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ABSTRACT

With the recent commencement of the LIGO-Virgo-KAGRA (LVK) Collaboration’s
fourth observing run, the field of gravitational-wave physics is uniquely poised to
collect even more accurate data from compact binary coalescences. Consequently,
we will soon be able to perform more stringent tests of general relativity (GR).
Because GR must, in some regime, be violated—either because the Universe is
described by an alternative theory or because of the emergence of quantum effects—
these tests of GR are crucial for unveiling new physics. Performing such tests,
however, requires that our understanding of GR and gravitational waves is reliable.
And, while there are many tools for unraveling Einstein’s equations, the only one that
is robust in every regime of GR is numerical relativity (NR): a means for computing

accurate solutions to Einstein’s equations with supercomputers.

In this thesis, I highlight some recent and impactful advancements that have been
incorporated into NR simulations of binary black holes. In particular, I show how a
more robust procedure for calculating the radiative data at future null infinity from
NR simulations, called Cauchy-characteristic evolution (CCE), produces waveforms
that exhibit a not-yet observed prediction of GR colloquially referred to as memory.
This phenomenon corresponds to the permanent net displacement that two observers
will experience due to the passage of transient gravitational radiation. Memory is of
particular interest in the testing GR and theory communities because of its relation
to asymptotic symmetries and scattering amplitude calculations in particle physics.
With these contemporary CCE waveforms, I provide explicit methods to calculate
the various memory effects and I also comment on their relative magnitudes and
detectability in the near future. Apart from this, I also demonstrate the importance
of controlling the BMS freedoms of these waveforms, i.e., their frame freedom at
future null infinity, for building waveform models as well as for extracting physics,

such as GR’s nonlinearities, from the ringdown phase of binary black hole mergers.

As we start to enter the next phase of high-precision gravitational-wave astronomy,
correctly modeling gravitational waves with NR simulations will play a crucial role
in pushing Einstein’s theory of relativity to its limits. It is the aim of this thesis to
illustrate the importance of combining gravitational-wave theory and NR to not only
improve our understanding of black holes and gravitational waves, but also further

our prospects for unveiling the true nature of gravity within our universe.
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Chapter 1

INTRODUCTION

One of the main objectives of physics research is to characterize the behavior of our
universe with mathematical theories whose predictions match the data that we collect
from our real-world experiments. Currently, however, we lack a theory that unifies
our best theory of gravity—FEinstein’s theory of general relativity (GR) [1]—with
the theory that we use to explain the physics of the microscopic realm— quantum
mechanics [2]. Because of this, there is hope that if we can observe the way in
which our universe ties gravity and quantum mechanics together, e.g., through the
coalescence of two black holes, then this data may help show us a path to the
long-sought-after theory of “quantum gravity”. Nonetheless, to understand if such
data is truly evidence for this type of coupling, we must first be certain that we have
accurate and robust solutions to Einstein’s equations for the types of phenomena that
we are observing. Otherwise how can we be certain that the data that we have seen
is really evidence of something that cannot be explained by GR? With the recent
and important detection of a gravitational wave produced by a binary black hole
merger, GW 150914 [3, 4], the possibility of obtaining data that has the potential to
disagree with Einstein’s theory of GR became a reality and ushered in the pivotal

and incredibly exciting era of gravitational wave astronomy.

This thesis, which focuses on obtaining correct solutions to Einstein’s equations for
the coalescence of two black holes and the gravitational waves that they produce
with numerical simulations, aims to contribute to this ongoing effort to test GR and

reveal fundamental information about how gravity in our universe works.

1.1 General Relativity

Formulated by Einstein in 1915 [1], general relativity is currently our best theory
at explaining how the interaction of “gravity” seems to work within our universe.
Fundamentally, Einstein’s theory of GR states that gravity is a geometric effect
and can be understood as the curvature of “spacetime”—a four-dimensional fabric
that our universe is comprised of. It also says that this spacetime curvature is
influenced by the presence of energy, which through the energy-momentum relation
E? = (mc*)?+(pc)? [5] can also be related to the presence of matter and momentum.

For example, when the Earth orbits the Sun, Einstein’s theory says that the two are
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interacting not through some force, but instead through the warping of the spacetime
that they each induce with their individual energies, i.e., their masses and momenta.
Their motion with respect to each other is simply because of their perpetual falling
and their inherent need to follow the straightest path within this curved geometry.
The same can be said of light, which although has no mass, has momentum and thus

can also move through the curved geometry and warp the spacetime while doing so.

Mathematically, the curvature of the fabric of spacetime is encoded in a variable
called the spacetime metric g,,. It describes the path along which objects travel
via the infinitesimal line element ds®> = guvdxtdx”, where dx* corresponds to
some infinitesimal displacement through the spacetime manifold and the index u
represents the four spacetime coordinates. Einstein’s equations, i.e., GR, state that
the way the metric responds to the presence of energy in spacetime is via

8nG

Guv = c_4T'uv’ (11)

where G, is the Einstein tensor and is a function of the metric g,, and 7}, is the
stress-energy tensor and describes the energy, mass, and momentum that are present

in the spacetime. In the remainder of this thesis, I will use units with G = ¢ = 1.

1.2 Asymptotically Flat Spacetimes

While there are many spacetime geometries that are physically meaningful in the
context of GR, the simplest and most relevant to current observational experiments
are those which are “asymptotically flat”. Roughly speaking, these spacetimes are
those in which the spacetime curvature vanishes at large distances from some region,
so that at these large distances the metric instead resembles that of Minkowski, i.e.,
“flat”, spacetime. What makes this feature useful is that, because of this similarity to
Minkowski spacetime in the asymptotic limit, extracting physics at the boundary of
asymptotically flat spacetimes is much more straightforward than if that boundary
had some nontrivial curvature. But the boundary of asymptotically flat spacetimes,
which is called “asymptotic infinity”, is still not as simple as the more familiar bulk
of Minkowski spacetime. In particular, Refs. [6, 7] showed that the symmetries of
asymptotic infinity are not the usual Poincaré symmetries [8], but are instead an

infinite collection of transformations with a much more rich and complex structure.

These extra symmetries, at least for the part of asymptotic infinity that is the (future)
asymptotic limit of null rays, i.e., null infinity, can be understood through the
following thought experiment. Imagine you have a collection of observers that are

surrounding some kind of event, say a binary black hole merger. If these observers
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know their relative positions, then a single observer could simply move to the
position of their peer and receive the same information at the same time. However,
if we push these observers to future null infinity, then they are infinitely far away
from each other and are thus causally disconnected, meaning we can freely translate
each observer on this celestial sphere without changing the underlying physics. So,
instead of having only four spacetime translations as symmetries of our spacetime,
at future null infinity we have an infinite number of such translations: one for each
point on the two-sphere. These extra symmetry transformations, which extend the
usual Poincaré spacetime translations, are referred to as supertranslations. They are
important because, thanks to Noether’s theorem [9], their existence implies that there
are extra conservation laws at null infinity that control how certain observables, e.g.,

gravitational waves, evolve with respect to certain sources, e.g., orbiting masses.

1.3 Gravitational Waves

Like the orbit of astrophysical objects, bending of light, and existence of black holes,
Einstein’s theory of GR also predicts the existence of gravitational waves (GWs)—
ripples in the fabric of spacetime [1, 10]. In their most simple form, GWs can be

understood as perturbations of the spacetime metric about some background metric

8uv = Nuv + h,uVa (1.2)

where 7, is the metric of the background, e.g., that of Minkowski spacetime, and
hy 1s a small perturbation representing the GW. By inserting Eq. (1.2) into Eq. (1.1),
taking 7,,,, to be the metric describing Minkowski spacetime, and setting 7}, = 0,

one readily finds that, in Lorenz gauge [11], Einstein’s equations yield
Ohyy =0, (1.3)

where o0 = V,V?® and l_l/“, = hyy — %vail is the “trace reverse” of h,, with h= h”ﬂ.
Clearly Eq. (1.3) exhibits solutions of the form

huy = Ay exp (ikox®), (1.4)
where A, is a complex tensor independent of time and k, is a real null vector.
Consequently, Eq. (1.4) can be viewed as a wave-like solution which propagates
along null rays. Or, put more simply, Eq. (1.4) illustrates that, to first order in

perturbation theory, GR predicts ripples in the curvature of spacetime, i.e., GWs.

