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ABSTRACT

The use of quantum mechanical phenomena for information processing has the
potential to solve computational problems which are believed to be intractable for
classical computers. Inspired by this potential, the last several decades has seen rapid
development in both the theory and practice of quantum information processing. In
this thesis, we explore three applications of quantum computing for the physical and

computational sciences.

The first potential application is for the simulation of open quantum systems. We
introduce two algorithms for the simulation of open quantum systems governed by a
Lindblad equation. Based on adaptations of the quantum imaginary time evolution
algorithm, these methods transform non-unitary open system evolution into unitary
evolution which can be implemented on contemporary quantum hardware. We
demonstrate these algorithms on IBM’s quantum hardware via the simulation of the
spontaneous emission of a two-level system and the dissipative transverse field Ising

model.

Next, we explore efficient methods to probe measurement induced phase transitions
using superconducting circuits. These phase transitions occur in monitored quan-
tum systems as the measurement rate of randomized single qubit measurements
increases. We overcome two exponential bottlenecks which limited the system sizes
of previous experiments on superconducting circuits by employing a cross-entropy
benchmarking protocol and Clifford based circuit compression techniques. We
observed measurement induced phase transitions on systems of up to 22 physical

qubits.

Finally, we switch our attention to machine learning, where we prove rigorous quan-
tum advantages for adversarially robust classification. By constructing a learning
task based on widely accepted cryptographic assumptions, we show a necessary con-
dition for the utility of quantum computers for robust classification. In particular,
we show that for the learning task we construct, any efficient classical learner cannot
robustly classify better than chance, whereas a quantum learner can efficiently and

robustly classify data with high accuracy.

Through these studies, we show that quantum computers have potential application

in the physical and information sciences in both the near and long term.
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Chapter 1

INTRODUCTION

1.1 Early history of quantum computing

Quantum mechanics as a resource for information processing was first motivated in
the early 1980’s as a solution to the classically hard problem of simulating inter-
acting quantum systems [1, 2, 3]. By 1985, quantum computing was formalized in
terms of quantum Turing machines [4, 5] followed by the circuit model of quantum
computation [6], which were subsequently proven to be equivalent to each other in
1993 [7]. The circuit model of quantum computation led to many rapid advances
in the development of quantum algorithms which exhibit reduced time or space
complexity over their classical counterparts [8, 9, 10, 11, 12]. In the late 1990s,
the problem of simulating quantum systems with a quantum computer was further
addressed and algorithms which allow for the efficient quantum computation of
time dependent expectation values of various types of quantum mechanical systems
were proposed [13, 14, 15, 16]. Inspired by the prospects of quantum computing
for various applications, various proposals for qubits in different physical systems
were introduced, including in nuclear magnetic resonance (NMR) systems [17, 18],
trapped ions [19], quantum dots [20], and superconducting circuits [21]. Experi-
mental realizations quickly followed, with the first quantum gates and algorithms
implemented in trapped ion and NMR systems [22, 23]. In the following decades,
exponential progress was made in key metrics for realizing qubits for quantum com-
putation, such as coherence times, readout error rates, and gate errors [24, 25, 26].
The rapid and exciting progress of quantum computing over the last 40 years has
spurred many investigations on the utility of quantum computing for applications
ranging from the simulation of physical systems to cryptography to machine learning

among many others.

1.2 Current state and prospects of quantum computing

In this section we briefly summarize the current state of quantum computing, includ-
ing recent advancements, challenges, and its near-term prospects. We discuss the
current state of experimental realizations of quantum computers and applications

across various fields.



2

Various platforms for quantum computing have emerged over the past several
decades, including superconducting qubits, trapped ions, solid state platforms, and
neutral atoms. Coherence times exceeding one millisecond and single-qubit gate
fidelities of 0.99991(1) have recently been obtained in superconducting qubits [27]
and two-qubit gate fidelities exceeding 99.5% have also been demonstrated [28,
29]. Although long coherence times and high two-qubit gate fidelities are certainly
achievable in superconducting qubits, it is important to note that these results were
obtained in small systems only, and scaling up to larger systems may reduce these
metrics. Higher two-qubit gate fidelities have been achieved in trapped ion systems,
allowing for the demonstration of all the requirements of fault tolerant quantum

computing [30].

Current research in applications of quantum computing includes cryptography, drug
discovery, materials science, finance, and machine learning. The necessity to pro-
tect private information on the classical internet has spurred the development of
quantum-safe encryption protocols. Any encryption scheme which can be broken
by factoring or discrete logarithms, such as the RSA cryptosystem [31], can be
broken by Shor’s algorithm, although it would require billions of operations on
thousands of logical qubits [32] and so is not under imminent threat. To prevent pri-
vate information from being exposed in the long term, post-quantum cryptographic
methods are being developed which would require super-polynomial time to break

even with a quantum computer [32].

In the near term, applications of quantum computing to drug discovery and material
science may provide the first benefits of quantum computing [33, 34, 35, 36].
Because these applications are fundamentally quantum mechanical in nature and
additionally take place in noisy systems, noisy quantum computers may provide
advantages of classical computers in computing fundamental properties of these
systems as well as pathways for creating them. Quantum computers are expected to
accelerate drug discovery by simulating molecular interactions, optimizing chemical

reactions, and predicting drug properties with high accuracy.

Quantum applications for finance [37, 38, 39] and machine learning [40, 41, 42] are

also active areas of research, although rigorous quantum advantages are still lacking.

In this thesis, we focus on several applications of quantum computing for quantum
simulation, critical phenomena, and machine learning. To provide a foundation
for the following chapters, in Section 1.3 we introduce the notion of circuit based

quantum computing and several primitives such as quantum gates and measurements.



3

In Section 1.4 we introduce noise sources and the models used to describe them
for the experimental demonstrations presented in this thesis. Finally, in Section 1.5
we outline the three main topics of this thesis, providing a motivation and the main
achievements of each project. In the following chapters we delve into the technical
details and results of each project. The final chapter presents a summary and outlook
of the applications of quantum computing in the context of the results presented in
this thesis.

1.3 Circuit based quantum computing

In this section, we present the fundamental building blocks of quantum computing.
This includes the basic unit of quantum information, the qubit, as well as operations
which can be applied to systems of qubits in order to carry out a quantum computa-
tion. Although there are several formalisms used to describe quantum computation,
such as measurement based quantum computing [43], topological quantum com-
puting [44], the quantum Turing machine [4, 5] and the circuit model [6], they are
all equivalent in computational power: any model can efficiently simulate any other
model. By far the most common and simplest formalism is the circuit model, which
we describe in this section. All of the information in the section can be found in
Reference [45].

Qubits and where they live

The fundamental unit of discrete quantum computation is the qubit. We define a
qubit as an element of a two-dimensional complex Hilbert space H,. To make con-
crete calculations, we define an orthonormal basis for the Hilbert space {|0), |1)}.
In column vector notation, we define [0) = (1 0)T and |1) = (0 1)T. Operations
that we can apply to qubits consists of unitary operations, elements of the unitary
group U(H>), and projective measurements defined by two-dimensional projective
operators P, satisfying P> = P. In general, the operations we can apply to qubits
are completely positive trace preserving (CPTP) maps and positive operator-valued
measures (POVMs), which include the aforementioned unitary evolutions and pro-
jective measurements; however, for the purpose of this thesis we do not need such

general operations and for simplicity we omit the details of CPTP maps and POVMs.

The Hilbert space of n qubits is defined as the tensor product of the Hilbert space of
each qubit, H = ?{21 ® ?{22 e ® ﬂ;, which has dimension 2". Operations we can
apply to systems of qubits are the unitary operations and projective measurements on

the total Hilbert space. n qubit observables are defined as 2”-dimensional Hermitian



operators. A general n qubit quantum state |/) can be always be represented as

2"—1
DEDIES (1.1)
x=0
where unit probability dictates that Y, |a,|?> = 1 and each x is written in its binary

representation.

Quantum circuit diagrams

The previous subsection described the abstract mathematics of qubits and the opera-
tions which can be applied to them. In order to develop algorithms and applications
for quantum computers, a more concrete description of the allowable operations is
required. This is provided by the circuit model of quantum computation, which
we describe here. Figure 1.1 shows an example of a circuit diagram containing

multi-qubit unitaries, classical feed-forward, and projective measurements.

B

|w)

Figure 1.1: Quantum circuit diagram for a computation with 4 qubits. The initial
state is denoted by |y). The blue rectangles represents 2 qubit unitaries, the metered
box represents a measurement, and the red controlled rectangle represents a 2 qubit
unitary conditioned on a measurement result. The green controlled square represents
a controlled single qubit gate. The double line at the bottom of the circuit represents
the classical bits used in the computation.

We can break up the circuit diagram into five main sections, which reads from left to
right with time increasing to the right. On the left, we write the initial state which is
used for the quantum computation. The bulk of the circuit consists of three sections,

which in order of increasing time are: 1. state preparation, 2. the computation,
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and 3. measurement preparation. The final section of the quantum circuit, shown
on the right of Figure 1.1, consists of measurements in the computational basis.
We typically assume that the input state is a fixed product state, typically (and
arbitrarily) taken to be |0)®". The state preparation step then takes the initial state
to the desired input state required for the computation, which is then followed by
the operations required for the main part of the computation. The measurement
preparation step allows us to measure in bases other than the computational basis.
Finally, the computation concludes with measurement of the qubits, which yields
a classical n-bit string. To obtain the expectation value of observables, we need to
run the circuit multiple times, each time obtaining a different bitstring. We average

the outputs of all the runs of the circuit in order to get the expectation value.

Unitary operations as quantum gates

For a general quantum computation, we would like to be able to apply an n-qubit
unitary operation; however, due to physical constraints, contemporary quantum
computers typically only allow for two-qubit unitaries, although multi-qubit unitaries
are an active area of research [46, 47]. The set of physically implementable unitaries
(for a given physical system) is known as a gate set, and elements of the gate
set are the quantum gates we can apply to the system. In order to carry out a
computation when physical restrictions only allow for two-qubit gates, we need
to decompose n-qubit unitaries into a sequence of two-qubit unitaries. As shown
in [45], any unitary operation can can be decomposed into a sequence of two-
qubit unitaries. Additionally, almost any two-qubit gate is universal for quantum
computation, provided that we can apply any single qubit gate [48]. A gate set which
is universal for quantum computation is a gate set which allows for approximation
of any multi-qubit unitary operation to arbitrary precision. Although the group
SU(H,) is a continuous group, any single qubit unitary can be approximated to
arbitrary precision provided we have access to a single qubit gate set which generates
a dense subgroup of SU(H;) [49].

Some important single qubit gates which will be used throughout this thesis are the

single qubit Pauli operators
0 1 0 —i 1 0
oy = (1 O)’ oy = (i O) and o, = (0 _1). (1.2)

The Pauli operators are sometimes also denoted by o, = X, 0y =Y, and 0, = Z.

Single qubit rotations around the x, y, and z axis are generated by exponentiating



the respective Pauli operators:

R, (0) = exp (—ifoy/2), R,(6) =exp (—ifoy/2) and R (6) = exp (—ifo;/2).
(1.3)

The three other single qubit gates which will also be used throughout this thesis are

I (1 1 1 0 1 0
T L L

known as the Hadamard, Phase, and 7" gates, respectively.

