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ABSTRACT

In Chapter 1 of this thesis, we give an introduction to this body of work,

providing some background for context.

In Chapter 2, we present a set of theoretical predictions for the carbon iso-

tope distribution between equilibrated carbon sites of alanine and pyruvate.

We start with the simplest possible theoretical treatment, and work progres-

sively through higher levels of theory, showing consistency in the direction and

magnitude of expected fractionation across these treatments.

In Chapter 3, we present our experimental work to confirm the predictions

made in Chapter 2 by measuring the δ13C of the α carbon site in alanine that

has undergone equilibration with the analogous carbon site in pyruvate via

the alanine transaminase enzyme (ALT).

In Chapter 4, we describe the process that led to our (re)discovery of β-

hydrogen-deuterium exchange in amino acids catalyzed by transaminases. We

then provide a literature review on the small body of historical work on this

system, which took place primarily during the 1960s and 70s. This literature

summary provides the background necessary for the reader to appreciate our

experimental work presented in the next chapter.

In Chapter 5, we present novel 1H NMR and 13C NMR experimental obser-

vations of intermolecular hydrogen isotope exchange between water and the

α and β carbon sites of alanine, as well as intramolecular hydrogen isotope

exchange between the α and β carbons, all of which is catalyzed by alanine

transaminase (ALT). These experiments track the abundances of eight iso-

topically distinct alanine species varying in their position and/or number of

hydrogen isotopes over a series of reactions differing in initial alanine isotopic

composition and initial water isotopic composition. With the data collected

we are able to determine up to thirteen rate constants and ten equilibrium

constants describing the transfer of hydrogen and deuterium amongst these

eight isotopic variants and water, as well as the thermodynamic equilibrium

constants between them.
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C h a p t e r 1

AN INTRODUCTION

“It often seems that isotopic fractionations provide too much infor-

mation about too many processes, combining it all in a package that

is unmanageably intricate. In response, investigators keep increas-

ing the complexity of the available data by providing more and more

detailed analyses. The proliferation of compound-specific isotopic

analyses is a prime example of this phenomenon. Does it increase

the information-carrying capacity of the isotopic channel or is it

another case of the triumph of entropy? To obtain the preferred

result, we will have to understand biosynthetic fractionations... .”

-John Hayes, 2001

Over the past decade, investigations in the most fundamental aspects of stable

isotope geochemistry have centered around the growing field of “isotomics”,

which involves several intersecting topics: (1) isotopic clumping, that is, the

occurrence of multiple rare, usually adjacent, heavy isotopes in a molecule

(e.g., 18O– 13C, 2H– 2H, 13C– 13C, 2H– 13C, 15N– 15N), (2) isotopic equilibra-

tion of atoms at specific positions in a molecule, either intermolecularly or

intramolecularly, and (3) kinetic fractionation of isotopes between molecular

reactants and products under conditions of disequilibrium, and in particular,

the coupling of isotopic and chemical equilibrium (e.g., Druhan et al., 2013;

Steefel et al., 2014). Most of these efforts have involved small, simple inorganic

molecules (e.g., CO2 (Zhang et al., 1995), and N2O (Magyar et al., 2016)) and

organic molecules, most extensively the lightest alkanes: methane (Stolper

et al., 2014a; Stolper et al., 2014b), ethane (Clog et al., 2017), and propane

(Piasecki et al., 2016a; Piasecki et al., 2016b; Piasecki et al., 2018; Xie et al.,

2018). Such studies have typically been limited to a subset of these topics, pri-

marily due to a combination of technical limitations and the restricted isotopic

diversity inherent to these small molecules. The fundamental physical princi-

ples governing “mass-dependent” isotopic distributions in molecules are based

on the analysis of quantum mechanical oscillators, and have been appreciated

since quantum mechanical principles were first applied towards the under-
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standing of isotope distributions in natural systems (Urey, 1947; Bigeleisen

et al., 1947). Computational predictions of carbon and hydrogen equilibrium

isotopic signatures for such molecules (e.g., Richet et al., 1977, Schauble, 2004)

have provided benchmarks against which to compare experimental results and

have thus encouraged the development of increasingly sensitive analytical tools

and methods using an array of new high-mass-resolution mass spectrometers,

notably the Thermo Scientific MAT 253 Ultra, Nu Instruments Panorama,

Thermo DFS, Q Exactive Orbitrap and related instruments. Improvements in

infrared spectroscopic (e.g., Ono et al., 2014) and nuclear magnetic resonance

instrumental capabilities (e.g., Liu et al., 2018) have also supported this effort.

Application of the methods developed with these instruments to this small

set of molecules was initially focused primarily on probing molecular processes

relevant to the natural gas industry and a handful of environmental settings,

using isotopes to tease apart molecular sources, sinks, and thermal history,

involving both equilibrium and kinetic fractionation processes. For example,

as the smallest and simplest alkane, methane (CH4) on its own has recently

yielded an impressively rich set of accessible and useful isotopic information.

Considering only the stable isotopes of carbon (12C and 13C) and hydrogen (1H

and 2H—sometimes denoted “D”), methane can exist in ten unique isotopic

forms, all of which are isotopologues, i.e., molecules that differ only in their iso-

topic composition. In natural terrestrial contexts these ten isotopologues range

in proportional relative abundance from 0.988 for 12CH4, to 6.54 ∗ 10−18 for

the rarest of these, 13CD4. In conventional mass spectrometric measurements,

these ten isotopologues were aggregated through conversion to CO2 or H2, eras-

ing the individual contributions of each isotopic species to the overall molecular

ratios of 13C/12C and D/H, in essence reducing ten distinct quantities down

to two. Only recently the ability to measure clumping of 13C–D and D–D in

methane using, e.g., the Thermo Scientific MAT 253 Ultra and Nu Instruments

Panorama, has given us access to five of the ten isotopologues: not only the

three most common of the unsubstituted and singly substituted forms (12CH4,
13CH4, and 12CH3D), but also the two doubly substituted forms, 13CH3D, and
12CH2D2. In general, these forms are reported relative to an expected stochas-

tic occurrence based on the known natural abundances of each nuclei, and

deviations from these probabilistic quantities are indicative of conditions and

processes involved during formation and destruction of the methane molecule.

Quantification of these two rarer isotopic species in addition to the more abun-
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dant three has proven powerful as a means of differentiating between multiple

microbial and abiotic methane sources, as well as the temperatures at which

these gases formed (Stolper et al., 2014a; Stolper et al., 2014b). The other

five of these isotopologues are so rare that they remain beyond our ability to

quantify in natural samples with present-day state-of-the-art instruments.

When considering site-specificity, we see that methane lacks a diversity of

distinguishable atomic sites. It is composed of a single carbon atom and four

tetrahedrally symmetrical, and therefore indistinguishable, hydrogen atoms.

Thus in the case of methane, intramolecular isotopic site preferences are not at

play, and yet access to two “clumped” isotope species provides significant novel

forensic geochemical leverage. One step up in complexity, ethane (H3C–CH3)

can exist in 28 possible isotopic combinations using the same set of stable

carbon and hydrogen isotopes. However, because of its structural symmetry,

many of the 28 possible isotopic forms are degenerate; that is, there are multiple

ways to form isotopically indistinguishable species. Ethane’s two carbon atoms

are structurally indistinguishable, as are the three hydrogen atoms bound to

each, assuming they are not sterically hindered and can rotate freely around

the carbon-carbon bond axis. Thus the number of distinguishable, unique

species is reduced from 256 to only 36 (see Table 5.7). Nevertheless, ethane’s

two carbon atoms introduce a site preference component in certain cases, as

we will show below.

The probability of forming a given isotopic species (based on the relative abun-

dances of each isotope in the available pools) must be multiplied by the number

of ways of forming each species when ethane’s symmetries are taken into ac-

count. For example, there are three possible ways to make H2D
12C– 12CH3, all

three of which are identical to the three possible ways to make H3
12C– 12CH2D,

resulting in a sixfold redundancy. Likewise, H3
13C– 12CH3 is identical to

H3
12C– 13CH3, and so on. But some of the possible isotopic species are not

redundant in this way, and in these cases, site specificity can apply. In an

ethane molecule that is already isotopically asymmetric, e.g., H2D
12C– 12CH3,

swapping in an additional heavy isotope can occur either at one carbon site

or the other, making one of four distinct forms, either HD2
12C– 12CH3 or

H2D
12C– 12CH2D if a D is swapped in for an H, and either H2D

13C– 12CH3 or

H2D
12C– 13CH3 if a 13C is swapped in for a 12C. It is in this sense, requiring

substitution of two or more heavy isotopes, that a kind of site specificity applies
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to ethane. This could also be considered a “clumping” of isotopes of ethane,

as each addition of a heavy isotope will be “clumped” one, two or three bonds

away from any that are preexisting in the molecule. A single study by Clog

et al. looks at the occurrence of 13C– 13C “clumping” in ethane (Clog et al.,

2017), relative to an expectation based on natural abundances and tempera-

ture, concluding that most of the observed natural variation in the occurrence

of this clumped isotopologue reflects kinetic fractionation processes in natural

gases of various thermal maturities.

One further step up in complexity, propane is the smallest alkane with multi-

ple structurally distinct atomic sites, having a central carbon with two bound

hydrogen atoms, and two identical “terminal” carbon atoms, each bound to

the central carbon and to three hydrogen atoms. It is here, still with only two

atomic elements, and the same four stable isotopes involved, that we can be-

gin to appreciate the broader range of isotopic forms (216 unique to propane)

that are possible in molecules with multiple structurally distinct sites. Many of

propane’s unique isotopic forms are isotopologues, while some are isotopomers,

i.e., structurally identical molecules that have the same number of atoms of

each isotope, but in which the isotopes are arranged in different positions. The

conventional nomenclature itself dramatically fails to capture the vast array of

possible isotopic arrangements, even in a molecule this small. In propane there

may be useful geochemical forensic information not only in 13C– 13C, 13C–D

or D-D clumping, as well as the site-preferences of both 13C and D between the

terminal and central positions, but also in the combination of site preference

and multiple heavy isotope substitution. For example, starting with the rel-

atively simple context of thermodynamically equilibrated hydrogen isotopes,

in a propane molecule with one deuterium atom, does that deuterium atom

prefer to be bound to the central carbon atom, or to the terminal carbon atom,

assuming the carbon atoms are of either all 12C or all 13C? This question was

recently addressed both theoretically and experimentally, in Piasecki et al.,

2018 and Xie et al., 2018, with the experimental work suggesting a preference

for deuterium at the central propane position of ∼80 h at 30 C, broadly con-

sistent with computational predictions. With this information one is bound

to wonder how this site preference might shift with each additional deuterium

atom on the propane molecule. Might there be a pattern predicting which site

they would prefer? Is this pattern measurably altered in propane molecules

with mixtures of 12C and 13C? For decades, these questions were generally out
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of reach to experimentalists. The dream of isotomics is to quantitatively pre-

dict and observe the isotopic “anatomies”, or “isotomes” of organic molecules,

for with access to such information we would surely have much tighter con-

straints on the relative contributions of a vast array of chemical and physical

processes to the molecules we can sample in nature.

Despite the potential useful information buried in isotomic complexity, there

so far exist only a small number of studies reporting variations in even a hand-

ful of the numerous possible isotopic species present in organic molecules (e.g.,

Stolper et al., 2014a, Magyar et al., 2016, Neubauer et al., 2018 and Csernica

et al., 2023), and often in these cases the measurements combine contribu-

tions from multiple isotopic variants. This is in large part due to the technical

challenges of measuring extremely rare isotopic forms in natural abundance

contexts. One strategy to deal with this challenge is to use isotopic labeling,

that is, artificially “doping” or “spiking” molecules with heavy isotopes signifi-

cantly (sometimes orders of magnitude) above their natural abundance, usually

during stages of methods development and proof of concept experiments. In

such studies the normally rare forms are present at higher abundance and are

thus easier to measure quantitatively and to higher precision. Still, isotopic

labeling has its limitations, particularly beyond early methods development

and in the realm of application of these methods to natural samples. Because

of this, the isotope geochemistry community tends to consider isotopic labeling

experiments a means to an end, employing them only as necessary on the way

to applying the techniques to natural samples, where their primary scientific

problems lie. There is also always a significant risk of contaminating natural

samples or laboratory instruments and equipment with unwanted and hope-

lessly difficult-to-eradicate heavy isotopes, making such labeling experiments

come with an undesirably high potential cost. This is especially true in labora-

tories relying heavily on mass spectrometry for isotopic discrimination, where

measurement involves sample destruction, and thus direct contact between the

instrumentation and the molecule under observation. In contrast, nondestruc-

tive analyses such as nuclear magnetic resonance, in which sample never comes

into contact with the instrument itself, are less vulnerable to this hazard, and

routinely use deuterated solvents as part of everyday measurements.

As instruments and techniques emerge that allow us to examine molecules

of greater molecular weight and complexity, the number of isotopic variants
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(isotopologues and isotopomers) whose relative abundances we can measure

and compare increases combinatorically. For a variety of reasons, one class of

molecules holds particular appeal for study at the current stage: the amino

acids, a set of small organic molecules that each contain an amine and a

carboxyl group. The smallest of these (and the only non-chiral amino acid)

is glycine, which has just two carbons and the simplest possible R group, a

hydrogen atom. Alanine is one carbon atom more complex than glycine, with

an R group of CH3, making it the most simple chiral amino acid. Glycine and

alanine belong to a small set of about twenty amino acids that are genetically

encoded and make up the proteins in all known life. All of these belong in

the category of α-amino acids, i.e., the carboxyl and amine groups are both

bound to the α-carbon. Several hundred additional non-proteinogenic amino

acids exist in relatively low abundance, primarily outside of earth, some of

which have been studied on carbonaceous chondrites. Many of these amino

acids are β-, γ-, δ- and ε-amino acids, a feature that distinguishes them from

the abundant terrestrial α-amino acids. Alanine was initially chosen for this

work in large part because of its simplicity relative to other amino acids, but

also because of its central roles in metabolism and relatively high abundance

both outside of earth and within terrestrial biology.

Alanine, like propane, is made of three carbon atoms, and both contain at

least one methyl group, but the similarities between these molecules end there,

and new challenges of analysis begin. Unlike propane, which has two indis-

tinguishable terminal methyl groups, each carbon site of alanine is unique.

The molecule includes two oxygen atoms and a nitrogen atom, making it in-

herently isotopically and structurally more complex than the alkanes, and in

turn much trickier to handle. Alkanes lack hydrophilic and reactive groups,

and can be manipulated in the gas phase and separated from each other and

from contaminants using common laboratory practices involving a Schlenk line

and cryogenic trapping, lending themselves cooperatively to gas-source mass

spectrometry. In contrast, alanine, and amino acids more generally, contain re-

active functional groups, exist as solids at room temperature, and decompose

when heated, rather than evaporating. Studying amino acid isotopic struc-

tures by mass spectrometry requires laboratory equipment and experimental

protocol adaptations that take into account the chemical differences between

well-behaved hydrocarbons and tricky amino acids. Generally this involves

some kind of derivatization, i.e., addition of functional groups to the amino
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acid reactive sites that result in a new, larger molecule with comparatively

increased volatility and reduced reactivity, but which still retains the carbon

backbone and some functional groups from the original amino acid. In our

lab, the introduction of such derivatized amino acid sample material occurs

via a prototype gas inlet system, which is contained inside a modified oven

designed for gas chromatography. This system uses helium as a carrier gas,

which feeds into an electron impact ionization source where the volatilized

sample is ionized.

One example of a fundamental proof-of-concept experiment in isotopic studies

applied to several n-alkanes (those discussed above) and other small molecules

has been to equilibrate the intramolecular isotopic structure at a fixed tem-

perature, either internally (as in the case of N2O (Magyar et al., 2016), CO2

(Eiler et al., 2004; Eiler, 2011), and methane (Stolper et al., 2014a; Xie et

al., 2018)), with carbon and oxygen in the CO2(aq)–HCO3
– (aq)–CO3

2– (aq)

system (Zhang et al., 1995; Uchikawa et al., 2021), or with hydrogen/deu-

terium atoms in H2O (Xie et al., 2018) or H2 (Horibe et al., 1995), using fairly

straightforward procedures involving catalysts in gas phase. In contrast, ala-

nine requires dissolution in water in the presence of an enzyme in order to

isotopically equilibrate any of its carbon or hydrogen sites. Because of this,

gas phase experiments on alanine are not possible; instead, any isotopic ma-

nipulation of alanine must take place in an aqueous solution, and analysis

on gas-source mass spectrometers requires derivatization of alanine’s charged

groups, meaning that additional atoms must be taken into account for in any

mass spectrometric measurement. More recently, measurements using electro-

spray ionization coupled to Orbitrap-based mass spectrometry have success-

fully analyzed carbon isotope distributions in alanine without derivatization,

with the limitation that the C-2 (α) and C-3 (β) sites are indistinguishable

due to lack of fragmentation across the bond between these two carbon atoms

(Weiss et al., 2023).

In spite of these challenges, isotopic equilibration of alanine with another

molecule is an appealing proof of concept experiment, and an important step

to take prior to trying to interpret the isotopic signatures of samples gathered

in nature. The answer can be predicted from first principles using various

degrees of sophistication, providing theoretical bases against which experi-

mentalists can evaluate results. In the field of stable isotope geochemistry,
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opportunities to test specific hypotheses against rigorous theoretical predic-

tions are not abundant in aqueous systems, in part because of the complica-

tions introduced by solvation, but also due to the challenge of finding systems

that are conducive to investigation with the available tools, and where equi-

librium can be unambiguously established (possibly with the aid of enzymes,

such as carbonic anhydrase, e.g., Uchikawa et al., 2021). For example, it

is only relatively recently that 13C-12C fractionations were available in the

CO2(aq)–HCO3
– (aq)–CO3

2– (aq) system (Zhang et al., 1995), and theoret-

ical calculations that accurately recovered observed fractionations have only

existed within the last two decades (Rustad et al., 2008). The study of site-

specific isotope effects associated with amino acid-keto acid transamination

reactions is similarly fundamental.

The ALT enzyme catalyzes the transamination reaction below (written stoi-

chiometrically in Equation 1.1 and illustrated in Figure 3.1):

HOOC−CO−(CH2)2−COOH + CH3−CHNH2−COOH⇀↽ (1.1)

CH3−CO−COOH + HOOC−CH(NH2)−(CH2)2−COOH

Figure 1.1: The alanine-pyruvate transamination reaction, catalyzed by the
alanine transaminase enzyme (ALT), EC number 2.6.1.2.

This transamination reaction was first discovered by Braunstein and Kritzman

in the mid-1930s (Braunstein et al., 1937), among the earliest characterizations

of biological transformations of amino acids to their corresponding keto acids.

The equilibrium constant and kinetics of this reaction were first examined

by Lénárd and Straub in the early 1940s (Lénárd et al., 1942). The alanine

transamination reaction, mediated by ALT, serves a fundamental and primary

central metabolic function required for all life as we know it, carrying out both

amino acid synthesis for protein construction, as well as amino acid catabolism

for gluconeogenesis, depending on the fluctuating needs of the organism. ALT

is ubiquitous across all branches of life, existing in many slightly different
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evolved forms known as isoenzymes (e.g., DeRosa et al., 1975). The sequences

and structures of three of these isoenzymes (one of several Hordeum vulgare

(barley) isoenzymes, one of Escherichia coli K-12, and one of two Homo sapiens

isoenzymes) are available on the RCSB Protein Data Bank. In mammals,

the enzymatic conversion is key to the Cahill cycle, a sequence of reactions

mediating transfer of amino groups and carbon between skeletal muscles and

the liver (Felig, 1973). Catabolic degradation of amino acids yields nitrogen

that is transaminated from alanine to form pyruvate. The resulting alanine is

directed to the liver where the nitrogen enters the urea cycle and the pyruvate

is used to produce glucose. The activity of human serum ALT is routinely

assayed in standard blood panels for clinical diagnosis of human liver injury

and disease, and its role in cancer metabolism is an active area of research

(Albers et al., 2008).

For the purpose of stable isotope biogeochemical investigation in small organic

molecules, ALT is a uniquely well suited catalyst. While the original intent

of this study was to use ALT as a means to isotopically perturb the carbon

backbone of alanine by reacting it to form pyruvate and measuring the isotopic

offset between product and reactant, in the process of working through compli-

cations in that set of experiments, we (re)discovered a useful secondary feature

of this enzyme that revealed an opportunity to study hydrogen-deuterium ex-

change kinetics and equilibrium site preferences for four hydrogen atoms bound

to two unique, adjacent carbon atoms. This work yielded unexpectedly fruitful

isotopic data, which we present here in addition to our carbon isotope study.

The work of this thesis is presented as follows:

In Chapter 1 (this chapter), we give an introduction to our work, providing

some background for context and summarizing each chapter.

In Chapter 2, we present a set of theoretical predictions for the carbon iso-

tope distribution between equilibrated carbon sites of alanine and pyruvate.

We start with the simplest possible theoretical treatment, and work progres-

sively through higher levels of theory, showing consistency in the direction and

magnitude of expected fractionation across these treatments.

In Chapter 3, we present our experimental work to confirm the predictions

made in Chapter 2 by measuring the δ13C of the α carbon site in alanine that

has undergone equilibration with the analogous carbon site in pyruvate via
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the alanine transaminase enzyme (ALT).

In Chapter 4, we describe the process that led to our (re)discovery of hy-

drogen deuterium exchange in amino acids catalyzed by transaminases. We

then provide a literature review on the small body of historical work on this

system, which took place primarily during the 1960s and 70s. This literature

summary provides the background necessary for the reader to appreciate our

experimental work presented in the next chapter.

In Chapter 5, we present novel 1H NMR and 13C NMR experimental obser-

vations of intermolecular hydrogen isotope exchange between water and the

α and β carbon sites of alanine, as well as intramolecular hydrogen isotope

exchange between the α and β carbons, all of which is catalyzed by alanine

transaminase (ALT). These experiments track the abundances of eight iso-

topically distinct alanine species varying in their position and/or number of

hydrogen isotopes over a series of reactions differing in initial alanine isotopic

composition and initial water isotopic composition. With the data collected

we are able to determine up to thirteen rate constants describing the transfer

of hydrogen and deuterium amongst these eight isotopic variants and water,

as well as the thermodynamic equilibrium constants between them.
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C h a p t e r 2

THEORETICAL UNDERPINNINGS: ESTIMATION OF THE
INTERMOLECULAR 13C-12C FRACTIONATION BETWEEN
ALANINE AND PYRUVATE AT THE α-CARBON AND THE
DISTRIBUTION OF 1H AND 2H IN ALANINE EFFECTED
THROUGH THE ALANINE TRANSAMINASE REACTION

2.1 Preamble

In this chapter we present key theoretical underpinnings for the experiments

performed in Chapters 3 and 5. The development of open-source, freely avail-

able, user-friendly quantum chemistry software (such as NWChem developed

at Pacific Northwest National Laboratory), as well as an increasing knowledge

base about how to use these codes in stable isotope geochemistry (Schauble

et al., 2006; James R. Rustad, 2016) enables experimentalists to routinely

carry out theoretical estimates of expected fractionation factors. The major-

ity of this chapter deals with estimating 13C-12C preference at the α carbon

in converting the CH3 –C–COOH backbone between zwitterionic alanine and

pyruvate, which is experimentally addressed in Chapter 3. We also estimate

the free energy change on exchanging D and H between the C(H, D)–C(H, D)3

α and β carbons, which is the focus of measurements presented in Chapter 5.

The first part of this chapter, which focuses on α site carbon isotope frac-

tionation between alanine and pyruvate, formed the basis for a collaborative

publication with McNeill et al., 2020, listed in Published Content and Contri-

butions. The collaboration with Dave Dixon (U Alabama) and Eric Bylaska

(PNNL) was initiated because of the persistent difficulties reconciling our ex-

perimental measurements (the subject of Chapter 3) with our theoretical pre-

dictions presented here. We envisioned that the work done in this chapter

would be combined with the experimental measurements in Chapter 3 in a

publication. It does a thorough job of laying the groundwork for theoreti-

cal understanding, including empirical techniques, computational calculation

of full potential energy surfaces including anharmonic corrections, full vibra-

tional calculations using density functional and molecular orbital methods, a

complete treatment of isotopic substitutions at the non-exchanging site, the
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potential effects of hydrated and enolated forms of pyruvate, as well as calcula-

tions on the α-ketoglutarate/glutamic acid system. Partly because of compu-

tational facilities, we were limited to calculations on single molecules without

explicit solvation effects. We sought out the collaboration with U Alabama and

PNNL to leverage their capabilities in large-scale electronic structure calcula-

tions and ab initio molecular dynamics simulations to include explicit water

molecules. While including solvation effects did not fundamentally change

the ultimate prediction of the carbon isotope fractionation, those capabilities

were novel enough to warrant a separate, computationally focused publication

because treatment of solvation effects is important in across a wide range of

problems in chemical sciences. Dixon’s group therefore took the lead in the

McNeill et al., 2020 publication, despite the fact that the groundwork for the

specific alanine-pyruvate isotope fractionation problem was very completely

laid out by our group. In the current scientific culture, work that shows a

discrepancy between theoretical predictions and experimental observations is

generally not published in a formal academic journal. For this reason we have

put off journal publication of this chapter until the discrepancy between theory

and experiment can be reconciled.

2.2 Abstract

In the first part of this chapter, we performed a set of electronic structure

calculations to estimate the equilibrium constant, K1, for the exchange of 13C

between the α carbon of alanine and the corresponding carbon site of pyru-

vate, an isotopic exchange that is possible in biological systems via alanine

transaminase (ALT), as given in Reaction 2.1. Along with the alanine-pyruvate

couple, we also studied the simpler analogous molecular couples, methylamine-

formaldehyde (MA-FA), and isopropylamine-acetone (IA-AC). We used den-

sity functional theory (DFT) to calculate the zero-point energies within the

local density approximation (LDA), as well as with the hybrid B3LYP func-

tional. Solvent effects in the alanine-pyruvate system were approximated by

protonating the pyruvate to pyruvic acid (to mimic hydrogen bond donation

into the carboxylic acid group) and by protonating the amine group on ala-

nine to create H–alanine+. The MA-FA, IA-AC, and alanine-pyruvate systems

all indicate fractionations of -7 to -12 h (expressed as 1000*ln(Keq), where

Keq =
( [12C−−O][13CHNH2]

[13C−−O][12CHNH2]

)
). The solvent-corrected pyruvic acid-H–alanine+ sys-

tem predicts fractionations of ∼ -10 to -15 h, depending on the exchange-
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correlation functional used. Benchmark calculations on the MA-FA system at

the MP2-aug-cc-pvTZ level give a much lower fractionation, -4.4 h, relative

to that predicted by DFT (-8 to -10 h), indicating the necessity of additional

high-level calculations on the larger systems. Anharmonic corrections, esti-

mated by DFT-LDA calculation of the C=O and C–NH2 potential surfaces

are estimated to be less than 0.5 h. Calculations on the hydrated from of

pyruvate, measured by 1H NMR to be present at 10 to 20% under experimen-

tal conditions, predict, unexpectedly, a stronger fractionation (by 2 to 5 h,

depending on the DFT functional). It is also predicted that the presence of 2H

at the α-carbon site (rather than 1H) will decrease the expected fraction by

30%. The fractionation predicted by DFT, even without the use of position-

specific carbon isotope analysis (i.e., the isotopic signal is diluted by a factor of

three by averaging over the three alanine carbon sites using compound-specific

isotopic analysis).

The last section of this Chapter (2.7 presents electronic structure calculations

estimating the distribution of 1H and 2H between the α and β sites in alanine,

relevant to Chapter 5. We put the calculations in this Chapter to keep the

electronic structure calculations in one place.

2.3 Introduction

The measurement of isotopic fractionation at particular sites within molecules,

known as site-specific, or position-specific isotope analysis (PSIA), has the po-

tential to reveal diagnostic information about processes that produce molecules

observed in natural systems. Notable examples include recent studies of carbon

isotopes in (1) propane to reveal formation mechanisms in hydrocarbon reser-

voirs (Xie et al., 2018), (2) methionine to discern between sources (Neubauer

et al., 2018), and (3) amino acids in the Murchison meteorite—a well-studied

carbonaceous chondrite—where it was proposed that abiotic alanine recovered

from the meteorite may have been produced by the Strecker reaction mecha-

nism (Chimiak et al., 2020). Such measurements may also be useful in under-

standing the details of chemical reaction mechanisms through measurement of

position-specific kinetic isotope effects. Before embarking on such problems,

it is important to establish the technique by making measurements on sim-

ple systems at equilibrium. While gas-phase systems at high temperatures

could be used for this purpose, a large number of stable isotope studies to-

day are focused on relatively low-temperature biogeochemical processes taking



17

place in the presence of water. In addition to the difficulties of the isotope-

ratio mass spectrometry measurements themselves, successful PSIA in these

systems depends heavily on quantitative separations that do not impose addi-

tional fractionation on the analytes. It is imperative to validate techniques by

using the simplest chemical reaction possible that has no difficulties coming

to chemical equilibrium at aqueous temperatures. We choose here a simple

aqueous biochemical reaction, the alanine transaminase (ALT) reaction as a

first foray into applying PSIA in aqueous systems. The ALT enzyme catalyzes

the transfer of an amino group from alanine to α-ketoglutarate to produce

pyruvate and glutamate (see Figure 2.1). This reaction swaps an NH2 group

for an oxygen at the α-carbon site, thus an equilibrium isotopic fractionation

at the α-carbon site is expected for the isotope exchange reaction:

CH3−13CO−COOH + CH3−12CHNH2−COOH⇀↽ (2.1)

CH3−12CO−COOH + CH3−13CHNH2−COOH

According to the general rule that heavy isotopes fractionate into shorter,

stronger bonds (Schauble, 2004), we expect that this isotope exchange reaction

will be driven to the left at chemical equilibrium, i.e., CH–CO–COOH will

be preferentially enriched in 13C because of the strength of the C––O bond

relative to C–NH2.

We have performed compound-specific isotopic analysis of the evolving ala-

nine produced during this reaction (see Chapter 3) and, surprisingly, do not

observe whole-molecule depletion of 13C at a precision of < 1 h. The position-

specific measurement would, prima facie, be expected to yield a threefold

larger fractionation than the compound-specific measurement, assuming the

isotopic composition of the methyl and carboxylic acid groups do not signif-

icantly affect isotope exchange at the α-carbon. In this chapter we estimate

the magnitude of this fraction using a variety of techniques ranging from fully

empirical estimates to fully ab initio electronic structure calculations and also

will include attempts to account for the role of solvation in driving the ob-

served fractionation. The hypothesis driving the work is that our chemical

intuition based on bond length/bond strength considerations is too simplistic

and that the range of values obtained from the various more quantitative and

sophisticated estimation methods will indicate the plausibility of a site-specific
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Figure 2.1: The alanine-pyruvate transamination reaction, catalyzed by the
alanine transaminase enzyme (ALT), EC number 2.6.1.2.

fractionation of less than 3 h, consistent with our inability to measure any

significant compound-specific fractionation at < 1 h precision.

2.4 Predicted Isotope Effects on Molecular Free Energies Based on

C–N, C–H, and C––O Vibrations Only

In this section we present two semi-quantitative analyses of the vibrational

energies of isotopically substituted forms of the molecules of interest to this

study, based on application of simplified analytical treatments of bond vibra-

tions and their associated isotope effects. We present these analyses prior to

the density functional theory (DFT)-based electronic structure calculations

and wavefunction-based first-principles models constructed for this study in

order to develop physical intuition regarding the directions and magnitudes

and causes of the isotope effects we expect to observe in the more complete

(and presumably accurate) DFT and first-principles models in Section 2.5.

This exercise, in a sense, quantifies our intuition about the expected fraction-

ation qualitatively based on the relative strengths of the carbonyl and amine

bonds and also assess the likely magnitude of anharmonic effects.

2.4.1 Approximate Analysis Based on Canonical Frequencies for

Nearest-Neighbor Stretching Modes

One way to estimate the partitioning of 13C between pyruvate and alanine by

Reaction 2.1 (and analogous reactions) is to consider the energetics of isotope

partitioning in simpler reactions of the form R2
13C––O + R2

12CH–NH2 ⇀↽

R2
12C––O + R2

13CH–NH2, which define a set of analogs for pyruvate-alanine.

The simplest representative system would be methylamine and formaldehyde,

where the R groups are all hydrogen. However, it is instructive to perform an

analysis of such reactions using vibrational frequencies for two-atom stretching

motions in canonical “functional groups”, as approximations for the specific

frequencies in the particular molecules of interest. This exercise is simply an
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attempt to quantify our intuition about the sense of the fractionation. For

this calculation, frequencies were taken from (K. Nakanishi, 1962).

1. The carbonyl group C=O stretch: 1750 cm−1

2. The amine group C–N stretch: 1100 cm−1

3. The amine group C–H stretch: 3000 cm−1

These canonical frequencies can be assumed to represent the most abundant

isotopic forms of each functional group; 12C=16O, 12C–14N, and 12C–1H, re-

spectively. Table 2.1 presents the reduced masses of diatomic stretches for

the 12C and 13C substituted forms of each functional group, under the ap-

proximation that each nuclide’s mass corresponds to a cardinal number mass

in Da (e.g., the reduced mass for the 12C=16O group = (12*16)/(12+16)).

This information can be used to compute the frequency associated with di-

atomic stretching for the 13C substituted form of each function group, using

the relation: ω13 = ω12 ×
√

(µ12/µ13 where ωi and µi are the frequency and

reduced mass, and i values of 12 or 13 indicate the 12C or 13C substituted

forms, respectively (Table 2.1).

The free energy of a quantum harmonic oscillator is given by (see, e.g., K. Den-

bigh, 1955):

A =
∑
i

1

2
hωi + kbT ln(1 − e

−hcωi
kbT ) (2.2)

For the isotope exchange reaction:

13C−−O + 12CHNH2 ⇀↽ 12C−−O + 13CHNH2 (2.3)

Table 2.1: Reduced masses of diatomic stretches for the 12C and 13C substi-
tuted forms of functional groups 12C=16O, 12C–14N, and 12C–1H

µ12 µ13 ω12(cm−1) ω13(cm−1)

C–N 6.4615 6.7407 1100 1076.98
C=O 6.8571 7.1724 1750 1711.11
C–H 0.9231 0.9286 3000 2991.11
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The vibrational free energy change ∆A can be calculated from Equation

2.2 summed over the four frequencies for the reactants and products (i.e.,

the C=O, C–N and two C–H stretches). The equilibrium constant, Keq =( [12C−−O][13CHNH2]

[13C−−O][12CHNH2]

)
, is equal to e−

∆A
RT . Table 2.2 provides vibrational energies

(joules per mole of stretching bonds) and corresponding isotope exchange en-

ergies and equilibrium constants at T= 310 K (“body” temperature is used

for these calculations, as the experimental work that will follow is concerned

with biological fractionation mediated by enzymes taken from warm-blooded

mammals). Note that Keq is less than one for the reaction as written in Equa-

tion 2.3 as the 13C prefers the stronger bonding environment in the carbonyl

bond. At these temperatures and for the isotope and bonds of interest, the

thermal contributions to Keq beyond the zero-point energy are less than 1

h—negligible at the level of approximation we make here. From Table 2.2,

we see that this simple calculation predicts an approximately 16 h enrichment

of 13C in the carbon bound to oxygen, corresponding to pyruvate in Reaction

2.1. This prediction seems reasonably in line with general experience in mea-

suring fractionations, and consistent with our prior assumptions and with our

motivation for trying this system as a prototype. For example, the 13C-12C

fractionation between organic and inorganic materials is around 40 h (Nier

et al., 1939). A 16 h site-specific fractionation would be expected to appear as

a ∼ 5.3 h fractionation in the compound-specific measurements, well within

our ability to detect.



21

Table 2.2: Calculated free energy (A), ∆A, and 1000*ln(Keq) for the 12C and 13C substituted forms of functional groups
12C=16O, 12C–14N, and 12C–1H

A 12C (Joules) A 13C (Joules)
ZPE 12C Thermal 12C Total 12C ZPE 13C Thermal 13C Total 13C

C-N 1.0925E-20 -2.6111E-23 1.0899E-20 1.0697E-20 -2.9064E-23 1.0668E-20
C=O 1.7381E-20 -1.2765E-24 1.7380E-20 1.6995E-20 -1.5290E-24 1.6994E-20
C-H 2.9797E-20 -3.8691E-27 2.9797E-20 2.9708E-20 -4.0320E-27 2.9708E-20

∆A (Joules) ∆A (J/mol) Keq 1000*ln(Keq)
ZPE + Therm 6.6655E-23 40.14 0.984554587 -15.6

ZPE Only 6.9355E-23 41.77 0.983933818 -16.2
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2.4.2 Computation of Potential Energy Surfaces and Anharmonic

Effects

A second way to estimate the expected 13C/12C fractionation in the chemical

system of interest to this work is to compute the potential energy surfaces for

the C–N, C–H, and C––O stretching motions using electronic structure calcu-

lations on actual molecules. Taking the methylamine-formaldehyde couple as a

model system, and using a “z-matrix” internal coordinate representation of the

atomic positions, the C–N, C–H, and C––O bond lengths are scanned over

a -0.04Å to 0.04Å range about the equilibrium bond length (obtained from

a geometry optimization) of the molecule (100 intervals spaced 0.0008Å ).

The potential surface is fitted to a Morse function: E = D(1 − e(−a(r−r0)))2.

Once this is complete, the zero-point energies, along with anharmonic cor-

rections, can be obtained from the parameters D, a, and r0. D and a are

fitted to the computed potential surface; r0, the equilibrium bond length, is

not fitted, but determined on the optimization step prior to the bond-stretch

calculations. The potential surface was computed with NWChem (Valiev et

al., 2010), using density functional theory (DFT). We used the local density

approximation (LDA) with the Slater exchange functional (Slater, 1951), the

VWN correlation functional (Vosko et al., 1980), and the Pople-type triple

zeta 6-311++G(2d,2p) basis (Ditchfield et al., 1971). The Morse parameters

can be used to calculate the associated harmonic frequency, ω0:

ω0 =

√
2Da2/µ

2π
(2.4)

(where µ is the reduced mass). The anharmonic constant, xe, which represents

the degree of anharmonicity of the bond of interest, is given by:

xe =
hν0
4D

(2.5)

Values of ν0 and xe are then used to compute the energy levels:

En = hν0[(n +
1

2
) − xe(n +

1

2
)2] (2.6)

For additional background information on these calculations, see, e.g., Richet

et al., 1977.
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Table 2.3: Morse function parameters for HCl potential energy surface (LDA
(SVWN) 6-311++G(2d,2p)).

De (Ha) 0.1382
a (bohr−1) 1.054

r0 (bohr) 2.438957
ω0 (cm−1) 2879.65

xe 0.018

We tested the accuracy of our calculations by comparing the results of the

method outlined above with the potential energy surface of HCl computed at

the LDA/6-311++G(2d,2p) level using NWChem. The optimized dimer has

a bond length of 129.064 pm (2.438957 bohr). Evaluating the energy surface

in the same manner described above gives the parameters in Table 2.3. The

computed value of ω0 (obtained by using the function fitting capabilities in

gnuplot) is very close to the 2877.53 cm−1 harmonic frequency computed in

NWChem (both of these are computed using NWChem, but ω0 here is from the

anharmonic surface and the value just reported is from a harmonic frequency

calculation done with analytic second derivatives within the NWChem code).

The computed anharmonic constant of 0.018 is equal to the experimental value

given in Richet et al., 1977 (note: the experimental value for ω0 given in Richet

et al., 1977 is 2990.946 cm−1).

The set of gnuplot commands to fit the Morse function to the potential energy

surfaces is given in Section 2.9.1.

The C–N, C–H, and C––O potential surfaces were evaluated with NWChem

in the same way as the HCl surface, using the same level of theory, LDA/6-

311++G(2d,2p). Using the local density approximation (rather than gradient-

corrected density functional theory) keeps the theory conceptually straightfor-

ward and, for carbon isotope exchange on small molecules with no hydrogen

bonding, works as well as any other functional (James R. Rustad, 2016, Fig-

ure 5.3). The potential energy surface calculations were done on methylamine

and formaldehyde, starting from the fully optimized structures obtained using

DFT. When scanning a single bond in a model more complex than a simple

dimer, all other internal coordinates are relaxed at each constrained point on

the C–N, C–H, and C––O bond length scans. The results of the fitting are

given in Table 2.4. Evaluating Equation 2.6 for n=0, gives an estimate of

19.3 h enrichment of 13C for formaldehyde relative to methylamine, which is



24

Table 2.4: De, a, r0 fitted parameters and derived quantities, ω0 and xe (using
Equations 2.4 and 2.5).

Fitted parameters Derived quantities

C-N De (Ha) 0.13476 ω0
12C (cm−1) 1097.2

a (bohr−1) 1.04516 ω0
13C (cm−1) 1074.2

r0 (bohr) 2.73179 xe 0.009

C-H De (Ha) 0.12410 ω0
12C (cm−1) 2884.7

a (bohr−1) 1.08609 ω0
13C (cm−1) 2876.0

r0 (bohr) 2.09554 xe 0.026

C=O De (Ha) 0.29332 ω0
12C (cm−1) 1800.6

a (bohr−1) 1.19750 ω0
13C (cm−1) 1760.5

r0 (bohr) 2.26688 xe 0.026

in acceptable agreement with the ZPE-only estimate of 16.2 h presented in

Section 2.4.1. If only the harmonic term is kept, the estimate is raised by 0.3

h to 19.6 h. As with the thermal contributions above the zero-point energy,

the anharmonic contribution is small, so we chose to ignore the anharmonic

terms hereafter. More particularly, these calculations indicate that while an-

harmonic effects do tend to reduce the observed fractionation, they are small

and cannot explain the lack of fractionation observed in our compound-specific

experiments.

The codes to do the “relaxed” scans (adapted from Ohlin, 2013) are given in

Section 2.9.2.

2.5 Full Vibrational Calculations Using Density Functional and

Molecular Orbital Electronic Structure Calculations

The analyses presented in sections 2.4.1 and 2.4.2 have the advantage that the

dynamics and energetics driving isotope exchange reactions can be evaluated

by analytical expressions and their causes can be clearly identified. However,

they involve substantial simplifications—most notably, they ignore modes of

motion other than the stretching frequencies of nearest neighbor atoms; there-

fore, they are approximations. In this section, we present a fuller analysis of the

energetics of 13C/12C isotope exchange reactions among the chemical species

of interest to this work, using a DFT treatment of full molecular vibrational

energetics.
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Figure 2.2: Potential energy surfaces for bond stretching calculations (note
the use of atomic units).

2.5.1 Density Functional Electronic Structure Calculations

Consider once again 12C–13C isotope exchange between formaldehyde and

methylamine:

H2
13CO + H3

12CNH2 ⇀↽ H2
12CO + H3

13CNH2 (2.7)

In the harmonic approximation, the free energy of this reaction can be evalu-

ated by calculating the reduced partition function ratios for methylamine and

formaldehyde. The reduced partition function ratio can be obtained from a

list of the vibrational frequencies of the molecule with the heavy (h) and light

(l) isotopes at the exchanging site.

β =

(
Qh

Ql

)
= Πi

uhi

uli

e−uhi/2

1 − e−uhi

1 − e−uli

e−uli/2
(2.8)

where u = 2πh̄cω/kbT (see Urey, 1947, and Bigeleisen et al., 1947). In this

expression, the Teller-Redlich rule is used to eliminate the need to evaluate
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the rotational contributions, and the frequencies run over the 3N-6 internal

vibrations.

This is only strictly applicable to molecules in the gas phase. For the systems

of interest here, the molecules are dissolved in water, and the six rotational and

translational degrees of freedom are, in part, externally hindered, and become,

in part, solvent-coupled vibrations. These vibrations are difficult to measure,

and there are no measurements available for the pyruvate/alanine system.

They can, in principle, be calculated by including solvent water molecules in

quantum mechanical calculations (see James R. Rustad, 2016), or, in classical

molecular dynamics calculations (see Bacsik et al., 2002). This level of detail is

beyond the scope of this study and is ignored (i.e., we are effectively evaluating

the zero-point energy of the isotope exchange equilibria among rotationless

vapor phase molecules).

As noted in Section 2.4.1, the energetics of the isotope exchange reactions

that we consider (13C/12C exchanges among the compounds of interest at 310

K) can be evaluated to a good approximation considering only the zero-point

energy contributions. For a harmonic oscillator with N normal modes the

zero-point energy is:

ZPE =
N∑
i

1

2
hcωi (2.9)

where h is Planck’s constant, c is the speed of light, and ωi is the frequency of

the ith mode. We define ∆ZPE to be the difference in ZPE between the 13C-

substituted and normal (12C-containing) version of a given compound. Thus,

∆ ZPE for the 12C–13C exchange can be defined:

∆ZPE =
N∑
i

1

2
hc(ω12

i − ω13
i ) (2.10)

The FORTRAN code used to calculate the ∆ZPE at 310 K is given in Section

2.9.3.

Here we define ∆ZPE as a positive number that represents the change in

zero-point energy upon substitution of 12C for 13C in a given bond environ-

ment, (i.e., heavy-isotope bearing molecules have lower vibrational energies
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than their light-isotope bearing equivalents). ∆ZPE has larger absolute mag-

nitude for molecules with more confining bonding environments (i.e., steeper

potential energy surfaces) for the atomic site in question.

To estimate the equilibrium constant for a given isotope exchange reaction,

we calculate the difference in ∆ZPE for the exchanging molecules (designated

∆∆ZPE). For example, to estimate the equilibrium constant for the reaction

in Equation 2.7, take ∆ZPE(formaldehyde) - ∆ZPE(methylamine) (468.11

J/mol–442.8 J/mol) = +25.3 J/mol; Keq = exp(-25.3/RT); 1000*ln(Keq) =

-9.8 (see Table 2.5). To keep the signs straight, note that Equation 2.7 has
12C (products) swapped for 13C (reactants) for the formaldehyde. This is

“positive”, according to the convention described immediately above. On the

other hand, Equation 2.7 has 13C (products) swapped for 12C (reactants) in

methylamine. This is “negative” according to the convention. Again, Keq is

less than 1 as the reaction, as written in Equation 2.7, with 12C in formaldehyde

in the products, is unfavorable.

∆ZPE estimates for compounds and substitutions of interest to this study are

given in Table 2.5. The main conceptual difference between these values and

those given in Sections 2.4.1 and 2.4.2 is that the values in Table 2.5 consider

energetic contributions from all of the normal modes, not just the C=O, C–

N, and C–H di-atomic stretching vibrations. The analysis presented here is

more complete, but also more opaque in molecules of the complexity of those

we consider, because the normal modes cannot be obviously associated with

specific molecular motions.
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Table 2.5: Estimates of 12C–13C fractionation for the model systems, using only ∆ZPE terms, as well as Urey-Bigeleisen-Meyer
(abbreviated UBM here). Augmented Triple Zeta (ATZ) represents 6-311++G(2d,2p).

MP2 AUG3 B3LYP ATZ LDA ATZ BP86 ATZ

Formaldehyde (∆ZPE) (J/mol) 464.54 468.11 458.67 452.78
Methylamine (∆ZPE) (J/mol) 453.21 442.8 436.89 431.22
∆∆ZPE 11.33 25.31 21.78 21.56
1000*ln(Keq) -4.4 -9.8 -8.4 -8.4
UBM -7.4 -12.6 -11.5 –

Acetone(∆ZPE) (J/mol) – 634.61 631.82 613.29
Isopropylamine(∆ZPE) (J/mol) – 600.76 601.73 583.7
∆∆ZPE – 33.85 30.09 29.59
1000*ln(Keq) – -13.1 -11.7 -11.5
UBM – -12.2 -10.9 –
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We can also use the fundamental modes computed from our DFT analysis

of the vibrational dynamics to evaluate the Urey-Bigeleisen-Meyer expres-

sion (Equation 2.8), which considers the isotope effects on excited vibrational

states. The results of this analysis are presented in Table 2.5 and indicate

minor differences between fractionations calculated using the Urey-Bigeleisen-

Mayer expressions versus those evaluated using only ∆ZPE terms; these dif-

ferences are possibly significant for reactions involving the smallest molecules

(methylamine and formaldehyde), but negligible for the larger molecules (ace-

tone and isopropylamine). In the interests of simplicity and consistency with

Sections 2.4.1 and 2.4.2, our subsequent discussion will continue to focus on

fractionations computed using ∆ZPE terms only.

The fractionations predicted from the full normal mode analysis are lower than

predicted in Sections 2.4.1 and 2.4.2 for the methylamine-formaldehyde couple,

but generally similar to that simplified analysis for the acetone-isopropylamine

couple. This finding reflects the fact that the contributions of C–H stretches

for the hydrogen atoms representing the R groups are magnified in importance

in smaller molecules (higher frequencies tend to contribute more to the ∆ZPE)

and cancel less perfectly. To see this, compare the cumulative fractionation

plots in Figure 2.3. This figure plots the cumulative sum of the contribu-

tions to ∆ZPE for each molecule of interest. In the case of the acetone-

isopropylamine fractionation, the contributions are fairly clearly delineated:

there are significant contributions from the C–N stretch in isopropylamine

from 1200 to 1500 cm−1, at 1750 cm−1 from the C=O stretch in acetone,

and a contribution from the C–H stretch in isopropylamine near 3000 cm−1.

For the methylamine-formaldehyde couple, one can see two contributions from

C–H stretching frequencies in formaldehyde and three contributions from C–

H stretching frequencies in methylamine. Thus, even though the ∆ZPE does

rise for formaldehyde after the 1750 cm−1 carbonyl stretching frequency (unlike

acetone), it rises more for methylamine than for isopropylamine (three C–H

stretching frequencies for methylamine, as opposed to one for isopropylamine).

The key takeaway here is that even in the case of formaldehyde-methylamine,

with a structural change as large as replacing C-C bonds with C-H bonds,

the final result does not change beyond a few permil; regardless of some dif-

ferences in how the ultimate zero point energies are accumulated across the

frequency spectrum, we still predict a nearly 10 h enrichment of 13C in the
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Figure 2.3: Cumulative contributions to ∆ZPE as a function of frequency for
acetone, isopropylamine, formaldehyde, and methylamine. This style of fig-
ure allows visualization and comparison of the frequencies in a given molecule
that contribute most significantly to the resulting ∆ZPE. In this case, there are
large contributions from C–H stretching frequencies coming from the hydro-
gen atoms representing R groups in methylamine and formaldehyde, occurring
around 3000 cm−1., with the result that the ∆∆ZPE of the methylamine-
formaldehyde couple is smaller than the ∆∆ZPE of the acetone/isopropy-
lamine system. These particular frequency contributions are not part of the
pyruvate/alanine system, and therefore are not representative of our system
of interest.

C=O carbon relative to the C–NH2 carbon, a result consistent with the “back

of the envelope” prediction at the functional group level. Whatever structural

perturbations one could make beyond the immediate functional group, such

as solvating these structures, these are likely to be smaller perturbations than

replacing C–C with C–H. The consistency of results from these sets of cal-

culations argues strongly for a measurable equilibrium fractionation between

pyruvate and alanine (see below). NWChem input files for the DFT calcula-

tions in this study are given in Section 2.9.4.



31

2.5.2 Molecular Orbital Calculations on the Methylamine-Formaldehyde

System

One advantage to introducing the analog methylamine-formaldehyde is that,

even with relatively meager computing resources, this system can be treated

at higher levels of theory using molecular orbital methods including many-

body perturbation theory approaches (MBPT) such as the 2nd-order MBPT

method introduced by Møller and Plesset (MP2) (Møller et al., 1934) and

coupled-cluster methods such as CCSD(T) introduced by Bartlett and cowork-

ers (Bartlett et al., 2007). These methods do not rely on an exchange-

correlation functional (i.e., the SVWN representation of the local density ap-

proximation used above, Slater, 1951, Vosko et al., 1980) and can treat, for

example, van der Waals forces that are absent in DFT. They can serve as a

check on the performance of DFT methods (this is discussed further below).