What is lacking about this linear description, however, is that it fails to capture the

full nonlinearity of GR, which is a fundamental part of the theory. In particular,
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through the conservation of energy and momentum, one can readily intuit that the
sources of GWs are those with mass multipole moments equal to or higher than the
quadrupole moment. But, because GWs are waves and therefore carry energy away
from their source, this means that GWs must have a mechanism that enables them
to affect the spherically symmetric part of their source’s mass. This mechanism is
exactly the back reaction that stems from the nonlinearity of GR, i.e., the fact that
GWs can interact with themselves to fundamentally change various properties of

the spacetime, not just the usual ripple-like behavior predicted by the linear theory.

In the broader context of asymptotically flat spacetimes in full nonlinear GR, GWs
can more formally be understood as perturbations about the angular part of some
background metric. In particular, by working with the Bondi coordinates (u, r, 6, ¢)
of Refs. [6, 7] where u = t — r is the retarded time, one can write the metric for an

arbitrary spacetime as
ds* = U du® = 26 dudr +r*hap (d0" — UNdu) (d0P - UPdu),  (1.5)

where capital Latin indices range over (6, ¢) and U, 3, UA, and hyp are functions

of the Bondi coordinates. The four gauge conditions that have been enforced are

grr = 0’ (163.)
gVA = 07 (1.6b)

for simplicity, and
oydet (hap) =0 (1.6¢)

to ensure that r corresponds to the luminosity distance. Then, to make Eq. (1.5)
uniquely correspond to the metric of asymptotically flat spacetimes, one must impose
extra conditions that control the falloff behavior of the various functions appearing
in Eq. (1.5). While there is no preferred method for choosing these falloff conditions,
there are certain choices that one can make that are more natural than others, e.g.,
those which lead to spacetimes with GWs, but not those that have infinite energy.

The conditions that were considered in Refs. [6, 7] and what we will use throughout



this thesis lead to the following metric function expansions in powers of 1/r:

ﬁ=@+ﬁ—21+0(r‘3), (1.7a)
r r
2
U=1——m+0(r—2), (1.7b)
r
ur 1| 2 1 1
A_Z __|_ENAL —pA BC\ , 1 ~ABC -4
u- = 2 ,,3[ 3N +16D (CBCc )+2C D™ Cpc +O(r ), (1.7¢)
C
hag=qap+—2+0 (r‘z) : (1.7d)
r

where the various coefficients on the right-hand sides are functions of (u, HA) only,
and gap (HA) is the metric on the two-sphere, i.e., in the usual spherical coordinates
gas (0, ) dx*dx® = d6*+sin® 8d¢?. Of the many functions appearing in Eqgs. (1.7),
the one encoding information about the spacetime’s GWs is the “shear” (or “strain’)
tensor Cy4p, since this is the component that corresponds to outgoing null rays that
are transverse to future null infinity, i.e., what one would expect of the radiation of
a spin-2 field such as GR, as illustrated through Eq. (1.4).

From this formalism, the importance of the nonlinearity of GR can then be made
apparent through the following. If one inserts Eq. (1.5) into Eq. (1.1) with 7}, = 0,
examines the resulting equation for the (u, u) component of the spacetime metric and
the =2 coefficient of the asymptotic expansion, and takes the spherically symmetric

contribution to this equation, then they readily recover the Bondi mass loss formula

d 1 ,
— = —— N|~dQ 1.8
() = =3 § INFag. (1.8

where m(u) is the Bondi mass of the spacetime and N is related to the norm of
the “news” tensor Nap = 0,Cap. Eq. (1.8) shows that, for C4p being the part of
the metric related to GWs, if there is some nonzero GW radiating in the spacetime,
1.e., N # 0, then there must be a corresponding loss in the spacetime’s Bondi mass.
Therefore, GWs not only propagate over some background metric, but because of
GR’s nonlinearity they also carry away energy (and momentum/angular momentum)

and thus influence the background metric in a nontrivial and interesting way.

1.4 Gravitational Memory Effects

Another peculiar feature of GWs is that, apart from their intuitive carrying of energy
(and momentum/angular momentum), they also permanently change the spacetime
that they propagate through. This phenomenon is called the memory effect and

was first realized in 1974 when Zel’dovich and Polnarev successfully calculated
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the gravitational radiation produced by two objects on hyperbolic trajectories [12].
Working with Einstein’s equations in linearized GR, they found that, because the
stress-energy tensor exhibits a net change between early and late times due to the
change in the mass distribution of the flyby objects, the gravitational-wave strain
will also exhibit a net change. Later, in 1985, Braginsky and Grischuk elaborated
upon this result and named this net change phenomenon the “memory effect” [13].
Following this, in 1987 Braginsky and Thorne found a simple equation for the
memory for scattering scenarios in terms of the four-momentum of the ingoing and
outgoing massive particles [14]. It says rather simply that for a system of N particles,

the net change in the gravitational-wave strain between early and late times is

4 Moy Vi TT
ARTT = —AZ 4 ( 4 A ) : (1.9)
v 1-v

2 1—VACOSQA
A

where r is the distance between the observer and the source, M4 is the mass of

particle A, V4 is the velocity with vi‘ the /™ component and v, the norm, 64 is the
angle between v 4 and the observer, and the A before the sum on the right-hand side

refers to the difference in this sum evaluated for the outgoing and ingoing particles.

After these early works, it was largely thought the memory effect was understood.
This opinion, however, was completely overturned in 1991 when Christodoulou
found that gravitational waves themselves will also source a certain type of memory,
through a subtle, but non-negligible nonlinear interaction with themselves [15].1
Christodoulou obtained this result by working with null hypersurface equations and
asymptotic limits to obtain an equation relating the gravitational-wave strain to the
flux of radiation through each point on the celestial two-sphere. A year later in 1992,
Thorne realized that Christodoulou’s finding was equivalent to that of Ref. [14], but
with the massive particles being replaced by null gravitons, i.e.,

i j/ TT
Ah’{/T:‘_‘/ dE( &é ) A<y (1.10)

r dQ’ \1—-cos@

where E is the energy of the radiation, & is a unit vector pointing from the source

toward dQ’, and 6’ is the angle between f"' and the observer [18].

What makes memory effects so tantalizing, apart from their unique nature, however,
is their intimate connection to the BMS group. In particular, Eqgs. (1.9) and (1.10)

turn out to both be parts of a conservation law at future null infinity that stems

I'This discovery was also realized by Payne as well as Blanchet and Damour in Refs. [16, 17].
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Figure 1.1: Top Left: A gravitational wave sourced by a binary black hole merger
without memory. Top Right: Identical to the top left panel, but now with memory.
The time-dependent growth of the memory is shown in blue. Bottom Left (Right):
The initial and final positions of a series of test particles after the passage of a
gravitational wave without (with) memory.

from the supertranslation symmetries. Specifically, if one carries out the procedure
before Eq. (1.8) without the last step, i.e., not taking the spherically symmetric part,
and integrates in time they instead find
u
Re [8%7 | :m+/ |12 du, (1.11)
—o0
where 0 is a certain angular operator and o is the gravitational-wave shear, which
is related to the gravitational-wave strain via o~ = 1/2. From this equation, one can
then readily see that if there is a net change in the Bondi mass aspect m or a net
change in the energy flux, i.e., the second term on the right-hand side, then there
will also be a net change in the gravitational-wave strain. In fact, a net change in
the Bondi mass aspect corresponds to the effect found by Zel’dovich and Polnareyv,
1.e., Eq. (1.9), while a net change in the energy flux corresponds to the effect found
by Christodoulou, i.e., Eq. (1.10). Because of this more modern interpretation of
memory through the supertranslation conservation law, memory effects appearing in

the charge-like component of this conservation law are typically called “ordinary”,
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while those in the flux component are called “null” [19]. Ordinary memory is
sourced by unbound objects, e.g., hyperbolic black holes, while null memory is
primarily sourced by bound objects, e.g., binary black hole mergers. An example of

the null memory sourced by a realistic binary black hole merger is shown in Fig. 1.1.