Commonly used two-qubit entangling gates are the CNOT (or CX) gate, and the
CZ gate, which have matrix representations

1 00O 1 00 O
01060 01 0 O

CX = 000 1 and CZ = 001 0 (1.5)
0010 00 0 -1

Projective measurements

The other primitive operation which is commonly used in quantum computing and in
this thesis is the single qubit projective measurement. Due to physical constraints,
many quantum computing systems are only able to measure single qubits in the
computational basis. We represent these single qubit projective measurements by
their projectors,

1 0\ 1+Z 00y 1-Z
P():(O O):T and Pl:(() 1):T (16)

For a single qubit state |¢) = a|0) + b|1), measuring the qubit in the computational
basis yields O or 1 probabilistically, with the probability of measuring either outcome

equal to
P[0] = (y|Poly) = lal* and P[1] = (y|Pily) = |bI*. (1.7)

Following the measurement, the state is projected into the subspace spanned by the

projection operator corresponding to the measurement outcome:

Pyly)
(W[ Pxlyr)

if the outcome of the measurement is x € {0, 1}.

) — (1.8)

For measurements not in the computational basis, a unitary operation is first required

to rotate the computational basis to the desired measurement basis. For example,
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to measure in the x basis, we first apply a Hadamard gate to the qubit followed by a

measurement in the computational basis.

Finally, we note that an n qubit Pauli measurement can always be broken down into
a sequence of n CNOT gates, single qubit gates, and one single-qubit projective

measurement in the computational basis.

1.4 Noise models for contemporary quantum computers

In the previous section we described the basic components of quantum circuits. In
an ideal physical implementation, all the necessary operations can be carried out
perfectly; however, in real-world physical systems, the execution of these operations
inevitably introduces some degree of noise. In this section, we introduce the basic
theory of noise processes in quantum computers and describe ways to carry out

computations in the presence of noise.

Representing noise and errors with quantum channels

Although there are many microscopic mechanisms which induce noise in qubits [50,
51, 52], all noise processes can be described using quantum channels. A quantum
channel is defined as a completely positive, trace preserving (CPTP) map from an
initial state p to a final state ®(p). We can always decompose a CPTP map @ into

a basis of operators in the form
O(p) = > MipM], (1.9)
i
where the M;’s, known as Kraus operators, satisfy the relation

ZM,-MI.T =1 (1.10)

The Kraus operators of commonly used quantum channels often have a intuitive
physical interpretation. We describe here some common single qubit quantum

channels which are used to describe various physical noise processes.

The amplitude damping channel is often used to model the spontaneous emission
of a two-level system from the excited state to the ground state. If the probability
of decaying from the excited state to the ground state is p, then the Kraus operators

describing this channel are given by

(10 (0 \p
Mo_(o m), Ml_(o o)' (1.11)
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Since relative phases are important to maintain throughout a computation, a noise
channel describing the loss of phase coherence is also commonly used, known as
a dephasing channel. The dephasing channel can be described using three Kraus

operators:

My=+1-plI, Mlz(‘g_’ 8), Mzz(g \2_7), (1.12)

where p. An alternate representation of the dephasing channel can be shown to be

desrcibed by the two Kraus operators

Mozg(1+2), Mozg(l—Z), (1.13)
which yields the channel
D(p) = (1 - %)p+§ZpZ. (1.14)

This channel has the interpretation that with probability 1 — p/2 we do nothing
to the state and with probability p/2 we apply a Pauli Z to the state. To see the
effect of the dephasing channel, we can apply it to a qubit in an arbitrary pure state
|¥) = al0) + b|1). The channel maps the density operator as

_o(lal? ab*y _( laP (1-p)ab*
We see that as p increases from O to 1, the off-diagonal elements (the phase infor-

mation) are lost.

The dephasing channel is a specific example of the more general Pauli channel. We
can interpret a Pauli channel as probabilistically applying different Pauli operators

to a qubit. We write the map as

@(p) = (1 = px = py —p)p+pxXpX +pyYpY +p.ZpZ. (1.16)

We interpret this channel as applying X with probability p,, applying Y with prob-
ability p,, applying Z with probability p., and doing nothing with probability
l = px—py— p;. If weset p, = p, =0, we obtain a dephasing channel, and if we

set px = py = p, we obtain what is known as a depolarizing channel.

Coherent errors
The error channels in the previous section all describe stochastic processes which

affect the qubits in a physical quantum computer. In addition to random processes,
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there are also systematic coherent errors which can arise due to miscalibrated gates
[53]. For example, if we intend to apply the gate exp (i6Z) to a qubit, due to imperfect
experimental control we may over rotate and instead apply the gate exp (i(6 + ) Z).
This leads to the coherent error exp (i6Z). Importantly, it is believed that coherent
errors will not cause significantly more damage than Pauli errors for fault tolerant

quantum computing [54].

Measurement errors and readout error mitigation

Another source of error during a computation occurs at when the qubits are mea-
sured, also known as qubit readout. When reading out a qubit, a readout error results
in measuring a qubit as being in the |0) state when it is actually in the |1) state and

vice versa.

Readout error mitigation (ROEM) is a collection of techniques used to help reduce
the impact of readout errors [55, 56, 57]. The simplest form of ROEM models

measurement errors classically by first constructs a transition matrix

P1o P11

where p,, is the probability of measuring the qubit to be in state |x) given that the
qubit is in state |y). During a computation, we typically repeat the computation
multiple times. If we repeat a single qubit experiment N times, then Ny times we
will readout 0 and N; times we will readout 1, with Ng + N; = N. We can correct

for readout errors by applying the inverse of M to our raw results:

No\ _ .,-1(No
(N])_M (Nl)' (1.18)

We use our corrected results to calculate expectation values. More advanced tech-

niques can be used to improve the fidelity of calculations further [56, 55].

1.5 Thesis outline

Here we give a high level overview of the three main topics of this thesis.

Digital quantum simulation of open quantum systems using quantum imagi-
nary time evolution

In Chapter 2, we present two algorithms for the dynamical simulation of open
quantum systems on contemporary quantum hardware and demonstrate their use for

small open quantum systems of up to five qubits [58]. While many studies focus
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on computing ground state properties or simulating unitary dynamics of closed
systems, open quantum systems are an interesting target of study owing to their
ubiquity and rich physical behavior. However, their non-unitary dynamics are also

not natural to simulate on digital quantum devices.

We consider the dynamics of spin systems governed by a local Lindblad equation.
Using two adaptations of the quantum imaginary time evolution (QITE) algorithm
[59], we develop two digital quantum algorithms to simulate the systems dynamics.
We demonstrate the algorithms on IBM Quantum’s hardware with simulations of
the spontaneous emission of a two level system and the dissipative transverse field

Ising model.

Experimental demonstration of measurement induced phase transitions using
cross-entropy benchmarking

In Chapter 3, we consider a relative of traditional open quantum systems, so called
monitored quantum systems. These are quantum systems which, while undergoing
unitary evolution, are also measured by an outside observer. Such quantum systems
are predicted to host novel non-equilibrium phases and quantum information phase
transitions. Yet, experimental observations of these phenomena have faced both
fundamental and technical challenges [60]. In Chapter 3, we study experimental re-
alizations and efficient probes of such phase transitions in prototypical hybrid circuit
models on IBM’s superconducting processors containing up to 22 qubits within 8
qubit-hours. A combination of cross entropy benchmark [61] and circuit compres-
sion techniques [62] allows us to minimize the effect of uncontrolled device noise,
and access system sizes of L < 44 without exponential overheads associated with
post-selection of quantum trajectories, error mitigation, or quantum state tomogra-
phy. From experimental data we extract critical exponents comparable to theoretical

predictions in systems with one-dimensional and all-to-all connectivities.

Quantum advantage in adversarially robust machine learning

In Chapter 4 we shift our focus to applications of quantum computing to problems
in machine learning. With the widespread deployment of modern machine learn-
ing, robustness to adversarial attacks, attacks in which a malicious adversary can
perturb the data, are critical. In response, significant effort has been invested into
both developing methods for adversarial attacks as well as mechanisms to defend
against such attacks. Although quantum computing has emerged as a potential re-

source for machine learning, much less attention has been paid to the question of
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adversarial robustness than in the classical case. This raises the natural question of
whether quantum learning algorithms offer any advantages in robustness over clas-
sical learning algorithms. In Chapter 4, we answer the question in the affirmative
by constructing a learning task which is 1. easy to learn non-robustly, 2. hard to
learn robustly for any classical learner, and 3. easy to learn robustly for a quantum
learner. While this task is not practically relevant, it provides a proof of principle
that quantum computing offers advantages in robust machine learning tasks and
we hope it stimulates further work on adversarial robustness of quantum machine

learning algorithms.

Finally, in Chapter 5, we summarize the results of this thesis and discuss further

directions of study related to our findings.
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Chapter 2

DIGITAL QUANTUM SIMULATION OF OPEN QUANTUM
SYSTEMS USING QUANTUM IMAGINARY TIME EVOLUTION

[1] Hirsh Kamakari et al. Digital quantum simulation of open quantum systems
using quantum imaginary—time evolution. In: PRX Quantum 3.1 (2022),
p- 010320. urL: https://doi.org/10.1103/PRXQuantum.3.010320.

One of the first proposed applications for quantum computing was for the simulation
of quantum many-body systems [1, 2, 3]. By the late 90’s quantum simulation
algorithms for various types of systems had been proposed [13, 14, 15, 16]. The
first quantum simulation algorithms focused either on simulating the dynamics of
closed quantum systems or on finding ground and low lying excited states. Open
quantum systems, quantum systems which interact with an environment, can be
relatively challenging to simulate since the effect of the environment also needs to
be incorporated into the simulation. In particular, environmental influence leads
to non-unitary evolution which is not natural to implement on quantum computers.
In this chapter, we present two algorithms for the dynamical simulation of open
quantum systems governed by a Lindblad equation [63]. Both algorithms use
an adaptation of the quantum imaginary time evolution algorithm [59]. The first
algorithm we present uses a vectorized time evolution to implement the dynamics
of the density operator on a quantum computer. The vectorization process leads
to an ancilla overhead equal to the number of qubits of the corresponding closed
quantum system to be simulated. The second algorithm does not require any ancilla
qubits, but instead requires sampling over multiple initial states. We present a
comparison of the resource requirements of both algorithms as well as experimental

demonstrations of both algorithms for quantum systems of up to five qubits.

2.1 Introduction

The development of quantum algorithms to simulate the dynamics of quantum many-
body systems is now a topic of interest owing to advances in quantum hardware [64,
65, 66]. While the real-time evolution of closed quantum systems on digital quantum
computers has been extensively studied in the context of spin models [67, 68, 69,
70, 71, 72, 73], fermionic systems [74, 75], electron-phonon interactions [76], and
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quantum field theories [77, 78, 79], fewer studies have considered the time evolution
of open quantum systems, which exhibit rich dynamical behavior due to coupling of
the system to its environment [80, 63]. However, this coupling leads to non-unitary

evolution which is not naturally simulable on quantum hardware.

Early approaches to overcome this challenge included use of the quantum simulators’
intrinsic decoherence [81] and direct simulation of the environment [82, 83, 84].
Theoretical works examined the resources required for efficient quantum simulation
of Markovian dynamics [85, 86, 87], concluding that arbitrary quantum channels
can be efficiently simulated by combining elementary quantum channels. Recently,
several algorithms have been proposed for the digital quantum simulation of open
quantum systems on the basis of the Kraus decomposition of quantum channels
[88, 89, 90, 91, 92, 93] as well as variational descriptions of general processes to
simulate the stochastic Schrodinger equation [71, 64] and the Lindblad equation
[94]. Recently, explicit Trotterization of the Lindblad equation was used to simulate

damping and dephasing of a single qubit using an additional ancilla qubit [95].

