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Introduction 

While pursuing an investigation of the general 

properties of the confluent hypergeometric functions of two 

variables at the suggestion of Harry Bateman the question 

of the expansion of arbitrary functions in terms of these 

arose. Efforts to obtain results by extending the theory 

of orthogonal Tchebycheff polynomials or by some other in

tegral method proved quite unsuccessful. Finally the formal 

algebraic method suggested by the Neumann expansions in Bessel 

functions was devised ana. developed. to solve the problem at 

hand. We shall give an extended discussion of this method, 

together with sufficient examples to illustrate its applica

tion. 

The idea of representing the power series 

by the exponential eax, using the umbral notation an= an, 

is apparently due to Blissard1 who used it to obtain very 

elegantly the properties of the Bernoulli and related numbers. 

In recent years this umbral notation has been extended by a 

great many investigators. It has been placed on a firm alge

braic basis by E.T. Be112 to whom the author is greatly indebted 

for constant counsel and encouragement. I should also like to 

state my appreciation to Harry Bateman, without whose original 

guidance the work would never have been begun. 

For convenience in writing formulae, we use certain 

1John Blissard, Theory of Generic Equations, IV-VI (1861-1864). 
2E. T. Bell, Algebraic Arithmetic {New York, 1927), pp. 146-159. 



notation conVcentions. In place of a repeated swnmation: 

a ,,, 
I, 

we shall write merely, 

Unless explicitly stated, all summations are to extend over 

the range o to ~ . Often we shall include polynomials under 

such a connection by using coefficients vanishing for all 

values of the index larger than a certain value. Such cases 

will be self-evident and will be left to the observation of 

the reader. 

Since we shall be dealing with hypergeometric functions, 

a great variety of Gamma functions, factorials, and binomi•al co

efficients might be introduced. Rather, we shall use uniformily 

the symbol introduced by Appell 

// A -,-_/4 ) 
; - ( ;\ ) 

Some simple properties of this symbol derived from its relation 

to the Gamma function will be used. 

(a,k) =- a(a, 1) ... (a -t- k - 1), k integral 

(a,o) = 1, (l,k) = k!, k integral 

(a -k) a (-)k k integral 
' (1-a,kf' 

(~ n,k) = O, n, k integral k;, n 

(a,n + k) • (a,k) (a+ k,n) 



b 
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Chapter I 

Forma.l Expansion Theory 

The expansion of known functions in terms of se

quences of polynomials or other functions has been considered 

from many angles. It forms the basis of the theory of orthog

onal functions and of polynomial approximations. The extensive 

work of Neumann and Schl6milch series in Bessel functions is of 

this nature. Although the methods of analysis are more power

ful and more- inclusive, yet a purely formal algebraic treatment 

of this problem exhibits a very attractive . elegance. Partial 

treatments of this nature have been discussed by previous 

workers, 1 but the completely general method seems to have been 

overlooked. 

In the work to follow we shall unlformly deal with 

functions defined by the power series 

1) 

or equally well by the matrix of coefficients 

2) a ", I 

Preliminary to a consideration of the general case, 

1 N. Nielsen, Fonctions Metaspherique, Chap. IV. 
N. Nielsen, Recherches sur le developpement d 1une fonction 

analytiques en series de fonctions hypergeometriques, Ann. 
Scientifiques d 1 Ee. Norm., (3) XXX {1913), 12. 

s. Pincherle, Alcuni teoremi sopra gli sviluppi en serie 
per funzioni analitiche, Lombardo Rendiconti, {2) XV (1882) 224. 

J.M. Whittaker, Interpalotory Function Theory, (Cambridge, 
1937) 
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let us illustrate the theory by determining in terms of the 

an the coefficients bn of 

3) 
/(x) 

,,,,_ ( I, 0) 

Since 

4) 
-?f 

( I - X) I-:·, ( -,'YI -r) r-
-- - X -- ( I' r) 

,-

we have 
h 

j~/1 

( - r>1' --r- ) 
lo,,,, (1-;x.)'1 l .~ 

,,,.. ,..,, - )'. 

5) l_/, . . - ( I, ' -'1) -; I, ·Y-) 
{ I, ,,,, ) , .,., r-

n-,_ 

,.,., 
( - "'1, ?-') 

I_~ 
X l .. : lo -

( I, ,..,_, ) { I/ --->c ) 
"') 

,r· -"' 

so that lo L. (-A, r ) -)~) 
n,-f .-?-

6) - h -- C ( I, , .,,, ) 0.---r-- - -- -
( I, -·>-1 ) 

r>t /?1. 

"1 

To obtain bs' then, we sum over r 

7) 

Hence 

I ) {-)\ { I - ;<.) '! ) a 
8) (x) 

,..,...,.'"'1. 
--

( I' '() I 
--· / {1 , --r} .L.--- - - -✓ 

n, r'" 

More generally, if we consider the polynomials, 

9) 
(-_.,.,,,_ .,-,) r-

x 
{ I' r- ) 



? 

IO 

Following the above argument we have, if 

10) r -,.,,,r ) h,,,, ) ?' J<,,_ 

/"h , r 
(1,,-,,,)(1,r ) ,1 

11) 

and to obtain bn we sum as before over r in; 

12) 

So that 

13) 

--r--

In particular, if )?-- =- ( , we have the formal Taylor• s ex-

pansion of a fWlction about an arbitrary point: 

14) 

It is thus possible to proceed to develop our entire 

theory. The awkwardness of hand.ling the algebra, however, 

would make the labor prohibitive and hide the elegance of the 

results. 

To avoid this, the umbral notation of Bl1ssard2 is 

introduced and will be used throughout. 

We consider 

15) r1 

,L__ ,, 
r>t 

as defined by the 1nf1n1 te one- ,owecl matrix 

2 Bl1ssard,10c. cit. 



16) 

and ado.pt the convention 

17) 

so that 

18) 

Hence, 

19) 

on this basis: 
ax 

I ( x ) :::- e 

=: 
)~ E ,,,, 

) (-> 
;: 

"' 

I/ 

« , ,.,, , 

I 
a ::c 

ux 
e 

a C( (1-).x ) ;;- - ;\ 

- e -

( 1 ->.-x ) ,,, 
0. 

{)_ 
·>r ;\ 

✓I. >; 
e, 

( I, az ) 

JI,,, (,.) 
l _; C,,(...,,.-)-1 + ,-,,_ 

-( I , /1'( ) /\ ( I , -r ) ,,,.. .,.,.,,~ 

giving the previously derived expansion very elegantly. Of 

course such a derivation is only suggestive, and the other 

is necessary for completeness. 

Such a formal derivation of an expansion by either 

of the methods used above gives no information regard.ing the 

range of validity, nor even whether the original and deduced 

series converge in the same range of the variable. In the 

discussion to follow this difficulty will be even more in 

evidence. Inasmuch as this forms a large part of the theory 

of any one particular sequence of functions, it would carry 

us quite off our track to deal with the problem extensively 

for any large class of functions. Rather, we shall assume 

that the arbitrary function and the sequence have some common 

1 



region of convergence and we shall be satisfied with the 

conclusions to be drawn from Weierstrass• 3 . 

Theorem 2.1 

L e f 1° { x ) P (x ) 
0 / / / 

be an ordered, infinite sequence of power series in x, 

each containing both positive and negative powers of the 

variable with arbitrary coefficients. Let it be possible 

to choose two real quantities R, R1 , with R1 > R 2- o, such 

that for all values of x satisfying 

21) R < /xi < R' 

oC> 

each of the series /;_ (:x. ) converges as well as the sum E', !J. ( x.} 

and further that the latter converges uniformly for all 

values of x having the same absolute value. 
(v) 

Then, if A_,,,,_ is the coefficient of Xfa in / ~ f?:. J the sum 
""' i v ) 

v/ A,,, has a L / definite finite value for every value of n, 
,J = 0 

designated by A,,,u.., , and it may be shown that for every value 

of x satisfying 21) the series E, A,,,, x _µ converges and the 

equation 

22) 

holds. 

,?-= - "" 

p ( x ) 
,I 

1. Function of~ Single Variable 

We shall call two sequences of functions Pn(x), 

Q.n(Y), defined by the matrices ;o,,,, ~ / p_,_-~/, L, =- I t "'/~ associate 

3 K. Weierstrass, Werke, Bd. 2, s 205. 



if they are such that 

23) 

/ J 

P,,, ( x J 9 ,,,,_ (-;; J 
(I,,,,_) 

Under this conVLention and the above assumption 

as to convergence, our basic theorem on formal expansion 

can be stated conveniently 

Theorem 2.2 

If f (x) is given by a matrix u.. ::: /~ /, and Pn (x), ~ (y) are 

associate sequences of functions, then 

24) CZ :X 

== e 

Using the umbral notation, this is immediately 

evident. However, we shall present a more vigorous deriva

tion since we have not developed sufficiently the properties 

of the matrices. 

Since P n (x) and ~ (y) are associate, we hs.ve: 

25) 

so that 

26) 

l,:(-x:) (),,,,_(J) 
(1,/?t.) 

r,,,, o,,,, 
~ bs 

---- -~~--- ---

( I, /?1.) 

( 1, -r ) , r--= S 

being the essential condition interrelating the coefficients 

of the associate functions. 



Now we e.ssume that ther e exists for f (x) an ex-

pansion: 

27) I (t) 

--

Hence with 

28) 

29) 

1= 
/}t, -,-, 

>-
l 

- .. 

_/ 

ffl.. 

">t ,r-
o( ;o,., X ..,,, 
-- -· 

( I, ,n ) ( I, )'- ) 

o( 
r>t. 

; --::> ( .( ) 
( I , ,n ) ,..,.,_ 

r 

1_: d. r: 
- - 1 - ·1 "'< ..,, 

( I , T ) (I,= ) - - _ / 

-r 
.,.,.,_ 

) 

/?'>( 

To solve for ~ we multiply by 

sum over r in: 

;y..,.., , to be determined, and 

,,,,,, ,,,, 
;»f c<.,.,, cf r ;O r 

30) L ?f -r a .,,,. 1-~' - --- - -~-·-~--
) (I,-,-) (1, -,, ) ( I, .,.. 

-r n,; -,-

1 
;,'I /'l 

1-: 
O("t 1 cf .,., /7) 

{I,,,,.,· ) 
--r- o( 

_/ 
(I , r ) 

,,,.,.,_ 
r>t ·r-

if 
~ 

cf,.. is such that 

31) 
6 /n't 

n-t c'.) rn-t -1- / 11_ ~-: -r- r r 

r- ( I, y ) (1 , .-,.,, ) .,,..,,, _--:~ 

But if this 1s true, we ce..n deduce by multiplying by 

and summing over n, that 

32) z: 
/>"( 

J 

5_~ 
r-

by 26) relating 

Therefore 

33) 

--- l 
I i : 

,.,, ) ../ ( I, 
, -n 

"'1 

<5 7' 

2 . _/ 

l 

(I, -,... ) 

\ ' 
L - 1 , . 

.m 

0 
"'1 

,.,, 

]_~_: ..,.. I°.,.. 
( I , r- ) ,-

'l ,.,, ~-), 

I°.,.. ,.,,., 
u 

(I, .,.-,, ) d" "' 

I , ' • . 
' ' J 



and 

34) ( I, ,,_,,,) 

The two sets o:f equivalent conditions: 

26) 
0 -r -I />L "'- -S 

/J,., "ts ' r - -
- -

,n 
( I, ,n) (I, r -J / :_-:: s 

and 
-r J C) / ;I:- s 35) r ? ,-,._ 'h,,,_ ' 

-
( I, ,,--,,__ ) 

(I, r) , r = s ,,_,_ 

:form a basis on which we can build several important theorems 

on the respective form of Pn and~• 

Let I?/ represent the discrimine.nt of the coefficients of the 

l°o I ;/_ 

0 r\ /Jo 

r,° ' 
,. 

36) 
P, /> 

' /;vi c) ' 
.,_ 

/> J 
/0 --.,_ I .i_ 

In general this will be an infinite order determinant and the 

question of convergence 1s best considered in the particular 

cases which arise. With this notation we have: 

Theorem 2.3 

Let Pn(x) be any arbitrary sequence of fwictions 

37) r (x) ,.,,_ 

! ( 



16 

If there exists an associate sequence of functions ~(y), 

the coefficients of the matrix qn representing O"n(x), are 

given by: ' -,, ' 
_.,,, I 

f'oo r 0 l°o ro 

P,o 
I--;) 1

1 
, >f - I ,,,_, I 

;-o' p 

38) ,,,, , s a-r! ..s ! 
(-) - - ~ - I ,.,, ,, 

/p/ a I 

;:> J - , /'\., I°,. I 
/7) J - I 

c) I 
.,.,., 

/0 .,, ' /'CJ 10.5._,. , I--;) Q 'f I 
u,.' 

In the proof of the previous theorem we showed that 

when the series ~(y) existed the coefficients were related to 

the matrix Pn by the equations: 

26) ,.,, 
?f a r -1-- -5 

2~ 
; o ,.. f" - -

{ I, ,n) -
(i, y) r -·- s ·-

/?<-

These can be regarded,as an infinite system of linear equations 

in (:fat! for all n. Solving these according to the standard 

methods, we obtain the result stated in the theorem. The same 

theory would be secured by starting with the equations 

35) ;o'°" tj: 
0 / n 7/»c 

I
- J ,... -- -_I (I, r) (I, .-;,( ) , /K -:=- /J'Yt 

r 

and solving for 

Utilizing this theorem, we have others as direct consequences. 

Theorem 2.4 

If P
0

(x) and Qn(y) are associate sequences of functions and 

)- =- I ),d, ;,, - - , ,\,,; I is an arbitrary matrix, then ~ (;1. x ) and 9"" (-J-) are 

associate sequences. 

If / /~ / is the determinant of the coefficients of the /;,, (?-xj 



I 7 

then, since the matrix of the coefficients is ?,., A =- / )._.._. p: / , 

39) 

Then replacing the j?: in the expression for <i: , by ),,.. ;o: we 

obtain the new 

40) 

· Hence corresponding to Pn (,.l_x) we have 

41) - -~ 5 <t"" 
_, 

( -2- ) L ~ ..5 J 
l ~ / 

l 

~ - - ~ _ _ J __ --~ --·--- - A 
s 

( I, -> ) u (1,.s ) /\., 

Thie very important theorem enables us to obtain 

from a given set of associate functions Pn(x), ~(y)an almost 

endless variety of new sets and in our later applications we 

shall see its usefulness in obtaining some of the classical 

expansions. 

Occasionally it happens that the expansion of an 

arbitrary function in a series of functions is derived by some 

other method aside from that discussed here. In these cases 

we can thereby deduce useful information from 



Theorem 2.5 

If we have given 

42) 
ax 

- e 
;O= ( x ) V~ (a_ ) 

( I, r'>1. ) 

then, subject to convergence conditions, we have also 

43) 
/ fx ) 

rn 

When the first expansion is given, the coefficient 

of Pn and~ must certainly satisfy the conditions 

26) 
0 , --r ::/= S 

which are perfectly symetrical in the p's and q's. Hence the 

second expansion follows by our previous argument. 

If the Pn(x) have some peculiar form, Theorem 2.3 

often enables us to infer directly certain properties of the 

~(y). In view of its import we state 

Theorem 2.6 

If Pn(x) and ~(y) are associate functions, and if Pn(x) is a 

polynomial of the n 1th degree in x, then O~(y) contains y to no 

power less than the n'th. 

Under the assumptions here, ,P.; =o , ..,,.,>/Yl , and without 

loss of generality, we can set the leading coefficient of Pn(x), 
,.,, rr,.,, 

f' ,.,, = 1, so that /?/ ::: ?,., =I . Hence for s < rn. 

I 

I ? 



44) 
,,, 

fs 
,,,+s I 

-= ( - ) rrt, .s I 

0 

while for s > r11, 

45) 

,,,, J 

.= ( - ) /"1: cl,' 

ana_ clearly f ;::_ = I 

I 'f 

J - ' s f> 0 

J,' ,,, - ' ,,,, ,, 

0 

0 

0 

0 

() ~" 

' r. 
c) 

C 

() 

0 -0 I , 

O 0 

0 0 

-

0 0 - -

0 0 

0 () 

Po I,:; 
0 I° 0 

/0 
0 

,- ' " 
, , ' 

1-::: p, /~ F', 

J . ' s "rl 
,,,, _, 

~- , !°,, _, ?, _, /:) > . ' 

,s+/ ,,,, . ' 
0 0 /\,, - . 

?_j ~/ 

0 0 a ~ - • 
/-:::,,. , 

,.,., -1 ,,,,, .,, 

j>,,, ' ?,.,, 
,,,, , 

o ~,,,,, - -- P,,, 

C) ? :: : - • • I°;~: 

Q 0 

) 

,,,,,, .5 j f ,., - /J -~ 

~-, 1 ,$ 

/J -> ·- ' • • j)u -1 

p 
" 

= o 

/o, 

'71-, I 

p 
s . , 

;o >,, 

/-;) .S7 ,. 

Similar theorems can be stated if Pn(x) is a poly

nomial of degree depending in some other manner upon n. The 

method is obvious and we shall not consider them. Also, if 

the sequence Pn(x) has any regular properties, corresponding 

ones can be inferred for the ~(x) by Theorem 2.3. 



2. Functions of Several Variables 

The formal theory here developed admits an immediate 

extension to functions of several variables in a manner more 

elegantly direct than similar extensions of other methods of 

expansions in functions. In order to provide a convenient way 

/ 

of stating our theorems, we introduce a rather obvious general

ization of our matrix notation. Let / (x.,, - ·, -\, ) -= / 0.·) be a function 

of k variables whose series representation is: 

46) 
j ~:I a. .,,,,, .m, 

/ (Y,, 
.,.,.,,, -· rl l. 

" / ~/2 ,.,, " 
Y - ) 

/1''/, / ,,-71,J. / 
X, :;l ~ '-.. t., · ftf .1 ,..,. /,' 

Then said function will be represented by the k-dimensional 

matrix which we denote: 

47) 
e,t,_ a • L I 

' /2 

and we ado.pt the convention 

48) 
== ,,,, J.. ' •• • 

The concept of associate sequences of functions needs 

to be extended to several variables. We say that two sequences 

of functions 

49) 

defined by the matrices 

50) 

51} 



al I 

With this notation the general expansion theorem 

fork variable5is: 

Theorem 2.10 

If I ( x:.A ) is a function of k variables represented by the matrix 

u' a'"!== /a.A;, , •;. / , and /~ (x.) and Q. (1J are associate sequences of 

functions, 

Then 

48) 

Again using the matrices and the umbral notation, the 

theorem is obvious and for the general case we shall be satis

fied with this. 

For two variables the statement is essentially the same. 