But the story does not simply end here. In particular, in 2014 memory effects
received a burst of new attention from the high-energy theory community when
the relationship between memory and asymptotic symmetries, i.e., the BMS group,
was explicitly stated in Refs. [20-22], even though this relationship between the
two has been effectively understood since, e.g., Refs. [23-27]. What grabbed the
theory community’s interest, however, was not simply this connection, but rather
the infrared triangle that was found to connect soft theorems from particle physics
to memory effects and asymptotic symmetries [22, 28, 29]. This connection was
exciting because soft theorems are inherently useful for studying the quantum gravity
S-matrix and thus play a large role in constructing a quantum theory of gravity.
So, the fact that these quantum gravity soft theorems could be connected to not
only the asymptotic symmetries of our universe, but also the memory, which can
be observed with GW detectors, was an astonishing realization and possible step
toward probing the quantum nature of gravity. Ever since, there has been a large
increase in the number of people studying what is now called “celestial holography”,
i.e., working with the holographic principle, e.g., the AdS/CFT correspondence, to

try to formulate a quantum theory of gravity (see Ref. [30] for a review).

1.5 Numerical Relativity

While the infrared connection between memory effects, asymptotic symmetries, and
soft theorems is an exciting one and is perhaps the way in which we will probe the
quantum nature of gravity, to utilize memory effects to study our universe we first
have to detect them. And, even before that, we need to know what they look like.
Currently, our most promising means for observing memory effects is through the
detection of loud GW events with a large enough signal-to-noise ratio (SNR) to see
the subdominant memory signal. Thus, to know what the memory should look like,
we need to know what the memory content in a gravitational-wave signal emitted
by, say, a binary black hole merger, looks like. Unfortunately, because Einstein’s
theory of GR is a highly nonlinear theory, working this out with pen and paper turns
out to be practically impossible. Instead, we need to rely on supercomputers to solve

Einstein’s equations for the problem of two coalescing black holes.



Figure 1.2: Foliation of a spacetime manifold M by spacelike hypersurfaces {Z;};cr;
n represents the normal vector to the hypersurface %;. Credit: Ref. [31].

In numerical relativity, this task of solving what a complex spacetime looks like is
often broken down into two parts: constructing initial data for the spacetime and
evolving the initial data using Einstein’s equations. To do so requires computing the
value of the spacetime metric g,, at each point in spacetime. Typically, this task
is simplified by instead computing the metric on foliations of the spacetime, i.e.,
non-intersecting, three-dimensional leaves X; which have a timelike normal vector

n? and can be labeled by some time coordinate #;. Then, on each leaf £; one only
(k)
ij

measures how the normal n“ to each leaf changes from point to point on the leaf.

needs to compute the induced metric g;;” and the extrinsic curvature Kl.(jk), which

An illustration of such a spacetime foliation is provided in Fig. 1.2.

With this foliation, Einstein’s equations can be written as two sets of equations:
constraint equations and evolution equations. The constraint equations control
whether or not the spacetime, on a single leaf, is a solution to Einstein’s equations.
Consequently, they only need to be solved on the first leaf, i.e., as a part of the
initial data construction, to provide initial values of g;; and K;; for the remaining
evolution equations. The evolution equations then, as their name suggests, are used
to evolve each leaf and thus compute the spacetime throughout the entire foliation.
Following this, one can then extract the gravitational wave at future null infinity—
a reasonable proxy for the location of Earth—by taking the gravitational wave to be
the 1/r component of the angular part of the metric, i.e., the C4p termin Eq. (1.7d ).
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Despite a vast amount of work from numerous numerical relativity groups, it took
nearly four decades until the first successful binary black hole merger simulation
was run in 2005 [32]. Part of why running such a black hole simulation proved to
be so challenging is because, even though Einstein’s equations are covariant, i.e.,
coordinate-independent, successfully implementing them in numerical relativity
requires coordinates that enable stable numerical evolution [32, 33]. Nonetheless,
since the breakthrough in 2005, a number of numerical relativity groups have
implemented codes for solving Einstein’s equations (see Ref. [34] for a review),
with the most robust code being the Spectral Einstein Code (SpEC) [35], which
was created by the Simulating eXtreme Spacetimes (SXS) Collaboration [36] and

is heavily relied upon for the majority of the work presented in the thesis.

1.6 Cauchy-Characteristic Evolution

After numerical relativity groups figured out how to simulate the coalescence of
binary black holes in GR, it then became possible to provide predictions for the
gravitational waves that future detectors would observe. In particular, after solving
for the spacetime metric on each of the leaves in the entire spacetime foliation, the
gravitational-wave strain at future null infinity could then be computed by fitting
the angular part of the metric, at various radial points, to polynomials in 1/r and
extracting the strain as the leading 1/r component. This procedure, which is used
by nearly every numerical relativity group, is called “extrapolation” as it uses data
local to the simulated spacetime to extrapolate to radial points infinitely far away.
One issue with this procedure, however, is that by doing so one never actually solves
Einstein’s equations on the null rays that connect the simulated spacetime volume
to future null infinity.? Consequently, if there is any physics sourced during the
propagation of the GW signal to future null infinity, e.g., gravitational memory,
the extrapolation procedure will not capture it. Consequently, one can instead
imagine running a simulation after the usual Cauchy simulation, which uses the
metric resulting from the Cauchy simulation as initial data for an evolution of
various radially compactified null hypersurfaces that connect the finite volume of
the Cauchy simulation to future null infinity. Conducting such an evolution would

then simulate Einstein’s equations across the entirety of spacetime.>

ZNote that most simulations simulate a finite spacetime volume because the smaller the volume,
the simpler and faster the simulation is.

3 An even better solution than this is to run this null hypersurface evolution in conjunction with the
Cauchy simulation and simultaneously feed information back and forth between the two simulations.
This is called Cauchy-characteristic matching (CCM) [37].
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CCE Domain

Cauchy Domain

Figure 1.3: An illustration of CCE compared to a finite-volume Cauchy evolution.
Notice that the CCE domain extends the finite-volume Cauchy domain all the way
to future null infinity (the side of the blue domain labeled by u). Credit: Ref. [48].

This procedure is called Cauchy-characteristic evolution (CCE). It was first theorized
in 1996 and was later implemented in simulations of binary black hole mergers in
20009 using the finite-difference Pitt Null code [38—42]. In 2014, an improved version
of CCE using spectral methods was incorporated into the SpEC code [43—45]. And,
finally, in 2020 and 2021 an even more improved version of CCE that enabled the
extraction of the Weyl scalars was developed by Ref. [46] and incorporated into
the SpECTRE code [47] by Ref. [48]. This version of CCE is the most advanced
version and is what will be used throughout the work that is presented in this thesis.
An illustration of the independent spacetime domains that are evolved by CCE and

a Cauchy evolution to obtain waveforms at future null infinity is shown in Fig. 1.3.

In Refs. [40, 49, 50], it was found that unlike the extrapolation procedure, CCE was
not only able to resolve the memory effect, but it also did so in a manner that is
consistent with the supertranslation conservation law, i.e., Eq. (1.11). This will be
the focus of Chapters 2 and 3. One issue that arose with CCE waveforms, however,
was that because they contained memory effects, they could not be easily compared
to post-Newtonian waveforms (see Ref. [51] for a review), which had information
about the entire past history of the binary’s coalescence and therefore predicted
larger values for the memory [49]. Fortunately, this “issue” turned out to instead be

a subtlety regarding the frame freedom such waveforms have at future null infinity
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Figure 1.4: Comparing the (2,0) mode of a PN waveform (dashed, blue) and a
NR waveform (solid, black), as output by CCE. The two waveforms are in different
BMS frames—e.g., they differ by a supertranslation—so the hybridized waveform
(dot-dashed, green), which is a smooth blending of the PN and NR waveforms,
exhibits an unphysical feature in the hybridization window (orange).

because of the nontrivial symmetry group, i.e., the BMS group [52, 53].

1.7 BMS Frame Fixing

Because of the rich number of symmetries possessed by future null infinity, i.e., the
BMS group, whenever one studies gravitational radiation they must also consider
the frame freedom that such data possesses. As an example, consider first the more
familiar Poincaré symmetries exhibited by Minkowski space. For a system in such
a spacetime, to study that system in a meaningful way, one must first specify the
specific frame, i.e., the coordinate system, that the system is in. This is because
whether or not such a system is in its, e.g., center-of-mass frame can produce rather
different interpretations of the radiation that the system is emitting. Consequently,
this frame freedom plays an important role when comparing data across different
waveform models, because there is no guarantee that the data from each model will
be in the same frame. This issue is typically resolved by fixing the frame of one
model to match that of the other. For systems that exhibit the Poincaré symmetries,
this frame-fixing procedure is fairly straightforward. In particular, because there

are only ten Poincaré freedoms, one can fix the Poincaré frame by mapping to the
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center-of-mass frame, and choosing meaningful time and spatial axes.

