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To begin, I would like to dedicate my thesis to

• my most respected teacher, Professor Alan J. Weinstein,

• my dearest brother, Elwin Li,

• my loving mother, Wendy Choy,

• and, to answer Alan’s question on the original title of my thesis, the anime/-
manga GIVEN (ギギギヴヴヴンンン) written by Natsuki Kizu (キキキヅヅヅナナナツツツキキキ).

I believe many people will think that I am eccentric (it is already a much better
word than crazy) to dedicate my thesis to a Japanese anime. Please bear with me
and allow me to explain. Particularly, “GIVEN” is an inseparable part of my PhD
journey. I resonate with “GIVEN” firmly.

Let me try to present it this way: In the following, boxed texts are summaries of
“GIVEN”, and unboxed sections are stories of mine. Alan knows part of the story
already, and maybe my friend and colleague Simona has also heard me talking
partially about it back when I was a SURF, but I have yet to tell them the full version
of the story. This is the right time.

The story of “GIVEN” revolves around the main character, Mafuyu Sato
(佐藤真冬). Mafuyu was born into a typical family, living with his father
and mother. However, he was constantly abused (verbally and physically).
Mafuyu explained in one of the scenes that “his father would beat him if he
spoke” (喋ると、お父さんが打つの). All these cause Mafuyu to become
a depressed and quiet boy. Only when he met another boy one day, Yuki
Yoshida (吉田由紀), who listened to him and called the police for help, did
Mafuyu manage to escape from his father’s violence and regain happiness.
Ever sinceMafuyu’s father was arrested, Yuki promised to be with and protect
Mafuyu forever (俺が一緒にいる、ずっとだ).

I was born into an ordinary family in 1997, living with my father and mother. I
would have had a great childhood, I really would have, but it turns out I did not. As
I remember, I used to live in a decent apartment, which my mother and father were
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in the process of purchasing through installments. However, one day, we moved
out of the apartment to a rental apartment, and then we moved again, one after
another, to smaller and smaller apartments. Back then, I had no idea what was
happening. When I turned five, my brother Elwin was born and entered the family.
Curiously, however, my father spent less and less time at home. My mother used to
take Elwin and me to meet many of her friends and our relatives, but that frequency
also decreased eventually. Again, back then, I had no idea what was happening.

2004 was the first turning point of my life that I will never forget. I was a Primary
2 student (equivalent to Grade 2 in the US). I remember I got “first in form” in
the final exam at the end of the school term. It should have been a happy news to
celebrate. However, it was at the very same time that my mother discovered that my
father was having an affair. They had a big fight, and a divorce was inevitable. The
whole thing was devastating to the seven-year-old me. But that was not the worst
part.

My father (hereafter, I will refer to him as that man because he does not deserve
to be my father) left me and my family with one final statement: “Listen, Alvin,
me having the divorce with your mother is the best present I will give you for your
birthday 1 and for you getting first in form in your final exam.” It was a very cruel
statement indeed, especially to a young child like me. I must have been crying
hard at that time, and I believe I even felt that all my effort was worthless. But
my mother, who should have been much more depressed than I was, hugged me
tightly and cheered me up. Regardless of what she was going through back then,
she toughened herself and continued to take care of and protect Elwin and me by
all means as both a loving mother and a strict father. She promised to stay with us
forever. Since then, my goal has been to work hard to make a good showing for my
mother.

Eventually,Mafuyu andYuki became boyfriends. Yuki lived up to his promise
- he gave Mafuyu his unlimited love and care. They were together all the
time, chatting, playing, spending time together. Mafuyu relied on Yuki, and
Yuki relied on Mafuyu. It would have been a great story for the two of them.

My mother sacrificed everything to take care of me and Elwin. Back then, that
man not only stole my mother’s money (which is why we had to go through the
constant apartment downsizing). He even borrowed money from our relatives and

1 That man left us in July 2004; my birthday is August 17.
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my mother’s friends, using false excuses that we did not have enough money for
food and lying that my mother was unwilling to buy milk powder for Elwin, who
was still a baby then. Yes, such a terrible man does exist on Earth, and from my
point of view, he is not even worthwhile to be called a human. At that time, my
mother must have been ashamed, and she must have been embarrassed to face her
friends and our relatives. She must have suffered a lot. She must have been deeply
depressed. However, even in such a horrible situation, she never considered giving
us up.

My mother gave up her dignity to apply for “Comprehensive Social Security As-
sistance” (financial assistance) from the government. She could have applied for
a decent job, given that she was an assistant manager previously before resigning
to become a full-time housewife. But she decided it was more important to spend
unlimited time caring for me and Elwin, especially because we were still recovering
after the incident.

Mymother stayed strong and took up both the role of a mother and a father to nurture
us. She was very strict with us, and that is because she was, at the same time, a
father to us, and she had to make sure we stayed on the right path. Yes, sometimes
we felt that she was too strict, and sometimes she would yell at us for no reason,
and we did complain about it. But as I grew up, I gradually understood why she
had to be that strict, and I also understood the pressure my mother was bearing, and
that we should be more considerate. I will never forget one thing my mother always
told me: “Remember Alvin, I would not have scolded you that hard if I did not care
about you. It takes much energy to scold and be angry with someone, and it makes
one feel sad.”

My mother never cared about herself. You would notice that she always wore the
same clothes and shoes and used the same handbag over the years. If you looked
closer, you would have noticed the holes within and the many signs of repairing on
them. That is because she was never willing to spend money on herself. She was
willing to spend money on us to buy new clothes and shoes, but she would only
allow herself to buy HK$20 shoes from the bargain shops in Mong Kok. She did
not even care if the shoes did not fit her foot size or were hurting her feet. For the
shoes at home, even if they were broken, she would only use glue to repair them, and
only when they were no longer repairable would she throw them away. She would
rather use super glue to fix her broken glasses than to buy a new pair; when Elwin
and I bought breakfast from fast-food shops, she would never join us in purchasing
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a meal; instead, she would just eat the toast from our meals. She never stopped us
from trying all the street food we desired when we went out. Even though our family
is poor, she encouraged Elwin and me to join all sorts of study tours and summer
research exchange programs. Who knows how much she had given up to fulfill our
many needs and desires?

My mother had always protected us from all kinds of attacks, verbal or physical. I
still remember the mocking frommy relatives like “what is the big deal about getting
into university?”, “You should be grateful that an institute in the US is willing to
take your son as a graduate student”... My mother always stood before us as a giant
shield to protect us from these mockeries. And that is why I promised myself to
work hard to win credit for her, hoping that one day she will be proud of us, that she
can take a good rest and enjoy life.

Nine years ago, when I became an undergraduate, and Elwin was still a high school
student, the heartless government decided to cut down the subsidy to our family to
force my nearly 50-year-old mother to return to the workforce. My mother did not
work in the first place to get the most time to take care of us. That was terrible
timing because Elwin was also going through HKDSE (similar to the university
entrance exam), one of the most critical exams in his life, and it was when he needed
my mother’s support the most. My mother decided to take on a job that she did
not like - being a security guard, only because she could leave work early and get
home early so she could still take care of Elwin. Being a security guard definitely
differs from a job she liked, but she worked hard and gradually gained her boss’s
trust. Patrolling day after day must have been a significant burden to her, but she
never ditched her role as a mother, even though she was tired. She still tried her
best to look after Elwin and me. Of course, I could not have let my mother bear
this pressure all on her own, and that is why I would constantly reject my friends’
invitations to whatever activities they were inviting me to join. I had to go home
and help my mother as much as possible. Here I have to apologize to my dearest
friends. I value friendship, but nothing is more important than my loving mother.

Regardless of how miserable life was, my mother would always care about us first.
She is our great mother.
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As Mafuyu and Yuki grew, Yuki became more involved in music, playing
guitar and starting his band. Mafuyu felt that Yuki was paying less and less
attention to him. Deep down, Mafuyu probably hoped that Yuki would invite
him to join his band, but he never said that to Yuki. Instead, his loneliness
had led to many fights and quarrels between him and Yuki. They were yelling
at each other hurtful phrases that were never meant. At one point, Mafuyu
said to Yuki, “(If you are willing to do anything for me, then) would you die
for me? (じゃ、俺のために死れるの？)”

Undoubtedly, there were times when I would not listen to my mother and yell at her,
especially when I was going through my rebellious stage. They were never meant,
but hurtful phrases would just come from my mouth. Also, I wouldn’t say I liked it
when my mother required me to call her and update her on my whereabouts, such
as when I was on a school trip, hanging out with friends, etc. Back then, I felt like
having to call my mother in front of my friends was embarrassing, and I probably
hoped she would have given me more “trust and freedom” by not having me call
her as frequently. I was so wrong that I would have gone back in time and punched
myself for having that thought.

Ever since three years ago, I have been reflecting on my whole life as I was watching
“GIVEN”. I have never askedmymother if shewould die forme, at least not verbally.
But actually, I did (kind of) ask her to do that, considering my decision five years
ago. To continue pursuing my dream of becoming a physicist, I accepted the offer
from Caltech graduate school to continue my PhD studies. I still remember that
very night on February 1, 2019, when I received an email from Caltech saying I
was accepted. I could not stop myself from screaming for joy. It was so loud that
my mother and Elwin were awakened. Elwin told me he thought I was screaming
because I saw a mouse. I told them the news, and my mother was extremely happy
for me. She hugged me so tightly and tears of happiness flowed down her cheeks.

With that, I left my mother and Elwin behind in Hong Kong as I continued to pursue
my dream at Caltech in the US. The selfish me left behind the burden of taking care
of Elwin and the family to my mother. Back then, I did “ask” my mother to die for
me, unknowingly...
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Mafuyu probably said that impulsively without thinking. However, the next
day, when Mafuyu came to Yuki’s house, he could only find a lifeless Yuki in
front of him - Yuki hung himself. Mafuyu stood there forever, unable to utter
a single word. He was staring blankly, without any crying. Mafuyu could
not express his feelings to anyone, and he decided to lock them away with his
true self and continue to live on as if nothing had happened.

January 2020 was the last time I could return to Hong Kong and reunite with my
mother. Then COVID-19 happened. Since then, I have only been able to talk to my
mother on the phone. Since early April 2021, my mother had not been feeling well,
and after my nagging, she finally agreed to go to the hospital and was asked to stay
behind because of her high fever. Being in the US, I could only obtain news about
her from Elwin, who was also busy with schoolwork as an undergraduate. Knowing
that my mother had an abnormally high concentration of white blood cells, all I
could do was search the internet with her symptoms for possible illnesses that she
could have had - it could have been just a regular fever. Still, it could have also been
meningitis, or even blood cancer...The different possibilities have only intensified
my feeling of insecurity. My mother was not willing to go to the hospital only until
the very end, and I know the reason why. Eight years ago, my mother also went
through a severe illness. At that time, I had been nagging her for a long time, asking
her to go to the hospital, and she even yelled at me for being annoying; only in the
end did she agree to my request. Of course, I fully understand her concerns. My
mother cared about Elwin and me and did not want to leave us alone. It was the
same this time. I was not home in Hong Kong, so Elwin would have been left alone
if my mother had gone to the hospital. She must have been worrying that Elwin
would feel scared and lonely, and so she only went to the hospital at the very last
moment.

I could fully understand how painful it would have been for Elwin to worry about
our mother, and at the same time , needing to take care of everything for the family.
That is why I wanted to help reduce Elwin’s pressure. Therefore, I called Elwin
the second morning after our mother went to the hospital to see if he had any news
about her. I requested Elwin to tell me the hospital she was staying at so that I could
ask Uncle Eric to check on her. I wanted to have another person to share the worries
with Elwin and support the lonely Elwin in Hong Kong. Those were good motives,
but I was not smart enough to notice that my constant phone calls to Elwin made
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Elwin think I distrusted him. With both of us suffering from extreme worry and
stress, we ended up in endless quarrels and yelling. I am grateful that Elwin forgave
me for yelling at him and that he eventually understood the motivation behind my
actions.

Ever since my mother went to the hospital and fell into a coma, I have been wanting
to call her and listen to her voice. But at the same time, I did not want to disturb her
from her rest. When I heard from Elwin that my mother’s fever had gone down and
was able to talk, I could not stop myself from calling her immediately. Even though
my mother’s voice sounded tired when I heard her saying “hello”, “I am really tired”
and “I am signing off”, I did feel less worried. Hearing my mother’s voice, all I
could say were “Great”, “It is great that you are conscious”. Knowing that she was
tired, I could only say “rest more” and quickly end the call. If I had known that it
was the last time I could talk to her, even though it was very selfish, I would not
have ended that call that quickly.

I felt hopeful when I heard my mother was getting better, but Elwin soon told me
her situation was worsening again. She fell into a coma again and was sent to the
intensive care unit (ICU). My heart sank immediately, but I knew life must go on,
so I kept working hard. On 20 April 2021, I confidently presented at the APS
April Meeting for the first time as a graduate student. I tried to share my happiness
through a Facebook post. People have been asking me why I write long journals on
Facebook whenever I go on trips or attain outstanding achievements. In the past,
I would answer that it was only personal interest, or maybe it was that I wanted to
share my happiness with others, but now that I think about it, I was hoping that my
mother could read through my journals and share my joy. I hoped my mother would
be proud to have me as her son, and I wanted her to know that her unlimited love for
Elwin and me was worthwhile. I was too silly that I was hoping that my Facebook
post could have woken her up from her coma. I really hoped that she would be
among the many people who liked my Facebook post. That had been my wish.

Who would have thought that I would be receiving the bad news of my mother’s
death the very afternoon of the same day through a phone call with Elwin? Unlike
Mafuyu, my eyes immediately flooded with tears while holding my phone, but I
knew I could not cry with Elwin on the line; I could not let Elwin hear me crying
because Elwin was already crying loudly as he spoke to me. I knew I had to calm
down, and I had to hide my feelings for now; I had to first calm Elwin down, so
even though I was in great pain, even though my tears were flowing from my eyes
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non-stop, I still forced myself to say “there, there”, “don’t cry”, “Alvin is here, I love
you” to the other side of the phone. Only after Elwin felt better and after we ended
the call could I truly release my sadness and cry as loudly and as much as I wanted
in my dorm room. I must have been crying very loudly because even my neighbors
came over to check on me. Eventually, I stopped crying on that very same day. Back
then, as I wrote in one of my Facebook posts, I thought, “You cannot cry in front of
other people, right? And at the same time, I thought I had cried enough”.

That turned out to be a terrible mistake. I thought that I had cried enough, and
similar to Mafuyu, I decided to lock away all my feelings together with my inner
true self and forced myself to move on. I acted like nothing happened in front of
everyone, especially in front of my friends, colleagues, and loving supervisor, Alan.
I put on a bold face, but at the same time, I distanced myself from everyone. I
avoided all kinds of interactions and social events with my research group members
as much as possible. I did not realize I was doing this on purpose until recently.
In front of everyone else, I always put on a big smile and a happy face. I drew
various cartoons and designed attractive slides and presentations to make everyone
laugh. People probably would just see me as an eccentric, weird graduate student.
Probably, that was my purpose - to hide my true self and feelings from everyone,
or maybe I wanted to relieve myself from the pain I was suffering by seeing others
smile. Back then, I always covered my ears with my earphones, playing music as
loud as I could and avoiding all kinds of conversation as much as possible.

Mafuyu isolated himself from everyone else until a year later when he met
Ritsuka Uenoyama (上ノ山立夏), another student studying in the same
school as him. Uenoyama found Mafuyu lying by the staircase, holding onto
the guitar with snapped strings that Yuki had left himwith. He helpedMafuyu
fix his guitar, eventually invited him to join his band, and taught him how
to play the guitar. This eventually brought Mafuyu back into the sunlight,
where he also met new friends in the band, although he was still hiding his
true feelings from everyone.

I kept isolating myself and let the fake “moved on” me take control of me for more
than a year. At some point, my inner self started to resist the control and tried to get
out of the prison I threw him into. If my research group members remember, at one
group meeting presentation 2, I put in a slide to explain that “I am not icy and cold”;

2 Actually, I remember the exact date of that group meeting - 22 October, 2022.
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that “Although I look brave on the outside, I am actually quiet and shy”, and I even
tried to ask people not to “hesitate to say hi to me” because “I will always reply”.
Looking back, that was the best attempt of my inner self trying to break through
and reach out for help. Fortunately, that attempt worked. After that group meeting,
people started to say hi and have daily conversations with me again. People may
not know, but even a single hi and simple small talk brighten me and make me feel
valued and cared for. Every little act leads to a significant impact. Although, like
Mafuyu, I still have not figured out how and when to express my true feelings and
who I should talk to. It is not typical to casually bring up the topic that one lost his
mother and that one feels sad when talking to your friends and colleagues.

As days passed, Uenoyama turned a melody that Mafuyu hummed into a
song and asked Mafuyu to write lyrics, prompting him to fill it with words
and thoughts he wanted to convey to the others. Uenoyama hoped to have
Mafuyu sing the song in their next public performance. This opened up an
opportunity for Mafuyu to face his locked away feelings. It was not easy,
especially when he needed to figure out what he wanted to say. In one scene,
while another band member, Haruki Nakayama (中山春樹) was asking why
Mafuyu found it so difficult to fill in the lyrics for the song, Mafuyu asked the
following questions:
“Do you have someone you love, Mr. Haruki? (春樹さんはすぎな人って
いますか？)”

“If that someone suddenly disappeared from the world one day, what would
you say? (もし、その人がある日突然世界からいなくなったら、なん
て言います？)”

“Would you feel lonely? Sad? Would you miss them? (悲しい？寂しい？
恋しい？)”
Obviously, Haruki was not able to answer these hard questions, and he could
only reply that “I honestly don’t know what to say...” (何て言えばいいか分
からないかな...), which Mafuyu agreed to.

I did not have such an opportunity as Mafuyu, but ever since I heard those questions
and words from Mafuyu, I cannot stop thinking about them. Figuring out the
answers to the questions is hard. It is not like I am trying to escape from facing the
real me, but I am genuinely confused and I do not know what my true feelings are -
Too many mixed emotions. Do I feel lonely? Do I feel sad? Do I miss my mother?
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Do I regret leaving my family behind? Do I feel angry towards myself? Do I feel
angry towards my mother for leaving me and Elwin so suddenly? I do not know the
answers, nor do I know how I should express them. It is too complicated.

Mafuyu kept pondering the questions day after day, and even until they had
their final rehearsal before the performance, he failed to come up with the
lyrics for the song. But just before the performance, Mafuyu heard his inner
voice talking to him: “I never know what kind of reactions I should be giving.
I am not able to laugh and cry normally like everyone else does. It is probably
because I am bad at expressing myself to the others. But even so, in reality,
even if I really want to, I cannot cry properly, and it hurts so bad. It hurts
so much that I just want to scream. I always wanted someone to understand
that, even just a little bit...” (いつもどういう反応したらいいか分から
ないんだ。他の人がするみたいに、泣いたり笑ったり、上手に出来

ない。多分きっと人より伝えるのが下手くそなんだ。でも、だけど

本当は、いつも本当は、 ただ、上手に泣けなくて、苦しくて、痛

くて、叫びたいのは、誰かにずっと分かって欲しかった。少しだけ

でいいから...) And with that, Mafuyu finally expressed his true feelings to
everyone through the song “A Winter story” (冬のはなし[175])...

I think I am the same as Mafuyu. I am terrible at expressing myself to others, and I
cannot laugh and cry (genuinely) in front of others. And because I cannot express
myself properly, it hurts so bad. Tears will start flowing endlessly down my cheeks
whenever I am alone, at night in my bedroom or in the office. Mafuyu’s “A Winter
Story” resonates with my feelings so much that I cannot stop myself from looping
the song repeatedly, and I am pretty sure that I have listened to that song not fewer
than ten thousand times over the past few years. If you have ever stumbled upon me
strolling on the campus wearing my earphones, that is actually your closest approach
(periapsis) to my true self, when listening to Mafuyu’s singing, as if he was saying
exactly what I wanted to say. I try my best to hide my inner self with a big smile
whenever I see someone I know, but if you look closely, you will probably notice
my watery eyes. For completeness, I include the lyrics of the song below.
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AWinter Story (partial)
冬冬冬のののはははなななししし（（（部部部分分分）））

また　溶けきれずに残った I continue with feelings inside me that is
日陰の雪みたいな not disappearing, like the snow that has
想いを抱いて生きてる not completely melted in the shade.

ねえ　僕はこの恋を Please tell mewhat words I should use to
どんな言葉で close the door on this only love I know?
閉じたらいいの？

あなたの全てが Your everything has lost its tomorrow,
明日を無くして and it is now wandering around eter-
永遠の中を彷徨っているよ nally. Alongside me, who was unable
さようなら出来ずに to say goodbye to you or move on.
立ち止まったままの

僕と一緒に

また　解けない魔法のような Just like a spell thatwill not break, or like
それとも呪いのような some kind of curse, I am still holding
重い荷物を抱えてる onto some heavy luggage that you left

behind.

ねえ　僕はこの町で Please tell me what kind of tomorrow
どんな明日を am I supposed to look for in this world?
探せばいいの？ (Scream)
嗚呼！

冷たい涙が The cold tears that fall freeze under the
空で凍てついて sky. They pretend to be kind as they flow
優しいフリして down my cheeks as if they are dancing.
舞い落ちる頃に

離れた誰かと Two people who were always together
誰かがいたこと were torn apart. That is all to the simple
ただそれだけの話 story I am telling you.

The lyrics ofMafuyu’s song is the samemessage I want to convey. I lied to everyone,
even myself, that I was feeling okay. In reality, I have never moved on since my



xiv

mother passed away three years ago. I have been standing in the same place, unable
to carry on. I tried to hide away all my feelings and my true self, but they continued
to live with me like the snow that was not melting in the shade. I cannot find the
right words to properly close the door on the only love I have ever known from
my mother, nor to express my feelings. All those memories and emotions that my
mother left me with are like a spell or a curse that cannot be broken. In the end, the
thing that causes me the most pain, which I will regret for the rest of my life without
any solution, is that I can never properly say goodbye to my mother. Without her, I
am not even sure what kind of tomorrow I should be looking for in this world.

As Mafuyu was singing, his inner voice spoke again: “This is a story that
happens in a winter. This is a story that happens over a night. Wherever I go,
you are always here. You are always living inside my head. You are living in
all the sceneries I am seeing. Wherever I go, there are always memories of
you lingering. I cannot forgive you, nor can I forgive myself. But I wish I can
forgive both of us. I am really lonely.” (とある冬の話。とある夜の話。
どこに行っても君がいるんだ。俺の頭の中に君がいるんだ。景色の

中に君がいるんだ。どこに行っても、君がいた匂いと景色があるん

だ。君を許せない。俺を許せない。許したい。寂しいよ。)

It is the same for me. I tried my best to forget about the sadness, but ironically, I
also do not want to forget my mother and all the memories, happy or sad, I have
with her. Wherever I go, I see shadows of her. When I see children playing happily
with their parents on the campus over the weekend, or when it comes to all those
holidays when people would go home and reunite with their friends and relatives,
I would feel sad and jealous, staying behind all alone and depressed. It is not very
physicist-like to say this, but I can feel my mother still being together with me. She
is always there wherever I go. I still cannot forgive her for leaving me. I also still
cannot forgive myself for leaving her in the first place. But I do wish to forgive both
of us and let go. I feel really lonely. How I wish I could talk to you again and hear
you telling me that I did a great job and that you are proud of me. But that will never
happen...

As everyone continues to talk to me and brings me out into the sunlight, my inner
self also tries harder and harder to take back control from the fake me. The pain and
the hope to find someone to understand me continue to grow daily. I know I cannot
hold my inner self in his prison much longer. And therefore, I decided I needed to
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find a time to end this properly. That is why I really hope to have my thesis defense
on the week of April 25, 2024. That week marks the third year since my mother
passed away. It would also have been her birthday if she was still alive. I want to use
the passing of my thesis defense as a final present to my mother, and as I finish my
Ph.D. studies, I will also use it to finally say a proper goodbye to my mother and end
one of the most important chapters of my life. I wish I could do that... (Well...turns
out I have to defend my thesis a week later, but as Mafuyu says, “it is going to be
fine (大丈夫。)".)

And that is the simple story I want to tell everyone reading my thesis. Apologies
for the lengthy passage, but I really need to use this opportunity to express my true
feelings and explain why I would like to dedicate my thesis to the manga and anime
series “GIVEN”. It helped me to reflect upon myself, release my true self, face my
hidden feelings, and get out of the darkness into the sunlight again. It has been an
essential part of my PhD journey.

For the rest of my acknowledgment, I would like to thank many people properly.

First and foremost, I would like to thank my most respected teacher and supervisor,
Professor Alan J. Weinstein. Alan has been the most loving, caring, and supportive
teacher throughout my PhD journey. He gives me the most freedom to work on
things that interest me, and he will never force projects or work on me. He provides
the best guidance and suggestions to advance my research path. At times, he would
remind me to expand my expertise and not only focus on one single research topic.
He introduced me to postdocs (e.g., Dr. Ryan Magee) with similar research interests
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ABSTRACT

The LIGO-Virgo-KAGRA (LVK) collaboration first observed gravitational waves
in 2015, and more than 90 gravitational-wave events have been observed, all coming
from mergers of compact objects (black holes and neutron stars), known as compact
binary coalescences (CBC). Studying and observing gravitationalwaves opens a new
window for us to understand the nature of spacetime and the universe. Strain data
fromLVK’s detectors are analyzed by search pipelines to identifyweak gravitational-
wave signals in noisy data. To maximize the potential of gravitational waves, it is
essential to continue to improve search pipelines’ sensitivity to probe GW sources
with the broadest range of parameters and from the furthest distances. I will give a
detailed overview of theGstLALpipeline and present related development (ongoing)
work for GstLAL to enhance its search effectiveness and efficiency.

In the second part of my thesis, I will focus on gravitational lensing of gravita-
tional waves. As masses can produce curvature in spacetime, gravitational waves,
like electromagnetic (EM) waves, are deflected when passing by massive interven-
ing objects before reaching gravitational-wave detectors on Earth, an effect known
as gravitational lensing. Observing lensed gravitational waves confirms another
prediction in Einstein’s general relativity and enables us to conduct cosmography
studies, test general relativity, search for dark matter and other exotic phenomena,
and deepen our understanding of the universe. I will give a detailed introduction
to gravitational lensing of gravitational waves. We then introduce a Targeted sub-
threshold search for strongly-lensed gravitational wave pipeline called “TESLA”.
The TESLA pipeline is the flagship to look for sub-threshold lensed gravitational
waves. Next, we present the results of the LVK collaboration-wide effort to search
for lensing signatures in gravitational-wave data from the third observing run O3.
Next, we introduce a significant update to the TESLA pipeline, now known as the
TESLA-X pipeline, with enhanced search sensitivity towards lensed gravitational
waves. We also introduce an alternative ranking statistic implemented into the
TESLA-X pipeline that considers the signal’s consistency with the assumed lens
model. Finally, we end the thesis with a summary and an outline of possible future
work.
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(IMBH) bank (in green) and other BBH bank (in red). These different
banks are used to target different regions in signal subspace. . . . . . 46

4.2.4 An example of two split banks (bank 1000 and 1019) generated from
the full template bank, shown in the chirp massMc - effective spin
χeff space. Note that the partially overlapping region exists only
for intermediate use when adopting the LLOID method, but will be
removed afterward so that there are no repeated templates. . . . . . 47

4.2.5 An example of the time slices for a templatewaveformwith chirpmass
Mc = 2.61M� and z-component spins s1z = −0.73 and s2z = −1.0.
Note that the sampling frequency increases with time as the Nyquist
frequency increases. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.6 A schematic diagram of the singular-value-decomposition (SVD)
operation on the template bank. . . . . . . . . . . . . . . . . . . . . 49

4.2.7 The auto-correlation timeseries (blue striped line) and SNR time-
series (black solid line) evaluated for GW230529 for the LIGO Liv-
ingston (L1) detector. In the above figure, the trigger’s coalescence
time is set to t = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.8 Triggers found in time coincidence (within a certain time window
that accounts for (1) the maximum travel time of gravitational waves
between detectors, and (2) statistical fluctuations in themeasured trig-
ger time due to detector noise) between participating detectors with
the same template parameters are grouped and labelled as coincident
(signal) triggers by GstLAL. Coincident triggers are further followed
up by the pipeline as signal triggers. In contrast, single detector
triggers (non-coincident triggers) are treated as noise (background)
triggers by GstLAL, and are used to construct the noise background.
Starting from LVK’s second observing run O2, GstLAL also allows
single detector triggers to be treated as signal candidates if they pass
a preliminary log-likelihood ratio threshold. This will be further
explained in later subsections. . . . . . . . . . . . . . . . . . . . . . 52
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4.2.9 The ρ-ξ2 histogram for noise triggers collected in the Hanford (H1)
detector for one split bank between GPS time 1370097052 and
1370356252 (3 days of data). The green circle marks an example
signal trigger with H1 SNR ρH1 = 10 and ξ2

H1 = 1. Since it is
(marginally) away from the background noise triggers distribution,
GstLAL will evaluate a low P( ®ρ, ®ξ2 | ®θ, noise) for this trigger, in turn
increasing the log-likelihood ratio and hence the significance of this
trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.10 (Left) At different sky locations, a gravitational wave may reach
one detector before reaching the other. The effective strength of
the signal may also differ. Depending on the ratio of the signal
strengths (effective distance ratios), the expected time and phase
delay distribution for a pair of detectors has a non-trivial probability
distribution, given that they are seeing the same signal. (Right) A
cartoon illustrating an example of the ∆t, ∆φ probability distribution
for a trigger seen in both the Hanford (H1) and Livingston (L1)
detector with an identical SNR of 8. Assuming both detectors have
similar sensitivity, it is more likely for the signal to be detected at
the same time with almost no difference in the coalescence phase.
Note that this is just a cartoon illustration. See Figure 7 of [309] for
a realistic example. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 An example timeseries of log-likelihood estimate lnLiDQ of the pres-
ence of non-Gaussian noise in the data output from the iDQ pipeline.
The timeseries covers roughly 5000s of data (i.e. ≈ 1.3 hours). Note
that lnLiDQ has a value of ≈ 9 most of time, but occasionally it can
increase to 70 or more (e.g. see the peak at GPS times ≈ 2600s).
These peaks represent times the iDQ pipeline believes glitches are
present in the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.3.1 The proposed scheme on modifying the original P(ρ, ξ2 |noise) term
in GstLAL’s likelihood ratio calculations. We propose promoting the
2D ρ-ξ2 histogram for noise triggers to 3D histograms such that the
renormalized iDQ log-likelihood ln L̂iDQ as an additional parameter.
In the figure, the proposed 3D histogram is represented by a series
of slices of 2D ρ-ξ2 histograms along the iDQ dimension. GstLAL
will then populate the extended 3D histograms for each detector with
noise triggers, according to the data quality around the time of each
trigger informed by ln L̂iDQ. Then, as usual, the histograms will be
normalized and smoothed with a Gaussian smoothing kernel. The
end product will be a three-dimensional probability density function
P(ρ, ξ2, ln L̂iDQ |noise), which can be used to replace the original
P(ρ, ξ2 |noise) term in the likelihood ratio calculation in GstLAL. . . 69
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5.4.1 An illustration showing how the proposed method can improve the
search sensitivity of GstLAL. Suppose we have a signal trigger found
in a detector when the data quality is good. A green star in the
figure represents the signal trigger. In the current GstLAL frame-
work, since data quality information is not used, the 3D ρ-ξ2-ln L̂iDQ

histograms (middle) for noise triggers are essentially “marginalized”
over the data quality (iDQ) dimension, resulting in the usual 2D
ρ-ξ2 histogram on the left. As discussed before, non-Gaussianity
(e.g. glitches) in the data can pollute the histograms and effectively
broaden the probability distribution P(ρ, ξ2 |noise). As shown in the
figure, the trigger found during times with good data quality lies in
the region of the marginalized probability distribution P(ρ, ξ2 |noise)
with high probability density, that is polluted by noise triggers asso-
ciated with non-Gaussian noise in the data. Essentially, this means
that P(ρ, ξ2 |noise) for this trigger will be unnecessarily high, result-
ing in a lower log-likelihood ratio and significance being assigned to
it. In the proposed method, on the other hand, the trigger found in
times with good data quality effectively has its log-likelihood ratios
assigned using a histogram that suits the data quality around the time
of the trigger (e.g. right upper histogram). As we can see, the trig-
ger does not live within the probability distribution P(ρ, ξ2 |noise) for
noise triggers coming from timeswith good data quality, and it will be
assigned a lower P(ρ, ξ2 |noise) and hence higher log-likelihood ratio
and significance. This helps to prevent unnecessary down-ranking
of triggers, which may lead to potential loss of gravitational-wave
signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 A cartoon showing a typical case of optical lensing with a convex
lens. Light from the object on the left is being focused onto the
observer on the right by the lens. The observer does not know that
the light has been refracted and will think that it originates from
an image (in pink) at a further position (different from the object’s
position), with a larger size (magnified). . . . . . . . . . . . . . . . 74
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6.2.2 Parameters for deriving the lens equation. Here, the solid black line
joining the observer and the center of the lens defined the z-axis. All
angles described in this figure are two-dimensional azimuthal angles
(e.g. one can decompose the angles into x and y components). ®θ is
the 2D angle of the image position. ®ξ is the 2D impact parameter. ®η
is the 2D source position. ®β is the 2D angle of the source position.
All other parameters have the same meanings as in Figure 6.D.2. . . 76

6.2.3 Critical curves and caustics of a point mass lens model. . . . . . . . . 79
6.3.1 (Left) Type 1 (blue) and Type 2 (orange) gravitationally-lensed grav-

itational waveforms in the time domain. (Right) Type 1 (blue) and
Type 3 (orange) gravitationally-lensed gravitational waveforms in the
time domain. Type 1 signals have zero Morse phase shift, and hence,
they are in phase with the not-lensed gravitational wave. Type 2
signals have a π

2 Morse phase shift compared to the not-lensed grav-
itational wave. Type 3 signals have a π Morse phase shift compared
to the not-lensed gravitational wave. . . . . . . . . . . . . . . . . . 86
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6.3.2 The general framework of the LIGO-Virgo-KAGRA (LVK) col-
laboration’s lensing searches. We start with a set of confirmed
gravitational-wave events. We performmicrolensing (via the pipeline
GRAVELAMPS) and millilensing analysis for each event. We also
search for possible sub-threshold lensed counterparts to each event via
two independent search methods: (1) GstLAL-based search pipeline
TESLA, and (2) PyCBC-based sub-threshold search. From the final
pool of gravitational-wave candidates, we form pairs of candidates.
For each pair, we utilize three independent preliminary tests/pipelines
to check for signal consistency, namely (1) posterior overlap (checking
for consistency in signal source parameters), (2) machine-learning-
based classification test LensID (checking for consistency in sky lo-
cation of source and time-frequency maps of signals), and (3) phazap
(checking for consistency in the signal phase with the strong lensing
hypothesis). Each of these tests assigns a ranking statistic to the pairs
of candidates, and those that satisfy a pre-determined threshold are
passed on for two independent, robust tests to determine how likely
they are strongly-lensed counterparts to each other from the same
source, namely (1) Golum and (2) Hanabi. Pairs that survive the tests
with strong evidence of being strongly lensed will then be followed
up further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.A.1 (Left) Objects projected from the Earth’s surface can have very differ-
ent trajectories depending on the initial conditions. (Right) Some ob-
jects in the universe may have accumulated sufficiently high masses.
Gravity is so strong that not even light can escape. . . . . . . . . . . 91

6.A.2 Light coming from a star-forming galaxy passes through a galaxy
cluster that acts as a gravitational lens to deflect the light rays. Ob-
servers on the other side of the lens will think that the deflected light
comes from images at positions different from the source position.
The images may be magnified / de-magnified in terms of brightness
and size, and may suffer from shape deformation. . . . . . . . . . . 93

6.B.1 An astronaut is riding in a rocket originally moving at speed v hor-
izontally to the right. A blue giant of mass M nearby acts as the
gravitational lens. The *half*-deflection angle is α̂, and the distance
d is the impact parameter. Inside the rocket, the astronaut shoots a
light beam horizontally (in red). . . . . . . . . . . . . . . . . . . . . 94
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6.B.2 Here, we show a rocket (the rectangle box) moving horizontally along
the positive x-axis initially. A blue giant of mass M (in blue) is placed
at the origin. ®r denotes the vector pointing from the blue giant to the
rocket, and θ is the angle between ®r and the positive y-axis. α̂ is the
deflection angle, and d is the impact parameter. A light beam is shot
horizontally inside the rocket (not shown). . . . . . . . . . . . . . . 95

6.B.3 A gravitational lens of mass M is placed at the origin. The x-axis is
aligned such that the positive-x direction is along the direction of the
un-deflected light ray from the source. The distance from the lens
to the closest approach of the light ray is ξ, at a polar angle θ0. The
position of the light ray at any time t is represented by the position
vector ®r . The half-deflection angle is δθ, so the total deflection angle
is 2δθ (deflection angle is defined as the angle between the image and
the source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.B.4 Additional geometric construction on 6.B.3. . . . . . . . . . . . . . . 102
6.D.1 The “simplest” lens model is the case when no gravitational lens

exists. In this scenario, however, we can already define two important
quantities, namely the source position β and source distance DS,
which will be useful later. . . . . . . . . . . . . . . . . . . . . . . . 107

6.D.2 A massive point-mass lens enters the picture. Because of gravita-
tional lensing, the light ray from the source is bent, and a new image
is formed. We now need to define several new parameters: (1) The
image position θ, (2) The lens-source distance DLS, (3) The lens
distance DL, (4) The impact parameter ξ (the distance of closest ap-
proach between the light ray and the lens), and (5) The deflection
angle α̂ (the angle between the un-deflected light ray and the image). 108

6.D.3 The problem of solving the image positions is transformed into a
graphical problem, asking for the number of intersection points be-
tween two curves y = θ − β and y =

θ2
E

θ . As we can see, the point
mass lens model always has two images (two intersection points in
red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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7.2.1 Workflow of the targeted subthreshold search method (TESLA). . . . 121
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7.3.3 The templates in the original and targeted bank plotted in dark blue
and orange respectively on them1-m2 plane. The best-match template
for MGW220111a is indicated by a red star, and the true parameters
of MGW220111a is represented by a green diamond. As we can
see, even when the noise in the mock data is almost stationary and
Gaussian, subthreshold lensed signals can still be found by templates
with parameters very different from thosewithin the posterior space of
the superthreshold target event. This demonstrates that the posterior
space of the target event itself is insufficient to cover all possible
subthreshold lensed counterparts. . . . . . . . . . . . . . . . . . . . 125

7.3.4 The templates in the original and “single-template” bank plotted
in dark blue and orange respectively on the m1-m2 plane. The
“single-template” bank is a bank with 100 templates having com-
ponent masses within ±0.1M� from those of the posterior sample
with maximum posterior to mimic the single template bank. . . . . . 127

7.3.5 The templates in the original and PE bank, plotted in dark blue and
orange respectively on the m1-m2 plane. The best-match template for
MGW220111a is indicated by a red star, and the true parameters of
MGW220111a are represented by a green diamond. The purple curve
represents the boundary to the 90% credible region of the posterior
probability distribution for MGW220111a. The PE bank is generated
by keeping only templates that lie within the 90% credible region of
the posterior probability distribution, containing only 81 templates. . 128

7.3.6 The templates in the original and random bank plotted in dark blue
and orange respectively on them1-m2 plane. The best-match template
for MGW220111a is indicated by a red star, and the true parameters
of MGW220111a are represented by a green diamond. The random
bank contains the same number of templates, i.e. 552 templates, as
the targeted template bank, and they are randomly selected from the
original template bank. . . . . . . . . . . . . . . . . . . . . . . . . 129
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7.3.7 (Top panel) The sensitive range v.s. FAR forMGW220111a-alike sig-
nals using the full template bank (black), targeted template bank (or-
ange), “single-template” bank (blue), PE template bank (green) and
random template bank (red) respectively. The shaded band for each
curves represent the corresponding 1-sigma region. (Bottom panel)
The corresponding percentage changes in sensitive range v.s. FAR for
the different banks. The percentage-change curve (orange) represent-
ing results using the targeted bank constructed by the TESLA search
pipeline is above that of the full template bank, showing improve-
ment in terms of sensitivity towards MGW220111a-alike (lensed)
subthreshold signals. The vertical striped line shows the typical FAR
threshold for triggers below which we consider as possible lensed
candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.1 Merger rate density as a function of redshift based on the GWTC-
2 results without lensing constraints (blue) and with lensing (red)
included in LIGO–Virgo detections. We show the results for galaxy-
scale lenses (G) and cluster-scale lenses (C) separately. Furthermore,
S (or D) correspond to doubly lensed events where single (or dou-
ble) events are detected. Because lensed detections occur at higher
redshifts than unlensed events, their non-observation can be used to
constrain mergers at higher redshifts. The results without lensing do
not include constraints derived from the absence of a SGWB. . . . . 143

8.3.2 Cumulative fraction of lensed detectable mergers at any redshift with
magnification greater than µ, constrained by the non-observation of
the SGWB. The solid line shows the value obtained from the median
merger rate density posterior. The shaded region corresponds to the
90% credible interval. Fewer than 1 in 103 events are expected to be
lensed with magnification µ > 2, on average. Significantly higher
magnifications (e.g., µ > 30) are suppressed by a further factor of 10.
The results here show the probability of observing an event above
a given magnification, which includes the merger-rate density and
magnification bias information. . . . . . . . . . . . . . . . . . . . . 144
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8.5.1 Scatter plot of the ranking statistics log10 B
overlap and log10 R

gal for
a subset of event pairs that have both Boverlap > 50 and Rgal >

0.01. The dashed lines denote the significance levels of the combined
ranking statistics (in terms of Gaussian standard deviations), obtained
by simulating unlensed event pairs in Gaussian noise matching the
O3a sensitivity of the LIGO–Virgo network. We identify several
high Boverlap > 50 candidates, which we follow up on with a detailed
joint-PE analysis. We have used abbreviated event names, quoting
the last 4 digits of the date identifier (see Table 8.5.1 for full names). 152

8.5.2 Combined results from the 39 sub-threshold searches with the Gst-
LAL pipeline (top panel) and PyCBC pipeline (bottom panel). Each
panel shows, as a solid line, the cumulative number of coincident
triggers (observed) with inverse [s] greater than or equal to a given
value. The dashed line is the expected distribution of background
triggers, with the gray bands indicating uncertainties in multiples of
the standard deviation σ of a Poisson distribution. For GstLAL, the
results for this plot are obtained by a search over all O3a data using a
combined bank from the 39 targeted banks. For PyCBC, the [s] are
from the individual searches, but for triggers found by several of the
single-template searches, their inverse [s] have been summed. . . . . 164

8.6.1 The marginalized posterior distribution of redshifted lens mass M z
L

and log10 B
ML
U between microlensed and unlensed hypotheses. The

corresponding log10 Bayes factors are noted to the right of the plot.
We find no evidence of microlensing by point mass lenses. . . . . . 169

8.C.1 Distribution of microlensing Bayes factors log10 B
ML
U for unlensed

simulated signals, recovered using a lensed template. . . . . . . . . 175
9.3.1 The False-Positive-Probabilities of each lensed candidate pair con-

structed from the set of gravitational wave events that exceed an
astrophysical probability [159, 206] threshold of 0.5, as evaluated
using the BL

U and Machine Learning classification statistics. Or-
ange dashed lines that correspond to an False-Positive-Probability
threshold of 10−2, are also placed. Pairs whose BL

U-based or Machine
Learning-based False-Positive-Probabilities fall below this thresh-
old are selected for additional joint parameter estimation analyses.
BL

U < 10−6 has been mapped to an False-Positive-Probability of 1,
which is reflected in the gap along the vertical axis between 0.4 and 1. 184
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9.3.2 Bayes factorsBL
U from hanabi for the highest-rankedmultiple-image

candidate pairs. As a check on the robustness of our results, we show
the Bayes factors calculated using three different merger rate density
models, namely the fiducial model tracking the Madau–Dickinson
star-formation rate [239], and also the Rmin(z) and Rmax(z) model
introduced in Abbott et al. [23]. The color for each marker represents
the value of ppair

astro for each pair, which is the probability that both
of the signals from a pair are of astrophysical origins and not from
terrestrial sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.3.3 Distribution of Bayes factors comparing different image type hy-
potheses for the 10 most relevant events. We compare the probability
of being type II vs. type I (blue-solid histogram) and of being type II
vs. type III (orange-dashed histogram). Only type II images display
waveform distortions and for that reason, we do not compare type III
vs. type I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.4.1 Distribution of microlensing log10 Bayes factors BMicro
U for all events

in O3 (blue, solid line) and simulated unlensed signals (orange,
dashed line) from Abbott et al. [23]. . . . . . . . . . . . . . . . . . 191

9.5.1 Merger rate density as a function of redshift based on the GWTC-3
results without lensing constraints (grey) and with lensing constraints
(cross-hatching) included. For clarity, we show only the results
for galaxy-scale lenses. Because lensed detections may occur at
higher redshifts than unlensed events, their non-observation can be
used to constrain the rate of mergers at higher redshifts. The ‘No
lensing’ results shown here do not include constraints derived from
the absence of an Stochastic Gravitational Wave Background. The
latter constraints are shown separately by the solid black curves. . . 195
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9.5.2 The spread in the 90% upper limits on fDM obtained from the O3
events using 5 different redshift distribution models for binary black
holes mergers: Belczynski et al. [58],Dominik et al. [143], Madau
and Dickinson [239], Abbott et al. [29] and uniform in comoving 4-
volume, assuming a monochromatic mass spectrum for the compact
objects forming darkmatter. The lensmass is shown on the horizontal
axis. The grey (black) shaded regions correspond to the spread in
fDM upper bounds computed assuming flat (Jeffreys) prior on Λ and
Λ`. The upper and lower curves bounding the spreads correspond
to the most pessimistic (weakest) and optimistic (strongest) upper
limits, as determined from the set of assumed redshift distributions,
in each mass bin. The current fDM constraints are weaker relative to
other corresponding EM constraints. We refer the reader to [91, 92,
112] for comparison. Nevertheless, these constraints are expected to
improve significantly with the increased detection of unlensed BBHs
in forthcoming LVK observing runs. . . . . . . . . . . . . . . . . . 197

9.A.1 Posterior distribution of the Morse phase for GW200129_065458.
We compare the real event posterior (solid-blue) with an injection
campaign of type I (dashed-orange) and type II (dotted-green) im-
ages. Type II images correspond to n1 = 1/2. For this event, the
differences between the distribution are small and make it difficult to
learn anything additional about the event. The Kolmogorov–Smirnov
statistic is 0.07 for type I vs real, and 0.08 for type II vs real. . . . . 201

9.A.2 Posterior distribution of the Morse phase for GW190412. We com-
pare the real event posterior (solid-blue) with an injection campaign
of type I (dashed-orange) and type II (dotted-green) images. Type II
images correspond to n1 = 1/2. For this event, the peak seen in the
real data and the one seen for the type II image are compatible, hinting
at a possible type II image. In this case, the Kolmogorov–Smirnov
statistic is 0.20 for type I vs real, and 0.13 for type II vs real. . . . . 202
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9.A.3 Comparison of the Morse factor distribution for the real event (solid-
purple) with the recovered posterior distribution for an injectionmade
with IMRPhenomPv3HM for a type I image (dashed-blue) and a type
II image (dotted-orange), and with an injection made with SEOB-
NRv4PHM for a type I image (dashed-green) and a type II image
(dotted-red). In all the cases, the posterior distributions agree with
the injected data, with the real event resembling a type II image. . . 203

9.B.1 Marginalized posterior distributions of redshifted lens mass M z
L and

log10 B
Micro
U between microlensed and unlensed hypotheses. . . . . . 204

9.B.2 The time-domain waveform corresponding to the maximum posterior
of GW200208_130117, with and without the microlensing hypothe-
sis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.3.1 Recovery of the Morse factor for the GW190412 event with different
waveforms: IMRPhenomXPHM,IMRPhenomPv3HM, andSEOBNRv4PHM.
The support for a type II image is present for the two waveforms from
the Phenom family. However, the feature is less prominent for the
IMRPhenomPv3HM waveform, and only marginally present for the
SEOBNRv4PHM waveform. Therefore, the observed feature is proba-
bly spurious and the event is not a type II image. . . . . . . . . . . . 213

10.3.2 Posteriors for a subset of the parameters including the detector frame
chirp mass and mass ratio, the luminosity distance, the lens frame
lens mass, and the dimensionless displacement of the source from the
optical axis (i.e. the source position). These posteriors were produced
during the point mass microlensing analysis done for GW190412
using Gravelamps. As can be seen, similarly to GW191103 (shown
in Fig. 10.4.5), the lensing parameter posteriors are extremely broad
and uninformative. This is consistent with the expectations for a
non-microlensing event. . . . . . . . . . . . . . . . . . . . . . . . . 215

10.4.1 Posteriors for someof the parameters obtained using theIMRPhenomXPHM
waveform for GW191103 (blue) and GW191105 (orange). The over-
lap in the extrinsic parameters (e.g. sky location) is larger than that
for the intrinsic parameters (e.g. detector-frame chirp mass and spins). 217
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10.4.2 The highest ranked candidate strong lensing pairs from the PO anal-
ysis considering all the event pairs found based on the O3 data
(dots) [32] and the supra-sub pair analyzed in this work. The dashed
lines correspond to the 1σ and 2σ confidence levels for the combined
PO statistic (Boverlap × Rgal) with different lensing models computed
from the background simulations. We note that beside GW191103–
GW191105, the pair analyzed in this work, GW190728–GW190930
is also close to 1σ for PO. However, the pair has been discarded in
previous searches with a lower overall significance than GW191103–
GW191105 [23]. Therefore, it is not considered for further analyzes
in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.4.3 Comparison of the posterior for the observed relative magnification
and time delays for the O3 event pairs with the expected distribu-
tions for the lensed population of mergers from More and More
[259] (dashed blue, using an SIE model) and from Wierda et al.
[364] (solid green, using an elliptical model with a power law den-
sity profile and external shear (EPL-Shear)) and unlensed popula-
tion (yellow-orange-red), both assuming galaxy lenses. Overlayed
in brown are the observed values for selected O3 event pairs, and
the letters mark the event pairs more compatible with the lensing
hypothesis. Written in brown, and denoted with letter a, is a pair
made of a super-threshold and a sub-threshold event, and further
analysed in this work. The top panel corresponds to the expected dis-
tribution when the two images are of the same type, i.e., there is no
phase difference between the two images (see top-left illustration),
while the bottom panel corresponds to a configuration where the
two image types differ, i.e., there is a π/2 shift between the images.
Most of the observed event pairs are well outside the lensed distri-
bution. The GW191103–GW191105, GW190706–GW190719, and
GW101230–LGW200104 pairs are more compatible with the lensed
hypothesis thanwith the unlensed one. In particular, the GW191103–
GW191105 pair lies in a higher probability density region than the
other pairs. One also sees that the GW191230–LGW200104 pair —
made of a supra and a sub-threshold event— lies in a higher density
region, even if it is less important than the GW191103–GW191105
pair. This pair is discussed further in Sec. 10.5. . . . . . . . . . . . 245
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10.4.4 From dark to lighter, the 10%, 50%, and 90% confidence sky lo-
calisation for the GW191103–GW191105 pair. Overlaid are the
cross-matched 5 candidates from the Master Lens Database. . . . . . 246

10.4.5 Posteriors for a subset of detector-frame source parameters and the
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Introduction to gravitational waves
and gravitational-wave data analysis
with the GstLAL Search pipeline
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C h a p t e r 1

OVERVIEW OF THE THESIS

This thesis is divided into two parts: Part I - “Introduction to gravitational waves
and gravitational-wave data analysis with the GstLAL Search pipeline” and Part II
- “Gravitational Lensing of Gravitational Waves”.

Part I is structured as follows: In Chapter 2, I give an overview of general relativity,
gravitational waves, and the Advanced LIGO detectors. In Chapter 3, I go over
briefly the major steps, namely (1) data calibration, (2) detector characterization
and noise mitigation, (3) search and (4) Bayesian parameter estimation, in the
LIGO-Virgo-KAGRA’s data analysis framework to search for gravitational waves,
specifically from compact binary coalescences. In Chapter 4, I first give a top-level
introduction to the general working principle of modelled matched-filtering-based
search pipelines for gravitational waves from compact binary coalescenes. I then
focus on the GstLAL search pipeline, which will be the primary search pipeline
to be used and discussed in various scenarios in the rest of the thesis. Alongside
reviewing the steps of a typical GstLAL analysis, I selected a few key terms in the
likelihood ratio calculation from the GstLAL search pipeline for discussion. Some
of these terms will be tuned/modified in later chapters for specific purposes. In
Chapter 5, I propose a method to improve the search sensitivity of the GstLAL
search pipeline by properly using statistical data quality information generated by a
machine-learning-based pipeline iDQ. Since the work is ongoing, I will only explain
and outline the expected results should the method be correctly implemented into
GstLAL.

In Part II, we focus on a specific phenomenon, “gravitational lensing”, as predicted
by general relativity. In Chapter 6, I give a detailed introduction to gravitational
lensing and lensing of gravitational waves. I also outline the current effort by
the LVK collaboration to search for lensing signatures in gravitational waves from
the third observing run O3. Chapter 7 is an adaption of [223], where we in-
troduce a GstLAL-based targeted search method (TESLA) to look for possible
strongly-lensed sub-threshold counterparts to known superthreshold gravitational-
wave events. Chapter 8, 9 and 10 present results from the LVK-collaboration-wide
effort to search for gravitationally-lensed gravitational waves from the third ob-
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serving run O3. The search for sub-threshold lensed gravitational waves using the
TESLA pipeline discussed in Chapter 7 is also included in the analyses. In Chapter
11, we explain howweupgrade the traditional TESLApipeline introduced inChapter
7 to the TESLA-X pipeline with improved search sensitivity towards strongly-lensed
sub-threshold gravitational waves. This is done by a better approach to constructing
targeted template banks and using targeted population models. Chapter 12 discusses
yet another upgrade made to the TESLA-X pipeline. In the chapter, we explain how
we assign an alternative ranking statistic, the Lensing Likelihood Llensing, to each
trigger reported by the TESLA-X pipeline. The Lensing Likelihood is evaluated
based on the consistency of the triggers to an assumed lens model. This alternative
ranking statistic serves as additional information to determine which candidates are
more likely to be sub-threshold strongly-lensed counterparts to their targets and their
priority for running subsequent lensing follow-up analyses. The upgraded TESLA-
X pipeline will continue to be one of the key pipelines of the LVK collaboration to
search for possible strongly-lensed gravitational waves in the fourth observing run
O4.

Finally, in Chapter 13, we summarize the results and findings in this thesis and
outline the possible future work.
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C h a p t e r 2

INTRODUCTION TO GRAVITATIONAL WAVES

2.1 Overview of this Chapter
In this introductory chapter, I will set the stage for our discussion in later chapters
by briefly reviewing the theory of general relativity, gravitational waves, and the
Advanced LIGO detectors. This chapter is structured as follows: I will first give a
top-level overview of general relativity in Section 2.2. In Section 2.3, I will give
the standard discussion and derivations of linearized gravity in the weak-field limit.
Then, in Section 2.4, I explain how gravitational waves emerge from the resulting
Einstein’s field equations in the weak-field limit. Section 2.5 derives the energy
carried by gravitational waves. Finally, Section 2.6 introduces the Advanced LIGO
detectors and derives the antenna pattern functions associated with the L-shape
geometry of the LIGO detectors. The antenna pattern functions are essential for
evaluating the input to the LIGO detectors as a gravitational wave passes through.

2.2 A very brief overview of General Relativity
The most important equation in General Relativity is the Einstein’s Field equation,
given by

Gµν = 8πGT µν . (2.1)

Here, the quantities with superscripts are tensors. Each index (i.e. µ and ν) can
take 4 values, representing time (1 dimension) and space (3 dimensions). G is the
gravitational constant.

Let us briefly go over each quantity. Gµν is known as the Einstein tensor, defined as

Gµν = Rµν −
1
2
gµνR, (2.2)

where Rµν is the Ricci tensor, R is the Ricci scalar, and gµν is the metric tensor.

Now, the Ricci scalar is simply a contraction of the Ricci tensor:

R = gµνRµν . (2.3)

The Ricci tensor is a contraction of yet another tensor called the Riemann tensor:

Rαβ = Rκ
ακβ = gµκRµακβ . (2.4)
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The Riemann tensor is defined as

Rαβµν = ∂µΓ
α
βν − ∂νΓ

α
βµ + Γ

α
µγΓ

γ
βν − Γ

α
νγΓ

γ
βµ, (2.5)

where the Γ’s are the Christoffel symbols, defined as

Γ
σ
αβ =

1
2
gσρ

[
∂αgρβ + ∂βgρα − ∂ρgαβ

]
. (2.6)

We now arrive at an expression that depends only on the metric tensor, i.e. the
geometry of the spacetime we are considering.

That being said, the Einstein tensor, Gµν, is solely a geometrical quantity encoding
the geometry of spacetime we are considering.

On the other hand, the tensor T µν, known as the Stress-Energy tensor, is defined as

T µν = (ρ0 + P0)uνuµ + P0g
µν, (2.7)

where ρ0 is the density, P0 is the pressure, and uµ is the four-velocity. In short,
the “stress-energy tensor" is related to the energy of and forces on the object under
consideration.

Essentially, Einstein’s field equations tell us that the (gravitational) force on an object
and its energy are closely related to the geometry of the spacetime in which it is
situated. John Wheeler gave a precise and concise statement for this equation:

“Matter tells spacetime how to curve, and spacetime tells matter how to move."

2.3 Linearized gravity in the weak-field limit
In flat Minkowski’s spacetime, we know that the metric tensor is given by the
Minkowski’s metric as

ηµν = diag[−1, 1, 1, 1]. (2.8)

We now consider the weak-field limit 1 in which the metric tensor, encoding the
geometry in the region, is only the Minkowski metric ηµν plus a small additional
symmetric perturbation term hµν , i.e.

gµν = ηµν + hµν . (2.9)

1 By weak-field, we want to consider a region of spacetime that is only slightly curved (e.g. this
could be a region far away from a black hole).
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Note that when we say the perturbation term is small, it means that

|hµν | � 1. (2.10)

We can now evaluate the Christoffel symbol, defined as

Γ
σ
αβ =

1
2
gσρ(∂αgρβ + ∂βgρα − ∂ρgαβ) (2.11)

=
1
2
gσρ(gρβ,α + gρα,β − gαβ,ρ), (2.12)

where in the last line, I have replaced the “partial derivative" expression ∂αK with
a simplified expression K,α, with the perturbed metric tensor.

The parentheses in the Christoffel symbol expression include terms of partial deriva-
tives of the metric tensors, e.g. gαβ,ρ. Since the Minkowski metric is constant, each
of these expressions reduces to the derivative of the perturbation term only, i.e.

gαβ,ρ = ηαβ,ρ︸︷︷︸
=0

+hαβ,ρ = hαβ,ρ. (2.13)

We then have

Γ
σ
αβ =

1
2
gσρ(gρβ,α + gρα,β − gαβ,ρ) (2.14)

=
1
2
(ησρ − hσρ)(hρβ,α + hρα,β − hαβ,ρ). (2.15)

As hαβ is small, we neglect terms that are of order higher than hαβ. This gives

Γ
σ
αβ =

1
2
(ησρ − hσρ)(hρβ,α + hρα,β − hαβ,ρ) (2.16)

≈
1
2
ησρ(hρβ,α + hρα,β − hαβ,ρ). (2.17)

Now, the Riemann Tensor is defined as

Rαβµν = Γ
α
βν,µ − Γ

α
βµ,ν + Γ

α
µγΓ

γ
βν − Γ

α
νγΓ

γ
βµ . (2.18)

We notice that the last two terms in the original Riemann Tensor expression in-
volve multiplication of two Christoffel symbols. Previously we have found that
the Christoffel symbols are of the same order as hµν , and so when two of them are
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multiplied together, they become “higher order terms" which we can neglect. Hence
we have

Rαβµν ≈ Γ
α
βν,µ − Γ

α
βµ,ν (2.19)

=
1
2
ηαρ

[(
hρν,β + hρβ,ν − hβν,µ

)
,µ
−

(
hρµ,β + hρβ,µ − hβµ,ν

)
,ν

]
(2.20)

=
1
2
ηαρ

hρν,βµ + hβµ,ρν − hρµ,βν − hβµ,ρν + (hρβ,µν − hρβ,µν)︸               ︷︷               ︸
=0

 (2.21)

=
1
2
ηαρ

[
hρν,βµ + hβµ,ρν − hρµ,βν − hβµ,ρν

]
. (2.22)

The Ricci Tensor is defined as

Rαβ = Rµ
αµβ = gµνRναµβ . (2.23)

For the perturbed metric, we get

Rαβ = gµνRναµβ (2.24)

=
1
2
gµν

[
hνβ,αµ + hαµ,νβ − hνµ,αβ − hαβ,νµ

]
(2.25)

≈
1
2
ηµν

[
hνβ,αµ + hαµ,νβ − hνµ,αβ − hαβ,νµ

]
(2.26)

=
1
2

[
hµβ,αµ + hαµ

,µ
β − h,αβ − �2hαβ

]
, (2.27)

where we have simplified the expressions with

K = K µ
µ = gµνKµν (2.28)

that represents the trace of the tensor Kµν , and

�2 = ∂µ∂µ = −∂
2t + ∂2x + ∂2y + ∂2z (2.29)

that represents the D’Alembertian operator.

The Ricci scalar, as mentioned before, is simply the contraction of the Ricci Tensor,
defined by

R = gµνRµν, (2.30)
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which, together with the Ricci Tensor expression, gives

R = gαβRαβ =
1
2
gαβ

[
hµβ,αµ + h ,µ

αµ β − h,αβ − �2hαβ
]

(2.31)

≈
1
2
ηαβ

[
hµβ,αµ + h ,µ

αµ β − h,αβ − �2hαβ
]

(2.32)

=
1
2

[
hµα,αµ + hαµ

,µα − h α
,α − �

2h α
α

]
(2.33)

=
1
2

[
2hµα,µα − 2�2h

]
(2.34)

= hµα,µα − �
2h, (2.35)

where we have made use of the facts that (1) Kαβ
,αβ = Kαβ

,αβ, (2) that partial
derivatives are commutable, and (3) that the perturbation term is symmetric.

We are now ready to evaluate the Einstein Tensor, defined as

Gµν = Rµν −
1
2
gµνR. (2.36)

which, with the expressions above, can be expressed as

Gµν = Rµν −
1
2
gµνR (2.37)

=
1
2

[
hαν,µα + hαµ,να − h,µν − �

2hµν
]
−

1
2
gµν

[
hαβ,αβ − �

2h
]

(2.38)

=
1
2

[
hαν,µα + hαµ,να − h,µν − �

2hµν − ηµνhαβ,αβ + ηµν�
2h

]
. (2.39)

By considering the term

Hµν = hµν −
1
2
ηµνh, (2.40)

whose trace is

H = ηµνHµν (2.41)

= ηµνhµν −
1
2
ηµνηµνh (2.42)

= h −
1
2
(4)h (2.43)

= −h, (2.44)

we can write

Hµν = hµν −
1
2
ηµνh = hµν +

1
2
ηµνH. (2.45)
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By rearranging the terms, we obtain

hµν = Hµν −
1
2
ηµνH. (2.46)

We can then rewrite the Einstein tensor as

Gµν =
1
2

[
hαν,µα + hαµ,να − h,µν − �

2hµν − ηµνhαβ,αβ + ηµν�
2h

]
(2.47)

=
1
2

[(
Hα

ν,µα −
1
2
ηανH,µα

)
+

(
Hα

µ,να −
1
2
ηαµH,να

)
+ H,µν

]
(2.48)

+
1
2

[
−

(
�2Hµν −

1
2
ηµν�

2H
)
− ηµν

(
Hαβ

,αβ −
1
2
ηαβH,αβ

)
− ηµν�

2H
]
(2.49)

=
1
2


Hα

ν,µα −
1
2

H,µν + Hα
µ,να −

1
2

H,νµ︸︷︷︸
= 1

2 H,µν

+H,µν


(2.50)

+
1
2

−�
2Hµν +

1
2
ηµν�

2H − ηµνHαβ
,αβ +

1
2
ηµν H α

,α︸︷︷︸
=�2H

−ηµν�
2H

 (2.51)

=
1
2

[
Hα

ν,µα + Hα
µ,να − �

2Hµν − ηµνHαβ
,αβ

]
(2.52)

=
1
2

[
H α
αν,µ + H α

αµ,ν − �
2Hµν − ηµνH αβ

αβ,

]
. (2.53)

With gauge freedom, we can freely transform potentials via coordinate transforma-
tion without altering the final results. The idea is that we shift the coordinates xα to
a new coordinate x̃α, each by a small amount ξα, i.e.

x̃α = xα + ξα, (2.54)



10

where ξα = ξα(xβ) is a function of xβ assuming that |ξα | � 1. Note that

∂xα

∂ x̃σ
=
∂ x̃α

∂ x̃σ
−
∂ξα

∂ x̃σ
(2.55)

= δασ − ξ
α
,β

∂xβ

∂ x̃σ
(2.56)

= δασ − ξ
α
,β

(
δ
β
σ −

∂ξ β

∂ x̃σ

)
(2.57)

= δασ − ξ
α
,σ + ξ

α
,β

∂ξ β

∂ x̃σ︸    ︷︷    ︸
H.O.T .

(2.58)

≈ δασ − ξ
α
,σ (2.59)

and

∂ x̃α

∂xσ
=
∂xα

∂xσ
+
∂ξα

∂ x̃σ
(2.60)

= δασ + ξ
α
,β

∂ x̃β

∂xσ
(2.61)

= δασ + ξ
α
,β

[
δ
β
σ +

ξ β

∂xσ

]
(2.62)

≈ δασ + ξ
α
,σ (2.63)

where we have neglected higher-order terms (listed as “H.O.T." in the equations).

With the coordinate transformation, the metric tensor transforms as

g̃µν = Λ
α

µ′ Λ
β

ν′ gαβ (2.64)

=
dxα

dx̃µ
dxβ

dx̃ν
gαβ (2.65)

≈
[
δαµ − ξ

α
,µ

] [
δ
β
ν − ξ

β
,ν

]
gαβ (2.66)

= gµν − gµβξ
β
,ν − gανξ

α
,µ + H.O.T. (2.67)

≈ gµν − ξµ,ν − ξν,µ, (2.68)

and because Minkowski’s metric ηµν is a constant tensor regardless of what coordi-
nate system we are using, we have

g̃µν + ηµν = gµν + ηµν − ξµ,ν − ξν,µ (2.69)

and hence the perturbation term hµν becomes

h̃µν = hµν − ξµ,ν − ξν,µ . (2.70)
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Note that

h̃ = ηαβ h̃αβ (2.71)

= ηαβ
[
hαβ − ξα,β − ξβ,α

]
(2.72)

= h − ξ β,β − ξα,α︸︷︷︸
=ξ

β
,β

(2.73)

= h − 2� · ®ξ. (2.74)

Hence we get

H̃µν = h̃µν −
1
2
ηµν h̃ (2.75)

=
[
hµν − ξµ,ν − ξν,µ

]
−

1
2
ηµν

[
h − 2� · ®ξ

]
(2.76)

=

(
hµν −

1
2
ηµνh

)
︸             ︷︷             ︸

=Hµν

−ξµ,ν − ξν,µ + ηµν� · ®ξ (2.77)

= Hµν − ξµ,ν − ξν,µ + ηµν� · ®ξ. (2.78)

We notice that

R̃αβµν =
1
2

[
h̃αν,βµ + h̃βµ,αν − h̃αµ,βν − h̃βν,αµ

]
(2.79)

= Rαβµν +
1
2

[
−ξα,νβµ − ξν,αβµ − ξβ,µαν − ξµ,βαν + ξα,µβν + ξµ,αβν + +ξβ,ναµ + ξν,βαµ

]
(2.80)

= Rαβµν . (2.81)

This means that the Riemann tensor is not affected by gauge transformation up to
the first order, and hence, we are free to choose a “friendly" coordinate system to
simplify our manipulation of the Einstein’s Field equations without affecting the
physical meaning of the solutions.

In terms of Hµν and H, the Einstein’s Field equations read

1
2

[
H α
αν,µ + H α

αµ,ν − �
2Hµν − ηµνH αβ

αβ,

]
= 8πGTµν . (2.82)

Note that three out of four of the terms on the left-hand side are in the form

H ,µ
µν . (2.83)
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(Note that the terms involve a second partial derivative, but here, we are just focusing
on the partial derivative with an index matching one of that of the tensors being
differentiated.)

