach is to do matrix multiplication using the 𝑇 matrix. Suppose
𝑇 = 𝑈Λ𝑈† where Λ =

[
𝜆𝑁+ 0
0 𝜆𝑁−

]
→

[
𝜆𝑁+ 0
0 0

]
. We can calculate the spin expectation

value as

⟨𝜎𝑖⟩ =
1
Z Tr

(
𝑒−𝛽𝐻𝑍𝑖

)
=

1
𝜆𝑁+

Tr
(
𝑇𝑁𝑍𝑖

)
=

1
𝜆𝑁+

Tr
(
Λ𝑁𝑈𝑍𝑖𝑈

†
)
= Tr

(
𝑈𝑍𝑖𝑈

†
)
=

sinh(𝛽ℎ)√︃
sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽

(4.9)

Note that at zero field ℎ = 0, ⟨𝜎𝑖⟩ = 0 for any temperature 𝑇 ≠ 0. This shows that
in 1D, there is no spontaneous magnetization.

Zero-Field Solution
Setting the field to zero will significantly simplify our calculation. The partition
function has the expression

Z =
∑︁
{𝜎}

𝑒𝛽𝐽
∑

⟨𝑖 𝑗 ⟩ 𝜎𝑖𝜎𝑗 (4.10)

Consider the transfer matrix 𝑇 under zero field

𝑇 =

[
𝑒𝛽𝐽 𝑒−𝛽𝐽

𝑒−𝛽𝐽 𝑒𝛽𝐽

]
. (4.11)
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In this case the eigenvalues and eigenvectors are

𝜆+ = 2 cosh(𝛽𝐽), (4.12)

𝜆− = 2 sinh(𝛽𝐽), (4.13)

𝑈 =
1
√

2

[
1 1

1 −1

]
, (4.14)

Note that the eigenvector matrix in this case is exactly the Hadamard matrix. With
these expressions of the 𝜆±, we can then write the partition function as

Z = 𝜆𝑁+

(
1 + (𝜆−/𝜆+)𝑁

)
= (2 cosh(𝛽𝐽))𝑁

(
1 + tanh𝑁 (𝛽𝐽)

)
𝑁→∞−−−−→ (2 cosh(𝛽𝐽))𝑁 .

(4.15)

The single-site magnetization is

⟨𝜎𝑖⟩ =
1
Z Tr

(
𝑇𝑁𝑍𝑖

)
= Tr

(
Λ𝑁𝑈𝑍𝑈†

)
= Tr

(
Λ𝑁𝑋

)
= 0, (4.16)

since Λ𝑁 is a diagonal matrix and under the permutation of 𝑋 the trace becomes 0.

Suppose the two spins we are interested in are 𝑛 sites apart, then

⟨𝜎𝑖𝜎𝑖+𝑛⟩ =
1
Z Tr

(
𝑍𝑇𝑛𝑍𝑇𝑁−𝑛

)
=

1
Z Tr

([
0 1

1 0

] [
𝜆𝑛+ 0

0 𝜆𝑛−

] [
0 1

1 0

] [
𝜆𝑁−𝑛+ 0

0 𝜆𝑁−𝑛−

])
=
𝜆𝑁−𝑛+ 𝜆𝑛− + 𝜆𝑁−𝑛− 𝜆𝑛+

𝜆𝑁+ + 𝜆𝑁−
(4.17)

As 𝑁 → ∞,

⟨𝜎𝑖𝜎𝑖+𝑛⟩ →
𝜆𝑁−𝑛+ 𝜆𝑛−
𝜆𝑁+

=

(
𝜆−
𝜆+

)𝑛
= tanh𝑛 (𝛽𝐽) (4.18)

The correlation length is defined as the quantity 𝜉 that satisfies the equation
⟨𝜎𝑖𝜎𝑖+𝑛⟩ = 𝑒−𝑛/𝜉 . From the equation above, we can write down the expression
for the correlation length as [37]

𝜉 = − 1
ln tanh(𝛽𝐽) . (4.19)

Random-Bond Ising Model
The Hamiltonian of random-bond Ising model (RBIM) in the notation of Ref. [23]
is

H = −
∑︁
⟨𝑖 𝑗⟩

𝑠𝑖 𝑗𝜎𝑖𝜎𝑗 . (4.20)
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where 𝑠𝑖 𝑗 is a random variable with the probability distribution

𝑝(𝑠𝑖 𝑗 = +1) = 𝑝, (4.21)

𝑝(𝑠𝑖 𝑗 = −1) = 1 − 𝑝. (4.22)

The probablity of each configuration {𝑠} is

𝑝({𝑠}) =
∏
{𝑠}

𝑝({𝑠}). (4.23)

If we define a variable 𝛽 = ln[𝑝/(1 − 𝑝)]/2, the probability distribution of each 𝑠𝑖 𝑗
in terms of 𝛽 is

𝑝(𝑠 = +1) = 𝑒𝛽

2 cosh(𝛽) , (4.24)

𝑝(𝑠 = −1) = 𝑒−𝛽

2 cosh(𝛽) . (4.25)

or we can write it as

𝑝(𝑠) = 𝑒𝛽𝑠

2 cosh 𝛽
. (4.26)

Suppose there are 𝑁𝑒 edges (bonds), the overall probability of a configuration 𝒔 is

𝑝(𝒔) =
∏
⟨𝑖 𝑗⟩

𝑝(𝑠𝑖 𝑗 ) =
𝑒𝛽

∑
⟨𝑖 𝑗 ⟩ 𝑠𝑖 𝑗

(2 cosh 𝛽)𝑁𝑒
(4.27)

Suppose we are summing a probability over an observable𝑂 (𝒔,𝝈). The probability
is

⟨𝑂⟩ =
∑︁
𝒔

𝑝(𝒔)𝑂 (𝒔,𝝈) = 1
(2 cosh 𝛽)𝑁𝑒

∑︁
𝒔

𝑒𝛽
∑

⟨𝑖 𝑗 ⟩ 𝑠𝑖 𝑗𝑂 (𝒔,𝝈). (4.28)

Suppose we put gauges 𝝉 = {𝜏𝑖} on the vertices and edges, so that

𝑠𝑖 𝑗 → 𝑠𝑖 𝑗𝜏𝑖𝜏𝑗 , 𝜎𝑖 = 𝜎𝑖𝜏𝑖 . (4.29)

If the observable is gauge-invariant, we can resum the expression as

⟨𝑂⟩ = 1
2𝑁𝑣 (2 cosh 𝛽)𝑁𝑒

∑︁
𝒔

∑︁
𝝉

𝑒𝛽
∑

⟨𝑖 𝑗 ⟩ 𝑠𝑖 𝑗𝜏𝑖𝜏𝑗𝑂 (𝒔,𝝈). (4.30)

Note that here the gauge-symmetrized probability has the expression

𝑝(𝒔) = 1
2𝑁𝑣 (2 cosh 𝛽)𝑁𝑒

∑︁
𝝉

𝑒𝛽
∑

⟨𝑖 𝑗 ⟩ 𝑠𝑖 𝑗𝜏𝑖𝜏𝑗 . (4.31)
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When considering the gauges as spins, this expression exactly looks like a partition
function.

The relation that results in this expression of probability

𝛽 =
1
2

ln
𝑝

1 − 𝑝 (4.32)

defines the Nishimori line on the phase diagram of RBIM.

4.2 Molecular Models
The Hamiltonian of a molecule with 𝐾 nuclei and 𝑁 electrons is [8]

𝐻 = −
𝑁∑︁
𝑖=1

ℏ2

2𝑚𝑒
∇2
𝑖 −

𝐾∑︁
𝐼=1

ℏ2

2𝑀𝐼

∇2
𝐼 −

𝑁∑︁
𝑖=1

𝐾∑︁
𝐼=1

𝑒2

4𝜋𝜖0

𝑍𝐼

|r𝑖 − R𝐼 |
(4.33)

+ 1
2

∑︁
𝑖≠ 𝑗

𝑒2

4𝜋𝜖0

1
|r𝑖 − r 𝑗 |

+ 1
2

∑︁
𝐼≠𝐽

𝑒2

4𝜋𝜖0

𝑍𝐼𝑍𝐽

|R𝐼 − R𝐽 |
(4.34)

Under the Born-Oppenheimer approximation, we treat the nuclei as classical charges
and hence obtain the Hamiltonian only for the electrons in atomic units as:

𝐻𝑒 = −
𝑁∑︁
𝑖=1

∇2
𝑖

2
−

𝑁∑︁
𝑖=1

𝐾∑︁
𝐼=1

𝑍𝐼

|r𝑖 − R𝐼 |
+ 1

2

∑︁
𝑖≠ 𝑗

1
|r𝑖 − r 𝑗 |

. (4.35)

Using Slater determinants to represent the atomic orbitals, we arrive at the second-
quantized Hamiltonian

𝐻 =
∑︁
𝑝𝑞

ℎ𝑝𝑞 𝑎̂
†
𝑝 𝑎̂𝑞 +

1
2

∑︁
𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠𝑎̂
†
𝑝 𝑎̂

†
𝑞 𝑎̂𝑟 𝑎̂𝑠 (4.36)

where the one-electron integrals ℎ𝑝𝑞 and two-electron integrals ℎ𝑝𝑞𝑟𝑠 are

ℎ𝑝𝑞 =

∫
𝑑x𝜙∗𝑝 (x)

(
−∇

2

2
−

𝐾∑︁
𝐼=1

𝑍𝐼

|r − R𝐼 |

)
𝜙𝑞 (x), (4.37)

ℎ𝑝𝑞𝑟𝑠 =

∫
𝑑x1𝑑x2

𝜙∗𝑞 (x1)𝜙∗𝑞 (x2)𝜙𝑟 (x2)𝜙𝑠 (x1)
|r1 − r2 |

. (4.38)

The second-quantized Hamiltonian can be converted to qubit Hamiltonian through
qubit encoding methods in Sec. 4.3.
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4.3 Qubit Encoding
This section introduces the Jordan-Wigner transformation [38] for encoding fermionic
operators into qubit operators.

The one-qubit creation and annihilation operators need to satisfy the relations

𝑄+ |0⟩ = |1⟩ , 𝑄+ |1⟩ = 0, (4.39)

𝑄− |0⟩ = 0, 𝑄− |1⟩ = |0⟩ . (4.40)

In matrix notation,

𝑄+ =

[
0 0

1 0

]
, (4.41)

𝑄− =

[
0 1

0 0

]
, (4.42)

so that 𝑄+ = (𝑋 − 𝑖𝑌 )/2, 𝑄− = (𝑋 + 𝑖𝑌 )/2.

Some useful relations we will be using later are

𝑄+𝑍 = 𝑄+, (4.43)

𝑍𝑄− = 𝑄−. (4.44)

To impose fermionic anti-commutation relation, we define

𝑎̂
†
𝑗
= 𝑍0...𝑍 𝑗−1𝑄

+
𝑗 , (4.45)

𝑎̂ 𝑗 = 𝑍0...𝑍 𝑗−1𝑄
−
𝑗 , (4.46)

which is the Jordan-Wigner transformation.

One-body terms
We derive one-body terms in the electronic structure Hamiltonian as an example.
The one-body terms in the electronic structure Hamiltonian is

𝐻̂1 =
∑︁
𝑖 𝑗

ℎ𝑖 𝑗 𝑎̂
†
𝑖
𝑎̂ 𝑗 =

∑︁
𝑖

ℎ𝑖𝑖 𝑎̂
†
𝑖
𝑎̂𝑖 +

∑︁
𝑖< 𝑗

ℎ𝑖 𝑗 (𝑎̂†𝑖 𝑎̂ 𝑗 + 𝑎̂
†
𝑗
𝑎̂𝑖). (4.47)

The second equality assumes ℎ is real, which is usually the case.
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The diagonal terms can be written explicitly as

𝑎̂
†
𝑖
𝑎̂𝑖 = (𝑍0...𝑍𝑖−1𝑄

+
𝑖 ) (𝑍0...𝑍𝑖−1𝑄

−
𝑖 ) (4.48)

=
1
4
(𝑋𝑖 − 𝑖𝑌𝑖) (𝑋𝑖 + 𝑖𝑌𝑖) (4.49)

=
1
4
(2𝐼𝑖 + 𝑖[𝑋𝑖, 𝑌𝑖]) (4.50)

=
1
2
(𝐼𝑖 − 𝑍𝑖). (4.51)

The off-diagonal one-body terms are, WLOG 𝑖 < 𝑗 ,

𝑎̂
†
𝑖
𝑎̂ 𝑗 = (𝑄+

𝑖 𝑍𝑖)𝑍𝑖+1...𝑍 𝑗−1𝑄
−
𝑗 = 𝑄

+
𝑖 𝑍𝑖+1...𝑍 𝑗−1𝑄

−
𝑗 , (4.52)

𝑎̂
†
𝑗
𝑎̂𝑖 = (𝑍𝑖𝑄−

𝑖 )𝑍𝑖+1...𝑍 𝑗−1𝑄
+
𝑗 = 𝑄

−
𝑖 𝑍𝑖+1...𝑍 𝑗−1𝑄

+
𝑗 (4.53)

The sum of these two terms gives

𝑎̂
†
𝑖
𝑎̂ 𝑗 + 𝑎̂†𝑗 𝑎̂𝑖 = 𝑄

+
𝑖 𝑍𝑖+1...𝑍 𝑗−1𝑄

−
𝑗 +𝑄−

𝑖 𝑍𝑖+1...𝑍 𝑗−1𝑄
+
𝑗 (4.54)

=
1
4
[(𝑋𝑖 − 𝑖𝑌𝑖)𝑍𝑖+1...𝑍 𝑗−1(𝑋 𝑗 + 𝑖𝑌 𝑗 ) + (𝑋𝑖 + 𝑖𝑌𝑖)𝑍𝑖+1...𝑍 𝑗−1(𝑋 𝑗 − 𝑖𝑌 𝑗 )]

(4.55)

=
1
2
(𝑋𝑖𝑍𝑖+1...𝑍 𝑗−1𝑋 𝑗 + 𝑌𝑖𝑍𝑖+1...𝑍 𝑗−1𝑌 𝑗 ). (4.56)

So the one-body terms can be written in qubit operator form as

𝐻̂1 =
1
2

∑︁
𝑖

ℎ𝑖𝑖 (𝐼𝑖 − 𝑍𝑖) +
1
2

∑︁
𝑖< 𝑗

ℎ𝑖 𝑗 (𝑋𝑖𝑍𝑖+1...𝑍 𝑗−1𝑋 𝑗 + 𝑌𝑖𝑍𝑖+1...𝑍 𝑗−1𝑌 𝑗 ) (4.57)
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C h a p t e r 5

FINITE-TEMPERATURE PROPERTIES OF SPIN MODELS

1S.-N. Sun, M. Motta, R. N. Tazhigulov, A. T. Tan, G. K.-L. Chan, and A. J.
Minnich, “Quantum Computation of Finite-Temperature Static and Dynamical
Properties of Spin Systems Using Quantum Imaginary Time Evolution”, PRX
Quantum 2, 010317 (2021),

5.1 Introduction
Quantum computers have long been considered as a potential tool to simulate
quantum many-body systems [1, 39, 40]. While near-term quantum devices have
made rapid progress in simulating ground-state properties [41–47] and dynamics
[30, 31, 48–50], the study of finite-temperature physics on quantum computers is
less understood and established [51]. Early works on digital quantum simulation
of finite-temperature physical systems involved thermalizing the quantum simulator
by coupling to a bath comprised of ancilla qubits [52–54] or sampling thermal
states using quantum versions of the Metropolis algorithm [55, 56]. These schemes
require prohibitively large numbers of qubits and deep circuits and are hence out of
reach for near-term quantum devices.

More practical variational algorithms have been proposed in recent years, such
as protocols to construct thermofield double states [57–59] and machine learning-
based methods to construct Gibbs states [60–64]. However, the accuracies of these
variational schemes depend on the quality of the ansatz. While other non-variational
alternatives exist, they are subject to various assumptions. For example, the minimal
effective Gibbs ansatz [65] algorithm generates a minimal ensemble of pure states
but presumes the eigenstate thermalization hypothesis.

Recently, the quantum imaginary time evolution (QITE) algorithm was introduced
[17]. Compared to variational-based algorithms of imaginary time evolution on
quantum computers [66–68], QITE is ansatz-independent. The QITE algorithm
approximates imaginary time evolution with unitary operators over a domain of
qubits and is able to reach the ground states of systems with a few sites. QITE can
also be used to calculate finite-temperature quantities, for instance by combining with
sampling techniques such as the minimal entangled typical thermal states (METTS)
algorithm [69, 70], together denoted as the quantum METTS (QMETTS) algorithm.

https://doi.org/10.1103/PRXQuantum.2.010317
https://doi.org/10.1103/PRXQuantum.2.010317
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However, the original work on QITE [17] focused on the general formalism, while
reduction and optimization of quantum resources were not thoroughly investigated.
Subsequent development of QITE [71–74] proposed several variations of the original
algorithm, but the practical evaluation of finite-temperature properties on existing
quantum devices remains largely unaddressed.

Here, we report QITE-based calculations of finite-temperature static and dynamical
properties of one-dimensional spin systems with up to four sites on five-qubit IBM
Quantum devices. The computed observables include finite-temperature energy,
static and dynamical correlation functions, and excitation spectra. These calcu-
lations are made possible by several algorithmic improvements. First, we exploit
symmetries in the spin Hamiltonians to reduce Pauli strings in the QITE unitaries,
thus reducing the overall required quantum resources. Second, circuit optimization
procedures including gate decomposition and circuit recompilation are used to fur-
ther reduce circuit depth. Third, error mitigation techniques, namely post-selection,
readout error mitigation and phase-and-scale correction, are used to improve the
quality of raw hardware data. Our work demonstrates that with efficient use of
quantum resources and effective error mitigation strategies, the ansatz-independent
QITE algorithm is capable of computing diverse finite-temperature observables on
near-term quantum devices.

This paper is organized as follows. In Sec. 5.2 we review the QITE algorithm
and propose a quantum circuit to evaluate finite-temperature dynamical correlation
functions. In Sec. 5.3 we introduce the algorithmic improvements including Pauli
string reduction, circuit optimization and error mitigation that enabled us to obtain
accurate results from hardware. Section 5.4 presents the results of our two-site and
four-site calculations. Finally, we conclude and suggest directions for future studies
in Sec. 5.5.

5.2 Theory
Quantum imaginary time evolution (QITE)
We begin by reviewing the QITE algorithm in the context of a general Trotterization
scheme of the imaginary time propagator. Consider imaginary time evolution
on 𝑁 qubits under a Hamiltonian 𝐻̂ =

∑𝑀
𝑚=1 ℎ̂[𝑚], where each ℎ̂[𝑚] acts on a

local set of qubits. Since the local terms ℎ̂[𝑚] are not commutative, we need
to Trotterize the imaginary time propagator 𝑒−𝛽𝐻̂ by grouping local terms ℎ̂[𝑚]
into Trotter terms 𝐻̂ [𝑙] such that each 𝐻̂ [𝑙] is a sum of local terms ℎ̂[𝑚] and
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𝐻̂ =
∑𝐿
𝑙=1 𝐻̂ [𝑙]. For example, for a two-local Hamiltonian where each local term

ℎ̂[𝑚] acts on qubits 𝑚 − 1 and 𝑚, setting 𝐿 = 2, 𝐻̂ [1] =
∑⌈𝑀/2⌉
𝑚=1 ℎ̂[2𝑚 − 1] and

𝐻̂ [2] =
∑⌊𝑀/2⌋
𝑚=1 ℎ̂[2𝑚] corresponds to the even-odd Trotterization used in one-

dimensional tensor network calculations of quantum many-body systems [75]. We
consider first-order Trotterization [76] of the full imaginary time propagator 𝑒−𝛽𝐻̂:

𝑒−𝛽𝐻̂ =

(
𝐿∏
𝑙=1

𝑒−Δ𝜏𝐻̂ [𝑙]
)𝑛𝛽

+ O(Δ𝜏2), (5.1)

where 𝑛𝛽 is the number of imaginary time steps and Δ𝜏 = 𝛽/𝑛𝛽.