For systems living at future null infinity and exhibiting the BMS symmetries, like
the gravitational radiation emitted by a binary black hole merger, this process of
fixing the BMS frame is more involved. This is because, unlike the Poincaré group,
the BMS group is an infinite-dimensional group with no obvious canonical frame
and more complicated coordinate transformations. Nonetheless, Refs. [52, 53]
established meaningful BMS frames that can be used to fix the BMS freedom of
waveforms at future null infinity, like those produced by CCE. This topic will be the
main focus of Chapters 4 and 5. Effectively, what Refs. [52, 53] realized was that,
like Poincaré frames which can be defined by the value of certain Poincaré charges,
1.e., the momentum charge, the BMS frame of data at future null infinity can also be
defined by certain BMS charges. Furthermore, they found that BMS charges that
should be used are those which naturally fall out of the BMS conservation laws, like
the Bondi mass aspect appearing in Eq. (1.11). This novel result enabled not only
the robust analysis of NR waveforms, but also the construction of highly accurate
waveform models that can be used by gravitational-wave detectors to study GR and
measure the characteristics of GW-emitting sources. An example of a problem that

can arise due to waveforms being in different BMS frames is shown in Fig. 1.4.

1.8 Waveform Modeling

Once a waveform has been produced by a simulation of some black hole coalescence,
it can be used to compare against observations made by gravitational-wave detectors.
However, because NR simulations are computationally expensive and therefore fairly
slow to run, there is often a need to build models of the waveforms output by NR to
speed up the analysis of real-world data. These waveform models typically come in
two types: phenomenological models which aim to model the overall features of the
waveform by make certain assumptions about how the data seems to behave [54-59],
and surrogate models which aim to model the NR waveform data directly [60—68].
As should be clear, because surrogate models are trained on real NR data, they have
a better chance at reproducing NR waveforms, which are our current best solutions

to Einstein’s equations for the astrophysical events that our detectors can observe.

A gravitational-wave surrogate model works via the following. First, given some
waveforms in a consistent BMS frame for some series of parameters, e.g., mass ratio
or spins, decompose the waveform data into smoothly varying pieces. For example,

rather than modeling the waveform itself, which can be oscillatory in time, one can
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Figure 1.5: Demonstration of the gravitational-wave surrogate modeling procedure.
Each blue curve corresponds to a training amplitude (as a function of time #), which
is associated with a mass ratio g in the training parameter space. The orange points
represent the interpolant points, with the red curves being the actual interpolants.
The black curve corresponds to the evaluation of the surrogate model at a point not
in the training parameter space, e.g., a waveform prediction. Credit: V. Varma.

instead model the amplitude and phase, which should be smooth functions of time
and should vary smoothly over parameter space. Next, choose basis functions to
model each of the smooth data pieces that were extracted from the input waveforms.
This is typically performed using an iterative routine, i.e., at each iteration, use the
waveform from the training set which has the largest projection error onto the basis
as a new basis element for the next iteration. Once this procedure has converged,
which usually takes ~10 iterations, one then has a set of basis functions (that are
functions of time) that can be used to fit the waveform data pieces. Following this,
build a basis of interpolants across parameter space at certain times that is the same
size as the number of temporal basis functions. Finally, with these interpolants one

can then solve a linear system of equations to obtain the coefficients of the temporal
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basis functions and then compute the waveform at any point in parameter space [60].
An illustration of how the surrogate modeling procedure works is shown in Fig. 1.5.
In Chapter 6 I will present the state-of-the-art gravitational-wave surrogate model

for aligned-spin binary black hole waveforms that contain memory effects.

1.9 Black Hole Ringdowns

Another way to model gravitational waves, besides using surrogate models, that
is particularly interesting from a testing-GR standpoint is trying to understand the
“ringdown” of the remnant black hole after the progenitor black holes have merged.
When two black holes merge, they form a highly perturbed remnant black hole
that rings down to an equilibrium state by emitting energy via gravitational waves.
Because this process can be viewed as some perturbation acting on an isolated
black hole geometry, it turns out that this problem can be solved using black hole
perturbation theory [69]. In particular, when solving Einstein’s equations in this
perturbed geometry, one finds that the equations are not only separable, but also
yield a relatively simple set of solutions at first order that describe a set of discrete
frequencies at which the black hole can ring. These are called quasi-normal modes
(QNMs) and only depend on the mass and spin of the remnant black hole. Therefore,
they can be used test GR by seeing if the observed frequencies match those that are
predicted by black hole perturbation theory in the context of GR [70, 71].

More specifically, first-order black hole perturbation theory states that the strain

emitted by a ringing black hole can be modeled as

h= Z A(tamnpye” @ Cmnnt, (1.12)
C\m|<tn,pe[-1,+1]

where ¢ and m are the angular indices, 7 is the overtone number and can be thought of
as a radial index that corresponds to the lifetime of each QNM, p = sgn (mRe [w])
describes whether the QNM phase front is co-rotating (p = +) or counter-rotating
(p = —) with the black hole, Az, p) is the complex amplitude of the QNM, and
W(¢,mn,p) 18 the complex frequency of the QNM. With this, one can then test GR
by, e.g., fitting a NR waveform with this QNM model, computing the amplitudes
for each QNM frequency, and seeing if these amplitudes agree with those measured
from real-world data. However, one main challenge with this fitting procedure is
that, a priori, it is not known what QNMs are really present in the NR data. Thus,
fitting NR waveforms needs to be carried out with care to ensure that the fits are
physically meaningful and that other, nonlinear content in the NR waveform is not

being fit away by these simple and numerous linear QNM predictions.
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Figure 1.6: Cartoon showing how two linear QNMs (blue) can interact with each
other near the black hole light ring and produce a nonlinear QNM (orange) that
escapes from the black hole to future null infinity. Credit: L. C. Stein.

This turns out to be a real challenge in NR data analyses because the waveforms
produced by NR simulations are not solutions to the linearized Einstein’s equations,
but are instead solutions to the fully nonlinear set of equations. As a result, in the
ringdown of these waveforms it is expected (and has been shown [72, 73]) that there
should be nonlinear features of GR that are mixed in with the linear QNMs. This is

because black hole perturbation theory, at some arbitrary order, looks like
Ty =S8, (1.13)

where 7 is the Teukolsky operator, i.e., the linearized Einstein equations, i is the
perturbation to the remnant black hole, and S is some source term that vanishes for
linear perturbations in vacuum [69]. So, at second order, § will instead be some
nontrivial source, which is a function of the first-order perturbation, than can source
non-negligible, higher-order contributions to the ringdown phase of NR waveforms.
A cartoon showing how ringdown nonlinearities can be sourced is shown in Fig. 1.6.
The exact form of these higher-order ringdown contributions and their presence in

NR waveforms will be examined in Chapter 7.

1.10 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 presents the NR waveforms computed using CCE and provides an explicit

calculation of the BMS balance laws that can be used to study the memory content,
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as well as other features, of NR waveforms. This work was published in Ref. [49].

Chapter 3 illustrates how existing NR waveforms that do not contain memory effects
can be corrected to contain such phenomena using the BMS balance laws of Ref. [49].
This work was published in Ref. [50].

Chapter 4 provides a method to constrain the BMS freedoms of NR waveforms
at future null infinity by minimizing the error between NR and PN waveforms as
a function of a finite-dimensional BMS transformation applied to the NR system.
This work was published in Ref. [52].

Chapter 5 provides an improved method for fixing the BMS frame compared to
Ref. [52] which explicitly relies on BMS charges and is thus much faster than

numerical optimization. This work was published in Ref. [53].

Chapter 6 builds a surrogate model that models the waveforms produced by CCE.
It is trained on binary black hole merger simulations with mass ratios ¢ < 8
and dimensionless spins that are aligned with the orbital angular momentum with

magnitudes y2 < 0.8. This work was published in Ref. [68].

