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Introduction

While pursuing an investigation of the general
properties of the confluent hypergeometric functions of two
variables at the suggestion of Harry Bateman the question
of the expansion of arbitrary functions in terms of these
arose, Efforts to obtain results by extending the theory
of orthogonal Tchebycheff polynomials or by some other in-
tegral method proved quite unsuccessful. Finally the formal
algebraic method suggested by the Neumann expansions in Bessel
functions was devised and developed to solve the problem at
hand, We shall give an extended discussion of this method,
together with sufficient examples to illustrate its applica-
tion.

-~
2, x

The 1dea of representing the power series %ég Lo s
by the exponential e2X, using the umbral notation a, = aB,
is apparently Que to Blissardl who used it to obtain very
elegantly the properties of the Bernoulli and related numbers,
In recent years this umbral notation has been extended by a
great many investigators., It has been placed on a firm alge-
braic basis by E., T. Bell? to whom the guthor is greatly indebted
for constant counsel and encouragement, I should also like to
state my appreciation to Harry Bateman, without whose original

guldance the work would never have been begun,

For convenience in writing formulae, we use certain

1John Blissard, Theory of Generic Equations, IV-VI (1861-1864).
2E. T. Bell, Algebraic Arithmetic (New York, 1927), pp. 146-159,



notation conventions. In place of a repeated summation:

)

<) o0 20
e —— ey
pa— e ' %
My 50 = o

M/:d

we shall write merely,

Unless explicitly stated, all summations are to extend over
the range o tox, Often we shall include polynomials under
such a connection by using coefficients vanishing for all
values of the index larger than a certain value. Such cases
will be self-evident and will be left to the observation of
the reader,

Since we shall be dealing with hypergeometric functions,
a great variety of Gamma functlions, factorials, and binomiwal co-
efficlents might be introduced. Rather, we shall use uniformily
the symbol introduced by Appell |

/(A
(3,41 = /‘// ,\)J

Some simple properties of this symbol derived from its relation
to the Gamma function will be used.

(a,x) = a(a+1) ... (& + k - 1), k integral

(a,0) = 1, (1,k) = k!, k integral

(a,=k) = (=YX , k integral

1-a,k
(- n,k) = 0, n, k integral k>n
(a,n+X%) = (a,k) (ar+k,n)
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Chapter I

Formal Expansion Theory

The expansion of known functions in terms of se-
quences of polynomials or other functions has been consildered
from many angles, It forms the basis of the theory of orthog-
onal functions and of polynomial approximations, The extensive
work of Neumann and Schlémilch series in Bessel functions 1s of
this nature., Although the methods of analysis are more power-
ful and more inclusive, yet a purely formal algebraic treatment
of this problem exhibits a very attractive. elegance. Partial
treatments of this nature have been discussed by previous
workers,l but the completely general method seems to have been
overlooked,

In the work to follow we shall uniformly deal with
functions defined by the power series

L N ~
! /(X) - )”7 (/6,{”;5 .
or equally well by the matrix of coefficients
& 2 =/a, 2 -, a, |

Preliminary to a consilderation of the general case,

1 N. Nielsen, Fonctions Metaspherique, Chap. IV,

N. Nielsen, Recherches sur le developpement d'une fonction
analytiques en series de fonctions hypergeometriques, Ann,
Scientifiques 4' Ec, Norm., (3) XXX (1913), 12,

S. Pincherle, Alcuni teoremi sopra gli sviluppl en serie
per funzioni analitiche, Lombardo Rendiconti, (2) XV (1882) 224,

J. M. Whittaker, Interpalotory Function Theory, (Cambridge,
1937)



let us 1llustrate the theory by determining in terms of the

an the coefficlents b of

3) s, (/——x)
//’C) J (/ ,,()
Since
o — (—m, 7j) =
4) (/ = X) = X 2 (/, ;") A
o
we have 4 ;§” )
— b, (/- x)" e el
. - s , P /, > )
5) 2;1—/ (/ M} 2», (4 ’ o 6
, ( ~, ”) s
— , (7, ] 2J 7, -
so that A
T ! ( -, 7'/ e b
6) a?f - 2_,/ ) /, »n ) /Q”( = ) )/r(_/ s m )

To obtain by, then, we sum over r

L“/ (7/7’) ) 7"”,/ (/ /\)(/,)I)
b
= J% ) / L - (» _)k{ é
= ;A{:jﬁw /é/“d j(;) 7 n) e ;
P ~”
Hence
v, (7 x) e 1 4,,,,0(
8) S x) D AT S
More generally, if we consider the polynomials,
9)

R o S
IRCEDIR S
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Following the above argument we have, if

100 ppx) = 57 Lo ML) N7 L) A A KT

(1,7) R (/,/»1)(/,7’)—/

11) - — P .
(-1, > ) '
A = A e {\ 5 —=" b, = () /\/r— 2“/ e, )

(/,/n) P

and to obtain bn we sum as before over r 1in;

Nk d/r+_( T ok a1 b/yl.q,, S /
s =) ey, E RS il
12) 2 Ave (1im)  Er imT ) TP
So that
A, (x) 1 a
= gm0 oy
13) ///"() ;/ (7, =) L;_/ /"L./fm (7, )

In particular, if Ay:;;”; we have the formal Taylor's ex-

pansion of a functlon about an arbitrary point:

S =3 EE T L

>

14)

It is thus possible to proceed to develop our entire
theory. The awkwardness of handling the algebra, however,
would make the labor prohibitive and hide the elegance of the
results,

To avoid this, the umbral notation of Blissard® is
Introduced and will be used throughout.

We consider

15 ' 3 . QMX ke &
) //f/@<) - ;E_, 7, o)

as defined by the infinite one-rowed matrix

2 Blissard,l6c, cit.



16) a = /a, e, o« o f 2 Tm

17) - , o A
A = am A = an
so that
. w X
18) //x) = ¢
Hence, on this basis:
a x ‘;i - %(— [/_AX)
S/ (x) = ¢ = €
19) " a
S (7-Ax) 2™ A
= 2")“ e - S 6
= (7, 7) A

/’M {X) e &me-,q»
s Ve ) A A ()

gilving the previousiy derived expansion very elegantly, Of
course such a derivation is only suggestive, and the other
is necessary for completeness.

Such a formal derivation of an expansion by either
of the methods used above glves no information regarding the
range of validity, nor even whether the original and deduced
serles converge in the same range of the variable., In the
discussion to follow this difficulty will be even more in
evidence, Inasmuch as this forms a large part of the theory
of any one particular sequence of functions, it would carry
us quite off our track to deal with the problem extensively

for any large class of functions. Rather, we shall assume

that the arbitrary function and the sequence have some common



region of convergence and we shall be satisfied wlth the
conclusions to be drawn from Welerstrass'® .

Theorem 2.1

"

Lel lx), Rix)

be an ordered, infinite sequence of power series in x,
each contalning both positive and negative powers of the
variable with arbitrary coefficients., Let it be possible
to choose two real quantities R, Rl, with RL > R > o, such
that for all values of x satisfying

21) R < Ix/ < R’

each of the series /7(x) converges as well as the sum Z? R (=)
and further that the latter converges uniformly for all
values of x having the same absolute value,

(v) vh @
if A, 1s the coeffilcient of X  in /3 (x) the sum
(V)

;ﬂ A. has a definite finite value for every value of n,

designated by A, , and it may be shown that for every value

Then,

2N

of x satisfying 21) the serieszg:/LlY“ converges and the

equation
22) Z/ /?/ ) = ;‘i; ’l,,]« gt
holds,

1. Function of a Single Variable

We shall call two sequences of functions Pp(x),

Qn(y), defined by the matrices ;o =/R"/ ¢, = /g / associate

S K. Weierstrass, Werke, Bd. 2, & 205.
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1 G

1f they are such that

23) % 5y i " B @, Cy)

Under this convention and the above assumption
a8 to convergence, our basic theorem on formal expansion
can be stated convenliently

| Theorem 2,2

If £(x) is given by a matrix « =/a./, and P,(x), Q,(y) are

assoclate sequences of functions, then

24) 3 ax /. (x) g)m(fc)
//") =7 2; ()

Using the umbral notation, this is immediately
evident., However, we shall present & more vigorous deriva-
tlon since we have not developed sufficiently the properties
of the matrices,

Since Pn(x) and Q,(y) are assoclate, we have:

28 vy o XaT o A 9. (1)
¢ = 2__/ (¢, p) - ”"" (//ﬂt)

Vel
S

- o ar
o TE g A el
717 (4, 7)(% $) g (1, n)

1

so that

26) O el A

s oL L
~” ’ (#n) (/,7-') =S

’

being thé essential condition interrelating the coefficlients

of the assoclate functions,.



Now we assume that there exists for f(x) an ex-

pansion:
; ) 1 o« =
27) / /\,) o > P (/,/71) /m (t)
S O L )“Vdﬂf;
- (t,em ) (2, 7} —<‘>-, Ll wd gt fim)
Hence with
) ~ — a,r X )
28) /"/ (v ) = );;-’ oty )
29) o, P
174 = z
> gnm/ (7, » )

To solve for <, we multiply by 5;7, to be determined, and

sum over r in:

- ST A
30) Zﬁ E:f" — > ‘ e L ;
— (4, ) = fFem) L4 ]
— 1 O(”( o 1 a/:’r /D e
S S S A
el S (&, ) ) el
-
if ¥, is such that
31) . o p o
I '
~ g (4, ) T

(7, ) ) Vet

But if this is true, we can deduce by multiplying by

and summing over n, that

»n i
- 1 [@ i \ £ b/ /)
32 , o £ A
) Z & - ) < (v, x ) );_A/ LA
IR S G SV
- ));J (-/-’ r)- )m# 7(/,(»;)_ —
by 26) relating g " and P
Therefore
: \ 5 1 ’Xr )
55) D R
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and

2] = 50 I () B )
34) ,/// ()

The two sets of equivalent conditions:

26) L o

> L%

%, (/‘//)1) (/f,) s = e
and
35) — Pl . g, T

form a basis on which we can build several important theorems
on the respective form of P, and Qn'

Let /,~/ represent the discriminent of the coefficients of the
Py () ¢

AN T
rlop Pl
36) A T

In general this will be an infinite order determinant and the
question of convergence 1s best considered in the particular
cases which arise, With this notatlon we have:

Theorem 2.3

Let Pn(x) be any arbitrary sequence of functlons

-~

7 Eled =), gz &7

(7, )




If there exists an assoclate sequence of functions Qn(y),

the coefficients of the matrix dn representing Qh(x), are

given by: PP , P o
p? o P
38) a s ! s/ S -
£o = } 2! /oéo /05/ / /2 ) ,l /Dj e -
/@di /04:/ /o:-,/ /Uj

In the proof of the previous theorem we showed that
when the series Q,(y) existed the coefficlents were related to
the matrix P, by the equations:

26) = o o N

/97“ Z‘s _ ’
; (1, =) ) =

P

These can be regarded as an infinite system of linear equatlons
in Z;éd for all n. Solving these according to the standard
methods, we obtain the result stated in the theorem, The same
theory would be securéd by starting with the equations

° 3

] 28
Z'—’ W‘ﬂ(/, 7“)« - (7o ), m =

>

and solving for i’fé/y/
Utilizing this theorem, we have others as direct consequences.

Theorem 2.4

If P,(x) and Qn(y) are associate sequences of functions and

A=/A, 7, ,\ /18 an arbitrary matrix, then /; (1:)and 9, (£)are

assoclate sequences,

If /7, / is the determinant of the coefficients of the /2 (Ax)

) €y
P



then, since the matrix of the coefficients is A = /A o7/,
/PR = TV A e

39) ! & A Al

Then replacing the/p: in the expression for g;, by A¢,Ofwe

obtain the new ¢ .

o

Ay £,
— oSl s/ \ Do
g - = B ol
s //DA/ \ o o)
/ o Sty
40) -
s/ 22 /v:
A, 7TA st Z,
— 7o s ,,/,“ - /D 9 - -
It 4 L 5 AJ

Hence corresponding to P,(ix) we have

41) - 4
Z E 2;’ (7 6) /\

S

B

(%)

This very important theorem enables us to obtain
from a glven set of assoclate functlons P, (x), Qn(y)an almost
endless variety of new sets and in our later appllcations we
shall see its usefulness in obtalning some of the classical
expansions,

Occasionally it happens that the expansion of an
arbltrary function in a serles of functions is derived by some
other method aside from that discussed here, In these cases

we can thereby deduce useful information from



Theorem 2.5

If we have gilven

, XN Pox) G, ()
42) s - “ s - i e “
///X) - 2%“ (1, )
then, subject to convergence conditions, we have also
43) Fex) = 5 ) Balm) 1o 0
// 2;“’ (/)

When the first expansion is given, the coefficient
of P, and Q, must certainly satisfy the conditions

75 @, 7 E S

e o ‘
26) L AT
/ (/,"7’1) (/‘7»/) ) S

Vsl

which are perfectly symetrical in the p's and q's. Hence the
second expansion follows by our previous argument.

If the Pn(x) have some peculiar form, Theorem 2,3
often enables us to infer directly certaln properties of the

Qu(y)s In view of its import we state

Theorem 2,6 _
If P,(x) and Q, (¥y) are associate functions, and if Pn(x) is a

polynomial of the ntth degree in x, then Qn(y) contains y to no

power less than the n'th.

Under the assumptions here, p” =0, = >=, and without
loss of generality, we can set the leading coefficient of P,(x),

Pa =/, 80 that /p/=7Tp] =/, Hence for s <=



£

PP
o
k4 m+S O O -
o 0

o

while for s » ~

+ S

Zm ::(’)m P
K

o
&S O
0

45) o

M S
:(") /74," \5'/

and clearly o™ =/

& = K i A ” - g
o P
Py Fo 7, o P, -
’a—l S S B Dn« ,'QM
5 B A Fe 5
: 5_ S/ A =il N
o ®)
Wz B, o, Faew P .
e/ - o
o o P, O
a O a /’Om e

Reanss & LA
% % 7 F P
- / &t 3 st/
0
/>”' /Om ;/\)”'-/ /Dm//»’» /k
ma g K O:-l
B Pa P Fa Ta
nr/ 8-/ K] s/
B B " L Bogy Py
D”’" : ’ - S ':51/
O / S - /J ’ /O_‘ J /D‘,/
O O ) 0 P:*/
<
./,)A’
3

Similar theorems can be stated if P (x) is a poly-

nomial of degree depending in some other manner upon n., The

method 1s obvious and we shall not consider them, Also, 1if

the sequence Pp(x) has any regular propertles, corresponding

ones can be inferred for the Qn(x) by Theorem 2,3,



2. Functlions of Several Variables

The formal theory here developed admits an immedlate
extension to functions of several variables in a manner more
elegantly direct than similar extensions of other methods of
expensions in functions. In order to provide a convenient way
of stating our theorems, we introduce a rather obvious general-
izatlion of our matrix notation. Let /(x,  x )-/(x)Dbe a function
of k variables whose series representation 1is:

46) } ! %,’ ", A/){& ' 2, o, LM‘
//”/, %) T L ity N 4.

Then sald function will be represented by the k-dimensional
matrix which we denote:

47) S I 4D

and we adopt the convention

1
48) o W%
P Ll R = B a e

The concept of associate sequences of functions needs
to be extended to several variables, We say that two sequences
of functions

Pt 2 G €8, - st
49)

Bo (9] 2 Gy (Fea 7 oe)

defined by the matrices

- (4 - 5 T e % /

50} Pty Py 7 L T // <
S ) A

51) Zrn‘ 4 . /g) = / ZZ A, /

T "4 Higes = TP



are associate if
4

52)

With this notation the general expansion theorem
for k variablesis:

Theorem 2,10

If 7/ (~ )1is a function of k variables represented by the matrix

«a=fa, .| , and / (x) end ) (y)are associate sequences of

functions,

Then

48) // /&o-- , % ) = ¢ / - ;L_ i& (/,m;)

Again using the matrices and the umbral notation, the
theorem 1s obvious and for the general case we shall be satis-
fied with this,

For two variables the statement is essentlially the same.

