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ABSTRACT 

 

Gene regulation is governed by the complex interplay between thousands of regulatory 

proteins and chromatin states; understanding how these dynamics give rise to precisely 

controlled, cell type-specific gene expression has been a central goal of molecular biology. 

Yet, addressing this goal remains challenging because current methods for mapping 

proteins to DNA are labor-intensive, resource-demanding, and limited to studying a single 

or a small number of proteins at a time. To overcome this, we developed ChIP-DIP (ChIP 

Done In Parallel), a novel split-pool-based method that enables simultaneous, genome-wide 

mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate 

that ChIP-DIP generates highly accurate maps equivalent to traditional approaches, with 

data quality unaffected by the number of distinct proteins or the composition of proteins 

measured within a single experiment. We show that, because of this multiplexed capability, 

ChIP-DIP enables generation of highly accurate maps using several orders of magnitude 

fewer cells per protein compared to traditional approaches (~30,000 fold), making it a 

powerful tool for studying a diverse array of proteins–DNA interactions with limited 

cellular input. In addition, we show that ChIP-DIP can generate high-quality maps for all 

classes of DNA-associated proteins, including histone modifications, chromatin regulators, 

transcription factors, and RNA polymerases. Using these data, we explore quantitative 

combinations of histone modifications and integrate these signatures with RNA 

polymerase activity, chromatin regulatory protein binding and transcription factor binding 

to define distinct classes of regulatory elements (e.g., distinct types of enhancer elements), 

their functional activity (e.g., transcriptional activity), and their regulatory potential (e.g., 

poised for activation upon stimulation or differentiation). Together, our results 

demonstratethat ChIP-DIP enables generation of consortium-level data within a single lab 

and highlight the importance of this approach for studying mechanisms of gene regulation 

in a context and cell type-specific manner. Lastly, ChIP-DIP provides a powerful platform 

to multiplex protein detection and provides a unique opportunity to incorporate other split-

pool-based assays such as SPRITE and single-cell SPRITE to detect protein specific nuclear 

structures and multiplexed single-cell chromatin profiles, respectively. This work 

represents a transformational framework on how to study biology in a holistic manner. 
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Chapter 1—Introduction 
 

Why do we need gene regulation? 

 

DNA is the blueprint of all known life. Each organism’s genome contains the DNA 

sequence of every gene needed to grow an organism from a single cell. RNA polymerase 

transcribe genes in RNAs, which go on to serve other roles, including the production of 

protein. Multicellular eukaryotic organisms have hundreds to thousands of unique cell 

types, each containing the same sequence of DNA. However, only a subset of possible 

genes is expressed in any given cell type; by expressing only the genes needed to carry 

out a specific role, the organism can use the same blueprint to do thousands of different 

jobs1. For example, a neuron found in the brain and a cell in the lining of the gut they 

have the identical DNA sequence, but their distinct gene expression patterns lead to very 

disparate functions (Figure 1). 

 

            
 

Figure 1. A graphical representation of how an organism can generate many different cell 

types. The left panel depicts a human with the same DNA sequence in every cell of their 

body. The middle panel depicts two different cell types with different functional roles in a 

human. The right panel depicts a simplified example of how the same DNA sequence can 

produce different transcriptional patterns; In the top cell type Gene A is expressed, but not 

Gene B. This is reversed in for the bottom cell type. 

Defining a chromatin state 

 

Gene expression is a tightly regulated process that requires the coordinated efforts of 

thousands of different proteins to localize to specific regions of the genome to activate, 

repress, or quantitatively control levels of transcription. Each genomic region of DNA is 

a highly organized polymer that is positioned around nucleosomes, comprised of histone 

proteins that are extensively modified post-translationally2 (Figure 2). The combination 

of DNA wrapped around histones is called chromatin; the pattern of histone 

modifications determines the chromatin state (active, repressed, poised, or condensed) of 

a given region of the genome3,4. Chromatin state is dynamically controlled by an 
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expansive set of proteins known as chromatin regulators that read, write, and erase 

different histone modifications as well as control nucleosome positioning and 

accessibility of the chromatin3,5. As the nucleosomes change position, the chromatin 

becomes more or less condensed; this in turn changes the accessibility of the chromatin 

for sequence-specific transcription factors (TFs)6, cofactors7,8 and RNA polymerases9 to 

bind and transcribe DNA into RNA. In addition to enabling active transcription, there are 

also combinations of histone modifications that poise a locus for transcription while 

maintaining silencing until transcription is required10. This is one way that the cell tightly 

regulates the transcription of genes and maintains, or changes, its cell state and function. 

 

 

           

Figure 2: Histone tails are extensively modified. There are over 45 amino acids on 

histone tails that can be modified by various chromatin readers, writers, and erasers. Each 

amino acid can only be modified by one chemical group at a time, but there are multiple 

possible chemical groups possible for most amino acid positions. This allows for an 

enormous amount of possible combinations of histone combinations at any given locus. 

Mapping the localization of these modifications is yet to be comprehensively done. It is 

hypothesized that understanding all combinations of these modifications at every locus 

will be essential to understand the functional potential of a given genomic locus. 

How do we traditionally understand gene regulation? 
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Understanding which proteins bind where within the genome is key to understanding how 

each cell generates its genome-wide chromatin state11. Because the binding patterns of 

these proteins to DNA dictate the cell’s chromatin state, each cell type has a mostly 

unique DNA-binding pattern for each of its DNA-interacting proteins. This makes 

profiling where on the genome each protein is binding for each cell type a daunting 

challenge. For example, if an organism had 200 different cell types and each of those had 

1,000 different transcriptional regulator proteins, 200,000 different protein-DNA profiles 

would need to be mapped (Figure 3). This challenge is exacerbated by a lack of 

technologies to quickly map protein-DNA interactions. For example, ChIP-seq12–15 , 

CUT&RUN16, and CUT&tag17–20 profile the DNA-protein interaction sites of anywhere 

from one to three different proteins in a single experiment. Given that each experiment 

takes two to three days, mapping the DNA-protein interactions of thousands of different 

proteins would take years. 

 

To highlight the importance of this problem, international consortia (ENCODE6,21–24, 

PsychENCODE25, roadmap epigenetics, ImmGen26, etc.) have been formed to address the 

problem of the sheer amount of work needed to map thousands of protein-DNA 

interactomes, one-by-one. ENCODE has directly published ~1000 papers in the space of 

15 years and the data it has generated has been used to publish an additional ~2400 

paper27, demonstrating that the data generated by ENCODE is being used to further 

community knowledge. The fourth and final phase of ENCODE aims to fill a 

notabledeficit in transcription factor annotations using human fetal tissue, adult tissues, 

and, importantly, primary cells. While technology has advanced since the pilot phase of 

ENCODE in 2003, the majority of chromatin profiling assays are still one protein-DNA 

map per experiment and, as such, mapping protein-DNA interactions is still a relatively 

slow-going endeavor that relies on dozens of labs to generate data. 

 

In the decade since ENCODE’s inception, the focus has been on cell lines and healthy 

cells (Figure 3). However, if one wanted to move into disease states or perturbations of 

any sort, the number of experiments that would be required quickly becomes infeasible 

for a number of reasons. First, acquiring enough cellular material to do one thousand or 

more protein-DNA profiling experiments in a disease state or in a perturbation system is 

incredibly challenging. Second, even if one could acquire the cellular material needed to 

perform over one thousand DNA-protein protein profiling assays, the time it would take 

to complete all experiments would likely not be worth the effort. There is a clear need for 

a way to use a reasonable number of cells to generate maps of hundreds of proteins in a 

reasonable amount of time. 
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Figure 3: Graphical representation of the staggering expanse of proteins that need to be 

mapped when considering cell lines, primary cells, and disease states for each regulatory 

protein type (histone modifications, transcription factors, and chromatin regulators). The 

filled-in squares represent what consortium efforts have accomplished, while the white 

squares represent what still needs to be mapped. 

 

Multiplexing the mapping of Protein-DNA interactions 

To this end, we wondered if we could leverage our lab’s expertise with split-and-pool 

barcoding to address the need for high-throughput mapping of DNA-protein interactions 

genome-wide. Specifically, we reasoned that split-and-pool barcoding is used to resolve 

stable complexes by putting the same string of barcodes on DNA molecules that are 

stably associated to each other (i.e., when complexes are split and barcoded, pooled 

together again, and then split out randomly to be barcoded, complexes that are stably 

associated to each other will always sort together). Our experience with this approach has 

enabled incredible leaps in technology and biological understanding through split-pool 

recognition of interactions by tag extension (SPRITE)28–30 In SPRITE, the same string of 

barcodes is attached to DNA molecules that are in spatial proximity to each other within 

the nucleus and held together by crosslinking. Sequencing these barcodes allows us to 

identify SPRITE clusters containing DNA molecules that may be far apart in primary 

sequence, but close together in 3D space. We reasoned that we could leverage this for a 

wider array of applications by building a “synthetic” complex that contains molecules 

that are stably associated onto a bead (for example, a complex of biotinylated DNA 

molecules on streptavidin beads) and then resolve the sequence of each DNA molecule 

that is on each individual bead; the constituent molecules on each bead could then be 

resolved using split-and-pool barcoding. 

 

Given that ChIP-Seq is used to map proteins to DNA, we sought to adapt its workflow to 

incorporate split pool. The ChIP-Seq workflow involves binding antibodies to protein 

Gthat has been covalently immobilized on a magnetic bead. This antibody–bead complex 

is then added to sheared and crosslinked chromatin to isolate a protein of interest and its 

associated chromatin. We reasoned that the bead-antibody-protein-chromatin complex is 

a stably associated complex that can be barcoded and resolved by split-and-pool 
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barcoding. Further, if multiple sets of beads were bound by unique antibodies and ChIP-

Seq was performed on this pool of beads, split-and-pool barcoding could be used to 

resolve the chromatin associated with each bead (Figure 4A). However, it would be 

impossible to identify the specific proteins associated with each piece of chromatin 

without labeling each bead with a unique identifier. To accomplish this, we developed a 

novel, simple, and modular method to label each set of beads with a known 

oligonucleotide sequence using streptavidin-conjugated oligos bound to biotinylated 

protein G beads (Figure 4B). 

 

This approach was the foundation for ChIP Done in Parallel (ChIP-DIP)31. In this thesis, 

we show that ChIP-DIP can be used generate hundreds of high-quality protein-DNA maps 

in a single experiment and that those data can be used to stratify the genome into 

functional states. Not only can this combination of split-pool and bead barcoding be used 

to multiplex the mapping of protein-DNA interactions genome-wide, it can also be used 

to multiplex the mapping of protein-RNA interactions genome-wide. For example, we 

can use a similar approach called SPIDR32 (Split-Pool Identification of RPB targets), to 

map dozens of RNA binding proteins (RBPs) in a single experiment. This work 

represents an important step towards a holistic understanding of biology. 

In this thesis, I discuss the method ChIP-DIP, its applications for mapping chromatin 

states, TFs, chromatin regulators, new insights into combinatorial histone modifications 

and gene regulations and conclude with a perspective on how this approach and the 

resulting data will enable a transformation in our understanding of gene regulation by 

allowing us comprehensively study all molecules within the system simultaneously. 

 

Figure 4: Split-and-pool barcoding is used to put a unique string of barcodes on stably 

associated DNA molecules. A) Graphical representation of each round of split pool. After 

beads are put into a well (that contains a unique barcode) ligase is added to ligate the 

barcode onto the DNA on the beads. After ligation, beads are pooled and then split out 

into a new row with another set of unique barcodes in each well. In this example, this is 

performed eight times, yielding ~430 million unique barcode string combinations. The 

A  
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goal is to have more barcode combinations that total beads to put a unique barcode string 

on the DNA molecules of each bead. B) graphical representation on what two fully 

barcodes beads would look like after split-and-pool barcoding is performed. The barcode 

string on each molecule is unique to the bead. 
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Chapter 2–Chromatin Immunoprecipitation Done In 
Parallel (ChIP-DIP) 

Introduction 
 

Although every cell in the body contains the same genomic DNA sequence, distinct cell 

types express different genes to enable cell-type-specific function. Cell-type-specific gene 

regulation involves the coordinated activity of thousands of regulatory proteins that 

localize at precise DNA regions to activate, repress, and quantitatively control levels of 

transcription. Each genomic DNA region is organized around nucleosomes1, which contain 

histone proteins that undergo extensive post-translational modifications2,3 and together 

define cell-type-specific chromatin states. Chromatin state is controlled by chromatin 

regulators that directly read, write and erase specific histone modifications2,4, as well as 

control nucleosome positioning and DNA accessibility5,6. This ultimately determines 

which genomic regions are accessible for binding by sequence-specific transcription 

factors7, the enzymes that transcribe DNA into RNA (RNA polymerases)8 and other general 

and specific regulatory proteins that promote or suppress transcriptional initiation9,10. 

Understanding how regulatory protein binding gives rise to cell type-specific gene 

expression has been a central goal of molecular biology for decades2. Over the past 20 

years, significant technical advances have enabled genome-wide mapping of regulatory 

proteins and histone modifications (e.g., ChIP-Seq)11–14, improved binding site resolution 

(ChIP-Exo)15,16, increased sample throughput (e.g., through automation and/or sample 

pooling)17,18,  and  mapping  within  a  limited  numbers  of  cells  

(e.g.,CUT&RUN/CUT&Tag)19–21. Yet, while these innovations have enabled new 

applications and uncovered critical new insights into gene regulation, all of these 

approaches still work by studying a single protein at a time. The two exceptions are 

multiplexed Cut&Tag22,23 and MAbID24, which can measure up to three or six histone 

modifications, but not transcription factors or other regulatory proteins, in a single 

experiment23. Due to the large number of distinct regulatory proteins and histone 

modifications involved and the cell-type-specific nature of their regulatory interactions, this 

one-at-a-time mapping approach makes it extremely difficult to construct a comprehensive 

understanding of gene regulation. 

Initial attempts to overcome this challenge led to the formation of various international 

consortia that aimed to generate reference maps of hundreds of proteins within a small 

number of cell types (ENCODE25, PsychENCODE26, ImmGen27, etc.). Although these 

efforts have provided many critical insights28–30, because protein binding maps and gene 

expression programs are intrinsically cell-type specific31,32, it is not possible to study cell 

type-specific regulation using maps generated from reference cell lines33. To date, most 

mammalian cell types, experimental and disease models, and model organisms remain 

uncharacterized. Generating additional cell type-specific regulatory maps currently 

requires consortium-level effort (dozens of labs across the world), time (many years), and 

resources (>$100 million) for each biological system. Accordingly, there is a clear need for 

a highly scalable, multiplexed protein profiling method that can increase throughput of 

protein mapping by orders of magnitude and profile the diverse categories of DNA-
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associated proteins, including classes that have been traditionally easier to map (e.g., 

histone modifications) and those that have been more challenging (e.g., transcription 

factors)34. Such a method would allow any lab to generate comprehensive maps for 

anycell type of interest in a rapid and cost-effective way and would enable exploration of 

key questions that is not currently possible. 

To address this need, we developed chromatin immunoprecipitation done in parallel (ChIP-

DIP), a scalable platform that enables simultaneous, genome-wide mapping of hundreds of 

diverse regulatory proteins within a single experiment. We utilized ChIP-DIP to generate 

data from ~180 distinct DNA-associated proteins in human or mouse cells, including a 

single multiplexed ChIP-DIP experiment containing >225 different antibodies targeting 

~160 distinct proteins (Supplemental Table 1). We show that ChIP-DIP generates 

accurate genome-wide maps, equivalent to those generated by traditional approaches, that 

are highly robust regardless of the number of antibodies or protein composition contained 

within a pool and across a range of input cell numbers. We show that ChIP-DIP enables 

accurate mapping of all classes of DNA-associated proteins, including histone 

modifications, chromatin regulators, transcription factors and other sequence-specific 

DNA-binding proteins, and RNA polymerases. Together, our results demonstrate that 

ChIP-DIP enables the generation of ‘consortium-level’ comprehensive, context-specific 

protein-localization maps within any experimental system and within any molecular 

biology lab and enables the exploration of complex, combinatorial patterns of protein 

localization that define regulatory activity. Beyond the immediate applications, ChIP-DIP 

can be directly integrated into a suite of existing split-pool approaches to enable highly 

multiplexed mapping of protein localization within single cells in combination with 

measurements of 3D structure35, ncRNA localization, and nascent transcription36,37. 

 

Results 
 

To enable highly multiplexed, genome-wide mapping of hundreds of DNA-associated 

proteins in a single experiment, we developed ChIP-DIP (ChIP Done In Parallel) (Figure 

1A). ChIP-DIP works by (i) using a rapid, modular, and simple approach to couple 

individual antibodies to beads containing a unique oligonucleotide tag (Figure S1A), (ii) 

combining sets of different antibody–bead-oligo conjugates to create an antibody–bead 

pool, (iii) performing ChIP using this pool, (iv) conducting split-and-pool barcoding to 

match antibody–bead-oligo conjugates to specific genomic DNA regions36,38,39, and (v) 

sequencing DNA and computationally matching split-pool barcodes that are shared 

between genomic DNA and the antibody tag. We refer to all unique reads containing the 

same split-pool barcode as a cluster. We combine DNA reads from all clusters 

corresponding to the same antibody to generate a protein-localization map for each 

individual protein. The output of a ChIP-DIP experiment is analogous to the data generated 

in a traditional ChIP-Seq experiment, however, instead of a single map, ChIP-DIP provides 

a set of distinct maps–one for each antibody utilized (Figure 1B). 

To ensure that chromatin–antibody–bead–oligo conjugates remain intact throughout the 

ChIP-DIP procedure (rather than dissociating and reforming new complexes), we designed 
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a series of experiments to measure dissociation between (i) oligo and bead, (ii) antibody 

and bead, or (iii) antibody and chromatin (Figure S1B). 

 

Antibody-ID oligo movement: If antibody-ID oligos were to dissociate from their original 

bead and bind to other beads during the ChIP-DIP procedure, then multiple antibody-ID 

oligo types would share a single split-pool barcode, leading to errorsin assigning a 

chromatin region to the correct protein. If this were the case, we would expect to observe 

clusters that contain multiple distinct antibody-ID oligos. To explore this, for each split-pool 

barcode we calculated the proportion of antibody-ID oligo reads corresponding to the 

maximally represented antibody-ID oligo type. In a representative experiment, we 

observed that 96% of clusters had only a single type of antibody-ID oligo (100% maximum 

representation) and 99.4% of barcodes had at least 80% maximum representation (Figure 

S1C). Since most split-pool barcodes have unique representation, this suggests that 

antibody-ID oligo movement occurs infrequently and should not significantly impact the 

accuracy of antibody-to-chromatin assignments. 

 

Antibody movement: If antibodies for protein X dissociated from their bead and 

reassociated with a distinct protein G bead containing a label for an antibody recognizing 

protein Y, then chromatin captured by that antibody would be improperly assigned to 

protein Y. To quantify the frequency of such events, we performed a ChIP-DIP experiment 

where we added in oligo-labeled protein G beads that were not conjugated to an antibody 

or to an IgG antibody and measured the amount of chromatin that was assigned to these 

beads. In all cases, we observed minimal detection of chromatin (<0.5%). Specifically, we 

performed a ChIP-DIP experiment with oligo-labeled beads containing a CTCF antibody, 

an isotype control IgG antibody, or no antibody (empty). Only beads containing an 

antibody (i.e., CTCF, IgG) were present during the IP stages and empty beads were added 

in various post-IP, pre-split- pool processing steps to determine the frequency ofmixing 

at each step. If antibodies moved between beads during post-IP processing, we would 

expect to find chromatin associated with empty beads. When we measured the amount of 

chromatin assigned to each bead, we observed that beads with the IgG control antibody 

received 0.10% (1/1000th) the amount of chromatin compared to the CTCF antibody 

(Figure S1E). Empty beads added during the end-repair reaction and dA-tailing reaction 

received 0.40% and 0.10% the amount of chromatin of the CTCF antibody beads, 

respectively. We note that these estimates are likely to be an overestimate of the true mixing 

rate because this experimental design does not distinguish between chromatin associating 

due to antibody movement from chromatin that may non-specifically bind to IgG or empty 

protein G beads. Nonetheless, these results indicate that the impact of antibody movement 

on chromatin assignment is minimal, representing no more than 0.5% of all chromatin 

captured. 

 

Chromatin movement: If proteins dissociate from their epitope-specific antibodies post IP, 

they may specifically bind to other beads containing the same epitope- specific antibodies. 

If this movement occurs during the split-pool process, then these chromatin fragments 

would not be assigned because they would lack a paired antibody-ID oligo with the same 

barcode. We estimated the frequency of chromatin movement using a human-mouse mixing 
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experiment in which we separately IP’d a human chromatin sample and a mouse chromatin 

sample using identical pools of labeled beads. After the IP, we mixed the samples and 

performed the remainder of the standard ChIP-DIP protocol (DNA processing and split 

pool). If chromatindissociates and rebinds prior to split pool then we would expect that it 

could rebind to beads from the other species containing the same antibody type as its 

original bead. We observed that only ~5% of reads were assigned to beads of the other 

species (4.2% and 5.8%, Figure S1E). This suggests that disassociation and reassociation 

of chromatin-crosslinked proteins from their epitope-specific antibodies during ChIP-DIP 

processing steps is minimal. Nonetheless, in the cases where this does occur it would 

impact the assignability of these chromatin fragments (sensitivity of detection) rather than 

resulting in incorrect assignment (specificity of detection). 

 

We observed minimal dissociation for any of these cases; most beads contain a single oligo 

type (>95%, Figure S1C), beads without a coupled antibody are associated with minimal 

chromatin (<0.5%, Figure S1D) and most purified chromatin originates from the initial 

capture (> 94%, Figure S1E). 
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Figure S1: Potential sources of mixing in ChIP-DIP, related to Figure 1. (A) Schematic 

of labeling strategy to generate Protein G beads coupled with a unique antibody-identifying 

oligonucleotide and a matched antibody. Protein G beads are covalently modified with a 

biotin; oligonucleotides containing a 3’ biotin are conjugated to streptavidin; oligo–

streptavidin complexes are mixed with biotinylated protein G beads and protein G beads 

are mixed with antibodies. This process is repeated for each unique oligonucleotide–

antibody pair and then all bead-antibody conjugates are pooled together. (B) Schematic 

ofthree potential sources of mixing during ChIP-DIP. (C) Cumulative distribution plot 

representing the uniqueness of antibody-ID oligos type (x-axis) within individual clusters. 