The MBPT approaches are expensive, with computational needs growing as

the 5th power of the basis set size in MP2 theory, and the 7th power of the

basis set size in CCSD(T). Unfortunately these calculations also tend to be

much more sensitive to basis set size and design than in DFT. The so-called

correlation-consistent (cc-) basis sets by Dunning and co-workers (Kendall et

al., 1992) are designed to systematically approach the complete-basis set limit

when used with these methods, and the CCSD(T,Q,...) approach when used

with the cc-pv(t,q,5,6..)z basis sets represent the current “gold-standard” of

quantum chemistry techniques (at least for systems larger than a very few

atoms). These computational demands put the coupled-cluster techniques

beyond the reach of this study, but we were able to perform vibrational cal-

culations on formaldehyde and methylamine at the MP2-aug-cc-pvTZ level.

MP2 can be thought of as an approximation to CCSD when used with a large

basis set. It is useful to have one set of “anchor” calculations that tie the DFT

calculations here to the world of higher-level methods.

We use the MP2 module of NWChem with the aug-cc-pvTZ basis of Dun-

ning and co-workers (Kendall et al., 1992, which is a triple-zeta basis set.

The Pople-type 6-311++G(2d,2p) basis used in our DFT calculations is also

an augmented triple-zeta basis set (which we abbreviate ATZ), however the

Dunning-type basis is about twice the size of the Pople-type basis.

The results of the MP2 calculations are also shown in Table 2.6. They predict

about half the fractionation predicted with density functional theory (-4.4 h
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Table 2.6: Number of basis functions in the two basis sets used in this work.

aug-cc-pvTZ 6-311++G(2d,2p)

Methylamine 207 104
Formaldehyde 138 74

at MP2 aug-cc-pvTZ as opposed to -8.4 h at LDA-SVWN 6-311++G(2d,2p)).

A fractionation of this modest magnitude is close to the limit of whole-molecule

analysis (due to the dilution effect of the other two carbon atoms, for which

we expect secondary isotope effects to be negligible) and would likely require

position-specific isotope analysis (PSIA) to confirm.

It is important to recognize that these calculations are just a first step towards

more accurate quantum chemical calculations. While the subsequent steps,

had they been feasible with the computational resources at hand, would lead to

a reliable, converged gas-phase fractionation between 12C and 13C in H2CO and

H3CNH2, it is important to point out that this initial MP2 aug-cc-pvTZ value

cannot serve as any kind of “gold-standard” in itself, or be assumed to be better

than the LDA (or, see later B3LYP) 6-311++G(2d,2p) calculations that are

the workhorses of this study. It is only after the progressive sequence of wave-

function models (e.g., CCSD(T,Q,5,. . . )), in conjunction with the progressive

sequence of basis sets (e.g., aug-cc-pv(t,q,5,6,...)z) have been carried out that

a definitively converged value would be obtained. There is also no way to

predict whether the calculated fractionation would increase or decrease as these

further steps are taken. But this initial step does give some indication of the

uncertainties of these calculations, and here it has substantially reduced the

fractionation expected for this system. Thus, these calculations might indicate

that the fractionations are not as large as the more approximate methods

indicate. Note also that, if one were to try to systematically relate/correct

the DFT values to the MO values, there is no indication as to whether 4 h

should be subtracted from the predicted fractionation for pyruvate-alanine, or

that it should instead be multiplied by one half. If, for example, the predicted

fractionation is -15 h, that difference could be important. Without further

study involving additional reaction systems, there is no way to be certain which

is more reasonable.

NWChem input files for the MP2 calculations in this study are given in Section

2.9.5.
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2.6 Density Functional Theory Calculations on the Pyruvate-Alanine

System

2.6.1 Representation of the Aqueous Ions and Effects of Solvation

With the intuition built through the preceding calculations, we now consider

electronic structure calculations of the ∆ZPE for pyruvate and alanine. In

addition to LDA 6-311++G(2d,2p), we also show results for B3LYP (Becke,

1988; Lee et al., 1988) and BP86 (Becke, 1988; Perdew, 1986) functionals,

the former being one of the canonical “hybrid” functionals which includes a

component of Hartree-Fock exchange. BP86 is one of the early Generalized

Gradient Approximation functionals. These GGA and hybrid functionals are

included because it is well known that hydrogen bonds are particularly poorly

described with LDA (Xantheas, 1995). While we do not consider explicit wa-

ters of solvation in these calculations, it is not always completely clear whether

some intramolecular hydrogen bonding might be contributing to the fraction-

ation (in fact, the larger α-ketoglutarate/glutamic acid system definitively

shows internal hydrogen bonding, as discussed below in Section 2.6.4). Re-

sults of these calculations are given in Table 2.7 (also, see discussion below, as

there are several molecules listed in Table 2.7 that we have not yet covered).

There are not alarming differences between LDA and B3LYP for these sys-

tems, although in both cases the B3LYP functional predicts somewhat larger

amplitude fractionation than LDA. Although in many cases over many types

of quantum chemistry calculations, particularly those involving water, hybrid

functionals work significantly better than LDA (Xantheas, 1995), for vibra-

tional frequencies on small molecules there is no indication that this is true.

Again, as mentioned above, work by Zarzycki and Rustad (as reported in

James R. Rustad, 2016) comparing the performance of many functional/basis

set combinations on a set of small molecules taken from Richet et al., 1977,

indicates no dramatic improvement of B3LYP over LDA in this context. Here

we assume they are equally likely to be correct.

A few questions arise here concerning the exact forms of the molecules to use

in the calculations. First, at the pHs of interest, pyruvic acid would be depro-

tonated, indicating that the calculations should be conducted on the pyruvate

anion. To do this, we removed the proton from the carboxylic acid group and

ran the calculations with an overall charge of -1e. The fractionation calcu-

lated between pyruvate and alanine is somewhat smaller than the 13 to 15

h calculated for the analog compounds, yielding 9.4 h (B3LYP) and 7.2 h
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(LDA). However, this estimate is likely to be in error due to solvation effects.

In solution, the carboxylate group would be accepting hydrogen bonds from

surrounding water molecules. Also, in solution, the alanine would be zwit-

terionic. This would be expected to increase the fractionation with a longer

C–NH+
3 bond relative to C–NH2. To account for hydrogen bond donation

to pyruvate, we ran the pyruvate as pyruvic acid. It is reasonable to expect

that the ∆ZPE for solvated pyruvate, with hydrogen bonds donated from sur-

rounding water molecules into the carboxylate group, would lie between the

gas-phase pyruvate anion and gas-phase pyruvic acid. We attempted to run

the alanine as a zwitterion by removing the carboxylic acid proton and mov-

ing it to the amine, however the zwitterion was not stable in the gas phase,

and the proton moved back onto the carboxylate group from the NH+
3 group

upon optimization of the molecule; i.e., the zwitterion is solvent-stabilized due

to hydrogen bonding into the deprotonated carboxylate group. One possible

solution to this problem is to protonate both the amine and the carboxylate

group, running the molecule as H–alanine+ with the C–NH2 group protonated

to C–NH+
3 . This representation is consistent with doing the vibrational cal-

culation on pyruvic acid as opposed to pyruvate to approximate the solvent

effect.

The predicted fractionation between pyruvic acid and H–alanine+ is, as ex-

pected, significantly larger than the pyruvate-alanine fractionation, but, in-

terestingly, not necessarily for the expected reason (i.e., the longer C–N bond

distance and lower stretching frequency expected for the protonated amine).

In fact, the ∆ZPE value for H–alanine+ is only about 5 J/mol lower than that

for alanine, while the increase in ∆ZPE in going from pyruvate to pyruvic acid

is 10 J/mol. This is counter-intuitive because adding a proton to the carboxy-

late group, not directly attached to the isotope exchange site, would not be

expected to have as much of an effect as putting a proton on the exchanging

site (as was done with alanine). What appears to be happening here is a gen-

eral stiffening of the pyruvate monoanion when it becomes pyruvic acid. The

extent to which that would actually happen in a real solvated environment is

not known, but the increase seen for the pyruvic acid is probably an upper

limit. Figure 2.4 shows that while the contributions from alanine, H–alanine+,

and isopropylamine all give a similar ∆ZPE, pyruvic acid, pyruvate anion,

and acetone give, by comparison, quite different ∆ZPE values. Again, it is

surprising that the characteristics of the keto molecule has a stronger effect
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Figure 2.4: Frequency contributions to ∆ZPE of Alanine LDA (ala lda), alz
+, pyruvate (pyr), pyruvic acid (pyrh), isopropylamine (ipa), and acetone.

than the amine.

NWChem input files for LDA DFT calculations on pyruvic acid and H–alanine+,

are given in Section 2.9.6.

2.6.2 Isotopic Substitutions at the Non-Exchanging Site

We next considered the effects of heavy isotope substitutions on the equi-

librium constants of the reactions we consider, in atomic sites that are not

directly involved in those reactions (i.e., where no bonds to the α-carbon are

made or broken over the course of the reaction). In a typical implementation

of an electronic structure model calculation, such as in the NWChem code,

the program stores masses for each atom and uses them to construct the dy-

namical matrix dF(αi)/dβj/
√

(mimj), the eigenvalues of which are the squares

of the frequencies. Within a given code, these masses may be set equal to

the abundance-weighted mean atomic weights, or using the atomic weight of

the most abundant isotope. For the world outside isotope geochemistry, such

choices are not important for most problems. The most complete analysis
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Table 2.7: ∆ZPE (J/mol), ∆∆ZPE (J/mol), and 1000*ln(Keq) for pyru-
vate (PYR), alanine (ALA), pyruvic acid (H-PYR), H–alanine+ (H-ALA+),
2,2-dihydroxoproanoic acid (DHPA), enolpyruvate (EPYRH), α-ketoglutarate
(AKG), and H-glutamic acid+ (H-GLU+). Augmented Triple Zeta (ATZ)
represents the 6-311++G(2d,2p) basis.

B3LYP ATZ LDA ATZ BP86 ATZ

PYR ∆ZPE (J/mol) 626.19 619.28 597.54
ALA ∆ZPE (J/mol) 601.92 600.84 580.27
∆∆ZPE 24.27 18.44 17.27
1000*ln(Keq) -9.4 -7.2 -6.7

H-PYR ∆ZPE (J/mol) 634.71 631.98 609.71
H-ALA+ ∆ZPE (J/mol) 596.6 600.26 576.86
∆∆ZPE 38.11 31.72 32.85
1000*ln(Keq) -14.8 -12.3 -12.7

DHPA ∆ZPE (J/mol) 653.7 (655.4) 656.0 (656.0) 625.9
∆∆ZPE (wrt H-ALA+) 57.1 55.7 49.04
1000*ln(Keq) -22.2 -21.6 -19.3

EPYRH ∆ZPE (J/mol) 624.3 (624.9) 627.1 (627.1) 616.3
∆∆ZPE (wrt H-ALA+) 27.7 26.9 39.44
1000*ln(Keq) -10.7 -10.4 -15.6

AKG ∆ZPE (J/mol) 645.76 638.88 619.11
H-GLU+ ∆ZPE (J/mol) 613.82 620.11 592.09
∆∆ZPE 31.94 18.77 27.02
1000*ln(Keq) -12.4 -7.3 -10.5

would specify the isotopic identity of all atoms in the molecule of interest,

including those that are not part of the site of reaction and possible isotope

exchange.

We calculated ∆∆ZPE values for all 576 isotopologues of H3C–C–COOH (the

base common to both pyruvic acid and H–alanine+) using B3LYP/ATZ. This

number is based on the fact that there are two isotopes for H, two for C, and

three for O (1H, 2H, 12C, 13C, 16O, 17O, 18O). 26=64 for the H, C combinations,

(the α-carbon is not included because the 12C, 13C exchange at that site, of

course, defines the ∆ZPE value). The three choices for each of the two oxygen

atoms gives 32x64 = 576. We wrote a code (given in Section 2.9.7) to rerun

the frequency calculation for all 576 possible isotopologues, after which the
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Figure 2.5: Numbered atoms in pyruvic acid (left) and H–alanine+ (right).
Atoms in the H3C–C–COOH moiety common to both pyruvic acid and H–
alanine+ are labeled in orange; those unique to either pyruvate or alanine are
labeled in blue.

∆∆ZPE values were calculated between H–alanine+ and pyruvic acid, with

the same isotopic distribution in the non-exchanging atoms. Consider, for

example, the reaction:

H3
13CH(12C)NH3

12C16O2H + H3
13CH(13C)16O12C16O2H⇀↽ (2.11)

H3
13CH(13C)NH3

12C16O2H + H3
13CH(12C)16O12C16O2H

This equation, which represents an exchange reaction at the α-carbon site

(in boldface) between H–alanine+ and pyruvate, with 13C substituted at the

methyl carbon site (underlined), would be one of these 576 reactions. Note

that in Table 2.7, the methyl carbon was taken as 12C. Also note that this

procedure does not recompute the Hessian matrix (a computationally demand-

ing calculation); the Hessian matrix is re-used, through the “reuse” command

in NWChem, and the isotopic substitutions are then used to create the dy-

namical matrix. We also calculated ∆∆ZPE values for reactions in which

the exchanging atoms O-10 (pyruvic acid) and H-(10, 12, 13, 14), N-11 (H–

alanine+) were substituted with heavy isotopes. Table 2.8 gives fractionations

for several choices of isotopes for the exchanging atoms. In this table, pyruvic

acid is labeled with 16O, 18O, depending on which oxygen isotope is present at

the carbonyl site. For H–alanine+, we show results for “base” (all H as 1H, N

as 14N), as well as the indicated isotopic substitutions within the exchanging

HCNH3 moiety.
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Table 2.8: Variation in 13C–12C fractionation between pyruvate and alanine
with additional isotopic substitutions. For each row, we calculated ∆∆ZPE
values for 576 isotope exchange reactions that include a heavy isotope substi-
tution at one atomic position in the H3C–C–COOH base common to both
alanine and pyruvate. We summarize this by taking the minimum, maximum
and average 1000*ln(K) for each set of 576 reactions (i.e., this table represents
the results of 12 * 576 = 6912 fractionation calculations). For example, row
1 gives these values for the “base”, where all exchanging atoms are present in
their most abundant isotopic form (i.e., 1H, 13C, 14N, 16O). Each subsequent
row also has one of the exchanging sites substituted with a heavy isotope.

Isotopic Substitution Average (h) Min (h) Max (h)

16O, HCNH3 (base) -15.1 -14.9 -15.3
16O, HC15NH3 -14.8 -14.6 -15.0
16O, HCNDH2 -14.7 -14.6 -14.9
16O, DCNH3 -10.0 -9.8 -10.1
16O, DC15NH3 -9.6 -9.5 -9.8
16O, DC15NDH2 -9.3 -9.1 -9.4
18O, HCNH3 -16.7 -16.5 -16.9
18O, HC15NH3 -16.4 -16.2 -16.5
18O, HCNDH2 -16.3 -16.1 -16.5
18O, DCNH3 -11.5 -11.4 -11.7
18O, DC15NH3 -11.2 -11.0 -11.4
18O, DC15NDH2 -10.8 -10.7 -11.0

It is apparent from Table 2.8 that none of these substitutions makes a sig-

nificant difference to the predicted fractionation between the α-carbon site of

alanine and the corresponding carbon site of pyruvate, except when deuterium

is present at the hydrogen attached to the α-carbon, in which case our cal-

culations indicate that the fractionation is reduced by about 1
3
. If it becomes

possible to make these measurements with the necessary degree of precision,

an interesting check would be to run the experiments with D at the α-carbon

site to see if the equilibrium fractionation is substantially reduced. Another

way to say this is that these calculations imply a 13C-2H clumping preference

in alanine at the α-site.

2.6.3 Fractionation Involving Hydrated and Enolated forms of Pyru-

vate/Pyruvic Acid

A complication with pyruvate/pyruvic acid is that in solution it is present in at

least two additional forms, depending on pH, temperature, and water activity
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(Pocker et al., 1969). Around neutral pH, some fraction exists in its hydrated

form, 2,2-dihydroxopropanoic acid (DHPA). A much smaller fraction exists

in its enolated form (EPYRH) (Muller et al., 1939; Damitio et al., 1992). It

can also condense to form 6-carbon structures that can similarly exist in keto,

enol and hydrated forms, though these are of insignificant abundance at near-

neutral pH and are not considered in this study. Estimates can be made for

the expected differences in fractionation for the hydrated and enolated forms.

Intuitively it might be expected that both DHPA and EPYRH would have

lower ∆ZPE values than pyruvic acid due to loss of the stiff carbonyl bond.

While this is observed for EPYRH, electronic structure calculations predict

a significantly higher ∆ZPE for DHPA than for pyruvic acid (see Table 2.7).

As shown in the cumulative ∆ZPE plots in Figure 2.4, the C–OH contribu-

tions from both C–OH groups, while coming in at lower frequencies than the

carbonyl stretch, do collectively raise the total ∆ZPE for DHPA well above

those for pyruvic acid. This is a good reminder that intuition based on bond

strengths is not always a good guide, and that coupling of vibrations at the

fractionating site to higher-frequency vibrations at nearby sites can also have

a strong influence (see James R. Rustad et al., 2009). In any case, Table 2.7

shows that while a EPYRH shows a little reduction in fractionation, depending

on the exchange-correlation functional used, DHPA is predicted to give rise to

an equally large, if not larger increase in fractionation. It seems unlikely that

these species would have a dramatic effect on the fractionation, even if all the

pyruvate component were EPYRH.

NWChem input files used to calculate fractionation involving hydrated and

enolated forms of pyruvic acid are given in Section 2.9.8.

2.6.4 The α-Ketoglutarate/Glutamic Acid System

As a final illustrative calculation, we also consider the fractionation between

glutamic acid (GLU) and α-ketoglutarate (AKG), the mirror of the pyruvate-

alanine couple in the ALT reaction. In keeping with the calculations above,

GLU is represented by H–GLU+ (both carboxylic acids protonated, as well as

the amine), and glutamate is run as glutamic acid. The predicted fractionation

(see Table 2.7) of 12.4 h (B3LYP/ATZ) and 7.3 h (LDA) is smaller than the

predictions for pyruvic acid and H–alanine+. This may be caused by the

strong internal hydrogen bonding present in the H–GLU+ (see Figure 2.7).
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Figure 2.6: Cumulative contributions to ∆ZPE of pyruvic acid, dihydroxo-
propanoic acid, and enol pyruvate.

In the gas phase, H-GLU+ is large enough to have conformational flexibility

allowing it to fold over on itself to form internal hydrogen bonds, causing it

to stiffen. In solution, GLU would be hydrogen bonded to the surrounding

solvent molecules, i.e., the internal hydrogen bonding that we see here in H–

GLU+ is essentially an artifact of the gas phase calculation; and not likely

representative of the species in solution. The lowest energy conformer of H–

GLU+ is thus likely to be different in the gas phase than in solution because of

this conformational flexibility. Alanine does not experience an analogous effect,

however, because it is too small and thus lacks the conformational flexibility

necessary for internal hydrogen bonding. This stiffening of H–GLU+ likely

accounts for the high ∆ZPE relative to H–alanine+ (see cumulative plot in

Figure 2.8, and note that AKG and PYR are closer to each other than H–

ALA+ and H–GLU+). For this larger system, it would be a good idea to

explore conformational space to some extent, as in James R Rustad, 2009,

where molecular dynamics simulations of the amino acids using forces from

semi-empirical methods were used to generate conformers. However, for our

purposes here, the effort required for such calculations probably would not be

justifiable. The main point is that the AKG-GLU system is in broad agreement
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Figure 2.7: Ball and stick representation of α-ketoglutarate and H-GLU+,
illustrating internal hydrogen bonding in H-GLU+, which artificially stiffens
it.

with the PYR-ALA system.

NWChem input files for AKG and GLU are given in Section 2.9.9.
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Figure 2.8: Cumulative fractionation for α-ketoglutarate (akg) and H-GLU+

relative to pyruvic acid (pyr) and H-ALA+. The stiffening of H-GLU+ results
from internal hydrogen bonding, as seen in Figure 2.7. This is the likely reason
for raising of the H-GLU+ above H-ALA+.
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2.7 Computational Prediction of Hydrogen Isotope α, β Site Pref-

erence at Equilibrium

In anticipation of the experimental work we present in Chapter 5, which in-

volves hydrogen isotope preferences between the α and β carbon sites of ala-

nine, we now turn our attention briefly towards predictions for this D/H site

preference. For this set of calculations we use the same methods as outlined

in Piasecki et al., 2016, which in that context were used to calculate D/H

preferences for the -CH2- and -CH3 sites in propane. This involves calcula-

tion of the vibrational frequencies using density functional methods, as de-

scribed in Section 2.5. In keeping with Piasecki et al., 2016, we use the Urey-

Bigeleisen-Mayer (UBM) equations based on the reduced partition function

ratio and the B3LYP exchange-correlation functional. Instead of using Gaus-

sian software as was used in Piasecki et al., 2016, we continue to use NWChem

(as we have done throughout this chapter), which is open source and freely

available. Because the B3LYP functional has slightly different formulations

between NWChem and Gaussian, we re-ran the Piasecki et al., 2016 calcu-

lations on the propane system with DFT using B3LYP/6-311G**, obtaining

the following reduced partition function ratios (at 300K) for the three unique

H sites: 13.152386 (–CH2–), 12.114795 (–CH3(a)), and 12.043858 (–CH3(b)).

This gives 1000ln(RPFRCH2/RPFRCH3) = 82 h and 88 h, respectively, for

the two unique hydrogen atoms in the methyl group for propane in C2V sym-

metry. These results are in acceptable agreement with the value of 93.20 h

reported in Piasecki et al., 2016 (it is not specified which hydrogen this value

refers to in that paper). The minor differences between our results and those in

Piasecki et al., 2016, could be due to the DFT integration grid (we use “xfine”,

i.e., extra fine), or the precise implementation of the B3LYP functional.

For the calculations on alanine, we use the same H-alanine+ model as described

earlier in this Chapter, Section 2.6.1. In fact, using the UBM technique, we

are able to re-use the Hessian matrix (Hij = d2E/dαidβj) and substitute

the mass of 2H (D) in the appropriate site to construct the dynamical ma-

trix (Hij/
√

(mimj)), so no new electronic structure calculations are required.

This is done with the “reuse” option in NWChem frequency calculations, as

described in Section 2.6.2.

Table 2.9 gives the calculated RPFR values and equilibrium constants at 303

K for a series of H → D substitutions using the following notation: the α
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hydrogen atom is designated as “α” and the three β hydrogen atoms as “β1”,

“β2” and “β3”. Recall that RPFR values are calculated through computing

the change in vibrational frequency that results by changing the mass of an

atom at a particular site, in this case, changing 1H to 2H. In Table 2.9 we

indicate the substituting site by “HD”, and also indicate any deuterium substi-

tutions at other sites, held fixed as D in both 1H to 2H vibrational calculations.

For example, “α-HD; β1-D” refers to an RPFR calculated using vibrational

frequencies from “CDCH2D” or “α-D; β1-D” and “CHCH2D” or “α-H; β1-D”

isotopologues.

Consider the reaction:

αH + βD ⇀↽ αD + βH (2.12)

The equilibrium constant:

Kαβ =
[αD][βH ]

[αH ][βD]
(2.13)

is given by the ratio of two RPFRs:

Kαβi
= [αHD]/[βHDi

] (2.14)

where i refers to the three possible choices of substitution at the β site. With
12C at both the α and β (methyl) carbons, we predict that 1000ln(Kαβ) lies

between 171 h and 179 h, depending on which β site is substituted. Pref-

erence is greatest for site 2 (trans to the α H), and least for site 3 (cis on the

carboxyl side). Site 1 (cis on the amine side) is intermediate between site 2

and site 3, and close to their average. This relative preference for D among

the β sites (1,2,3) is preserved throughout the calculations. We assume the β

group is rotating at room temperature, washing out the differences in prefer-

ence among the β hydrogen sites, resulting in a 1000ln(Kαβ) of 175 per mil

(174.8 in Table 2.9

Note: We abbreviate alanine (and its isotopic variants) as “CHCH3”, “CDCH3”,

etc. for readability and clarity, leaving out the carboxyl and amine functional

groups, which do not play a role in the following discussion.
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RPFR α,β-12C 1000*ln(K) RPFR α-13C 1000*ln(K) RPFR β-13C 1000*ln(K)

α-HD 14.404803 14.46986 14.409580
β1-HD 12.105544 173.9 12.10914 178.1 12.169112 169.0
β2-HD 12.038915 179.4 12.042933 183.6 12.102699 174.5
β3-HD 12.140067 171.1 12.142889 175.3 12.203561 166.2

AVG 1000*ln(α−HD
β−HD

) (0β-D) 174.8 179.0 169.9

α-HD; β1-D 14.405662 163.9 14.470609 168.1 14.410414 159.1
154.7 159.0 149.9

α-HD; β2-D 14.417122 159.2 14.481793 163.4 14.421722 154.4
155.4 159.6 150.6

α-HD; β3-D 14.405483 157.5 14.470389 161.8 14.410212 152.8
163.0 167.1 158.1

AVG 1000*ln(α−HD
β−HD

) (1β-D) 159.0 163.2 154.2

α-HD; β1,β2-D 14.417963 139.4 14.482628 143.6 14.422388 134.7
α-HD; β1,β3-D 14.406402 147.8 14.47111 151.9 14.411058 143.1
α-HD; β2,β3-D 14.417770 143.2 14.482334 147.3 14.422164 138.5

AVG 1000*ln(α−HD
β−HD

) (2β-D) 143.5 147.6 138.8

β1-HD; β2-D 12.295190 15.5 12.298824 15.5 12.358192 15.4
β1-HD; β3-D 12.305656 16.4 12.309223 16.4 12.368870 16.3
β2-HD; β1-D 12.227517 15.5 12.23158 15.5 12.290747 15.4
β2-HD; β3-D 12.239371 16.5 12.243374 16.5 12.302840 16.4
β3-HD; β1-D 12.340749 16.4 12.343529 16.4 12.403887 16.3
β3-HD; β2-D 12.342207 16.5 12.344993 16.5 12.405370 16.4

AVG 1000*ln(β−HD
β−HD

) (1β-D) 16.2 16.1 16.0

β1-HD; α, β2-D 12.295908 15.6 12.299534 15.6 12.358763 15.5
β1-HD; α, β3-D 12.306441 16.5 12.309837 16.4 12.369599 16.3
β2-HD; α, β1-D 12.237959 16.4 12.241739 16.4 12.300960 16.2
β2-HD; α, β3-D 12.249810 17.4 12.25348 17.3 12.313044 17.2
β3-HD; α, β2-D 12.342761 16.6 12.345454 16.5 12.405749 16.4
β3-HD; α, β1-D 12.341383 16.4 12.343957 16.4 12.404441 16.3

AVG 1000*ln(β−HD
β−HD

) (α-D,1β-D) 16.5 16.5 16.3

β1-HD; β2,β3-D 12.494370 31.6 12.498142 31.6 12.556600 31.3
β2-HD; β1,β3-D 12.427076 31.7 12.431282 31.7 12.489565 31.5
β3-HD; β1,β2-D 12.542156 32.6 12.545059 32.6 12.604535 32.3

AVG 1000*ln(β−HD
β−HD

) (2β-D) 32.0 32.0 31.7

β1-HD; α, β2,β3-D 12.495142 31.7 12.498835 31.7 12.557374 31.4
β2-HD; α, β1,β3-D 12.437643 32.6 12.441613 32.6 12.499960 32.3
β3-HD; α, β1,β2-D 12.542755 32.6 12.5455 32.6 12.605116 32.4

AVG 1000*ln(β−HD
β−HD

) (2β-D) 32.3 32.3 32.0

α-HD; β1,β2,β3-D 14.418652 1.0 14.483137 0.9 14.423053 0.9
β1-HD; β2,β3-D 12.106265 0.1 12.109767 0.1 12.169817 0.1
β2-HD; β1,β3-D 12.049210 0.9 12.052865 0.8 12.112897 0.8
β3-HD; β1,β2-D 12.140639 0.0 12.143332 0.0 12.204096 0.0

Table 2.9: Calculated alanine RPFR values and equilibrium constants at 303 K for a series of H → D
substitutions using the following notation: the α hydrogen atom is designated as “α” and the three β hydrogen
atoms as “β1”, “β2” and “β3”. We indicate the substituting site by “HD”, and also indicate any deuterium
substitutions at other sites, held fixed as D in both 1H to 2H vibrational calculations. For example, “α-
HD; β1-D” refers to an RPFR calculated using vibrational frequencies from “CDCH2D” or “α-D; β1-D” and
“CHCH2D” or “α-H; β1-D” isotopologues.
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The findings in Table 2.9 can be summarized as follows:

1. We predict a D preference of ∼180 h α site relative to the β site for the

reaction CHCH2D ⇀↽ CDCH3.

2. We predict a ∼16 h clumping effect stabilizing β D substitution for each

D already present in the β group (i.e., if there are already two deuterium

atoms present in the β group the α site preference for a third deuterium

atom is reduced by ∼32 h). Thus 1000ln(K) for CHCHD2 ⇀↽ CDCH2D

is reduced to 159 h and 1000ln(K) for CHCD3 ⇀↽ CDCHD2 is reduced

to 143 h.

3. We predict that the presence of D vs. H at the α position has negligible

effect (1 h or less) on substitutions at the β position (and vice versa).

(i.e., the 1000ln(K) for a reaction such as CHCD3+CDCH3 ⇀↽ CDCD3+

CHCH3 is less than 1 h).

4. We predict a ∼5 h clumping effect stabilizing β-D substitutions if 13C

is present in the β position. Thus, all of the equilibrium constants for

hydrogen-deuterium exchange (“HDX”) reactions are reduced by ∼5 h

if 13C is present in the β position. Likewise, there is a corresponding ∼5

h clumping effect stabilizing α-D substitutions if 13C is present in the

α position. In this scenario, all of the equilibrium constants for HDX

reactions are increased by ∼5 h.

2.8 Conclusions

Our findings can be summarized briefly as follows:

• Our electronic structure calculations are consistent with empirical esti-

mates based on measured C–N, C=O, and C–H vibrational frequencies.

• Predicted PYR-ALA fractionations are similar to the analogous formaldehyde-

methylamine and acetone-isopropylamine systems.

• Anharmonic effects are unlikely to influence the results.

• Isotopic clumping effects are negligible except for H/D at the α-carbon.

• Different forms of pyruvate are unlikely to result in significantly different

fractionation factors.
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The predicted 10–15 h depletion of 13C in the α-carbon site of alanine rela-

tive to the corresponding carbon site in pyruvate, predicted by the empirical

estimates and DFT calculations, is large enough to be observable even at the

whole-molecule level. We should expect to measure a ∼3–5 h fractionation

with whole-molecule analysis, 1
3

of the predicted fractionation, due to signal

dilution from the other two carbon atoms, whose isotope ratios remain con-

stant assuming negligible carbon-carbon clumping. A signal of this magnitude

is well within the measurement capabilities of, e.g., EA/IRMS. The original

hypothesis motivating this work was that our chemical intuition based on bond

length/bond strength considerations would likely be too simplistic to make ac-

curate predictions, and that the range of values obtained from the various more

quantitative and sophisticated estimation methods will indicate the plausibil-

ity of a site-specific fractionation of less than 3 h, consistent with our inability

to measure any significant compound-specific fractionation at < 1 h precision.

Results from these calculations (as well as the calculations on solvent effects

reported in McNeill et al., 2020) effectively disprove this hypothesis–there is

no way to reconcile our GC-IRMS and EA/IRMS measurements (documented

in Chapter 3) with these calculations.

Our MP2 calculations, which could only be carried out on the smallest repre-

sentative system (the methylamine-formaldehyde system) do predict a smaller

fractionation and may point towards a resolution of the questions posed by

the experimental findings, but without a full treatment, perhaps with cou-

pled cluster methods and more complete basis sets, it is really not possible to

come to any conclusions as to whether the MP2 calculations are any better

than the DFT calculations. The MP2 calculations do suggest, however, that it

would be worthwhile doing exhaustive high-level calculations (e.g., large-basis

set coupled-cluster calculations) on the formaldehyde-methylamine fractiona-

tion; these molecules are small enough that the high-level calculations could

be attempted with relatively modest resources and provide indicative values

of what to expect for alanine-pyruvate fractionation. Another avenue for fur-

ther exploration is the treatment of solvent effects. Although we believe our

approximations would be more likely to overestimate the true solvent effects,

this needs to be further tested.
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2.9 Supplementary Materials

2.9.1 Appendix A: GNUPLOT Session for Fitting Parameters for

the HCl Surface
1 gnuplot > f(x)=d*(1-exp(-a*x))**2

2 gnuplot > a=1;d=0.2

3 gnuplot > fit f(x) ’hcl_lda_atz ’ via d,a

4

5 FIT: data read from ’hcl_lda_atz ’

6 format = z

7 #datapoints = 101

8 residuals are weighted equally (unit weight)

9

10 function used for fitting: f(x)

11 f(x)=d*(1-exp(-a*x))**2

12 fitted parameters initialized with current variable values

13

14 iter chisq delta/lim lambda d a

15 0 1.4791654077e-06 0.00e+00 8.32e-04 2.000000e-01

1.000000e+00

16 63 2.9512036918e-10 -8.41e-07 8.32e-09 1.382429e-01

1.054443e+00

17

18 After 63 iterations the fit converged.

19 final sum of squares of residuals : 2.9512e-10

20 rel. change during last iteration : -8.41313e-12

21

22 degrees of freedom (FIT_NDF) : 99

23 rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 1.72656e

-06

24 variance of residuals (reduced chisquare) = WSSR/ndf :

2.98101e-12

25

26 Final set of parameters Asymptotic Standard Error

27 ======================= ==========================

28 d = 0.138243 +/- 0.001757 (1.271%)

29 a = 1.05444 +/- 0.006659 (0.6315%)

30

31 correlation matrix of the fit parameters:

32 d a

33 d 1.000

34 a -0.999 1.000
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2.9.2 Appendix B: “Relaxed” Scans

Adapted from http://verahill.blogspot.com/2013/08/503-relaxed-pes-scanning-

in-nwchem.html

2.9.2.1 Formaldehyde:
1 start formaldehyde

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 o library "6 -311++G(2d,2p)"

10 h library "6 -311++G(2d,2p)"

11 c library "6 -311++G(2d,2p)"

12 end

13

14 charge 0

15 dft

16 mult 1

17 iterations 200

18 grid xfine

19 tolerances tight

20 tolerances tol_rho 1.e-12

21 tolerances accCoul 12

22 end

23

24 driver; tight; end

25

26 geometry formaldehyde

27 c -0.00000000 -0.00000000 -0.53241468

28 o -0.00000001 0.00000000 0.66717002

29 h 0.95226353 0.00000000 -1.12354372

30 h -0.95226352 0.00000000 -1.12354371

31 end

32

33 set geometry formaldehyde

34

35 driver

36 default

37 maxiter 100

38 end
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39

40 python

41 from nwgeom import *

42 geom = ’’’

43 geometry adjust

44 zcoord

45 bond 1 2 %f cccc constant

46 end

47 end

48 ’’’

49 results=scan_input(geom ,[1.19878] ,[1.24038] ,51 , ’dft ’,

task_optimize)

50 for i in range(0,len(results)):

51 print results[i][0][0] , results[i][1]

52 end

53

54 task python

2.9.2.2 Methylamine
1 basis "ao basis" spherical print

2 N library "6 -311++G(2d,2p)"

3 H library "6 -311++G(2d,2p)"

4 C library "6 -311++G(2d,2p)"

5 end

6

7 charge 0

8 dft

9 mult 1

10 iterations 200

11 grid xfine

12 tolerances tight

13 tolerances tol_rho 1.e-12

14 tolerances accCoul 12

15 end

16

17 driver; tight; end

18

19 geometry methylamine

20 H -0.64179809 -0.00016870 -1.37980579

21 C -0.64744677 0.00000550 -0.27090590

22 N 0.64985908 -0.00009222 0.36686769

23 H 1.19623587 0.82132760 0.10383691

24 H 1.19599562 -0.82174859 0.10407113
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25 H -1.21884250 0.88155470 0.05774748

26 H -1.21910285 -0.88127395 0.05801975

27 end

28

29 set geometry methylamine

30

31 driver

32 default

33 maxiter 100

34 end

35

36 python

37 from nwgeom import *

38 geom = ’’’

39 geometry adjust

40 zcoord

41 bond 2 3 %f cccc constant

42 end

43 end

44 ’’’

45 results=scan_input(geom ,[1.44480] ,[1.48640] ,51 , ’dft ’,

task_optimize)

46 for i in range(0,len(results)):

47 print results[i][0][0] , results[i][1]

48 end

49

50 task python
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2.9.3 Appendix C: FORTRAN Code Used to Calculate ∆ZPE at

310 K
1 implicit real*8 (a-h,o-z)

2 parameter (planck =6.62607004D-34) !Joule Seconds

3 parameter (clight =29979245800.0 d0) !cm/second

4 parameter (gas =8.31445980 d0) !Joule/mole

5 parameter (avogadro =6.022140857 D23)

6 parameter (temperature =310.150 d0)

7 real*8 freqh (100)

8 real*8 freql (100)

9 real*8 zpeh (100) ,zpel (100)

10 read (*,*)n

11 do i=1,n

12 read (*,*) freqh(i),freql(i)

13 enddo

14 zpeht =0.0

15 do i=1,n

16 zpei =0.5* planck*clight*freqh(i)

17 zpeht=zpeht+zpei

18 zpeh(i)=zpei

19 enddo

20 zpelt =0.0

21 do i=1,n

22 zpei =0.5* planck*clight*freql(i)

23 zpelt=zpelt+zpei

24 zpel(i)=zpei

25 enddo

26 summ=0

27 do i=1,n

28 summ=summ+(zpel(i)-zpeh(i))*avogadro

29 c print *,freql(i) ,(zpel(i)-zpeh(i))*avogadro ,summ

30 enddo

31 print *, (zpelt -zpeht)*avogadro

32 stop

33 end
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2.9.4 Appendix D: NWChem Input Files for DFT Calculations

Note: these input files will do the DFT calculations in the local density ap-

proximation (LDA). This is done by default in NWChem. If another exchange-

correlation functional is required, the appropriate line needs to be inserted into

the dft block.

2.9.4.1 Formaldehyde
1 start formaldehyde

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 geometry formaldehyde

9 zmatrix

10 c

11 o 1 B1

12 h 1 B2 2 A1

13 h 1 B3 2 A2 3 D1

14 variables

15 B1 1.20651

16 B2 1.12578

17 A1 122.43969

18 B3 1.12578

19 A2 122.43969

20 D1 -180.00000

21 end

22 symmetry c1

23 end

24

25 basis "ao basis" spherical print

26 o library "6 -311++G(2d,2p)"

27 h library "6 -311++G(2d,2p)"

28 c library "6 -311++G(2d,2p)"

29 end

30

31 set geometry formaldehyde

32 charge 0

33 dft

34 mult 1

35 iterations 200
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36 grid xfine

37 tolerances tight

38 tolerances tol_rho 1.e-12

39 tolerances accCoul 12

40 end

41

42 driver; tight; maxiter 500; end

43 task dft optimize

44 task dft frequencies numerical

2.9.4.2 Methylamine
1

2 start methylamine

3 echo

4

5 memory 2000 mb

6 scratch_dir /xxxx

7 permanent_dir /xxx

8

9 geometry methylamine

10 zmatrix

11 H

12 C 1 B1

13 N 2 B2 1 A1

14 H 3 B3 2 A2 1 D1

15 H 3 B4 2 A3 1 D2

16 H 2 B5 3 A4 4 D3

17 H 2 B6 3 A5 4 D4

18 variables

19 B1 1.11711

20 B2 1.44512

21 A1 116.80296

22 B3 1.02633

23 A2 110.35031

24 D1 58.58089

25 B4 1.02633

26 A3 110.34873

27 D2 -58.65303

28 B5 1.10619

29 A4 109.45445

30 D3 -63.32240

31 B6 1.10618

32 A5 109.45268
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33 D4 -179.51649

34 end

35 symmetry c1

36 end

37

38 basis "ao basis" spherical print

39 h library "6 -311++G(2d,2p)"

40 n library "6 -311++G(2d,2p)"

41 c library "6 -311++G(2d,2p)"

42 end

43

44 set geometry methylamine

45 charge 0

46 dft

47 mult 1

48 iterations 200

49 grid xfine

50 tolerances tight

51 tolerances tol_rho 1.e-12

52 tolerances accCoul 12

53 end

54

55 driver; tight; maxiter 500; end

56 task dft optimize

57 task dft frequencies numerical

2.9.4.3 Acetone
1 start acetone

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6 -311++G(2d,2p)"

10 c library "6 -311++G(2d,2p)"

11 o library "6 -311++G(2d,2p)"

12 end

13

14 geometry acetone

15 c 0.10391590 -1.41324822 0.00000179

16 c 0.15370320 0.08864386 0.00000034
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17 c -1.17208069 0.79641916 -0.00000221

18 o 1.20843185 0.69784947 0.00000078

19 h 1.12667483 -1.82244935 -0.00000098

20 h -0.44658558 -1.78508048 0.88588891

21 h -0.44659241 -1.78508356 -0.88587964

22 h -1.01437298 1.88667371 -0.00000001

23 h -1.76958807 0.50589605 -0.88590447

24 h -1.76959356 0.50589310 0.88589550

25 symmetry c1

26 end

27

28 set geometry acetone

29 charge 0

30 dft

31 mult 1

32 iterations 200

33 grid xfine

34 tolerances tight

35 tolerances tol_rho 1.e-12

36 tolerances accCoul 12

37 end

38

39 driver; tight; maxiter 500; xyz pyr; end

40 task dft optimize

41 task dft frequencies numerical

2.9.4.4 Isopropylamine
1 start isopropylamine

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6 -311++G(2d,2p)"

10 c library "6 -311++G(2d,2p)"

11 n library "6 -311++G(2d,2p)"

12 end

13

14 geometry isopropylamine noautoz

15 c 0.07143839 0.04160596 0.35262611

16 c 0.00039146 -1.43804581 0.04680482
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17 c -1.24511285 0.71976106 0.04507680

18 n 1.09920366 0.63341572 -0.48369002

19 h 0.96120058 -1.94316098 0.26565061

20 h -0.78575412 -1.93318157 0.64567004

21 h -0.22202063 -1.58224590 -1.02739916

22 h -1.20351874 1.80402998 0.26592880

23 h -1.47883927 0.60021568 -1.02975094

24 h -2.06793978 0.28511933 0.64153433

25 h 1.18659719 1.63762714 -0.27954955

26 h 2.01201251 0.20798384 -0.27508607

27 h 0.26925573 0.15678439 1.44983128

28 symmetry c1

29 end

30

31 set geometry isopropylamine

32 charge 0

33 dft

34 mult 1

35 iterations 200

36 grid xfine

37 tolerances tight

38 tolerances tol_rho 1.e-12

39 tolerances accCoul 12

40 end

41

42 driver; tight; maxiter 500; xyz pyr; end

43 task dft optimize

44 task dft frequencies numerical
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2.9.5 Appendix E: NWChem Input Files for MP2 Calculations

2.9.5.1 Formaldehyde
1 start formaldehyde

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 geometry formaldehyde

9 zmatrix

10 C

11 O 1 B1

12 H 1 B2 2 A1

13 H 1 B3 2 A2 3 D1

14 variables

15 B1 1.20875

16 B2 1.09644

17 A1 121.75464

18 B3 1.09644

19 A2 121.75464

20 D1 180.00000

21 end

22 symmetry c1

23 end

24

25 basis "ao basis" spherical print

26 h library aug -cc-pvtz

27 o library aug -cc-pvtz

28 c library aug -cc-pvtz

29 end

30

31 set geometry formaldehyde

32

33 mp2

34 freeze core

35 end

36

37 driver; tight; end

38

39 task mp2 optimize

40 task mp2 frequencies numerical
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2.9.5.2 Methylamine
1 start methylamine

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 geometry methylamine

9 zmatrix

10 H

11 C 1 B1

12 N 2 B2 1 A1

13 H 3 B3 2 A2 1 D1

14 H 3 B4 2 A3 1 D2

15 H 2 B5 3 A4 4 D3

16 H 2 B6 3 A5 4 D4

17 variables

18 B1 1.09145

19 B2 1.45779

20 A1 114.83454

21 B3 1.00929

22 A2 110.45566

23 D1 58.50664

24 B4 1.00928

25 A3 110.43179

26 D2 -59.07348

27 B5 1.08574

28 A4 109.06552

29 D3 -63.10342

30 B6 1.08579

31 A5 109.02048

32 D4 -179.94423

33 end

34 symmetry c1

35 end

36

37 basis "ao basis" spherical print

38 h library aug -cc-pvtz

39 n library aug -cc-pvtz

40 c library aug -cc-pvtz

41 end

42
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43 set geometry methylamine

44

45 mp2

46 freeze core

47 end

48

49 task mp2 optimize

50 task mp2 frequencies numerical
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2.9.6 Appendix F: NWChem Input Files for B3LYP DFT Calcu-

lations on Pyruvic Acid and H–Alanine+

2.9.6.1 PYRH
1 start pyrh

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8

9 basis "ao basis" spherical print

10 h library "6 -311++G(2d,2p)"

11 o library "6 -311++G(2d,2p)"

12 c library "6 -311++G(2d,2p)"

13 end

14

15 geometry pyrh noautoz

16 c -0.97700620 -1.66191644 -0.00881858

17 c 0.21191777 -0.74424711 0.00073269

18 c -0.13147017 0.76770984 -0.00362319

19 o 0.95942201 1.54253777 -0.00068086

20 o -1.26308932 1.18031058 -0.00874912

21 h -1.60832330 -1.46544766 0.85884435

22 h -0.63716461 -2.69292907 -0.00609885

23 h -1.59461680 -1.46540902 -0.88627568

24 h 0.65860209 2.46313112 -0.00335730

25 o 1.35899033 -1.10592399 0.01169561

26 symmetry c1

27 end

28

29 set geometry pyrh

30 charge 0

31 dft

32 xc b3lyp

33 mult 1

34 iterations 200

35 grid xfine

36 tolerances tight

37 tolerances tol_rho 1.e-12

38 tolerances accCoul 12

39 end

40
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41 driver; maxiter 500; xyz pyr; end

42 task dft optimize

43 task dft frequencies numerical

2.9.6.2 ALZ+

1 start alz+

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 geometry alz+ noautoz

9 c -1.37149519 1.18795415 0.41321607

10 c -0.21713344 0.61316909 -0.39939848

11 c 0.14535728 -0.83167579 -0.03265822

12 o -0.86409872 -1.65788215 -0.22574359

13 o 1.24509526 -1.11888637 0.37530983

14 h -1.57775557 2.21585419 0.11772297

15 h -1.16125700 1.15327643 1.48280735

16 h -2.26653876 0.59969331 0.22617989

17 h -0.60430122 -2.56473420 0.00782131

18 h 1.76136017 0.68199004 0.16903325

19 h 0.96166455 2.10725527 0.54928574

20 h 1.42919052 1.83015038 -1.01176400

21 h -0.43448424 0.65669208 -1.46523175

22 n 1.07346038 1.38749894 -0.16516138

23 end

24

25 basis "ao basis" spherical print

26 h library "6 -311++G(2d,2p)"

27 o library "6 -311++G(2d,2p)"

28 c library "6 -311++G(2d,2p)"

29 n library "6 -311++G(2d,2p)"

30 end

31

32 set geometry alz+

33 charge 1

34 dft

35 xc b3lyp

36 mult 1

37 iterations 200

38 grid xfine
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39 tolerances tight

40 tolerances tol_rho 1.e-12

41 tolerances accCoul 12

42 end

43

44 driver; tight; maxiter 1; xyz alz+; end

45 task dft optimize

46 task dft frequencies
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2.9.7 Appendix G: Frequency Calculation for All 576 Possible Isotopo-

logues
1 parameter(nfreq =24)

2 real*8 freqh(nfreq),freql(nfreq)

3 parameter (ntopemax =1000000)

4 real*8 dzpe(ntopemax)

5 real*8 c12 ,c13 ,h1 ,h2 ,o16 ,o17 ,o18 ,n14 ,n15

6 integer nmass(natoms),prod

7 character *2 label(natoms)

8 character *1 digit (3)

9 character *14 code(ntopemax)

10 character *120 aline

11 real*8 mass(3,natoms)

12 integer i,j

13 digit (1)=’1’

14 digit (2)=’2’

15 digit (3)=’3’

16 nmassc =2

17 nmassh =2

18 nmasso =3

19 nmassn =2

20 C12 =12.00000000000

21 C13 =13.00335483507

22 H1= 1.00782503223

23 H2= 2.01410177812

24 O16= 15.99491461957

25 O17= 16.99913175650

26 O18= 17.99915961286

27 N14= 14.00307400443

28 N15= 15.00010889888

29 label (1)=’C ’

30 label (2)=’C ’

31 label (3)=’C ’

32 label (4)=’O ’

33 label (5)=’O ’

34 label (6)=’H ’

35 label (7)=’H ’

36 label (8)=’H ’

37 label (9)=’H ’

38 label (10)=’O ’

39
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40 do i=1,natoms

41 if(label(i).eq.’C ’) then

42 nmass(i)=nmassc

43 mass(1,i)=C12

44 mass(2,i)=C13

45 elseif(label(i).eq.’H ’)then

46 nmass(i)=nmassh

47 mass(1,i)=H1

48 mass(2,i)=H2

49 elseif(label(i).eq.’O ’)then

50 nmass(i)=nmasso

51 mass(1,i)=O16

52 mass(2,i)=O17

53 mass(3,i)=O18

54 elseif(label(i).eq.’N ’)then

55 nmass(i)=nmassn

56 mass(1,i)=N14

57 mass(2,i)=N15

58 endif

59 enddo

60

61

62 ncode=0

63 nvals=0

64 10 format(a51)

65 12 format(a56)

66 11 format(a7 ,2x,f15 .10)

67 do i1=1,nmass (1)

68 do i3=1,nmass (3)

69 do i4=1,nmass (4)

70 do i5=1,nmass (5)

71 do i6=1,nmass (6)

72 do i7=1,nmass (7)

73 do i8=1,nmass (8)

74 do i9=1,nmass (9)

75 do i10=1,nmass (10)

76 open(55,file=’freq.nw’)

77 rewind 55

78 write (55 ,10)’restart pyrh ’

79 write (55 ,10)’echo ’

80 write (55 ,10)’memory 2000 mb ’

81 write (55 ,10)’scratch_dir /tmp ’
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change scratch

82 write (55 ,12)’permanent_dir /home/PYRH/ATZ/REORDER/p

83 &erm’ change permanent directory

84 c23456789112345678921234567893123456789412345678951234567896123456789712

85 write (55 ,10)’freq ’

86 write (55 ,10)’reuse ’

87 write (55 ,11)’mass 1’,mass(i1 ,1)

88 write (55 ,11)’mass 2’,mass (2,2)

89 write (55 ,11)’mass 3’,mass(i3 ,3)

90 write (55 ,11)’mass 4’,mass(i4 ,4)

91 write (55 ,11)’mass 5’,mass(i5 ,5)

92 write (55 ,11)’mass 6’,mass(i6 ,6)

93 write (55 ,11)’mass 7’,mass(i7 ,7)

94 write (55 ,11)’mass 8’,mass(i8 ,8)

95 write (55 ,11)’mass 9’,mass(i9 ,9)