Theorem 2,11

If f£(x,y) is a function of two variables represented by the

matrix «a”-/a,/, and /] (xy) and Qw@$7)are associate sequences

of functions represented by the matrices /P:77/ , /‘ijf/ ,

J

th ,
en ax ra*y — /fmm (x. ;() &//»1,41 (a a™)
49) //'/?5'; ) = ¢ - ¢>w-/ (2.am 3 L4 2)

The proof is a direct extension of that given for one



K
R

variable, From the definition of /j and QML we have:

50) XE # ;Z 1 2 } 2 /‘Z\S - )\ m £ (X 07) /écﬁzj
G A/ u) B 1 /»;/ o 42/7/107) // ?7/
-y g“ ol
et O, o )1 S 0 w) (1) £t “FeiTha)
so that
51) » PUT T O, TEu adie sy
ot ) (1)
"1, m (/l . (/,7’)(/,4)' 7":(/(/ s =
We assume there exists the expansion for //x;):
52) e ——
//XZ) (/m)(//rﬁ /2“'/”1 [X';z)
P e —_— > X —_ o /D s,
/—L e "",J X g’ ——’-2 l”g_ S ol
= TSt i T L (08 L Tmd ()
w1, S > s 7, m
but
| — L, Xy
53) / N T S 7.
A (= *27‘/ 7 ) (1, 8)
. T g
Therefore o,
O O(/*n ~1 /D,’,.
54) o 7 — 2,4 T7. o 3 7L m')

hd
To solve for <, , we multiply by a/f 6)130 be determined, and sum

over r and s in o o
44 o 7 " .
55) T Ve ®ea = 3 lme e e
L—r (1, 7)(15) s U ) (1) (70 005)
4, 4
? ! i”"’ . N b/ﬂ” s ”° ::t :1 — &
5 s g (Z/m)(/,/ﬂ) i (, r) (/ J) - A,é
P ’r’,d
A,
if Yy _1is such that
56) 5/64 /O/»v,/v O , h 2 an QWQ////Gr % .
? A s _
(), ) (4 5D —

27,
.

() (1) h =, A =om



< I

ot 1

If this is multiplied by (Lmjwﬁf}and sumned over m,n we obtain:

57) k4 R = g 77 ) L X/I'é /Ofm'q
o T fg‘;f T Erw L () (1)
o N
e s T I P
by 51). Therefore
58) o gm
_ 7 ] %
o = } R e (a, a
A ’f‘:{"/ (/,7")(//‘5) Q/IA 4 )

For three or more variables the proof would be sim—
llar and it is unnecessary to glve the details here.

The analogy of Theorem 2.4 1s extremely important in
this case.

Theorem 2,12

If/ivnﬁg)andgla(f:ﬂare assoclate sequences of functions and

AX'=/2.,;/1s an arbitrary matrix, then L (ax Xy)and @, (%, % jare

assoclate sequences,

In the proof of Theorem 2,11 it was shown that the

conditions that two sequences Pm,n and Qm,n be assoclate, namely

51) : O 7 4/
- o, 1, y = A w /97- s £ Vv
! P, v
/m;,/'t/ (/,2) (/, ) (8wl lid) | #F ==, & =
was equivalent to the similar
59) Y 0, hwm wds hrm

A ;
)—/ IR .

L& (/,/V’(}////rl)/ /l == e

Now let the matrices of /0 (Ax Xy) and ¢, (5@— %)be designated for

the moment by 3, L*and ¢ g2~



N

o 4,k
Then o, hoAK o s
Z Py Brs B \ /\,f,Jﬁ’{’_rfiwf\i{7 Z’m_
60) “yred " ow) {1 5) BT (1, ) (1. 9)
. f;,; O htam and/or 4 # o
/rIJ/ [/,'7")(/,5) (/,/"”l/(//"l)/ !ll ,:/yv// A:/ﬂ

by the original assumption. Hence we show that the second
pair satisfies the necessary conditioné and are assoclate,

This theorem has 1ts greatest use in obtalning asso-
ciate functions for given two-variable functions by building
them up from known one-variable associates. Thus, 1f /° (x) Qn/fj
and/é(ﬁ),&iﬂ7)are two known sets of assoclate functions, then
we have immediately that

- : LN ) _”gA
P (xy)=P () PNy, @, ()7 ¢.(5) ¢ ()

are assoclate sequences, And 1if »11¥:/&,/1s perfectly general,
the two variable functions can certainly not be actually factored
into one-variable functions. We shall use this in all its power
in later applications,

Evidently it would be possible to state theorems for
specilal types of two-variable associate functions as we did for
the one-variable cases, Those needed are such obvious extensions
that we shall mention them only when they are used.

We have indilcated in several places the directlon of
generalization to any number of variables., On the formal basis
which we are bullding these extensions wlll clearly introduce no
new complications, We have restricted ourselves from treating

the general case in order to have the results in a form ready to



apply in our later discussions.

3. Relation to Tchebycheff Polynomials

Since the Tchebycheff polynomlals form a very large
class of functions to ﬁhich this theory 1s applicable, it is
significant to inquire concerning the possible extensions of
thelr theory to this more general case,

Let P,(x) and Q,(y) be a set of associlated functions,
and we shall assume the desired expansions to be in P,(x). We

search for a welght function W,(x) such that

19, A F

/

61) =
/ P o(x) POV dx =

If such a function exlsts 1t will certalnly be unigue and since

Pn and Q, are associate, we would infer directly that

oo

62) .
6&,/2 ) = //— e WV, (x) (x) d x
In case we have
&8} W, fx) = V\//Y), W,

where W (x)1s independent of n and W, 1s independent of x, then

64) 0 , o oy

/ /?7{ (x) /jw /X) W(ix)da = (1,~)

v, o T
8o that P _(x) for a set of Tchebycheff polynomials, 9.(x). Ana
conversely, when the Pn(x) are Tchebycheff polynomials, then W, (x)

will certainly be of this form.



In the theory of the Tchebycheff polynomials there
are several integrsls and related functions which have signi-
ficant meaning., We consider the extensions here:

The functions of the second kind P,*(y) are defined
e , o Palx) Py

from this and the definition of the associate function Q,(y)
we conclude that

.
~ AL F )
66) P (y) = 5 4, (;Z)
where /7 - ./ (matrix notation). Also from 65) and 61)
i JELE TP L [ 2 R cow. cddx =1 ()
_;f—_x ETI T ;::L/ (1, ) N - ~

— o0

which would also follow symbolically from 66) and 62).

We may indicate a treatment of our expansion theory
using the Cauchy 'complex varlable theorems, in a manner custom-
arily used for the Neumann, Legendre and Bessel function expan-
sions, The question of the range of applicablility of this to
follow is another problem beyond our present purpose.

Let 65) be uniformly convergent with respect to y in
some region R including the point z with y on the boundary C of
R. Let

a4 X

) kT
B . = ¥
///X 2,4 (7,724 .

be some function analytic inside and on C. Then, since 65) 1s



uniformly convergent

///z) = 2 //7) 2 /D/Z ‘,7/2///1)/17;7”;

~”m

But since the expansion in Pn(x) is unique when the series
converges, this implies

69) e P ry)d
Q. (a) = 5 & w (2 9

c

If, further, the weight function Wn(x) does exlst and the in-
finite integral 67) is uniformly convergent then

a x a}ﬁ/’() M/ //()
/ 4
so7 J € L fpldy = // Ty
70) ¢

= [ e oW dx = 6, (a)

— oo

in agreement with the inference above,

The two-variable theory outlined can also be treated
in this manner., The method is obvious and since it contributes
nothing of significance to our theory, we shall be content with

the brief discussion of the one-variable case.



Chapter II - Application.

Functlions of a Single Variable

We shall develop the application of this theory to
the hypergeometric functions of one and two variables, All
the classical orthogonal expansions are in this category and
will appear as special cases in a logical sequence,

1. Hypergeometric Series

o

A single infinite series Ej “«, 1s sald to be hyper-

M=o

“/4. 18 & ratlonal function of n. When

aﬂv

geometric if the ratio

this is true, we may write:

” /D/M1

o, ——

“. T @)
where P(n) and Q(n) are relatively prime polynomials in n, If

they are of degrees p and q+ 1 respectively, we may exhibit thenm

in the factored form:

1) % (oot w (e on) - (mean) A

w, < (m v (i) - (B ) )

A being the ratio of the coefficlents of the highest terms in

P and Q.

Without loss of generality we set /£ , = / according to established
custom. In case any one of the B's is a negative integer, say'
/31= -k, then obviously &, and all previous terms in the series
must be zero, Hence, the series will begin with 8,1 S0 & new

set of 3's is obtained with.ﬁz;:/24£+/. Thus, again, without any
loss in generality we may assume that none of the,3's are negative

integers,

2D



So that

~ =

2

Applying 1) successively, we deduce

”m

(=]
> A

7

o

("(/, > ) 69("/%) 2 - (O(/u//n) /\”(
/ﬁ3/,/n)(%%,é; ) - 7(,dg/ﬁn) Clnm) %
o (&, ) T u\‘m) H/l/if
= L 2‘_/ Z/JM) o (/d ~) (///VL)
”

For the series occurring in the second member of

thlis equatlon, the standard notation is:

f

/J

M,

«

. Ce : e BTN IS ”‘7)' g, ) /\ﬂ(
//d 4/\ ﬂ'—) s (1B, g g (/J//%) (//”L)

£

In case any one of the x's is a negative integer,

the terms become zero after a certain stage and the series 1s

merely a polynomial in A . In all other cases the series will

be non-terminating and from the Welerstrass ratio test we infer

the following convergence properties:

p

o T o B« B o B o I o ]

p

<q+l’- = bt - - - e - ey - "',a.c.
=q +1, /al<i - - = - = = = = , B G
=q+1, /277 Rz a2 'm0, — - a. ¢
’ L] *
=q +1,/A/=/1>R(S«-Ym)>20, % #/ , c. c.
=q+l, A=/, RIPD=x-Fr))qg - -, d.
=g + 1 [Al= 1, /?/£“~~L'/u)2/, — =
=g #1, fA*T, - - « o L L . — 5 B
g+l = = = o o= o= o= o= o= m o,

8. ce. = Absolutely convergent; c. c. - Conditionally convergent

d. - Divergent.



To avoid the complication of encounters with the
divergent forms above, we shall consider them replaced when
they do occur by the series for which the divergent forms
represent an asymptotie expansion according to the treatment

1

of Barnesg™- the series being considered as functions of A .

The formula, valid for ,p 72 g2*/, is

" K, =" p D(P ’
el /‘ X /\]
i 4 ﬁ/, -, ﬂg v
P
/0

- Pfg
2 et
2y T st ) R, %M, 24, 2o B gt
_— A " gui! oy " i A
g W—_ (_ = /Gd)g O(""-O(/—,// Ky L - 2=, O('/— O(/"f/
T=7 E 4

where the astérisk indicates the omission of the term with
equal subscripts,

When p~ =g+ /, the same formula gives the analytic
continuation of the function beyond the unit circle.

These formulae are particularly useful on occasion
to replace certain polynomials by equivalent forms, the re-
placement being in these cases merely a reversion of the order
of terms, ‘

The various analytical properties of these functions
have been considered in detail by a great many writers, Since

they have no immediate connection with our formal expansion

theory, we merely refer to these sources,?

1 E. W, Barnes, The Asymptotic Expansion of Integral Function
defined by Generalized Hypergeometric Series, Proc. London
Math, Soec., (2) V, 59-118,
2 Appel et Kampe de Fergiet, Fonctlons Hypergeometrique,
(Paris, 1926); an extensive bibliography is geven here,

W. N, Bailey, Generalized Hypergeometric Series, (Cambridge,
1935),



2. Baslc Sets of Assoclate Functions

All of the known expansions in hypergeometric
functions of a single varlable are deducible by our theory
from two basic sets of associate functions, We are primarily
concerned with such expansions and shall treat them in detail
before proceeding to non—-hypergeometric series,

The first basic pair arises as an extension of the

well=known expansion in Hermite polynomials, The function AL?(X)

defined by the generating function p P
AxX - .zfg g 2 P - N v, < _,,;__Zgu,A
e A Z oy /L/m (x) __,;H’ of (7,7 ) (1)
m=-pS
(cm,sP) X
P ,Z (#rd — -
:ZC’J (/m el o) MQ (’””2—/ (<) TP
has the explicit form: i
(-m sp) X

0 o ol e i )
H //X) s Lﬂdm (45 ) 2
” 5

P/ m )_I/_’j“-_/ . /_ o g
s(pir) f)‘( /""/\S /:« J»)W o /o __)

P
The assoclate function, AL Q;), 1s readily determined from the

generating function, since:

x 7 ¥ ° #
S - . ”
'y R = & o d g — )’7”/1 i_-/,j /X{; —6
o //’ ”’l/
Hence ;fﬁ T
72 - rn@ s é
M (v) =% 7,//3”//““)

Expansions derived from these by application of our several

theorems will be called Hermite type.



The well-known Neumann expansions in Bessel functlons
are speclal cases of the expansions obtained from the associlate

functions:
m-f—fér

y - . ~
Ki (o, x) = ZLJ [Hh o 28 g g - d (£

3 N e Lo k) P
Lm (d’y) - )_(,_/) [—a—;+/ d)(/ \5)

[

We show that these are assoclate by referring to the basic de-

finition:
5 &Ly ho (e h) XAy
A N (—) — e e e s e e e
¢ () A (ot + 2200 7 )= 22 sy s )1, 7)1, 5) (4,7)
_‘A'f"—é\f
=i oz ; />/fr+,5) (= 72 /A )( /Df,é—r &53‘;{ L
— ; , 7/—_/0) {f&f-ﬁ/ J)(O(-ﬁ _,;¢¢/7~)(/T)(/‘5)
» S

P

Z P PAZ 77'; (—Z’r’)(—/b,é ) (- p + o, kg—%7)

(//0)//5) v (o= %ﬁfi)r#/f ) (x+ i/g—.27~+/ +) (0,7 )
T (- A ) d P—%Z e Wi f»)(—o(—a2 +/a7-r)(‘°<‘——/-o—r)
B b Gl § g r)m o G 2T T
I (-a- 22 e )P0 g) ¢ (= Lrges ) (-~ 3£ 27) (4 )

/52 -

e )
TS M ) e St R
- L_/ (- - —-f,_/ g)//,o)//g) v 2p

_ P-4
- } Cope CPAdx 3 TE - g0 g ) (08)
(o(_JJ_r )///){/g) (,:”c%_r—&v%/ff/ g) {jia,\?f,,“ g) *5
) X ; - Xl
=L . (4, P) == &
P

Thus Bp and L, fulfill the definition of assoclate functions.

Expansions derived from these will be called Bessel

type.

S W, N. Bailey, loe. cit., p. 25.