Chapter 7 shows that ringdown predictions from second-order perturbation theory
can be found in the ringdown of NR waveforms and exhibit the expected behavior

of a second-order perturbation. This work was published in Ref. [72].
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Chapter 2

COMPUTATION OF DISPLACEMENT AND SPIN
GRAVITATIONAL MEMORY IN NUMERICAL RELATIVITY

K. Mitman, J. Moxon, M. A. Scheel, S. A. Teukolsky, M. Boyle, N. Deppe, L. E.
Kidder, and W. Throwe, Phys. Rev. D 102, 104007 (2020) 10.1103/PhysRevD.
102.104007,

2.1 Abstract

We present the first numerical relativity waveforms for binary black hole merg-
ers produced using spectral methods that show both the displacement and the spin
memory effects. Explicitly, we use the SXS Collaboration’s SpEC code to run a
Cauchy evolution of a binary black hole merger and then extract the gravitational
wave strain using SpECTRE’s version of a Cauchy-characteristic extraction. We find
that we can accurately resolve the strain’s traditional m = 0 memory modes and
some of the m # 0 oscillatory memory modes that have previously only been theo-
rized. We also perform a separate calculation of the memory using equations for the
Bondi-Metzner-Sachs charges as well as the energy and angular momentum fluxes at
asymptotic infinity. Our new calculation uses only the gravitational wave strain and
two of the Weyl scalars at infinity. Also, this computation shows that the memory
modes can be understood as a combination of a memory signal throughout the bi-
nary’s inspiral and merger phases, and a quasinormal mode signal near the ringdown
phase. Additionally, we find that the magnetic memory, up to numerical error, is
indeed zero as previously conjectured. Lastly, we find that signal-to-noise ratios of
memory for LIGO, the Einstein Telescope (ET), and the Laser Interferometer Space
Antenna (LISA) with these new waveforms and new memory calculation are larger

than previous expectations based on post-Newtonian or Minimal Waveform models.

2.2 Introduction

As has been understood since the early 1970s [1-4], when gravitational waves
(GWs) pass through the arms of a GW detector, a persistent physical change to the
corresponding region of spacetime is induced as a result of the transient radiation.
Originally, this effect, which is referred to as the memory effect or just memory,

was found by studying the fly-by behavior of two compact astrophysical objects that
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travel to asymptotic infinity as t — +co on timelike paths [1]. Later, it was realized
that the memory effect also occurs when null radiation travels to asymptotic null
infinity as r,t — +oco at a fixed Bondi time u = ¢ — r [3]. Originally, these two
unique contributions to memory were called linear memory and nonlinear memory!
because of the order of the metric’s perturbative expansion that was used to calculate

each of the independent memory contributions.

Recently, the memory effect was realized to be the element needed to extend the
Poincaré conservation laws to the infinite number of proper Bondi-Metzner-Sachs
(BMS) conservation laws [5-8], which correspond to the various BMS and ex-
tended BMS transformations [9-17], i.e., supertranslations, superrotations, and
superboosts.? Unlike the ten Poincaré conservation laws, which equate the change
in the Poincaré charges to the corresponding energy and momentum fluxes, the BMS
conservation laws state that the change in the BMS charges minus the corresponding

fluxes? is exactly the memory effect, i.e.,

Change in BMS charges — BMS fluxes = Memory. 2.2)

Early studies of gravitational memory focused on the type of memory corresponding
to supertranslations and supermomentum, which is called displacement memory.
We follow [6] and [7] and refer to the other memory effects, which are related to
superrotations and superboosts, as the spin and the center-of-mass (CM) memory
effects. While the displacement memory is the most prominent in the strain of a
gravitational wave, the spin and CM memory effects can most easily be noticed in the
time integral of the strain. Physically, displacement memory is related to a change in
a GW detector’s arm length [1-4], while the spin memory relates to the relative time
delay that would be acquired by counter-orbiting objects, e.g., the particle beams in
the Large Hadron Collider or a freely falling Sagnac interferometer [6]. The CM

memory, by contrast, corresponds to the relative time delay that would be acquired

! Also known as Christodoulou memory [3, 4].

ZFormally, superrotations and superboosts, which are the two types of super-Lorentz transfor-
mations, can be realized as the |m| > 2 elements of the Virasoro algebra (an extension of the more
common MGobius transformations, i.e., PL(2, C)), just as supertranslations can be viewed as the
| > 2 spherical harmonics. These super-Lorentz transformations, though, which form the extended
BMS group, do not preserve asymptotic flatness.

30ften, the BMS conservation law is written as

Change in BMS charges — BMS fluxes = 0, 2.1

where the “BMS flux” is understood to have two contributions: “hard” and “soft,” with the hard
contribution being the flux in Eq. (2.2) and the soft contribution being the memory in Eq. (2.2).
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by objects on antiparallel paths [7]. As an example, for two particles bouncing
back and forth in a Fabry-Perot cavity, if a gravitational wave propagates at an angle
through the cavity, then the particles will acquire a relative time delay given by the
CM memory.

Furthermore, because the various memory effects are now known to be calculable
from BMS flux-balance laws, both of the previous classifications of linear and
nonlinear contributions have been renamed to be more indicative of what they
represent. Instead, the two contributions to each of the three memory effects are
now referred to as the ordinary memory and the null memory. Moreover, the modern
nomenclature also avoids potential confusion about which types of terms should be
included in each memory effect because whether a particular effect appears linearly
or nonlinearly varies with the perturbation theory that is being considered [18].
As one might expect, for the most common sources of observable GW radiation,
1.e., binary black holes (BBHs), the displacement memory is the most prominent,

followed by the spin memory, and then the center-of-mass memory [7].

Over the past few years, there have been many studies of whether current or future
GW detectors could measure the displacement and the spin memory effects [19-24].
These previous studies, however, used approximations of the memory since earlier
calculations of the memory in a BBH merger have, until now, been incomplete.
For one, the waveforms produced by numerical simulations using extrapolation
techniques have been unable to resolve the primary m = 0 memory modes and
have also failed to produce the expected memory in certain oscillatory m # 0
memory modes.* Apart from this, previous calculations of memory have used
post-Newtonian (PN) approximations or have tried to compute an effective memory
using the available numerical waveforms through various kinds of postprocessing
techniques [19, 22, 26, 27].

So far, PN approximations have been computed for the modes contributing to the
displacement memory through 3PN order, through 2.5PN order for the spin memory,
and even through 3PN for the CM memory [7, 19, 20]. However, the memory effect
is predominantly accumulated during the merger phase of a BBH coalescence, in
which most of the system’s energy and angular momentum are radiated by GWs.

Because PN theory cannot capture the merger phase of a BBH coalescence, we must

4While the strain (2, 0) mode, which is the primary contributor to the displacement memory, has
been resolved previously [25], the code used in this work was much more computationally expensive
and thus could not easily run longer simulations required to accurately resolve the other memory
effects.
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instead use numerical relativity (NR) simulations to calculate the displacement,

spin, and CM memory effects.

As already mentioned, previous numerical relativity simulations have been unable
to extract the three unique memory effects for a variety of reasons [19]. For one,
numerical relativity simulations of BBH mergers typically compute the strain on
concentric finite-radius spheres and then extrapolate the strain to future null infin-
ity using a collection of fits. While this procedure is adequate for computing the
main strain modes, it unfortunately does not produce waveforms that accurately
resolve the modes responsible for illustrating the various memory effects. As a
result, even though approximate calculations of the memory in the strain can be
performed using waveforms that have been computed thus far, they will nonethe-
less be incomplete since they fail to include the next-order memory contributions
from the fluxes induced by the memory modes themselves. Furthermore, many of
these postprocessing computations of the memory use only the primary waveform
modes—often just the (2,2) mode—instead of every mode. This is because, before
this work, there has not been a method for fully computing the memory from every

mode of a waveform.>

As a part of this study, we present the first successful resolution of the modes
that contain memory by using the Simulating eXtreme Spacetimes (SXS) Collab-
oration’s older and newer codes, SpEC [28] and SpECTRE [29]. Explicitly, we use
Cauchy-characteristic extraction (CCE) to evolve a world tube produced by a Cauchy
evolution to asymptotic infinity, where we extract many observables, most impor-
tantly the strain [30]. With CCE, we find that we can resolve many of the m = 0
and m # 0 modes that contribute to the displacement and spin memories. Through
this, we observe that not only do CCE waveforms surpass extrapolated waveforms
in terms of resolving the displacement memory, but they also exhibit a spin memory
that is roughly twice as much as what is seen in the extrapolated waveforms [20].
Furthermore, we compare the displacement and spin memory modes to the memory
computed from the numerical waveforms using the new memory equations pre-
sented in this paper. We find that the two agree exceptionally well, which implies
that the CCE waveforms obey the BMS flux-balance laws to a rather high degree of

accuracy. We also briefly discuss the CM memory’s formulation in Sec. 2.3.2.3 and

>In [22] a procedure using the result of [4] was presented for computing just the displacement
memory using all of the modes of a strain waveform. However, this method was only used on
extrapolated waveforms, which exhibit no displacement memory, and thus fails to accurately capture
the “memory of the memory”, i.e., the memory induced by the memory modes.



