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ABSTRACT

The use of quantum mechanical phenomena for information processing has the
potential to solve computational problems which are believed to be intractable for
classical computers. Inspired by this potential, the last several decades has seen rapid
development in both the theory and practice of quantum information processing. In
this thesis, we explore three applications of quantum computing for the physical and
computational sciences.

The first potential application is for the simulation of open quantum systems. We
introduce two algorithms for the simulation of open quantum systems governed by a
Lindblad equation. Based on adaptations of the quantum imaginary time evolution
algorithm, these methods transform non-unitary open system evolution into unitary
evolution which can be implemented on contemporary quantum hardware. We
demonstrate these algorithms on IBM’s quantum hardware via the simulation of the
spontaneous emission of a two-level system and the dissipative transverse field Ising
model.

Next, we explore efficient methods to probe measurement induced phase transitions
using superconducting circuits. These phase transitions occur in monitored quan-
tum systems as the measurement rate of randomized single qubit measurements
increases. We overcome two exponential bottlenecks which limited the system sizes
of previous experiments on superconducting circuits by employing a cross-entropy
benchmarking protocol and Clifford based circuit compression techniques. We
observed measurement induced phase transitions on systems of up to 22 physical
qubits.

Finally, we switch our attention to machine learning, where we prove rigorous quan-
tum advantages for adversarially robust classification. By constructing a learning
task based on widely accepted cryptographic assumptions, we show a necessary con-
dition for the utility of quantum computers for robust classification. In particular,
we show that for the learning task we construct, any efficient classical learner cannot
robustly classify better than chance, whereas a quantum learner can efficiently and
robustly classify data with high accuracy.

Through these studies, we show that quantum computers have potential application
in the physical and information sciences in both the near and long term.
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C h a p t e r 1

INTRODUCTION

1.1 Early history of quantum computing
Quantum mechanics as a resource for information processing was first motivated in
the early 1980’s as a solution to the classically hard problem of simulating inter-
acting quantum systems [1, 2, 3]. By 1985, quantum computing was formalized in
terms of quantum Turing machines [4, 5] followed by the circuit model of quantum
computation [6], which were subsequently proven to be equivalent to each other in
1993 [7]. The circuit model of quantum computation led to many rapid advances
in the development of quantum algorithms which exhibit reduced time or space
complexity over their classical counterparts [8, 9, 10, 11, 12]. In the late 1990s,
the problem of simulating quantum systems with a quantum computer was further
addressed and algorithms which allow for the efficient quantum computation of
time dependent expectation values of various types of quantum mechanical systems
were proposed [13, 14, 15, 16]. Inspired by the prospects of quantum computing
for various applications, various proposals for qubits in different physical systems
were introduced, including in nuclear magnetic resonance (NMR) systems [17, 18],
trapped ions [19], quantum dots [20], and superconducting circuits [21]. Experi-
mental realizations quickly followed, with the first quantum gates and algorithms
implemented in trapped ion and NMR systems [22, 23]. In the following decades,
exponential progress was made in key metrics for realizing qubits for quantum com-
putation, such as coherence times, readout error rates, and gate errors [24, 25, 26].
The rapid and exciting progress of quantum computing over the last 40 years has
spurred many investigations on the utility of quantum computing for applications
ranging from the simulation of physical systems to cryptography to machine learning
among many others.

1.2 Current state and prospects of quantum computing
In this section we briefly summarize the current state of quantum computing, includ-
ing recent advancements, challenges, and its near-term prospects. We discuss the
current state of experimental realizations of quantum computers and applications
across various fields.



2

Various platforms for quantum computing have emerged over the past several
decades, including superconducting qubits, trapped ions, solid state platforms, and
neutral atoms. Coherence times exceeding one millisecond and single-qubit gate
fidelities of 0.99991(1) have recently been obtained in superconducting qubits [27]
and two-qubit gate fidelities exceeding 99.5% have also been demonstrated [28,
29]. Although long coherence times and high two-qubit gate fidelities are certainly
achievable in superconducting qubits, it is important to note that these results were
obtained in small systems only, and scaling up to larger systems may reduce these
metrics. Higher two-qubit gate fidelities have been achieved in trapped ion systems,
allowing for the demonstration of all the requirements of fault tolerant quantum
computing [30].

Current research in applications of quantum computing includes cryptography, drug
discovery, materials science, finance, and machine learning. The necessity to pro-
tect private information on the classical internet has spurred the development of
quantum-safe encryption protocols. Any encryption scheme which can be broken
by factoring or discrete logarithms, such as the RSA cryptosystem [31], can be
broken by Shor’s algorithm, although it would require billions of operations on
thousands of logical qubits [32] and so is not under imminent threat. To prevent pri-
vate information from being exposed in the long term, post-quantum cryptographic
methods are being developed which would require super-polynomial time to break
even with a quantum computer [32].

In the near term, applications of quantum computing to drug discovery and material
science may provide the first benefits of quantum computing [33, 34, 35, 36].
Because these applications are fundamentally quantum mechanical in nature and
additionally take place in noisy systems, noisy quantum computers may provide
advantages of classical computers in computing fundamental properties of these
systems as well as pathways for creating them. Quantum computers are expected to
accelerate drug discovery by simulating molecular interactions, optimizing chemical
reactions, and predicting drug properties with high accuracy.

Quantum applications for finance [37, 38, 39] and machine learning [40, 41, 42] are
also active areas of research, although rigorous quantum advantages are still lacking.

In this thesis, we focus on several applications of quantum computing for quantum
simulation, critical phenomena, and machine learning. To provide a foundation
for the following chapters, in Section 1.3 we introduce the notion of circuit based
quantum computing and several primitives such as quantum gates and measurements.
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In Section 1.4 we introduce noise sources and the models used to describe them
for the experimental demonstrations presented in this thesis. Finally, in Section 1.5
we outline the three main topics of this thesis, providing a motivation and the main
achievements of each project. In the following chapters we delve into the technical
details and results of each project. The final chapter presents a summary and outlook
of the applications of quantum computing in the context of the results presented in
this thesis.

1.3 Circuit based quantum computing
In this section, we present the fundamental building blocks of quantum computing.
This includes the basic unit of quantum information, the qubit, as well as operations
which can be applied to systems of qubits in order to carry out a quantum computa-
tion. Although there are several formalisms used to describe quantum computation,
such as measurement based quantum computing [43], topological quantum com-
puting [44], the quantum Turing machine [4, 5] and the circuit model [6], they are
all equivalent in computational power: any model can efficiently simulate any other
model. By far the most common and simplest formalism is the circuit model, which
we describe in this section. All of the information in the section can be found in
Reference [45].

Qubits and where they live
The fundamental unit of discrete quantum computation is the qubit. We define a
qubit as an element of a two-dimensional complex Hilbert spaceH2. To make con-
crete calculations, we define an orthonormal basis for the Hilbert space {|0⟩, |1⟩}.
In column vector notation, we define |0⟩ = (1 0)⊤ and |1⟩ = (0 1)⊤. Operations
that we can apply to qubits consists of unitary operations, elements of the unitary
group 𝑈 (H2), and projective measurements defined by two-dimensional projective
operators 𝑃, satisfying 𝑃2 = 𝑃. In general, the operations we can apply to qubits
are completely positive trace preserving (CPTP) maps and positive operator-valued
measures (POVMs), which include the aforementioned unitary evolutions and pro-
jective measurements; however, for the purpose of this thesis we do not need such
general operations and for simplicity we omit the details of CPTP maps and POVMs.

The Hilbert space of 𝑛 qubits is defined as the tensor product of the Hilbert space of
each qubit, H = H1

2 ⊗ H
2
2 · · · ⊗ H

𝑛
2 , which has dimension 2𝑛. Operations we can

apply to systems of qubits are the unitary operations and projective measurements on
the total Hilbert space. 𝑛 qubit observables are defined as 2𝑛-dimensional Hermitian
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operators. A general 𝑛 qubit quantum state |𝜓⟩ can be always be represented as

|𝜓⟩ =
2𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩, (1.1)

where unit probability dictates that
∑

𝑥 |𝑎𝑥 |2 = 1 and each 𝑥 is written in its binary
representation.

Quantum circuit diagrams
The previous subsection described the abstract mathematics of qubits and the opera-
tions which can be applied to them. In order to develop algorithms and applications
for quantum computers, a more concrete description of the allowable operations is
required. This is provided by the circuit model of quantum computation, which
we describe here. Figure 1.1 shows an example of a circuit diagram containing
multi-qubit unitaries, classical feed-forward, and projective measurements.

|ψ⟩

Figure 1.1: Quantum circuit diagram for a computation with 4 qubits. The initial
state is denoted by |𝜓⟩. The blue rectangles represents 2 qubit unitaries, the metered
box represents a measurement, and the red controlled rectangle represents a 2 qubit
unitary conditioned on a measurement result. The green controlled square represents
a controlled single qubit gate. The double line at the bottom of the circuit represents
the classical bits used in the computation.

We can break up the circuit diagram into five main sections, which reads from left to
right with time increasing to the right. On the left, we write the initial state which is
used for the quantum computation. The bulk of the circuit consists of three sections,
which in order of increasing time are: 1. state preparation, 2. the computation,
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and 3. measurement preparation. The final section of the quantum circuit, shown
on the right of Figure 1.1, consists of measurements in the computational basis.
We typically assume that the input state is a fixed product state, typically (and
arbitrarily) taken to be |0⟩⊗𝑛. The state preparation step then takes the initial state
to the desired input state required for the computation, which is then followed by
the operations required for the main part of the computation. The measurement
preparation step allows us to measure in bases other than the computational basis.
Finally, the computation concludes with measurement of the qubits, which yields
a classical 𝑛-bit string. To obtain the expectation value of observables, we need to
run the circuit multiple times, each time obtaining a different bitstring. We average
the outputs of all the runs of the circuit in order to get the expectation value.

Unitary operations as quantum gates
For a general quantum computation, we would like to be able to apply an 𝑛-qubit
unitary operation; however, due to physical constraints, contemporary quantum
computers typically only allow for two-qubit unitaries, although multi-qubit unitaries
are an active area of research [46, 47]. The set of physically implementable unitaries
(for a given physical system) is known as a gate set, and elements of the gate
set are the quantum gates we can apply to the system. In order to carry out a
computation when physical restrictions only allow for two-qubit gates, we need
to decompose 𝑛-qubit unitaries into a sequence of two-qubit unitaries. As shown
in [45], any unitary operation can can be decomposed into a sequence of two-
qubit unitaries. Additionally, almost any two-qubit gate is universal for quantum
computation, provided that we can apply any single qubit gate [48]. A gate set which
is universal for quantum computation is a gate set which allows for approximation
of any multi-qubit unitary operation to arbitrary precision. Although the group
𝑆𝑈 (H2) is a continuous group, any single qubit unitary can be approximated to
arbitrary precision provided we have access to a single qubit gate set which generates
a dense subgroup of 𝑆𝑈 (H2) [49].

Some important single qubit gates which will be used throughout this thesis are the
single qubit Pauli operators

𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
and 𝜎𝑧 =

(
1 0
0 −1

)
. (1.2)

The Pauli operators are sometimes also denoted by 𝜎𝑥 = 𝑋 , 𝜎𝑦 = 𝑌 , and 𝜎𝑧 = 𝑍 .
Single qubit rotations around the 𝑥, 𝑦, and 𝑧 axis are generated by exponentiating
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the respective Pauli operators:

𝑅𝑥 (𝜃) = exp (−𝑖𝜃𝜎𝑥/2), 𝑅𝑦 (𝜃) = exp (−𝑖𝜃𝜎𝑦/2) and 𝑅𝑧 (𝜃) = exp (−𝑖𝜃𝜎𝑧/2).
(1.3)

The three other single qubit gates which will also be used throughout this thesis are

𝐻 =
1
√

2

(
1 1
1 −1

)
, 𝑆 =

(
1 0
0 𝑖

)
, and 𝑇 =

(
1 0
0
√
𝑖

)
, (1.4)

known as the Hadamard, Phase, and 𝑇 gates, respectively.

Commonly used two-qubit entangling gates are the CNOT (or 𝐶𝑋) gate, and the
𝐶𝑍 gate, which have matrix representations

𝐶𝑋 =
©­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®¬ and 𝐶𝑍 =
©­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®¬ . (1.5)

Projective measurements
The other primitive operation which is commonly used in quantum computing and in
this thesis is the single qubit projective measurement. Due to physical constraints,
many quantum computing systems are only able to measure single qubits in the
computational basis. We represent these single qubit projective measurements by
their projectors,

𝑃0 =

(
1 0
0 0

)
=

1 + 𝑍
2

and 𝑃1 =

(
0 0
0 1

)
=

1 − 𝑍

2
. (1.6)

For a single qubit state |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, measuring the qubit in the computational
basis yields 0 or 1 probabilistically, with the probability of measuring either outcome
equal to

P[0] = ⟨𝜓 |𝑃0 |𝜓⟩ = |𝑎 |2 and P[1] = ⟨𝜓 |𝑃1 |𝜓⟩ = |𝑏 |2. (1.7)

Following the measurement, the state is projected into the subspace spanned by the
projection operator corresponding to the measurement outcome:

|𝜓⟩ → 𝑃𝑥 |𝜓⟩
⟨𝜓 |𝑃𝑥 |𝜓⟩

(1.8)

if the outcome of the measurement is 𝑥 ∈ {0, 1}.

For measurements not in the computational basis, a unitary operation is first required
to rotate the computational basis to the desired measurement basis. For example,



7

to measure in the 𝑥 basis, we first apply a Hadamard gate to the qubit followed by a
measurement in the computational basis.

Finally, we note that an 𝑛 qubit Pauli measurement can always be broken down into
a sequence of 𝑛 CNOT gates, single qubit gates, and one single-qubit projective
measurement in the computational basis.

1.4 Noise models for contemporary quantum computers
In the previous section we described the basic components of quantum circuits. In
an ideal physical implementation, all the necessary operations can be carried out
perfectly; however, in real-world physical systems, the execution of these operations
inevitably introduces some degree of noise. In this section, we introduce the basic
theory of noise processes in quantum computers and describe ways to carry out
computations in the presence of noise.

Representing noise and errors with quantum channels
Although there are many microscopic mechanisms which induce noise in qubits [50,
51, 52], all noise processes can be described using quantum channels. A quantum
channel is defined as a completely positive, trace preserving (CPTP) map from an
initial state 𝜌 to a final state Φ(𝜌). We can always decompose a CPTP map Φ into
a basis of operators in the form

Φ(𝜌) =
∑︁
𝑖

𝑀𝑖𝜌𝑀
†
𝑖
, (1.9)

where the 𝑀𝑖’s, known as Kraus operators, satisfy the relation∑︁
𝑖

𝑀𝑖𝑀
†
𝑖
= 𝐼 . (1.10)

The Kraus operators of commonly used quantum channels often have a intuitive
physical interpretation. We describe here some common single qubit quantum
channels which are used to describe various physical noise processes.

The amplitude damping channel is often used to model the spontaneous emission
of a two-level system from the excited state to the ground state. If the probability
of decaying from the excited state to the ground state is 𝑝, then the Kraus operators
describing this channel are given by

𝑀0 =

(
1 0
0

√︁
1 − 𝑝

)
, 𝑀1 =

(
0 √𝑝
0 0

)
. (1.11)
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Since relative phases are important to maintain throughout a computation, a noise
channel describing the loss of phase coherence is also commonly used, known as
a dephasing channel. The dephasing channel can be described using three Kraus
operators:

𝑀0 =
√︁

1 − 𝑝𝐼, 𝑀1 =

(√
𝑝 0

0 0

)
, 𝑀2 =

(
0 0
0 √𝑝

)
, (1.12)

where 𝑝. An alternate representation of the dephasing channel can be shown to be
desrcibed by the two Kraus operators

𝑀0 =

√
𝑝

2
(1 + 𝑍), 𝑀0 =

√
𝑝

2
(1 − 𝑍), (1.13)

which yields the channel

Φ(𝜌) =
(
1 − 𝑝

2

)
𝜌 + 𝑝

2
𝑍𝜌𝑍. (1.14)

This channel has the interpretation that with probability 1 − 𝑝/2 we do nothing
to the state and with probability 𝑝/2 we apply a Pauli 𝑍 to the state. To see the
effect of the dephasing channel, we can apply it to a qubit in an arbitrary pure state
|𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩. The channel maps the density operator as

Φ( |𝜓⟩⟨𝜓 |) = Φ

(
|𝑎 |2 𝑎𝑏∗

𝑎∗𝑏 |𝑏 |2
)
=

(
|𝑎 |2 (1 − 𝑝)𝑎𝑏∗

(1 − 𝑝)𝑎∗𝑏 |𝑏 |2
)
. (1.15)

We see that as 𝑝 increases from 0 to 1, the off-diagonal elements (the phase infor-
mation) are lost.

The dephasing channel is a specific example of the more general Pauli channel. We
can interpret a Pauli channel as probabilistically applying different Pauli operators
to a qubit. We write the map as

Φ(𝜌) = (1 − 𝑝𝑥 − 𝑝𝑦 − 𝑝𝑧)𝜌 + 𝑝𝑥𝑋𝜌𝑋 + 𝑝𝑦𝑌𝜌𝑌 + 𝑝𝑧𝑍𝜌𝑍. (1.16)

We interpret this channel as applying 𝑋 with probability 𝑝𝑥 , applying 𝑌 with prob-
ability 𝑝𝑦, applying 𝑍 with probability 𝑝𝑧, and doing nothing with probability
1 − 𝑝𝑥 − 𝑝𝑦 − 𝑝𝑧. If we set 𝑝𝑥 = 𝑝𝑦 = 0, we obtain a dephasing channel, and if we
set 𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 we obtain what is known as a depolarizing channel.

Coherent errors
The error channels in the previous section all describe stochastic processes which
affect the qubits in a physical quantum computer. In addition to random processes,
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there are also systematic coherent errors which can arise due to miscalibrated gates
[53]. For example, if we intend to apply the gate exp (𝑖𝜃𝑍) to a qubit, due to imperfect
experimental control we may over rotate and instead apply the gate exp (𝑖(𝜃 + 𝛿)𝑍).
This leads to the coherent error exp (𝑖𝛿𝑍). Importantly, it is believed that coherent
errors will not cause significantly more damage than Pauli errors for fault tolerant
quantum computing [54].

Measurement errors and readout error mitigation
Another source of error during a computation occurs at when the qubits are mea-
sured, also known as qubit readout. When reading out a qubit, a readout error results
in measuring a qubit as being in the |0⟩ state when it is actually in the |1⟩ state and
vice versa.

Readout error mitigation (ROEM) is a collection of techniques used to help reduce
the impact of readout errors [55, 56, 57]. The simplest form of ROEM models
measurement errors classically by first constructs a transition matrix

𝑀 =

(
𝑝00 𝑝01
𝑝10 𝑝11

)
, (1.17)

where 𝑝𝑥𝑦 is the probability of measuring the qubit to be in state |𝑥⟩ given that the
qubit is in state |𝑦⟩. During a computation, we typically repeat the computation
multiple times. If we repeat a single qubit experiment 𝑁 times, then 𝑁0 times we
will readout 0 and 𝑁1 times we will readout 1, with 𝑁0 + 𝑁1 = 𝑁 . We can correct
for readout errors by applying the inverse of 𝑀 to our raw results:(

𝑁̃0
𝑁̃1

)
= 𝑀−1

(
𝑁0
𝑁1

)
. (1.18)

We use our corrected results to calculate expectation values. More advanced tech-
niques can be used to improve the fidelity of calculations further [56, 55].

1.5 Thesis outline
Here we give a high level overview of the three main topics of this thesis.

Digital quantum simulation of open quantum systems using quantum imagi-
nary time evolution
In Chapter 2, we present two algorithms for the dynamical simulation of open
quantum systems on contemporary quantum hardware and demonstrate their use for
small open quantum systems of up to five qubits [58]. While many studies focus
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on computing ground state properties or simulating unitary dynamics of closed
systems, open quantum systems are an interesting target of study owing to their
ubiquity and rich physical behavior. However, their non-unitary dynamics are also
not natural to simulate on digital quantum devices.

We consider the dynamics of spin systems governed by a local Lindblad equation.
Using two adaptations of the quantum imaginary time evolution (QITE) algorithm
[59], we develop two digital quantum algorithms to simulate the systems dynamics.
We demonstrate the algorithms on IBM Quantum’s hardware with simulations of
the spontaneous emission of a two level system and the dissipative transverse field
Ising model.

Experimental demonstration of measurement induced phase transitions using
cross-entropy benchmarking
In Chapter 3, we consider a relative of traditional open quantum systems, so called
monitored quantum systems. These are quantum systems which, while undergoing
unitary evolution, are also measured by an outside observer. Such quantum systems
are predicted to host novel non-equilibrium phases and quantum information phase
transitions. Yet, experimental observations of these phenomena have faced both
fundamental and technical challenges [60]. In Chapter 3, we study experimental re-
alizations and efficient probes of such phase transitions in prototypical hybrid circuit
models on IBM’s superconducting processors containing up to 22 qubits within 8
qubit-hours. A combination of cross entropy benchmark [61] and circuit compres-
sion techniques [62] allows us to minimize the effect of uncontrolled device noise,
and access system sizes of 𝐿 ≤ 44 without exponential overheads associated with
post-selection of quantum trajectories, error mitigation, or quantum state tomogra-
phy. From experimental data we extract critical exponents comparable to theoretical
predictions in systems with one-dimensional and all-to-all connectivities.

Quantum advantage in adversarially robust machine learning
In Chapter 4 we shift our focus to applications of quantum computing to problems
in machine learning. With the widespread deployment of modern machine learn-
ing, robustness to adversarial attacks, attacks in which a malicious adversary can
perturb the data, are critical. In response, significant effort has been invested into
both developing methods for adversarial attacks as well as mechanisms to defend
against such attacks. Although quantum computing has emerged as a potential re-
source for machine learning, much less attention has been paid to the question of
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adversarial robustness than in the classical case. This raises the natural question of
whether quantum learning algorithms offer any advantages in robustness over clas-
sical learning algorithms. In Chapter 4, we answer the question in the affirmative
by constructing a learning task which is 1. easy to learn non-robustly, 2. hard to
learn robustly for any classical learner, and 3. easy to learn robustly for a quantum
learner. While this task is not practically relevant, it provides a proof of principle
that quantum computing offers advantages in robust machine learning tasks and
we hope it stimulates further work on adversarial robustness of quantum machine
learning algorithms.

Finally, in Chapter 5, we summarize the results of this thesis and discuss further
directions of study related to our findings.
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C h a p t e r 2

DIGITAL QUANTUM SIMULATION OF OPEN QUANTUM
SYSTEMS USING QUANTUM IMAGINARY TIME EVOLUTION

[1] Hirsh Kamakari et al. Digital quantum simulation of open quantum systems
using quantum imaginary–time evolution. In: PRX Quantum 3.1 (2022),
p. 010320. url: https://doi.org/10.1103/PRXQuantum.3.010320.

One of the first proposed applications for quantum computing was for the simulation
of quantum many-body systems [1, 2, 3]. By the late 90’s quantum simulation
algorithms for various types of systems had been proposed [13, 14, 15, 16]. The
first quantum simulation algorithms focused either on simulating the dynamics of
closed quantum systems or on finding ground and low lying excited states. Open
quantum systems, quantum systems which interact with an environment, can be
relatively challenging to simulate since the effect of the environment also needs to
be incorporated into the simulation. In particular, environmental influence leads
to non-unitary evolution which is not natural to implement on quantum computers.
In this chapter, we present two algorithms for the dynamical simulation of open
quantum systems governed by a Lindblad equation [63]. Both algorithms use
an adaptation of the quantum imaginary time evolution algorithm [59]. The first
algorithm we present uses a vectorized time evolution to implement the dynamics
of the density operator on a quantum computer. The vectorization process leads
to an ancilla overhead equal to the number of qubits of the corresponding closed
quantum system to be simulated. The second algorithm does not require any ancilla
qubits, but instead requires sampling over multiple initial states. We present a
comparison of the resource requirements of both algorithms as well as experimental
demonstrations of both algorithms for quantum systems of up to five qubits.

2.1 Introduction
The development of quantum algorithms to simulate the dynamics of quantum many-
body systems is now a topic of interest owing to advances in quantum hardware [64,
65, 66]. While the real-time evolution of closed quantum systems on digital quantum
computers has been extensively studied in the context of spin models [67, 68, 69,
70, 71, 72, 73], fermionic systems [74, 75], electron-phonon interactions [76], and

https://doi.org/10.1103/PRXQuantum.3.010320
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quantum field theories [77, 78, 79], fewer studies have considered the time evolution
of open quantum systems, which exhibit rich dynamical behavior due to coupling of
the system to its environment [80, 63]. However, this coupling leads to non-unitary
evolution which is not naturally simulable on quantum hardware.

Early approaches to overcome this challenge included use of the quantum simulators’
intrinsic decoherence [81] and direct simulation of the environment [82, 83, 84].
Theoretical works examined the resources required for efficient quantum simulation
of Markovian dynamics [85, 86, 87], concluding that arbitrary quantum channels
can be efficiently simulated by combining elementary quantum channels. Recently,
several algorithms have been proposed for the digital quantum simulation of open
quantum systems on the basis of the Kraus decomposition of quantum channels
[88, 89, 90, 91, 92, 93] as well as variational descriptions of general processes to
simulate the stochastic Schrödinger equation [71, 64] and the Lindblad equation
[94]. Recently, explicit Trotterization of the Lindblad equation was used to simulate
damping and dephasing of a single qubit using an additional ancilla qubit [95].

