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ABSTRACT

Methodological advances in biology have given us a powerful suite of tools for
measuring the state of the cell. Among these methods, next-generation sequenc-
ing, including single-cell methods, enables comprehensive measurement of gene
expression; however, sequencing-based methods often preclude the collection of
other visible phenotypic information. In contrast, light microscopy supports many
different measurements that can be acquired in sequential rounds of labeling and
imaging because light microscopy does not destroy the sample. Furthermore, light
microscopy supports live cell imaging, including the use of fluorescent reporters
to observe signaling dynamics in real time. In order to fully understand cellular
function, multimodal data collection is needed that encompasses live cell response,
end-point phenotypes, and finally perturbations to test the components of relevant
signaling networks. In this thesis, I present key advances to create a unified experi-
mental platform for interrogating the cell state. This platform uses light microscopy
to collect multimodal measurements of cell state while supporting high-throughput
perturbation screening. This platform is supported by a suite of deep learning
analysis tools to enable quantitative analysis of these high-dimensional datasets. In
Chapter 2, I introduce Caliban, our deep learning method for nuclear segmentation
and tracking. In Chapter 3, I present a new method of optical barcodes to enable
microscopy-based pooled perturbation screens. Finally, in Chapter 4, I describe pre-
liminary work that leverages the previously described cell tracking and barcoding
methodologies to explore the interdependencies of signaling pathway dynamics.
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C h a p t e r 1

INTRODUCTION

Technological advances have given the field many different methods for evaluating
the state of the cell. In addition to gene expression measurements, next-generation
sequencing methods can also capture protein-binding patterns and chromatin acces-
sibility either from bulk populations of cells or, more recently, single cells. However,
while these sequencing measurements capture incredibly informative datasets, they
also have inherent limitations. Namely, their use currently precludes the acquisition
of visible phenotypic or spatial information from sampled cells. This loss includes
dynamic information about the cell’s behavior and its interactions with the environ-
ment. To overcome the existing challenges posed by these separate measurements,
we need to collect "multimodal" measurements that include as many axes of cell state
as possible (Figure 1.1). For this purpose, light microscopy emerges as a powerful
tool for capturing multimodality data at single-cell resolution. Light microscopy
is generally nondestructive to acquired samples, which can enable repeated rounds
of labeling and imaging, where each round captures a different type of information
about the state of the cell.

Figure 1.1: Multi-modal measurements of single cells using light microscopy.
Light microscopy enables different types of data to be captured from the same cell
using repeated rounds of staining and imaging. (a) Live cell imaging is used in the
first round to capture signaling dynamics using a fluorescent reporter. (b) Organelles
are then labeled in the fixed cell to capture subcellular organization. (c) Finally, gene
expression is captured using spatial transcriptomics. Created with Biorender.com.
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1.1 Cellular and molecular dynamics are essential dimensions underlying
biological processes

In pursuit of a comprehensive understanding of the cell state, fluorescent microscopy
serves as a powerful tool for collecting single-cell datasets that capture multiple
phenotypic dimensions. The development of fluorescent reporter constructs has
facilitated our ability to monitor the activity of signaling pathways of individual cells
in real time.1–3 This advancement is in stark contrast to previous approaches that
relied on destructive measurements of whole populations at a single point in time.
Although these population measurements are still useful, they cannot resolve the
biologically significant differences that exist between otherwise seemingly identical
individual cells. Single cell investigations of signaling pathways have revealed that
the dynamic response of a pathway can serve to encode information about the type
of input stimuli received and trigger different downstream responses (Figure 1.2).4

Although it has become clear that these dynamic processes are multifaceted and
governed by a variety of internal and external inputs, all of which contribute to
the cell’s state and fate, detecting and measuring these processes remains a critical
undertaking in the field of biology.

Figure 1.2: Signaling dynamics lead to different downstream responses.
The shape of ERK signaling dynamics serves to encode the type of input received.
EGF leads to transient ERK activation while NGF triggers sustained activation.
Downstream pc-Fos decodes ERK dynamics to produce different outcomes: prolif-
eration or differentiation. Adapted from Purvis & Lahav.4
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The construction of a platform capable of supporting multimodal measurements,
including signaling dynamics and downstream responses, poses several challenges.
First, the platform needs to be able to capture live cell measurements, as snapshots in
time of individual cells are not sufficient to determine the full course of a dynamic
response. Second, the platform must be able to collect endpoint measurements,
such as gene expression, to determine which genes are expressed in an individual
cell following a specific signaling pattern. Third, the platform should have the
ability to incorporate perturbations, to facilitate deconvolution of how specific genes
and pathways contribute to specific dynamics. Although there are a variety of
tools that currently exist to enable the collection of data addressing the first two
points, the development of a platform that incorporates these ideas at scale has
proven challenging. The sheer number of potential candidate genes that could be
manipulated in an investigation of a signaling pathway requires a reevaluation of
how to perform forward genetic screening.

1.2 The power of pooled screens for biological discovery
Forward genetics are a powerful tool for biological discovery when designed with
high-throughput capability. These experiments target a particular known gene for
perturbation in order to observe the resulting phenotype, which can vary from a
change in cell shape to a change in how that cell interprets its environment. A
variety of perturbation methods have been developed that enable these experiments
to be executed with increasing ease in mammalian systems, with the most recent
notable addition being the CRISPR-Cas9 system. Although there are many plat-
forms that enable targeted forward genetic manipulations, including RNAi, ZFN,
TALEN, and CRISPR-Cas9, CRISPR-Cas9 in particular has shown greater ease of
use and efficacy in gene knockout and knockdown in mammalian systems than its
predecessors.5,6 Cas9, a DNA nuclease, is capable of inducing dsDNA breaks in
the host genome and targeting specific locations in the host genome by an RNA
sequence, called guide RNA (gRNA), which has a 5’ region that can be changed
to direct Cas9 targeting specific regions of the host genome.7,8 As Cas9 targeting is
directed solely through the gRNA sequence and short RNA synthesis is relatively
trivial compared to manipulations at the plasmid level needed for TALENs and
ZFNs, these features have made CRISPR-Cas9 a valuable tool for forward genetic
screens. In addition, multiple derivatives of the Cas9 protein and related effector
proteins have been developed that allow greater specificity of use. This includes a
wider range of gRNAs to extend the available population of potential regions in the
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genome capable of being targeted for double-stranded DNA break, and Cas9 mu-
tants, such as dCas9, which is capable of binding DNA, but lacks nuclease activity
and therefore remains persistently bound to DNA instead.9 However, to fully lever-
age the power of the CRISPR-Cas9 system for forward genetics, perturbation screens
must be performed at high throughput to support both a large number of targets and
to achieve a sufficient sample size to enable statistical detection of phenotypes.

Large-scale forward genetics experiments, which are predominantly performed in
cell culture, can be performed in one of two formats: arrayed or pooled. In an arrayed
screen, each well receives a different experimental perturbation and is thus analyzed
separately (Figure 1.3a). As a result, arrayed-format screens are expensive in terms
of both time and reagent cost, and often require laboratory automation to reach
a significant scale, but provide greater ease in linking perturbation to phenotype.
In contrast, pooled screens combine all perturbations into a single reagent pool,
but control the delivery so that each cell receives only one perturbation. As such,
pooled screens are highly effective in screening large numbers of perturbations while
limiting the experimental cost. However, they introduce a challenge associated with
discovering which perturbations produced the desired phenotype.

The first pooled genome-wide screens utilizing CRISPR-Cas9 relied on enrichment-
based methods to discover positive hits in the screen (Figure 1.3b). In this regime,
an enriched population of cells is created using positive selection for fitness, nega-
tive selection with a drug or FACS.9,11–13 The enriched population of cells is then
sequenced to reveal which gRNAs are present in the population. Although this
approach has proven to be effective, it requires the question to be reduced to a single
phenotype of interest that can be selected with a single screening step. This decision
excludes unexpected and potentially rare phenotypes from the analysis and limits
the scope of potential discovery. However, clever applications of photoconvertable
proteins have extended this approach to the microscope, so live imaging and pheno-
typing can be performed in real time while cells displaying the phenotype of interest
are photoconverted for later capture with FACS and bulk sequencing.14 Despite these
advances, even this approach leads to the loss of single-cell phenotypic variation
and the powerful insights that are possible from data where perturbations and their
phenotypic profiles are directly linked. As a result, profiling screening methods that
perform phenotypic analysis on a single cell level have become more popular, as they
allow for greater phenotypic nuance and for the discovery of phenotypes beyond the
single hypothesized phenotype that drives enrichment-based screens (Figure 1.3c).
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Figure 1.3: High-throughput screening methods.
(a) In arrayed screens, each well is treated with a single perturbation whose identity
is known in advance. No additional processing is needed to identify the perturbation
in each well. (b) In pooled enrichment screens, an enrichment method such as fitness
selection or FACS is applied to the population. Bulk sequencing is performed on
both the initial and the enriched population to measure the relative prevalence of
each perturbation before and after enrichment. (c) In profiling screens, all cells in
the pool are processed in order to identify the perturbation alongside phenotypic
data. Adapted from Walton et al.10 and created with Biorender.com.

The advent of single cell sequencing methods has led to a variety of work that
couples single cell sequencing with pooled CRISPR screens, using variations of
RNA sequencing to read the identity of each gRNA alongside the sequenced profile
of the cell (Figure 1.4a).15–19 These methods have proven to be highly effective in
screening large perturbation panels in a discovery-driven manner, as opposed to the
hypothesis-driven design of most selection-based bulk screens.

Although RNA sequencing measurements are convenient in that they easily extend
to sequencing the gRNA itself, interest in pooled screens has expanded to other
modalities of phenotypic measurements. To facilitate this, the construct that deliv-
ers the gRNA perturbation is modified to include a unique barcode that is designed
to be compatible with the targeted measurement modality. For example, Pro-Codes
expresses a combination of protein epitopes on the cell surface.20 With this epitope
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Figure 1.4: Profiling methods for high-throughput screens.
(a) Single-cell sequencing enables a phenotypic profile such as gene expression to
be captured at the same time as identifying the perturbation in the cell. (b) Protein
barcodes expressed on the surface of the cell can be read using CyTOF along with a
panel of phenotype measurement antibodies. (c) Microscopy phenotyping methods
can be using in sequence with an in situ genotyping method to create a combined
phenotype and genotype profile for each cell. Adapted from Walton et al.10 and
created with Biorender.com.

barcode in place, CyTOF can be used to identify the perturbation present in each cell
and to collect a high-dimensional proteomic profile of individual cells (Figure 1.4b).
Beyond sequencing-based readouts, light microscopy also serves as a powerful tool
for phenotypic profiling on the single-cell level. Imaging-based arrayed screens have
been successfully applied to a variety of biological questions;21–26 however, apply-
ing the same imaging-based profiling to pooled screens introduces an additional
challenge of identifying the perturbation identity of each cell while maintaining its
association with the phenotypic profile (Figure 1.4c,d). Deep learning methods offer
a potential tool to facilitate the development, feasibility, and analysis of multimodal
dataset collection and analysis.
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1.3 Deep learning enables processing of large amounts of biological data
To fully maximize the potential of these multimodal data sets, data analysis pipelines
are needed to extract the phenotypic profiles of single cells. The first task in most
data intake pipelines is to identify the position and shape of each cell in the field of
view (FOV) using methods for object detection and segmentation. Depending on
the composition of the dataset, additional processing may be necessary, including
object tracking for dynamic datasets or spot detection for spatial transcriptomics.
Ultimately, the goal is to extract a processed data set in which each cell is represented
as a row in an array with a set of associated features that describe the phenotypic
presentation of the cell. For many of these tasks, deep learning has emerged as a
highly effective method to reliably perform routine processing tasks on a variety of
datasets.27 The foundation of any deep learning task is a training dataset, which is
made up of pairs of inputs to the model with the desired model output. For most
biological problems that are suited to deep learning, training dataset generation
remains a major barrier to developing new methods. Therefore, the development
of methods and pipelines to efficiently collect, process, annotate, and collate large
amounts of high-quality data to feed into the model is essential to developing a
model that can efficiently and accurately determine changes in cell phenotype that
are outside the normal bounds for a given cell type and link those changes to a given
change in transcription or perturbation.
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Figure 1.5: An experimental platform to combine multimodal measurements
and perturbations.
A pooled perturbation library is introduced to a population of cells prior to utilizing
microscopy, both live and fixed, to capture a variety of phenotype measurements.
Additionally staining reveals the identity of the perturbation in each cell. After
processing with deep learning models, the final dataset correlates the perturbed
gene in each cell with the corresponding phenotypic profile of the cell. Created with
Biorender.com.

1.4 Summary
In this thesis, I present key advances towards the building of a unified experimen-
tal platform to fully decode cell state (Figure 1.5). This platform leverages light
microscopy to capture multimodal measurements of cell state while introducing
support for high-throughput perturbation screening. Finally, the platform is accom-
panied by a suite of deep learning tools to enable quantitative analysis of the rich
datasets collected.

In Chapter 2, I will describe Caliban, our deep learning method for nuclear segmen-
tation and cell tracking. This work takes an end-to-end approach to the problem
of cell tracking by starting with the task of dataset development and ending with
the deployment of the model for use by the community. In Chapter 3, I present
our new method of optical barcodes for pooled perturbation screens. Finally, in
Chapter 4, I propose an experiment to explore the interdependencies of signaling
pathway dynamics using the previously described cell tracking and optical barcoding
methods.
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C h a p t e r 2

CALIBAN: ACCURATE CELL TRACKING AND LINEAGE
CONSTRUCTION IN LIVE-CELL IMAGING EXPERIMENTS

WITH DEEP LEARNING

1. Schwartz, M. S. et al. Caliban: Accurate cell tracking and lineage construction
in live-cell imaging experiments with deep learning. bioRxiv (2023).

2.1 Introduction
Live-cell imaging, in which cells are imaged over time with light microscopy, pro-
vides a window into the dynamic behavior of living cells. Data generated by this
class of experiments have shed light on numerous cellular processes, including
cellular heterogeneity,1–4 cell division,5,6 morphological transitions,7–11 and signal
transduction.12–15 New technologies that pair perturbations with imaging have led to
renewed interest in using imaging to phenotype cellular dynamics.16–20 While pow-
erful, live-cell imaging data present a significant challenge to rigorous quantitative
analysis. Central to the analysis of these data is single-cell analysis, where each cell
is detected and tracked over time. Accurate solutions to these two tasks—cell de-
tection and tracking—are essential components of every live-cell imaging analysis
pipeline.

Modern deep learning methods offer a compelling path to general solutions to
the computer vision problems raised by cellular imaging data. While powerful,
the performance of these methods is limited by the availability of labeled data.
Researchers have made substantial progress in cell segmentation, primarily because
of the increased availability of labeled data and the development of human-in-the-
loop (HITL) labeling methodology for static images.21–23 Progress in deep learning
solutions to cell tracking has been more limited due to a lack of similar data resources
and methodology for dynamic data. Existing datasets (Table 2.1) are limited in their
scope and scale,24–31 whereas simulated datasets have not yet proven capable of
creating high-performing models.24,32,33 Further, existing datasets are limited in the
resolution of their labels (e.g., point labels vs. pixel-level segmentation labels),
trajectory length (the number of frames over which a cell is tracked), and the
number of mitotic events (Table 2.1). These limitations are understandable, given
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the time-consuming nature of labeling dynamic movies. Not only must each cell
be segmented in a temporally consistent way, but lineage information must also
be captured by tracking cells over time and labeling cell division events. Existing
labeling methodology that has proven scalable for static images has yet to be extended
at scale to these dynamic datasets.34

In this work, we applied a full-stack approach to the problem of cell tracking,
with a specific focus on tracking fluorescently labeled cell nuclei in mammalian
cells. Specifically, we combined an HITL approach to image labeling22 adapted
to dynamic imaging data, a novel deep learning algorithm for cell tracking, and
new benchmarks for cell tracking to create a new labeled reference dataset for
cell tracking. We used this dataset—DynamicNuclearNet—to develop state-of-
the-art deep learning models for cell tracking. We further integrated these mod-
els into a pipeline called Caliban, which enables rapid and accurate segmenta-
tion, tracking, and lineage construction of nuclear live-cell imaging data with no
manual parameter tuning. The source code described in this work is available
at https://github.com/vanvalenlab/deepcell-tf and https://github.
com/vanvalenlab/deepcell-tracking; datasets and pre-trained models are
available through our lab’s web portal https://deepcell.org.

https://github.com/vanvalenlab/deepcell-tf
https://github.com/vanvalenlab/deepcell-tracking
https://github.com/vanvalenlab/deepcell-tracking
https://deepcell.org
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Figure 2.1: Developing DynamicNuclearNet with HITL annotation of dynamic
data.
(a) The HITL process for generating labels alternates between preliminary models
generating predictions and human annotators correcting errors generated by the
model. This process is conducted twice: first for segmentation and again for
tracking. Each update to the labeled data is versioned and saved with DVC.35

(b) With a two-stage HITL process, we assembled DynamicNuclearNet, a dataset
of segmented and tracked dynamic cell nuclei encompassing five cell lines. (c)
Example images of each of the five cell lines. Scale bars, 50 𝜇m.

2.2 HITL labeling of large-scale, dynamic imaging data
We employ two key strategies to label dynamic imaging data efficiently. First, we
make use of crowdsourcing to parallelize our work. Second, we utilize an HITL
approach to accelerate labeling efforts. Our approach has two phases: temporally
consistent cell segmentations are generated in the first phase, whereas cells are
tracked and cell divisions are labeled in the second phase (Figure 2.1a). The seg-
mentation phase of our approach follows prior work,22 beginning with a small seed
dataset for cell segmentation generated by expert labelers. We then train a prelimi-
nary model to generate candidate segmentations, which are refined through a round
of crowdsourced correction and expert quality control (QC). We used DeepCell
Label, our browser-based labeling engine specifically designed for cellular images
for this work. Critically, labelers were shown a sequence of five frames rather than
individual frames to leverage temporal information to increase the label accuracy.
After a sufficient amount of data was labeled, the model was retrained on a new
dataset that combined the original seed dataset and the corrected predictions; the
updated model was then used to generate subsequent segmentation labels. This
cycle was repeated until model predictions matched expert predictions, as judged
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Table 2.1: Publicly available labeled datasets for two-dimensional temporal
(2D+T) cell tracking.