26

its presence in our numerical results in Appendix 2.C.

2.2.1 Overview

We organize our computations and results as follows. Using Einstein’s field equa-
tions, we compute expressions for the displacement and spin memory in Secs. 2.3.1
and 2.3.2, which are valid in asymptotically flat spacetimes. Moreover, we write
these expressions in terms of the observables that are explicitly produced by SXS’s
CCE. We also provide a few brief comments on the CM memory in Sec. 2.3.2.3, but
not a complete mathematical expression. Following this, in Sec. 2.4.1, we describe
certain aspects of CCE and outline the choices that we make to produce memory
results that agree with post-Newtonian theory. Note, we explore the features of CCE
further in Sec. 2.4.8. Continuing to our numerical results, in Sec. 2.4.2, we then
illustrate how well our extracted observables comply with the BMS flux-balance
laws that we compute in Sec. 2.3.2. Next, in Secs. 2.4.3,2.4.4, and 2.4.5, we present
the results for five numerical simulations covering combinations of equal and un-
equal masses, spinning and nonspinning, and precessing and nonprecessing, whose
parameters are outlined in the introduction of Sec. 2.4. We not only show the suc-
cess of CCE in resolving the modes that express memory effects, but also compare
them to the memory that is expected according to our calculations in Sec. 2.3.2.
Furthermore, in Sec. 2.4.6, we show that during ringdown, the most prominent
memory modes can be accurately modeled as a sum of the null memory contribu-
tion and the corresponding quasinormal modes (QNMs) of the remnant BH. Finally,
in Sec. 2.4.7, with these results we then compute signal-to-noise ratios (SNRs) for
LIGO, ET, and LISA and thus provide estimates on the measurability of both the
displacement and the spin memory effects. We also provide computations of the
Bondi mass aspect and the Bondi angular momentum aspect in Appendixes 2.A
and 2.B in terms of the strain and the Weyl scalars ¥, and ¥;. Appendix 2.C gives
an informal presentation of a mode of the strain that exhibits the CM memory effect.

2.2.2 Conventions
We set ¢ = G = 1. When working with complex dyads, following the work of

Moxon et al. [30], we use

ga =—(1,isin®) and g* = —(1,icsc ), (2.3)
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and denote the round metric on the two-sphere as g 4p. The complex dyad obeys the

following properties

_ 1 _ _
qaq* =0, qaq"* =2, gap = 5(44d5+dagp). (2.4)

We built spin-weighted fields with the dyads as follows. For a tensor field Wa...p,

the function
W= WA...Bc...DqA . _qu—C cee (iD (25)

with m factors of ¢ and n factors of g has spin-weight s = m —n. We raise and lower

spins using the differential spin-weight operators & and d,

OW = (DgWa..5c.p)q* - ¢%3¢ - - 3" 4F, (2.6a)
W = (DgWa..pc.0)q” - ¢%GC¢ ... q"°g". (2.6b)

Here, D, is the covariant derivative on the two-sphere. The & and & operators in

spherical coordinates are then

OW (0, ¢) = —(sin )" (g +icscHdy)

[(sin®)*W(0, )], (2.7a)
dW (0, ¢) = —(sin0) 5 (dy — i csc 004)
[(sin®)*W (6, ¢)]. (2.7b)

Thus, when acting on spin-weighted spherical harmonics, these operators produce

3(sYem) = +V(L =) (£ + 5+ 1), Yem, (2.8a)
3(Yem) =~V +8) (£ —5+1),_Yem. (2.8b)

As aresult, for f(6, ¢) an arbitrary spin-weight O function, the spherical Laplacian
D? is then given by

D*f (6, ¢) =31 (0,¢) =35f(6, ¢). (2.9)

Last, for our comparisons to PN computations, we use the polarization convention
that coincides with Kidder [31], rather than Blanchet [32], since most PN calcula-

tions of the memory make this choice as well [19, 20].

2.3 Description of Memory
We now review the mathematical formulation of the memory effects and extend

previous results to be more relevant for calculations in numerical relativity.
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2.3.1 Bondi Framework

We begin by reviewing a few of Einstein’s equations for the asymptotically flat
Bondi-Sachs metric to obtain relationships between conserved charge quantities
and memory-contributing terms. We closely follow the work of Flanagan and
Nichols [33], but we only consider a vacuum spacetime. We extend their results
by computing the memory contribution to the gravitational wave strain, i.e., the
quantity that is extracted in numerical relativity and currently measured by GW

detectors.

Consider retarded Bondi coordinates, (u, r, 0!, 02), near future null infinity, where
u =t — r. For such a system, the metric of arbitrary asymptotically flat spacetimes

can be written in the form

ds® = ~Ue*Pdu?* — 2¢*Pdudr
+r2yap(d6? — UAdu) (d6® — UBdu), (2.10)

where A, B € {1, 2} are coordinates on the two-sphere, and U, 3, UA, and YApB are

functions of u, r, and 4. Here we apply the four gauge conditions

gr =0, g4 =0, and det(ysp) = det(qap), (2.11)

where g, is the metric of four-dimensional spacetime. We now expand these metric

functions as series in 1/r to relevant orders, which gives

om 2
U:l——m——/;/(+0(r_3), 2.12)
r r
ﬁ:@+@+@+0(r—4), (2.13)
ror2
vt 1y 2 1
WA I _NA _DA C CBC
2t TN g (o)
1
+ ECABDCCBC +0(r™), (2.14)
Ciap Dus E
YAB = qap+ =+ =30+ = +0(7), (2.15)

where the various coefficients on the right-hand sides are functions of (u, QA) only,
and g4p(67) is the metric on the two-sphere, i.e., gag(6, #) = d6? + sin® 6 dp>
in ordinary spherical coordinates. The three most important functions above are:
the Bondi mass aspect m, the Bondi angular momentum aspect N A and the shear
tensor C4 g, whose retarded time derivative is the Bondi news tensor Nag = 0,,Cap.

The Bondi mass aspect is related to the supermomentum charge while the angular
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momentum, once a few extra terms are included,® corresponds to the super-Lorentz

charges [8]. Applying the gauge conditions in Eq. (2.11) produces the constraints

q*BCap =0, (2.16)
1

Dyp = ZQABCCDCCD + Dyp, (2.17)
1

Eap = EC]ABCCDDCD +Eas, (2.18)

where D4 p and E4p are two arbitrary traceless tensors.

Finally, we consider Einstein’s equations. By computing the O(1/r?) terms of the

uu part of the evolution equation for the Bondi mass aspect, we find

1 1
m = —gNABNAB + ZDADBNAB. (2.19)

Equation (2.19) is identical to the central result of [9], which outlines the link

between a system’s news and mass loss.” If we integrate and reorder this equation,

we obtain

%DADBCAB =m +4n8, (2.20)
where

&= % / NagNABdu (2.21)

is just the energy that is radiated per unit solid angle. Equation (2.20) represents one
of the two BMS flux-balance laws that we will examine. The first term corresponds
to the memory appearing in the shear. The second term, which relates to the
ordinary memory contribution, can be understood as the change in a BMS charge—
specifically, the supermomentum charge. The third term, which can be viewed as
the null memory contribution, is a flux—specifically, an energy flux. We now repeat

the calculation performed above, but for the angular momentum aspect.

Computing the O(1/r?) terms of the uA part of the evolution equation for the
angular momentum aspect produces an equation similar to that of Eq. (2.19),

. 1 1
Ni=Dam+ ZDBDADCCBC - ZDZDBCAB

1 1
+7D 5(CacNBC) + 5CacD sNBC. (2.22)

®Extra terms are needed because the angular momentum aspect cannot explicitly be related to
one of the conserved BMS charges; see Sec. 2.3.1 for a further explanation.