By gauge transformation, with the transformed perturbation term H̃µν , we have

H̃µν = Hµν − ξµ,ν − ξν,µ + ηµν� · ®ξ (2.84)

H̃ ,µ
µν = 0 = H ,µ

µν − ξ
µ

µ,ν︸︷︷︸
=∂ν(∂µξµ)=0

− ξ
µ

ν,µ︸︷︷︸
=�2ξν

+ ∂µ(ηµν� · ®ξ)︸         ︷︷         ︸
=0

(2.85)

0 = H ,µ
µν − �

2ξν (2.86)

�2ξν = H ,µ
µν . (2.87)

This means we can always find a gauge ξα satisfying

�2ξα = Hαβ
,β , (2.88)

such that we can transform Hµν into H̃µν that gives

H̃ ,µ
µν = 0. (2.89)

With this gauge transformation (formally known as the Lorenz gauge), we can write
Einstein’s field equations as

1
2

[
−�2Hµν

]
= 8πGTµν (2.90)

�2Hµν = −16πGTµν . (2.91)

Wehave not yet exhausted all the gauge freedom. Suppose nowwe are in a coordinate
system such that

H ,µ
µν = 0 (2.92)

already. Now consider we do yet another coordinate transformation

x̃α = xα + ξα, (2.93)

such that h̃µν and H̃µν are transformed accordingly. Note that we still have

H̃µν = Hµν − ξµ,ν − ξν,µ + ηµν� · ®ξ. (2.94)

If we now apply the partial derivative ∂µ on both sides, we get

H̃ ,µ
µν = 0 = H ,µ

µν︸︷︷︸
=0

− ξ
µ

µ,ν︸︷︷︸
=∂ν�· ®ξ=0

− ξ
µ

ν,µ + ∂
µ
(
ηµν� · ®ξ

)
︸          ︷︷          ︸

=0

(2.95)

�2ξν = 0. (2.96)
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Hence, as long as the gauge ξν satisfies the above condition, Einstein’s field equations
will remain invariant.

2.4 Gravitational waves
The Einstein’s field equations, after applying the Lorenz gauge, is given by

�2Hµν = −16πGTµν . (2.97)

In empty space, there is no mass/energy, and hence the stress-energy tensor on the
right becomes zero, which gives

�2Hµν = 0. (2.98)

Recall that the �2 actually means

�2 = −∂2t + ∇2 = −∂tt + ∇
2, (2.99)

and, assuming we can treat Hµν simply as a function, the Einstein’s field equation
reads

∂tt Hµν = ∇
2Hµν = (∂xx + ∂yy + ∂zz)Hµν , (2.100)

where in the last line I assumed we use Cartesian coordinates for spatial coordinates.
This equation resembles the wave equation we see in classical mechanics. In the
same spirit, we can expect plane wave-like solutions to the empty space Einstein’s
field equations. We assume the solution to be in the form

Hµν = Aµν cos(−ωt + ®k · ®r) = Aµν cos(kαxα) = Aµν cos(gαβ kαxβ), (2.101)

where kα = [−ω, kx, ky, kz] is the four wave co-vector, and Aµν is just a constant
matrix (tensor).

Several constraints exist on the constant tensor Aµν and the four wave-co-vector kα.
(1) Recall that Hµν , which is a function of hµν , is symmetric (because the metric
gµν is symmetric), i.e.

Hµν = Hνµ . (2.102)

Therefore, we must have

Aµν = Aνµ. (2.103)
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That is, Aµν must also be symmetric. (2) Also, Hµν needs to satisfy the Lorenz
gauge, i.e.

H ,µ
µν = 0. (2.104)

We hence have

H ,µ
µν =

∂

∂xµ
[
Aµν cos(kαxα)

]
= 0. (2.105)

Aµν

∂

∂xµ
[cos(kαxα)] = 0 (2.106)

−Aµν sin(kβxβ)kα
∂xα

∂xµ︸︷︷︸
δαµ

= 0 (2.107)

Aµνk µ sin(kβxβ) = 0. (2.108)

Note that this must be true for all xβ, and hence, we have an additional constraint on
the four wave-co-vector kα and the constant tensor Aµν given by

Aµνk µ = 0. (2.109)

(3) Finally, recall that Hµν also needs to satisfy the Einstein’s field equations

�2Hµν = 0. (2.110)

Thus, we have

�2Hµν = ∂
β∂β

[
Aµν cos(kαxα)

]
= 0. (2.111)

−Aµν∂
β sin(kσxσ) kαδαβ︸︷︷︸

=kβ

= 0 (2.112)

Aµν cos(kρxρ)kσδβσkβ = 0 (2.113)[
Aµν cos(kρxρ)

]
k βkβ = 0. (2.114)

Again, note that this must be true for all xρ, and we do not want Aµν = 0, corre-
sponding to the trivial, “no-wave" solution. This leaves us with the constraint

k βkβ = 0. (2.115)

Note that

k βkβ = −ω2 + k2 = 0 (2.116)

ω = k . (2.117)
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Since wave speed v is related to the wave angular frequency ω and wave-vector k as

vk = ω. (2.118)

Hence, the speed of the gravitational waves is given by

v =
ω

k
= 1 (2.119)

which means that gravitational waves travel at the speed of light (since we have set
the speed of light c = 1).

To further simplify the solutions, we consider the gauge

ξα = Bα sin(kρxρ), (2.120)

where Bα is just another constant four-vector. We have

�2ξν = ∂
µ∂µBν sin(kρxρ) (2.121)

= Bν∂µ
[
cos(kβxβ)kρδ

ρ
µ

]
(2.122)

= −Bν sin(kσxσ)kβδβµkµ (2.123)

= −Bν sin(kσxσ) k µkµ︸︷︷︸
=0

(2.124)

= 0 (2.125)

where the last line is obtained based on the constraint placed on kα from theEinstein’s
field equations. Recall that under a gauge transformation, the tensor Hµν transforms
as

H̃µν = Hµν − ξµ,ν − ξν,µ + ηµν� · ®ξ. (2.126)

Note that

ξµ,ν = ∂ν
[
Bµ sin(kαxα)

]
= Bµ cos(kβxβ)kν, (2.127)

and

ηµν� · ®ξ = ηµν∂
αξα = ηµνBα cos(kβxβ)kα. (2.128)

Hence we have

Ãµν cos(kβxβ) = Aµν cos(kβxβ) − Bµ cos(kβxβ)kν (2.129)

− Bν cos(kβxβ)kµ + ηµνBα cos(kβxβ)kα (2.130)

Ãµν = Aµν − Bµkν − Bνkµ + ηµνBαkα. (2.131)
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If we want to eliminate the time-components in the transformed Aµν, we require

Atν − Bt kν − Bνkt + ηtνBαkα = 0. (2.132)

We further require that Aµν to be “traceless":

gµνAµν ≈ η
µνAµν = Aµ

µ = 0, (2.133)

by imposing the constraint

gµν Ãµν = gµν
[
Aµν − Bµkν − Bνkµ + ηµνBαkα

]
= 0 (2.134)

Aµ
µ − Bµk µ − Bνkν + 4Bαkα = 0 (2.135)

Bαkα = −
1
2

Aµ
µ. (2.136)

This simplifies the previous constraint as

Atν − Bt kν − Bνkt −
1
2
ηtνAµ

µ = 0. (2.137)

We have shown that we can always find a gauge such that (1) the wave solution is
traceless, i.e.

Aµ
µ = 0, (2.138)

and (2) transverse, i.e.

Aµt = 0 = Atµ. (2.139)

This gauge transformation is known as the traceless-transverse gauge (TT gauge),
and we denote the corresponding tensor as HTT

µν .

Recall that the newly defined tensor Hµν is related to the original metric perturbation
hµν as

hµν = Hµν −
1
2
ηµνH. (2.140)

In the TT gauge, Aµν (and hence Hµν ) is traceless, and so H = 0 which gives

hTTµν = HTT
µν . (2.141)

Suppose the gravitational wave is travelling along the z direction. This means only
the z component of the wave-vector ®k is non-zero. Then, the four wave-co-vector
becomes

kα = [−ω, 0, 0, ω]. (2.142)
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(Note that kαkα = 0.)

In general, we have Hµν = Aµν cos(kαxα). Under the TT gauge with the assumption
that the wave is travelling along the z direction, we have

cos(kαxα) = cos(−k tt + k x x + k yy + k zz) = cos(kz − ωt). (2.143)

Now, the tensor Aµν in general consists of 16 elements, which can be written
explicitly as

Aµν =


Att At x Aty Atz

Axt Axx Axy Axz

Ayt Ayx Ayy Ayz

Azt Azx Azy Azz


. (2.144)

Note that even without working in the TT-gauge, not all 16 elements in Aµν are
independent of each other because Aµν is symmetric, i.e. Aµν = Aνµ. There are
only 10 independent elements without the TT gauge transformation. Working in the
TT gauge, we have Atν = 0. This means that

Aµν =


0 0 0 0
0 Axx Axy Axz

0 Axy Ayy Ayz

0 Axz Ayz Azz


. (2.145)

This leaves us with 6 independent elements. We also have Aµ
µ = 0, which means

Axx + Ayy + Azz = 0. (2.146)

This further reduces our degree of freedom by 1, leaving us with 5 independent
elements. Recall that the Lorenz Gauge requires that

Aµνk µ = 0. (2.147)

Imposing this constraint gives

Atνω + Azνω = 0, (2.148)

since only the t and z components are non-zero. Note that we require Atν = 0. This
leaves us with

Azνω = 0. (2.149)
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This means Azx = Azy = Azz = 0. Hence we have

Aµν =


0 0 0 0
0 Axx Axy 0
0 Axy Ayy 0
0 0 0 0


, (2.150)

i.e. we are left just 3 independent elements. However, note that we have an additional
constraint that Aµ

µ = 0, which leads to

Axx + Ayy = 0 (2.151)

Axx = −Ayy . (2.152)

This leaves us with just 2 independent elements. Hence, we can write the metric
perturbation matrix as

Hµν = Aµν cos(kz − ωt) =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


cos(kz − ωt) (2.153)

=

©«
Axx


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


+ Axy


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


ª®®®®®¬

cos(kz − ωt).

(2.154)

We will rename the remaining independent parameters Axx and Axy as A+ and A×
respectively, such that

Hµν =

©«
A+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


+ A×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


ª®®®®®¬

cos(kz − ωt). (2.155)

The A+ and A× are known as the plus polarization and cross polarization respectively.

Let us first consider we have a particle that is initially at rest. To the leading order,
the four-velocity of the particle is given by

uµ = [1, 0, 0, 0]. (2.156)
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Now, the geodesic equation

d2xµ

dτ2 = −Γ
µ
αβuαuβ, (2.157)

similar to the Lagrange equation in classical mechanics, gives us the particle’s
equation of motion when the gravitational wave passes through. Recall that in terms
of the metric, the Christoffel symbol can be written as

Γ
µ
αβ =

1
2
gµσ

[
gασ,β + gσβ,α − gαβ,σ

]
. (2.158)

Since only the ut component is non-zero, we have

d2xµ

dτ2 = −Γ
µ
tt utut︸︷︷︸
=1

(2.159)

= −
1
2
gµσ

[
gtσ,t + gσt,t − gtt,σ

]
. (2.160)

Note that gtσ = 0 except for gtt = −1, but differentiating it also gives zero. Hence,
the three terms in the bracket vanish, leaving us with

d2xµ

dτ2 = 0. (2.161)

Nevertheless, this does not mean the particle is not moving as a gravitational wave
passes through. It simply means that in the TT-gauge, the coordinates of the particle
are always the same (i.e. the coordinate systemwe adopted is a comoving coordinate
frame). To visualize the motion of the particle with a gravitational wave passing
through, we consider a particle lying on the z = 0 plane at some distance R away
from the origin with polar angle θ. In particular, we assume

∆x = R cos θ

∆y = R sin θ
. (2.162)

With the particle lying on the plane z = 0, the metric tensor can be written as

gαβ = ηαβ + Hαβ (2.163)

=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


cos [k(0) − ωt] (2.164)

=


−1 0 0 0
0 1 + Axx cos(ωt) Axy cos(ωt) 0
0 Axy cos(ωt) 1 − Axx cos(ωt) 0
0 0 0 1


. (2.165)
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Now, when a gravitational wave passes through, the physical distance between the
particle and the origin is given by

∆s2 = gαβ∆xα∆xβ. (2.166)

In the TT gauge, this becomes

∆s2 = gαβ∆xα∆xβ (2.167)

= (∆xα)Tgαβ(∆xβ) (2.168)

=
[
0 R cos θ R sin θ 0

] 
−1 0 0 0
0 1 + Axx cos(ωt) Axy cos(ωt) 0
0 Axy cos(ωt) 1 − Axx cos(ωt) 0
0 0 0 1




0
R cos θ
R sin θ

0


(2.169)

= R2


0

(1 + Axx cos(ωt)) cos θ + Axy sin θ cos(ωt)

Axy cos θ cos(ωt) + (1 − Axx cos(ωt)) sin θ
0



T 
0

cos θ
sin θ

0


(2.170)

= R2 [
cos2 θ + sin2 θ + Axx cos(ωt)(cos2 θ − sin2 θ) + 2Axy cos(ωt) sin θ cos θ

]
(2.171)

= R2 [
1 + Axx cos(2θ) cos(ωt) + Axy sin(2θ) cos(ωt)

]
. (2.172)

Suppose the “cross-polarization" is absent, i.e. Axy = A× = 0, then

∆s =
√

R2 [1 + A+ cos(2θ) cos(ωt)] (2.173)

= R [1 + A+ cos(2θ) cos(ωt)]1/2 (2.174)

≈ R
[
1 +

A+
2

cos(2θ) cos(ωt)
]
. (2.175)

If we plot the position of the particle at different θ at different times, we will obtain
Figure 2.4.1. On the other hand, assuming that the “plus-polarization" is absent, i.e.
Axx = A+ = 0, then

∆s =
√

R2 [1 + A+ sin(2θ) cos(ωt)] (2.176)

= R [1 + A+ sin(2θ) sin(ωt)]1/2 (2.177)

≈ R
[
1 +

A+
2

sin(2θ) cos(ωt)
]
. (2.178)

If we plot the position of the particle at different θ at different times, we will obtain
Figure 2.4.2.
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Figure 2.4.1: How a ring of test masses on the x-y plane deforms as a gravitational
wave with plus-polarization travelling in the z-direction passes by.

Figure 2.4.2: How a ring of test masses on the x-y plane deforms as a gravitational
wave with cross-polarization traveling in the z-direction passes by.

2.5 Energy carried by gravitational waves
To understand the amount of energy carried by gravitational waves, we return to the
Einstein’s field equation:

Gµν = 8πGTµν . (2.179)

In earlier sections we assumed that Tµν = 0, i.e. the wave is travelling in free
space. Now, we put the stress-energy term back into the equation. However, this
term tells us nothing about the gravitational wave itself because it only encodes
information about the system that generates the gravitational waves, e.g. the energy
distribution in a binary black hole system. We must consider higher-order terms
to extract information about the energy carried by gravitational waves. As a first
approximation, we start with second-order terms. To first order, we have

G(1)µν = 8πGTµν, (2.180)

with G(1)µν = −1
2�

2Hµν . Promoting this to the second order gives

G(1)µν + G(2)µν = 8πGTµν . (2.181)
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In terms of Hµν , we can write this as

G(1)µν + G(2)µν = 8πGTµν (2.182)

−
1
2
�2Hµν = 8πGTµν − G(2)µν (2.183)

�2Hµν = −16πG

(
Tµν −

G(2)µν
8πG

)
. (2.184)

The first term on the right-hand side is just Tµν, i.e. the stress-energy tensor for
the source of gravitational waves. The second term comes from the geometric side,
i.e. it comes directly from the gravitational waves generated. This term encodes
information about the energy the gravitational waves carry. By moving this term to
the right-hand side of the equation, we are treating it as if it is yet another stress-
energy tensor term. This additional termwill tell us about the energy of gravitational
waves.

It should be noted that the second term itself evaluated at a single point in spacetime
is meaningless. Instead, we need to average this term over several gravitational-wave
wavelengths. That is, the gravitational-wave energy tensor is defined as

TGW
µν = −

〈G(2)µν〉
8πG

. (2.185)

For a gravitational wave with only plus polarization content, assuming that the
gravitational-wave frequency is ω, and that its direction of propagation is +z, the
metric tensor can be written as

gµν = ηµν + hµν =


−1 0 0 0
0 1 + A+ cos(ωt − ωz) 0 0
0 0 1 − A+ cos(ωt − ωz) 0
0 0 0 1


.

(2.186)

For simplicity, we write A+ cos(ωt−ωz) = h+(t, z) for the time being. To the second
order, evaluating the Ricci tensor gives

Rtt = Rzz ≈ h+ Üh+ +
1
2
Ûh2
+, (2.187)

and

Rtz = Rzt ≈ Ûh+,zh+ +
1
2
Ûh+h+,z . (2.188)
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All other elements in the Ricci tensor are identically 0. Then, the Ricci scalar is
given by

R ≈ ηµνRµν = −Rtt + Rzz = 0. (2.189)

Recall that the Einstein tensor is defined as

Gµν = Rµν −
1
2
ηµνR. (2.190)

The second-order correction term for the Einstein tensor is hence given by

Gµν = Rµν −
1
2
ηµνR = Rµν =


h+ Üh+ + 1

2
Ûh2
+ 0 0 Ûh+,zh+ + 1

2
Ûh+h+,z

0 0 0 0
0 0 0 0

Ûh+,zh+ + 1
2
Ûh+h+,z 0 0 h+ Üh+ + 1

2
Ûh2
+


(2.191)

To find the stress-energy tensor for gravitational waves, we need the wavelength-
averaged expression for the Einstein tensor, i.e. 〈Gµν〉. With

h+ = A+ cos(ωt − ωz), (2.192)

we obtain

Üh+ = −A+ω2 cos(ωt − ωz), (2.193)

and

Ûh+ = −A+ω sin(ωt − ωz). (2.194)

This leads to

〈h+ Üh+ +
1
2
Ûh2
+〉 = 〈−A2

+ω
2 cos2(ωt − ωz) +

1
2

A2
+ω

2 sin2(ωt − ωz)〉 (2.195)

= −A2
+ω

2〈cos2(ωt − ωz)〉 +
1
2

A2
+ω

2〈sin2(ωt − ωz)〉 (2.196)

=

(
−

1
2
+

1
4

)
A2
+ω

2 = −
1
4

A2
+ω

2. (2.197)

Note that

−
1
2
〈 Ûh2
+〉 = −

1
2

A2
+ω

2〈sin2(ωt − ωz)〉 = −
1
4

A2
+ω

2. (2.198)
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This means that for the non-zero diagonal elements in the Einstein tensor, the
averaged value will be equivalent to −1

2 〈
Ûh2
+〉, and hence, the tt component of the

stress-energy tensor for gravitational waves with only plus-polarization content is

TGW
tt = −

G(2)tt

8πG
=
〈 Ûh2
+〉

16πG
. (2.199)

Similarly, the stress-energy tensor for gravitationalwaveswith only cross-polarization
content is given by

TGW
tt =

〈 Ûh2
×〉

16πG
. (2.200)

For general gravitational waves that have both plus and cross-polarization content,
the stress-energy tensor is then given by

TGW
tt =

〈 Ûh2
+ +
Ûh2
×〉

16πG
. (2.201)

Now, the energy density of a gravitational wave is simply the tt component of the
stress-energy tensor. Note that

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


. (2.202)

Since

ÛhTTµν Ûh
µν
TT = (

Ûh+)2 + ( Ûh×)2 + ( Ûh×)2 + (−Ûh+)2 = 2( Ûh2
+ +
Ûh2
×), (2.203)

we have

TGW
tt =

1
2
×
〈ÛhTTµν Ûh

µν
TT〉

16πG
=
〈 ÛhTTµν Ûh

µν
TT〉

32πG
=
〈 Ûh2
+ +
Ûh2
×〉

16πG
. (2.204)

As we have assumed that the gravitational wave is propagating along the z direction,
The tz component of the stress-energy tensor gives the flux of gravitational wave
energy. The tz component of the Einstein tensor is given by

Gtz = Ûh+,zh+ +
1
2
Ûh+h+,z . (2.205)

The averaged expression is given by

〈Gtz〉 =
1
2
〈 Ûh+

2
〉. (2.206)
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Generalizing to gravitational waves with mixed polarizations, the expression be-
comes

〈Gtz〉 =
1
4
〈hTTµν hµνTT〉, (2.207)

and hence the energy flux of gravitational wave is simply the same as the energy
density of thewave itself, apart froman overall sign difference (since it is transporting
energy).

2.6 The LIGO detectors: An overview
Brief introduction to the LIGO detectors

Figure 2.6.1: A simplified schematic diagram of the Advanced LIGO gravitational-
wave detector. Figure from [341].

A schematic overview of the gravitational wave detector used by LIGO is shown in
Figure 2.6.1. Advanced LIGO gravitational-wave detectors are essentially modified
Michelson interferometers [341]. A pair of test masses with highly reflective mirror
surfaces forms a Fabry-Perot arm cavity along each of the two detector arms. A
power recycling mirror is placed between the input laser and the beamsplitter in
the lower left part of the figure to enhance the laser power stored in the detector
arms to 100 kW. The laser beams travelling along the two detector arms are joined
at the beamsplitter and directed to the gravitational-wave readout photodetector, as
shown in 2.6.1. We place a signal-recycling mirror between the beam splitter and
the gravitational-wave readout photodetector to alter the frequency response of the
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interferometer to fluctuations in differential arm length. When gravitational waves
pass through the gravitational-wave detectors, it will cause apparent changes in the
differential arm lengths that induce power fluctuations in the detectors’ gravitational-
wave readout port. With appropriate calibration, the signal from the gravitational-
wave readout port can be converted into a change in differential arm lengths of
the detectors, formally known as strain h(t), in the time domain. Search pipelines
can then ingest the calibrated strain data to search for possible gravitational-wave
signals. In Chapter 3, we will discuss how data from LIGO detectors is calibrated.

Antenna pattern associated with LIGO’s L-shaped detectors
We will now derive the antenna pattern associated with the geometry of the
gravitational-wave detectors. For LIGO detectors, it corresponds to an L-shaped
ground-based detector. Consider a gravitational wave travelling along the direction
n̂, the corresponding strain tensor is then given by

h j k(t, ®r) =
∑

A=+,×

eA
jk(n̂)

∫
hA( f ) exp

[
2πi f

(
t −

n̂ · ®r
c

)]
, (2.208)

where A represents the polarization (“plus" and “cross" polarization). The Latin
alphabet indices j and k represent the three spatial dimensions (i.e. excluding
the time dimension) 2. The integral is an inverse Fourier transform of the strain
amplitude of gravitational wave evaluated at retarded time t − n̂·®r

c . eA
jk(n̂) are the

polarization tensors for gravitational waves in the TT gauge, specifying the test mass
ring motion: 

e+j k = û j ûk − v̂ j v̂k

e×j k = û j v̂k + v̂ j ûk

. (2.209)

where û and v̂ are unit vectors orthogonal to n̂ and to each other. Without loss of
generality, we set ®r = 0 as the position of the LIGO detector.

When the gravitational wavelength λGW =
1
f is much longer than the detector’s

typical size, we can neglect the second term in the retarded time, i.e.

e−i2π f (t−®n·®r) ≈ e−i2π f t . (2.210)

2 In the rest of this thesis, Greek alphabet indices represent time and spatial dimensions (i.e.
4-dimension) where Latin alphabet indices represent spatial dimensions only.
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With this, the tensor strain can be simplified as

h j k(t) =
∑

A=+,×

eA
jk(n̂)

∫ ∞

−∞

df h̃A( f )e−i2π f (t−n̂·®r)df (2.211)

≈
∑

A=+,×

eA
jk(n̂)

∫ ∞

−∞

df h̃A( f )e−i2π f t df (2.212)

=
∑

A=+,×

eA
jk(n̂)hA(t) (2.213)

where we make use of the fact that the integral in the second line is simply the
“inverse Fourier transform" of the strain amplitude in frequency space h̃A( f ).

Recall that the input of the detector is given by

h(t) = D j k hi j(t), (2.214)

where D j k is a tensor describing the detector’s geometry. We define the detector
pattern functions as

FA(n̂) = D j k eA
jk(n̂). (2.215)

In terms of spherical coordinates (r, θ, φ), the general expression for the directional
unit vector n̂ can be expressed as

n̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ. (2.216)

In terms of the antenna pattern functions and the twopolarizations of the gravitational
wave h+ and h×, we can write

h(t) = D j k h j k(t) = D j k h j k(t)
∑

A=+,×

eA
i j(n̂)hA(t) (2.217)

=
∑

A=+,×

[D j k h j k(t)eA
jk]hA(t) (2.218)

=
∑

A=+,×

FAhA(t) (2.219)

= F+h+ + F×h×. (2.220)

We have assumed above that we have chosen a system of axes (û, v̂) in the plane
orthogonal to the propagation direction n̂ of the wave, with respect to which the
polarizations h+ and h× are defined. In the case where the system is rotated along
the n̂ axis counter-clockwise by an angle ψ. Take u and v as the x and y axes
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respectively. The rotational matrix R that represents the rotational transformation
from the u − v plane to the u′ − v′ plane is given by

R =
[
cosψ − sinψ
sinψ cosψ

]
. (2.221)

From this, we have[
u′

v′

]
= R

[
u

v

]
=

[
cosψ − sinψ
sinψ cosψ

] [
u

v

]
=

[
u cosψ − v sinψ
u sinψ + v cosψ

]
. (2.222)

The original TT gauge expression for hTT
jk is given by

hTT
jk =

[
h+ h×
h× −h+

]
(2.223)

where I have neglected the t and z components. By transforming the strain tensor
hTT

jk with the rotational matrix, we have

hTT
j ′k ′ =

[
h′+ h′×
h′× −h′+

]
(2.224)

=

[
cosψ − sinψ
sinψ cosψ

] [
h+ h×
h× −h+

] [
cosψ sinψ
− sinψ cosψ

]
(2.225)

=

[
h+ cosψ − h× sinψ h× cosψ + h+ sinψ
h+ sinψ + h× cosψ h× sinψ − h+ cosψ

] [
cosψ sinψ
− sinψ cosψ

]
(2.226)

=

[
h+(cos2 ψ − sin2 ψ) − h×(2 sinψ cosψ) h+(2 sinψ cosψ) + h×(cos2 ψ − sin2 ψ)

h+(2 sinψ cosψ) + h×(cos2 ψ − sin2 ψ) −[h+(cos2 ψ − sin2 ψ) − h×(2 sinψ cosψ)]

]
(2.227)

=

[
h+ cos(2ψ) − h× sin(2ψ) h+ sin(2ψ) + h× cos(2ψ)
h+ sin(2ψ) + h× cos(2ψ) −[h+ cos(2ψ) − h× sin(2ψ)]

]
(2.228)

and hence 
h′+ = h+ cos(2ψ) − h× sin(2ψ)

h′× = h+ sin(2ψ) + h× cos(2ψ)
. (2.229)

Then, in the rotated frame, the plus polarization tensor can be written as

e+
′

j k = û′ j û′k − v̂′ j v̂′k (2.230)

= (û j cosψ − v̂ j sinψ)(ûk cosψ − v̂k sinψ) − (û j sinψ + v̂ j cosψ)(ûk sinψ + v̂k cosψ)
(2.231)

= [û j ûk − v̂ j v̂k](cos2 ψ − sin2 ψ) − [û j v̂k + v̂ j ûk](2 sinψ cosψ) (2.232)

= cos(2ψ)e+j k − sin(2ψ)e×j k, (2.233)
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and similarly, the cross-polarization tensor can be written as

e×
′

j k = û′ j v̂′k + v̂′ j û′k (2.234)

= (û j cosψ − v̂ j sinψ)(ûk sinψ + v̂k cosψ) + (û j cosψ − v̂ j sinψ)(ûk cosψ − v̂k sinψ)
(2.235)

= [û j ûk − v̂ j v̂k](2 sinψ cosψ) + [û j v̂k + v̂ j ûk](cos2 ψ − sin2 ψ) (2.236)

= sin(2ψ)e+j k + cos(2ψ)e×j k . (2.237)

With the detector antenna pattern functions defined as

FA(n̂) = D j k eA
jk(n̂), (2.238)

since Di j depends only on the geometry of the detector, it should remain unchanged
under the rotation. In the new rotated system, we have

F′+(n̂, ψ) = F+(n̂, 0) cos(2ψ) − F×(n̂, 0) sin(2ψ)

F′×(n̂, ψ) = F+(n̂, 0) sin(2ψ) + F×(n̂, 0) cos(2ψ)
. (2.239)

Now consider Figure 2.6.2, which shows the gravitational-wave source frame (left)
and the LIGO detector frame (right). The polarizations h+ and h× are defined with
respect to the x′ − y′ frame. Therefore, in the source frame, the gravitational wave
strain tensor has the form (note that I have ignored the time component)

h′j k =


h′xx h′xy h′xz

h′yx h′yy h′yz

h′zx h′zy h′zz

 =

h+ h× 0
h× −h+ 0
0 0 0

 . (2.240)

To transform h′j k into the detector frame, we need to do two rotations, respectively
along the y axis and z axis. The rotational matrix about the y axis is given by

Ry =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 . (2.241)

and that about the z axis is given by

Rz =


cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 . (2.242)



30

Figure 2.6.2: A schematic diagram illustrating gravitational-wave source frame and
detector frame.

Therefore, we have

R = RzRy =


cos φ sin φ 0
− sin φ cos φ 0

0 0 1




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.243)

=


cos φ cos θ sin φ cos φ sin θ
− sin φ cos θ cos φ − sin φ sin θ
− sin θ 0 cos θ

 . (2.244)

In terms of h+, h×, θ and φ, we have
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h j k = Rh′j kRT (2.245)

=


cos φ cos θ sin φ cos φ sin θ
− sin φ cos θ cos φ − sin φ sin θ
− sin θ 0 cos θ



h+ h× 0
h× −h+ 0
0 0 0



cos φ cos θ − sin φ cos θ − sin θ

sin φ cos φ 0
cos φ sin θ − sin φ sin θ cos θ

 (2.246)

=


h+ cos φ cos θ + h× sin φ h× cos φ cos θ − h+ sin φ 0
−h+ sin φ cos θ + h× cos φ −h× sin φ cos θ − h+ cos φ 0

−h+ sin θ −h× sin θ 0



cos φ cos θ − sin φ cos θ − sin θ

sin φ cos φ 0
cos φ sin θ − sin φ sin θ cos θ


(2.247)

=

[
h+(cos2 φ cos2 θ − sin2 φ) + h× cos θ sin(2φ) −h+(cos2 θ + 1) sin φ cos φ + h× cos θ cos(2φ) − 1

2 h+ cos φ sin(2θ) − h× sin φ sin θ
−h+(cos2 θ + 1) sin φ cos φ + h× cos θ cos(2φ) h+(sin2 φ cos2 θ − cos2 φ) − h× cos θ sin(2φ) 1

2 h+ sin φ sin(2θ) − h× cos φ sin θ
− 1

2 h+ cos φ sin(2θ) − h× sin φ sin θ 1
2 h+ sin φ sin(2θ) − h× cos φ sin θ −h+ sin2 θ

]
.

(2.248)

To compute the phase shift in a LIGO detector, defined by 1
2 (∂tt hxx − ∂tt hyy), we

need to write the tensor D j k as

D j k =
1
2
(x̂ j x̂k − ŷ j ŷk). (2.249)

The strain is given by

h(t) =
1
2
(hxx − hyy) = F+h+ + F×h×. (2.250)

Since
1
2
(hxx − hyy) =

1
2
{h+[cos2 θ(cos2 φ − sin2 φ) + (cos2 φ − sin2 φ)] + 2h× cos θ sin(2φ)}

(2.251)

=
1
2

h+ cos(2φ)(cos2 θ + 1) + h× cos θ sin(2φ), (2.252)

we obtain the antenna pattern functions as
F+ = 1

2 cos(2φ)(cos2 θ + 1)

F× = cos θ sin(2φ)
. (2.253)

With these derived expressions, we can now evaluate the input of the detector given
by

h(t) = D j k h j k(t), (2.254)

with D j k being a tensor describing the geometry of the detector. It is important to
note that all the expressions defined here are evaluated in the celestial coordinate
frame.
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C h a p t e r 3

DATA ANALYSIS OF GRAVITATIONAL WAVES FROM
COMPACT BINARY COALESCENCES - AN OVERVIEW

3.1 Introduction
In this chapter, I will give an overview of the LIGO-Virgo-KAGRA (LVK) collab-
oration’s framework to search for gravitational waves. Some of the known sources
of gravitational waves include: (1) gravitational waves from compact binary coales-
cences (CBCs), (2) gravitational-wave bursts that may originate from transients like
supernovae, (3) continuous gravitational waves from sources emitting gravitational
waves continuously at quasi-constant frequency, for example, spinning asymmetric
neutron stars, and (4) stochastic gravitational-wave background that consists of a
collection of gravitational waves that are not well-localized. In this thesis, however,
we will only be focusing on gravitational waves from compact binary coalescences
as LIGO has only confidently detected gravitational waves from CBCs at the time
of writing.

3.2 Overview of current LVK’s framework to search for gravitational waves
from compact binary coalescences

There are several key steps in current LVK’s framework to search for and analyze
gravitational waves from compact binary coalescences: (1) Calibrating detector
data, (2) Detector characterization and noise mitigation, (3) Searching for significant
possible gravitational-wave candidates, and (4) Performing parameter estimation for
possible gravitational-wave candidates.

Calibrating detector data
Before searching for possible gravitational-wave signals, the detector’s data must
first be calibrated and have their data quality checked, a process more commonly
known as “strain calibration” 1

When a typical gravitational wave passes through a detector, the detector arm
lengths will only change by a small amount ∆L on the order of O(1019)m. The
corresponding gravitational wave strain is h = ∆L

L , where L is the detector arm
1 I will not pretend to be an expert because I do not actively work on strain calibration. This will

be something I am going to explore in the future. Here, I will try my best to give a brief introduction.
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length (i.e. 4km) (c.f. Equation 2.250 in Chapter 3). To measure the change in
arm lengths to that precision, the calibration of the detector data must also attain at
least the same precision. We calibrate the detector data carefully using feedback
control loops [7]. Feedback control loops (see Figure 3.2.1) are used to maintain

Figure 3.2.1: A block diagram of the feedback control loops used in the LIGO
detectors. Figure taken from [341].

the gravitational-wave detectors in a quasi-stationary state so that they can detect
gravitationalwaves. One of these control loops is called the differential arm (DARM)
length feedback loop [7]. The DARM length feedback loop, subdivided into sensing
and actuation functions, is primarily used to keep the detector arm length difference
steady. The sensing function transforms the differential displacement of the testmass
to a digitized signal. This digitized signal represents the laser power fluctuation at
the gravitational-wave readout port. The actuation function, on the other hand, can
control the detector differential arm length by actuating on the quadruple suspension
system for any of the arm cavity test masses. Details of the two functions can be
found at [7], which will not be repeated here.

For the Advanced LIGO detectors, we use photon calibrators, commonly known
as “Pcals”, as the primary calibration tool [207]. The working principle of photon
calibrators is as follows: First, auxiliary, power-modulated laser beams are impinged
onto a suspended test mass. Because of photon radiation pressure, as the test mass’
mirror surface reflects the photons, the test mass will recoil accordingly. Since
the laser beams are modulated, the forces on the test mass are periodic and are
directly proportional to the amplitude of the laser power modulation, the test mass’
position will hence undergo modulation together with the length of the detector
arm cavity. Figure 3.2.2 illustrates how photon calibrators imping laser beams
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on a suspended test mass. We can also use the photon calibrators to produce

Figure 3.2.2: An illustration of how photon calibrators imping laser beams on a
suspended test mass. Figure taken from [207].

tracked and known movements to the test masses. This produces “calibration lines”
at known frequencies to the detector data. We can use the calibration lines to
calibrate the output signal and track slow temporal variation [207]. Calibration
lines are excitations induced using the photon calibrators at certain known nominal
frequencies with known amplitudes (See Table III of [207]). The use of calibration
lines allows one to apply corrections for slow temporal variations and hence improve
the accuracy of data calibration. In Figure 4.2.2, two examples of calibration lines
at frequencies 36.7 Hz and 331.9 Hz can be seen.

Interested readers are asked to refer to [7, 207] for more information about strain
calibration.

Detector characterization and mitigation
While Advanced LIGO detectors have employed various technologies to reduce
noise from non-astrophysical sources, the complicatedness of the detectors also
introduces “instrumental noise” to the data, affecting the data quality and our search
sensitivity for gravitational waves. It is, therefore, important to identify, diagnose,
and mitigate detector noise that may affect the quality of gravitational-wave data.
These procedures are known collectively as detector characterization [130].

There are two major instrumental noise types: Transient and persistent noise. Noise
transients, more commonly known as “glitches”, which are short-duration bursts of
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noise in the data. In contrast, persistent noise is long-term noise residing in the
data. The ability to correctly identify and characterize instrumental noise can help
us to locate and possibly remove known noise from the data (i.e. data mitigation),
providing cleaner data for follow-up analyses to search for and identify gravitational
waves from the data. Detailed procedures for identifying andmitigating instrumental
noise that is characterize-able in the data can be found in [130, 131].

Because of theAdvanced LIGOdetectors’ complexity and thewide range of possible
noise sources, not all noise in the data can be accurately characterized and mitigated.
Data with quality issues that cannot be mitigated will be “vetoed”, and will not be
analyzed by analysis pipelines. Identifying and vetoing problematic times of data
is particularly important to searches for gravitational waves from compact binary
coalescences. This is because search pipelines must be capable of separating bursts
of excessive power caused by real gravitational-wave signals, from glitches caused
by instrumental noise [130]. LIGO also employs pipelines to help identify times
with high glitch rates. For example, Omicron [303] is used to identify and gather
all glitch times [130]. A machine-learning-based pipeline, iDQ [149, 176], is also
used to find possible correlations with auxiliary witnesses in gravitational-wave
data. iDQ aims to automatically identify potential glitches in the gravitational-
wave data and provide information about the times in the data up to sub-second
intervals likely to contain a glitch in low latency. Search pipelines will incorporate
information provided by the aforementioned tools about the data quality and consider
them when assigning ranking statistics to triggers found during times with a high
probability of corruption by glitches (See also [176]). Later in Chapter 5, we will
introduce a proposed method to incorporate data quality information output from
the iDQ pipeline into the GstLAL search pipeline.

Since detector characterization is not the main focus of this thesis, readers are asked
to refer to [130, 131] for more details.

Searching for possible gravitational-wave signals from the data
Calibrated data are then ingested by “search pipelines” to search for possible candi-
dates of gravitational waves in low-latency. In this thesis, we are mainly focusing
on the search for gravitational waves from compact binary coalescences. However,
readers are reminded that other sources of gravitational waves are possibly detectable
by ground-based gravitational-wave detectors, including continuous gravitational
waves, gravitational-wave bursts, and stochastic gravitational-wave background.
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Gravitational waves from compact binary coalescences have well-modelled wave-
forms that typically depend on 15 parameters.

Figure 3.2.3: The 15 parameters that govern the waveforms of gravitational waves
from compact binary coalescences.

• m1,m2: Masses of the two components,

• ®χ1, ®χ2: The three-dimensional (dimensionless) spins of the two components,

• ι: Inclination of the orbital plane of the compact binary with respect to the
line of sight,

• ψ: The orientation of the polarization vector with respect to the detector,

• DL: Luminosity distance to the source,

• α, δ: The right ascension and declination of the compact binary,

• tc, φc: The coalescence time and phase.

These parameters are also illustrated in Figure 3.2.3. For gravitational waves from
compact binaries that involve a neutron star, additional parameters known as the
“tidal deformability” Λi, corresponding to effects related to the matter and internal
structure of neutron stars, are included. In some analyses, the eccentricity of the
orbit of the compact binaries is also included as one of the parameters.

There are two major types of search pipelines to search for possible gravitational
waves from compact binary coalescences, namely (1) Modelled (matched-filtering-
based) searches, and (2) Unmodelled searches.
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Modelled (matched-filtering-based) search pipelines, including GstLAL and py-
CBC, rely on the fact that gravitational waves from compact binary coalescences
have well-modeled waveforms. Given a region in the parameter space (e.g. in the
component masses m1-m2 space) where gravitational waves are within the frequency
bands that LIGO detectors are sensitive to, we can precompute a set of gravitational
waveforms (which we call “template” waveforms) within this region labelled by
their respective parameters. This set of precomputed template waveforms is stored
collectively in a “template bank”. We then slide each of these templates across
the data, and at each point, we compute the correlation between the template and
data. The correlation amplitude is known as the signal-to-noise ratio (SNR). This
is a process known as “matched-filtering” [43, 189]. Suppose the SNR exceeds a
certain pre-determined threshold at a given time instant. In that case, we record
the time instant and label it as a possible candidate gravitational-wave signal (also
known as a “trigger”). Modelled (matched-filtering-based) search pipelines will
then rank these triggers according to some internally assigned ranking statistics
from most likely to least likely to be an actual gravitational-wave signal. A ranked
list of candidates is then released from the search pipeline for follow-up analysis.
Details of matched-filtering-based pipelines will be further discussed in Chapter 4.

In contrast, unmodelled searches like the Coherent WaveBurst (CWB) pipeline
[144] aims to identify gravitational waves with minimal assumptions on the signal
morphology, i.e., there are no assumed waveform models. For example, the CWB
pipeline looks for coherent (i.e., coincident in time) burst signals in the time-
frequency domain for data across a network of detectors. Coherent triggers are
subsequently assigned a likelihood ratio that compares the probability of the trigger
associated with a gravitational-wave signal to that of the trigger originating from
noise. If the trigger’s likelihood ratio exceeds a predetermined threshold, it will be
flagged by the pipeline as a candidate gravitational wave and passed on for follow-up
analyses [215].

While modelled and unmodelled searches have been used to search for gravitational
waves, modelled searches, in general, are more effective in uncovering gravitational-
wave signals. Some possible reasons are: (1) Modelled (matched-filtering-based)
searches can maximize the signal-to-noise ratio (SNR) when the observed data
is matched-filtered against a bank of template waveforms by design. If noise in
the data is stationary and Gaussian, it has been shown that matched-filtered SNR
is the optimal detection statistic to search for possible signals in the data [43].
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(2) Unmodelled searches generally require signals to be seen in more than one
detector (coherent signals). However, it is not uncommon for detectors in a detector
network to be “down” (not in a state where it can collect scientific data) temporarily,
leaving only a single detector collecting data. Alternatively, due to the geometry
of the detectors, there exists “blind spots” in the sky at any given time from which
gravitational waves are not detectable by a detector. In those scenarios, unmodelled
searches that rely on the coherent detection of signals across detectors can potentially
lose signals. Modelled (matched-filtering-based) searches, on the other hand, can
find signals even if they are only detected in one detector 2.

In the rest of this thesis, we will focus on modelled (matched-filtering-based) search
pipelines.

Bayesian Parameter Estimation for significant events
As a next step, Bayesian parameter estimation is run on significant gravitational-
wave candidates output from search pipelines to infer the sources’ astrophysical
properties (e.g. the source component masses and spins, c.f. Figure 3.2.3). Given
the gravitational-wave data d containing a gravitational-wave signal s, we want to
infer the signal’s source parameters ®θ. Formally, we want to determine the posterior
p(®θ |d) [341], i.e. the probability that the data contains a gravitational-wave signal
with source parameters ®θ given the data d. To evaluate this posterior, we make use
of Bayes’ theorem and write the posterior as

p(®θ |d) =
L(d | ®θ)π(®θ)
Z

, (3.1)

where L(d | ®θ) is the “likelihood” that gives the probability of obtaining the data d

if a gravitational-wave signal with source parameters ®θ is present in the data; π(®θ)
is the “prior” distribution for the source parameters ®θ, and

Z =

∫
L(d | ®θ)π(®θ)d ®θ (3.2)

is the “evidence”. In this case, the evidence is a normalization constant to the
posterior. However, it should be noted that if we are instead performing Bayesian
model selection analysis, the “evidence”Z will become important when evaluating
the Bayesian odds [341]. For instance, in Chapter 6, 8, 9 and 10, we perform
Bayesian model selection analysis to determine how likely a set of gravitational-
wave signals are strongly-lensed counterparts to each other, originating from the

2 This requires the signal to have a sufficiently high amplitude in general.
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same source, as compared to being independent signals. In such analyses, the
“evidence” is no longer a mere normalization constant, but is crucial for evaluating
the Bayesian odds ratio (See also [235]).

For most Bayesian parameter estimation analyses like Bilby [49], a Gaussian noise
likelihood, defined as

L =
1

2πσ2 exp

−
���d − h

(
®θ
)���2

2σ2

 , (3.3)

where h
(
®θ
)
is a template waveform with parameters ®θ, σ is the detector noise

(assuming Gaussian noise), and π is the usual mathematical constant (not the prior),
is adopted.

Once the prior and likelihood are set, one can adopt a stochastic sampler, e.g.
MarkovChainMonteCarlo (MCMC) based samplers, to explore the parameter space
and map out the posterior. Samplers employed by the Bilby parameter estimation
pipeline [49] generate a list of posterior samples { ®θ} drawn from the posterior
probability distribution such that the number of samples is proportional to the
posterior distribution p(®θ |d) on the interval

(
®θ, ®θ + d ®θ

)
[341].

These posterior samples generated for each candidate gravitational-wave event,
while being a by-product of the parameter estimation analysis, are crucial ingredients
for other follow-up analyses to be conducted on the gravitational-wave events. For
instance, in Chapter 7, posterior samples of confirmed superthreshold gravitational-
wave events are used to generate lensed injections for the targeted search for possible
sub-threshold lensed gravitational waves.

Details on the exact Bayesian parameter estimation analysis can be found in [49, 341].
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C h a p t e r 4

THE GSTLAL SEARCH PIPELINE - AN OVERVIEW

4.1 Top-level introduction to matched-filtering-based search pipelines
Here, we give a general overview of matched-filtering-based search pipelines for
gravitational waves. For the rest of this thesis, matched-filtering pipelines are
assumed to be targeting only gravitational waves originating from compact binary
coalescences, but readers are reminded that these pipelines can potentially be used
to search for gravitational waves from other sources (e.g. bursts).

Matched-filtering-based pipelines exploit the fact that gravitational waveforms from
compact binary coalescences are well-modelled. Focusing on a particular region in
the gravitational-wave parameter space, a collection of waveforms {h̃i( f ) (labelled
by their intrinsic parameters like component masses m1,2 and dimensionless spins
®χ1,2) are prepared and filtered against sets of data {d(t)} collected from the partic-
ipating detectors in an observing run. Assuming aligned spins with the stationary
phase approximation, the plus and cross-polarization components of a gravitational
waveform can be written in the time domain as

h+(t) = 1+cos2 ι
2

(
2GM
c2D

) (
2Gµ
c2r(t)

)
cos [2(ω(t) − φc)]

hx(t) = cos ι
(

2GM
c2D

) (
2Gµ
c2r(t)

)
cos [2(ω(t) − φc)]

, (4.1)

where ι is the inclination of the system, G is the gravitational constant, c is the speed
of light, M = m1 + m2 is the total mass of the system, µ is the reduced mass of the
system, ω is the orbital angular frequency, D is the distance to the source’s center, r

is the source’s separation, and φc is the coalescence phase. Under this assumption,
the two polarizations differ from each other only by a proportionality constant plus
a π

4 phase shift. Note that here we are only considering the fundamental 2−2 mode,
and higher-order modes are neglected. In the future, the inclusion of higher-order
modes may be implemented to further improve our search sensitivity [359].

Mathematically, we can write the complex matched-filtering output zi(t) of the data
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d(t) against a given template h̃i( f ) as

zi(t) ≡ xi(t) + iyi(t) = 4
∫ ∞

0

d̃( f )h̃∗i ( f )
Sn( f )

e2iπ f t df (4.2)

= 4
∫ ∞

0

d̃( f )√
Sn( f )

·
h̃∗i ( f )√
Sn( f )

e2iπ f t df , (4.3)

where Sn( f ) is the one-sided noise power spectral density (PSD), and the integral in
the last line transforms the matched-filtering output from the frequency domain to
the time domain via Fourier transform. xi and yi correspond to a gravitational wave
signal with coalescence phase φc and φc +

π
4 respectively. The final line of Equation

4.2 explicitly shows that both the data d̃( f ) and the template waveform h̃i( f ) are
whitened by the square root of the noise PSD, i.e. the amplitude spectral density
(ASD).

Pipelines will record times when the magnitude of the matched-filtering output.
When the output is suitably normalized[43], it is formally known as the signal-to-
noise ratio SNR ρ, exceeds a predetermined threshold together with the SNR at those
times and the template parameters as a candidate event (also known as “trigger”) for
each template waveform. For GstLAL, an additional statistic, the “auto-correlation
based consistency test value” ξ2, is calculated for each trigger. ξ2 evaluates the
difference between the expected SNR timeseries for a template associated with a
trigger (also known as the “auto-correlation”, hence auto-correlation-based) to the
actual SNR timeseries. The larger ξ2, the more different the data is compared to
the template waveform. ξ2 will be further discussed in Section 4.2. PyCBC has a
similar signal consistency test value (see Equation 14 of [351] for example).

Pipelines will then estimate the significance (using a ranking statistic) of the col-
lection of triggers they obtained. PyCBC previously used a ranking statistic called
“re-weighted SNR” ρ̃ defined by (See also Equation 5 of [277])

ρ̃ =


ρ, χ2 ≤ 1

ρ[
1
2+(χ

2)
3
] 1

6
, χ2 > 1 . (4.4)

GstLAL assigns an alternative ranking statistic, the “likelihood ratio”

L =
L(signal)
L(noise)

. (4.5)

L is the ratio of the probabilities of obtaining a trigger (with the recorded SNR ρ,
ξ2, template parameter ®θ, and other detection statistics) under the signal hypothesis
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(i.e. assuming that the trigger is a gravitational-wave signal) and that under the noise
hypothesis (i.e. assuming that the trigger is noise). Starting from the third observing
run, PyCBC also started to use the “likelihood ratio” as the ranking statistic. This
will be further discussed in the next section.

A noise background estimation is required to evaluate the probability under the noise
hypothesis. Different search pipelines have different approaches to model the noise
background. For example, pyCBC estimates the noise background by performing
multiple timeslides of data [277, 279]: In each iteration, pyCBC adds a time offset
to the data in different detectors that is larger than the maximum light travel time
across the detectors, perform matched-filtering on the time-slided data and collect
triggers that are found coincidentally inmultiple detectors. These coincident triggers
must not correspond to real gravitational waves but noise because of the unphysical
time offset added. Hence, they can be used to construct one realization of the noise
background. An ensemble of these estimates is then used to generate a representative
noise background estimation. On the other hand, GstLAL uses non-coincidental
single detector triggers to estimate the noise background (See Section 4.2).

Finally, search pipelines estimate the False-Alarm-Probability (FAP) 1 for each
trigger. FAP is the probability that noise can produce a trigger with a ranking
statistic larger or equal to that of the trigger under consideration. Intuitively, the
lower the FAP, the more likely a candidate is a gravitational wave. A related statistic
known as the False-Alarm-Rate (FAR) is also evaluated for each candidate. FAR
quantifies how often noise can produce a trigger with a ranking statistic lnL greater
or equal to the ranking statistic lnL∗ of the trigger under consideration, marginalized
over all the data analyzed [11]. Mathematically, we have

FAR =
N × FAP

T
, (4.6)

where N is the total number of observed candidates, and T is the duration of the
data being analyzed, A ranked list of candidates according to the FAPs estimated is
then output from the search pipeline for follow-up analysis like Bayesian parameter
estimation [305].

1 A similar quantity known as the False-Alarm-Rate (FAR) can also be evaluated. FAR tells us
how often noise can produce a trigger with a ranking statistic larger or equal to that of the trigger
under consideration.
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4.2 An overview of the GstLAL search pipeline
In this section, I will give an overview of the GstLAL search pipeline, outlining the
key procedures.

Figure 4.2.1: A simple flowchart outlining the key components of the GstLAL
pipeline. Figure reproduced with reference to [250]. Note that the first two boxes
representing “data and template preparation” and “data filtering” are done individ-
ually for each participating detector.

One key difference that sets GstLAL aside from the other search pipelines like
pyCBC is that GstLAL performs matched filtering in the time domain instead of
the frequency domain. As we have seen previously, the complex matched-filtering
output is given by equation 4.2. GstLAL performs matched-filtering with “real”
templates only in the time domain, and hence, for each matched-filtering, GstLAL
will only compute the real part xi of the complex SNR timeseries, corresponding to
a single coalescence phase. To obtain the complete complex SNR time series, for
each complex template hc

i (t) (i runs from 0 to N − 1, where N is the total number of
templates in the template bank, and c means that the template is complex in general),
GstLAL will perform two matched-filtering processes with two real sub-templates
defined by 

h2i(t) = <
[
hc

i (t)
]

h2i+1(t) = =
[
hc

i (t)
] , (4.7)

where the second waveform differs from the first waveform by a π
4 coalescence phase

shift with respect to Equation 4.1.

Estimating the noise power spectral density (PSD)
As a first step, GstLAL estimates the (one-sided) noise power spectral density (PSD)
Sn( f ) with the given data from the various detectors. Note that PSD is the square
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of the Amplitude Spectral Density (ASD). The PSDs are essential for whitening
the templates and data for matched-filtering at a later stage (See also Equation 4.2).
Theoretically, if the noise in the detectors is stationary and Gaussian, the one-sided
noise PSD is defined [250] as

〈ñ( f )ñ∗( f ′)〉 =
1
2

Sn( f )δ( f − f ′), f > 0 (4.8)

where the left side is the average of an ensemble of realizations of the noise in the
detector n(t). In reality, we can only estimate detector noise from data collected
from the detectors, which generally consists of both signals and data. Additionally,
detector data is neither stationary nor Gaussian due to glitches. A detailed expla-
nation of how GstLAL estimates the PSDs can be found in Section II A of [250].
As an example, Figure 4.2.2 shows the median power spectral density (PSD) of
data collected from the Hanford (H1) and Livingston (L1) detector between UTC
time 2023-05-24 15:00:00 and 2023-06-06 14:30:34, estimated using the GstLAL
pipeline. The binary-neutron-star horizon distances 2 for each detector are also
estimated and shown in the legend of the same figure.

Template bank splitting and decomposition
Since we do not know a priori where in the parameter space the gravitational waves
we are searching for lives (we refer to this parameter space as the “signal subspace”
hereafter), we will need to prepare a large number of gravitational waveforms, col-
lectively stored in a “template bank”, to cover the possible search parameter space
where a gravitational wave may live in for a general search. Templates in a standard
template bank are not distributed uniformly but are chosen to minimize the size of
the template bank. Insufficient templates to cover the parameter space may lead to
potential loss of gravitational-wave signals due to excessive loss of signal-to-noise
ratio (SNR), causing them not to be identified as potential triggers in the first place
in a matched filtering search pipeline. Meanwhile, an over-population of templates
leads to high trials factors and thus accumulates excessive “noise” background,
making it more difficult to distinguish actual gravitational-wave signals from the
collected background 3. Therefore, a standard template bank is generated in a way

2 The binary-neutron-star horizon distance is defined as the furthest distance to which we will be
able to detect gravitational waves from a 1.4M�−1.4M� binary-neutron-star merger with a threshold
signal-to-noise ratio of 8.

3 The trials factor problem (and hence the large noise background) is an obstacle we encountered
when looking for sub-threshold (strongly-lensed) gravitational-wave signals, which typically have
lower amplitudes and lower ranking statistics. In later chapters, we describe a method to strategically
narrow the search parameter space and reduce the noise background to uprank possible sub-threshold
gravitational waves.
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Figure 4.2.2: The median power spectral density (PSD) of data collected from the
Hanford (H1, in red) and Livingston (L1, in blue) detector between UTC time 2023-
05-24 15:00:00 and 2023-06-06 14:30:34, estimated using the GstLAL pipeline.
The binary-neutron-star horizon distances for the two detectors are also estimated
and shown in the legend. Note that GstLAL downsamples the data being analyzed,
and hence the PSD shown above ends at 103 Hz. However, the PSD extends beyond
103 Hz in reality.

that satisfies a minimal match criterion (between any signals within the covered sig-
nal subspace and the templates) to balance between identifying signals with minimal
loss of SNR and the over-accumulation of the noise background. Methodologies
and techniques for creating template banks for searching gravitational waves are
out of scope for this thesis, but readers are referred to [80, 96, 310, 359]. Figure
4.2.3 shows the template bank used by the GstLAL search pipeline in LIGO-Virgo-
KAGRA’s third observing run O3, plotted on the component masses m1 −m2 space.
The entire bank, covering component masses ranging from 1M� to 400M�, is com-
posed of five smaller banks, namely the binary-black-hole (BBH) bank (in blue),
binary-neutron-star (BNS) bank (in orange), neutron-star-black-hole (NSBH) bank
(in pink), intermediate-mass-black-hole (IMBH) bank (in green) and other BBH
bank (in red). They are used to target different regions in the signal subspace. The
bank has a total of 1, 412, 263 templates.

The large number of templates in the template bank still poses the problem of high
computational cost induced by running matched filtering with all the templates.
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Figure 4.2.3: The template bank used by the GstLAL search pipeline in O3,
shown in the component masses m1 − m2 space. The full bank is composed of
five smaller banks, including the binary-black-hole (BBH) bank (in blue), binary-
neutron-star (BNS) bank (in orange), neutron-star-black-hole (NSBH) bank (in pink),
intermediate-mass-black-hole (IMBH) bank (in green) and other BBH bank (in red).
These different banks are used to target different regions in signal subspace.

GstLAL addresses this problem via the Low Latency Online Inspiral Detection
(LLOID) method [87]. First, GstLAL splits the full template bank into smaller
“split-banks”, each carrying 2NT real templates 4, according to the templates’ chirp
mass

Mc =
(m1m2)

3/5

(m1 + m2)1/5
(4.9)

and effective spin parameter

χeff =
m1s1z + m2s2z

m1 + m2
, (4.10)

where m1, m2 are the component masses, and s1z and s2z are the components’
dimensionless spins in the z-direction. The neighbouring split banks in the Mc

4 The factor of 2 is the result of GstLAL using only real templates to compute the complex SNR
timeseries; NT is an adjustable number which is generally set to be O(100).
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space are partially overlapping for intermediate use when adopting the LLOID
method, but will be removed later so there are no repeated templates at the end.
Figure 4.2.4 shows an example of two split banks (bank 1000 and 1019) generated
from the full template bank (Figure 4.2.3) in the chirp massMc - effective spin χeff
space.

Figure 4.2.4: An example of two split banks (bank 1000 and 1019) generated from
the full template bank, shown in the chirp massMc - effective spin χeff space. Note
that the partially overlapping region exists only for intermediate use when adopting
the LLOID method, but will be removed afterward so that there are no repeated
templates.

GstLAL then sub-divides each sub-bank into smaller “time slices”, so eachwaveform
is further “chopped” into smaller regions in time with respect to the waveform
frequencies at each time. The sampling frequency for each time slice will be
adjusted according to the corresponding Nyquist frequency. Hence, we can use a
lower sampling frequency for the low-frequency time slices, reducing the number of
sampling points and, thus, the computation cost when performing matched filtering.
Figure 4.2.5 gives an example of the timeslices for a template waveform with chirp
massMc = 2.61M� and z-component spins s1z = −0.73 and s2z = −1.0.
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Figure 4.2.5: An example of the time slices for a template waveform with chirp
massMc = 2.61M� and z-component spins s1z = −0.73 and s2z = −1.0. Note that
the sampling frequency increases with time as the Nyquist frequency increases.

The final step in the LLOID method is to perform a singular-value decomposition
(SVD) on each time slice for each sub-bank. SVD reduces the physical templates
into unphysical templates (i.e. they look nothing like actual gravitational wave-
forms) as basis. One can reconstruct the original waveform with the corresponding
reconstruction coefficients (also known as the mixing matrix elements). GstLAL
truncates the SVD output so that it only keeps the most important basis to further
reduce computational cost with minimal effect on the waveform reconstruction ac-
curacy (set by the “tolerance”). In the end, GstLAL will perform matched filtering
with the SVD basis, and reconstruct the SNR timeseries for each template waveform.
The process is shown schematically in figure 4.2.6. The mathematical derivations
and computation of the LLOID method can be found in [87].

Matched-filtering and the signal consistency test
When performing matched filtering, GstLAL records instances when the SNR ex-
ceeds some pre-determined threshold as candidate events (also known as “triggers”).
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Figure 4.2.6: A schematic diagram of the singular-value-decomposition (SVD)
operation on the template bank.

At the time of writing, GstLAL sets the SNR threshold for a single detector trigger
at 4.

Suppose noise in the data is truly Gaussian and stationary. In that case, the matched-
filtered SNR will be an optimal ranking statistic to determine how likely a trigger
is an actual gravitational-wave event compared to noise. However, this is not the
case for real data. Noise fluctuations and non-Gaussianities (e.g. glitches) in the
data, can also produce high SNR triggers in the pipeline. To address this problem,
GstLAL assigns a second detection statistic known as the “auto-correlation based
signal consistency test value” ξ2 to each trigger. GstLAL precomputes the expected
complex auto-correlation timeseries for each template waveform (i.e. the expected
SNR timeseries when a signal is matched-filtered against a template waveform
having the same parameters) as [250]

Rj(t) =
∫
| h̃2 j( f )|2 + | h̃2 j+1( f )|2

Sn( f )
e2πi f t df , (4.11)

where j runs from 0 to NT − 1, corresponding to a total of NT physical templates.
h2 j and h2 j+1 are the real and imaginary parts of the template waveform defined
previously. We can compare these to the actual obtained complex SNR timeseries
for a trigger

z j(t) = x2 j(t) + ix2 j+1(t), (4.12)

Conventionally, we set t = 0 to be the peak time, and the autocorrelation is nor-
malized for each template such that R(0) = 1. If we assume that the actual SNR
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Figure 4.2.7: The auto-correlation timeseries (blue striped line) and SNR timeseries
(black solid line) evaluated for GW230529 for the LIGO Livingston (L1) detector.
In the above figure, the trigger’s coalescence time is set to t = 0.

timeseries of a signal that is identical to a template waveform can be represented by
the corresponding autocorrelation timeseries up to a scaling factor z j(0) 5, then we
can compute ξ2 as

ξ2 =

∫ δt
−δt |z(t) − z(0)R(t)|2 dt∫ δt
−δt 2 − 2 |R(t)|2 dt

. (4.13)

The numerator is effectively the sum of the squared difference between the expected
(auto-correlated) normalized SNR timeseries Rj(t) (scaled by the peak SNR of
the actual SNR timeseries) and the actual SNR timeseries z j(t), integrated over a
predetermined time window δt around the peak time. Details about how δt is set
can be found in [250]. The denominator of ξ2 is merely a normalization constant,
such that a perfect match between the autocorrelation SNR timeseries and actual
SNR timeseries will give ξ2 = 1. In principle, the larger ξ2 is, the more different
the trigger’s SNR timeseries is as compared to the expected SNR timeseries, and

5 Here, t = 0 is again chosen to be the peak time of the actual SNR timeseries such that
max(zj(t)) = zj(0).
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hence, the less likely it is a gravitational wave that is described by the template
waveform 6. Figure 4.2.7 shows an example of the autocorrelation timeseries (blue)
and actual timeseries (black) for the event GW230529 for the LIGO Livingston (L1)
detector. In the Appendix Section 4.A, I also provide a detailed derivation for the
normalization constant as reference.

Collecting signal candidates and noise candidates
After filtering, the GstLAL pipeline now has a collection of triggers, each of which
contains (1) the trigger time t, (2) the template parameters ®θi as a label, (3) the
matched-filtered SNR ρ, and (4) the auto-correlation-based signal consistency test
value ξ2 as trigger information. It is important to note that at a given time instant,
multiple triggers can be formed with different templates in the template bank (i.e.
triggers at a given timestamp do not have unique template parameters, hence SNR
and ξ2).

Starting with the collection of triggers, GstLAL looks for triggers that are found in
time coincidence (within a certain time window that accounts for (1) the maximum
travel time of gravitational waves between detectors, and (2) statistical fluctuations
in the measured trigger time due to detector noise) between participating detectors
with the same template parameters. These triggers are grouped and labelled as
coincident (signal) triggers [250]. Coincident triggers are further followed up by
the pipeline as signal triggers. In contrast, single detector triggers (non-coincident
triggers) are treated as noise (background) triggers and are used to construct the noise
background. Starting from LVK’s second observing run O2, GstLAL also allows
single detector triggers to be treated as signal candidates if they pass a preliminary
log-likelihood ratio threshold. This will be further explained in later subsections
(Or, see Section D1 of [309]).

Key terms in the Likelihood Ratio Statistic
Aranking statistic needs to be assigned to each of the triggers to rank candidate events
from least likely to be a real signal, and most likely to be a real signal. GstLAL uses

6 While ξ2 can help the pipeline to distinguish triggers corresponding to real gravitational-wave
signals from triggers corresponding to glitches, one may also potentially lose exotic gravitational-
wave signals that do not look like the template waveforms. For example, suppose there exists an
alternative-gravity theory (Non-GR) gravitational-wave signal in the data that differs significantly
from usual general-relativity gravitational template waveforms; the pipeline will assign a high ξ2

to the trigger (if the signal is registered as a trigger in the first place), and will potentially affect its
ranking statistics at a later stage, making it a sub-threshold candidate at the end. Another example
would be microlensed gravitational waveforms (See Part II of the thesis).
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Figure 4.2.8: Triggers found in time coincidence (within a certain time window that
accounts for (1) the maximum travel time of gravitational waves between detectors,
and (2) statistical fluctuations in the measured trigger time due to detector noise)
between participating detectors with the same template parameters are grouped and
labelled as coincident (signal) triggers by GstLAL. Coincident triggers are further
followed up by the pipeline as signal triggers. In contrast, single detector triggers
(non-coincident triggers) are treated as noise (background) triggers by GstLAL,
and are used to construct the noise background. Starting from LVK’s second
observing run O2, GstLAL also allows single detector triggers to be treated as
signal candidates if they pass a preliminary log-likelihood ratio threshold. This will
be further explained in later subsections.

the likelihood-ratio ranking statistic [85, 166, 250, 309] to rank candidate events.
For coincident triggers, the likelihood ratio Lcoinc is defined as

L =
P( ®DH, ®O, ®ρ, ®ξ2,

[
®∆t, ®∆φ

]
| ®θ, signal)

P( ®DH, ®O, ®ρ, ®ξ2,
[
®∆t, ®∆φ

]
| ®θ, noise)

·
P(®θ |signal)
P(®θ |noise)

, (4.14)

where (1) ®DH are the horizon distances of the detectors (a measure of the detector
sensitivity), (2) ®O is the set of detectors that registered the coincident trigger, (3)
®ρ are the recorded detector SNRs for the trigger at each participating detectors, (4)
®ξ2 are the auto-correlation-based consistency test values evaluated for each of the
participating detectors, (5)

[
®∆t, ®∆φ

]
are the sets of differences in end times ∆t and

coalescence phases ∆φ between pairs of detectors within the set of participating
detectors 7, and (6) ®θ is the template parameters associated with the trigger.

The likelihood ratio Lcoinc, in essence, is the ratio of the probability of getting the
sets of detection statistics for a given coincident triggers under the hypothesis that
the trigger is a signal (signal hypothesis), to that under the hypothesis that trigger

7 For instance, if a coincident trigger is found by three detectors, H1, L1, and V1, then ®∆t will
have three components, ∆tH1L1, ∆tL1V1 and ∆tH1V1, corresponding to the difference in end times
between the H1-L1 detector pair, L1-V1 detector pair and H1-V1 detector pair.
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originates from noise (noise hypothesis). The higher the likelihood ratio, the more
likely the trigger is an actual gravitational-wave signal.

Starting from O2, GstLAL also computes an alternative likelihood ratio for single
detector triggers [309] as

Lsingle =
P( ®DH,O, ρ, ξ2 | ®θ, signal)
P( ®DH,O, ρ, ξ2 | ®θ, noise)

·
P(®θ |signal)
P(®θ |noise)

, (4.15)

that is mostly the same as the likelihood ratio for coincident triggers, except that (1)
the SNRs and ξ2 vectors now become only the values for the detector that registers
the trigger, (2) the difference in end times and coalescence phases

[
®∆t, ®∆φ

]
terms

are dropped, (3) the set of participating detectors ®O now reduces to just the detector
that registers the trigger. An additional penalty of 12 is manually subtracted from
the log single detector likelihood ratio [153] to account for single detector triggers
being more susceptible to uncertainty as they are not found in time coincidence
in multiple detectors. For single detector triggers that have a log-likelihood ratio
lnLsingle > 2, GstLAL will consider them as signal triggers for further follow-up.

As explained in [85, 250], the likelihood ratio can be factorized into smaller terms.
Details of the factorization and the calculation for each of the sub-terms can be
found in [85, 166, 250, 309]. Here, I will discuss several key terms in preparation
for the discussion in later Chapters.