In the discusslon to follow we shall show how these
two sets glve rise to all the classical expansions by using
Theorem 2,4, The two sets here glven are essentially different
in this respect, in that one cannot be derived thus from the
other by application of Theorem 2.4. Further basic expansions
of more complicated nature doubtless exist, but only provide
expansions in functions of greater complexity than concern us,

3. Classical Expansions

The several well-known expansions in serles of Bessel
functions are ihcluded among both the Bessel and the Hermite type
expansions above., The Neumann series of the first kind gives
expanslons in: o2

-V _'_’_‘,,/ V__‘_(,‘f{:,){,,,,__,__,_

(3x] J,, (x) =2 i)

W s (-4)" 2 < x
! \{:’ "—f-—i‘)—** = Bm (v =& )
:/—/Vf/nf/)z , (VA 7)) S (A7)
>

Hence it is of the Bessel type and the assoclate function is:

VI ORI

R T J

-2
/’/’mef/) 1 (—/11.,?6)(—,74) ;‘Z & ['M/Jé)(;?;)
L ar e S Aot ! (-

— e ) 2;*/ Zv_m+/’ s) (7, 6) kﬁ /‘/1}7‘ ); :) (—‘s/—/wf/,d)(/, s )

3
S

The Neumann expansion of the second kind glves expan-

slons in:/TV B Ay

N Z\ (+x)

. X J o _./:"Z - =

(QX) Jl:—_f'/) f:;/_’_‘f /X) a(/ /_(_%—/p,-r/of/)/—//;\/’l_fg_f/){/l/o)(/’gj
a8

Mt RS
— (%r/fm+/,oza) (4 x) i
2‘“),f EEE IV I IR Y S Y B -
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_ B, (%L 2x)
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/(/1/—/:/::[1‘/74"/)

where AA g s i ,,/

agaln the Bessel type, so we obtain the associate function:
LU om) = raey | 2

M-29
)" m (7R . R PO ) (220 ) (- 2 ) (7248 )

—_— (“x)_’"/—/%/fm‘r/) /—/V—;f4m~—2J"/)(‘ 'Zc_:,/__m_;_/‘ 4) (’/ J/

- A —t/-m S 1)—*'/7—.5,‘, /‘/ié—_,-”—--Sf/ M -2 s
— (-)3 fe g )/ et 4 '2‘;)_/_‘__/_1,”442_/7 _,,,,__‘,,,) (2 ;/)
(-2 cmvs, «) (12D

N

Related to these 1s the expansion of even functions

in serles of: 24 s

J‘J A —:—\7' (;i/‘ X)
Gx) ", () T z\_q’?’/ FBl t3 v s ia)

s N (A E)

4
fe)
where A = FETE ]

This 1s of the Hermite type, so the associate function is:

s = 1)+.S»7“~/) S- -
, V(-5 7)) (4y) E (Al (¥ ta-v-
&« o pi o W S
A H(FE) = (r7) A, = 7o) 3

-7

In addition to these well-known expansions, we may
construct from our baslc set an almost unending variety of

expansions in Bessel functions not discussed before, For ex-

Mt 2

ample: ~ (L 5%)

R g ()= )0

-

ES

(-2)
2 - e
o) A//h (A :?Zi) J AA - /_(Ti’ * )

Thus we have a Hermite type with the assoclate function:

2 39 S L‘:I,‘J.s)/.?;)”"-u o = M(—m,lx) M2
W) =00 0 = o, T ()



Again, the fact that

=4

/3£(O( ){) e (—/)7(\/—:—7(_/:) k/o( am (V-yxé)
m ! T A
suggests a number of expansions,

The Jacobl polynomial may be similarly considered.

We have the general form: forit, o} (Ewm, ] g
F ("ﬂ?/o(v‘m/' 3/,'?() :Z (y, =) (1, 7)

P

Y L= lemoed et i g i ool K
== 7_’ (a///y,_,r) (7,+) X - /-) o(v"ﬂ/l,/n/_ﬁ/ (—9432,,,-,/'7-)6/(,,1_7)//’7‘)

Ve

/

— )" (oLt ) Am/ /°(/ AX), /1/7 : 7}7/15)

Hence expansions in Jacobl polynomials are of the Bessel type.

The assoclate function is:
[ / .
(;; /»1 ) /LB”‘ ( X ) A 7

- K’W‘~ifg7’“),g

= lrot, ) Lo (R 2wy £) (4, §)
’ S

Rather than discuss the Legendre polynomial, we
J
consider the Gegenbauer function C, (=) which includes the

former as the special case ' = ¥, By definition

o = J
(1= 2hnsd?) =Y 47 C)(x)

m -3
1 {—/y{/.?d) (QX)

J (¥, m) T I-at  EEY
Hence ¢ [x) =— ] B fod g w8, &) (7.9)

m

(+, ) I {4/2%)

ey

showing it to be of the Bessel type. The associate function

here 1is: ' o e
{
R ) U
bl B (Ex) = ) 2;./ T 3 et TS



It may be observed here that thus, formally the
expanslons in Gegenbauer polynomials and the Neumann series
of the first kind are, aside from trivial factors, equiva-
lent in the light of our theory. The various expansions in
generalized Legendre polynomials are of course related to
the expansions in Jacobl polynomials mentioned above.

Among the functions expressible in terms of the

confluent hypergeometric function:

W, (x) = € 2R A ek id ks =)

we shall 1llustrate our theory for the following:

The Hermite polynomial:

? / -
s

gt = 2T T T Wy (%)

The parabolic cylinder function:

Do <) =e Hox) = 27 Tx TG, g (%)

The Sonine polynomlial:
/
/ (x) = s S X : : 4 2

Vs

The Laguerre polynomial:

s

V]
(=)

L) =i e T ) T W ()

For the Hermite polynomial we have:

— {—m,»z:‘) 2 "’"_‘24 - = %
/é/m /)() — L/ 77 -Jr) _;z = o /L/’" [ )

S



Hence the associate function is:

L I

/}/m (;Z) it 2 f—;f(,,-y)'

>~

The relation between the Hermite polynomial and
the parebolic cylinder function points the way to obtain

expansions in terms of the latter. If we wish to expand

a x (x
//AJ — as a series ) -2 w/)), we consider the function
ax - ;)f_l _— ”( b x
¢ ’ = 2—-/ (1, m) // (“ ‘/—) = &
lgal
where

b = 2 % A (a3

Pt (/ n/z) 7

so that
a x B \—~] /Jm /K) /1/41 (/a)
e =2 Ty

This device is one which may be profitably applied often to
similar situations.

The Sonine polynomial:

RS
7—”4 (- T Peend) X
e (X) f"(/—l',;,)(,,,;) _J(mq+/m a) (/J)
/
/—)M H’ ;\ :,:/" /A)
_— ~ o +/,
= (n,m) (), m) o~ (/\ X) 4 4

so the associate function 1is:
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4 s e 9
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The Laguerre polynomial:
Xm /:“ ’7’"(____) "1 (a(”’m"’) ”7//:_(~m;—0(—e2/)1f/J'—~“5:“)

(7,m)
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e
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Just to mention one or two further expansions to

1llustrate the method, we mention first:

>'_:“‘ (o(/ﬂ:—r'r')(o( 1t ) g {°{ ”’)/d m)
) A

A o : ” .3t
(6, mrr) (70 X T G ) X (s rm ot B )
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which has the associate function:

mo- 5

(s ) (B, o) Y
/L/ (——— :———'4\6__/ {-o(ﬁh,;w;)[ogz 7 —\;) (r,s)

Again, the Bessel functlon of the third order in-
troduced by P, Humbert,4 1llustrates the theory nicely. Con-

slder expansion in terms of

- -3

x) J

P
|
Qi

2 1
L # —;m}/d‘ + 5 m

analogous to the Neumann series of the first kind., By de-

finition:

4
P. Humbert, C. R., CXC (1930) 59.
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These examples will suffice to 1llustrate the

treatment of expansions in various hypergeometric functions,

Further cases can be given at pleasure.
4, Non-hypergeometrlic Series

The Hermite type expansions considered above lead
directly to one elegant application of our theory to functions

of a more general nature than the hypergeometric series:

The f7polynomials of L., M, Milne-Thompson5 are de-

fined by the generating function:
()
Xo'yf;/}) —- ;./m_ / /K/
///;7) e = %[/ (1,7 2
1) )
It can be shown that if ¢ (w#0, ¢, (x) 1s a polynomial in x
The properties of the polynomials have been con-

of degree n.
In addition to including as speclal cases

sidered in detail.

5
L. M. Milne-Thompson, Proc. London Math. Soc., (2) XXXV,

(1933) .



the generalized Hermite polynomials mentioned above, they also
include the well-known Bernoulll and Euler polynomials,
/)
The form of the generating function for ¢, (x) makes

the application of our theory lmmediate, We have

v) -2 ()
e F Z—‘\ % (X) - ,,C %
& T L ) 7 ()
Hence if we introduce the new function
- g (x)
ﬂ(

V) Z
K (2 = 7?;)

then ¢ZW(X) and}fﬂ?gj)are assoclate and we can proceed to ex-
pand any arbitrary function in a series of either function,
Other general types of functions, such as powers of
polynomials and any well-defined sequence, may be treated since
we know from our previous theorems methods whereby the assoclate
function may be constructed, although not always in such conven-

ient forn,



Chepter III - Applications
Functions of Two Variables

1. Hypergeometric Series

As in the case with single variable functions, the

hypergeometric series are most elegantly suited to illustrate
the theory.

A double infinite series‘Z: 4., . 18 sald to be hyper-

geometric in case the two ratios: %mw/ and @W;f are both
2 Soor,
rational functions of m and n,

In such a case 1t can be shown,
as in the one variable case, that ratios can be expressed:

4
Lomem o gy (A #@irmr b, al)  x
P ity i s aim ) bmre)

—_— 7)4/‘ (0(/‘ * a_ﬂ./yy, 7 é./y// é) ;(
T i Ay r am T8, Cp) ()

where «. 6 < ¢ are positive, negative integers or zero, The

general term of the series can then be written so we have finally

the complete expression:

Zj Wé (d Q,be/,{) X sz _ - /j/o(/' | & b ),7(,02]

CM#GM)M/M/ 5/A S T

~ )

This latter notation we suggest as being completely descriptive,

compact, and readily extensible to functions of many variables,

The convergence propertles have been considered in de-

teil by Horn.l We omit them as unessentlal here,

1

J. Horn, Yber die Convergens der Hypergeometrisch Reihen
zweler und dreiler Ver#nderlichen, Math. Annalen, XXXIV, (1889),
544,



The analogue of the Barnes asymptotic expansion
formula has not been given due to the uncertainty as tg?%xact
meaning of asymptotlic expanslons of two variables. It 1s pos-
sible, however, to proceed by a method of double complex inte-
gration extending the Barnes integrals to obtain certain rela-
tions between series of an asymptotic appearance. These relations
furthermore glive immediately the formulae for reversion of series
in case any of the series occurring are merely polynomials., As
these are the only applications of the asymptotic formulae we
need and since they may be obtained directly, we shall omlt fur-

ther discussion.

2. Expansions in Products

As with the one-variable functions, we refer our
various expansions back to a few basic sets. Here, however, we
shall be satisfied to illustrate with use of only combinatlons
of the one-variable sets., Others of a more complicated nature
not derivable from these doubtless can be exhlibited.

The simplest two-variable expansions are those in
products of one-variable functions: For example the Neumann

Series of Bessel functions can be extended. Thus, if:

77 ~
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where:
o R el P I i I 4
1 (=, 25) (-2, 28) Q

TS AR =
o — —) LA . Ay -2y

Tl dermmwa it e ) e M e P I )

where we have here made use of the assoclate functions for the
Bessel functions previously obtained asnd applied Theorem 2.11.
Agailn, we can have expansions in mixed products.

Thus for f(x,y) above, we have:

e A/m /X) T%m(#)
)///x;; ) t;;;;f /o Ty
where:

(_)”’,ﬁ/m/% N j'ﬂ {Af/m*d),“”"rarm+6

(1, ) (s, n) ;AT L))

ZaE "
.

glving the expansions in products of Hermite and Sonine poly-
nomials, Again we have made use of the associate functions
glven before.

Such examples could be multiplied indefinitely, but
these will suffice to 1llustrate the principle involved., Among
the speciegl functions which might be treated in this manner the

following pseudo-addition formulae are very interesting:
b=

(x € + y7) &&AM (/Q&él?%&

T A N

el S S N - e R RV

(0. 1) (1)
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Where:/Lﬂ #7/7 .ﬁ/offv‘/) (/ 7/’)(/ z) g 4

Again such examples could be extended at will, but
these will suffice,

3. Expansions in Two-Variable Hypergeometric Functions

In addition to expansions in products, there can be
derived expansions in distinctly two—variable polynomials and
functions by application of Theorem 2,12,

P, Humbert® introduced the set of confluent hyper-
geometric functions of two variables, special cases of which
can be variously interpreted as extensions of the Sonine and
Jacobl polynomials as well as the Bessel functlons, Several
of these give particularly compact expansions of two-variable

functions,

2 P. Humbert, Proc. Roy. Soc. Edin., XLI, (1921), 73.
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The Appel hypergeometric functions of two variables
will give a similar extended 1list, as well as more
complicated cases of the hypergeometric functions. As
remarked before, further basic pairs of associate functions
doubtlessly exist which could be used to give additional
applications of the theory.

4. Non—-hypergeometric Types

Ag in the case of one—variable functions, the
theory is applicable to expansions in functions of a more
general nature still than those considered above.

Let us consider the polynomials %th (x,3) defined

by the generating function:
/11
Ax-/-j;,_ +§-[/7 /{) — f/ (X )
///7,%)6 ——2 //toz)(/’%) e /;

As in the one-variable case, the %ﬁﬂqﬂ{;) can be shown in



general to be polynomials in x and y of degree m,n.

The associate function is direectly deducible since:

o ae g (£ )
e 5T e (ix) £ e T
TAE () G A€, )
whence: gm@% e 7 ‘£7)
Y th) =

2,

g )

//\
is the associate of 55[2//;,>,
As an example of this, we mention the two-variable

Hermite polynomials ﬁL@«</Xul) defined by the expansion:

hlaxsby) +hiberey) — 4 (ah* s ahhh +c L)
C

an Via®

o AT K. (x z)

=) milim)

M, o~

If we write ;’Z’Aa-+156/ = hb +A ¢ then

xEtoy X A, (% Y Tl‘/a#f"u’Az*‘za)
2 .:z;,(/M)EZJ

g0 that the function associate to /ﬁmﬁ (*¢z)1s

(§=by) (/ogmﬁ) cgi+ 2bExy raxy®

- — 24
where A = ac-Lt #F o
The several two—-variable extensions of the Bernoulli

and Fuler polynomials can be similarly treated, using the

generating function.

5 ch. Hermite, Oeuvres, II, 293-308.



One could proceed to bulld up any number of examples
in expansions of functions of three or more variables. The
results so obtained would be in the large obvious general-—
izations of those given above. The many variable problems
will introduce no complications in theory and only the

manipulation of the aligebra will be cause for any difficulties.
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Introduction

The problem of finding the number of representations
of an arbitrary integer by a given binary quadratic form has
yet to be solved in complete generality. In the two centuries
that have followed the first general investigation by J. L.

1) of any part of the problem, the investigations have

Lagrange
proceeded in two directions. A great number of specific forms
have been considered individually for which more or less
general solutions have been given. Again, certain gener=1l
investigations have reduced the problem to more simple and
direct questions. The early investigations of Dirichletg)
and more recently those of Pa115) are of this nature.

In the discussion to follow we offer as a contribution
to the general problem, the general explicit expressions for
the number of representations function for all forms whose
discriminant is such that there is a single class in each
genus. For the original suggestion of this problem and for

continued advice and encouragement, the author wishes to express

his deep appreciation to Professor E. T. Bell.