The QITE algorithm approximates each imaginary time propagator 𝑒−Δ𝜏𝐻̂ [𝑙] by a
unitary operator

𝑒−𝑖Δ𝜏𝐺̂ [𝑙] = 𝑒−𝑖Δ𝜏
∑

𝝁 𝑥 [𝑙]𝝁𝜎𝝁 , (5.2)

where 𝑥 [𝑙]𝝁 are real coefficients and 𝜎𝝁 are Pauli strings. Here we use the notation
𝜎0 = 𝐼, 𝜎𝑥 = 𝑋, 𝜎𝑦 = 𝑌, 𝜎𝑧 = 𝑍 to denote the identity and the Pauli matrices, so
that each Pauli string can be written in the form 𝜎𝝁 =

⊗𝑁−1
𝑗=0 𝜎𝜇 𝑗

where 𝜎𝜇 𝑗
acts on

qubit 𝑗 and 𝜇 𝑗 ∈ {0, 𝑥, 𝑦, 𝑧}. The Pauli strings 𝜎𝝁 are chosen from the set

P𝐻̂ [𝑙] =
⋃

ℎ̂[𝑚]∈𝐻̂ [𝑙]

Pℎ̂[𝑚] , (5.3)

where Pℎ̂[𝑚] is the set all Pauli strings over a domain of 𝐷 qubits larger than or
equal to the support of ℎ̂[𝑚]. To apply the QITE unitaries, without an efficient
decomposition scheme each unitary needs to be further Trotterized as

𝑒−𝑖Δ𝜏𝐺̂ [𝑙] =
∏
𝝁

𝑒−𝑖Δ𝜏𝑥 [𝑙]𝝁𝜎𝝁 + O(Δ𝜏2). (5.4)

The coefficient vector 𝒙[𝒍] is found by minimizing the square of the difference be-
tween the unitarily evolved state 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] |Ψ⟩ and the imaginary-time-evolved state
𝑐[𝑙]−1/2𝑒−Δ𝜏𝐻̂ [𝑙] |Ψ⟩, where 𝑐[𝑙] = | |𝑒−Δ𝜏𝐻̂ [𝑙] |Ψ⟩ | |2. This minimization results in
a linear system

𝑨[𝒍]𝒙[𝒍] = 𝒃[𝒍], (5.5)

where

𝐴[𝑙]𝝁𝝂 = Re⟨Ψ|𝜎𝝁𝜎𝝂 |Ψ⟩, (5.6)

𝑏[𝑙]𝝁 =
Im⟨Ψ|𝑒−Δ𝜏𝐻̂ [𝑙]𝜎𝝁 |Ψ⟩

Δ𝜏𝑐[𝑙]1/2 . (5.7)
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In our implementation, we expand the exponential 𝑒−Δ𝜏𝐻̂ [𝑙] in 𝒃[𝒍] and 𝑐[𝑙] to second
order in Δ𝜏:

𝑏[𝑙]𝝁 =
Im⟨Ψ| (−𝐻̂ [𝑙] + Δ𝜏𝐻̂ [𝑙]2)𝜎𝝁 |Ψ⟩

𝑐[𝑙]1/2 + O(Δ𝜏2), (5.8)

𝑐[𝑙] = ⟨Ψ|1 − 2Δ𝜏𝐻̂ [𝑙] + 2Δ𝜏2𝐻̂2 [𝑙] |Ψ⟩ + O(Δ𝜏3), (5.9)

To construct the linear systems, given the terms in Eqs. ?? we measure operators of
the form

𝜎𝝁𝜎𝝂, 𝐻̂ [𝑙]𝜎𝝁, 𝐻̂ [𝑙]2𝜎𝝁, 𝐻̂ [𝑙], 𝐻̂ [𝑙]2. (5.10)

The QITE algorithm is carried out by iterating the procedure of constructing the
circuit from the QITE unitaries obtained at the previous imaginary time steps,
measuring the operators in Eq. 5.10, constructing the linear system in Eq. 5.5,
solving for 𝒙[𝒍], and propagating the state with the new unitary 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] .

Finite-temperature dynamical correlation functions
Finite-temperature static observables have been previously computed on quantum
hardware using the QMETTS algorithm by averaging over the observable evaluated
from each METTS sample state [17]. In this work, we show that finite-temperature
dynamical observables, in particular finite-temperature dynamical correlation func-
tions, can be computed using a similar averaging procedure as for finite-temperature
static observables.

On quantum computers, dynamical correlation functions can be calculated using
the circuit reported in Refs. [15, 16]; this circuit has been recently used to compute
neutron scattering cross-section [30] and magnon spectra [31] on quantum hardware.
To obtain finite-temperature dynamical correlation functions, we insert the QITE
circuit into the dynamical correlation function circuit, resulting in the circuit shown
in Fig. 5.1. The ancilla qubit is initialized in |0⟩ and the system qubits are initialized
in |Ψ⟩. Define |Ψ(𝜏)⟩ = 𝑒−𝜏𝐻̂ |Ψ⟩ /| |𝑒−𝜏𝐻̂ |Ψ⟩ | | as the state initialized in |Ψ⟩ and
evolved to imaginary time 𝜏, and |Φ(𝜏)⟩ as the QITE-evolved state that approximates
|Ψ(𝜏)⟩. Let subscript 𝑎 (𝑠) denote quantities on the ancilla qubit (system qubits). To
evaluate finite-temperature observables at an inverse temperature 𝛽, we evolve the
initial state by QITE to 𝛽/2 so that the joint ancilla-system density operator prior to
measurement is

𝜌̃ = 𝑈̃ (𝐼𝑎 ⊗ 𝑒−𝑖𝐻̂𝑡)𝑉̃ (𝜌𝑎 ⊗ 𝜌𝑠)𝑉̃†(𝐼𝑎 ⊗ 𝑒𝑖𝐻̂𝑡)𝑈̃†, (5.11)
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Figure 5.1: Quantum circuit to calculate the finite-temperature dynamical
correlation function ⟨𝑈 (𝑡)𝑉⟩𝛽. The ancilla qubit is initialized in |0⟩ and the system
qubit are initialized in |Ψ⟩. Here / denotes a bundle of qubits. Measuring 𝑋 (𝑌 ) on
the ancilla yields the real (imaginary) part of ⟨𝑈 (𝑡)𝑉⟩ on the QITE-evolved initial
state. Performing a thermal average over all initial states yields ⟨𝑈 (𝑡)𝑉⟩𝛽.

where

𝜌𝑎 = |+⟩ ⟨+| , (5.12)

𝜌𝑠 = |Φ(𝛽/2)⟩ ⟨Φ(𝛽/2) | , (5.13)

and 𝑈̃ (𝑉̃) is the controlled-𝑈 (controlled-𝑉) gate.

Measuring 𝑋 (𝑌 ) on the ancilla yields the real (imaginary) part of the dynamical
correlation function on a single QITE-evolved basis state:

Tr( 𝜌̃𝑋𝑎) = Re⟨Φ(𝛽/2) |𝑈 (𝑡)𝑉 |Φ(𝛽/2)⟩ (5.14)

Tr( 𝜌̃𝑌𝑎) = Im⟨Φ(𝛽/2) |𝑈 (𝑡)𝑉 |Φ(𝛽/2)⟩. (5.15)

If the initial states are the METTS sample states, an unweighted average over the
initial states yields the finite-temperature dynamical correlation function ⟨𝑈 (𝑡)𝑉⟩𝛽.
In this work, we consider trace evaluation in the exact expression of an observable
𝑂̂ at finite temperature:

⟨𝑂̂⟩𝛽 =
Tr(𝑒−𝛽𝐻̂𝑂̂)
Tr(𝑒−𝛽𝐻̂)

. (5.16)

The numerator trace and the denominator trace are either evaluated by full sampling
over the entire Hilbert space, denoted as full trace evaluation, or by random sampling
over a subspace of the Hilbert space, denoted as stochastic trace evaluation. If
𝑂̂ = 𝑈 (𝑡)𝑉 , Eq. 5.16 yields the finite-temperature dynamical correlation function
⟨𝑈 (𝑡)𝑉⟩𝛽. 𝑂̂ can also be a static observable, in which case Eq. 5.16 yields the static
observable at finite temperature.

5.3 Methods
Pauli string reduction by Z2 symmetries
If we include all 4𝐷 Pauli strings over each domain consisting of𝐷 qubits, each QITE
unitary 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] applied as in Eq. 5.4 yields O(𝑁4𝐷) multi-qubit rotation gates by
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the standard rotation gate decomposition [32], which results in a circuit too deep
on near-term quantum devices even for 𝐷 = 2. Because of this prohibitive resource
overhead, we describe a systematic method to reduce the number of Pauli strings in
the QITE unitaries when the Hamiltonian and initial state have Z2 symmetries.

Z2 symmetries on qubit Hamiltonians have direct parallels with the stabilizer for-
malism in quantum error-correcting codes [18]. Suppose the Hamiltonian has 𝑑 Z2

symmetries, i.e. 𝐻̂ commutes with elements of a group isomorphic to Z𝑑2 generated
independently by 𝑑 Pauli strings, and the initial state is in the +1 eigenspace of all 𝑑
generators. If we regard the symmetry group Z𝑑2 as the stabilizer S, the symmetry
sector of the initial state corresponds to the stabilizer subspace 𝑉S .

In stabilizer codes, the normalizer of the stabilizer N(S) includes all Pauli strings
that commute with elements of the stabilizer S, and all valid operations on the code
space are in the quotient group N(S)/S. Intuitively, to preserve Z2 symmetries,
among all Pauli strings from P𝐻̂ [𝑙] the QITE unitaries should only include those
from the quotient group N(S)/S. We now show that the original QITE algorithm
subsumes the requirement that the Pauli strings should be chosen from N(S)/S
because the action of the unitary 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] with the Pauli strings from the unreduced
set P𝐻̂ [𝑙] is the same as the action with Pauli strings from the reduced set P𝐻̂ [𝑙] ∩
N(S)/S. This result is stated as the following proposition, proved and discussed in
Appendix ??.

Proposition 12. Suppose QITE is applied to approximate the imaginary time prop-
agator 𝑒−Δ𝜏𝐻̂ [𝑙] on the state |Ψ⟩. If there exists a stabilizer S such that every element
of S commutes with 𝐻̂ [𝑙] and |Ψ⟩ ∈ 𝑉S , then
(a) The action of 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] on |Ψ⟩ with 𝜎𝝁 ∈ P𝐻̂ [𝑙] is equivalent to the action with
𝜎𝝁 ∈ P𝐻̂ [𝑙] ∩ N(S)/S,
(b) 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] |Ψ⟩ ∈ 𝑉S .

Further reduction in the number of Pauli strings can be achieved by recalling from
Ref. [17] that when the Hamiltonian and the initial state are real in the computational
basis, the state after imaginary time evolution must be real. Thus, only Pauli strings
with an odd number of 𝑌 need to be included in the QITE unitaries. Since Z2

symmetries and the conditions of a real Hamiltonian and initial state are independent,
when both conditions are satisfied, the number of Pauli strings can be reduced
using both conditions, in which case the reduced set of Pauli strings is modified to
P𝐻̂ [𝑙] ∩ N(S)/S ∩ {𝜎𝝁 :

∑
𝑗 𝛿𝜇 𝑗 ,𝑦 ≡ 1 (mod 2)}.
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Figure 5.2: Energy 𝐸 versus imaginary time 𝛽 simulated without noise or
measurement sampling on a single initial state with and without reduction of the
Pauli strings in the QITE unitaries by Z2 symmetries. (a) Four-site TFIM with
𝐽 = ℎ = 1 and initial state |0001⟩. The imaginary time step size in QITE is set to
Δ𝜏 = 0.01. The number of Pauli strings from three 𝐷 = 2 domains is reduced from
16 to 6 by one Z2 symmetry 𝑍0𝑍1𝑍2𝑍3. (b) Four-site Heisenberg model with
𝐽 = Δ = 1 and initial state ( |0101⟩ + |1010⟩) /

√
2. The imaginary time step size in

QITE is set to Δ𝜏 = 0.03. The number of Pauli strings on the single 𝐷 = 4 domain
is reduced from 120 to 6 by two Z2 symmetries 𝑍0𝑍1𝑍2𝑍3 and 𝑋0𝑋1𝑋2𝑋3. In both
panels the energy trajectories using reduced numbers of Pauli strings match the
energy trajectories without reduction, which also match the energy trajectories
from exact imaginary time evolution.

In practice the Proposition is used inductively on the Trotter terms 𝐻̂ [𝑙], which
implies the stabilizer need to be chosen such that every element of the stabilizer
commutes with all 𝐻̂ [𝑙], or equivalently with 𝐻̂. For spin Hamiltonians, the sta-
bilizer generators are usually global Z2 symmetries such as 𝑍⊗𝑁 and 𝑋⊗𝑁 . For
general Hamiltonians, the Z2 symmetries can be found by Gaussian elimination on
the parity check matrix formed from the Hamiltonian terms [77].

To confirm our Pauli string reduction scheme, we compare the QITE energy tra-
jectory as a function of imaginary time simulated without noise or measurement
sampling on a single initial state with and without reduction of the Pauli strings
in the QITE unitaries by Z2 symmetries. The Hamiltonians we study include the
transverse-field Ising model (TFIM) Hamiltonian

𝐻̂TFIM = 𝐽

𝑁−2∑︁
𝑖=0

𝑋𝑖𝑋𝑖+1 + ℎ
𝑁−1∑︁
𝑖=0

𝑍𝑖 (5.17)
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and the Heisenberg 𝑋𝑋𝑍 Hamiltonian

𝐻̂𝑋𝑋𝑍 = 𝐽

𝑁−2∑︁
𝑖=0

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + Δ𝑍𝑖𝑍𝑖+1), (5.18)

with open boundary conditions assumed for both.

In Fig. 5.2 we plot energy versus imaginary time calculated with QITE on a single
initial state. The unreduced set of Pauli strings only includes Pauli strings with odd
numbers of𝑌 because the Hamiltonian and initial state are real in the computational
basis. We choose a sufficiently small imaginary time step size Δ𝜏 to ensure that
the Trotter errors from expansion in Eq. 5.4 are negligible. Figure 5.2a plots the
energy trajectory for the initial state |0001⟩ in the four-site TFIM with 𝐽 = ℎ = 1.
The Hamiltonian and the initial state have a Z2 symmetry 𝑍0𝑍1𝑍2𝑍3. By combining
reduced Pauli strings from all three 𝐷 = 2 domains, we obtain six Pauli strings in
the QITE unitaries

𝑋0𝑌1, 𝑌0𝑋1, 𝑋1𝑌2, 𝑌1𝑋2, 𝑋2𝑌3, 𝑌2𝑋3, (5.19)

compared to 16 Pauli strings without reduction by Z2 symmetries. Figure 5.2b
plots energy versus imaginary time of the initial state ( |0101⟩ + |1010⟩)/

√
2 on the

four-site Heisenberg model with 𝐽 = Δ = 1. The Hamiltonian and the initial state
have two Z2 symmetries 𝑍0𝑍1𝑍2𝑍3 and 𝑋0𝑋1𝑋2𝑋3. The 120 Pauli strings in the
QITE unitaries without reduction is reduced to the 6 Pauli strings

𝑋0𝑌1𝑍2, 𝑋0𝑍1𝑌2, 𝑌0𝑋1𝑍2, 𝑌0𝑍1𝑋2, 𝑍0𝑋1𝑌2, 𝑍0𝑌1𝑋2. (5.20)

In both panels of Fig. 5.2, the energy trajectories using reduced numbers of Pauli
strings match the energy trajectories without reduction, which also match the energy
trajectories from exact imaginary time evolution.

Circuit optimization
Even with reduction of Pauli strings in the QITE unitaries by Z2 symmetries,
applying the QITE unitaries as in Eq. 5.4 may still result in a circuit too deep to
be implemented on current quantum hardware. In this section we describe circuit
optimization techniques that further reduce circuit depth.

In two-site calculations, both the QITE circuit and the real time evolution circuit
can be optimized to constant depth with a standard one- and two-qubit gate set,
regardless of the number of imaginary and real time steps. For example, in two-
site TFIM there is only one Pauli string 𝑋0𝑌1 in the QITE unitaries after reduction
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by the Z2 symmetry 𝑍0𝑍1. Suppose the unitary applied to the state at the 𝑘-th
imaginary time step is 𝑒−𝑖Δ𝜏𝑥𝑘𝑋0𝑌1 . Then the unitaries at all imaginary time steps can
be multiplied into a single two-qubit rotation gate 𝑒−𝑖𝜃𝑋0𝑌1/2 where 𝜃 = 2Δ𝜏

∑
𝑘 𝑥𝑘 .

For real time evolution, the two-qubit operator 𝑒−𝑖𝐻̂𝑡 is decomposed by the 𝐾𝐴𝐾
decomposition [78–81] into six single-qubit gates and two CNOT gates.

In four-site calculations, neither the QITE circuit nor the real time evolution circuit
is of constant depth. If we Trotterize the QITE unitaries as in Eq. 5.4 and similarly
for the real time propagator, the circuit is too deep to be accurately implemented on
existing quantum devices. Therefore, we recompile the circuit by fitting each QITE
unitary 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] or the real time propagator 𝑒−𝑖𝐻̂𝑡 to a parametrized circuit [82–84]
using an open-source tensor network-based quantum simulation library [85]. Figure
5.3a shows the recompiled four-site QITE circuit, where the 𝑈3 gate is a generic
single-qubit gate defined as

𝑈3(𝜃, 𝜙, 𝜆) =
(

cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)
𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)

)
. (5.21)

The four 𝑈3 gates at the left constitute the base gate round. Each additional gate
round consists of a layer of CNOT gates and a layer of single-qubit gates. The
additional gate rounds alternate between even-odd and odd-even pairs of qubits.
Let the target unitary be 𝑈targ and the recompiled unitary be 𝑈rec(𝜽), where 𝜽 is a
composite variable denoting all the angles. Given a reduced density operator 𝜌 on
the finite domain acted on by the target unitary, the optimal recompiled unitary is
found by performing a gradient descent to maximize the function

𝐹 (𝜽) =
��Tr(𝑈rec(𝜽)†𝑈targ𝜌)

��2 , (5.22)

which can be interpreted as the fidelity between 𝑈rec(𝜽) and 𝑈targ with respect to
the reduced density matrix 𝜌. Since the QITE unitaries are real, we use the one-
parameter single-qubit gate 𝑅𝑦 (𝜃) = 𝑈3(𝜃, 0, 0) in the recompiled circuit for QITE,
while for real time evolution we keep the 𝑈3 gate as the parametrized single-qubit
gate.