Theorem 2.11 

If f(x,y) 1s a function of two variables represented by the 

matrix u o."" =/a..,,./, and t:...,~ (x. , ✓ ) and Q,~ ((, '1) are associate sequences 

of functions represented by the matrices /? ;,J~ / , / c;; ~,, 7 , 
then 

49) (I, ,,,,,_, ) ( I, .,n ) 

The proof is a direct extension of that given for one 

.17 



variable. From the definition of ~-"" and 9,,.,, ,,.,_ we have: 

50) 

so that 

51) 
/0,,..,,,,,rl? ri-.t, , ?/ 

r: -J <t l-l, ti 
- ---------·--

( /
1 

,,,_,,, ) (I,_,,,,,, ) 

0 

( I, Y) ( I, .s) 

We assume there exists the expansion for/(x,J.): 

52) 
/tq) = J; 

~ L: 
but 

53) 

Therefore 

54) 

/ 
I (x,) ) 

u,,,,,.., -.S 

d 

(1,~ tt;;;> ~,"' ( x, X ) 

,,. J 

= 2_; Cl,,.._ .s X ;J 
(!---: ;- ) ( I, .5) 

-r, ,5 

,,,,., ,,,,,, 

1 -__: 
c/ /0 ,,.,.,,_,..,, 

-- --,,-,_ '5 

- ------ (I,,,,_;,) (I, ,,,,,,,,. ) 
/V}f ,,,_,,_ 

I 

V 

h j 
To solve for c::x1._ L we multiply by ✓ - to be determined, and sum 

~ 0 --,r; <5) 

over r and s in 
;( h, /, / ;,_j o( 

,,.,.,, ,,,, 

55) L a l~ -r, ,5 
,,,,,,_,..,, ?--,,-, _ _, 

r; ,5 --r, J - -
- ---- --····· ·- - - - (I,,,,,,,,,_ ) ( /

1 
4) ( I, r) (/;-~) ( I, r) ( I, -.S) 

-y ,-5 
/>rl,/11; ": J 

(I, -r) ( I, cf) 

h, £ 
if t,,,, _, is such that 

56) ;( h, -/2 -,,,,, 0 h ± /1-'1 a--,,J/ 01- A :/:-,,,,,., 
L I° --r -r, s , J 

- - - - - - --

,- J 
(/,-,,-) ( I, s) 

(;,,,,_.,)(l,"'t) /--, -/2 .=-,,-,,,,i = /71.. 



r"'f '>/ 

~ -, 

If this 1s multiplied by ci.,,,.,J{i . .,_;;;) and summed over m,n we obtain: 

57) 

_/ 

( !,---»1) ( /,"'1) 

by 51). Therefore 

58) 

,,..,,,4 

l°,,,,,.s 
( I, ") 

6 
/, /2 

,,<, ' J 

For three or more variables the proof would be sim

ilar and it is unnecessary to give the details here. 

The analogy of Theorem 2.4 is extremely important in 

this case. 

Theorem 2.12 

If ~,"t (:t:)')and Q,,,. (f y)are associate sequences of functions and 

AA-x=/;.A~)is an arbitrary matrix, then!;.,,,0 (1.x.,)})and 9l.,,,,(f,f}are 

associate sequences. 

In the proof of Theorem 2.11 it was shown that the 

conditions that two sequences Pm n and~ n be associate, namely ' , 
51) ~,At. ,.-nf / ,t 

/> -,,-, .s 'b u.'v 

r_) 
/ 

-r c::/= cA " ---,C V 

(!,~) (/,,n-) 
(l,Y){!,0) / , = U s .=. V 

was equivalent to the similar 

59) ,,,,,,,"'1 h /,_ a h * - CZ,,,,. J /or J P?:t. 

L /" 7 %' r', J 

/ 
,:, 

- --- - -··--- ----
( /, r) ( I, ..s) 

( I, ,-,,,, ) (!, "?J ) /4 'l"' 
/ '-' Ii - /J-r1 / = /J1, 

/ 

Now let the matrices of~,,, (k"', >)(;,) and <2,.,,,, (f, J )be designated for 

the moment by fi., ~.,_ and ?'- [.,,_ 



~ 't 

Then - ,,,.,,,,, 1,,..£ 

L p .,-
' ,J 

~ 7;--5 

60) 
- --

-r, • 
(I' , ) ( I , ..s ) 

a-,,d/o-,--

by the original assumption. Hence we show that the second 

pair satisfies the necessary conditions and are associate. 

This theorem has its greatest use in obtaining asso

ciate functions for given two-variable functions by building 

them up from known one-variable associates. Thus, if P~(x}, 9rl ff} 

and /: ("'J.) , ~ ( 1) are two known sets of associate functions, then 

we have immediately that 

are associate sequences. And if A ;l,."" =I)._.._ j is perfectly general, 

the two variable functions can certainly not be actually factored 

into one-variable functions. We shall use this in all its power 

in later applications. 

Evidently it would be possible to state theorems for 

special types of two-variable associate functions as we did for 

the one-variable cases. Those needed are such obvious extensions 

that we shall mention them only when they are used. 

We have indicated in several places the direction of 

generalization to any number of variables. On the formal basis 

which we are building these extensions will clearly introduce no 

new complications. We have restricted ourselves from treating 

the general case in order to have the results in a form ready to 

_, , ) 
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apply in our later discussions. 

3. Relation to Tchebycheff Polynomi~s 

Since the Tchebycheff polynomials form a very large 

class of functions to which this theory is applicable, it is 

significant to inquire concerning the possible extensions of 

their theory to this more general case. 

Let Pn(x) and ~(y) be a set of associated functions, 

and we shall assume the desired expansions to be in Pn(x). We 

search for a weight function Wn(x) such that 

61) 
o0 o /1-"tF/V/. 

j r: ( X} I°_ ( X) YI;'., ( <) J X = (,, ~ ~ ' ;n, = "'1 

- 00 

If such a function exists it will certainly be unique and since 

Pn and ~ are associate, we would infer directly that 

62) 
00 

f X --:J.. VV,,,, ( X ) I: (-r ) d X 0,,, () ) C 

- oO 

In case we have 

63) 

where \IV ( x ) is independent of n and Wn is independent of x, then 

64) 00 

j ~ (x ) I:,,. (x ) vl(x ) d:t 
{) 

- 00 

so that P n (x) for; a set of Tchebycheff polynomials, '1= (?(). And 

conversely, when the Pn(x) are Tchebycheff polynomials, then ~(x ) 

will certainly be of this form. 



In the theory of the Tchebycheff polynomials there 

are several integrals and related functions which have signi

ficant meaning. We consider the extensions here: 

by 

65) 

The functions of the second kind Pn*(y) are defined 

I 

.,, 
PA. ( X ) 1°,,, ( ;;) 

J - X ( /,0.) 

from this and the definition of the associate function ~(y) 

we conclude that 

66) 
I 

J 

where r n-t_:c /J1 / (matrix notation). Also from 65) and 61) 

which would also follow symbolically from 66) and 62). 

We may indicate a treatment of our expansion theory 

using the Cauchy ,complex variable theorems, in a manner custom

arily used for the Neumann, Legendre and Bessel function expan

sions. The question of the range of applicability of this to 

follow is another problem beyond our present purpose. 

Let 65) be uniformly convergent with respect toy in 

some region R including the point z with yon the boundary C of 

R. Let 

( I, ·?1 ) 

be some function analytic inside and on C. Then, since 65) is 



uniformly convergent 

68) /( ) ~ -:f-. ! --/ (?) d) 
z .;i, ,,.,,<: ;;. - z_ 

C 

~ut since the expansion in Pn(x) is unique when the series 

converges, this implies 

69) 

C 

If, further, the weight function Wn{x) does exist and the in-

finite integral 67) is uniformly convergent, then 
oO ' ff ca)f-f:(-x} 

,J,_71.,; ~'t -'X 
C. - 00 {T 70) G 

- 00 

in agreement with the inference above. 

The two-variable theory outlined can also be treated 

in this manner. The method is obvious and since it contributes 

nothing of significance to our theory, we shall be content with 

the brief discussion of the one-variable case. 



Chapter II - Application. 

Functions of a Single Variable 

We shall develop the application of this theory to 

the hypergeometric functions of one and two variables. All 

the classical orthogonal expansions are in this category and 

will appear as special cases in a logical sequence. 

1. Hypergeometric Series 

A single infinite series f a~ is said to be hyper-
M~O 

geometric if the ratio a=/a~ is a rational function of n. When 

this is true, we may write: 

where P(n) and Q(n) are relatively prime polynomials inn. If 

they are of degrees p and q -r 1 respectively, we me,y exhibit them 

in the factored form: 

1) ( I?'( -1- c( ' ) ( ;74 i- ot " ) - - - - - ( ,,,,, -r 0( !"_) __ ~\~ 
(0 -+- /3 , ) (/)1 7 /.J.,_) - - (M -I /3g){,n -I /[Jt,_,J 

A being the ratio of the coefficients of the highest terms in 

P and Q. 

Without loss of generality we set 1, ,= / according to established 

custom. In case any one of the/:3's is a negative integer, say 

Pi= -k, then obviously ak and all previous terms in the series 

must be zero. Hence, the series will begin with 8krl' so a new 

set of ;-3: ' s is obtained with ~. = I!:_ -1- A + I. Thus, again, without any 

loss in generality we may assume that none of the p ·•s are negative 

integers . . 



So that 

Applying 1) successively, we deduce 

( o:.,,'>r ) ("'-.,ht. ) 
- -· -- --- -
( /3, ~ ) (;CJ rn ) 

/ ~ 

( o(p I />I. ) 

( / (jg /J'l) 
t{ 

0 

For the series occurring in the second member of 

this equation, the standard notation is: 

In case any one of the oc 1 s is e, negative integer, 

the terms become zero after a certain stage and the series is 

merely a polynomial in ) . In all other cases the series will 

be non-terminating and from the Weierstrass ratio test we infer 

the following convergence properties: 

p < q + 1, , a. c. 

p = q + 1, / i\ I < ! J a. c. 
p = q +l, /},,/ ~ /, R (r,cx.-L'rJ ) <OJ , a. c. 

p = q + 1, 1 " 1 = 1, 1 ? R r-;: °" -r /13 > > u ) >- 1: 1 , c. c. 

p = q + 1, 

p = q + 1, 

1r ( E o< -I;a ) J u, -

17 r E 0( -- 1_; ,✓cl J 2 1, 

P = q + 1, I/\ I > I , -

p > q + 1, 

, d. 

, a. 

, a. 

, a. 
a. c. - Absolutely convergent; c. c. - Conditionally convergent 

a. - Divergent. 



To avoid the complication of encounters with the 

divergent forms above, we shall consider them replaced when 

they do occur by the series for which the divergent forms 

represent an asympto_tie expansion according to the treatment 

of Barne~1 the series being considered as functions of A . 

The formula, valid for F > g + 1 , is 

A] [ 

o<. - - . o( r., 
I , I I -

13 , , - / ;3 !;' ., 

. . o(-/1_ + ! 
/ ff g 

where the asterisk indicates the omission of the term with 

equ~l subscripts. 

When p -::::: g- +- 1, the same formula gives the analytic 

continuation of the function beyond the unit circle. 

These formulae are particularly useful on occasion 

to replace certain polynomials by equivalent forms, the re

placement being in these cases merely a reversion of the order 

of terms. 

The various analytical properties of these fW1ctions 

have been considered in detail by a great many writers. Since 

they have no immediate connection with our formal expansion 

theory, we merely refer to these sources. 2 

1 E. W, Be.rnes, The Asymptotic Expansion of Integral FW1ction 
defined by Generalized Hypergeometric Series, Proc. London 
Math. Soc., (2) V, 59-118. 
2 Appel et Kampe de F'er1{i-eti Fonctions Hypergeometrique, 
(Paris, 1926); an extensive bibliography is geven here. 

W. N. Bailey, Generalized Hypergeometric Series, (Cambridge, 
1935). 

/ ; ( 
_,,. ... \(i 



2. Basic Sets of Associate Functions -----
All of the known expansions in hypergeometric 

functions of a single variable are deducible by our theory 

from two basic sets of associate functions. We are primarily 

concerned with such expansions and shall treat them in detail 

before proceeding to non-hypergeometric series. 

The first basic pair arises as an extension of the 

well-known expansion in Hermite polynomials. The function /-/ I"(/. ) 
hi 

defined by the 
-
;;z_ ,: 

generating function ,.,. t ;v c$ X -r-

,,, p ) ------,, Z .'..l X -e. I° \ (_3_ fl (x. ) =- t-( ;a- " _(_/ _, 7' ) { I, u ) 
0 /, ni ) ~ n-;, 
n, 

has the explicit form: 
p ) ,,J(f'-r, ) H ( X ) =- -) 

/"1 -s 

"'. ,P.J 
.>( 

p 

The associate function, }l () ), is readily determined from the 

generating function, since: 

C 

Hence 

Expansions derived from these by application of our several 

theorems will be called Hermite type. 



The well-known Neumann expansions in Bessel functions 

are special cases of the expansions obtained from the associate 

functions: 
/, 

/3 (ot,x) ,,,, ( o<. -f :,,,, r I, r ) ( I, 7 ) 

We show that these are associate by referring to the basic de

finition: 
/3 ( ) ) 

,.,,.,-4.,,. ,,,-As 
), ~ X L,,, (;J E/2.,- (-/>1, / k ,J) X l 

{I,,;,,) T_~ : I-J (cl-,. '"1,"'11,-r){-o,:- ~t-1, .s}(1,-,r)(1,J)(1,'1t) 
~ m,~s 

Thus Bn and ½1 fulfill the definition of associate functions. 

Expansions derived from these will be called Bessel 

type. 

3 W. N. Bailey, loc. cit., p. 25. 



In the discussion to follow we shall show how these 

two sets give rise to all the classical expansions by using 

Theorem 2.4. The two sets here given e..re essentially different 

in this respect, in that one cannot be derived thus from the 

other by application of Theorem 2.4. Further basic expansions 

of more complicated nature doubtless exist, but only provide 

expansions in functions of greater complexity than concern us. 

3. Classical Expansions 

The several well-known expansions in series of Bessel 

functions are ihcluded among both the Bessel and the Hermite type 

expansions above. The Neumann series of the first kind gives 

expansions in: 
-✓ 

( ~ x) J (x) 
v +,,-,,,. 

--· - - - -
---- r(-,1+,,,,,,, ,J 

Hence it is of the Bessel type and the associate function is: 

The Neumann expansion of the second kind gives expan

sions in~ 1--!--J 

{-Jx) "'- J_
0

~(x ){~"'(x) 
~ .,_ 

(-,,,)fl/ 

= r (o/~~ ,,J 



/2 /- ( vf / ) __,(. -ol·- -f /, + I 

where 

Related to these is the expansion of even functions 

in series ~!j 
/_!__ x) J ( ~ ) 
~.,2 y -fv 

where 
~ 

(-) 
/7;;-;-·~ Tl) 

This is of the Hermite type, so the associate function is: 

In addition to these well-known expansions, we may 

construct from our basic set an almost unending variety of 

expansions in Bessel functions not discussed before. For ex

ample: 

..,... 

Thus we have a Hermite type with the associate function: 



Again, the fact that 

suggests a number of expansions. 

The Jacobi polynomial may be similarly considered. 

We have the general form: 
f- (- r>1 o( -f ""'- • ;( ; X ) 

-.. I / / 

==- (-) ,,., ( ol. -t r?1 / rJ1 ) L I ( 0( )_ ;:\'. ) .,,. / / 

Hence expansions in Jacobi polynomials are of the Bessel type. 

Rather than discuss the Legendre polynomial, we 
--.J 

consider the Gegenbauer function ( ,,, (;;,;_) which includes the 

former as the special case J 

(1- ::2 h X -f A") 

Hence J 

cm (-x) 

_/ \ - - 7 

L--- ✓ 
n, 

( -J, ,.,., ) 

{_ 

( -J, ,,,._) 
7;-_,,,,.) 

/J,7 ) 

/2 .,,, 

-\ - -- 1 

} _ _ _/ 

" 

By definition 

J 
C ( x. ) 

"' 
0 - .2 J 

{-0, :i sJ (J _x ) -
(- J _;:-,-- ; -:: -) ( I,") 

( .J .2x ) 
/ 

showing it to be of the Bessel type. The associate function 

here is: 



d (; 

It may be observed her e that thus, formally the 

expansions in Gegenbauer polynomials and the Neumann series 

of the first kind are, aside from trivial factors, equiva

lent in the light of our theory. The various expansions in 

generalized Legendre polynomials are of course related to 

the expansions in Jacobi polynomials mentioned above. 

Among the functions expressible in terms of the 

confluent hypergeometric function: 

we shall illustrate our theory for t h e following : 

The Hermite polynomial: 
l. 

. .3.:. 
'r 

The parabolic cylinder function: 
J. 

:::- t 
...!.. , 

_3 _ 'I - -;,-

0/,, "' fl (x) /J (-x ) - c ~ X - - -1-,,,, ,,___ 
rH 

The Sonine polynomial: 
--i f---,,) I 

I ;;, X' 
\Ill T,,,,.,,,.,, (x ) 

;>( e I , 

= 0/rf,,,,,,.,..,,.,.,,J /1'1-;- - ,,,,..,_ -r ··-
~ ~ / 

The Laguerre polynomial: 
I I - ot 

For the Hermite polynomial we have: 

\ 
..,!.__/ 

(-,,,,,,;;_") X 

( I ' J ) 

- -i-) 

( X. ) 

(x ) I ! ;; ·, ,, 

.!.,,.,., fx: ) 
°' 



Hence the associate function is: 

. - y J ?/ 
L ._/ ;,_ ~ { I, . ,.. ) 

?' 

The relation between the Hermite polynomial and 

the parabolic cylinder function points the way to obtain 

expansions in terms of the le.tter. If we wish to expand 
<-1.X I (x) ~ e r; ex,.,, /J_,., (x) 

as a series --( 1' ,;; ) -- ' 
we consider the fwi.ction 

where 

;;:: ,._ 

'-I 

Then we have 

C 

so that 

e 

;1/,.,,, ( h ) fl,,,, (A) 

(I, ,,-;,z) 

e 
hx 

This device is one which may be profitably applied often to 

similar situations. 