The P( ®ρ, ®ξ2 | ®θ, noise) term

P( ®ρ, ®ξ2 | ®θ, noise) is the probability of registering a (coincident) noise trigger with
SNRs ®ρ and ξ2. To compute this probability, GstLAL first populates histograms in
the ρ-ξ2 space with collected background triggers for each detector. The histograms
are then normalized 8 and smoothed with a Gaussian smoothing kernel. Figure 4.2.9
shows an example histogram for noise triggers collected in the Hanford (H1) detector
for one split bank between GPS time 1370097052 and 1370356252 (3 days of data).
These histograms do not track time dependence in both the online and offline

8 The ρ-ξ2 histogram contains 2D bins of widths ∆ρi and ∆ξ2
i for the ith bin. To normalize the

histogram, one “integrates” the histogram via

C =
∑
i

ni∆ρi∆ξ2
i , (4.16)

where i runs from 0 to N , the total number of bins, and ni represents the counts in the ith bin, to
obtain the normalization constant C. Then, the histogram bin counts are divided by the normaliza-
tion constant. This ensures that the normalized histogram, when integrated, gives 1 as any usual
probability density.
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Figure 4.2.9: The ρ-ξ2 histogram for noise triggers collected in the Hanford (H1)
detector for one split bank between GPS time 1370097052 and 1370356252 (3 days
of data). The green circle marks an example signal trigger with H1 SNR ρH1 = 10
and ξ2

H1 = 1. Since it is (marginally) away from the background noise triggers
distribution, GstLAL will evaluate a low P( ®ρ, ®ξ2 | ®θ, noise) for this trigger, in turn
increasing the log-likelihood ratio and hence the significance of this trigger.

operation, but instead, they are merely cumulative histograms. This will potentially
affect the sensitivity of the search because of durations of noisy data, which can occur
when detectors are affected by seismic motion and extreme weather, can pollute
the ρ-ξ2 histograms. Should a real signal trigger be found later during relatively
“cleaner” data, the trigger will still be assigned a P( ®ρ, ®ξ2 | ®θnoise) probability using
the polluted histogram, reducing its likelihood ratio and significance. This may
potentially result in the pipeline not “finding” 9 the trigger, in turn reducing the
search sensitivity of the pipeline. In Chapter 5, we explore and discuss a potential
solution to tackle this problem.

The P( ®∆t | ®ρ, ®DH, signal) × P( ®∆φ| ®∆t, ®ρ, ®DH, signal) term

The P( ®∆t | ®ρ, ®DH, signal) × P( ®∆φ| ®∆t, ®ρ, ®DH, signal) term is added to the likelihood
ratio calculations since LVK’s second observing run O2. This term accounts for

9 A signal trigger is “found” if its ranking statistic/significance passes a pre-determined threshold.
For the GstLAL pipeline it thresholds on the False-Alarm-Rate (FAR) of a trigger (To be explained
in later subsections).
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signal consistency across the detector network. The arrival times and coalescence

Figure 4.2.10: (Left) At different sky locations, a gravitational wave may reach one
detector before reaching the other. The effective strength of the signal may also
differ. Depending on the ratio of the signal strengths (effective distance ratios),
the expected time and phase delay distribution for a pair of detectors has a non-
trivial probability distribution, given that they are seeing the same signal. (Right)
A cartoon illustrating an example of the ∆t, ∆φ probability distribution for a trigger
seen in both the Hanford (H1) and Livingston (L1) detector with an identical SNR
of 8. Assuming both detectors have similar sensitivity, it is more likely for the signal
to be detected at the same time with almost no difference in the coalescence phase.
Note that this is just a cartoon illustration. See Figure 7 of [309] for a realistic
example.

phases of signal triggers at each detector, assuming sources of gravitational waves
are distributed isotropically across the sky, is uniform. However, the relative time
delays and coalescence phase of the same signal arriving at different detector make
up a non-trivial correlated probability density function, depending on the ratio of the
signal strengths (effective distance ratios). It is, therefore, natural to precompute the
probability distributions for signals and use them to check the signal consistency for
signal triggers across detectors. [183, 309] give detailed discussion and explanation
on how to precompute the aforementioned term.

It is, however, helpful to note that the current precomputed probability distributions
are marginalized over all sky and all possible inclinations and polarizations. This
marginalization prevents GstLAL from performing any sky-location-based targeted
searches. For instance, one can search for gravitational-wave counterparts to a
Gamma-Ray-Burst (GRB) detection. The targeted search can be made more sensi-
tive if we can focus on regions in the sky that overlap with the localization of the
GRB source. In later chapters (Chapter 13), we will also see that sky-location-based
targeted searches will be useful for uncovering possible strongly-lensed gravitational
waves coming from the same source since they can be treated as having the same
sky location essentially.
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As part of ongoing work, we are investigating the possibility of rewriting the log-
likelihood ratio so that the sky localization of the source (i.e. the right ascension
α and declination δ) can be included as part of the calculations, in replacement
of the ®∆t, ®∆φ term. This will become exceptionally useful as more detectors (e.g.
Virgo, KAGRA and LIGO India) join the detector network. To do so, we are
now working on implementing the rapid localization method introduced in [347]
into the GstLAL search pipeline as a first step. In short, [347] creates posterior
skymaps for the sources of gravitational-wave signals in a similar fashion as existing
gravitational-wave source localization pipelines like BAYESTAR [319], but itmax-
imizes 10 the posterior skymap over the source distance and the source’s inclination.
While sacrificing a certain amount of accuracy in the skymap, this maximization
increases the computation speed as part of the terms in the computation becomes
data-independent and can be factorized out and precomputed. According to [347],
their method reduces the computation time of a skymap to O(0.1s) as compared to
O(1s) for BAYESTAR [319]. We aim to implement this method into GstLAL so that
the pipeline will evaluate the source localization for signal triggers as an additional
statistic for computing the likelihood ratio. However, work is still ongoing to (1)
determine what parameters/terms should be used to represent the source localization
of a trigger and (2) develop a (semi-analytic) signal and noise model for the sky
localization parameters we are introducing to the likelihood ratio calculation, and
(3) further improve the accuracy of the source localization method introduced in
[347]. We also note that the computational time/cost for computing skymaps for
every single trigger coming out of the pipeline can still be large, given the large
number of triggers (See also “Fast Path Cut” and the subsection “Clustering”). We
will need to develop a more effective way to pre-select candidates that are more
likely to be gravitational-wave signals so that we can drastically reduce the number
of triggers the pipeline needs to compute source localization for. This pivotal change
in the likelihood ratio calculation will allow GstLAL to perform sky-location based
targeted searches in the future.

The P(®θ |signal) term

The P(®θ |signal) term is the numerator in the second part of the likelihood ratio
definition. This term, formally known as the population model term, corresponds
to the probability that a template waveform with parameters ®θ is recovered as the

10 For reference, BAYESTAR [319] marginalizes the posterior skymaps over source distance and
inclination.
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best-match template, given that the trigger is a signal. Before LVK’s third observing
run O3, the populationmodel termwas neglected and is set to be 1 for every template
in the template bank [166, 309]. Effectively, this assumes that astrophysical sources
are distributed identically to how the templates are distributed in the template bank.
This is incorrect, mainly due to the uneven density of templates in the template
bank.

[166] provides a detailed discussion on properly incorporating prior information
about the signal distribution in parameter space (population model) into the popula-
tion model term. Here, we give a summary for completeness. We start by assuming
the following:

(1) The template bank is populated with a sufficiently high density such that
any gravitational-wave signal ®s(®θ) labelled by its source parameters ®θ can be
described exactly by a normalized template ®t j up to a proportionality constant
ρ that describes the strength of the signal (i.e. the signal-to-noise ratio SNR).
Mathematically, we have

®s(®θ) ∼ ρ®t j . (4.17)

(2) Noise in the data is stationary and Gaussian, and

(3) Data ®d that contains both noise ®n and a gravitational-wave signal ®s can be
described by the multiple of a normalized waveform template ®tk , i.e.

®d ∼ ρobs,k®tk . (4.18)

Suppose there is a gravitational-wave signal ®s = ρ®t j originating from a predefined
population in the data, then the probability for the signal to be picked up by a
template ®tk is given by

P(®tk |s, ρ) =
∑

j

{
P(candidate in ®tk |s = ρ®t j) × P(®t j |signal from population)

}
,

(4.19)

where j runs from 0 to N , with N being the total number of templates in the
template bank. The first term in the summation, P(candidate in ®tk |s = ρ®t j), gives
the probability that the observed signal described by ®t j is recovered as a trigger
by template ®tk . This term can be precomputed as the template overlap for each
template in the template bank. The second term, P(®t j |signal from population),
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gives the probability that a signal originating from the pre-determined population
can be described by a template ®t j . One can incorporate a population model into
the likelihood ratio calculation in this term. Details of the exact computation can
be found in [166]. Nevertheless, it is useful to note that in later chapters (Chapter
11), we will show how one can incorporate a targeted population model to improve
the search sensitivity for possible sub-threshold strongly lensed gravitational-wave
signals.

Fast path cut

While not adequately documented in any of the published articles so far, GstLAL
actually employs a “fast path cut” function to “discard” triggers that analysts deemed
unlikely to be an actual signal. The logic of the function goes as follows: Given a
coincident trigger, if the network SNR 11 of the trigger is < 7, the trigger will be
automatically assigned a log-likelihood ratio of negative infinity. This is essentially
“discarding” the trigger. The reason for employing the “fast-path cut” function is
to reduce the number of triggers for follow-up preliminarily. However, this leads
to two potential issues: (1) The ρnetwork ≥ 7 threshold is arbitrarily set. There has
been no in-depth studies done a priori before this threshold is set. Also, as we have
mentioned earlier, SNR is not an optimal ranking statistic to determine how likely
a trigger is a real gravitational-wave signal, given that noise is not stationary and
Gaussian. The “fast-path cut” function can potentially reduce the search sensitivity
by unknowingly removing signal triggers. (2) The “fast path cut” function, together
with trigger clustering (to be discussed in the next subsection) will lead to permanent
loss of trigger information because the pipeline will ultimately remove triggers 12
with low log-likelihood ratios. This prevents analysts from utilizing filtered products
(the complete trigger list) from a given search for alternative studies. For instance,
one may want to rerank 13 triggers from a search using a different population model.
Another example would be to rerank candidates from multiple searches across
different time ranges of data with a combined background. These would not be
possible since some triggers have been clustered and discarded from the complete
list of triggers, potentially leading to inaccurate results from the re-analyses.

11 The network SNR of a trigger is the SNRs recorded in all participating detectors added in
quadrature, i.e. ρnetwork =

√
ρiρi .

12 Here, removing means deleting files and information related to a trigger.
13 A rerank involves a re-assignment of log-likelihood ratios to the triggers.
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Clustering
As mentioned before, different templates in the template bank can form multiple
(coincident) signal triggers at a given time. [250] also mentioned that it is probable
for GstLAL to register at least one trigger per every one-second interval per template
per detector. To reduce the size of the final data products (i.e., the trigger list and
associated files), GstLAL keeps only triggers with the highest likelihood ratio within
a certain time window and permanently discards the other triggers. This process
is known as clustering. For the online analysis, clustering is done for each split
bank within a ±1-second window. For the offline analysis, clustering is done within
a ±4-second window across the full template bank. As explained in the previous
subsection, the clustering process prevents analysts from using the data products in
a search for alternative studies.

As part of ongoing work, we are investigating an alternative, better method/logic
to replace the current “fast path cut” function, such that we can still retain the
complete list of triggers but limit the follow-up analysis to only those that are (semi-
analytically) more likely to be real gravitational-wave signals. The aim is to trim
down the list of triggers for follow-up without discarding any potential ones that may
be real signals to a point where the size of the final data products is manageable,
such that the clustering process can be removed and information of the complete list
of triggers can be kept. In the future, this will allow users to properly do reranks
and other studies using data products from GstLAL searches, without the need to
do re-filtering (i.e. a new search).

False Alarm Rates and False Alarm Probabilities
As a final step, GstLAL evaluates, for each trigger, a False-Alarm-Probability (FAP)
defined as

FAP = P(lnL > lnL∗ |noise) =
∫ ∞

lnL∗
P(lnL|noise)d lnL. (4.20)

Effectively, the FAP is the probability that noise can produce a trigger with log-
likelihood ratio lnL larger or equal to the log-likelihood ratio lnL∗ of the trigger
under consideration [250] 14. We can, from the FAP, evaluate a similar statistic
known as the False-Alarm-Rate (FAR) defined by

FAR =
FAP × N

T
, (4.21)

14 The False-Alarm-Probability is also known more generally as the p-value.
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where N is the total number of candidates, and T is the total duration of data
being analyzed. The FAR tells us how often noise can produce a trigger with log-
likelihood ratio lnL larger or equal to the log likelihood ratio lnL∗ of the trigger
under consideration [250]. The lower the FAR, the more significant a trigger is.

Ultimately, GstLAL outputs a list of triggers ranked by their FARs. Candidates that
pass a pre-determined FAR threshold are passed on for follow-up analyses, including
Bayesian parameter estimation.

More information about the GstLAL pipeline can be found in [86, 250, 309].
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APPENDIX

4.A Deriving the normalization constant forGstLAL’s auto-correlation based
signal consistency test value ξ2

Recall that the auto-correlation signal-consistency test value without normalization
is given by

ξ̃2(t) = |z j(t) − z j(0)Rj(t)|2, (4.22)

where z j(t) is the complex SNR time series

z j(t) = 2
∫ +∞

−∞

[h2 j( f ) + ih2 j+1( f )]∗d( f )
Sn(| f |)

e2πi f t df , (4.23)

with h2 j and h2 j+1 being the real and imaginary part of the template waveform, d( f )

is the data in the frequency domain, Rj(t) is the normalized autocorrelation function
of the template waveform, Sn(| f |) is the noise power spectral density.

The expectation value of ξ̃2 is given by

〈ξ2〉 = 〈|z j(t) − z j(0)Rj(t)|2〉 (4.24)

= 〈|z j(t)|2 + |z j(0)|2 |Rj(t)|2 − z j(t)z∗j (0)R
∗
j (t) − z∗j (t)z j(0)Rj(t)〉 (4.25)

= 〈|z j(t)|2〉 + 〈|z j(0)|2 |Rj(t)|2〉 − 〈z j(t)z∗j (0)R
∗
j (t)〉 − 〈z

∗
j (t)z j(0)Rj(t)〉.

(4.26)

This is the expectation value when the data is purely Gaussian noise, i.e. d( f ) =

n( f ). In the frequency domain, the auto-correlation function Rj(t) can be written as

Rj(t) =
∫ ∞

−∞

|h2 j( f )|2 + |h2 j+1( f )|2

Sn(| f |)
e2πi f t df . (4.27)
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With this, part of the second term in the expanded version of ξ̃2 can be evaluated as

〈|z j(0)|2〉 = 〈4
∫ ∞

−∞

[h2 j( f1) + ih2 j+1( f1)]n∗( f1)
S∗n(| f1 |)

df1︸                                         ︷︷                                         ︸
z∗j (0)

∫ ∞

−∞

[h2 j( f2) + ih2 j+1( f2)]∗n( f2)
Sn(| f2 |)

df2︸                                         ︷︷                                         ︸
zj (0)

〉

(4.28)

= 4
∫ ∞

−∞

∫ ∞

−∞

〈n∗( f1)n( f2)〉

〈
[h2 j( f1) + ih2 j+1( f1)][h∗2 j( f2) − ih∗2 j+1( f2)]

S∗n(| f1 |)Sn(| f2 |)

〉
df1df2

(4.29)

= 2
∫ ∞

−∞

∫ ∞

−∞

Sn(| f2 |)δ( f2 − f1)

〈
[h∗2 j( f1) + ih∗2 j+1( f1)][h

∗
2 j( f2) − ih∗2 j+1( f2)]

S∗n(| f1 |)Sn(| f2 |)

〉
df1df2

(4.30)

= 2
∫ ∞

−∞

〈
[h∗2 j( f1) + ih∗2 j+1( f1)][h

∗
2 j( f1) − ih∗2 j+1( f1)]

S∗n(| f1 |)
df1

〉
(4.31)

= 2
∫ ∞

−∞

|h2 j( f1)|2 + |h2 j+1( f1)|2

S∗n(| f1 |)
df1︸                                    ︷︷                                    ︸

R∗j (0)=1

(4.32)

= 2, (4.33)

where we have made use of the fact that for stationary Gaussian noise,

< n( f1)n∗( f2) >=
1
2

Sn( f1)δ( f1 − f2). (4.34)
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Similarly, the first term can be evaluated as

〈|z j(t)|2〉 = 〈4
∫ ∞

−∞

[h2 j( f1) + ih2 j+1( f1)]n∗( f1)
S∗n(| f1 |)

e−2πi f1t df1︸                                                   ︷︷                                                   ︸
z∗j (t)

∫ ∞

−∞

[h2 j( f2) + ih2 j+1( f2)]∗n( f2)
Sn(| f2 |)

e2πi f2t df2︸                                                 ︷︷                                                 ︸
zj (t)

〉

(4.35)

= 4
∫ ∞

−∞

∫ ∞

−∞

〈n∗( f1)n( f2)〉

〈
[h2 j( f1) + ih2 j+1( f1)][h∗2 j( f2) − ih∗2 j+1( f2)]

S∗n(| f1 |)Sn(| f2 |)
e2πi( f2− f1)t

〉
df1df2

(4.36)

= 2
∫ ∞

−∞

∫ ∞

−∞

Sn(| f2 |)δ( f2 − f1)

〈
[h2 j( f1) + ih2 j+1( f1)][h∗2 j( f2) − ih∗2 j+1( f2)]

S∗n(| f1 |)Sn(| f2 |)
e2πi( f2− f1)t

〉
df1df2

(4.37)

= 2
∫ ∞

−∞

〈
[h2 j( f1) + ih2 j+1( f1)][h∗2 j( f1) − ih∗2 j+1( f1)]

S∗n(| f1 |)
df1

〉
(4.38)

= 2
∫ ∞

−∞

|h2 j( f1)|2 + |h2 j+1( f1)|2

S∗n(| f1 |)
df1︸                                    ︷︷                                    ︸

R∗j (0)=1

(4.39)

= 2. (4.40)
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Note that

〈z j(t)z∗j (0)〉 = 〈4
∫ ∞

−∞

[h2 j( f1) + ih2 j+1( f1)]∗n( f1)
Sn(| f1 |)

e2πi f1t df1︸                                                 ︷︷                                                 ︸
zj (t)

∫ ∞

−∞

[h2 j( f2) + ih2 j+1( f2)]n∗( f2)
S∗n(| f2 |)

df2︸                                         ︷︷                                         ︸
z∗j (0)

〉

(4.41)

= 4
∫ ∞

−∞

∫ ∞

−∞

〈n( f1)n∗( f2)〉

〈
[h∗2 j( f1) − ih∗2 j+1( f1)][h2 j( f2) + ih2 j+1( f2)]

Sn(| f1 |)S∗n(| f2 |)
e2πi f1t

〉
df1df2

(4.42)

= 2
∫ ∞

−∞

∫ ∞

−∞

Sn(| f1 |)δ( f1 − f2)

〈
[h∗2 j( f1) − ih∗2 j+1( f1)][h2 j( f2) + ih2 j+1( f2)]

Sn(| f1 |)S∗n(| f2 |)
e2πi f1t

〉
df1df2

(4.43)

= 2
∫ ∞

−∞

〈
[h∗2 j( f2) − ih∗2 j+1( f2)][h2 j( f2) + ih2 j+1( f2)]

S∗n(| f2 |)
e2πi f2t df2

〉
(4.44)

= 2
∫ ∞

−∞

|h2 j( f2)|2 + |h2 j+1( f2)|2

S∗n(| f2 |)
e2πi f2t df2︸                                            ︷︷                                            ︸

Rj (t)

(4.45)

= 2Rj(t), (4.46)

and similarly.

〈z∗j (t)z j(0)〉 = 2R∗j (t). (4.47)

Putting all these results together, we get

〈ξ2〉 = 〈|z j(t)|2〉 + 〈|z j(0)|2 |Rj(t)|2〉 − 〈z j(t)z∗j (0)R
∗
j (t)〉 − 〈z

∗
j (t)z j(0)Rj(t)〉

(4.48)

= 2 + 2|Rj(t)|2 − 2|Rj(t)|2 − 2|Rj(t)|2 (4.49)

= 2 − 2|Rj(t)|2 (4.50)

which is the normalization term for ξ2.
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C h a p t e r 5

IMPROVING THE RANKING STATISTIC ASSIGNMENT OF
THE GSTLAL SEARCH PIPELINE WITH THE INCLUSION OF

IDQ DATA-QUALITY INFORMATION

Note: This chapter will be turned into a short author publication:

“Improving the ranking statistic assignment of the GstLAL search pipeline
with the inclusion of iDQ data-quality information”, In preparation.

5.1 Introduction and Overview
One of the GstLAL search pipeline’s main development goals is to improve its
search sensitivity towards gravitational waves from compact binary coalescences.
As we have briefly mentioned in the previous chapter, the lack of time dependence
of the ρ-ξ2 histograms used by the GstLAL pipeline to assign ranking statistics can
potentially cause GstLAL to miss gravitational-wave signals, leading to a loss in
search sensitivity.

In this chapter, I describe a method that utilizes statistical data quality from the iDQ
pipeline [149, 176] information as a workaround to the stated problem above. This
chapter is arranged as follows: In Section 5.2, I will briefly recap the computation
of the P(ρ, ξ2 |noise) portion for the calculation of the likelihood ratio for the Gst-
LAL pipeline and give a short introduction to iDQ, a machine-learning-based data
quality pipeline. In Section 5.3, I will outline the proposed method to incorporate
information from the iDQ pipeline into GstLAL’s likelihood ratio calculation. Fi-
nally, in Section 5.4, I will briefly discuss the expected results with the successful
implementation of the proposed method.

5.2 Background
In this section, I will briefly recap how GstLAL computes the likelihood ratio for
triggers, explicitly focusing on the P( ®ρ, ®ξ2 | ®θ, noise) term. I will briefly introduce
the iDQ data quality pipeline [149, 176].
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GstLAL’s likelihood ratio statistic
In Chapter 4, we explained how GstLAL assigns to each trigger a likelihood ratio
defined by

L =
P( ®DH, ®O, ®ρ, ®ξ2,

[
®∆t, ®∆φ

]
| ®θ, signal)

P( ®DH, ®O, ®ρ, ®ξ2,
[
®∆t, ®∆φ

]
| ®θ, noise)

·
P(®θ |signal)
P(®θ |noise)

, (5.1)

where (1) ®DH are the horizon distances of the detectors (a measure of the detector
sensitivity), (2) ®O is the set of detectors that registered the coincident trigger, (3)
®ρ are the recorded detector SNRs for the trigger at each participating detector, (4)
®ξ2 are the auto-correlation-based consistency test values evaluated for each of the
participating detectors, (5)

[
®∆t, ®∆φ

]
are the sets of differences in end times ∆t and

coalescence phases ∆phi between pairs of detectors within the set of participating
detectors and (6) ®θ is the template parameters associated with the trigger.

The likelihood ratio can be factorized into products of smaller terms [85, 250]. This
subsection will focus on the term P( ®ρ, ®ξ2 | ®θ, noise). This term gives the probability of
obtaining a noise trigger with SNRs ®ρ and ξ2. To compute this probability, GstLAL
populates 2D histograms in the ρ-ξ2 space for each participating detector with
non-coincident triggers, assuming they represent triggers originating from noise.
The histograms are normalized and smoothed with a Gaussian smoothing kernel
to produce an approximated P( ®ρ, ®ξ2 | ®θ, noise) for assigning likelihood ratios for
triggers. As noted in the previous chapter and [250], these histograms are constructed
cumulatively throughout the data being analyzed, and no time dependence is tracked.

Consider the following scenario: The data quality is generally “bad” (i.e., the data are
“noisy” and potentially contain numerous glitches) over a certain period of analysis
time. We perform a search across the data that includes the aforementioned period of
data with the GstLAL search pipeline. Glitches and noise in the noisy period of data
get registered as noise triggers. These triggers, in particular those corresponding to
glitches, may have SNRs ρ’s and ξ2 very different from those of noise triggers from
stationary and Gaussian noise. These triggers will enter the ρ-ξ2 histograms and
can potentially “pollute” 1 the expected probability distribution of ρ and ξ2 for noise
triggers due to their extreme values. At some later time, when the data becomes
less “noisy”, a near-threshold, low-amplitude gravitational-wave signal may still get
registered as a trigger. However, since the ρ-ξ2 histogram for background triggers

1 Generally speaking, the probability distribution is “polluted” if it is broadened by extreme data.
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has been polluted by earlier noisy data, triggers with weaker SNRs may potentially
be assigned a smaller likelihood ratio and significance, causing the pipeline to miss
the signal potentially. In Section 5.3, we propose a method to potentially resolve this
problem by modifying the likelihood ratio statistic to consider data quality around
the time of the trigger when assigning ranking statistics.

The iDQ data quality pipeline: A brief introduction
iDQ is a machine-learning-based statistical inference pipeline that generates prob-
abilistic information about the data quality in quasi-real time [149, 176]. The iDQ
pipeline has been operating since LVK’s first observation run. The main goal of the
iDQ pipeline is to automatically identify potential non-Gaussian noise (glitches) in
the data and labelled times in the data up to subsecond intervals as likely to contain
a glitch in low latency. Details about the formalism, setup of the iDQ pipeline
(including the training and training data generation), and effectiveness evaluation of
the iDQ pipeline are all out of the scope of this thesis. Related information, however,
can be found in [149]. One of the data products output from the iDQ pipeline is a
log-likelihood estimate lnLiDQ of the presence of non-Gaussian noise in the data as
a function of time (i.e. a timeseries. See Figure 5.2.1, for example). For practical
reasons, as suggested in [176], lnLiDQ is renormalized to control the impact on
search pipelines better when being incorporated into ranking statistic calculations.
For a given duration of data being analyzed, the raw lnLiDQ timeseries sampled at
128 Hz is aggregated and maximized over a ±1 second time window. The resulting
values are then used to evaluate the renormalized iDQ log-likelihood defined by

ln L̂iDQ =


0, P < Pmin,

ln P
100−P, Pmin ≤ P < Pmax,

15, P ≥ Pmax

, (5.2)

where Pmin = 50, and

Pmax =
100

1 + exp
[
− ln L̂upper

iDQ

] = 100
1 + e−15 , (5.3)

with ln L̂upper
iDQ being the predefined upper limit of the renormalized iDQ log-

likelihood, which is set to be 15. P is the percentile of lnLiDQ values across
the whole timeseries. Pmin and Pmax are chosen accordingly to limit the renormal-
ized lnLiDQ to a range between 0 and 15. Values below the 50th percentile are
assigned a renormalized iDQ log-likelihood of 0. The higher ln L̂iDQ is, the more
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Figure 5.2.1: An example timeseries of log-likelihood estimate lnLiDQ of the
presence of non-Gaussian noise in the data output from the iDQ pipeline. The
timeseries covers roughly 5000s of data (i.e. ≈ 1.3 hours). Note that lnLiDQ has
a value of ≈ 9 most of time, but occasionally it can increase to 70 or more (e.g.
see the peak at GPS times ≈ 2600s). These peaks represent times the iDQ pipeline
believes glitches are present in the data.

likely there exists non-Gaussian noise in the data. Interested readers are referred to
[149, 176] for details.

5.3 Proposed method
Recall that the problem with the current implementation of the P(ρ, ξ2 |noise) term
in GstLAL’s log-likelihood ratio calculation is that non-Gaussianity in data can
potentially “pollute” the cumulative ρ-ξ2 histograms for background noise which
are used to approximate P(ρ, ξ2 |noise). The approximated, “polluted” P(ρ, ξ2 |noise)
function can lead to unnecessary reductions in the assigned log-likelihood ratio for
triggers that are found in times where data quality is relatively good. This may lead
to signal loss and a decrease in the search sensitivity of the pipeline.

Figure 5.3.1 shows a schematic overview of our proposed method to resolve the
problem potentially. We propose to promote the current 2D probability density
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Figure 5.3.1: The proposed scheme on modifying the original P(ρ, ξ2 |noise) term
in GstLAL’s likelihood ratio calculations. We propose promoting the 2D ρ-ξ2

histogram for noise triggers to 3D histograms such that the renormalized iDQ log-
likelihood ln L̂iDQ as an additional parameter. In the figure, the proposed 3D
histogram is represented by a series of slices of 2D ρ-ξ2 histograms along the
iDQ dimension. GstLAL will then populate the extended 3D histograms for each
detector with noise triggers, according to the data quality around the time of each
trigger informed by ln L̂iDQ. Then, as usual, the histograms will be normalized
and smoothed with a Gaussian smoothing kernel. The end product will be a three-
dimensional probability density function P(ρ, ξ2, ln L̂iDQ |noise), which can be used
to replace the original P(ρ, ξ2 |noise) term in the likelihood ratio calculation in
GstLAL.

function P(ρ, ξ2 |noise) to a 3D probability density function P(ρ, ξ2, ln L̂iDQ |noise)
that includes the renormalized iDQ log-likelihood ln L̂iDQ as an additional paramter.
The middle part of Figure 5.3.1 shows two “slices” of the proposed 3D probability
density function, i.e. P(ρ, ξ2, ln L̂iDQ |noise) at fixed iDQ log-likelihood values.
The top and bottom histograms illustrate how the projected 2D probability density
function will look like for low ln L̂iDQ (corresponding to times where data quality
is good) and high ln L̂iDQ (corresponding to times where the data quality is bad)
respectively. One will expect that the projection of the 3D probability density
function P(ρ, ξ2, ln L̂iDQ |noise) to span a larger region (i.e. the distribution is
broader) in the ρ-ξ2 space because it is populated and “polluted” with triggers
coming from non-Gaussian features in the data (e.g. glitches).

In the modified scheme, GstLAL will set up 3D histograms in the SNR ρ-ξ2-
ln L̂iDQ parameter space per detector, populated by noise triggers collected during
the filtering process. These histograms, as usual, will then be normalized and
smoothed with a Gaussian smoothing kernel to approximate the three-dimensional
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probability density function P(ρ, ξ2, ln L̂iDQ |noise), which is then used to assign
likelihood ratios to signal triggers.

5.4 Expected results
Because of various reasons, implementing and testing the aforementioned method
remains an ongoing work. I will briefly discuss the expected results. Figure 5.4.1

Figure 5.4.1: An illustration showing how the proposed method can improve the
search sensitivity of GstLAL. Suppose we have a signal trigger found in a detector
when the data quality is good. A green star in the figure represents the signal trigger.
In the current GstLAL framework, since data quality information is not used, the 3D
ρ-ξ2-ln L̂iDQ histograms (middle) for noise triggers are essentially “marginalized”
over the data quality (iDQ) dimension, resulting in the usual 2D ρ-ξ2 histogram on
the left. As discussed before, non-Gaussianity (e.g. glitches) in the data can pollute
the histograms and effectively broaden the probability distribution P(ρ, ξ2 |noise).
As shown in the figure, the trigger found during times with good data quality lies
in the region of the marginalized probability distribution P(ρ, ξ2 |noise) with high
probability density, that is polluted by noise triggers associated with non-Gaussian
noise in the data. Essentially, this means that P(ρ, ξ2 |noise) for this trigger will be
unnecessarily high, resulting in a lower log-likelihood ratio and significance being
assigned to it. In the proposed method, on the other hand, the trigger found in
times with good data quality effectively has its log-likelihood ratios assigned using
a histogram that suits the data quality around the time of the trigger (e.g. right
upper histogram). As we can see, the trigger does not live within the probability
distribution P(ρ, ξ2 |noise) for noise triggers coming from times with good data
quality, and it will be assigned a lower P(ρ, ξ2 |noise) and hence higher log-likelihood
ratio and significance. This helps to prevent unnecessary down-ranking of triggers,
which may lead to potential loss of gravitational-wave signals.

illustrates how the proposed method can potentially improve the search sensitivity
of GstLAL. Suppose we have a signal trigger found when the data quality is good.
In the figure, the example trigger is represented by a green star. Under GstLAL’s
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current framework, since data quality information is not considered, the 3D ρ-ξ2-
ln L̂iDQ histograms (in the middle of the figure) for noise triggers are essentially
“marginalized” over the data quality (iDQ) dimension, resulting in the usual 2D
ρ-ξ2 histogram shown on the left. As discussed in Section 5.2, extreme noise
triggers originating from non-Gaussianity (e.g. glitches) in the data can “pollute”
the histograms and effectively broaden the probability distribution P(ρ, ξ2 |noise).
As shown in the left histogram in the figure, the trigger found during times with
good data quality lies in the region of the marginalized probability distribution
P(ρ, ξ2 |noise) with high probability density that is “polluted” by extreme noise
triggers associated with non-Gaussian noise in the data. Essentially, this means
that P(ρ, ξ2 |noise) for this trigger will be unnecessarily high, resulting in a lower
log-likelihood ratio and significance being assigned to it. The trigger with a low
assigned significance can potentially be buried in the noise background and not
being identified as a gravitational wave signal, leading to a reduction in the search
sensitivity of the pipeline.

In the proposed method, the trigger found in times with good data quality effec-
tively has their log-likelihood ratios assigned using a histogram that suits the data
quality around the time of the trigger (e.g. right upper histogram). As we can
see, the trigger does not live within the probability distribution P(ρ, ξ2 |noise) for
noise triggers coming from times with good data quality, and it will be assigned a
lower P(ρ, ξ2 |noise) and hence higher log-likelihood ratio and significance. This
helps to prevent unnecessary down-ranking of triggers that lead to potential loss of
gravitational-wave signals.



Part II

Gravitational Lensing of
Gravitational Waves

72



73

C h a p t e r 6

INTRODUCTION TO GRAVITATIONAL LENSING AND
LENSING OF GRAVITATIONAL WAVES

6.1 Overview
Part II of my thesis will focus on another phenomenon predicted in Einstein’s theory
of general relativity — Gravitational Lensing. This chapter is arranged as follows:
In Section 6.2, I will first briefly introduce gravitational lensing. In Section 6.3, I
will discuss gravitational lensing of gravitational waves. I will then introduce the
different regimes of lensing of gravitational waves, i.e. microlensing, millilensing,
and strong lensing. I will outline the current effort to look for lenisng of gravitational
waves. I will briefly introduce the different pipelines and technologies used by the
LVK collaboration to search for the first lensed gravitational waves. Finally, in 6.4,
I will describe briefly the content of the remaining chapters of this part of my thesis.

6.2 A very brief overview of gravitational lensing
Optical lensing
When we look at objects through an optical lens like a convex lens or concave
lens, their images will appear to have different locations than the object’s original
position. They will also appear to have sizes (magnified/diminished) compared to
the object. This can be understood as light is refracted when it passes through the
optical lens. This is known as optical lensing. Figure 6.2.1 shows a typical example
of how light rays are refracted under the influence of a convex lens.

The concept and history of gravitational lensing
Einstein’s theory of general relativity describes the universe as a fabric of spacetime.
Masses can produce curvature on this fabric of spacetime. When electromagnetic
(EM) waves from a source pass by intervening massive objects like galaxies and
galaxy clusters, their travelling paths will be deflected due to the curvature of
spacetime. This is known as gravitational lensing. One interesting point is that
the concept of light bending could already be seen in Newtonian mechanics before
Einstein developed his theory of general relativity. I invite interested readers to the
Appendix Section 6.A.

An important concept in gravitational lensing is the deflection angle. The deflection
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Figure 6.2.1: A cartoon showing a typical case of optical lensing with a convex
lens. Light from the object on the left is being focused onto the observer on the
right by the lens. The observer does not know that the light has been refracted and
will think that it originates from an image (in pink) at a further position (different
from the object’s position), with a larger size (magnified).

angle measures how much deflection a gravitational lens induces on the travelling
paths of the waves emitted from a source. Since light bending is already predicted
in Newtonian mechanics, it should not be surprising that the deflection angle was
calculated way before Einstein formulated his theory of general relativity. Henry
Cavendish was the first to calculate the gravitational lensing deflection angle back
in 1784, followed by Johann Von Soldner in 1801 [146]. In 1911, Einstein also
attempted to evaluate the deflection angle using Newtonian mechanics, and the
deflection angle near the surface of the Sunwas determined to be roughly δθ = 0.84′′

[133]. In 1913, Einstein wrote a letter to astronomer George Hale and asked if it
was possible to observe and measure a deflection angle of δθ = 0.84′′. George Hale
explained to Einstein that unless it is in the case of a solar eclipse, the background
starlight will be dominated by sunlight. In 1914, Einstein asked Erwin Freundlich to
lead a German team to Russia to observe a total solar eclipse to verify the deflection
angle calculation [141]. However, the team was captured during the First World
War (WWI) and was released only after the solar eclipse.

In 1915, Einstein recalculated the deflection angle with correction based on general
relativity [174] and obtained δθ = 1.75′′. The detailed calculations for the relativistic
deflection angle are found in the Appendix Section 6.C. Sir Eddington set out to
observe a total solar Eclipse onMay 29, 1919, partially to avoid military service that
would conflict with his Quaker faith [141, 173]. Eddington observed a deflection
angle of δθ = 1.9′′, proving Einstein was right up to a 30% error. The deflection
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of light is the first confirmed prediction of general relativity, even before the proper
explanation of the perihelion shift of Mercury [111].

Unexpectedly, Einstein did not believe gravitational lensing would be a significant
contribution [147]. This is because he only considered stellar-mass objects as possi-
ble gravitational lenses, for which the images will not be observationally resolvable.
In 1937, Fritz Zwicky considered the possibility of nebulae being gravitational
lenses [378]. He also considered the possibility of a galaxy being observed as
multiple distinct lensed images if its light passed sufficiently close to a foreground
cluster of galaxies[111]. The foreground cluster of galaxies has to contain a lot of
unseen dark matter to prevent the galaxies from flying apart. In 1970, Vera Rubin
and Kent Ford demonstrated that a single galaxy could also act as a gravitational
lens [307].

Gravitational lensing was long forgotten until the 1960s when Norwegian Sjur
Refsdal started working on it again. In 1964, Sjur proposed that measurements of
the Hubble constant can be made independent of other methods by measuring the
time delay between lensed images [208]. People in the (astro)physics community
were initially skeptical, but later decided it was a plausible idea. Since then,
gravitational lensing has become a highly useful tool in astrophysics. For instance,
gravitational lensing can be used to search for the presence of dark matter [107,
245] and exoplanets [70], and to detect and discover faint massive objects and
structures [108].

Key concepts in gravitational lensing
I will now summarize the key concepts in gravitational lensing. Refer to Figure
6.2.2 for the discussion.

In gravitational lensing, we focus on the “lens equation”, given by

®β +
DLS

DS
α̂ = ®θ. (6.1)

The lens equation relates the source position ®β, the image position ®θ, the source
distance DS, the lens-source distance DLS and the deflection angle ®α together.
Appendix section 6.D provides a detailed geometric derivation for the lens equation.
One can also derive the lens equation by considering the total time delay of waves
emitted from a source arriving at the observer due to gravitational lensing. There
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Figure 6.2.2: Parameters for deriving the lens equation. Here, the solid black line
joining the observer and the center of the lens defined the z-axis. All angles described
in this figure are two-dimensional azimuthal angles (e.g. one can decompose the
angles into x and y components). ®θ is the 2D angle of the image position. ®ξ is the
2D impact parameter. ®η is the 2D source position. ®β is the 2D angle of the source
position. All other parameters have the same meanings as in Figure 6.D.2.

are two components in the time delay function, namely, the geometric time delay

τgeo = (1 + zL)∆λ = (1 + zL)
DSDL

2DLS
| ®θ − ®β|2, (6.2)

where zL is the lens redshift; and gravitational time delay (also known as the Shapiro
time delay)

τgrav = −2(1 + zL)

∫
Φdl (6.3)

where Φ is the Newtonian potential of the lens. Detailed derivation of the two
components can be found in the Appendix section 6.E.

The total time delay caused by gravitational lensing is given by

τ = τgeo + τgrav (6.4)

= (1 + zL)
DSDL

2DLS
| ®θ − ®β|2 − 2(1 + zL)

∫
Φdl (6.5)

= (1 + zL)
DSDL

DLS

[
1
2
| ®θ − ®β|2 − Φeff

]
, (6.6)

where

Φeff =
DLS

DLDS

∫
2Φdl (6.7)
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is the “effective 2D potential” of the lens. The term inside the bracket is known as
the Fermat potential. According to the Fermat principle, light travels along paths
with stationary traveling times. By differentiating the Fermat potential with respect
to ®θ and setting the results to be zero, i.e.

∇®θ

[
1
2
| ®θ − ®β |2 − Φeff

]
= 0, (6.8)

we obtain

®θ − ®β − ∇Φeff = 0, (6.9)

which is the same lens equation we have obtained previously, if we identify ∇Φeff

as the deflection angle, i.e.

®α = ∇Φeff. (6.10)

In practice, light will travel along paths where ∇τ = 0. To determine the type of
solutions, we take the second derivative of the time delay function, which gives the
lensing Jacobian:

∇∇τ =


d2τ
dθ2

x

d2τ
dθxdθy

d2τ
dθxdθy

d2τ
dθ2

y

 . (6.11)

The solution is a local minimum if the second derivative yields two positive eigen-
values. If it yields one positive and one negative eigenvalue, the solution is a saddle
point solution. If it yields two negative eigenvalues, the solution is a local maximum.

In index notation form, the lens equation can be written as

τ,i = θi − βi − ψ,i . (6.12)

Taking the second derivative, we get

τ,i j = θi, j︸︷︷︸
=δi j

− βi, j︸︷︷︸
=0

−ψ,i j = δi j − ψ,i j, (6.13)

where θi, j = ∂jθi. Hence, we can write the lensing Jacobian as

A = τ,i j =

[
1 − ψ,xx −ψ,xy

−ψ,xy 1 − ψ,yy

]
. (6.14)
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The convergence is related to the potential by 2κ = ψ,ii, so we can write

κ =
1
2

[
ψ,xx + ψ,yy

]
. (6.15)

Hence, the lensing Jacobian can be rewritten as

A = τ,i j =

[
1 − κ − 1

2
[
ψ,xx − ψ,yy

]
−ψ,xy

−ψ,xy 1 − κ + 1
2
[
ψ,xx − ψ,yy

] ] (6.16)

=

[
1 − κ − γ1 −γ2

−γ2 1 − κ + γ2

]
, (6.17)

where 
γ1 =

1
2
[
ψ,xx − ψ,yy

]
γ2 = ψ,xy

. (6.18)

We can write the Jacobian into a sum of two matrices:

A = τ,i j = (1 − κ)

[
1 0
0 1

]
−

[
γ1 γ2

γ2 −γ1

]
. (6.19)

The first matrix corresponds to an isotropic scaling of the image, whereas the second
matrix corresponds to the shearing of the image.

To find the magnification of the image, we can evaluate the magnification matrix

M =
d ®θ

d ®β
. (6.20)

The magnitude of the magnification is simply given by the determinant of the
magnification matrix, i.e.

µ = |M |. (6.21)

From the lens equation, we have

βi, j = θi, j − ψ,i j = Ai j . (6.22)

This means that the lensing Jacobian is simply the inverse of the magnification
matrix, i.e. A = M−1.

There exist positions where the magnification becomes infinite. The corresponding
curves ®θ(µ → ∞) on the lens plane are known as critical curves. We can also
map these curves back to the image plane using the lens equation. These curves
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Figure 6.2.3: Critical curves and caustics of a point mass lens model.

are known as the caustics. Figure 6.2.3 shows the caustics and critical curves of a
point mass lens model. The caustics also provide a very intuitive way to determine
the number of images formed. A new pair of images will be formed whenever the
source crosses a caustic.

For a more detailed discussion on gravitational lensing in general, readers are
referred to standard reviews and textbooks, including but not limited to [111, 133,
141, 315]. I will end this section here by stating that gravitational lensing has been
extensively studied with electromagnetic waves [52, 70, 107, 108, 117, 142, 245,
251, 271, 299, 348]. Starting from the next section, I will focus on discussing
gravitational lensing of gravitational waves.

6.3 Gravitational lensing of gravitational waves
In this section, I will focus on the lensing of gravitational waves. I will first explain
some of the motivations for studying lensed gravitational waves. Then, I will briefly
discuss the different regimes of gravitational lensing of gravitational waves, from
microlensing to millilensing, and end with strong lensing. For the rest of my thesis,
I will focus on strong lensing of gravitational waves. Next, I will discuss the current
effort from the LVK collaboration to search for lensing signatures in gravitational-
wave data, outlining the key pipelines and technologies being used in preparation
for discussions in the later chapters.

Motivations for studying lensed gravitational waves
The effect of gravitational lensing has been exclusively studied with electromagnetic
waves. Gravitational waves should be gravitationally lensed in the same way,
according to the equivalence principle. As discussed in [23, 32, 186, 203], the
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search for gravitationally-lensed gravitational waves is highly motivated.

One of the avenues is to test general relativity [51, 110, 154, 155, 178, 179]. Suppose
we identify a pair of strongly lensed gravitational waves originating from the same
source with a network of three linearly independent detectors (e.g. the LIGO-
Hanford, LIGO-Livingston, and Virgo detectors). We are essentially observing
the same signal twice, albeit at different times. An alternative view is that we are
observing the gravitational-wave signal with a six-detector network. This provides
an excellent opportunity to perform precise polarization tests on gravitational waves
and test alternative theories of gravity [124, 178, 241] as the network can measure
different combinations of the same polarization. One may also test the speed of
gravitational waves over cosmological distances with strongly lensed gravitational
waves (See [110]).

Another possible avenue is to perform precision cosmology [88, 187, 225, 227,
317] and statistical cosmology [372]. Strongly lensed gravitational waves have
accurately measured time delays. With the help of multi-messenger astronomy,
we can observe images and redshifts in the electromagnetic regime. Together, the
two pieces of information allow us to achieve precise cosmography and a better-
measuredHubble constant [197, 227]. Detecting strongly lensed gravitational waves
also allows us to probe the population of compact binaries and galaxies, especially
in the higher redshift universe [372]. Understanding the early universe through
gravitational waves is not possible unless one takes into account gravitational lensing
of gravitational waves, and the stochastic gravitational-wave background.

Studying and detecting gravitationally-lensed gravitational waves also allows one
to improve source localization [187, 374] and lens model characterization [138,
220, 230, 283]. Apart from traditional candidates for gravitational lenses, including
galaxies and galaxy clusters, one can also make use of gravitationally-lensed gravi-
tational waves to probe dark matter in the universe, an alternative viable candidate
for gravitational lenses [89, 158, 231, 376], and possibly halo properties [339].

Basics of lensing of gravitational waves
The derivations and discussion in this subsection closely follow [154, 259]. In
Section 6.2, we show that the total time delay between the lensed and unlensed
travelling paths in the thin lens approximation is given by the sum of the geometric
time delay τgeo and the gravitational time delay (also known as the Shapiro time
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delay) τgrav:

τ(®θ, ®β) = τgeo + τgrav (6.23)

= (1 + zL)
DSDL

2DLS
| ®θ − ®β|2 − 2(1 + zL)

∫
Φdl (6.24)

= (1 + zL)
DSDL

DLS

[
1
2
| ®θ − ®β |2 − Φeff

]
, (6.25)

where

Φeff =
DLS

DLDS

∫
2Φdl (6.26)

is the effective gravitational potential.

Following [154], the observed lensed gravitational wave is given by

h̃L =
1

2π

∫
F(ω, ®β) · h̃U dω, (6.27)

where ω is the angular frequency,

h̃U =

∫
h(t)eiωt dt (6.28)

is the frequency domain unlensed gravitational wave, and the amplification factor

F(ω, ®β) =
DLDS

DLS

ω

2πi

∫
eiωτ(®θ, ®β)d2θ (6.29)

considers all the possible traveling paths of the gravitational waves from the source
to the observer. The amplification factor is also known as the Fresnel-Kirchhoff
diffraction integral, a reduction of the infinite-dimensional Feynman path integral
[154, 269]. Note that the amplification factor in the most general case is frequency-
dependent.

Depending on the mass properties of the lens [134, 270, 284, 337, 340, 361], the
effect of gravitational lensing can be vastly different, and different approximations
can also be applied. In the following sections, wewill investigate the various regimes
of gravitational lensing: microlensing, millilensing, and strong lensing.

Microlensing of gravitational waves
Whenwe consider gravitational lenseswith sizes that are comparable to gravitational-
wave wavelengths, they can produce frequency-dependent modulations, also known
as wave optics effects, on the lensed waveforms via the amplification factor array
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(See equation 6.29). This is formally known as microlensing [90, 93, 95, 101,
105, 116, 121, 134, 138, 220, 248, 256, 270, 337]. The detection of microlensed
gravitational waves allow us to study and understand the nature of the gravitational
lens [90, 101, 105, 121, 138, 139, 205, 220, 248, 257, 286, 337].

Gravitational lenses with masses ≤ O(105)M� fall within the microlensing regime.
These include stellar-mass objects and intermediate-mass black holes. Note that,
however, it is not likely that a gravitational wave detected on the Earth only passes
by a single stand-alone microlens, but rather, these microlenses are often embedded
within larger structures such as a galaxy or galaxy clusters. Therefore, more realistic
models where one or more microlenses are included in a larger macrolens have
been considered and developed [101, 139, 257, 333, 373], albeit resulting in more
complicated waveforms. Nevertheless, due to the expensive computational costs to
work with these realistic models, the LVK collaboration has only been searching
for microlensing effects in gravitational waves assuming an isolated lens [23, 32,
186, 203, 316] (See also the subsection “Current Effort from LVK Collaboration”)
with different lens model, including the Point Mass Lens model (PML), the Singular
Isothermal Sphere model (SIS), the Singular Isothermal Ellipsoid model (SIE), and
the Navarro-Frenk-White model (NFW).

Strong Lensing of gravitational waves
When the size of the gravitational lenses is (much) larger than the gravitational-
wave wavelength, the time delay between stationary paths (among all the possible
travelling paths) in the amplification factor (path) integral becomes (much) larger
than the inverse frequency of the wave, and hence we can approximate the integral
by assuming that it is dominated by the stationary phase points in the Fermat’s
time-delay surface under the stationary phase approximation [154, 259]. These
stationary phase points are essentially unique separate lensed gravitational-wave
signals (different from the inseparable signals from microlensing). The Fermat’s
time-delay surface allows for three stationary point solutions: a minimum, a saddle-
point and a maximum. The lensed images formed at these points are referred to as
Type I, Type II and Type III images accordingly.

Following [154], we can Taylor-expand the total time delay τ around the stationary
phase points ®θk under the stationary phase approximation as

τ(®θ, ®β) ≈ τ(®θk) +
1
2

2∑
(a,b)=1

| ®θk − ®β|a | ®θk − ®β |b∂a∂bτ(®θk), (6.30)
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where k labels the k th image, and a, b represents the two components of the two-
dimensional angles. Note that the first-order term in the Taylor expansion vanishes
because the time-delay function is expanded around the stationary phase points.
From the total time delay function τ(®θ, ®β), we can obtain the stationary points by
solving

∂aτ(®θ) = 0. (6.31)

The nature of each of these stationary points, as we have seen before, can be
determined by evaluating the second-order derivative of the total time delay function
at these positions. The result would be a 2×2 matrix known as the lensing Jacobian
(or the Hessian matrix [154])

Tab = ∂a∂bτ(®θ) =


d2τ
dθ2

x

d2τ
dθxdθy

d2τ
dθxdθy

d2τ
dθ2

y

 . (6.32)

The stationary point is a local minimum if the second derivative yields two positive
eigenvalues. If it yields one positive and one negative eigenvalue, the solution is a
saddle point solution. If it yields two negative eigenvalues, the solution is a local
maximum. We can diagonalize the lensing Jacobian in terms of the eigenvalues
λ1k, λ2k and corresponding eigenvectors θ̃1, θ̃2. This allows us to write the second
term in the Taylor expansion for the total time delay function as

1
2

2∑
(a,b)=1

| ®θk − ®β|a | ®θk − ®β |b∂a∂bτ(®θk) =
1
2

DSDL

DLS

(
λ1k θ̃

2
1 + λ2k θ̃

2
2

)
. (6.33)

Substituting this into the amplification factor array, we have

F =
DLDS

DLS

ω

2πi

∫
eiωτ(®θ, ®β)d2θ (6.34)

≈
DLDS

DLS

ω

2πi
×

∑
k

eiωτ(®θk ) ×

∫
exp

[
iω
2

DSDL

DLS

(
λ1k θ̃

2
1 + λ2k θ̃

2
2

)]
d2θ̃ (6.35)

=
DLDS

DLS

ω

2πi
×

∑
k

eiωτ(®θk ) ×

∫
exp

[
iωλ1k

2
DSDL

DLS
θ̃2

1

]
dθ̃1 (6.36)

×

∫
exp

[
iωλ2k

2
DSDL

DLS
θ̃2

2

]
dθ̃2. (6.37)

Note that the last two terms are complex Gaussian integrals. We can evaluate the
integrals with the identity∫ ∞

−∞

exp
[
±ix2] dx = exp

[
±i
π

4

]
·
√
π. (6.38)
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For the first integral, we make the following change of variable (in [154], it was
phrased as a renormalization)

χ̃1 =

√
ωλ2k

2
DSDL

DLS
θ̃1, (6.39)

which transforms the integral as∫
exp

[
iωλ1k

2
DSDL

DLS
θ̃2

1

]
dθ̃1 =

√
2

ωλ1k

DLS

DSDL

∫
exp

[
isign(ωλ1k) χ̃

2
1
]

d χ̃1

(6.40)

=

√
2

ωλ1k

DLS

DSDL
·
√
π · exp

[
isign(ωλ1k)

π

4

]
.

(6.41)

Note that the sign(...) function denoting the sign of the argument (in this case, it
is the product of the angular frequency ω and the eigenvalue λ1k) is required as
it will affect the evaluation of the Gaussian integral. The second integral can be
transformed similarly into∫

exp
[
iωλ2k

2
DSDL

DLS
θ̃2

2

]
dθ̃2 =

√
2

ωλ2k

DLS

DSDL
·
√
π · exp

[
isign(ωλ2k)

π

4

]
.

(6.42)

Then, the amplification factor array can be written as

F ≈
DLDS

DLS

ω

2πi
×

∑
k

eiωτ(®θk ) ×
2π
ω

DLS

DSDL
×

√
λ1kλ2k (6.43)

× exp
[
i [sign(ωλ1k) + sign(ωλ2k)]

π

4

]
(6.44)

=
∑

k

(−i) · exp
[
iωτ(®θk)

]
·

√
1

|λ1kλ2k |
· exp

[
isign(ω)

qπ
2

]
, (6.45)

where

q =


1, for local minimum (two positive eigenvalues)

0, for saddle point (one positive and one negative eigenvalue)

−1, for local minimum (two negative eigenvalues)

(6.46)
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(I use q to distinguish the usual n in most literature). We can write −i = exp
[
−i π2

]
,

and hence the amplification factor array as

F =
∑

k

√
1

|λ1kλ2k |︸       ︷︷       ︸
√
|µ(®θk )|

· exp
[
iωτ(®θk) − i

π

2
+ isign(ω)

qπ
2

]
(6.47)

=
∑

k

√
|µ(®θk)| · exp

[
iωτ(®θk) − isign(ω)

nπ
2

]
, (6.48)

where

µ(®θk) =
1

|λ1kλ2k |
(6.49)

is the amplification factor for the k th image (note that we have shown previously that
the magnification is identical to the inverse of the product of the eigenvalues of the
Lensing Jacobian), and

n =


0, for local minimum (Type 1)

1, for saddle point (Type 2)

2, for local minimum (Type 3)

, (6.50)

is commonly known as the Morse phase. Figure 6.3.1 illustrates the three types of
strongly-lensed gravitational waves with different Morse phases.

Different lens models predict different distributions of relative time delays and
relative magnifications between gravitationally-lensed gravitational waves from the
same source. Gravitational lenses with moderate masses (e.g. galaxies) can produce
lensed gravitational waves with relative time delays ranging from days to months,
whereas more massive gravitational lenses (e.g. galaxy clusters) can produce lensed
signals with relative time delays ranging from months to years [259, 281]. If
appropriately used, the aforementioned prior information can help us to estimate the
lensing rates for gravitational waves (See Chapter 8 and [266]) and can also help
us to improve the search sensitivity for possible strongly-lensed gravitational waves
(See Chapter 8).

It is also important to note that the magnification factor
√
|µ j | can be smaller than 1

[281]. Hence, some strongly-lensed gravitational waves may be de-magnified with
a reduced signal-to-noise (SNR) ratio below the detection threshold. These signals,
formally known as “sub-threshold” signals, are of particular interest, as a significant
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Figure 6.3.1: (Left) Type 1 (blue) and Type 2 (orange) gravitationally-lensed gravi-
tational waveforms in the time domain. (Right) Type 1 (blue) and Type 3 (orange)
gravitationally-lensed gravitational waveforms in the time domain. Type 1 signals
have zero Morse phase shift, and hence, they are in phase with the not-lensed gravi-
tational wave. Type 2 signals have a π

2 Morse phase shift compared to the not-lensed
gravitational wave. Type 3 signals have a π Morse phase shift compared to the
not-lensed gravitational wave.

proportion of strongly-lensed gravitational-wave events falls into this category [364].
Retrieving these possible sub-threshold lensed counterparts is a crucial step to boost
the confidence for the first detection of strongly-lensed gravitational waves.

To summarize, in the strong lensing regime, we can use the stationary phase approx-
imation to simplify the amplification factor integral so that it becomes frequency-
independent (i.e. achromatic). This approximation is also known as the geometric
optics limit. Mathematically, if we denote the not-lensed gravitational wave in the
frequency domain as h̃NL( f ; ®θ,∆t j = 0), then the j th strongly-lensed counterpart
waveform h̃ j is

h̃ j( f ; ®θ, µ j,∆t j,∆φ j) =

√
|µ j | h̃NL( f ; ®θ,∆t j)e(i sign( f )∆φ j). (6.51)

where

∆φ j = −
n jπ

2
, n j =


0,Type 1 lensed signals

1,Type 2 lensed signals

2,Type 3 lensed signals

(6.52)

is the Morse phase factor, and µ j is the magnification for the j th lensed signal.
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Millilensing of gravitational waves
In between strong lensing and microlensing, there is an intermediate regime where
the sizes of the gravitational lenses are comparable to, although still larger than, the
gravitational-wave lengths. In this regime, the geometric optics limit used for strong
lensing is still valid, such that the lensed signals are still distinct signals. However,
the relative time delays between the lensed signals are shortened so that they can
start overlapping and interfere with each other, resulting in similar beating patterns
as in microlensing. This is known as millilensing [230]. We expect millilensing
to occur for gravitational lenses with masses ranging from 102M� to 106M�. In
this regime, the millilensed gravitational-wave signal is the sum of all the lensed
gravitational-wave signals produced

h̃
(

f ; ®θ,
{
µ j, t j, n j

}
j=1,...,K

)
=


K∑

j=1

√
|µ j |e(i sign( f )∆φ j)

 h̃NL( f ; ®θ,∆t j). (6.53)

where j is the j th lensed gravitational-wave signals, running from 1 to K . The
interference between the lensed gravitational-wave signals results in a non-trivial
millilensed gravitational wave. Since the total number of lensed signals is usually
not known a priori, searching for such millilensed signals requires one to either fix
the number of lensed signals in a search, or make it into a variable and try to infer
it [203, 230].

Current LVK effort to search for lensing signatures in gravitational-wave data
Since the first successful detection of gravitational waves by the LIGO-Virgo-
KAGRA (LVK) Collaboration [5, 6, 8, 11, 12, 17–19, 21, 24, 33], The LVK
collaboration has conducted various analyses searching for lensing signatures in
the event catalogs of LVK’s observing runs O1-O2 [186] and O3 [23, 32]. The
details will be covered in later chapters. In this subsection, I will briefly introduce
the framework of LVK’s lensing searches.

Figure 6.3.2 illustrates the general framework of the LVK collaboration’s lensing
searches. We start with a set of confirmed gravitational-wave events documented in
LVK’s Gravitational-Wave Transient Catalogues (GWTC). For each event in the set,
we first perform microlensing analysis to look for possible microlensing signatures
embedded in the gravitational-wave signal via the pipeline GRAVELAMPS [370].
In the follow-up work [203] for the full-O3 lensing analysis [32], we also search for
possible millilensing signatures with the methodology described in [230]. LVK also
searches for possible strongly-lensed gravitational waves within the available data.
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Figure 6.3.2: The general framework of the LIGO-Virgo-KAGRA (LVK) collabora-
tion’s lensing searches. We start with a set of confirmed gravitational-wave events.
We perform microlensing (via the pipeline GRAVELAMPS) and millilensing anal-
ysis for each event. We also search for possible sub-threshold lensed counter-
parts to each event via two independent search methods: (1) GstLAL-based search
pipeline TESLA, and (2) PyCBC-based sub-threshold search. From the final pool
of gravitational-wave candidates, we form pairs of candidates. For each pair, we
utilize three independent preliminary tests/pipelines to check for signal consistency,
namely (1) posterior overlap (checking for consistency in signal source parameters),
(2) machine-learning-based classification test LensID (checking for consistency in
sky location of source and time-frequency maps of signals), and (3) phazap (check-
ing for consistency in the signal phase with the strong lensing hypothesis). Each
of these tests assigns a ranking statistic to the pairs of candidates, and those that
satisfy a pre-determined threshold are passed on for two independent, robust tests
to determine how likely they are strongly-lensed counterparts to each other from the
same source, namely (1) Golum and (2) Hanabi. Pairs that survive the tests with
strong evidence of being strongly lensed will then be followed up further.

To account for possible de-magnified sub-threshold strongly-lensed gravitational
waves that are not previously identified as a signal, we first employ two independent
search pipelines: (1) GstLAL-based search pipeline TESLA [222, 223], and (2)
PyCBC-based sub-threshold search [247] to search for possible sub-threshold lensed
counterparts to known gravitational-wave events in the set under consideration.
Then, we form possible pairs of lensed gravitational-wave candidates from the final
pool of gravitational waves. For each pair, we utilize independent preliminary
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tests/pipelines to check for signal consistency 1:

(1) Posterior overlap: Check for consistency of intrinsic parameters of the gravitational-
wave signals by comparing the posteriors of gravitational waves obtained from
standard parameter estimation under the unlensed hypothesis [188].

(2) LensID: A machine-learning-based pipeline that checks for consistency in the
sky location of the gravitational-wave sources and time-frequency maps of
the signals [180].

(3) phazap: Employed since the O4 analysis that checks for consistency of the
signals’ phase with respect to the strong lensing hypothesis (under strong
lensing, only certain integral values of phase differences between lensed
signals are allowed) [157].

Each of these pipelines assigns a ranking statistic to the pairs of possible lensed
gravitational-wave candidates, and those that satisfy a pre-determined threshold are
passed on to two independent, robust joint parameter estimation pipelines, Golum
[200, 202] and Hanabi [235], to re-analyse the event pair under the strong-lensing
hypothesis. At the end, the two pipelines evaluate a Bayes factor for each event
pair, comparing the hypothesis that the two events are strongly-lensed counterparts
to each other, and that the two events are independent, unlensed events. Pairs with
sufficiently high evidence of being strongly lensed will then be followed up further.
Details of these tests can be found in their respective references (cited above), as
well as in later chapters.

6.4 Overview of the upcoming chapters
In Chapter 7, I will introduce the GstLAL-based search pipeline TESLA that
searches for possible sub-threshold lensed counterparts to known superthreshold
gravitational waves. TESLA also participated in the LVK collaboration-wide effort
to search for lensing signatures in gravitational waves from O3 data. Results from
the analysis of the first-half of O3 data [23], the full O3 data [32], and the follow-up
analysis [203] are included and discussed in Chapters 8, 9 and 10. In Chapters 11

1 Under the strong lensing hypothesis, strongly-lensed gravitational waves should have the
same intrinsic parameters. While the inferred sky location of the gravitational-wave sources of the
lensed signals should differ, the deviation is usually of the order of O(1′′). In contrast, the source
localization for gravitational waves has an uncertainty of the order of O(1o). Therefore, we assume
that strongly-lensed gravitational waves would have essentially the same sky location.
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and 12, I will discuss the latest improvements made to the TESLA pipeline (cur-
rently known as the TESLA-X pipeline) that boost the search sensitivity for possible
sub-threshold lensed counterparts to superthreshold gravitational waves.
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APPENDIX

6.A Gravitational lensing in Newtonian Mechanics
Escape velocity
In Newtonian Mechanics, when an object is being projected from the surface of the
Earth, depending on the initial velocity, the object may

1. return to the Earth’s surface,

2. move around the Earth in a bounded orbit, or

3. leave the Earth forever through an unbound orbit.

Figure 6.A.1: (Left) Objects projected from the Earth’s surface can have very
different trajectories depending on the initial conditions. (Right) Some objects in
the universe may have accumulated sufficiently high masses. Gravity is so strong
that not even light can escape.

For an object to escape the influence of gravity of its host, we can compute the escape
velocity vesc by considering energy conservation: The initial mechanical energy of
the object must be conserved as it escapes from its host. Suppose an object of mass
m is projected with an initial velocity of v from the surface of a host with radius R

and mass M . If the object manages to escape from its host completely, the object
should have zero gravitational potential energy, and the minimum final velocity of
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the object is zero. Mathematically, we can write

1
2

mv2 −
GMm

R
= 0 (6.54)

v = vesc =

√
2GM

R
, (6.55)

where G is the gravitational constant. This is known as the escape velocity vesc.

We can evaluate the radius of the host when the escape velocity becomes or exceeds
the speed of light c:

c =

√
2GM

R
(6.56)

R =
2GM

c2 . (6.57)

Such radius is known as the Schwarzschild radius. Nothing, including light, can
escape if a mass M is compressed to a radius smaller or equal to R. In the
18th Century, John Michell was the first person to theorize the existence of these
“compact” objects, which he named “dark stars” [252].

The above discussion hints at the point that gravity affects not only masses but also
light. When objects pass by masses, their travelling paths will get deflected due
to gravity. The same goes for light, which will be bent as it passes by massive
intervening objects. When these deflected light rays reach the Earth, they appear to
originate from positions different from the source position. In this sense, themassive
object that “supplies” the gravity for light bending becomes a “gravitational lens”.
Figure 6.A.2 shows an illustrative example of gravitational lensing of a star-forming
galaxy by a gravitational lens formed by a galaxy cluster. The images formed from
gravitational lensing can also suffer a magnification / de-magnification in terms of
brightness (amplitude) and size, and their shapes may also be deformed.

6.B Derivation of the deflection angle in Newtonian Mechanics
In this section, I present four different methods to derive the Newtonian deflection
angle.

Method 1: Dimensional analysis
We note that the deflection angle α̂ is a dimensionless quantity. It is possible to
construct this dimensionless physical quantity with known related parameters. We
have earlier derived the Schwarzschild radius RS =

2GM
c2 , which has a unit of length.

This is a good starting point because it relates the gravitational “strength” of the lens
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Figure 6.A.2: Light coming from a star-forming galaxy passes through a galaxy
cluster that acts as a gravitational lens to deflect the light rays. Observers on the other
side of the lens will think that the deflected light comes from images at positions
different from the source position. The images may be magnified / de-magnified in
terms of brightness and size, and may suffer from shape deformation.

to its density (mass M and radius R). To create a dimensionless quantity, we must
divide the Schwarzschild radius with another parameter with a unit of length. A
convenient parameter would be the impact parameter ξ. Putting everything together,
we get a dimensionless expression

α̂ =
2GM
c2ξ

, (6.58)

which turns out to be exactly the Newtonian deflection angle. We can make sense
of the constructed quantity:

1. The deflection angle is directly proportional to the mass of the lens M . That
is, the more The larger the lens is, the larger the deflection angle will be, i.e.
the more significant the gravitational lensing effect will be.

2. The deflection angle is inversely proportional to the impact parameter ξ. That
is, the closer the source is to the principal axis, the greater the deflection angle
will be. This makes perfect sense because gravitational potential is inversely
proportional to the distance to the source of gravity. The closer it is to the
source of gravity, the stronger the gravitational force will be, and hence, the
greater the effect of gravitational lensing will be.
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Method 2: A hand-waving approach

Figure 6.B.1: An astronaut is riding in a rocket originally moving at speed v

horizontally to the right. A blue giant of mass M nearby acts as the gravitational
lens. The *half*-deflection angle is α̂, and the distance d is the impact parameter.
Inside the rocket, the astronaut shoots a light beam horizontally (in red).

Figure 6.B.1 shows an astronaut riding a rocket moving horizontally to the right with
an initial speed v. A blue giant of mass M nearby acts as the gravitational lens that
changes the rocket’s trajectory. The *half*-deflection angle is α̂ 2, and the impact
parameter is d. Inside the rocket, the astronaut shines a light beam horizontally (in
red) to the right. If we assume the change in distance between the blue giant and
the rocket d®r is small, the magnitude of the acceleration due to gravity | ®a| =

��� d2®r
dt2

���
can be regarded as approximately constant throughout the whole deflection process.
Under this assumption, the acceleration can be approximated as

a ≈
GM
d2 . (6.59)

Since the rocket, astronaut, and the light pulse all experience the same deflection
due to gravity. The time t that the light pulse experiences deflection due to gravity
is roughly the same order as it takes to travel a distance d (the impact parameter) in
its original speed (i.e. the speed of light). Hence, we can approximate t as

t ≈
d
c
. (6.60)

2 The deflection angle is halved because we have only considered half the deflection process.
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As the acceleration is assumed to be roughly constant throughout the whole deflec-
tion, the final vertical speed of the light pulse is approximately

v⊥ = u + at = 0 +
GM
d2 ×

d
c
=

GM
cd

, (6.61)

where u is the initial vertical speed of the light pulse. Assuming that the half-
deflection angle α̂ is small, and considering the horizontal component v = c and
vertical component v⊥ of the speed of the light pulse, we get

tanα ≈ α̂ =
v⊥

v
=

GM
c2d

, (6.62)

which is the same expression we got earlier (apart from the prefactor 2 because we
have only considered half the deflection process).

Method 3: Integration

Figure 6.B.2: Here, we show a rocket (the rectangle box) moving horizontally along
the positive x-axis initially. A blue giant of mass M (in blue) is placed at the origin.
®r denotes the vector pointing from the blue giant to the rocket, and θ is the angle
between ®r and the positive y-axis. α̂ is the deflection angle, and d is the impact
parameter. A light beam is shot horizontally inside the rocket (not shown).