Name Modality Annotation Type Cell
Types

Objects Tracks Divisions Source

Dynamic
NuclearNet

Fluor. Nuclei Nuclear Mask 5 606,455 15,175 2,222 This work

DeepSea Phase Nuclear Mask 3 100,000 2,576 137 Zargari
et al.31

BTrack/CellX Fluor. Nuclei Nuclear Mask 1 - 1,032 - Cuny et al.36

CTMC DIC Bounding Box 14 2,045,834 2,900 457 Anjum &
Gurari27

C2C12 Phase Centroid 1 135,859 23,400 7,159 Ker et al.25

CTC 2D+T DIC Part. WC Mask 1 - 70 18 CTC37

CTC 2D+T Phase Part. WC Mask 2 - 2,415 1,019 CTC37

CTC 2D+T Fluor. Nuclei Part. Nuclear
Mask

3 - 1,227 395 CTC37

CTC 2D+T Fluor. WC Part. WC Mask 2 - 128 10 CTC37

CTC 2D+T Brightfield Part. WC Mask 2 - 459 242 CTC37

CTMC: Cell Tracking with Mitosis Detection Dataset Challenge, ISBI: Interna-
tional Symposium on Biomedical Imaging, CTC: Cell Tracking Challenge, Fluor:
fluorescent, DIC: differential interference contrast, WC: whole cell, Part: partial.

by qualitative comparison and quantitative metrics (Section 2.5.5). In the tracking
phase, labelers were given a complete movie (42–71 frames) and tasked with track-
ing cells and identifying cell divisions. This phase was achieved through iterative
cycles of model prediction, crowdsourced correction, expert QC, and model updat-
ing. For this task, we extended DeepCell Label to include tools for labeling cell
lineages and divisions. To coordinate this multi-stage dataset development process,
we implemented a data and model versioning system using Data Version Control
(DVC),35 which acts alongside Git to track each data file and its associated metadata
(Figure 2.1a). By automating these file associations, we removed the need for an
expert user to manage the labeling pipeline and keep track of various computational
notebooks or scripts.

Using this methodology, we built DynamicNuclearNet, a segmented and tracked
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dataset of fluorescently labeled cell nuclei spanning five different cell lines. This
dataset contains approximately 600,000 unique nuclear segmentations assembled
into over 15,000 trajectories with over 2,200 division events (Figure 2.1b,c). Each
trajectory begins at the cell’s appearance in the FOV or birth as a daughter cell and
ends when the cell disappears by leaving the FOV, dying or dividing. While it is ex-
pensive to generate pixel-level masks for each cell compared to other types of labels
(e.g., centroids or bounding boxes), these masks facilitate numerous downstream
analysis steps, such as quantifying signaling reporters or nuclear morphology. The
2,200 division events in our dataset surpass all previous annotation efforts that uti-
lize nuclear segmentation masks (Table 2.1), which allows us to incorporate cell
division detection into our deep-learning-based cell-tracking method.

2.3 Accurate nuclear segmentation and tracking with Caliban
In tandem with the labeling methodology advances described above, we developed
Caliban, an integrated solution to nuclear segmentation and tracking. Caliban
employs a tracking-by-detection approach in which cells are first identified in each
frame by a deep learning model; these detections are then used to reconstruct a
lineage tree that connects cells across frames and through cell division events.
For reconstruction of lineage trees, we utilize a deep learning model inspired by
Sadeghian et al.,41 which encodes temporal dependencies for multiple features of
each object. In this approach, accurate cell detection and segmentation are essential
to producing faithful lineage reconstructions. To this end, we have combined our
prior work on cell segmentation22,42 with DynamicNuclearNet and a comprehensive
benchmarking framework to train an accurate deep learning model for nuclear
segmentation as part of Caliban.

The processing steps for Caliban are shown in Fig. 2.2a. Raw images are passed
through the nuclear segmentation model to produce cell masks. These masks are
used to extract features for each cell, while the centroids are used to construct an
adjacency matrix to identify cells in close proximity (< 64 pixels, 41.6 𝜇m). These
features and the adjacency matrix are fed into a neighborhood encoder model, which
uses a graph attention network38,39 to generate feature vectors that summarize infor-
mation about a cell’s—and its neighbors’—appearance, location, and morphology
(Figure 2.2b). These feature vectors are then fed into a tracking model that causally
integrates temporal information and performs a pairwise comparison of each cell’s
feature vector across frames to produce an effective probability score indicating
whether two cells are the same cell, are different cells, or have a parent–child
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Figure 2.2: A deep learning approach to cell segmentation and tracking using
Caliban.
(a) Caliban takes a movie of fluorescently labeled nuclei as input and then generates
a nuclear segmentation mask for each frame. Features for each cell in a frame are
extracted and passed through a neighborhood encoder model to generate a vector
embedding for each cell. These embeddings and cell positions are passed into
the tracking inference model, which predicts the probability that each pair of cells
between frames is the same, is different, or has a parent–child relationship. These
probabilities are used as weights for linear assignment to construct cell lineages on
a frame by frame basis. (b) The neighborhood encoding model takes as input an
image of each cell, its centroid position, and three metrics of morphology (area,
perimeter, and eccentricity). A vector embedding of each input is used as node
weights in a graph attention network,38,39 where edges are assigned to cells within
64 pixels (41.6 𝜇m) of each other. The final neighborhood embedding for each cell
captures the appearance of that cell and its spatial relationship with its neighbors in
that frame. (c) The tracking inference model performs pairwise predictions on cells
in frame 𝑡𝑛 to cells in frame 𝑡𝑛+1. The model is given neighborhood embeddings and
centroid positions of cells in the previous seven frames [𝑡𝑛−7, 𝑡𝑛] to compare with
cells in frame 𝑡𝑛+1. The temporal context of the previous seven frames is modeled
using long short-term memory (LSTM) layers.40 Ultimately, the model outputs a set
of effective probabilities (𝑝same, 𝑝diff, and 𝑝parent-child) for each pair of cells between
frame 𝑡𝑛 and frame 𝑡𝑛+1. (d) The performance of Caliban and that of four other
tracking methods were evaluated on the test split of DynamicNuclearNet. Tracking
performance on ground truth segmentations is excluded for EmbedTrack because
it is an end-to-end method that generates segmentations as part of tracking. TRA:
tracking accuracy in the Cell Tracking Challenge. (e) A sample montage from
DynamicNuclearNet with predictions from Caliban. Circles highlight the correct
identification of three division events. Scale bars, 26 𝜇m.
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relationship (Figure 2.2c). Separating our tracking model into two pieces also facil-
itates rapid and scalable inference. During inference, the computationally expensive
neighborhood encoder model can be run on all frames in parallel, leveraging GPU
acceleration, followed by the lightweight tracking inference model, which is run on
a frame-by-frame basis. The tracking inference model assigns lineages to cells by
comparing the feature vectors of the last frame of existing lineages with the feature
vectors of candidate cells in the current frame; model predictions are used with the
Hungarian algorithm43,44 to complete the assignment. To accommodate the entry
and exit of cells in the linear assignment framework, we create a “shadow object"
for each cell in the frame, which allows assignments for the “birth" or “death" of
cells in each frame.44 The methods (Section 2.5.5) provide full details of the model
architecture, model training, postprocessing, and hyperparameter optimization.

In addition to Caliban, we also developed a comprehensive framework for evaluating
tracking performance as part of this work. Most existing metrics for cell tracking fo-
cus on the quality of linkages between cells in lineage trees.45–48 While useful, these
approaches mask the method’s performance on cell division. Many downstream
analyses rely on accurate division detection; however, the relative rarity of division
events makes them difficult to assess with summary metrics. To resolve this issue,
we implemented several evaluation metrics that quantify a method’s performance
on cell division; the details of each metric are given in the methods (Section 2.5.5).

We used these metrics in combination with prior metrics30,45–47 to compare Cal-
iban against four alternative algorithms for cell tracking: Baxter, CellTrackerGNN,
EmbedTrack, and Tracx. We focused on methods that performed well in the Cell
Tracking Challenge and that could be run without manual parameter tuning includ-
ing using parameters published as part of the challenge submission. Baxter imple-
ments the Viterbi algorithm.49 CellTrackerGNN constructs a global track solution
by pairing a graph neural network with an edge classifier to extract cell lineages.50

EmbedTrack utilizes a single convolutional neural network for joint cell segmenta-
tion and tracking.51 Tracx pairs a feature-based linear assignment problem with a cell
fingerprint classifier to curate tracking results.36 We tested each algorithm on ground
truth and predicted segmentations. Predicted segmentations for each method were
generated with that method’s segmentation model or Caliban’s segmentation model
if the former was unavailable. We found that Caliban outperforms all algorithms
on all metrics except for Baxter on target efficiency (0.97 vs. 0.98) and association
accuracy (0.97 vs. 0.98) (Figure 2.2d). Importantly, on measures of division perfor-
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mance, Caliban performs substantially better than all previously published methods.
This performance boost is primarily attributable to Caliban’s cell-tracking capability
(Figure 2.2e), as the performance boost is present when tracking is performed on
ground truth segmentations. Complete benchmarking results are shown in Table
S2.1.

To increase the accessibility of Caliban, we have made Caliban available through
our lab’s GitHub (https://github.com/vanvalenlab/deepcell-tf) and the
DeepCell web portal (https://deepcell.org). Converting algorithms into ro-
bust, user-friendly software can be expensive and time-consuming, particularly for
cell-tracking algorithms, given the large size and varied nature of the data on which
these algorithms must operate.24,32,34,52 Here, we leverage our prior work in devel-
oping the DeepCell Kiosk,53 a cloud-native, scalable software platform for cellular
image analysis pipelines that use deep learning methods. Our cloud deployment of
Caliban was facilitated by our emphasis on inference speed, scalability, and accu-
racy during method development. We believe that the availability of Caliban in both
local and cloud versions will make this tool accessible to the broader life science
community. Further, the open-source datasets, models, and benchmarking tools will
facilitate future method development.

2.4 Discussion
Live-cell imaging is a transformative technology critical to elucidating cellular pro-
liferation, migration, and other dynamic phenomena. The utility of this technology
has long been limited by our ability to extract quantitative, single-cell information
from these movies. In this work, we have made a significant step toward solving
the computer vision challenges of dynamic cellular imaging data. By extending
scalable, HITL labeling frameworks21,22,54–57 to dynamic data, we have generated
a labeled dataset of over 15,000 cellular trajectories and 2,200 cell divisions. We
demonstrated that these labeled data can power accurate nuclear segmentation and
tracking models. We further showed that these models can be combined into an in-
tegrated pipeline and deployed on a cloud-native platform for scalable, user-friendly
inference.

While we achieved impressive performance on nuclear segmentation and tracking,
several areas of improvement exist for future work. First, accurate cell segmentation
remains a performance bottleneck, as highlighted by the difference in the perfor-
mance of tracking methods on ground truth and deep-learning-generated segmenta-

https://github.com/vanvalenlab/deepcell-tf
https://deepcell.org
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tions (Figure 2.2). Additional performance gains on segmentation will likely arise
via methods that leverage temporal information to improve performance. Newer
segmentation methods that enable the segmentation of overlapping objects23,58—a
limitation of all cell segmentation methods that currently see wide use59—may also
help close this gap. Second, while the dataset we have collected is impressive in
scale, its diversity remains limited compared with the full space of live-cell pheno-
types. Our focus on cell nuclei allowed us to develop a new labeling methodology
for dynamic datasets; creating a dataset similar in label scale and quality for whole
cells will likely be the focus for future work. To this end, we have already ex-
tended the features available in DeepCell Label to support annotation and tracking
of overlapping cells. Moreover, dynamic cell phenotypes change substantially in
the setting of perturbations. Such shifts in data distribution are expected to degrade
cell segmentation and tracking performance; the best approach for mitigating this
issue is to expand the space of labeled data to capture these phenotypes. Doing so
will require expanding our labeling framework to capture more dynamic phenotypes
(e.g., cell death). We note that imaging data from pooled optical screens16,18,20,60,61

may also be a valuable path for generating images of perturbed cell phenotypes at
scale.

Our work contains several lessons for the community of researchers developing
deep learning methods for cellular image analysis. First, our work highlights the
importance of data labeling methodology and data scale. By developing a scalable
approach for labeling dynamic live-cell imaging data, we have compiled a pixel-level
labeled dataset that is substantially larger than previous datasets. The increased scale
of the data allowed us to compile enough examples of cell divisions—a critical but
rare dynamic event—to enable accurate detection by deep learning models. While
models trained on sparsely labeled data can be effective,34,62 increasing the amount
of labeled data is essential to creating models that generalize across datasets. Second,
our study demonstrates the importance of informative benchmarks. As highlighted
by our work and that of others,30,62,63 accurate cell division detection is one of
the most challenging aspects of cell tracking but is critical to constructing cell lin-
eages. This task is challenging for supervised methods, largely because of the class
imbalance—cell divisions represent a relatively minor fraction of linkages in cell
lineage trees. Aggregate metrics for cell tracking mask cell division events, making
it difficult to judge performance gains during and after algorithmic method devel-
opment.45 Combining aggregate metrics with specific, informative metrics creates
a more complete picture of performance and is critical to crafting methods that can
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be used in production. Finally, this work underscores the value of model scalability.
While accuracy is often the metric used to judge cellular image analysis methods,
inference speed—and hence scalability—is equally important. Faster workflows
can process substantially more data and provide a better user experience. A major
focus of this work was scalability, which was achieved by crafting an architecture in
which computationally expensive operations (e.g., the neighborhood encoder) were
performed in parallel on specialized hardware (e.g., GPUs). Our model’s scalability
enables a responsive cloud deployment—a typical dataset (10,000 cell detections
over 30 frames) can be processed in ∼ 40 s on an A6000 GPU, with much of the
processing time taken by segmentation (Figure S2.1).

In conclusion, our work provides the live-cell imaging community with an accessi-
ble, accurate method for reconstructing single-cell lineages from dynamic imaging
experiments. We believe our work will facilitate the analysis of cell phenotypes and
behaviors in a wide variety of high-throughput imaging experiments.

2.5 Materials and methods
2.5.1 Cell culture
We used five mammalian cell lines (NIH-3T3, HeLa-S3, HEK293, RAW 264.7,
and PC-3) to collect training data. All lines were acquired from the American Type
Culture Collection. We cultured the cells in Dulbecco’s modified Eagle’s medium
(DMEM; Invitrogen; RAW 264.7, HEK293, and NIH-3T3) or F-12K medium (Cais-
son; HeLa-S3 and PC-3) supplemented with 2 mM L-glutamine (Gibco), 100 U/mL
penicillin, 100 𝜇g/ml streptomycin (Gibco), and either 10% calf serum (Colorado
Serum Company) for NIH-3T3 cells or 10% fetal bovine serum (FBS; Gibco) for
all other cells.

2.5.2 Live imaging
Before imaging, cells were seeded in fibronectin-coated (10 𝜇g/mL; Gibco) glass
96-well plates (Nunc or Cellvis) and allowed to attach overnight. We performed
nuclear labeling via prior transduction with H2B-iRFP670 (HeLa, RAW 264.7),
H2B-mClover (HEK293, NIH/3T3), and H2B-mCherry (PC-3). The media was re-
moved and replaced with imaging media (FluoroBrite DMEM (Invitrogen) supple-
mented with 10 mM HEPES (Sigma-Aldrich), 10% FBS (Gibco), 2mM L-glutamine
(Gibco)) at least 1 h before imaging. We imaged cells with a Nikon Ti-E or Nikon
Ti2 fluorescence microscope with environmental control (37°C, 5% CO2) and con-
trolled by Micro-Manager or Nikon Elements. We acquired images at 5- to 6-min
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intervals with a 20x objective (40x for RAW 264.7 cells) and either an Andor Neo 5.5
CMOS camera with 3×3 binning or a Photometrics Prime 95B CMOS camera with
2×2 binning. All data were scaled so that pixels had the same physical dimensions
(0.65 𝜇m per pixel) before training.

2.5.3 Data annotation
DeepCell Label

We previously described DeepCell Label,22 our browser-based software for data
annotation. We extended DeepCell Label to support labeling cell lineages and
divisions in dynamic datasets. Additionally, we implemented a state machine that
allows annotators to apply undo/redo functions during their work.

In this study, we utilized DeepCell Label in two stages in order to generate a nuclear
tracking dataset. First, annotators were asked to correct nuclear segmentation
labels for all frames in the dataset. Movies were broken into five frame sets for
segmentation which allows annotators to leverage the temporal context present in
the movie in order to improve the annotation of dividing cells. Second, after
segmentation annotations were complete, annotators were asked to label the nuclear
segmentation masks such that a single cell maintains the same label across frames.
Additionally, all division events were annotated with the connection of the parent
cell to each daughter cell. An expert annotator reviewed all annotated movies before
incorporation into the training dataset. The appendix provides a user manual for
DeepCell Label (Appendix A), along with sample instructions for segmentation
(Appendix B) and tracking (Appendix C) corrections. Annotations were conducted
by a team of four annotators and two expert reviewers. Each movie was annotated by
a single annotator and approved by a single expert eliminating the need for resolving
differences between two independent annotators.

Data versioning with DVC

Each labeled movie was versioned and tracked with DVC.35 We recorded additional
metadata in each .dvc file, including the data dimensions, annotation progress,
and data source. These metadata enabled automatic data processing for generating
segmentation and tracking predictions as well as launching annotation tasks.
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2.5.4 Nuclear segmentation
Deep learning model architecture

The deep learning model for nuclear segmentation was based on the design of fea-
ture pyramid networks.64,65 The network was constructed from an EfficientNetV2L
backbone66 connected to a feature pyramid. Input images were concatenated with a
coordinate map before entering the backbone. We used backbone layers C1–C5 and
pyramid layers P1–P7. The final pyramid layers were connected to three semantic
segmentation heads that predict transforms of the label image.

Label image transforms

For each image, we used a deep learning model to predict three different transforms,
as inspired by previous work.22,67,68 The first transform predicted whether a pixel
belongs to the foreground or background, known as the “foreground–background
transform". The second transform predicted the distance of each pixel in a cell to
the center of the cell and is called the “inner distance". If the distance between a
pixel and the center of the cell is 𝑟, then we compute the transform as 1

1+𝛼𝛽𝑟 , where
𝛼 = 1√

cell area
and 𝛽 is a hyperparameter set to 1.22 The final transform was the

“outer distance," which is the Euclidean distance transform of the labeled image.
The loss function was computed as the sum of the mean squared error on the inner
and outer distance transforms and the weighted categorical cross-entropy69 on the
foreground–background transform. The cross-entropy term was scaled by 0.01 prior
to the sum.