The Sonine polynomial: 

I 

= (I,,,-,,,, ) (I,;;,,) 
/-11().x) 

"" 
A ;; =:::. (;;., -;- I, ; ) 

so the associate function is: 

= r-1""(1,,,,-.,)(l,r>t)), 
(/J-'">t _.,.. 1/ ,,,-x .": 7") nr -I" .-,-

( 1,---,.-) ;;., 
r-



The Laguerre polynomial: 

X
"' L~"'-;; ,.,,(- + ) - 1 __ ,,., (o<-t-,,.,,,'!'J ni r (-rn ~ -o<.- .J.a,--rl.,- xi ) 

,,, " - ) (I,,,,,, ) X I I 

so the associate function is: 

(/,;,,) 

1- /''(d..-r·;,,,, "'1) 

= (-) 

-r 

,.,,, L I ( 0<, X) 
,.,, 

Just to mention one or two further expansions to 

illustrate the method, we mention first: 
(o(, ,,,,,-,-,-) (oL ,,,,-,.,,-) 

'. ~, X '>t-,..,.... - -

( ,G I /n t ,,.. ) ( I, -r ) 
r 

(c1., /2) (c<"' /2 ) 
I I - ----- ·- ----
( 13, ,{ ) 

which has the associate function: 

-
( o(I , nt - $ ) { o<_, I /' 1 - J") 

Again, the Bessel function of the third order in

troduced by P. Humbert, 4 illustrates the theory nicely. Con

sider expansion in terms of 

analogous to the Neumann series of the first kind. By de

finition: 

4 
P. Humbert, C.R., CXC (1930) 59. 



,.j 7 

( o( -+ .: /YI -r I, /3 -f j 0 1 + / • - 3-~) 
V i..3 .,I a... 7 

{ I , r) 

F (or .,. } ,,,., -, , ) 

,s 

These examples will suffice to illustrate the 

treatment of expansions in various hypergeometr1c functions. 

Further cases can be given at pleasure. 

4. Non-hypergeometric Series 

The Hermite type expansions considered above lead 

directly to one elegant application of our theory to functions 

of a more general nature than the hypergeometric series: 

The /polynomials of L. M. Milne-Thompson5 are de

fined by the generating function: 

It can be shown that if i v~rJ) f o,, ~(-.!{:><) is a polynomial in x 

of degree n. The properties of the polynomials have been con

sidered in detail. In addition to including as special cases 

5 
L. M. Milne-Thompson, Proc. London Math. Soc., (2) XXXV, 

(1933). 



'f 0 

the generalized Hermite polynomials mentioned above, they also 

include the well-known Bernoulli and Euler polynomials. 

The form of the generating function for ~ 
(-.I) 

(>r. ) makes ,,, 

the application of our theory immediate. We have 

,., C 
- ,7 (').) 

7 i1 ( )- ) 

Hence if we introduce the new function 

-y_ (.j) ( ) 

,.,, ). 

_,0 (/) 
then t { ?(_ ) and 1: () ) are associate and we can proceed to ex-

pand any arbitrary function in a series of either function. 

Other general types of functions, such as powers of 

polynomials and any well-defined sequence, may be treated since 

we know from our previous theorems methods whereby the associate 

function may be constructed, although not always in such conven

ient form. 
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Chapter III - Applications 

Functions of Two Variables 

1. Hypergeometric Series 

As in the case with single variable functions, the 

hypergeometric series are most elegantly suited to illustrate 

the theory. 

A double infinite series£ a,..,_,,,,_ is said to be hyper-

geometric in case the two ratios: 0-,..,,,,,,.,/0.,,,,.,,,,,,. and are both 
0-,__,,,,, 

rational functions of m and n. In such a case it can be shown, 

as in the one variable case, that ratios can be expressed: 

a.,-,m .,...,, ff{ - ;/- ( o( A' + O.A•/>'1 T lo. />7 , a..,;) .,,;: 
- - - -

a,..,., , ,,,. ..-1'.. '.:", ( a: r l~,,_.,, :r (?A ff( c,., ) (,,.,,., fl) , 

0-,..., ,,,,., ' h 
( D(A a;,,,.,., -r b_./1'/ /2J X 71 -t-

/ 

a,7'>1,/)f -1. :; ' ( ?(,· -t- c:.- -""1 --; e_, /11 , C'_.) ( M-f- I) 

where aA, Iv,,,, c,,,~ e.,: are positive, negative integers) or zero. The 

general term of the series can then be written so we have finally 

the complete expression: 

C • e · • 
A.,. ..A- I 

This latter notation we suggest as being completely descriptive, 

compact, and readily extensible to functions of many variables. 

The convergence properties have been considered in de

tail by Horn. 1 We omit them as unessential here. 

1 J. Horn, Uber die Convergens der Hypergeometrisch Reihen 
zweier und dreier VerAnderlichen, Math. Annalen, XXXIV, (1889), 
544. 



The analogue of the Barnes asymptotic expansion 
the 

formula has not been given due to the uncertainty as toAexact 

meaning of asymptotic expansions of two variables. It is pos

sible, however, to proceed by a method of double complex inte

gration extending the Barnes integrals to obtain certain rela

tions between series of an asymptotic appearance. These relations 

furthermore give immediately the formulae for reversion of series 

in case any of the series occurring are merely polynomials. As 

these are the only applications of the asymptotic formulae we 

need and since they may be obtained directly, we shall omit fur

ther discussion. 

2. Expansions in Products 

As with the one-variable functions, we refer our 

various expansions back to a few basic sets. Here, however, we 

shall be satisfied to illustrate with use of only combinations 

of the one-variable sets. Others of a more complicated nature 

not derivable from these doubtless can be exhibited. 

The simplest two-variable expansions are those in 

products of one-variable functions: For example the Neumann 

Series of Bessel functions can be extended. Thus, if: 

then 
_j - "'-

( -1: )() (i ;:) 
-

( /
1 
~ ) { I, m) 

J J+.,.,,, 
{ x ) J 

,<A-_,. ,,,, 



7' v 

where: 

o( 
""'-"1 

m ;=,-~--;7;-t« 1,,,.,, ,) 

where we have here made use of the associate functions for the 

Bessel functions previously obtained and applied Theorem 2.11. 

Again, we can have expansions in mixed products. 

Thus for f(x,y) above, we have: 

where: 

( -Jr>t /'3,,,,,.,,,.,, 
( I, /, ) ( I , /11 ) 

,,,.... ' J 

II~ (x) T,;,rt(~) 
( /, /M'C- ) ( I, rn,, ) 

giving the expansions in products of Hermite and Sonine poly

nomials. Again we have made use of the associate functions 

given before. 

Such examples could be multiplied indefinitely, but 

these will suffice to illustrate the principle involved. Among 

the special functions which might be treated in this manner the 

following pseudo-addition formulae are very interesting: 
/2 - ~ ~ -

(x f _,, ) 7) JJ ,,_ /2 ( J J (,,, f -r-7J )) 

where: 

- - r_--- 1 

-~ -
/ 



)/ 
=,"f 

(1 -: =3) 

where: 

r _ -r, ,... ; ( _ $ , .,,, ) r foe__, __,_ , , J r ( /3 + s_: , J r - -J, __,.. ,_ ., ) 

7 ( 0------:-----::~--~--; : T);' _; -j) I' J ) 

- ;,,_,,.., 
-==-- -) 

_J 

,,,,,,, ' ,,, 

where: )I 
,,,,.,,,.. 

Again such examples could be extended at will, but 

these will suffice. 

3. Expansions in Two-Variable HyPergeometric Functions 

In addition to expansions in products, there can be 

derived expansions in distinctly two-variable polynomials and 

functions by application of Theorem 2.12. 

P. Humbert2 introduced the set of confluent hyper

geometric functions of two variables, special cases of which 

can be variously interpreted as extensions of the Sonine and 

Jacobi polynomials as well as the Bessel functions. Several 

of these give particularly compact expansions of two-variable 

functions. 

2 P. Humbert, Proc. Roy. Soc. Edin., XLI, (1921), 73. 
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The polynomial: 

<-=-~, ,,._) ✓\ ~ )_ _ /7 

( -a-,, J) <5 cl r; X ( I . .s) ~ ~ 
- (1,--r) l5 

---,-

I 

~as the associate function: 

(-) 

(if', r -f s +,..,,., 
---- -----~- -

( i, r) (1,0) 

So that 

{; rht) ( l,"11) , 

The polynomial: 

_/ ( -/"1 , -/1"1 ; ~ / X d / -:;_ ) 

X J. 
-

(1,-r-)(J,u) 



(-/Y/,s) (-,..,,r) 

( 'if, 0 ) ( I, -1" - 6) ( I, r) 

-r 6 

X ;t 

Hence the associate function is: 

---,-, ,S 

The polynomial: 

( I , ,,- - ' i ,,,_., - ,,, ) ( O, ..I 7_-n__~ 

(-;' ,S -1-.,.,) ( I, '7" l (/, ,S) 

( - /J'11 , - ;-V{ 

( 'a', -r r .s ) ( I, -r ) {I, cl ) 

Mence the associate function is: 

1-)""'""f \ - I 

( /3 f/Y'I,,,,,.,, ) £_ __ ./ 
,.,.., .j 

{ I, ..! ) 

{I, ,,- - .j ) ( if, .j ) 

_J 



7' / 

T,he semi-polynomial .: 

(o!-,,,,.,, -r--ts) { · ,,-,,.,,--,..) 

( o' / ,.,.. ) ( 0 I t· ;;_ ,,, .,. I I ,S ) 

{ ol.' --,.- r/YT .,. .s ) ( - _.,,,.,, ...,. ) X 
--- ~-~- ~ -

{ 0 , ,.,,--) (c5 1
-f - ,J,.,.,,,, -rl, <.S) {1

1
-r-)(1,.sj 

I 

Hence the associate function is: 

The semi-polynomial:: 
l""'>'n-r4 

0( .,.. d. I, u;, I, 0 ,· - 1, / 

0, I 

( c(-tr>-z f /
1 

.5) (l,-r) ( /,.s) 



Hence the associate function is: 

( oi, ~ -;"! J ~ d)_ ( K J L ~J_ < ;{'; :!- ) 

( ex 
I 

The Appel hypergeometric functions of two variables 

will give a similar extended list, as well as more 

complicated cases of the hypergeometric functions. As 

remarked before, further basic pairs of associate functions 

doubtlessly exist which could be used to give additional 

applications of the theory. 

4. Non-hypergeometric Types 

As in the case of one-variable functions, the 

taeory is applicable to expansions in functions of a more 

general nature still than those considered above. 

Let us consider the polynomials ~,ni { ;,;., ).) defined 

by the generating function: 

/, hr( ,t_ 4 

( I , ,n,z) ( I, "'t ) 

As in the one-variable case, the l ,,,,, ( x, ~) can be shown in 



_'f '1_ 

general to be polynomials in x and y of degree m,n. 

The associate function is directly deducible since: 

I<,,. (3-~_i) 
( 1,,,,,,,) (1,4r) 

whence: 

/ I f, ~) --- 

t'- /Yl., -,f(""l) 
'? ~ e 

---·--· ~--~ -

/ fr, /J'J J 
/ 

is the associate of f ( x, }- ) ,,,,, ,,,, 

As an example of this, we mention the two-variable 

Hermite polynomials //,,..,_ ✓><- f-x, ;. ) defined by the expansion: 

h ( a x + b; } -1- -h ( /;;o< + c ;'/. ) - ~ ( a h .,_ r .z 6 Ii J -t c / ) 

,,,,,,, ,C""-
h -h 

r-::~ ) (1, /}'(_) 

If we write f-= /1 a +lab, ~ = h b 1-J c. then 

r1- )I ( ) ± fa_ /,,_t-2h /2 i-1- cJ."') )( > -;J I \---, />Of , ,., x, J-_ h ,,,,.,). rlf 

C :=::-L_/ r 1,,,.,,,, J !1, 0 J c_ 
,.,.,,,,0. 

so that the fun ct ion a s sociate to fl,,.,, "1 ( ?<,) ) is 

where 

The several two-variable extensions of the Bernoulli 

and Euler polynomials can be similarly treated, using t he 

generating function. 

3 Ch. Hermite, Oeuvres, II, 293-308. 



One could proceed to build up any number of examples 

in expansions of functions of three or more variables. The 

results so obtained would be in the large obvious general

izations of those given above. The many variable problems 

will introduce no complications in theory and only the 

manipulation of the al~ebra will be cause for any difficulties. 
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Part II 

The Number of Representations Function for 

Binary Quadratic Forms 
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Introduction 

The problem of finding the number of representations 

of an arbitrary integer by a given binary quadratic form has 

yet to be solved in complete generality. In the two centuries 

that have followed the first general investigation by J. L. 

Lagrange1 ) of any part of the problem, the investigations have 

proceeded in two directions. A great number of specific forms 

have been considered individually for which more or less 

general solutions have been given. Again, certain general 

investigations have reduced the problem to more simple and 

direct questions. The early investigations of Dirichlet2 ) 

and more recently those of Pa11 3 ) are of this nature. 

In the discussion to follow we offer as a contribution 

to the general problem, the general explicit expressions for 

the number of representations function for all forms whose 

discriminant is such that there is a single class in each 

genus. For the original suggestion of this problem and for 

continued advice and encouragement, the author wishes to express 

his deep appreciation to Professor E.T. Bell. 

1) J. L. Lagrange, Recherches a'Arithmetique, Oeuvres t III 
p 693 - ?85. 
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In our terminology and notation we shall follow closely 

those of Dickson used in his -&eduction to the Theory of Numbers. 

We are concerned with binary quadratic forms ax'+ bx;; +- c,/, desig

nated by [u,h , c] , of discriminant -Ll=h' - ta.c , and shall examine the 

form of the number of representations function 

this being the number of solutions in integers, x and y, of 

If a, b, and c have the common factor A, 

0 ..,,. 

according as mis or is not divisible by A. If no such factor 

exists, the form is primitive. If L.l < o, N l,,,,,, ~ 17- :x.' t bx) -re;/] is in

:fini te, and the form is called indefinite. When .LI ? o, a..-x.~-rhA -:; -,- c-:;.."

is either always greater than zero, or always less than zero, i.e., 

either positive definite or negative definite, there is no loss in 

generality if we restrict ourselves to positive definite, primitive 

forms. All forms hereinafter mentioned will be assumed as such. 

Let 

J 

be a transformation whose determinant has unit absolute value, 

which replaces the form 

C ,__ 
( . 

Two such forms are called equivalent and all equivalent forms are 



said to form a class. Clearly the discriminant is the same in 

both cases. Because of the restriction on the transformation, 

we have further 

.:: 

In view of this it 1s convenient to choose one form representa

tion of the class, the reduced form. A form l a, h, c J is reduced 

if -a_ d.s: a./ c.2a. with 620 ,.f c. ::a. It is unique. 

We shall base our investigation on the following theorem 

of Dirichlet: 

Theorem 1.1 

Let m be positive and prime to L\ . The number of representations 

of m by all the reduced forms of discriminant - LI is "'"'Lt (-IJ/1), 
"I/= 

where w ::: ;;, .ii ;, 'I, w ~ ti LJ.:: 'I, "" = t LJ::: 3 and (-JJ /'i ) is Kronecker's 

symbol. 

If there existed invariants whereby we could determine 

whether a certain integer could be represented by a certain re

duced form, we could proceed with the use of them and Theorem 1.1 

to obtain the complete solution of our problem. The only known 

quantities associated with a particular form, invariant in that 

they are equal for all integers represented by said form, separate 

the forms given discriminant into genera which may or may not co

incide with the several classes. These invariants, the so-called 

characters, are defined by the following: 



Theorem 1,2 

If p_ p_ . 
v ,I ' 

are the distinct odd prime factors of ~, then 

(,,, I 1~) has the same value for all integers n prime to -7. Ll , 

represented by a form La..;,, c J of discriminant - LI . When Ll. 

is even, Ll-=-l"JJ, the same is true of 
-f (,,,., ~,) 

,3 ( "',d ,,;) 5 = (-1} ;j 0 - 0 0,. 

c = (-!) 
V,,,, - ,) 

,j ;J 3 0 0 ,- ;;; {rndd ({) 

~ ;J ,0 = 0 OY 6 { mod I{) 
E / 

We shall use the notation L;__ for the set of characters 

for a certain form, excluding ~ t if both S and € are char

acters. The notations ,,,,c,.,. and ( (,-,.,J are to represent the value 

of the characters (, form or for the form representing m. 

All forms of a given discriminant whose characters have 

the same value are said to form a genus. Since equivalent forms 

represent the same numbers, all forms in the same class are in 

the same genus. 

When there is a single class in each genus we may proceed 

using these characters to give the explic~t form for the number

of representations function for integers m prime to :i L1 • If 

[a., h,c] represents the integer s, Theorem 1.2 states c~ f,,,,,, J -= c~ (.s) 

as a necessary condition that m be represented at all by r~, h,c ]. 

Since we a£sume a single class in each genus, each reduced form 

has different values for the characters. Hence by Theorem 1.1 

we obtain 



Theorem 1,3. 
- LI<-'/ 

Let [a,6,c ] be a form of discriminant~,such that there is a 

single class of forms in each genus, with character [, 
A • 

If m is an integer prime to :2 Ll 

+ {,~ {a) ( (.,.,.,., }J J -~ { -iJ / ,y ) 
-'( ; ..,.,, 

Before we proceed to derive reduction formulae for the 

number of representations of integers not prime to double the 

discriminant so as to apply Theorem 1.3 to the complete solution 

of our problem, we shall make some general remarks on the set of 

discriminants of forms of which there is a single class in each 

genus. Since we are restricting ourselves to forms of sµch a 

discriminant, these results may prove useful. 

L.-
··' 



Chapter I. 

Discriminants with a Single Class to a Genus 

It is known that the number of genera is equal to one 

half the number of characters, C,.: , for forms of a particular 

discriminant. Further, it is well known that the number of 

classes is the same in each genus. Hence the question of the 

number of classes in the genus is closely related to the class

ical class-number problem. Following the analytic methods used 

in the study of this latter, s. Chowla has shown recently that 

the number of discriminate such that each gems has . a specified 

number of classes is finite. Although this gives a certain qual

itative satisfaction, yet it gives absolutely no light on the 

question as to just what particular discriminants have the spec

ified number of classes in the genus. 

Rather extensive specific lists of this nature have been 

given and all evidence points toward the conclusion that many are 

complete. In particular, it is an open question whether the known 

lists of discriminants with a single class in each genus are com

plete, although if there are others, they certainly must be very 

large. 

In this connection we shall extend the known tests for 

there being a single class in each genus, and also give some con

clusions regarding the elimination of discriminants satisfying 

certain congruences and also those whose factors are of a peculiar 

nature. 

0 



As a basis for our investigations we use the 

Theorem 2.1 

A necessary and sufficient condition that there be more than a 

single class of forms of a given discriminant in each genus is 

that there exist a reduced form of said discriminant [ a., h, c ] 

with c / a > h > o 

The sufficiency follows directly, since if [ a., h, c. J ,, c ? a > b 7 0 

is a reduced form, [~, -h, c. J is also reduced, represents the same 

integers and is hence in the same genus. The necessity requires 

a detailed examination of several cases and as we do not require 

it now, we postpone its proof. 