"The reason why the DADBN 45 term was not important in [9] is because they integrated their
version of Eq. (2.19) over the sphere, which kills this term because its £ = 0, 1 modes are zero.
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However, the terms in this equation cannot as clearly be classified as “memory-
like,” “ordinary-like,” and “null-like,” analogous to those appearing in Eq. (2.19)
or (2.20). Therefore, before we compute the memory, we must first rewrite Eq. (2.22)
in terms of the function N, which can be thought of as an angular momentum that
corresponds to the conserved super-Lorentz charges. We henceforth call Ny the
angular momentum aspect rather than N4. According to Flanagan and Nichols’s [33]
Eq. (3.11), N, is

]VA = NA —uDAm

1 1
T A4(CpeCBCy — ZCABDCCBC . (2.23)

Using Eq. (2.22) in the retarded time derivative of Eq. (2.23) produces the result

=~ 1
auNA = Z(DBDADCCBC - DZDBCAB)

1 1
+ ZDB(CAcNBC) + ECAcDBNBC

1 1
- gDA(CBCNBC) - ZNABDCcBC

- %CABDCNBC — uD arit
= %(DBDADCCBC — D*D®Cyp)
_ (%NABDCCBC - gCABDCNBC)
_ (éNBCDBCAC - %CBCDBNAC)
— uD prit. (2.24)

For the second equality, we have used

NBCDACBC = NBCDBCAC + NABDCcBC, (2.25)
CBCDANBC = CBCDBNAC + CABDcNBC. (226)

Finally, using the angular momentum aspect, we may write the evolution equa-
tion (2.22) as

1
Z(DBDADCCBC - D?DBCyp)

= 9u(N4 + 87 T4) + uD ari, (2.27)
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where

. 1
I = e (BNagDcCBC = 3C4 5D NEC)

— (NBCDpCac — CBCDpN4c) (2.28)

is the retarded time derivative of the angular-momentum radiated per unit solid
angle. Akin to Eq. (2.20), we have written Eq. (2.27) so that the first, second, and
third terms on the right-hand side of the equation correspond to the memory that can
be found in the shear as well as the ordinary and null memory contributions. As we
will show next, Eq. (2.20) produces the displacement memory while its counterpart,
Eq. (2.27), produces the recently discovered spin memory. While we do not present
an explicit equation for the CM memory effect, Eq. (2.20) can be shown to contain

terms that relate to the CM memory (see Sec. 2.3.2.3 for more explanation).

2.3.2 Computation of Memory

Consider a spacetime in which the flux of energy and angular momentum to future
null infinity vanishes before some early retarded time u, so that the news tensor N4
and the stress-energy tensor vanish there as well. Further, assume that sometime
thereafter there is emission of gravitational waves, and that these fluxes again vanish
for times after some u, > u;. The displacement memory is the effect that a pair of
freely falling, initially comoving observers will then be able to observe a nonzero
change in their relative position. This change is determined by changes to the

spacetime of order 1/r and is given by a function known as the memory tensor,
ACyp = Cap(uz) — Cap(uy). (2.29)

Here, we use the notation Af = f(us) — f(u;) where f is some function of Bondi

time.

We now write the memory tensor as the sum of an electric and a magnetic component.
Motivated by how one may write a vector field on the two-sphere as the sum of a

gradient (“electric”) and a curl (“magnetic”’)®, we have
1
ACap = (DaDp - 5q;ABDZ)Aq) +ec(aDp DEAY, (2.30)

where A® = ®(uy) — ®(u;) and AY = ¥(uy) — W(u;) are scalar functions that
represent the electric and magnetic components of the displacement memory and

€ap 1s just the Levi-Civita tensor on the two-sphere.

Si.e., Va= DA(I) + EABDBlP.
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Because our Cauchy-characteristic extraction extracts the strain 4, we now rewrite
the BMS flux-balance laws, i.e., Egs. (2.20) and (2.27), in terms of this observable.
Using the complex dyad introduced previously in Sec. 2.2.2, we construct the strain
as a spin-weight —2 quantity:

=2 Cas =3 Y hom2Yin(0,9). (2.31)

=2 |m|<t

Here we are only considering the 1/r part of the strain. Generally the strain is
computed using the full metric at asymptotic infinity—namely, 2 = 1§42y 5.
However, the 1/r part of the strain is the only observable component at future null

infinity and thus all we need to consider.

We now use Eqgs. (2.20) and (2.27) to compute the memory AJ. But, to simplify this
work we first write the memory in terms of its electric and magnetic components,
ie., AJ = AJE + AJB) where

1
E) _ L -A=-B ~(E)
AJE) = "3 AC, (A®)

1 4 1
=-q"¢" [(DADB - EQABDZ)ACD]

2
= +%62Ad>, (2.32a)
1
a1® = Sgh g ACi] (M)
1,
= EquB [Ec(ADB)DCA\P]
1.,
= —5i0°AY. (2.32b)

We reserve the letter J to represent observables that we calculate using functions
extracted from our simulations, such as the strain /4, the news /, or the Weyl scalars.
2.3.2.1 Electric Memory

The electric component of the memory is the piece that arises from the scalar

function A®. Using Eq. (2.30), the memory term in Eq. (2.20) becomes
%DADBACAB = %(1)4 — 2D [D, D] D®)AD

- é(z)4 +2D%gagD®)AD

= %DZ(DZ +2)AD

= DAD, (2.33)
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where

D =-D*(D*+2). (2.34)

1
8
In computing Eq. (2.33) we have used the fact that [D 4, Dg|D® = —gApD® on
the two-sphere and used symmetry/antisymmetry to remove the dependence on the
magnetic term A¥. We act on Eq. (2.33) with D! to obtain an expression for A®.
But, because © maps the £ = 0, 1 modes to zero, D~1’s action on these modes is
ambiguous. Therefore, to avoid this complication we construct D! so that it maps
the £ = 0,1 modes to zero. Note that this choice has no effect on the strain since
it is a spin-weight —2 function, and will thus be independent of these modes. By
acting on Eq. (2.33) with D! and combining the result with the expression from
Eq. (2.20), we then obtain

1 U
AD =D |Am +4n (— / NapNAE du)] . (2.35)
32r Jy,
Using
1 -
Cap = E(QAC]Bh +Gaqgh), (2.36)

which follows from the symmetric, trace-free condition of the shear tensor, we find

that we may write Eq. (2.35) as

AD = D!

u
Am+4n(%/ hf_zdu)]. (2.37)
uj

T

Thus, the electric component of the memory can readily be found by combining the
results of Egs. (2.32a ) and (2.35),

Ar® = Lypt
2

1 “a .
Am + — / hh du] , (2.38)
4 U

with the Am term as the ordinary contribution and the hih term as the null contribu-
tion. Equation (2.38) could also be written with 32 since this operator is equivalent
to %6220‘1 when acting on spin-weight O functions. But, we choose to use D for
numerical purposes. At this point, it remains to compute the Bondi mass aspect
in terms of the strain and the Weyl scalar ¥;. As is shown in Appendix 2.A, by
Eq. (2.65), the result one obtains is

m = —Re

l.-
Y, + Zhh] , (2.39)

where Re denotes the real part.
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2.3.2.2 Magnetic Memory

To compute the magnetic memory, we use Eq. (2.27) and proceed in a similar
manner to the above calculation of the electric memory. By replacing C4p with
ACap, Eq. (2.27) can be written as

1
7(DsD aDcACEC — D2DBAC,p)
- A[au(ﬁA +874) +uD arit. (2.40)

Using Eq. (2.30) in Eq. (2.40) and making use of the identity D ,[D* DAJAY =
D?(2D*+1)AY, which follows from D 4 [ D*, DB] £ (0, ¢) = DADB(2D?*+1) £ (6, ¢),

we obtain
1
Z(D 8D ADcACEC — D2DBACAp) = eAc DE DAY, (2.41)

Note that the electric component A® vanishes because of various commutation

relations similar to the one above. Therefore, we have the relation
escDEDAY = A [au(ﬁA +87.94) +uD Am] . (2.42)

If we now contract Eq. (2.42) with the function e*8Dp, since €48 = %i (¢4g® -

g% ¢®), we obtain
DD2AY = Ae*P Dy [au (N4 +87.54) +uD Am]
— Alm [6@ (N + sn?)] : (2.43)
where Im denotes the imaginary part and

NEC[A]VA and 9 = quA. (2.44)

Note that the Bondi mass aspect term drops out because of the commutativity of the
covariant derivatives when acting on a scalar function and the antisymmetry of the
Levi-Civita tensor. Consequently, by acting on Eq. (2.43) with D~!D~? and using
Eq. (2.28) we have

