
Deep learning-enabled integrated measurements of
immune signaling in primary human macrophages

Thesis by
Emily Chiu Laubscher

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended May 7, 2024



ii

© 2024

Emily Chiu Laubscher
ORCID: 0009-0008-0242-0507

All rights reserved



iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, David Van Valen, for the
privilege to work in his group. I have grown into the researcher that I always hoped
to be under your guidance and am forever grateful for the numerous opportunities
you have given me. I would also like to thank my committee, Lu Wei, Shasha
Chong, and Ellen Rothenberg, for your helpful comments and enthusiasm about my
projects.

Thank you to all of the Van Valen lab members that I had the pleasure of collaborating
with: Edward Pao, Morgan Schwartz, Ellen Emerson, Changhua Yu, Julie Wang,
Nitzan Razin, Will Graf, Ross Barnowski, Danielle Gallandt, Ekta Patel, John Soro,
Erick Moen, Tom Dougherty, Uriah Israel, and Rohit Dilip. I would like to thank
a few colleagues in particular. My success in graduate school would not have been
possible without Ed and Morgan’s daily support. Ed’s assistance with the practical
elements of research was what enabled all of the research in this thesis. Morgan’s
willingness to brainstorm and attention to detail have gotten my projects unstuck a
number of times, but more importantly, her friendship has been a constant source
of happiness through graduate school. Ellen’s collaboration was invaluable to the
completion of this thesis, expediting the analysis for the integrated measurements
data in the eleventh hour. I had a great time collaborating with Changhua on the
ML-driven reporter design project, and his friendship as my desk neighbor has
meant a lot to me. I would like to thank Julie for being a kind, generous, and
talented collaborator for Polaris’ gene decoding method. I would like to thank
Nitzan for initiating the work on the deep learning model for spot detection that
grew into Polaris. Polaris would not be the quality analysis tool it is today without
her insightful work on its algorithms and attention to detail for its design. Finally,
I would like to thank Will and Ross who were great mentors for the software
engineering aspects of my research.

Thank you to my collaborators Jeffrey Moffitt and Rosalind J. Xu for providing
data and invaluable feedback during the development of Polaris. Thank you to
Yisong Yue for providing insightful feedback during the optimization of Polaris’
performance.

My journey as a researcher started when I was an undergraduate in the Groves
lab at UC Berkeley. I would not have pursued this path without the mentorship



iv

and encouragement of Shalini Low-Nam, Steven Alvarez, Jenny Lin, and Meredith
Triplett. I would especially like to thank Shal, whose contagious enthusiasm for
science and tenacity as a researcher continues to inspire me today. I would also
like to thank my friends, Xavier, Howard, and James whose camaraderie during this
time kept science fun.

Thank you to my parents, Jon and Mabel, who encouraged me from a young age
to pursue my curiosity for science and created the perfect environment for me to
flourish academically. My ability to pursue graduate school was entirely enabled by
your continued commitment to supporting my education. Thank you to my brother,
Alex. Your talent for all things quantitative and relentless pursuit of your passions
are a continuous source of inspiration for me.

Finally, I would like to thank my partner, David, for providing stability through my
tumultuous time in graduate school. My path through graduate school would not
have been possible without your unwavering support of my scientific career.



v

ABSTRACT

Examination of biological systems at the single-cell level reveals heterogeneity in
both time and space. Single-cell temporal and spatial heterogeneity allow commu-
nities of cells to process noisy stimuli and perform complex tasks. We leveraged
state-of-the-art imaging technologies to characterize cell-to-cell heterogeneity in
responses to environmental stimuli to reveal mechanisms of information transmis-
sion. Fluorescent live-cell reporters enable real-time visualization of the activity
state of cell signaling proteins. Signaling dynamics allow cells to translate infor-
mation about environmental stimuli into cellular behaviors. Chapter 2 explores
the variety of live-cell reporters designed to characterize the dynamic patterns of
activity of key signaling pathways, and covers the development of two live-cell
reporters. Spatial transcriptomics assays, on the other hand, excel at capturing het-
erogeneity in spatial gene expression patterns, which is often required to enable a
tissue to perform complex functions. Chapter 3 details the development of Polaris,
a deep learning-enabled analysis method for spatial transcriptomics data. Polaris
is an assay-agnostic, turnkey solution for analyzing images from spatial transcrip-
tomics experiments, minimizing the time and expertise require to extract biological
insights. In Chapter 4, we pair dynamic measurements of live-cell reporters with
a spatial transcriptomics measurement in an integrated imaging assay in primary
human macrophages. This imaging assay revealed transcriptional sub-populations
of cells with differing distributions of dynamic immune signaling responses and
morphological states.

This work contributes a number of methodological developments, including live-
cell reporter expression in primary human macrophages and deep learning-enabled
spatial transcriptomics image analysis. Expression of live-cell reporters in primary
macrophages will enable the investigation of environmental cues shape macrophages’
cell state, which is highly plastic and shaped by external stimuli. Polaris expedites
the analysis of this multi-modal imaging data set, extracting single-cell gene expres-
sion values without manual parameter tuning. However, Polaris’ impact extends
beyond the scope of this work to the broader spatial biology field as its spot detec-
tion and gene decoding capabilities generalize to data sets from a variety of sample
types and imaging modalities. Finally, our paired dynamics-spatial transcriptomics
imaging assay can be generally applied to characterize information transmission
from environmental stimuli through signaling dynamics to the expression of down-
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stream genes for a wide variety of signaling pathways in primary and immortalized
cell types.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
The viability of organisms requires dynamic homeostatic control of internal state
in response to continuously changing environmental conditions.1 Therefore, the
success of living systems depends on their ability to effectively identify and rep-
resent information about their environment to perform a situationally-appropriate
response.2

Examination of biological systems at the single-cell level reveals heterogeneity in
time and space, whereas population-level measurements mask temporal and spatial
heterogeneity, preventing the exploration of how single-cell variability enables the
function of the system. (Fig. 1.1) Single-cell heterogeneity enables cells to act
as individuals with a collective goal, increasing the complexity and robustness of
achievable functions.

In this work, we aim to characterize heterogeneous cellular responses to environ-
mental stimuli, leveraging breakthroughs in imaging technologies. We focus on
macrophages, which are highly plastic and have cell states largely shaped by envi-
ronmental cues.3–5 We capture temporal heterogeneity of the macrophage signaling
response, asking how the signaling state of macrophages evolves over time in re-
sponse to immune stimuli and how the dynamic response of individual macrophages
varies at the single cell level. We also interrogate their spatial heterogeneity, inves-
tigating how a macrophage’s morphology may indicate its internal state and how
neighborhoods of cells influence each other. Taken together in an integrated imag-
ing assay, we explore the mechanisms by which macrophages transfer information
about environmental stimuli into cellular behaviors.
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Figure 1.1: Bulk measurements mask single-cell heterogeneity. Cells in a homo-
geneous state at the single-cell level (upper) will be indistinguishable from cells in
a heterogeneous state (lower) when observed at the population-level if the average
state of both populations is the same.

1.2 Temporal heterogeneity stores and transmits information
Networks of interactions between signaling proteins allow cells to process the infor-
mation from environmental stimuli into a biological response.6 The architecture of
these interactions allows signaling dynamics to encode environmental information
and dictate the subsequent cellular behaviors. By studying signaling dynamics,
we can explore how cells wade through noisy or overlapping stimuli to execute a
stimulus-appropriate response.7

The nuclear factor-𝜅B (NF-𝜅B) transcription factor family is a critical signaling
pathway that enables cells to respond to immune stimuli and is an illustrative exam-
ple of this principle of cell signaling.8,9 Complex molecular feedback mechanisms
allow the NF-𝜅B pathway to differentiate the identities and strengths of environ-
mental stimuli.7,10–14 For example, the NF-𝜅B pathway encodes the identities of
upstream stimuli, TNF𝛼 or LPS, with oscillatory activation or a single broad acti-
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Figure 1.2: Signaling dynamics dictate cellular behaviors. NF-𝜅B dynamics
encode the identity of environmental stimuli and dictate the downstream cellular
response. (Upper) In response to TNF𝛼 treatment, NF-𝜅B activation will oscillate
and trigger and inflammatory response. (Lower) In response to LPS treatment,
NF-𝜅B will undergo a single broad activation event and trigger an adaptive immune
response. Figure adapted from Purvis et al. (2013).

vation event, respectively. (Fig. 1.2) These dynamic patterns of NF-𝜅B activation
elicit specific gene expression profiles, corresponding with stimulus-specific cellular
responses.2,15,16 Thus, cells are able to encode the identity and strength of immune
stimuli in the dynamic pattern of NF-𝜅B activation to elicit the stimulus-appropriate
behavioral response.

Signaling dynamics are often heterogeneous in timing and strength at a single-
cell level. Therefore, observation of dynamics at a population level can lead to
misleading conclusions about the mechanisms of signal transduction occurring at the
single-cell level.7 For example, increasingly asynchronous oscillations can appear as
a dampened oscillation when observed at the population-level. NF-𝜅B dynamics are
often oscillatory, but bulk measurements may obscure observation of this specific
temporal pattern, apparent at the single-cell level. Alternatively, asynchronous
digital activation events can appear as graded activation at the population-level.
(Fig. 1.3)
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Figure 1.3: Signaling dynamics vary at a single-cell level. (Upper) Asynchronous
single-cell oscillations in signaling pathway activation appear as dampened oscil-
lations when observed at the population-level. (Lower) Asynchronous switch-like
activation events appear as a graded activation when observed at the population-
level. Figure adapted from Purvis et al. (2013).

Cell-to-cell heterogeneity in the NF-𝜅B response is commonly reported, and in fact,
has been shown to serve a functional role at the multicellular level. In response
to TNF-𝛼 treatment, NF-𝜅B activation has been shown to be digital at the single-
cell level with stimulus strength encoded in the fraction of a population cells that
respond.17 Moreover, intrinsic and extrinsic noise in NF-𝜅B signaling has been
shown to drive the robustness of the cell population’s response to a wider range of
stimuli.18

For these reasons, observation of cell signaling at the single-cell level and dynam-
ically through time is critical to the characterization of the mechanisms by which
cells respond to environmental stimuli. Fluorescent live-cell reporters are a critical
imaging tool for visualizing real-time signaling at the single-cell level. In Chapter
2, we explore a variety of fluorescent live-cell reporters currently available for visu-
alization of real-time signaling pathway activation at the single-cell level. We also
demonstrate two vignettes of live-cell reporter design and development.
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1.3 Spatial heterogeneity enables complex functions
Technologies for profiling cells and tissues with spatial context are rapidly being
developed in the emerging field of spatial biology. Spatial-“omics” methods aim to
characterize the patterns of spatial organization in living systems that enable complex
tissue function or drive pathological dysfunction.19,20 These spatial-omics measure-
ments can be targeted to characterize many categories of biological molecules, and
the spatial transcriptome, or the collection of mRNA transcripts in a sample, is of
particular interest to this work. Characterization of a cell’s transcriptome yields a
transient snapshot of its gene expression profile and offers a glimpse into the active
processes shaping a cell’s signaling state at a given point in time.21 There are a
number of emerging technologies for spatial transcriptomic characterization of cells
and tissues.22–24 These methods fall into two broad categories: (1) sequencing-
based methods with a variety of capture strategies, such as spatial transcriptomics
and Slide-seq,25–28 and (2) image-based methods with a variety of multiplexed bar-
code strategies, such as in-situ sequencing, MERFISH, osmFISH, seqFISH, and
splitFISH.29–33

Spatial transcriptomics methods excel at characterizing heterogeneous tissue mi-
croenvironments, consisting of functional structures of multiple cell types. Tu-
mor microenvironments have been of particular research interest, because of their
complex architectures and translational value.34 A number of different spatial tran-
scriptomics methods have offered critical insights into the organization of tumor
microenvironments, including spatial methods for the whole-transcriptome and tar-
geted in-situ methods.35 The insights include interactions at the tumor boundary36

or survival and therapy response predictions based on edge architecture charac-
teristics,37 amongst others. As another example of complex tissue architectures
that have been explored with spatial transcriptomics, MERFISH has been applied
to characterize the complex tissue-level organization of the mouse brain, elucidat-
ing the cellular structures that enable function.38,39 These measurements identified
thousands of transcriptionally distinct subpopulations of multiple cell types and
quantified the cell-type composition of each specific brain region. This atlas of
the spatial transcriptome of the mouse brain is an invaluable point of comparison
for elucidating mechanisms of dysfunction in disease-state samples. Capturing the
tissue-level organization of the tumor microenvironment and brain samples would
have been impossible with RNA sequencing methods that require tissue dissocia-
tion, so spatial transcriptomics methods enable characterization of gene expression
with multicellular spatial organization.
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On the other hand, tissues often consist of structures of a single cell type in differing
cell states, which allows the tissue to perform complex functions with a single cell
type. Spatial transcriptomics methods are ideal for capturing this spatial hetero-
geneity in cell state. A clear example of structures of a single cell type in a spectrum
of cell states to perform a collective function can be found in liver tissue. The
liver consists of hexagonal units of hepatocytes, called lobules. The hepatocytes
have a gradient of cell states from the periphery of the lobule to the center, varying
in metabolic and immune signaling states. This complex architecture enables the
liver tissue to perform complex functions.40,41 Investigation of the link between the
tissue-level organization of cell states in the liver and its function has been enabled
by recent breakthroughs in spatial-omics technologies, revealing metabolic zona-
tion, mechanisms of immunity, and morphological structures that could not have
been revealed with sequencing technologies.42,43

The collaboration of spatially heterogeneous cell types and cell states requires cell-
to-cell communication to enable function. Because spatial transcriptomics methods
can often visualize the location of transcripts of interest with high spatial resolu-
tion, they are well-poised to investigate questions of intra-cellular signaling. For
example, seqFISH+ has been used to quantify cell-to-cell communication between
astrocytes, neurons, microglia, and endothelial cells in mouse olfactory bulb and
visual cortex tissue samples. The high spatial resolution allowed the authors to
identify sub-cellular spatial patterns of transcript localization and the large panel
size of seqFISH+ allowed this study to identify subpopulations of each cell type
with specific relative spatial distributions in the tissue.32,44 These insights could not
be learned from sequencing methods that require dissociation of the tissue sample
and destroy sub-cellular and tissue-level organization information.

Because of the power of spatial transcriptomics methods to elucidate multi-cellular
mechanisms of function, we sought to create an analysis pipeline to expedite the
extraction of biological insights from spatial transcriptomics images. Because
analysis of these large, complex datasets is often highly manual and time-intensive,
we created a deep-learning enabled method, called Polaris, that is assay-agnostic
and minimizes the time and expertise required for analysis. In Chapter 3, we detail
the construction and validation of Polaris as a turnkey solution for the quantification
of spatial transcriptomics images.
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1.4 Integrated measurement of signaling dynamics and spatial transcrip-
tomics

We sought to integrate both of these powerful imaging technologies, live-cell imag-
ing of fluorescent reporters and spatial transcriptomics, to investigate the mecha-
nisms of immune signaling pathways in primary human macrophages. Previous
works have linked dynamic NF-𝜅B activation to the expression of its target genes
to understand how the pathway encodes environmental information to be decoded
into cellular behaviors. The molecular feedback mechanisms of NF-𝜅B signaling
that allow for discrimination of concentrations of immune stimuli have been linked
to population-level expression of target genes.2,15 However, at the population level,
these measurements cannot observe the information processing occurring in the NF-
𝜅B pathway at the single-cell level. Furthermore, it has been demonstrated that the
fold-change of NF-𝜅B activation corresponds with the expression of target genes at
the single-cell level, but this work utilized a low-throughput spatial transcriptomics
method, smFISH, to measure gene expression, sharply limiting the size of the panel
of measured genes.45 Dynamic observation of NF-𝜅B activation has also previously
been paired with single-cell RNA-sequencing. This measurement demonstrated
subpopulations of macrophages have different dynamic NF-𝜅B responses to im-
mune stimuli, linked to specific patterns of target gene expression. Although this
work demonstrates the link between NF-𝜅B dynamics and transcriptome-level gene
expression, it lacks the sub-cellular and cell-to-cell spatial sample organization that
spatial transcriptomics measurements could capture.16 More recently, increasingly
nuanced mathematical models have been developed to characterize the mechanisms
of information transmission via NF-𝜅B signaling, but the accuracy of the outputs of
this model are inherently limited by the abundance and quality of paired dynamics
and target gene expression data.46

With this in mind, we aimed to develop an imaging assay to measure immune
signaling in primary human macrophages at the single-cell level that addresses
the limitations of previous characterizations of NF-𝜅B signaling. We proposed to
use characterize NF-𝜅B signaling dynamics with time lapse imaging of live-cell
reporters and measure the end-point spatial transcriptome with seqFISH in primary
macrophage cells. Importantly, a paired measurement of this flavor has not been
extended to primary human macrophages, which have much greater physiological
relevance to macrophages in vivo. In Chapter 4, we demonstrate the application of
integrated measurements of signaling dynamics and spatial transcriptomics to the
characterization of immune signaling in primary human macrophages.
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Figure 1.4: Integrated measurements in primary human macrophages. Fluo-
rescent live-cell reporters are expressed in primary human macrophages by RNA
transfection. The dynamic response of these cells to immune stimuli is captured
with time-lapse imaging. Then, end-point seqFISH is performed to measure the
spatial transcriptome of the cells.

Our proposed measurement can observe information transmission from environ-
mental stimulus to gene expression profile through the NF-𝜅B signaling pathway at
the single-cell level. The single-cell resolution of our measurement is fundamental
to its ability to investigate the capability of individual cells to process information
about their environment. This experimental workflow can ultimately be applied as
a general framework to investigate information processing at the single-cell level.
This work demonstrates its applicability to classically hard-to-transfect cell types,
increasing its theoretically scope. Moreover, it demonstrates the types of insights
that can be yielded when pairing a dynamics measurement with a multiplexed spatial
transcriptomics measurement.
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C h a p t e r 2

CHARACTERIZATION OF METABOLIC AND IMMUNE
SIGNALING DYNAMICS WITH FLUORESCENT LIVE-CELL

REPORTERS

2.1 Overview of select fluorescent live-cell reporters
Information is transduced through signaling pathways by a wide variety of signaling
events. Commonly, a protein substrate is phosphorylated by a kinase in response
to an upstream stimulation event. (Fig. 2.1a) This phosphorylation event confers a
negative charge to the target protein that can trigger a number of molecular events.
Phosphorylation can trigger the target protein to interact with other macromolecules,
such as genomic DNA or proteins. (Fig. 2.1b,e) It can also alter the localization
pattern of a target protein, leading to trafficking to sub-cellular compartments such
as the plasma membrane or nucleus. (Fig. 2.1d) Alternatively, phosphorylation
can mark a protein molecule for degradation by the ubiquitin-proteasome pathway.
(Fig. 2.1c) Finally, phosphorylation can trigger a conformational change in a target
protein, which can, for example, modulate its enzymatic activity. (Fig. 2.1e) A
wide variety of live-cell reporters have been engineered to capitalize on all of these
molecular events, amongst others, to read out the signaling activity of proteins
of interest in real time.47,48 These reporter methods have the ability to quantify
information storage and transmission in signaling pathways at the single-cell level,
making them invaluable to the characterization of cellular strategies for responding
to environmental stimuli.

The development, selection, and implementation of live-cell reporters should be
rigorously considered for accurate quantification of signaling pathway activation.49

Live-cell reporter development requires demonstration of the specificity and accu-
racy of the read out of the reporter. Often this process involves demonstration of
activity and comparison to existing quantification methods in response to known
upstream stimuli. Selection of the appropriate existing live-cell reporter for a re-
search question should involve consideration of dynamic range, spectral bandwidth,
and mechanism of action, amongst others. Such considerations will determine the
veracity of the reporter’s read out of signaling pathway activity and capability to
be multiplexed with other measurements. Finally, implementation of an imaging
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assay using live-cell reporters requires attention to the ideal mode of expression and
imaging conditions. Development of an imaging assay that implements the live-cell
reporter in its ideal conditions will offer the best quantification of signaling pathway
activity. In this chapter, we discuss the advantages and limitations of a variety of
live-cell reporters to demonstrate their ranging applications. We also detail the on-
going development of two live-cell reporters to illustrate the process of developing
reporters to address specific research questions.

Figure 2.1: Signaling events for reporters. See section 2.5 for caption.

Fluorescent fusion proteins
The discovery and continued development of fluorescent proteins (FPs) has revo-
lutionized our ability to characterize spatial and temporal heterogeneity in living
systems.50–53 FPs can be fused to proteins of interest to visualize changes in their
abundance and localization over time, making them an ideal tool for the quantifica-
tion of a number of signaling events that involve translocation or expression level
changes. However, there are a number of important considerations when expressing
fluorescent fusion proteins, including chromophore maturation rate, aggregation,
photobleaching rate, and brightness of individual fluorescent proteins, and for pairs
of fluorescent proteins, spectral overlap.49,54

Fluorescent fusion proteins are an ideal imaging method for visualize proteins that
undergo a significant shift in sub-cellular localization upon signaling pathway ac-
tivation. A key category of proteins that undergo such a shift upon activation are
transcription factors, which are commonly sequestered in the cytoplasm in their
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inactive state and translocate to the nucleus upon upstream signaling activity. An
important consideration when designing a fluorescent fusion protein is the tendency
of some fluorescent proteins to aggregate when over-expressed. Aggregation can
modulate the local concentration levels of signaling proteins in sub-cellular re-
gions, which can affect the propensity of certain chemical reaction steps in signaling
networks. Selection of monomeric fluorescent proteins can minimize this effect.
Additionally, the endogenous expression levels of some signaling proteins can be
relatively low, requiring bright fluorescent proteins to minimize the effect of imag-
ing noise during visualization. When expressing fluorescent fusion proteins, the
potential for protein over-expression to perturb the endogenous balance of a cell’s
signaling state should be carefully considered. Previous works have introduced
loss-of-function mutations to transcription factors to allow safe over-expression.
For example, the F3aN400-Venus reporter for FoxO3 contains all phospho-residues
for interaction with upstream signaling proteins, but contains a loss-of-function
mutation that prevents DNA binding and thus modulation of FoxO3 target gene ex-
pression, minimizing the effect of reporter expression on the cell’s signaling state.55

Fluorescent fusion proteins also excel at visualizing dynamic changes in protein
abundance. The fluorescent fusion construct can be knocked in to a target genome as
an entirely exogenous locus, or the fluorescent protein can be introduced to the native
locus, offering flexibility in the method of expression for different applications. For
example, a fluorescent protein sequence can be inserted into the reading frame for a
target gene of a transcription factor of interest. Such a strategy would visualize the
induction of gene expression in response to pathway activation, but it also allows
for visualization of the degradation of a specific protein. (Fig. 2.1c) The rate of
chromophore maturation is an important consideration when using a fluorescent
fusion protein to visualize the expression of genes of interest. Selection of a
fluorescent protein with a relatively fast maturation rate will minimize the delay
between protein translation and ability to be visualized, offering more a faithful read
out of the concentration of the expressed protein.
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Live-cell reporters for signaling network activity
In recent years, the toolbox of available live-cell reporters has grown significantly,
expanding the range of cell signaling questions that can be investigated.56,57 These
live-cell reporters are engineered constructs that are exogenously expressed in a
living system to visualize its single-cell signaling state in real time. A wide variety
of reporter architectures have been developed with different advantages for their
specific application.