As it stands, this is scarcely convenient as a method to 

test certain discriminants, inasmuch as it requires a more or less 

exhaustive consideration of all reduced forms. It is certain in 

this respect, however, that having definitely listed all reduced 

forms, one can tell by immediate inspection whether there is more 

than a single class of forms in the genus. On this account it is 

essentially the final test that is always required. However, in 

order to make preliminary steps simpler, we derive from Theorem 2.1 

several direct tests. 

Using the sufficiency in Theorem 2.1, Dickson obtains tests 

7 

for odd dis crlminants which we state for reference. Write ~ = [LJ" (;i' ,J]J'I , 

then for positive integers, k, ~ must be a prime p, its square p2 , 

or, also, 
T. 

f 

- J a 'I I :r- I " J a,. J • 
~ ,' I ,J 

0 T , etc. 

/ .:,.= 7;o r>r 7'-- ; 

Here as elsewhere we assume all 
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primes to be positive. 

The corresponding tests for even discriminants are similarly 

stated. Write .s~ :: fLJ + l'. We list below for successive integers, 

k., the 5"" which are eliminated by the corresponding reduced forms 

satisfying the sufficient conditions of Theorem 2.1 or its equiva

lent interchanging a and c, and summarize the resulting necessary 

values for 5-it • For 5'3 we give the details of deducing these neces-

sary values of Sk that there be a single class in each genus. The 

argument in the other cases is quite similar. We let (r, s,m) denote 

the greatest common divisor of r, s, and m 

s, - r,5 I r :> j / ;) ( ---;' 5 J. ) = I [ Y, :; sJ - .) J 

- J_ 4 /4 ) !i 
[ i( J ' ' 

:2£-a.,._,] 
s, - .J 

s 
S, == ,)_ I 0 , 'I, 7 ] 

Hence 81 must be a prime p, p2' 2p, 23, or 24. 

s). 
/· <.) -y / J ;,- '-I 

.I J 
{ 7', j 'I) -= I L ' , f, s] 

s ~ J' /YI r>1 / 'i .I [ J / ~,0-1 J 
l. 

s = J.. /4 I ? c:' L J::l, 
I ~ ' ;J_ fo - 6- f L J 

1, 
)._ 

s -- I{' L V, 'I, t.3 I ] 
2 - - 1 

7 l 3, ,) ' 7' I] 
S2 === 2. 

S2 be p2, 2p, 4p, 24 5 26. Hence must a prime p, ' 2 ' or 

(1) ,5.J - y , j y ? .) ;, C { r; .5, ( ) .::.. I [ r ·, C, J J - .., 

(2) 53 
- s/11 /'1 / Co [S, 'I, , -;z-1} - .J I 

(3) S-:i - f- /'1 / I? oc!J ;, ,.J .I [ f-, .:? 
.I 

/Y{-;;_ J 
-

3,:2_4 /4 
k-J ;) (4) s :: _/ J / [ z( :,; 3 ,) 

J I 
, 

(5) Sa = )_ le /4 / '-I ) [ £5-', ;,? 
' 

A -.3 ] :J. - I 

) 'J :k J /2 'I I J ,, 
/2-J ] 

( 6) ..5-J = ? .I 
I ;_;, ;} 'J -t I 



(7) 5<1 
JA /2 l s f ::2 1, I :; , 

A- J 
T I J :: J 

(8) 
,,, 

:?,:?.2] Sa - ;) ·3 [ 7, -

(9) 
s 

.58 = c3 [ (/; ;;;_, '-17] 

We consider exhaustively the possible forms which S3 may take and 

refer to the numbered cases above to eliminate certain forms. Let 

S3 ~ p.n where pis the smallest prime factor of 83, then n 2 p or 

n = 1. If p > 5 or p - 5, 53 is eliminated by (1) or (2) respect

ively unless n ~porn~ 1. If p ~ 3, let n = q.m where q is the 

smallest prime factor of n > 3 if such exists. Then according as 

q ) 5 or q = 5, we eliminate by (1) or (2) unless m = 1. If no such 

q exists then S3 = 2k.3J, and when k > 2, j > 1 we use (1). For 

k = 2 consider (3); k = 1, (6) and (8); k == O, (5); j = 1, (4); 

j = O, (7) and (9) . If p =- 2 let n ~ Q.m where Q is the smallest 

odd prime factor of n if such exists. Then according as Q > 5 or 

Q = 5 we eliminate by (1) or (2) unless m = 1, 2, or 3. If m = 2, 

we use (3). If m ~ 3 proceed as when p - 3. If no such Q exists, 

53 = 2k and we apply (5) • 

2 4 3 4 3 2 33 Hence 63 must be a prime p, p, 2P, 3p, 6p, 2, 3, 3, 2 .3, or •• 

s" --

S1 --

s.,. -· -

S" ~ 
'/ 

• <; y --- -

54 --

84 --

S4 ---

)' . -5 

7 . /?1 

5. /YI 

3/>1 

:2_ 
A 

211 
' 

210 , 
29 , 

/ 
,/2 ;, I I 

[7. l nz-1] 

Is, ::> />f-JJ 

13, :J, ff/ -s] 

[ ; 1 , 'I, 9 ;;_ ] 

rs 'I, 11] 



r' !./ 'p 

Hence s4 must be a prime p, p2, 2P, 4p, 8p, 2.32, 3.7, 25 , 26, 27, or 2~ 

5·. ..,-. s 
J / 

~.r - 7 ,0 --

Ss -- J /'Y( 

5 .,- ::-.:::: Z5 /YI 

~s ·==- 'I /Y/ 
I 

£ ---s - S- :Jr,__ 

Sr ==-- /2 ,}_ 
' 

£§' = :) , ..)- /2. 
/ 

) , = 
- I. s 

u 
~.r =- s 

Y,? ,5 > 

'11 ) 1 

-n ;, II 

...,,, ocfJ 

' '1 o c-lJ 

A ;, ,3 

A >S 

/4 > 3 
/ 

A )cl 

/0 {r, s 

,,.,,,, r /0 

/ 7 ,, 

7 7 
/ 

/0 )-= I [ -r, Io, s] 

[7, '-l ,~ -3] 

13 , J, / '7 - b' ] 

[ ;,, (, />'I - ~ J 

[ '1,ol, /1-1-( ] 

/ Es, :J, S , .7A - -:1_3 J 

L !f , ;) 
1 

;J. t - J - 3] 

f .2 6-, ,;J O / ,) , s h - L -f- J J 
/2 - ;i_ [;; s-, :2 0, S -r ,J ] 

[ '6, 'f, 13 ] 

Hence s5 must be a prime p, p2 , 2p, 5p, lOp, 24 , 26, 52 , 23 .5, 2.53, 

2.32, 3.7, 23.3, 33 , 3.11, or 22.7. 

To prove the necessity in Theorem 2.1 we must exhibit all 

the reduced forms occurring when there is a single class in each 

genus and show that when other reduced forms arise, giving more 

than a single class to a genus, they must be of the form stated. 

In addition to accomplishing this purpose, we will have available 

for later reference the explicit reduced forms for the disciminants 

we shall be considering. 

The original definition of reduced forms allows, in addition 

to forms 

Ca.., h, C J u ,- C ? a. )' - /2 :1 0 

only the three possibilities 

[a.. , d, c ] [ a, lo Ci ] 

For these we have respectively 

L] ::: 'la c 
/ J 

LI - f ,Jo.. - /4 ) (Ja.-f 1:,) 
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Restricting ourselves to these three types, we shall show that 

except in some cases where it is already known, there are more 

than a single class in each genus, and that all these possibil

ities give exactly the same number of reduced forms as there are 

genera. Hence when there is only a single class in each genus 

they are all the reduced forms and further when there are two or 

more reduced forms to a genus, among them must be at least one 

satisfying the conditions of Theorem 2.1. 

Let the discriminant be odd, then ~ ~ - 1 r~,d 1/). Write 

Ll ::.: A"f with ;t 5"1 ; from L! cc -1 (.,.,.,,,J t) we have ;t --t./4(; o (-m 0 J,;). 

There can be no reduced forms Ia, cJ, c) since L1 is odd. For [a, a, c] 

we find the single solution of Ll cc u{'ic_ - a).:: ✓-'IA satisfying c Ju. >o ,,, 

' [, A+-"<] and 11 ~ / 4. to give the form >--, 11, --;;- with the restriction --0.l.J). 

Similarly, considering [a., h, u J, we solve L'l" ( ;; o.. - h) (:;a. -d) under the 

conditions a.> h > o to obtain the form [ ~;-'(, ~~ ,,, ,."l___}::!] with "'1 5 "J ,, • 

Now, if ~ is a prime or the power of a prime, the only primitive 

form among these is obtained when tl-=-;,. "'-1::: LI , i.e., the principal 

form 
[ I , I 

If /l contains, say k, distinct prime factors, we obtain primi

tive reduced forms . in addition to the principal form by separating 

LJ into all possible co-prime pairs A and kt and using 

0-Y 

according as .,A1 -2 J;,. or ..,1 5 J 71. 

This gives in all c2 ;,_, reduced forms, being the same as the number 

ff 



of genera. 

The following, relating to oa.d discriminants stated by 

Dickson, is important for later consideration: 

Theorem 2.2 

When Li -:- -1 ( ,.,,, 0 1 25) there is more than a single class in each genus 

unless L1 ::._· I or IS, 

L et L'..l = v A - ; , then ;;: = 2 i. and Dickson's tests exclude 

all but k ....: 1 or 2, i.e . , LI =- 7 o ,- I S 

The kno~m odd discriminants giving a single class in each 

genus are listed with their prime factors: 

3 

7 

11 

15 = 5. 3 

35 = 5 . 7 

51 = 3.17 

67 
? , 

75 = 3 . 5 

1 15 = 5.2 3 

12 3 = 3 . 41 

147 = 3 . 7
2 

1 63 

18 7 = 11.17 

1 9 5 = 3 .5.1 3 

235 = 5 .47 

267 = 3 . G9 

315 = 3
2 

.5.7 

40 3 = 1 3 . 31 

4 2 7 = 7. 61 

435 = 3 .5. 29 

4 83 = 3 .7. 23 

555 = 3 . 5 . 37 

59!::J = 5. 7.17 

627 = 3 .11.19 

715 = 5.11.13 

1155 = 3 .5.7.11 

1435 = 5.7.41 

1 9 95 = 3. 5 . 7 .19 

300 3 = 3 . 7.11. 13 

3315 = 3.5.13.17 



Let the discriminants be even and LI 3 'I ( = 0 I It) , then 

fJ = a (mod 'I), so S is the single even character. Write Lo = 'I ;1 "1 

with A s.,y • Reduced forms [ a, o, G J will be £ ,1, C:-"t J. For primitive 
so/,,. f,071 

[a.,o.,c] we find the single set, of .il. =- o.{'lc-o..J -=-'l,l'i satisfying c_ >o..;,o 

and ;,.,_ i ./4f to give the form [,n,-< )., ;..;_-'f] with the restriction ,A,{ _2 J)... 

Similarly considering [iJ. I lo, a_J , we solve Ll ::.. (:2a.-!o)(,1a..-,-b) ='1.:\/f.f 

under the conditions a. ;, Iv ) 0 to obtain the form [ ~ -:,__"-l 
1 

.-<t - ;1 / ,~At] 

with ./4f ~ J ;\. • If lJ is a prime or the power of a prime, the only 

primitive forms are obtained when ;\. = 1 and _,if== f , give the principle 

form 

When d contains k distinct prime factors, we obtain primitive 

reduced forms in addition to these two forms by separating LYi into 

all possible co-prime pairs 11. and .-A--/ and using 

a,., d 

according as A1 -2 3 11 or A ~ ,1 :\ • 

This gives in all zk-- reduced forms, being the same as the number 

of genera. 

When Ll ~ ~ ( 7>7o j /() 
1 

D 5.:: ~ (rn OJ )") so el ther e or ~ 6- is 

the single even character. We write ~==~>~and observe that no 

reduced forms [ "', a, c] or [ a, Iv, a..] exist by examining g ;I -1 _.,. a. ( t c -a..) 

and ~ ;:\--<t ::.. ( ;,,,,_ - lo) Oo 1 ;, ) respectively. This leaves reduced forms 

[,1.,0, .:>"1) and [,,2:-\ , 0,_,,,_,] or [.,,,,,0,.:2.,1] according as "L\<-0 or J.>-?-c/ 

J '7 ; ... .> 



obtained from [q, o, G J with c 7 a ,, o • When Li Iv is prime or the 

power of a prime the two reduced forms are 

"'- 71 j 

When Ll/v contains k distinct prime fa,ctors, we obtain primitive 

reduced forms in addition to these two forms by separating L1/v into 

all possible co-prime pairs ;\ and _,,,-<-f and using 

[ )._/ () .L,,l{J 

a,-, cl 

according as ;;. 11 <A or ;;_ ;;i ? -"f • 

This gives in all~ reduced forms, being the same as the number of 

genera. 

When LI -= n. (-,,,"J 1t )/ o.::: 'l-/2 r 3 so that s, = 'I ( le -u), there are 

then more than a single class of forms in each genus for all such 

discriminants except LI = 1 ~, J S--: co . The reduced forms for these 

cases are given in the tables. 

When Ll -= a ( '7n o J 1,), D = :/1 
( 2 /,. 1- 1 J, h 2- 'J.. • For /. 2. 'I-/ s,, = 1.t [ ;z. h • ~ (., -t. -u > _,, , ] 

so there are no discriminants with a single class in each genus ex-

cept when and ./4. -= o 1 0 7 , / , • For /.., = 'J , hence 

excluding all cases except A = o, 1, :1 / 7 • The reduced forms for 

these cases are given in the tables. 

The case /, = J , that is ii ~ J ~ (-,,, 0 J {'I), requires separate 

treatment. Here D ~ o (,,.,,,J ,,,, ) so that S and € are the characters. 

Write l'.'.l =- J ~ ,"\ Af with ;\ '5/f. Reduced forms [a , o, c) will be [A, o, fr'A-t J 

and [,,_,_, 0/ 6 )1 ) or [ ff' .7\, 0 / j1 J 

according as -"1 ~ is' " or _,/4./_ ? r:, i1 • 

To find the primitive reduced form [ a., Ci, c J, we solve 3 2. ;t .A-t - o. ( <1 c - ci. ) 



l, / 

to obtain the roots a.. = 1/ A 
I 

c = ~ -1- A✓- a= 8' ).., c: -==__,,,u + J. ) satisfying 

C > a >O and ).~ , whence the forms [ 'I 1\ 'I)./ ~-t)] a,,,J ['i>'A , 5") i/-t J. tl] 
with the restrictions 'Y'1 > 3 ). and/-' > (). respectively. 

Similarly, for [a, 6, a. J the equation 3 .J. ) _/-'( = ( ::2 a.. - lo) ( 2.. a.. + ,b J 

under the condition a> h > O has the roots a,-=). r- ~,, h = ~ - c<.11.; 

a= J. A +.,,LA,, lo =:V-, - 'I); a.=,)>- i_/A, 1i = ¥). -<!<{ whence the reduced forms 

U- T ~/ 'l_,,u - ~ A, A -f ~ 1, [ .}_ ) -1;/A / ~ - 'I ) I ;,;_ A !:,,"" ] J [;; A 0 / 1/). - .,(~.) ,2 A !,A J 
under the respective conditions J_.,,,-,<-1 -< J A ~) ~, t) / __,,u < J. ;t 

I 

If L\ is a prime or the power of a prime, the only primitive 

LI/ forms are obtained when ). = I,, / = /(3 < There are two or four 

according as / = 1 or /' > I , 

0 J"'~ ] I / 2 

t../, J~ + I ] /A ;> I 
/ 

or [ /A, a_, 

o r 

If bjJ.. has k distinct prime factors, we obtain primitive reduced 

forms in addition to these four by separating L'.l/3 ~ into all 

possible co-prime pairs A and / and using the four forms 

[). I c}/ ~ ] 

[ .,,M, o, &" /\ ] 
1 

__,,LA -< ~ 1\ / o ,- [ &"' /\ Cl, /-'I ] 
1 

/ / ~ ). 

[ '-/ ). / '-/ ). 
1 
~ t- ;\ ] / 0 ) 3 A , o r [ 1\. f- ~, 'fA - J ;\ 1 1\ -f ~ ] , ~ < 3 A 

r ?J 1\ ' ~ ,,{_ I ./' + J. /\ J I /1 / ( ) , 0 ,- [ ;2_ 1\ -f __,A I ;2 _,,,M - y ) I ;) 1\ 1/ ] / J_ A 0 < ( 1\ 

<' r [ d_ /1 f-,/'1
1 

'I A - ~ I ;)_ /\ -/;fa 1,,, /A < ;)_ ;\ 

~+/ 
This gives in all J reduced forms, being the same as the 

number of genera. 



Thus we have exhaustively considered all types of 

discriminants and have shown by actual exhibition sufficient 

reduced forms to account for each genus in every case where it 

is not shown definitely by the sufficiencies of Theorem 2.1 

that there are more than a single class of forms to the genus, 

which reduced forms include all those not covered by the 

conditions of Theorem 2.1, thereby proving the necessity of 

Theorem 2.1. 

For reference we list the known even discriminants with 

a single class in each genus according to the above division 

congruences. When L\ - 4 (mod 16), Ll has the values: 

4 = 4.1 148 = 4. 37 660 = 4.3.5.11 
20 = 4.5 180 = 4.3.3.5 708 = 4.3.59 
36 = 4.3.3 228 = 4. 3.19 1012 = 4.11.23 
52 = 4.13 340 = 4.5.17 1092 = 4.3.7.13 
84 = 4. 3.7 372 = 4. 3. 31 1380 = 4. 3.5.23 

100 = 4.5.5 420 = 4.3.5.7 1428 = 4.3.?.l? 
132 = 4. 3.11 532 = 4.?.19 1540 = 4.5.7.11 

5460 = 4.3.5.7.13 

When L1 = 8 (mod 16) and Ll - • 32 (mod 64), we may set 

J = 8m and 32m respectively, where m takes the values: 

When 

1 
3 
5 
9 = 3.3 

Ll ::::: 0 

Finally, when 

11 
15 = 3.5 
21 = 3.7 
29 

35 
39 
51 
65 

(mod 16), there 

/\ = 16, 48, 

/\_ = 64, 192, 

LI 12 (mod 

Ll = 12, 28, 

= 5.7 
= 3.13 
= 3.17 
= 5.13 

are only 

112, 240; 

448, 960 

95 = 5.19 
105 = 3.5.7 
115 = 5.23 
231 = 3.7.11 

the eight values: 

16), there remain the cases: 

60 

by 
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With these tables and the reduced forms given above in 

general form, we can write down explicitly the reduced forms for 

any known discriminant with a single class in each genus. 