Preprocessing

Each image was required to have a minimum of one labeled object. Additionally,
each image was normalized using contrast-limited adaptive histogram equalization
with a kernel size equal to 1/8 of the image size to ensure that all images have the
same dynamic range.70

Postprocessing

We fed two of the three model outputs, the inner and outer distance, into a marker-
based watershed method71 to convert the continuous model outputs into a discrete
labeled image in which each cell is assigned a unique integer. We applied a peak-
finding algorithm72 with a radius of ten pixels and a threshold of 0.1 to the inner
distance prediction in order to determine the centroid location of each cell. Next, we
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generated the cell mask image by applying the watershed algorithm to the inverse
outer distance prediction with the centroids as markers and a threshold of 0.01.

Model training and optimization

Training data were augmented with random rotations, crops, flips, and scaling to
improve the diversity of the data. We used 70% of the data for training, 20% for
validation, and 10% for testing. The model was trained using the Adam optimizer73

with a learning rate of 10−4, a clipnorm of 10−3, and a batch size of sixteen images;
training was performed for sixteen epochs. After each epoch, the learning rate
was adjusted using the function lr = lr × 0.99epoch. Additionally, if the loss of the
validation data did not improve by more than 10−3 after five epochs, the learning
rate was reduced by a factor of 0.01.

To optimize the model’s performance on nuclear segmentation, we tested ten back-
bones: ResNet50,74 ResNet101,74 EfficientNetB2,75 EfficientNetB3,75 Efficient-
NetB4,75 EfficientNetV2M,66 EfficientNetV2L,66 EfficientNetV2B1,66 Efficient-
NetV2B2,66 and EfficientNetV2B3.66 Additionally, we explored the optimal set
of pyramid layers: P1–P7 and P2–P7.

Evaluation

To fully evaluate the performance of our segmentation model, we developed a set of
object-based error classes that assess the model on a per-object basis as opposed to a
per-pixel basis. This framework provided a perspective on model performance that
reflects downstream applications. First, we built a cost matrix between cells in the
ground truth and cells in the prediction, where the cost is one minus the intersection
over union (IoU) for each pair of cells. We performed a linear sum assignment on
this cost matrix, with a cost of 0.4 for unassigned cells, to determine which cells
were correctly matched between the ground truth and prediction. For all remaining
cells, we constructed a graph in which an edge was established between a ground
truth and a predicted cell if the IoU was greater than zero. For each subgraph, we
classified the error type based on the connectivity of the graph. Nodes without edges
corresponded to a false positive or negative if the graph contained only a predicted or
ground truth cell, respectively (Figure S2.2a–c)). A single predicted node connected
to multiple ground truth nodes indicated a merge error (Figure S2.2d). Conversely,
a single ground truth node connected to multiple predicted nodes was a split error
(Figure S2.2e). Finally, any subgraphs that contain multiple ground truth and
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predicted nodes were categorized as “catastrophe" (Figure S2.2f). The resulting
error classes can be used to calculate a set of summary statistics, including recall,
precision, and F1 score by using the true positive, false positive and false negative
classes. The remaining error classes can be used to calculate (1) the number of
missed detections resulting from a merge, (2) the number of gained detections
resulting from a split, (3) the number of true detections involved in a catastrophe,
and (4) the number of predicted detections involved in a catastrophe.

2.5.5 Cell tracking
Linear assignment for tracking

Our tracking algorithm drew inspiration from Jaqaman et al.,44 where tracking
was treated as a linear assignment problem. To solve the tracking problem, we first
constructed a cost function for possible pairings across frames. The tracking problem
was then reduced to the selection of one assignment out of the set of all possible
assignments that minimizes the cost function. This task can be accomplished with
the Hungarian algorithm.76 One complicating factor of biological object tracking
is that objects can appear and disappear, which leads to an unbalanced assignment
problem. Cells can disappear by either moving out of the FOV or dying. Similarly,
cells can appear by moving into the FOV or dividing into two daughter cells from
one parent cell. In the context of the linear assignment problem, one can preserve
the runtime and performance by introducing a “shadow object” for each object in the
two frames that represent an opportunity for objects to “disappear” (if an object in
frame 𝑡𝑛 is matched with its shadow object in frame 𝑡𝑛+1) or “appear" (if an object in
frame 𝑡𝑛+1 is matched with its shadow object in frame 𝑡𝑛).44 Assuming that mitotic
events can be accommodated by a “shadow object” as well, division detection and
assignment fit neatly into this framework. This framework can also accommodate
cells that disappear from the FOV and reappear, by allowing unmatched cells from
prior frames that were not assigned to cell division events to participate in the
assignment. With the annotated trajectories and divisions from our dataset, it then
becomes a matter of developing a deep learning architecture to extract an object’s
features and learn an optimal cost function.

To construct our learned cost function, we cast it as a classification task. Let
us suppose that we have two cells: our target cell 1 in frame 𝑡𝑛 and cell 2 in
frame 𝑡𝑛+1. Our goal was to train a classifier that takes in information about each
cell and produces an effective probability indicating whether these two instances
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are the same, are different, or have a parent–child relationship. To incorporate
temporal information, we used multiple frames of information for cell 1 as an input
to the classifier. This approach allowed us access to temporal information beyond
just the two frames we are comparing. Our classifier was a hybrid deep learning
model that blends recurrent, convolutional, and graph submodels; its architecture
is summarized in Figure 2.2b,c. The three scores that the model outputs, (𝑝same,
𝑝diff, and 𝑝parent-child), which are all positive and sum to unity, can be thought of
as probabilities. These scores were used to construct the cost matrix. If a cell
in frame 𝑡𝑛+1 is assigned to a shadow cell, i.e., if it “appears”, then we assessed
whether there is a parent–child relationship. This was done by finding the highest
𝑝parent-child among all eligible cells (i.e., the cells in frame 𝑡𝑛 that were assigned to
“disappear”)—if this probability was above a threshold, then we made the lineage
assignment.

Neighborhood encoder architecture

To capture the contextual information of each cell and its neighbors, we constructed
a graph attention network.38,39 There were three input heads to the model. The first
head received images of each cell after reshaping to a standard 32×32 shape and
converted these images to a vector embedding with a convolutional neural network.
The second head received the centroid location of each cell. The third head received
three morphology metrics for each cell: area, perimeter, and eccentricity. The latter
two heads made use of fully connected neural networks to convert the inputs into
vectors. We built an adjacency matrix for the graph attention network based on the
Euclidean distance between pairs of cells; cells were linked if they are closer than 64
pixels (41.6 𝜇m). The normalized adjacency matrix and concatenated embeddings
were fed into a graph attention layer38 to update the embeddings for each cell. The
appearance and morphology embeddings were concatenated to the output of the
graph attention layer to generate the final neighborhood embedding.

Tracking model architecture

Given cell 1 in frame 𝑡𝑛 and cell 2 in frame 𝑡𝑛+1, the neighborhood encoder was used
to generate embeddings for cell 1 in frame 𝑡𝑛 and the previous seven frames [𝑡𝑛−7, 𝑡𝑛].
Long short-term memory40 layers were applied to the resulting embedding for cell
1 to merge the temporal information and to create a final summary vector for cell 1.
The neighborhood encoder then generated an embedding for cell 2. Next, the vectors



26

for cell 1 and cell 2 were concatenated and fed into fully connected layers. The final
layer applied the softmax transform to produce the final classification scores: 𝑝same,
𝑝diff, and 𝑝parent-child.

Training and optimization

Both the neighborhood encoder and the inference model were jointly trained end-
to-end such that the neighborhood embedding was tuned for the inference task. The
model was trained on data that compare a set of frames [𝑡𝑛−7, 𝑡𝑛] with frame 𝑡𝑛+1.
Each comparison of 𝑡𝑛 with 𝑡𝑛+1 contributed to the loss. For inference, the model
was given single pairs of frames, e.g., 𝑡𝑛 vs. 𝑡𝑛+1. Training data were augmented
with random rotations and translations. We used 70% of the data for training, 20%
for validation, and 10% for testing. Data splitting was performed with regards to
the cell type such that each cell type is equally represented across the three splits.
The model was trained using the rectified Adam optimizer77 with a learning rate of
10−3, a clipnorm of 10−3, and a batch size of eight images. After each epoch, the
learning rate was adjusted using the function lr = lr × 0.99epoch. Additionally, if the
loss of the validation data did not improve by more than 10−4 after five epochs, the
learning rate was reduced by a factor of 0.1. The model was trained over 50 epochs.

To optimize the performance of the tracking model, we tested the following param-
eters: graph layers (graph convolution layer, graph convolution layer with trainable
skip connections, and graph attention convolution layer), distance threshold (64, 128,
256 pixels; 41.6, 83.2, 166.4 𝜇m), crop mode (fixed and resized), birth probability,
division probability, and death probability.

Evaluating tracking performance

To evaluate the tracking performance, we utilized two sets of metrics. The first set
assessed the linkages between cells, whereas the second set focused on the linkages
of dividing cells. For the first set of metrics, we calculated the target efficiency
(TE) and association accuracy (AA).46,47 Briefly, TE assesses the fraction of cells
assigned to the correct lineage, and AA measures the number of correct linkages
generated between cells.

Traditional metrics for evaluating tracking, including TE and AA, do not accurately
reflect the ability of the method to identify divisions because divisions are relatively
rare events. To overcome this weakness, we developed an evaluation pipeline that
classifies each division event as a correct, missed, or incorrect division. Our pipeline
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can handle tracking assignments on ground truth and predicted segmentations. First,
we calculated the IoU between cells in the ground truth and the predictions to
establish a mapping that can be used to compare tracking predictions. For each
division in the ground truth, we checked the corresponding node in the prediction to
determine whether it was labeled as a division. If the daughter nodes in the prediction
match those in the ground truth, the division was counted as a correct division
(Figure S2.3a). We have found that depending on the predicted segmentations, a
division can sometimes be assigned to the frame before or after the frame that is
annotated as a division in the ground truth data. We treated these shifted divisions
as correct. If the predicted node was not labeled as a division, it was considered as a
missed division (Figure S2.3b). Finally, if a predicted parent node was identified as
a division, but the daughters do not match the ground truth daughters, the division
was counted as incorrect (Figure S2.3c).

We utilized the classified divisions to calculate a set of summary statistics, including
recall, precision, and F1 score. Additionally, we utilized the mitotic branching
correctness (MBC) metric defined by Ulicna et al.,30 calculated as follows:

MBC =
correct divisions

correct divisions + missed divisions + incorrect divisions

2.5.6 Deployment
We previously described the DeepCell Kiosk,53 our scalable cloud-based deploy-
ment for deep learning models. The Kiosk provides a drag-and-drop interface for
model predictions currently deployed at www.deepcell.org/predict. To pro-
vide a seamless pipeline for nuclear segmentation and tracking, we deployed a new
consumer for tracking jobs. First, each movie is split into single frames, which are
distributed for nuclear segmentation. This step takes advantage of the Kiosk’s ability
to parallelize and scale resources to match demand. Once nuclear segmentation is
complete on all frames, the masks are concatenated, and tracking is performed. The
user receives a final output that contains the raw data, labeled masks, and lineages.

2.5.7 Benchmarking
We compared the performance of our model against four other algorithms: Baxter,49

CellTrackerGNN,50 EmbedTrack,51 and Tracx.36 Using the test split of our dataset,
we evaluated the tracking performance of each algorithm on ground truth segmenta-
tion and predicted segmentations generated by either the algorithm or Caliban. We
evaluated the resulting tracking predictions using our division evaluation pipeline
and evaluation software from the Cell Tracking Challenge.45 The notebooks used

www.deepcell.org/predict
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to generate benchmarks are available at https://github.com/vanvalenlab/
Caliban-2023_Schwartz_et_al.

We evaluated Caliban’s inference speed using a single GPU (NVIDIA RTX A6000)
and eight CPUs (AMD EPYC 7763 64-Core Processor). The inference time was
split into four sections: segmentation inference, neighborhood encoder inference,
tracking inference, and linear assignment. Inference was repeated three times for
each movie in the test data split.

2.5.8 Python packages
The following Python packages (listed in no particular order) were used in the
course of this work: TensorFlow,78 NumPy,79 SciPy,80 NetworkX,81 scikit-learn,82

scikit-image,83 pandas,84 Spektral85 and Matplotlib.86

2.6 Supplemental materials

Tracking Segmentation DET SEG TRA Div R Div P Div F1 MBC AA TE

Caliban Caliban 0.991 0.924 0.990 0.90 0.94 0.92 0.85 0.97 0.97
GT 1.000 1.000 1.000 0.95 0.98 0.97 0.94 0.99 0.99

Baxter Caliban 0.988 0.920 0.987 0.50 0.74 0.60 0.43 0.98 0.98
GT 0.997 0.996 0.997 0.60 0.89 0.72 0.56 1.00 0.99

Tracx Caliban 0.991 0.924 0.989 0.32 0.26 0.28 0.17 0.95 0.95
GT 1.000 1.000 0.999 0.34 0.54 0.42 0.27 0.98 0.98

CellTrackerGNN CellTrackerGNN 0.815 0.682 0.812 0.43 0.05 0.08 0.04 0.76 0.76
GT 1.000 0.999 0.996 0.65 0.10 0.18 0.10 0.93 0.93

EmbedTrack EmbedTrack 0.816 0.642 0.815 0.64 0.17 0.27 0.15 0.82 0.82

Table S2.1: Benchmarking the performance of different tracking methods on
the test split of DynamicNuclearNet.
Bold font indicates the best scores on predicted segmentations. Italic font denotes
the best scores on ground truth (GT) segmentations. CTC: Cell Tracking Challenge,
DET: CTC detection accuracy,45 SEG: CTC segmentation accuracy,87 TRA: CTC
tracking accuracy,87 Div R: division recall, Div P: division precision, Div F1: divi-
sion F1 score, MBC: mitotic branching correctness,30 AA: association accuracy,46,47

TE: target efficiency.46,47

https://github.com/vanvalenlab/Caliban-2023_Schwartz_et_al
https://github.com/vanvalenlab/Caliban-2023_Schwartz_et_al
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Figure S2.1: Runtime for segmentation and tracking with Caliban.
The total runtime for segmentation and tracking is plotted as a function of the
number of objects and frames in the sample. Each point represents a movie in the
test data split, with a unique color assigned to each movie.
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Figure S2.2: Object-based evaluation of segmentation performance.
Segmentation predictions were evaluated based on object-level accuracy by first
constructing a graph in which edges indicate an overlap between two objects. Each
subgraph is then isolated and analyzed to identify the type of segmentation error
present. (a) Subgraphs with one GT and one predicted node represent a true positive
segmentation. Subgraphs containing only one node represent (b) a false negative if
the node is GT or (c) a false positive if the node is predicted. Subgraphs with three
nodes indicate (d) a merge if two GT nodes are associated with one predicted node
or (e) a split if two predicted nodes are associated with one GT node. (f) Finally, all
subgraphs containing more than three nodes are assigned to the catastrophe error
class.

Figure S2.3: Division-based evaluation of tracking performance.
Division events are classified as correct, missed, or incorrect based on a comparison
of the true and predicted tracking graphs. (a) A division is considered correct if
the prediction links the parent to the correct daughters within one frame of the GT
division event. We allow divisions to shift in time because segmentation predictions
can change when the cell is identified as one or two objects. (b) Divisions are
identified as missed if the daughter cells are assigned to the incorrect parent or if no
parent is identified. (c) A division is incorrect if the parent is assigned to only one
of the correct daughter cells.
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Declarations
Code availability
The software used for data labeling is available athttps://github.com/vanvalenlab/
deepcell-label. The code used for model development, cell tracking, and model
deployment are available at https://github.com/vanvalenlab/deepcell-
tf, https://github.com/vanvalenlab/deepcell-tracking, and https://
github.com/vanvalenlab/kiosk-console, respectively. Finally, the code for
reproducing all models and figures included in this paper is available at https:
//github.com/vanvalenlab/Caliban-2023_Schwartz_et_al. All code is
released under a modified Apache license and is free for non-commercial use.

Data availability
The DynamicNuclearNet dataset is available throughdeepcell.datasets (https:
//deepcell.readthedocs.io/en/master/data-gallery/dynamicnuclearnet.

html#sphx-glr-data-gallery-dynamicnuclearnet-py) for non-commercial
use.
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C h a p t e r 3

DEEP-LEARNING ENABLED SPATIAL OPTICAL BARCODES

3.1 Introduction
As described in Chapter 1, pooled microscopy screens have emerged as a powerful
method for merging the rich phenotyping capabilities of microscopy with high-
throughput perturbation screening. However, imaging pooled populations of cells
introduces an additional challenge: each cell must be linked to the perturbation
that it received. Optical barcodes are a set of methods that solve this problem by
encoding a unique identifier in each cell that can be read on the microscope and used
to link each cell with its associated perturbation. Broadly, optical barcodes fall into
two classes: (1) sequential barcodes that rely on iterations of staining and imaging
to read, and (2) spatial barcodes that create a pattern within the cell (Figure 3.1).

Sequential barcodes can easily scale to large library size, but the repeated imaging
rounds required to capture the barcode can make the collection of other types
of imaging data challenging. Additionally, the process of staining and imaging a
sequential barcode can take days, which limits overall sample throughput. Sequential
optical barcodes have been implemented with several different read-out methods.
The Zhuang lab adapted MERFISH to a barcode strategy in which an N-bit barcode
is read through 2N rounds of sequential FISH staining.1,2 In this scheme, each
bit of the barcode is encoded by one of two fluorescent read-out probes. The
read-out sequence is highly expressed as part of the perturbation construct, so no
additional signal amplification is needed to read the barcode using MERFISH.
The Blainey lab implemented an alternative approach to sequential barcodes using
in situ sequencing.3 In this scheme, the barcode is a twelve-nucleotide sequence
embedded in the 3’ UTR of an antibiotic resistance gene of the lentiviral construct
used to deliver the library. The barcode is flanked by standard sequences that
serve as targets for rolling circle amplification to increase the number of copies of
the barcode in the cell before readout with twelve rounds of in situ sequencing.
The epitope barcoding strategy, ProCode, which originally used CyTOF, has since
been applied in microscopy modalities, including multiplexed ion beam imaging
(MIBI) and multiplex immunohistochemistry consecutive staining on a single slide
(MICSSS).4–6
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Figure 3.1: Optical barcodes for pooled microscopy screens.
Optical barcodes are sequences expressed in a cell that can be labeled and identified
on a microscope as a unique identifier. 1D barcodes are read out through repeated
rounds of staining and imaging. They can be encoded using epitopes targeted by
antibodies, target sequences labeled by FISH probes or short nucleotide sequences
read out using in situ sequencing. In contrast, 2D or spatial barcodes are typically
labeled with a single round of imaging and combine spatial patterns in the cell with
different colors using either fluorescent proteins or epitopes.