1) J. L. Lagrange, Recherches d'Arithmetique, Oeuvres t III
p 693 - 785.
2) G. L. Dirichlet, Zshlentheorie, ed. 4 (1894), p 229
3) G. Pall, Vathematische Zeitschrift, v 36, p 321-343 (1932)



In our terminology and notation we shall follow closely
those of Dickson used in hisjg;auction to the Theory of Numbers,
We are concerned with binary quadratic forms (zx‘+bx; +<Jﬁ desig-
nated by /[« 4, ¢c], of discriminant -4-4°-#<c, and shall examine the

form of the number of representations function
A/me:axafbxz +C;Za/

this being the number of solutions in integers, x and y, of
<L

o = p’L’Xl1"/OX0“Z ;-Cy

If a, b, and ¢ have the common factor A,
2 b < ¢
/V/ﬂﬁ :aXLbej +c;71] = g oF /\/ZM/): T\QAX L 7‘<7]

according as m is or 1is not divisible by A . If no such factor
exists, the form is primitive, If <0, N/[rzax'rbxy .oy 18 in-
finite, and the form is called indefinite, When 4 >0 ax'rhxy rcy”
1s either always greater than zero, or always less than zero, 1i,e.,
elther positive definite or negative definite, there is no loss in
generality if we restrict ourselves to positive definite, primitive
forms, All forms hereinafter mentioned will be assumed as such,

Let

X = «f r By vy = xS + S

be a transformation whose determinant has unit absolute value,

which replaces the form
axl45xg +c772 ,{3)/ //El '*/357r 57"-

Two such forms are called equivalent and all equivalent forms are



sald to form a class, Clearly the discriminant is the same in
both cases. Because of the restriction on the transformation,

we have further

/\//M*ﬁx-/-/j/ry-fcyij = /\///"‘7_ //52/55477‘ C/71]

In view of this it is convenient to choose one form representa-
tion of the class, the reduced form, A form [«4 <] 18 reduced
1f -a<éxa , c2a with b20 +f c=za . It 1s unique.

We shall base our investigation on the following theorem
of Dirichlet:
Theorem 1,1

Let m be positive and prime to 4 . The number of representations

of m by all the reduced forms of discrimlnant -4 1is w«w ) (-a/y),

A frm
where w:=24,% w:4 0:¢ w=¢ 43 and (-2/y) 1s Kronecker's

symbol,

If there existed invariants whereby we could determine
whether a certain integer could be represented by a certain re-
duced form, we could proceed with the use of them and Theorem 1.1
to obtain the complete solution of our problem, The only known
quantities associated with a particular form, invariant in that
they are equal for all integers represented by said form, separate
the forms given discriminant into genera which may or may not co-
incide with the several classes, These invariants, the so=called

characters, are defined by the following:

&



Theorem 1,2

If f,p - are the distinct odd prime factors of 4 , then

(«/p.) has the same value for all integers n prime to 2.4,

represented by a form [z 4 <] of discriminant -4 . When 4

is even, 4 --#,, the same is true of

é - (_/)_5(41‘/) /f 0 i G (naa/ ‘/}

gl B
6:(‘/) ’i/ /0 = @ o r 2

S ¢ ,\/ D 0 or ¢ (mod 5)

iy

Lomad ¥

1y

We shall use the notation (. for the set of characters

for a certain form, excluding s¢ if both $§ and ¢ are char-
acters. The notations (. and ( (~) are to represent the value
of the characters (. for m or for the form representing m,

All forms of a given discriminant whose characters have

the same value are sald to form a genus, Since equlvalent forms

represent the same numbers, all forms in the same class are in
the same genus,

When there is a single class in each genus we may proceed
using these characters to glve the explicit form for the number:

of representations function for integers m prime to 24 , If
[«, 4,c] represents the integer s, Theorem 1.2 states (. /)= (. (s)
as a necessary condition that m be represented at all by [«, 6, ¢ ].
Since we assume a single class in each genus, each reduced form

has different values for the characters. Hence by Theorem 1.1

we obtain



Theoren 1,3,

—a<-7

Let (246 c] be a form of discriminant, such that there is a

single class of forms in each genus, with character

C .

A o

If m is an integer prime to 2 4

N[ =ax? 7‘/7%/‘} + c;;“]

k. ,
_ T C. la c.(m)} S (-4 ]y)
= % N At ) | S, (-4ly

GE L ,4///»1

Before we proceed to derive reduction formulae for the

number of representations of integers not prime to double the

discriminant so as to apply Theorem 1.3 to the complete solution

of our problem, we shall make some general remarks on the set of

discriminants of forms of which there is a single class 1in each

genus, Since we are restricting ourselves to forms of such a

dlscriminant, these results may prove useful,
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Chapter I.

Discriminants with a Single Class to a Genus

It is known that the number of genera is equal to one
half the number of characters, (. , for forms of a particular
discriminant, Further, it is well known that the number of
classes i1s the same in each genus. Hence the question of the
number of classes in the genus is closely related to the class-
lcal class-number problem. Following the analytic methods used
in the study of this latter, S. Chowla has shown recently that
the number of discriminats such that each gerus has. a specified
number of classes is finite, Although this gives a certain qual-
ltatlve satisfaction, yet it gives absolutely no light on the
question as to just what particular discriminants have the spec—
ified number of classes in the genus. |

Rather extensive specific lists of this nature have been
given and all evidence points toward the conclusion that many are
complete, In particular, it 1s an open question whether the known
lists of discriminants with a single class in each genus are com-
plete, although i1f there are others, they certainly must be very
large.

In this connection we shall extend the known tests for
there being a single class in each genus, and also glve some con=
clusions regarding the elimination of discriminants satisfying
certain congruences and also those whose factors are of a peculiar

nature.



As a basis for our investigations we use the

Theorem 2.1

A necessary and sufficlent condition that there be more than a

single class of forms of a given discriminant in each genus 1is

that there exist a reduced form of said discriminant [« 4, </

with ¢ >« »>b >0

The sufficiency follows directly, since if [z bcl , c74>” 670
is a reduced form, [«, 4 <] is also reduced, represents the same
integers and is hence in the same genus. The necessity requires
a detalled examination of several cases and as we do not reqguire
1t now, we postpone its proof.

As 1t stands, thils 1s scarcely convenlient as a method to
test certain discriminants, inasmuch as it requires a more or less
exhaustive consideration of all reduced forms, It 1s certaln in
this respect, however, that having definitely listed all reduced
forms, one can tell by ilmmediate inspection whether there 1s more
than a single class of forms in the genus. On this account it is
essentially the final test that is always required. However, in
order to make preliminary steps slmplér, we derive from Theorem 2,1
several direct tests. .

Using the}sufficiency in Theorem 2.1, Dickson obtains tests
for odd discriminants which we state for reference. Write 7, = [a-Gill},

then for positive integers, k, ]Q must be a prime p, its square p2,

9 2 . - =18

— [} g
or, also, 7, <3p, 3,073 : 7, =58p, 8 0or 5, T, =2 7p or 77 ;

[ 3, o g9 , ete, Here as elsewhere we assume all



primes to be positive,

The corresponding tests for even discriminants are similarly
stated, Write s, -/4 +/’., We list below for successive integers,
k, the S, which are eliminated by the corresponding reduced forms
satisfying the sufficient conditions of Theorem 2.1 or its equiva-
lent interchanging a and ¢, and summarize the resulting necessary

values for For S, we glve the details of deducing these neces-

‘4 *
sary values of @4 that there be a single class in each genus. The
argument in the other cases is quite similar. We let (r,s,m) denote

the greatest common divisor of r, s, and m

G, =ws , vrs2d fen s,2)ed, [, 3, 8]
S,:Q‘, 4 o5 [¢,¢. 2% ]
5,:,25, [,9 7]

Hence Sq must be a prime p, p2, 2o, 25, or 24.
S, = ves, s, (v, s y)=t, L7 4 S]
S,z dem o, o2t [3, 2, m-+1]
Y [s9, 72, 257" 4]
52::25/ [ &, # o571
8¢ = 2 Js, 2. 7/]

Hence S, must be a prime p, p?, 2p, 4p, o4 9% or 26,

(1) S, = Yo, sz (7s )=t 7 & &7

(8y &, =dmm , = 26, &, ¥ ==r]

(3) S, =#m, = odd >3, [# 2, m-2]

(4) s, :32%, ko3, [v 2 32°1/]
(8) S, - o Ao [,s«/;e,:zé”’/J
(6) &, :2'3%, foot, Jaz 23, 2'3£d¢,]



7y 5 :3'4, A 75, » [.27//2/(3£—3T/]

g

(8 s, =z 2.3 [7, 2 2a]

3 /

-
() s, = &, [5,2,77]
We consider exhaustively the possible forms which Sz may take and
refer to the numbered cases above to eliminate certain forms. Let

83z - p.n where p 1s the smallest prime factor of Sz, then n > p or

1l

n-1, Ifp >5orp 5, 83 is eliminated by (1) or (2) respect-
ively unless n =porn =1, Ifp - 3, let n = q.m where q is the
smallest prime factor of n > 3 if such exists, Then according as
Q> 5o0rq -5, we eliminate by (1) or (2) unless m =1, If no such
q exists then Sz = 2K,3J, and when k » 2, J > 1 we use (1). For

2 consider (3); k =1, (6) and (8); ¥k = 0, (B8); J = 1, (4);

0, (7) and (9)., If p = 2 let n = Q.m where @ 1s the smallest

k
J

odd prime factor of n if such exists, Then according as @ > 5 or

1

I

= 5 we eliminate by (1) or (2) unless m =1, 2, or 3, If m= 2,
we use (3). If m = 3 proceed as when p = 3. If no such @ exists,
Sz = 2% and we apply (5).
Hence Sz must be a prime p, p2, %p, 3p, 6p, 2%, 35, 3%, 25,3, or 2.35,

54 & T S )“')b)é{/ {7,858, ¥} % #, [+, ¢, 8]
S, = 7om , m 2 [7, ¢ m-/]
¢ = Sm , o m 28, mFE K Is‘lﬁ/m—aj
¢
8 4 == BT
C = 3m , #7278 [3. 2, m )|
' A
-/

g% h o2 de,Q%/Qﬂ +7]
&, = .

. L 77, /3, #7]
34_ 21,
84 = 210;‘ [r0, ¢ 72]

S4 = o9 [ s, ¢, /1]



Hence 84 must be a prime p, p2, 2r, 4p, Sp, 2.52, 3.7, 25, 26, 27, or 28

§p = -5, rrsrie, [(rssw)=2, L[7 79 4]
o = o n ? 7 F s0 [7. 4, »-3]
5.5,-’—? 3/)’(, a5 > A 23 3 o =g
de.—-: 5,/}/1’ n add )7/ [é)/ F o —,2]
s ¥ m, m oodd >7 1#,2 wm=g]
§o = &2 kh 23

AT J&, 2 2%7°-3]
§p= ak A > -
3 ’ J ZA/,Q/ ‘2/4"J~(3]
£ffzg,5&,/4 73 42

4 7 [.2‘5',.,70/,?'5 +3]
§ o 2 S , /l et b-2

s ‘ [925/.20/ J # &
S== ¢ [ ¥, + /3]

Hence S, must be a prime p, p°, 2p, 5p, 10p, 2%, 25, 52, 25,5, 2,55,
2.3, 3,7, 25,3, 35, 3.11, or 22.7,

To prove the necessity in Theorem 2.1 we must exhibit all
the reduced forms occurring when there is a single class in each
genus and show that when other reduced forms arise, giving more
than a single class to a genus, they must be of the form stated.

In addition to accomplishing this purpose, we will have available
for later reference the explicit reduced forms for the disciminants

we shall be considering,

The original definition of reduced forms allows, in addition

to forms
[a b ¢l ¢ r>a»b2d o 4- P a »=h 5 @

only the three possibilities

[a4 ¢ ¢ crazo; [aa c] crave; [a b, ,al arboo
For these we have respectively

A = Ya c , /J:Q[?{L‘a) p // = /Qa»ﬁ)(o?dcv‘é)



o O

Restricting ourselves to these three types, we shall show that
except 1n some cases where it is already known, there are more
than a single class in each genus, and that all these possibil-
itles give exactly the same number of reduced forme as there are
genera, Hence when there 1s only a single class in each genus
they are all the reduced forms and further when there are two or
more reduced forms to a genus, among them must be at least one
satisfying the conditlons of Theorem 2.1.

Let the discriminant be odd, then A -/ (»<J #), Write
J=Xq with A<« ; from 4 =-/(-/ ¢) we have A +1«z0/(med ¥),
There can be no reduced forms Ja o <] since /A 1is odd. For [a « c ]
we find the single solution of / -«(¥c-« )= A« satisfying ¢ >« >0
and )< 4 to give the form [x, A, “+] with the restriction -« 23\,
Similarly, considering [« 6 «], we solve 4= (o«-4)(24+4) under the
conditions >4 s 0 to obtaln the form [*+% %", *27] with 4 <34,
Now, 1f / 1is a prime or the power of a prime, the only primitive
form among these 1s obtained when A-/ <-4, 1.,e.,, the principal
form i 4

[, 7, sl

If /. contains, say k, distinct prime factors, we obtain primi-
tive reduced forms in addition to the principal form by separating

/) into all possible co-prime pairs A and 4 and using

A+ ) A+ < = A {};*/ﬂ]
[}\, A, T ] v [‘f = b

7 ’

according as v 242 or v 5 JA,

This gives 1in all c2£” reduced forms, being the same as the number



of genera,
The following, relating to odd discriminants stated by

Dickson, is important for later consideration:

Theorem 2,2

When A 7-/(mods) there is more than a single class in each genus

unless 4 = / or /S

Let A=¢4-,, then /, -2/ and Dickson's tests exclude
all but k =1l or 2, 1,6., 4 =7 or /&
The known odd discriminants glving a single class in each

genus are listed with their prime factors:

3 99 = 3°.11 435 = 3.5.29

7 115 = 5.23 48% = 3.7.23
11 123 = 3.41 555 = %.5.37
16 = 5453 147 = 3.72 595 = 5.7.17
19 163 627 = %.11.19
27 _ 50 187 = 11.17 715 = 5.11.13
35 _ 5.7 195 = 3.5.1%3 795 = 2.5.53
4 235 = 5.47 1155 = 3.5.7.11
51 = .17 267 = 3.89 1435 = 5.7.41

67 315 = 3°.5.7 1995 = 3.5.7.19
75 o 7.5 403 = 13.31 Z00% = 2.7.11.13
01 = 7.1% 427 - 7.61 3315 = 3.5.13.17



Let the discriminants be even and 4=7(=-4 /c) , then
D=3 (moed ), 80 & 1s the single even character., Write 2 = 714
with A<+ . Reduced forms [2o <] Will be /i o.]. For primitive
[4,4 c] we £ind the single set 0f / = alre-u) - 714 satisfylng ¢ »a o
and A<+ to glve the form [2», 21, 2%] with the restriction .« > 32,
Similarly considering [« b «], we solve A = (24-4)(2a+b) = 4 p.
under the conditions « 24 20 to obtain the form [ﬂi”f-, Ty };MJ
with 4+ <31. If 4 1s a prime or the power of a prime, the only
primitive forms are obtalned when A-/ and ~- —;/;' , &ive the principle
form

Ay # 4

[0, 4], «nd [22

When / contains k distinct prime factors, we obtain primitive
reduced forms in addition to these two forms by separating 4/, into
all possible co-prime pairs A and ~« and using

[ A, o0 «]
an d

At At R
[an, ax, =2 | B -

according as .4 23)or 4<JA,
This glves in all zk reduced forms, belng the same as the number
of genera,

When 4 = & (mod/é) D=3 (mody) 80 elther ¢ or &¢ 1s
the single even character, We write 4 - )4 and observe that no
reduced forms [« a <] or [« 4« ] exist by examining &), - « (vc-«)
and sy = (2.-4) (22+46) respectively. This leaves reduced forms

[A, 0 24] @nd [2A,0 «] or [« o 2)] according as 21<«u or A AT



©

obtained from I[«, o c] with c>2>0 , When 4y is prime or the

power of a prime the two reduced forms are

[//0’ Al/y] 2w [;/a/ ‘d/x]

When “/s contains k distinct prime factors, we obtain primitive
reduced forms in addition to these two forms by separating </s+ into

all possible co-prime pairs A and -« and using
[)\/ o, 2.4 |

and
[2/\,0,/'{] o " [/‘1,0192/‘\]

according as 4/ <M or 2174,
This gives in all 2k reduced forms, being the same as the number of
genera,

When 4 =/2 (med i) 0= 94+3 so that S, =«(4.,), there are
then more than a single class of forms in each genus for all such
dlscriminants except 4 -/2 25 ¢o . The reduced forms for these

cases are given in the tables,

When AZ=Z06 (mod/i), o,:gbﬁzé+/g hzo2. For h2¢, S, = //[Q”'?24#04,]

s0 there are no discriminants with a single class in each genus ex-—
cept when /4-v and 4 :0,/,9 7 . For h=2 o,- 5(4=+/) , hence
excluding all cases except A - o,/ 3 7 . The reduced forms for
these cases are given in the tables.