Simulation via Kraus decomposition is convenient when the Kraus operators corre-
sponding to the time evolution of the system are known, such as modelling deco-
herence with amplitude damping or depolarizing channels. However, determining
the Kraus operators of a general system requires either computing the full unitary
evolution of both the system and environment or casting a master equation into
an operator sum representation for the density operator. The latter procedure can
be approximated analogously to Trotterization [93, 91] but requires either reset of
ancillae qubits or a qubit overhead which scales linearly with the number of time
steps in the simulation. Exactly determining the Kraus operators from the Lind-
blad equation is a classically hard task which is equivalent to solving the master
equation [96] and so can only be applied to small systems. Explicit Trotterization
circumvents the need to determine the Kraus operators representing the time evo-
lution but has the same ancilla qubit overhead as in as the Kraus decomposition
methods. Variational approaches [71, 64, 97] offer an alternative for simulating
open system dynamics, but as in the case of closed systems require an ansatz and
a potentially high dimensional classical optimization which is an NP-hard problem
[98]. A quantum simulation of the stochastic Schrodinger equation was emulated in
Ref. [71]. In this case, the quantum jumps, or discontinuous changes in the quantum
state, was implemented via variational matrix-vector multiplication, thus incurring

the disadvantages previously mentioned for variational approaches.
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The common feature of the above algorithms is that they reformulate non-unitary
open system dynamics into unitary dynamics which can be simulated on a quantum
computer. A similar approach is used in variational approaches to imaginary time
evolution [99] and the quantum imaginary time evolution (QITE) algorithm, which
has recently been introduced as a way to prepare ground states and compute thermal
averages on near-term devices [59]. QITE has since been used to compute finite-
temperature correlation functions of many-body systems [100], scattering in the
Ising model [101], and binding energies in quantum chemistry [102, 103] and
nuclear physics [103]. It is therefore natural to consider how QITE might be

adapted for open quantum system evolution.

In this chapter, we introduce two quantum algorithms to simulate open quantum
dynamics using adaptations of the QITE algorithm and demonstrate them on IBM
Quantum hardware. The first algorithm casts the Lindblad equation for the density
operator into a Schrodinger-type equation with a non-Hermitian Hamiltonian. Time
evolution is then achieved by simulating the unitary evolution via Trotterization,
corresponding to the Hermitian component of the Hamiltonian and using QITE to
simulate the anti-Hermitian component of the Hamiltonian. The second algorithm
expresses the density operator in terms of an ansatz which is preserved during
both real and imaginary time evolution. We demonstrate these algorithms on IBM
Quantum hardware for two cases: the spontaneous emission of a two level system
(TLS) in a heat bath at zero temperature, and the dissipative transverse field Ising
model (TFIM) on two sites. We observe good agreement between the exact and
hardware results, showing that the dynamics of open quantum systems are accessible

on near-term quantum hardware.

The dynamics of a Markovian open quantum system can be described by the Lindblad

equation

— =—i[H,p] + LypL, — ={L, Ly, 2.1

el p]Zk:(kpkz{kkp} (2.1
where p is the density operator of the system, H is the system’s Hamiltonian, and
Ly are operators describing the coupling to the environment. The master equation
in Lindblad form is often derived assuming weak coupling between system and

environment and absence of memory effects (Born-Markov approximation) [104,
63].
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We present two algorithms to simulate the master equation in Lindblad form on a
digital quantum computer. The first quantum algorithm, based on a vectorization of
the density operator, is described in Sec. 2.2; the second algorithm, which combines a
QITE adaptation with an ansatz for the time-dependent density operator, is presented
in Sec. 2.3.

2.2 Algorithm I

0y —{H] T T X/Y

, l e_iHT I I e 7ZALZLAT l_ . . —
[ p(0)) e L L®LT Bell
: I eiH't I I e T L LWL l— : I
Repeat N times

Figure 2.1: Time evolution for the vectorized density operator |p) (Algorithm
I). e7*¥17 is a unitary operator and can be directly implemented on the quantum

simulator. The non-unitary terms ™2 Tk LiLit gnd o Xk LkBLAT gre implemented via
QITE. The unitary labelled “Bell” represents a unitary preparing the generalized
2n-qubit Bell state. The / denotes a bundle of n qubits.

The Lindblad equation can be rewritten as a Schrodinger-type equation with a non-
Hermitian Hamiltonian by transforming the 2" x 2" density operator p into an 4"
component vector |p) by column stacking the density operator [105]. The resulting

transformation of the Lindblad equation is

d|P>_ . crrT — 1 T 1 T
~ = [leH+iH ®E+Zk:(Lk®Lk—511®(LkLk)—§(LkLk)®1[) o)

(2.2)
where the bar indicates entry-wise complex conjugation and |p) = |p(?)) is the
vectorized density operator [105]. Separating Eq. (2.2) into Hermitian and anti-

Hermitian parts, the time evolution of the initial state can be written as:
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lp(2)) = exp (—i(H) — iH>)1)|p(0)) = -

[exp (—iH7) exp (—H>7)]V|p(0)) + O (TZN) -
where in the last equality we have Trotterized to first order with time step 7 =
t/N, and H| and iH, are the Hermitian and anit-Hermitian components of the
vectorized Hamiltonian, respectively. The first term exp (—iH;7) is unitary and
can implemented on a quantum simulator via Trotterization and standard quantum
simulation techniques [45, 65, 13]. The term exp (—H,7) is non-unitary and so
cannot be directly applied to the quantum register. Instead, we implement it on a
digital quantum simulator via analogy to quantum algorithms for imaginary time

evolution [59].

Imaginary time evolution of the Schrédinger equation with Hamiltonian H is carried
out formally by substituting 8 = it into the real time propagator exp (—itH). This
technique is typically used to find ground states |) = limg_. [¢(8))/II|@¢(B)II,
where |¢(B)) = exp (-BH)|#(0)) and |¢(0)) has non-zero overlap with a ground
state. If we interpret H, as the Hamiltonian of a system in the extended Hilbert
space, exp (—H,7) is an imaginary time evolution operator generated by H;. The
full time evolution is then applied as sequence of real and imaginary time evolutions,

as shown in Fig. 2.1.

We present a brief review of the QITE algorithm reported in Ref. [59] which is used
as a subroutine in this work. The QITE algorithm represents normalized imaginary

time evolution in terms of unitary evolution as:

) -

€ —iA

o =€ ), (2.4)
[le=PH ]y )]

where H is the system Hamiltonian, S is the imaginary time, and A is a Hermitian

operator. The operator A can be represented with real coeflicients in a complete

basis of Hermitian operators, typically chosen to be the Pauli strings o; over the

qubits of the system:

A= Z aio. (2.5)
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For an imaginary time step S, the coefficients a; are determined (up to order 82) by

the linear system Sa = b, with

Sij = Wlo ojly),

o (2.6)
bi = L (ylo) Hlp)

where ¢ = (exp (—28H)) is the norm squared of the un-normalized imaginary time

evolved state.

Once the desired time and state |p(¢)) are reached, measurements of an observable
O are obtained by evaluating the expectation value (0)(¢) = Tr (Op(2)) as (O'|p).
|O) is the vector obtained from column stacking the matrix representation of O
and so only the matrix representation of O in the computational basis is needed for
this step. Lindbladian evolution preserves Tr (o) whereas the algorithm preserves
Tr (p2) = (p|p), meaning that the operator p obtained from matricizing |p(?)) is
not strictly a density matrix. However, the final state can be renormalized to have
unit trace as p’(t) = p(t)/Tr (p(t)). In practice, we normalize the final expectation
value of a given observable instead. The final physical observables are thus given by
(O)/Tr (p). Therefore, obtaining measurements of observables on the state requires

evaluating both (O) and Tr (p) at each time step.

Both quantities (O)(¢) and Tr (p(¢)) can be obtained using a Hadamard test circuit
[106]. In particular, Tr (p) can be evaluated up to a prefactor of 27/2P~1/2 ag
(0]VTU|0), where U is the circuit that prepares |p), V prepares the generalized Bell
state |8) = 272 ¥ |x)®|x), |x) are the computational basis states on 7 qubits, and P
is the purity of the initial state. Preparing the 2n qubit Bell state requires » Hadamard
and n CNOT gates. Assuming |p) = U|0) for a unitary U with gate decomposition
requiring u#; and u, single-qubit and CNOT gates, respectively, the measurement of
Tr (p) requires a circuit with O (n + u;) single-qubit gates, O (n + u;) CNOT gates,
and O (n + up) CCNOT gates.

Measurement of k—local observables can be carried out similarly. We assume here
without loss of generality that the k—local observable O has support on the first £

qubits. The vectorized state can then be written as
-1/2
) =P Y by ixay1y2) 2.7)
X1,X2,1,Y2

where x, y; and x;, y, are length k and (n — k) bit strings, respectively, and P is

the purity of the initial state. Defining the state
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Oxlyl

07y = x12y12), (2.8)

x1y1z o2k Tr (OTO)

where the over-bar indicates complex conjugation, the expectation value of O can

be evaluated (up to a pre-factor) as

Oxiy1 Pxizyiz Tr (Op)
(O'p) = ), —== = . (2.9)
i Y2k VP \/2”—kTr (oto) P

The state |O") can be prepared as

U0+Vn_k |0k, On—ka 0]{5 0n—k> = UOT

\/2n—k

1 Z |0k,Z,Ok,Z>] (2.10)

where V,,_; prepares the n — k generalized Bell state and U,,+ prepares the 2k qubit
state

(0]
07) = " ——|x1y1). @2.11)
X1)1 Tr (OTO)

We then measure the un-normalized expectation value of O using the Hadamard test.
Since the purity is conserved by the algorithm, all observables can be renormalized
after the measurement. Assuming a decomposition of U into u; and u, single-qubit
and CNOT gates, respectively, and V into v{ and v, single-qubit and CNOT gates,
the total overhead for measurement of observables (including the trace evaluation) is
O (n+ uy + vy) single-qubit gates, O (n + u; + v1) CNOT gates, and O (n + up + v»)
CCNOT gates.

2.3 Algorithm IT

Algorithm I allows for efficient simulation of the full density operator for many
physical systems characterized by local interactions; however, it requires a doubling
of the number of qubits and an overhead of an ancilla and controlled operations
for evaluating observables. In particular, the circuit required for measurements
is too deep for near-term hardware. We therefore introduce a second algorithm

based on the variational ansatz used to obtain the non-equilibrium steady states of
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Repeat for all included x

Figure 2.2: Time evolution for the purification-based algorithm (Algorithm II). x is
a bit-string included in the index set /. V(1) represents the non-unitary terms which
need to be applied to the system for a time step 7. The / denotes a bundle of n qubits.