(D) Schematic of experimental design to test for antibody movement between beads and 

quantification of relative reads per bead assigned to true targets (CTCF) or empty beads 

added during experimental processing steps. (E) Schematic of human-mouse experimental 

design to test for chromatin movement and quantification of species-specific reads assigned 

to human or mouse beads. 
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To test whether ChIP-DIP can accurately map genome-wide protein localization, we 

performed a ChIP-DIP experiment in human K562 cells using four well-studied proteins: 

1) the CTCF sequence-specific DNA-binding protein that binds to insulator sequences40, 

2) the H3K4me3 histone modification that localizes at the promoters of active genes13,41, 

(3) the RNA Polymerase II enzyme that transcribes RNA42 and (4) the H3K27me3 histone 

modification that accumulates over broad genomic regions that are associated with 

polycomb-mediated transcriptional repression13,41. We observed localization patterns that 

are highly comparable at specific genomic sites (Figure 1B–C) and highly correlated 

genome-wide (r=0.837–0.956, Figure 1D) to ChIP-Seq profiles generated by the 

ENCODE consortium25,28,43 (Supplemental Table 2). 

 

These genome-wide profiles were highly consistent even when using antibody pools 

containing different numbers of antibodies and protein composition (Figure 2A-D, 

Supplemental Table 3), including pools containing independent antibodies targeting the 

same protein (CTCF) or multiple proteins within the same complex (e.g., members of the 

PRC1/2 complex, Figure S2). Because ChIP-DIP enables simultaneous mapping of many 

proteins within the same experiment, we reasoned that it may dramatically reduce the total 

number of input cells required per experiment44 (Methods). Indeed, we observed strong 

genome-wide correlations and peak overlap when measuring these same proteins across a 

range of input cell numbers (Figure 2E-H, Figure S3, Supplemental Table 4). Because 

ChIP-DIP can generate dozens of individual maps from the same lysate, this further reduces 

the effective number of cells required for each protein target. In this example, we observed 

strong correlations with maps generated from ~1,400 cells per protein. 

Together, these results demonstrate that ChIP-DIP is highly robust and generates data that 

are highly comparable to those generated by standard methods. 
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Figure 1: ChIP-DIP: A highly multiplexed method for mapping proteins to genomic 

DNA. (A) Schematic of the ChIP-DIP method. Beads are coupled with an antibody and 

associated oligonucleotide (antibody ID). Sets of beads are then mixed (antibody–bead 

pool) and used to perform ChIP. Multiple rounds of split-and-pool barcoding are performed 

to identify molecules bound by the same protein G bead. DNA is sequenced and genomic 

DNA and antibody oligos containing the same split-and-pool barcode are grouped into a 

cluster, which are used to assign genomic DNA regions to their linked antibodies. All DNA 

reads corresponding to the same antibody are used to generate protein-localization maps. 

(B) Protein-localization maps over a specific human genomic region (hg38, 

chr12:53,649,999–54,650,000) for four protein targets—CTCF, H3K4me3, RNAP II and 

H3K27me3. Left panel: Protein localization generated by ChIP-DIP in K562. Top track 

shows read coverage prior to protein assignment and bottom four tracks correspond to read 

coverage after assignment to individual proteins. Right panel: ChIP-Seq data generated by 

ENCODE within K562 for these same four proteins are shown for the same region. To 
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enable direct comparison of scales between datasets, we normalized the scale to coverage 

per million aligned reads. Scale is shown from zero to maximum coverage within each 

region. (C) Comparison of ChIP-DIP and ChIP-Seq maps over specific regions 

corresponding to zoom-ins of the larger region shown in (B). The locations presented are 

demarcated by colored bars above the gene track of (B). Scale shown similar to (B). (D) 

Genome-wide comparison (density plots of signal correlation) between the localization of 

each individual protein measured by ChIP-DIP (x-axis) or ChIP-Seq (y-axis). Points are 

measured genome-wide across 10kb windows (CTCF, H3K27me3) or all promoter 

intervals (H3K4me3, RNAP II). 
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Figure 2: ChIP-DIP accurately maps large sets of proteins using low-levels of cell 

lysate. (A) Schematic of experimental design to test scalability of antibody–bead pool size 

and composition. (B) Correlation heatmap for protein-localization maps of four proteins–

CTCF, H3K4me3, RNAP II and H3K27me3–generated using antibody pools of four 

different sizes and compositions (see Methods). Pool sizes are listed along top and left 

axis. Replicate proteins in the same pool indicate that a different antibody was used for that 

protein. Some antibodies were not included in every pool. (C) Comparison of H3K4me3 

localization over a specific genomic region (hg38, chr19:45,345,500–46,045,500) when 

measured within various antibody pool sizes and compositions. (D) Comparison of CTCF 

localization over a specific genomic region (hg38, chr19:40,349,999–41,050,000) when 

measured within a pool of ten antibodies containing a single CTCF-targeting antibody (top) 
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or two different CTCF-targeting antibodies within a pool of 52 antibodies (bottom). (E) 

Schematic of experimental design to test the amount of cell input required for ChIP-DIP. 

(F) Correlation heatmap for protein-localization maps of four targets–CTCF, H3K4me3, 

RNAP II and H3K27me3–generated using various amounts of input cell lysate (see 

Methods). Amounts of input cell lysate are listed along top and left axis. (G) Comparison 

of H3K4me3 localization over a specific genomic region (hg38, chr13:40,600,000–

42,300,000) when measured using various amounts of input cell lysate. (H) Comparison 

of CTCF localization over a specific genomic region (hg38, chr12:53,664,000–53,764,000) 

when measured using various amounts of input cell lysate. 
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Figure S2: Simultaneous mapping of multiple components of a single protein complex 

using ChIP-DIP, related to Figure 2. (A) Visualization of various components of the 

PRC1 (RING1B, CBX8) and PRC2 (EZH2, SUZ12, EED) complexes that were mapped 

within the same ChIP-DIP pool (K562 52 Antibody Pool) along a genomic region (hg38, 

chr4:500,000–5,500,000). 
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Figure S3. Comparison of protein localization across different amounts of cell lysate, 

related to Figure 2. (A) Comparison of RNAP II NTD localization across a snRNA gene 

cluster (hg38, chr17:58,620,000–58,689,000) when generated using various amounts of 

input K562 cell lysate. (B) Comparison of H3K27me3 localization across a genomic region 

(hg38, chr1:23,850,000–25,850,000) generated using various amounts of input K562 cell 

lysate. (C) Comparison of various isoforms of RNAP II at the EGR1 locus (hg38, 

chr5:138,455,000–138,480,000) generated using various amounts of input K562 cell lysate. 
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ChIP-DIP accurately maps hundreds of diverse DNA-associated proteins 

 

We next explored whether ChIP-DIP can simultaneously map proteins from distinct 

categories, some of which have been traditionally easier to map than others45,46. To do this, 

we performed ChIP-DIP on >60 distinct proteins in human K562 cells and >160 distinct 

proteins in mouse embryonic stem cells (mESCs) across six experiments (Supplemental 

Table 1). These included 39 histone modifications (HMs), 67 chromatin regulators (CRs), 

51 transcription factors (TFs), and all three RNA polymerases (RNAPs) and four of their 

modified forms. 

Histone modifications and chromatin regulators. Histone modifications define cell-type-

specific chromatin states and have proven incredibly useful for annotating cell type-

specific regulatory elements47. We mapped 39 histone modifications–including 18 

acetylation, 17 methylation, 3 ubiquitination and 1 phosphorylation marks–in either 

mESCs or K562s (Figure 3A). We confirmed the localization of five histone modifications 

commonly used to demarcate five functional states7, as well as additional modifications 

associated with each state (Figure S4A-F): enhancer regions48 (H3K4me1, H3K4me2, 

H3K27ac, Figure 3B), transcribed regions13,49,50 (H3K36me3, H3K79me1/2, Figure 3C), 

promoter regions13,41,51 (H3K4me3, H3K9ac, Figure 3D), polycomb-repressed regions52 

(H3K27me3, H2AK119ub, Figure 3E), and constitutive heterochromatin regions53 

(H3K9me3, H4K20me3, Figure 3F). These data indicate that ChIP-DIP accurately maps 

histone modifications with distinct genome-wide patterns (broad and focal localization), 

that represent distinct activity states (active and repressive), and that localize at distinct 

functional elements (promoters, enhancers, gene bodies, and intergenic regions). 

Chromatin regulators (CRs) are responsible for reading, writing, and erasing specific 

histone modifications and are critical for the establishment, maintenance, and transition 

between chromatin states54,55. We measured 67 CRs associated with various histone 

methylation, acetylation, and ubiquitination marks, as well as with DNA methylation, in 

either mouse ES or human K562 cells (Figure 3A). As expected, we observe that an eraser 

(JARID1A)56 and a writer (RBBP5-containing complex)57 of H3K4me3 localize at 

H3K4me3-modified promoter sites (Figure 3G, Figure S4G). Additionally, we observed 

that components of the PRC1 (RING1B, CBX8)58 and PRC2 complex (EED, SUZ12, 

EZH2)59 co-localize and are enriched over genomic regions containing their respective 

histone modifications (H2AK119ub and H3K27me3, Figure 3H, Figure S4H). Similarly, 

we observed co-localization of two members of the heterochromatin protein 1 (HP1) 

family, HP1α and HP1ß, at genomic DNA regions containing their associated 

heterochromatin marks, H3K9me3 and H4K20me360 (Figure 3I, Figure S4I). These data 

indicate that ChIP-DIP accurately maps chromatin regulators from diverse complexes and 

with distinct functional properties (i.e., modification recognition, enzymatic activity, 

chromatin packaging). 
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Figure 3: ChIP-DIP accurately maps dozens of functionally diverse histone 

modifications and chromatin regulators. (A) Illustration of the diverse histone 

modifications and chromatin regulatory proteins mapped in K562 or mESC using ChIP-

DIP. (B–C) Visualization of multiple histone modifications across a genomic region (hg38, 

chr22:23,050,000–23,290,000) in K562 corresponding to multiple histone modifications 

associated with (B) enhancers–H3K4me1, H3K4me2 and H3K27Ac and (C) active gene 

bodies–H3K36me3, H3K79me1 and H3K79me2. (D) Top: Schematic of histone 

modifications and chromatin regulators associated with active promoters. Bottom: 

Visualization of multiple histone modifications associated with active promoters—

H3K4me3 and H3K9Ac—across a genomic region (mm10, chr12:81,590,000–81,636,000) 

in mouse ESCs. Hashmarks indicate an intervening 29kb region that is not shown. (E) Top: 

Schematic of histone modifications and chromatin regulators associated with polycomb-

mediated repression. Bottom: Visualization of multiple histone modifications associated 

with polycomb-mediated repression—H3K27me3 and H2A119ub—across a genomic 

region (hg38, chr2:175,846,000–176,446,000) containing the silenced HOXD cluster in 

K562. (F) Top: Schematic of histone modifications and chromatin regulators associated 
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with constitutive heterochromatin. Bottom: Visualization of multiple histone modifications 

associated with constitutive heterochromatin—H3K9me3 and H4K20me3—across a 

genomic region (hg38, chr2:46,200,000–55,700,000) in K562. (G) Visualization of an 

H3K4me3-associated eraser (JARID1A) and writer component (RBBP5) across the same 

genomic region as (D). (H) Visualization of PRC2 (EED) and PRC1 (RING1B) 

components across the same genomic region as (E). (I) Visualization of HP1b and HP1a 

across the same genomic region as (F). 
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Figure S4: Histone modifications associated with five chromatin states, related to 

Figure 3. (A) UMAP embedding of 12 histone modifications measured in K562 correspond 

to five chromatin states. (B) Pie chart showing proportion of H3K4me1 peaks in K562 at 

various genomic position categories—promoters (co-localizing H3K4me3), intragenic (co-

localizing H3K36me3) or intergenic—in K562. Proportion of peak regions overlapping 

with H3K27Ac within each genomic position category are shown in purple. (C) Meta plot 

of signal distribution of H3K36me3, H3K79me1 and H3K79me2 across the gene body of 

protein coding genes in K562. (D) Correlation scatterplot of H3K9Ac and H3K4me3 
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signals at promoter sites in mESC. (E) Pie chart showing overlap of H2AK119ub and 

H3K27me3 sites in K562. (F) Enrichment heatmap of H3K9me3 and H4K20me3 at 

various associated (ZNF genes, LTRs, LINES) and unassociated (SINES, TSS) genomic 

elements in K562. H3 is shown as reference. (G) Meta plots of read coverage for three 

H3K4me3-associated chromatin regulators (JARID1A, RBBP5, PHF8) and H3K4me3 at 

four promoter groups in mESC. Promoter groups were identified using k-means clustering 

of CR signal (see Methods). (H) Meta plot showing co-localization of multiple PRC1 and 

PRC2 members and their respective histone modifications at RING1B sites in K562. (I) 

Genome-wide correlation matrix of multiple HP1 proteins versus heterochromatin and 

euchromatin markers in K562. 
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Transcription factors. TFs bind cis-regulatory elements in combinatorial patterns to 

control gene expression. Generating comprehensive maps of TF localization has proven 

difficult because there are large numbers of distinct TFs, most are cell type-specific, and 

they are challenging to map by ChIP-Seq because they tend to be lower in abundance and 

only transiently associated with DNA61,62. To explore whether ChIP-DIP can map large 

sets of TFs, we measured 15 TFs in K562 and 43 TFs in mESC, including constitutive (e.g., 

SP1 and USF2)63,64, stimulus-dependent (e.g., p53 and NRF1)65–67, and 

developmental/cell type-specific (e.g., Nanog and RFX1)68,69 DNA- binding 

proteins70 (Figure 4A). We obtained high-resolution binding maps for TFs in both cell 

types, with previously characterized TFs showing localization at their expected genomic 

DNA targets63,67,71–74 (Figure 4A-B, Supplemental Table 5). Using these genome-wide 

localization data, we accurately identify DNA-binding motifs for each TF, including the 

20bp dimer motif of p5375 and the 21bp RE-1 consensus sequence of REST76 (Figure 4C). 

Together, these data indicate that ChIP-DIP generates accurate, high-resolution binding 

maps of diverse TFs in multiple cell types. 
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Figure 4: ChIP-DIP maps dozens of transcription factors representing diverse 

functional classes. (A) Top: Visualization of six transcription factors (SP1, USF2, p53-

pSer15, NRF1, NANOG, RFX1) representing three broad functional classes (constitutive, 

stimulus-response, development/cell type-specific) across a genomic region (mm10, 

chr11:35,000,000–75,000,000) in mESC. Bottom: Higher-resolution zoom-ins showing 

individual TF binding patterns at selected targets and motif localization as appropriate. (1) 

p53 binding the p53 response element on the Cyclin G1 gene promoter. (2) Nanog binding 

a cluster of sites internal to the developmental gene ADAM19. (3) Nuclear Respiratory 

Factor 1 (NRF1) binding multiple copies of its motif at the promoter of FXR2. 

(4) The constitutively active USF2 binding its triplicate E-box motif. (B) Visualization of 

TBP (constitutive) and REST (cell type-specific) across a genomic region (hg38, chr11:1–

11,000,000) in K562 cells. Bottom: Higher-resolution zoom-ins highlight two individual 

peaks of RE-1 Silencing Transcription Factor/ Neuron-Restrictive Silencer Factor 

(REST/NRSF) at motif sites near promoters of known neuronal gene targets. (C) de novo 

generated motifs for p53 (top) in mESCs and REST (bottom) in K562 cells using binding 

sites identified using ChIP-DIP. 
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RNA Polymerases (RNAPs). Different classes of RNA are transcribed by distinct RNA 

polymerases: RNA Polymerase I (RNAP I) transcribes the 45S ribosomal RNA (rRNA) 

encoding the 18S, 28S, and 5.8S rRNAs; RNAP II transcribes messenger RNAs and 

various non-coding RNAs, including snRNAs, snoRNAs and lncRNAs; and RNAP III 

transcribes diverse small RNAs, including transfer RNAs, 5S rRNA, 7SL, 7SK, and U6 

snRNA8. We leveraged the power of ChIP-DIP to simultaneously map all three RNAPs and 

the post-translationally modified forms of RNAP II. We observed that each RNAP localizes 

with high selectivity to its corresponding classes of genes; RNAP I binds at rDNA, RNAP 

II at mRNA and snRNA genes, and RNAP III at tRNA genes (Figure 5A, Figure S5A). 

Moreover, we observed distinct localization patterns of different RNAP II phosphorylation 

states: serine 5 phosphorylated RNAP II localizes at promoters, while serine 2 

phosphorylated RNAP II accumulates over the gene body and past the 3’ end of the gene 

(Figure S5B). These data indicate that ChIP-DIP accurately maps the localization of the 

three RNA polymerases–including multiple functional phosphorylation states of RNAP II–

at distinct gene classes and gene features. 

Together, these results establish ChIP-DIP as a modular, highly multiplexed method that 

generates high-quality maps for a wide range of DNA-associated proteins spanning diverse 

biological functions. 

 

Integrated analysis of protein-localization identifies functionally distinct cis-

regulatory elements 

Previous large-scale analyses have identified histone modifications that demarcate distinct 

genomic elements (e.g., promoters, enhancers, transcribed regions, etc.)77, their activity 

state (active, inactive, repressed), and regulatory potential (poised/primed for activation)78. 

However, because of the large number of histone modifications and regulatory proteins, 

many efforts have focused on mapping only five histone modifications to identify genomic 

features and regulatory states (i.e., H3K4me3, H3K4me1, H3K36me3, H3K9me3, and 

H3K27me3 marking promoters, enhancers, elongated transcripts, heterochromatin, and 

polycomb-mediated silencing, respectively)7. Because ChIP-DIP can map large numbers 

of diverse proteins, we asked whether additional combinations of histone modifications 

and regulatory proteins can provide additional information about distinct types, activity 

states, and regulatory potentials of cis-regulatory elements (promoters or enhancers) 

beyond those captured by the five commonly studied individual histone modifications. 

 

Promoter type and activity state are defined by combinations of histone modifications 

 

H3K4me3 is generally thought to mark the promoters of actively transcribed RNAP II 

transcripts13,41,79. Consistent with this, we find H3K4me3 over the promoters of actively 

transcribed RNAP II genes, yet we also observe this modification near RNAP I promoters 

(ribosomal RNA) and many active RNAP III genes (tRNAs) (Figure 5B). Similarly, we 

observe that other histone modifications associated with active RNAP II promoters, 

including H3K4me2, H3K9Ac, H3K27Ac, and H3K56Ac, are also enriched at RNAP I 
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and III genes (Figure 5B-C, Figure S5C). For example, focusing on a genomic region 

containing neighboring RNAP II (i.e., histone) and RNAP III (i.e., tRNA) genes, we observe 

specific binding of the associated polymerase with shared transcription factors and 

chromatin modification patterns over all genes (Figure 5C). 

Although the presence of these histone modifications does not appear to distinguish 

between genes transcribed by different polymerases, we observed that both their position 

relative to the transcriptional start site (TSS) and their relative levels differ by polymerase: 

for RNAP I genes, these modifications localize prior to the TSS; for RNAP II, they flank 

the promoter and are enriched downstream of the TSS; and for RNAP III, they flank the 

gene body, localizing both upstream of the TSS and downstream of the transcriptional 

termination site (Figure 5B, Figure S5C). In addition, the three RNAPs have different 

relative levels of these histone modifications near their respective gene promoters. For 

example, we found that RNAP I and II promoters display stronger H3K56Ac enrichment 

and RNAP I and III display stronger H3K4me2 enrichment relative to H3K4me3 (Figure 

5D). In this way, both quantitative combinations of histone modifications and their relative 

positions define distinct classes of promoters (Figure 5E). 
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Figure 5: Distinct chromatin signatures define the promoters of each RNA Polymerase. (A) 

Visualization of RNAP I at the promoter and along the gene body of rDNA (left), RNAP II at a 

snRNA gene (middle), and RNAP III at a cluster of tRNA genes (right) in mouse ESCs. (B) 

Comparison of H3K4me3 and H3K27Ac profiles at the promoters of RNAP I, II and III genes. 

RNAP I is displayed over the rDNA spacer promoter (left) while RNAP II and III are displayed as 

meta plots across active (blue) and inactive (dashed gray) promoters. (C) Visualization of RNAP II 

and RNAP III along with the shared transcription factor TBP, and histone modifications H3K4me3 

and H3K56Ac across a genomic region (mm10, chr13:23,385,000–23,595,000) containing a 

tRNA gene cluster (RNAP III-transcribed genes) adjacent to a histone gene cluster (RNAP II-

transcribed genes), separated by dashed line. (D) Density distribution of H3K4me2/H3K4me3 

versus H3K56Ac/H3K4me3 ratios at RNAP I, active RNAP II and active RNAP III promoters. 

Points show ratios when computed using the total sum of histone coverage over all promoters. 

Marginal distributions are shown for RNAP II and III along x and y-axis. Axes are log10 scaled. 

(E) Schematic showing relative levels of histone modifications H3K4me2 and H3K56Ac at 

H3K4me3 enriched regions and the associated RNAP promoter. 
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Figure S5: Chromatin states corresponding to distinct RNA polymerases and 

isoforms, related to Figure 5. (A) Bar graph showing enrichment of gene class coverage 

(rRNA, mRNA, snRNA or tRNA) for RNAP I, II and III in mESC. For each RNAP, the 

bar of its associated class (or classes) is highlighted. (B) Visualization of RNAP II 

phosphorylation isoforms across the NUP214 gene in K562 (left). Meta plot of signal 

distribution of RNAP II phosphorylation isoforms across the gene body of protein coding 

genes in K562 (right). (C) Comparison of histone profiles for H3K4me2, H3K9Ac and 

H3K56Ac at the promoters of RNAP I, II and III, similar to Figure 5B. (Left) Histone 

modification over the RNAP I-transcribed rDNA spacer promoter. (Middle/Right) Meta 

plot of histone profiles at active (blue) and inactive (gray) promoters for RNAP II (middle) 

and RNAP III (right). 
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Next, we considered whether other histone modifications may distinguish activity states of 

RNAP II promoters. To explore this, we quantified the levels of ten additional histone 

modifications at each genomic region containing H3K4me3 and grouped them using 

hierarchical clustering. We identified five sets of H3K4me3 enriched genomic regions; four 

are enriched with other histone modifications (sets 1–4) and one is not (set 5). The four co-

occurring sets correspond to H3K4me3 along with: H3K27me3/H2AK119ub (set 1), 

H3K36me3/H3K79me (set 2), H3K9me3/H4K20me3 (set 3), or H3K4me1/H3K27ac (set 

4) (Figure 6A). These sets correspond to promoters that exhibit distinct transcriptional 

activity (e.g., high versus low expression) (Figure 6B) and are enriched for distinct classes 

of RNAP II-transcribed genes, such as ribosomal protein and cell cycle genes (set 2), zinc 

finger protein (set 3) and long intergenic ncRNAs genes (sets 3 and 4) (Figure 6C-G)12,80. 