In Fig. 5.3b, we examine how recompilation affects observable values by simulating
the finite-temperature energy ⟨𝐸⟩𝛽 of the four-site TFIM with 𝐽 = 3, ℎ = 1 in the
absence of noise or measurement sampling. Both the 𝐷 = 2 and the 𝐷 = 4 QITE
unitaries are recompiled with three gate rounds, resulting in a circuit of the same form
as that shown in Fig. 5.3a. For both 𝐷 = 2 and 𝐷 = 4, the average recompilation
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Figure 5.3: (a) Four-site recompiled circuit. The four𝑈3 gates at the left constitute
the base gate round. Each additional gate round includes a layer of CNOT gates
and a layer of single-qubit gates as shown in the dashed box. The additional gate
rounds alternate between even-odd and odd-even pairs of qubits, so that the circuit
shown consists of three gate rounds. (b) Comparison of the finite-temperature
energy ⟨𝐸⟩𝛽 of the four-site TFIM with 𝐽 = 3, ℎ = 1 with and without
recompilation in the absence of noise and measurement sampling. The imaginary
time step size in QITE is Δ𝜏 = 0.05. For both 𝐷 = 2 and 𝐷 = 4, the observable
values from the recompiled QITE unitaries are within 0.1% of those from the
unrecompiled QITE unitaries.

fidelity defined in Eq. 5.22 is above 0.9999, and the observable values from the
recompiled QITE unitaries are within 0.1% of those from the unrecompiled QITE
unitaries. The observable values from QITE are also close to the exact values, which
is expected from a noiseless simulation.
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Error mitigation
To mitigate the effect of hardware noise on the measurement results, we post-
process our hardware data by error mitigation methods including post-selection,
readout error mitigation and phase-and-scale correction. Post-selection and readout
error mitigation are applied to the measurement outcomes at each imaginary time
step in the QITE subroutine; phase-and-scale correction is applied to the final
computed finite-temperature dynamical correlation function as a single-step post-
processing. Richardson extrapolation to the zero-noise limit on short-depth circuits
[86] as recently implemented in QITE [71] was also carried out; however, it was not
observed to further improve the results and hence was not applied in our calculations.

Post-selection is performed on Z2 symmetries discussed in Sec. 5.3. When the
Hamiltonian and the initial state have Z2 symmetries, the final state after imaginary
or real time evolution should have the same stabilizer parities as the initial state.
However, during execution of the circuit, gate errors and qubit decoherence can
induce nonzero overlap of the qubit state with the subspace of the wrong parity.
Post-selection can mitigate these undesirable effects by discarding measurement
outcomes with the wrong parity [87, 88].

We specifically consider the symmetry from a single stabilizer generator. If the
operator to be measured is an ancilla operator, we can simply measure the stabilizer
generator on all the system qubits and read off the parity without interfering with
measurement of the ancilla. If the operator to be measured acts on system qubits,

Figure 5.4: Measurement of a Pauli string in a four-site QITE calculation with
post-selection on the stabilizer generator 𝑍0𝑍1𝑍2𝑍3. The appended CNOT gates
achieve simultaneous measurement of the Pauli string with the stabilizer generator
by transforming 𝑍0𝑍1𝑍2𝑍3 to 𝑍3 acting on a single qubit, from which the stabilizer
parity is read off. The other qubits are measured in 𝑋-, 𝑌 - or 𝑍-basis depending on
the Pauli string measured. Measurement outcomes with the wrong parity are
discarded.
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we need to simultaneously measure the operator and the stabilizer generator, which
is possible because all operators in Eq. 5.10 commute with the stabilizer generator
by our choice of Pauli strings in the QITE unitaries in Sec. 5.3. Specifically,
each operator and the stabilizer generator can be simultaneously measured by using
Clifford gates to transform the Pauli string components of the operator and the
stabilizer generator until they are qubit-wise commuting, so that their expectation
values can be read off on different qubits [89–92].

Figure 5.4 shows the circuit to simultaneously measure the stabilizer generator
𝑍0𝑍1𝑍2𝑍3 and a Pauli string that commutes with it in a four-site QITE calculation.
The sequence of CNOT gates after the QITE circuit in Fig. 5.4 transforms 𝑍0𝑍1𝑍2𝑍3

to 𝑍3. Since 𝑍3 acts on a single qubit, it necessarily qubit-wise commutes with
the transformed Pauli string. In practice, we stop applying CNOT gates when
the transformed Pauli string becomes qubit-wise commuting with the transformed
stabilizer generator, and therefore the number of CNOT gates added to the end of
the circuit ranges from zero to three.

To account for noise in the final measurement, the built-in readout error mitigation
routine in Qiskit [93] is applied to each measurement outcome. Because of the
small size of the systems we study, for 𝑁 qubits we carry out full calibration on
all 2𝑁 initial states. Application of the inverse of the calibration matrix to the raw
measurement counts is performed by the default least-square fitting method.

We assess the effectiveness of applying post-selection and readout error mitigation
at every imaginary step of QITE by simulating the finite-temperature energy of two-
site and four-site TFIMs using full trace evaluation with measurement sampling and
the noise model from ibmq_rome. In both panels of Fig. 5.5, QITE is applied with
Pauli strings reduced and circuits optimized. In particular, four-site QITE unitaries
are of domain size 𝐷 = 2 and recompiled with three rounds of gates. From Fig. 5.5
we can see that both readout error mitigation and post-selection shift the raw data
toward the exact data, confirming the effectiveness of both schemes in reducing
the effect of noise. Furthermore, a combination of readout error mitigation and
post-selection is observed to be most effective in mitigating the errors, which is not
apparent on two sites in Fig. 5.5a presumably because of the small size of the system
but clearly evident on four sites in Fig. 5.5b.

In calculations of finite-temperature dynamical correlation functions, the ancilla
qubit is in the state |+⟩ before entangling with the system qubits. When there is a
long sequence of gates in the real time propagator 𝑒−𝑖𝐻̂𝑡 , decoherence of the ancilla
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Figure 5.5: Finite-temperature energy ⟨𝐸⟩𝛽 of (a) the two-site TFIM with
𝐽 = ℎ = 1 and (b) the four-site TFIM with 𝐽 = 3, ℎ = 1, simulated with
measurement sampling and the noise model from ibmq_rome. The imaginary time
step size in QITE is Δ𝜏 = 0.1 for two-site TFIM and Δ𝜏 = 0.05 for four-site TFIM.
Raw data are post-processed at each imaginary time step with either readout error
mitigation, or post-selection, or both. Employing both readout error mitigation and
post-selection is observed to be most effective in mitigating the errors.

qubit such as amplitude damping to the qubit ground state |0⟩ and depolarization
will significantly affect the 𝑋 and 𝑌 measurement results on the ancilla. To mitigate
the effect of ancilla decoherence, we apply phase-and-scale correction [30, 31]
as a single-step post-processing to the result at the end of the calculation. The
only finite-temperature dynamical correlation function considered in this work is
⟨𝑍0(𝑡)𝑍0⟩𝛽, which is equal to 1 analytically at 𝑡 = 0. Hence, we apply phase-
and-scale correction by dividing the raw hardware ⟨𝑍0(𝑡)𝑍0⟩𝛽 at each 𝑡 by the raw
hardware ⟨𝑍0(𝑡 = 0)𝑍0⟩𝛽 to enforce the condition ⟨𝑍0(𝑡 = 0)𝑍0⟩𝛽 = 1.

In addition, Richardson extrapolation on the noise parameters [55] as recently im-
plemented in QITE has been attempted in the current project. However, it did
not improve the results on top of the error mitigation methods we already have,
and hence are not applied in our calculations. has been proposed as a promising
method in extrapolating out gate errors. However, in our two-site calculations,
the three error mitigation methods above already produced results good enough on
the constant-depth circuits and thus eliminate the necessity of applying Richardson
extrapolation. In our four-site calculations, where the circuits are not of constant
depth, the main source of the error is likely to be qubit decoherence resulting from
deep circuit rather than gate errors. Moreover, applying Richardson extrapolation
by repeating gates [71] result in circuits with more than 200 layers of gates, which
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are too deep to yield meaningful results on near-term devices. Consequently, we do
not apply Richardson extrapolation in our calculations.

5.4 Results
Experiments of computing finite-temperature observables were conducted on IBM
Quantum devices ibmq_bogota and ibmq_rome [94], both of which consist of five
qubits arranged on a chain with nearest-neighbor interactions and similar error rates.
IBM’s open-source library Qiskit [95] was used to implement our algorithms on the
devices. In each calculation, the 𝑁 system qubits 0, ..., 𝑁 − 1 are arranged adjacent
to each other and the ancilla is closest to system qubit 0.

The systems we study are sufficiently small that we apply QITE to approximate
the full imaginary time propagator 𝑒−Δ𝜏𝐻̂ at each imaginary time step, which is
equivalent to setting 𝐿 = 1 and 𝐻̂ [1] = 𝐻̂ in Eq. 5.1. The QITE linear systems
in Eq. 5.5 are solved by a conjugate gradient method. Because hardware noise
and measurement sampling lead to ill-conditioned 𝑨 matrices in the QITE linear
systems, we add a regularizer of 0.2 to the diagonal elements of each 𝑨 matrix in
the four-site calculations.

Each calibration circuit used for readout error mitigation is repeated 1000 times;
each Pauli string measurement circuit used to construct the QITE linear systems
is repeated 8000 times. Error bars from full trace evaluation result only from
measurement sampling and are the size of the markers in most figures; error bars
from stochastic trace evaluation originate from both measurement sampling and
initial state sampling. A detailed description of error bars in full and stochastic trace
evaluation is given in Appendix B.

Two-site calculations
We study the two-site TFIM defined in Eq. 5.17 by setting ℎ = 1 and varying
𝐽. The finite-temperature energy ⟨𝐸⟩𝛽 and static correlation function ⟨𝑋0𝑋1⟩𝛽
are calculated on the Hamiltonians with 𝐽 = ±1,±3, while the finite-temperature
dynamical correlation function ⟨𝑍0(𝑡)𝑍0⟩𝛽 and excitation spectra are calculated on
the Hamiltonian with 𝐽 = 3. In all calculations, finite-temperature observables are
calculated by full trace evaluation and the circuits are optimized according to the
circuit optimization procedures in Sec. 5.3.

Figure 5.6 shows the finite-temperature energy ⟨𝐸⟩𝛽 and static correlation function
⟨𝑋0𝑋1⟩𝛽 of the two-site TFIM with 𝐽 = ±1,±3 from 𝛽 = 0 to 𝛽 = 2. In both 5.6a
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Figure 5.6: (a) Finite-temperature energy ⟨𝐸⟩𝛽 and (b) static correlation function
⟨𝑋0𝑋1⟩𝛽 of the two-site TFIM with 𝐽 = ±1,±3 and ℎ = 1 versus inverse
temperature 𝛽. The imaginary time step size in QITE is Δ𝜏 = 0.1. The observables
obtained on hardware are within 1-4% of the exact values.

and 5.6b the finite-temperature observables obtained on hardware are within 1%
to 4% of the exact values. Further, if we regard each finite-temperature variable
as a function of 𝐽, analytically it can be shown that ⟨𝐸⟩𝛽 (𝐽) = ⟨𝐸⟩𝛽 (−𝐽) and
⟨𝑋0𝑋1⟩𝛽 (𝐽) = − ⟨𝑋0𝑋1⟩𝛽 (−𝐽). This relation is satisfied in the hardware data.

Next, finite-temperature dynamical properties were calculated on the two-site TFIM
with 𝐽 = 3, ℎ = 1. The dynamical correlation function ⟨𝑍0(𝑡)𝑍0⟩𝛽 is evaluated from
𝛽 = 0 to 𝛽 = 2 and at real time from 𝑡 = 0 to 𝑡 = 8𝜋. Figures 5.7a and 5.7b show the
real and imaginary parts of ⟨𝑍0(𝑡)𝑍0⟩𝛽 at 𝛽 = 0.2 and 𝛽 = 1.8 up to 𝑡 = 4𝜋. From ??
we see that even without phase-and-scale correction, the real and imaginary parts of
⟨𝑍0(𝑡)𝑍0⟩𝛽 agree well with the exact results at both small and large 𝛽, presumably
due to the constant and shallow depth of the real time evolution circuit.

The spectral density 𝑆(𝜔) is obtained by a discrete Fourier transform of the dynam-
ical correlation function ⟨𝑍0(𝑡)𝑍0⟩𝛽. Specifically, at each 𝛽

𝑆(𝜔𝑘 ) =
1
𝑛𝑡

𝑛𝑡−1∑︁
𝑚=0

⟨𝑍0(𝑡𝑚)𝑍0⟩𝛽 𝑒𝑖𝜔𝑘 𝑡𝑚 , (5.23)

where 𝑛𝑡 is the total number of points in the time series, 𝑡𝑚 = 𝑚Δ𝑡, and 𝜔𝑘 =

2𝜋𝑘/𝑛𝑡Δ𝑡. With this definition of Fourier transform, the peaks at positive (negative)
frequencies correspond to emissions (absorptions) of excitations of the system.

To analyze the evolution of the excitation spectra across different temperatures,
we plot the amplitudes at the two emission frequencies versus 𝛽 in Fig. 5.7d.
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Analytically, the amplitude of the transition from an initial state |Ψ𝑖⟩ to a final state��Ψ 𝑓

〉
is 𝑒−𝛽𝐸 𝑓 |⟨Ψ𝑖 |𝑍0 |Ψ 𝑓 ⟩|2/Z, where 𝐸 𝑓 is the energy of the final state andZ is the

partition function. In the two-site TFIM, the only allowed transitions are between
the two states in each of the two-dimensional eigenspaces of 𝑍0𝑍1 with eigenvalues
±1. The frequency ±7.18 corresponds to a transition in the +1 eigenspace, where
the ground state lies, and the frequency ±5.94 corresponds to a transition in the −1
eigenspace, where the first excited state lies. As the temperature decreases from
infinite temperature (𝛽 increases from 0), the populations in the two lowest states
first increase until the ground state population dominates

Figure 5.7: Finite-temperature dynamical properties of the two-site TFIM with
𝐽 = 3, ℎ = 1. The imaginary time step size in QITE is set to Δ𝜏 = 0.1. (a) Real and
(b) imaginary parts of the finite-temperature dynamical correlation function
⟨𝑍0(𝑡)𝑍0⟩𝛽 at 𝛽 = 0.2 and 𝛽 = 1.8 versus real time 𝑡. (c) Finite-temperature
excitation spectra |𝑆(𝜔) |2 versus frequency 𝜔. Positive (negative) frequencies
correspond to emissions (absorptions). (d) Amplitudes of the two emission peaks
at 𝜔 = 7.18 and 𝜔 = 5.94. The hardware data capture finite-temperature dynamics
of two-site TFIM across a wide range of temperatures.

over that of the first excited state at around 𝛽 = 0.4, a trend reproduced by the
amplitudes obtained from hardware data in 5.7d. Thus, 5.7 shows that quantum
hardware accurately captures the finite-temperature dynamics of the two-site TFIM
across a wide range of temperatures.
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Figure 5.8: (a) Finite-temperature energy ⟨𝐸⟩𝛽 and static correlation functions (b)
⟨𝑋0𝑋1⟩𝛽 (c) ⟨𝑋0𝑋2⟩𝛽 (d) ⟨𝑋0𝑋3⟩𝛽 of the four-site TFIM with 𝐽 = 3, ℎ = 1 versus
inverse temperature 𝛽 with different QITE unitaries. The imaginary time step size
in QITE is set to Δ𝜏 = 0.05. The 𝐷 = 2 QITE unitaries are either Trotterized as in
5.4 or recompiled, while all 𝐷 = 4 QITE unitaries are recompiled. The results with
recompiled QITE unitaries are closer to exact results than the results with
Trotterized QITE unitaries due to circuit depth. Between the calculations with
recompiled unitaries, 𝐷 = 4 is not necessarily closer to exact results than 𝐷 = 2 for
all observables possibly due to the increased influence of hardware noise in the
larger linear systems.

Four-site calculations
We next proceed to four-site spin systems. We study the four-site TFIM defined
in Eq. 5.17 with 𝐽 = 3, ℎ = 1. Full trace evaluation is employed unless otherwise
specified.

First, let us consider gate counts in the four-site circuits. For the four-site TFIM with
𝐷 = 2, after reduction by the Z2 symmetry 𝑍0𝑍1𝑍2𝑍3 there are six weight-two Pauli
strings, which are the ones given in Eq. 5.19. If we Trotterize the QITE unitaries
as in Eq. 5.4, each unitary requires 12 CNOT gates by the standard rotation gate
decomposition [32], which becomes unfeasible on near-term quantum hardware
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after the first few imaginary time steps. When 𝐷 = 4, even after reduction by one Z2

symmetry there are still 28 Pauli strings in each QITE unitary. After Trotterization
and rotation gate decomposition, each QITE unitary requires more than 50 CNOT
gates for a single imaginary time step. Hence, when 𝐷 = 2, we compute finite-
temperature observables both by Trotterizing and by recompiling the QITE unitaries
with three gate rounds; when𝐷 = 4, we only recompile the QITE unitaries with three
gate rounds. To obtain dynamical correlation functions, we additionally recompile
the real time propagator 𝑒−𝑖𝐻̂𝑡 with five gate rounds. The number of gate rounds
is chosen so that the fidelity as defined in 5.22 is at least 0.999 on average in each
calculation.

Figure 5.8 shows the finite-temperature energy ⟨𝐸⟩𝛽 and static correlation functions
⟨𝑋0𝑋1⟩𝛽 , ⟨𝑋0𝑋2⟩𝛽 , ⟨𝑋0𝑋3⟩𝛽 of the four-site TFIM. From the figure, we can see
that the finite-temperature observables calculated with Trotterized 𝐷 = 2 QITE
unitaries deviate from those calculated with 𝐷 = 2 recompiled QITE unitaries or
𝐷 = 4 recompiled QITE unitaries after 𝛽 = 0.1. This deviation is due to the deep
circuit resulting from 12 layers of CNOT gates per imaginary time step, compared
to 3 layers of CNOT gates per imaginary time step in the recompiled circuit. The
observables from 𝐷 = 2 recompiled QITE unitaries are in reasonable agreement
with those from 𝐷 = 4 recompiled QITE unitaries for all 𝛽, which is consistent with
the simulator results in the absence of noise or measurement sampling in Fig. 5.3b.
However, even the recompiled QITE unitaries are not able to track the exact finite-
temperature observables for 𝛽 ≳ 0.4. In particular, the slope is reversed compared
to the exact result for 𝛽 > 0.5. QITE up to 𝛽 = 0.5 corresponds to 5 imaginary
time steps and hence 15 layers of CNOT gates, which is almost at the limit of circuit
depth on these quantum devices.

To explore the scalability of our approach, we compare stochastic trace evaluation
with full trace evaluation in calculating the finite-temperature energy of the four-site
TFIM. Stochastic trace evaluation is performed by uniformly selecting initial states
in the full trace evaluation result with recompiled 𝐷 = 2 QITE unitaries. In Fig. 5.9,
we plot the stochastic trace evaluation results with 10 and 20 samples along with the
full trace evaluation and exact results; the inset shows the running average of ⟨𝐸⟩𝛽
versus number of samples 𝑛samples. As can be seen from the figure, random sampling
with 10 samples already reproduced the results from full sampling on all 16 initial
states, indicating that using scalable sampling schemes is a promising approach to
studying larger systems.
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Figure 5.9: Finite-temperature energy ⟨𝐸⟩𝛽 of the four-site TFIM with 𝐽 = 3, ℎ = 1
versus inverse temperature 𝛽 using full and stochastic trace evaluation. QITE is
performed with recompiled 𝐷 = 2 unitaries with a time step of Δ𝜏 = 0.05. Results
of stochastic trace evaluation are shown with number of samples 𝑛samples set to 10
and 20. Inset shows the running average of ⟨𝐸⟩𝛽 versus 𝑛samples using stochastic
trace evaluation at 𝛽 = 0.2 (red symbols), with full trace evaluation (blue symbols)
and exact results (black solid line) plotted as constant values. Stochastic trace
evaluation with 10 samples is already sufficient to reproduce the results from full
trace evaluation across a wide range of 𝛽.