Figure 6.B.2 shows a rocket (the rectangle box) moving horizontally initially along
the positive x-axis. A blue giant of mass M (in blue) is placed at the origin. ®r
denotes the vector pointing from the blue giant to the rocket, and θ is the angle
between ®r and the positive y-axis. α̂ is the deflection angle, and d is the impact
parameter. A light beam is shot horizontally inside the rocket (not shown).
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Assuming the deflection is very small such that the y-component of the vector ®r is
approximately constant, i.e. it is approximately equal to the impact parameter d, we
can express r as

r ≈
√

x2 + d2, (6.63)

where x is the x-coordinate of the rocket. Neglecting the horizontal component
of the gravitational acceleration on the light beam by the blue giant 3, then the
acceleration due to gravity experienced by the light beam at any time t is given by

®a = −
GM
r2 r̂ ≈ −

GM
r2 cos θ ŷ. (6.64)

The magnitude of the acceleration can be further expressed as

a =
GM
r2 cos θ =

GM
r2

d
r
=

GMd(
x2 + d2)3/2 . (6.65)

Then, the total increase in speed of the light beam along the y-direction is given by

∆v⊥ =

∫ t∞

t0
adt. (6.66)

We make a change of variable with

dt =
dx
c
, (6.67)

where dt is the infinitesimal time of travel of the light beam along the x direction.
Since we assume the horizontal component of the acceleration due to gravity is
negligible, the speed of the light beam along the x-direction remains c. Then, we
get

∆v⊥ =

∫ ∞

−∞

a
dx
c
=

GMd
c

∫ ∞

−∞

1(
x2 + d2)3/2 dx. (6.68)

Doing a change of variable x = d tan θ, we get dx = d sec2 θdθ, and hence we have

∆v⊥ =
GMd

c

∫ π/2

−π/2

1
d3 sec3 θ

d sec2 θdθ (6.69)

=
GM
cd

∫ π/2

−π/2

dθ
sec θ

(6.70)

=
GM
cd

∫ π/2

−π/2
cos θdθ =

2GM
cd

. (6.71)

3 We neglect that because we are only interested in the deflection along the vertical direction.
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Assuming that the deflection angle is small, we have

tanα ≈ α =
∆v⊥

c
=

2GM
c2d

, (6.72)

which is the same expression we obtained earlier 4.

Method 4: Standard Newtonian Mechanics

Figure 6.B.3: A gravitational lens of mass M is placed at the origin. The x-axis is
aligned such that the positive-x direction is along the direction of the un-deflected
light ray from the source. The distance from the lens to the closest approach of
the light ray is ξ, at a polar angle θ0. The position of the light ray at any time t is
represented by the position vector ®r . The half-deflection angle is δθ, so the total
deflection angle is 2δθ (deflection angle is defined as the angle between the image
and the source).

Figure 6.B.3 shows a gravitational lens of mass M at the origin. The x-axis is
aligned such that the positive-x direction is along the direction of the undeflected
light ray from the source. The distance from the lens to the closest approach of
the light ray is ξ, at a polar angle θ0. The position of the light ray at any time t is
represented by the position vector ®r . The half-deflection angle is δθ, so the total
deflection angle is 2δθ (deflection angle is defined as the angle between the image
and the source).

4 Note that this time, we get the correct prefactor 2 because the integral ranges from −∞ to ∞.
Technically, we are integrating over the whole deflection process.
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Assuming photons have mass, we can write the equations of motion for photons as

m
d2®r
dt2 = −

GMm
r2 r̂ (6.73)

d2®r
dt2 = −

GM
r2 r̂, (6.74)

where we have removed photons “hypothetical” mass m. This equation of motion is,
in general a three-dimensional equation (in spherical coordinates, r̂ , θ̂, φ̂). However,
we can construct the diagram such that all the motions are constrained on a plane,
which reduces this to a two-dimensional equation (in polar coordinates, r̂ and θ̂).
Recall that ®r = rr̂ , Û®r = Ûrr̂ + r Ûθθ̂, and Ü®r =

(
Ür − r Ûθ2) r̂ +

(
r Üθ − 2 Ûr Ûθ

)
θ̂. We can hence

write the above equation of motion as(
Ür − r Ûθ2 +

GM
r2

)
r̂ +

(
r Üθ − 2 Ûr Ûθ

)
θ̂ = 0. (6.75)

Focusing on the θ component of the equation of motion, we have

r Üθ − 2 Ûr Ûθ = 0 (6.76)

r2 Üθ − 2r Ûr Ûθ = 0 (6.77)
d
dt

[
r2 Ûθ

]
= 0 (6.78)

r2 Ûθ = Lz = Constant, (6.79)

which leads to a “conserved” quantity Lz = r2 Ûθ, correpsonding to the “angular
momentum”.

The r-component of the equation of motion can be written as

Ür −
L2

z

r3 +
GM
r2 = 0. (6.80)

To solve the equation, we make a change of variable r(t) → r[θ(t)], i.e. we make r

become a function of θ instead of time t. Then, we have

Ûr =
dr
dθ

dθ
dt
= r′ Ûθ = r′

Lz

r2 , (6.81)

where Ûr and r′ represent the derivative with respect to time t and θ respectively.
Similarly,

Ür = Lz
d
dt

[
r′

1
r2

]
= Lz

d
dθ

[
r′

1
r2

]
×

dθ
dt
=

L2
z

r2

[
r′′

r2 −
2r′2

r3

]
= L2

z

[
r′′

r4 −
2r′2

r5

]
.

(6.82)
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The equation of motion can then be written as

L2
z

[
r′′

r4 −
2r′2

r5

]
+

GM
r2 = 0. (6.83)

We make another change of variable u = 1
r . This gives us

r =
1
u
→ r′ = −

1
u2 u′ → r′′ = −

u′′

u2 +
2u′2

u3 , (6.84)

and the equation of motion becomes

L2
z

(
u2u′′ + u3

)
= GMu2 (6.85)

u2 [
L2

z (u
′′ + u) − GM

]
= 0. (6.86)

This leads to two possible solutions:

1. u = 0 and hence r → ∞ (the light is infinitely away from the lens, such that
no lensing occurs), and

2. L2
z (u
′′ + u) − GM = 0.

The first solution is the trivial solution (no lensing has occurred). Hence, we
will focus on the second solution. The second solution yields an inhomogeneous
second-order differential equation

u′′ + u =
GM
L2

z
. (6.87)

The homogenous part of the equation

u′′ + u = 0 (6.88)

yields the homogenous solution uh = A cos(θ − φ), where A and φ are constants to
be determined by initial conditions. The particular solution is simply the constant
on the right side of the equation, i.e. up =

GM
L2
z
. Hence, the general solution to the

differential equation is given by

u = uh + up = A cos(θ − φ) +
GM
L2

z
. (6.89)

In terms of r , the solution is

1
r(θ)

= A cos(θ − φ) +
GM
L2

z
. (6.90)
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We observe that r is minimized when the right side is maximized, which, by
constraining A to be positive, happens when cos(θ − φ) = 1 (i.e. θ − φ = 0). The
minimum r occurs at the closest approach θ = θ0. Hence, we immediately get
φ = θ0, and the solution becomes

1
r(θ)

= A cos(θ − θ0) +
GM
L2

z
. (6.91)

Now, we consider the conservation of angular momentum Lz = r2 Ûθ. When the light
is very far away from the lens θ → θ∞, the angular momentum is roughly equal to
Lz = ®r × ®v ≈ ξc, since the light is moving along the direction of x. We can hence
write the solution for r as

1
r(θ)

= A cos(θ − θ0) +
GM
ξ2c2 . (6.92)

We now impose initial conditions: (1) When θ → π, r →∞, so we get

0 = A cos(π − θ0) +
GM
ξ2c2 = −A cos θ0 +

GM
ξ2c2 (6.93)

A cos θ0 =
GM
ξ2c2 (6.94)

A2 cos2 θ0 =
G2M2

ξ4c4 . (6.95)

(2) If we differentiate the equation of motion with respect to time, we get

−
Ûr

r2 = −A Ûθ sin(θ − θ0) (6.96)

A =
Ûr

r2 Ûθ︸︷︷︸
Lz

sin(θ − θ0)
=

Ûr
ξc sin(θ − θ0)

. (6.97)

Initially at θ = π, we have Ûθ ≈ 0, and recall that v = c =
√
Ûr2 + r2 Ûθ2 ≈ Ûr in polar

coordinates, so we get

A =
c

ξc sin(π − θ0)
=

1
ξ sin θ0

(6.98)

sin θ0 =
1

Aξ
(6.99)

cos2 θ0 = 1 −
1

A2ξ2 . (6.100)
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Together, we get

A2
(
1 −

1
A2ξ2

)
=

G2M2

ξ4c4 (6.101)

A2 =
1
ξ2 +

G2M2

ξ4c4 , (6.102)

and hence

cos2 θ0 = 1 −
1

ξ2
(

1
ξ2 +

G2M2

ξ4c4

) = 1 −
1

1 + G2M2

ξ2c4

≈ 1 −
[
1 −

G2M2

ξ2c4

]
=

G2M2

ξ2c4

(6.103)

cos θ0 =
GM
ξc2 . (6.104)

Now note that if θ0 =
π
2 , it results in no deflection. Therefore, if we write θ0 =

π
2 − ε ,

where ε is a small number, then ε will define the “strength” of the lensing effect
acting on the light beam. Then, we can expand cos θ0 as

cos θ0 = cos
(π

2
− ε

)
≈ ε =

GM
ξc2 , (6.105)

and hence

θ0 ≈
π

2
−

GM
ξc2 . (6.106)

Finally, consider the geometric construction in Figure 6.B.4. In the closed quadri-
lateral, by the angle sum of polygon, we have

π

2
× 2 +

(π
2
− δθ

)
+ (π − θ0) = 2π (6.107)

δθ =
π

2
−

(
π

2
−

GM
ξc2

)
=

GM
ξc2 , (6.108)

and hence the total deflection angle is, once again,

α̂ = 2δθ =
2GM
ξc2 . (6.109)

6.C Relativistic deflection angle
In this section, we will explain how one can derive the relativistic deflection angle.
Unless otherwise stated, we set the speed of light c = 1 for simplicity. We consider a
simple point-mass lens massive enough to be considered stationary. Around a point
mass lens of mass M , spacetime can be described by the Schwarzschild metric, i.e.

ds2 = −

(
1 −

2GM
r

)
dt2 +

(
1 −

2GM
r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 (6.110)
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Figure 6.B.4: Additional geometric construction on 6.B.3.

in spherical coordinates. Note that away from the point mass lens (i.e. r →∞), the
Schwarzschild metric reduces to the flat Minkowski metric, i.e.

ds2 → −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2. (6.111)

The metric tensor gµν for the Schwarzschild metric can be written as

gµν = diag

[
−

(
1 −

2GM
r

)
,

(
1 −

2GM
r

)−1
, r2, r2 sin2 θ

]
. (6.112)

The geodesic equation is given by

d
dτ

(
gµν

dxν

dτ

)
−

1
2
gαβ,µ

dxα

dτ
dxβ

dτ
= 0, (6.113)

where gαβ,µ = ∂µgαβ, τ is the proper time, and xµ is the 4-position vector. Consid-
ering the µ = t-component of the geodesic equation, we have

d
dτ

(
gtν

dxν

dτ

)
−

1
2
gαβ,t

dxα

dτ
dxβ

dτ
= 0. (6.114)
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Since gtν is non-zero only when ν = t, and none of the components of gµν is
explicitly dependent on t, we have gαβ,t = 0, and

d
dτ

[
gtt

dt
dτ

]
= 0 (6.115)

−gtt
dt
dτ
= e = Constant. (6.116)

A negative sign is deliberately multiplied to the last line of the equation. Note
that dt

dτ is the t-component of the 4-velocity vt . If we multiply the mass of the
corresponding particle m to the expression, we get the t-component pt of the 4
momentum. As r →∞, gtt → −1 and me = pt , corresponding to the energy of the
particle. Therefore, we can interpret e as the energy per unit mass of the particle.

Considering the µ = φ component of the geodesic equation, we get

d
dτ

(
gφν

dxν

dτ

)
−

1
2
gαβ,φ

dxα

dτ
dxβ

dτ
= 0. (6.117)

Note that gφν is non-zero only when ν = φ, and gαβ,φ = 0. We have

d
dτ

(
gφφ

dxφ

dτ

)
= 0 (6.118)

gφφ
dxφ

dτ
= r2 sin2 θ

dxφ

dτ
= l = Constant. (6.119)

Assuming the geodesic lies on the equatorial plane, i.e. θ = π
2 , we get

l = r2 dxφ

dτ
= r2 Ûφ. (6.120)

Multiplying the mass of the particle m to both sides, we get

ml = mr2 Ûφ, (6.121)

which we can immediately identify the right side as the angular momentum of the
particle. Therefore, we can interpret l as the particle’s angular momentum per unit
mass.

Note that the above discussion only applies to particles with mass. For massless
particles like photons, the proper time τ is ill-defined (along any photon’s worldline,
τ = 0). We can eliminate the proper time τ by creating a new conserved quantity
b = l

e using the previously found conserved quantities. This new quantity

b =
l
e
=

r2 dφ
dτ(

1 − 2GM
r

)
dt
dτ

=
r3

r − 2GM
dφ
dt

(6.122)

dφ
dt
=

b
r2

(
1 −

2GM
r

)
. (6.123)
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is the impact parameter. Note that this new quantity b does not depend on τ, hence
it applies to massless particles like photons.

For massless particles like photons, the proper time is always dτ = 0, so by compar-
ing the spacetime interval measured by an observer co-moving with a photon (i.e.
the proper time −dτ = 0), and that measured by another arbitrary observer, we get

0 = −
(
1 −

2GM
r

)
dt2 +

(
1 −

2GM
r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2. (6.124)

Constraining the motion on the equatorial plane (i.e. θ = π
2 and dθ = 0), we get

0 = −
(
1 −

2GM
r

)
dt2 +

(
1 −

2GM
r

)−1
dr2 + r2dφ2 (6.125)

0 = −
(
1 −

2GM
r

)
+

(
1 −

2GM
r

)−1 (
dr
dt

)2
+ r2

(
dφ
dt

)2
. (6.126)

Using the quantity b we obtained earlier, we have

0 = −
(
1 −

2GM
r

)
+

(
1 −

2GM
r

)−1 (
dr
dt

)2
+ r2 ×

b2

r4

(
1 −

2GM
r

)2
(6.127)(

dr
dt

)2
=

(
1 −

2GM
r

)2
−

b2

r2

(
1 −

2GM
r

)3
(6.128)

dr
dt
=

(
1 −

2GM
r

) √
1 −

b2

r2

(
1 −

2GM
r

)
. (6.129)

Making a change of variable u(φ) = 1
r(φ) gives

dr
dt
=

dr
du

du
dφ

dφ
dt
= −

1
u2 × u′ ×

b
r2

(
1 −

2GM
r

)
= −u′b (1 − 2GMu) , (6.130)

where u′ = du
dφ . Then, the previous equation can be rewritten as

−u′b(1 − 2GMu) = (1 − 2GMu)
√

1 − b2u2(1 − 2GMu) (6.131)

(1 − 2GMu)
[
u′b +

√
1 − b2u2(1 − 2GMu)

]
= 0, (6.132)

which leads to

u′b +
√

1 − b2u2(1 − 2GMu) = 0 (6.133)

u′2b2 = 1 − b2u2(1 − 2GMu) (6.134)

u′2 + u2 =
1
b2 + 2GMu3. (6.135)
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Differentiating both sides with respect to φ again, we get

2u′u′′ + 2uu′ = 6GMu2u′ (6.136)

u′(u′′ + u − 3GMu2) = 0. (6.137)

This leads to either u′ = 0 (trivial solution, corresponding to the scenario where no
lensing occurs), or the differential equation

u′′ + u = 3GMu2. (6.138)

To solve this differential equation, we first consider the case where M = 0, i.e. when
there is no lens. Then, the differential equation becomes

u′′ = −u (6.139)

and the general solution is simply

ũ = A cos φ + B sin φ, (6.140)

where A, B are constants to be determined by initial conditions. If we assume u = 0
(i.e. r → ∞) at φ = π, we get A = 0 and ũ = B sin φ. Note that u is maximized
when φ = π

2 , which corresponds to the minimum of r , i.e. the closest approach uc

from the gravitational lens to the light beam. With such, we immediately get A = uc

and hence ũ = uc sin φ.

With perturbation theory, we can now solve the original equation (i.e. M , 0). We
assume the solution can be written as

u = uc sin φ + ucz(φ), (6.141)

where z(φ) is a small perturbation. Substituting this into the original equation, we
get

d2

dφ2 [uc sin φ + ucz(φ)] + [uc sin φ + ucz(φ)] = 3GM [uc sin φ + ucz(φ)]2 (6.142)

−uc sin φ + ucz′′ + uc sin φ + ucz = 3GM
[
u2

c sin2 φ + 2u2
c z sin φ + u2

c z2] (6.143)

z′′ + z ≈ 3GM(uc sin2 φ) (6.144)

where we have dropped the final two terms on the right side because they are
sufficiently small. This means

z′′ + z =
3GMuc

2
(1 − cos 2φ) . (6.145)
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This is, again, an inhomogeneous differential equation. To solve for the particular
solution, we guess the solution to be

zp = E + F sin 2φ + H cos 2φ (6.146)

where E, F,H are constants. Substituting this into the equation, we get

[−4F sin 2φ − 4H cos 2φ] + [E + F sin 2φ + H cos 2φ] =
3GMuc

2
(1 − cos 2φ)

(6.147)

−3F sin 2φ − 3H cos 2φ + E =
3GMuc

2
(1 − cos 2φ) .

(6.148)

This gives F = 0, E = 3GMuc
2 and H = GMuc

2 . Then, the general solution for z can
be written as

z =
3GMuc

2
+

GMuc

2
cos 2φ, (6.149)

and that for u can be written as

u = uc sin φ +
3GMu2

c

2
+

GMu2
c

2
cos 2φ = uc

[
sin φ +

3GMuc

2

(
1 +

1
3

cos 2φ
)]
.

(6.150)

Recall that u = 0 when φ = 0 and π for M = 0. However, this is no longer the case
when M , 0. Instead, u = 0 for some small angle φ0 (φ0 is small because we assume
a small perturbation). Under the small angle approximation, we get sin φ ≈ φ and
cos 2φ ≈ 1, and hence

0 ≈ uc

[
φ0 +

3GMuc

2

(
1 +

1
3

)]
(6.151)

φ0 = 2GMuc =
2GM

rc
, (6.152)

where rc =
1
uc

is the distance from the lens to the light beam at the closest approach.
Since we are only considering half the deflection process, the total deflection angle
is hence

α̂ =
4GM

rc
, (6.153)

which is twice the Newtonian value.

6.D The lens equation from geometric constructions
In this section, we will derive the lens equation with the thin lens approximation.
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The 1D lens equation
We first consider the “simplest” lens model - When there is no lens. Figure 6.D.1
illustrates the scenario. Although no lensing is occurring, we can already define two
important parameters, namely the source position β and source distance DS, for later
discussion. Note that all distances in this section are assumed to be cosmological
distances.

Figure 6.D.1: The “simplest” lens model is the case when no gravitational lens
exists. In this scenario, however, we can already define two important quantities,
namely the source position β and source distance DS, which will be useful later.

We now insert a massive lens into the picture. We assume that the lens is massive
enough so it is approximately a stationary point mass. Figure 6.D.2 illustrates the
updated scenario. In this case, we need to define several new parameters, namely
(1) the image position θ, (2) the lens-source distance DLS, (3) the lens distance DL,
(4) the impact parameter ξ, which is the distance to the closest approach between
the light ray and the lens, and (5) the deflection angle α̂, which is the angle between
the image and the undeflected light ray.

Recall that the deflection angle is given by

α̂ =
4GM
ξ

. (6.154)

Assuming small angles, the “height” of the image is then given by DSθ. The same
“height” can also be expressed in terms of DS,DLS, β and α̂ as DSβ + DLSα̂. The
impact parameter can be expressed as ξ = DLθ. Hence, we have

DSθ = DSβ + DLSα̂ = DSβ +
4GMDLS

DLθ
(6.155)

θ2 − βθ −
4GMDLS

DLDS
= 0. (6.156)
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Figure 6.D.2: Amassive point-mass lens enters the picture. Because of gravitational
lensing, the light ray from the source is bent, and a new image is formed. We now
need to define several new parameters: (1) The image position θ, (2) The lens-source
distance DLS, (3) The lens distance DL, (4) The impact parameter ξ (the distance of
closest approach between the light ray and the lens), and (5) The deflection angle α̂
(the angle between the un-deflected light ray and the image).

This quadratic equation for θ is known as the “lens equation”. If we set β = 0 (i.e.
the source is directly behind the lens), we get

θ2 =
4GMDLS

DLDS
(6.157)

θ = θE = ±

√
4GMDLS

DLDS
. (6.158)

θE is known as the “Einstein radius”. In this case, “infinitely many” images are
formed around the point mass lens with the image position being θE , forming the
“Einstein ring”.

We can then write the lens equation in terms of θE as

θ2 − βθ − θ2
E = 0 (6.159)

θ =
β

2
±

1
2

√
β2 + 4θ2

E = θ±, (6.160)

which gives the image positions as θ±. Another way to visualize the result is by
using the graphical method. The lens equation can be written as

θ − β =
θ2

E

θ
. (6.161)

The problem is now transformed into one asking for the number of intersections
between the two curves y = θ − β and y =

θ2
E

θ . As Figure 6.D.3 demonstrates, the
point mass lens model always admits two solutions.
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Figure 6.D.3: The problem of solving the image positions is transformed into a
graphical problem, asking for the number of intersection points between two curves
y = θ − β and y =

θ2
E

θ . As we can see, the point mass lens model always has two
images (two intersection points in red).

Lens equation in higher dimensions
We now want to extend our discussion to three-dimensional scenarios where the
lens has sizes. For the following derivation, refer to Figure 6.2.2. All the angles
are now promoted to 2D angles. The deflection angle is now a function of the
impact parameter α̂ = α̂( ®ξ). Apart from this, the previous derivation for the 1D lens
equation still holds as long as we promote the angles to two-dimensional, i.e.

®β +
DLS

DS
α̂ = ®θ. (6.162)

This is the 2D lens equation.

We can define the reduced deflection angle as

®α =
DLS

DS
α̂. (6.163)



110

Rearranging the terms, we get

DS ®α = DLSα̂. (6.164)

Both sides roughly describe the distance between the source and the image, and ®α
is roughly the angle between the line joining the observer and the source, and that
joining the observer and the image.

Since all angles are now two-dimensional, including the deflection angle α̂, we can
write the deflection angle as a directional vector in terms of the impact parameter
vector, i.e.

α̂ =
4GM
ξ

ξ̂. (6.165)

Generalizing to a lens that is not at the origin (but at some position ®ξ′), the deflection
angle is

α̂ =
4GM

| ®ξ − ®ξ′|2

(
®ξ − ®ξ′

)
. (6.166)

Note that this applies only to a single point mass lens.

Figure 6.D.4: Deriving the deflection angle for a thin lens.

If the lens mass can be described by some continuous mass density function ρ(®r),
the deflection angle can be written as a triple integral, i.e.

α̂ = 4GM
∫

V

ρ(®r′)d3r′

| ®ξ − ®ξ′|2

(
®ξ − ®ξ′

)
= 4GM

∫ z1

z0

dr′3

∫
S

ρ( ®ξ, r′3)d
2ξ

| ®ξ − ®ξ′|2

(
®ξ − ®ξ′

)
,

(6.167)

where r3 is the dimension perpendicular to the lens plane. Note that in principle we
should replace the vector ®ξ − ®ξ′ by ®η − ®η′, where ®η = ®ξ + ®r3 includes the distance
along the dimension r3. However, here we take the thin lens approximation (i.e. the
distance along the dimension r3 is negligible).
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The integral along the r3 dimension can be integrated easily since only ρ depends
on r3. We can define the integral as a new quantity

Σ( ®ξ) =

∫
ρ( ®ξ, r′3)dr′3, (6.168)

known as the surface mass density of the lens. Then, the deflection angle can be
written as

α̂ = 4G
∫
Σ
®ξ − ®ξ′

| ®ξ − ®ξ′|2
d2ξ. (6.169)

We have shown that ®ξ = DL ®θ. Similarly, we can write ®ξ′ = DL ®θ
′. Then, the

deflection angle can be expressed as

α̂ = 4G
∫
Σ

DL

(
®θ − ®θ′

)
D2
L |
®θ − ®θ′|2

D2
Ld2θ′ = 4GDL

∫
Σ
®θ − ®θ′

| ®θ − ®θ′|2
d2θ′. (6.170)

The reduced deflection angle can also be expressed as

®α =
DLS

DS
α̂ =

4GDLSDL

DS

∫
Σ
®θ − ®θ′

| ®θ − ®θ′|2
d2θ′. (6.171)

Note that the constants outside of the integral 4GDLSDL
DS

have a dimension of kg−1m2

(with appropriate insertion of the speed of light c), which is the inverse of the lens
surface mass density. Therefore, we are prompted to define a “critical mass density”
as

Σc =
1

4πG
DS

DLSDL
. (6.172)

The constant π is inserted intentionally. Then, the reduced deflection angle can be
written as

®α =
1
π

∫
Σ

Σc

®θ − ®θ′

| ®θ − ®θ′|2
d2θ′. (6.173)

We can further define “convergence” as

κ =
Σ

Σc
, (6.174)

which allows us to further simplify the expression to

®α =
1
π

∫
κ
®θ − ®θ′

| ®θ − ®θ′|2
d2θ′. (6.175)
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From vector calculus, we know that

∇ ln |®r − ®r′| =
®r − ®r′

|®r − ®r′|2
, (6.176)

so we can rewrite the reduced deflection angle as

®α = ∇

[
1
π

∫
κ ln | ®θ − ®θ′|d2θ′

]
. (6.177)

The term inside the square bracket is now solely a function of the image position
θ, and all the lens information is well-contained in κ. We name the term the lens
potential ψ(®θ). Then, the reduced deflection angle can be written as

®α = ∇ψ(®θ). (6.178)

Many similarities between the lens equation derivations and electrostatic equations
can be drawn. For instance, the electric field ®E is minus the gradient of the electric
potential V , i.e.

®E = −∇V . (6.179)

For the case of lensing, the reduced deflection angle ®α is the gradient of the lens
potential ψ(®θ), i.e.

®α = ∇ψ. (6.180)

The total electric field by a distribution of charges is given by

®E = ke

∫
ρ

|®r − ®r′|3

(
®r − ®r′

)
d3r′. (6.181)

For lensing, the reduced deflection angle due to a distribution of lens masses is given
by

®α =
1
π

∫
κ

| ®θ − ®θ′|2

(
®θ − ®θ′

)
d2θ′. (6.182)

The Gauss’s law for electrostatics is

∇ · ®E = −∇2V =
ρ

ε0
. (6.183)

The Gauss’s law for lensing is

∇ · ®α = ∇2ψ = 2κ. (6.184)

The lens equations have almost the same structure as electrostatics formalism.
Therefore, techniques for solving electrostatics problems can also be applied (with
appropriate modifications) to solve the lens equation.
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6.E Deriving the time delay components induced by gravitational lensing
We derive the lens equation by considering the total time delay induced by gravita-
tional lensing. Gravitational lensing changes the path lengths of the waves traveling
toward us from the source, causing a “geometric time delay”. There is also an
additional “gravitational time delay” (also known as Shapiro time delay) that comes
purely from the metric.

Geometric time delay
Let us first derive the geometric time delay due to the change in path length by
gravitational lensing. We refer to Figure 6.E.1 for the derivation. By construction,

Figure 6.E.1: Deriving the geometric time delay.

we make OA = OS. Then, considering the isosceles triangle ∆OAS, we have

∠OAS = ∠OSA =
π

2
−
®α

2
. (6.185)

Next, we have LI ≈ LS ≈ DLS, so by considering the isosceles triangle ∆LIS, we
have

∠LIS = ∠LSI =
π

2
−
α̂

2
. (6.186)

By considering the exterior angle of triangle ∆OLS, we have

∠OSL = α̂ − ®α. (6.187)

Then

∠ASL =
π

2
−
®α

2
− (α̂ − ®α) =

π

2
+
®α

2
− α̂. (6.188)
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With that, we get

∠ASI =
π

2
−
α̂

2
−

(
π

2
+
®α

2
− α̂

)
=
α̂

2
−
®α

2
. (6.189)

Recall that the reduced deflection angle and the deflection angle are related by

®α =
DLS

DS
α̂. (6.190)

Therefore, we have

∠ASI =
DS

2DLS
®α −
®α

2
=
®α

2

(
DS

DLS
− 1

)
=
®α

2

(
DS − DLS

DLS

)
≈
®α

2
DL

DLS
, (6.191)

where in the last line we use the approximation DS − DLS ≈ DL. Now, AS ≈ DS ®α,
so the additional path length is roughly

∆λ ≈ DS ®α ·
®α

2
DL

DLS
=

DSDL

2DLS
| ®α |2 =

DSDL

2DLS
| ®θ − ®β |2. (6.192)

We need to account for cosmological redshift near the lens, assuming that lensing
happens only around the lens. Therefore, the geometric time delay is given by

τgeo = (1 + zL)∆λ = (1 + zL)
DSDL

2DLS
| ®θ − ®β|2, (6.193)

where zL is the lens redshift.

The gravitational time delay (Shapiro time delay)
Another component for the gravitational lensing time delay comes purely from the
metric, known as the gravitational time delay (Shapiro time delay). We will derive
the Shapiro time delay in this subsection.

The metric of spacetime in which a lens with Newtonian potential Φ is present can
be described by

ds2 ≈ −(1 + 2Φ)dt2 + (1 + 2Φ)−1(dx2 + dy2 + dz2) (6.194)

= −(1 + 2Φ)dt2 + (1 + 2Φ)−1dl2. (6.195)

For photons, the spacetime interval is always 0, so we have

0 = −(1 + 2Φ)dt2 + (1 + 2Φ)−1dl2 (6.196)
dl
dt
= c′ ≈ 1 + 2Φ. (6.197)
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Here, c′ is the speed of the light near the lens. Note that Φ < 0, meaning that light
moves with a lower speed near the lens. Now, the total traveling time of light over
its whole journey is given by∫

dt = t =
∫

dl
1 + 2Φ

≈

∫
(1 − 2Φ) dl = L − 2

∫
Φdl, (6.198)

where L is the time of travel if the speed of light is constant. So, the extra time
required for light to travel the same path near a lens is given by

τgrav = −2(1 + zL)

∫
Φdl, (6.199)

where the factor 1+ zL is inserted to account for cosmological redshift near the lens.
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C h a p t e r 7

THE TARGETED SUBTHRESHOLD SEARCH FOR STRONGLY
LENSED GWS (TESLA)

Note: This Chapter is an adaptation of the short author publication:

Alvin K. Y. Li et al., “Targeted subthreshold search for strongly
lensed gravitational-wave events”, Phys. Rev. D 107.12 (2023), doi:
10.1103/PhysRevD.107.123014

Alvin K .Y. Li is the first author of this paper. He is the main developer of
the “TargetEd Subthreshold Lensing seArch” (TESLA) method to find possible
sub-threshold lensed counterparts to known gravitational waves described in this
manuscript and led the writing of the manuscript.

7.1 Introduction
At the time of writing, the LVK Collaboration published its first full-scale analysis
to search for gravitational-lensing signatures of gravitational waves within data from
the first half of LIGO/Virgo third observing run O3a [23]. They conclude that no
compelling evidence was found for gravitational lensing to take place within O3a.
In the paper, they consider the possibility that strong lensing produces multiple
gravitational waves from the same sources. In one scenario some images are
magnified and hence become identifiable as detections, and the rest are demagnified
and thus are buried within the noise background. Through two independent search
methods, they search for the latter subthreshold lensed counterparts to confirmed
gravitational-wave detections by effectively reducing the noise background while
keeping the targeted foreground constant. This chapter explains in details one of
the methods being used, namely the GstLAL-based TargetEd Subthreshold Lensing
seArch (TESLA) pipeline. We provide an assessment to its performance in searching
for potential subthreshold lensed counterparts to superthreshold gravitational waves.

This chapter is structured as follows 1: In Sec. 7.2, we pose the problem of searching
for potential subthreshold lensed counterparts, and introduce the TESLA pipeline’s

1 The original publication includes an additional section on the overview of how matched-
filtering search pipelines work to search for possible gravitational-wave candidates, using GstLAL
as an example. It has been omitted here, and readers are asked to refer to Chapter 4.
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working principle. In Sec. 7.3, we provide details of a mock data challenge
performed to assess the performance of the TESLA pipeline, and compare its
effectiveness to alternative proposals in solving the problem posed in the previous
section. Finally, Sec. 7.4 summarizes the findings and discusses possible future
work to improve the search sensitivity of the TESLApipeline (at the time of writing).

7.2 The TESLA search method for subthreshold lensed gravitational waves
In this sectionwewill introduce the TargetEd subthreshold Lensing seArch (TESLA)
pipeline aiming to search for potential subthreshold lensed counterparts to confirmed
superthreshold gravitational waves.

The need for a reduced targeted template bank
As discussed in Chapter 4, a large template bank is used for a general search for
gravitational waves to cover a wide parameter space, solely because we have no
prior information about the parameters of the gravitational waves we are searching
for. However, higher number of templates results in higher trials factors and larger
noise background. This will lower the ranking statistics of gravitational wave signal,
particularly those being weaker, and caused them to remain un-identified. Hence,
we have to develop a way to reduce the nuisance noise background while keeping
the targeted foreground constant by reducing the search parameter space, keeping
only a subset of templates from the original full template bank.

Deciding which region of the parameter space should be targeted:
Signal sub-space and noise fluctuations
The task upfront now becomes deciding the parameter space that we should be
searching in to find subthreshold lensed counterparts to a given targeted superthresh-
old event. We argue here that there are two major contributing factors: (1) infor-
mation about the signal sub-space gained from the target superthreshold event, and
(2) noise fluctuations in the data, which can lead to finding a candidate event with a
template whose parameters differ from those of the target event.

Information about the signal sub-space

Recall from Chapter 6 that strongly-lensed gravitational waves from the same source
should have identical waveforms apart from (1) a relative arrival time delay, (2) an
overall amplitude scaling factor, and (3) an additional Morse phase factor. That
said, the potential subthreshold lensed counterparts we are searching for should
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have the same intrinsic parameters (e.g. component masses and spins) as the target
superthreshold event. In principle, if we know precisely the underlying parameters
for the target event, a single template with the exact same parameters would be
ideal to search for its potential subthreshold lensed counterparts. However, the
parameters of a gravitational wave are not exactly known, but instead given by best
estimates from the posterior probability distribution obtained by Bayesian parameter
estimation. Therefore, a good starting point would be to keep templates within the
parameter space enclosed by the 90% credible region of the posterior probability
distribution of the target event’s parameters.

Nevertheless, we argue that the posterior space is insufficient to cover all potential
subthreshold lensed counterparts. Bayesian parameter estimation for gravitational
waves typically assumes that noise in the data is Gaussian and stationary, which is
not true in reality. That said, the posterior probability distribution obtained is for
one noise realization only, i.e. the width of the posterior space does not account
for noise fluctuations in actual data. Should the superthreshold signal be found at
a different time in the data, the resulting posterior probability distribution obtained
from Bayesian parameter estimation can be significantly different from the initial
one. This argument will be demonstrated in later sections of this chapter.

Noise fluctuations in the data

Should noise in actual data be stationary and Gaussian, the posterior space of the
target event would be sufficient to serve as a search sub-space to look for potential
subthreshold lensed counterparts. However, noise fluctuations in actual data add
complexity, since they can result in the subthreshold signal being found with a
template that falls outside this parameter sub-space. Hence, we will need to also
consider the effects of noise fluctuations in actual data when deciding which region
of the parameter space should be targeted. We do this by injecting subthreshold
signals into noisy detector data and identify all the templates that can recover them;
this is described in some details below.

An injection campaign accounting for both factors
Strongly-lensed gravitational waves from the same source should have exactly the
same waveform, differing only by an overall scaling factor. Hence we can use the
posterior samples obtained by Bayesian parameter estimation of the target event
to generate possible simulated lensed injections that have similar parameters (i.e.
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component masses and spins) and sky location as the target event. To mimic the
effect of lensing de-magnification, we reduce the amplitude and hence the SNRs
of the injections. This can be done by increasing the source effective distance, as
the optimal SNR scales inversely with the source’s effective distance. In detail, we
take the posterior samples of the target event and rank them in decreasing order of
likelihood. Within a given injection period, we generate, for each posterior sample,
one injection with the original optimal SNR, and nine 2 additional weaker injections
with smaller optimal SNRs by increasing their effective distances, requiring that
their SNRs in each detector have to be ≥ 4 to ensure they can be registered as a
trigger during the matched-filtering process in the search. These simulated lensed
injections represent possible subthreshold lensed counterparts to the superthreshold
target event. We then inject these simulated signals into actual data, and useGstLAL
to recover 3 them with a general template bank. Because of noise fluctuations, some
injections will be found by templates that have parameters significantly different
from those within the posterior space of the target event. In the end, we keep
only templates that can find these injections, and use them to construct a reduced
targeted template bank to search for possible subthreshold lensed counterparts to
the target event. Performing the injection campaign allows us to approximate a
near-to-optimal targeted template bank taking into account both the information of
the signal subspace we gained from the target event (by using the posterior samples
to generate simulated lensed injections) and noise fluctuations in actual data. This
ensures templates in the reduced bank can identify any potential subthreshold lensed
signals while effectively reducing the noise background.

A targeted search to dig up possible lensed candidates
Once a targeted bank is constructed, we again use GstLAL to search through all
possible data with the targeted bank to look for potential subthreshold lensed coun-
terparts to the target superthreshold event. As explained in Chapter 4, GstLAL
outputs a list of candidate events ranked by their assigned ranking statistics, in-
cluding FARs and lnL. It is important to remind readers that the assigned FARs
to the candidate events here are not measures of how likely they are to be lensed
counterparts to the target event, but rather, as in the full search, we use the FAR to
distinguish noise events (false alarms) from real astrophysical signals, whether or

2 The number nine is arbitrarily chosen. In principle, one can generate as many injections as one
wishes.

3 An injection is considered “recovered” if the corresponding trigger has a False-Alarm-Rate
(FAR) < 1/30 days.
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not they are lensed counterparts to a target event. In this case, we should use the
ranking statistics assigned as a priority ranking for follow-up analysis to decide how
likely each candidate event is a lensed counterpart to the target event. The details
for the follow-up analysis are discussed in [233, 235] and are out of this paper’s
scope. Readers are reminded that the sole purpose of the TESLA search pipeline is
to reduce the nuisance noise background effectively, and in turn up ranking possible
subthreshold lensed counterparts to a target superthreshold event, assuming it is
strongly lensed. It does not serve the purpose of estimating how likely the found
potential candidates are indeed lensed counterparts to the target event.

Figure 7.2.1 summarizes the major steps in the TESLA search pipeline discussed in
this section.

7.3 Simulation campaign
We perform a simulation campaign to test the effectiveness of the proposed TESLA
pipeline to search for potential subthreshold lensed counterparts to a target su-
perthreshold gravitational wave, assuming it is strongly lensed. Figure 7.3.1 out-
lines the flow of the simulation campaign. We first prepare a mock data stream
with a set of injected lensed signals, one being superthreshold and the other being
subthreshold. A general search is then performed using GstLALwith the usual
large general template bank 4. The general search is expected to recover the su-
perthreshold signal. Bayesian parameter estimation is then performed for the found
superthreshold signal, which outputs a set of posterior samples. Then, we apply the
TESLA search pipeline to perform an injection campaign and construct a targeted
bank to search for the potential subthreshold lensed counterparts to the target event.
Finally, we perform another search with GstLAL 5 using the targeted bank to see if
we can uprank the remaining subthreshold lensed signal that is injected. It has been
suggested that extreme template banks 6, including

(1) a single template bank with the template parameters being those of the poste-
rior sample for the target event with the maximum posterior probability,

4 The general template bank is composed of several sub-banks targeted different systems. The
minimal match of the sub-banks are in general ≥ 97%, with certain banks having minimal match
≥ 99%, see Table II in [21].

5 A re-filtering is required only because (a) PE posteriors correspond to templates that are not in
the full template bank, and (b) the results of the search with the full template bank discarded most
subthreshold triggers, requiring us to re-run the search pipeline.

6 Here, I would like to thank the various reviewers of the short author publications, whom,
through the years of review process, help us to strengthen our publication before it was finally
published.
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Figure 7.2.1: Workflow of the targeted subthreshold search method (TESLA).

(2) a PE template bank constructed by only keeping templates that lie within the
90% credible region of the posterior probability distribution for the target
event, and
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Figure 7.3.1: The analysis flow of the simulation campaign.

(3) a random template bank constructed by randomly selecting templates from
the full bank,

will have higher efficiencies than the targeted bank generated with the proposed
TESLA pipeline. We therefore perform extra searches with GstLALusing the
proposed banks and compare their performance.

Mock data generation and information
Figure 7.3.2 summarizes the basic information of the mock data stream used for this
simulation campaign. For LIGO Hanford, LIGO Livingston and Virgo detector,
we generate a ∼ 28-hour-long data stream with Gaussian noise recolored with O3a
characteristic power spectral densities (PSDs). We assume no detector downtime
7, and no times are vetoed. A pair of strongly-lensed gravitational waves simulated
following [364] is generated using the SEOBNRv4pseudoFourPN [69] waveform
approximant, and is injected into the mock data. The superthreshold signal and
subthreshold signal are injected at times shown in figure 7.3.2. Details about the
source parameters of the gravitational-wave signal pair are listed in table 7.3.1.
We then apply Bilby [49, 305], a Bayesian inference library for gravitational-wave
astronomy, to perform parameter estimation (PE) for the superthreshold signal,

7 A detector is considered “down” if it is not in observing mode.
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Figure 7.3.2: Information about the mock data used for the simulation campaign.

Properties Superthreshold Subthreshold
signal signal

GPS time 1325932493 1326029051
Magnification µi 1.503 −0.595
Distance (Mpc) 2842.00 4518.21
Image type I II

Primary mass mdet
1 42.0M�

Secondary mass mdet
2 39.9M�

Dimensionless spins χ1/2,x = χ1/2,y = 0 ,
χ1,z = 0.488, χ2,z = −0.245

Right ascension α 2.939
Declination δ 0.143
Inclination ι 2.720
Polarization Ψ 4.093

Source redshift zsource 0.579
Lens redshift zlens 0.245

Table 7.3.1: Information of the injected lensed gravitational-wave pair for the
simulation campaign. All properties reported here are measured in the detector
frame.

which outputs a set of posterior samples required for applying the TESLA search
pipeline.

Applying the TESLA method
Next, we apply the TESLA search pipeline to perform an injection campaign to
construct a reduced targeted template bank to search for the remaining subthreshold
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lensed counterpart to the superthreshold target event. We generated 5868 simu-
lated lensed injections using the posterior samples obtained from the PE of the
superthreshold lensed event. We inject these simulated signals into the mock data
and perform another search using GstLAL with the general template bank and try
recovering them. 552 templates are rung up by the recovered injections 8, and they
are used to construct the targeted template bank (see figure 7.3.3). As we can see,
even when the noise is almost stationary and Gaussian, subthreshold lensed signals
can still be found by templates with parameters very different from those within the
posterior space of the superthreshold target event. This demonstrates our earlier
argument that the posterior space of the target event itself is insufficient to cover
all possible subthreshold lensed counterparts. Finally, we perform another search
using GstLAL with the targeted template bank over the same period of mock data
to try recovering the remaining injected subthreshold lensed signal. Note that we
also included the lensed injection set that was used to determine the templates that
we are keeping in the reduced template bank in the search for performance analysis
in later sections of the Chapter (see section 7.3). Table 7.3.2 summarizes the search
results for the two injected signals using the TESLA targeted template bank. We can

Search results Superthreshold Subthreshold
signal signal

GPS time 1325932493 1326029051
Rank 1 3

FAR (Hz) 5.37 × 10−21 4.27 × 10−5

lnL 48.63 12.13
Network SNR ρnetwork 12.20 7.60

Table 7.3.2: Results of the targeted search of the simulation campaign for the two
injected lensed signals.

see that (1) The FAR of the subthreshold signal has been reduced by two orders of
magnitude, with the log likelihood ratio lnL and network SNR ρnetwork increased.
That is, the ranking statistics of the subthreshold signal have been improved. (2) The
ranking of the subthreshold signal improves significantly from its previous position
of > 100 to the current 3. This means the TESLA search pipeline has successfully
upranked the subthreshold signal, and hence made it easier to be identified as a
possible gravitational wave for further analysis. We admit that the new FAR of the
subthreshold signal still does not pass the usual FAR threshold of 1 in 30 days. This

8 Note that this does not mean only 552 injections are recovered. The same template can be used
to recover multiple injections. See Table 7.3.6 for the actual number of injections recovered.
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Figure 7.3.3: The templates in the original and targeted bank plotted in dark blue and
orange respectively on them1-m2 plane. The best-match template forMGW220111a
is indicated by a red star, and the true parameters of MGW220111a is represented
by a green diamond. As we can see, even when the noise in the mock data is
almost stationary and Gaussian, subthreshold lensed signals can still be found by
templates with parameters very different from those within the posterior space of the
superthreshold target event. This demonstrates that the posterior space of the target
event itself is insufficient to cover all possible subthreshold lensed counterparts.

is primarily due to the observing time being too short. However, we note that the
FARs assigned to each candidate here should only be treated as priority ranking for
follow-up analysis to determine whether or not (1) they are gravitational waves, and
(2) they are lensed counterparts of the target event. The increase in ranking of the
subthreshold signal from > 100 to 3 demonstrates that the TESLA search pipeline
is effective in reducing unwanted noise background while conserving the desired
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foreground, fulfilling its task to uprank potential subthreshold lensed counterparts
for a targeted superthreshold event.

Performance comparison with other suggested alternatives
Suggestions have been made that (1) a single template bank, (2) a PE template bank
or (3) a random template bank will be more efficient than the targeted template
bank constructed with the proposed TESLA pipeline. Here we conduct additional
searches using the proposed alternative banks to compare their performance. A
random template bank is generated by randomly selecting the same number of
templates (i.e. 552 templates) as the targeted template bank. A PE template
bank with 81 templates is generated by keeping only templates that lie within the
90% credible region of the posterior probability distribution obtained by Bayesian
parameter estimation for the target event. A single template bank in principle should
only contain one template with parameters identical to those of the posterior sample
with maximum posterior of the target superthreshold event 9. Figures 7.3.4, 7.3.5
and 7.3.6 show the distribution of templates in the “single-template” bank, PE bank
and random bank respectively.

Recovering the subthreshold lensed signal

Three additional searches using GstLAL are performed over the same period of
mock data as the injection run with the random template bank, the PE template
bank and “single-template” bank respectively, in order to recover the subthreshold
injected signal. Tables 7.3.3, 7.3.4 and 7.3.5 summarize the search results for the
two injected signals.

Search results Superthreshold Subthreshold
signal signal

GPS time 1325932493 1326029051
Rank 1 > 100

FAR (Hz) 3.07 × 10−14 1.54 × 10−2

lnL 28.0 −2.14
Network SNR ρnetwork 10.45 7.21

Table 7.3.3: Results of the search for the two injected lensed signals using the
random template bank.

9 For practical reasons, we use a bank with 100 templates having component masses within
±0.1M� from those of the posterior sample with maximum posterior to mimic the single template
bank.
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Figure 7.3.4: The templates in the original and “single-template” bank plotted in
dark blue and orange respectively on the m1-m2 plane. The “single-template” bank
is a bank with 100 templates having component masses within ±0.1M� from those
of the posterior sample with maximum posterior to mimic the single template bank.

Search results Superthreshold Subthreshold
signal signal

GPS time 1325932493 1326029051
Rank 1 7

FAR (Hz) 3.61 × 10−5 9.05 × 10−5

lnL 48.13 12.69
Network SNR ρnetwork 12.53 7.663

Table 7.3.4: Results of the search for the two injected lensed signals using the PE
template bank.
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Figure 7.3.5: The templates in the original and PE bank, plotted in dark blue and
orange respectively on them1-m2 plane. The best-match template forMGW220111a
is indicated by a red star, and the true parameters of MGW220111a are represented
by a green diamond. The purple curve represents the boundary to the 90% credible
region of the posterior probability distribution for MGW220111a. The PE bank is
generated by keeping only templates that lie within the 90% credible region of the
posterior probability distribution, containing only 81 templates.

From the results, we see that (1) the “single-template” bank fails to even register the
subthreshold signal as a trigger in the first place during thematched-filtering process,
(2) the PE template bank successfully upranks the subthreshold signal to a rank 7
candidate and improves its ranking statistics, but its performance is not as good as
compared to that using the TESLA search pipeline, and (3) the random template
bank fails to improve the ranking and the ranking statistics of the subthreshold event.
This means that the targeted foreground is affected by the reduction in the number
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Figure 7.3.6: The templates in the original and random bank plotted in dark blue and
orange respectively on them1-m2 plane. The best-match template forMGW220111a
is indicated by a red star, and the true parameters of MGW220111a are represented
by a green diamond. The random bank contains the same number of templates, i.e.
552 templates, as the targeted template bank, and they are randomly selected from
the original template bank.

of templates for the random template bank. It is therefore evident that the random
bank is not suitable to search for potential subthreshold lensed gravitational waves.
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Search results Superthreshold Subthreshold
signal signal

GPS time 1325932493 ...
Rank 1 ...

FAR (Hz) 6.11 × 10−6 ...
lnL 24.11 ...

Network SNR ρnetwork 12.49 ...

Table 7.3.5: Results of the search for the two injected lensed signals using the
“single-template” bank.

Simulated lensed injections recovery

To further compare the performance of the banks, we analyse the change in number
of lensed injections recovered 10 using the four proposed banks as compared to using
the general template bank. Table 7.3.6 summarizes the findings.

Injections General TESLA Random PE Single
Total 5868 5868 5868 5868 5868
Found 1793 1959 402 299 1076
Missed 4075 3909 5466 5569 4792

Found % change - +9.26% −77.5% −80.3% −40.0%

Table 7.3.6: Number of injections found and missed during the search of mock data
using the general template bank, TESLA targeted template bank, random template
bank, PE template bank and “single-template” bank respectively.

The targeted template bank constructed using the TESLA search pipeline succeeds in
recovering more lensed subthreshold injections than the other banks. The “single-
template” bank, the PE template bank and the random template bank miss more
lensed subthreshold injections. The random template bank is expected not to give
a satisfactory performance in recovering the lensed subthreshold injections. While
the lensed subthreshold injections are generated using the exact same parameters as
the posterior samples of the target event (i.e. the injections should all have similar
parameters as to the templates in the PE template bank), the PE template bank
misses even more injections as compared to using the general template bank 11.
This again demonstrates our argument that constructing the targeted template bank

10 As before, an injection is considered “recovered” if the corresponding trigger has a FAR < 1/30
days.

11 In fact, it misses even more injections than the random bank, but this should not be alarming.
Given that the injections are subthreshold, they are more likely to be recovered by templates with
very different parameters than their true parameters. The random bank, while being completely
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solely by considering the posterior signal sub-space of the superthreshold target
event is insufficient. In this simulation campaign, we are simply fortunate that the
PE bank can recover the injected subthreshold lensed signal. Should the injected
subthreshold signal be even weaker, or should it be injected at a time at which noise
is very different from that around the superthreshold signal, the PE template bank
is more likely to miss it. On the other hand, the targeted template bank created
using the TESLA pipeline is more likely to recover it since the bank is constructed
by considering both information about the signal sub-space gained from the target
event as well as noise fluctuations in the data.

Sensitive range at different FAR threshold

Finally, we use the 5868 lensed subthreshold injections 12 to evaluate the sensitive
range 13 at different combined FAR threshold for each template bank. Figure 7.3.7
shows the percentage changes in sensitive range v.s. FAR curves obtained using
the alternative banks as compared to that using the full template bank for lensed
subthreshold signals that are similar to the target superthreshold event. We can
see that the percentage-change curve representing results using the targeted bank
constructed by the TESLA search pipeline is above that of the full template bank,
showing improvement in terms of sensitivity towards MGW220111a-alike (lensed)
subthreshold signals. Meanwhile, the same curves for the random bank, the PE bank
and the “single-template bank” are below that of the full template bank, showing
that the sensitivity towards MGW220111a-alike (lensed) signals is worsened. This
further demonstrates that the targeted template bank created using the TESLA search
pipeline has the best performance among the four banks to search for potential
subthreshold lensed gravitational waves for a target superthreshold event.

Summary of results

To sum up the results presented above, in this simulation campaign we investigated
four proposed banks to search for possible subthreshold lensed counterparts of a
given superthreshold gravitational wave. Three of the cases are found to be inferior

random, covers a much wider parameter space than the PE bank, and hence have a higher chance in
recovering the subthreshold injections.

12 These are the same injections used in the simulation campaign to create the reduced template
bank.

13 The sensitive range is the distance out to which we may identify gravitational waves averaged
over relevant parameters including sky location and binary orientation. Note that in this analysis we
assumed the injections are not lensed, i.e. they have magnification µ = 1.
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Figure 7.3.7: (Top panel) The sensitive range v.s. FAR for MGW220111a-alike
signals using the full template bank (black), targeted template bank (orange), “single-
template” bank (blue), PE template bank (green) and random template bank (red)
respectively. The shaded band for each curves represent the corresponding 1-sigma
region. (Bottom panel) The corresponding percentage changes in sensitive range
v.s. FAR for the different banks. The percentage-change curve (orange) representing
results using the targeted bank constructed by the TESLA search pipeline is above
that of the full template bank, showing improvement in terms of sensitivity towards
MGW220111a-alike (lensed) subthreshold signals. The vertical striped line shows
the typical FAR threshold for triggers below which we consider as possible lensed
candidates.

in performance compared with the TESLA bank, namely the single-template bank,
the PE template bank and the random template bank. The results show that none
of the three alternative cases can outperform an intermediate template bank created
based on the TESLA pipeline in terms of search sensitivity and effectiveness.

It should be noted that in this simulation campaign, we considered the case where
lensing creates a pair of repeated gravitational-wave signals from the same source,
separated by roughly a day ( 1.11 days). In practice, the relative time delay between
repeated signals can range from minutes to months for galaxy lenses. We will need
to perform the injection campaign over a longer time range with a larger number of
injections. This will result in an increase in size for the reduced template bank, and
may affect the performance of the reduced template bank. The ranking statistics,



133

in particular the FAR of the triggers, will also be affected based on the number
of templates we have in the reduced template bank. Chapter 11 discuss some of
the possible work to fine tune the selection procedure for templates included in the
targeted template bank in order to find the optimal balance between coverage and
sensitivity.

7.4 Concluding Remarks
At the time of writing, the LVK collaboration has just published the first full-
scale analysis to search for lensing signatures of gravitational waves within the first
half of LIGO/Virgo third observing run O3a [23], and concluded that there is not
yet any compelling evidence for gravitational lensing of gravitational waves. One
featured analysis in the paper explores the possibility of strong lensing producing
magnified superthreshold gravitational-wave signals, and de-magnified subthreshold
copies that have insufficient significance and remain un-identified as detections.
Two independent search methods were applied to search for the latter potential
subthreshold lensed signals, one being the GstLAL-based TargetEd subthreshold
Lensing seArch (TESLA) pipeline.

In a general search for gravitational waves, a large template bank covering a wide
parameter space is used since we have no prior information regarding the param-
eters of gravitational waves we are searching for. The large number of templates
used contributes a high trials factors. This may bury potential subthreshold (lensed)
gravitational waves in the huge noise background. To search for possible subthresh-
old lensed counterparts to superthreshold confirmed gravitational waves, we need
to reduce the noise background while keeping the targeted foreground constant.
In other words, we want to lower the noise background by tactically focusing a
particular region in the parameter subspace, while keeping the targeted foreground
constant, and hence upranking any potential subthreshold lensed candidates to the
superthreshold target events.

In this Chapter we explain the methodology of the TESLA pipeline in detail, and
demonstrate that the TESLA pipeline can efficiently search for possible subthreshold
lensed counterparts to confirmed superthreshold gravitational-wave detections.

TheTESLApipeline fulfils the task by conducting an injection campaign. It prepares
simulated lensed injections based on posterior samples obtained from Bayesian
parameter estimation of the superthreshold target event, such that they have similar
intrinsic parameters as the target event, but with varying effective distances and
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hence weaker amplitudes to mimic the de-magnifying effect caused by gravitational
lensing. These injections are then injected into actual data 14 and a GstLAL search
is performed using the general template bank to recover these injections. Templates
that can find the injections are used to construct a targeted template bank, which
is then used to perform another GstLAL search to look for possible subthreshold
lensed counterparts to the target event, should it be strongly lensed. We argue that
the TESLA search pipeline can generate a template bank that performs better than
alternatives to search for these potential subthreshold signals, as it accounts for both
information about the signal-subspace gained from the target event, as well as noise
fluctuations in actual data.

To assess the performance of the TESLA search pipeline, we conducted a simulation
campaign in which we simulated LHO, LLO, and Virgo data streams with Gaussian
noise recolored with O3a representative power spectral densities (PSDs) and a pair
of lensed signals, one being superthreshold and the other being subthreshold. We
first perform a GstLAL search using the general template bank to recover the
superthreshold signal, and perform Bayesian parameter estimation to generate a set
of posterior samples. Then, we use the TESLA pipeline and try to recover the
remaining subthreshold lensed signal from the mock data. Our results show that
the TESLA pipeline can effectively uprank the subthreshold signal, improving the
probability that it will be identified as a gravitational wave, and with further analysis,
a lensed counterpart to the target superthreshold event.

We also compare the performance of the targeted template bank constructed with the
TESLAsearch pipeline to suggested alternative template banks: (1) a single template
bank with the template parameters being those of the posterior sample for the target
event with the maximum posterior probability, (2) a PE template bank constructed
by keeping only templates from the general bank that lie within the 90% credible
region of the posterior space for the target event, and (3) a random template bank
constructed by randomly selecting templates from the general template bank. We
show, by considering their performance in (1) recovering the injected subthreshold
lensed signal, (2) recovering the simulated lensed injections and (3) their sensitive
range for gravitational waves that are similar to the target events, that the targeted
template bank constructed using the TESLA search pipeline outperforms the other
three alternative banks. In fact, the results show that one would not expect additional
improvement when further narrowing the template bank.

14 Note that the results in this paper make use of Gaussian simulated data, but for the actual
subthreshold search, these injections are made into actual data.



135

The search sensitivity of the TESLA search pipeline can be further improved. For
instance, since we are looking for lensed counterparts of targeted events, using the
target’s sky location, we should be able to set a consistent range for the difference in
arrival time and phase between participating detectors for the lensed counterparts.
This will be discussed in a future paper under development. Also, the selection
procedure for templates included in the targeted template bank may require further
tuning to find the optimal balance between coverage and sensitivity.

This method has been applied to subsequent searches for subthreshold lensed events,
in LVK papers [23, 32].
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C h a p t e r 8

SEARCH FOR LENSING SIGNATURES IN THE FIRST HALF
OF LVK’S THIRD OBSERVING RUN

Note: This Chapter is an adaptation of the LIGO-Virgo-KAGRA collaboration-wide
publication:

LIGO Scientific and Virgo Collaborations, R. Abbott, ...(723 au-
thors)..., Alvin K. Y. Li, ...(655 authors)..., “Search for Lensing Sig-
natures in the Gravitational-Wave Observations from the First Half of
LIGO–Virgo’s Third Observing Run”, Astrophys. J. 923.1 (2021), doi:
10.3847/1538-4357/ac23db

Alvin K. Y. Li led the analysis for the search for sub-threshold lensed gravita-
tional waves and edited the corresponding section in the LIGO-Virgo-KAGRA
collobration-wide paper (Section 5.3). The other related sections in this chapter are
contributions from co-authors.

8.1 Introduction
In this chapter we perform a comprehensive lensing analysis of data from the first
half of the third LIGO–Virgo observing run, called O3a for short, focusing on
compact binary coalescence (CBC) signals. We begin by outlining the expected
rate of strongly lensed events. Strong lensing is rare, but magnified signals enable
us to probe a larger comoving volume, thus potentially giving us access to more
sources [120, 224, 274, 281, 302, 308, 323–325]. We forecast the lensed event rates
using standard lens and black hole population models (Sec. 8.3). These expected
rates are subject to some astrophysical uncertainty but are vital to interpreting our
search results in later sections.

The rate of lensing can also be inferred from the stochastic GW background
(SGWB) [81, 82, 266]. Thus, we use the non-observation of strong lensing and
the stochastic background to constrain the binary black hole (BBH) merger-rate
density and the rate of lensing at high redshifts.

Since lensing magnification biases the redshift z estimation, the inferred gravi-
tational wave (GW) luminosity distance and source mass measurements (source
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frame masses differ from detector frame masses by a factor of (1 + z)−1) can also
be biased. This could lead to observations of apparently high-mass (or low-mass,
when de-magnified) binaries [74, 75, 120, 186, 281]. Therefore, we analyze several
LIGO–Virgo detections with unusually high masses under the alternative interpreta-
tion that they are lensed signals from lower-mass sources which have beenmagnified
(Sec. 8.4).

We then move on to search for signatures of lensing-induced multiple images, which
should appear as repeated similar signals, magnified and with waveform differences
determined by the image type [119, 154], separated in time by minutes to months
(or even years). Consequently, if an event pair is strongly lensed, we expect to infer
consistent parameters for both events [186, 188].

We search for thesemultiple images by first comparing the posterior overlap between
pairs of events occurring during the O3a period as reported in [21] (Sec. 8.5). After
identifying a list of candidates from the posterior-overlap analysis, we follow these up
with more computationally expensive but more accurate joint-parameter estimation
(PE) procedures (Sec. 8.5). Next, we perform a targeted search for previously
undetected counterpart images of known events in Sec. 8.5, images that could have
fallen below the threshold of previous wide-parameter space CBC searches [as
discussed in 122, 223, 247]. Finally, we search for microlensing induced by point-
mass lenses in the intermediate and low mass range, including wave-optics effects
(Sec. 8.6).

Several searches for GW lensing signatures have already been performed in the
data from the first two observing runs O1 and O2 [122, 186, 223, 233, 247, 288],
including strong lensing and microlensing effects. We will discuss these previous
studies in the appropriate sections. Given the growing interest in GW lensing and
the existing forecasts, an analysis of the most recent GW observations for lensing
effects is now timely.

Results of all analyses in this paper and associated data products can be found
inLIGOScientificCollaboration andVirgoCollaboration [228]. Gravitational-wave
strain data and posterior samples for all events from GWTC-2 are available [181]
from the Gravitational Wave Open Science Center [34].

8.2 Data and events considered
The analyses presented here use data taken during O3a by the Advanced LIGO [1]
and Advanced Virgo [36] detectors. O3a extended from 2019 April 1 to 2019
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October 1. Various instrumental upgrades have led to more sensitive data, with
median binary neutron star (BNS) inspiral ranges [43] increased by a factor of 1.64
in LIGOHanford, 1.53 in LIGO Livingston, and 1.73 in Virgo compared to O2 [21].
The duty factor for at least one detector being online was 97%; for any two detectors
being online at the same time it was 82%; and for all three detectors together it was
45%. Further details regarding instrument performance and data quality for O3a are
available in Abbott et al. [21], Buikema et al. [79].

The LIGO and Virgo detectors used a photon recoil based calibration [83, 207, 357]
resulting in a complex-valued, frequency-dependent detector response with typical
errors in magnitude of 7% and 4 degrees in phase [37, 335] in the calibrated O3a
strain data.

Transient noise sources, referred to as glitches, contaminate the data and can affect
the confidence of candidate detections. Times affected by glitches are identified so
that searches for GW events can exclude (veto) these periods of poor data quality [3,
15, 131, 163, 275]. In addition, several known noise sources are subtracted from
the data using information from witness auxiliary sensors [128, 145].

Candidate events, including those reported in Abbott et al. [21] and the new can-
didates found by the searches for sub-threshold counterpart images in Sec. 8.5 of
this paper, have undergone a validation process to evaluate if instrumental artifacts
could affect the analysis; this process is described in detail in Sec. 5.5 of [131].
This process can also identify data quality issues that need further mitigation for
individual events, such as subtraction of glitches [114] and non-stationary noise
couplings [352], before executing PE algorithms. See Table V of Abbott et al. [21]
for the list of events requiring such mitigation.

The GWTC-2 catalog [21] contains 39 events from O3a (in addition to the 11
previous events from O1 and O2) with a false-alarm rate (FAR) below two per year,
with an expected rate of false alarms from detector noise less than 10% [21]. We
neglect the potential contamination in this analysis. These events were identified
by three search pipelines: one minimally modeled transient search cWB [212–
214, 216, 217] and the two matched-filter searches GstLAL [183, 250, 309] and
PyCBC [42, 43, 123, 276, 351]. Their parameters were estimated through Bayesian
inference using the LALInference [356] and Bilby [49, 305, 326] packages. Both
the matched-filter searches and PE use a variety of CBC waveform models which
generally combine knowledge from post-Newtonian theory, the effective-one-body
formalism and numerical relativity [for general introductions to these approaches,
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see 61, 125, 287, 314, and references therein]. The analyses in this paper rely on
the same methods, and the specific waveform models and analysis packages used
are described in each section.

Most of the 39 events from O3a are most probably BBHs, while three (GW190425,
GW190426_152155, and GW190814) have component masses below 3M� [12, 19,
21], thus potentially containing a neutron star. We consider these 39 events in
most of the analyses in this paper, except in the magnification analysis (Sec. 8.4),
which concerns only six of the more unusual events, and the microlensing analysis
(Sec. 8.6), which focuses on the 36 clear BBH events only.

Specifically, we use the following input data sets for each analysis. Themagnification
analysis in Sec. 8.4 and posterior-overlap analysis in Sec. 8.5 start from the Bayesian
inference posterior samples released with GWTC-2 [181]. The joint-PE analyses
in Sec. 8.5 and microlensing analysis in Sec. 8.6 reanalyze the strain data in short
segments around the event times, available from the same data release, with data
selection and noise mitigation choices matching those of the PE analyses in Abbott
et al. [21]. In addition, the searches for sub-threshold counterpart images in Sec. 8.5
cover the whole O3a strain data set, using the same data quality veto choices as
in Abbott et al. [21] but a strain data set consistent with the PE analyses: the final
calibration version of LIGO data [335] with additional noise subtraction [352].

8.3 Lensing statistics
In this section, we first forecast the number of detectable strongly lensed events
(Sec. 8.3). Then, we infer upper limits on the rate of strongly lensed events using
two different methods; the first uses only the non-detection of resolvable strongly
lensed BBH events (Sec. 9.5), while the second leverages additionally the non-
observation of the SGWB (Sec. 8.3) [20, 84]. Since the background would originate
from higher redshifts, this second method complements the first method.

Throughout this section, we model the mass distribution of BBHs following the
results for the Power Law + Peak model of [22]. We consider two distinct models
of the BBH merger rate density. Model A brackets most of the population synthesis
results [65, 148, 273, 311] corresponding to Population I and II stars while Model
B assumes the Madau–Dickinson ansatz [239] where the rate peaks at a particular
redshift. For consistency with previous analyses [e.g., 20], we take the Hubble
constant from Planck 2015 observations to be H0 = 67.9 km s−1 Mpc−1 [41].
Detailed discussion on both models and their respective parametrization is given
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in Appendix 8.A. The obtained rates are subject to uncertainty because of their
dependence on the merger rate density, which is model-dependent and only partially
constrained. They are nevertheless vital to interpreting our search results in later
sections (see Sec. 8.5).

Strong lensing rate
We predict the rate of lensing using the standard methods outlined in the litera-
ture [224, 267, 274, 281, 364, 372], at galaxy and galaxy-cluster lens mass scales.
To model the lens population, we need to choose a density profile and a mass func-
tion. We adopt the singular isothermal sphere (SIS) density profile for both galaxies
and clusters. Moreover, we use the velocity dispersion function (VDF) from the
Sloan Digital Sky Survey [SDSS; 102] for galaxies and the halo mass function from
Tinker et al. [342] for clusters which have been used in other lensing studies as well
[e.g., 282, 302]. The SIS profile can well describe galaxies. However, the mass
distribution of clusters tends to be more complicated. Nevertheless, [302] have
demonstrated that the SIS model can reproduce the lensing rate predictions from
a study of numerically simulated cluster lenses. Thus, we adopt the same model.
Under the SISmodel, we obtain two images with different magnifications and arrival
times. The rate of strong lensing is

Rlens =

∫
dN(Mh, zl)

dMh

dDc

dzl

Rm(zm)

1 + zm

dVc

dzm
σ(Mh, zl, zm, ρ, ρc)

× p(ρ|zm) dρ dzm dzl dMh ,

(8.1)

where dN(Mh, zl)/dMh is the differential comoving number density of lensing halos
in a halo mass shell at lens redshift zl, Dc and Vc are the comoving distance and
volume, respectively, at a given redshift, Rm(zm) is the total comoving merger rate
density at redshift zm, (1+zm) accounts for the cosmological time dilation, p(ρ | zm)

is the distribution of signal-to-noise ratio (SNR) at a given redshift, and σ is the
lensing cross-section (Appendix 8.A). Throughout this section and in Sec. 8.3 we
choose a network SNR threshold ρc = 8 as a point estimator of the detectability of
GW signals. We find it to be consistent with the search results in Abbott et al. [21]
and in Sec. 8.5, and we estimate its impact to be subdominant with respect to other
source of uncertainties.