Markovian systems [97, 107] that overcomes these limitations. The isomorphism

maps a density operator as

p=) pURYIUT = |p) = ) pUlxy @ Ulx) (2.12)

xel xel
where the |x)’s label the n-qubit computational basis states and 7 is a subset of all
2" possible bit-strings. In the rest of the paper the index set / is implied. We note
that although we are using an ansatz for this algorithm, any density operator can be
represented in this form provided the index set / is large enough. However, it should
be noted that assuming polynomial resources to store the bit-string weights implies
that the present algorithm employs a sparse approximation to represent the density
matrix. The Lindblad master equation is mapped identically to the vectorization
mapping, resulting in Eq. (2.2). In order to implement the resulting non-unitary time
evolution on a quantum computer, we need to rewrite the time evolution operator
in terms of products of unitary evolutions and imaginary time evolutions. The
unitary evolution can be implemented directly on the quantum computer, while the
imaginary time evolutions are implemented via a QITE adaptation, described in the

following.



20

Derivation of the QITE linear system for complex time evolution
Here we derive the QITE linear systems which need to be solved to obtain the unitary
time evolution of the density operator ansatz under vectorized Lindblad evolution.

Consider |p) = 3, pxT|x) ® T|x), with T unitary. The complex time propagator is

(2.13)

the same as in the vectorization method,

X(t) =

exp (

Trotterizing results in

_ 1 1
1@ H+iH &I+ Z(Lk ®Li-51® (LTLy) - S(LILy @)
k

X(1) =

n

LTLir\*
k kT J—
) exp (Ly ® Li7) (2.14)

[exp (iH" 1) ® exp (-iH7)] n exp (—
k

+0 (Tzn)

with 7 = t/n. Using the identity exp (—iA) = exp (iA") for A Hermitian and
exp (B) = exp (B) for arbitrary B, the propagator can be rewritten as

X(1) = {[U o0l [ [ i ®W]Wk} +0 (Tzn) (2.15)
k

with U := exp (iH 1), Vi = exp (—LZL_](T/Z), and Wy := exp (L ® Li7). Itis
immediate that evolution with U ® U preserves the ansatz, as (U ® U) ¥, pT|x) ®
T|x) = 3, p«(UT)|x) ® (UT)|x). The term V ® V also preserves the ansatz, but is
an imaginary time evolution with Hamiltonian L;L_k/ 2, and so requires a modified
QITE algorithm, described below, for implementing exp (—LZL_kT /2)T|x). Due to
the non-unitarity of Vi, we expect that in addition to a unitary evolution of the state,
the weights p, will also evolve in time. The final term, Wj = exp (L_k ® L;T), does
not preserve the ansatz, and we use a modified version of QITE, described below,

to effectively apply Wy while preserving the form of ansatz.

Implementing V; ® V; via a QITE adaptation
Under real time evolution by the non-unitary operator Vj ® Vi, the evolution of |p)

can be expressed as

Vi ® V_kZ 2. TIx) ® T|x) = Z(px + qy) exp (iA)T|x) ® exp (—iA)T|x) + 0(12),
’ ’ (2.16)
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with ¢, € R and A a Hermitian operator with ||A||, = O (7). Defining B :=
(1/ 2)LZL_;<, we then have, to first order in 7,

exp (—7B) ® exp (—7B) Z pTIx) ® T|x) =
x
Z(px +qy) exp (iA)T|x) ® exp (—iA)T|x). (2.17)
Expanding both sides to first order in 7 and discarding higher order terms results in
—1 ) pe(BT|x) @ T|x) + T|x) ® BT |x)) =
D aTlx) @ Tlx) +i ) pe(ATIx) @ T|x) - T|x) ® AT x)).
i ) (2.18)

Taking the inner product of Eq. (2.18)) with (y|T" ® (y|TT results in
-7 Z Pe(IT BT |x)(yIT T |x) + (YIT T x)(y|T " BT |x)) =
X
D aGITTIOITTTIxY +i ) po(GITTATIGIT ) (2.19)
—OIT TIx)(y|TTATx)).
Using the identities (y|T7T|x) = (y|T"T|x) = Oxy for T unitary results in
~tpy (T BT|y) + (GITTBTy)) = gy +ipy (T ATy) = (7T TATy)). (2.20)

Because A is Hermitian, we additionally have (y|TTAT|y) = (y|TTAT|y) so that

the last two terms on the right-hand side cancel, resulting in
qy = —2tp,Re [(y|TTBT|y)] . (2.21)

With the ¢,’s determined, we can now determine the operator A. Rearranging

Eq. (2.18), we first isolate the terms containing A:
i Y pr(AT|x) ® T|x) - T|x) ® AUlx)) =
X
~7 ) p(BT|x) @ Tlx) + T|x) ® BT|x)) - " q.Tlx) & Tx).
X X

(2.22)

We define the right hand side as

(@) = -7 " po(BTIx) @T|x) + T|x) ® BT|x)) = > g, Ty @ Tlx).  (2.23)
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We then decompose A into a sum over Pauli strings with domain size D, A =
2.jajoj, where the o; are Pauli strings acting on at most D qubits, a; € R and
a;j = O (7) for all j. Substituting into the left hand side of Eq. (2.22) yields

i Z pxa;(o;TIxy ® Tlx) — T|x) ® 75T |x)) = Z ajlvj) = |®@), (2.24)

X, J

where we have defined the vectors |v;) := >\ px(0;T|x) ®T*|x) - T|x) ® O';T* |x)).
Denoting by f the function

@) —i > ajlv;)

J

2

fla) =

(O|D)+i Z(aj@ﬂ@ —aj(®P|v;)) + Z a;ar(vilvi)),
J Jk
(2.25)

the optimal coeflicients a; are determined by minimizing f. This results in the set

of equations

0= 8_k = —Im [(vi|DP)] + ZJ: ajRe [(vilv))]. (2.26)

Defining the matrix S;; := Re [(vjlvk)] and the vector b; := Im [(vjld))], the
optimal coefficients a are the solution to the linear system Sa = b.

Using the definitions of |v;) and |®), we calculate calculate the matrix elements of
S as

Sjk =Re [(vj|vk)] =

> p2Re [T (ajok + oo )TIX)] =2 > pepyRe [x|T o TIy) (x| o T]y)]
X Xy

(2.27)

and the elements of b as

by = =2t (> pim [x|T7 o BT|x)] + > pepyIm [T o TIy)IT BTI)] | .
X Xy

(2.28)
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Implementing W) via a QITE adaptation

The real time evolution corresponding to Wy = exp (7L ® L;) can be determined

completely analogously to that of V};, ® V; above. The resulting equations are

Gy =7 X, pe |OIT LTI
Sik =Re [(vjlvi)] (2.29)
bj=Im [(v;|®)]

where Sa = b gives the optimal Pauli strings. The matrix elements for S are the
same, as the vectors |v;) are identical in both cases. Since |®) has a different form,

the elements of b are modified and given by

b; =Im [(v;|®)] :2rszpy1m[<x|TfaijT|y><y|TTLZT|x> . (2.30)
xy

Measuring Matrix Elements

To obtain the coefficients g, and a;, we need to measure various matrix elements. In
general, we can decompose any operator into a sum over Pauli strings, X = 3} ; x;05.
Since (x|X|y) = X; xi{x|o;|y), we then need to measure (x|o;|y) for all Pauli strings

o;. This can be done using the following identities:

GOl ) =0l = 1y)
2Re [(x|X|y)] = v X v 5 X 5
i [ X]y)] = <x|\+/§z<y| X|x>;§z|y> _ <x|;§z<y| X|x>;§z|y>_ o)

(2.31)

In general, the state (|x) + i?|y))/V2, with p € {0,1,2,3}, requires a quantum
circuit comprising m CNOT gates and having depth m + 1, where m is the Hamming
distance between the binary strings x, y [108]. Indeed, one can find an index k such
that x; # yx. Without loss of generality, one can assume that x; = 1 (otherwise,
just invert the roles of x, y and replace p with —p mod 4). One can then define
thesets S ={l :x; = 1,1 # k}, T ={l : x; # y;,[ # k}. Finally, starting from a
register of n qubits prepared in |0)®", the desired state is obtained by: (i) applying
a product of X gates on qubits in the set S, [];c5 X;, (ii) applying to qubit k the gate
gp=H,SH,ZH,ZSH, for p =0, 1,2, 3, respectively, and (iii) applying a product
of CNOT gates to qubits in 7 controlled by qubit k, [];cs cx X;.

For local observables the state preparation is simpler, as described in the following.

Consider a k-qubit observable X®) ®@1,_, with X¥) acting non-trivially on k qubits
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out of a total of n qubits. Then

@XO @ T, iy = (1o Xio Xkt Xl X @ Ty kv, Vi Yerts - V)

(2.33)
= Sxrmin  Oryn X1 Xk [ X O e, v (2.34)
Thus we need only to prepare the states
|‘x17"'7'xk’xk+l""’xn>+ |y1""’yk’xk+1""’xn> —

V2 (2.35)

|X1,~-.,Xk>+|y1,..-,yk>®|xk1 )

+1s-+-5Xn/-

V2

Since k is typically small, only 1 or 2 qubits in most cases and independent of the
system size, this state can be efficiently prepared. The form of Eq. (2.35) suggests
a stochastic sampling method to determine which p,’s to store classically. For
simplicity we describe the case of qubits in a line, and the indices 1, .. ., n labelling
the sites with the observable acting on the first & qubits. The general case is similar.
Since the matrix elements will depend more heavily on qubits 1, . . ., k +m for some
cutoff m, we can sample with higher frequency on the first k + m qubits and with
lower frequency on the rest. In addition, in many cases we expect the dissipation
channels L to reduce long range correlations, further increasing the convergence

rate of local sampling.

Conservation of probability

The trace of the density operator, given by Tr (p) = >, px = 1, is preserved by time
evolution generated by the Lindblad equation. Here we show that time evolution via
Algorithm II also maintains the trace. The trace is preserved if the sum of all g,’s
is zero at each time step. This requires summing the contributions to the ¢g,’s from

both the V}, and W} terms as follows:

= =7 > pyOGITTLILTIy) +7 ) pe D (ITTLITIy)IT LiTx)
y X y

T s 2
—tpRe [GITTLILATIY) | 47 ) pe [T LaT 1)
X
(2.36)
=-1Tr (pLZLk) +7T Z px(x|TTLZLkT|x)
X

=—-71Tr (pLsz) +7Tr (pLZLk)

=0.
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Measuring observables

The result of the solving the QITE linear system at each time step, the weights p. ()
and the Hermitian QITE Hamiltonian A(¢), can be used to calculate the expectation
value of any observable as a function of time. Inverting the Choi-Jamiotkowski
isomorphism gives us the density operator p(t) = 3, p.(t)T(2)|x){(x|TT(z). Ob-

servables O are then calculated as

(0(1)) =Tr (0p(1)) = Z px()YIOT (1) |x)x|T™ (1))
xy

= > pexlT y)(y|OT )
xy

= > pualT! (Z M
x y

= Z pr(O&ITT(H)OT (1) |x).

(2.37)
OT|x)

Beyond a certain number of qubits, storing all the p,(z)’s is not possible, and a
stochastic sampling approach is needed. Locality conditions suggest one possible
approach to efficient sampling, described at the end of section (2.3), which converges
faster than uniform random sampling. It is important to note that although the ansatz
lies in a dilated Hilbert space, all measurements take place on the original system
and no entangling operations between the system and ancilla are needed, and so no
ancillae qubits are needed. In particular, for each time step measurements only on
the original Hilbert space are used to determine the Hermitian matrix A. Expectation

values of observables on this state are computed using the standard methods [65,
64].