96 write (55 ,11)’mass 10’,mass (1 ,10)

97 write (55 ,10)’end ’

98 write (55 ,10)’task dft frequencies ’

99 close (55)

100 call system (’nwchem ./freq.nw > freq_out ’)

101 open(55,file=’freq_out ’)

102 rewind (55)

103 do i=1 ,100000

104 read(55,’(a)’,err=100,end =100) aline

105 if(aline (26:60).eq.’Projected Derivative Dipole Moments ’) then

106 do j=1,8

107 read(55,’(a)’,err=100,end =100) aline

108 enddo

109 do j=1,nfreq

110 read(55,’(a)’)aline

111 read(unit=aline (11:18) ,fmt =*) freqh(j)

112 enddo

113 endif

114 enddo

115 100 continue

116 close (55)

117 open(55,file=’freq.nw’)

118 rewind 55

119 write (55 ,10)’restart pyrh ’

120 write (55 ,10)’echo ’

121 write (55 ,10)’memory 2000 mb ’
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122 write (55 ,10)’scratch_dir /tmp ’

change scratch directory

123 write (55 ,12)’permanent_dir /home/PYRH/ATZ/REORDER/perm ’

change perm

124 c23456789112345678921234567893123456789412345678951234567896123456789712

125 write (55 ,10)’freq ’

126 write (55 ,10)’reuse ’

127 write (55 ,11)’mass 1’,mass(i1 ,1)

128 write (55 ,11)’mass 2’,mass (1,2)

129 write (55 ,11)’mass 3’,mass(i3 ,3)

130 write (55 ,11)’mass 4’,mass(i4 ,4)

131 write (55 ,11)’mass 5’,mass(i5 ,5)

132 write (55 ,11)’mass 6’,mass(i6 ,6)

133 write (55 ,11)’mass 7’,mass(i7 ,7)

134 write (55 ,11)’mass 8’,mass(i8 ,8)

135 write (55 ,11)’mass 9’,mass(i9 ,9)

136 write (55 ,11)’mass 10’,mass (1 ,10)

137 write (55 ,10)’end ’

138 write (55 ,10)’task dft frequencies ’

139 close (55)

140 call system (’nwchem ./freq.nw > freq_out ’)

141 open(55,file=’freq_out ’)

142 rewind (55)

143 do i=1 ,100000

144 read(55,’(a)’,err=200,end =200) aline

145 if(aline (26:60).eq.’Projected Derivative Dipole Moments ’) then

146 do j=1,8

147 read(55,’(a)’,err=100,end =100) aline

148 enddo

149 do j=1,nfreq

150 read(55,’(a)’)aline

151 read(unit=aline (11:18) ,fmt =*) freql(j)

152 enddo

153 endif

154 enddo

155 200 continue

156 open(55,file=’freqlist ’)

157 rewind (55)

158 write (55,*) nfreq

159 do j=1,nfreq

160 write (55,*) freqh(j),freql(j)
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161 enddo

162 close (55)

163 call system(’./vg2.x < freqlist > dzpe’)

164 nvals=nvals +1

165 open(55,file=’dzpe’)

166 read (55 ,*) dzpe(nvals)

167 close (55)

168 ncode=ncode +1

169 code(ncode)=digit(i1)//’*’// digit(i3)// digit(i4)

170 c &// digit(i5)

171 &// digit(i5)// digit(i6)// digit(i7)// digit(i8)// digit(i9)

172 &// digit(i10)

173 print *,nvals ,dzpe(nvals),code(ncode)

174 enddo

175 enddo

176 enddo

177 enddo

178 enddo

179 enddo

180 enddo

181 enddo

182 enddo

183 open(55,file=’dzpevals ’)

184 23 format(f12.6,2x,a14)

185 do i=1,nvals

186 write (55 ,23) dzpe(i),code(i)

187 enddo

188 close (55)

189 stop

190 c23456789112345678921234567893123456789412345678951234567896123456789712

191 end
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2.9.8 Appendix H: NWChem Input Files Used to Calculate Frac-

tionation Involving Hydrated and Enolated Forms of Pyruvic

Acid

2.9.8.1 DHPA
1 start dhpa

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6 -311++G(2d,2p)"

10 c library "6 -311++G(2d,2p)"

11 o library "6 -311++G(2d,2p)"

12 end

13

14 geometry dhpa noautoz

15 c 0.08532599 -0.58627457 0.01094416

16 c 0.80022449 -1.05050869 1.27002698

17 c -0.09243680 0.94518502 -0.07599580

18 o -1.17689025 -1.18235961 -0.02216110

19 o 0.83341017 -0.89019824 -1.16270697

20 o 1.01805670 1.62751381 0.23086103

21 o -1.12946844 1.46037453 -0.40742409

22 h 0.83230901 -2.13989412 1.26874394

23 h 0.26251230 -0.72560414 2.15951627

24 h 1.81404360 -0.66167650 1.29386909

25 h -1.76686467 -0.59434114 -0.51521472

26 h 0.71570378 -1.83157587 -1.33198340

27 h 0.82705522 2.56867893 0.10467300

28 end

29

30 set geometry dhpa

31

32 dft

33 mult 1

34 iterations 200

35 xc b3lyp

36 grid xfine

37 tolerances tight

38 tolerances tol_rho 1.e-12

39 tolerances accCoul 12
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40 end

41

42 task dft optimize

43

44 task dft frequencies

2.9.8.2 EPYRH
1 start epyrh

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6 -311++G(2d,2p)"

10 c library "6 -311++G(2d,2p)"

11 o library "6 -311++G(2d,2p)"

12 end

13

14 geometry epyrh noautoz

15 c 0.14006052 0.73918552 0.13099020

16 c 1.26277468 1.37715814 -0.19584448

17 c 0.15277532 -0.74424935 0.33370661

18 o -1.08423524 1.30846306 0.31223832

19 o -1.05864293 -1.23638069 0.65932957

20 o 1.13621016 -1.43275277 0.22003276

21 h 1.28447993 2.44720157 -0.34862018

22 h 2.17510532 0.81677380 -0.31205541

23 h -1.01931395 2.25780955 0.16700242

24 h -0.94505707 -2.19139706 0.76743280

25 end

26

27 set geometry epyrh

28

29 dft

30 mult 1

31 iterations 200

32 xc b3lyp

33 grid xfine

34 tolerances tight

35 tolerances tol_rho 1.e-12

36 tolerances accCoul 12
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37 end

38

39 driver; tight; maxiter 100; end

40

41 task dft optimize

42

43 task dft frequencies
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2.9.9 Appendix I: NWCHEM Input Files for α-Ketoglutarate and

GLU+

2.9.9.1 α-Ketoglutarate
1 start akg

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6 -311++G(2d,2p)"

10 c library "6 -311++G(2d,2p)"

11 o library "6 -311++G(2d,2p)"

12 end

13

14 geometry akg noautoz

15 c 0.57545076 -2.09075453 0.07840194

16 c -0.77800957 -1.34932147 -0.11670750

17 c -0.74788090 0.09703968 -0.55267198

18 c -0.14451563 1.00537800 0.52478286

19 c -0.02318887 2.43734807 0.05641988

20 o 1.54916757 -1.56841597 -0.70357736

21 o 0.73323409 -3.01373225 0.82245991

22 o 0.37917568 3.24849965 1.06258728

23 o -0.23906928 2.83613476 -1.05775226

24 h 2.35180443 -2.09198151 -0.55823499

25 h 0.44773419 4.14285504 0.69829877

26 h -1.77031489 0.39365403 -0.77346702

27 h -0.16008772 0.18758596 -1.46618265

28 h -0.74306140 0.99429633 1.43684098

29 h 0.85675617 0.67795307 0.81364844

30 o -1.78640787 -1.96568069 0.10064432

31 symmetry c1

32 end

33

34 set geometry akg

35

36 dft

37 mult 1

38 iterations 200

39 xc b3lyp

40 grid xfine
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41 tolerances tight

42 tolerances tol_rho 1.e-12

43 tolerances accCoul 12

44 end

45

46 driver; tight; maxiter 100; end

47

48 task dft optimize

49

50 task dft frequencies numerical

2.9.9.2 GLU+

1 start glu+

2 echo

3

4 memory 2000 mb

5 scratch_dir /xxxx

6 permanent_dir /xxx

7

8 basis "ao basis" spherical print

9 h library "6-31G*"

10 c library "6-31G*"

11 o library "6-31G*"

12 n library "6-31G*"

13 end

14

15 geometry glu+ noautoz

16 O 1.50901187 -1.81976598 -0.81036382

17 O 0.72443926 3.04662364 1.01339558

18 O 0.42276077 -2.85429868 0.86161844

19 O -0.81218956 2.93845222 -0.61786210

20 N -1.75376811 -1.35025158 0.54631437

21 C -0.44179313 0.14316859 -0.88762442

22 C -0.79027860 -1.29595713 -0.52158421

23 C 0.05563540 0.89553179 0.32252902

24 C 0.42187292 -2.06738583 -0.06661114

25 C -0.07051619 2.37090761 0.16266915

26 H -1.34741470 0.65752605 -1.26409737

27 H 0.29992861 0.15119238 -1.70769061

28 H -1.11426948 -1.81318234 -1.46048522

29 H -0.58840067 0.57948134 1.17732063

30 H 1.09651786 0.63485323 0.59483506

31 H -1.59198405 -2.20350042 1.09892231
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32 H -2.71556526 -1.33542001 0.19633209

33 H 2.21512619 -2.40133232 -0.43693819

34 H 0.52372009 3.99792421 0.83695776

35 H -1.75376811 -0.35025158 0.54631437

36 symmetry c1

37 end

38

39 dft

40 xc b3lyp

41 end

42

43

44 set geometry glu+

45

46 charge 1

47

48 task dft optimize

49

50 task dft frequencies numerical
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C h a p t e r 3

MEASURING EQUILIBRIUM AND KINETIC
SITE-SPECIFIC INTERMOLECULAR CARBON ISOTOPE
FRACTIONATION BETWEEN ALANINE AND PYRUVIC

ACID AT THE α-CARBON SITE THROUGH THE ALANINE
TRANSAMINASE REACTION

3.1 Introduction

A central goal of many stable isotope studies is to measure the isotopic frac-

tionation between two or more molecules. The focus of this chapter is the

carbon isotopic fractionation between equilibrated alanine and pyruvate. In

recent years, an overarching goal of many in the community, and the Eiler

group in particular, has been to evaluate the efficacy of newly developed high-

mass-resolution isotope ratio mass spectrometers to measure site-specific iso-

topic compositions in molecules of increasing molecular weight and complexity,

with the hope that this will open such inquiries to a broader set of prob-

lems. In particular, Thermo Scientific’s Orbitrap-based mass spectrometers

hold promise to launch a new era of high-precision, site-specific stable isotope

measurements in complex organic molecules, a class of measurements that has

generally eluded the field in the many decades since Abelson and Hoering first

examined site-specific carbon isotopes of amino acid carboxyl groups using wet

chemical cleavage methods in 1961 (Abelson et al., 1961).

The initial framing of this study was to use the relatively simple alanine

transamination reaction, as defined in Equation 3.1 and illustrated in Figure

3.1, to work through the various hurdles and stages such a measurement might

entail, as much as to determine an experimental value for the ALA/PYR equi-

librium fractionation factor. In other words, we initially expected the Orbitrap

mass spectrometric analysis to be the most “expensive” aspect of this work,

and our goal, setting out, was to analyze the site-specific isotopic structure

of alanine, and to be able to relate this to the carbon isotopic composition of

pyruvate, the product of the reaction of interest. In reality, however, a series

of complications and challenges along the way prevented us from analyzing

the samples from this experiment using the Q Exactive instrument for a truly
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site-specific measurement. Nevertheless, the data gathered through the exper-

imental methods described in this chapter is sufficient to report site-specific

values for the carbon position of interest, C2 (i.e., the α-carbon).

CH3−13CO−COOH + CH3−12CHNH2−COOH⇀↽ (3.1)

CH3−12CO−COOH + CH3−13CHNH2−COOH

Figure 3.1: The alanine-pyruvate transamination reaction, catalyzed by the
alanine transaminase enzyme (ALT), EC number 2.6.1.2.

The ∼10 h fractionation at the α-carbon site between alanine and pyruvate

predicted from theory in the previous chapter is large enough that the fraction-

ation should be detectable, even without position-specific analysis capabilities.

If the isotopic composition of the C1 (carboxyl-carbon) and C3 (methyl-, or β-

carbon) sites has a negligible effect on fractionation observed at the α-carbon

site, as we expect from calculations described in the previous chapter, then,

since there are three carbons in alanine, the site-specific ∼10 h preference

for 13C in pyruvate should be manifested as a ∼3 h whole-molecule (i.e., not

site-specific) fractionation, a signal that is easily observed using conventional

carbon stable isotope analysis. We are also assuming carbon isotopic prefer-

ence at the carboxyl-carbon and β-carbon sites is negligible, as predicted in the

previous chapter, due to the fact that the bonding environments for these sites

are conserved between alanine and pyruvate to a distance of one bond, i.e.,

the differences between these molecules are two bonds away from these sites,

and therefore exert only secondary influence on isotopic preference at these

sites. Thus, for the purposes of this study, we attribute any change in carbon

isotope composition of the whole molecule solely to isotopic fractionation at

the α-carbon site, where bond-breaking occurs.

Given that we expect 12C to preferentially fractionate into the alanine α-carbon

site, when we initiate the transamination reaction by addition of ALT enzyme

to a solution containing alanine and α-ketoglutarate, absent pyruvate, such
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that any pyruvate that forms is derived directly from the alanine in the initial

solution, we expect the carbon isotopic composition of the alanine to evolve

toward more negative values and approach some limiting δ13C, as alanine is

converted to pyruvate and the reaction comes to equilibrium. If there is a

normal kinetic isotope effect, we may see a transient rise in δ13C in alanine as
12C is initially preferentially transmitted into the pyruvate, but eventually the

isotopic composition of the alanine will become more depleted in 13C than it

started out.

In this chapter we present carbon isotopic measurements on alanine over the

course of reaction with α-ketoglutaric acid to produce pyruvate and glutamic

acid, mediated by alanine transaminase (ALT). We first determine the chemi-

cal equilibrium constant and forward and backward rate constants using ALT

derived from porcine heart, by measuring the concentration of alanine over the

course of this reaction using 1H NMR and fitting the data using a second-order

rate law. We then run a larger volume of the reaction, collecting aliquots from

the reaction mixture at intervals on the way to equilibrium, and recovering

and isolating the alanine to measure its evolving carbon isotopic composition.

Note that we take a somewhat indirect approach here as we are not measur-

ing the carbon isotope composition of both the product (pyruvate) and the

reactant (alanine). With our knowledge of reaction progress, and thus mass

balance, at the time each sample is recovered, we can determine the carbon

isotope fractionation associated with this reaction. From knowledge of the

chemical rate law and the equilibrium fraction factor (and hence the ratio of

the forward and backward isotopic exchange rates) we can, with a model that

couples the isotopic exchange to the chemical reaction rate, predict the iso-

topic composition of the alanine as a function of time. Finally, we compare

our results to our theoretical predictions presented in the previous chapter of

this thesis and to models for isotopic evolution presented here.

3.2 Materials and Methods

3.2.1 Experimental Materials

We used unlabeled alanine expected to have isotopic signatures close to nat-

ural abundance from Alfa Aesar (L-alanine, 99% purity, Lot # 10167391).

Ultrapure water was obtained from a Millipore ultrahigh-purity (18.2 MΩ cm)

water system at Caltech. For 1H NMR we also used D2O purchased from

Cambridge Isotope Laboratories, Inc. (D, 99.9% Lot # M3063).
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Alanine transaminase (abbreviated ALT, EC number 2.6.1.2) derived from

porcine heart was used to catalyze the alanine-glutamate transamination re-

action as given in Figure 3.1, thus facilitating exchange of carbon isotopes be-

tween alanine and pyruvate pools. ALT (∼7.65 mg protein/mL) suspended in

1.2 M ammonium sulfate was purchased from LeeBiosolutions (Lot # 07B3133).

The lot used in the experiments presented here was measured by the vendor

to have an activity of 1990 Units per milliliter ammonium sulfate suspension,

or 260 U/mg protein, based on an assay run at 310 K and pH 7.4, with ini-

tial concentrations of alanine and α-ketoglutarate at 260 mM and 20 mM,

respectively, tris buffer at 100 mM, pyridoxal-5’-phosphate at 0.15 mM, and

enzyme diluted to <1 U/mL. The protein exists as a dimer in solution, with

a molecular weight of ∼100,000 g/mol dimeric ALT (i.e., ∼50,000 g/mol per

monomer).

Additional reaction components included pyruvic acid from Sigma Aldrich

(purity 98%, Lot # SHBH2749V), α-ketoglutaric acid from ChemCruz (purity

99%, Lot A1717), pyridoxal-5’-phosphate (P5P) from Sigma Aldrich (purity

98%, Lot # SLBM9225), and potassium phosphate dibasic from Sigma Aldrich

(purity ¿98%, Batch # 126K0747). For separations we used 30 kDa Amicon

Ultra-15 mL centrifugal filters, Dowex 50WX8 hydrogen form, and a Primesep

A HPLC column (10x250 mm, Part # A-100.250.051C, Particle 5 µm 100 A).

3.2.2 Experimental Procedures

We prepared reaction media by weighing 331.9 mg of alanine and 5373.25 mg

α-ketoglutaric acid, which was dissolved in 670 mL ultrapure H2O in a 1 L

bottle. To this we added 20 mL 6 mM pyridoxal-5’-phosphate (the co-enzyme

for this reaction) and 100 mL of 400 mM dipotassium phosphate, and raised

the pH to 7.5 by addition of ∼10 mL 5 M NaOH. This brought the solution

volume to a total of ∼800 mL, resulting in a concentration of 4.6 mM alanine,

40.6 mM α-ketoglutaric acid, 0.15 mM pyridoxal-5’-phosphate, and 200 mM

dipotassium phosphate. We chose a tenfold higher initial concentration for α-

ketoglutaric acid relative to alanine, with the intention of pushing the reaction

toward a very low alanine concentration (i.e., high pyruvate concentration)

relative to initial conditions. This maximizes the expected observable isotopic

fractionation in alanine, which is preferred, given that we are not able to

measure the carbon isotopic composition of pyruvate to compare directly to

alanine. The reaction volume was optimized for recovery of sufficient alanine
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for GC-IRMS and EA/IRMS analysis. We set aside 560 µL of this 800 mL

solution to measure chemical kinetics as described below, while the rest we

reacted separately, collecting samples at intervals throughout the reaction for

isotopic analysis of remaining alanine, also described below.

To acquire chemical kinetics data, we filled an NMR tube with 560 µL reaction

media set aside as described above, to which was added 30 µL D2O to serve as

a frequency lock. To begin the reaction, 7.5 µL of 50x diluted enzyme solution

was added to give an expected enzyme activity of 0.5 U/mL, and the NMR

tube vortexed for several seconds and then quickly transferred to an NMR

spinner. Quantitative 1H NMR spectra were recorded on a Varian 600 MHz

spectrometer with 5 mm inverse triple resonance probe (1H, 2H, 13C, 15N,
31P) set to 303 K. We acquired 8-scan spectra at 4-min intervals spanning 9

hours, resulting in an array of 128 spectra. Using MestReNova software, we

stacked these spectra and integrated peak area over the upfield peak of the

alanine doublet, tracking this value as change in alanine concentration over the

duration of the experiment. We avoided integrating over the downfield peak

of the alanine doublet as it suffered interference with the pyruvate hydrate

methyl group singlet, which increases over the course of the experiment, while

the upfield alanine doublet peak was resolved and sufficient for peak area

integration.

To initiate the reaction for isotopic analysis, 200 µL ALT enzyme stock solution

was added to the ∼800 mL reaction media described above, for an expected

enzyme activity of 0.5 U/mL, as above. The reaction was incubated at 303

K, and samples of the solution were removed at 1, 2, 3, 4, 5, 6, 9, 12, and 24

hours. Upon sample removal, ALT reaction was quenched with liquid nitrogen,

followed by filtration of the sample solution through 30 kDa Amicon Ultra-

15 mL centrifugal filters to remove ALT, thus ensuring the reaction could

not continue during the following steps. Each sample solution was eluted

through a cation exchange column using Dowex 50WX8 hydrogen form and

2M ammonium hydroxide to remove buffer, pyruvic acid, and α-ketoglutaric

acid, recovering a mixture of alanine and glutamate. Collected fractions were

tested for presence of amino acids using ninhydrin on TLC plates, followed by
1H NMR, and all fractions testing positive by either method were combined

and dried down in a TurboVap. Each of these recovered alanine and glutamate

mixtures was then split into two aliquots; one aliquot was run through HPLC
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to separate alanine from glutamate using a Primesep A column. Using 1H

NMR we verified the purity of each alanine sample recovered to be ¿ 99 % pure

of organic contaminants, before sending to UCD SIF for elemental analysis

(EA). The second aliquot (mixture of alanine and glutamate) was sent to

UCD SIF for derivatization followed by GC-IRMS analysis.

3.2.3 Determination of ALT Reaction Equilibrium and Kinetics

Knowledge of the chemical equilibrium constant, Keq, given in Equation 3.2 for

the ALT reaction is necessary, for our experiment is designed to recover sam-

ples of alanine while the reaction is in progress, as well as once it has reached

equilibrium. Several research groups measured this Keq in the 1940s and 50s:

Lénárd in 1942 reporting 0.699 (Lénárd et al., 1942), Darling in 1947 reporting

0.444 (Darling, 1947), and Krebs in 1953 reporting 0.658 (Krebs, 1953). Two

more publications on ALT kinetics during the 1960s reported additional val-

ues: Hopper and Segal reporting 0.38 and 0.63 (acquired thermodynamically

and kinetically, respectively) (Hopper et al., 1962) and Bulos and Handler

reporting 0.45 (Bulos et al., 1965). (Note: All of these authors wrote Reac-

tion 1 in the opposite direction, so they actually report reciprocal values in

their papers. Oddly, in their discussion, Bulos and Handler (Bulos et al., 1965)

somehow confused themselves and compared their Keq of 2.2 (i.e., 1/0.45) with

the reciprocals of Krebs’ and Hopper and Segal’s published values, presenting

apparent discrepancies much larger than the actual discrepancies, which on

their own are already significant. It is disconcerting that the magnitude of the

discrepancy did not cause enough concern to correct the error in the reaction

direction, especially since it must have been clear that they were comparing a

Keq greater than unity to one less than unity. In their words, “No explanation

can be offered for the relatively small difference between Keq as determined

by [Krebs (0.658) and Hopper and Segal (0.63)] and the value of 2.2 reported

herein.”) It is somewhat surprising to see this degree of variation in reported

values, with no obvious convergence toward a single value as the number of

studies increased, and no meta discussion on the potential explanations for

these discrepancies. It is not clear from these literature values which to take

as the correct one, so we use our chemical kinetics data to determine Keq for

ourselves and compare this to the scattered literature values.

Keq =
[PYR][GLU]

[ALA][αKG]
(3.2)
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It is also important that we have some sense of the expected reaction rate, to

optimize sampling frequency for isotopic analysis, as well as to determine the

length of time that the reaction needs to run to establish equilibrium.

Given the alanine transamination reaction shown in Figure 3.1, we assume a

second-order rate law with two parameters, a forward rate, kf , and a backward

rate, kb:

d[ALA]

dt
= −kf [ALA][αKG] + kb[PYR][GLU] (3.3)

The negative sign on the first term of the right hand side of the reaction

indicates that [ALA] decreases as the reaction proceeds from left to right. It

is most convenient to fit kf and Keq, with kb taken as kf/Keq.

These parameters are optimized to obtain the best fit of the numerically inte-

grated equation to the 1H NMR data on [ALA] as described in the previous

section. Numerical integration was done with Euler’s method, and fitting was

performed with the downhill simplex method of Nelder and Meade (Nelder et

al., 1965; note: there is more discussion of this technique in Chapter 5 where

it is used more extensively). Codes are given in 3.5.2.

The best fit to our data, as shown in Figure 3.2, gave Keq as 0.431, kf=9.89×10−5

mM−1 min−1 and kb=kf/0.431 = 2.32×10−4 mM−1 min−1. Interestingly, our

Keq is closest to Darling’s value of 0.444 (Darling, 1947) and second closest

to Bulos and Handler’s value of 0.45 (Bulos et al., 1965). In Figure 3.2 we

compare the fit using these two parameters to a single-parameter fit constrain-

ing kb to kf/0.658 to match Krebs’ equilibrium constant. In the case of the

constrained single-parameter fit, kf=9.40×10−5 mM−1min−1. It is visually

obvious that our two-parameter fit to the data is significantly better than the

constrained single-parameter fit. However, it turns out that choosing either

the constrained single-parameter model or the two-parameter model does not

affect the conclusions we draw in this paper. Were we to show similar con-

strained single-parameter fits using the other four Keq values reported in the

papers referenced above, all but Lénárd’s would be closer to our two parameter

fit than Krebs’.

Given our fitted Keq of 0.431 and the starting concentrations of our experiment

as described earlier, we expect equilibrated substrate concentrations to be

0.83 mM alanine, 36.8 mM α-ketoglutarate, 3.6 mM pyurate, and 3.6 mM
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Figure 3.2: Concentration of alanine as a function of time from 1H NMR (gray
circles) and the fitted model concentrations of alanine, fitting both Keq and kf
(blue solid line), and fitting kf with kb fixed by Krebs’ equilibrium constant
(blue dashed line). Pyruvate concentration also shown (brown solid line and
brown dashed line, respectively).

glutamate. Accordingly, approximately 81.5 % of the initial alanine will be

converted to pyruvate, giving an apparent equilibrium isotope fractionation

that is 81.5 % of the theoretical value calculated in the previous chapter.

The discrepancy between the Keq determined kinetically and the thermody-

namic value given by Krebs is apparently typical of studies on ALT kinetics

(0.45 kinetically determined in (Bulos et al., 1965); 0.38 kinetically determined

in Hopper et al., 1962). Hopper and Segal report a thermodynamic Keq of 0.63

(Hopper et al., 1962), close to Krebs’ value of 0.658, determined in some of

their earlier work (Segal et al., 1962). They do not comment on possible rea-

sons for the discrepancy. Here we focus on the kinetics and take the kf and kb

as two parameters that describe the kinetics that we measured as a basis to

understand the isotope exchange kinetics.

Enzyme-catalyzed reactions are not typically represented by rate laws like
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Equation 3.3 even for the simplest single-substrate reactions, as enzyme-substrate

complexes can introduce additional substrate dissociation parameters. The

ALT reaction is relatively complex, operating via a “bi-bi ping-pong” mech-

anism with the enzyme serving as a reaction target that alternately converts

between reactants and products of the two half-reactions (ALA ⇀↽ PYR and

αKG ⇀↽ GLU) (Hopper et al., 1962; Bulos et al., 1965). For our purposes,

however, given that we care principally about the carbon kinetic and equilib-

rium isotope affects, and are not directly concerned with broader enzymology

topics such as inhibition, it is sufficient that our “naive” rate law fits our ex-

perimental concentration data and successfully predicts the amount of alanine

converted to pyruvate with time. It should not be blindly assumed to apply

to the alanine transaminase reaction under different reaction conditions, and

even under the same conditions using a different ALT isoform (further dis-

cussed below). It is also worth noting the that the enzyme concentration used

in our experiment is many orders of magnitude lower than the alanine concen-

tration and does not serve as a significant pool of bound alanine or pyruvate

during the NH2/O exchange and thus should not significantly influence the

isotopic compositions of alanine and pyruvate.

The porcine-heart-derived ALT used in this study came with documentation

from the vendor giving a specific activity of 260 U/mg, from which we can

derive a rate constant. Measured specific activity for alanine transaminase

ranges over several orders of magnitude, with values ranging from ∼1 U/mg

for Zea mays (corn) to 2231 U/mg for Hordeum vulgare (barley), depending

largely on the type of organism producing it (Good et al., 1992; Schomburg

et al., 2007). Note that we are not determining Km or other Michaelis-Menten

kinetic parameters in this study, which would require running the reaction

over multiple ranges of substrate concentrations. In 1967, Saier and Jenkins

reported Km values for porcine heart alanine transaminase as 28 mM for ala-

nine and 0.4 mM for α-ketoglutarate (Saier Jr. et al., 1967). Km values can

vary greatly depending on the isoenzyme across organisms, and even within

the same organism. More recent studies have shown that distinct isoenzymes

of alanine transaminase can have radically differing affinities for substrates,

in some cases favoring opposite reaction directions (DeRosa et al., 1975; Duff

et al., 2012; McAllister et al., 2013).

We calculate the actual initial reaction rate based on our fitted rate constant,
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kf , and the initial concentrations of alanine and α-ketoglutarate, and compare

this value to the expected enzyme activity given the amount of enzyme added

to our reaction solution and the activity of the enzyme as assayed by the

vendor prior to our purchase:

d[ALA]

dt
= −kf [ALA][αKG] + kb[PYR][GLU]

= −9.89 ∗ 10−5mM−1min−1 ∗ 4.6mM ALA ∗ 40.6mMαKG

= 0.018
mmol ALA

L*min
= 0.018

U

mL

(3.4)

Initial substrate concentrations for the vendor assay are 260 mM alanine and

20 mM α-ketoglutarate, and the assay is performed with diluted enzyme at <1

U/mL, which is then concentrated to 1990 U/mL in the commercial product.

As described in the experimental section above, we diluted the concentrated

enzyme solution by a factor of ∼4000, to a targeted value of 0.5 U/mL, as-

suming substrate concentrations identical to the assay conditions. Using our

fitted kf and the vendor assay substrate concentrations, we calculate an initial

reaction rate of 0.51 U/mL, matching the target value. That is to say, our rate

constant gives us the initial reaction rate we would expect, had we used the

assay substrate concentrations, and otherwise identical conditions. In reality,

experimental temperature (304 K) and buffer system (phosphate) were also

different from the assay conditions (310 K and tris buffer), but they appear

not to have made a significant difference here. It is actually somewhat sur-

prising that this calculation results in an answer so close to the target value,

since the assumption that the observed reaction rate is directly proportional

to substrate concentrations over a wide range in a multi-substrate enzyme-

catalyzed reaction is not necessarily justified. We conducted this check simply

to gauge whether the enzyme was behaving roughly as expected based off of

its documentation.

3.2.4 Expected Isotopic Evolution of Alanine

We used the rate law in Equation 3.3 as a basis for generating models of iso-

topic evolution as a function of different magnitudes of kinetic isotope effect in

the following manner: we begin with the concentration of 13C at -19.83 h, the
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composition of our Alfa Aesar alanine standard on the VPDB scale, as mea-

sured by GC-IRMS. An element of alanine, d[ALA], is drawn from the alanine

pool with ratio 12C/13C (r hereafter), to be converted to pyruvate. Note that

in the context of creating the code, we find it easier to think of 12C/13C rather

than the more usual inverse because the transmission factor (see immediately

below), representing the kinetic isotope effect is then slightly greater than 1

for a normal kinetic isotope effect, showing preferential transmission of 12C.

However, wherever we report an isotopic composition in terms of δ notation

we use the conventional 13C/12C ratio. We postulate a transmission factor,

kif , giving the amount of 12C or 13C that preferentially converts from reac-

tants to products, as well as a similar factor, kib , giving the amount of 12C or
13C that preferentially converts from products to reactants in the backward

reaction. If there is no preference for the forward reaction, kif would equal

1.000. However, from theory we expect that the pyruvate will preferentially

incorporate 13C by ∼10 h, and so expect, for the backward reaction, that kib
= 1.010, that is, the pyruvate preferentially binds 13C, so the transmission of
12C is enhanced. Note that we use the expected site-specific ∼10 h fraction-

ation here in simulating the reaction; the ∼3 h signature is a result of the

analytical methods we used in the study, which involve combustion to CO2

resulting in dilution of the α-carbon with the carboxyl carbon and β-carbon,

which we assume are not subjected to significant isotopic fractionation on the

CH3 –C–COOH backbone that is conserved between alanine and pyruvate.

Note also that there is a difference between these “transmission factors” as

we have defined them here and the actual isotope exchange rates that we

would measure, for example, under conditions of chemical equilibrium. These

transmission factors, as written, are unitless numbers that couple the isotopic

exchange to the chemical reaction rates. Going a bit further, we could think

of a normal kinetic isotope effect (where “normal” means 12C is preferentially

transmitted) being represented by a kif that is greater than one. That is, there

is a preferential transmission of 12C as we convert the products to reactants at

a rate determined by the chemical kinetics. For example, a 5 h normal kinetic

isotope effect would have a kif = 1.005, and, given that we expect a ∼10 h

fractionation at equilibrium, kib would then be set to 1.015. The isotopic flux

is incorporated into the chemical rate law as follows: let an amount d[ALA] of

alanine, with isotope ratio r=d[12CALA]/d[13CALA], be converted from product

to reactant. For the forward reaction in a normal KIE, a certain amount, ε, of
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13CALA is removed from the transmitted element of alanine and a correspond-

ing amount of 12CALA is added. It is evident that the amount removed/added

satisfies the equation:

kif r =
d[12CALA] + ε

d[13CALA] − ε
(3.5)

Solving this equation for ε yields:

ε =
d[13CALA]kif r − d[12CALA]

1 + kif r
(3.6)

Exactly the same considerations apply to the reverse reaction, but now choos-

ing kib as the rate constant. At each timestep in the chemical reaction, equation

3.6 (as well as its equivalent in the reverse direction) is solved, which deter-

mines the evolution of the isotopic composition of the alanine and pyruvate.

A Python script (given in 3.5.3) was written to follow the isotopic composition

of alanine for ∼0, 5, 10, and 15 h kinetic isotope effects. The expected

evolution is given in Figure 3.3. The magnitude of the KIE is adjusted by

increasing kif up from 1.000 (0 h KIE) to 1.015 (∼15 h KIE).

The model behaves as expected, with the initial difference in alanine and pyru-

vate isotopic compositions reflecting the kinetic isotope effect, with a transient

enrichment of 13C in alanine that rises with the magnitude of the kinetic

isotope effect, eventually reaching the equilibrium value of a ∼3 h whole-

molecule enrichment of 13C in pyruvate at equilibrium. The model shows that

isotopic equilibrium should be obtained within approximately a day (∼1500

minutes), which it is forced to by the one-to-one coupling with the chemi-

cal evolution of the system. However, our experimental data are obviously

inconsistent with the theoretical predictions.

It is worth noting also the sensitivity of the isotopic evolution to the chemical

kinetics. While the 2-parameter model is a better fit to our chemical kinetics

data, the 1-parameter model, with Keq fixed to Krebs’ value, is not terribly far

off (as depicted in Figure 3.2). The difference between them has a surprisingly

large effect on the prediction of the time dependence of the isotopic equilibrium

with a significantly larger transient enrichment of alanine in 13C, especially for

large KIEs (as shown in Figure 3.3). Neither model, however, predicts our

isotopic measurements.
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Figure 3.3: Predicted whole-molecule carbon isotopic composition of alanine
(dashed lines) and pyruvate (dash-dot lines) as a function of time, with the
kinetic parameters used in Figure 3.2. Blue and black dots are the GC-IRMS
and EA/IRMS data, respectively. Thin lines for alanine are calculated from
model constrained to Krebs’ chemical Keq.

Only by reversing the direction of the equilibrium isotope affect can we repro-

duce the data as it approaches equilibrium. That is, if:

1000 ∗ ln(kif/kib) = 10 (3.7)

Thus, our data indicate that there is a ∼10 h site-specific enrichment (∼3

h whole-molecule) in the other direction, with alanine being enriched in 13C

relative to pyruvate. In Figure 3.4 we show predictions for a range of possible

kinetic isotope effects. Not only do the data indicate the opposite sense of frac-

tionation from what was predicted, but the time dependence is not consistent

with any single kinetic fractionation factor, even with the reversed fractiona-
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Figure 3.4: Predicted whole-molecule carbon isotopic composition of alanine
(solid blue lines) and pyruvate (brown dash-dot lines) as a function of time,
with the kinetic parameters used in Figure 3.2, but with a 10 h equilibrium
fractionation (alanine enriched in 13C) imposed. Gray circles and black crosses
are the GC-IRMS and EA/IRMS data, respectively. Dashed blue lines for
alanine are calculated from model constrained to Krebs’ chemical Keq.

tion put into the model. The observed behavior is more complex, crossing a

range of isokinetic fractionation curves (with different KIEs) .

3.3 Discussion

Comparing these experimental results with our theoretical predictions in Chap-

ter 2, the obvious question is what could account for the discrepancy not only

in degree of fractionation, but, more strikingly, the direction of fractionation.

That is, we observed a 13C isotope enrichment in alanine over the course of this
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reaction, in contrast to our prediction that the reaction, once it had reached

equilibrium, would result in alanine depleted in 13C relative to its starting com-

position. It is sensible to evaluate first whether an experimental methodology

issue could be lurking in such unexpected results. Separation procedures such

as those that we use in this study (i.e., ion exchange column to purify alanine

and glutamate from the other reaction components, and HPLC to separate

alanine from glutamate) can introduce fractionation if analyte recovery is not

quantitative (e.g., Caimi et al., 1997). We control for this in part by analyzing

using two independent methods: EA/IRMS, which requires HPLC, and GC-

IRMS, which does not require HPLC as a purification step prior to analysis.

If HPLC introduces a fractionation, it will be observable in the difference be-

tween the results of the two analytical methods. While there is some scatter

between these two analytical methods, it is visibly insignificant with respect to

our conclusions. In addition, any fractionation introduced by our separation

methods is unlikely to result in the time-dependent trend and regularity our

data displays.

From our chemical kinetics data, it is easy to see that our reaction would

have reached chemical equilibrium by the time the last aliquot was collected,

but can we be certain that the reaction had also reached isotopic equilib-

rium? A previous study by Rishavy and Cleland investigated a set of enzyme-

mediated carbon equilibrium isotope fractionation measurements, with the

alanine/pyruvate fractionation among them (Rishavy et al., 1999). They re-

ported a site-specific value of 12 h, with 13C preferring pyruvate, which is

similar to what we predicted theoretically in the previous chapter. Their study

employed a chemical degradation method involving decomposition of pyruvate

into acetate, avoiding detection and measurement of alanine altogether. Un-

fortunately, there is not enough detail reported in Rishavy and Cleland’s paper

to replicate their work. They do not provide any time-dependent chemical or

isotopic equilibration data, such as that which we give in Figures 3.2 and 3.3

here. There are no error bars included in their data, nor discussion of poten-

tial sources of error. Rishavy and Cleland casually mention that they “usually

allow 10 times longer” than the characteristic chemical equilibration time “to

ensure that true isotopic equilibrium has been reached”, but they do not ex-

plain this claim or give any indication where to find further discussion on the

topic. We were not able to determine whether this question of decoupling

between chemical and isotopic equilibration has been rigorously examined or
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explained elsewhere.

In the context of the discussion above, modeling a decoupled chemical or

isotopic equilibrium would require a time-dependent Ki=kif /kib , and, more

specifically, knowledge of a functional form for such. At each time step, our

code converts a specified amount of alanine to pyruvate; we would need a recipe

to replace the simpler idea above of having a kinetic fractionation represented

by the deviation of the kif transmission factor from unity and an equilibrium

fractionation expressed by the kif /kib ratio. While the decoupling of isotopic

and chemical equilibrium is not an unheard of concept, there is little guidance

from the literature in how to think about this decoupling mechanistically in

a way that could be used rigorously, as in a computational algorithm imple-

mented in our code. One idea is to postulate that there is some systematic

relationship between the expressed fractionation and the reaction flux (i.e.,

the rate constant times the concentration), being closer to unity when the

reaction flux is high and closer to the equilibrium fractionation when the flux

is low. We can test this by running a simulation with kif /kib set to unity for

various KIEs, for example, both ki at 1.002 for a 2 h KIE, 1.005 for a 5 h

KIE, etc. This would correspond to an “infinite” time to reach equilibrium.

If such a model cannot reproduce the experimental data, then there is little

point in thinking about the precise relationship between reaction flux and the

expressed fractionation, at least in the context of a “fast-flux-implies-lower-

fractionation” model. It is clear from the results shown in Figure 3.5 that a

flux-dependent fractionation approach, at least one having zero fractionation

at high flux and equilibrium fractionation at low flux, would not be able to fit

the data.

The variability in specific activity for alanine transaminase isolated from var-

ious organisms as discussed earlier could in fact be an advantage in pursuing

the secondary goal of understanding how the rates of chemical and isotopic

equilibrium are related. For example, it is possible the chemical/isotopic cou-

pling depends on reaction flux, with negligible fractionation at fast conversion

rates and becoming closer to equilibrium fractionation at slow conversion rates.

Having a suite of enzymes with a large variation in activity could be useful in

exploring this issue in future work.

Given that this experiment involved equilibration of the α carbon isotopes

between alanine and pyruvate, it was of interest to us to determine whether
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Figure 3.5: Predicted carbon isotopic composition of alanine as a function of
time with the kinetic parameters used in Figure 3.2 and a 3 h enrichment
of 13C in pyruvate (dashed lines) and with no fractionation (solid lines) for a
range of kinetic isotope effects. The zero-fractionation might be appropriate
for fast conversion rates. Gray circles and black crosses are the GC-IRMS and
EA/IRMS data, respectively. The figure shows that even if zero fractionation
persisted throughout the progress of the reaction, this could not explain the
experimental data.
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there was a straightforward way to measure the δ13C of pyruvate along with

that of alanine. If this was an option, it would provide an independent way

to observe the isotopic evolution of the system, as the isotopic compositions

of pyruvate and alanine evolve interrelatedly and the offset between them at

equilibrium would provide an independent approach to determining their equi-

librium fractionation. Unfortunately for our purposes, dealing with pyruvate

in this way was not feasible due to a number of complications it would in-

troduce. One major challenge is dealing with the complicated behavior of

pyruvate in solution, whether in an effort to isolate pyruvate from the other

reaction components, or to measure its δ13C in a mixture. In water, pyruvic

acid is known to equilibrate with pyruvate and pyruvate hydrate, and can

also exist in its enol form, as well as undergoing aldol condensation to form

dimers and higher polymers (see Supplementary Figure 3.6 for a 1H NMR

spectrum showing several species we identified in a solution of pyruvate at

neutral pH). The relative abundances of these species are very sensitive to

temperature and pH (Damitio et al., 1992). Quantitatively recovering these

species and separating them from the other reaction components without trad-

ing off quantitative recovery of alanine is a project we leave for someone else.

While others (e.g., Melzer and Schmidt 1987) have analyzed pyruvate 13C by

chemical degradation in the dehydrogenase reaction, those papers did not dis-

cuss the challenges of pyruvate speciation, so it is not clear whether they were

aware of this complication, and how they dealt with it. In their reaction of

interest, pyruvate was a reactant (rather than a product, as in our case) of de-

hydrogenase reactions that were run for relatively brief intervals, which we can

only speculate might have limited the degree to which pyruvate was converted

into its other forms. Regardless, procedures involving chemical degradation

for isotopic analysis were outside the scope of our project.

Pyruvate speciation (again, see Supplementary Figure 3.6) also raises another

question: could these species introduce additional carbon fractionation factors

that lead to a delayed or altered equilibrium between alanine and pyruvate?

Our theoretical predictions in the previous chapter included calculations for

some of these species (pyruvic acid, enol-pyruvate), and the equilibrium frac-

tionation between them and alanine was not significantly different from that

of pyruvate. Intuitively, because the carbon bonding environments of these

pyruvate species are so similar to each other, we would expect fractionation

factors amongst these species to be small compared to the fractionation factor
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between any one of them and alanine. Nevertheless we cannot exclude the

possibility that an explanation for the disagreement between our theoretical

predictions for alanine and our actual observations has something to do with

pyruvate speciation. Similarly, it is possible that irreversible reactions occur

through pyruvate dimerization and polymerization, as mentioned above, which

could act as sinks for pyruvate, thus leading to a situation where steady state

is never truly reached in our reaction. If so, this could also potentially account

for the mismatch between our experimental results and theoretical predictions.

Further investigation would be required to resolve these questions.

3.4 Conclusions

Here we present measurements of carbon isotopic (12C and 13C) preference be-

tween the α carbon site of alanine and the corresponding (central) carbon site

in pyruvate, which differs from alanine only in that it is double-bonded at this

carbon site to an oxygen atom, while alanine is bound to a proton and an amine

group. The alanine transamination reaction, an enzyme-mediated biochemical

reaction converting between two amino acid, keto-acid pairs (simultaneously

between alanine and pyruvate, and between α-ketoglutarate and glutamate)

mediated by alanine transaminase (ALT), facilitates carbon isotopic equilibra-

tion between alanine and pyruvate. Using GC-IRMS and elemental analysis

(EA), we measured the δ13C of alanine recovered from regular intervals along

this reaction and compare the measured value to the original isotopic compo-

sition. We find a clear discrepancy between our experimental measurements

and theoretical estimates (and chemical intuition) that predict pyruvate, with

its stiff carbonyl bond, should be enriched in 13C. Instead of observing that

the isotopic composition of alanine becomes more depleted in 13C as equilib-

rium is approached under conditions where it is driven down to ∼20 % of its

initial concentration, we find it becomes more enriched in 13C with time. Our

model shows that the observed time dependence isotopic composition of the

alanine does not correspond to any simple combination of kinetic and equi-

librium fractionation. One possible way to explain this discrepancy would be

that the timescale for isotopic equilibration was much longer than the chemi-

cal equilibration. To evaluate this possibility, we considered a model involving

a flux-dependent fractionation where greater fluxes implied a lower degree of

fractionation, but even a model with zero kinetic fractionation across the range

of fluxes calculated in the model was unable to account for the observed time
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dependence of the alanine isotopic composition, implying that the thermody-

namic fractionation factor itself would actually have to be reversed.
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3.5 Supplementary Materials

3.5.1 Supplementary Figures

To deconvolve the pyruvate-related peaks, we used NMR to investigate the

molecular species present in a sample of pyruvic acid purchased from Aldrich

Chemistry (product # 107360-100G, Lot # SHBH2749V). In water, pyruvic

acid is known to exist in equilibrium with pyruvate and pyruvate hydrate,

and can also exist in its enol form, while the abundances of these species will

depend largely on pH (Damitio et al., 1992). Pyruvate can also undergo aldol

condensation to form dimers. We found that in our reaction mixture, dimers

were not abundant enough to detect easily with 13C NMR, indicating that

they make up <1% of the total pyruvate species. However, in an aqueous

solution of pyruvate prepared from pyruvic acid, three dimers were found to

be abundant. This solution, prepared in a 2 mL GC vial, was composed of 10

µL pyruvic acid in 400 µL 0.4 M phosphate buffer at pH 7.2, to which was

added 200 µL D2O for the lock frequency. Before transferring to an NMR

tube, the pH of this solution was measured with thin strips of pH paper and

verified to be 6–7.