The case + -3, that is A4 =32 (=4 ¢7), requires separate
treatment. Here 0= o (n.J/ ¥) so that & and ¢ are the characters.
Write 4 =92 A+ with A<+« . Reduced forms [a o c] will be [a,K6 o, 5« ]
and [« 9, s2] op [&A, 2, ]
according as < &4 or w264,

To find the primitive reduced form [a « c], we solve $2 A4 = aldec -«

iz



to obtain the roots « =7A Cc=2u4+d a=82 c=w +< ) gatisfying
C>@20and A« , whence the forms [7)A 4} Ru+ ] and [51, 5, s 2]
with the restrictions 2« >3 A and _« > ¢ A respectively.

Similarly, for [z 4 2] the equation 32 A « = (2a-b)(2a+ &)
under the condition « 24> 0 has the roots a =A4+2« A= fu«-22;
a= A LA, /0:9/“'7},‘“:0”"’/“, b = Y22« wnence the reduced forms
[M#r2a, 22 d A pda] [2X 2, 2e-yd, 20 pa] [ad 2, A-2u, RALu]
under the respective conditions 4u< 3N 2ACu<C e, o< Q1

1f /\ is a prime or the power of a prime, the only primitive

forms are obtained when A\ = ///t = %;z There are two or four

according as « =/ or _« >/

[+, 0, §«] , M2
[611 9/, Q/M-/-/] /(/( |
[%/,0,/]// >¥ o [, 0, 5] /<u< ¥

[g/, g ur2] w6 o, [Hra qu-d _wsa] I<uc<

If L%;\ has k distinct prime factors, we obtain primitive reduced
forms in addition to these four by separating A/a; into all

possible co—prime pailrs A and ~ and using the four forms

[x, o g«
[, 0, 2] <A, o [§A, 0, x] _u«>g)

[43 92 2urd] 243K, or [Ar 20, 2a-ad Avza] 2u <32
[ A, &4, ardd] _u ¢ or [201m, 2072 200u] 22 gu <l

or [2A e, ¥2- 20, 2Apu] i< 22

4+
This gives in all d 'reduced formg, being the same as the

number of genera.



Thus we have exhaustively considered all types of
discriminants and have shown by actual exhibition sufficient
reduced forms to account for each genus in every case where it
is not shown definitely by the sufficiencies of Theorem 2.1
that there are more than a single class of forms to the genus,
which reduced forms include all those not covered by the
conditions of Theorem 2.1, thereby proving the necessity of
Theorem 2.1.

For reference we list the known even discriminants with
a single class in each genus according to the above division by

congruencegs. When A = 4 (mod 16), /| has the values:

4 = 4.1 148 = 4.37 660 = 4.3.5.11
20 = 4.5 180 = 4.3.3.5 708 = 4.3.59
36 = 4.3.3 228 = 4.3.19 1012 = 4.11.23
52 = 4,13 340 = 4.5.1% 1092 = 4.3.7.13
84 = 40507 372 = 4.3051 1580 = 403.5-25
100 = 4.5.5 420 = 4.3.5.7 1428 = 4.%.7.17
122 = 4.3.11 5%2 = 4.7.19 1540 = 4.5.7.11
5460 = 4.3.5.7.13
When A= 8 (mod 16) and 4 = 32 (mod 64), we may set
/A = 8m and 32m respectively, where m takes the values:
1 11 2D = 5.7 95 = 5.19
3 15 = 3.5 39 = 3.13 105 = 3.5.7
S 2] = 3.7 51 = 3.17 115 = 5.23
9 = 3.3 29 65 = 5.13 271 = 3.7.11

When 4 = O (mod 16), there are only the eight values:

/= 16, 48, 112, 240;
/N = 64, 192, 448, 960
Finally, when /4 = 12 (mod 16), there remain the cases:

/= 12, 28, 60



With these tables and the reduced forms given above in
general form, we can write down explicitly the reduced forms for
any known discriminant with a single class in each genus.

In addition to an explicit knowledge of the single
reduced form in each genus and the factors of discriminant in
our later discussion, it 1s necessary to treat separately the
cases where the discriminant contains the square of any odd prime
as a factor. 1In this connection we state:

Theorem 2.3

If the discriminant contains as a factor the square of any odd
prime, there is more than a single class of forms in each genus
except for the ten known cases

/l = 36, 72, 100, 180, 288;

/ =27, 75, 99, 147, 3Z15.

In proof, let /\ be even and contain as a factor the square

of the positive odd prime g. Write A = 4q°(r.s — 1). Then
either r.s = 2h k, or we may choose r as a positive odd prime
distinct from g. In the latter case we consider the primitive form
[r,2]er - q/, sq2 + c(er = 2q)], where ¢ > O is chosen so that
g=c¢r +b, 0<b< r/2. The conditions of Theorem 2.1 are clearly
gsatisfied when r < sq2 + cler = 2q). If r> s8g2 + cler — 2q)
then r > q(sq - 2¢), and q < r, if sg — 2¢ > 0. But 9> cr - r/2
by choice of c. Hence sq > scr - sr/2 = ser — 2¢c - sr/2 + 2¢c > 2c¢,
¢ > 1, since scr — 2¢ — sr/2 > O follows from r > 3 > 4c/s(2c - 1);
and sq > 3> 2 =2¢, ¢ = 1. If q<1r/2, ¢ =0and 2ler-ql =29

< 892 = Sq2 +cler - 2g). If r/2<q<r, ¢c=1, r<2g< sq2,



2)ecr — ql= 2r — 29 < 8g°2 + r — 29 = 8q° + ¢ (cr - 2q).
Hence the conditions of Theorem 2.1 are always sat&sfied.

If A = 4q2(2hqk -1/), then [q2, 4q, thk + 3] satisfies
the required conditions when q > 3, k > 1; and h > 1, k = 1.
If a = 3 then Sz = 293%*2, allowing only the cases h = 1, k = 1;
h=0,k=2; h=0, k=1; and h=1, k =0; or 4 =180,
288, 72, and 26 respectively. When h =1, kX = 1 we use
[q + 4, 24, 20° — 99 + 36], q > 19, and eliminate q = 5, 7, 11,
13, 17, 19 since S; = 9.26, S) = 11.58, S, = 31.82, S, = 58.73,
81 = 38.251, S, = 3l.431 respectively. Similarly for h = O,
k = 1 we use [q + 3, 12, g2 — 4q + 12], q > 7, eliminating
a =5 and 7 by So = 8.15 and 87 = 5.59 respectively. Finally,
if kK =0, 8 =q2(2h = 1) +1 = 42" 2% + (1 = 4®)/4), n > 1;

and when h = 1, 57 = h° + 1, Ss = q2 + 4, so that 5 divides So

1+

for g= + 1 (mod 10) and 5 divides Sy for gq = 3 (mod 10), thus
excluding all cases except g = 5, namely, 4 = 100.

Again, when 4 1is odd and contains as a factor the square
of the positive odd prime g, we may write A ='q2(4 rs - 1),
since 4 = =1 (mod 4). Then either r.s = ofX or we may choose
r 2ag a positive prime digstinect from g. In the latter case we
consider the primitive form [r,|2 cr - dj, sg° + c(er — a)l, where
¢ > 0 is chosen so that q = 2cr + b, 0 < b< r. The conditions

2 4 c(er — q).

of Theorem 2.1 are clearly satisfied when r < sq
If r > sq2 + c(cr - q), then r > g(sqg - ¢), and r > q if sg — ¢ > O.
But g > 2c¢r - r by choice of ¢. Hence sg > 2scr - sr = 2scr

- ¢ —8r +c>c¢c, ¢ > 0, since 2scr — ¢ - sr > O follows from



r>2>c/s(2c - 1). When r > g, ¢ = O so that
J2cr - a = 0 < sq2 = sq2 + ¢c(cr — g). Hence the conditions
of Theorem 2.1 are again satisfied.
If A = g2(49% - 1), then [g2, 3q, g¥ + 2] satisfies
the conditibns of Theorem 2.1 wnen g > 2 and k> 1. If g = 3
then Tl = 5k+2’ and hence by Dickson's test there are allowed
only k = 0, 1, 2, namely, A =27, 99, 315. When k = 1 all
remaining cases are eliminated by [q + 2, g — 4, qa° = 2q + 2].
Finally, when k = O, namely, A = 392, we write
g = 6ém + € where € is + 1 or — 1 as the case may be, so that
A = 36m(Zm +e) + 3. Then To = 9m(3m +e) +1 =0 (mod 7)
when m = 4e or 5e (mod 7); T1 = 9m(3m + e) + 2 = O (mod 7) when

m = 3¢ or 6e (mod 7); Tp = Im(3m + e) + 7 =0 (mod 7) when

m=0 or 2¢ (mod 7); and Tz = 9m(3m + e) + 13 = O (mod 49)

when m = € (mod 7). When e = — 1 Dickson's tests eliminate all
cases except m = 1, namely, g = 5, since Tl = 3.7 and is
allowed. When e = + 1 all cases are eliminated except m = 1,
namely, g = 7, since Ty = 49 and is allowed. These give the

final two allowable odd discriminants 4 = 75, 4 = 147,
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Chapter II

Reduction Formulae

In stating Theorem 1.3 it was added that in order to apply

1t to the complete solution of the number of representations prob-
lem it would be necessary, among other things, to derive formulae
whereby the number of representations for integers not prime to
the discriminant could be expressed in terms of the number of re-
presentations function for integers prime to the discriminant.
The results needed here have been given by Pall, who derived them
and expressed them using the terminology and methods of the theory
of composition of binary quadratic forms, In order that our treat-
ment may present a unified completeness, we propose to deduce these
theorems with some extensions by more elementary and direct methods,
The essential part of our development will be based on certain dir-
ectly derived properties of the quadratic characters defined in
Theorem 1,.2.

In most cases, if (~ 4)-/and ¢/Z, then

Nlgam =axts bryeey] = K Nlmza'x®sb xy ey
where X 1s some constant, /[«, 4 <] has discriminant -4, and [a! 6] ]
has a discriminant derived from <4 by some prescribed method.
Before giving theorems of this nature, we require the result on
transformations of quadratic forms stated in
Lemma 1

If the primitive quadratic form «x' + 4xy rcy’, where A

a _ 4
is a prime > 2, 1s such that 4 -~7a< 0 (med A7) hz /e 2,




2

then there exlsts a transformation

X = af + Ba ';z=b/§°+547

A & By 5 )

such that

a.xlféznyyl = Z€Z+ A’g‘? ""E”"{?

where < = o Cdad A%) L &8 lmed &)

If all of a, b, ¢ are =0 (»¢d 1), the form is not primitive

and so not considered. If «= o0 (mod A)and c= o0 (med A), then since

ba— Yo c = 0 (mod A) b = 0(77104/\)/ A prime

reducing to the case mentioned.
Hence for all other cases we may, without loss of generality, choose‘

cFo(medA)

Now 1f @ = 0(mod ), then b = 0(mod M) and h=0(mod 1), 80

b*=0(mod A Hence, since b-7ac =0 (mod A%) and c#o0(med A))

a=00med M), 1¢ h=0(md 1), °=0 (mod A*)ana @ =0 (mod 1Y)

Therefore, 1f either « or b=0(mod A) @ =0lmod A%)ana b=0(medd )

in which case we use the identity transformation,
If a, b, ¢ are all # 0 (med A) then we must have

a,ocl+ /)o(a/fcz(lf.—‘_-‘()(wac/)\)/ ant/ O{_S—ﬁa/_:/

5(5[77;05/ A)
(Qadv-by)l*(yac‘bq)yi

7 =
AL ual + huy Ty’

"fazdlv‘ 7@1)0(3/ r(/acb/l_
(o?aa+/oa/)lfo (mod A)

since 7ac-b = 0 (mod \) , but since A 1s prime

Ja_o(+/aa/ = 0 ('nzoe/,\)

Conversely, 1f da« + by =0 (mod A),



)
\

Ya (ax® + boay +cy’)= 0(mod 1)

and since A is a prime 2 < and « #0 (med A),
a ot F by ey ro(med 1)

so we wlsh a solution of

Qe + by =0 (mod A) & yEy o/
Take y - / ; then since the 2« and \ are co-prime, « may be
determined.,
Then 3=« -/ , So for all § , ,7 is fixed. Thus we have a
solution and these values give a transformation which reduces the
case to that where « =0 (m-41) considered above.

When A 1s an odd prime dividing takes two essen-
tially distinct forms according as A /4 and A/ 4. These results
are incorporated in the followling:

Theorem 3.1

If A/4 , )\ an odd prime, and A / Z, then

/V[/\M’/M ax*f/ar; + cﬁ;"] = /\//m = x by fc;“]

4///\4” = axlrf”/a”xvz :7‘- Céy&j "?/\/ZI/M =2 %‘/X*vfélxaz fC,;Q]

P

L

where Ype - b = A = A = Ta’c' b’

By lemma 1
/V[/\Jm = ax'rhbxy fcvvz'z]

e /\/Z/\&m = c},g + Af;tfr/ f—c-/}7 ]
where & = h 20 (mudA) ¢ fo(mod A), Hence » < ¢ (med 1), but
2,5250(m4J/V) 80 f:EO(MdJA).‘Therefore n=dy, £ =Ax and

/V[Al/’fiaxzf /3)(21 +c;‘j
= /\/ZM = ax r b x y ~/—C_;2]
Also by lemma 1



/V/)\M :axaf-/f)xoy +C{;y'2]
:/V[Am = quf‘gg/»? +Z/7'1]

Whereafng_U(ng}), C 20 (mod /1). Hence /750(7,700//1). If we put
« =Aa |- Ab'yn= Az, then
- / ~ = ! ) N ’ o /\A :
/V[AM:Q$Q+AE,7+C,,72]:A/[ a' + Ah £z cz]
where #a'Ac-A 4 =tii-L =%..-4% . The theorem follows by suc-

cessive appllcétion of these results:

Theorem 3,2

Ir A /4 , A an odd prime, then
NN e = ax* +hbxy fc;fl]
— A/[m = a' x" *5/7(;7 # C’;‘/R]

— /
where Ya'c'- A —= /2%

/V[)m —axt by roy® (,m,/\)'-/] = )

By lemma 1 p
/\/[}\m:ax 'rb'r; '#c;] ,/é/)o

e N[N m @ X f by r

where @ =Aa’, b =14 T 20 (nod)), so
/\,{m = Aalxte A blxy +C y"
which requires x=¢ , y = A, . Hence
/\/3/}7 - L /\1/0/5/7 . /\25/%
so if 4 -, and ~-.~ is prime to A , there can be no represent-

ations and when % = <

Y 45’ * )é 4 e Q
M = & 7 é° oy
) = P A
Also dales o ,é / = o ;c\z,; & _,’i)i == gL



Hence the theorem follows.

As might be anticipated, the number of representations
for 2n requires specizl treatment. Before proceeding, we recall
that our development 1s being restricted to cases with a single
class of forms to a genus. In theorem 2.2 we shdéd that if
A4 ==1 (mod 8), i.e., if the diseriminante were odd and yet some
of the coefficients of the form were even, there was more than a
single class to a genus unless /A = 7 or 15. These cases we
consider separately in

Theorem 3.3

If [a,b,c] has discriminant -4 = -7

N[2km=aX2 2

+ bxy + ¢y©, m odd]

=(k +1) N[ m=ax* +bxy +cy2 ]

If [a,b,c] has discriminant -4 =~ 15

N[ 2Km = ax> + bxy + cy2, m odd]

—(k+1) N[m=a'x" +b'xy +c'y° ]

where [a',b',c'] 1s in the same class with [a,b,c] or not

according as k is even or odd.