A¥ = D' D2AIm [wu (N + 87r7)] (2.452)
= 1
= SD‘ID‘ZAIm{ES((?uN) + §6ch
[(3NABDCCBC ~3CapDcN5)

— (NBCDyCyuc — CECD BNAC)] } (2.45b)
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Expressing the angular momentum flux quantities on the right-hand side in terms

of the observable & gives

NagDcCPC =Re[qahdh), (2.46a)
CapDcNEC = Re[qahdh], (2.46b)
NEC€DyCyc = Re[qahBh], (2.46¢)
CBCDgNac = Re[qahdh], (2.46d)

Thus, by combining everything together and using the result of Eq. (2.32b ), we find
1 - .
AJB) = §i6sz_ID_2AIm{6(0MN)
1 —= Lo s ——.
e [6(3h6h — 38k + hSh - h6h)] } (2.47)

Next, we need the angular momentum aspect in terms of the strain and the Weyl

scalar ;. As is shown in Appendix 2.B, by Eq. (2.79b ), the result one obtains is
- ~ — . 1- —
Im [6(auN)] — Im {26‘{‘1 -8 [au(héh)]} . (2.48)

As is illustrated by either Eq. (2.45a) or (2.47), the magnetic component of the
memory is the total derivative with respect to retarded time of some scalar function,
whereas the electric component of the memory contains terms that are either net
changes, i.e., the Am term, or retarded time integrals, i.e., the kl;a term. Consequently,
since the magnetic memory does not have such terms, one might presume that the
magnetic memory vanishes, i.e., that the net change in the magnetic component of
the strain is zero. Currently, this is unknown [18, 33-35]. But, it is known that the
retarded time integral of the magnetic memory does not vanish; this is what we refer
to as the spin memory effect. We explore the conjectured vanishing feature of the

magnetic memory in Sec. 2.4.4 and the spin memory in Sec. 2.4.5.

Equipped with both Egs. (2.38) (the electric memory) and (2.47) (the magnetic
memory), we may now compute the electric and magnetic memory contributions
to the strain by expressing each of these functions as a sum over spin-weighted

spherical harmonics and acting with the inverse operators accordingly,

D Y = [-€(€+ 1) Y, (2.49a)
-1
DY = %(5 —DEEL+1)(E+2)| Yo (2.49b)
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We thus obtain the spin-weighted spherical harmonic representation of the memory

AJ(0,8) = ) D Alem 2Yen (6, 9), (2.50)

=2 |m|<t
which we can use to compare the memory modes to those of the CCE extracted

strain produced in our various numerical relativity simulations.

2.3.2.3 CM Memory

Finally, we now illustrate how one can realize that Eq. (2.38) contains terms con-

tributing to the CM memory. According to Eq. (2.42), we have
~ 1 )
ANy = geACDC DAY — 87AGH — uD A Arir. (2.51)

If we then contract this equation with D# and take the real part of the entire equation,

we obtain

8,Re(dN) = —87Re(8.F) — uD*m
= —87Re(39) — 8,(uD’m) + D*m, (2.52)

since the Bondi mass aspect term is a purely real quantity. By rearranging this
equation and then entering the results back into the ordinary part of Eq. (2.38), we

obtain

1-
AJE) = 56220"A{ (m + urm)+

ordinary
8,D~’Re [6(1V + 87rj)] } (2.53)

When written in this manner, it is now clear how the ordinary part of the electric
memory can be realized as containing terms involving the retarded time derivative
of the real part of the super-Lorentz charges, which are a part of the N term, and the
angular momentum flux. Even though this is somewhat trivial since we have simply
changed the Bondi mass aspect by a function that is zero, Eq. (2.53) nonetheless
illustrates how the ordinary part of the electric memory can be broken up into not
only a displacement contribution (the first two terms), but also the time derivative
of a CM contribution (the terms with the g, in front of them). To obtain the full
expression for the CM memory, the remaining component that is needed is the null
contribution, which can, in principle, be extracted from the energy flux. Joining this
component with the ordinary CM memory contribution in Eq. (2.53) gives the full
expression for the CM memory in terms of its ordinary and null parts. We explore

the CM memory further with numerical results in Appendix 2.C.
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2.4 Results

We now compute the electric and magnetic components of the memory for various
binary black hole simulations run using the code SpEC. Each of these merger
simulations corresponds to an entry in the public SXS Catalog [28] and collectively
encompasses both equal and unequal masses, spinning and nonspinning black holes,
and configurations that are either precessing or nonprecessing. We provide the main

parameters of these simulations in Table 2.1.

Table 2.1: Primary parameters of the various BBH mergers analyzed in this paper.
We use the mass and effective spin values that are obtained at the simulation’s
relaxation time [28]. While these are the runs that we show in this paper, many others
have been used to understand and refine our conclusions. The spin vectors of 1389
are y1 = (—0.2917,+0.2005, —0.3040) and y, = (—0.01394, +0.4187,+0.1556).

SXS:BBH: Classification M;/M, Xeff Norpits

1155 Nonspinning  1.000 +2.617 x 107 40.64
0554 Nonspinning ~ 2.000  +4.879 x 107>  19.25
1412 Spinning 1.630  +1.338x 107! 145.1
1389 Precessing  1.633 —1.293x 107! 140.4
0305 GW150914 1221 -1.665x 1072 15.17

Each simulation produces a GW strain computed by Regge-Wheeler-Zerilli (RWZ)
extraction at a series of spheres of finite radius and then extrapolates the strain to
future null infinity [28]. This is the strain that can be found in the SXS Catalog.
Like Pollney and Reisswig [25], we find, however, that this method for constructing
the strain does not seem to be able to resolve the memory. Consequently, we instead

compute the strain using CCE.

Fortunately, each of our BBH simulations also produces the metric and its derivatives
on a series of world tubes, where each world tube is a coordinate two-sphere dragged
through time that provides the inner boundary conditions for the CCE module from
the code SpECTRE [29, 30]. We use this CCE module to explicitly compute the strain
h at future null infinity. Note that we use the variable / to represent the strain thus
obtained from CCE, while the variable J has been reserved for the strain computed
from the BMS flux-balance laws. These should be identical in the absence of
numerical error. Furthermore, unlike earlier implementations of CCE that exhibited
the resolution of the strain (2, 0) mode [25], the SpECTRE CCE module computes

the strain directly, like [36]. Consequently, there is no need to compute the news
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Figure 2.1: Comparison of the strain computed by CCE versus RWZ extraction
followed by extrapolation to future null infinity, for several spin-weight —2 spherical
harmonic modes of the SXS simulation SXS:BBH:0305. On each plot, we show
the interval over which the hybridization between CCE and PN is performed, i.e.,
before this interval the waveform is purely from a post-Netwonian calculation while
after this interval the waveform is purely from numerical computations. In the

bottom row of each plot we provide the residuals and an estimate of the error in the
CCE waveform, |h2,CE) - hCCE)l where h&CE)
of SXS:BBH:0305 and h(cé,CE) is the next highest resolution waveform for the same
binary system. We align the waveforms in both time and phase around upeax, which

is where the L2 norm of the strain achieves its maximum. See Table 2.1 for the
parameters of SXS:BBH:0305.

is the highest resolution waveform

first and then integrate it with respect to retarded time, which could introduce errors

from the choice of integration constants.

Within the SXS Catalog, most of the BBH simulations follow only a few tens of bi-
nary orbits. PN computations of memory, however, include effects that are obtained
by integrating over the waveform starting at u — —oo. Accordingly, we hybridize
the numerical strain obtained from CCE with a PN waveform corresponding to
the same BBH merger (see Sec. 2.4.8) using the python packages GWFrames and
Post-Newtonian [37, 38]. When using Post-Newtonian, we also modified the
code to include memory terms up to 3PN order. With this scheme, we find that we
can resolve the traditional and most prominent m = 0 memory modes, as well as

other m # 0 modes that exhibit both the displacement and spin memory effects.

Last, it should be noted that we primarily use the python package scri to perform
our analysis [39-42].



39
2.4.1 CCE vs Extrapolation

We first compare the strain that we compute using two distinct extraction methods:
(1) RWZ extraction followed by extrapolation to future null infinity and (2) CCE
plus a PN hybridization. In Fig. 2.4.1. we compare three different spin-weight —2
spherical harmonic modes of the strain for the numerical simulation SXS:BBH:0305,
which is a simulation of GW 150914 (see Table 2.1). We compare the (2, 2), (2,0),