Finally, in Fig. 5.10 we show the dynamical properties of the four-site TFIM with
𝐽 = 3, ℎ = 1 at 𝛽 = 0.2. The calculation is implemented by recompiling𝐷 = 2 QITE
unitaries with three gate rounds and real time propagation with five gate rounds.
Figure 5.10a shows the real and imaginary parts of ⟨𝑍0(𝑡)𝑍0⟩𝛽 after phase-and-
scale correction. With this correction, both the real and the imaginary parts show
good agreement with the exact result. Figure 5.10b shows the excitation spectra
obtained by Fourier transforming the exact and phase-and-scale-corrected hardware
⟨𝑍0(𝑡)𝑍0⟩𝛽 at the same points in real time. The excitation spectrum from hardware
data accurately reproduces not only the frequencies 𝜔 = 0,±4.90,±6.37,±7.84 but
also the peak amplitudes.

The favorable agreement of the hardware ⟨𝑍0(𝑡)𝑍0⟩𝛽 with the exact result is in
contrast with the deviation of finite-temperature static observables from the exact
values in Fig. 5.8. In fact, the raw hardware ⟨𝑍0(𝑡)𝑍0⟩𝛽 at 𝑡 = 0 is 0.821 +
0.397𝑖, which is far from the exact value 1, indicating that the phase-and-scale
correction has a significant effect in correcting raw hardware data. Although in
Ref. [31] a phase-and-scale correction combined with readout error mitigation was
not observed to yield as large an improvement as we see in our hardware data, the
use of post-selection before the phase-and-scale correction in our implementation
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may be responsible for some of the improvement relative to exact results.

Even though the phase does not enter the static observables we computed, the lack
of a scale correction scheme for the static observables may explain their large de-
viation from the exact values compared to dynamical observables. Moreover, even
though the recompiled circuit in Fig. 5.10 includes up to 11 gate rounds with the
QITE and real time evolution gates combined, the ancilla is initialized after the
QITE circuit and hence only experiences 5 gate rounds prior to measurement. The
relatively shallow circuit applied to the ancilla may be another reason for the good
performance of the quantum device for calculating the finite-temperature dynamical
observable ⟨𝑍0(𝑡)𝑍0⟩𝛽.

Figure 5.10: Finite-temperature dynamical properties of the four-site TFIM with
𝐽 = 3, ℎ = 1 at 𝛽 = 0.2. QITE is performed with a time step of Δ𝜏 = 0.05 and
recompiled 𝐷 = 2 unitaries. (a) Real and imaginary parts of the finite-temperature
dynamical correlation function ⟨𝑍0(𝑡)𝑍0⟩𝛽 versus real time 𝑡. Raw hardware data
are post-processed by phase-and-scale correction. (b) Finite-temperature excitation
spectra obtained by Fourier transform of exact and phase-and-scale-corrected
hardware ⟨𝑍0(𝑡)𝑍0⟩𝛽 at the same points in real time. The hardware ⟨𝑍0(𝑡)𝑍0⟩𝛽 and
excitation spectrum after phase-and-scale correction are in good agreement with
the exact results.

5.5 Conclusion and Outlook
Our work demonstrates that finite-temperature physics of quantum spin systems is
accessible with near-term quantum hardware and paves the way for further study
of finite-temperature phenomena on near-term quantum devices. With methods to
reduce required quantum resources and mitigate errors in raw hardware data, QITE
enables the practical calculation of finite-temperature energy, static and dynamical
correlation functions, and spectral densities of excitations.

On two sites, static and dynamical observables for a wide range of temperatures
are accurately captured by quantum hardware. An important factor underlying this



57

accuracy is the constant depth of the circuit in both QITE and real time evolution.
Constant depth in QITE allowed us to extend QITE-based finite-temperature cal-
culations from a single site [17]; constant depth in real time evolution allowed us
to reproduce exact finite-temperature dynamical correlation functions on quantum
hardware without phase-and-scale correction as compared to previous studies [30,
31].

On four sites, finite-temperature static observables calculated on quantum hardware
with circuit recompilation are in reasonable agreement with exact results at 𝛽 ≤
0.5. We were also able to accurately reproduce the finite-temperature dynamical
correlation function using phase-and-scale correction at a high temperature 𝛽 ∼ 0.2.
However, accurate determination of observables at lower temperatures still appears
challenging using the current recompilation scheme where the QITE unitaries are
recompiled separately at each imaginary time step. Therefore, simulating quantum
systems at low temperature on near-term quantum computers will likely require
additional reduction of circuit depth such as recompilation with merged imaginary
time steps [73] or lower error rates on quantum devices either from efficient error
mitigation for imaginary time or from improvements in hardware.

To simulate larger systems, more qubits, deeper circuits, and a scalable method for
performing thermal averages are required. Since the main limitation in our four-site
calculations is circuit depth rather than system size, simulation of larger systems will
likely require more aggressive recompilation techniques. However, this recompila-
tion is scalable as the fidelity defined in Eq. 5.22 is evaluated on the reduced density
matrix. To investigate the scalability of the method to calculate thermal averages, we
examined how stochastic trace evaluation performs in calculating finite-temperature
observables compared to full trace evaluation. We found that on four sites stochastic
trace evaluation reproduced full trace evaluation results accurately in the tempera-
ture regime we studied. Compared to the previously proposed QMETTS algorithm,
stochastic trace evaluation has zero autocorrelation time. A detailed comparison
of QITE-based computation of finite-temperature observables with different sam-
pling schemes is a topic worth exploring. Furthermore, with the availability of
more qubits [28, 96], trading increased computational time due to sampling for
an increased number of qubits via constructing density matrix purification states
[57–59] may be another feasible direction for studying finite-temperature physics
on near-term quantum hardware.
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C h a p t e r 6

FREQUENCY-DOMAIN RESPONSE PROPERTIES OF
DIATOMIC MOLECULES

1S.-N. Sun, B. Marinelli, J. M. Koh, Y. Kim, L. B. Nguyen, L. Chen, J. M.
Kreikebaum, D. I. Santiago, I. Siddiqi, and A. J. Minnich, “Quantum computation
of frequency-domain molecular response properties using a three-qubit iToffoli
gate”, npj Quantum Inf. 10, 55 (2024),

6.1 Introduction
A primary goal of emerging quantum computing technologies is to enable the sim-
ulation of quantum many-body systems that are challenging for classical computers
[1, 39, 40]. Early experimental demonstrations of quantum simulation algorithms
have focused on computing ground- and excited-state energies of small molecules
or few-site spin and fermionic models [41–44, 97]. More recently, the scale of
quantum simulation experiments has increased in terms of numbers of qubits, di-
versity of gate sets, and complexity of algorithms, as manifested in simulation of
models based on real molecules and materials [47, 98], various phases of matter
such as thermal [99], topological [100, 101] and many-body localized states [102,
103], as well as holographic quantum simulation using quantum tensor networks
[104, 105]. As quantum advantages in random sampling have been established on
quantum hardware [28, 106], focus has turned to the experimental demonstration of
quantum advantages in problems of physical significance [107].

For applications in chemistry and physics, the calculation of the response properties
of molecules and materials is of substantial interest [51]. Investigating response
properties in the electronic structure theory framework involves calculating quan-
tities such as the one-particle Green’s function [108] and density-density response
functions [109], which provide insight into interpreting experimental spectroscopic
measurements [110]. Response properties of molecules and materials can be de-
termined either in time domain or in frequency domain. Due to the natural ability
of quantum computers to simulate time evolution [1, 39], near-term algorithms to
compute time-domain response properties have been carried out on quantum hard-
ware [30, 31, 111]. However, computing the frequency-domain response from the
time-domain response using the typical gate set requires a time duration that exceeds

https://doi.org/10.1038/s41534-024-00850-9
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Figure 6.1: Schematic of the diatomic molecules and diagrams of the LCU
circuits for computing transition amplitudes. (A) Schematic of the diatomic
molecules NaH and KH. The active space consists of only the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
(B) The circuits to calculate diagonal transition amplitudes, where 𝑎0 is the ancilla
qubit and 𝑠0 and 𝑠1 are the system qubits. For the spectral functions the target
unitaries are 𝑋̃𝑝𝜎 and 𝑖𝑌𝑝𝜎, while for the response function the target unitaries are
𝐼 and 𝑍̃𝑝𝜎. (C) The circuit to calculate off-diagonal transition amplitudes in the
response functions, where 𝑎0 and 𝑎1 are the ancilla qubits, and 𝑠0 and 𝑠1 are the
system qubits. The double-controlled-𝑍̃ gates are decomposed with either iToffoli
gates or CZ gates. In both (B) and (C), quantum state tomography (QST) is
performed on the system qubits.

the circuit depth limitations of near-term quantum computers.

An alternative approach to determine these response properties is by computing them
directly in the frequency domain. Frequency-domain algorithms generally involve
obtaining the ground- and excited-state energies as well as the transition amplitudes
between the ground state and the excited states. Although there are established
methods to obtain ground- and excited-state energies on quantum computers [33,
112, 113], calculating transition amplitudes is less straightforward. Various schemes
including variational quantum simulation [114–116], quantum subspace expansion
[117] and quantum linear algebra [118] to determine frequency-domain response
properties have been proposed. While variational quantum methods to compute
frequency-domain response properties have been demonstrated [119], the accuracy
of variational methods generally depends on the quality of the ansatz. Moreover,
quantum subspace expansion is susceptible to numerical instabilities from basis
linear dependence, and quantum linear algebra is out of reach for near-term quantum
hardware. Recently, a non-variational scheme amenable to near-term hardware
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implementation has been proposed [21, 22]. This scheme constructs the electron-
added and electron-removed states simultaneously by exploiting the probabilistic
nature of the linear combination of unitaries (LCU) algorithm [20]. Nevertheless,
this LCU-based algorithm has not yet been demonstrated on quantum hardware in
part due to the lack of efficient implementations of the multi-qubit gates.

In this work, we experimentally demonstrate the application of a high-fidelity three-
qubit iToffoli gate [19] on a superconducting quantum processor to the calculation
of frequency-domain response properties of diatomic molecules using LCU circuits.
The use of the iToffoli gate leads to substantial reductions in the circuit depth by
∼ 50% and in the circuit execution time by ∼ 40%. The transition amplitudes
between the ground state and the 𝑁-electron or (𝑁 ± 1)-electron states of NaH
and KH molecules are computed on the quantum hardware and used to construct
spectral functions and density-density response functions. We apply error mitigation
techniques including randomized compiling (RC) [120, 121] during circuit construc-
tion, and McWeeny purification [122] during postprocessing, both of which result
in marked improvement of the experimental observables. The molecular response
properties obtained from the reduced-depth circuits with iToffoli decomposition
show comparable or better agreement with theory compared to those from circuits
with CZ decomposition, despite incomplete Pauli twirling in the RC procedure ap-
plied to the iToffoli gate. Although the particular calculation of this work would
require modifications to scale to larger systems, our results advance the general ap-
plication of multi-qubit gates to quantum chemistry and related quantum simulation
applications on near-term quantum hardware.

6.2 Materials and Methods
Calculation of Transition Amplitudes
In this section, we give the equations used to calculate transition amplitudes in the
spectral function and density-density response function from quantities measured
on hardware. We use the same notation as in the main text, where |Ψ0⟩ is the
𝑁-electron ground state, |Ψ𝑁±1

𝜆
⟩ are the (𝑁 ± 1)-electron states, and |Ψ𝑁

𝜆
⟩ are the

𝑁-electron excited states. The transition amplitudes follow the same notation as in
Ref. [22], where the transition amplitudes from the ground state to the (𝑁 ± 1)-
electron eigenstates in the calculation of spectral functions are
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𝐵
(𝑒)
𝜆,𝑝𝜎,𝑞𝜎′ = ⟨Ψ0 |𝑎̂𝑝𝜎 |Ψ𝑁+1

𝜆 ⟩⟨Ψ𝑁+1
𝜆 |𝑎̂†

𝑞𝜎′ |Ψ0⟩, (6.1)

𝐵
(ℎ)
𝜆,𝑝𝜎,𝑞𝜎′ = ⟨Ψ0 |𝑎̂†𝑝𝜎 |Ψ𝑁−1

𝜆 ⟩⟨Ψ𝑁−1
𝜆 |𝑎̂𝑞𝜎′ |Ψ0⟩. (6.2)

The spectral function only requires the diagonal transition amplitudes. Theoretically
the (unnormalized) states after restraining the ancilla to |0⟩ or |1⟩ is 1

2 ( 𝑋̃𝑝𝜎 ±
𝑖𝑌𝑝𝜎) |Ψ0⟩. Let the tomographed density matrices corresponding to these states be
𝜌±𝑝𝜎. The diagonal transition amplitudes are calculated as the overlap between the
(𝑁 ± 1)-electron eigenstates |Ψ𝑁±1

𝜆
⟩ and the tomographed density matrices 𝜌±𝑝𝜎:

𝐵
(𝑒)
𝜆,𝑝𝜎,𝑝𝜎

= ⟨Ψ𝑁+1
𝜆 |𝜌−𝜌𝜎 |Ψ𝑁+1

𝜆 ⟩, (6.3)

𝐵
(ℎ)
𝜆,𝑝𝜎,𝑝𝜎

= ⟨Ψ𝑁−1
𝜆 |𝜌+𝜌𝜎 |Ψ𝑁−1

𝜆 ⟩ (6.4)

Similarly, in the calculation of density-density response functions, we follow the
notation in Ref. [21] and define the transition amplitudes from the ground state to
𝑁-electron eigenstates as

𝑁𝜆,𝑝𝜎,𝑝𝜎 = ⟨Ψ0 |𝑛̂𝑝𝜎 |Ψ𝑁
𝜆 ⟩⟨Ψ

𝑁
𝜆 |𝑛̂𝑞𝜎′ |Ψ0⟩ (6.5)

In the diagonal circuits, theoretically the (unnormalized) state after restraining the
ancilla qubit to |1⟩ is 1

2 (𝐼 − 𝑍̃𝑝𝜎) |Ψ0⟩. Let the corresponding tomographed density
matrix obtained from experiments be 𝜌−𝑝𝜎. The diagonal transition amplitudes
are calculated by taking the overlap of the 𝑁-electron eigenstates |Ψ𝑁

𝜆
⟩ and the

tomographed density matrix 𝜌−𝑝𝜎:

𝑁𝜆,𝑝𝜎,𝑝𝜎 = ⟨Ψ𝑁
𝜆 |𝜌

−
𝑝𝜎 |Ψ𝑁

𝜆 ⟩ (6.6)

In the off-diagonal circuits, theoretically the (unnormalized) states after restraining
the ancilla qubits to 𝑘𝑒𝑡10 or |11⟩ are 1

4 [(𝐼 − 𝑍̃𝑝𝜎) ± (𝐼 − 𝑍̃𝑞𝜎′)] |Ψ0⟩. Let the
corresponding tomographed states obtained from experiments be 𝜌±

𝑝𝜎,𝑞𝜎′ . The
intermediate transition amplitudes obtained directly from

��Ψ𝑁
𝜆

〉
are defined as

𝑇±
𝜆,𝑝𝜎,𝑞𝜎′ = ⟨Ψ𝑁

𝜆 |𝜌
±
𝑝𝜎,𝑞𝜎′ |Ψ𝑁

𝜆 ⟩, (6.7)
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from which the off-diagonal transition amplitude is determined by Eq. 25 in Ref. [21]
(or equivalently Eq. 18 in Ref. [22]) as

𝑁𝜆,𝑝𝜎,𝑞𝜎′ = 𝑒−𝑖𝜋/4(𝑇+
𝜆,𝑝𝜎,𝑞𝜎′ − 𝑇−

𝜆,𝑝𝜎,𝑞𝜎′) + 𝑒𝑖𝜋/4(𝑇+
𝜆,𝑞𝜎′,𝑝𝜎 − 𝑇−

𝜆,𝑞𝜎′,𝑝𝜎). (6.8)

The transition amplitudes 𝐵(𝑒)
𝜆
, 𝐵

(ℎ)
𝜆

calculated from Eqs. 6.3 and 6.4 or𝑁𝜆 calculated
from Eqs. 6.6 and 6.8 are then combined with the ground-state energy 𝐸0 as well
as the excited-state energies 𝐸𝑁±1

𝜆
or 𝐸𝑁

𝜆
to construct the spectral functions or

density-density response functions.

Molecular Models
The molecular models studied in this work are HOMO-LUMO models of NaH
at bond distance 3.7 Å and KH molecule at bond distance 3.9 Å in the STO-
3G basis. The bond distances are chosen to ensure sufficient population in the
excited states to facilitate comparisons of the spectral peaks. Molecular integrals are
determined from PySCF [123]. Since our work focuses on comparing the transition
amplitudes, the ground- and excited-state energies are determined classically, as has
been performed in other quantum simulation demonstrations [64]. OpenFermion
[124] is used to map the second-quantized Hamiltonians to qubit operators.

Quantum Circuit Construction
The ground-state preparation gate on the system qubits is determined classically by
constructing a unitary that maps the all-zero initial states to the ground state and
then decomposed into three CZ gates and single-qubit gates using the 𝐾𝐴𝐾 decom-
position [80]. The LCU circuits are then constructed by applying the gates shown in
Figs. 6.1b and 6.1c, where the SWAP gates are decomposed according to the scheme
in Ref. [125] and the circuits are transpiled by the functions MergeInteractions,
MergeSingleQubitGates and DropEmptyMoments in Cirq [34]. The transition
amplitudes are combined with the classically determined ground- and excited-state
energies to calculate the spectral functions and response functions (see Supplemen-
tary Sec. II).

Z2 symmetry transformations on operators and qubit states
In this section, we describe the Z2 symmetry transformations applied to the qubit
operators and ancilla qubit subspaces in the linear combination of unitaries (LCU)
algorithm. This transformation converts the four-qubit operators and qubit subspaces
into two-qubit ones, which are used in constructing the circuits for hardware runs.
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There are four spin orbitals in the diatomic molecules we study in this work. We
order them as 0 ↑, 0 ↓, 1 ↑, 1 ↓ from left to right, corresponding to the qubit indices 0,
1, 2, 3, in the Pauli strings and qubit state bitstrings. The HOMO-LUMO molecular
Hamiltonians of NaH and KH have the same number of up-spin and down-spin
electrons. After Jordan-Wigner transformation, the parity of up-spin and down-
spin electrons correspond to the qubit operators 𝑍𝐼𝑍𝐼 and 𝐼𝑍 𝐼𝑍 , which are Z2

symmetries of the Hamiltonian. The mean-field ground state |Φ0⟩ = |1100⟩ has the
expectation values ⟨𝑍𝐼𝑍𝐼⟩ = ⟨𝐼𝑍 𝐼𝑍⟩ = −1, as does the exact ground state |Ψ0⟩.

We can define three types of states in our calculation based on Z2 symmetries: the
“up-spin” states are the states that have symmetries ⟨𝑍𝐼𝑍𝐼⟩ = 1, ⟨𝐼𝑍 𝐼𝑍⟩ = −1,
which are obtained by applying 𝑎̂𝑝↑ or 𝑎̂†

𝑝↑ on the ground state; the “down-spin”
states are the states that have symmetries ⟨𝑍𝐼𝑍𝐼⟩ = −1, ⟨𝐼𝑍 𝐼𝑍⟩ = 1, which are
obtained by applying 𝑎̂𝑝↓ or 𝑎̂†

𝑝↓ on the ground state; the “spin-balanced” states
are the states that have the symmetries ⟨𝑍𝐼𝑍𝐼⟩ = −1, ⟨𝐼𝑍 𝐼𝑍⟩ = −1, which are
obtained by applying the number operators on the ground state and have the same
symmetries as the ground state. Note that the up-spin and down-spin states here are
defined from the expectation values of the Z2 symmetry operators but not from the
spin-𝑧 components of the corresponding molecular states. For example, the qubit
computational state |0100⟩ represents the molecular state with a single electron in
the 0 ↓ orbital, which has total spin-𝑧 expectation value of −1/2, but in our definition
it is classified as an up-spin state.