Although sequential barcode methods have been applied to screening large libraries,
compatibility with other highly multiplexed downstream phenotyping methods, such
as transcriptome-scale RNA FISH or cyclical immunofluorescence, has been chal-
lenging.7 A preliminary multiomics dataset was collected using CRISPRmap, which
paired barcoded gRNAs for read out using FISH with probes against 12 mRNA
transcripts and antibodies against thirteen proteins imaged with IBEX.8 This work
clearly demonstrates the power of multi-omics investigations, but additionally high-
lights the need for future development to extend multi-omics to the transcriptome
and proteome scale. Given that most experiments are limited in the amount of
time dedicated to staining and imaging, any time spent reading a sequential barcode
directly takes time away from phenotypic data collection.

In contrast to current implementations of sequential barcodes, spatial barcodes en-
code information by separating labels into subcellular compartments, which can
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reduce the number of rounds of imaging required in readout. To date, implemen-
tations of spatial barcodes are based on labeling organelles. In yeast, Chen et al.
constructed barcoded yeast populations by labeling four organelles (nucleus, vacuo-
lar membrane, plasma membrane, and actin) with one of four fluorescent proteins,
which yielded a barcode library that can encode tens of thousands of variants.9

However, the use of four fluorescent proteins for the optical barcode precluded the
use of this barcoding strategy for any reporter-based measurements. In an effort to
overcome this limitation, two different methods have been published that reserve
a portion of the visible spectrum for reporters and biosensors while using the re-
mainder of the spectrum for barcodes based on fluorescent proteins conjugated to
organelle localization sequences.10,11 Finally, to allow the full spectrum of reporters
to be used in barcoded experiments in mammalian cells, Kudo et al. introduced
barcodes based on protein epitopes localized in either the nucleus or mitochon-
dria.12 This method, EPICode, uses three rounds of multiplexed immunochemistry
to image eighteen epitopes. In any spatial barcoding strategy, the total number of
variants that can be encoded in the library depends on a combinatorial relationship
between the number of patterns and the number of colors. In a library design
where all combinations of labels and organelles are allowed, the total library size is
given by 𝑛!

(𝑛−𝑟)! where 𝑛 is the number of organelles and 𝑟 is the number of patterns.
Organelle-based barcoding methods have been successfully implemented so far only
with a maximum of four organelles. As a result, any organelle-based barcode is
limited in the library scale without dramatically increasing the number of colors.

In this work, we present a new spatial optical barcoding method that uses repetitive
genomic sequences to substantially increase the number of spatial patterns that
can be reliably created inside of cells. We pair these patterns with an endpoint,
FISH-based readout that enables us to preserve the full color spectrum for live cell
imaging reporters prior to reading out barcodes. Finally, we demonstrate that a
deep learning classifier can accurately identify cells using this barcoding strategy.
Our new spatial optical barcoding method can encode libraries encompassing 6840
variants while only requiring a single round of 3 color FISH to read the barcode
identity. With the inclusion of an additional round of FISH labeling, the library
scales to more than 40 million variants. This streamlined read-out approach enables
our libraries to be paired with other multiplexed phenotype measurements such as
seqFISH (transcriptome) or multiplexed immunofluorescence (proteome).13–15
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Figure 3.2: CRISPR-dCas9 enables a scalable strategy for spatial optical bar-
codes.
In each of these example nuclei, an optical barcode is constructed by pairing three
distinct spatial patterns with three color assignments. By varying the combination
of colors with patterns, a set of unique barcodes are created.

3.2 Method development
The development of CRISPR-Cas9 and its related variants has transformed the field’s
ability to introduce genetic perturbations into cells. A key variant has been deac-
tivated Cas9 (dCas9), which binds to the genome as programmed by its associated
gRNA. This method has been used to inactivate (CRISPRi) and activate (CRISPRa)
gene expression. Further developments include CRISPR-imaging in which the tar-
geting mechanism of CRISPR-dCas9 is used to label genomic sequences for live
imaging.16–18 The mechanism enabling this imaging is quite simple: repetitive se-
quences recruit many copies of the dCas9-gRNA complexes to the same location,
creating bright and distinct spot patterns inside the nucleus.

In this work, we propose a new method for creating spatial patterns within cells
using CRISPR-dCas9 to bring fluorescent tags to different repetitive sequences in
the genome, creating distinct and recognizable spatial patterns. In our method, each
spatial optical barcode consists of three spatial patterns labeled in three different
colors (Figure 3.2). With this design, the total number of possible barcodes is 𝑝!

(𝑝−𝑐)!
where 𝑝 is the number of distinct spatial patterns and 𝑐 is the number of colors. To
accommodate most standard microscopy setups, we use three colors (green, red, and
far red), while reserving blue for nuclear labeling. With only 20 gRNA patterns, this
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barcode strategy can create a library encoding 6840 variants that can be decoded
in a single round of 3-color imaging. If we allow for two imaging rounds, we can
achieve a library size of more than 40 million. To associate specific gRNAs with
different readout colors, we designed a protocol for labeling gRNAs with FISH.
In contrast to alternative optical barcoding strategies, our method can be read in a
single round of imaging and can scale to genome-scale libraries. Ultimately, the
only limit on our library size is the number of repetitive sequences in the genome
that can produce distinguishable spatial patterns.

In the following sections, we describe our computational strategy for identifying
gRNA sequences that produce distinct spatial patterns, as well as the corresponding
protocols for testing and validating candidate sequences. We show that deep learning
can be used to accurately identify spatial patterns and interpret spatial barcodes. In
addition, we describe how we engineered binding sites for multicolor FISH labeling
into the gRNA scaffold sequence.

3.3 Identifying and screening candidate gRNA sequences
3.3.1 Computational method for identifying potential sequences
The first challenge for developing our approach to spatial optical barcodes was iden-
tifying a set of gRNA sequences that produce distinct and visible patterns in the
nucleus. We used existing gRNA sequences targeting the telomere and the 𝛼 and 𝛽

satellites of the centromeres as guidelines for our design criteria when selecting new
gRNAs. Preliminary data collected using the CASFISH labeling method demon-
strated that all three sequences could produce spatial patterns that could be visualized
with standard epifluorescent microscopy (Figure 3.3). To perform a computational
search for new gRNAs that bind to repetitive sequences, we considered two possi-
ble reference genomes. The first was GRCh38, which is derived from the Human
Genome Project and has seen substantial improvements over the past two decades.19

However, the methods used to assemble this genome struggle with repetitive se-
quences and thus fail to fully capture the satellite sequences of the centromeres,
along with other highly repetitive regions. In contrast, the second reference genome
we considered, T2T-CHM13, used new long-read sequencing technology to prior-
itize complete coverage of repetitive regions across the genome.20 This reference
genome used a complete hydatiform mole (CHM) cell line, which can be effectively
considered homozygous with the exception of a few thousand heterozygous variants
and a single megabase deletion. Given the importance of accurately identifying
repetitive sequences that could be targeted with gRNAs, we chose to work with the
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Figure 3.3: Labeling repetitive genomic sequences using CRISPR-dCas9.
Shown here are sample images of nuclei labeled with dCas9 using gRNAs targeted
against 𝛼 satellite,21 𝛽 satellite, and telomeres.22 The 𝛽 satellite gRNA sequence
was designed based on the sequence published in [23]. Sample gRNA images were
collected from HeLa cells stained using CASFISH, which utilizes a fluorescently
labeled tracrRNA to visualize CRISPR-dCas9 binding sites. Scale bars, 10 𝜇m.

reference genome T2T-CHM13. We expect that any cell line used in our experi-
ments (or future experiments) will have genetic variation different from that of the
CHM13 cell line. It follows that experimental validation must be performed for each
cell line for all targets identified in the T2T-CHM13 genome.

A key design constraint for our barcoding method is compatibility with standard
fluorescent microscopes (confocal or epifluorescent) and lower magnifications (10-
40X) to facilitate rapid imaging of large numbers of cells. Although individual
fluorescent molecules cannot be seen under these imaging conditions, clusters of
molecules can. To mimic this expectation computationally, we first identified all
binding sites within the genome for a given gRNA. We then developed a set of
criteria to approximate when a set of adjacent gRNA binding sites would lead
to a visible cluster on the microscope (Figure 3.4). Through a combination of
hyperparameter optimization and experimental validation, we determined that a
minimum of eighteen binding sites within eighteen kilobase pairs (kbp) are required
to form a visible cluster. Additional binding sites that occur within 54 kbp of the
first cluster were assigned to that first cluster. The parameters for this criteria were
calibrated by comparing the known number of clusters experimentally observed
for 𝛼 satellite and telomere gRNAs with the number of clusters predicted by our
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Figure 3.4: Predicting visible gRNA binding clusters.
Each possible gRNA sequence was identified based on its position 5’ of a PAM site
(NGG). A visible cluster was predicted if there are a minimum of eighteen gRNA
binding sites within 18 kbp. Additional binding sites within 54 kbp of the first
cluster were associated with that cluster. If these minimum criteria were not met,
no visible cluster was predicted.

algorithm. Additional comparisons of experimental microscopy data with predicted
cluster patterns led us to exclude any gRNAs with fewer than 8,000 binding sites
across the entire genome, as these gRNAs were unlikely to produce a visible pattern.

For the purpose of identifying distinguishable patterns for our spatial barcoding
strategy, we wanted to increase the likelihood that the collection of gRNAs that we
would test could be distinguished from each other. We reasoned that distinguishable
sequences likely had repeats on distinct locations on the chromosomes. To filter for
these sequences, each sequence’s predicted binding pattern was encoded as a single
vector by breaking the genome into 100,000 bp sections. Sections with a predicted
visible cluster received the value of 1; remaining sections were set to 0. We then
performed dimensionality reduction with UMAP on the vectorized representation
of the binding patterns.24 This procedure allowed us to sample gRNAs for testing
that were more likely to produce different patterns (Figure 3.5).
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Figure 3.5: Identifying distinct binding patterns using dimensionality reduction.
A set of gRNA binding patterns in cells (a) was sampled from an embedding space
(b) constructed based on the predicted binding patterns of each gRNA. Sample
gRNA images were collected from HeLa cells stably expressing dCas9-GFP and
transfected with a gRNA expression plasmid. Scale bar, 10 𝜇m.

3.3.2 Screening gRNAs for patterns with CASFISH
After selecting candidate gRNAs with our computational strategy, we then sought
to test each gRNA quickly in a cellular context to verify that it produced a visible
pattern. To do this, we used CASFISH, a fixed cell staining method that uses an
RNA-protein complex consisting of a dCas9 protein complexed with fluorescently
labeled gRNA.25 Together, this complex enables visualization of the labeling pattern
resulting from binding of dCas9-gRNA to matching genomic regions in a sequence-
specific fashion (Figure 3.6a). This approach has several advantages, which lend
itself to high-throughput screening. First, it can utilize any adherent cell line
of interest without the need for additional cell line engineering (e.g., introducing
dCas9). Second, gRNAs can be ordered from vendors such as IDT with a fast
turnaround time and low cost. These gRNAs differ in their target sequence, but
contain a sequence that binds to the scaffold contained in the universal fluorescently
labeled tracRNA. Finally, since CASFISH is a staining method, it does not rely on
exogenous or native expression in the stained cell, eliminating the need to optimize
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Figure 3.6: CASFISH enables rapid screening of candidate gRNA sequences.
(a) Cells were fixed and permeabilized prior to incubation with complexes of dCas9
protein with a gRNA. Either dCas9 or the gRNA can be prepared with a fluorescent
label in order to facilitate visualization. (b) A sample image of CASFISH staining
of HeLa cells with gRNA P demonstrating reliable and consistent staining of every
cell. See Section 3.8.5 for details on sample preparation. Scale bar, 50 𝜇m.

the expression of dCas9 and gRNA. Thus, CASFISH can reliably generate labeling
in every cell included in the experiment as shown in Figure 3.6b. With this pipeline,
we tested 26 candidate gRNA sequences selected with the algorithm described above
and identified 21 gRNAs that generated visible labeling patterns (Figure 3.7, Table
S3.1).
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Figure 3.7: gRNA candidates verified with CASFISH staining.
21 additional gRNAs were identified and shown to generate visible patterns with
CASFISH staining. See Section 3.8.5 for details on sample preparation. For gRNA
sequences, see Table S3.1. Scale bar, 10 𝜇m

3.4 Training a deep learning model for barcode identification
In our final barcoding experiments, each cell will be examined and identified on
the basis of the gRNA patterns present in the nucleus. To facilitate this process,
we will utilize a deep learning model trained to classify each gRNA pattern. To
train a preliminary model, we collected a training dataset of CASFISH stained
HeLa cells for each of the 24 gRNAs identified in the previous section. The data
was processed such that each cell was cropped and resized to a standard size. A
preliminary classifier was trained on all 24 gRNAs in the dataset. The performance
of the preliminary classifier was highly variable depending on the specific gRNA
(Figure S3.1). For example, almost all cells with the telomere gRNA were correctly
identified by the model. However, the model frequently confuses gRNA T with
gRNAs U and S. To train a model that improved performance for all gRNAs included
in the model, we performed an iterative process to eliminate gRNAs that were prone
to errors. As a result, we trained a final classifier on 12 gRNAs with the inclusion of
a negative class without any gRNA and achieved at least 90% recall on all gRNAs
(Figure 3.8). The negative class will allow the model to handle any cells that appear
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Figure 3.8: A deep learning classifier can reliably identify gRNA patterns.
The version of the deep learning classifier was trained on 12 gRNA with the addition
of a negative gRNA class for unstained cells. The model achieved over 90% recall
on all classes. See Section 3.8.9 for details on dataset collection and model training.
Scale bar, 10 𝜇m.

in the final experiment without any gRNA present. This result demonstrates that a
deep learning model can reliably identify and distinguish different gRNA patterns.
Additionally, this success occurs throughout the full spectrum of the cell cycle as the
cells used for training were not synchronized to a particular stage in the cell cycle.

In order to test the ability of gRNA patterns to be used as barcodes, and demonstrate
our model’s ability to correctly assign gRNA patterns to barcoded cells, we used
two-color CASFISH to simulate barcoded cells. In this experiment, two gRNAs
were selected and each duplexed to tracrRNA ATTO 550 or tracrRNA ATTO 647.
To maximize signal sensitivity and subsequent detection of lower frequency binding
events, we plan to use a spinning disk confocal microscope for the final implemen-
tation of this method, as opposed to the epifluorescent microscope used in Figure
3.8. As part of this eventual transition, we utilized this experiment as an opportunity
to test the confocal imaging modality. We captured a pilot dataset of eight gRNAs
using the new imaging modality and fine tuned the barcode classifier on this new
dataset (Figure 3.9a). The classifier was then used to predict the gRNA pattern in
each CASFISH channel in two color CASFISH samples. Cells were considered
correctly identified if the model assigned the correct gRNA in both channels. On
a test of two barcodes, U|G and O|𝛽, the model correctly identified 91% and 89%
of cells respectively (Figure 3.9b,c). These results demonstrate that gRNAs can be
combined in a single cell and reliably identified from confocal images by the model
as distinct and recognizable patterns.
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Figure 3.9: Identifying barcoded cells.
(a) A deep learning model was trained to identify eight gRNAs and achieved a
minimum of 84% recall for each gRNA. The model was tested on cells that had been
stained using two color CASFISH where each of the two gRNAs was conjugated to
a different fluorescent marker. (b) In cells labeled with gRNAs U and G, the model
correctly assigned the U|G barcode to 91% of cells. (c) In cells labeled with gRNAs
O and 𝛽 satellite, the model correctly assigned the O|𝛽 barcode to 89% of cells. See
Section 3.8.10 for method details. Scale bars, 20 𝜇m.

3.5 Imaging gRNA-induced spatial patterns with FISH
The next challenge in developing the spatial barcoding method was compatibility
with live cell imaging. This imposed two constraints: (1) the gRNAs must be
expressed in living cells and (2) the gRNAs must contain an accessible, stable, and
modular binding site for multicolor RNA FISH. The first constraint is a natural con-
sequence of our desire to perform live-cell imaging on barcoded cells: the barcodes
must be present in the cells prior to imaging. The second constraint arises from
the need to preserve the fluorescence channels for fluorescent biosensors. Although
spatial patterns can be imaged with dCas9 conjugated to a fluorescent protein (Fig-
ure 3.5a), this experimental design hinders the use of fluorescent biosensors during
live cell imaging. The readout of barcodes with multicolor RNA FISH is a better
approach, as the full palette of fluorescent biosensors can be used for cell pheno-
typing. After live cell imaging, cells can be photobleached, fixed, and stained with
multicolor RNA FISH for spatial barcode readout. Note that this approach is also
compatible with multiple rounds of multicolor RNA FISH staining and imaging,
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Figure 3.10: Spatial patterns produced by gRNAs can be labeled using gRNA
FISH.
(a) We used a modified gRNA scaffold that introduced a binding site for a fluorescent
oligo probe into the 3’ end of the gRNA. (b) CASFISH was performed on HeLa
cells with a modified 𝛼 satellite gRNA prior to FISH staining. Each DAPI-labeled
nucleus (blue) has the expected 𝛼 satellite patterns visible through gRNA FISH
(red). See Section 3.8.6 for details on sample preparation. Scale bar, 20 𝜇m.

which can substantially increase our maximum possible barcoded library size: one
round of 3-color imaging with 20 spatial patterns allows for a barcode size of 6840,
while two rounds allows for a barcode size of more than 40 million.

Our first experiments to solve this challenge focused on developing methodology
to image our spatial barcode gRNAs with RNA FISH. Our first proof-of-concept
experiment used a modified version of CASFISH25 to verify that our spatial patterns
could be imaged with RNA FISH. For this experiment, we designed a modified
gRNA scaffold with a binding site for a fluorescent oligo at the 3’ end of the scaffold
(Figure 3.10a). This modified gRNA sequence was synthesized by in vitro tran-
scription and complexed with dCas9 proteins according to the standard CASFISH
protocol. Following CASFISH staining, we performed secondary FISH labeling
with a fluorescent oligo corresponding to the target sequence introduced into the
scaffold. Each cell stained with the modified 𝛼 satellite gRNA displayed patterns of
FISH labeling consistent with the pattern previously observed with standard CAS-
FISH (Figure 3.10b). Furthermore, control samples including a nonspecific gRNA
with the same target FISH sequence and a negative sample without CASFISH stain-
ing did not present any specific FISH staining (data not shown). These experiments
demonstrated that gRNA binding patterns can be reliably labeled with fluorescent
oligo probes.