Förster resonance energy transfer (FRET) involves the transfer of energy from a
donor fluorophore to an acceptor fluorophore, the efficiency of which is highly
dependent on the proximity of the donor and acceptor.58 Therefore, FRET is of-
ten used in live-cell reporters designed to measure the proximity of two peptide
constructs.59–62 The proximity of the peptides can be driven by a protein-protein
interaction event following a post-translational modification like phosphorylation or
acetylation.63,64 (Fig. 2.1e) FRET reporters can also be designed to read out the
conformational changes of a protein of interest, strategically fusing two FPs to the
protein such that their proximity is determined by the conformational state of the
protein.65,66 (Fig. 2.1f)

Because the read out of FRET reporters depends solely on intra-molecular processes,
they excel at visualizing signaling activity with sub-cellular resolution. FRET-
based A-Kinase Activity Reporter (AKAR) targeted to sub-cellular compartments
reveal differential basal and agonist-induced activity of cAMP-dependent protein
kinase (PKA).67,68 FRET reporters are also uniquely suited to investigating structural
dynamics, such as protein conformational dynamics or complex formation. For
example, single-molecule FRET has been used recently to study agonist-induced
organizational dynamics of G protein-coupled receptors in live cells.69

Kinase translocation reporters (KTRs) are a single color, translocation-based live-
cell reporter architecture that addresses some of the limitations of FRET reporters.
These reporters consist of optimized NES and NLS sequences that regulate cyto-
plasmic to nuclear shuttling upon phosphorylation. A kinase docking sequence
recruits the kinase of interest, which then processively phosphorylates sites on the
NES and NLS sequences.70 Therefore, these reporters exploit native charge-based
nuclear translocation machinery to read out the activity of a target kinase (Fig. 2.1d).
Therefore, they are best applied to study kinases that trigger translocation events,
because they do not report kinase activity with sub-cellular spatial resolution. KTRs
have been rigorously characterized in mathematical models corresponding their read
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Figure 2.2: Survey of live-cell reporter architectures. See section 2.5 for caption.

out to kinase activity and are readily expressed in cell lines of interest.71 As a single
color reporter, KTRs occupy a small range of the visible spectrum and are very
amenable to multiplexing.70

The fidelity and multiplexing capabilities of KTRs have led to a number of im-
pactful discoveries of properties of signaling networks. As an example, JNK KTR-
mCerulean3 was expressed in the same cells as p65-dsRed to reveal coordination
between the JNK and NF-𝜅B signaling pathways in response to a variety of im-
mune stimuli. In another example, co-expression of ERK KTR, JNK KTR, and p38
KTR revealed mechanisms of cell cycle regulation by interactions between the three
kinases.70

Optimization for spatial resolution with a single fluorophore
However, FRET reporters and KTRs have some key short-comings that limit the
breadth of their applications. Although FRET reporters excel at reading out the
proximity of pairs of peptides, they are often difficult to multiplex with other live-
cell reporters because their pairs of fluorescent proteins occupy a large portion of
the visible spectrum. Furthermore, their reliance on the sensitive FRET process
as a read out can limit their dynamic range. KTRs, on the other hand, are limited
by their inability to read out kinase activity with sub-cellular resolution as they use
translocation to visualize kinase activity. These limitations of FRET reporters and
KTRs have been addressed by other reporter architectures.
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Live-cell reporters for intracellular calcium address these limitations with circularly
permuted fluorescent proteins (cpFPs). These reporters consist of two peptide
fragments fused to the cpFP. Upon Ca2+ binding, the two fragments form a stable
complex, altering the conformation of the cpFP. In the bound form, the cpGFP has
higher quantum yield than the unbound form, leading to an increase in fluorescence
intensity from the reporter dependent on the intracellular concentration of Ca2+.72,73

This reporter architecture establishes a pattern that has been iteratively improved by
subsequent live-cell reporters: an intracellular signaling event triggers a molecular
binding event that can be read out by changes in patterns of fluorescent intensity.

Excitation ratiometric (ExRai) reporters extend previous work with cpGFP reporters
to read out kinase activity. As will be discussed further in section 2.3, these reporters
rely on protein-protein interaction in response to kinase activity to alter the excitation
spectrum of cpGFP in a phosphorylated reporter molecule. (Fig. 2.1e)74 The
most recent iterations of this reporter demonstrate much greater dynamic range
than FRET reporters, increasing their applicability to a wide range of imaging
assays. Furthermore, with a single fluorescent protein, they are more amenable to
multiplexing than FRET reporters.75

The ExRai reporter architecture has been generalized to a variety of color variations
and applied to a number of target kinases.74 Mutations to the cpGFP in ExRai
reporters increased its dynamic range, allowing it to be used for in vivo imaging
of protein kinase A (PKA) activity in the brains of awake mice.75 Furthermore,
its compact design allows it to be targeted to organelles, such as mitochondria and
lysosomes, for specific, a sub-cellular read out of target kinase activity. Observation
of ExRai AMPKAR targeted to individual organelles has revealed unique kinetic
profiles of activation in mitochondria and lysosomes and identified cytoplasmic to
nuclear shuttling of AMPK.76
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Separation of Phases-based Activity Reporter of Kinase (SPARK) reporters uti-
lize a phase separation mechanism to reporter kinase activity with sub-cellular
resolution with a single fluorescent protein.77 This reporter architecture utilizes
the protein-protein interaction motif to drive phase separation of phosphorylated
reporter molecules (Fig. 2.1e). As will be highlighted in section 2.2, SPARK
reporters have a number of key advantages. They have been reported to read out
kinase activity with many-fold greater dynamic range than FRET reporters, which
makes them feasible to image in tissue samples and in high-throughput screens.
They occupy a smaller range of the visible light spectrum than ratiometric reporters
like FRET and ExRai reporters, increasing their capacity for multiplexing.

SPARK reporters for a number of target kinases have been created and applied to
novel observation of signaling pathway dynamics. PKA SPARK revealed heteroge-
neous PKA dynamics in response to 𝛽-adrenergic receptor and adenosine receptor
activation. ERK SPARK has been used to read out spatiotemporal ERK activity
in Drosophila tissues in vivo. Challenging in vivo imaging of SPARK reporters
is enabled by its excellent dynamic range in a single fluorescence channel.77 Fi-
nally, ataxia telangiectasia mutated (ATM) SPARK has been used to observe the
spatiotemporal DNA damage response. ATM SPARK was employed in a high-
throughput screen that revealed enzyme and small-molecule inhibitors of ATM.
The wide dynamic range of SPARK reporters allowed for the low magnification
imaging required for the high-throughput screen.78

We considered the characteristics of these currently available reporter architectures
when designing reporters relevant to the scope of this work. The following vignettes
detail the design and validation of two live-cell reporters targeted to visualize the
activity of metabolic and immune signaling pathway for the ongoing goal to char-
acterize immuno-metabolic signaling in primary macrophages.

2.2 Vignette 1: Development and validation of AMPK SPARK
Construction of a novel live-cell reporter for AMPK
AMP-activated protein kinase (AMPK) is a central metabolic regulator, controlling
cellular processes such as glucose metabolism, autophagy, and mitochondrial func-
tion in response to cellular ATP levels. AMPK is critical to a cell’s ability to balance
catabolic and anabolic processes in response to metabolic stress. Its activity is mod-
ulated by two independent upstream signaling pathways: the CAMKK2-AMPK
pathway and the LKB1-AMPK pathway.79–81 The CAMKK2-AMPK pathway mod-
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ulates the cell’s metabolic state in response to spikes in intracellular calcium levels,
and has been implicated in fatty acid metabolism and adipocyte differentiation.82

The LKB1-AMPK pathway is a central energetic checkpoint, regulating ATP pro-
duction in response to the availability of environmental nutrients.83 Its role as a
fundamental metabolic regulator makes AMPK a target of basic and translational
research. We are particularly interested in the mechanisms by which AMPK regu-
lates cellular behaviors in response to dynamic changes in a cell’s environment. We
aimed to improve upon the leading live-cell reporter for AMPK at the time of con-
ception of this project, AMPKAR.84 As a FRET-based reporter, AMPKAR had two
main limitations that could be alleviated with an alternative reporter architecture:
(1) limited dynamic range, and (2) limited multiplexing capabilities, because FRET
reporters rely on a sensitive photon transfer step between two fluorescent proteins.60

We sought a live-cell reporter architecture that utilizes a single fluorescent protein
and achieves a greater dynamic range than FRET-based reporters.

Overview of SPARK reporters
SPARK reporters are a reporter architecture that reads out kinase activity at sub-
cellular spatial resolution with a single fluorescent protein. The reporter molecules
freely diffuse when the kinase of interest is not active. However, upon phosphoryla-
tion with the kinase of interest, the reporter molecules phase separate into clusters
(Fig. 2.3). The sharp increase in local reporter concentration allows the clusters to
be detected above the background fluorescence intensity of the cell. The dynamic
activity of the kinase of interest is quantified by measuring fraction of the total
fluorescence intensity of the clusters to the total fluorescence intensity of the cell.

To achieve this, SPARK reporters consist of two constructs whose interaction drives
clustering in response to kinase activity. The first construct contains a peptide
substrate for the kinase of interest fused to a fluorescent protein, EGFP and a homo-
oligomerization domain (HOTag). The HOTag is a computationally-designed de
novo alpha helical domain that forms oligomers spontaneously.85,86 In the SPARK
construct, the HOTag drives homo-hexamer formation of the kinase substrate-EGFP-
HOTag construct. The second construct contains a phospho-binding domain (PBD),
which binds the phosphorylated kinase substrate, and an orthogonal HOTag, which
drives homo-tetramer formation of the second SPARK construct. The two HOTags
have been shown to oligomerize specifically and orthogonally, such that mixed
oligomers of the two different HOTags will not form.77
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Figure 2.3: SPARK reporters cluster in response to kinase activity. HOTag1
(orange) forms homo-hexamers containing the kinase substrate and the fluorescent
protein. HOTag2 (blue) forms separate homo-tetramers containing the phospho-
binding domain (PBD). Upon phosphorylation by the kinase of interest, multivalent
interactions form between the two homo-oligomers, leading to clustering of the
reporter.

Therefore, upon phosphorylation of the kinase substrate, the PBDs will bind to the
kinase substrates, which will drive the multivalent interactions between the two
types of homo-oligomer, resulting in phase separation of the reporter. It has been
demonstrated that these interactions can be reversed when the kinase substrate is
de-phosphorylated by native phosphatases, causing dissociation of the PBD from
the kinase substrate. Previous work demonstrated that this SPARK reporter archi-
tecture could achieve many-fold changes in reporter read out range in kinase activity,
which is much greater than the ∼ 30% dynamic range expected from FRET-based
reporters.77

For these reasons, we designed a novel SPARK reporter to read out the dynamic activ-
ity of AMPK, using the previously published PKA SPARK reporter as a template.77

The construction of this reporter is benefited by a number of design choices. The
kinase substrate for AMPK (RRVATLVDL) was derived from its native substrate,
acetyl-CoA carboxylase (ACC), and has been shown previously to be specifically
phosphorylated by AMPK.84 FHA1 domain binds specifically to phospho-serine
and phospho-threonine residues, making it an ideal candidate as a PBD for this
reporter.87 The AMPK substrate was selected to be optimal for FHA1 binding, with
the FHA1-preferred LVD sequence following the phospho-threonine residue.88 The
two HOTag constructs were selected out of a number of candidate combinations,
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because previous work demonstrated their ability to drive phase separation with the
greatest sensitivity of all tested pairs. Finally, the T2A sequence encodes a self-
cleaving peptide, allowing two separate protein construct to be expressed in a single
open reading frame, ensuring that the two constructs are expressed in the desired
1:1 stoichiometry.89

Figure 2.4: AMPK SPARK construct. AMPK substrate is a verified substrate of
AMPK activity derived from ACC. EGFP is enhanced green fluorescent protein.
HOTag1/2 are homo-oligomerization domains. T2A is a self-cleaving peptide
sequence. FHA1 is a phospho-binding domain.

Validation of AMPK SPARK
To assess the viability of the reporter, we measured the response of AMPK SPARK
to known AMPK agonists in HeLa cells. As previously mentioned, there are two
major signaling pathways that activate AMPK, the CAMKK2-AMPK pathway and
the LKB1-AMPK pathway, so we will test agonists of both pathways. Under
homeostatic culture conditions, we expect low intra-cellular calcium levels and low
metabolic stress, so therefore, we expect minimal basal AMPK activity from both
upstream pathways.90

Figure 2.5: Montage of AMPK SPARK response to ionomycin treatment. Exam-
ple HeLa cell transiently expressing AMPK SPARK was dosed with 2𝜇M ionomycin
between the first and second frames. The reporter clusters in response to AMPK
activity.

Ionomycin is a membrane-permeable calcium ionophore that causes extracellular
calcium ions to flux into the cytoplasm.91 This calcium flux activates CAMKK2, a
calcium-dependent protein kinase, to phosphorylate and thus activate AMPK.92,93

As expected, we observed low basal AMPK activity as read out by AMPK SPARK
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and a sharp increase in AMPK activity in response to 2𝜇M ionomycin treatment,
demonstrating AMPK activation in response to a flux in intracellular calcium (Fig.
2.5).

The second tested agonist of AMPK was a glucose analog, 2-deoxy-D-glucose
(2-DG), which inhibits glucose metabolism. 2-DG has a hydrogen at the 2’ car-
bon where glucose has a hydroxyl group, preventing its conversion to fructose and
leading to the accumulation of glucose metabolism intermediates.94 Exposure to
an excess of 2-DG at concentrations greater than glucose concentration in the cul-
ture media prevents efficient production of ATP, triggering AMPK signaling by
energy-sensing kinase LKB1 and direct interaction of AMP/ADP with AMPK.83

AMPK SPARK clusters in response to the 2-DG treatment, demonstrating AMPK
activation in response to glycolysis inhibition. We have therefore demonstrated
that AMPK SPARK reads out AMPK activity triggered by both major upstream
signaling pathways, CAMKK2-AMPK and LKB1-AMPK (Fig. 2.6).

Figure 2.6: Montage of AMPK SPARK response to 2-DG treatment. Example
HEK293T cell transiently expressing AMPK SPARK was dosed with 20mM 2-DG
between the first and second frames. The reporter clusters in response to AMPK
activity.

To demonstrate that the mechanism of reporter clustering relies specifically on
binding of the PBD to the phosphorylated AMPK substrate, the phospho-site of
the AMPK substrate (T12) was mutated to an alanine residue, using site-directed
mutagenesis. This construct was also transiently transfected into HeLa cells, using
the same protocol as was used for the wild type AMPK SPARK construct. The
AMPK SPARK T12A mutant did not demonstrate a clustering response after treat-
ment with 2𝜇M ionomycin, demonstrating that the reporter clustering is driven by
phosphorylation of the threonine residue in the AMPK substrate. (Fig. 2.7)

Quantification of SPARK reporter clustering
To quantify the degree of reporter clustering, we initially followed the absolute
intensity thresholding method of the original work.77 Because cluster formation in-
creases the local concentration of the reporter, the locations of reporter clusters can
be identified by setting an absolute intensity threshold, above which a pixel is con-
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Figure 2.7: Montage of AMPK SPARK T12A mutant response to ionomycin
treatment. Example HeLa cell transiently expressing AMPK SPARK T12A was
dosed with 2𝜇M ionomycin between the first and second frame. The reporter does
not cluster in response to AMPK activity.

sidered to be a part of a cluster. This threshold was set manually for each individual
cell because of cell-to-cell variation in reporter expression level. The whole-cell
area was similarly segmented by absolute intensity thresholding (Fig. 2.8a-c). The
intensity of the pixels inside the masked cluster and cell areas was integrated to
calculate the total amount of reporter in each masked area. The integrated cluster
intensity was normalized by the total whole-cell intensity to calculate the fraction
of the reporter that is clustered, which we take as a read out of kinase activity. This
method was applied to time lapse images to quantify AMPK SPARK clustering over
time (Fig. 2.8d).

Figure 2.8: Image analysis of SPARK reporter with intensity thresholding. (A)
Image of clustered AMPK SPARK in a HeLa cell in response to ionomycin. (B) Cell
area segmented with manually-tuned absolute intensity thresholding. (C) SPARK
cluster area segmented with manually-tuned absolute intensity thresholding. (D)
Fraction of clustered reporter, reading out AMPK activity, through time.

This intensity thresholding method was used to analyze the response of a population
of AMPK SPARK-expressing cells to ionomycin stimulation, yielding time traces of
normalized SPARK cluster intensity (Fig. 2.9). The traces reveal heterogeneity at
the single-cell level in the dynamic AMPK activities. The cells have heterogeneous
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initial cluster intensities before ionomycin stimulation, demonstrating the variation
in basal metabolic state at the single-cell level. Furthermore, the cells react hetero-
geneously to ionomycin stimulation, demonstrating either external noise in dosing
efficiency or internal noise in calcium signaling states. These results illustrate the
need to measure AMPK signaling dynamics at the single-cell level.

Figure 2.9: Time series of dynamic AMPK activation of live-cells in response
to ionomycin stimulation. Ionomycin (2𝜇M) was added to HeLa cells at the 5
min. time point, as indicated by the black dotted line. The fluorescence signal from
clustered reporter was quantified by intensity thresholding and is normalized by the
total fluorescence signal in the cell volume, representing the dynamically changing
fraction of reporter in the clustered state in each individual cell.

The images of AMPK SPARK clustering in response to 2-DG were also quantified
with this method, yielding time traces representing the dynamics AMPK activation
of individual cells (Fig. 2.10). This population of cells also demonstrates hetero-
geneity in basal metabolic state before stimulation and heterogeneity in dynamic
response to AMPK stimulation. The population-level patterns in AMPK response
to ionomycin and 2-DG differ, corresponding to our intuition of the biological mech-
anisms driving both agonists. AMPK activation spikes immediately after exposure
to ionomycin, reflecting the sudden onset of the calcium flux and activation of
the CAMKK2-AMPK pathway. On the other hand, AMPK activation ramps more
slowly after exposure to 2-DG, reflecting a slower onset of metabolic stress as the
cells consume their remaining ATP resources.

However, this method of cluster quantification has its limitations, because segmen-
tation by an absolute intensity threshold can not accurately differentiate all pixels
corresponding to clusters from those corresponding to diffuse reporter. For example,
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Figure 2.10: Time series of dynamic AMPK activation of live-cells in response to
2-DG stimulation. 2-DG (20mM) was added to HeLa cells at the 5 min. time point,
as indicated by the black dotted line. The fluorescence signal from clustered reporter
was quantified by intensity thresholding and is normalized by the total fluorescence
signal in the cell volume, representing the dynamically changing fraction of reporter
in the clustered state in each individual cell.

uneven background fluorescence intensity may make areas of the diffuse reporter
brighter than clusters in the dimmer parts of the cell (Fig. 2.8c). Moreover, be-
cause the thresholds were set manually, they are time-intensive to generate and are
inherently subjective.

For these reasons, accurate quantification of SPARK reporter clustering necessitates
a more sophisticated image analysis method. Instead of using thresholding, we
segmented the SPARK reporter clusters with Polaris, our deep learning-based spot
detection method.95 We find that Polaris more accurately detects clusters in areas of
the cell with ranging background intensities than intensity thresholding (Fig. 2.11).
Moreover, it does not require manual parameter tuning to detect spots, increasing
the reproducibility of its quantification and enabling measurements at much greater
scale. The construction and performance of Polaris is detailed in Section 3.1.

Advantages of AMPK SPARK
This work constructing and validating AMPK SPARK as a novel live-cell reporter
AMPK activity demonstrates that we have improved upon the limitations of AMP-
KAR. As is inherent to its design architecture, AMPK SPARK utilizes a single
fluorescent protein and occupies a smaller region in the visible light spectrum than
FRET-based reporters, making it more amenable to multiplexing with other live-
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Figure 2.11: Comparison of SPARK cluster segmentation with absolute thresh-
olding and Polaris. (a) Montage of AMPK SPARK response to 2 𝜇M ionomycin
treatment. (b) Absolute intensity thresholding of montage in (a). (c) Polaris predic-
tion of spot locations in montage in (a).

cell reporters. AMPK SPARK could even theoretically be multiplexed with other
SPARK reporters, if both reporters use orthogonal HOTag sequences and different
PBDs.77

As with the previously published SPARK reporters, AMPK SPARK demonstrated
much greater dynamic range than the leading FRET-based reporter, AMPKAR. In
response to both ionomycin and 2-DG, AMPK SPARK demonstrated a many-fold
increase in reporter clustering whereas AMPKAR demonstrated an ∼ 30% increase
in intensity of FRET signal.84 This improvement in dynamic range allows AMPK
SPARK to detect more subtle differences in AMPK activity states at the single-cell
level. Moreover, it makes AMPK SPARK signal less susceptible than AMPKAR
signal to the external noise inherent to live-cell imaging assays.
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An additional advantage of AMPK SPARK that potentially warrants further investi-
gation is its ability to visualize sub-cellular AMPK activity. In HeLa cells expressing
AMPK SPARK, we observed oscillatory AMPK activity that was occasionally lo-
calized to a sub-cellular compartments of the cell in response to treatment with LPS
(Fig. 2.12). Both gradual accumulation and rapid spiking of fluorescent reporter
can be observed in these images. These phenotypes align with plausible biolog-
ical mechanisms for AMPK signaling in response to LPS stimulation. Mounting
an immune response to perceived pathogens is an energetically expensive process,
which would lead to gradual AMPK activation as energy resources are consumed,
explaining the observation of persistently accumulating clusters. Furthermore, LPS
treatment has been linked to calcium signaling activity, including fluxes from the
extracellular space and stores in the endoplasmic reticulum (ER), which could ex-
plain the variety of observed whole-cell and sub-cellular pulses in AMPK SPARK
clustering.96 For these reasons, we believe that dynamic AMPK activity in response
to LPS treatment warrants further investigation. Immune cells, unlike HeLa cells,
express all of the signaling pathway components necessary to respond to LPS. For
this reason, a measurement of the AMPK SPARK response to LPS in immune cells
would be of great interest to the field.

Figure 2.12: Montage of AMPK SPARK response to LPS treatment. Example
HeLa cell transiently expressing AMPK SPARK was dosed with 1𝜇g/mL LPS
between the first and second frames. The reporter clusters in response to AMPK
activity.

These observations were enabled by AMPK SPARK’s improved dynamic range,
which sensitively reports rapid oscillations of sub-cellular kinase activity. These
oscillations occur at the low end of AMPK SPARK’s dynamic range, with only a
small proportion of the reporter clustering at any given time point. Therefore, a
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reporter with lower dynamic range like AMPKAR would likely struggle to read
out these oscillations above the degree of external noise inherent to FRET-based
reporters.

Limitations of the SPARK reporter architecture
The SPARK reporter architecture is potentially limited by the kinetics and the varied
mechanisms of the phase separation that it relies on to read out dynamic kinase activ-
ity. The mechanisms of reporter phase separation are similar to those of endogenous
proteins.97 A rapid spike in the concentration of phosphorylated reporter would elicit
a sudden phase separation event whereas slower reporter phosphorylation may lead
to gradual coalescence (Fig. 2.13a). Depending on the size of cluster that can be
reliably visualized with a given imaging setup, there may be a considerable popula-
tion of phosphorylated, clustered reporter that is unreliably detected, especially for
the coalescence mechanisms of reporter clustering. The varied kinetics by which
the phosphorylated reporter becomes visualizable limit the reliability of the SPARK
clustering read out of kinase activity.

Additionally, SPARK reporter clustering is a lagging indicator of kinase activity
(Fig. 2.13b). For a theoretical spike in kinase activity, the SPARK reporter would
only exhibit clusters when the local concentration of phosphorylated reporter exceed
the critical concentration required for phase separation. It follows that the SPARK
reporter would not become diffuse again until the local concentration of phospho-
rylated reporter dips below the critical concentration.98,99 Therefore, theoretically,
the read out of kinase activity fails to report the earliest changes in kinase activity,
but the degree to which this limits kinase kinetics reported by SPARK reporters is
unknown, because the critical concentration for SPARK reporter clustering has not
been rigorously characterized.