Figure 3.6 shows the methyl region of the 1H NMR spectrum taken on the

pyruvate solution described above. Annotations indicate the methyl protons

from which each peak arises. A 13C spectrum and two 2D spectra (HSQC

and HMBC), provided in the Supplementary Attachments, were also obtained

to aid in identifying the species present in this sample. Five distinct major

species were identified, including pyruvate (most abundant), pyruvate hydrate,

and three condensation products. Surprisingly, no enol monomer was found

present in this solution, but an enol dimer was present. Integrals were drawn

on each of these five species and are shown relative to pyruvate (100%). The

four less abundant species range in relative abundance from ∼10–20%.
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Figure 3.6: 1H NMR spectrum showing signals arising from methyl groups on at least five variants of pyruvate, hydrated pyruvic
acid, and related dimers that naturally arise around neutral pH. The relative abundances of these species is very sensitive to pH.
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3.5.2 Python Code for Chemical Kinetics Model
1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 pd.set_option(’display.max_rows ’, None)

7

8 df1=pd.read_csv(’chem.dat’,names=[’time’,’A’],sep="\s+")

9

10 # 2-parameter model

11 maxiter =10001 # chemical rate constant in forward direction in

units of mMol -1 min -1

12 kf =9.89E-05 # chemical rate constant in backward direction in

units of mMol -1 min -1

13 kb =2.32* kf

14 dt =0.25000 # time step in minutes

15 a=4.45 # starting alanine concentration in mMol

16 b=40.45 # starting aKG concentration in mMol

17 c=0.000010 # starting pyruvate concentration in mMol

18 d=0.000010 # starting glutamic acid concentration in mMol

19 t=0.00 # starting time

20 plist = []

21 for i in range(1,maxiter):

22 daf=kf*a*b*dt

23 dab=kb*c*d*dt

24 da=-daf+dab

25 dc=-da

26 db=da

27 dd=dc

28 a=a+da

29 b=b+db

30 c=c+dc

31 d=d+dd

32 t=t+dt

33 ratio=(c*d)/(a*b)

34 plist.append(array([t,a,b,c,d,ratio ]))

35 df2=pd.DataFrame(plist ,columns =[’time’,’A’,’B’,’C’,’D’,’K’])

36

37 # 1-parameter model using Krebs ’ Keq

38 kf =9.40E-05 # chemical rate constant in forward direction in

units of mMol -1 min -1

39 kb =1.52* kf # chemical rate constant in backward direction in
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units of mMol -1 min -1

40 dt =0.25000 # time step in minutes

41 a=4.45 # starting alanine concentration in mMol

42 b=40.45 # starting aKG concentration in mMol

43 c=0.000010 # starting pyruvate concentration in mMol

44 d=0.000010 # starting glutamic acid concentration in mMol

45 t=0.00 # starting time

46 plist = []

47 for i in range(1,maxiter):

48 daf=kf*a*b*dt

49 dab=kb*c*d*dt

50 da=-daf+dab

51 dc=-da

52 db=da

53 dd=dc

54 a=a+da

55 b=b+db

56 c=c+dc

57 d=d+dd

58 t=t+dt

59 ratio=(c*d)/(a*b)

60 plist.append(array([t,a,b,c,d,ratio ]))

61 df3=pd.DataFrame(plist ,columns =[’time’,’A’,’B’,’C’,’D’,’K’])

62

63 fig1 , ax=plt.subplots(figsize =(8 ,6))

64 ax.plot(df1[’time’],df1[’A’],’.’,color=’k’,alpha =0.3, label=r’

ALA Exp’)

65 ax.plot(df2[’time’],df2[’A’],’-’,color=’#01497c’,lw=1,alpha

=0.7, label=r’ALA 2-P Fit’)

66 ax.plot(df3[’time’],df3[’A’],’--’,color=’#01497c’,lw=1,alpha

=0.7, label=r’ALA Krebs $K_{eq}$’)
67 ax.plot(df2[’time’],df2[’C’],’-’,color=’#7 c2c01’,lw=1,alpha

=0.7, label=r’PYR 2-P Fit’)

68 ax.plot(df3[’time’],df3[’C’],’--’,color=’#7 c2c01’,lw=1,alpha

=0.7, label=r’PYR Krebs $K_{eq}$’)
69 ax.set_xlabel(’Time (min)’)

70 ax.set_ylabel(’Concentration (mM)’)

71 ax.set_xlim (0 ,2000)

72 ax.set_ylim (0 ,4.5)

73 ax.legend ()

74 fig1.tight_layout ()

75 fig1.savefig(’Ch3_Chem -Model.png’,dpi=400, transparent=False)

Listing 3.1: Ch3_Chem-Model.py
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3.5.3 Python Code to Fit Experimental Data
1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 pd.set_option(’display.max_rows ’, None)

7

8 maxiter =10001

9 peedee =0.011180 # fraction of 13C in PDB standard

10 alaf =0.0108395 # starting fraction of 13C in alanine (d13C =

-19.83 \permil)

11 kf =9.89E-05 # chemical rate constant in forward direction in

units of mMol -1 min -1

12 kb =2.32* kf # chemical rate constant in backward direction in

units of mMol -1 min -1

13 dt =0.25000 # time step in minutes

14

15 df_isotope1 = pd.read_csv(’davis_GCIRMS.dat’,names =[’time’,’

d13C_ala ’])

16 df_isotope2 = pd.read_csv(’davis_EA.dat’,names =[’time’,’

d13C_ala ’])

17

18 factorkf =1.000 # isotope factor in forward direction

19 factorkb =1.010 # isotope factor in backward direction

20 a=4.45 # starting alanine concentration in mMol

21 b=40.45 # starting aKG concentration in mMol

22 c=0.000010 # starting pyruvate concentration in mMol

23 d=0.000010 # starting glutamic acid concentration in mMol

24

25 a13=a*alaf # alanine 13C concentration in mMol

26 a12=a*(1-alaf) # alanine 12C concentration in mMol

27 c13=c*alaf # pyruvate 13C concentration in mMol

28 c12=c*(1-alaf) # pyruvate 12C concentration in mMol

29

30 t=0.00 # starting time

31 plist = []

32 for i in range(1,maxiter):

33 daf=kf*a*b*dt

34 dab=kb*c*d*dt

35 da=-daf+dab

36 dc=-da

37
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38 daf13=daf*a13/(a12+a13)

39 daf12=daf*a12/(a12+a13)

40 rf=daf12/daf13

41 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

42 daf13=daf13 -epsilon

43 daf12=daf12+epsilon

44

45 # same thing for pyruvate (c) backwards

46 dab13=dab*c13/(c12+c13)

47 dab12=dab*c12/(c12+c13)

48 rb=dab12/dab13

49 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

50 dab13=dab13 -epsilon

51 dab12=dab12+epsilon

52

53 da13=-daf13+dab13

54 da12=-daf12+dab12

55 dc13=-da13

56 dc12=-da12

57

58 db=da

59 dd=dc

60

61 a=a+da

62 b=b+db

63 c=c+dc

64 d=d+dd

65 a13=a13+da13

66 a12=a12+da12

67 c13=c13+dc13

68 c12=c12+dc12

69 t=t+dt

70 site_1_3_a13 =2*a*0.01083760

71 site_1_3_a12 =2*a*(1 -0.01083760)

72 site_1_3_c13 =2*c*0.01083760

73 site_1_3_c12 =2*c*(1 -0.01083760)

74 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

75 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

76 ratio=(c*d)/(a*b)

77 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

78
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79 df1=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

80

81

82 factorkf =1.010

83 factorkb =1.020

84 a=4.45

85 b=40.45

86 c=0.000010

87 d=0.000010

88 a13=a*0.01083760

89 a12=a*(1 -0.01083760)

90 c13=c*0.01083760

91 c12=c*(1 -0.01083760)

92 t=0.00

93 plist = []

94 for i in range(1,maxiter):

95 daf=kf*a*b*dt

96 dab=kb*c*d*dt

97 da=-daf+dab

98 dc=-da

99 daf13=daf*a13/(a12+a13)

100 daf12=daf*a12/(a12+a13)

101 rf=daf12/daf13

102 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

103 daf13=daf13 -epsilon

104 daf12=daf12+epsilon

105 dab13=dab*c13/(c12+c13)

106 dab12=dab*c12/(c12+c13)

107 rb=dab12/dab13

108 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

109 dab13=dab13 -epsilon

110 dab12=dab12+epsilon

111 da13=-daf13+dab13

112 da12=-daf12+dab12

113 dc13=-da13

114 dc12=-da12

115 db=da

116 dd=dc

117 a=a+da

118 b=b+db

119 c=c+dc

120 d=d+dd
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121 a13=a13+da13

122 a12=a12+da12

123 c13=c13+dc13

124 c12=c12+dc12

125 t=t+dt

126 site_1_3_a13 =2*a*0.01083760

127 site_1_3_a12 =2*a*(1 -0.01083760)

128 site_1_3_c13 =2*c*0.01083760

129 site_1_3_c12 =2*c*(1 -0.01083760)

130 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

131 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

132 ratio=(c*d)/(a*b)

133 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

134

135 df2=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

136

137 factorkf =1.020

138 factorkb =1.030

139 a=4.45

140 b=40.45

141 c=0.000010

142 d=0.000010

143 a13=a*0.01083760

144 a12=a*(1 -0.01083760)

145 c13=c*0.01083760

146 c12=c*(1 -0.01083760)

147 t=0.00

148 plist = []

149 for i in range(1,maxiter):

150 daf=kf*a*b*dt

151 dab=kb*c*d*dt

152 da=-daf+dab

153 dc=-da

154 daf13=daf*a13/(a12+a13)

155 daf12=daf*a12/(a12+a13)

156 rf=daf12/daf13

157 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

158 daf13=daf13 -epsilon

159 daf12=daf12+epsilon

160 dab13=dab*c13/(c12+c13)
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161 dab12=dab*c12/(c12+c13)

162 rb=dab12/dab13

163 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

164 dab13=dab13 -epsilon

165 dab12=dab12+epsilon

166 da13=-daf13+dab13

167 da12=-daf12+dab12

168 dc13=-da13

169 dc12=-da12

170 db=da

171 dd=dc

172 a=a+da

173 b=b+db

174 c=c+dc

175 d=d+dd

176 a13=a13+da13

177 a12=a12+da12

178 c13=c13+dc13

179 c12=c12+dc12

180 t=t+dt

181 site_1_3_a13 =2*a*0.01083760

182 site_1_3_a12 =2*a*(1 -0.01083760)

183 site_1_3_c13 =2*c*0.01083760

184 site_1_3_c12 =2*c*(1 -0.01083760)

185 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

186 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

187 ratio=(c*d)/(a*b)

188 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

189

190 df3=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

191

192 factorkf =1.030

193 factorkb =1.040

194 # this is not quite right , but close enough (i.e 1.018/1.015 is

not exactly 1.003)

195 a=4.45

196 b=40.45

197 c=0.000010

198 d=0.000010

199 a13=a*0.01083760
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200 a12=a*(1 -0.01083760)

201 c13=c*0.01083760

202 c12=c*(1 -0.01083760)

203 t=0.00

204 plist = []

205 for i in range(1,maxiter):

206 daf=kf*a*b*dt

207 dab=kb*c*d*dt

208 da=-daf+dab

209 dc=-da

210 daf13=daf*a13/(a12+a13)

211 daf12=daf*a12/(a12+a13)

212 rf=daf12/daf13

213 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

214 daf13=daf13 -epsilon

215 daf12=daf12+epsilon

216 dab13=dab*c13/(c12+c13)

217 dab12=dab*c12/(c12+c13)

218 rb=dab12/dab13

219 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

220 dab13=dab13 -epsilon

221 dab12=dab12+epsilon

222 da13=-daf13+dab13

223 da12=-daf12+dab12

224 dc13=-da13

225 dc12=-da12

226 db=da

227 dd=dc

228 a=a+da

229 b=b+db

230 c=c+dc

231 d=d+dd

232 a13=a13+da13

233 a12=a12+da12

234 c13=c13+dc13

235 c12=c12+dc12

236 t=t+dt

237 site_1_3_a13 =2*a*0.01083760

238 site_1_3_a12 =2*a*(1 -0.01083760)

239 site_1_3_c13 =2*c*0.01083760

240 site_1_3_c12 =2*c*(1 -0.01083760)

241 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000
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242 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

243 ratio=(c*d)/(a*b)

244 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

245

246 df4=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

247

248 kf=9.4E-05 # these are units of mmol -1 min -1

249 kb =1.52* kf

250

251 factorkf =1.000

252 factorkb =1.010

253

254 a=4.45

255 b=40.45

256 c=0.000010

257 d=0.000010

258

259 a13=a*0.01083760

260 a12=a*(1 -0.01083760)

261 c13=c*0.01083760

262 c12=c*(1 -0.01083760)

263

264 t=0.00

265 plist = []

266 for i in range(1,maxiter):

267 daf=kf*a*b*dt

268 dab=kb*c*d*dt

269 da=-daf+dab

270 dc=-da

271

272 daf13=daf*a13/(a12+a13)

273 daf12=daf*a12/(a12+a13)

274 rf=daf12/daf13

275 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

276 daf13=daf13 -epsilon

277 daf12=daf12+epsilon

278

279 # same thing for pyruvate (c) backwards

280 dab13=dab*c13/(c12+c13)

281 dab12=dab*c12/(c12+c13)

282 rb=dab12/dab13
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283 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

284 dab13=dab13 -epsilon

285 dab12=dab12+epsilon

286

287 da13=-daf13+dab13

288 da12=-daf12+dab12

289 dc13=-da13

290 dc12=-da12

291

292 db=da

293 dd=dc

294

295 a=a+da

296 b=b+db

297 c=c+dc

298 d=d+dd

299 a13=a13+da13

300 a12=a12+da12

301 c13=c13+dc13

302 c12=c12+dc12

303 t=t+dt

304 site_1_3_a13 =2*a*0.01083760

305 site_1_3_a12 =2*a*(1 -0.01083760)

306 site_1_3_c13 =2*c*0.01083760

307 site_1_3_c12 =2*c*(1 -0.01083760)

308 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

309 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

310 ratio=(c*d)/(a*b)

311 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

312

313 df5=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

314

315

316 factorkf =1.010

317 factorkb =1.020

318 a=4.45

319 b=40.45

320 c=0.000010

321 d=0.000010

322 a13=a*0.01083760
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323 a12=a*(1 -0.01083760)

324 c13=c*0.01083760

325 c12=c*(1 -0.01083760)

326 t=0.00

327 plist = []

328 for i in range(1,maxiter):

329 daf=kf*a*b*dt

330 dab=kb*c*d*dt

331 da=-daf+dab

332 dc=-da

333 daf13=daf*a13/(a12+a13)

334 daf12=daf*a12/(a12+a13)

335 rf=daf12/daf13

336 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

337 daf13=daf13 -epsilon

338 daf12=daf12+epsilon

339 dab13=dab*c13/(c12+c13)

340 dab12=dab*c12/(c12+c13)

341 rb=dab12/dab13

342 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

343 dab13=dab13 -epsilon

344 dab12=dab12+epsilon

345 da13=-daf13+dab13

346 da12=-daf12+dab12

347 dc13=-da13

348 dc12=-da12

349 db=da

350 dd=dc

351 a=a+da

352 b=b+db

353 c=c+dc

354 d=d+dd

355 a13=a13+da13

356 a12=a12+da12

357 c13=c13+dc13

358 c12=c12+dc12

359 t=t+dt

360 site_1_3_a13 =2*a*0.01083760

361 site_1_3_a12 =2*a*(1 -0.01083760)

362 site_1_3_c13 =2*c*0.01083760

363 site_1_3_c12 =2*c*(1 -0.01083760)

364 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000
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365 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

366 ratio=(c*d)/(a*b)

367 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

368

369 df6=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

370

371 factorkf =1.020

372 factorkb =1.030

373 a=4.45

374 b=40.45

375 c=0.000010

376 d=0.000010

377 a13=a*0.01083760

378 a12=a*(1 -0.01083760)

379 c13=c*0.01083760

380 c12=c*(1 -0.01083760)

381 t=0.00

382 plist = []

383 for i in range(1,maxiter):

384 daf=kf*a*b*dt

385 dab=kb*c*d*dt

386 da=-daf+dab

387 dc=-da

388 daf13=daf*a13/(a12+a13)

389 daf12=daf*a12/(a12+a13)

390 rf=daf12/daf13

391 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

392 daf13=daf13 -epsilon

393 daf12=daf12+epsilon

394 dab13=dab*c13/(c12+c13)

395 dab12=dab*c12/(c12+c13)

396 rb=dab12/dab13

397 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

398 dab13=dab13 -epsilon

399 dab12=dab12+epsilon

400 da13=-daf13+dab13

401 da12=-daf12+dab12

402 dc13=-da13

403 dc12=-da12

404 db=da

405 dd=dc
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406 a=a+da

407 b=b+db

408 c=c+dc

409 d=d+dd

410 a13=a13+da13

411 a12=a12+da12

412 c13=c13+dc13

413 c12=c12+dc12

414 t=t+dt

415 site_1_3_a13 =2*a*0.01083760

416 site_1_3_a12 =2*a*(1 -0.01083760)

417 site_1_3_c13 =2*c*0.01083760

418 site_1_3_c12 =2*c*(1 -0.01083760)

419 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

420 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

421 ratio=(c*d)/(a*b)

422 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

423

424 df7=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

425

426 factorkf =1.030

427 factorkb =1.040

428 # this is not quite right , but close enough (i.e 1.018/1.015 is

not exactly 1.003)

429 a=4.45

430 b=40.45

431 c=0.000010

432 d=0.000010

433 a13=a*0.01083760

434 a12=a*(1 -0.01083760)

435 c13=c*0.01083760

436 c12=c*(1 -0.01083760)

437 t=0.00

438 plist = []

439 for i in range(1,maxiter):

440 daf=kf*a*b*dt

441 dab=kb*c*d*dt

442 da=-daf+dab

443 dc=-da

444 daf13=daf*a13/(a12+a13)
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445 daf12=daf*a12/(a12+a13)

446 rf=daf12/daf13

447 epsilon =( factorkf*rf*daf13 -daf12)/( factorkf*rf +1.0)

448 daf13=daf13 -epsilon

449 daf12=daf12+epsilon

450 dab13=dab*c13/(c12+c13)

451 dab12=dab*c12/(c12+c13)

452 rb=dab12/dab13

453 epsilon =( factorkb*rb*dab13 -dab12)/( factorkb*rb +1.0)

454 dab13=dab13 -epsilon

455 dab12=dab12+epsilon

456 da13=-daf13+dab13

457 da12=-daf12+dab12

458 dc13=-da13

459 dc12=-da12

460 db=da

461 dd=dc

462 a=a+da

463 b=b+db

464 c=c+dc

465 d=d+dd

466 a13=a13+da13

467 a12=a12+da12

468 c13=c13+dc13

469 c12=c12+dc12

470 t=t+dt

471 site_1_3_a13 =2*a*0.01083760

472 site_1_3_a12 =2*a*(1 -0.01083760)

473 site_1_3_c13 =2*c*0.01083760

474 site_1_3_c12 =2*c*(1 -0.01083760)

475 delta13Ca =((( a13+site_1_3_a13)/(a12+site_1_3_a12))/peedee

-1.0) *1000

476 delta13Cc =((( c13+site_1_3_c13)/(c12+site_1_3_c12))/peedee

-1.0) *1000

477 ratio=(c*d)/(a*b)

478 plist.append(array([i,t,a,delta13Ca ,c,delta13Cc ,ratio ]))

479

480 df8=pd.DataFrame(plist ,columns =[’iter’,’time’,’alanine ’,’

d13C_ala ’,’pyruvate ’,’d13C_pyr ’,’cd/ab’])

481

482 fig1 , ax=plt.subplots(figsize =(8 ,7))

483 ax.plot(df_isotope1[’time’],df_isotope1[’d13C_ala ’],’o’,color=’

k’,alpha =0.3, label=r’ALA Exp (GC-IRMS)’)
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484 ax.plot(df_isotope2[’time’],df_isotope2[’d13C_ala ’],’+’,color=’

k’,label=r’ALA Exp (EA)’)

485 ax.plot(df1[’time’],df1[’d13C_ala ’],’-’,color=’#61 a5c2’,alpha

=0.9,lw=1,label=u’ALA 0 \permil KIE’)

486 ax.plot(df2[’time’],df2[’d13C_ala ’],’-’,color=’#2 a6f97’,alpha

=0.7,lw=1,label=u’ALA 5 \permil KIE’)

487 ax.plot(df3[’time’],df3[’d13C_ala ’],’-’,color=’#01497c’,alpha

=0.7,lw=1,label=u’ALA 10 \permil KIE’)

488 ax.plot(df4[’time’],df4[’d13C_ala ’],’-’,color=’#012 c4a’,alpha

=0.7,lw=1,label=u’ALA 15 \permil KIE’)

489 ax.plot(df1[’time’],df1[’d13C_pyr ’],’-.’,color=’#f2baa2 ’,alpha

=0.9,lw=1)

490 ax.plot(df2[’time’],df2[’d13C_pyr ’],’-.’,color=’#c27f61 ’,alpha

=0.7,lw=1)

491 ax.plot(df3[’time’],df3[’d13C_pyr ’],’-.’,color=’#97502a’,alpha

=0.7,lw=1)

492 ax.plot(df4[’time’],df4[’d13C_pyr ’],’-.’,color=’#7 c2c01’,alpha

=0.7,lw=1,label=u’PYR’)

493 ax.plot(df5[’time’],df5[’d13C_ala ’],’--’,color=’#61 a5c2’,alpha

=0.9,lw=1)

494 ax.plot(df6[’time’],df6[’d13C_ala ’],’--’,color=’#2 a6f97’,alpha

=0.7,lw=1)

495 ax.plot(df7[’time’],df7[’d13C_ala ’],’--’,color=’#01497c’,alpha

=0.7,lw=1)

496 ax.plot(df8[’time’],df8[’d13C_ala ’],’--’,color=’#012 c4a’,alpha

=0.7,lw=1,label=u’ALA , Krebs $K_{eq}$’)
497 ax.set_xlabel(’Time (min)’)

498 ax.set_ylabel(u’$\delta ^{13} $C \permil ’)

499 ax.set_xlim (0 ,2500)

500 ax.set_ylim (-30,-10)

501 ax.legend ()

502 fig1.tight_layout ()

503 fig1.savefig(’Ch3_Fig3.png’,dpi=400, transparent=False)

504 plt.show()

Listing 3.2: Ch3_Fit-Exp.py
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C h a p t e r 4

BACKGROUND ON HYDROGEN-DEUTERIUM
EXCHANGE CATALYZED BY TRANSAMINASES

In the previous chapter of this thesis, we described an investigation of carbon

isotope kinetics and equilibrium during alanine transamination via alanine

transaminase (ALT). This investigation involved a set of 1H NMR experiments,

which in turn led to an unanticipated tangential observation: while incubating

this reaction with 10% 2H2O (i.e., D2O, which, when added to H2O, quickly

mixes to form a solution of H2O, HDO, and D2O) serving as the frequency

lock, a set of multiplets appeared adjacent to and slightly upfield of the alanine

methyl (β) doublet. These multiplets increased with time and showed splitting

in accordance with a spin=1 nucleus (a 1:1:1 triplet, in the case of the multiplet

just upfield of the β doublet), indicating 1H-2H coupling (Figure 4.1). Their

growth coincided with a decrease in the peak area of the methyl doublet. With

these observations we determined that protons on the alanine β carbon were

exchanging with deuterium in the solvent.

It is obvious upon inspection of the alanine transamination reaction (Figure

3.1) that removal of the hydrogen atom at the α carbon site occurs by necessity

during transamination; that is, the α-C–H bond must be broken for the forward

reaction to occur, because pyruvate’s respective carbon site is attached by a

double bond to an oxygen in place of the hydrogen and amine on alanine.

When the reaction occurs in the reverse direction, an amine group from the

pyridoxal phosphate (PLP) coenzyme and a hydrogen atom from the solvent

water will replace the oxygen on the central pyruvate carbon atom to form

alanine. Thus in going from alanine to pyruvate and back again to alanine,

hydrogen exchange will have occurred between water and the α carbon of

alanine. However, it is not at all clear from such an inspection that hydrogen

exchange will also take place at alanine’s β carbon. In standard biochemistry

textbook discussions of the transaminase mechanism (e.g., Voet et al., 2016),

amino acid R-groups, such as the methyl group on alanine, are not discussed

as participants in transamination. Given the generality of transamination, it

was a surprise to us that transaminases can indeed in some cases also catalyze

hydrogen-deuterium exchange (“HDX”) on amino acid β carbon sites, i.e., not
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Figure 4.1: 1H NMR superimposed spectra illustrating decay of the alanine
12CH3 doublet and rise of the 12CH2D triplets observed during initial incu-
bation of alanine with ALT, in 10 % D2O. Spectra evolve forward in time,
represented by color gradient from dark blue (earlier) to light blue (later).

just alanine’s β carbon, but, as we will review below, on at least one other

documented amino acid (glutamate) as well.

A literature search revealed that HDX on the β carbon site of alanine had

been documented before, beginning with Oshima et al., 1961. And yet, after

a modest collection of studies by several independent research groups in the

mid-1970s (Cooper, 1976; Golichowski et al., 1977; Walter et al., 1975; Babu

et al., 1974), the phenomenon has seen little interest in the decades since,

and seems to have been largely unnoticed or forgotten, with a few exceptions

in the enzymology community (e.g., Barb et al., 2013; Funk et al., 2019).

Amino acid R-groups do not appear to be involved in any necessary step in

the transamination reaction pathway, and, while some have characterized β
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exchange as an “off-pathway” or “side” reaction (Barb et al., 2013), it remains

an open question whether it is purely coincidental, or whether there might be

some mechanistic advantage that such exchange lends to the catalysis of the

subset of transamination reactions in which it occurs.

Our colleagues studying stable isotope distributions in organic molecules were,

like us, unaware that this natural enzyme system facilitated an interesting iso-

topic exchange. It quickly became apparent that we had found a biological

context, largely unexplored with modern analytical tools, in which it was possi-

ble to investigate hydrogen isotope equilibrium fractionation as well as kinetic

isotope effects at multiple distinct sites in an amino acid. Like other biocat-

alyzed reactions, such as H2CO3-carbonic anhydrase, one key advantage is that

the system can achieve equilibrium in low-temperature aqueous environments,

here with respect to H/D exchange in otherwise inert hydrogen atoms. In

addition, here it is possible to preserve a hydrogen isotopic signature into the

alanine β site (or the pyruvate methyl site) that is inherited from the local

water pool at the moment the molecule undergoes transamination through the

ALT enzyme, but which is otherwise non-exchangeable.

After the many challenges we encountered and unresolved questions we were

left with in our study of carbon isotope fractionation within this same enzyme-

mediated reaction, it is hard to overstate how rewarding this opportunity

turned out to be.

With the combination of α and β hydrogen exchange on alanine, it becomes

possible to study the intermolecular exchange kinetics and equilibrium prefer-

ence of H and D between water and these two carbon-bound hydrogen sites

in alanine, as well as the intramolecular site preference of H and D within

alanine, independent of water. The closest comparable work of which we are

aware is the recent study from the Eiler group by Xie et al., in which the au-

thors measured Ni- and Pd-catalyzed hydrogen isotope exchange between the

two carbon positions in propane, i.e., the single central carbon versus the two

identical terminal carbons. With kinetics experiments using water enriched in

deuterium, they were able to deduce that exchange was occurring by at least

two different mechanisms, because, all else being equal, the rates at which

deuterium from the water exchanged with the two propane sites were roughly

an order of magnitude faster for Pd than for Ni. Once samples reached iso-

topic equilibrium using these metal catalysts, they were measured to determine
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their equilibrium site preference, which was found to be an approximately 80

h preference for deuterium at the central carbon site at 303 K (Xie et al.,

2018).

To the best of our knowledge, no analogous studies have been attempted on

an organic molecule in aqueous solution. Many reactions of interest to bio-

geochemists occur in the liquid phase, with substrates typically dissolved in

water. Of course, biological reactions occur inside cells, where solvating wa-

ter molecules are abundant, and the interactions between solvent, enzyme

active site, co-enzyme, and substrates create a reaction environment that is

fundamentally different from that of gas phase reactions. Thus, the alanine

transamination reaction provides a unique opportunity to study HDX in a

solvated and metabolically central molecule at two distinct, adjacent carbon

sites over time scales and chemical shifts that are easily accessible by NMR. In

the next chapter, we present 1H and 13C NMR data that provide new insights

into the kinetics and equilibrium site-preference of deuterium and hydrogen

between the α and β sites in alanine.

For the remainder of this chapter we provide a literature review as back-

ground for that work. As mentioned above, this small body of literature

on enzyme-catalyzed hydrogen-deuterium exchange in amino acids has been

largely forgotten and is not widely appreciated, particularly in the biogeo-

chemistry community, receiving a small number of citations in the 4+ decades

since the research was performed on this system during the 1960s and 1970s.

Most of these citations are from within the enzymology and medical commu-

nities, where isotopes tend to be employed in the service of some practical

application, rather than taken as a target for basic research in their own right;

none of these citations are from within the biogeochemistry or stable isotope

geochemistry community. Thus we believe it is worth reviewing the prior work

on this topic.

4.1 Literature Review

Hydrogen-deuterium exchange in alanine was first documented in 1947 by

Konikova et al. (Konikova et al., 1947), who recognized that the removal of

the α-hydrogen was necessary for conversion into the corresponding α-keto

acid during transamination. They confirmed this expectation using a series of

amino acids labeled with deuterium at the α-carbon site and measuring the
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dissociation of this deuterium by densimetric estimation of excess deuterium

coming into the aqueous medium as the transamination reactions progressed.

It was not discovered until fourteen years later that the β hydrogen atoms in

alanine and a few other amino acids were also exchangeable with water in the

presence of certain transaminases.

The first observation of enzymatically catalyzed hydrogen exchange on the β

carbon of an amino acid was presented by Oshima and Tamiya, who in 1961

used mass spectrometry to show the presence of 3.76 atoms of deuterium per

molecule of alanine (translating to 94% of the enzyme-catalyzed exchange-

able hydrogen atoms) after incubation for 38 hours with ALT at 310 K in the

presence of 99.8% D2O. After incubation, prior to analysis, alanine’s three

exchangeable amine deuterium atoms were allowed to re-equilibrate with H2O

by filtering out the enzyme and redissolving the alanine in a minimal amount

of H2O. Infrared spectra taken on the D2O-plus-enzyme-equilibrated alanine,

compared with spectra from fully hydrogenated alanine and selectively deuter-

ated α-deutero-DL-alanine, confirmed HDX in both the β and the α alanine

sites. Oshima and Tamiya further confirmed this result by running the same

experiment in reverse, i.e., taking the deuterated alanine and converting it back

into hydrogenated alanine and observing that its infrared spectrum changed in

reverse, as expected. They also recovered alanine after short (tens of minutes,

rather than hours) incubation periods, and concluded through integration of

infrared spectra on CH and CH3 peaks that the rates of α and β hydrogen

exchange were roughly equivalent. They argued that these similar exchange

rates indicated that the dissociation of a β proton must be an essential step in

the transaminase mechanism, and therefore a Schiff base intermediate would

be required, in which a β (rather than α) proton was dissociated (Oshima

et al., 1961).

These experiments are primitive in comparison to what is possible today, and

it is impressive that the authors were able to assess the β and α exchange

rates, in spite of the fact that they did not report any evaluation of experi-

mental precision. Their interpretation that similar exchange rates indicated β

exchange as a necessary part of transamination (Figure 4.2) was perhaps rea-

sonable based on the limited information available at the time, though it has

since become widely known that transamination mechanisms are similar across

all amino acids–all of them rely on common intermediates formed between a
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lysine residue and the pyridoxal phosphate coenzyme (abbreviated PLP, also

known as the active form of vitamin B6)–and β exchange occurs in only a sub-

set of these. At that time, it was recognized that PLP played a co-enzymatic

role in transamination, but little was known about the corresponding role of

transaminase enzyme active sites stabilizing reaction intermediates. Research

in subsequent decades, particularly resolving the structures of transaminases

through x-ray crystallography beginning in the 1980s, has been crucial in devel-

oping a detailed mechanistic understanding of transamination (Toney, 2005).

The alanine transaminase’s ability to catalyze the exchange of amino acid

β hydrogen is apparently not unique to this enzyme, although the rate of

alanine β-exchange catalyzed by ALT appears to be faster than amino acid

β-exchange catalyzed by other transaminases. In 1969, Whelan and Long used

60 MHz 1H NMR, developed earlier that decade, to show that porcine-heart

glutamate-aspartate aminotransferase (now known as aspartate transaminase,

or AST) catalyzed slow hydrogen exchange on the β carbon of glutamic acid,

and much faster exchange at the α carbon, but ALT catalyzed exchange only

at the glutamic acid α carbon (Whelan et al., 1969). Hydrogen-deuterium

exchange on glutamate had been reported about 15 years earlier by (Grisolia

et al., 1954) and (Hilton et al., 1954), but, having incubated their reaction

for a relatively short time, only a small amount of exchange had taken place,

compared to the amount of material available. Lacking any means to resolve

site-specificity at that time, they assumed that exchange was taking place only

at the α carbon.

In 1975, Walter et al. conducted a series of incubation experiments with ei-

ther glutamic-pyruvic transaminase (a deprecated name for ALT) or glutamic-

oxaloacetic transaminase (another deprecated name for AST) and either ala-

nine, glutamate, or aspartate, all of which were labeled with tritium (3H) at

their β-carbon site (Walter et al., 1975). They found that hydrogen exchange

occurred at the β-carbons of both alanine and glutamate in the presence of

ALT, however in the case of alanine, the presence of α-ketoglutarate (the

corresponding 2-oxo acid) was not required for exchange to occur, while for

glutamate no exchange was observed unless pyruvate was present. They also

saw exchange at the β-carbon of glutamate in the presence of AST, regardless

of whether any oxaloacetate was present, but did not observe exchange at the

β-carbon of aspartate under either condition. The findings of Walter et al.,
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that HDX occurs at the β-carbon position of glutamate in the presence of both

AST and ALT and the corresponding 2-oxo acid, appear to contradict the find-

ings of Whelan and Long, that this is the case only for glutamate with AST,

as described above. We were unable to determine whether this discrepancy

was resolved in later work.
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Figure 4.2: The mechanism for alanine β-exchange proposed by Oshima and Tamiya (Oshima et al., 1961), in which a Schiff base
forms between the amino acid and the co-enzyme, pyridoxal phosphate, allowing dissociation of a proton primarily from the β-carbon
rather than from the α-carbon. This mechanistic representation is oversimplified—it does not depict any interaction of the substrate
and co-enzyme with the enzyme itself. At the time of Oshima and Tamiya’s research, the role of the ALT enzyme in mediating this
reaction was unknown. This mechanistic depiction is outdated, but is presented here to provide historical context.
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In 1976 and 1977, two independent researchers, Cooper and Golichowski et

al., respectively, used 1H NMR to study the kinetics of alanine β- and α-

hydrogen exchange. 1H NMR made it possible to monitor the reaction in real-

time, enabling a much richer study of this exchange than previously possible.

Figure 4.3 shows the earliest published kinetics data for this reaction, from

Cooper, who interpreted these data as showing a ∼3.3x faster exchange at the

β position than at the α position (this is likely not accounting for multiplicity,

although there is no discussion of this in the paper).

One of the hypotheses that Cooper attempted to test was the possibility of a

“scrambling mechanism”, in which exchange at the α and β positions are cou-

pled—i.e., a proton or deuteron on the β carbon is removed via one mechanism

and transferred rapidly to the α carbon, while a second mechanism transfers

the α proton or deuteron away from the molecule. This hypothesis was tested

by monitoring the kinetics of the reaction starting with L-alanine-2-d (that

is, alanine with deuterium at the α position) in a solution of D2O. In this

scenario, the α deuteron is already equilibrated with the solvent, such that

any resolvable proton signal that arises in the α region must come from the

β position. They did not see any signal arise in the α region, and therefore

concluded that a “scrambling mechanism” was not involved, at least not to

an extent greater than their lower limit of detection, which was estimated to

be 5% incorporation at the α position of protons coming from the β position.

We replicated this experiment with the additional capability of finer time res-

olution and a lower limit of detection, and show that, contrary to Cooper’s

findings, there is a significant degree of hydrogen and deuterium mixing be-

tween the α and β positions during reaction (see Section 5.4.1.3 below for

details).
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Figure 4.3: (a) 1H NMR data published by (Cooper, 1976), showing exponential decay of the alanine α proton quartet (top)
and β proton doublet (bottom) at 298 K. Time is given in minutes on the bottom. As the α and β hydrogen atoms are
exchanged for deuterium, not only do the quartet and doublet peak areas decay, they also evolve into more complex signals due
to changing proton and deuterium splitting. (b) Exponential decay of signal area from the entire β proton region (closed circles)
and α proton region (open circles) using the data shown on the left. Cooper also attempted to break the multiplets into signal
coming specifically from the “β singlet” (open triangle), “β doublet” (closed triangle) and “α quartet” (open square). These
signals proved more difficult to deconvolve than the author recognized at the time, making the data impossible to interpret,
and probably not meaningful. Cooper used these data to argue that the loss of β protons was ∼3.3 times faster than that of
the α proton. Vertical axis is Log10 Signal Area (arbitrary units); horizontal axis is time in minutes.
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Cooper also investigated the uniqueness of the alanine transaminase’s ability

to catalyze β HDX by measuring exchange in L-alanine, L-glutamate, and L-

aspartate using another transaminase enzyme, glutamate-aspartate transami-

nase (AST). Alanine is able to bind to AST, but AST does not catalyze alanine-

glutamate transamination. The HDX observed on the alanine β position using

AST was so slow that Cooper attributed it to enolization of pyruvate, rather

than enzymatic catalysis, in disagreement with previous work by Babu and

Johnston (Babu et al., 1974). Cooper posited that Babu and Johnston’s AST

enzyme preparation likely contained contaminating ALT, which would have

given rise to mis-attributed HDX. Cooper saw no significant change in gluta-

mate β proton signal after incubation with AST in D2O for 24 hours, while

the glutamate α proton signal completely disappeared in this same period. On

the other hand, aspartate incubated with AST saw complete α proton signal

loss within 3 hours, with 15% β proton signal loss in the same period, and

75% loss after 24 hours.

In recent years, tracking pyruvate through metabolic pathways in vivo has

become useful in clinical settings to investigate cancer metabolism and ALT

activity in diseased tissues (e.g., Albers et al., 2008, Witney et al., 2010).

Pyruvate metabolism can be tracked in tissues, and even living animals (Xu

et al., 2011), with NMR over timescales of seconds by employing hyperpolar-

ization techniques, which increase molecular 13C NMR signal intensity, giving

a temporary sensitivity boost of > 10, 000 (Ardenkjaer-Larsen et al., 2003).

Barb et al. used hyperpolarized 13C3D3-pyruvate to investigate the alanine

transaminase mechanism over timescales of seconds (an experiment that is

only possible via the sensitivity boost provided by hyperpolarization). They

demonstrated that ALT introduced approximately 0.8 new protons into the β

group of alanine for every molecule converted from perdeuterated pyruvate.

Multiple alanine isotopologues appeared after just a single catalytic cycle, in-

dicating a small probability of converting 13C3D3-pyruvate to 13C3H2D-alanine

in a single encounter with the enzyme. These experiments were challenging,

and precision was limited such that the formation of the isotopologues resulting

from this reaction could not be quantified, however an interesting conclusion

that Barb et al. report is that hydrogen isotope exchange at the β site oc-

curs in alanine transamination not as an integral part of the transamination

mechanism, but as an off-pathway reaction involving an enamine intermediate

(Figure 4.4, Barb et al., 2013). In their proposed side-reaction, there is a finite
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chance of hydrogen exchange occurring not just once, but twice or even three

times before the product alanine is released from the enzyme active site (i.e.,

a single catalytic cycle will result in some distribution of the four possible

alanine isotopologues, 13C3D3-,
13C3HD2-,

13C3H2D-, or 13C3H3-alanine from
13C3D3-pyruvate). It is not clear to us whether Barb et al. are correct in con-

cluding from their observations that the existence of β exchange is necessarily

a coincidental feature of this transamination reaction. We think it possible

that there is some advantage to transamination rates conferred by such β

exchange, and that further exploration of such questions may provide some

understanding of natural variation in transamination mechanisms and rates,

even within just the various isoforms of ALT, and the biological advantages to

having such flexibility.

The effectiveness of hyperpolarization is dependent on the T1 relaxation of

the molecule of interest—longer relaxation times lead to longer-lasting hy-

perpolarization, thus it is desirable to maximize T1 for experiments in which

hyperpolarization is used. The T1 relaxation of a given molecule can be pro-

longed by replacing its hydrogen atoms with deuterium. Doing so, however,

exposes the experiment to a new question—does perdeuteration of pyruvate

change the rate at which it is metabolized? A 2019 NMR study by Funk et

al. demonstrates that the rate of pyruvate metabolism in heart muscle is not

significantly affected by deuteration of the pyruvate methyl group, such that

this technique can be used without concern that the metabolic rates being

studied are influenced by this factor (Funk et al., 2019). This finding is in

agreement with Cooper, who documented no difference in transamination rate

between 13C3H3-alanine and 13C3D3-alanine (Cooper, 1976).
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Figure 4.4: Barb et al., 2013’s proposed Alanine Transaminase (ALT) catalytic mechanism. An excursion from the main pathway, as
highlighted by a gray box, would explain the observed D/H exchange (figure adapted from Barb et al., 2013).
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C h a p t e r 5

HYDROGEN-DEUTERIUM ISOTOPIC DYNAMICS AND
SITE PREFERENCES IN ALANINE IN THE PRESENCE OF

ALT ENZYME, ABSENT TRANSAMINATION

5.1 Abstract

We have determined by 13C and 1H NMR the equilibrium constants and

rate constants characterizing the conversion between eight isotopically distinct

species of alanine that vary in hydrogen isotope composition at the α-carbon

and β-carbon sites. The hydrogen exchange between these two sites and sol-

vent water is mediated by alanine transaminase (ALT), a ubiquitous enzyme

involved in central metabolism. Our experiments track the abundances of

these eight alanine species over a series of reactions differing in initial alanine

isotopic composition and/or initial water isotopic composition. These eight

isotopic species (involving both “clumped”, or multiply substituted, isotopo-

logues and site-specifically distinct isotopomers) are the only eight species

possible considering only variation in hydrogen and deuterium at these two

carbon sites, meaning that our measurements have the potential to character-

ize this isotopically exchangeable system completely. This study involves high

density observations (measurements are frequent relative to the timescale of

the reactions) during exchange kinetics, providing an unprecedentedly high-

temporal-resolution look at enzymatically-mediated isotopic exchange, with

observations taking place with frequency of tens of seconds. This is made pos-

sible by novel 13C-NMR applications that we developed in the Caltech CCE

NMR lab and present here for the first time. We built a kinetic model that

allows determination of up to thirteen rate constants (three reactions involv-

ing intramolecular alanine exchange, and ten involving intermolecular solvent-

alanine exchange) and ten equilibrium constants characterizing this system

by fitting to our 13C and 1H NMR dataset, and evaluated the robustness of

our model by iterating through a series of reduced parameter versions of the

model and tracking the consistency of parameter distributions as we increased

degrees of freedom.

We find evidence of a set of ten solvent exchange rate constants and three
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intramolecular exchange rates that describe the evolution of the system. The

intramolecular exchange rate constants are approximately an order of magni-

tude larger than those for solvent exchange. We find rate-constant variations

of approximately a factor of four within the solvent exchange rate constants.

Generally, the β-exchange rate constants are faster than those for α, but they

do overlap; the fastest rate constant for α-exchange is very close to the slowest

rate for β-exchange. There is a variation of about a factor of three within the

rate constants for β exchange, and about a factor of two across those for α

exchange.

5.2 Introduction

The idea that the equilibrium isotopic composition of a particular site in a

molecule should, through the principles of mass-dependent isotope fractiona-

tion, depend on the isotopic composition of other atoms within the molecule

has been appreciated since the early days of applying quantum mechanical

principles to isotope fractionation (e.g., Urey, 1947; Bigeleisen et al., 1947).

However, to our knowledge it was not until the early 2000s that explicit calcu-

lations were conducted to estimate the magnitude of this effect (Schauble et

al., 2006 and Wang et al., 2004). These theoretical estimates were followed by

development of analytical techniques capable of measuring these correlations

using what is now called “clumped isotope” geochemistry. Advances in mass

spectrometry in the last two decades have established the field of “clumped

isotope” chemistry, which has been useful in a wide variety of geochemical

contexts (Eiler, 2007).

Given the success of this recent work on isotopically equilibrated systems, the

question naturally arises of whether to expect kinetic, in addition to thermo-

dynamic, “clumping” effects. That is, does the rate of an isotope exchange

reaction occurring at a particular site in a molecule also depend on the iso-

topic composition at other sites within that molecule? Because free energy

differences, as reflected in equilibrium constants, drive rates, the answer to

this question is expected to be affirmative, but there have been no studies

demonstrating the extent to which the rate of isotope exchange at one site

in a molecule depends on isotopic composition of nearby sites. This idea is

distinct from the familiar kinetic isotope effect: it is not just a question of

determining the difference between rates of H exchange and D exchange from

a particular site on a molecule, but how these rates depend on the H/D pop-
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ulation at neighboring sites on that particular molecule.

As a first step into understanding kinetic clumping, here we investigate H/D

exchange in alanine, facilitated by the alanine transaminase enzyme (ALT).

ALT catalyzes the transfer of the amine group in L-alanine to α-ketoglutarate,

forming pyruvate and L-glutamate using pyridoxal phosphate (PLP) as a coen-

zyme. ALT is ubiquitous across all branches of life, existing as isoenzymes in

many slightly different evolved forms (e.g., DeRosa et al., 1975). While the

conversion of alanine to pyruvate obviously requires the removal of hydrogen

bound to alanine’s α-carbon, what makes this enzyme particularly useful and

interesting in this study is the fact that, while alanine is bound to the ac-

tive site of ALT, the enzyme also catalyzes an off-pathway exchange of the

three hydrogen atoms bound to alanine’s β-carbon (alternately denoted the

“methyl-carbon”). The adjacency of hydrogen exchange is crucial to studying

the system, that is, if there were more bonds separating the two exchanging

sites, in general, we would not predict a significant exchange rate dependence.

This behavior of two adjacent, unique carbon sites simultaneously exchanging

hydrogen offers a serendipitous opportunity to study isotopic dynamics at a

level of detail that to our knowledge has never been attempted previously (see

Chapter 1 for background discussion).

Another aspect of this reaction that enables this study is the fact that both

of these site-specific hydrogen isotope exchanges occur in the absence of glu-

tamate and α-ketoglutarate. The “bi-bi ping-pong” nature of transaminase

reactions is actually the coupling of two independent “half-reactions” between

two amino-acid-keto-acid pairs, in the case of ALT, one between alanine and

pyruvate, and another between glutamate and α-ketoglutarate (see Figure

3.1). Only when these two half-reactions are coupled can the chemical reac-

tion proceed. In contrast, for the hydrogen isotope reaction to proceed at the

two sites of interest, there need only be some minimal amount of alanine and

pyruvate exchanging amino and keto groups back and forth via the enzyme,

while the quantities of the two chemical components remains constant (upon

equilibration with the enzyme itself, which is generally many orders of mag-

nitude lower than the amino acid and corresponding keto acid concentrations,

and is therefor negligible). The experiments we present in this chapter take

advantage of this “half-reaction” involving only alanine and pyruvate, and the

concentrations of these two chemical species are essentially fixed throughout
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the reaction, i.e., the change occurring during reactions is limited to hydro-

gen exchange between the two exchangeable sites of alanine and water. Con-

structing our experiments in this way allows us to focus completely on the

isotopic state of the system, eliminating the complication of chemical equili-

bration, which we considered for carbon isotopic exchange in Chapter 3. This

is a convenient feature of this system as systems where isotopic and chemi-

cal equilibrium can be decoupled at will are not common. This ability could

be important in understanding coupling of isotopic and chemical equilibrium

(Druhan et al., 2013; Steefel et al., 2014).

We use 13C NMR to establish the equilibrium populations and rates of conver-

sion of the eight distinct enzyme-mediated H/D isotopic variants of alanine,

i.e., from the slowly exchanging sites on the α- and β-carbon sites (notationally

simplified as variations on CHCH3), excluding the non-catalytic, very rapidly

exchanging sites on the amine and carboxyl groups. We then fit these pop-

ulations to a phenomenological kinetic model which allows determination of

the reaction rates that convert one isotopic variant into another. Through this

work we want to establish:

1. What are the rates of conversion amongst the eight isotopic variants?

How much variation is there in theses rates? Are the magnitudes of such

variations small compared to, for example, differences between exchange

rates at the α- and β-carbon sites in isotopic tracing experiments, e.g.,

Cooper, 1976; Golichowski et al., 1977?

2. Assuming they are large enough to be observed, is there any pattern in

the conversion rates that would give some insights into the mechanism of

ALT-induced H/D exchange in alanine, and therefore further insight into

the mechanism of ALT itself? For example, perhaps the H/D exchange

rates at the α-carbon are similar, but the rates at the β-carbon depend

systematically on the number of H or D on the β site; or maybe the H/D

exchanges at the β-carbon all have similar rates and the exchanges at

the α-carbon depend on the H/D ratio at the β-carbon.

It is important to recognize that the experiments and results we present in

this chapter are unusual and even unprecedented in a number of ways. In fact,

the NMR capabilities to conduct the key experiment in our study have existed



136

since the mid-1990s; the instrument employed for our experiments (including

its 3-channel probe, the essential component for our key 13C NMR experiment)

has resided in the central NMR facility on our campus since 1998. That over

two decades elapsed between the emergence of this capability and its use for

this set of experiments begs for explanation.

We suggest that there are several factors contributing to this delay. First,

fundamental experimental work in isotope geochemistry has not historically

made broad use of NMR as the analytical tool of choice. To the extent that

NMR is employed toward isotopic studies today, the vast majority of this

work is heavily driven by application (e.g., food forensics, fossil fuel industry,

medicine), and would rarely be considered fundamental chemistry. This is, in

part, a natural consequence of the historical developmental paths of analytical

tools available to be employed in such work. The isotope geochemist’s instru-

ment of choice, the isotope-ratio mass spectrometer (IRMS), is used for the

vast majority of isotopic investigations, and justifiably so. Mass spectrometry

was developed significantly earlier than NMR as a tool for observation of iso-

topic differences, and so, in part, the scientific community that was focused

on isotopic partitioning in natural materials became habituated to designing

experiments around what was possible with this tool. This had the benefit

of encouraging further development in mass spectrometry toward greater ca-

pability in, e.g., distinguishing smaller mass differences and handling a larger

variety of molecules. State of the art mass spectrometers are extremely capa-

ble instruments, highly sensitive to tiny differences in relative abundances of

distinct species as well as to differences in mass as low as millidaltons (mDa),

meaning that many ionized molecular species and fragments having the same

number of nucleons (e.g., methane species 13CH3D and 12CH2D2, which differ

in mass by ∼3 mDa) can be distinguished.

Nevertheless, we are not aware of any study using mass spectrometry to mea-

sure the intensities of multiple isotopic species (in our case, eight species, three

pairs of which share the same number of nucleons) over the course of an isotopic

exchange reaction at a fine temporal resolution, during which the compositions

and relative abundances of these species change dramatically, resulting in a

data set that can be used to extract both a set of rate constants and a set of

equilibrium constants for the observed reactions. There are several barriers to

the feasibility of a mass spectrometric study of this kind. At the time of our
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experimental work, there were neither commercially available nor prototype

mass spectrometers that offered all the features required for this experiment:

first, in order to differentiate and quantify all eight species, it would be nec-

essary to have the ionization source generate both the molecular ion and a

specific set of ionized fragments of the molecule in order to differentiate be-

tween variants having the same mass—this would require an electron impact

ionization source, rather than a softer ionization method such as electrospray;

second it would need to simultaneously inject a temperature-controlled re-

action solution for continuous observation of the masses of interest as they

evolve over time. In addition, because it is a destructive method in which

the molecules under observation make direct contact with the surfaces of the

instrument, mass spectrometry is sensitive to isotopic contaminants. Research

in stable isotope geochemistry is generally performed using mass spectrome-

ters to observe isotopic systems having natural or near-natural isotopic abun-

dances, with small amounts of heavy isotope doping used occasionally during

initial stages of methods development. An investigation of the sort performed

in this study requires unnatural isotopic abundances; that is, while terrestrial

stable isotopes of hydrogen include only ∼0.1% deuterium, our study includes

experiments with as much as ∼85% deuterium in water. This high level of

deuterium would cause severe contamination to any mass spectrometer used

for measurements on substances containing natural isotopic abundances.

In contrast, NMR is an independent technology that can be used to observe

mass differences in molecules. While NMR has significant constraints that

mass spectrometry does not share, it does not suffer from some of the lim-

itations of mass spectrometry as described above, making it well suited to

certain tasks to which mass spectrometry is poorly suited (and, of course, vice

versa). One of the strengths of NMR is the fact that it is a non-destructive

analytical method, which in our case is indirectly useful in the sense that the

sample never comes directly into contact with the instrument, and therefore

isotopic contamination is not an issue. While many isotope geochemistry in-

vestigations deal with a small, precious volume of sample extracted laboriously

from some natural source, our experiment does not involve natural samples,

and is therefore limited in scale only by cost of isotopically labeled reagents

and the volume of sample admitted to the NMR probe (∼600 µL), so we are

able to scale up our reaction to a volume and concentration suitable for this

analytical technique, which requires a large amount of sample relative to the
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amount that would be required for measurement by mass spectrometry. The

non-destructiveness of NMR also implies that there is no ionization or frag-

mentation of the molecules under observation, which means this method is

free from the complications introduced by ionization required for observation

by mass spectrometry.

In essence, our study leverages several features unique to NMR, without com-

promising on experimental design, which, when applied to the alanine transam-

inase system, result in meaningful data that could not be acquired by other

existing means, and is not easily compared with any preexisting work. The

most uniquely distinctive feature of our approach was our use of “double de-

coupling”, that is, simultaneously decoupling 1H from 13C as well as 2H from
13C in our 13C NMR experiments presented in this chapter. This “double de-

coupling” process serves to simplify our spectra such that each of the eight

unique isotopic variants of interest corresponds to a unique 13C NMR peak.

This is an essential feature of our work, as it allows us to track the quantity

of each variant over time, making it possible to model the system phenomo-

logically, as we present below. While “double decoupling” of these nuclei is

not unheard of, it is not frequently used outside of NMR protein structure

studies conducted at high field strengths. Naturally it is useful only in con-

texts where there are significant proportions of both protium and deuterium.

In the protein structure context, proteins are deuterated to increase T1; that

is, signal arising from carbon bound to deuterium suffers less from loss due

to pulse sequences than does carbon bound to protium, thus giving rise to

stronger carbon signal.

It is our belief that the isotope geochemistry community would benefit from

intentional consideration of a subset of fundamental studies in isotope parti-

tioning that would lend themselves particularly well to NMR, complementing

the strengths of mass spectrometry.

5.3 Materials and Methods

5.3.1 Experimental Materials

We used L-alanine from Alfa Aesar (99% purity, Lot # 10167391) with isotopic

signatures close to natural abundance. We also used L-alanine purchased

from Sigma Aldrich, labeled selectively with either 2H or 13C: (1) 99 atom %
13C label at C-3 (Lot # EB2211V), (2) 98 atom % D L-alanine-2-d (Lot #
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MBBB5282V), and (3) 99 atom % D L-alanine-3,3,3-d3 (Lot # SN1346V).

Ultrapure water was obtained from a Millipore ultrahigh-purity water (18.2

MΩ cm) system at Caltech. Most experiments were conducted with deuterium

enriched water. We used D2O purchased from Cambridge Isotope Laborato-

ries, Inc. (D, 99.9%, Lot # M3063). Water solutions of varying D/H were

prepared by mixing volumes of D2O and H2O to the desired ratio. This la-

beled water was used to examine the kinetics of hydrogen isotope exchange

between water and alanine.

Alanine transaminase (abbreviated ALT, EC number 2.6.1.2) derived from

porcine heart was used to catalyze hydrogen exchange on alanine α and β

carbons. ALT (∼7.65 mg protein/mL) suspended in 1.2 M ammonium sulfate

was purchased from LeeBiosolutions (Lot # 07B3133). The lot used in the

experiments presented here was measured by the vendor to have an activity of

1990 Units/mL Ammonium Sulfate suspension, or 260 U/mg protein, based

on an assay run at 310 K and pH 7.4, with initial concentrations of alanine

and α-ketoglutarate at 260 mM and 20 mM, respectively, tris buffer at 100

mM, pyridoxal-5’-phosphate at 0.15 mM, and enzyme diluted to <1 U/mL.