Next, we tested our gRNA scaffold design with expression in live cells. Although
our final experimental design excludes the use of dCas9-GFP, during this stage of



51

method development, we found that it served as a useful positive control to verify
that the spatial pattern produced by FISH staining corresponds to the pattern induced
by gRNAs targeting repetitive sequences. We prepared a plasmid that expresses 𝛼
satellite FISH gRNA under the U6 promoter and transfected it into HEK293T cells
that stably express dCas9-GFP. Although we observed the successful formation of
𝛼 satellite spots with dCas9-GFP (Figure 3.11b”), we did not observe the corre-
sponding patterns in the images produced by gRNA FISH labeling (Figure 3.11b’).
Given the position of the FISH binding site at the exposed 3’ end of the gRNA, we
suspected that the gRNA may experience 3’ degradation when expressed in cells,
an event that would lead to the ablation of the FISH binding site. To overcome
this possible problem, we explored alternative locations for our FISH binding site,
inspired by previous work that tested the efficacy of introducing long noncoding
RNAs at various locations in the gRNA scaffold.16 Based on their success using
a modification of the internal hairpin of the gRNA, we designed a new internal
FISH scaffold that expanded the hairpin loop to include the binding site of the FISH
probe (Figure 3.11d). With this new design, we observed specific FISH labeling
that corresponded directly to the spots seen with dCas9-GFP (Figure 3.11e).

Next, we sought to optimize our gRNA FISH protocols to enable high-throughput
imaging. Two constraints imposed by the desire for high throughput are (1) low
magnification and (2) imaging with an air objective. During our development of the
gRNA FISH scaffold design, all imaging was performed with a 100X oil objective
to maximize signal sensitivity, violating our two constraints. Decreasing from a
100X to a 40X objective would increase the number of cells per FOV by 7-fold.
Similarly, imaging with an air objective would increase sample throughput and ease
the difficulty of image acquisition. The trade-off of these two experimental choices
is a reduction in the signal. To mitigate this issue, we explored several methods
for amplification of the FISH signal (data not shown). These experiments led us to
conclude that SABERFISH26 was the optimal signal amplification strategy for our
use case. SABERFISH uses primary probes that contain repeated binding sites for
the secondary fluorescent probe (Figure 3.13a) and allows signal amplification with
only one additional stage in the staining protocol. Our primary probes consist of
a 50 bp recognition sequence that binds to a corresponding target sequence in the
gRNA internal FISH scaffold and six binding sites for fluorescent secondary probes.
In addition, these primary probes can be ordered as IDT ultramers, eliminating the
need for time-intensive probe synthesis protocols. We tested three different primary
binding sequences in the internal hairpin site and found that all three produced
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Figure 3.11: gRNA FISH scaffold designs.
𝛼 satellite gRNA expression plasmids were transfected into HEK293T/17 cells stably
expressing dCas9-GFP. (a) The tail scaffold design includes a FISH probe binding
site at the 3’ end of the gRNA scaffold. Although this gRNA produced 𝛼 satellite
spots that could be visualized with dCas9-GFP (b”), there was no corresponding
specific gRNA FISH labeling (b’). For further detail, see inset (c). (d) In contrast,
the internal scaffold includes the FISH binding site within the hairpin loop of the
gRNA scaffold. This design produced spots visible with both the dCas9-GFP (d”)
and the corresponding gRNA FISH labeling (d’). See inset (f) for further details.
See Section 3.8.7 for details on sample preparation. LUTs are set for signal visibility
and should not be compared between images. Scale bar, 10 𝜇m.

successful FISH labeling (Figure 3.12).

To test the SABER gRNA FISH protocol in a context that mirrors the final experi-
mental system, we designed a lentiviral construct for the expression of gRNAs. In
addition to the gRNA expressed under the U6 promoter, the construct also expresses
H2B-mOrange as a tranduction marker and puromycin resistance for selection. HeLa
cells that stably expressed dCas9-GFP were also transduced with the gRNA virus.
We performed gRNA SABERFISH on these barcoded cells (Figure 3.13b). Pre-
liminary inspection of the data revealed that every cell expressing H2B-mOrange
with visible levels of dCas9-GFP displayed patterns that were also labeled with
FISH (Figure 3.13d). The dCas9-GFP virus also included Blasticidin resistance and
cells were maintained under Blasticidin selection. As such cells expressing H2B-
mOrange contain gRNA FISH patterns even in the absence of visible dCas9-GFP,
suggesting that the expression of dCas9-GFP in these cells is too low to visualize, but
high enough to effectively create gRNA patterns (Figure 3.13c”’). All imaging was
performed with a 40X air objective, indicating that signal amplification achieved



53

Figure 3.12: gRNA FISH with different primary binding sequences.
HeLa cells stable expressing dCas9 were transfected with a plasmid that expresses
H2B-EBFP and the 𝛼 satellite gRNA with an internal FISH binding site. (a) A
primary probe was designed to recognize a binding site in the gRNA scaffold (labeled
in orange) and contain six binding sites for a fluorescent secondary probe conjugated
to Alexa Fluor 488. Three different primary probe binding sequences were tested
in the internal hairpin position: (b) 3064, (c) 1924, and (d) 5068 (Table 3.1). All
three primary probes enabled FISH labeling of the 𝛼 satellite pattern. Staining was
performed according to the protocol described in Section 3.8.8. Scale bar, 10 𝜇m.

using the SABER design is sufficient for higher-throughput imaging.
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Figure 3.13: SABER gRNA FISH in stable cells.
(a) In order to amplify gRNA FISH signal so that we could image using a 40X air
objective in contrast to the 100X oil objective used in preliminary experiments, we
modified the design of our FISH probe to include an intermediate primary probe
with binding sites for six secondary probes conjugated to Alexa Fluor 647. (b)
We developed a stable HeLa barcoded cell line using lentiviral transduction. First,
cells were transduced with a construct expressing dCas9-GFP. Second, they were
transduced with a construct expressing H2B-mOrange as a transduction marker and
gRNA D as a barcode. Insets (c) and (d) show that in cells expressing gRNA as
indicated by the presence of H2B-mOrange, gRNA FISH staining recapitulates the
labeling of dCas9-GFP and additionally labels the gRNA signal that is not visible
with the limited signal amplification of dCas9-GFP. See Section 3.8.8 for details on
sample preparation. Scale bar, 50 𝜇m.

3.6 Discussion
In this work, we sought to develop a method for performing microscopy-based
pooled perturbation screens that is compatible with other multiplexed phenotyping
methods. This methodology will enable an extensive interrogation of cell state
by collecting a comprehensive microscopy dataset that links multiple phenotypic
measurements to perturbations. To this end, we have adapted CRISPR-imaging
methodology to create distinct spatial patterns in cells and trained a deep learning
model to identify these patterns. During the course of developing this method,
several lessons have been learned that may be relevant to the continued development
and future applications of this technology.
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3.6.1 Method development lessons
gRNA scaffold design

To label gRNAs with several different colors after fixing cells, we modified the
gRNA scaffold to include a binding site for a FISH probe. We began by placing
the FISH binding site at the 3’ end of the gRNA. In our preliminary tests using
CASFISH, which introduces the dCas9-gRNA complex after fixation, FISH labeling
was successful (Figure 3.10). However, when we expressed a gRNA with the same
design in cells expressing dCas9-GFP, we observed the expected spots labeled by
dCas9-GFP, but did not observe any corresponding FISH staining of the gRNA
(Figure 3.11a–c). These results suggested that, while the gRNA was expressed and
functional, the FISH binding site was not available for labeling. Although there
are several possible explanations for why this might occur, we first pursued the
hypothesis that the FISH binding site was being degraded by 3’ RNase activity.
As a result, we tested design modifications to protect the FISH binding site from
RNase activity. Multiple gRNA designs were tested to physically protect the binding
site, either by burying it in the Cas9 protein or by modifying its structure to render
it non-targetable by nucleases. Of the two primary methods we tried, we found
success in locating the binding site within the central hairpin of the gRNA, and it is
this design that we ultimately used in our final design. However, we also tested an
alternative design that extended the 3’ end of the gRNA following the FISH binding
site to include a 3’ hairpin, which we reasoned would protect the binding site from
degradation. Although we observed the successful formation of spots labeled with
dCas9-GFP, FISH staining revealed spots that were not colocalized with dCas9-GFP.
Furthermore, in a non-targeting gRNA control, we observed FISH labeled spots in
the absence of any dCas9-GFP spots (data not shown). Our experience in designing
the modified gRNA scaffold highlights the importance of appropriate controls when
designing, testing, and validating pattern-generating methods for labeling cells. In
this specific case, we found that the use of a dCas9-based labeling method as a
control for the correct binding pattern was essential to ensure that the selected
patterns were specific and intended. The second control method we identified was
to test non-targeting (e.g., scramble) gRNAs to verify that the modifications are not
leading to unintended labeling or spurious detection events.
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gRNA delivery method

Following initial proof-of-concept testing using CASFISH in fixed cells, we began
to perform experiments in live cells that stably express dCas9-GFP. Our initial
experiments utilized plasmid transfection, as this allowed us to rapidly iterate on
different designs of gRNA scaffolds. Our first gRNA plasmids expressed only
gRNA. Although a successful transfection would be indicated by the formation
of spots labeled with dCas9-GFP, experiments that did not generate spots were
uninformative, as this negative result could be due to inefficient transfection or gRNA
modifications that interfered with its function. To improve the interpretability of our
experiments, we modified the design of the gRNA-expressing plasmids to include a
second expression cassette for a transfection marker such as H2B-mCherry. With
this design, we could use the presence of H2B-mCherry in a cell as a marker of gRNA
expression, allowing us to separate the efficiency of transfection from the impact
of gRNA design. To collect training data, we optimized our transfection protocol
to maximize the number of cells within a FOV that expressed gRNA. However,
transfection protocols that would allow a reasonable data collection throughput
negatively impacted cell health. Although this was not readily apparent when cells
were examined by phase microscopy, when we began FISH staining, we encountered
high levels of background signal, likely due to staining of cellular debris (data not
shown). In particular, high background levels were not observed in untransfected
cells. Ultimately, we elected to use lentiviral vectors to generate stable cell lines
expressing dCas9-GFP and gRNA. Although this change added additional overhead
to our experiments due to the need to package each new gRNA construct, the
overhead was offset by the decreased imaging time as a result of a significant
increase in the number of cells expressing the gRNA. In addition, it eliminated
the need to perform additional optimization of the FISH protocol to achieve clean
staining. Additionally, since most pooled screens are delivered utilizing lentivirus,
performing development utilizing lentiviral-based stable lines allows us to more
closely mirror the final experimental context in which our barcodes will be used.

3.6.2 Next steps
Recent advances and technologies employing dCas9 for gene manipulation suggest
that our barcoding system naturally complements dCas9-based perturbation screens.
Multiplexed gRNA arrays have been shown to maintain knockdown and gene edit-
ing efficacy compared to single gRNA expression units.27 Furthermore, multiplexed
CRISPR imaging experiments have demonstrated that multiple repetitive sequences
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can be targeted simultaneously.28,29 This prior work suggests that our gRNA bar-
codes can be directly integrated into CRISPR knockdown screens without impacting
the efficacy of the screen. To combine our barcodes with Cas9-based screens that
require gene editing, Cas9 orthologs could be used to separate the targeting of bar-
code gRNAs from knockout gRNAs. Previously, three dCas9 orthologs have been
utilized to generate three color CRISPR imaging of three different genomic loci,
which supports the feasibility of this approach.30 Although not yet tested, our method
should generalize to the introduction of a barcoded population of cells into tissue.
The gRNA FISH staining protocol we developed was derived from SABERFISH26

which has been used in tissues.

We utilized two-color CASFISH to perform a proof-of-concept experiment that
demonstrated our ability to generate multiple discrete patterns within a single cell,
image these patterns using confocal microscopy and identify both patterns using a
barcode classifier. We tested two sets of gRNA patterns using gRNAs conjugated
to ATTO 550 and 647. We achieved 91% and 89% true positive rate on two
barcodes, U|G and O|𝛽 respectively, in this proof of concept test of our labeling and
model performance (Figure 3.9). These results establish that reasonable accuracy
of identification, 9̃0% , is possible with our current model backbone and small
trial datasets. While a proof of concept accuracy of 9̃0% is sufficient to generate
pooled data sets for analysis, further optimization will enable the collection of data
sets with lower false-positive noise. Furthermore, this demonstration of successful
identification of patterns by our model when combined with our ability generate
stable barcoded cells suggest that the next step of constructing a training dataset
in stable cell lines will enable full implementation and usability of the method.
However, even after full implementation, I propose that increases in model accuracy,
beyond the current 9̃0% are possible, and could play a key role in increasing the
available number of distinguishable gRNAs to further increase library size, or to
otherwise reduce the amount of data needed for robust event detection.

In any pooled screen, a certain amount of noise is expected in the data as a result of
cells being assigned to the incorrect perturbation. In order to maximize the strength
of any screen this type of error needs to be minimized. For our method, we are using
a deep learning model to assign cells to their perturbation. A typical deep learning
model is trained on a given set of classes and will always assign a prediction to
one of its known classes. A drawback of this approach is that even if a model is
uncertain about an assignment it will always predict one of the known classes. In
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order to overcome this potential limitation, investigations in the deep learning space
have been made into methods to quantify model confidence in order to create an
option for the model to assign a sample to an unknown class.31,32 For the purpose
of this spatial optical barcoding method, we will apply the Spectral-normalized
Neural Gaussian Process (SNGP) technique to the barcode classifier model in order
to reduce the likelihood of incorrectly assigning a cell to the wrong perturbation.33

Although our preliminary barcode classifier was trained on data collected using
CASFISH staining, we have since refined our method to express gRNA in live cells
and developed a protocol for gRNA FISH staining. As such, we will collect a new
training data set that uses stable populations of cells that express each barcode gRNA
and stained with gRNA FISH. This data set will be used to train a new deep learning
classifier that can be used to identify barcodes in a unified experimental context. To
test its performance on a pool of cells, we will develop two stable cell lines, each
expressing H2B conjugated to a different fluorescent protein and a different barcode
gRNA. The model’s prediction of the gRNA barcode identity can then be validated
using the color of the fluorescent protein expressed in that cell.

In order fully demonstrate that our barcodes are an effective method for performing
pooled screens, additional validation experiments are required. First, we will verify
that the expression of barcode gRNAs does not alter the state of the cell in the absence
of any perturbation. Although barcode gRNAs are designed to target noncoding
repetitive sequences, there is a theoretical possibility that binding of many dCas9-
gRNA complexes to the genome could still impact normal cellular function. To
investigate this possibility, we will perform bulk RNA sequencing experiments on
cells expressing each of the barcode gRNAs along with a nontargeting gRNA as
a negative control. By comparing the gene expression of barcoded cells to cells
with a nontargeting control, we will detect any possible perturbations in cell state
that may be caused by the binding of barcode gRNA. If some particular barcode
gRNAs disrupt the cell state, these gRNAs can be eliminated and replaced with
other candidates.

Next, as we would like to use this technology to barcode CRISPR knockdown
screens, we will verify that knockdowns can be performed with the same efficacy
in the presence and absence of barcode gRNAs. For this experiment, we will
design three gRNA expression constructs using validated knockdown gRNA. The
constructs will express (1) only the knockdown gRNA, (2) the knockdown gRNA and
three barcode gRNAs, and (3) the knockdown gRNA and three nontargeting gRNAs.
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Once stable cell lines are generated in a dCas9 background from each construct,
we will measure the expression of the gene targeted for knockdown. Previous
investigations of multiplexed CRISPR have shown that multiple gRNAs directed to
different targets can be effective, although an observed reduction in efficacy between
one and many gRNAs is often deemed acceptable.27 As such, we expect a minor
reduction in knockdown efficiency in both conditions that express four gRNAs that
is due to the number of gRNAs expressed and not the presence of barcode gRNAs.
However, despite potential reductions in knockdown efficiency, existing methods for
detecting the number of RNA transcripts are sufficiently precise that even modest
knockdown, which might more closely represent physiological perturbation, would
be detectable and quantifiable.

Although our initial development of this method has been performed in HEK293 and
HeLa cells, which has allowed us to optimize our transfection and labeling protocols
given their prevalence in the field, this method should translate to other human cell
types. However, since immortalized cell lines are known to have significant genetic
abnormalities, we expect that new training data will need to be collected for each
new cell line to account for these differences. However, since we have developed this
platform using lentiviral delivery, new cell types require only an initial optimization
of the transduction protocol before a new library of gRNA-expressing cells can be
banked. Finally, while the barcode gRNAs presented here are developed to target
the human genome, a similar set of gRNAs could be rapidly developed for other
species using the algorithm and testing framework developed here.

3.7 Conclusion
In this chapter, I present the development of key components of an optical barcoding
method for use in pooled microscopy screens. This method leverages noncoding
repetitive sequences in the genome to generate spatial patterns using CRISPR imag-
ing as a labeling method. In Figure 3.5, we demonstrate that we can computationally
identify new gRNAs that produce patterns and have shown that these patterns can
be distinguished using a deep learning model to identify the gRNA that generated
a particular pattern (Figure 3.8). We have developed stable cell lines expressing
dCas9 and a barcode gRNA and demonstrated that barcode gRNAs can be labeled
using FISH after introducing a probe-binding site into the scaffold of the gRNA
(Figure 3.13). Furthermore, we have tested three different probe-binding sites to
ensure that we can label gRNAs with different readout sequences (Figure 3.12). Us-
ing these tools, we are now ready to create a pool of barcoded cells by introducing
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a combination of three gRNAs, each with a FISH binding site corresponding to a
probe of different colors.