Consistent with the fact that H3K4me3 localization associates with functionally distinct 

classes of promoters, we found that different combinations of chromatin regulators that 

read, write, and erase H3K4me3 localize at distinct promoters (Figure S4G). 

Taken together, these results demonstrate that combinations of histone modifications can 

distinguish promoter features including polymerase (Figure 5E), gene type, and activity 

level (Figures 6H). 
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Figure 6: Combinations of histone modifications distinguish RNAP II promoter type, 

activity and potential. (A) Hierarchically clustered heatmap of coverage levels of ten 

different histone modifications (y-axis) at individual H3K4me3 enriched genomic regions 
(x-axis). Five distinct sets of regions are indicated by colored bars along top-axis. (B) RNAP II 

coverage at H3K4me3-enriched regions, as sorted in (A). (C) Gene density of ten different gene 

classes at H3K4me3 enriched regions, as sorted in (A). (D) Visualization of H3K4me3 and 

H3K27me3/H2AK119ub (associated with set 1) across the EML5 gene in K562. (E) Visualization 

of H3K4me3, H3K79me2/H3K79me3/H3K36me3 co-localization (associated with set 2) across the 

ribosomal protein gene RPL24 in K562. (F) Visualization of H3K4me3 and H4K20me3/H3K9me3 

co-localization (associated with set 3) across neighboring zinc finger genes in K562. (G) 

Visualization of H3K4me3 and H3K4me1/H3K4me2/H3K27Ac (associated with set 4) across the 

long intergenic noncoding RNA gene LNCRNA0881. For tracks in (D–G), the non-H3K4me3 

tracks represent the sum of histone tracks associated with each set and are scaled to the maximum 

value across all panels. H3K4me3 tracks are scaled to the maximum for each panel. (H) Illustration 
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summarizing the co-occurring promoter-associated histone modifications and their associated gene 

groups. 
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Enhancer type, activity and potential are defined by combinations of histone 

modifications 

There are >40 different histone acetylation marks3, many of which have been associated 

with enhancers and active transcription. We mapped 15 of these in mESCs, including marks 

on all four core histones and histone variants, and observed that they co-localize at similar 

sites genome-wide (Pearson r = 0.86–0.97)81 (Figure S6). We considered whether these 

strong correlations indicate that these marks are redundant or whether there is additional 

regulatory information encoded by the relative levels of each acetylation mark at specific 

genomic sites. To explore this, we used a matrix factorization algorithm to define five 

weighted combinations of acetylation marks at highly acetylated genomic regions 

(quantitative combinations C1–C5; see Methods, Figure 7A–B, Supplemental Note 2, 

Figure S7). These quantitative combinations correspond to genomic regions that contain 

distinct transcription factor and chromatin regulator binding profiles (Figure 7C–F, Figure 

S8). 

Active promoter-proximal elements. The first group of regions (C1) is defined by H3K9Ac 

and several other H3 acetylation marks (H3K14ac, H3K18ac, H3K36ac, H3K56ac, and 

H3K79ac) (Figure 7B). Genomic regions containing this signature tend to be localized 

near the promoter region of transcribed genes and are enriched for RNAP II, general TFs 

(e.g., TFIIB), and other CpG-island associated factors (e.g., E2F1, CXX1) along with their 

sequence motifs (e.g., ETS, SP and NRF families) (Figure 7C, E–F). 

Poised promoter-proximal elements. The second group of regions (C2) contains high 

levels of H3K9Ac and acetylation of the histone variant H2AZ (H2AZAc) (Figure 7B). 

Genomic regions containing this signature tend to have lower levels of RNAP II (relative 

to C1) and are strongly enriched for polycomb (JARID2, SUZ12, RING1B) and other 

repressive chromatin regulators (KDM2B, HDAC2) (Figure 7E–F). 

Stress and signaling response elements. The third group of regions (C3) contains high 

levels of H2AZAc and H4Ac (Figure 7B). Genomic regions containing this signature are 

also enriched for RNAP II but are bound by p53 and contain other stress response motifs 

(e.g., BACH1, NRF2) or signaling response motifs (e.g., CRE) (Figure 7C, Figure 7E–

F). Consistent with these observations, H2AZ has been proposed as a facilitator of 

inducible transcription (e.g., signaling pathway responses and p53 regulation)82–85. Yet, 

because 

H2AZ is also a component of C2, our results suggest that this association is not solely a 

property of H2AZAc but of this unique C3 signature. 

Active pluripotency distal regulatory elements. The fourth group of regions (C4) is defined 

by H2BK20Ac and H3K27Ac (Figure 7B). Genomic regions containing this signature tend 

to be promoter distal (Figure S8B) and are associated with actively transcribed embryonic 

and stem-cell-specific genes (Figure 7D). These regions are enriched for binding of the 

pluripotency TFs, including Nanog, Oct4, and Sox2, as well as the P300 acetyltransferase 

and components of mediator (Figure 7F). 

Poised differentiation distal regulatory elements. The fifth group of regions (C5) is 
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defined by high levels of H2BK20Ac (similar to C4) and H3K14Ac (distinct from C4) 

(Figure 7B). Interestingly, these regions displayed similar TF and CR occupancy (e.g., 

Oct4, Sox2, Nanog, P300 and mediator) to C4 regions (Figure 7F–G)86. However, in 

contrast to C4 regions bound by these pluripotency factors, which correspond to enhancers 

of active genes involved in embryo and stem cell function, C5 regions bound by these 

factors correspond to enhancers of genes involved in post-embryonic development (Figure 

S9) and are enriched for sequence motifs of TFs involved in lineage specification and 

morphogenesis (e.g., TEAD family)87 (Figure S8C). This suggests that C5 enhancers might 

be important in establishing the gene expression program needed upon differentiation 

(regulatory potential). Interestingly, we identified a third set of genomic regions that also 

contain a high density of pluripotency TFs but lack the C4 or C5 acetylation signatures; 

these are associated with genes involved in later stages of organogenesis (e.g., kidney and 

sensory systems) (Figure S9). 

These analyses indicate that histone acetylation is not a redundant marker of enhancers, 

but that combinations of acetylation modifications can define unique classes of cis-

regulatory elements (promoter-proximal versus distal enhancers) that act in distinct ways 

(stimulus-responsive versus developmentally regulated) and that exhibit different activity 

(e.g., active gene expression versus poised for activation upon differentiation) (Figure 7H). 

Overall, these observations highlight the importance of multi-component analyses and 

demonstrate why ChIP-DIP provides a powerful approach that will be critical for defining 

unique regulatory features within distinct cell states. 
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Figure 7: Distinct combinations of histone acetylation marks define unique enhancer 

types that differ in their activity and developmental potential. (A) The relative weights 

of five different combinations of histone acetylation marks (C1-C5, y-axis) for each 

acetylated genomic region (x-axis). Regions are grouped according to the combination that 

received the greatest weight, as indicated along top-axis. (B) The relative weights of each 

histone acetylation mark (y-axis) within each combination (x-axis). Only weights greater 

than 2.5 are labeled. (C) Visualization of H3K9ac and H4ac along with SP1 and P53 across 

a genomic region (mm10, chr15:34,065,000–34,086,000) containing enhancers assigned to 
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the C1 (yellow) and C3 (red) state. (D) Visualization of H2BK20Ac and H3K27Ac along 

with Nanog, Tead1, and RNAP II across a genomic region (left: mm10, chr7:3,191,500–

3,221,500, right: mm10, chr18:5,006,500–5,016,500) containing enhancers assigned to C4 

(left) and a distinct region assigned to C5 (right). (Scale of the Nanog track is capped to 

the maximum of the left region; Tead1 data is from published ChIP-Seq data in fetal 

cardiomyocytes (Akerberg et al., 2019)). (E) Visualization of H3K9Ac, H2AZAc, H4Ac 

along with RING1B, P53, and RNAP II over a genomic region (mm10, chr8:47,272,800–

47,427,000) containing enhancers assigned to states C1-C4. (F) DNA-associated proteins 

(x-axis, ordered by function) with significant binding at genomic regions defined by each 

combination (y-axis) are indicated in color (see Methods). (G) Enrichment bar graph of 

selected transcription-associated factors or regions with high density of pluripotency TFs 

(see Methods) in C4 vs. C5 associated regions. Error bars correspond to the enrichment 

range from bootstrap resampling. (H) Schematic of C1-C5 associated regions and their 

corresponding functions. 
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Figure S6: Histone acetylation marks are highly correlated genome-wide, related to 

Figure 7. (A) Genome-wide Pearson correlation of fifteen different histone acetylation 

marks in mESC. Correlations are based on coverage computed in 10kB windows. (B) 

Comparison of fifteen different histone acetylation marks across a genomic region (mm10, 

chr1:55,048,000–55,148,000) in mESC. 
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Figure S7: ChromHMM model using histone acetylation marks, related to Figure 7. 
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(A) Histone acetylation mark emission probability matrix for 19-state ChromHMM model. 

State annotations (right) were assigned manually based on genomic position enrichments 

of states. (B) Track visualization of histone acetylation marks (top) and chromatin-state 

annotations (bottom) at example promoter region (left) versus example intergenic region 

(right). Histone acetylation marks are scaled to the same maximum values at both regions. 

At each region, the chromatin states that are present are shown with solid lines and a box 

indicating the exact position; chromatin states that are absent are listed next to dotted lines. 

(C) Heatmap of genome annotation enrichment of chromatin states. Enrichment scores are 

normalized to the maximum and minimum of each column. (D) Heatmap of genomic 

position enrichment relative to the TSS of chromatin states. Enrichment scores are 

normalized to the maximum and the minimum of the heatmap. 
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Figure S9: Profiles for high-density regions of NANOG-OCT4-SOX2, related to 

Figure 7. (A) Plot showing normalized region scores (x-axis) for peak regions of NANOG-

OCT4-SOX2, ordered by rank (y-axis). High-density regions are defined as regions past 

the point where the slope = 1. (B) Track visualization of NANOG-OCT4-SOX2 upstream 

of the gene for KLF4, a pluripotency transcription factor, in mESC. A high-density region 

is indicated with a red bar; low-density regions are indicated with gray bars. (C) 

Visualization of NANOG-OCT4-SOX2 near the TET2 gene, a developmentally associated 

chromatin regulator, in mESC. A high-density region internal to the gene is indicated with 

a red bar. (D) Coverage meta plots over low-density regions (LDR) vs. high-density regions 

(HDR) for pluripotency transcription factors and other transcriptional-related factors. 

Metagenes are centered on the region and the lengths represent the approximate difference 

in mean lengths (500bps for LDRs and 14,500bps for HDRs). An additional 4kb 

surrounding each region is shown. (E) Enrichment heatmap for GO terms of genes 

associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. 

(F) Enrichment heatmap for development-associated GO terms of genes associated with 

HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. 
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Discussion 
 

We demonstrated that ChIP-DIP enables highly multiplexed mapping of hundreds of 

regulatory proteins to genomic DNA in a single experiment. Although the largest ChIP-

DIP experiment in this study contained >225 distinct antibodies, this number was primarily 

limited by the availability of high-quality antibodies and we expect that ChIP-DIP could 

be performed using even larger pools of antibodies. Because this approach employs 

standard molecular biology techniques, we expect that it will be readily accessible to any 

lab without the need for specialized training or equipment. As such, we anticipate that 

ChIP-DIP will enable a fundamental shift from large consortia generating reference maps 

for a limited number of cell types to individual labs generating cell-type-specific maps 

within any specific experimental system of interest. 

Given the important information encoded within quantitative combinations of histone 

modifications, chromatin regulators, and transcription factors, comprehensively mapping 

these factors across cell types will be critical for studying gene regulation and for defining 

the putative effects of genetic variants associated with human disease. For instance, while 

specific regulatory states have been shown to be encoded by combinations of histone 

modifications (e.g., bivalent domains), the details of such states (i.e., number and cell-type 

specificity) have remained largely unexplored. The large numbers of histone modifications 

and regulatory proteins have until now necessitated a tradeoff between mapping many 

marks in a few cell types or a few marks in many cell types. ChIP-DIP overcomes this by 

mapping hundreds of proteins in a single experiment. Moreover, due to the nature of split-

pool barcoding used in ChIP-DIP and because there is negligible antibody–bead–chromatin 

dissociation during the procedure, ChIP-DIP can also be used to map protein binding within 

multiple samples simultaneously using distinct sets of antibody-oligo-labeled beads. While 

we did not directly emphasize this capability in this paper, several ChIP-DIP experiments 

described here were performed simultaneously by barcoding multiple sample conditions 

within the same experiment (e.g., crosslinking conditions, IP conditions). In addition to the 

increase in scale provided by mapping multiple proteins within a single sample, ChIP-DIP 

also reduces many sources of technical and biological variability associated with 

processing individual proteins and samples. This ability to measure regulatory proteins at 

scale, in multiple cell conditions, and with reduced sources of variability will enable large-

scale mapping of dynamic protein localization across distinct cell types and timepoints. 

Beyond the multiplexing applications highlighted in this work, ChIP-DIP can be directly 

integrated into multiple existing split-pool approaches to create additional capabilities that 

are not currently possible. For example, we previously showed that we can map the 3D 

genome structure surrounding individual protein binding sites (SIP)88; integrating this 

approach with ChIP-DIP will enable mapping of the 3D structures that occur at hundreds 

of distinct protein binding sites simultaneously. Moreover, we previously developed a 

method to map 3D genome contacts within thousands of individual single cells using this 

same split-pool approach35. Integrating this single-cell approach with ChIP-DIP will enable 

comprehensive mapping of hundreds of regulatory protein binding sites within many 

thousands of individual cells. Finally, we previously showed that split-and-pool barcoding 



 
45 

can be used to simultaneously map the spatial proximity of DNA and RNA to measure 

ncRNA localization and the levels of nascent RNA transcription at individual DNA sites37. 

Integrating this approach with ChIP-DIP will enable the direct measurements of protein 

binding and transcriptional activity at individual genomic locations, providing a direct link 

between binding events and the associated transcription activity within the same cell. For 

these reasons, we expect that ChIP-DIP will represent a transformative new tool for 

dissecting gene regulation. 
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Supplemental note 

 
ChromHMM Model of histone acetylation states. To investigate the spatial relationships 

between histone acetylation marks, we generated a 19-state genome segmentation model 

using ChromHMM and fifteen different histone acetylation marks (Figure S7A). Based on 

the transition probabilities, we grouped these nineteen states and found two large sets that 

differed in their genome positioning: set 1 (States 1–8) was promoter proximal, with the 

individual states identifying the relationship to the TSS, while set 2 (States 9–16) was 

promoter distal, with the individual states demarcating the acetylation peaks and 

surroundings between 

them (Figure S7B–D). State 17 was also promoter proximal but was grouped separately 

because of a unique signature with H2AZAc (Figure S7A, D). Finally, States 18 and 19 

corresponded to silent genic and intergenic regions. Remarkably, this model found that 

histone acetylation marks were sufficient to define multiple functional elements (e.g., 

promoters, enhancers, gene bodies, silent, intergenic). 

Overall, our state-model found that the acetylation marks cover similar genomic loci; there 

exist multiple states that have nearly all the marks (i.e., State 1, 2, 9 and 10) and multiple 

states that appear alike in composition but differ in relationship to genomic annotations (i.e., 

State 1 vs. State 9) (Figure S7A, D). Comparing sets 1 and 2 (i.e., promoter proximal vs. 

promoter distal), we found that all acetylation marks are present in both sets, however, 

some marks are more enriched in one set over the other. For example, H3K9Ac was 

strongest in set 1 (the promoter-proximal set), while H3K18Ac, H3K27Ac and H2BK20Ac 

were enriched throughout set 2 (the promoter-distal set) (Figure S7A). Notably H3K18Ac, 

H3K27Ac and H2BK20Ac are all targets of the CBP/p300 acetyltransferase89, which is 

strongly associated with activity at enhancers. In contrast, the GCN5/PCAF subfamily 

preferentially acetylates H3K9, H3K14 and H490–all marks we see preferentially in set 1. 

Comparing all nineteen states individually, we found that a small subset of states had 

greater selective enrichment for specific histone modifications. For example, State 5 

(promoter up/down stream) and State 7 (gene body) both had greater selectivity for 

H3K9Ac, State 14 was defined by H2BK20Ac and State 17 was defined by H2AZAc. Such 

states may indicate subtle positional shifts or locations unique to these marks. 

Correspondingly, by visual comparison, we saw that H3K9Ac appears more enriched 

downstream of the TSS and into the gene body than other histone acetylation marks. 

Our 19-state ChromHMM genome segmentation results corresponded well with the 

findings of our weighted combinatoric NMF model (Figure 7). In our NMF model, we 

found that TSS associated combinations (C1 and C2) are defined by H3K9Ac; similarly, in 

our ChromHMM model, we found that H3K9Ac preferred the promoter-associated set of 

states (set 1). In our NMF model, we predicted a unique role for H2AZAc in defining 

multiple promoter-associated combinations (C2 and C3); in our ChromHMM model, we 

found H2AZAc was selectively enriched in State 17, a promoter-associated state. In our 

NMF model, we found that promoter-distal combinations are defined by H2BK20Ac and 

H3K27Ac (C4 and C5); in our ChromHMM model, we found that these two marks prefer 

the promoter-distal set of states (set 2). 



 
47 

Methods 
 

Cell Lines, Cell Culture and Crosslinking 

 

Cell lines used in this study. We used the following cell lines in this study: (i) Female mouse 

ES cells (pSM44 mES cell line) derived from a 129 × castaneous F1 mouse cross and (ii) 

K562, a female human lymphoblastic cell line (ATCC, Cat # CCL-243). 

Cell Culture Conditions 

 

(i) pSM44 mES cells were grown at 37°C under 7% CO2 on plates coated with 0.2% gelatin 

(Sigma, G1393-100ML) and 1.75 mg/mL laminin (Life Technologies Corporation, 

#23017015) in serum-free 2i/LIF media composed as follows: 1:1 mix of DMEM/F-12 

(GIBCO) and Neurobasal (GIBCO) supplemented with 1x N2 (GIBCO), 0.5x B-27 

(GIBCO 17504-044), 2 mg/mL bovine insulin (Sigma), 1.37 mg/mL progesterone (Sigma), 

5 mg/mL BSA Fraction V (GIBCO), 0.1 mM 2-mercaptoethanol (Sigma), 5 ng/mL murine 

LIF (GlobalStem), 0.125 mM PD0325901 (SelleckChem) and 0.375 mM CHIR99021 

(SelleckChem). 2i inhibitors were added fresh with each medium change. Fresh medium 

was replaced every 24–48 hours depending on culture density, and cells were passaged 

every 72 hours using 0.025% Trypsin (Life Technologies) supplemented with 1mM EDTA 

and chicken serum (1/100 diluted; Sigma), rinsing dissociated cells from the plates with 

DMEM/F12 containing 0.038% BSA Fraction V. 

(ii) K562 cells were purchased from ATCC and cultured in 1x DMEM (Life Technologies, 

# 11965118), 10% FBS (VWR, #97068-091), 100U/mL Penicillin/Streptomycin (Life 

Technologies, # 15140122), 1mM Sodium Pyruvate (ThermoFisher, #11360070), 2mM L- 

Glutamine (Life Technologies # 25030081) at 37°C and 5% CO in 15cm plates 

(USA Scientific # 5663-9160Q). 

Cell Harvest 

 

(i) For harvesting pSM44 mESCs, cells were trypsinized by adding 5 mL of TVP (1 mM 

EDTA, 0.025% Trypsin, 1% Sigma Chicken Serum; pre-warmed at 37°C) to each 15 cm 

plate and rocking gently for 3–4 min until cells start to detach. 25 mL of wash solution 

(DMEM/F-12 supplemented with 0.03% GIBCO BSA Fraction V, pre-warmed at 37°C) was 

added to each plate to inactivate the trypsin. Detached cells were transferred into 50 mL 

conical tubes, pelleted at 330 g for 3 min, washed in 4 mL of 1X PBS per 10 million cells 

and then pelleted in 1X PBS in preparation for crosslinking. (ii) For harvesting K562s, the 

cell suspension was transferred to 50mL conical tubes, pelleted at 330 g for 3 min, washed 

with 4 mL of 1X PBS per 10 million cells and then pelleted in 1X PBS in preparation for 

crosslinking. 
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Cell Crosslinking 

 

Cells were crosslinked in suspension with 1% Formaldehyde for 10 min at room 

temperature. For both cell lines, during crosslinking steps and subsequent washes, volumes 

were maintained at 4 mL of buffer or crosslinking solution per 10 million cells. Pelleted 

cells were resuspended in 1ml of 1X PBS per 10 million cells and pipetted to disrupt clumps 

of cells. Next, cells were crosslinked in suspension in a final volume of 4 mL of 1% 

formaldehyde (FA Ampules, Pierce 28906) diluted in 1X PBS per 10 million cells and 

rocked gently for 10 min at room temperature. Formaldehyde was immediately quenched 

with addition of 200 ml of 2.5 M glycine (Sigma G7403-250G) per 1 mL of 1% FA solution 

and incubated with gentle rocking for 5 min at room temperature. Cells were then washed 

three times with 0.5% BSA in 1X PBS that was kept at 4°C. Finally, aliquots of 10 million 

cells were prepared in 1.7 mL tubes; these cell aliquots were pelleted, flash frozen in liquid 

nitrogen and stored in -80°C until lysis. 

Nuclear Isolation and Chromatin Preparation 

 

Nuclear Isolation 

 

Crosslinked cell pellets (10 million cells) were lysed using the following nuclear isolation 

procedure: cells were incubated in 0.7 mL of Nuclear Isolation Buffer 1 (50 mM HEPES 

pH 7.4, 1 mM EDTA pH 8.0, 1 mM EGTA pH 8.0, 140 mM NaCl, 0.25% Triton-X, 0.5% 

NP-40, 10% Glycerol, 1X PIC) for 10 min on ice. Cells were pelleted at 850 g for 10 min 

at 4C. Supernatant was removed, 0.7 mL of Lysis Buffer 2 (50 mM HEPES pH 7.4, 1.5 

mM EDTA, 1.5 mM EGTA, 200 mM NaCl, 1X PIC) was added and the sample was 

incubated for 10 min on ice. Nuclei were obtained after pelleting and supernatant was 

removed (as above). Then, 550 uL of Lysis Buffer 3 (50 mM HEPES pH 7.4, 1.5 mM 

EDTA, 1.5 mM EGTA, 100 mM NaCl, 0.1% sodium deoxycholate, 0.5% NLS, 1X PIC) 

was added and the sample was incubated for 10 min on ice prior to sonication. 