For each type of state, we aim to find aZ2 transformation that generates the minimum
number of gates in the circuits that apply the creation or annihilation operators 𝑎̂ (†)𝑝𝜎
or the number operators 𝑛̂𝑝𝜎. Recall from the main text that in the Jordan-Wigner
transformation, the creation or annihilation operators 𝑎̂ (†)𝑝𝜎 have the decomposition
𝑋̄𝑝𝜎 ± 𝑖𝑌𝑝𝜎, where 𝑋̄𝑝𝜎 and 𝑌𝑝𝜎 are the Jordan-Wigner transformed Pauli 𝑋 and
𝑌 operators on orbital 𝑝 with spin 𝜎, and the number operators 𝑛̂𝑝𝜎 have the
decomposition 𝐼 − 𝑍𝑝𝜎. The transition amplitudes under the Z2 transformation𝑈Z2

can be expressed as

⟨Ψ𝑁±1
𝜆 |𝑎̂ (†)𝑝𝜎 |Ψ0⟩ = ⟨Ψ𝑁±1

𝜆 |𝑈†
Z2
𝑈Z2 𝑎̂

(†)
𝑝𝜎𝑈

†
Z2
𝑈Z2 |Ψ0⟩ =

(
⟨Ψ𝑁±1

𝜆 |𝑈†
Z2

) [
𝑈Z2 ( 𝑋̄𝑝𝜎 ± 𝑖𝑌𝑝𝜎)𝑈†

Z2

] (
𝑈Z2 |Ψ0⟩

)
,

(6.9)

⟨Ψ𝑁
𝜆 |𝑛̂𝑝𝜎 |Ψ0⟩ = ⟨Ψ𝑁

𝜆 |𝑈
†
Z2
𝑈Z2 𝑛̂𝑝𝜎𝑈

†
Z2
𝑈Z2 |Ψ0⟩ =

(
⟨Ψ𝑁

𝜆 |𝑈
†
Z2

) [
𝑈Z2 (𝐼 − 𝑍̄𝑝𝜎)𝑈

†
Z2

] (
𝑈Z2 |Ψ0⟩

)
,

(6.10)

where the transformed bra state, ket state and operator are grouped in brackets
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at the end of each equation. On the up-spin states, we use the transforma-
tion 𝑈Z2 = CNOT(3, 1)CNOT(2, 0); on the down-spin states, we use the trans-
formation 𝑈Z2 = SWAP(2, 3)CNOT(3, 1)CNOT(2, 0), followed by multiplying
all the operators by −1; on the spin-balanced states, we use the transformation
𝑈Z2 = CNOT(2, 3)CNOT(3, 1)CNOT(2, 0). After the Z2 transformation, the first
two qubits on the operators and the states are then truncated.

As an example, consider the transformation of the Pauli string 𝑋̄1↑ = 𝑍𝑍𝑋𝐼. After we
apply the transformation CNOT(3, 1)CNOT(2, 0), the operator becomes−𝑌𝑍𝑌𝑍 . To
truncate qubit 0 and qubit 1, we need to find the constant factor after the transformed
Pauli string acts on the first two qubits of the ground state. The constant factor for
𝑋̃1↑ is ⟨01|𝑌𝑍 |11⟩ = 𝑖, where ⟨01| are the bit values on the first two qubits of the
transformed up-spin states ⟨Ψ𝑁±1

𝜆
|𝑈†
Z2

and |11⟩ are the bit values on the first two
qubits of the transformed ground state 𝑈Z2 |Ψ0⟩. The factor of 𝑖 is then combined
with the rest of the Pauli string −𝑌𝑍 to give the final truncated form of the Pauli
string 𝑋̃1↑ = −𝑖𝑌 𝑍 . The Pauli strings and qubit state bitstrings before and after the
Z2 symmetry transformations and truncations are given in Table 6.1.

Quantum Device
The quantum device used in this work is a superconducting quantum processor
with eight transmon qubits [121, 126]. The algorithm is performed on a four-qubit
subset of the device with linear connectivity. Single-qubit gates are performed with
resonant microwave pulses. Multiplexed dispersive readout allows for simultaneous
state discrimination on all four qubits. CZ gates between all nearest neighbors
are performed according to the method in Ref. [127]. The same method allows
for a native CS gate on a particular pair of qubits according to the requirements
of the algorithm. While single-qubit gates are applied simultaneously, microwave
crosstalk requires that all two- and three-qubit gates are applied in separate cycles
from each other as well as from any single-qubit gates. TrueQ [128] is used for
circuit manipulations in the implementation of RC as well as gate benchmarking.
Internal software is used to map the circuits to hardware pulses for implementing
the native gate set.

Calibration of the iToffoli Gate
This work employs the recently developed C-𝑖X-C iToffoli gate [19]. In this section
we outline the procedure for eliminating spectator errors during the gate application.
Since the gate acts on a three-qubit subset of the full four-qubit subsystem we need
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Figure 6.2: Cancellation of spectator error during iToffoli gate. (A) Ramsey
protocol for detecting spurious 𝑍𝑍 error between 𝑄2 and spectator 𝑄3 during the
application of the iToffoli gate. (B) |0⟩ population for 𝑄3 after application of the
Ramsey sequence in (A) conditional on the state of 𝑄2. The relative phase shift
between the sinusoidal curves gives the unwanted conditional phase 𝜙, which must
be corrected. (C) A pure iToffoli gate on 𝑄0-𝑄2 is achieved by applying the
iToffoli drive from Ref. [19] followed by a CZ𝜙 gate. (D) Same as (B) except now
the CZ𝜙 correction gate is applied immediately after the iToffoli drive, correcting
the unwanted 𝑍𝑍 error.

to understand and correct the spectator error on the fourth qubit. For concreteness
we label qubits 𝑄𝑖 for 𝑖 = 0, . . . , 3 where the iToffoli gate acts on 𝑄0, 𝑄1 and 𝑄2

with 𝑄3 as the spectator qubit. States on the four qubits are denoted in the form
|𝑄0𝑄1𝑄2𝑄3⟩. We run a simple circuit that prepares the system in either |100+⟩
or |101+⟩ (where |+⟩ = ( |0⟩ + |1⟩)/

√
2) and apply the iToffoli gate in a Ramsey-

like sequence to determine the 𝑍 rotation on 𝑄3 conditional on the state of its
nearest neighbor 𝑄2 (see Fig. 6.2a for circuit diagram). We observe an unwanted
conditional phase interaction between𝑄2 and𝑄3 with a conditional phase 𝜙 = 48.4◦

(see Fig. 6.2b). This interaction results from the conditional Stark shift between 𝑄2

and 𝑄3 when a strong off-resonant drive is applied to 𝑄2 at the frequency of 𝑄1 to
implement the iToffoli gate [127]. We can use the same effect to undo the conditional
phase by applying simultaneous off-resonant drives to 𝑄2 and 𝑄3 for a period of
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121 ns following the iToffoli drive sequence, which explains why the iToffoli gate
duration in our work is longer than that in Ref. [19]. The full pulse sequence and
characterization of the residual conditional rotation with the cancellation applied
are shown in Figs. 6.2c and 6.2d. We benchmark the resulting gate implementation
using cycle benchmarking [129]. With this correction, we measure a gate fidelity
of 97.8% when isolated to the cycle that only involve qubits 𝑄0, 𝑄1 and 𝑄2, and a
small reduction to 96.6% when including the idling spectator qubit 𝑄3.

Two-qubit CZ and CS/CS† gates are calibrated according to Ref. [127]. Gate
fidelities and durations are listed in Table 6.2. Qubit coherence times are listed in
Table 6.3 for completeness.

Randomized Compiling for Non-Clifford Gates
In this section we outline a modified version of randomized compiling (RC) [120,
121] that is applied to the circuits used to compute the observables in the main text.
RC is expected to mitigate errors and improve algorithm performance. A broad
native entangling gate set is used, consisting of both Clifford gates (CZ) and non-
Clifford gates (CS, CS†, iToffoli). RC is typically used with hard cycles of 𝑛-qubit
Cliffords where the twirling group T is chosen to be the group of tensor products
of 𝑛 single-qubit Paulis. By the definition of Clifford gates, for any Clifford 𝐶 and
twirling gate 𝑇 ∈ T there is some 𝑇 𝑐 ∈ T such that𝐶 = 𝑇𝐶𝑇 𝑐. When RC is applied
to the hard cycle 𝐶𝑘 consisting of Clifford gates, it proceeds by choosing some 𝑇𝑘
and 𝑇 𝑐

𝑘
such that 𝐶𝑘 → 𝑇𝑘𝐶𝑘𝑇

𝑐
𝑘
. The single-qubit Paulis 𝑇𝑘 and 𝑇 𝑐

𝑘
are compiled

into the easy cycles of single-qubit gates before and after the Clifford cycle 𝐶𝑘 , thus
keeping the total circuit depth unchanged.

In order to generalize the method to the non-Clifford gates employed in this work
we first find the subsets T𝑋 ⊂ T for 𝑋 = CS,CS†, iToffoli where for all 𝑇 ∈ T𝑋
there is some 𝑇 𝑐 ∈ T𝑋 such that 𝑋 = 𝑇𝑋𝑇 𝑐. RC proceeds in the same way as above
except that the twirling gates for hard cycles consisting of gate 𝑋 are simply chosen
from the subset T𝑋 of Pauli strings that stabilize gate 𝑋 . Both the CS and CS† are
stabilized by 4 of the possible 16 two-qubit Pauli strings and the iToffoli is stabilized
by 8 of the possible 64 three-qubit Pauli strings. For all these non-Clifford gates
the twirling and inversion gates are the same, 𝑇 = 𝑇 𝑐. Results “with RC” in the
main text involve averaging the experimental bitstring output distributions over 100
equivalent circuit randomizations generated according to the process outlined here,
with each circuit measured for 500 shots. These are compared to results “without
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RC” in which the bare circuit is measured for 50000 shots such that the total number
of shots is maintained between the two implementations.

All error processes can be described by a superoperator acting on the density matrix
of the full qubit register. Written in the 𝑛-qubit Pauli basis this error process
matrix is referred to as a Pauli transfer matrix (PTM) with diagonal elements giving
Pauli fidelities and off-diagonal elements characterizing the unitary (coherent) and
non-unitary (incoherent) errors. As discussed in Refs. [120, 121], applying RC
tailors coherent errors into stochastic Pauli noise, which suppresses the off-diagonal
elements of the PTM resulting from coherent errors. This holds for the PTM
describing errors during the CZ cycles, since these undergo perfect Pauli twirling
(in the limit of infinite randomizations). However, in the case of the non-Clifford
gate cycles, the twirling is imperfect (since we only twirl over a subset of the 𝑛-
qubit Pauli strings). As a result, some, but not all, of the off-diagonal elements in
the corresponding PTMs are suppressed. In other words, not all coherent errors
are tailored to stochastic Pauli noise. This imperfect noise tailoring is the main
limitation of our approach to generalizing RC to non-Clifford gates.

We observe a small improvement in the state fidelities when using RC without
purification but a much larger improvement when using RC with purification. The
improvement in the state fidelities can be explained by the suppression of off-
diagonal components of the PTM due to coherent errors, which lowers the overall
error rate slightly. As discussed in the main text, if the stochastic Pauli error rates are
similar after noise tailoring then the errors are approximately depolarizing and can be
largely corrected by McWeeny purification. The deviation of the noise from purely
depolarizing is responsible (along with the finite number of randomizations) for the
remaining infidelity after RC and purification are applied. Conversely, without RC
a larger fraction of the error is a coherent over/under-rotation of the two-qubit Bloch
vector which cannot be corrected by purification.

6.3 Results
Quantum Algorithm for Transition Amplitudes of Diatomic Molecules
We consider the HOMO-LUMO models of the diatomic molecules NaH and KH
as shown in Fig. 6.1a (see Methods for parameters of the molecular models). Such
molecular models with reduced active space have been used in benchmarking quan-
tum chemistry methods on quantum computers [131]. The HOMO-LUMO model
generates two spatial orbitals or equivalently four spin orbitals, which correspond
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to four qubits after Jordan-Wigner transformation [38]. To reduce quantum re-
sources, we exploit the number symmetry in each spin sector to reduce the number
of qubits from four to two using a qubit-tapering technique [77] (details given in
Supplementary Sec. I).

The observables we aim to determine are the spectral function and density-density
response function. Suppose that the molecular Hamiltonian with reduced active
space has ground state |Ψ0⟩ with energy 𝐸0, and (𝑁±1)-electron eigenstates

��Ψ𝑁±1
𝜆

〉
with energies 𝐸𝑁±1

𝜆
. Let 𝑎̂†𝑝𝜎 and 𝑎̂𝑝𝜎 be the creation and annihilation operators

on orbital 𝑝 with spin 𝜎, respectively. The one-particle Green’s function has the
expression [108]:

𝐺 𝑝𝑞 (𝜔) =
∑︁
𝜆𝜎

⟨Ψ0 |𝑎̂𝑝𝜎 |Ψ𝑁+1
𝜆

⟩⟨Ψ𝑁+1
𝜆

|𝑎̂†𝑞𝜎 |Ψ0⟩
𝜔 + 𝐸0 − 𝐸𝑁+1

𝜆
+ 𝑖𝜂

+
∑︁
𝜆𝜎

⟨Ψ0 |𝑎̂†𝑞𝜎 |Ψ𝑁−1
𝜆

⟩⟨Ψ𝑁−1
𝜆

|𝑎̂𝑝𝜎 |Ψ0⟩
𝜔 − 𝐸0 + 𝐸𝑁−1

𝜆
+ 𝑖𝜂

(6.11)

where 𝜔 is the frequency and 𝜂 is a small broadening factor. The spectral function
𝐴(𝜔) is related to the Green’s function by 𝐴(𝜔) = −𝜋−1 Im Tr 𝐺 (𝜔).

For the density-density response function, we consider the charge-neutral 𝑁-electron
excited states

��Ψ𝑁
𝜆

〉
with energies 𝐸𝑁

𝜆
and the number operator 𝑛̂𝑝𝜎 on the orbital 𝑝

with spin 𝜎. The density-density response function has the expression [109]:

𝑅𝑝𝑞 (𝜔) =
∑︁
𝜆

∑
𝜎𝜎′ ⟨Ψ0 |𝑛̂𝑝𝜎 |Ψ𝑁

𝜆
⟩⟨Ψ𝑁

𝜆
|𝑛̂𝑞𝜎′ |Ψ0⟩

𝜔 + 𝐸0 − 𝐸𝑁𝜆 + 𝑖𝜂
. (6.12)

The operators 𝑎̂†𝑝𝜎, 𝑎̂𝑝𝜎 and 𝑛̂𝑝𝜎 are not unitary, but they can be written as linear
combination of unitary operators as

𝑎̂†𝑝𝜎 = ( 𝑋̄𝑝𝜎 − 𝑖𝑌𝑝𝜎)/2, (6.13)

𝑎̂𝑝𝜎 = ( 𝑋̄𝑝𝜎 + 𝑖𝑌𝑝𝜎)/2, (6.14)

𝑛̂𝑝𝜎 = (𝐼 − 𝑍𝑝𝜎)/2, (6.15)

where 𝐼 is the identity operator, 𝑍𝑝𝜎 is the Pauli 𝑍 operator on orbital 𝑝 with spin
𝜎, and 𝑋̄𝑝𝜎 and 𝑌𝑝𝜎 are the Jordan-Wigner transformed Pauli 𝑋 and 𝑌 operators
on orbital 𝑝 with spin 𝜎 with a string of 𝑍 operators included to account for the
anticommutation relation [38]. The Pauli strings 𝑋̄𝑝𝜎, 𝑌𝑝𝜎 and 𝑍𝑝𝜎 undergo the
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same transformation and qubit tapering process as the Hamiltonian (details given
in Supplementary Sec. I). Except for the identity operator which does not change
under the transformation, we label the transformed 𝑋̄𝑝𝜎, 𝑌𝑝𝜎, 𝑍𝑝𝜎 as 𝑋̃𝑝𝜎, 𝑌𝑝𝜎 and
𝑍̃𝑝𝜎.

The LCU circuits to calculate diagonal and off-diagonal transition amplitudes are
given in Figs. 6.1b and 6.1c, respectively. Each circuit has two system qubits 𝑠0

and 𝑠1, and one ancilla qubit 𝑎0 or two ancilla qubits 𝑎0 and 𝑎1. The unitary 𝑈0

prepares the ground state |Ψ0⟩ on the system qubits from the all-zero initial state.
The operators 𝑋̃𝑝𝜎 and𝑌𝑝𝜎 are only present in the diagonal circuit in Fig. 6.1b since
the calculation of the spectral function only requires diagonal transition amplitudes.
The operators 𝐼 and 𝑍̃𝑝𝜎 are present in both the diagonal circuit in Fig. 6.1b and
in the off-diagonal circuit in Fig. 6.1c, since the density-density response function
requires both the diagonal and off-diagonal transition amplitudes. The remaining
two double-controlled identity gates that would complete the LCU circuit, which
correspond to the first double-controlled gate (controlled on |0⟩ of both 𝑎0 and 𝑎1)
and the third double-controlled gate (controlled on |0⟩ of 𝑎0 and |1⟩ of 𝑎1) in Fig. 3 of
Ref. [22], are not shown because they are equivalent to identity gates on the whole
circuit. We note that the original algorithm [22] proposed performing quantum
phase estimation on the system qubits, but due to quantum resource constraints we
instead apply quantum state tomography [132] to the system qubits while measuring
the ancilla qubits in the 𝑍 basis.

In the diagonal circuits, we obtain the (unnormalized) system-qubit states 1
2 ( 𝑋̃𝑝𝜎 ±

𝑖𝑌𝑝𝜎) |Ψ0⟩ or 1
2 (𝐼 ± 𝑍̃𝑝𝜎) |Ψ0⟩ with probabilities 𝑝±, where the probabilities are

specified by the ancilla measurement outcome as 𝑝+ = 𝑝𝑎0=0 and 𝑝− = 𝑝𝑎0=1; in
the off-diagonal circuits, we obtain the (unnormalized) system-qubit states 1

4 [(𝐼 −
𝑍̃𝑝𝜎) ± 𝑒𝑖𝜋/4(𝐼 − 𝑍̃𝑞𝜎′)] |Ψ0⟩ with probabilities 𝑝±, where 𝑝+ = 𝑝 (𝑎0,𝑎1)=(1,0) and
𝑝− = 𝑝 (𝑎0,𝑎1)=(1,1) . We take the overlap of the tomographed system-qubit states
with the exact eigenstates, which are then postprocessed according to Eq. 18 in
Ref. [22] or Eq. 25 in Ref. [21] to yield the transition amplitudes (see Supplementary
Sec. II). The transition amplitudes are then used to construct the spectral function
and density-density response function according to Eqs. 6.11 and 6.12.