When /| = 7 the single reduced form is ([1,1,2]. Hence, if
on = x° + Xy + 2y2, then x(x +y) = 0 (mod 2) so that
x =0 (mod 2), x +y =0 (mod 2), or botﬁ. If we make
replacements according to the scheme: X even, x — 2X, ¥y - ¥;

X +y even, X7 = X +y, ¥y >X +y; xand X +y even, x> 2x,

y - 2y, then we observe that



a

NIam =x* +rxy +»25°]

/V[m:xz+?<;+o?yl] X evey

1l

. A/[/n = X +XY 7"2}2] e X # o  eves

/\/[m = Q[XIJ-X}/ +o2;2)] , x amd Xty evewy

setting m:fz%m, - 0dd and repeating the procedure, the result

follows,

When A = /s the only reduced forms are [/ /. Y] and [2, /2],

If
Lo T X'?f?cgf ” ?/;x . X(xty) 20 (mod 2)

and X 1s even, or *+3x 1s even, or both are even. If we make

replacements according to the scheme, Y even, x—7ix v > v; x+y

even, X 7 -2x-y vy >y ;X awd X+ 3 €Ven, x >2x y - 2,, We observe:

;
/V[.,?m = X 2y 7;(,‘]

= N[ = 2x" # {;fo?yyl] ) X cven

» N [m —_,,zx‘,u,‘,yz f;zoy‘j , X+y cven

N[ = (X oy f%df)]/ X and x vy evey
If, however, <~ = 2x' +xy . 27, then Xy =0 (msd2)and X 1is even,
or y 1s even, or both X and x are even. So, if we make re-
placements: X even,Xx 7J, 7 X, j €ven, X7 X y Z2y; X and

J even, ¥ six - -2, We observe:
/V[“Z/H :ol/\"’lf)(;(f;?yl_] ‘
e N [mo=xTErxy 7‘;‘/ X cvey
//I/[Mz)()f*\'; 7‘7‘774] % ecve

"/l/[ﬂ/[:;l(a)QL/'/\’;/—o?Jl/Jl x amd ¥y evey

4
Combining these results with # =2+, ~»= 0dd, the theorem follows.



When /4 = 3 (m<<4 &), that 1s for all other odd discriminants,

all the coefficlents must be odd, so the reduction theorem takes the
form:

Theorem 3.4

If A = 3 (mod &)

Nidde = ax v bxg +cy® p odd]

Since / 73 (med %) a, b, and ¢ are odd; therefore

Q;\’sz“{;fc;q = )(‘/‘“{;1‘7‘;1 [»,acf:l)

so that 1f x and J are such that

¢ !

Y
then \’l—/- ‘Lgy / ]2 G (7)4»:/ ,,2)
or (}/;)l,, t; — o ("mao/ o&)

Soxry and *xy are both odd or both even; but 1f > 3y 1s odd, x
and Y are both odd and x * y 1s even, Hence ~y and ~~+  are
even, 8o that * and  are both even x=2%,6 7 =,

This requires
ax e hry eyt 20 (med ¥

and by a successive reduction the theorem follows,

For even discriminants it 1s convenlent to make a separa—

tion into two types according as:

A E ¥ ar & lvod R, am d A = €@ o» f3 (wod 7€)



In which connection we state:

Lemma 2

A’ quadratic form [a,2b,clhas discriminant -4, 4

4 or 8 (mod 16)

if, and only if, ac=2 or ac=2b + 1 (mod 4); or equivalently if,

and only 1if,

or

When 4 =
When 4 =
Conversely,
When

a=1 (mod 2), c = 2 (mod 4);
a= 2 (mod 4), ¢ =1 (mod 2)
a=1 (mod 2), ¢ =1 (mod 2)
a(a +2b + c) = 2 (mod 4)
4 (mod 16), b2 - ac = 3 (mod 4)
ac:b2 + 1
=1 = 2b +1, D even
= , b odd
8 (mod 16), b2 - ac T 2 (mod 4)
ac = b° + 2
=2 , b even
=3 = 2b +1, b odd
when ac = 2 (mod 4)

/l = hac - 42 = 8 = 4b° (mod 16)
= 8 , b even
=4 , b odd

ac =2b + 1 (mod 4)

A = bac — 4b° = = 4b2 4+ 8b + 4 (mod 16)
= 4 , b even
=8 , b odd



Thus proving the first part of the lemma.
Then, if ac = 2 ( mod 4)
a =1 (mod 2), ¢ =2 (mod 4)
or a =2 (mod 4), c =1 (mod 2)
and the converse is obvious.
Again, if ac = 2b + 1 (mod 4)
a =1 (mod 2), ¢c =1 (mod 2)

so that

a +c¢c:==ac + 1 (mod 4)
hence

a +¢ =2b +c¢ (mod 4)
or

a +2b + ¢ =2 (mod 4)

and finally
al{a +2b + ¢) = 2 (mod 4)

Conversely, 1if
a =1 (mod 2), ¢ =1 (mod 2)

then

a(a +2b +¢) 2 (mod 4)
implies

a +2b + ¢ = 2 (mod 4)
or |

a +¢-72b + 2 (mod 4)
but since a and ¢ are odd, this is equivalent to

ac = 2b + 1 (mod 4)

Theorem 3.5

Let [a,2b,c] have even discriminant -4 . If A= 4 or 8 (mod 16)

1\

W e = ax sl bny vey'] = Nfm

‘Jé%zv‘- Qb'v;, 7—50"71]




Ir /A = 0 o /2 (mod /€

a2k =a

/V[JMW = ax® r 2bxy +C;72] = N[ s @k s b ay +<;7‘]

where [« 4 <'| has discriminant "A/f .

We consider separately the two cases:
I. One of a and ¢ o0dd, the other even
II. Both a and ¢ odd
Case 1

Without any loss of generality we choose « =/ (mod 2)
¢ =0 (med2)  Then

2

Yoy = ax' +dbxy+ cy?
?Xl (’7’}’(1)(/ 92)

so that x -2£, Hence
S = Faf + #bEy + g
Now if 4= ¢or 5 (mod /¢) , that is by lemma 2, if c= 2 (v od )
Tom 2 247 (mod #)
so that y =<~ . Hence
i 2wl E AEE e wm”

/VZVWH s a X +2b vy * c’;,fz_} '—/I//Z”"”" sant s ”é/)x,] * Céyl]

However, if 4 =0 /2 (»ud /¢) , that is by lemma 2, 1f c=o(med 7))

then iz .

/

e = a b "/Dg;—/ v <y

N [ S = ar® + by 4 e ]

e

and
/1/2/744 TQVKI‘F /Jl/\Oy '/C'véyz‘/



where ® ' = L e A £% == W ¢

Case II.

The biunique transformation: Y = ¢ *~ Al

2

replaces e xtr 2abkxy t+ g
by 5751 4 ‘,z/,vg»7 v ey
where - g~ «@ b = w + b ) & = mer ab ¢+ e
Since a =/ (mad 2 ) ¢ =/ (mod az))‘
C = ar abd + ¢ 20 (mod 2)

Thus we reduce Case II to Case I.
When 4= 7. & (=.d /¢ ) , then by lemma 2 C = atdbrc=20nd ¢);
and when 4 = 0 o /2 (mod /6), C = a+2bvrc=0 (msd 7)

Thus in all cases:

When A =9 or & (mod /6

A/[flfwz —'—52_(1—/—4267(;1 fc;z]“f/VZMT:uXJfQ/ox; »/-50—21]
When 4 = © or /2 (mod /¢ )

] / £y ¢ / . ¢« Ay

A/[yM:a)(L/L"l/)/(;Z +C;1J B /Z/Z/nq == a X fﬁx;fc y//l,_ /74]

The theorem follows then by mere repetition of the above process,
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Theorem 3.6

Let [« 24, <] have discriminant -4, and let m be an odd integer;

then:

If A = 7 o & (mod /¢ )

wx 4 2bXxy 7 C(;?PJ

~
~,
o
3

1]

— /)/[/m:a/xz #»2/9/9(07 +c’07‘]

where ac-b =a'c'- 4"

If A =0 o> /2 (~-med /¢)

Consider first the case where a-c¢c i1s even, Without loss

of generality we set a odd and ¢ even, Then

02_/’41 == Q?(l-‘fol/i'?(; -+ c/;yzé’—' XL(%zuc/c?/

go that x=2¢ and

X

m/;:a/g 7 o?/ég;\z r c./o}r

RS

/

where «’ = 2. Bt=hk_ ezt
Now when 4 =#oc, % (mod /¢) by lemma 2 c =2 (mod ¢ ), c'= 7/ (ed 2

so that
N[%w:axzf&bx;+¢;']

e /]/[/7/»[ ::d/’{l} aZ/é/)(;/ _{_C;;z]

. . @ ; )
Where A £ = A &2 ode L F ‘;1/_ c - b & - Wl /S

2

When A =0¢ .- /2 ( mod /6 )by lemma 2 ¢ =0(mod ¢)y ' = 0 (omod 2 )

so that
/V[QM ::C({ZJ- 02/5;\/;7 'f(;ylj

/ z

—:/V[W:a?t 1-»2[:/.?(07—/5’071/7;0



When a-¢ is odd, as in the previous theorem, the trans-
formation x=¢ +- y =+ reduces the sltuation to the case a-c
even,

These theorems give the reduction formulae necessary for
the forms we are to consider., In order to identify the several
forms occurring in these formulae, we need some extenslons on the
properties of the characters as given by Dickson,

We generalize the statement of Dickson's Theorem 67 to read:

Theorem 3,7

&

[#,%, c] has the discriminant -4, A= #<c- kb ., If p. are the dis-

tinet odd prime factors of / , then the characters ./~ ) have

the same value for all integers n represented by a form of discrim-

inant -4, excluding those characters, (-/2/) , where ; /= . The
3 (met)

L)
same is true for the characters §$= (/)  ¢=-¢/J | 5¢ for 0dd integers

n,

In the proof of Dickson's Theorem defining the characters
and giving thelr properties, it is only necessary to shift the em-
phasis that n be prime to / , hence allowing a conslideration of all
odd prime factors of Z , to a restriction to conslder only charac-
ters corresponding to those odd prime factors of /L not dividing n,
The details of proof remain unchanged.,

In connection with the theorems to follow, we state:

Lemma 3

Let [,/ <] have the odd discriminent 4 --1/, If 1 1s square free

and
i 2

;\/m:axz—//éx;z ~,¢—c0‘7



there exist £ and -~ such that

A, :—.afl*ég”/’*‘“’f

By hypothesis L ST *bxo‘z*ﬂjl

so that Y a /\/,,,,_ 9/((27(1 —,»Va’/a”kyz # {/c‘zc;‘

2

— (2ax + b;z)‘\ + Aoy
g: (Aax + /50“1)1 + A, A, K .
and similarly ¢ c A, ~ = (ucy + ba) + A, A, x1

Since A, 1s square free, this implies

/Djk—f.,?c;:/\/g , La £ + /:;(——*/\,/‘7
to determine § and -, but T
~ A, x = bE + 20y Aoy = R«f v by
Hence A, }j o o oa (bE F Qtﬁm)L“ Ll Aoy ) (2a €t by
e (2eb F b))t
i (dae b2) (a&7 1 bE 4 4 < 42)

or A g ™ o« é‘c : #* b 5 % + & E

Lemma 4

Let /2,24, <] have discriminant -4--YA A If A, 1s square free and

/\/m —;—ccxzf.l/o7n; ﬁc}z

there exist ¢ and ~7 such that

Al P afcgl /’456/7 'ff“/7{

The proof parallels that of Lemma 3 starting with



2

4 dom = ax +hy) # A Az

2 R
Am = (cy+bx) + A4 As X

C

and using the determination of £ and -~ -
A,g:bX+cg/ —/\/7_:a7<+/a;

It is unnecessary to repeat detalls,

The characters of forms representing certain products of
integers occurring in certain of the above theorems are related
according to the followlng four theorems:

Theorem 3.8

Let -/ be a disciminant such that A=A« , 1 an 0dd prime and

(A u)=17. Then, 1f X, » odd, 1is represented by a form of dis-

criminant -/ whose characters are,C n is represented by a

4 9

form of discriminant -/ whose characters are ,C., where

C./\C, = L

”m P “

5C. being the value of the characters for the form representing A.

Consider first odd discriminant -4, let

Am = Gt s Buw F oow?
P ar® phrs o+ s’
2 2
so that YA = x + 4y ()
where ,
X = dawur r bus + Prv + dcuvs
'; em A § o HE W

If A=A«, by lemma 3 there exist « ../ v’ such that



Hence
g/u—mmc:x +L|;7

£z )
But (1) and (2) state
7/\/»’/”1 - 7(1(7’)100//9) . 7/(/”/”1 == 7(/‘1 (Wac/ /'a)

for all p prime factors of 4 .

Therefore

I
~
~
3
el
&
3
P

(X1 p)(m/p) (e /p )

1

i
S
™
9
~
N

pN-

(/U//"’)/’”//“)/”’"//o) = g

But by lemma 3 A and « are represented by the same form, hence
(X)) or (u/,) include all ¢ - and the theorem 1s proved for odd
disciminants,

For even discriminants the proof begins similarly. Let

A s =+ 2buv +ev”
o - a» o+ 2bhrs e
i 4
so that Y oo e = KX — Wy (&)
where
X - a ur 7+ b o s s b v + cuvs
;7 = A & - ¥ v

If -/0=)% «, by lemma 4 there exist «' omd v’ such that

2 2

P - awu' +2dba’'v’ 4+ cvr

Hence ) .
A e = x ' = /D;I (9’)

But (3) and (4) state

2

Amm EXZ(WUC//“) ; oo = X (maq//O)



for all p, odd prime factors of D.
Therefore

(X1 p)lmyp) o /) = 7 722 A

(/“//?’)(“M//D/(M//D/:// 2= A

But by lemma 4 A and « are represented by the same form,
hence (A/r) or (= /,) include all ,C . of this type.

Let O =3(xsd ¥), Then A e m K "3 ° (o o 5 J

but A , n, and m are odd, so that Awomn 2 [ (mod #)

whence X+ —/ = s (mod ¥) 80

£ 6v-r) [ (a-0d a1

(=) = (=) Clom ) = SCX) §ln)

/ICH(_C_

If O=2a(d5) then x 1s odd in (3). According as y is even or
044, A = #/ or =) A = £ (mod &)+ Hence Aiw‘?ﬂwyﬁdduy, but since

A and n are odd

& ok

/\MZ'—_: /\ #mz_/ :-/')4/1Z (77tar\/ /é)

L st ) L TeAL 1o
Hence (-1~ = (-7 Sl /1

Aewce

When 035((’””‘/3/), then /\/n/m =4 ve & At T os I (o o 5/),

-

whence A=, Fn® (mod /¢). For the first alternative
Slom) = S(A) S () o € (om) = € (Q) € (»e)

For the second

2T,

(_)MS/M):S//\)S/’V) (—) Lé(M) /:é()\)(‘[m/l

so that fo- bolh SUA) €(X) §(m) €(m) = §lo) € ()



1t DEO(moJf‘) /\mmfxz’:’/[mac/f)/ i o S(/\)g/’”):é/yn)

Ip D=0(medg) Amom=u" =/ (mod §) and €(3) ECx) = &lox)

Theorem 3.9

Let -/l be an even disciminant. If 2m, m o0dd, 1is represented by

a form of discriminant, -4, whose characters are, ( , m is repre-

sented by a form with characters _,( - where

7

zcﬂ'being the value of the characters of the form representing 2.

The proof follows the second part of theorem 3.8 for the
characters (- /p2). (That 2 1s even is immaterial dealing with odd
characters) .