Chromatin fragmentation and size analysis. 

 

Chromatin was fragmented via sonication of the nuclear pellet using a Branson needle-tip 

sonicator (3 mm diameter (1/8’’ Doublestep), Branson Ultrasonics 101-148-063) at 4C for 

a total of 2.5 min at 4–5 W (pulses of 0.7 s on, followed by 3.3 s off). To check the resulting 

DNA size distribution, a small aliquot of 20uL of sonicated lysate was then added to 80uL 

of Proteinase K buffer ((20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM EGTA, 

0.5% Triton-X, 0.2% SDS) and reverse crosslinked at 80°C for 30 min. DNA was isolated 

using Zymo IC DNA Clean and Concentrator columns and eluted in water. 10uL of purified 

DNA was then run for 10 min on a 1% e-gel (Invitrogen™ E-Gel™ EX Agarose Gels, 1%, 

Cat.No. G402021). Fragments were found to be 150–700 bp with an average size of 

roughly 350 bp. The remaining chromatin prep was stored at 4C overnight to be used for 

the immunoprecipitation the next day. 
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ChIP-DIP: Bead Preparation 

 

Antibody-ID oligo design 

 

Antibody-ID oligos were designed and ordered from IDT (Supplemental Table 6). The 

sequence is as follows: 

/5phos/TGACTTGNNNNNNNNTATTATGGTAGATCGGAAGAGCGTCGTGTACAC 

 

AGAGTC/3Bio/. 

 

This corresponds to a sticky end that ligates Odd barcodes, UMI, antibody barcode, 

Illumina primer binding site (i5 primer binding site), spacer sequence. The oligo contains 

a 5’ phosphate to enable ligation and a 3’ biotin to enable coupling to beads. 

Protein G Bead biotinylation 

 

1 mL of Protein G Dynabeads (ThermoFisher, #10003D) were washed once with 1X PBSt 

(1X PBS + 0.1% Tween-20), separately keeping the original storage buffer, and 

resuspended in 1mL PBSt. Beads were then incubated with 20 μL of 5 mM EZ-Link Sulfo- 

NHS-Biotin (Thermo, #21217) on a HulaMixer for 30 min at room temperature. To quench 

the NHS reaction, beads were placed on a magnet, 500 μL of buffer was removed and 

replaced with 500 μL of 1M Tris pH 7.4 and beads were incubated on the HulaMixer for 

an additional 30 min at room temperature. Beads were then washed twice with 1 mL PBSt 

and resuspended in their original storage buffer until use. 

Preparation of streptavidin-coupled oligonucleotides 

 

Biotinylated antibody-ID oligonucleotides were coupled to streptavidin (BioLegend, 

#280302) in a 96-well PCR plate. In each well, 20 μL of 10 μM oligo was added to 75 μL 

1X PBS and 5 μL 1 mg/mL streptavidin to make a 909 nM (calculated from the molarity 

of streptavidin molecules) stock. The 96-well plate was incubated with shaking at 1600 

rpm on a ThermoMixer for 30 min at room temperature. Each well was diluted 1:4 in 1X 

PBS for a final concentration of 227 nM. 

Preparation of oligonucleotide-coupled Protein G beads 

 

For each antibody in the experiment, 10uL of oligonucleotide-coupled protein G beads 

were prepared. All biotinylated protein G beads that would be needed for the entire 

experiment were first pooled into a tube, washed in 1mL of PBSt and resuspended in 200uL 

of 1x oligo binding buffer (0.5X PBST, 5 mM Tris pH 8.0, 0.5 mM EDTA, 1M NaCl) per 
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10uL of beads. 200 μL of bead suspension was aliquoted into individual wells of a deep-

well 96-well plate (Nunc 96-well deep-well Plates with Shared-Wall Technology, Thermo 

Scientific, Cat. No. 260251) and 14 μL of 5.675nM (1:40 from 227nM working stock made 

fresh) of streptavidin-coupled oligo was added to each well. The 96-well plate was then 

sealed with a Nunc 96-well cap mat (Thermo Scientific, Cat. No. 276000) and shaken at 

1200 rpm on a ThermoMixer for 30 min at room temperature. Beads in each well were 

washed twice with M2 buffer (20 mM Tris 7.5, 50 mM NaCl, 0.2% Triton X-100, 0.2% 

Na-Deoxycholate, 0.2% NP-40), twice with 1X PBSt, and finally resuspended in 200 μL 

of 1X PBSt. 

Estimating number of oligos per bead 

 

After oligo-coupling, a QC step was performed to estimate the number of oligos bound to 

each bead. 20% of a representative well for each row of the 96-well plate of oligo-coupled 

beads was isolated and the “Terminal” tag from split-and-pool barcoding was ligated onto 

the oligos in these aliquots. Then, half of the ligated product was PCR amplified for ten 

cycles and purified using 1x SPRI beads. The purified DNA product was run on an Agilent 

TapeStation using a D1000 tape to estimate molarity and this molarity was used to calculate 

the total number of molecules post PCR. Using this post-PCR number and the number of 

cycles of PCR, the number of unique molecules pre-PCR was estimated39. Finally, the 

number of unique molecules was divided by the number of beads put into the PCR reaction 

(2.7*10^6 beads per 1uL of stock biotinylated protein G beads) to calculate the estimated 

oligos per bead. 

Antibody Coupling 

 

2.5 μg of each antibody was added to each well of the 96-well plate containing 

oligonucleotide-labeled beads resuspended in 1X PBSt. The plate was incubated on a 

ThermoMixer overnight at 4C with 30 seconds of shaking at 1200 RPM every 15 min. The 

following morning, beads were washed twice with 1X PBSt (Sigma, #B4639-5G), 

resuspended in 200 μL of 1x PBSt + 4mM biotin + 2.5ug Human IgG Fc and left shaking 

at 1200 rpm for 15 min at room temperature to quench free protein G or streptavidin 

binding sites. 

Preparation of bead pool 

 

All wells containing oligo-labeled, antibody-coupled beads were washed 2X with 200uL 

1X PBSt + 2 mM biotin, taking care to remove all supernatant after the final wash. 

Afterwards, one of two protocols were followed for bead pooling: 1) Equal bead pooling—

Beads were pooled using equal amounts of prepared beads for each antibody (10uL of 

protein G beads per antibody). 2) Titrated bead pooling—Beads were pooled using unequal 

amounts of prepared beads for each antibody. The relative number of beads for each 

antibody was determined based on the chromatin pull-down efficiency (chromatin reads 

per bead) measured in QC experiments. Fewer beads were used for antibodies with higher 
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pull-down efficiencies and greater beads were used for antibodies with lower pull-down 

efficiencies or negative controls. This strategy was intended to generate a more uniform 

distribution for the number of chromatin reads assigned to each antibody in the final 

experiment. 

ChIP-DIP: Immunoprecipitation, Split-and-pool and Library Preparation 

 

Pooled immunoprecipitation 

 

Fragmented lysate was diluted with PBSt +10mM biotin + 1x PIC + 2.5ug of human IgG 

Fc per 10ul of beads. The pool of labeled beads was added to the lysate and rotated on a 

HulaMixer for 1 hour at room temperature. Beads were washed 2X with 1mL IP Wash 

Buffer I (20mM TrispH8.0, 0.05% SDS, 1% Triton X 100, 2mM EDTA, 150mM NaCl in 

water), 2X with 1mL of IP Wash Buffer II (20mM TrispH8.0, 0.05% SDS, 1% Triton X 

100, 2mM EDTA, 500mM NaCl in water) and 2X with 1mL of M2 buffer (20mM Tris 

pH7.5, 0.2% Triton X100, 0.2% NP-40, 0.2% DOC, and 50mM NaCl). 

Chromatin End Repair and dA-Tailing 

 

To blunt end and phosphorylate double stranded DNA, the NEB End Repair Module 

(E6050L; containing T4 DNA polymerase and T4 PNK) was used. Beads were incubated 

in 1X NEBNext End Repair Enzyme cocktail + 1X NEBNext End Repair Reaction Buffer 

+ 4mM biotin + 1ug human IgG Fc per 10uL beads at 20°C for 15 min. The reaction was 

quenched with 3X volume of PBSt + 100uM EDTA and beads were washed 2X with 1mL 

PBSt. Next, to dA-tail DNA, the NEBNext dA-tailing Module (Klenow fragment (50 

-30 exo-, NEBNext dA-tailing Module, E6053L) was used. Beads were incubated in 1X 

NEBNext dA-tailing Reaction Buffer + 1X Klenow Fragment (exo-) + 4mM biotin + 1ug 

human IgG Fc per 10uL beads at 37°C for 15 min. The reaction was quenched with 3X 

volume of PBSt + 100uM EDTA and beads were washed 2X with 1mL PBSt. 

Split-and-pool barcoding 

 

Split-and-pool barcoding was performed as previously described39 with modifications. 

Specifically, beads were first split-and-pool ligated by DPM to attach a common sticky end 

to all DNA molecules. Then, beads were split-and-pool ligated for ≥ 6 rounds with sets of 

“Odd”, “Even”, and “Terminal” tags. The number of barcoding rounds and number of tags 

used for each round was determined based on the number of beads that needed to be 

resolved. These parameters were selected to ensure that virtually all barcode clusters 

(>95%) represented molecules belonging to unique, individual beads. In most cases, 6 

rounds of barcoding with 24–36 tags per round were performed. Each individual tag 

sequence was used in only a single round of barcoding. All split-and-pool ligation steps 

were performed for 5 min at room temperature and supplemented with 2mM biotin and 

5.4uM ProteinG. After split-and-pool barcoding was complete, beads were resuspended in 
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1mL of MyRNK buffer [20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM EGTA, 

0.5% Triton-X, 0.2% SDS]. Aliquots of various sizes (0.05% to 4% of total beads) were 

prepared, ensuring that the number of beads within each aliquot was resolvable by the 

number of possible unique split-and-pool barcodes. Each aliquot was then digested with 

8ul of Proteinase K (NEB) for 2 hrs at 55°C, 1200RPM shaking and reverse crosslinking at 

65°C, 1600 RPM shaking overnight. 

Library Preparation 

 

DNA from each reverse crosslinked aliquot was isolated with a Zymo IC column using a 

6X volume of the DNA-binding buffer (Zymo Cat. No. D4014) and eluted in 21ul of H20. 

Libraries were amplified for 9–12 cycles using Q5 Hot-Start Mastermix (NEB Cat No 

M0294L) and primers that added the full Illumina adaptor sequences. The following PCR 

mixture was used: 21uL DNA in H2O, 2uL of i5 primer (12.5uM), 2uL of i7 primer 

(12.5uM), 25uL 2X Q5 MM. After amplification, libraries were cleaned with 1.2x SPRI 

(Bulldog Bio CNGS500) and eluted in 20uL. Prior to sequencing, libraries were gel 

purified to remove unused primers using a 2% agarose gel [Invitrogen Cat No. G401002]. 

Sequencing 

 

Sequencing was performed on Illumina NovaSeq S4 (300 cycle) and NextSeq (200 cycle 

or 300 cycle) paired-end runs, Read lengths were asymmetrical in order to capture the full 

split-and-pool barcode sequence on read 2 (R2) and the chromatin sequence on read 1 (R1). 

For 300 cycle kit–100 cycles for R1, 200 cycles for R2; For 200 cycle kit–50 cycles for R1 

and 150 cycles for R2. 

For each experiment, multiple different libraries were generated and sequenced. Each 

library corresponds to a distinct aliquot which is amplified with a unique pair of primers, 

providing an additional round of barcoding. 

Data Processing Pipeline 

 

Read Processing. Paired-end sequencing reads were trimmed with Trim Galore! V0.6.2 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)  to  remove  adaptor 

 

sequences and quality assessed with FastQC v0.11.8. Split-and-pool barcodes were 

identified from Read 2 using Barcode ID v1.2.0 (https://github.com/GuttmanLab/chipdip- 

pipeline ). Reads missing split-and-pool tags or with tags in the incorrect position given 

 

the split-and-pool round they correspond to were discarded. Subsequently, reads were split 

into two files, one for antibody-ID reads and one for DNA reads, based on the presence of 

“BPM” (bead tag) or “DPM” (DNA tag), respectively, on Read 1. 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
https://github.com/GuttmanLab/chipdip-pipeline
https://github.com/GuttmanLab/chipdip-pipeline
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For DNA reads, the DPM sequence was trimmed from Read 1 using Cutadapt v3.491. The 

remaining sequence was aligned to mm10 or hg38 using Bowtie2 (v2.3.5)92 with default 

parameters. Only primary alignments with a mapq score of 20 or greater were kept for 

further analysis. Finally, reads were masked using the repeat genome obtained from 

ENCODE93. 

For antibody-ID reads, the BPM sequence, which contains the antibody-ID information, 

was trimmed from Read 1 using Cutadapt v3.4 and the UMI extracted from the remaining 

sequence. 

MultiQC v1.694 was used to aggregate metrics from all steps. 

 

Cluster Generation. A “cluster file” was generated by aggregating all reads (i.e., aligned, 

masked DNA reads and antibody-ID reads) that share the same split-and-pool barcode 

sequence. During this step, reads in each cluster were deduplicated by alignment position 

for DNA reads or UMI for antibody-ID reads. 

Antibody-ID Oligo Movement Quality Control Check. To assess the frequency of antibody 

 

ID oligo movement between beads, the proportion of antibody-ID reads corresponding to 

the maximum representation in each cluster was calculated. Only clusters with >1 antibody-

ID read were considered. For each experiment, these values were plotted as an empirical 

cumulative distribution function (ECDF) using the Python plotting package seaborn95. 

Cluster Filtering and Assignment. Individual clusters in the “cluster file” were assigned to 

a specific antibody based on antibody-ID reads within the cluster. First, clusters in the 

“cluster file” without antibody-ID reads or clusters with >10,000 genomic DNA reads 

(which likely represent undersonicated material or clumps of beads) were filtered out. 

Next, each remaining cluster was assigned to the antibody ID that had maximum 

representation within the cluster if 1) there were greater than two unique reads 

corresponding to the antibody ID and 2) the antibody ID represented >80% of all antibody-

ID reads within the cluster. These criteria were selected empirically to ensure high 

confidence assignments of antibody IDs to each cluster. Clusters that did not meet these 

criteria were removed from further analysis. 

Antibody-specific protein maps. Genomic DNA alignments were split into separate bam 

files such that each file corresponded to all alignments associated with an individual 

antibody based on the antibody-ID assignments within each cluster. DNA reads from 

clusters that did not have antibody-ID reads, were too large or could not be uniquely 

assigned to a single antibody ID were filtered out. DNA reads were deduplicated such that 

only one read per alignment position per cluster was retained. 

Visualization and Peak Calling 
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Bigwig Generation. Bigwigs were generated from each antibody-specific BAM file using 

the ‘bamCoverage’ function from deepTools v3.1.396 and were visualized with IGV97. Track 

visualizations are scaled to the maximum over the region and scales indicate reads per bin, 

unless indicated otherwise. 

Background Normalization. Because beads from many antibodies are processed together, 

ChIP-DIP has sources of potential background that are distinct from a traditional ChIP-

Seq experiment. In any ChIP experiment, the antibody used will immunoprecipitate its 

specific protein (and the associated chromatin) but will also non-specifically purify other 

proteins (and their associated chromatin) at some lower frequency. This non-specific 

chromatin (background) is generally proportional to the overall distribution of genomic 

DNA present in the starting material (“input”). In ChIP-DIP, the same is true during the IP; 

any given antibody will preferentially capture its specific protein but will, at some lower 

frequency, non-specifically capture other proteins. However, because ChIP-DIP entails 

purification with many antibodies, the source of proteins and chromatin for this non-

specific binding is no longer the entire cellular input but rather the material present within 

the pooled IP (e. g. the proteins and chromatin that were pulled down by the pool of 

antibodies). Indeed, we observed that some antibodies displayed background signal that 

was distinct from the input library. For example, antibodies targeting CTCF displayed 

higher background over promoter regions, likely reflecting the presence of various 

promoter-enriched histone modifications present in the same experimental pool. To 

account for this in our analysis, we used the pool of all genomic DNA reads captured in a 

ChIP-DIP experiment as the background control. We found that normalization using this 

empirically-defined background led to a more conservative enrichment calculation for 

ChIP-DIP data. For example, in the CTCF example noted above, this normalization 

approach successfully removed the background promoter-associated signal while retaining 

signal at known CTCF binding sites. 

Specifically, a background model was generated for each individual antibody using the 

total pool of assigned sequencing reads. The background for an antibody contained all reads 

except those assigned to it, or other antibodies targeting the same or related proteins. For 

example, for an antibody targeting RNAPII-NTD, reads from all antibodies targeting 

RNAP II were excluded from this background set. To calculate a scaling factor for this 

background: 1) the total experiment coverage was calculated in 10kB bins, 2) the high 

coverage bins (80%) were selected, 3) a per-bin enrichment quotient of the target compared 

to the background coverage was calculated, 4) a kernel density plot of the enrichment 

quotient was generated, 5) a threshold was calculated based on the position of the smallest 

peak and 6) the ratio of total coverage in target versus background bins below the threshold 

was determined. The goal of this procedure was to locate regions that represented 

background noise in the target and calculate the target-to-background ratio using only those 

regions. The kernel density plot was frequently bimodal or with a long tail, with the higher 

peak or tail representing signal bins and the lower peak representing background bins. 

Background normalized peaks were called using the scaled background as a substitute for 
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input. Background normalized bigwigs were generated using the ‘bamCompare’ function 

from deepTools v3.1.3 by subtracting the scaled background and, subsequently, removing 

negative value bins. 

Peak Calling. Peaks were called using the HOMER v4.1198 program ‘findPeaks’ on tag 

 

directories generated for target datasets using ‘-style histone’ for histone modification 

targets and ‘-style factor’ for other targets. Background normalized peaks were generated 

using the scaled background distribution (described above). Specific parameter settings, 

such as ‘-minDist’ (distance between adjacent peaks), ‘-size’ (width of peaks) or filtering 

thresholds were tuned according to the nature of the target. For instance, peaks for focal 

histone modification H3K4me3 were generated using ‘-F 2 -P 0.001 -L 0’ while enriched 

regions for broad histone modification H3K36me3 were calculated using ‘-F 2 -P 0.001 -

L 0 -size 1000 -minDist 7500 -region’. 

Motif Prediction. Transcription factor motifs were predicted using the HOMER program 

‘findMotifsGenome’ on peaks generated using HOMER, as described above. For all 

transcription factors, motifs were generated using the settings ‘-s 200 -mask -l 10’ and 

results are reported in Supplemental Table 5. For individual examples in Figure 4, longer 

motifs were also predicted. 

Ribosomal DNA Alignments 

 

To analyze reads aligning to genomic DNA encoding ribosomal RNA (rDNA), we aligned 

reads directly to an rDNA reference. We generated a modified reference of the mouse rDNA 

sequence (NCBI Genbank BK000964.3)99. Because the original mouse BK000964.3 

sequence begins with the TSS and ends with the Pol I promoter, we transposed a portion at 

the end of the rDNA reference to the beginning, as previously described100, to enable a 

continuous visualization of the promoter-TSS region. Specifically, the rDNA sequence was 

cut at the 36,000 nt position and the sequence downstream of the cut site were moved 

upstream of the TSS, such that the resulting rDNA sequence begins with ~10kb of IGS, 

then the promoters and then transcribed regions. Processing steps prior to sequence 

alignment followed the standard ChIP-DIP pipeline. After barcode identification, DNA 

sequence was aligned to the custom rDNA genome using Bowtie2 (v2.3.5) with default 

parameters. Only primary alignments with a mapq score of 20 or greater were kept for final 

analysis. The subsequent cluster generation and read assignment steps followed the 

standard ChIP-DIP pipeline. 

 

 

 

ChIP-DIP Experiments 

 

We performed nine ChIP-DIP experiments in this paper, each of which, along with the 

associated antibodies, proteins, and statistics are described in Supplemental Table 1. 

Briefly, these experiments were: 
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1. Chromatin Movement Experiment: A quality control human and mouse 

mixing 

experiment used to quantify possible chromatin movement during the procedure. 

2. Antibody Movement Experiment: A quality control human and mouse 

mixing 

experiment used to quantify possible antibody movement during the procedure. 

 

3. K562 10 Antibody Pool Experiment: An initial data-generation 

experiment 

performed in human K562 to measure a small number of well-defined targets. 

 

4. K562 50 Antibody Pool Experiment: A data-generation experiment 

performed in 

human K562 measuring 50 antibodies. 

5. K562 52 Antibody Pool Experiment: A data-generation experiment 

performed in 

 

human K562 measuring 52 antibodies. 

6. K562 35 Antibody Pool Experiment: A data-generation experiment in human 

K562 

 

measuring 35 antibodies as a function of different cell input amounts. 

7. mESC  228 Antibody  Pool  Experiment:  An  antibody-screening  

experiment 

performed in mouse ES cells using 228 antibodies to identify good antibodies and the 

antibody amounts required for deeper characterization in subsequent ChIP-DIP 

experiments. 

8. mESC 67 Antibody Pool Experiment: A data-generation experiment 

performed in 

 

mouse ES cells measuring 67 antibodies. 

9. mESC 165 Antibody Pool Experiment: A data-generation experiment 

performed in 

 

mouse ES cells measuring 165 antibodies. 
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All ChIP-DIP experiments were performed using the same general protocol with the 

following experiment-specific modifications: 

1.  Chromatin Movement Experiment: To test whether chromatin dissociates 

during the 

ChIP-DIP procedure and binds to other beads, we designed a human-mouse mixing 

experiment. Cell lysate from 20M mESC cells, cell lysate from 10M K562 cells and two 

sets of antibody-coupled, oligonucleotide-labeled beads were prepared according to 

standard protocol. Prior to IP, lysate yields were quantified using TapeStation and equal 

amounts of mouse and human chromatin preparations were used for the subsequent, 

separate IPs. One set of antibody-ID-labeled beads was used for the human IP and the other 

set of antibody-ID labeled beads was used for the mouse IP. After IP, the two species-

specific IPs were mixed and split into three conditions using different quenchers: (i) 10% 

BSA quencher, (ii) 1X Blocking Buffer quencher and (iii) No quencher. For the 10% BSA 

quencher condition, end-repair, dA-tailing and DPM reactions were performed in buffer 

supplemented with 10% BSA. For the 1X blocking buffer quencher condition, end-repair, 

dA-tailing and DPM reactions were performed in buffer supplemented with 1X protein 

blocking buffer (Abcam ab126587). The three conditions were combined for split-and-pool 

barcoding. 