The benefits of Algorithm II are that it requires no ancilla qubits, and no Hadamard
test is required for measurements of observables. These characteristics, trading
quantum for classical resources and simulating large quantum circuits using smaller
quantum computers are important for near-term hardware [109, 110, 111, 112, 113].
In particular, Algorithm II allows for halving the number of required qubits as in
Ref. [113], allowing simulation of larger physical systems by increasing the classical
and quantum computational time while decreasing the required number of qubits.
Its drawbacks are the sparse representation of the density matrix and the number
of measurements required to evolve the system. We discuss this overhead in the

following section.
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2.4 Run time bounds, computational overheads, and errors

In this section, we discuss the run times, quantum and classical computational
overheads, and errors associated with each algorithm. Other sources of errors,
such as those associated with noisy hardware, are not addressed here as they are

non-algorithmic errors.

Run time bounds

We first bound the run time of Algorithm I. For each time step in the Trotterization,
the algorithm requires applying the imaginary time propagator exp (—H,7), where
7 =t/N and N is the number of Trotter steps for the time evolution. Assuming alocal
Lindblad equation, H> is a sum of m, local terms h; such that H, = 2731 h;, where
my scales polynomially with system size. The imaginary time evolution operator
exp (—H,7) is implemented by additional Trotterization. For a given desired error
€2, we Trotterize the imaginary time evolution into p, steps. From Eq. (3.8) of
Ref. [114], we find that for p, > 1/e; the error in the p;-step approximation is
bounded by e, assuming the number of Trotterization steps for time evolution N is

sufficiently large that 3mytvy /N < 1, where v, = max;{||A||}.

Each term in the Trotterization is an imaginary time increment and so corresponds
to a rotation by a unitary operator supported on D qubits where D is the domain size.
An arbitrary D qubit unitary can be decomposed exactly into O (D24D) single-qubit
and CNOT gates [45]. The total contribution to running time from all the imaginary
time evolutions is O (NmyD?4P /).

Algorithm I also has additional unitaries exp (—iH;7) interleaved between each
QITE step, leading to an additional overhead. Because H; is a sum of local terms,
H, = Z’l":ll h;, exp (—iH 1) needs to be Trotterized as well. Performing a similar

analysis for the real time evolution, we find the total running time to be

T=0 (Nm1k24k /€1 + NmyD24P /62) , (2.38)

where €; is the allowable Trotter error for the real-time evolution and k is the
maximum number of qubits acted on by each term in the Hamiltonian. In the first
term on the right hand side, we have assumed that each k—local unitary can be
exactly decomposed into O (k24k) single qubit and CNOT gates [45].

A similar analysis can be carried out for Algorithm II, resulting in the same run-time
up to constant factors with the following difference. The errors appearing in the

run-time bound for Algorithm II do not include errors incurred from approximating
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the density operator with a strict subset of all bit-strings. Although in principle
any density operator can be represented by the sum Y, p.U|x) ® U|x), this sum
contains exponentially many terms and so only a subset of all possible bit strings
can be included efficiently. Exclusion of bit-strings leads to an error in representing
the state given by ) ,.c;c px, Where [ is an index set containing all bit strings to be
included, and /¢ is its complement. Whether a polynomial scaling of the number of
included bit-strings is sufficient for a desired error will be problem dependent. In
practice, this scaling can be assessed by stochastically sampling the bit-strings until

the simulation converges.

Measurement and classical computational overheads

Provided that the finite domain approximation holds, the largest computational over-
head (apart from running time) of both algorithms is the measurement overhead.
For Algorithm I, this measurement overhead is the same as in the original QITE
algorithm. State tomography over each domain consisting of D qubits needs to be
carried out to construct the unitaries over that domain, requiring O (4D ) measure-
ments. Assuming a 1-dimensional lattice, there are O (n/D) domains, and so the
total measurement overhead is O ((n/ D)4P ) per time step. Similar bounds can be

obtained for lattices in higher dimensions.

Algorithm II requires measurement of the matrix elements (x|Uo;U|y) for all
Pauli strings o; supported on a domain D (measured in qubits) and all bit strings
in x, y € I for some subset [ of the 2" n-bit strings. Measuring all matrix elements
necessitates running O (L4D |1 |2) circuits per time step, where L is the number of
Lindblad operators on the domain and |/| is the number of bit-strings included in the
computation. For the algorithm to be efficient, the number of bit strings included in

I must scale polynomially or slower with system size.

The finite-domain approximation required from QITE is accurate in many cases
because the domain size D can generally be taken to be smaller for dissipative
systems compared to the same system with no dissipation, as dissipation generally
reduces a system’s correlation length [115]. It should be noted that a reduced
correlation length that decreases the cost for quantum algorithms might also permit
an efficient classical description of the quantum evolution. This imprecise boundary
is a consideration for quantum simulation algorithms generally and remains a topic

of active investigation.
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Algorithm | # of qubits | Circuits per Lindblad operator
I 2n+1 (n/D)4P
II n (n/D)4P|I?

Table 2.1: Asymptotic number of circuits required per time step per Lindblad
operator for both algorithms for an open system on r sites. Here, D is the domain
size, and I is is a subset of all n-bit strings for which the corresponding matrix
elements are measured.

Table 2.1 summarizes the asymptotic scaling of the number of circuits required per
time step of both algorithms for open quantum system dynamical simulation on n

sites.

2.5 Quantum hardware demonstrations

We demonstrate both algorithms on IBM Quantum hardware for two cases: the
spontaneous emission of a two level system (TLS) in a heat bath at zero temperature,
and the dissipative transverse field Ising model (TFIM) on two sites. The TLS (n = 1
from Table 2.1) requires three physical qubits and one physical qubit to simulate
with Algorithm I and 1II, respectively. The TFIM (n = 2 from Table 2.1) requires
five and two physical qubits, respectively.

Considering Algorithm I, neither the TLS nor the two-site dissipative TFIM on 5
qubits have constant depth circuit decompositions; Trotterizing both the real and
imaginary time propagators results in a circuit with depth linear in the number of
time steps. The resulting circuits are too deep for near-term devices. To overcome
this limitation, we recompile the circuits as in Ref. [100]. In all simulations, we
correct for readout error using the built-in noise models in Qiskit [116, 56, 117, 55].
All measurements reported represent the average of 8192 shots and were repeated
three times. Sampling noise in the measurement of the expectation value of the Pauli
strings can lead to numerical instabilities in the QITE linear system. Therefore, when
constructing the QITE matrix for Algorithm I, regularizers 1 x 107 and 0.01, for
the TLS and TFIM, respectively, were added to the diagonal terms of the S matrix to
increase the condition number of the matrix S following the procedure in Ref. [59].

No regularizers were used for Algorithm II.
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Hardware demonstration of a two-level system

We first present results for the TLS model with the Hamiltonian

H= —gO'Z - %O’x (2.39)
and the Lindblad operator 4/yo_, where o_ is the lowering operator, ¢ is the
detuning, Q is the Rabi frequency, and y is the spontaneous emission rate. We
consider here the overdamped case where 7y is on the order of the other energies
in in the system. It was found via numerical simulations that to accurately capture
the dynamics only the Pauli strings in the set {0‘x ® 0,0y ® 0,0y ®0;,0;® O'x}
needed to be included in the QITE unitary.

We set 6 = Q =y = 1, and the initial state was chosen to be the excited state. In
Fig. 2.3, we show the populations of the ground and excited states, with the experi-
mental data averaged from three runs on IBM’s ibmqg_mumbai [118] for Algorithm
I and ibmq_casablanca [118] for Algorithm II. Good qualitative agreement is
obtained for all observables, with the deviation between the theoretical and experi-
mental curves largely due to gate errors as confirmed by numerical simulations and

noisy hardware emulations.

We observe an initial exponential decay in the population of the excited state due to
spontaneous emission into the bath followed by an approach to the non-equilibrium
steady steady state (NESS) for y¢+ > 1. Damped Rabi oscillations are visible
between these two regimes. The populations in the NESS can be interpreted as
a balance between the spontaneous emission due to coupling to the bath and the
absorption and stimulated emission due to the Hamiltonian driving term o, [121].
In the NESS, the combined spontaneous and stimulated emission rates are equal to

the absorption rate.

In the absence of driving by an external electric field (2 = 0) the Hamiltonian is
diagonal in the computational basis, resulting in the off-diagonal matrix elements
Po1 = p1o approaching zero as the system thermalizes. Figure 2.4 shows that
these matrix elements remain non-zero as the NESS is approached, indicating that
the hardware correctly obtains the expected quantum coherence as measured in the
canonical basis. Also shown in Fig. 2.4 is the purity Tr (pz), which does not corre-
spond to a time-independent Hermitian observable on the system but can nonetheless
be obtained from the density operator representation on the hardware. Time evolu-

tion preserves the inner product Tr (p?) = (p|p) on the quantum simulator, but the
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Figure 2.3: Population of the excited state from numerical simulations obtained
in QuTiP [119, 120] (black line), hardware using Algorithm I on ibmg_mumbai
[118] (blue crosses) and Algorithm II (green circles) on ibmq_casablanca [118].
The deviation between the theoretical and experimental curves is largely due to gate
error. The system approaches a non-equilibrium steady state for yz > 5.

physical quantity, the normalized purity, Tr (p?) /Tr (p), is not constant.

The larger deviation between the hardware results and the exact results for Algorithm
I is attributed to the fact that Algorithm I is a three-qubit circuit requiring two-qubit
gates, which are generally of lower fidelity than single qubit gates. Since Algorithm
I for the TLS is a single qubit circuit, there are no infidelity contributions from
two-qubit gates. In addition, the circuits required for Algorithm I are deeper than for
Algorithm II, resulting in more gate errors. An additional breakdown of the error
contributions due to hardware error and algorithmic error is provided in Fig. 2.5,
in which we compare the hardware results to noiseless numerical emulations. The
noiseless numerical emulations were run with the same circuits as in the hardware
trials but using IBM’s gasm_simulator. From Fig. 2.5, we see that Algorithm I has
a larger deviation between the emulation and hardware data. This difference can

be accounted for by the fact that the hardware experiment for Algorithm II requires
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Figure 2.4: Purity, Tr (pz) (grey line) and off-diagonal term, Re [p19] (black line),
corresponding to non-diagonal observables obtained in in QuTiP [119, 120]. Hard-
ware results are shown for Algorithm I (purity, red crosses; Re [p19], blue crosses)
and for Algorithm II (purity, orange circles; Re [p10], green circles). Hardware re-
sults for the observable Im [p¢] agree with the exact solution similarly to Re [p¢]
but are omitted for clarity. For all hardware results for Algorithm I, the error bars are
the standard deviation from three runs. The error bars for Algorithm II are smaller
than the symbol size.

only a single qubit, so the density matrix for all time steps can be obtained from
only single qubit rotations. Single qubit simulations can always be compiled to
a constant depth regardless of the number of time steps, resulting in lower depth
circuits and correspondingly lower total gate error. In addition, since 2-qubit gates
are generally lower fidelity than single-qubit gates, there is no infidelity contribution

due to 2-qubit gates in Algorithm II.