Since m 1s assumed odd, we require A= 7o~ &(mod/c), (Theorem 2)
If AEEy/WOJ/g/,'g-ﬂM is represented by the same form as 2m by Lemma 4
and may be used in the manner of Theorem 3.8 to complete the proof

for even charsacters,

When A = #(med /c), 0= 3 (=sd 7) and as before 2m.-=x -/ 3", since m, n,

and D are odd, x and y must be odd. Hence x =y’ = / (mod &)
80 Do = /- 10 (med §)

But Qomm = dam £ m- 2 = 2om -2+ A (mod &)

so that Jm D = Zemo— Qmm = a (red 5)

and o B das A F R {55 g o é//

Hence (., %% ;) = _ () 7

But iig is represented by the same form that represents 2.
Therefore S(2) Slom) = §(o2m)

§ is the only even character here.



Theorem 3,10

Let 4m be represented by a form of discriminant, -/, with char-

acters , (.. m will be représented by a form of discriminant -4

or 4/, whose characters

for all 1 for which both exist.

For the odd characters, (~ /p.), the proof parallels that
of Theorem 3.8 replacing A everywhere by 4 and omitting mention
of « as unnecessary., If / 1s odd or 4 =/2(»+d/ /%) there are no
even characters, When 4=¢9., & (mod /¢) by Theorem 3.5 4m and m
are represented by the same form, hence all the characters must
be l1ldentical.

When A= (med 32), §, € and $¢ are all characters, but when
we go to “y two of these characters will no longer occur, leaving

one as follows:

$ /0 (moed ¢ ¥)
/
¢ N = P6 (mod i2%)
£ & A":dQ.(maa/ /Jé’)
We assume
Tom = au’® #2buv +ecv?
y Vead 37 Jc/(/
77 :o'cf’l-/—az/‘;rd ~c s

and as before fonm = = 4

Now, if AEO(”'OJé‘/), O =0 (mod 16)  4nd

2

7,”1”1 = X' == S mod /é)/ S/ nce e wmid ~ A e oc/c/

S 0 o 1 = A (Mue/ 9‘)/ /m_‘—‘m//woO/ ‘7‘)

and o] = & ()



I¥ 4= 75(”70(:1/‘25/)} ng/(mdc/ 32)
7 ot '_;XZ (mad & ) : (;76'/5’1

= X -¥ (mod 22) e odd

85 EHEE iew = & ¢ fwmwd %) , oy even er od d
ot = o (moed /6)
and €(m) = € ()
If A = 32 (mod /s28) 0O 2 24 (mod 3a)
Yoo oy =35 X° ( dvod 59) y cven

= X —2Y (mod F2) s odd

80 tvhat o m E & 3 3 [7>7ac/ 5/)

and S{W)C[mr) g é[n1)6(nz)

Theorem 3,11

Let 4 =2« , A an odd prime, If A ~« , m odd 1s represented by

a form of discriminant -4 wlth characters ,: ¢., m i1s represented

by a form of discriminant ~“/\* whose characters

C . = C

vt - /\ ;*w s

for all 1 for which both exist.

Let A =ax'r by tcyt

where ﬁ/dc —b‘l — - A «
By lemme 1 there exists a primitive form in the same class of

the form A=’ Al <. We may equally well consider this. But

2 / 2

)\&M e /\ 74 X f/\/o/ygvz {C/{;ZZ

2

implies y =)-, hence Al = Na'x? r Ab v + A ¢y



/ 2

and o o= a’'x" + b'xm o+ 'y’

Now the form [« 4,<'| representing m has discriminant ”‘9& and cer-
tainly represents all integers represented by [a,b,¢c] and its equiva-
lent [3'2' A <'], An integer prime to 24 , and hence also to Qfﬁ‘ , 1s
represented by both, Hence all common characters must be equal as

they are identical.



7 3

Chepter III

The Number of Representations Functilon

The explicit formulae for the number of représentations
function for all integers in the cases summarized above where there
is a single class of forms to each genus follow now in logical sum~
mary. These are given in the theorems below., We let s uniformly
stand for somé 0odd integer prime to the discriminant, -4 represented
by the form [«, b, c], Unless otherwise specified, k will stand for
the number of characters in any particular case as determined ac-
cording to Theorem 1,2, The connection with thlis k and the number
of prime factors of the discriminant is used,

Theorem 4.1

If LXE/2/1~/35¢-7 or /8 (mod /¢) and 4 >3 where the ,r- are

distinct odd primes, and [e 4 <] has discriminant -4, then:

/V[QA/O/#“‘_/:)‘%M = @ wt # /DY;*C;ZJ) (MI‘QA);-/J

£ .
) T el e e T o 0

s

By Theorem 3.4
A a(} o 1 2
/V[o? p e /aﬁ x/m = @R+ /ox? +C;7J
A 2 A 5 Py
e £t WA e e = ax®s brx s cx]

By repeated application of Theorem 3.1

oL

/}/[/)/dl‘ "/‘746’4/141 = a2 x° f-/:X; +—c;72]

= A/["”‘ = 62’/‘(27‘—/:-/231 +C’D’Zz]

where Ya''- 4’ = 75C._61 , and by Theorem 3.8 1f g is an o0dd integer



prime to / represented by [« 4, <]
C/‘. /Z) = 7}/ [C (/a )] C {s)

Hence by Theorem 1.3 the result follows.
Theorem 4,2

[
It Ad=p P = 0or/a(med /6), where 5,=2 ,6 =32 o- 3  and the

remaining ,°- are distinct odd primes, and [« b c]| has discriminant

-/l, then:

, 4 o, 3 :
N7 B B = & % # bxy +cy’ (o, 4)= /]

— {/ , WL (/9)] e /M)j 3 ags)
AL o

By repeated application of Theorems 3,1 and 3.6,
”[/D/ I/D_z 17 . /DAD%M s a;(l #- /D X(y 7= Loyz]
= N | o= a /a//\yz VC/yL]
where Ya'.’ /' - 4ac -4 and by repeated application of Theorems

3.8, 3.9, and 3,10, 1f q 1s an integer prime to A represented by
[« 6] <]

- 4
(. (g) = ,/),/ /(:A (/’J')] C.(s)

Hence the result follows from Theorem 1,3,

Theorem 4,3

If,4=/2ig-~/74d where »~, =2 and the ,°- are distinct odd primes,

and s, b <] has discriminant -/, then:




7S

NIRRT o B e = ax™ vbxy +cylilom 8)=1]

= = 77{/ c H ) Ct)Ctmr} S AL 4 2

e

= 0 «, =/

>4 o

= gis W{/ ¢ B feupl] G Clm ) ALe) 2a

et o

where (, 1s the character for /I , not a character for A/c/ .
By repeated application of Theorem 3,1
A/ [/D’a(t . .302»1

2 m = ax’ + bxy *C;‘Y
= N/ /a,d’m = a'xtr hxy *C}}Y}]

where #Ya'c'- 4" = 4uc-/" , and Lf « =0, q being an odd 1integer
represented by [ @, 4, <[

b =
C. (Z) = d/{ [ & //v,')/ el ad

and by Theorem 1,3, the first part follows.

If x, =/, Theorem 3.6 indlicates

N Lp o = a'x

Z

7“/9/'&; fC'/yz/'(m7/A)L‘/j;‘0

If X,2 2, Theorem 3.5 indicates

/V[/J,O(/” g

@m:ﬂxzf/jxayﬁﬁc;z‘}

0(15‘2 D(; 95 ) 77
et /}///a/ J2, - = F‘lo(‘,,,n = a x £ b Xy +c";’]
where 7/74”5”—5"2) = #Hac- b )
Hence this falls under Theorem 4.2 and by Theorem 3,10 our result
follows, noting that (-4 /«)= (~5/#).

74 {'/'/



7 e et

Theorem 4,4

By Theorem 2,3 the odd discriminants containing a square factor

and such that there are a single class of forms in each genus,

are all of the form.A==ﬁf7%‘ﬁ;where the o are all odd primes on

one. If [, b c] has discriminant -4, then

A % %5 2
N[ p s Jo oo = ax +hxy tCy, (om, 24) = |

:—_——é‘[/f(_/f]:??[/ +7T[c (/a)] C (J)C/m) /_ (A//) * =

M [

iz &) ., = i

7 L=

= F/P*‘(")A]W {/ + W}C (/v)]C (s)C (P m)})‘

R ./ Al

where C, 1s the character determined from p,.

By Theorem 3.4

A e «'s «, .
/V[‘Q 7= /D_L /Q 7 P X /J.K/ + ¢y *]
== ’{;{T [/ '_('/)I\J /\//‘/D/ ” /\:_3(7/390(d s =S a?(z 7 éX;( 1 CO'ZZ]

By Theorem 3.1
NLRo P o oo wn® +boxy +eq]

o . . / ;2
WIpm = aint 7 bxs s ]

where 7o'« -4 = .. -4 and if q 1s an odd integer prime to A

represented by [+’ 4 c'[, by Theorem 3.8,
>3 G . = 0(\/' .
C(g) =/l [etr)] Cts)

If «,=0 o/ the result follows from Theorem 1.3 and 3.2 re-

spectively,



2/

If «, >/, by Theorem 3,2
/V[/’,d’m = a’x‘f—/o’x;, + c;]

/)/[/D,%—g/m —a"x + b ”xo} # ”071’]
where ;2'(%:"-4") = #2.- 4" and 1f ¢ ' 1s an 0dd integer prime to
represented by [2” 4" c"], by Theorem 3,11.
£ g d = £, (g )

Hence Theorem 1.3 gives the final result.

Theorem 4,5
I =2 P, 0:0296;P=1/5 PP s, /%= 2 , and [a,lc]

hag discriminant -4 , then:

/V[/O,%/%«‘/gdjm = ax'+ bxy + co}zk; (/M,—Zd)f/]

o/ ‘5*/) Q__

= / {/ & §/g /PJ-)]%C (J)(A./,m)]):j e :4//4)/ o > @

A/ rm
@, %, . «
é[/ff-rdz/{/fd?? Jer)] Cesrcen |7 LA k), 45E

By Theorems 3.6 and 3,5, 1f «, < @

/)/[/Oio(,/zo(l/%"(d/m — g x ek 2y 7 5 g 2]

7 e s G 7 / z
= :a/[/”"fJ /1/[/02 Py o = Z A ’*'éX[;; *C x ]
, A
¢'| nas discriminant - /. If q, an integer prime to / ,
is represented by J«' 4 c’|, then by Theorem 3.10
L. {8} = & (¢ )

If <, >4 , by Theorems 3,6 and 3.3



NP R R = = by + eyl

== (o(,*@#,) /V[/Da%/iqum — 5{//)(1/”526:;[ - C’;%z]
v gl 4

where [¢” 4" c’| has dlscriminant — 7° , and 1if g;/, an integer prime

to /I , 1s represented by /a” A"C’]

o

/

C, l¢g") = [CL'(P,)] C (s)

/)
By Theorem 3.1, if [«,s ;| has discriminant /2", then

/V[/O;A/Dudd/m o o(,.\”z,t—/jy; f&;‘/

= /\/ZW = &(lfY)*f/:))/‘(’; + 5 '[/le

Where [« ;' has the same discriminant as |«/4 , ) and if ,» and
ﬁV are integers prime to /I and represented respectively by [«, 74 y]
a'nd [d;ﬁ//b//]f

Theorem 3.8 indicates
C(p) = Letp)l e )] C )

Combining these results with the above and applying Theorem 1,3,
the statement of the theorems follows.

Theorem 4.6

[,k ]
If A=2°3, @ =0 2 ¢ ( , and has discriminant -4 , then:

/\/[QQL?ﬁ/m = wx + by f“cayl) (o, 6/ = 1]

K4 o 7 = 4 i V)
= el eIy {/ P )|y o) w20
N =

= 4 [reen] /7 {/ P LGN £ s} € G )Q_ (T )« <O

A oot

By Theorems 3,4, 3.5, 3.6



o ? 2
A/['Q m:ax-//é't; 'fC;]

= :/z‘[/f(—/)aj N lm =a'x™+ b ol C?zj

, 8- o
where pzjé,c] has discriminant -4--3, if x>0 and 4=2 J if «< &
and 1f ¢ 1is an odd integer prime to =24 represented by [« éfCCL
by Theorem 3,10

C.l¢) = ¢ (s)
By Theorem 3,1

N[eFn = ax*=+ bxy * Cii]

2

== /\/[/rr:a”‘\' + bl/’(g’? % C/;?zj

where 1f ¢’ 1s an odd integer prime to 24 represented by [#) 4 c’|

by Theorem 3,8

o /;) i
Cd,{g/j = C‘/‘B’) C'(‘j)

Hence by Theorems 1.1, 1,3, and these results, the Theorem follows,
Similerly, the number of representations formulae for the
remaining discriminants to be consldered: those even ones according
to Theorem 2,3 containing an odd square factor 4 = J¢, 79, /00,
180, 280; and the even ones A = 4 /¢, ¢4 . We shall omit the de-

rivations here as evident from Theorems 3,1 - 3,11, 1.l and 1,3.



/00

N[a"3%m = ax'v bxy recy’, (md)=1]

A. .
- ;2; 7)’ [/ &, («)é/m)jg__j (‘4’//“), x =4 = 0
/4/,».,

== 0/ < = 2 ' /2:/

;= x & - T X >
— Jh‘.f // // + C;[.z) . /d)C /m)-/ . 4 i
A : # {0 q/%z; ( d*/“) G 22

< 2

-

A = / &0 =

<
= n Y 2 2 .
A/[,z 8 & pmw = A X fAXJvtc;,/(M/z[):/]

A 5
= 25 ~/}/ [/ + Cla) & (J)B/C, (s) C (o )/2 L (-afa) B0

=l g

,/"//»y
= U, /j = /
" . P
A T ey cd) cere ()] N () 8
. P
A= /oo = 28"

L 5
/VZ;Z ) M‘,:C(Yf/j.t;fcgyzl [M/,g),.:/]

A v )
= 5 ‘_{/ // FoC (a) ¢ (s) cwjé‘ (-4 )u) 5= o0

“//""

) 1) s 2

A
< /‘5 P sad



/A

/|

/70/

Nla® s - ax’rbx g o <y

A

Vd

/m«/,d) T//

= s ety ce] S i)

L

4. 3 .
- zf: 7/ [/ ~ o (2) C,-(&)C,/m,)j)

14//»,

(-A)4) B22

B2

""1/ I

o & R S

2

/P/[u?“a’ﬂ/m = e

;-

/4//‘;

# /Sx] + L.p}z/ //Wr/d).:/;]

' . /) g . .
= g A //// + C"/d) C;(’d)(_".,/m)]/\ /("'Z]/u/ P

¥

L/ ) ) [ -y /_ [23 ) ) //LJ ) ()Z

~—
S]
X
|
IN
850
o~
S
S



/0 X

7
Z) e /[ ey 2
/VZOQh(/I% = o X ‘/bi;«/-f;///w//]j
M
) 922 # (A /// af ) = & D
[
@ L 7

. 7)} (-y«)/ oL >R

N

N2 = ax’ 1 b S CJZ/ (o, 4]

,,lzL)// 5/6)8(/»1}_)[/ 74 ({J)C.//wr//)” ) /—//a)

]
Vs

& A L
cy
N 2 > =& < ) X, TR
:"/'/;I
. g ;
7 ‘_\ ’ (A- /// @ ) , e F //
A/ rom

In these cases [a,b,c] is to be any form of

discriminant indicated.

= ¢ ]

Uy

0
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Appendix A

Tables of Reduced Forms and Characters

Chapter II exhibits in detail the appearance of the
gseveral reduced forms when there is a single class of forms
In each genus. 1In order to provide complete reference,
however, we append here a complete table of all reduced
forms for all known discriminants having a single class to
& genus. Further, in order to facilitate the calculation
of the number of representations function, we indicate the
several characters for each discriminant and indicate the
values these characters assume for numbers represented by
each of the reduced forms. The reduced forms which
represent the several odd prime factors of the discriminant
are likewise indicated.