In addition to an explicit knowledge of the single 

reduced form in each genus and the factors of discriminant in 

our later discussion, it is necessary to treat separately the 

cases where the discriminant contains the square of any odd prime 

as a factor. In this connection we state: 

Theorem 2.3 

If the discriminant contains as a factor the square of any odd 

prime, t here is more than a single class of forms in each genus 

except for the ten known cases 

LI = 36, ?2, 100, 180, 288; 

LI = 2?, ?5, 99, 14?, 315. 

In proof, let j_\ be even and contain as a factor the square 

of the positive odd prime q. Write Ll = 4q2 (r.s - 1). Then 

either r.s = 2hqk, or we may chooser as a positive odd prime 

distinct from q. In the latter case we consider the primitive form 

[r,2/cr - q/, sq2 
+ c(cr - 2q)], where c ~ 0 1s chosen so that 

q = er + b, O < b < r/2. The conditions of Theorem 2.1 are clearly 

satisfied when r < sq2 + c(cr 2q). If r > sq2 + c(cr - 2q) 

then r > q(sq - 2c), and q < r, if sq - 2c > o. But q > er - r/2 

by choice of c. Hence sq> scr - sr/2 = scr - 2c - sr/2 + 2c > 2c, 

c > 1, since ecr - 2c - sr/2 > 0 follows from r ~ 3 > 4c/s(2c 1); 

and sq~ 3 > 2 = 2c, c = 1. If q < r/2, c = 0 and 2/cr - q I = 2q 

< sq2 = sq2 + c(cr - 2q). If r/2 < q < r, c = 1, r < 2q < sq2, 
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2/cr - q/= 2r - 2q < sq2 + r - 2q = sq2 + c (er - 2q). 

Hence the conditions of Theorem 2.1 are always sattsfied. 

If jj = 4q2 (2hqk -I), then [q2 , 4q, 2hqk + 3] satisfies 

the required conditions when q > 3, k > 1; and h > 1, k = 1. 

If q = 3 then s 3 = 2h3k+2 , allowing only the cases h = 1, k = l; 

h = 0, k = 2; h = 0, k = 1; and h = 1, k = 0; or Ll = 180, 

288, 72, and 36 respectively. When h = 1, k = 1 we use 

[q + 4, 24, ·20 2 - 9q + 36], q > 19, and eliminate q = 5, 7, 11, 

13, l?, 19 since s3 = 9.26, S1 = 11.58, s1 = 31.82, s3 = 58.?3, 

S1 = 38.251, s2 = 31.431 respectively. Similarly for h = 0, 

k = 1 we use [q + 3, 12, q2 - 4q + 12], q > ?, eliminating 

q =5 and 7 by S2 = 8.15 and S1 = 5.59 respectively. Finally, 

if k = 0, s1 = q2 (2h - 1) + 1 = 4(2h-2q2 + (1 - q2 )/4), h > l; 

and when h = 1, S1 = q2 + 1, 52 = q2 + 4, so that 5 divides 52 

for q '= :t 1 (mod 10) and 5 divides s1 for q ==- + 3 (mod 10), thus 

excluding all oases except q = 5, namely, Li = 100. 

Again, when Ll. is odd and contains as a factor the square 

of the positive odd prime q, we may write Ll = q2 (4 rs - 1), 

since L1 -== - 1 (mod 4). Then either r.s = qk or we may choose 

r as a positive prime distinct from q. In the latter case we 

consider the primitive form [r, 12 er q~ sq2 + c(cr - q)], where 

c > 0 is chosen so that q = 2cr + b, 0 < b < r. The conditions 

of Theorem 2.1 are clearly satisfied when r < sq2 + c(cr - q). 

If r > sq2 + c(cr - q), then r > q(sq - c), and r > q if sq - c > o. 

But q > 2cr - r by choice of c. Hence sq> 2scr - sr = 2scr 

- c sr + c > c, c > 0, since 2scr - c - sr > 0 follows from 
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r ~ 2 > c/s(2c - 1). When r > q, c = 0 so that 

/ 2cr - q / = q < sq 2 = sq2 + c(cr - q). Hence the conditions 

of Theorem 2.1 are again satisfied. 

If Ll = q2 (4qk - 1), then [q2, 3q, qk + 2] satisfies 

the conditions of Theorem 2.1 when q > 3 and k > 1. If q = 3 

then T1 = 3k+2 , and hence by Dickson's test there are allowed 

only k = O, 1, 2, nam ely, /j = 27, 99, 315. When k = 1 all 

remaining cases are eliminated by [q + 2, q - 4, q2 2q + 2]. 

Finally, when k = o, namely, !l = 3q2' we write 

q = 6m + e where e is + 1 or - 1 as the case may be, so that 

Ll = 36m ( 3m + e) + 3. Then To = 9m ( 3m + e) + 1 =- 0 (mod 7) 

when rn = 4e or 5e (mod ? ) ; Ti = 9m ( 3m + e) + Z :=: 0 (mod ? ) when 

m = 3e or 6e (mod ? ) ; T 2 = 9m ( 3m + e) + 7 ==:. 0 (mod ? ) when 

m -:::: 0 or 2e (mod ?) ; and T3 = 9rn(3rn + e) + 13 -'= 0 (mod 49) 

when m = e (mod ?) • When e = 1 Dickson's tests eliminate all 

cases except m = 1, namely, q = 5, since T1 = 3.7 and is 

allowed. When e = + 1 all cases are eliminated except rn = 1, 

namely, q = ?, since T3 = 49 and is allowed. These g ive the 

final two allowable odd discriminants ~ = 75, Ll = 147. 



Chapter II 

Reduction Formulae 

In stating Theorem 1.3 it was added that in order to apply 

it to the complete solution of the number of representations prob

lem it would be necessary, among other things, to derive formulae 

whereby the number of representations for integers not prime to 

the discriminant could be expressed in terms of the number of re

presentations function for integers prime to the discriminant. 

The results needed here have been given by Pall, who derived them 

and expressed them using the terminology and methods of the theory 

of composition of binary quadratic forms. In order that our treat

ment may present a unified completeness, we propose to deduce these 

theorems with some extensions by more elementary and direct methods. 

The essential part of our development will be based on certain dir

ectly derived properties of the quadratic characters defined in 

Theorem 1.2. 

In most cases, if {=, LJ J ~ 1 and i I Ll, then 

I'/ l f ,--,,,, -= ax,_+ Iv x ) 1- c;; L J = /'(' N z,,,,,,, : "' 1 
x L 

I I:, x J- -r "- ';y • ] 

where K ls some constant, fa, L, c J has discriminant -Ll, and [a'.6'.c'J 

has a discriminant derived from .LJ by some prescribed method. 

Before giving theorems of this nature, we require the result on 

transformations of quadratic forms stated in 

Lemma 1 
2 /2 ~ \. If the prim1 tive quadratic form u. x. -1- ::t:;; 1 c) , where / 

is a prime / J ' is such that b :>. - </a_ C. 3 Cl (r-. 0 j A J) / ,/4 = I O r ~,) 
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then there exists a transformation 

such that 

where 

If all of a, b, c are ==- o ('/?(()cl)), the form is not pr1mi ti ve 

and so not considered. If a::= o {,n od J..) and C == o {-m 0 d )), then since 

/o a._ '/a_ C ~ 0 {,noc/ ;\} 6 ::=- 0 {mo J )_) 
/ 

reducing to the case mentioned. 

Hence for all other cases we may, without loss of generality, choose 

C,, '-f O {-rno d A~ 

Now if a.='. 0 {mod A) then 1/·= 0 (mod ✓1) and fJ E O {-n,od ✓·u so ' ' 
2 ~) Hence, since /J - 'lac ~ o (r,-,..ocl ;\ and C 7- a (mod A), 

a = O(-mod 1\~). If h == () (,-;, o /) ), b ;i ."::O {-mod ✓1')and a =0 {n,dd ;1~). 

Therefore, if either a or b=O(m e1cl;\ ), a..::=::0(7>10J Ak)and fo :.=:0 (7>7od,l) 

in which case we use the identity transformation. 

If a, b, c are all =/ o {-mod J.), then we must have 

If 0- o< :\ + h o< er -r c tf;; = o r,,, o J .;l) 

'fa ' cl..< -r i a. b ci. 0 -r 'I a c. ;!;;.. = ( J a. c1._ r /o ~) ~ -1- {'I a c - lo<)~ oz 

= ( Jc, ex --t lo~/ -= O ( Tnocf ,'\) 

since '/ a. c - b :..E o (nr 0 d 1'\) , but since A is prime 

J a. c1. + h o' == o {nio cl ;\ ) 

Conversely, if Jao< .,.. h o == O {moJ ;\ ), 
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and since A is a prime > J. and a ;E o (muJ )) , 

so we wish a solution of 

Take y ::: I ; then since the ~ o< and )_ are co-prime, o< may be 

determined. 

Then /3 == o( S -- I • So for all /3 is fixed. Thus we have a 

solution and these values give a transformation which reduces the 

case to that where a =- o {m 0 d ,\) considered above. 

When ) is an odd prime dividing takes two essen-

tially distinct forms according as A~/ Li and /\ \/LI . These results 

are incorporated in the following: 

Theorem 3.1 

If ). I LI , /\ an odd prime, and /l a. / L1 , then 

Iv I x1 4,,,,,,, -- a_ x ~ f h l( J ,_ c ;z"'- J -_: )I l /7'>1. 

T C) ·J C C: NL ;'>rl 

I ol. / I I ~1 
==a X /-!J X ), -f-C;);t 

where _lJ 

By lemma l 
!V[ A:ir>-r -::ax 'tlo~ ) 1-c. ) .;.j 

1V [ >- .,_ /11. -- a f + i C -7 1- c- "7 ., J 

where Q.. :::' l :-= 0 ( -mu d 1\)/ c- f O {-r11od ,-\ ) . Hence ~ ·-c: a (,-.,,o J )), but 

a. ~~==o ( rn °d tl ~) so f ~o{-,-,.,.o d ;\) . Therefore 7-= ,\;,_ , f =,"\y and 

IV l A ,/>f = C( X l -t /:; :t ) -t C) L J 
=~- )/ f 0 _ a x L r h ~-;;._ -r c ;;t ' ] 

Also by lemma 1 
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where a = l ::-_cc O { 771 a j) ), CI- 0 (nio j ;l) . Hence ~ =-0 (-rn O j )). If we put 

~ ' - 2 

where i e2' Ac - J- // = 1 a-::.--/, = fa c - ./2 " • The theorem follows by suc-

cessive application of these results: 

Theorem 3.2 

If A/iJ , il an odd prime, then 

I , LI/, ,l_ where 1/ o , c ' - ;o ' = "' 

By lemma 1 
// [;./\x __ ax'- r h ,'Cl +c;'-] 

= : IV [ /\ l, /7'1 == d ?(' f 6 ,( /j f- c- ',J i] 

which requires x = ~ 1 ; c:: ) ? . Hence 

I 
fi! ) a 

so 11" ,/4 =- 1 and /1'/ = /1-?'( is prime to ), , there can be no represent-

ations and· when le ==- ~ 

- air <- f- bl( "77 f-

Also '/ a I C - h I ;z h 
z. Ll a, --

'I )' C - · - -
/\ <,_ A 

,_ 
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Hence the theorem follows. 

As might be anticipated, the number of representations 

for 2n reauires special treatment. Before proceeding, we recall 

that our development is being restricted to cases with a single 
w 

class of forms to a genus. In theorem 2.2 we sh~ed that if 

Ll -= - 1 (mod 8), i.e., if the discriminants were odd and yet some 

of the coefficients of the form were even, there was more than a 

single clas.s to a genus unless LI. = 7 or 15. These cases we 

consider separately in 

Theorem 3. 3 

If [a, b, c] has a iscriminant - il = - 7 

N [ 2km = ax2 + bxy + cy 2 , m odd] 

= (k + 1) N [ m = ax 2 + bxy + cy 2 

] 

If [a, b, c] has discriminant - ,1 = 15 

N [ 2km = ax2 + bxy + cy 2, m odd] 

= (k + 1) N [ m = a' x
2 + b' xy + c 'y 2 

] 

where [a',b',c'] is in the same class with [a,b,c] or not 

according ask is even or odd. 

When !.I = 7 the single reduced form is [l, 1, 2]. Hence, if 

2n = x2 + xy + 2y2 , then x(x + y) - 0 (mod 2) so that 

:x = O (mod 2), x + y -,= 0 (mod 2), or both. If we make 

replacements according to the scheme: x even, x --, 2x, y --, y; 

x + y even, x 7 - x + y, y -7 x + y; x and :x + y even, x _ _,, 2x, 

y ~ 2y, then we observe that 
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N!:1/"I 
,. 

f- cl.)'] = X f- X). 

-- /V [ r'1 = X 
, 

-f X.) +- ::l J' ~ J :x' e ve '1 

N !/'YI 

,. t-.2;;/] -;- cc: X -f X ;1. 

- Jv[rn ;::: ,;;_ (-x.' + x;; + ~;, ')} a--,, cl 

j 
setting m ::= ;;,_ ,m1 1 /rrl. odd and repeating the procedure, the result 

follows. 

When L'1 = is-the only reduced forms are [,, 1, ?"] and [.), 1, .:2J. 
If 

and X is even, or -x ,- -;;... 1s even, or both are even. If we make 

replacements according to the scheme, even x -, ~"' ' , 

even, x - -;> -J.x -d , ;.x ->,;; ; x a,,,J '<'. -1-- ;; even, ;,: -t "'"'-,)--'; 2;;., we observe: 

/V/Jm -X"rct;+'I; '} 

X eve n 

--1-!l[,,-n --=c2.x" 1-.:r ;;r 1-;z;r'-J I X-t-'). even 

-;ti 1/11 = J.(x_",- () f Y;t 2
)] / X a~J .:x -t-;t c-.Ve.-'1 

If, however, 2/'r[ = ~X
1

-fXd t- :.2J\ then XJ- cc'=O ('F>,vd~) and X is even, 

or ;x is even, or both x and ~ are even. So, if we make re-

placements: X x and 

) even,x,1_-:x:,;:7.1..), we observe: 

/ii [d.. r'1 == d.. X .. -f X:; t- ;;; I'] 

__ JV [ ;Y{ ~ ~ '1-x) -t I;,] X C.VC'( 

t IV [ r,-t_ - X 2 f /\ ) -f ~1 ") 

C'. V C )' - ;V I /Y[ -- ~ { ~ X ,_ I X ~ ;- cJ l , ) J ' 
/4 

Combining these results wilh /11 -== 2 ,✓,-,,r, rJ-n. odd, the theorem follows. 



When L1 = 3 ( ni o d '6), that is for all other odd discriminants, 

all the coefficients must be odd, so the reduction theorem takes the 

form: 

Theorem 3.4 

If LI ===-= 2 c = o J &') 

+ C) 
., 

::::: 0 

Since LI :~, 3 (7>1 °d 't!) , a, b, and care odd; therefore 

2. 

so that if -~ and ) are such that 

.), />1, 0.. ·,: f h1::;. ·r · c.; 
··-

then l 2 a ( ·n,,J j ,.2 ) ,\'. --j- \.) I cl 
or ( t ·1,1- )' ,\'.) , - (_) (--,.,.," J a<.) 

So-x -,- }. and ; 'I:, J are both odd or both even; but if x )J is odd, x 

and 1J are both odd and x --1- ~ is even. Hence ,'\:: :J. and x -1 ) are 

even, so that x and ) are both even x -= ;;)_ f, ~ :-:: ;;r . 

This requires 

and by a successive reduction the theorem follows. 

For even discriminants it is convenient to make a separa

tion into two types according as: 

'· . . , --,. 
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In which connection we state: 

Lemma 2 

A..· quadratic form [a,2b,c]has discriminant -<l, Ll ===:: 4 or 8 (mod 16) 

if, and only if, ac = 2 or ac = 2b + 1 (mod 4); or equivalently if', 

and only if', 

or 

When L.l -

When LL -

Conversely, 

When 

4 

8 

a ==' 1 (mod 2), c =-~ 2 (mod 4); 

a :==: 2 (mod 4), c ~= 1 (mod 2) 

a = 1 (mod 2), c - 1 (mod 2) 

a(a + 2b + c) ~,,. 2 (mod 4) 

(mod 16), b2 ac . - 3 (mod 4) 

ac - b2 + 1 

-- 1 -- 2b + 1, b even 

=== 2 
' 

b odd 

(mod 16), b2 - ac -:? 2 (mod 4) 

ac :=::: b2 + 2 

"-= 2 
' 

b even 

-- 3 - 2b + 1, b odd 

when ac 2 (mod 4) 

ii = 4ac - 4b2 - 8 4b
2 

(mod 16) 

- 8 b even , 
::-.:. 4 

' 
b odd 

ac :::==: 2b + 1 (mod 4) 

<l = 4ac - 4b2 =- - 4b2 + 8b + 4 (mod 

- 4 b even , 

= 8 , b odd 

16) 



Thus proving the first part of the lemma. 

Then, if ac = 2 ( mod 4) 

a .=::: 1 ( mod 2), C ::::c· 2 (mod 4) 

or a :'c-: 2 ( mod 4), C cc:': 1 (mod 2) 

and the converse is obvious. 

Again, if ac ~ 2b + 1 (mod 4) 

a ==' 1 (mod 2L c =- 1 (mod 2) 

so that 
a + c c::.-=: a c + 1 (mod 4 ) 

hence 
a + c = 2b + c (mod 4) 

or 
a + 2b + c =--= 2 (mod 4) 

and finally 
a(a + 2b + c) ==- 2 (mod 4) 

Conversely, if 
a -- 1 (mod 2), c c:c: 1 (mod 2) 

then 
a ( a + 2b + c) ", 2 (mod 4) 

implies 
a + 2b + c - - 2 (mod 4) 

or 
a + c , : 2b + 2 (mod 4) 

but since a and care odd, this 1s equivalent to 

a c -::: 2b + 1 (mod 4 ) 

Theorem 3.5 

Let [a,2h,c] have even discriminant - Ll • If A::..: 4 or 8 (mod 16) 

a A ' 1- l b X) + C) ' ] = : ;1/ / ~ =0- a .. :-c' -f ,) .0 ·..- ;; T C. ;;t • ] 
----- -



1.1. (-n, o J It) 

where [a ,';.,; c: 'J has discriminant - o/y . 

We consider separately the two cases: 

I. One of a and c odd, the other even 

II. Both a and c odd 

Case I 

Without any loss of generality we choose a = 1 (m O cl .:2 ), 

C =- 0 ( -171 C) d .2. ). Then 

so that :.:- .: 2 f . Hence 

-+ ( ) 

Now if Ll-= 'l o,- ti' { 1>t o d I ? ) , that is by lemma 2, if c :=:J.(n,dcly~ 

so that ) = .J ,.-7 • Hence 

3 (J 

However, if 11 ,.·:: 0 ,.» /,) ( n,o cl I{, ) , that is by lemma 2, if C ~.:i O (n,_ c,J Y), 

then '-
-/ 'f C / 

-; c.. :, ·] 
(T 

and 



l--.:i 
I I 

where I.,(_ - Q_ I::> ~ c- -7' C. 