In the following sections, for simplicity, we will denote the diagonal circuit that
applies the operator 𝑎̂ (†)𝑝𝜎 or 𝑛̂𝑝𝜎 as the 𝑝𝜎-circuit, and the off-diagonal circuit that
applies the operators 𝑛̂𝑝𝜎 and 𝑛̂𝑞𝜎′ as the (𝑝𝜎, 𝑞𝜎′)-circuit.
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iToffoli versus CZ Decompositions in LCU Circuits
The transformed and tapered operators are two-qubit Pauli strings with multiplicative
factors of ±1 or ±𝑖. To apply the single- or double-controlled gates, we follow the
standard multi-qubit Pauli gate decomposition [29] with the base gate as CZ or
CCZ and use CNOT gate equivalents, which consist of native CZ gates dressed by
Hadamard gates, to extend the weights of the Pauli strings. The multiplicative factor
−1 or ±𝑖 can be applied as a single-qubit phase gate on the ancilla in the diagonal
circuits, or as the native CZ, CS, or CS† on the two ancillae in the off-diagonal
circuits. Additionally, 𝑋 gates are wrapped around the ancilla qubits controlled on
|0⟩. Figure 6.3a shows how a double-controlled gate with ancilla 𝑎0 controlled on
|1⟩, ancilla 𝑎1 controlled on |0⟩, and a target operator −𝑍𝑍 is applied on the device.

We decompose the CCZ gate either with the three-qubit iToffoli gate as shown in
Fig. 6.3b or with the native CZ gates. The iToffoli decomposition starts with a
double-controlled 𝑖Z component, followed by a long-range CS† gate to cancel the
phase factor 𝑖. The SWAP gates in the long-range CS† part of the circuit are further
simplified in the transpilation stage or decomposed into three CZ gates and additional
single-qubit gates according to a recent work on the same quantum device [125]. For
the CZ decomposition of CCZ, we use the topology-aware quantum circuit synthesis
package BQskit [133] to obtain the optimal decomposition as eight CZs under linear
qubit connectivity, as opposed to the six-CZ decomposition that requires all-to-all
qubit connectivity [134].

The spectral function only requires the four diagonal circuits 0 ↑, 0 ↓, 1 ↑, 1 ↓. The
density-density response function requires four diagonal circuits 0 ↑, 0 ↓, 1 ↑, 1 ↓
and six off-diagonal circuits (0 ↑, 0 ↓), (0 ↑, 1 ↑), (0 ↑, 1 ↓), (0 ↓, 1 ↑), (0 ↓, 1 ↓
), (1 ↑, 1 ↓). We use the same transpilation procedure to optimize the circuits
constructed from iToffoli decomposition and CZ decomposition (details given in
Methods).

The diagonal circuits after transpilation are relatively shallow circuits with maximum
circuit depth (excluding virtual 𝑍 gates) of 19, maximum two-qubit gate count of 7
and no iToffoli gates. In the off-diagonal circuits, the circuit depths range from 24
to 29 for iToffoli decomposition and from 54 to 59 for CZ decomposition. As for
the two- and multi-qubit gate counts, each iToffoli-decomposed circuit contains two
iToffoli gates and 9 to 12 native two-qubit gates, while each CZ-decomposed circuit
contains 19 to 21 native two-qubit gates. The iToffoli decomposition thus results in
∼ 50% reduction in the circuit depth and the number of two-qubit gates compared
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Figure 6.3: Decomposition of the double-controlled composite gates in the
LCU circuits. (A) Example of the decomposition of a double-controlled −𝑍𝑍
gate, which is controlled on |1⟩ of 𝑎0 and |0⟩ of 𝑎1, into CCZ (blue) along with
other single- and two-qubit gates. The 𝑋 gates (green) are used to adjust the
control states; the CZ gate on 𝑎0 and 𝑎1 (purple) is used to adjust the overall
multiplicative factor, which is −1 in this case; the CNOT gate equivalents (orange)
are used to extend the weights of the Pauli string as in Ref. [29]. (B)
Decomposition of the CCZ gates with the iToffoli gate, which is a CC-𝑖X gate with
both control qubits controlled on |0⟩. The decomposition includes the equivalent
of a CC-𝑖Z gate (light blue) and the equivalent of a long-range CS† gate (yellow).
The SWAP gates are simplified in the transpilation stage or further decomposed
with CZ gates according to Ref. [125].

to the CZ decomposition.

We also compare the durations of the circuits that result from the iToffoli decom-
position and the CZ decomposition. The duration of each CZ gate is 201 ns [125],
while the duration of each iToffoli gate is 413 ns [19]. Combined with other gate
execution times, the durations of the iToffoli- (CZ)-decomposed circuits range from
2.9 – 3.6 𝜇s (4.9 – 5.5 𝜇s), corresponding to a reduction in circuit execution time of
approximately 40% from using iToffoli gates. This reduction in duration is expected
to have a more pronounced effect on deeper circuits with execution times compara-
ble to qubit coherence times, which are on the order of 30 – 50 𝜇s [125]. A complete
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Figure 6.4: Spectral function of diatomic molecules. Spectral function of (A)
NaH, (B) KH. The circuits to obtain the spectral function are shallow three-qubit
circuits that do not require the iToffoli gates. A broadening factor of 𝜂 = 0.75 eV is
used to produce both the exact and the experimental spectra. The experimental
spectral functions are in quantitative agreement with the exact ones, with
maximum peak height deviation of 10.6%.

set of gate durations and qubit coherence times are given in Supplementary Sec. III.

Spectral Function and Response Function on Quantum Hardware
The spectral functions of NaH and KH are shown in Fig. 6.4. The density matrices
are obtained from quantum state tomography and postprocessed with McWeeny
purification. Randomized compiling is not employed in constructing the circuits
for obtaining these results. A broadening factor of 𝜂 = 0.75 eV is used to produce
both the exact and experimental spectra. As the peak frequencies are determined
classically, the primary metric for comparison of spectral functions is the peak
height. The experimental spectral functions show very good agreement with the
exact ones, with maximum peak height deviation of 10.6%.

We next turn to the density-density response function, which is more challenging
to compute than the spectral function because it requires the deeper off-diagonal
circuits containing three-qubit iToffoli gates. We begin by considering a specific
off-diagonal circuit needed for the density-density response function, the (0 ↑, 0 ↓)
-circuit. To understand the influence of the iToffoli gate on the accuracy of the
executed circuit, we compute the fidelity of the whole qubit register obtained by
quantum state tomography versus circuit depth. The same quantity was computed
for a circuit using only CZ gates to decompose the double-controlled gates. The
results are shown in Fig. 6.5. Although the iToffoli decomposition shows a steeper
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Figure 6.5: Fidelity versus circuit depth of the (0 ↑, 0 ↓)-circuit for NaH.
Fidelity for the iToffoli decomposition (blue), which has a circuit depth of 24, and
the CZ decomposition (yellow), which has a circuit depth of 54. The locations of
the iToffoli gates are marked by red crosses. The CZ decomposition results in
lower overall fidelity compared to iToffoli decomposition due to higher circuit
depth. The inset is the corresponding data from noisy simulation and shows a
similar trend. All results in this figure are raw experimental or simulated data
without any error mitigation.

decrease in fidelity compared to the CZ decomposition, the fidelity at the end of
the circuit is higher due to lower circuit depth. The noisy simulation in the inset
of Fig. 6.5 shows a similar trend. The iToffoli gate reported in Ref. [19] does
not consider spectator errors on neighboring qubits, which are cancelled out in the
gate calibration in this work (details given in Supplementary Sec. III). The cycle
benchmarking fidelity of the iToffoli gate accounting for the spectator qubit is 96.6%,
lower than the single-qubit gate fidelities which are above 99.5% and the two-qubit
gate fidelities which are between 98.0% and 98.7%, which may explain the steeper
decay in fidelity with circuit depth in the iToffoli circuit compared to the CZ circuit.

Next, we examine the fidelity of the final state in each iToffoli-decomposed circuit
used in the calculation of response functions. Figure 6.6 shows the system-qubit state
fidelities on each response function circuit for NaH, where McWeeny purification
is applied to the system-qubit density matrix after restricting the full density matrix
to each ancilla bitstring sector. Comparing the values in Fig. 6.6a with those in
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Fig. 6.6b, we can see that RC itself only results in a moderate improvement in
the fidelities, with the average diagonal fidelities changing from 84.6% to 85.5%
and average off-diagonal fidelities changing from 45.2% to 54.8%. However, the
results between Fig. 6.6b and Fig. 6.6d show that RC combined with purification
yields an average diagonal fidelity of 99.9% and an average off-diagonal fidelity of
96.0%, even though purification without RC only leads to a limited improvement in
the average diagonal fidelity from 85.6% to 95.7%, and in the average off-diagonal
fidelity from 45.2% to 67.4% in Figs. 6.6a and 6.6c.

We now show the imaginary parts of the density-density response functions 𝜒00 and
𝜒01 of NaH in Fig. 6.7. Here 𝜒00 is obtained from two diagonal circuits 0 ↑, 0 ↓
and one off-diagonal circuit (0 ↑, 0 ↓), while 𝜒01 is obtained from four off-diagonal
circuits (0 ↑, 1 ↑), (0 ↑, 1 ↓), (0 ↓, 1 ↑), (0 ↓, 1 ↓). All experimental results are
postprocessed with purification after constraining the ancilla qubits to each bitstring
subspace. A broadening factor of 𝜂 = 1.5 eV is used to produce the response
functions.

Overall, the iToffoli decomposition yields better results compared to the CZ decom-
position in the absence of RC, while both decompositions yield comparable results
when RC is applied. Examining the spectral functions in Figs. 6.7a and 6.7c, we
observe that the peak at 24.0 eV is not present in 𝜒00 and has the wrong sign in 𝜒01

under the CZ decomposition. Although the iToffoli decomposition also produces
the peak at 24.0 eV with the wrong sign in 𝜒01, it produces a peak with a deviation
of 6.1% from the exact peak in 𝜒00. The same trend occurs for the peak at 1.4
eV. Both decompositions result in similar deviations of the peak height at 1.4 eV
in 𝜒01, where the deviation is 45.3% for the CZ decomposition and 52.5% for the
iToffoli decomposition. However, in 𝜒00, the iToffoli decomposition yields a 26.6%
deviation from the exact peak in 𝜒00, whereas the CZ decomposition produces the
peak more than twice the theoretical value.

The results for circuits constructed with RC are shown in Figs. 6.7b and 6.7d.
In 𝜒00, deviations from the exact peak height at 24.0 eV and 1.4 eV are 34.8%
and 4.7% for the CZ decomposition, and are 11.8% and 24.0% for the iToffoli
decomposition. In 𝜒01, deviations from the exact peak at 24.0 eV and 1.4 eV
are 5.7% and 28.2% for the CZ decomposition, but are 39.2% and 32.2% for the
iToffoli decomposition. Since the iToffoli gate is non-Clifford, our implementation
of RC results in incomplete Pauli twirling compared to applying RC to the CZ-
decomposed circuits (see Supplementary Sec. IV). The incompleteness of RC on
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the iToffoli-decomposed circuits may explain why the two decompositions have
comparable peak height deviations with RC despite the initial advantage for the
iToffoli decomposition without RC due to its lower circuit depth.

This section presents the system-qubit state fidelities and density-density response
functions of the KH molecule. Figure 6.8 shows the system-qubit state fidelities in
the response function calculations of KH. In the case of RC without purification,
the average off-diagonal fidelity improves from 49.2% in Fig. 6.8a to 61.3% in
Fig. 6.8b, whereas the average diagonal fidelity slightly decreases from 91.5% in
Fig. 6.8a to 90.5% in Fig. 6.8b. Purification without RC shows a unified improvement
across both diagonal and off-diagonal fidelities, which change to 97.1% and 66.9%
from 91.5% and 49.2% respectively when comparing Fig. 6.8c to Fig. 6.8a. The
most significant improvement again comes from applying both purification and RC,
with the average diagonal fidelity 99.8% and average off-diagonal fidelity 95.9% in
Fig. 6.8d.

Figure 6.9 shows the density-density response functions of KH with all data post-
processed with McWeeny purification. Similar to the case of NaH, the iToffoli
decomposition exhibits a better agreement with exact results in the absence of RC.
For 𝜒00 without RC in Fig. 6.9a, the deviations from exact peak heights are 1.0%
and 13.9% for the iToffoli decomposition, but are 41.6% and 17.1% for the CZ
decomposition. For 𝜒01 without RC in Fig. 6.9c, although both decompositions fail
to capture the peak at 24 eV, the iToffoli decomposition reproduces the exact peak
with an 8.2% deviation while the CZ decomposition results in only around half of
the peak height for the peak at 1.4 eV. When RC is used to construct the circuits,
the results are comparable between the two decompositions. For 𝜒00 with RC in
Fig. 6.9b, the peak height deviations in the two peaks are 17.0% and 10.7% for the
iToffoli decomposition, which are slightly better than the CZ decomposition results
of 21.6% and 20.8%. For 𝜒01 with RC in Fig. 6.9d, the CZ decomposition exhibits
a better agreement, with peak height deviations of 4.2% and 7.7%, compared to the
values from the iToffoli decomposition of 26.6% and 45.5%.

6.4 Discussion
We have carried out an LCU-based algorithm to compute the spectral functions
and density-density response functions of diatomic molecules from the transition
amplitudes determined on a superconducting quantum processor. Using a native
high-fidelity iToffoli gate [19] has enabled the required circuit depth to be reduced
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by ∼ 50% and the circuit execution time to be reduced by ∼ 40%. These resulting
circuits produced better agreement with the exact results compared to the circuits
constructed only from single- and two-qubit gates when RC is not employed in
circuit construction. We also developed an RC protocol for the non-Clifford iToffoli
gate, and have shown that in the absence of complete Pauli twirling on the iToffoli
gate, the circuits constructed from iToffoli gates gave comparable results as the
circuits constructed only from single- and two-qubit gates with RC.

The quality of the computed observables was greatly improved by the use of several
error mitigation techniques. Specifically, our results highlight the significance of
RC [120, 121] combined with McWeeny purification [122] for quantum simulation.
McWeeny purification has been widely used in quantum chemistry [135] and started
to be exploited in quantum computing for constraining the purity of the output state
[47, 136]. Our results have shown that RC or McWeeny purification individually
only improves the experimental results to a limited extent, as observed in the change
of the average off-diagonal fidelities from 45.8% to 54.2% with only RC, and to
67.4% with only purification in Fig. 6.6. However, the combination of RC and
purification results in a substantial improvement in the quality of the results with the
system-qubit state fidelities being 96.0% on average.The larger improvement with
purification is explained by the fact that RC tailors coherent errors into stochastic
Pauli errors. If the rates of various stochastic Pauli errors are similar, the errors are
largely depolarizing and can be corrected by the purification procedure, yielding
the high fidelities in Fig. 6.6d (see Supplementary Sec. IV for further discussion).
Moreover, previous works applied purification to the whole qubit register, but we
have shown here that the purification scheme can be applied when there is purity
constraint on a subset of qubits. Additionally, our work is the first to apply RC to
the non-Clifford iToffoli gate. As more native non-Clifford two-qubit and multi-
qubit gates become available, our findings may guide future application of RC to
non-Clifford gates.

Our work is also among the first to demonstrate the practical use of a native multi-
qubit gate in quantum simulation. Although the particular problem in this work
would require modification to scale efficiently to larger system sizes, other quantum
algorithms for computing molecular spectra with potentially improved scalability
have been developed [114–119] and could benefit from the use of multipartite gates.
Further, LCU as a general algorithmic framework is not limited to determining
transition amplitudes in frequency-domain response properties but has broader ap-
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plications in areas such as solving linear systems [137], simulating non-Hermitian
dynamics [138], and preparing quantum Gibbs states [139]. Besides the LCU al-
gorithm, quantum algorithms such as Shor’s algorithm [140] and Grover’s search
algorithm [141] can benefit from native three-qubit gates with reduction in circuit
depths and gate counts. Quantum algorithm design and implementation thus far
have been mostly restricted to single- and two-qubit gates due to their ease of im-
plementation and demonstrated high fidelities. Meanwhile, early implementations
of three-qubit gates [142–144] were generally slower and more prone to leakage and
decoherence compared to the iToffoli gate employed here due to populating higher
levels outside the qubit computational space. However, more recent implementa-
tions of three-qubit gates [19, 145–148] have begun to address these challenges
yielding fidelities approaching those achieved with two-qubit gates. Further, they
have been carried out on quantum devices with tens of qubits, suggesting their utility
for larger-scale quantum devices. As such native multi-qubit gates become more
prevalent, our work paves the way for using them as native gate components in future
quantum algorithm design and implementation.
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Pauli
string

transfor-
mation

Original
Pauli

strings

Trans-
formed
Pauli

strings

Original qubit
state bitstrings

Transformed
qubit state
bitstrings

Up-spin

𝑋̄0↑ →
𝑋̃0↑

𝑋𝐼𝐼 𝐼 𝐼 𝐼 (𝑁+1)-electron: (𝑁+1)-electron:

𝑌0↑ →
𝑌0↑

𝑖𝑌 𝐼 𝐼 𝐼 𝑍 𝐼 1110, 1011, 10, 11,

𝑋̄1↑ →
𝑋̃1↑

𝑍𝑍𝑋𝐼 −𝑖𝑌 𝑍 (𝑁 − 1)-
electron:

(𝑁 − 1)-
electron:

𝑌1↑ →
𝑌1↑

𝑖𝑍𝑍𝑌 𝐼 −𝑋𝑍 0100, 0001. 00, 01.

Down-spin

𝑋̄0↓ →
𝑋̃0↓

𝑍𝑋𝐼𝐼 𝐼𝑍 (𝑁+1)-electron: (𝑁+1)-electron:

𝑌0↓ →
𝑌0↓

𝑖𝑍𝑌 𝐼 𝐼 𝑍𝑍 1101, 0111. 10, 11.

𝑋̄1↓ →
𝑋̃1↓

𝑍𝑍𝑍𝑋 𝑖𝑌 𝐼
(𝑁 − 1)-
electron:

(𝑁 − 1)-
electron:

𝑌1↓ →
𝑌1↓

𝑖𝑍𝑍𝑍𝑌 𝑋𝐼 1000, 0010 00, 01.

Spin-balanced

𝑍0↑ →
𝑍̃0↑

𝑍𝐼𝐼 𝐼 −𝑍𝐼 1100, 00,

𝑍0↓ →
𝑍̃0↓

𝐼𝑍 𝐼 𝐼 −𝑍𝑍 1001, 01,

𝑍1↑ →
𝑍̃1↑

𝐼 𝐼𝑍 𝐼 𝑍 𝐼 0110, 10,

𝑍1↓ →
𝑍̃1↓

𝐼 𝐼 𝐼𝑍 𝑍𝑍 0011. 11.

Table 6.1: Pauli strings and qubit state bitstrings under Z2 transformations and
truncations. Each Pauli string is characterized as up-spin or down-spin depending
on whether it originates from a creation or annihilation operator applied on an
up-spin or a down-spin orbital of the ground state, and is characterized as
spin-balanced if it originates from a number operator applied on the ground state.
The qubit state bitstrings are similarly characterized as up-spin, down-spin or
spin-balanced by the type of operator that yields the state after applying on the
mean-field ground state |1100⟩, which are consistent with the classification based
on the expectation values of the Z2 symmetry operators 𝑍𝐼𝑍𝐼 and 𝐼𝑍 𝐼𝑍 given in
the text.
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Gate Qubit(s) Fidelity Duration (ns)

1Q Cliffords

𝑄0 0.9959

60𝑄1 0.9949
𝑄2 0.9956
𝑄3 0.9973

CZ
(𝑄0, 𝑄1) 0.983

201(𝑄1, 𝑄2) 0.987
(𝑄2, 𝑄3) 0.980

CS (𝑄1, 𝑄2) 0.982 151

iToffoli (𝑄0, 𝑄1, 𝑄2) 0.966 413

Table 6.2: Gate fidelities and durations. Single-qubit Clifford gate fidelities are
measured using simultaneous randomized benchmarking [130]. Arbitrary
single-qubit gates are decomposed into two real 𝑋𝜋/2 gates (duration 30 ns) and
three virtual 𝑍𝜙 gates (duration 0 ns) according to the 𝑍𝑋𝑍𝑋𝑍 decomposition.
Two-qubit CZ and CS and three-qubit iToffoli gate fidelities are measured using
cycle benchmarking (CB) [129]. All CB fidelities are cycle fidelities including
spectator errors on idling qubits.