We will first generate a library of stable dCas9 cell lines expressing the suite of
gRNAs presented in Figure 3.7 and use this library to collect an updated training
dataset that utilizes FISH staining of these gRNAs. Our preliminary deep learning
model trained on CASFISH data has shown that it can reliably distinguish between
individual gRNA patterns Figure 3.8. As such, the deep learning model trained
on the FISH-labeled dataset should be able to identify each of the three gRNAs
in each cell captured in three different channels and match the combination of
patterns and colors to a perturbation. While fine-tuning of a deep learning model
to identify patterns across a range of cell types and collection conditions presents
some challenges, they are primarily in the form of collecting sufficiently varied
training data with which to ensure that the model generalizes well. I have developed
pipelines for data ingress and annotation which have supported both the development
of the barcode classifier and the work presented in Chapter 2. This infrastructure
enables rapid processing of the range training data that may be needed to train a
generalizable model that is capable of reliably identifying barcode patterns under
an array of different imaging and treatment conditions. With the support of the cell
segmentation tools presented in Chapter 2, data collected from a single well in a
96-well plate can provide thousands of single cell training examples.

Using this suite of tools, we propose that with only 20 gRNA patterns, we can encode
a library of 6,840 barcodes, sufficient to support a perturbation screen affecting all
protein-coding genes, with one round of three color imaging or over 40 million
barcodes, more than sufficient to cover the entire transcriptome with a second
round of imaging. Further, by requiring only one round, or at most two rounds
for extensive coverage, of imaging to read our barcodes, our method prioritizes
compatibility with optical phenotyping methods including multiplexed methods
that require many rounds of imaging. As such, this methodology supports the
collection of a multimodal dataset described in Chapter 4 by pairing combinations
of barcoded live cell reporters with endpoint measurement of gene expression.

3.8 Materials and methods
3.8.1 Cell culture
HEK293T/17 cells (ATCC CRL-11268) were cultured in Dulbecco’s modified Ea-
gle’s medium (DMEM; Caisson DML10) supplemented with 10% fetal bovine
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serum (Thermo Fisher #26140079) and 100 U/mL penicillin / streptomycin (Cais-
son PSL01). HeLa cells (ATCC CCL-2) were cultured in Minimal Essential Media
(EMEM; Cytiva SH30024.FS) supplemented with 10% fetal bovine serum (Thermo
Fisher #26140079) with 100 U/mL penicillin/streptomycin (Caisson PSL01).

For experiments performed in a dCas9 background, HeLa cells (ATCC CCL-2)
were transduced with either pGH125_dCas9-Blast (Addgene #6142534) or pLenti-
EF1a-SPdCas9-EGFP-2A-Blast (Addgene #7121535). Details of the transduction
protocal are described in the following section.

3.8.2 Lentiviral packaging and transduction
Lentivirus was packaged using third generation transfer plasmids and second gener-
ation helper plasmids. Transfer plasmids were prepared in the pLex_305 (Addgene
#41390) or pTwist Lenti SFFV (Twist Biosciences) backbone. HEK293T/17 cells
(ATCC CRL-11268) were seeded in 10 cm plates (3.8 × 106 in 10 ml of com-
plete DMEM). After 24 hours, cells were transfected with psPax2 (9 𝜇g; Addgene
#12260), pMD2.G (0.9 𝜇g; Addgene #12259) and transfer plasmid (9 𝜇g) using
TransIT-LT1 (54 𝜇l; Mirus #2300) in a total volume of 315 𝜇l of OptiMem (Invitro-
gen, #31985-070). 18 hours after transfection, the medium was replaced with 15 ml
of high-BSA (1 mg/ml; Caisson B0005) complete DMEM. The virus was harvested
24 hours after the media change and any remaining cells were removed with a 0.45
𝜇m PVDF syringe filter (Celltreat #229745). The virus was concentrated using the
Lenti-X Concentrator Kit (Takara #631232).

Additional virus was packaged by the viral tools team at Janelia Research Campus.

Cells were transduced by adding concentrated virus and polybrene (10 𝜇g/ml; Santa
Cruz Biotechnology sc-134220) and centrifuging at 800 g for 1 hour. After two days
of recovery, cells were transferred to medium containing the appropriate antibiotic
selection agent at the following concentrations: 16 𝜇g/ml Blasticidin (Santa Cruz
Biotechnology sc-204655A), 2 𝜇g/ml puromycin (PeproTech #5855822).

3.8.3 gRNA sequence design
The human genome was analyzed using the sequencing data from the Telomere-
to-Telomere (T2T) Consortium.20 First, the genome was searched for “NGG” PAM
sites by looking for the sequence “GG” or its reverse complement “CC”. The
20 upstream base pairs were then compared with the sequences of existing gRNA
sequences to count the number of binding sites for each gRNA. Biopython was used

https://www.addgene.org/41390/
https://www.addgene.org/12260/
https://www.addgene.org/12259/
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to extract sequence data from genome files and to create reverse complements of
PAM site sequences, as well as gRNA probe sequences.36

To determine which types of binding patterns would produce fluorescent spots,
we generated a set of binding parameters that could correlate our computational
results with our CASFISH data. Using data from the alpha satellite, beta satellite,
and telomere gRNA sequences, we found a set of parameters that best linked the
experimental data for fluorescent spots for CASFISH experiments imaged at 100x
to the number of spots that the computational data predicted. The threshold was
that there must be at least eighteen binding sites within a region of 18,000 bp, with
an extension size of 54,000 bp, which meant that any binding site after the first
eighteen that was found within the 54,000 bp region of the last binding site would
be included in the same fluorescent spot as the first eighteen binding sites.

New gRNA sequences were identified using these clustering parameters (eighteen
binding sites, 18,000 bp region, 54,000 bp extension size). We used the same
algorithm for identifying new PAM sites, except that now for each PAM site, the
20 basepair region upstream was either added to the binding sites for that gRNA
if it already existed or stored as a new gRNA sequence. Then, at the end of each
chromosome, all gRNA sequences that did not meet the thresholds for creating a
fluorescent spot/cluster were dropped from the list. This process was repeated for
each chromosome.

To try to computationally predict differences in gRNA binding patterns, each chro-
mosome was divided into 100,000 bp chunks and the above process was repeated
for filtering gRNA sequences. Then, for these new gRNA sequences, an array was
created in which rows represented probe sequences, and columns represented in-
dividual chunks. A value of 0 indicated that that probe did not have a fluorescent
cluster in that fragment, while a value of 1 indicated the existence of a fluorescent
cluster in that fragment for that gRNA probe. Based on previous experimental
observations, we dropped all probes that had fewer than 8000 binding sites. We
then used UMAP to cluster the vectorized binding data to try to distinguish between
gRNA sequences that had unique binding patterns.24

For a complete set of all gRNA sequences used in this work, see Table S3.1.

3.8.4 gRNA transfections
Cells (104 cells in 100 𝜇l) were seeded on 96-well glass plates coated with fibronectin
and incubated overnight. For each well, plasmid DNA (100 ng) was diluted in 10
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𝜇l of Opti-MEM prior to adding TransIT-LT1 (Mirus, 0.2 𝜇l) and incubated for 30
minutes at RT prior to adding to cells. Cells were imaged 24 hours after transfection.

3.8.5 CASFISH
Cells were seeded on 96-well glass plates coated with fibronectin and incubated
overnight. The CASFISH staining protocol was adapted from [25]. Cells were fixed
in a pre-chilled solution of methanol and acetic acid in a 1:1 ratio for 5 minutes at -
20°C and then rinsed three times in 1×PBS. The cells were then incubated in reaction
buffer [Hepes (20 mM, pH 7.5), KCl (100 mM), MgCl2 (5 mM) with freshly added
DTT (1 mM), glycerol (5% v/v), and TWEEN-20 (0.1% v/v)]. The gRNA duplex
was prepared by combining fluorescently labeled tracRNA (IDT, 100 𝜇M in IDT
Duplex Buffer) and crRNA (IDT, 100 𝜇M in IDT Duplex Buffer) in equimolar ratios,
heating at 95°C for 5 minutes and then cooling to room temperature. CASFISH
probes were prepared by combining dCas9 protein (IDT, 25 nM) and gRNA duplex
(25 nM) in reaction buffer and incubating at RT for 10 minutes prior to storage on
ice. Cells were stained with CASFISH probes for 5 minutes at 37°C, washed 3 times
with 1×PBS, stained with DAPI (300 nM) for 5 minutes and finally washed twice
with 1×PBS.

CASFISH samples were imaged with a Nikon Ti2-E fluorescence microscope con-
trolled by Nikon Elements. Images were acquired with a Nikon SOLA SE II light
source, a Photometrics Prime 95B CMOS camera, and a 40X oil objective.

3.8.6 CASFISH with FISH
gRNAs with a FISH binding site were synthesized using in vitro transcription
as follows. The DNA template was prepared using Q5 polymerase with a forward
primer including a T7 promoter and a reverse primer binding to the end of the gRNA
scaffold. The resulting PCR product was purified using a Qiagen MinElute column.
gRNAs were synthesized using a NEB HiScribe T7 kit and purified using the NEB
Monarch RNA Cleanup kit. CASFISH probes were prepared by combining dCas9
protein (IDT, 25 nM) and IVT gRNA (25 nM) in reaction buffer and incubating at RT
for 10 minutes before storage on ice. Cells were prepared for staining following the
standard CASFISH protocol described above. Cells were stained with CASFISH
probes for 5 minutes at 37°C, washed 3 times with 1×PBS, stained with DAPI
(300 nM) for 5 minutes, and finally washed twice with 1×PBS. Before secondary
staining, cells were fixed in 1×PBS with 4% (w/v) paraformaldehyde for 10 minutes,
rinsed twice in 1×PBS, and rinsed twice in 2×SCC. The secondary probe sequences
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and the subsequent staining protocol were adapted from [13]. Fluorescent probes
(50 nM) were diluted in secondary staining buffer [6.67×SSC, ethylene carbonate
(16% w/v), dextran sulfate (0.16 g/ml)] and then incubated with cells in the dark
for 20 minutes at RT. Cells were rinsed twice and washed once (5 min) in wash
buffer [2×SCC, formamide (10% v/v), Triton-X 100 (0.1% v/v)]. Before imaging,
antibleaching buffer was added to each well [Tris-HCl (50 mM, pH 8.0), NaCl (300
mM), trolox (3 mM), D-glucose (8%), catalase (1:100 dilution), glucose oxidase
(0.5 mg/ml)].

CASFISH samples with FISH staining were imaged with a Nikon Ti2-E fluorescence
microscope controlled by Nikon Elements. Images were acquired with a Nikon
SOLA SE II light source, a Photometrics Prime 95B CMOS camera, and a 100X
oil objective.

3.8.7 Direct gRNA FISH
Cells were seeded on 96-well glass plates coated with fibronectin. Samples were
rinsed in 1× PBS, fixed in 1×PBS with 4% (w/v) paraformaldehyde for 10 minutes
and then rinsed twice in 1×PBS. Cells were permeabilized by washing three times
for five minutes each in 1×PBS with 0.1% (v/v) Triton X-100. Before secondary
staining, cells were rinsed once in 1×PBS and twice in 2×SCC. Secondary probe
sequences and the subsequent staining protocol were adapted from [13]. Fluorescent
probes (100 nM) were diluted in secondary staining buffer [6.67×SSC, ethylene
carbonate (16% w/v), dextran sulfate (0.16 g/ml)] and then incubated with cells in
the dark for 30 minutes at RT. Cells were rinsed twice and washed once (5 min)
in wash buffer [2×SCC, formamide (10% v/v), Triton-X 100 (0.1% v/v)]. Before
imaging, antibleaching buffer was added to each well [Tris-HCl (50 mM, pH 8.0),
NaCl (300 mM), trolox (3 mM), D-glucose (8%), catalase (1:100 dilution), glucose
oxidase (0.5 mg/ml)].

gRNA FISH samples were imaged with a Nikon Ti2-E fluorescence microscope
controlled by Nikon Elements. Images were acquired with a Nikon SOLA SE II
light source, a Photometrics Prime 95B CMOS camera, and a 100X oil objective.

3.8.8 SABER gRNA FISH
The target sequences for the primary probes were selected from a collection of
25-mer DNA barcode sequences that were designed to be orthogonal.37 Each target
sequence is a concatenation of two 25-mer barcode sequences (Table 3.1). The
remainder of the primary probe consists of six repeated binding sites for the 22 bp
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Table 3.1: gRNA FISH primary probe sequences.
Name gRNA Target Sequence
3064 ATCGGGGTGGAAATTATGGCGAATAAACGCGCCTTAAGATACTGCGTAATCT
1924 AGCTCGATACATACTACTGGGTCGGTAGAATTGAGTACGTGCGCAAAGGAA
5658 tAAAAGTCGGCCAATGTGCTATGGGTGTCGTGGAGTTGAAATCGTTGGATA

Table 3.2: Fluorescent secondary probe sequences.
Name Sequence

sf25*647 /5Alex647N/TTTATTATTGGTTATTATTGGT/3InvdT/
sf26*564 /5Alex546N/TTTAGGTTTATTTAGGTTTATT/3InvdT/
sf27*488 /5Alex488N/TTATGATGATGTATGATGATGT/3InvdT/

fluorescent secondary probe, each separated by an "A" nucleotide. Primary probes
were ordered from IDT as single-stranded DNA ultramers. The sequences for the
secondary probes were drawn from [26] (Table 3.2). Secondary probes were ordered
from IDT as oligos conjugated to Alexa Fluor secondaries and purified with HPLC.

Glass coverslips were prepared with a CultureWell silicone gasket to create two
9mm circular chambers or an Ibidi silicone eight-well chamber. Chambers were
coated with fibronectin prior to seeding cells and incubating overnight. Samples
were rinsed in 1×PBS, fixed in 1×PBS with 4% (w/v) paraformaldehyde for 10
minutes and then rinsed twice in 1×PBS. The silicon gaskets were removed from
the coverslip and cells were permeabilized overnight by fully immersing the coverslip
in 70% EtOH at -20°C. All subsequent washes were performed in a 200 ml beaker
with coverslips held in a slide wash rack. Cells were also permeabilized in 1×PBS
with 0.5% (v/v) Triton X-100 for 15 minutes, rinsed once in 1×PBS, washed for 2
minutes in 1x PBS and washed for 2 minutes in 2×SSC with 0.1% (v/v) Tween-20
(2×SSCT). For primary staining, samples were incubated overnight at 37°C in 30%
(v/v) formamide, 10% (w/v) dextran sulfate, 0.1% (v/v) Tween-20, 2×SSC and 100
𝜇m primary probe. After overnight incubation, samples were washed twice for 10
minutes in prewarmed 2×SSCT (at 60°C) and washed once for 5 minutes in room
temperature 2×SSCT. Before secondary staining, the samples were washed twice
in 1× PBS for 2 minutes. Samples were incubated at 37°C for 1 hour with 1 𝜇m
fluorescent secondary probes in 1×PBS. After incubation, samples were washed
twice for 5 minutes in prewarmed 1×PBS (at 37°C).

SABER gRNA FISH samples were imaged with a Nikon Ti2-E with Crest X-Light
V3 spinning disk confocal microscope controlled by Nikon Elements. Images were
acquired with a Lumencor Celesta light source, a Photometrics Prime 95B CMOS
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camera, and a 40X air objective.

3.8.9 Deep learning barcode classifier
For the collection of training data, samples were stained according to the CASFISH
protocol described above in Section 3.8.5. Prior to imaging, the bottom of the glass
plate was coated with a thin layer of immersion oil. Imaging was performed with a
Nikon Ti2-E fluorescence microscope controlled by Nikon Elements. Images were
acquired with a Nikon SOLA SE II light source, a Photometrics Prime 95B CMOS
camera, and a 40X oil objective. Automated jobs were configured to collect 24
fields of view from random positions within each well.

Nuclear segmentation was performed on the DAPI channel using the model pub-
lished in [38]. Using the CASFISH channel, each cell was cropped according to a
bounding box around the nuclear segmentation label and resized to 128×128. Be-
fore training, the data were manually curated to remove any samples with abnormal
segmentation results or other aberrations.

Model training

The barcode classifier model was constructed using a DenseNet121 backbone as
a foundation with weights pre-trained on ImageNet.39 The output of the backbone
was fed into a classification head consisting of two additional dense layers to predict
the final classification. Before training, images were normalized by subtracting the
average pixel value and dividing by the standard deviation of pixel values. Training
data were augmented with random rotations, crops, flips, and scaling to improve the
diversity of the data. We used 70% of the data for training, 20% for validation, and
10% for testing. The model was trained using the Adam optimizer with a learning
rate of 10−4, a clipnorm of 10−3, and a batch size of sixteen images; training was
performed for fifty epochs.40 After each epoch, the learning rate was adjusted using
the function lr = lr × 0.99epoch.

3.8.10 Two-color CASFISH
For the collection of training data, samples were stained according to the CASFISH
protocol described above in Section 3.8.5. Two tracrRNAs were used for the col-
lection of training data conjugated to either ATTO 550 or ATTO 647. Barcoded
cell data was collected by first separately complexing two gRNAs duplexed to either
tracrRNA ATTO 550 or ATTO 647 to dCas9. The two complexing reactions were
combined prior to staining the sample. Samples were imaged with a Nikon Ti2-E
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with Crest X-Light V3 spinning disk confocal microscope controlled by Nikon Ele-
ments. Images were acquired with a Lumencor Celesta light source, a Photometrics
Prime 95B CMOS camera, and a 40X air objective.

Nuclear segmentation was performed on the DAPI channel using CellSAM.41 Each
cell was cropped according to a bounding box around the nuclear segmentation label
and resized to 128×128. Both the CASFISH channel and the DAPI channel were
used as inputs to the model.

Model training was performed as described in Section 3.8.9.

For barcoded cells, predictions were performed separately on each CASFISH chan-
nel. Cells were counted as correctly identified if both gRNA predictions were made
correctly.