Simulation via Kraus decomposition is convenient when the Kraus operators corre-
sponding to the time evolution of the system are known, such as modelling deco-
herence with amplitude damping or depolarizing channels. However, determining
the Kraus operators of a general system requires either computing the full unitary
evolution of both the system and environment or casting a master equation into
an operator sum representation for the density operator. The latter procedure can
be approximated analogously to Trotterization [93, 91] but requires either reset of
ancillae qubits or a qubit overhead which scales linearly with the number of time
steps in the simulation. Exactly determining the Kraus operators from the Lind-
blad equation is a classically hard task which is equivalent to solving the master
equation [96] and so can only be applied to small systems. Explicit Trotterization
circumvents the need to determine the Kraus operators representing the time evo-
lution but has the same ancilla qubit overhead as in as the Kraus decomposition
methods. Variational approaches [71, 64, 97] offer an alternative for simulating
open system dynamics, but as in the case of closed systems require an ansatz and
a potentially high dimensional classical optimization which is an NP-hard problem
[98]. A quantum simulation of the stochastic Schrödinger equation was emulated in
Ref. [71]. In this case, the quantum jumps, or discontinuous changes in the quantum
state, was implemented via variational matrix-vector multiplication, thus incurring
the disadvantages previously mentioned for variational approaches.
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The common feature of the above algorithms is that they reformulate non-unitary
open system dynamics into unitary dynamics which can be simulated on a quantum
computer. A similar approach is used in variational approaches to imaginary time
evolution [99] and the quantum imaginary time evolution (QITE) algorithm, which
has recently been introduced as a way to prepare ground states and compute thermal
averages on near-term devices [59]. QITE has since been used to compute finite-
temperature correlation functions of many-body systems [100], scattering in the
Ising model [101], and binding energies in quantum chemistry [102, 103] and
nuclear physics [103]. It is therefore natural to consider how QITE might be
adapted for open quantum system evolution.

In this chapter, we introduce two quantum algorithms to simulate open quantum
dynamics using adaptations of the QITE algorithm and demonstrate them on IBM
Quantum hardware. The first algorithm casts the Lindblad equation for the density
operator into a Schrödinger-type equation with a non-Hermitian Hamiltonian. Time
evolution is then achieved by simulating the unitary evolution via Trotterization,
corresponding to the Hermitian component of the Hamiltonian and using QITE to
simulate the anti-Hermitian component of the Hamiltonian. The second algorithm
expresses the density operator in terms of an ansatz which is preserved during
both real and imaginary time evolution. We demonstrate these algorithms on IBM
Quantum hardware for two cases: the spontaneous emission of a two level system
(TLS) in a heat bath at zero temperature, and the dissipative transverse field Ising
model (TFIM) on two sites. We observe good agreement between the exact and
hardware results, showing that the dynamics of open quantum systems are accessible
on near-term quantum hardware.

The dynamics of a Markovian open quantum system can be described by the Lindblad
equation

d𝜌
d𝑡

= −𝑖[𝐻, 𝜌] +
∑︁
𝑘

(
𝐿𝑘𝜌𝐿

†
𝑘
− 1

2
{𝐿†

𝑘
𝐿𝑘 , 𝜌}

)
(2.1)

where 𝜌 is the density operator of the system, 𝐻 is the system’s Hamiltonian, and
𝐿𝑘 are operators describing the coupling to the environment. The master equation
in Lindblad form is often derived assuming weak coupling between system and
environment and absence of memory effects (Born-Markov approximation) [104,
63].
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We present two algorithms to simulate the master equation in Lindblad form on a
digital quantum computer. The first quantum algorithm, based on a vectorization of
the density operator, is described in Sec. 2.2; the second algorithm, which combines a
QITE adaptation with an ansatz for the time-dependent density operator, is presented
in Sec. 2.3.

2.2 Algorithm I

|ρ(0)⟩
e−iHτ

eiH⊤τ

e− 1
2 ∑k L†

k Lkτ

e− 1
2 ∑k L⊤

k Lkτ
e ∑k Lk⊗Lkτ

Repeat  timesN

|0⟩

Bell

X/YH

Figure 2.1: Time evolution for the vectorized density operator |𝜌⟩ (Algorithm
I). 𝑒−𝑖𝐻1𝜏 is a unitary operator and can be directly implemented on the quantum
simulator. The non-unitary terms 𝑒−

1
2
∑

𝑘 𝐿
†
𝑘
𝐿𝑘𝜏 and 𝑒

∑
𝑘 𝐿𝑘⊗𝐿𝑘𝜏 are implemented via

QITE. The unitary labelled “Bell” represents a unitary preparing the generalized
2𝑛-qubit Bell state. The / denotes a bundle of 𝑛 qubits.

The Lindblad equation can be rewritten as a Schrödinger-type equation with a non-
Hermitian Hamiltonian by transforming the 2𝑛 × 2𝑛 density operator 𝜌 into an 4𝑛

component vector |𝜌⟩ by column stacking the density operator [105]. The resulting
transformation of the Lindblad equation is

d|𝜌⟩
d𝑡

=

[
−𝑖I ⊗ 𝐻 + 𝑖𝐻⊤ ⊗ I +

∑︁
𝑘

(𝐿𝑘 ⊗ 𝐿𝑘 −
1
2
I ⊗ (𝐿†

𝑘
𝐿𝑘 ) −

1
2
(𝐿⊤𝑘 𝐿𝑘 ) ⊗ I)

]
|𝜌⟩

(2.2)
where the bar indicates entry-wise complex conjugation and |𝜌⟩ = |𝜌(𝑡)⟩ is the
vectorized density operator [105]. Separating Eq. (2.2) into Hermitian and anti-
Hermitian parts, the time evolution of the initial state can be written as:
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|𝜌(𝑡)⟩ = exp (−𝑖(𝐻1 − 𝑖𝐻2)𝑡) |𝜌(0)⟩ =

[exp (−𝑖𝐻1𝜏) exp (−𝐻2𝜏)]𝑁 |𝜌(0)⟩ + O
(
𝜏2𝑁

) (2.3)

where in the last equality we have Trotterized to first order with time step 𝜏 =

𝑡/𝑁 , and 𝐻1 and 𝑖𝐻2 are the Hermitian and anit-Hermitian components of the
vectorized Hamiltonian, respectively. The first term exp (−𝑖𝐻1𝜏) is unitary and
can implemented on a quantum simulator via Trotterization and standard quantum
simulation techniques [45, 65, 13]. The term exp (−𝐻2𝜏) is non-unitary and so
cannot be directly applied to the quantum register. Instead, we implement it on a
digital quantum simulator via analogy to quantum algorithms for imaginary time
evolution [59].

Imaginary time evolution of the Schrödinger equation with Hamiltonian 𝐻 is carried
out formally by substituting 𝛽 = 𝑖𝑡 into the real time propagator exp (−𝑖𝑡𝐻). This
technique is typically used to find ground states |𝜓⟩ = lim𝛽→∞ |𝜙(𝛽)⟩/| | |𝜙(𝛽)⟩| |,
where |𝜙(𝛽)⟩ = exp (−𝛽𝐻) |𝜙(0)⟩ and |𝜙(0)⟩ has non-zero overlap with a ground
state. If we interpret 𝐻2 as the Hamiltonian of a system in the extended Hilbert
space, exp (−𝐻2𝜏) is an imaginary time evolution operator generated by 𝐻2. The
full time evolution is then applied as sequence of real and imaginary time evolutions,
as shown in Fig. 2.1.

We present a brief review of the QITE algorithm reported in Ref. [59] which is used
as a subroutine in this work. The QITE algorithm represents normalized imaginary
time evolution in terms of unitary evolution as:

𝑒−𝛽𝐻 |𝜓⟩
| |𝑒−𝛽𝐻 |𝜓⟩| |

= 𝑒−𝑖𝐴 |𝜓⟩, (2.4)

where 𝐻 is the system Hamiltonian, 𝛽 is the imaginary time, and 𝐴 is a Hermitian
operator. The operator 𝐴 can be represented with real coefficients in a complete
basis of Hermitian operators, typically chosen to be the Pauli strings 𝜎𝑖 over the
qubits of the system:

𝐴 =
∑︁
𝑖

𝑎𝑖𝜎𝑖 . (2.5)
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For an imaginary time step 𝛽, the coefficients 𝑎𝑖 are determined (up to order 𝛽2) by
the linear system 𝑆𝑎 = 𝑏, with

𝑆𝑖 𝑗 = ⟨𝜓 |𝜎†𝑖 𝜎𝑗 |𝜓⟩,

𝑏𝑖 =
−𝑖√
𝑐
⟨𝜓 |𝜎†

𝑖
𝐻 |𝜓⟩

(2.6)

where 𝑐 = ⟨exp (−2𝛽𝐻)⟩ is the norm squared of the un-normalized imaginary time
evolved state.

Once the desired time and state |𝜌(𝑡)⟩ are reached, measurements of an observable
𝑂 are obtained by evaluating the expectation value ⟨𝑂⟩(𝑡) = Tr (𝑂𝜌(𝑡)) as ⟨𝑂† |𝜌⟩.
|𝑂⟩ is the vector obtained from column stacking the matrix representation of 𝑂

and so only the matrix representation of 𝑂 in the computational basis is needed for
this step. Lindbladian evolution preserves Tr (𝜌) whereas the algorithm preserves
Tr

(
𝜌2) = ⟨𝜌 |𝜌⟩, meaning that the operator 𝜌 obtained from matricizing |𝜌(𝑡)⟩ is

not strictly a density matrix. However, the final state can be renormalized to have
unit trace as 𝜌′(𝑡) = 𝜌(𝑡)/Tr (𝜌(𝑡)). In practice, we normalize the final expectation
value of a given observable instead. The final physical observables are thus given by
⟨𝑂⟩/Tr (𝜌). Therefore, obtaining measurements of observables on the state requires
evaluating both ⟨𝑂⟩ and Tr (𝜌) at each time step.

Both quantities ⟨𝑂⟩(𝑡) and Tr (𝜌(𝑡)) can be obtained using a Hadamard test circuit
[106]. In particular, Tr (𝜌) can be evaluated up to a prefactor of 2−𝑛/2𝑃−1/2 as
⟨0|𝑉†𝑈 |0⟩, where 𝑈 is the circuit that prepares |𝜌⟩, 𝑉 prepares the generalized Bell
state |𝛽⟩ = 2−𝑛/2

∑
𝑥 |𝑥⟩⊗ |𝑥⟩, |𝑥⟩ are the computational basis states on 𝑛 qubits, and 𝑃

is the purity of the initial state. Preparing the 2𝑛 qubit Bell state requires 𝑛Hadamard
and 𝑛 CNOT gates. Assuming |𝜌⟩ = 𝑈 |0⟩ for a unitary 𝑈 with gate decomposition
requiring 𝑢1 and 𝑢2 single-qubit and CNOT gates, respectively, the measurement of
Tr (𝜌) requires a circuit with O (𝑛 + 𝑢1) single-qubit gates, O (𝑛 + 𝑢1) CNOT gates,
and O (𝑛 + 𝑢2) CCNOT gates.

Measurement of 𝑘−local observables can be carried out similarly. We assume here
without loss of generality that the 𝑘−local observable 𝑂 has support on the first 𝑘
qubits. The vectorized state can then be written as

|𝜌⟩ = 𝑃−1/2
∑︁

𝑥1,𝑥2,𝑦1,𝑦2

𝜌𝑥1𝑥2𝑦1𝑦2 |𝑥1𝑥2𝑦1𝑦2⟩ (2.7)

where 𝑥1, 𝑦1 and 𝑥2, 𝑦2 are length 𝑘 and (𝑛 − 𝑘) bit strings, respectively, and 𝑃 is
the purity of the initial state. Defining the state
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|𝑂†⟩ =
∑︁
𝑥1𝑦1𝑧

𝑂𝑥1𝑦1√︃
2𝑛−𝑘Tr

(
𝑂†𝑂

) |𝑥1𝑧𝑦1𝑧⟩, (2.8)

where the over-bar indicates complex conjugation, the expectation value of 𝑂 can
be evaluated (up to a pre-factor) as

⟨𝑂† |𝜌⟩ =
∑︁
𝑥1𝑦1𝑧

𝑂𝑥1𝑦1√
2𝑛−𝑘

𝜌𝑥1𝑧𝑦1𝑧√
𝑃

=
Tr (𝑂𝜌)√︃

2𝑛−𝑘Tr
(
𝑂†𝑂

)
𝑃

. (2.9)

The state |𝑂†⟩ can be prepared as

𝑈𝑂†𝑉𝑛−𝑘 |0𝑘 , 0𝑛−𝑘 , 0𝑘 , 0𝑛−𝑘⟩ = 𝑈𝑂†

[
1
√

2𝑛−𝑘

∑︁
𝑧

|0𝑘 , 𝑧, 0𝑘 , 𝑧⟩
]

(2.10)

where 𝑉𝑛−𝑘 prepares the 𝑛 − 𝑘 generalized Bell state and 𝑈𝑂† prepares the 2𝑘 qubit
state

|𝑂†⟩ =
∑︁
𝑥1𝑦1

𝑂𝑥1𝑦1√︃
Tr

(
𝑂†𝑂

) |𝑥1𝑦1⟩. (2.11)

We then measure the un-normalized expectation value of𝑂 using the Hadamard test.
Since the purity is conserved by the algorithm, all observables can be renormalized
after the measurement. Assuming a decomposition of𝑈 into 𝑢1 and 𝑢2 single-qubit
and CNOT gates, respectively, and 𝑉 into 𝑣1 and 𝑣2 single-qubit and CNOT gates,
the total overhead for measurement of observables (including the trace evaluation) is
O (𝑛 + 𝑢1 + 𝑣1) single-qubit gates, O (𝑛 + 𝑢1 + 𝑣1) CNOT gates, andO (𝑛 + 𝑢2 + 𝑣2)
CCNOT gates.

2.3 Algorithm II
Algorithm I allows for efficient simulation of the full density operator for many
physical systems characterized by local interactions; however, it requires a doubling
of the number of qubits and an overhead of an ancilla and controlled operations
for evaluating observables. In particular, the circuit required for measurements
is too deep for near-term hardware. We therefore introduce a second algorithm
based on the variational ansatz used to obtain the non-equilibrium steady states of
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|x⟩ e−iHτ V(τ)
Repeat  timesN

Repeat for all included x
Figure 2.2: Time evolution for the purification-based algorithm (Algorithm II). 𝑥 is
a bit-string included in the index set 𝐼. 𝑉 (𝜏) represents the non-unitary terms which
need to be applied to the system for a time step 𝜏. The / denotes a bundle of 𝑛 qubits.

Markovian systems [97, 107] that overcomes these limitations. The isomorphism
maps a density operator as

𝜌 =
∑︁
𝑥∈𝐼

𝑝𝑥𝑈 |𝑥⟩⟨𝑥 |𝑈† → |𝜌⟩ =
∑︁
𝑥∈𝐼

𝑝𝑥𝑈 |𝑥⟩ ⊗ 𝑈 |𝑥⟩ (2.12)

where the |𝑥⟩’s label the 𝑛-qubit computational basis states and 𝐼 is a subset of all
2𝑛 possible bit-strings. In the rest of the paper the index set 𝐼 is implied. We note
that although we are using an ansatz for this algorithm, any density operator can be
represented in this form provided the index set 𝐼 is large enough. However, it should
be noted that assuming polynomial resources to store the bit-string weights implies
that the present algorithm employs a sparse approximation to represent the density
matrix. The Lindblad master equation is mapped identically to the vectorization
mapping, resulting in Eq. (2.2). In order to implement the resulting non-unitary time
evolution on a quantum computer, we need to rewrite the time evolution operator
in terms of products of unitary evolutions and imaginary time evolutions. The
unitary evolution can be implemented directly on the quantum computer, while the
imaginary time evolutions are implemented via a QITE adaptation, described in the
following.
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Derivation of the QITE linear system for complex time evolution
Here we derive the QITE linear systems which need to be solved to obtain the unitary
time evolution of the density operator ansatz under vectorized Lindblad evolution.
Consider |𝜌⟩ = ∑

𝑥 𝑝𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩, with 𝑇 unitary. The complex time propagator is
the same as in the vectorization method,

𝑋 (𝑡) =

exp

([
−𝑖I ⊗ 𝐻 + 𝑖𝐻⊤ ⊗ I +

∑︁
𝑘

(𝐿𝑘 ⊗ 𝐿𝑘 −
1
2
I ⊗ (𝐿†

𝑘
𝐿𝑘 ) −

1
2
(𝐿⊤𝑘 𝐿𝑘 ) ⊗ I)

]
𝑡

)
.

(2.13)

Trotterizing results in

𝑋 (𝑡) =
[
exp

(
𝑖𝐻⊤𝜏

)
⊗ exp (−𝑖𝐻𝜏)

] ∏
𝑘

exp

(
−
𝐿⊤
𝑘
𝐿𝑘𝜏

2

)⊗2

exp (𝐿𝑘 ⊗ 𝐿𝑘𝜏)

𝑛

+ O
(
𝜏2𝑛

) (2.14)

with 𝜏 = 𝑡/𝑛. Using the identity exp (−𝑖𝐴) = exp (𝑖𝐴⊤) for 𝐴 Hermitian and
exp (𝐵) = exp (𝐵) for arbitrary 𝐵, the propagator can be rewritten as

𝑋 (𝑡) =
{
[𝑈 ⊗ 𝑈]

∏
𝑘

[𝑉𝑘 ⊗ 𝑉𝑘 ]𝑊𝑘

}𝑛

+ O
(
𝜏2𝑛

)
(2.15)

with 𝑈 := exp (𝑖𝐻⊤𝜏), 𝑉𝑘 := exp (−𝐿⊤
𝑘
𝐿𝑘𝜏/2), and 𝑊𝑘 := exp (𝐿𝑘 ⊗ 𝐿𝑘𝜏). It is

immediate that evolution with 𝑈 ⊗𝑈 preserves the ansatz, as (𝑈 ⊗𝑈)∑𝑥 𝑝𝑥𝑇 |𝑥⟩ ⊗
𝑇 |𝑥⟩ = ∑

𝑥 𝑝𝑥 (𝑈𝑇) |𝑥⟩ ⊗ (𝑈𝑇) |𝑥⟩. The term 𝑉 ⊗ 𝑉 also preserves the ansatz, but is
an imaginary time evolution with Hamiltonian 𝐿⊤

𝑘
𝐿𝑘/2, and so requires a modified

QITE algorithm, described below, for implementing exp (−𝐿⊤
𝑘
𝐿𝑘𝜏/2)𝑇 |𝑥⟩. Due to

the non-unitarity of 𝑉𝑘 , we expect that in addition to a unitary evolution of the state,
the weights 𝑝𝑥 will also evolve in time. The final term, 𝑊𝑘 = exp (𝐿𝑘 ⊗ 𝐿𝑘𝜏), does
not preserve the ansatz, and we use a modified version of QITE, described below,
to effectively apply 𝑊𝑘 while preserving the form of ansatz.

Implementing 𝑉𝑘 ⊗ 𝑉𝑘 via a QITE adaptation
Under real time evolution by the non-unitary operator 𝑉𝑘 ⊗ 𝑉𝑘 , the evolution of |𝜌⟩
can be expressed as

𝑉𝑘 ⊗ 𝑉𝑘

∑︁
𝑥

𝑝𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ =
∑︁
𝑥

(𝑝𝑥 + 𝑞𝑥) exp (𝑖𝐴)𝑇 |𝑥⟩ ⊗ exp (−𝑖𝐴)𝑇 |𝑥⟩ +𝑂 (𝜏2),

(2.16)
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with 𝑞𝑥 ∈ R and 𝐴 a Hermitian operator with ∥𝐴∥2 = O (𝜏). Defining 𝐵 :=
(1/2)𝐿⊤

𝑘
𝐿𝑘 , we then have, to first order in 𝜏,

exp (−𝜏𝐵) ⊗ exp (−𝜏𝐵)
∑︁
𝑥

𝑝𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ =∑︁
𝑥

(𝑝𝑥 + 𝑞𝑥) exp (𝑖𝐴)𝑇 |𝑥⟩ ⊗ exp (−𝑖𝐴)𝑇 |𝑥⟩. (2.17)

Expanding both sides to first order in 𝜏 and discarding higher order terms results in

−𝜏
∑︁
𝑥

𝑝𝑥 (𝐵𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ + 𝑇 |𝑥⟩ ⊗ 𝐵𝑇 |𝑥⟩) =∑︁
𝑥

𝑞𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ + 𝑖
∑︁
𝑥

𝑝𝑥 (𝐴𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ − 𝑇 |𝑥⟩ ⊗ 𝐴𝑇 |𝑥⟩).

(2.18)

Taking the inner product of Eq. (2.18)) with ⟨𝑦 |𝑇† ⊗ ⟨𝑦 |𝑇⊤ results in

−𝜏
∑︁
𝑥

𝑝𝑥 (⟨𝑦 |𝑇†𝐵𝑇 |𝑥⟩⟨𝑦 |𝑇⊤𝑇 |𝑥⟩ + ⟨𝑦 |𝑇†𝑇 |𝑥⟩⟨𝑦 |𝑇⊤𝐵𝑇 |𝑥⟩) =∑︁
𝑥

𝑞𝑥 ⟨𝑦 |𝑇†𝑇 |𝑥⟩⟨𝑦 |𝑇⊤𝑇 |𝑥⟩ + 𝑖
∑︁
𝑥

𝑝𝑥 (⟨𝑦 |𝑇†𝐴𝑇 |𝑥⟩⟨𝑦 |𝑇⊤𝑇 |𝑥⟩

−⟨𝑦 |𝑇†𝑇 |𝑥⟩⟨𝑦 |𝑇⊤𝐴𝑇 |𝑥⟩).

(2.19)

Using the identities ⟨𝑦 |𝑇†𝑇 |𝑥⟩ = ⟨𝑦 |𝑇⊤𝑇 |𝑥⟩ = 𝛿𝑥𝑦 for 𝑇 unitary results in

−𝜏𝑝𝑦 (⟨𝑦 |𝑇†𝐵𝑇 |𝑦⟩ + ⟨𝑦 |𝑇⊤𝐵𝑇 |𝑦⟩) = 𝑞𝑦 + 𝑖𝑝𝑦 (⟨𝑦 |𝑇†𝐴𝑇 |𝑦⟩ − ⟨𝑦 |𝑇⊤𝐴𝑇 |𝑦⟩). (2.20)

Because 𝐴 is Hermitian, we additionally have ⟨𝑦 |𝑇†𝐴𝑇 |𝑦⟩ = ⟨𝑦 |𝑇⊤𝐴𝑇 |𝑦⟩ so that
the last two terms on the right-hand side cancel, resulting in

𝑞𝑦 = −2𝜏𝑝𝑦Re
[
⟨𝑦 |𝑇†𝐵𝑇 |𝑦⟩

]
. (2.21)

With the 𝑞𝑥’s determined, we can now determine the operator 𝐴. Rearranging
Eq. (2.18), we first isolate the terms containing 𝐴:

𝑖
∑︁
𝑥

𝑝𝑥 (𝐴𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ − 𝑇 |𝑥⟩ ⊗ 𝐴𝑈 |𝑥⟩) =

−𝜏
∑︁
𝑥

𝑝𝑥 (𝐵𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ + 𝑇 |𝑥⟩ ⊗ 𝐵𝑇 |𝑥⟩) −
∑︁
𝑥

𝑞𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩.

(2.22)

We define the right hand side as

|Φ⟩ = −𝜏
∑︁
𝑥

𝑝𝑥 (𝐵𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ + 𝑇 |𝑥⟩ ⊗ 𝐵𝑇 |𝑥⟩) −
∑︁
𝑥

𝑞𝑥𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩. (2.23)
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We then decompose 𝐴 into a sum over Pauli strings with domain size 𝐷, 𝐴 =∑
𝑗 𝑎 𝑗𝜎𝑗 , where the 𝜎𝑗 are Pauli strings acting on at most 𝐷 qubits, 𝑎 𝑗 ∈ R and

𝑎 𝑗 = O (𝜏) for all 𝑗 . Substituting into the left hand side of Eq. (2.22) yields

𝑖
∑︁
𝑥, 𝑗

𝑝𝑥𝑎 𝑗 (𝜎𝑗𝑇 |𝑥⟩ ⊗ 𝑇 |𝑥⟩ − 𝑇 |𝑥⟩ ⊗ 𝜎𝑗𝑇 |𝑥⟩) =
∑︁
𝑗

𝑎 𝑗 |𝑣 𝑗 ⟩ = |Φ⟩, (2.24)

where we have defined the vectors |𝑣 𝑗 ⟩ :=
∑

𝑥 𝑝𝑥 (𝜎𝑗𝑇 |𝑥⟩ ⊗𝑇∗ |𝑥⟩ −𝑇 |𝑥⟩ ⊗𝜎∗𝑗𝑇∗ |𝑥⟩).
Denoting by 𝑓 the function

𝑓 (𝑎) =





|Φ⟩ − 𝑖∑︁

𝑗

𝑎 𝑗 |𝑣 𝑗 ⟩





2

=

⟨Φ|Φ⟩+𝑖
∑︁
𝑗

(𝑎∗𝑗 ⟨𝑣 𝑗 |Φ⟩ − 𝑎 𝑗 ⟨Φ|𝑣 𝑗 ⟩) +
∑︁
𝑗 𝑘

𝑎∗𝑗𝑎𝑘 ⟨𝑣 𝑗 |𝑣𝑘⟩),

(2.25)

the optimal coefficients 𝑎 𝑗 are determined by minimizing 𝑓 . This results in the set
of equations

0 =
𝜕 𝑓

𝜕𝑎𝑘
= −Im [⟨𝑣𝑘 |Φ⟩] +

∑︁
𝑗

𝑎 𝑗Re
[
⟨𝑣𝑘 |𝑣 𝑗 ⟩

]
. (2.26)

Defining the matrix 𝑆 𝑗 𝑘 := Re
[
⟨𝑣 𝑗 |𝑣𝑘⟩

]
and the vector 𝑏 𝑗 := Im

[
⟨𝑣 𝑗 |Φ⟩

]
, the

optimal coefficients 𝑎 are the solution to the linear system 𝑆𝑎 = 𝑏.