Because of the demonstrated value of the SPARK reporter architecture, we believe
that the degree to which the kinetics of phase separation limits SPARK reporters’
ability to read out real-time kinase activity warrants further investigation. Possible
experiments to investigate this question include characterization of the critical con-
centration for phase separation and characterization of SPARK clustering kinetics
with single molecule fluorescence imaging. Furthermore, an alternative live-cell
reporter for AMPK that was published after the conception of this project, called
ExRai AMPKAR, could be used as an alternative read out for dynamic AMPK
activity in live cells. ExRai AMPKAR has a similar dynamic range to AMPK
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Figure 2.13: Kinetics of phase separation limit the responsiveness of the SPARK
reporter read out of kinase activity. (a) Schematic diagram of two possible mech-
anisms of reporter clustering: sudden phase separation and gradual coalescence.
Figure adapted from Yoo et al. (2019). (b) Example time trace of phosphorylated
reporter concentration, illustrating that SPARK reporter clustering is a lagging in-
dicator of kinase activity. The critical concentration of phosphorylated reporter for
phase separation is noted as ccritical. Figure adapted from Alberti et al. (2017).

SPARK, making it a valuable resource for characterizing AMPK activity dynamics.
However, its read out of kinase activity relies on measuring the ratio of two fluores-
cence channels, potentially limiting its multiplexing capabilities and highlighting
the field’s need for a single-channel live-cell reporter like AMPK SPARK.76

2.3 Vignette 2: ExRai reporter development with large language models
Kinase cascades in immune signaling pathways
IFN regulatory factor 3 (IRF3) is a key transcription factor involved in the innate
immune response, modulating the expression of type I interferons (IFNs) particularly
in response to viral infection. IRF3 is constitutively expressed in its monomeric form
in the cytoplasm. Upon infection, IRF3 is phosphorylated by an upstream kinase,
TANK-binding kinase 1 (TBK1), which triggers it to undergo dimerization and
translocation to the nucleus where it activates the expression of its target genes. Its
activation is tightly regulated by a cascade of signaling events following detection
of infection (Fig. 2.14).100–102
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Another fundamental immune signaling pathway is nuclear factor 𝜅-light-chain-
enhancer of activated B cells (NF-𝜅B), which is a family of transcription factors
activated by a number of immune stimuli, such as lipopolysaccharide, viral nucleic
acid material, or cytokines. The family consists of five structurally similar members
that can create a variety of homo- and hetero-dimers with different transcriptional
activities. The canonical NF-𝜅B signaling pathways involves a hetero-dimer of two
subunits, p65 (also named RelA) and p50, which is sequestered in the cytoplasm by
an inhibitory protein, inhibitor of nuclear factor 𝜅-B 𝛼 (I𝜅B𝛼). Upon detection of
immune stimuli, I𝜅B𝛼 is phosphorylated by an upstream kinase, primarily inhibitor
of nuclear factor kappa-B kinase 𝛽 (IKK𝛽), triggering its degradation and allowing
the p65-p50 dimer to translocate to the nucleus and modulate the expression of
its target genes (Fig. 2.14). NF-𝜅B translocation is stereotypically oscillatory, a
behavior manifested by complex regulatory feedback within a network of signaling
proteins.9,103

Figure 2.14: Parallel immune signaling pathways: NF-𝜅B and IRF3. STING,
which is present in the endoplasmic reticulum, detects viral DNA and triggers a
cascade of signaling kinase activity, which culminates in the translocation of IRF3
and p65 into the nucleus, activating the expression of their target genes. Dashed
arrows indicate the omission of known molecular steps. Figure adapted from Balka
et al. (2020).
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Controlling the phosphorylation of both IRF3 and NF-𝜅B are intersecting cascades
of signaling kinases, leading to crosstalk between the activation of both signaling
pathways in response to immune stimuli. For example, TBK1 activity downstream
of stimulator of interferon genes (STING) detection of the presence of viral DNA
activates both IRF3 and NF-𝜅B translocation (Fig. 2.14). This pattern of redundancy
is also observed for I𝜅B kinase 𝜖 , which also activates both IRF3 and NF-𝜅B
translocation in response to pro-inflammatory stimuli.104–106

Dysregulation of both the NF-𝜅B and IRF3 signaling pathways is implicated in a
number of disease states, including cancer, inflammatory disorders, and autoim-
mune disorders.107,108 Therefore, characterization of these signaling pathways is of
particular translational interest, as mechanistic insight into the regulation of their
activation has previously revealed druggable signaling proteins.109–112

Beyond translational applications, modeling these immune signaling pathways as
toy systems for motifs of regulatory feedback is of significant interest to the systems
biology field, and mathematical models of increasing nuance and complexity con-
tinue to be developed.113–118 These models require biochemical parameters of kinase
activity, such as catalytic rates and affinity for binding partners. These parameters
are often characterized with population-level measurements, which can miss the
heterogeneity in signaling responses that would be evident at the single-cell level.
Fluorescent live-cell reporters, on the other hand, have the capability to measure
dynamic kinase activity at the single-cell level, which may reveal heterogeneity in
dynamic behaviors that was previously impossible to measure. Characterization of
the information flow through these pathways at the single-cell level could lead to the
development of models for these signaling pathways with greater complexity and
nuance.

We aim to create a set of live-cell reporters to characterize the kinase cascades in
the NF-𝜅B and IRF3 signaling pathways. Such a toolbox of reporters could quantify
the information flow between various immune stimuli and cellular responses at
a single-cell level. We first created reporters for IKK𝛽 and TBK1, which are
the kinases directly upstream of the p65 and IRF3 translocation steps, respectively.
Additionally, in experiments where direct visualization of p65 or IRF3 is not feasible,
these reporters can offer an alternative read out for signaling pathway activity
because of the strong correspondence between the activity of IKK𝛽 and TBK1 to
the translocation of p65 and IRF3, respectively.115,119,120
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Designing live-cell reporters with large language models
Selection a substrate for a kinase of interest is fundamental to designing a live-cell
reporter for the activity of such kinase. Candidate substrates could be identified
from curated databases of known kinase-substrate interactions (KSIs)121–123, but
screening candidate live-cell reporter sequences in an arrayed fashion is time and
resource intensive. To identify the most promising kinase substrates, we use our
large language model for predicting KSIs, called KINBERT. KINBERT was trained
with the most comprehensive data set (131,081 KSIs) and its predictions have
been shown to recapture many times more known KSIs when compared to other
previously published language models for KSI prediction.

Figure 2.15: Designing live-cell reporters with large language models. Large
language models can be used to predict kinase-substrate interactions (KSIs). Figure
courtesy of Changhua Yu.

In addition to being an amenable target sequence for the kinase of interest, the
designed kinase substrate must meet a few more requirements to be a good candidate
for a live-cell reporter. As described for AMPK SPARK in Vignette 1, the kinase
substrate must be compatible with FHA1 binding, which is the typical PBD used in
ExRai reporters. Candidate IKK𝛽 and TBK1 substrates were filtered based on their
compatibility with the selective binding preferences of FHA1.87,88 Based on these
criteria, a set of candidate substrates were selected for IKK𝛽 and TBK1 from the
substrates identified by KINBERT for further screening in mammalian cells (Table
2.1).

Overview of ExRai reporters
We selected the ExRai architecture to construct live-cell reporters for IKK𝛽 and
TBK1. ExRai reporters contain cpGFP, which has two conformations with different
fluorescent excitation spectra. Phosphorylation of the kinase substrate in ExRai
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Table 2.1: Candidate kinase substrates for IKK𝛽 and TBK1. Target phospho-
sites in the kinase substrates are shown in bold. The score returned by KINBERT is
a logit score corresponding to the probability of kinase-substrate interaction.

Kinase ID No. Original pro-
tein

Amino acid
sequence

KINBERT
score

IKK𝛽 1 HS90B NPQERTLT
LVDTGIG

4.620

IKK𝛽 2 PRDX1 KGILRQITV
NDLPVG

4.460

IKK𝛽 3 CSN5 EGPSEYQTI
PLNKIE

3.944

TBK1 1 DDX3X LLDLLNAT
GKDSLTL

4.476

TBK1 2 DDAH2 DHPYASLT
LPDDAAA

4.561

reporters drives the conformation change in the cpGFP (Fig. 2.16). In the unphos-
phorylated conformation, the cpGFP has a higher excitation peak at 405 nm, and
in its phosphorylated conformation, the cpGFP has a higher excitation peak at 488
nm. Therefore, the read out of kinase activity for ExRai reporters is the ratio of the
fluorescence intensity in the 488 nm and 405 nm excitation images.74

Figure 2.16: ExRai reporters undergo a conformation change in cpGFP in
response to kinase activity. ExRai reporters contain a cpGFP molecule fused
to a substrate for the kinase of interest and a phospho-binding domain (PBD).
Upon phosphorylation, the reporter undergoes a conformation change that shifts the
primary peak in the excitation spectrum of cpGFP from 405 nm to 488 nm.

Similar to SPARK reporters, ExRai reporters have been shown to have a wide
dynamic range and the ability to read out kinase activity with sub-cellular spa-
tial resolution.74–76 Unlike SPARK reporters, ExRai reporters are not limited by a
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complex design that leads to nuances in read out dynamics or limits multiplexing
capacity. For these reasons, we selected the ExRai reporters architecture to con-
struct novel live-cell reporters to IKK𝛽 and TBK1. We incorporated the substrates
identified by the large language model method into ExRai reporters, which we call
ExRai IKKAR and ExRai TBKAR henceforth.

ExRai IKKAR and ExRai TBKAR: Novel ExRai reporters for IKK𝛽 and TBK1
To screen the performance of the set of candidate ExRai IKKAR and ExRai TBKAR
reporters, we measured the response of the reporters to poly (I:C) treatment in HT-
1080 cells. Poly (I:C) is an dsRNA analog and is a known agonist of Toll-like receptor
3 (TLR3) signaling, activating immune signaling proteins including IKK𝛽 and
TBK1.124 We expect low basal activity from both kinases in homeostatic conditions
before poly (I:C) treatment and significant kinase activation upon treatment.

The screened substrates for IKK𝛽 and TBK1 yielded ExRai reporters with varying
sensitivity to kinase activity. The substrates that demonstrated the greatest sensitivity
to target kinase activity were IKK𝛽 substrate 1, derived from HS90B, and TBK1
substrate 2, derived from DDAH2. These substrates were also assigned the highest
probability of kinase-substrate interaction by KINBERT (Table 2.1), demonstrating
the efficacy of identifying candidate kinase substrates for live-cell reporter design
with KINBERT.

In response to poly (I:C) treatment and read out by ExRai IKKAR and ExRai
TBKAR, we observe dynamic responses of IKK𝛽 and TBK1, respectively, that
are heterogeneous at a single cell level over time (Fig. 2.17). Population-level
methods such as Western blotting would not be able to quantify the activity of
these kinases at a single-cell level, which may obscure the sub-populations of cells
that may respond divergently to the same stimulus. End-point measurements like
immunofluorescence staining cannot capture the changes in kinase activity over
time, which prevents interrogation of the information processing mechanisms of
the dynamic activation of these kinases. ExRai IKKAR is of particular value for
characterization of the relationship between the activity of IKK𝛽 and p65, whose
stereotypical oscillatory nuclear localization is obscured at the population level.

The ExRai reporter architecture has the distinct advantage over other established
live-cell reporter architectures, such as KTRs, of reporting kinase activity with
sub-cellular spatial resolution. Both ExRai IKKAR and ExRai TBKAR demon-
strate lower activity in the cell nuclei than cytoplasm volumes, a pattern that is
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Figure 2.17: ExRai IKKAR and ExRai TBKAR demonstrate heterogeneous
single-cell responses to poly(I:C) treatment. (a,b) HT-1080 cells expressing
ExRai IKKAR and ExRai TBKAR, respectively, respond heterogeneously to 2
𝜇g/mL poly(I:C) treatment at a single-cell level. The cells were dosed 15 minutes
after the initiation of the time series. The colors of cell masks correspond with the
colors of the plotted time series. Scale bar is 20𝜇m. The time series are normalized
to the average reporter activity before poly(I:C) treatment.

exacerbated by treatment with an immune agonist (Fig. 2.18). This observation
follows established models of the sub-cellular activity of these kinases as primarily
cytoplasmic.115,119,120

We demonstrate that this pattern is does not simply reflect differences in reporter
abundances with line profile analysis. If we take a line profile across the nucleus
of a cell expressing ExRai IKKAR, we observe that the fluorescence intensities at
the termini of the line, distant from the nucleus have fluorescence intensities in both
channels that are quite correlated. However, in the perinuclear region, the intensity
of the 405 nm ex. image sharply increases whereas the intensity of the 488 nm ex.
image modestly increases. This trend is further exacerbated in the nucleus of the
cell, reading out lower kinase activity in the nucleus.

We compare the nuclear line intensity profile to one taken in a region of the cell’s
cytoplasm with ranging reporter abundance. The intensity of both the 405 nm ex.
image and the 488 nm ex. images are highly correlated. Therefore, the ratio of
intensities from the 488 nm ex. image to the 405 nm ex. image are not altered by
changes in reporter abundance. This control analysis illustrates the robustness of
the ExRai reporter read out of kinase activity to changes in abundance.
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Figure 2.18: ExRai IKKAR reveals sub-cellular patterns of IKK𝛽 activation.
(a) Images of ExRai IKKAR expressed in an individual HT-1080 cell, treated with 2
𝜇g/mL poly(I:C) and visualized in 405 nm excitation (ex.) and 488 nm ex. channels
and a ratio of the two channels. The orange and magenta line profiles correspond
to the plots in (b-c). Scale bar is 20𝜇m. (b) Line intensity profile of 405 nm ex.,
488 nm ex., and ratio images across the nucleus. Profile corresponds to the orange
line in (a). (c) Line intensity profile of 405 ex., 488 ex., and ratio images across a
region of the cytoplasm with varying reporter concentration. Profile corresponds to
the magenta line in (a).

The observation of varying kinase activities in different sub-cellular compartments
for IKK𝛽 and TBK1 warrants further explicit characterization. Additional experi-
ments could include fusing the ExRai reporters to NES and NLS sequences to target
the reporter to specific sub-cellular compartments. Such experiments can yield
biophsyical parameters of the activity of these kinases that would be of great value
to mathematical modeling of immune signaling pathways.

Discussion
This work illustrates the construction of ExRai IKKAR and ExRai TBKAR with
substrates identified with a large language model for prediction of KSIs, KINBERT.
Live-cell reporters for IKK𝛽 and TBK1 would be of particular translational interest,
as both kinases are druggable targets of active research interest.125–130 However, the
greatest value of this work is the demonstration of KINBERT as a computational
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method for candidate kinase substrate sequence generation and ExRai reporters as
an experimental platform for screening such sequences. In future works, KINBERT
can be used to streamline candidate substrate identification for the design ExRai
reporters for other kinases of interest.

A number of control experiments are still needed to verify the validity of ExRai
IKKAR and ExRai TBKAR’s read out of the activity of their respective kinases.
The specificity of the reporters for their target kinase needs to be demonstrated by
activating the reporters in the background of inhibitors specific to the respective
kinases. Additionally, the specificity of the read out to phosphorylation of the
expected phospho-site in the reporter needs to be demonstrated by mutating the
phospho-site to an amino acid that cannot undergo phosphorylation, such as alanine.
Finally, it would be interesting to demonstrate that the dynamic range of the reporters
is not limited by its expression level. In the regime where the expression level of
the reporter far exceeds the capacity of the kinase of interest to phosphorylate it,
the large pool of unphosphorylated reporter could limit the dynamic range of the
reporter. To test this consideration, stable cell lines with varying reporter expression
could be generated by Lentiviral transduction at different multiplicities of infection,
and their dynamic range in response to immune stimuli could be tested.

Once validated, the performance of ExRai IKKAR and ExRai TBKAR should be
further optimized, because the dynamic range of both reporters is approximately
15%, which is much lower than other published ExRai reporters.75,76 Mutagenesis
to the kinase substrate and cpGFP sequences, as was done previously for ExRai
AKAR275, could yield an improved version of ExRai IKKAR and ExRai TBKAR
by modulating the rate at which the substrate is phosphorylated and the efficiency
of the read out of its phosphorylation state.

2.4 Methods
Plasmid construction
The plasmids for AMPK SPARK, ExRai IKKAR, and ExRai TBKAR were cloned
using Gibson assembly of an oligo containing the kinase substrate and linearized
backbone plasmid containing the reporter sequence (Takara In-Fusion HD). The
reporter sequence that was used as a template for AMPK SPARK was derived from
PKA SPARK (Addgene Plasmid #106920). The reporter sequence that was used
as a template for the ExRai reporters was ExRai AMPKAR (gift from the Zhang
lab). The plasmid backbones contain a mammalian promoter, EF-1𝛼, and a T7
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Table 2.2: Reporter peptide sequences. Target phospho-sites in the kinase sub-
strates are shown in bold.
Reporter Construct Sequence
AMPK SPARK Kinase substrate RRVATLVDL
AMPK SPARK HOTag1 GEIAKSLKEIAKSLKE

IAWSLKEIAKSLKG
AMPK SPARK HOTag2 TLREIEELLRKIIEDS

VRSVAELEDIEKW
LKKI

ExRai IKKAR Kinase substrate QERTLTLVDTG
ExRai TBKAR Kinase substrate PYASLTLPDDA

promoter for expression by transient DNA and RNA transfections, respectively. For
each plasmid, the cloning scheme was verified by sequencing of the junctions of the
assembly.

Cell culture

HeLa (CCL-2) cells were received from the American Type Culture Collection. The
cells were cultured in Eagle’s Minimum Essential Medium (Cytiva #SH30024LS)
supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 𝜇g/mL
streptomycin (Gibco or Caisson), and 10% fetal bovine serum (Omega Scientific or
Thermo Fisher). Cells were incubated at 37°C in a humidified 5% CO2 atmosphere
and were passaged when they reached 70%-80% confluence.

HEK 293T (CRL-3216) and HT-1080 (CCL-121) cells were received from the Amer-
ican Type Culture Collection. Both cell lines were cultured in Dulbecco’s Modi-
fied Eagle’s Medium (Cytiva #SH3024302) supplemented with 2 mM L-glutamine
(Gibco), 100 U/mL penicillin, 100 𝜇g/mL streptomycin (Gibco or Caisson), and
10% fetal bovine serum (Omega Scientific or Thermo Fisher). Both cell lines were
incubated at 37°C in a humidified 5% CO2 atmosphere and were passaged when
they reached 70%-80% confluence.

THP-1 (TIB-202) cells were received from the American Type Culture Collection.
The cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium
(Gibco) supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100
𝜇g/mL streptomycin (Gibco or Caisson), and 10% fetal bovine serum (Omega
Scientific or Thermo Fisher). To make the complete medium, 2-mercaptoethanol
(BME) (Sigma-Aldrich #M6250) was added to a concentration of 0.05mM before
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every use. Cells were incubated at 37°C in a humidified 5% CO2 atmosphere and
were passaged to maintain a concentration of 0.3-1 x 106 cells/mL.

Transient transfections
For all imaging experiments, the cells were seeded in a fibronectin-functionalized
(Fisher Scientific #33010018) glass-bottom 96-well plate (Cellvis P96-1.5H-N) at
80%-90% confluence. For plasmid DNA transfections, 100 ng of plasmid DNA was
transfected per well with TransIT-LT1 Transfection Reagent (Mirus #MIR 2304).
For both types of transfections, cells were allowed to incubate at 37°C in a humidified
5% CO2 atmosphere overnight before imaging.

Imaging experiments
Ionomycin treatment: Ionomycin (Sigma #I3909) was received reconstituted at a
stock concentration of 1 mM in DMSO. Cells were treated with 2 𝜇M ionomycin.
Cells were imaged at a frame rate of 2 minutes to capture the rapid AMPK activation
following this treatment.

2-DG treatment: 2-DG (Sigma #D6134) was received in powdered form and
reconstituted at a stock concentration 200 mM in water. Cells were treated with 20
mM 2-DG, which exceeds the typical 5.5 mM glucose concentration in most cell
culture media formulations. Cells were imaged at a frame rate of 5 minutes.

LPS treatment: LPS O55:B5 (Sigma #L4524) was received in powdered form and
reconstituted at a stock concentration of 5 mg/mL in water. Cells were treated with
100 ng/mL or 1 𝜇g/mL. Cells were imaged at a frame rate of 5 minutes.

Poly (I:C) treatment: Poly (I:C) (Tocris #4287) was receive in powdered form and
reconstituted at a stock concentration of 3 mg/mL in water. Cells were transfected
with poly (I:C) using TransIT-LT1 Transfection Reagent (Mirus #MIR 2304), fol-
lowing the manufacturer’s specifications. Cells were imaged at a frame rate of 5
minutes.

Imaging conditions

The AMPK SPARK samples were imaged with a Nikon Ti2-E fluorescence micro-
scope controlled by Nikon Elements. Images were acquired with a Nikon SOLA SE
II light source, a 40X air objective, and a Photometrics Prime 95B CMOS camera.
The samples were incubated at 37°C in a humidifed 5% CO2 atmosphere during
imaging.
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The ExRai reporter samples were imaged with a Nikon Ti2-E with Crest X-Light
V3 spinning disk confocal microscope controlled by Nikon Elements. Images were
acquired with a Lumencor Celesta light source, a Photometrics Prime 95B CMOS
camera, and a 40X air objective. The cpGFP was visualized with two imaging
configuations: (1) 405 nm laser excitation with a 488 nm emission filter, and (2)
488 nm laser excitation with a 488 nm emission filter. The samples were incubated
at 37°C in a humidifed 5% CO2 atmosphere during imaging.

Image analysis
SPARK reporter images: Whole-cell segmentation was performed by absolute
intensity thresholding and watershed segmentation. Cells were tracked through
time with an intersection over union (IOU)-based cell tracking algorithm. Clustered
reporter was identified by absolute intensity thresholding or with Polaris’95 spot
detection model. Images were background-subtracted, using the mean intensity
values of assigned to the background during segmentation. The total amount of
reporter in each masked area was taken as the sum of the pixel values in the masked
pixels. The reporter activity was quantified from the ratio of the total fluorescence
intensity of the clustered reporter and the total fluorescence intensity of the cell.

ExRai reporter images: Whole-cell segmentation was performed with Deepcell’s
deep learning models for cell segmentation.131 Cells were tracked through time with
an IOU-based cell tracking algorithm and minor manual corrections.132 Images in
both fluorescence channels were background-subtracted, using the 5th percentile
of intensity values of pixels assigned to the background during segmentation. The
reporter activity was visualized by taking the ratio of the images acquired in the 488
nm and 405 nm excitation conditions. ExRai reporter activity was quantified from
the ratio images using randomly selected ROIs inside the cell area as previously
published.76

2.5 Figure captions
Figure 2.1: Signaling events for reporters. (a) Kinase activity is regulated by
internal factors of cell state or external stimuli. A kinase in its active state will
phosphorylate its substrate proteins. (b) Phosphorylation of a protein can lead
to interaction with genomic DNA, regulating transcription of target genes. (c)
Phosphorylation can signal for a protein to be degraded. (d) Phosphorylation can lead
to translocation of the substrate protein to sub-cellular compartments. Destinations
can include the nucleus of a cell or the plasma membrane. (e) Phosphorylation can
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drive interaction or complex formation between proteins. (f) Phosphorylation can
lead to a conformation change in the substrate protein.