An explanation in detail for one case will suffice to

show the organization of the table. Consider the selection:

280 = 2°.5.7 ¢ (n/5) (n/7)
El,o,vo] 1 1 1
2,0,351,2 -1 -1 1
[5,0,14],5 i) 1 il
[7,0,10]1,7 1 =5 =)

The negative discriminant, =280 = —23.5.7, has the reduced
forme: [1,0,70]1, [2,0,35]), [5,0,14], [7,0,10). The prime
factors of the discriminant, 2,5, and 7, are represented by
the last three of these respectively. There are three
characters, £ , (n/5), (n/7), which take on the values listed

for numbers represented by the form opposite.



31

12

15

16

19

20

24

27

28

35

5.7

i O Y

[1:4,1%; 53
[1,0,1],2
[1,%,21,7
[1,0,2],2

11,3,81,11

[1,0,4]1,4

[1,1,51,19



36

40

43

48

5l

52

60

64

67

72

75

84

88

22, =2

23,5

3.17

22,13

27 .35

23,3

35

2 e 3.7

23,11

Y

1,0,9],9
[2,2,5],2

[1,0,10]
[2,0,6],2,8

[(1,1,11]1,43

(1,0,12]
[3,014]’4’3

[1,1,13]
[5,5,5] 3,17

[1,0,13],1
[2,2,7],2

(1,0,15]
[5,0 51,8, 3,5

[1,1,19],25
[5:5:71: 53

[1,0,22]
[2,0,11],2,11

(n/ 3)
1
1
(n/17)
1l
-1

(n/13)
1

(n/3) (n/7)
1



(n/13)
(!
-1

|
=1

(n/7)

/06

[1,1,23]
L8, 8,8 ],7,18

91 = 7.13

(n/ 3)

T
-1

1
-1
(n/5)

1
-1
-1

1
(n/11)

1
-1

1
=1,

~~ ~~ —~
~ ~~ ~~~ [\ ~~ o~ — ~~
e~~~ . 51 - 21 ' }r_..l_l 51111 .
| ! (= | (= s s | S| ! <o S0 )
~r ~ ~ ~— ~ ~r ~r N

e o — —~
— % s e — Ao W o Wag ©
Dt ~ O~ —~ O ~N - DI I e I o W | ~N —
T 2T = - TS
e N SN N
~ —
— ~ mw < ~
— 0 - -
- A Ly - am A9 QM
< (@) «a & < 0 a &l - « &
M & & 1 & /i = = M - e o« | g I | ~arr
< e 0r— n o O\ QUOm e~ — D~ Hr
(AVEeo R iTe] [V} (a0 | Qo Qo O 9~ R s i
L L L. L) L3 L} L. L.} » L] L3 L3 L} L) -~ L.} L) - L) ® L) L3
oCoOox ~ o oo — 0 oo oNe) — 0 OOV
L. had L) « LY - L) LY & L3 - - L) L. bl -~ L) ) L.} LY L) L.
~ 10 ~ 0 —~ QU — < —~ 0 QW — 2 —~ QRO
| N BN | S | S | —n_J I ) - | IO § I | —na | U | O | N | | I | - | [ B | S | S | M-
~
: [Te) ~
Qq [ °
— 0 o~ tQ A8 ~ [\ Ql
~ . 3 [qV) o < ® o~
. Q <t . (L9 ° Q °
23 Q Q 0 Qi L8} Q M
i [} 1 i 1] It L} L}
o Q 0 o 0 Q o
(o)) (@ — —~ (aV} Ql t <
(0)} —t —t —~ — — —~ —~

1
=1
(n/ 37)

1
-1

1
1
&
1

» 49

2, 5,48, B
5%

-

[2,2,19],2

[1,1,5?
(1,0, 57

L

148 = 22.37



29,5

160

e
O~
Sl He O
L) L3 .Y L)
oFT OV
LY - LY -
< 0o~
[ IS T T |

[1,1,41],163

168 = 230 5.7

163

QM
L] ’7

/I o«

N AT ™
< QN e~ B
OO0OO0O0
~ QU MO\O
L

§

180 = 22.32.5

(n/5)
1
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350 = 2°.11
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403 = 1%.31 (n/ 31)
[1,1,101] 1
(11,9,111,13, 31 -1

408 = 2%.3.17 (n/3) (n/17)
E1,0,102] 1 1
2,0,51],2 -1 1
[5,0:56]’5 i —1
[17,0,24],17 -1 -1

420 = 2°.3.5.7 (n/3) (n/5)
[1,0,105] 1 1
[2,2,53],2 1 -1 -1
[3,0,35],3 -1 -1 -1
[5,0,211,5 1 -1 1
[6,6,19] -1 1 1
[7,0,15]1,7 -1 1 -1
[10,10,13] 1 1 -1
[11,8,11] -1 -1 1

427 = 7.61 (n/7) (n/61)
[1,1,107] 1 1
[7,7,171,7,61 -1 -1

435 = 3.5.29 (n/3) (n/5) (n/29)
E1,1,109] 1 1 1
3, 3,371, 3 1 -1 -1
(5,5,23],5 -1 -1 1
[11,7,11],29 =1 1 ~1

548 - 2.7 | § € (n/7)
[1,0,112] 1 1 1
[4,4,29],4 1 -1 1
[7,0,16],7 -1 1 1
[11,6,11] -1 -1 1

480 = 2°.3.5 3 € (n/ 3)
[1,0,120] 1 1 1
[3,0,40], 3 -1 -1 1
[4,4,731],4 -1 1 1
[5,0,24],5 1 -1 -1
[8,0,15] -1 1 -1
[8,8,17] 1 1 -1
[11,2,11] -1 -1 -1
[12,12,13] 1 -1 1

487 = 3.7.23 (n/3) (/7)) (n/23)
[1,1,121] 1 1 1
[3,3,41]1,53 -1 -1 1

E7’7’19] 7 1 =1 =1
11,1,111, 23 -1 1 ]
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3315 = 3.5.13.17
(n/3) (n/5) (n/13) (n{lV)

[1,1,829] 1 1 1

[ 3, 3,277], 3 1 -1 1 -1
[5,5,167]1,5 -1 -1 -1 -1
[13,13,67],13 i -1 -1 1
[15,15,59] -1 1 -1 1
[19,17,581,1% -1 -1 1 1
[29,7,29] -1 1 1 -1

[ 31,23, 31] 1 1 -1 -1

3360 = 2°.3.5.7
i § ¢ (n/3) (n/5) (n/7)
[1,0,840] 1 1 1 1 1
[ 3,0,280]1,58 -1 -1 1 -1 -1
[4,4,211],4 -1 -1 1 1 1
[5,0,168],5 1 -1 -1 -1 -1
[7,0,120],7 -1 1 1 -1 1
[8,0,105] 1 1 -1 -1 1
[8,8,107] -1 -1 -1 -1 1
[12,12,73] 1 1 1 -1 -1
[15,0,56] -1 1 -1 1 1
(20,20, 47] -1 1 -1 -1 -1
[21,0,40] 1 -1 1 1 -1
(24,0, 35] 1 1 -1 1 -1
[28,28, 37] ] -1 1 -1 1
[29,2,29] il -1 -1 1 1
[31,22, 31] -1 1 1 1 -1
5280 = 2°.3.5.11
5 € (n/3) (n/5) (n/11)

[1,0,1320] 1 1 1 1 1
[3,0,440],3 -1 -1 -1 -1 1
[4,4,331],4 -1 -1 1 1 1
[5,0,264],5 1 -1 -1 1 1
[8,0,165] 1 -1 -1 -1 -1
[8,8,167] -1 1 -1 -1 -1
[11,0,120],11 -1 -1 -1 1 -1
[12.12,115] 1 1 i} - 1
[15,0,88] -1 1 1 -1 1
[ 20,20, 71] -1 1 -1 1 1
[24,0,55] -1 1 1 1 -1
[24,24,61] 1 -1 1 1 -1
[ 33,0,40] 1 1 1 -1 -1
[ 37,14, 37 1 -1 1 -1 1
[ 40, 40, 43] -1 -1 1 -1 -1
(41, 28,41] 1 1 -1 1 -1
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5460 = 2°.3.5.7.13

S (n/3) (n/5) (n/7) (n/13)

(1,0,1365] 1 1 1 1 1
[2,2,683],2 -1 -1 -1 1 -1
[3,0,455],3 -1 -1 -1 -1 1
[5,0,273],5 1 -1 -1 -1 -1
[6, 6 229] 1 1 1 -1 -1
{%7,0,195],7 -1 1 -1 -1 -1
[10 1o 159] -1 1 1 -1 1
[15,0 105J 13 1 1 -1 -1 1
[14, 14 101] 1 -1 1 -1 1
(15,0, 1] -1 1 1 1 -1
[21,0,65] 1 -1 1 1 -1
[ 26, 26 59] -1 -1 1 -1 -1
[ =0, 30, 53] 1 -1 -1 1 1
[ 35,6, 39] -1 -1 1 1 1
[27,4,37] 1 1 -1 1 -1
[4 ,42 43] -1 1 -1 1 1
7392 = 29.3.7.11 ¢
& (n/3) (n/7) (n/11)

[1,0,1848] 1 1 1 1

[5,0 6161, 3 -1 -1 1 -1 1
[4,4,463],4 -1 1 1 1 1
[ 7, o 264],7 -1 1 1 -1 -1
(8,0,281 ] -1 1 =L 1 -1
[8,8,233] 1 1 -1 1 -1
[11 o 168],11 -1 -1 -1 1 1
(12, 12 157] 1 -1 1 -1 1
[21,0,88) 1 -1 1 1 -1
[ 24, o 77] 1 -1 -1 -1 -1
[ 24, 24 83] -1 -1 -1 -1 sl
(28,28, 73] 1 1 o -1 =1
:55,0,56] 1 1 -1 -1 1
[43,2,43] -1 -1 1 1 -1
[44, 4, 53] 1 -1 -1 1 1
[47,38,47] -1 1 -1 -1 1
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Appendix B
Numericzal EXampies
In order to make explicit the application of the results

obtained, we proceed to calculate in detail the number of

representations function for the two forms:
2x° 55y2 ’ 7x2 + Xy + 7y2.
These should illustrate sufficiently the methods required.
The form 2x° + 35y2 has the diseriminant —280 = -25.5.7

s ’I‘//Hl—/

and characters, € = (/)% a (n/5), (n/7). The number of
representations function is given for this case by Theorem 4.2.
Referring to the table of Appendix A to obtain the values of

the characters for the form, we obtain explicitly:
/)/[°2 lé_wa] GM = .;27(7-/- 815—;1/ /M,70):/]

i (y/f". °//*°(J ol, # o/J, \f 7 ‘
= 7[/ - (-0) é/m)][/~ (=) (m/;)][/ () /m/7)]/w_/[—oz §0/m)

Af
We have further, €Elm) = |  an 2/ or 7 (mod &)
=i= i , S = 8 o - S ( ‘o )
(/1”7/\5) = o g o of (mod &)
::_/ ;o orm = L & 3 ( 4 )

(”’7/7) = / P ot = P, 2, b ‘/ /mdi‘/ 7)

A N AT

Hence we may seperate integers, m, (m,70) = 1, into residue

classes, modulo 280, with the triplet ¢/=~), (m/5), (w/7),
l1dentical for all integers in the class:

€lm) (m/5) (n/7)
1) + + + l, 9, 39, 71, 79, 81, 121,

151, 169, 191, 239, 249.

2) - + & 11, 29, 51, 99, 109, 141, 149,
179, 211, 219, 261, 221.



c(=) (m/5) (m/7)
3) + - + 23,57, 113, 127, 177, 183, 193,

207, 233, 247, 263, 137.

4) - - + a7, 838, 67, 93, 107, 123, 163,
197, 253, 267, 277, 43.

5) + + - 31, 41, 111, 89, 129, 159, 199, 201,
200, 2k1, 271, 279.

6) - + - 19, 59, 61, 69, 101, 131, 129, 171,
181, 229, 251, 269.

7) + - - 17, 83, 4%, 73, 87, 97, 103, 155,
223, 257, 143, 167.

8) T a5 2z 13, 27, 83, 117, 157, 173, 187,
213, 227, 237, 243.

According to the parity of «, gy oy W have the four cases:

A, + A X, + o, oL, # oL, o, <, o
even even even even even even
a) odd odd odd
odd odd even odd even even
b) even odd odd
odd even odd even odd even
c) odd even odd
even odd odd odd odd even
d) even even odd

Applying these results to the number of representations function
as given above, we see that it is possible to state further:
/\/[&d'-Sy’,7&"ﬂn = 2zt =+ ds‘gz/ (o 70) =1 ]

2 aweye)

P

when <, &, «, and m are palred, according to the divisions
above, a),4); b),1); ¢),7); 4),6); otherwise the number of

representations 1is zero.
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The law of quadratic reciprocity shows that:

(‘:25’0//‘4) :(~)?/A~,)[/A//S‘)//a/7) = 6(/‘%/(”(/{/\5‘) (/"//)
Hence‘Z: (-259/«) 18 equal to the excess of the divisors of m in
A

classes 1), 4), 6), 7) over those in classes 2), 3), 5), 8).

We 1llustrate further by verifying the formula for the
number of representations of 23,902. 1If

23,902 = 2x2 + Z5y2,

we obtain emplirically the solutions ¢ x = + 11, y = + 26;
X =409, §y=4+22; x=4+101, y = +10; x = + 109, y = + 2;
with all choices of &ign permigsable. Hence the number of
representations is 16. To check this with our formula, we

observe that 23,902 = 2.17.19.37, hence

N[z23 902 = ax" +asy"] = N[2-17-19.67 = ax’ s+ a5y ]
u 1
— > , ¢ (/14) //cz i é‘)(////r /7/
A fcis s

Since, referring to the previous notation, «, =/ < =¢ o, =g
17.19.37 = 11951 - 191 (mod 280), we have case b),l). Further—
more, for the prime factors of 11951, ¢/«) («/s)(«/7)is seen by
reference to 4), 6), and 7) to be + 1. Hence the same is true
for all factors. 1In all, 11951 has eight factors: 1; 17; 19;
37; 17.19; 17.37; 19.37; 17.19.37. Thus, finally

N [23902 = 2x2 + 35y° ] = 2.8 = 16,

to agree with the empirical result.

The form '7x2 + Xy + 7y2 hag the discriminant =195 = =-3.5.13,
hence characters, (n/3), (n/5), ©/13). The nurber of representa—
tions function 1is given by Theorem 4.l. Referring to Appendix A

to obtain the values of characters for this form, we obtain
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A &, o o

.3'6"/&3/%:7)(1*;{;_#7;

2z

N L2

, (o 3?())?/]

= [/ WP [ / # (—//d'm'/M/a)][/ = (-,)d'w"//m/,)]

[/ - (—/)dz

+ o, \_j i
(o) ]) (7175 ) «)
Y
Using the same table as above relating the parity of
%, ggto that of «+« o+, « +«, , Wwe see that when A is even

o«

’/\ ’ a E ) = z
/VZQ.JO(-S_ 738 M:/]Qlf-)(;[‘/'?}//(/wlc??d):/]

— o
— 91/1*—/ (-/76/‘%)

At/
in the cases,
(m/3) (m/5) (m/13)
a) 1 1 -1
b) -1 -1 -1
c) -1 1 1
a) 1 -1 1

In all other cases, including X odd, the number of representa—
tions is zero.
By the law of quadratic reciprocity, we have

(195)u) = 02 Capadluss) (upis)
In a similar manner as in our first example we may separate
numbers, n, into classes modulo 4.195 according to the values
taken by the set (”)ﬁhvi (n/3), (n/5), (n/13), so as to first
test by the above whether the number may be represented at all.
Then by combining into two classes according as (~195/n) is
+1or -1, 2i3 (-/75/.«) is obtained as the excess of the divisors
of m in the/gz;st classes over those in the second. Further

details are routine and are omitted.