Using the definitions of |𝑣 𝑗 ⟩ and |Φ⟩, we calculate calculate the matrix elements of
𝑆 as

𝑆 𝑗 𝑘 = Re
[
⟨𝑣 𝑗 |𝑣𝑘⟩

]
=∑︁

𝑥

𝑝2
𝑥Re

[
⟨𝑥 |𝑇†(𝜎𝑗𝜎𝑘 + 𝜎𝑘𝜎𝑗 )𝑇 |𝑥⟩

]
−2

∑︁
𝑥𝑦

𝑝𝑥 𝑝𝑦Re
[
⟨𝑥 |𝑇†𝜎𝑗𝑇 |𝑦⟩⟨𝑥 |𝑇†𝜎𝑘𝑇 |𝑦⟩

] ,
(2.27)

and the elements of 𝑏 as

𝑏 𝑗 = −2𝜏

(∑︁
𝑥

𝑝2
𝑥Im

[
⟨𝑥 |𝑇†𝜎𝑗𝐵𝑇 |𝑥⟩

]
+

∑︁
𝑥𝑦

𝑝𝑥 𝑝𝑦Im
[
⟨𝑥 |𝑇†𝜎𝑗𝑇 |𝑦⟩⟨𝑦 |𝑇†𝐵†𝑇 |𝑥⟩

] )
.

(2.28)
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Implementing 𝑊𝑘 via a QITE adaptation
The real time evolution corresponding to 𝑊𝑘 = exp (𝜏𝐿𝑘 ⊗ 𝐿𝑘 ) can be determined
completely analogously to that of 𝑉𝑘 ⊗ 𝑉𝑘 above. The resulting equations are

𝑞𝑦 = 𝜏
∑

𝑥 𝑝𝑥
��⟨𝑦 |𝑇†𝐿𝑘𝑇 |𝑥⟩

��2
𝑆 𝑗 𝑘 = Re

[
⟨𝑣 𝑗 |𝑣𝑘⟩

]
𝑏 𝑗 = Im

[
⟨𝑣 𝑗 |Φ⟩

] (2.29)

where 𝑆𝑎 = 𝑏 gives the optimal Pauli strings. The matrix elements for 𝑆 are the
same, as the vectors |𝑣 𝑗 ⟩ are identical in both cases. Since |Φ⟩ has a different form,
the elements of 𝑏 are modified and given by

𝑏 𝑗 = Im
[
⟨𝑣 𝑗 |Φ⟩

]
= 2𝜏

∑︁
𝑥𝑦

𝑝𝑥 𝑝𝑦Im
[
⟨𝑥 |𝑇†𝜎𝑗𝐿𝑘𝑇 |𝑦⟩⟨𝑦 |𝑇†𝐿†𝑘𝑇 |𝑥⟩

]
. (2.30)

Measuring Matrix Elements
To obtain the coefficients 𝑞𝑥 and 𝑎𝑖, we need to measure various matrix elements. In
general, we can decompose any operator into a sum over Pauli strings, 𝑋 =

∑
𝑗 𝑥𝑖𝜎𝑖.

Since ⟨𝑥 |𝑋 |𝑦⟩ = ∑
𝑗 𝑥𝑖 ⟨𝑥 |𝜎𝑖 |𝑦⟩, we then need to measure ⟨𝑥 |𝜎𝑖 |𝑦⟩ for all Pauli strings

𝜎𝑖. This can be done using the following identities:

2Re [⟨𝑥 |𝑋 |𝑦⟩] = ⟨𝑥 | + ⟨𝑦 |√
2

𝑋
|𝑥⟩ + |𝑦⟩
√

2
− ⟨𝑥 | − ⟨𝑦 |√

2
𝑋
|𝑥⟩ − |𝑦⟩
√

2
, (2.31)

2Im [⟨𝑥 |𝑋 |𝑦⟩] = ⟨𝑥 | + 𝑖⟨𝑦 |√
2

𝑋
|𝑥⟩ − 𝑖 |𝑦⟩
√

2
− ⟨𝑥 | − 𝑖⟨𝑦 |√

2
𝑋
|𝑥⟩ + 𝑖 |𝑦⟩
√

2
. (2.32)

In general, the state ( |𝑥⟩ + 𝑖𝑝 |𝑦⟩)/
√

2, with 𝑝 ∈ {0, 1, 2, 3}, requires a quantum
circuit comprising 𝑚 CNOT gates and having depth 𝑚 +1, where 𝑚 is the Hamming
distance between the binary strings 𝑥, 𝑦 [108]. Indeed, one can find an index 𝑘 such
that 𝑥𝑘 ≠ 𝑦𝑘 . Without loss of generality, one can assume that 𝑥𝑘 = 1 (otherwise,
just invert the roles of 𝑥, 𝑦 and replace 𝑝 with −𝑝 mod 4). One can then define
the sets 𝑆 = {𝑙 : 𝑥𝑙 = 1, 𝑙 ≠ 𝑘}, 𝑇 = {𝑙 : 𝑥𝑙 ≠ 𝑦𝑙 , 𝑙 ≠ 𝑘}. Finally, starting from a
register of 𝑛 qubits prepared in |0⟩⊗𝑛, the desired state is obtained by: (i) applying
a product of 𝑋 gates on qubits in the set 𝑆,

∏
𝑙∈𝑆 𝑋𝑙 , (ii) applying to qubit 𝑘 the gate

𝑔𝑝 = 𝐻, 𝑆𝐻, 𝑍𝐻, 𝑍𝑆𝐻, for 𝑝 = 0, 1, 2, 3, respectively, and (iii) applying a product
of CNOT gates to qubits in 𝑇 controlled by qubit 𝑘 ,

∏
𝑙∈𝑆 𝑐𝑘𝑋𝑙 .

For local observables the state preparation is simpler, as described in the following.
Consider a 𝑘-qubit observable 𝑋 (𝑘) ⊗ I𝑛−𝑘 , with 𝑋 (𝑘) acting non-trivially on 𝑘 qubits
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out of a total of 𝑛 qubits. Then

⟨𝑥 |𝑋 (𝑘) ⊗ I𝑛−𝑘 |𝑦⟩ = ⟨𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛 |𝑋 (𝑘) ⊗ I𝑛−𝑘 |𝑦1, . . . , 𝑦𝑘 , 𝑦𝑘+1, . . . , 𝑦𝑛⟩
(2.33)

= 𝛿𝑥𝑘+1,𝑦𝑘+1 · · · 𝛿𝑥𝑛,𝑦𝑛 ⟨𝑥1, . . . , 𝑥𝑘 |𝑋 (𝑘) |𝑦1, . . . , 𝑦𝑘⟩. (2.34)

Thus we need only to prepare the states

|𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛⟩ + |𝑦1, . . . , 𝑦𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛⟩√
2

=

|𝑥1, . . . , 𝑥𝑘⟩ + |𝑦1, . . . , 𝑦𝑘⟩√
2

⊗ |𝑥𝑘+1, . . . , 𝑥𝑛⟩.
(2.35)

Since 𝑘 is typically small, only 1 or 2 qubits in most cases and independent of the
system size, this state can be efficiently prepared. The form of Eq. (2.35) suggests
a stochastic sampling method to determine which 𝑝𝑥’s to store classically. For
simplicity we describe the case of qubits in a line, and the indices 1, . . . , 𝑛 labelling
the sites with the observable acting on the first 𝑘 qubits. The general case is similar.
Since the matrix elements will depend more heavily on qubits 1, . . . , 𝑘 +𝑚 for some
cutoff 𝑚, we can sample with higher frequency on the first 𝑘 + 𝑚 qubits and with
lower frequency on the rest. In addition, in many cases we expect the dissipation
channels 𝐿𝑘 to reduce long range correlations, further increasing the convergence
rate of local sampling.

Conservation of probability
The trace of the density operator, given by Tr (𝜌) = ∑

𝑥 𝑝𝑥 = 1, is preserved by time
evolution generated by the Lindblad equation. Here we show that time evolution via
Algorithm II also maintains the trace. The trace is preserved if the sum of all 𝑞𝑥’s
is zero at each time step. This requires summing the contributions to the 𝑞𝑥’s from
both the 𝑉𝑘 and 𝑊𝑘 terms as follows:∑︁

𝑦

𝑞𝑦 =
∑︁
𝑦

(
−𝜏𝑝𝑦Re

[
⟨𝑦 |𝑇†𝐿†

𝑘
𝐿𝑘𝑇 |𝑦⟩

]
+ 𝜏

∑︁
𝑥

𝑝𝑥
��⟨𝑦 |𝑇†𝐿𝑘𝑇 |𝑥⟩

��2)
= −𝜏

∑︁
𝑦

𝑝𝑦 ⟨𝑦 |𝑇†𝐿†𝑘𝐿𝑘𝑇 |𝑦⟩ + 𝜏
∑︁
𝑥

𝑝𝑥

∑︁
𝑦

⟨𝑥 |𝑇†𝐿†
𝑘
𝑇 |𝑦⟩⟨𝑦 |𝑇†𝐿𝑘𝑇 |𝑥⟩

= −𝜏Tr
(
𝜌𝐿
†
𝑘
𝐿𝑘

)
+ 𝜏

∑︁
𝑥

𝑝𝑥 ⟨𝑥 |𝑇†𝐿†𝑘𝐿𝑘𝑇 |𝑥⟩

= −𝜏Tr
(
𝜌𝐿
†
𝑘
𝐿𝑘

)
+ 𝜏Tr

(
𝜌𝐿
†
𝑘
𝐿𝑘

)
= 0.

(2.36)
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Measuring observables
The result of the solving the QITE linear system at each time step, the weights 𝑝𝑥 (𝑡)
and the Hermitian QITE Hamiltonian 𝐴(𝑡), can be used to calculate the expectation
value of any observable as a function of time. Inverting the Choi-Jamiołkowski
isomorphism gives us the density operator 𝜌(𝑡) = ∑

𝑥 𝑝𝑥 (𝑡)𝑇 (𝑡) |𝑥⟩⟨𝑥 |𝑇†(𝑡). Ob-
servables 𝑂 are then calculated as

⟨𝑂 (𝑡)⟩ = Tr (𝑂𝜌(𝑡)) =
∑︁
𝑥𝑦

𝑝𝑥 (𝑡)⟨𝑦 |𝑂𝑇 (𝑡) |𝑥⟩⟨𝑥 |𝑇†(𝑡) |𝑦⟩

=
∑︁
𝑥𝑦

𝑝𝑥 ⟨𝑥 |𝑇† |𝑦⟩⟨𝑦 |𝑂𝑇 |𝑥⟩

=
∑︁
𝑥

𝑝𝑥 ⟨𝑥 |𝑇†
(∑︁

𝑦

|𝑦⟩⟨𝑦 |
)
𝑂𝑇 |𝑥⟩

=
∑︁
𝑥

𝑝𝑥 (𝑡)⟨𝑥 |𝑇†(𝑡)𝑂𝑇 (𝑡) |𝑥⟩.

(2.37)

Beyond a certain number of qubits, storing all the 𝑝𝑥 (𝑡)’s is not possible, and a
stochastic sampling approach is needed. Locality conditions suggest one possible
approach to efficient sampling, described at the end of section (2.3), which converges
faster than uniform random sampling. It is important to note that although the ansatz
lies in a dilated Hilbert space, all measurements take place on the original system
and no entangling operations between the system and ancilla are needed, and so no
ancillae qubits are needed. In particular, for each time step measurements only on
the original Hilbert space are used to determine the Hermitian matrix 𝐴. Expectation
values of observables on this state are computed using the standard methods [65,
64].

The benefits of Algorithm II are that it requires no ancilla qubits, and no Hadamard
test is required for measurements of observables. These characteristics, trading
quantum for classical resources and simulating large quantum circuits using smaller
quantum computers are important for near-term hardware [109, 110, 111, 112, 113].
In particular, Algorithm II allows for halving the number of required qubits as in
Ref. [113], allowing simulation of larger physical systems by increasing the classical
and quantum computational time while decreasing the required number of qubits.
Its drawbacks are the sparse representation of the density matrix and the number
of measurements required to evolve the system. We discuss this overhead in the
following section.
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2.4 Run time bounds, computational overheads, and errors
In this section, we discuss the run times, quantum and classical computational
overheads, and errors associated with each algorithm. Other sources of errors,
such as those associated with noisy hardware, are not addressed here as they are
non-algorithmic errors.

Run time bounds
We first bound the run time of Algorithm I. For each time step in the Trotterization,
the algorithm requires applying the imaginary time propagator exp (−𝐻2𝜏), where
𝜏 = 𝑡/𝑁 and 𝑁 is the number of Trotter steps for the time evolution. Assuming a local
Lindblad equation, 𝐻2 is a sum of 𝑚2 local terms ℎ𝑙 such that 𝐻2 =

∑𝑚2
𝑙=1 ℎ𝑙 , where

𝑚2 scales polynomially with system size. The imaginary time evolution operator
exp (−𝐻2𝜏) is implemented by additional Trotterization. For a given desired error
𝜖2, we Trotterize the imaginary time evolution into 𝑝2 steps. From Eq. (3.8) of
Ref. [114], we find that for 𝑝2 > 1/𝜖2 the error in the 𝑝2-step approximation is
bounded by 𝜖2, assuming the number of Trotterization steps for time evolution 𝑁 is
sufficiently large that 3𝑚2𝑡𝑣2/𝑁 < 1, where 𝑣2 = max𝑙{∥ℎ𝑙 ∥}.

Each term in the Trotterization is an imaginary time increment and so corresponds
to a rotation by a unitary operator supported on 𝐷 qubits where 𝐷 is the domain size.
An arbitrary 𝐷 qubit unitary can be decomposed exactly into O

(
𝐷24𝐷

)
single-qubit

and CNOT gates [45]. The total contribution to running time from all the imaginary
time evolutions is O

(
𝑁𝑚2𝐷

24𝐷/𝜖2
)
.

Algorithm I also has additional unitaries exp (−𝑖𝐻1𝜏) interleaved between each
QITE step, leading to an additional overhead. Because 𝐻1 is a sum of local terms,
𝐻1 =

∑𝑚1
𝑙=1 ℎ𝑙 , exp (−𝑖𝐻1𝜏) needs to be Trotterized as well. Performing a similar

analysis for the real time evolution, we find the total running time to be

𝑇 = O
(
𝑁𝑚1𝑘

24𝑘/𝜖1 + 𝑁𝑚2𝐷
24𝐷/𝜖2

)
, (2.38)

where 𝜖1 is the allowable Trotter error for the real-time evolution and 𝑘 is the
maximum number of qubits acted on by each term in the Hamiltonian. In the first
term on the right hand side, we have assumed that each 𝑘−local unitary can be
exactly decomposed into O

(
𝑘24𝑘

)
single qubit and CNOT gates [45].

A similar analysis can be carried out for Algorithm II, resulting in the same run-time
up to constant factors with the following difference. The errors appearing in the
run-time bound for Algorithm II do not include errors incurred from approximating



27

the density operator with a strict subset of all bit-strings. Although in principle
any density operator can be represented by the sum

∑
𝑥 𝑝𝑥𝑈 |𝑥⟩ ⊗ 𝑈 |𝑥⟩, this sum

contains exponentially many terms and so only a subset of all possible bit strings
can be included efficiently. Exclusion of bit-strings leads to an error in representing
the state given by

∑
𝑥∈𝐼𝑐 𝑝𝑥 , where 𝐼 is an index set containing all bit strings to be

included, and 𝐼𝑐 is its complement. Whether a polynomial scaling of the number of
included bit-strings is sufficient for a desired error will be problem dependent. In
practice, this scaling can be assessed by stochastically sampling the bit-strings until
the simulation converges.

Measurement and classical computational overheads
Provided that the finite domain approximation holds, the largest computational over-
head (apart from running time) of both algorithms is the measurement overhead.
For Algorithm I, this measurement overhead is the same as in the original QITE
algorithm. State tomography over each domain consisting of D qubits needs to be
carried out to construct the unitaries over that domain, requiring O

(
4𝐷

)
measure-

ments. Assuming a 1-dimensional lattice, there are O (𝑛/𝐷) domains, and so the
total measurement overhead is O

(
(𝑛/𝐷)4𝐷

)
per time step. Similar bounds can be

obtained for lattices in higher dimensions.

Algorithm II requires measurement of the matrix elements ⟨𝑥 |𝑈†𝜎𝑖𝑈 |𝑦⟩ for all
Pauli strings 𝜎𝑖 supported on a domain 𝐷 (measured in qubits) and all bit strings
in 𝑥, 𝑦 ∈ 𝐼 for some subset 𝐼 of the 2𝑛 𝑛-bit strings. Measuring all matrix elements
necessitates running O

(
𝐿4𝐷 |𝐼 |2

)
circuits per time step, where 𝐿 is the number of

Lindblad operators on the domain and |𝐼 | is the number of bit-strings included in the
computation. For the algorithm to be efficient, the number of bit strings included in
𝐼 must scale polynomially or slower with system size.

The finite-domain approximation required from QITE is accurate in many cases
because the domain size 𝐷 can generally be taken to be smaller for dissipative
systems compared to the same system with no dissipation, as dissipation generally
reduces a system’s correlation length [115]. It should be noted that a reduced
correlation length that decreases the cost for quantum algorithms might also permit
an efficient classical description of the quantum evolution. This imprecise boundary
is a consideration for quantum simulation algorithms generally and remains a topic
of active investigation.
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Algorithm # of qubits Circuits per Lindblad operator

I 2𝑛 + 1 (𝑛/𝐷)4𝐷

II 𝑛 (𝑛/𝐷)4𝐷 |𝐼 |2

Table 2.1: Asymptotic number of circuits required per time step per Lindblad
operator for both algorithms for an open system on 𝑛 sites. Here, 𝐷 is the domain
size, and 𝐼 is is a subset of all 𝑛-bit strings for which the corresponding matrix
elements are measured.

Table 2.1 summarizes the asymptotic scaling of the number of circuits required per
time step of both algorithms for open quantum system dynamical simulation on 𝑛

sites.

2.5 Quantum hardware demonstrations
We demonstrate both algorithms on IBM Quantum hardware for two cases: the
spontaneous emission of a two level system (TLS) in a heat bath at zero temperature,
and the dissipative transverse field Ising model (TFIM) on two sites. The TLS (𝑛 = 1
from Table 2.1) requires three physical qubits and one physical qubit to simulate
with Algorithm I and II, respectively. The TFIM (𝑛 = 2 from Table 2.1) requires
five and two physical qubits, respectively.

Considering Algorithm I, neither the TLS nor the two-site dissipative TFIM on 5
qubits have constant depth circuit decompositions; Trotterizing both the real and
imaginary time propagators results in a circuit with depth linear in the number of
time steps. The resulting circuits are too deep for near-term devices. To overcome
this limitation, we recompile the circuits as in Ref. [100]. In all simulations, we
correct for readout error using the built-in noise models in Qiskit [116, 56, 117, 55].
All measurements reported represent the average of 8192 shots and were repeated
three times. Sampling noise in the measurement of the expectation value of the Pauli
strings can lead to numerical instabilities in the QITE linear system. Therefore, when
constructing the QITE matrix for Algorithm I, regularizers 1 × 10−6 and 0.01, for
the TLS and TFIM, respectively, were added to the diagonal terms of the 𝑆 matrix to
increase the condition number of the matrix 𝑆 following the procedure in Ref. [59].
No regularizers were used for Algorithm II.
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Hardware demonstration of a two-level system
We first present results for the TLS model with the Hamiltonian

𝐻 = −𝛿
2
𝜎𝑧 −

Ω

2
𝜎𝑥 (2.39)

and the Lindblad operator √𝛾𝜎−, where 𝜎− is the lowering operator, 𝛿 is the
detuning, Ω is the Rabi frequency, and 𝛾 is the spontaneous emission rate. We
consider here the overdamped case where 𝛾 is on the order of the other energies
in in the system. It was found via numerical simulations that to accurately capture
the dynamics only the Pauli strings in the set

{
𝜎𝑥 ⊗ 𝜎𝑧, 𝜎𝑦 ⊗ 𝜎𝑥 , 𝜎𝑦 ⊗ 𝜎𝑧, 𝜎𝑧 ⊗ 𝜎𝑥

}
needed to be included in the QITE unitary.

We set 𝛿 = Ω = 𝛾 = 1, and the initial state was chosen to be the excited state. In
Fig. 2.3, we show the populations of the ground and excited states, with the experi-
mental data averaged from three runs on IBM’s 𝑖𝑏𝑚𝑞_𝑚𝑢𝑚𝑏𝑎𝑖 [118] for Algorithm
I and 𝑖𝑏𝑚𝑞_𝑐𝑎𝑠𝑎𝑏𝑙𝑎𝑛𝑐𝑎 [118] for Algorithm II. Good qualitative agreement is
obtained for all observables, with the deviation between the theoretical and experi-
mental curves largely due to gate errors as confirmed by numerical simulations and
noisy hardware emulations.

We observe an initial exponential decay in the population of the excited state due to
spontaneous emission into the bath followed by an approach to the non-equilibrium
steady steady state (NESS) for 𝛾𝑡 ≫ 1. Damped Rabi oscillations are visible
between these two regimes. The populations in the NESS can be interpreted as
a balance between the spontaneous emission due to coupling to the bath and the
absorption and stimulated emission due to the Hamiltonian driving term 𝜎𝑥 [121].
In the NESS, the combined spontaneous and stimulated emission rates are equal to
the absorption rate.

In the absence of driving by an external electric field (Ω = 0) the Hamiltonian is
diagonal in the computational basis, resulting in the off-diagonal matrix elements
𝜌01 = 𝜌10 approaching zero as the system thermalizes. Figure 2.4 shows that
these matrix elements remain non-zero as the NESS is approached, indicating that
the hardware correctly obtains the expected quantum coherence as measured in the
canonical basis. Also shown in Fig. 2.4 is the purity Tr

(
𝜌2) , which does not corre-

spond to a time-independent Hermitian observable on the system but can nonetheless
be obtained from the density operator representation on the hardware. Time evolu-
tion preserves the inner product Tr

(
𝜌2) = ⟨𝜌 |𝜌⟩ on the quantum simulator, but the
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Figure 2.3: Population of the excited state from numerical simulations obtained
in QuTiP [119, 120] (black line), hardware using Algorithm I on 𝑖𝑏𝑚𝑞_𝑚𝑢𝑚𝑏𝑎𝑖

[118] (blue crosses) and Algorithm II (green circles) on 𝑖𝑏𝑚𝑞_𝑐𝑎𝑠𝑎𝑏𝑙𝑎𝑛𝑐𝑎 [118].
The deviation between the theoretical and experimental curves is largely due to gate
error. The system approaches a non-equilibrium steady state for 𝛾𝑡 ≳ 5.

physical quantity, the normalized purity, Tr
(
𝜌2) /Tr (𝜌), is not constant.

The larger deviation between the hardware results and the exact results for Algorithm
I is attributed to the fact that Algorithm I is a three-qubit circuit requiring two-qubit
gates, which are generally of lower fidelity than single qubit gates. Since Algorithm
I for the TLS is a single qubit circuit, there are no infidelity contributions from
two-qubit gates. In addition, the circuits required for Algorithm I are deeper than for
Algorithm II, resulting in more gate errors. An additional breakdown of the error
contributions due to hardware error and algorithmic error is provided in Fig. 2.5,
in which we compare the hardware results to noiseless numerical emulations. The
noiseless numerical emulations were run with the same circuits as in the hardware
trials but using IBM’s qasm_simulator. From Fig. 2.5, we see that Algorithm I has
a larger deviation between the emulation and hardware data. This difference can
be accounted for by the fact that the hardware experiment for Algorithm II requires
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Figure 2.4: Purity, Tr
(
𝜌2) (grey line) and off-diagonal term, Re [𝜌10] (black line),

corresponding to non-diagonal observables obtained in in QuTiP [119, 120]. Hard-
ware results are shown for Algorithm I (purity, red crosses; Re [𝜌10], blue crosses)
and for Algorithm II (purity, orange circles; Re [𝜌10], green circles). Hardware re-
sults for the observable Im [𝜌10] agree with the exact solution similarly to Re [𝜌10]
but are omitted for clarity. For all hardware results for Algorithm I, the error bars are
the standard deviation from three runs. The error bars for Algorithm II are smaller
than the symbol size.

only a single qubit, so the density matrix for all time steps can be obtained from
only single qubit rotations. Single qubit simulations can always be compiled to
a constant depth regardless of the number of time steps, resulting in lower depth
circuits and correspondingly lower total gate error. In addition, since 2-qubit gates
are generally lower fidelity than single-qubit gates, there is no infidelity contribution
due to 2-qubit gates in Algorithm II.

Since systems with larger or smaller dissipation rates correspond to different pa-
rameter regimes, we expect that the dissipation rate may also effect the accuracy of
the algorithms. In general, we should expect larger algorithmic errors when larger
dissipation rates are simulated since both the Trotter error and QITE error increase
with the operator norm of the Lindblad operators. Larger dissipation rates corre-
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Figure 2.5: Excited state population for the two level system (TLS). The solid curve
is the exact solution and the blue and red dots are noiseless numerical emulations of
Algorithm I and II, respectively. The blue and red crosses are the hardware results
presented in the main text for Algorithm I and II, respectively. The deviation between
hardware and simulation results for Algorithm I are larger than for Algorithm II,
which we attribute to hardware error resulting from the larger circuit depth and
number of qubits needed for the Algorithm I.

spond to Lindblad operators with larger norms and hence larger algorithmic errors.
To understand how increasing dissipation rates affect both algorithm’s errors, we
performed simulations of the 2-site TFIM with dissipation rates ranging from 𝛾 = 0
to 𝛾 = 1. Figures 2.6 and 2.7 shows the results of the simulations using Algorithm I
and II, respectively. We see that in this specific case, which includes 16 Pauli strings
for Algorithm I and all possible bit-strings for Algorithm II, Algorithm II performs
qualitatively better than Algorithm I for all dissipation rates. Although Algorithm
II performs better for the simulations shown in Fig. 2.7, we have not considered the
error due to bit-string selection. For larger systems where all bit-strings cannot be
included, there will be additional errors introduced by including only a strict-subset
of all possible bit-strings.
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Figure 2.6: The effect of increasing the dissipation rate from 𝛾 = 0 to 𝛾 = 1.
Noiseless simulation of Algorithm I using 16 Pauli strings. The same qualitative
error is obtained for all dissipation rates simulated.