In Table 8.3.1, we show our estimates of the relative rate of lensing assuming
different models (Models A and B) for the merger rate density. The results are
shown separately for galaxy-scale (G) and cluster-scale (C) lenses. Furthermore,
these rates are calculated for events that are doubly lensed and for two cases: when
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Table 8.3.1: Expected fractional rates of observable lensed double events at current
LIGO–Virgo sensitivity.

Merger Rate Density Galaxies (×10−4) Galaxy Clusters (×10−4)

Model RD RS RD RS

A 0.9–4.4 2.9–9.5 0.4–1.8 1.4–4.1
B 1.0–23.5 2.5–45.2 0.7–10.9 1.6–19.9

This table lists the relative rates of lensed double events expected to be observed by
LIGO–Virgo at the current sensitivity where both of the lensed events are detected
(RD) and only one of the lensed events is detected (RS) above the SNR threshold. For
Model A, the range corresponds to the bracketing function (see Appendix 8.A) and
forModel B, the rates encompass a 90 per cent credible interval. We show the rate of
lensing by galaxies (σvd = 10–300 km s−1) and galaxy clusters (log10(Mhalo/M�) ∼
14–16) separately. Besides their usage for forecasts, the fraction of lensed events
allows us to interpret the prior probability of the strong lensing hypothesis, which
we require to identify lensed events confidently.

only a single event (i.e., the brighter one) is detected (S), andwhen both of the doubly
lensed events are detected (D). The expected fractional rate of lensing (lensed to
unlensed rate), which will be necessary for the multi-image analyses (Sec. 8.5),
ranges from O(10−3–10−4), depending on the merger rate density assumed. We
estimate the fractional rate of observed double (single) events for galaxy-scale lenses
in the range 0.9–4.4 (2.9–9.5) when using Model A for the merger rate density.
Similarly, for cluster-scale lenses, the fractional rate is estimated to be in the range
of 0.4–1.8 (1.4–4.1) much rarer than the rates at galaxy scales. These estimates
suggest that observing a lensed double image is unlikely at the current sensitivity
of the LIGO–Virgo network of detectors. Nevertheless, at design sensitivity and
with future upgrades, standard forecasts suggest that the possibility of observing
such events might become significant [224, 267, 274, 281, 364, 372]. Our lensing
rates are consistent with those predicted for singular isothermal ellipsoid models
[e.g., 281, 364, 372]. The main uncertainty in the rate estimates derives from the
uncertainties in the merger-rate density at high redshift.

Depending on the specific distribution of lenses and the source population, the
time delays between images can change. Models favoring galaxy lensing produce
minutes to perhaps months of time delay, while galaxy cluster lensing can produce
time delays up to even years. However, the time delay distribution for galaxy cluster
lenses is more difficult to model accurately, owing to the more complex lensing
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morphology.

Since the merger rate density at high redshift is observationally constrained only
by the absence of the SGWB, these rates are subject to uncertainty. Nevertheless,
standard theoretical models will still produce useful forecasts. We will later refer to
these rate estimates in the relevant sections (see Sec. 8.5).

Implications from the non-observation of strongly lensed events
Motivated by the absence of evidence for strong lensing (Sec. 8.5), we assume that
no strong lensing has occurred, in order to constrain the merger rate density at high
redshift. We use the standard constraints on the merger rate density at low redshift
from the LIGO–Virgo population studies [22]. We assume the Madau–Dickinson
form for the merger rate density (Model B). This model’s free parameters include
the local merger rate density, the merger rate density peak, and the power-law slope.
The non-observation of lensing constrains the merger-rate density at high redshift,
which is unconstrained by the low-redshift observations alone (Fig. 8.3.1). These
lensing constraints are complementary to the current strictest high-redshift limits
obtained through SGWB non-observation [20].

Constraints from stochastic background
We can also constrain the redshift evolution of the merger rate density from the
reported non-observation of the SGWB from BBHs [20, 84]. This, in turn, provides
constraints on the relative abundance of distant mergers, which are more likely to
undergo lensing. Thus, the non-observation of the SGWB can inform the estimate
of the probability of observing lensed BBH mergers [81, 266].

Following [81], we forecast constraints on the merger rate density in O3 using up-
to-date constraints on the mass distribution and redshift evolution of BBH mergers
obtained from the latest detections [10, 11, 21, 22], as well as those inferred from
current upper limits on the SGWB, given its non-observation [20].

While the measured parameters for each merger (redshifts, source masses) are po-
tentially biased by lensing, as discussed in Sec. 8.4, we express all quantities as
functions of non-biased merger redshift zm and chirp massM [81] for consistency
with other sections. However, following Buscicchio et al. [81], we do not assume
as prior information that lensing is not taking place. Instead, we include the magni-
fication bias self-consistently in the analysis, by imposing population constraints in
apparent masses and redshifts.
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Figure 8.3.1: Merger rate density as a function of redshift based on the GWTC-2
results without lensing constraints (blue) and with lensing (red) included in LIGO–
Virgo detections. We show the results for galaxy-scale lenses (G) and cluster-scale
lenses (C) separately. Furthermore, S (or D) correspond to doubly lensed events
where single (or double) events are detected. Because lensed detections occur at
higher redshifts than unlensed events, their non-observation can be used to constrain
mergers at higher redshifts. The results without lensing do not include constraints
derived from the absence of a SGWB.

We model the differential lensing probability following [120]. The differential
merger rate in a redshift and magnification shell is

d2R

dzmd ln µ
=

dP(µ | zm)

d ln µ
4πD2

c (zm)

H0 (1 + zm) E (zm)

×

∫
dm1dm2

d3Rm(zm)

dm1dm2dzm
p (ρ> ρc | m1,m2, zm, µ) ,

(8.2)

where d3Rm(zm)/dm1dm2dzm is the differentialmerger rate density; p (ρ> ρc | m1,m2, zm, µ)

provides the probability of observing mergers with source masses m1,m2, red-
shift zm, and magnified by a factor µ above a fixed network SNR threshold ρc =

8, integrated over the population distribution of source parameters; the factor
4πD2

c (zm)/[H0(1 + zm)E(zm)] gives the comoving volume of a redshift shell in an
expanding Universe (taking into account the redshifted rate definition with respect
to the source frame); and dP(µ | zm)/(d ln µ) is the lensing probability. However, as
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Figure 8.3.2: Cumulative fraction of lensed detectable BBH mergers at any redshift
with magnification greater than µ, constrained by the non-observation of the SGWB.
The solid line shows the value obtained from the median BBH merger rate density
posterior. The shaded region corresponds to the 90% credible interval. Fewer than
1 in 103 events are expected to be lensed with magnification µ > 2, on average.
Significantly higher magnifications (e.g., µ > 30) are suppressed by a further
factor of 10. The results here show the probability of observing an event above a
given magnification, which includes the merger-rate density and magnification bias
information.

noted by Dai et al. [120], the differential magnification probability at 0.9 < µ < 1.1
and zm < 2 is affected by relative uncertainties up to 40%. We therefore con-
sider magnified detections only (µ > 1), which are subject to less uncertainty, and
normalize our results accordingly. We then integrate the differential merger rate
(Eq. 8.2) over redshift and magnifications in [µ, µmax] and divide it by the total rate
of magnified detections. By doing so, we obtain the cumulative fraction of detected
lensed events at any redshift with magnifications larger than µ.

We show the result in Fig. 8.3.2. We find the observation of lensed events to be
unlikely, with the fractional rate at µ > 2 being 4.9+1.7

−1.3. More significantlymagnified
events are even more suppressed, with a rate of 3.5+0.6

−0.4 at µ > 30. These estimates
suggest that most binary mergers that we observe are not strongly lensed. However,
as projected in Buscicchio et al. [81], Mukherjee et al. [266], at design sensitivity,
the same probability will be enhanced, as a widened horizon will probe the merger



145

rate density deeper in redshift.

Comparing the above predictions with the expected fractional rates RS of single
lensed detections with Model B in Table. 8.3.1, the predictions agree within a factor
of 5 for the relative rate of lensing. The differences are due to a different underlying
lens model and partly to the inclusion of de-magnified events in Sec. 8.3.

8.4 Analyzing high-mass events
If a GW signal is strongly lensed, it will receive a magnification µ defined such that
the GW amplitude increases by a factor |µ|1/2 relative to an unlensed signal. The
luminosity distance inferred from the GW observation will be degenerate with the
magnification such that the inferred luminosity distance

Dinferred
L =

DL√
|µ|

. (8.3)

Because of this degeneracy, lensing biases the inferred redshift and thus the source
masses. Consequently, the binary appears to be closer than it truly is, and it appears
to be more massive than it truly is.

Broadhurst et al. [74, 75, 77] argued that some of the relatively high-mass LIGO–
Virgo events could be strongly lensed GWs from the lower-mass stellar black hole
population observed in the electromagnetic bands. However, the expected strong
lensing rates and the current constraints on the merger-rate density, based on the
absence of a detectable SGWB, disfavor this interpretation [81, 82, 120, 186, 224,
274, 281] compared to the standard interpretation of a genuine unlensed high-mass
population [10, 22, 211, 306]. Hence, in the absence of more direct evidence, such
as identifying multiple images within LIGO–Virgo data (Sec. 8.5), it is difficult
to support the lensing hypothesis purely based on magnification considerations.
Nevertheless, it is informative to analyze the degree towhich the lensed interpretation
would change our understanding of the observed sources.

Under the strong lensing hypothesis HSL, the GW would originate from a well-
known, intrinsically lower-mass population, and the LIGO–Virgo observations have
been biased by lensing. Using such a mass prior, we infer the required magnification
and corrected redshift and component masses underHSL. The posterior distribution
of the parameters is [288]

p(µ, ϑ |d,HSL) ∝ p(d |ϑ) p(ϑ |µ,HSL) p(µ|HSL), (8.4)

where we distinguish the apparent parameters of the waveform received at the
detector ϑ, which differ from the intrinsic parameters θ due to bias by lensing
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Table 8.4.1: Inferred properties of selected O3a events under the lensing magnifi-
cation hypothesis.

Event name m1 [M�] m2 [M�] z µ

GW190425 1.42+0.16
−0.12 1.27+0.12

−0.15 0.3+0.1
−0.1 68+163

−44
GW190426_152155 1.89+0.40

−0.55 0.90+0.25
−0.40 1.3+0.5

−0.2 497+452
−272

Event name m50
1 (m65

1 ) [M�] m50
2 (m65

2 ) [M�] z50 (z65) µ50 (µ65)
GW190521 43+6

−16 (55+9
−22) 36+10

−15 (45+13
−19) 2.5+2.1

−0.7 (1.8
+1.7
−0.5) 13+55

−8 (6+28
−4 )

GW190602_175927 42+7
−17 (48+14

−19) 31+13
−16 (33+15

−16) 1.4+1.5
−0.5 (1.1

+1.4
−0.4) 10+65

−7 (6+46
−4 )

GW190706_222641 39+10
−15 (42+17

−17) 29+12
−13 (29+13

−13) 1.7+1.8
−0.5 (1.6

+1.7
−0.6) 5+26

−3 (4+22
−2 )

Under the hypothesis that the listed events are lensed signals from intrinsically
lower-mass binary populations with µ > 2, this table lists the favored source masses,
redshifts, and magnifications for the BNS and neutron star–black hole (NSBH) (top)
and BBH (bottom) high-mass events. For the BBHs, two sets of numbers are given
for different assumptions about the edge of the pair instability supernova (PISN)
mass gap (a cut at 50 M� and 65 M�). For the BNSs, we presume that they originate
from the Galactic BNS population. To interpret the heavy BBHs as lensed signals
originating from the assumed lower-mass population, they should be magnified at a
moderate magnification µ ∼ O(10) at z ∼ 1 to 2. The BNS and NSBH events would
require extreme magnifications.

magnification. Therefore, we can compute the magnification posterior and other
parameters by simply re-weighting existing posteriors.

Studies along these lines were already done for the GW190425 BNS event by Pang
et al. [288] and for the GW190521 BBH event in Abbott et al. [18]. Here we extend
the approach to cover additional interesting O3a events, focusing on two cases: (i)
the (apparently) most massive observed BBHs, and (ii) sources with an (apparent)
heavy neutron star component. In the BBH case, we take the prior over component
masses, m1 and m2, and redshift, z of the source p(m1,m2, z) from the power-law
BBH population model used in Abbott et al. [10] for O1 and O2 observations, with
a mass power-law index α = 1, mass ratio power-law index βq = 0, and minimum
component mass mmin = 5 M�, and assume an absence of BBHs above the pair
instability supernova (PISN) mass gap. As in the previous GW190521 study [18],
we consider two different values to account for uncertainties on the edge of the PISN
gap, mmax = (50, 65)M�. Such a simple model is adequate for this analysis because
our analysis results are most sensitive to the mass cut (highest masses allowed by
the prior) and less sensitive to the specific shape of the mass distribution. For events
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with an apparent heavy neutron star component, we assume a Galactic BNS prior
following a total mass with a 2.69 M� mean and 0.12 M� standard deviation [160].
In both cases, the magnification could explain the apparent high mass of the events
from the LIGO–Virgo observations.

We assume that the redshift prior p(z) ∝ τ(z)dVc/dz, where the optical depth of
lensing by galaxies or galaxy clusters τ(z) ∝ Dc(z)3 [188]. The redshift dependence
of the optical depth is approximately the same for both galaxies and galaxy clusters,
while the overall scaling can change [168]. We use the lensing prior p(µ|HSL) ∝ µ

−3

[64] with a lower limit µ > 2 appropriate to strong lensing [274]. This prior
is appropriate when we are in the high-magnification, strong lensing limit, i.e.
assuming that the observed masses are highly biased. We do not consider weak
lensing, which does not produce multiple images and would require expanded future
GW data sets to study [264, 265].

We analyze all O3aBBHeventswith the primarymass above 50 M� at 90% probabil-
ity using the Bayesian inference posterior samples released with GWTC-2 [21, 181].
Moreover, we analyze GW190425, a high-mass BNS [12], and GW190426_152155,
a low-significance potential neutron star–black hole (NSBH) event [21] which was
investigated as a possible lensed BNS event [322]. We use the results for the IM-
RPhenomPv2 waveform [68, 184] for most of the events. For GW190521, where
higher-order multipole moments are important to include in the analysis [18], we
adopt the NRSur7dq4 waveform [354] results as in Abbott et al. [16]. Further-
more, for GW190425 [12], we use the IMRPhenomPv2_NRTidal [140] low-spin
samples. Results are summarized in Table 8.4.1.

To interpret the heavy BBHs as lensed signals originating from the assumed lower-
mass population, they should be magnified at a moderate magnification µ ∼ 10
at z ∼ 1 − 2. Depending on the lens model, this magnification may imply a
moderate chance of an observable multi-image counterpart as events closer to the
caustic curves experiencemore substantial magnifications. Consequently, they often
produce eventswith similarmagnification ratios and shorter time delays (comparable
magnifications and shorter time delays can be derived from the lens’s symmetry,
although if lensing by substructures or microlenses is present, the magnifications
between images can differ even in the high-magnification limit). However, we could
not identify any multi-image counterparts for any of the high-mass events in our
multiple image search (Sec. 8.5).

The BNS and NSBH events, on the other hand, would require extreme magnifi-
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cations (68+163
−44 and 497+452

−272, respectively) to be consistent with the Galactic BNS
distribution. At these magnifications, we would expect the source to be close to
a caustic, and therefore it may be possible that the presence of microlenses would
produce observable effects [138, 139, 256, 286]. Moreover, the event would likely
be multiply imaged [64, 281]. A more detailed follow-up study to quantify the like-
lihood of multiple images and microlensing could produce more stringent evidence
for the lensing hypothesis for these events. We will briefly comment on these events
in the context of multi-image and microlensing results in the sections that follow.

At this stage, we cannot set robust constraints on the lensing hypothesis based
on the magnification alone. Moreover, as detailed in the following section, we
have also not found any other clear evidence to indicate that these GW events are
lensed. The prior lensing rate disfavors the lensing hypothesis for most standard
binary population and lens models, as discussed in Sec. 8.3. However, if other
BBH formation channels exist that produce an extensive number of mergers at high
redshift, the lensing rates can change. In the future, more quantitative constraints
could be set by connecting the inferred magnifications with lens modeling to make
predictions for the appearance of multiple images or microlensing effects.

8.5 Search for multiple images
In addition to magnification, strong lensing can produce multiple images of a single
astrophysical event. These multiple images appear at the GW detectors as repeated
events. The imageswill differ in their arrival time and amplitude [186, 188, 223, 247,
361]. The sky location is the same within the localization accuracy of GWdetectors,
given that the typical angular separations are of the order of arcseconds. Addition-
ally, lensing can invert or Hilbert transform the image [119, 154], introducing a
frequency-independent phase shift. This transformation depends on the image type,
set by the lensing time delay at the image position: Type-I, II, and III correspond to
a time-delay minimum, saddle point, and maximum, respectively [154].

The multiply imaged waveforms {h̃L
j } of a single signal h̃ then satisfy [119, 154]

h̃L
j ( f ; θ, µ j,∆t j,∆φ j) =

√
|µ j | h̃( f ; θ,∆t j) exp

(
i sign( f )∆φ j

)
, (8.5)

where
√
|µ j | is the lensing magnification experienced by the image j and ∆φ j =

−πn j/2 is the Morse phase, with index n j = 0, 1, 2 for Type-I, II, and III images.
h̃( f ; θ,∆t j) is the original (unlensed) waveform before lensing, but evaluated as
arriving with a time delay ∆t j . The multi-image hypothesis then states that most
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parameters measured from the different lensed images of the same event are consis-
tent.

The relative importance of different parameters for the overall consistency under
the multi-image hypothesis will vary for different events. For example, the sky
localization match will have greater relevance for well-localized, high-SNR events.
Similarly, the overlap in measured chirp mass (1 + z)M = (1 + z) (m1m2)

3/5/(m1 +

m2)
1/5 will be more significant when the uncertainty in that parameter is lower,

although in this case the underlying astrophysical mass distribution will play a key
role. The similarities in other parameters such as mass ratios or spins will be more
important when they depart from the more common astrophysical expectations.
Evidence of strong lensing could also be acquired with a single Type-II (saddle
point) image if the induced waveform distortions in the presence of higher modes,
precession, or eccentricity are observed [154]. Such evidence is unlikely to be
observed without next-generation detectors [360].

In this section, we perform three distinct but related analyses. First, we test the lensed
multi-image hypothesis by analyzing, for all pairs of O3a events from GWTC-2, the
overlap of posterior distributions previously inferred for the individual events. This
allows us to set ranking statistics to identify an initial set of candidates for lensed
multiple images. We perform a more detailed joint-PE analysis for these most
promising pairs, considering all potential correlations in the full parameter space
and the image type. This joint analysis provides a more solid determination of
the lensing probability for a given GW pair. Finally, we search for additional sub-
threshold candidates that could be multiply imaged counterparts to the previously
considered events: some counterpart images can have lower relative magnification
compared with the primary image and/or fall in times of worse detector sensitivity
or antenna patterns, and hence may not have passed the detection threshold of
the original broad searches. According to the predictions of the expected lensing
time delays and the rate of galaxy and galaxy cluster lensing [122, 281, 324], we
expect it to be less likely for counterpart images to the O3a events to be detected in
observing runs O1 or O2. Relative lensing rates for galaxies and clusters are given
in Table 8.3.1. Thus, we only search for multiple images within O3a itself.

Previous studies have also searched for multiple images in the O1–O2 catalog
GWTC-1 [76, 122, 186, 223, 233, 247]. The first search for GW lensing signatures in
O1 and O2 focused on the posterior overlap of the masses, spins, binary orientation
and sky positions [186] and the consistency of time delays with expectations for
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galaxy lenses, but found no conclusive evidence of lensing. The search did uncover
a candidate pair GW170104–GW170814 with a relatively high Bayes factor of
& 200. Still, this study disfavored the candidate due to its long time delay and the
low prior probability of lensing. In parallel, Broadhurst et al. [76] suggested that the
candidate pair GW170809–GW170814 could be lensed, but this claim is disfavored
by more comprehensive analyses [186, 233]. Both Li et al. [223] and McIsaac et al.
[247] performed searches for sub-threshold counterparts to the GWTC-1 events,
identifying some marginal candidates but finding no conclusive evidence of lensing.
More recently, Dai et al. [122] and Liu et al. [233] searched for lensed GW signals
including the analysis of the lensing image type, which can be described through the
Morse phases, ∆φ j in Eq. (8.5). These analyses have revisited the pair GW170104–
GW170814 and demonstrated that the Morse phase is consistent with the lensed
expectation but would require Type-III (time-delay maximum) images, which are
rare from an observational standpoint. Dai et al. [122] also pointed out that a
sub-threshold trigger, designated by them as GWC170620, is also consistent with
coming from the same source. However, the required number and type of images
for this lens system make the interpretation unlikely given current astrophysical
expectations. Also, two same-day O3a event pairs (on 2019 May 21 and 2019
August 28) have already been considered elsewhere, but were both ruled out due to
vanishing localization overlap [18, 320].

Posterior-overlap analysis
As a consequence of degeneracies in the measurements of parameters, the lensing
magnification can be absorbed into the luminosity distance (Sec. 8.4), the time delay
can be absorbed into the time of coalescence, and, when the radiation is dominated
by ` = |m| = 2 multipole moments, the phase shifts introduced by lensing (the
Morse phases) can be absorbed into the phase of coalescence. The multi-image
hypothesis then states that all other parameters except the arrival time, luminosity
distance, and coalescence phase are the same between lensed events, and thus there
should be extensive overlap in their posterior distributions, even if those have been
inferred without taking lensing into account.

Therefore, we use the consistency of GW signals detected by LIGO and Virgo to
identify potential lensed pairs. Following [188], we define a ranking statisticBoverlap

to distinguish candidate lensed pairs from unrelated signals:

Boverlap =

∫
dΘ

p(Θ|d1) p(Θ|d2)

p(Θ)
, (8.6)
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where the parametersΘ include the redshifted masses (1+ z)m1,2, the dimensionless
spinmagnitudes χ1,2, the cosine of spin tilt angles θ1,2, the sky location (α, sin δ), and
the cosine of orbital inclination θJN , but they do not include the full 15-dimensional
set of parameters Θ to ensure the accuracy of the kernel density estimators (KDEs)
that we use to approximate the posterior distributions p(Θ|d1,2) for each event when
evaluating Eq. (8.6). Here, p(Θ) denotes the prior on Θ.

The accuracy of the KDE approximation was demonstrated in Haris et al. [188]
through receiver operating characteristic curves with simulated lensed and unlensed
BBH events. To improve the accuracy further, we compute the sky localization (α,δ)
overlap separately from other parameters and combine it with the overlap from the
remaining parameters. Splitting the two overlap computations is justified because
the posterior correlations of (α,δ) with other parameters are minimal.

We use posterior samples [181] obtained using the LALInference software pack-
age [356] with the IMRPhenomPv2 waveform model [104, 184] for most of the
events. However, for GW190521, we use NRSur7dq4 [354] posteriors, and for
GW190412 and GW190814 we use IMRPhenomPv3HM [210] posteriors. The
prior p(Θ) is chosen to be uniform in all parameters. The component mass pri-
ors have the bound (2˘200M�). Equation (8.6) then quantifies how consistent a
given event pair is with being lensed. In our analysis, we omit the BNS event
GW190425 [12] because it was detected at relatively low redshift, and hence we
expect the probability of it being lensed to be very small.

In addition to the consistency of the frequency profile of the signals (as measured by
the posterior overlap), the expected time delays ∆t between lensed images follow a
different distribution than for pairs of unrelated events. Following Haris et al. [188],
we define

Rgal =
p(∆t |HSL)

p(∆t |HU)
, (8.7)

where p(∆t |HSL) and p(∆t |HU) are the prior probabilities of the time delay ∆t

under the strongly lensed and unlensed hypotheses, respectively. Here p(∆t |HU)

is obtained by assuming that the GW events follow a Poisson process. We use a
numerical fit to the time-delay distribution p(∆t |HSL) obtained in Sec. 8.3 for the SIS
galaxy lens model, with a merger rate density given by Rmin in Eq. (8.10). Equation
(8.7) provides another ranking statistic to test the lensing hypothesis, based on the
time delay, though subject to some astrophysical uncertainties (see discussion in
Sec. 8.3). The time-delay distribution does not include galaxy cluster lenses, which
may be responsible for long time delays of several months or more. We also do
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not model detector downtime, but we expect the different contributions to the time
delay to average out across a longer time period.
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Figure 8.5.1: Scatter plot of the ranking statistics log10 B
overlap and log10 R

gal for a
subset of event pairs that have both Boverlap > 50 and Rgal > 0.01. The dashed lines
denote the significance levels of the combined ranking statistics (in terms ofGaussian
standard deviations), obtained by simulating unlensed event pairs in Gaussian noise
matching the O3a sensitivity of the LIGO–Virgo network. We identify several high
Boverlap > 50 candidates, which we follow up on with a detailed joint-PE analysis.
We have used abbreviated event names, quoting the last 4 digits of the date identifier
(see Table 8.5.1 for full names).

To estimate the significance of the combined ranking statistic, log10(B
overlap ×Rgal)

computed for O3a event pairs, we perform an injection campaign. For the injection
campaign, we sample component masses m1,2 from a power-law distribution [4] in
the range (10˘50M�). We assume that the redshift distribution follows population
synthesis simulations of isolated binary evolution [56, 57, 65, 143, 148, 244, 273,
311]; in particular, for illustration purposes, we show results using the redshift
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evolution from Belczynski et al. [55, 58], but for the local universe that we look at
(z < 2), other models produce qualitatively similar results. All other parameters
are sampled from uninformative prior distributions [188]. We inject the simulated
signals into Gaussian noise with O3a representative spectra for a LIGO–Virgo
detector network. We computeBoverlap and Rgal for all possible pairs in the injection
set to obtain the false-alarm probability for one pair FAPpair(x) at different levels x of
combined statistics by counting the number of simulated pairs with log10(B

overlap ×

Rgal) > x. Then the probability of at least one of the N event pairs in GWTC-2
to cross the threshold can be estimated as FAPcat(x) = 1 − [FAPpair(x)]N . We then
obtain theσ levels of significance shown in Fig. 8.5.1 by assuming FAPcat(x) follows
the complementary error function.

In Fig. 8.5.1 we show the scatter plot of log10 B
overlap and log10 R

gal for the O3a
event pairs that have high combined ranking statistic. The dashed lines repre-
sent different significance levels as obtained from the simulations. The event
pair GW190728_064510–GW190930_133541 gives the highest combined ranking
statistic, log10(B

overlap × Rgal) = 3.6; however, as can be seen from Fig. 8.5.1, its
significance is above 1σ (68%) but much below the 2σ (95%) significance level.

To follow up on the most promising event pairs with the more detailed joint-PE
analysis in the next section, we make a selection based on just the posterior overlap
ranking statistic, Boverlap, rather than the combined ranking statistic, Boverlap × Rgal,
because Rgal depends strongly on the lens model. That is, we do not rule out any
candidates based on Rgal. Our aim in the next section is to understand the high
Boverlap event pairs in greater detail without resorting to any specific lens model.
We thus select the most promising event pairs from Fig. 8.5.1, i.e., those with
Boverlap > 50, and carry out the joint-PE analysis in the next section. The 19
selected pairs are listed in Table 8.5.1.

Joint parameter estimation analysis
Here we follow up on the most significant pairs of events from the posterior-overlap
analysiswith amore detailed butmore computationally demanding joint-PE analysis.
The benefit of this analysis is that it allows for more stringent constraints on the
lensing hypothesis by investigating potential correlations in the full parameter space
of BBH signals, instead of marginalizing over some parameters. Moreover, it also
includes a test for the lensing image type by incorporating lensing phase information.

We perform our analysis using two independent pipelines, a LALInference-based
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pipeline [233] and a Bilby-based pipeline [hanabi; 235], giving us additional
confidence in our results. Unlike the posterior-overlap analysis, the joint-PE analysis
does not start from existing posterior samples. Instead, we start the inference directly
using the detector strain data. In both pipelines, we follow the same data selection
choices (calibration version, available detectors for each event, and noise subtraction
procedures) as in the original GWTC-2 analysis [21], with special noise mitigation
steps (glitch subtraction and frequency range limitations) taken for some events as
listed in Table V of that paper. However, the two pipelines use different waveform
models. In this section, we first describe howwe quantify the evidence for the strong
lensing hypothesis, then detail the two pipelines and finally present the results.

The coherence ratio and the Bayes factor

There will be three types of outputs for the joint-PE analysis. First, we compute
a coherence ratio CL

U, which is the ratio of the lensed and unlensed evidences,
neglecting selection effects and using default priors in the joint-PE inference. We
treat this as a ranking statistic, which quantifies how consistent two signals are
with the lensed hypothesis. Large coherence ratios indicate that the parameters of
the GWs agree with the expectations of multiple lensed events. This occurs, for
example, when the masses and sky localization coincide. However, the coherence
ratio does not properly account for the possibility that the parameters overlap by
chance.

The likelihood that GW parameters overlap by chance sensitively depends on the
underlying population of sources and lenses. For example, if there existed forma-
tion channels that produced GWs with similar frequency evolutions (as expected of
lensing), the likelihood of an unlensed event mimicking lensing would increase sub-
stantially. Thus, we introduce a second output, the population-weighted coherence
ratio CL

U |pop, which incorporates prior information about the populations of BBHs
and lenses. The value of CL

U |pop is subject to the choice of both the BBH and lens
models.

Similarly, the probability that two signals agree with the multiple-image hypothesis
is altered through selection effects, as some masses and sky orientations are pref-
erentially detected. Thus, we also include the selection effects, which gives us our
final output, the Bayes factor BL

U. The BL
U quantifies the evidence of the strong

lensing hypothesis for a given detector network and population model. For the full
derivations and detailed discussion on the difference between the coherence ratio
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and the Bayes factor, see [235].

LALInference-based pipeline

For the LALInference-based pipeline, we adopt the method presented by Liu
et al. [233], which was first used for analyzing pairs of events from GWTC-1 [11].
LALInferenceNest [356] implements nested sampling [321], which can compute
evidences without explicitly carrying out the high-dimensional integral while sam-
pling the posteriors. The LALInference-based pipeline uses the IMRPhenomD
waveform [193, 209], which is a phenomenological model that includes the inspi-
ral, merger, and ringdown phases but assumes non-precessing binaries and only
` = |m| = 2 multipole radiation. This is motivated by the fact that most events
detected so far are well described by the dominant multipole moment [11, 21].
Higher-order multipole moments, precession, or eccentricity could lead to non-
trivial changes to the waveform for Type-II images, but such waveforms cannot
currently be used with this pipeline. For a discussion of the events within GWTC-2
displaying measurable higher-order multpole moments or precession, see Appendix
A of Abbott et al. [21].

As in the posterior-overlap analysis, we expect observed, lensed GWs to share the
same parameters for the redshifted masses, spins, sky position, polarization angle
and inclination, {(1 + z)m1, (1 + z)m2, χ1, χ2, α, δ, ψ, θJN }. Hence, we force these
parameters to be identical under the lensing hypothesis. For the unlensed hypothesis,
we sample independent sets of parameters for each event. This is equivalent to
performing two separate nested sampling runs and then combining their evidence.
In total, LALInference samples in an 11-dimensional parameter space and provides
CL

U as the output.

We sample the apparent luminosity distance of the first event D1
L and the relative

magnification µr [361] instead of the luminosity distance of the second event D2
L ,

using the relation √µr = D1
L/D

2
L . Since our waveform only includes the dominant

` = |m| = 2 multipole moments,the lensing Morse phase is modeled by discrete
shifts in the coalescence phase φc by an integer multiple of π/4 [with relation to the
lensing phase shift ∆φ = 2∆φc, 119, 154]. Thus, we consider all possible relative
shifts ∆φc ∈ {0, π/4, π/2, 3π/4} between two GW signals.

We set a uniform prior in log[(1 + z)m1] and log[(1 + z)m2] for both the lensed
and unlensed hypothesis. The minimum and maximum component masses are
respectively 3M� and 330M�, with a minimum mass ratio of q = m2/m1 = 0.05.
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This choice reduces the prior volume by 102 − 103 compared to the uniform prior
used in GWTC-2 [see 233, for discussion]. For the other parameters, the prior for
the luminosity distance is p(DL) ∝ D2

L up to 20 Gpc, while the spins are taken to be
parallel to the dimensionless orbital angular momentum with a uniform prior on the
z components between −0.99 (anti-aligned) and +0.99 (aligned).

The hanabi pipeline

The hanabi pipeline, on the other hand, adopts a hierarchical Bayesian framework
that models the data generation process under the lensed and the unlensed hypothe-
sis. This pipeline uses the IMRPhenomXPHM waveform [295], which models the
full inspiral–merger–ringdown for generic precessing binaries including both the
dominant and some sub-dominant multipole moments. Therefore, the parameter
space of hanabi enlarges to 15 dimensions.

hanabi differs from the LALInference-based pipeline in the treatment of the
Morse phase. Here the lensing phase is directly incorporated in the frequency-
domain waveform, accounting for any possible distortion of Type-II images [120,
154, 235]. Moreover, the lensed probability is computed by considering all possible
combinations of image types with a discrete uniform prior [235]. For this reason,
hanabi only produces one evidence per pair, and not one for each discrete phase
difference as the LALInference-based pipeline. Unlike the LALInference-based
pipeline, hanabi samples the observed masses in a uniform distribution. The mass
ranges are different for each event pair, but an overall reweighting is applied later
(see below). The rest of the prior choices for the intrinsic parameters are the same as
for the LALInference-based pipeline with the addition of a discrete uniform prior
on the Morse phase and isotropic spin priors.

In addition to computing the joint-PE coherence ratio, hanabi also incorporates
prior information about the lens and BBH populations, as well as selection effects.
In particular, the BBH population is chosen to follow a Power Law + Peak model
in the primary mass following the best-fit parameters in Abbott et al. [22]. Similarly,
the secondary mass is fixed to a uniform distribution between the minimum and the
primary mass. hanabi also uses an isotropic spin distribution and merger rate
history following Model A in Sec. 8.3. The lens population is modeled by the
optical depth described in Hannuksela et al. [186] and a magnification distribution
p(µ) ∝ µ−3 for µ ≥ 2. hanabi is thus able to output CL

U, C
L
U |pop and BL

U. However,
hanabi does not include any preference for a particular type of image, i.e., hanabi
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uses a discrete, uniform prior for the Morse phase shift ∆φ j .
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Table 8.5.1: Summary of joint-PE results for event pairs in O3a.

log10(C
L
U) log10(C

L
U

��
pop) log10(B

L
U)

Event 1 Event 2 log Rgal LALInference hanabi hanabi
(∆φ: 0, π/2, π, 3π/2)

GW190412 GW190708_232457 −1.6 (+1.0,−9.7,−22.8,−4.4) −6.6 −9.7
GW190421_213856 GW190910_112807 − (+4.5,+2.5,−1.5,−0.0) −0.7 −3.8

GW190424_180648 GW190727_060333 −1.8 (+4.9,+0.0,+1.1,+4.0) −0.8 −3.9

GW190424_180648 GW190910_112807 − (+2.5,+4.7,+4.3,+1.6) −0.8 −3.9

GW190513_205428 GW190630_185205 −0.6 (+0.8,+4.3,−1.9,−6.5) −2.4 −5.5

GW190706_222641 GW190719_215514 +0.4 (+2.4,+2.4,−0.0,−0.5) −0.3 −3.4

GW190707_093326 GW190930_133541 −1.5 (−4.6,−4.3,−3.5,−4.1) −9.4 −12.5

GW190719_215514 GW190915_235702 −0.9 (+3.5,−2.1,−0.1,+4.1) −0.7 −3.8

GW190720_000836 GW190728_064510 +0.5 (−1.4,−0.9,−4.5,−5.4) −6.7 −9.8

GW190720_000836 GW190930_133541 −1.2 (−3.5,−2.8,−3.9,−3.9) −9.2 −12.3

GW190728_064510 GW190930_133541 −1.1 (−3.6,−2.5,−3.1,−2.9) −8.5 −11.6

GW190413_052954 GW190424_180648 +0.4 (+0.6,−0.9,+0.4,−0.0) −1.6 −4.7

GW190421_213856 GW190731_140936 −2.1 (+3.1,−1.9,+2.5,+5.2) −0.2 −3.3

GW190424_180648 GW190521_074359 −0.1 (+1.3,+3.8,+3.7,+4.4) −2.0 −5.1

GW190424_180648 GW190803_022701 −2.1 (+4.2,+1.9,+2.6,+3.1) −1.0 −4.1

GW190727_060333 GW190910_112807 −0.6 (+1.8,+3.3,+3.7,+3.4) −1.4 −4.5

GW190731_140936 GW190803_022701 +0.9 (+4.1,+3.2,+2.2,+3.4) −0.9 −4.0

GW190731_140936 GW190910_112807 −0.5 (+0.1,+4.5,+0.8,−7.2) −1.2 −4.3

GW190803_022701 GW190910_112807 −0.4 (+4.0,+5.5,+4.7,+2.6) −0.1 −3.2

We select those events with posterior overlap ranking statistic larger than 50. For each pair of events presented in
the first two columns, the third column lists the time-delay ranking statistic Rgal as described in Section 8.5. The
next column gives the coherence ratio of the lensed/unlensed hypothesis CL

U obtained with the LALInference-based
pipeline, including the results for the four possible lensing phase difference ∆φ = 2∆φc. We highlight in boldface
those pairs with log10(C

L
U) > 4 for at least one Morse phase shift. The fifth and sixth columns correspond to the

hanabi results for the population-weighted coherence ratio CL
U |pop and the Bayes factorBL

U. All quantities are given in
log10. All high coherence ratio events display a small Bayes factor when including the population priors and selection
effects. For the pairs GW190421_213856–GW190910_112807 and GW190424_180648–GW190910_112807, the
time delays between events are larger than what we expect for galaxy lenses in our simulation, and thus Rgal = 0.
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Results

Within the O3a events, the LALInference-based pipeline finds 11 pairs with
log10(C

L
U) > 4, indicating high parameter consistency. We have checked that the

results of the LALInference-based pipeline are qualitatively consistent with those
from hanabi. This reinforces our previous argument that the shift in the coalescence
phase is a good approximate description of the lensing Morse phase given that in the
present catalog most events are dominated by the ` = |m| = 2 multipole moments.
However, because of the pair-dependent prior choices of hanabi, we do not present
its raw CL

U results in Table 8.5.1.

We then include our prior expectation on the properties of the lensed images (de-
rived from our BBH and lens population priors) and selection effects when com-
puting the population-weighted hanabi coherence ratio and the Bayes factors BL

U.
The results are summarized in Table 8.5.1. The event pair GW190728_064510–
GW190930_133541, which seemed the most promising from the overlap analysis
in Sec. 8.5, is disfavored by both joint-PE pipelines. After the inclusion of the
population prior and selection effects, none of the event pairs display a preference
for the lens hypothesis (log10 B

L
U < 0).

The population-weighted coherence ratio and the Bayes factor are subject to the
BBH and lens model specifications. The population properties are not inferred
taking into account the possibility of lensing. This introduces an inevitable bias, but
it can be justified a posteriori to be a good approximation given the expected low
rate of strong lensing. Additionally, the population properties include significant
uncertainties in the hyper-parameter estimates and presume a population model.
In any case, to quantify this intrinsic uncertainty in the modeling, we consider
different choices for the mass distribution and merger rate history. Varying the
maximum BBH mass and the redshift evolution of the merger rate using the Rmin(z)

and Rmax(z) of Model A in Sec. 8.3, we find that the strong lensing hypothesis is
always disfavored. While these results are subject to assumptions on prior choices,
our results are sufficient to reject the strong lensing hypothesis: Even if other prior
choices favored the lensing hypothesis, the evidence would at best be inconclusive.

The impact of selection effects is considerable. Among other reasons, this is because
present GW detectors preferentially observe higher mass events [164], making
coincidences in observed masses more probable. Along the same lines, given
the specific antenna patterns of the current network of detectors, GW events are
preferentially seen in specific sky regions with characteristic elongated localization
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areas [99], which favors the overlap between different events.

We also reanalyze the GW170104–GW170814 event pair in the O2 data previously
studied byDai et al. [122], Liu et al. [233]. Using theLALInference-based pipeline,
Liu et al. [233] found that the coherence ratio, including selection effects associated
with the Malmquist bias [243], is log10(C

L
U) ≈ 4.3 for a π/2 coalescence phase shift.

However, when including together population and selection effects with hanabi, we
find that the evidence drastically reduces to a Bayes factor of log10(B

L
U) ≈ −2.0.

In addition to the Bayes factor, it is important to contrast the recovered number of
candidate lensed pairs and their properties with astrophysical expectations. In Sec.
8.3 we found that the relative rate of GW events with at least two strongly lensed
images above the detection threshold is below ∼ 1.3 × 10−3 for all considered BBH
populationmodels. Thus, the lensing rate estimates significantly disfavor the lensing
hypothesis a priori; even a moderate Bayes factor would not by itself yet make a
compelling case for strong lensing. Additionally, the type of images, arrival times,
and magnifications provide additional information on the lensing interpretation’s
plausibility. For example, a quantification of the time-delay prior can be computed
by multiplying the coherence ratio by Rgal. However, our final conclusions do not
depend on the prior information about the lensing time delays or the prior odds
against lensing: the prior lensing knowledge further disfavors the strong lensing
hypothesis, but we did not use it to rule out any candidates.

Although we do not find evidence of strong lensing, future electromagnetic follow-
up of the candidates could allow for independent support for the hypothesis if
we identified a lensed counterpart galaxy to these events [187, 302, 308, 317, 323–
325, 374]. This identification could take place bymatchingGWand electromagnetic
image properties when four GW images are available [187]. With two images, the
number of hosts could also be constrained [317, 374], but to a lesser degree due
to degeneracies with the lens and source alignment and uncertainties introduced by
micro/millilensing – although strong lensing by galaxy clusters might allow us to
identify a single cluster candidate [302, 308, 323–325]. Moreover, strong lensing
could have produced additional images below the noise threshold. We perform a
further investigation of such sub-threshold counterparts in the next section.

Search for sub-threshold lensed images
Herewe search for sub-threshold counterpart images of the O3a events fromGWTC-
2 that would not have been identified as confident detections by the search pipelines
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used in Abbott et al. [21]. As lensed images could in principle appear anywhere
in the entire O3a data, we perform targeted template bank searches for these sub-
threshold lensed counterparts over the whole O3a strain data set, following the data
selection criteria described in Abbott et al. [21]. We employ two matched-filter
searches based on the GstLAL [87, 183, 250, 309] and PyCBC [127, 277, 279, 351]
pipelines, adapted to the lensing case in similar ways as in Li et al. [223] andMcIsaac
et al. [247].

Search methods and setups

The lensed hypothesis states that the intrinsic masses and spins will remain con-
sistent between multiple lensed images of the same event. Hence, we can perform
searches that specifically target sub-threshold lensed counterparts of known events
by creating reduced banks of template waveforms with masses and spins close to
those inferred for the primary event. We use the public posterior mass and spin
samples released with GWTC-2 [181] to create these targeted template banks. This
ensures that the known events will match well with the templates while simultane-
ously decreasing the FAR of the search for similar events, potentially returning new
candidates that did not reach the search threshold in Abbott et al. [21]. GstLAL’s
reduced banks contain between 173 and 2698 templates per search, while for each
PyCBC search we select a single aligned-spin template. The construction of these
template banks closely follows Li et al. [223], McIsaac et al. [247] and is further
detailed in Appendix 8.B. Template waveforms are generated using the aligned-
spin SEOBNRv4_ROM waveform [69, 297, 298] for both pipelines and all events,
with the exception of GW190425 in the PyCBC search, where we use the TaylorF2
model [47, 61–63, 66, 67, 80, 126, 161, 253, 258, 293, 312].

Given these template banks, each search pipeline proceeds with configurations and
procedures as outlined in Abbott et al. [21] to produce a priority list of potential
lensed candidates matching each target event. To rank these, each pipeline uses a
different method to estimate FARs.

GstLAL first identifies matched-filter triggers from one or more of the Hanford,
Livingston, and Virgo data streams. Coincidences are identified with the same
settings as in Abbott et al. [21]. From each candidate’s recovered parameters, a
likelihood-ratio ranking statistic is computed [309]. Single-detector triggers are
penalized using machine-learning based predictions [iDQ; 149, 176] whereas for
coincident triggers, no data quality products are used. We estimate the FAR of
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a trigger by comparing with the distribution of the ranking statistic from all non-
coincident noise triggers, used to characterize the noise distribution, over the O3a
data set.

PyCBC also first identifies single-detector matched-filter triggers, with a reduced
clustering window compared to the GWTC-2 configuration (from 1 s to 0.01 s).
These are tested for time coincidence between detectors and are required to have an
SNR ≥ 4 in at least two detectors. While in the GWTC-2 analysis the PyCBC search
was limited to the Hanford and Livingston detectors, here we also include Virgo
data, using the methods described in Davies et al. [127] to analyse the three detector
network. FARs are estimated from a noise background measured using time-shifted
data. All triggers within 0.1 s of the times of the events in GWTC-2 are removed
from both the foreground (observed coincident events) and the background.

Candidates from both pipelines are further vetted by a sky localization consistency
test against the targeted GWTC-2 event, as lensed images of the same event should
come from consistent sky locations but the matched-filter searches do not check
for this. For each new candidate, we generate a sky localization map p(Ω) using
Bayestar [319], with Ω denoting parameters that specify the sky location. We
compute the percentage overlap O90%CR of the 90% credible regions between the
sky localization q(Ω) of a GWTC-2 event and the sky localization p(Ω) of a sub-
threshold event candidate as

O90%CR =
190%CR [p(Ω)q(Ω)] dΩ

min(190%CR [p(Ω)] dΩ, 190%CR [q(Ω)] dΩ)
, (8.8)

where 1 is the indicator function. To avoid false dismissal at this step, we only veto
candidates withO90%CR = 0. All candidates with non-vanishing localization overlap
are kept for further follow-up with data quality checks as discussed in Sec. 8.2 and
with the joint-PE methods described in Sec. 8.5.

Results

In Table 8.5.2, we list the eight candidates with FAR < 1 in 16 years from the
individual targeted searches for counterparts of the 39 detections reported inGWTC-
2 found by at least one pipeline. Six of these are unique candidates. This number,
compared with ∼ 2 expected noise events above this FAR from the number of
searches performed, is consistent with additional astrophysical signals being present
in the data set. However, in this work, we do not assess in detail the probability
of astrophysical origin for each of these. The reported FARs also do not indicate
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how likely each trigger is to be a lensed counterpart of the targeted event, but only
how likely it is to obtain a trigger with a similar ranking statistic from a pure noise
background using these reduced template banks. Three of these candidates were
also recovered with high probability of an astrophysical origin in the 3-OGC open-
data search [278], which used a broad template bank. Five of them are also included
with pastro > 0.5 in the extended catalog GWTC-2.1 [33]. Candidates matching one
or both of these catalogs are marked with footnotes in Table 8.5.2.

In contrast, Fig. 8.5.2 shows the combined search results from all 39 targets for
each pipeline: GstLAL (top panel) and PyCBC (bottom panel), excluding triggers
that correspond to other detections already reported in GWTC-2. Each panel shows
the cumulative number of coincident triggers (observed) with inverse FARs greater
than or equal to a given threshold value. For GstLAL, the combined results are
obtained by a search over all O3a data using a combined template bank from the 39
targeted banks. For PyCBC, the FARs are obtained from the individual searches, but
for triggers being found in several single-template searches, their inverse FARs are
summed. In the same figure, we compare these results with estimated background
distributions, accounting for the fact that we have re-analyzed the same data set of
∼ 150 days multiple times, and find a slight excess in the rate of foreground triggers
at high inverse FARs.
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Figure 8.5.2: Combined results from the 39 sub-threshold searches with the GstLAL
pipeline (top panel) and PyCBC pipeline (bottom panel). Each panel shows, as a
solid line, the cumulative number of coincident triggers (observed) with inverse
FARs greater than or equal to a given value. The dashed line is the expected
distribution of background triggers, with the gray bands indicating uncertainties in
multiples of the standard deviation σ of a Poisson distribution. For GstLAL, the
results for this plot are obtained by a search over all O3a data using a combined bank
from the 39 targeted banks. For PyCBC, the FARs are from the individual searches,
but for triggers found by several of the single-template searches, their inverse FARs
have been summed.
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Table 8.5.2: Candidates from individual sub-threshold searches for strongly-lensed
counterpart images of the 39 O3a events from GWTC-2.

UTC time GWTC-2 |∆t | [d] FAR
[
yr−1] O90%CR log10 C

L
U (LALInference)

target event PyCBC GstLAL [%] (∆φ: 0, π/2, π, 3π/2)
190925_23:28:45a,b GW190828_06 28.69 0.003 98.681 0.0% −

190426_19:06:42b GW190424_18 2.04 − 0.017 63.8% (−5.8,−5.8,−5.9,−5.6)
190711_03:07:56 GW190421_21 80.23 0.032 0.341 1.2% (+2.3,+1.1,+1.1,+2.6)
190725_17:47:28a,b GW190728_06 2.54 − 0.038 0.0% −

190711_03:07:56 GW190731_14 20.46 0.045 0.944 2.9% (+2.6,−1.2,−1.6,+0.9)
190805_21:11:37b GW190424_18 103.13 − 0.051 26.9% (−1.1,+0.6,−0.3,−0.7)
190711_03:07:56 GW190909_11 60.36 0.053 1.196 12.6% (+3.5,+2.2,+3.4,+2.9)
190916_20:06:58a,b GW190620_03 88.71 0.055 1.389 49.5% (+1.7,+3.6,+2.1,−3.2)

The first column shows the UTC time of the newly found sub-threshold candidate (format YYMMDD_HHMMSS).
The second column lists the targeted O3a event from the catalogGWTC-2 (Note that the event IDs have been shortened
to only include up to “hour” of the UTC time of the events); see Table IV and Table VI of Abbott et al. [21] for
details of these. The third column shows the absolute time difference between the candidate and the targeted event.
The fourth and fifth columns show the corresponding FARs from the individual search for the target from the second
column, from each of the two search pipelines (GstLAL and PyCBC), if the candidate has been recovered by it. The
sixth column shows the percentage overlap of the 90% sky localization regions between the candidate and the targeted
event, from the pipeline with the lower FAR. The seventh column shows the coherence ratio CL

U for the pair from the
LALInference joint-PE follow-up (only for candidate pairs with a localization overlap > 0%). Candidates are only
reported here if they pass a FAR threshold of < 1 in 16 years in at least one pipeline, and are sorted in ascending
order by the lowest FAR from either pipeline. If the same new trigger was found with sufficient FAR by more than
one search for different targets, all occurrences are included, and the PE follow-up is conducted separately for each
pair. Candidates that have since also been reported by other searches are marked with footnotes.
[a] also included in 3-OGC [278]
[b] also included in GWTC-2.1 [33]
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We perform follow-up analyses of the lensing hypothesis under the assumption of
astrophysical origin, aiming to determine for each candidate pair in Table 8.5.2
whether it is more consistent with a pair of images of a single lensed event or
with two independent astrophysical events. After taking into account the initial
FAR thresholds, sky localization overlap, and data-quality checks, we have followed
up six candidate pairs through LALInference joint Bayesian PE as described in
Sec. 8.5. No special mitigation steps were required for data-quality reasons on any
of the new candidates. The results are included in Table 8.5.2.

Compared with the results for GWTC-2 pairs in Table 8.5.1, the LALInference
coherence ratios alone are insufficient to provide evidence of lensing while keeping
in mind selection effects and prior odds. As another cross-check, we have also
analysed the pair with the highest LALInference coherence ratio CL

U (the candidate
on 2019 September 16 found by the GW190620_030421 PyCBC search) with the
hanabi pipeline described in Sec. 8.5. As with all pairs previously tested (see
Table 8.5.1), after the inclusion of population priors and selection effects, there is
no evidence favoring the lensing hypothesis for this pair either, with population-
weighted coherence ratio log10(C

L
U

��
pop) = −0.1 and Bayes factor log10(B

L
U) = −3.2.

As lensing can produce more than two images of the same source, cases where
several searches find the same trigger are of particular interest. We find that
the same candidate on 2019 July 11 has been found with low FARs by three
searches (targeting the GWTC-2 events GW190421_213856, GW190731_140936,
and GW190909_114149). In addition, the trigger on 2019 August 05 is only found
with sufficient FAR for inclusion in Table 8.5.2 by a single GstLAL search (for
GW190424_180648), but was also recovered by those for GW190413_052954 and
GW190803_022701 with FARs just below the cut. However, the GWTC-2 pairs
involved in these possible quadruple sets have already been significantly disfavored
by the hanabi analysis including population priors and selection effects. We also ex-
pect such multiple matches from an unlensed BBH population due to the clustering
of the GWTC-2 events in parameter space [21, 22].

Also, as discussed in detail in McIsaac et al. [247], if any high-mass GW detections
are interpreted as highly magnified images of lower-mass sources, then counterpart
images for these would be more likely. However, we did not find any promising sub-
threshold candidates for the five events discussed under the lensing magnification
hypothesis in Sec. 8.4.

In summary, the sub-threshold searches can recover additional promising candidates
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that were not included in GWTC-2, which match other events closely and, in that
sense, are consistent with the lensing hypothesis. However, we do not find sufficient
evidence that they are indeed lensed images, as the set of results is also consistent
with a population of physically independent and only coincidentally similar events.

8.6 Search for microlensing effects
Microlensing by smaller lenses produces image separations on the order of mi-
croarcseconds. For GWs, it can also induce frequency-dependent wave-optics
effects similar to femtolensing of light [270, 337]. More specifically, when the
characteristic wavelengths are comparable to the Schwarzschild radius of the lens,
i.e., λGW ∼ Rlens

Sch , it causes frequency-dependent magnification of the waveform.
Moreover, the characteristic lensing time-delay due to microlensed images can be
shorter than the GW signal duration, causing potentially observable beating pat-
terns on the waveform [90, 101, 105, 121, 138, 139, 205, 220, 256, 286], due to
waveform superposition. To observe GW microlensing, we search for these beating
patterns instead of the time-dependent change in the flux traditionally observed for
microlensing in electromagnetic signals.

Here we search for microlensing by isolated point masses. The microlensed wave-
form has the form

hML( f ; θML) = hU( f ; θ) F( f ; M z
L, y) , (8.9)

where hML and hU are the microlensed and unlensed waveforms in the frequency
domain, respectively. θ represents the set of parameters defining an unlensed GW
signal, while θML = {θ, M z

L, y}. F( f ; M z
L, y) is the frequency-dependent lensing

magnification factor, which is a function of the redshifted lensmass M z
L = ML(1 + zl)

and dimensionless impact parameter y, given in Eq. 2 of [220]. The search involves
re-estimating the parameters of previously identified events under the microlensed
hypothesis as defined in Eq. (9.2), including those of the potential lens.

To measure the evidence of lensing signatures in a signal, we define a Bayes factor
BML

U , which is the evidence ratio between the microlensed and unlensed hypotheses.
Higher positive values correspond to support for lensing. [186] searched for similar
beating patterns due to point mass lenses in the O1 and O2 data, using an upper
lens mass prior cutoff M z

L . 105M�. They reported no evidence for such lensing
patterns above log10 B

ML
U > 0.2.

For O3a, we analyze the 36 events from [21] that confidently have both compo-
nent masses above 3M� and search for microlensing signatures following the same
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method as in [186]. We perform PE using Bilby [49, 305] and the nested sam-
pling algorithm dynesty [333]. For each event, we perform two PE runs using both
unlensed and microlensed templates. For the unlensed case, which is similar to
the usual PE analysis, equivalent prior settings and data dictionaries such as strain
data and power spectral densities (PSDs) are used as in Abbott et al. [21]. The
analysis uses the IMRPhenomXPHM [295] waveform for most events, except for
GW190521, which is analyzed using the NRSur7dq4 waveform [354] and for the
least massive event GW190924_021846 where the IMRPhenomPv2 waveform is
used. The prior on M z

L is log uniform in the range [1–105 M�], above which the
effect of microlensing is relatively small for the LIGO–Virgo sensitivity band. The
impact parameter prior is p(y) ∝ y between [0.1, 3], chosen due to geometry and
isotropy [220].

In Fig. 8.6.1 we show violin plots of marginalized posterior distributions for the
redshifted lens mass for each event, as well as the Bayes factors between the mi-
crolensed and unlensed hypotheses. The broad M z

L posteriors correspond to broad
posteriors on the impact parameter y, which is not well constrained for unlensed
cases. In terms of Bayes factors, there is no substantial evidence of microlensing
with a maximum log10 B

ML
U = 0.5 for the event GW190910_112807. Additionally,

as can be seen in Appendix 8.C, statistical fluctuations of the log10 Bayes factors
for injections without microlensing can be as high as 0.75. Thus, the observed
Bayes factors are already by themselves consistent with random noise fluctuations
and do not significantly favor the microlensing hypothesis for any of the events. The
resulting posterior odds OML

U , which are the products of Bayes factors and the low
prior odds of microlensing [220], would be even lower. Thus, we find no evidence
of microlensing in this study.
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Figure 8.6.1: The marginalized posterior distribution of redshifted lens mass M z
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ML
U between

microlensed and unlensed hypotheses. The corresponding log10 Bayes factors are noted to the right of the plot.
We find no evidence of microlensing by point mass lenses.
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We searched for microlensing due to isolated point masses. More complex models
in which point mass lenses embedded in an external macromodel potential such
as galaxies and galaxy clusters [101, 138, 256] can produce additional modulation
on the magnified waveform, which could also prove important in the LIGO–Virgo
frequency band. Future searches could be extended to cover a broader range of
microlensing models.

8.7 Conclusions and outlook
Wehave searched for gravitational lensing effects on theGWobservations fromO3a,
the first half of the third LIGO–Virgo observing run, finding no strong evidence of
lensing. First, we outlined estimates for the rate of strongly lensed GWs. Second,
presuming a non-observation of lensing, we constrained the BBH merger-rate den-
sity at high redshift. Third, we used merger-rate density models obtained through
the non-observation of a SGWB to estimate the GW lensing rate.

Next, we performed an analysis of apparent high-mass events under the hypothesis
that they are lensed signals from lower-mass sources, finding that the highest-mass
BBHs from O3a could be consistent with component masses below the PISN mass
gap, while GW190425 and GW190426_152155 would require extreme magnifica-
tions to be compatible with the Galactic BNS population. This hypothesis is at the
moment mainly disfavored by the expected lensing rates, but in the future, more
quantitative constraints could also be set by connecting these magnification results
with lens modeling to make predictions for the appearance of multiple images or
the possibility of microlensing.

We then searched for signatures of multiple lensed images from a single source
through several methods. We first investigated the parameter consistency among
all pairs of O3a events from GWTC-2 using a posterior-overlap method, finding
no significant event pairs but identifying several interesting candidates with high
overlap.

We followed up on these candidate pairs using two detailed joint-PE analyses,
finding high parameter consistency for 11 pairs. However, after the inclusion of a
more appropriate population prior, selection effects, and the prior odds against the
lensing hypothesis, these candidates do not provide sufficient evidence for a strong
lensing claim.

Moreover, we used two targeted matched-filter approaches to search for additional
lensed images of the known events that could be hidden beneath the thresholds of
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the corresponding broader analyses used to produce GWTC-2, identifying six new
candidates. After follow-up by joint PE, we found no evidence to conclude that any
of these sub-threshold triggers are lensed images.

Finally, we analyzed 36 events fromGWTC-2 formicrolensing effects by performing
full PE with waveforms incorporating microlensing by point mass lenses. We found
no evidence of microlensing.

In summary, our results on O3a data are consistent with the expected low rate
of lensing at current detector sensitivities. However, improved analysis meth-
ods and lens modeling may allow digging deeper into potential lensing effects.
Electromagnetic follow-up of lensing candidates, even if they are not significant
enough based on the GW data alone, could also be promising [187, 317, 324, 374].
With the current generation of detectors further improving their sensitivity and
the global network being extended [9], the chances of detecting clear lensing sig-
natures will improve, and the field will offer many possibilities at the latest with
third-generation [14, 242, 296, 300] and space-based detectors [44, 190] and their
expected cosmological reach.
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APPENDIX

8.A Lensing statistics supplementary
Assuming a specific BBH formation channel, we can estimate the lensing rate
for merger signals from that population. For example, suppose BBHs form as
a consequence of isolated binary evolution. In that case, one can theoretically
model BBH formation assuming that it traces the star-formation rate, modulated
by the delay time distribution and by the stellar metallicity evolution [56, 57, 65,
143, 148, 244, 273, 311]. However, note that if the BBHs form through other
means or through multiple channels, the merger-rate density could be different [e.g.,
45, 46, 72, 132, 167, 254, 304, 367, 375].

Here we assume two models for the merger-rate density. We base the first model
on the assumption that the merger-rate density of the observed BBHs traces the
star-formation rate density and the BBHs originate from Population I/II stars.

In this work, we did not consider the contribution of Population III stars. Population
III stars have not been observed yet, and their physical properties, binary fraction, and
initial mass function are still a matter of debate [78, 194, 238, 240, 268, 280, 313].
As such, the contribution of Population III BBHs to gravitational-wave sources is
also uncertain [e.g., 54, 71, 219, 232]. Should Population III stars dominated the
BBH formation at high redshift, our results would need to be re-interpreted.

The first model, which we label Model A, uses the following fits that bracket the
available population synthesis results from the literature [e.g., 56, 57, 65, 143, 148,
244, 273, 311]:

Rmin
m (zm) =

a1 ea2zm

a3 + ea4zm
Gpc−3 yr−1 ,

Rmax
m (zm) =

b1 eb2zm

b3 + eb4zm
Gpc−3 yr−1 ,

(8.10)

where the fitting parameters a1 = 58.497, a2 = 2.06424, a3 = 2.82338, a4 =

2.52898, b1 = 105356, b2 = 1.30278, b3 = 2714.36, and b4 = 2.22903.

We base the second model, Model B, on the assumption that the merger-rate density
follows the Madau and Dickinson [239] ansatz:

Rm(zm; R0, α) = R0
(1 + zm)κ

1 + [(1 + zm)/(1 + zp)]
(γ+κ)

. (8.11)
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To constrain the merger-rate density at high redshift, we assume that no strong
lensing has occurred (Sec. 9.5). We further assume that events occur following a
Poisson process.

Let us now assume Model B for the merger-rate density, Eq. 8.11. The distribution
of merger-rate density parameters, given that no strong lensing has occurred,

p(R0, κ, γ, zp |N, {di}) ∝ W × p(R0, κ, γ, zp |{di}) , (8.12)

where p(R0, κ, γ, zp |{di}) follows the posterior distribution of parameters inferred
from LIGO–Virgo population studies [22], and

W =
Navg(R0, κ, γ, zp)

N exp[−Navg(R0, κ, γ, zp)]

N!
, (8.13)

with N being the number of observed, strongly lensedGWsignals, and Navg(R0, κ, γ, zp)

the expected number of events within a time ∆t. Here, like in Sec. 8.3, we do not
account for detector downtime, and instead as a proxy presume that the detectors
are always online. The R0 and κ value is measured at a low redshift [22]. The γ
and zp values are unconstrained here and thus match an uninformative prior, with
p(γ) = SN(5, 10, 3) being a split normal distribution and p(zp) being uniformly
distributed between [0, 4]. The above equations give all the necessary ingredients to
forecast the rate of strongly lensed events and place constraints on the merger-rate
density based on the number of lensed signals observed by LIGO and Virgo.

8.B Construction of sub-threshold counterpart search template banks
For theGstLALandPyCBC searches for sub-threshold lensed counterparts (Sec. 8.5)
the targeted template banks for each event are constructed starting from a certain
choice of posterior distributions released with GWTC-2 [21, 181], aiming for a
reduced-size template bank that is effective at recovering signals similar to the
primary observed event.

For the GstLAL pipeline, we start, for all but three of the O3a events from
GWTC-2, from non-spinning posteriors obtained with the IMRPhenomD wave-
form [193, 209]. In three cases, we instead start from posteriors obtained with
the IMRPhenomPv2 waveform [68, 184], which includes spin precession. These
exceptions are GW190413_052954, GW190426_152155, and GW190909_114149.
We then choose subsets of the original broad template bank from the GWTC-2
analysis by comparing against the posteriors of each event, using the following
steps as introduced by Li et al. [223]: We first draw O(1000) of each event’s pos-
terior samples with the highest likelihoods to account for the uncertainty in the
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event’s measured mass and spin parameters. For each sample we simulate, using the
aligned-spin SEOBNRv4_ROM waveform model [69, 297, 298], one signal with
the event’s original optimal signal-to-noise ratio ρopt as given by Eq. (2) in [223]
and nine extra signals with smaller ρopt, scaled by changing their effective distances
Deff [43]. The reduced template bank for an event is then constructed by searching
the simulated data with the original GWTC-2 template bank (which also consists of
SEOBNRv4_ROM waveforms) and keeping those templates that recover any of the
simulated signals with a FAR < 1 in 30 days.

For PyCBC we select a single template for each search, choosing the maximum-
posterior redshiftedmasses and aligned-spin components {(1+z)m1, (1+z)m2, χ1, χ2}

as estimated from a four-dimensional GaussianKDEfit to the posterior samples from
GWOSC [181] for these parameters. Where available, we use aligned-spin posterior
samples. In the case of GW190412 and GW190814, we use samples generated
using the SEOBNRv4_ROM waveform; for GW190426_152155 we use a mixture
of samples generated using the SEOBNRv4_ROM_NRTidalv2_NSBH and IMR-
PhenomNSBH waveforms; and for GW190425 we use samples generated using the
IMRPhenomD_NRTidal, TEOBResumS, and SEOBNRv4T_surrogate waveforms.
If aligned-spin posteriors are not available in the GWOSC [181] data release, we use
precessing posterior samples and marginalise over the transverse-spin components
before applying the KDE. This produces an aligned-spin template with high matches
at the peak of the posterior. In the case of GW190521, we use samples generated us-
ing the IMRPhenomPv3HM [210], NRSur7dq4 [354] and SEOBNRv4PHM [285]
waveforms. For all other events, we use samples generated using the SEOBNRv4P
and IMRPhenomPv2 waveforms.

These choices of waveforms and posterior samples are not necessarily optimal, but
they are valid for this analysis in the sense that the recovery of similar waveforms
with parameters close to the best-fit ones for the targeted GWTC-2 events has
been verified through injection studies. In addition, in the actual searches, the
targeted banks constructed in this way successfully recovered the corresponding
GWTC-2 events in all GstLAL searches, while for PyCBC triggers within 0.1 s of
the target events were excluded from the final trigger list, but in all cases where
the original events were observed with two or more detector, a coincident trigger
was also recovered in the targeted search. In future work, revisiting the choice
of posterior samples used to construct template banks may further improve sub-
threshold searches’ effectiveness.
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8.C Injection study for microlensing analysis

−3 −2 −1 0 1

log10BML
U

0

5

10

15

20
N

u
m

b
er

of
ev

en
ts

Figure 8.C.1: Distribution of microlensing Bayes factors log10 B
ML
U for unlensed

simulated signals, recovered using a lensed template.

A high Bayes factor BML
U itself is not conclusive evidence of microlensing in an

observed event. We have performed an injection study to explore the impact of
statistical fluctuations on the Bayes factor obtained from unlensed signals. We
generate unlensed injections by randomly drawing from the parameter space of
precessing BBH systems. Simulated Gaussian noise is used considering nominal
O3 sensitivity [9], and we use the IMRPhenomPv2 waveform model [68, 184] for
all simulated injections. The statistical fluctuations of log10 B

ML
U for 100 unlensed

injections recovered using lensed templates can been seen in Fig. 8.C.1 which shows
that the typical values found are log10 B

ML
U < 0.75.
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C h a p t e r 9

SEARCH FOR LENSING SIGNATURES IN LVK’S FULL THIRD
OBSERVING RUN

Note: This chapter is an adaptation of the LIGO-Virgo-KAGRA collaboration-wide
publication:

LIGO and Virgo Scientific Collaboration, R. Abbott, ...(850 authors)...,Alvin
K. Y. Li, ...(842 authors)..., “Search for gravitational-lensing signatures in the
full third observing run of the LIGO-Virgo network”, arXiv e-prints, 2023.
doi:10.48550/arXiv.2304.08393.

Alvin K. Y. Li is one of the editorial leads for writing this LIGO-Virgo-KAGRA
collobration-wide paper and led the analysis for the search for sub-threshold lensed
gravitational waves (Section 3.1). The other related sections in this chapter are
contributions from co-authors.

9.1 Introduction
In this chapter, we search for a variety of lensing signatures in the third LIGO
Scientific, Virgo, and KAGRA (LVK) Collaboration Gravitational-Wave Transient
Catalog (GWTC-3) [30] and study its implications for gravitational wave lensing.
In particular, we expand on the lensing results presented for the first half of the
third observing run of the LIGO–Virgo network (O3a) [23] by including the signals
found in the second half of the third observing run (O3b) and by including additional
analyses to further test the lensing hypothesis and interpret their outcomes. First,
we search for the effects of strong lensing by studying the similarity and lensing
evidence for pairs of binary black holes mergers. We consider both pairs of detected
mergers (super-threshold) and pairs formed by detected mergers and candidates
that nominally fall below the detection threshold (sub-threshold) with consistent
waveform morphologies. Second, we search for evidence of microlensing induced
by point-mass lenses. Finally, we constrain the expected rate of lensed signals, black
holes merger-rate density, and the fraction of dark matter composed of compact
objects.