The protein exists as a dimer in solution, with a molecular weight of ∼100,000

g/mol dimeric ALT (i.e., ∼50,000 g/mol per monomer).

Additional reaction components included pyruvic acid from Sigma Aldrich

(purity 98%, Lot # SHBH2749V). Gadolinium(III) Chloride hexahydrate from

Sigma Aldrich (purity 99.999%, trace metals basis, Lot # MKCC3867) was

used to reduce relaxation times so that more frequent scans could be acquired

during kinetics without compromising quantitative signal.

5.3.2 Experimental Procedures

Hydrogen-Deuterium exchange (“HDX”) experiments were conducted by incu-

bating alanine at 303 K in the presence of ALT. Reaction media were prepared

by weighing 53 mg of alanine for each experiment, which was dissolved in 600

µL of solution, resulting in a concentration of alanine of 1 molar. To this

solution was added 1.5 mM pyridoxal-5’-phosphate (the co-enzyme for this

reaction), and 5 mM pyruvate (except where otherwise noted). Stock solu-

tions of pyruvate were prepared by adding 35 µL pyruvic acid to 5 mL of

either ultrapure H2O or 99.8% D2O, and raising the pH to 7.5 by addition

of sodium hydroxide. 45 µL ALT enzyme stock solution was added (for an
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enzyme concentration of 150 Units/mL) to initiate each reaction. Reactions

were conducted at a pH of 7. To avoid possible damage to the enzyme that

might result in reduced enzyme activity, we left the enzyme in its ammonium

sulfate suspension (rather than removing it from the suspension via centrifu-

gation) and added this solution directly to the reaction mixtures, resulting in

a concentration of ammonium sulfate approximately 50 mM. Upon addition

of ALT enzyme to the solution, the tube containing the reaction solution was

vortexed for several seconds and then quickly transferred to an NMR spinner.

Because NMR probe tuning is sensitive to salt concentrations, we manually

tuned the probe as soon as each kinetics sample was inside the magnet, i.e.,

immediately prior to shimming, followed by initiating data collection for each

kinetics experiment. The time delay between adding ALT enzyme to the pre-

pared solution and the start of kinetics data acquisition was typically 5–7

minutes. We have identified a way of correcting some experiments for this de-

lay, as detailed in the Supplementary Materials Section 5.8.4.2 Table 5.1 lists

additional concentrations and conditions for each experiment.

5.3.3 NMR Procedures

Data collection for this study was performed on a Varian 600 MHz spectrom-

eter with a 5mm inverse triple resonance probe ( 1H, 2H, 13C, 15N, 31P), using

combined 1H-13C and 2H-13C decoupling for some experiments (as indicated

in Table 5.1). The temperature of the probe was set to 303 K, following the

experimental conditions in Golichowski et al. (Golichowski et al., 1977). For

each kinetics experiment, reaction mixtures were prepared without enzyme,

and a spectrum acquired to get a pre-kinetics data point. Enzyme addition

took place just prior to beginning observation of kinetics by 1H or 13C NMR.

A delay of several minutes between enzyme addition and the beginning of data

acquisition was necessary for shimming and manual probe tuning; these first

several minutes of each reaction are therefore absent from our data sets. All

original spectra and extracted data are included as supplementary files.

We determined the final D:H of water in each kinetics experiment (1H NMR

and 13C NMR) by measuring the 1H NMR water signal in each sample once

reactions had reached equilibrium and comparing it to a standard calibration

curve. These measured water composition values were then used as constraints

in determining the intramolecular Keq values in Section 5.4.3. Because NMR

signal intensity scales linearly with concentration of the observed nucleus in so-
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lution (given a constant parameter set and constant volume of solution within

the receiver coil), a measurement of a single sample with known water D:H

is the minimum information necessary to calibrate D:H of water to signal in-

tensity. However, in practice, the very high signal intensity of D2O (or H2O,

depending on the sample and nucleus of interest) causes radiation damping

in some of our samples, thus distorting the baseline, which could introduce

some nonlinearity. By using a set of prepared Milli-Q H2O and 99.8% D2O

mixtures, we made a standard calibration curve, intended to account for any

minor nonlinear effects. These mixtures had Milli-Q H2O/99.8% D2O ratios

of 25/75, 50/50, 75/25 and 100/0. With the y-intercept set to 0, a linear fit

to these data gave r2 ≥ 0.998.

5.3.3.1 1H NMR HDX Kinetics Experiments

For 1H NMR kinetics experiments, we acquired single-scan spectra at 1-min

intervals, typically spanning six hours, resulting in arrays of 360 spectra. Deu-

terium decoupling was used in some experiments (see Table 5.1). Deuterium

decoupling collapses the small J-coupling of protons three bonds away from a

deuterium into singlets. Earlier experiments were not deuterium decoupled,

but we eventually found broadband deuterium decoupling to be advantageous,

as it simplifies spectra in which carbon-bound deuterium is present. In this se-

ries of experiments, the four possible isotopic variants of interest that contain

an H on the α carbon site (i.e., 12CH13CH3,
12CH13CH2D, 12CH13CHD2, and

12CH13CD3) appear in the resulting NMR spectra as a group of overlapping

peaks in the ∼4 ppm region, while the seven isotopic variants containing one

or more H atoms on the β carbon site (i.e., the four αH variants listed above,

plus 12CD13CH3,
12CD13CH2D, and 12CD13CHD2) appear as a group of over-

lapping peaks in the ∼1 ppm region. The eighth possible variant, 12CD13CD3,

which lacks any hydrogen atoms, is dark to this method. Note: We simplify

notation by leaving out the amine and carboxyl groups in these formulas, as

those remain constant across all variants.

We do not attempt to quantitatively monitor HDX on the alanine amine group

(NH3
+) over the course of our HDX kinetics experiments, as the hydrogen

atoms on this group equilibrate with water effectively immediately (indepen-

dent of enzyme), upon alanine dissolution. Because of this rapid exchange,

the amine hydrogens appear in 1H and 2H NMR spectra as a very broad peak

(>100 Hz) that is not easily quantifiable. While these hydrogen atoms are
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a significant pool of hydrogen in the system (given the 1 M alanine concen-

tration), for our purposes their interaction with HDX at the α and β carbon

positions is expected to be insignificant given that they are isotopically in equi-

librium with water on relevant experimental timescales. The total contribution

of exchangeable hydrogen coming from the enzyme itself is also assumed to be

negligible, based on a concentration of 0.35 mg enzyme per 600 µL experiment

(compared to the experimental concentration of alanine, 1 M, i.e., 54 mg per

600 µL experiment).

5.3.3.2 13C NMR HDX Kinetics Experiment

While 1H NMR, used for the kinetics experiments described above, provides

the ability to quantitatively track the abundance of protons bound to the α

and β carbon sites, it does not allow distinction between the isotopic variants

(a set of isotopologues and isotopomers) that result. Mixtures of deuterated

and hydrogenated alanine species give 1H NMR spectra in which the chemical

shifts are not large enough relative to the peak widths to be able to resolve all

eight isotopic species, even with deuterium decoupling. In addition, the fully

deuterated species has no 1H NMR signal. In contrast, 13C NMR gives narrow

peaks with large chemical shifts, resulting in widely dispersed, well-resolved

signals. When combined with decoupling procedures, each peak represents a

single isotopic species, allowing us to quantitatively track the abundances of

each of the eight isotopic variants as they evolve through time.

Because the 12C nucleus is spin 0, it is NMR-silent, and thus cannot be directly

observed; 13C, however, is spin 1
2
, and therefore NMR active, meaning it can

be used as a means of indirectly observing bound hydrogen and deuterium to

determine the abundance of the isotopic variants that arise via the HDX reac-

tion. Quantifying isotopic variants with the natural abundance 13C present in

our 1H NMR experiments (described in the previous section) proved challeng-

ing due to 13C’s relatively low natural abundance (∼1% of all carbon), and

its low NMR sensitivity relative to the 1H nucleus. However, by running the

same HDX reaction using alanine labeled with 13C in the β site, we were able

to determine the relative abundances of these isotopic variants with precision

of several permil.

The 13C NMR spectrum of deuterated molecules is determined by multiple

factors. The 2H nucleus is quadrupolar and has a spin = 1 (in contrast to
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the 1H dipolar nucleus spin of 1
2
), which increases the complexity of 13C NMR

spectra for carbon atoms with one or more directly attached deuterium atoms.

In specific, 2H-13C coupling forms 1:1:1 triplets for a single coupled deuteron,

1:2:3:2:1 quintets for two coupled deuterons and 1:3:6:7:6:3:1 septets for three,

whereas 1H-13C coupling forms 1:1 doublets for a single coupled proton, 1:2:1

triplets for two, and 1:3:3:1 quartets for three. In the absence of decoupling, the

multiplets resulting from all of the alanine species present in our experiments

are complicated and their signal split over a wide area only to be drowned

by noise, making quantification impractical, if not impossible. 1H-13C de-

coupling is routinely used in 13C NMR to simplify 13C spectra, while 2H-13C

decoupling is less routine and requires a probe with three or more channels.

NMR instruments used for protein analysis typically have these capabilities,

and serendipitously one of the Varian instruments in our campus facility was

designed for such work, and was supplied with the necessary probe. Thus,

we were able to use simultaneous 1H-13C and 2H-13C decoupling to simplify

the spectra into eight baseline-separated peaks that arise from the isotopically

distinct species of interest in this study. The mass difference between 1H and
2H also induces a chemical shift in the 13C NMR spectrum.

Because spectra of these alanine isotopic species have not, to our knowledge,

been documented previously in the literature, we verified their identities by

preparing mixtures of fully hydrogenated alanine and alanine deuterated se-

lectively at either the α or the β carbon positions, and measuring the chemical

shift between these species at their β carbon peaks using 13C NMR. As ex-

pected, the chemical shift decreases with increasing deuteration, i.e., alanine

containing more hydrogen atoms appears downfield of alanine containing deu-

terium atoms in place of hydrogen. In the case of alanine, for each additional
2H on the β carbon, we observe a chemical shift of the β carbon signal for

that species of 0.25 ppm, while the two-bond shift that results from adding a
2H at the α carbon position is 0.109 ppm. Supplementary Figure 5.17 gives

example spectra illustrating this exercise.

Once these checks were completed, we observed one H/D isotopic exchange

reaction using 13C NMR. This reaction began with > 99% of a single isotopic

species, alanine-3-13C (alanine labeled with 13C at its β-carbon site, i.e., ala-

nine with an α- and β-carbon composition of 12CH13CH3), in a ∼1:1 mixture of

D2O:H2O (measured to be 0.483:0.517). This kinetics experiment, designated
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Experiment “Q”, follows the time evolution of the eight isotopic variants of

interest, and was conducted using the same acquisition parameters and exper-

imental conditions as for the 1H NMR kinetics experiments described above

except as otherwise noted. The eight isotopic species we observe are listed here

as follows: 12CH13CH3,
12CD13CH3,

12CH13CH2D, 12CD13CH2D, 12CH13CHD2,
12CD13CHD2,

12CH13CD3,
12CD13CD3. (Recall that we simplify notation by

leaving out the amine and carboxyl groups in these formulas, as those remain

constant across all variants.) Each of these eight isotopic variants gives rise

to a unique 13C NMR peak in the β carbon resonance region, in the range of

15–16 ppm.

Note that the eight isotopic variants also generate corresponding 13C NMR

peaks in the α-carbon resonance region, around 50 ppm (e.g., 13CH12CH3,
13CH12CH2D, etc.). We do not attempt to quantify these peaks in this study,

in part because they are clustered more densely than the eight in the β region.

The chemical shifts induced by the three hydrogen/deuterium atoms on the

β-carbon are smaller because they are two bonds away, rather than one, and

therefore have less influence on the α-carbon’s chemical shift. In addition,

any attempt at quantification of a similar nature to that used here in the β-

carbon resonance region would have required an independent experiment with
13C label at the α carbon site. Our observations do not enable us to quantify
13C–13C clumped species, (e.g., 13CH13CH3,

13CH13CH2D, etc.), because the

signal coming from these rare species is too weak to be measured with the

methods presented here. The error arising from the presence of some small

amount of these species is expected to be negligible.

We used the same experimental methods as described for the 1H NMR kinet-

ics, except for the difference that the single-scan acquisitions were 2 minutes

apart, rather than 1. Unlike proton relaxation times, which rarely exceed

several seconds, carbon relaxation times can be significantly longer and must

be accounted for when quantitative data is desired. We measured Carbon T1

relaxation times of each of the eight isotopic species, and found they ranged

from ∼2 seconds (12CH13CH3) to ∼25 seconds (12CD13CD3). Thus, to acquire

quantitative signal on all eight species, we used a D1 of 120 seconds, approxi-

mately five times the longest T1, resulting in an array of 270 spectra acquired

over 9 hours.

The relative abundances of the eight species are determined by integrating the
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area of each of the eight distinct peaks in the 13C NMR spectrum, and dividing

each one by the total integrated area for all eight. This procedure is done for

all 270 spectra belonging to this experiment. An example spectrum is given

in Figure 5.1.

Figure 5.1: An example 13C NMR spectrum (using simultaneous 1H-13C and
2H-13C decoupling) of L-alanine in isotopic equilibrium with water having a
composition of 51.7 % H, 48.3 % D, showing the eight isotopic species of alanine
quantified in this study. All eight isotopic variants are easily distinguishable
from one another, and present in significant abundance in this solution.

5.3.3.3 13C NMR Equilibrium Acquisitions

Once the isotopic exchange reaction in Experiment “Q” reached equilibrium

with water, we quantified the eight alanine isotopic variants over the follow-

ing two days at significantly higher precision than was used for the kinetics

portion of Experiment “Q” by acquiring sets of 16-scan 13C NMR spectra on

the equilibrated sample, keeping all other 13C NMR acquisition parameters

identical to those used in the 13C NMR kinetics given above. Integrating mul-

tiple scans per acquisition increases signal to noise (and therefore precision),

which is advantageous in an equilibrated solution, where the relative and ab-

solute proportions of the eight isotopic variants are constant over time. With

this method, we were able to reach a measurement precision of several permil,
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which we expect to be more than sufficient to determine equilibrium hydrogen

isotopic site preferences. We will use these equilibrium constants to reduce

the parameter space in our modeling work presented in Section 5.5. As shown

in Figure 5.1, each of the eight alanine isotopic variants gives rise to a unique,

isolated and quantifiable 13C NMR peak in the β-carbon resonance region, in

the range of 15–16 ppm.

We processed the spectra using the autophasing and 3rd-order Bernstein Poly-

nomial baseline correction features built into MestReNova 14.0, prior to fitting

the peaks using the MestReNova line-fitting feature using Generalized Loren-

zian peak shape, Simulated Annealing, and otherwise default settings. This

processing is distinct from taking the peak area integrals directly, in the case

of the 13C NMR kinetics data described in Section 5.3.3.2.

5.4 Experimental Results

5.4.1 H/D Exchange Kinetics by 1H NMR

As explained in Section 5.3.3.2, we found that 13C NMR, when used in conjunc-

tion with alanine labeled with 13C at the β carbon position and simultaneous

proton and deuterium decoupling, provides a far superior method of observ-

ing the alanine isotopic system compared with 1H NMR. While 1H NMR can

differentiate hydrogen bound to the α carbon from hydrogen bound to the β

carbon, it is unable to distinguish the eight isotopic variants of interest to us

here (proton signal from the β carbon cannot be resolved into distinct species),

and cannot detect the CDCD3 isotopic variant at all, because it contains no

bound protons at either site.

Nevertheless, the majority of our experiments were conducted using 1H NMR,

as it took some time and method development for us to discover the novel
13C NMR approach and determine that it was a viable option, and shortly

after conducting our first 13C NMR kinetics experiment, our window for fur-

ther experimentation had passed. In spite of this, the 1H NMR experiments

we performed did produce useful data, which are important to present here.

As presented in later in this chapter, a subset of our 1H NMR kinetics data

provided additional constraints on the 8-box model we constructed based on

our 13C NMR kinetics experiment. In addition to this we were able to build on

investigations published the 1970s out of several research groups (e.g., Cooper,

1976, and Golichowski et al., 1977 as reviewed in the previous chapter).
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Table 5.1 lists all kinetics experiments both 1H NMR and 13C NMR) and their

corresponding parameters.
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EXP Date Length (min) PYR (M) Final water D/H α starting D/H β starting D/H β 13C Nucleus Observed D Decoupling

A 06/25/2019 90 0 77/23 natural abundance natural abundance n 1H n
B 06/25/2019 90 0.001 77/23 natural abundance natural abundance n 1H n
C 06/25/2019 90 0.005 77/23 natural abundance natural abundance n 1H n
D 06/28/2019 54 0.005 77/23 natural abundance natural abundance n 1H n
E 06/29/2019 180 0.005 77/23 natural abundance natural abundance n 1H n
F 07/03/2019 360 0.005 77/23 natural abundance natural abundance n 1H n
G 07/05/2019 360 0.005 47/53 natural abundance natural abundance n 1H n
H 07/07/2019 360 0.005 62/38 natural abundance natural abundance n 1H n
I 07/08/2019 360 0.005 55/45 natural abundance natural abundance n 1H n
J 07/11/2019 360 0.005 85/15 99 % D natural abundance n 1H n
L 07/13/2019 360 0.005 18/82 natural abundance natural abundance n 1H n
M 07/18/2019 360 0.005 87/13 natural abundance 99 % D n 1H y
N 07/19/2019 360 0.005 1/99 99 % D natural abundance n 1H y
O 07/23/2019 360 0.005 2/98 natural abundance 99 % D n 1H y
P 08/15/2019 540 0.005 85/15 natural abundance natural abundance n 1H y
Q 09/13/2019 540 0.005 48/52 natural abundance natural abundance y 13C y

Table 5.1: 1H and 13C NMR Kinetics Experimental Parameters and Conditions. All experiments were performed at 304 K and with
1 M alanine. Original 1H and 13C NMR data are given in the Supporting Information.



149

5.4.1.1 Pyruvate Concentration Dependence

Our first set of 1H NMR kinetics experiments tested the reaction rate-dependence

on pyruvate concentration, as shown in Figure 5.2. Golichowski et al. reported

that the rate of H-D exchange increased with increasing pyruvate concentra-

tion, but did not discuss the implications of this dependence, nor did they

report any experimental data for the reaction run in the absence of pyru-

vate (Golichowski et al., 1977). In our initial tests to confirm our observation

of hydrogen exchange at the alanine β carbon position, samples were com-

posed of alanine in 10% D2O solution in the presence of ALT, absent any

other components of the alanine transamination reaction (i.e., no pyruvate,

alpha-ketoglutarate, or glutamate). Our results confirm that the α and β H-D

exchange rates are dependent on the concentration of pyruvate, but also show

that, in the absence of any added pyruvate, the exchange reaction proceeds

at a much faster rate than Golichowski et al. were able to extrapolate based

on their data. In addition, Golichowski et al. reported identical α and β

exchange rates, while our data show the β exchange rate to be consistently

slightly higher than that of α exchange (on a per-site basis, that is, the rate

of β exchange is more than three times faster than α exchange as would be

expected, simply because of multiplicity, i.e., there are 3 βH for every αH).

Although the experimental conditions used in this study attempted to repli-

cate those reported in Golichowski et al., our experiments do not reproduce

the rates they measured. One possible explanation for this could be a differ-

ent D2O:H2O. The initial measured exchange rates depend, of course, on the

degree to which the system is in disequilibrium; thus our experiments, which

took place in a solution of approximately 75:25 D2O:H2O, may fail to repli-

cate the Golichowski experiments, which reportedly took place in nominally

100% D2O. However, it is doubtful that this was indeed quantitatively true;

for instance, Golichowski did not document any method to deuterate the ex-

changeable sites on the alanine initially added to the reaction (i.e., alanine’s

three readily exchangeable hydrogen atoms, the amino and carboxyl hydro-

gen atoms). At the 1 M alanine concentration used in their experiments (and

ours), there are 3 M exchangeable hydrogen atoms from alanine, leading to

the addition of several percent hydrogen into the solution. It is also not doc-

umented in their study whether the ALT enzyme added in their experiments

was in a solution of D2O or H2O. If it was in H2O, adding this solution to D2O

would change the D2O:H2O. If the D2O:H2O of their experiments was indeed
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higher than ours, the initial driving force for their reaction would have been

higher, and, in that case, the rates they measured are expected to be higher

than those we measured.

The measured T 1
2
s in our study are longer than those of Golichowski et al. for

experiments at 1 and 5 mM pyruvate, while the T 1
2

at our lowest experimental

pyruvate concentration is much shorter than that predicted by extrapolation

using a linear fit to their data, as plotted in Figure 5.3. Our data do not show

a linear trend in reciprocal concentration space, while the data of Golichowski

et al. do appear to follow such a trend. Golichowski et al. do not seem to have

considered the possibility that alanine β HDX can occur without the addition

of pyruvate. This is possible in part because the hydrogen exchange occurs

at an intermediate stage of the alanine-pyruvate half-reaction, i.e., it is not

necessary that alanine bind to the co-enzyme and leave as pyruvate in order

for exchange to occur; instead, alanine can bind to the enzyme, proceed to an

intermediate state in which HDX occurs, and then reverse direction and leave

the way it came, as alanine. Also, in the absence of added pyruvate, a very

small amount of pyruvate is still able to form. For every molecule of alanine

that binds to the enzyme and leaves as pyruvate in the alanine → pyruvate

half-reaction, that same number of enzyme + co-enzyme complexes are left

in a configuration that will only accept a keto acid (in this case, pyruvate,

as it is the only keto acid present; see Figure 4.4). Thus, by definition, the

maximum possible pyruvate concentration under these circumstances cannot

exceed the enzyme concentration, but will come to equilibrium at some con-

centration less than the concentration of the enzyme in solution. The exact

relative proportions will depend on the binding affinities between pyruvate and

enzyme, and alanine and enzyme. In our case, the concentration of alanine

in solution is 1 M, while the enzyme concentration is lower by six orders of

magnitude; we calculate the enzyme concentration to be roughly 2 µM, based

on an approximate enzymatic mass of 100 kDa and a concentration of 0.35 mg

of enzyme per 600 µL experimental volume. Thus we estimate the maximum

pyruvate concentration in this experiment to be less than the ALT enzyme

concentration of approximately 2 µM.

5.4.1.2 Water H/D Composition Dependence

Our second set of HDX experiments evaluated the kinetics of exchange over

a wide range of D2O:H2O, and the corresponding equilibrium partitioning
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Figure 5.2: Comparing β and α protons loss rates in L-alanine as a func-
tion of pyruvate concentration, based on initial 35 minutes of each kinetics
experiment. Here we normalize βH signal (by using βH/3) to start at a “con-
centration” of 1.0, for ease of comparison with αH H signal loss rate. All
reaction solutions were incubated at 303 K and contained 1.0 M L-alanine,
150 Units/ml of alanine transaminase, and varying pyruvate concentrations.
These duplicate the experimental conditions of Golichowski et al., 1977. Ex-
ponential fits are shown as lines through these data, with equations for them
given in the legend.

of deuterium between the α and β positions of alanine. Each experiment

began with L-alanine, pyruvate, and pyridoxal phosphate (P5P) in water, with

water composition ranging from ∼18% D2O (82% H2O) to ∼85% D2O (15%

H2O). Our data show the β exchange rate constant to be consistently slightly

higher than the α exchange rate constant. The overall shape of the time

series βH/(3αH) (i.e., the ratio of βH peak area divided by 3*αH peak area,

as depicted for this set of experiments in Figure 5.4) has notable features that

invite explanation, namely the initial dip below 1 at early times, subsequent

rise at intermediate times and the slow decay over long time scales. Loss of H in

β is initially slightly faster than loss of H in α, resulting in an initial reduction

in this ratio to a value ∼0.95. As demonstrated by our selectively deuterium-

labeled experiments discussed below, the H-loss rate of α is increased as β

gains deuterium (i.e., βCH3 → βCD3), while β H-loss rate decreases as α gains
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Figure 5.3: (a) Comparison of measured “half-life” for β and α proton exchange
between Golichowski et al., 1977 (purple x’s), and this study (α, yellow stars;
β, green diamonds). (b) Magnified portion of (a) to give more detail in the
region of higher pyruvate concentration. Note that we show two curves, one
for α, and one for β, while Golichowski et al. were not able to differentiate
between α and β exchange rates.
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deuterium (i.e., as αCH → αCD). The combined effect of these H-loss rates,

apparently influenced by the D/H ratio of the other site, is a crossover point

at which α H-loss becomes faster than β H-loss, and
∫
βH/(3

∫
αH) evolves

to values greater than 1. The higher the D2O:H2O, the greater this value

overshoots the eventual equilibrium value.
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Figure 5.4: Top: Evolution of αH and βH concentrations (blue and brown points, respectively) from six 1H NMR kinetics experiments “F”,
“G”, “H”, “I”, “L”, and “P”, as described in Table 5.1. Bottom: Evolution of the ratio βH/(3αH) for this same set of experiments. The
legend gives %H2O of the solution at equilibrium. Initial alanine α and β composition for all experiments was CHCH3, and the starting
ratio βH/(3αH) was ∼0.997. Data are given in the Supplementary Materials.
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Figure 5.5: Approximate starting conditions of four kinetics experiments with
selectively deuterium-labeled L-alanine: (a)“M”, (b)“J”, (c)“O”, and (d)“N”,
also depicted in Figure 5.11.

5.4.1.3 Site-Specific D-Labeled Alanine Kinetics

Our third set of experiments was designed to evaluate the kinetics of exchange

at one of the two (α or β) positions while the other position was already

relatively close to equilibrium with water. We began with L-alanine labeled

with 99% deuterium at either the α or β position. Each of these two deuterium-

labeled alanine variants was reacted once in H2O, and once in D2O, resulting

in a set of four experiments with approximate initial conditions as illustrated

in Figure 5.5.
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Figure 5.6: Evolution of αH and βH concentrations (blue and brown points, respectively) from
four 1H NMR kinetics experiments with selectively-deuterium-labeled L-alanine: “J”, “N”, “O”,
and “M”, as depicted in Figure 5.5 and described in Table 5.1. Notes: (1) Vertical scales vary
depending on αH and βH concentration ranges, particularly to highlight the transient overshoots
in the species already close to equilibrium with solvent water, (2) The slight oscillation with ∼20
minute period in “M” βH originates from room temperature fluctuations due to A/C running at
regular intervals during the experiment. Its effect on our modeling and conclusions is negligible.
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These deuterium-labeled experiments are summarized thus:

• Experiment J: CDCH3 in ∼85 % D2O. The primary isotopic exchange

reaction is the loss of H (gain of D) at the β site (Reaction 5.3 forward),

there is a transient rise in the α signal as H leaks over from the β site,

augmenting the contribution from ∼15 % H2O in solution.

• Experiment N: CDCH3 in 100 % H2O. The primary isotopic exchange

reaction is the loss of D (gain of H) α site (Reaction 5.1 backward), but

there is a transient loss of β as D leaks over from the α site before being

overwhelmed by H from the solution.

• Experiment M: CHCD3 in ∼85 % D2O. The primary isotopic exchange

reaction is loss of H (gain of D) at the α site (Reaction 5.10 forward),

but there is a transient rise of the β signal as H leaks over from the α site

augmenting the contribution coming from the ∼15 % H2O in solution.

• Experiment O: CHCD3 in 100 % H2O. The primary isotopic exchange

reaction is the loss of D (gain of H) at the β site (Reaction 5.8 backward)

but there is a transient loss of H from the α site as D leaks over from

the β site before being overwhelmed by H from the solution.

We compared the initial rate (using the first 20 minutes of data collected) of

α hydrogen loss in Figure 5.5a (Experiment “M”, alanine with an initial com-

position of 12CH12CD3), to the analogous experiment with unlabeled alanine

(Experiment “P”) used in the second set of experiments (both experiments

occur in 85:15 D2O:H2O). The initial composition of alanine is the only differ-

ence between these two experiments—in Figure 5.5b, the initial composition

of alanine’s α and β is 12CH12CD3, while in the unlabeled experiment, it is
12CH12CH3. Only the earliest portion of data collected is used, in part be-

cause this is the period during which the vast majority of α hydrogen loss

occurs on alanine that has the original composition of either 12CH12CD3 (be-

ing converted to 12CD12CD3) or 12CH12CH3 (being converted to 12CD12CH3).

As the reaction continues and more intermediate isotopic variants are formed,

the HDX rates begin to deviate significantly from an exponential function.

These data and fitted exponential functions are given in Figure 5.7a, plotted

as the log of H concentration relative to the starting concentration for these

two experiments (data are normalized to an initial value of 1). We observe a
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substantial difference in α hydrogen loss rate between these two experiments,

where α hydrogen loss from 12CH12CD3 is ∼1.4 times faster than α hydrogen

loss from 12CH12CH3.

We also compared the rates of β hydrogen loss in two experiments, that is, Fig-

ure 5.5b (Experiment “J”, alanine with an initial composition of 12CD12CH3),

against the same analogous experiment with unlabeled alanine (Experiment

“P”), as used in the α hydrogen loss comparison above. These data and fitted

exponential functions are given in Figure 5.7b, where β hydrogen abundance

is normalized to an initial value of 1.

We observe a difference in β hydrogen loss rate between these two experiments

of similar magnitude, but it is in the opposite direction from that observed in

α hydrogen loss, where β hydrogen loss from 12CD12CH3 is ∼1.4 times slower

than β hydrogen loss from 12CH12CH3.

The site-specific deuterium labeling appears to have similar but opposite effects

on the rate of hydrogen loss at the α and β carbon positions, that is, the rate

of α hydrogen loss is increased by having deuterium in the β carbon site as

opposed to hydrogen, while the rate of β hydrogen loss is decreased by having

deuterium in the α carbon site as opposed to hydrogen. The faster α H loss

observed in Experiment “M” relative to Experiment “P” is expected, if for

no other reason than because the labeled CHCD3 alanine has a nearby source

of D. However, the slower β H loss observed in Experiment “J” relative to

Experiment “P”, however, must mean that the presence of D at the α site has

an intrinsic retarding effect on the rate H loss from the β group, overwhelming

any acceleration in H loss that might come from having a nearby D available

at the α site. In other words, the rate constant for β exchange must faster

for α=H than for α=D. But we cannot say from these data alone whether the

rate constant for α exchange is really faster for β=D. We address this issue

further below in the Modeling and Discussion section (5.5).

These experiments were inspired by somewhat similar experiments reported by

Cooper where reaction rates were compared between starting compositions of

variably deuterated alanine (Cooper, 1976). The distinction between Cooper’s

experiments and ours is that he measured the rate of transamination through

the appearance of pyruvate, in addition to the rate of hydrogen exchange,

while we have measured only the hydrogen exchange using the half-reaction

alanine ↔ pyruvate. Cooper found that the rate of transamination was faster
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by a factor of 2.3 for alanine with α and β composition of CHCH3, compared

to the rate for alanine labeled with deuterium at the α site (i.e., CDCH3).

However, he found that labeling the β site with deuterium (i.e., CHCD3),

did not change the transamination rate. He found a similar factor of 2.4

difference in rate between β hydrogen loss from CDCH3 and CHCH3, with

the α-deuterated variant resulting in the slower rate. This last result of his

can be compared to our rate difference of 1.4 between β hydrogen loss from

CDCH3 and CHCH3, which goes in the same direction. The reasons for the

discrepancy in magnitude between our experiments and his are unknown. It

is likely a matter of lower precision in his measurements given the technology

available to him at the time. It may also have to do with the fact that Cooper

was not running half-reactions but was running the full transamination ping-

pong reaction, similar to what we did in Chapter 3 on carbon isotopes.

5.4.2 H/D Exchange Kinetics by 13C NMR

Our final kinetics experiment, a single reaction observed using 13C NMR, takes

place in water with an isotopic composition close to 50:50 D2O:H2O, as de-

scribed in Section 5.3.3.2. It begins with effectively all alanine present as

CHCH3, and ends with all eight isotopic species present. Figure 5.8 presents

the relative abundances of each of the eight isotopic variants at two-minute

intervals over the course of this reaction. As expected, the 12CH13CH3 species

decays exponentially from its starting concentration, while the other seven

species start at effectively zero abundance, each appearing to increase at a

unique rate.

Note that this reaction is a closed system—total β carbon signal is conserved

throughout the kinetics, i.e., loss of 13C NMR signal from one of the eight

species is always gained by another (see Figure 5.18 for the total integrated

peak area of the β 13C NMR region, which remains constant, despite some

noise, throughout the experiment).

To our knowledge, the density and richness of the data presented here goes

beyond any work previously published in isotope kinetics, and far surpasses

any previous work on alanine. In general, isotopic kinetics studies are severely

limited in time resolution, precision, or the number of isotopic species being

tracked, and usually in all three. Here, the time resolution is fine relative

to changes in isotopic composition, such that the quality of fits to the data
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Figure 5.7: Comparing hydrogen loss rates for L-alanine, using the initial
20 minutes of data from kinetics experiments “P”, “M”, and “J” in ∼85:15
D2O:H2O. (a) α hydrogen loss rate in Experiments “M” (12CH12CD3) and “P”
(12CH12CH3), denoted by purple circles (Experiment “P”) and green circles
(Experiment “M”). Lines are exponential fits to the data, y-axis is concentra-
tion in log scale, normalized to initial concentration. (b) β hydrogen loss rate
in Experiments “J” (12CD12CH3) and “P” (12CH12CH3), denoted by purple
circles (Experiment “P”) and green circles (Experiment “J”). Lines are expo-
nential fits to the data.
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can easily be assessed. Measurement precision is qualitatively visible by the

scatter of individual data points over the course of the reaction, and it is

readily apparent that this degree of precision enables unprecedented tracking

of each of the eight species throughout the course of the reaction.

This experiment proved to be the single most valuable kinetics experiment we

conducted. The value of this experiment comes principally from the ability by
13C NMR to distinguish and quantify through the course of reaction all eight

isotopic variants of interest, which gives us the opportunity through model-

ing to determine rate constants for both intermolecular (between water and

alanine) and intramolecular (within alanine) isotopic exchange, an impressive

and exciting accomplishment we have not seen elsewhere for this reaction or

for any other. Thus, in contrast to the 1H kinetics experiments presented in

the previous section, there are no previous studies with which we can compare

our results, so we leave further discussion of this experiment, with added con-

straints from the 1H kinetics experiments, to the modeling discussion below.

The design of this experiment was also key, as we chose to equilibrate unla-

beled alanine, i.e., CHCH3 with water having approximately 50:50 D2O:H2O

composition. This final composition resulted in equilibrated amounts of the

eight isotopic variants that vary by only a factor of ∼3. This factor of 3 is, of

course, due to the multiplicity of three indistinguishable ways to configure four

out of eight isotopic variants (CHCH2D, CDCH2D, CHCHD2, and CDCHD2),

while the remaining four (CHCH3, CDCH3, CHCD3 and CDCD3) can exist

in only one distinct configuration. That is, there is no way to construct this

experiment to result in greater equality across all isotopic variants. The use-

fulness of this fact is that it enables us to acquire high-precision measurements

on the equilibrated solution, as presented below, in Section 5.4.3, with up to

h-level precision. An equilibrated solution with vastly different proportions

of the eight isotopic species would result in greatly reduced measurement pre-

cision on the low abundance species, which would be reflected in the resulting

precision on the calculated equilibrium constants that depend on the relative

abundances of these species.
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Figure 5.8: Time series of the eight isotopic species in Experiment “Q” using single-scan 13C NMR acquisitions
taken every two minutes for 540 minutes (9 hours) of reaction time. The observed reaction began with >99
% 12CH13CH3, and evolved towards the equilibrium distribution of eight isotopic variants reported in Tables
5.2 and 5.3. Isotopic species with H in the α site are shown in shades of blue (darkest = 4H, 0D → lightest
= 1H, 3D) and those with D in the α site are shown in shades of brown (darkest = 3H, 1D → lightest = 0H,
4D).
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5.4.3 H/D Isotopic Equilibrium Fractionation

Once the isotopic exchange reaction in Experiment “Q” (described in Section

5.4.2 above) reached equilibrium with water (over the following two days), we

quantified the eight alanine isotopic variants at significantly higher precision

than was used for the kinetics portion of Experiment “Q”. Here we present

results of our 13C NMR equilibrium observations of the intermolecular hydro-

gen isotope fractionation between water and the two ALT enzyme-mediated

exchangeable α- and β-carbon sites in alanine, as well as the intramolecular

hydrogen isotope fractionation between the same α and β sites.

We used the fitted peak areas from the observations on equilibrated Exper-

iment “Q” to calculate the relative abundances of each of the eight isotopic

species, and calculated the ten equilibrium constants between alanine and sol-

vent water using the equations given below. These reactions would proceed

diagonally in Figure 5.9 and are given below, with solitary “D” and “H” rep-

resenting these isotopes in solvent water:

CHCH3 + D
k1f−−⇀↽−−
k1b

CDCH3 + H (5.1)

CHCH3 + D
k2f−−⇀↽−−
k2b

CHCH2D + H (5.2)

CDCH3 + D
k3f−−⇀↽−−
k3b

CDCH2D + H (5.3)

CHCH2D + D
k4f−−⇀↽−−
k4b

CDCH2D + H (5.4)

CHCH2D + D
k5f−−⇀↽−−
k5b

CHCHD2 + H (5.5)

CDCH2D + D
k6f−−⇀↽−−
k6b

CDCHD2 + H (5.6)

CHCHD2 + D
k7f−−⇀↽−−
k7b

CDCHD2 + H (5.7)

CHCHD2 + D
k8f−−⇀↽−−
k8b

CHCD3 + H (5.8)
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CDCHD2 + D
k9f−−⇀↽−−
k9b

CDCD3 + H (5.9)

CHCD3 + D
k10f−−⇀↽−−
k10b

CDCD3 + H (5.10)

Each of these reactions corresponds to an equilibrium constant that depends

on the concentrations of the products and reactants:

K1 =
[CDCH3][H]

[CHCH3][D]
(5.11)

K2 =
[CHCH2D][H]

[CHCH3][D]
(5.12)

K3 =
[CDCH2D][H]

[CDCH3][D]
(5.13)

K4 =
[CDCH2D][H]

[CHCH2D][D]
(5.14)

K5 =
[CHCHD2][H]

[CHCH2D][D]
(5.15)

K6 =
[CDCHD2][H]

[CDCH2D][D]
(5.16)

K7 =
[CDCHD2][H]

[CHCHD2][D]
(5.17)

K8 =
[CHCD3][H]

[CHCHD2][D]
(5.18)

K9 =
[CDCD3][H]

[CDCHD2][D]
(5.19)

K10 =
[CDCD3][H]

[CHCD3][D]
(5.20)
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The H and D in these equations are associated with water molecules in the

solvent, present as a mixture of H2O, HDO, and D2O. Since they are all

readily exchangeable on time scales of interest to this study, we can take

them as simply H or D, with initial populations given by [H]=2×[H2O] and

[D]=2×[D2O]. In other words, we are not, at this time, creating a model with

explicit H2O, HDO, and D2O species. The degree to which the constructed

models are able to describe kinetics and equilibria across a range of initial

H2O:D2O compositions will provide a check on the validity of assuming we do

not have to concern ourselves with the specific molecular-level source of the D

and H. The equilibrium constants K1–K10 thus determined are given in Table

5.2. The large values of K2 and K3 and the small values of K8 and K9 simply

result from multiplicity; i.e., there are three targets for the forward direction in

Reactions 2 and 3, and only one for the backward direction, and three targets

for the backward direction of Reactions 8 and 9, but only one for the forward

direction.

The fractionations (in h) associated with these reactions are also given in

parentheses in Table 5.2. These are just 1000ln(Ki) values, but also have the

multiplicity effects removed (where indicated in the table) so that the intrinsic

enthalphic vibrational effects are clear. For all HDX reactions taking place

between the α site and water in the homogenized solvent pool (i.e., Reactions

1, 4, 7 and 10) the fractionations are positive, meaning that D prefers the α

site in alanine over a solvated water molecule in the solvent pool. For HDX

reactions taking place between the β site and water, the first two additions of

a D atom on the β site (i.e., Reactions 2, 3, 5, and 6) have negative values,

indicating that D would prefer to bind to a water molecule over the β site in

alanine. However, if there are already two D atoms at the β site, the third D

atom prefers to “clump” at the β site over a water molecule. These preferences

hold regardless of whether the hydrogen atom bound to the α carbon is H

(Reactions 2, 5, and 8) or D (Reactions 3, 6, and 9).

We also consider the possibility of “direct” exchange reactions between the α

and β sites without the involvement of the homogenized solvent pool. Such

reactions are useful for comparing with theoretical calculations because there is

no solvent explicitly present in the reaction. Molecular modeling of the solvent

is nontrivial, requiring sampling of many solvent structures to demonstrate

convergence. Considering an isotopic swap within a single alanine molecule
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suffers less from errors that may arise from modeling a reaction with completely

different reactant and product environments. These reactions would proceed

horizontally in Figure 5.9 and are as follows:

CHCH2D
kαβ1f−−−⇀↽−−−
kαβ1b

CDCH3 (5.21)

CHCHD2

kαβ2f−−−⇀↽−−−
kαβ2b

CDCH2D (5.22)

CHCD3

kαβ3f−−−⇀↽−−−
kαβ3b

CDCHD2 (5.23)

Each of these reactions corresponds to an equilibrium constant that depends

on the concentrations of the products and reactants:

Kαβ1
=

K1

K2

=
K4

K3

=
[CDCH3]

[CHCH2D]
(5.24)

Kαβ2
=

K4

K5

=
K7

K6

=
[CDCH2D]

[CHCHD2]
(5.25)

Kαβ3
=

K7

K8

=
K10

K9

=
[CDCHD2]

[CHCD3]
(5.26)

The two remaining isotopic species contain either all hydrogen or all deuterium.

We can write these two species in a single reaction by describing the tendency

for deuterium in the α carbon site to prefer clumping with an alanine molecule

containing all deuterium versus all hydrogen at the β carbon site:

CHCD3 + CDCH3

kαβ4f−−−⇀↽−−−
kαβ4b

CDCD3 + CHCH3 (5.27)

The corresponding equilibrium constant for this reaction is:

K(αβ)4 =
K10

K1

=
[CDCD3][CHCH3]

[CHCD3][CDCH3]
(5.28)
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The measured and predicted (refer to Section 2.7) values for these equilibria

indicating H/D site preferences between α and β carbon sites are given in

Table 5.3. When multiplicity is accounted for, it is apparent that there is

an enthalpic preference for D to sit at the α site in all cases, however the

preference is significantly less for Kαβ3
than for Kαβ1

and Kαβ2
.

Positive values indicate deuterium preference for the α position. Recall from

Section 2.7 Table 2.9 that we predicted, using density functional electronic

structure calculations, a 169.9 h site preference for deuterium in the α posi-

tion in the case where all remaining exchangeable atoms are hydrogen and with
13C in the beta position as done in these experiments. This value decreases

by ∼16 h per deuterium atom replacing hydrogen in the β position (i.e., the

effect of deuterium clumping at the β position). We measure a site preference

of ∼168 h for deuterium in the α position for Reaction 5.24, in almost per-

fect agreement with the prediction of 170 h. In contrast, our measured site

preference for clumped species given by Reactions 5.25 and 5.26 deviate sig-

nificantly from the predicted values, where the presence of a single deuterium

atom in the β position produces an even stronger deuterium site preference for

the α position of ∼191 h, while the presence of two deuterium atoms in the β

position weakens the site preference to ∼74h. The preference for clumping of

deuterium in both α and β positions within the same molecule (i.e., Reaction

5.26) is predicted to be negligible (∼0–1 h), and measured to be ∼-11 h, i.e.,

a slight anti-clumping preference extending beyond two bonds. The difference

between theoretical predictions and experiment would be expected given all

the issues involved in predicting H/D fractionations (non-Born-Oppenheimer

effects, anharmonicity, barrier tunneling and recrossing, etc., Richet et al.,

1977).



168

Table 5.2: Measured Equilibrium Constants, Ki,
for Reactions 5.1–5.10, as depicted in Figure 5.9.

Ki 1000ln(Ki) (h)

α (β=H or D)
K1 1.144±0.003 (134.9±2.9)
K4 1.165±0.001 (152.4±1.2)
K7 1.165±0.001 (152.7±1.4)
K10 1.132±0.003 (123.9±2.8)

β (α=H)
K2 2.904±0.010 (-32.7±3.4)*

K5 0.962±0.001 (-39.0±1.4)
K8 0.361±0.002 (78.9±5.2)*

β (α=D)
K3 2.955±0.015 (-15.2±5.1)*

K6 0.962±0.001 (-38.7±0.6)
K9 0.350±0.001 (50.1±4.1)*

* Value has multiplicity effects removed by di-
viding observed K2 and K3 by 3 and multiply-
ing observed K8 and K9 by 3.

Table 5.3: Measured and predicted site preference
equilibrium constants, Kαβi

, for intramolecular ex-
change Reactions 5.21, 5.22, and 5.23, as depicted
in Figure 5.9.

Kαβi
1000ln(Kαβi

) (h) Predicted (h)

Kαβ1
1.182* 167.6±2.2* 170

Kαβ2
1.211 191.4±0.3 154

Kαβ3
1.077* 73.8±2.6* 139

Kαβ4
0.990 -11.0 0

* Value has multiplicity effects removed by multi-
plying observed Kαβ1

by 3 and dividing observed
Kαβ3

by 3
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Figure 5.9: Graphical depiction of the system of ten intermolecular reactions (black diagonal
arrows, circled) that convert the eight possible isotopic variants of alanine (i.e., the eight boxes)
in our study from one to another by exchanging an H or D from either the α or β carbon position,
and the three intramolecular reactions (gray horizontal arrows, circled) that swap an H and a D
between the α and β carbon position. Forward reactions (up) remove a D from the solvent and
emit an H to the solvent. Backward reactions (down) remove an H from the solvent and emit a D
to the solvent. (Interaction with solvent for Reactions 1–10 is implicit in this diagram.)
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5.5 Modeling and Discussion

It is readily apparent that the experimental data collected through the series

of experiments presented above gives us an unprecedented look at this enzyme-

mediated isotope exchange system, made possible through a combination of

experimental capabilities that have advanced since earlier work was performed

(see literature review in Chapter 4) and through experimental design choices.

Perhaps less obvious is how to make sense of this dataset, and what useful

information can be extracted from it, both with respect to this particular

system and potentially to isotopic exchange systems more generally. To aid in

this interpretive effort, we built a phenomenological kinetic model that allows

determination of the reaction rates that convert each one of the eight isotopic

variants into the others via H/D exchange with solvent water.

5.5.1 A Kinetic Model of Enzyme-Catalyzed Exchange Processes

Our model assumes that the eight isotopic alanine species populations fol-

low a phenomenological rate law as given in the following ordinary differen-

tial equations, constructed using the isotope exchange Equations 5.1–5.10 and

5.21–5.23:

d[CHCH3]

dt
= +k1b [CDCH3][H] − k1f [CHCH3][D]

+ k2b [CHCH2D][H] − k2f [CHCH3][D]

(5.29)

d[CHCH2D]

dt
= +k2f [CHCH3][D] − k2b [CHCH2D][H]

+ k4b [CDCH2D][H] − k4f [CHCH2D][D]

+ k5b [CHCHD2][H] − k5f [CHCH2D][D]

− kαβ1f
[CHCH2D] + kαβ1b

[CDCH3]

(5.30)

d[CHCHD2]

dt
= +k5f [CHCH2D][D] − k5b [CHCH2D][H]

+ k7b [CDCHD2][H] − k7f [CHCHD2][D]

+ k8b [CHCD3][H] − k8f [CHCHD2][D]

− kαβ2f
[CHCHD2] + kαβ2b

[CDCH2D]

(5.31)
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d[CHCD3]

dt
= +k10b [CDCD3][H] − k10f [CHCD3][D]

+ k8f [CHCHD2][D] − k8b [CHCD3][H]

− kαβ3f
[CHCD3] + kαβ3b

[CDCHD2]

(5.32)

d[CDCH3]

dt
= +k1f [CHCH3][D] − k1b [CDCH3][H]

+ k3b [CDCH2D][H] − k3f [CDCH3][D]

+ kαβ1f
[CHCH2D] − kαβ1b

[CDCH3]

(5.33)

d[CDCH2D]

dt
= +k3f [CDCH3][D] − k3b [CDCH2D][H]

+ k4f [CHCH2D][D] − k4b [CDCH2D][H]

+ k6b [CDCHD2][H] − k6f [CDCH2D][D]

+ kαβ2f
[CHCHD2] − kαβ2b

[CDCH2D]

(5.34)

d[CDCHD2]

dt
= +k6f [CDCH2D][D] − k6b [CDCHD2][H]

+ k7f [CHCHD2][D] − k7b [CDCHD2][H]

+ k9b [CDCD3][H] − k9f [CDCHD2][D]

+ kαβ3f
[CHCD3] − kαβ3b

[CDCHD2]

(5.35)

d[CDCD3]

dt
= +k10f [CHCD3][D] − k10b [CDCD3][H]

+ k9f [CDCHD2][D] − k9b [CDCD3][H]

(5.36)
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d[DSolution]

dt
=

+ k1b [CDCH3][H] − k1f [CHCH3][D]

+ k2b [CHCH2D][H] − k2f [CHCH3][D]

+ k3b [CDCH2D][H] − k3f [CDCH3][D]

+ k4b [CHCH2D][H] − k4f [CDCH2D][D]

+ k5b [CHCHD2][H] − k5f [CHCH2D][D]

+ k6b [CDCHD2][H] − k6f [CDCH2D][D]

+ k7b [CHCHD2][H] − k7f [CDCHD2][D]

+ k8b [CHCHD2][H] − k8f [CHCD3][D]

+ k9b [CDCHD2][H] − k9f [CDCD3][D]

+ k10b [CHCD3][H] − k10f [CDCD3][D]

(5.37)

d[HSolution]

dt
= −d[DSolution]

dt (5.38)

We wrote a code to integrate these kinetic equations, given the initial concen-

trations of each isotopic variant and the thirteen rate constants kif,b . To fit

the parameters, this code was embedded into an optimization code (originally

developed in Benjamin Hay’s group at Pacific Northwest National Labora-

tory in the early 1990s) derived from the downhill simplex code “AMOEBA”

in Press et al., 1986. The code from Hay’s group is very easily configured

for any optimization problem as it has system calls to a script that runs the

model and calculates the error. In other words, one does not need to interface

FORTRAN subroutines to run the model and calculate the error. While we

originally wrote the code to integrate the differential equations 5.29-5.36 and

to calculate the misfit in Python, this proved to be very slow, and so we trans-

lated the code into FORTRAN, which ran about three orders of magnitude

faster. Both the Python and FORTRAN versions are given in the Supporting

Information.

We configured the code to fit up to thirteen knf,b
parameters. While there are

twenty-three parameters in the model (thirteen rate constants and ten equi-

librium constants), the corresponding knb,f
parameters are calculated from the
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equilibrium constants, determined by the relationship Kn=knf
/ knb

. The code

reads in an initial guess and then runs a specified number of fits from ran-

dom perturbations, of a specified magnitude, about the initial guess. For each

“simulation” of the reaction, we determine a “misfit” value, defined as the

sum of the absolute value of the difference (experiment - model) for each data

point for each of the eight species. The downhill simplex algorithm finds pa-

rameters that minimize the misfit, producing a “local” minimum. The details

of the implementation fitting procedure are discussed further in Section 5.5.3.