'I a 
I lo' a c. - /2 , LI// 

(.. -

Case II. 

The biunique transformation: ,\:' ·- f +~ ') 
.. '7 I 

replaces la L 

a X + c2. .C\'. ;r -t C. ) 

by l 
/.::, ( --7 

-

0-- ~ i ,}_ ·f C. -1 

where u. ·-··- le. /2 a ·r h 

Since 

(, = a t- r c. 

Thus we reduce Case II to Case I. 

When LJ .-:: "I OY ~ (--,,,od ;.; ) , then by lemma 2 c-= a. rJ /2 r c ? ~_ :1 (mod ?" J ; 

Thus in all cases: 

When LI 

When .Ll - Q O r / ~ ( ln d cl / ( 

The theorem follows then by mere repetition of the above process. 



Theorem 3.6 

Let la., 2 6, c] have discriminant - L.l, and let m be an odd integer; 

then: 

If L\ - t./ 0 ,- [(" {.,,. o cl I 6 } 

1Y l 2 rni a ~ ' -t ;;__ /::, X ;t --t C;; '] = 

j)/ [ /rV/ 
I 

-f ,2/:,\K) -f- c'7'} = 0. X 

where a c - h 
"- , /2; ,. 

-- a C -

If L\ ~ 0 0 7 / .2 ( _,.,,,, 0 J I[, ) 

Consider first the case where a·c is even. Without loss 

of generality we set a odd and c even. Then 

so that x = :2 ( and 

where ce. 
1 = J a. CI ___:- L C 

ol. 

Now when c'.'.\ ~'-/ o, ~ (n-,ud /(;) by lemma 2 c. ~ :;_(--,,,u.Jd 'I), C
1

==' 1 (,,,,vcl oZ) 

so that 
/V [ ;;;_ ,,.,,, -= a x ' -t- ,;J. h x d + c ;; ' J 

When Ll = 0 V r / 2 ( n--1 0 cl I,; ) by 1 emma 2 C. .,,. () ( ,.,., ,? cl ii)' 

so that 

1 1 
1 , 7 --

-; o2 /;:, --'t ) -j C rl _J C 



When a-c is odd, as in the previous theorem, the trans

formation x * f + "'? , -;; " '7 reduces the situation to the case a -c 

even. 

These theorems give the reduction formulae necessary for 

the forms we are to consider. In order to identify the several 

forms occurring in these formulae, we need some extensions on the 

properties of the characters as given by Dickson. 

We generalize the statement of Dickson's Theorem 67 to read: 

Theorem 3.? 
;i_ 

[ a, lJ, cJ has the discriminant -Ll , _ Ll = t/a c - h . If ;o __ ,: are the dis-

tinct odd prime factors . of L'.l , _theil !-_he __ characters ( r'1 / pA. ) have 

the same value for all intege:i::-_s n represented by a form of discrim

inant - 1-1 , excl1..1:<!~~~ --t~ose char~cters, _(01 /Pv) , where 1ul0 . The 
i (, , -,) -,!;J,, ' - I) 

same is true for the characters s -==- {- 1> , t = c- 1 ) , £, c for odd integers 

In the proof of Dickson's Theorem defining the characters 

and giving their properties, it is only necessary to shift the em

phasis that n be prime to L1 , hence allowing a consideration of all 

odd prime factors of ~ , to a restriction to consider only charac

ters corresponding to those odd prime factors of LL not dividing n. 

The details of proof remain unchanged. 

In connection with the theorems to follow, we state: 

Lemma 3 

Let Lo, b, c.] have the odd discriminant - LJ =- - ), 1\. If ). is square free 
I 

and 
+ C y 

2-



there exist ,? and nz such that 

By hypothesis 

so that 

( :J.. Q, X -f- b°J- r LI ..t. 
-/ ) 

· - · • { ~ Q, X. -r · I:> J) l -f 
~\ I i 'L., 

and similarly 

Since A, is square free, this implies 

to determine f and 1 , but from these 

l. 

J 

C,'./ t/' 
j 

Hence CL (hf;' r ;Jc_ ( )L -- /2 {l( -,-- J c_"o/ ) {;;_ c.,r I t 'o/ ) 

-; C ( ;;_'-<( f- h'"'l):; 

or -f f-

Lemma 4 

Let fa , :2 t, c] have discriminant - Ll "" - tf 11, 1· If ) , is square free and 

there exist f and n-; such that 

The proof parallels that of Lemma 3 starting with 



0. ;, fr/ = { a. X -r ID I ) 
, 

A, );, ).:,_ +-

hA /' ;\ >-., ~ 

J, at ( C 'J_ + f- )( 
C :::-

and using the determination of f and "1 • 

It is winecessary to repeat details. 

The characters of forms representing certain products of 

integers occurring in certain of the above theorems are re.}.ated 

according to the following four theorems; 

Theorem 3.8 
.,.. 

Let - LI be a dis~iminant such that .t1 = .A/ , A an odd prime and 

(>-,J-<.)= 1. Then, if A,n., rn odd)is represented by a form of dis

criminant - LI whose characters are ,\,..c--t. , n 1s represented by a 

form of discriminant - LI whose characters are ,.,,c.,; , where 

>- C,. being the value of the characters for the form representing ), . 

Consider first odd discriminant, -.Ll, let 

so that 

where 

)/>?. Ci. u." -t- KJu.v -r cv< 

o.r-"-1-h--r-s -rc,.s"-

( I ) 

:::( == ;)_ a l,{ ..,.., r b u .s -/· h -r v --r ;;J. c v s 

::::: US - r V 

If Ll "' ),.,P , by lemma 3 there exist u ".,, cl v' such that 



Hence 

But (1) and {2) state 

for all p prime factors of Ll • 

Therefore 

-f L I J I 

I 

:, 
CV' 

I -,,, 

But by lemma 3 ) and ~ are represented by the same form, hence 

(>-I 1v ) or v / ;-v ) include all >. c.,.., • and the theorem is proved for odd 

disc1m1nants. 

so that 

where 

For even discriminants the proof begins similarly. Let 

= a r -t-
f- C c5 '-

),( -- a u. ,- r b 1,1 .s 1- lo --,- v r c v s 

- -,,- V 

If - l:J == A/ , by lemma. 4 there exist ,,, "".,, J v ' , such that 

= a v1 ' ' -1- « b v1 ' v ' + c v ' 

Hence 
- FJ J, 

But (3) and (4) state 



for all p, odd prime factors of D. 

Therefore 
( i\ I ;o) {,-,,Jr)(~ /p) - I / 

I r -=-- ). 

But by lemma 4 ~ and / ~ are represented by the same form, 

hence ( >--/ ?) or ( 0 / ;v) include all 

Let /J = 3 (mod r). Then 

but A , n, and mare odd, so that 

whence ..\ 1- ,,., - 1 = ,,,,,, ( 77( o c1 Y) so 

C , of this type. ,\ . -( 

)_ rn ,,,,,,,, - ., I ( ,,, " j 'I ) 

= (-) 
/, C r"l L e_ 

If /J ::: J. <7>1." cl f), then x is odd in (3) . According as y is even or 

odd, >..,.,,,- = .,- / n - I, ,\ /Yi ·~ +_ r""f (-,,,,J cl ?J) o Hence ) ',,,,, 2

cc' /Jn 
2 

( J>tu d ;.) ' but since 

/\ and n are odd 

1\ ' l , ,\ 2 
( )7( o J n) /M. - - r />t - I - n¥1 - ·-

Hence 
-{;-(- ' - 1 J -f,[0'-1) ,. (,n'-1)] 

(-!) - ( - I) --

I, enc. e 

,J~ (mod 6-'}, 

For the first alternative 

For the second 

so that / " ,- /2 " t .!.. 



If 

If 

D = O{moJ '!-)/ A;?fa>l ~ x· == I (m,cl :1) 

/)=.O(n-,odFr), ">._,,-,,,/m==x'=-/ (,,,oclFr) 

Theorem 3.9 

"",, J 

an cl 

Let -Ll be an even disciminant. If 2m, m odd, is represented by 

a form of discriminant, -11, whose characters areJr121C__,<,, m is repre

sented by a form with characters ,,,,,, C ". where 

C, C, 
..l A. ~ .... 

~C~· being the value of the characters of the form representing 2. 

The proof follows the second part of theorem 3.8 for the 

characters (=/;J_,) • (That 2 is even is immaterial dealing with odd 

characters). 

Since m is assumed odd, we require Li= '/ or Fr( rn°J 1b). (Theorem 2) 

If Ll = 'is (mod u), ~-r>rt 1s represented by the same form as 2m by Lemma 4 

and may be used in the manner of Theorem 3.8 to complete the proof 

for even characters. 

{ ,j ) ' ,._ When IJ='f(,,,,,J u), lJ= 3 = 0 'I and as before;;,.,,,,,,,,= x -1);1, since m, n, 

and Oare odd, x and y must be odd. 

so 

so that 

and 

Hence (- ) 

I - ;:> 

). "1 - J /»-1 

' f l) ":l e_ ! -,,,- (-;} "-

--f I -f- /0 (7n 0 J 

--; 
( -I) ... 

- -

Hence 

&--) 

But ~~8 is represented by the same form that represents 2. 

Therefore S (,;i) S (,.,,,,,) = & (c),,,,,) 

6 is the only even character here. 



Theorem 3.10 

Let 4m be represented by a form of discriminant, - Ll , with char

acters jl,,_,, C ..,· • m will be represented by a form of . discriminant - Ll 

or -~/1/ whose characters 

for all i for which both exist. 

For the odd characters, (,...,., / ; J_,_ ) , the proof parallels that 

of Theorem 3.8 replacing A everywhere by 4 and omitting mention 

of_)l as unnecessary. If ii is odd or L\ =' 1:2 (7>7oJ 10 there are no 

even characters. When L\ ='Io , &' ( m o d It )..1 by Theorem 3.5 4m and m 

are represented by the same form, hence all the characters must 

be identical. 

When LI = {n1° cl 3;;_), S, c , an d cS t are all characters, but when 

we go to LV ,; two of these characters will no longer occur, leaving 

one as follows: 

~ L1 - 0 ( 7n 0 cl {, 'I) 
/ 

€ Ll · - '1 ( ( ,-,,.; J ;;z&') 

6 6 L'.J - .3:1. ( n-t 0 d Id. (l) 

We assume 

and as before 

Now, if L.l = o ( n,o d 6 '1), IJ == o C m O d 1t; J a.,, J 

C,( 'J · C 

s () 

and 



If 

so that 

and 

If Ll - 0 J ( ~ a cl u 1, J 

so that 

and 

Theorem 3.11 

X) ( 7n ocf 3 «) 

J c ve >r 

Let LI == 7\~u , ). an odd prime, If 1\ .. ,,.,.,,l , m odd 1s represented by 

a form 0£ discriminant - LI w1 th characters >..",,,,/.:. , m 1s represented 

by a form of discriminant - ~/\' whose characters 

for all i for which both exist. 

where 

By lemma 1 there exists a primitive form in the same class of 

the form[,\~,< ;( c J. We may equally well consider this. But 



and />YI = a I x 
2 

+ h 
I 

x ~ + c '~ "" 

Now the form [ c,: I.:,: c 'I representing m has discriminant - o/'i and cer

tainly represents all integers represented by [a.,h,c ] and its equiva-
.vl; lent [>.. 'c.1 ', U'. c 'J. An integer prime to 1 LI , and hence also to ;;i,. , is 

represented by both. Hence all common characters must be equal as 

they are identical. 
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Chapter III 

The Number of Representations Function 

The explicit formulae for the number of representations 

function for all integers in the cases summarized above where there 

is a single class of forms to each genus follow now in logical sum

mary. These are given in the theorems below. We lets uniformly 

stand for some odd integer prime to the discriminant✓ -4J represented 

by the form[a , h, cJ. Unless otherwise specified, k will stand for 

the number of characters in any particular case as determined ac

cording to Theorem 1.2. The connection with this k and the number 

of prime factors of the discriminant is used. 

Theorem 4.1 

If L.'i = fl, fl. - - /J, ¥= 7 a.,.. 10 ( ,,,, d cl h) and LJ > J where the J?,,· are 

distinct odd primes, and [a,.b,c ] has discriminant -L'.l, then: 

By Theorem 3.4 

/v [ ,1 A p , ot, - - • / ~ or ,I,,-,,.,,_ = d. :;,;_ • +- /a .::t -;J -t- C l , J 

By repeated application of Theorem 3.1 

= a x ,_ -,- !vx "21 

I l 

=- a .x 

where 'la 'c ' _ 1:,'' =: 'IQ c - /2 .-i. , and by Theorem 3.8 if q is an odd integer 



prime to Ll represented by [a ', lo : c ' J 

Hence by Theorem 1.3 the result follows. 

Theorem 4.2 
$ 

If Ll _,c: /
0

, / 0 , - - /~4. = o "r 1 :2. ( nr a J I c) , where ?, ::::. ;;. , 8 = J. o ,- 3 and the 

remaining /~ ,_ are distinct odd primes, and [a, h, c:] has discriminant 

- ii , then: 

;V [?, °', /> o<,_ 

" 

- - ; , ; fi {; f- /-1 c. r1o J(C. (,) c,r- > J L ' (- /j 1/J 
---- - -----·----- --·-------- -~------·- - - '-"'_/_,...,. _ _ _ _ _ 

By repeated application of Theorems 3.1 and 3.6, 

_...: a X l f- /v X d -t- C ) , J 
I J. 

a '."\'. 

1 L 

where '/ a 
1

c. ~- /4' =· "la (.. - lo and by repeated application of Theorems 

3.8, 3. 9, and 3.10, if q is an integer prime to Ll represented by 

[a.', b I C 'j 
/ ' 

Hence the result follows from Theorem 1.3. 

Theorem 4.3 
J-

I f .6 = ;:; / ~ - -- r;, _ 
1 

where ;v, = ~ and the r,, • _ ~r_e __ ~~-s_t_i_n_c_t_ o_d_d_p_r_i_m_e_s_, 

and La., h, c.] has discriminant - L'l , then: 



0 o<, ::::: I 

where C4 is the character for Ll • not a character for L'.'1/'-I • 

By repeated application of Theorem 3.1 

N [ ;o,<X' ___ /~~,-/ /'1-n. = oxl -f /ox;y. -f c~'] 

where r'o 'c I - ,b,, = 'la C - /a., , and if 0<, = C) , q being an odd integer 

represented by L I / I 1 a Ji) c ' 
I I 

fa· I o( ' 

c A r " ) ::: J z ~ 1 c. ( /0 J.); ✓ CA ( s ) 

and by Theorem 1.3, the first part follows. 

If o</ = I , Theorem 3. 6 indicates 

If o<,2_ 2 , Theorem 3.5 indicates 

!Y f /~ o(, - - 0 "'h rm. t:1. x , 1 1o x 7 - f c;; ·] 

where i('la ''c" - /2"
2
) 

Hence this falls wider Theorem 4.2 and by Theorem 3.10 our result 

follows, noting that (-Lly) = (--#:-)? ). 

L/ r/ 



Theorem 4.4 

By Theorem 2.3 the odd discriminants containing a square factor 

and such that there are a single class of forms in each genus, 
.... 

are all of the form L1 == ;o, /J.,_ ?a where the ?,._· are all odd primes on 

one. If [a., h, c] has discriminant - L1 , then 

N [ ~ A r, <>:,/~ d, /~ cx_,O?! = a X:, -f- h ,t' '). -t C;; ", (/,,,1_, -;; A) ::= ] 

C) 

By Theorem 3.4 

where ta 'c. '- /2' \ '-la "" - t .,__ and if q is an odd integer prime to LJ 

represented by [a. ~ lo'. c], by Theorem 3.8. 

8 c{_' 

( · ( ~ ) _- : "l ~ [ CA ( F, ) ] V (_ - ( s f 

If r,1_, , = o o, I the result follows from Theorem 1.3 and 3.2 re-

spectively. 



'1 7 

If rx., > 1 , by Theorem 3.2 

IV [ r, ot, /?-?? =- a , X L -f- /2 I X )' + C 
17 2 1 

- /V f P, "Y'; -~ = a " x " -1- lo "x ) r c ,, -;x , ] 

where ?, '(1,, "c .,_ t ,,') ~ 'IO ~ ' - );', and if ~ ' ie an odd integer prime to 

represented by [o ': h ,., c "], by Theorem 3.11. 

Hence Theorem 1.3 gives the final result. 

Theorem 4.5 
t} 

If iJ = ;2 /0 ; 0 = 0, ~, 5". & ; p .:: 7, I ..5-; /1 = /~. r .J ,, ;-:), -- ~ , and [ a, /2, c] 

has discriminant -A, then: 

;V [lo, c,, n, "'•;-:: ~.,.,,,,, , b , ( , ,, ) ] / :.. :: ,, -, = a X -t- X) -t- C )' ; rtr>t, -< ,{__/ = I 

By Theorems 3. 6 and 3. 5, if o(, ~ 0 

=- j ! /t ( - r ;" I J )V l ;, ct ' / 0 \3 ,,,, J /7,?? = a A I T tJ ~; -t- C J' ,! ] 

[o;b : c'J has discriminant - ;;_Cy/. If q, an integer prime to L1. , 

is represented by Jc;~ .6,
1 c' ), then by Theorem 3.10 

If <¥1 2 {9 , by Theorems 3. 6 and 3 .3 



( o( 
1 

- {;! -;- I ) )/ [ f>.,_ « • ?_, ot_, /J'>'{ .=:- C{ 
11

A ,.· + ),/x ) -f C 'j, ~] 
LI 

where [a': t': c'J has discriminant - ':!;0 , and if g, 1
, an integer prime 

to Ll , is represented by [ 0 
11 ti: 11 "} 
, o , C 

I~ 
By Theorem 3.1, if ["',/3, if ] has discriminant - /.:2;., , then: 

.. 
Where [c,</J,

1

1 } has the same discriminant as lot,~ y J_,and if / -:J and 

P
1 

are integers prime to / J and represented respectively by [o<, ,<3'. /] 

and [a{>< t 'J, 

Theorem 3.8 indicates 

Combining these results with the above and applying Theorem 1.3, 

the statement of the theorems follows. 