𝑄0 𝑄1 𝑄2 𝑄3

𝑇1 (𝜇s) 66 58 65 59
𝑇2𝑟 (𝜇s) 38 24 39 47
𝑇2𝑒 (𝜇s) 71 77 86 61

Table 6.3: Qubit coherence times. 𝑇1 (energy decay time), 𝑇2𝑟 (Ramsey
dephasing time) and 𝑇2𝑒 (spin echo dephasing time) for the qubits used in this work
as reported in Ref. [121].
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Figure 6.6: System-qubit state fidelities in the response function calculation of
NaH. (A to B) Fidelities between the raw experimental and exact system-qubit
density matrices without (A) and with RC (B). The diagonal elements correspond
to system-qubit density matrices in the diagonal circuits after taking the ancilla
state 𝑎0 = 1, and the off-diagonal elements correspond to the system-qubit density
matrices in the off-diagonal circuits after taking the ancilla states either as
(𝑎0, 𝑎1) = (1, 0) (upper diagonal) or as (𝑎0, 𝑎1) = (1, 1) (lower diagonal). (C to D)
Fidelities between the purified experimental and exact system-qubit density
matrices without (C) and with RC (D). Layout of the tiles are the same as in panels
(A) and (B). Without RC, purification raises the average off-diagonal fidelity from
45.2% to 67.4%, but with both RC and purification the average off-diagonal
fidelity increases to 96.0%.
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Figure 6.7: Density-density response function of NaH. (A) Im 𝜒00 without RC.
(B) Im 𝜒00 with RC. (C) Im 𝜒01 without RC. (D) Im 𝜒01 with RC. All experimental
results are postprocessed with McWeeny purification on the system-qubit states
after constraining to the ancilla bitstring subspace. A broadening factor of 𝜂 = 1.5
eV is used to produce the spectra. Without RC, the iToffoli decomposition yields
qualitatively better results compared to the CZ decomposition. After RC is
applied, the two decompositions yield comparable results.
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Figure 6.8: System-qubit state fidelities for the response function calculation of
KH. (A to B) Fidelities between the raw experimental and exact system-qubit
density matrices without (A) and with RC (B). (C to D) Fidelities between the
purified experimental and exact system-qubit density matrices without (C) and
with RC (D). Layout of the tiles in each panel is the same as in Fig. 5 in the main
text. Similar to NaH, without RC, purification raises the average off-diagonal
fidelity from 49.2% to 66.9%, but with both RC and purification the average
off-diagonal fidelity increases to 95.9%.
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Figure 6.9: Density-density response function of KH. (A) Im 𝜒00 without RC.
(B) Im 𝜒00 with RC. (C) Im 𝜒01 without RC. (D) Im 𝜒01 with RC. All experimental
results are postprocessed with McWeeny purification on the system-qubit states
after constraining to the ancilla bitstring subspace. A broadening factor of 𝜂 = 1.5
eV is used to produce the spectra. Similar to NaH, the iToffoli decomposition
yields qualitatively better results compared to the CZ decomposition in the absence
of RC. After RC is applied, results from the two decompositions are comparable.
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C h a p t e r 7

MEASUREMENT-INDUCED STATE PREPARATION

7.1 Introduction
Recently, there has been a renewed interest in measurement-based quantum com-
putation [149–152]. Compared to the traditional approach of performing unitary
evolution on an initial quantum state, measurement-based quantum computation pro-
cesses quantum information by adaptive measurements on highly entangled states,
where the state to be measured is called the resource state [153]. Compared to
the conventional approach where time evolution is applied on a quantum computer,
measurement-based quantum computation has the benefit of circumventing deep
quantum circuits. Measurement on cluster states has been shown to generate states
with long-range entanglement such as the Greenberg-Horne-Zeilinger (GHZ) state
or states with certain topological orders [154–157].

Meanwhile, the limitations of existing quantum hardware have spurred a surge of in-
terest in the development of software for quantum circuit simulation. There are two
main approaches to simulating quantum circuits: state vector simulation, which rep-
resents the quantum state in its full state-vector form, and tensor network simulation,
which constructs the quantum state approximately with tensor networks. Recently
developed high-performance simulators for the state-vector approach include the
Intel Quantum Simulator [158], the qsim simulator [159], and the cuStateVec li-
brary in cuQuantum [24]. However, the state-vector approach requires exponential
storage space for the quantum state and thus suffers from memory issues. On the
other hand, tensor networks have been demonstrated to efficiently simulate quan-
tum circuits without exponential memory requirements [11]. A series of software
packages for tensor network simulations have been developed in recent years, in-
cluding Quimb [85], TensorNetwork [160], ExaTN [161], TensorCircuit [162] and
the cuTensorNet library in cuQuantum [24]. In particular, the cuTensorNet library
leverages the power of graphical processing units (GPUs), which has been an indis-
pensable component in the recent advancements in fields such as machine learning
[163].

Here, we use tensor network methods to carry out a quantum simulation protocol
[23] that reproduces phase transition in random-bond Ising models (RBIMs) [164]
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from cluster states [153]. Although a similar protocol has been formulated [165]
and implemented [166] on quantum hardware, the insight of the current protocol in
Ref. [23] is that we can perform decoding instead of post-selection on the measured
bitstrings to uncover hidden phases in the quantum state. Equipped with the high-
performance simulation library cuTensorNet [24] on GPUs, we perform simulation
on the bipartite Lieb lattice on up to 176 qubits. In one dimension (1D), we compute
the correlation functions and extract the correlation lengths; in two dimensions (2D),
we compute the ferromagnetic susceptibilities and observe the phase transition from
the ferromagnetic phase to the paramagnetic phase along the Nishimori line [164].

This chapter proceeds as follows. In Sec. 7.2, we present the quantum simulation
protocol for observing phase transition in RBIM from Ref. [23] and the tensor net-
work implementation details. Next, we show the results on 1D and 2D cluster states
in Sec. 7.3, focusing on correlation lengths in 1D and ferromagnetic susceptibilities
in 2D. In Sec. 7.4, we discuss the broader context and implication of this work with
regards to tensor network-based simulation of quantum computation protocols.

Figure 7.3: (a) 2D Lieb lattice where each vertex (blue circle) or edge (green
square) represents a qubit. The gray lines connecting a vertex qubit with an
adjacent edge qubit represent the bond between two qubits, which is at most
dimension 2 in the cluster state. The edge qubits are measured with angle 𝜃 away
from the 𝑋-basis while the vertex qubits are measured in the 𝑍-basis. The
measured bitstrings are decoded according to the protocol introduced in Ref. [23]
before computing physical observables. (b) Application of the entangling CZ gates
to adjacent qubits initialized in the |+⟩ state. Initially there is no bond between a
vertex qubit and its adjacent edge qubit. After CZ gates are applied on all qubits,
the maximum bond dimension is 2 without any truncation error.
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7.2 Methods
Quantum Protocol
The simulations in this work follow the protocol introduced in Ref. [23]. We first
build a cluster state on a 1D or 2D Lieb lattice as in Fig. 7.1, where the 1D lattice is
divided into the sublattice on all odd sites and the sublattice on all even sites, and
the 2D lattice is divided into the sublattice on all vertex sites and the sublattice on
all edge sites. For simplicity of notation, we will denote the sublattice of odd or
vertex sites as V and the sublattice of even or edge sites as E. The measurement
results on the V sublattice are denoted as {𝜎𝑣}𝑣∈V , and those on the E sublattice
are denoted as {𝑠𝑒}𝑒∈E . We will use the notation 𝑣 ∈ 𝑒 to indicate that the vertex 𝑣
is part of the edge 𝑒 and hence the qubit at 𝑣 is adjacent to the qubit at 𝑒.

Initially, a Hadamard gate is applied to convert each qubit in V and E to the |+⟩
state. CZ gates are then applied to all adjacent 𝑣-𝑒 qubit pairs to create the cluster
state. To measure qubits of the E sublattice in the basis tilted by 𝜃 from the 𝑋-basis,
an 𝑅𝑦 (𝜋/2 − 𝜃) gate is applied to each qubit of the E sublattice so that when 𝜃 = 0,
the qubits are measured in the 𝑋-basis, and when 𝜃 = 𝜋/2, the qubits are meausred
in the 𝑍-basis.

In the parameter regime under study, the measurement angle range of 𝜃 = 0 to
𝜃 = 𝜋/2 corresponds to an antiferromagnetic bond probability of 𝑝− < 1/2. How-
ever, the output state in the quantum simulation protocol exhibits no preference of
ferromagnetic bonds over antiferromagnetic bonds. In order to recover the hidden
ferromagnetic order in RBIM from the quantum state, we need to convert each
obtained measurement outcome to the one with the least number of ferromagnetic
bonds, while preserving fluxes 𝑚𝑝 around each plaquette defined as

𝑚𝑝 =
∏
𝑒∈𝑝

𝑠𝑒, (7.1)

where 𝑝 is a plaquette or a non-contractible loop (in 1D, the loop corresponds to the
line extending through all the E sublattice). The flux configurations are preserved
by attaching gauges to the V sublattice such that

𝜎𝑣 → 𝜎̃𝑣 = 𝑡𝑣𝜎𝑣, 𝑠𝑒 → 𝑠𝑒 =

(∏
𝑣∈𝑒

𝑡𝑣

)
𝑠𝑒 . (7.2)
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The problem of finding the equivalent configuration with the smallest number of
ferromagnetic bonds can be mapped to the error syndrome decoding problem in
quantum error correcting codes [167], where we can use the minimum weight per-
fect matching (MWPM) algorithm [168] for efficient decoding without exponential
computational resources.

After the decoding process which produces the gauges {𝑡𝑖}, the observables can be
computed with the decoded values {𝜎̃𝑣} in the corresponding formulas. Although
phase transition is not present in 1D RBIM, we can compute the 𝑍𝑍-correlation
function 𝐶𝑛 ≡ ⟨𝑍1𝑍2𝑛+1⟩ on the even sites and extract the correlation length 𝜉. The
correlation function 𝐶𝑛 has the expression:

𝐶𝑛 ≡ ⟨𝑍1𝑍2𝑛+1⟩ =
∏𝑛
𝑚=1 𝑠2𝑚 (cos 𝜃)𝑛 + ∏𝑁

𝑚=𝑛+1 𝑠2𝑚 (cos 𝜃)𝑁−𝑛

1 +
(∏𝑁

𝑚=1 𝑠2𝑚

)
(cos 𝜃)𝑁

→ 𝑒−𝑛/𝜉 , (7.3)

𝜉 = − ln cos 𝜃. (7.4)

In 2D RBIM, there is a phase transition from the ferromagnetic phase to the paramag-
netic phase. Along the Nishimori line [164], the antiferromagnetic bond probability
at the transtion point 𝑝∗ was determined numerically to be 0.109 [169], which cor-
responds to a measurement angle 𝜃∗ = 38.6◦ in the quantum computation protocol.
We use the ferromagnetic susceptibility 𝜒 as the order parameter for the phase
transition:

⟨𝜒⟩ = 1
𝑁𝑣

∑︁
𝑣,𝑣′∈V

⟨𝑍𝑣𝑍𝑣′⟩. (7.5)

To compute the variance of 𝜒, we need the quantities ⟨𝜒⟩ and ⟨𝜒2⟩. In practice, we
only compute the unique vertex pairs 𝑖 ↔ 𝑗 . The equations for ⟨𝜒⟩ and ⟨𝜒2⟩ are
thus given by
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⟨𝜒⟩ = 1
𝑁𝑣

∑︁
𝝈

𝑃(𝝈)
∑︁
𝑖 𝑗

(𝑍𝑖𝑍 𝑗 )𝝈 (7.6)

=
∑︁
𝝈

𝑃(𝝈)
(
1 + 2

𝑁𝑣

∑︁
𝑖↔ 𝑗

(𝑍𝑖𝑍 𝑗 )𝜎

)
, (7.7)

⟨𝜒2⟩ = 1
𝑁2
𝑣

∑︁
𝝈

𝑃(𝝈)
∑︁
𝑖 𝑗 𝑘𝑙

(𝑍𝑖𝑍 𝑗𝑍𝑘𝑍𝑙)𝝈 (7.8)

=
∑︁
𝝈

𝑃(𝝈)
[
1 + 2

𝑁𝑣

∑︁
𝑖↔ 𝑗

(𝑍𝑖𝑍 𝑗 )𝜎

] [
1 + 2

𝑁𝑣

∑︁
𝑘↔𝑙

(𝑍𝑘𝑍𝑙)𝜎

]
(7.9)

=
∑︁
𝝈

𝑃(𝝈)
[
1 + 2

𝑁𝑣

∑︁
𝑖↔ 𝑗

(𝑍𝑖𝑍 𝑗 )𝝈

]2

(7.10)

Implementation Details
We use tensor network methods to carry out the present quantum simulation protocol.
The tensor network is constructed with a 2D Lieb lattice structure where each lattice
site contains a tensor (the 1D lattice is simply obtained by setting one of the two
dimensions to 1). The total number of tensor elements increases after the application
of entangling CZ gates, in which case the composite tensor need to be decomposed
with singular value decomposition (SVD) where the middle bond can be truncated,
as illustrated in Fig. 7.2. The bond dimension is maintained at 2 throughout the
construction of the cluster state and the application of 𝑅𝑦 gates before measurements.

Measurement on the quantum state is implemented with the standard numerical
simulation procedure of computing the marginal distribution on a subset of qubits,
sampling bitstrings on the subset of qubits, and fixing these qubits to the sampled
bitstrings before proceeding to sample the next subset of qubits, until all qubits
have been sampled [85]. The number of qubits in the subset during the sampling
iterations, which is a parameter called the group size, is set to 4 in our simulations.
Each circuit is sampled 1000 times to obtain the bitstrings. Additionally, as the
norm of the intermediate tensor networks under study experiences super-exponential
decreases, we multiply a factor to all tensors in the network in order to avoid
underflow in the probabilities when sampling each subset of qubits.

The simulations are executed on NVIDIA H100 GPUs hosted at Caltech’s High-
Performance Computing Cluster. We use the GateSplit algorithm from the cuTen-
sorNet library [24] to perform the combined step of contracting two site tensors (one
on a vertex qubit and the other on an edge qubit) and one gate tensor followed by



89

Figure 7.6: (a) Correlation function ⟨𝑍1𝑍2𝑛+1⟩ as a function of site separation 𝑛 on
1D 𝐿 = 50 lattice. The correlation function is plotted for four angles
𝜃 = 0.01𝜋, 0.05𝜋, 0.15𝜋, 0.25𝜋. In the thermodynamic limit, the correlation
function should follow an exponential decay. The state on the odd sites starts from
a GHZ state at 𝜃 = 0 to a product state at 𝜃 = 𝜋/2, and therefore we see a more
rapid exponential decay as 𝜃 increases. (b) Correlation lengths 𝜉 from fitting the
correlation function to the analytical result 𝑒−𝑛/𝜉 for 𝐿 = 30, 50, 100. For each 𝐿,
we use the first 1/5 of site separation in the correlation function ⟨𝑍1𝑍2𝑛+1⟩ data for
the nonlinear least-square fit. The exact result reflects the analytical expression of
the correlation length 𝜉 = − ln cos 𝜃 from the protocol. The inset displays the
difference between the simulated and exact correlation lengths. Although the
simulated correlation lengths are expected to match better with the exact
correlation lengths when 𝐿 increases, we observe the best agreement with the exact
result at 𝐿 = 100 but 𝐿 = 50 has worse agreement compared to 𝐿 = 30.

decomposition and truncation of the middle bond. In the bitstring sampling process,
contraction of the full tensor network to marginal tensor networks is also performed
through the cuTensorNet library. Data in the tensors are managed through the
NumPy library [170] on CPU and through the CuPy library [171] on GPU. We use
the PyMatching library [172] to decode the measured bitstrings with the MWPM
algorithm.

7.3 Results
1D Cluster States
In Fig. 7.4, we present the correlation function ⟨𝑍1𝑍2𝑛+1⟩ as a function of site sepa-
ration 𝑛 on a 1D lattice with a size of 𝐿 = 50. The correlation function is displayed
at four distinct angles: 𝜃 = 0.01𝜋, 0.05𝜋, 0.15𝜋, 0.25𝜋. In the thermodynamic
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limit, the correlation function is expected to exhibit an exponential decay, with a
more rapid decay for larger measurement angle 𝜃 since the state evolves from an
maximally entangled GHZ state at 𝜃 = 0 to a completely unentangled product state
at 𝜃 = 0.5𝜋. Indeed, we observe an almost constant value when 𝜃 = 0.01𝜋 and
sequentially more rapid decay as 𝜃 proceeds to 0.05𝜋, 0.15𝜋 and 0.25𝜋. The trend
we see in the correlation function agrees with the theoretical prediction.

Figure 7.5 shows the correlation lengths 𝜉 obtained through non-linear least-square
fit of the correlation function to the analytical result 𝑒−𝑛/𝜉 for lattice sizes 𝐿 =

30, 50, 100. To minimize finite-size effect, we utilize only the first 1/5 of site sepa-
ration in the correlation function ⟨𝑍1𝑍2𝑛+1⟩ data for each 𝐿 to avoid the parameter
regime where 𝑛 is close to 𝐿. The exact correlation length, derived from the ana-
lytical expression 𝜉 = − ln cos 𝜃 inherent in the protocol, serves as a benchmark for
comparison. The inset of the figure illustrates the disparity between the simulated
and exact correlation lengths. While an overall improvement in agreement is antic-
ipated as 𝐿 increases, we first observe the best agreement for 𝐿 = 100, showing a
convergence towards the exact result. However, the agreement for 𝐿 = 50 is less
accurate compared to 𝐿 = 30. This discrepancy prompts further investigation into
the interplay between lattice size, correlation length, and the protocol parameters.

2D Cluster States
Moving to two dimensions, Fig. 7.7 illustrates the ferromagnetic susceptibility 𝜒 as
a function of the measurement angle 𝜃 on a 2D lattice with 𝐿 = 4, 5, 6, 7, 8. The 𝜒
values are normalized by dividing by 𝐿2 to facilitate comparisons across different
𝐿s. The dashed black line represents the theoretically predicted phase transition
angle of 38.6◦ in RBIM. The data exhibits the expected behavior as 𝜒/𝐿2 = 1 on
the GHZ state at 𝜃 = 0 and progresses to 𝜒/𝐿2 = 0 on the product state at 𝜃 = 90◦.
This alignment with theoretical predictions underscores the qualitative accuracy of
our simulated results.

Continuing our exploration of the 2D model, Fig. 7.8 shows the normalized variance
of the ferromagnetic susceptibility as a function of the measurement angle 𝜃 for
various lattice sizes, specifically 𝐿 = 4, 5, 6, 7, 8. The dashed black line corresponds
to the theoretically predicted phase transition angle of 𝜃∗ = 38.6◦ in the 2D RBIM
[169]. The variance of 𝜒 is expected to exhibit a divergence at the critical point
as predicted by theoretical analysis and numerical simulations. While the peaks
of Var(𝜒) show slight deviations from the exact transition angle 𝜃∗ at 𝐿 = 4 and
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5, for simulated data with 𝐿 = 6, 7, 8, all peaks align precisely at 𝜃∗, with peak
height increasing alongside the lattice size 𝐿. This convergence towards the exact
transition angle suggests a scaling behavior indicative of the critical phenomena.