3.8.11 Python packages
The following Python packages were used in the course of this work: TensorFlow,42

NumPy,43 scikit-learn,44 scikit-image,45 pandas,46 napari,47 nd2,48 Biopython,36

CellSAM,41 UMAP,24 seaborn49 and Matplotlib.50

3.9 Supplemental materials

Table S3.1: Candidate gRNA sequences verified with CASFISH.
Name Sequence

𝛼 Satellite GAATCTGCAAGTGGATATT
𝛽 Satellite AGACAAGAGTTACATCACCT
Telomere TAGGGTTAGGGTTAGGGTTA

D TGGAATGGAGTGGAATGGAA
E CCGAGTGGAATGGCATGGAA
F TTCAAACCTGCTCTATGAAA
G TCAGAGGAATAGAAAGGGAC
H TGGAATGGAATGGAATGAAA
I CGAATGGAATCATCATCGAA
J TTGAGGCCTTCGTTGGAAAC
K TTGAGGATTTCGTTGGAAAC
L AATCGAATGGAATCATCGAA

Name Sequence
M TGGATATTTGGACCTCTTTG
O AATGGAATCAACGCGAGTGC
P CCGAGTGCAGGGGAATGGAA
Q TGGAATGGAATGCAATGGAA
R TTTGAGGATTTCGTTGGAAA
S TGGATTGGAATGGAATGGAA
T TGGAATGGAATCGAATGGAA
U TGGAATAGAATGGAATGGAA
V TGGAATGGAATGGAGTGGAA
W TGGAATGGAATGGAATGGAG
Y TTTGAGGTCAATGGTAGAAT
Z GACTTGAAACACTCTTTTTG

The gRNA sequences for𝛼 satellite and telomere were drawn from the literature. The
𝛽 satellite sequence was designed based on the satellite repeat sequence published
in [23]. The remaining gRNAs were candidates selected by the algorithm presented
in this work and were experimentally validated with CASFISH.
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Figure S3.1: A preliminary deep learning classifier trained on 24 gRNAs.
A preliminary deep learning model was trained on all 24 gRNAs identified using
CASFISH screening. This model demonstrated highly variable performance across
different gRNAs ranging from nearly perfect recall for the telomere gRNA to as low
as 37% recall for gRNA L.
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C h a p t e r 4

EXPLORING NETWORK RELATIONSHIPS WITH A
BARCODED COMBINATORIAL REPORTER LIBRARY

4.1 Introduction
As discussed in Section 1.1, the dynamics of signaling pathways are an important
dimension that cells use to encode information about stimuli and trigger different
downstream responses. In order to fully decode complex signaling networks, three
types of measurements are required. The first is single-cell measurements as many
pathways demonstrate heterogeneous responses when comparing between individ-
ual cells in a population.1–5 The second is to combine measurements of multiple
pathways in a single cell to explore the dependencies between different pathways.6,7

The third is multiplexed measurements that pair signaling reporters with other mea-
surements of cell state such as gene expression.8 This type of dataset serves as a
foundation for analysis of mutual information which estimates the amount of infor-
mation a pathway’s signaling dynamics encode about the nature of the stimulus.9–11

In order to collect a dataset that includes the combination of many different signaling
pathways, I propose building a combinatorial pooled reporter library using gRNA
barcodes as described in Chapter 3 to precisely define and link the identity of each
cell to its reporter . In this library, each cell will express reporters for three differ-
ent pathways of interest. When used in a pooled context, systematic sampling of
triplets of pathways will allow a comprehensive measurement of the entire network
(Figure 4.1).
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Figure 4.1: Combinatorial measurements of signaling dynamics to capture
network-level trends.
In order to fully understand the inter-dependencies between nodes in a signaling
network, sets of nodes need to be measured in individual cells. By systematically
sampling sets of three nodes in individual cells in a pooled context, comprehensive
measurements of an entire network can be captured in a single pool of cells.

4.2 Proposed experiment
In our combinatorial reporter library, each cell will express three different fluorescent
proteins: EBFP, mOrange, and mClover. Each fluorescent protein will be conjugated
to a signaling reporter or to a localization sequence for an organelle (Figure 4.2).
Furthermore, each fluorescent protein construct will also express a barcode gRNA
that can be labeled using FISH as described in Chapter 3. Using this method,
each reporter and localization sequence will be assigned a different gRNA pattern.
Additionally, the color of the FISH readout probes will correspond to the color of
the fluorescent protein, which will enable readout of any given cells’ set of reporters
after live imaging collection. With this library, we can perform three color live
imaging to observe the response of cells to various stimuli. To achieve labeling of
the gRNA library after live imaging, cells will be fixed, bleached, and stained with
FISH probes to identify each of the three fluorescent protein constructs expressed
in the cell. Subsequently, additional end-point measurements will be collected,
including SeqFISH to measure gene expression.
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Figure 4.2: A pooled combinatorial library of live cell reporters.
Each cell in this pooled library will express three fluorescent proteins each conju-
gated to either a signaling reporter or an organelle localization sequence. Following
live imaging, FISH staining will reveal gRNA barcode patterns in the nucleus that
will identify which reporter was expressed in conjugation with each of the three
fluorescent proteins.

4.3 Preliminary results
As a proof-of-concept experiment to demonstrate the power and utility of this
method, we have assembled a set of live cell reporters that capture a variety of
signaling pathways and organelles. We have selected a set of eight reporters that
capture aspects of innate immune signaling, MAPK signaling, and cell cycle pro-
gression (Table 4.1). Each signaling reporter included here captures activity through
translocation of the reporter between the cytoplasm and the nucleus. In addition to
capturing signaling dynamics, we want to capture other features of cell state during
live imaging. To this end, organelle labeling using Cell Painting has been shown to
be an effective method to capture cell states and phenotypes in a variety of screen-
ing contexts.12,13 Here we propose a live cell implementation of the Cell Painting
assay that labels eight organelles using protein localization sequences conjugated to
fluorescent proteins (Table 4.2).

In order to validate the performance of all reporters and labels in our experimental
system, each of the selected reporters and organelle labels was cloned into a standard
lentiviral backbone and transduced into HeLa cells. For signaling reporters, we
verified that each reporter was responsive to an appropriate stimulus (as seen in the
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Table 4.1: Signaling pathway reporter constructs.
Pathway Reporter Source
NF𝜅B p65-mClover Addgene #12717214

JNK JNK-KTR-mClover Addgene #591516

p38 p38-KTR-mClover Addgene #591526

ERK ERK-KTR-EBFP Addgene #591506

PKA PKA-KTR-mClover Addgene #17719915

Smad2 mClover-Smad2 Addgene #11894316

CDK2 DHB-mClover Addgene #13646117

CDK4 mClover-CDK4-KTR Addgene #12668018

Table 4.2: Organelle labeling constructs.
Organelle Reporter Source
Actin Lifeact-mOrange Addgene #9887719

Endoplasmic Reticulum ER-mClover Addgene #13780419

Focal Adhesions mOrange-PXN Addgene #12960419

Golgi Apparatus mClover-Giantin Addgene #9888019

Lysosomes LAMP1-mOrange Addgene #9888219

Microtubule mClover-MapTau Addgene #13780819

Mitochondria 4xMTS-mClover Addgene #9887619

Peroxisome mOrange-peroxi Addgene #13780619

example shown in Figure S4.1). For organelle labels, we verified that the pattern
of the label corresponded to the correct organelle (Figure 4.3). Additionally, this
process allowed us to verify that all sequences could be expressed by our chosen
promoter, PGK, and successfully packaged as lentiviruses.

To assemble the final library of pooled combinations, we tested a strategy that would
facilitate future split-pool viral transduction. In this approach illustrated in Figure
4.4a, subpopulations of cells can be transduced separately with EBFP-conjugated
reporters. These subpopulations can then be recombined prior to resplitting for
separate transduction with each of the reporters conjugated to mClover. Finally, the
process of pooling and splitting can be repeated a third time for the mOrange reporter.
The final population of cells will contain individual cells that represent all possible
combinations of reporters. In order to perform sequential transduction rapidly with
minimum cell passages, we adapted our standard lentiviral transduction protocol,
which calls for typical adherent cells, to a variation performed with suspension cells.
With this new suspension transduction protocol described in Section 4.6.3, all three
stages of viral transduction can be performed within a few hours before allowing
the cells to adhere normally. A preliminary version of this protocol was used to

https://www.addgene.org/127172/
https://www.addgene.org/59151/
https://www.addgene.org/59152/
https://www.addgene.org/59150/
https://www.addgene.org/177199/
https://www.addgene.org/118943/
https://www.addgene.org/136461/
https://www.addgene.org/126680/
https://www.addgene.org/98877/
https://www.addgene.org/137804/
https://www.addgene.org/129604/
https://www.addgene.org/98880/
https://www.addgene.org/98882/
https://www.addgene.org/137808/
https://www.addgene.org/98876/
https://www.addgene.org/137806/
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Figure 4.3: Live cell painting.
Sample images of cells transduced with each of the eight organelle reporter con-
structs. Sequence sources used for viral transduction are available in Table 4.2.
Scale bars, 20 𝜇m.

sequentially transduce a population of cells with three different viruses and we were
able to successfully produce triple positive cells using this strategy (Figure 4.4b).
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Figure 4.4: Split-pool transduction for combinatorial library assembly.
(a) During round 1, separate populations of cells in suspension are each transduced
with an EBFP reporter. The populations are then pooled together and immediately
split into new subpopulations for transduction with a mClover reporter. Finally,
the process of pooling and splitting is repeated a second time prior to transduction
with a mOrange reporter. The final population of cells will contain all possible
combinations of EBFP, mClover, and mOrange reporters. (b) A sample population
of cells sequentially transduced in suspension with three reporters: ERK-KTR-
EBFP, DHB-mClover and H2B-mOrange. This FOV contains multiple cells that
express all three reporters. See Section 4.6.3 for additional experimental details.
Scale bar, 20 𝜇m. Created with Biorender.com.

4.4 Future directions
To date, I have established a panel of live cell reporters that have been validated
for stable expression in HeLa cells. I have developed a preliminary protocol to
enable the rapid generation of a combinatorial pooled population of cells. With
these preliminary steps and validation experiments complete, I am prepared to order
a set of constructs that pairs each reporter/fluorescent protein combination with the
assigned gRNA. The datasets generated by these experiments will be able to pair
live cell imaging collections with barcode gRNA FISH to identify each reporter
and SeqFISH to measure end-point gene expression. For each stimulus in the
panel, multiple dose concentrations will be captured above and below the optimized



78

dosage in order to facilitate a dose-response analysis when measuring the mutual
information between a stimulus and a pathway’s dynamic response.

4.5 Conclusion
When investigating the relationship between different components of a signaling
network, arrayed measurements of reporters of individual pathways are generally
ineffective, because of the acknowledged presence of variation between wells in
a plate or replicates of an experiment. To overcome this limitation, two methods
have been pursued in order to capture measurements of multiple signaling pathways.
The first is to express and combine multiple reporters in a single cell.6,20,21 This
approach has allowed the measurement of up to four reporters in a single cell and
revealed potential connections between the dynamic responses of different pathways.
Alternatively, pooled libraries of reporter cell lines have been generated such that
each cell expresses a different reporter whose identity can be revealed after the
conclusion of the live imaging experiment.22,23 Pooled reporter experiments have
previously been developed that were able to span up to twelve different pathways
and captured aspects of synchronicity between different pathways. Despite these
advances, methods to capture both multiple reporters in a single cell and many
reporters of different pathways in a single experiment have not yet been available.
This has limited the precise analysis of the interactions of signaling pathways at a
larger scale.

To overcome these existing limitations, I propose to combine our existing work
using gRNA-based optical barcodes (Chapter 3) to create a combinatorial library of
reporters for signaling activity and cell state (Figure 4.2). As shown in Figures 4.3
and S4.1, we have collected a panel of signaling reporters and organelle labels and
demonstrated that they can be stably expressed in HeLa cells. In addition, we have
developed a protocol for lentiviral transduction in suspension that will enable rapid
generation of the combinatorial cell line using a split-pool approach (Figure 4.4).
Using this pool of cells, we can capture measurements of multiple reporters in
a single cell while sampling combinations from a panel of sixteen reporters of
signaling pathways and cell state. This approach will enable the collection of a
comprehensive dataset of cell signaling and state that would be infeasible to collect
in an arrayed fashion.
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Table 4.3: Signaling pathway stimuli.
Pathways Stimulus Concentration
JNK, p38 Anisomycin 50 ng/ml
ERK EGF 100 ng/ml
PKA IBMX 250 𝜇M
NF𝜅B TGF-𝛼 2 ng/ml
Smad2 TGF-𝛽 10 nM

4.6 Methods
4.6.1 Lentiviral construct validation
Each reporter sequence was cloned into the pLex_305 (Addgene #41390) lentiviral
backbone that drives expression under the PGK promoter. For preliminary testing,
each reporter was tested with one of three fluorescent proteins: EBFP,24 mOrange,25

mClover.26 The combinations of reporters and fluorescent proteins used in the initial
tests are listed in Table 4.1 and Table 4.2. Lentiviral packaging was performed by the
Janelia Viral Tools support team. HeLa cells (ATCC CCL-2) were cultured in Min-
imal Essential Media (EMEM; Cytiva SH30024.FS) supplemented with 10% fetal
bovine serum (Thermo Fisher #26140079) with 100 U/mL penicillin/streptomycin
(Caisson PSL01). Cells were transduced by adding virus (MOI 7) and polybrene (10
𝜇g/ml) and centrifuging at 800 g for 1 hour. Cells were imaged two days after trans-
duction to verify that the construct was correctly expressed and that the signaling
reporters responded to stimulation.

4.6.2 Stimulus optimization
The combinations of reporters and stimuli tested are listed in Table 4.3. For each
test case, cells (104 cells in 100 𝜇l) were seeded on 96-well glass plates coated with
fibronectin and incubated overnight. Reporter plasmid DNA (100 ng) was diluted
in 10 𝜇l of Opti-MEM prior to adding TransIT-LT1 (Mirus, 0.2 𝜇l) and incubated
for 30 minutes at RT prior to adding to cells. Cells were imaged 24 hours after
transfection. Live cell imaging was performed using five minute intervals. Several
FOVs were selected and imaged for at least one time point prior to dosing with the
appropriate stimulus. Imaging continued for a minimum of two hours and ended
after a response to the stimulus was observed. Initial stimulus concentrations were
drawn from the literature and titrated as needed for HeLa cells.

https://www.addgene.org/41390/
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4.6.3 Lentiviral suspension transduction
HeLa cell suspension (2 ml of 1.25 × 105 cells/ml) was added to a well in a 6-well
ultra-low attachment plate. Cells were transduced by adding the first virus (MOI
5) and polybrene (10 𝜇g/ml), centrifuging at 800g for 10 minutes and shaking at
250 rpm for 30 minutes. The cells were then pelleted and resuspended in 2 ml of
fresh media along with the second virus (MOI 5) and polybrene (10 𝜇g/ml) in an
ultra-low attachment plate before repeating the centrifugation and shaking steps.
Subsequently, the cells were again pelleted and resuspended in fresh media along
with the third virus (MOI 5) and polybrene (10 𝜇g/ml) before performing the final
centrifugation and shaking steps. Finally, cells were transferred to a 6-well glass
plate coated with fibronectin and allowed to recover for two days prior to imaging.

4.6.4 SeqFISH library preparation
In order to prepare a panel of target genes for SeqFISH labeling, bulk RNA sequenc-
ing must be performed on representative samples to establish the relative expression
and expected fold change of genes of interest.

RNA sequencing

HeLa cells (1.5 × 105) were seeded in a 6-well plastic plate and allowed to ad-
here overnight. Cells were then dosed with the following drugs and incubated
for four hours: anisomycin (50 ng/ml), EGF (100 ng/ml), IBMX (3-isobutyl-1-
methylxanthine, 250 𝜇M), TGF-𝛼 (2 ng/ml) and TGF-𝛽 (10 nM). An undosed
sample was also collected in parallel. Subsequently, RNA was collected using the
Qiagen RNeasy plus mini kit for RNA purification, and contaminating DNA was
digested and removed using the DNA-free kit DNase treatment from Ambion. Fi-
nally, the RNA samples were sequencing using the Illumina HiSeq 2500 using a
PE50, 20M paired end run. RNA sequencing data processed using the Galaxy web
server.27 The Trimmomatic tool was used to trim sequences, then sequences were
aligned to the human genome using HISAT2. FastQC and MultiQC were used to
ensure the quality of the trimming and alignment outputs. The featureCounts tool
was then used to create a file that contains transcript counts for each human gene.
The results of the feature counts for the undosed and dosed conditions for each drug
were then analyzed and compared in Python.

4.7 Supplemental materials
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Figure S4.1: HeLa cell response to anisomycin.
HeLa cells stably expressing p38-KTR-mClover and JNK-KTR-mClover were dosed
with anisomycin (50 ng/ml) following the collection of the first timepoint. Both
reporters responded to stimulation as indicated by the translocation of the reporter
from the nucleus into the cytoplasm. Scale bar, 30 𝜇m.
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C h a p t e r 5

CONCLUSION

The exponential growth in the ability of machine learning to interpret and decipher
the world around us has facilitated a gold rush across scientific disciplines. Be-
haviors and observations that were previously too complicated or convoluted for a
human to decode or mathematically pull apart into principal components can now
be solved with an increasing variety of machine learning models. With new model
architectures being devised to handle new tasks, or improve the modeling of older
tasks, it is now possible to ask questions in biology that were not possible even a
few years ago. I sought to leverage these advances to enable the collection of multi-
modal measurements of pooled libraries, while taking advantage of CRISPR-Cas9
to generate traceable labels to link experimental modalities. However, pursuing
this type of experiment first called for development of methods to process the vast
amounts and varied types of data which result from pooled screens and multimodal
measurements.

Fundamentally, major advances in deep learning come from two places, advances in
model architecture, and increased quantity, quality, variety, or processing of the data
fed into a model. The foundation of any deep learning model is an extensive training
dataset that associates the input data with the desired output from the model. Without
high-quality data, a deep learning model is starting off from a deficit. However, the
work that goes into building these datasets is often an unacknowledged component of
deep learning model development. This body of work sought to utilize deep learning
to improve the design and analysis of biological microscopy experiments, to create
a platform capable of augmenting the latter of these two deep learning modalities.
To accomplish this feat, I utilized deep learning for two different objectives, which
in tandem would provide additional data acquisition and quality improvements. The
first objective is to robustly extract single cell features from microscopy data without
needing extensive parameter tuning or oversight on new datasets. The second is to
utilize deep learning as an integral tool in experimental design in order to reduce
the technical difficulty of data collection.

A key focus of my work, connecting both Chapters 2 and 3, was the development
of tools to support building new training datasets. In order to build DynamicNucle-
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arNet, which was presented in Chapter 2, I developed a framework for versioning
each piece of annotated data and tracking relevant metadata such as the microscopy
collection conditions and the quality of the annotations. Typically the process of
assembling a training dataset is highly manual and consists of smaller subunits of
data organized in folders. Updates to the data may overwrite the previous version
or be roughly versioned using additions to the file names. This process is time
consuming and vulnerable to human error. Furthermore if an error is identified, it
is often not possible to return to an earlier version of the dataset prior to the error.
The data infrastructure that I developed replaces manual oversight with automated
routines that build in versioning and create a reproducible process for interacting
with data. Furthermore, this infrastructure was readily adapted to building several
different training datasets described in Chapter 3. While the data infrastructure
introduced in this work is currently fine-tuned towards our use cases, and would
require investment by labs interested in its use to tailor to their use cases, the impact
of this infrastructure on this thesis clearly indicates that there is significant value in
developing better data management systems for the biological microscopy commu-
nity. Minimally, it should be noted that investing time in establishing even a simple
data management process for a single project is highly worthwhile, due to future
time savings and increased resiliency to errors which can hamper deep learning
model training. With a solid dataset development infrastructure in place, it becomes
possible to rapidly build new datasets in order to prototype models for new tasks.