Figure 2.2: Survey of live-cell reporter architectures. (a) Fluorescent fusion
proteins consist of a fluorescent protein connected to a protein of interest with a
flexible peptide linker. (b) KTRs consist of a fluorescent protein fused to a nuclear
export signal (NES), nuclear localization signal (NLS), and a substrate for a kinase of
interest. (c) SPARK reporters consist of two types of oligomers: (1) one oligomer
consisting of fluorescent proteins and substrates for a kinase of interest, and (2)
one oligomer consisting of phospho-binding domains (PBDs). (d) FRET reporters
consist of a pair of fluorescent proteins that are amenable to FRET, such as CFP and
YFP, that are connected by a flexible peptide linker containing a kinase substrate and
a PBD. (e) ExRai reporters consist of a cpGFP molecule fused to a kinase substrate
and a PBD.
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C h a p t e r 3

POLARIS: ACCURATE SINGLE-MOLECULE SPOT
DETECTION FOR IMAGE-BASED SPATIAL

TRANSCRIPTOMICS WITH WEAKLY SUPERVISED DEEP
LEARNING

1. Laubscher, E. et al. Accurate single-molecule spot detection for image-based
spatial transcriptomics with weakly supervised deep learning. Cell Systems
15, 475–482.e6. issn: 2405-4712. doi:10.1016/j.cels.2024.04.006.
http://dx.doi.org/10.1016/j.cels.2024.04.006 (May 2024).

3.1 Introduction
Advances in spatial transcriptomics have enabled system-level gene expression mea-
surement while preserving spatial information, enabling new studies into the connec-
tions between gene expression, tissue organization, and disease states75,133. Spatial
transcriptomics methods fall broadly into two categories. Sequencing-based meth-
ods leverage arrays of spatially barcoded RNA capture beads to integrate spatial
information and transcriptomes25–28. Image-based methods, including multiplexed
RNA fluorescent in situ hybridization (FISH) and in situ RNA sequencing (ISS),
perform sequential rounds of fluorescent staining to label transcripts to measure the
expression of thousands of genes in the same sample29–33. Because these methods
rely on imaging, the data that they generate naturally contain the sample’s spatial or-
ganization. While image-based spatial transcriptomics enables measurements with
high transcript recall and subcellular resolution75,133, rendering the raw imaging data
interpretable remains challenging. Specifically, the computer vision pipelines for
image-based spatial transcriptomics must reliably perform cell segmentation, spot
detection, and gene assignment across diverse imaging data. Prior methods that
sought an integrated solution to this problem rely on manually-tuned algorithms to
optimize performance for a particular sample or spatial transcriptomics assay134,135.
Thus, there remains a need for an integrated, open-source pipeline that can perform
these steps reliably across the diverse images generated by spatial transcriptomics
assays with minimal human intervention.
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Figure 3.1: A weakly supervised deep learning framework for accurate fluores-
cent spot detection of spatial transcriptomics imaging data. See section 3.6 for
caption.

Deep learning methods are a natural fit for this problem. Prior work by ourselves and
others has shown that deep learning methods can accurately perform cell segmenta-
tion with minimal user intervention136–139, providing a key computational primitive
for cellular image analysis. Here, we focus on the problem of spot detection for
image-based spatial transcriptomics data. Existing spot detection methods fall into
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two categories: “classical” and “supervised”140. Classical methods are widely used
but require manual parameter fine-tuning to optimize performance141,142. The opti-
mal parameter values are often different within regions of the same image, making
implementation of classical methods time-intensive and fundamentally limiting their
scalability. Supervised methods143–145, which often rely on deep learning method-
ologies, learn how to detect spots from labeled training data. These methods elimi-
nate the need for manual parameter tuning to optimize spot detection performance.
However, the requirement for labeled training data presents a major challenge, as
experimentally-generated data contain too many spots for manual annotation to be
feasible. Training data derived from classical algorithms are limited by the char-
acteristics of those algorithms, imposing a ceiling on model performance. Further,
simulated training data lack the artifacts present in experimentally-generated data
which can limit their performance on real data.

In this work, we combine deep learning a with weakly supervised training data
construction scheme to create a universal spot detector for image-based spatial tran-
scriptomics data. We demonstrate the performance of our spot detection model on
simulated and experimentally-generated images. Given that training deep learning
models with weak supervision can yield a computational primitive for spot detection,
we then constructed Polaris, an integrated deep learning pipeline for image-based
spatial transcriptomics. Constructed in this fashion, Polaris offers a turnkey analysis
solution for data from various image-based spatial transcriptomics methods while
removing the need for manual parameter tuning or extensive user expertise.

Figure 3.2: Benchmarking consensus annotation output of the generative model.
(a) Error distribution for EM estimates of TPR and FPR values for 100 trials with
three simulated classical methods. (b) Fraction of simulated detections correctly
classified with increasing dataset size (number of spots in the dataset). (c) Fraction
of simulated detections correctly classified as a true or false detection by EM for an
increasing number of classical spot detection methods used in the EM method.
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3.2 Training spot detection models with weak supervision
Here, we describe two key aspects of Polaris’ spot detection model — constructing
consensus training data with annotations from multiple classical spot detection
algorithms, and deep learning model design and training.

Constructing consensus training data. Accurate training data is an essential com-
ponent of every deep learning method. In this work, we have sought to create training
data for spot detection models by finding consensus among several commonly used
classical spot detection algorithms (Fig. 3.1a). In our approach, we first create
annotations for representative fluorescent spot images by manually fine-tuning a
collection of classical algorithms on each image. We refer to these algorithms as
“annotators.” This process generates conflicting sets of coordinate spot locations,
as each annotator detects or misses different sets of spots. To determine which
annotators detected each spot in an image, the detections from all annotators are
clustered based on their proximity. Inspired by prior work on programmatic label-
ing146, we then de-noise conflicting spot annotations with a generative model. The
generative model characterizes annotators with two parameters: (1) true positive
rate (TPR), which is an annotator’s probability of detecting a ground-truth true spot,
and (2) false positive rate (FPR), which is an annotator’s probability of detecting a
ground-truth false spot. The model characterizes clustered spots by their probability
of corresponding to a ground-truth true spot (𝑝(TP)). The generative model is given
an initial guess for the TPR and FPR of each classical algorithm and a matrix of
annotation data, which we name the “detection information matrix.” This matrix
of annotation data, 𝑥 = {𝑥𝑖𝑐𝑖=1,...,𝑛} consists of binary variables, 𝑥𝑖𝑐, which are equal
to 1 if annotator 𝑖 detected cluster 𝑐, and 0 if not. The model is then fit with ex-
pectation maximization (EM)147 by iteratively calculating the 𝑝(TP) of each cluster
and estimating the TPRs and FPRs of each annotator until convergence (Fig. 3.1d).
The remainder of this section provides more detail on the mathematical execution
of these steps.

Our generative model assumes that each annotator 𝑖 produces Bernoulli-distributed
annotations. We define 𝑧𝑐 to be a binary variable indicating whether cluster 𝑐 is a
true spot or not (1 if true, 0 if not). 𝑝(𝑧𝑐) — conditioned on the data and annotator
characteristics — corresponds to 𝑝(TP), which we wish to compute. Let us also
define 𝜃𝑖 (𝑧𝑐) to be a variable that represents an annotator 𝑖’s probability of detecting
a cluster, conditioned on whether the cluster is a true spot or not. This notation is a
more compact way of representing the annotator characteristics, as 𝜃𝑖 (1) = TPR𝑖 and
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𝜃𝑖 (0) = FPR𝑖. For every cluster 𝑐 and annotator 𝑖, the distribution of 𝑥𝑖𝑐 given the
cluster assignment 𝑧𝑐 and annotator characteristics 𝜃𝑖 (𝑧𝑐) is a Bernoulli distribution:

𝑃(𝑥𝑖𝑐 |𝑧𝑐, 𝜃𝑖 (𝑧𝑐)) = 𝜃𝑖 (𝑧𝑐)𝑥𝑖𝑐 (1 − 𝜃𝑖 (𝑧𝑐))1−𝑥𝑖𝑐 . (3.1)

We assume the variables 𝑥𝑖𝑐 are independent; the probability to observe the data
𝑥 = {𝑥𝑖𝑐}, given {𝜃𝑖} and {𝑧𝑐} is then

𝑃({𝑥𝑖𝑐}|{𝑧𝑐}, {𝜃𝑖}) =
∏
𝑖,𝑐

𝜃𝑖 (𝑧𝑐)𝑥𝑖𝑐 (1 − 𝜃𝑖 (𝑧𝑐))1−𝑥𝑖𝑐 . (3.2)

To offer a concrete example of this formula in action, consider the following situa-
tions for a hypothetical set of three annotators. For a “true detection” (e.g., 𝑧𝑐 = 1),
the probability that all three annotators detect the spot (e.g., 𝑥𝑖𝑐 = 1 for all 𝑖) given
by the above formula reduces to

𝑝(𝑥𝑖,𝑐 |𝑧𝑐, 𝜃) =
3∏
𝑖=1

TPR𝑖, (3.3)

which is simply the product of the TPRs of each annotator. Alternatively, the
probability that the first two annotators detect a ground-truth true spot while the
third annotator (incorrectly) does not is given by:

𝑝(𝑥𝑖,𝑐 |𝑧𝑐, 𝜃) = TPR1 · TPR2 · (1 − TPR3). (3.4)

We utilize formula 3.2 with the EM algorithm to infer the annotator and cluster
characteristics. The EM algorithm consists of two computation steps: an expec-
tation step and a maximization step. To perform the expectation step, we define
the probability of a cluster corresponding to a true or false detection with Bayes’
theorem:

𝑝(𝑧𝑐 |𝑥𝑖𝑐, 𝜃) =
𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)𝑝(𝑧𝑐)

𝑝(𝑥𝑖𝑐 |𝜃)
. (3.5)

The term 𝑝(𝑧𝑐) is the prior probability of a cluster corresponding to a true or false
detection; we use the least informative value for the prior by setting 𝑝(𝑧𝑐) = 1/2,
indicating an equal probability that a spot is a true or false detection. The term
𝑝(𝑥𝑖𝑐 |𝜃) can be expressed as:

𝑝(𝑥𝑖𝑐 |𝜃) =
∑︁
𝑍

𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)𝑝(𝑧𝑐). (3.6)
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Therefore, the probability 𝑝(𝑧𝑐 |𝑥𝑖𝑐, 𝜃) can be expressed as the likelihood of each
possible label (e.g., true or false) normalized by the sum of the likelihood of both
labels:

𝑝(𝑧𝑐 |𝑥𝑖𝑐, 𝜃) =
𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)𝑝(𝑧𝑐)∑
𝑧 𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)𝑝(𝑧𝑐)

, (3.7)

=
𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃) · 1

2∑
𝑧 𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃) · 1

2
, (3.8)

=
𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)∑
𝑧 𝑝(𝑥𝑖𝑐 |𝑧𝑐, 𝜃)

. (3.9)

Using this method to calculate 𝑝(𝑧𝑐 |𝑥𝑖𝑐, 𝜃), we can then calculate E(TP), E(FN),
E(FP), and E(TN) for each annotator. Two scenarios can arise when calculating
these values.

1. If an annotator detects a spot in a particular cluster, i.e., 𝑥𝑖𝑐 = 1, E(TP) for
that method is equal to 𝑝(TP) = 𝑝(𝑧𝑐 |𝑥𝑖𝑐, 𝜃) for that cluster, and E(FP) for
that annotator is equal to 𝑝(FP) for that cluster. E(TN) and E(FN) are set to
zero.

2. If an annotator does not detect a spot in a particular cluster, i.e., 𝑥𝑖𝑐 = 0,
E(TN) for that annotator is equal to 𝑝(FP) = 1 − 𝑝(TP) for that cluster, and
E(FN) for that annotator is equal to 𝑝(TP) for that cluster. E(TP) and E(FP)
are set to zero.

To perform the maximization step, we sum E(TP), E(FN), E(FP), and E(TN) across
all clusters to calculate an updated maximum likelihood estimate for𝑇𝑃𝑅𝑖 and 𝐹𝑃𝑅𝑖
for method 𝑖 with equations of the following form:

TPR𝑖 =
∑
𝑖 E(TP𝑖)∑

𝑖 E(TP𝑖) +
∑
𝑖 E(FN𝑖)

(3.10)

FPR𝑖 =
∑
𝑖 E(FP𝑖)∑

𝑖 E(FP𝑖) +
∑
𝑖 E(TN𝑖)

(3.11)

The expectation and maximization steps are performed iteratively until the values
for 𝑝(TP)𝑐, TPR𝑖, and FPR𝑖 converge. The consensus spot locations are taken at
the centroid of the clusters with a 𝑝(TP)𝑐 value that exceeds a defined probability
threshold. We demonstrated that this method yields accurate estimation of TPR and
FPR and that the resulting spot labels approach 100% correct as data set size and
numbers of annotators increase (Fig. 3.2).
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Figure 3.3: Polaris’ spot detection model generalizes to spot images generated
with a variety of single-molecule assays. The spot probability prediction images
encode the pixel-wise spot probability. The regression image is the sum of the
square of the subpixel distances to the nearest spot in the x- and y-dimensions.
Pixels beyond a threshold value are set to zero. These outputs are used together to
generate a set of predicted spot locations with subpixel resolution, plotted over the
raw image.

Figure 3.4: Example cases handled by a mutual nearest-neighbor matching
algorithm. (a) Example with spots inside and outside the threshold distance to a
ground-truth spot. Ground truth spots and their threshold distance are shown in
grey. True positive detections are shown in green and false positive detections are
shown in orange. (b) Example with two spots inside the threshold distance to a
ground-truth spot. (c) Example with two spots within the threshold distance of two
ground-truth spots.

To construct a training dataset for Polaris’ spot detection model, we applied this
consensus training data construction method to images from various spatial tran-
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scriptomics assays. We assembled a set of representative images from sequen-
tial fluorescence in situ hybridization (seqFISH), multiplexed error-robust FISH
(MERFISH)148,149, and SunTag-labeled imaging data150. We use these consensus
annotations to train a deep learning model for spot detection.

Model design and training. To train our spot detection model, we frame the
problems as a classification and regression task (Fig. 3.1b). For each pixel we seek
to predict whether that pixel contains a spot and compute the distance from the pixel
to the nearest spot centroid. To train our model with our consensus spot labels,
the coordinate spot locations are converted into two image types: (1) an image
containing one-hot encoded spot locations, and (2) regression images encoding the
sub-pixel distance to the nearest spot in the x- and y-directions (Fig. 3.1b). The
deep learning model returns two output images from a given input image: (1) the
pixel-wise probability of a spot, and (2) x- and y-regression images (Fig. 3.1c). Our
model is trained with a weighted cross entropy and a custom mean squared error
loss (e.g., computed only in a neighborhood around each spot) for the two output
images.

We trained the network using a custom loss function composed of a classification
loss and a regression loss, which considers the outputs of both of the model’s
prediction heads. The loss function has the following form:

𝐿 (𝑦, �̂�) = 𝐿cla(𝐶, �̂�) + 𝐿reg(𝑅, �̂�) (3.12)

where 𝐶 is the classification head output, 𝑅 is the regression head output, and
𝑦 = (𝐶, 𝑅). The classification loss is the weighted cross-entropy with inverse class
frequency-based weights. The regression loss is given by:

𝐿reg(𝑅, �̂�) =
1

|𝐺𝑑 |
∑︁
𝑖∈𝐺𝑑

ℓ((𝑑𝑦𝑖, 𝑑𝑥𝑖), (𝑑𝑦𝑖, 𝑑𝑥𝑖)) (3.13)

where 𝑅𝑖 = (𝑑𝑦𝑖, 𝑑𝑥𝑖) (𝑖 denotes a single pixel), 𝐺𝑑 = {pixels 𝑖 = (𝑖𝑦, 𝑖𝑥) | a spot-
containing pixel 𝑗 exists with 𝐿∞(𝑖, 𝑗) = max𝑘∈𝑥,𝑦 |𝑖𝑘 − 𝑗𝑘 | ≤ 𝑑}, and ℓ is the smooth
𝐿1 function. 𝑑𝑥𝑖 is the x-coordinate of the position difference between the nearest
spot to pixel 𝑖, and pixel 𝑖’s center. Similarly, 𝑑𝑦𝑖 is the y-coordinate of this position
difference. 𝑑 is a configurable parameter that determines the threshold distance
from the nearest spot under which the estimated nearest spot’s position for that pixel
is taken into account in the loss function.
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For our model architecture, we utilize FeatureNets, a family of models that are
parameterized by their receptive field136. We perform hyperparameter optimization
experiments to find the optimal receptive field size of 13 (Fig. 3.6). To return the
location of the spots in an image, we use maximum intensity filtering to detect the
local maxima in the spot probability image and assign sub-pixel location of each
maximum with the regression images.

Figure 3.5: Quantification of agreement between Polaris’ deep learning model
and different classical spot detection methods. The benchmarked methods include
maximum-intensity filtering (PLM), the Crocker-Grier centroid-finding algorithm
(Trackpy), Laplacian of Gaussian (LoG), difference of Gaussians (DoG), Airlocalize,
and Polaris.

3.3 Results
We demonstrate Polaris’ spot detection capabilities on held-out experimentally-
generated images. Visual inspection showed that our model generalized to out-
of-distribution, spot-like data generated by various spatial-transcriptomics assays,
such as ISS29 and splitFISH images33 (Fig. 3.3). Additionally, we used held-out
images to quantify the agreement between Polaris and the classical methods used
to create our consensus training data. Agreement between sets of detected spots
was determined with a mutual nearest neighbors matching method. (Fig. 3.4).
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We observed higher agreement between Polaris and the classical methods than
exists among the classical methods themselves. This analysis demonstrates Polaris’
learning of consensus labels generalizes to images held-out from the training data
set. (Fig. 3.5)

Figure 3.6: Benchmarking the receptive field parameter of Polaris’ spot detec-
tion model. (a-d) Violin plot quantifying the performance metrics ((a) precision,
(b) recall, (c) F1, (d) best validation loss during training) for models trained with
different values for receptive field of Polaris’ spot detection model. n=24 trained
models per receptive field condition.

The ambiguity of ground-truth annotations for experimental data presents chal-
lenges for quantitatively benchmarking spot detection methods. To evaluate the
accuracy of our approach, we followed prior work by simulating spot images, which
have unambiguous ground truth spot locations.151,152 When accurate simulation of
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experimental data is possible, simulations remove the need for unambiguous ground-
truth annotations for benchmarking. We note that our spot simulations add signal on
top of autofluorescence images. Because we control the image generation, we can
explore model performance as a function of image difficulty by tuning parameters
such as the spot density and signal-to-noise ratio. Benchmarking on simulated data
demonstrated that our method outperforms models trained with either simulated data
or data labeled with a single classical algorithm. We found that this performance
gap held across the tested range of spot intensity and density (Fig. 3.7a-b). We
concluded that the consensus annotations more accurately capture the ground truth
locations of spots in training images than any single classical algorithm and that
there is significant value to training with experimentally generated images. We also
found that Polaris’ spot detection model outperforms other recently published spot
detection methods when evaluated on these simulated data, demonstrating greater
robustness to ranging spot density and signal-to-noise ratios (Fig. 3.7c-d). The
combination of benchmarking on simulated data, visual inspection, and analysis of
inter-algorithm agreement led us to conclude that Polaris can accurately perform
spot detection on a diverse array of challenging single-molecule images.

Figure 3.7: Benchmarking model performance on simulated spot images with
a range of spot intensities and densities. See section 3.6 for caption.
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Polaris packages this model into an analysis pipeline implemented in Python for
multiplexed spatial transcriptomics data. Polaris integrates multiple analysis steps
to yield coordinate spot locations with assigned gene identities. (Fig. 3.8a) First, it
utilizes classical computer vision methods for image alignment and performs spot
detection on images across all staining rounds. Then, cell segmentation is performed
with models from DeepCell software library138. Polaris’ spot detection model pre-
dicts the pixel-wise spot probability for each imaging round. For multiplexed spatial
transcriptomics images, Polaris considers a codebook of up to thousands of barcodes
that define the rounds and colors of fluorescent staining for each gene. To assign gene
identities for barcoded spatial transcriptomics images, we fit a graphical model of a
mixture of relaxed Bernoulli distributions to the pixel-wise probability values with
variational inference153,154 (Fig. 3.8b-c). This model estimates the characteristic
relaxed Bernoulli distributions of pixel values for “spots” and “background” in each
imaging round, which may vary due to factors such as fluorophore identity, staining
efficiency, or image normalization. These distributions are used in combination
with the experimental codebook to estimate the probability of each barcode identity
and ultimately assign spots to a gene identity or “background.”

As with our benchmarking of spot detection methods, we used simulated data to
benchmark the performance of our barcode assignment method quantitatively. Here,
simulated data allowed us to explore our method’s dependency on spot dropout. This
event can occur due to labeling failure, image quality, or failure in spot detection.
Regardless of origin, the presence of dropout imposes a robustness constraint on
the gene decoding methodology, as decoding schemes robust to dropout would
better tolerate labeling and spot detection model failures. Our benchmarking of spot
decoding with simulated data demonstrates that decoding with a generative model
based on the relaxed Bernoulli distribution was more robust to dropout than other
benchmarked methods (Fig. 3.9).

We demonstrated Polaris’ performance on a variety of previously published data: a
MERFISH experiment in a mouse ileum tissue sample149 (Fig. 3.8d-f), a MERFISH
experiment in a mouse kidney tissue sample155 (Fig. 3.10a), a seqFISH experiment
in cultured macrophages (Fig. 3.10b), and an ISS experiment of a pooled CRISPR
library in HeLa cells156 (Fig. 3.12). We found that Polaris detected marker genes
from expected cell types - even in areas with high cell density and heterogeneous
cell morphologies in tissue samples. These results highlight the power of spatial
transcriptomics methods to quantify gene expression while retaining multicellular
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Figure 3.8: Polaris produces single-cell, spatial gene expression maps for mul-
tiplex spatial transcriptomics images. See section 3.6 for caption.

and sub-cellular spatial organization.

For both tissue MERFISH datasets, we found that Polaris’ output gene expression
counts have similar correlations with bulk sequencing data as the original analyses
(r=0.796 and r=0.683; r=0.537 and r=0.565), and for both datasets, the two analysis
outputs were highly correlated (r=0.936; r=0.911) (Fig. 3.11a-d). For the cell cul-
ture seqFISH dataset, Polaris’ output has a similar correlation with bulk sequencing
data as the output of the original analysis tool (r=0.809 and r=0.694) and the two
outputs are highly correlated (r=0.910) (Fig. 3.11e-f). For the ISS dataset, the bar-



52

Figure 3.9: Benchmarking of the robustness of gene decoding methods to
dropout. Quantification of F1 score for four barcode decoding methods (a graphical
model of relaxed Bernoulli distributions, a graphical model of multivariate normal
distributions, Hamming distance matching, and PoSTcode) for simulated barcode
pixel values with a range of dropout rates.

code counts quantified with Polaris and the original analysis156 are highly correlated
(r=0.946) with Polaris consistently yielding higher counts (Fig. 3.12). Spatial tran-
scriptomics methods often encounter overdispersion in measuring gene expression
counts, potentially limiting the efficacy of comparing these counts using a linear re-
gression model.155,157. Despite this limitation, these results demonstrate that Polaris
can generalize across sample types, imaging platforms, and spatial transcriptomics
assays without manual parameter tuning.