Since systems with larger or smaller dissipation rates correspond to different pa-
rameter regimes, we expect that the dissipation rate may also effect the accuracy of
the algorithms. In general, we should expect larger algorithmic errors when larger
dissipation rates are simulated since both the Trotter error and QITE error increase

with the operator norm of the Lindblad operators. Larger dissipation rates corre-
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Figure 2.5: Excited state population for the two level system (TLS). The solid curve
is the exact solution and the blue and red dots are noiseless numerical emulations of
Algorithm I and II, respectively. The blue and red crosses are the hardware results
presented in the main text for Algorithm I and II, respectively. The deviation between
hardware and simulation results for Algorithm I are larger than for Algorithm II,
which we attribute to hardware error resulting from the larger circuit depth and
number of qubits needed for the Algorithm I.

spond to Lindblad operators with larger norms and hence larger algorithmic errors.
To understand how increasing dissipation rates affect both algorithm’s errors, we
performed simulations of the 2-site TFIM with dissipation rates ranging from y = 0
toy = 1. Figures 2.6 and 2.7 shows the results of the simulations using Algorithm I
and II, respectively. We see that in this specific case, which includes 16 Pauli strings
for Algorithm I and all possible bit-strings for Algorithm II, Algorithm II performs
qualitatively better than Algorithm I for all dissipation rates. Although Algorithm
IT performs better for the simulations shown in Fig. 2.7, we have not considered the
error due to bit-string selection. For larger systems where all bit-strings cannot be
included, there will be additional errors introduced by including only a strict-subset

of all possible bit-strings.
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Figure 2.6: The effect of increasing the dissipation rate from y = 0 to y = 1.

Noiseless simulation of Algorithm I using 16 Pauli strings. The same qualitative
error is obtained for all dissipation rates simulated.

Hardware demonstration for a transverse field Ising model

We next present experimental and numerical results on the 2-site TFIM. The TFIM
has the Hamiltonian

H=-J) oV —p 3" o (2.40)
k k

and Lindblad operators \/?O'Ek) , with nearest neighbor coupling J, transverse mag-
netic field /4, and decay rate y. For this model, the number of required Pauli strings
could not be reduced by symmetry in Algorithm I. To reduce circuit depth, 16 Pauli
strings were randomly selected out of the 256 possible Pauli strings on 4 qubits to
implement the QITE unitary. We chose 16 Pauli strings as a balance between too
few Pauli strings, which results in a poor approximation to normalized imaginary

time evolution, and too many Pauli strings, which results in a large computational
overhead and an ill-conditioned QITE matrix.

33
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Figure 2.7: The effect of increasing the dissipation rate from y = 0 to y = 1.
Noiseless simulation of Algorithm II.

Figure 2.8 shows the average magnetization of the dissipative TFIM with the initial
state given by both spins in the spin up state and / = h = 1 and y = 0.1. Os-
cillations in magnetization are evident due to the relatively large transverse field.
We observe qualitative agreement between the theoretical and experimental curves
from Algorithm I with a Trotter step yz/N ~ 0.5. For the small system size of 2
sites, all 4 bit-strings on 2 qubit were included in Algorithm II. Experimental results
for Algorithm II are also in good qualitative agreement with the exact curve for all

times.

Exactly simulating the 2-site TFIM using Algorithm I requires measuring expec-
tation values of the 256 Pauli strings on 4 qubits. To reduce the runtime of the
Algorithm, we use a subset of all Pauli strings. We show in Fig. 2.9 that increas-
ing the number of included Pauli strings beyond 16 has only a minor effect on the

observables.

In Section 2.4, we discussed the runtime and resources required by both algorithms

in a general setting. We now discuss the relative computational cost required
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Figure 2.8: Average magnetization N~! 3;(Z;) for the dissipative transverse field
Ising model on 2 sites (5 physical qubits for Algorithm I, 2 physical qubits for
Algorithm II) using IBM Quantum’s ibmq_guadalupe [118] for Algorithm I (blue
symbols), and ibmq_casablanca [118] for Algorithm II (green symbols). Numer-
ical solutions obtained in QuTiP are shown with black lines. The error bars for
both algorithms are the standard deviation from 3 hardware runs. Both algorithms
qualitatively agree with the exact dynamics for all simulated times. The deviation
between the hardware results and the exact result for Algorithm II is due mainly to
Trotter gate error.

by each algorithm for the specific case of the 2-site TFIM hardware simulations.
For the simulations considered here, Algorithm I is able to accurately describe the
dissipative dynamics when using 16 out of the total of 256 Pauli strings. Simulations
of Algorithm I using up to 48 Pauli strings, shown in Fig. S2, show no significant
increase in accuracy when using more than 16 Pauli strings. In general, the number of
required Pauli strings will be problem dependent. Algorithm II requires measuring
the matrix elements of all two-qubit Pauli strings at each time step, requiring 836
circuits per time step, versus only measuring expectation values of 16 operators in
the case of Algorithm I, which requires 16 circuits. These measurements are only

needed on a domain of fixed size.
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Figure 2.9: Noiseless numerical simulations for the transverse field Ising model
(TFIM) using Algorithm I with increasing number of Pauli strings included. Here
the dissipation rate is y = 0.1. The black solid curve is the exact result, and the blue
dashed curve is a simulation of Algorithm I using the same 16 Pauli’s as in the main
text. The red, green, light blue, and yellow dashed curves are noiseless numerical
simulations of Algorithm I obtained from including an increasing number of Pauli
strings in the simulation. From these simulations we see that only marginal increase
in accuracy is obtained from including a larger number of Pauli strings.

For larger dissipation rates y ~ J, h, separate numerical simulations, presented in
Fig S3, show that both algorithms are able to accurately capture the magnetization
dynamics. However, these simulations do not include the error incurred by including
a subset of bit-strings in Algorithm II. The actual algorithmic error of Algorithm II
will thus depend on the accuracy of the representation of the density matrix with a
subset of bit-strings for the given problem. Stochastic sampling of bit-strings may
be a viable approach for larger systems.

2.6 Summary
We have introduced digital quantum algorithms for the time evolution of open

quantum systems described by a Lindblad equation based on quantum imaginary
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time evolution. Algorithm I uses QITE to implement the non-unitary evolution
introduced when the density operator is vectorized, whereas Algorithm II uses an
adaptation of QITE to maintain a purification-based ansatz throughout the com-
putation. Calculations for the spontaneous emission of a two level system and the
dissipative transverse field Ising model, respectively, were carried out on IBM Quan-
tum’s quantum processors. Good qualitative agreement with the exact result was
observed in all cases. These algorithms decrease the quantum resources required to
simulate open quantum systems governed by Lindblad master equations on quantum

hardware.
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Chapter 3

SCALABLE CROSS-ENTROPY BENCHMARK OF
MEASUREMENT-INDUCED PHASE TRANSITIONS ON A
SUPERCONDUCTING QUANTUM PROCESSOR

[1] Hirsh Kamakari et al. Experimental demonstration of scalable cross-entropy
benchmarking to detect measurement-induced phase transitions on a super-
conducting quantum processor. In: arXiv preprint arXiv:2403.00938 (2024).
URL: https://arxiv.org/abs/2403.00938.

In the previous chapter, we described two algorithms for simulating open quan-
tum systems on a quantum computer. Although we were able demonstrate both
algorithms on quantum hardware, due to the excessive circuit depth resulting from
Trotterization we required fitting the circuits to a known ansatz. This approach is not
scalable and was only used for demonstrations purposes. In general, Hamiltonian
dynamics results in circuits which are too deep to run effectively on a quantum com-
puter. Another class of quantum computations which exhibit interesting dynamics
are random quantum circuits. These circuits can often be shorter depth than circuits
for Hamiltonian dynamics, and therefore are a prime candidate for study on near

term quantum computers. [122, 123]

In this chapter, we experimentally study measurement induced phase transitions(MIPTs)
which result from random circuits consisting on unitary operations as well as mea-
surements at random points in space-time. Although MIPTs have been previously
studied on superconducting quantum processors [60], scalable demonstrations with-
out any exponential overheads have not. Here, we present an experimental demon-

stration of MIPTs using a scalable cross-entropy benchmarking protocol [61].

3.1 Introduction

Quantum systems undergoing unitary evolution in the presence of an observer
making measurements (monitored quantum systems) [124, 125, 126] exhibit unique
dynamics, distinct from both thermalizing closed systems and conventional open
quantum systems. When a system is weakly monitored and subject to sufficiently
entangling unitaries, initial product states typically exhibit a linear in time growth of

the entanglement entropy, before evolving into steady states where the entanglement
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entropy admits a volume-law scaling [127, 128, 129, 130]. In contrast, strongly
monitored systems are not able to support highly entangled states, resulting in area-
law entanglement scaling even at long times. Separating the two phases lies a
continuous phase transition, which was initially found theoretically in simplified
quantum circuit models with mid-circuit measurements, and was later found to be
generic to a wide range of monitored dynamics [131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145]. Such measurement-induced phase
transitions (MIPTs) have recently garnered much interests [146], in part due to
multiple theoretical viewpoints one can take in describing them [147, 148, 149, 150,
151].

An experimental observation of MIPTs was recently demonstrated on IBM quantum
hardware with up to 14 qubits [60]. By directly measuring the entanglement entropy
after a comprehensive quantum tomography of the steady states, Koh et al. [60] were
able to observe an MIPT and confirm the competing effects of random unitaries and
mid-circuit measurements. However, the experiment required over 5200 qubit-hours
and is limited in scalability due to the exponential cost of quantum state tomography
and post-selection of measurement outcomes. The lifetime of superconducting
qubits also puts a stringent limit on the circuit depth (as well as on system size when
circuit depth scales with the number of qubits), since mid-circuit measurements
can be an order of magnitude slower than two-qubit unitary gates. To avoid mid-
circuit measurements, a space-time duality mapping was introduced [152, 153] and
recently implemented on Google’s superconducting processor [154], where MIPT-
like physics was observed in 1D unitary circuits with a reduced number of post-
selections, and at the boundary of shallow 2D unitary circuits of 70 qubits without
post-selection. Alternatively, order parameters based on reference qubits can be used
to efficiently and scalably probe MIPTs [155], where post-selection can be avoided
with an accompanying classical simulation. The use of a reference qubit to probe
MIPTs has been demonstrated in trapped ion systems for Clifford circuits [156],
featuring a high gate fidelity and non-local qubit connectivity. However, critical

exponents at the transition were not obtained from previous experimental data.

In this chapter, we explore experimental realizations and efficient probes of MIPTs
in prototypical hybrid Clifford circuit models with up to 22 physical qubits in
less than 8 qubit-hours on IBM superconducting devices. By combining a recently
proposed cross entropy benchmark (XEB) protocol [61] with a Clifford-based circuit

compression [62], we circumvent the exponential overhead in post-selection and
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tomography, and manage to probe MIPTs in systems with larger effective system
size than the available number of physical qubits while minimizing the effect of noise.
Moreover, the circuit compression allows us to investigate circuit models with all-
to-all connectivity on IBM’s 2D layout, due to reduced non-locality in compressed
circuits. We obtain precise estimates of critical exponents that are comparable to
theoretical predictions. Comparing the experimental data to numerical simulations
with stochastic erasure error, we give rough estimates of effective noise rates per gate
of the superconducting devices, which are comparable to numbers IBM reported.
Qualitative differences between experimental data and numerical simulations are
also observed, which we understand to be macroscopic manifestations of real device

errors that are beyond our simple noise model.

This work paves the way for scalable studies of other critical phenomena on near-
term quantum hardware and provides a benchmarking tool for quantum circuits with

mid-circuit measurements.