For alignment of human-mouse mixing experiments, DNA reads were aligned to a custom 

combination genome including both mm10 and hg38 genomes using Bowtie2 (v2.3.5) with 

default parameters. Only primary alignments with a mapq score of 20 or greater were kept 

for further analysis. Reads were then masked using a merged version of mm10 and hg38 

blacklist regions defined by ENCODE. Reads were then uniquely assigned to human beads 

(beads present only in the human IP condition) or mouse beads (beads present only in the 

mouse IP condition) using the standard assignment pipeline. Total reads aligned to mm10 

or hg38 for each bead set were quantified and the relative proportions were plotted as a bar 

graph. 

2.   Antibody Movement Experiment: To test whether antibodies dissociate from 

their 

 

labeled beads during the ChIP-DIP procedure and bind to other beads, we designed an 

experiment that involved the addition of labeled antibody-free beads at various steps. 

Following a similar set-up as the chromatin mixing experiment, cell lysate from 20M 

mESC cells, cell lysate from 10M K562 cells and two sets of antibody-coupled, 

oligonucleotide-labeled beads were prepared using the standard protocol. One set of beads 

was used for the human IP and the other set of beads was used for the mouse IP. After IP, 

half of each species-specific IP was mixed together, and half was left separate. For this 

mixed condition only, oligonucleotide-labeled beads without a coupled antibody were 

added prior to the end-repair and the dA-tailing reactions. These empty beads were added 

to capture antibodies that dissociated from other IP’d beads. Finally, the three conditions 

(mouse only, human only, mixed) were ligated with unique sets of DPM adaptors and 

combined for split-and-pool barcoding. To calculate the frequency of antibody movement, 
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total reads and total beads assigned to human CTCF beads, human IgG beads, empty beads 

added prior to end repair and empty beads added prior to dA-tailing were quantified. Reads 

per bead for each group were normalized to the mean value for human CTCF beads. These 

normalized values were plotted as a bar graph with 99% CI using the Python plotting 

package seaborn. 

3.   K562 10 Antibody Pool Experiment: We performed an initial small scale proof-

of- 

 

concept (POC) experiment in K562 using 10 different antibodies. The POC experiment 

was performed using lysate from 50M K562 cells per IP. Standard protocol with equal bead 

pooling was used with the exception of IP conditions. Two identical sets of antibody-

coupled beads were prepared using different biotinylated oligonucleotides; one set was 

used for an overnight immunoprecipitation at 4C and one set was used for 1-hr 

immunoprecipitation at room temperature. DNA processing steps and DPM ligation 

reactions were performed separately for the two IP conditions and then the two samples 

were pooled for the remaining rounds of split-and-pool barcoding. See Supplemental 

Table 1 for full list of antibodies under the “K562 10 Antibody Pool” tab. For data 

processing, the standard pipeline generated individual clusters corresponding to antibody–

IP condition pairs and individual bam files for each target in each IP condition. Data from 

both IP conditions were merged for each target, resulting in a single file per antibody. 

4.   K562 50 Antibody Pool Experiment: The K562 50 Antibody Pool Experiment 

was 

 

performed using lysate from 50M K562 cells. The standard protocol with equal bead 

pooling was used. See Supplemental Table 1 for full list of antibodies under the “K562 

50 Antibody Pool” tab. 

5.   K562 52 Antibody Pool Experiment: The K562 52 Antibody Pool Experiment 

was 

performed using lysate from K562 cells. To test the efficiency of different crosslinking 

strategies, two parallel IPs were performed using the same pool of prepared beads. One IP 

utilized 60M K562 cells crosslinked with 1% FA and the other IP utilized 60M K562 cells 

crosslinked with 1% FA + DSG. Cells for the 1% FA condition were prepared as described 

above. Cells for the 1% FA + DSG condition were prepared as follows: After harvest and 

pelleting, K562 cells were crosslinked in 4 mL of 2 mM disuccinimidyl glutarate (DSG, 

Pierce) dissolved in 1X PBS per 10 million cells for 45 min at room temperature. Cells were 

then pelleted, washed with 1X PBS and crosslinked with 1% FA, as described above. 

For antibody-ID oligonucleotide-labeling of beads, beads were labeled in two sequential 

rounds. First, beads were labeled according to the standard protocol. Then, beads were 

labeled again using another 2.5uL of 5.67nM streptavidin-coupled oligo in 200uL of 1x 

oligo binding buffer for 30 min at room temperature. During the first round of labeling, all 

wells received a unique streptavidin-coupled oligonucleotide. During the second round of 
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labeling, most wells received the same streptavidin-coupled oligonucleotide as the first 

round, with the exception of eleven wells. Eleven pairs of wells received the same 

streptavidin-coupled oligonucleotide in the second round–one well of each pair was labeled 

with the same oligonucleotide in both rounds while the other well was labeled with different 

oligonucleotides. The result was that most beads were labeled with a single, unique 

oligonucleotide label, eleven beads were labeled with a pair of oligonucleotide labels, and 

eleven beads were labeled with a single oligonucleotide label that can also be found on 

other beads. This labeling strategy was designed to test combinatorial labeling of beads. 

After antibody coupling, beads were pooled in equal amounts and half of the bead pool 

was used for IP of each crosslinking condition. Following IP, each condition was processed 

separately and DPM-ligated with unique, condition-identifying sets of adaptors. Conditions 

were kept separate for the first round of split-and-pool barcoding and then combined for 

the remaining rounds of split-and-pool. See Supplemental Table 1 for full list of 

antibodies under the “K562 52 Antibody Pool” tab. 

Sequenced data was processed using the standard ChIP-DIP pipeline up until the clustering 

assignment step. To account for the dual oligo labeling of selected antibodies, prior to 

assignment of unique antibodies to each cluster, clusters with multiple labels (clusters 

containing both oligo types from a known co-occurring pair) were isolated and antibody- 

ID oligos in these clusters corresponded to the second round of labeling were reassigned 

to the matched antibody-ID oligo from the first round of labeling. The result is that all 

antibodies now corresponded to a unique antibody-ID oligo; for the eleven combinatorial 

pairs, this is the first round of labeling. Afterwards, the remaining steps in the standard 

ChIP-DIP pipeline (cluster assignment, etc.) were performed as described above. 

6.  K562 35 Antibody Pool Experiment for input cell number titration: One of the 

major 

challenges with mapping DNA-binding proteins in primary cell types, disease models, and 

other rare cell populations is the large number of cells required for traditional ChIP-Seq 

experiments. Because ChIP-DIP enables simultaneous mapping of many proteins within 

the same experiment, we reasoned that it may dramatically reduce the total number of cells 

required in two ways: (i) the number of cells required to map any individual protein is 

instead distributed across all protein targets in a pool, and (ii) the total chromatin purified 

from multiple proteins may enable purification of lower DNA concentrations associated 

with a single/low abundance proteins that might otherwise be lost due to experimental 

handling. 

The K562 35 Antibody Pool Experiment was designed to measure the amount of cell input 

material required for ChIP-DIP. To do this, we performed a series of ChIP-DIP experiments 

using the same antibody pool and differing amounts of cell lysate. Specifically, we 

crosslinked >100M cells in a single batch and then performed four ChIP-DIP experiments 

from this same crosslinked lysate. This experiment involved four separate ChIP-DIP 

experiments, performed in pairs of two. For the first pair, the 45M and 5M conditions, a 

50M cell aliquot was lysed and sonicated and then split into 45M and 5M cell equivalents 

of lysate. For the second pair, the 500K and 50K conditions, a 1M cell aliquot was lysed 
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and sonicated and then split into 500k and 50k cell equivalents of lysate. Each pair of 

experiments used a single preparation of antibody-coupled, antibody-ID oligonucleotide 

labeled beads that was split in half. See Supplemental Table 1 for full list of antibodies 

under the “K562 35 Antibody Pool” tab. 

Read coverage profiles of four targets—H3K4me3, H3K27me3, CTCF and RNAP II—were 

compared. For both RNAP II and CTCF, two different antibodies were included (RNAP II: 

CST 91151 and 14958S; CTCF: CST 3418S and ABCAM ab128873). Coverage of 

normalized bigwig files across the set of all peak regions from the 10 Antibody Pool 

experiment, the same set of regions used for the pool size comparison correlations, was 

calculated using the ‘multiBigwigSummary’ function of the Python package deepTools 

v.3.1.3. Pearson correlation coefficients for all pairs were calculated using the 

‘plotCorrelation’ function of deepTools v.3.1.3 and the plotted as a heatmap, manually 

ordering the rows/columns from lowest to highest amount of input lysate for each target. 

Peak overlaps were calculated for each antibody between pairs of experiments as the 

(number of peaks in experiment 1 intersecting peaks in experiment 2) / (total number of 

peaks in experiment 1). The number of intersecting peaks were calculated using the 

BEDtools v2.29.2101 and results are reported in Supplemental Table 4. 

7.   mESC 228 Antibody Pool Screen: The mESC 228 Antibody Pool experiment 

was 

performed using 40M mESC cells. The standard protocol was used with the following 

modifications. Because the number of antibodies exceeded the number of unique antibody- 

ID oligonucleotides, three plates of antibody-coupled, oligonucleotide-labeled beads were 

prepared separately, the beads from each plate were pooled into three separate antibody–

bead pools, and each pool was used to IP one third (~13M cells) of the prepared cell lysate. 

Post IP, each sample was processed separately until split pool.  During split-pool 

barcoding, a unique set of “ODD” barcodes was ligated to each sample during the first 

round and then all samples were pooled for rounds 2–6. 

Sequencing data was processed through the standard pipeline, using a concatenated string 

of three antibody names (i.e., DNMT3B-CST_POLR3E-Bethyl_H3K36Ac-CST), one 

name for the antibody corresponding to each sample, to match individual antibody-ID 

sequences during barcode identification. After cluster generation and prior to cluster 

assignment, each antibody-ID read was assigned to only one antibody based on its first-

round ‘ODD’ split- and-pool tag. Cluster assignment then proceeded using the standard 

pipeline. Chromatin reads were assigned to each antibody based on cluster assignments and 

total chromatin for each antibody was quantified (see Supplemental Table 1, “mESC 228 

antibody pool” tab for counts). These relative chromatin yields per antibody were used to 

inform the ideal amount of antibody needed and we used these to titrate the amount of 

beads for each antibody pooled together in ChIP-DIP experiments 8 and 9 below. This 

experiment was sequenced at low depth to allow for rapid and low-cost antibody screening. 

8.  mESC 67 Antibody Pool Experiment: The mESC 67 Antibody Pool experiment 
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was 

 

performed using lysate from 80M mESC cells. The standard protocol with titrated bead 

pooling was used. This experiment contained 67 different antibodies. See Supplemental 

Table 1 for full list of antibodies under the “mESC 67 Antibody Pool” tab. 

9.  mESC 165 Antibody Pool Experiment: The mESC 165 Antibody pool experiment 

was 

performed using lysate from 60M mESC cells. Similar to the mESC 228 Antibody Pool 

experiment, because the number of antibodies exceeded the number of unique antibody-ID 

oligonucleotides, a multi-plate strategy was used. Specifically, two plates of antibody- 

coupled, oligonucleotide-labeled beads were prepared separately, pooled using the titrated 

bead pooling strategy and used to IP half of the prepared cell lysate. After IP, the two 

samples were processed separately up until the third round of split-and-pool barcoding and 

then combined for the remaining rounds of split-and-pool. This experiment contained 165 

different antibodies. See Supplemental Table 1 for full list of antibodies under the “mESC 

165 Antibody Pool” tab. Sequencing data was processed through the standard pipeline, 

using a concatenated string of antibody names (i.e., LSD1-CST_SAP30-Bethyl) to match 

individual antibody-ID sequences during barcode identification. After cluster generation 

and prior to cluster assignment, each read antibody-ID read was assigned to only one 

antibody based on its first-round split-and-pool tag. Cluster assignment and BAM file 

generation then proceeded using the standard pipeline. 

 

 

 

 

 

 

Protein Target Classification 

 

Antibody targets were assigned to one of five categories: histone modification (HM), 

transcription factor (TF), chromatin regulator (CR), RNAP and other DNA-associated 

protein. Transcription factors were defined as proteins with a DNA- binding domain and 

were manually subclassified into constitutive, stimulus response or cell-type-

specific/developmental manually curated these transcription factors based on functional 

descriptions from GeneCards. Chromatin regulators contained proteins or members of 

complexes that read, write, or erase histone modifications or DNA methylation. Proteins 

that were part of chromatin regulator complexes and contained a DNA-binding domain were 

considered part 

of the chromatin regulatory category. Proteins involved in chromatin remodeling (e. g., 

BRG1) or other structural proteins that interact with chromatin (e.g., LaminA) were also 

considered chromatin regulators. Dual function proteins (e.g., transcription factors with 

intrinsic acetyltransferase capabilities) were assigned to a single category (e. g. 
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transcription factor) but were included in chromatin regulator schematics. Other DNA-

associated proteins included a mixture of targets, such as RNAP elongation factors (e.g. 

ELL), RNA binding proteins (e.g., NONO) and antibodies that detected DNA methylation. 

Comparison to ENCODE data 

 

ChIP-DIP comparisons to ENCODE-generated ChIP-Seq data in Figure 1 were performed 

using the 10 pool experiment in K562. Visual comparisons were performed using IGV and 

the raw ENCODE datasets: ENCFF656DMV (H3K4me3), ENCFF785OCU (POLR2A), 

ENCFF800GVR (CTCF) and ENCFF508LLH (H3K27me3). Genome-wide coverage 

comparisons were calculated across all RefSeq TSS for H3K4me3 and POLR2A or across 

10kB bins for CTCF and H3K27me3. Calculations were performed using the 

‘multiBamSummary’ function of the Python package deepTools v3.1.3 and plotted as 2-D 

kernel density plots using the Python library seaborn. 

Systematic comparisons between ChIP-DIP K562 datasets (10 Antibody Pool, 50 Antibody 

Pool, 52 Antibody Pool and 35 Antibody Pool) and ENCODE-generated ChIP-Seq were 

performed for all targets for which ENCODE datasets were available. Genome-wide 

coverage comparisons were calculated at 1000bp using the ‘multiBigwigSummary’ 

function of the Python package deepTools v3.1.3 and Pearson correlation coefficients are 

reported in Supplemental Table 2. The number of overlapping peaks between ChIP-DIP 

and ENCODE datasets were calculated using as described above. Both the fraction of 

ENCODE peaks detected by ChIP-DIP and the fraction of ChIP-DIP peaks detected by 

ENCODE are reported in Supplemental Table 2. 

Accession numbers used for coverage comparisons include: ENCFF121RHF, 

ENCFF508LLH, ENCFF035SOZ, ENCFF272JVI, ENCFF816ECC, ENCFF880HKV, 

ENCFF352HXD, ENCFF446FUS, ENCFF656DMV, ENCFF465UWC, ENCFF149MXA, 

ENCFF155UQU, ENCFF187HIQ, ENCFF702HIC, ENCFF800GVR, ENCFF982AFE, 

ENCFF178ARN, ENCFF096FWU, ENCFF844WTT, ENCFF801TEZ, ENCFF174BEG, 

ENCFF014HSG, ENCFF656FDC, ENCFF457PGP, ENCFF108EMO, ENCFF617EYG, 

ENCFF986KSB, ENCFF572IXE, ENCFF893LSE, ENCFF785OCU, ENCFF816VGU, 

ENCFF179XDZ 

Accession numbers used for peak comparisons include: ENCFF863MYY, 

ENCRR698RKX, ENCRR736TRL, ENCFF222OPH, ENCFF731WDM, 

ENCFF479VOH, ENCFF514SHW, ENCFF643TQX, ENCFF586UHP, ENCFF456SZC, 

ENCFF108JNI, ENCFF632MQY, ENCFF924JXT, ENCFF834RTA, ENCFF660HBV, 

ENCFF567BOX, ENCFF563CWK, ENCFF394JNY, ENCFF307DMW, ENCFF181AVH, 

ENCFF169ZQQ, ENCFF040TWS, ENCFF990EZP, ENCFF755KWM, ENCFF269JZL, 

ENCFF106GOL, ENCFF827OVS, ENCFF789NDS, ENCFF567HEH 

 

 

 

Pool Size Comparison Analysis 
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To measure the influence of the number of antibodies contained within an individual pool, 

read coverage profiles of four targets–H3K4me3, H3K27me3, CTCF and RNAP II–

generated in four different ChIP-DIP experiments in K562 cells were compared. ChIP-DIP 

experiments included the 10 Antibody Pool, the 45M condition from the 35 Antibody Pool, 

the 50 Antibody Pool and the 52 Antibody Pool in K562. For both RNAP II and CTCF, 

two different antibodies were included (RNAP II: CST 91151 and 14958S; CTCF: CST 

3418S and ABCAM ab128873). Coverage of normalized bigwig files across the set of all 

peak regions from the 10 Antibody Pool experiment was calculated using the 

‘multiBigwigSummary’ function of the Python package deepTools v.3.1.3. Pearson 

correlation coefficients for all pairs were calculated using the ‘plotCorrelation’ function of 

deepTools v.3.1.3 and plotted as a heatmap, manually ordering the rows/columns from 

smallest to largest pool size for each target. 

Peak overlaps were calculated for each target between experiments of different pool sizes 

as described above and are reported in Supplemental Table 3. 

 

 

 

Histone Modification Diversity Analysis 

 

Chromatin-State: Genome-wide coverage for 10kb windows for 12 histone marks 

 

(H3K27me3, H2AK119ub, H3K9me3, H4K20me3 and H3K9me3 from the 5M condition 

in the 35 Antibody Pool Experiment in K562; H3K79me2, H3K79me1, H3K4me3, 

H3K4me2, H3K4me1, H3K9Ac and H3K27Ac from the histone panel in K562) was 

calculated using the ‘multiBamCoverage’ function from deepTools v3.1.3. These values 

were standardized for each mark by transforming into z-score values. The UMAP reduction 

was generated using the UMAP102 Python package and parameters n_components=2 and 

n_neighbors=3. 

Polycomb-Associated Histone Modifications: Validation of polycomb-associated histone 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment. 

H3K27me3 and H2AK119ub bam alignment files were converted into binary signal files 

using the ‘BinarizeBam’ script from the ChromHMM103 package with standard settings. 

The number of bins with only H2AK119ub signal or with both H2AK119ub and 

H3K27me3 signal were computed and plotted as a pie chart. 

Heterochromatin-Associated Histone Modifications: Validation  of heterochromatin- 

 

associated histone modifications used the 5M condition in the K562 35 Antibody Pool 

Experiment. Read coverage of H3K9me3, H4K20me3 and H3 were computed over 

annotation groups (ZNFs, LTRs, LINES, SINES, TSS+/-2kb) using the ‘depth’ function 

from SAMtools v1.9104. An enrichment score was calculated by normalizing for feature and 

target abundance. Specifically, let a = total base pairs within an annotation group, b = 



 
64 

effective genome size, c = read coverage of a target over the annotation group and d = total 

reads of the target. The enrichment score would be (c/d) / (a/b). 

Promoter-Associated Histone Modifications: Validation of promoter-associated histone 

 

modifications used the ChIP-DIP histone dataset in mESC. Promoter coverage correlations 

were calculated across promoters from EPDNew105, a database of non-redundant 

eukaryotic RNAP II promoters, +/- 500bp using the ‘multiBamSummary’ and 

‘plotCorrelations’ functions of the Python package deepTools v.3.1.3. 

Gene Body-Associated Histone Modifications: Validation of gene body-associated histone 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment and the 

K562 50 Antibody Pool Experiment. Coverage meta plots over the gene bodies of all 

protein coding genes from GENCODE v38 basic annotation were calculated using 

‘computeMatrix’ function of the Python package deepTools v.3.1.3 and normalized to the 

maximum and minimum for each target. 

Enhancer-Associated Histone Modifications: Validation of enhancer-associated histone 

 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment and the 

K562 50 Antibody Pool Experiment. H3K4me1 peaks were assigned to three categories 

(promoter, gene or intergenic) based on overlap with H3K4me3 (promoter), H3K79me1 

(gene) or H3K36me3 (gene). These categories were further sub-divided based on the co- 

occurrence of H3K27Ac peaks. The proportion of peaks in each category was computed 

and plotted as a pie chart. 

Chromatin Regulator Diversity Analysis 

 

Polycomb-Associated Chromatin Regulators: Validation of polycomb-

associated 

 

chromatin regulators used the K562 50 Antibody Pool Experiment. Meta plots respective 

to RING1B peak sites were calculated using ‘computeMatrix’ function of the Python 

package deepTools v.3.1.3 with the following settings: ‘reference-point -bs 10000 -a 

500000 -b 500000’. The resulting read coverage profiles were normalized to the maximum 

and minimum for each target and plotted as a heatmap. 

Heterochromatin-Associated  Chromatin  Regulators: Validation  of  heterochromatin- 

associated chromatin regulators used the K562 50 Antibody Pool Experiment. Genome- 

wide coverage for 10kB windows and Pearson correlation coefficients were calculated 

using the ‘multiBigwigSummary’ function and ‘plotCorrelation’ function, respectively, of 

the Python package deepTools v3.1.3. 

H3K4me3-Associated Chromatin Regulators: Analysis of H3K4me3-associated chromatin 
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regulator used the mESC 165 Antibody Pool Experiments. Binding profiles of JARID1A, 

RBBP5 and PHF8 were measured +/- 1kB around the TSS of all representative promoters 

from EPDNew and were clustered using k-means clustering with k=4 by the 

‘plotCoverage’ function of the Python package deepTools v.3.1.3. H3K4me3 binding 

profiles from the mESC 67 Antibody Pool Experiment were measured over the same four 

promoter groups. 

Polymerase Diversity Analysis 

 

RNAP I, II and III Comparison: Validation of the various RNA polymerases used the mESC 

 

165 Antibody Pool Experiment. First, read coverage within a +/- 100bp window 

surrounding the promoters/TSS of various gene groups were calculated. For tRNAs, the 

TSS of repeatmasker106 tRNAs were used. For snRNAs, the TSS of RepeatMasker snRNAs 

(excluding U6 which is transcribed by RNAP III) were used. For mRNAs, EPDNew TSS 

annotations were used. For rDNA, the spacer promoter was used. Next, for each 

polymerase, coverage was normalized to the total reads aligned with any gene group. 