3.4 Discussion
We sought to create a key computational primitive for spot detection and an inte-
grated, open-source pipeline for image-based spatial transcriptomics. Our weakly
supervised deep learning model for spot detection provides a universal spot de-
tection method for image-based spatial transcriptomics data. Our training data
generation methodology effectively tackles a fundamental data engineering chal-
lenge in generating annotations for supervised spot detection methods, surpassing
the performance achieved by using simulated data or a single classical method.
Polaris packages this model and others into a unified pipeline that takes users
from raw data to interpretable spatial gene expression maps with single-cell resolu-
tion. We believe Polaris will help standardize the computational aspect of image-
based spatial transcriptomics, reduce the amount of time required to go from raw
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Figure 3.10: Demonstration of Polaris’ performance on a MERFISH and seq-
FISH data. See section 3.6 for caption.

data to insights, and facilitate scaling analyses to larger datasets. Polaris’ outputs
are compatible with downstream bioinformatics tools, such as squidpy19 and Seu-
rat158. Polaris is available for academic use through the DeepCell software library
https://github.com/vanvalenlab/deepcell-spots and as a Python pack-
age distributed on PyPI https://pypi.org/project/DeepCell-Spots/. A
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singleplex deployment of the pipeline is available through the DeepCell web portal
https://deepcell.org.

Figure 3.11: Correlation of Polaris’ quantification of MERFISH data with other
quantification methods. See section 3.6 for caption.
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Figure 3.12: Demonstration of Polaris’ performance on an ISS dataset in HeLa
cells. (a) Example Polaris prediction for the ISS sample. The spot colors correspond
with barcode identities. The inset location is defined by the black box in the full field
of view (FOV). (b) Scatter plot correlating total counts for each barcode decoded by
the original published analysis with counts quantified by Polaris (r=0.946).

3.5 Methods
Generation of sequential fluorescent in situ hybridization (seqFISH) images for
spot training data
Probe design: mRNA transcripts were targeted with single-stranded DNA probes,
as previously described32. Primary probes were designed to target a panel of 10
genes with OligoMiner using balanced coverage settings159. The primary probes
were designed to have secondary probe-binding sites flanking both ends of the
sequence that binds to the mRNA transcript. The secondary probes were 15 bases
long and consisted of nucleotide combinations that were optimized to have 40%-60%
GC content and minimal genomic off-target binding.
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Probe construction: Single-stranded DNA primary probes were obtained from
Integrated DNA Technologies (IDT) as an oPools Oligo Pool. Oligos were received
lyophilized and dissolved in ultrapure water at a stock concentration of 1 𝜇M per
probe. Single-stranded DNA secondary probes were also obtained from IDT and
were 5’-functionalized with Alexa Fluor 647, Alexa Fluor 546, or Alexa Fluor 488.
Secondary probes were received lyophilized and dissolved in ultrapure water at a
concentration of 100 nM.

Cell culture: HeLa (CCL-2) cells were received from the American Type Culture
Collection. The cells were cultured in Eagle’s minimum essential medium (Cytiva
#SH30024LS) supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin,
100 𝜇g/mL streptomycin (Gibco or Caisson), and 10% fetal bovine serum (Omega
Scientific or Thermo Fisher). Cells were incubated at 37°C in a humidified 5% CO2

atmosphere and were passaged when they reached 70%-80% confluence.

Buffer preparation: The primary probe hybridization buffer consisted of 133
mg/mL high-molecular-weight dextran sulfate (Calbiochem #3710-50GM), 2X saline-
sodium citrate (SSC) (IBI Scientific #IB72010), and 66% formamide (Bio Basic
#FB0211-500) in ultrapure water. The 55% wash buffer was comprised of 2X
SSC, 55% formamide, and 1% Triton-X (Sigma-Aldrich #10789704001) in ul-
trapure water. The secondary probe hybridization buffer consisted of 2X SSC,
16% ethylene carbonate (Sigma-Aldrich #E26258-500G), and 167 mg/mL of high-
molecular-weight dextran sulfate in ultrapure water. The ethylene carbonate was
first melted at 50°C for 30-60 minutes. The 10% wash buffer was comprised of
2X SSC, 10% formamide, and 1% Triton-X in ultrapure water. The imaging buffer
base consisted of 0.072M Tris HCl (pH 8) (RPI #T60050-1000), 0.43 M NaCl
(Fisher #MK-7581-500), and 3 mM Trolox (Sigma-Aldrich #238813) in ultrapure
water. The anti-bleaching buffer was comprised of 70% imaging buffer base, 2X
SSC, 1% catalase (10X dilution of stock) (Sigma #C3155), 0.005 mg/mL glucose
oxidase (Sigma-Aldrich #G2133-10KU), and 0.08% D-glucose (Sigma #G7528) in
ultrapure water.

seqFISH sample preparation: The cells were seeded in a fibronectin-functionalized
(Fisher Scientific #33010018) glass-bottom 96-well plate (Cellvis P96-1.5H-N) at
80%-90% confluence. Cells were rinsed with warm 1X phosphate-buffered saline
(PBS) (Gibco), fixed with fresh 4% formaldehyde (Thermo #28908) in 1X PBS
for 10 minutes at room temperature, and then permeabilized with 70% ethanol
overnight at -20°C. Prior to probe hybridization, the cells were rinsed with 2X SSC.
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The primary probes were diluted to 10 nM in the primary probe hybridization buffer
and 100 𝜇L of this solution was added to each well. Cells were incubated with the
primary probe solution for 24 hours at 37°C. The primary probes were rinsed out
twice with 55% wash buffer. Cells were incubated in 55% wash buffer for 30 min-
utes in the dark at room temperature and then rinsed three times with 2X SSC buffer.
The secondary probes were diluted to 50 nM in the secondary probe hybridization
buffer and 100 𝜇L was added to each of the wells. The probes were then incubated
for 15 minutes in the dark at room temperature. The secondary probes were then
washed twice in 10% wash buffer. The cells were then incubated in the 10% wash
buffer for 5 minutes in the dark at room temperature. Finally, the cells were washed
once with 2X SSC buffer and once with imaging buffer. Before imaging, the buffer
was changed to anti-bleaching buffer (100 𝜇L).

Images of cell autofluorescence were acquired with non-specific secondary probe
staining to generate simulated spot images. These samples were prepared with the
same seqFISH method described above, without the addition of primary probes.

Imaging conditions: The seqFISH samples were imaged with a Nikon Ti2 fluo-
rescence microscope controlled by Nikon Elements. Images were acquired with a
Nikon SOLA SE II light source, a 100X oil objective, and a Photometrics Prime
95B CMOS camera.

Creation of spot training data
Image annotation: Our training dataset consisted of 1000 128x128 pixel im-
ages: 400 images generated as described above by performing seqFISH on cell
culture samples, 400 previously published images generated with multiplexed error-
robust FISH on tissue samples148,149, and 200 previously published images gen-
erated with SunTag labeling of nascent proteins in cell culture samples150. All
data were scaled so that the pixels had the same physical dimension of 110 nm
prior to training. These images contained up to approximately 200 spots per
image and were min-max normalized to a range of [0,1] prior to annotation.
We annotated each image with a collection of five classical spot detection al-
gorithms: maximum intensity filtering (skimage.feature.peak_local_max),
difference of Gaussians (skimage.feature.blob_dog), Laplacian of Gaussian
(skimage.feature.blob_log), the Crocker-Grier centroid-finding algorithm
(trackpy.locate), and Airlocalize. To accelerate image labeling with all methods
except Airlocalize, we created a Tkinter graphical user interface to tune the algo-
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rithm parameters (intensity threshold, minimum distance between spots, etc.) on a
per-image basis. To create annotations with Airlocalize, we utilized its previously
published Matlab GUI to fine tune the algorithm parameters on a per-image basis.160

For the spot detection algorithms that return spot locations with pixel-level reso-
lution (peak_local_max, blob_dog, and blob_log in skimage.feature), the
subpixel localization was determined by fitting a 2D isotropic Gaussian to the spot
intensity161. A 10x10 pixel portion of the image surrounding the detected spot was
cropped out and used for the Gaussian fitting. A nonlinear least squares regression
was performed, with initial parameters of Gaussian mean at the pixel center, an
amplitude of 1 (the image’s maximum value after min-max normalization) and a
standard deviation of 0.5 pixels. The spot location was constrained to be in the
middle 20% of the image, and the spot standard deviation was constrained to be
between 0 and 3.

Clustering of spot annotations: Spots detected by the four classical algorithms
were clustered into groups by proximity. For clarity, we refer to these classical
algorithms as “annotators”. Each group of detections was presumed to be derived
from the same spot in the image. To perform this clustering, we first constructed a
graph with each detected spot being a node. Two detections were connected by an
edge if they were within 1.5 pixels of each other. We then considered the connected
components of this graph to be clusters. We screened the clusters to ensure that
they contained at most one detection from each algorithm. If a cluster contained
more than one detection from the same algorithm, the detection closest to the cluster
centroid was retained, and all other detections were separated into new clusters.

From this graph, we derived the “detection information matrix,” which identifies the
annotators that contribute a detection to each cluster. This matrix has dimensions of
𝐶 · 𝐴, where 𝐶 is the number of connected components or clusters in the graph and
𝐴 is the number of annotators. The matrix has a value of 1 or 0 when a particular
annotator does or does not have a detection in a particular cluster, respectively.

Creation of consensus annotations with expectation maximization: A generative
model fit with the expectation-maximization (EM) algorithm147 was used to estimate
the probability that a cluster of detections corresponds to a true spot in the image.
The detection information matrix, described above, was used as the input into the
generative model along with an initial guess for the true positive rate (TPR) and false
positive rate (FPR) of each algorithm and a prior probability of a spot being a true
detection. The initial guesses for the TPR and FPR were 0.9 and 0.1, respectively.
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The prior probability of a spot being a true detection was defined as 0.5. Briefly,
the EM algorithm consists of two steps - an expectation step and a maximization
step. The expectation step yields an estimate for the probability that each detection
cluster corresponds to a true detection. The maximization step yields an updated
estimate for the TPR and FPR of each annotator. The expectation and maximization
steps were performed iteratively 20 times, sufficient iterations for convergence to a
local maximum of the likelihood. The resulting values were used as an estimate for
the Bayesian probability of each cluster corresponding to a “true” spot. We provide
further details of these steps in the main text. Clusters with a probability above 0.9
were used as spots in the training dataset, and the spot location was taken to be the
centroid of the detection cluster.

Model benchmarking with simulated data
Creation of simulated spot images: Simulated spot images were used to benchmark
Polaris’ spot detection model. We created simulated images by adding Gaussian
spots at random locations to cellular autofluorescence images. The location and
number of spots in an image were sampled from uniform distributions. The inten-
sity and width of the simulated Gaussian were sampled from normal distributions
reflecting a spot distribution that is characteristic of experimental images.

Creation of simulated detection information: Simulated detection information
was used to benchmark the EM algorithm for generating consensus spot annotations.
First, we simulated a set of spot identities, as either true detections or false detections.
The ratio of ground-truth true and false spots was determined by a pre-defined
prior probability of true spots. We then used the defined TPR and FPR values to
simulate detections. The probability that true spots are detected by the simulated
spot detection methods is defined by the simulated TPR, and the probability that
false spots are detected is defined by the simulated FPR. As with detections from
experimental images, the simulated detections are stored in a detection information
matrix.

Creation of simulated barcode pixel values: Simulated barcode pixel values were
used to benchmark Polaris’ barcode assignment method’s robustness to dropout.
We generated simulated barcode pixel values by sampling from distributions of
spot and background pixel values from experimental images. The benchmarked
methods include a graphical model of relaxed Bernoulli distributions, a graphical
model of multivariate normal distributions, barcode matching by Hamming distance,
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and PoSTcode154. The relaxed Bernoulli graphical model, the multivariate normal
graphical model, and the distance matching method take input pixel values sampled
from a distribution simulating spot probability values output by Polaris. Alterna-
tively, PoSTcode takes input pixel values from a distribution simulating pixel values
of the raw imaging data, consistent with its original methodology. Our method for
simulating barcode values does not consider correlations in pixel values between
images acquired in the same fluorescence channel or imaging round. PoSTcode
relies on this nuanced characteristic of experimental data; thus, its performance on
the simulated data used in this benchmarking analysis may have been negatively
impacted.

Mutual nearest neighbors point matching method: To quantitatively benchmark
the performance of our deep learning models, we need a method for comparing sets
of coordinate spot locations. Our method finds sets of mutual nearest neighbors
to compare sets of ground-truth and predicted spot locations. To be considered a
true detection, a detection must be within some threshold distance of a ground-truth
detection. All spots outside this threshold distance are considered false detections
(Supplementary Fig. 3.4a). If more than one detection is within the threshold
distance of a ground-truth spot, the detection that is the closest to the ground-truth
spot is considered a true detection, and all others are considered false detections
(Supplementary Fig. 3.4b). If more than one detection is within the threshold
distance for more than one ground-truth spot, edge cases may arise. For a detection
to be considered a true detection, that detection and the corresponding ground-truth
spot must be mutual nearest neighbors. Therefore, if a detection is within the
threshold distance for two ground-truth spots, it is only paired with a ground-truth
spot if they are each others’ mutual nearest neighbors. Otherwise, the detection is
considered a false detection, even if the detection is within the threshold distance of
a ground-truth spot (Supplementary Fig. 3.4c).

Spot detection deep learning model architecture
Preparation of coordinate annotations for training data: The coordinate spot
locations were converted into two different types of images before being used for
deep learning model training. The first image type is a classification image array
in which pixels corresponding to spots and background are one-hot encoded. The
second image type is a regression image array, in which pixel values correspond to
the distance to the nearest spot in the x- and y-direction.
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Image preprocessing: We performed preprocessing of images prior to model
training. Pixel intensities were clipped at the 0.1 and 99.9th percentiles and then
min-max normalized so that all pixel values were scaled between 0 and 1.

Model architecture: Our deep learning model architecture is based on FeatureNets,
a previously published backbone implemented in TensorFlow162 where the receptive
field is an explicit hyperparameter136. We attach two prediction heads to this
backbone: a classification head (to predict the probability a given pixel contains a
spot) and a regression head (to predict the distance to the nearest spot with sub-pixel
resolution). The receptive field of the network is an explicit hyperparameter that
was set to a default value of 13 pixels.

All models were trained with stochastic gradient descent with Nesterov momen-
tum. We used a learning rate of 0.01 and momentum of 0.9. We performed image
augmentation during training to increase data diversity; augmentation operations
included rotating (0°-180°), flipping, and scaling (0.8X-1.2X) input images. The
labeled data were split into training and validation sets, with the training set con-
sisting of 90% and the validation set consisting of 10% of the data. The test set for
benchmarking model performance consisted of simulated spot images and held-out
experimentally generated spot images.

Image postprocessing: We processed the classification and regression predictions
to produce a list of spots. The local maxima of the classification prediction output
were determined using maximum intensity filtering, with a default intensity thresh-
old of 0.95. For most datasets, we found that the spot detection results do not vary
widely with changes to this threshold value. In the pixels determined to correspond
to local maxima, the sub-pixel localization is determined by adding the value of
the regression prediction in the x- and y-directions. These sub-pixel locations are
returned as the output of the model.
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Generation of multiplexed seqFISH dataset in cultured macrophages
Cell culture: THP-1 (TIB-202) cells were received from the American Type
Culture Collection. The cells were cultured in Roswell Park Memorial Institute
(RPMI) 1640 Medium (Gibco) supplemented with 2 mM L-glutamine (Gibco), 100
U/mL penicillin, 100 𝜇g/mL streptomycin (Gibco or Caisson), and 10% fetal bovine
serum (Omega Scientific or Thermo Fisher). To make the complete medium, 2-
mercaptoethanol (BME) (Sigma-Aldrich #M6250) was added to a concentration of
0.05mM before every use. Cells were incubated at 37°C in a humidified 5% CO2

atmosphere and were passaged to maintain a concentration of 0.3-1 x 106 cells/mL.

seqFISH sample preparation and imaging: The THP-1 monocyte cells were
seeded on a fibronectin-functionalized glass slide (Corning #2980-246) at 80%-
90% confluence contained by a rubber gasket (Grace Bio-Labs #JTR8R-2.5). To
differentiate the THP-1 monocytes into macrophages, the cells were incubated with
10ng/mL phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich #P8139) in RPMI
with BME for 24 hours. The media was then replaced with fresh RPMI with BME
and incubated for an additional 24 hours. Differentiation was confirmed visually
based on changes in adherence and morphology.

The macrophages were dosed with 1ug/mL LPS (Sigma Aldrich #L4524) in RPMI
with BME for 3 hours. Cells were rinsed with warm 1X PBS, fixed with fresh 4%
formaldehyde (Thermo #28908) in 1X PBS for 10 minutes at room temperature,
and then permeabilized with 70% ethanol overnight at -20°C. The primary probe
library (Spatial Genomics) was added to the sample in a flow chamber provided by
Spatial Genomics and incubated overnight at 37°C. The sample was washed several
times with primary wash buffer (Spatial Genomics). The nuclei of the sample were
stained with staining solution (Spatial Genomics).

The macrophage sample was imaged with the Spatial Genomics Gene Position-
ing System (GenePS). Image tiling and secondary probe staining were performed
programmatically by this instrument.
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Spatial Genomics image analysis: To generate a point of comparison for Polaris’
output, we analyzed the seqFISH dataset with the Spatial Genomics software. The
spot detection for this analysis was performed via manual parameter tuning. For
each imaging round and channel, the threshold intensity used to detect spots was
defined visually. The validity of this threshold value was confirmed across several
randomly selected fields of view. The DAPI channel was used as the input for
their supervised nuclear segmentation method; nuclear masks were dilated to create
whole-cell masks.

Multiplex FISH analysis pipeline
Cell segmentation: For cell culture samples, cell segmentation was performed
with nuclear and whole-cell segmentation applications from the Deepcell software
library. For tissue samples, cell segmentation was performed with Mesmer138. The
source code for these models is available at https://github.com/vanvalenlab
/deepcell-tf; a persistent deployment is available at https://deepcell.org.

Gene identity assignment: Existing spot decoding methods for image-based spa-
tial transcriptomics fall into two main categories: (1) pixel-wise decoding, which
attempts to decode every pixel in the input image, and (2) spot-wise decoding, which
attempts to detect spots before decoding them. Polaris’ spot decoding method uses
elements of both methods. For spot decoding, Polaris’ pixel-wise spot probability
output was used to determine which pixels to decode. The maximum intensity pro-
jection of the spot probability image was performed across all rounds and channels
and the set of pixels to be decoded was determined by an intensity threshold with
a default value of 0.01. For each thresholded pixel, the array of spot probability
values at its coordinate location through the rounds and channels was used as the
input for gene assignment.

Gene assignment was performed by fitting a generative model to the probability
intensities at identified spot locations, a similar method to previously published
work.154 Our model consists of a mixture of 2 · 𝑅 ·𝐶 relaxed Bernoulli distributions,
where 𝑅 is the number of imaging rounds in the experiment and 𝐶 is the number
of fluorescent channels in each round. The model for pixel intensities was based on
a mixture of relaxed Bernoulli distributions by default, but Polaris also offers two
alternative distributions for modeling pixel intensities: Bernoulli and multivariate
Gaussian. Therefore, the model consists of a “spot” distribution and a “background”
distribution for each imaging round and channel. This model requires two inputs:
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1. Spot probabilities at the pixel location across all imaging rounds and channels
of the detected spots, as predicted by Polaris’ deep learning model

2. A codebook defining the imaging rounds and channels in which each gene in
the sample is labeled, referred to as the gene’s barcode. An empty barcode
is added to the input codebook, corresponding to a “background” — or false
positive — assignment.

The distributions are fit to the pixel values of the detected spots with stochastic
variational inference153. The codebook is used to constrain the logit function of
the relaxed Bernoulli distribution, and the temperature is learned. We assume
independence across channels and imaging rounds, but the distribution parameters
are shared across all genes. For each thresholded pixel, the probability of each
barcode assignment is calculated, based on the probability that the pixel value was
out of the “spot” or “background” distribution for each round and channel. These
probability values are compared to the codebook to calculate the probability of each
gene assignment for the pixel. The gene whose barcode has the highest probability
is assigned to the pixel. If the highest probability assignment does not exceed a
threshold probability value, set to 0.95 by default, the pixel is instead given an
“unknown” assignment.

To find the coordinate locations of decoded genes, we create a mask with the pixels
successfully decoded to a gene in the codebook and apply this mask to the maximum
intensity-projected spot intensity image. We perform peak finding with maximum
intensity filtering on the projected image to yield the coordinate location of each
decoded gene.

Gene assignment rescue methods: After prediction, “background” and “unknown”
assignments can be rescued to be assigned gene identities through two methods. The
first method, which we refer to as “error rescue”, compares the pixel values of the
spot to each barcode in the codebook. If the Hamming distance of the pixel values
to a barcode is less than or equal to 1, the assignment is updated. This method
catches the rare cases in which the probabilistic decoder misses an assignment. The
second method, which we refer to as “mixed rescue”, catches the spots that contain
two mixed barcodes. This situation occurs when two RNA molecules are in close
proximity in the sample and the signal from their barcode labels is mixed. Mixed
barcodes often lead to a low probability assignment, so all spots below a threshold
probability, set to 0.95 by default, are checked for this case. For this method, the
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barcode values for the original assignment are subtracted and the update pixel values
are compared to each barcode in the codebook. If the Hamming distance of the
pixel values to a barcode is less than or equal to 1, the assignment is updated.

Background masking: Bright objects in the background of smFISH images can
interfere with barcode assignment, so detected spots in these regions can be masked
out. This step requires a background image without FISH staining to assess the
initial fluorescence intensity in the sample. The background image is min-max
normalized so that pixels are scaled between 0 and 1, and a mask is created with a
threshold intensity, which defaults to 0.5. Any detected spots in the masked regions
are excluded from downstream analysis. Polaris also allows a user to manually
define a mask for image regions to exclude from analysis.

3.6 Figure captions
Figure 3.1: A weakly supervised deep learning framework for accurate fluo-
rescent spot detection for spatial transcriptomics imaging data. (a) Training
data generation for spot detection. Spot labels were generated by finding consen-
sus among a panel of commonly used classical spot detection algorithms through
generative modeling. These consensus labels were then used to train Polaris’ spot
detection model. Sequential steps are linked with an arrow; associated methods
and data types are linked with a solid line. (b) Demonstration of the training data
generation for an example spot image. Spot locations are converted into encoded
detections and distance maps which guide the classification and regression tasks
performed during model training. Spot colors correspond to the annotation colors
in (a). (c) Output of Polaris’ spot detection model for an example seqFISH image.
Regression values above a default threshold are set to zero. The regression images
in (b-c) are the sum of the squared pixel-wise regression in the x- and y-directions.
(d) Schematic diagram of the EM method to fit the generative model for consensus
spot annotation creation.

Figure 3.7: Benchmarking model performance on simulated spot images with a
range of spot intensities and densities. (a) Performance quantification for models
with Polaris’ deep learning architecture trained with various datasets predicting on
images with a range of spot density. (b) Performance quantification for models with
Polaris’ deep learning architecture trained with various datasets predicting on images
with a range of levels of simulated noise. The low noise condition corresponds to a
signal-to-noise ratio of greater than approximately 16. The medium noise condition
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corresponds to a SNR of approximately 8-15. The high noise condition corresponds
to a SNR of approximately 3-7. (c) Performance quantification for various spot
detection methods on images with a range of spot densities. (d) Performance
quantification for various spot detection methods on images with a range of levels
of simulated noise. The SNR ranges for each noise condition are the same as those
in (b).