The merits (and deficiencies) of the downhill simplex method are discussed in

Numerical Recipes (Press et al., 1986). This method creates a set of n + 1

points in an n-dimensional parameter space (a “simplex”) and then specifies

a series of moves on the vertex with the worst fit to the data, mainly pro-

jecting new guesses along a line through this vertex and the centroid of the

n remaining vertices (all with better fits to the data). If no better fit can be

found, the whole simplex shrinks towards the point having the best fit to the

data. The process terminates when the values of the simplex differ by some

specified amount, in our case 0.0001. This method is appropriate because it

is particularly robust when presented with parameters whose initial values are

highly uncertain, and when gradients of the parameters with respect to the

misfit are expensive. In our case evaluation of the misfit involves running a

simulation and cannot be expressed as an analytical function. Thus the gradi-

ent would have to be calculated numerically by evaluating ∂χ
∂pi

where χ is the

misfit and pi is the ith parameter. Numerical gradients can introduce noise

into the objective function to be optimized that can cause problems for higher-

order optimization methods (see discussion in Numerical Recipes, Press et al.,

1986).

For each solution we obtained (which locates a “local” minimum), we ran a

Monte-Carlo-like procedure where each parameter was kicked with a random

perturbation, scaled (by trial and error) to cause the first iteration of the

downhill simplex method to have parameter sets that scored about a factor

of three higher (i.e. worse) in the misfit parameter, and the downhill simplex

method was allowed to proceed to reach an optimal parameter set. This was

done over tens of thousands of iterations to search the parameter space as

completely as reasonably possible. Through this procedure we attempt to find

a “global” minimum.
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Our kinetic model is shown in Figure 5.9. Each of the eight species are rep-

resented by a node in the diagram. The α=CH species are shown along the

lower diagonal and the α=CD species on the upper diagonal. The four re-

actions converting α=CH to α=CD for β=CH3, CH2D, CHD2, and CD3 are

given by the four northwest-southeast arrows. As we move upward (north-

east) along each diagonal we go from β=CH3 to β=CD3, adding one D at

each step. The scheme is arranged so that species with equivalent numbers of

D are aligned horizontally (for example CDCH3 and CHCH2D are level with

each other). The horizontal reactions Kαβ1
-Kαβ3

allow for “direct” intramolec-

ular exchange of H/D between the α site and the β site without involving the

homogenized solvent pool. Note that this homogenized solvent pool is implicit

in Figure 5.9, but is explicitly present in the corresponding equations. These

intramolecular reactions are unlikely to be elementary in the sense that they

could involve intermediates that do not appear in the reactions. These inter-

mediates could be bound to internal solvent water molecules, the co-enzyme,

the enzyme itself, or a combination of all or a subset of these. The main point

is that the D/H can be exchanged on the alanine without directly changing the

bulk solution composition. While the ALT crystal structures determined by

x-ray diffraction provided a major update to our understanding of the molec-

ular mechanisms involved in the function of this enzyme, there are still many

unknowns when it comes to the dynamics of this reaction. It is worth saying a

bit more about what is presently known about the mechanism before getting

further into the results of our model.

5.5.2 The Role of Lysine in Hydrogen-Deuterium Exchange

A lysine residue in ALT is now known to play a key role during transamination

(Figure 4.4). During the reaction from alanine to pyruvate, this lysine’s termi-

nal amine (:NH2) accepts the α hydrogen from alanine, resulting in a positive

charge on the amine (NH3
+). One of those three hydrogen atoms on the lysine

terminal amine is then swapped onto the C4’ position of the pyridoxal moiety,

allowing the double bonds in the pyridoxal moiety to shift (forming a –CH2–

where there was previously a =CH–). In the side-reaction where the double

bond between the α carbon and the alanine nitrogen atom (forming a Schiff

base) shifts to the bond between the alanine α and β carbons, the hydrogen

atom lost from the β position is gained by a nearby base.

In his 1976 paper, nearly three decades before an enzyme crystal structure had
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been determined for alanine transaminase (Zhou et al., 2004), Arthur Cooper

entertained the idea that a lysine residue could, in theory, single-handedly me-

diate H/D exchange in both the α and β site. He believed it most probable

that one or more bases must sit within the active site to assist in hydrogen

removal in the α site, while β site hydrogen exchange occurred independently

via a different basic residue in the enzyme active site. Nevertheless, he recog-

nized the possibility that a single base could conceivably receive and donate

hydrogen between both the α and β sites, and suggested that, if this were

the case, it would have to be a lysine residue, for any other basic amino acid

(e.g., histidine) would not be flexible enough to move between the various

enzyme-substrate complexes. At the time of his writing, the mechanisms and

structures of pyridoxal-5’-phosphate enzymes were largely unknown, and ex-

perimental work such as his was, in part, attempting to develop understanding

of the molecular mechanisms at work in the active-sites of such pyridoxal-

5’-phosphate-dependent enzymes. Only in the last couple decades has work

on transaminase structures and mechanisms fully resolved Cooper’s question

about the presence of a single, versus multiple basic amino acid residues in the

active site.

In the last two decades, several research groups have experimentally deter-

mined, using x-ray diffraction crystallography, the crystal structures of four

ALT isoenzymes from radically different organisms: Pyrococcus Furiosus,

Homo sapiens, Hordeum vulgare, and E. coli (i.e., an archea, a mammal, a

plant, and a bacterium, respectively). These structures are published and

publicly available on the Protein Data Bank (PDB): Pyrococcus furiosus (407

aa residues, Zhou et al., 2004), Homo sapiens ALT 2 (523 aa residues, Wis-

niewska et al., 2009), E. coli (405 aa residues, Peña-Soler et al., 2014), Hordeum

vulgare (barley, 482 aa residues, Duff et al., 2012). Despite their significant

variation in genetic encoding, as well as in sequence and number of amino

acids, all of these isoenzymes share a very well-conserved active site structure

and set of key amino acid residues. It is clear now from these structures that

each active site contains only one basic amino acid residue, a lysine, which

plays a direct role in stabilizing the transamination transition state. Thus the

base receiving the hydrogen atom lost from the β position is indeed the same

lysine residue that facilitates removal of the α hydrogen in transamination,

which becomes NH3
+ in this side reaction when it gains a β hydrogen (Figure

4.4). The approximate distance between the basic moiety on lysine and the
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PLP carbon atom to which it temporarily binds during enzyme function can

be determined from the ALT crystal structures and available tools on the Pro-

tein Data Bank (PDB) website. As we show in Figure 5.10, these distances

are 1.60 Å (Homo sapiens ALT 2), 1.46 Å (E. coli), and 3.33 Å (Hordeum

vulgare). The resolutions of these crystal structures (2.30 Å, 2.11 Å, and 2.71

Å, respectively) are of similar magnitude to these atomic distances, so these

values are likely less precise than their significant figures suggest; nevertheless,

they provide strong evidence of a tightly conserved mechanism, depending

on a lysine residue from the enzyme interacting with the coenzyme and sub-

strates. Unfortunately there does not yet exist a published crystal structure

for Homo sapiens ALT 1, which is distinct from Homo sapiens ALT 2, with

496 amino acid residues instead of the 523 residues of ALT 2. In amino acid

sequence, porcine ALT 1 and 2 are very similar to human ALT 1 and 2, respec-

tively. There also does not yet exist a published crystal structure for either

porcine ALT 1 or 2 (the ALT used in this study), but, given the well-conserved

structure seen across the three radically diverse organisms with known crystal

structures, it is safe to assume that the active site structures of Homo sapiens

ALT 2 and porcine ALT 1 and 2 do not deviate significantly from these.
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Figure 5.10: Views of the ALT enzyme active sites of Homo sapiens ALT 2, E. coli, and Hordeum
vulgare (barley) showing the ball-and-stick PLP coenzyme (in the case of Horeum vulgare, PLP
bound to cycloserine) with phosphate group in the center, and the lysine residue (purple) on left.
Here basic amino acid residues are shown in purple, acidic residues are red, and the remaining
residues are white. Structures are available on the Protein Data Bank. Distances between the
basic moiety on lysine and the carbon atom on PLP to which it temporarily binds are determined
from the crystal structure to be 1.60, 1.46, and 3.33 Å, respectively.
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Strangely, Cooper came to the conclusion that a lysine residue was not the base

receiving the hydrogen atom lost from the β position, based on his experimen-

tal results. Cooper proposed a test to distinguish between his two scenarios:

if a single base was responsible for exchange at both sites, this should result

in a “scrambling” (Cooper’s terminology) of the hydrogen between the two

sites; if two bases were responsible, such scrambling, he suggested, would not

occur. Cooper believed that, for a reaction in which the α and β sites be-

gin with known, contrasting hydrogen isotope compositions (e.g., CDCH3), as

they progress toward equilibrium with D2O, this scrambling should be observ-

able using the analytical tools available at that time (in his case, a Bruker

WH 90 MHz NMR spectrometer). He tried this experiment with CDCH3 in

D2O, but was not able to see any evidence of scrambling, and thus ruled out

the single-base hypothesis. It is unclear whether his reported limit of detec-

tion of 5% incorporation at the α position of hydrogen derived from the β

position was accurate. As can be seen in Figure 5.6 (Experiment “J”, αH)

presented in Section 5.4.1.3 above, we ran an experiment analogous to his and

observed temporary incorporation of hydrogen at the α position derived from

the β position that is much greater than 5% relative to the final equilibrated

incorporation, in apparent conflict with Cooper’s results, but consistent with

the now known enzyme structure.

In hindsight, Cooper’s experiments may not have been able to provide a defini-

tive answer; at the very least, the instruments and data processing methods

he had available to him were not nearly as capable as those we have available

to us today. Nevertheless, the experimental limitations of that day need not

necessarily have hindered conceptual appreciation for the system at hand. An

important question that Cooper did not discuss, but which naturally emerges

when we consider the role of lysine in hydrogen exchange, is that of how the

constrained water molecules inside the enzyme active site interact with the

lysine residue, the co-enzyme, the enzyme-catalyzed transition state, the en-

zyme itself, and with the free water outside the enzyme. A related question

is: What is the rate of exchange between this internal water and the exterior

homogenized solvent pool? In other words, it is not simply the lysine residue

that may play the role of mixing H and D between the α and β sites, but rather

the tiny pool of water inside the enzyme active site, which may temporarily

diverge in composition from the larger pool of well-mixed water outside the

enzyme.
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With the experimental tools now available to us, we are able to unambigu-

ously observe the “scrambling”, which we describe as “transient overshoots”,

between the α and β sites that Cooper sought. Communication between these

two sites is most clearly realized in our four experiments beginning with se-

lectively deuterated alanine (see Figures 5.5 and 5.6). In each of the four

experiments of this type, “J”, “M”, “N”, and “O”, whichever alanine position

began with a D/H composition most similar to the solvent water showed a tem-

porary excursion away from final equilibrium, followed by an eventual return

towards equilibrium (past its initial value which was slightly out of equilibrium

with the final water composition). This initial trend towards greater disequi-

librium indicates that the position closest to equilibrium with the solution is

receiving hydrogen (in the case of the reactions in ∼85% D2O) or deuterium

(in the case of the reactions in ∼100% H2O) from the position that is farther

from equilibrium. The fact that the lysine residue is responsible for picking up

hydrogen atoms from both sites means it can also donate the hydrogen atoms

from one site to the other. Thus there will be some probability that a hydrogen

atom taken from one position will be directly swapped onto the other. The

alternative is that the hydrogen gets transferred to a water molecule inside

the active site, which can either remain inside the active site to eventually

undergo a further H/D exchange with lysine (and thus potentially exchange

with another alanine), or go on to diffuse outside the enzyme and be lost to

the free water molecules in solution outside of enzyme.

This raises several questions: (1) with what relative frequency does the lysine

amine exchange its hydrogen atoms with the surrounding water, (2) what is

the size of the pool of water within the enzyme active site with which the lysine

can readily exchange, and (3) at what rate does the water inside the enzyme

active site exchange with the external solution? These are questions about

dynamical processes that cannot be answered with enzyme crystal structures

alone, and which thus motivate both the experimental work presented above

and the modeling work we present below. It is unknown to what extent a

phenomenological model such as ours can conclusively answer these questions,

but our unique data set gives us a rare opportunity to explore the possibilities

and limitations of such a model.
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5.5.3 Fitting Parameters for the Kinetic Model

The essential objectives of this section of our work are (1) to fit our exper-

imental data presented in Section 5.4 with the kinetic model described by

Equations 5.29–5.36, (2) to evaluate the extent to which our model might

accurately represent the actual system, and, (3) using these fits, to look for

patterns in the rate constants for this reaction network that may give insights

into the factors governing the ALT-catalyzed hydrogen isotope exchange. The

most basic null hypothesis is that all isotope exchange reactions occur with the

same rate constant, independent of isotopic composition. A more reasonable

one, however, is to allow for different rate constants for the chemically distinct

α and β groups but to postulate that neither the α exchange rate constant

nor the β exchange rate constant depends on the isotopic composition. Our

strategy is to try out a number of models of increasing complexity and track

the degree of misfit. If the system is well described by two rate constants for

α and β then models that go beyond this should not give appreciably better

fits to the data.

It is important to recognize that the approach we take here does not involve

estimating rate constants by fitting exponential functions to early-stage reac-

tion data, as in the previous work of, e.g., Cooper, 1976 (as we show in Figure

4.3) and Golichowski et al., 1977. Instead, we are globally fitting measured

populations of the isotopic variants from the beginning to the end of each

experiment. The movement of protons and deuterons from a bulk solvent

into an enzyme constitutes an isotope-dependent transport problem in com-

plex large-scale protein structure which we are ignoring in this formulation.

It is not a straightforward task to figure out how the problem would simplify

to some effective transport rate. Such transport effects could be influencing

our rate constants in unknown ways that could require some type of detailed

structure-kinetic coupling analysis such as recently presented (Kratochvil et

al., 2023) or, in a geochemical context, the work by Bourg et al., 2012. On the

other hand, it is likely that the better the fit achieved with the model chosen

here, the more it indicates that one need not worry too much about such com-

plex transport problems in the interpretation of our data. The issue of how

mesoscale structural complexity can be folded into the rate constants does

serve as an example of why these models cannot be considered elementary.

There are also, of course, considerations for influences from smaller scale pro-
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cesses. Our model implicitly assumes that alanine enters into the enzyme as

one of the isotopic variants, reacts, and exits as another isotopic variant that

is related to the entering variant by one of the thirteen reactions identified in

Figure 5.9. The turnover number for ALT is on the order of 1 to 100 s−1 (de-

pending on experimental conditions and isoenzyme, as reported by, e.g., Duff

et al., 2012, Escalera-Fanjul et al., 2017), so our NMR measurements average

over on the order of 102-104 conversions per sampling interval. If some of these

conversions were to result in a double substitution (for example CHCH3 + 2D

⇀↽ CHCHD2 + 2H), or a simultaneous solvent and intramolecular exchange

(for example CDCH3 + D ⇀↽ CHCHD2 + H), the effectiveness of our model

could be compromised.

As described at the beginning of Section 5.5, the unknown variables in this

model include thirteen rate constants: k1f , k2f , k3f , k4f , k5f , k6f , k7f , k8f ,

k9f , k10f , kαβ1f
, kαβ2f

, kαβ3f
, and ten equilibrium constants: K1, K2, K3, K4,

K5, K6, K7, K8, K9, K10. The relative size of the solvent pool with respect to

the alanine concentration is fixed by the concentration of alanine dissolved in

solution (1 Molar), and the concentration of H and/or D in water (2×∼55.5

Molar). Note that, as shown in Equations 5.24-5.26, Kαβ1
-Kαβ3

are derivative

and can be calculated through ratios of K1-K10. Naturally, a key question

in such an endeavor is the uniqueness of the solution; we want to monitor

the extent to which our model might be underconstrained, or overfitted, with

respect to our experimental data.

To accomplish this, we begin by fitting the experimental data constraining k1f -

kαβ3f
to a single parameter representing a global rate constant (kf ). However,

in this model, the corresponding kib values are not restricted to a single value,

but instead are fixed by the measured Ki through the relation kib=kif /Ki. In

other words, while all the forward reactions are the same single parameter, each

backward reaction constant in the single-parameter fit is unique, determined

by the separate measurements of all ten unique equilibrium constants. This

one-parameter model provides both a reference point for more complex models

and also a well-defined starting guess for fitting such models.

To further evaluate our model, we also try this fitting procedure with three

distinct subsets of our kinetics data (from experiments summarized in Table

5.1). The experiments included in these subsets, and the primary reactions

receiving the highest flux in each are indicated in Figure 5.11. The subsets are
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grouped as follows:

• Data Subset “Q”: Data from Experiment “Q” only, which is our 13C

NMR kinetics experiment

• Data Subset “QMαOβ”: Data from Experiments “Q”, plus the αH por-

tion of data from Experiment “M”, and the βH portion of data from

Experiment “O”

• Data Subset “QJMNO”: All data for Experiments “Q”, “J”, “M”, “N”,

and “O”

Fitting this 1-parameter model to the QJMNO dataset, we obtained a value

of 2.3×10−4 M−1min−1 for the rate constant regardless of the initial guess,

excluding initial guesses higher than 6×10−4 M−1min−1, where the model fails

to converge at all, producing a nonphysical negative parameter during the op-

timization. Figure 5.13 shows the abundances of the isotopic species predicted

by this 1-parameter model, plotted with the QJMNO dataset to which it was

fitted.

Starting from this single-parameter model, we then explored a series of more

complex models, to determine whether allowing for differences in the rate con-

stants representing the thirteen isotope exchange reactions in Figure 5.9 would

improve the level of agreement between model and experiment. This tests our

null hypothesis that the system can be described terms of a rate constant for α

exchange and a rate constant for β exchange. If so, we should see minimal im-

provements in allowing for variations beyond these models. In formulating and

discussing these models it is useful to distinguish the intramolecular exchange

reactions (with rate parameters kαβ1f,b
-kαβ3f,b

) from the solvent exchange reac-

tions (with rate parameters k1f,b-k10f,b). This distinction can be intuited from

a mechanistic point of view: we should expect the solvent-exchange rates and

intramolecular exchange rates likely will occur on different time scales. Also, as

just discussed, the SERPs are more likely to be influenced by transport effects

associated with mesoscale structure. Notationally we denote these models as

“NSMI”, depending on the number N of the solvent exchange rate parameters

(SERP) (N=1, 2, 3, 4, 10) and the number of intramolecular exchange rate pa-

rameters (IERP) (M=0, 1, or 2). In addition to adding IERPs to the 1P model

just discussed, we progressively increased the number of SERPs from N=2 to
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Figure 5.11: Graphical depiction of the system of ten intermolecular reactions
that convert the eight possible isotopic variants of alanine in our study from one
to another by exchanging an H or D from either the α or β carbon position,
and three intramolecular reactions that swap an H and a D between the α
and β carbon position, similar to Figure 5.9. Labeled green arrows (pointing
upward) indicate reactions experiencing the highest flux for experiments “Q”,
“J” and “M”. Labeled purple arrows (pointing downward) indicate reactions
experiencing the highest flux for experiments “N” and “O”. Solid black boxes
surround isotopic variants that were used as initial pure starting points for
these experiments. Dashed gray boxes surround remaining isotopic variants.
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N=10, with and without IERPs. For models without any IERPs (M=0) we set

kαβ1f,b
, kαβ2f,b

, and kαβ3f,b
to zero. For models with a single IERP (M=1), we

took two approaches: During the early fits we assigned kαβ1f
, kαβ2f

, and kαβ3f

to the same single value. Later, after comparing our 8-species models with the

3-box model as described in Section 5.5.4, we realized it was better to assign

the single parameter to kαβ2f
and then assign kαβ3f

=3
2
kαβ2f

and kαβ1f
=1

2
kαβ2f

to better represent with the expected multiplicity effects. After realizing that

the latter approach made more sense, this we re-ran 10,000 iterations of the

downhill simplex parameter search for 10S1I, improving the misfit from 46.4

to 44.6. The multiplicity effects were still present in the first approach, but

were folded entirely into kαβ1b
and kαβ3b

. This is not necessarily incorrect, but

it is probably not optimal to force all kαβif
to be the same and correct for

this only through the magnitude of the kαβ1b
and kαβ3b

. For models with two

IERPs (M=2), we set kαβ1f
to the first parameter, kαβ3f

to the second, and

fix kαβ2f
to (kαβ1f

+kαβ3f
)/2. There is not a need to refit the (M=2) models

as kαβ1f
and kαβ1f

are not constrained in any way. We also explored fitting

all three IERPs, but with our given set of experiments, there was minimal

improvement over setting kαβ2f
to the average of kαβ1f

and kαβ3f
) and, further

the kαβ2f
was very poorly defined through the fitting. Thus here we are really

testing three different IERP models: (1) no IERPs; (2) single IERP (corrected

for anticipated multiplicity); (3) Linear change in IERPs across the three reac-

tions. Except for cases where the rate parameter is zero, the reverse reaction

rate constant, as just discussed for the one-parameter model, is fixed by the

measured equilibrium constant (Ki, both SERP and IERP reactions) from the
13C NMR data using the 16-scan acquisitions (as presented in Section 5.4.3)

with kib=kif /Ki.

We do not jump from here directly to the full thirteen-parameter model in the

fitting process. Instead, we progressively and systematically increase model

complexity so that we might track the response of the parameter values to this

increasing complexity, thus providing a means to evaluate model robustness as

well as the potential for overfitting. In particular, it is important to understand

how the SERPs and IERPs affect each other as we add more parameters. To do

this, we group parameter values using intuition regarding which rate constants

are likely to be similar to one another.
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NSMI Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

2S0I k1f , k4f , k7f , k10f k2f , k3f , k5f , k6f , k8b , k9b — — — —
3S0I k1f , k4f , k7f , k10f k2f , k5f , k8b k3f , k6f , k9b — — —
4S0I k1f , k4f , k7f , k10f k2f , k8b k3f , k6f , k9b k5f — —
2S1I k1f , k4f , k7f , k10f k2f , k3f , k5f , k6f , k8b , k9b kαβ1f

, kαβ2f
, kαβ3f

— — —

3S1I k1f , k4f , k7f , k10f k2f , k5f , k8b k3f , k6f , k9b kαβ1f
, kαβ2f

, kαβ3f
— —

4S1I k1f , k4f , k7f , k10f k2f , k8b k3f , k6f , k9b k5f kαβ1f
, kαβ2f

, kαβ3f
—

2S2I k1f , k4f , k7f , k10f k2f , k3f , k5f , k6f , k8b , k9b kαβ1f
kαβ3f

— —

3S2I k1f , k4f , k7f , k10f k2f , k5f , k8b k3f , k6f , k9b kαβ1f
kαβ3f

—

4S2I k1f , k4f , k7f , k10f k2f , k8b k3f , k6f , k9b k5f kαβ1f
kαβ3f

Table 5.4: Groupings of parameters for our simplified box models (NSMI-parameter, where N = 2, 3, or 4, and M = 0, 1, or 2).
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For the models with fewer than ten solvent exchange rates, we grouped the

parameters as given in Table 5.4. Note from the Table that we are assigning

k8b and k9b rather than k8f and k9f . Given the sense of the multiplicity and

remembering that Ki=kif /kib , it is not reasonable to force, for example, k8f

(with K8 ≈ 1/3) to be equal to k2f (with K2 ≈ 3).

To give a few examples:

2S0I is a model with a rate for α exchange and a rate for β exchange that

is independent of isotopic composition at the α site with no intramolecular

exchange (this was effectively the model implicitly assumed in Cooper’s work

Cooper, 1976).

Model 3S0I has a single rate for α exchange with the possibility of two rates

for β exchange, one with α=H (k2f , k5f , k8b) and one with α=D (k3f , k6f ,

k9b). Model 4S0I is similar but allows for different rate for k5f .

As just described we added either one or two IERPs. For example, 2S1I is

a minimal model with a rate for α solvent exchange, a rate for β solvent

exchange, and a single rate for intramolecular exchange.

The parameter groupings in Table 5.4 were informed by thousands of previous

fits performed in a more exploratory and less systematic manner. This explo-

ration suggested that: (1) the variation in the α exchange rates (k1f , k4f , k7b ,

k10b) was small relative to variation in β exchange rates (k2f , k3f , k5f , k6f ,

k8b , k9b); (2) there was a substantial difference in β exchange rates depending

on whether α was H or D, (3) k5f was larger than k2f and k8b , which were

approximately equal to one another; (4) the intramolecular exchange rate pa-

rameters were significantly larger than the solvent exchange rate parameters.

Though much of this process was exploratory, it was nevertheless thorough.

For example, in the 2S0I models we scanned every possible way 210/2 (512) of

assigning two parameters to ten variables, and, for 3S0I, every possible way

310/3! (9842) of assigning three parameters. Though the groupings above

for the 2S0I and 3S0I were not necessarily the lowest-misfit groupings found

(mainly because the full ten-parameter model turns out to be more complex

than the symmetric lower-order models can recover), we are not blindly im-

posing preconceived groupings in our search.

We then searched for optimal parameters for each of these models. The starting

guess for all SERPs were 2.0×10−4 M−1min−1 After discovering early on that
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the IERPs were roughly a factor of ten larger than the SERPs, we set the

initial parameters for IERPs to 20.0×10−4 M−1min−1 to achieve a reasonable

fitting attempt success rate.

For each model we ran at least 10,000 unique fitting attempts, starting from

random guesses with each of the initial values perturbed randomly (positively

or negatively) by up to 40% of the initial value. Note that the initial values

(before random perturbation) are the same for each of these fitting attempts.

In other words, this is not a Monte-Carlo type of search where the initial guess

is continually updated. Our approach is designed as a sort of reconnaissance

operation to understand the space of possible solutions within the iterations

of downhill simplex optimizations rather than to provide an additional level

of optimization on top of the downhill simplex iterations. The results are

shown for the 10S2I model in Figure 5.12, given as a plot of the value of each

parameter versus the misfit. Note that the lowest-misfit obtained (39.8954)

is subtracted from all values, so the distributions begin at zero. Overall, the

parameters fitted to the QJMNO dataset are well constrained by the data.

Although k4f , k7f , k5f and kαβ3f have broad distribution bands at higher

misfit levels, they converge to reasonably unambiguous values at low misfit

levels. There is also a high density of points at approximately five above zero,

indicating an alternate solution, which is associated with a set of lower values

for k3f and k9b .

Additionally, it is apparent from Figure 5.12 that most of the parameter values

would be much less well determined if our data were restricted to Experiment

“Q” only, or QMαOβ. Experiment “Q” gives us tight constraints on k1f and k2f

as these are associated with a high flux in that experiment, which starts from

CHCH3. From the opposite end of the isotopic concentration range, Experi-

ment “M” provides some constraint on k10f , while Experiment “O” provides

some constraint on k8b . We anticipate that kinetics experiments observing with
13C NMR for the labeled systems (i.e., 13C NMR experiments with the condi-

tions of “J”, “M”, “N”, and “O”, which start with either CDCH3 or CHCD3),

along with an additional 13C NMR experiment starting with CDCD3 in H2O,

would provide the specificity needed to tighten up the distributions for the

other parameters to comparable levels.
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Figure 5.12: Parameter distributions for the 10S2I Model, comparing fits to “Q” (green), “QMαOβ” (purple), and “QJMNO” (blue)
datasets. Misfits are shifted such that the x-axis is the misfit found by downhill simplex minus the lowest misfit value found for the
group. Units of rate constants are ×10−4 M−1min−1
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Although the fits that matter most are those to the full “QJMNO” dataset,

we also look at models fitted to “Q” and to “QMαOβ”, not only to check for

evidence of overfitting in the full ten-parameter search, but also to examine the

sensitivities of the parameters to selective omission of fitting data, in particular

to look for inconsistencies between the labeled 1H NMR (“J”, “M”, “N”, “O”)

data sets and the 13C NMR (“Q”) data sets. We look for these in part because

of the evidence presented above about the possibility of enzyme degradation

between the 1H NMR and 13C NMR experiments. We choose QMαOβ as one

of the subsets because “M” and “O” provide constraints for Reactions 8 and

10 that “Q” alone cannot. It includes only the solution-driven species initially

furthest from equilibrium, where Reactions 8 and 10 are most clearly involved,

and does not directly incorporate any data resulting from the signals displaying

“transient overshoots” discussed in Section 5.5.2 above.

Ideally, the subspace of fits to the full data set would lie within the subspace

of “QMαOβ” fits and the subspace of “QMαOβ” fits, in turn, would lie within

the least restrictive subspace of fits to only the “Q” data set. If it should

happen that the more restricted set of fits do not lie within the subspaces of

the least restricted fits, that could indicate self-inconsistency within the data.

Given that we are merging here both 1H and 13C NMR data, it is important

to note known and potential sources of inconsistency. Recall that Experiment

“Q” was performed on alanine labeled with 13C at the β carbon position,

which distinguishes it from the 1H experiments (“J”, “M”, “N”, “O”) we are

combining with “Q” in our models, which are not labeled with 13C. From

our computational predictions, we expect the presence of 13C at the β site to

introduce a clumping effect, where D will show a higher preference for the β

site by 5–10 h in the presence of 13C relative to 12C. This means there is a

systematic error in this range of 5–10 h built in to our data set, for which we

do not try to correct. Since it is expected to be small compared to the H/D

effects we are focused on in this study, we do not expect this error to lead to

an inability to extract useful results from our model presented below in this

section. In addition, the 13C NMR kinetics appear to be approximately a factor

of two slower than the 1H NMR kinetics. In order to merge these data sets for

this modeling, we attempted to correct for this rate discrepancy, as described

Supplementary Materials, Section 5.8.4. We have provisionally attributed this

discrepancy to enzyme degradation between experiments, however, the issues

accounting for this discrepancy may be more complex. The obvious way to
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resolve this issue is to repeat the experiments with modifications, as detailed

at the end of this Chapter. It is important to note here, however, that if we are

correct about the origin of the discrepancy coming from enzyme degradation,

the rate constants reported here would need to be multiplied by two. As

explained in more detail in Section 5.8.4, we have divided the time in the model

predictions for experiments J, M, N, and O by a factor of two. In other words,

we are speeding up the “model” time relative to what is used to represent

Experiment “Q”. We performed the fitting in a “Q”-centric framework due to

the central role of the 13C NMR measurements in motivating this work, even

though, in retrospect, the 1H NMR measurements may be the ones done on

the un-degraded enzyme. We do the same for experiments “F”, “G”, “H”,

“I”, “L”. and “P” when comparing them to model predictions below; these

experiments are not used to fit any parameters, so this has no influence on the

model construction. This issue is discussed in more detail in the Appendix in

Section 5.8.4.

Plots showing parameter distributions for all of the models are provided in

the Supplemental Attachments. Some of the parameter distributions reveal a

tendency for discontinuous areas of high density reflecting multiple minima in

parameter space, particularly when fitting the reduced 2SMI, 3SMI, and 4SMI

parameter sets to the restricted “QMαOβ” data when M=1 or 2. We interpret

this as a split between a locally stable solution with small IERPs and another

solution set with much faster IERPs and significantly lower degree of misfit.

In some cases, for example, 3S0I “QMαOβ”, there are effectively continuous

linear subspaces of solutions where one of the parameters (e.g. k3f in the case

of 3S0I) is locally stable at higher misfit values, but extrapolates to solutions

that are in good agreement with “Q” and “QJMNO” parameter values at

low values of misfit. In some cases the subspaces appear parabolic or bilinear

rather than linear (as in 4S0I). We do not believe these subspaces result from

the convergence tolerance, that is, specifying a tighter cutoff of, e.g., 10−5

rather than 10−4 between the simplex points does not appreciably focus the

scatter in the parameters. We believe the parameter scatter really does reflect

a distributed range of locally stable solutions.

The consistency check, in terms of the “QJMNO” fits falling within those of

the less restrictive “Q” and “QMαOβ” fits, gives mixed results. The most

significant discrepancies are in k3f and (to a lesser extent) k1f , kαβ3f
and k4f .
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Each parameter is reasonably well defined in the “Q” and “QMαOβ” sets

but, for k3f , about a factor of two smaller than in the estimate taken from

the full data set. We doubt that further exploration with our model would

lead to a resolution to these discrepancies, as they likely arise from minor

incompatibilities within our data set; to resolve these, the kinetics experiments

should be repeated with modifications and additions, as discussed below in the

recommendations for future work.
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Figure 5.13: Time evolution of the 1S0I (dotted lines), 3S2I (dashed lines), and 10S2I (solid lines) models fitted to the experimental
data for experiments “Q”, “J”, “M”, “N”, and “O” (colored points). Experiment “Q” is split into α=H (left) and α=D (right) species.
For experiments “J”, “M”, “N”, and “O”, the αH integrated species are shown on the top row and the βH integrated species are
shown on the bottom row. The experimental data displayed here is equivalent to that shown in Figures 5.6 and 5.8.
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The general features of the 10S2I model (misfit=39.8954) are consistent with

the simpler 3S2I model (misfit=53.8371), that is:

• An α SERP (k1f , k4f , k7f , k10f ) close to 1×10−4 M−1min−1 (k1f , k4f ,

k7f , k10f )

• A fast (α=H) β SERP (k2f , k5f , k8b) close to 3×10−4 M−1min−1

• A slower (α=D) β SERP (k3f , k6f , k9b) close to 2×10−4 M−1min−1

• A kαβ1f
IERP of around 5×10−4 M−1min−1 for CDCH3 ⇀↽ CHCH2D

• A kαβ3f
IERP around 40–50×10−4 M−1min−1 for CDCHD2 ⇀↽ CHCD3

Examining the parameter distributions, the improved misfit for 10S2I over

3S2I may result from allowing for an increase in α exchange rate in going from

k1f to k10f , along with the possibility of a faster rate for k5f and a slower

rate for k6f . However, given the parameter uncertainties, specific aspects of

the improvements in going from 3S2I to 10S2I are somewhat speculative. For

example, it is not clear whether the increase in α exchange rates from k1f to

k4f to k7f to k10f is gradual or non-monotonic, with k7f being greater than

k10f . Further, because the 4S2I model has minimal improvement over 3S2I,

it appears that the faster k5f needs to be coupled to greater flexibility in the

other parameters.

A surprising aspect of the model is the very large value of the fitted kαβ3f
/kαβ1f

,

with values of
kαβ3f

kαβ1f

near 10. We would expect this ratio to be closer to 3, given

the sense of the multiplicity. One might be led to question whether this value

is meaningful; it is difficult to conceive of a rationalization for rate constants

representing reactions for isotopic exchange alone resulting in values differing

by such magnitude. Given the consistency of the IERP rate constants across

the range of 2S2I-10S2I in Table 5.8, it seems unlikely that high ratio is a result

of overfitting. We believe this may be an indication of multiple mechanisms

involved in what we are representing as a pseudo-elementary reaction in our

model. It is difficult attribute it to transport effects as IERPs are unlikely

to be affected by transport, unless these effects are localized to multiple ex-

change pools involving, for example, lysine interacting with near-solvent and

far-solvent pools. In any case, the mechanistic implications of this increase are

likely more complex than can be accounted in the model we use here. This
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is another area where molecular-level simulation models could provide some

insight.

A similar observation can be made for the relative values of k2f , k5f , and k8b .

When we allow these values to vary independently in the 4S and 10S models,

the best fits have k5f close to 4×10−4 M−1min−1 and k2f and k8b ≈ 2.6 to

2.8 ×10−4 M−1min−1. This is a more surprising variation when one realizes

that, due to multiplicity effects, k2f and k8b would be expected to be about 1.5

times larger than k5f . Understanding the underlying molecular mechanisms

that give rise to this behavior will likely require atomic-level simulations along

the lines of, e.g., Dama et al., 2013, Jang et al., 2004, Pomès et al., 1996, and

Cerqueira et al., 2011, but applied specifically to the ALT enzyme reaction.

The behavior of the 10S0I model is peculiar in that the parameter fitting pro-

cedure discovered physically implausible solutions with a very large k9b and

a lower misfit (≈60) than the physically plausible solution (misfit≈70). This

lower misfit model achieves a better fit (lower misfit) to the transient over-

shoots in Experiments Jα and Mβ, with the trade-off being a worse fit (higher

misfit) on Experiment “Q”. We did not anticipate that a model without IERP

parameters could have the capacity to recover transient overshoots. This ap-

pears to happen through artificial kinetic “traffic jams” in the model that arise

due to the large contrasts in the magnitudes of the rate constants (a combi-

nation of very large or very small values). Note, however, that our fitting

procedure did not discover any such solutions that are able to reproduce all

the transient overshoots (i.e. Jα, Mβ, Nβ, and Oα), and it is likely that a

model with only SERPs cannot accomplish this.

Interestingly, the lowest misfit of all models we discovered comes from a single

10S3I solution with misfit = 39.03. This was a single solution found only once

in the search procedure. It is similar to the lowest-misfit 10S0I solution in that

it has a large k9b , and a small kαβ3f
. The next-lowest misfit 10S3I solution

(misfit = 39.76) more closely resembles the best 10S2I fits. As apparent in

Table 5.10, a major reason for the success of the misfit=39.03 solution is that

it is able to simultaneously represent both the Jα and Oα transients (albeit

at the expense of a worse fit for Jβ and Mβ). Other solutions have trouble

with this as, generally, getting a good value for the Jα transient overshoot

coincides with an Oα transient “undershoot” that is too pronounced. It is

likely that both the lowest-misfit 10S0I and 10S3I fits are spurious solutions
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resulting from dataset inconsistencies that could be resolved via further work,

as we suggest at the end of this section. The trade-offs between Jα and Oα

may suggest an inconsistency in those datasets, but could also result from the

limitations of the model. Although we reject the lowest-misfit models for 10S0I

and 10S3I, it is encouraging that the searching procedure is doing its job of

locating surprising alternative fitting approaches, even if they are nonphysical.

Finding only a single anomalous solution for the 10S3I model also indicates

that the 10,000 iterations of separate downhill simplex fits is not overkill.

In Figure 5.13 we present the time evolution of three distinct model simulations

(1S0I, 3S2I, and 10S2I) for the experiments to which they were fitted (the

QJMNO dataset) using parameters chosen from the lowest-misfit parameter

set. Our choice of presenting the parameters of the lowest misfit solution may

risk obscuring the diversity of nearby solutions having slightly higher total

misfit. One could argue that it would be better to choose an “average” value

in the middle of the distribution at slightly higher misfits (see Figure 5.12).

For example, in 10S2I, the lowest-misfit model has k7f =1.77×10−4 M−1min−1,

but this happens to be one value in a broad distribution covering ∼1–2×10−4

M−1min−1, without much increase in misfit. Thus there is potential trouble in

using a single number to represent the goodness of fit, for it may be that some

of these solutions have desirable attributes that we miss by just choosing a

single one based on the scalar measure of total misfit. However, going beyond

the total misfit criterion would require developing more sophisticated measures

which should await a more complete data set. In the work presented here, we

pick the model with the lowest misfit and use the parameter distributions as a

visual indicator of parameter uncertainty. Given the non-Gaussian, irregular

nature of the parameter distributions, this qualitative measure of uncertainty

is the best we can do. The complexity inherent in these distributions is evident

in Figure 5.12.

The sensitivity of our results to somewhat arbitrarily choosing the lowest-misfit

solution can be addressed by plotting a range of solutions instead of just the

lowest-error solution. We show this in Figure 5.19, which randomly samples

solutions having misfit values amongst the lowest 10 %. Given the visible lack

of variability in the trajectories of these models, we likely do not miss much

by considering only the solution with the lowest error.

For the model with the lowest misfit, we plot the results of the time evolution
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of the eight isotopic variants in Experiment “Q” and the integrated αH and

βH species of Experiments “J”, “M”, “N” and “O”, respectively, in Figure

5.13. While the one-parameter fit (i.e., 1S0I) is visually surprisingly good,

remember that, by construction, the one-parameter model recovers the equi-

librium distributions as the knb
rate constants will be different for each species

through the relation knb
= knf

/Kn. The 10S2I model is a major improvement

under conditions far from equilibrium. The most noticeable deficiency in the

10S2I model is the overshoot for CHCH2D in Experiment “Q”, which may be

related to a systematic discrepancy between the equilibrium defined by the

single-scan runs and the more accurate determination from the multiscan runs

at the end of the experiment. Similar plots showing the species evolution as a

function of time are given in the Supplemental Attachments.

The experimental findings presented here invite molecular-level calculations

(using a combination of molecular dynamics and first-principles electronic

structure calculations) about the magnitudes of isotopic composition of neigh-

boring atoms in the vicinity of an isotope exchange reaction. A possible ap-

proach would be to try to identify a reaction pathway for α and β exchange on

alanine interacting with a lysine residue. If a transition state structure could

be located for both α and β exchange reactions, the vibrational energy change

on H/D isotopic substitutions could be calculated. First, We would expect to

see modest increase in α exchange rates as D is progressively substituted in at

the β site. A stronger effect would be predicted for β exchange. Substituting

D for H at the should decrease the rate by about 2
3
. Given the uncertainties

in transition state theory formulations it would be difficult to get quantitative

estimates, but it should be possible to see whether substitution of D for H at

the β site increases α exchange, and whether substitution of D for H at the α

site decreases the rate of α exchange.

In the modeling work detailed above, we did not attempt to fit to 1H NMR

experiments FGHILP. Instead, we decided to use our models fitted to the

QJMNO dataset to predict the course of these experiments, as an independent

check on the validity of our models. This decision was based on the fact that

the FGHILP experiments are more or less redundant to Experiment “Q”, in

the sense that they start from the same CHCH3 isotopic variant, and the only

variable changing across these experiments is the initial water composition, and

thus in theory they should not provide useful additional constraints for the rate
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constants in our model unless the rate constants are somehow dependent on

solvent composition. Figure 5.14 presents these fits for 1S0I, 3S2I, and 10S2I

models, as fitted to the QJMNO dataset. First note that the predictions for

the 1H β signal are systematically worse than for the α signal. Experimentally

we found that the initial β
α

ratio was close to 2.93 to 1 for Experiments “F”,

“G”, “H”, “I”, “L”, and “P”, and we opted to normalize the signal such that

the initial value for α was set to unity, and therefore to let the initial value

of β be close to 2.93. In the model, the initial ratio β
α

is 3, hence the misfit

for the β signal suffers. Since we are not actually fitting these data, we have

not attempted to correct the β signal. This means, however, that there is

no physical significance to the fact that the β contribution to the misfit is

worse than the α contribution; it is simply a result of our arbitrarily choosing

to normalize the α to unity. Although we break down the contributions in

terms of α and β, only the total misfit is significant. Further, as mentioned

above, it is important to understand that the time for the model system has

been divided by two when compared to the experimental data for all 1H NMR

data. As expected, the 3S2I fit is a dramatic improvement on the 1S0I fit,

particularly on the αH species. The 10S2I fit is a further improvement over

the 3S2I fit, though less dramatic. These improvements can most easily be

seen in the bottom panel of Figure 5.14, which gives the ratio of the data

in the top two panels, i.e., βH/(3αH). In this format it is readily apparent

that the 1S0I fit fails to capture any of the initial dip, and prematurely rises

to a much higher ratio than the data actually do. Model 10S2I is our only

model that predicts both the initial dip and subsequent rise of βH/(3αH) in

these experiments, most clearly realized in Experiment “P” (15%H). Given

the generally excellent ability of this model to predict Experiments “F”, “G”,

“H”, “I”, “L”, “P”, it appears that the rate constants we have determined are

independent of solution composition. We can take this agreement to indicate

that the models do not suffer much due to not specifically accounting for H2O-

HDO-D2O. Plots of the predictions of each of the models for Experiments “F”,

“G”, “H”, “I”, “L”, “P” are given in the Supplemental Attachments.
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Figure 5.14: Time evolution of the 1S0I (dotted lines), 3S2I (dashed lines), and 10S2I (solid lines) models in a range of D2O:H2O (as
displayed by experiments “F”, “G”, “H”, “I”, “L”, and “P”), fitted to the QJMNO experimental dataset. Data from experiments
“F”, “G”, “H”, “I”, “L”, and “P”, as described in Table 5.1 presented in Figure 5.4.
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Figure 5.15 shows various model predictions for the data on the initial α-β H-

loss experiments presented in Figure 5.5 from the labeled alanine experiments

described in Section 5.4.1.3. An interesting feature of those experiments was

that having D at the β site seemed to increase the rate of H-loss at the α site,

whereas having D at the α site seemed to slow down the rate of H-loss at the

β group. It is instructive to look at these data in light of some of the models

presented above. For example, as shown in Figure 5.15 the 2S0I model with a

single rate constant for α exchange and a single rate constant for β exchange

cannot reproduce either the Experiment “M”–Experiment “P” comparison or

the Experiment “J”–Experiment “P” comparison. This is obvious because

in the 2S0I model, the two rate constants are independent. Model 3S0I can

account qualitatively for the slow rate of β exchange observed in Experiment

“J” (with D at α) relative to Experiment “P” (with H at α) but cannot account

for the relative rates of α exchange between Experiment “M” (labeled with D

in the β group) and Experiment “P” (with H at the β group). This is because

the 3S0I model has a faster rate for k2f , k5f , and k8b (α=H), and a slower

rate for k3f , k6f , k9b (α=D). But just as for model 2S0I, 3S0I cannot account

for the observed comparison between Experiment “M” and Experiment “P”

because, given the way we have grouped the parameters in Table 5.4, there is

still only a single α exchange rate for k1f , k4f , k7f and k10f .

In contrast, the 2S1I model can qualitatively account for the increase in α

H-loss caused by a deuterated CD3 β site acting as a source of D. In other

words, as mentioned above in the experimental section, the relative outcomes

of Experiment “M” and Experiment “P” can be understood by including the

possibility of intramolecular exchange. Further, the additional flexibility of

the 2S2I model (with the large ratio of kαβ3f
/kαβ1f

≈ 18) is much better

able to quantitatively capture this effect than 2S1I (with the smaller ratio of

kαβ3f
/kαβ1f

= 3).

Figure 5.15 also shows that model 10S2I can account for the relative H-loss

rates in Experiment “M” and “P” because there is a tendency for the α rate

constants α exchange (k1f , k4f , k7f and k10f ) to become faster with increasing

D in the β group. It is also evident the slower rate of β exchange for α=D

(in Experiment J) than for α=H (in Experiment “M”) cannot be explained

using IERPs; here the IERPs actually make the problem a little worse as they

provide a source of D and thus accelerate the β H-loss rather than retard it.
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As discussed in the experimental section, the relative outcomes of Experiment

“J” and Experiment “P” cannot be reproduced (at least in the context of our

model) without allowing for β exchange rate constants to be higher for α=H

(k2f , k5f , k8b) than for α=D (k3f , k6f , k9b).
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Figure 5.15: Comparing model predictions for hydrogen loss rates, using the initial 20 minutes
of data from kinetics Experiments “P”, “M”, and “J” in ∼85:15 D2O:H2O. Left: α hydrogen
loss rate in Experiments “M” (CHCD3, green circles) and “P” (CHCH3, purple circles). Right: β
hydrogen loss rate in Experiments “J” (CDCH3, orange circles) and “P” (CHCH3, purple circles).
Lines are models as indicated, fitted to the QJMNO experimental dataset. Y-axis is concentration
in log scale, normalized to initial concentration.
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5.5.4 “3-Box” Simplified Model

In the early stages of this work, we created a simpler model fitted only to our

data acquired using 1H NMR (i.e., the FGHILP dataset). While we believe

our later “8-species” model based on both 1H NMR and 13C NMR data far

surpasses this earlier model, there is some value in presenting the earlier work

here to show both the potential and limitations of working with observations

that aggregate multiple distinct isotopic variants, i.e., in our case, 1H NMR

data. We also find that reducing the fully-resolved eight-isotopic-variant model

into a model that differentiates only between the relative proportions of D and

H at the α and β sites can give some guidance in constructing the “8-species”

model, that is, both models benefit from the comparison.

This simplified model involves three “boxes”, as shown in Figure 5.16: the

α and β “reservoirs”, whose equilibrium is mediated through a solvent reser-

voir, “s”. This basic model has four parameters, Kαβ, kα,sf , kα,sb , and kβ,sf ,

representing forward and backward exchange between both the α and β pools

with the solvent. Figure 5.16 also depicts the subsets of isotopic variants

that are aggregated in the counting of H abundance in the α “reservoir”

(CHCH3, CHCH2D, CHCHD2 and CHCD3, each counted once) and β “reser-

voir” (CHCHD2, CDCHD2, 2×CHCH2D, 2×CDCH2D, 3×CHCH3, and 3×CDCH3).

The system of ordinary differential equations defining the fluxes of H and D

between the α and β sites and solution for this model are as follows:

dαH

dt
= −kα,sf [αH ][sD] + kα,sb [αD][sH ] (5.39)

dαD

dt
=

−dαH

dt
(5.40)

dβH

dt
= −kβ,sf [βH ][sD] + kβ,sb [βD][sH ] (5.41)

dβD

dt
=

−dβH

dt
(5.42)

dsH
dt

= kα,sf [αH ][sD] − kα,sb [αD][sH ] + kβ,sf [βH ][sD] − kβ,sb [βD][sH ] (5.43)
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dsD
dt

=
−dsH
dt

(5.44)

The associated equilibrium constants for solvent exchange are:

K1 =
[αD][sH ]

[αH ][sD]
(5.45)

K2 =
[βD][sH ]

[βH ][sD]
(5.46)

In addition, in Section 2.7 we calculated a theoretical estimate for the direct

exchange of H and D between the α and β sites:

αH + βD ⇀↽ αD + βH (5.47)

with Kαβ:

Kαβ =
[αD][βH ]

[αH ][βD]
=

K1

K2

(5.48)

Our first-principles calculations indicated a value of 1.191 for Kαβ. Fixing Kαβ

at 1.191 allowed us to reduce the number of fitted parameters from four to

three, because K2 = K1

Kαβ
=

kβ,sf
kβ,sb

. Our initial fits to a subset of the 1H NMR

data (experiments G, L, and P, representing the extremes of H-D water com-

position) gave, surprisingly, a slightly smaller rate constant for H/D exchange

at the β site than for the α site. This disagreed with the work of Cooper, 1976

and Golichowski et al., 1977, both estimating the rate constant for β exchange

was approximately three times the rate constant for α exchange.
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Figure 5.16: Graphical depiction of the “3-Box” model, in which we show the subsets of the eight isotopic variants making up the
observed 1H NMR signal. Note that those variants having H at the α site and the β site are “counted” in both the α “box” and the β
“box”, and variants having multiple H at the β site are “counted” according to this multiplicity. Corresponding equations are given
in the text.
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After working through the parameter fitting for the 8-species model (and

greatly improving the parameter-fitting workflow and software) we revisited

this earlier, more primitive model that was constructed before we had the
13C-NMR data resolving all eight isotopic variants. Applying the improved

software did not change the results. The improved software still produced a

kα,sf that was close to, but a bit larger than, the kβ,sf . We then modified the

8-species-based 2S0I model described in the main text to reproduce the 3-box

model, but did not use any information from the 13C-NMR experiments. As

in the 2S0I model we forced all the α site exchange rates (k1f , k4f , k7f , k10f )

to share an identical value, (k1f ), and also forced all β-site exchange rates

(k2f , k3f , k5f , k6f , k8b , k9b) to share an identical value, (k2f ). Unlike the other

reduced-parameter models MSNI (M < 10), which used the equilibrium con-

stants, K1 − K10, measured in the 13C-NMR experiments, we also fitted an

equilibrium constant for K1 (Equation 5.45), and enforced the Kαβ (Equation

5.48) of 1.191. Thus these two model formulations (3-box and the restricted

2S0I 8-species model) appeared to us to be equivalent and were expected to

yield the same result (subject, of course, to the randomness in the fitting

process).