Finally, an enrichment score of the relative coverage compared to IgG was calculated and 

plotted as a bar graph. 

RNAP II Phosphorylation State Comparison: Validation of the various RNA polymerases 

used the K562 52 Antibody Pool Experiment. Meta plots over the gene bodies of all 

protein 

coding genes from GENCODE v38 basic annotation were calculated

 using ‘computeMatrix’ function of the Python package deepTools v.3.1.3. 

Histone Combinatorial Analyses 

 

Polymerase-Associated Histone Profiles 

 

For RNAP I, track coverage profiles of various histone modifications 1.5kB upstream to 

0.5kB downstream of the spacer promoter were visualized using IGV. 

For RNAP II, meta plots of coverage profiles for various histone modifications were 

generated around active and inactive RNAP II promoters using the deepTools v.3.1.3 

‘computeMatrix’ (reference-point -a 1000 -b 1000) and ‘plotProfile’ functions. Promoters 

were defined as the TSS of all representative promoters from EPDNew and were grouped 

into active or inactive based on the read coverage of RNAP II in the surrounding +/-1kB 

window. 

For RNAP III, meta plots of coverage profiles for various histone modifications were 

generated around active and inactive tRNA genes using the deepTools v.3.1.3 

‘computeMatrix’ (scale-regions -a 1000 -b 1000 -m 75 -bs 25) and ‘plotProfile’ functions. 
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tRNA genes were grouped into active or inactive based on the read coverage of RNAP III. 

For comparison of relative histone levels, total coverage for each histone mark was 

calculated in the -1.5kB to +0.5kB window surround the spacer promoter for rDNA, -0.5kB 

to +0.5kB window around active RNAP II promoters and -0.5kB to +0.5kB window around 

active RNAP III tRNA gene promoters. To account for differences in window size, the 

coverage of H3K56Ac and H3K4me2 was normalized to the level of H3K4me3. The 

density profiles of these ratios were plotted using the seaborn ‘jointplot’ function with the 

following kde parameters: “common_norm=False, thresh=0.2, log_scale=True, levels=10, 

cut=True”. For comparison to RNAP I, the total sum ratios (e. g. total H3K4me2 coverage 

across all active RNAP II promoter intervals divided by total H3K4me3 coverage across 

all active RNAP II promoter intervals) were also calculated and plotted for RNAP II and 

RNAP III. 

H3K4me3 Enriched Regions Clustering 

 

Combinatorial histone modification analysis for H3K4me3 regions used the 5M condition 

of the K562 35 Antibody Pool Experiment. Read coverage of ten histone targets 

(H3K79me3, H3K79me2, H3K36me3, H3K4me1, H3K4me2, H3K27Ac, H3K27me3, 

H2AK119ub, H3K9me3 and H4K20me3) was calculated over all H3K4me3 peak regions 

using the ‘multicov’ function of BEDtools. The resulting region vs. histone data matrix (A) 

was normalized using log normalization107: 1) The log of the data matrix was computed 

𝐿 =𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴) . 2) The column mean (𝐿𝑖. ), row mean (𝐿.𝑗), and overall mean (𝐿..) of the 

log matrix were computed. 3) All individual cells of the final matrix were computed 

according to 𝐾𝑖𝑗 = 𝐿𝑖𝑗 − (𝐿𝑖.) − (𝐿.𝑗) + (𝐿..) . This method of normalization is intended 

to capture the “extra” coverage of histone modification j in region i that is not explained 

simply by the overall difference between region i and other regions or between histone 

modification j and other histone modifications. Instead, it is special to the combination of 

region i (a region with H3K4me3 enrichment) and coverage of histone modification j. The 

regions of the normalized data matrix were clustered using cluster.hierarchy.linkage 

function from scipy v.1.6.2108 with a Euclidean distance metric and complete linkage 

method. The clustered matrix was visualized using the ‘clustermap’ function of Python 

package seaborn. 

Gene annotation of H3K4me3 regions was performed using the ‘annotatePeaks.pl’ function 

from HOMER v4.11. ZNF genes, RP genes, and lincRNA genes were defined as regions 

whose annotation gene description contained the terms ‘zinc finger protein’, ‘ribosomal 

protein’ and ‘long intergenic’, respectively, and had the nearest TSS within 2000bp. 

snoRNA genes were defined as all regions whose annotation gene type was snoRNA. 

Satellite RNA genes were defined as regions whose detailed annotation contained the term 

‘Satellite’. tRNA genes were defined as all regions that intersected with tRNA gene bodies 

or upstream by 500bp of the tRNA TSS from repeat masker. Cell cycle genes were defined 

as regions whose gene annotation belonged to the Kegg Cell Cycle Pathway109. Bivalent 

genes were defined as regions whose gene annotation belong to those identified by Court 

and Arnaud in human H1 cells110. Enhancer RNA regions (both antisense and intergenic) 
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were defined as regions that intersected those identified by Lidschreiber et al.111 and had 

the nearest TSS greater than 2000bp away. To visualize enrichments of gene annotations 

in sets and subsets of the hierarchically clustered heatmap, the kernel density estimate 

(KDE) was calculated for each annotation group based on their clustering-defined order. 

RNAP II levels of individual H3K4me3 regions were measured as the summed coverage 

over each region from four antibodies targeting RNAP II (RNAP II, RNAP II NTD, RNAP 

II Ser5, RNAP II Ser2) from the K562 52 Antibody Pool Experiment. 

ChromHMM Model of Acetylation 

The ChromHMM genome segmentation model was built using 15 different histone 

acetylation modifications measured in the mESC 67 Antibody Pool Experiment. Bam files 

were binarized using the BinarizeBam function from ChromHMM with a Poisson threshold 

of 0.000001 and other default parameters. The signal threshold was increased from default 

to remove spurious noise. State models with 5–20 states were built using the LearnModel 

function with default parameters. States were manually reordered and grouped based on 

transition probabilities between states. 19 states were selected for the final model to retain 

State 17, a state with a distinctive enrichment and transition profile. 

Non-Negative Matrix Factorization of Acetylated Regions 

 

Non-negative matrix factorization analysis utilized the histone acetylation mark data from 

the mESC 67 Antibody Pool Experiment. NMF is a matrix factorization technique to 

reduce dimensionality and explain the observed data using a limited number of 

combinatorial components107. NMF decomposes the original data matrix (dimensions: N x 

M) into a basis matrix (dimensions: N x k) and a mixture coefficient matrix (dimensions: 

k x M). In this case, N represents genomic regions of interest, M represents individual 

histone acetylation marks and k represents the number of combinatorial histone acetylation 

states. High coverage regions were defined using the results of the ChromHMM Model. 

Specifically, the 200bp genomic bins corresponding to states with enrichment of multiple 

histone acetylation marks (states 1,2,3,4,6,9,10,11,12,15,16) were merged to form high 

coverage regions. Then, to reduce the number of fragmented or spurious regions, bins with 

400 base pairs (2 genomic windows) were merged and regions with size less than 400 base 

pairs (2 genomic windows) were filtered out. A initial normalized data matrix (N x M) was 

generated by computing the coverage of each histone modification over each region and 

normalizing for region size and histone abundance. Specifically, to account for differences 

in region size between regions, the total reads per region was scaled by region size and, to 

account for differences in total measured histone abundance between marks, sigmoidal 

scaling was used112,113. NMF was then performed using ‘Nimfa’114, a Python library for 

nonnegative matrix factorization, with the nndsvd initialization method. The rank k was 

selected empirically, taking into account the biological assignability of the resulting states, 

the complexity of the model and the stability of the factorization (the number of iterations 

the algorithm required to coverage). 

After factorization, the resulting basis matrix (N x k) contained the coefficient of each 



 
68 

combination i for each genomic region. A sorted heatmap of the basis matrix was generated 

by grouping the regions according to the combination that contributed the greatest 

coefficient for each region. For visualization, this heatmap was normalized by dividing the 

coefficients for each region by the total coefficient sum of the region. 

To profile and assign a biological interpretation to individual combinations, each region 

was assigned to the combination with the maximum coefficient. Identification of 

transcription factors with significant binding overlap to regions assigned to a single 

combination was performed using the Cistrome Data Browser, an interactive database of 

public ChIPseq115. For each combination, the top 100 scores were filtered for targets with 

at least two hits in any cell type. Motif enrichment was calculated using the HOMER 

function ‘findMotifs’ on all genomic regions assigned to each combination. For 

comparison of enrichment levels in C4 versus C5, enrichments were calculated using 

bedGraphs from the mESC 165 Antibody Pool Experiment and the ChromHMM program 

‘OverlapEnrichment’ (java -jar ChromHMM.jar OverlapEnrichment -binres 1 -signal). 

Interval bars for these 

enrichments were generated by bootstrap resampling; enrichments were recalculated for 

200 independent draws of 75% of the regions assigned to C4 or C5. 

High-Density Regions of NANOG-OCT4-SOX2 

 

High-density regions of pluripotency associated transcription factors were calculated using 

the NANOG, OCT4 and SOX2 data from the mESC 165 Antibody Pool Experiment. 

Specifically, high-density and low-density regions were defined using the super-enhancer 

setting of the ‘callPeaks’ function from HOMER on the merged tag directors of the three 

transcription factors. To remove nonspecific background peaks, the merged tag directories 

of the background models for these three factors was used as input. Briefly, the super-

enhancer setting with default parameters first identifies peaks, then stiches together 

individual peaks that are within 12.5kb of each other, calculates a ‘super-enhancer score’ 

for each region based on input-normalized read coverage, generates a ‘super-enhancer plot’ 

(regions sorted by score vs. number of regions) and identifies the regions where the slope 

of the plot is greater than 1. These regions are labeled as putative ‘super enhancers’ while 

all remaining regions are labeled as ‘typical enhancers’. We consider the ‘super-enhancer’ 

regions as HDR and the ‘typical enhancer’ regions as LDR. 

TF and CR enrichments over HDRs versus LDRs were calculated using the 

‘computeMatrix’ function with scale-regions setting from deepTools v.3.1.3. To account for 

the differences in typical region size between LDRs and HDRs, which tended to be much 

larger, the -m parameter was set to approximately the median region size for each group. 

GO terms associated with the intersection of HDRs, LDRs and NMF-based acetylation 

combinations were calculated using the GO analysis function of ‘annotatePeaks’ from 

HOMER. To limit the number of terms under consideration, only terms assigned to the 

biological process category that received a cutoff p<0.001 were used. Terms were then 

manually grouped into larger categories (e. g. developmental, metabolic). Enrichment 

scores were calculated by normalizing for the total number of possible unique terms 
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assigned the category and the total number of terms assigned to the intersection group. 

Statistics 

 

Pearson correlation coefficients for coverage comparisons versus ENCODE were 

calculated using Pearson function of scipy.stats library108. Pearson correlation coefficients 

for heatmaps were generated using the ‘plotCorrelation’ function from deepTools v.3.1.396. 
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Chapter 3 - ChIP DIP Development 

 

Introduction 
 

Each gene is constantly and dynamically modulated to ensure the survival and stability of 

each cell and its cellular functions. There are roughly one thousand five hundred proteins 

that regulate the activity of all genes in a cell through direct or indirect binding to 

chromatin. While there are many proteins that regulate transcription, studies generally 

focus on understanding a handful of proteins at a time. Traditionally, ChIP-seq, and more 

recently CUT&RUN/CUT&tag, has been used to map where on chromatin each protein 

is bound one protein at a time. Because of the low throughput nature of current chromatin 

profiling methods, we reasoned that being able to map hundreds of proteins to DNA 

would dramatically enhance our ability to understand how the cell establishes and 

maintains the transcriptional levels of each gene. To do this we realized that SPRITE1 

could be used to resolve the identity of each constituent molecule on a bead. Since ChIP-

seq utilizes beads for immunoprecipitation, we reasoned that a simple adaptation would 

enable ChIP-seq to be multiplexed by labeling each set of beads with a unique 

oligonucleotide sequence (antibody ID oligo) followed by split pool barcoding. This 

multiplexed method is coined ChIP DIP, or ChIP Done in Parallel. To accomplish this, 

we considered many facets including the design of the antibody ID oligo, different 

modalities to attach the antibody ID oligo to the beads, bead attributes, dissociation rates 

of noncovalent interactions, antibody amounts for each target, antibody pool 

composition, and the number of rounds and duration of split pool. 

 

Design Considerations 
 
Oligo Design 
 

Antibody ID oligos need to have several features that are required to serve the purpose of 

a antibody ID oligo as well as several features that enable them to feed into split pool 

barcoding ligation reactions. The first requirement is a nine-nucleotide sequence that 

denotes the identity of the barcode. We chose a nine-nucleotide string of barcodes 

because this leaves enough combinatorial space for 16,384 different barcode 

combinations assuming there are up to two sequencing errors when reading the barcode 

on current high throughput sequencing platforms. Given that there are roughly one 

thousand different direct and indirect chromatin binding proteins in each cell type2, this 

would enable us to choose up to ten antibodies per protein if we wanted to profile every 

protein in a single experiment. Next, we needed to decide where on the oligonucleotide 

the barcode is. To avoid a monotemplate sequence during the first few cycles of each 

sequencing run, which would drastically compromise the sequencing platform’s ability to 

differentiate the different molecules on the flow cell, the barcode starts at the first 
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nucleotide that is sequenced by the sequencer. Because there is always more than one 

antibody ID oligo in each experiment, the diversity of the first nucleotides to be 

sequenced is always diverse using this strategy. Then we considered the length of the 

unique molecular identifying sequence (UMI). The purpose of a UMI is to distinguish the 

number of antibody ID oligos on each bead. If all bead oligos have the exact same 

sequence on the bead, it is impossible to distinguish a unique molecule from a PCR 

duplicate and prevent the number of antibody ID oligos per bead from being determined. 

The UMI on each barcode is eight nucleotides long, which will distinguish up to 65,536 

antibody ID oligos on each bead. Given that we aim to have 10-20 antibody ID oligos per 

bead, an eight nucleotide UMI will allow us to identify any PCR duplicated antibody ID 

oligos. Next, we considered a single stranded antibody ID oligo vs a double stranded 

antibody ID oligo. A single stranded antibody ID oligo has two advantages. The first is 

the compatibility with downstream End Repair and dA-tailing enzymatic reactions to 

blunt and a dA-tail the immunoprecipitated chromatin in preparation of DPM ligation 

reactions. These reactions will fill in the sticky end on the antibody ID oligo if it is 

double stranded, destroying the sticky end. The second is that there is no annealing step 

required as there is with a double stranded antibody ID oligo, saving both on costs and 

time. Lastly, for ease of use, the bead attachment modality should be on the 3’ end of the 

antibody ID oligo to leave a phosphorylated 5’ end with the appropriate sticky end 

available for downstream ligation to split pool tags.  

 
Labeling Modalities 
 
When choosing a labeling modality for barcoding a bead with an antibody ID oligo, there 

are three key considerations; 1) the number of antibody ID oligos attached to each bead 

needs to be controllable and titratable, 2) the modality needs to be stable with a relatively 

low Koff rate to avoid movement of the antibody ID oligo from bead to bead, and 3) the 

modality needs to be modular, inexpensive, simple. To this end, we tested three different 

bead labeling modalities; 1) an inert oligo-labeled antibody that can bind to protein G 

beads through antibody-protein G interactions, 2) a DBCO-Azide based click-chemistry 

modality, and 3) a streptavidin-biotin labeling modality. 

 

The first modality, oligo-labeled antibody, was able to label protein G beads, but had 

several drawbacks. First, it was very challenging to efficiently label antibodies with 

antibody ID oligos using the published CITE-seq protocols. This led to less than one 

oligo per bead in many cases and made calling the identity of each bead challenging. 

Second, the Koff of antibodies to Protein G are in the 4*10-4-1*10-5 range giving them a 

half-life of 2-19 hours for an unmodified antibody3. The lack of stability between the 

antibody and protein G interaction led to many different antibody ID oligos on the same 

bead (Figure 1). Because of these drawbacks, we sought to address them with other 

labeling modalities. 
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Figure 1: This plot represents the proportion of beads (y-axis) that have a certain fraction 

of the antibody ID oligo that is maximally represented on each bead (x-axis). This ECDF 

represents the maximal representation of each antibody ID oligo that bound to protein G 

beads using the antibody-oligo bead labeling modality. 

 

 

The second bead labeling modality, DBCO-Azide click chemistry, solved these problems 

because the chemistry was covalent and there was only one oligo per labeling moiety. 

This strategy entailed labeling protein G beads with NHS-DBCO and then reacting the 

DBCO with an antibody ID oligo that had a 3’ azide modification (azide-labeled antibody 

ID oligo). By mixing the DBCO labeled beads with the azide-labeled antibody ID oligo 

for two hours at room temperature yielded antibody ID oligo labeled beads that are 

dependent on how much azide-labeled antibody ID oligo is added to the reaction (Figure 

2). This labeling method suffered from two drawbacks; 1) beads tended to clump after the 

NHS-DBCO reaction, 2) the use of antibody ID oligos with a 3’ azide modification was 

not scalable due to cost. Due to these considerations, we did not proceed to sequencing 

with the azide-DBCO click-chemistry labeling modality. 

 

P
ro

p
o
rt

io
n

 

Fraction Max Representation Oligo 

Antibody-conjugated antibody 

ID oligo 



 
84 

  
Figure 2: The number of antibody ID oligos per bead detected on each bead using the 

“bead QC assay” (see protocol chapter for details) after incubating NHS-DBCO labeled 

Protein G with varying amounts of azide-labeled antibody ID oligo at 25C for 2 hours. 

 

The third bead labeling modality utilized labeling Protein G beads with NHS-biotin 

followed by binding of the biotinylated beads with subsaturated streptavidin-biotin-oligo 

to make a “streptavidin (SA) sandwich” to attach the biotinylated antibody ID oligo to the 

bead. This labeling modality has the most robust results when considering the following 

metrics; low Koff rate for oligo to bead attachment, minimal bead aggregation, reliable 

oligo labeling densities (Figure 3), and antibody ID oligo loading modularity, costs, and 

simplicity. Based on these attributes, all experiments utilized this bead labeling modality. 
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Figure 3: The number of antibody ID oligos per bead detected on each bead using the 

“bead QC assay” (see protocol chapter for details) after incubating NHS-biotin labeled 

Protein G with varying amounts of SA-bound antibody ID oligo at 25C for 30 minutes. 

 
Bead Attributes 
 
Next, we considered the bead being used for labeling and capture. For this we considered 

several attributes; bead size, tendency to clump with other beads, and antibody capacity. 

We tested two types of beads for this purpose, Protein G Dynabeads (Thermo Fisher Cat. 

No. 10009D) and Pierce Protein A/G beads (Thermo Scientific Cat. No. 88803). Protein 

G beads had a bigger diameter (2.8um) compared to protein A/G beads (1um). On the 

other hand, the antibody binding capacity of protein A/G beads (55-85ug/mg beads) was 

higher per volume of beads compared to Protein G beads (2.5-3ug/mg beads). Lastly, 

Protein A/G beads tended to form clumps, making the purity of the oligo on each bead 

less than desirable (Figures 4, 5). The purity of each antibody ID oligo called on each 

protein A/G bead made the certainty of correctly assigning chromatin to a protein 

challenging. For this reason, we selected protein G beads to proceed with. 
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Figure 4: This plot represents the proportion of beads (y-axis) that have a certain fraction 

of the antibody ID oligo that is maximally represented on each bead (x-axis). We 

compared two replicates of antibody ID oligo labeled Protein G or Protein A/G beads that 

were split pooled on separate days. In short, the greater the area under the curve, the more 

mixed the antibody ID oligos are on each bead. Replicates coincided almost perfectly. 

 

Dissociation rates of noncovalent interactions 
 
Because of the nature of noncovalent interactions that hold the streptavidin to biotin and 

antibody to protein G, quencher molecules were added to prevent molecules from moving 

from one bead to bead to another, which would create false signal in a ChIP DIP 

experiment. In the case of the biotin to streptavidin interactions, this is accomplished by 

maintaining a concentration of 200uM biotin throughout the experiment. This works in 

two ways; first the affinity of SA to biotin is cooperative and if all four biotin binding 

pockets are full then the dissociation constant becomes lower4, and second, there are no 

free biotin binding pockets available for antibody ID oligos to move to a different bead 

than it started on. By adding free biotin, the nonspecific binding of antibody ID oligo is 

lowered dramatically (Figure 5). In the case of antibody to protein G interactions we 

tested two different quencher molecules, soluble protein G and soluble rabbit IgG. The 

rabbit IgG acts similar to the biotin by binding to any bead immobilized protein G that is 

available to capture antibody that has dissociated from another bead, which prevents the 

Protein G vs Protein A/G Bead Antibody ID Oligo ECDF 
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movement of any antibody that didn’t start on a given bead. Soluble protein G works by 

binding to any antibody that dissociates from its initial bead and keeps any protein G 

binding sites on the antibody occupied, thus preventing it from binding to any other 

protein G beads. To test these quenchers, we prepared three sets of antibody ID oligo 

labeled protein G beads coupled with either; an oligo-conjugated antibody that can be 

barcoded by split pool, rabbit IgG, or nothing (empty beads) and then pooled all three 

sets. This pool was treated with either protein G (80uM), IgG (2.5ug/10uL protein G 

beads), or no quencher control and each condition was split pooled separately. To assess 

bead to bead antibody movement, that amount oligo-conjugated antibody that ended up 

on the other two sets of oligo labeled beads, IgG and empty, was assessed. We observed a 

dramatic reduction of oligo-conjugated antibody that ended up on the empty bead 

conditions with both protein G and IgG quenchers (Figure 6). We decided to proceed 

with protein G as a quencher for future experiments because of its low cost and similar 

efficacy compared to IgG. 

 

 

 

 
Figure 5: empirical cumulative distribution function (ECDF) plot that represents the 

proportion of oligo counts (Y-axis) that have a fraction of antibody ID oligo oligos each 

bead (X-axis). We observed that for both protein G and protein A/G, adding biotin at 

200uM final concentration dramatically reduced the number of different antibody ID 

oligos bound to a given beads. In addition, we observed that protein A/G beads tended to 

be more mixed compared to their protein G counterpart. Essentially, the greater the area 

under each curve, the more diverse the antibody ID oligos are on each bead. 

Protein G vs Protein A/G Bead Antibody ID Oligo ECDF (+/- Biotin) 
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Figure 6: Adding “quencher” molecules, protein G or IgG, reduces the amount of 

antibody movement from bead to bead. Antibody-oligo beads, IgG saturated beads, and 

Empty beads were each coupled with unique antibody ID oligos and then pooled, 

followed by split pooled with either no quench, IgG quench, or protein G quench 

molecules. The amount of oligo-labeled antibody detected on each set of beads was then 

read out to quantify the amount of antibody that moved during the experiment in each 

condition. 