Figure 3.8: Polaris produces single-cell, spatial gene expression maps for multi-
plex spatial transcriptomics images. (a, b) Analysis steps for Polaris for singleplex
(red) and multiplex (blue) spatial transcriptomics imaging data. Sequential steps are
linked with an arrow, and associated methods and data types are linked with a solid
line. Deep learning models perform spot detection and cell segmentation, while a
probabilistic graphical model infers gene identities. (c) A probabilistic graphical
model for inferring gene identities from spot detections. This model consists of a
mixture of 𝐾 relaxed Bernoulli distributions, parameterized by their probability, 𝛼,
and their temperature, 𝜆, for generating observed data, 𝑥, of size𝑁 spots. Shaded ver-
tices represent observed random variables; empty vertices represent latent random
variables; edges signify conditional dependency; rectangles (“plates”) represent in-
dependent replication; and small solid dots represent deterministic parameters. (d)
Spatial organization of marker gene locations in a mouse ileum tissue sample. Each
spot corresponds to a decoded transcript for a cell type marker gene. Whole-cell
segmentation was performed with Mesmer138. (e-g) Locations of decoded genes in
an example Goblet cell, enterocyte, and B cell, respectively.

Figure 3.10: Demonstration of Polaris’ performance on a MERFISH and seq-
FISH data. (a) Example Polaris prediction for a MERFISH experiment in a mouse
kidney tissue sample (Liu et al. 2022). (b) Example Polaris prediction for a seq-
FISH experiment in a macrophage cell culture sample. The spot colors of the Polaris
prediction in (a,b) denote the predicted gene identities. The inset image location is
defined by the white box in the full field of view (FOV).

Figure 3.11: Correlation of Polaris’ quantification of MERFISH data with
other quantification methods. (a,c) Scatter plot plotted in logspace, compar-
ing gene expression counts quantified with MERFISH with counts measured with
RNA-seq. (b,d) Scatter plot plotted in logspace, comparing previously published
MERFISH gene expression counts with counts quantified with Polaris. (e) Scatter
plot plotted in logspace, comparing mean gene expression counts per cell quanti-
fied with seqFISH with counts measured with RNA-seq. (f) Scatter plot plotted
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in logspace, comparing mean gene counts per cell obtained by manual analysis of
seqFISH data with gene counts quantified with Polaris.
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C h a p t e r 4

PAIRED LIVE-CELL IMAGING AND SEQFISH
MEASUREMENTS OF NF-𝜅B SIGNALING IN PRIMARY

HUMAN MACROPHAGES

4.1 Introduction
Macrophages are innate immune cells deposited in tissues during development
that perform a diverse array of tissue-specific roles.163,164 They have an impor-
tant immunological role, acting as the first line of defense against pathogens and
clearing foreign materials. They are also thought of as “gatekeepers of tissue home-
ostasis,” responsible for the resolution of inflammation and tissue self-renewal.165

Macrophages are able to perform diverse roles because of their highly plastic cell
state that informs their inflammatory and metabolic functions.3–5

Macrophages are highly dynamic cells that can be readily polarized to a wide
variety of cell states depending on environmental stimuli.165–167 They adeptly en-
code the identity and strength of perceived stimuli as dynamic patterns of immune
signaling pathway activation, which have been linked previously to unique transcrip-
tional profiles in macrophages.16,168 Therefore, to characterize the mechanisms by
which macrophages perceive and encode environmental information, their signaling
response must be measured dynamically and at the single-cell level. Moreover,
because of the influence of their environment on their cell state, measurements of
macrophage signaling with spatial context can reveal the cell-to-cell communication
shaping their responses.

In this work, we integrated dynamic observation of the signaling response of pri-
mary human macrophages to lipopolysaccharide (LPS) treatment with an end-point
measurement of the expression of a panel of inflammatory genes (Fig. 4.1a). We
utilized deep learning-based image analysis methods to generate paired signaling
pathway activation dynamics and spatial transcriptome data at the single-cell level
(Fig. 4.1b-d). We demonstrated live-cell reporter expression in primary human
macrophages, adapting a toolbox of imaging methods that were previously limited
to immortalized cell systems to primary cells. We leveraged live-cell reporters in
primary macrophages to illustrate their capability to perceive and encode different
LPS concentrations at the single-cell level. We then utilized seqFISH to measure
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Figure 4.1: Overview of integrated measurements method in primary human
macrophages. See section 4.5 for caption.

spatial gene expression patterns to reveal distinct morphological and transcriptional
subpopulations of cells. Finally, in an integrated measurement of paired live-cell
imaging and seqFISH, we demonstrated that the transcriptional subpopulations also
have distinct dynamic patterns of immune signaling pathway activation in response
to LPS. With this work, we aimed to demonstrate how cell state informs an individ-
ual macrophage’s response to LPS treatment and how this response is informed by
intra-cellular communication from its neighbors.

4.2 Results
Single-cell morphological heterogeneity in cultured macrophages
Macrophages utilize cell-to-cell heterogeneity to perform diverse, specialized roles
in tissues. It has been well characterized that macrophages spontaneously form
two distinct morphological populations, linked to their inflammatory states. The
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“round” morphotype is characterized by a smaller, more circular morphology that
has been associated with a pro-inflammatory signaling state. The “spindle” mor-
photype is characterized by an elongated appearance and is associated with an
anti-inflammatory cell state.169–173 These cell states are highly plastic and allowing
macrophages to take on roles determined by environmental stimuli.165–167 Consider-
ing this relationship between a macrophage’s morphology and its inflammatory state,
we sought to develop an imaging-based assay that could capture a macrophage’s
immune signaling state with spatial context.

We quantified the morphologies of primary human macrophages using a set of
previously published morphology metrics.174 (Fig. 4.2) A considerable amount
of heterogeneity in macrophage morphology is found on a circularity-eccentricity
axis. Circular cells are round and have relatively similar values for their major
and minor axis lengths. On the other hand, eccentric cells come to sharp points,
meaning the distance between their major foci is nearly the distance of their major
axis. The macrophages also vary in size, which can be quantified with two related
metrics, area and perimeter. A cell’s aspect ratio is an alternative metric to quantify
its elongation, calculated as the ratio of the lengths of its major and minor axes.
Finally, the solidity of a cell is calculated as the ratio of a cell’s area and the area of
its convex hull.174

Figure 4.2: Metrics for morphology quantification. Example cell morphologies
demonstrate the axis of variation the metric captures.

We utilized these metrics to identify subpopulations of macrophages with distinct
morphologies. In naive macrophages, we observed a mixture of round and spindle
macrophages, in alignment with previous work characterizing macrophage mor-
phologies.169–173. (Fig. 4.3a) We utilized the morphology metrics174 and find that
the two populations are particularly distinct in the distributions of cell circularity
and eccentricity. (Fig. 4.3d)
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We further explored morphology as a function of inflammatory cell state by treating
naive macrophages with polarizing cytokines. Once treated with a pro-inflammatory
cytokine, IFN𝛾, the circularity of the macrophages increased and their eccentric-
ity decreased, reflecting polarization towards the round morphological state (Fig.
4.3b,e). Once treated with an anti-inflammatory cytokine, IL4, the circularity and
solidity of the macrophages sharply decreased and their eccentricity and aspect
ratio sharply increased, indicating strong polarization towards the spindle morpho-
logical state (Fig. 4.3c,f). These results confirm that the observed morphotypes
align with the field’s current understanding of the morphological characteristics of
macrophages in different inflammatory states. (Fig. 4.3d)

Figure 4.3: Treatment with pro-inflammatory and anti-inflammatory cytokines
alters the morphology of primary macrophages. (a,c,e) Images of primary
macrophages in naive, IFN𝛾-treated, and IL4-treated states, respectively. Scale
bar corresponds to 30 𝜇m. (b,d,f) Violin plots comparing the morphology metrics
of primary macrophages in naive (n=348), IFN𝛾-treated (n=226), and IL4-treated
(n=189) states (blue), respectively, to the rest of the cells from other conditions
(orange). All metrics were normalized by removing the mean and scaling to unit
variance.

This characterized heterogeneity in macrophage morphology and its relationship
to a cell’s inflammatory state was a key motivation for our image-based investi-



72

gation of their information processing capabilities at the single-cell level. In this
work, we leveraged live-cell imaging and spatial transcriptomics to reveal the re-
lationship between a macrophage’s morphology and its response to environmental
stimuli.169–173

Modified RNA transfections in primary macrophages
We exogenously expressed fluorescent live-cell reporters to observe dynamic signal-
ing pathway activity at the single-cell level by mRNA transfection. Plasmid DNA
transfection is the most common method for transient expression of exogenous con-
structs. However, monocytes and macrophages are classically difficult to transiently
transfect for a number of reasons.175 First, in order to be transcribed, transfected
plasmid DNA needs to be delivered to the nucleus of cells, which typically occurs
during nuclear envelope breakdown in cell division. As non-proliferative cells,
nuclear delivery of plasmid DNA remains challenging for macrophages.176,177 To
address this consideration, we utilized a protocol that transfects macrophages with
in vitro synthesized messenger RNA (IVT-mRNA), which can be expressed from
the cell’s cytoplasm.178 Second, macrophages are programmed to recognize and
mount an immune response to exogenous DNA or RNA, which would typically be
an indicator of viral infection.179 It has been demonstrated that chemical modifi-
cations to the nucleotides used to synthesize the IVT-mRNA can allow it to evade
immune detection.180 Therefore, we synthesize IVT-mRNA with pseudouridine and
5’-methyl cytidine to minimize the immunogenicity of its transfection (Fig. 4.4a).178

We extended this protocol to the expression of a variety of constructs, such as tran-
scription factor fluorescent fusion proteins, kinase translocation reporters (KTRs),
and ratiometric ExRai reporters, demonstrating the general applicability of this
method to a range of live-cell measurements in primary human macrophages. (Fig.
4.5) For more information on the sampled live-cell reporter architectures, see section
2.1. The efficiency of IVT and transfection as a function of construct length could
have limited the broad applicability of this live-cell reporter expression protocol.
However, this panel demonstrates the robustness of the modified RNA transfection
method for reporters ranges in construct size from about 800 to over 3,000 base
pairs, which covers a considerable amount of the size range applicable to live-cell
reporters.49

We utilized this IVT-mRNA transfection protocol to achieve efficient simultaneous
transfection of two fluorescent constructs. (Fig. 4.6a) Transfection with lipofec-
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Figure 4.4: Synthesis and transfection of modified mRNA transcripts encod-
ing live-cell reporters in primary macrophages Schematic diagram of modified
mRNA in vitro synthesis and transfection. RNA is synthesized with T7 polymerase
and modified nucleotides from a DNA template containing a T7 promoter. IVT
mRNA is capped at its 5’ end with ARCA and tailed at the 3’ end with EPAP. The
mRNA is transfected into cultured cells with LipoMM.

tamine requires a micelle formation step during which the negatively charged nucleic
acid material is encapsulated with positively charged lipids allowing entry into a
cell’s plasma membrane.181,182 We mix the two mRNA constructs before micelle
formation to promote the formation of micelles with both mRNA constructs to
improve the double transfection rate.

For the purposes of this work, the simultaneously transfected constructs were an
mOrange fusion protein of p65 and a KTR utilizing mClover. When transfecting
KTR-mClover and p65-mOrange, 62.3% cells are double transfected, and 76.3% of
cells are expressing at least one of the fluorescent proteins. (Fig. 4.6b) This efficient
transfection rate demonstrated the viability of the modified RNA transfection method
for efficient characterization of paired signaling dynamics with live-cell reporters in
primary macrophages. Furthermore, as opposed to observing many cells strongly
expressing only one fluorescent construct, we observed a strong correspondence of
the expression of both fluorescent constructs, indicating that micelles containing a
mixture of the mRNA constructs formed. This result demonstrated the amenability
of modified RNA transfections in primary macrophages, enabling the application of
a set of imaging tools previously limited to immortalized cell systems.
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Figure 4.5: Expression of a panel of live-cell reporters in primary macrophages
with modified RNA transfection. See section 4.5 for caption.

Immune signaling dynamics in LPS-treated primary human macrophages
As was introduced in section 1.2, dynamic patterns of signaling pathway activation
are a critical mechanism by which cells encode environmental stimuli, leading
to distinct cellular behaviors and phenotypes. We observed these mechanisms
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Figure 4.6: Simultaneous transfection of two mRNA constructions in primary
macrophages. (a) Composite image of primary macrophages transfected with JNK
KTR-mClover (green) and p65-mOrange (red), stained with Hoechst (blue). Scale
bar corresponds to 20𝜇m. (b) Scatter plot of fluorescence intensity values for
mClover (green) and mOrange (red) in arbitrary units, plotted in log scale. (n=2490
cells, reps=2) Plotted lines are threshold values for transfected cells.

of information processing with fluorescent live-cell reporters, which offer unique
insight into real-time patterns of signaling pathway activation at the single-cell level.

The Toll-like receptor 4 (TLR4) signaling pathway plays a critical role in the in-
flammatory response of macrophages to bacterial infection.184,185 TLR4 is a pat-
tern recognition receptor for LPS, a cell wall component of gram-negative bacte-
ria.186 Receptor binding triggers a cascade of well-characterized signaling events
that diverge into two parallel signaling pathways, the nuclear factor 𝜅-light-chain-
enhancer of activated B cells (NF-𝜅B) pathway and mitogen-activated protein ki-
nases (MAPK) pathways, including p38 and c-Jun N-Terminal Kinase (JNK) activa-
tion.187–189 As was covered in section 2.3, the NF-𝜅B family of transcription factors
consist of a variety of hetero-dimer constructs. The primary complex that triggers
the activation of inflammatory genes in response to TLR4 activation is a hetero-
dimer of p65 and p50.9,103 To observe the translocation of p65 from the cytoplasm
to the nucleus upon TLR4 activation, we expressed a fluorescent fusion protein
consisting of p65 and mOrange. An analogous fusion construct with a different
fluorescent protein has been previously used to measure p65 translocation dynam-
ics.156 The MAPK signaling pathway consists of a complex cascade of signaling
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Figure 4.7: Fluorescent live-cell reporters for dynamic observation of the TLR4
signaling pathway. The TLR4 signaling pathway is activated by LPS binding
to TLR, triggering a diverging cascade of downstream kinases. The TAK1-TABs
complex is a central signaling hub that activates both NF-𝜅B (p65) and MAPK
(p38 and JNK) translocation and activation of target genes.183 We observe p65 and
MAPK activity with fluorescent live-cell reporters.

kinases that control cell growth and proliferation. MAPK proteins like p38 and
JNK translocate to the nucleus upon activation, where they phosphorylate and thus
activate target transcription factors.190,191 To quantify the activation of these path-
ways, we expressed KTRs, which have been robustly engineered and characterized
to report the translocation of p38 and JNK.70 (Fig. 4.7)

In response to LPS treatment, we observed distinct activation of the NF-𝜅B, p38, and
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Figure 4.8: Primary macrophages simultaneously activate NF-𝜅B and MAPK
signaling. (a,c) Simultaneous response of p65-mOrange and p38 KTR-mClover or
JNK KTR-mClover, respectively, to 100 ng/mL LPS treatment. Nuclear areas were
visualized with Hoechst staining. Scale bar corresponds to 20 𝜇m. (b,d) Single-cell
nuclear p65 intensity and p38 KTR or JNK KTR, respectively, activity dynamics,
presented as tandem heatmaps. KTR activity was quantified as the ratio of the
cytoplasmic to nuclear fluorescence intensities.70 Values are normalized between
zero and one on a per-trace basis for each reporter.

JNK signaling pathways. As expected, LPS treatment induced sharp and sustained
nuclear translocation of p65-mOrange. In the same cells, p38 and JNK activate
simultaneously with p65, aligning with our molecular understanding of the NF-
𝜅B and MAPK pathways diverging from a unified upstream signal from TLR4
activation. (Fig. 4.8)

When quantifying the nuclear intensity of p65-mOrange, we observed a wide range
of overlapping intensity levels in treated and untreated cells. (Fig. 4.9a) However,
we observed greater resolution between LPS-treated and untreated cells in the fold-
change of p65 intensity relative to levels prior to LPS-treatment. We observed largely
overlapping distributions of p65 intensity, maximum p65 intensity, derivative of p65
intensity, and integral of p65 intensity from the absolute nuclear p65 intensity traces.
On the other hand, these distributions were much more resolved for the traces of
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fold-change of p65 intensity, in which the absolute intensity values are normalized by
the initial nuclear intensity of p65. (Fig. 4.9b-e) We also compared the fold-change
dynamics to values normalized by the cytoplasmic p65 intensity, as a measure of
expression level, prior to LPS treatment. (Fig. 4.18) We found that the fold-change
normalization of p65 intensity values better resolved distributions of metrics of p65
translocation dynamics. (Fig. 4.19)

Our observation aligns with previous work has demonstrated that the fold-change
of NF-𝜅B activity is more consequential for the expression of target genes than the
absolute intensity.45 This observation of greater differentiation between stimuli by
fold-change dynamics over absolute intensities led us to perform analysis inspired
by previous work that utilized information theory to demonstrate greater signal
transduction in the Tgf-𝛽 pathway by fold-change levels of nuclear Smad3.192

As was discussed in section 1.2, the key purpose of signaling pathways is to al-
low a cell to assess and encode the identity and strength of environmental stimuli.
Therefore, we expect different identities and concentrations of immune stimuli to
elicit varying dynamic patterns of signaling activation in macrophages. The lack of
resolution between dynamics metrics calculated with the absolute p65 intensity for
LPS-treated and untreated cells indicates that the absolute intensity of nuclear p65
does not confer much information about the environmental concentration of LPS.
However, the greater resolution in the distributions calculated with fold-change
intensity implies that cells may be able to better sense environmental LPS concen-
trations with nuclear p65 intensity normalized by their basal activity level.
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Figure 4.9: Fold-change of nuclear p65 intensity shows greater resolution of
LPS stimulation conditions than absolute intensities. See section 4.5 for caption.

We can quantified the degree of information transmission by absolute and fold-
change nuclear p65 intensities with a metric called mutual information (MI). MI is a
general measure of mutual dependence between two variables and does not assume
a specified underlying distribution to the data. MI is expressed as:

𝐼 (𝑋;𝑌 ) = 𝐷𝐾𝐿 (𝑃(𝑋,𝑌 ) | |𝑃𝑋 × 𝑃𝑌 ) (4.1)

where 𝐷𝐾𝐿 is the Kullback-Leibler (KL) divergence, defined for two probabilities
A and B in its discrete form as:
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𝐷𝐾𝐿 (𝐴| |𝐵) =
∑︁
𝑥

𝐴(𝑥)𝑙𝑜𝑔
(
𝐴(𝑥)
𝐵(𝑥)

)
. (4.2)

In this case, if 𝑋 represents the concentration of LPS and 𝑌 represents a metric of
signaling pathway activation, the KL-divergence measures how different the joint
distribution 𝑃(𝑋,𝑌 ) is from the product of the marginal distributions 𝑃(𝑋) and
𝑃(𝑌 ). If 𝑃(𝑋) × 𝑃(𝑌 ) = 𝑃(𝑋,𝑌 ), 𝑋 and 𝑌 are independent and the KL-divergence
is zero, indicating no MI between 𝑋 and 𝑌 . However, when 𝑃(𝑋) × 𝑃(𝑌 ) and
𝑃(𝑋,𝑌 ) diverge, the KL-divergence is non-zero, indicating dependence between 𝑋
and 𝑌 , or said another way, MI between 𝑋 and 𝑌 .

Figure 4.10: Fold-change of p65 intensity has higher mutual information with
LPS dose than absolute p65 intensity (a) Mutual information between absolute
p65 intensity or fold-change p65 intensity and LPS dose at each observed time point
for four dosing conditions (0 ng/mL, 1 ng/mL, 10 ng/mL, and 50 ng/mL LPS). (b)
Mutual information between metrics of p65 dynamics for absolute and fold-change
intensities for the four dosing conditions. Bars are plotted with 95% confidence
intervals. Confidence intervals were calculated by bootstrap sampling. For each
metric, 10,000 sets of 500 cells were sampled. MI is displayed in units of bits.

In agreement with greater resolution between doses for the fold-change p65 intensity,
we found the greater MI between p65 activity and the LPS dose for the fold-change
time series than the absolute p65 intensity in four LPS treatment conditions, 0 ng/mL,
1 ng/mL, 10 ng/mL, and 50 ng/mL. (Fig. 4.10a) The greatest MI occurred around
40 minutes into the time series, which aligns with the typical timing of peak p65
translocation. When p65 translocation is summarized with metrics of activation,
we observed a similar trend, with the fold-change time series showing greater MI
with the LPS dose than the absolute intensity. (Fig. 4.10b) These results confirm
that individual macrophages are able to perceive and encode the environmental
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concentration of LPS. Moreover, they confirm that these metrics are able to capture
the aspect of p65 translocation dynamics that cells use to transmit information.

We also quantified the MI between p65 dynamics and MAPK dynamics, which
captures non-linear dependence between the two variables unlike other metrics like
Pearson correlation. MI is an appropriate metric for capturing the heterogeneity
shared between two signaling pathways, because it does not have inherent direc-
tionality, like conditional dependence. (Fig. 4.11a) Therefore, it does not make
assumptions about the underlying architecture of the signaling network or the ex-
pected distributions for each variable. These characteristics make MI an ideal metric
for quantifying information transmission in signaling networks, which operates non-
linearly through molecular cascades and feedback motifs.

Figure 4.11: MAPK and p65 signaling dynamics have significant mutual infor-
mation in response to LPS treatment. (a) Schematic illustrating the relationship
between entropy, conditional entropy, and mutual information. (b) Mutual informa-
tion (MI) between p65 dynamics and JNK or p38 dynamics. The experimentally
observed pair of dynamics from single cells demonstrate the highest MI. (JNK, n =
440 cells; p38, n = 292 cells) Pairs of dynamics from two random individual cells
shows moderate MI, and time series shuffled across the time dimension show no
MI. Bars are plotted with 95% confidence intervals. MI is displayed in units of bits.
(*p < 1 × 10−5 , **p < 0.05; unpaired t-test, two-tailed)

We treated the dynamic activation of the p65 and MAPK signaling pathways as
random variables and found significant MI between p65 dynamics, and both JNK
and p38 dynamics. (Fig. 4.11b) This observation corresponds with our intuition
for these signaling pathways, which are initially activated by the same cascade
of signaling events before diverging into two separate pathways. Therefore, we
expected these activation of both the NF-𝜅B and MAPK signaling pathways to be
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subjected to the same extrinsic noise in LPS stimulus and intrinsic noise in the cells’
amenability to TLR4 signaling activation.

We demonstrated the significance of these values by comparing the experimentally
observed pairs of signaling dynamics from individual cells to shuffled versions of
the paired data. First, we compared the experimental pairs to pairs of dynamics from
two random cells, which we refer to as the “shuffled pairs” experiment. We found a
statistically significant difference between the MI values for experimental pairs and
shuffled pairs. This significant difference indicates that the signaling dynamics likely
encode the extrinsic noise in the environmental stimulus, and the effect of intrinsic
noise in cell state on a cell’s signaling response. However, there is a considerable
amount of MI between shuffled pairs, which we attribute to the inherent similarity
in the reactions of clonal cells to a mutually experienced stimulus. Second, we
compared the experimental pairs of signaling dynamics to those shuffled across the
time dimension. As expected, randomly shuffling across time abrogates any mutual
information between the paired time series and serves as a negative control for our
MI metric.