3.2 Circuit model and cross entropy benchmark

We consider a family of random circuits, where each circuit consists of two stages:
an purely unitary “encoding stage” consisting of fencoding layers, and a “bulk stage”
consisting of 1k layers with both unitary gates and mid-circuit measurements, see
Fig. 3.1(a). For an L-qubit circuit, both stages must contain a number of layers
scaling at least linearly with L for the system to enter a steady state, particularly

when the steady state has volume-law scaling of entanglement entropy.

The protocol involves the application of the same circuit to two different initial
states, p and o, and a comparison between the two ensembles of measurement
records. For a given circuit C with N mid-circuit measurements, a measurement
record m = (my,ma,...,my), where m; are the outcomes (0 or 1) from each mid-
circuit measurement, is sampled by running the circuit on quantum hardware with
input state p. The sampled measurement records obey a probability distribution,
which we denote as pk,. We also implement the sampling experiment using classical
simulations of the same circuit, but with a different (stabilizer) initial state o. The
corresponding measurement record probabilities is similarly denoted as pg,. The
cross entropy acts as a distance measure between the two distributions, and is defined

for this circuit as .
_ ZmPmPm

N A E

which can be estimated by taking the sample average of pg, /(X (p%)?) over many

3.1)
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Figure 3.1: Schematic of the protocol demonstrated in this chapter. (a) We construct
an L-qubit Clifford circuit consisting of Zencoding €ncoding layers, and #,u1x bulk layers.
Each layer (shown in the red dashed box) consists of L random 2-qubit Clifford
unitaries and each bulk layer additionally contains Pauli-Z measurements . The
measurements are performed at each spacetime location of the bulk independently
and with probability p. We choose the initial state |¢) to be either |0T)®X/2, where
|T) is a magic state, or |0)®L . (b) After circuit compression, we obtain an L/2
qubit circuits consisting of at most L /2 multi-qubit Pauli measurements which may
not be geometrically local and have to be compiled into nearest-neighbor two-qubit
gates and single-site measurements. The compressed initial state is |¢') = |T)®L/2
or |0)®%/2. Only circuits with initial magic states are run on hardware.
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runs of the quantum circuit with input state p. We then average over random circuits
C, obtaining the final cross entropy for a given measurement rate as y = Ecyc. As
shown in [61], for p # o and in the absence of noise, the quantity y acts as an order
parameter which, in the thermodynamic limit, approaches 1 when the system is in
the volume-law phase (small p) and approaches a constant strictly less than 1 in the
area-law phase (large p). Intuitively, y measures the distinguishability of the two
initial states by comparing mid-circuit measurement records, after the two initial
states are “scrambled” by the encoding unitary. Previously, the linear cross entropy
has been used as a figure of merit for random circuit sampling [157, 123, 158,
159]. For y to be efficiently obtainable from quantum and classical hardware, the
probabilities p7, as well as 3, (p%)?, need to be efficiently classically computable.
This is possible when the bulk of the circuit contains only Clifford operations and
when the input state o is a stabilizer state. The cross entropy protocol is similar in
spirit to hybrid quantum-classical observables used in previous experiments [154,
156] (see also [160, 161]) and, as we will show, allows us to probe critical properties

on noisy processors without error mitigation.

We implemented this approach on IBM Quantum processors. The systems we
considered are a 1D chain with nearest-neighbor qubit connectivity and an infinite-
dimensional system with all-to-all qubit connectivity. We chose the initial L-qubit
states on the quantum processor in both cases to be p = |070T - - - 0T ){T0T0 - - - TO|
with |T) = (|0)+exp (ir/4)|1))/V?2, the alternating magic state, and o = [0®L)(0®E|,
the all-zero state. We note that p is not a stabilizer state. For the alternating magic
states, the number of 7" gates grows linearly with the number of qubits, so that an
exact simulation of the circuit is classically intractable [162, 163, 164, 165]. For
all experiments, the circuits are constructed using alternating layers of unitaries and
measurements. Each unitary layer consists of L/2 two-qubit unitary gates, sampled
uniformly from the two-qubit Clifford group. For the 1D chain, the two-qubit Clif-
ford gates are applied in a brickwork pattern on nearest-neighbor qubits. For the
infinite dimensional system, L /2 two-qubit unitaries are applied to pairs of qubits
selected uniformly at random. Each measurement layer, in both the 1D chain and
the infinite-dimensional system, consists of single-qubit Z measurements occurring
on each qubit with probability p. For both systems, we used an encoding ratio and
bulk ratio of 3, namely fpuix = Zencoding = 3L. For all experiments, we generated
1000 random circuits for each (L, p) pair, and each circuit was run 1000 times on

the ibm_sherbrooke machine.
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3.3 Compression of Clifford circuits with magic initial states

The resulting circuits with the above properties have at most L mid-circuit measure-
ments per qubit, which are relatively slow operations and introduce both readout
and quantum state errors, and so they cannot be executed while preserving adequate
fidelity. We therefore employ a circuit compression scheme which exploits the input
state being an alternating magic state and the circuit bulk being fully Clifford. After
circuit compression, we obtain a circuit with L /2 hardware qubits and at most L/2
multi-qubit measurements, significantly fewer than an average of ptyu L> measure-
ments in the original uncompressed circuits. For each measurement record of the
compressed circuit, we can further use it as a seed to classically sample a measure-
ment record according to the ensemble of the uncompressed circuit. The initial state
of the circuit is now |T)®L/2, see Fig. 3.1(b). The multi-qubit measurements are
generally not geometrically local, and must be compiled into local gates and local
measurements (which are now mid-circuit measurements). As a result, the circuit
compression reduces the number of two-qubit gates from 3L? to L?/2, but increases
the circuit depth from 9L to an average of L2, see Sec. 3.3 for additional details. All
circuits used in our experiments use Clifford compression, bringing larger system

sizes within the range of accessibility.

Here we describe the Clifford based compression algorithm we use to reduce the
required number of physical qubits by a factor of two, as well as to reduce the
total number of mid-circuit measurements to equal the number of physical qubits.
The compression is based on Ref. [62] with an improvement that removes the
requirement for dynamic circuits (adaptivity), but instead using an efficient classical
simulation and classical coin flipping. Here we first summarize the compression

algorithm stated in Ref. [62], and then explain how to remove the adaptivity.

Summary of the compression algorithm
In a particular circuit realization the unitaries and the measurements can be written

as
Cm = ...UsM,,UsM,, U,. (3.2)

Here m; is the j-th measurement outcome of the entire record, and correspondingly
M,,; = (14 (=1)"7P;)/2 is the j-th projection operator, with P; the Pauli operator
being measured. Moving all unitaries past the measurements to the right, we can

equivalently write

Cm=...My,M,,, (3.3)
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Mmj:§(1+Zij), Pj:UIUZ'---UijUjUj—l---UI (34)

are now multi-site Pauli measurements and z; = (—1)"/.

LetA={l,...,k},and B={k+1,...,N}. Following Ref. [62], we state without

proof that the following algorithm correctly samples an output bitstring of the circuit

C on a input state in the new basis, with input states of the form |¢/) = [¢4)® |O§N Ky,

1. Initialize the quantum state |¢4), define the initial stabilizer group & =
(Zk+1, - - - Zn), and let the Pauli operators be {f~’j}.

2. Consider each P ; in increasing order of j. For each j there are three possible

cases:

a)

b)

P ; € S. In this case the measurement result is deterministic, and can be

classically computed and we do not need to update the state or S.

P ; € S, and it anticommutes with at least one element Q € S. In this
case, the measurement result of P ; is equally likely z; = +1. We can
flip a classical coin to sample z;. Further, we need to account for the

change in the state, which can be shown to be

l9) = Vi(zp)l¥) (3.5)
where V;(z;) is a Clifford unitary operator
1 ~
Vi(z;) = —=(Q +z;Pj). (3.6)
=5 it

Instead of evolving the state and updating S, we adopt the Heisenberg

picture and modify all subsequent measurements P> ; as follows,
Py — Vi(z) PiVi(z)), Yk > j. (3.7)

P ;i ¢ S, and it commutes with all elements of S. It then necessarily
commutes with Z;, 1, . . ., Zy since these stabilizers are permanent, as we
can check at the end of the algorithm (see comment 2 below). It follows
that }7 ; only contains the identity operator or the Pauli Z operator on B.
We can then consider a truncated Pauli operator that is supported only

onA,

P} =n;-Pjla, (3.8)
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where P ila is the restriction of P 7 on A, and the sign n; = £1 can be

chosen such that for any state |¢4) we have
($alPHpa) = (¢4 @ 05N F|P;|ps @ 05V ). (3.9)

The measurement of P ; on the joint system AB can therefore be faith-
fully simulated by a measurement of ﬁ;‘ on just A. We perform this
measurement on the state |¢4), update the state accordingly and record

the measurement result z;.. We then update the stabilizer group as
S — (S.7,P%). (3.10)
We see that in this algorithm

1. Cases (1) and (2) can be accounted for by classical simulation, and only in

case (3) a quantum operation on |¢4) needs to be performed.

2. The stabilizer group S gets augmented only in case (3), and can be augmented
at most k times. Once an operator is added into S, it will remain in S until

the algorithm terminates.

In this way, a given sequence of multi-site measurements can be simulated by a
“compressed circuit” with at most & multi-site measurements on A, as well as

classical coin flips, up to a polynomial time overhead.

Removal of adaptivity

A major problem of the above algorithm is that the update of the stabilizer group S
in case (c) depends on the quantum measurement result z;.. Not knowing z;. before
the circuit execution will lead to the lack of knowledge of the sign of Q € § in case
(b) if occuring after the update of S due to case (c). Here we show the adaptivity can
be removed by proving that the effect of flipping signs of z;. or Q can be captured

by classical postprocessing.

In order to prove it, we first notice that 0 — —Q is equivalentto z; — —z; in Eq. 3.6
(V — -V has no effect on Eq. 3.7). We additionally notice that

Vi(=z;) = QV;(z))0Q, (3.11)
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so that for any k > j,
Vi(=2) PiVi(=zj) = QV;(z)) QP QV;(z))Q
= 29.5,0V;(z)) PrV;(z)Q
i
= AQ,ﬁk/lQ,Vj(Zj)Tﬁij(Zj)Vj (Zj) Pij(Zj)a (312)
where we have defined the commutator of Pauli operators A, B

AB = A4 pBA. (3.13)

Eq. (3.12) implies that flipping measurement results z;. at most result in sign changes
of the subsequent measurements operators Py ;, and such sign dependence can be
classically captured. In practice, we can first determine the form of each Pauli
operator to be measured on A in the compressed circuit, and assume they all have
+1 sign; the adativity can be re-introduced in post-processing, by flipping the

measurement results appropriately.

Decomposition of the Pauli-based computing model to a common gate set

Here we describe an algorithm to decompose each multi-qubit Pauli measurement

in Eq. (3.3) to
T

P, = Z[k]

[l

1

[l

l

where {C;} contains up to m single-qubit Clifford operations and 2m CNOT gates.
For a Pauli string P; = ®" P;[i], where P;[i] € I,X,Y,Z, we first convert

each X and Y to a Pauli Z at qubit i by a single-qubit Clifford operation C|[i],
ie., C[i]Pj[i]C[i]Jf = Z|[i]. After this step, the Pauli string becomes a string
of Is and Zs. We note the fact that CNOT; (I ® Z)CNOT;, = (Z ® Z) and
CNOT;2(Z ® Z)CNOT; > = (I ® Z). Thus we first sequentially convert the Pauli
string to the form of /...IZ...Z1...I by converting adjacent ZI or [Z to ZZ, and then
sequentially convert it to I.../Z1...] with a single Z in the middle by converting
adjacent ZZ to IZ or Z1.