Theorem 4.6 
() [a,b,c ] 

If ti = :1 • 3 ,; <9 ::: u, :2, tf, r; , and, has discriminant - Ll , then: 

/V f ,;2 ... 3 ,o /h{_ = u x' t- b .: ) + c) .,_ ,, _(.,,,.,, 0) .:- 1 ] 

3 "' ·~ A ·r 
=;1,-[1+(-,J j ?Y / t- c;_(J)4( {s )(,,(,._)]_1~ (-3 // J 

- -------···- .. . . _.k</ - .. ······~ •-------

= /;. [ u- I ,tj l! {1 f ( (, )" C, (o) C, (,-,., 1J,L_; (- / :,J j,p J , 
.-"''/-

0( < (9 

By Theorems 3.4, 3.5, 3.6 



'J' 7 

C,( X 

0-oe 

where [a: I>: c '] has discriminant -Ll = -0 , if oc 2.. a and .LI= :i. 3 if ex'.~ C3- ; 

and if ~ is an odd integer prime to :2. LL represented by [a ; k ! c 'J, 
by Theorem 3.10 

By Theorem 3.1 

N [ 3 t<J r,1_ 

L / •/ I I z J 
" i ( -t- /0 -i'. d i C )' 

where if f is an odd integer prime to ;,_ LI represented by [c:1 ; I:,:· c "} 

by Theorem 3.8 

Hence by Theorens 1.1, 1.3, and these results, the Theorem follows. 

Similarly, the number of representations formulae for the 

remaining discriminants to be considered: those even ones according 

to Theorem 2.3 containing an odd square factor ~ = 20 , 7~, ; oo_, 

180, 280; and the even ones LI =- '-I, 1 (, t L/ • We shall om1 t the de

rivations here as evident from Theorems 3.1 - 3.11, 1.1 and 1.3. 



/ 0() 

..s ... 
L\ :,:-: ;;__ V V -- J. • 3 

, 
0. X ·f-

C ~ {.) ( ( .,,.,, ) ] l_~_,,1 
( - L.I ~ ) , o( = /J :: CJ 

.,,,,,/-..., 

cJ 0 • • 

{) 

Ll :.-=-. ioo 

1 
0. ?( -f 

I, 

;;./i ;?,Y"/1 r C.,(o1 )-:{_ (.s ) c_ r.-JJ 2__: (- 4 £ .u) 
1 

/3 _-_ a 
u j ,..... 

0 ; 3 -= I 



l l 

10 I 

C) /3 = I 

' L l - u. ;,1: 7 p A' J -/ (__ ) / 

- .., : -, ~1 /1 -f c,( a)" ( ( , ) c, c-~)}) _; ( LJ / ") , 

i 

I 

7 ) ,I ( - / / l< ) 

_,l;/3 13-~ 

/1/-

N I ;2. X /Y-1 -- u_ , \. t j ,b -l )" i C. cl ' (,,,,,.,, / L)) - I J 

/J :: 0 



il 

d- \ 
- 1 

(- ) I I (,( ex. - C L_ __ / I 

--"' / ,,,.. 

c; o<- - I -
/ 

1) I (- I I . '1. ) D( > - I I 

' -f/,-,., 

/\I [.2 " r'Wf __ ax' l lo .-:i_ J ; cd 

\., 

L-_ • . - ~ / 

:/1./ r'v>f 

( - I / l( ) 
I 

{ - ; / ,.,_) I . I 

( ,,..,,I Ll ) - I J 

J_ 

(- 1/u.) 

In these cases [a,b,c] is to be any form of 

discriminant indicated. 
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Appendix A 

Tables of Reduced Forms and Characters 

Chapter II exhibits in detail the appearance of the 

several reduced forms when there is a single class of forms 

in each genus. In order to provide complete reference, 

however, we append here a complete table of all reduced 

forms for all known discriminants havi ng a single class to 

a genus. Further, in order to facilitate the calculation 

of the number of representations function, we indicate the 

several characters for each discriminant and indicate the 

values these characters assume for numbers represented by 

each of the reduced forms. The reduced forms which 

represent the several odd prime factors of the discriminant 

are likewise indicated. 

An explanation in detail for one case will suffice to 

show the organization of the table. Consider the selection: 

280 = 23.5.? € (n/5) (n/?) 

fl,O,?O] 1 1 1 
2, o, 35], 2 -1 -1 1 

[5,0,14],5 -1 1 -1 
[?,0,10],7 1 -1 -1 

The negative discriminant, -280 = -23.5.?, has the reduced 

forms: (1,0,?0], [2,0,35], [5,0,14], [?,O,lOJ. The prime 

factors of the di scriminant, 2,5, and 7, are represented by 

the last three of these respectively. There are three 

characters, ~ , (n/5), (n/?), which take on the values listed 

for numbers represented by the form opposite. 



I a '-I 

3 (n/3) 
(1, 1, 1], 3 1 

4 22 ~ 
= 

[1,0,1],2 1 

? (n/?) 
[1,1,2],? 1 

8 = 23 s € 
[1,0,2],2 1 

11 (n/11) 
[l, 1, 3], 11 l 

12 = 22 .3 (n/3) 
(1,0,3],3 1 

15 = 3.5 (n/3) (n/5) 
[1,1,4] 1 1 
(2,1,2],3,5 -1 -1 

16 = 24 ~ € 
(1,0,4],4 1 

19 (n/19) 
[1,l,5],19 1 

20 = 22 .5 s (n/5) 
[1,0,5],5 1 1 
[ 2, 2, 3], 2 -1 -1 

24 3 (: (n/ 3) = 2 . 3 
[l,0,6] 1 1 
[2,0, 3],2, 3 -1 -1 

2? = 33 (n/ 3) 
(1,1,?],9 1 

28 = 22.? (n/?) 
[1,0,?],? 1 

32 = 25 s (:-

[l,0,8],8 1 1 
[ 3, 2, 3] -1 -1 

35 = 5.? (n/5) (n/?) 
[1,1,9] 1 1 
[ 3, 1, 3] , 5, ? -1 -1 



I O 6 

36 = 22. 32 b (n/3) 
[l,0,9],9 1 1 
[2, 2, 5], 2 1 -1 

40 = 2 3 .5 s €- (n/5) 
[l,0,10] l 1 
[2,0,5],2,5 -1 -1 

43 (n/ 43) 
[1,1,11],43 1 

4 48 = 2 . 3 & (n/ 3) 
[1,0,12] 1 1 
[ 3, O, 4], 4, 3 -1 1 

51 = 3.17 (n/ 3) (n/17) 
[1,1,13] 1 1 
[ 3, 3, 5] , 3, 1 7 -1 -1 

52 = 22 .13 Ei (n/ 13) 
(1,0,13],13 1 1 
[2,2,7],2 -1 -1 

60 2 (n/ 3) (n/5) = 2 . 3.5 
[1,0,15] l 1 
[3,0,5],8, 3,5 -1 -1 

64 = 2 6 b (-

[1,0,16] 1 1 
[4,4,5],4 1 -1 

67 (n/ 67) 
(1,1,17],67 1 

72 = 23. 32 SE (n/ 3) 
[l,0,18] 1 1 
[2,0,9],2,9 1 -1 

75 = 3.52 (n/ 3) (n/5) 
(1,1,19],25 1 1 
[ 3, 3, 7], 3 1 -1 

84 2 b (n/3) (n/7) = 2 • 3. 7 
[1,0,21] 1 1 1 
(2,2,11],2 -1 -1 1 
[ 3, 0, ? ] , 3, 7 -1 1 -1 
[5,4,5] - 1 -1 -1 

88 = 2 3 .11 E: (n/11) 
[l,0,22] 1 1 
[2,0,ll],2,11 -1 -1 



/ Ob 

91 = 7 .13 (n/7) (n/13) 
[l,1,23] 1 1 
[ 5, 3, 5], 7, 13 -1 -1 

96 5 s E (n/3) = 2 . 3 
[l,0,24] 1 1 1 
[3,0,8],3 -1 -1 -1 
[4,4,7],4 -1 1 1 
[5,2,5] 1 -1 -1 

99 = 32 .11 (n/ 3) (n/11) 
(1,1,25] 1 1 
[5,l,5],9,11 -1 -1 

100 = 22.52 b (n/5) 
[l,0,25),25 1 1 
[2,2,12].2. 1 -1 

112 = 24 .7 ¢ (n/7) 
[l,0,28J 1 1 
[4,0,7],4,7 -1 1 

115 = 5.23 (n/5) (n/23) 
(1,1,29] 1 1 
(5,5,7),5,23 -1 -1 

120 = 2 3 .3.5 (: (n/ 3) (n/5) 
[l, O, 30] 1 1 1 
[2,0,15],2 1 -1 -1 
[3,0,10], 3 -1 1 -1 
[5,0,6],5 -1 -1 1 

123 = 3.41 (n/ 3) (n/ 41) 
[1, 1, 31] 1 1 
[ 3, 3, 11], 3, 41 -1 -1 

132 2 b (n/ 3) (n/11) = 2 • 3. 11 
(1, o, 33] 1 1 1 
(2,2,17],2 1 -1 -1 
[3,0,ll],3,11 -1 -1 1 
(6,6,7] -1 1 -1 

147 2 (n/ 3) (n/ 7) = 3.7 
[1,1, 37],49 1 1 
[ 3, 3, 13], 3 1 -1 

148 = 22 .37 ~ (n/ 37) 
(1, o, 37], 37 1 1 
[2,2,19],2 -1 -1 



I U I 

160 = 25 .5 6 E (n/5) 
[l,0,40] 1 1 1 
[4,4,11],4 -1 -1 1 
[5,0,8],5 1 -1 -1 
[7,6,7] -1 1 -1 

163 (n/163) 
[l,l,41],163 1 

168 = 23.3.7 SE (n/ 3) (n/7) 
[l,0,42] 1 1 1 
[2,0,21],2 -1 -1 1 
[ 3,0, 14], 3 1 -1 -1 
[6,0,7],7 -1 1 -1 

180 = 22 . 32 .5 b (n/ 3) (n/5) 
[l,0,45] 1 1 1 
[2, 2, 23], 2 -1 -1 -1 
[5,0,9],5,9 1 -1 1 
[7,4,7] -1 1 -1 

187 = 11.17 (n/11) (n/17) 
[1,1,47] 1 1 
[7,3,7],11,17 -1 -1 

192 6 s <= (n/ 3) = 2 . 3 
[l,0,48] 1 1 1 
[3,0,16],3 -1 -1 1 

t4, 4, 13], 4 1 -1 1 
7,2,7] -1 1 1 

195 = 3. 5 .13 (n/ 3) (n/5) (n/13) 
[1,1,49] 1 1 1 
[ 3, 3, 17], 3 -1 -1 1 
[5,5;11],5 -1 1 -1 
[7,l,7],13 1 -1 -1 

228 2 s (n/ 3) (n/19) = 2 • 3. 19 
(1,0,57] 1 1 l 
[2,2,29],2 1 -1 -1 
[3,0,19],3,19 -1 1 -1 
[6,6,11] -1 -1 1 

232 = 23.29 6f (n/29) 
[l,0,58] 1 1 
[2,0,29],2,29 -1 -1 

235 = 5.47 (n/5) (n/ 47) 
[1,1,59] 1 1 
[5,5,13],5,47 -1 -1 
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240 4 f> (n/ 3) (n/5) = 2 • 3.5 
[l,0,60] 1 1 1 
[3,0,20], 3 -1 -1 -1 

t4,0,15],4 -1 1 1 
5,0,12],5 1 -1 -1 

267 = 3.89 (n/ 3) (n/89) 
[1,1,67] 1 1 
[ 3, 3, 23], 3, 89 -1 -1 

280 = 2 3 .5.7 G (n/5) (n/7) 
[1,0,?0] 1 1 1 
[2,0,35],2 -1 -1 1 
[5,0,14],5 -1 1 -1 
[7,0,10],? 1 -1 -1 

288 = 25. 32 s f (n/3) 

tl,0,?2] 1 1 1 
4,4,19],4 -1 -1 1 

[8,0,9],9 1 1 -1 
[8,8,11] -1 -1 -1 

312 3 € (n/ 3) (n/13) = 2 • 3.13 
[1,0,?8] 1 1 1 
[2, o, 39], 2 1 -1 -1 
[3,0,26], 3 -1 -1 1 
[6, o, 13J, 13 -1 1 -1 

315 2 (n/3) (n/5) (n/?) = 3 .5. 7 
[1,1,?9] 1 1 1 
[5,5,17],5 -1 -1 -1 
[ 7, 7, 13], 7 l -1 -1 
[9, 9, 11], 9 -1 1 1 

340 2 ~ (n/5) (n/17) = 2 .5.1? 
[l,0,85] . 1 1 1 
[2, 2, 43], 2 -1 -1 1 
[5,0,17],5,17 1 -1 -1 
[10,10,11] -1 1 -1 

352 = 25 .11 s 6 (n/11) 

tl,0,88] 1 1 1 
4,4,23],4 -1 1 1 

[8,0,11],11 -1 -1 -1 
[8,8,13] 1 -1 -1 

372 2 f:. (n/ 3) (n/ 31) = 2 . 3. 31 
[l,0,93] 1 1 1 
[2,2,47],2 -1 -1 1 
[ 3 , o, 31], 3, 31 -1 1 -1 
[6,6,17] 1 -1 -1 



403 = 13-31 (n/13) (n/ 31) 
[1,1,101] 1 l 
[11, 9, 11], 13, 31 -1 -1 · 

408 3 G- (n/ 3) (n/17) = 2 . 3.17 

tl,0,102] 1 1 1 
2,0,51],2 -1 -1 1 

[ 3, o, 36], 3 -1 1 -1 
[17,0,24],17 1 -1 -1 

420 2 s (n/ 3) (n/5) (n/7) = 2 .3.5.7 
[l,0,105] 1 1 1 1 

t2,2,53],2 l -1 -1 1 
3,0,35],3 -1 -1 -1 -1 

(5,0,21],5 1 -1 1 -1 
[6,6,19] -1 1 1 -1 
[7,0,15],7 -1 1 -1 1 
[10, 10, 13] 1 1 -1 -1 
[11,8,11] -1 -1 1 1 

427 = 7.61 (n/ 7) (n/ 61) 
(1,1,107] 1 1 
[7,7,17],7,61 -1 -1 

435 = 3.5.29 (n/ 3) (n/5) (n/29) 

tl,1,109] 1 1 1 
3, 3, 37], 3 1 -1 -1 

(5, 5, 23) j 5 -1 -1 1 
[11,7,11 ,29 -1 1 -1 

448 = 26 .7 5 E (n/7) 
(1,0,112] 1 1 1 
[4,4,29],4 1 -1 1 
[7,0,16),7 -1 1 1 
[11,6,11) -1 -1 1 

480 5 £ € (n/ 3) (n/5) = 2 . 3.5 
[l,0,120] 1 1 l 1 
[ 3, o, 40], 3 -1 -1 1 -1 
[ 4, 4, 31), 4 -1 1 1 l 
[5, o, 24), 5 1 -1 -1 1 
[8,0,15] -1 1 -1 -1 
[8,8,17) 1 1 -1 -1 
[11,2,11] -1 -1 -1 1 
[12, 12, 13] 1 -1 1 -1 

483 = 3.?.23 (n/ 3) (n/ 7) (n/23) 
[1,1,121] 1 1 1 
[3,3,41],3 -1 -1 1 

t7,7,19]j7 1 -1 -1 
11,1,11 ,23 -1 1 -1 
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3 520 = 2 .5.13 € (n/5) (n/13) 
(1, o, 130] 1 1 1 
[2,0,65],2 1 -1 -1 
[5,0,26]j5 -1 1 -1 
(10,0,13 ,13 -1 -1 1 

532 2 s (n/7) (n/19) = 2 .7.19 
(1, o, 133] 1 1 1 
(2,2,67],2 -1 1 -1 

t7,0,19],?,19 -1 -1 1 
13, 12, 13] 1 -1 -1 

555 = 3.5. 37 (n/3) (n/5) (n/ 37) 
[l, 1,139] 1 1 1 
(3,3,4?],3 -1 -1 1 
[5,5,29],5 -1 1 -1 
(13, 11, 13], 37 1 -1 -1 

595 = 5.7.1? (n/5) (n/7) (n/17) 
(1,1,149] 1 1 1 

f 5, 5, 31], 5 1 -1 -1 
7, 7, 2 3], 7 -1 1 -1 

[ 13, 9, 13], 1? -1 -1 1 

62? = 3.11.19 (n/ 3) (n/ 11) (n/19) 
(1,1,15'7] 1 1 1 
[ 3, 3, 53], 3 -1 1 -1 
[11,11,l?],ll -1 -1 1 
[1 3,7,13],19 1 -1 -1 

660 2 [, (n/ 3) (n/5) (n/ 11) = 2 .3.5.11 
[l,0,165] 1 1 1 1 
[2, 2, 8 3], 2 -1 -1 -1 -1 

f 3,0,55], 3 -1 1 -1 1 
5, o, 33), 5 1 -1 -1 1 

(6,6,29] 1 -1 1 -1 
[10,10,19] -1 1 1 -1 
[1i;o,15J,11 -1 -1 1 1 
[13, 4, 13] 1 1 -1 -1 

5 672 = 2 . 3.? s € (n/ 3) (n/ 7) 
[l,0,168] 1 1 1 1 
[ 3, o, 56], 3 -1 -1 -1 -1 
[4,4,43J,4 -1 -1 1 1 
[?,0,24],7 -1 1 1 -1 
[8,0,21] 1 -1 -1 1 
(8,8,23] -1 1 -1 1 
[12,12,17] 1 1 -1 -1 
(13, 2, 13] 1 -1 1 -1 
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708 2 6 (n/ 3) (n/59) = 2 .3.59 
[l,0,17?] 1 1 1 
[2,2,89J,2 1 -1 -1 

t3,0,59], 3,59 -1 -1 1 
6, 6, 31] -1 1 -1 

715 = 5.11.13 (n/5) (n/ 11) (n/13) 
[1,1,179] 1 1 1 
[5, 5, 37], 5 -1 1 -1 
[11,11,19],ll 1 -1 -1 
[13, 13, 17], 13 -1 -1 1 

760 3 6 (n/5) (n/19) = 2 .5.19 
[l,0,190] 1 1 1 
[2,0,95],2 1 -1 -1 
[5,0,3SJ,5 -1 -1 1 
[10,0,19],19 -1 1 -1 

795 = 3.5. 53 (n/ 3) (n/5) (n/53) 
[1,1,199] 1 1 1 
[3,3,67],3 1 -1 -1 

f5,5,41],5 -1 1 -1 
15,15,17],53 -1 -1 1 

840 3 Sf (n/ 3) (n/5) (n/7) = 2 .3.5.7 
[1,0,210] 1 1 1 1 

t2,0,105],2 1 -1 -1 1 
3, o, 70], 3 1 1 -1 -1 

[5,0,42],5 -1 -1 -1 -1 
[6,0,35] 1 -1 1 -1 
[7,0,30],7 -1 1 -1 1 
[10,0,21] -1 1 1 -1 
[14,0,15] -1 -1 1 1 