 

Another consideration for the non-covalent interactions is balancing the time it takes to 

perform a ChIP DIP experiment and the time it takes to complete the various enzymatic 

reactions throughout the experiment, as well as the buffers used in the various reactions. 

We found that it is important to follow the recommended reaction times outlined in the 

protocol chapter to label the maximal number of molecules while minimizing the number 

of molecules lost during incubations. Specifically, the time required for split pool 

barcoding should be reasonably minimized by ensuring that the DPM ligation does not 

exceed one hour, and subsequent split pool ligations should by 8-10 minutes each. This 

will reduce the amount of chromatin and antibody ID oligo lost throughout the split pool 

reactions. 

 
Antibody and bead amounts per protein 
 
The amount of chromatin bound to each antibody-bead-oligo combination varies from 

protein to protein. This means that for an abundant histone modification there could be up 

to 100 chromatin bound to each bead, while for a lowly expressed transcription factor 

there could be as little as one chromatin bound to each bead. Because of the pooled 

nature of ChIP DIP, each antibody-bead-oligo combination cannot be separated after the 

experiment for sequencing. This was a problem because if the protein that precipitates 

100 chromatin per bead gets 10,000,000 reads, then the protein that precipitates one 
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chromatin per bead would only get 100,000 reads assigned to it. This was addressed in 

two ways. First, antibodies that precipitate similar amounts of chromatin per bead can be 

pooled together to prevent large disparities in chromatin per protein. As a rule of thumb, 

histone antibodies can be pooled together, and transcription factors and chromatin 

regulator antibodies can be pooled together. Second, to further equalize coverage for each 

protein target, the amount of antibody can be titrated to precipitate less or more 

chromatin. For example, if a POLR2A antibody precipitates two chromatin per bead and 

a Ring1B antibody precipitates 6 chromatin per bead, the amount of Ring1B antibody can 

be reduced by three-fold to normalize coverage. Alternatively, three-fold more POLR2A 

antibody (and beads) can be added to the experiment. However, the drawback of adding 

more beads to an experiment is two-fold; first, more beads need to be resolved with more 

split pool barcoding and, second, more antibody ID oligo will need to be sequenced for 

the experiment. For this reason, in general, the amount of antibody was titrated down to 

normalize coverage between targets. In this way, antibodies that pull down dramatically 

different amounts of chromatin per bead (Figure 7) can give relatively uniform coverage 

per protein target by normalizing the amount of antibody/bead added to the 

immunoprecipitation (Figure 8). 

 

 
 

 

 

Figure 7: Histogram of the number of reads per bead for each protein target. 
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Figure 8: Histogram of the total number of reads for each protein target after adjusting 

the amount of antibody used to normalize read coverage per protein target. 
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Chapter 4 - ChIP DIP Protocol 

 

Starter Guide to Bead Barcoding 
 
Materials 
• EZ-Link Sulfo-NHS-Biotin (Thermo PIA39256) 

• DMSO (Sigma-Aldrich D2650-5X5mL) 

• Dynabeads Protein G (Life Technologies 10009D) – 2.7*10^6 beads/uL 

• Instant Sticky-end Master Mix (NEB M0370L) 

• NEBNext Quick Ligation Reaction Buffer (5X) (NEB B6058S) 

• 1,2-Propanediol, ACS reagent, ≥99.5% (Sigma-Aldrich 398039-25ML) 

• Q5 2x Mastermix (NEB M0494L) 

• Streptavidin (BioLegend 280302) 

• Terminal Ligates Even Barcode 

o Top: /5Phos/CAAGTCAACCATAATAAGATCGGAAGA 

o Bottom: CAGACGTGTGCTCTTCCGATCTTATTATGGT 

• 2Puni primer: 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCT-3’ 

• 2Pbarcoded primer: 5’-

CAAGCAGAAGACGGCATACGAGATGCCTAGCCGTGACTGGAGTTCAGACGTG

TGCTCTTCCGATCT-3’ 

• Biotinylated and barcoded oligo of bead barcoding 

o Sequence structure 

▪ /5phos/TGACTTGNNNNNNNNTATTATGGTAGATCGGAAGAGCGTCGTG

TACACAGAGTC/3Bio/ 

• Sticky end that ligates Odd barcodes 

• UMI 

• Oligo barcode 

• Illumina primer binding site (i5 primer binding site) 

 

Buffers: 

SPRITE Instant sticky mastermix 

Solution Volume 

NEBNext Quick ligation reaction buffer 1600 uL 

Instand Sticky-end Master Mix (2x) 1000 uL 

1.2-Propanediol 600 uL 

 3200 
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M2 (SPRITE wash buffer) 

 Stock conc Final conc Volume for 50mL solution 

H2O   45.5 

Tris pH 7.5 1M 20mM 1 

Triton-X 10% 0.20% 1 

NP-40 10% 0.20% 1 

DOC 10% 0.20% 1 

NaCl 5M 50mM 0.5 

   50 

 

 

 

2x SA binding buffer 

 Stock conc Final conc Volume for 50mL solution 

H20   29.4 

Tris pH 7.5 1M 10mM 0.5 

NaCl 5M 2M 20 

EDTA .5M 1mM 0.1 

   50 

 

PBSt 

reagent Stock conc, Final conc 50mL 500mL 

PBS 1x 1x 49.5mL 495mL 

Tween-20 10% 0.10% 0.5mL 5mL 

 

Dilute M2 

Reagent 1x 

M2 7.5mL 

Water 7.5mL 

 
Protocol: 
 
Biotinylate Protein G beads 

1. Reconstitute NHS-biotin 

a. Allow 1mg tube of sulfo NHS-biotin to equaliberate to RT (10-30 min) 

b. Add 448µL of DMSO to the 1mg vial for a 5mM solution of NHS-biotin 

c. Vortex for 10 seconds 

2. Conjugate NHS-biotin to Protein G beads 

a. Put 5mL of beads on magnetic rack 
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b. Remove storage buffer and put in a separate tube 

c. Wash beads with 1mL PBSt 

d. Resuspend beads in 1mL PBSt 

e. Add 20uL of freshly reconstituted 5mM Sulfo-NHS-Biotin 

f. Vortex 10 seconds immediately  

i.This is important to ensure all beads are equally biotinylated which is key to 

an even distribution of antibody ID oligo on all beads. 

g. Rotate on hula mixer for 30 minutes to mix end to end 

h. Put on magnetic rack, remove 500uL and add 500uL 1M Tris pH 7.4 

i. Vortex 5 seconds and rotate on hula mixer for 30 minutes 

j. Wash beads 2x with 1mL PBSt 

k. Resuspend beads in original buffer for storage 

i.This is to keep the antibody capacity per uL of beads consistent as well as 

keeping the beads in buffer designed for long term stability at 4C. 

Generate Streptavidin bound to antibody ID oligo (SA-oligo) complex and optimize 

bead labeling 

1. Couple biotinylated barcoded oligo to Streptavidin at a 2:1 ratio 

(oligo:Streptavidin) 

a. Prepare the following reaction for each barcoded oligo 

Reagent  molarity (uM) 1x  
final concentration 

of SA (nM) 
 

Barcoded 

oligo 
10 40   

Streptavidin 

(1mg/mL) 
18.1818 10 909 

5.474×10^11 

molecules/uL 

PBS  150   

 total 200   

 

b. Critical note: maintaining the 2:1 ratio of oligo:streptavidin is key to 

effective bead labeling. If bead labeling is not robust, lowering the ratio to 1:1 can 

help. 

c. Shake 30 minutes at RT at 1200 RPM 

d. Make a 1:4 dilution (227nM final) 

i. Store 227nM stock at 4C. Good for two years (and counting!) 

ii. Store 909nM stock at -80C. 

2. Titrate amount of SA-oligo to optimize oligo/bead   

a. Critical note: It is important to remove any free biotin from the NHS-

biotin labeling step with these washes. Any biotin that was not washed away will 

negatively impact the bead labeling efficiency with SA-oligo because the biotin 

will quench the available SA binding pockets for biotin. 

b. Make a fresh dilution from the 227nM to make a working stock at a final 

concentration of 5.67nM (2:80 dilution) 

i. Wash 10uL of biotinylated Protein G beads per condition 2x with 1mL 

PBSt (Eg. 5 conditions would be 50uL of protein G beads) 

c. Resuspend beads in 100uL PBSt per 10uL of beads 
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d. Add 100uL 2x SA binding buffer per 10uL of beads 

i. Critical note: This buffer is important for efficient binding of SA-oligo to 

the biotinylated protein G beads. The high salt will neutralize the charge of the 

single stranded antibody ID oligo and allow the SA-oligo to get close enough 

to the protein G for binding to the biotin molecules on the protein G.  

e. Split into 200uL aliquots (10uL worth of beads) in n number of wells of a 

deep well plate 

f. Add varying amounts of 5.67nM SA-oligo to each well 

i. For example: 0uL, 5uL 10uL, 15uL and 20uL of 5.67nM SA-oligo 

g. Shake on thermomixer at 1100 RPM at RT for 30 minutes 

h. Wash each well 2x with 200uL M2 buffer 

i. Resuspend in 200uL Dilute M2 (50:50 of M2:H2O) 

3. Quantify oligos/bead 

a. Take 2uL worth of beads (40uL of 200uL) of each condition and 

resuspend beads in 40uL of dilute M2. (Dilute M2 is 50% M2 and 50% water) 

b. Prepare the following reaction for each condition 

Reagent  1x (uL) 

Beads in Dilute M2 40 

Terminal Ligates Even 

(4.5uM) 
12 

Instant Sticky MM 32 

total 84 

 

c. Shake at 25C for 15 minutes, 1200RPM 

d. Wash 3x with 200uL M2 

e. Resuspend in 42uL water 

f. Prepare the following reaction with 1/2 of sample (21uL, 1uL of beads)  

Reagent 1x (uL) 10x 

Beads in water 21  

2pbc (25uM) 2  

2puni (25uM) 2  

2x Q5 MM 25  

 

g. PCR amplify 10 cycles with the following program 

Temp (C) Time (s) Cycles 

98 60 1 cycle 

98 15 4 cycles 

69 15 

72 90 

98 15 6 cycles 

 72 90 
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72 2min  

 

h. 1.2x SPRI 

i. Add 60uL SPRI beads 

ii. Mix and incubate 5 minutes at room temperature  

iii. Put on magnet and wait until solution clears 

iv. Wash 2x with 200uL 80% freshly prepared ethanol 

v. Remove any excess ethanol and allow beads to dry 

1. Critical note: Do not over dry, because this will prevent proper 

elution. Allow to dry enough such that there is no glossy sheen from the 

beads being wet, but not so dry that the beads begin to show cracks. 

vi. Elute by adding 20uL of water and incubate at 37C 

i. Run each sample on tapestation to quantify molarity  

i. The readout will be in picomolar (pM) from the tapestation 

ii. Back calculate the number of unique molecules pre-PCR with the 

following formula: [(pM)(elution volume)(6.022*10^23)]/[2^((number of 

PCR cycles)-1)] 

iii. Divide by the number of beads, which in this case in 1uL worth of beads, 

or 2.7*10^6 beads. This will give you antibody ID oligos per bead 

iv. Aim for condition that gives 50-80 oligos/bead 
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ChIP DIP Protocol 
 

Abbreviations 

FA = formaldehyde 

SA = streptavidin 

QC = Quality control 

ProK = Proteinase K 

PBS = phosphate buffered solution 

MM = mastermix 

RT = Room temperature  

 

High level workflow 
Small scale test experiment (optional) – This is an optional step in which only a 

small amount of sequencing is done to understand the IP efficiency (chromatin per 

bead) for each antibody. There are two goals:  

1. Find the amount of chromatin/bead pulled down by each antibody. This information is 

used to normalize the number of beads used in a large scale experiment so that each 

target gets roughly the same number of reads. 

2. Make sure enough antibody is used to get the library complexity desired. For example, 

if a TF is very lowly abundant there might only be 5M unique chromatin pulled down 

with 10uL of antibody-Protein G beads. So for the full experiment you would add 

20uL worth of antibody-protein G beads for the large scale experiment. 

Workflow 

• Generate oligo-labeled beads 

• Biotinylate Protein G beads (Day 0) 

• Make Oligo-SA complex (Day 0) 

• Bind SA-oligo to biotinylated beads (Day 1) 

• QC oligo per bead to ensure oligo/bead ratio is in range (80-160 oligo/bead) (Day 

1) 

• Lyse cells and fragment chromatin using method of choice (Day 1) 

• Verify fragments are correct size before binding antibodies 

• Store at 4C overnight 

• Bind antibodies to oligo-labeled beads (Day 1) 

• Bind overnight at 4C 

• Quench beads with excess biotin and IgG-Fc (Day 2) 

• Wash and pool beads (Day 2) 

• Add bead pool to chromatin for IP (Day 2) 

• 30 min to 1 hour at RT or 2 hours at 4C 

• Wash beads 

• End Repair, dA-tailing and DPM to prepare for split pool (Day 2) 

• Split pool barcoding (Day 2) 

• Take small aliquots and reverse crosslink and ProK overnight (Day 2) 
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• Column clean aliquots (Day 3) 

• Library amplification (Day 3) 

• Tapestation or BioAnalyzer to QC libraries (Day 3) 

• Illumina sequencing (Day 4) 

• Computational demultiplexing (Day 5) 

• Assess chromatin/bead for each target for large scale normalization 

Large scale experiment for full depth 

Workflow 

• Generate oligo-labeled beads 

• Biotinylate Protein G beads (Day 0) 

• Make Oligo-SA complex (Day 0) 

• Bind SA-oligo to biotinylated beads (Day 1) 

• QC oligo per bead to ensure oligo/bead ratio is in range (80-160 oligo/bead) (Day 

1) 

• Lyse cells and fragment chromatin using method of choice (Day 1) 

• Verify fragments are correct size before binding antibodies 

• Store at 4C overnight 

• Bind antibodies to oligo-labeled beads (Day1) 

• Bind overnight at 4C 

• Quench beads with excess biotin and IgG-Fc (Day 2) 

• Wash and pool beads (Day 2) 

• Add bead pool to chromatin for IP (Day 2) 

• 30 min to 1 hour at RT or 2 hours at 4C 

• End Repair, dA-tailing and DPM to prepare for split pool (Day 2) 

• Split pool barcoding (Day 2) 

• Take aliquots and reverse crosslink and ProK overnight (Day 2) 

• Column clean aliquots (Day 3) 

• Library amplification (Day 3) 

• Tapestation or BioAnalyzer to QC libraries (Day 3) 

• Illumina sequencing (Day 4) 

• Computational demultiplexing and alignment of chromatin from each antibody to 

the genome (Day 5) 

• Downstream ChIP-seq analyses 

 

Equipment 
• Branson needle-tip sonicator (3mm diameter (1/8’ doublestep). Branson ultrasonics 

101-148-063) 

• Agilent TapeStation 4150 (or Agilent Bioanalyzer) 

• Multichannel pipet p20 (12 well) 

• Multichannel pipet p200 (12 well) 

Materials and reagents 
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• 16% Formaldehyde (w/v), Methanol-Free (Thermo PI28908) 

• cOmplete, EDTA-free Protease Inhibitor Cocktail (Millipore Sigma 11873580001) 

• EZ-Link Sulfo-NHS-Biotin (Thermo PIA39256) 

• DMSO (Sigma-Aldrich D2650-5X5mL) 

• Dynabeads Protein G (Life Technologies 10009D) – 2.7*10^6 beads/uL 

• Streptavidin (BioLegend 280302) 

• Positive control antibodies 

• H3K4me3 (CST 9751S) 

• CTCF (CST 3418S) 

• Q5 2x Mastermix (NEB M0494L) 

• SPRI beads (Bulldog Bio CNGS500) 

• 96 well PCR plate 

• NEBNext End Repair Module (NEB E6050) 

• NEBNext dA-tailing Module (NEB E6053) 

• IgG Fc (Bio X Cell BE0096) 

• Biotin (Sigma Aldrich B4639-5G) 

• Proteinase K (NEB P8107S) 

• Zymo DNA Clean and Concentrator kit (Zymo 4014) 

• Agilent High Sensitivity D1000 ScreenTape (Agilent Technologies 5067-5584) 

• Agilent High Sensitivity D1000 Reagent (Agilent Technologies 5067-5603) 

• Nunc 96-Well DeepWell Plates with Shared-Wall Technology, Thermo Scientific, 

Color:Natural, (Thermo Fisher Scientific 260251) 

• Instant Sticky-end Ligase Master Mix (ISMM) - 250, rxns (NEB M0370L) 

• NEBNext Quick Ligation Reaction Buffer (5X) (NEB B6058S) 

• 1,2-Propanediol, ACS reagent, ≥99.5% (Sigma-Aldrich 398039-25ML)  

• Bead oligo sample sequence and structure 

• /5phos/TGACTTGNNNNNNNNTATTATGGTAGATCGGAAGAGCGTCGTGTAC

ACAGAGTC/3Bio/ 

▪ Sticky end that ligates Odd barcodes 

▪ UMI 

▪ Oligo barcode 

▪ Illumina primer binding site (i5 primer binding site) 

▪ Spacer sequence 

 

 

 

Buffers 
Lysis buffer A 

 Stock conc Final conc Volume for 10mL solution 

HEPES 7.4 1M 50mM 0.5 

EDTA .5M 1mM 0.02 
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EGTA .5M 1mM 0.02 

NaCl 5M 140mM 0.28 

Triton-X 10% 0.25% 0.25 

NP-40 10% 0.50% 0.5 

Glycerol 50% 10% 2 

H2O   6.43 

   10mL 

    

Lysis buffer B 

 Stock conc Final conc Volume for 10mL solution 

HEPES 7.4 1M 50mM 0.5 

EDTA .5M 1.5mM 0.03 

EGTA .5M 1.5mM 0.03 

NaCl 5M 200mM 0.4 

H2O   9.04 

   10mL 

    

    

Lysis buffer C 

 Stock conc Final conc Volume for 10mL solution 

HEPES 7.4 1M 50mM 0.5 

EDTA .5M 1.5mM 0.03 

EGTA .5M 1.5mM 0.03 

NaCl 5M 100mM 0.2 

DOC 10% 0.10% 0.1 

NLS 20% 0.50% 0.25 

H2O   8.89 

   10mL 

 

SPRITE Instant sticky mastermix 

Solution Volume 

NEBNext Quick ligation reaction buffer 1600 uL 

Instand Sticky-end Master Mix (2x) 1000 uL 

1.2-Propanediol 600 uL 

 3200 

 

MyRNK buffer 

 

Stock 

conc 

Final 

conc 

Volume for 10mL 

solution  
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Tris 

pH 7.5 1M 20mM 0.2 1 

NaCl 5M 100mM 0.2 1 

EDTA 0.5 10mM 0.2 1 

EDTA 0.5 10mM 0.2 1 

Triton-

X 10% 0.50% 0.5 2.5 

SDS 10% 0.2% 0.2 1 

H2O   8.7 43.5 

   10mL 50mL 

IP Wash buffer 1 (IPWB1) 

 

Stock 

conc, 

Final 

conc 

Volume for 

30mL 

solution 50mL  500mL 

Tris-HCl 

pH8.0 1M 20mM 0.6 1 4.77 10 

SDS 10% 0.05% 0.15 0.25  2.5 

Triton X-100 10% 1% 3 5  50 

EDTA .5M 2mM 0.12 0.2  2 

NaCl 5M 150mM 0.9 1.5  15 

H2O   25.23 42.05  420.5 

   30 50  500 

IP Wash buffer 2 (IPWB2) 

 

Stock 

conc, 

Final 

conc 

Volume for 

30mL 

solution 50mL  500mL 

Tris-HCl 

pH8.0 1M 20mM 0.6 1 6.87 10 

SDS 10% 0.05% 0.15 0.25  2.5 

Triton X-100 10% 1% 3 5  50 

EDTA .5M 2mM 0.12 0.2  2 

NaCl 5M 500mM 3 5  50 

H2O   23.13 38.55  385.5 

   30 50  500 

M2 (SPRITE wash buffer) 

 

Stock 

conc 

Final 

conc 

Volume 

for 

50mL 

solution 

H2O   45.5 

Tris pH 7.5 1M 20mM 1 
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Triton-X 10% 0.20% 1 

NP-40 10% 0.20% 1 

DOC 10% 0.20% 1 

NaCl 5M 50mM 0.5 

   50 

2x SA binding buffer 

 

Stock 

conc 

Final 

conc 

Volume for 

50mL solution 

H20   29.4 

Tris pH 

7.5 1M 10mM 0.5 

NaCl 5M 2M 20 

EDTA .5M 1mM 0.1 

   50 

M2 + 75mM EDTA 

 

Stock 

conc 

Final 

conc 

Volume for 

50mL solution 

H20   38 

Tris pH 

7.5 1M 20mM 1 

Triton-X 10% 0.20% 1 

NP-40 10% 0.20% 1 

DOC 10% 0.20% 1 

NaCl 5M 50mM 0.5 

EDTA .5M 75mM 7.5 

 

PBSt 

reagent Stock conc, Final conc 50mL 500mL 

PBS 1x 1x 49.5mL 495mL 

Tween-20 10% 0.10% 0.5mL 5mL 

 

 

Dilute M2 

Reagent 1x 

M2 7.5mL 

Water 7.5mL 

 

Protocol 

 
[Day 0] 
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Crosslinking 

1. Preparation work 

a. Chill one bottle of 1x PBS on ice. Keep one at room temperature. 

2. Count and wash cells 

a. Count an aliquot of the cells to determine the total number of cells to 

crosslink. Prior to counting cells, make sure the cells are in a single cell 

suspension by pipetting vigorously several times. 

i. total cells:  

b. Pellet cells at room temp for 3 minutes at 330xG. Remove media. 

c. Wash 1x by resuspending in 4mL PBS per 10M cells and pellet cells at 

room temp for 3 minutes at 330xG. Remove PBS solution. 

3. 1% FA crosslinking 

a. NOTE: Right before using, premix a 1% formaldehyde (Thermo cat no. 

28908) solution in PBS. Use a fresh ampule of 16% formaldehyde. Do not 

use an ampule opened more than ~20 min before crosslinking the cells. 