Hardware demonstration for a transverse field Ising model
We next present experimental and numerical results on the 2-site TFIM. The TFIM
has the Hamiltonian

𝐻 = −𝐽
∑︁
𝑘

𝜎
(𝑘)
𝑧 𝜎

(𝑘+1)
𝑧 − ℎ

∑︁
𝑘

𝜎
(𝑘)
𝑥 (2.40)

and Lindblad operators √𝛾𝜎 (𝑘)− , with nearest neighbor coupling 𝐽, transverse mag-
netic field ℎ, and decay rate 𝛾. For this model, the number of required Pauli strings
could not be reduced by symmetry in Algorithm I. To reduce circuit depth, 16 Pauli
strings were randomly selected out of the 256 possible Pauli strings on 4 qubits to
implement the QITE unitary. We chose 16 Pauli strings as a balance between too
few Pauli strings, which results in a poor approximation to normalized imaginary
time evolution, and too many Pauli strings, which results in a large computational
overhead and an ill-conditioned QITE matrix.
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Figure 2.7: The effect of increasing the dissipation rate from 𝛾 = 0 to 𝛾 = 1.
Noiseless simulation of Algorithm II.

Figure 2.8 shows the average magnetization of the dissipative TFIM with the initial
state given by both spins in the spin up state and 𝐽 = ℎ = 1 and 𝛾 = 0.1. Os-
cillations in magnetization are evident due to the relatively large transverse field.
We observe qualitative agreement between the theoretical and experimental curves
from Algorithm I with a Trotter step 𝛾𝑡/𝑁 ∼ 0.5. For the small system size of 2
sites, all 4 bit-strings on 2 qubit were included in Algorithm II. Experimental results
for Algorithm II are also in good qualitative agreement with the exact curve for all
times.

Exactly simulating the 2-site TFIM using Algorithm I requires measuring expec-
tation values of the 256 Pauli strings on 4 qubits. To reduce the runtime of the
Algorithm, we use a subset of all Pauli strings. We show in Fig. 2.9 that increas-
ing the number of included Pauli strings beyond 16 has only a minor effect on the
observables.

In Section 2.4, we discussed the runtime and resources required by both algorithms
in a general setting. We now discuss the relative computational cost required
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Figure 2.8: Average magnetization 𝑁−1 ∑
𝑖 ⟨𝑍𝑖⟩ for the dissipative transverse field

Ising model on 2 sites (5 physical qubits for Algorithm I, 2 physical qubits for
Algorithm II) using IBM Quantum’s 𝑖𝑏𝑚𝑞_𝑔𝑢𝑎𝑑𝑎𝑙𝑢𝑝𝑒 [118] for Algorithm I (blue
symbols), and 𝑖𝑏𝑚𝑞_𝑐𝑎𝑠𝑎𝑏𝑙𝑎𝑛𝑐𝑎 [118] for Algorithm II (green symbols). Numer-
ical solutions obtained in QuTiP are shown with black lines. The error bars for
both algorithms are the standard deviation from 3 hardware runs. Both algorithms
qualitatively agree with the exact dynamics for all simulated times. The deviation
between the hardware results and the exact result for Algorithm II is due mainly to
Trotter gate error.

by each algorithm for the specific case of the 2-site TFIM hardware simulations.
For the simulations considered here, Algorithm I is able to accurately describe the
dissipative dynamics when using 16 out of the total of 256 Pauli strings. Simulations
of Algorithm I using up to 48 Pauli strings, shown in Fig. S2, show no significant
increase in accuracy when using more than 16 Pauli strings. In general, the number of
required Pauli strings will be problem dependent. Algorithm II requires measuring
the matrix elements of all two-qubit Pauli strings at each time step, requiring 836
circuits per time step, versus only measuring expectation values of 16 operators in
the case of Algorithm I, which requires 16 circuits. These measurements are only
needed on a domain of fixed size.
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Figure 2.9: Noiseless numerical simulations for the transverse field Ising model
(TFIM) using Algorithm I with increasing number of Pauli strings included. Here
the dissipation rate is 𝛾 = 0.1. The black solid curve is the exact result, and the blue
dashed curve is a simulation of Algorithm I using the same 16 Pauli’s as in the main
text. The red, green, light blue, and yellow dashed curves are noiseless numerical
simulations of Algorithm I obtained from including an increasing number of Pauli
strings in the simulation. From these simulations we see that only marginal increase
in accuracy is obtained from including a larger number of Pauli strings.

For larger dissipation rates 𝛾 ∼ 𝐽, ℎ, separate numerical simulations, presented in
Fig S3, show that both algorithms are able to accurately capture the magnetization
dynamics. However, these simulations do not include the error incurred by including
a subset of bit-strings in Algorithm II. The actual algorithmic error of Algorithm II
will thus depend on the accuracy of the representation of the density matrix with a
subset of bit-strings for the given problem. Stochastic sampling of bit-strings may
be a viable approach for larger systems.

2.6 Summary
We have introduced digital quantum algorithms for the time evolution of open
quantum systems described by a Lindblad equation based on quantum imaginary
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time evolution. Algorithm I uses QITE to implement the non-unitary evolution
introduced when the density operator is vectorized, whereas Algorithm II uses an
adaptation of QITE to maintain a purification-based ansatz throughout the com-
putation. Calculations for the spontaneous emission of a two level system and the
dissipative transverse field Ising model, respectively, were carried out on IBM Quan-
tum’s quantum processors. Good qualitative agreement with the exact result was
observed in all cases. These algorithms decrease the quantum resources required to
simulate open quantum systems governed by Lindblad master equations on quantum
hardware.
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C h a p t e r 3

SCALABLE CROSS-ENTROPY BENCHMARK OF
MEASUREMENT-INDUCED PHASE TRANSITIONS ON A

SUPERCONDUCTING QUANTUM PROCESSOR

[1] Hirsh Kamakari et al. Experimental demonstration of scalable cross-entropy
benchmarking to detect measurement-induced phase transitions on a super-
conducting quantum processor. In: arXiv preprint arXiv:2403.00938 (2024).
url: https://arxiv.org/abs/2403.00938.

In the previous chapter, we described two algorithms for simulating open quan-
tum systems on a quantum computer. Although we were able demonstrate both
algorithms on quantum hardware, due to the excessive circuit depth resulting from
Trotterization we required fitting the circuits to a known ansatz. This approach is not
scalable and was only used for demonstrations purposes. In general, Hamiltonian
dynamics results in circuits which are too deep to run effectively on a quantum com-
puter. Another class of quantum computations which exhibit interesting dynamics
are random quantum circuits. These circuits can often be shorter depth than circuits
for Hamiltonian dynamics, and therefore are a prime candidate for study on near
term quantum computers. [122, 123]

In this chapter, we experimentally study measurement induced phase transitions(MIPTs)
which result from random circuits consisting on unitary operations as well as mea-
surements at random points in space-time. Although MIPTs have been previously
studied on superconducting quantum processors [60], scalable demonstrations with-
out any exponential overheads have not. Here, we present an experimental demon-
stration of MIPTs using a scalable cross-entropy benchmarking protocol [61].

3.1 Introduction
Quantum systems undergoing unitary evolution in the presence of an observer
making measurements (monitored quantum systems) [124, 125, 126] exhibit unique
dynamics, distinct from both thermalizing closed systems and conventional open
quantum systems. When a system is weakly monitored and subject to sufficiently
entangling unitaries, initial product states typically exhibit a linear in time growth of
the entanglement entropy, before evolving into steady states where the entanglement

https://arxiv.org/abs/2403.00938
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entropy admits a volume-law scaling [127, 128, 129, 130]. In contrast, strongly
monitored systems are not able to support highly entangled states, resulting in area-
law entanglement scaling even at long times. Separating the two phases lies a
continuous phase transition, which was initially found theoretically in simplified
quantum circuit models with mid-circuit measurements, and was later found to be
generic to a wide range of monitored dynamics [131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145]. Such measurement-induced phase
transitions (MIPTs) have recently garnered much interests [146], in part due to
multiple theoretical viewpoints one can take in describing them [147, 148, 149, 150,
151].

An experimental observation of MIPTs was recently demonstrated on IBM quantum
hardware with up to 14 qubits [60]. By directly measuring the entanglement entropy
after a comprehensive quantum tomography of the steady states, Koh et al. [60] were
able to observe an MIPT and confirm the competing effects of random unitaries and
mid-circuit measurements. However, the experiment required over 5200 qubit-hours
and is limited in scalability due to the exponential cost of quantum state tomography
and post-selection of measurement outcomes. The lifetime of superconducting
qubits also puts a stringent limit on the circuit depth (as well as on system size when
circuit depth scales with the number of qubits), since mid-circuit measurements
can be an order of magnitude slower than two-qubit unitary gates. To avoid mid-
circuit measurements, a space-time duality mapping was introduced [152, 153] and
recently implemented on Google’s superconducting processor [154], where MIPT-
like physics was observed in 1D unitary circuits with a reduced number of post-
selections, and at the boundary of shallow 2D unitary circuits of 70 qubits without
post-selection. Alternatively, order parameters based on reference qubits can be used
to efficiently and scalably probe MIPTs [155], where post-selection can be avoided
with an accompanying classical simulation. The use of a reference qubit to probe
MIPTs has been demonstrated in trapped ion systems for Clifford circuits [156],
featuring a high gate fidelity and non-local qubit connectivity. However, critical
exponents at the transition were not obtained from previous experimental data.

In this chapter, we explore experimental realizations and efficient probes of MIPTs
in prototypical hybrid Clifford circuit models with up to 22 physical qubits in
less than 8 qubit-hours on IBM superconducting devices. By combining a recently
proposed cross entropy benchmark (XEB) protocol [61] with a Clifford-based circuit
compression [62], we circumvent the exponential overhead in post-selection and
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tomography, and manage to probe MIPTs in systems with larger effective system
size than the available number of physical qubits while minimizing the effect of noise.
Moreover, the circuit compression allows us to investigate circuit models with all-
to-all connectivity on IBM’s 2D layout, due to reduced non-locality in compressed
circuits. We obtain precise estimates of critical exponents that are comparable to
theoretical predictions. Comparing the experimental data to numerical simulations
with stochastic erasure error, we give rough estimates of effective noise rates per gate
of the superconducting devices, which are comparable to numbers IBM reported.
Qualitative differences between experimental data and numerical simulations are
also observed, which we understand to be macroscopic manifestations of real device
errors that are beyond our simple noise model.

This work paves the way for scalable studies of other critical phenomena on near-
term quantum hardware and provides a benchmarking tool for quantum circuits with
mid-circuit measurements.

3.2 Circuit model and cross entropy benchmark
We consider a family of random circuits, where each circuit consists of two stages:
an purely unitary “encoding stage” consisting of 𝑡encoding layers, and a “bulk stage”
consisting of 𝑡bulk layers with both unitary gates and mid-circuit measurements, see
Fig. 3.1(a). For an 𝐿-qubit circuit, both stages must contain a number of layers
scaling at least linearly with 𝐿 for the system to enter a steady state, particularly
when the steady state has volume-law scaling of entanglement entropy.

The protocol involves the application of the same circuit to two different initial
states, 𝜌 and 𝜎, and a comparison between the two ensembles of measurement
records. For a given circuit 𝐶 with 𝑁 mid-circuit measurements, a measurement
record m = (𝑚1, 𝑚2, . . . , 𝑚𝑁 ), where 𝑚 𝑗 are the outcomes (0 or 1) from each mid-
circuit measurement, is sampled by running the circuit on quantum hardware with
input state 𝜌. The sampled measurement records obey a probability distribution,
which we denote as 𝑝𝜌m. We also implement the sampling experiment using classical
simulations of the same circuit, but with a different (stabilizer) initial state 𝜎. The
corresponding measurement record probabilities is similarly denoted as 𝑝𝜎m. The
cross entropy acts as a distance measure between the two distributions, and is defined
for this circuit as

𝜒𝐶 =

∑
m 𝑝

𝜌
m𝑝𝜎m∑

m(𝑝𝜎m)2
, (3.1)

which can be estimated by taking the sample average of 𝑝𝜎m/
(∑

m(𝑝𝜎m)2
)

over many
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Figure 3.1: Schematic of the protocol demonstrated in this chapter. (a) We construct
an 𝐿-qubit Clifford circuit consisting of 𝑡encoding encoding layers, and 𝑡bulk bulk layers.
Each layer (shown in the red dashed box) consists of 𝐿 random 2-qubit Clifford
unitaries and each bulk layer additionally contains Pauli-𝑍 measurements . The
measurements are performed at each spacetime location of the bulk independently
and with probability 𝑝. We choose the initial state |𝜙⟩ to be either |0𝑇⟩⊗𝐿/2, where
|𝑇⟩ is a magic state, or |0⟩⊗𝐿 . (b) After circuit compression, we obtain an 𝐿/2
qubit circuits consisting of at most 𝐿/2 multi-qubit Pauli measurements which may
not be geometrically local and have to be compiled into nearest-neighbor two-qubit
gates and single-site measurements. The compressed initial state is |𝜙′⟩ = |𝑇⟩⊗𝐿/2
or |0⟩⊗𝐿/2. Only circuits with initial magic states are run on hardware.
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runs of the quantum circuit with input state 𝜌. We then average over random circuits
𝐶, obtaining the final cross entropy for a given measurement rate as 𝜒 = E𝐶𝜒𝐶 . As
shown in [61], for 𝜌 ≠ 𝜎 and in the absence of noise, the quantity 𝜒 acts as an order
parameter which, in the thermodynamic limit, approaches 1 when the system is in
the volume-law phase (small 𝑝) and approaches a constant strictly less than 1 in the
area-law phase (large 𝑝). Intuitively, 𝜒 measures the distinguishability of the two
initial states by comparing mid-circuit measurement records, after the two initial
states are “scrambled” by the encoding unitary. Previously, the linear cross entropy
has been used as a figure of merit for random circuit sampling [157, 123, 158,
159]. For 𝜒 to be efficiently obtainable from quantum and classical hardware, the
probabilities 𝑝𝜎m, as well as

∑
m(𝑝𝜎m)2, need to be efficiently classically computable.

This is possible when the bulk of the circuit contains only Clifford operations and
when the input state 𝜎 is a stabilizer state. The cross entropy protocol is similar in
spirit to hybrid quantum-classical observables used in previous experiments [154,
156] (see also [160, 161]) and, as we will show, allows us to probe critical properties
on noisy processors without error mitigation.

We implemented this approach on IBM Quantum processors. The systems we
considered are a 1D chain with nearest-neighbor qubit connectivity and an infinite-
dimensional system with all-to-all qubit connectivity. We chose the initial 𝐿-qubit
states on the quantum processor in both cases to be 𝜌 = |0𝑇0𝑇 · · · 0𝑇⟩⟨𝑇0𝑇0 · · ·𝑇0|
with |𝑇⟩ = ( |0⟩+exp (𝑖𝜋/4) |1⟩)/

√
2, the alternating magic state, and𝜎 = |0⊗𝐿⟩⟨0⊗𝐿 |,

the all-zero state. We note that 𝜌 is not a stabilizer state. For the alternating magic
states, the number of 𝑇 gates grows linearly with the number of qubits, so that an
exact simulation of the circuit is classically intractable [162, 163, 164, 165]. For
all experiments, the circuits are constructed using alternating layers of unitaries and
measurements. Each unitary layer consists of 𝐿/2 two-qubit unitary gates, sampled
uniformly from the two-qubit Clifford group. For the 1D chain, the two-qubit Clif-
ford gates are applied in a brickwork pattern on nearest-neighbor qubits. For the
infinite dimensional system, 𝐿/2 two-qubit unitaries are applied to pairs of qubits
selected uniformly at random. Each measurement layer, in both the 1D chain and
the infinite-dimensional system, consists of single-qubit 𝑍 measurements occurring
on each qubit with probability 𝑝. For both systems, we used an encoding ratio and
bulk ratio of 3, namely 𝑡bulk = 𝑡encoding = 3𝐿. For all experiments, we generated
1000 random circuits for each (𝐿, 𝑝) pair, and each circuit was run 1000 times on
the ibm_sherbrooke machine.
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3.3 Compression of Clifford circuits with magic initial states
The resulting circuits with the above properties have at most 𝐿 mid-circuit measure-
ments per qubit, which are relatively slow operations and introduce both readout
and quantum state errors, and so they cannot be executed while preserving adequate
fidelity. We therefore employ a circuit compression scheme which exploits the input
state being an alternating magic state and the circuit bulk being fully Clifford. After
circuit compression, we obtain a circuit with 𝐿/2 hardware qubits and at most 𝐿/2
multi-qubit measurements, significantly fewer than an average of 𝑝𝑡bulk𝐿

2 measure-
ments in the original uncompressed circuits. For each measurement record of the
compressed circuit, we can further use it as a seed to classically sample a measure-
ment record according to the ensemble of the uncompressed circuit. The initial state
of the circuit is now |𝑇⟩⊗𝐿/2, see Fig. 3.1(b). The multi-qubit measurements are
generally not geometrically local, and must be compiled into local gates and local
measurements (which are now mid-circuit measurements). As a result, the circuit
compression reduces the number of two-qubit gates from 3𝐿2 to 𝐿2/2, but increases
the circuit depth from 9𝐿 to an average of 𝐿2, see Sec. 3.3 for additional details. All
circuits used in our experiments use Clifford compression, bringing larger system
sizes within the range of accessibility.

Here we describe the Clifford based compression algorithm we use to reduce the
required number of physical qubits by a factor of two, as well as to reduce the
total number of mid-circuit measurements to equal the number of physical qubits.
The compression is based on Ref. [62] with an improvement that removes the
requirement for dynamic circuits (adaptivity), but instead using an efficient classical
simulation and classical coin flipping. Here we first summarize the compression
algorithm stated in Ref. [62], and then explain how to remove the adaptivity.

Summary of the compression algorithm
In a particular circuit realization the unitaries and the measurements can be written
as

𝐶m = . . . 𝑈3𝑀𝑚2𝑈2𝑀𝑚1𝑈1. (3.2)

Here 𝑚 𝑗 is the 𝑗-th measurement outcome of the entire record, and correspondingly
𝑀𝑚 𝑗

= (1 + (−1)𝑚 𝑗𝑃 𝑗 )/2 is the 𝑗-th projection operator, with 𝑃 𝑗 the Pauli operator
being measured. Moving all unitaries past the measurements to the right, we can
equivalently write

𝐶m = . . . 𝑀𝑚2𝑀𝑚1 , (3.3)
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where

𝑀𝑚 𝑗
=

1
2
(1 + 𝑧 𝑗𝑃 𝑗 ), 𝑃 𝑗 = 𝑈

†
1𝑈
†
2 . . . 𝑈

†
𝑗
𝑃 𝑗𝑈 𝑗𝑈 𝑗−1 . . . 𝑈1 (3.4)

are now multi-site Pauli measurements and 𝑧 𝑗 = (−1)𝑚 𝑗 .

Let 𝐴 = {1, . . . , 𝑘}, and 𝐵 = {𝑘 + 1, . . . , 𝑁}. Following Ref. [62], we state without
proof that the following algorithm correctly samples an output bitstring of the circuit
𝐶 on a input state in the new basis, with input states of the form |𝜓⟩ = |𝜙𝐴⟩⊗ |0⊗𝑁−𝑘𝐵

⟩.

1. Initialize the quantum state |𝜙𝐴⟩, define the initial stabilizer group S =

⟨𝑍𝑘+1, . . . 𝑍𝑁⟩, and let the Pauli operators be {𝑃 𝑗 }.

2. Consider each 𝑃 𝑗 in increasing order of 𝑗 . For each 𝑗 there are three possible
cases:

a) 𝑃 𝑗 ∈ S. In this case the measurement result is deterministic, and can be
classically computed and we do not need to update the state or S.

b) 𝑃 𝑗 ∉ S, and it anticommutes with at least one element 𝑄 ∈ S. In this
case, the measurement result of 𝑃 𝑗 is equally likely 𝑧 𝑗 = ±1. We can
flip a classical coin to sample 𝑧 𝑗 . Further, we need to account for the
change in the state, which can be shown to be

|𝜙⟩ → 𝑉 𝑗 (𝑧 𝑗 ) |𝜓⟩ (3.5)

where 𝑉 𝑗 (𝑧 𝑗 ) is a Clifford unitary operator

𝑉 𝑗 (𝑧 𝑗 ) =
1
√

2
(𝑄 + 𝑧 𝑗𝑃 𝑗 ). (3.6)

Instead of evolving the state and updating S, we adopt the Heisenberg
picture and modify all subsequent measurements 𝑃𝑘> 𝑗 as follows,

𝑃𝑘 → 𝑉 𝑗 (𝑧 𝑗 )†𝑃𝑘𝑉 𝑗 (𝑧 𝑗 ), ∀𝑘 > 𝑗 . (3.7)

c) 𝑃 𝑗 ∉ S, and it commutes with all elements of S. It then necessarily
commutes with 𝑍𝑘+1, . . . , 𝑍𝑁 since these stabilizers are permanent, as we
can check at the end of the algorithm (see comment 2 below). It follows
that 𝑃 𝑗 only contains the identity operator or the Pauli 𝑍 operator on 𝐵.
We can then consider a truncated Pauli operator that is supported only
on 𝐴,

𝑃𝐴
𝑗 B 𝜂 𝑗 · 𝑃 𝑗 |𝐴, (3.8)
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where 𝑃 𝑗 |𝐴 is the restriction of 𝑃 𝑗 on 𝐴, and the sign 𝜂 𝑗 = ±1 can be
chosen such that for any state |𝜙𝐴⟩ we have

⟨𝜙𝐴 |𝑃𝐴
𝑗 |𝜙𝐴⟩ = ⟨𝜙𝐴 ⊗ 0⊗𝑁−𝑘

𝐵
|𝑃 𝑗 |𝜙𝐴 ⊗ 0⊗𝑁−𝑘

𝐵
⟩. (3.9)

The measurement of 𝑃 𝑗 on the joint system 𝐴𝐵 can therefore be faith-
fully simulated by a measurement of 𝑃𝐴

𝑗
on just 𝐴. We perform this

measurement on the state |𝜙𝐴⟩, update the state accordingly and record
the measurement result 𝑧′

𝑗
. We then update the stabilizer group as

S → ⟨S, 𝑧′𝑗𝑃𝐵
𝑗 ⟩. (3.10)

We see that in this algorithm

1. Cases (1) and (2) can be accounted for by classical simulation, and only in
case (3) a quantum operation on |𝜙𝐴⟩ needs to be performed.

2. The stabilizer groupS gets augmented only in case (3), and can be augmented
at most 𝑘 times. Once an operator is added into S, it will remain in S until
the algorithm terminates.

In this way, a given sequence of multi-site measurements can be simulated by a
“compressed circuit” with at most 𝑘 multi-site measurements on 𝐴, as well as
classical coin flips, up to a polynomial time overhead.

Removal of adaptivity
A major problem of the above algorithm is that the update of the stabilizer group S
in case (c) depends on the quantum measurement result 𝑧′

𝑗
. Not knowing 𝑧′

𝑗
before

the circuit execution will lead to the lack of knowledge of the sign of 𝑄 ∈ S in case
(b) if occuring after the update ofS due to case (c). Here we show the adaptivity can
be removed by proving that the effect of flipping signs of 𝑧′

𝑗
or 𝑄 can be captured

by classical postprocessing.

In order to prove it, we first notice that𝑄 → −𝑄 is equivalent to 𝑧 𝑗 → −𝑧 𝑗 in Eq. 3.6
(𝑉 → −𝑉 has no effect on Eq. 3.7). We additionally notice that

𝑉 𝑗 (−𝑧 𝑗 ) = 𝑄𝑉 𝑗 (𝑧 𝑗 )𝑄, (3.11)
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so that for any 𝑘 > 𝑗 ,

𝑉 𝑗 (−𝑧 𝑗 )†𝑃𝑘𝑉 𝑗 (−𝑧 𝑗 ) = 𝑄𝑉 𝑗 (𝑧 𝑗 )†𝑄𝑃𝑘𝑄𝑉 𝑗 (𝑧 𝑗 )𝑄
= 𝜆

𝑄,𝑃𝑘
𝑄𝑉 𝑗 (𝑧 𝑗 )†𝑃𝑘𝑉 𝑗 (𝑧 𝑗 )𝑄

= 𝜆
𝑄,𝑃𝑘

𝜆
𝑄,𝑉 𝑗 (𝑧 𝑗 )†𝑃𝑘𝑉 𝑗 (𝑧 𝑗 )𝑉 𝑗 (𝑧 𝑗 )†𝑃𝑘𝑉 𝑗 (𝑧 𝑗 ), (3.12)

where we have defined the commutator of Pauli operators 𝐴, 𝐵

𝐴𝐵 = 𝜆𝐴,𝐵𝐵𝐴. (3.13)

Eq. (3.12) implies that flipping measurement results 𝑧′
𝑗
at most result in sign changes

of the subsequent measurements operators 𝑃𝑘> 𝑗 , and such sign dependence can be
classically captured. In practice, we can first determine the form of each Pauli
operator to be measured on 𝐴 in the compressed circuit, and assume they all have
+1 sign; the adativity can be re-introduced in post-processing, by flipping the
measurement results appropriately.

Decomposition of the Pauli-based computing model to a common gate set
Here we describe an algorithm to decompose each multi-qubit Pauli measurement
in Eq. (3.3) to

𝑃 𝑗 =

(∏
𝑖

𝐶𝑖

)†
𝑍 [𝑘]

(∏
𝑖

𝐶𝑖

)
,

where {𝐶𝑖} contains up to 𝑚 single-qubit Clifford operations and 2𝑚 CNOT gates.
For a Pauli string 𝑃 𝑗 = ⊗𝑚

𝑖=1𝑃 𝑗 [𝑖], where 𝑃 𝑗 [𝑖] ∈ 𝐼, 𝑋,𝑌 , 𝑍 , we first convert
each 𝑋 and 𝑌 to a Pauli 𝑍 at qubit 𝑖 by a single-qubit Clifford operation 𝐶 [𝑖],
i.e., 𝐶 [𝑖]𝑃 𝑗 [𝑖]𝐶 [𝑖]† = 𝑍 [𝑖]. After this step, the Pauli string becomes a string
of 𝐼s and 𝑍s. We note the fact that CNOT1,2(𝐼 ⊗ 𝑍)CNOT1,2 = (𝑍 ⊗ 𝑍) and
CNOT1,2(𝑍 ⊗ 𝑍)CNOT1,2 = (𝐼 ⊗ 𝑍). Thus we first sequentially convert the Pauli
string to the form of 𝐼 ...𝐼𝑍...𝑍 𝐼...𝐼 by converting adjacent 𝑍𝐼 or 𝐼𝑍 to 𝑍𝑍 , and then
sequentially convert it to 𝐼 ...𝐼𝑍 𝐼...𝐼 with a single 𝑍 in the middle by converting
adjacent 𝑍𝑍 to 𝐼𝑍 or 𝑍𝐼.