The fitted kαsf and k1f were very close (near 2.2×10−4 M−1min−1), but the

fitted kβ,sf and k2f were different, with kβ,sf close to 1.9×10−4 M−1min−1 and

k2f close to 5.1×10−4 M−1min−1. The misfits for each of these models were

essentially identical.

At this point it was necessary to more carefully formalize the equivalence

between the 3-box model and the restricted 2S0I 8-species model to track

down the source of the problem, since for two models that appeared to us

to be equally valid (with nearly identical misfits obtained in the stochastic

searching procedure) we were getting inconsistent results for the relative α

and β exchange rates. After working through the algebra, it was realized that

there was a problem in how we were dealing with the multiplicity of the forward

and backward reactions for β exchange. For Reactions 2, 3, 8, and 9 we were

simply dividing the forward rate constants k8f and k9f and backwards rate

constants k2b and k3b by three to reflect the differences in free energy due to

the multiplicity. This led to an inconsistency in matching the two models. We

then tried a more symmetric approach, multiplying k2f , k3f , k8b and k9b by 3
2

and k2b , k3b , k8f and k9f by 1
2
. When this is done, the “8-species” representation
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and the “3-box” representation can be shown to be equivalent. The algebra

is provided in Supplementary Materials Section 5.8.6. As can be seen in the

last two equations, there is a factor of two reduction in the kβ,sf when going

between the “3-box” formulation and the restricted “8-species” formulation of

the problem. Further, when the multiplicity was accounted for with the factors

of 3
2

and 1
2

as just described, the fitted k2f changed from 5.1×10−4 M−1min−1

to 3.8×10−4 M−1min−1. Tables 5.5 and 5.12 show the near-perfect equivalence

of these models once the proper symmetric multiplicity factors are included

and the factor of two is applied to kβ,sf .

The above discussion illustrates some of the potential problems that can arise

when naively formulating “box” type models that bury unknown details within

the boxes. In the context of this work, the complexities associated with multi-

plicity in the series of β-exchange reactions would be examples of such details.

Here, these are knowable/measurable because we have the 13C-NMR experi-

mental data. In many cases, however, such complexities may not be knowable;

this lack of knowledge is, of course, what would likely drive the generation of

the “box”-type models in the first place. The exercise presented here shows

that while the “3-box” model can describe the data just as well as the full

“8-species” model, when fitted to an equivalent set of parameters, the conclu-

sions drawn from the magnitudes of those parameters can be misleading. Even

something as basic as the relative rates of the exchange between the α and β

sites and solvent (kβ,sf and kα,sf , respectively) can be obscured. In cases were

we can only observe aggregations of isotopic variants, such as in the 1H-NMR

here, one must resist the temptation to go directly from the data to a model

governed by the aggregated data. In such cases it is better to formulate the

complete chemical model (in this case, one based on all eight isotopic variants)

and then aggregate the complete model by grouping species and parameters as

necessary, systematically moving upward in scale. If that step is bypassed, it is

very easy to make errors analogous to the case of our initial misinterpretation

of the relative rates of kβ,sf and kα,sf . The algebra involved in performing the

reduction from the “8-species” model to the “3-box” model is involved enough

that issues like the factor of two reduction in the kβ,sf exchange rate in the

aggregated model are not obvious a priori.

Even if one cannot measure such indicators, it is important to work through the

problem at the most fundamental level and then make approximations from
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Parameter 8 Species 3-Box

Kαβ 1.1910 1.1910
kα,sf 2.1861544×10−4 2.1861544×10−4

kα,sb 1.9039785×10−4 1.9039785×10−4

kβ,sf 3.8883611×10−4 1.9441805×10−4

Table 5.5: Parameters for the 8-species and 3-box models in Figure 5.16. Kαβ

is fixed by first principles calculations, and therefore given in bold.

there. In this work, for example, one can proceed by grouping parameters that

cannot be distinguished experimentally, and then ensuring that the models are

equivalent by working through the algebra. Further, the exercise of ensuring

the consistency of an aggregated and fundamental model can give insights into

how to interpret the fitted parameters of the fundamental model. Without

going through this exercise it would have been easy to miss the factors of 3
2

and 1
2

that arise naturally in the equations. This is not an important issue

in a completely unconstrained fit, of course, but it can matter when enforcing

parameter groupings. For example, in the 3SNI fits, we set k2f and k8b to be

the same as k5f and then enforced the multiplicity in Reactions 2 and 8 by

setting k2b and k8f to be consistent with the measured equilibrium constants

(2.904 for Reaction 2 and 0.361 for Reaction 8). It might have been more

appropriate to set k2f and k8b to 3
2
k5f . If we actually do this it turns out

we get a worse fit, because we definitely find in the 10SNI fits, where the

relative values of k2f /k5f and k8b/k5f are free to vary, that the best fits have

roughly equal k2f and k8b , with both significantly less than k5f . Conversely,

as discussed above, in the 10S1I model we significantly improved the fit by

setting kαβ3f
= 3

2
kαβ2f

and kαβ1f
= 1

2
kαβ2f

. This is simply because it appears

that kαβ3f
is in fact faster than kαβ1f

as indicated in the unconstrained fits.

That said, the formulation of the model with the correct factors does influence

how the fitted parameters are interpreted. For example, the observation that

k2f is slower than k5f is more of a surprise when its realized that it would be

expected to be 3
2

faster. The observation that
kαβ3f

kαβ1f

is nearly 10 should be

compared not with unity but to the factor of 3 that one would expect from

the multiplicity. Of course, as a practical matter, it is important to keep in

mind any differences between the fitted parameter and the actual value of the

rate constant if the factors of 3
2

and/or 1
2

are enforced in the fitting process.
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5.6 Implications

This fundamental study demonstrates that isotopic composition two bonds

away from the exchanging site gives rise to measurable variations in the rate

constant for exchange at said site. There are potential practical implications

for this work as well, worth mentioning here. Given that ALT assays are

routinely used to evaluate human liver function, and ALT is presently under

investigation as to its role in cancer metabolism, it is plausible that further

pursuit of answers to questions addressed in this chapter could be useful in de-

veloping new medical forensic tools. Several relevant questions come to mind:

Could the pattern of measured rate constants be measurably sensitive to envi-

ronmental factors, and such sensitivity be exploited as a kind of “fingerprint”

for variations in enzyme tertiary structure and function in vivo? Given that

there are many isozymes of this enzyme (two in humans, with many variations

across other organisms), how similar are the rate constants across these iso-

forms? Further, even within one isoform, does the pattern of rate constants

observed here vary with other factors? This is highly speculative, but certainly

the ability to dynamically characterize H/D exchange and transport within an

enzyme at this level of detail is a completely new capability, and, as such, has

potential for unforeseen applications. In this sense our study gives a new kind

of appreciation for the potential that isotomics has for broad application.

5.7 Conclusions

Here we used high-precision 1H and 13C NMR applied in novel ways to explore

and characterize the details of hydrogen-deuterium exchange and site pref-

erence in alanine at both the α- and β-carbon positions, via an off-pathway

reaction catalyzed by ALT. Our experiments yielded an unprecedentedly rich

and informative dataset that tracks the kinetics of the exchange with high tem-

poral resolution, following the abundances of eight isotopic variants of alanine

involved in this reaction as they evolve through time.

By fitting a complete kinetic model of α- and β-hydrogen exchange (includ-

ing rate constants for thirteen isotope exchange reactions) to the data from

these experiments, we find evidence for two classes of rate constants, with one

class governing exchange of H/D between solvent and alanine, and another

governing intramolecular exchange within alanine. In general, intramolecular

exchange proceeds approximately a factor of ten faster than solvent exchange,

however we see variation in the solvent exchange rate constants by up to a fac-
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tor of four, and by nearly a factor of ten in the rate constants for intramolecular

exchange. Allowing for variations in rate constants over all thirteen isotope

exchange reactions gives over a factor of three improvement in the misfit over

a naive model assuming two exchange rates that are independent of isotopic

variations elsewhere in the molecule (i.e., 2S0I in the notation discussed above,

with one rate for exchange at the α site, and another for exchange at the β

site). Given our findings, this “2S0I null hypothesis” model should probably

be amended to include a reaction for intramolecular exchange between the α

and β sites (i.e., a 2S1I model), which could have been postulated a priori.

Even allowing for this modification, there is still a factor of 2.7 improvement

in the misfit going from this restricted model to our fully fitted model. Our

findings therefore disprove our null hypothesis; the observed behavior of the

network of isotope exchange reactions in ALT catalysis is more complex than

can be accounted for with a simple two-site model with intramolecular ex-

change, independent of the isotopic compositions of the two sites.

The H-D exchange reactions described here are decoupled from the chemical

transamination reaction by leaving α-ketoglutarate (and thus also glutamic

acid) out of the reaction. The ability to run the isotopic exchange reactions in

absence of transamination, taking only one half of the “bi-bi ping-pong” reac-

tion and thus having constant concentrations of chemical species throughout

isotopic exchange makes the ALT reaction useful for exploring the fundamen-

tal issue of chemical/isotopic kinetic coupling, which has proven difficult when

studied in other contexts, such as mineral precipitation reactions (e.g., Steefel

et al., 2014, Druhan et al., 2013). In the ALT system we have the possibility in

future experiments of understanding how the rate constants for H/D isotope

exchange, measured here with the chemical reaction absent, would respond

when the chemical reaction is proceeding at a finite rate.

While our model does not definitively resolve the relative importance of near

and far solvent pools, the ALT active site lysine residue, and the PLP coen-

zyme in mediating exchange of H and D intermolecularly between alanine and

water and intramolecularly between the α- and β-carbon atoms, it does give

us confirmation that exchange is taking place over multiple time scales, as

indicated by the “direct” exchange (intramolecular) rate constants, kαβ1
, kαβ2

,

and kαβ3
, which are consistently roughly an order of magnitude larger than

the intermolecular rate constants, k1-k10.
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versification of alanine transaminases in yeast: catabolic specialization and
biosynthetic redundancy”. In: Frontiers in Microbiology 8, p. 1150.

Golichowski, Alan, Richard C Harruff, and W Terry Jenkins (1977). “The
effects of pH on the rates of isotope exchange catalyzed by alanine amino-
transferase”. In: Archives of Biochemistry and Biophysics 178.2, pp. 459–
467.

Jang, Seung Soon, Valeria Molinero, Tahir Çagin, and William A Goddard
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Garces, Andrew J. Richardson, Juan F. Quintana, Kenneth E. Rudd, Miquel
Coll, and M. Cristina Vega (July 2014). “Structural Analysis and Mutant
Growth Properties Reveal Distinctive Enzymatic and Cellular Roles for the
Three Major L-alanine Transaminases of Escherichia coli”. In: PloS ONE
9.7, pp. 1–15. doi: 10.1371/journal.pone.0102139. url: https://doi.
org/10.1371/journal.pone.0102139.

Pomès, R and B Roux (1996). “Structure and dynamics of a proton wire: a
theoretical study of H+ translocation along the single-file water chain in the
gramicidin A channel”. In: Biophysical Journal 71.1, pp. 19–39.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery (1986). Numerical Recipes in FORTRAN 77, The Art of Scientific
Computing. Cambridge University Press, Cambridge, UK.

Richet, P, Y Bottinga, and M Javoy (1977). “A review of hydrogen, carbon,
nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among
gaseous molecules”. In: pp. 1–47.

Schauble, Edwin A, Prosenjit Ghosh, and John M. Eiler (2006). “Preferential
formation of 13C–18O bonds in carbonate minerals, estimated using first-
principles lattice dynamics”. In: Geochimica et Cosmochimica Acta 70.10,
pp. 2510–2529. issn: 0016-7037. doi: 10.1016/j.gca.2006.02.011.

Steefel, Carl I., Jennifer L. Druhan, and Kate Maher (2014). “Modeling Cou-
pled Chemical and Isotopic Equilibration Rates”. In: Procedia Earth and
Planetary Science 10, pp. 208–217. issn: 1878-5220. doi: 10 . 1016 / j .

proeps.2014.08.022.

Urey, Harold C (1947). “The thermodynamic properties of isotopic substances”.
In: Journal of the Chemical Society (Resumed), pp. 562–581.



212

Wang, Zhengrong, Edwin A. Schauble, and John M. Eiler (2004). “Equilibrium
thermodynamics of multiply substituted isotopologues of molecular gases”.
In: Geochimica et Cosmochimica Acta 68.23, pp. 4779–4797. issn: 0016-7037.
doi: 10.1016/j.gca.2004.05.039.

Wisniewska, M. et al. (2009). Human alanine aminotransferase 2 in complex
with PLP. doi: https://doi.org/10.2210/pdb3IHJ/pdb.

Zhou, W et al. (2004). Alanine aminotransferase from Pyrococcus furiosus
Pfu-1397077-001. doi: https://doi.org/10.2210/pdb1XI9/pdb.



213

5.8 Supplementary Materials

5.8.1 Supplemental Attachments

EXPF_NMR.dat

EXPF.dat

EXPG_NMR.dat

EXPG.dat

EXPH_NMR.dat

EXPH.dat

EXPI_NMR.dat

EXPI.dat

EXPJ_NMR.dat

EXPJ.dat

EXPL_NMR.dat

EXPL.dat

EXPM_NMR.dat

EXPM.dat

EXPN_NMR.dat

EXPN.dat

EXPO_NMR.dat

EXPO.dat

EXPP_NMR.dat

EXPP.dat

EXPQ_NMR.dat

EXPQ.dat

Ch5_ExpQ-EQ-line-fit-abundances.dat

Ch5_ExpQ-EQ.py

FGHILP-data-only.py

QJMNO-data-only.py

GQ-scaling.py
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5.8.2 Supplemental Tables

Species Rep 1 Rep 2 Rep 3 Rep 4

CHCH3 222.480 229.093 230.435 229.979
CDCH3 236.019 245.950 246.097 247.078

CHCH2D 609.488 620.531 623.125 620.487
CDCH2D 661.000 674.958 679.125 676.416
CHCHD2 546.114 558.130 558.975 559.434
CDCHD2 593.846 607.529 610.596 607.115
CHCD3 181.575 189.909 189.546 188.041
CDCD3 193.191 200.959 200.518 197.409

Table 5.6: Line-fit abundances of four replicate measurements on alanine equi-
librated with water from Experiment Q. These abundances are used to calcu-
late the equilibrium constants given in Tables 5.2 and 5.3 as documented in
attached Python script Ch5_ExpQ-EQ.py.



215

# Species Multiplicity H:D Mass (amu)

1 H3
12C– 12CH3 1 6:0 30.0470

2 H3
12C– 13CH3 1 6:0 31.0503

3 H3
13C– 13CH3 1 6:0 32.0537

4 H3
12C– 12CH2D, DH2

12C– 12CH3 6 5:1 31.0532
5 H3

12C– 13CH2D* 3 5:1 32.0566
6 DH2

12C– 13CH3* 3 5:1 32.0566
7 H3

13C– 13CH2D, DH2
13C– 13CH3 6 5:1 33.0599

8 H2D
12C– 12CH2D 9 4:2 32.0595

9 H2D
12C– 13CH2D 9 4:2 33.0629

10 H2D
13C– 13CH2D 9 4:2 34.0662

11 H3
12C– 12CHD2, D2H

12C– 12CH3 6 4:2 32.0595
12 H3

12C– 13CHD2* 3 4:2 33.0629
13 D2H

12C– 13CH3* 3 4:2 33.0629
14 D2H

13C– 13CH3 6 4:2 34.0662
15 H2D

12C– 12CHD2, HD2
12C– 12CH2D 18 3:3 33.0658

16 H2D
12C– 13CHD2* 9 3:3 34.0691

17 HD2
12C– 13CH2D* 9 3:3 34.0691

18 H2D
13C– 13CHD2, HD2

13C– 13CH2D 18 3:3 35.0725
19 H3

12C– 12CD3, D3
12C– 12CH3 2 3:3 33.0658

20 H3
12C– 13CD3* 1 3:3 34.0691

21 D3
12C– 13CH3* 1 3:3 34.0691

22 H3
13C– 13CD3, D3

13C– 13CH3 2 3:3 35.0725
23 H2D

12C– 12CD3, D3
12C– 12CH2D 6 2:4 34.0721

24 H2D
12C– 13CD3* 3 2:4 35.0754

25 D3
12C– 13CH2D* 3 2:4 35.0754

26 H2D
13C– 13CD3, D3

13C– 13CH2D 6 2:4 36.0788
27 HD2

12C– 12CHD2 9 2:4 34.0721
28 HD2

12C– 13CHD2 9 2:4 35.0754
29 HD2

13C– 13CHD2 9 2:4 36.0788
30 HD2

12C– 12CD3, D3
12C– 12CHD2 6 1:5 35.0783

31 HD2
12C– 13CD3* 3 1:5 36.0817

32 D3
12C– 13CHD2* 3 1:5 36.0817

33 HD2
13C– 13CD3, D3

13C– 13CHD2 6 1:5 37.0850
34 D3

12C– 12CD3 1 0:6 36.0846
35 D3

12C– 13CD3 1 0:6 37.0880
36 D3

13C– 13CD3 1 0:6 38.0913

Table 5.7: The 36 unique isotopic forms (isotopologues and isotopomers) of
ethane (H3C–CH3), a possible additional molecular system for future further
investigation. * denotes isotopomer pairs.
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Model k1f k2f k3f k4f k5f k6f k7f k8b k9b k10f kαβ1f
kαβ2f

kαβ3f

1S0I 2.3016 2.3016 2.3016 2.3016 2.3016 2.3016 2.3016 2.3016 2.3016 2.3016 0.0000 0.0000 0.0000
1S1I 2.0099 2.0099 2.0099 2.0099 2.0099 2.0099 2.0099 2.0099 2.0099 2.0099 17.1854 17.1854 17.1854
1S2I 1.9883 1.9883 1.9883 1.9883 1.9883 1.9883 1.9883 1.9883 1.9883 1.9883 6.2085 55.1455 104.0825
2S0I 1.1135 2.8565 2.8565 1.1135 2.8565 2.8565 1.1135 2.8565 2.8565 1.1135 0.0000 0.0000 0.0000
2S1I 0.9743 2.7604 2.7604 0.9743 2.7604 2.7604 0.9743 2.7604 2.7604 0.9743 10.0625 10.0625 10.0625
2S2I 1.0290 2.5914 2.5914 1.0290 2.5914 2.5914 1.0290 2.5914 2.5914 1.0290 2.9427 28.2276 53.5125
3S0I 1.1106 3.1441 1.9284 1.1106 3.1441 1.9284 1.1106 3.1441 1.9284 1.1106 0.0000 0.0000 0.0000
3S1I 0.9918 3.0168 1.6544 0.9918 3.0168 1.6544 0.9918 3.0168 1.6544 0.9918 14.4630 14.4630 14.4630
3S2I 0.9934 2.9928 1.7564 0.9934 2.9928 1.7564 0.9934 2.9928 1.7564 0.9934 4.5117 22.2181 39.9245
4S0I 1.1092 2.9276 1.9289 1.1092 3.8348 1.9289 1.1092 2.9276 1.9289 1.1092 0.0000 0.0000 0.0000
4S1I 1.0094 2.7589 1.6394 1.0094 3.9020 1.6394 1.0094 2.7589 1.6394 1.0094 14.7464 14.7464 14.7464
4S2I 0.9914 2.7524 1.7523 0.9914 3.8960 1.7523 0.9914 2.7524 1.7523 0.9914 4.3925 22.9005 41.4084
10S0IA 1.0243 2.7067 2.9927 5.8125 15.1224 0.5075 1.3727 2.2110 32.6628 1.8279 0.0000 0.0000 0.0000
10S0IB 1.0513 2.7974 2.5718 0.6435 3.7569 1.5008 2.0746 3.0680 1.7909 1.7347 0.0000 0.0000 0.0000
10S1I 0.8186 2.8063 2.2597 1.1044 3.7412 1.2521 1.2345 2.7961 1.6233 1.3687 10.0176 20.0351 30.0527
10S2I 0.9296 2.7884 2.4394 0.7869 4.0492 1.2149 1.5867 2.6442 1.5808 1.2443 4.7184 26.1650 47.6116
10S3IA 0.9405 2.7093 2.8817 0.3979 4.4451 0.4075 1.8572 2.7305 16.4969 1.7607 4.4436 62.3995 3.5657
10S3IB 0.9317 2.7578 2.4301 0.7357 4.2045 1.1362 1.6052 2.6396 1.6030 1.2498 4.5894 38.4177 45.1290

Table 5.8: Parameters for 8-species models fitted to the “QJMNO” dataset (×10−4 M−1min−1).
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Model CHCH3 CDCH3 CHCH2D CDCH2D CHCHD2 CDCHD2 CHCD3 CDCD3 Total Q Total QJMNO

1S0I 4.7147 6.6535 5.0049 4.7689 5.9565 2.6534 3.2238 0.8498 33.8254 156.1131
1S1I 4.0134 5.8587 4.1074 3.6744 6.1063 1.8305 3.4849 1.2025 30.2781 141.8131
1S2I 4.3134 6.7906 4.6045 3.0675 6.0686 1.5255 3.1332 1.1498 30.6530 128.2469
2S0I 3.0244 2.6003 3.4641 1.3234 1.5908 2.0624 1.7754 0.7630 16.6039 126.1574
2S1I 2.7429 2.3807 4.1864 0.9563 1.4011 1.5532 1.8146 0.8056 15.8407 117.1725
2S2I 2.8562 2.2443 3.5022 1.0590 2.4486 1.5350 2.1813 0.8672 16.6937 92.7369
3S0I 3.9991 2.3650 3.8307 1.1626 1.1881 1.5346 1.6110 0.8959 16.5870 85.0908
3S1I 3.4578 2.0755 4.6050 0.8565 1.0716 1.3547 1.7583 1.2704 16.4498 68.0822
3S2I 3.3689 1.9955 4.3276 0.9276 1.3082 1.3316 1.8690 1.2074 16.3357 53.8371
4S0I 3.3774 2.4447 3.3760 0.9981 1.2016 1.5164 1.6234 0.8982 15.4359 84.2248
4S1I 2.9790 2.2113 3.3349 0.8096 1.0206 1.3199 1.7856 1.2576 14.7184 66.5873
4S2I 2.9081 2.0733 3.2503 0.8380 1.1011 1.3165 1.8713 1.2028 14.5615 52.3065
10S0IA 2.7683 1.9629 6.0895 6.1682 1.8131 1.2178 1.8522 0.8826 22.7547 57.5441
10S0IB 2.7506 2.3752 3.1900 0.8676 1.4201 2.1916 1.8252 0.7619 15.3823 66.6417
10S1I 2.5914 1.7489 3.2652 1.4922 1.1872 1.3587 1.9694 1.0614 14.6744 44.6027
10S2I 2.6059 1.9882 3.1738 1.3086 1.2449 1.6443 1.9784 1.0403 14.9846 39.8954
10S3IA 2.5105 2.0374 2.9819 1.9304 1.4641 1.3390 1.8199 0.8252 14.9085 39.0331
10S3IB 2.5741 1.9466 3.1220 1.4222 1.2771 1.5975 1.9967 1.0440 14.9802 39.7632

Table 5.9: Misfit values for Experiment “Q” for 8-species models fitted to “QJMNO” dataset.
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Model Jα Jβ Mα Mβ Nα Nβ Oα Oβ Transient Major Total JMNO Total QJMNO

1S0I 10.0462 18.6738 5.7584 13.6568 25.6548 4.8667 7.0120 36.6190 35.5817 86.7060 122.2877 156.1131
1S1I 4.8010 15.0726 5.0879 11.3001 26.5105 6.3785 0.8375 41.5468 23.3171 88.2179 111.5350 141.8131
1S2I 2.6044 18.6939 9.0407 3.8196 24.1386 2.0949 7.4429 29.7589 15.9618 81.6321 97.5939 128.2469
2S0I 11.7581 43.5909 14.6318 11.2321 3.4515 5.1694 7.4327 12.2870 35.5923 73.9612 109.5535 126.1574
2S1I 6.7212 45.4736 15.6984 8.2580 6.8989 5.3872 1.4771 11.4174 21.8435 79.4883 101.3317 117.1725
2S2I 5.1335 40.0264 5.4317 2.4096 3.2880 2.5613 4.8292 12.3636 14.9336 61.1096 76.0432 92.7369
3S0I 12.1616 7.5024 14.7486 13.0501 3.3816 5.2085 7.3329 5.1181 37.7530 30.7508 68.5038 85.0908
3S1I 2.1297 4.3691 13.7010 7.4941 10.3409 7.0731 1.2780 5.2465 17.9749 33.6576 51.6325 68.0822
3S2I 4.8431 8.1981 8.3352 2.6748 3.3464 2.1537 2.8827 5.0673 12.5543 24.9471 37.5014 53.8371
4S0I 12.1656 7.4019 14.7966 13.5149 3.3502 5.2647 7.3440 4.9509 38.2892 30.4997 68.7889 84.2248
4S1I 2.0232 3.8597 13.0886 8.0350 10.9031 7.7565 1.3181 4.8848 19.1328 32.7361 51.8689 66.5873
4S2I 4.8662 8.0511 8.0923 2.6833 3.2304 2.2027 2.9609 5.6580 12.7132 25.0318 37.7450 52.3065
10S0IA 4.0992 2.1498 3.0891 4.7728 2.8629 5.2563 6.5949 5.9645 20.7232 14.0663 34.7894 57.5441
10S0IB 12.4864 0.5335 3.1904 14.3921 2.5814 5.2766 7.5447 5.2543 39.6998 11.5596 51.2594 66.6417
10S1I 4.1546 0.4994 3.6933 5.6918 2.4632 6.0771 2.4478 4.9010 18.3714 11.5570 29.9283 44.6027
10S2I 4.8970 0.4967 3.3686 2.7020 2.5927 2.3352 3.2769 5.2417 13.2111 11.6997 24.9108 39.8954
10S3IA 2.7667 1.9335 3.0230 4.6256 2.5789 2.3194 1.4718 5.4056 11.1836 12.9410 24.1246 39.0331
10S3IB 4.0776 0.5002 3.3034 2.7880 2.6017 2.3171 3.7105 5.4846 12.8933 11.8898 24.7831 39.7632

Table 5.10: Misfit values for Experiments “J”, “M”, “N”, and “O” for 8-species models fitted to “QJMNO” dataset.
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Model Total, F-P Fα Fβ Gα Gβ Hα Hβ Iα Iβ Lα Lβ Pα Pβ

1S0I 200.4777 16.9859 21.2097 12.2117 15.1601 17.0337 21.7526 14.8021 17.8916 8.2977 17.9384 16.0549 21.1392
1S1I 190.9556 12.2808 23.1902 8.9226 18.3079 13.0889 22.3640 11.1007 20.1183 6.6341 19.2683 10.9880 24.6917
1S2I 198.9599 11.2136 25.6415 8.9641 19.6505 12.7181 23.7766 10.9135 21.3431 6.9830 20.7245 9.9669 27.0644
2S0I 145.7547 3.0791 26.6840 2.1562 10.5697 4.3444 29.4858 3.2041 19.1331 3.6482 12.4722 6.1847 24.7931
2S1I 144.2136 5.5295 24.8868 1.7101 10.6477 3.4513 27.5128 2.8181 18.1501 2.6163 13.3960 10.2623 23.2326
2S2I 135.4353 3.8128 22.7803 1.4476 11.6593 3.4826 24.7863 2.4709 17.3660 3.0621 14.8131 8.1054 21.6489
3S0I 109.9436 3.0004 16.3115 2.1067 8.3505 4.2743 24.4514 3.1456 15.2547 3.6109 11.4004 6.1204 11.9167
3S1I 104.9658 5.6754 12.6612 1.7190 8.6785 3.7367 20.2730 2.9330 13.3794 2.8357 12.6609 10.4734 9.9397
3S2I 104.5058 4.7732 13.5229 1.3947 8.8081 3.4164 20.3218 2.4550 13.4619 2.8679 12.6791 9.6436 11.1613
4S0I 111.2882 3.0125 16.4019 2.0924 8.7425 4.2570 24.3516 3.1309 15.3739 3.6075 12.3152 6.1551 11.8478
4S1I 106.4565 5.3748 12.7267 1.6787 9.3405 3.7068 20.5231 2.8802 13.8313 2.8468 13.6985 10.0568 9.7924
4S2I 106.1861 4.6765 13.5356 1.3773 9.3747 3.4100 20.5213 2.4237 13.8011 2.8441 13.7153 9.5640 10.9425
10S0IA 125.5199 8.0053 14.9076 6.4518 7.5010 9.6501 24.6976 8.0673 14.3089 5.0982 12.2841 7.1478 7.4003
10S0IB 109.3413 3.7499 16.1948 1.3900 9.8448 4.5318 25.9539 2.7969 17.0624 2.5595 12.5216 3.0373 9.6985
10S1I 96.1056 2.9186 11.8241 1.2925 9.0129 2.5868 21.4038 1.8637 14.1155 2.0549 13.1358 7.1050 8.7921
10S2I 94.6151 1.7416 11.7079 1.0857 8.9250 3.2416 22.3867 1.9520 14.5807 2.3056 12.8871 5.8950 7.9063
10S3IA 104.6129 2.0317 15.9607 1.1296 8.9474 3.3371 23.9221 2.0047 15.1750 2.0859 13.1575 4.3692 12.4921
10S3IB 94.7154 1.8376 11.4405 1.1265 8.9856 3.3770 21.9609 2.0594 14.3708 2.3460 13.0916 5.8527 8.2668

Table 5.11: Misfit values for Experiments “F”, “G”, “H”, “I”, “L”, and “P” for 8-species models fitted to “QJMNO” dataset,
as generated by the code in Supplemental Attachment 20240219-FORTRAN.tar.

Misfits for Experiments FGHILP (used in fitting)
Model Fα Fβ Gα Gβ Hα Hβ Iα Iβ Lα Lβ Pα Pβ Total
8-Species 3.2418 15.6164 2.2429 8.7042 4.3729 16.7609 3.3351 10.8675 3.3695 14.0173 6.3575 21.0280 109.9141
3-Box 3.2418 15.6164 2.2429 8.7042 4.3729 16.7609 3.3351 10.8675 3.3695 14.0173 6.3575 21.0280 109.9141

Misfits for D-Labeled Experiments JMNO (not used in fitting)

Model Jα Jβ Mα Mβ Nα Nβ Oα Oβ Total FGHILP+JMNO Total
8-Species 11.9878 26.6856 14.9872 12.7559 2.9986 5.1942 7.5534 21.5557 103.7184 213.63252496084010
3-Box 11.9878 26.6856 14.9872 12.7559 2.9986 5.1942 7.5534 21.5557 103.7184 213.63252493498513

Table 5.12: Misfit equivalence between 3-Box and 8-Species models, as generated by Supplemental Attachments 20240122-8SPEC

-TO-3BOX.tar and 20240122-3BOX.tar. These models are equivalent to seven decimals.
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5.8.3 Supplemental Figures

Here we provide several figures referenced, but not provided, in the main body

of this chapter.
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Figure 5.17: Verification by 13C NMR of the identity of the isotopic species in our reactions,
as described in Section 5.3.3.2. Distances between sets of peaks are measured in ppm. (a) Two
vertically stacked spectra are shown, with alanine-CHCH3 and alanine-CHCD3 in the top spectrum,
while the bottom spectrum contains all eight isotopic variants for comparison. For each additional
2H on the β carbon, we observe a chemical shift of the β carbon signal for that species of 0.25
ppm, totaling 0.75 ppm shift between alanine-CHCH3 and alanine-CHCD3. (b) Two vertically
stacked spectra are shown, with alanine-CHCH3 and alanine-CDCH3 in the top spectrum, while
the bottom spectrum contains all eight isotopic variants for comparison. The two-bond shift that
results from adding a 2H at the α carbon position is 0.109 ppm.
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Figure 5.18: Time series of the eight isotopic variants in Experiment “Q” using single-scan 13C
NMR acquisitions taken every two minutes for 540 minutes (9 hours) of reaction time, as depicted
in Figure 5.8, with added series giving the sum of 13C NMR signal contribution from each of the
eight isotopic variants measured in this experiment at each time step (black circles), to demonstrate
that this sum is conserved (with some measurement noise) throughout this reaction.



223

Figure 5.19: A random sampling of ten 10S2I model fits to the QJMNO experimental dataset in the range of misfit=39.89–40.28 (top
ten percent of best fits), to illustrate the variability of these fits to experimental data. The variability of these fits is low, however in
Experiment “Q”, the fits to some isotopic species (e.g., CHCH2D and CDCH2D) can be seen to vary more than others (e.g., CHCH3

and CDCH3).
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Figure 5.20: Graphical depiction of the system of ten reactions (circled) that convert the eight
possible isotopic variants of alanine in our study from one to another (see also Figure 5.9). Forward
reactions (up) remove a D from the solvent and emit an H to the solvent. Backward reactions
(down) remove an H from the solvent and emit a D to the solvent. Colored arrows indicate kinetic
rate constants most directly observed (and thus the direction in which each experiment proceeds)
during the initial stages of reactions starting from pure isotopic variants, where purple (backward)
reactions take place in water enriched with deuterium relative to the initial alanine isotopic variant,
while green (forward) reactions take place in water depleted in deuterium relative to the initial
alanine isotopic variant. Reactions explored via experiments presented in this work are labeled
“J”, “M”, “N”, “O”, and “Q” as described in Table 5.1. Of these, “Q” is the only experiment
performed with 13C NMR. Isotopic variants available for purchase from Sigma Aldrich (SA) or
Cambridge Isotope Laboratories (CIL), or able to be produced in our facilities, are outlined with
solid black boxes, while those that are not available are outlined with dashed gray boxes.
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5.8.4 Data Adjustments

5.8.4.1 Scaling

The proton NMR data from experiments in different D2O:H2O solution com-

positions (Experiments “F”, “G”, “H”, “I”, “L”, and “P”) as well as the

D-labeled experiments beginning with either CDCH3 (Experiments “J” and

“N”) or CHCD3 (Experiments “O” and “M”) can be compared with model

predictions by summing the total H on the α and β sites in the model. In

merging the 13C NMR data (Experiment “Q”, conducted 9/13/2019) with the

proton NMR data (Experiments “F”, “G”, “H”, “I”, “L”, “P” and “J”, “M”,

“N”, “O”), (conducted about two months earlier) we noted that the isotopic

exchange rates seemed significantly faster for the proton NMR experiments.

Experiment “G” (conducted 07/05/2019) has roughly the same solution com-

position as Experiment “Q” (see Table 5.1), so they can be directly compared

without having to use a model. Figure 5.21 shows that the reaction in Ex-

periment “G” proceeds roughly twice as fast as Experiment “Q”. It is most

likely that either there was some degradation of the enzyme over the time gap

between these two experiments, or an issue with the addition of enzyme via

pipette to initiate this reaction (e.g., an accidental bubble in the pipette tip

would have reduced the amount of enzyme added). Based on Figure 5.21, we

multiply the time scale by 2.0 when using any of the proton NMR experiments

to constrain the model. An obvious question would be whether there was a

systematic gradual degradation over the time period between early July and

mid September, or whether there was a single event (for example, if the enzyme

was accidentally allowed to sit at room temperature for a prolonged period).

We find no indication of the later experiments being systematically slow, for

example, Experiment “P” (conducted 8/15/2019), suggesting that the enzyme

was not undergoing gradual degradation in the time between Experiment “P”

and Experiment “Q”. Since we performed no further kinetics experiments af-

ter Experiment “Q”, we cannot distinguish between these two most plausible

scenarios. Given this discrepancy, we only use the D-labeled experiments (“J”,

“M”, “N”, “O”) in fitting the model, and then use the model thus produced

to make predictions for Experiments “F”, “G”, “H”, “I”, “L”, and “P”. As

we will see, the QJMNO-fitted model makes reasonably good predictions for

the concentration dependence of the integrated α and β rates, so we do not

expect any major issues using the “J”, “M”, “N”, “O” experimental data to

constrain the rate constants.
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Figure 5.21: Depiction of method used to determine scaling Factor applied to Experiment “Q”. Hydrogen isotope exchange reactions
in Experiment “G” (acquired using 1H NMR) and Experiment “Q” (acquired using 13C NMR) took place in similar water D/H
composition, and with the same initial CHCH3 alanine hydrogen isotope composition. Several time scaling factors (1.5, 2.0, and 2.5)
applied to Experiment G serve to illustrate that the reaction in Experiment “G” proceeds roughly twice as fast as Experiment “Q”.
We use this empirically derived factor of two to adjust the rate of Experiment “Q” so that is consistent with the earlier 1H NMR
experiments this entire dataset (from Experiments “Q”, “J”, “M”, “N”, and “O”) can be incorporated into the same modeling effort.
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5.8.4.2 T0 Adjustments for Experiments Q, J, M, N, and O

As mentioned in Section 5.3.2, there is a delay on the order of several minutes

between the addition of enzyme to the reaction mixture, marking the true

beginning of the kinetics experiments, and the beginning of data collection.

We did not anticipate the modeling work later conducted when performing

these experiments, so this delay, while kept to a minimum with the equipment

available, was not quantified with a stopwatch. This delay could in theory

be eliminated with a specialized NMR tube, a “Sample Reaction System” by

New Era, which we did not possess at the time. In order to combine this set of

experiments so that they may provide independent constraints in our model,

we attempt to account for this “missing” data, and correct for this time delay

using two methods, depending on the nucleus observed for each experiment

(13C for Experiment “Q”, 1H for Experiments “J”, “M”, “N”, and “O”). In

the case of Experiment “Q”, where the 13C NMR observations provide the

populations of each of the isotopic variants sum to a value that is constant

(with some measurement noise, as depicted in Figure 5.18) over the course

of the experiment, the most straightforward approach is to fit an exponential

decay function to the early values of the concentration of the CHCH3 variant

and extrapolate it back to unity. This is possible because we know that the

initial alanine was effectively entirely made up of the CHCH3 variant, with

all other variants initially at zero abundance. The result of this procedure is

shown in Figure 5.22. The exponential function reaches unity at approximately

-6.1 minutes. Thus, we estimate the time of the first data point collected to

be 6.1 minutes after initial enzyme addition.

Correcting for the delay in the 1H NMR Experiments “J”, “M”, “N”, and

“O” is slightly more involved, since these experiments do not yield conserved

signal. In these cases we know the initial alanine composition has one site

(either α or β) labeled with deuterium, so the 1H NMR peak area of protons

at that site is effectively zero. With this knowledge we can estimate the time

delay by fitting a quadratic function to the initial 20–40 data points, and then

use the fitted function to estimate when the signal from the labeled group goes

to zero (refer to top panel of Figure 5.23 for the quadratic fit to Experiment

“J” as an example; quadratic fits for Experiments “M”, “N”, and “O” are

similar). We then shift the time by this amount and extrapolate the signal

arising from the unlabeled site (either α or β) back to zero time (see bottom

panel of Figure 5.23). Lastly, we normalize both the labeled and unlabeled
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Figure 5.22: Fit of an exponential function to Experiment “Q” to determine
delay between reaction initiation and start of analysis.

signal by the estimated zero-time NMR signal for the unlabeled component.

Python scripts for processing the NMR signal for Experiments “Q”, “J”, “M”,

“N”, and “O” are attached in Section 5.8.8.3.
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Figure 5.23: Fit of a quadratic function to Experiment “J” to determine delay
between reaction initiation and start of analysis. Quadratic fits for Experi-
ments “M”, “N”, and “O” are similar.
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5.8.5 Stochastic Distributions of Isotopic Variants at Equilibrium

While we have already presented the measured (and predicted, where possi-

ble) equilibrium constants for the isotopic exchange reactions involved in our

experiments in Section 5.4.3, these results can also be presented in a format

perhaps more familiar to geochemists studying clumped isotopes. A com-

mon basis for standardization in clumped isotope geochemistry is a state in

which rare isotopes of known abundance are stochastically distributed among

all possible isotopic variants of a molecule. For an isotopic variant of alanine

(CH3CHNH2COOH), i, deviations from a random distribution are typically

reported as ∆i values:

∆i =
iR
iR∗ − 1 (5.49)

where iR = [i]/[12CH3
12CH14NH2

12C16O2H] (here the denominator would con-

ventionally be the isotopic variant with no heavy isotope substitutions, i.e.,

the most common variant under conditions where isotopes are present at nat-

ural abundance) and iR∗ denotes the value of iR predicted for the sample if

the isotopes are stochastically distributed among all possible isotopic variants.

A unique aspect of the experimental work presented in Section 5.4.3 is the

presence of 13C at the β carbon position for all eight quantified species, such

that it is not reasonable to use the common definition for iR. Here we are

also concerned primarily with variants of alanine containing 1H and/or 2H (D)

in its α- and β-carbon positions, i.e., the four “non-exchangeable” hydrogen

atoms of alanine. In contrast with the hydrogen atoms at the carboxyl and

amine sites, which spontaneously and rapidly (over timescales of microseconds

to milliseconds) exchange with water when in solution, exchange of the hydro-

gen atoms at the α and β carbon sites requires an enzyme catalyst, and occurs

at rates that are observable using the techniques applied in this study. For

the remainder of this work, we do not consider the isotopic variation in the

atoms making up the carboxyl and amine groups of alanine, for they are not

directly involved with the hydrogen exchange reaction, and are not measured

in our experiments.

Unlike typical studies in clumped isotope geochemistry, where isotopic abun-

dances are close to natural terrestrial abundance (e.g., deuterium makes up

only ∼0.015% of the total hydrogen), our experiments involve the incorpora-

tion of unnatural isotopic abundances (i.e., high abundances of heavy isotopes,
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2H and/or 13C) to get insight into isotopic processes that would otherwise be

difficult to probe. At natural abundance, the stochastic probability of having

CHCH3 will be 0.999, while that of CDCD3 is 6 ∗ 10−16 (here we are consid-

ering 1H and 2H isotopes only, i.e., ignoring variation in carbon isotopes). In

the case of alanine, its naturally rare multiply substituted species range from

difficult to impossible to measure with existing tools, and to our knowledge no

prior observations exist for these isotopic species. In contrast, an experiment

in which the hydrogen atoms in a species of interest are allowed to equilibrate

with water that has a subequal concentration of deuterium and hydrogen re-

sults in a set of isotopic species that are close enough in relative abundance

to be studied with existing tools. For example, equilibrating alanine’s hydro-

gen using a water composition of 1:1 D2O:H2O results in a distribution of

isotopic species that vary in relative stochastic abundance by only a factor of

three (the four least abundant isotopic species that arise under these condi-

tions each contribute ∼6.25% of the total, while the four most abundant each

contribute ∼18.75% ). Designing experiments in this way allowed us to mea-

sure the degree to which each of these eight isotopic variants diverge from a

stochastic distribution upon equilibration, leading us to a deeper understand-

ing of isotopic site preferences and clumping tendencies than would otherwise

be possible.

In this context, where the most common isotopic variant is a species with mul-

tiple heavy isotope substitutions, and the quantities of all eight relevant iso-

topic variants are measured directly (rather than as ratios to a more abundant

species, as is the case in isotope ratio mass spectrometry) a more straightfor-

ward way to calculate ∆i is by using

∆i =
iF
iF ∗ − 1 (5.50)

where iF = [i]/[Total], where [Total] is the summed area of the signal arising

from all eight isotopic species, and iF ∗ represents the expected percent of the

total signal given a stochastic distribution. Using this definition, the isotopic

variant containing the fewest heavy isotopes (in this case, 12CH13CH3) is no

longer forced to have a ∆ of 0 h, and the values for all eight species are given

relative to their expected stochastic abundance. When calculated using this

definition, the resulting ∆ values shift by an amount approximately equal to

the ∆ value of the 12C1H13C1H3 species.
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Stochastic distributions of the eight isotopic variants measured were deter-

mined based on measured D2O concentration of the sample using 2H NMR as

described in the previous section. This value was measured to be 0.483:0.517

D2O:H2O. As a result, of course, the stochastic distributions that emerge

from this water composition differ dramatically from those we would calcu-

late in a natural abundance context. Because the 13C abundances at the two

carbon sites of interest are fixed (non-random, and non-exchangeable) in our

experiments, we do not use 13C abundance in our determination of stochastic

distribution. Our computational work presented in Chapter 2 (Section 2.7)

predicts a 5 h 13C-D clumping effect at the β carbon site, relatively minor

compared to the H-D site preference of ∼170 h.

Our results indicate that we should not have any clumping across α and β,

and that we should expect a progressive decrease of ∼16h for each D present

in the β group.

The resulting fitted peak areas were used to calculate the relative abundances

of each of the eight isotopic species and the ∆ values for each species. These

values are presented in Figure 5.24 and Table 5.13.

∆(h) STERR MC error

12CH13CH3 -36 1.7 4.8
12CD13CH3 104 4.9 4.9

12CH13CH2D -67 1.7 1.5
12CD13CH2D 87 1.0 1.4
12CH13CHD2 -102 1.1 1.5
12CD13CHD2 46 0.7 1.6

12CH13CD3 -29 4.0 3.5
12CD13CD3 100 4.4 3.7

Table 5.13: Values of ∆i as shown in Figure 5.24. Standard errors are given
for four replicate measurements. Monte Carlo simulated errors using 1E6
iterations, based on relative error using 1/SNR of peak intensities, are given
for comparison and are in broad agreement with measurement error.
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Figure 5.24: Abundance of eight isotopic species reported as deviations from a stochastic distribution, as ∆ (h). Here we define

∆i =
iF
iF ∗ − 1 using iF = [i]/[Total], where [Total] is the summed area of the signal arising from all eight isotopic species, and iF ∗

represents the expected percent of the total signal given a stochastic distribution. Error bars represent 2*sterr based on four replicate
NMR measurements on a single sample.
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The error bars for ∆ in Figure 5.24 represent 2*standard error of four replicate

measurements on a single equilibrated sample. Measurement reproducibility

can also be evaluated based on the signal to noise ratio of each of the eight

NMR signals corresponding to the eight isotopic variants of interest. We used

the SNR tool built into MestReNova to calculate S/N, which ranges from

∼200 for the shortest peak (corresponding with 12CH13CH3) to ∼750 for the

tallest (12CD13CH2D), resulting in relative errors of 5.0h (1/200) and 1.3h

(1/750), respectively. We used a Monte Carlo approach (code provided in

Section 5.8.8.4) to model the errors in ∆ that result from these relative errors

in signal intensity. A limitation of using this approach is that S/N is a measure

of the maximum intensity of a peak relative to the surrounding noise, and does

not take peak width into account, thereby capturing only one aspect of the

possible error. For example, two peaks may have the same maximum intensity,

but different widths, and therefore different areas, corresponding to different

abundances, but the relative error calculated for each will be the same. In

the case of the data presented here, the equilibrium abundance of 12CH13CH3

is slightly greater than the abundance of 12CD13CD3, but the width of the
12CD13CD3 peak is a bit narrower than that of 12CH13CH3, such that the S/N

reported is lower on the less abundant (but taller) 12CD13CD3 than on the

more abundant (but shorter) 12CH13CH3. The calculation of relative error

for these two species is different by ∼1–2h, insignificant compared to the

magnitude of the signals being measured.
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5.8.6 Algebraic Transformation from “8-Species” Model to “3-Box” Model as Dis-

cussed in Section 5.5.4

Ten hydrogen-deuterium isotope exchange reactions:

CHCH3 + D
kα,sf−−−⇀↽−−−
kα,sb

CDCH3 + H (5.51)

CHCH3 + D
3
2
kβ,sf−−−−⇀↽−−−−

1
2
kβ,sb

CHCH2D + H (5.52)

CDCH3 + D
3
2
kβ,sf−−−−⇀↽−−−−

1
2
kβ,sb

CDCH2D + H (5.53)

CHCH2D + D
kα,sf−−−⇀↽−−−
kα,sb

CDCH2D + H (5.54)

CHCH2D + D
kβ,sf−−−⇀↽−−−
kβ,sb

CHCHD2 + H (5.55)

CDCH2D + D
kβ,sf−−−⇀↽−−−
kβ,sb

CDCHD2 + H (5.56)

CHCHD2 + D
kα,sf−−−⇀↽−−−
kα,sb

CDCHD2 + H (5.57)

CHCHD2 + D
1
2
kβ,sf−−−−⇀↽−−−−

3
2
kβ,sb

CHCD3 + H (5.58)

CDCHD2 + D
1
2
kβ,sf−−−−⇀↽−−−−

3
2
kβ,sb

CDCD3 + H (5.59)

CHCD3 + D
kα,sf−−−⇀↽−−−
kα,sb

CDCD3 + H (5.60)

Differential equations expressing change in species concentrations per time:

d[CHCH3]

dt
= +k1b [CDCH3][H]− k1f [CHCH3][D]− 3

2
k2f [CHCH3][D] +

1

2
k2b [CHCH2D][H] (5.61)

d[CDCH3]

dt
= −k1b [CDCH3][H] + k1f [CHCH3][D]− 3

2
k2f [CDCH3][D] +

1

2
k2b [CDCH2D][H] (5.62)
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d[CHCH2D]

dt
= +k1b [CDCH2D][H]− k1f [CHCH2D][D] +

3

2
k2f [CHCH3][D]

−1

2
k2b [CHCH2D][H]− k2f [CHCH2D][D] + k2b [CHCHD2][H]

(5.63)

d[CDCH2D]

dt
= −k1b [CDCH2D][H] + k1f [CHCH2D][D] +

3

2
k2f [CDCH3][D]

−1

2
k2b [CDCH2D][H]− k2f [CDCH2D][D] + k2b [CDCHD2][H]

(5.64)

d[CHCHD2]

dt
= +k1b [CDCHD2][H]− k1f [CHCHD2][D] +

3

2
k2b [CHCD3][H]

−1

2
k2f [CHCHD2][D] + k2f [CHCH2D][D]− k2b [CHCHD2][H]

(5.65)

d[CDCHD2]

dt
= −k1b [CDCHD2][H] + k1f [CHCHD2][D] +

3

2
k2b [CDCD3][H]

−1

2
k2f [CDCHD2][D] + k2f [CDCH2D][D]− k2b [CDCHD2][H]

(5.66)

d[CHCD3]

dt
= +k1b [CDCD3][H]− k1f [CHCD3][D] +

1

2
k2f [CHCHD2][D]− 3

2
k2b [CHCD3][H] (5.67)

d[CDCD3]

dt
= −k1b [CDCD3][H] + k1f [CHCD3][D] +

1

2
k2f [CDCHD2][D]− 3

2
k2b [CDCD3][H] (5.68)

Defining βH and βD:

βH = 3
(
[CHCH3] + [CDCH3]

)
+ 2

(
[CHCH2D] + [CDCH2D]

)
+

(
[CHCHD2] + [CDCHD2]

)
(5.69)

βD = 3
(
[CHCD3] + [CDCD3]

)
+ 2

(
[CHCHD2] + [CDCHD2]

)
+

(
[CHCH2D] + [CDCH2D]

)
(5.70)

dβH

dt
= 3

(d[CHCH3]

dt
+

d[CDCH3]

dt

)
+ 2

(d[CHCH2D]

dt
+

d[CDCH2D]

dt

)
+

(d[CHCHD2]

dt
+

d[CDCHD2]

dt

)
(5.71)

3
(d[CHCH3]

dt
+

d[CDCH3]

dt

)
= −9

2
k2f [CHCH3][D]− 9

2
k2f [CDCH3][D] +

3

2
k2b [CHCH2D][H] +

3

2
k2b [CDCH2D][H] (5.72)

2
(d[CHCH2D]

dt
+

d[CDCH2D]

dt

)
= +3k2f [CHCH3][D]− k2b [CHCH2D][H]

+3k2f [CDCH3][D]− k2b [CDCH2D][H]− 2k2f [CHCH2D][D]

+2k2b [CHCHD2][H]− 2k2f [CDCH2D][D] + 2k2b [CDCHD2][H]

(5.73)

(d[CHCHD2]

dt
+

d[CDCHD2]

dt

)
= +

3

2
k2b [CHCD3][H]− 1

2
k2f [CHCHD2][D]

+k2f [CHCH2D][D]− k2b [CHCHD2][H] +
3

2
k2b [CDCD3][H]

−1

2
k2f [CDCHD2][D] + k2f [CDCH2D][D]− k2b [CDCHD2][H]

(5.74)

Collecting terms with k2f [D]:
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k2f [D]×
(
−9

2
[CHCH3] + 3[CHCH3]−

9

2
[CDCH3] + 3[CDCH3]

−2[CHCH2D] + [CHCH2D]− 2[CDCH2D] + [CDCH2D]− 1

2
[CHCHD2]−

1

2
[CDCHD2]

) (5.75)

Simplifying:

k2f [D]×
(
−3

2
[CHCH3]−

3

2
[CDCH3]− [CHCH2D]− [CDCH2D]− 1

2
[CHCHD2]−

1

2
[CDCHD2]

)
(5.76)

Collecting terms with k2b [H]:

k2b [H]×
(
+
3

2
[CHCH2D] +

3

2
[CDCH2D] + 2[CHCHD2]− [CHCH2D]

+2[CDCHD2]− [CDCH2D]− [CHCHD2] +
3

2
[CHCD3]− [CDCHD2] +

3

2
[CDCD3]

) (5.77)

Simplifying:

k2b [H]×
(
+
1

2
[CHCH2D] +

1

2
[CDCH2D] + [CHCHD2] + [CDCHD2] +

3

2
[CHCD3] +

3

2
[CDCD3]

)
(5.78)

Defining dβH/dt

dβH

dt
= k2b [H]×

(1
2
[CHCH2D] +

1

2
[CDCH2D] + [CHCHD2] + [CDCHD2] +

3

2
[CHCD3] +

3

2
[CDCD3]

)
−k2f [D]×

(3
2
[CHCH3] +

3

2
[CDCH3] + [CHCH2D] + [CDCH2D] +

1

2
[CHCHD2] +

1

2
[CDCHD2]

) (5.79)

dβH

dt
=

k2b
2

[H]×
(
[CHCH2D] + [CDCH2D] + 2[CHCHD2] + 2[CDCHD2] + 3[CHCD3] + 3[CDCD3]

)
−
k2f
2

[D]×
(
3[CHCH3] + 3[CDCH3] + 2[CHCH2D] + 2[CDCH2D] + [CHCHD2] + [CDCHD2]

) (5.80)

dβH

dt
=

k2b
2

[H]× βD −
k2f
2

[D]× βH (5.81)
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5.8.7 Recommendations for Future Study of This Isotopic Exchange

System

We see ways in which the experimental component of our work could be car-

ried further, at relatively low cost, beyond what we present here, potentially

providing the information necessary to resolve some of the questions about

this system that remain open. Thus we offer a set of recommendations for

future experiments that build on the work presented here:

• In general, further HDX experiments with alanine should follow the

methods of Experiment “Q” where possible, with 13C NMR using si-

multaneous decoupling of 1H and 2H, and alanine labeled with 13C at

its β carbon position, thus providing distinction between all eight iso-

topic variants. This method stands in contrast to using 1H (or 2H)

NMR, which does not provide the means to distinguish all eight vari-

ants, but instead aggregates the eight isotopic variants into two groups,

distinguished only between α- and β-carbon-bound 1H (or 2H), and thus

failing completely to observe the presence of CDCD3 (or CHCH3, if using
2H NMR).