 1% FA 

 1x (10M 

cells) 

10x (100M cell 

EXAMPLE) 

16% FA 250 uL 2500 uL 

1x PBS 3750 uL 37500 uL 

 4000 uL 40000 uL 

 

b. Prepare a 50mL conical centrifuge tube with 3.75 mL PBS for each 10M 

cells to be crosslinked. 

c. Use 1mL of PBS solution prepared in 3.a. to resuspend cell pellet 

d. Crack open 16% FA ampule and transfer to a labeled 15mL centrifuge 

tube 

e. Add 250uL 16% FA solution per 4 mL PBS solution from 3.a. to get a 

~1% FA solution. Invert to mix 

f. Add resuspended cell pellet to the ~1% FA tube to make a tube of 1% 

final concentration FA in PBS 

g. Rock gently at room temperature for exactly 10 minutes 

h. Immediately add 200uL of 2.5M glycine stop solution per 1mL of 1% 

formaldehyde solution directly to the tube to quench the crosslinker. Mix 

well. 

i. Glycine calculation: 

i. Rock gently at room temperature for 5 minutes. 

4. Wash and aliquot crosslinked cells 

a. Spin down cells at 4 °C for 4 minutes at 1000xG. Discard FA solution in 

the FA liquid waste in the fume hood. From here onward, keep cells on 

ice. 
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b. Resuspend pellet in cold 1x PBS (4mL PBS per 10M cells) 

c. Spin down cells at 4 °C for 4 minutes at 1000xG. Discard solution in FA 

waste. 

d. Repeat the wash step. 

e. Resuspend cells in 200uL of PBS per 10M cells. 

f. Aliquot cells into microcentrifuge tubes (5M-20M cells each) and spin at 4 

°C for 5 minutes at 2000xG. Remove supernatant carefully without 

disrupting the pellet. 

g. Critical note: Completely removing the supernatant is important to 

prevent lysis of cell upon flash freezing for long term storage. 

5. Flash freeze in liquid nitrogen and store at -80 or proceed to cell lysis. (Safe stop if 

flash freezing and storing at -80C) 

 

Day 1 

Prepare chromatin 

6. Cell lysis (for up to a 50M cell aliquot) 

a. Resuspend in 700uL Lysis Buffer A with 14uL 50x Roche C0mplete 

Protease Inhibitor Cocktail (PIC) 

b. Incubate 10 min on ice 

c. Spin down at 4C for 8 min at 850G 

d. Remove supernatant 

e. resuspend each sample in 700uL Lysis Buffer B with 14uL 50x PIC 

f. Incubate 10 min on ice 

g. Spin down at 4C for 8 min at 850G 

h. Remove supernatant 

i. Resuspend each sample in 550uL Lysis buffer C with 22uL 50x PIC 

j. Incubate 10 min on ice 

7. Sonicate 

a. NOTE: sonication times and power will vary depending on cell type 

and crosslinking condition and will need to be empirically optimized. 

These conditions have been optimized for mouse embryonic stem cells, 

HEK293T cells, and K562 cells. 

b. Sonicate each aliquot with 20% power (3-4 watts) at 4C for 2.5 min (.7sec 

on, 3.3sec off) 

c. Check size distribution of chromatin: 

i. Reverse crosslink 10uL-20uL at 80C for 30 minutes. This can be 

done at a small volume in a thermocycler. 

ii. Clean up with Zymo IC column DNA purification kit 

1. Add 6x DNA binding buffer 

2. Add this to a IC column and spin at 10,000g for 30 seconds 

3. Dump flowthrough 
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4. Wash 2x with 200uL DNA/RNA wash buffer by spinning 

at 10,000g for 30 seconds 

5. Dump flowthrough 

6. Do an empty spin for 1 minute 

7. Transfer column to a clean 1.7mL tube 

8. Add 20uL H2O to elute 

9. Spin at 10,000g for 30 seconds to collect purified DNA 

iii. Run half of the purified DNA on a 1% gel to check the chromatin 

fragment sizes (desired fragment size in 200bp-500bp) 

iv. If the size range is 200bp-500bp for most fragments, save this as 

your input. If not, go back to sonicated sample and sonicate more. 

Repeat once if needed. 

v. Critical point: Take 20uL input and reverse crosslink 

overnight 

Bind unique oligos to Protein G beads 

8. Aliquot 10uL of biotinylated Protein G beads per IP  

9. Wash biotinylated Protein G twice with 1mL PBSt 

10. quick spin and put on magnet to remove excess PBSt 

11. Resuspend in 100uL PBSt per 10uL of beads 

12. Add 100uL of 2x SA binding buffer per 10uL beads. This is the bead master mix 

(MM). 

13. Split bead MM into deep well plate, 200uL per well.  

14. Add XuL (optimized volume from bead labeling titration) of 5.67nM SA-PC50 to 

corresponding wells  

15. Shake at RT for 30 minutes 

16. Quick spin for 30sec at 100G 

17. Wash 2x with 200uL M2 

18. wash 2x with 200uL PBSt 

19. Keep on ice while prepping chromatin 

QC oligos/bead from bead labeling reaction 

20. Take 2uL worth of beads (40uL of 200uL) from the last well of each row for 

representative assessment of coupling for that row 

21. Resuspend beads in 40uL of dilute M2. (Dilute M2 is 50% M2 and 50% water) 

22. Prepare the following reaction for each condition 

Reagent  1x (uL) 

Beads in Dilute M2 40 

Terminal Ligates Even 

(4.5uM) 
12 

Instant Sticky MM 32 

total 84 

 

23. Shake at 25C for 15 minutes, 1200RPM 

24. Wash 3x with 200uL M2 
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25. Resuspend in 42uL water 

26. Take 1/2 of sample (21uL, 1uL of beads) and prepare the following reaction 

Reagent 1x (uL) 10x 

Beads in water 21  

2pbc (25uM) 2  

2puni (25uM) 2  

2x Q5 MM 25  

 

27. PCR amplify 10 cycles using the following program: 

Temp (C) Time (s) Cycles 

98 60 1 cycle 

98 15 4 cycles 

69 15 

72 90 

98 15 6 cycles 

 72 90 

72 2min  

 

28. 1.2x SPRI 

a. Add 60uL SPRI beads 

b. Mix and incubate 5 minutes at room tempuratre  

c. Put on magnet and wait until solution clears 

d. Wash 2x with 200uL freshly prepared 80% ethanol 

e. Remove any excess ethanol and allow beads to dry 

i. Critical note: Do not over dry, because this will prevent proper 

elution. Allow to dry enough such that there is no glossy sheen 

from the beads being wet, but not so dry that the beads begin to 

show cracks. 

f. Elute by adding 20uL of water and incubate at 37C 

29. Run each sample on Tapestation to quantify molarity  

a. The readout will be in picomolar (pM) from the tapestation 

b. Back calculate the number of unique molecules pre-PCR with the 

following formula: [(pM)(elution volume)(6.022*10^23)]/[2^((number of 

PCR cycles)-1)] 

c. Divide by the number of beads, which in this case in 1uL worth of beads, 

or 2.7*10^6 beads. This will give you antibody ID oligos per bead 

30. Record the calculated number of antibody ID oligos per bead 

 

Bind Antibodies to Labeled Protein G Beads 

31. Resuspend beads in 200uL PBSt 

32. Add 2.7ug of antibody to each well  

33. Shake at 4C overnight 

a. 10 seconds shaking at 1200 RPM, every 15 minutes 
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Day 2 

34. Critical note: It is important to follow the reaction times below. Allowing reactions 

to proceed for longer than recommended can cause a lower yield in library 

complexity. 

35. 1hr RT IP  

36. Shake beads at RT at 1100rpm while preparing reagents and lysate 

37. Prepare lysate 

a. Add 500uL PBSt to each tube 

b. 30uL 50x PIC 

c. add XuL of IgG Fc (2.5ug per 10uL beads) 

d. Add XuL 1M biotin (200uM biotin final concentration) 

38. Wash beads 2x with 200uL PBSt 

39. Resuspend in 200uL PBSt + 200uM biotin + 2.5ug Human IgG Fc per well  

a. This quenches any free protein G and SA to prevent mixing of labels or 

antibody 

40. Shake at RT for 15 minutes 
 1X 48X 

PBSt 200 9600 

Biotin (100mM) 0.8 38.4 

Human IgG (8.6ug/uL) 0.3 14.4 

 

41. Pool all beads with volumes outlined in excel sheet to equalize coverage 

a. Normalize number of beads to evenly distribute sequencing coverage for 

each antibody 

i. Normalize to the beads with the antibody that pulls down the 

least amount of chromatin. For example, if antibody A pulls 

down 100chrom/bead and antibody B pulls down 

10chrom/bead then there would be 10x less beads from 

antibody A compared to antibody B added to the bead pool. 

This can be skipped if the chromatin per bead for each 

antibody in unknown or if pooling antibodies of similar IP 

efficiency. 

42. Wash pooled beads 2x with 1mL PBSt+200uM biotin 

43. resuspend beads in 200uL PBSt 

44. Add beads to prepared lysate 

45.  rotate on hula mixer at RT for 1 hour or 2 hours at 4C 

Wash beads post IP 

46. Wash beads 2x with 1mL IPWB1 

a. Put on magnet and remove supernatant between washes  

47. Wash beads 2x with 1mL IPWB2 

a. Put on magnet and remove supernatant between washes  

48. Wash beads 2x with 1mL M2 

a. Put on magnet and remove supernatant between washes  

49. quick spin, put tube on magnet and remove all excess M2 

 

End Repair and dA-tailing 
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50. Critical Note: It is important to not allow beads to dry out. Prepare mastermixes 

ahead of time before removing all buffer from beads. 

End Repair 

51. prepare the following reaction: 

Stock Solution 1x 

H2O 211.5 

100mM biotin 1 

End Repair Reaction Buffer (10X) 25 

End Repair Enzyme Mix 12.5 

Total 250 

 

52. Add 1ug human IgG1 Fc for every 10uL of beads 

53. Shake at 20C for 15 min, 1400RPM 

54. Quench with 500uL PBSt+100mM EDTA 

55. Wash 2x with 1mL M2 

a. Put on magnet and remove supernatant between washes  

56. Quick spin and put on magnet, remove all residual solution 

57. dA-tailing 

dA-tailing 

58. Prepare the following reaction 

Stock Solution 1x 

H2O 214 

100mM biotin 1 

dA-Tailing Reaction Buffer (10X) 25 

Klenow Fragment (exo-) 10 

Total 250 

 

59. Add 1ug human IgG1 Fc for every 10uL of beads 

60. Shake at 37C for 15 min, 1400RPM 

61. Quench with 500uL PBSt+100mM EDTA 

62. Wash 2x with 1mL M2 

a. Put on magnet and remove supernatant between washes  

63. Quick spin and put on magnet, remove all residual solution 

 

Ligate DPM to chromatin 

Reagent 1x (per well)  

Beads in dilute M2+200uM biotin + Protein G 11.2  

DPM (4.5uM) 2.4  

ISMM 6.4  

 20  

64. Resuspend each aliquot of beads in 135uL of dilute M2 + 200uM biotin + Protein G 

65. Distribute into 24 wells 

66. Add unique DPM to each well 

67. Add ISMM with multichannel pipet in volume outlined on reaction table. Pipet up 

and down to mix 
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68. Shake at 20C for 20 minutes 

69. Quench with 30uL PBSt+100mM EDTA 

70. Pool all beads into a single tube 

71. Wash 2x with 1mL M2 

a. Quickly vortex to resuspend beads in wash buffer 

b. Put on magnet and remove supernatant   

72. Quick spin and put on magnet, remove all residual wash buffer 

 

Split pool 

73. 6 rounds of 24 well barcoding (barcode combinations) 

a. Odd (Rows A, B) 

b. Even (Rows A, F)  

c. Odd (Rows C, D) 

d. Even (Rows C, D) 

e. Odd (Rows E, F) 

f. Terminal Ligates Odd (Rows F, G, A) 

i. Critical note: It is important to use these rows of terminal ligates 

Odd/Even because they have the full stagger. This will give better 

sequencing yield and avoid a monotemplate issue when 

sequencing. 

Stock solution Volume 

beads + dilute M2 + 200uM biotin + Protein G 11.2 

Split pool tag (4.5uM) 2.4 

Ligation master mix 6.4 

total 20 

 

74. Resuspend beads in 270uL dilute M2 + 200uM biotin 

75. Distribute into 24 wells 

76. Prepare the outlined reaction for each well 

a. Add barcode with multichannel pipet in volume outlined on reaction table. 

Do not pipet up and down. This will cause beads to stick pipet tip and 

cause a loss is yield in the final libraries. 

b. Add ISMM with multichannel pipet in volume outlined on reaction table. 

Pipet up and down to mix 

77. incubate at RT for 8-10 minutes 

a. Critical note: It is important to minimize the time it takes to perform split 

pool. This is because the antibody, and by extension the chromatin, is held 

to the bead via noncovalent interactions. Excess time will lead to shedding 

of antibody-protein-chromatin off the bead and decrease the yield of 

chromatin in the final libraries. 8-10 minutes of ligation time is the 

optimal time for allow for all split pool tags to ligate to the constituent 

molecules on each bead, but not so long that antibody-protein-chromatin 

complexes start to excessively shed from the beads. 

78. Quench with 30uL PBSt+100mM EDTA 

79. Pool into 2mL tube and place on magnet 

80. Wash 2x with 1mL M2 using magnet 
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a. Quickly vortex to resuspend beads in wash buffer 

b. Put on magnet and remove supernatant between washes  

81. Quick spin and put on magnet, remove all residual solution 

82. Repeat 2-9 5 more times 

83. wash 2x extra 1mL washes before resuspending in MyRNK 

84. resuspend in 1mL MyRNK 

85. Take aliquots and reverse crosslink overnight 

a. Critical note: Use tubes that are sealed tightly. Some low quality plastics 

will allow for evaporation. 2mL LoBind Eppendorf tubes tend to have an 

excellent seal. 

b. 92uL of MyRNK (this includes the aliquot) + 8uL of Proteinase K 

c. Example of a 1% aliquot: 10 uL aliquot in MyRNK + 82 mL MyRNK + 8 

uL Proteinase K 

d. Critical note: The size of the aliquot is important. When doing split pool 

based techniques, most molecules in an aliquot must be sampled by 

sequencing. This is because in order detect to most molecules bound to 

each bead each molecule need to be sampled by sequencing. If most 

molecules are not sampled, then you may and up with a cluster (bead) that 

has only oligo, but no chromatin, making that data useless. To avoid this, 

we generally take an aliquot with 5 million to 20 million beads. For 

example, assuming there are 10 molecules per bead, an aliquot with 5M 

beads would require 50M reads. 

86. 50C for 2 hours, 65C overnight 

Day 3 

Clean up samples 

87. Put beads on magnet and transfer supernatant to a new LoBind tube, this contains 

your IP’d chromatin fragments 

88. Add 700uL of DNA binding buffer to sample and add to Zymo IC column 

a. Spin at 10,000g for 30 seconds, dump flow through 

b. Wash 2x with 200uL RNA/DNA wash buffer  

i. 20 sec spin at >10,000 RPM  

ii. dump flowthrough 

c. Empty spin of column in empty collection tube 

d. Put column in a new, labeled 1.5mL LoBind tube 

e. Add 21uL H2O to elute from column, incubate at RT for 3-5 minutes 

f. Spin down 60 sec at > 10,000 RPM 

g. This eluate contains purified DNA fragments 

Amplify samples to add sequencing index barcode 

89. Prepare the following reaction to amplify all of the aliquot 

Reagent 1x (uL) 

Purified DNA 21 

I5 (12.5uM) 3 

I7 (12.5uM) 3 

2x Q5 MM 27 

Total 54 
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90. Amplify with the following PCR program 

Temp (C) Time (s) Cycles 

98 60 1 cycle 

98 15 4 cycles 

91. 69 92. 15 

72 90 

98 15 6 cycles 

 72 90 

72 2min  

 

93. Critical note: Amplify 1-2 aliquots first at 10 cycles. 10 cycles is the 

recommendation, but if the yield is high there can by overamplification at 10 cycles. 

Adjust as needed with remaining aliquots. The target molarity after PCR is ~10-16nM 

94. Clean up with 1.2x SPRI  

a. Add 60uL SPRI beads and mix with pipet 

b. Incubate at RT for 10 minutes 

c. Wash beads 2x with 200uL freshly prepared 80% EtOH 

d. Quick spin and put on magnet to remove residual EtOH 

i. Critical note: Do not over dry, because this will prevent proper 

elution. Allow to dry enough such that there is no glossy sheen 

from the beads being wet, but not so dry that the beads begin to 

show cracks. 

e. Add 20uL H2O to elute 

f. Incubate at 37C for 5 minutes  

g. Place beads on a magnet and allow solution the clear.  

h. Transfer supernatant away from SPRI beads into a fresh tube 

i. This contains the amplified library 

95. Proceed to Tapestation analysis or freeze for later 

a. Quantify library and number of unique molecules per aliquot with 

tapestation 

i. Run Tapestation or Bio Analyzer, following manufacturers 

protocol for each aliquot 

ii. The readout will be in picomolar (pM) from the tapestation 

iii. Back calculate the number of unique molecules pre-PCR with the 

following formula: [(pM)(elution 

volume)(6.022*10^23)]/[2^((number of PCR cycles)-1)] 

96. Gel extract oligo and chromatin to remove PCR primers. 

a. Optional: gel cut chromatin and oligo separately. This is helpful if you 

want to sequence more chromatin than oligo or vice versa. 

97. Sequence on your favorite NGS platform! 

98. Analysis pipeline and all details on how to run the pipeline can be found here: 

https://github.com/GuttmanLab/chipdip-pipeline  

a. Documentation and software is maintain on the Github repository and the 

link can also be found on the Guttman Lab Webpage. 

 

 

https://github.com/GuttmanLab/chipdip-pipeline
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Future directions 
 

With the core technology of bead barcoding and ChIP-DIP validated and robust, we can 

now accurately map hundreds of proteins in a single experiment and there is a vast array 

of questions that can be addressed quickly using this technology. For example, we can 

quickly profile the protein-DNA and protein-RNA landscape in any disease model, such 

as cancer or neurogenerative disease, to understand how changes in the protein- 

DNA/RNA landscape are driving these diseases. Another option would be to perturb 

healthy cells to understand fundamental biology of gene regulation. For example, one 

could inhibit various chromatin regulators to understand how chromatin regulators 

influence to localization of proteins to DNA and RNA. We aim to leverage ChIP-DIP and 

SPIDR to make landmark observations about gene regulation biology. 

 

 

Our lab has pioneered the idea that active transcription of RNA is required for nuclear 

organization and is key to the proper folding and 3D architecture of the genome1. Beyond 

this, we have shown that active transcription is important for the localization of 

chromatin-associated proteins like HP1-beta1. Others have also shown that when 

transcription is inhibited, large foci of splicing proteins become aberrantly localized when 

observed with fluorescent microscopy2. While it is clear that protein localization can 

change dramatically upon transcriptional inhibition, it remains unclear how these gross 

localization changes translate to changes in protein-DNA interactions. 

 

We plan to approach this problem with ChIP-DIP by screening the DNA localization of 

hundreds of DNA-associated protein upon transcriptional inhibition. This strategy has 

several advantages to traditional ChIP-Seq. First, and most obviously, dozens to hundreds 

of protein-DNA interactions can be profiled simultaneously, dramatically reducing the 

workload associated with inhibiting transcription in 80 million cells per target. Utilizing 

ChIP-DIP, we can inhibit transcription in 80 million cells to be used to explore the DNA 

interactions of hundreds of different proteins. We expect one of two different results. 

First, it is possible that active transcription is required for the proper localization of 

protein; that is, we would observe improper and/or expanded localization of DNA-

associated proteins upon inhibition. The second possibility is that active transcription is 

required for chromatin-associated proteins to find their targets. In this scenario, we would 

expect to see a dramatic loss of signal compared to cells that did not have transcription 

inhibited. This would show how RNA guides the localization of different proteins to their 

chromatin targets. 

 

 

To inhibit transcription, we could use any of several small molecules that inhibit RNA 

polymerases to varying specificity. For example, flavopiridol (FVP) is a robust cyclin-

dependent kinase 9 (CDK9) inhibitor. CDK9 phosphorylates the largest subunit of RNA 

polymerase II (RNAPII), POLR2A to initiate the transition from paused RNAPII to 

actively transcribing RNA RNAPII. By inhibiting CDK9, RNAPII is unable to initiate 
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transcriptional elongation, effectively inhibiting the production of RNAPII transcripts3. In 

addition to FVP, there are several nonspecific RNA polymerase inhibitors, such as 

actinomycin D, which form a highly stable complex with DNA, preventing the DNA 

from unwinding4. Since this DNA cannot unwind, RNAPII cannot transcribe. We plan to 

start our exploration of RNA dependence of nuclear organization by performing ChIP 

DIP on cells treated with FVP using a panel of 160 previously validated antibodies to 

profile ~120 different chromatin-associated proteins to evaluate the role of transcription in 

the localization of chromatin-associated proteins. 

 

 

Importantly, we have also demonstrated the ability of bead barcoding to multiplex CLIP 

to perform high-throughput RNA-protein mapping with SPIDR. We anticipate that bead 

barcoding will expand the multiplexing capabilities of other IP based assays, such as 

SPRITE IP5. Beyond immunoprecipitation assays, bead barcoding can be used to 

multiplex other bead-based assays. For example, bead barcoding could be used to 

multiplex DNA-encoded library (DEL)6 based drug screening assays by allowing drug 

discovery of hundreds of proteins, and mutants of proteins, in the same experiment. 
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Limitations 
 

The level of multiplexing is mainly limited by the number of different barcoded oligos 

and antibodies that are available. However, because the oligo barcoding of beads is so 

robust, one can use different combinations of bead oligos to denote a unique bead 

barcode. There is also a start-up cost of doing split-pool-based assays that requires the 

investment of purchasing the split-pool barcodes, thermomixers, and multichannel pipets. 

Additionally, we have found that while some antibodies are validated with ChIP-Seq or 

CLIP, that same antibody may not provide a robust protein-DNA/RNA interaction map 

with ChIP-DIP or SPIDR. Lastly, because ChIP-DIP and SPIDR rely on the barcode string 

on the bead oligo to assign chromatin or RNA, respectively, to a specific antibody, there 

are additional sequencing costs associated with sequencing the bead oligos that provide 

no additional biological information. We have mitigated this by selecting beads that have 

a large diameter, increasing the chromatin to oligo ratio required to assign chromatin to a 

protein. Additionally, the cost of sequencing has dramatically dropped in the past 5 years 

and continues to drop as newer and more high-throughput sequencing technologies are 

developed. This makes technologies like ChIP-DIP and SPIDR more and more accessible 

every day. 
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