By using the above algorithm for the decomposition of 𝑃 𝑗=1, we obtain 𝑃 𝑗=1 =

(∏𝐶𝑖)†𝑍 [𝑘] (
∏

𝐶𝑖). However, instead of naively applying the algorithm for each
𝑃 𝑗 , we first “absorb” (∏𝐶𝑖)† into the rest of the Pauli strings by𝑃 𝑗 → (

∏
𝐶𝑖)𝑃 𝑗 (

∏
𝐶𝑖)†,

and then apply the above algorithm to the next Pauli measurement. By doing such
“absorption," we roughly reduce the number of CNOT gates by half. Finally, the
compressed circuit is decomposed to at most 𝑚2 single-qubit gates and 2𝑚2 CNOT
gates.
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Resource reduction after circuit compression
Before compression After compression

Num. hardware qubits 𝐿 𝐿/2
Average depth 9𝐿 𝐿2

Avg. num. 2 qubit gates 3𝐿2 𝐿2/2
Avg. num. measurements 3𝐿2𝑝 𝐿/2

Table 3.1: Hardware resources required before and after Clifford circuit compression
for a fixed 𝐿 and 𝑝. The number of hardware qubits, average depth, and average
number of 2 qubit gates required are reduced by a constant factor after compression,
whereas the average number of measurements is reduced by a factor of 𝐿 and is
independent of 𝑝. The values in this table apply both to the 1D system as well as
the all-to-all system.

In Table 3.1 we present a summary of the quantum hardware resource requirements
before and after circuit compression. Here we are setting 𝑡bulk = 𝑡encoding = 3𝐿 and
using an initial 𝜌 state that is an alternating magic state.

3.4 Qubit selection
For the 1D-chain experiments, qubits were selected heuristically at submission time
based on the one-qubit gate, two-qubit gate, and readout error rates provided by IBM
in their hardware calibration data. We selected the qubits based on a minimization
of the average errors that would occur in all circuits based on the number and
placement of gates and measurements in the circuits. For the 1D-chain experiment
with 𝜌 ≠ 𝜎, the qubits were selected heuristically at run time as in Ref. [60]. The
qubits we selected based on the one and two qubit gate error rates, 𝜖1q and 𝜖2q,
respectively, as well as the qubit readout error 𝜖 ro rates provided by IBM in their
hardware calibration data. Denoting by 𝜒 the set of qubit selections which contain
all 𝐿/2 qubits in a connected chain, an average circuit error for circuit𝐶 is calculated
as

E𝑥∈𝜒 [𝐶] =
∑︁
𝑗∈𝑥
(𝜖1q𝑁

1q
𝑗
[𝐶] + 𝜖2q𝑁

2q
𝑗
[𝐶] + 𝜖 ro𝑁 ro

𝑗 [𝐶]), (3.14)

where the subscript 𝑗 represents the 𝑗’th qubit in the qubit set 𝑥, and the function
𝑁

1q,2q,ro
𝑗

computes the number of single qubit gates, two qubit gates, and measure-
ments, respectively, acting on qubit 𝑗 in the circuit 𝐶. The qubit chain used in the
experiment is then selected as the one which minimizes the average error over all
circuits C, argmin𝑥∈𝜒E𝐶∈CE𝑥 [𝐶].

For the all-to-all and 𝜌 = 𝜎 experiments, we used the same qubit layouts that were
selected for the 1D-chain.
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Figure 3.2: Cross entropy for identical initial states (𝜌 = 𝜎) obtained from
ibm_sherbrooke with up to 18 physical qubits (equivalent to a system size of 𝐿 = 36
qubits before compression). The initial state for both 𝜌 and 𝜎 is chosen to be the
all-zeros state, with 2-qubit gates acting on nearest neighbors before compression.
The errors incurred from the physical qubits results in a cross entropy lower than
the theoretical value of 1. Larger systems have more measurements and more gates,
incurring a larger overall error in the cross entropy.

3.5 Results for 𝜌 = 𝜎

We first present the experimental results when we set 𝜌 = 𝜎 to provide a benchmark
of the hardware performance. We obtain the circuits from the compressed 1D
circuits, but replace all |𝑇⟩ states with |0⟩ states, so that the initial states on both 𝜌

and 𝜎 are the all-zero state. In this case, since the circuits run on both the quantum
and classical sides are identical, we expect to observe 𝜒 = 1 for all 𝐿 and for all 𝑝 in
the absence of any noise or hardware errors. The deviation of the cross entropy from
1 therefore provides a measure of the overall errors and noise in the circuit, which
could be due to various sources such as gate errors, qubit decay and dephasing, and
cross-talk from mid-circuit measurements.
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The results are shown in Figure 3.2, where we observe that 𝜒 decreases when either 𝐿
or 𝑝 increases. For increasing 𝐿 at fixed 𝑝, we have more mid-circuit measurements
in both uncompressed and compressed circuits. For increasing values of 𝑝 at fixed 𝐿,
we do not necessarily have more measurements in the compressed circuit (they are
upper bounded by 𝐿), but the measurement results will be more strongly correlated,
see Section 3.3. Our noisy simulations in Section 3.12 of uncompressed circuits
are qualitatively consistent with Fig. 3.2.

3.6 Results for 1D chain, 𝜌 ≠ 𝜎
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Figure 3.3: Cross entropy 𝜒 for 1D chains with up to 22 physical qubits (cor-
responding to a system size of 𝐿 = 44 qubits before compression) computed on
ibm_sherbrooke.

We next present experimental results for the 1D chain for 𝜌 ≠ 𝜎. Fig. 3.3 shows
the cross entropy curves obtained from the 127 qubit 𝑖𝑏𝑚_𝑠ℎ𝑒𝑟𝑏𝑜𝑜𝑘𝑒 device.
Qualitatively, we see the expected characteristics as described below Eq. (3.1),
namely with increasing 𝐿 the approach of 𝜒 to 1 for smaller values of 𝑝, and the
saturation of 𝜒 to a constant < 1 for larger values of 𝑝. The curves for different 𝐿
cross at the critical point with 𝑝𝑐 ∈ (0.15, 0.175).
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Figure 3.4: Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function. The fitting
procedure gives a critical measurement rate of 𝑝𝑐 = 0.14±0.01 and critical exponent
𝜈 = 1.4 ± 0.5.

The cross entropy is related to a domain wall free energy in an associated statistical
mechanics model [61], and whose value near the critical point depends only on the
ratio of the system size and the correlation length, according to standard scaling
hypotheses. We verify this hypothesis by collapsing the data from different sys-
tem sizes 𝐿 and measurement probabilities 𝑝 to an unknown but universal scaling
function 𝐹:

𝜒(𝐿, 𝑝) = 𝐹

[
𝐿1/𝜈 (𝑝 − 𝑝𝑐)

]
, (3.15)

where 𝜈 is the critical exponent that controls the divergence of the correlation length,
and 𝑝𝑐 is the critical measurement rate [166]. With 𝐹 unknown, we follow standard
methods [60, 167] to choose the parameters 𝑝𝑐 and 𝜈 so as to optimize the quality
of the data collapse, see Sec. 3.8 for details. Such a procedure allows us to extract
best fits for the critical measurement rate 𝑝𝑐 = 0.14 ± 0.01 and for the critical
exponent 𝜈 = 1.4 ± 0.5 at the 90% confidence level, see results in Figure 3.4. Our
reported values of 𝑝𝑐 and 𝜈 are consistent with classical numerical calculations in
the presence of 0.1% erasure noise, see Sec. 3.12.
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For chains of fewer than 10 qubits, we see a stronger finite-size effect as indicated
by deviating cross entropy curves as well as the saturation to a larger final value for
large 𝑝 (see Figure 3.4). Removing the smaller system sizes from the fitting allows
for the critical values to be obtained while reducing finite-size effects. Although
we extract the same value of 𝜈 whether we remove the smaller systems or not, the
resulting data collapse has a lower variance, with all data points lying closer to a
single curve. Including only the larger systems leads to fitting critical values of
𝜈 = 1.4 ± 0.4 and 𝑝𝑐 = 0.156 ± 0.009, see Figure 3.5. The value of 𝜈 when we fit
all the data is 𝜈 = 1.4 ± 0.3 and the value of 𝑝𝑐 is 𝑝𝑐 = 0.144 ± 0.007, and so are
qualitatively the same within error bars. Although we obtain the same fit values,
removing the small system sizes leads to a data collapse with reduced broadening,
particularly near the phase transition.
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Figure 3.5: Raw and collapsed cross entropies for a 1D chain. (a) Cross entropy
𝜒 for a 1D chain with up to 22 physical qubits obtained from 𝑖𝑏𝑚_𝑠ℎ𝑒𝑟𝑏𝑟𝑜𝑜𝑘𝑒,
corresponding to a system size of 44 qubits and with small systems (𝐿 < 16)
removed. (b) Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function.

Comparing 𝜒𝜌=𝜎 (Fig. 3.2) with 𝜒𝜌≠𝜎 (Fig. 3.3), we find that the former is often
visibly smaller than the latter, particularly for the larger values of 𝑝 we accessed
in our experiments. On the other hand, as we show in Sec. 3.12 with rigorous
arguments, one has the bound 𝜒𝜌=𝜎 ≥ 𝜒𝜌≠𝜎 in Clifford circuits with a simple
noise model, namely those that can be written as stabilizer operations and their
probabilistic mixtures. These include the erasure errors we use in our classical
numerical simulations (see Sec. 3.12). We attribute the violation of this bound to
real device error, which necessarily involves, e.g., coherent and non-unital noise,
that go beyond our simple noise model. Evidently, 𝜒𝜌=𝜎 is more sensitive to noise
than when two different initial states are used.
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3.7 Results for all-to-all connectivity
We finally present the experimental results for the all-to-all connectivity experiment.
Theory predicts qualitatively similar results of the cross entropy to the 1D case, but
the transition is in a different universality class [168]. The initial states used in
this experiment are the same as in the 1D-chain case. Hardware executions of
the raw, uncompressed circuits are difficult on current superconducting hardware,
which typically only support gates acting on nearest-neighbor qubits. As a result,
the raw circuits would require an excessive number of swap gates. With circuit
compression, however, the average cost of executing the all-to-all circuits are the
same as in the 1D-chain case, since the compressed circuits once again have 𝐿/2
qubits and at most 𝐿/2 mid-circuit measurements.
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Figure 3.6: Cross entropy 𝜒 for infinite-dimensional systems with up to 20 physical
qubits (corresponding to a system size of 𝐿 = 40 qubits before compression) com-
puted on ibm_sherbrooke.

Figures 3.6 and 3.7 shows that the phase transition is still observable despite the raw
(uncompressed) all-to-all circuits requiring significantly more gates than in the 1D
case. The qualitative features of 𝜒 in the all-to-all case are similar to the 1D-chain
case, with larger values of 𝜒 for larger systems when 𝑝 < 𝑝𝑐, crossing of all 𝜒’s at
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Figure 3.7: Collapse of cross entropy curves near the critical point obtained by
minimizing the scatter of all points to an unknown scaling function. The fitting
procedure gives a critical measurement rate of 𝑝𝑐 = 0.26±0.02 and critical exponent
𝜈 = 1.9 ± 0.4.

the critical point, and a saturation to a constant for 𝑝 > 𝑝𝑐. The critical values we
extract from fitting to the finite size scaling form Eq. (3.15) are 𝑝𝑐 = 0.26 ± 0.02
and 𝜈 = 1.9 ± 0.4 at the 90% confidence level, with a different function 𝐹 than in
the 1D case. In particular, a mean-field analysis of all-to-all circuits [168] predicts
𝜈 ≈ 2.5, which lies within the range of confidence here . These results are consistent
with our numerical simulations (see Sec. 3.12) for these system sizes,where a large
uncertainty in these fitting parameters are also observed.

The increased value of 𝑝𝑐 for the infinite-dimensional case compared to the 1D
case is consistent with the intuitive picture that entanglement in a system with high
connectivity is more stable to measurements that in one with low connectivity.

3.8 Fitting parameters 𝜈 and 𝑝𝑐 by collapsing hardware data
Near the critical measurement rate 𝑝𝑐, the order parameter 𝜒 for different system
sizes and under suitable rescaling is expected to collapse onto a single curve [124,
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166, 167]. Quantitatively, this can be expressed as 𝜒(𝐿, 𝑝) collapsing to the same
curve for all system sizes 𝐿 when we suitably rescale both 𝐿 and 𝑝:

𝜒(𝐿, 𝑝) = 𝐹

[
𝐿1/𝜈 (𝑝 − 𝑝𝑐)

]
. (3.16)

The critical measurement rate depends on the microscopic details of the circuits, such
as the encoding and bulk ratios, whereas the the critical exponent is independent of
the microscopic circuit details and is the same for all systems in the same universality
class [124, 166]. If the scaling function 𝐹 was known, we could obtain the optimal
𝑝𝑐 and 𝜈, denoted by 𝑝∗𝑐 and 𝜈∗, by minimizing the residual sum of squares (RSS)
over all data points:

𝑝∗𝑐, 𝜈
∗ = arg min

𝑝𝑐 ,𝜈

∑︁
𝐿

∑︁
𝑝

(
𝐹

[
𝐿1/𝜈 (𝑝 − 𝑝𝑐)

]
− 𝜒exp(𝐿, 𝑝)

)2
, (3.17)

where 𝜒exp(𝐿, 𝑝) is the cross entropy obtained from the experiment for a system
size 𝐿 and measurement rate 𝑝. When the scaling function is unknown, we still
find 𝑝∗𝑐 and 𝜈∗ by minimizing an RSS, but instead use an interpolating function for
our scaling function for a fixed 𝐿, followed by symmetrization over all 𝐿 in order
to prevent preferential treatment of any portion of the data [167, 60]. Our approach
to fitting 𝑝𝑐 and 𝜈 follows Ref. [60] with modifications due to there being only one
critical exponent in our case, versus two critical exponents in Ref. [60]. We denote
by L the set of system sizes used in the experiment and P𝐿 the set of measurement
rates used for a fixed 𝐿. For each 𝐿 ∈ L and 𝑝 ∈ P𝐿 , we first compute the rescaled
controlled variable

𝑞𝐿 (𝑝) = 𝐿1/𝜈 (𝑝 − 𝑝𝑐). (3.18)

We then construct an interpolating function for 𝜒(𝐿, 𝑝) from the rescaled experi-
mental data, which we denote by 𝑓𝐿 (𝑞). The interpolating function is used since
the 𝑞 values for different values of 𝐿 are different, and the RSS is taken over points
with identical 𝑞 values. From numerical simulations, we expect the scaling function
to decrease monotonically for increasing 𝑝 [61]. To preserve this monotonicity,
we use a piecewise cubic Hermite polynomial implemented in SciPy to construct
the interpolating function [169]. We denote the set of 𝑞𝐿 as Q𝐿 , 𝑞−

𝐿
= minQ𝐿

and
𝑞+
𝐿
= maxQ𝐿

. Adapting the measure of goodness of fit from References [167] and
[60], we define the loss function as

𝑅(𝜈, 𝑝𝑐) =
∑︁
𝐿∈L

∑︁
𝐿′∈L,
𝐿′≠𝐿

∑︁
𝑞∈Q𝐿′ ,

𝑞−
𝐿
≤𝑞≤𝑞+

𝐿

( 𝑓𝐿 (𝑞) − 𝑓𝐿′ (𝑞))2 . (3.19)
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In the innermost summation, we constrain 𝑞 by 𝑞−
𝐿
≤ 𝑞 ≤ 𝑞+

𝐿
in order to avoid

extrapolation of 𝑓𝐿 (𝑞). Our reported best fit values of 𝑝𝑐 and 𝜈 are then given by

𝑝∗𝑐, 𝜈
∗ = arg min

𝑝𝑐 ,𝜈

𝑅(𝜈, 𝑝𝑐). (3.20)

Following References [60, 167], the errors for 𝜈 and 𝑝𝑐 are given by the width of
the minimum at level 𝜂:

𝛿𝜈± = 𝜂𝜈∗
[
2 log

𝑅(𝜈∗ ± 𝜂𝜈∗, 𝑝∗𝑐)
𝑅(𝜈∗, 𝑝∗𝑐)

]−1/2
(3.21)

𝛿𝑝𝑐± = 𝜂𝑝∗𝑐

[
2 log

𝑅(𝜈∗, 𝑝∗𝑐 ± 𝜂𝑝∗𝑐)
𝑅(𝜈∗, 𝑝∗𝑐)

]−1/2
. (3.22)

Our final values of 𝜈 and 𝑝𝑐 are then reported, setting 𝜂 to the 10% level, as

𝜈∗ ±max(𝛿𝜈+, 𝛿𝜈−) (3.23)

𝑝∗𝑐 ±max(𝛿𝑝𝑐+, 𝛿𝑝𝑐−). (3.24)

In Figure 3.8(a) the cost function for the 1D chain is shown in a parameter space
near the optimum. The reported uncertainties corresponding to the 90% confidence
interval are the width of the minima when we increase the cost function by 10%.
Figure 3.8(b) (3.8(c)) shows the cost function for the 1D chain when 𝑝𝑐 (𝜈) is held
fixed at its minimum and 𝜈 (𝑝𝑐) is varied. Figure 3.9 shows the corresponding cost
function for the all-to-all system.
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Figure 3.8: Cost function minimum in the region of the optimal solution for fitting
critical values in the 1D chain experiment. (a) The cost function as defined in
Equation (3.19) for the 1D chain with varying 𝜈 and 𝑝𝑐. (b) The cost function when
𝑝𝑐 is held fixed at its optimal value and 𝜈 is varied. (c) The cost function when 𝜈 is
held fixed at its optimal value and 𝑝𝑐 is varied.

The low reported uncertainty in the value of 𝑝𝑐 is a consequence of the cost function
having a sharp minimum in the 𝑝𝑐 direction (see Figures 3.8(b) and 3.9(b)), and
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Figure 3.9: Cost function minimum in the region of the optimal solution for fitting
critical values in the all-to-all connectivity experiment. (a) The cost function as
defined in Equation (3.19) for the all-to-all system with varying 𝜈 and 𝑝𝑐. (b) The
cost function when 𝑝𝑐 is held fixed at its optimal value and 𝜈 is varied. (c) The cost
function when 𝜈 is held fixed at its optimal value and 𝑝𝑐 is varied.

the relatively large uncertainty for 𝜈 results from the cost function having a broad
minimum (see Figures 3.8(c) and 3.9(c))

3.9 Calculation of error bars
In order for the linear cross entropy to be a scalable probe for measurement induced
phase transitions, the number of circuits and and circuit evaluations required for
a given (𝐿, 𝑝) pair must be polynomial in 𝐿, 𝑝, and 1/𝜖 , the error in estimating
𝜒(𝐿, 𝑝) from multiple samples. As shown in Reference [61], the number of samples
can in fact be taken to be independent of 𝐿 and 𝑝, and exhibits a linear dependence
on 𝑁 in 1/𝜖 , where 𝑁 is the number of circuits used. We can see this dependence
explicitly in the calculation of the error bars reported in the main text, shown in the
following.

For a given (𝐿, 𝑝) pair, we use 𝑁 randomly generated circuits and execute each
circuit 𝑀 times on IBM’s quantum hardware, resulting in 𝑀 different measurement
outcomes. We calculate the cross entropy for each circuit 𝑖 as

𝜒𝑖 =
1
𝑀

𝑀∑︁
𝑗=1

𝑥𝑖 𝑗 , (3.25)

where 𝑥𝑖 𝑗 is the 𝑗’th measurement bit string for the 𝑖’th circuit and is defined as

𝑥𝑖 𝑗 =


1, if 𝑥𝑖 𝑗 can occur on 𝜎𝑖

0, if 𝑥𝑖 𝑗 cannot occur on 𝜎𝑖

. (3.26)
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Here, 𝜎𝑖 is the 𝜎 circuit corresponding to the 𝑖’th 𝜌 circuit. We next calculate the
standard error of the mean as

𝜖𝑖 =
𝑠𝑖√
𝑀

, 𝑠2
𝑖 =

1
𝑀 − 1

𝑀∑︁
𝑗=1
(𝑥𝑖 𝑗 − 𝜒𝑖)2. (3.27)

We then compute the final estimate of the cross entropy as 𝜒̄ = (1/𝑁)∑𝑁
𝑖=1 𝜒𝑖. The

variance of 𝜒̄ is given by

𝜖2 =
1
𝑁

𝑁∑︁
𝑖=1

𝜖2
𝑖 (3.28)

and the error bars reported in all figures are given by 𝜒̄ ± 1.96𝜖 , representing the
95% confidence interval for the estimate of 𝜒.

3.10 Error mitigation for hardware experiments
Dynamical decoupling
Dynamical decoupling (DD) is a quantum control technique employed in quantum
computing to mitigate errors by taking advantage of time-dependent pulses [170,
171, 172, 173, 174, 175, 176]. In its simplest form, DD is implemented by sequences
of 𝑋 control pulses, whose effect is to protect qubits from decoherence due to low-
frequency system-environment coupling. Here, we applied sequences of two 𝑋

pulses (as in Ramsey echo experiments) to idle qubits. In Figure 3.10, we illustrate
the impact of DD on the cross entropy, focusing on the 𝜌 = 𝜎 case. As seen, for
𝐿 ≃ 10, DD increases the cross entropy towards the exact value of 𝜒 = 1. However,
the increase in 𝜒 is of order 0.01 whereas the difference between 𝜒 and 1 is of order
0.1 and, furthermore, it becomes less pronounced for 𝐿 ≃ 18.
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Figure 3.10: Cross entropy 𝜒 for chains of 𝐿 = 6 to 𝐿 = 18 qubits, with initial states
𝜌 = 𝜎, computed without (a) and with (b) dynamical decoupling, and difference
between these two quantities (c).
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Readout error mitigation
Readout error mitigation (ROEM) is a standard technique to compensate for errors
incurred during qubit readout [177, 178]. We tested ROEM for small systems of
up to 𝐿 = 14 (7 physical qubits) and observed negligible differences between the
readout error mitigated cross entropies and the unmitigated cross entropies, see
Figure 3.11. Due to the negligible effects of ROEM, we did not use ROEM for any
of the results presented in the main text.
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Figure 3.11: Effects of readout error mitigation on cross entropy for systems with
up to 7 physical qubits. (a) The raw cross entropies without ROEM. (b) The cross
entropies with ROEM applied. (c) The difference 𝜒raw − 𝜒ROEM, which shows that
the differences between the raw and ROEM cross entropies are significantly smaller
than the error bars for the raw cross entropies.

3.11 Resource analysis
Because this protocol makes use of measurement results without post-selection and
does not require quantum state tomography, the quantum hardware resources re-
quired are significantly reduced compared to previous experiments. In particular,
the total number of qubit-hours required was reduced from above 5200 qubit-hours
in Ref. [60] to less than 8 qubit-hours in our demonstration while retaining the hard-
ware implementation of mid-circuit measurements. Additionally, we were able to
demonstrate this protocol using 22 hardware qubits, corresponding to uncompressed
systems of up to 44 qubits. This size regime is presently inaccessible to protocols
requiring post-selection.

With the use of circuit compression, we expect that larger systems with as many
as 30 physical qubits could be accessed while still maintaining the fidelity of the
current experiments. The limiting factor in our demonstration is the computational
cost of the circuit compression, which scales polynomially with system size but is
still too resource-intensive for circuits with 𝐿 > 50 qubits. As this work focused on
demonstrating the protocol on near-term hardware, we did notemphasize efficient
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implementations of the classical circuit-compression algorithm; this task could be
a focus of future work. To increase to larger system sizes, the bulk and encoding
ratios can also be reduced from 3, used in our experiments, to as low as 1 while still
maintaining a visible phase transition.

Improvement of the experimental performance of the processor, for instance by
reducing cross-talk and introducing carefully tailored dynamical decoupling se-
quences may also allow us to explore the phase transition in even larger systems.
Preliminary experiments including dynamical decoupling show some improvement
in the fidelity obtained in the intermediate regime of 5 to 8 hardware qubits; how-
ever, for larger systems dynamical decoupling had little effect and so was not used
in any of the experiments. We have also attempted a readout error mitigation for
our 𝜌 ≠ 𝜎 experiments in 1D, which did not change our results and was not applied
to our data.

3.12 Simulated noisy data
In this section we provide classical numerical simulations as a reference for experi-
mental data presented in the main text. All circuits considered here are drawn from
the same ensemble as the experimental runs, and are simulated without compression.

1D circuits and a statistical mechanics picture
For the 1D case, we first choose 𝜌 = 𝜎 = ( |0⟩⟨0|)⊗𝐿 , as in Fig. 3.2. In the
circuit, we insert an erasure channel at each spacetime location of the 𝜌-circuit with
probability 𝑞 = 0.1%, while keeping the 𝜎-circuit noiseless. The results are shown
in Fig. 3.12(a), where we see a decrease in 𝜒

noisy
𝜌=𝜎 when either 𝐿 or 𝑝 is increased.

This trend is consistent with what we observe in Fig. 3.2. The data is consistent
with the following functional form,

𝜒
noisy
𝜌=𝜎 ∝ exp

[
−𝛼(𝑝, 𝑞) · 𝐿2] , (3.29)

where 𝛼(𝑝, 𝑞) is a nonzero coefficient depending on 𝑝 and 𝑞, see Fig. 3.12(b).

Next we consider the 𝜌 ≠ 𝜎 case, but instead with stabilizer initial states 𝜌 = 1
2𝐿 I

and 𝜎 = ( |0⟩⟨0|)⊗𝐿 to facilitate efficient classical simulation. In Fig. 3.13(a), we
present numerical results obtained from a noiseless simulation. The overall trend of
the results are comparable to those in Fig. 3.3. The data collapse in Fig. 3.13(b) is
performed with 𝑝𝑐 = 0.16 and 𝜈 = 1.33, as consistent with Ref. [61].