Leveraging the advances in data set acquisition and augmentation presented in this
thesis, I was then able to assemble a new dataset to test the ability of deep learning
models to classify the identify of a gRNA based on the nuclear labeling pattern that
it generated (Chapter 3). The goal of this optical barcoding strategy is to be simple
to execute, primarily by shifting the burden of complexity from the experimental
data collection stage, which is limited by how quickly a human and microscope
can acquire data, to the data analysis stage, which is primarily bounded by machine
learning performance. In the pursuit of collecting multi-modal datasets, the time
spent during each round of staining and imaging becomes a valuable commodity
such that any steps that can be taken to eliminate the need for additional rounds of
imaging are highly advantageous. With this aim in mind, we utilized the nuclear
staining patterns generated by gRNAs to design an optical barcode that can be
captured in a single round of imaging, and utilizes a deep learning model to read
out each barcode.
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The key challenge to overcome in developing this system, and the ML tools needed
to decode the barcodes is found in collecting an appropriate dataset to use to train
the model. Developing the foundation of this system required collecting new data
for each new cell line, with additional overhead of the need to collect data from
different perturbation conditions that will be represented in the final experimental
dataset. Nevertheless, despite the time required to collect an appropriate dataset, this
step represents a one-time investment that prepares for many future experiments.
The optical barcoding method presented in Chapter 3 lays the foundation for an
experimental platform that can be used to collect complex multimodal datasets such
as those described in Chapter 4 that include live imaging of reporters, perturbation
labeling with optical barcodes and measurement of gene expression with SeqFISH.
However, the challenges, and the solutions identified in Chapter 3, highlight the
importance of considering data collection and analysis as a unified process that can
be jointly optimized to create an experimental design that maximizes the potential
impact of the experiment.

With the tools and methods presented in this thesis, including a new framework
for robust large data set acquisition and management, with reduced capacity for
human error, and methods for generating large multimodal pooled library screens in
single cells, it is easier than ever to apply the power of deep learning to the unique
challenges presented by biology. Biology is composed of complex systems, with
many deep and unseen interactions, with the results of those interactions taking
up to days to fully manifest themselves. Unraveling these complex systems, one
interaction at a time, is costly, time consuming, and error-prone. However, with
the methods presented here, a scientist can step back from the minutiae and query
the role of a protein in a system over time, or even the role of a system in how a
cell changes over time, all while decoupling the speed of discovery from how fast a
scientist can set up and collect individual experiments.
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A p p e n d i x A

DEEPCELL LABEL USER MANUAL



How to Use DeepCell Label
This guide shows how to use different annotation tools within DeepCell Label (DCL) to create or
edit annotated biological images. Please refer to job instructions for specific corrections needed.
Use the outline as a reference for particular tool descriptions.

Overview
DCL offers a suite of tools to interact with labeled or unlabeled images. Unique project URLs
should have already been generated for your project. If you need access to these URLs or want
to generate your own, please contact a member of DeepCell for further information.

Layout
When you click on a valid DCL URL, you should be taken to a screen similar to this:
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The right side of the screen is the workspace, which contains the image and any annotations
associated with the file that has been uploaded. The left hand side contains all of the tools
available to manipulate the image or annotations.

The Undo/Redo Buttons allows you to undo (or redo) the changes you make on the canvas.
Be aware that switching tools and changing annotation selections are considered “edits” and
multiple clicks of the button may be required to fully restore the desired result.

The Palette Boxes (located below the REPLACE button) allows you to visualize current label
selections. The upper-left palette box shows the color of the currently selected label. Hovering
over this box allows you to cycle through the different labels by clicking the left and right
arrows, add a new label value by pressing the “+” symbol, or deselect the current label by
pressing the “x” symbol. The lower-right palette box displays the label value of the canvas
(black = no label value). The canvas is where edits can be made with tools and actions. The
label value of the canvas can be changed to match any label (for more information, see the
description of the Select Tool).

When you’ve finished your corrections, use the Submit Button to upload them.

Preparing the canvas:

When an image is loaded into DCL, the default view assumes your image contains multiple
channels and will load your image with false coloring. Move the slider under each color to
change the intensity of that color.

If you are working on phase images or single color images, you may want to switch the toggle to
Grayscale. When in grayscale mode you are able to have more control over the brightness and
contrast of the image. Move each slider to a position that allows you to see the most features
within an image. These settings can be changed at any time.
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The outlines of any existing annotations will be displayed by default. They can be turned on/off
by toggling the Outline button. If the image being annotated contains too many objects, it will be
beneficial to see the annotations filled in with different colors. This can be done using the
Opacity slider. Pressing “z” will also cycle through three preset opacity values (0, 30%, and
100%)

Zooming and panning:

To zoom into the image, use the scroll wheel or the “+” and “-” keys. To move around once
zoomed in, hold down the spacebar then click and drag the mouse.

Changing channels:

Change channels with the "c" key.
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Changing frames:

Use “a” or the left-arrow key to go back one frame, and “d” or the right-arrow key to go forward
one frame. Going forward from the last frame will loop back around to the start of the file. Some
datasets will only have one frame per file.

Editing Tools

Select Tool:
Use the select tool to click on the annotation that you want to edit. Selected annotations will be
highlighted in white and the annotation color shown in the upper-left palette box. Only selected
cells can be interacted with through other tools or actions. Press “esc” to deselect the current
annotation. If an object needs a new label, click the “+” symbols on the upper palette or press
“n” to select an unused label. To select 2 labels at once (in the case of swapping or replacing),
click on the label to replace twice (this will now be the background label in the lower-right palette
box) and click on the label to paint with once (this will become the foreground label in the
upper-left palette box).

Brush Tool:
Use the brush tool to make corrections to the current selected annotation. Click once to paint
an area the size of the cursor. Click and drag to make larger edits. The brush size can be
adjusted using the up- and down-arrow keys.

To adjust the border between 2 labels, first select the label you want to paint with, then hold
down shift and click on the label you want to overwrite. Once you see the labels properly
represented in the palette box (the top-left box will be the label you are painting with and the
bottom-right box will be the label that is being brushed over), use the brush tool as you would
normally.

Eraser Tool:
Use the eraser tool to remove portions of the current selected annotation. Click once to erase a
portion of the label according to the size of the cursor. Click and drag to make larger edits. The
eraser size can be adjusted using the up and down arrow keys. Press “z” to quickly switch to the
brush tool.

Trim Tool:

Most of the time annotations should be connected. To quickly remove disconnected portions of
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an annotation, select the trim tool and click on the part of the annotation you want to keep. If
the annotation to be fixed was not originally selected, click again for the trim tool to be applied.

Flood Tool:

Occasionally, annotations will contain empty spaces. To quickly fill these spaces, select the
flood tool and click on the empty space to be filled. Make sure the correct annotation has been
selected otherwise another label could be applied to the space.

Actions
Actions have been designed to make certain common edits easier to perform. Make sure to use
the select tool to click on the annotation that needs to be corrected.

Delete:
To delete a whole annotation, click on that label with the select tool and the click delete. This is
useful when whole objects are labeled incorrectly.

Shrink/Grow:
Annotations that are uniformly too large or too small can be edited using the shrink or grow
actions. Both shrink and grow add or subtract one pixel around the label respectively.

Replace:
Sometimes annotations of a single cell have been split in error and given two different labels. To
correct this, double click one of the labels, click the second label and click replace. Repeat as
necessary. Use the brush tool to make all parts of the label connect.

Swap two labels:
This action is only needed to make sure that labels match up with each other correctly across
different frames of a file. Select two different labels by double clicking on one label and then
clicking on the other. Click swap to swap values.
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A p p e n d i x B

SEGMENTATION CORRECTION INSTRUCTIONS



DeepCell Label has been updated to improve the interface, so some
functions and tools have changed. Please read the updated manual (DCL
User Manual) for general instructions as to how to use this new tool. Once
you are familiar with the new layout and features, refer to the following
examples to check for specific work you need to do to complete the job.
Thank you!

Overview
In this task you will work with a tool to create annotations of densely packed cells. This
tool, DeepCell Label, has many features in it to draw and correct annotations. In this task,
you will use a set of those features to create annotations of all the cells in the image. 

Background
Our group is in the process of writing a computer program to automatically identify cells in
culture. To help us do this, we're asking you to help create annotated datasets where
single cells are manually identified. We can then feed this into the computer program to
teach it how to accurately identify cells by itself. This program will be used in other
research laboratories to study a range of topics, including viruses, cancer cells, and
immune cells. The software we create is only as good as the data used to create it, so
accuracy in your annotations is extremely important.

In this job, each file contains many cells. Many of the cells are already labeled correctly,
but some cells in the file have labels that are too big, too small, or overlap adjacent cells.
You will correct the labels with the provided tools.
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Your Task
For this job, your goal is to make sure that the border around each cell is in precisely
the correct spot.

Algorithm Accuracy: High
This means that most of the cells in this image are correct. Some of the cells in this job will
need to be changed.

New Function: Autofit

A new function has been added to the tool set that automatically fills in missing labels.

To use this function do the following:
1. Click on the brush tool

2. Press “N” to select a new label
3. Fill in a small portion of the cell to be labeled
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4. Click on Autofit

5. Wait until the label gets created

6. Evaluate the label and made edits as necessary

Specific Instructions for this job

The most common errors in this job are multiple cells with a single label.
These labels need to be separated.
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General Instructions

Less common errors may also be found in this job. Watch out for and correct the following
errors.

Label too large

When a cell has a label larger than the cell, fix the label to match the size of the cell.

Missing cell

If a cell doesn't have a label, you should add one
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If DCL doesn't work properly
First, make sure you have clicked inside the viewing window, which may solve your issue.
This is a new tool that, despite testing, may still have some bugs. The tool may also have
been updated since the last time you accessed it. If it does not seem to load correctly, try
refreshing the page without cached data. If this does not work and you encounter an error
that prevents you from finishing correcting the file, please notify your manager and
continue onto another file if possible.
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A p p e n d i x C

TRACKING CORRECTION INSTRUCTIONS



Overview
In biology, cells naturally move over time. Occasionally, one cell divides into two cells. A cell that
divides is a "parent cell" and the two new cells that result are "daughter cells." We want to track
these movements and divisions. In this task, every cell in the movie has been labeled with a
color and number. You will use DeepCell Label to correct the cell labels so that each cell has the
same label across all frames. Additionally, you will find cell divisions and link the daughter cells
to their parent cell.

Your Task
For this job, each different label value is represented by a color and number. You will follow
each cell throughout the movie and check that each cell:

● Has the same label value in every frame
● Is linked to its daughter cells if it divides
● If there is a division, that the two daughter cells have different labels from each other and

its parent

DCL has tools that will help with tracking these cells. Each tool for each use case is discussed
below.

Some labels may disappear or migrate out of the field of view. This is ok. You should not make
new labels or edit the shape of these labels.

Check each label in each frame throughout the whole movie. You must look at every cell
label in each frame before submitting the job.
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DCL tracking tools
When you click on the link you will see this (it may take a few moments to load):

If you have used DCL before, this will look familiar. This is the work area you will use in each
job.
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The work area is divided up into 3 areas:

Image Canvas (Yellow) - This is where each frame of the movie and the cell labels will be
displayed. The colors are there to help differentiate labels and to check if labels are staying the
same throughout the movie.

Annotation Tools (Red) - These tools are for editing the label shapes or creating new ones.
You should not need these tools for this task.
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Tracking Tools (Blue) - These are the tools you will need to fix labels in the movie.

1. Image adjustments - These can help you see the movie better. For these jobs, increase
the opacity to maximum so that only the labels are visible. You can press “Z” to change
the opacity quickly.

2. Movie frame indicator - This shows which frame of the movie you are viewing. You can
change frames by clicking on the bar or by pressing the “A” and “D” keys. “A” goes to the
previous frame and “D” goes to the next frame.

3. Label frame indicator - This bar shows you in which frames the current selected label
exists. (Note: the bar does not align perfectly to the movie frame indicator)

4. Cursor label indicator - This line shows the label value of the cell that the cursor is
currently hovering over.

5. Error messages - The program checks for odd connections that exist in the movie. Pay
close attention to these messages as they likely need to be corrected. Click on the
messages to see labels that will need special attention. Red errors must be fixed. Yellow
warnings need to be checked but may not require a change.

6. Lineage map - This map shows the currently selected cell and if that cell has a parent or
daughters in the movie.
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Interactions with the image canvas
In this job, you will correct incorrect label assignments throughout the movie. Use the following
keybinds to interact with the image canvas:

“A” - moves one frame backwards in time

“D” - moves one frame forward in time

“[“ - Selects the previous label value (values will loop from end to beginning)

“]” - Selects the next label value (values will loop from end to beginning)

“Z” - Increases the opacity of the labels

General Instructions
The easiest way to interact with each job is to look at the label values to see when new cells
appear and if labels change values in-between frames. New cells have a larger label number
and will be yellow in color. These new cells are likely to be daughter cells as a result of cell
division.

To set this up:

1. Press “Z” twice or increase the opacity slider to 100%
2. Press “[“ to select the highest numbered label
3. Click on the label number in the lineage map

This will take you to the last frame of this movie. You will then press “A” and “D” to cycle
between frames in the movie. Follow the selected label through all the frames it is present in.

During this process, assess the following:
1. Does the label exist throughout every frame of the movie?

a. YES: does the label stay constant throughout the movie?
i. YES: move on to the next highest label by pressing “[“
ii. NO: does the label switch places with another label?
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1. YES: see Swapping labels section
2. NO: you likely have a situation where the parent label has been

transferred to a daughter cell. See Changing parent cell to
daughter cells section

b. NO: move on to #2
2. Does the label disappear because the cell merges with another cell?

a. YES: Is the current label a daughter of the cell it merges into?
i. YES: Is the other daughter cell also associated with the parent cell.

1. YES: move on to the next highest label by pressing “[“
2. NO: See Changing parent cell to daughter cells or Adding

daughter cells section
ii. NO: see Adding daughter cells section

b. NO: Has the label of that cell changed in a previous frame?
i. YES see Combining labels section
ii. NO: move on to #3

3. Does the cell disappear off the canvas?
a. YES: scan all frames to see if the label stays the same if the cell reappears in the

frame. Does the label stay the same?
i. YES: move on to the next highest label by pressing “[“
ii. NO: see Combining labels section and Swapping labels section

b. NO: the label has disappeared due to cell death. Move on to the next highest
label by pressing “[“

These general instructions should guide you through 90% of a job. Sometimes a cell needs
multiple actions to correct it’s label. Pay closer attention when correcting those cells. In the
hardest cases, you may need to change a label to a new label value to correct all the cells. In
that case, please see the Add new labels section

When you have finished reviewing all the labels, press the Submit button to complete your job.

Adding daughter cells
Use these instructions to add daughter cells to a parent cell when a cell divides.

1. Select the parent cell
2. Click the “+” symbol next to the parent cell label in the lineage map and select Add

Daughter from the menu
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3. Scan through the movie until the daughter cells appear (usually the next frame of the
movie after the parent label ends)

4. Click on a daughter cell on the canvas

5. Wait for the lineage map to update

6. Repeat for the other daughter cell if necessary

When a parent label should be a daughter
Use these instructions when a parent cell divides but does not have a different label after
dividing. A correct division will have different labels for the parent and daughters.
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Example: Label 67 divides into two daughter cells in frame 34. Label 67 in frame 34 should be a
new label instead of keeping the same label as before the division.

1. Select the parent cell

2. Click the “+” symbol next to the parent cell label in the lineage map and pick Add
Daughter from the menu

3. Scan to the frame where the parent cell divides
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4. Click on the parent label in the canvas in the first frame where it becomes a daughter
5. Wait for the lineage map to update

The daughter will have a new label from this frame on.

Combining labels across frames
Use these instructions when one cell has different labels in different frames but should have the
same label. Pay attention to these instructions as they are currently not easy.
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Example: Label 64 switches to 171 in frame 7.
1. Select one of the labels to be combined (usually the lower number)

2. Click the “+” symbol next to the parent cell label in the lineage map and select “Add
Daughter”

3. Scan to the frame where the cell changes to a different label without dividing (make sure
the first label does not exist in this frame) and click on the new, different label you want
to replace.
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4. Wait for the lineage map to update

5. Click on the “x” symbol to the right of the daughter label and select “Replace with Parent”
from the menu

6. Wait for the lineage map to update

Swapping labels
Use these instructions to switch label values between two different labels.
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Example: Labels 189 and 48 switch places in frame 21.
1. Click the Segment button to change tools.

2. Make sure you are using the Select tool under the Tools buttons

3. Double click on one of the labels to be changed so it is outlined in red

4. Click on the other label so it becomes red inside
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5. Click “Swap” under Actions

6. Wait for the highlighted cell to switch spots

7. (Optional) If cells in multiple frames need to be changed, press “D” to go to the next
frame and click “Swap” for each frame

8. Press “Esc” to unselect the 2nd label

Add new cell value
Use these instructions to assign a new label value to cells that change labels multiple times
between multiple cells during the course of the movie. Use this function only when other
functions will introduce a duplicate label in the same frame.
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Example: Label 64 changes to 171 in frame 7 then changes back to 64 in frame 9. We cannot
just combine label 64 with 171 because they both exist in frame 19. Label 171 in frame 19 will
need to be changed to a new label before other fixes can occur.

Select the label that needs to be fixed
1. Advance the movie to the frame where that label reappears in the movie

2. Click the “+” symbol next to the label in the lineage map and select “Create New Label”

3. Wait for the label to change
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The new label replaces the original label from the current frame to the end of the movie. Then
go back and make necessary corrections.

If DCL doesn't work properly
First, make sure you have clicked inside the viewing window, which may solve your issue. This
is a new tool that, despite testing, may still have some bugs. The tool may also have been
updated since the last time you accessed it. If it does not seem to load correctly, try clearing
your browser cache and refreshing the page. If this does not work and you encounter an error
that prevents you from finishing correcting the file, please notify your manager and continue
onto another file if possible. If you have any suggestions or questions, please share them with
us! We would love to know what will make this tool easier and more useful for you.
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