It is important to note that GWTC-3 is a cumulative catalog describing all the
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gravitational wave transients found in all observing runs to date: O1, O2, O3a,
and O3b. O1 made observations between 2015 September 12 00:00 UTC to 2016
January 19 16:00 UTC, O2 between 2016 November 30 16:00 UTC to 2017 August
25 22:00 UTC, O3a between 2019 April 1 15:00 UTC to 2019 October 1 15:00
UTC, and O3b between 2019 November 1 15:00 UTC to 2020 March 27 17:00
UTC.

Results of all analyses in this paper and associated data products can be found in
LIGO Scientific Collaboration and Virgo Collaboration [228]. gravitational wave
strain data [182] and posterior samples [27] for all events fromGWTC-3 are available
from the Zenodo platform or the Gravitational Wave Open Science Center [35].

9.2 Data and Events
The analyses presented here expand on the lensing results from the first half of O3
(also referred to as O3a) by documenting new results from the second half of O3
(also referred to as O3b) using GWTC-3 [30]. The O3a lensing results paper [23]
used the GWTC-2 catalog [21]. Since then, GWTC-2.1 [33] has reclassified 2 of
the candidates used in the O3a lensing paper as having a probability of astrophysical
origin of less than 0.5 and are not included in the results described here, specifically
GW190424_180648 and GW190909_114149. GWTC-3 also includes 5 events
that were identified by the O3a lensing sub-threshold search using the TESLA
pipeline introduced in Chatper 7, namelyGW190925_233845, GW190426_190642,
GW190725_184728, GW190805_211137, and GW190916_200658.

Various instrumental upgrades have led to more sensitive data in O3b, with a median
binary neutron star inspiral ranges [2, 43] of 115 Mpc in O3b compared to 108 Mpc
in O3a for LIGO Hanford, 133 Mpc in O3b compared to 135 Mpc O3a for LIGO
Livingston, and 51 Mpc in O3b compared to 45 Mpc in O3a for Virgo [30]. The
duty factor for at least one detector being online was 96.6%; for any two detectors
being online at the same time was 85.3%; and for all three detectors together was
51%. Further details regarding instrument performance and data quality for O3b
are available in Abbott et al. [30], Acernese et al. [39], Davis et al. [131].

The LIGO and Virgo detectors used a photon recoil-based calibration [83, 207, 357]
resulting in a complex-valued, frequency-dependent detector response. Previous
studies have documented the systematic error and uncertainty bounds for O3b strain
calibration in LIGO [335, 336] and Virgo [38].

Transient noise sources, referred to as glitches, contaminate the data and can affect
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the confidence of candidate detections. Times affected by glitches and other data
quality issues are identified so that searches for gravitational wave events can exclude
(veto) these periods of poor data quality [3, 15, 131, 163, 275]. In addition, several
known persistent noise sources are subtracted from the data using information from
witness auxiliary sensors [128, 145].

Candidate events, including those reported in Abbott et al. [30] and the new candi-
dates found by the search for sub-threshold counterpart images in Sec. 9.3 of this
chapter, have undergone a validation process to evaluate if instrumental artifacts
could affect the analysis; this process is described in detail in Sec. 5.5 of Davis
et al. [131]. This process can also identify data quality issues that need further
mitigation for individual events, such as the subtraction of glitches [115, 129] and
non-stationary noise couplings [352], before executing parameter estimation algo-
rithms. See Table XIV of Abbott et al. [30] for the list of events requiring such
mitigation.

The GWTC-3 catalog [30] contains 35 events from O3b in addition to the 55
previous events from previous observing runs [33] with a False-Alarm-Rate below
two per year, and an expected rate of contamination from detector noise less than
10–15% [30]. We neglect the potential contamination in this analysis. These events
were identified by four search pipelines: one minimally modeled transient search
cWB [212–214, 216, 217] and three matched-filter searches GstLAL [183, 250,
309], MBTA [40, 50], and PyCBC [42, 43, 123, 276, 351]. Their parameters
were estimated through Bayesian inference using the bilby [49, 305, 326] and
RIFT [221, 289, 371] packages. Both the matched-filter searches and parameter
estimation use a variety of binary black holes waveform models which generally
combine knowledge from post-Newtonian theory, the effective-one-body formalism,
and numerical relativity [for general introductions to these approaches, see 61, 125,
287, 314, and references therein]. The analyses in this paper rely on the same
methods, and the specificwaveformmodels and analysis packages used are described
in each section.

Of the 35 events from O3b, 31 are likely binary black holes, while four have
component masses consistent with being below 3M� [24, 30], thus potentially
containing a neutron star. We consider these 35 events in the analyses documented
in this paper. Specifically, we use the following input data sets for each analysis.
The searches for sub-threshold counterpart images in Sec. 9.3 cover the whole O3
strain data set, using the same data quality veto choices as in Abbott et al. [30]
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but a strain data set consistent with the parameter estimation analyses: the final
calibration version of LIGO data [335] with additional noise subtraction [352]. The
posterior-overlap analysis in Sec. 9.3 starts from the posterior samples released
with GWTC-3 [182]. The joint-parameter estimation analyses in Sec. 9.3 and
microlensing analysis in Sec. 9.4 reanalyze the strain data in short segments around
the event times, available from the same data release, with data selection and noise
mitigation choices matching those of the parameter estimation analyses in Abbott
et al. [30].

9.3 Strong lensing
If a gravitational wave travels close enough to amassive lens, it will producemultiple
images, with the number of images depending on the lens profile and source lens
geometry. This regime is known as the strong-lensing limit. Each of these lensed
images hL

j will have a change in its amplitude, arrival time and phase compared to
the emitted signal h [315]:

hL
j ( f ) =

√
|µ j | exp

[
i2π f∆t j − isign( f )n jπ

]
h( f ) , (9.1)

for n j = 0, 1/2, 1 for type I, II and III images, which correspond to differentminima of
the lensing potential. While the magnification µ j and time delay∆t j do not affect the
waveformmorphology (they are completely degenerate with the luminosity distance
and coalescence time) the frequency-independent lensing phase shift n jπ could
induce distortions when the signal has multiple frequency components [119, 154].
In particular, this occurs for type II images since type I does not have a phase
shift, and type III only flips the overall sign, which is degenerate with shifting the
polarization angle by π/2. The sign( f ) term is only there to ensure that the time
domain waveform is real.

Making a distinction between effects that do and do not change the waveform
morphology, we divide our search into two parts. First, we search for pairs of
events consistent with the strong-lensing hypothesis. Some of these pairs will have
sufficiently strong amplitudes that can be identified as confident detections (super-
threshold) by the search pipelines used in Abbott et al. [21, 30, 33], while others
may have not been identified as signals (sub-threshold) because of the relative de-
magnification. Our searches will include both sub- and super-threshold pairs. A
pair is the minimum association, but higher multiplicities are also possible. Then,
we search for strong lensing focusing on the distortion of type II images.
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Sub-threshold Search
In this section, we describe the search for possible sub-threshold counterparts of
super-threshold detections from O3. We perform searches over all O3 strain data
following the rules for data selection described in Abbott et al. [33] and Abbott et al.
[30]. A general search for gravitational waves uses a large template bank covering
a broad parameter space as we have no prior information about the signal subspace,
resulting in a high trials factor and hence incurring a high noise background. Sub-
threshold (lensed) gravitational waves with smaller amplitudes will therefore be
easily buried in the noise without being identified as detections as they cannot pass
the usual detection threshold.

To uncover these sub-threshold (lensed) signals, we have to effectively reduce the
noise background while keeping the targeted foreground (i.e. the signals) con-
stant [122, 223, 247]. The strong lensing hypothesis asserts that lensed gravitational
waves, super-threshold or sub-threshold, coming from the same origin have identical
waveforms apart from an overall scaling factor and aMorse phase factor as described
in Eq. 9.1, and hence should have consistent inferred intrinsic masses and spins. 1
Therefore, we can construct a reduced template bank with only templates that have
masses and spins similar to those of a target super-threshold detection. Using the
reduced bank lowers the trials factors and noise background and effectively searches
for previously unidentified possible sub-threshold lensed counterparts to the target
detection. For each known candidate from O3 with a probability of astrophysical
origin pastro > 0.5, we create a reduced template bank using their respective public
posterior mass and spin samples released with GWTC-3 [182], ensuring that the
templates will match well with their respective target events while improving the
ranking statistics of the search for similar events, and hence potentially returning
new candidates that previously did not reach the threshold pastro > 0.5 in GWTC-3.
Details of how the reduced banks are constructed can be found in Li et al. [223].

Given these template banks, we proceed with configurations and procedures as
outlined in Abbott et al. [23] to produce a priority list of potential lensed candidates
matching each target event, using GstLAL [250, 309] as the search pipeline. The
list of candidates obtained is again further vetted using a sky location consistency
check detailed in Abbott et al. [23], Wong et al. [366] to ensure the candidates have

1 The Morse phase factor for different image types has not been considered in the search
described here. Should a gravitational wave include detectable higher-order multipole moments,
then the Morse phase factor will cause complicated changes to the waveforms, inducing a loss in the
search sensitivity.
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consistent sky location with the target event. To avoid false dismissal at this step,
we only veto candidates with an overlap in 90% credible region of the sky location
O90%CR = 0. All candidates with non-vanishing localization overlap are kept for
further follow-up with data quality checks as discussed in Sec. 9.2.

In Table 9.3.1, we list the top five candidates from the individual targeted searches
for counterparts of the detections reported in O3. As in the O3a lensing paper
[23], we do not assess in detail the probability of astrophysical origin for each of
these. It is also important to note that the reported FARs do not indicate how likely
each trigger is a lensed counterpart of the target event, but only how likely noise
produces a trigger with a ranking statistic higher or equal to that of the candidate
under consideration using these reduced template banks. Similar to Abbott et al.
[23], we account for the fact that we have analyzed ∼ 332 days of data multiple times
for a total of 76 events, and set the False-Alarm-Rate threshold to be 1 in 69 years
(i.e. 4.59 × 10−10 Hz). We followed up on the top two candidates listed that passed
the False-Alarm-Rate threshold through golum’s joint PE analysis [198, discussed
in 9.3]. The results are included in Table 9.3.1. Since both pairs of candidates have
mildly negative log10 coherence ratios, showing that there is no evidence supporting
the lensing hypothesis for either of these pairs, we did not further follow them up
with the more computationally intensive hanabi analysis [235, discussed in 9.3].

Preliminary Identification of Lensed Pair Candidates
Multiple, non-overlapping images produced by strongly lensed gravitational wave
signals have identical phase evolution, and therefore their intrinsic parameters (as
well as their orbit’s inclination with respect to the line of sight) are expected to have
overlapping posteriors. In addition, the angular separations of images (produced
by galaxies or galaxy clusters) are several orders of magnitude smaller than the
uncertainties associated with their gravitational wave sky location. As a result, their
sky localisations will also overlap. (As in the previous section, the Morse phase for
different image types is not considered here.)

Under these assumptions, a Bayes-factor statistic (BL
U) that assesses the consistency

between a lensed candidate pair’s posterior distributions of intrinsic parameters, sky
location, and inclination angle (and thus acts as a discriminator between the lensed
and unlensed hypotheses) can be constructed [188]. To convert this statistic to a
False-Positive-Probability,2 a background distribution of unlensed BL

U needs to be
2 False-Alarm-Rate and False-Positive-Probability, while conceptually similar, pertain to differ-
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Table 9.3.1

Top 5 candidates from individual sub-threshold searches for strongly-lensed coun-
terpart images of O3 events from GWTC-3.

Target event Lensed candidate (UTC) ∆t [days] FAR
[
yr−1] O90%CR [%] log10(C

L
U)

GW190930_133541 19-08-05 13:43:48 −56.0 0.002 61.00% −6.4
GW191204_171526 19-08-05 13:43:48 −121.1 0.006 25.40% −12.2
GW190828_065509 19-11-12 12:13:18 76.2 0.023 18.00% -
GW190725_174728 19-08-05 13:43:48 10.8 0.038 39.50% -
GW190828_065509 20-02-06 07:24:59 162.0 0.154 36.00% -

The first column lists the target event from O3. The second column shows the
time (YY-MM-DD HH-MM-SS) in UTC of the found sub-threshold candidate. The
third column shows the time difference (in days) between the candidate and the target
event. The fourth column shows the redshifted chirp mass of the template that found
the trigger. The fifth column shows the redshifted chirp mass of the target event.
The sixth column shows the FARs from the individual search for the new candidate
from the second column. The seventh column shows the percentage overlap of the
90% sky localization regions between the candidate and the target event. The eighth
column shows the log10 coherence ratio obtained from golum’s joint PE analysis.

estimated.

To that end, we conduct an injection campaign involving binary black holes only,
in which we sample component masses m1,2 from a power-law distribution [4] in
the range (10–50M�). We assume that the redshift distribution of binary black
holes is similar to population synthesis simulations of isolated binary evolution
[56, 57, 72, 143, 148, 375]. All other parameters are sampled from uninformative
prior distributions [188]. We inject the simulated signals into Gaussian noise with
O3a representative Power Spectral Density for a LIGO–Virgo detector network.
We compute BL

U for all possible pairs in this injection set, and following Abbott
et al. [23], we assign an False-Positive-Probability to a candidate pair using its
BL

U. Candidate lensed pairs involving binary neutron star or neutron-star-black-hole
events are not analyzed and ranked.

We additionally employ a Machine Learning-based binary classification scheme
to rapidly provide a probability of class membership (lensed or unlensed) for a
given candidate binary black holes pair [177]. Such an analysis not only serves

ent contexts in this work. In particular, we use False-Positive-Probability exclusively for significances
associated with candidate lensed pairs to discriminate them from unlensed pairs. On the other hand,
a False-Alarm-Rate is associated with the significance assigned to individual candidate gravitational
wave signal events.



183

as an independent method to rank candidate pairs but also provides a quantitative
significance to pairs for which source-parameter inference samples are unavailable.

Q-transform-based [98] time–frequency maps of strongly lensed binary black holes
are expected to have similar shapes, although the signal energy in each time-
frequency tile will differ between images. Furthermore, as mentioned earlier, their
sky localisations will overlap. Exploiting these facts, Machine Learning models
that take Q-transforms and Bayestar [319] sky localisations as inputs, are built.
These models use a DenseNet [191] architecture [with several layers pre-trained on
the ImageNet dataset; 136], and XGBoost [100] algorithms, trained on lensed and
unlensed binary black holes signals injected in Gaussian noise (for details on the
Machine Learning training set, see Goyal et al. [177]) The outputs of the individual
models are then combined to provide a probability that a candidate pair is lensed or
unlensed.

To convert this probability to an False-Positive-Probability, we construct a back-
ground distribution of Machine Learning probabilities using a population of un-
lensed binary black holes events injected in Gaussian noise characterized by the
O3a representative Power Spectral Density – the same as was used for the posterior
overlap statistic. This Power Spectral Density is found to be sufficiently similar to
the averaged O3 Power Spectral Density for the estimation of the background distri-
bution so as not to change the preliminary selection of candidate pairs. The binary
black holes population is identical to the one used by the posterior overlap statistic
analysis to construct its corresponding background distribution. Furthermore, the
sky localisations used to rank candidate pairs come from the same PE analysis used
to estimate the posterior overlap statistic 3.

A plot comparing the False-Positive-Probabilities assigned by the posterior over-
lap and Machine Learning analyses is shown in Fig. 9.3.1. Candidates that have
either a posterior-overlap-assigned False-Positive-Probability or Machine Learning-
assigned-False-Positive-Probability, (or both), that are smaller than 1%, are selected
for more comprehensive Bayesian analyses.

Joint Parameter Estimation
Similar to the analysis of O3a data [23], we perform a joint PE analysis for the
most relevant candidate lensing pairs. We follow up on the pairs that display low

3 Note that Bayestar, which is used to assign Machine Learning probabilities to real-event
candidate pairs, is expected to provide sky localisations that are similar to those provided by this
parameter estimation analysis.
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Figure 9.3.1: The False-Positive-Probabilities of each lensed candidate pair con-
structed from the set of gravitational wave events that exceed an astrophysical
probability [159, 206] threshold of 0.5, as evaluated using the BL

U and Machine
Learning classification statistics. Orange dashed lines that correspond to an False-
Positive-Probability threshold of 10−2, are also placed. Pairs whose BL

U-based or
Machine Learning-based False-Positive-Probabilities fall below this threshold are
selected for additional joint parameter estimation analyses. BL

U < 10−6 has been
mapped to an False-Positive-Probability of 1, which is reflected in the gap along the
vertical axis between 0.4 and 1.

FPP in their posterior overlap or Machine Learning classification scheme. These
are pairs within the whole of O3, but we only consider here those with at least one
event in O3b since pairs in O3a were studied in Abbott et al. [23]. We use two
complementary pipelines: golum [198] and hanabi [235]. Both pipelines use the
nested sampling algorithm dynesty [333], and implement the joint PE with the
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help of bilby [49, 305].

golum [198] is a joint PE tool where the workload is reduced by analyzing the
two images, under the lensed hypothesis, in two successive stages. The first image
is characterized by the same parameters of the unlensed case (where the time of
coalescence and the luminosity distance are the observed ones) with an additional
Morse factor. The second image is then analyzed using (samples of) the posterior
from the first image as the prior and linking the parameters modified by lensing
through three lensing parameters: a time difference, a relative magnification, and
a Morse factor difference. The final coherence ratio CL

U is the ratio of the product
of the evidences for the two runs under the lensed hypothesis and the product of
evidences for the two images analyzed under the unlensed hypothesis.

hanabi [235] first performs a joint inference on a signal pair by constructing a
joint likelihood function that is a product of the likelihood function for each indi-
vidual event, with a joint prior distribution. The latter is defined for a set of joint
parameters that can simultaneously describe both signals if they are truly lensed,
for example, the masses and the spins, as well as a set of parameters that are dif-
ferent for each of the signals such as the time of arrival, the apparent luminosity
distance, and the Morse phase factor associated to each of the lensed signals. The
joint parameter space is explored with the package hanabi.inference [235]. The
inference result is then reweighted with an astrophysically motivated prior distribu-
tion; for example, the astrophysical prior distribution for the redshifted component
masses would be dependent on both the population model for the intrinsic BBH
masses and the redshift distribution of the sources. However, the true source red-
shift cannot be determined from gravitational wave observations alone since the
true source redshift is degenerate with the magnification from strong lensing. To
compute the Bayes factorBL

U, the source redshift, which serves as a hyper-parameter
for the signal pair, must be marginalized over. Selection effects enter as a normal-
ization constant to the marginal data likelihood. This procedure is implemented
in hanabi.hierarchical with the help of gwpopulation [338]. The ratio of
unnormalized evidences calculated under the lensed hypothesis and the unlensed
hypothesis using this astrophysical prior is referred to as the population-weighted
coherence ratio CL

U

��
pop, while the ratio of normalized evidences that accounts for

both population prior and selection effects is referred to as the Bayes factorBL
U in this

analysis. We follow our fiducial Singular Isothermal Sphere lensing model when
computing the magnification prior [23]. This analysis however does not impose any
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informative prior on the time delay or the image types from the lensing model.

Both pipelines use IMRPhenomXPHM [295] as the waveform model, with an addi-
tional Morse phase applied to each of the waveform polarizations in the frequency
domain. Other inputs, such as the power spectral density estimates and the cali-
bration envelopes, are chosen to match the analyses done in the GWTC-3 catalog
paper [30]. Following the same prescriptions of the other analyses, we fix the BBH
population model to the Power-Law + Peak model for the primary masses and the
merger rate history to Madau–Dickinson star-formation rate [239] normalized by
the median GWTC-3 rate [29].

Taking advantage of golum’s rapid joint PE, we analyze the 75 pairs of candidates
highlighted by posterior overlap and Machine Learning. For each of them, we
compute the coherence ratio, which accounts for the probability ratio of the lensed
and unlensed hypotheses without including selection effects and population priors.
Wefind that there is awide range of log10(C

L
U) values, with a peak slightly above zero.

This comes from the fact that this analysis considers only triggers already flagged by
the posterior overlap andMachine Learning analyses. As a consequence, the analysis
is biased towards the higher values. Nevertheless, a significant proportion of events
flagged with the Machine Learning pipeline and the posterior overlap pipeline are
disfavored, having log10(C

L
U) < 0. When comparing the highest coherence ratio

found in the data, log10(C
L
U) = 2.5, with a background of unlensed events, we find

that it is well within the expected values, with 1% of the background events having
larger CL

U. This background is computed for a population of compact binaries
that follows the mass, spin and redshift distribution of GWTC-3 [29]. This large
number of positive log10(C

L
U) is consistent with the high number of expected false

alarms [94, 364]. For those pairs with the highest coherence ratio, we follow up with
the hanabi pipeline for a total of 17 pairs. Our main results are presented in Fig.
9.3.2, where the left column indicates the event pairs and the horizontal axis their
BL

U. There we can observe that none of the event pairs shows support for the lensing
hypothesis, i.e. all BL

U < 1. The pair with highest BL
U is GW190620_030421 –

GW200216_220804, for an evidence against lensing of ∼ 1/100 with the fiducial
merger rate density model following the Madau-Dickinson star-formation rate. As
a robustness check of how using different merger rate density models would change
the results, we repeat the calculations using two more models, namely Rmin(z) and
Rmax(z) from our previous O3a analysis [23] that minimally and maximally bracket
many existing population-synthesis results [56, 57, 143, 148]. We see that while the
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exact values for the Bayes factor change with the use of different merger rate density
models, the conclusion remains that there is no support for the lensing hypothesis
in any of the event pairs analyzed. To further assess the significance of these pairs
we also include a color code to indicate the probability of having an astrophysical
origin ppair

astro, defined as the product of the highest pastro of each event reported in
the GWTC-3 catalog paper [30] by different pipelines. In conclusion, we find no
evidence of multiply imaged events.
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Figure 9.3.2: Bayes factors BL
U from hanabi for the highest-ranked multiple-image

candidate pairs. As a check on the robustness of our results, we show the Bayes
factors calculated using three different merger rate density models, namely the
fiducial model tracking the Madau–Dickinson star-formation rate [239], and also
the Rmin(z) and Rmax(z) model introduced in Abbott et al. [23]. The color for each
marker represents the value of ppair

astro for each pair, which is the probability that both
of the signals from a pair are of astrophysical origins and not from terrestrial sources.

Type II image search
In addition to the search for strong-lensing identifying multiple images, we also
look for the distortions that lensing introduces in type II images [154]. This is
because the frequency-independent phase shift that each image acquires becomes
a frequency-dependent time delay for different frequency components. Therefore,
for signals containing different measurable spherical harmonic modes, as recently
detected in GW190412 [17], GW190814 [19], and other events [30], the overall
lensed waveform can be distorted. The extent of the distortion is subject to the
power in modes beyond the quadrupole radiation. As a consequence, we do not
expect to see these distortions in the majority of the lensed events with current
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sensitivities. However, if not searched for, they might be mistaken with deviations
from general relativity [156].

To look for these distortions, we use golum [198]. Within GWTC-3 we identify
10 events whose posterior has some information about the Morse phase, either by
favoring or disfavoring the distortions of the type II image by more than 4% with
respect to normality, i.e. the probability of each image type p(n j) is p(n j) > 0.37
or p(n j) < 0.29. We summarize the evidence of one image type versus another in
Fig. 9.3.3. Since only type II images display waveform distortions, we only compute
the Bayes factors of the type-II-vs-I and the type-II-vs-III hypotheses. As can be seen
in Fig. 9.3.3, only a few events display a preference for one image type versus the
other one. This is expected given the signal-to-noise ratio of these events and their
power in higher multipole moments. However, GW190412 andGW200129_065458
present higher evidence for type II images. For GW190412 we find a log10 Bayes
factor for type II vs. I of 0.60 ± 0.16 and for type II vs. III of 0.22 ± 0.16. For
GW200129_065458 we find 0.38 ± 0.14 and 0.24 ± 0.14 for type II vs. I and type
II vs. III respectively. These events have possible super-threshold counterparts but
those were discarded by the golum analysis. In addition, we have also searched for
sub-threshold triggers associated with these events, but found none.

To assess the significance of the type II images, we follow up on GW190412 and
GW200129_065458 performing a simulation campaign of type I and type II images.
GW190412 simulations show that indeed this event has enough power in higher
multipole moments to favor the type II hypothesis so that it could meaningfully test
that hypothesis and would favor it if it were true. For GW200129_065458, however,
that is not the case. Moreover, GW200129_065458 might have a significant glitch
under subtraction [291]. The preference of GW190412 for a type II image could
be just a systematic effect due to the waveform modeling, especially since this
event falls in challenging parts of the parameter space [17, 109, 185]. For this
reason, we repeat the analysis with different waveform families from our fiducial
IMRPhenomXPHM model [295]. We find that the preference for a type II image
remains when using SEOBNRv4PHM [285] or IMRPhenomPv3HM [210]. The
same conclusion holds when using different noise realizations for the simulations.
Details on these simulation campaigns can be found in Appendix 9.A.

Although we find a mild preference for the type II image hypothesis in GW190412,
we find that this analysis cannot provide conclusive evidence of strong lensing.
However, our techniques and pipeline will be relevant for future observing runs
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GW200129_065458
GW190412

Figure 9.3.3: Distribution of Bayes factors comparing different image type hypothe-
ses for the 10 most relevant events. We compare the probability of being type II
vs. type I (blue-solid histogram) and of being type II vs. type III (orange-dashed
histogram). Only type II images display waveform distortions and for that reason,
we do not compare type III vs. type I.

when high-signal-to-noise ratio events display stronger evidence of higher-order
modes.

9.4 Microlensing Effects
When the characteristic wavelengths of gravitational waves are comparable to the
Schwarzschild radius of a lens (λGW ∼ Rlens

Sch ), we may observe frequency-dependent
magnification of the waveform that can inform us about the lens model [90, 95,
101, 105, 116, 121, 138, 139, 205, 220, 286, 337]. Since the gravitational waves
of sources such as binary black holes sweeps through a wide range of frequencies,
these beating patterns can reveal the presence of intervening microlenses. In the
sensitive range of ground-based detectors, these effects are expected for objects up
to ∼ 105M, which includes stellar-mass objects and intermediate-mass black holes.

Objects that can cause these microlensing effects are predominantly found in larger
structures. Therefore we expect that realistic microlensing due to a field of mi-
crolenses embedded in an externalmacromodel potential such as galaxies and galaxy
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clusters causes complex effects on the unlensed waveforms [138]. While the effects
of these systems on gravitationalwave signals have been studied [101, 139, 257, 373],
the resulting waveforms are computationally costly to evaluate. Nevertheless, in the
absence of specific knowledge of the matter distribution along the travel path and
to keep the problem computationally tractable, we assume that the beating patterns
are caused by isolated point masses as a first approximation. In this case, the mi-
crolensed waveform hMicro can be related to the unlensed waveform hU according
to

hMicro( f ; θ, M z
L, y) = hU( f ; θ) F( f ; M z

L, y) , (9.2)

where θ represents the set of parameters defining an unlensed gravitational wave
signal, M z

L = ML(1 + zl) is the redshifted lens mass, y is the dimensionless impact
parameter, and F( f ; M z

L, y) is the frequency-dependent lensing magnification factor
[e.g., 337].

Similar to Abbott et al. [23], we perform Bayesian inference on all events from O3b
using the unlensed signalmodel hU and themicrolensing signalmodel hMicro. In par-
ticular, we use bilby [49, 305] and the nested sampling algorithm dynesty [333].
Data products such as strain data and Power Spectral Densities are the same as for
GWTC-3 and between the two signal models [30]. For the gravitational wave param-
eters, we use the same priors as GWTC-3, while the prior on the lens mass M z

L is log
uniform in the range [1–105 M�] and the prior on the impact parameter is p(y) ∝ y

between [0.1, 3]. All events were analyzed using IMRPhenomXPHM [295].

The process yields posterior probability distributions of θ or
{
θ, M z

L, y
}
for the un-

lensed and lensed signal models, respectively. Moreover, we compute the evidence
ratio between the microlensed and unlensed signal models, better known as the
Bayes factor BMicro

U .

Fig. 9.4.1 shows the distribution of log10 B
Micro
U for all the events in O3 and simulated

unlensed signals fromAbbott et al. [23]. The distribution of log10 B
Micro
U is primarily

clustered around 0 and the distribution for O3 events does not extend to significantly
higher values than the distribution for simulated signals. Themarginalized posteriors
of the microlensing parameters are shown in Appendix 9.B. We conclude that there
is no compelling evidence for the presence of microlensing signatures.

9.5 Implications
In this section, we consider some of the implications that derive from the search
for lensing signatures. We first forecast the number of detectable strongly lensed



191

−2 −1 0 1 2

log10 BMicro
U

0.0

0.5

1.0

1.5

2.0

2.5

P
( lo

g
10
BM

ic
ro

U

)
O3 Events

Background

Figure 9.4.1: Distribution of microlensing log10 Bayes factors BMicro
U for all events

in O3 (blue, solid line) and simulated unlensed signals (orange, dashed line) from
Abbott et al. [23].

events based on the latest knowledge on the merger-rate density. Next, we infer
upper limits on the strong lensing rate using the non-detection of resolvable strongly
lensed binary black holes events. Finally, we use the non-detection of microlensing
to infer the compact dark matter fraction in the Universe.

Strong lensing rate
We predict the rate of lensing using the standard methods outlined in the litera-
ture [224, 267, 274, 281, 364, 372], at galaxy and galaxy-cluster lens mass scales.
To model the lens population, we need to choose a density profile and a mass func-
tion. We adopt the Singular Isothermal Sphere density profile for both galaxies and
galaxy clusters. Moreover, we use the velocity dispersion function from the Sloan
Digital Sky Survey [103] for galaxies and the halo mass function from Tinker et al.
[342] for clusters which have also been used in other lensing studies [e.g., 282, 302].
The Singular Isothermal Sphere profile can accurately describe lensing by galaxies,
but the mass distribution of clusters tends to be more complicated.

Under the Singular Isothermal Sphere model, we obtain two images with different
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magnifications and arrival times. The rate of strong lensing is given by

Rlens =

∫
dN(Mh, zl)

dMh

dDc

dzl

Rm(zm)

1 + zm

dVc

dzm
σ(Mh, zl, zm, ρ, ρc)

× p(ρ|zm) dρ dzm dzl dMh ,

(9.3)

where dN(Mh, zl)/dMh is the differential comoving number density of lensing halos
in a halo mass shell at lens redshift zl, Dc and Vc are the comoving distance and
volume, respectively, at a given redshift, Rm(zm) is the total comoving merger rate
density at redshift zm, (1+zm) accounts for the cosmological time dilation, p(ρ | zm)

is the distribution of signal-to-noise ratio at a given redshift, ρc is the network
signal-to-noise ratio threshold, and σ is the lensing cross-section which indicates,
as a function of its various arguments, how efficiently strong lensing will occur.
We model the mass distribution of binary black holes following the results for
the Power Law + Peak model of Abbott et al. [29]. We consider a merger rate
density model that assumes the Madau–Dickinson ansatz [239] that is consistent
with recent results from GWTC-3. Moreover, we make use of the absence of a
detected Stochastic Gravitational Wave Background to further constrain the merger
rate density [29]. For consistency with previous analyses [e.g., 20], we take the
Hubble constant from Planck 2015 observations to be H0 = 67.9 km s−1 Mpc−1

[41].

Furthermore, we choose ρc = 8 as a point estimator of the detectability of gravi-
tational wave signals. We find this choice to be consistent with the search results
in Abbott et al. [21] and Sec. 9.3, and we estimate its impact to be subdominant
compared to other sources of uncertainty.

Nevertheless, Robertson et al. [302] have demonstrated that the Singular Isothermal
Sphere model can reproduce the lensing rate predictions from a study of numerically
simulated cluster lenses. Thus, we adopt the samemodel for both galaxies and galaxy
clusters.

In Table 9.5.1, we show our estimates for the relative rate of lensing expected to be
observed by the LIGO–Virgo network of detectors. The results are shown separately
for galaxy-scale and cluster-scale lenses. Furthermore, these rates are calculated
for events that are doubly lensed and for two cases: when only a single event (i.e.,
the brighter one) is detected (S), and when both of the doubly lensed events are
detected (D). The expected fractional rate of lensing (i.e. the lensed to unlensed
rate) spans the range O(10−4–10−3), depending on the merger rate density assumed.
We estimate the fractional rate of observed double (single) events for galaxy-scale
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Table 9.5.1: Expected fractional rates of observable lensed double events at current
LIGO–Virgo sensitivity.

Merger Rate Density Galaxies Galaxy Clusters
Model RD RS RD RS

GWTC-3+Stochastic 1.9−11.0 ×10−4 5.0−19.5 ×10−4 0.8−4.4 ×10−4 2.0−7.6 ×10−4

This table lists the relative rates of lensed double events expected to be observed by
LIGO–Virgo at the current sensitivity where both of the lensed events are detected
(RD) and only one of the lensed events is detected (RS) above the signal-to-noise ratio
threshold. The rates encompass a 90 percent credible interval. We show the rate of
lensing by galaxies (σvd = 10–300 km s−1) and galaxy clusters (log10(Mhalo/M�) ∼
14–16) separately.

lenses to lie in the range 1.9−11.0 ×10−4 (5.0−19.5 ×10−4 ). Similarly, for cluster-
scale lenses, the fractional rate is estimated to be in the range of 0.8−4.4 ×10−4

(2.0−7.6 ×10−4), typically lower than the rates on galaxy scales. These estimates
suggest that observing a lensed double image is unlikely at the current sensitivity of
the LIGO–Virgo network of detectors. Nevertheless, at design sensitivity and with
future upgrades, standard forecasts suggest that the possibility of observing such
events might become significant [224, 267, 274, 281, 364, 372]. Compared with
other lens models, our lensing rates are consistent with those predicted for Singular
Isothermal Ellipsoid models [e.g., 281, 364, 372].

Implications from the non-observation of strongly lensed events
The absence of any detections of strongly lensed gravitational wave events before and
during O3 provides a complementary way to constrain the merger rates of compact
objects at high redshift. The detection of individual gravitational wave events has
enabled measurement of the low redshift (z < 1) merger rate [29]. However, the
high redshift merger rate of gravitational wave sources is not yet measured directly,
and we have only been able to place an upper limit on it from the absence of
a detection of the Stochastic Gravitational Wave Background [20]. The absence
of such a detection naturally leads to a bound on the lensing rate expected from
GWTC-3 [81, 266].

By using the same power-law form for the merger rate as that used in Sec. 9.5, but
extended up to z = 2, we obtain limits on the merger rate at redshift z > 1 from
the absence of detections of strongly lensed events. The corresponding constraints
(90% credible intervals) are shown in Fig. 8.3.1 as the cross-hatched region bounded
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by the dash-dotted curves. The changes in the upper bound of the merger rates are
driven by the absence of detected lensing events, whereas the lower bound is driven
by the low-redshift constraints on the merger rate. For comparison, the current
limits on the merger rate from GWTC-3 up to redshift z = 1 [29], with the bounding
curves extrapolated to higher redshifts z > 1, are shown as the grey shaded region
bounded by the dotted curves. For further comparison, we have also plotted the
solid black curves which show the current constraints from the absence of detection
of the Stochastic Gravitational Wave Background [20]. The upper bounds on the
merger rate from lensing are more stringent than the bounds from GWTC-3 at
high redshift [29], and are also comparable with the bounds from the Stochastic
Gravitational Wave Background for redshifts z < 1.2. The slight difference between
the constraints on the merger rates at low redshift derived from the Stochastic
Gravitational Wave Background [20] and from GWTC-3 [29] arise because the
bounds from the Stochastic Gravitational Wave Background are obtained here using
the previous constraints on the merger rate at low redshift derived using GWTC-2
[22].

Constraints on compact dark matter from gravitational-wave microlensing
Black holes and other compact objects have sizes comparable to their gravitational
radius, and may cause microlensing effects on GW signals. Although their abun-
dance is heavily constrained by several astronomical observations [91, 92], the
possibility of their contributing to dark matter cannot be ruled out in several mass
windows.

Here we use the non-observation of microlensing effects on the gravitational wave
signals detected by LIGO and Virgo to constrain the fraction of dark matter con-
tributed by compact objects in the mass range ∼ 102–105 M� [53, 205, 350]. The
essential idea is that if a significant fraction of dark matter is in the form of compact
objects, theywould introduce detectablemicrolensing signatures on the gravitational
wave signals that we observe.

Assuming that lensed and unlensed events occur as Poisson processes, we compute
the posterior distribution on the lensing fraction (u ≡ Λ`/Λ), defined as the ratio
of Poisson means of lensed events to the total number of detected events. This is
then used to compute the posterior of the fraction of compact dark matter ( fDM ≡

ΩCO/ΩDM) [53]. We take that a total of N = 67 binary black holes mergers are
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Figure 9.5.1: Merger rate density as a function of redshift based on the GWTC-
3 results without lensing constraints (grey) and with lensing constraints (cross-
hatching) included. For clarity, we show only the results for galaxy-scale lenses.
Because lensed detections may occur at higher redshifts than unlensed events, their
non-observation can be used to constrain the rate of mergers at higher redshifts. The
‘No lensing’ results shown here do not include constraints derived from the absence
of an Stochastic Gravitational Wave Background. The latter constraints are shown
separately by the solid black curves.

detected during the O3 run 4 , and none of them is lensed (i.e., N` = 0). We then
estimate the posterior distribution of the lensing fraction u. Finally, the posterior of
fDM can be computed as

p( fDM | {N` = 0, N}) = p(u | {N` = 0, N})
���� du
d fDM

���� , (9.4)

where du/d fDM is the Jacobian that relates the observed fraction u of lensed events
to the compact dark matter fraction fDM in the Universe.

We determine this Jacobian by simulating astrophysical populations of binary black
holes mergers lensed by point mass lenses [53]. 5 The constraints we obtain depend
upon the assumed distributions of the component masses, spins and the redshifts of
the mergers, which have considerable uncertainties. We assume that the masses are

4 These are the events cataloged in GWTC-3 that do not contain a neutron star component.
5 The simulations are done assuming theO3b representative Power SpectralDensity andGaussian

noise. The Jacobian is not expected to change significantly if real noise is used instead.
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distributed according to the Power-law + Peak model of Abbott et al. [29] while
spins are assumed to be aligned/antialigned with the orbital angular momentumwith
magnitudes distributed uniformly in (0, 0.99). We use the approximant IMRPhe-
nomD [209] to produce the waveforms. We consider different redshift distributions
of the mergers: uniform distribution in comoving volume, the power-law model of
Abbott et al. [29], theMadau-Dickinson model [239], as well as some representative
population-synthesis models given by Dominik et al. [143] and Belczynski et al.
[58]. In our simulations, compact objects are approximated by point mass lenses and
distributed uniformly in comoving volume. Binaries producing a network signal-
to-noise ratio of 8 or above in the LIGO–Virgo detectors are deemed detectable. In
order to reduce the computational cost of performing the simulations, we estimate
BMicro

U using an approximation to the Bayes factor that is expected to be accurate in
the high-signal-to-noise ratio regime [113, 353]. We then compute the fraction of
detected events that produce a BMicro

U larger than the highest BMicro
U obtained from

real LIGO–Virgo events. This lensing fraction is computed as a function of the fDM,
which is used to compute the Jacobian du/d fDM.

The largest value of the microlensing likelihood ratio obtained from GWTC-3
events is log10 B

Micro
U = 0.799. We compute the fraction of simulated events

with log10 B
Micro
U ≥ 0.799, for different lens masses. This allows us to compute the

Jacobian du/d fDM and thus the posterior on fDM. The 90% upper limits are shown
as a function of the lens mass (assuming a monochromatic spectrum) in Fig. 9.5.2.
A number of bounds on fDM, for masses comparable to the mass range considered
in this analysis, have been estimated, notably from EM searches for microlensed
events. These include constraints from searches for lensed FRBs [112, 226, 262],
GRBs [192, 229, 292], radio emissions from active galaxies [355]; from searches
in archival EROS-2 and MACHO photometric data for Galactic microlenses [60];
and from searches for microlensed quasars [150] and supernovae [169, 377]. The
bounds we obtain are weaker than several of these constraints, some of which are
well below 1%, as compared to the O(10%) constraints obtained from our analysis.
Nevertheless, GWs are a fundamentally different messenger than EM waves, and do
not suffer from the same uncertainties and systematics. Thus, acquiring constraints
from the non-detection of GW microlensing is a worthwhile exercise, even though
presently they are modest.

The weak constraints can be attributed to an insufficient number of BBH detections.
Indeed, the gravitational wave lensing bounds will improve significantly in the next
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Figure 9.5.2: The spread in the 90% upper limits on fDM obtained from the O3
events using 5 different redshift distribution models for binary black holes mergers:
Belczynski et al. [58],Dominik et al. [143], Madau and Dickinson [239], Abbott
et al. [29] and uniform in comoving 4-volume, assuming a monochromatic mass
spectrum for the compact objects forming dark matter. The lens mass is shown on
the horizontal axis. The grey (black) shaded regions correspond to the spread in fDM
upper bounds computed assuming flat (Jeffreys) prior on Λ and Λ`. The upper and
lower curves bounding the spreads correspond to the most pessimistic (weakest) and
optimistic (strongest) upper limits, as determined from the set of assumed redshift
distributions, in each mass bin. The current fDM constraints are weaker relative
to other corresponding EM constraints. We refer the reader to [91, 92, 112] for
comparison. Nevertheless, these constraints are expected to improve significantly
with the increased detection of unlensed BBHs in forthcoming LVK observing runs.

few years as the sensitivity of gravitational wave detectors improve [9] resulting in a
sizeable increase in observed BBHs. Assuming ∼ 300 binary black holes detections
in O4 and O(1000) detections in O5, the constraints on fDM will improve to ∼ 10−1

and ∼ 10−2, respectively.
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9.6 Concluding Remarks
We have extended the search for lensing signatures to all binary black holes can-
didates with a probability of astrophysical origin higher than 0.5 from O3b [30].
While we have not observed any significant candidates for strongly lensed events,
we updated the constraints on the rate of such events from several different analyses.
First, we searched for sub-threshold repeated signals associated with super-threshold
events using reduced template banks produced from the posterior probability distri-
butions of the super-threshold events. Interesting sub-threshold/super-threshold
pairs and pairs formed from two super-threshold events were further analyzed
for their probability of being from a single, strongly lensed source. For super-
threshold/super-threshold pairs, we calculated the degree of overlap between the
posteriors of the intrinsic parameters and sky location, which were obtained from
Bayesian inference. Moreover, we analyzed these pairs using a new analysis based
on the comparison of spectrograms through machine learning. Finally, pairs with
false-positive probability from either analysis smaller than 10−2 were further studied
by conducting full joint Bayesian inference analyses that take population priors and
selection effects into account. We found no pairs that show significant evidence for
strong lensing.

The events from O3b were also analyzed for distortions caused by the lens on the
gravitational waveform. First, we searched for the distortions that lensing introduces
on type II signals, which are in the form of a frequency-independent phase shift
(Morse phase). The Bayes factors for all events show no evidence for type II signal
distortions. Similarly, we searched for the frequency-dependent distortions caused
by point masses. None of the computed Bayes factors show any significant signs
of microlensing. For both analyses, some events show interesting features in the
posteriors for the Morse phase or lens mass. However, follow-up analyses using
simulated signals show no further signs of the lensing nature of these features.
Altogether, we found no significant evidence for distortions of the gravitational
waveforms that can be attributed to lensing.

The lack of evidence for lensing is then used to infer properties of the lensing rates
and to set constraints on the dark matter fraction of (dark) compact objects.

Finally, we note that our conclusions are based on estimates and assumptions that are
in line with other analyses from the LIGO–Virgo–KAGRA Collaboration [29, 30].
It is possible to arrive at different conclusions and interpretations if assumptions are
chosen differently. Examples include claims that almost all detections are strongly
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lensed if one assumes that heavy black holes do not exist [74, 75, 77]. Data from the
upcoming observing runs are expected to further expand the catalog of gravitational
wave detections that can further shed light on the lensing of gravitational waves [9].
Moreover, multi-messenger astronomy may provide significant input in confirming
and interpreting possible lensed gravitational wave signals [363].
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APPENDIX

9.A Type II simulation campaigns
Given the mild evidence of GW190412 and GW200129_065458 towards being
a type II strongly lensed image presented in Sec. 9.3, we follow up on these
events by doing an injection campaign where we simulate type I and type II images
similar to the events, and verify whether the posteriors recovered are compatible
with the distribution observed for the real events. These injections are performed
in different noise realizations and with different waveform models. The observed
feature could be caused by twomain other effects than a type II image: noise artifacts
or systematic effects in the waveform modeling. In the former, non-Gaussianities in
the noise could be such that they lead to the observation of spurious features, while
in the latter case, the specific combination of observed parameters could lead to
some systematic issues in fitting with the waveform model. Waveform systematics
might be especially important for these events since they lie in challenging parts of
the parameter space [17, 109, 185]. Moreover, for GW200129_065458 Payne et al.
[291] reports that there could be a significant glitch under subtraction.

To test for the noise-related features, we generate colored Gaussian noise from the
PSD around the time of the candidate and then inject the maximum likelihood
parameters coming from the parameter estimation and take the Morse factor to be
either the value for a type I or a type II image. In the first step, we do this for
only one noise realization for each event to see whether we can reproduce similar
features or not. For GW200129_065458, the injection shows that the effect is too
weak to be distinguishable from one image type to the other, as can be seen in the
uninformative posteriors of Fig. 9.A.1. As a consequence, no further investigation
is done into this event. On the other hand, for GW190412, the feature seen in the
real data is compatible with the one seen in the injection (see Fig. 9.A.2).

Given that the real-data results are compatiblewith the type II injection forGW190412,
we investigate further the noise hypothesis. For this purpose, we take the maximum
likelihood parameters and a Morse factor of 0 or 1/2 and inject the signal generated
with the IMRPhenomXPHM [295] model in ten different noise realizations. We
then repeat the analysis in the same way as for the real signal and verify if we retrieve
the same preference for a type II image. For all the noise realizations used here, we
see the same behavior as in Fig. 9.A.2.
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Figure 9.A.1: Posterior distribution of the Morse phase for GW200129_065458.
We compare the real event posterior (solid-blue) with an injection campaign of type
I (dashed-orange) and type II (dotted-green) images. Type II images correspond to
n1 = 1/2. For this event, the differences between the distribution are small and make
it difficult to learn anything additional about the event. The Kolmogorov–Smirnov
statistic is 0.07 for type I vs real, and 0.08 for type II vs real.

We perform an extra test by injecting the maximum likelihood parameters with a
given image type in the generated noise for different waveform models. We use the
IMRPhenomPv3HM [210] and the SEOBNRv4PHM [285] model to generate the
signal and use the IMRPhenomXPHM [295] model to recover it. This enables us to
combine the two possible sources of systematics. This way, we can verify whether a
different noise combined with a different model also leads to a preference for type II
images. For all the noise realizations and the two models used for the injections, we
find that the injections always recover the correct hypothesis, and the fact that the
real event supports type II is unlikely to be a result of noise or waveform artifacts,
as shown in Fig. 9.A.3.

Although these tests do not discard the type II image hypothesis, they cannot con-
clusively confirm it. To confirm the presence of lensing for this event with a mild
preference for a type II image, we would need additional evidence. Therefore, we
search for possible sub-threshold counterparts with the methodology explained in
Sec. 9.3. However, we find only marginal triggers.
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Figure 9.A.2: Posterior distribution of theMorse phase forGW190412. We compare
the real event posterior (solid-blue) with an injection campaign of type I (dashed-
orange) and type II (dotted-green) images. Type II images correspond to n1 = 1/2.
For this event, the peak seen in the real data and the one seen for the type II image
are compatible, hinting at a possible type II image. In this case, the Kolmogorov–
Smirnov statistic is 0.20 for type I vs real, and 0.13 for type II vs real.

In the end, these additional searches did not enable us to find any extra evidence
for lensing, while still not ruling out the possibility for GW190412 to be a type II
image.

9.B Marginalized Posteriors of Microlensing Parameters
As a supplement to the distribution of log10 Bayes factorsBMicro

U shown in Fig. 9.4.1,
we show the individual marginalized posterior distributions of redshifted lens mass
M z

L and log10 B
Micro
U (right vertical axis) in Fig. 9.B.1. The Bayes factors individ-

ually do not show clear evidence for microlensing by point-mass lenses. However,
several events show a narrow posterior distribution of the redshifted lens mass. An
example is GW200208_130117 (with log10 B

Micro
U = 0.8), for which the waveform

corresponding to the maximum posterior for this event, with and without lensing, is
shown in Fig. 9.B.2. The beating pattern introduced by the point-mass lens is most
visible as a reduction of the amplitude for two cycles in the middle of the signal
and an increase in the amplitude before and after this reduction. We hypothesize
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Figure 9.A.3: Comparison of the Morse factor distribution for the real event (solid-
purple) with the recovered posterior distribution for an injectionmadewith IMRPhe-
nomPv3HM for a type I image (dashed-blue) and a type II image (dotted-orange),
and with an injection made with SEOBNRv4PHM for a type I image (dashed-green)
and a type II image (dotted-red). In all the cases, the posterior distributions agree
with the injected data, with the real event resembling a type II image.

that short-duration noise fluctuations may have caused an apparent dip in the signal,
which in turn may have led to a distortion similar to a point-mass lens beating
pattern. This is corroborated by a low Bayes factor BMicro

U , which concludes the
data is inconclusive about the microlensing hypothesis.
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Figure 9.B.2: The time-domain waveform corresponding to the maximum posterior
of GW200208_130117, with and without the microlensing hypothesis.
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C h a p t e r 10

FOLLOW-UP ANALYSES TO THE O3 LIGO-VIRGO-KAGRA
LENSING SEARCHES

Note: This Chapter is an adaption of the publication:

J. Janquart, ...(6 authors)..., Alvin K. Y. Li, ...(22 authors)..., “Follow-up
Analyses to the O3 LIGO-Virgo-KAGRA Lensing Searches”, Mon. Not.
Roy. Astron. Soc. 526.3 (2023), doi:10.1093/mnras/stad2909.

Alvin K. Y. Li led the analysis and provided results for the search for GstLAL-based
sub-threshold lensed gravitational waves described in the paper. The other related
sections in this chapter are contributions from co-authors.

10.1 Introduction
The LVK collaboration has searched for strong lensing and for microlensing signa-
tures in the following LVK observing runs: O1–O2 [186], O3a [23], and the full
O3 run [32], yielding no confident signatures. In parallel, other searches have been
performed, confirming that no lensing features have been confidently detected so
far [122, 223, 233, 247].

Nevertheless, in these searches, interesting candidates have been found. This is the
case, for example, for GW190412 that shows some support for being a type II image,
the GW191103–GW191105 pair for strong lensing—discarded only after the inclu-
sion of both the population priors and selection effects—, and GW200208_130117
which displays some features which are compatible, at low significance, with mi-
crolensing [32]. Although, ultimately, not confirmed as lensed, such events contain
features representative of signatures one could find in genuinely lensed events. It
is therefore important to see what sort of follow-up analyses one could do on such
events to have a better grasp on their significance, and to extract a maximum of
information about the systems.

Possible avenues to achieve this in the future are presented in this work by ap-
plying them to these interesting O3 candidates. We follow up on strongly-lensed
candidates by making a background distribution of simulated unlensed events in
order to compute each candidate’s false-alarm probability (FAP). We also compare
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the candidates to the most recent simulations as to see if we can identify the lens
that could be at the root of such a lensed event. Additionally, we look for lensed
electromagnetic (EM) counterparts by cross-matching with galaxy-lens catalogues.
Moreover, since some fainter counterparts are likely to be present in a strongly-lensed
multiplet, we also follow up on an additional strongly-lensed candidate containing
a supra-threshold event GW191230_180458 and a weaker “sub-threshold” event
LGW200104_184028 identified for investigation by a new method [180]. We ana-
lyze this pair in more details in this work, showing that it is an intriguing pair but is
unlikely to be lensed. We also analyse the most significant candidate microlensing
events using different lens models, inferring the parameters of the lens models at the
same time. We compare these models to investigate which is most likely. Moreover,
we analyze the most significant of these microlensing candidates with a millilensing
framework to see if the signatures could come from a source in this lensing regime.
We do not report any additional evidence for lensing but outline some important
next steps to further deal with a possibly lensed event.

We stress that whilst the events discussed in this paper may be treated as though
they were lensed, they do not display significant evidence for lensing [32]. The
goal of this work is to demonstrate the methodologies that can be used to dig
deeper in the case of genuinely lensed events and to better assess the importance
of candidates. To represent this, we refer to the events as “lensed candidates” in
what follows. Additionally, since the events and event pairs analyzed in this work
have been selected because they present interesting features, it is often the case that
they lead to higher Bayes factors. However, this is generally not enough to claim
lensing, and we would also require to have posteriors converging to a given value
of the lensing parameters or a high significance compared to a background before
considering an event as lensed.

The rest of the Chapter is structured as follows. In Sec. 10.2, we introduce the
methodologies that are applied in the analysis of this work. In Sec. 10.3, we
show the results for different new analyses performed on GW190412, an event
flagged with some support for a type II image. Next, in Sec. 10.4, we analyze the
GW191103–GW191105 event pair, found to have some characteristics resembling
the ones expected for strongly-lensed event pairs. We continue in Sec. 10.5 by
analyzing another event pair, GW191230–LGW200104, a pair made of a supra and
a sub-threshold event. In Sec. 10.6, we analyze GW200208, an event found to have
a mild support for microlensing in past searches. We then give our conclusions and
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prospects in Sec. 10.7.

10.2 Analysis Methods
Strong Lensing
When the GW travel path is close enough to a massive lens, gravitational lensing
leads to several—possibly detectable—images having the same frequency evolu-
tion. This is called the strong lensing regime. In this work, several methods are
used to analyze the interesting lensing candidates and compute Bayes factors for
lensed versus unlensed hypotheses: BL

U = ZL/ZU , whereZH = P(d1, d2 |H) is the
evidence under the hypothesis H (H = L for lensed or H = U for unlensed), and
di = ni + hH

i is the data stream for the ith image, made of a noise (ni) and a GW (hH
i )

component. In this work, we adopt the same conventions as those used in Janquart
et al. [198], Lo and Magana Hernandez [235], referring to the evidence ratio as
the Bayes factor when it includes both the population and selection effects, and the
coherence ratio when these are not included.

The first analysis method is called posterior overlap [PO, 188]. Since the frequency
evolution of lensed images is unchanged, the detector frame parameters should
match (except for those modified by lensing), there should be a significant overlap
between the posteriors obtained for these images under the unlensed hypothesis.
Therefore, one can compute a detection statistic comparing the evidence for the
lensed and unlensed hypotheses

Boverlap =

∫
dθ

P(θ |d1)P(θ |d2)

P(θ)
, (10.1)

where P(θ |di) is the posterior obtained from data i, and P(θ) is the prior.

Typically, kernel-density estimators (KDEs) are performed on the posteriors in
Eq. (10.1) for a subset of parameters (component masses, spins, inclination angle
and sky location), and Boverlap is computed using those KDEs. The posteriors used
often come from the usual unlensed PE [49, 356].

Another method used is joint parameter estimation (JPE), where one performs the
joint inference of the lensed images, linking them through the lensing parame-
ters [122, 198, 202, 233, 235, 247]. These pipelines have two different ways to
tackle the problem. Some compute the full joint evidence p(d1, d2 |HL) at once, such
as those outlined in [233] and [235]. Here, we use the Hanabi pipeline from [235].
The alternative approach is to instead consider the evidence for the second image as
conditional on that of the first [198, 202]. This makes the computation faster and is
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equivalent to JPE under the lensed hypothesis. However, some level of approxima-
tion is added by doing sub-sampling to improve the speed. The pipeline undertaking
this method used within this work is called GOLUM [198, 202]. The analysis done
using the pipeline for the first image also directly offers the possibility to search for
type II images when higher-order modes are present [32, 154, 199, 235, 358, 360].

In addition tomatching purely on the observational parameters of the system, one can
also use models of the lens to inform the strong-lensing detection process [188, 201,
235, 236, 259, 364]. Lensed events do not only have matching frequency-domain
evolution but they are also linked via the lensing parameters. Their measured values
can be used to assess how likely it is for the observed events to be lensed for a given
model. To do this, one compares the probability of having the apparent lensing
parameters under the lensed and unlensed hypotheses. This may be done for all of
the lensing parameters, or a subset of them. To obtain the probabilities, an unlensed
population of BBH mergers is constructed using given population models (mass,
redshift, spin, . . . distributions) and the phase differences, relative magnifications,
and time delays are computed between these events. In parallel, the same process
is performed on a lensed population, produced from a BBH population and a
lens population following a specific model such as a Singular Isothermal Sphere
(SIS [365]) [188] or a Singular Isothermal Ellipsoid (SIE [218]) [259, 364] for the
galaxy lenses. From the two computed distributions, a probability density function
can be obtained via, for example, KDE reconstruction. It is then possible to evaluate
the ratio

Sgal =
P (Φ|HL)

P (Φ|HU)
, (10.2)

where HL and HU designate the lensed and unlensed hypotheses respectively, and
Φ is the set of lensing parameters under consideration.

Specific examples of the statistics computed with this method for this work are
Rgal [188] using specifically the time delay, andMgal [259] which may use all or
a subset of the lensing parameters. Both models can be used either with an SIS
or an SIE lens model. These statistics are used to select candidates to be followed
up by the more extensive analyses or are multiplied with the detection statistics
evaluating the match between the parameters. Though model dependent, this in
general decreases the risk of false alarm detections [188, 201, 364].

Alternatively, one can consistently incorporate the information from a lens and a
source population model [235], where the lens and the source population model
affect both the probability of observing a given set of data, in this case (d1, d2),
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under the lensed and the unlensed hypothesis. Specifically, the lens population
model informs the joint probability distribution on the magnification, the image
type, and the time delay between images, as well as the optical depth for strong
lensing, while the source population model informs the distribution of the (true)
redshift and the source parameters of a lensed source. This was already done in [23]
and [32] using the simple SIS lens model.

In practice, it is difficult to write down an analytical form for the above-mentioned
joint probability distribution from a lens model except for some simple lens models
(e.g. the SIS model), and instead one usually resorts to constructing a surrogate
that approximates the probability density function, such as the aforementioned KDE
technique. However, it can be computationally expensive to useKDE-based schemes
to construct an estimate for the probability density from a catalog of simulated lensed
images that contains many (e.g. millions of) samples, which in turn is evaluated over
a set of (roughly tens of thousands of) posterior samples.

In this work, we use the probability density surrogate described in [236] that fits the
joint probability density on the magnification and the image type conditioned on the
time delay between images from a catalog of mock lens images used in [281] using
a normalization-flow-based method [234]. The underlying strong lensing model
adopted in the simulation is a population of galaxy-scale SIE lenses with external
shear. The lens-redshift-dependent velocity dispersion function is constructed from
hybridizing the velocity dispersion measurement for the local Universe derived from
the Sloan Digital Sky Survey Data Release 6 [59] with the Illustris simulation result
for the velocity dispersion function at higher lens-redshifts [344]. The ellipticity
and the external shear follow a Gaussian distribution and a log-normal distribution
respectively with additional detail found in [281].

Millilensing
When the mass of the lens and its extent is reduced, the different images produced
by lensing can start overlapping. In such a case, they interfere, and one gets only
one image exhibiting beating patterns. This is called millilensing [230],

To search for such signals, one needs to analyze the GW signal assuming that several
lensed images are interfering with each other. Usually, the number of signals is not
known beforehand. Therefore, it can either be fixed in the search or it can be a
variable one tries to infer [230].
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Microlensing
For lens-source systems such that the wavelength of the GW is comparable to the
Schwarzschild radius of the lens, frequency-dependent modulation of the amplitude
occurs.

In Abbott et al. [23, 32], Hannuksela et al. [186] the microlensing search has been
performed using an isolated point mass model. Regardless of the exact model of the
lens, the lensed (hMicro) and unlensed (hU) waveforms are linked as

hMicro( f ; θ, M z
Lens, y) = hU( f ; θ) × F( f ; M z

Lens, y), (10.3)

where, θ are the parameters defining the unlensed GW signal, y is the dimensionless
source position, M z

Lens is the redshifted lens mass, and F( f ; M z
Lens, y) is the ampli-

fication factor which is dependent upon both the frequency and the mass-density
profile of the lensing object (more details can be found in [337] for example), hence
on the lens model.

Whilst the isolated point mass model has been used for its simplicity and consequent
speed, there are other density profiles that may describe microlenses. These include,
but are not limited to, the SIS [365], the SIE [218], or the Navarro-Frenk-White
(NFW) [272] profiles. Efforts have been made to incorporate some of these models
into microlensing GW analyses [370] to determine more information about the
lensing object in the event of microlensing detection. This work will use these
models to analyse the data and recover information about potential lenses that could
be at the origin of a lensed event system.

To explore thesemultiple models, microlensing candidates are analysed usingGrav-
elamps [370]. This algorithm performs PE analyses of the GW data by jointly
inferring the source and lens parameters, assuming a particular lens model. There-
fore, it can not only extract information on the lens, but also perform lens-model
selection by comparing the evidence obtained for different models and see which
one is favoured based on the data. In addition, to cross-check the results obtained
with this pipeline, the data is also analysed with the GWMAT pipeline [255], a
similar but independent python/cython analysis package implementing the point
lens model.

10.3 GW190412
GW190412 [17] is a well-known event as it is, alongside GW190814 [19], one of
the events with significant higher order modes (HOMs) detected during O3. It is
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identified as the coalescence of a∼ 30 M� black hole, with a∼ 8 M� one. During the
O3 lensing search [32], this event was found to be the most likely candidate for being
a type II image. However, the evidence (log10(B

II
I ) = 0.61 and log10(B

II
III) = 0.30) is

inconclusive and could be related to other effects as well, such as noise or waveform
effects. In this section, we investigate possible origins of this feature. In particular,
we re-analyze the data searching for type II images using other waveform models,
and see if the observed feature could be related to microlensing effects.

Check for Waveform Systematics
For any astrophysical inference about CBCs fromGWdata, it is crucial to understand
the possible systematic errors due to approximations in the waveform models used
or whether observed features could not originate from the model used. Since full
numerical relativity simulations are only available as a reference for a few points
in parameter space, the most convenient way to study the impact of waveform
systematics is to compare results from different models. PE runs for GWTC data
releases have always used at least two waveforms from independent modelling
approaches and additional studies on events of special interest regularly compare
larger numbers of models [see, e.g., 13, 18, 109, 152, 185, 246].

In Abbott et al. [32], the type II image (Morse factor of 0.5) search was performed
with the IMRPhenomXPHM waveform [295], including HOM and precession effects.
A feature similar to the observed one —meaning a peak around a value of 0.5 in
the Morse factor posterior— was recovered in various scenarios. For example, by
injecting a signal with the maximum likelihood parameters in simulated noise with
a given waveform family and recovering with IMRPhenomXPHM. This seemed to
indicate that the feature was consistent with a real signal, at least given the used
waveform.

Here, we re-analyse the data using twoother commonly-usedwaveforms: IMRPhenomPv3HM [210]
and SEOBNRv4PHM [285]. These two waveforms encapsulate the same type of
physics as IMRPhenomXPHM with HOMs and precession included. The analyses
are performed using the same setup as the one used for the Type II image search
performed in Abbott et al. [32].

The posterior recovery of the Morse factor (n1), allowing it to take any value from
0 to 1 instead of discrete, for the different waveforms is shown in Fig. 10.3.1. The
posterior peaks at 0.5 using IMRPhenomXPHM. When analyzing the data with the
IMRPhenomPv3HM waveform we still observe a peak but it is less prominent. On



213

the other hand, with the SEOBNRv4PHM waveform the posterior distribution has an
earlier maximal value, is much broader, and is lacking a pronounced peak. This is
different from the results seen with the Phenom-family waveforms. Therefore, the
observed feature seems to come from a combination of noise and waveform effects,
and the event is probably not a type II image.
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Figure 10.3.1: Recovery of the Morse factor for the GW190412 event with different
waveforms: IMRPhenomXPHM, IMRPhenomPv3HM, and SEOBNRv4PHM. The support
for a type II image is present for the two waveforms from the Phenom family.
However, the feature is less prominent for the IMRPhenomPv3HM waveform, and
only marginally present for the SEOBNRv4PHM waveform. Therefore, the observed
feature is probably spurious and the event is not a type II image.

Microlensing Analysis
The possible signs of de-phasing that generated initial interest inGW190412 as a type
II lensing candidate may also be a mistaken interpretation of frequency-dependent
microlensing effects. This motivates an analysis of the event using the Gravelamps
pipeline to determine if there is any potential favouring of this interpretation of the
signal’s features.

Looking at the results of the analysis for GW190412 shown in Fig. 10.3.2 1 marks
1 The redshifted lens mass Mz

Lens (1+ zLens)MLens where MLens is the lens frame lens mass. In the
Gravelamps analyses the redshift of the lens is calculated based on the lens being half way between
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the event as unique amongst those analysed for this paper in that it favours the
point mass lensing model over the SIS model with log10(B

L
U) values of 0.6 and

0.4 respectively. This remains quite marginal preference for the microlensing hy-
pothesis in either case, although it is worth noting that this support is higher than
for GW191103 or GW191105, the events analysed in a strong-lensing context in
Sec. 10.4. This is consistent with the apparent signs of de-phasing being present
only in GW190412. Whether the correlation holds would need to be confirmed with
additional examinations of simulations or additional type II lensing candidates.

However, whilst support for this event is higher in terms of the raw Bayes factors,
the posteriors for the lensing parameters need to be examined. Fig. 10.3.2 presents
these posteriors for the marginally more preferred point mass lensing model. The
source posteriors are tightly constrained but the lensing parameters are extremely
broad, leading to the conclusion that this event does not indicate any particular signs
of microlensing either, and again the apparent features could be related to noise or
waveform issues.

10.4 GW191103–GW191105
GW191103 andGW191105wereBBHs detected during the third observing run [30].
In the main LVK analyses, the standard treatment of the signals revealed nothing
out of the ordinary for these events. However, when treating the events as potential
lensing candidates, the pair display some intriguing characteristics. There is a
notable amount of overlap between some of the reported source parameters, such as
the sky location and masses; see Fig. 10.4.1 for a representation of the posteriors.
Moreover, the two events have about two days delay between their merger times
which is consistent with galaxy-scale lenses [259, 364]. However, in the LVK
lensing search, these events were ultimately discarded once the JPE Bayes factor
had been computed [32], meaning that the observed overlap is unlikely to be coming
from a lensed BBH and is more likely to be coincidental. Nevertheless, as was stated
in the introduction, in the following analyses we have disregarded this and treated
the event as though it were a lensed pair.

Posterior Overlap Candidate Identification
During the O3 strong lensing search, the PO analysis and a machine learning
pipeline, LensID [177], were used to identify potential lensing candidate pairs from
the detected events. The top 1% of these—approximately a hundred pairs—were

the source and the observer.
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Figure 10.3.2: Posteriors for a subset of the parameters including the detector frame
chirp mass and mass ratio, the luminosity distance, the lens frame lens mass, and the
dimensionless displacement of the source from the optical axis (i.e. the source posi-
tion). These posteriors were produced during the point mass microlensing analysis
done for GW190412 using Gravelamps. As can be seen, similarly to GW191103
(shown in Fig. 10.4.5), the lensing parameter posteriors are extremely broad and
uninformative. This is consistent with the expectations for a non-microlensing event.

then passed on toGOLUM [198, 202] for filtering, and then to hanabi [235] for final
analysis. The GW191103–GW191105 pair was identified as one of the most likely
candidates by the PO analysis using the posteriors of some of the parameters obtained
with the IMRPhenomXPHM waveform [295] released publicly on the Gravitational
Wave Open Science Centre (GWOSC) [182, 349], whereas LensID—which uses
Q-transform images and Bayestar [319] skymaps— had not classified it as a
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candidate. Appendix 10.A discusses possible reasons for the non-identification of
the pair by the machine-learning based pipeline. For PO, the pair ended up having
the highest overall statistic: log10 B

overlap = 3.03 and log10 R
gal = 1.14 for the SIS

model giving a total of 4.17. Fig. 10.4.1 shows the posteriors of both events where
one may see the varying degrees of overlap between the events.

Fig. 10.4.2 shows the candidate event pairs identified byPOanalysis on the logBoverlap–
logRgal plane considering both the SIS and SIE galaxymodels. The choice of model
affects only the logRgal value. The PO analysis is marginalised over phase and is,
therefore, insensitive to the relative Morse phase (∆φ) between the two events. As
a result of this insensitivity, the SIE cases ∆φ = 0 and ∆φ = π/2 are considered
separate models, hence we compute the Rgal expected distributions for each case.