We also perform a noisy simulation for 𝜌 = 1
2𝐿 I and 𝜎 = ( |0⟩⟨0|)⊗𝐿 , where we

insert an erasure channel at each spacetime location of the 𝜌-circuit with probability
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𝑞 = 0.1%. The numerical results are shown in Fig. 3.14. As we anticipate from
statistical mechanics arguments (see Ref. [61] and below), for any finite noise rate,
the cross entropy will be suppressed to zero for all value of 𝑝, in the thermodynamic
limit. For small system sizes (before the cross entropy is reduced to zero) the curves
will instead appear to cross at a smaller value of 𝑝𝑐. Indeed, the best fit for 𝑝𝑐 has
now shifted to a smaller value, 𝑝𝑐 ≈ 0.14 (whereas we use the same value for 𝜈),
close to the one used for fitting in the main text.

Statistical mechanics picture

The qualitative behavior the results in Fig. 3.14 can be understood from a mapping
to statistical mechanics models, which we briefly describe here. (We refer the reader
to Ref. [61] and references therein for further details.) Recall that

𝜒 B E𝐶𝜒𝐶 = E𝐶

∑
m 𝑝

𝜌
m𝑝𝜎m∑

m (𝑝𝜎m)2
= E𝐶

∑
m Tr (𝐶m(𝜌)) · Tr (𝐶m(𝜎))∑

m(Tr (𝐶m(𝜎)))2

= E𝐶

∑
m Tr

(
𝐶⊗2

m (𝜌 ⊗ 𝜎)
)∑

m Tr
(
𝐶⊗2

m (𝜎 ⊗ 𝜎)
) . (3.30)

Here 𝐶m(𝜌) denotes the resultant state when unitaries and projective measurements
(labeled by the measurement record m) from 𝐶 are applied to the initial state 𝜌. It
is easier to study the following proxy quantity, which is an approximation of 𝜒 by
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Figure 3.12: Noisy numerical simulations for the 1D chain using erasure noise. (a)
Results from noisy numerical simulations of Clifford circuits in 1D, for system sizes
𝐿 ≤ 40. We take the initial states 𝜌 = 𝜎 = ( |0⟩⟨0|)⊗𝐿 as in Fig. 3.2, and randomly
insert an erasure channel at each spacetime location of the 𝜌-circuit with probability
𝑞 = 0.1%. (b) We find the data consistent with the functional form in Eq.(3.29).
(c) Experimentally obtained 𝜒. The non-linear behaviour may be caused due to
coherent errors or other noise sources not captured by an erasure channel.
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Figure 3.13: Noisy numerical simulations for the 1D chain using erasure noise. (a)
Results from noiseless numerical simulations of Clifford circuits in 1D, for system
sizes 𝐿 ≤ 256. In our simulation, we take 𝜌 = 1

2𝐿 I and 𝜎 = ( |0⟩⟨0|)⊗𝐿 , as in
Ref. [61]. (b) When fitting the data to the scaling form in Eq. (3.15), we obtain
𝑝𝑐 ≈ 0.16 and 𝜈 ≈ 1.33, as consistent with Ref. [61].

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.5 1.0 0.5 0.0 0.5 1.0
p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

4

8

16

24

32

40

L

Figure 3.14: Noisy numerical simulations for the 1D chain using erasure noise. (a)
Results from noisy numerical simulations of Clifford circuits in 1D, for system sizes
𝐿 ≤ 40. We take the same initial states 𝜌 and 𝜎 as in Fig. 3.13, and randomly
insert an erasure channel at each spacetime location of the 𝜌-circuit with probability
𝑞 = 0.1%. (b) When fitting the data to the scaling form in Eq. (3.15), we use
𝑝𝑐 ≈ 0.14 and 𝜈 ≈ 1.33 as obtained from Fig. 3.4, where we find consistency.

averaging the numerator and the denominator separately over 𝐶,

𝜒 =
E𝐶

∑
m Tr

(
𝐶⊗2

m (𝜌 ⊗ 𝜎)
)

E𝐶
∑

m Tr
(
𝐶⊗2

m (𝜎 ⊗ 𝜎)
) . (3.31)

For𝐶 a brickwork circuit with local 2-qubit random unitary gates forming a 2-design,
the averages can be performed. As a result, the numerator and the denominator will
both take the form of a partition function of the Ising model on a triangular lattice,
where the Boltzmann weights can be explicitly written down [179, 148, 129, 180,
181]). The two partition functions are identical in the bulk, and only differ in
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Figure 3.15: Mapping 𝜒 defined in Eq. (3.32) to quantities in an effective Ising
model, when the circuit is (a) noiseless and (b) noisy. See the text for more details. In
both figures the blue color represents spins pointing in the “+” direction, the yellow
color represents spins pointing in the “−” direction, and the black color represents
a “free” boundary condition, where the spins can point in either direction.

their boundary conditions (coming from the difference in initial states). Following
Ref. [61], we denote them 𝑍𝜌≠𝜎 and 𝑍𝜌=𝜎, respectively.

In all our circuits we choose 𝜌 and 𝜎 to be tensor products of onsite density
matrices, and let them be different states. We also take the circuit to have a purely-
unitary “encoding” stage without measurements, before measurements take place
(see Fig. 3.1). Within these circuits, 𝜒 = 𝑍𝜌≠𝜎/𝑍𝜌=𝜎 corresponds to the partition
function ratio shown in Fig. 3.15(a). Each term lives in a rectangular geometry, with
the lower half an Ising model at zero temperature (corresponding to the encoding
stage), and the upper half at finite temperature [61]. The blue color denotes a “+”
boundary condition, and the yellow color denotes a “−” one. The numerator 𝑍𝜌≠𝜎

has a boundary condition where both the top and bottom spins are fixed to be +,
whereas 𝑍𝜌=𝜎 has an additional contribution where the bottom boundary condition
is also “−”. Thus,

𝜒𝜌≠𝜎 =
𝑍𝜌≠𝜎

𝑍𝜌=𝜎

=
1

1 + 𝑍+−/𝑍++
. (3.32)

The 𝑝 < 𝑝𝑐 phase of circuit maps to the the ferromagnetic phase of the Ising magnet,
where − ln(𝑍+−/𝑍++) is the free energy of a horizontal domain wall separating the
bottom and the top (see Fig. 3.15(a)), which diverges with 𝐿, therefore 𝜒 → 1. On
the other hand, in the 𝑝 > 𝑝𝑐 “paramagnetic” phase the domain wall free energy
vanishes, so 𝑍+−/𝑍++ → 1 and 𝜒 → 1/2. We see that the numerical value of 𝜒 in
the 𝑝 > 𝑝𝑐 phase differs from our numerical results, due to the annealed average.

The Ising picture is also useful for a qualitative understanding of the behavior of
linear cross entropy in the presense of noise. For simplicity, we take the the noise
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to be a random erasure at each spacetime location. The cross entropy now reads

𝜒 B E𝐶,N 𝜒𝐶,N = E𝐶,N

∑
m Tr

(
(𝐶′m ⊗ 𝐶m) (𝜌 ⊗ 𝜎)

)∑
m Tr

(
𝐶⊗2

m (𝜎 ⊗ 𝜎)
) . (3.33)

Here the circuit 𝐶′ is obtained from 𝐶 by inserting erasure noise (denoted N ) at
random spacetime locations, which in general turns pure states into mixed states.
Similarly, we define

𝜒
noisy
𝜌≠𝜎 =

E𝐶,N
∑

m Tr
(
(𝐶′m ⊗ 𝐶m) (𝜌 ⊗ 𝜎)

)
E𝐶

∑
m Tr

(
𝐶⊗2

m (𝜎 ⊗ 𝜎)
) =

𝑍
noisy
𝜌≠𝜎

𝑍𝜌=𝜎

. (3.34)

This quantity is similar to our of experimental data in Fig. 3.3. We can also consider
the following ratio

𝜒
noisy
𝜌=𝜎 =

𝑍
noisy
𝜌=𝜎

𝑍𝜌=𝜎

, (3.35)

which approaches 1 as the noise rate vanishes, and is similar to Fig. 3.2. Both 𝑍
noisy
𝜌≠𝜎

and 𝑍
noisy
𝜌=𝜎 can be obtained from their noiseless versions by applying a magnetic field

in the “+” direction everywhere in the system, breaking the Ising symmetry and also
destroy the phase transition.

Nevertheless, we may still make a prediction from the stat mech picture for noisy
data in a finite-size system. As we illustrate in Fig. 3.15(b), the following ratio
should always be upper bounded by 1,

𝜒
noisy
𝜌≠𝜎

𝜒
noisy
𝜌=𝜎

=
𝑍

noisy
𝜌≠𝜎

𝑍
noisy
𝜌=𝜎

=
1

1 + 𝑍+−(ℎ > 0)/𝑍++(ℎ > 0) ≤ 1, (3.36)

as the Ising partition functions remain positive under the erasure channel.

All-to-all circuit
We perform classical numerical simulations for circuits with all-to-all connectivity,
taking the same initial states as our 1D simulations. The results are shown in
Fig. 3.16, 3.17. We fit both noiseless and noisy data to the scaling form in Eq. (3.15).
From the noiseless simulation of 𝐿 ≤ 256 we obtain fits 𝑝𝑐 ≈ 0.33 and 𝜈 ≈ 2.50. In
particular, the critical exponent 𝜈 ≈ 2.50 agrees with a mean-field analysis as well
as numerical simulations from Ref. [168]. We also observe that if we only include
data from 𝐿 ≤ 40, then both the parameters here (𝑝𝑐, 𝜈) ≈ (0.33, 2.50), and the
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best fits obtained from experimental data (𝑝𝑐, 𝜈) ≈ (0.26, 1.90) (see Fig. 3.6), will
result in high quality data collapses (data not shown). This is consistent with our
observation of a large uncertainty in the fitting parameters in Fig. 3.6.

On the other hand, from our noisy data at noise rate 𝑞 = 0.1%, we obtain 𝑝𝑐 ≈ 0.20
and 𝜈 ≈ 0.80. Recall that the same noise model and noise rate produced Fig. 3.14,
which are comparable to experimental results in 1D. This suggests that noise affects
the data strongly in all-to-all connectivity, and our experimental data cannot be fully
captured by the simple simulated noise model.

3.13 Discussions
Our results show that MIPTs can be studied efficiently for systems with different
connectivities on near-term superconducting quantum hardware, when restricted to
Clifford circuits with an arbitrary initial state. The cross-entropy protocol used in this
chapter eliminates both of the exponential bottlenecks in previous studies of MIPTs
on superconducting hardware [60] while preserving the mid-circuit measurements
in the bulk of the circuit, providing a benchmark for the quality of mid-circuit
measurements in near-term quantum hardware. In future work, this protocol may be
extended to extract other critical exponents using a different circuit structure [61],
or to detect other related phenomena [182, 183, 144, 184, 185].

A technique we used throughout this work is Clifford circuit compression, which
takes a circuit with non-stabilizer initial states and outputs a gate-efficient represen-
tation for it. Circuit compression allows us to study systems larger than the number
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Figure 3.16: Noisy numerical simulations for the all-to-all connectivity system using
erasure noise. (a) Results from noiseless numerical simulations of Clifford circuits
with all-to-all connectivity, for system sizes 𝐿 ≤ 256. In our simulation, we take
𝜌 = 1

2𝐿 I and 𝜎 = ( |0⟩⟨0|)⊗𝐿 , identical to our choices in Fig. 3.13. (b) When fitting
the data to the scaling form in Eq. (3.15), we obtain 𝑝𝑐 ≈ 0.33 and 𝜈 ≈ 2.50.
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Figure 3.17: Noisy numerical simulations for the all-to-all connectivity system using
erasure noise. (a) Results from noisy numerical simulations of Clifford circuits with
all-to-all connectivity, for system sizes 𝐿 ≤ 40. We take the same initial states 𝜌 and
𝜎 as in Fig. 3.16, and randomly insert an erasure channel at each spacetime location
of the 𝜌-circuit with probability 0.1%. (b) When fitting the data to the scaling form
in Eq. (3.15), we find 𝑝𝑐 ≈ 0.20 and 𝜈 ≈ 0.80.

of available hardware qubits, while minimizing the number of measurements, which
is the slowest process of our circuits. Although we do not have a way to analyze or
control the effect of noise in the compressed circuit, from the cross entropy data for
𝜌 ≠ 𝜎 we can extract critical exponents that are evidently comparable to classical
simulations and theoretical predictions. On the other hand, the same circuit but
with 𝜌 = 𝜎 appear to be more sensitive to noise, which cannot be explained by a
simple incoherent noise model. It will be an interesting future direction to explore
the effects and the description of real device noise on the critical properties, and
conversely, the extent to which a phase transition in cross entropy can be informative
of experimental conditions and changes, such as dynamical decoupling, for large
systems where process tomography is too costly.
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C h a p t e r 4

QUANTUM ADVANTAGE IN ADVERSARIALLY ROBUST
MACHINE LEARNING

The previous chapters have demonstrated the applicability of noisy quantum com-
puters for the physical problems of open quantum system simulation and studying
measurement induced phase transitions. In the near term, noisy quantum compu-
tations may be useful for these and similar areas. The ultimate long term goal of
quantum computing, however, is to scale quantum computers and reduce errors to
a level which allows for large scale fault tolerant quantum computing. Among the
potential applications of fault tolerant quantum computing is to speed up classical
machine learning algorithms.

The growth of machine learning research in the past several years has led to the
widespread real world deployment of machine learning algorithms. As they con-
tinue to be used throughout society, the safety of these algorithms has become an
important topic. As a result, the study of adversarial attacks and defenses has be-
come increasingly important. Many studies have been done on whether quantum
learning algorithms are also susceptible to adversarial attacks, and whether they can
offer additional defense over classical algorithms; however, to date these studies
have mostly been heuristic in nature. In this chapter we provide the first rigor-
ous quantum advantage for defending against adversarial attacks. In particular, we
construct a binary classification learning problem for which any efficient classical
algorithm cannot successfully defend against a specific adversarial attack, but for
which a quantum algorithm can defend against and efficiently classify data.

4.1 Introduction
The past decade has seen large growth in machine learning research owing in large
part to the near-human level of performance of neural network architectures for
tasks ranging from image recognition and classification [186, 187, 188] to natural
language processing [189, 190, 191] to generative modeling [192, 193]. In parallel,
quantum computing has seen a similar growth due to its potential for applications
such as quantum simulation of physics and chemistry [194, 195] and cryptography
[196, 10]. Given the achievements and prospects of both quantum computing and
machine learning, a natural question to ask is what, if any, advantage is there
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in using quantum computers for classical machine learning tasks. So far, it has
been shown that for a variety of learning frameworks, one can use cryptographic
assumptions to construct learning problems for which quantum learners provably
outperform classical learners [197, 198]. However, whether there exists a rigorous
quantum advantage for practically relevant learning problems is unknown. One
learning problem which has not been studied from the perspective of cryptographic
assumptions is that of adversarially robust learning. In this framework, one is
required to learn a model which performs accurately even in the presence of an
adversary which can perturb the inputs in any way. A typical motivating example
is when an adversary can perturb an image in a way which is imperceptible to the
human eye, but causes a highly accurate classifier to mislabel the image.

Szegedy et al. [199] were the first to show that well performing neural networks for
classification are susceptible to adversarial attacks. Attacks on automatic speech
recognition systems and control systems [200, 201] and autonomous vehicle vision
systems [202] were subsequently discovered. An analysis of adversarial attacks
in linear models was given by Goodfellow et al. [203] and provides insight into
why these attacks work in neural networks. By perturbing each pixel in an image
proportionally to the sign of the gradient of the loss function, a small perturbation
can result in a model misclassifying the perturbed input despite the perturbation
being imperceptible to the human eye [203]. Since the seminal papers of Szegedy
et al. [199] and Goodfellow et al. [203], various heuristic defenses have been con-
structed to protect neural networks from adversarial attacks. These defenses include
the use of perturbed data into the training set [202] and a framework known as
distillation of knowledge [204, 205] among others [206]. Despite the abundance of
heuristic methods to defend against adversarial attacks, a rigorous understanding of
which defenses work against which attacks and how well they work is lacking in the
literature.

Recent results [207, 208] suggest there are computational barriers to learning clas-
sifiers that are robust to adversarial perturbations. In Reference [207], a learning
problem is constructed such that non-robust classification is easy but robust classi-
fication is hard as a result of the computational indistinguishability of the output of
pseudorandom generators from the uniform distribution. Although Reference [207]
provides evidence for the hardness of robust learning as a result of computational
limitations, the problem constructed there is not practically relevant; for real world
problems, the hardness of robust learning may also be rooted in computational
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limitations but so far this connection has not been made in the literature.

Adversarial attacks and defenses on quantum learning algorithms have been well
studied in the literature. Quantum principal component analysis and ensemble meth-
ods have have been used to harden quantum classifiers against poisoning attacks
[209]. Adding noise to quantum classifiers has been shown to increase robustness
to attacks [210, 211] with robustness bounds which improve as the level of noise in-
creases [211]. Liu and Wittek showed that the classification of quantum states using
a quantum classifier is vulnerable to adversarial attacks as a result of the concen-
tration of measure phenomenon in high dimensional Hilbert spaces [212], although
encodings of realistic classical data has been shown, also using concentration of
measure arguments, to exhibit increased robustness to attacks [213]. Alternative
ways to obtain robustness bounds include linking quantum classification to quantum
hypothesis testing [214], which also provides a protocol for assessing the robust-
ness of classifiers to both random and adversarial noise and a protocol to determine
whether a classifier outputs the same class for a perturbed state as an unperturbed
state without requiring access to the unperturbed state. By providing access to states
similar to those used in quantum PAC learning [215], classifiers can be constructed
which are provably adversarially robust [216]. Numerical experiments have shown
that quantum neural networks (QNNs) are susceptible to the same attacks as classi-
cal neural networks and that the same defenses can work in both the quantum and
classical setting [212], although QNNs can exhibit enhanced robustness over clas-
sical adversaries by learning features that their classical counterparts do not [217].
Similar experiments have also been carried out on quantum hardware with up to 10
qubits, confirming the numerical results [218].

In this paper, we show constructively, under standard cryptographic assumptions,
that there exists a class of classification problems for which any efficient classical
learner is susceptible to an adversarial attack but for which a quantum learner
can successfully defend against the same attack. Our work builds directly on
top of the works of Bubeck et al. [207] and Degwekar et al. [208], and our
contribution is to instantiate their learning problem in a way which allows for easy
robust classification when given access to a quantum computer. We emphasize here
that although our results provide an adversarial learning problem which exhibits a
quantum advantage, the learning problem is not practically relevant. The complexity
separation we provide is based on cryptographic assumptions and not real world
learning problems. Nonetheless, our construction provides a necessary condition
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for quantum advantages in robust learning and we believe it is an interesting proof
of principle for adversarially robust quantum machine learning.

In Section 4.2, based on Ref. [207], we introduce the concept of adversarially
robust machine learning and how hard robust learning tasks can be constructed
from cryptographic primitives. In Section 4.4, based on Ref. [208], we illustrate
how classical error correcting codes can be used on top of cryptographic primitives
to allow for increased robustness. In Section 4.6, containing our main results, we
introduce a learning task which, under widely accepted cryptographic assumptions,
is infeasible for any efficient classical learner to learn robustly, but for which a
quantum learner can efficiently learn an adversarially robust hypothesis. Finally, in
Section 4.11 we discuss our results.

4.2 Adversarially robust classification from pseudo-random generators
Robust binary classification
We first define binary classification for the non-robust case for a pair of distributions
(D0,D1) supported on Z𝑛2 [207].

Definition 4.2.1 (Binary classification problem). A binary classification problem
over Z𝑛2 is defined via a tuple (D0,D1), where both D0 and D1 are distributions
supported on Z𝑛2. For any 𝜖 ∈ (0, 1/2), a function 𝑓 : Z𝑛2 → {0, 1} is an 𝜖-accurate
solution to (D0,D1) if

P𝑋∼D0 [ 𝑓 (𝑋) = 0] ≥ 1 − 𝜖 and P𝑋∼D1 [ 𝑓 (𝑋) = 1] ≥ 1 − 𝜖 . (4.1)

We note that a binary classification problem as defined above may not have a solution
𝑓 which satisfies Equation (4.1). A trivial example is if D0 = D1.

We define a learning algorithm (for the binary classification problem) as

Definition 4.2.2 (PAC binary classification algorithm). We say that a learning
algorithmA is an (𝜖, 𝛿) probably approximately correct (PAC) learner for a family
of binary classification problems D = {(D𝑖

0,D
𝑖
1)} if, for all 𝑖, for any 𝛿 ∈ (0, 1)

and 𝜖 ∈ (0, 1/2), when given sample access to D𝑖
0 and D𝑖

1, algorithm A outputs,
with probability at least 1 − 𝛿, an 𝜖-accurate solution to (D𝑖

0,D
𝑖
1).

When learning a binary classifier, and for many learning problems in general, there
are several distinct notions of efficiency that are important when comparing learning
algorithms. The query complexity of an (𝜖, 𝛿) PAC learner the number of samples
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required to output a classifier. The time complexity of learning is the runtime,
as a function of 𝑛, 1/𝛿, and 1/𝜖 , of the learning algorithm to output a hypothesis.
The time complexity of the hypothesis is the runtime, as a function of 𝑛, 1/𝛿 and
1/𝜖 , required to output a label. All three of the aforementioned complexities are
important when evaluating the complexity of a learning algorithm. We say that a
learning algorithm is efficient only if its query and time complexity, as well as the
time complexity of the hypothesis, is 𝑂 (poly(𝑛, 1/𝜖, 1/𝛿)).

The previous definitions required only that the classifier is able to classify individual
points accurately. In the presence of an adversary, however, it is not enough to
classify individual points accurately but also all points reachable by an adversary.
In this paper we consider an adversary that can perturb points arbitrarily within an
𝜆-ball surrounding a data point. We therefore define an 𝜆-robust version of the above
formulation which requires that not only points from each distribution are correctly
classified with high probability, but also that all points within an 𝜆-ball are correctly
classified:

Definition 4.2.3 (𝜆-robust binary classification problem). A 𝜆-robust binary clas-
sification problem is defined via a tuple (D0,D1)𝜆 where both D0 and D1 are
distributions supported on Z𝑛2. For any 𝜖 ∈ (0, 1/2), a function 𝑓 : Z𝑛2 → {0, 1} is
an 𝜖-accurate solution to (D0,D1)𝜆 if

P𝑋∼D0 [ 𝑓 (𝑌 ) = 0 ∀ 𝑌 ∈ 𝐵(𝑋, 𝜆)] ≥ 1 − 𝛿 and (4.2)

P𝑋∼D1 [ 𝑓 (𝑌 ) = 1 ∀ 𝑌 ∈ 𝐵(𝑋, 𝜆)] ≥ 1 − 𝛿, (4.3)

where 𝐵(𝑥, 𝜆) = {𝑧 ∈ Z𝑛2 : 𝑑 (𝑥, 𝑧) ≤ 𝜆} and 𝑑 (·, ·) is the Hamming metric on Z𝑛2.

We note that in Reference [207], the distributionsD0 andD1 are supported over R𝑛

allowing for perturbations which are small with respect to the 𝐿2 norm on R𝑛. In
our definition, we restrict our distributions to be supported on Z𝑛2 and only allow for
bit flip perturbations. We impose these restrictions in order to simplify our results
although generalisation to R𝑛 is possible. Additionally, we note that Definition 4.2.3
reduces to the non-robust case when we set 𝜆 = 0.

We finally define a 𝜆-robust PAC learning algorithm as

Definition 4.2.4 (𝜆-robust PAC binary classification algorithm). We say that a learn-
ing algorithmA is 𝜆-robust, (𝜖, 𝛿) PAC learner for a family of binary classification
problem D = {(D𝑖

0,D
𝑖
1)𝜆𝑖 } if, for all 𝑖, for all 𝛿 ∈ (0, 1) and 𝜖 ∈ (0, 1/2), when
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given sample access toD𝑖
0 andD𝑖

1, algorithmA outputs, with probability of at least
1 − 𝛿, an 𝜖-accurate solution to (D𝑖

0,D
𝑖
1)𝜆𝑖 .

The sample and computational complexities are defined as for non-robust classifi-
cation, except the complexities are additionally functions of 𝜆, which we consider
a function of 𝑛. 𝜆-robust binary classification requires that not only points from
each distribution are correctly classified with high probability, but also that every
point in an 𝜆-ball around a given point from either distribution is correctly classified
with high probability. When considering an adversary rather than random noise, we
require that every point in an 𝜆-ball is correctly classified so that even in the worst
case, where the adversary can perturb the data in any way provided the size of the
perturbation is less than 𝜆, we are still able to accurately classify points. In the first
inequality in Equation 4.2.3, this is represented by the function 𝑓 being identically 0
on the 𝜆-ball so that no perturbation smaller than 𝜆 can cause a misclassification. In
the second inequality, 𝑓 must be identically 1 on the 𝜆-ball so that no perturbation
smaller than 𝜆 can cause a misclassification.

Hard robust-classification problems
As described in Ref. [207] and Section 4.9, we can construct a learning problem for
pseudo-random generators (PRGs) and uniform distributions such that a function 𝑓

exists such that non-robust classification is efficient whereas 𝜆-robust classification
is possible but outputting a Θ(

√
𝑛)-robust classifier is computationally inefficient.

A PRG is family {𝐺𝑛} of deterministic functions

𝐺𝑛 : {0, 1}𝑛 → {0, 1}𝑚, 𝑚 = poly(𝑛) (4.4)

such that the output distribution of 𝐺𝑛, on uniformly random inputs {0, 1}𝑛, is
computationally indistinguishable from the uniform distribution on {0, 1}𝑚. See
Section 4.7 for rigorous definitions.

SinceD0 is the output of a PRG andD1 the uniform distribution, efficient classifica-
tion of points as in Eq. (4.2) implies efficient distinguishability between the output
of the PRG and the uniform distribution, contrary to the definition of a PRG. By
prepending the data labels, the classification can be made efficient in the non-robust
case. The adversary then randomly flips the first bit of the input, rendering the robust
classification as difficult as inverting the PRG [207]. We formalize the classification
task as follows.