Spatial transcriptomics measurement in primary human macrophages with
seqFISH
Spatial transcriptomics methods measure gene expression while retaining the spa-
tial organization of the sample. Often this capability is utilized to measure gene
expression in communities of cells in a tissue sample.22,23 seqFISH measures gene
expression while retaining the spatial organization of the sample by labeling mRNA
transcripts with fluorescent oligo probes. It targets the mRNA molecules with single-
stranded DNA oligos containing a complementary sequence flanked by binding sites
for fluorescent secondary probes. It achieves signal amplification by staining each
mRNA molecule with multiple primary probes. The secondary probes specifically
bind with the primary probes and have been optimized to minimize off-target bind-
ing. Each primary probe contains multiple secondary binding sites that are labeled
in specific imaging rounds. In this way, seqFISH utilizes a temporal barcoding
scheme, where the gene identity is encoded by the imaging rounds in which an
mRNA molecule is stained, to measure panels of up to thousands of genes.32 (Fig.
4.12)

By retaining the cell-to-cell spatial organization of the sample, spatial transcrip-
tomics method like seqFISH allows us to use the spatial organization of the sample
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Figure 4.12: seqFISH measures gene expression by targeting DNA oligo probes
to mRNA transcripts. The seqFISH barcoding scheme targets mRNA molecules
with two sets ssDNA oligo probes: (1) primary probes which bind directly to the
RNA and contain flanking secondary binding sites, and (2) fluorescent secondary
probes for visualization, demonstrated in the panel for gene B. Each primary probe
contains four secondary binding sites, for staining in sequential imaging rounds,
demonstrated in the panel for gene A. The codebook defines the stained imaging
rounds that correspond with a gene identity.

to retain a cell’s identity between a live-cell imaging measurement and a gene ex-
pression measurement. Leveraging this capability allows paired live-cell imaging
with seqFISH to enable a high-throughput single-cell measurement that integrates
signaling dynamics with the spatial expression patterns of a large panel of genes.

We assembled a panel of genes for the seqFISH measurement that are strongly
differentially expressed as a function of LPS treatment. The panel was constructed
based on a bulk RNA sequencing dataset that measured the transcriptional response
of THP-1 cells, an immortalized macrophage line, to LPS treatment, selecting of
the most strongly differentially expressed genes.193 Consistent with an inflammatory
response to LPS treatment, the panel mainly consists of a few categories of genes:
cytokine genes, interferon signaling genes, metabolic genes, morphology genes,
immuno-regulatory genes, and transcriptional regulatory genes.

As expected, we observed a distinct change in the transcriptomes of primary human
macrophages upon LPS treatment. Principal component analysis (PCA) revealed
that the transcription of cells in the LPS-treated and untreated conditions are distinct,
comprising of two separate clusters. (Fig. 4.13a) The LPS-treated cluster of cells
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Figure 4.13: LPS treatment strongly alters the transcriptome of primary
macrophages. (a) PCA of gene expression quantified with seqFISH. LPS-treated
(green) and untreated (gray) cells cluster separately. (b) Expression of inflamma-
tory cytokines (TNF, IL1B, CXCL1, CXCL9, IL27, and IL23A) is strongly activated
by LPS treatment. Expression score is the natural logarithm of CPM-normalized
counts.

strongly expressed a number of cytokines (e.g., TNF, IL1B, CXCL1, CXCL9, IL27,
and IL23A), which aligns with an inflammatory cellular response. (Fig. 4.13b).

As a spatial transcriptomics methods, seqFISH has the distinct advantage of retaining
the morphology of the cells in a sample, allowing a cell’s transcriptome to be linked
to its morphological state. We observed that the previously described round and
spindle macrophages have distinct transcriptional patterns. (Fig. 4.14a) The round
macrophages demonstrated higher expression of TNF, IL27, and PIM1, whereas
spindle macrophages demonstrated higher expression of IL1B and CXCL1, amongst
other differentially expressed genes. (Fig. 4.14b) The differential expression of these
genes are a part of a larger pattern of transcriptional differences between the two
morphological states. (Fig. 4.14c,d)

Our observation of subpopulations of macrophages aligned with previous work
that demonstrated that TNF and IL1B are expressed by distinct subpopulations of
macrophages after ischemic stroke in mice.194,195 The expression of TNF and IL-1B
in separate populations of cells likely contributes to a mechanism of the induction of
inflammation that relies on synergy between TNF and IL1B.196,197 The redundancy
between the induction of inflammation by TNF and IL1B allow the cells to coordinate
a rapid yet robust immune response at the population level.198 The differential
expression of TNF and IL-1B is controlled by differences in their promoter states
and transcription factor requirements. IL-1B transcription in particular is influenced
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Figure 4.14: Morphological subpopulations of macrophages have distinguish-
able patterns of gene expression. (a) Scatter plot of decoded gene locations. Round
cell marker genes are plotted in blue and spindle cell marker genes are plotted in
orange. All other genes are plotted in gray. Scale bar corresponds to 40 𝜇m. (b)
Inset of scatter plot in (a), location denoted by the black box. The gene identity is
encoded by the point color. All other genes are plotted in gray. (c) Joint plot of
UMAP of gene expression data measured with seqFISH and histograms of UMAP
values in each dimension. (n=2,405 cells) (d) Mean expression of round and spindle
marker genes. All cells that do not meet the criteria for round or spindle cells are
plotted as “other.” Error bars denote the 95% confidence interval of the mean.

by the cell’s metabolic state, a mechanism that may underlie the transcriptional
differences between round and spindle cells.199

The seqFISH measurement also retained the cell-to-cell spatial organization of the
sample, which allows it to explore gene expression in communities of cells unlike
sequencing methods that require sample homogenization to measure gene expres-
sion. We utilized this capability to investigate the degree of spatial variation in gene
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expression of the cultured macrophage samples treated with LPS. We constructed
a graph consisting of the centroid locations of each cell to investigate correlations
in gene expression in neighborhoods of cells in our samples. Assortativity was the
metric we used to quantify the degree to which graph nodes of the same label, as
opposed to different labels, are connected. (Fig. 4.15a) We performed clustering
Leiden clustering on the gene expression values of LPS treated macrophages. (Fig.
4.15b) We then calculated the assortativity of the cluster labels in a graph of the
cell locations to assess the similarity between the gene expression of a cell and its
neighbors. (Fig. 4.15c) We found that the gene expression clusters in these graphs
showed relatively high assortativity. We demonstrated the significance of this ob-
served value by comparing it to a distribution of assortativity values for multiple
iterations of the same graph with shuffled cluster labels. (Fig. 4.15d) We also found
that gene expression clusters that are more similar, as measured by proximity in the
UMAP of gene expression, tended to have lower assortativity than more dissimilar
clusters. (Fig. 4.20a-b) For example, dissimilar cluster labels 0 and 1 have a rela-
tively high assortativity value, reflecting spatial separation of cells with dissimilar
gene expression patterns. On the other hand, similar cluster labels 1 and 2 have a
relatively low assortativity value, reflecting inter-connectivity of neighborhoods of
cells with similar gene expression patterns. (Fig. 4.20c-e)
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Figure 4.15: Macrophages dosed with LPS show assortativity of gene expression.
See section 4.5 for caption.

We also found high assortativity of gene expression cluster labels in graphs of
untreated macrophages. (Fig. 4.21) This observation suggests that the macrophages
create neighborhoods of similar cell states prior to treatment with an inflammatory
stimulus. Dynamic measurement of the expression of a limited panel of genes could
determine the extent to which these neighborhoods of similar cells exist prior to an
inflammatory stimulus, and how they change over the course of treatment.

The observed spatial gene expression pattern aligns with the expected length scale of
paracrine signaling, which is estimated to be 40-100 𝜇m.200,201 This length scale is
determined by the rates of cytokine diffusion and production and the concentration
of cytokines required to elicit a response in target cells. Paracrine signaling would
act as a local average over cell behaviors, allowing cells to make decisions as
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individuals while also collecting the information from their neighbors that allow
them to act collectively.201 Macrophages have also been shown to have quorum
sensing capabilities, modulating their response to inflammatory stimuli depending
on their density in a sample, further solidifying the concept of coordination between
macrophage cells to inform their inflammatory response.202,203

Development of the integrated live-cell imaging-seqFISH experimental pipeline
To interrogate the relationship between signaling dynamics and spatial gene ex-
pression, we developed an integrated measurements workflow that pairs live-cell
imaging with seqFISH. Although it is generalizable as a method, we targeted this
method to investigating immune signaling in primary human macrophages. In this
workflow, the macrophages are seeded onto glass slides that are compatible with
live imaging and seqFISH. Time lapse images of fluorescent live-cell reporters and
a nuclear stain are acquired. Then, the cells are fixed, stained with seqFISH oligo
probes and imaged on the GenePS system. Images between the two microscopes
were aligned using nuclear label images.

Live-cell imaging and seqFISH experiments both generate large, complex image-
based data sets that require powerful image analysis methods to generate biological
insights. Our integrated measurements pipeline is enabled by deep learning-based
image analysis methods that increase the feasibility and reproducibility of its data
analysis. Tools in the DeepCell software library, such as Caliban204 and CellSAM131,
expedite the analysis of live-cell imaging data and Polaris95 enables accurate quan-
tification of gene expression from seqFISH images.
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We utilized the single-cell gene expression profiles yielded by the paired seqFISH
measurement to explore the degree to which transfection perturbs the immune
state of the macrophages. We compared the transcriptomes of untransfected and
KTR-transfected cells before and after LPS treatment to assess the effect of mRNA
transfection on their basal immune state and their response to stimulus. Further-
more, we compared p65-expressing cells to these two populations to determine if
exogenous expression of p65 perturbs immune signaling.

We found that the untreated and LPS-treated samples across transfection conditions
group together in a PCA plot of the single-cell gene expression profiles. We did not
find a clear distinction between transfected and untransfected cells or between cells
over-expressing and cells not over-expressing p65. (Fig. 4.22) From this compari-
son, we concluded that transfection does not significantly change the gene expression
profile of the macrophages. This conclusion aligns with previous work that demon-
strated that modified mRNA transfection does not alter the surface marker profiles
of macrophages.178 We also concluded that the background fluorescence intensity
from the fluorescent live-cell reporter does not significantly interfere with the ability
of seqFISH and Polaris to measure gene expression. However, this control seqFISH
measurement is limited by the panel design, which was intended to measure the
transcriptional response to LPS treatment. Additional control experiments measur-
ing gene expression with RNA sequencing would more comprehensively quantify
the effect of modified mRNA transfection on the cell state of macrophages.

Paired immune signaling dynamics and spatial transcriptomics measurements
in primary human macrophages
We utilized our integrated live-cell imaging-seqFISH experimental pipeline to mea-
sure p65 signaling dynamics paired with the spatial expression of our panel of
inflammatory genes. This measurement builds upon our disjointed exploration
of multiple aspects of immune signaling in macrophages. Our live-cell imaging
experiments demonstrated capabilities of individual macrophages to perceive and
encode LPS concentrations with their dynamic activation of immune signaling path-
ways. On the other hand, our seqFISH experiments characterized the relationship
between morphological and transcriptional subpopulations form neighborhoods of
cell. However, a paired measurement will enable exploration of how these subpop-
ulations respond dynamically to inflammatory stimuli.
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The seqFISH measurement revealed distinct transcriptional subpopulations of
macrophages, defined by their expression of TNF, IL1B, NUPR1, and PIM1. (Fig.
4.16a-b) These transcriptional subpopulations have differing distributions of dy-
namic features of p65 translocation. The subpopulations defined by TNF and
IL1B/GRAMD1A expression have weaker p65 translocation, particularly when
measured by nuclear p65 intensity at 40 minutes and the integral of nuclear p65
intensity, in response to LPS treatment, as compared to the subpopulations defined
by NUPR1, PIM1, or IL1B/ZC3H12A expression. (Fig. 4.16c) The presence of
subpopulations with distinct transcriptional states and dynamic p65 signaling re-
sponses to LPS indicates a relationship between the dynamic p65 activation and
transcriptional response to LPS treatment.

The transcriptional subpopulations also have varying distributions of morphological
states. We observe that the subpopulation defined by TNF expression tends to have
a small area and low aspect ratio. On the other hand, the subpopulation defined by
IL1B and GRAMD12A expression tends to have a small area and relatively high
aspect ratio. These results align with the previously discussed “round” and “spindle”
subpopulations observed in unpaired seqFISH data. This measurement also revealed
that the subpopulation defined by IL1B and ZC3H12A expression have a distinctly
large area and the subpopulation with high NUPR1 expression is distinctly circular.
(Fig. 4.17) Empirically, we did not observe individual cells undergoing dramatic
morphological changes on the time scale of our dynamics measurements, suggesting
that their morphology is an indicator of cell state, which is priming their response
to LPS treatment.

An integrated measurement of JNK dynamics and seqFISH revealed similar tran-
scriptionally distinct subpopulations of macrophages, similarly defined by the ex-
pression of the same marker genes (TNF, IL1B, NUPR1, and PIM1). (Fig. 4.23a-b)
Observation of the same transcriptional subpopulations across both samples demon-
strates the robustness of these subpopulations of macrophage responses to LPS treat-
ment. To a lesser extent than with p65 dynamics, these subpopulations have different
distributions of JNK signaling dynamics. (Fig. 4.23c) The subpopulation defined by
TNF expression showed stronger JNK activation whereas the subpopulation defined
by IL1B expression showed weaker activation. Our paired measurement has also
revealed that the transcriptional subpopulations also have varying distributions of
morphological states. (Fig. 4.23d)



91

Figure 4.16: Transcriptional subpopulations of macrophages have distinct dy-
namic features of p65 translocation. (a) UMAP of gene expression data measured
with seqFISH in response to 100 ng/mL LPS treatment. Leiden clustering was
performed with a resolution of 0.7. Cluster stability analysis was performed to set
clustering resolution parameter. Cluster marker genes are highlighted. (n=410 cells)
(b) UMAP of seqFISH data, colored by cluster marker gene expression (TNF, IL1B,
NUPR1, and PIM1). Expression score is the natural logarithm of CPM-normalized
counts. (c) Box plots of metrics of the fold-change of p65 translocation dynamics.
Boxes denote quartiles of the data and the whiskers denote the 2.5th and 97.5th
percentiles of the data.

4.3 Discussion
Our integrated measurements workflow, pairing live-cell imaging with seqFISH
offers insights into cellular decision making, at the single-cell level as well as pop-
ulation level. With this workflow, we can interrogate the capabilities of individual
cells to perceive and encode environmental stimuli while also asking how they
communicate to act as a collective.

The live-cell imaging measurement established the capability of individual cells in
our system to distinguish between concentrations of LPS. This measurement estab-
lishes cellular perception and decision-making at the single-cell level. The signal
that transmits information about environmental stimuli is distributed across multiple
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Figure 4.17: Transcriptional subpopulations of macrophages in paired p65
dynamics-seqFISH measurement have distinct morphological features. (a-d)
Box plots of morphology metrics across gene expression clusters from Fig. 4.16.
Boxes denote quartiles of the data and the whiskers denote the 2.5th and 97.5th
percentiles of the data.

signaling pathways, as demonstrated by the mutual information observed between
NF-𝜅B and MAPK signaling dynamics. Such a mechanism adds redundancy to the
signaling network but also allows the cells to perform diverse cellular behaviors in
response to activation.

Measuring the spatial gene expression of macrophages with seqFISH revealed a few
key insights for understanding single-cell heterogeneity and cell-to-cell commu-
nication in macrophages. First, the seqFISH measurement revealed morphotypes
of macrophages with distinct gene expression profiles. This measurement also
revealed the heterogeneity in cells states, as read out by morphology, present in
a population of macrophages. Transcriptional subpopulations of cells were also
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linked to differentiable patterns of morphology and signaling dynamics, indicat-
ing a relationship between a cell’s state and its response to inflammatory stimuli.
Such an observation could not be made if gene expression was measured with a
sequencing-based method, such as single-cell RNA sequencing, which does not
retain the morphological state of a cell. In particular, seqFISH is well-positioned
to link morphology to gene expression as an image-based spatial transcriptomics
methods, because even bead-based spatial transcriptomics methods lack the spatial
resolution to capture subtle morphological details of a sample. Next, the seqFISH
measurement revealed transcriptionally similar neighborhoods of cells, indicating
cell-to-cell communication that could not have been observed with a method that
requires sample homogenization. The characterization of paracrine signaling can
be made more comprehensive in future work by adding pairs of cytokines and re-
ceptors to the seqFISH panel to rigorously characterize the spatial gene expression
patterns of receptor-ligand pairs. Alternatively, immunofluorescence staining for
such receptors could reveal the spatial distributions of their abundances with more
precision than a spatial transcriptomics measurement.

Because of the previously characterized relationship between morphology and sub-
strate stiffness, an interesting future direction for this work would be additional
experiments exploring the interplay between the mechanical forces from substrate
stiffness and macrophage cell state. We expect environmental forces to strongly
influence the inflammatory state of macrophages based on previous studies.167 Our
integrated measurements workflow would add expand upon previous work by allow-
ing investigation of the effects of substrate stiffness on macrophages’ responses to
inflammatory stimuli and spatial gene expression patterns before and after treatment.

A key limitation of this measurement is its utilization of p65 overexpression as a
method for observing NF-𝜅B dynamics. Overexpression of p65 is known to alter
its dynamics, because the feedback mechanisms that regulate its translocation are
finely tuned to its expression level.17,205 Visualization of endogenous p65 translo-
cation would reveal more physiologically relevant dynamics. Genetic engineering
in macrophages remains challenging because of their sensitivity to double stranded
breaks in their genomic DNA, so fluorescent nanobody labeling may be a more
feasible alternate method for visualizing endogenous p65.206

In this work, we have demonstrated the viability of our integrated measurements
workflow to measure immune signaling dynamics paired to spatial transcriptomics
in primary macrophages. The scale of our experiment was enabled by deep learning



94

methods to expedite image analysis. With these methodological capabilities there
are many dimensions across which this measurement can be extended. Importantly,
this work is limited to measuring macrophages’ response to LPS stimulation when
it is well established that they demonstrate range of stimulus-specific responses.168

Our workflow could iterate upon the current characterization of stimulus-specific
responses, because it would simultaneously capture both the dynamic signaling and
transcriptional responses of macrophage morphotypes to each inflammatory stim-
ulus. Additionally, we measured gene expression at a single static time point after
LPS treatment, but transcriptional dynamics are variable and gene-specific.16,207,208

Follow-up experiments measuring gene expression at different time-points could
capture known early response or late response NF-𝜅B target genes. Finally, we
demonstrated that a wide variety of live-cell reporters can be expressed in primary
human macrophages with modified mRNA transfection, opening up the scope of
feasible live-cell imaging experiments in this system to the range of available live-
cell reporters. Therefore, this workflow could be applied to the investigation of a
signal transduction in a number different signaling pathways.

4.4 Methods
Cell culture
CD14+ primary peripheral blood mononuclear cells (PBMCs) were received from
the Charles River Laboratories. After thawing, the cells were cultured for 24 hours in
Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco) supplemented with
2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 𝜇g/mL streptomycin (Gibco
or Caisson), and 10% fetal bovine serum (Omega Scientific or Thermo Fisher).
Cells were incubated at 37°C in a humidified 5% CO2 atmosphere in a polystyrene
6-well plate (CellTreat #229105) at a density of 1 million cells per well. After 24
hours, the cells were dosed with 50 ng/mL M-CSF (Peprotech 300-25). The cells
were maintained at this M-CSF concentration for up to 9 days, replacing the media
every 3 days, for differentiation from monocytes to macrophages. After 6 days of
M-CSF treatment, the macrophages were dissociated from the plate with Accutase
for 30 minutes at 37°C for usage in the paired imaging assay.

Modified RNA synthesis
RNA constructs were synthesized using a linear DNA oligo template that contains
the coding sequence for the construct of interest preceded by a T7 promoter. This
template was generated by restriction enzyme digestion or PCR. The DNA tem-
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plate was purified by gel extraction (NEB T1020S). RNA was synthesized by T7
polymerase in a reaction mixture that includes modified nucleotides, pseudouridine
and 5-methylcytidine at 37 °C for 2 hours (APExBIO K1064). After synthesis, the
DNA template was digested with DNAse I (Thermo EN0521) and a polyA tail was
enzymatically added (APExBIO K1064). The synthesized mRNA was purified with
a column-based protocol (NEB T2040S). For long-term storage, the IVT RNA was
aliquoted and stored at -80 °C.

Live-cell imaging in 96-well plates
The macrophages were seeded in fibronectin-functionalized (Fisher Scientific #33010018)
glass-bottom 96-well plates (Cellvis P96-1.5H-N) at 80-90% confluency. Live-cell
reporters were transiently expressed in the macrophages with lipofectamine designed
for transfection of mRNA, Lipofectamine MessengerMax (Thermo LMRNA001).
When transfecting a single mRNA construct, the cells were transfected with 100 ng
of mRNA. When transfecting two mRNA constructs, the cells were transfected with
150 ng of mRNA.

Live-cell imaging on slides
The macrophages were seeded on a fibronectin-functionalized glass slide (Corning
#2980-246) at 80%-90% confluence contained by a rubber gasket (Grace Bio-Labs
#JTR8R-2.5). When transfecting a single mRNA construct, the cells were trans-
fected with 150 ng of mRNA per well. When transfecting two mRNA constructs,
the cells were transfected with 150 ng of mRNA per well.

Live-cell imaging conditions
The seqFISH samples were imaged with a Nikon Ti2 fluorescence microscope
controlled by Nikon Elements. Images were acquired with a Nikon SOLA SE II
light source, a 100X oil objective, and a Photometrics Prime 95B CMOS camera.
Cells were imaged in a humidified environment at 37 °C and 5% CO2.