Posteriors of events detected by the LVK detectors can overlap by random coin-
cidence meaning that unlensed pairs could also give high Bayes factors. For this
reason, a background injection study with ∼ 1000 unlensed events (the combina-
tions of which yield about half a million pairs) is done to calculate the FAP [94]
of the observed log Bayes factor for the candidate pair. The FAP per-pair (FAPPP)
for the candidate, hence the number of unlensed events with a Bayes factor higher
than the one observed for the pair of interest, is found to be 1 in 10, 000. Taking
into consideration that a total of ∼ 68 BBH events were detected in O3 the total
FAP (given by FAP = 1 − (1 − FAPPP)

Npairs) is found to be 0.3, i.e. a significance of
slightly above 1σ. As seen in the figure the time delay for this event pair is more
compatible with an SIE with ∆φ = 0 as compared to an SIE with ∆φ = π/2 and
SIS. After this step, to extract more information about the event pair, it is passed to
more extensive pipelines for further investigation.

Waveform Systematics Study on Posterior Overlap Candidate Identification
At the time of writing, no dedicated studies of waveform systematics have been
conducted for gravitational lensing analyses. As an initial check, we report on a
comparison of PO calculations on single-event PE performed with different wave-
forms. This is a practical first step as the single-event PE is significantly cheaper
computationally than JPE, and detailed studies of waveform systematics on the latter
are left for future work. The results presented here for the GW191103–GW191105
pair are an excerpt from a larger pioneer study on waveform model systematics in
GW lensing that will be published separately [171].

The PO statistics reported in Abbott et al. [32] and used to initially qualify the



217

Figure 10.4.1: Posteriors for some of the parameters obtained using the
IMRPhenomXPHM waveform for GW191103 (blue) and GW191105 (orange). The
overlap in the extrinsic parameters (e.g. sky location) is larger than that for the
intrinsic parameters (e.g. detector-frame chirp mass and spins).
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Figure 10.4.2: The highest ranked candidate strong lensing pairs from the PO
analysis considering all the event pairs found based on the O3 data (dots) [32] and
the supra-sub pair analyzed in this work. The dashed lines correspond to the 1σ and
2σ confidence levels for the combined PO statistic (Boverlap × Rgal) with different
lensing models computed from the background simulations. We note that beside
GW191103–GW191105, the pair analyzed in this work, GW190728–GW190930 is
also close to 1σ for PO. However, the pair has been discarded in previous searches
with a lower overall significance than GW191103–GW191105 [23]. Therefore, it is
not considered for further analyzes in this work.

GW191103–GW191105 pair as sufficiently interesting for further follow-up were
based on the IMRPhenomXPHM waveform [295]. Besides the posterior samples for
this waveform, the data release [182] for GWTC-3 [30] contains samples obtained
with the SEOBNRv4PHM waveform [285]. For this study, we performed additional
PE runs on GW191103 and GW191105 for several other models, using paral-
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lel_Bilby [49, 326] with the dynesty sampler [333], using settings and priors
consistent with the GWTC-3 IMRPhenomXPHM runs [30].

The additional waveforms covered are three variants from the same family of
frequency-domain phenomenological waveforms as IMRPhenomXPHM, as well as
one time-domain phenomenological waveform:

• IMRPhenomXAS is an aligned-spin frequency-domain waveform for dominant-
mode-only GW emission [294];

• IMRPhenomXHM is an aligned-spin frequency-domain waveform including
HOMs [170];

• IMRPhenomXP is a frequency-domain waveform allowing for spin precession
but for dominant-mode-only GW emission [295];

• IMRPhenomTPHM is a time-domain waveform allowing for spin precession and
including HOMs [151].

The three reduced-physics IMRPhenomX waveforms allow us, in comparison with
the most complete family member IMRPhenomXPHM, to check if neglecting any of
these features has a significant impact on the PEs for each event, and hence on their
overlap. In addition, the IMRPhenomTPHM waveform shares its time-domain nature
with SEOBNRv4PHM but much of its modelling approach with IMRPhenomXPHM,
making it an ideal tool to further cross-check for consistency between different
modelling strategies.

We have followed the original KDE-based calculation from Haris et al. [188] to
compute the PO statistic Boverlap, with the modification of computing sky overlaps
and intrinsic-parameter overlaps separately and then multiplying them, as done
in Abbott et al. [32].

Table 10.4.1 lists the Boverlap resulting from comparing the posteriors from both
events with each waveform. There are changes up to factors of ∼ 6 in overlap
statistics, with IMRPhenomXHM producing the highest Boverlap and SEOBNRv4PHM
resulting in the lowest. We first notice that the aligned-spin waveforms produce the
highest Boverlap. These have fewer free parameters than the precessing models and
hence also different prior volumes. By inspecting the posteriors we find that the
aligned-spin waveforms prefer a2 closely peaked to zero for both events which gives
a high contribution to the overlap, while the precessing waveforms have broader
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Table 10.4.1: PO statistic values for the GW191103–GW191105 pair using different
waveform models in the single-event PE.

Waveform log10(B
overlap)

IMRPhenomXAS 3.37
IMRPhenomXHM 3.48
IMRPhenomXP 3.08
IMRPhenomXPHM 3.03
IMRPhenomTPHM 2.70
SEOBNRv4PHM 2.65

distributions in this parameter, compensating with the additional freedom in the tilt
angles. In addition, the two time-domain waveforms produce lower Boverlap than the
frequency-domain waveforms. However, these changes are not significantly larger
than expected from other sources such as prior choice and KDE implementation
details, and all results are consistently in favour of the lensing hypothesis. Hence,
we conclude that waveform choice does influence the PO method to some degree,
but that for this specific event pair it is sufficiently robust under waveform choice,
in the sense that all results agree qualitatively on identifying the pair as possibly
lensed and interesting for follow-up.

One caveat on this type of study is that a full interpretation of Boverlap requires
extensive simulation studies on both lensed and unlensed pairs, and the respective
distributions could easily be different for different waveforms. However, in Abbott
et al. [32], this factor was used purely as a ranking statistic. So, as long as the number
does not drop strongly for any of the considered waveforms, we can conclude that
the identification of the candidate pair is robust under waveform choice.

Compatibility with Lensing Models
Once an event has been identified as a potential candidate through the aforemen-
tioned PO or machine learning searches, it can be followed up by other pipelines.
However, an additional check can bemade by comparing the observed lensing param-
eters with the ones predicted by specific lensing models [188, 201, 235, 259, 364].
In this work, we focus on galaxy lenses. A comparison of the lensing parame-
ters observed in the O3 search with the catalogue presented in More and More
[259] and Wierda et al. [364] is given in Fig. 10.4.3. Most of the events are
compatible with the values expected for unlensed events. Noticeably, two supra-
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threshold event pairs have lensing parameters that are more consistent with a lensed
hypothesis: GW191103–GW191105, which is the one the most on the left and
therefore the most favoured, and GW190706–GW190719. One can also compute
the Mgal [259] statistics for the pairs. This number is the ratio of the probabili-
ties for observing the lensing parameters under the lensed and unlensed hypotheses
given by the lensing catalog though it does not account for the rate of lensing2.
For GW191103–GW191105, we find log10(M

gal) = 1.3, while for GW190706–
GW190719, log10(M

gal) = 0.8. This shows that in the two cases, based on the
catalogue, the observed lensing parameters agree more with the expected values for
the lensed hypothesis than for the unlensed one.

Whilst such a comparison is valuable to gain information on the chances of lensing
from specific models, it does not account for the compatibility of the binary param-
eters. Since the lensed hypothesis is favored over the unlensed one both based on
PO and lensing statistics, we need to further ascertain the lensed nature by turning
to JPE methods.

Joint Parameter Estimation Based Investigations
In the case of events being genuine lensed images, in addition to the lensing parame-
ters being compatible with at least one lensing model, parameters whose estimation
are unaffected by the lensing—e.g. sky location, component masses—should be
the same between the events. For the GW190706–GW190719 pair, the GOLUM
analysis gives log10(C

L
U) = 0.6, which is a value slightly favouring lensing, but

still well within the values one can expect for unlensed events [201]. On the other
hand, for GW191103–GW191105, we find log10(C

L
U) = 2.6. However, despite this

higher value, this does not guarantee that the signals are not merely coincidentally
similar [201]. Here, we follow up only on the GW191103–GW191105 pair, which
has the highest coherence ratio observed in the O3 pairs [32], with the methodolo-
gies described in [201] and [235] to include information from a lens model into the
analyses.

We use the method from Janquart et al. [201] to include a lens model in the detection
statistic coming from the GOLUM pipeline [198, 202], modifying the coherence
ratio so that it also accounts for the observed lensing parameters and a given lens
model. This reduces the risks of false alarms in lensing searches and makes the
detection of genuinely lensed pairs more robust. This also enables one to compare

2Such a catalogue is obtained through extensive lensed and unlensed populations simula-
tions [188, 259, 364].
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Table 10.4.2: Values of the detection statistic obtained using theGOLUM framework
for the GW191103–GW191105 lensed candidate pair without lens model (CL

U ), and
with an SIE lens, with (CMµ,t

) and without (CMt
) relative magnification accounted

for. The FAPPP is decreased when using an SIE model.

Statistic log10 value FAPPP
CL

U 2.5 2.0 × 10−3

CMµ,t
2.4 1.6 × 10−3

CMt
2.9 9.8 × 10−4

the compatibility of the observation with different lens models, constraining the
nature of the lens.

To explore the event’s significance, we make an injection study by generating an
unlensed background. We simulate 250 unlensedBBHs, sampling their masses from
the powerlaw + peak distributions; the spins and redshift are also sampled from
the latest LVK observations, using the maximum likelihood parameters to generate
the distributions [29]. The sky location is sampled from a uniform distribution
over the sphere of the sky. The inclination is uniform in cosine, and the phase
and polarizations are sampled uniformly on their domain. The merger times are
set uniformly throughout the third observing run. For each set of parameters, we
randomly associate a real event from the GWTC-3 catalogue and assume the same
observation conditions (the same detectors are online, and the noise is generated
from the event’s PSD). The 250 events selected are such that their network SNR is
higher than 8 3.

Based on this population, we can compute the FAPPP for the coherence ratio for a
given lens model. Table 10.4.2 summarizes the detection statistic and the FAPPP for
the analysis with and without model.

As a first step, we can verify the FAPPP for the event pair when considering the
coherence ratio. In this case, FAPPP = 2.007 × 10−3, meaning that for our 250
unlensed BBHs, the chance is 1 in 500 that these events are not a genuine lensed
pair. Thus, based only on the match between the parameters, the probability for
these events to originate from two unrelated unlensed events is relatively high.
Statistically, this means that the combination of only 33 randomly-selected unlensed

3 Whether an event can be considered to be of astrophysical origin is not dependent only on its
SNR, and recent GWTC papers also put a threshold on the probability pastro [30, 137]. Here, we
consider the SNR threshold sufficient to assess detectability.
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BBH mergers is capable to make at least one pair with at least the same coherence
ratio as the GW191103–GW191105 pair.

Including a lens model helps study which astrophysical object could be at the origin
of the lensed event. Here, we consider an SIE model [218, 259], which is a good
model for a galaxy lens. We consider the case where we account for the time delay
and the relative magnification in the model, and the case where we only consider
the time delay. The combinations of the coherence ratio and the lensing statistics
are written CMµ,t

and CMt
for the case with and without relative magnification

respectively. The values for detection statistics and the FAP for the two cases
are given in Table 10.4.2. The inclusion of the SIE model, with and without the
relative magnification, decreases the FAP, meaning that the candidate pair becomes
more significant. It is the case even if the SIE model with the time delay and
the relative magnification slightly decreases the coherence ratio. The reduction in
FAP is slightly larger when only the time delay is considered. This is because
the observed relative magnification is slightly outside the highest-density regions
for the two models under the lensed hypothesis. Moreover, the overlap between
lensed and unlensed populations for this parameter is high, making it less helpful to
discriminate between the two situations. The results have also been cross checked
using an SIE-based catalog from Wierda et al. [364], giving the same conclusions.

We note here that whilst the FAPPP seem relatively small for the SIE model, it is
insufficient to claim the pair to be lensed. The smallest value found is 9.8 × 10−4.
Whilst this is an improvement over the original FAPPP, it repreresents only an in-
crease from the combinations of 33 randomly-selected unlensed BBH mergers to
the combinations of 47 such mergers to, statistically, have a pair display a detection
statistic higher or equal to the one reported for the observed pair. Consequently,
whilst GW191103–GW191105 displays some interesting behaviours, these are in-
sufficiently significant to claim a first strong lensing detection.

Additionally, we repeat the Bayes factor calculation comparing the probability ratio
of the lensed versus the unlensed hypothesis as described in [32] using the more
realistic lens populationmodel described in [281] (see [236] and also Sec. 10.2) using
hanabi [235]. We use the same set of source population models as in [32], e.g. the
powerlaw + peakmodel for the source masses from the GWTC-3 observations [29]
and three models for the merger rate density: Madau-Dickinson [239], Rmin(z), and
Rmax(z). Table 10.4.3 shows the log-10 Bayes factors computed using the three
merger rate density models with the simple SIS lens model reported in [32] and the
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Table 10.4.3: log10 B
L
U for the GW191103–GW191105 pair from hanabi assuming

three different merger rate density models and two different lens models. The values
computed using the SIS model are reproduced from [32] for the sake of comparison.
We see that the values with the SIE + external shear model are consistently higher
than that with the SIS model, indicating a higher compatibility of the pair with a
more realistic strong lensing model. However, since the values remain negative,
the event is still most likely to be unlensed considering a more realistic lensing
population with the most recent population models.

Lens modelMerger rate density Madau-Dickinson Rmin(z) Rmax(z)
SIS [32] −3.27 −3.21 −2.33
SIE + external shear [236] −2.60 −2.46 −1.28

SIE + external shear model reported in [236]. We see that the values calculated
using the SIE + external shear model are consistently higher than those using the
SIS model, indicating that the pair is more consistent with a more realistic strong
lensing model. Still, the log10 B

L
U values are negative, and therefore the event pair

is most likely unlensed.

Electromagnetic Follow-Up
In the case of a genuinely lensed GW signal, the light emitted by the host galaxy
should also be lensed [187, 363]. As a result of this, in the case of a high-significance
lensing candidate, one practical avenue would be to initiate an EM follow-up search.
Identifying the host galaxy would be a way to verify the lensed nature of the signal
independently.

The EM counterpart of a signal may be searched for in two ways: cross-matching
of the joint GW sky localisation with EM catalogues containing known lens-source
systems or a dedicated EM search on a per-event basis. Both of these make use
of the improved GW sky localistation from the observation of multiple images
which provide a virtually extended detector network [122, 198, 202, 233, 235]. A
dedicated, per-event, EM search could be peformed by looking for lenses within
the sky localisation area and performing lens reconstruction to try to identify the
specific lens at the origin of the observation [187, 363].

We cross-matched the GW191103–GW191105 pair with a few lens catalogues from
optical surveys such as SuGOHI [97, 195, 196, 330–332, 368, 369], AGEL [345]
and the Master Lens Database [MLD, 261]. Whilst no matches were found from
the SuGOHI and AGEL catalogues, the grade A and grade B lenses 4 selected from

4 In this context, grade A lenses have a higher observational quality and accuracy than grade B
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MLD at galaxy scales showed 5 matches—4 doubly lensed systems and 1 quadruply
lensed system (see Fig. 10.4.4). Two of the doubles are predicted to have time delays
> 50 days based on the best-fit lens mass models [204, 290]. For the remaining
double, we infer a time delay of ∼ 20 days given the redshifts of the lens galaxy and
the source as well as the velocity dispersion [73] under the assumption of an SIS
lens mass distribution. All of these time delays are too long to be consistent with
the 2-day time gap of the GW191103–GW191105 pair.

Lastly, we determine the time delays expected for the quadruplet SDSS J0918+5104
using the best-fit mass model and results from Ritondale et al. [301]. The expected
time delay for the closest pair in SDSS J0918+5104 is around ∼ 0.5 − 1 day. Given
the uncertainties in the lens model, this ballpark estimate of time delay could be
consistent with that of the GW191103–GW191105 pair. However, a more detailed
mass modelling analysis and exploring different physical scenarios for the offset
between the host galaxy and the GW source can lead to slightly different degrees
of compatibility. Still, the predicted relative magnification is both qualitatively and
quantitatively consistent since the latter GW event is found to be weaker than the
former GW event according to the Hanabi analysis. Furthermore, the closest pair
of SDSS J0918+5104 images corresponds to a minimum (Type I) and a saddle point
(Type II) suggesting a phase shift of ∆φ = π/2. This is somewhat less favored
but yet plausible for the GW191103–GW191105 pair based on the PO analysis (see
Fig. 10.4.2).

We note that the cross-matching analysis is limited by both the incompleteness of
the databases of known EM lenses and the algorithms used to find matching lenses.
A more detailed investigation (see Wempe et al. [363] for an example of how to
investigate the link between EM and GW lensed systems) is warranted to assess
the probability of a lens like SDSS J0918+5104 to be a genuine EM counterpart
of the GW191103–GW191105 pair, if the latter is considered to be lensed. In the
future, having dedicated EM follow-up of the lensed event candidates using optical
telescopes could also help to gather more information about the lens and localise
the source to the host galaxy.

Microlensing Analysis
Whilst interest in the GW191103–GW191105 pair was triggered from the strong
lensing perspective, it is worth paying additional attention to whether either of the

ones.
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single events in the pair displays any signs of frequency-dependent effects associated
with microlensing. As has been noted above, the most likely microlensing scenario
is a microlens embedded within a macrolens. In such a scenario, one or both of
the individual signals could display the signatures of the microlens [257, 316]. To
determine if that scenario is plausible both GW191103 and GW191105 have been
analysed using the Gravelamps pipeline to determine the evidence for an isolated
point mass or SIS microlens.

The main result of this analysis is that neither event shows particular favouring
for either the point mass or the SIS microlensing models over the unlensed model.
The preferred case is that of an SIS microlens in GW191103 which produces a
log10(B

L
U) = 0.38. In the point lens case, however, support drops to a log10(B

L
U) of

0.09 meaning that neither case posits strong evidence. To further compound this,
the posteriors for the SIS case are given in Fig. 10.4.5. The source parameters’
posteriors are well constrained, but those of the lensing parameters are extremely
broad and uninformative. This is consistent with the expectation of an unlensed
event and, combined with the marginal Bayes factor, leads to the conclusion that
there are no observable microlensing signatures within this event.

The case of GW191105 is similar, albeit with even less favouring for the lensing
models. Here, log10(B

L
U) = 0.21 for the SIS case, and it is −0.35 for the point

mass lens model. With even the more optimistic of the two models having a
lower favouring, as well as a repetition of the posterior behaviour for the lensing
parameters, one again concludes that there are no observablemicrolensing signatures
within this event either.

Targeted Sub-threshold Search
Whilst lensing may produce multiple images, it is not guaranteed that all of the
images will be detected. However, if it can be ascertained that a detected signal
(or signal pair) is lensed, this allows deeper investigation for events below the
detection threshold used for standard searches. Reciprocally, finding a sub-threshold
counterpart to images with a low probability of being lensed could increase the
support for the lensing hypothesis. As such, we conducted searches for sub-threshold
lensed counterparts to GW191105 and GW191103 individually in the O3 data with
the event-specific template banks constructed out of the intrinsic parameter posterior
samples [223]. These searches yielded 7 triggers for GW191105 and 15 triggers for
GW191103 above the false-alarm rate (FAR) threshold of 1 in 69 years as defined
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in Abbott et al. [32]. None of these were reported as a potential lensed counterpart
to any of the GW191103 and GW191105 events. One of the interesting triggers
found was LGW191106_200820 which arrived just about a day after GW191105,
agreeing with galactic scale lens models. However, this trigger was ruled out as
a lensed counterpart to a GW191103–GW191105 pair as the overlap in the sky
location is poor and the evidence for the event being a real event is very small. It
was thus concluded that no promising candidates for an additional sub-threshold
counterpart image for GW191103–GW191105 was found within the O3 data.

10.5 GW191230_180458–LGW200104_180425
During the O3 sub-threshold lensing counterpart search, the TESLA pipeline [223]
based on the GstLAL software [86, 250] found roughly 470 triggers which could
be potential strong lensing counterparts to the superthreshold events. Of these, two
had a FAR lower than 1 in 69 years [32] though none were found to have support for
the lensing hypothesis and all were ultimately discarded. An alternative method for
identifying the sub-threshold triggers as possible lensed counterparts to superthresh-
old events, developed in Goyal et al. [180], uses the Bayestar localisation skymaps,
matched-filter chirp mass estimates and the time delay priors to rank all the super-
sub pairs. It identifies the sub-threshold event termed LGW200104_180425 5 as a
possible lensed counterpart to the supra-threshold GW191230_180458 event. It is
the most promising super-sub pair according to this method as it has significant sky
and mass overlap, coupled with apparent lensing parameters matching the expected
values for a galaxy lensed models (see Goyal et al. [180] for more detail). In the rest
of this section, we denote the super- and the sub-threshold events GW191230 and
LGW200104, respectively.

LGW200104was detectedwith both LIGOdetectorswith an SNRof 6.31 inHanford
and 4.94 in Livingston. TheGstLALmatched-filter estimates on its chirpmass place
it at 67.39M� with the individual component masses being 82.48M� and 72.71M�.
These high component masses combined with the faintness of the signal contribute
to a very low pastro of 0.01 during usual unlensed super-threshold searches, where
the event was found with the SPIIR [106, 237] and cWB [217] pipelines, signifying
a significant lack of probability of the event being a genuine detection. Likewise,
the FAR found for this event during the super-threshold searches is 4824/yr, also

5 Here, we follow the usual naming convention, adding an L at the start of the event name
to specify it is a sub-threshold candidate. Therefore the name of the sub-threshold trigger is
LGWYYMMDD_hhmmss, where YY is the year, MM the month, DD the day, hh the hour, mm the
minutes and ss the second in UTC time.
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favouring a terrestrial origin for the signal [206]. Since the sub-threshold searches
have a more focused template bank, they also reduce the FAR for the events when
they are in the correct region of the parameter space [223, 247]. Therefore, the FAR
for the event decreases to 6.59/yr when it is found with the TESLA pipeline [223],
still higher than the threshold used for following-up on sub-threshold events in
O3 [32]. In keeping with the analyses done within this work, whilst we do not claim
that the event is both genuine and genuinely lensed, we treat it as though it were.
Consequently, we investigate the pair using the lensing identification tools used for
super-threshold pairs.

PyCBC Sub-Threshold Search
To further verify this candidate and look for sub-threshold counterparts, an inde-
pendent search pipeline, based on PyCBC [127, 351], has been applied [247]. In
contrast to the GstLAL-based TESLA pipeline [223], the PyCBC-based approach
uses a single template based on the posterior distribution of each target event. This
search method was previously applied to O1–O2 data [247] and O3a data [23].
Whilst this search was not deployed across the totality of the O3b data, we have
applied it as a cross-check on the chunk of data containing LGW200104 starting
on 2019/12/03 at 15:47:10, and ending on 2020/01/13 at 10:28:01, looking for
counterparts to GW191230.

For the template, we selected themaximum-posterior point from theIMRPhenomXPHM
samples for GW191230 released with GWTC-3 [182], from a KDE after removing
transverse spins, as to obtain the parameters for a single IMRPhenomXAS template
with the following values: m1 = 82.48M�, m2 = 72.71M�, a1 = −0.0037, and
a2 = 0.026. After running PyCBC over the chunk using the same clustering steps
as in McIsaac et al. [247], the results are collected and events are ranked by the
inverse of their false alarm rate (IFAR).

For the examined chunk, we found 5 candidates above an IFAR threshold of 1month,
with 2 previously knownGWevents topping the list, one being GW191230 itself. To
check the correlation of the remaining 3 events with the target supra-threshold event,
we performed a sky overlap estimation of each pair, following the idea described
in [366]. The results are shown in Table 10.5.1. The sky overlap is computed as
the fractional overlap between the sky map obtained using parameter estimation for
GW191230 and the sky map produced using Bayestar [319] for each sub-threshold
candidate. Since these two methods do not match exactly, it leads to a 75% overlap
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Table 10.5.1: PyCBC targeted sub-threshold results for counterpart candidates to
GW191230 ranked by IFAR. From left to right, the columns represent the event,
the time delay compared to the supra-threshold event used to make the template,
the inverse false-alarm rate (IFAR), the signal-to-noise ratio (SNR), and the 90%
confidence region (CR) overlap for the sky posteriors.

Rank Name Event ∆T [days] IFAR [yr] SNR 90% CR Overlap
1 LGW191222_033537 GW191230 8.60 125822.11 10.99 0.00
2 LGW191230 GW191230 0.00 312.15 10.11 0.75
3 LGW191212_220841 GW191230 17.83 0.57 16.38 0.00
4 LGW191214_055524 GW191230 16.51 0.10 7.16 0.02
5 LGW200104 GW191230 5.02 0.09 8.02 0.62

for the supra-threshold event with itself.

In interpreting sub-threshold search results, one has to take into account that there
is a good chance that, in addition to the potential counterpart images, there will
be candidates originating from instrumental glitches or also from different, weaker,
GW events that were not identified in previous searches. Here, the candidate
corresponding to LGW200104 is ranked fifth (including GWTC events) with an
IFAR of 0.09 years. Its network SNR is recovered as 8.02 (with an SNR of 6.31 and
4.94 in H1 and L1, respectively) and its sky localization overlap with GW191230 is
62%. The sky overlap map is given in Fig. 10.5.2.

The third-ranked event has a higher SNR, but no sky overlap with GW191230 and
can be clearly identified as a glitch since there is simply an excess in power for all
frequencies at a given time and no time-frequency evolution similar to that expected
for a CBC signal. The fourth-ranked event is clearly a case of a scattered-light
glitch [327, 328, 343]. Appendix 10.B further details these two events. In the
end, the PyCBC sub-threshold search also finds LGW200104 as the most plausible
lensed GW sub-threshold counterpart to GW191230 consistent with the GstLAL-
based TESLA pipeline [223] and the ranking method proposed in Goyal et al. [180].

Posterior Overlap Analyses
From the PO analysis this pair has log10 B

overlap = 2.45. Since the combined SNR
of the sub-threshold trigger is close to 8, it is reasonable to treat the event pair the
same way we did for other candidates. Using the same time delay priors as for the
supra-threshold events we find log10 R

gal = 0.97 which makes the log of the overall
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Table 10.5.2: Posterior-overlap factors for the GW191230–LGW200104 pair using
different waveform models in the single-event PE.

Waveform log10(B
overlap)

IMRPhenomXAS 3.20
IMRPhenomXHM 3.13
IMRPhenomXP 2.52
IMRPhenomXPHM 2.45
IMRPhenomTPHM 2.55

PO statistic 3.43. Fig. 10.5.3 shows the posteriors for LGW200104 and GW191230.
Visually, the degree of overlap in both extrinsic and intrinsic parameters is high.
However the intrinsic parameters posteriors are broader as compared to GW191103–
GW191105. For events having high masses in the detector frame, such as these, the
number of cycles in the waveformwithin the LIGO–Virgo frequency band is smaller.
This leads to broader posteriors which in turn reduce the overlap statistics, while
increasing the rate of coincidental overlaps [118, 162]. In addition, lensed events
are more likely to have higher detector frame masses than unlensed events due to the
their magnification. Hence, it is a challenge to identify high-mass lensed candidates.
Including the population priors and selection effects might help [188, 201, 235].

We also compute the significance of the pair using the supra-threshold background
introduced in Sec. 10.4 and find it to be / 1σ, as shown in Fig. 10.4.2. This
implies that this pair, though not conclusively lensed, is one of the most significant
candidates amongst all the O3 event pairs.

To look for potential waveforms systematics, we perform the same analysis as in
Sec. 10.4 using results from parallel_Bilby runs with the same five waveform
models in the posterior overlap calculation. The results are shown in Table 10.5.2
and we find relatively consistent results. However, we again notice that the aligned-
spin waveforms produce higher Boverlap, by a factor of ∼ 6. In this case, both a1 and
a2 peak towards zero for the aligned-spin models for the two events, leading to a
better overlap. However, all waveforms agree on identifying this pair as consistent
with lensing.

The PO analysis can quickly identify the lensed candidates but it does not take into
account the full correlation between the data streams, the selection effects, and the
lensing parameters. Hence, the candidates are passed on to JPE pipelines for further
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investigations.

Joint Parameter Estimation Based Investigation
After discovering the candidate with the sub-threshold searches and confirming
interest with PO, it was analysed in more detail using GOLUM [198, 202] with
the samples of the supra-threshold event as the prior for the sub-threshold one.
The evidence of this run can be compared to the results of a standard unlensed
Bilby [49] investigation to yield the coherence ratio. In this case, the run yielded
log10(C

L
U ) = 1.1. This is lower than that calculated for GW191103–GW191105.

However, in this case, one of the two images is very close to the limit of a detectable
event and this may impact the coherence ratio. By itself, the coherence ratio also is
still high enough to favour the lensing hypothesis. To initially investigate the pair’s
significance, it was compared with the same background as outlined in Sec. 10.4.
This results in a FAPpp of 1.4% and thus a FAP of 0.6 which indicates the event is
consistent with a coincidental unlensed background event. However, the background
resulting in this FAP consisted entirely of supra-threshold events and the exact effects
of sub-threshold events in such studies have not been deeply explored.

The GOLUM analysis also offers the possibility to gain insight into the lensing
parameters. In particular, it gives information about the difference in Morse factor
and relative magnification 6. Their posterior distributions are given in Fig. 10.5.4
and 10.5.5, respectively, inwhich it can be seen that the relativemagnification peak is
at∼ 1.5, meaning that its value is close to the highest-probability region expected for
an SIE lens model (see for example Fig. 10.4.3). On the other hand, the difference in
Morse factor is less well constrained, with the main support being for ∆n = 0.5, but
also some support for the ∆n = 0 case. We note that, generally, for well-detectable
lensing events, the difference in Morse factor is well recovered [198, 202]. This
observation may indicate that the event is unlensed but also simply that the lower
SNR of the signal makes the identification harder. These lensing parameters and
the time delay, however, are consistent with expected values for a galaxy-scale lens.

Based on the GOLUM results, we may also investigate how the coherence ratio
and the FAP evolve with the inclusion of expected parameter values from a lens
model, as was done in Sec. 10.4. Using the same background, and the same
models as within that section, we compute the population-reweighted coherence
ratios. These values are reported in Table 10.5.3. Notably, the coherence ratio

6 It also gives the possibility to constrain the time delay, but since the arrival times are very well
measured already in GW data analysis, this does not provide much additional information.
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Table 10.5.3: Values of the detection statistic for the GW191230–LGW200104
lensed candidate pair without lens model (CL

U ), and with an SIE lens, with (CMµ,t
)

and without (CMt
) relative magnification accounted for. The F APPP is decreased

when using an SIE model, showing that the observed characteristics are in line with
the expected behaviour for the given model and population.

Statistic log10 value FAPPP
CL

U 1.105 1.401 × 10−2

CMµ,t
3.427 1.167 × 10−3

CMt
1.915 2.017 × 10−3

found for the SIE model including both the relative magnification and the time delay
is now higher than that for the GW191103–GW191105 event pair, meaning that
the observed characteristics are more in agreement with the expected value for a
galaxy-lens model and the currently observed population than for that pair. This is
a demonstration of the fact that the candidate pair—even though the sub-threshold
event is not confirmed to be of astrophysical origin—is interesting.

TheGW191230-LGW200104 pairwas also analyzed by the full JPEpackagehanabi
[235] where the joint parameter space of the two events was simultaneous explored
by the stochastic sampler dynesty [333] with settings identical to those used in
[32]. The parameters found are consistent with the ones found using the GOLUM
framework—see Fig. 10.5.5 for a comparison of the relative magnifications. In
particular Fig. 10.5.6 shows the posterior probability mass function for the possible
image types of the GW191230-LGW200104 pair. We see that the image type
configurations for the two events that have non-zero support have the difference in
the Morse phase factor ∆n either 0 (i.e. the I-I, II-II and III-III configuration) or
0.5 (i.e. the II-I and III-II configuration). Again, this is consistent with the values
shown in Fig. 10.5.4 obtained using GOLUM.

We also performed the Bayes factor calculation comparing the probability ratio of
the lensed versus the unlensed hypothesis for this pair in the same fashion that we
did for the GW191103–GW191105 pair as in Sec. 10.4. Again, we use the same set
of source population models as in [32], e.g. the powerlaw + peak model for the
source masses from the GWTC-3 observations [29] and three models for the merger
rate density: Madau-Dickinson [239], Rmin(z), and Rmax(z). Table 10.5.4 shows
the log10 Bayes factors computed using the three merger rate density models with
the simple SIS lens model [32] and the SIE + external shear model [236]. We see
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Table 10.5.4: log10 B
L
U for the GW191230 and LGW200104 pair from hanabi

assuming three different (source) merger rate density models and two different lens
models. We see that the values with the SIE + external shear model are all positive
(but only mildly) and consistently higher than that with the SIS model which are
all negative, indicating a higher compatibility of the pair with a more realistic
strong lensing model. Note that the calculations assumed that both GW events are
astrophysical of origin. These values are not sufficient to claim the event pair to be
lensed as we would require a positive log10 posterior odds, and the observed Bayes
factors are not high enough to balance the low prior odds for strong lensing.

Lens modelMerger rate density Madau-Dickinson Rmin(z) Rmax(z)
SIS −0.76 −0.35 −0.57
SIE + external shear 0.14 0.57 0.30

that the values calculated using the SIE + external shear model are positive but only
mildly (< 1), and they are also consistently higher than the values computed using
the SIS model (which are all negative), indicating that the pair is more consistent
with a more realistic strong lensing model. It should be noted that the calculations
assumed that both GW events are astrophysical of origin and the second is treated
as a super-threshold event.

Despite some of the evidence for this event aligning relatively well with the expecta-
tions for a lensed event, there remain several key arguments against a claim of lensing
for this pair. The first is that whilst it is the case that the event has the highest currently
observed Bayes factor, it is insufficient to yield a positive log posterior odds consid-
ering that the log10 prior odds is between −2 and −4 [81, 224, 266, 274, 281, 364].
The second argument, is the nature of the trigger itself. The sub-threshold event is
not convincing—consider for instance the extremely low pastro and FAR—and there
is no clear evidence to claim that the event is a genuine GW detection.

In the end, although the event pair is unlikely to be lensed, the analyses performed on
this event pair serve as a powerful demonstration of the necessity for searching for
such sub-threshold counterparts and the kinds of information that they may yield.

Electromagnetic Follow-Up
Even though the lensing hypothesis is disfavored, we investigate if there are any EM
lens systems with consistent lensing properties from the literature for this event pair.
As in Sec. 10.4, we cross-matched with the MLD. The grade A and grade B lenses
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selected from the catalog at galaxy scales showed 21 matches (see Fig. 10.5.7).
There are two major lens samples that fall within the 90% confidence region of the
sky localisation in addition to a handful of systems from heterogeneous studies [e.g.,
318, 346]. The Strong Lensing Legacy Survey (SL2S) lens systems are those with
RA< 40 deg2 [172, 260, 329] and South Pole Telescope (SPT)–ALMA lens systems
are those with RA> 50 deg2 [e.g., 334, 362]. Some of these lens systems do not
have sufficient information (for instance, are lacking source redshift) and the others
do not have best-fit mass model parameters or sufficiently high-resolution imaging
to identify the multiple lensed image positions. In the absence of these constraints,
the time delay of a few days (i.e. ∼ 5 days for the GW191230–LGW200104 pair)
can easily be consistent with many of the lens systems. As a result, a rudimentary
analysis to determine the likelihood of these lens systems and to select the most
likely EM counterparts is not possible, and a more detailed mass modelling for all
of the 21 systems would be necessary to find the most promising EM counterpart.
Whilst the observation of a third or a fourth GW image would also help further in
constraining the characteristics, the lack of high resolution imaging to clearly and
accurately measure the image positions are still anticipated to be the limiting factor.
Lastly, we again caution the reader that any incompleteness of the survey (both
telescope imaging and subsequent lens searches) may mean that additional potential
EM counterparts may have been missed from our initial list of 21 candidates. We
found more candidates as compared to the EM follow up of GW191103–GW191105
(Sec. 10.4) merely because there are more optical surveys that have looked towards
the sky region of interest here with respect to the sky overlap region of GW191103–
GW191105 which is nearer to the poles. Hence in order to have a robust association
one needs to incorporate the selection effects for both the EM and GW observations
(see [363] for possible avenues).

10.6 GW200208_130117
GW200208_130117, denoted GW200208 from here on, was selected for follow-
up in this paper for two reasons. The first was because it was the event with the
highest log10 B

L
U in the O3 microlensing analysis [32], with a value of 0.8 which,

whilst positive, is still inconclusive. The secondary reason was that the event
had a relatively narrow posterior on the redshifted lens mass which is atypical of
unlensed events. In the O3 lensing paper it was considered that the cause of the
apparent favouring of microlensing for the event could be due to short duration noise
fluctuations causing an apparent dip in the signal, mimicking the beating pattern of
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microlensing [32].

Microlensing Model Investigation
As has been done with a selection of the other events within this paper, GW200208
was re-examined using the Gravelamps pipeline [370] to investigate the potential-
ity of model selection in the case of a microlensing candidate. Whilst the isolated
point mass model used by Gravelamps is similar to that used by the O3 microlens-
ing search pipeline, there are sufficient implementation differences to warrant re-
examination with Gravelamps for this model rather than simply comparing the
results of the SIS investigation with those of the O3 microlensing analysis pipeline.

For all of the models examined, Gravelamps had increased favouring for the
microlensing hypothesis with this event as compared to the O3 microlensing anlysis
pipeline. In the point lens case, the log10 B

L
U increases to 1.20. This confirms the

result from the O3 analysis and shows the event warrants additional investigations.
In the SIS case, the preference increased further with the log10 B

L
U = 1.77. This

again is sufficiently high as to warrant additional scrutiny, but not high enough to
make a statement by itself.

One stage of preparatory work that would shed additional light on the potential sig-
nificance of the log10 B

L
U figures would be a detailed background study to determine

the range over which unlensed events may appear as microlensing candidates. Such
a study had been done for the microlensing search in [23, 32] and allowed the state-
ment above that for the case of that pipeline, the BL

U recorded for GW200208 was
within the expected range for an unlensed event. Due to computational constraints,
this has not yet been performed for the Gravelamps models, although it is one of
the steps that should be taken during O4 so that the significance of candidates may
be evaluated quickly. What we note is that the increase between the two pipelines
would not necessarily have rendered GW200208 outside of expectations for the
O3 microlensing search pipeline, and the general trend of events analysed would
appear to indicate that in general SIS is preferred over the point mass model. This
is likely due to a lens with similar parameters producing lower peak amplifications
in the SIS model as compared with the point mass model which would yield smaller
deformations from the unlensed template.

For the other events that have been examined, the posteriors for lensing parame-
ters have been a factor in determining that the microlensing hypothesis is unlikely.
However, in the case of GW200208—the posteriors of which in the SIS case are
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Table 10.6.1: This table presents the results of a Bayesian model comparison
study between the unlensed and the microlensed hypotheses for GW200208, with
microlensing model corresponding to an isolated point-lens mass. The study was
conducted for different configurations and sampler settings, as indicated by the
different columns, to verify for possible noise artifacts and check the influence of the
sampler settings on the results. The table includes the waveform approximant used,
the lower and higher frequency cutoffs used for likelihood evaluation ( flow, fhigh),
duration of the data segment used, and the priors on the redshifted microlens mass
(M z

Lens) and the impact parameter (y), represented by p(MLz) and p(y) respectively.
The Bayes factor for the support of microlensing over the unlensed waveform model
is given by log10 B

L
U. The range of the priors is also indicated. The terms ‘L.U’

and ‘L.L.U’ refer to log-normal and log-log-normal distributions respectively, while
‘P.L’ refers to a power law profile with the index given by α.

Waveform flow fhigh duration p(M z
Lens) p(y) log10 B

L
U

[min,max] [(α), min, max]
IMRPhenomXPHM 20 448 4 L.U [1, 105] P.L [1, 0.1, 3.0] 0.89
IMRPhenomXPHM 20 1024 4 L.U [10, 105] P.L [1, 0.01, 5.00] 0.63
IMRPhenomXPHM 20 896 8 L.U [10, 105] P.L [1, 0.01, 5.00] 0.46
IMRPhenomXPHM 15 448 4 L.U [10, 105] P.L [1, 0.1, 3.0] 1.02
IMRPhenomXPHM 15 448 4 L.U [10, 105] P.L [1, 0.01, 5.00] 0.53
IMRPhenomXPHM 15 448 4 L.U [10, 105] Uniform [0.1, 3.0] 1.04
IMRPhenomXPHM 15 448 4 L.L.U [10, 105] P.L [1, 0.1, 3.0] 0.70
IMRPhenomXPHM 15 448 4 L.L.U [10, 105] Uniform [0.1, 3.0] 0.95
IMRPhenomXPHM 15 448 4 Uniform [10, 105] Uniform [0.1, 3.0] 0.50
NRSur7dq4 20 448 4 L.U [1, 105] P.L [1, 0.1, 3.0] 0.96
NRSur7dq4 18 448 4 L.U [1, 105] P.L [1, 0.1, 3.0] 0.90

shown in Fig. 10.6.1—this same test yields results more consistent with the mi-
crolensing hypothesis. As can be seen in the figure, the lensing parameter posteriors
are relatively narrowly constrained around a 2000M� lensing object with a source
position value of 0.60. Fig. 10.6.2 shows that in the more pessimistic point lens
case, the lensing parameters are constrained to similar values which further cements
the need for additional scrutiny of this event. For the two models, we see that the
3-σ confidence intervals for the lensing parameters are a bit noisy. However, the
peaks in the density distributions remain clearly visible.

We further investigate GW200208 using various sampler and prior settings, as
well as testing different waveform models, as listed in Table 10.6.1. These tests are
designed to verify whether noise artifacts could be at the root of the observed support
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for microlensing, and whether the results are robust for different sampler settings.
We assume the microlensing model of an isolated point-lens and do parameter
estimation using the GWMAT framework [255].

This pipeline utilizes a Cython implementation of the amplification factor calcu-
lation for the isolated point mass model serves as an independent cross-check for
the study. Additionally, the pipeline incorporates a dynamic cutoff based on the
source position y to transition to a geometric optics approximation. The resulting
probability density functions representing the recovered microlensing parameters
are illustrated in Fig. 10.6.3.

Firstly, we observe that the posteriors for both parameters, y and log10 M z
Lens, are

consistent across different runs, with median values and 1-sigma errors of 1.07+0.61
−0.32

and 3.15+0.18
−0.21, respectively. However, the posteriors for y show signs of railings at

the upper end, particularly in runs with an upper limit of 5 in the prior. Since the
SNR is around 11, we limit the prior on y to a maximum of 5, which would already
require an SNR & 40 to make the microlensing signatures detectable 7. It is worth
noting that the posteriors for log10 MLz are relatively well-converged, with a sharp
peak, except in the case where we used a uniform prior in M z

Lens, which shows a
tendency towards bimodality with another peak at log10 M z

Lens & 5.

As shown in Table 10.6.1, we primarily use fhigh = 448 Hz 8 and a duration of 4
seconds due to the heavy mass nature of the GW200208 event, which has a total
binary mass of approximately 90 M� and negligible spin content. Comparing the
first entry in the table with the second-to-last entry, we find that NRSur7dq4 [354]
yields a slightly higher Bayes factor value than IMRPhenomXPHM for similar settings,
except that the NRSur7dq4 case imposes a total mass constraint of greater than 66
M�, considering its region of validity for flow = 20 Hz. However, since the event has
a total mass ≥ 74 M� with 3σ certainty, we also analyzed the event with flow = 18
Hz (last row), resulting in a slight decrease in log10 B

L
U. On the other hand, when

we lowered the value of flow to 15 Hz for the IMRPhenomXPHM case, the log10 B
L
U

increased compared to a similar run with flow = 20 Hz (see 1st and 4th entry).

When we choose fhigh = 896 Hz and a duration of 8 s (3rd row), both BU
noise and

BL
noise decrease, as does log10 B

L
U, resulting in the lowest value among all the different

7 The minimum SNR required to distinguish two waveforms with a match value of m is roughly√
2/(1 − m2), where we used an estimate of the Bayes factor and set a threshold of unity for

distinguishability [113, 135, 353]. For Mz
Lens = O(103 M�), the match value between the unlensed

and lensed waveform with y = 5 comes out to be ∼ 0.9993, which implies a minimum SNR of ∼ 40.
8 We choose fhigh ≤ 0.875∗ ( fs/2), where fs is the sampling frequency (see Appendix E of [30]).
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settings used in the table. Additionally, log10 B
L
U also decreases when we broaden

the prior on y or log10 MLz (compare, for example, the 4th and 5th row), which could
be additionally lowered due to railing and bimodalities at the higher values of y and
log10 M z

Lens, as shown in Fig. 10.6.3.

The apparent railing and the bimodality can be attributed to the fact that if the likeli-
hood fails to exhibit strong unimodality, the posterior densities may vary depending
upon the prior beliefs. A higher upper limit in the prior of y with a power law profile
p(y) ∝ y will assign more weight to higher values of y. Similarly a uniform prior in
M z

Lens places a higher weight on heavier microlenses than a log-uniform or log-log-
uniform prior, thereby increasing the posterior density in that region. However, if
the SNR is high, or if the event is truly microlensed, the likelihood values are better
constrained and the posterior densities would not be expected to change much with
the priors.

We also note that the Bayes factors presented in Table 10.6.1 show more variability.
These results indicate that we cannot make a firm conclusion on whether the event
is microlensed or not based on the Bayes factor, and the event can only be deemed
interesting probabilistically depending on the prior beliefs we choose.

Maximum Likelihood Injection
One avenue of investigation to determine whether an event with the parameters that
are suggested by the lensing models withinGravelampswould be detected, and if it
was detected, how significant a detection would we expect is to examine a simulated
waveform with the maximum likelihood parameters injected into simulated detector
noise.

Whilst as stated above, a full-scale injection campaign was not undertaken for
the Gravelamps analysis due to temporal and computational constraints, we can
investigate if the BL

U figures would be plausible for a genuine microlensing event of
the suggested parameters by injecting a signal with the parameters of the maximum
likelihood sample of the Gravelamps analysis into a realisation of Gaussian noise
assuming a representative PSD for the noise around the time of detection and
analysing this injection with the Gravelamps models in the same fashion as the real
event.

Performing this analysis yields value for the log10 B
L
U of 0.37 and 0.79 for the isolated

point mass and SIS profiles respectively which are lower than those given for the
event. This suggests that it would be difficult to confidently confirm an event with
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these parameters, and therefore this test does not rule out either the possibility of a
genuine microlensing event or a noise fluctuation in the data. This again highlights
the need for additional investigations such as the aforemnetioned full scale injection
campaign to given greater context to the significance of the calculated Bayes factors.

Residual Power Examination
An additional means of scrutinising amicrolensing candidate event is to examine the
residual power that is left within the data when the maximum-likelihood waveform
fit from the non-lensed PE carried out on the event is removed from the data. In the
case of a genuine microlensing event, one would expect to see remaining oscillating
amounts of power in each of the detectors due to the unaccounted for oscillating
behaviour of the amplification factor. In the case of a non-lensed event, absent any
other systematic errors, one would expect to see the fluctuations associated with
the noise of the detector. This type of analysis is also performed when looking
for deviations from general relativity, where one looks at the residual power in the
data after the maximum-likelihood general-relativity template—equivalent to the
unlensed one—has been subtracted from it [25]. The residual power investigation
carried out in Abbott et al. [25] for this event yielded a p-value, corresponding to
the probability of obtaining a background event with a residual SNR higher than the
event, of 0.97. This suggests the remaining power is within expectations for residual
noise.

The residuals from performing this subtraction are shown for each of the detectors,
for a subset of the total frequency range, in Fig. 10.6.4. As can be seen, none of the
detectors display an obvious coherent oscillation in the residual power that would
be expected in the microlensing hypothesis. These residuals are more typical of
the noise which may indicate that the event is unlikely to be a microlensing event.
Hence, despite the increased favouring of the microlensing hypothesis under the SIS
case in terms of raw PE analysis, this work draws the same conclusion as that of
the lensing searched conducted by the LVK: GW200208, whilst interesting, is not a
genuine microlensing event—though it does highlight the need for more systematic
studies on the imapct of the noise on microlensing searches in the future.

Millilensing Analysis
The range of masses favoured by the microlensing analysis both in Abbott et al. [32]
and within this work would also be within the millilensing regime as described in
Sec. 10.2. In the analysis performed here, four millilensing waveform models were
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used—three with fixed numbers of millilensing signals (two, three, and four signals
respectively), and the fourth being a variable multi-signal waveform allowing any
number of signals from 1 to 6.

With each of the millilensing waveform models, we performed parameter esti-
mation of the source and lensing parameters using the Bayesian inference library
Bilby [49, 305] with the dynesty [333] sampler and the IMRPhenomXPHMwaveform
approximant [295], following the method developed in Liu et al. [230].

The plots resulting from these PE runs are presented in this section and Ap-
pendix 10.C. Before commenting on each of the results individually, we note the
terminology used commonly for each of the figures. The millilensing parameters
are described by a series of effective luminosity distances, deff

j , time delays with
respect to the first image t j+1, and Morse phase n j for the j th image. The convention
for this work is that the images are referred to in time ordering.

Turning to the specific results, we begin with Fig. 10.6.5 detailing the two-signal
case. The posterior distribution of the effective luminosity distance of the first
signal, deff

1 , displays a clear peak as would be expected of a real signal. The
posteriors for the second signal parameters—i.e. the effective luminosity distance
and the time delay—both display peak-like features but also have an extended
underlying posterior. Without additional evidence this would be insufficient to
claim millilensing of the signal and could be explained by the presence of noise, as
discussed in the microlensing analysis of the event.

The three-signal analysis results (detailed in Appendix 10.C) are in agreement with
the two-signal case, where the effective luminosity distance, deff

2 , and time delay
of the second signal, t2, display a peak-like feature in the posterior distribution.
The corresponding parameters of the third signal, however, do not show significant
peaks in their distributions which disfavours the presence of a third millilensing
component signal. The four-signal analysis (detailed in Appendix 10.C) also lacks
any peaking features in the parameters of either the third or fourth signal—returning
their uniform priors and giving additional evidence for the disfavouring of any more
than two signals.

Lastly, a multi-signal analysis, making the number of millilensing components
signals itself a free parameter, was performed. In this analysis, the number of signals
was allowed to range from 1 to 6. The posterior distributions for the millilensing
parameters are shown in Appendix 10.C. These posteriors are again consistent with
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Table 10.6.2: Comparison of Bayes factors for the evidence against the unlensed
hypothesis from the millilensing runs for GW200208.

Model log10(B
Milli
U )

Two signals 0.86
Three signals 0.92
Four signals 0.96
Multi-signal 1.10

the assertion that there is no favouring for any number of signals above a possible
second one. The additional results of attempting to infer the number of signals are
shown in Fig. 10.6.6. The discrete posterior here is notably ambiguous disallowing
confident constraints on the number of signals here—despite only the posteriors
of the second image having any notable features. This serves to underline the
fact that the features within the second image posteriors are insufficient to claim a
millilensing detection.

In addition to the posterior plots, we also compute the Bayes factors for the millilens-
ing hypothesis against the unlensed one. The values are given in Table 10.6.2. They
slightly favor the millilensing case, not significantly enough to truly favor this hy-
pothesis when accounting for the astrophysical information, the prior odds, and the
observed posteriors.

It is thus the conclusion of the millilensing analysis that there is insufficient evidence
to support millilensing within GW2000208 despite a favouring of the millilensing
hypothesis when comparing the Bayes factors of signal versus noise for each of the
models.

10.7 Conclusions and Prospects
In this work, we have analyzed candidates found to be interesting by the LIGO-
Virgo-KAGRA lensing searches in the full O3 data [32] as if they were genuinely
lensed. We considered three main types of lensing: strong lensing, millilensing,
and microlensing with the types being defined by the effects they have on observed
gravitational waves. Though the events investigated do not display strong evidence
of being lensed, the analyses done here demonstrate possible follow-up strategies
for future observing runs in order to assess the significance of any lensing candidate
event.
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Firstly for the GW190412 event—which displayed the greatest support for being a
type II image—, we analysed the data with two other waveform models, showing
that these do not show as strong a feature. Therefore, the observed support is most
likely due to combined noise and waveform systematics. Additionally, we study the
event with a microlensing pipeline to see if such lensing could lead to the apparent
deviations in the overall phasing, finding no evidence for this hypothesis.

Next considered was the GW191103–GW191105 pair, which was flagged as in-
teresting because of its relatively high coherence ratio and the consistency of the
relative amplitudes and time separation with the expectations for the relative magni-
fication and time delay of galaxy lenses. Testing the effect of waveform systematics
on the posterior overlap analysis showed that the lensing hypothesis is favoured re-
gardless of waveform choice. We then went on to demonstrate that whilst the event
is compatible with galaxy-lens models, inclusion of models in the coherence ratio
ultimately does not yield a significant increase in support, as seen by the low coher-
ence ratio. The disfavouring of the lensed hypothesis is further shown by including
a more realistic SIE model in our analysis pipeline, still finding a negative log Bayes
factor. Furthermore, we demonstrated how an electromagnetic counterpart to the
host galaxy could be searched for and showed that no confident counterpart could be
found. We also demonstrated that neither of the individual events has any indications
of microlensing effects. Finally, we looked for a subthreshold lensed counterpart
but found no promising candidate.

A new ranking scheme for the sub-threshold counterparts of detected supra-threshold
events found a new interesting candidate pair: the GW191230_180458 supra-
threshold and the LGW200104_180425 sub-threshold events. We performed inves-
tigations with additional dedicated sub-threshold searches which confirmed interest
in the event pair. As was done for the other event pairs, we then analysed it using the
standard and follow-up tools. First with the posterior overlap analysis, we saw the
event pair is an interesting candidate. Again, a waveform systematic study yielded
consistent results for the various waveforms considered in this work. In this case,
analysis with the joint parameter estimation tools showed that upon the inclusion
of a galaxy-lens model, the coherence ratio was higher than for the previous pair
though only to the extent that 40 unlensed events can produce a pairing with similar
results by coincidence. Additionally, performing the computation of the proper
Bayes factor with an SIS model leads to negative log Bayes factor, disfavouring the
lensing hypothesis. On the other hand, the inclusion of an SIE lens model leads to
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a marginally positive log Bayes factor. However, it is not high enough to compen-
sate for the prior odds, and therefore the posterior odds is disfavoring the lensing
hypothesis. Besides, the low pastro and FAR cast doubt on the astrophysical origin
of the sub-threshold event. Finally, as with the previous pair, a search for possible
electromagnetic counterparts yielded no confident matches which is in line with the
expectation for the events not being lensed. Let us also re-iterate the absence of
clear evidence for the sub-threshold event to be genuine in the first place.

The last event analysed was GW200208_130117 which was flagged as the event
closest to the expectations for a microlensing event. First, we re-examined the event
using different lens models. We found the Bayes factors to be slightly higher than
those computed in Abbott et al. [32], but still compatible with values found for
background unlensed events. We also studied the variation of the Bayes factor for a
point-mass lens model depending on the priors used. We found values ranging from
slightly disfavoring lensing to favoring this hypothesis, in line with other analyses
performed on this event. To deepen the investigation, we perform a maximum-
likelihood injection, recovering the injection with a Bayes factor comparable to the
one found for the event, showing the difficulty to confidently identify microlensing
at this sensitivity. We then looked at the residual power remaining when subtracting
the best-fit unlensed waveform. This test did not yield any particular evidence for
the remaining power being consistent between the detectors, which is in line with the
event being most likely not microlensed. Finally, since millilensing may also lead to
beating patterns in the waveform, we searched for millilensing features in this event.
These searches demonstrated that there was no additional evidence for anymore than
two lensed waveforms comprising the event, and the combination of posteriors and
Bayes factors were not sufficient to conclusively favour the millilensing hypothesis
in general.

In the end, the conclusions from the additional tests are in line with those given by
the LIGO-Virgo-KAGRA Scientific Collaboration [32], showing that none of the
events or event pairs is likely to be genuinely lensed, regardless of their initially
intriguing characteristics. By doing these additional studies, we have shown some
important points for future lensing searches, such as the possibility of having wave-
form systematics, the impact of the lens model in the analysis, the difficulties one
may have to distinguish between events resembling each other by chance and gen-
uinely lensed ones, the interplay between microlensing and millilensing, and other
additional avenues to further investigate lensing candidates in the future. These
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follow-up methods should be valuable in the future when more intriguing lensed
candidates are found.
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Figure 10.4.3: Comparison of the posterior for the observed relative magnification
and time delays for the O3 event pairs with the expected distributions for the lensed
population of mergers from More and More [259] (dashed blue, using an SIE
model) and from Wierda et al. [364] (solid green, using an elliptical model with a
power law density profile and external shear (EPL-Shear)) and unlensed population
(yellow-orange-red), both assuming galaxy lenses. Overlayed in brown are the
observed values for selected O3 event pairs, and the letters mark the event pairs
more compatible with the lensing hypothesis. Written in brown, and denoted with
letter a, is a pair made of a super-threshold and a sub-threshold event, and further
analysed in this work. The top panel corresponds to the expected distribution when
the two images are of the same type, i.e., there is no phase difference between
the two images (see top-left illustration), while the bottom panel corresponds to a
configuration where the two image types differ, i.e., there is a π/2 shift between the
images. Most of the observed event pairs arewell outside the lensed distribution. The
GW191103–GW191105, GW190706–GW190719, and GW101230–LGW200104
pairs are more compatible with the lensed hypothesis than with the unlensed one.
In particular, the GW191103–GW191105 pair lies in a higher probability density
region than the other pairs. One also sees that the GW191230–LGW200104 pair
—made of a supra and a sub-threshold event— lies in a higher density region, even
if it is less important than the GW191103–GW191105 pair. This pair is discussed
further in Sec. 10.5.
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Figure 10.4.4: From dark to lighter, the 10%, 50%, and 90% confidence sky
localisation for the GW191103–GW191105 pair. Overlaid are the cross-matched 5
candidates from the Master Lens Database.
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Figure 10.4.5: Posteriors for a subset of detector-frame source parameters and
the lensing parameters produced during the Gravelamps microlensing analysis of
GW191103. As can be seen, whilst the source posteriors are well constrained, the
lensing parameter posteriors are extremely broad and uninformative. This shows
there are no observable microlensing features in this signal.
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Figure 10.5.1: Scatter plot of posterior samples of GW191230, marginalised to the
mass and aligned spin parameter space. We choose the template given by a KDE
estimator. The other two options shown are the maximum likelihood point (ML)
and an alternative KDE with an extra set of samples reflected on the m1 = m2 line
(rKDE).
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Figure 10.5.2: Overlaid LGW200104 and GW191230 skymaps with 90% and 50%
confidence regions.
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Figure 10.5.3: Posteriors for GW191230 (blue) and LGW200104 (orange). The
posteriors, though broad, have significant overlap for both the intrinsic (left) and
extrinsic (right) parameters.
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Figure 10.5.4: The difference in Morse factor for the GW191230–LGW200104
event pair according to the GOLUM pipeline. The preferred value is 0.5 but there
is also some support for 0.
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Figure 10.5.5: Posterior distribution for the relative magnification for the
GW191230–LGW200104 event pair measured with the GOLUM (solid blue) and
Hanabi (dashed orange) pipelines. One sees that the measured values are consistent
between the two pipelines.
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Figure 10.5.6: Posterior probability mass function for the image type of GW191230
and the image type of LGW200104 from hanabi. It is consistent with the GOLUM
result that it is more likely for the difference in Morse factor to be ∆n = 0.5 (i.e.
the II-I and III-II configuration) than to be ∆n = 0 (i.e. the I-I, II-II and III-III
configuration).
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Figure 10.5.7: Sky localisation 10%, 50%, and 90% confidence region (from dark
to light) for the GW191230-LGW200104 pair. Overlaid are the cross-matched 21
candidates from the Master Lens Database.
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Figure 10.6.1: Posteriors of a subset of source parameters as well as lensing pa-
rameters for GW200208 in the SIS microlensing case. Unlike the other events that
have been examined within this work, the lensing parameters for the model are well
constrained, even if the 3-σ confidence interval is a bit noisy. This means that this
event, unlike the others, cannot be immediately ruled out as a lensing candidate
from this test.
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Figure 10.6.2: Posteriors of a subset of source parameters as well as lensing pa-
rameters for GW200208 in the point mass microlensing case. For this case, the
posteriors are similarly constrained, notably arriving at similar lensing parameters
as the SIS case even if the 3-σ confidence interval is a bit noisy.
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Figure 10.6.3: The posterior densities of the recovered microlensing parameters for
different parameter estimation runs, as presented in Table 10.6.1. The results are
visualized with varying colors from light to dark (numbered from 1 to 11, indicating
different runs as we move down the table.)

Figure 10.6.4: The residual power remaining, from top-to-bottom, in LIGOHanford,
LIGO Livingston, and Virgo when subtracting the best fit non-lensed waveform
template for GW200208 as determined by the unlensed PE from the detector strain,
over a subset of the total frequency range. As can be seen, there is no obviously
coherent oscillatory behaviour in the residual power which would be expected in the
case of the microlensing hypothesis. This absence would suggest that what remains
is noise related rather than signal related.
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Figure 10.6.5: Corner plot of the millilensing parameters obtained from a two-
signal analysis of GW200208. Notable is that there is a peak within the effective
luminosity distance and time delay parameters for a potential second millilensing
signal. However, this peak could be explained by the presence of detector noise.
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Figure 10.6.6: Discrete posterior of the number of signals in themulti-signal analysis
forGW200208. This posterior is insufficient to confidently assert a number of signals
present.
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APPENDIX

10.A LensID GW191103–GW191105 Investigations
In Abbott et al. [32] the pairs which had false positive probability (FPP) less than
0.01 either with PO or LensIDwere passed on for the follow-up analysis. According
to PO the GW191103–GW191105 pair is found to be one of the most significant
candidates. However, the LensID FPP is found to be 0.16. We cannot determine for
certain why LensID did not find the pair significant for follow-up analysis, however,
we can identify some possible contributing factors. Before detailing these, we
briefly summarise how LensID works. LensID is made up of two ML models, one
which takes Q-transforms input, and another which takes skymaps as input. On the
basis of the Q-transforms, the network outputs the probability for the event pair to be
lensed for each detector. Additionally, there is one output lensing probability based
on the sky map. The entire probability for lensing is then computed by taking the
four individual probabilities mentioned above. For more details we refer the reader
to Goyal et al. [177].

GW191103 was observed only in two detectors, LIGO Hanford (H1) and LIGO
Livingston (L1), whereas, GW191105 was observed in all three detectors but was
contaminated by a glitch in the Virgo detector. As seen in Fig. 10.A.1, the final PE
skymap of the event (right panel in Fig. 10.A.1), which is made after deglitching the
data [30], is different from the initial skymap (left panel in Fig. 10.A.1), reducing
the sky map FPP from 0.08 to 0.02 after using the PE sky map, still not crossing the
threshold.

For the Q-transforms, only the H1 and L1 detectors data are used by the framework.
Wenotice that theQ-transforms for the events, especially forGW191105, are visually
poor. They seem to be broken in the middle, as shown in the Fig. 10.A.2. Notice
that the Q-transform of GW191105 in the L1 detector has a gap in the middle of
the signal with peaks of power on both sides of the gap. This is not expected from
a GW chirp signal. We checked that even though the SNRs are similar for both the
events in the H1 and L1 detectors, the estimated probability for lensing varies a lot
between the two detectors, 0.86 for H1 and 0.12 for L1. This indicates that the ML
algorithm is not robust to real noise fluctuations, which is expected as it is trained
using simulated Gaussian noise signals. Additionally, from an injection study we
found that LensID is more prone to misclassifying lensed signals with low chirp
masses (< 20M�) which is the case here. In the future, to mitigate these problems,
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the ML models will be trained and tested on data containing real noise and lower
chirp masses.

Figure 10.A.1: Comparison of sky maps for GW191105, as downloaded from
GraceDBwhich is generated usingLALInference (left) and fromGWOSCwhich is
generated using Bilby after de-glitching the Virgo data (right). The LALInference
sky map is narrower as compared toBilby, likely because of the glitch present in the
data. Note that the localisation patch near to the north pole is the one that overlaps
with GW191103 and therefore matters more than the rest of the patches.

10.B Discarded Targeted PyCBC Sub-Threshold Search Triggers
In this section, we show the time-frequency maps for the two discarded (third and
fourth ranked) candidate triggers found as possible sub-threshold counterparts for the
GW191230 event by the PyCBC-based pipeline. The two can clearly be identified
as glitches, with the third-ranked clearly having a power excess across a broad
frequency band at the same time without presenting a time-frequency evolution
similar to the one expected for a genuine GW signal (see Fig. 10.B.1), and the fourth
in ranking (see Fig. 10.B.2) clearly matching a scattered-light glitch [327, 328, 343].

10.C Details of the Millilensing Investigation
This Appendix presents additional details of the millilensing investigation for
GW200208.

Fig. 10.C.1 represents the result for a millilensing run done with 3 possible super-
posed images. It shows that in comparison with Fig. 10.6.5 the addition of a third
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Figure 10.A.2: Q-transforms images input to the LensID pipeline for GW191103
(top panel) and GW191105 (bottom panel). The chirping feature for GW191105
is broken in both the LIGO detectors, whereas for GW191103 the chirp signal is
fairly visible in Hanford, and not so visible in Livingston. This could be one of the
reasons why LensID did not identify this pair as significant.

Figure 10.B.1: Time-frequency map of the third-ranked PyCBC candidate. This
shows the glitch present near to GPS time 1260223739. This represents the kind of
quieter glitches that gets skipped in the normal autogating procedures.
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Figure 10.B.2: Time-frequency map of the fourth-ranked PyCBC candidate, con-
sistent with a scattered-light glitch [327, 328, 343].

image is not leading to the recovery of an extra possible image since the posterior
for its lensing parameters are flat and uninformative. Similarly, the posteriors for
the four-image analysis (Fig. 10.C.2) show flat posteriors for the lensing parameters
of the third and fourth possible images, leading to the conclusion that no more than
two images can be identified in the data.

In addition to a posterior on the possible number of images, the run where the
number of images is left free also returns posteriors for the lensing parameters of the
different images. These are shown in Fig. 10.C.3. Only the posteriors for a possible
second image are not completely uninformative. The others are flat, meaning that
the analysis does not favour anything with more than two signals.
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Figure 10.C.1: Corner plot of the millilensing parameters obtained from a three-
signal analysis. A similar peak appears in the second image parameters as was
present within the two-signal analysis shown in Fig. 10.6.5. However, no such
features are present within the posteriors of the third millilensing image.
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Figure 10.C.2: Corner plots of the effective luminosity distance (left) and time
delay (right) parameters obtained from the four-signal analysis. Consistent with
the previous analyses, there are no peaking features in the third or fourth signal
posteriors.
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Figure 10.C.3: Corner plots of the effective luminosity distance (left) and relative
time delays (right) obtained from amulti-signal analysis. Again, these are consistent
with what has been seen in the previous analyses with no favouring for any number
of signals above two.
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C h a p t e r 11

TESLA-X: A MORE EFFECTIVE TARGETED SEARCH
METHOD FOR SUB-THRESHOLD STRONGLY LENSED

GRAVITATIONAL WAVES

Note: This Chapter is an adaption of the short author preprint:

“Alvin K. Y. Li et al., “TESLA-X: An effective method to search for sub-
threshold lensed gravitational waves with a targeted population model”,
arXiv e-prints, 2023, doi: arXiv.2311.06416.”

Alvin K .Y.Li is the lead author of this paper, which describes the next-generation
“TargetEd Subthreshold Lensing seArch” (TESLA) method with the use of a better-
constructed reduced template bank and a targeted population model.

11.1 Introduction
Strongly lensed gravitational waves will likely originate from sources living in the
higher redshift universe. Without being lensed, these signals will only be barely
detectable or undetectable. Under strong lensing, copies of gravitational waves
from these high redshift sources will be produced; some may be magnified and are
detected as super-threshold gravitational waves, but some may be potentially de-
magnified with a reduced signal-to-noise (SNR) ratio below the detection threshold.
These signals, formally known as “sub-threshold” signals, are of particular interest,
as a significant proportion of strongly-lensed gravitational-wave events falls into
this category [364]. Retrieving these possible sub-threshold lensed counterparts
is a crucial step in boosting confidence for the first detection of strongly-lensed
gravitational waves.

Two targeted search methods [223, 247] have been developed and employed to re-
cover potential sub-threshold lensed counterparts to known super-threshold gravita-
tional waves. The GstLAL-based TargetEd Subthreshold Lensing seArch (TESLA)
described in [223] strategically reduces the search parameter space to look for pos-
sible sub-threshold lensed counterparts. However, as we will explain in this chapter,
the traditional TESLA method can potentially lose signals due to an excessive loss
in signal-to-noise (SNR) ratio due to how the targeted template bank is constructed.
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Additionally, TESLA’s efficiency in finding potential sub-threshold lensed grav-
itational waves can be improved if a targeted population model built based on
information from the target superthreshold event is used. A proper targeted pop-
ulation model in the ranking statistic can further reduce the influence of the noise
background. Detailed information on the TESLA method can be found in [223].

In this chapter, we present a novel method, TESLA-X, to search for strongly-lensed
sub-threshold gravitational-wave signals. TESLA-X employs a targeted population
model to enhance the search sensitivity for potential lensed sub-threshold signals,
and it addresses the excessive SNR loss issue by utilizing a new targeted template
bank construction method.