72

Construction 4.2.1 (Hard robust-classification problem from PRGs). Let 𝐺 :
{0, 1}𝑛 → {0, 1}𝑚 be a pseudorandom generator. We construct a hard robust-
classification problem (in the sense of Definition 4.2.3) from 𝐺 by defining the two
distributions D0 and D1. D0 is defined as the distribution of (0, 𝐺 (𝑋)) where 𝑋

is distributed uniformly over {0, 1}𝑛. D1 is the distribution of (0, 𝑌 ), where 𝑌 is
distributed uniformly over {0, 1}𝑚.

In the above construction, if the first bit is flipped, computational indistinguishability
of 𝐺 (𝑋) and 𝑌 implies that efficient classification is not possible. In the following
sections, we will instantiate the PRG 𝐺 using specific cryptographic assumptions.

The complexity separation between robust and non-robust classifiers as constructed
above relies crucially on the computational indistinguishability between the distri-
bution of the output of the PRG and the uniform distribution. PRGs which rely on
cryptographic assumptions, such as the Decisional Diffie-Hellman (DDH) assump-
tion over the quadratic residues modulo a safe prime, are thought to provide the
necessary randomness required in the above constructions as the DDH assumption
is widely believed to hold in this case [219]. However, although no efficient classical
algorithm is known which can distinguish between the outputs of the DDH PRG
and the uniform distribution, a simple application of Shor’s algorithm for discrete
logarithms [10] would be sufficient to distinguish between the pseudo-random and
uniformly random bits. Our construction of an adversarially robust machine learn-
ing problem which exhibits a rigorous quantum-classical separation is based on the
application of Shor’s algorithm to break the PRGs used in the construction of hard
robust learning problems.

4.3 A quantum-classical separation with constant robustness
As a warm-up, we describe in this section how to obtain a quantum advantage for a
robust learning problem when the adversary is allowed to flip 𝑂 (1) bits. The robust
learning problem follows directly from Construction 4.2.1 described in [207]. We
use the fact that there exists, under certain cryptographic assumptions, families of
functions 𝐺 = {𝐺𝑛} which are provably pseudorandom but which are easy to invert
if given access to a fault-tolerant quantum computer. More details are provided in
Section 4.6 and Section 4.8, but for the purpose of this section we note that if there
exists an efficient algorithm for computing discrete logarithms then it is efficient to
determine whether a bit string is in the image of the PRG 𝐺 or not.
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We now describe an efficient algorithm to classify bit strings in the presence of an
adversary which can flip 𝑂 (1) bits. In particular, we choose an adversary which
always sets the first bit to 0 and which leaves the rest of the bit string unchanged.
The input to the algorithm is thus a bit a string of the form 0| |𝑥. We assume that
we have access to an efficient quantum algorithm A which on input 𝑥 outputs 0 if
𝑥 ∈ Image(𝐺) and 1 if 𝑥 ∉ Image(𝐺). The existence of such an algorithm A is
shown in Section 4.6. On input 0| |𝑥, the classification algorithm simply outputs
A(𝑥). If A is efficient and outputs the correct label with high probability, then the
classification is efficient and accurate.

4.4 Increasing robustness via error correcting codes
Even if there exists an algorithm which can efficiently distinguish between outputs
from the PRG and the uniform distribution, the above construction can only effi-
ciently robustly classify against an adversary which flips 𝑂 (1) bits. To see this,
suppose we are given a point 𝑥 ∈ {0, 1}𝑚 drawn from D0 to classify. In order for
any algorithm to correctly classify this point, we need to check that most within an
𝜆-ball lie within the classifying set 𝐴. However, the number of points in 𝐵(𝑥, 𝜆),
where the 𝜆-ball is now defined using the Hamming metric, grows exponentially
with the number bit-flips, so efficiently checking whether most are contained in 𝐴

is not possible unless 𝜆 = 𝑂 (1).

To increase the robustness of the classifier, we can use classical error correcting
codes to first encode the output of the PRG as proposed in Reference [208]. This
method allows us to robustly classify points with as many bit-flips as can be tolerated
by the chosen error correcting code. As there exist error-correcting codes that can
uniquely decode under the presence of 𝑂 (𝑙) errors, where 𝑙 is the length of the code
words [220], this increases the robustness of the classification algorithm to 𝑂 (𝑙) as
well. If we denote the encoding and decoding functions of the error correcting code
as

Encode : {0, 1}𝑚 → {0, 1}𝑙 (𝑚) (4.5)

Decode : {0, 1}𝑙 (𝑚) → {0, 1}𝑚, (4.6)

respectively, where 𝑙 is some polynomial, the classification task is now defined as in
Construction 4.2.1 where the two distributions are given by the encoded PRG. The
two distributions D0 and D1 are now given by the distributions of

(0,Encode(𝐺 (𝑋))) and (1,Encode(𝑌 )), (4.7)
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where once again 𝑋 is drawn uniformly from {0, 1}𝑛 and𝑌 is drawn uniformly from
{0, 1}𝑚. The adversary can now flip up to 𝑂 (𝑙 (𝑚)) bits after which we apply the
decoding function. We can then efficiently classify points if we can break the PRG
𝐺, as in the previous section. The converse is also true: if we can efficiently classify
points, then we can break the PRG.

4.5 Necessity of a training phase when prior information is reduced
Although the previous constructions allow for a rigorous quantum advantage in terms
of the computational complexity of outputting a correct label once the hypothesis
is learned, when provided with a sample to classify the quantum algorithms from
Sections 4.3 and 4.4 can output a correct label with high accuracy even if the
algorithm was provided no previous samples. In other words, there is no training
phase for the learning algorithm and the sample complexity to learn a hypothesis
for the quantum algorithm is 0. This is inconsistent with the intuitive notion that
learning requires a training phase, rather than an algorithm being able to simply
calculate the correct output without learning from data. To remedy this problem,
we can provide less information to the quantum algorithm before hand and instead
supply this information to the algorithm during a training phase.

Breaking the PRG we use for our construction requires knowing both the prime 𝑝

used as the modulus as well as the generator 𝑔 of the PRG. Instead of assuming that
these values are known beforehand, we no longer explicitly provide the algorithm
with the generator 𝑔 which is required to run Shor’s algorithm. Instead, single bits
of the pair 𝑔 are appended to the data when we query for a sample.

Our training set now consists of samples of the form

(0,Encode(𝐺 (𝑋) | |𝑍 | |𝑏𝑔 (𝑍))) and (1,Encode(𝑌 | |𝑍 | |𝑏𝑔 (𝑍)), (4.8)

where the marginal distribution of 𝑍 is uniform on {1, . . . , 𝑝} and 𝑏𝑔 : {1, . . . , 𝑝} →
{0, 1} is a function which on input 𝑖 returns the 𝑖’th bit of 𝑔. In the training phase, we
receive polynomially many samples of the form Equation (4.8). As shown in Section
4.10, if 𝑝 is an 𝑛-bit safe prime and we are given access to 𝑛 log(𝑛/𝛿) samples, then
with probability at least 1 − 𝛿 we have enough samples to perfectly reconstruct 𝑔.
In this case, we can then use Shor’s algorithm as in the previous sections in order to
label points.

We note that it would be also possible to simply append all of 𝑔 to each data
point, rather than providing the information one bit at a time. However, if all of 𝑔 is
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appended to each data point, then once again no training phase is needed. In order to
classify point without having seen training data, we first read off the bits describing
𝑔. After we have 𝑔, we can then classify points if given access to quantum resources.
To avoid this problem, we provide 𝑔 one bit at a time.

4.6 Quantum advantage for an adversarial classification problem
In the constructions above, we can use a PRG which is classically safe but can be
broken efficiently using Shor’s algorithm, and an error correcting code which can
uniquely decode up to a linear number of errors. In the presence of an adversary
which always sets the first bit to 0 and can also flip up to a linear number of
bits, accurate classification implies the ability to distinguish between the outputs
of the PRG and the uniform distribution. Because we choose a classically safe
(under widely accepted cryptographic assumptions) PRG, the classification task
must necessarily be inefficient. However, since the PRG is not quantum safe, we can
show that classification can be done efficiently. We thus have a quantum advantage
for an adversarial classification problem.

We summarize our result in the following theorem.

Theorem 4.6.1. There exists a binary classification problem on Z𝑙2 equipped with
the Hamming metric that satisfies:

1. Non-robust classification is classically sample and computationally efficient
to learn and implement.

2. There exists a Θ(𝑙)-robust classical classifier.

3. There exists an 𝑂 (1)-adversary such that classification is classically sample
and computationally inefficient to learn.

4. There exists an 𝑂 (𝑙)-robust sample and computationally efficient quantum
learner whose output is computationally efficient.

To prove theorem 4.6.1, we first state a learning algorithm for binary classification,
then show that each of the 4 properties of Theorem 4.6.1 are satisfied. The first part
of the learning algorithm is the training phase. In the following, 𝑛 is the length of
an 𝑛-bit safe prime.
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Algorithm 1 Training phase of the quantum PAC learning algorithm for 𝜆-robust
binary classification

1: procedure Learn(𝛿, 𝑛)
2: 𝑁 ← 𝑛 log (𝑛/𝛿) ⊲ Set number of samples
3: 𝑔 ← list(𝑛) ⊲ Initialize empty lists for storing bits of 𝑔
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . , 𝑁 do
5: 𝑥0 ← Sample

(
D𝑖

0

)
⊲ Receive a sample from each distribution

6: 𝑥0 ← Decode(𝑥0) ⊲ After decoding, 𝑥0 is of the form
𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 | |𝑧 | |𝑏𝑔 (𝑧)

7: 𝑔[𝑧] ← 𝑏𝑔 (𝑧)
8: end for
9: return 𝑔 ⊲ The bitstring representing 𝑔

10: end procedure

The purpose of the training phase is to collect enough information about the generator
𝑔 to run Shor’s algorithm. As shown in Section 4.10, with probability at least 1 − 𝛿
we can perfectly reconstruct 𝑔.

Once we have run the training phase, we can then output a quantum algorithm which
can robustly classify points. The classification algorithm we output is as follows.

Algorithm 2 Algorithm for 𝜆-robust binary classification
1: procedure Classify(𝑥)
2: 𝑥 ← Sample

(
D𝑖

0,D
𝑖
1

)
⊲ Receive a sample from either distribution

3: 𝑥 ← Decode(𝑥) ⊲ After decoding, 𝑥 is of the form 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 | |𝑧 | |𝑏𝑔 (𝑧)
4: 𝑎, 𝑏, 𝑐 ← Shor(𝑔𝑎), Shor(𝑔𝑏), Shor(𝑔𝑐) ⊲ Use Shor’s algorithm to

compute DL
5: if 𝑎𝑏 = 𝑐 then
6: return 0
7: else
8: return 1
9: end if

10: end procedure

Construction of the PRG and error correcting code
We discuss here the PRG and error correcting code we use in order to construct
the classification problem which satisfies all four requirements of Theorem 4.6.1.
The construction relies on the DDH assumption over the group family of quadratic
residues modulo a safe prime [219]. We use this particular construction because it
is widely believed to be able to be used to construct a secure classical PRG which
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is not quantum safe, as efficient implementation of the discrete logarithm allows
us to efficiently invert the PRG. Efficient inversion of the PRG then allows us to
efficiently determine whether a bitstring was sampled from the uniform distribution
or the output of the PRG, which in turn allows for efficient classification.

A safe prime is a prime number 𝑝 which can be written in the form 𝑝 = 2𝑞 + 1,
where 𝑞 is also prime. The DDH assumption applies to group families, families of
groups which are parametrized by some index set. For our construction, we use the
group family defined by the group of quadratic residues modulo a safe prime. See
Section 4.8 for definitions.

We next informally define the DDH assumption. The rigorous definition can be
found in Section 4.8.

Definition 4.6.1 (Decisional Diffie-Hellman assumption, informal). Let 𝐼 be an
infinite index set. We say that a group family 𝐺 = {𝐺𝑖}𝑖∈𝐼 satisfies the DDH
assumption if for all polynomial time algorithms A and all polynomials 𝑞��P [

A(𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1
]
− P

[
A(𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1

] �� < 1
𝑞(𝑛)

for sufficiently large 𝑛, where 𝑔 is a group generator for 𝐺𝑖 and 𝑛 = |𝑖 | is the length
of the binary representation of 𝑝. The probability is taken over the randomness in
the algorithm A, as well as over the randomness in selecting a group and group
generator 𝑔 from the group family.

Roughly speaking, if the DDH assumption holds over a group family, then (𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏)
and (𝑔𝑎, 𝑔𝑏, 𝑔𝑐) are computationally indistinguishable when 𝑎, 𝑏 and 𝑐 are drawn
uniformly from the integers in the range [0, |𝐺𝑖 | − 1].

We now define the PRG we use in our construction. We use the quadratic residues
modulo 𝑝 where 𝑝 is a safe prime to construct a PRG. We represent each ℎ ∈ QR𝑝

by its binary representation with zero padding on the left if |ℎ | < |𝑝 |. Then every
binary representation of elements of QR𝑝 has length ⌊log 𝑝⌋ + 1. Given a group
generator 𝑔, the PRG is defined as

𝐺𝑔 (𝑎, 𝑏) = 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏,

where 𝑎 and 𝑏 are drawn independently and uniformly from [0, 𝑞 − 1], and | |
represents concatenation. All exponentiation is done modulo 𝑝. By the DDH
assumption, 𝐺𝑔 (𝑎, 𝑏) is computationally indistinguishable from 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐, where
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𝑐 is also drawn independently and uniformly from [0, 𝑞 − 1]. Since 𝑔 is a generator
of a cyclic group and 𝑎, 𝑏, 𝑐 are drawn uniformly, 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 is uniformly distributed
over QR3

𝑝.

Although bit flip perturbations to 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 do not necessarily map to another
element of QR3

𝑝, since we will use an error correcting code on top of 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐,
once decoded and with sufficiently few bit flips the original string will still be
recovered.

We now specify the error correcting code we use in our construction. We use the
fact that there exist classical error correcting codes which can correct for a number
of errors in proportion to the length of the encoded string [220]. In particular, we
use Theorem 10 from Ref. [220]:

Theorem (Binary code of rate Ω(𝛾3) with relative distance (1/2 − 𝛾)). For any
𝛾 < 1/4 there exists a binary code 𝐶 : {0, 1}𝑚 → {0, 1}𝑙 with 𝑙 = 𝑂 (𝑚/𝛾3) which
can detect and correct up to (1/4 − 𝛾)𝑙 errors uniquely and which has an encoding
time 𝑂 (𝑙 log𝑂 (1) 𝑙) and decoding time 𝑂 (𝑙2 + 21/𝛾3).

Following [208], we define, for fixed 𝛾, Encode𝛾 : {0, 1}𝑚 → {0, 1}𝑙 as the encoding
function and Decode𝛾 : {0, 1}𝑙 → {0, 1}𝑚, which is well defined since the code
supports unique decoding.

Informal proof of Theorem 4.6.1
Using the construction in Section 4.6, we outline the proof of Theorem 4.6.1, noting
that we are particularly interested in parts 3 and 4 of the theorem. For simplicity, we
fix 𝛾 = 1/8 for the error correction code and drop the subscript 𝛾 for the encoding and
decoding functions. The distributionD0 is defined as being the uniform distribution
over the set

𝐷0 =
{
0| |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 | |𝑧 | |𝑏𝑔 (𝑧)) | 𝑎, 𝑏 ∈ Z𝑞, 𝑔 ∈ QR𝑝, 𝑧 ∈ {1, . . . , 𝑝}

}
(4.9)

and D1 as uniform over the set

𝐷1 =
{
1| |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 | |𝑧 | |𝑏𝑔 (𝑧)) | 𝑎, 𝑏, 𝑐 ∈ Z𝑞, 𝑔 ∈ QR𝑝, 𝑧 ∈ {1, . . . , 𝑝}

}
.

(4.10)
Here, 𝑔 is a generator of QR𝑝, 𝑔𝑥 is to be understood as the left zero-padded
binary representation of the integer, padded to length ⌊log 𝑝⌋ + 1, and | | represents
concatenation. Since the length of each 𝑔𝑥 is ⌊log 𝑝⌋ + 1, we have 𝑚 = 4(⌊log 𝑝⌋ +
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1) + 1 for the inputs into the encoding function and 𝑙 = 𝑂 (𝑚). The length of each
element of 𝐷0 and 𝐷1 is therefore 𝑙 + 1.

For the proof, we assume we have already trained on 𝑛 log (𝑛/𝛿) samples, so that
with probability 1 − 𝛿 we have reconstructed 𝑔. The classical non-robust classifier
outputs the first bit of the input, proving part 1.

For part 2, suppose we are given a bit string of length 𝑙 + 1, of the form
𝑥0 | |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 | |𝑧 | |𝑏𝑔 (𝑧)). We define the classifying set as

𝐴 = ∪𝑥∈𝐷0𝐵(𝑥, 𝑙/8). (4.11)

As shown in Section 4.10, with the classifying set defined as above, the existence
of a Θ(𝑙)-robust classifier depends only on the relative sizes of the sets 𝐷0 and 𝐷1.
In particular, if |𝐷0 |/|𝐷1 | is negligible, then a Θ(𝑙)-robust classifier exists. The
number of elements in 𝐷0 is 2𝑝𝑞2 and the number of elements in 𝐷1 is 2𝑝𝑞3, so
|𝐷0 |/|𝐷1 | = 1/𝑞. Since 𝑞 grows exponentially relative to the length of the bit string
representation of 𝑝, the relative sizes of the sets is negligible and a Θ(𝑙)-robust
classifier exists.

For part 3, we assume for contradiction that we have an efficient𝑂 (1)-robust classical
classifier A: ��P𝑋∼D0 [A(𝑋) = 1] − P𝑋∼D1 [A(𝑋) = 1]

�� < 1
𝑛𝛼

, (4.12)

where 𝛼 > 0 is constant and 𝑛 is the length of the input. The adversary that always
erases and sets the first bit to 0, so we can ignore it. Since the remaining bits of 𝑋
are either encoded Diffie-Hellman triples if 𝑋 ∼ D0 or encoded triples of all group
elements if 𝑋 ∼ D1, this directly contradicts the DDH assumption since we can use
A to efficiently distinguish between triples and non-triples.

For part 4, we receive a bit string 0| |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 | |𝑧 | |𝑏𝑔 (𝑧)) with up to 𝑙/8− 1
bits flipped on the encoded suffix. We apply Decode to the suffix, yielding the
string 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐. Using Shor’s algorithm for discrete logarithms, we can find 𝑎, 𝑏

and 𝑐 in quantum polynomial time. We then output 0 if 𝑎𝑏 = 𝑐 and 1 if 𝑎𝑏 ≠ 𝑐.
Since both the decoding function and Shor’s algorithm run in polynomial time, this
classification is efficient.

4.7 Pseudorandom generators
In the following sections we provide the rigorous definitions required to rigorously
prove quantum advantage for adversarially robust machine learning.
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In this section we provide definitions and results without proof to rigorously define
pseudorandom generators (PRGs). We assume that we are always referencing a
specific probability space (Ω, F , P), although we rarely need to make use of any
specific details of the sample space or 𝜎-algebra. For more details, see Ref. [221].

Pseudorandom generators are ensembles or families of functions whose outputs
“appear random” when seeded with a uniformly (truly) random input. A probability
ensemble is defined as

Definition 4.7.1 (Probability ensemble). Let 𝐼 be an index set. A probability ensem-
ble indexed by 𝐼 is a sequence {𝑋𝑖}𝑖∈𝐼 of random variables where each 𝑋𝑖 : Ω→ R
is a random variable.

As we are interested in asymptotic results, notions such as two ensembles being
“similar” or functions being “hard to invert” are defined in terms of so-called
negligible functions, which captures the notion of rapidly decreasing functions as
the length of the inputs increase. A negligible function is defined as

Definition 4.7.2 (Negligible functions). A function 𝜇 : N → R is negligible if
𝜇(𝑛) < 1/𝑝(𝑛) for all polynomials 𝑝 and all sufficiently large 𝑛.

We now define what it means for two ensembles to be indistinguishable. There are
two related notions of indistinguishability. The classical notion of indistinguishabil-
ity is statistical closeness, defined in terms of the statistical difference, also known
as the total variation distance

Δ(𝑛) = 1
2

∑︁
𝛼

|P[𝑋𝑛 = 𝛼] − P[𝑌𝑛 = 𝛼] | . (4.13)

Two ensembles are said to be statistically close if their statistical difference is
negligible. Statistical closeness is a stronger than necessary requirement, since for
the purposes of complexity theory it does not matter if two ensembles are statistically
close, only whether there exists an efficient algorithm which can distinguish between
the two ensembles. This notion is captured by computational indistinguishability:

Definition 4.7.3 (Polynomial-time computational indistinguishability). Two ensem-
bles {𝑋𝑛}𝑛∈N and {𝑌𝑛}𝑛∈N are polynomial-time computationally indistinguishable
if for every probabilistic polynomial-time algorithm 𝐷

|P[𝐷 (𝑋𝑛) = 1] − P[𝐷 (𝑌𝑛) = 1] | (4.14)

is a negligible function of 𝑛.
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Two ensembles which are polynomial-time indistinguishable may not be statistically
close, but no efficient algorithm can detect the difference between them.

PRGs are used to “expand randomness,” in the sense that they take as input a uni-
formly chosen random seed and output a longer bit-string which “appears random.”
Formally, we first define pseudorandom ensembles:

Definition 4.7.4 (Pseudorandom ensembles). An ensemble {𝑋𝑛}𝑛∈N is called pseu-
dorandom if it is polynomial-time computationally indistinguishable from some
uniform ensemble {𝑈𝑙 (𝑛)}𝑛∈N, where 𝑙 is a polynomial.

Pseudorandom ensembles can be used in any polynomial time application which
requires uniform randomness with negligible degradation in performance. Provided
that any adversary must run in polynomial time, the probability of detecting that
a pseudorandom ensemble was used rather than a uniformly random ensemble is
negligible.

We can now formally define the concept of pseudorandom generators.

Definition 4.7.5 (Pseudorandom generators). A pseudorandom generator 𝐺 is a
deterministic polynomial-time algorithm which satisfies the following conditions:

1. Expansion: there exists a function 𝑙 : N→ N such that 𝑙 (𝑛) > 𝑛 for all 𝑛 ∈ N,
and |𝐺 (𝑠) | = 𝑙 ( |𝑠 |) for all 𝑠 ∈ {0, 1}∗.

2. Pseudorandomness: the ensemble {𝐺 (𝑈𝑛)}𝑛∈N is pseudorandom.

The polynomial 𝑙 in the above definition is called the expansion factor of the PRG
and the input 𝑠 is called its seed. Since the ensemble {𝐺 (𝑈𝑛)}𝑛∈N is pseudorandom,
it is polynomial-time computationally indistinguishable from the uniform distribu-
tion {𝑈𝑙 (𝑛)}𝑛∈N. Provided that an adversary only has access to polynomial-time
resources, we need only have access to uniform ensembles {𝑈𝑛}𝑛∈N in order to build
safe applications which require longer random strings.

PRGs used in practice rely on cryptographic hardness assumptions, such as the Deci-
sional Diffie-Hellman over certain group families. These cryptographic assumptions
are based on the hardness of inverting one-way functions, functions which are easy
to compute in the forward direction but hard to invert. Finally, we note that in
many modern applications, the underlying cryptographic assumptions are widely
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accepted, yet with access to polynomial-time quantum resources are easily broken.
The use of so-called “quantum-safe” cryptographic assumptions are an active area
of research [32, 222].

4.8 The Decisional Diffie-Hellman assumption
The Decisional Diffie-Hellman (DDH) assumption underlies many modern cryp-
tosystems [223, 224, 225]. For more details, see Ref. [219] and [198] which this
section is based on.. In this section, we again assume that we are always refer-
encing a specific probability space (Ω, F , P). For a fixed cyclic, multiplicative
group 𝐺 with group generator 𝑔, and uniformly random integers 𝑎, 𝑏, 𝑐 ∈ [1, |𝐺 |],
the DDH assumption states that, roughly speaking, (𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) and (𝑔𝑎, 𝑔𝑏, 𝑔𝑐)
are polynomial-time computationally indistinguishable. We give two examples of
group for which the DDH assumption is believed to hold:

1. Let 𝑝 = 2𝑞 + 1 where both 𝑝 and 𝑞 are prime, and let 𝐺 = QR𝑝 be the group
of quadratic residues modulo 𝑝.

2. Let 𝑁 = 𝑝𝑞, where all of 𝑝, 𝑞, (𝑝 − 1)/2 and (𝑞 − 1)/2. Let 𝐺 be the cyclic
subgroup of order (𝑝 − 1) (𝑞 − 1).

We note that in the above, both groups are parametrized by a single parameter,
𝑝 or 𝑁 . Some groups for which the DDH assumption is believed to hold may be
parametrized by multiple parameters, but we always define the DDH assumption over
parameterized group families. Computational indistinguishability will be defined
in terms of the parameters of the group families, allowing for asymptotic analysis
as the length of the binary representation of the parameter increases.

We next formally define the DDH assumption, for which we need several preliminary
definitions. First, since the DDH assumption is an assumption on group families,
we formally define efficient group families.

Definition 4.8.1 (Efficient group families). An efficient group family is a sequence
of cyclic groups 𝐺 = {𝐺 𝑝}𝑝∈𝑃 where 𝑃 is an infinite index set. We denote by |𝑝 |
the length of the binary representation of 𝑝. By efficient, we mean that there exists
a polynomial time (in |𝑝 |) algorithm which, when given 𝑝 and two elements of 𝐺 𝑝

outputs their product. We denote by ID the instance description, a probabilistic
polynomial-time algorithm that on input 𝑝 outputs a group generator for 𝐺 𝑝.
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Since the DDH assumption is based on group families, we need an efficient way
to select groups from the family given some integer input. We do this by defining
instance generators:

Definition 4.8.2 (Instance generator). An instance generator IG for 𝐺 is a proba-
bilistic polynomial-time algorithm which on unary input 𝑛 outputs an index 𝑝 ∈ 𝑃

and a group generator 𝑔 ∈ 𝐺 𝑝. We note that for each 𝑛, IG induces a distribution
on the set of indices 𝑝 ∈ 𝑃 and that the output |𝑝 | is polynomial in 𝑛.