Cells were treated with Hoechst 33342 (Thermo-Fisher H3570) to stain the nuclear
volume at least 30 minutes prior to imaging. Cells were imaged for 15 minutes prior
to LPS treatment to capture their basal signaling state. Cells were imaged at a frame
rate of 5 minutes for the duration of the live-cell imaging assay.
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Preparation of seqFISH gene panel
The gene panel for seqFISH was designed using a previously published RNA se-
quencing dataset, demonstrating the transcriptomic changes that occurred in THP-1
cells upon LPS stimulation.193 The panel consists of 200 of the most strongly differ-
entially expressed genes between untreated and LPS-treated cells. The gene panel
was optimized for visualization with seqFISH, taking considerations like probe
binding properties, number of available probes for a genes, and expression levels
into account. The codebook defining the relationship between gene identities and
temporal barcodes was designed with guidance from previously published design
principles to minimize the number of required staining rounds and maximize the
Hamming distance between barcodes.32

The panel consists of the following genes: CCL4, HCAR3, ENSG00000216775,
ENSG00000279320, NT5C3A, HCAR2, GBP1P1, CCL20, USP30-AS1, CXCL1,
HES4, WFDC21P, CXCL3, BATF3, CCL8, CCDC194, IFITM1, HESX1, MAP1LC3A,
IL27, TNFAIP6, EBI3, USP18, HMGN2P46, CCL5, CXCL10, CXCL11, TNFSF9,
IL6, PLAC8, IL23A, ASNS, ENSG00000284633, TRGC1, SOCS1, MDK, GBP1,
ENSG00000279118, ENSG00000277895, NOCT, PMAIP1, TNFSF10, TFPI2,
AIM2, CKB, RRAS2, CD40, PKIG, PTX3, IL1B, ENSG00000270562, IL1A,
TNIP3, NEURL3, IDO1, RND1, ISG20, IL15RA, SERPINB2, ETV7, MUC1,
CLCF1, RUSC1-AS1, ZBP1, LAG3, TNF, PDGFRL, GBP4, IL15, HSH2D, ZBTB10,
NME8, ENSG00000260244, HS3ST3B1, ACOD1, CDC42EP2, RASL11A, GCNT4,
AZIN2, RNF144A, IFI44L, CASZ1, PRDM8, STK26, LAMP3, EEF2, NIPAL4,
ELOVL7, OXTR, NUPR1, CFB, CATSPERB, GBP5, HELZ2, HERC5, PCDH9,
GRAMD1A, ANKRD33B, TMPRSS13, SLAMF1, IRF1, MCOLN2, PRSS23,
PELI1, DCLK3, SGPP2, BIRC3, SLC1A2, NECTIN3, PARP14, MDGA1, FZD4,
TMCC2, SOCS2, C1S, PIM1, NIBAN1, PPM1K, TNFAIP3, IRF4, ADORA2A,
CACHD1, RAPGEF2, OASL, IFIH1, ITGA1, ADM2, CD38, SOCS3, IL2RA,
TTC39A, IRF1-AS1, APOL3, ADGRE1, CAMK1G, GUCY1A1, KCNA3, CCR7,
C1R, ADA, ZC3H12A, IL7R, CYP7B1, LAD1, PLEKHA4, ADPGK-AS1, HAPLN3,
NFIX, RNF19B, FAM186B, IFIT2, RSAD2, BRIP1, MN1, KLF5, MX1, CXCL9,
PLCB4, TRAF1, TANC1, CD274, CD80, PTGIR, SYNPO2, CGN, NTN1, ADAMTS4,
ABTB2, SYNPO, ABCG1, TNFAIP2, CMPK2, ITGB8, SLAMF7, GCH1, MVP-
DT, IFIT3, TNFRSF9, SLC2A6, NXN, PDE4B, STAT4, PLEKHG1, PTGS2,
DHX58, and ADAM19.
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seqFISH sample preparation
Immediately following the live-cell imaging assay, cells were rinsed with warm
1X PBS, fixed with fresh 4% formaldehyde (Thermo #28908) in 1X PBS for 10
minutes at room temperature, and then permeabilized with 70% ethanol overnight
at -20°C. The primary probe library (Spatial Genomics) was added to the sample
in a flow chamber provided by Spatial Genomics and incubated overnight at 37°C.
The sample was washed several times with primary wash buffer (Spatial Genomics).
The nuclei of the sample were stained with staining solution (Spatial Genomics).
The macrophage sample was imaged with the Spatial Genomics Gene Positioning
System (GenePS). Tiled imaging and secondary probe staining were performed
programmatically by this instrument.

Image analysis
Cell segmentation and tracking: The nuclei were segmented with Deepcell’s deep
learning model for nuclear segmentation. Nuclear segmentation was performed
on images of Hoechst nuclear staining. The whole-cell areas were segmented
with CellSAM.131 Whole-cell segmentation was performed on images of live-cell
reporters or on maximum intensity projections of images of multiple rounds of
seqFISH staining. The nuclei were tracked through time in live-cell image sets with
Caliban.204

Reporter activity quantification: The activity of the p65-mOrange reporter was
quantified as the mean nuclear intensity. The nuclear intensity was normalized
with one of two values: (1) the mean cytoplasmic intensity prior to LPS-treatment
as a measure of expression level, or (2) the mean nuclear intensity prior to LPS-
treatment to calculate the fold-change of nuclear p65 intensity. The activity of the
KTR reporters was quantified as the mean cytoplasmic intensity of the reporter
divided by the mean nuclear intensity throughout the time-lapse. For both reporters,
the mean nuclear intensity was the mean value of the masked pixels for the segmented
nuclei. The cytoplasmic intensity was the mean value of a masked region created
by dilating the nuclear masks by 40 pixels.

Image alignment: The live-cell imaging and seqFISH measurements were collected
at different magnifications of different microscopes, so linking cells between these
two imaging modalities requires image alignment. Images of Hoechst nuclear
labeling were acquired with the live-cell imaging configuration and the GenePS
configuration. A Gaussian blur was applied to these images and the location of the
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live-cell imaging fields of view was identified in the larger GenePS field of view
with template matching implemented in CV2. The match was required to exceed a
user-defined threshold score for downstream analysis.

seqFISH quantification: Gene expression was quantified from the seqFISH images
using Polaris.95 Gene assignment is attempted for all pixels with a spot probability
greater than 0.01. The spot probability values were fit with a relaxed Bernoulli
distribution during gene assignment. The gene assignments with a probability value
less than 0.95 were removed from downstream analysis.

Morphology quantification: In order to measure morphology metrics of cell ar-
eas, the Python package function skimage.measure.regionprops was used to
measure the area, perimeter, major axis length, minor axis length, eccentricity, and
solidity of cells. The eccentricity is the ratio of the ratio of the distance between
the focal points of the region over the major axis length. The solidity is the ratio of
area of the region to area of the convex hull image. Following previously published
methods for morphology quantification, the circularity was quantified as 4𝜋 · 𝐴/𝑃2,
where 𝐴 is the area of the region and 𝑃 is the perimeter, and the aspect ratio was
quantified as the ratio of the major and minor axis lengths.174

Morphological sub-populations: The cells were divided into defined morpholog-
ical sub-populations depending on the values of two metrics. “Round” cells had a
circularity value greater than 0.65. “Spindle” cells had an aspect ratio of greater
than 3.5. All cells that did not meet either of these criteria were separated into an
“other” category.

Timeseries analysis
Metrics for signaling dynamics: The dynamic activity of p65 and the KTR re-
porters was summarized with a few summary metrics. When the activity of the
reporters is summarized with a single value, that intensity value was taken at 40
minutes from the beginning of the time series. This time point was selected because
it has the maximum amount of mutual information with the concentration of the
LPS treatment. It was empirically determined that cell death in response to LPS
treatment is relatively rare in the first 150 minutes of the time series. Cell death
leads to aberrant signal in the time series of quantified reporter activity. For this
reason, the maximum intensity, maximum derivative, and integral of activity were
calculated across the first 150 minutes of each time series.
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Mutual information: The mutual information between two time series or between
a time series and a particular value with
sklearn.feature_selection.mutual_info_regression. This method esti-
mates entropy in a non-parametric fashion with a k-nearest neighbors method, based
on previous work.209,210

Single-cell gene expression analysis
Clustering for single-cell gene expression data: Clustering for single-cell gene
expression data was performed with the Leiden algorithm implemented in scanpy.
Cluster stability analysis was performed for resolution values from 0.1 to 1.0 with
an increment of 0.1. The stability of the clusters was quantified with the adjusted
Rand index score. The resolution value with the highest stability with neighboring
resolution values was selected.

Marker gene analysis: Marker genes for gene expression clusters were determined
by ranking the genes that characterize each cluster, as implemented in scanpy. The
genes were ranked by their t-test score and the resulting p-value was corrected with
the Benjamini-Hochberg procedure.

Assortativity analysis: The assortativity of the single-cell gene expression values
was determined by creating a graph of neighboring cells. The nodes of the graph
were placed at the centroids of each whole-cell area. Edges were defined between
nodes closer than 46.8 𝜇m. The threshold for defining neighbors was determined
based on the typical cell area. Assortativity was calculated using a function imple-
mented in networkx with the Leiden gene expression clusters as the attribute.

4.5 Figure captions
Figure 4.1: Overview of integrated measurements method in primary human
macrophages (a) Schematic diagram of integrated measurements workflow that
pairs live-cell imaging with seqFISH. (b) Montage of p65-mOrange translocation in
response to LPS treatment in an example primary human macrophage cell. Nuclear
segmentation indicated in red. Scale bar corresponds to 20 𝜇m. (c) seqFISH
staining and Polaris analysis of spatial gene expression for the same example primary
macrophage cell as in (b). Gene identities are indicated with spot colors. (d)
Single-cell data captured by the integrated measurements workflow for the example
primary macrophage cell. The dynamic p65 translocation is plotted at the ratio
of the nuclear and cytoplasmic intensity values over time. The time point of LPS
treatment is indicated with the dashed red line.
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Figure 4.5: Expression of a panel of live-cell reporters in primary macrophages
with modified RNA transfection A panel of fluorescent fusion proteins, KTRs,
and ExRai reporters were expressed in primary macrophages. Montage figures
demonstrate the appearance of the reporters over time. Time increments in montage
figures are 40 minutes (TFEB-mClover and ExRai AMPKAR) or 50 minutes (p65-
mOrange, JNK KTR-mClover, and p38 KTR-mClover). All scale bars correspond
to 40𝜇m. Time traces quantify the activity of the signaling protein read out by each
live-cell reporter.

Figure 4.9: Fold-change of nuclear p65 intensity shows greater resolution of
LPS stimulation conditions than absolute intensities (a) Time series data of
nuclear p65 intensity for untreated and LPS-treated cells, presented as absolute
intensity (a.u.) and fold-change intensity. Time series have been smoothed with a
boxcar average over a window of four frames. Fold-change is calculated using the
intensity of the fourth frame. (b-e) Distributions of (b) nuclear p65 intensities after
70 minutes of imaging, (c) maximum p65 intensity, (d) maximum rate of change of
p65 intensity, and (e) integral of p65 intensity over 4 hours of imaging, presented
as absolute intensity and fold-change intensity for untreated and LPS-treated cells.
Distribution values have been normalized to the median of the intensity values across
both treatment conditions.

Figure 4.15: Macrophages dosed with LPS show assortativity of gene expres-
sion. (a) Schematic illustration of the assortativity graph metric. High assortativity
means similar cells are connected, and low assortativity means dissimilar cells
are connected. (b) UMAP of single-cell gene expression of primary macrophages
dosed with 100 ng/mL LPS. (c) Example graph of cell centroid locations, labeled
by gene expression cluster from (b). Graph defines the neighbors of each cell. Cells
closer than 46.8 𝜇m are connected. (d) Macrophages show positive assortativity,
calculated with respect to gene expression clusters (0.0095), shown in orange. The
distribution of assortativity values calculated for randomly shuffled cluster labels in
1000 experiments, shown in blue, has a mean of -0.011 and standard deviation of
0.0049. The dashed lines indicate the 1st and 99th percentiles of this distribution.
The experimental and shuffled assortativity values are an average across graphs
created for 72 fields of view, containing a total of 8,279 cells.
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4.6 Supplementary figures

Figure 4.18: Comparison of normalization methods for nuclear p65 dynamics
in response to LPS treatment. Primary human macrophages were treated with LPS
of various concentrations at 15 minutes. (Upper) Absolute nuclear p65 intensity.
(Middle) Normalized nuclear p65 intensity, relative to cytoplasmic p65 intensity, as
a measure of expression level before LPS treatment. (Lower) Fold change of nuclear
p65 intensity, relative to the mean nuclear p65 intensity before LPS treatment. Line
plotted in black represents the mean p65 intensity for each condition. The shaded
region represents the 25th-75th percentile of p65 intensities for each condition.
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Figure 4.19: Normalization method alters resolution of distributions of p65
dynamics metrics (a-c) Ridge-plots for distributions of p65 dynamics metrics for
absolute p65 intensity, normalized p65 intensity, and fold-change p65 intensity,
respectively. Normalized p65 intensity is relative to cytoplasmic p65 intensity, as
a measure of expression level. Fold-change p65 intensity is relative to the mean
nuclear p65 intensity before LPS treatment.
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Figure 4.20: Neighborhoods of macrophages with similar gene expression pat-
terns. (a) UMAP of single-cell gene expression of primary macrophages dosed
with LPS. (b) Matrix of assortativity values of pairs of gene expression clusters.
(c) Example graph of cell centroid locations, labeled by gene expression cluster
from (a). Graph defines the neighbors of each cell. Cells closer than 46.8 𝜇m are
connected. (d) Sub-graph of graph in (c) containing two labels of interest, 0 and 1.
The sub-graph shows a relatively high assortativity value of 0.023. (e) Sub-graph
of graph in (c) containing two labels of interest, 1 and 2. The sub-graph shows a
relatively low assortativity value of -0.003.
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Figure 4.21: Unreated macrophages dosed with show assortativity of gene
expression. (a) UMAP of single-cell gene expression of untreated primary
macrophages. (b) Example graph of cell centroid locations, labeled by gene ex-
pression cluster from (a). Graph defines the neighbors of each cell. Cells closer
than 46.8 𝜇m are connected. (c) Macrophages show positive assortativity, calcu-
lated with respect to gene expression clusters (-0.0035), shown in orange. The
distribution of assortativity values calculated for randomly shuffled cluster labels,
shown in blue, has a mean of -0.018 and standard deviation of 0.0085. The dashed
lines indicate the 5th and 95th percentiles of this distribution. The experimental
and shuffled assortativity values are an average across graphs created for 72 fields
of view, containing a total of 5,313 cells.
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Figure 4.22: PCA plot gene expression values of LPS-treated, transfected
macrophages (a-c) PCA of single-cell expression values of primary human
macrophages measured with seqFISH for highly variable genes colored by LPS
treatment condition, transfection condition, or Leiden clustering, respectively. Clus-
ter stability analysis was performed to set clustering hyperparameter values.
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Figure 4.23: Transcriptional sub-populations of macrophages have distinct
dynamic features of JNK KTR activity. (a) UMAP of gene expression data
measured with seqFISH in response to 100 ng/mL LPS treatment. Leiden clustering
was performed with a resolution of 0.5. Cluster stability analysis was performed to
set clustering resolution parameter. Cluster marker genes are highlighted. (n=1,358
cells) (b) UMAP of seqFISH data, colored by cluster marker gene expression (TNF,
IL1B, NUPR1, and PIM1). Expression score is the natural logarithm of CPM-
normalized counts. (c) Box plots of metrics of the fold-change of JNK-KTR activity
dynamics. Boxes denote quartiles of the data and the whiskers denote the 2.5th and
97.5th percentiles of the data. (d) Box plots of morphology metrics across the gene
expression clusters. Boxes denote quartiles of the data and the whiskers denote the
2.5th and 97.5th percentiles of the data.
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C h a p t e r 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Live-cell reporters: quantifying signaling dynamics at the single-cell level
Fluorescent live-cell reporters are an important tool to capture cell-to-cell and
temporal heterogeneity in signaling pathway activation with a microscope. The
variety of available reporter architectures and their typically modular design allows
them to be applied to explore the dynamic activation of a wide variety of signaling
proteins. In this work, we demonstrated the design and initial validation of two
live-cell reporters, AMPK SPARK and ExRai IKKAR/TBKAR.

AMPK SPARK is a novel live-cell reporter for AMPK activity with a few key
advantages over existing reporters for AMPK. Unlike the FRET-based reporter,
AMPKAR, or the cpGFP-based reporter, ExRai AMPKAR, it utilizes a single
fluorescence channel, decreasing its spectral bandwidth and increasing its capacity
to be multiplexed with other fluorescent live-cell reporters. However, the phase
separation kinetics of its read out dynamics warrant more detailed characterization
to ensure that its clustering state accurately reflects a cell’s real-time of AMPK
activity. The original creators of the SPARK reporter architecture have improved
that responsiveness of SPARK reporters by inserting a fluorescent protein molecule
in both peptide constructs of the reporter to drive stronger multivalent interactions
between the reporter oligomers.78 Further work on AMPK SPARK should involve
the implementation of this incremental improvement in the SPARK design. We
expect that this change will increase the dynamic range and responsiveness of
AMPK SPARK.

Its multiplexing capability allows AMPK SPARK to be utilized in experiments that
address immuno-metabolic signaling questions relevant to the scope of this work.
In response to inflammatory stimuli, macrophages produce large amounts of cy-
tokines and undergo highly dynamic cytoskeleton remodeling.211–213 Therefore, the
inflammatory response of macrophages is energetically expensive, so the metabolic
state of macrophages is largely shaped by environmental stimuli. AMPK is a key
metabolic signaling protein that regulates the balance of anabolic and catabolic cel-
lular processes.79,81 For this reason, we expect it to be critical to the regulation of
energy expenditure during a macrophage’s inflammatory response. AMPK SPARK
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can be utilized to measure AMPK activity at the single-cell level simultaneously
with live-cell reporters for the immune signaling. Such a measurement will illustrate
the relationship between AMPK and immune signaling in individual cells and may
reveal mechanisms of metabolic regulation in response to inflammatory stimuli.

Our work designing ExRai IKKAR and ExRai TBKAR with KINBERT was a valu-
able proof-of-concept for designing live-cell reporters with large language models.
ExRai IKKAR and ExRai TBKAR demonstrated reactivity to kinase activity of
IKK𝛽 and TBK1, respectively, in response to previously characterized upstream
stimuli. Although their dynamic range was limited, their responsiveness demon-
strated the viability of using KINBERT to generate peptide substrate hits for kinases
of interest. We propose to continue to use KINBERT to design live-cell reporters
for kinases of interest. Often live-cell reporters only exist for a single kinase in a
signaling pathway, because of the significant time and resource investment required
to develop a live-cell reporter. We hope that KINBERT can alleviate the degree to
which substrate identification can limit live-cell reporter development. With this
greater throughput, we propose to characterize information transmission in cascades
of signaling kinases. For example, this method could be applied to investigate the
molecular mechanisms by which cells encode the identity and strength of immune
stimuli in the dynamic patterns of kinase activity in the NF-𝜅B signaling pathway.

5.2 Polaris: applying deep-learning to expedite spatial transcriptomics anal-
ysis

Spatial transcriptomics methods excel at capturing the spatial organization of pat-
terns of gene expression. Image-based spatial transcriptomics methods generate
large, complex image sets of multiple staining rounds, which typically require man-
ual parameter tuning to extract gene expression values. With Polaris, we utilized
deep learning to create an analysis pipeline for spatial transcriptomics images that
mitigates the need for manual parameter tuning that requires time and expertise.

Polaris’ spot detection model achieves accurate spot detection that generalizes across
sample types and spatial transcriptomics assays. This capability makes Polaris an
assay-agnostic, turnkey solution for extracting single-cell gene expression profiles
from spatial transcriptomics images. Furthermore, Polaris does not require manual
parameter tuning for accurate spot detection, greatly increasing the efficiency and
reproducibility of spatial transcriptomics analysis.

Variation in fluorescence background intensities from factors like non-specific stain-
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ing and autofluorescence continues to limit Polaris’ performance in images from
challenging tissue samples. We have observed the greatest improvements in per-
formance from continued investment in the quantity and quality of the training
data available for Polaris to learn from. Therefore, we expect that adding training
data from a wider variety of tissue sample types would increase Polaris’ accuracy in
more challenging sample types. On the other hand, improving the quality of Polaris’
consensus annotations with labels from more classical spot detection methods has
previously improved its performance. Such an improvement in Polaris’ training data
quality demonstrates the strength of our weakly supervised training data annotation
method to iteratively improve upon previous annotations.

To offer a diverging goal for this method, Polaris could be applied to spot detection
for a wider variety of single-molecule experiments if its training data set included
more mobile fluorescent spots. The shape of mobile fluorescent molecules departs
from the circular, Gaussian spots commonly seen in spatial transcriptomics images.
Because of the expected heterogeneity in the shape of mobile spots, Polaris’ deep
learning model could offer more robust spot detection capabilities than the more
rigid mathematical operators underlying classical spot detection methods.

Polaris’ gene decoding method was optimized to capitalize on the spot probability
output of its spot detection model. These paired methods yielded gene expression
values that strongly correlate with gene expression values measured with RNA
sequencing, with manual parameter tuning. Furthermore, unlike other assay-specific
analysis pipelines, Polaris’ gene decoder does not make limiting assumptions about
the structure or pattern of temporal barcoding to encode gene identities with imaging
rounds, making it assay-agnostic and broadly applicable to the analysis of a wide
variety of spatial transcriptomics images.

A known shortcoming of Polaris’ gene decoder its limited ability to assign gene
identities to pixels containing more than one mRNA molecule. SeqFISH+ images
typically have overlapping fluorescent spots from more than one labeled mRNA
molecule because they measure the expression of a large panel of up to thousands
of genes in an individual cell.32 Polaris has a mixed barcode rescue method that
addresses this situation. However, the robustness of this rescue method warrants
further investigation and development given the prevalence of overlapping spots in
seqFISH+ images. Such an improvement to Polaris would improve the breadth of
samples it could be applied to.

With Polaris, we have made an investment in model development, training data
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annotation, and open-source distribution for the analysis of spatial transcriptomics
images. Polaris expedites the analysis of seqFISH images in this work, but its
impact reaches far beyond the scope of this work. It can also be applied to quantify
single-cell gene expression from MERFISH and in situ sequencing experiments in
tissue and culture-cell samples.

5.3 Integrated measurements: spatiotemporal characterization of immune
signaling in primary human macrophages

In this work, we have demonstrated the value of imaging assays that capture temporal
and spatial heterogeneity in living systems. These imaging methods are particularly
powerful when paired, because they can reveal the morphology or spatial arrange-
ments of sub-populations of cells with distinct signaling states. Furthermore, we
have demonstrated the value of using deep learning methods to enable the scale of
imaging assays.

Our expression of fluorescent live-cell reporters in primary human macrophages
with modified RNA transfection demonstrated the feasibility of a few different
measurements. First, it showed that a sufficient expression level of fluorescent live-
cell reporters can be achieved in classically hard-to-transfect cell types with minimal
impact on viability. Second, it increased the scope of measurements of signaling
dynamics that are possible in primary human macrophages. Previously, these
measurements were limited to immortalized human models or murine cells. Primary
human macrophages are more physiologically relevant to in vivo macrophages,
opening the possibility to collect insights about the signaling networks of these cells
in vitro that are relevant to in vivo behaviors.

We leveraged seqFISH’s capabilities to measure gene expression with high spatial
resolution to reveal relationships between the morphology and spatial organiza-
tion of primary macrophages to their gene expression patterns. This measurement
can be expanded upon with panel design updated with the information gained in
this work. Our seqFISH data revealed neighborhoods of cells primarily express-
ing TNF or IL-1B, indicating intracellular communication via cytokine expression.
Promising future directions for this measurement include incorporation of pairs of
cytokines and their associated receptors in the seqFISH panel to capture variability
in amenability to activation by each cytokine. Such a measurement also has the po-
tential to reveal sub-cellular localization patterns of mRNA transcripts for receptors,
which may be trafficked to sub-cellular regions prior to expression. These proposed
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measurements would reveal the mechanisms by which cells form patchwork neigh-
borhoods in which cells have similar gene expression patterns as their neighbors
while maintaining heterogeneity at the population level.

This work revealed a relationship between cell morphology and inflammatory sig-
naling. This observation indicates a relationship between immune signaling and
mechanotransduction and cytoskeletal regulation. YAP and TAZ are mechanosensi-
tive transcriptional co-factors that have been linked to inflammatory signaling.214,215

An interesting future direction for this work would be simultaneous measurement of
p65 and YAP translocation. Such an experiment would more explicitly characterize
the relationship between morphological regulation and immune signaling. Addi-
tionally, Piezo1 is a mechanosensitive ion channel linked to inflammatory signaling
in macrophages. It plays an unknown role in regulating intracellular Ca2+ concentra-
tions, so a genetically encoded calcium indicator could be paired with expression of
a fluorescent p65 fusion protein in our integrate measurements workflow to observe
the response to macrophages to Yoda1, Piezo1-specific agonist.216,217

Our integrated measurements workflow is broadly applicable to the investigation of
spatiotemporal regulations of signaling pathway activation. It is particularly useful
for studying pathways known to be regulated by paracrine signaling. For example,
the workflow could be applied to study spatiotemporal regulation of ERK signaling.
ERK is known to activate in waves across communities of cells, during processes
like embryo development or wound healing.201,218–220 Our integrated measurements
workflow would link dynamic ERK activation with the activity of other signaling
pathways and target gene expression at the single-cell level. Such a measurement
would capture cell-to-cell heterogeneity that would indicate computation at the
single-cell level within a population of cells communicating to achieve a collective
goal.
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