7.4 Discussion
In this study, we employed tensor network methods to explore the measurement-
induced preparation of quantum states corresponding to phase transition along the
Nishimori line in RBIM. Our investigation marked an initial stride in the exploration
of measurement-induced state preparation from cluster states using tensor network
simulators on GPUs.

While our study successfully employed tensor network methods to reproduce phase
transition along the Nishimori line in 2D RBIM, it is crucial to acknowledge inher-
ent inefficiencies in the current tensor network implementation. These inefficiencies
highlight the need for future refinements and optimizations in the algorithm. Addi-
tionally, our exploration does not extend to multi-GPU configurations, representing
an unexplored direction in our approach. The potential of multi-GPU architectures
could significantly enhance computational efficiency, addressing existing concerns
and paving the way for more scalable simulations of quantum systems. Future
research endeavors should investigate both the optimization of tensor network im-
plementation and the exploration of multi-GPU configurations to further improve
the robustness and efficiency of the methodology in studying complex quantum
phenomena.

Furthermore, we should note a significant aspect that has not been addressed in
our study: the incorporation of noise into the simulation. As real-world quantum
systems are inevitably subject to various sources of noise, the incorporation of noise
into the simulation is crucial for a more accurate representation of experimental
conditions and have implications on whether the phase transition can be accurately
reproduced on real quantum hardware. Future research should aim to integrate noise
modeling into the simulation framework, providing a more realistic portrayal of the
quantum protocols when executed on quantum hardware and enriching the insights
derived from our study.

In conclusion, our investigation into phase transition phenomena in RBIM prepared
from cluster states through tensor network methods lays the groundwork for future
explorations in measurement-induced state preparation. While we acknowledge
the limitations in the current implementation, including inefficiencies in the ten-
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sor network method, the unexplored realm of multi-GPU configurations, and the
absence of noise in our simulations, these aspects present avenues for refinement
and expansion in future work. Importantly, the applicability of our tensor network
simulation approach extends beyond the scope of this study, as it can be harnessed
to explore other measurement-induced protocols in the future. As the field of
measurement-based quantum computation continues to evolve, these avenues offer
prospects for further advancements in quantum research and the exploration of novel
measurement-induced protocols using tensor network simulations.
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Figure 7.9: (a) Ferromagnetic susceptibility 𝜒 normalized by 𝐿2 as a function of
the measurement angle 𝜃 on the 2D lattice with 𝐿 = 4, 5, 6, 7, 8. The dashed black
line corresponds to the theoretical RBIM phase transition angle 38.6◦. In theory,
𝜒/𝐿2 = 1 on the maximally entangled GHZ state when 𝜃 = 0 and 𝜒/𝐿2 = 0 on the
completely disentangled product state when 𝜃 = 90◦, which is what we observe
from the simulated data. (b) Variance of the ferromagnetic susceptibility Var(𝜒)
divided by 𝐿2 as a function of measurmeent angle 𝜃 on the 2D lattice with
𝐿 = 4, 5, 6, 7, 8. The dashed black line corresponds to the theoretical RBIM phase
transition angle 38.6◦. Variance of 𝜒 is expected to diverge at the critical point.
Although the peaks of Var(𝜒) exhibit small deviations from the exact transition
angle 𝜃∗, the simulated data with 𝐿 = 6, 7, 8 all peak at 𝜃∗ with peak height
increasing with the lattice size 𝐿.
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C h a p t e r 8

CONCLUSION AND OUTLOOK

This thesis delved into leveraging near-term quantum computers for simulating
properties of quantum many-body systems especially within the linear response
framework. Through two experimental demonstrations of quantum simulation on
current quantum hardware, one on the finite-temperature properties of spin models
and the other on the frequency-domain response properties of molecular models, we
showed the current capabilities of superconducting quantum devices in simulating
many-body physics and how error mitigation techniques can further improve the
computed physical observables. Additionally, we used tensor network methods to
carry out a protocol for preparing quantum states and observed the phase transition in
the random-bond Ising model (RBIM). We found that with the latest tensor network
simulation libraries targeting graphical processing units (GPUs), we can execute
simulations on a scale that was not possible previously.

Our first work showed that finite-temperature properties of few-site spin systems, in
particular finite-temperature dynamical properties that require both real and imag-
inary time evolutions, are accessible on current quantum hardware. The quantum
imaginary time evolution (QITE) algorithm, improved by strategies to mitigate
errors and reduce quantum resources, is demonstrated to have the capability of
computing finite-temperature properties such as energy, correlation functions, and
spectral densities. Accurate simulations on two sites are achieved by maintaining
constant-depth circuits in both QITE and real-time evolution. On four sites, we
observed reasonable agreement in finite-temperature observables at high tempera-
ture using circuit recompilation techniques. However, as we enter the regime of low
temperature, which corresponds to long imaginary time, the observables determined
from quantum hardware exhibit relatively large discrepancies with the exact results,
indicating the need for more effective quantum resource reduction schemes. The
evaluation of thermal properties on reduced density matrices and the use of stochas-
tic trace evaluation as an alternative to full trace evaluation solidified the scalability
of our approach. With the availability of more qubits on quantum hardware, our
work lays the foundation for future scalable implementation of the QITE algorithm
for computing finite-temperature observables.
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Our second investigation harnessed a high-fidelity iToffoli gate to implement an algo-
rithm based on linear combination of unitaries (LCU) to compute Green’s functions
and density-density response functions of diatomic molecules on a superconducting
quantum processor. This work is among the first to demonstrate the practical use
of a native multi-qubit gate in quantum simulation. The iToffoli gate enabled the
reduction of circuit depths by ∼ 50% and circuit execution times by ∼ 40%. Our
results highlighted the importance of error-mitigation techniques in the LCU-based
algorithm. In particular, randomized compilation (RC) and McWeeny purification
when applied separately only improved the raw experimental data to a limited extent.
However, the combination of RC and McWeeny purification resulted in a substantial
improvement, with system-qubit state fidelities averaging over 96.0%. The ver-
satility of the LCU algorithm extends beyond computing transition amplitudes in
response functions, with potential applications to solving linear systems, simulating
non-Hermitian dynamics, and preparing quantum Gibbs states. As native multi-
qubit gates become more available on quantum hardware, our study anticipates their
incorporation as native gate components into future design and implementation of
quantum algorithms.

In the third study, tensor network methods were employed to investigate the measurement-
induced preparation of states corresponding to certain phases of the RBIM. In one
dimension, we computed the correlation function and observed the transition from
the ferromagnetic phase to the paramagnetic phase where the correlation length
determined from the non-linear least-square fit approaches the exact value as the
number of sites increases. In two dimensions, we computed the ferromagnetic
susceptibility and observed the transition from the ferromagnetic phase to the para-
magnetic phase where the critical phase transition angle agrees with the value de-
termined from theoretical analysis. This exploration represents an initial foray into
understanding measurement-induced state preparation from cluster states. How-
ever, inherent inefficiencies in the current tensor network implementation and the
unexplored dimension of multi-GPU configurations underscore the need for future
refinements and optimizations. The absence of noise modeling in our investigation
emphasizes a crucial avenue for future research to bridge the gap between theo-
retical simulations and real-world quantum systems. Despite these limitations, our
study lays the groundwork for future explorations in measurement-based quantum
computation, showing the versatility of tensor network simulations and their po-
tential applications in understanding measurement-induced protocols in quantum
information processing and computation.
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In conclusion, this thesis explored the potential of near-term quantum computers
to simulate properties of quantum many-body systems within the linear response
framework. Through experimental demonstrations on current quantum hardware,
we investigated finite-temperature properties of spin models and frequency-domain
response properties of molecular models. These studies highlighted the capabilities
and limitations of superconducting quantum devices and the significant role of
error mitigation techniques in improving physical observables. The application of
tensor network methods enabled the preparation and analysis of quantum states,
revealing critical phase transitions in the RBIM and demonstrating the scalability
of these methods using GPU-based libraries. Collectively, these investigations pave
the way for future research in quantum simulations, emphasizing the importance
of continuous advancements in hardware capabilities, error mitigation strategies,
and algorithmic innovations to realize the full potential of quantum computing in
studying complex quantum systems.
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A p p e n d i x A

PROOF OF PAULI STRING REDUCTION BY Z2 SYMMETRIES

In 5.3 we introduced a scheme to reduce Pauli strings in the QITE unitaries by Z2

symmetries. We mentioned that rather than impose Z2 symmetries when choosing
the Pauli strings in the QITE unitries, the original QITE algorithm subsumes the
preservation of Z2 symmetries. We now restate the proposition and present a proof
that derives directly from the QITE linear systems in 5.5.

Proposition 13. Suppose QITE is applied to approximate the imaginary time prop-
agator 𝑒−Δ𝜏𝐻̂ [𝑙] on the state |Ψ⟩. If there exists a stabilizer S such that every element
of S commutes with 𝐻̂ [𝑙] and |Ψ⟩ ∈ 𝑉S , then
(a) The action of 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] on |Ψ⟩ with 𝜎𝝁 ∈ P𝐻̂ [𝑙] is equivalent to the action with
𝜎𝝁 ∈ P𝐻̂ [𝑙] ∩ N(S)/S,
(b) 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] |Ψ⟩ ∈ 𝑉S .

Proof. Pick 𝜎𝝁 ∉ N(S). Since 𝑒−Δ𝜏𝐻̂ [𝑙] commutes with elements of S and |Ψ⟩ ∈
𝑉S , for any 𝑠 ∈ S we have ⟨Ψ| 𝑒−Δ𝜏𝐻̂ [𝑙]𝜎𝝁𝑠 |Ψ⟩ = − ⟨Ψ| 𝑠 𝑒−Δ𝜏𝐻̂ [𝑙]𝜎𝝁 |Ψ⟩, which
implies ⟨Ψ| 𝑒−Δ𝜏𝐻̂ [𝑙]𝜎𝝁 |Ψ⟩ = 0. Hence

𝑏[𝑙]𝝁 =
Im⟨Ψ|𝑒−Δ𝜏𝐻̂ [𝑙]𝜎𝝁 |Ψ⟩

Δ𝜏𝑐[𝑙]1/2 = 0. (A.1)

Now fix the column index 𝝂 such that𝜎𝝂 ∈ N (S), then for any 𝑠 ∈ S, ⟨Ψ| 𝜎𝝁𝜎𝝂𝑠 |Ψ⟩ =
− ⟨Ψ| 𝑠 𝜎𝝁𝜎𝝂 |Ψ⟩, which implies ⟨Ψ| 𝜎𝝁𝜎𝝂 |Ψ⟩ = 0. Hence

𝐴𝝁𝝂 = Re(⟨Ψ| 𝜎𝝁𝜎𝝂 |Ψ⟩) = 0 (A.2)

Since 𝑨 is Hermitian and real, 𝐴𝝂𝝁 = 𝐴∗𝝁𝝂 = 𝐴𝝁𝝂 = 0. Thus the linear system has
the block-diagonal form(

𝑨[𝒍]′ 0
0 𝑨[𝒍]′′

) (
𝒙[𝒍]′

𝒙[𝒍]′′

)
=

(
𝒃[𝒍]′

0

)
, (A.3)

where the quantities with single primes are indexed by 𝝁 such that 𝜎𝝁 ∈ N (S) and
those with double primes are indexed by 𝝁 such that 𝜎𝝁 ∉ N(S). By setting 𝒙[𝒍]′′

to 0, the linear system is reduced to 𝑨[𝒍]′𝒙[𝒍]′ = 𝒃[𝒍]′.
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To show that the set of 𝜎𝝁 can be reduced from N(S) to N(S)/S, suppose 𝜎𝝁 and
𝜎𝝁′ belong to the same coset in N(S)/S, then 𝜎𝝁′ = ±𝜎𝝁𝑠 for some 𝑠 ∈ S. In the
QITE unitary 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] =

∑∞
𝑘=0(−𝑖Δ𝜏)𝑘 (

∑
𝝁 𝑥 [𝑙]𝝁𝜎𝝁)𝑘 , each term in the sum is a

power of −𝑖Δ𝜏 times a product of the form
∏

𝝂 (𝑥 [𝑙]𝝂𝜎𝝂). If a product term contains
𝑥 [𝑙]𝝁′𝜎𝝁′ , the action of this term on |Ψ⟩ is proportional to(∏

𝝂′′

𝑥 [𝑙]𝝂′′𝜎𝝂′′

)
(𝑥 [𝑙]𝝁′𝜎𝝁′)

(∏
𝝂′

𝑥 [𝑙]𝝂′𝜎𝝂′

)
|Ψ⟩ (A.4)

In the product over 𝝂′, each 𝜎𝝂′ ∈ N (S), so
∏

𝝂′ (𝑥 [𝑙]𝝂′𝜎𝝂′) |Ψ⟩ ∈ 𝑉S . Then A.4 is
equivalent to (∏

𝝂′′

𝑥 [𝑙]𝝂′′𝜎𝝂′′

)
(±𝑥 [𝑙]𝝁′𝜎𝝁)

(∏
𝝂′

𝑥 [𝑙]𝝂′𝜎𝝂′

)
|Ψ⟩ (A.5)

Since this applies to every pair of Pauli strings in the same coset, 𝐺̂ [𝑙] can be written
as

𝐺̂ [𝑙] =
∑︁
𝝁

𝑥 [𝑙]𝝁𝜎𝝁, (A.6)

where 𝝁 is chosen such that𝜎𝝁 ∈ P𝐻̂ [𝑙]∩N(S)/S, 𝑥 [𝑙]𝝁 =
∑

𝝁′ 𝜂𝝁′𝑥 [𝑙]𝝁′ , 𝜂𝝁′ = ±1
and 𝝁′ is chosen such that 𝜎𝝁′ ∈ 𝜎𝝁S.

Since all Pauli strings on the exponent of 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] commute with elements of S,
𝑒−𝑖Δ𝜏𝐺̂ [𝑙] commutes with elements of S and hence 𝑒−𝑖Δ𝜏𝐺̂ [𝑙] |Ψ⟩ ∈ 𝑉S . □

Our Pauli string reduction scheme is related to the qubit encoding scheme that
removes redundant qubits by exploiting Z2 symmetries reported in Ref. [77]. In the
qubit encoding scheme, a Hamiltonian over some number of qubits is transformed
to another Hamiltonian over a smaller number of qubits by a series of Clifford gates.
Our Pauli string reduction scheme coincides with the qubit encoding scheme when
the domain size 𝐷 equals the total number of qubits 𝑁 , in the sense that the reduced
set of Pauli strings in our scheme exactly corresponds to all Pauli strings in the
encoded Hamiltonian with redundant qubits removed in the qubit encoding scheme.

However, because the weight of a Pauli string can change during the Clifford trans-
formation, the two schemes differ when 𝐷 < 𝑁 . On the one hand, some Pauli strings
can decrease in weight after encoding. If we include all Pauli strings with domain
size 𝐷 in the encoded Hamiltonian, these Pauli strings might include those with
domain size 𝐷′ > 𝐷 in the original Hamiltonian, thus increasing the total number
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of Pauli strings. On the other hand, some Pauli strings can increase in weight after
encoding and result in an increased cost of the QITE algorithm. As an example,
consider performing QITE on a Hamiltonian with periodic boundary condition and
the Z2 symmetry 𝑍0𝑍1𝑍2𝑍3. One of the 𝐷 = 2 Pauli strings is 𝑋0𝑌3. In the qubit
encoding scheme, the symmetry operator 𝑍0𝑍1𝑍2𝑍3 is transformed to 𝑍3 so that
qubit 3 can be eliminated, but the weight-two Pauli string 𝑋0𝑌3 is transformed to
the higher-weight Pauli string 𝑋0𝑋1𝑌2, thus requiring a larger QITE domain and
increasing the overall cost of the algorithm. Therefore, in the present work, we use
Z2 symmetries to reduce the number of Pauli strings in the QITE unitaries rather
than eliminate redundant qubits.
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A p p e n d i x B

ERROR BARS IN TRACE EVALUATION

We describe calculation of error bars of finite-temperature observables in full and
stochastic trace evaluation. Here we use 𝐸 (𝑄) and Var(𝑄) to denote the mean and
variance of a quantity 𝑄. The error in 𝑄 is the square root of its variance.

A finite-temperature observable ⟨𝑂̂⟩𝛽 ≡ 𝑂 has the expression 𝑂 =
∑
𝑖 𝑃𝑖𝑂𝑖/

∑
𝑖 𝑃𝑖,

where𝑃𝑖 = | | |Ψ𝑖 (𝛽/2)⟩ | |2 is the (unnormalized) probability and𝑂𝑖 = ⟨Ψ𝑖 (𝛽/2) |𝑂̂ |Ψ𝑖 (𝛽/2)⟩
is the expectation value of the observable after imaginary time evolution on the 𝑖th
basis state |Ψ𝑖⟩. On quantum computers, each probability 𝑃𝑖 is built up from the
energy expectation value at each imaginary time step:

𝑃𝑖 =

𝑛𝛽/2−1∏
𝑘=0

𝑒−2Δ𝜏𝐸𝑖,𝑘 , (B.1)

where 𝐸𝑖,𝑘 = ⟨Φ𝑖 (𝑘Δ𝜏/2) |𝐻̂ |Φ𝑖 (𝑘Δ𝜏/2)⟩ and 𝑛𝛽/2 = 𝛽/2Δ𝜏; each 𝑂𝑖 is the expec-
tation value of the observable on the QITE-evolved state |Φ𝑖 (𝛽/2)⟩. Note that here
both the exact imaginary-time-evolved state |Φ𝑖 (𝛽/2)⟩ and the QITE-evolved state
|Ψ𝑖 (𝛽/2)⟩ are consistent with the definitions in 5.2.

In full trace evaluation 𝑂 is regarded a function of the 𝑃𝑖 and 𝑂𝑖, which are random
variables because of measurement sampling on quantum computers. Var(𝑂) can be
evaluated by expanding 𝑂 to first order in all 𝑃𝑖 and 𝑂𝑖 and assuming all 𝑃𝑖 and 𝑂𝑖
are independent, which then gives

Var(𝑂) =
∑2𝑁

𝑖=1 [E(𝑃𝑖)2Var(𝑂𝑖) + (E(𝑂𝑖) − E(𝑂))2 Var(𝑃𝑖)](∑2𝑁

𝑖=1 E(𝑃𝑖)
)2 (B.2)

In stochastic trace evaluation, we need to consider initial state sampling on top of
measurement sampling. Define the numerator 𝑅 = 𝑛−1

samples
∑𝑛samples
𝑖=1 𝑃𝑖𝑂𝑖 and the

denominator 𝑆 = 𝑛−1
samples

∑𝑛samples
𝑖=1 𝑃𝑖 so that𝑂 = 𝑅/𝑆. By first-order expansion of𝑂

in 𝑅 and 𝑆 and assuming 𝑅 and 𝑆 are independent,

Var(𝑂) = E(𝑅)2Var(𝑆) + E(𝑆)2Var(𝑅)
E(𝑆)4 . (B.3)
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Now expanding 𝑅 and 𝑆 to first order in all variables and assuming all variables are
independent, we have

Var(𝑅) = 1
𝑛2

samples

𝑛samples∑︁
𝑖=1

[(E(𝑃𝑖)E(𝑂𝑖) − E(𝑅))2+

+ E(𝑃𝑖)2Var(𝑂𝑖) + E(𝑂𝑖)2Var(𝑃𝑖)], (B.4)

Var(𝑆) = 1
𝑛2

samples

𝑛samples∑︁
𝑖=1

[(E(𝑃𝑖) − E(𝑆))2 + Var(𝑃𝑖)] . (B.5)
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