By using the above algorithm for the decomposition of P;-, we obtain P;-; =
(I1C)TZ[k)(T] C;). However, instead of naively applying the algorithm for each
P, we first “absorb” (] C;)" into the rest of the Pauli strings by P; — (I1C)HP;(I1 C)T,
and then apply the above algorithm to the next Pauli measurement. By doing such
“absorption,” we roughly reduce the number of CNOT gates by half. Finally, the
compressed circuit is decomposed to at most m? single-qubit gates and 2m> CNOT

gates.
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Resource reduction after circuit compression

Before compression | After compression
Num. hardware qubits L L/2
Average depth 9L L?
Avg. num. 2 qubit gates 3L° L%)2
Avg. num. measurements 3L°p L/2

Table 3.1: Hardware resources required before and after Clifford circuit compression
for a fixed L and p. The number of hardware qubits, average depth, and average
number of 2 qubit gates required are reduced by a constant factor after compression,
whereas the average number of measurements is reduced by a factor of L and is
independent of p. The values in this table apply both to the 1D system as well as
the all-to-all system.

In Table 3.1 we present a summary of the quantum hardware resource requirements
before and after circuit compression. Here we are setting fyuix = fencoding = 3L and

using an initial p state that is an alternating magic state.

3.4 Qubit selection

For the 1D-chain experiments, qubits were selected heuristically at submission time
based on the one-qubit gate, two-qubit gate, and readout error rates provided by IBM
in their hardware calibration data. We selected the qubits based on a minimization
of the average errors that would occur in all circuits based on the number and
placement of gates and measurements in the circuits. For the 1D-chain experiment
with p # o, the qubits were selected heuristically at run time as in Ref. [60]. The
qubits we selected based on the one and two qubit gate error rates, €'9 and €29,
respectively, as well as the qubit readout error €™ rates provided by IBM in their
hardware calibration data. Denoting by y the set of qubit selections which contain
all L/2 qubits in a connected chain, an average circuit error for circuit C is calculated

as
Evey[C] = Z(elqzv_}q[C] + EINI[C] + €°NP[C)), (3.14)

JEX

where the subscript j represents the j’th qubit in the qubit set x, and the function

N}q,2q,r0

ments, respectively, acting on qubit j in the circuit C. The qubit chain used in the

computes the number of single qubit gates, two qubit gates, and measure-

experiment is then selected as the one which minimizes the average error over all

circuits C, argmin__ EcecEi[C].

XEY

For the all-to-all and p = o experiments, we used the same qubit layouts that were
selected for the 1D-chain.
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Figure 3.2: Cross entropy for identical initial states (p = o) obtained from
ibm_sherbrooke with up to 18 physical qubits (equivalent to a system size of L = 36
qubits before compression). The initial state for both p and o is chosen to be the
all-zeros state, with 2-qubit gates acting on nearest neighbors before compression.
The errors incurred from the physical qubits results in a cross entropy lower than
the theoretical value of 1. Larger systems have more measurements and more gates,
incurring a larger overall error in the cross entropy.

3.5 Resultsfor p =0

We first present the experimental results when we set p = o to provide a benchmark
of the hardware performance. We obtain the circuits from the compressed 1D
circuits, but replace all |T') states with |0) states, so that the initial states on both p
and o are the all-zero state. In this case, since the circuits run on both the quantum
and classical sides are identical, we expect to observe y = 1 for all L and for all p in
the absence of any noise or hardware errors. The deviation of the cross entropy from
1 therefore provides a measure of the overall errors and noise in the circuit, which
could be due to various sources such as gate errors, qubit decay and dephasing, and

cross-talk from mid-circuit measurements.
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The results are shown in Figure 3.2, where we observe that y decreases when either L
or p increases. For increasing L at fixed p, we have more mid-circuit measurements
in both uncompressed and compressed circuits. For increasing values of p at fixed L,
we do not necessarily have more measurements in the compressed circuit (they are
upper bounded by L), but the measurement results will be more strongly correlated,
see Section 3.3. Our noisy simulations in Section 3.12 of uncompressed circuits

are qualitatively consistent with Fig. 3.2.

3.6 Results for 1D chain, p # o
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Figure 3.3: Cross entropy y for 1D chains with up to 22 physical qubits (cor-
responding to a system size of L = 44 qubits before compression) computed on
ibm_sherbrooke.

We next present experimental results for the 1D chain for p # o. Fig. 3.3 shows
the cross entropy curves obtained from the 127 qubit ibm_sherbooke device.
Qualitatively, we see the expected characteristics as described below Eq. (3.1),
namely with increasing L the approach of y to 1 for smaller values of p, and the
saturation of y to a constant < 1 for larger values of p. The curves for different L
cross at the critical point with p,. € (0.15,0.175).
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Figure 3.4: Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function. The fitting
procedure gives a critical measurement rate of p. = 0.14+0.01 and critical exponent
v=14+0.5.

The cross entropy is related to a domain wall free energy in an associated statistical
mechanics model [61], and whose value near the critical point depends only on the
ratio of the system size and the correlation length, according to standard scaling
hypotheses. We verify this hypothesis by collapsing the data from different sys-
tem sizes L and measurement probabilities p to an unknown but universal scaling

function F:

X(Lop) = F [ (p = o). (3.15)

where v is the critical exponent that controls the divergence of the correlation length,
and p. is the critical measurement rate [166]. With F unknown, we follow standard
methods [60, 167] to choose the parameters p. and v so as to optimize the quality
of the data collapse, see Sec. 3.8 for details. Such a procedure allows us to extract
best fits for the critical measurement rate p. = 0.14 + 0.01 and for the critical
exponent v = 1.4 + (0.5 at the 90% confidence level, see results in Figure 3.4. Our
reported values of p. and v are consistent with classical numerical calculations in

the presence of 0.1% erasure noise, see Sec. 3.12.
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For chains of fewer than 10 qubits, we see a stronger finite-size effect as indicated
by deviating cross entropy curves as well as the saturation to a larger final value for
large p (see Figure 3.4). Removing the smaller system sizes from the fitting allows
for the critical values to be obtained while reducing finite-size effects. Although
we extract the same value of v whether we remove the smaller systems or not, the
resulting data collapse has a lower variance, with all data points lying closer to a
single curve. Including only the larger systems leads to fitting critical values of
v =14+0.4and p. = 0.156 + 0.009, see Figure 3.5. The value of v when we fit
all the data is v = 1.4 + 0.3 and the value of p. is p. = 0.144 + 0.007, and so are
qualitatively the same within error bars. Although we obtain the same fit values,
removing the small system sizes leads to a data collapse with reduced broadening,

particularly near the phase transition.
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Figure 3.5: Raw and collapsed cross entropies for a 1D chain. (a) Cross entropy
x for a 1D chain with up to 22 physical qubits obtained from ibm_sherbrooke,
corresponding to a system size of 44 qubits and with small systems (L < 16)
removed. (b) Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function.

Comparing x,-, (Fig. 3.2) with yx,+, (Fig. 3.3), we find that the former is often
visibly smaller than the latter, particularly for the larger values of p we accessed
in our experiments. On the other hand, as we show in Sec. 3.12 with rigorous
arguments, one has the bound x,-, > X,z in Clifford circuits with a simple
noise model, namely those that can be written as stabilizer operations and their
probabilistic mixtures. These include the erasure errors we use in our classical
numerical simulations (see Sec. 3.12). We attribute the violation of this bound to
real device error, which necessarily involves, e.g., coherent and non-unital noise,
that go beyond our simple noise model. Evidently, y,-, is more sensitive to noise

than when two different initial states are used.
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3.7 Results for all-to-all connectivity

We finally present the experimental results for the all-to-all connectivity experiment.
Theory predicts qualitatively similar results of the cross entropy to the 1D case, but
the transition is in a different universality class [168]. The initial states used in
this experiment are the same as in the 1D-chain case. Hardware executions of
the raw, uncompressed circuits are difficult on current superconducting hardware,
which typically only support gates acting on nearest-neighbor qubits. As a result,
the raw circuits would require an excessive number of swap gates. With circuit
compression, however, the average cost of executing the all-to-all circuits are the
same as in the 1D-chain case, since the compressed circuits once again have L/2

qubits and at most L /2 mid-circuit measurements.

L
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Figure 3.6: Cross entropy y for infinite-dimensional systems with up to 20 physical
qubits (corresponding to a system size of L = 40 qubits before compression) com-
puted on ibm_sherbrooke.

Figures 3.6 and 3.7 shows that the phase transition is still observable despite the raw
(uncompressed) all-to-all circuits requiring significantly more gates than in the 1D
case. The qualitative features of y in the all-to-all case are similar to the 1D-chain

case, with larger values of y for larger systems when p < p., crossing of all y’s at
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Figure 3.7: Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function. The fitting
procedure gives a critical measurement rate of p. = 0.26+0.02 and critical exponent
v=19+04.

the critical point, and a saturation to a constant for p > p.. The critical values we
extract from fitting to the finite size scaling form Eq. (3.15) are p. = 0.26 = 0.02
and v = 1.9 = 0.4 at the 90% confidence level, with a different function F than in
the 1D case. In particular, a mean-field analysis of all-to-all circuits [168] predicts
v =~ 2.5, which lies within the range of confidence here . These results are consistent
with our numerical simulations (see Sec. 3.12) for these system sizes,where a large

uncertainty in these fitting parameters are also observed.

The increased value of p. for the infinite-dimensional case compared to the 1D
case is consistent with the intuitive picture that entanglement in a system with high

connectivity is more stable to measurements that in one with low connectivity.

3.8 Fitting parameters v and p. by collapsing hardware data
Near the critical measurement rate p., the order parameter y for different system

sizes and under suitable rescaling is expected to collapse onto a single curve [124,
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166, 167]. Quantitatively, this can be expressed as y (L, p) collapsing to the same

curve for all system sizes L when we suitably rescale both L and p:

X(Lop) = F [ (p = po)| (3.16)

The critical measurement rate depends on the microscopic details of the circuits, such
as the encoding and bulk ratios, whereas the the critical exponent is independent of
the microscopic circuit details and is the same for all systems in the same universality
class [124, 166]. If the scaling function F' was known, we could obtain the optimal
pc and v, denoted by p; and v*, by minimizing the residual sum of squares (RSS)
over all data points:

piov =argmin 3337 (F |1 (p = po)| - eolLp)) . @)

c T 7

where xexp(L, p) is the cross entropy obtained from the experiment for a system
size L and measurement rate p. When the scaling function is unknown, we still
find p} and v* by minimizing an RSS, but instead use an interpolating function for
our scaling function for a fixed L, followed by symmetrization over all L in order
to prevent preferential treatment of any portion of the data [167, 60]. Our approach
to fitting p. and v follows Ref. [60] with modifications due to there being only one
critical exponent in our case, versus two critical exponents in Ref. [60]. We denote
by L the set of system sizes used in the experiment and #; the set of measurement
rates used for a fixed L. For each L € £ and p € Py, we first compute the rescaled

controlled variable
aL(p) =L (p - p.). (3.18)

We then construct a