This chapter is organized as follows: Section 11.2 outlines the workflow of the tradi-
tional TESLA method. In Section 11.3, we give an overview of how the population
prior term in the likelihood ratio calculations for triggers from the GstLAL search
pipeline is calculated, and detail the TESLA-X methodology. Section 11.4 presents
a simulation campaign to evaluate the TESLA-X method. Finally, in Section 11.5,
we summarize our findings and discuss potential future work to further enhance the
search sensitivity of the TESLA-X pipeline.

11.2 The search for sub-threshold strongly-lensed gravitational waves:
Objectives and current approach

Current effort to search for strongly-lensed sub-threshold lensed counterparts
to super-threshold gravitational waves
When searching for gravitational waves in general, signals with sufficiently high am-
plitudes that can be identified as gravitational waves from the noisy data are known
as super-threshold. In contrast, weaker gravitational waves not distinguishable from
noise are known as sub-threshold. As discussed in Chapter 6 and 7, strong lensing
can produce multiple copies of gravitational waves coming from the same source
with different amplification factors √µ j .

√
µ j can take on values smaller than 1, i.e.

the repeated gravitational-wave signals are de-magnified compared to the not-lensed
gravitational-wave signal and may become sub-threshold. It is then natural to ask
the question: If we assume that one of the identified super-threshold gravitational
waves detected so far is strongly lensed, can we find its sub-threshold strongly lensed
counterparts, if they exist?

There have been ongoing efforts to employmatched-filtering based search pipelines
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with modifications [223, 247] to search for strongly-lensed sub-threshold lensed
counterparts to identified super-threshold gravitational waves from LVK’s first three
observing runs (O1, O2 and O3) [23, 32, 186]. In this paper, we focus on the
TargetEd subthreshold Lensing seArch (TESLA)method [223], which is built based
on the GstLAL search pipeline [43, 86, 96, 176, 183, 249, 250, 263, 309]. The
following sub-section gives a brief introduction to the traditional TESLA method.

The traditional TESLA search method
Traditional TESLA is built based on thematched-filtering-based pipelineGstLAL.A
detailed introduction to the GstLAL search pipeline can be found in [86, 223, 250].
In a general search for gravitational waves from compact binary coalescences,
the goal is to detect signals that span the entire parameter space to which the
detector network’s frequency bandwidth is sensitive. Hence, a large template bank
comprising over a million template waveforms is constructed and used. A large
number of candidates (also known as triggers) is generated, regardless of whether
they are noise or signals. The more templates we use in a search, the larger the trials
factor, and hence, the larger the noise background will become.

Gravitational waves with weaker amplitudes, for instance, strongly-lensed sub-
threshold lensed counterparts, can be buried in the large noise background. Hence,
it is necessary to tactically reduce the noise background while keeping the targeted
foreground constant to uncover possible weaker gravitational waves.

Assuming a super-threshold gravitational wave is strongly lensed, we want to search
for its possible sub-threshold lensed counterparts. In Chapter 7 we explained that
strongly-lensed gravitational waves from the same source should have identical
intrinsic parameters (e.g. component masses and spins), and hence identical wave-
forms. For each super-threshold event (target), we obtain the posterior probability
distribution that gives the best estimates of the source parameters of the target using
the Bayesian parameter estimation analyses described in [48, 49, 305, 356]. We
can then narrow down the parameter search space for possible strongly-lensed sub-
threshold counterparts to regions consistent with the target’s posterior parameter
space. However, as explained in [223], the posterior parameter space of the tar-
get itself is insufficient because of noise fluctuations in the data. Non-Gaussianity
in the data can cause false signals (especially those that have weaker amplitudes
and are hence sub-threshold), to be registered by templates that have very different
parameters than those of the posterior samples for the target.
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TESLAaccounts for both the signal sub-space and noise fluctuations in the datawhen
searching for possible strongly-lensed sub-threshold counterparts to super-threshold
gravitational waves. Here, we outline the steps for running a TESLA analysis. For
each super-threshold gravitational event (target), we start with the posterior samples
ordered in decreasing order of log-likelihood from the parameter estimation for the
target. Since the amplitudes of possible strongly-lensed sub-threshold gravitational
waves are lower, they will be registered as triggers in the search pipeline with lower
signal-to-noise ratio ρ (SNR). For each posterior sample, we generate 1 injection
with the exact same parameters (including luminosity distance to the source DL and
sky location, i.e. right ascension α and declination δ) as the sample, and 9 extra
injections with DL increased (and hence optimal SNR ρopt decreased) to mimic the
de-magnifying effect of strong lensing on the amplitudes of possible sub-threshold
lensed counterparts, according to the inverse proportionality of DL and the optimal
SNR ρopt:

DL ∝
1
ρopt

. (11.1)

We require the latter 9 injections to have detector SNR ρdet ≥ 4 in at least one
detector as a constraint from the GstLAL search pipeline 1. The set of lensed in-
jections represents the possible sub-threshold lensed counterparts to the target we
are searching for. They are then injected into real data, and we perform an injec-
tion campaign using GstLAL with a full template bank to recover them. After the
injection campaign, templates that can find these injections 2 are kept to construct
a targeted template bank to search for possible strongly-lensed sub-threshold coun-
terparts to the target. The end product of TESLA is a ranked list of possible lensed
counterparts to the target in increasing order of FARs. Readers are reminded that
the FARs (or other ranking statistics) reported in the search’s ranked list do not
indicate how likely the signal candidate is a lensed counterpart to the target, but
only a priority label for follow-up analysis.

For a detailed explanation of the TESLA method, please refer to [223].
1 We do not lower the single detector SNR threshold in the GstLAL search pipeline since this

will lead to an exponential increase in the number of both signal and noise triggers. As future work,
we will explore the possibility of further lowering the single detector SNR threshold.

2 An injection is “found” if the FAR of the associated trigger is ≤ 1 in 30 days.
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11.3 The upgraded TESLA-X search method

The missing pieces in the traditional TESLA method: Non-optimal template
bank and population model
We have shown in [223] that the traditional TESLA method succeeds in improving
the search sensitivity to possible strongly-lensed sub-threshold gravitational waves.
However, the whole picture still needs to include two puzzle pieces.

First, in the original full template bank, the parameter ranges are informed by the
masses and spins of detectable sources (BNS, NSBH, BBH), and the templates
are distributed with a density that allows a maximum loss of 3% SNR when a
gravitational-wave signal is recovered (compared to the optimal SNR 3) [263].
However, when a reduced template bank is generated using traditional TESLA, we
discard templates that did not recover lensed injections for the target super-threshold
gravitational waves. This breaks the original optimality of the full template bank,
caused by the finite number of lensed injections that are used to generate the reduced
template bank, and strongly-lensed sub-threshold signals whose optimal detector
SNR is near threshold (i.e. around ρopt ≈ 4.12) will not be detected. Therefore, it is
vital that the optimality of the reduced template bankmust be conserved tomaximize
our search sensitivity towards possible strongly-lensed sub-threshold gravitational
waves.

Second, a population model was not set in traditional TESLA. In the analysis, the
absence of a population model carries an implicit assumption that every template in
the template bank has an equal probability of recovering a possible sub-threshold
counterpart. Since our goal is to detect sub-threshold counterparts whose intrinsic
parameters are identical to a super-threshold signal, implementing a population
model centered around the signal’s recovered parameters will increase the pipeline’s
sensitivity in detecting signals in that region. The population model should also be
dependent on SNR to account for sub-threshold signals that are coloured by noise
and, thus, could be recovered by a template that is different from that recovered the
super-threshold signal.

3 The optimal SNR is the SNR when the signal is cross-correlated with a template with the exact
same parameters as the signal.
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The likelihood ratio in the GstLAL search pipeline
To rank candidates, GstLAL assigns each trigger a likelihood ratio as its ranking
statistic, defined as [86, 250, 309]:

L =
P( ®DH, ®O, ®ρ, ®ξ2,

[
∆®t,∆ ®φ

]
| ®θ, signal)

P( ®DH, ®O, ®ρ, ®ξ2,
[
∆®t,∆ ®φ

]
| ®θ, noise)

· L(θ), (11.2)

where the first term, P(...| ®θ, signal)/P(...| ®θ, noise), is the ratio of the probability of
obtaining the candidate event under the signal model to that under the noise model.
It depends on (1) the detectors ®O that are participating at the time of the candidate
event, (2) the horizon distances of the participating detectors ®DH , (3) the detector
SNRs ®ρ and (4) The candidate event’s auto-correlation-based signal consistency test
values at each detector ®ξ2. If a candidate event is found in coincidence at multiple
detectors (i.e. the event is a coincident event), L will also include (5) the relative
time delays ∆®t and (6) the relative phase delays ∆ ®φ of the candidate event between
participating detectors 4.

The second term in Equation 11.2,

L(θ) =
P(®θ |signal)
P(®θ |noise)

, (11.3)

is the ratio of the probability that a trigger is recovered by a template with parameters
®θ, given the trigger is an astrophysical signal or noise. Because this ratio does not
depend on the data observed by the detectors and depends on input parameters given
before performing the search, it has been written as a separate term.

The method of calculating the numerator and denominator are described in detail
in [166] and [85], respectively. While the derivations are not repeated here, we
wish to highlight that information about the population model is enfolded into the
numerator; therefore, it is P(®θ |signal) that allows the pipeline to perform targeted
source searches. The following section describes the changes made to improve the
strongly-lensed gravitational-wave search.

A better reduced template bank, and a targeted population model
Traditional TESLA aims to reduce the noise background effectively to uncover pos-
sible strongly-lensed counterparts to the target super-threshold gravitational wave.

4 These relative time delays and phase delays should not be confused with the relative time delays
and phase delays coming from strong lensing



271

We reduce the number of templates, and hence trials factors, by keeping only tem-
plates that can cover the parameter space where possible lensed counterparts may
live in. Through an injection campaign, traditional TESLA locates a subset of tem-
plates from the full template bank to construct a reduced template bank to search
for possible lensed counterparts to a given target super-threshold gravitational wave.
However, as explained at the beginning of 11.3, there are two problems in traditional
TESLA, both of which lead to a decrease in the search sensitivity of TESLA.

We now propose two improvements to the TESLA method that will resolve these
problems: (1) constructing a better reduced template bank, and (2) generating a
targeted population model.

We recall that the sole purpose of the injection campaign is to determine the search
parameter subspace that we should focus on to look for possible strongly-lensed
sub-threshold counterparts to the target super-threshold gravitational waves. The
injection campaign is always imperfect because we can only do a limited number
of injections with discretized SNRs, i.e. we cannot cover the full spectrum of
SNRs that possible lensed sub-threshold signals can have. Therefore, the templates
that can recover lensed injections in the injection campaign can only serve as a
pointer as to the region of search parameter space we should be targeting, i.e. a
search parameter subspace where possible lensed sub-threshold counterparts to the
target super-threshold gravitational waves may live in. We should hence use the
injection campaign results to define a boundary within which templates live should
be used collectively to construct the reduced template bank to search for possible
lensed counterparts to the target, regardless of whether the templates can recover
injections from the injection campaign. The proposed reduced template bank does
not discard templates within the narrowed-down search parameter space defined
by the boundary. Hence, it maintains the optimality guaranteed by the original
full template bank within the limited search space. In turn, any possible lensed
counterparts that live within the boundary will be recovered with an SNR loss less
than 3%, preventing any loss of potential signals due to excessive SNR loss.

Under the strong lensing hypothesis, possible lensed counterparts should have the
same parameters as the target super-threshold gravitational waves regardless of be-
ing super-threshold or sub-threshold. Therefore, the population of possible lensed
counterparts to the target gravitational waves should have a higher probability of
lying near the signal subspace defined by the posterior parameter probability distri-
bution of the super-threshold event, and a lower probability of living far away from
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that. When we perform the injection campaign in traditional TESLA, we can obtain
both the recovered injections’ SNRs and the corresponding templates that recover
the injections. Generally speaking, sub-threshold signals with lower optimal SNRs
are affected by noise fluctuations more substantially and hence can be recovered by
templates with parameters different from those of the target super-threshold event.
That said, the templates closer to the signal subspace defined by the posterior pa-
rameter probability distribution of the target are associated with recovered injections
with higher SNR values. Therefore, we can make use of the results from the injec-
tion campaign to construct a Gaussian Kernel Density Estimation (KDE) function
KDE(®γ) using the distribution of the templates that recovered the lensed injections,
with the corresponding injections’ recovered SNRs as weights. The KDE is a func-
tion of source parameters ®γ, which, to match the parameters of the template bank,
are set to be the masses and spins of the source. When weighted with the recovered
SNRs, regions closer to the signal subspace that the target super-threshold gravita-
tional wave lies in will give a higher value for the KDE function, which matches
our expectation that lensed counterparts to the target should have similar parameters
as the target. The KDE function can then be redefined as the probability density
function that describes the “source population” for our possible strongly-lensed sub-
threshold counterparts to the target gravitational wave. Using this as our population
model, we then follow the steps detailed in [166] to calculate P(®θ |signal), i.e. the
probability that a signal is recovered by a template with parameters ®θ. Notably,
this probability depends on SNR, such that the search does not overly penalize
templates far away from the signal subspace for weak sub-threshold signals. These
methods instill a correct population model to the new TESLA method compared to
the incorrect uniform population model in traditional TESLA, improving the search
sensitivity.

The flow of the TESLA-X search method
We now describe in detail the actual flow of the proposed TESLA-X search method.

Figure 11.3.1 presents the workflow of the TESLA-Xmethod. We start with a target
super-threshold gravitational-wave event found during a general searchwithGstLAL
using a full template bank. Using the posterior samples obtained by Bayesian
parameter estimation of the target event, we generate, for each sample, one injection
that has the same optimal SNR as the sample, and nine additional injections with
smaller optimal SNRs by increasing their effective distances, requiring that their
SNRs in at least one detector have to be ≥ 4 to ensure they can be registered as
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Figure 11.3.1: Workflow of TESLA-X. Elements in grey are the same procedures
as in traditional TESLA. Colored elements (color online) are new procedures in
TESLA-X.

a trigger during the matched-filtering process in the search. These injections will
represent possible sub-threshold lensed counterparts to the target super-threshold
event. We then inject these simulated lensed injections into real data, and use the
GstLAL search pipeline to try and recover them with a full template bank. Up to
this stage, TESLA-X is still identical to the traditional TESLA method.

After the injection campaign, we now retrieve a set of templates that can recover
the simulated lensed injections, and the associated observed SNRs of the recovered
injections. We can plot the retrieved templates on the chirp massMc - effective spin
χeff space, with the colors of the points being the associated recovered injections’
observed SNRs ρobs. The top left panel of Figure 11.3.2 shows an example cartoon
that plots the templates on theMc−χeff space, with the color being the recovered
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injections’ network SNRs. Traditional TESLA keeps only templates that can recover

Figure 11.3.2: A cartoon depicting how we construct a reduced template bank from
the injection results following the Traditional TESLA method (top right) and the
proposed TESLA-X method (bottom left and right).

the lensed injections and use them to construct the reduced bank, hereby known as
“TESLA BANK” (top right panel of Figure 11.3.2). For TESLA-X, we construct
a Gaussian Kernel Density Estimation (KDE) function f (®γ) for the templates that
recover the injections, with the corresponding recovered SNRs as the weights,
where γ is the set of template parameters we are considering; for example, in Figure
11.3.2 ®γ will be chirp massMc and effective spin χeff 5. Using the KDE function,
we can then evaluate the probability density for each template point ®θ in the full

5 Note that the lensed injections are generated based on the posterior samples from the parameter
estimation of the target event. Spins, admittedly, are not well measured for gravitational waves.
However, recall that the lensed injections’ spin distribution follows the distribution of the parameter
estimation result for the target event. Suppose the spin measurement for the target event is poor.
In that case, the parameter estimation result will essentially return the uninformed, uniform prior
for spins, meaning that the lensed injections’ spins will follow a uniform distribution. Hence, the
injection campaign result is not biased towards spins. Hence, we argue that there is no harm in using
effective spin as a parameter when generating the Gaussian KDE.
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template bank. We then use “matplotlib.pyplot.contour” with the default settings
of “matplotlib.ticker.MaxNLocator” to determine the characteristic contour levels
for the KDE function (see bottom left panel of Figure 11.3.2) for example). Then,
using the lowest contour (it is left as future work to better define the lowest contour /
least significant contour in terms of confidence interval) as the boundary, TESLA-X
keeps all the templates within the boundary and uses them to construct the reduced
template bank, hereby known as “TESLA-X BANK”. While the TESLA BANK has
“holes" (see, for example, the top right picture in Figure 11.3.2) compared to the
original full template bank because we are overly removing templates, the TESLA-
X BANK keeps all the templates within a certain boundary, hence recovering the
optimality of the original template bank in the region within the boundary. Hence,
we will not lose signals due to excessive loss in SNR, and we will expect the
TESLA-X BANK to give better search sensitivity.

Because the Gaussian KDE function f (®γ) is essentially a probability density func-
tion (PDF) that describes the expected distribution of possible (sub-threshold) lensed
counterparts to the target super-threshold gravitational wave, we can use it as the
astrophysical source population prior to construct a targeted population model using
the same methodology described in the previous section and [166]. Figure 11.3.3
shows an example cartoon to illustrate the idea. We have also compared the perfor-

Figure 11.3.3: A cartoon depicting how we use the injection campaign results to
construct a targeted population model in TESLA-X.

mance of TESLA-X using (1) the targeted population model suggested above, and
(2) an empirical, uniform mass model. We have verified that the search with the
suggested targeted population model gives a better performance than the uniform
mass model.

Once the reduced bank and the targeted population model have been constructed, we
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again use GstLAL to search through all possible data with the targeted bank and the
targeted population model to look for potential sub-threshold lensed counterparts to
the target super-threshold event. GstLAL will then output a list of candidate events
ranked by their assigned ranking statistics, including the FARs and the likelihood
ratios L. We have to stress again that the FARs assigned to the candidate events
here do not quantify how likely they are to be lensed counterparts to the target
event. Still, they are measures to distinguish noise triggers (false alarms) from real
astrophysical signals, whether or not they are lensed counterparts to a target event.
The ranking statistics here should only be used as a priority ranking for follow-up
analysis to decide how likely each candidate event is a lensed counterpart to the
target event. As future work, we will explore the idea of evaluating an additional
lensing likelihood ratio for each trigger that includes additional lensing information
as a separate ranking statistic. At that stage, the lensing likelihood may reveal how
likely a trigger is a lensed counterpart to the target event.

11.4 Method verification and results
In [223], we carry out a full-scale simulation campaign, where we prepare mock
data with a pair of super-threshold and sub-threshold lensed signals injected, and
apply the TESLA method to recover the two signals. We have proved that the
TESLA method can recover sub-threshold lensed signals if they exist. TESLA-X
and TESLA have essentially the same working principle, but the only differences are
how we construct the reduced template bank and the population model. Therefore,
we conduct a simulation campaign solely to compare the search effectiveness and
sensitivity towards possible sub-threshold lensed gravitational-wave signals using
TESLA and the proposed TESLA-X method.

Mock data generation
First, we generate a 9.15-day long data stream with Gaussian noise recolored with
O4 characteristic power spectral densities for LIGO Hanford, LIGO Livingston, and
Virgo detector 6, with the assumptions that there is no detector downtime 7, and no
times are vetoed. We inject a super-threshold gravitational wave generated using
the IMRPhenomXPHMpseudoFourPN waveform [295] into the mock data. Details
about the source parameters of the injected gravitational wave are listed in Table
11.4.1.

6 The exact data for O4 characteristic power spectral densities for LIGO Hanford, LIGO Liv-
ingston and Virgo detector can be found at https://dcc.ligo.org/T2200043-v3/public.

7 A detector is considered “down” if it is not in observing mode.
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Table 11.4.1: Information of the injected super-threshold gravitational-wave signal
MS220508a in the simulation campaign. All properties reported here are measured
in the detector frame.

Properties Injected super-threshold signal
UTC time May 08 2022 11 : 06 : 00
GPS time 1336043178.397

Distance (Mpc) 2858.18
Primary mass mdet

1 70.08M�
Secondary mass mdet

2 38.83M�
Dimensionless spins χ1x = 0.182, χ1y = 0.182, χ1z = −0.0363,

χ2x = −0.113, χ2y = 0.132, χ2z = 0.116,
Right ascension α 2.811
Declination δ 0.819
Inclination ι 2.513
Polarization Ψ 1.187
Waveform IMRPhenomXPHMpseudoFourPN

In later parts of this paper, wemay refer to the super-threshold signal asMS220508a.

Performing a general search
We then use GstLAL to perform a search over the mock data stream following the
same settings used to search for gravitational waves within O3 data in GWTC-3
[27]. We use the same general template bank as described in [223] for the general
search. As expected, the search recovers MS220508a with the highest ranking
statistics (FAR= 2.972 × 10−35 Hz, rank 1) among all other triggers. We then
apply a Bayesian inference library for gravitational-wave astronomy Bilby [49] 8 to
perform parameter estimation (PE) for MS220508a, which outputs a set of posterior
samples required to apply the TESLA and TESLA-X search pipeline.

Performing an injection campaign
Using the posterior samples from the PE for MS220508a, we generated 7815 simu-
lated lensed injections following equation 11.1. These simulated signals are injected
into the mock data, and we perform another search using GstLAL with the general
template bank to recover them. The results of the injection campaign are then used
to perform the TESLA and TESLA-X analyses.

In the injection campaign, the general template bank recovers 6151 out of 7815
8 For reference, we used the default MCMC approach to do the sampling.
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injections (See the column “General” in Table 11.4.2), ringing up a total of 1008
templates 9. Figure 11.4.1 plots the rung-up templates on the chirp mass Mc -
effective spin χeff space, with the colors of the markers being the network SNRs of
the associated injections. We can see that the results match our expectations: Tem-
plates closer to the actual parameters of MS220508a are associated with injections
with higher recovered SNRs (i.e. super-threshold). Those that have parameters
much different than the actual parameters of MS220508a are, in general, related to
injections with lower SNRs (i.e. sub-threshold).
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Figure 11.4.1: Rung-up templates by the simulated lensed injections of MS220508a
in the injection campaign, plotted on the chirp massMc - effective spin χeff space.
The colors of the markers represent the network SNRs of the associated injections.

Generating the TESLA and TESLA-X reduced template banks
We keep all templates that are rung up during the injection campaign, and use them
to generate a TESLA targeted template bank. Figure 11.4.2 shows the templates in
the full template bank (in grey) and those in the TESLA template bank (in orange).

9 Note that the same template may be rung up multiple times by different injections, and hence
the number of rung-up templates can be fewer than the number of found injections.
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Figure 11.4.2: The templates in the full template bank (in grey) and in the TESLA
reduced template bank (in orange), plotted in theMc - χeff space.

For TESLA-X, we first use the rung-up templates in the injection campaign to
construct a Gaussian Kernel Density Estimation (KDE) function KDE(®γ) with the
associated injections’ network SNRs as the weights. γ represents the template
parameters used to label the templates. Here, ®γ = {Mc, χeff}. Then, we evaluate
the probability density at each template point in the full template bank, and plot the
results on a contour map. Figure 11.4.3 shows the contour map for the Gaussian
KDE function estimated for MS220508a.

We then take the lowest contour level (For the case of MS220508a, the lowest
contour level has a value of 0.005) as a boundary, and use all the templates within
this boundary to construct a TESLA-X targeted template bank. Figure 11.4.4 shows
the templates in the full template bank (in grey) and in the TESLA-X reduced
template bank (in red) in theMc - χeff space. The yellow curve marks the lowest
contour level we obtained for the estimated Gaussian KDE function we showed in
Figure 11.4.3. There are 22136 templates in the TESLA-X reduced template bank.
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Figure 11.4.3: The contour map of the Gaussian Kernel Density Estimation function
obtained forMS220508a in theMc - χeff space. The colors represent the probability
density estimated by the KDE function.

Constructing the targeted population model for the TESLA-X reduced template bank
Next, we use the estimatedKDE function forMS220508a and the TESLA-X reduced
template bank to construct a targeted population model, following the same steps
detailed in 11.3 and [166]. Note that for practical reasons, the Gaussian KDE
function KDE(®γ) is re-calculated with ®γ chosen to be the component masses and
spins m1,m2, χ1, χ2 instead ofMc and χeff.

Performing a re-filtering to recover the lensed injections with the TESLA
and TESLA-X methods
Finally, we perform two searches, one using the TESLA reduced template bank,
and one using the TESLA-X reduced template bank, together with the targeted
population model, over the same stretch of mock data to try to recover the same
set of lensed injections used in the injection campaign to compare the performance
of the TESLA and TESLA-X methods. Table 11.4.2 summarizes the findings. As
expected, the TESLA method successfully recovers more injections than the full
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Figure 11.4.4: The templates in the full template bank (in grey) and in the TESLA-
X reduced template bank (in red), plotted in theMc - χeff space. The TESLA-X
template bank is constructed by keeping templates that fall within the lowest contour
level from the Gaussian KDE function shown in Figure 11.4.3, i.e. 0.005, plotted
as a yellow curve in this figure. For easy comparison, we plot the TESLA reduced
template bank templates in the same figure (in blue).

Table 11.4.2: Number of injections found during the search of mock data using the
general template bank, TESLA method, and TESLA-X method, respectively.

Injections General TESLA TESLA-X
Total 7815 7815 7815
Found 6151 6169 6297

Found % change - +0.29% +2.37%

template bank, with an increase of 0.29%. However, we can see that the proposed
TESLA-X method outperforms the TESLA method. In particular, it recovers even
more lensed injections than the TESLA method, with an increase of 2.37%.

Furthermore, if we look at the sensitive range v.s. FAR forMS220508a-alike signals
using the full template bank, TESLA template bank, and TESLA-X template bank,
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Figure 11.4.5: (Top panel) The sensitive range v.s. FAR for MS220508a-alike
signals using the full template bank (black), TESLA template bank (red), and
TESLA-X template bank (blue), respectively. The shaded band for each curve
represents the corresponding 1-sigma region. (Bottom panel) The corresponding
percentage changes in sensitive range v.s. FAR for the different banks. We note
that both the TESLA and TESLA-X bank improves in terms of sensitivity towards
MS220508a-alike (lensed) signals, but the curve representing the TESLA-X bank
(blue) is above that of the TESLA bank (red), meaning that the TESLA-X method
outperforms the TESLA method. In particular, notice that the improvement is most
significant in the region with FAR ≥ 10−7 Hz, which represents the “sub-threshold”
region. This further proves that the TESLA-X method is better than the traditional
TESLA method.

respectively (see Figure 11.4.5), we can see that the TESLA-Xmethod gives a bigger
improvement in terms of sensitivity towards MS220508a-alike (lensed) signals than
the traditional TESLA method. In particular, we note that the improvement is most
significant in the region with FAR ≥ 10−7 Hz, which represents the “sub-threshold”
region. This means that TESLA-X outperforms TESLA in finding possible sub-
threshold strongly lensed gravitational waves.

11.5 Concluding Remarks
The detectability of strongly lensed gravitational wave (GW) signals can be compro-
mised as they may experience demagnification, falling below the detection thresh-
old. In a previous study, we introduced the TESLA method [223] to extract strongly
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lensed sub-threshold GW signals by constructing a target template bank based on
the information from detected events. This Chapter presents an enhanced approach
called TESLA-X, which aims to improve the search sensitivity for strongly lensed
sub-threshold GW signals.

The TESLA-X methodology begins with generating simulated lensed injections
using posterior samples obtained from parameter estimation. These injections are
then subjected to an injection campaign using GstLAL, with a threshold set at
a FAR of 3.385 × 10−7 Hz, ensuring statistical significance. Subsequently, the
TESLA-X method utilizes the retrieved injections to create a targeted population
model and a densely distributed template bank. Finally, the data is reprocessed to
identify potential sub-threshold lensed candidates using the new population model
and template bank.

The targeted populationmodel is constructed through several steps. Initially, a Gaus-
sian kernel density estimation (KDE) function is applied to the retrieved injections’
source parameters ®γ. This KDE function is then transformed into a probability
density function, representing the parameter space of our potential strong-lensed
sub-threshold GW signals [166]. Additionally, we generate the targeted template
bank by defining a boundary within the retrieved injections. This process involves
discarding templates from the original full template bank outside of a predefined
boundary that encloses the target parameter space while keeping all templates within
the boundary. This results in a densely distributed template bank targeting a smaller
region. Compared to the TESLA method, this refined template bank ensures the
recovery of any lensed counterparts with less than a 3% SNR loss. Notably, the
FARs and likelihood values (L) do not provide information about the likelihood
of being lensed counterparts to the target event. Instead, they serve as metrics to
differentiate between noise triggers and astrophysical signals.

In this study, we conducted a simulation campaign to evaluate and compare the
search sensitivity of three methods: the full template bank search, the TESLA
method, and the TESLA-X method. Our analysis utilized a stream of mock data,
where Gaussian noise was introduced along with a significant GW event labeled
MS220508a. Our findings demonstrate that the TESLA-X method outperforms
the other approaches by successfully recovering more lensed injections specifically
targeting MS220508a. Furthermore, we observed a maximum of ∼ 10% increase in
the search sensitivity through an examination of the sensitive range versus FAR plot.
An increase in sensitive range means that we can see signals coming from further
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sources, and equivalently, we can see weaker signals according to equation 11.1.
These results substantiate the superior performance of the TESLA-X method in
enhancing the search capabilities for gravitational lensing phenomena. TESLA-X
still carries the same problem as TESLA in terms of high computational cost10 for
running the injection campaign for each target super-threshold gravitational-wave
event. As future work, we will explore ways to improve TESLA-X’s computational
efficiency. We will also look into possible parameters other than chirp mass and
effective spin to represent our interested population (See Appendix).

10Running TESLA/TESLA-X for a single super-threshold event can take O(weeks).
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APPENDIX

11.A Choosing a suitable pair of parameters to construct the Gaussian KDE
In the main text, we construct the Gaussian KDE in the chirp massMc - effective
spin χeff parameter space. It has also been suggested that the component masses
m1-m2 parameter space may be a better choice. In this appendix, we present some
preliminary investigation results for this question.

Re-doing the TESLA-X analysis for MS220508a with the Gaussian KDE
constructed in the m1-m2 space
In this subsection, we redo the TESLA-X analysis with the Gaussian KDE con-
structed in the component masses m1-m2 parameter space instead of the chirp mass
Mc - effective spin χeff parameter space.

Constructing the TESLA-X bank and population model

We start with the injection run results we obtained previously for the same event.
First, Figure 11.A.1 plots the rung-up templates on the component masses m1-m2

parameter space, with the colors of the markers being the network SNRs of the
associated injections.

Note that although we are working in a different parameter space, templates in the
TESLA template bank will remain unchanged because we are simply keeping all
the templates that are rung up by the injections during the injection campaign to
form the TESLA bank. For completeness, we also plot the same TESLA bank in
the main text for MS220508a on the component masses m1-m2 parameter space in
Figure 11.A.2 As before, templates in the full template bank are plotted in grey, and
those in the TESLA template bank are plotted in orange.

For TESLA-X, we use the rung-up templates in the injection campaign to construct
a Gaussian Kernel Density Estimation (KDE) function KDE(®γ) with the associated
injections’ network SNRs as the weights. As before, γ represents the template
parameters used to label the templates. Here, ®γ = {m1,m2}. Then, we evaluate
the probability density at each template point in the full template bank, and plot the
results on a contour map. Figure 11.A.3 shows the contour map for the Gaussian
KDE function estimated for MS220508a in the m1-m2 space.

We again take the lowest contour level (0.00002) as a boundary, and use all the
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Figure 11.A.1: Rung-up templates by the simulated lensed injections ofMS220508a
in the injection campaign, plotted on the component masses m1-m2 parameter space.
The colors of the markers represent the network SNRs of the associated injections.

templates that fall within this boundary to construct a TESLA-X targeted template
bank in the m1-m2 space. For simplicity, we will call the TESLA-X bank created
based on the KDE constructed in the m1-m2 space as the “TESLA-X (component
mass) bank”, and the TESLA-X bank in the main text that is created based on the
KDE constructed in theMc - χeff space as the “TESLA-X (main) bank”. Figure
11.A.4 shows the templates in the full template bank (in grey) and in the “TESLA-X
(component mass) bank” (in red) in the m1-m2 space. The yellow curve marks
the lowest contour level we obtained for the estimated Gaussian KDE function we
showed in Figure 11.A.3. There are 159043 templates in the “TESLA-X (component
mass) bank”.

Similar to the main text, we use the estimated KDE function for MS220508a and
the “TESLA-X (component mass) bank” to construct a targeted population model,
following the same steps detailed in 11.3 and [166].
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Figure 11.A.2: The templates in the full template bank (in grey) and in the TESLA
reduced template bank (in orange), plotted in the component masses m1-m2 space.

Performing a re-filtering to recover the lensed injections with the “TESLA-X
(main) bank” and “TESLA-X (component mass) bank”

To compare the effectiveness of the “TESLA-X (main) bank” and “TESLA-X (com-
ponent mass) bank” for the case of MS220508a, we perform an additional search
using the “TESLA-X (component mass) bank” together with the targeted popula-
tion model over the same stretch of mock data described in the main text to try
to recover the same set of lensed injections used in the injection campaign. Table
11.A.1 summarizes the findings. We can see that “TESLA-X (component mass)”
is performing even worse than the full template bank, with a reduction in recovered
lensed injections by −0.3%. This should not be surprising, however, given that the “
TESLA-X (component mass) bank” has more templates than the “TESLA-X (main)
bank” (almost six times more templates). This results in a much higher trials factor
and, hence, a larger noise background, making it harder to recover the simulated
lensed injections.

Furthermore, if we look at the sensitive range v.s. FAR forMS220508a-alike signals
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Figure 11.A.3: The contourmap of theGaussianKernel Density Estimation function
obtained for MS220508a in the m1 - m2 space. The colors represent the probability
density estimated by the KDE function.

Table 11.A.1: Number of injections found during the search of mock data using
the general template bank, “TESLA-X (main) bank” and “TESLA-X (component
mass) bank” respectively.

Injections General TESLA-X (main) TESLA-X (component mass)
Total 7815 7815 7815
Found 6151 6297 6132

Found % change - +2.37% −0.3%

using the full template bank, “TESLA-X (main) bank” and “TESLA-X (component
mass) bank” respectively (see Figure 11.A.5), we can see that the “TESLA-X
(component mass) bank” is performing even worse than the full template bank.
Therefore, in the case of MS220508a, chirp mass Mc - effective spin χeff would
be the better pair of parameters to construct the Gaussian KDE in the TESLA-X
method.
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Figure 11.A.4: The templates in the full template bank (in grey) and in the “TESLA-
X (component mass) bank” (in red), plotted in the m1-m2 space. The “TESLA-X
(component mass) bank” is constructed by keeping templates that fall within the
lowest contour level from the Gaussian KDE function shown in Figure 11.A.3, i.e.
0.00002, plotted as a yellow curve in this figure. For easy comparison, we also plot
the templates in the TESLA reduced template bank in the same figure (in blue).

Analyzing another mock event MS220510ae with the TESLA-X method
MS220508a is a relatively low chirp mass event (∼ 45.0M�). It will be useful to
redo the above investigation about the choice of parameters to construct the Gaussian
KDE in the TESLA-X method with a different mock event that lives in a different
region in the parameter space.

In this subsection, we repeat the analysis in the previous subsection with another
mock superthreshold gravitational-wave event MS220510ae. Settings for the mock
data are identical to those in the main text. Details about the source parameters of
the injected gravitational wave are listed in Table 11.A.2.

We follow the same steps in the main text to perform Bayesian parameter estimation
on MS220510ae, and use the posterior samples obtained to generate a set of lensed
injections. We then conduct an injection campaign using the full template bank to
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Figure 11.A.5: (Top panel) The sensitive range v.s. FAR for MS220508a-alike
signals using the full template bank (black), “TESLA-X (main) bank” (red), and
“TESLA-X (component mass) bank” (blue) respectively. The shaded band for each
curve represents the corresponding 1-sigma region. (Bottom panel) The corre-
sponding percentage changes in sensitive range v.s. FAR for the different banks.
We note that while the “TESLA-X (main) bank” improves in terms of sensitivity
towards MS220508a-alike (lensed) signals, “TESLA-X (component mass) bank” is
performing worse than the full template bank, mainly due to the significant increase
in trials factors caused by the large number of templates.

search for the lensed injections. The injection run results are then used to construct
the “TESLA-X (main) bank” and “TESLA-X (component mass) bank”, and their
corresponding targeted population models. Out of the 8099 lensed injections, the
full template bank manages to recover 5047. For simplicity, we only show the
Gaussian KDE constructed for the “TESLA-X (main) bank” (in theMc-χeff space)
and for the “TESLA-X (component mass) bank” (in the m1-m2 space) in Figure
11.A.6 and 11.A.7 respectively.

As before, we construct the “TESLA-X (main) bank” and “TESLA-X (component
mass) bank” by keeping all templates that fall within the boundary defined by
the least significant contour in the respective Gaussian KDE constructed. For the
case of MS220510ae, the “TESLA-X (main) bank” contains 15655 templates, and
the “TESLA-X (component mass) bank” contains 21676 templates. Notice that
the “TESLA-X (component mass) bank” for MS220510ae, unlike in the case for
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Table 11.A.2: Information of the injected super-threshold gravitational-wave signal
MS220510ae in the simulation campaign. All properties reported here are measured
in the detector frame.

Properties Injected super-threshold signal
UTC time May 10 2022 18 : 38 : 17
GPS time 1336243115.828

Distance (Mpc) 10066.811
Primary mass mdet

1 166.90M�
Secondary mass mdet

2 117.04M�
Dimensionless spins χ1x = 0.635, χ1y = 0.233, χ1z = 0.660,

χ2x = 0.006, χ2y = 0.087, χ2z = 0.029,
Right ascension α 5.69
Declination δ 1.45
Inclination ι 5.99
Polarization Ψ 2.92
Waveform IMRPhenomXPHMpseudoFourPN

MS220508a, is larger than the “TESLA-X (main) bank” bymerely∼ 5000 templates.

We then use the two TESLA-X banks and their respective population models to
try recovering the same set of lensed injections used in the injection campaign.
Table 11.A.3 summarizes the findings. Completely different from the case of
MS220508a in the main text, we can see that “TESLA-X (component mass)” is
performing even better than the full template bank, while the “TESLA-X (main)
bank” is performing worse than the full template bank. This is mainly because spins
are poorly measured in general for high-mass systems, and hence the “TESLA-X
(main) bank”, with inaccurate constraint in the spin dimension, are more likely to
lose signals than the “TESLA-X (component mass) bank”, which does not impose
any constraints on spins. For completeness, we also show the sensitive range v.s.
FAR for MS220510ae-alike signals using the full tempalte bank, “TESLA-X (main)
bank” and “TESLA-X (component mass) bank” respectively in Figure 11.A.8.

Conclusion
From the two investigations, we note that “chirp mass - effective spins” is a better
parameter pair to be used in constructing the Gaussian KDE for the TESLA-X
method, if the target event is a low chirp mass system. On the other hand, component
masses “mass 1 - mass 2” will be a better parameter pair to be used in constructing
the Gaussian KDE for the TESLA-X method, if the target event is a high chirp mass
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Figure 11.A.6: The contourmap of theGaussianKernel Density Estimation function
obtained forMS220510ae in theMc - χeff space. The colors represent the probability
density estimated by the KDE function.

Table 11.A.3: Number of injections found during the search of mock data using
the general template bank, “TESLA-X (main) bank” and “TESLA-X (component
mass) bank” respectively for the mock event MS220510ae.

Injections General TESLA-X (main) TESLA-X (component mass)
Total 8099 8099 8099
Found 5047 4715 5886

Found % change - −6.58% 16.6%

system. We note that these findings are entirely expected: While chirp masses and
spins are well-measured in low-mass systems, they are not well-measured in high-
mass systems since their signals have much fewer in-band cycles. As future work,
we will investigate how we can improve the construction of the Gaussian KDE
functions for the TESLA-X method. For instance, we can see that the Gaussian
KDEs can exceed the physical boundary of the original template bank (See the
yellow boundary in 11.A.4). Regions near the physical boundary of the original
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Figure 11.A.7: The contourmap of theGaussianKernel Density Estimation function
obtained for MS220510ae in the m1 - m2 space. The colors represent the probability
density estimated by the KDE function.

template bank may require special care. We may also explore the idea of first
constructing and applying a separate KDE to “flatten" the TESLA-X bank (i.e., to
construct a uniform mass model) before applying the Gaussian KDE representing
the targeted population model.



294

8000

10000

12000

14000

Se
ns

iti
ve

 R
an

ge
 (M

pc
) Full template bank

TESLA-X (main) bank
TESLA-X (component mass) bank

10 1310 1210 1110 1010 910 810 7

Combined FAR (Hz)

10

0

10

20

%
 in

cr
ea

se

Figure 11.A.8: (Top panel) The sensitive range v.s. FAR for MS220510ae-alike
signals using the full template bank (black), “TESLA-X (main) bank” (red), and
“TESLA-X (component mass) bank” (blue) respectively. The shaded band for each
curve represents the corresponding 1-sigma region. (Bottom panel) The correspond-
ing percentage changes in sensitive range v.s. FAR for the different banks. We note
that, unlike the case of MS220508a in the main text, the “TESLA-X (component
mass) bank” improves in terms of sensitivity towards MS220510ae-alike (lensed)
signals, “TESLA-X (main) bank” performs worse than the full template bank. This
is mainly because spins are typically poorly measured for high chirp mass systems.
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C h a p t e r 12

RE-RANKING POSSIBLE SUB-THRESHOLD LENSED
CANDIDATES WITH LENSING LIKELIHOODS

Note: This chapter will be turned into a short author publication:

Alvin K. Y. Li et al., “TESLA-X+: Targeted search method for sub-threshold
strongly lensed gravitational waves with lens-model-based ranking statistics”,
In Preparation.

12.1 Introduction
The GstLAL-based TESLA / TESLA-X pipeline [222, 223] has been one of the key
pipelines for the LVK’s collaboration to search method for possible sub-threshold
lensed counterparts to known superthreshold gravitational waves [23, 32]. By doing
injection campaigns, TESLA / TESLA-X narrows down the search parameter space
and reduces the size of the template bank to lower the noise background. With the
help of a targeted population model, they help to improve the ranking statistics of
possible sub-threshold lensed gravitational-wave candidates. While the number of
templates in targeted template banks generated through the TESLA-X pipeline is
typically much lower than that used in searches for gravitational waves in general 1,
targeted searches using the reduced template banks can still return O(10) of possible
lensed candidates per event. To do follow-up on these candidates to see how likely
they are lensed counterparts to the target super-threshold gravitational-wave event,
one will first need to obtain the posterior probability distribution that gives the best
estimates of the source parameters of the target using the Bayesian parameter esti-
mation analyses described in [48, 49, 305, 356]. For sub-threshold candidates that
typically have lower signal-to-noise ratios (SNRs), conducting parameter estima-
tion analyses are extremely computationally expensive and time-consuming. It is,
therefore, vital to develop ways to discard candidates returned from each TESLA-X
analysis effectively that are unlikely lensed counterparts to the target event, before
passing them for follow-up analysis.

This chapter introduces a new ranking statistic for the TESLA-X pipeline incorporat-
1 For reference, the template bank used by the LVK collaboration in O3 to search for gravitational

waves has O(106) templates, whereas a typical TESLA-X targeted bank has O(103 − 104) templates.
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ing lens model information. This new ranking statistic, named “lensing likelihood”,
evaluates how likely a candidate returned from the TESLA-X pipeline is a lensed
counterpart to the target superthreshold event, assuming that the candidate is an
actual gravitational-wave event. It is important to note that the lensing likelihood is
lens-model-based (i.e. its value can vary for different lens models). The possible
use cases of the lensing likelihood will be discussed later.

This chapter is organized as follows: Section 12.2 describes the motivation for
implementing the lensing likelihood. In Section 12.3, we describe how the lensing
likelihood is constructed and evaluated. Section 12.4 presents a working example
of how the lensing likelihood can help to prioritize candidate-follow-up for the
TESLA-X pipeline. Finally, in Section 12.5, we summarize our findings and discuss
potential future work to further enhance the usefulness of the newly implemented
lensing likelihood.

12.2 Motivation and Background
Strong gravitational lensing can produce copies of gravitational waves from the
same source. These copies have the same intrinsic parameters (hence the same
waveform morphology) but with different amplitudes (due to different amplification
factors applied) and phases (due to different Morse phase factors applied). Some of
these copies are de-amplified compared to the not-lensed gravitational wave because
the amplification factor is < 1, and may become “sub-threshold” 2. GstLAL-based
TESLA-X [222, 223] (See also Chapter 11) has been the flagship LVK matched-
filtering-based search pipeline to search for strongly-lensed sub-threshold lensed
gravitational-wave counterparts to confirmed superthreshold gravitational waves
from LVK’s first three observing runs [23, 32, 186]. In this section, we will give
a brief review of the TESLA-X pipeline, and motivate the implementation of the
lensing likelihood, which will be discussed in the next section.

The TESLA-X search pipeline: A brief recap
TESLA-X aims to search for possible sub-threshold lensed counterparts to known
superthreshold gravitational waves. These possible new candidates are not identified
as gravitational waves in the general search by the LVK collaboration because a
large template bank spanning a vast region in the search parameter space is used.
As more templates are used in a search, more candidates (triggers), whether they are

2 As explained in previous chapters, “sub-threshold” signals are low-amplitude signals that are
indistinguishable from the noise background.
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real signals or noise, will be generated. Because of the high trials factor, the noise
background generated in a general search for gravitational waves will be large, hence
making itmore difficult for low-amplitude signals, e.g. possible sub-threshold lensed
gravitational waves, to be distinguished from noise and be identified as signals.
TESLA-X strategically reduces the nuisance noise background while keeping the
targeted foreground constant to uncover possible gravitational waves with weaker
amplitudes.

For a given superthreshold gravitational-wave event, TESLA-X first considers the
posterior probability distribution that provides the best estimates of the source
parameters of the target using BILBY, a Bayesian parameter estimation pipeline
[48, 49, 305, 356]. Under the strong lensing hypothesis, we expect possible sub-
threshold lensed counterparts to the target superthreshold gravitational-wave event
to have similar intrinsic parameters. Therefore, it is natural to consider localizing the
search parameter space to regions consistent with the target’s posterior parameter
space. However, we note that the posterior distributions obtained for the target
event are only valid for one noise realization. Due to noise fluctuations in the data,
weaker signals (near or sub-threshold) can be registered as triggers by templates
with parameters very different from those of the posterior samples of the target
event [222, 223].

To account for both consistency in intrinsic parameters with the target event, and
noise non-stationarity, TESLA-X takes the posterior samples of a target superthresh-
old gravitational-wave event from parameter estimation as input, and sorts them in
decreasing order of log-likelihood. We aim to determine the region in the parameter
space where weaker lensed counterparts can be recovered. These possible lower-
amplitude signals will be registered as triggers in searches with lower signal-to-noise
ratios ρ (SNR). For each sample, TESLA-X generates 1 injection with identical pa-
rameters (including luminosity distance to the source DL and sky location, i.e. right
ascension α and declination δ) as the sample, and 9 extra injections with increasing
DL to mimic the effect of de-magnification due to strong lensing on the amplitudes
of the possible sub-threshold signals, according to the relation DL ∝ ρ

−1.

The set of lensed injections is injected into real data. Then, an injection campaign
is performed using GstLAL with a general, full template bank to try to recover the
injections (As before, an injection is recovered if the false-alarm-rate FAR of the
associated trigger is ≤ 1 in 30 days.). Recovered injections with their associated
templates are then used to generate a Gaussian Kernel Density Estimation (KDE)
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p(®θ) on the search parameter space represented by ®θ 3 with the recovered SNR
of the injections as weights. Templates that live within the lowest contour of the
KDE are kept to construct a targeted template bank. The KDE is further used
to generate a targeted population model [166, 222] that describes the expected
distribution of possible (sub-threshold) lensed counterparts to the target super-
threshold gravitational wave.

Finally, TESLA-X uses the GstLAL search pipeline again to search through all
possible data with the generated targeted template bank and population model.
GstLAL will output a list of possible candidate events ranked according to their
assigned ranking statistics, including the likelihood ratios L and false-alarm-rates
FARs. These ranking statistics assigned by GstLAL, however, only represents how
likely the candidate is an actual gravitational-wave event as compared to noise, i.e.
it does not include any additional information regarding how likely the candidate
event is a lensed counterpart to the target event, compared to being an independent
event.

Candidates that satisfy a pre-determined FAR threshold are then passed on for
follow-up analyses, which require parameter estimation to be first done on each
new candidate. Since we expect to see many sub-threshold candidates with lower
SNRs, it is, in general, more computationally costly and time-consuming to conduct
parameter estimation for them.

In the LVK’s search for lensing signatures in full O3 data [32], the TESLA pipeline
reported 2372 new sub-threshold candidates that passes the usual 1 in 30 days FAR
threshold from targeted searches for 39 superthreshold gravitational-wave events
[26]. This corresponds to approximately 60 new candidates per event. In the paper,
we set a stricter threshold on the FAR and only follow up on the most promising
O(1) candidates due to the expensive computational costs. However, we note that
the FAR assigned to each candidate only tells us how likely they are gravitational-
wave events as compared to noise. Lensing information (i.e., how likely these
candidates are lensed counterparts to the target event) has not been considered. To
better trim the list of candidates and only follow up on those that are more likely
to be an actual gravitational-wave event, and more likely to be lensed counterparts
to the target event, we need a second alternative ranking statistic that accounts for

3 ®θ labels the intrinsic parameters of the templates in the search parameter space. They can be
different sets of parameters, e.g. “chirp massMc - effective spin χeff” or “component mass 1 m1 -
component mass 2 m2”, depending on the region of parameter space we are probing.
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the consistency of the candidates’ parameters with the lensing hypothesis. In the
next section, We will give a detailed discussion about this new statistic, the lensing
likelihood.

12.3 The Lensing Likelihood
In gravitational lensing, the primary observables are the relative time delays and
magnifications between the pair of lensed events [259]. Given a lens model, one
can simulate lensed gravitational-wave events and model the expected distributions
of the relative time delays p(∆t |lensed) and magnifications (Magnification ratios)
p(µrel |lensed) of the possible lensed event pairs. We will use the joint probability
distribution p(∆t, µrel |lensed) instead of the factorized probability distribution. We
can repeat the exercise for independent (not lensed) gravitational-wave events, and
obtain the joint probability distribution of their relative time delays and magnifi-
cations p(∆t, µrel |not lensed) [259]. Figure 12.3.1 shows an example of the Kernel
Density Estimations of the distribution of log relative time delay and magnification
ratios for the simulated lensed gravitational waves (green contours and pale blue
sample points) for the SIE-double model and not-lensed, independent gravitational
waves (black contours with grey sample points). We can see that the KDE for
not-lensed, independent gravitational waves spans a larger range of relative magni-
fications and relative time delays solely because these gravitational-wave events are
randomly distributed, in contrast to lensed gravitational waves under a given lens
model. Since lensed and not lensed gravitational waves have different distributions
for relative time delays and relative magnifications. one can construct the proposed
“lensing likelihood” with these joint distributions as

Llensing =
p(∆t, µrel |lensed, signal)

p(∆t, µrel |not lensed, signal)
. (12.1)

For candidates returned from the search pipeline, relative magnification can be de-
fined as the ratio of the candidate’s SNR to that of the target event. Note that we have
implicitly assumed that the candidates under consideration are real gravitational-
wave signals.

In contrast to the likelihood assigned by search pipelines that evaluate how likely a
candidate is a gravitational-wave signal as compared to noise, the lensing likelihood
evaluates how likely a candidate is a lensed counterpart to a given target event,
as compared to being completely independent events, by considering the relative
time delay and magnification between the two events under consideration. The
higher the lensing likelihood, the more consistent the lensing observables (i.e.
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Figure 12.3.1: TheKernel Density Estimations of the distribution of log relative time
delay and magnification ratios for the simulated lensed gravitational waves (green
contours and pale blue sample points) for the SIE-double model and not-lensed,
independent gravitational waves (black contours with grey sample points). We can
see that theKDE for not-lensed, independent gravitational waves spans a larger range
of relativemagnifications and relative time delays solely because these gravitational-
wave events are randomly distributed, in contrast to lensed gravitational waves under
a given lens model.

relative time delay and magnification) of the candidate are with the lens model
under consideration, and thus, the more likely the candidate is a lensed counterpart
to the target event under consideration.

There are two caveats to the interpretation of the lensing likelihood: (1) The lensing
likelihood assumes the candidate is an actual gravitational-wave event. This means
that the lensing likelihood only assesses the consistency with the strong lensing
hypothesis of the candidates’ relative time delay ∆t and relative magnification µrel
compared to the target event, regardless of whether the candidate is an actual signal
or noise. (2) The lensing likelihood heavily depends on the lens model under
consideration. Different lens models have different expected distribution for the
relative time delays and magnifications between lensed signals, and hence, the
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lensing likelihood for the same candidate can change when one varies from one lens
model to another.

12.4 Working example
This section uses the mock lensed event MGW220111a introduced in [223] as a
working example for the lensing likelihood implementation in TESLA. As a quick
recap, a pair of lensed events (GPS time: 1325932493 and 1326029051), one
superthreshold and one subthreshold, is injected into a 28-hour-long data stream
with Gaussian noise recolored with O3a characteristic power spectral densities
(PSDs). The two signals are image type 1 and type 2 signals, respectively. Detailed
setup and parameters of the injected events can be found in Section IV of [223], and
Section 7.3 of Chapter 7.

In the TESLA targeted search for the mock superthreshold event MGW220111a
in [223], we can uprank the missing sub-threshold lensed counterpart (GPS time:
1326029051) and retrieve it as a rank-3 candidate, followed by the target event
MGW220111a (rank-1 candidate) and a noise trigger (rank-2 candidate). Table
12.4.1 shows the detailed information of the top three candidates from the TESLA
targeted search. Should this situation be encountered in a real analysis, we will

Search results Superthreshold Noise Subthreshold
signal trigger signal

GPS time 1325932493 1326011224 1326029051
log10 ∆t (days) - −0.04 0.04

Rank 1 2 3
FAR (Hz) 5.37 × 10−21 1.18 × 10−5 4.27 × 10−5

lnL 48.63 13.53 12.13
Network SNR ρnetwork 12.20 7.12 7.60

log10 µrel - 0.23 0.21

Table 12.4.1: Top three candidates from the TESLA targeted search for the mock
lensed event MGW220111a.

have to follow up on both the rank 2 and rank 3 triggers, because we do not know a
priori whether they (1) correspond to a real gravitational wave, and (2) are lensed
counterparts to the target event (i.e. rank 1 trigger).

Following [259], we simulated lensed gravitational waves based on the singular
isothermal ellipsoid (SIE) lens model. The SIE lens model allows for systems of
2 lensed images (also known as “doubles”) and systems of 4 images (also known
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as “quads”). For our example, we will only consider the SIE-double model. Based
on the simulated lensed gravitational waves, we generate Gaussian Kernel Density
Estimation (KDE) for the relative time delays log10 ∆t (in days) and magnification
ratios (log10 µrel) between the lensed images. We repeat the exercise with simulated,
not-lensed, independent gravitational waves. Then, for both the rank 2 and rank 3
triggers listed in Table 12.4.1, we evaluate the log lensing likelihood lnLlensing. Ta-
ble 12.4.2 shows the evaluated results. In Figure 12.4.1 we also plot the relative time
delays andmagnification ratios for the rank 2 (in red) and rank 3 (in blue) triggers, on
top of the KDE distributions for lensed gravitational waves (green contours) and not-
lensed, independent gravitational waves (filled contours). We can see that the lens-

Log Lensing Rank 2 Rank 3
Likelihood trigger trigger
lnLlensing 3.80 3.98

Table 12.4.2: Log Lensing Likelihoods for the rank 2 and 3 triggers evaluated based
on the SIE-double lens model.

ing likelihood of the rank 3 trigger, corresponding to the real sub-threshold lensed
gravitational-wave counterpart to the mock superthreshold event MGW220111a,
has a “marginally-larger” log lensing likelihood (lnLlensing = 3.98 > 3.80) than
that of the rank 2 trigger, corresponding to a noise trigger. In Figure 12.4.1, we
can see that the rank 3 trigger’s (in blue) lensing observables (relative time delay
and magnification) is slightly closer to the lensed gravitational wave distribution
(green contours), compared to those of the rank 2 trigger (in red). While being a
marginal case, this still demonstrates that the lensing likelihood has the potential
to uprank candidates that are more likely to be a lensed counterpart to the target
event under consideration. However, it should be noted that the lensing likelihood
calculation is based on the assumption that the candidate under consideration is a
real gravitational wave. This is not the case in this example, where the rank 2 trigger
is a noise trigger. In addition, the lensing likelihood is highly dependent on the lens
model under consideration, and may vary vastly should a different lens model be
considered. Therefore, we remind readers that the lensing likelihood, at the current
stage, should be treated with caution and only be used as reference information.

12.5 Conclusion and future work
TESLA-X has been the LVK collaboration’s key pipeline to search for possible sub-
threshold lensed counterparts to known superthreshold gravitational-wave events.
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Figure 12.4.1: The log relative time delay and magnification ratios of the rank 2
trigger (in red) and rank 3 trigger (in blue) respectively. The Kernel Density Esti-
mations of the distribution of log relative time delay and magnification ratios for the
simulated lensed gravitational waves (green contours) and not-lensed, independent
gravitational waves (filled contours) are also plotted. We note that the rank 3 trig-
ger, corresponding to the real sub-threshold lensed counterpart to MGW220111a, is
slightly closer to the lensed KDE distribution than the rank 2 noise trigger, resulting
in a slightly higher log lensing likelihood.

As of the O3 analysis, the TESLA-X pipeline can return 60, possibly lensed sub-
threshold candidates per superthreshold event. Due to the expensive computational
costs, we trim down the candidate list by imposing a high threshold on the false-
alarm-rate FAR assigned to the candidates by the search pipeline. However, as
mentioned in [222, 223], the ranking statistics assigned by the search pipeline to
each candidate only consider how likely the candidate is an actual gravitational-wave
signal compared to noise. It contains no information about how likely the candidate
is a lensed counterpart to the target event under consideration. Therefore, a pure cut
in FAR to reduce the number of candidates to follow up with may potentially lead
to real lensed gravitational waves being discarded.

In this chapter, we introduce an alternative ranking statistic for theTESLA-Xpipeline
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that incorporates lens model information. The new ranking statistic, or “lensing
likelihood”, evaluates how likely a candidate returned from the TESLA-X pipeline
is a lensed counterpart to the target superthreshold event, assuming that the candidate
is an actual gravitational-wave event. The lensing likelihood takes in the relative
time delay and magnification ratios between the sub-threshold lensed candidate and
the target event, and compare the probability of obtaining this set of observables
under the hypothesis that they are lensed counterparts to each other, as compared to
under the hypothesis that they are not-lensed, independent events.

We demonstrate how the lensing likelihood can potentially uprank real lensed sub-
threshold gravitationalwaveswith themock gravitational-wave eventMGW220111a
case as an example. However, we note the following caveats to the interpretation
of the lensing likelihood: (1) The lensing likelihood is evaluated based on the
assumption that the candidate is an actual gravitational-wave event. (2) The lensing
likelihood depends heavily on the lens model under consideration.

There are several possible use cases for the lensing likelihood proposed in this
chapter. (1) The lensing likelihood can be used as a separate ranking statistic to
uprank / downrank candidates, (2) We can also multiply the lensing likelihood to
the search pipeline’s likelihood that addresses how likely the candidate is a signal
as compared to noise, then use the combined ranking statistic to uprank / downrank
candidates. We may as well just use the new ranking statistic as a rank / label,
but we can also run simulation campaigns to understand the distribution of lensing
likelihoods for lensed gravitational-wave events and independent gravitational-wave
events to give a better statistical interpretation of the new ranking statistic values. In
the future, we can also consider other lens models and different types of lenses (e.g.
galaxies and galaxy clusters). Since the calculations are done after the searches as
a post-processing step, the additional computational cost of considering more lens
models and lens types will be minimal.
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C h a p t e r 13

SUMMARY AND FUTURE WORK

13.1 Summary of Thesis
The detection of gravitational waves by the LIGO-Virgo-KAGRA (LVK) collabo-
ration has opened a new window for us to study the universe. We have detected
gravitational waves from compact binary coalescences, which are mergers of bi-
nary compact objects: black holes and/or neutron stars. To continue pushing the
boundaries to explore new science via gravitational waves, we need to enhance
both the hardware, e.g. improving the gravitational-wave detectors’ sensitivities
and building more ground-based detectors to expand the detector network; as well
as software, e.g. developing better search pipelines for gravitational waves and data
analysis techniques to probe gravitational-wave sources with the broadest range of
parameters and from the furthest distances. With these efforts, we aim to populate
our catalog of gravitational-wave events maximally not restricted to only known and
confirmed sources like compact binary coalescences, but also, other types of gravi-
tational waves, including gravitational-wave bursts from core-collapse supernovae,
continuous gravitational waves from spinning non-axisymmetric neutron stars, and
stochastic gravitational-wave background from sources that are not individually re-
solvable. These detections allow us to explore many essential and exciting topics in
astrophysics that can foster our understanding of our universe’s fundamental laws
and evolution. For instance, gravitational waves can be deflected by curvature in
spacetime caused by massive intervening objects like galaxies and galaxy clus-
ters as electromagnetic (EM) waves are, an effect known as gravitational lensing.
Successful detection of lensed gravitational waves will be a tremendous discovery
for the (astro)physics community. It will also be a pivotal pathway to study the
higher-redshift early universe and, ultimately, cosmic evolution.

In this thesis, I focus on improving the search sensitivity of the matched-filtering
based search pipeline GstLAL, and searching for gravitationally-lensed gravitational
waves. Here, I will briefly summarize the content of my thesis. Beginning with
Chapter 2, I gave a very brief overview of the key ideas and concepts in General
Relativity, followed by the standard derivations of linearized gravity in the weak-
field limit, and how gravitational waves emerge from the resulting Einstein’s field
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equations. I also briefly introduced theAdvancedLIGOgravitational-wave detectors
and derived the antenna pattern functions associated with the LVK collaborations’
L-shaped detectors. Then, in Chapter 3, I gave a top-level review of the current
framework of the LVK collaboration to search for gravitational waves from compact
binary coalescences, including data calibration, searches for gravitational waves in
calibrated data, and Bayesian parameter estimation analysis for gravitational-wave
events. In Chapter 4, I explained in detail how matched-filtering pipelines search
for gravitational waves in general. I then focus on GstLAL, one of the flagship
pipelines of the LVK collaboration to search for gravitational waves from compact
binary coalescences. Alongside the overall structure of the GstLAL pipeline, I have
also selected and explained several key terms in the likelihood ratio calculation for
triggers in the GstLAL pipeline. With proper modifications, these chosen terms will
allowus to enhance the search sensitivity ofGstLAL further. For instance, inChapter
5, I introduced amethod to effectively incorporate statistical data quality information
from the machine-learning-based pipeline iDQ [149, 176] into GstLAL’s likelihood
ratio calculations. This method aims to (partially) resolve the problem of current
GstLAL noise background estimation, which does not track time dependence nor
data quality. Improvements to the other highlighted terms are left as future work
(See the next section).

In the second part of my thesis, I switched my focus towards gravitational lensing
of gravitational waves. In Chapter 6, I gave an overview of gravitational lens-
ing in general and gravitational lensing of gravitational waves. I also introduced
current efforts made by the LVK collaboration to search for lensing signatures in
gravitational-wave data. In Chapter 7, I introduced the targeted sub-threshold search
for strongly lensed gravitational waves (TESLA) method. TESLA aims to search for
possible sub-threshold (demagnified by gravitational lenses and hence with weaker
amplitudes) strongly-lensed counterparts to confirmed superthreshold gravitational
waves. To reduce the noise background effectively while keeping the targeted
foreground constant, TELSA conducts injection campaigns to narrow the search pa-
rameter space, accounting for both the target super-threshold event signal subspace
and noise fluctuations in the data. Through a simulation campaign, we have shown
that TESLA can boost our search sensitivity towards possible sub-threshold lensed
gravitational waves in the data, if they exist. In Chapter 8, 9 and 10, we present
results from the LVK collaboration-wide search for gravitationally-lensed gravita-
tional waves from the first-half and entire third observing run (O3). The TESLA
analysis to search for possible sub-threshold lensed gravitational waves was included
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as one of the key analyses. While we have found no evidence of gravitational lens-
ing in O3 data, we expect that with the detectors’ sensitivities improving, upcoming
LVK’s observing runs will continue to populate our catalog of gravitational-wave
detections that will foster our study and understanding of gravitational lensing of
gravitational waves. With the help of multi-messenger astronomy and improved
analysis methods, we have high hopes of making the first (and many more) detection
of gravitationally-lensed gravitational waves in the near future. In Chapter 11 and
12, I further introduced two significant improvements to the TESLA search method.
Chapter 11 describes how we can construct a better reduced template bank and a
targeted population model to improve our sensitivity towards possible sub-threshold
lensed gravitational waves. Chapter 12 demonstrates how we can fine-tune the
list of possible lensed gravitational-wave candidates reported by the TESLA search
method by the incorporation of lens model information. These improvements are
crucial and critical to improve our chance of detecting the first gravitationally-lensed
gravitational waves.

13.2 Future work
A wise friend once told me, “There is always room for improvement, and things are
not done all at once. They are completed in stages." His words apply to both research
work and science development. While I am ending my work as a PhD candidate
here, there is still a lot of work left to do to exhaust the potential of gravitational
waves to fully understand the Universe.

The TESLA-X+ pipeline can be further improved:

Firstly, the current TESLA-X method arbitrarily defines the region of interest in the
search parameter space as enclosed by the least significant contour of the Gaussian
Kernel Density Estimation we constructed using the recovered injections from the
injection campaign. While we have shown that TESLA-X can recover more lensed
injections than the traditional TESLAmethod and attain a larger sensitivity range, the
current approach does discard certain templates that can recover lensed injections,
but are outside of the least significant contour of the Gaussian KDE constructed.
In the future, we will investigate ways to improve the construction of the targeted
population model further. For instance, we may consider first “flattening" the
TESLA-X bank (by constructing a uniformmassmodel) before applying the targeted
population model. We may also need to address the problem that the Gaussian KDE
can exceed the physical boundary of the original template bank.
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Secondly, as discussed in Chapter 12, additional injection campaigns are needed to
quantify the significance of the lensing likelihood values reported by the TESLA-
X+ pipeline. Currently, they can only be used as reference information because
we lack a robust study to understand the distributions of the lensing likelihoods
of “background", not-lensed gravitational waves, compared to that for truly lensed
gravitational waves. We will need to conduct more thorough background studies to
unleash the full potential of the lensing likelihood.

The lensing likelihood can also be extended to include sky location information of
the triggers’ sources. Because the uncertainty in source localization for gravitational
waves is much larger than the deviation in source positions of lensed gravitational
waves from the same source, we can assume lensed gravitational waves originating
from the same source to have the same sky localization. This can be potentially
added as an additional parameter to be considered in the lensing likelihood and
enhance its power to distinguish possible lensed gravitational waves from not-lensed
gravitational waves.

We can also work on the GstLAL search pipeline for more general sky-location-
based targeted searches. We want to modify the GstLAL search pipeline to only
search for gravitational waves from a specific region in the sky. The use case
for sky-location-based targeted searches are not only constrained to searching for
strongly-lensed gravitational waves. One can also apply the same methodology
to look for gravitational-wave counterparts to EM observations/detections. For
instance, a potential use case would be to conduct targeted Gamma-Ray Burst
searches [28, 165] / Fast Radio Burst searches [31] that look for gravitational-wave
counterparts to detected Gamma-Ray Bursts / Fast Radio Bursts. To do so, however,
we must modify the likelihood ratio calculation in the GstLAL search pipeline to
include parameters that encode the sky localization of triggers. Additionally, we
must develop a (semi-analytic) signal and noise model to include the sky-location-
related parameters in the likelihood ratio. Moreover, we will need a rapid method
implemented in GstLAL to efficiently localize the source for the many triggers
reported by GstLAL. At the same time, we will also need to implement a better
“fast-path cut" function to drastically reduce the number of triggers to be followed
up without discarding triggers that may be an actual gravitational-wave signal.
Should such a “fast-path cut" function be implemented, we will be able to bypass
the current clustering process in the GstLAL pipeline and enable the reranking of
triggers in the future, potentially removing the need to refiltering data due to the use
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of a subset of templates in the full template bank (e.g. the TESLA-X method), or
the use of an alternative population model.

We are entering a golden age to pursue gravitational-wave science with multi-
messenger astronomy and observational high-energy astrophysics, which requires
the worldwide collaboration of the LVK collaboration and EM astronomers and
telescopes. There is enormous potential to learn about the early universe through
gravitational lensing and multi-messenger astronomy with gravitational waves. The
truth is out there for us to discover. . .
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Before I end my thesis, I would like to include the last part of the song “A Winter
Story”.
あなたの全てが Even though your everything has lost
形を無くしても its shape, you will still live inside me
永遠に僕の中で生きてくよ eternally. Although I was unable to say
さようなら出来ずに goodbye, I will now move on and con-
歩き出す僕と tinue with my life, for I know you will
ずっと一緒に be with me forever.

Dear mother, this thesis and my thesis defense mark the end of my PhD journey and
the end of a chapter in my life. While I will never be able to speak to you again,
you will continue to live inside my heart forever. I promise I will never forget about
you, but for now, I am going to move on to the next stage of my life. May you rest
in peace.
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