• An experimental setup in which the first several minutes of a reaction

could be observed would be an improvement on our experiments, which

did not capture the first several minutes of reaction time, as described in

Section 5.3. The Sample Reaction System by New Era ($317) provides

this option.

• A set of 13C NMR kinetics experiments should be performed with initial

conditions starting with pure single isotopic variants as can be acquired

or synthesized, as presented in Supplementary Figure 5.20 and Supple-

mentary Table 5.14 using experimental conditions delineated above. We

expect this set of experiments will greatly reduce our uncertainties on

several of the rate constants in our model. The current hourly rate for

the 600 MHz instrument in our facility is $24.40. Eight experiments at

12 hrs each = 8*12*24.40 = $2342.40

• At the time of the experiments presented in this work, our Varian 600

MHz NMR was equipped with a broadband inverse (BBI) probe, which is

optimized for 1H observation and multinuclear, multidimensional exper-

iments (e.g., HSQC, HMQC, HMBC). Replication of our experiments,
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Table 5.14: Recommended future 13C NMR kinetics experiments using isotopic
variants available for purchase from Sigma-Aldrich (SA) or Cambridge Isotope
Laboratories (CIL), or able to be produced in our facilities.

Water Rate Constant(s) Cost
Initial Species Composition Sampled Product No. ($/gram)

CH13CH3 D2O k1f , k2f 489948 (SA) $716
CD13CH3 H2O k1b 740055 (SA) $1086
CD13CH3 D2O k3f 740055 (SA) ”

CH13CD3 H2O k8b CDLM-3439-PK (CIL) $2400
CH13CD3 D2O k10f CDLM-3439-PK (CIL) ”

CH13CHD2 H2O k6b , k7b 710512 (SA) $5100
CH13CHD2 D2O k9f 710512 (SA) ”

CD13CD3 H2O k9b , k10b Not Available –

in addition to execution of those recommended here, on a multinuclear

broadband observe (BBO) probe should result in a ∼10x increase in car-

bon signal for otherwise identical experiments, thus resulting in an even

higher precision data set.

• This same set of experiments may also be conducted on the full transam-

ination reaction, i.e., initial conditions would include the presence of α-

ketoglutarate. The experiments presented in this chapter involve only

the ALA ⇀↽ PYR half-reaction, in contrast to experiments presented in

the previous chapter.

• Experiments performed in this study as well as those proposed above

could be conducted with different ALT isoenzymes (e.g., mammalian cy-

tosolic and mitochondrial ALT, plant ALT, bacterial ALT, and archaeal

ALT). Combined with knowledge of protein sequence and structure, this

may reveal any heterogeneity across ALT isoenzymes in terms of their

rate-limiting transition states.

• Building molecular models has the potential to deepen our understanding

beyond kinetic models. This would include models for finding transition

states in the exchange reactions as well as molecular models of H/D

transport in the enzyme environment.
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5.8.8 Supplemental Scripts

5.8.8.1 Python Codes for Parameter Fitting
1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 pd.set_option(’display.max_rows ’, None)

7

8 df1=pd.read_csv(’kvals’,names=[’kf’,’kb’],sep="\s+")

9 df2=pd.read_csv(’input’,names=[’input’])

10

11 kf=df1[’kf’]

12 kb=df1[’kb’]

13

14 input=df2[’input ’]

15

16 trajectory =[]

17 trajectoryint =[]

18 solution =[]

19

20 t=0

21 nstep=input [0]

22 nstep=int(nstep)

23 dt=input [1]

24 tscal=input [2]

25 h2ofrac=input [3]

26 d2ofrac=input [4]

27 h0=input [5]

28 d0=input [6]

29 h1=input [7]

30 d1=input [8]

31 h2=input [9]

32 d2=input [10]

33 h3=input [11]

34 d3=input [12]

35

36

37 h2o =2.00*55.5* h2ofrac

38 d2o =2.00*55.5* d2ofrac

39

40 kab1 =1000.0* np.log(d0/h1)

41 kab2 =1000.0* np.log(d1/h2)
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42 kab3 =1000.0* np.log(d2/h3)

43 kab4 =1000.0* np.log((d3*h0)/(h3*d0))

44

45 h2ofrac =(h2o/(h2o+d2o))

46 d2ofrac =(d2o/(h2o+d2o))

47

48 summh =4.*h0+3.*h1+2.*h2+1.*h3+3.*d0+2.*d1+1.*d2+0.*d0

49 summd =0.*h0+1.*h1+2.*h2+3.*h3+1.*d0+2.*d1+3.*d2+4.*d3

50

51 sumalphah=h0+h1+h2+h3

52 sumbetah =1.0* h2+2.0* h1+3.0* h0+1.0* d2+2.0* d1+3.0* d0

53

54 trajectory.append(array ([t/tscal ,h0,d0,h1,d1,h2,d2,h3,d3 ,\\

55 kab1 ,kab2 ,kab3 ,kab4 ,h2ofrac ,d2ofrac ]))

56 trajectoryint.append(array ([t/tscal ,sumalphah ,sumbetah ]))

57 solution.append(array ([t/tscal ,h2o ,d2o ,h2o+d2o ,h2ofrac ,d2ofrac

,\\

58 summh ,summd ,summh+summd]))

59

60 for i in range(1,nstep):

61

62 t=t+dt

63

64 flux1f=kf[0]*h0*d2o*dt

65 flux1b=kb[0]*d0*h2o*dt

66 flux1=flux1f -flux1b

67

68 flux2f=kf[1]*h0*d2o*dt

69 flux2b=kb[1]*h1*h2o*dt

70 flux2=flux2f -flux2b

71

72 flux3f=kf[2]*d0*d2o*dt

73 flux3b=kb[2]*d1*h2o*dt

74 flux3=flux3f -flux3b

75

76 flux4f=kf[3]*h1*d2o*dt

77 flux4b=kb[3]*d1*h2o*dt

78 flux4=flux4f -flux4b

79

80 flux5f=kf[4]*h1*d2o*dt

81 flux5b=kb[4]*h2*h2o*dt

82 flux5=flux5f -flux5b

83
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84 flux6f=kf[5]*d1*d2o*dt

85 flux6b=kb[5]*d2*h2o*dt

86 flux6=flux6f -flux6b

87

88 flux7f=kf[6]*h2*d2o*dt

89 flux7b=kb[6]*d2*h2o*dt

90 flux7=flux7f -flux7b

91

92 flux8f=kf[7]*h2*d2o*dt

93 flux8b=kb[7]*h3*h2o*dt

94 flux8=flux8f -flux8b

95

96 flux9f=kf[8]*d2*d2o*dt

97 flux9b=kb[8]*d3*h2o*dt

98 flux9=flux9f -flux9b

99

100 flux10f=kf[9]*h3*d2o*dt

101 flux10b=kb[9]*d3*h2o*dt

102 flux10=flux10f -flux10b

103

104 flux11f=kf [10]*h1*dt

105 flux11b=kb [10]*d0*dt

106 flux11=flux11f -flux11b

107

108 flux12f=kf [11]*h2*dt

109 flux12b=kb [11]*d1*dt

110 flux12=flux12f -flux12b

111

112 flux13f=kf [12]*h3*dt

113 flux13b=kb [12]*d2*dt

114 flux13=flux13f -flux13b

115

116 dh2o=flux1+flux2+flux3+flux4+flux5+flux6+flux7+flux8+flux9+

flux10

117 dh0=-flux1 -flux2

118 dh1=flux2 -flux4 -flux5 -flux11

119 dh2=flux5 -flux7 -flux8 -flux12

120 dh3=flux8 -flux10 -flux13

121 dd0=flux1 -flux3+flux11

122 dd1=flux3+flux4 -flux6+flux12

123 dd2=flux6+flux7 -flux9+flux13

124 dd3=flux9+flux10

125
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126 h2o=h2o+dh2o

127 d2o=d2o -dh2o

128

129 h0=h0+dh0

130 h1=h1+dh1

131 h2=h2+dh2

132 h3=h3+dh3

133

134 d0=d0+dd0

135 d1=d1+dd1

136 d2=d2+dd2

137 d3=d3+dd3

138

139 kab1 =1000.0* np.log(d0/h1)

140 kab2 =1000.0* np.log(d1/h2)

141 kab3 =1000.0* np.log(d2/h3)

142 kab4 =1000.0* np.log((d3*h0)/(h3*d0))

143

144 h2ofrac =(h2o/(h2o+d2o))

145 d2ofrac =(d2o/(h2o+d2o))

146

147 summh =4.*h0+3.*h1+2.*h2+1.*h3+3.*d0+2.*d1+1.*d2+0.*d0

148 summd =0.*h0+1.*h1+2.*h2+3.*h3+1.*d0+2.*d1+3.*d2+4.*d3

149

150 sumalphah=h0+h1+h2+h3

151 sumbetah =1.0* h2+2.0* h1+3.0* h0+1.0* d2+2.0* d1+3.0* d0

152

153 trajectory.append(array ([t/tscal ,h0,d0,h1,d1,h2,d2,h3,d3 ,\\

154 kab1 ,kab2 ,kab3 ,kab4 ,h2ofrac ,d2ofrac ]))

155 trajectoryint.append(array ([t/tscal ,sumalphah ,sumbetah ]))

156 solution.append(array ([t/tscal ,h2o ,d2o ,h2o+d2o ,h2ofrac ,

d2ofrac ,\\

157 summh ,summd ,summh+summd]))

158

159 df3=pd.DataFrame(trajectory ,columns =[’time’,’H0’,’D0’,’H1’,’D1’

,’H2’ ,\\

160 ’D2’,’H3’,’D3’,’KAB1’,’KAB2’ ,\\

161 ’KAB3’,’KAB4’,’H2OFRAC ’,’D2OFRAC ’])

162 df4=pd.DataFrame(trajectoryint ,columns =[’time’,’ALPHAH ’,’BETAH’

])

163 df5=pd.DataFrame(solution ,columns =[’time’,’H2O’,’D2O’,’

SUMH2OD2O ’ ,\\

164 ’H2OFRAC ’,’D2OFRAC ’,’TOTH’,’TOTD’,’TOTHD’])
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165

166 c1=df3[’time’]

167 c2=df3[’H0’]

168 c3=df3[’D0’]

169 c4=df3[’H1’]

170 c5=df3[’D1’]

171 c6=df3[’H2’]

172 c7=df3[’D2’]

173 c8=df3[’H3’]

174 c9=df3[’D3’]

175 c10=df3[’KAB1’]

176 c11=df3[’KAB2’]

177 c12=df3[’KAB3’]

178 c13=df3[’KAB4’]

179 c14=df3[’H2OFRAC ’]

180 c15=df3[’D2OFRAC ’]

181

182 n=len(c1)

183

184 mod = open("mod.dat", "w")

185 modint = open("modint.dat", "w")

186 hdbal = open("hdbal.dat", "w")

187

188 i=0

189 while i < n:

190 print(’{0: >10.3f} \

191 {1: >10.3f} \

192 {2: >10.3f} \

193 {3: >10.3f} \

194 {4: >10.3f} \

195 {5: >10.3f} \

196 {6: >10.3f} \

197 {7: >10.3f} \

198 {8: >10.3f} \

199 {9: >10.3f} \

200 {10: >10.3f} \

201 {11: >10.3f} \

202 {12: >10.3f} \

203 {13: >10.3f} \

204 {14: >10.3f}\

205 ’.format(c1[i],\

206 c2[i],\

207 c3[i],\
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208 c4[i],\

209 c5[i],\

210 c6[i],\

211 c7[i],\

212 c8[i],\

213 c9[i],\

214 c10[i],\

215 c11[i],\

216 c12[i],\

217 c13[i],\

218 c14[i],\

219 c15[i]),file=mod)

220 i=i+1

221

222 c1=df4[’time’]

223 c2=df4[’ALPHAH ’]

224 c3=df4[’BETAH’]

225

226 i=0

227 while i < n:

228 print(’{0: >10.3f} {1: >10.3f} {2: >10.3f}’.format(c1[i],\\

229 c2[i], c3[i]),file=modint)

230 i=i+1

231

232 c1=df5[’time’]

233 c2=df5[’H2O’]

234 c3=df5[’D2O’]

235 c4=df5[’SUMH2OD2O ’]

236 c5=df5[’H2OFRAC ’]

237 c6=df5[’D2OFRAC ’]

238 c7=df5[’TOTH’]

239 c8=df5[’TOTD’]

240 c9=df5[’TOTHD’]

241

242

243 i=0

244 while i < n:

245 print(’{0: >10.3f} \

246 {1: >10.3f} \

247 {2: >10.3f} \

248 {3: >10.3f} \

249 {4: >10.3f} \

250 {5: >10.3f} \
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251 {6: >10.3f} \

252 {7: >10.3f} \

253 {8: >10.3f}\

254 ’.format(c1[i],\

255 c2[i],\

256 c3[i],\

257 c4[i],\

258 c5[i],\

259 c6[i],\

260 c7[i],\

261 c8[i],\

262 c9[i]),file=hdbal)

263 i=i+1

264

265 mod.close()

266 modint.close ()

267 hdbal.close()

268

269 exit()

Listing 5.1: box8.py
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1 import numpy as np

2 import pandas as pd

3

4 df1=pd.read_csv(’free_parameters ’,names=[’FREE’])

5 free=df1[’FREE’]

6 #for 1-parameter model , need to modify for other models

7 k1f=free [0]

8 k2f=free [0]

9 k3f=free [0]

10 k4f=free [0]

11 k5f=free [0]

12 k6f=free [0]

13 k7f=free [0]

14 k8b=free [0]

15 k9b=free [0]

16 k10f=free [0]

17 k11f =0.0

18 k12f =0.0

19 k13f =0.0

20

21 K1 =1.144

22 K2 =2.904

23 K3 =2.955

24 K4 =1.165

25 K5 =0.962

26 K6 =0.962

27 K7 =1.165

28 K8 =0.361

29 K9 =0.350

30 K10 =1.132

31 K11 =0.394153522

32 K12 =1.210934903

33 K13 =3.229704225

34

35 k1b=k1f/K1

36 k2b=k2f/K2

37 k3b=k3f/K3

38 k4b=k4f/K4

39 k5b=k5f/K5

40 k6b=k6f/K6

41 k7b=k7f/K7

42 k8f=K8*k8b

43 k9f=K9*k9b



248

44 k10b=k10f/K10

45 k11b=k11f/K11

46 k12b=k12f/K12

47 k13b=k13f/K13

48

49 kvals = open("kvals", "w")

50 print(’{0: >20.10e} {1: >20.10e}’.format(k1f ,k1b),file=kvals)

51 print(’{0: >20.10e} {1: >20.10e}’.format(k2f ,k2b),file=kvals)

52 print(’{0: >20.10e} {1: >20.10e}’.format(k3f ,k3b),file=kvals)

53 print(’{0: >20.10e} {1: >20.10e}’.format(k4f ,k4b),file=kvals)

54 print(’{0: >20.10e} {1: >20.10e}’.format(k5f ,k5b),file=kvals)

55 print(’{0: >20.10e} {1: >20.10e}’.format(k6f ,k6b),file=kvals)

56 print(’{0: >20.10e} {1: >20.10e}’.format(k7f ,k7b),file=kvals)

57 print(’{0: >20.10e} {1: >20.10e}’.format(k8f ,k8b),file=kvals)

58 print(’{0: >20.10e} {1: >20.10e}’.format(k9f ,k9b),file=kvals)

59 print(’{0: >20.10e} {1: >20.10e}’.format(k10f ,k10b),file=kvals)

60 print(’{0: >20.10e} {1: >20.10e}’.format(k11f ,k11b),file=kvals)

61 print(’{0: >20.10e} {1: >20.10e}’.format(k12f ,k12b),file=kvals)

62 print(’{0: >20.10e} {1: >20.10e}’.format(k13f ,k13b),file=kvals)

63 kvals.close()

Listing 5.2: genk.py
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1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6

7 pd.set_option(’display.max_rows ’, None)

8

9 dfexperiment=pd.read_csv(’EXPQ.dat’,names=[’TIME’,’CHCH3’,’

CDCH3 ’\\

10 ,’CHCH2D ’,’CDCH2D ’,’CHCHD2 ’ ,\\

11 ’CDCHD2 ’,’CHCD3’, ’CDCD3’],sep="\s+")

12 dfmodel=pd.read_csv(’modQ.dat’,names=[’TIME’,’CHCH3’,’CDCH3’\\

13 ,’CHCH2D ’,’CDCH2D ’,’CHCHD2 ’,’CDCHD2 ’ ,\\

14 ’CHCD3’,’CDCD3’,\

15 ’KAB1’,’KAB2’,’KAB3’,’KAB4’,’H2OFRAC ’,’D2OFRAC ’],sep="\s+")

16

17 texp=dfexperiment[’TIME’]

18 tmod=dfmodel[’TIME’]

19

20 chch3exp=dfexperiment[’CHCH3 ’]

21 chch3mod=dfmodel[’CHCH3 ’]

22 cdch3exp=dfexperiment[’CDCH3 ’]

23 cdch3mod=dfmodel[’CDCH3 ’]

24

25 chch2dexp=dfexperiment[’CHCH2D ’]

26 chch2dmod=dfmodel[’CHCH2D ’]

27 cdch2dexp=dfexperiment[’CDCH2D ’]

28 cdch2dmod=dfmodel[’CDCH2D ’]

29

30 chchd2exp=dfexperiment[’CHCHD2 ’]

31 chchd2mod=dfmodel[’CHCHD2 ’]

32 cdchd2exp=dfexperiment[’CDCHD2 ’]

33 cdchd2mod=dfmodel[’CDCHD2 ’]

34

35 chcd3exp=dfexperiment[’CHCD3 ’]

36 chcd3mod=dfmodel[’CHCD3 ’]

37 cdcd3exp=dfexperiment[’CDCD3 ’]

38 cdcd3mod=dfmodel[’CDCD3 ’]

39

40 nexp=len(texp)

41 nmod=len(tmod)

42
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43 dtm=tmod[1]-tmod [0]

44

45 tmodtotal = tmod[nmod -1]

46

47 i=0

48 misfit_chch3 =0.0

49 misfit_cdch3 =0.0

50 misfit_chch2d =0.0

51 misfit_cdch2d =0.0

52 misfit_chchd2 =0.0

53 misfit_cdchd2 =0.0

54 misfit_chcd3 =0.0

55 misfit_cdcd3 =0.0

56 misfitQ =0.

57

58 while i < nexp:

59 ti = texp[i]

60 ndt=int(ti/dtm)

61

62 chch3mod_interp=chch3mod[ndt ]+(( chch3mod[ndt+1]- chch3mod[

ndt])\\

63 *((ti -tmod[ndt])/dtm))

64 misfit_chch3=misfit_chch3+np.absolute(chch3exp[i]-

chch3mod_interp)

65

66 cdch3mod_interp=cdch3mod[ndt ]+(( cdch3mod[ndt+1]- cdch3mod[

ndt])\\

67 *((ti -tmod[ndt])/dtm))

68 misfit_cdch3=misfit_cdch3+np.absolute(cdch3exp[i]-

cdch3mod_interp)

69

70 chch2dmod_interp=chch2dmod[ndt ]+(( chch2dmod[ndt+1]-

chch2dmod[ndt])\\

71 *((ti -tmod[ndt])/dtm))

72 misfit_chch2d=misfit_chch2d+np.absolute(chch2dexp[i]\\

73 -chch2dmod_interp)

74

75 cdch2dmod_interp=cdch2dmod[ndt ]+(( cdch2dmod[ndt+1]-

cdch2dmod[ndt])\\

76 *((ti -tmod[ndt])/dtm))

77 misfit_cdch2d=misfit_cdch2d+np.absolute(cdch2dexp[i]\\

78 -cdch2dmod_interp)

79
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80 chchd2mod_interp=chchd2mod[ndt ]+(( chchd2mod[ndt+1]-

chchd2mod[ndt])\\

81 *((ti -tmod[ndt])/dtm))

82 misfit_chchd2=misfit_chchd2+np.absolute(chchd2exp[i]\\

83 -chchd2mod_interp)

84

85 cdchd2mod_interp=cdchd2mod[ndt ]+(( cdchd2mod[ndt+1]-

cdchd2mod[ndt])\\

86 *((ti -tmod[ndt])/dtm))

87 misfit_cdchd2=misfit_cdchd2+np.absolute(cdchd2exp[i]\\

88 -cdchd2mod_interp)

89

90 chcd3mod_interp=chcd3mod[ndt ]+(( chcd3mod[ndt+1]- chcd3mod[

ndt])\\

91 *((ti -tmod[ndt])/dtm))

92 misfit_chcd3=misfit_chcd3+np.absolute(chcd3exp[i]\\

93 -chcd3mod_interp)

94

95 cdcd3mod_interp=cdcd3mod[ndt ]+(( cdcd3mod[ndt+1]- cdcd3mod[

ndt])\\

96 *((ti -tmod[ndt])/dtm))

97 misfit_cdcd3=misfit_cdcd3+np.absolute(cdcd3exp[i]\\

98 -cdcd3mod_interp)

99

100 i=i+1

101

102 misfitQ= misfit_chch3+misfit_cdch3+misfit_chch2d+misfit_cdch2d

\\

103 +misfit_chchd2+misfit_cdchd2+misfit_chcd3+misfit_cdcd3

104

105 f = open("misfit", "r+")

106 misfitnow=float(f.read())

107 misfit=misfitQ+misfitnow

108 f.seek (0)

109 f.write(str(misfit))

110 f.close ()

Listing 5.3: getmisfitQ.py
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1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 pd.set_option(’display.max_rows ’, None)

7

8 dfexperiment=pd.read_csv(’EXPJ.dat’,names=[’TIME’,’ALPHAH ’,’

BETAH ’]\\

9 ,sep="\s+")

10 dfmodel=pd.read_csv(’modintJ.dat’,names=[’TIME’,’ALPHAH ’,’BETAH

’]\\

11 ,sep="\s+")

12

13 texp=dfexperiment[’TIME’]

14 tmod=dfmodel[’TIME’]

15 alphahmod=dfmodel[’ALPHAH ’]

16 alphahexp=dfexperiment[’ALPHAH ’]

17

18 nexp=len(texp)

19 nmod=len(tmod)

20 dtm=tmod[1]-tmod [0]

21 tmodtotal = tmod[nmod -1]

22

23 i=0

24 misfitJa =0.0

25 while i < nexp:

26 ti = texp[i]

27 ndt=int(ti/dtm)

28 alphahmod_interp=alphahmod[ndt ]+(( alphahmod[ndt+1]-

alphahmod[ndt])\\

29 *((ti -tmod[ndt])/dtm))

30 misfitJa=misfitJa+np.absolute(alphahexp[i]-

alphahmod_interp)

31 i=i+1

32

33 f = open("misfit", "r+")

34 misfitnow=float(f.read())

35 misfit=misfitJa+misfitnow

36 f.seek (0)

37 f.write(str(misfit))

38 f.close ()

Listing 5.4: getmisfitJa.py
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5.8.8.2 Python Code to Calculate Equilibrium Constants from Experiment

“Q”
1 import numpy as np

2 from numpy import array

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 pd.set_option(’display.max_rows ’, None)

7

8 df1=pd.read_csv(’Ch5_ExpQ -EQ -line -fit -abundances.dat’,names=[’

species ’,’rep1’,’rep2’,’rep3’,’rep4’],sep="\s+")

9

10 D2O =0.483 # proportion of deuterium in solvent water

11 H2O=1-D2O # proportion of protium in solvent water

12

13 # calculate stochastic abundance expectations

14 CHCH3 = H2O **3* H2O

15 CDCH3 = H2O **3* D2O

16 CHCH2D = H2O **2* D2O*H2O*3

17 CDCH2D = H2O **2* D2O*D2O*3

18 CHCHD2 = H2O*D2O **2* H2O*3

19 CDCHD2 = H2O*D2O **2* D2O*3

20 CHCD3 = D2O **3* H2O

21 CDCD3 = D2O **3* D2O

22 #print(CHCH3 ,CDCH3 ,CHCH2D ,CDCH2D ,CHCHD2 ,CDCHD2 ,CHCD3 ,CDCD3)

23 sto = [CHCH3 ,CDCH3 ,CHCH2D ,CDCH2D ,CHCHD2 ,CDCHD2 ,CHCD3 ,CDCD3]

24 df1[’sto’]=sto

25 #print(sto)

26

27 # sum peak area signals for all eight species

28 Tot1=sum(df1[’rep1’])

29 Tot2=sum(df1[’rep2’])

30 Tot3=sum(df1[’rep3’])

31 Tot4=sum(df1[’rep4’])

32 #print(Tot1 ,Tot2 ,Tot3 ,Tot4)

33

34 # calculate relative abundance by dividing each species by the

total peak area

35 df1[’rep1rel ’]=df1[’rep1’]/Tot1

36 df1[’rep2rel ’]=df1[’rep2’]/Tot2

37 df1[’rep3rel ’]=df1[’rep3’]/Tot3

38 df1[’rep4rel ’]=df1[’rep4’]/Tot4

39 #print(df1[’rep1rel ’])
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40

41 rep1rel=df1[’rep1rel ’]

42 rep2rel=df1[’rep2rel ’]

43 rep3rel=df1[’rep3rel ’]

44 rep4rel=df1[’rep4rel ’]

45

46 relCHCH3 = (rep1rel [0], rep2rel [0], rep3rel [0], rep4rel [0])

47 relCDCH3 = (rep1rel [1], rep2rel [1], rep3rel [1], rep4rel [1])

48 relCHCH2D = (rep1rel [2], rep2rel [2], rep3rel [2], rep4rel [2])

49 relCDCH2D = (rep1rel [3], rep2rel [3], rep3rel [3], rep4rel [3])

50 relCHCHD2 = (rep1rel [4], rep2rel [4], rep3rel [4], rep4rel [4])

51 relCDCHD2 = (rep1rel [5], rep2rel [5], rep3rel [5], rep4rel [5])

52 relCHCD3 = (rep1rel [6], rep2rel [6], rep3rel [6], rep4rel [6])

53 relCDCD3 = (rep1rel [7], rep2rel [7], rep3rel [7], rep4rel [7])

54

55 # calculate the cap delta values relative to stochastic

abundance

56 df1[’delta1 ’]=( df1[’rep1rel ’]/sto -1) *1000

57 df1[’delta2 ’]=( df1[’rep2rel ’]/sto -1) *1000

58 df1[’delta3 ’]=( df1[’rep3rel ’]/sto -1) *1000

59 df1[’delta4 ’]=( df1[’rep4rel ’]/sto -1) *1000

60 #print(df1[’delta1 ’],df1[’delta2 ’],df1[’delta3 ’],df1[’delta4 ’])

61

62 delta1=df1[’delta1 ’]

63 delta2=df1[’delta2 ’]

64 delta3=df1[’delta3 ’]

65 delta4=df1[’delta4 ’]

66

67 DelCHCH3 = (delta1 [0], delta2 [0], delta3 [0], delta4 [0])

68 DelCDCH3 = (delta1 [1], delta2 [1], delta3 [1], delta4 [1])

69 DelCHCH2D = (delta1 [2], delta2 [2], delta3 [2], delta4 [2])

70 DelCDCH2D = (delta1 [3], delta2 [3], delta3 [3], delta4 [3])

71 DelCHCHD2 = (delta1 [4], delta2 [4], delta3 [4], delta4 [4])

72 DelCDCHD2 = (delta1 [5], delta2 [5], delta3 [5], delta4 [5])

73 DelCHCD3 = (delta1 [6], delta2 [6], delta3 [6], delta4 [6])

74 DelCDCD3 = (delta1 [7], delta2 [7], delta3 [7], delta4 [7])

75

76 # calculate avg measured cap Delta for each of the eight

species , along with the standard error

77 avg1=np.mean(DelCHCH3 ,dtype=np.float64)

78 avg2=np.mean(DelCDCH3 ,dtype=np.float64)

79 avg3=np.mean(DelCHCH2D ,dtype=np.float64)

80 avg4=np.mean(DelCDCH2D ,dtype=np.float64)
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81 avg5=np.mean(DelCHCHD2 ,dtype=np.float64)

82 avg6=np.mean(DelCDCHD2 ,dtype=np.float64)

83 avg7=np.mean(DelCHCD3 ,dtype=np.float64)

84 avg8=np.mean(DelCDCD3 ,dtype=np.float64)

85

86 std1=np.std(DelCHCH3 ,dtype=np.float64 ,ddof =1)

87 std2=np.std(DelCDCH3 ,dtype=np.float64 ,ddof =1)

88 std3=np.std(DelCHCH2D ,dtype=np.float64 ,ddof =1)

89 std4=np.std(DelCDCH2D ,dtype=np.float64 ,ddof =1)

90 std5=np.std(DelCHCHD2 ,dtype=np.float64 ,ddof =1)

91 std6=np.std(DelCDCHD2 ,dtype=np.float64 ,ddof =1)

92 std7=np.std(DelCHCD3 ,dtype=np.float64 ,ddof =1)

93 std8=np.std(DelCDCD3 ,dtype=np.float64 ,ddof =1)

94

95 sterr1=std1/np.sqrt (4)

96 sterr2=std2/np.sqrt (4)

97 sterr3=std3/np.sqrt (4)

98 sterr4=std4/np.sqrt (4)

99 sterr5=std5/np.sqrt (4)

100 sterr6=std6/np.sqrt (4)

101 sterr7=std7/np.sqrt (4)

102 sterr8=std8/np.sqrt (4)

103

104 df1[’Delta’]=[avg1 ,avg2 ,avg3 ,avg4 ,avg5 ,avg6 ,avg7 ,avg8]

105 df1[’STDev’]=[std1 ,std2 ,std3 ,std4 ,std5 ,std6 ,std7 ,std8]

106 df1[’STerr’]=[ sterr1 ,sterr2 ,sterr3 ,sterr4 ,sterr5 ,sterr6 ,sterr7 ,

sterr8]

107 #print(df1[’Delta ’],df1[’STDev ’],df1[’STerr ’])

108

109 # calculate avg measured relative abundance for each of the

eight species , along with the standard deviation and

standard error

110 avgr1=np.mean(relCHCH3 ,dtype=np.float64)

111 avgr2=np.mean(relCDCH3 ,dtype=np.float64)

112 avgr3=np.mean(relCHCH2D ,dtype=np.float64)

113 avgr4=np.mean(relCDCH2D ,dtype=np.float64)

114 avgr5=np.mean(relCHCHD2 ,dtype=np.float64)

115 avgr6=np.mean(relCDCHD2 ,dtype=np.float64)

116 avgr7=np.mean(relCHCD3 ,dtype=np.float64)

117 avgr8=np.mean(relCDCD3 ,dtype=np.float64)

118

119 # calculate Ks

120 K1 = avgr2*H2O/( avgr1*D2O)
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121 K2 = avgr3*H2O/( avgr1*D2O)

122 K3 = avgr4*H2O/( avgr2*D2O)

123 K4 = avgr4*H2O/( avgr3*D2O)

124 K5 = avgr5*H2O/( avgr3*D2O)

125 K6 = avgr6*H2O/( avgr4*D2O)

126 K7 = avgr6*H2O/( avgr5*D2O)

127 K8 = avgr7*H2O/( avgr5*D2O)

128 K9 = avgr8*H2O/( avgr6*D2O)

129 K10 = avgr8*H2O/( avgr7*D2O)

130

131 Kab1 = K1/K2

132 Kab2 = K4/K5

133 Kab3 = K7/K8

134 Kab4 = K10/K1

135

136 K1p =1000* np.log(K1)

137 K2p =1000* np.log(K2/3)

138 K3p =1000* np.log(K3/3)

139 K4p =1000* np.log(K4)

140 K5p =1000* np.log(K5)

141 K6p =1000* np.log(K6)

142 K7p =1000* np.log(K7)

143 K8p =1000* np.log(K8*3)

144 K9p =1000* np.log(K9*3)

145 K10p =1000* np.log(K10)

146 Kab1p =1000* np.log(Kab1 *3)

147 Kab2p =1000* np.log(Kab2)

148 Kab3p =1000* np.log(Kab3 /3)

149 Kab4p =1000* np.log(Kab4)

150

151 Ks={’Ks’:[K1 ,K2 ,K3 ,K4 ,K5 ,K6 ,K7 ,K8 ,K9 ,K10 ,Kab1 ,Kab2 ,Kab3 ,Kab4],’

permil ’:[K1p ,K2p ,K3p ,K4p ,K5p ,K6p ,K7p ,K8p ,K9p ,K10p ,Kab1p ,

Kab2p ,Kab3p ,Kab4p ]}

152 df2=pd.DataFrame(Ks)

153 print(df2)

154

155 # plot it up

156 fig1 = plt.figure(figsize =(7 ,10))

157 ax1 = plt.subplot2grid ((2, 1), (0, 0), colspan=1, rowspan =1)

158 ax2 = plt.subplot2grid ((2, 1), (1, 0), colspan=1, rowspan =1)

159 ax1.plot(df1[’species ’],df1[’rep1’],’o’,color=’#1 a017c’,alpha

=0.4, markersize =5)

160 ax1.plot(df1[’species ’],df1[’rep2’],’o’,color=’#1 a017c’,alpha
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=0.4, markersize =5)

161 ax1.plot(df1[’species ’],df1[’rep3’],’o’,color=’#1 a017c’,alpha

=0.4, markersize =5)

162 ax1.plot(df1[’species ’],df1[’rep4’],’o’,color=’#1 a017c’,alpha

=0.4, markersize =5)

163 ax1.set_ylim (0 ,700)

164 ax1.grid(’on’)

165 ax1.tick_params(axis=’x’, grid_color=’none’)

166 ax1.tick_params(axis=’y’)

167 ax1.xaxis.set_ticks(df1[’species ’])

168 ax1.xaxis.set_ticklabels(ax1.get_xticklabels (),rotation =45)

169 ax1.set_xlabel(’Isotopic Species ’)

170 ax1.set_ylabel(r’Peak Area (arbitrary units)’)

171

172 ax2.plot(df1[’species ’],df1[’rep1rel ’],’o’,color=’#1 a017c’,

alpha =0.3, markersize =5,label=’Replicate Measurements ’)

173 ax2.plot(df1[’species ’],df1[’rep2rel ’],’o’,color=’#1 a017c’,

alpha =0.3, markersize =5)

174 ax2.plot(df1[’species ’],df1[’rep3rel ’],’o’,color=’#1 a017c’,

alpha =0.3, markersize =5)

175 ax2.plot(df1[’species ’],df1[’rep4rel ’],’o’,color=’#1 a017c’,

alpha =0.3, markersize =5)

176 ax2.plot(df1[’species ’],df1[’sto’],’+’,color=’k’,alpha =0.6,

markersize =5,label=’Stochastic Expectation ’)

177 ax2.set_ylim (0 ,0.25)

178 ax2.set_xlabel(’Isotopic Species ’)

179 ax2.set_ylabel(r’Relative Abundance ’)

180 ax2.grid(’on’)

181 ax2.tick_params(axis=’x’, grid_color=’none’)

182 ax2.tick_params(axis=’y’)

183 ax2.xaxis.set_ticks(df1[’species ’])

184 ax2.xaxis.set_ticklabels(ax1.get_xticklabels (),rotation =45,

horizontalalignment=’right’)

185 ax2.legend ()

186

187 fig1.tight_layout ()

188 fig1.savefig(’Ch5_ExpQ -EQ -line -fit -abundances.png’,dpi=400,

transparent=False)

189 plt.show()

190

191 fig2 = plt.figure(figsize =(7 ,5))plt.errorbar(df1[’species ’],df1

[’Delta ’],yerr=df1[’STerr ’]*2,fmt=’o’,color=’#1a017c ’,alpha

=0.6, markersize =4,capsize =4)
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192 plt.grid(’on’)

193 plt.tick_params(axis=’x’, grid_color=’none’)

194 plt.tick_params(axis=’y’)

195 plt.xticks(rotation =45)

196 plt.yticks(np.arange (-120.1, 120.1 , 100/10) ,minor=True)

197 plt.xlabel(’Isotopic Species ’)

198 plt.ylabel(r’$\Delta$ ($^o/_{oo}$)’)
199 fig2.tight_layout ()

200 fig2.savefig(’Ch5_Stochastic -Clumping.png’,dpi=400, transparent=

False)

201 plt.show()

Listing 5.5: Ch5_EXPQ-EQ.py
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5.8.8.3 Python Codes for Data Adjustments
1 import pandas as pd

2 import numpy as np

3 import array

4 from scipy.optimize import curve_fit

5 from matplotlib import pyplot as plt

6

7 df=pd.read_csv(’EXPQ_NMR.dat’,names=[’TIME’,’CHCH3’,’CDCH3’,’

CHCH2D ’,’CDCH2D ’,’CHCHD2 ’,’CDCHD2 ’,’CHCD3’,’CDCD3’,’TOTAL’

],sep="\s+")

8 df_select=df.head (35)

9 df_select2=df.head (17)

10

11 time=df[’TIME’]. to_numpy ()

12 chch3=df[’CHCH3 ’]. to_numpy ()

13 cdch3=df[’CDCH3 ’]. to_numpy ()

14 chch2d=df[’CHCH2D ’]. to_numpy ()

15 cdch2d=df[’CDCH2D ’]. to_numpy ()

16 chchd2=df[’CHCHD2 ’]. to_numpy ()

17 cdchd2=df[’CDCHD2 ’]. to_numpy ()

18 chcd3=df[’CHCD3 ’]. to_numpy ()

19 cdcd3=df[’CDCD3 ’]. to_numpy ()

20 total=chch3+cdch3+chch2d+cdch2d+chchd2+cdchd2+chcd3+cdcd3

21 chch3=chch3/total

22 cdch3=cdch3/total

23 chch2d=chch2d/total

24 cdch2d=cdch2d/total

25 chchd2=chchd2/total

26 cdchd2=cdchd2/total

27 chcd3=chcd3/total

28 cdcd3=cdcd3/total

29 htime=time [0:35]

30 hchch3=chch3 [0:35]

31 hcdch3=cdch3 [0:35]

32 hchch2d=chch2d [0:35]

33

34 x=htime

35 y=hchch3

36

37 def test(x, a,b):

38 return np.exp(-a * (x+b) )

39

40 param , param_cov = curve_fit(test , x, y)
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41

42 a=param [0]

43 b=param [1]

44 time_shift=b

45

46 xx1 = np.linspace (-10, 100, num = 40)

47 f1= np.exp(-a * (xx1+b))

48

49 plt.plot(x, hchch3 , ’o’, color =’green’, label =r"CHCH$_3$")
50 plt.plot(xx1 , f1 , ’--’, color =’blue’, label ="Fit (exponential

")

51 #plt.axhline(y = 1.0, color = ’black ’, linestyle = ’-’)

52 plt.xlim (-10,30)

53 plt.legend ()

54 plt.grid()

55 plt.xlabel(’Time (min)’)

56 plt.ylabel(r’CHCH$_3$ (normalized signal)’)

57 plt.savefig(’extrpltQ.jpg’,dpi=400, transparent=False)

58 plt.savefig(’extrpltQ.png’,dpi=400, transparent=False)

59 plt.show()

60

61 time=time+time_shift

62 n=len(time)

63

64 f = open("EXPQ.dat", "w")

65 i=0

66 while i < n:

67 print(’{0: >10.6f} {1: >10.6f} {2: >10.6f} {3:10.6f} {4:10.6f}

{5:10.6f} {6:10.6f} {7:10.6f} {8:10.6f}’\

68 .format(time[i], chch3[i], cdch3[i], chch2d[i], cdch2d[i],

chchd2[i], cdchd2[i], chcd3[i], cdcd3[i]),file=f)

69 i=i+1

70 f.close ()

Listing 5.6: ProcessQ.py
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1 import pandas as pd

2 import numpy as np

3 import array

4 from scipy.optimize import curve_fit

5 from matplotlib import pyplot as plt

6

7 dfnmr=pd.read_csv(’EXPJ_NMR.dat’,names =[’time’,’alpha ’,’beta’],

sep="\s+")

8 time=dfnmr[’time’]. to_numpy ()

9 alphanmr=dfnmr[’alpha ’]. to_numpy ()

10 betanmr=dfnmr[’beta’]. to_numpy ()

11 normalize=betanmr [0]

12 alpha=alphanmr/normalize *3

13 beta=betanmr/normalize *3

14

15 #df_select=df.head (20)

16 #df_select2=df.head (17)

17

18 xa = time [0:20]

19 ya = alpha [0:20]

20

21 def test(x, a, b, c):

22 return a * x**2 + b * x + c

23

24 param , param_cov = curve_fit(test , xa , ya)

25 a=param [0]

26 b=param [1]

27 c=param [2]

28

29 xx = np.linspace (-10, 20, num = 40)

30 yy = a * xx**2 + b * xx + c

31

32 root1=(-b-np.sqrt(b**2-4*a*c))/(2*a)

33 root2=(-b+np.sqrt(b**2-4*a*c))/(2*a)

34

35 tshift1=-root2

36

37 c=c-0.02

38

39 root1=(-b-np.sqrt(b**2-4*a*c))/(2*a)

40 root2=(-b+np.sqrt(b**2-4*a*c))/(2*a)

41

42 tshift2=-root2
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43

44 xb=time [0:17]+ tshift1

45 yb=beta [0:17]

46 param , param_cov = curve_fit(test , xb , yb)

47 a=param [0]

48 b=param [1]

49 c=param [2]

50

51 print(a,b,c)

52

53 xx2 = np.linspace (-10, 20, num = 40)

54 yy2 = a * xx2 **2 + b * xx2 + c

55

56 fig1 = plt.figure(figsize =(8 ,10))

57 ax1 = plt.subplot2grid ((2, 1), (0, 0), colspan=1, rowspan =1)

58 ax2 = plt.subplot2grid ((2, 1), (1, 0), colspan=1, rowspan =1)

59

60 ax1.plot(xx , yy , ’--’, color =’k’,alpha =0.5, label ="Quadratic

Fit")

61 ax1.plot(xa , ya , ’o’,color=’#01497c’,alpha =0.5, label =’Exp J

Data’)

62 ax1.set_xlim (-10,20)

63 ax1.set_ylim (0 ,0.25)

64 ax1.grid(’on’)

65 ax1.tick_params(axis=’x’, grid_color=’none’)

66 ax1.tick_params(axis=’y’)

67 ax1.legend(loc=’lower right’)

68 ax1.set_xlabel(’Time (min)’)

69 ax1.set_ylabel(r’$H_\alpha$ (normalized)’)

70 ax2.plot(xx2 , yy2 , ’--’, color =’k’,alpha =0.5, label ="Quadratic

Fit")

71 ax2.plot(xb , yb , ’o’,color=’#01497c’,alpha =0.5, label =’Exp J

Data’)

72 ax2.set_xlim (0,20)

73 ax2.set_ylim (2.4 ,3.4)

74 ax2.grid(’on’)

75 ax2.tick_params(axis=’x’, grid_color=’none’)

76 ax2.tick_params(axis=’y’)

77 ax2.legend(loc=’upper right’)

78 ax2.set_xlabel(’Time (min)’)

79 ax2.set_ylabel(r’$H_\beta$ (normalized)’)

80 fig1.tight_layout ()

81 plt.show()
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82 fig1.savefig(’Ch5_EXPJ -correction.png’,dpi=400, transparent=

False)

83

84 beta_0_0=c

85

86 x=time [0:17]+ tshift2

87 y=beta [0:17]

88 param , param_cov = curve_fit(test , x, y)

89 a=param [0]

90 b=param [1]

91 c=param [2]

92

93 beta_02_0=c

94

95 t_0=time+tshift1

96 t_0=np.insert(t_0 ,0 ,0.0)

97 t_02=time+tshift2

98 t_02=np.insert(t_02 ,0 ,0.0)

99 alpha_0=alpha

100 alpha_0=np.insert(alpha_0 ,0 ,0.0)

101 alpha_02=alpha

102 alpha_02=np.insert(alpha_02 ,0 ,0.02)

103 beta_0=beta

104 beta_0=np.insert(beta_0 ,0,beta_0_0)

105 beta_02=beta

106 beta_02=np.insert(beta_02 ,0, beta_02_0)

107

108 beta_0=beta_0/beta_0_0 *3.0

109 alpha_0=alpha_0/beta_0_0 *3

110 beta_02=beta_02/beta_02_0 *3

111 alpha_02=alpha_02/beta_02_0 *3

112

113 n=len(t_0)

114

115 f = open("EXPJ.dat", "w")

116 i=0

117 while i < n:

118 print(’{0: >10.6f} {1: >10.6f} {2: >10.6f}’.format(t_0[i],

alpha_0[i],beta_0[i]),file=f)

119 i=i+1

120 f.close ()

121

122 f = open("EXPJb.dat", "w")
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123 i=0

124 while i < n:

125 print(’{0: >10.6f} {1: >10.6f} {2: >10.6f}’.format(t_02[i],

alpha_02[i],beta_02[i]),file=f)

126 i=i+1

127 f.close ()

128

129 fig2 = plt.figure(figsize =(7 ,5))

130 plt.plot(t_0 , alpha_0 , ’:’, color =’#01497c’,alpha =0.5, label ="

extrap to 0",markersize =5)

131 plt.plot(t_0 , beta_0 , ’:’, color =’#7 c2c01’,alpha =0.5, label ="

extrap to 0",markersize =5)

132 plt.plot(t_02 , alpha_02 , ’-.’, color =’#01497c’,alpha =0.5, label

="extrap to 0.02",markersize =5)

133 plt.plot(t_02 , beta_02 , ’-.’, color =’#7 c2c01’,alpha =0.5, label

="extrap to 0.02",markersize =5)

134 plt.xlim (0 ,400)

135 plt.ylim (0,3)

136 plt.legend ()

137 fig2.savefig(’Ch5_EXPJ -correction -2. png’,dpi=400, transparent=

False)

138 plt.show()

Listing 5.7: AdjustJ.py
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5.8.8.4 FORTRAN Code for Monte Carlo Error Simulation
1 parameter(maxiter =1000000)

2 real abund (8),err (8),sab (8),tmp (8),pab (8)

3 real capdel(8,maxiter),acd (8),acddev (8)

4 abund (1) =222.480

5 abund (2) =236.019

6 abund (3) =609.488

7 abund (4) =661.000

8 abund (5) =546.114

9 abund (6) =593.846

10 abund (7) =181.57475

11 abund (8) =193.19091

12 err (1)= 0.0054

13 err (2) =0.0048

14 err (3) =0.0017

15 err (4) =0.0014

16 err (5) =0.0018

17 err (6) =0.0016

18 err (7) =0.0038

19 err (8) =0.0035

20 sab (1) =7.1443

21 sab (2) =6.6745

22 sab (3) =20.0235

23 sab (4) =18.7067

24 sab (5) =18.7067

25 sab (6) =17.4764

26 sab (7) =5.8255

27 sab (8) =5.4424

28

29 22 format(i6 ,f12 .5)

30 do i=1,maxiter

31 do k=1,8

32 tmp(k)=abund(k)

33 enddo

34 do k=1,8

35 shift =4.0* err(k)*(rand() -0.5)

36 tmp(k)=tmp(k)+shift*abund(k)

37 enddo

38 summ =0.0

39 do k=1,8

40 summ=summ+tmp(k)

41 enddo

42 33 format (2f12 .2)
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43 34 format (2f10 .0)

44 do k=1,8

45 pab(k)=(tmp(k)/summ)*100.0

46 enddo

47 do k=1,8

48 capdel(k,i)=(pab(k)/sab(k) -1.0) *1000.

49 enddo

50 enddo

51 do k=1,8

52 acd(k)=0.0

53 enddo

54 do i=1,maxiter

55 do k=1,8

56 acd(k)=acd(k)+capdel(k,i)

57 enddo

58 enddo

59 do k=1,8

60 acd(k)=acd(k)/float(maxiter)

61 enddo

62 do k=1,8

63 acddev(k)=0.0

64 enddo

65 do i=1,maxiter

66 do k=1,8

67 acddev(k)=acddev(k)+abs(capdel(k,i)-acd(k))

68 enddo

69 enddo

70 do k=1,8

71 acddev(k)=acddev(k)/float(maxiter)

72 enddo

73 44 format(f12.1,f12 .1)

74 do i=1,8

75 print 44,acd(i),acddev(i)

76 enddo

77 end

Listing 5.8: Ch5_EXPQ-EQ.py