We can now formally define the DDH assumption.

Definition 4.8.3 (Decisional Diffie-Hellman assumption). Let 𝐺 = {𝐺 𝑝}𝑝∈𝑃 be a
group family with instance description ID and instance generator IG. We say that
the DDH assumption holds over𝐺 if for all probabilistic polynomial-time algorithms
A,

|P𝑝←IG(1𝑛)
𝑔←ID(𝑝)
𝑎,𝑏←Z |𝐺𝑝 |

[A(𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1] − P 𝑝←IG(1𝑛)
𝑔←ID(𝑝)
𝑎,𝑏,𝑐←Z |𝐺𝑝 |

[A(𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1] |

(4.15)
is a negligible function of 𝑛. By 𝑝 ← IG(1𝑛) (𝑔 ← ID(𝑝)) we mean that 𝑝

(𝑔) is distributed according to the distribution induced by the randomness of the
algorithmIG (ID). By 𝑎, 𝑏, (𝑐) ← Z|𝐺 𝑝 |, we mean that 𝑎, 𝑏, (𝑐) are independently
distributed according to the uniform distribution on Z|𝐺 𝑝 |.

We now focus on the DDH assumption on the group family defined by the quadratic
residues modulo a safe prime. The group of quadratic residues modulo an integer
is defined as

Definition 4.8.4 (Group of quadratic residues over Z∗
𝑁

). Let Z∗
𝑁

denote the multi-
plicative group of integers modulo 𝑁 . An element 𝑦 ∈ Z∗

𝑁
is a quadratic residue

modulo 𝑁 if 𝑦 ≡ 𝑥2 (mod 𝑁) for some 𝑥 ∈ Z∗
𝑁

. We denote by QR𝑁 the subgroup of
quadratic residues modulo 𝑁 .

A safe prime is a prime 𝑝 of the form 𝑝 = 2𝑞 + 1, where 𝑞 is also prime and
the parametrization set 𝑃 is the set of all safe primes. We note that {QR𝑝}𝑝∈𝑃 is
indeed a valid efficient group family, since computing the product of two elements
in QR𝑝 modulo 𝑝 is efficient [226] and an instance description can, for example,
be constructed by randomly selecting an integer from [1, 𝑝], followed by (efficient)
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membership testing using Euler’s criterion [227]. Since exactly half of the elements
in Z∗𝑝 are quadratic residues (|QR𝑝 | = 𝑞), and all non-identity elements of QR𝑝 are
generators, this method will rapidly find a generator for QR𝑝.

Finally, we show how to construct a PRG which is provably pseudorandom under
the DDH assumption over the quadratic residues modulo a safe prime. We define
the parametrized function 𝐺𝑔,𝑝 : Z𝑞 × Z𝑞 → QR𝑝 × QR𝑝 × QR𝑝 by

𝐺𝑔,𝑝 (𝑎, 𝑏) = 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 (4.16)

where all exponentiation is done modulo 𝑝 (efficiently, see Ref. [228]) and | |
represents concatenation. This family of functions is a pseudorandom generator
under the DDH assumption over QR𝑝, as we can see by rewriting Equation (4.15)
as

|P𝑝←IG(1𝑛)
𝑔←ID(𝑝)
𝑎,𝑏←Z |𝐺𝑝 |

[A(𝑝, 𝑔, 𝐺𝑔,𝑝 (𝑎, 𝑏)) = 1] − P 𝑝←IG(1𝑛)
𝑔←ID(𝑝)
𝑎,𝑏,𝑐←Z |𝐺𝑝 |

[A(𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1] |.

(4.17)
Since the quantity in Equation (4.17) is negligible for all probabilistic polynomial-
time algorithms A, this implies that no efficient algorithm can distinguish between
𝐺𝑔,𝑝 (𝑎, 𝑏) = 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 and 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 with non-negligible probability. Since
𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 is uniformly distributed over QR3

𝑝 (for uniformly distributed 𝑎, 𝑏, 𝑐 ∈ Z𝑞),
both conditions of Definition 4.7.5 are satisfied and 𝐺𝑔,𝑝 is a PRG.

4.9 Volume arguments for the existence of good classifiers
Here we present the volume arguments used to show that whenD0 is the distribution
of the output of a PRG and D1 is the uniform distribution, non-robust classification
is computationally and sample efficient and that robust classification is possible but
inefficient. First we present the volume argument for the non-robust case.

Volume argument for non-robust classification
We denote by𝐺 : {0, 1}𝑛 → {0, 1}𝑚 the PRG, and we defineD0 to be the distribution
of 𝐺 (𝑥) for 𝑥 uniform in {0, 1}𝑛, and D1 the uniform distribution over {0, 1}𝑚. We
define 𝐴 to be the range of 𝐺, 𝐴 = {𝑥 ∈ {0, 1}𝑚 : 𝑥 = 𝐺 (𝑦) for some 𝑦 ∈ {0, 1}𝑛}.
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Then P𝑋∼D0 [𝑋 ∈ 𝐴] = 1 and

P𝑋∼D1 [𝑋 ∉ 𝐴] = 1
2𝑚

2𝑚−1∑︁
𝑥=0

1[𝑥∉Im(𝐺)] (4.18)

≥ 1
2𝑚
(2𝑚 − 2𝑛) (4.19)

= 1 − 2𝑛−𝑚 (4.20)

since |Range(𝐺) | ≤ 2𝑛. 1 − 2𝑛−𝑚 ≥ 0.99 for large enough 𝑛 provided that 𝑚 is an
increasing function of 𝑛, which is the case in all of our arguments.

Volume argument for robust classification
In this section, we provide a volume argument to show that Θ(

√
𝑛) robust classifi-

cation is possible yet inefficient if we do not use error correcting codes. Similarly
to the non-robust case, we define 𝐴 as

𝐴 = ∪𝑥∈Im(𝐺)𝐵(𝑥, 𝜖) (4.21)

and once again we have P𝑋∼D0 [𝑋 ⊂ 𝐴] = 1.

For D1, we show that

P𝑋∼D1 [𝐵(𝑋, 𝜖) ∩ 𝐴 ≠ ∅] ≤ 0.01 (4.22)

by counting the total number of points within a 2𝜖-ball of all points in Im(𝐺).

P𝑋∼D1 [𝐵(𝑋, 𝜖) ∩ 𝐴 ≠ ∅] = 1
2𝑚

2𝑚−1∑︁
𝑥=0

1[𝐵(𝑥,𝜖)∩𝐴≠∅] (4.23)

=
1

2𝑚


∑︁

𝑥∈Im(𝐺)
1[𝐵(𝑥,𝜖)∩𝐴≠∅] +

∑︁
𝑥∉Im(𝐺)

1[𝐵(𝑥,𝜖)∩𝐴≠∅]


(4.24)

≤ 1
2𝑚

2𝑛 +
∑︁

𝑥∉Im(𝐺)
1[𝐵(𝑥,𝜖)∩𝐴≠∅]

 (4.25)

= 2𝑛−𝑚 + 1
2𝑚

∑︁
𝑥∉Im(𝐺)

1[𝐵(𝑥,𝜖)∩𝐴≠∅] . (4.26)

To complete the argument, we need to upper bound∑︁
𝑥∉Im(𝐺)

1[𝐵(𝑥,𝜖)∩𝐴≠∅] .
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To do this, we consider any point 𝑥 ∉ Im(𝐺). Since 𝐵(𝑥, 𝜖) ∩ 𝐴 ≠ 0 iff there exists
a point 𝑦 ∈ Im(𝐺) within 2𝜖 of 𝑥, we have that

∑
𝑥∉Im(𝐺) 1[𝐵(𝑥,𝜖)∩𝐴≠∅] is equal to the

number of points in {0, 1}𝑚\Im(𝐺) that are within 2𝜖 of a point in Im𝐺. This must
be less than the total number of points within 2𝜖 of all points in Im(𝐺). In other
words, ∑︁

𝑥∉Im(𝐺)
1[𝐵(𝑥,𝜖)∩𝐴≠∅] ≤ |Im(𝐺) |𝑀,

where 𝑀 is the number of points in {0, 1}𝑚 inside of a 2𝜖-ball centered at any point,
since each ball contains the same number of points. In the following, we also assume
that 𝑚 = 𝑘𝑛 for some constant 𝑘 > 1. For the PRG we use, we have that 𝑘 > 3/2.
We thus need to count how many points are inside this ball. By symmetry, we can
take the center of the ball to be 0𝑚 and count how many bit-strings are inside this
ball. We do this by writing the Hamming weight as 𝐻 (𝑥) = ∑𝑚

𝑖=1 𝑥𝑖 =
∑𝑚

𝑖=1 𝑥
2
𝑖
= |𝑥 |22

since 𝑥 is binary. For a ball of size 2𝜖 (in 𝐿2 norm), we then have that the number
of strings in the 2𝜖-ball is

𝑀 =

⌊4𝜖2⌋∑︁
𝑖=0

(
𝑚

𝑖

)
(4.27)

=

𝑑∑︁
𝑖=0

(
𝑚

𝑖

)
setting 𝑑 =

⌊
4𝜖2⌋ (4.28)

≤
( 𝑒𝑚
𝑑

)𝑑
(4.29)

= 2𝑛𝑐 log 𝑘𝑒
𝑐 setting 𝑑 = 𝑐𝑛. (4.30)

Then, ∑︁
𝑥∉Im(𝐺)

1[𝐵(𝑥,𝜖)∩𝐴≠∅] ≤ |Im(𝐺) |𝑀 (4.31)

≤ 2𝑛2𝑛𝑐 log 𝑘𝑒
𝑐 (4.32)

= 2𝑛(𝑐 log 𝑘𝑒
𝑐
+1) . (4.33)

Substituting back into Equation (4.26), we get

P𝑋∼D1 [𝐵(𝑋, 𝜖) ∩ 𝐴 ≠ ∅] ≤ 2𝑛−𝑚 + 1
2𝑚

∑︁
𝑥∉Im(𝐺)

1[𝐵(𝑥,𝜖)∩𝐴≠∅] (4.34)

≤ 2𝑛−𝑚 + 2−𝑚2𝑛(𝑐 log 𝑘𝑒
𝑐
+1) (4.35)

= 2𝑛−𝑚 + 2𝑛(𝑐 log 𝑘𝑒
𝑐
+1−𝑘) . (4.36)
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Provided that 𝑐 log 𝑘𝑒
𝑐
+ 1 − 𝑘 is negative, we have our desired result by taking 𝑛

sufficiently large. The function 𝑓 (𝑥) = 𝑥 log 𝑘𝑒
𝑥
+ 1 − 𝑘 is negative for sufficiently

small 𝑥 for all 𝑘 > 1. Since 𝑑 is the number of bit flips we allow, i.e., the
maximum allowable Hamming distance, and 𝜖 = 𝑂 (

√
𝑑), we have that 𝑂 (

√
𝑚)-

robust classification is possible. However, since the adversary always flips the first
bit, the classification must be necessarily be inefficient otherwise we violate the
assumption of the PRG being computationally indistinguishable from the uniform
distribution.

4.10 Rigorous proof of Theorem 4.6.1
Here we provide a rigorous proof of Theorem 4.6.1.

Sample efficiency
We first prove that for 𝑛 = ⌊log 𝑝⌋+1, with 𝑝 an 𝑛-bit safe prime, that with probability
1− 𝛿 we can perfectly reconstruct a generator 𝑔 for QR𝑝 given access to 𝑛 log (𝑛/𝛿)
samples of the form 𝑥0 | |𝐺𝑔,𝑝 (𝑎, 𝑏) | |𝑧 | |𝑏𝑔 (𝑧).

With 𝑘 = 𝑛 log (𝑛/𝛿) i.i.d. training samples, drawn from the uniform distributions
over either 𝐷0,𝑔 or 𝐷1,𝑔, we collect samples of the suffixes

(𝑧1, 𝑏𝑔 (𝑧1)), (𝑧2, 𝑏𝑔 (𝑧2)) . . . (𝑧𝑘 , 𝑏𝑔 (𝑧𝑘 )). (4.37)

It is not important how we select which distribution to draw from, since the suffixes
are uniformly random in either case. Each sample (𝑧1, 𝑏𝑔 (𝑧1)) gives us 1 bit of
information about 𝑔. If we have enough samples to learn all of 𝑔, then we have
found the correct concept and will be able to classify 100% accurately. To see how
many samples we need to draw, we write the binary expansion

𝑔 = 𝑔𝑛−1𝑔𝑛−1 · · · 𝑔0. (4.38)

We want to know given 𝑘 samples, what is the probability of seeing each 𝑔𝑖 at
least once. Let’s call this event 𝐴. If we have less than 𝑛 samples, then clearly the
probability of seeing each bit at least once is 0. For 𝑘 ≥ 𝑛 samples, let us define the
events

𝐴𝑖 = the event that we see bit 𝑖 at least once. (4.39)
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Then, for 𝑚 ≥ 𝑛,

P[𝐴] = P[𝐴0 ∧ 𝐴1 ∧ · · · ∧ 𝐴𝑛−1] (4.40)

= 1 − P[𝐴𝑐
0 ∨ 𝐴𝑐

1 ∨ · · · ∨ 𝐴𝑐
𝑛−1] (4.41)

≥ 1 −
𝑛−1∑︁
𝑖=0
P[𝐴𝑐

𝑖 ] union bound (4.42)

= 1 − 𝑛P[𝐴𝑐
0] independence (4.43)

= 1 − 𝑛
(
𝑛 − 1
𝑛

)𝑚
(4.44)

≥ 1 − 𝑛 exp
(
−𝑚
𝑛

)
. (4.45)

Setting
𝛿 = 𝑛 exp

(
−𝑚
𝑛

)
(4.46)

we have that

𝛿

𝑛
= exp

(
−𝑚
𝑛

)
(4.47)

=⇒ 𝑚

𝑛
= log

𝑛

𝛿
(4.48)

=⇒ 𝑚 = 𝑛 log
𝑛

𝛿
. (4.49)

In summary, we have that with probability at least 1−𝛿, we can perfectly reconstruct
𝑔 provided that we have at least 𝑛 log (𝑛/𝛿) training samples.

Proof of Theorem 4.6.1 assuming 𝑔 has been reconstructed
Here, we assume that we have run the training phase of the algorithm and have
reconstructed 𝑔. We omit the last bits of the data 𝑧 | |𝑏𝑔 (𝑧) for notational simplicity.

As in Section 4.6 of the main text, we set 𝛾 = 1/8 for our error correcting
code with encoding and decoding functions Encode : {0, 1}𝑚 → {0, 1}𝑙 and
Decode : {0, 1}𝑙 → {0, 1}𝑚, respectively. We define the PRG as in Equation
(4.16), 𝐺𝑔,𝑝 (𝑎, 𝑏) = 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 with 𝑝 = 2𝑞 + 1, 𝑝, 𝑞 prime, and 𝑎, 𝑏 ∈ Z𝑞. We
denote by |𝑥 | the length of the binary representation of 𝑥 if 𝑥 is a numerical value and
the number of elements in 𝑥 if 𝑥 is a set. The adversary is chosen such that it always
sets the first bit to zero, then can flip up to 𝑙/8 bits arbitrarily. The distribution D0

is defined as being the uniform distribution over the set

𝐷0 =
{
0| |Encode(𝐺𝑔,𝑝 (𝑎, 𝑏)) | 𝑎, 𝑏 ∈ Z𝑞, 𝑔 ∈ QR𝑝

}
(4.50)
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and D1 as uniform over the set

𝐷1 =
{
1| |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐) | 𝑎, 𝑏, 𝑐 ∈ Z𝑞, 𝑔 ∈ QR𝑝

}
. (4.51)

We define the classifying set, used for parts 1 and 2 of the proof, as

𝐴 = ∪𝑥∈𝐷0𝐵(𝑥, 𝑙/8). (4.52)

Given a point 𝑥 ∈ {0, 1}𝑙+1, we label it 0 if 𝑥 ∈ 𝐴 and 1 if 𝑥 ∉ 𝐴.

For part 1, non-robust classification, on input 𝑥0 | |𝑥 with 𝑥0 ∈ {0, 1} and 𝑥 ∈ {0, 1}𝑙

we output the first bit 𝑥0. Since 𝐷0 ⊆ 𝐴, points from 𝐷0 will always be correctly
classified. However, since there is a non-zero overlap between the two sets 𝐷0 and
𝐷1 (when 𝑎𝑏 = 𝑐), there will always be a non-zero probability of misclassification.
The classification error occurs when we output 1 for an element from 𝐷1 which
is in fact a Diffie-Hellman triple and so should be labeled 0. The probability of
misclassification for points from 𝐷1 is therefore upper bounded by 𝑞2/𝑞3 = 1/𝑞,
since there are 𝑞2 values for which 𝑎𝑏 = 𝑐 and 𝑞3 elements in 𝐷1. Since 𝑞 grows
exponentially in |𝑞 | (and in |𝑝 |), the probability of misclassification is negligible.

For part 2, we need to show that the two conditions

P𝑋∼D0 [𝐵(𝑋, 𝜖) ⊂ 𝐴] ≥ 0.99 and P𝑋∼D1 [𝐵(𝑋, 𝜖) ∩ 𝐴 = ∅] ≥ 0.99, (4.53)

are satisfied for 𝜖 < 𝑙/8. The first inequality is immediate from the definition
of 𝐴. For the second inequality, we again suppose we receive a bitstring 𝑥0 | |𝑥
with 𝑥0 ∈ {0, 1} and 𝑥 ∈ {0, 1}𝑙 . Since the adversary always sets the first bit to
0, we can obtain no useful information from that bit and so discard it. For the
remaining bitstring 𝑥, we know that the adversary has flipped at most 𝑙/8 bits of 𝑥.
We can therefore apply Decode to 𝑥 to recover the unique string 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐. The
classification can now be done in the decoded space, where we define

𝐴′ = ∪𝑎,𝑏∈Z𝑞𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 . (4.54)

Since the decoding is unique when fewer than 𝑙/8 bits are flipped, we have that

𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 ∈ 𝐴′ ⇐⇒ Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐) ∈ 𝐴. (4.55)

Since in the decoded space we have no more adversarial perturbations, the misclas-
sification error is again bounded by 𝐷0/𝐷1 = 1/𝑞, which is a negligible function of
the length of the binary representation of 𝑝.
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The proof of part 3 follows directly from Equation (4.17). We suppose that the first
bit (and up to 𝑙/8 of the remaining bits) is flipped. We apply the Decode function.
Then, an algorithm which can efficiently classify the decoded strings as either being
𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐 or 𝑔𝑎 | |𝑔𝑏 | |𝑔𝑎𝑏 would violate the DDH assumption for the PRG𝐺𝑔,𝑝 (𝑎, 𝑏),
and so an efficient classification algorithm cannot exist.

For part 4, we receive a bit string 0| |Encode(𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐) with up to 𝑙/8 − 1 bits
flipped on the encoded suffix. We apply Decode to the suffix, yielding the string
𝑔𝑎 | |𝑔𝑏 | |𝑔𝑐. Using Shor’s algorithm for discrete logarithms, we can find 𝑎, 𝑏 and
𝑐 in quantum polynomial time. We then output 0 if 𝑎𝑏 = 𝑐 and 1 if 𝑎𝑏 ≠ 𝑐.
Since both the decoding function and Shor’s algorithm run in polynomial time, this
classification is efficient.

4.11 Discussion
Parts 3 and 4 of Theorem 4.6.1 provides the rigorous quantum advantage for ad-
versarial machine learning. Although maximally robust classifiers exists for our
construction (Theorem 4.6.1, part 2), they must necessarily be inefficient under the
DDH assumption, and even 𝑂 (1)-robust classical classifiers are inefficient. The
quantum classifier is efficient in both sample complexity and computational com-
plexity, since no explicit training examples are needed and once we receive a sample
to classify, classification is efficient due to the efficiency of Shor’s algorithm. On
the other hand, under the DDH assumption, any classical algorithm is necessarily
inefficient in regards to both sample and computational complexity.

We can view our results as a necessary condition of the use of quantum computers
in real world adversarial machine learning tasks, in that if even for highly fine-tuned
problems there exists no quantum advantage, then it may be unreasonable to expect
any quantum advantage for real world problems with less mathematical structure.
For there to exist a rigorous quantum advantage for real world problems, there must
exist a rigorous quantum advantage for quantum-tailored problems. This illustrates
one of the current difficulties in showing rigorous quantum advantages in real world
machine learning tasks over classical learning algorithms.

This work establishes the first known rigorous quantum advantage for an adversarial
machine learning task. Extensions to real space classification and real world adver-
sarial machine learning tasks are active areas of investigation and will elucidate the
exact quantum advantages to be expected.
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C h a p t e r 5

SUMMARY

In this thesis we have explored several applications of quantum computing. These
applications range from quantum simulation algorithms on noisy devices to com-
plexity theoretic proofs of the utility of quantum computers for machine learning
tasks. Within each topic, we developed new machinery in order to tackle the specific
technical challenges unique to the topic. The results obtained in this thesis have
spurred new research directions for scientific applications of quantum computing
in both the near and long term. We summarize here the main results obtained and
conclude with an outlook of the prospects of future research related to the works of
this thesis.

5.1 Quantum simulation algorithms for open quantum systems
In this project, we developed two new algorithms for simulating open quantum
systems.

Algorithm I utilizes Quantum Imaginary Time Evolution (QITE) to implement the
non-unitary evolution introduced when the density operator is vectorized. Vector-
ization of the density operator and the Lindblad equation results in a Schrödinger
type equation with a non-Hermitian Hamiltonian. For an 𝑛 qubit system, this algo-
rithm requires 2𝑛 + 1 qubits to simulate on quantum hardware. The time evolution
generated by the non-Hermitian Hamiltonian results in non-unitary evolution. The
unitary parts of the time evolution are implemented using standard quantum sim-
ulation techniques while the non-unitary parts are implemented using QITE. We
also discussed the computational overheads, run-time bounds, and error analysis
associated with the algorithm.

Algorithm II uses a purification based isomorphism to map a density operator to two
copies of a pure state. Each copy can be propagated independently, resulting in a
time evolution of an 𝑛 qubit system requiring no ancilla qubits. Similar to Algorithm
I, Algorithm II is analyzed in terms of its computational overheads, run-time bounds,
and error characteristics.
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Both algorithms were tested classically and on IBM Quantum hardware, where
we simulated the spontaneous emission of a two-level system and the dissipative
transverse field Ising model (TFIM).

5.2 Experimental realization of scalable probes of measurement induced
phase transitions

In this study, we demonstrated an experimental realization of measurement-induced
phase transitions (MIPTs) on superconducting quantum hardware using a cross-
entropy protocol on up to 22 qubits. Compared to previous demonstrations of
MIPTs on superconducting hardware, we were able to access larger systems while
reducing the quantum resources required by two orders of magnitude.

The cross entropy protocol requires executing pairs of quantum circuits, one clas-
sically hard to simulate and one classically easy to simulate. The classically hard
circuit requires the use of a quantum computer in order to efficiently probe the MIPT.

Due to the excessive circuit depths required for the larger systems, we used a
Clifford based circuit compression technique which allowed us to halve the number
of required qubits as well as significantly reduce the number of measurements
required in a circuit. We improved on existing Clifford circuit compression methods
by removing the requirement for adaptive quantum circuits, which was previously
required in the best known circuit compression techniques.

We obtained results for 1D systems as well as infinite dimensional systems on up to
22 physical qubits, allowing us to probe MIPTs on system sizes of up to 44 sites.
We also provided a method to use this protocol to benchmark quantum hardware
with quantum circuits which use mid-circuit measurements.

Error mitigation techniques such as dynamical decoupling and readout error miti-
gation were tested to address noise in experimental setups but were found to have
little impact. We also classically simulated noisy and noise-free circuits for both 1D
and all-to-all systems. Our experimental results were consistent with both the noisy
numerical simulations as well as theoretical predictions of critical phenomena.

5.3 Quantum advantage in adversarially robust machine learning
Chapter 4 explored the application of quantum computing to machine learning,
particularly focusing on adversarial attacks where malicious interference with data
is a concern. While extensive efforts have been dedicated to addressing adversar-
ial robustness in classical machine learning, less attention has been given to its
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quantum counterpart. We investigated whether quantum learning algorithms hold
advantages in adversarial robustness compared to classical ones. By constructing
an adversarial learning task that is hard for classical learners but easy for quantum
ones, we demonstrated rigorously the potential of quantum computing in enhancing
robustness in machine learning tasks.

5.4 Broader implications and future directions
The rapid progress in quantum hardware over the last several years has spurred much
excitement on the prospects of using quantum computers to solve problems which
are classically intractable. In this thesis, we have presented several applications
which suggest that quantum speed-up may be possible, particularly for simulating
open quantum systems and probing measurement induced phase transitions on noisy
hardware. We have also provided a rigorous argument that fault tolerant quantum
computers may also provide advantages for adversarially robust machine learning,
albeit on a problem with no known applications. All of these topics are potentially
of interest to the broader quantum computing community as well as the scientific
community in general.

Quantum simulation algorithms for open quantum systems continues to be investi-
gated by the community. Our work in this area could be extended by either reducing
the ancilla qubit overhead or by finding alternative simulation algorithms which
make use of alternative quantum resources such as mid-circuit measurements.

Measurement induced phase transitions have also garnered recent interest in the
physics community as a phenomena which exhibits the universality of phase transi-
tions in a purely quantum resource, entanglement. The work presented on MIPTs in
this thesis could be further improved by reducing the computational complexity of
the Clifford compression algorithm, which was the main bottleneck of our study, as
well as by further investigating the effects of non-Pauli noise on the cross entropy
benchmark that we examined.

Adversarially robust machine learning has many applications in real world settings,
and so has resulted in the development of many attacks and defenses which can
be implemented in real world applications. Rigorous quantum advantage in this
setting was previously lacking, and our work helps to fill this knowledge gap. This
work could be extended by providing a sufficient condition on when there exists a
rigorous quantum advantage in adversarially robust machine learning, as our work
can be viewed as a necessary condition for such an advantage. Additionally, finding
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rigorous quantum advantages for more realistic problems would further motivate
the use of quantum computing for machine learning tasks.
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