928 = 25 .29 S € (n/29) 
[1,0, 232] 1 1 1 
[4,4,59],4 -1 -1 1 
[8,0,29J,29 1 -1 -1 
(8, 8, 31] -1 1 -1 

960 6 s € (n/ 3) (n/5) = 2 . 3.5 
[l,0,240] 1 1 1 1 
[ 3, o, 80] -1 -1 -1 -1 
[4,4,61],4 1 -1 1 1 
[5, o, 48], 5 1 -1 -1 -1 

tl2,12,23] -1 1 -1 -1 
15, 0,16] -1 1 1 1 

(16,16,19] -1 -1 1 1 
[17,14,17] 1 1 -1 -1 



1012 2 6 (n/ 11) (n/23) = 2 .11.23 
[l,0,253] 1 l 1 
[2,2,127],2 -1 -1 l 

tll,0,23]jll,23 -1 1 -1 
l?,12,1? 1 -1 -1 

1082 
2 

b (n/ 3) (n/7) (n/13) = 2 .3.7.13 
[1,0,273] l l 1 l 
[ 2, 2, 137] , 2 l -1 1 -1 
[3,0,91], 3 -1 1 -1 1 
[6,6,47] -1 -1 -1 -1 
[ 7, o, 39] j 7 -1 1 l -1 
[13,0,21 jl3 1 1 -1 -1 

tl4,14,23 -1 -1 1 1 
17,8,17] 1 -1 -1 1 

1120 5 s €- (n/5) (n/7) = 2 .5. 7 
[l,0,280] 1 1 1 1 
(4,4,71],4 -1 1 1 1 
[5,0,56],5 1 -1 1 -1 
[7,0,40],7 -1 1 -1 -1 
[8,0, 35] -1 -1 -1 1 
(8,8, 37] 1 -1 -1 l 
[l?,6,17] 1 1 -1 -1 
(19,18,19] -1 -1 l -1 

1155 = 3.5.?.ll (n/ 3) (n/5) (n/7) (n/ 11) 

tl,1,289] 1 1 1 l 
3, 3, 97], 3 1 -1 -1 l 

(5, 5, 59], 5 -1 1 -1 1 
[ 7,?, 43], 7 1 -1 1 -1 
(11,11,28],11 -1 1 1 -1 
[15, 15, 23] -1 -1 1 1 
(17,1,1?] -1 -1 -1 -1 
(19,17,19] 1 1 -1 -1 

1248 5 S' € (n/ 3) (n/13) = 2 . 3.13 
[l,0,312] 1 1 1 1 
[3,0,104],3 -1 -1 -1 1 
[4,4,?9],4 -1 1 1 1 
[8,0,39] -1 1 -1 -1 
(8,8,41] 1 1 -1 -1 
[12,12,29] 1 -1 -1 1 
[13, o, 24], 13 1 -1 1 -1 
(19,14,19] -1 -1 1 -1 
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1320 3 b€ (n/ 3) (n/5) (n/ 11) = 2 . 3. 5 .11 
[l, O, 330] 1 1 1 1 
[2,0,165],2 -1 -1 -1 -1 
[ 3, 0, 110], 3 1 -1 -1 1 
[5, o, 66], 5 -1 -1 1 1 
[6,0,55] -1 1 1 -1 
[10, o, 33J 1 1 -1 -1 
[11, o, 30], 11 1 -1 1 -1 
[15,0,22] -1 1 -1 1 

1380 
2 s (n/ 3) (n/5) (n/23) = 2 . 3.5.23 

[1, o, 345] 1 1 1 1 
[2,2,1?3],2 1 -1 -1 1 
[ 3, o, 115], 3 -1 1 -1 1 
[5,0,69],5 1 -1 1 -1 

f6,6,59] -1 -1 1 1 
10, 10, 3?] 1 1 -1 -1 

[15, o, 23], 23 -1 -1 -1 -1 
[19,8,19J -1 1 1 -1 

1428 
2 fi (n/ 3) (n/7) (n/ 17) = 2 . 3.? .17 

[ 1, o, 35?] 1 1 1 1 

t2,2,179],2 -1 -1 1 1 
3, o, 119], 3 -1 -1 -1 -1 

[6,6,61] 1 1 -1 -1 
[?,0,51],7 -1 1 1 -1 
[14,14,29] 1 -1 1 -1 
[l?,0,21J,1? 1 -1 -1 1 
[19,4,19] -1 1 -1 1 

1435 = 5.?.41 (n/5) (n/ 7) (n/ 41) 
[1, 1,359] 1 1 1 

t5,5,?3],5 -1 -1 1 
7, 7, 53] j 7 -1 1 -1 

[19, 3, 19 , 41 1 -1 -1 

1540 
2 s (n/5) (n/7) (n/11) = 2 .5.?.11 

[1,0,385] 1 1 1 1 
[2, 2,193], 2 1 -1 1 -1 
[5,0,?7],5 1 -1 -1 1 
[?,0,55],? -1 -1 -1 -1 
[10,10,41] 1 1 -1 -1 
[11,0,35],11 -1 1 1 -1 
[14, 14, 31] -1 1 -1 1 
[22,22,23] -1 -1 1 1 



/ I '-/ 

1632 5 ~ €- (n/ 3) (n/17) = 2 . 3.17 
[l, O, 403] 1 1 1 1 
[ 4, 4,103], 4 -1 1 1 -1 
[3,0,136],3 -1 -1 1 -1 
[8,0,51] """'.l -1 -1 1 
[8, 8, 53] 1 -1 -1 1 
[12,12,37] 1 -1 1 -1 
[17,0,24],17 1 1 -1 -1 
[23, 22, 23] -1 1 -1 -1 

1844 3 
(n/ 3) (n/7) (n/11) = 2 .3.7.11 E 

[l,0,462] 1 1 1 1 
[ 2, 0, 2 31], 2 1 -1 1 -1 
[ 3, 0, 154] , 3 -1 1 -1 1 
[6,0,77] -1 -1 -1 -1 
[7,0,66],7 1 1 -1 -1 
[11,0,42],11 -1 -1 1 1 
[14, o, 33] 1 -1 -1 1 
[21,0,22] -1 1 1 -1 

1995 = 3.5.7.19 (n/ 3) (n/5) (n/7) (n/19) 
[1,1,499] l 1 1 1 
[3, 3,167], 3 -1 -1 -1 -1 

t5,5,101],5 -1 1 -1 1 
7, 7, 7 3J, 7 1 -1 -1 1 

[15,15,37] 1 -1 1 -1 
[19,19,31),19 1 1 -1 -1 
[21,21,29] -1 1 1 -1 
[23, 11, 23] -1 -1 1 1 

2080 5 s f (n/5) (n/13) = 2 .5.13 
[l,0,520] 1 1 1 1 
[ 4, 4, 131] , 4 -1 -1 1 1 
[5,0,104],5 1 -1 1 -1 
[8,0,65] 1 1 -1 -1 
[8,8,67] -1 -1 -1 -1 
[13, o, 40], 13 1 -1 -1 1 
[20, 20, 31] -1 1 1 -1 
[23,6,23] -1 1 -1 1 

3003 = 3.7.11.13 (n/ 3) (n/ 7) (n/11) (n/13) 
[1,1,751] 1 1 1 1 
[3, 3,251], 3 -1 -1 1 1 
[7,7,109] 7 1 1 -1 -1 
[ll,ll,7lj,11 -1 1 1 -1 
[13, 13, 61], 13 1 -1 -1 1 
[21,21,41] -1 -1 -1 -1 
(29,19,29] -1 1 -1 1 
[ 31, 29, 31] 1 -1 1 -1 
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3315 = 3.5.13.17 
(n/ 3) (n/5) (n/13) (n/1?) 

(1,1,829] 1 1 1 1 
[3, 3,277], 3 1 -1 1 -1 
[5, 5,167], 5 -1 -1 -1 -1 
[13, 13, 67], 13 1 -1 -1 1 

tl5,15,59] -1 1 -1 1 
17, 17, 53], 17 -1 -1 1 1 

[29,7,29] -1 1 1 -1 
[ 31, 23, 31] 1 1 -1 -1 

3360 5 
= 2 .3.5.7 

6 (;- (n/ 3) (n/5) (n/ 7) 
[l,0,840] 1 1 1 1 1 
[3,0,280], 3 -1 -1 1 -1 -1 
[ 4, 4,211], 4 -1 -1 1 1 1 
[5,0,168],5 1 -1 -1 -1 -1 
[7,0,120],7 -1 1 1 -1 1 
[8,0,105] 1 1 -1 -1 1 
[8,8,107] -1 -1 -1 -1 1 
[12, 12, 73] 1 1 1 -1 -1 
[15,0,56] -1 1 -1 1 1 
[20,20,47] -1 1 -1 -1 -1 
[21,0,40] 1 -1 1 1 -1 
[24,0,35] 1 1 -1 1 -1 
[28, 28, 37] 1 -1 1 -1 1 
[29,2,29] 1 -1 -1 1 1 
[31,22,31] -1 1 1 1 -1 

5280 
5 

= 2 . 3.5.11 
& e (n/ 3) (n/5) (n/11) 

[1, o, 1320] 1 1 1 1 1 
[ 3, o, 440], 3 -1 -1 -1 -1 1 
[4,4,331],4 -1 -1 1 1 1 
[5,0,264],5 1 -1 -1 1 1 
[8,0,165] 1 -1 -1 -1 -1 
[8,8,16?] -1 1 -1 -1 -1 
[ll,0,120]jll -1 -1 -1 1 -1 
[12,12,113 1 1 -1 -1 1 
[15,0,88] -1 1 1 -1 1 
[20,20,71] -1 1 -1 1 1 
[24,0,55] -1 1 1 1 -1 
[24,24,61] 1 -1 1 1 -1 
[ 33, o, 40] 1 1 1 -1 -1 
[37,14,37] 1 -1 1 -1 1 
[ 40, 40, 43] -1 -1 1 -1 -1 
[41, 38,41] 1 1 -1 1 -1 
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5460 
2 

= 2 .3.5.7.13 
b (n/ 3) (n/ 5) (n/7) (n/13) 

[l, O, 1365] 1 1 1 1 1 
[ 2, 2,683], 2 -1 -1 -1 1 -1 
[3,0,455],3 -1 -1 -1 -1 1 
[5,0,273],5 1 -1 -1 -1 -1 
[6,6,229] 1 1 1 -1 -1 
[?,0,195],? -1 1 -1 -1 -1 
[ 10, 10,139] -1 1 1 -1 1 
[13, O, 105], 13 1 1 -1 -1 1 
[14,14,101] 1 -1 1 -1 1 
[15,0,91] -1 1 1 1 -1 
[21,0,65] 1 -1 1 1 -1 
[26,26,59] -1 -1 1 -1 -1 
[ 30, 30, 53] 1 -1 -1 1 1 
[ 35, G-,; 39) -1 -1 1 1 1 
[3?,4, 37] 1 1 -1 1 -1 
[ 42,42, 43] -1 1 -1 1 1 

?392 5 
= 2 .3.?.ll s 6 (n/ 3) (n/?) (n/11) 

[l,0,1848] 1 1 1 1 1 
[3,0,616], 3 -1 -1 1 -1 1 
[4,4,463J,4 -1 1 1 1 1 
[ ? , 0, 264], 7 -1 1 1 -1 -1 
[8, O, 2 31] -1 1 -1 1 -1 
[8,8, 2 33) 1 1. -1 1 -1 
(11,0,168],ll -1 -1 -1 1 1 
(12,12,157) 1 -1 1 -1 1 
[21,0,88] 1 -1 1 1 -1 
[24,0,77) 1 -1 -1 -1 -1 
[24,24,83] -1 -1 -1 -1 -1 
[28, 28, 73] 1 1 1 -1 -1 
[ 33, o, 56] 1 1 -1 -1 1 
[43,2,43] -1 -1 1 1 -1 
[ 44, 44, 53) 1 -1 -1 1 1 
[47, 38,47] -1 1 -1 -1 1 
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Appendix B 

Numerical Examples 

In order to make explicit the application of the results 

obtained, we proceed to calculate in detail the number of 

representations function for the two forms: 

, 7x2 + xy + 7y2 • 

These should illustrate sufficiently the methods required. 

The form 2x2 + 35y2 has the discriminant -280 = -2 3.5.7 
• )ff,,,,'-,) 

and characters, € = <-1 , {n/5), {n/7). The number of 

representations function is given for this case by Theorem 4.2. 

Referring to the table of Appendix A to obtain the values of 

the characters for the form, we obtain explicitly: 

/l[.J."'•s0/~7"'a,,,,_,,,,_ = .l.-x:'+ 0 .s-l', (r'Y"1,7o)= 1] 

= ~[! - (-1)01,,:•f,,,..))[J- (-,t•'"'r-10-))[1 t- (-,t•f~}=/7)])_ __ :(-J!sOj/') 

/</.,.,..., 

We have further, ~ ( frVI) - I /1'>( - I 0 ,- 7 ( ,.,.,,., d 6- ) 

= - I ,,,,.., - ,3 0 ·J- s { ) 

( ,'l,?1 Is) - I (,..,.," cl s) -
/hf '-I , - I 0 , -

= - I ( ) I r»1. - .(_ 0 , - ,3 , ' 
{;'VY//7) = I ( nu, ,j 7) , 

~ I -< , Cl} ·- '-/ -- / 

:::: - I J, -I - Cl-,-- ~ ( , I ) , rn--t -

Hence we may seperate integers, m, (m,70) = 1, into residue 

classes, modulo 280, with the triplet f (""'1) , (m/5), (m/7), 

identical for all integers in the class: 

€ (r>ii) (m/5) (m/7) 
1) + + + 1, 9, 39, ?1, ?9, 81, 121, 

151, 169, 191, 239, 249. 

2) + + 11, 29, 51, 99, 109, 141, 149, 
179, 211, 219, 261, 221. 



(; ( n,,r ) (m/5) (m/?) 
3) + + 2 3, 5?, 113, 127, 177, 183, 193, 

207, 233, 247, 263, 137. 

4) + 37, 53, 67, 93, 107, 123, 163, 
19'7, 253, 267, 277, 43. 

5) + + 31, 41, 111, 89, 129, 159, 199, 201, 
209, 241, 271, 279. 

6) + 19, 59, 61, 69, 101, 131, 139, 171, 
181, 229, 251, 269. 

?) + 17, 33, 47, 73, 87, 97, 103, 153, 
223, 257, 143, 167. 

8) 3, 13, 27, 83, 117, 157, 173, 187, 
213, 227, 237, 243. 

According to the parity of ~, , o<.,_ o1.J we have the four cases: 

o<' ,+ o1 ,. o( + cl , ., "'• r ctJ o{ I 
o(., o( J 

even even even even even even 
a) odd odd odd 

odd odd even odd even even 
b) even odd odd 

odd even odd even odd even 
c) odd even odd 

even odd odd odd odd even 
d) even even oaa 

Applying these results to the number of representations function 

as given above, we see that it is possible to state further: 

c2 X' --r r.3 6) 
2 

/ { ,-,,,,,r, l Cf ) = I ] 

J. ) 1/ {- .L",/0/&<-) 

__µ;,...,, 

when cl, , o(, oiv and m are paired, according to the divisions 

above, a),4); b),l); c),7); a),6); otherwise the number of 

representations is zero. 
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The law of quadratic reciprocity shows that: 

(-;)_'i{oj_,,µ.) =-l -/fA' - ,)(/1/ s) L/-< /?) - t (_,,P, ) ( tAj s ) v/1 ) 

Hence£ ( -.z ls l'/;.{) is equal to the excess of the divisors of m in 
./A/,.,,, 

c 1 a s s es 1 ) , 4 ) , 6 ) , 7 ) over tho s e in c 1 asses 2 ) , 3) , 5 ) , 8 ) • 

We illustrate further by verifying the formula for the 

number of representations of 23,902. If 

23,902 = 2x2 + 35y2 , 

we obtain empirically the solutions : x = .±. 11, y = .±. 26; 

X = .:!: 59, y = .:!:, 22; X = .:!:, 101, y = .:!: 10; X = .±, 109, y = + 2; 

with all choices of $ign permissable. Hence the number of 

representations is 16. To check this with our formula, we 

observe that 23,902 = 2.17.19.37, hence 

/I [ ~ 3/ 9 cJ :2 = ;;_ x -.. -t- J s rl ' ] = JV [ ;2 • I l • I y · 3 7 = ,)_ X ' -t 3 Jj ' ] 

~ ;;i_ \ 1 f y) 
.:!'_ ..../ 

/-1 ju v ,;- / 

Since, referring to the previous notation, 

l?.19.37 = 11951 == 0 191 (mod 280), we have case b),l). Further

more, for the prime factors of 11951, t (/"}, ( u/ s J- (u I 1) is seen by 

reference to 4), 6), and 7) to be + 1. Hence the same is true 

for all factors. In all, 11951 has eight factors: l; 17; 19; 

37; 17.19; 17.37; 19.37; 17.19.37. Thus, finally 

N [23902 = 2x2 + 35y2 ] 

to agree with the empirical result. 

= 2.8 = 16, 

The form ?x2 + xy + ?y 2 has the discriminant -195 = -3.5.13, 

hence characters, (n/ 3), (n/5), Wl3). The nurrber of representa

tions function is given by Theorem 4.1. Referring to Appendix A 

to obtain the values of characters for this form, we obtain 
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A / [ ).. ol, at , «., 
IV d . 3 • _s- • I J ,,-,-,,r = 7 ,-"I: , f- ;t ;; f- 7 ;r , / ( ,,,,,,,,, J 'i O ) --= I ] 

• 

ol., .,. al._, - .. , 

- ( - I ) (~ I / <3 ) J l_/ ( - I I s / l,( ) 

/-'//»! 

Using the same table as above relating the parity of 

in the cases, 

d_ L ( -1 <t sJ✓ V( ) 

-4/ ,,,,..., 

a) 
b) 
c) 
d) 

(m/ 3) 
1 

-1 
-1 

1 

(m/5) 
1 

-1 
1 

-1 

(m/13) 
-1 
-1 

1 
1 

In all other cases, including ~ odd, the number of representa

tions is zero. 

By the law of quadratic reciprocity, we have 

{ - I '1 S l JA ) = C - I) -j ( ,,-/ -I ) (,.u Id ) l L-< I .,,- ) V1 / ;J ) 

In a similar manner as in our first example we may separate 

numbers, n, into classes modulo 4.195 according to the values 
-!;. ( .,,-, ) 

taken by the set r- 1) , (n/3), (n/5), (n/13), so as to first 

test by the above whether the number may be represented at all. 

Then by combining into two classes according as (-195/n) is 

+ 1 or - 1, )~ (-1rs//-1) is obtained as the excess of the divisors 
__µ; ...,., 

of m in the first cla.sses over those in the second. Further 

details are routine and are omitted. 




